PRACTICAL

OCTOBER 1975
$35 p$

開 when ,

IARIH $\overbrace{\text { Hich }}^{\text {marriek. }}$

RTROMASOMTE electronics

Dept 2. 56. Fortis Green Road Muswell Hill, London. N10 3HN telephone: 01~883 3705

CONSTRUCTIONAL PROJECTS

P.E. ENGINE ANALYSER by D. Haley
Provides most of the needs for the economy minded motorist 796
DIGITAL WRISTWATCH
Assembling the Sabchron L.E.D. wristwatch 802
ENVELOPE SHAPER by E. F. Flint
A simple-to-build shaper with full ADSR facilities 810
CONSTANT CURRENT LOAD
A loading unit for power units and amplifiers 825
LIGHT MODULATION UNIT by S. R. Beeching
A two-channel sound to light effects system 828
GENERAL FEATURES
SEMICONDUCTOR UPDATE by D. W. Coles A review of interesting devices 812
MICROPROCESSORS-1 by V. E. Yates
A detailed look into this important new technology 816
INGENUITY UNLIMITED
Car Alarm-Simple Timer-Pulse Generator-Frequency Doubler-
VCO Circuit-Short Circuit Protection-Signal Indicator with Memory 834
NEWS AND COMMENT
EDITORIAL—Micro Master Minds 795
NEWS BRIEFSA Stitch In Time-TV Innovations-Going Dutch-Talking to Computers-Solar Cells-British Instrumentation806, 843
SPACEWATCH by Frank W. HydeEarthquakes-Soviet Activities809
INTERNAVEX '75
Some of the highlights of this years Audio/Visual show 815
APRS '75 821
BOOK REVIEWS
Selected new books we have received 823, 832INDUSTRY NOTEBOOK by NexusWhat's happening inside industry833
PATENTS REVIEW
Looking at Car Mirror Defrosting and a Rescue Transmitter/Receiver 841
READOUT
A selection of readers' letters 842
FREE ENTRY COMPETITION
HOW INVENTIVE ARE YOU?Your last chance to win a Big Cash Prize822

SPECIAL FREE DATA SHEET INSIDE THIS ISSUE

LINEAR I.C. IDENTICHART

At-a-glance functional equivalents of linear i.c.s.

Our November issue will be published on Friday, October 10, 1975
(for details of contents see page 824)

[^0]
Connoisseur

THE B.D. 2 TURNTABLE ASSEMBLY

The Famous B.D. 2 belt drive turntable with press button speed change has now been developed to feature a newly designed mat and brushed aluminium trim, and the perspex cover has an easy 'hinged-on, hinged-off' movement. The B.D. 2 is available as a chassis unit or spring mounted on a wood plinth.

B.D.I TURNTABLE KIT

The B.D.I well known for its superb performance and quality is available in kit form. Construction is simplicity itself with no soldering required. Now it's so easy to own the best.
Contact your dealer for information or send a stamp for brochure.
A. R. SUCDEN \& CO. (ENCINEERS) LID

Atlas Mill Road, Brighouse HDG 1 ER Telephone: Brighouse (04847) 2142. Telegrams and cables: Connoiseur, Brighouse

$4 \frac{1}{2}$ in $\times 3 \frac{1}{4}$ in METER. $\quad 30 \mu \mathrm{~A}$. $50 \mu \mathrm{~A}$ or $100 \mu \mathrm{~A}, £ 3,85$. I3p P. \& P
 RECORDER LEVEL METER
500μ A. 70 p. 10 P P. \& P

CARDIOID

 DYNAMIC MICROPHONEModel UD-I30. Fre. quency response 50 $15,000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50 K and 600 ohms. 67.40. 13p P. \& P
$42 \times 42 \mathrm{~mm}$ meters $100 \mu \mathrm{~A}, 500 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 500 \mathrm{~mA}, \underset{2.76}{ } .11 \mathrm{p}$ P. \& P.
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $500 \mu \mathrm{~A}$ and 1 mA VU meter, $\mathbf{6 2 9 2}$. Ifp P. \& P.

Edgewise meters $90 \mathrm{~mm} \times 34 \mathrm{~mm}$ ImA, 63•40. I3p P. \& P.
MULTI.
METER
Model ITI-2
$20,000 \mathrm{ohm} /$
vole, £6.90.
$16 \frac{1}{2} \mathrm{P} P . \& \mathrm{P}$.

3 WATT STEREO $\left(1 \frac{1}{2}+1 \frac{1}{2}\right)$ PER CHANNEL AMPLIFIER \&4.30. $12 \frac{1}{2}$ P P. \& P.

All above prices include V.A.T. LARGE S.A.E. for List No. Il. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate - Bolton - Lancs. BL2 IBA

ENGINEERS

Do you want promotion. a bellet pb. hither pay New Opportunities shows you how 10 get them through a low-cost home sludy course There are no books to buy and you can pay-lisyou-learn

Enough books are written about crime, this one stops it.

Outside it's a book. Inside it's an ingenious ultrasonic burglar alarm from Heathkit. The GD-39.

A complete kit that can be assembled in only a few enjoyable hours, with the help of a very easy to follow instruction manual.

The GD-39 works by transmitting a silent, ultrasonic signal throughout the room. And continuously monitoring it. Any movement made by an intruder in the room will then automatically produce a change in the signal. Which triggers off a lamp and, thirty seconds later, a remote buzzer. that just you hear: or a loud bell.

Enough to scare the living daylights out of a burglar.
For more details and a bookful of other ideas, just post the coupon now for your Heathkit catalogue.

Or. if youre in London or Gloucester, call in and see us. The London Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showrowm is next to our factory in Bristol Road.

Heath (Gloucester) Limited,
Dept. PE-105. Bristol Road, Gloucester GL2 6EE. Tel: (0452) 29451.

The GD- 39
Ultrasonic Burglar Alarm

B. BAMBER ELECTRONICS
 5 STATION ROAD, LITTLEPORT, CAMBS., CEG 1QE Telephone: ELY (0353) 860185 (2 Ines) Tuesday-Saturday

II) IL.P. (tesetronemese

SHEER SIMPLICITY!

MONO ELECTRICAL CIRCUIT DIAGRAM WITH INTERCONNECTIONS FOR STEREO SHOWN

The HYS is a complete mono hybrid preamplifler, ideally suited for both mono ane stereo applications internally the device consists of two high quality amplifiers-the first contains irequency equalisation and gain correction while the second caters for tone control and balance.

TECHNICAL SPECIFICATION
Inputs: Magnetic Plek-up 3 mV RIAA: Ceramic Pick-up 30 mV : Microphone 10 mV ; Tuner 100 mV ; Auxillary $3-100 \mathrm{mV}$ InpuVimpedance $47 \mathrm{k} \Omega$ at 1 kHz . Outpuls: Tape 100 mV Main output Odb (0.775 V RMS). Actlve Tone Controle Treble $\pm 12 d \mathrm{~b}$ at 10 kHz ; Bass $\pm 12 \mathrm{db}$ at 100 Hz . Distortion 0.5% at 1 kHz Signal/Nolse Ratho: 68 db . Overload Cepebllity: 40db on most sensitive input. Supply voltage
PRICE $£ 4.75$

The HY50 is a complete solid state hybrid Hi-Fi amplifier incorporating its own high conductlvity heatsink hermetically sealed in black epoxy resin Only five connections are provided. input, output, power lines and earth.
TECHNICAL SPECIFICATION
Output Power: 25 W RMS tinto 8Ω. Load impedance: 4-16 Ω Input Sensitivity: Odb $10-775 \mathrm{~V}$ RMS). Input typically 0.05%. Signal/Nolase Ratio: Better than 75 db . Frequency Response: $10 \mathrm{~Hz}-50 \mathrm{kHz} \pm 3 \mathrm{db}$. Supply Voltage:

$$
\pm 25 \mathrm{~V} \text {. Size: } 105 \times 50 \times 25 \mathrm{~mm}
$$

PRICE £6. 20^{2}
P. \& P. free

+ + 1.55 VAT TECHNICAL SPECIFICATIONS

The PSU50 incorporates a specially designed transformer and can be used for sither mono or stereo systems

POPE $56.25 \begin{aligned} & +£ 1.56 \text { VAT } \\ & \text { P. \& P. free }\end{aligned}$

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd.

Crossland House,
Nackington, Canterbury, Kent CT4 7AD.
Tel. (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name and Address
SIgnature

6 Volume library 69 '75 is now

 Speedier, more efficient servicing

 Speedier, more efficient servicing means increased turnover...

 means increased turnover...}This library is a gold-mine of technical information. Six hard-bound volumes giving vital data on more than 1500 models of Television (colour and mono), Radios, Car Radios, Stereograms, Record Players and Tape Recorders. More than 4300 pages clearly display thousands of circuits, printed panel diagrams, component layout diagrams, waveform graphs, block diagrams, etc. Over 800 pages, devoted entirely to Colour TV, include installation instructions, new term explanations, purity adjustments, colour balance, static convergence and a wealth of invaluable information: Here, in fact, is all the data you need for efficient and speedy repair work.

Your Guarantee

Sending for these valuable books, even though you also enclose your remittance, commits you to nothing. Unless you are absolutely satisfied you are perfectly free to return the set and if you do so within 10 days of receipt your money will be refunded in full and without question.

Makes of Colour TV include:
Alba. Barrd, Bang and Olufsen, B.R.C., Bush, Decca.Dynatron, Ekco, Ferguson, Ferranti, G.E.C., Invicta, H.M.V.. Marconiphone, I.T.T./K.B., Masteradio, Murphy, Philips, Pye, Sobell. Stella, Ultra, Hitachi, Thorn Consumer Electronics, Korting, R.G.D., Sony, Telefunken.
All these makes of Mono TV, Radios, Car Radios.
Stereograms, Record Players, Tape Recorders
Aıwa, Alba, Bard, Bang and Olufsen, Beogram, Beolit, Blaupunkt, B.R.C. Bush, Cossor, Crown, Dansette, Decca, Defiant, Dulci, Dynatron, Eddystone, Ekco, Elizabethan. Ferguson, Ferranti, Fidelity, G.E.C., Grundig. Hacker, Halcyon, H.M.V., Hitachi, Invicta, I.T.T./K.B., JugoElektra, Klinger, Loewe Opta, Marconiphone. Masteradı, Monogram, Murphy, National, Nivico. Perdio, Peto Scott. Philco, Philips, Portadyne, Pye, Radiomobile, Radionette, R.G.D., Roberts' Radio, Robux, Sanyo, Sharp Sobell, Sony, Standard, S.T.C., Stella, Stereosound, Telefunken, Teletron. Ultra, Unitra, Van Der Molen, World Radio, Thorn Consumer Electronics, Elpico. Rigonda (USSR); Waltham.

Plus such developments as:

Stereo Multiplex Transmission - Phase Locked Loop Stereo Decoding Dynamic Noise Limiting - Adoption of Integrated Circuits in Receiver Design - Thyristor Power Supplies - Silicon Controlled Switch Timebases - Sony Trinitron Systems - Modifications to Circuitry and Fault-Finding Tips.

To: Purnell Book Services, P.O. Box 20, Abingdon, Oxon OX144 4 HE
Please send me the 6 -volume set of RADIO \& TV SERVICING for which
I enclose cheque'P O No - crossed and made
payable to Purnell Book Services Lid.
for the full cash price of f 31.75
for $£ 9.25$ deposit to be followed by 6 successive
monthly payments of $£ 400$ (total f 33.25)
$\begin{aligned} & \text { I understand that unless I am entirely satisfied I may return the volumes } \\ & \text { in good condition within } 10 \text { days and my money will be refunded in full } \\ & \text { BLOCK LETTERS PLEASE }\end{aligned}$
Name
Address \qquad

TRADE APPLICATION (To be accompanied by Trade Order)
Please supply__ 6 -volume set(s) of RADIO \& TV SERVICING at £ 31.25 per set. (Credit 30 days)
block letters please
Name
Company
Signature
IMPORTANT: Individual volumes are available on application.
Please return entire form. Available U.K. only

$\leftrightarrow C H I N A G L I A$

> 33 RANGES
> $20 \mathrm{k} \Omega / \mathrm{V}$ d.c. $4 k \Omega / V$ a.c.

- ROBUST CLASS 1.5 PRECISION MOVEMENT ACCURACY 2.5% D.C. AND 3.5% A.C - 12 MONTH GUARANTEE - SELF-POWERED AND POCKET-SIZED OPTIONAL 30kV D.C. PROBE

PRICE $£ 19.00$ inc. VAT (P. \& P. 80p) PROBE $\mathrm{E}^{\mathbf{- 5} 50}$

For details of this and the many other exciting instruments in the Chinaglia range, including multimeters, component measuring, automotive and electronic instruments please write or telephone:

The sensible method for lowest cost sockets for ICs. displays. CMOS. TTL (nyion supports available if required: samples enclosed with any pin order). Strip of 100 pins for $50 p ; 400$ for $\varepsilon 2 ; 1,000$ for $£ 4 ; 3.000$ for $£ 10 \cdot 50$.

RCA CMOS PRICES ARE DOWN

Widest stock range in UK-at the new manutacturers one-ott prices

000	0.17	CD4021	0.83	CD4039	7-47	CD4057	$20^{£} \cdot 35$	CD4082	$0 \cdot 18$
01	0.17	CD4022	0.79	CD 4040	0.88	CD4059	10.84	CD4085	0.57
D4002	0.17	CD4023	$0 \cdot 17$	CD4041	0.69	CD4060	0.92	CD4086	0.57
CD4006	0.97	CD	0.64	CD4042	0.69	CD4061	16.43	CO4093	0.66
CD4007	0.17	CD4025	0.17	CD4043	0.83	CD 4062	7.33	CD4095	0.86
CD4008	0.79	CD4026	$1 \cdot 42$	CD4044	0.77	CD4063	0.90	CD4096	0.86
CD4009	0.46	CD4027	0.46	CD4045	$1 \cdot 15$	CD4066	0.5	CD4099	1.50
CD4010	0.46	CD4028	0.74	CD4046	1.10	CD4068	0.	CD4501	0.32
CD4011	0.17	CD4029	0.94	CD4047	0.74	CD4069	$0 \cdot 18$	CD4502	1.02
CD4012	$0 \cdot 17$	CD4030	0.46	CD4048	0.46	CD4070	$0 \cdot 18$	CD4508	$4 \cdot 20$
CD4013	0.46	CD4031	1.81	CD4049	0.46	CD407	$0 \cdot 1$	CD4510	1.26
CD4014	0.83	CD4032	0.88	CD4050	0.46	CD4072	0.18	CD4511	1.95
CD4015	0.83	CD4033	$1 \cdot 14$	CD4051	0.77	CD4073	$0 \cdot 16$	CD4518	1.03
CD4016	0.46	CD4034	$7 \cdot 3$	C04052	0.77	CD4075	$0 \cdot 18$	CD4520	1.03
CD4017	0.83	CD4035	0.97	CD4053	0.77	CD4076	$1 \cdot 27$	CD4532	$1 \cdot 18$
CD4018	0.83	CD4036	7.47	CD4054	0.95	CD4077	$0 \cdot 18$	CD4555	0.74
CD4019	0.46	CD4037	0.78	CD4055	1.08	CD4078	$0 \cdot 18$	CD4585	$1 \cdot 45$
CD4020	0.92	CD4038	0.88	CD4056	1.08	CD4081	0.18		
RCA 1975 CMOS Databook: Pin-Outs. 400 pages of data. 200 pages of circuits. applications and use, $£ 2 \cdot 30$ (no VAT) plus 37p P. \& P ADD VAT at 8% (higher rate does not apply to any of above), 15p P. \& P. on orders under $£ 3$ (despatch is tst class post BY RETURN'). Price List sent FREE with any order, or on request (a S.A.E. helps). Official orders welcomed (written or phoned)Universities. Polytechnics, Government. Companies, eic. Export orders (no Vat): add 35p (Europe). 70p (overseas) for air mail P. \& P.									

add 35p (Europe). 70p (overseas) for air mail P, \& P.

53b Aston Street. Oxford Tel. 086543203

BARGAIN PACKS
$\begin{array}{llll}12 \text { BC107 } & £ 1.20 & 25 & \text { 1N4001 } \quad \mathbf{1} \cdot 20\end{array}$ 14 BCt08 $\quad 51.20 \quad 22$ IN4002 $\quad 51 \cdot 20$ 12 BC109 $\quad \Sigma 1 \cdot 20 \quad 20 \quad 1 \mathrm{~N} 4003 \quad \mathrm{E} \cdot 20$ $\begin{array}{llll}15 \text { BC148 } & \mathrm{E1} \cdot 20 & 18 \\ 18 & \text { N4004 } & \mathbf{5 1} \cdot 20\end{array}$
$\begin{array}{llll}12 \text { BC149 } & \mathrm{\Sigma} 1.20 & 161 \mathrm{~N} 4005 & \mathrm{E1} \cdot 20\end{array}$
$\begin{array}{llll}12 \text { BC157 } & £ 1.20 & 141 \text { N4006 } & £ 1.20\end{array}$
$\begin{array}{lllll}12 \text { BC158 } & £ 1.20 & 12 \text { 1N4007 } & £ 1.20\end{array}$
12 BC159 $\quad \mathbf{~} 1 \cdot 20 \quad 40$ 1N4148 $\quad \mathbf{~} 1.20$
$\begin{array}{rrrr}22 \mathrm{~N} 2646 & \mathrm{£} 1 \cdot 20 & 32 \mathrm{~N} 3055 & \mathrm{£} 1 \cdot 20 \\ 10 \mathrm{BC} 28 & \mathrm{£} 1 \cdot 20 & 12 \mathrm{BC} 48 & \mathrm{\Sigma} 1 \cdot 20\end{array}$
$\begin{array}{llll}10 \text { BC328 } & \mathrm{£} 1.20 & 12 \text { BC548 } & \mathrm{£1.20} \\ 12 \text { BF194 } & \mathrm{£} 1.20 & 12 \text { BF195 } & \mathrm{£1.20}\end{array}$ $\begin{array}{llll}7 \text { BF173 } & £ 1.20 & 5 \text { BF181 } & £ 1.20\end{array}$
All full spec. marked components

COMPUTER TAPE STATION
in 7 track deck and electronics in 5 ft cabinet. sto plus VAT and carr.

8 PIN DIL 741's
$10+23 p ; 25+23 p ; 100+21 p ; 250+20 p$ SSS TIMEAS
SPECIAL OFFERI 10 for 54.50.
76013 ND 3 watt I.C. Only 51.20
RESISTORS AND CAPACITORS

 electrolytics. but mainly unmarkod, so only〔1.35. 15 airgpeced and compreasion 1 mar of the above co 00 vilu pack1 each of the above. $59-60$ value for only

VEROBOARD

100 sq.in. about B pieces asstd. anzen and pliches E - 15 .
MISCELLANEOUS
SPCO microwwitch. 5a 12p; 15 asstd. pots 75p; plug in relay, $2.500 \mathrm{n} 4 \mathrm{c}^{\circ} \circ \mathrm{O} 25 \mathrm{p} ; 4 \times 80 \mathrm{~V} 10 \mathrm{~A}$ rects. On hent sink, ideal batt. charger K 1.20 ; resiators-S.A.E. llat. 96kitz crystal $£ 1$

TAANSISTOA PACK8

Large quanity of mainly unmarked out o phow 75\% OK Sold in mixemple teat show. 75\% OK. Sold in mixed packs with
PNP. NPN, AF. AF, plastic, metal can, Bmall nignal and power devices. At loast 200 for
$\mathrm{E} 1.50 ; 500$ for $\mathrm{EJ}-50 ; 1,000$ for ES . Out of spec . I1. 50; 500 for $\mathrm{EJ}-50 ; 1,000$ for ES . Out of 8 spyc 2N3055 \& for $£ 1 \cdot 10$. 25 untented 8 BY5

ALL OUR PRICES INCLUDE V.A.T.

BSR HI-FI AUTOCHANGER STEREO AND MONO
Pleys 12", 10" or 7 " records. Auto of Manual. A hlgh rellabillty with 12 months. guerantee. A.C. 200/250V Sle $13 \frac{1}{2} \times$ 11ilh.

Above motor board $3 \frac{1}{2} \mathrm{ln}$. Below motor board $2 \ddagger \mathrm{ln}$ with STEREO and MONO $\mathbf{~ C Q} \cdot 25$ Post $75 n$
CARTRIDGE PORTABLE PLAYER CABINET
Modern design. Rexine covered.
Vyalit front grilie. Chrome iltings.
Size $17 \times 15 \times$ ain approx. 25 post 75p
Motor board cut for BSR or Garrard dec
COMPLETE STEREO HI-FI SYSTEM Two full size loudepeakers $13 \frac{2}{2} \times 10 \times 34 \mathrm{In}$. Player unit cllpa to loudspeakers making it extremely compact overall slze only $134 \times 10 \times 8 / \mathrm{ln}$., 3 watte per channel,
plave all records $33 \mathrm{r} . \mathrm{p}$

SPECIAL OFFER!
SMITH'S CLOCKWORK 15 AMP IIME SWITCH $0-60$ MINUTES $£ 2 \cdot 50$ Post 35 p Single pola two-way. Surface moun ing with fixing screws. Will replace axisting wall switeh to glve lighi or return home, garage, automatic antl-burgier ilghte, etc. Varlable knob
Turn on or off at full or intermediate.
sotings. Brand new and fully guaranteed.
OOD LOUDSPEAKEA GRILIES will easily it

WEYRAD P50 - TRANSISTOR COILS AA2W Ferrite aerial a5p Driver Trans. LFDTA...65p I.F. P50/2CC $470 \mathrm{ke} / \mathrm{s}$ 40p 3rd I.F. P50/3CC Printed Circult, PCA1 ${ }^{65 p}$ Spares Cores Mullard F Wayrad Booktet OPT1

VOLUME CONTROLS $\quad 80.0 \mathrm{hm}$ Coax 5 p yd.

 5 kR to 2 Mn . LOG or Lim L/S 20p. D.P. 35p. STEREO L/S 55p. D.P. 75p. Edge 5K. BRITISH AERIALITE | FRINGELOW LOSS |
| :--- |
| ldo il 625 ind colour 10 pyd |

8in. or $10 \times 6 \mathrm{in}$. ELAC HI-FI SPEAKER
Oual cone plasticlaed roll sur-$0-10$. Large ceramic magnet. $50-18,000 \mathrm{c} / \mathrm{s}$. Bass resonance
$55 \mathrm{c} / \mathrm{s}, \mathrm{s}$ ohm lmpedance,
10 watts. musle power. $£ 4 \cdot 35$ pont 35 p
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$.

SPEAKER SALE!
With tweeter
crossover. 10 watt.
State 3,8 or 15 ohm .25
As lllustrated. Poat 35p
With llared tweater cone and ceramic
magnet. 10 watt.
Flux $10.000 \mathrm{c} / \mathrm{s}$
£3. 45
State 3 or 8 or 15 ohm . Post 35 p

Bookshelf Cabinet toak finish $16 \times 10 \times 7 \mathrm{~m}$ $13 \mathrm{in} \times \mathrm{sin}$. Basa Woofer, 20 m atta, e6-30 £7. 60 Poat 75p THE 'INSTANT' MEALK TAPE NETISER. Sultable for cassettes malns 200/250V. Lesflet S.A.E. E4. 35

$$
\text { Post } 30
$$

BLANK ALUMINIUN CHASSIS. 10 a.w.g. 2tin. alde
 ALUMINIUM PANELS 18 In 20 ; $12 \times 31 \ln 60 p ; 16 \times 101 \mathrm{n} £ 1 \cdot 40$.
 \times BOXES: $3 \times 3 \times 3 \mathrm{tn} 70 \mathrm{p} ; 1 \times 4 \times 41 \mathrm{n} 0 \mathrm{p} ; 18 \times 10 \mathrm{ln} 60 \mathrm{p}$ $\times 4 \times 4 \ln \{1.25 \cdot 12 \times 4 \times 4 \ln 51.50$

ELAC 9×5 In HI-FI SPEAKER TYPE 59RM £3.45
QUALITY.LOUDSPEAKER ENCLOSURE
 cabinet foetures. wide mesh Sllver Gilli covering a separate compartment for mount Ing Tweeters or Mld-Aange Horn. The fully 6f Inch Woofer 87.50 Carr. 85 p
Rosewood Verelon 58.50 Carr a5p Baffic could be cut to take larger apeaker RCS POWER PACK KIT 12 VOLT, 750 ma . Complete with
printed circult bosid and assembly
$\mathbf{2}$
$\mathbf{3} .35$
30 p instrucflons.
12 VOLT 300 mA KIT, $\mathbf{~ 2 3 . 1 5 . 9 ~ V O L T ~} 1$ AMP KIT, 23.35
R.C.S. GENERAL PURPOSE TRANSISTOR

PRE-AMPLIFIER-BRITISH MADE Ideal for Mike, Tape, P.U., Gultar, otc. Can be used with
Battery $9-12 \mathrm{~V}$ or H.T. IIns 200-300v d.c. operation. Slze: $1 子 \times 1 \frac{1}{x} \times 4 / \mathrm{n}$. Response $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s} .26 \mathrm{~dB} \mathrm{galn}$ For use with valve or transisior equipment. f 1.45 Poat
Full Instructions supplled. Details S.A.E. 45 30p

ELECTRO MAGNETIC

PENDULUM MECHANISM 1.5V d.c. operation over 300 hours conilnuous on SP battery, fully adjustable swing and speed. Ideal displays, feachong ciro magnellsm or for 95p

BRITISH FM/VHF TUNING HEART

 as to 108 M/CS Brilish made. 2 Trunslators ready allgnedrequires 10.7 M/CS I.F. Complete with funling gang. requires $10 \cdot 7$ M/CS I.F. Complete with tuning gang.
Connections supplied but some technicel experience Connectlon
esaentlal.

Our price $£ 3.95$ doar 25_{0}

10.7 M/CS I.F. strip $54.95 \quad$ DECODER 54.95

MAINS TRANSFORMERS

ALL POST

250-0-250V 70mA, 6, 3V, 2 A
$250-0-25050 \mathrm{~mA}, 6-3 \mathrm{~V} 3.5 \mathrm{~A}, 6.3 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2 AA $350-0-35080 \mathrm{~mA}, 5.3 \mathrm{~V} 3.5 \mathrm{~A}, 6.3 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2 A 300-0-300V $120 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 4 \mathrm{~A}$ C.T.; 6-3V 2A MIDGET $220 \mathrm{~V}: 45 \mathrm{~mA}, 8.3 \mathrm{~V} 2 \mathrm{~A}$
HEATER TRANS. 6.3V 支 mp 95p, 3 amp
HEATER TRANS. 6.3V tamp $95 p$, 3 amp $11 \cdot 25$
GENERAL PURPOSE LOW VOLTAGE TAP GENERAL PURPOSE LOW VOLTAGE. Tapped output
 1 amp. 8, $8,10,12,16,18,20,24,30,36,40,48,60$ 24. 80
$2 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,80 ~ 87.00$
$3 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,60 \mathrm{sf} \cdot 70$ $5 \mathrm{amp} .8,8,10,12,18,18,20,24,30,36,40,48,80 \mathrm{s11}-25$
 $20 \mathrm{~V}, 3 \mathrm{amp}, ~ £ 2.45,40 \mathrm{~V}, 2 \mathrm{mmp}$. $£ 2 \cdot 95.22-0-22 \mathrm{~V}, 4 \mathrm{mpp} . \mathrm{d.c}$.

 150W \&4.80; 500W \&8.70; 750W \&17-50; 1000W $£ 21$. battery chargers. Ready bultt with leads and ellpa 4 smp \&4; 5 amp \& $4 \cdot 50$.
FULL WAVE GRIDGE CHARGER RECTIFIERS
6 or 12 V outputs, $1 \frac{1}{2} \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p}$; 4 amp 85 p .

MAINS ISOLATING TRANSFORMER

Primary $0-110-240 \mathrm{~V}$. Secondary $0-240 \mathrm{~V} 3 \mathrm{~A} \quad 720 \mathrm{~W}$ Insulated terminals. Varnlsh impregnated. Fully enclosed
 Can be used as soow auto trensformers $240-110 \mathrm{~V}$ IDEAL FOR COLOUR T.V. OR GARDEN TOOLS.

2/350V	20p	250/25V20p	$50+50 / 300 \mathrm{~V}$.........50p
4/350V	20p	500/25V25p	900/350V95p
1/350V	2tp	$100+100 / 275$ V65p	$32+32 / 250 \mathrm{~V}$........ 20 p
18/350V	35p	150 + 200/275V 70p	$32+32 / 450 \mathrm{~V} \ldots \ldots \ldots .80 \mathrm{p}$
32/500V	.80p	$8+1 / 350 \mathrm{~V}$...35p	350 + 50/325V _....85p
$25 / 25 \mathrm{~V}$	15p	$6+15 / 350 \mathrm{~V}$...35p	$100+50+50 / 350 \vee 85 p$
$50 / 50 \mathrm{~V}$.15p	16+16/350 ...60p	$32+32+32 / 350 \mathrm{~V}$ 65p
100/25V	...15p	$32+32 / 350 \mathrm{~V}$...60p	4700/63V95p

LOW VOLTAGE ELECTROLYTICS.
$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{v} 10 \mathrm{p}$
$500 \mathrm{mF} 12 \mathrm{v} 15 \mathrm{p}: 25 \mathrm{v} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
1000 mF 12 V 17 p ; 25 V 35 p ; 50 V 47 p ; 100 V 70 p .

TAIMMERS 10pF, 30pF, 50pF, 5p. 100pF, 150pF, 15p. CERAMIC, 1 pF to $0.01 \mathrm{mF}, 4 \mathrm{p}$. SHiver Nitce 2 to 5000 pF , 4 p PAPER $350 \mathrm{~V}-0.17 \mathrm{p}, 0.513 \mathrm{p} ; 1 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p}$; 2 mF 150 V 15 p . $500 V-0.001$ to $0.055 p ; 0.1$ 10p; 0.2513
MICRO SWITCH LEVER ACTION 20p.
SUB-MIN MICRO SWITCH 25 N 2OP
SUB-MIN MICRO SWITCH 25p. SIngle pole change over. WIN GANG, $0-0$ 203pF +176 pF \&1.20; 500pF stsndard 75 p . 120pF TWIN GANG, 50p; 385pF TWIN GANG, 50p. NEON PANEL INDICATOAS 250 V AC/OC. Amber 30 p . RESISTORS. $\ddagger W, j W, 1 w, 20 \% 2 p ; 2 W, 10 p .10 \cap$ to 10 M . HIGH STABILITY, IW 2% ohme to 6 meg., 10p. Olto 5%. Preferred values 10 ohms to 10 meg., $5 p$ WIRE-WOUND RESISTORS 5 watt, $10 \mathrm{watt}, 15$ watt, 10 ohms to 100 K 12 p each

NEW MODEL "BAKER LOUDSPEAKER"', 12IN 50 WATT, GROUP 50/12. O OR 15 OHM HIGH POWER. $£ 14.50$ FULL RANGE PROFESSIONAL CUALITV, Post 60p
BAKER MAJOR 12" ${ }^{\prime \prime} 11.50$
$30-14,500 \mathrm{c} / \mathrm{s}, 12 \mathrm{nn}$. double cone, wooter and iweeler coramic magnet asembly having t tux denslty of having gand fux total flux of 145,000 Maxwells. Bats resonance $40 \mathrm{c} / \mathrm{s}$. Rated 20 W . NOTE: 3 or 8 or 15 ohme must be stated.
Module klt, $30-17,000 \mathrm{c} / \mathrm{s}$ with tweeter, crossover, batfle and
£14.50 Post 60p each
Please state 3 or 8 or 15 ohms. BAKER "BIG-SOUND' SPEAKERS Post 40p each
'Group 25' | 'Group 35' ${ }^{\prime}$ 'Group 50/15'
 3 or 8 or 15 on $35 \mathrm{~W}: 10.5$

TEAK VENEERED HI-FI SPEAKER AND CABINETS For 121 n or 10 in dis. speaker $20 \times 13 \times 12 \mathrm{n}, \mathrm{E12} .50$ Post 75 p
 LOUDSPEAKER CABINET WADDING 18In wide, 20p ft

GOODMANS $6 \frac{1}{2} \mathrm{In}$. HI-FI SPEAKER 4 ohm or 6 ohm. 10 W . Large cersmic magnot. Special Cambric cone aurround. Frequency reapona deal P.A. Column
HIFI Enclosure Syetems, otc
£4.60
NEW MODEL JUST RELEASED
A.C.S. 100 WATT VALUE AMPLIFER

CHASSIS. 4 inputs. manter volume ban and treble. Ideal A. Dlaco, or group amplifier. Protessional quallty, solld lob. Matchen all loudopeakere. $£ 85$ carr $£ 2$.
SPEAKER COVERING MATERIALS. Samplee Large S.A.E.

De Luxe Horn Tweeters $2-18 \mathrm{kc} / \mathrm{s}, 15 \mathrm{~W}$, 15 ohm $£ 4 \cdot 50$
CROSSOVERS, TWO-WAY $3,000 \mathrm{c} / \mathrm{s}$ or 8 or $15 \mathrm{ohm} \varepsilon 1.90$.
CROSSOVERS, TWO-WAY $3,000 \mathrm{c} / \mathrm{l} 3$ or 8 or $15 \mathrm{ohm} £ 1 \cdot 90$
OUDSPEAKERS P.M. 3 OHMS. $7 \times 4 \ln , ~ £ 1 \cdot 50 ; 8 \mathrm{~s} / \mathrm{ln}$, $£ 1 \cdot 80$

SPECIAL OFFER: 80 ohm, $2 \mathrm{fm}, 2 \mathrm{~lm}, 35 \mathrm{ohm}, 2 \mathrm{hn}, 3 \mathrm{hm}$,
25 ohm, $2 \frac{1}{2} \mathrm{ln}$. dia., 31 n . dia., Sin. dila., 8 ohm, $2 \frac{1}{1} \mathrm{In}$., 31 n . $3 \frac{1}{2} \mathrm{n} ., 15 \mathrm{ohm}, 3 \frac{1}{\mathrm{ln}}$. die., $8 \times 4 \mathrm{ln} ., 7 \times 4 \mathrm{ln}$., $8 \times 5 \mathrm{in}$.,
3 ohm, 2 In., 2 in., 31/n., Sim. dia.
RICHARD ALLAN TWIN CONE LOUDSPEAKERS
RICHARD ALLAN TWIN CONE LOUDSPEAKERS,
sin. diameter 4 W E2-50. 10in. dlameter 5 W £2.95;

121n. diameter iv en
Mike trans. mu metal 100:1 £1-25.
Loudepeaker Volume Control 15 ohme 10 W with one Inch ong threaded bush for wood pisiोl mounting. $\frac{1}{2}$ In spindle. long threaded bush
65 p ash. Post 15p.
MAJOR 100 WATT

ALL PURPOSE

AMPLIFIER
deal for Groups, Disco and P.A
Inputs speech and musle. 4 way
mixing. Output 8115 ohm . A.c. Minins.
Separate treble and basa controls. $\$ 59$ Cerr.
Guaranteed. Details SAE. 259 £1.00 each NEW MODEL. MAJOR- 50 watt, 4 Input, 2 vol.
Treble and base. Ideal dleco amplifier.
$£ 49.95$
BARGAIN 4 CHANNEL TRANSISTOR MONO MIXER. Add musleal highilghta and sound effects to recordings. Wht mix Microphone, records, tape and tuner
with separate controls into alingle output. 9V.
E5 - 20 whth saparate COntrole into single output. 9V.

TWO STEREO CHANNELS VERSION | GARGAIN 3 WATT AMPLIFIER. 4 Tranalator $\mathbf{£ 4 . 5 0}$ |
| :--- |
| Puah-Pull Ready Bullt, with volume. Treble |
| 40 | and bans controla. 18, volt d.c. Malni Power Pack e3-45 COAXIAL PLUG 10p. PANEL SOCKETS 10p. LINE 13P. OUTLET BOXES, SURFACE 40p. FLUSH 60p. TWIN 85 p BALANCED TWIN RIBBON FEEDER 300 ohme. 7p yd. JACK SOCKET Std. open-clrcult 18p, closed clrcult 23p Chrome Lead-Soekt 45p. Phono Plugs 8p. Phono Socket tp JACK PLUGS Sid. Chrome 30p; 3.5 mm Chrome $15 p$. DIN

SOCKETS Chasels 3 -pln 10 p . 5 -pln 10 p . DIN SOCKETS lead 3 -pin 25p; 5 -pin 25p. DIN PLUGS 3 -pin 18p; 5 -pin 25 p. VALVE HOLDERS, 10p; CERAMICS 10p; CANS 10p.
R.C.S. SOUND TO LIGHT KIT

Kit of parte to bultd a channol sound to Ilght unit. 1,000 watts per channol. ©12.50. Poet 35p.

EMI TAPE MOTOR
EMI TAPE MOTORS. 240V a
 $3+\times 2 \frac{1}{4} \times 2 \frac{1}{2}$ n (lilustreted). Post 40p. 120V Model, £1.

B/-PAK

SEMICONDUCTORS

TRANSISTORS

BRAND NEW FULLY GUARANTEED

187 208 213L 225 | 226 |
| :--- |
| 302 | 302 440 460 Y 31 Y33 $Y 70$

$Y 71$

$Y 72$ 210 CZ11 116 D123 124 D132 135 BFY 19 | XX 20 |
| :--- | 8 Y 26 B8Y28 BSY 39 Prict Type

BSY40 BSY40
BSY41
BSY95
BSY95A

근

 0.28
0.13 BU105

C111E ${ }_{C 400}^{C l 11 E}$ $\stackrel{C}{C 400}$ | C 407 |
| :--- |
| C 424 |
| C 425 | C 425

C 426
C 428 C 428
C 442
C 44
C 444
C 450 MAT100 MAT101
MAT120 MAT121
MJE52 MJ ES2 295
MJE 2055 MJE
MPF
M
M MPF'102
MPF104
MPF'105
0 Cl 19
O

000

00

Typu
AF118
 융N 0.22
0.23
0.22 oí 0.20
0.20
0.20 운운 우울웅 0.2
0.2
0.21 0.21
0.1
0.1 0.
0.
0. 0.18
0.19
0.25
0.25 0 0.15
0.15
0.20

PO BOX 6 WARE HERTS

SUPER UNTESTED PAKS

Patino.
Description

U e 50 Mixed Germanium tranixtura AF/RF
II 3.75 Germantum goll bouded sub-ruln. like OA5. OA47

- 5 Germaniuni transistors ike OC81, Acles
a 60200 mas rub-min. sillicon dicnea

! 7 If Sil. rect. TOP-hat t50ma vitg. range up to jom
 ir 90 Mixed voltages, I Watt Zather Diodes
1100 2n BAY50 charge aturage lifodes Do-7 glaws
171120 PNP Sil. planar trana. 'ro-5 like 2N113:2, '2N2904
111330 PNP-NPN Ril. transisturn OC200 a 28104
I'14 150 Mixed siltien and germanium diodes
Uls 20 NPN Sil. planar tralus. To-5 like $2 \mathrm{~N} 69 \mathrm{~h}, 2 \mathrm{Nby}$ -
U18 10 3Amp stl. rectiffery stuil type up to 1000 PIV
 t18 \& 6 Amp sill. rectiflers BYZ13 type up to 600 PIN T19 20 silicon NPN transistors like BC 108
$1 T 20121.5$ Amp ail. rectiflers top hat up to 1000 PIV
[2l 30 AF. Cterm. alloy transistorn 2 (1300 series at Oct 1
re3 25 MADT's like MHz neries PNP trunkistors
(924 20 (iernt. 1 Amp rectifers GiJM series up to 300 PIS Tr25 $\quad 25300 \mathrm{MHz} \mathrm{NPN}$ silicon trankiktors 2N70s, BSY27 U26 30 Fast switching sillcon dionles like IN914 Micro-Min 1298101 Amp sce's TO-s can. up to 600 PIV CRSl/25-huo U32 25 Zener diodes 400 mW DO-7 cane $3-33$ volts mixed
${ }^{1+33} 15$ Plastic case I Amp ail. rectithers IN4000 seripa
13430 silicon PNP alloy trans. TO.5 BCY26 28302/4
133 -25 silcou planar tranginturs PNP TO-18 2N:906
133 20 Silicon planar APN transisturs TO-8 BFY50/51/52
[137 30 Silicon alloy transigtors $80-2$ PNP OC 200,82322
13420 Fhat switching sillcon trans. NPN $400 \mathrm{MHz} 2 \mathrm{~N}_{3} 311$
T39- 30 RF. Ger. PNP transiators $2 \mathrm{~N} 1303 / 5$ TO-5
$040 \quad 10$ Dual transistors 6 lead TO-5 2N 20 6n
T143 25 Sillicon trans. plastic TO-I8 A.F. B(`113/114
$[14420$ silicon trana. plastic TO-5 BCI 15
$[14573 A$ SCR. TO66 up to 600 PIV
04620 Unijunction transistors similar fo T1843
114710 TO220AB plantic triacs 50 V 6.
148 9 NPN Sil. power transistors like 2 N 3053
14912 NPN sil. plastic power trans. 60 W like $2 \mathrm{n} 5294 / 5298$
akno.

Red spo

 quality Tested Paks, Q $3 \quad 4$ OC77 type transistors
Q 4 Gi Matehel tranBistors OC44/45/8i/81। 4 OC 75 transistors
Q6 5 OU 72 transistorn
Q 74 AC 128 transiators PNP high zain,
Q 84 AC 126 trangistors PNP
Q 7 OC 81 type transistors
Q10 7 OC' 71 type transintor:
QI1 2 AC $127 / 128$ Complementary mairw PNP/NPN
Q12 3 AF 116 type transistor
Q13 3 AF 117 type transistors
Q14 3° OC: 171 H.N. type tranaistorx
Q15 7 2N2946 sil. Epoxy transistors mixel colours
Q17 5 NPN $2 \times$ ST.141. \& $3 \times$ ST. 140
Q18 4 MADT'S $2 \times$ MAT $100 \& 2 \times$ MAT 120 Q19 3 MADT'R $2 \times$ MAT 101 \& $1 \times$ MAT 191 Q20 4 OC 44 Germbrium transistora A.F Q21 4 AC 127 NPN Germaniun tranajem Q22 20 NKT irunsisturs A.F. R.F. codel Q23 10 OA 202 Silicon diaden sub-min $\begin{array}{llll}\text { Q23 } & 10 & \text { OA } & 202 \text { Silicon } \\ \text { Q24 } & 8 & \mathrm{OA} \\ 81 \\ \text { Q diodes }\end{array}$
Q24 8 OA 81 diodes
$81 \cdot 20^{*}$ Q25 15 IN 914 Silicon dionler 75 PIV 75 ma
Q26 8 OA95 Germanium (iodey sub-nimQ27 2 10A 600 PIV silicon reetiflers IR425B
Q28 2 silicon power rectifiers BYZ 13
Q29 4 Sil. tranaistora 2×2 N696, $1 \times 2 \mathrm{~N} 697$. $1 \times 2 \mathrm{~N} 698$
Q30 7 Silicon awitch transistors 2 N 706 NPN
Q31 6 Silicon switch transistors 2 N708 NPN
Q32 3 PNP Sil. trana. $2 \times 2 N 1131,1 \times 2 N 1132$
Q33 3 Silicon NPN transistora 2N 1711
Q34 7 8il. NPN tralis. $2 \mathrm{~N} 2369,500 \mathrm{MHz}$ (code P397)
Q35 3 silicon PNP TO-5 2×2 N2904 \& $1 \times$ 2N2095
Q36 $\quad 7$ 2N3f46 TO-18 plastic 300 MHz NPN
Q37 $\quad 32 \mathrm{~N} 3053 \mathrm{NPN}$ Silicon tranaistors
Q38 5 PNP transistors 3×2 N $3703.2 \times 2 \mathrm{~N}_{3} 7 \mathrm{O}^{2} 2$
Q39 5 NPN transistors 3×2 N3704, 2×2 N3705 Q40 5 NPN trunsistors 3×2 N3707, 2×2 N 3708 Q41 3 Plartic NPN TO18 2N3904
Q43 5 BC 107 NPN transistors
Q44 5 NPN transistors $3 \times$ BC $108,2 \times$ BC 108
Q45 $\quad 3$ BC 113 NPN TO-18 translators Q46 3 BC 115 NPN TO-5 transistors
Q47 4 NPN high gain transistors $2 \times$ BC 157, $2 \times \mathrm{BC} 168$
Q48 3 BCY 70 PNP transistors TO-18
Q49 3 NPN transistors $2 \times$ BFY $51,1 \times$ BFY
Q50 7 BSY 28 NPN switch transistors TO-is Q51 7 BSY 95A NPN translstors 300 MHz Q52 8 BY 100 type silicon rectifers Q53 25 sil. \& (ierm. trans. mixed all marked
Q54 6 TLL 209 Red LED

* UNTESTEDT.T.L. PAKS

Manutacturers "Fall Outs" which include Functional and part Functional Units. These are classed as "out-of spec' from the makers' very rigid specificutions, but are ideal for learning about I.C.'s and experimental work

PlV	0.6 A	0:8A	JA	3.4	5 A	5 A	7 A			
	T018	T092	TO5	T066	T066	${ }_{6}$ T064	T048	T048	T048	T048
10	0.18	0.15								
20	0.15	0.18								
30	0.19	0.22	-							
50	0.22	0.28	020	0.25	0.36	(0.98	0.48	0.51	0.54	21.18
100	0.25	0.30	0.25	0.25	0.48	$8 \quad 0.48$	0.51	. 0.57	0.58	11.48
${ }_{2} 150$	0.81 0.88	0.38 0.4	-0.85	$0 \cdot 90$						
400	0.8	0.44	0.85 0.30	0.80	0.50 0.55	$\begin{array}{ll}0 & 0.50 \\ 5 & 0.57\end{array}$	0.57	0.62	0.62	21-68
600		-	0.39	-0.48	-0.69	 0.67 0.89	0.62 0.78	0.71 0.99	1 0.77 0.90	81.79
800		-	0.58	0.85	0.81	$1 \begin{array}{ll}10.81\end{array}$	0.92	81.29	21.89	84.07
					DI	ES				
Type	Price		Type	Price		Type	Price		Type	
AA119	0.08		BY101	0.18		BYZ16	0.41		O485	0.09
AA120	0.08		BY105	0.18		BY217	0.88		AA90	0.07
A A129	0.08		BY114	0.12		BYZ18	0.86		-A91	0.07
AAY30	0.09		BY124	0.12			0.28		- 495	0.07
AAZ13	0.10		BY126	0.15		CG62			A200	0.07
Bal00	0.10		BY127	0.18		(0A91Eq)) 0.06		A202	0.07
BA116	0.81		BY128	0.16		CG651 (O)	A70-		SD10	0.08
BA126	0.82		BY130	0.17		OA79)	0.07		D19	0.08
${ }_{\text {BAl }}$ BA8	0.15		BY133	0.21		OAs Shor			N34	0.07
BA154	0.12		BY164	0.51		Leads	0.21		N34A	0.07
BA155	0.15		BYX38	1300.43		OA10	0.14		N914	0.08
BA173	0.15		BYZ10 BYZ	0.38 0.81		OA47	0.07		N916	0.08
B8104	0.15		BYZ12	0.81		OA79	0.07		N4148	0.08 0.10
BY100	0.16		BYZ13	0.28		OA81	0.07		8051	-10

VOLTAGE

 REGULATORSTO. 3 Plastlc Encapsulation A.7805/1.129 5V
(Equiv. to MVR5V) 41.25 p 1A. $7812 / \mathrm{L} 130$ 12V
(Equlv. to MVR12V) 81.25 p
(Equiv. to MVR1\&V) 51.250
1.4 .781818 V
(Equiv. to MVR18V) \$1.25p
add 20p overseas
Minimum order 75p

UIC

U

THYRISTORS

ICO
IC
IC
IC
UIC
UIC
UIC
UIC

\section*{OSMABET LTD | We make transtormers |
| :---: |
| amongst other things |}

AUTO TRANSFORMERS 110-200 220/240V 30W. £2 10:50W. £2 70; 75W £3-45; 100W. £4; 500W, £12 LOW VOLTAGE TRANSFORMERS

 LT TRANSFORMERS TAPPED SEC. Pilm 200/240V

$0-5-20-30-40-60 \mathrm{~V} 1 \mathrm{~A}$. $\mathrm{F4} \cdot 20: 2 \mathrm{~A}$, ह8.
MIDGET RECTIFIER TRANSFORMERS
51.65 rect. 200 240.c. 9 V 1 A

$0.5 A+6 V 0.5 A$ or $9 V 0.35 A+9 V 0.35 A$ or $12 V 0.25 \mathrm{~A}$
$+12 V 0.25 A$ or

MAINS TRANSFORMERS
Prim 200240 V a.c. TX6 sec. $425-0-425 \mathrm{~V} 500 \mathrm{MA}$ $425-0-425 \mathrm{~V} 250 \mathrm{MA}, 6.3 \mathrm{~V}$ CT 4 A , 6.3 V CT 4 A $0-5-3 \mathrm{~V}$ 3A \& 11 25: MT3 Prim 0-110-240V. sec O/P TRANSFORMERS FOR POWER AMPLIFIERS P.P SEC. tapped 3-8-15 ohms. A-A 6 6kn 30w 66 . 75 G.E.C. MANUAL OF POWER AMPLIFIERS Covering valve amplitiers of 30 W to 400 W 35 p HI-FI SPEAKERS
5 in 8 n . E1.15; Goodman low full throw on. E4.25 $\sin 4 \Omega$. E1. 50 , EMI $13 \times \sin 8$. 450 \$4.25: Bin LOUDSPEAKEAS
$2 \operatorname{lin} 8$ or $75 \Omega, 2 \neq$ in 8 or 25Ω. 3in 3,8 or 35Ω. 34 in 8Ω 15Ω or 80 . 95 aach. $\sin 3.8$ or $25 \Omega, 5 \times 3$ in 3. 8 . 15 Ei. $50.9 \times 6 \mathrm{IN}$ HI-FiC M $8 \Omega .50$
SPEAKER AUTO MATCHING TRANSFORMER 12W 3 to a or 15Ω up or down, $£ 3-50$.

PAPER TUBULAA CONDENSERS W.E.
"INSTANT" BULK TAPE/CASSETTE ERASER instant erasure, any diameter tape spools, cassette SYNCHRONOUS GEARED MOTORS, $200 / 240 \mathrm{~V}$ a Brand now Smlths. Bullt-in gearbox. 2r.ph. 75peach S.A.E. ENQUIRIES, LISTS. MAIL ORDER ONLY 46 Kenllworth Rosd, Edgware, Middx. HA8 8 YG

DIGITAL CLOCK KITS

MHI-A modular approach to digital clock building. An MHI Kit clock uses an MHI clock kit plus an MHI display kit. Any of the clock kits will interface with any of the display kits or with any other common-anode LED display. Each clock kit contains basic components plus a PCB-all you have to supply s a tew resistors. transistors. etc
MHI-537-This kit has full car/boat clock facilities. uartz time source, brightness control, etc. Display
is switchable with Ignition for power saving
KIt: MM5378, socket, CA3081, $2 \mathrm{MH}_{3} \mathrm{X}$ tal and trimmers. PCB
£ $15 \cdot 10$
MHI-5024-The MHI-5024 kut till act as a 6 or
4 digit stopwatch chip with readouts down to $1 / 10 \mathrm{sec}$.
Clock will count up or down and can (with additional
components) also act as a calculato
KIt: MK50204, socket CA3081. PCB $\quad 14.00$ MHI-5314-Six digit basic clock, 12/24 hour. MM5314 chip £6.60 MHI-5025-Slx diglt alarm clock. Snooze, MK50250 MHI-7001-Six digit time/datevalarm/timer, can be used as slectronic time-switch in addition to other unctions MHI-D707-Four or six digit display kit, $0 \cdot 3 \mathrm{in}$ digits. Supplied with PCB 4 digit- $\mathbf{6 6} 60$. 6 digit- 59.50 MHI-D727-Four or six digits. 0.5 in high digits Supplied with 6 digit PCB 4 digit-C8.50. 6 digit- 12.00
MHI-Din4--Four or six digits. 0.6 in high digits. Supplied with PCB for 6 digits. 4 digit- 59.80 . 6 digit- 114.70
Torme: CWO. Access, Barchaycard (simply quote your number and sign). Gredit facilities to accredited accoun holders

181 Ebberns Road, Hemel Hempstead Herts. HP3 9RD Tel. 044262757
4.STATION INTERCOM

Solve your comfunica. tion problems with this 4.Station Transistor Intercom system (1 master and 3 Subs), in robust plastic cabinet, for desk or wall mounting Call/takk/isten from Master to Subs and Subs to Master. Ideally suitable for Business, Surgery, Schools, Hospsitals, Othee and Iomic. Operates on one batuery, Onfocting wites cach 66ft and other accessories. I. \& P. 6Jp.

MAINS INTERCOM NEW MODEL to batteries-no wires. Jast piug in the mains for inatant two-way. loud and clear communication. On off switch and vo

NEW! AMERICAN TYPE CRADLE TELEPHONE AMPLIFIER

ONLI
-14.95
± 11.95

+ VAT 96 p
Latest transistorised Telephone Amplitier with detacbed plug-in speaker. placing the zeceiver on two-way conversations without holuing the handset. Many people can liaten al a tinc. Increase efficiency It office, shop, workshop. P'erfect for "conierence " calls: leaves the user's hands free to make notes, consult thes. No long waiting, saves titne Fith long-distance calls. Volnme. Direct tape recording
 rice refund guarante.
WEST LONDON DIRECT SUPPLIES (PE10) 169 EENSINGTON HIGH STREET, LONDON. W. 8

Col. (I)
Coilohms
Col. (2)
Working
C.c. voles Contact Crice

HD = Heavy duty

1	2
52	$4-8$
58	$5-9$
185	$8-12$
230	$9-18$
430	$15-24$
700	$12-24$
700	$16-24$
1.250	$18-36$
2.500	$31-43$
2.500	$36-45$
9.000	$40-70$
$15 k$	$85-110$

3	4
$2 \mathrm{c} / \mathrm{o}$	70p*
$8 \mathrm{c} / 0$	$80 p$
6M	$60 p^{*}$
$2 \mathrm{c} / 0 \mathrm{HO}$	$80{ }^{\text {p }}$
$4 \mathrm{c} / \mathrm{o}$	80p ${ }^{\text {* }}$
$2 \mathrm{c} / \mathrm{o}$	60p*
4 clo	80 p *
$2 \mathrm{c} / \mathrm{o}$	60 p *
$2 \mathrm{c} / \mathrm{OHD}$	80p*
6 M	60p
$2 \mathrm{c} / \mathrm{o}$	60p*
6M	60p*

OPEN TYPERELAYS
VOLT D.C. I make contacts 35p. Post 15p
3 c/o 5 amp contacts. 70 ohm coil, 75 p. Post $15 p$
3 c/o 5 amp concacts. 120 ohm coil. 75p. Post 15 p ENCLOSEDTYPERELAYS
24 VOLTD.C. 3 c/o 75 p. Post 15p. Base 15p extra. 24 VOLT A.C. Mrg. by ITT. 3 h.d. c/o contacts. 55p. Post $15 p$. Base 15 p .
55 VOLT A.C. RELAY
55 VOLT A.C. RELAY
$3 \mathrm{~h} . \mathrm{d} . \mathrm{c} / \mathrm{ocone}$ cocts. Price 55p. Post 15p. Base 15p 100 VOLT A.C. 3 c/o sealed iype. 75p. Post 15p. Base 15p.
3 h.d, c/o contacts
lur in base 15 pens. Price 75p. Post 15p. Octal $230 / 240$ VOLT A.C. RELAY. Mig. by Arrow 2 h.d. amp c/o contacts. Amp connectors. Price \mathcal{A} $220 / 240$ VOLT A.C. RELAY

$$
\text { c/0 } 5 \text { amp contacts. Sealed. Mfg. ISKRA, }
$$ EI.25. Post ISp. Base I5pextra.

CLARE-ELLIOTT TYPERP7641 GB
Miniature relay. 675 ohm coit. 24 Volt D.C. 2 clo. $70 p$ post paid.
110 V .2 cio.
Many 2 eio. 20 amp contaces. € $1-25$. Post $10 p$
CO MICRO SWITCH
VERY SPECIAL OFFER. MIg. by
 Post 50 p . 1,000 for $\mathrm{E45}$. Post paid.
Bulk purchase means LOW! LO
SUB-MINIATURE REED
RELAY $3.9 V$ d.c. 250 ohm Coil
RELAY 3.9V d.c. 250 oh
flor six. $£ \mathrm{l}$.
LATCHING RELAY
Twin latching relay. "flip-flop" 2 c/ each relay. Mains contacts. 115 V
A.C. or 50 V D.C. operation. 240 V

C. with 2.5 K resissor. 85p. Post 15 p

TRIAC

Raytheon Tag symmetrical Triac. Type TAG.
$250 / 500 \mathrm{~V}, 10 \mathrm{mpp}, 500$ p.i.v. Glasspassivated plassic triac. Swiss precision product for lons term triac. Swiss precision product for long term
reliability $\& 1.00$. Post 10 p . (Inclusive of Data and
application application sheet.) Suitable Diac 18p.
$230 / 250$ VOLTA.C. SOLENOID Approximately $1 \frac{1}{2} l b$ pul
Price fl.00, Post 15 p.
HEAVY DUTYTYPE. Approx, 14 lb. pull. $\mathbf{2 2} \cdot 50$.
24 VOLT DC SOLENOIDS
UNIT containing I heavy duty solenoid approx. 25Ib pull 1 inch travel. Two approx. Ilb pull $\frac{1}{2}$ inch
travel. 6 approx. $40 z$. pull $\frac{1}{2}$ inch travel. One eravel
24 volt de., I heavy dutysingle makerelay. Price
E2.50. Post $75 p$. ABSOLUTE BARGAIN. COIN MECHANISM (Ex London Transport)
Unit containing, selector mechanism for 1p, 2p and
$5 p$ coins. Micro switches, relays, solenoid operated 5p coins. Micro swirches, relays, solenoid operated
hopper. 24 volt D.C. Presision built to high standhopper. 24 volt D.C. Precision built to high stand-
ard. Incredible VALUE at only E2.50. Post 70p. VAT 25\%

CENTRIFUGAL BLOWER

Mfg by Smiths Industries. $230 / 240 \mathrm{~V}$
A.c. Miniature Model. Series SE/200
Size 95 mm Size $95 \mathrm{~mm} \quad 82 \mathrm{~mm} \times 82 \mathrm{~mm}$ Aperture 38 mm
c.f.m.. $£ 2.75$. Post 25 p .
. 1 mm . 12
Mfg-by Airflow Developments Led

Precision made, continuously rated, smooth running. $230 / 240 \mathrm{~V}$ a.c. moror, 80 c c.f.m. As illustrated but with round aperture, E6.50. Post 50p.
MIg. by Woods
Extremely powerful. 220/250V a.c. 0.3A 2.700 r.p.m. continuously rated. Capacitor start. Cast construc-
tion. Aperture $66 \mathrm{~mm} \times 50 \mathrm{~mm}, ~ O / A 200 \mathrm{~mm}$. 612.

All Mail Orders-Callers-Ample Parking
Dept. PEIO, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560 Showroom open Mon..Fr

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/240V a.c. 50/60 OUTPUT VARIABLE 0-260V SHROUDED TYPE 200 watt (amp) $\leqslant 10.00$ | $1 \mathrm{KVA}(2 \geqslant \mathrm{amp})(M A X)$ |
| :--- |
| KVA $(5 \mathrm{amp})$ |
| (MAX) |
| 115.50 |
| 1500 | KVA (10 amp) (MAX) $\mathrm{E27.50}$ 3 KVA (15 amp) (MAX) $£ 30.00$ $4 \mathrm{KVA}(20 \mathrm{amp})$ (MAX) $\in 60.00$ 37.5 amp (MAX) $\subset 102.50$ OPEN TYPE I amp (panel moxtra

L.T. TRANSFORMERS

0.6 .12 Volt at 10 amp . 5.60 . Post 70p. $\begin{array}{lll}0.10 .17,18 \text { Volt at } 10 \mathrm{amp} . & 67.90 . & \text { Pose } 70 \mathrm{p} . \\ 0.4,6,24.32 \text { Volt at } 12 \mathrm{amp} . & 69.90 & \text { Pose } 70 \text {. }\end{array}$

 Other types to order at short notice-Phone your
"STC' 6" RED ALARM BELL
$24 / 48$ volt DC. Brand New,
"GENTS'6"ALARM BELL
200/250V AC DC. Brand New. Price 65. Post 75 p.
VAT 25

STROBE! STROBE! STROBE!

Build a Strobe Unit. using the latest type Xenon White light flash cube. Solid state timing and triggering circuit. $230 / 250 \mathrm{~V}$ a.c. operation HY-LYGHT STROBE MK III
For use in large rooms, halls and utilises a silica tube, printed circuit. Speed adjustable 0-20 f. p.s. Joule) strobes él4. Post 50. many (so called RANGE OF THREE OTHER STROBE KITS FROM STOCK. FROM E6.30 to $\mathbf{E 2 2}$.

SQUAD LIGHT

channels each capable
 of spot lights. flood lig mer lamps. Seven programs all speed giving IA diflus flash modulation. effectively light obsolere. Complerely electrically and mechanically noisefree. Can be used on same circuir as radio mikes or sensitive amplifiers. A whole new range of highting enects possibe
with aspounding results. Already in use in London's foremost theatres. night clubs and Coscos. Conforms to all R.F.i. rests. including tough. well designed case with embossed front panel. Price only Et60. Post 60 p. S.A.E.
(Foolscap) for further derails.

POWER RHEOSTATS : : !

Superior Quality Precision Mad NEW POWER RHEOSTATS

New ceramic construction, vitreous enamel embedded winding heavy

 ename embedded winding. heav 25 WATT $10 / 25 / 50 / 100 / 150 / 250 / 500 / 1 \mathrm{k} / 1 \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k}$ ohm. C1.70. Post 15 p .50 WATT
$1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k}$ 50 WATT ${ }^{\text {E2. }} 10$. Post 20p. 100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / \mathrm{lk} / 1 \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k}$ $3.5 \mathrm{k} / 5 \mathrm{k}$ ohm $\mathbf{6 3} .30$. post 25 p
Black Silver, Skirted knob calibrated in Nos.
$1 \pm i$ in. dia. brass bush. Ideal for atoove 22 p .
vat
VAT AT 8\% MUST BE ADDED TO
ALL ORDERS FOR THE TOTAL VALUE OF GOODS INCLUDING POSTAGE UNLESS OTHERWISE STATED. SERVICE TRADING CO

METERS NEW
90 mm diameter
Type 65C5. 2A D.C.M/C: SA D.C. M/C Type 62 T2. IA A.C. MII: 20 A A C MII: 300 V A.C. M/I: ALL ABOVE E2.50. Post 20p. Type 65L5, 300 V A.C. R/M/C: E2.75. Poss 20p.
REVERSIBLE MOTOR
General Electric, 230 V a.c. 1.600
r.p.m.
vibration mounting bracket
capacitor O/A sizellomm Spindle fis. dia. 20 mm long. equipment sested. E3. Post $50_{\text {p }}$

330/240 VOLT A.C. MINIATURE MOTOR. 20 R.P.M. Price E1. Post 15p.

BODINE TYPE N.C.I.

GEARED MOTOR

(Type J) 71 Fiv.m. torque 101 lb in.
Reversible iloth h.p. cvcle 0.3 g
mp. (Type 2) 28 r.p.m. eorque 20
b. in Reversible $1 / 80$ th h.p. 50 cvele 0.28 a mp The above two precision made U.S.A. motors are ofered in as new' condition. Input voltage of motor 230/240V A.C. input. pice eirher

CARTER' 230 VOLT A.C. GEARED MOTOR
230/240V A.C., smooth, powerful, pm or $110 \mathrm{r} . \mathrm{m}$ Either C4.50. Post 50p.

ROTARY VACUUM AIR PUMP AND COMPRESSOR
Carbon vane. oilless. $100 / 115 \mathrm{~V}$ a.c. $1 /$ h.p. motor, $50 / 60$ cycle, $2875 / 3450$
r.p.m. 20 in vacuum, comp 1.25 .p.m.. 20 in vacuum, comp. 10 p.s.i. (approx. figures).
 With electrical connection data, FRACTION OF 150 watt auto transformer $\mathbf{6 3} 50$. Post 50p. (Both

PROGRAMME TIMERS
$230 / 240 \mathrm{~V}$ a.c. 15 r.p.m. Motors
switch. Ideal for lighting effeets. 20 iniming if

rested

2 cam model. $15 \mathrm{r} . \mathrm{p} . \mathrm{m}$. E2.00 post 35p
4 cam model. $15 \mathrm{r} . \mathrm{p} . \mathrm{m}$. $£ 2.50$ post 35 p
8 cam model. $20 \mathrm{r} . \mathrm{D} . \mathrm{m}$. 44.75 pose 40 o
8 cam model, each cam fully adiustable. 6 r.
A.C. MAINS TIMER UNIT

Electric Blankets. etc. Attractive satin copper finish. Size 135 mm , 130 mm 60 mm . Price E2. Post 40p. TTotal incl. VAT and Post $\mathbf{C 2} \cdot 59$

TIME SWITCH

Horstmann. Type V Mk. II Time off every 24 hours, at any manually pre. set time. 30 amp contaces. 36 hour spring reserve in case of power fallure. Day omitting device. Fitted in heavy high impact case, with glass observation window. Builtrohighest Electricity
Board Soec. individually cested. Price Board Spec. individually ested. Price
$£ 7.75$. Post 50 p. (Total inc. VAT $88 \cdot 91$).
 Easily fitted. Fully guaranteed by makers.
Will! control up to 600 W of lighting except fluorescent at mains voleage. Complete with
6.75 . Post 250.
1.000 watt model. E4. Post 25p.
2.000 watt model. ©8. Post 30p.

INSULATION TESTERS NEW!

Test to l.E.E. Spec. Rugged metal construction, suitable for bench or
field work. constant speed clurch
. size L.8in. W. Ain, H. Gin, weight blb. $500 \mathrm{~V}, 500$ megohms, 630 . Post 80 . $1,000 \mathrm{~V}, 1,000 \mathrm{M} \Omega$, $\mathbf{4 6}$. Post 80 p .

9 LITTLE NEWPORT STREET LONDON WC2H 7JJ
 Phone 0l-437 0576

BARCLAY ELECTRONICS

NOW OFFER YOU A FULL RANGE OF ORDINARY AND SCIENTIFIC CALCULATORS

\author{

- FULLY GUARANTEED
}
- AT THE BEST POSSIBLE PRICES!

4 FUNCTION

CBM 774 D 7 digit, slim pocket*
SINCLAIR CAMBRIDGE 8 digit, slim pocket, constant
SINCLAIR OXFORD 1008 digit, constant ${ }^{*}$
4 FUNCTION \% CONSTANT
DECIMO VATMAN SPY 8 digit. stim pocker
DECIMO VATMAN s digit, green display
CBM 385R 8 aligit rachargeable
CEM 986R 8 digit, green display, rechargeable
4 FUNCTION, STORE MEMORY, \%
CBM 776MD 7 digit, pocket silim*
CBM GL976MR 7 digit, green display. rechargeable
4 FUNCTION, FULL MEMORY, CONSTANT
SINCLAIR CAMBRIDGE MEMORY 8 digit, pocket slim
SINCLAIR OXFORD 200 s algit $\%$ *
CAM 887D 8 digit. factor exchange. \%*
CBM2GL987R \& digit. \%. factor exchange, green display, rechargeable
DECIMO VATMAN MEMORY 8 digit. green display, \%. factor exchange
14.55
16.25

SEMI-SCIENTIFIC FULL MEMORY
DECIMO SUPER VATMAN 8 digit, green display. \sqrt{x}, x^{2}, factor exchange.
CBM 9898 digit. green display $\sqrt{x_{1}} x^{2}$. factor exchange, $\%$ reciprocals. rechargeable

SCIENTIFICS, ALGEBRAIC LOGIC, DUAL FUNCTION KEYS
SINCLAIR SCIENTIFIC 5 digit, 2 exponents. trig. log, slim pocket
SINCLAIR OXFORD 3005 digit, 2 exponants. trig. log. π. \sqrt{x}. reciprocals. x^{2} DECIMO 2001
pocket slim*
ATMAN SCIENTIFIC as 2001. but large green display
DECIMO SCIENTIFIC SUPERMAN 8 digit. 2 exponents. log. 1 memory. memory store, y^{\prime}, e^{x}, reciprocals, $\sqrt{ }, x^{2}$, pocket slim"
CBM SR120R 8 digit. 2 exponents, trig, log, π. \sqrt{x}, reciprocals. e^{x}, x^{2}. x-y (parenthesis), exponent shift, meanand standard deviation. polar rectangular. co-ordinates, rechargeable, 2 memory stores
ROCKWELL 31R
ROCKWELL 51R
ROCKWELL 61R
PLEASE SEND S.A.E. FOR NEW LOW PRIOES
ROCKWELL $63 R$
SCIENTIFICS ALGEBRAIC LOGIC, SINGLE FUNCTION KEYS
DECIMO 2001E to digit. 2 exponents. trig. log. $\pi . \sqrt{x}$. reciprocals. memory.
$y^{x}, x^{2}, x+y$, memory exchange. hyperbolics. pocket stim*
CBM SR4148R same as SR120R but in addition has 10 digits. 2 exponents, 2 store memory, and singte tunction keys
TEXAS INSTRUMENTS
SR11
SR16

| SR16 |
| :--- | :--- |
| SR50 | PLEASE SEND S.A.E. FOR NEW LOW PRICES

SR51
SCIENTIFICS, REVERSE POLISH LOGIC-SINGLE FUNCTION KEYS
SCIENTIFICS, REVERSE POLISH LOGIC-SIN
NOVUS (BY NATIONAL SEMI-CONDUCTORS)
6010 \& digit. trig. log. $x^{2}, \sqrt{ }$, T, $x-y$, reciprocals, memory
4510 and 102 step programmabie
6020
6030
HEWLETT PACKARD
HP21
HP35
HP35
HP45
HP55
PLEASE SEND S.A.E. FOR NEW LOW PRICES
*These models employ ordinary batteries but mains adaptors are available, as an optional extra
DECIMO ADAPTOR 23.00
SINCLAIR OXFORD ADAPTOR 22.95
CBM ADAPTOR $£ 2 \cdot 10$
Please add the correct amount to total if adaptor is required.
NOTE-All rechargeable machines supptied complete with nicad batteries and chargers for the stated price.
All prices include V.A.T. at 8% and although correct at time of going to press, may be subject to alteration without notice.

PHONE CALLS AND PERSONAL CALLERS WELCOME
MONDAY-THURSDAY BETWEEN 2 and $5 \mathrm{p} . \mathrm{m}$.
To BARCLAY ELECTRONICS, 1115 FInchley Rd., London, N.W. 11 Please send me. of model(\$)
with/without optional mains adaptor. I enclose cheque/money order total value E............................... which includes 50 p insured post and packing charge.

NAME
ADORESS .

In LONG PERSISTENCE CRT. FUII spec. Price E6. 50 to include V.A.T. and Carriage.

MAKE YOUR SINGLE BEAM SCOPE NTO A DOUBLE WITH OUR NEW LOW PAICED SOLID STATE SWITCH. 2 Hz to MHz. Hook up to a volt battery and connect to your acops and have two races for ONLY ES.25, P. \& P. 25p. (Not cased, not calibrated.)

WIDE RANGE WOBBULATOR. 5 MHz to 150MHz up to 15 MHz sweep width. Only 3 controls, preset RF level, sweep width and trequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V a.c. and use within minutes of receiving. All this for ONLY E6-75, P. \& P. 35p. (Not cased, not calibrated.)
20 Hz to 200 kHz WB, SINE and SQUARE GENERATOR. Four ranges. Independent GENERATOR. Four ranges. Independent amplitude controls, thermistor stabilised. Ready to use. IV supply required. P. \& P. 35p. (Not cased, not calibrated.)

GRATICULES $12 \mathrm{~cm} \times 14 \mathrm{~cm}$ high quality plastic 15p each, P. \& P. 8p.

Large quantity of good quality com-ponents-NO PASSING TRADE-SO we offer 3lb of ELECTRONIC GOODIES for \$1.70. Post paid.

METER PACK-3 different maters for $\mathbf{5 2}$. P. \& P. 55p.

MIN TRANSFORMER. 240 V input. 3 V 1 A output. Brand new 65 p each P. \& P. 20 p P.C.B. PACKS. S \& D. Quantity 2 sq. ft no tiny pleces. 50p, P. \& P. 37p.
CAPACITOR PACK- 50 brand new components. only $50 \mathrm{p}, \mathrm{P} . \& \mathrm{P} .37 \mathrm{p}$.

TRINMER PACK. 2 twin 50/200pF ceramic, 2 twin 10/60pF ceramic; 2 min strip with 4 preset $5 / 20 \mathrm{pF}$ on each; 3 air spaced preset $30 / 100 \mathrm{pF}$ on ceramic base ALL
PHOTOCELL equ. OCP71. 13p each. MULLARD OCP70. 10 p each.
DELIVERED TO YOUR DOOR, 1cwt of Electronic Scrap chassis, boards. etc. No rubbish. FOR ONLY \&4.
MODERN TELEPHONES. Type 706: twotone grey or black, $\mathbf{5 3} 75$ each. Type 7006 two-tone grey or green. $53 \cdot 75$ each Style similiar to Type 746: grey, or black, $£ 3$ each. As above but discoloured grey only, $\mathbf{c} 2$ each. P. \& P. all types 45p each.
CRYSTALS. $4 \cdot 43 \mathrm{MHz}$. Brand new, 51.25 each. P. \& P. 15p.
RESETTABLE COUNTERS-4 digit by Sodeco/Stonebridge. 1,000 ohm coil, $\frac{1}{2}$ each. P. \& P. 35p.
HANDSETS. Complete with 2 inserts and lead, 75p each, P. \& P. 37p.
DIALS. ONLY 75p each. P. \& P. 25p.
MIGH VALUE-PRINTED BOARD PACK Hundreds of components, transistors. etc.-NO 2 boards the same. No short leaded transistor computer boards. E1.75, post paid.
BEEHIVE TRIMMER $3 / 30 \mathrm{pF}$. Brand new Qty 1-9 13p each, P. \& P. 15p; 10-99 10p each. P. \& P. 25p: 100-999 7p each. P. \& P tree.
HE CRYSTAL DRIVE UNIT. 19in rack mount. Standard 240V input whth superb crystal oven by Labgear (no crystals) \& each. Carr. $£ 2$
1,000pF FEED THRU CAPACITORS. Only sold in packs of 10, 30p, P. \& P. 15p.
SOME OSCILLOSCOPES ALWAYS AVAILABLE. S.A.E. staling specification and price range.

PLEASE ADD V.A.T. AT 8\%
OPEN 9 a.m. to 6 p.m. ANY DAY

7/9 ARTHUR ROAD, READING, BERKS.
 (rear Tech. College)

Tel. Reading 582605

ELEGTRONALIE

The best of all!

CATALOGUE 7 ISSUE 3

With 25p refund voucher

Up-dated Price and Product Information

112 pages plus cover. As comprehensive and up-to-the-minute as possible Thousands of items from vast ranges of semi-conductors Including I.C.s to components, tools, acceasories. technical information and diagrams are included as well as a refund voucher worth 25 p for spending on orders list
value 55 or more SEND NOW FOR YOUR COPY BY RETURN value $£ 5$ or more SEND NOW FOR YOUR COPY BY RETURN 30 post

PRICES-Electrovalue policy is to review prices every three months rather than try to keep up with day by day changes as they occur. We have, in fact, held our prices for two such periods (Jan. 1st-July 1st) and our next price review is due October 1 st.
DISCOUNTS apply on all items except the few where prices are shown NETT. 5% on orders from £5 to £14•99; 10% on orders list value. $£ 15$ or more.
FREE POST AND PACKING in U.K. for pre-paid mail orders over $£ 2$ (except Baxandall cabinets). If under there is an additional handling charge of 10p
QUALITY GUARANTEE. All goods are sold on the understanding that they conform to maker's specification. No rejects, seconds or sub-standard merchandise.

ELECTROALUE LTD

All communications to Section 255, 28, ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB. Telephone Egham 3603, Telex 264475. Shop hours: 9-5.30 daly, 9-1 pm Sats.

NORTHERN BAANCH: BaO, Burnage Lane, Burnage, Manchaster M 19 1NA. Telophone (061) 432 4945. Shophours: Dally $9-5.30$ pm; 9 -f pm Sats

=1-2- F-an
 The people for component bargains

Makers of
 surme
 Sound audio equipment

ORIGINATORS OF PRE-PACKED COMPONENTS IN BRITAIN - AND STILL LEADING!

SUNDRY
PI PAK-Approx. 170 short-lead sem conductors and components. PNP NPN, diodes, rectifiers, etc. on PCBs At least 30% factory marked. Some data supplied 50 p.
UHF 625 line tuner, rotary $£ 2 \cdot 50$. Rov Counter (for cars) (8%). £1.00.* Books by Bernard's Publications Newnes-Butterworth's. etc.

THE FREE CATALOGUE Now edition belter than ever. His getting-only please send large S. A.E with 10 p stamp if we have post it to you.

TERMS OF BUSINESS

NEW RANGE TRANSISTOR AND COMPONENT PACKS

TP SELECTION

TP5 20 Transistors. PNP GermanTP6 ${ }_{20} 20$ Transistors. PNP GermanTP7 1 2N 1744150 W 80Vce Power Transistor, with mounting assembly.
TP19 100 diodes. mixed Germanium. Gold-bonded, etc Marked/Un. marked
TP23 Twenty NPN Silicon uncoded TOS Similar to BFY50/2. 2N696. 2N1613, etc CompleTP24 Twenty PNP Silicon uncoded TO5. Similar to BFY64.
2N2904/5 TP29 $\begin{aligned} & \text { \& power diodes } 400 \mathrm{~V} .1 \cdot 25 \mathrm{~A}\end{aligned}$

CAPACITOR DISCHARGE IGNITION KIT simple to assemble and fit. Improves car periormance $£ 7.50^{\star}$
saves on fuei. $\mathrm{P} . \& \mathrm{P} .30 \mathrm{p}$. BI-PRE-PAK X-HATCH GENERATOR MK. 2

Four-paltern selector \cdot switch
$31 n \times 5 \sin \times 31 n$

s invaluable to industrial and home user alike improved circuitry assures reliability and still better accuracy. Very rental and other engineers. With reintorced fibreglass case, instructions, but less batteries. (Three U2 type required.)

TV SIGNAL STRENGTH METER*

Complete kit as described In Television $£ 19-50$ plus 40p

UT SELECTION

UT1 50 PNP's Germanilum, AF and UT2 ${ }_{\text {glass }} 150$
UT4 100 sillcon diodes, min. glass. similar to.IN914. IN916
UT5 40 250mW Zener dlodes $0 A Z 24$ range: average 50% UT7 30 Silicon rectiflers 750 mA . mixed voltages. Top Hats, etc UTG 40 NPN Siticon planers. Similar to 2N3707-11 range. Low noise amps
UT12 25 2N3702/3 Transistors. PNP Silicon. Plastic to 92

CP SELECTION
CP1 Mixed bag of capacitors(Approx 150-wsold by welaht)

CP2 200 (approx.) Resistors. various types, values, watts. (Sold by werght.)
CP3 40 Wire-wound resistors. mixed.
CP4 12 pots-pre-set, w/wound. carbon. dual. with/without swltches-all mixed.

CP7 Heat sinks. assorted. To fit SO-Z (OC72) TO-1 (AC 128). etc
of orcer except for iteme marked * or (8%), AT If to be addec at 1%. No VAT on oversefe orders POST \& PACKING Add 22 p for UK orders unlesis shown otherwise. Alinimum mall order accoplable-54. Overseas ordera, udd
 mode to ensure correctnes of information.

SS300 POWER SUPPLY STABILISER

 Add this to your unstabilised supply to obtaln a steady working voltage from 16 to 60 V for your audio system, workbench, etc. Money saving and very reliable $\mathbf{E 3} \cdot 25$ *PLASTIC POWER TRANSISTORS

Type	Polarity	Gain	VCE	Price
40 N 1	NPN	15	15	20p
40N2	NPN	40	40	30p
40 P 1	PNP	15	15	20p
40P?	PNP	40	40	30p
90 WATT SILICON				
Typo	Polarlty	Gain	VCE	Price
90 N 1	NPN	15	15	25p
90 N 2	NPN	40	40	35p
90 P 1	PNP	15	15	25p
90 P 2	PNP	40	40	35p

LE－4 SPEAKERS

Superb performance and beautifully finished in selected teak veneers．A professional standard four－way speaker system giving 25 watts RMS powet handling．Bass unit is $14^{\prime \prime} \times 9^{\prime \prime}$ with $8^{\prime \prime} \times 5^{\prime \prime}$ unit for mid－range and twin $3^{\prime \prime}$ high frequency units to give manitor type quality and performance．
Specification－Size $33^{\prime \prime} \times 14^{\prime \prime} \times 16^{\prime}$ approx．Impedance 8 ohms．Powet handling 25W RMS．（Peak 50 watts．） Frequency range $35 \mathrm{~Hz}-20 \mathrm{KHz}$ ．

Our Price $£ 34.00$ each

（normally $£ 66.00$ ）$+£ 5.80$ p \＆p ．
Scotland and the Orkneys
P \＆P Surcharge $£ 3.50$

EMI 350 KIT

System consists of a $13^{\prime \prime} \times 8^{\prime \prime}$ approx．woofer with a $3^{\prime \prime}$ tweeter． crossover components and circuit diagram．Frequency response： 20 Hz to 20 KHz ．Power handling 15 watts RMS into 8 ohms．（Peak 30 watts．）
$\mathrm{f} 6.50+\mathrm{f} 1.20$ \＆\＆
Complete with crossover Components and circuit diagram

THE＇COMPACT＇

EASY BUILD SPEAKER KIT

A compact bookshelf speaker system giving a high electro accoustic efficiency for the low powered amplifier．
The professional finish can be obtained with the minimum of tools，the infinite baffle type enclosures come ready mitred and professionally finished．simply apply glue， fold up around baffle board，and fix together with masking tape till glue dries．
The cabinet measures $12^{\prime \prime} \times 9^{\prime \prime} \times 5^{n}$ deep approx finished in simulated teak，incorporating a quality $7^{\circ} \times 4^{\prime \prime}$ elliptical speaker，power handling 4 watts，flux density 30,000 maxwells，impedance 8.15 ohms nominal，voice coil dia $\frac{z^{\prime \prime}}{a^{\prime \prime}}$ magnet size 27＂approx．
£6．00

EASY TO BUILD SPEAKER KITS

These superb simulated teak－finished speaker kits have been specially designed by RT－VC for the cost－conscious hi－fi enthusiast who wants top quality speakers but doesn＇t want to spend the earth．Built to EMI＇s exacting specification．these new RT－VC speaker kits （ 350 type kit）incorporate $13^{\prime \prime} \times 8^{\prime \prime}$ woofer， $3 \frac{\bar{m}^{\prime \prime}}{}$ tweeter and matching crossover．
Easily put together with just a few basic tools．
Specification（aach speaker）：Impedance 8 ohms． Power handling 15 watts RMS（30 walts peak）． Response $20-20.000 \mathrm{~Hz}$ ．Size $20^{\prime \prime} \times 11^{\prime \prime} \times 9 \frac{1}{2}^{\prime \prime}$ approx．Comparable built units（EMI LE3）sold else－ where for over $£ 45$ pair．
£22．00 pair complete +55.20 p 8 ．
Complete with crossover Components and circuit diagram

R TV I ＊ VISCOUNT IV STERED SYSTEM

System 1a． $\mathbf{£ 6 5 . 0 0}$

The new $20+20$ watt Stereo Amplifier incorporating the latest sificon transistor solid state circuitry， the RT－VC VISCOUNT IV gives you a powerful 20 watts RMS per channel into 8 ohms．Superb teak－ finished cabinet，with anodised fascia to harmonise with any decor．Polished trim and knobs．
The VISCOUNT IV has a comprehensive range of controls－volume，bass，treble，balance．mono／stereo， mode selector，and scratch filter．
front panel socket for stereo headphones．And a host of sockets at the rear－for left and right speakers，tape recorder，auxiliary．tuner，disc and microphone．
SPECIFICATION： 20 watts RMS per channel 40 watts peak．Suitable 8－15 ohms speakers．Total distortion 10 watts better than 0.2% ．Six switched inputs：1．Magnetic PU．－ 3 millivolts 47 K ohms（R．IAA．）：2．Crystal／ceramic P．U．－ 50 millivolts 50 K ohms（R．IA．A）；3．4，6．Tape Tuner／Aux，－ 140 millivalts－ 50 K ohms（llat frequency response）；5．Microphone－ 3 millivalts a 50 K ohms tilat trequency response）．
CONTROLS：Push button ON／OFF，stereo／mono．scratch filter． 6 position rotary selector．Individua rotary controls for treble，bass，balance and volume．Headphone socket，tape out socket．Aux．mains output．Frequency response： 25 Hz to 25 KHz －full fated output．Sipnal to noise ratio：better than -50 dB on all inputs．Tome control renge：Bass $\pm 15 \mathrm{~dB} \& 50 \mathrm{~Hz}$ ；Treble ± 12 dB er 10 kHz Power requirements： 200 －250V A．C．mains छ 60 watts．Approx．size： $151^{\prime \prime} \times 3^{\prime \prime \prime} \times 10^{\prime \prime}$
Power requirements： $200-250 \mathrm{~V}$ A．C．mains e 60 watts．Appror
MP60 type deck with magnetic cartridge，de fuxe plinth and cover．
MP60 type deck with magnetic cartridge，de fuxe plinth and cover． $\left.19 \frac{1}{2} \times 103^{\prime \prime} \times 7\right\}^{\prime \prime}$ in simulated teak．Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with $3^{\prime \prime}$ tweeter． 15 watts handling． 30 watts peak．
Complete Systam with these speakers $\mathbf{f 6 5 . 0 0}+\mathbf{f 6 . 5 0} \mathrm{p}$ \＆ p ．

System 2． 881.00

Viscount IV amplifier（As S＇ystem 1a） MP60 type deck（As System la）
Two Duo Type III matched speakers －Enclosure size approx． $27^{\circ} \times 13^{\prime}$ $\times 11 \frac{1}{2}^{-}$Finished in teak simulate Drive units $13^{\prime \prime} \times 8^{\prime}$ bass driver，and two $3^{\prime \prime}$（appron．）tweeters． 20 watts AMS， 8 ohms frequency range－ 20 Hz to $18,000 \mathrm{~Hz}$
Complate System with these speakers $\mathrm{f} 81.00+£ 7.60 \mathrm{p} \& \mathrm{p}$ ．

PRICES：SYSTEM 1

Viscount iv R103
amplitier $£ 25.00+£ 1.90 \mathrm{p} \& \mathrm{p}$ ． 2 Duo Type lla
speakers $\quad \mathrm{f} 30.00+\mathrm{f6} .50 \rho \& \rho$ ． MP60 type deck with Mag．cartridge de fuxe plinth
and cover $\quad \mathbf{f 2 0 . 0 0}+\mathbf{£ 3} .30 \mathrm{p} \& \mathrm{p}$ Total if purchased
separatatly：$\$ 75.00$
Available complete for only $\mathbf{f 6 5 0 0}$
$+\mathrm{f} 6.50 \mathrm{p} \%$ ．

PRICES：SYSTEM 2
Viscount IV R103
smplitier $\quad \mathrm{f} 25.00+\mathrm{f} 1.90 \mathrm{p} \& \mathrm{p}$ 2 Ouo Type ill speakers $\quad\{46.00+£ 7.50 \rho \& p$ ． MP60 type deck with Mag．carrridge de luxe plinth and cover Total if purchased
separsaty：$£ 91.00$ Availsble complete for only $£ 81.00$
$+77.60 \mathrm{p} \% \mathrm{p}$ ．
20×20 SYSTEM

Scotland and the Orkneys P \＆P Surcharge System 1 a £ 1.75 System $2 £ 3.50$

PUSH BUTTON CAR RADIO KIT- THE TOURIST TT*

NO SOLDERING REQUIRED

NOW BUILD YOUR OWN PUSH BUTTON CAR RADIO
Easy 10 assemble construction kit comprising fully completed and tested printed circuit board on which no soldering is required. All connections are simple push fit type making for easy assembly. Fine tuning push button mechanism is fully built and tested to mate with printed circuit board. TECHNICAL SPECIFICATION: (1) Output 4 watts RMS output. For 12 volt operation on negative or positive earth. (2) Integrated circuit output stage, pre-built three stage IF Module.

Controls volume manual tuning and five push buttons for station selection; illuminated tuning scale covering full, medium and long wave bands. Size chassis 7" wide 2" high and $4 \frac{3^{\prime \prime}}{4}$ deep approx.
$\mathbf{£ 9 . 5 0}+\mathrm{f} 1.05$ p. \& p Speaker including baffle and fixing strip $£ 2.00$ $+45 p$ p \& p. Car Aerial Recommended - fully retractable $£ 1.60+40 p p \& p$.
The Tourist I Kit For the experienced constructor If you can solder on a printed circuit board you can build this model. Same technical specification as Tourist TT. Price $\mathbf{f 8} \mathbf{8 0}+\mathbf{£ 1 . 0 5 p \& p}$.

Stene 27 Qualit Sounp for LESS THAN £24.00

Stereo 21. easy to assemble audio system kit. No soldering required.
The unit is finished in white PVC. and the acrylic top presents an unusually interesting variation on the modern deck plinth Includes - BSA 3 speed deck. automatic, manual lacilities ogether with stereo cartridge.
Two speakers with cabinets.
Amplifier module. Ready built with control panel, speaker leads and full, easy to follow assembly instructions.
Specifications - For the technically minded
Input sensitivity 600 mV . Aux. input sensitivity 120 mV . Power output 2.7 watts per channel. Output impedance 8-15 ohms. Stereo headphone socket with automatic speaker cutout. Provision for auxiliary inputs - radio, tape, stc., and outpuls for taping discs. Overall Dimensions. Speakers approx $15 \frac{1^{\prime \prime}}{} \times 8^{\prime \prime} \times 4^{\prime \prime}$. Complete deck and cover in closed position approx. $15 \frac{1^{\prime \prime}}{2} \times 12^{\prime \prime} \times 6^{\prime \prime}$
Complete only $£ \mathbf{£} 3.20+£ 3.00 \mathrm{p} \& \mathrm{p}$.
Extras if required. Optional Diamond Styli $\mathbf{f 1 . 6 0}$.
Specially selected pair of stereo headphones with individual tevel controls and padded earpieces to give optimum performance $\mathbf{f 5 . 8 0}$.
${ }^{*}$ DISCO AMPLIFIER

Reliant Mk IV Mono Amplifier, ideal for the small disco or house parties. Output 20 watts RMS into 8 ohms (suitable for 15 ohms).
Inputs " 4 electrically mixed inputs. " 3 individual mixing controls. "Separate bass and treble controls common to all 4 inputs. "Mixer emploping F.E.T (Field Effect Transistors) "Solid State circuitry *Attractive styling.
INPUT SENSITIVITIES - Input - 1). Crystal mic guitar or moving coil mic, 2 and 10 mV . (Selector switch for desired sensitivity.) - Inputs - 2). 31. 4). Medium output equipment - ceramic cartridge. tuner, tape recorder, organs, etc. - all 250 mV sensitivity. AC Mains, 240 V operation. Size approx: $12 \frac{1}{2}^{\prime \prime} \times 6^{\prime \prime} \times 3 \frac{1}{2} \frac{1}{2}^{\prime}$
$\mathbf{£ 2 0 . 0 0}+£ 1.35 \mathrm{p} \& \mathrm{p}$.

INCDRPORATES: Pre-Amp with full mixing facilities, including switched input for mic with volume controt, switched input for auxiliary with volume controt. bass and trible controls. volume control and blend control for turntables Two B.S.R. MP60 type single play professional series decks. fitted with crystal cartridpes.

TECHNICAL SPECIFICATION:
Pre-amp - Output - 200 mV . Auxiliary inputs - 200 mV and 750 mV into I meg. Mic input -6 mV into 100 K .240 volt operation Turntables capacity - $7,10^{\prime \prime}$ or $12{ }^{\prime \prime}$ records. Rumble, wow and flutter Rumble Bettel than -35 dB . Wow Better than 0.2%. Flutter Better than 0.06% (Gaumont kalee meter).
Finish - Satin black mainplate with black turntable mat inlaid with brushed aluminium trim. Tonearm and controls in black and brushed aluminium.

Console size
Unir Closed - 17$\}^{\prime \prime} \times 133^{\prime \prime} \times 83^{\prime \prime}$ "(app.) Unit Open $-35 t^{\prime \prime} \times 13 f^{\prime \prime} \times 4 f^{\prime \prime}$ (app.) This disco console is ideally matched for the Reliant IV and Disco 50 or any other quality amplifier.
The unit is fie ished in black PVC with contrasting simulated teak edging, diamond spun control knobs with matching control panel.

Yours for only
$\mathbf{f 4 9 . 0 0}+56.50$ p 8 p.

DO NOT SEND CARD
Just write your order giving
your credit card number

Mail orders to Acton. Terms C.W.D. All snquiries stamped addressed anvelopa. Goods not despatched outside U.K.
Leafiets available for all items listed thus" Sand stamped addressed envelope. All items subject to availability. Prices correct at 1stAug 19 ? 5 and subject to change without notice.
All prices include VAT at current rates

21 D HIGH STREET. ACTON, LONDON W3 6NG 323 EDGWARE ROAD, LONDON W2
Personal Shoppers EDGWARE RD: 9 a.m. $-5.30 \mathrm{p} . \mathrm{m}$. Half day Thurs ACTON: 9.30a.m.-5p.m. Closed all day Wed.

ENGINEERS

识进

YOURSELF FOR A

 BETTER JOB＂m MORE PAY！Do you want promotion，a better job．higher pay？New oppor－ tunities shows you how to get Study through a low－cost．Home Study Course．There are no books to buy and you can pay as you
learn．

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer．Send for this helpful 76－page free book NOW： No obligation．nobody will call on you．It could be the best thing you
ever did．

CHOOSE A BRAND NEW FUTURE HERE

RST
VALVE MAIL ORDER CO． 16a WELLFIELD ROAD，LONDON SWI6 2BS SPECIAL EXPRESS MAIL ORDER SERVICE

1N21	${ }^{29}$	AFZ11 1.15 18	BY213	$\begin{gathered} \text { ep } \\ 0.25 \end{gathered}$	OAZEOS	$\begin{aligned} & 8 p \\ & 0.45 \end{aligned}$	28170	$\begin{aligned} & \text { \%p } \\ & 0.10 \end{aligned}$
1N23	0.35	$\mathrm{AFZ}^{12} \quad 2.00$	Byzio	0.45	0az206	0.45		
INB．	0.88	AsYi26 0.85	BYZ 11	0.40	OAZ207	0.45	zT21	0.25
｜ N 25.3	0.50	$\begin{array}{ll}\text { ARYQ } & 0.38 \\ \text { ASY } & 0.25\end{array}$	BYZ12	0.40	OAzenk	，	\％T43	0．25
1 N 2 z \％	0.50	ASY29 0.30	Hyzta	0.42	OAZ：0	0.4	ZTX10日	0.08
IN645	0.16		BYZ1：	1.25	oazele	． 40	ZTX300	0.18
LN725A	0.20	ASY50 0．20	BYZ14	0.80	0azell	0.40	ZTX304	0.24
iN914	0.06	ASY51 0.40	BZY8＊	0.10	0AZ：22	0.45	ZTX ${ }^{\text {a }}$	
IN $400{ }^{-1}$	0.12	$\begin{array}{ll}\text { ASY53 } & 0.20 \\ \text { ASY5 } & 0.20\end{array}$	（c111 CR81／0：	0．55 0.35	0 0AZ2＇3 0AZ224	0.45 0.45		0.25
18113	0.25	A8Y6\％ 0.25	CR81／40	0.50	$\begin{aligned} & 0 A Z 24 \\ & \text { OAZ } 241 \end{aligned}$	0．85		
18202	0.23		$\mathrm{CS}_{4 \mathrm{~B}}$	1.80	OAZ24：	0.15	INTEGRATED CIRCUITS	
20371	0.40	${ }^{\text {A B Z } 21} 1000$	calob	3.50	OR2044	0.95		
$2 \mathrm{Cr381}$	0.22	A8Z23 0.75	bD000	0.15	OAZ24i	0.15	7400	0.16
$2 \mathrm{C414}$	0.80	$\mathrm{AC}^{104} 1.00$	DD003	0.15	osZ29n	0.88	T401	0.16
26417	0.25	$\mathrm{ACY1}^{1.50}$	DD006	0.25	${ }_{0}^{0} 16$	1.00	7402	0.16
2 N 404	0.28	$\begin{array}{ll}\text { BC10 } & 0.14 \\ \text { BC108 } & 0.13\end{array}$	pDoń	0.40	－${ }_{\text {OC16 }}^{\text {OCly }}$	1.00 0.50	－ 7404	${ }_{0.26}^{0.16}$
${ }^{2} \mathbf{N 6 9 7}$	0.16	BClog 0．14	CD3	0.83	OCP2	1.00	7405	0.22
2 N 698	0.80	$\begin{array}{ll}\text { BC113 } & 0.15\end{array}$	aps	0.10	OC3\％	1.25	－ 406	0.42
2 N 7006	0.12	$\begin{array}{ll}\text { BCll } & 0.20\end{array}$	GD5	0.83	OC2\％	1.10	$740 \overline{7}$	0.42
${ }_{2}^{2 N 706 A}$	0.12 0.15	BC116 0.20	Gns	0.25	OC2J	0.40	－ $40 \times$	0.28
2N708	0.15	BC116A 0.28	GDI？	0.10	OC2h	0.40	7404	0.28
2N\％09	0.40	BC118 0.20	（GET10：	0.50	ocss	0.66	It 10	0.16
2N1131	0.25	$\begin{array}{ll}\mathrm{BC121} & 0.20 \\ \mathrm{BC122} & 0.20\end{array}$	${ }_{\text {GET113 }}$	0.40 0.35	0029	0.65	i411	0．25
2N1132	0.24	$\begin{array}{ll}\text { BC125 } & 0.28 \\ 0.68\end{array}$	GET114	${ }_{0}^{0.36}$	OC3	0.40	$i+13$	0.36
${ }_{2} \mathbf{N} 1302$	0.18	8C126 0.65	GETIIS	0.90	${ }_{0} \mathrm{C} 36$	0.60	T＋16	0.86
${ }^{2} \mathrm{~N} 1303$	0.18 0.28	BC140 0.55	GET 116	0.85	$\bigcirc \mathrm{C}+1$	0.35	i417	0.36
${ }_{2} \mathrm{~N}^{\text {N }} 1304$	0.28	BC14 ${ }^{\text {B }}$－ 0.10	GET120	0.50	OC＋2	$0 \cdot 40$	¿f	
2N1306	0.28	BC14 0.08	GET8iz	0.30	oct 3	0.70	－142	． 275
2 N 130 T	0.28	$\begin{array}{ll}\text { BC148 } \\ \text { BC157 } & 0.10 \\ 0.14\end{array}$	GET870	0.40 0.80	OC44	0.20	－423	0．87
2 N 1308	0.28	BC158 0.12	GET $8 * 1$	${ }_{0}^{0.25}$	${ }_{\text {OC4 }}$	0.20	－42\％	0.87
$2 \mathrm{~N}^{2147}$	0.78	BC180 0.88	GET882	0.85	$\mathrm{OCH}^{\text {cha }}$	0.18	¢ 4 N	0.40
2 N 2148	0.60	BC189 0.14	GET885	0.40	$\mathrm{OC}^{\text {4 }}$	0.27	［430	0.16
$2 \mathrm{2N} 2160$	0.78 0.28	BCY81 0.45	GEX44	0.08	OC5：	0.80	i43：	0.87
$\begin{aligned} & 2 \mathrm{~N} 2218 \\ & 2 \mathrm{~N}_{2} 219 \end{aligned}$	0.28 0.25	$\begin{array}{ll}\text { BCY32 } & 0.85 \\ \mathbf{B C Y} 3 & 0.88\end{array}$	GEX40／1	0.45	$\mathrm{oc}^{\text {¢ }}$	0.60	7433 7437	0.87
$2 \mathrm{~N}_{2} 268 \mathrm{t}$	0.18	$\begin{array}{ll}\text { BCY33 } & 0.88 \\ \text { BCY34 } & 0.45\end{array}$	GEX ${ }_{\text {GJM }}{ }^{\text {a }}$	0.60	${ }_{\text {OC59 }}$	0．80	－${ }_{\text {－}}$	0.87
${ }_{2}^{2 N} 2644$	1．89	BCY3 0.55	GJ43	0.50	OC：0	0.18	－440	0．28
$\begin{aligned} & 2 N 2613 \\ & \text { 2N2646 } \end{aligned}$	0.75 0.50	BCY39 1.50	GJ5M	0.25	OCil	0.18	7441．	\％
2 N 2904	0.20	$\begin{array}{ll}\text { BCY } 40 \\ \mathrm{BCY} 42 & 0.80 \\ 0.80\end{array}$	${ }_{\text {aJ }}^{\text {QJM }}$	0.50	$\mathrm{OC7}^{\text {O }}$	0.88	\％ 3442	${ }^{89}$
2 N 2904 A	0.25	$\begin{array}{ll}\mathrm{BCY} \\ \mathrm{BCY} 70 & 0.85 \\ 0.18\end{array}$	HC1005 $\mathrm{HS100}$	0.50	$\mathrm{OCF}^{\mathrm{OCH}}$	0.50 0.30	7451	0.16
2N2906	0.20	$\begin{array}{lll}\text { BCY71 } & 0.22\end{array}$	MATl00	0.20	OCF_{5}	0.80	7453	0.18
2N2907	0.28 0.18	BCZ10 0.60	MAT101	0.25	0 0c： 6	0.80	： 454	0.18
－2N2924	0.18	$\begin{array}{ll}\text { BCZ } 11 & 0.65 \\ \text { BD121 } & 1.00\end{array}$	MAT120	0.20	OCJ	0.54	－ 7460	0.88
2 N 2926	0.12	$\begin{array}{ll}\text { BD121 } & 1.00 \\ \text { BD123 } & 1.00\end{array}$	MATE340	0.25 0.47	${ }^{0} 0$	0.25 0.80	－ 478	0.88
2 N 3054	0.48	BD124 0.65	MJE520	0.68	$0{ }^{0} 81$	0.29	7473	0.41
${ }^{2} \mathrm{~N} 30055$	0.45	BDY11 1.45	MJE2955	1.27	OC81D	0.28	5474	0.42
$\begin{aligned} & \text { 2N3702 } \\ & \text { 2N3705 } \end{aligned}$	0.15	$\begin{array}{ll}\text { BF115 } & 0.20 \\ \text { BF10\％}\end{array}$	MJE3055	0.72	OC81M	0.20	7475	0.6
2 N 3706	0.11	$\begin{array}{ll}\text { BF16＇} & 0.26 \\ \text { BF173 } & 0.28\end{array}$	MPF102	0.40 0.88	OC81DM	0.18	－480	
2 N 3705	0.18	BF181 0．85	MPF104	${ }_{0}^{0.35}$	OC812	0.48 0.28	$74{ }^{2}$	0.87
2 N 3709	0.10	BF184 0.28	MPF100	0.36	OC82	0.25	7483	1.10
2 N 3710	0.11	BF185 $\quad 0.28$	NKT128	0.45	$00^{\circ} 83$	0.27	7484	1.00
${ }_{2} \mathbf{2} \mathbf{N} 3711$	${ }_{0}^{0.11}$	BFIO4 0.10	NKT129	0.80	${ }_{0} \mathrm{C} 44$	0.80	$748{ }^{5}$	0.47
$\begin{aligned} & \text { 2N3819 } \\ & \text { 2N4289 } \end{aligned}$	0.88 0.30	BF195 0.18	NKTell	0.25	OC114	0.88	－490	0.50
$2 \mathrm{~N} 502 \mathrm{~F}$	${ }_{0}^{0.68}$	$\begin{array}{ll}\text { BF196 } & 0.15 \\ \text { BF197 }\end{array}$	NKTE13	0.25	Oc12？	1.00	7491A	1.00 0.70
2 N 5088	0.88	$\begin{array}{ll}\text { BF197 } \\ \text { BF861 } & 0.15 \\ 0.25\end{array}$	NKT214	0.24	${ }_{0}^{\mathrm{OCl} 123}$	1.10	${ }_{7}$	${ }_{0}^{0.70}$
23301	0.69	$\begin{array}{ll}\text { BF9998 } & 0.25\end{array}$	NKT216	0.45	－C139	1.40 1.14	7494	0.80
29304	1.16 0.75	$\begin{array}{ll}\text { BFX } 12 & 0.80\end{array}$	NKT218	0.45	0 Cl 11	0.80	${ }^{\text {i }} 495$	0.80
28501 28703	0.76 1.00	BFX13 0．28	NKT219	0.38	${ }_{0} \mathrm{C} 169$	0.20	7496	0.95
AA129	0.20	${ }^{\text {BF X29 }}$	NKT 222	0.30	OClio	0.30		
AAZ12	0.75	BFX 0.28 BFX 35 0.98	NKTept	0.25	OClit	0.30	${ }_{74107}$	0.45
AAZ13	0.12	$\begin{array}{ll}\text { BFX } \\ \text { BFX } 63 & 0.50 \\ 0.9\end{array}$	NKT251	0.20	OC200	0.54 1.00	4110	0．58
${ }^{\text {ACl07 }}$	0.61	$\begin{array}{ll}\text { BFXX84 } & 0.25\end{array}$	NKT	0.20	OC201 OC202	0.90	7411	0.88
$\mathrm{ACl}^{\text {ACl26 }}$	0.25 0.25	$\begin{array}{ll}\text { BFX85 } & 0.28\end{array}$	NKT2－3	0.20	$\mathrm{OC}^{2} \mathbf{0 3}$	0.55	74118	0.80
ACl27 $\mathrm{Acl28}$	0.25	BFX86 0.25 BFP8	NKT2：4	0.20	OC204	0.65	\＄4119	1.68
${ }_{\text {AC187 }}$	0.21	BFX87 0.25 $\mathrm{BFX88}$ 0.24	NKT2：5	0.25	Oc：25	1.00	i4121	0．60
AC188	0.20	$\begin{array}{ll}\text { BFX88 } & 0.24 \\ \text { BFY } & \\ 0.60\end{array}$	NKT2：\％	0.20	Oc^{206}	1.10	74122 74123	0.70 1.00
ACY1：	0.40	$\begin{array}{ll}\text { BFY10 } & 0.60 \\ \text { BFY11 }\end{array}$	NKT278 $\times \mathbf{N K T} 01$	0．25	－${ }^{-107}$	1.00 0.20	74141	0.60
ACY18	0.27	$\begin{array}{ll}\text { BFY17 } & 0.40\end{array}$	－\times KT304	${ }_{0}^{0.75}$	OC470		${ }_{\text {¢ }}+1445$	1.28
${ }_{\text {ACY }}$	0.27 0.22	$\begin{array}{ll}\text { BFY18 } & 0.45\end{array}$	${ }^{\text {NKT }} 403$	－0．70	OC4781	1．20	－ 4150	1.75
ACY_{21}	0.22	$\begin{array}{ll}\text { BFY19 } & 0.56 \\ \text { BFY4 } & 0.45\end{array}$	NKT404	0.86	ORP12	0.60	74151	1.00
ACY 2 ？	0.18	$\begin{array}{ll}\text { BFY24 } & 0.40 \\ \text { BFY } 44 & 1.00\end{array}$	NKT678	${ }_{0}^{0.30}$	ORP6 ORPA	0.058	－4155	1.00
${ }_{\text {ACY }}$	0.25 0.25	BFY50 0.21	NKT ${ }^{\text {NKT }}$	0.25		0.48	－ 4156	1.00
ACY ${ }^{\text {ACP }}$	0．28	BFY51 0.20 BFY5 0.20	NKT\％：\％	0.88	SX681	0.45	74157	0．95
ACY40	0.28	BFY52 0.20 BFY53 0.14 0.	oas	0.72	¢ $\times 635$	0.55	8ilizo	2．58
ACY41	0.28	BFY BFY 64 0.18 0.88	OAG	0.12	צX640	0.75	84175	${ }_{1}^{1 \cdot 10}$
ACY 44	0.82 0.50	$\begin{array}{ll}\text { BFY64 } & 0.86 \\ \text { BFY } & 0.81\end{array}$	OA4\％		Sx641	0.75	841：4	1.26
AD140	0.50 0.50	$\begin{array}{ll}\text { BR } 100 & 0.40\end{array}$	OA：	0.10	5X642	0.60	24190	2．00
AD149 AD 161	0.50 0.44	$\begin{array}{ll}\text { BR100 } & 0.40 \\ \text { BSX25 } & 0.60\end{array}$	OAil	0.20	SX644	0.85	74191	2.00
AD161 AD162	0.44 0.44	$\begin{array}{ll}\text { BSX } 60 & 0.98\end{array}$	${ }_{\text {OA73 }}$	0.15	8X645	0.85	－ 7192	2.00
AF106	0.80	$\begin{array}{ll}\text { B8X } & 0 \\ 88 & 0.18\end{array}$	oat9	0.10	TIC44	0.89	74193 $7+194$	1.30
AF14	0.85	BSY26 0.17	oabl	0.18	V15／30P	0.76	－ 416 \％	1.10
AF115	0.25	$\begin{array}{ll}\text { B8Ye＇} & 0.20 \\ \text { BSY } & 0.50\end{array}$	Oars	0.15	V30／201P	0.75	74195	1.20
AFl16	0.25 0.24	$\begin{array}{ll}\text { B8Y } & 0.50 \\ \text { BSY95A } & 0.12\end{array}$	oasg	0.15	V80j201	0.50	${ }^{4} 419{ }^{\circ}$	1．20
AFlis	0.67	BSY95 0.12	0．490	0.07	V601201P	0.75	7419 M 74194	2.77 2.52
AF119	0.20	600R	OA91	0.07	XA101	0.10		$2 \cdot 52$
AF124	0.30	0.75	OA93	0.07	X Al 102	0.18	Plug in sockets －low profle 14 pin DJL 0.15 1f pin DHL	
AF125，	0.80	BT Y ${ }^{\text {P }} 0.82$	－A 200	0.08	${ }^{+1} 151$	0.15 0.15		
AF126	0.80	BTY $9 / 900 \mathrm{R}$	OAL20	0.06	XA152	0.15 0.25		
AFl2 AF139	0.80 0.41	BT Y $79 / 400 \mathrm{O}$	－ $\begin{aligned} & \text { OA210 } \\ & \text { OA21 }\end{aligned}$	0.20 0.35		0.25 0.25		
AF178	0.55	1．10	OAZ：20	0.60	XB101	0.48		
AF179	0.65	BY100 0.27	oazzol	0.45	XB10：	0.30		
AF180	0.55	BY126 0.14	OAZ202	0.45	XB103	0.35		
AFIAI	0.50	BY127 0.12	0az203	0.45	XB113	0.30		
AF186	0.48	BY182 0.85	oaz204	0.45	B121	． 43		
Open daily to callers：Mon．－Fri． 9 a．m．－S p．m． Valves，Tubes and Transistors－Closed Sat． 1 p．m．-3 p．m． Terms C．W．O．only－Tel．01－677 2424－7 Post and Packing 10p per order． V．A．T．Transistors 25% ．Integrated Circuits 8% ．							Prices correct when going to press．	

Kit inspection

Dimensions

$410 \times 260 \times 190 \mathrm{~mm}$

STUDIO ELECTRONICS EASIKIT

We invite your closest inspection of our loudspeaker kits. Here at last is a kit which doesn't require you to be either an electronic genius or a master carpenter. The assembly is simplicity itself, taking barely 15 minutes and requiring only a soldering iron, screwdriver and our easy to follow instructions, the cabinet being already built. 4 drive units provide excellent reproduction free from colouration, cabinet resonance and listening fatigue. In teak or white. Based on an original design as also selected for the outstanding Practical Electronics Rondo Quadraphonic system

SPECIFICATIONS

Impedance 4-8 ohms
Power Handling 20W r.m.s
Crossover Frequencies $250 \mathrm{~Hz}, 5 \mathrm{kHz}$.
Frequency response 30 Hz to $20 \mathrm{kHz} \pm 5 \mathrm{~dB}$
4 Drive units, Bass (13 cm dia.), Bass/Mid-range $(13 \mathrm{~cm}$ dia.), 2 Tweeters (6.5 cm dia.)
£42. 50 per pair. Post free. Plus VAT.
ready assembled $£ 49 \cdot 50$ per pair. Post free
Plus VAT.
Trade enquiries welcomed
Demonstrations by telephone appointment.

SOUND SPHERES

The little speaker with the blg sound! Only 4tin diamoter and weighing 700 grams, it is capable of handling 10w. A very versatile little performer. ideally suited to rear channel systems. In the car, extension speakers. etc. The magnetle base enables them to be mounted virtually anywhere. Superbly finished in black, white or orange.
 SPECIFICATIONS
Impedance 4-5 ohms. Power Handling 10W. Response 100 Hz to 16 kHz
£19.95 per pair. Post free. Plus VAT.

TUAC POWER MODULES offering more power and quality than ever before

- 4 R.C.A. 150 watt 15 amp output transistors
- Rugged layer wound drlver transformer
- Short-Open-and Thermal overload protection
- Only 6 connections

Power supplies vacuum impregnated Transformers with supply board incorporating pre-amp supply:

PS 125 ± 45 volts for TP125 PS 100 ± 43 volts for TL100 PS 60 ± 38 volts for TL60 PS 30 ± 25 volts for TL30 PSU 2 for supplying disco mixer $\quad \begin{array}{ll}\mathbf{5} .90\end{array}$

Specification on ail power modules: All output power ratings $\pm 0.5 \mathrm{~dB}$; Output impedance $8-15$ ohms; THD at full power 2% typically 1%. Input sensitivity 60 mV into $10 \mathrm{k} \Omega$: Frequency response $20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 2 \mathrm{~dB}$; Hum and noise better than -70 dB .

TUAC DISCOTHEQUE MIXER WITH AUTO FADE

Designed for the discerning D.J. of professional standard. Offering a vast variety of functions. Controls: Mic Vol Tone, over-ride depth; auto/Manual Sw; Tape Vol; L \& R Deck Faders; Deck Volume; Treble and Bass; H. Phon Vol Selector; Master Vol On/Off Sw. Max output IV RMS.

Specification: Deck Inputs- 50 mV into $1 \mathrm{M} \Omega$; Deck Tone Controls-treble $+20-10 \mathrm{~dB}$ at 12 kHz , Bass $+22-15 \mathrm{~dB}$ at 40 Hz ; Mic Input-200 ohms upwards, 2 mV into $10 \mathrm{k} \Omega$: Mic Tone Control-Total Variation Treble 15 dB , Total Variation Bass 10dB; Tape Input- 30 mV into $47 \mathrm{k} \Omega$; Power Require-ments-30-50 volts at 50 mA .
$£ 31.50$
PANEL SIZE
$18 \times 4 \frac{1}{2} i n$
DEPTH 3in

HOW TO ORDER BY POST

Make cheques/P.O.s payable to TUAC LTD (PE10/3) or quote Access/Barclay Card No. and post to TUAC LTD (PE10-3)
163 Mitcham Road, London, SW17 9PG We accept phone orders against Access/Barclay Card Holders Phone: 01-672 3137/9080

STOCKISTS—CALLERS ONLY

Arthur Sallis Ltd., 28 Gardner Street. Tel. Brighton 65806 Brlstol Dlsco Centre, 86 Stokes Croft. Tel. Bristol 41666 Socodi, 9 The Friars. Tel. Canterbury 60948
Cookles, 132 West Street. Tel. Crewe 4739
Calbarrle Audlo, 88 Wellington Street. Tel. Luton 411733
Al Musle Centre, 88 Oxford Street. Tel. Manchester 2360340
Damon Electronlcs, 99 Carrington Street. Tel. Nottingham 53880 Electra Centre, 58 Lancaster Road. Tel. Preston 58488 Mitchell Electronlcs, 64 Winchester Street. Tel. Salisbury 23689 Wec Lighting, 10 Commercial Road. Tel. Southampton 28102

NEW ! ! ! 4 CHANNEL SOUND TO LIGHT SEQUENCER—4LSMI

Patents applied for

- RCA 8A Triacs
- 1000W per channel
- Fully suppressed and fused
- Switched master control for sound operation from $\frac{1}{2}$ W to 125 W
- Speed control for fixed rate sequence from 8 per minute to 50 per second
- Full logic integrated circuitry optical isolation for amplifier protection
- Full wave control
- 13 easy connections
£22.00

3 CHANNEL LIGHT MODULATOR

- R.C.A. 8A Triacs 1000W per channel Each channel fully suppressed and fused Master control to operate from 1W to 100W Full wave control - 12 easy connections.

Single Channel Version 1500 Watts
£15.50
£7-25.

ADD SEQUENCE AND DIMMING EFFECTS TO YOUR TUAC 3 CHANNEL LIGHT MODULATOR

SEQUENCE DIMMER MODULE—3SDMI

Speed Control 3 per min. to 10 per sec
Full logic integrated circuitry
Dimmer control to each channel
9 easy connections

DIMMER MODULE-LMDI

Dimmer control for each channel 7 easy connections
£4. 25

No-l'm not referring at the moment to My Old Dutch. but to the fact that for almost thirty years l've been getting my radio and electronic bits and pieces from Home Radio. Hundreds of orders I've sent them, and I've always been delighted with the courteous and efficient service l've received. What's more, on the many occasions when I've called at their Mitcham shop. I've found the same friendly, business-like atmosphere. On the few occasions when they've slipped up (they don't claim to be infallible) they have really gone out of their way to put things right and to ensure my satisfaction.

If you've been reading these adverts during the last few months you'll know that a young friend of mine has experienced the same satisfaction. Perhaps we two typify the thousands of electronic fanatics, young and old, who have found Home Radio Components a wonderful backup service for a fascinating hobby.

If you are not yet with us why not join us right away? Your first step of course is to invest in the famous Home Radio Components catalogue. It's an eye opener!

From the moment you remove the wrapper and gaze on the beautiful colour picture of Barbara Hepworth's "Theme on Electronics" until you reach the Index at the back you'll find it as absorbing as a first class thriller. The 240 pages are packed with details of over 6,000 items, nearly 2,000 of them illustrated.
If you're a meany like me you'll probably use the same catalogue for several years (Home Radio keeps me up to date on prices by sending me new price lists free); but if you're keen to keep up with all the latest developments in electronic components then you'll get each edition as it's published. In any case, when you start ordering components you can recoup 70 pence of your 108p investment by using the 'save-money' vouchers supplied with the catalogue. You can't lose.
So why delay? Send the Coupon below today with a cheque or P.O. for 108 pence, and look forward to at least thirty years of happy co-operation with Home Radio Components!

MICRO MASTER MINDS

WHEN one hears lavish claims made in respect of some contemporary development in technology and predictions concerning its likely profound effect upon life in general in the future, one tends to be a little cautious and tries to avoid the temptation to get "carried away". This muy or may not be a milestone in the making. Time alone will tell. Yet in the face of known facts, it is hard to resist the thought that a new chapter in electronic expansion is upon us, right now. Certainly it is evident that the total domination of machinery-in the widest sense of the word-by electronic control and supervisory systems has become much closer to reality with the arrival of the microprocessor. This device-virtually a minicomputer of great programming flexibility which may be contained within just four I.s.i. packages-appears to offer the key to the widespread and uninhibited use of powerful computing systems. It is a force to be reckoned with, and we endeavour to put readers in the picture with a special introductory article which commences this month.
U.S. semiconductor manufacturers are now producing, between them, a variety of different microprocessors. These devices have already been installed in aircraft; more recently they have been incorporated in advanced types of oscilloscopes, and now the search for additional areas for their profitable and useful employment is on. Other actual, or seriously proposed, applications range from automated industrial plants to sewing machines; from automobiles to washing machines: and from bowling alleys to vending machines.
Was it clever timing by the microprocessor makers or was it just chance that these devices made their first appearance during the onset of the present fuel and energy crisis? Certainly conditions at this time are very propitious for any device or system that will enable greater mileage to be cbtained from a gallon of petrol-to say nothing of reducing the amount of pollution. There can be little doubt that microprocessors will be built into cars of the future.
Exciting, and full of promise all this may be-yet we have to end on a despondent notc. What are the British semiconductor manufacturers doing about microprocessors? Very little it seems.

ENGINE ANALYSER

Until the day when we all drive computerised motor cars, we have to motor-on as best we can in face of ever-increasing fuel costs and garage servicing charges. Yet some assistance is here at hand-this month--for all our motorist readers. 'Through prevailing economic conditions more and more private motorists are being forced to do their own car maintenance. Here electronics can offer aid in the very practical form of a piece of test equipment known as an Engine Analyser. Constructors who run a car will be wise to make the PE Engine Analyser the first job they tackle this autumn, as the major and busiest season for home construction gets under way. This instrument could repay its cost many times over in the months ahead.
F.E.B.

Editor

F. E. BENNETT

Editorial

R. D. RAILTON Assistant Editor D. BARRINGTON Production Editor G. GODBOLD Technical Editor R. W. LAWRENCE, B.Sc.

Art Dept.

J. D. POUNTNEY Art Editor
D. J. GOODING
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager
D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R: BROWN, Classified

Phone: 01-634 4301
Editorial \& Advertising Offices: Fleetway House, Farringdon St. London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4202

IMPORTANCE OF TIMING

Improper ignition timing may cause overheating, loss of power, poor acceleration and performance and may even shorten the life of an engine. It is for these reasons that accurate timing adjustment at the correct r.p.m. is vital. In the Analyser this is achieved with a very bright Xenon flash which allows timing to be achieved even in bright sunlight.

The dwell angle is the angle through which the distributor shaft turns while the points are closed and current is able to flow through the coil primary. Normally the points are 50 per cent closed and 50 per cent open, however when dwell time is specified there is no need to use feeler gauges, just set to the correct reading on the dwell meter to ensure maximum efficiency.

The voltmeter and ohmmeter is extremely useful for fault location and regulator adjustment.

The Analyser need not lay idle between services, since it may also be used as a batter charger. Frequent starting of the engine, with short journeys, will reduce the life of a battery. This can be offset with frequent topping-up by the charger. Two charging rates are provided.

BLOCK DIAGRAM

A block schematic diagram of the Engine Analyser is shown in Fig. I.1. A battery charger transformer and bridge rectifier provide full wave rectified output at 12 V for charging the battery at 4 A . The rectifier can also be switched to half wave for a low charge of 2 A . The 12 volt output can also be used to drive the Engine Analyser circuits or if mains supply is not available, these will work equally well from the car battery.

A voltage regulator circuit is included to regulate the supply to the circuits at 10 volts, so that outputs and meter calibrations will remain constant.

SPECIFICATION•••

Ignition
timing

Tachometer

Dwell measurement

Ohmmeter

Battery
Charger

Voltmeter

Condenser check

Power input

By strobe lamp fired from inductive coupling to No. 1 spark plug lead.

0 to 2500 r.p.m. on 1, 2, 4, 6 or 8 cylinder engines.

10 per cent to 80 per cent at 1000 r.p.m.

0 to 1000 ohms. 150 ohms centre scale.

12 volt 4A (High rate) or 2A (Low rate) or 6 volt 4A (High rate) or 2A (Low rate).

0 to 25 volts d.c. ± 5 per cent f.s.d.
$0.22 u \mathrm{~F}$ condenser is substituted across contact breaker.

240 V a.c. at 50 Hz or $12-16 \mathrm{~V}$ d.c. at 1 A .

Fig. 1.1. Block diagram of Engine Analyser

The meter is switchable to the various functions as indicated in Fig. 1.I. The "Volts" and "Ohms" positions connect in circuit the necessary resistor networks for meter calibration. On battery charge the meter is connected across a shunt in the negative lead to read charging current from 0 to 5 A .

The dwell and tachometer unit derives its information from the contact breaker pulses. Dwell is metered by cleaning up the contact breaker pulses and applying them to the meter to give a reading proportional to the "contacts closed" period. For tachometer readings, standard pulses are produced from the c.b. pulses, which give a meter reading proportional to their repetition rate.
The strobe timing unit produces a high voltage supply and triggering for a stroboscopic discharge lamp. When triggered from No. 1 spark plug, the lamp is used to illuminate the timing marks on the engine and fan belt pulley while the engine is running. The stroboscopic light pulse freezes the motion of the engine at the instant of firing of No. 1 cylinder, enabling the timing to be checked under dynamic conditions.

CONTROL PANEL

The photograph shows the control panel of the finished instrument. The meter is a $0-1 m A$ moving coil meter with scale length just over 3 inches. There are five calibrated scales to indicate d.c. volts (0 to 25), dwell angle (0 to 100 per cent), r.p.m. (0 to 2500), amps (0 to 5) and ohms (0 to 1000). The dwell scale is calibrated in per cent rather than angle in order that the same scale shall apply for all types of engine. The maximum angle varies with number of cylinders, but the circuit is designed to produce deflection proportional to dwell angle for all engines.
Below the meter are two pairs of sockets. The pair marked "Battery" are for use in either charging the battery from the mains or powering the instrument from the car battery. The other pair,

The Engine Analyser front panel showing layout of controls and sockets
marked "Meter" are for use for voltage and continuity or resistance tests. The switch between the two, marked "Earth," should be set to whichever of the two battery terminals is connected to car chassis. The earth terminal (E) is provided to connect instrument chassis to car chassis.

The five position selector switch S3 on the top right hand side of the panel, switches the meter to the appropriate circuit and also switches power to the circuit boards when required. Associated with the battery charger is a "High/Low" charge rate switch which allows a low rate (2A) for overnight charging, or to limit initial charge current into a flat battery. The "No. of Cylinders" switch adjusts
the r.p.m. and dwell circuits for the type of engine under test. "Set Ohms" is adjusted so that the meter reads zero on ohms setting with the two meter leads shorted together. The strobe socket connects to the strobe lamp unit and the two trigger sockets above it to a small coupling coil, L1, for picking up a trigger pulse from No. 1 spark plug lead.

Finally, the c.b. socket in the bottom right hand corner is for connection to the contact breaker terminal on the ignition coil. Associated with this socket is a standard ignition condenser which can be switched into circuit by the switch above the socket, thus enabling a test to be made for a faulty condenser.

FRONT PANEL AND CHASSIS ASSEMBLY

The actual front panel dimensions and layout can be varied slightly to suit the particular case to be used. An R.S. Type 1 was used in the prototype. Since the case is about the most expensive single item in the kit, many constructors may prefer to build their own wooden case, or use a suitable housing already to hand. The components and printed circuit boards are mounted on a flat chassis ${ }_{9} \frac{1}{4}$ in $\times 7 \frac{1}{2}$ in $(235 \times 190.5 \mathrm{~mm})$ fixed to the rear of the front panel by two right-angled brackets.

A photograph shows the chassis layout, and the circuit diagram for the main wiring is shown in Fig. 1.2. The mains transformer, Tl , is mounted at the rear left hand side of the chassis, with the bridge rectifier and fuse-holder in front of it. To obtain the half charge rate, a diode DI is connected in series with the bridge, on the a.c. side, converting the rectifier to half wave. DI is a stud type power diode, and is mounted on one a.c. terminal of the bridge rectifier by means of a solder tag on its stud terminal. For high charge the diode is short circuited by the charge switch S2.
The positive output of the bridge rectifier connects through a 5 A fuse to the battery positive socket, and to the last 3 positions, ""Ohms," "Dwell" and "Tach/Strobe") of one section of the four pole.
five way selector switch S3. The negative output is similarly connected to the battery negative terminal and another section of S3, through the ammeter shunt. The shunt consists of four 0.5 ohm 3 W resistors in parallel, giving a total resistance of 0.125 ohms. With SA flowing, this will produce 0.625 volts across the shunt, which will in turn produce the full scale current of 1 milliamp in the meter and its series resistor R5. This voltage will also just bring D6 to the point of conduction, which will limit any excessive overload of the meter due to currents greater than 5A. The meter shunt and series resistors and the protection diode are mounted on a small piece of Veroboard which is bolted to the top of the mains transformer, and the meter is connected through position 1 of the remaining two sections of S3. This completes the battery charger section of the circuit. 5A capacity. wire must be used for wiring the bridge rectifier and battery sockets.

D.C. VOLTMETER

On position 2 of the function switch the meter is connected to the external meter sockets via two series resistors R8 and R9, to give a 25 volt d.c. measuring facility. The value of R8 may need to be selected to suit individual meters. R8 and R9 are mounted on the rear of the selector switch S3, using

Fig. 1.2. Main wiring for Engine Analyser. Note that in the prototype S1, FS1 and LP1 are omitted
a spare tag for the junction. The remaining circuits require a d.c. power supply which will be described next.

POWER SUPPLY REGULATOR

Changes in engine speed will cause variations in generator voltage and hence the voltage appearing across the battery may be anything between 12.5 and 16 volts. As this will affect meter zero and calibration settings it is necessary to stabilise the supply for changes in battery volts. A simple series regulator circuit is used to produce a 10 V 50 mA regulated supply from the $12-16 \mathrm{~V}$ input.

Fig. 1.3 shows the circuit diagram. A proportion of any variation in the output voltage is applied to the base of TR2, the emitter being held constant
by the reference potential on the base of TR1. The amplified error voltage at the collector of TR2 is applied to the base of series regulator transistor TR3, the phasing is such as to reduce the variation at the output, changes in input voltage are compensated by a corresponding change in the voltage drop across TR3. This circuit is built on a piece of printed circuit board $2 \frac{3}{4}$ in $\times 2 \frac{1}{2}$ in at $0 \cdot \operatorname{lin}(69.85 \times$ 63) pitch, with component layout as shown in Fig. 1.4. The assembled board is mounted by two small brackets on the chassis, adjacent to the mains transformer.

There are two electrolytic capacitors, C1 and C2, which are mounted separately from the board. Cl is bolted by a cleat to the side of the mains transformer and C 2 is connected between the negative supply and chassis (positive terminal to chassis).

COMPONENTS . . .

Resistors				
R1-R4	$0 \cdot 5 \Omega 3 \mathrm{~W}$ (4 off)	R20	$1.8 \mathrm{k} \Omega$	
R5	510Ω	R21	$2 \cdot 2 \mathrm{k} \Omega$	
R6	22Ω	R22	120Ω	
R7	820Ω	R23	330Ω	5W
R8	910Ω	R24	15kW	9 W
R9	$24 \mathrm{k} \Omega$	R25	$1 \mathrm{M} \Omega$	
R10-11	240Ω	R26	$1 \cdot 2 \mathrm{k} \Omega$	
R12	$2 \mathrm{k} \Omega$	R27	$150 \mathrm{k} \Omega$	1 W
R13	$3 \cdot 3 \mathrm{k} \Omega$	R28	470Ω	
R14	$10 \mathrm{k} \Omega 2 \%$	R29	820Ω	
R15	22k $\Omega 2 \%$	R30	270Ω	
R16	$16 \mathrm{k} \Omega \mathrm{R}$ 2\%	R31	$2 \cdot 2 \mathrm{k} \Omega$	
R17	$47 \mathrm{k} \Omega 2 \%$	R32	$1 \mathrm{k} \Omega$	
R18	$3 \cdot 3 \mathrm{k} \Omega 2 \%$	R33	$1 \mathrm{k} \Omega$	
R19 $2 \mathrm{k} \Omega$ 2\%				
All $\frac{1}{2}$	W except where	wise	stated.	

$\left.\begin{array}{rl}\text { Potentiometers } \\ \text { VR1 } & 1 \mathrm{k} \Omega \\ \text { VR2 } & 1 \mathrm{k} \Omega \\ \text { VR3 } & 3.3 \mathrm{k} \Omega\end{array}\right\}$ All linear

Capacitors

C1	$1000 \mu \mathrm{~F}$ elect. 25 V
C2	$125 \mu \mathrm{~F}$ elect. 25 V
C3	$0.22 \mu \mathrm{~F}$
C4	, $0.1 \mu \mathrm{~F}$
C5	$0.1 \mu \mathrm{~F}$
C6	$1 \mu \mathrm{~F}$ polyester
C7	$16 \mu \mathrm{~F}$ elect. 10 V
C8	$1.5 \mu \mathrm{~F}$ polyester
C9	$1 \mu \mathrm{~F}$ polyester 400 V
C10	$1 \mu \mathrm{~F}$ polyester 400 V
C11	$1 \mu \mathrm{~F}$ polyester 400 V
C12	$0.1 \mu \mathrm{~F}$
C13	$1000 \mu \mathrm{~F}$ elect. 25 V
C14	$2 \cdot 2 \mu \mathrm{~F}$ polyester
C15	$4700 \mu \mathrm{~F}$ elect. 6 V
C16	$0.047 \mu \mathrm{~F}$

Transformers and Inductor

T1 240 pri. 12 V sec. - Douglas battery charging transformer.
T2 TT51B (Henry's Radio)
L1 Trigger coil (see text) wound on Ferroxcube ring FX1588 (Home Radio)

Xenon Tube

LP2 ZFT8 (Henry's Radio)
Meter
M1 ImA SEW modet SD830

Miscellaneous

FS1/FS2-5A fuses, FS3-150mA fuse, fuseholders (2 off) p.c.b. 3 in $\times 2.4$ in $\times 0.2 \mathrm{in}(76.2 \times 60.96)$ (main chassis), p.c.b. $2.6 \mathrm{in} \times 2.7 \mathrm{in} \times 0.1 \mathrm{in}$ (66.04 $\times 68.58$) (10V regulator), p.c.b. $2.7 \mathrm{in} \times 4.8 \mathrm{in} \times$ $0.1 \mathrm{in}(68.58 \times 121.92)$ (tach, and dwell), p.c.b. $6.4 \mathrm{in} \times 3.4 \mathrm{in} \times 0.2 \mathrm{in}) \quad(162.56 \times 86.36 \times 5.08 \mathrm{~mm})$ (ignition timing) Veropins (31 off), 14 pin di.i.l. i.c. sockets (2 off), brackets: $2 \frac{1}{4}$ in $\times 3 \frac{1}{2}$ in (2 off) ($57.15 \times 88.9 \mathrm{~mm}$) (main chassis), ($\frac{1}{2}$ in $\times \frac{5}{8}$ in \times音in) (Lektrokit LK2321) (2 off) (tach. and dwell), paxolin tube for strobe 12 in $\times 1$ in ($304.8 \times$ 25.4 mm), Case-Type 1 instrument case (R.S.) SK2, SK3, SK4, SK5, SK7, SK8, SK9-4mm sockets (R.S.) (7 off). SK6, miniature socket (R.S.)

Its purpose is to complete the circuit for the contact breaker pulses to the dwell and tachometer circuits. The input to the voltage regulator board connects through the last 3 positions of S3a and b. A 150 milliamp fuse is connected in the 10 volt output line.

CONTINUITY METER

Position 3 of the function switch connects the meter for resistance and circuit continuity measurement. R6, R7 and VR1 ("Set Ohms") are connected across the 10 -volt regulated supply, and VRI adjusted so that with the meter leads short-circuited, full scale deflection (zero ohms) is produced. R6 plus the internal resistance of the meter should give

Fig. 1.3. Circuit of Voltage Regulator Board ' C '

Fig. 1.4. Component layout and track cutting details for Board 'C'
a total source resistance of 150 ohms. To check the calibration, set the zero control, and connect a 150 ohm resistor across the meter sockets, and the meter should read half scale. If not, a different value may be selected for R6, and the check repeated. If the reading is too high, reduce R6 and vice versa. When using the continuity tester on car wiring, the battery should be disconnected from the car to prevent possible short circuit or erroneous readings.

CONTACT CONDENSER

The test ignition condenser, C3, may be conveniently mounted by its flange to the chassis bracket bolt above the switch and contact breaker socket. A test for faulty condenser can be made by simply closing the switch. This completes the assembly of the static test circuits. In the next article we shall deal with the dwell and tachometer measurements.

CARS WITH 6 VOLT BATTERY

The engine analyser may be used on a car with a 6 volt system, provided it is supplied from 240 volt mains, or an independent 12 volt battery. If 6 volt battery charging is required, the a.c. input to D1 and the bridge rectifier must be moved to the 6 volt tappings on the mains transformer secondary. This bridge will not thien give sufficient d.c. output to supply the circuits, and an additional 25 volt, IA bridge rectifier must be connected across the 12 volt tappings. The input connections to S3a and S3b must be removed from the "Battery" sockets and taken to the d.c. output terminals of this second bridge. There may also be a change necessary in the dwell and tachometer circuit, and this will be mentioned when the circuit is described.

NEXT MONTH: The remaining circuits involv-

 ing dynamic engine tests
\square - A VOLUME OF PRACTICAL KNOW-HOW

. . . can be made using these new-look self binders for PRACTICAL ELECTRONICS to become your most valuable source of reference. With the EasiBinder current copies can be inserted as they are received, without waiting for the completion of twelve issues.
They are attractively made with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers, please advise year and volume and a separate'set of gold transfer figures will be supplied.
At $£ 1 \cdot 90$ (including VAT and postage), they are obtainable from:
Post Sales Department, IPC Magazines Ltd. Cartion House, 66-68 Great Queen Street London, W.C. 2
I enclose P.O./cheque value. for binders at £1.90 each for Practical Electronics Vol. No's.....
Name.
Address.

Date

ASSEMBLING THE SABCHRON L.E.D. WRISTWATCH KIT

If you want to be really with it, no doubt the digital watch is the thing of the moment. But, before you rush ahead and buy that expensive kit, make certaln you have both the tools and the skill needed to undertake this deceptively simple task.

ANYONE with an interest in electronics will have noted the trend over recent years towards miniaturisation of almost everything. We have gone from large to small radios, computers and pocket calculators at an ever-increasing pace.

The latest development is the truly electronic watch. Made possible by the development of c.m.o.s., with its low power consumption and compact packiging density. this concept has in two short years managed to go from development prototype to kit construction in one of the fastest development curves in our exploding technology.

Various watches are coming on to the British market but these are mostly in the ready-made form and the prices are a little awe-inspiring to the wouldbe owner. For example there is one rather large item which boasts solar power and the ability to cope with both normal and leap-year counting once set. This is available at around $£ 300$.

At the other end of the scale at the time of writing there is a fairly simple ready-built unit which is capable of indicating merely hours and minutes, with a flashing hyphen to give some idea of seconds. Apparently such a device can be obtained for around $£ 50$.

Of course all these equipments come from overseas at this time and so they are subject, in price terms, to the vagaries of international financial adjustments, usually to the British purchaser's detriment, so it is heartening to see a kit appearing on the market with an associated lower cost.

Euray Trading Inc. of Dallas have started to advertise a kit for a watch which incorporates most of the features the non-specialist would need. Called the Sabchron Digital, the watch offers the ability to indicate, on one depression of a small button in its side, hours and minutes, the month and day numbers on a second depression, and minutes and seconds if the button is initially held down for three seconds.

THE SABCHRON

Using an l.e.d. display with up to four digits and housed in an attractive case of only slightly larger than a normal wrist-watch thickness dimension, the Sabchron when completed is certainly a reasonable project to undertake.

This kit makes use of current m.o.s. l.s.i. technology in the form of one small 24-lead chip which houses all the logic and basic electronics. The display is only switched on for a matter of seconds after the operating the main push-switch and is, in addition, strobed to reduce power consumption. Battery life is claimed to be about one year.

An additional function is the automatic control of le.d. brilliance dependent on ambient light. This is achieved by using an l.d.r. (light-dependent resistor) positioned inside the case to measure the amount of light falling on the display. This feature is optional.

CIRCUIT DESCRIPTION

The component count is kept fairly low by designing the integrated circuit in such a way that it is capable of driving the display directly rather than through driver transistors as can be seen from the general block circuit diagram of Fig. 1. Here the layout is for drafting convenience, obviously the i.c. pin numbers follow in order on the board used, as seen from Fig. 2 and Fig. 3.

The built-in oscillator circuit (input at pins 16 d 17) works in conjunction with the quartz crystal, C1, C2 and C3. The trimmer capacitor, C3 is included to adjust for accurate frequency. $C 1$ and $C 2$ are included to further stabilize the fiequency, but the circuit would work without them. However, it is recommended that they be used. The oscillations are counted and divided by the i.c.

Power for the complete circuit is supplied by silver, oxide $1 \frac{1}{2} V$ cells; $B 1$ and $B 2$. The l.d.r. varies the current available to the display drive circuitry. The I.d.r. resistance increases in bright light, permitting more current flow to this circuit, in total darkness, the resistance increases to reverse the effect.

Outputs from the i.c. are provided through pins $2,3,4,5,6,7,8,19,20,21$ and 22 for driving the display, thus onitting the need for additional driver transistors. Time display is made via $S 2$ on an ondemand basis to conserve battery power. Internal logic elements within the i.c. keep the display lighted for about 1 to $1 \frac{1}{2}$ seconds after demand is made. The logic elements are always powered and driven: only the display is on-demand. Since the i.c. draws only $18 \mu \mathrm{~W}$ of power, the two silver-oxide cells will last up to one full year or more, depending on how frequently display demand is made.

Fig. 1. Circuit diagram of the Sabchron digital wristwatch

Once the complete watch is assembled, operation is simple and uncomplicated. Depressing S2 once, displays the hours and minutes. Keeping S2 depressed after that, causes the minutes and seconds to be displayed. Depressing S2 twice in succession causes the month and date to be displayed, in that order (e.g. a display of 1204 indicates the 12th month and 4th day of the month). This is the way dates are written in the United States.

PRECAUTIONS

Before any construction at all is considered there are several precautions which need to be taken.

First of all there is the question of skill level required. No doubt someone with a reasonably mechanical bent could cope if he followed the instructions painstakingly and laboriously. However, as both miniature soldering and the handling of an m.o.s. 1.s.i. in involved there is considerable risk of damage to the product in the process.

Figs. 2 and 3. Components mounted on the double-sided printed circuit board

(1)! Minelleman

Thus it would be advisable that a prospective constructor have at least some experience with quite small soldering problems and the handling of c.m.o.s. with its attendant danger of electrostatic damage.

TOOLS

Then there is the matter of suitable tools. No doubt most enthusiasts have a fairly miniature iron but here it is really necessary for the bit to be smaller than $3 / 64$ in diameter, so for many this will involve the purchase of a suitable iron and miniature bit. In fact a pointed rather than a chisel end might be found more suitable.

The kit calls for a plastic tweezers but, as anyone who has tried to purchase a pair will know, there are very few around so it behoves one to make them as the writer did.

Finally, there is provision for speed adjustment through a tiny trimmer capacitor which has to be set using a very small square socket tool. To the best of our knowledge there is no version of this available in the U.K., so one will have to be made.

With these thoughts in mind and dealt with one way or another construction can be considered.

THE KIT

The Sabchron kit comes complete with quite comprehensive instructions and all the parts carefully packaged in small plastic bags. The first words on the instructions say "Read before starting assembly" and we heartily endorse this. Currently there is also some Addenda material which bears similar careful scrutiny.
First of all the watch specification is discussed and then a list of required tools is noted. Here it might be sensible to add a pair of small snipe-nosed piiers and a pair of side cutters for holding small objects and cutting leads to length respectively.

KIT INSTRUCTIONS

As in most kits, the instructions are written in a numbered step-by-step sequence which any constructor will find easy to follow. The only steps which might cause some baulking are those concerned with a repetition of a series of resistance checks which, on the face of it, seem unduly laborious. However, they, are none-the-less absolutely necessary.

Starting from an untouched p.c.b., the first stage involves a decision to use the optional light level control for the l.e.d.s. If one decides, as we did, to make use of this facility then a small section of track shorting the location of the I.d.r. has to be removed.

FIRST SOLDERING

The board is "double-sided, with interconnection between the sides provided by so-called "bif" rivet.- These have to be soldered to both sides of the board and in fact this step provides good practice in handling the small iron before more important components are attached.

After this first soldering exercise a series of continuity tests is carried out between both sides of the board and various pads for the i.c. and l.e.d. to ensure proper soldering and no damaged tracks. This and similar checks are very important and should not be skipped no matter how convinced of one's soldering ability one might be. Any fault now can become very embarrassing later.

FIDDLY BITS

Probably for many, the hardest task will be the next step, involving attaching two tiny capacitors in the oscillator circuit.
Again, the use of these components is optional in that without them the watch maintains a claimed accuracy of 3 minutes per year whilst with them this figure can be considerably bettered.

Two points come up at this time. One is the use of so-called reflow soldering in which both parts of a joint are first tinned' and then subsequently placed together, heated and thus bonded. The second is the nature of the solder compound used in the tiny chip capacitor which, in the prototype, appeared to be a somewhat pasty material when heated, rather than a free-flowing solder. Thus it behoves the constructor to apply solder to the capacitor joints when making them rather than relying only on the solder on the capacitor themselves as is suggested in the instructions.

The trimmer, C3, comes with longer leads than necessary and these need trimming to suit the board prior to tinning, a step not mentioned in the instructions.
Handling the tiny C1 and C2 capacitors is quite a problem and the writer found that any excess of pre-tinning on the board copper caused them to lie at odd angles when assembling before soldering. A bit of solder wick is handy in this case for removing excess solder, but probably some extra solder will be needed to obtain a good bond. In fact, in a second assembly operation no pre-tinning was done and this was found to be an easier operation.
After assembling the capacitors, the l.d.r. is soldered on, taking care to watch orientation both in terms of the exposed side of the tiny chip and in terms of orientation with respect to the edge of the board as the l.e.d! display has to be subsequently assembled in the centre of the board.

CONTINUITY CHECKS

At this point a comprehensive continuity check is carried out and again one must emphasise that this step is imperative since the next steps involve mounting the rather sensitive circuitry which, if some lines are not connected or are shorted, can be damaged on applying power.

CRITICAL STEPS

Now we come to the trickiest part of the assembly. Tricky because even if damage is done to the i.c. you will not know till you power the watch. And it is very easy to do damage because of static electricity. Thus the suggestions as to earthing everything to a common earth are most important. This is dealt with in the instructions in some depth.
The writer used a normal desk for assembly, overcoming the earthing problem by using two sheets of aluminium foil to work on. Wearing cotton clothes (nylon can create a great deal of static electricity, and working with bare arms on the working surface at all times makes certain both you and the tools are grounded.

The soldering iron must be connected to this ground surface and it is advisable, when handling the i.c., to keep it insulated from every thing until the soldering is done. The writer applied the first solder joints to the chip whilst the p.c.b. was resting on a sheet of cardboard on the aluminium foil and

completed some of the soldering after the first three steps whilst holding the p.c.b. with the hand.

The orientation of the chip is obviously important and care should be taken to ensure it is both the correct way up and with pin 1 facing the pin 1 pad on the p.c.b. before the final pressure is applied to make the double-sided adhesive sheet used to temporarily hold it down actually stick firmly.

Patience at this stage is imperative. Do not do more than one joint at a time between inspection steps. The delay in the sequence introduced by each examination is very useful as it allows things to cool down after heat from the iron has been applied. In this way the chip does not become too hot and heat, it should be remembered, can destroy the chip.

The soldering operation itself at this stage requires quite a lot of dexterity and great care must be exercised to avoid too much solder as well as too much heat. It is very easy to run solder over more than one track on the p.c.b. but a good' loupe (magnifying glass) will show such an error fairly clearly.

FINISHING ASSEMBLY

From this point on the assembly is fairly simple with the possible exception of the application of three small switch contacts. These latter are in the form of bent-up phosphor-bronze strip which has to be soldered to the p.c.b. at three points on the periphery. In itself the soldering is not difficult providing one can hold the spring steady whilst the solder cools.

The three switch contacts engage in three slots formed in a nylon moulding which serves to locate the board and contacts in the watch body. The engagement is very tight and some relieving with a small file or, indeed, the hot iron bit, is needed to finally get the assembly to go together smoothly.

After all compenents are assembled on the p.c.b. and prior to power application, a further and final continuity check is carried out.

FIRST TRIAL

The instructions now lead the constructor through the first trials of the watch, including powering the unit up, checking it out and finally closing up the case.

In the writer's case the prototype worked first time round on all tests, apart from one l.e.d. segment which was clearly due to a faulty l.e.d. No doubt, the kit being a prototype explains this particular item. The second, final form, kit operated properly the first time power was applied.

Measurements on the two models made up were quite interesting. The first, prototype version, without any alteration at all gained some 15 seconds in 14 days according to TIM. The second version, the final form of model, lost some 30 seconds in 48 hours, clearly a matter for heavy adjustment. Indeed both watches constructed need adjustment to meet the claimed accuracy and this brings up the matter of the tool required for this job.

To the writer's knowledge there is no available device so again one has to be made up and could be filed from a length of steel or brass rod to give the required very small rectangular end shape. In fact, the adjustment can be effected using any fairly small object which is shaped so as to engage with the flats or the diagonals of the square hole in the capacitor spindle.

THE latest domestic sewing machine instroduced by Singer in the United States, the Athena 2000, is controlled electronically by a m.o.s. l.s.i, system produced for Singer by AMI Microsystems.

Designed to Singer's own specification, the AM1 module operates in conjunction with touch contact controls to replace as many as 350 mechanical parts, including the manual levers and dials conventionally used for the selection of the various machine functions.

Pattern selection, for example, is effected simply by touching the relevant contact: the appropriate machine settings are then made automatically by the m.o.s. control system. This facility also allows one unit of a selected pattern to be sewn, following which the machine automatically stops. Similarly, the AMI module causes the adjustment of machine settings according to the selected stitch length and width, and the fabric in use.

At present, the Athena 2000 is available only in the US domestic markets. A version of the machine for Europe is currently under development.

TV Innovations

FOR those of us who like to watch t.v. but find following a programme difficult when others start talking in the room, a recent innovation from Germany may help put an end to our plight. Mounted on the front of the new set from Loewe Opta GmbH is an array of l.e.d.s which transmit a frequency modulated beam of infra-red to a photo diode mounted on a pair of headphones; the beam being modulated with the t.v. sound. The headphones are thus completely independent of the t.v.

Infra-red was chosen since light in that frequency band tends to be reflected around the room and therefore can be picked up by the receiving photo diode without it having to be in line of sight with the transmitter. One is able to listen to a programme without being disturbed by others talking, and without fear of anyone tripping over leads to the headset.

Besides their sophisticated ultrasonic control system (see Inter Navex '75 report) Grundig are to incorporate yet another new feature in their latest range of t.v.s. On pressing either a control on the ultrasonic control unit, or a plate on the t.v. itself, four-centimeter high lightgreen digits giving the time in hours and minutes appear on the bottom of the screen. Also, whenever the channel is changed a similar display giving the programme number is shown on the screen. The digits automatically disappear after ten seconds.

Going Dutch

The Wilhelmina Gasthuis Hospital in Amsterdam is the first hospital in Holland to be equipped with an EMI-Scanner, a revolutionary X-ray machine for the diagnosis and investigation of brain disorders.

The order was placed with EMI's Dutch Company ANRU, and followed a visit by Professor Westra of the hospital, to the Company's X-ray Systems division at Hayes, Middlesex and to several existing clinical installations of the system in UK hospitals.
The EMI-Scanner produces pictures of brain tissue with exceptional clarity and high definition, giving doctors 100 times more information on tissue than is possible with conventional X-ray techniques.

As patients can frequently be accepted for examination by the EMI-Scanner on an out-patient basis this contributes greatly to reduced patient anxiety.

This could lead to something big.

If you know how to use them, or at least know one end from the other, you know enough to enrol in our unique home electronics course.
This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You build, see and learn as, step by step, we take you through all the fundamentals of electronics and show you
how easily the subject can be mastered and add a new dimension not only to your hobby but also to your earning capacity.
This course is accepted by and used in a large number of schools and colleges and forms an invaluable grounding for professional training in the subject. All the training is planned to be carried out in the comfort of your own home and work in your own time. You send them in when you are ready and not before. These culminate in a final test and a certificate of success.

Read, draw and understand circuit diagrams.
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

Carry out over 40 experiments on basic circuits.
We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

ALL STUDENTS ENROLLING IN OUR COURSES RECEIVE A FREE CIRCUIT BOARD ORIGINATING FROM A COMPUTER AND CONTAINING MANY DIFFERENT COMPONENTS THAT CAN BE USED IN EXPERIMENTS AND PROVIDE an excellent example of current ELECTRONIC PRACTICE

THE EARTH AND EARTHQUAKES

Geophysicists have been working for some time on evidence of a number of related facts which suggest that an earthquake is but one of a number of manifestations of a chain of physical events.

Dr. Donald Anderson, Director of the Seismology Laboratory at the Californian Institute of Technology, has discovered a number of curious data relationships which occurred at the beginning of this century. Between 1897 and 1914 there was a 17 year period of seismic violence. During that time 1s0 less than 71 earthquakes were reported with a intensity greater than 8 on the Richter scale.

Coincident with these happenings there were volcanic eruptions," and "Tsunamis". These "Tsunamis" are giant waves and in the time of the 17 year cycle of events some of these were more than 100 feet high. Perhaps surges are a more apt description of them for they are the result of earthquake crustal movement and not tidal effects.

Now at the same time as these events were operating, the "wobble", known as the Chandler Wobble after its discoverer, was at its peak. This wobble is a spinning top effect which varies in such a way that the north geographical pole describes varying diameter circles. This normally has a slight effect on the speed of the rotation of the Earth which over a period of time averages out.

However, at the period in question the length of the day changed because the Earth had slowed up. In five years the rotation decreased more than it had
previously done in the last 2000 years. At the same time the global temperature added to the phenomena by rising by 1.0 degree Centigrade, the sea level rose and the westward drift of the Earth's magnetic field accelerated.

During the last few years great strides have been made in the science of geophysics. As a result of refined measuring systems, the observations from satellites and probes and the revival of interest in plate tectonics, earthquake predictions have become more accurate.

The spin-off of space technology has had its part in this and we are thus able to learn more about the rather unstable globe on which life exists. Indeed, like so many of the things going on around us the facts are more exciting than fictional stories.

ON THE MOVE

The Earth's upper crust is not stable and solid, but is in fact made up of about a dozen tectonic plates which move in relation to each other. The upper surface of the crust is rather similar to a conveyor belt feeding new crust out at one end and consuming it at the other. Pressure builds up in the interior of the Earth and pushes new molten material out of the sea floor separating the plates and pushing them apart. If this ocurrs with the Pacific Plate and the North American Plate then one passes under the other returning material to the inerior. Earthquakes occur at the lines where the plates meet.

This is but a part of the chain of events. The total energy cycle involves the atmosphere. for energy is transferred from it to the crust, to the core and back out again. For example, when the Earth slows down rotational energy is released and this could be transferred to the atmosphere or the core.

From his examination of the data Dr. Anderson believes that massive earthquakes release enough energy to affect the Chandler wobble and the Earth's rotation. There seems to be evidence of a 40 year cycle of the Chandler effect. The great earthquake of 1911 was near the Chandler maximum and so was the Assam event in 1950 and the Kamchatka event in 1952.

The efficiency of measurements now possible, of the tilt and bulge of the Earth. make predictions of earthquakes a more positive science.

EXPLORING THE MAGNETOSPHERE

Plans for a joint effort by NASA/ SRC which would involve three satellites have been discussed in

London. The original project involved two satellites. These would have been put into a low circular orbit and the other in an elliptical orbit with an apogee varying between three to six Earth radii. Correlated measurements could thus be made.
Now thoughts are along the lines of three satellites. The third would be a UK vehicle unpropelled. The lower orbiting US satellite would be used to vary their separation.

There is considerable competition for space funds but there can be no doubt about the value of such missions. A great deal of work needs to be done at lower levels and the inter-level correlations have alreadv shown their value.

The sunspot cycle seems to be directly related to tropospheric phenomena such as lightning. verticity rainfall and pressure.

SOVIET ACTIVITIES

The Salyint 4 vehicle has been an unusually successful project. Apart from the long time occupation by cosmonauts, more than fo days for the last pair. an enormous amount of data has been accuuired.

A new method of spectral sounding was employed in the upper atmosphere using infra red and ultra violet techniques. This enables studies to be made of the distribution of water vapour. ozone and nitrous oxides. The uptical observations were carricd oul by means of the OCT-I orbital solar telescope. Also aboard were attomatic installations for the growth of higher plants. The "beds" were sown with onions and peas. These have shown lavish development a month after launch.

The present parameters of Saly"I 4 are: Orbital period $y /-3$ min. Perigee 330 km Aprogee 362 km and orbital inclination 51.6 degrees.

METEOR 2

Launched for meteorological studies. Mercor ? on board instruments include infra red experiments. an experimental optical-mechanical television scanning system and some rather complex radiometric equip. ment. The radiometric equipment is for the study of penetrating radiations in near Earth space.

The satellite has an advanced' three axis sysem for the orientation of the satellite to the Earth. In addition there were the usual telemetry and other communications systems.

The parameters are: Orbital period 102.5 min . Perigee 872 km . Apogee 903 km and the inclination of the orbit $81-3$ degrees.

Two types of envelope shaper are found in commercial synthesisers: one gives control of attack and release times and is known as an "AR" envelope shaper: the other gives control of attack and release times and also allows, after the end of the attack period, a decay of variable rate to a preset level (sustain level). This type is known as an "ADSR" envelope shaper (Fig. 1) which has a far greater control potential and allows a wider range of effects to be produced.

The circuit comprises two exponential generators, a high impedance buffer stage, a Schmitt trigger and a unity gain differential adder.

CIRCUIT DESCRIPTION

The circuit diagram of the ADSR shaper is given in Fig. 2. When SI is closed the emitter of TRI rises to 8.5 V . resulting in capacitor Cl charging through DI and VRI to approximately 8 volts, since about 0.5 V is lost across D1. Half of the voltage on Cl is applied to the inverting input of IC1 via the divider R2 and R3.

F.E.T. BUFFER STAGE

This voltage is also applied to the gate of f.e.t TR2, which has a high impedance and thus does not drain Cl . The source of the f.e.t. connects onto VR3 whose slider position determines at what stage in the cycle the Schmitt frigger (TR3 and TR4) fires. This occurs when the base of TR3 reaches approximately 3 V . When this happens TR4 is off and TR5 is held on with R8. Zener diode L 3 $(3.9 \mathrm{~V})$, D4 and VR4 provide a charging path for C2, the charging rate being determined by VR4.

A proportion of the voltage on C2, depending on the setting of VR5, is applied to the non-inverting input of ICI via R1I. Any voltage present at this input will result in a proportional reduction of the output voltage of IC1. The rate this reduction occurs is set by the decay control, and the level it reduces to by the sustain control.

Fig. 1. "AR" and "ADSR" envelopes

COMPONENTS . .

Resistors					
R1	$4.7 \mathrm{k} \Omega$	R5	270Ω	R8	560Ω
R2	$1 \mathrm{M} \Omega$	R6	680Ω	R9	$4.7 \mathrm{k} \Omega$
R3	$3.3 \mathrm{M} \Omega$	R7	560Ω	R10-13	$1 \mathrm{M} \Omega$
All $\frac{1}{4} \mathrm{~W}, 5 \%$ carbon					
Potentiometers					
VR1, VR4	4 100k Ω	lin.		R5	M lin.
VR2	500 k S	dual	ged li		
VR3	$10 \mathrm{k} \Omega$	vert.	nting	eleton	eset

Capacitors
C1-2 $10 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
Semiconductors
IC1 7418 pin dil.
D1, 2, 4,5 1N914
D3 \quad BZY88 $3.9 \mathrm{~V}, 400 \mathrm{~mW}$, Zener
TR1, 3, 4, 5 2N3702, BC212 etc (any general purpose silicon or germanium pnp type)
TR2 2N3820 (p-channel f.e.t.).

Miscellaneous

S1 S.p.s.t. or trigger switch of keyboard
S2 D.p.s.t.
B1-2 PP9
Veroboard $2 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{in} .(64 \times 115 \mathrm{~mm})$
8 pin dil. holder for IC1 (optional)

RELEASE

When SI is opened, TR1 switches off, the voltage on C1 falls, the Schmitt trigger switches off resulting in the voltage on C2 also falling. Capacitor C1 discharges through R1, D2 and VR2a: C2 through R9, D5 and VR2b. Thus both discharge with the same time constant.

CONSTRUCTION AND TESTING

A suitable Veroboard layout is given in Fig. 3. Note that pin 5 of. the holder for ICl should be snipped off so that it does not touch the copper strip connecting pin 4 to the negative voltage line. An oscilloscope or high resistance voltmeter is required to set VR3.

First monitor the voltage on C1 and ensure that it rises when SI is closed. Now monitor the voltage on C2. Start with VR3 wiper at the ground end of its travel; close SI and advance VR3 wiper until C 2 starts to charge. If C 2 is not at OV with S1 open, change D3 for one of a higher Zener voltage.

If VR1 and VR4 are both set at minimum resistance the voltages on C1 and C 2 will rise quickly.

USE WITH VOLTAGE CONTROLLED AMPLIFIERS

The module can be used with the VCA circuit published in Practical Electronics October ${ }^{7} 73$. For this purpose connect a 4.7 K !? resistor between the output and ground, and connect the output to the input of the VCA.

ADSR SHAPER EFFECTS

Generally speaking, short attack and decay times will tend to give short, sharp, percussive sounding effects when used with, for instance, noise sources. With a little experimentation with the various controls, an ADSR shaper can be adjusted to closely simulate the envelopes produced by a wide variety of instruments (e.g. the piano, violin, guitar, etc) and thus adds a new dimension to a monophonic synthesiser.

Fig. 3. Veroboard and component layout details

GSIMPDIUUTIDR

2416 MP9100 553 554

MISTER SHIFTER
T.T.L. brought us the eight-bit shift register, and m.o.s. stretched this up to 128, and then an incredible 1024, bits per register during the last few years. A shift register 1024 bits long in a single dual in line package seemed pretty indredible to me, or anyway it did until the other day when I saw the preliminary data sheet on the new Intel 2416!
The 2416 is a charge-coupled m.o.s. device housed in a diminutive 18 pin package containing no fewer than 64 separate registers each 256 bits long, an amazing 16,384 bits in all! Even those who are numb to the customary excesses of m.o.s. technology will have to agree that getting that number of storage elements together on one piece of silicon is quite a revolution, and a revolution is just what its manufacturers want to start, because the 2416 is aimed at the bulk-storage end of the computer memory market, the traditional territory held by electro-mechanical devices such as magnetic tapes and discs.
If Intel are right, and the 2416 does start to replace its non-solid-state predecessors, it will be continuing a trend which began with the ousting of magnetic cores from computer work stores by the now familiar "Random-Access" m.o.s. chips. Semiconductor storage has already proved that it can be cheaper and more compact than rival magnetic devices at this high speed small capacity end of the market, but at first glance it seems a tall order to think of replacing things like discdrives whose storage capacity is rated in Megabits. The key to success, as always, lies in the low price of semiconductor devices, and even at its introductory price of $£ 30$ each, the 2416 works out at only about 0.2 pence per bit.
The reason why the storage on the new chip is organised as 64 separate recirculating registers instead of one thumping great long one is not hard to find. Since shift register stores can only be accessed via their serial inputs and outputs, it would take an unacceptably long time to rotate the contents of a 16,384 bit device for access to a particular bit, even at high clock speeds. By splitting the store into separate loops of 256 bits each and using an address decoder to get at the separate registers,
average access time is reduced to less than 100 microseconds at a clock rate of 1 Mhz .

To prove that the 2416 really is a practical proposition Intel have put together a printed circuit board measuring 9 in by 15 in which has a storage capacity of $1,048,576$ bits, the magic "Megabit" figure, which will have the manufacturers of the magnetic systems losing a lot of sleep if I'm any judge!

TIMELY QUADS

The 555 i.c. timer chip has been with us now for several years, and in that time it has become very popular, and has been used in many amateur projects. The popularity of this chip is well deserved because the 555 combines in one small package all the useful features one needs to build a wide range of ascillators and time delays, coupled with a wide availability and low price.

A dual version of the 555 was introduced, but not a lot was gained because the dual version came in a 14 pin d.i.l. instead of the little 8 pin "Mini-d.i.p." of the 555, but Signetics have now taken the cramming process a step further by putting four 555 type timers in a 16 pin d.i.l. which comes in two versions with type number 553 or 554 .

To get four timers into such a restricted space, some reduction in available facilities has had to be made, the most fundamental being a reduction in the output drive capability. The original 555 can source or sink up to 200 ma at its output pin, whereas the new quads come in two versions, one of which, the 553, sinks current, while the other, the 554, sources it, both at a reduced current level of up to 100 ma . In addition, the $553 / 554$ quads do not have the reset input which is available on the 555 to terminate an initiated time period, but since in many applications the reset is superfluous this is no loss.

The 553/554 have most of the other traditional timing features, such as good stability and wide range, and the duty cycle of all four timers can be varied by means of a single external control voltage.

The new quads really come into their own where sequential time periods are required, i.e. timer A triggers timer B, timer B triggers timer C and so on, making them ideal for such applications as traffic light
controllers, model train sequencers, etc.

DIAL STYLE

Two new i.c.s from Plessey demonstrate the way that large-scaleintegration can solve everyday problems as well as the more exotic problems of the mammoth computer industry.

The MP9100 and the MP9200 are m.o.s. i.c.s intended for use in pushbutton telephones, the first being a dial code generator and the second a store to enable a caller to recall previously entered numbers by pressing a single button.

The MP9100 comes in an 18 pin d.i.l. package, and has many novel features which make it attractive for amateur as well as professional applications. A four line binary code from a keyboard is accepted, up to twenty digits at a time, and from this input the MP9100 generates the necessary pulse sequences to drive the uniselectors of standard Post Office Strowger type exchanges. In addition to the digits 0 to 9, "Dial-tone-waits" may be keyed in anywhere in the number sequence, to force a pause in the output pulse sequence.

This unfamiliar-sounding operation is normally carried out by the telephone user himself, and is required, for example, when a private exchange has a dial-out facility. In situations like this it is necessary to dial, say 9 , and then wait for the "outside-line" dialling tone before dialling in the normal way.

With the MP9100 there is no need to pause during the keying sequence, all that's necessary is to key in a "dial-tone-wait" after the 9, and then the rest of the number, the chip will send out the 9 and then wait until a dial-tone arrives before continuing.

The MP9200 is a sort of optional extra to go with the MP9100 in a telephone system, bringing with it a facility which did not exist at all with traditional instruments, namely the ability to store up to ten, separate, 22 digit telephone numbers, for later recall. Each complete number is recalled and dialled out via the MP9100, by pressing the appropriate single key.
A system using these chips could be the long awaited electronic replacement for the "little-blackbook" for space-age batchelors!

Ist GRADF COMPONENTS
 FROM
 MOTOROLA•MULLARD•SIGNETICS MONSANTO FERRANTI GIM

We hold $£ 250,000$ worth of components and all items listed in this advertisement are ex-stock at the time of going to press - All products guaranteed - No minimum order charge

Choose the right hi-fi and you're constantly rewarded. Choose the wrong hi-fi and you live with a costly mistake.

Audio ' 75 helps you arrive at the right buying decision, by bringing together under one roof, the finest equipment for you to see, hear and compare.

Audio Fair ' 75 lets you become acquainted with new products, new ideas and new refinements in your price range.

Don't miss Audio Fair '75-it could save you a lot of money and anxiety.

Sponsored by THE OBSERVER THE 1975 INTERNATIONAL AUDIO FESTNAL\&FAR. OIMPIA:LONDON:2Oth-26th OCTOBER. Admission 75p llive-theatre show FREE)

The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates

Excellent job prospects await those who hoid one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour T.V. Servicing
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE.

Aexhibition designed to cater for the ever expanding Audio and Visual Aids industry, Inter Navex 75 was held at Olympia from July 8 to 10 . Most exhibitors were showing equipment in some way associated with education but an enormous range of peripheral gear was also displayed.

PROJECTION T.V.

Trying to show a large number of people a t.v. programme, whether taped or live, can be difficult unless one happens to have a large number of monitors available. A new colour t.v. projection system launched by Advent should help solve a few problems from this point of view. Providing a $4 \frac{1}{2} \times 5 \mathrm{ft}$. screen, the system can give comfortable viewing for as many as 40 people.
The system employs three separate "Light Guide" projection tubes each having its own optical system within the tube (thus eliminating the cleaning and alignment problems usually associated with this sort of equipment). A built-in cross-hatch generator allows for quick and easy convergence adjustment. With the growth of the video-recording industry, the system is sure to find popularity with schools and industrial training courses as a means of showing programmes to classes.
Still on the t.v. front, Grundig were displaying their new television (Color 2252) which features an extremely comprehensive ultrasonic conirol system. and a 110 degree in-line slot mask tube. The control system allows instantaneous selection of any channel, plus the usual volume, brilliance and colour contrast up-down controls. In addition a button is provided on the unit to allow one to cut the sound. Pressing it again returns the volume to its original level.
The service engineers should like it too, as plugging a gadget called a Diagnostic Adapter into the main printed circuit board, in theory reveals faulty modules in the set under breakdown conditions.

ANIMATED DISPLAYS

Have you ever wondered how those "animated" displays work which depict such things as tlows in chemical processing plants, or the movement of fluids round the body? The displays themselves appear to have zones that are actually moving along. The effect is zenerated by using a special plastic film which. although transparent, is in fact composed of strips which are "sequentially polarized", i.e. the direction of polarisation is sequentially rotated strip after strip. If one views this through a rotating disk on which the angle of rotation of polarisation varies through 360 degrees around it, the dark zones formed when the two polarisations are at right angles to each other, will move down the film due to the sequential polarisation of the film. This causes the effiect of apparent motion on the display.

Technamation had some impressive displays of charts of widely differing subject matter using the principle. The charts are easily made up with ordinary coloured self-adhesive plastic film and the special polarised
material (also self adhesive). The system is ideal for overhead projectors where the rotating wheel is merely placed between the chart and the projector lens to give the animation effect.

VIDEO CASSETTES

A number of video cassette recorders were on display; amongst others the increasingly popular Phillips model, and surprisingly, an all British recorder with a sophisticated digital clock arrangement to allow ascurate time switching (from Radio Rentals Contracts).

Grundig's new ultrasonically controlled t.v.

The Radio Rentals Contracts vcr and timer

The Video-Beam colcurt.v. projection systiem from Advent

MICROPROCESSORS PART 1

A word heard more and more in electronics today is "microprocessor". Although a comparatively recent innovation, this device is now finding its way into extremely diverse fields of application.

The word "microprocessor" describes a complex integrated circuit package which forms the heart of a digital processing system. The concept has been designed in order to provide a basic, flexible system which can be "programmed" to perform functions normally requiring large numbers of standard TTL devices. The essence of the system is flexibility however, and this is one of the many reasons for their rapid increase in popularity.

The automobile industry, for instance, has turned to microprocessors to cope with the task of optimising engine performance under all conditions, and with the price of fuel soaring, this is obviously a highly favourable feature. Microprocessor on-board diagnostic systems (i.e. letting the driver know where a fault has occurred) and "anti-skid" braking systems are among other applications in this field.

Domestic equipment will benefit by this new technology. Sewing machines and washing machines are examples of consumer products which will make use of microprocessors.

Electronic games will soon be (some already are in fact) incorporating microprocessors, which are bound to greatly increase their sophistication. An electronic bowling-alley exists now which uses a complex microprocessor system not only in scoring, but also in giving the right "feel" to the game as far as the roll of the "ball" and knocking the pins down.

These devices have already entered the field of electronic instrumentation and some of the more advanced types of oscilloscopes and signal generators already incorporate microprocessors.

Industry has been exploiting microprocessors in such fields as factory automation systems, machine tool control, electronic scales, conveyor-line control, robot manipulation of piece parts and component insertion. A microprocessorbased metal stretching machine can monitor operations performed on a piece of metal (via various A-D converters) commit them to a "memory" and then can duplicate the operation as many times as is required.

Traffic control is another area where microprocessors are bound to excel. The complex logic required to control an intricate main road intersection can be relatively easily carried out using a microprocessor.

Telephones and telephone systems will greatly benefit from the use of microprocessors. Research is being carried out at present to reduce the bandwidth necessary to transmit a telephone channel by having an "intelligent" transmitter and receiver system.

On a more practical basis a microprocessor contro!led memery arrangement for a 'phone could be envisaged which would not only automatically dial a number when perhaps a name or symbol was entered, but also have facilities for redirecting calls to holiday addresses.

The above examples show how microprocessors can become the heart of intelligent systems, and also indicate their great flexibility.

The following article is concerned with the operation of the device itself and also some of the associated equipment.

THE microprocessor is one of the most exciting new products to be announced by semiconductor manufacturers and, even though microprocessor technology is still in its infancy, a bewildering choice of some 30 different types is now being offered to electronics design engineers. Before examining the microprocessor in depth, it is worth briefly looking at the development of the digital integrated circuit to see exactly how and why the microprocessor evolved.

DEVELOPMENT

In the early days, all digital integrated circuits were integrated copies of the discrete component circuitry they replaced. They were made up of resistors and bipolar transistors diffused into a single chip of silicon and only a very few individual logic elements (gates, flip flops, etc.) could be built into a package. Therefore, a typical digital system employing these circuits consisted of a very large number of separate packages.
As bipolar semiconductor technologists learned how to increase the complexity of the circuit in each package, integrated circuits employing p-channel, and more recently n-channel, m.o.s.f.e.t.s. were introduced. The mos technologies opened the way to integrating thousands of transistors on a single chip and enabled circuits of an unprecedented complexity to be contained in a single small package.

PROBLEMS

At this stage a very difficult problem arose. A great deal of money is needed to design and produce one complex l.s.i. (large scale integration) circuit, say, several tens of thousands or hundreds of thousands of pounds. If a large number of each particular integrated circuit is ultimately to be produced, the development cost can, be spread over a sufficiently large number of units to become insignificant. In addition, it is important to note that semiconductor manufacture is essentially a mass production undertaking as the more integrated circuits of one type that can be produced the lower the production cost per unit.

The potential advantages of large scale integration were in danger of not being fully realised because it was found that as the complexity of an integrated circuit was increased the more specialised became its uses. What was needed was a universal digital integrated circuit that could be used in an unlimited number of different applications. That universal i.c. was developed and was called the microprocessor.

MICROPROCESSOR FUNDAMENTALS

Any conventional digital circuit consists of a number of gates and flip-flops connected in such a way as to perform the required function. Such a
circuit accepts digital inputs, performs some kind of processing and provides digital outputs. The function performed by many digital systems is determined by the way in which the various gates and flip-flops are interconnected.

PROGRAMMING

The microprocessor differs from the "hardwired" digital circuit discussed above in that the function performed is determined by a sequence of instructions which are stored in a memory in much the same way as a conventional digital computer. A change in the programme will alter the function carried out by the microprocessor.

PRACTICAL MICROPROCESSORS

To enable readers to more fully grasp the detail involved in microprocessor system design, one microprocessor-the Motorola M6800-will be described in some depth. Following this, basic details will be given on some other microprocessors which are available to industry.

The Motorola M6800 is a family of six integrated circuits that can be interconnected in a variety of different ways. The set comprises the microprocessor itself (MPU), a Random Access Memory (RAM), a Read Only Memory (ROM), a Peripheral Interface Adapter (PIA), an Asynchronous Communications Interface Adapter (ACIA) and a Low-speed Modem (LSM).

SECTIONS

All microprocessors can be divided into four basic sections: a memory, an input/output unit, a control unit and an arithmetic logic unit. The entire operation of such a system can be likened to a man adding up numbers written on a sheet of paper and writing the result on the same piece of paper.

In this analogy the sheet of paper becomes the peripheral device-the source and destination of the data to be processed. The man's eyes are the input system enabling the numbers to be read into the memory. The man's hand forms the output unit enabling the results of a calculation to be written down. The memory of both the man and machine perform the same function-both store the sequence of instructions (algorithm) for performing addition. The part of the brain which performs the addition can be likened to the arithmetic logic unit and the brain's co-ordinationg centre to the machine's control unit.

BYTES

In the Motorola microprocessor, instructions and alphanumeric data are represented by eight-bit

[^1]| ACIA | Asynchronous | CROM | Control Read Only | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Memory | PROM | Programmable Read |
| | | DMA | Direct Memory Access | | Only Memory |
| | Communications | IRQ | Interrupt Request | RAM | Random Access Memory |
| | Interface Adapter | MPU | Microprocessor | RALU | Register, Arithmetic and |
| ACU | Arithmetic Logic Unit | NMI | Non Maskable Interrupt | | Logic Unit |
| Byte | 8 -bit binary word | PIA | Peripheral Interface | ROM | Read Only Memory |
| CCR | Condition Code Register | | Adapter | RTI | Return from Interrupt |

binary words. called bytes, which are stored in the memory. Each location within the memory has a numerical address (in the same way as houses in a street) and each location is capable of holding one byte of information.

With one byte (eight bits) it is possible to count up to the equivalent of 256 in decimal and, therefore, with one byte it is possible to individually address up to 256 memory locations. For the majority of microprocessor applications much greater memory capacity is required, therefore all the registers within the microprocessor concerned with addressing have a length of 16 bits.
This means that up to 65,536 separate locations within memory can be addressed (since a 16-bit binary word can have a value of up to this figure in decimal). Every location within memory will hold one 8 -bit binary word, which means that the memory can consist of $65,536 \times 8=524,288$ bits. However, there is no need to have a memory as large as this to make the MPU function.

HEXIDECIMAL CODING

In binary, memory location number one would be referred to as location 000000000000000 I, location number two would be 0000000000000010 and location 32.769 would be 1000000000000001 , which, you will agree, is all rather tedious.

To avoid using such long strings of 1 s and 0 s , the hexidecimal code is often used when referring to numbers within the MPU, as conversion between binary and hexidecimal is easier to perform and more convenient than conversion between binary and decimal.
The conversion between binary and hexidecimal first involves splitting the binary word up into blocks of 4-bits as follows:

01101101 becomes 01101101

Table 1: Hexidecimal Code

Decimal		Binary		Hexidecimal
0	$=$	0000	$=$	0
1	$=$	0001	$=$	1
2	$=$	0010	$=$	2
3	$=$	0011	$=$	3
4	$=$	0100	$=$	4
5	$=$	511		
6	$=$	0110	$=$	6
7	$=$	011	$=$	7
8	$=$	1000	$=$	8
9	$=$	1001	$=$	9
10	$=$	1010	$=$	A
11	$=$	1011	$=$	B
12	$=$	1100	$=$	C
13	$=$	1101	$=$	D
14	$=$	110	$=$	E
15	$=$	1111	$=$	F

Each block of four bits has 16 possible values. In the decimal system we only have ten symbols to use (0 to 9) so, in the hexidecimal system, counting continues using letters of the alphabet as follows:
Returning to our earlier example, 01101101 in hexidecimal is equal to:

$$
\begin{array}{cc}
01101101 \\
0110 & 1101 \\
6 & \mathrm{D}
\end{array} \text { (from Table 1) }
$$

Fig. 2

0001	86	Load accumulator A with
0002	05	'the number 05 (Hex).
0003	B9	Add contents of accumulator
0004	00	A to the contents of the
0005	27	Memory location 0027.
0006	B7	Store the contents of accumulator
0007	00	A at memory
0008	28	location 0028
0027	03	Operand
0028	08	Result

In other words 01101101 is equivalent to 6 D in hexidecimal. If you wish to work it out you will find that 6 D in hexidecimal is equivalent to 109 in decimal.
Using the hexidecimal system is confusing at first Numbers like CF2C do not seem to make much sense. However, after a little practice working in 16s with the hexidecimal system, it becomes as familiar as working in tens.

SIMPLIFIED VIEW

A much simplified block diagram of the Motorola microprocessor is shown in Fig. 1. The blocks labelled programme counter, stack pointer and index register are all registers capable of holding 2 bytes (16 bits) which are used to hold the addresses of instructions or data stored in the memory.

Accumulators A and B are each 1 byte registers which are primarily used to hold data for and from the arithmetic logic unit. The instruction register is used to hold an instruction (1 byte) which is decoded and used to produce the control, routing and timing signals which are necessary to carry out the instruction.

EXAMPLE SEQUENCE

With the aid of Fig. 1 and Fig. 2 it is possible to trace a complete sequence of events within the microprocessor.

Fig. 2 shows a number of memory locations containing instructions which are to be performed by the microprocessor. For convenience the instructions are shown in hexidecimal instead of binary. To the left of the memory locations are the four digit hexidecimal memory location addresses. On the right of the memory locations are the plain English explanations of the instructions stored in the memory locations.

The programme counter is set to the address of the first instruction in the programme which is situated at memory location 0001 . This is done by loading the programme counter with the number 0001.

The address in the programme counter is sent to the memory along the address bus and, as a result, the contents of memory location 0001 are sent to the MPU along the data bus to be stored in the instruction register. The programme counter is now incremented by 1 to 0002 .

The content of the instruction register (86-the instruction to load accumulator A with data represented by the byte in the next memory location) is decoded and the control system causes the byte addressed by the programme counter to be transferred along the data bus from memory to accumulator A in the MPU. The programme counter is again incremented. (now holds 0003) and accumulator A holds the numerical value 05 (hexidecimal).

NEXT INSTRUCTION

The MPU fetches the next instruction from memory that is addressed by the programme. This is B9-an instruction which causes the numerical value contained in accumulator A to be added to the content of the memory location specified in the following two bytes of the instruction and to place the result of the addition in accumulator A. The programme counter is incremented to 0004.

The MPU fetches the first byte of the second operand address (00) from memory location 0004. increments the programme counter to 0005 and fetches the second byte of the address (27) from location 0005 . The programme counter is incremented to 0006 .

The MPU now holds the first operand (05) in accumulator A, holds the address 0027, which is the location of the second operand, and has the instruction to add (B9) in the instruction register. The MPU fetches the data at address 0027 (the numerical value 03), adds it to accumulator A and stores the result in accumulator A.

Having completed instruction B9, the MPU fetches the next instruction (B 7) addressed by the programme counter and then increments the programme counter. Instruction B7 will cause the

contents of accumulator A (the result of the addition of 05 and 03) to be transferred to the location specified by the next two bytes. These two bytes 00 and 28 are fetched one at a time by the M.PU and the numerical value 08 is transferred to memory location 0028.

The sequence of instructions we have just traced caused the numbers 03 and 05 to be added together and the result to be stored in a known memory location.

The purpose of the various registers and counters in the MPU are summarised below.

Programme counter: The programme counter holds a two byte address and is used by the MPU to proceed through a programme step-by-step.

Stack pointer: A section of the memory is called "the stack". Each new byte to be stored in the stack will be stored at a location which is on top of all the other bytes which have previously been stored in the stack. Reading information from the stack is done one byte at a time starting with the byte that is on the top. Sometimes the stack is described as a "last in first out memory". The stack pointer is a register which contains a two byte address that specifies the vacant location on top of the stack. The use of the stack will be discussed later.

Index register: The index register is also used to store a two byte address and its use will be discussed in a later section of the article.

Accumulators: The two accumulators are used primarily to hold operands for, and results from, the arithmetic logic unit (ALU).

Condition code register: The condition code register (CCR) provides extra information on the results of operation performed by the ALU. It enables the MPU to be programmed to make decisions. When the ALU performs an operation the result of that operation is stored in accumulator A. accumulator B or the memory.

Additionally, various flip-flops (or bits) may be set in the CCR to indicate that, for instance, the result is negative. the result is zero or that overflow occurred. Two bits are set aside to indicate if a carry (or half carry) has occurred and one bit is called the "Interrupt Mask Bit"-more about that later.

It is possible, under programme control, to examine (or test) the state of individual bits within

the CCR following an operation. For example, bit N in the CCR is set to " 1 " if the result of an operation is negative. A programmer could say:
A. Carry out instructions 1, 2 and 3 .
B. Instruction 4. Does bit $\mathbf{N}=1$? (bit test). If \mathbf{N} $=0$ return to instruction 1. If $\mathrm{N}=1$ proceed with instruction 5 . In other words, the sequence of instructions being carried out by the machine was made dependent on the sign of the result through the use of a CCR bit test.
Fig. 3 shows the main interconnections in a typical MPU system. The address bus is 16 -bits wide and provides the means by which the MPU selects a particular memory location or output device. The data bus is 8 -bits wide and is bi-directional. That is, the buffers in each integrated circuit connected to the data bus can function as either inputs or outputs.

The MPU itself is housed in a 40-pin dual-in-line package as shown in Fig. 4. In all, 26 of these pins are taken up by the previously discussed address and data highways, and the +5 V and common lines of the power supply. Another two are used by the 1 MHz two-phase clock generator needed by the system. The functions of the remaining pins are as follows:

Pin 2. HALT: When this input is taken to logic " 0 " all activity in the machine is stopped.

Pin 39. Three-state control: A logic " l " input on this pin will cause all of the address bus buffers and the Read/Write line (pin 34) to go into a high impedance state-in other words turning them off. External equipment can now use the address bus to directly access the memory without involving the MPU in the process (Direct Memory Access--DMA).
Pin 34. Read/Write: The MPU has two basic modes of operation-read and write. In the read mode the MPU is in a condition to accept information from either the memory or from input/output devices. In the write mode the MPU will send out information to either the memory or the input/ output circuits. The MPU informs the rest of the system that it is in the read mode by applying logic " 1 " to the read/write output.

When the MPU is in the write mode the read/ write output is at logic " 0 ". Normally, when the MPU is in the standby mode (waiting for work) the read/write output will be logic " 1 ". When either
the $\overline{H A L T}$ input is at logic " 0 " (machine halted) or the three-state control input is high (DMA), the MPU read/write output will be put into a highimpedance state.

Pin 5. Valid memory address (VMA): When the MPU has placed a memory address on the address bus, the VMA output goes to logic " 1 ". This signal is used for control purposes.

Pin 36. Data bus enable: When this input is in the logic " 0 " state the data bus driver circuits are held in a high impedance state for DMA applications. Normally this input is driven by the clock. Additionally, the data bus drivers within the MPU are also disabled internally every time the MPU goes into the read condition.

Pin 7. Highway available: This output is normally in the logic " 0 " state unless either the HALT line is at logic " 0 " (halt machine) or the MPU has just executed an instruction to "wait." In both of these two conditions the Highway available output will go to logic " 1 "-indicating to other circuits the MPU has stopped and that the address highway is vacant. and all "three-state" output drivers will be put in their high impedance condition. The MPU is removed from the "wait" state when a valid interrupt occurs (see later).

Fig. 5

Pin 4. Interrupt request (IRQ): A logic " 0 " on the IRQ input will cause the following sequence of events:

1. The MPU will complete the instruction it is currently processing.
2. The Interrupt mask bit in the condition code register is examined. If this bit is " 1 " it means that the processor is processing a previously requested interrupt and the MPU will, therefore, ignore the new interrupt request until it has completed all the instructions in the interrupt programme it is currently servicing. If the Interrupt mask bit is at logic " 0 ", the MPU enters an interrupt routine.
3. The contents of the index register, programme counter, accumulators and the condition code register are stored in the memory in the previously mentioned stack.
4. The MPU now responds to the interrupt request (having ensured that all the information it was processing has been safely stored away) by setting the mask interrupt bit to logic " 1 ". This ensures that the MPU cannot respond to any new interrupt request.
5. The MPU now addresses a known location in memory where the first instruction for the interrupt service programme will have been previously stored.
6. The last instruction in the interrupt programme will be RTI (Return from Interrupt).
7. On receipt of this instruction-having completed the interrupt programme-the MPU recalls the data it stored away in the stack and continues from where it left off.
Pin 40. Reset: Whenever the MPU is first switched on, or after a power failure, the MPU has to go through an initialisation routine before it can commence operations. A positive going pulse on the Reset input causes the processor to begin its 'restart sequence. During the sequence the interrupt mask bit in the code condition register is set to " 1 " to prevent interruption. At the end of the sequence the MPU will output a known address to provide the MPU with the address of the first instruction to be performed.

Pin 6. Non maskable interrupt (NMI): The application of a logic " 0 " on this input begins a chain of events which is very similar to the interrupt request sequence, but which has one major difference. The NMI input is used to inform the MPU that a task awaits which has the highest possible priority.

The MPU, on receipt of the NMI signal, enters the interrupt routine without regard for the condition of the interrupt mask bit. However, the MPU completes its present instruction and stores the contents of the various registers away in the stack before starting the high priority programme.

At the end of this programme, when it encounters the RTI instruction, the MPU will return to its previous task.

The whole operation of the MPU is summarised in the flow chart of Fig. 5.

Next month:
 The language and programming of the MPU

Some of the highlights from the Assoclation of Professional Recording Studios exhlbition held recently In London.

HE APRS exhibition offered its usual spectacular display of state-of-the-art professional audio equipment. Although one would expect the general poor economic situation to severely affect development in this field, if it has it was not obvious at the exhibition. With over 70 stands almost every aspect of sound processing was covered.

C.R.T. LEVEL MONITORING

An impressive display of various forms of program level monitoring equipment was given by the Danish firm N.T.P. One such device uses a conventional colour t.v. monitor as a multi-channel display unit. Keeping an eye on a large number of programme meters (as is required in multi-track recording) can be extremely difficult. This unit, however, makes the process much easier by bringing all the channels together on a t.v. screen. Channels may be grouped together and/or colour coded for easy identification. They have even incorporated an overload arrangement which causes the overload portion on the display to go red.

DELAY UNIT

H.H. Electronics, makers of high quality power amplifiers, have recently added a portable echo delay unit to their range. It is capable of single or multiple echoes with the facility of variable time delay. Working on a tape-loop system with a fixed recording and moveable replay head, it can achieve continuously variable delays (or times between echoes) of between 100 and 720 ms . The unit also incorporates a compressor to allow a large range of input levels to be accommodated.

AUDIO PROCESSING

Audio \& Design were demonstrating their range of audio processing equipment. An interesting new product in this line is a band-selective compressor. A normal compressor attenuates the whole programme signal when operating. With this unit, however, one can select a particular frequency band and only operate on that. It can, for instance, act as an extremely effective "de-esser"" (a device which removes high level sibilants thus reducing the possibility of associated distortion). It will no doubt find popularity in the disc-cutting field.

TAPE RECORDERS

The new Studio 8 tape recorder from Ferrograph (Wayne Kerr were responsible for most of the development work) was on display. It has been well received by the professional recording field and such features as state-of-the-art logic systems, fibre optics, and choice of editing facilities no doubt help it along in this respect.

Leevers-Rich have introduced a new \ddagger inch tape recorder known as the Proline 2000 . Servo controls in its capstan and tape tensioning systems as well as optoelectronic techniques are a few of its prominent features. Also from Leevers-Rich is a cassette transport system aimed at Broadcasting. Studio, and Educational use.

\star 1st Prize

£250* 2nd Prize £100
\star 3rd Prize £50
Fifty Other Prizes for Runners Up

* 25 Magispark Gas Ignitors
* 25 One-Year Subscriptionsto Practical Electronics

When you saw the Portable Gas Ignitor in the July issue of Practical Electronics did you immediately think of other applications for this particular circuit? Can you suggest any ways in which the device could be put to other uses in industry or in the home? If so, here's an opportunity to put your ideas to good advantage. And if you missed the July issue, not to worry-the circuit and the essentials of its operation are given on this page.
In association with the Plessey Company, we present this fascinating challenge and offer prizes totalling over f500 in value for really practicable and ingenious ideas. And a chance, possibly, to see your idea in production! So get that grey matter plus your know-now of electronics working, and meet our challenge right away!'

HOW TO ENTER

The contest is for practical applications of the Portable Gas lgnitor Circuit-either utilising the original circuitry or including design modifications to increase its scope.

To remind you, the operation of the Ignitor is :
The application of a high voltage across a pair of electrodes produces an electric field in the gas between them, this leads to ionisation and breakdown of the gas producing a spark across the gap. When the circuit of the ignitor is completed current flows from a battery into a transistor oscillator circuit and the resultant pulses of energy charge a capacitor to approximately 300 volts The capacitor is then discharged by an electronic switch into the primary of an H.T. transformer which produces the necessary voltage to cause the sparks at the electrode. The design enables a steady stream of sparks at $10,000 \mathrm{~V}$ to be generated with complete safety and employing only a single 1.5 V dry cell as the power source.

Entries must be written/drawn clearly on one side of plain paper with the entrant's full name and address at the top of every sheet. Each entry to comprise:
(a) a brief summary of the idea (about 25 words)
(b) any such further lucid description, drawings, sketches or circuit diagrams you consider the judges may need to form the best appraisal of your idea. DO NOT send actual models.
Each entry must have a properly completed entry coupon firmly affixed to the BACK of the summary.

SECOND CHANCE!

The closing date is Monday October 13, 1975, to allow plenty of time for you to obtain the second entry coupon from our next issue and post two different ideas in one envelope if you wish.

RULES AND CONDITIONS

There is no entry fee nor limit to the number of entries a reader may submit but each entry must be accompanied by a proper printed entry coupon, cut from PRACTICAL ELECTRONICS, and must bear the entrant's own full name and address. Entries will also be accepted from groups-in which case the entry coupon must be completed by one of the group and the names and addresses of all the other members listed on a separate piece of paper affixed, with the entry coupon, to the back of the summary.

All accepted entries will be examined by a panel of expert judges, including Plessey engineers and the Editor of Practical Electronics, and asssesed on (a) originality of the idea, (b) technical merit, (c) practicability, (d) economic viability, (e) market potential. The prizes will be awarded for the best entries in order of merit. No entrant may win more than one award. In the event of the same idea being submitted by two or more entrants, presentation of the entry (clarity, best expression, etc) will decide such winner(s) or winning order.
In the event that the judges consider there are not enough entries of a sufficiently high standard, the Editor reserves the right not to award any prize(s) at his discretion.
Entries arriving after closing date will not be considered, nor will any received that are illegible, not wholly understandable, are not accompanied by a properly completed entry coupon or in any other way do not comply exactly with the instructions and rules.

No responsibility can be accepted for entries lost or delayed in the post or otherwise; proof of posting will not be accepted as proof of receipt. No entries can be returned.

Copyright of all entries shall become the property of IPC Magazines Ltd., publishers of Practical Electronics. Ideas submitted may be used or adapted by the competition sponsors for production or other commercial use. Where appropriate, additional payment will be automatically negotiated with the entrant. Entries will not be published prior to evaluation in order to comply with legal safeguards.

Decisions of the judges, and of the Editor in all other matters affecting the competition, will be final and legally binding. No correspondence will be entered into nor interviews granted.
Winners will be notified by post and brief details of winning entries published later in Practical Electronics. The Editor
reserves the right to amend and/or re-draw any sketches or diagrams of prizewinning entries for publication purposes.

The contest is open to all readers in Great Britain, Northern Ireland, Eire, Channel Isles and Isle of Man except employees of IPC Magazines Lid., the Printers of Practical Electronics, and the Plessey Co. Ltd, and its subsidiary companies; and the families of all such employees.

Post your entry in a sealed envelope to: Ignitor Application Contest, PRACTIGAL ELECTRONICS, 136 LONG ACRE, LONDON, WC2E 9QP, to arrive not later than October 13, 1975 the closing date.

HI-FI FOR THE ENTHUSIAST

By M.L. Gayford

Published by Pitman
235 pages, $\mathbf{2 2 2} \mathbf{m} . \mathrm{m} . \times 140 \mathrm{~m} . \mathrm{m}$. Price $£ 5.00$

THIS is the second edition of a work first published in '1971 and the contents have been expanded to take in developments such as quadraphonic sound.

This book ranges over the whole gamut of equipment from input to output. But first it deals with the end-to which all these items are but the mouns. The first chapter explains simply the nature of human speech and hearing:' the human vocal and auditory systems are examined; psycho-aconstical factors such as perception of pitch| and sound pressure, the need for two or more channels for exercise of our full psycho-acoustical powers. stereophonic and quadraphonic systems, room acoustics and placement of loudspeakers are discussed.

The bulk of the book is concerned with hardware. and sets out to serve the needs of would-be purchasers of audio equipment who lack any extensive technical knowledge by indicating the features and performance that should be looked for when selecting complete units or kits for home construction, to form a sound reproduction system.

The description of f.m. broadcasting and reception and the typical f.m. tuner specification given are more suited to the technically knowledgeable; to the non-technical person the terms and expressions will be largely meaningless. although a nodding acquaintance as gained through a study of this book will possibly help when
reading manufacturers' sales literature or listening to salesmen.

This point also applies to the sections dealing with other programme input sources and with amplifiers. A few typical circuits for commercial tuners and amplifiers are included, but component values are omitted-at the instance of the proprietors. no doubt.

The two chapters dealing with loudspeakers and enclosures are likely to be particularly valuable to the lay reader and merit close study. This final link is perhaps the most important, and choice and selection of loudspeakers must be based very considerably on personal preferences.

Recommendations are included on planning a complete high-quality system. There are diagrams of commonly used audio connectors and cables. A Glossary of Hi Fi and radio terms, lists of recommended books. and a list of gramophone test records are useful appendages to this book.

A GUIDE TO AMATEUR RADIO (16th Ed)

By Pat Hawker, G3VA
Published by Radio Society of Great Britain. 112 pages, $248 \mathrm{~m} . \mathrm{m} . \times 182 \mathrm{~m} . \mathrm{m}$. Price 90 p .

THIS latest edition is as welcome as all its forerunners. Those who are not addicts of amateur radio will find this an illuminating read. It could convert them before the final page is reached.

No one is better able to "sell" home radio than Pat Hawker-an ardent activist in the game and an acknowledged authority in the related technical matters.

Those who already have a hankering after radio communication will find the answers to all their immediate queries in this publication.

The recent changes in UK amateur regulations are covered. Guidance on the latest developments in technique and equipment is given, and a new chapter on popular amateur radio equipment is incorporated.

ELECTRONIC TUNING FORK

Completely simplifies the tuning of musical instrument by providing 84 frequency-accurate tones which can be instantly switch selected. All beat note adjustments are clearly visible on a l.e.d. monitor

ENGINE ANALYSER

This month's article contains full constructional details for building the dwell/ tachometer unit complete with calibration procedures

Ensure YOUR future issues

NATMTM

A compact low cost, battery operated, six-channel stereo mixer with such features as: panning controls, comprehensive headphone monitoring facilities, twin VU meters, and prefade monitoring on all channels. Although designed with synthesisers (such as the P.E. Minisonic) in mind, the unit is nevertheless capable of a much wider range of applications

To
(Name of Newsagent)
Please reserve/deliver the NOVEMBER issue of Practical Electronics (35p), on sale October 10 and continue every month until further notice.

NAME ..
\qquad

PRAETIEAL

An easily adjusted load for p.s.u.s and amplifiers

WHEN experimenting, particularly with power units and amplifiers, a constant current load is often required. The unit described here was designed to serve just that purpose being easily adjusted by a potentiometer to give the required loading effect.

The load is constant for a.c. as well as d.c. inputs within the range of $4-30 \mathrm{~V}$. As the unit is not polarity conscious it may be used with d.c. circuits either way round, that is, the positive and negative terminals on the circuit being loaded may be reversed and the constant current load will still work correctly. The a.c. loading capability of the unit makes it ideal for checking transformers by simply connecting the load across the secondaries and adjusting the unit to draw from the required current.

REFERENCE LEVEL

To enable a constant current to be generated a reference level must be obtained which should be very stable, this can be obtained from across a Zener diode fed with a series resistor from the supply being loaded. For good constant current stability this method will not produce the best results, because as the input voltage varies so the current through the Zener will vary which will in turn vary the Zener level very slightly. So for the best results the supply to the Zener should be stabilised. This starts to increase the cost of the unit so to overcome this problem it was decided that the only way to ensure a constant voltage to supply the reference Zener was to use an internal battery.

The battery chosen to do the job was a 9 V type which fed a 3.3 V Zener diode which meant dropping 6 V across a resistor. As batteries are being used it is essential that the current to the reference Zener is kept to a minimum so a current of 2.5 mA was chosen. This gave a low drain on the battery.

A switch is incorporated into the unit to switch the battery out, this will save the battery and a life of 12 months can be reckoned on.

Fig. 1. Circuit of Constant Current Load

EDMPDNENTS...

```
Resistors
    R1 2.2k\Omega 1 W
    R2-R3 1\Omega 2.5W vitreous wirewound (2 off)
Capacitor
    C1 470\muF elect. 100V
Rectifiers
    D1-D4 Bridge Rectifier (1A)
Potentiometer
    VR1 5k\Omega
Transistors
    TR1 BCY50
    TR2 OC28
Meter
    M1 1A d.c.
Diode
    D5 3.3V 400mW Zener
```


Sockets

```
2 mm terminal sockets (2 off)
```


Fig. 2. Component Jayout and interwiring details. Note that TR2 has a heatsink. See photo for approximate dimensions

The circuit operation is very simple and with the transistor specified a constant current of 1 A can be drawn from a circuit of 25 V this can be increased
by paralleling another power transistor with the one already in circuit, this will enable the voltage to be doubled at the same current or the voltage can remain at a maximum of 25 V and the current may be doubled, see Fig. I.

Keeping to the very basics in this design has enabled the price of the unit to be very low and if all of the components were to be purchased new then the total cost will not exceed $£ 5$.

ZENER RESISTOR VALUE

The Zener resistor value is calculated to draw from the battery a current of only 2.5 mA . Which can be switched off when the unit is not in use. To enable the unit to be fairly universal the load is formed by arranging TR2 to take a constant current of 1 A maximum. With a gain of only 20 for the transistor used. a base current of 50 mA would be required which is far too much current for B1 to supply. A further transistor connected to form a super-alpha pair gave an overall gain equal to the gain of TR1 times the gain of TR2 that is, 50×20 so that an input of only 1 mA will give 1 A which is well within the capabilites of the small battery.

EMITTER LOAD

As the unit represents a load which draws IA resistance is necessary in the emitter of TR2 to enable the circuit to function properly. R2 and R3 are each lohm, which will develop an emitter voltage drop of 2 V . With 2 V at the emitter of TR2 a base

DATA CHART-COMPONENTS IDENTIFIED AND EXPLAINED

PLUS: These easy to build projects

 TREMOLO TRANSISTOR TESTER• DOORBELL BLEEPERPLUS: All the regular features including our manthly look at careers in Electranics! Don't miss out. . . Place your order NOW!

By S.R. BEECHING

A Two-channel Sound to Light Converter

THE main features of this Light Modulation Unit are its simplicity. reliability and accurate transformation of audio input to audio modulated 50 Hz 240 V mains current. Before any description of the circuit it is felt that the choice of a two-channel unit as opposed to three should be defended. The twochannel light unit described provides good separation of the bass and treble frequencies without the use of complex filters, which may require high stability low tolerance components.

With a larger number of three-channel systems it is often difficult to discern which channel is which, as they all appear to be behaving similarly. With the middle channel removed the difference between the two channels can be readily seen with the added advantage of the electronics being simpler.

ISOLATING TRANSFORMER

The circuit is shown in Fig. 1. The input is isolated by a speaker isolating transformer rated at 5 W with a series resistor incorporated to prevent damage both from and to high powered amplifiers. (This can be increased in case of doubt).

The input sensitivity is about IV r.m.s. and a suitable signal can be obtained from the speaker outputs of the power amplifier.

The common line of the electronics is mains neutral, and it must be borne in mind that since the live side of the supply can easily be made common by a simple mistake in the wiring extreme care must be taken. The signal is taken from T2 secondary to VRI which acts as an input attenuator. Attenuators VR2 and VR3 then adjust the treble and bass light levels respectively.

CIRCUIT DESCRIPTION

TR1 and TR2 and associated components from the filter stages. The bass filter operates in the "Miller Integrator" fashion with C7 connected between the collector and base of TR2.

Capacitor C2 and the input impedance of the stage comprising TR1, R3 and R4 form the high pass

COMPONENTS

Resistors

R1	75Ω	R7	$2 \cdot 2 \mathrm{k} \Omega$	R13	$1 \mathrm{k} \Omega$
R2	68Ω	R8	$22 \mathrm{k} \Omega$	R14	470Ω
R3	$22 \mathrm{k} \Omega$	R9	$2 \cdot 2 \mathrm{k} \Omega$	R15	470Ω
R4	$2 \cdot 2 \mathrm{k} \Omega$	R10	$1 \mathrm{k} \Omega$	R16	$220 \mathrm{k} \Omega$
R5	$1 \mathrm{k} \Omega$	R11	68Ω	R17	$220 \mathrm{k} \Omega$

R6 68Ω
1k
R17 $220 \mathrm{k} \Omega$
All resistors $\frac{1}{2} \mathrm{~W} 10 \%$ carbon

Potentiometers

VR1-VR3 $10 \mathrm{k} \Omega$ 1in. plastic slider controlssee text (R.S. Components)

Capacitors
C1 $1000 \mu \mathrm{~F} .25 \mathrm{~V}$ elect.
C2 $4.7 n \mathrm{~F}$ plastic or ceramic
C3 $\quad 4.7 n \mathrm{~F}$ plastic or ceramic
C4 $\quad 0.1 \mu \mathrm{~F}$ plastic or ceramic
C5 $10 \mu \mathrm{~F} 6 \mathrm{~V}$ elect.
C6 $22 \mu \mathrm{~F}$ elect.
C7 $0.1 \mu \mathrm{~F}$ plastic or ceramic
C8 $\quad 0.1 \mu \mathrm{~F}$ plastic or ceramic
C9 470μ F 10 V elect.
C10 $22 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C11 $22 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C12 $0 \cdot 1 \mu \mathrm{~F} 400 \mathrm{~V}$ polyester
C13 $0 \cdot 1 \mu \mathrm{~F} 400 \mathrm{~V}$ polyester
Semiconductors

TR1-TR2	BC107
D1-D4	IN4001 (or bridge rect.)
D5-D6	IN4148
CSR1-CSR2	BRY39
CSR3-CSR4	40430

Miscellaneous
T1 240 V to 12 V 100 mA (R.S. Components)
T2 Universal speaker isolating transformer (R.S. Components)

L1-L2 3A t.v. chokes (R.S. Components)
Case-see text, wire and solder etc.
filter for the treble channel. Capacitor C3 causes the response of the filter to fall off at higher frequencies to prevent spurious responses to spikes generated in the triac circuitry.
If it is found that instruments with predominantly h.f. output are not causing the treble channel to respond, C3 may be reduced; but the above point must be borne in mind.

SILICON CONTROLLED SWITCHES

The filter outputs pass via C4 and C8 to the triac drive circuitry. This consists of two BRY39 silicon controlled switches (CSR 1 and 2) which conduct giving a pulse of current to the triac gate when their anode (pin 4) is driven more positive than their anode gate (pin 3). Resistors R14 and R15 load the BRY39 and hold the triac gate to the common line to prevent spurious triggering.

During continuous switching, the voltage across C10 and C11 will reduce. Gate current to the triacs will then be determined by the value of R12 and R13. These are therefore chosen to be able to provide this current since if they are too large the triacs may fail to trigger under conditions of continuous firing.

DIODES

Diodes D5 and D6 prevent C4 and C8 from charging up with the firing current of the SCS's. On negative signals the diodes conduct so that positive signals can be passed through the capacitors into the gates of the SCS's.

R.F. CHOKES

The r.f. chokes have been incorporated in the circuit to reduce any r.f.i. from the triacs. Three amp types were used in the prototype but if the full current capacity of the triacs is to be exploited these should be uprated to 6A.

MONITORING

Each channel drives a neon bulb to allow monitoring of the state of the display bulbs if they are remote from the unit. The neons also provide a means of checking that the displays are connected, since they will glow dimly without the displays due to the small current passed through C12 and C13. As soon as the displays are in circuit the neons will no longer glow as the small leakage current will then be shunted via the displays to neutral.

Fig. 1. Circuit diagram of the light modulation unit

CIRCUIT BOARD DETAILS

Fig. 2. Component layout and printed circuit board master (full-size)

CONSTRUCTION

The printed circuit board master and component layout is given in Fig. 2.

During construction remember that a live chassis technique is used and so extreme care must be taken. A wooden or metal case may be used but the metal case must be earthed and the electronics and wiring insulated from it. The output sockets should be 5A or 13 A and insulated from the case. For the input attenuators R.S. slider controls are recommended as they are plastic. If rotary potentiometers are used however, they should have nylon shafts. Care must be taken with the wiring of these components as screened cable is used; the screening is live and must be insulated from the metal case.

Wiring details of the unit are shown in Fig. 3. The common (neutral) line is wired from the input to the triacs which are mounted on a heatsink. The cable used should be able to withstand the current (6 A) and be adequately insulated. The live mains is wired straight to the output sockets and to the bulbs; it is also wired to the neons and transformer. Both triacs are mounted on the same heatsink. They are insulated by mica washers and as a further precaution it is recommended that the heatsink is insulated from the chassis by pillars or nylon nuts and bolts.

Resistors R14 and R15 are mounted across the triac pins. If wiring to the pins is difficult then insulated mounting tags can be used. The chokes can be mounted between the triac cases and the fuseholders.

DISPLAYS

Finally a word about the displays that have been used. Small wattage bulbs ($15 \mathrm{~W}-60 \mathrm{~W}$) produce a very rapid ffashy effect, whilst the higher wattage bulbs ($100 \mathrm{~W}-500 \mathrm{~W}$) are much slower due to filament heating time (thermal inertia). Two 500 W spots with colour change wheels focussed on the same white wall will produce an ever-changing colour. which varies according to the colour wheel, and the amount of colour mix dependent on the quantities of bass and treble.

At the other end of the scale large numbers of 15 W pygmy bulbs in a matrix can produce an exciting display. An enhanced effect can be obtained by wiring the bulbs in fixed patterns which can be switched by relays as well as driven by the light unit. One similar to this was built into an old t.v. cabinet with frosted glass and used as a mobile discotheque. There are no limitations to the display technique and the constructor will be able to spend many hours devising his own.

CONSTANT CURRENT LOAD

continued from page 826
voltage of $2 \mathrm{~V}+\mathrm{V}_{\text {be }}$ of TR2 $+\mathrm{V}_{\text {be }}$ of TR1 must be present at TR1 base. The $\mathrm{V}_{\text {be }}$ of an average transistor is around the 0.3 V level so the base voltage of TRI $=2 \mathrm{~V} \pm 0.3 \mathrm{~V}+0.3 \mathrm{~V}=2 \cdot 6 \mathrm{~V}$. This determines the Zener level which must not fall below this level and so a Zener of 3.3 V was used to ensure adequate forward bias at a loading of 1A.

To allow the level to be adjusted the voltage to the base of TR1 is obtained from the wiper of VRI which is connected across the Zener diode thus as the potentiometer is rotated anticlockwise the voltage at the base of TR1 decreases until zero is reached. At this point the transistor is reverse biased and so cut off and represents no load. As VR1 is rotated the transistors become forward biased and will conduct more and more until the full load of IA is reached. The dissipation of TR2 must be kept to around the 30 W region and so the maximum voltage applied must be limited to 30 V . It is connected to a heat sink in direct contact with the diecast box.

BRIDGE CIRCUIT

How does the unit act as a constant load for both a.c. and d.c. circuits. If we consider the unit being used with a d.c. supply first of all it can be seen that with a positive supply at socket SK1 and negative at SK2 then conduction will be via D4 and D1. If the d.c. supply was reversed that is with the negative line at SK1 and the positive at point SK2 then the negative supply to the transistors will be provided by D2 conducting and the positive will be supplied via D3 once again ensuring that the polarity of the supply is correct for the load circuit.

Diodes arranged in this form are said to be in a bridge network and they will provide a rectifying circuit for an a.c. supply that may be connected across the input sockets. After some smoothing from Cl a d.c. signal is obtained and supplied to the transistors as described before. The ammeter connected in series with the super-alpha circuit so that the load current is displayed continuously.

CONSTRUCTION

Constructional layout is determined by the meter used. In the prototype unit an edge meter was used. Of course terminals can be arranged so that an external meter may be used or an Avometer. The transistor TR2 is mounted onto a heatsink, using insulators to ensure that there is no electrical connection to the case. This can be checked by connecting an ohmmeter across the transistor and the heatsink the reading obtained should be infinity.
Vero board has been used for the circuit assembly and requires cutting in the places indicated in Fig. 2.

TESTING

With the reference voltage switched on check with a voltmeter that the voltage across the Zener diode is greater than 2.6 V . With an ammeter in series with the unit connect it to a d.c. supply of approximately 15 V and adjust VR1. Both meters should coincide over the full range of the unit. Now reverse the leads from the power supply and check that the meters still track togther. Remove the test meter and the unit is now ready for use.

THE STORY OF RADIO (8 Volumes)
By W. M. Dalton
Published by Adam Hilger
Each Vol.: 150 pages, $215 \mathrm{~mm} \times 150 \mathrm{~mm}$
Price $£ 4.50$

The story of radio is intended to extend to eight volumes in all. To date Volumes 1, 2 and 3 have been published.

Each volume is a first-class hardback production, with many line diagrams and photographs of technical and historical interest. The price of each volume makes this add up to a formidable total for the complete work. One is inclined to question the publishing policy: few readers are likely to be interested only in part of the overall story, so there seems little justification for separating the work into so many volumes. Fewer volumes with more pages should have resulted in some economy in binding materials resulting therefore, one would expect, in a lower selling price.

What kind of story? Well this certainly is no romanticised tale, nor is it a ponderous exposition of scientific and technical development. The author has settled very successfully it seems (judging from these first three volumes) on a mid course and has produced a well researched account of pertinent scientific and technical discovery and invention before and since the advent of radio, or wireless telegraphy to use the more meaningful term.

In this story personalities are treated in a formal fashion, being introduced summarily (by surname alone) as their contributions to knowledge or invention are described. The objective and crisp style of presentation adopted undoubtedly avoids unnecessary distractions to and flow of the essential story. Yet the lack of a bibliography or an appendix giving key facts or source references for the work of these pioneers-some are very well-known figures, soine lesser known-will be rather a disappointment to the more inquisitive student of technical history wishing to explore in more detail some of these discoveries, experiments, or inventions. This apart, this work should prove to be popular and provides a useful record of the technical landmarks in the history of radio. Those old enough will certainly relish wallowing in nostalgia, which will be further enlivened by the excellent photographs of equipment of bygone days and once-familiar circuits which are reproduced, together with many other line diagrams, in these volumes.

Vol. 1. How Radio Began

The first chapter retells concisely the principal known events in the long history of magnetism and electricity, the second describes the first practical and commercial uses of electricity-for signalling and for power. These two chapters are a prelude to the real story: this opens with accounts of the earliest investigations into elecromagnetic radiation and first experiments in wireless telegraphy, the subsequent successes, and the kind of apparatus used. The final chapter covers the thermionic valve and the earliest valve circuits in the period up to the outbreak of the First World War.

Vol. 2. Everyone An Amateur

The story is taken up from the post World War 1 years. There are details of wartime uses and developments: especially noteable-radiotelephony in aircraft
and directional finding. Amateurs had to wait until 1920 before restrictions on their activities were lifted. Then followed a period of great activity-technical and political. Both amateurs and commercial interests play their part in spurring along new improved circuits and new devices for transmitting and receiving radio signals. The amateurs' vital part is faithfully recorded, not least the agitation which finally lead to the creation of a broadcasting service, then to be followed by an epidemic of home construction of receiving sets. The important distinction between the large host of set constructors and the smaller band of transmitting and experimenting amateurs is made clear in the final chapter which deals with the rediscovery of short waves by amateurs and the ultimate usurping of these waves by government and commercial bodies.

Vol. 3. The World Starts To Listen

This volume is chiefly devoted to the rapid and extensive technical advances in commercial receivers during the period 1925-1930. The coming of massproduction, the emergence of many new types of valves and new circuit designs based on them. Developments in broadcasting techniques; the loudspeaker and the gramophone pickup.
The final chapter entitled "Telephones, Talkies and Television" introduces these and other new fields (as distinct from radio) where "radio-techniques" were also being applied at this time. What is outlined is in fact the dawn of "electronics" but that word has yet to enter The Story of Radio. Doubtless it will though, in some later volume of this immensely enjoyable, technically informative and (no doubt to the majority of presentday readers) quite revealing account of those past years of brilliant and exciting endeavour and achievement, which include a period when the amateur held a proud position as a pioneer and frequently set the pace for the professionals.
F.E.B.

PUBLISHER'S ANNOUNCEMENT

The contents of Practical Electronics is fully protected by international copyright and reproduction of it in any form is prohibited without our consent.
With effect from this announcement any application for permission to reproduce, or use our material in any way or part of, must be made to the Editor. Under no circumstances will permission be given to reproduce material in a similar or competitive publication, without payment. No application need be made in the case of a private constructor, constructing one item for his/her own enjoyment and interest.

BOOM OR BUST?

There has never been a more confusing time for industry watchers like myself. From all sides one hears gloom and doom and there is some truth in these stories. But not the whole truth. Consumer electronics has. taken its biggest knock for years as forecast by myself and others earlier this year. Deliveries of colour t.v. sets have dropped severely following the imposition of higher taxes. But for the same reason monochrome sales have had a boost. Hi-fi and radio sales were also down.

But what 'is the norm? Might it not be the case that this year's sales are normal and last year's exceptional? Growth is bound to slow down once the market is saturated.

Well managed companies are not suffering. Those in professional electronics who also have a good export business are at their wits end to recruit staff and maintain deliveries. I have often stated in this column that in times of stress the little company with a flexible response to market changes has a better chance of survival. The big companies are, however, still performing not only well but admirably.

Plessey reports almost $£ 320$ million in sales, $£ 27 \cdot 3$ million pre-tax profits, $£ 40$ million export. Not bad. Chairman Sir John Clark also commented on Britain's membership of the EEC and how it affected Ples sey. In 1972 exports to EEC countries were \&3 million. They are now £9 million.

With a courageous look in his crystal ball, Sir John suggests they may well be $£ 40$ million by 1979. Consumer components and Garrard record players have been hit by the
consumer market slump but with overall trade figures so healthy, every Plessey business will survive and most are clearly prospering.

With sales of $£ 1,500$ million, profits up by $£ 23$ million to a record £174 million GEC is flourishing. Capital investment for the year was E78 million and this might have been more but for $£ 85$ million snatched in taxes by the Government.

With heavy dependence on the consumer market, Thorn Electrical pushed sales up to $£ 807$ million but all the headlines concentrated on the profit slump. Profit tumbled by E8.7 million. Sounds an awful lot until you realise that the "huge" drop still left Thorn with $£ 65 \cdot 4$ million profit in what is officially described as "difficult market conditions".

SOLDIERING ON

Then there's Racal, soldiering on through boom, depression, recession. This company has again made record profits and has thus successfully achieved 20 consecutive years of record growth and record profits.

With still only $£ 50$ million turnover and 6,000 people employed Racal remains a medium sized company but is world leader in what it does best. The formation of Racal-Tacticom Ltd. in July brought together Racal-Mobilcal and Racal-BCC to form easily the strongest military manpack and mobile radio supplier in the world with a customer list of well over 100 armies.

More than 70 per cent of all Racal sales were overseas last year and in ground radio equipment Racal exported more than all its UK competitors added together. In 1970 Racal turned over $£ 14.3$ million with $£ 1.7$ million profit. Latest figures are $£ 50.2$ million with £ 9.5 million profit.

Look at British Aircraft Corporation with its record breaking Rapier missile and other aerospace interests. Turnover up from E174 million to $£ 271$ million and profits up from £13.7 million to $£ 24 \cdot 2$ million. And the forward order book stands at a record $£ 815$ million.

An indifferent performer for a number of years, Ultra Electronics reports a $£ 13$ million forward order book. An all-time record. With $£ 9$ million turnover profits were £550,000, £142,000 up on the previous year.

The main British subsidiary of ITT, Standard Telephones and Cable, reports record sales of £333 million which included a sharp rise in export business. Profit was £33.8 million.

Naturally these figures, mostly a reflection of trading in 1974, need
treating with some reserve because the effects of inflation tend to show "growth" where none exists. But the picture can hardly be regarded as gloomy.

The really dull spot is the instrument industry. The 60 leading companies, according to a recent analysis, after allowing for inflation are showing zero growth or even a loss in sales figures and many are only on the margins of profitability.

LADIES' YEAR

Mrs Mary Griffin has become president of the Scientific Instrument Manufacturers' Association (SIMA). She has served for several years as a SIMA council member and has been the association's spokesman on statistics and economic affairs.

Professionally she is a special director of Smiths Industries Ltd. and was awarded the MBE for services in export in 1970. With a background as a chemist and mathematician perhaps she will prepare an elixir to revive the fortunes of Britain's instrument makers followed by more heartening statistics during her period in office.

Dr Elizabeth Laverick has been appointed to serve on the Engineering Design Advisory Committee of the Design Council. After a distinguished academic start in life she was in industry for 20 years as a radar and microware expert, rising to be technical director of Elliott Automation Radar Systems Ltd. In 1971 she left industry to become deputy secretary to the Institution of Electrical Engineers.

It seems extraordinary that so few ladies enter electronics on the engineering side. I know of two qualified lady engineers at the M-OV division of the GEC Electronic Tube Co. Ltd., and a lady scientist at English Electric Valve Co. In Sweden recently I met the general manager of a semiconductor plant who was a she.

Here and there one comes across a lady craft apprentice but they are always demonstrated to visitors as being something of a novelty. At a recent international conference in Holland there were 200 engineer delegates of whom only one was a lady, French and slightly embarrassed at the preponderence of males.

And yet, of the total workforce in electronics, the majority are women but generally only engaged on the more menial tasks of assembly, although a few do emerge climbing the ladder of promotion in inspection and test departments.

How about it, girls? Unless you improve your. performance in electronic engineering we shall have to conclude you are not as equal as you would have us believe.

car anti-theft device

TO IGNITION SWITCH

Fig. 1

 OSt car anti-theft devices use one or both of the following two principles:(1) The ignition circuit is completely disabled, usually by means of a hidden switch.
(2) Any attempt to break into the car sounds the horn, flashes the headlamps, etc.
The first of these two approaches suffers from the disadvantage that the ignition circuit can usually be remade under the bonnet, using a piece of wire. The second approach leaves the car owner with the possibility of returning to his vehicle to find a flat battery and a group of disturbed local residents.
The device described here works by upsetting the timing of the car engine, causing it to run extremely roughly. It is assumed that any car thief would soon abandon a vehicle which refused to accelerate properly, performed kangaroo motions and generally appeared to be in need of some serious repair.
The circuit shown in Fig. 1 works as follows: IC1 is connected as an astable multivibrator, driving TR1. TR1 is turned on for about $0.25 S$ then off for a further $0.95 S$ repeatedly. If the points open when TR1 is on, no spark is generated and the engine does not fire. Due to the parallel connection of the points and TR1 there is no danger of the engine firing in the middle of a compression stroke or inlet stroke.
The circuit still operates even if a piece of wire is used to connect the battery negative to the ignition coil. The wire from S1 to the coil is best made as inconspicuous as possible.

For a negative earth car TRI could be replaced by an npn device (2N3055). TR1 needs no heat sink as it is either fully on or cut off and dissipates little power.
P. J. Tyrell,

Ilford.

SIMPLE TIMER

THE 741 and Cl.form an operational integrator, the integration current being determined by the current flowing through TR1, see Fig. 1.

This in turn is determined by the setting of VRI (RI limiting the maximum base drive to a safe value). The integrator output is fed to R3 and R4 which turns TR2 en when the output reaches about 5 volts.

The circuitry around TR2 can be altered to suit the constructor's needs. For example, a relay could be operated instead of the l.e.d.

The timing range of the circuit as it stands is from less than a second to about 12 minutes.
A. MacNeil,

Great Bookham.

SPECLAL OFFER
 TO PRACTICAL ELECTRONICS READERS

LED WRISTWATCH

 As featured in this issue SAVE ABOUT \&8-75*(SPECIAL OFFER VALID UNTIL 15th OCTOBER 1975 ONLY)

- SINGLE BUTTON OPERATION
- DISPLAYS HOURS, MINUTES, SECONDS, MONTH AND DATE (DAY OF MONTH).
- GOLD PLATED SWISS MADE CASE WITH STAINLESS STEEL BACK COVER
- accuracy to within 5 SECONDS PER MONTH.
- AUTOMATIC READOUT INTENSITY CONTROL: BRIGHTENS DISPLAY IN BRIGHT LIGHT; DIMS DISPLAY IN SUBDUED LIGHT OR TOTAL DARKNESS.
- BATTERIES LAST UP TO 1 YEAR WITH NORMAL USAGE.
- WATER RESISTANT, SHOCK PROTECTED, ANTIMAGNETIC

COMPLETE KIT
(with batteries but without bracelet). Airmail post paid.

ASSEMBLED WATCH
(with leather band and 12 month guarantee on the electronics
Airmail post paid

SABCHRON WATCHES ARE AVAILABLE ONLY FROM THE U.S. MANUFACTURER

EURAY TRADING INC.

P.O. BOX 64683, DALLAS, TEXAS 75206, U.S.A.

\star IMPORTANT INFORMATION ABOUT PRICES

The above prices shown in British Pounds are approximate equivalents of the actual U.S. Dollar prices: Kits (with coupon) U.S. $\$ 80 \cdot 00$. Kits (without coupon) U.S. $\$ 99 \cdot 50$. Assembled (with coupon) U.S. $\$ 100 \cdot 00$. Assembled (without coupon) $\$ 119 \cdot 50$ ALL PRICES INCLUDE AIRMAIL POSTAGE AND INSURANCE. REMITTANCE BY U.S. DOLLAR BANK DRAFTS OR U.S. DOLLAR MONEY ORDERS. DO NOT SEND PAYMENT IN ANY OTHER CURRENCY PLEASE.

SPECIAL OFFER COUPON

To: EURAY TRADING INC., P.O. BOX 64683, DALLAS, TEXAS 75206, U.S.A.
Please Send via Insured Airmail
I enclose \square Bank Draft \square International Money Order in U.S. Dollars for $\$$.
Name
Address
(country)
All orders (recelved with payment) shlpped within 72 Hours, 27 Minutes and 53 Seconds!
EXTRA SPECIALI YOU EXTRA SPECIAL! You can have your SABCHRON DIGITAL personalize wame or Initials to be engraved on the coupon. (Allow 48 hours additional for personalized

[^2]The above prices do not inciude taxes levlable by a purchaser's country of residence.

SONY HALF PAIGE

These top quality SQ Decoder/Amplifiers are offered at half prlce while stocks last. Brand new In manufacturers' cartons with one year guarantee.

SQA 200
OUR SPECIAL HALF
PRICE OFFER
£38.80 incl. VAT
REC. RETAIL PRICE $£ 77$. 68 incl. VAT
Please add $\$ 1 \cdot 50$ P. \& P. and insurance

SQA 200

SO DECODERJAMPLIFIER
SQA 200. Providing an output of OW RMS per channel for the rear speakers. SQA 200 is a decoder/ amplitier designed specifically to work with those complete audio units systems provided with a tape-source monitor switch. Now that so many of your favourte artists are recording SQ albums,
the addition of SQA 200 plus a pair of rear speakers will add a new dimension to your stereo system.

DECLON FOAM SPEAKER FRONTS as used by leading manufacture's
$18 \frac{1}{2} \times 10 \times \frac{3}{\frac{3}{2}}$ black or brown $\$ 2.00$ each $22 \times 12 \times \frac{1}{\frac{1}{b}}$ brown $29 \times 11 \times \frac{3}{4}$ brown $26 \times 15 \frac{1}{2} \times \frac{1}{4}$ brown
£3.00 each

THE FABULOUS SANSUI 210 TUNER AMPLIFIER

REC. RETAIL PRICE £ 111.85 incl. VAT OUR PRICE
£74.95 incl. VAT

+ +1.50 P. \& P. and insurance

Prices include VAT and Post and Packing Can be easily cut to suit any loudspeaker enclosure.
Pattern as illustrated
Saneuil 210 34W AM/FM Stereo Multiplex Tuner Amplifler. Equipped with an FET Yront end for exceptionally sensitive FM reception. Iinear scale FM dial for precise tuning and automatic FM stereo/mono switching, this model also provides a full system of accessory circuits wide 30 to $25,000 \mathrm{~Hz}$ power bandwidth and holds distortion to less than 1%

Dimmit range of light dimmers and lighting control systems

Illustrated is the popular PMSDI000 module. A IkW slider control dimmer, incerference suppressed, 60 mm slider range size $4 \frac{1}{2} \times 2$ I $\frac{1}{2}$ in. Ideal for low cost stage and disco lighting. Used by schools, theatres, scudios, etc. Complete with scale plate, fixing screws and fullinstructions. $\mathbf{L 8} \mathbf{- 6 0}$ inc. VAT and postage and packing.

Complete compact light dimmer systems for stage, club and disco lighting, etc.

DD6I (illustrated). Six IkW channels, six outlet sockets, master control, mains on/off switch, size $238 \frac{1}{2} \mathrm{Sin}$ Price $\mathbf{6} 97.20$ inc. VAT

DD261. As above but with two-preset arrangement. i.e. two stider controls per channel, two master controls. Size $23 \quad 10 \quad 5 \mathrm{in}$. Price © 117.72 inc. VAT

DD61-B. Six 1 kW channels, using module PMSD 1000 , lowest cost system. Size $16 \frac{1}{2} 85 \mathrm{in}$. Price $\mathbf{8 9} \mathbf{5} 50$ inc VAT

DD62. Six $2 k W$ channels, six outlet sockets, mains on/off switch. Size $25 \times 10 \frac{1}{2} \times 6$ in. Price $\mathcal{E} 156.60$ inc. VAT

Add $\mathbf{\$ 2 . 2 0}$ postage and porking for all systems.
The Dimmit range includes rotary and slider control dimmers and sound to light converters for home, entertainment and professional applications. Ratings $1 \mathrm{~kW}, 2 \mathrm{~kW}, 3 \cdot \mathrm{~W}$

All products are guaranteed and are supplied with full instructions and applications. Fullafter-sales service. Technical advice given.

For full informotion on all modules ond lighting control systems send $15 p$ for our illustroted catologue and price list. Collers welcome, visit our showroom for a demonstration of any of the modules or systems. Mon. Fri. .30 to $6.0 \mathrm{p} . \mathrm{m}$. Sat. by arrangement

YOUNG ELECTRONICS LTD.
 184 Royal College Street, London NW1 9NN Tel. 01-267 0201

LOW VOLTAGE PULSE GENERATOR

THE CIRCUIT (Fig. 1) generates pulses in the audio range with very fast rise and fall times even when the supply voltage is as low as 0.8 volts, thus making it ideal for signal injector purposes.

In commercial injectors an unbalanced multivibrator is often employed which results in slower transitions. Typical wave forms are shown in Fig. 2.

Transistors TR2, 3 and 4 form an oscillator whose frequency largely depends on C and R4. With the values shown the frequency is about 300 Hz . This can be altered so that the output is in the range 0.1 Hz to 5 kHz , with an almost constant mark space ratio of $1: 28$. At the collector of TR2 negative going pulses are available, while after inversion at TR1 positive going pulses are also available.

The output from the circuit was fed into a u.h.f. television resulting in an audible tone from the loudspeaker and a dot pattern on the screen, thus showing that very high frequency harmonics must be present. Current consumption is only 0.3 mA at 1.5 volts.

D. C. Dyer, Coventry

input frequency range 35 Hz to 100 kHz . The upper limit of input frequency was set by the available test oscillator

Transient distortion associated with changes in d.c. level of the output voltage waveform implies that the circuit is best used with inputs of amplitude, but the duration of transient distortion will be
reduced if the capacitors $\mathrm{C} 1 . \mathrm{C} 2$. and C3 are reduced for operation at frequencies above 35 Hz .

This circuit is readily adapted for use with other transistors. provided that RI is selected to give a collector current in TR1 of 5 to 10 mA .
D. Letts, Camberwell.

Fig. 1

VOLTAGE CONTROLLED OSCILLATOR

THe v.c.o. circuit has a dynamic range of 4 decades, for inputs of 10 V down to 1 mV , and with care, down to 0.1 mV . The timing is reliable, and the ramp output is very linear.

A positive voltage applied to the input causes the amplifier to start integrating. When the trigger voltage of TRI is reached (this is an avalanche device) the capacitor is discharged and the process starts again.

R3 and D1 ensure that the amplifier cannot integrate "backwards" and destroy TR1.

The trigger voltage of TRI is dependent on the interbase voltage, and R4, VR2 are thus used as a control for setting the frequency range initially.

The outputs are thus obviously effected by loading, and this must be taken into account.

SHORT CIRCUIT PROTECTION

ASHORT circuit protection device for fixed voltage d.c. power supplies like rechargeable batteries is shown in Fig. 1

The relay is used to cut out the power supply. When a short circuit occurs no current flows through the relay and thus it falls off to the normal closed position. R1 is chosen experimentally such that enough current flows through the relay to hold the normal open contacts closed, but not enough current to operate the relay when SI

Cl has been tried with values from $0.01 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$, the latter giving a reliable period of about $1 \frac{+}{2}$ hours. Obviously C1 must be very low leakage.

To compensate for offset errors in the 741 earth the input and adjust the offset control at VR1 for minimum voltage drift at pin 6 .
A. W. Diverall, Ashtead.

is closed. If R1 were not used the relay would chatter in the short circuit condition. S2 serves to reset
the relay, and LP is a lamp to indicate when the relay has cut out. S. Bygraves, Norwich.

The 7413 is a duai Schmitt trigger, and is excellent for producing the fast rise time necessary to drive TTL integrated circuits. With the addition of a few components, indication and memory can be added.

All inputs are normally at logical " 1 " (+5 V), when any input goes to logical " 0 " the output of 7413 rises to logical "I", and removal of the sink current drives the transistor on. One input to the 7413 is coupled to the transistor collector, so that the Schmitt latches on, and the bulb indicates signal failure. Simultaneously, a fast negative transition is produced at the 7413 output. The latch may be reset, simply by grounding the base of the transistor.
R. Bratby. Headington.

SIGNAL FAILURE INDIGATOR WITH MEMORY

Fig. 1

Videomaster urge all good electronics enthusiast's lo play the game

The best thing about the Videomaster Home T.V. Game Mk. III is that the sheer pleasure of building it is immediately followed by the excitement of playing three fascinating games.

The famous Videomaster is now available for you to make. It plugs into any standard UHF 625 line TV set, and it shouldn't take you longer than a few hours to build.

In detail . . . The Videomaster Mk. Ill has eleven integrated circuits . . . four transistors . . . eleven diodes . . . is easy to build . . . with no alignment necessary because with ready-built and tested transistorized UHF modulator, is complete with all parts . . . including fully drilled and prepared p.c.b. . . . handsome plastic box . . . controlleads . . . complete step by step assembly instructions . . . Runs on a PP7 9 volt battery . . . and has logic and analogue "state of the art" circuitry all with National Semiconductors CMOS devices . . . with full specification.

The cost? Only $£ 19.95$ (+VAT)

POST TODAY TO:

Videomaster Ltd

119/120Chancery Lane, London WC2A 1QU
Please send me (insert no.) Videomaster Mk. Ill kits at £21.55 ea. inc. VAT. P \& P
I enclose my cheque/money order for $£$
Tick if VHF Modulator required \square - $£ 1$ extra

NAME

ADDRESS

CRESCENT RADIO LTD.
11.15 \& 17 MAYES ROAD, LONDON N22 6TL (also) 13 SOUTH MALL, EDMONTON, N. 9

MAIL ORDER DEPT.
I St. Michaels terrace, wood green LONDON N22 4SJ Phone 888-4474

BARGAIN PROJECT BOX

A plastic box with moulded extrusion ralle for PC or Chassis panels with metal iront plate fitted wit
aupplied).
An ideal box to give a smal project a protessional finish.
28min.
OUR PHICE 40p. $+8 \%$

MIDGET

MAINS TRANSFORMER
Varnish Impregnated Size $45 \mathrm{~mm} \times 36 \mathrm{~mm} \times 31 \mathrm{~mm}$ PRI R4OV
$\begin{array}{lll}\text { Sec } & 3.0 \cdot 3 & 100 \mathrm{~mA} \\ \text { Sec } & 6.0 .6 & 100 \mathrm{~m}\end{array}$
$\begin{array}{lll}\text { Sec } & 6.0 .6 & 100 \mathrm{~mA} \\ \text { See } & 9.0 .9 & 100 \mathrm{~m}\end{array}$
$\begin{array}{lcc}\text { See } & 9.0 .9 & 100 \mathrm{~mA} \\ \text { Sec } & 12 \cdot 0.12 & 100 \mathrm{~mA}\end{array}$
$8 \mathrm{ec} \quad 20.0 \cdot 20 \quad 100 \mathrm{~mA}$
21.2810 p P. \& P. $+8 \%$.

CRESCENT BUBBLE LIGHT SHOW
This budget eystem compares rery favourably with more sophisticated and higher priced models.
Projector-15 - 150 w
cooled. At 30ft the convection cooled At . 30ft the projected
image is 16 ft .
 multi colour.
The motor is fitted to the projector and can on
Thie llauid wheel io be purchard model and may our atandard separately.

carr. + 8\%.

CABLE LESS SOLDERING IRON WAHL "ISO.TIP
t Completely portable.

* Solders up to 150 joints per charge.
* Recharges in its own stand.
* Fine tip for all types of molder-
Ing.

B oza
OUR PRICE $\mathbf{C 9 . 7 5}+8 \%$.
"CRESCENT" 100 WATT R.M.S. ALL PURPOSE AMPLIFIER U, BUILD. IT
We supply the three modules for you to build this Disco-Group-P.A. amplifier into the cabinet of sour choice.

+ THE POWER AMP MODULE 170W r.m.s. sq. wave 300 W instantaneous peal
Into 8 ohm 60 W into 16 ohm) Into 8 ohm (60 W into 16 ohm)
t THE PRE-AMP MODULE
Four control pre-amp, Vol. Bass, Treble. Middie controls. Designed to dirve most amplifera using F.E.T. first stage
' THE POWER SUPPLY
Comppiled complete with the mains transformer. Complete fixing instructions are supplied and no thechnical knowledge is required to connect the 225 ready wired modules. A fantastic bargain. 225 carr. 75 p . Send S.A.E. for further detaile
on this or our ready built amplifers. $+8 \%$.

12-0-12V $500 \mathrm{M} / \mathrm{A}$
$240 v$ primary tranaiormer bargain. Approx. size Our $\times 40 \mathrm{~mm} \times 50 \mathrm{~mm}$; fixing centres: 75 mm Our price $21 \cdot 20 . \quad+8 \%$.

FERRIC CHLORIDE
Anhydrous ferric chioride in double sealed one pound poly packs.

LOW NOISE, LOW PRICE CASSETTES Good quality tape in well made screw typ cassentes. Presented in single plastic cases

C60 31p C90 42p C120 63p 10% discount on ten or more cassettes of one Hands boxes for PLASTIC BOXES
Hands boxes for construction projects. Moulded extrusion rails for P.C. or chassis panels. Fitted With 1 mm front panels. $1005,105 \mathrm{~mm} \times 73 \mathrm{~mm} x$ 1007 . $184 \mathrm{~mm} \times 124 \mathrm{~mm} \times 60 \mathrm{~mm} \times 1.28 ; 1021$ $106 \mathrm{~mm} \times 74 \mathrm{~mm} \times 45 \mathrm{~mm}$ (sloping front) 55 p .

P.C. ETCHING KIT

This kit contalns all that the constructor will need to etch the circuits of hls own deaign. Contents: Plastic etching dlah. Sample copperclad board. Lamininate Cutter. 1 lb Ferric Chloride. Large Plastic spoon. Etch Reslat Pen. Full Etching
Instructions. Complete and Big Kit Value at 23.75 + 8\% VAT.

2in. PANEL METERS
Size $59 \mathrm{~mm} \times 46 \mathrm{~mm}$
$0.50 \mu \mathrm{~A}-\mathrm{ME6} \quad 59 \mathrm{~mm} \times 46 \mathrm{~mm} \quad 0.100 \mathrm{~mA}-\mathrm{MER} 3$ $0.100 \mu \mathrm{~A}-\mathrm{ME} \quad 0.500 \mathrm{~mA}-\mathrm{ME1}$ $\begin{array}{lrr}0.500 \mu A-M E 8 & 0.1 \mathrm{~A} & \text {-ME15 } \\ 0.1 \mathrm{~mA}-\mathrm{ME9} & 0.50 \mathrm{~V} & \text {-ME1 }\end{array}$ $\begin{array}{ll}0.1 \mathrm{~mA}-\mathrm{ME9} & 0.50 \mathrm{~V} \text {-ME16 } \\ 0.5 \mathrm{~mA}-\mathrm{ME10} & 0.300 \mathrm{~V} \text { a.c. } \mathrm{ME} 17\end{array}$ $\begin{array}{ll}0.10 \mathrm{~mA} \text {-ME11 } & \text { S meter -ME18 }\end{array}$ $0.50 \mathrm{~mA}-\mathrm{ME12}$ V.U. meter-ME19 (3 each. 10 pP. \&P. $+8 \%$. POWER PACKS
PP1 8witched 3-41-6-71-9 and 12 V at $500 \mathrm{M} / \mathrm{A}$
 PP2 \$witched $6.7 \frac{1}{3}-9 \mathrm{~V}$ Battery Eliminator Approx. slze 2 in $\times 2 \frac{1}{2}$ in $\times 3!\ln$. Ideal for cassette recorders, $£ 3.25$.
PP3 Car converter. Fron 12 V Pos. or Neg. to $=6-7 \frac{1}{2}-9 \mathrm{~V}$. Easy to
regulated, 23.90.

TELESCOPIC AERIAL

Nine section fully swivelling telescopic aerial with 4BA single bolt fixing or two hole fixing bracket. $50 \mathrm{p}+\mathbf{P} / \mathbf{P}+\mathrm{VAT}$ (en $\mathbf{8 \%}$. Our Price $\frac{80 p+P / P+V A T}{}$

KILOWATTS PSYCHEDELIC LIGHT CONTROL UNIT Three Channel: Bass, MIddle,
Treble. channel has its own sensitivity control. Just connect the input of
loudspeaker terminals of an amplifier, and connect three 250 V up to 1000 W lamps to the output terminals of the unit, and you produce a fasci C 18.50 plus 38 p P. \& P. $+8 \%$.

U.K. CARRIAGE 20p UNLESS

 OTHERWISE STATEDVAT-Ail pricel are exclad-
ing Vat. Please add to each
item the VAT rate indicated.

SEND 30p FOR A CRESCENT catalogue

Countless uses in industry and offices *QUICK aND EASY TO APPLY

EVEN IN AWKWARD PLACES

* SAVES DAMAGE TO WOOD AND PAINTWORK *STICKS ON INSTANTLY: HOLDS WIRE FIRMLY You'll save enormous time and trouble with the new Brandauer adhesive staple. Just peel off the backing strip and press staple into place. Then bend clips over to hold wire firmly in position. No messing with pins, tacks, soldering or drilling. No damage to woodwork, e.g. skirting boards. Use the Brandauer Staple for any wall, frame or cabinet wiring jobs - it's wonderfully easy for fitting in those awkward corners.

Send now for details to:

SPECIAL PRODUCTS DISTRIBUTORS LTD.

 81 Piccadilly, London WIV OHL: Tel:01-629 9556.
RESCUE TRANSMITTER/RECEIVER

In BP 1382 732, Autophon AG, of Switzerland, describes an electronic system to facilitate the rescue of people buried or trapped, for instance by a landslide or avalanche.

The system requires that both the searcher and the searched be equipped (in advance of course) with matching equipment. It is suggested that where this has been previously tried difficulties have arisen because of the very wide range of field strength intensities that must be handled. The receiver must pull in a strona signal from a remote transmitter but must also accurately process a strong signal from the same source when local.

The circuit diagram for the transmitter/receiver is shown in Fig. 1. The ferrite aerial forms with C1 an input circuit tuned approximately to the same transmitter and receiver frequency. The multivibrator intermittently switches the transmitter primary input stage on and off to save battery power.

A manually operated switch S1 has ganged segments, each with nine positions. The oscillator crystal X1 is connected to earth by R5 and C6 and to the primary input stage via switch contacts S1, 1K. TR1 functions as the output stage of the transmitter when under the control of primary input stage.

The input amplifier is connected to a tap on aerial coil and, as lona as the amplifier is powered, the base of switching transistor TR3 receives a voltage which causes it to conduct. The circuit elements between TR2 and R8 act as a symmetrical crystal filter, of which the output leads to adjustable attenuation or damping resistors R8, R9, R10.

Signals of three different intensities are delivered to R8, R9 and R10 at their three junction points and each point is connected to two terminals of S1b. Thus the output of the symmetrical crystal filter reaches the input of the mixer after being damped to a degree dependent on the switch position. The mixer also receives a sianal from the receiver oscillator, which differs only slightly from the receiver frequency. The resultant signal is filtered, passed to the control element, a.f. amplifier and finally to the earphone.

The circuit gives the following function option with the single switch, S1. Unit on and off, switching between a transmitting function and a receiving function (switch positions S and E). Adjustment of the receiver to the best suited sensitivity range (switch positions E with varying damping effect) Overal performance check (position K with voltage supply to the transmitter and receiver stages with the

BP 1382732

Fig. 1
signal processed as a low frequency signal under normal conditions. so that the earphone produces a sound signal). Thus the same unit is carried by anyone feelina themselves to be at risk (e.a. climbino potholing or skiina) and by a searcher subsequently on a rescue operation if the risk is realised.

CAR MI RROR DEFROSTING BP 1387436

A technique for electrically defrosting or demisting car wing mirrors is described by the Sprague Electric Co. of Massachusetts in BP 1387436.

Whereas it is necessary to embed a heating element in a car window to provide for defrosting or demisting, a mirror of necessity incorporates a conductive element at its reflective backing.

In accordance with the invention. a glass surface has a reflective nickel-chromium alloy resistance film evaporated or sputtered on the back. In practice approximately 25 or 30 W of power is obtained with a coating 300-400 \AA thick having a resistance of about 4 to 6 ohms and fed from a 12 V battery supply. A thermostat can be used to provide automatic control of the heating dependent on ambient temperature.

One suggestion is that an alloy of 80 per cent nickel and 20 per cent chromium be applied and the electrical supply connected via contacts formed from conductive epoxy resin attached directly to the alloy coating. A small piece of ceramic material with a positive temperature coefficient of resistivity (PTCR) is incorporated in one resin contact to serve as a thermostat. As a suitable PCTR it is suggested that a material composed of 65 per cent BaTiO_{3} (including 0.15 per cent $\mathrm{Nz}_{3} \mathrm{O}_{5}$) and 35 per cent SrTiO_{3}.

Readers with enquiring minds may wish to experiment on the effects of connecting conventional wing mirror coatings to the 12 V supply.

Readout
 A SEIECTION FROM OUR POSTBAG

Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the telephone.

Touch funing

Sir,-Further to my article titled "Touch Tuning Unit", published in the May 1975 issue, I have made some simple modifications to the circuit which may be of interest to your readers. These modifications improve the sensitivity of the unit, since in the orginal circuit, when the person operating the touch buttons was earthed, the unit could not switch channels correctly.

The modification requires there to be a negative supply voltage of approximately 5 V to the unit, as well as the positive supply. The modification is as follows:

1. Remove C3, D9. and D10: replace by short-circuit.
2. Connect pin 4 of IC2 to negative rail.
3. Connect emitters of TR2.

TR4. TR6, TR8, TR10 and
TRI2 to negative rail.
In addition, I would like to point out some printing errors in the article. These are: Component List-D17 should be B7Y88C6V8. Component List and Fig. 2-IC4 to be DL.707. Page 394. column 2. line $2--$ R 12 to read R11

> R. J. Bonfield.

Hampton, Middx

Mutchless!

Sir-1 read with interest yout article by Mr Bullen, on the "P.E. Portable Gas Lighter". As Mr

Bullen says, it would have been rather difficult to light the gas with flint and steel. However, about 50 years ago, when a young man, l was given an old non-working gas lighter. This was operated by frictional electricity. It so happens that this year 1 decided to recondition and repair it and had only finished it about 8 weeks before your article appeared.

A sketch is enclosed (see Fig. 1) and shows a finger lever near the handle. It takes three depressions of the lever to energise to sparking condition. The spark is about 0.020 in and quite brilliant. Internally the ebonite circular box contains one 3 in diameter Wimshurst type revolving disc with six metal foil plates stuck upon it. This is driven by the finger lever via a quadrant and a small free wheeling pinion. In the base of the ebonite box is the "Leyden Jar" (capacitor today); this comprises two semi-circular lead foil plates cemented to the bottom of the box.

I do not have gas so ! am unable to try it. but feel doubtful if it would be very successful on town gas. A very gentle squeeze of the lripper is sufficient to produce maximum sparking. Its overall length is $12 \frac{1}{2} \mathrm{in}$, the ebonite box be-
 The name of the machine is "The Matchless Electric Gas Lighter" (I assume no pun intended!) Molisons Patents. and I guess the date circum 1900.

> E. J. Bright.

Sound track

Sir,-l would like to back up Mr Scargill's statement (Readout, June) and add that Mr Lenton-Smith should listen to the following pieces:
"Dark Side of the Moon" by Pink Floyd (Harvest SHVI, 804)

Side 1, track 2 "On The Run"
Side 2, track 3 "Any Colour You Like"
"The Two Sides of Tony (T.S.) McPhee" by Tony McPhee (W.W.A. $001)$

Side 2 "The Hunt"
The Pink Floyd tracks are played on E.M.S. Sythesisers (V.C.S.3's and a Synthi Hi Fli guitar model), and Mr McPhee's suite is played on two ARP2600's, an electric piano and a "Rhythm Ace" drum sythesiser.
It may be of interest that Mr McPhee's work was recorded in a studio which he built himself in his garage and until 3 years ago he only played the guitar professionally.

Further examples of good sythesiser work can be found on the recordings of the following groups and musicians:
Gentle Giant (Vertigo/W.W.A.), Peter Hammill (Charisma), Rick Wakeman (A\&M), Van Der Graff Generator (Fontana/Charisma), Genesis (Charisma), Manfred Mann's Earthband (Vertigo), Yes (Atlantic). Groundhogs (United Artists/W.W.A.) and Jethro Tull (Chrysalis).
Incidentally, how about a reprint of the P.E. Sound Synthesiser as there must be many people who missed this series as I did.

Steven F. J. Smith. Coatbridge, Lanarkshire

Eaton Audio can supply reprints (see advertisers index).

SS Convention

Sir,-I think your readers may be interested in the special "Slow-Scan TV Convention" being organised by the British Amateur Television' Club.

The convention will take place at Aston University, Birmingham on Saturday, October 11, from 1000 to 1800 hrs . This convention is open to all who are interested in this fascinating topic. whether they belong to the B.A.T.C. or not. There will be lectures and display of equipment and plenty of opportunity for the exchange of ideas.

There is a small charge of 50 p to cover expenses. and tickets may be obtained from Mr M . Crampton, G8DLX. 16. Percival Road, Rugby, CV22 5JS:
C. G. Dixon.

Ross-on-Wye. Herefordshire

NEWS BRIEFS

Solar Cells Becoming Popular

A^{\top}
long last interest is being shown more actively in solar power. The Government has made moves to support Ferranti in their research on the subject and another active company, Lucas, have been releasing information on applications in Australia for their range of solar energy systems.

The latter includes railway signalling, fire protection, radio repeater stations, a pipeline cathodic protection set-up and a Ham transmitter on Mt. Sugarloaf near Melbourne.

Now that Lucas have proved solar cells in use in the Western Isles, Scotland for transmitter/receiver use it is to be hoped that a lowering of price and increase in availability for the many obvious uses in the U.K. will occur.

British Instrumentation

North Sea Oil is all the rage these days so it is not surprising that electronic companies are fast becoming involved in this market area.
The latest is Transducers (CEL) of Reading who is now offering a specialist service to companies in the offshore oil fields in conjunction with Banchory Instruments of Scotland.

The two companies are jointly offering a comprehensive pressure and load/tension measuring, X monitoring and control facility. They are able to either simply supply the equipment or provide all follow-up facilities including servicing and maintenance.

Inspectors Talk To Computers

QUality assurance inspectors probably spend as much time noting their observations as they use in carrying out the observations in the first instance. Now EMI Threshold Ltd have come up with a computer solution to this problem in which the computer is able to recognise a vocabulary of selected words.

In this way an inspector can instruct the computer to effect various functions whilst his hands are free to manipulate the object under inspection.

The vocabulary used is normal factory terminology and not only does the system display the inspector's findings as he speaks them but it also shows the correct values for any specific parameter. In addition, a record is kept of all operations for future use.

MAIL BAG

The on-going increase in postal and telephone charges does not seem to have made any difference to our post bag or our telephone bell. Enquiries continue to flood in.

We find that there are two points we are constantly mentioning. In the first place we just cannot afford to reply to any readers' letters, particularly those not associated with projects we have pubished, unless they are accompanied by a stamped addressed envelope. Were we to undertake to do so our post bill would become astronomic.

We cannot deal with technical enquiries by telephone. Readers should write in, giving details of symptoms and perhaps some test point readings, when requesting technical help so that we can at least give the relevant author some idea of the problems involved.

Finally, whilst we normally supply details as to source of components in each project we do assume that the constructor refers to advertisements and has an awareness of general sources. Thus, where goods are generally available we do not specify a source. You could save the cost of a letter by reading the advertisement pages first.

P.E. SYNTHESISER

(P.E. Feb. 1973 to Feb. 1974) The well acclaimed and highly versatile large scale mains-operated Sound Synthesiser complete with keyboard circuits. All function circuics may be the number of circuirs, the greater the versatilicy Other eircuits in our lists may be used with the Synchesiser to good advantage.

THE MAIN SYNTHESISER Stabilised Power Supply
Two Linear Voltage Controlled Oscillacors 12.05 and one Inverter-all 3 circuits:
PCB (2 are required)--each
Two Ramp Generators and Two Input Amplifiers-all 4 circuits
PCB (holds all 4 circuits)
Sample-Hold and Noise GeneratorTome Contral, E2.43; PCB, 72p Tomerbontral, 22.43 : Sprine Line unit for Reverb Amp Rlng Modulasor
Peak Level Meter Circuit
100uA Panel Merer
PCB for Rev., R-Mod, \& Meter Ccts.i
Envelope Shaper, $\$ 5.24$; PCB Envelope Shaper, 55.24 ; PCB, 11.42 Poltage Controlled Amp. and Diff, Amp THESYNTHESISERKEYBOARDCIR Can be used without the Main Synthesiser to Uits andependent musical instrument) 2 Log. Voltage Controlled Oscillators PCB for both log
Divider, 2 Hold Circuits, 2 Modulacion Amplifiers, Mixer and 2 Envelope Shapers PCB (Holds the first 6 eircuits) CB for both Envelope Shaper Keyboard Stabilised

SYNTHESISERS AND KEYBOARDS

P.E. JOANNA
(P.E. May to Aug. 1975)

The new electronic piano that has switchable Iternative voicing of Piano Honky-Tonk and Harpsi choro. All PCB's are "as published" Power Supply $\quad 88.85$ Power Supply
Tone Generator and Top C Envelope Shaper $£ 8.85$
$£ 10.26$ PCB Ger abover
18.26
$\mathbf{6} 1.30$ Envelope Shapers
632.16

2 sets (full requirement)
Set of 12 PC8's (full requirement)
Voicing and Pre-Amplifier Circuits PCB for above circuits

Remaining circuits: prices in lists.

KEYBOARDS

Kimber-Allen Keyboards as required for many published circuits, including the P.E. Joanna P.E. Minisonic and P.E. Synchesiser. The manufacturers claim that these are the finest moulded plastic keyboards made.
3 Octave Keyboard (37 notes C to C) $\quad \mathbf{2 0 . 5 0}$ 4 Ocrave Keyboard (49 notes C to C) Octave Keyboard (61 notes C to C) Contact Assemblies for use wish above herboards Single-pole change-over (SP) as for PE Joann and E. Minisonic ge-over (SP) as for P.E. Joanna and break (2P) as for P.E. Synthesiser Special contac assembly (4PS) having 4 poles, 3 of which are normally-open make-break contacts and the foursh is a change-over contact-this special assembly enables the same keyboard to be used with the P.E. Synthesiser, P.E. Minisonic, and P.E. Synthesiser simultaneously thus avoiding the cost of more than

one keyboard.
 Concact Each Set 3 Octave 4 Octave 5 Octave

 $\begin{array}{lllll}\text { Concact Each } & \text { Set } & \text { Set } & \text { Set } \\ \text { SP } & \text { 20p } & £ 7.40 & £ 9.80 & £ 12.20 \\ 2 P & 24 p & £ 8.88 & £ 11.76 & £ 14.64\end{array}$| $2 P$ | $24 p$ | $E 8.88$ | $E 11.76$ | $£ 14.64$ |
| :--- | :--- | ---: | ---: | ---: |
| $4 P S$ | $48 p$ | $£ 17.76$ | $£ 23.52$ | $£ 29.28$ | Printed Circuit Boards for use with the above wiring required, are ayailable-details in our lises

PHONOSONICS

P.E. MINISONIC

(P.E. Novi. 1974 co March 1975)

A portable, battery or mains operated, miniature ound synthesiser, with keyboard circuits. Although having shightly fewer racilities than the large P. yntresiser seope and versatility Two Voltage Controlled Oscillators Two Voltage Controlled O
Voltage Controlled Filter Voltage Controlled Fiter
and Voltage Reference Circuic
Two Envelope Shapers and Two Voltage two Envelope Shapers and Two Voltage Keyboard Controllers and Hold Circuits $\quad £ 7.25$ Keyboard Divider Resistors (select cype co suit keyboard used, all are 2% tolerance) 2 Octave, $\not \subset 1$ 3 Oet., 11.48 ; 4 Oct. E1.96; 5 Oct., $\mathbb{2} .44$. H.F. Oscillator and Detector $f 1.66$
64.96 Ring Mod., Noise Gen. \& Env. Inverter Two Power Amplifiers and Two Mixers 43.51 Battery Eliminator
Temperature Stabiliser PCB 0 hold 2 VCOs, VCF and V Rel hold 2 ESs, V CAs, 2 Mixers. Ring Mod, Keyboard Conerol and Hold $\quad 1.99$ PCB to hold 2 Power Amps, Noise Gen, Envelope. Inverter. HF Osc, and Decector $\in 1.32$ PCB for Battery Elim. \& Temp. Stab. $\quad \mathbf{E 1 . 2 5}$

FOR ADDRESS, INFORMATION REGARDING POST AND PACKING VAT LISTS AND EXPORT TERMS SEE OUR OTHER ADVERT 15EMENT ON OPPOSITE PAGE
Photos: 2 of our units containing some of the P.E. projects built from our kits and PCBs. (The cases were built by ourselves and are not for sale.)

Brochure, without obligation to:
BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, Dept.,
P.O. Box 156, Jersey, Channel Islands.

NAME

PHONOSONICS

SOUND-TO-LIGHT (P.E. Apr. 'Aug. 7I)
The ever-popular AURORA-4 or 8 channels each The ever-popular AURORA-4 or 8 channels each trolling its own light. Can be used with most audio systems and lamp intensities. A MUST for any Disco, and a fascinating visual display for the home.
4 channel component set (excl. thyristors) $\quad 12.83$ channel component set (excl. thyristors)
Power supply component set
$\begin{array}{ll}\mathrm{PCB} & \text { for power supply and } 8 \text { lamp drivers } \quad \text { \& } 8.32 \\ \text { \& } 1.56\end{array}$ I Amp 400 V thyristors (1 per chan. requ.) each 75 p
Panel meter $(1 \mu \mathrm{~A})$ (optional)
VOICE OPERATED FADER (P.E. Dec-73)
For automatically reducing music volume during "talk-over" particularly useful for Disco work or for home-movie shows.
Component set incl, PCB
62.95

TAPE-NOISE LIMITER
Very effective circuit for reducing the hiss found in most tape recordings.
Component set (incl, PCB)
Regulated power supply (inel. PCB)
62.50
63.98

P.E. SYNTHESISER
 SEE OUR ADVERTISEMENT ON OPPOSITE PAGE

GUITAR EFFECTS PEDAL (P.E. July 75)
Will modify an audio signal not only from a guitar but from any audio source, producing 8 different switchable effects that can be further modified by manual controls. Possibly the most interesting of all the low-priced sound effects units in our range. Component set with special foor operated switches
Alsernative component set with panel
mounting switches
Printed Circuit Board
4.60
$\& 1.10$

HI-FI TAPE-LINK (P.E. Mar./Apr. 73)
Designed for use with reasonable quality tape-decks, this high performance pre-amp includes record, playback and metering circuits.
Stereo componenz set (excl. panel meter) $\quad \mathbf{2 3 . 4 8}$ Mono component set (excl. panel meter)
23.48
414.19

Power supply component set
Stereo main PCB
C2.74
Stereo sub-assembly PCB
P.E. GEMINI 30W STEREO AMP LIFIER An exceptionally high quality Stereo Amplifier system.
STOCKS LAST.

Main Amplifior:
Set of resistors, capacitors and presers
Stereo printed circuit board
65.96
61.18

Pre-Amplifier:
Set of resistors, capacizors, potentiometers and switches-

Standard zolerance set
Stereo PCB (as published)
Regulated Power Supply
Set of resistors, capacitors and preset
62.20

VOLTAGE CONTROLLED FILTER (P.E. Oct. 74)

An independently designed VCF that can be used with the P.E. Synthesiser.
Component set
63.41
61.20

RHYTHM GENERATOR

(P.E. Mar, 'Apr. 74)

Programmable for 64,000 rhythm patterns from 8 effects circuits (high and low bongos, bass and snare drums, long and short brushes, blocks and
soft cymbal), and with variable time signatures soit cymbal), and with variable time signatures
and rhythm rates. Really fascinating and useful. and rhythm rates. Really fascinating and useful. $\begin{array}{ll}\text { Tempo, } \\ \text { PCB for above circuits (double-sided) } & E 2.84 \\ & E 10.49\end{array}$ Component set for all 8 effects circuits $\mathbf{1 0 . 4 9}$ Set of 4 PCB's to hold all 8 effects
Simple mixer (no PCB available)
Alternative mixer with external volume controls and adjustable tain (independently
designed), including PCB $\begin{array}{ll}\text { designed), including PCB } & \mathbf{6 9 . 2 2} \\ \text { Power Supply, including PCB } & \mathbf{\& 6 . 3 2}\end{array}$

SOUND BENDER (P.E. May 74)

A mult -purpose sound controller, the functions of which include envelope shaper. tremolo, voice fic fader and frequency. doubler.
Component set for ab

abov

Optional extra-additional Audio Modulator. the use of which, in conjunction with the above com ponent set, can produce "jungle-drum" rhythms.
Component set (incl. PCB)
62-47
PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlled unit for introducing the "phasing" sound into live or recorded music.
Component ser (incl. PCB)
PHASING CONTROL UNIT (P.E. Oct. 74)
For use with the above Phasing Unit to automasically
conerol the rate of phasing
Componens sez (incl. PCB) . $\$ 3.65$

P.E. JOANNA
 SEE OUR ADVERTISEMENT ON OPPOSITE PAGE

WIND AND RAIN UNIT

A manually controlled unit for producing the above named sounds.
Component set incl. PCB
62.63

POWER SUPPLIES supply kits complete with PCB's and detailed in formation are now available. Details in list.
Other PCBs (all "as published") While stocks last Bench Power Supply (P.E. Sept. 1974) 70p CCTV
Master Logic. Video Amp., Sync Mixer and Cathode Switch PCB (P.E. Oct. 1974) 1974) 12.20 PCB for remaining Circuits (P.E. Oct. 1974) E2.20
Digital Power Supply (P.E. Aug. 1972)
Electronic Piano:
Pre-amp PCE (P.E. Oct. 1972)
Power Supply PCB (P.E. Oct. 1972)
Power Slaves: Power Supply PCB (P.E. Aug. 1974)

Rondo: ${ }_{\text {CBS S Decoder PCB (P.E. Sept. 1973) }}$
Pre-Amp PCB (P.E. Ocz. 1973)
Tone, Balance and Volume Conerol PCB
(P.E. Oct.)

BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)
Multi-function circuits that, with the use of other external equipment, can serve as lie detector, alphaphone, cardiophone, etc.
Pre-Amplifier Module
63.60

Basic Output Circuits
Combined component set with PCBs, for alphaphone cardiophone. frequency meter and visual feed-back lamp driver circuits
Audio Amplifier Module
45.50

SINE AND SQUARE WAVE GENERATOR (P.E. July 75)
Suitable for audio, digital, or general purpose. lookHolle through 4 dion through 10 ranges from lov to lmV peak-to-peak.
Component set
PCB for above components
Power Supply
PCB for Power Supply
67.16
41.55
$72 p$

P.E. MINISONIC
SEE OUR ADVERTISEMENT ON OPPOSITE PAGE

REVERBERATION UNIT (P.W. Nov. 'Dec. 72)
A high quality unit having microphone and line input preamps, and providing full control over reverberation level.
Component set (exi, spring unit) $\quad \mathbf{4 7}$-49
Prineed circuit board
9 inch spring unit
41.66

Panel meter $(50 \mu \mathrm{~A})$ (optional)
63.75

ULTRASONIC TRANSMITER-RECEIVER

(P.E. May 1972). A highly, sensitive, right-beam; long-range, "invisible beam" detection circuit with
numerous applications.
Component set with PCBs but excluding transducers
4.60

SEMI-CONDUCTOR TESTER (P.E. Oct. 73)
Essential test equipment for the enterprising home constructor. tiomerers, makaswitches and PCB E7.96 Panel meter $(500 \mu \mathrm{~A})$

PHOTOPRINT PROCESS CONTROE(P.E. Jan.'Feb. 72)
For colour and $B \& W$, an indispensible dark-room unit for finding exposure, consrolling enlarger timing, and stabilising mains voltage. Component set (excl. meter) \quad \&10.18 Printed Circuit Board Ell7 Panel meter (ImA) 63.75

ENLARGER EXPOSURE METER AND

THERMOMETER (P.E. Sept. 73)
Dual-purpose dark-room unit with good accuracy. Component set with PCB but excl. meter
Panel mezer $(100 \mu \mathrm{~A})$

78

Crinted circuit board Transistors B Transistor
AC128

Capacit

Electroly

($\mu \mathrm{F} / \mathrm{V}$)

AC107	20p BSY95A
13p MJE2955	
BC108	13p MJE3055

O日ananoga
$\left\lvert\, \begin{aligned} & 3 Z ~ \end{aligned}\right.$
-anagangan pNANMANOMOM

VAT

POST AND HANDLING

U.K. orders: under f 15 add 22p.
U.K. orders: und
over $£ 15$ add 40. over Cl 5 add 40 . for compensarion apainst loss or damage in post (U.K.

Add $\mathbf{2 5 \%}$ (or current rate if different) to full total of goods, post and handling. Overseas-VAT does not currently apply.

Tantalu
($\mu \mathrm{F} / \mathrm{V}$) $\begin{array}{lll}0.1 / 35 & 13 \\ 0.22 / 35 & 13\end{array}$

Send S.A.E. with all U.K. requests for free lise giving fuller details of PCBs kits, and other components. Overseas enquirie
Europe-send 20 p.

MAIL ORDER ANDC.W

Overseas-will be charged extra.
minimum charge 70p. Details of kii weights, and postage rates will be sent with list.
With list. Channel fsles classify

NEW PROFESSIONAL QUALITY MODULES TO SAVE YOU £ £ £s

THE NEW POWER AMPLIFIERS

Three brilliant new power modules employing the same circuitry use 10 transistors, three diodes and one zener diode, with electronic over temperature cutout as well as normal thermal protection, load line short circuit and wrong load protection, integrally mounted output capacitor, etc. Fused supply and output terminals. Solder or screw connected. The input impedance is high enough to accept all types of mixer having an output of 250 mV .

* NEW $90^{\circ} \mathrm{C}$ overtemperature electronic cutout, not mechanical.
* NEW integral output capacitor means no external components normally required
* Short circuit load line type protection with twin summing amplifiers
* Inhérently open circuit proof
* Input sensitivity -10 dBm (240 mV into 100 k) permits use with most mixers.
* Frequency response $20 \mathrm{~Hz}-40 \mathrm{kHz} \pm 1 \mathrm{~dB}$.
* Distortion typically 0.4%. Noise -80 dB .
* Compact: only $15 \mathrm{~cm} \times 8 \mathrm{~cm} \times 3 \mathrm{~cm}$.
* Suitable for all public address, discotheque. and group applications.
* Fused supply and output terminals.
* Single supply line (split supply not required)
\qquad
\qquad
\qquad

OWVTEIT TODI

PROFESSIONAL STANDARD COMPLETE UNITS
A total range project to satisfy the most discerning

Note these compelling features:

Stainiess Stoel Escutcheont \dagger

 Totally compatible with all Saxon modules.Tough estily-read facla
Plug/socket terminations throughout.
100 W rme into 8Ω.
Two mixed inputs, wide range base and treble controls. May be operated as slave amplifler.
Amazingly compact $(27 \times 16 \times$ $10 \mathrm{~cm})$.

* Fully protected againat all incorrect loads and short circulte MINOTAUR 100 £47.50
+Except Minotaur (anodised aluminium)

SYSTEM 7000 DISCO CONTROL UNIT

* Mono or stereo versions

Two deck and one tape inputs. Individually controlled plus deck fader (ineffective in central position).
Wide range bass and treble controls plus separate mic. vol. bass and treble controls. Overall master control.
Continuoúsly variable autotade depth and threshold

Five posltion monitoring switch with two mute positions-ample headphone power
Noise -80 dB response 20 Hz $50 \mathrm{kHz} \pm 1 \mathrm{~dB}$.
Complete, cased with all ter Complete, by plug socket stc
MONO VERSION $£ 28 \cdot 50$ STEREO VERSION 145.00

SYSTEM 7000 MODULAR MIXING

COMPLETE VERSIONS OF THE IM7001 AND IM7002 modules

 shown in our advertisement.Let you make a professional quality versatile mixer to your requirements using these modules. Mono and stereo inputs may be combined.

- The mixing modules split mono signals.

Each input module has own monitor switch.

* Stainless steel panel on $15 \times 5 \mathrm{~cm}$ matrix (approx.)
- Input equatisation for all types of signal inc magnetic cartildge.
- Complete system may comprise twenty channels, mono or
stereo with ample monitoring power.
- May be patched in with disco mixers or Minotaur amplifier.

MONO INPUT MODULE 58.50 STEREO INPUT MODULE $\{12 \cdot 00$ MONO MIXER MODULE E8.50

STEREO MIXER MOOULE $\$ 12-00$ POWER SUPPLY UNIT FOR UP TO 20 MODULES 17.50

SYSTEM 7000 LIGHTING CONTROL UNIT

T,000W per OVERRIDE.

individual best
Master control. mid. and
Plug/socket terminatons.
Slider control for function
both combined.
Statioless steel front panel matching to disco control unt Compact (17x $10 \times 10 \mathrm{~cm}$ approx.).

High sensitivity, negliglble input powe
$£ 35$

All Saxon Modules are guerantesd for two yesrs from dite of purchase

To order telephone 01 -64 5385 now or call $01-6840098$ for more details.
WE ACCEPT TELEPHONE ORDERS FOR C.O.D. AND ACCESS/BARCLAYCARD ACCOUNT HOLOERS
if ordering by post please send chequelcrosed postal orders made payable to Saxon Entertainment Lid. or simply enciose your Access/Barclaycard number.
Shop hours Mon.-Sat. 9.00-5.00 p.m. Tel. 01-684 5385
All prices include postage and packing, but V.A.T. at 8% must be added to total value of order.
Trade enquiries
Saxon products are avallabie from Norman Rose Electrical Lid.
Branches in
London. Tel: 01-837 911
Birmingham. Tel. 021-236 4710
Manchester. Tel. 061-273 1498

TRANSFORMERS ALL EX-STOCK

PLEASE ADD VAT AFTER P \& P
ELECTROSIL and SEMICONDUCTOR STOCKIST
Send stamp for lists

Barrie Electronics Ltd.

 3,THE MINORIES, LONDONEC3N 1BJ TELEPHONE: $01-488$ 3316/8NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOL ST

GIVE YOUR TELEVISION HI-FI SOUND

Our TV tuner receives the signal from the TV aerial and produces an audio signal which can be fed into your hi-fi equipment. The result is not only high quality sound but also a high quality video signal which can be fed back into your set to improve picture quality. The tuner consists of a printed circuit board

Top 500 Semiconductors From the Largest Range in the U.K.

												LM309K	1.88	OC42	0
2N456	0.30	Orange	0.12	2N5192	1.24	AF 106	0.40	BC184	0.13	BF 153	0.25	L005T\%	1.50	OC45	0.
2N456A	0.85	2N3053	0.25	2N5195	1.46	AF109 ${ }^{\text {a }}$	0.40	BC184L	0.13	BF154	0.20	LM380	1.10	OC71	
2N457A	$1 \cdot 20$	2N3054	0.60	2N5245	0.47	AF114	0.35	BC186	0.25	BF159	0.27	LM381	$2 \cdot 20$	OC72	
2N490	4-14	2N3055	0.75	2N5294	0.46	AF115	0.35	BC 187	0.27	BF160	0.23	LM702C	0.75	OC81	
2N491	4.38	2N3390	0.45	2N5295	0.48	AF116	0.35	BC207	0.12	BF163	0.32	LM709		$\mathrm{OCP3}^{\text {ORP12 }}$	
2 N 492	5.00	2N3391	0.28	2N5296	0.45	AF117	0.35	BC208	0.11	BF166	0.40	TO99	0.48		
2N493	5.20	2N3391A	0.29	2N5298	0.50	AF118	0.35	BC212K	0.16	BF167	0.25	$8 \mathrm{8DLL}$	0.38 0.40	SL314A	
2N696	0.22	2N3392	0.15	2N5457	0.49	AF124	0.30	BC212L	0.16	BF173	0.27	LM710	0.40 0.47	SL614A	
2N697	0.16	2N3393	0.15	2N5458	0.46	AF125	0.30	8C214L	0.14	BF177	0.29	LM710	0.47	SL610C	
2N698	0.82	2N3394	0.15	2N5459	0.49	AF126	0.21	BC237	0.15	BF178	0.35	-M723C	0.90	SL612C	
2N699	0.59	2N3402	0.18	2N5492	0.58	AF127	0.28	BC238	0.15	BF179	0.43	LM7		SL620C	
2N706	0.14	2N3403	0.19	2N5494	0.58	AF139	0.65	BC239	0.15	BF180	0.35	TO99		SL621C	
2N706A	0.18	2N3440	0.59	2N5496	0.81	AF186	0.48	BC251	0.25	BF181	0.36			SL623	
2N708	0.17	2N3441	0.87	2N5777	0.45	AF200	0.65	${ }^{\text {BC253 }}$	0.25	BF182	0.35		1.00	SL640C	
2N709	0.42	2N3442	1.40	2N6027	0.45	AF239	0.65	BC257	0.16	BF183	0.55	LM748	1.00	SL641C	
2N711	0.50	2N3414	0.20	3N128	0.73	AF240	0.90	BC258	0.16	BF184	0.30			SN76003N	
2N718	0.23	2N3415	0.21	3N139	. 42	AF279	0.70	BC259	0.17 0.25	BF185	0.30	1401 L	0.73	SN76013N	
2N718A	0.28	2N3418	0.34	3N140	. 00	AF280	0.79	BC261	0.25	BF19	0.12 0.12	LM3900	0.70	SN76023N	
2N720	0.57	2N3417	0.24	N141	0.81	AL102	1.00	BC262	0.25 0.25	BF	0.12 0.13	LM7805	2.00	SN76033N	
2N914	0.39	2N3638	0.15	3N200	2.48	AL103	1.00	$\mathrm{BC}^{\text {B }} 363$	0.25 0.38	BF196	0.15		2.50	ST2	
2N916	0.24	2N3638A	0.15	40361	0.40 0.45	BC407	14	BC300	0.38 0.34	BF197	0.15 0.10	LM7815	2.50 2.50	TAA263	
2NS 18	0.32	2N 3639	0.27	40362	0.88	BC 108	0.14 0.14	BC301	0.34 0.29	BF 198 BF200	0.10	LM7824	2.50 2.50	taA300	
2N 129	0.37	2N3641	$0 \cdot 17$	40363 40389	0.88	BC109	0.14 0.15	${ }^{8 C 302}$	0.29 0.54 0.15	${ }_{\text {BF200 }}$ BF225	0.40 0.23	MC1303	1.50	taA350	
2Ns30	0.22	2N 3702	$0 \cdot 12$	40389 40394	0.48 0.56	BC113	0.15 0.17	BC303 BC307	0.54 0.17	${ }_{\text {BF244 }}$	0.23 0.21	MC1310	2.92	taAS50	
2N 1302	0.19	2N3703	0.13	40394	0.56 0.65	BC115	0.17 0.17	BC307 BC308A	0.17 0.15	BF244	0.21	MC1330P	0.90	YAA611C	
2N9303	0.19	2N3704	0.15 0.15	40395 40406	0.65	BC116 BC1164	0.17 0.18	BC308A BC309C	0.15 0.20	BF246	0.58	MC1351P	0.80	TAA621	2.0
2N1304	0.26	2N3705	0.15 0.15	40406 40407	0.44 0.35	BC116A BC117	0.18 0.21	BC 309 C BC 237	0.20 3.27	BF247	0.65	MC 1352P	0.80	TAA661B	1.3
2N1305 2N 1306	0.24 0.31	2N3706 2N3707	0.15 0.18	40407 40408	0.35 0.50	BC117	0.21 0.14	BC237 BC 238	3.21	BF254	0.18	MC1466	3.50	TBA6418	2.2
2N1307	0. 30	2N37C8	0.14	40409	0.52	BC119	0.29	BC337	0.20	BF255	0.19	MC1469	2.75	TBA651	
2N1308	0.47	2N3709	0.15	40410	0.52	BC121	0.35	BC 338	0.20	BF257	0.47	MEO402	0.20	tbaboo	
2N1309	0.47	2N3710	0.15	40411	2.00	BC125	0.16	BCr 30	0.80	BF258	0.53	ME0404	0.13	TBAB20	
2N1671	1.54	2N3711	- 15	40594	0.74	BC126	0.23	BCY31	0.05	BF259	0.55	ME0412	. 18	TBA920	
2N1671A	1.67	2N3712	1.20	40595	0.34	BC132	0.30	BCY32	1.15	BFFP39	0.24	ME410	0.11	TH209	
2N16718	1.15	2N3713	$1 \cdot 20$	40601	0.67	BC134	0.13	BCY33	0.85	BFR7	0.24 2.30	MES10	0.11 0.95	T1P29A	
2N1711	0.45	2N3714	1.38	40602	0.61	BC135	0.13	BCY34	0.79	BFS21	$2 \cdot 30$	MJ4		TIP29C	
2N1907	5.50	2N3715	1.50	40603	0.58	BC136	0.17	BCY38	1.00	BFS28	0.92	MJ		TIP30A	
2N2102	0.64	2N3716	1.80	40604	0.56	BC137	0.17	BCY39	1.50	BFS61	0.27 0.25	MJ4		TIP30C	0.
2N2147	0.78	2N3771	2.20	40636	1.10	BC136	0.24	BCY40	0.47	BFS98	0.25	MJ2955	$\begin{array}{r}1.45 \\ \hline 100\end{array}$	tip3iA	0.
2N2148	0.94	2N3772	1.80	40669	1.00	BC140	0.68	BCY42	0.28	8		MJE340	0.48	TIP31C	
2N2160	0.90	2N3773	2.65	40673	0.73	8C141	0.68	BCY58	0.30	BF	0.27	MJE2955		TIP32A	
2N218A	0.22	2N3789	2.06	${ }_{\text {AC }}{ }^{\text {c }} 126$	0.20	BC142	0.23	BCY59	0.32	BF	0.24 0.30	MJE2055	0.75	TIP32C	
2N2219	0.24	2N3790	2.40	${ }^{\text {AC }} 127$	0.20	BC143	0.25	BCY70	0.17 0.22	BF	0.20	MJE370	0.65	TIP33A	
2N2219A	0.26	2N3791	2.35	${ }^{\text {A C }} 128$. 20	BC 145	0.21	BCY71	0.22 0.15	BFX88	0.25	MJE371	0.75	TIP33C	
2N2220	0.25	2N3792	2.60	AC151V	0.27	$\mathrm{BC}^{\text {Cl }} 14$	0.84	BCY72 BD 115	0.15 0.75	BFX88 BFX89	0.25 0.90	MJES20	0.60	TIP34A	
2N2221	0.18	2N3794	0.24	${ }_{\text {AC }}{ }^{\text {AC }} 153 \mathrm{~V}$	0.49	${ }^{\text {BC }} 148$	0.14	BD115 BD116	0.75 0.75	BFX889 BFYS0	0.95 0.23	MJE521	0.70	TIP34C	
2N2221A	0.21	2N3019	0.37 0.64	AC153	0.35 0.40	BC 149 BC 153	0.15 0.18 0.18	BD116 BD121	0.75 1.00	BFY51	0.23	MP8111	0.32	TIP35A	
${ }^{2 N} 22222$	0.20 0.25	2N3820 2N3823	0.64 0.78	${ }_{\text {AC }}^{\text {AC153 }}$	0.40 0.25	BC153 BC154 che	0.18	BD121 BD123	1.00 0.82	BFY52	0.21	MP8112	0.40	TIP36A	
2N2222A	0.25	2N3823	0.78	AC154	0.25 0.30	BC154 BC15	0.16	BD123 BD124	0.82 0.67	BFY53	0.18	MP8113	0.47	TiP 1 A	
N2369	0.25 0.20	2N3904 2N3906	0.27 0.27	AC176K	0.40	BC 158	0.16	BD131	0.40	BFYg0	0.75	MPF 102	0.34	TPP41C	
2N 2369	0.20	2N4036	0.67	AC187K	0.35	BC160	0.80	BD132	0.50	BRY39	0.23	MPSA05	0.25	TIP42A	
2N 2646	0.55	2N4037	0.42	ACl8sk	0.40	BC167B	0.15	BD135	0.43	BSX20	$0 \cdot 21$	MPSA06	0.31	TIP62C	
2N 2647	0.98	2 N 4058	0.18	${ }^{\text {ACY }} 18$	0.24	BC168B	0,15	BD136	0.49	BSX21	0.28	MPSA ${ }^{\text {P }}$ 2	35	TIP	
2N2904	0.22	2N4059	0.15	ACY19	0.27	BC168C	0.15	BD137	0.55	BU104	2.00	MP			
2 N 2904 A	$0: 24$	2N 4060	0.15	ACY20	0.22	BC169B	0.75	80138	0.83	BU105	2.25			TIP2955	
2N2905	0.25	2N4061	0.15	ACY21	0.26	8C 169C	0.15	80139	0.71	C106D		M		TiP305	
2N2905A	0.26	2N4062	0.15	ACY28	0.20	BC170A	0.15	BDi40	0.87	Ca3018a	0.85	MPSU06		Tis ${ }^{\text {T }}$	
2N2906	0.19	2N4126	0.21	ACY30	0.58	8C171	0.16	80529	0.80	CA3020A	1.80	MPSU55	0.83	2TX300	
2N2906A	0.21	2N4289	0.34	ADT42	0.57	BC 172	0.17	BDS30	0.80	CA3028A	1.79 1.38	MPS55V	0.70	21×301	
2N2907	0.22	2N4919	0.95	AD143	0.68	BC 177	$0 \cdot 21$	BDY20	1.05	CA3035	1.36 0.70	NE556	1.30		
2N2907A	0.24	2N4920	1.10	AD149V	1.20	BC 178	0.27	BF115	0.36 0.55	CA 3048	1.11 2.11	NE560	1. 48		
2N2924	0.20	2N4921	1.33	ADI50	1.15	BC179	0.30	EF117	0.55		1.62	NE561	4. 00	27×502	
2N2925	0.20	2N4922	1.00	AD 161	0.50	BC182	0.12	EFF121	0.35	CA3089E	1.06	NE565A	48	2T×530	
2N2926		2N4923	1.00	AD 662	0.50	BY 182 L	0.12	BF123	0.35	CA3090Q	4.23		1.35		
Green	0.12	2N5190	0.92	AD161	PA	BC183	0.12	BF125	0.35	CM301A	0.48	OC28			
Yellow	0.12	2N519	0.96	AD162	15	BC183L	$0 \cdot 12$	BF152	0.20	LM301A	0.48	OC28	0.76		

TTL Integrated Circuits-Quality and Prices You Can't Beat

 \begin{tabular}{r|ll|ll|ll|l|l|l|}
SN7401AN \& SN7411 \& 0.25 \& SN7437 \& 0.37 \& SN7451 \& 0.16 \& SN7481 \& 1.25 \& SN7495

\& 0.38 \& SN7412 \& 0.28 \& SN7438 \& 0.35 \& SN7453 \& 0.16 \& SN7482 \& 0.75

SN7746 \& 0.7

SN7402

SN7402 \& 0.18 \& SN7413 \& 0.35 \& SN7440 \& 0.16 \& SN7454 \& 0.16 \& SN7483 \& 0.95 \& SN74100

SN.

SN7403 \& 0.16 \& SN7416 \& 0.35 \& SN7441AN \& SN7460 \& 0.18 \& SN7484 \& 0.95 \& SN74107 \& 0.36

SN7403 \& 0.16 \& SN7416 \& 0.35 \& SN7441AN \& SN7460 \& 0.18 \& SN7484 \& 0.95

SN7404 \& 0.19 \& SN7417 \& 0.35 \& SN74107 \& 0.36
\end{tabular}

 | SN7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SN7406	0.45	SN7423	0.29	SN7445	0.90	SN7473	0.36	SN7490	0.45	SN74 21
SN										

1 STRAITS PARADE FISHPONDS
BRISTOL BS16 2LX TEL: BRISTOL 654201/2

LONDON-GLASGOW-PARIS
 AND NOW
 BRISTOL!

PW TELETENNIS KIT Oblaturg on BEC Netionwide ano in in amily. No need 10 modity your NV sot. juat

 200. D Semicondutor Paen c14.30

 tim complate vill or $75 p$ on request
P.C. Marker Pen Dato 33PC 0.87p 2eners 400 MW . 11p: 1 W 17p.
IC Sockets 8 DIL 16 p ; $14 \mathrm{DIL} 17 \mathrm{p}: 16 \mathrm{DIL} 20 \mathrm{p}$ Resistors iW 2p: jW 3p: 2;W 9p: 5W 10p 10W 12p.

Scorpio Car Ignition KIt- $£ 11 \cdot 50+$ VAT 1 IMF440V E1-10
BSTBO246 £1-20. Transformer £3
OPTO and LED:
0.16 dismeter 31p: 0.20 diameter 33 p DL707 £2.35 or 4 for ct
Minitron $£ 1.55$.

Trade and Retall Supplied

Dinitien Displays

SLA7 RED LED 0.3" DIGIT 0-9DP 89p ea JUMBO LED $0.6^{\prime \prime} 747$ DISPLAY $£ 2.25$ ea 3015F 0-9DP \&1 ea. enon flash tube E4. Data 15p. ᄂ (D) P [oO qS O LEDS 209 STYLE ONLY 13p ea TIL 209 WITH CLIP RED 15p ea TIL 211 \& CLIP GREEN 29p ea LARGE 0.2" \& CLIP RED 17p ea LARGE 0. $2^{\prime \prime}$ CLIP GREEN 30p ea 209 STYLE OR $\cdot 2^{\text {"ORANGE }} 29$ ea (ロ) TEC12 PHOTO AMP/SCMITT/RELAY DRIVER or LED TTL INTERFACE $81 p$

FLUORESCENT LIGHTS 12 V MADE IN UK (WATT 13" £3. 13w 22" £3.50
DiGithl ELDEH IC AY51224 4 DIGIT CLOCK $£ 3.75$

CASSETTE mechanics
NEW 8tk CARTRIDGE MECHANISM $\& 8$ STEREO CASSETTE MECHANISM £ 13.75 Suitable for 'PW ASCOT' recorder

INTEGRATED CIRCUITS

709 DIL14 29p	LM377 2x2W£2.87
555 TIMER 54p	LM380 2\% AF 89p
$703 \mathrm{RF} / 1 \mathrm{~F}$ 28p	LM381 2xPre ¢2
709 T099 23p	LM3900 4xOPA69p
709 DIL 14 28p	MC1303 E1. 20
710 DIL 14 34p	MC1306 49p
$723 \mathrm{Reg}. \mathrm{54p}$	MC1310\&LEDE2.65
741 DIL 8 27p	MC1312 SQ £2.10
741 DIL 14 29p	MC1330 69p
741 TO99 29p	MC1339 2 xPre \& 1
747 2x741 70p	MC1350 55p
748 DIL 8 33p	NE536 fetopa \& 2
7805 5V £ 1.40	NE540 Driver \& 1
7812 \& 15 £1.40	NE550 2vRef 79p
76013 6W AF £1	NE555 T1mer 55p
8038 SIG GEN £3	NE556 2x" $£ 1.20$
CA3028 £1	NE560 PLL ¢ 3.15
CA3046 55p	NE561 PLL \&3.15
CA3048 £2	NE562 PLL 83.10
CA3052 £ 1.50	NE565 PLL £2,69
CA3054 £1	SN72709 709 28p
LM300 2-20V £2	SN72741 741 26p
LM301 OPA 45p	SN72748 748 33p
LM304 0-40V ¢3	SN76660 IF \& 1
LM307 OPA 49p	SN76611 IFE1.25
LM308 H1 co $^{\text {c }} 95$	TAD110 \& IF \& 2
LM309K 5V ¢ 1.48	TBA810 7WAF 99p
LM372 IF $¢ 1.80$	ZN414 RX ¢ 1.09

2N3055 FULL HIGH SPEC 115 W 37 p 741 C 8PIN DIL 27 p MFC4000B 33p NE555 TINER 55p. ZN414 RX \&1,09 BC109 9p. 2N3819e 16p. BFY51 15p

7 7Π TTL

 7400 GATES 13p 7475 45 p 7404 INVERT 17p 7490 52p $\begin{array}{llll}7413 \text { SCMITT 31p } & 7491 / 2 / 3 / 4 & 59 p\end{array}$ 7440 BUFFER 14p $74121 \quad 32 \mathrm{p}$ 7447 DRIVER 89p 74123 59p

TRANSISTORS \& DIODES

Price each
$\begin{array}{ll}\text { AC127 \& } 128 & 16 p\end{array}$ $\begin{array}{llll}\text { AC127 \& } & 128 & 16 p \\ \text { AC187 \& } & 188 & 19 p\end{array}$ AC187 \& $188 \quad 19 p$
AD149
AD $\begin{array}{lll}\text { ADD149 } \\ \text { AD1 } & 162 & 33 p\end{array}$ $\begin{array}{rlll}\text { AD161 \& } & 162 & 33 p \\ \text { BC107 } & \text { \& } & 108 & 9 p\end{array}$
 $\begin{array}{ll}\text { BC109 } & 10 p \\ \text { BC147/8/9 } & 10 p\end{array}$ BC157/8/9 12p BC167/8/9 12p $\mathrm{BC} 177 / 8 / 9 \quad 18 \mathrm{p}$ BC182/3/4A\&L10p BC212/3/4A\&L11p BCY70/1/2. 17p BD131 \& 13239 p BFR51 BFR50/51 23p BFR50/51 23p BFR88 250V $29 p$ BFY50/1/2 $15 p$ BSX19/20/21 $16 \mathrm{p}^{\circ}$ MJE2955 90p MJE3055 65p MPU131 PUT 49p 0 O81 0A81 6p OAB \& OAG1 6p THP $29 \& 3052 p$ TIP 31 \&

MATCHING $16 p$ IAS,BUSH SETIOp TIP 41
TIP 42 TIP 42 TIP 2955 TIP 3055 90p TIS 43 see 2 N2646 ZTX1098301 13p 1N4001 1N4004 \& $7 \quad 7 \mathrm{p}$ $1 N 4148$ \& 9144 p 2N697 2N706R8 2N2646 UJT $\begin{aligned} & 11 p \\ & 32 p\end{aligned}$ 2N2904 \& $5 \quad 20 \mathrm{p}$ 2N2926royg 9p 2N3053 2N3055 115W 37p 2N3563 \& $6416 p$ 2N3614 $\begin{array}{lllr}\text { 2N3702 \& } & 3 & 9 \mathrm{p} \\ \text { 2N3704 } & 5 & 9 \mathrm{p}\end{array}$ 2N3704 \& 5 10p $\begin{array}{llll}2 N 3706 & \& & 9 p \\ 2 N 3708 & \& & 9 & 8 p\end{array}$ 2N3710 \& 1110 p 2N3819E FET 16p 2N3904/5/6 2N390475/6 15p

NEW TRAMPUS FULL SPEC PAKS

PAK A 10 RED LEDS our chofce PAK B 4741 OP AMP
 $\begin{array}{llllllll}\text { PAK } & E & 10 & \text { BC182 } & \text { \&1.F } & 11 & 2 N 3704 & \text { \& } 1 \\ \text { PAK } & G & 8 & \text { BFY } 1 & \text { I }\end{array}$ $\begin{array}{lllllll}\text { PAK } & G & 8 & \text { BFY51 } & \text { £1.H } & 9 & \text { 2N3819e£1 } \\ \text { PAK } & J & 9 & 2 N 3053 & \varepsilon 1, K & 40 & \text { 1N914 }\end{array}$

BZY88 400 mW ZENER DIODES 9p BRIDGE RECT $1 \mathrm{~A} 50 \mathrm{~V} \quad 20 \mathrm{p}$
BR100 DIAC $25 p$
$1 \mathrm{~A} / 50 \mathrm{~V}$ SCR 6D TAG1/400 55p C106 \& 7 SCR D $4 \mathrm{~A} / 400 \mathrm{~V}$ SC146D TRI

vero

COPPER CLAD VEROBOARD $0.1^{\text {¹ }}$
 3\}"x5" 31p 3\}x $17^{\prime 1}$ \&1.50
DIL IC's BOARDS 6x4 ${ }^{\frac{1}{2} 11} £ 1.50$ 24 way edge connector 60 p .
36 way 90 . PLAIN $37^{\prime \prime} \times 17^{\prime \prime}$

- Ar•

PRINTED CIRCUIT BOARD KIT $£ 1.69$ DECON NO MESS ETCH PAK NEW 69p decon desolder braid reel 59p HEATSINKS
5F/T05 \& $18 \mathrm{~F} / \mathrm{TO} 18 \mathrm{5p}$ ea,TV4 15 p TV3/T03 16p. EXTRUDED 4" 4Y1 29p TGS308 GAS DETECTOR $£ 1.80$ ea. LOGIC PROBE TTL TESTER PEN \& 5 CAPACITORS
CERAMIC 22pi to 0,1uf 50 v 5 p ELECTROLYTIC: $10 / 50 / 100$ uf in $10 \mathrm{v} 5 \mathrm{p} .25 \mathrm{v} 6 \mathrm{p} .50 \mathrm{v} 8 \mathrm{p} .2 \mathrm{ff} / 10 \mathrm{v} 5 \mathrm{p}$ 1000 uf/25v 18p. $200 / 50025 \mathrm{v} \quad 9 \mathrm{p}$ POTENTIOMETERS (POTS) AB or EGIN LIN or LOG ROTARY 13p. SWITCH 14 p DUAL 45p. SLIDERS 29p. STEREO 57p KNOBS 7p.PRESETS 6PRESISTORS 1i SWITCHES: SPST 18p. DPDT 25p.
Din plugs all 12p. Sockets 10 p. ALI CASES AB5/AB7-50p, AB13 65p TAANSFORMERS 1 A 6 v 6 v or $\times 2 \mathrm{v} 12 \mathrm{v}$

OHL sachets

SOLDERCON STRIPS:

INTRODUCING THE CUB 'COMBI' BLOWTORCH up to $2.500^{\circ} \mathrm{F}$
Vest pocket size. yet will braze. jewellery items. etc. soft solder strip paint. putty. bum-off oiled spark plugs, etc. Burns up to 1 hron tiny gas' cylinder 'Cub' complete with 2 cyis., instruction book \& soft-soldertoit. £4.25 $\begin{aligned} & \text { inct. VAT. P. \& P. Spare cyls. } \\ & \text { Ber 2. incl. P. \& P. }\end{aligned}$

MAIL ORDER PROTECTION SCHEME

The Publishers of Practical Electronics are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund moneys sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund moneys owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.

In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Electronics within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence

For the purpose of this scheme, mail order advertising is defined as:

Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered." Classified and catalogue mail order advertising are excluded

'CRAFTSMAN'S' TORCHES

up to $6,000^{\circ} \mathrm{F}$

MICROFLAME (UK) LIMITED
'Freepost', Rickinghall. Diss, Norfolk, IP22 1BR. Tel. Botesdale (037-989) 555

WirelessWorld DOLBY NOSE RIDUCER

> CONSTRUCTION KIT AVAILABLE ONLY FROM WIRELESS WORLD

Complete kits for the Wireless World Dolby B noise reducer are available through the address given below. The two-channel design features
*a weighted noise reduction of 9dB *switching for both encoding (low-levelh.f. compression) and decoding
*a switchable f.m. stereo multiplex and bias filter *provision for decoding Dolby f.m. radio transmissions (as in USA) *no equipment needed for alignment
*suitability for both open-reel and cassette tape machines *check tape switch for encoded monitoring in three-head machines The kit includes:
-complete set of components for a stereo processor -regulated power supply components
-board-mounted DIN sockets and push-button switches
-fibreglass board designed for minimum wiring
-solid mahogany cabinet, chassis, two meters, front panel, knobs, mounting screws and nuts

Price is $£ 43$ inclusive.
A single-channel printed-circuit board, with f.e.t. costs $£ 2.50$ and $£ 8.63$ with all components inclusive (excluding edge connector, f 1.37 extra). - Selected field-effect transistors cost 68p each inclusive. $£ 1.20$ for two and E 2.20 for four.
Calibration tapes are available, costing $£ 1.94$ inclusive for $9.5 \mathrm{~cm} / \mathrm{s}$ open-reel use and for cassette (specify which).
Send cash with order, making cheques payable to :
IPC Business Press Ltd, to: Wireless World Noise Reducer.
General Sales Department, Room 11. Dorset House, Stamford Street, London SE1 9LU. Allow three weeks for delivery.

DOLBY KIT ORDER FORM

Please supply me with the complete Wireless World kit for a Dolby noise reducer.
I enclose remittance value $£ 43.00$ inclusive.
Name
Address

Additional items required

I enclose remittance value $£$

WirelessWorld

"I MADE IT MYSELF"
Imagine the thrill you'll feel! Imagine how impressed people will be when they're hearing a programme on a modern radio you made yourself.

> Now! Learn the secrets of radio and electronics by building your own modern transistor radio!

Practical lessons teach you sooner than you would dream possible.

What a wonderful way to learn-and pave the way to a new, better-paid career! No dreary ploughing through page after page of dull facts and figures. With this fascinating Technatron Course. you learn by building!

You build a modern Transistor Radio . . . Burglar Alarm. You iearn Radio and Electronics by doing actual projects you enjoy-making things with projects you enjoy-making things with your own hands that you'll be proud to
own! No wonder it's so fast and easy to own! No wonder it's so fast and easy to
learn this way. Because learning becomes hobby! And what a profitable hobby. Because opportunities in the field of Radio and Electronics are growing faster than they can find people to fill the jobs?

No soldering-yet you learn faster than you ever dreamed possible.

Yes! Faster than you can imagine you pick up the technical know how you need. Specially prepared step-by-step fessons show you how to: read circuit -assemble components-build thinga -experiment. You enjoy every minute of it !
You get everything you need. Tools Components. Even a versatile Multimeter that we teach you how to use. Al included in the course. AT NO EXTRA CHARGE! And this is a course anyone can afford. (You can even pay for it by eaty instalments.)

thle perionalised course will teach you even If you don't know thing todey!

No matter how little you know now, no matter what your background or education, we'll teach you. Step by step, in simple easy-to-understand language. you pick up the secrets of radio and electronics.

You become a man who makes things, not just another of the millions, who don't understand. And you could pave the way to areat new career, to add to the thrill and pride you receive when you look at what you have achieved. Within weeks you could hold in your hand your own transiator radio. And after the course you can 80 on to acquire highpowered technical qualifications, because our famous courses so right up to City $\&$ Guilds ievels.

Send now for FREE
76 page book-se how
esey It ls-read what others eay!

Find out more now! This is the gateway to a thrilling new career, or a wonderful hobby you'll eajoy for years. Send the coupon now. There's no obligation

HOME OF BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

$240 \mathrm{v}-50 \mathrm{~Hz}$ from your 12 v car battery. 25 watt- $84 \cdot 20 \quad 150$ watt- 519.10 40 watt- 27.35 75 watt- 810.71 300 watt (12 v)- $\mathbf{\Sigma 2 9 . 8 5}$ All above inventors are in kit form but may All above inventors are in kit form but may
be purchased built up in metal case \& ready be purchased bit up in metal case \& ready Prices include post \& packing.
P.W. AUTOMATIC EMERGENCY SUPPLY
$240 \mathrm{v}-50 \mathrm{~Hz}-150$ watt inverter with built in battery charger. In event of power failure switches over automatically from battery charging to inverter operation. Cat. as appeared in Dec. 72 P.W. Complete kit of parts (excluding meter) $£ 22 \cdot 50+\Sigma 1 \cdot 10$ p. \& p. FLUORESCENT LIGHT INVERTER KIT 8 watt-12v-Fluorescent light, suitable for tents, caravans, houses, boats \& secondary lents, caravans. houses, boats est
$12^{\prime \prime}-8$ watt- $\mathrm{E} \cdot 9 \cdot 90+25$ pp. \& p. Built up$54+25$ p.
21 "-13 watt- $£ 3 \cdot 30+30$ p p. \& p. Built up$84.50+30 \mathrm{p}$.

TRANSFORMERS COILS
Both high volume \& small order capacity available.
Special offer. Miniature mains transformer 12-0-12v-6V.A.-85p plus 10p p. \& p.
TRADE \& EXPORT ENQUIRIES WELCOMED

P.E. ORION STEREO AMPLIFIER

$20+20$ Watts r.m.s. into 8 ohm load. Distorion less than $0.01 \% 100 \mathrm{~Hz}-10 \mathrm{kHz}$. Frequency response $\pm 1 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 kHz . Hum level virtually nil with vol. full on.

This is a power amplifier of superb quality incorporating the very latest design features. Professional hi-fi enthusiasts have classed it as fantastic and real value for money. The CCT incorporates a low flux transformer and inputs for disc. tape, tuner, etc.

Complete kit of parts including slim line bookend case, silk screened front panel \& knobs. £43 incl. VAT \& $p . \& p$.

The bookend case, I.C.s \& semiconductors, P.C. board, Transformer, etc. may be purchased separlately if desired. Send S.A.E. for further information

ASTR IGNITION SYSTEM Complete kit of parts for this proven and tested system $£ 9.50$ incl. VAT. Ready built with only two connections to alter $£ 12.50$ incl. VAT. Thousands have used this system both home and abroad. Consider these advantages more power, faster acceleration, fuel economy, excellent cold starting, smoother running, no contact breaker burning. Also because of the high energy spark, the fuel mixture can be made weaker giving further economy and fewer plug problems. Fitting time when built 5 minutes approx. Please state whether positive or negative earth. Trade and export enquiries wetconed.

ASTR ELECTRONICS
Spring Bank Road, West Park Chesterfield.

PRINCIPLES OF TRANSISTOR CIRCUITS

by S. W. Amos

Price $\mathbf{£ 3} \mathbf{~} \mathbf{4 5}$

ILO OPERATIONAL AMPLIFIER STRUCTOR by R. M. Marston Price $£ 2.00$ ELECTRONICS SELF.TAUGHT WITH EXPERIMENTS AND PROJECTS Price $\mathbf{1 2} \cdot 10$ TRANSISTOR POCKET BOOK by R. G.
Hibberd RADIO AND LINE TRANSMISSION by D. C. Green Price $\mathbf{4 4} \mathbf{2 5}$ ELECTRONICS AN ELEMENTARY INTRO. FOR BEGINNERS by L. W. ELEMENTARY TELECOMMUNICATION PRACTICE by J. R. G. Smith SCR MANUAL INCLUDING TRIACS AND OTHER THYRISTORS Fth edition by G.E. Price $£ 1.90$ SOLID STATE HOBBY CIRCUITS by INTEGRATED ELECTRONICS by Millman TEST EQUIPMENT FOR THE RADIO AMATEUR by H.L. Gibson Price $£ 2.05$ WORKING WITH THE OSCILLOSCOPE by A.C.W. Saunders Price $£ 1.70$
\star prices include postage *

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books 19-2I PRAED STREET LONDON W2 IN

Phone Of -723 4185
Closed Saturday I p.m.

FULLY GUARANTEED
Mail order only VAT extra p\&p 20p
Bridge Electronics
PO Box No. 10 Fishponds Bristol BS 16 LX

SPECIAL OFFER

FREE-741 Operational Amplifier I.C. with every copy of R. M. Marston's book "110 Operational Amplifier Projects for the Home Constructor' ${ }^{\text {, }}$ price $\mathbf{1 1} \mathbf{8 0}$. Includes circuits for musical instruments, fire alarm, burglar alarm, touchactivated switch and many other exciting projects.

ZN414 £1-10
Ferranti Application Booklet for ZN414, 25p
ZN1034E New Ferranti Precision Timer I.C. E2.90
Ferranti Data Sheets for ZN1034E 10p 741 Operational Amplifier I.C. 33p

RADNAGE RADIO \& ELECTRONICS

2 Bottom Road, Radnage, High Wycombe, Bucks.
Prices inclusive. Add 15p Post and Packing UK. 60p Exports. Mail order only

DECADE 4 resistance substitution box-a must for all engineers, students and experimenters. Full details on request. Trade enquiries welcome. $£ 38$ plus 8% VAT.
5 W Chassis Stereo amp. ($2.5 \mathrm{~W} / \mathrm{CH}$) 12 V d.c output $2.5 \mathrm{~W} / \mathrm{CH}$ into 8 ohm. Input iape head 3 mV or suitable Input ape head with external com-
100 mV mic/PU. With ponenis. Slider controls. \& plus 25% VAT
8 track car stereo players 12 V neg. earth. £14 plus 25% VAT

nc. VAT
12 V d.c. Solenoids short duration. 55p inc. VAT. High Power Slrobe Light-ideal Disco/Group use $£ 42$ plus 8% VAT

SCOTT ELECTRONICS

Estcourt House, Estcourt Road, Gt. Yarmouth, Norfolk
C.O.D. under $£ 30$

Practical Electronics Classified Advertisements

RATES: 13p per word (minimum 12 words). Box No. 35p extra. Semi-Display $£ 10.00$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD. Elootway House, Farringdon Street, London EC4A 4AD. Tel. 01-634 4451

RECEIVER8 AND COMPONENT8

TTL AT LOW PRICES! (Fast delivery. All prices include VAT)					
7400	0.14	0.13.	7473	0.33	0.31
7401	0.14	0.13	7474	0.33	0.31
7402	0.14	0.13	7475	0.45	0.44
7403	0.14	0.13	7476	0.34	0.31
7404	0.16	0.15	7480	0.47	0.42
7405	0.16	0.15	7483	0.89	0.80
7408	0.16	0.15	7486	0.30	0.26
7410	0.14	0.13	7489	2.99	2.80
7413	0.32	0.31	7490	0.46	0.44
7417	0.30	0.29	7491	0.74	0.69
7420	0.14	$0 \cdot 13$	7492	0.48	0.45
7427	0.27	0.25	7493	0.46	0.44
7430	0.14	0.13	7495	0.61	0.58
7432	0.27	0.25	7496	0.77	0.69
7437	0.29	0.26	74107	0.34	0.31
7440	0.14	0.13	74121	0.34	0.31
7442	0.69	0.63	74123	0.65	0.61
7445	0.89	0.82	74141	0.71	0.69
7447	0.81	0.79	74145	0.86	0.78
7450	0.14	0.13	74151	0.91	0.88
7451	0.14	0.13	74153	0.76	0.72
7453	0.14	0.13	74154	1.60	1.55
7454	0.14	0.13	74157	0.87	0.79
7460	0.14	0.13	74174	0.99	0.90
7412	0.16	0.15	74175	0.99	0.90
7472	0.28	0.25	74181	2.09	1.95
TTL may be mixed for quancity prices. INTEL 2102 IK static random access memories \&4.50 each. All devices full spec. by famoun maniufacturers, 5.A.E, for full lists. All goods sent by list class post. 10 p P. \& P. on orders below 62 otherwise post free.					
J. C. JONES E9) 46 BURSTELLARS, UNTINGDON, PEI7 $4 \times X$ (Mail Order only)					

BRAND NEW COMPONENTB BY RETURN, Electrolytice $16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}, 0.47,1 \cdot 0,2 \cdot 2,4.7$, $10 \mathrm{mfds}, 5 \mathrm{pi} 22,47,5 \frac{1 \mathrm{p}}{}(50 \mathrm{~V}, 6 \mathrm{p}$); 100 , 7 p (50 V ', $8 \mathrm{p})$; $220,8 \mathrm{p}(50 \mathrm{~V}, 10 \mathrm{p}) ; 500,11 \mathrm{p}(50 \mathrm{~V}, 16 \mathrm{p})$; $1000 / 25 \mathrm{~V}, 18 \mathrm{p}$. Subminiature bead-type tantalums. $0.1 / 35 \mathrm{~V}, 0.22 / 35 \mathrm{~V}, 0.47 / 35 \mathrm{~V}, 1.0 / 35 \mathrm{~V}$, $2 \cdot 2 / 35 \mathrm{~V}, 4 \cdot 7 / 35 \mathrm{~V}, 10 / 20 \mathrm{~V}, 22 / 16 \mathrm{~V}, 47 / 6 \mathrm{~V}$, $100 / 3 \mathrm{~V},{ }^{11 p}$. Mylar Film 100V, $0.001,0.002$, $0.005,0.01,0.02,3 \mathrm{p} ; 0.04,0.05,31 \mathrm{p}$. Mullard tubular polyester 400 V E6 series, $0.001-0.022$ $3 \frac{1 p i}{} 0.033-0 \cdot 1,4 \frac{1}{2} \mathrm{p}$. Mullard polyester 160 V tubular or 250 V miniature for vertical mounting E6 series, $0.01-0.047,3 \frac{1}{2} \mathrm{P} ; 0.068,0.1,4 \frac{1}{2}$;

 Mullard miniature C333 ceramics 63V E12 series $2 \% \quad 1.8 \mathrm{pF}-47 \mathrm{pF}, 3 \mathrm{pi} \quad 56 \mathrm{pF}-330 \mathrm{pF}$, ${ }^{31 \mathrm{P}}$. Plate ceramics 50 V E6 series 470 pF .$47,000 \mathrm{pF}$, 2 p . Polystyrene 63V. E12 series $10 \mathrm{pF}-1,000 \mathrm{pF}, 3 \mathrm{p}$; $1,200 \mathrm{pF}-10,000 \mathrm{pF}$, 4 p . Miniature highstab carbon film resistors it E12 serles 5% (10% over $1 \mathrm{M} \Omega$) $1 \Omega-10 \mathrm{Mn}$, 1.2pi 1N4002, 6p; 1N4006, 8p; 1N4148, 4p. Postage 10p. Prices VAT inclusive. THE O.R. SUPPLY CO., 127 Chesterfleld Road, Sheffield, S8 ORN.

40	metmisco

AERIALS £.3. $80+25 \%$ VAT $+50 \mathrm{P} . \& \mathrm{P}$
c2. $00+25 \%$ VAT
 $11.75+25 \%$ VAT
New design. superior quality. including mounting brackel and full instructions.

$\begin{aligned} & \mathrm{ACl}^{\mathrm{AC} 127} \\ & \mathrm{AC} 107 \\ & \mathrm{BC} 108 \end{aligned}$	$\begin{aligned} & 15 p \\ & 15 p \\ & 11 p \end{aligned}$	$\begin{aligned} & \text { Zener blodes } \\ & 400 \mathrm{mw} \text { 11p } \\ & \text { iw } \end{aligned}$	THLIC.		
			7400 15p		
		1N4001 6p	7403	15p	
BC113	12p	1N4004 0p	7404	200	
BC147	$11 p$	1 N 4007 Pp	7405	200	
BC148	11p	1N4148 Sp	7410	150	
BC149 12p OPIn Oll			7413	${ }_{38} 17$	
BF194 12p		- PIn Oll 741 op amp 35p 301 op amp sop		rep	
		7448	\%p		
BFY50 1\%p			301 op amp sop 555 Timer	7474	36
BFY51	10p		7490 7429	$3{ }^{49}$	
2 N 2908	${ }^{251}$		7416074192		
2 N 2928 $\mathbf{2 N 3 0 1 9}$	11p	9ktel 19p		140%	
$2 N 3819$ 2N 3055	300				
All S	rates C.	prices incłude \& P. 10p per MAIL ORDER	at appr er $\mathbb{2}$ Ly	ate	

R.T. SERVICES
 (MAIL ORDER ONLY)

77 Hayfield Rd., Salford 6, Lancs.
Tapped Auto Transformer, 240 V -IIOV 80 watts, 62 P.P. New.
Tapped Auto Transformer, 240V-115V, 200 watts, $44 \cdot 50$ P.P. New.
100 Watt Valve Output Transformer. KT88s, etc. 8 or 15Ω or 100 volt line output, EI3•60 P.P.
FM Tuner with R.F. Stage and A.G.C. 3 transistors, neg. earth, $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with circuit, £1-54 P.P
Crouzet Geared Motors, 30 r.p.m. New. El-75 P.P.
UHFTVTuners. Transistorised, E2•10 P.P. Panals with I.C's on $8 \frac{1}{2}$ p per I.C. min. order 101. C's.
Trantformers. $7 \cdot 5 \mathrm{~V}+7 \cdot 5 \mathrm{~V}, \frac{1}{2}, \$ I \cdot 12$ inc. P.P. $12-0-12 \mathrm{~V}, 100 \mathrm{~mA}, \mathrm{£}[-25$ inc. P.P. $9-0-9 \mathrm{~V}$ 100 mA , $£ 1 \cdot 25$ in c. P.P. $29 \mathrm{~V} 50 \mathrm{~mA}, 95$ p inc. P.P. $100 \mathrm{~mA}, ~$
$6-0-6 \mathrm{~V}, 100 \mathrm{~mA}$, E 1.25 inc. P.P.
$6-0-6 V$, $100 \mathrm{~mA}, 2125$ inc. P.P.
Transformer. 24 volt, approx. I amp + 6.3 V CT approx, 500 mA , $\mathbb{E 1} \cdot 60$ inc. P.P. Transformer. 20 volt, 1 amp, EI-40 P.P. Transformer. 45 volt, 2 amp, E3-38 P.P. P.C. Board. $S / S, 5 \frac{1}{2} \times 5 \frac{1}{2}$ in, 10 for $£ 1 \cdot 10$ P.P. Transistorised Timer. Variable delay. 110 or 250 V A.C. input. With instructions.
Brand new, $\mathbf{2} \cdot 25^{\prime}$ inc. P. P. Size $3^{\prime \prime} \times \mathbf{2}^{\prime \prime} \times \mathbf{2}^{n}$. Power Unit Components Transformer. 18 volt I amp F/W bridge rectifier, 21250 mfd capacitors, all new $\{1 \cdot 60$ per kit. P.P.
Electrolytic Capacitors, $4,000 \mathrm{MF}, 50 \mathrm{VW}$. Electrolytic Capacito
$4 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime} 90 p$. inc. P.P.
Mixed Pack of C280 series Mullard capacitors. 100 for $\$ 1 \cdot 30$ inc. P.P.

PRECISIONPOLYCARBONATECAPACITORS

\section*{ALL HIGH 8TABILITY-EXTRRMELY LOW LEAEAGE} $0.1 \mu \mathrm{~F}(27 \times 12.7) \quad 61 \mathrm{p}$ Value | $0.22 \mu \mathrm{~F}$ | (33×16) | $64 p$ | $(\mu \mathrm{~F})$ |
| :--- | :--- | :--- | :--- |
| $0.25 \mu \mathrm{~F}$ | (83×16) | $\mathbf{6 7 p}$ | $0.47 \mu \mathrm{~F}$ |
| 1% | $\pm 2 \%$ | $\pm 5 \%$ | |
| 60% | | | | $\begin{array}{lll}0.47 \mu \mathrm{~F} & (33 \times 19) & 80 \mathrm{p} \\ 0.2 \mu \mathrm{~F} \\ 0.5 \mu \mathrm{~F}\end{array}$ $0.5 \mu \mathrm{~F}(33 \times 19) \quad 87 \mathrm{p}$ $0.68 \mu \mathrm{~F}(50.8 \times 19) 98 \mathrm{p} \quad 6.8 \mu \mathrm{~F}$ $1.0 \mu \mathrm{~F}(50.8 \times 19) 51.08,10 \mu \mathrm{~F}$ $2.0 \mu \mathrm{~F}(50.8 \times 25.4) \mid{ }_{81.44}^{15 \mu \mathrm{~F}} \underset{2 \mu \mathrm{~F}}{2 \mu}$

${ }^{67 p}$	608	481
96p	780	61p
81.62	81.18	94
11.96	11.88	81.18
\$2-40	21.95	81.84
88.88	88.78	42-84
44.28	蟹68	88.08

TANTALUM BEAD CAPACHORS-Values avallable: $0 \cdot 1,0.22,0.47,1 \cdot 0,2 \cdot 2,4 \cdot 7,6 \cdot 8 \mu \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or 35 V ; $10.0 \mu \mathrm{~F}$ at $16 \mathrm{~V} / 20 \mathrm{~V}$ or $25 \mathrm{~V} ; 22.0 \mu \mathrm{~F}$ at $6 \mathrm{~V} / 10 \mathrm{~V}$ or 16 V ; $33-0 \mu \mathrm{~F}$ at 6 V or $10 \mathrm{~V} ; 47 \cdot 0 \mu \mathrm{~F}$ at 3 V or $6 \mathrm{~V} ; 100 \cdot 0 \mu \mathrm{~F}$ at 3 V . ALL at 10 p each. 10 for 95 p . 50 for 4. ALL at 10p each. 10 for $96 \mathrm{p}, 60$ for E4.

 \begin{tabular}{lr|ll|ll}
BO107/8/9 \& 0p \& BC184/184L \& 12_{p} \& BFY51 \& $20 p$

BC114 \& 189 \& BC212/212L \& $14 p$ \& BFY52 \& $80 p$

BC147/8/9 \& $10 p$ \& BC647/558A \& $12 p$ \& AF178 \& $80 p$

BC147/8/9 \& 10p \& BC647/558A \& 12p \& AF178 \& $80 p$

BC153/7/8 \& 129 \& BF194 \& 12p \& OC71 \& 12p
\end{tabular} BC182/182L 11p |BF197, 18p ${ }^{2 N} 3055 \quad 80 \mathrm{p}$ POPULAR DIODRG-1N914 6p, 8 for $45 p$, 18 for $90 p$;

IN916 8p, 6 for 46 p .14 for $90 p$; $18445 \mathrm{p}, 11$ for $60 \mathrm{p}, 24$ for IN9168p, 6 for $46 p .14$ for $90 p$; $1844 \mathrm{6p}, 11$ for $60 \mathrm{p}, 24$ for E1; $1 N 4148$ Sp, 6 for 87p, 12 for 48p; IN4001 $51 p ;$ IN 4002 IN $1 N 4007$ 81p; IN4004 7p; IN4006 7hp; IN 4006 8p; IN $40078{ }^{81}$
5 mA . Valueas Railable: $3 \mathrm{~V}, 3.3 \mathrm{~V},-400 \mathrm{~mW}, \mathrm{Tol}, \pm 5 \%$ at $6.2 \mathrm{~V}, 6-8 \mathrm{~V}, 7.5 \mathrm{~V}, 8.2 \mathrm{~V}, 9.1 \mathrm{~V}, 10 \mathrm{~V}, 11 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}$ $13.5 \mathrm{~V}, 16 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}, 33 \mathrm{~V}$. ALL at 7p each, 5 for $88 p$, 10 for 60 p. 8 PECLAL OFFER: 100 Zeners (may be mixed) for 86.00 .
RESISTOR8-High ntability, 10 w noise carbon film 5% 1 W at $40^{\circ} \mathrm{C}$, 1 W at $70^{\circ} \mathrm{C}$. E12 serles only-from 2.2Ω to 2.2Mn. ALL at 1 p each, 8 p for 10 of any one value, 70p for 10.1 any one value. BLLICON PLASTIC EECTIFIER wire ended D027: 100 P.I.V. 7 p (4 for 26 p); 400 P.I.V. 8 p (4 for 80p).
BRIDGE RECTIFIERS-2才 amp ; 200 V 40p; 350 V 45 p ; 600 V 56 p
SUBMIMLATURE VERTICAL PRESETS-0.1W only: ALL at 8 geach; $50 \Omega, 100 \Omega, 220 \Omega, 470 \Omega, 680 \Omega, 1 \mathrm{kO}$, $2.2 \mathrm{k} 0,4.7 \mathrm{kQ}, 668 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 47 \mathrm{k} \Omega$, 100 k . 250 B . 15 B .
PRDERS BELOW E5 ALL EXPORT ORDE ON ALL COBT OF SEA COL PLEASE ADD 25\%
Send S.A.E. for lists of additional ex-stock items.
Wholesale price lista available to bona fide companiea

MARCOTRADINC

Dept. E.10, The Old 8chool, Edrtaston,
Tel.: Whixall 464/465 (BTD 094872)
(Propra.: Minlcont Trading Led.)

ELECTROLYTIO8 $6 \cdot 3,10,16 \mathrm{~V} 10,25,33,50$, $100 \mathrm{mF} 25,50.63 \mathrm{~V}$ 1, $2 \cdot 2,4 \cdot 7,6 \cdot 8,10,25,33$,
 1W 0.7p, 1W 1p (prices are in fraetiens of 1p). Send 10p for our catalogue for additional items and discounts. P. \& P. 15p + VAT 25%. C. W. ELECTRONICS 10, Kingsley Path, Britwell Est., Slough, Berks. (All components

VALYES, RADIO, TV, TRANSMITTING, INDU8TRIAL. 1930 to 1975. 2,200 types in stock, many obsolete. List 20p. Quotation S.A.E. Postal export service. We wish to purchase new and boxed valves. Dealers, wholesalers, etc., stocks purchased. COX RADIO (SUSSEX) LTD., The Parade, East Wittering, Sussex. Tel, West Wittering 2023.

Bank of 20 Neons 74p (11p). 5 Figure Rosettabil Counter $18 / 22 \mathrm{~V}$ works on 12, $\mathbf{1 2 . 5 0 (3 0 \mathrm { p }) \text { . Box }}$ With $20 \times$ LA 2 Pot Cores $+20 \times 1 \%$ Caps, $6-65 p, 12 \times 12 \mathrm{in}, 65 \mathrm{p}, 16 \times 9 \frac{1}{2} \mathrm{in} .65 \mathrm{p}, 8 \times 9 \frac{1}{8} \times \mathrm{in}$. 3-fl. Fibre Glass Ditto, $12 \frac{1}{2} 7 \mathrm{in}, 80 \mathrm{p}, 18 \times \frac{2}{4} \mathrm{in}$. 75p, $11 \frac{1}{2} \times 13+$ in. $C 1.50$, all C.P. 74 Series I.C.
 7Ib ASSORTED COMPONENTS E2.20 C.P.

J.W.B. RADIO

2 Barnfiold Crascent, Sale, Cheshire, M33 iNL
Postage in brackets

Mail order only

OLEARINE DISTRIBUTOR STOCK8, tranalstors, diodes, components, etc. Sample pack $85 p$ incl. postage or send stamp for list. RedHaw S SALES LTD., 10 Maple Lodge Clone, Rlckmangworth, Herts. Mail order only.
BARGAIS RELPAE TEGTED SEMCOMDDCTORS
R1. IONPN, S1L, $7092-75 \mathrm{P}$ IN $4001-6 \mathrm{P}$
IN 4006-I3p R2. IOPNP, SIL, T092-75p
IN4002-7p IN4148-6p R3. 10 NPN,
SIL, TOI8-75p, Zeners-2 to $33 \mathrm{P}^{\prime} \mathrm{s}$ - 9 p
R4. 10 PNP , SIL, TO18-75p Philips Pots:
Lin: IK to 2M2-16p. Lists 25p.
Export enquiries welcomed. Deduct 8% VAT. Mail
Order only. Satisfaction guaranteed or money back REITRAN LIMITED
(Dept. P.E.), P.O. Box 18, Camberloy
TURN YOUR SURPLU8 capacltors, tranistors, ote. Into cash. Contact COLES-HARDING ote., CO., P.O. Box 5 , Frome, Bomerset. Immediate cash settlement.

8ITUATIONS VACANT

MEN: reve
 can be yours

Abstract

Tens of thousands of new computer personnel needed over the next few years alone. With our revolutionary, direct-from-America, course, you train as a Computer Operator in only 4 weeks! It can pay around $\mathbf{2 3 5}$ p.w. as a starter and can reach over $£ 90$ p.w. After training, our exclusive appointments bureau - one of the world's leaders of its kind - introduces you FREE to world-wide opportunities. Write or 'phone TODAY, without obligation. London Computer Operators Training Centre Y40, Oxford Hse. 9-15 Oxford St., W.1.Tel. 01-734 2874

COURSES

THE POLYTECHNIC

OF NORTH LONDON
Department of Electronic and
Communications Engineering
Interested in Electronics and Communications?

* Join our B.Sc. Degree course in Electronic and Communications Engineering.
** Become a member of a Professional Institution and a Chartered Engineer.
** Entry requirements: 2 'A' levels (Mathematics and normally Physics). **** Any recognised equivalent (ONC, OND, etc).
**** Write to the Dept. of Electronic and Communications Engineering, Polytechnic of North London, Holloway, Lendon $\mathrm{N} 7 \mathrm{8DB}$ (or phone $01-607$ 6767)

AGENTS

HANUFACTURER8/WHOLE8ALER8Australian importer requires information on availability-prices-weights Electronic Parts/ Assemblies. Air Mail Reply-GSCE, 18 Marie Assemblies. Air Mail Reply-GSCE, 18 Marie
Street, Murarrie, Q412
Australia. Telex AA41532/Code P.Y. (GSCE).

PROFESSIONAL SERVICES

PATENT8 AND TRADE MARK8. KINGS PATENT AGENCY LIMITED (Est. 1886) B. T. King, Director, M.I.Mech.E., Registered Patent Agent, 146a Queen Victoria Street, London, EC4V 5AT. Booklet on request. Tel. 01-248 6161. Telex 883805.

FOR 8ALE

PRACTICAL ELECTRONICS Vol. 1-9. What offers. SPENCER, Garden Cottage, Warren House, Warren Road, Kingston upon Thames.

LIQUID CRYSTAL DISPLAYS Norstron 7-segment dynamic scattering LCD'

* Ready mounted with attractive bezel

Ready mounted with attractive bezel
Run from 15VDC, CMOS compatible

- Single digit displays can be mounted side-bside
- Supplied with mounting socket pins

Supplied complete with data sheets and application notes

Prices:
Single digit ($0-9$ and Decimal Point). . © 1.80 eath 3-digit (000-999 and Decimal Points). . $84 \cdot 90$ ea h h 31-digit (0000-1 999 with O verflow.
\pm signs and Decimal Points). . $86 \cdot 00$ eadh
P. \& P. per order 25 p, offer at these prices limitod to present stocks; please add 25% VAT to all ordels

Data sheets only... 10p
From:
NIMROD ELECTRONICS LTD. 85 High Street, Billingshurst, W. Sussex RHI49日X
(Mail Order anly)
WHHERRD TECHNICAL HANDBOOK8-fifteen volumes and six supplements giving specifcations on Capacitors, Semiconductors, I.C. Tubes and Resistors. 212 including postage. FRANK MORTON, 24 The Chestnuts, 70 Cleanthus Road, London, S.E. 18 .

WANTED

TOP PRICES PAID

 NEW VALVES AND TRANSISTORS Popular T.V. and Radio typesKENSINGTON SUPPLIES (B)
367 Kensington Street Bradford 8, Yorks.

8ERVICE SHEETS

8ERVICE SHEETS, radio, TV, etc. 10,000 models. Catalogue $24 p$ plus S.A.E. with models. Catalogue TELPA plus 154 Brook Street, orders-enquiries.
Preston, PR1
H.

SERVICE SHEETS for radio, TV, tape recorders, stereo, etc., with free fault-finding guide, 50 p and S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

LADDER8

LADDER8, timber and aluminium. Tel. Telford 586644 for brochure.

MI8CELLANEOU8

CLEARINE LABORATORY, scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep turntabler, tapeheads, stabilised P.S. Ing 236.
ALUMINIUM PROSECT BOXES, lids and screws included

Prices include VAT (at 8%) but 18 p should be added to the total order value for postage \& packing.
8 WATT I2V FLUORESCENTI LIGHT KIT Complete Kit including all components, heatsink, channel, zube, etc. Onl' E3.49 inc. VAT p. \& p . extra inc. VAT $p_{\text {. }} \& P_{\text {P }}$
Send cheque or P. O. 's with your order direct to:
ELECTRONICS DESIGN ASSOCIATES
Dept. PE, 82 Bath Street, Walsall, WSI 3DE.

PRINTED CIRCUIT BOARDS, sll prices inclusive of P. \& P. etc. No extras. We offer: inclusive of P. \& P. etc. No extras. We offer: assemble, any $\mathrm{si} \mathrm{\cdot 30}$ e each. Also full spec., ready to assemble PCB's for "P.E" Orion $\$ 1 \cdot 30 \mathrm{p}$, Power-slaves (2 PCB's) $81 \cdot 52$, C.C. TV (2 PCB's) 22.15. "Practical Wlreless" Easy. build organ (2 PCB's) 85.70, teletennis (6 PCB's) $\$ 3 \cdot 68$, sound effects $\& 1 \cdot 10$, tricolour 11-35. Ferret locator 75p, many others avail-\$1-35, Ferret locator 75p, many others available. C.W.O. Send S.A.E. for lists. Production
space available for PCB production, silk-screen printing, timning, plus all art/graphic, photographic and design facilities. We also sell direct art/graphic aids and supplies. Cat. 40 p. Production estimates by return or phone: W.K.F. ELECTRONICS, Welbeck Street, Whitwell, Worksop, Notts., S80 4TW: Tel Whitwell' (Derby's) 695 or 544, STD 090974 Callers seen by appointment only at Station Road.

PGB DIY 8 UPPLIE8. We offer ferric chloride as used in our own plant, 4 lb \$2.50, 1 cWt 823 , 1 ton 8350.1 lb makes 1 gall. good strength. Solld carbide PCB drill bits from $1 \mathrm{~mm} u p$, $82 \cdot 50$. Most supplies for PCB production s2.50. Most supplies for PCB production
available from: W.K.F. ELECTRONICS, svailable from: W.K.F. ELECTRONICS,
Welbeck Street, Whitwell, Worksop, Notts. Tel. Whitwell (Derby's) 695 .

CABINET FITTINGS FOR
 Stage Loudspeakers and Amplifier Cabs

Fretcloths, Coverings, Recess Handles, Strap Handles, Feet, Castors. Locks and Hinges, Corners, Trim. Speaker Bolts, etc., etc. Send' 2×7 Stamps for samples and list. ADAM HALL (P.E. SUPPLIES)
Unit Q, Starline Works, Grainger Road

SUPERB INSTRUMENT CA8E8 'by Bazelli, manufactured from heavy duty PVC faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast choosing the competitive prices start at a low 75 p . range, competitive prices start at a low 75 p .
Examples, Width, Depth, Height, $8^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}$ Examples, Width, Depth, Height, $8^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}$
$21.55 ; 10^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} 42.20 ; 10^{\prime \prime} \times 8^{\prime \prime} \times 3^{\prime \prime}$ $2.75 ; 12^{\prime \prime} \times 10^{\prime \prime} \times 3^{\prime \prime} 83.60 ; 8^{\prime \prime} \times 4^{\prime \prime} \times$
$21.80 ; 10^{\prime \prime} \times 6^{\prime \prime} \times 4^{\prime \prime} 22.70 ; 12^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$
 Plus 8% YAT \& 50 p postage. Over 200 models to choose from. Prompt despatch. Free literature (stamp would be appreciated). BAZELII, Dept. No. 23, St. Wilfrid's, Foundry Lane, Halton, Lancaster La2 6LT.

BUILD YOUR OWN

YOU ARE INVITED TO SEND S.A.E. FOR LISTS ON OUR VERY EXTENSIVE RANGE OF HIGH QUALITY AMPLIFIERS, PRE-AMPS, F.M. TUNERS, INSTRUMENTS, RADIO CON. TROL, IGNITION UNITS AND MANY OTHER KITS. STATE REQUIREMENTS.
TELERADIO ELECTRONICS 325 Fore St., Edmonton, London N9

SCREW8, nuts and washers. Useful quality assortment. 81.50 per packet inclusive. Write: C. BRITTAIN, The Bungalow, Old Titness, Buckhurst Lane, Sunninghill, Ascot, Berks. SL5 7QB.

BUILDING YOUR OWN HI-FI AMPLIFIER?
WHY NOT USE A PROFESSIONAL CASE? We have a limited number of high quality case assemblies valued at over $\mathbf{6} 15.00$ which must be

sold.

LOOK AT THESE FEATURES:

* Ready punched steel chassis
* Screce, teak veneered case
\star Supplied complete with push switches
Overall dimensions $17^{\prime \prime} \times 81^{\prime \prime} \times 3^{\prime \prime}$.
Fantastic value at only 88.95
(inc. VAT and P. \& P.)
Send cheque or P.O. now to
SOUND ELECTRONICS
(NEWCASTLE) LIMITED
48 Haston Grove, ITowasatle upon Tyne, MB6 sMP
Tel. (0632) 650108
DIVIDER8 from Selmer organ, 5 double triodes earh, \$10 for 12 or 81 each (gone solid state). 'Halo' Wahwah 88, 4-channel mixer $\$ 11$, topboost \&7, all as new. JARVIS, Dall, Rannock Station, Perths.

ENAMELLED COPPER MIRE		
S.W.G.	Ifb Reel	tlb Reel
10-14	c2.05	K1.15
15-19	$2 \cdot 15$	$\times 1.20$
20-24	62.20	41.25
25-29	62.25	$\times 1.30$
30-34	42.35	¢1.38
35-40	¢2. 50	41.45

All she above prices are inclusive in U.K.
COPPER SUPPLIES
102 Parriwood Rd., Withington, Manchaster 20 Telephone 061-4458753

HARDWARE. Comprehensive range of screws, nuts, washers, etc. In small quantities, and many useful constructors' items. Sheet aluminium to Individual requirements, punched, drilled, etc. Fascia panels, dials, nameplates In otched aluminium. Printed clrcult boards for this magazine, and other individual requirements, one-off's and small runs. Machlne engraving in metals and plastics, contour milling. Send 2 4tp stamps for catalogue. RAMAR CONSTRUCTOR Warwicks. CV37 ONF.

fibre oplle suppliers

MAme's TAlLs. Build a dscorative display with thie professlonally finished unit, 22 in dimmeter with $7,000+$ MBres. Looke immaculato. Eio.
bundie diu. 1.14 mm . 40p por motre ($\mathbf{\Sigma}$) per 10 m).
Fibmoflex acze 4.2 .28 mm bundis die. 1,780 strand glaea llght conduh, $\mathbf{~} 1 \cdot 50$ per metre ($\mathbf{~} 12$ per 10 m).
CWOFON 1610. 84-atrand platic light condult, bundie die. 1.8 mm , 0.0 .3 .3 mm . I1. 20 per metre (se per 10 m). PLABTIC OPTICAL MONOFIBEE. For multiple Illimination optical coupling, atc.
$F P_{20}(0.5 \mathrm{~mm}$ dia.) FP40 (1mm dla.) $22 \cdot 20$ per 10 m : c 45 per 100 m FP60 (1.5 mm dia.)- ed per 10 m : 830 per 100 m OPTIKIT 103. Contalng 2 m Croton 1810 plua 5 m sech FP20, FP40, FP60 plus potiohing compound. A handy pack to LIENEPETImenter AND MECTORE. Wo stock
and 5 reflectora for ues in proximity detectora, intruder detectors, batch countere, tachometere, ohort range optical communicathone.
OPTIKIT LS. 1 amch of 8 convex lenses, Ez .
OPTIKIT Ahs. 1 each of 5 retro-refiectors, 52.50 ,
CIRCULAR POLARIsERE. Cut that glare. Reduce epecular reflection by up to $20 \times$ - inhance contrat on crte. LED

 (2 mm) Red LED. $20 p(10$ + 17p); MLED500 TO92 Red LED.
 $X C 200-\mathrm{A} 3 \mathrm{~mm}$ Red LED, $20 p(10+17 \mathrm{p})$: $X C 200-\mathrm{Y}$ or -G
Yellow/Green. 300 Photodartington Silicon Detector, galn $\times 2,500$. 500p $(10+42 p)$; MAD 150 Silicon Phototrinnistor-high speed, 4 u g good senaitivity. $\mathbf{r p p}(10+17 p)$.
*NEW ML Eto3. Lateot Motorola LIght Activated SCR. High zensitivity $10 \mathrm{~mW} / \mathrm{cm}^{2}$: high current 400 mA (5 A peak) 60 V . Switch emali motor or reley direct from optical control, up to 24 W power. $\$ 1 \cdot 20(10+\$ 1 \cdot 10)$.
BEOSE-NOT/R ULTMABONIC TRANBOUCER PAIR. SUltPractical Electronice. Moppler Shift Intruder Detector" Practical Electrontios March 1975. TXAR pair EA.
stosezst/n ULTHABONIC TRAMBDUCER PAIA. *NEW NT The SEOSB-4OT/R hat proved to be in extremely popular them in our range and we are width le lose at $\pm 500 \mathrm{~Hz}$, senastivity if better by bode Suitable for burgiar alarm syatome. proximity switches. countera, level metert. antl-collioion devices. 25 kHz TXURx pali tit.
 FIBRE OPTIC SUPPLIERS
(Dept. PE), 2 Loudoun Road Mews London NW8 ODN

DIOITAL OLOOK OHIP, AY-5-1224, with data and circuit diagram, E3-86 plus VAT. "Jumbo" LED digits (16 mm high), Economy type. DL-747, only 82.04 each plus VAT, post free. GREENBANK ELECTRONICS, 94 New Chester Road, Wirral, Merseyside, L62 bAG.

21in 13 watt FLUORESCENT
LIGHTING (by THORN/AEI) LIGHTING (by THORN/AEI) Ideal. caravan. bout emergency lighting.

Guarenteed
L5. 50

List price t 7.02 inc.
8ALOP ELECTMONIG Tel. ssem
LOW COST I.C. MOUNTINE for any size DIL package. 100 pin sockets 50 p. 7 and 8 hole plastic supports 5 p pair. Quantity rates. S.A.E. details and sample. Trial pack 50p. (P. \& P. 10p order). P.K.G. ELECTRONICS, Oak Lodge, Tansley, Derbyshire, DE4 5FE.

THE SCIENTIFIC WIRE CO.

Copper-Nickel Chrome-EurekaManganin Wires. No minimum overings. S.A.E. Brings List.
P.O. BOX 30, LONDON E4 9BW

PE JOANNA" BULKCOMPONENTSLST
 (page 388 May ' 75 issue)

EVERYTHING LISTED FOR JUST £44.61 inc. VAT + OUR USUAL DISCOUNT VOUCHERS or WITHOUT DISCOUNT VOUCHERS (41-1) ine. BY RETURN OF POST
These are all top quality brand new components Capacitors and Resistors by Mullard, Diodes by 1.TT etc. For keyboards etc. see our catalogue'40p. - CT2 Transformer in stock $\mathbf{E 2} .72$ inc. VAT * Maplin Electronic Supplies P.O. Box 3.Rayleigh.Essex

I.C. EXPERIMENTER'S KITS.

Learn about modern electronics with our new contain specially selected IC, techniques. Kits board, L.E.D.'s, instructions and data. Now available at $63 \cdot 50$ each: Kit Two: Flifp-Flops
Kit One: Gates
Kit Three: Shit Registers Kit One: Gates Eit Three: Shift Registers
Experimenter's Pak, I.C.'s of Gates, Flip-Flops,
Inverters, Counters, Holders and data. $\mathbf{6 3} \cdot \mathbf{0 0 .}$
S.A.E. for further detoils to:

69 High Street, Ryton, Coventry CVB 3FJ

HOME SCIENTISTS
Get the key to a fantastic WORLD of
previously UNHEARDOF PROJECTS. The NEW Boffin catalogue lists LOTS of HAGALY UNUSUAL LOW-COS
Here are just a few examples, there are stocks more!
Dazzling MINI.STROBE (pocket size) 63.50 BEOPLER SOUND-CATCHER Mini DREAM LABORATORY
Don't take our word for it though GETA COPY AND SEEI SEND ONLY 2OP and W'll 'GOODIES' JUST AS QUICKLYTTOOI)

BOFFIN PROJECTS

4 Cunlifte Road, Stonaleigh
Ewall, Surray
(Mail Order U.K. only)

FANTASTIC NEW MICROTEST 80

MEASURES ONLY
$90 \times 70 \times 18 \mathrm{~mm}$ ELECTRONIC ZERO Ω

Amazing Value at $£ 11.95$ 8 flelds of measurement and 40 ranges

PRINTED CIRCUIT

 BOARD IS REMOVABLE WITHOUT SOLDERINGVolle d.c. 8 ranges: $100 \mathrm{mV}, 2 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 200 \mathrm{~V}, 1.000 \mathrm{~V}$ $(20 \mathrm{k} \cap / \mathrm{V}) .2 \%$ praciaion on d.e. and a.c.
Volte e.c. 5 rengee: 1.5 V . 10 V .50 V .250 V . $1.000 \mathrm{~V}(4 \mathrm{k} \cap \mathrm{V})$. Amp. d.c. 6 ranges: $50 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 500 \mathrm{~mA}, 5 \mathrm{~A}$ Amp. B.c. 5 ranges: $250 \mathrm{HA}, 2.5 \mathrm{~mA}, 25 \mathrm{~mA}, 250 \mathrm{~mA}, 2.5 \mathrm{~A}$. Ohme 4 ranges: Low \cap. $\cap \times 1, \cap \times 10, \cap \times$ 个 00 (from 110 di \cap until 5 Mn)
\checkmark Output 5 rengea: $1.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1,000 \mathrm{~V}$
Decibele 5 ranges: $+6 \mathrm{~dB},+22 \mathrm{~dB},+38 \mathrm{~dB},+50 \mathrm{~dB}$ +82 dB .
Capachy 4 rengee; $25 \mu \mathrm{~F}, 250 \mu \mathrm{~F}, 2.500 \mu \mathrm{~F}, 25.000 \mu \mathrm{~F}$

SUPERTESTER GOR ICE
20.000 Ohm per Valt senaitivity - Fully screened agoinat extornal magnatic fielde Scals width
mater and amall case dimendions ($128 \times$ Of $\times 32 \mathrm{~mm}$) Accuracy and stability (1% in D.C.. 2% in A.C.) of indicated reading Simplicity Full ranges of readability - 1.000 timas overioad Printed circuit boerd in removable without \quad \& 18.50 other meter. Agk for froe catalogue.
218.50 other metor. Ask for froe catalogue.
convert Microtera and Supertester 680R into following. LIGHTMETER, GAUSS METER. ELECTRONIC VOLTMETER, AMPERCLAMP, TRANSISTOR TESTER. TEMPERATURE PROBE. PHASE SEQUENCE INDICATOR, $\cap \times 100 k$
Multiplier, SIGNAL INJECTOR-Sand for details.
MORE RANGES FOR LESS MONEY!
AC/DC Multimeter type U432
A-DC 0.00-3A-6 Ranges.
A-AC $0 \cdot 3-3 A-5$ Ranges.
V-AC 3-900 V-8 Rangese
Frequency in the range
Frequency in the fange of 45 to
20kHz. Reslatence: 500 ohm to
5 Mohm-5 rangee. Decibel:
to +12 dB Accuracy: $\pm 2.5 \%$ OC
$+4 \% \mathrm{AC}$. Dimenstons: 167×98
\times *3mm.only £9-25
ALPHANUMERIC NIXIE TUBES B7971
The Aphanumeric NIXIE tube has the
ability to diasplay ability to display
sil the letters of the alphabet. numerals 0 thru 9
and and special characte
single
From
pointof the atandability and elactrical characteris-
 ics, the Alphanumeric NIXIE fube provides many unlque benefit including * $170 \mathrm{~V}-21 \mathrm{~mA}$ All d.c. operation \# Uniform,
continuou line charecters of equal height continuoul line charecters of equal height M Memory
with eimple solid state drive circuite \& Rheadebility in high ambient light. 200 tootlamberts brighteses high ambitht light ing long of brightness \ddagger Chapacte haight 2 ifin.
Beses for above 40p each
Price only $99 p$ ach plus 16p P./P.

JUST ARRIVED!!

NUMERIC INDICATOR TUBES

mal pointa. Supply voltage zoov dic. Current 14 mA

 Pulse duration $100 \mu \mathrm{z}$. Character height 0.51 , overaliaize 1.4 . Brand now. quaranteed. S
requirements. Type B5853st 1-25 £1.00; $25+90 p ; 100+80 p ;$ $1.000+$ price on application.

49-53 Pancras Road, London NW1 2QB Tel. 01-837 7781

AERIALS

Telescopic, 15-120 cm
Telescopic, $\mathrm{H} \& \vee \mathrm{Swivol}, 15-80 \mathrm{~cm}$
Indoor FM antena, Compact design Loft mounting FM dipole antenna
CAPACITANCE SUBSTITUTION BOXES
Single control for essy selection
$0001,001,0022,01,022,047,0.01,0.22$ KEYNECTORS
Aapia connect to mains. Built-in
plano switches, neon \& 13A fuse
MULTIMETERS
Vdc-10,50,250, 1,000. Vac-10, 50,250,
1,000. Idc-100mA.R-150k
PRINTED CIRCUIT KITS
Contain all items necessary to
orotuce printed circults
SIGNAL INJECTORS
Audio theorgh video signals, idea

servicing amplifiers, radio \& tv
E4. 25
TEST SWITCHES
5 minlature push to test switches
Positive logging to $1 / 10$ th of a
degree, $8: 1$ ratio, clear scales
YU METEAS
Calibrated -20 to $3,0-100 \%$, idea
-recording level or power output
uDIO LEADS
$5 p$ din plg to $5 p$ din plg. 1.5 m lead

CASSETTE WALLETS (HOLD 6)-Ref. 39

 CASSETTE HEAD DEMAGNETISERS Shaped pole piece-saves time
EARPHONES

Stethoscope style, 8 onm dynamic
Crystal earphone with lead s plug
High resistance, 2000 ohrm headphone
£0. 65

FOOT SWITCHES

Push on-push off. Anti skid base © 2.70

INTERCOMS

2-station, ideal for the home-baby
alarm, office, with cable \& staples
£6. 35
Door-phone 'Answer door before opening' Completely weatherproof MICROPHONES
Dynamic, remote start/stop,200 hms, $100-10 \mathrm{kHz}, 6 \mathrm{mV}$ output MINIATURE TRANSISTOR MODULES Microphone pre-amplifier
Power amplifier
(Each plug-in with mounting socket) STEREO HEADPHONES
Superb stereo Jistening in comfort and privacy, $30-15 \mathrm{kHz}, 8$ ohms STEREO HEADPHONE JUNCTION BOXES
3 way switch unit selects phones only, speaikers only or both STEREO PRE-AMPLIFIERS
In: 3-30mX. Equalise: RIAA _ Out : 200800 mV flat. $20-20 \mathrm{kHz}$.Supply: PP3 SPEAKERS
Miniature, 75 mm dia, 8 onms
TWEETERS \& CROSSOVERS
Super Tweeters, 8 ohms, $c / f 7 \mathrm{kHz}$,
For systems up to 30w RMS
Cone Tweeters, 8 ohms, $\mathrm{c} / \mathrm{f} 3 \mathrm{kHz}$,
Crossovers, 8 ohms, $c / f 800,3 \mathrm{kHz}$,
7 kHz . For systems up to 40 W RMS

BATTERY ELIBINATORS

Miniature AC adaptor-provides
9 V at 50 mA OC output from mains £4.35 POWER SUPPLY UNITS
P1 Switchable between 6 \& $9 \mathrm{~V}(200 \mathrm{~mA}$) ideal-most small radios, etc.
£4. 85
P2 Switchable to provide $6,7.5$,
9 V at 400 mA
£7. 15
TRANSFORMERS
Mains (miniature), 2 secondaries $0-6 \mathrm{~V}, 0-6 \mathrm{~V}$ RMS , 280 mA

C2. 70
$0-12 \mathrm{~V}, 0-12 \mathrm{~V}$ RMS, $150 \mathrm{~mA} \quad$ E2.70
Mains (sub miniature)
$6-0-6 V$ RMS, 100 mA

| $12-0-12 V$ |
| :--- | :--- |

PERSONAL RADIOS
Philips RL077 with earphone \& case
E6.00
Philips RLO20 with earphone \& case
E7.50

COMBINATION TRY \& MITRE SQUARES
Cabinet/Chassis/P.C.B.work. One
tool combining Try \& Mitre Square, Depth,
Height and Marking Guages. $300 \mathrm{~mm} / 12$ in Rule.Spirit Level/Plumb \& Steel Scriber

Leytool compact, 5/16 ${ }^{1 i}$ chuck, Gears totally enclosed, S / L bearings SOLDERING IRONS
Antex $25 \mathrm{~W}, \mathrm{X} 25,240 \mathrm{~V}$, Low leakage, $1 / 8$ " interchangeable long life bit 3/32", $1 / 8^{\prime \prime}, 3 / 16^{\prime 1}$ spare bits-each $\times 25$ Eleménts
Stands, ST3, High grade base, spi ing,
sponges, accomodation-spare bits £1.00
SOLDER - in handy Blb dispenser EO.43 WIRE STRIPPERS \& CUTTERS Bib 8B, 8 guage selector, automatic opening, easy grip handea

SYNTHESISER Modules by Dewtron ${ }^{\circledR}$

The synthesiser illustrated was built using Dewtron modules, as sold to constructors for some years now With over 10 years' experience in mail-order, we have supplied many famcus people and groups. Over 30 types of synthesis modules, some of extremely precision design, e.g. VCO-2 log-law oscillator; 3-wave o/ps; sample/hold/envelope module; pitch-to-voltage module allowing a whole equipment to "play itself" in unison/harmony with any solo input or voice. Modules for sequencer construction, too. Famous "Modumatrix' patching system makes other patching a thing of the past! Send just 20 p for full catalogue to

254 RIngwood Road, Ferndown Dorset BH22 9AR

DIGITAL CLOCK KITS
 SENSATIONAL OFFER

 USUAL PRICE TO P.E. READERS
 NO KNOWLEDGE OF ELECTRONICS REQUIRED
 LATEST 1975 DESIGN-ONLY £14
 (including P. \& P., VAT, Circuit)
 COMPARE OUR PRICES IF PURCHASED AS SINGLE ITEMS (INCLUDING VAT AND P. \& P.)
 1 MOS Clock Chip 12-24 hr option 1.95
 $40.63^{\prime \prime}$ LED Displays (latest HI BRI Type)
 1 Segment Driver Chip
 4.60
 1 Pack Resistors, Caps., Transistors, Switch, etc.
 $0 \cdot 50$
 1 Double Sided Glass Fibre P.C. Board 1.60
 0.95
 1 Double-wound Mains Transformer
 1.50
 1 Circuit/Assembly Manual
 1 Futuristically-styled Case (state colour)-Yellow,
 Orange, Red, Black, White, Mauve, Green, Blue
 4.40

Pulse Electronics Ltd
\square
2-20
Dept. PE2, 202 Shefford Road, Cllition, Beds. Tel. Hitchin (0462) 814477

TELEVISIONS AND SPARES TO THE TRADE

MONOCHROME TELEVISIONS

BBC 2 Dusl Standard TVs (19in, 23in) in batches of 10 - $\mathbf{5 2}$ each (makes include Bush, Thorn, Philips, PyelEkco, Baird). Many with trensistorised tuners. GEC 2000, Thorn 950 series, Bush 141, Philips Styie 70, Baird 600 and 700 series all at $\Sigma 6$ each.
Thorn 1400, Bush 160/170 series, Philips 210. Pye-Ekco Olympic, etc.. Baird 673 Push Button-all at $£ 12 \cdot 50$ each.
20 in and 24 in square screen Dual Standard setg-Thorn. GEC. etc., $20 \mathrm{in}-$ £15, 24in- $£ 16 \cdot 50$.
20 in and 24 in Single Standard Thorn 1500, GEC, Bush Acoustlc. 20in- $\mathbf{1 7} \mathbf{1 7} 50$ 24 in - 19.50.
(1) Discounts for quantities. (2) All monochrome spares supplied free of
charge. (3) All tubes guaranteed. (4) All cabinete very good. (5) All sets 'walk and talk". (6) All sets guaranteed complete inside and out. $\times \quad$ (7) Delivery and VAT extra.
Portable TV: 16 in Thorn UHF- $£ 15$ working, $£ 12 \cdot 50$ untested.

COLOUR TELEVISIONS

Colour TVs 19 in and 25 in . Makes include Thorn 2000, Bush CTV25, Decca CTV 19/25in. Pye-Ekco, Baird 700 and 710 serles, Philips G6, GEC 2028. All sets guaranteed complete inside and out-cabinets first class and tubes guaranteed. From $\mathbf{8} 85$ each.
20 in and 22 in Colour Televisions are always available in varying quantitiesplease telephone for availability and cost.
Please Note: (1) We deliver anywhere by our own transport. (2) All goods are blanket wrapped in our vans. (3) All orders with half deposit, balance on delivery after inspection. (4) Cheques most welcome. (5) Any quantity supplied. (6) We do not sell rubbish, and we stand by our guarantees. (7) We alm to please. (8) All spares supplied free of charge (mono only).
N.B. Special arrangements for delivery to North and South Ireland and worldwide exports ordere welcomed.

TEST BENCH FACILITIES ALWAYS AVAILABLE

MISCELLANEOUS ITEMS

Large quantities of stereograms, fridges, deep freezers, Hoovermatics, radios etc., always at hand-prices on request.
Colour \quad SCAN COILS
Colour
1F. Decoder and Convergence-_frame IF Line timeoase $\mathbf{\varepsilon} 3$ plus 81 Pa Mon output for all from $£ 7.50$ plal dual atandard models in stock. available.
10p meters- $\mathbf{L 1} 50$ each including postage and packing.
SPEAKERS
6 in $\times 4 \mathrm{in}$. 5 in Round, $8 \mathrm{in} \times 2$ in 30 p each plus $10 \mathrm{p} P . \& p$.

MAIL ORDER SERVICES

BLACK/WHITE OTELEVISIONS
Working: 19in-£5.50, 23in-£12.50. 20in-£20, 24 in -£24.50.
Untested (but guaranteed complete with good tubet): $19 \mathrm{in}-\mathbb{E}, 23 \mathrm{in}-\mathbf{5} 5$, 20in-E15, 24in-E18.
(Postage, packing and insurance £3-50 each; prices include VAT.)
N.B. All tubes guaranteed

COLOUR TELEVISIONS
Working: $191 \mathrm{n}-\mathrm{E} 85,22 \mathrm{in}-\mathrm{E} 125,25 \mathrm{in}-\mathrm{E} 130$.
Untested (but guaranteed complete with good tubes): 19in- $\mathbf{~ 7 0 , ~ 2 2 i n - £ 9 0 , ~}$ $25 \mathrm{in}-\mathrm{C} 95$.
(Postage, packing and insurance $\mathrm{E9}$ each; prices include VAT.)
Thorn 2000, Buah CTV25, Philips G6, GEC2028, Baird 700, Decca CTV25
PORTABLE EBC2 18in TELEVISIONS (MONOCHROME)
Working £18'50. Untested £15. (Postage, packing and insurance £3: prices include VAT).

MAIL ORDER SPARES. Special Offer-Brand new epares:
BRC 2000 panels, video. convergence, and regulator-only $£ 12 \cdot 50$ plug $£ 1 \cdot 50$ P. 8 P.

Bush CTV 25 Line timebase-tower unit including LOPT and valver Mk. I and II only- 11 plus $\mathbf{E} 3$ P. \& P.
BAC single standard colour 4 button tuners colour and mono- $\mathbf{~} 7 \cdot 50$ plus $£ 1$ P. \& P.

UHF Vari-cap tuner units- $\mathbf{\Sigma 6} \cdot \mathbf{5 0}$ plus $£ 1$ P. \& P
VHF Vari-cap tuner units- $\mathbf{~} 7.50$ plus $£ 1$ P. \& P
Pye-Ekco CTV Tripler units- 86.25 plus 75 p P. \& P.
Philips G8 Tripler unite- $\mathbf{8 7 . 5 0}$ plus 75p P. \& P.
KB VC Series LOPT $\varepsilon 2 \cdot 50$ including P. \& P
Bush 125 and 135 IF PANELS- $£ 3.50$ plus 75p P. \& P.
Thorn 850 IF Panels- $£ 2 \cdot 50$ plus $£ 1$ P. \& P.
GEC 2000 IF Panelg- $\mathbf{E 3} \cdot 50$ plus $£ 1$ P. \& P.

EX-EQUIPMENT TUNERS:

Colour:
All dual standard colour push button-rotary and integrated models in stock at \&4.50 plus £1 P. \& P.
Mono:
All VHF tuners available at $£ 2$ plus $£ 1$ P. \& P.
All UHF tuners for dual standard models in stock. Push bytton- $\mathbf{8} \cdot 50$ plus $£ 1$ P. \& P.

Rotary- $\mathbf{2} .50$ plus $£ 1$ P. \& P.
Integrated (UHF and VHF) £4.50 plus £1 P. \& P.
Comprehensive list of capacitors. resistors. etc., too numerous to mention. Prices on request.

MAKE YOUR CALCULATOR RECHARGEABLE!

(Amongst other thingel)

* Ni-Cad. $1 \cdot 2 \mathrm{~V}$ rechargeable
batteries
HP7 size
Charging $45 \mathrm{~mA} / 15 \mathrm{~h}$
- Capacity 450 mAh
only £1-95 for TWO! ! Including P.\& \&. « vat
Write to Dept. PE
GUILDFORD CALCULATOR CENTRE
181 High St., Guildford, Surrey. Tel. (0483) 35014

DISCO PROJECTORS

Optikinetics Solar 100 B Multi-Effect projector 100W OI lamp complete with oil wheel rotator and cassette rotator
£48-60 Postage E1
Bubblelite 150 W complete with rotator and 6" oll wheel

> £22 Postage £1

TUTOR 2 The most versatile effects projector available. 250W Qi lamp complete with rotator and $6^{\prime \prime}$ oil wheel
£ 78 Postage $£ 1$ - 50
$6^{\prime \prime}$ Oll wheels E3.50 postage 25p, effects cassettes $55 \cdot \mathbf{4}$ postage 25 p or diasplay and clear right green dieplay
cbm GL997R

- Anth-gLARE 8 dight
diapplay
- iffunction memory
- (MAR, MT. M + . M-)
- Live percontago key
- Rechargentlo

$£ 16.55$

+50 p postage

Optikinetics, ICE, Pluto disco gear at discount prices. S.A.E. for list
A. E. Crew Electrical

56 MARKHAM ROAD, WINTON BOURNEMOUTH, DORSET EH9 1HZ

Sparkrite mha

The tried, tested, proven, reliable, complete, professional, capacitive discharge,

Electronit Ignition Kit

ORDER NOW

FROM	Namm
	4 Adruas
	1.
0 tr .	
	SPaAKRITE MK 2 OIY Aesembly lite of 10.91
	SPARKRITE MK 2 heady Buin Nestive merth ef1388
	Ipaition champeover minetives © 12.71
Cheeve	us Mo. .-...an.

Sparkrite MK2 is a nigh parformance, high quality, capacitive discharge, electronic ignition system. Because of eliminates problems of the contact brazker. There is no mistire because contact breaker bounce is liuninated electronically by a pulse supprassion circuit which prevents the unit firing if the points bounce open at high A.P.M. Contacivoreaker burn is eliminated by reducing the cultent to about $1 / 50$ th of the norm. It will periorm equally well with new, old, or even badly pitted points and is not dependent uoon the dwell lime of the contsct breakers lor techarging the system. Soanke incoporates a short cir cuit protected inverter which eliminates the possibllity of blowing the transistors or the SCA. (Many capacitive dis charge ignitions are not completely foolproof in this respect.
Sparkrite can thesefore give you:starting, cleaner plugs - they last up to 5 times tonger without attention, faster acteleration, higher top speds. tonges coil and battery life. efficient fuel burning and less all pollution, smoother ponning. continual peak performance.
THE KIT. COMPRISES EVERYTHING NEEDED
Ready dritied pressed stees case coated in matt black epony resin, ready drilled base and heatsink, top quality 5 year
guaranteed transformer and components, cebles, coll con nectors, plinted circuit board nuts, bolts silicon grease und 10 page instalation instructions.
OPTIONAL EXTRAS
Elortronic, R.P.M. limetation. an advantage to most companies, hire firms. high perio mance drizers etc.
Elertronic/conventional ignition switeh.
Gives instant changeover from 'Sparkite" ignition to con ventional ignition for performance comparisons, static tim ing etc. and will also switch the ignition of completely as a securily device includes. switch, connectors. mounting bracket and instructions. Cables excluded

PRICES

DIV assembly kit $[10.93$ incl VA.T post and packing Rearty built unit $£ 13.86$ incl. V.A.T. post and packing (Both to fit
8 cylinders)
Switch for instant changeover from Sparkrite" ignition to conventional igmition [2.79 incl V.A.T. post and packing RPM dimiting controt $\mathbf{E} 2.42$ incl. V.AT. post and packing ffitted in case on ready buift unt, dashboard mounting on kit.
CALLEAS WELCOME

INDEX TO ADVERTISERS

NEW EDUKIT MAJOR

COMPLETELY SOLDERLESS ELECTRONIC CONSTRUCTION KIT BUILD THESE PROJECTS WITHOUT SOLDERING IRON OR SOLDER

TOTAL BUILDING COSTS
£10．30
P．P．\＆Ins． 65 p （Overseas Seamail P．\＆P．£3．40）
－Signal Tracer Transist －PNP 4 Transistor Puwh Pull i）Transintur Push Pull dmplifier

Sheaker Radio NW／LW．
Trannistor Short
－Electronc Metronome
Electromie Noisc Genera
－Batterylese Orystal Radie
－One Transistor Radio

Components include
24 Kenstary－2I Cipacitory－ 10 Transisturs－ $3 t^{\prime \prime}$ Luudspeaker Ebarpiece Mica Basebuard 31以－way＇omnectors－Wuhme Controls＊Blider Switcheq 1 Tuning Condenger 3 Knobs －Leady Wourd MW／LW／SW Coils Ferrite Rod $6 \frac{1}{2}$ yards of wire 1 yard of sleeving，etc．

ROAMER TEN

Mk．II
WITH VHF
INCLUDING
AIRCRAFT
10 TRANSISTORS．
WAVEBAABLE
WAVEBANDS．
SW1，SW2，SW3
SWA SWER BAND VHE AHD LOCAL

Latest $4^{\prime \prime}$ 2 watt Ferrite Magnet Loudspeaker
Built－in ferrite rod acrial for MW／LW．
Chrome phated 6 section telescopic aerial，can the angled and rotatel for peat short wave and VHF listening．Pushopull out put using do0mW transistors． Car Aerial and tape record sockets． 10 transistors pius 3 diodes．Ganged tumng contenser with YhF section．Separate coil for Alrcraft hathd．Wave change and tone controls．Wlttactive case
off． in black with silver bincking－Size 9 in $\times 7$ in $\times 4$ In Easy to follow instructions and diagrams．Parts price list and plans 60 p（FREE with parts）

POCKET FIVE

NOW WITH 3^{*}
3 Tunable wavebauds
3 Tunahle Fravebands
MW／LW and Trawle Band．${ }_{7}$ stages． transistors and rod aerial，attractive Total Building Costs Black and Goln Case．Size Slans and parts price list free with parts．

（Overseas Seamail P．P．Ins．38p

ROAMER EIGHT Mk．I
 now with variable
 TONE CONTROL
 TUNABLE WAVEBANDS

MW1，MW2，LW，SW1
SW2，SW3 AND TRAWLER BAND．Built－m ferrite lad uerial for MW and LW．Cirone plated telescopte acrial can be angled and rotated fin peak ohort－ wave listening．Push－pull output using 600sulw
transistors．Car aerial and tape record socketa． transistors．Car aerial and tape record bocketa．
Selectivityswiteh， 8 transistors pins 3 diodes．latest 4^{*} Selectivityswitch． 8 transigtors phas 3 diodes．Latest 4 ， tuning conderser．Volume／onfot，tuning，wave chang and tone controls．Attractive cast in rech chest nut shade with gold blocking．Size 9 in \times Fin \times tin approx，Easy atul plane free with part

TOTAL
 BULDING E－ cosTs P．\＆P．©3．50）

NEW JIFFY TESTER

Easy to huilat and pperate，tits in the pucket．A yuick
checker for contimity of revisturs，chokes，dioules． ransistors，circuit wiring（not mains）and loudspeakers． Alsur fur checking ahort cirenite of capazitors，tuning apacitors arn many otherises om histef here．Bel instrnet ion shet frew with kit． Complete
earpiece．
earpiewe jack
glug and sorket thag athl sorke
resist ors． resistors，rap－
acitors．
com－ whents，eto．
Parta Price Lisi and Elasy Build Planis free with Parte
Total
Building Costs

£2：81

P．P．\＆Ins．22p（Overseas Seamail P．EP．\＆i•70）

Attractive case in black with red grille，dial and black knobe with polished metal inserts．Size $9 \times 5\} \times 2 \sharp$ ins approx． 6 Transistors and 3 diodes．Punered by 9 MW／LN coverage．Push Pull Output．Parts price list and plans free with parts．
 COSTS P．\＆P．£2．30）

TRANS EIGHT

8 TRANSISTORS

Sin speaker．$\%$ imprusad type ransistors ulus 3 tio Atfractive case in black with red grille，dial and bleck ktractive case in biack with redgrille，dial and black －Sin appron．Push＋pull whtut．Battery vernomiser awitch for extemital hattery life．Ample puwer to Irive a larger apeaker．Parts price list and plans free with phart＊．

TOTAL BUILDING COSTS
？ $4-\begin{aligned} & \text { P．P．\＆Ins．50p } \\ & \text {（Overseas } \$ \text { eamail }\end{aligned}$

＂Edu－Kit＂

Build Radios，Amplifers，etc．，Irom easy stage diagrams Five units including master unit to constract．
Components inchude：Tuning Condenser：シg Volnne Contros：：Smer Switches：Fine tome 3^{*} moving Lon Speaker：Turninal Strip：Ferrite Rou Acrial：Battery Buards： 10 Transisturn： 4 Dindes：Resintors：
ors：Three $\frac{1}{2}$ in Knobs．Dnits once con－ cted are tetachable from Manter Init， Ifeal for Schools，Eiducational Authorities and all those interested in radio an． struction．Parts jprice list and plana free with parts
£6＂87
P．P．寊 Ins．50p （Overseas Seamail P．\＆P．（3．40） BUILDING
COSTS

RADIO EXCHANGE LTD

To radio exchange co．，bla high street，bedford mk4o isa Tel． 023452367 Reg．No． 788372

1 enclose 6

ROAMER TEN
EV6 ROAMER EIGHT JIFFY TESTER［．। －

ALL PRICES NOW INCLUSIVE VAT

－Callers side entrance＂Lavells＂shop
\star Open 10－1，2．30－4．30 Mon．－Fri．9－12 Sat．

More than justa catalogue

 Projects for you to build.4-digjt clock, 6-digit clock, 10W high quality power amp., High quality stereo pre-amp. Stereo Tuner, F.M. Stereo decoder, etc., etc.
CIRCUITS ... Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, .Capacitance Multiplier, etc., etc.

Full details and pictures of our wide range of components. e.g. capacitors, cases, knobs, veroboards, edge connectors plugs and sockets, lamps and lampholders, audio leads, adaplor plugs, rotary and side potentiometers, presets,
resistors (even 1% types!), switches, interlocking pushbutton switches, pot
cores, transformers, cable and wire, panel meters, nuts and bolts, tools, organ
components, keyboards, L.E.D.
REALLY GOOD VALUE FOR MONEY AT JUST 40p.

ELECTRONIC ORGAN

Build yourself an exciting Electronic Organ. Our leaflet MES51, price 15p, deals with the basic theory of eiectronic organs and describes the construction of a simple 49 -note instrument with a single keyboard and a limited number of stops.
Leaflet MES52, price 15p, describes the extension of the organ to two keyboards each with five voices and the extension by an octave of the organ's range.
Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are shown in leaflet MES53, priced at 35 p .

No more doubts about prices

Now our prices are GUARANTEED (changes in VAT excluded) for two month periods-and we'll tell you about price changes in advance for just 30p a year (refunded on purchases). If you already have our catalogue send us an S.A.E. and we'll send you our latest list of GUARANTEED prices. Send us 30p and we'll put you on our mailing list-you'll receive immediately our latest price list then every two months from the starting date shown on that list you'll receive details of our prices for the next GUARANTEED period before the prices are implemented!-plus details of any new lines, special offers, interesting projects-and clip-off coupons to spend on components to repay your 30p when used as directed.
NOTE: The price list is based on the Order Codes shown in our catalogue so an investment in our super catalogue is an essential first step
Call in at our shop, 284 London Road, Westcllff-on-Sea, Essex. Please address all mall to P.O. Box 3, Raylelgh, Essex, SS6 8LR.

SYNTHESISER

A reprint of the complete article giving full construction details published by "Electronics Today International between JanuarySeptember ' 74 of the International Voltage Controlled Synthesiser, developed as a "sfate of the art' now available, price $£ 1.50$. S.A.E please for detaited price list.

GRAPHIC EQUALISER

A really

 superior high quality stereo graphic equaliser as described in the January edition of "Electronics Today International'. We stock all the pe (except woodwork) including i metalwork drilled and printed. brings you a reprint of the article or S.A.E. please for our detailed price list.
[^0]: (c) IPC Magazines Limited 1975. Copyright in all drawings, photograptis and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: *Director, MOS Marketing, Europe. Motorola Inc.

[^2]: watch cases.)

