PRACTICAL

NOVEMBER 1975

FTROMASOMTE electronics

Dept. 2. 56. Fortis Green Road.
Muswell Hill, London. N10 3HN telephone: 01-883 3705

CONSTRUCTIONAL PROJECTS
ELECTRONIC TUNING FORK by P_{N} W. Busby
Tuning aid for musical instruments 882
P.E. ENGINE ANALYSER-2 by D. Haley
Construction of the dwell and tachometer board 890
P.E. MINIMIX 6-1 by G. D. Shaw
The first part of a six channel, stereo mixer 904
SIMPLE LIGHT COMPARATOR by C. C. Whitehead A low cost enlarger aid for the amateur photographer 910
MAINS OPERATED 9V UNIT by C. H. Banthorpe A simple transformerless battery substitute 914
GENERAL FEATURES
SEMICONDUCTOR UPDATE by D. W. Coles
A review of interesting devices 896
MICROPROCESSORS-2 by V. E. Yates
A detailed look into this important new technology 899
INGENUITY UNLIMITED
Music Generator-Triffid Power Supply-Logic Checker- Electrolytic Tester 925
NEWS AND COMMENT
EDITORIAL-A Compelling Force 881
SPACEWATCH by Frank W. Hyde Ice ages-Life in the Universe 889
PATENTS REVIEW
Protecting Ideas-Fusible Link—Move Monitor 908
INDUSTRY NOTEBOOK by Nexus
What's Happening Inside Industry 918
BRITISH MUSICAL INDUSTRIES TRADE FAIR by G. Godbold
A look at some of this year's exhibits 921
READOUT
A selection of reader's letters 929

Our December issue will be published on Friday, November 14, 1975

[^0]
At Home Soldering?

You should be - with the LITESOLD CONQUEROR
A superbly handling lightweight iron, fully insulated and earthed for safety. Bits are interchangeable, non-seize, and are available in 16 different shapes and sizes, from $1 / 16^{\prime \prime}$ up to $1 / 4^{\prime \prime}$, in copper and long-life types. (Standard fitting, $1 / 8^{\prime \prime}$ copper single chisel shape). Covers a range of work often needing several different irons. A special spring stand gives safe, easy location of the iron and spare bits. The heavy heat-resistant base is complete with non-slip pads and bit cleaning sponge.
Send cheque/PO direct, or ask for leaflet.

LIGHT SOLDERING DEVELOPMENTS LTD
 97-99, Gloucester Road, Croydon, CRO 2DN. 01-689 0574

ENGINEERS

[进:
YOURSELF FORA BETTER JOB "m MORE PAY!

Do you want promotion. a belter rob T Do you want promotion. a belier tob
highet pay? Neu Opportunities shows you how to get them inrough a low cosi yome sludy course There are no books to buy and you can pay-as you-learn

This helpful guide to success should be read by every ambitious engineer
Send for this helpful 76 page FREE nook now. No obligation and nobody will call on you it could be the best thing yeu evet did

P.E.
 ORION

Complete Kit of semiconductors $£ 10.95$ High quality printed circuit£3.40

THIS GLASS FIBRE P.C.B. IS ROLLER TINNED AND
SCREEN PRINTED WITH COMPONENT LOCATIONS.

PE TV SOUND SEPARATOR
Complete kit of semicenductors $£ 2.40$
Migh quality printed circuit board $£ 1.25$ MC 38 p .
MOTOROLA BD699 £1-27; BD700 £1-41: MKE2955 ह1. 50; MKE3055 87p: MC1357PO §1.60; MJ2501 £1.65; MJ3001 £1-59.
£1. 60 JOANNA 77 ZTX 108 £6.25, 183 ZS $170 ~ £ 18 \cdot 30$
POSTAGE AND PACKING 10p per order. Orders over $£ 3$ post free
All devices top grade, brand new, and to full manufacturers spec. We do not sell seconds or rejects. Send SAE for our data sheet and price list. We can supply any Ferranti device to order. SAE for quotation

DAVIAN ELECTRONICS

PO BOX 38, OLDHAM, LANCS, OL2 6XJ

ORIGINATORS OF PRE-PACKED COMPONENTS IN BRITAIN - AND STILL LEADING!

AUDIO MODULES - today's most challenging values!

POWER AMPS

SS103
Compact I.C. amp 3 watts R.M.S. Single channel (mono) On P.C.B. size $3 \mathrm{i} \mathrm{in} \times 2 \mathrm{in}$. Needs $10-20 \mathrm{~V}$ supply. $£ 1.75$

SS103-3
Stereo version of above (iwo I.C.s)
£3.25

NEW!SS105 Mk. 2
A compact all-purpose power amp. Can be run from 12 V car battery. Size 3 in $\times 2$ in Useful 5 W output (mono) into 3Ω using 12V. Excellent value.
£2. 25
SS110 Mk. 2
Similar in size to SS105 but will give 10W output into 4Ω using 24 V (mono). Two in stereo glve IIrst-class results. suitable for many domestlc applications. \quad £2.75

SS140
Beautifully designed will give up to 40 W R.M.S. into 4Ω Excellent S.N.R. and transient response. Fine for P.A., disco use. etc. Operates from 45 V d.c. Two in bridge formation will give 80 W R.M.S. into 8Ω.
$£ 3 \cdot 60^{*}$

PRE-AMP/CONTROL MODULES

SS100
Active tone control unit to provide bass and treble facilities (stereo).
£1-60
SS101
Pre-amp for stereo ceramic cartridges, radio and tape. £1-60
SS 102
Pre-amp for low-output stereo magnetic cartridges, radio
and tape. $£ 2.25$
BUILD A STEREO F.M. TUNER with these modules

SS201

Front End assembly. Ganged tuning with well engineered slow-motion geared drive in robust housing. A.F.C. facility. Requires $6-16 \mathrm{~V}$. Excellent sensitivity. $88-108 \mathrm{mHz}$. £6.25

SS202

I.F. Stage (with I.C.). Designed to use with SS201 uses I.C. Carefully checked before despatch
[5. 25

SS203

Stereo Decoder. Designed essentially for use with SS201 and SS202, this excellent decoder can also make a stereo tuner of aimost any single channel FM tuner. Supplied ready aligned. A L.E.D. can easily be fitted. $55 \cdot 62$

SAVE 55 ON THE S/S TUNER
By buying Unfts SS201, SS202 and SS203 together, the price is $£ 12 \cdot 12$-a genuine saving of $£ 5$ on this very efficient tuner. $£ 12$-12

SUNDRY

PI PAK-Approx. 170 short-lead semiconductors and components. PNP. NPN, diodes, rectifiers, etc. on PCBs. data supplied. 50p
UHF 625 Ilne tuner, rotary. £2. 50.
Rev Counter (for cars) (8\%). \{1.00.* Books by Bernard's Publications Newnes-Butterworth's. etc

THE FREE CATALOGUE

New edition better than ever. It's your's for tree and well worth getting-only pleese send large S.A.E. with 10 D stamp li wo have to post th to you.

NEW RANGE TRANSISTOR AND COMPONENT PACKS

TP SELECTION

TP5 20 Transistors. PN
TP6 140 m Red Spot A. F
TP6 20 Transistors. PN
TP7 lum, White spoi RF German
TP7 1 2N174 150 W 80Vce power Transistor. with mounting assembly.
100 diodes
TP19 100 diodes. mixed Germanium Gold-bonded. etc. Marked/Unmarked

Twenty NPN Silicon uncoded NES. Similar to BFY50/2 2N696. 2 N 1613.
mentary to TP2
TP24 Twenty PNP Silicon. uncoded TO5. Similar to BFY64.
2N2904/5. TP29 8 2 $2904 / 5$
TP29 8 sower diodes 400V. 1.25A

> ALL ABOVE PACKS-50p EACH

CAPACITOR DISCHARGE IGNITION KIT
 BI-PRE-PAK X-HATCH GENERATOR MK. 2

Four-pattern selector switch
$\operatorname{3in} \times 5+1 \mathrm{ln} \times 3 \ln$

$3 \ln \times 5 \operatorname{lin} \times 3 \ln$	
Ready-bullt	
and tested	$£ 9.93^{*}$
In klt form	$£ 7.93^{\star}$

Please add 30 p for postage and 27.93 ss invalub to pleaze add porking is invaluable to industrial and home user alke. Improved compact, self-contained. Robustly built Widely used by TV rental and other engineers. With relntorced fitreglass case. instructions, but less batteries. (Three U2 type required.) TV SIGNAL STRENGTH METER*
Complate kit as described in Television 819.50 plus 40p

UT SELECTION
UT1 50 PNP's Germanium. AF and
UT2 150 Germanium diodes. min
UT4 100 sllicon dlodes. min. glass similar to IN914. IN916
UT5 $40{ }^{20} 250 \mathrm{~mW}$ Zener diodes OA224 range: average 50% good.
UT7 $\begin{aligned} & 30 \\ & \text { mixed voiltages. Top Hats, etc. }\end{aligned}$
UTg 40 NPN Sillicon planers. Simila 10 2N3707-11 range. Low nolse amps.
UT12 25 2N3702/3 Transistors. PNP

CP SELECTION
CP1 Mixed bag or capacitorsElectrolytic. Paper. Silver Mic (Approx. 150 -sold by welght).

CP2 200 (approx.) Resistors various types. values, watts. (Sold by weight.)
CP3 40 wire-wound resistors mixed
CP4 12 pots-pre-set. w/wound cartones dulthou switches-all mixed

CP7 Heat sinks. assorted. To fit SO-Z (OC72) TO.1 (AC128). etc.

TERMS OF BUSINESS:
VAT at 25% must be added VAT at 25% must be added to total vatue of order, except for llams marked or (8\%), when
VAT le to be added mt 8%. Wo VAT on oversease orders. POST \& PACKING Ade 22 p tor UK ordera unless shown otherwite. Minimum mall orger acceptable- $\mathrm{\Sigma}$. Overeeas ordera, add E1 for poatage. Any ditrerence will be crealted or charged. PhicES Subject to altoration without notice. AVAlLABILITY All hems evallet

222224 WEST ROAD,WESTCLIFF-ON-SEA, ESSEX SSO SDF TELEPHONE: SOUTHEND (0702)-46344.

PROFESSIONAL QUALITY TEST EQUIPMENT FROM ONE OF ITALY'S LEADING MAKERS CORTINA MINOR 33 RANGE POCKET MULTIMETER

- SENSITIVITY $20 \mathrm{~K} \Omega / \mathrm{V}$ d.c. and $4 \mathrm{~K} \Omega / \mathrm{V}$ a.c.
- ACCURACY $\pm 2.5 \%$ d.c and $\Omega, \pm 3.5 \%$ on a.c.
- 33 RANGES, d.c. $\mathrm{V}, 0-100 \mathrm{mV} .1 \cdot 5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1.5 \mathrm{kV}$ d.c. $1,0-50 \mathrm{~mA}, 5 \mathrm{~mA}$, 50 mA .500 mA .25 A a c $\mathrm{V}, 0-7.5 \mathrm{~V}, 25 \mathrm{~V}, 75 \mathrm{~V}, 250 \mathrm{~V}, 750 \mathrm{~V}, 1.5 \mathrm{kV}$ a.c. $1.0-25 \mathrm{~mA}$ $250 \mathrm{~mA}, 2 \cdot 5 \mathrm{~A} ; 12 \cdot 5 \mathrm{~A} ; \mathrm{dB},-10$ to +69 in 6 ranges: $\Omega 0-10 \mathrm{k} \Omega, 10 \mathrm{M} \Omega$.
- ROBUST PROTECTED PRECISION MOVEMENT.
- CLEAR UNAMBIGUOUS DIAL CALIBRATION WITH ANTI-PARALLAX MIRROR
- COMPACT, MEASURING $155 \times 85 \times 40 \mathrm{~mm}$ WEIGHT 350 g WITH INTERNAL BATTERIES
- PROFESSIONAL COMPONENTS AND CONSTRUCTION STANDAROS THROUGHOUT
- FULL AFTER-SALES SERVICE AND SPARES FACILITIES
- SUPPLIED COMPLETE WITH TOUGH CARRYING CASE, LEADS, HANDBOOK AND FULL 12-MONTH GUARANTEE.
- OPTIONAL 30kV d.c. PROBE AVAILABLE

Meter $£ 19$ inc. VAT (80 p p.p.). 30 kV Probe $£ 9.50 \mathrm{inc}$. VAT
For details of this and the many other exciting instruments in the
Chinaglia range, including multimeters, component measuring. automotive and electronic instruments please write or telephone:

CHINAGLIA

 Tel: 01-352 1897

trade enduiries welcomed

FREE Brochure on New KTS

Whether professional. student, teacher or amateur. the field of electronics can open up a new world for you.

CROF TON don't just sell kits, we offer you a technical back up service to ensure vour success
The following is a selection of some of the more popular kits

NOTE PC.Bs for most published projects available to order

Dept E 124 Colne Road. Twickenham.Middx 018981569

ORDER DIRECT FROM THE U.S. AND SAVE

10\% Off on orders over $£ 10$ 15% Off on orders over $£ 50$ 20\% Off on orders over £100

TTL

\begin{tabular}{|c|c|c|c|c|c|}
\hline ${ }^{7400}$ \& \& 0-11 \& 7448 \& ¢ 080 \& 74150 \&

\hline 7402 \& 11 \& 7450
7451 \& ${ }_{13}^{12}$ \& ${ }_{7}^{74151}$ \& $\xrightarrow{60}$

\hline 7403

7048 \& ${ }^{11}$ \& 7453 \& 13 \& 24154 \& -05

\hline ${ }_{7} 74054$ \& ${ }^{13}$ \& 7454 \& 14 \& ${ }^{2} 4155$ \& 95

\hline ${ }_{7} 706$ \& 22 \& 7464 \& \& ${ }^{74156}$ \& 71

\hline 7407 \& 22 \& 7465 \& 21 \& ${ }_{7} 7161$ \&

\hline 74 \& 14 \& 7472 \& ${ }_{22}$ \& ${ }_{74163}$ \& 05

\hline 7409 \& 14 \& 7473 \& 26 \& 74164 \& 1.25

\hline 7411
7401 \& 11 \& 7474
775 \& ${ }^{266} 4{ }_{41}^{26}$ \& 74465 \& 1.25

\hline 7443 \& 35 \& 7476 \& 26 \& ${ }_{74173}$ \& 15

\hline 7415 \& ${ }_{2}^{22}$ \& 7483 \& 70 \& 74775 \& 95

\hline 74 \& 22 \& ${ }^{7485}$ \& ${ }_{8}^{80}$ \& 24176 \& 95

\hline 74 \& 11 \& 7489 \& 24 \& 7417 \& ${ }^{85}$

\hline 7422 \& 22 \& 7489 \& - 4 \& S4181 \& ${ }^{80}$

\hline 7423 \& 22 \& 7491 \& 81 \& ${ }_{74182}$ \& ${ }^{2.50}$

\hline 7425 \& 22 \& 7492 \& 44 \& 74184 \& 1.55

\hline ${ }^{3} 248$ \& ${ }_{22}^{23}$ \& 7493 \& 44 \& 74185 \& 1.45

\hline 7430 \& 12 \& ${ }_{7} 7995$ \& 49 \& 74191 \& 95

\hline ${ }^{7432}$ \& 22 \& ${ }^{7496}$ \& 55 \& 74192 \& 90

\hline ${ }_{7} 748$ \& 21 \& | 74100 |
| :--- |
| 74105 | \& ${ }_{1}^{1.25}$ \& ${ }_{74194} 7$ \& 85

\hline 7440 \& 11 \& 74107 \& ${ }_{27}$ \& 7495 \& 80

\hline 7441 \& 60 \& 74121 \& 32 \& 74196 \& 1.00

\hline 7422
7443 \& 55 \& ${ }^{74122}$ \& 50
55 \& $\begin{array}{r}74197 \\ \hline 7198\end{array}$ \& 75

\hline 7444 \& 60 \& 74125 \& 50 \& 74199 \& ${ }_{1}^{1.70}$

\hline 7445 \& 75 \& 74126 \& 50 \& 74200 \& 390

\hline ${ }_{7} 7447$ \& ${ }_{80}^{85}$ \& ${ }_{74149} 7$ \& ${ }_{75}^{68}$ \& \&

\hline \multicolumn{6}{|l|}{LOW POWER}

\hline (2400 \& ${ }^{0} 016$ \& ${ }_{7}^{7445155}$ \& ¢ 0.16 \& ${ }_{7}^{744990}$ \&

\hline 7403 \& 16 \& ${ }_{7} 74251$ \& ${ }_{18}^{18}$ \& ${ }_{74493}$ \& ${ }_{89}^{80}$

\hline 74104 \& 18 \& 74172 \& 27 \& 74 L95 \& 89

\hline (1) \& 18 \& ${ }_{7} 74473$ \& ${ }_{38}^{38}$ \& 74498 \& ${ }_{\text {lis }}$

\hline 74120 \& ${ }_{16}$ \& ${ }_{74178}$ \& 44 \& ${ }_{74 L} 165$ \& ${ }^{1.53}$

\hline 7430 \& 16 \& 74485 \& ${ }^{85}$ \& \&

\hline 74142 \& 89 \& 74186 \& \& \&

\hline \multicolumn{6}{|l|}{HIGH SPEED}

\hline 3400 \& ¢ 016 \& ${ }^{74 \mathrm{H} 212}$ \& [0 0 \& $7 \mathrm{7aH55}$ \&

\hline 14H04 \& ${ }_{16}^{16}$ \& ${ }_{7}^{74 H 22}$ \& ${ }_{18}^{18}$ \& ${ }_{7}^{74 \mathrm{H66}} \mathbf{7}$ \& 21 21

\hline 4M08 \& ${ }^{16}$ \& 74 H 40 \& 16 \& 74462 \& 20

\hline 24H10 \& 16
16 \& ${ }_{7} 74 \mathrm{HH50}$ \& ${ }_{18}^{16}$ \& \& 32

\hline 44+20 \& ${ }_{16}^{16}$ \& - ${ }_{344532}$ \& ${ }_{20}^{18}$ \& \&

\hline \multicolumn{6}{|l|}{8000 SERIES}

\hline - 8091 \& -33 \& 8274 \& E0.93 \& \& E. 0.38

\hline ${ }_{\substack{8092 \\ 8095}}$ \& ${ }_{76}$ \& | 8220 |
| :--- |
| 8230 |
| 8 | \& ${ }_{1} 9.42$ \& \& ${ }_{1}^{60}$

\hline 121 \& ${ }_{4} 9$ \& 8520 \& 71 \& 8830 \& 142

\hline 130 \& ${ }^{88}$ \& 8551 \& 91 \& ${ }^{8831}$ \& 1.42

\hline 300 \& 1.18 \& ${ }_{8554}$ \& 1 \& \& ${ }_{73}^{27}$

\hline 8220 \& ${ }_{1}^{1.92}$ \& ${ }_{8810} 8$ \& ${ }_{48}$ \& 8880 \& ${ }^{3}$

\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{9000 SERIES}}

\hline \& \& \& \& \&

\hline $$
\begin{aligned}
& 9002 \\
& 99010
\end{aligned}
$$ \& ${ }_{6}^{60} 1$ \& \[

$$
\begin{gathered}
9309 \\
9312
\end{gathered}
$$
\] \& c 049

49 \& ${ }_{9602}^{9601}$ \& ¢0.54 49

\hline
\end{tabular}

NOVEMBER

 SPECIALS
75491 SEGMENT DRIVER

MOS to LED quad segment driver - 50 ma sink capability per driver - high gain dartington circuits
14 pin DIP
723 VOLTAGE REGULATOR
Input 40 V max - output adj. 2 to $37 \mathrm{~V}-150 \mathrm{ma}$ output current without ext. pass trans. 14 pin DIP or
5314 CLOCK CIRCUIT
$50-60 \mathrm{~Hz}-4$ to 6 digit - 12-24 HR - fast and slow
set controls - 24 pin DIP with socket .. $\mathbf{2 2 - 2 5}$
2102.2 RAM

1024 bit fully decoded static RAM - DFL/TTL compatible - single +5 V supply - 650 ns 16 pin DIP

8263 MULTIPLEXER

3 input, 4 bit gating array - active output structure
-24 pin DIP
$\mathbf{E 3 - 1 0}$
8267 MULTIPLEXER
2 input, 4 bit monolithic array - bare collector
output - 16 pin DIP
£1-40

TTL SPECIALS DIP			
74432	18p	7493	
7448	$59 p$	74107	22p
7475	$32 p$	74145	$65 p$
7490	$35 p$	74163	$85 p$

CMOS						$\begin{aligned} & 4000 \mathrm{~A} \\ & 4001 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 18 \\ 18 \end{array}$	$\begin{aligned} & 4013 A \\ & 4014 A \end{aligned}$	$\begin{array}{r} 32 \\ 1-06 \end{array}$	$\begin{aligned} & 4025 A \\ & 4027 A \end{aligned}$	$\begin{array}{r} \mp 18 \\ 42 \end{array}$	$\begin{aligned} & 4069 \mathrm{~A} \\ & 4071 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 31 \\ 19 \end{array}$
74.00	¢ $0-21$	$74 \mathrm{C74}$	80-63	74C162	1-78								
$74 \mathrm{C02}$	30	$74 \mathrm{C76}$	93	74 C 163	1-78	4002A	18	4015A	1-06	4028A	70	4072A	25
$74 \mathrm{CO4}$	41	74 C 107	82	74C164	1-92	4006A	$\%$	4016A	40	4030A	32	4073A	28
$74 \mathrm{CO8}$	41	$74 \mathrm{C151}$	1-59	74 C 173	1-59	4007A	19	4017A	85	4035A	90	4075A	28
74C10	36	74 C 154	1-92	74C195	1-65	4008A	1-27	4020A	1-06	4042A	1-05	4078A	28
74C20	36	74 C 157	1-20	80 C 95	82	4009 A	41	4021A	98	4049A	42	4081A	19
74.42	1-18	$74 C 160$	1-78	$80 C 97$	82	4010A	38	4022A	78	4050A	42	4082A	25
$74 \mathrm{C73}$. 85	74C161	1-78			4011A	21	4023A	18	4066A	63	4528A	1-14
						4012A	18	4024A	63	4068 A	31	4585A	1-49

Sparkrite mhe

The tried, tested, proven, reliable, complete, professional, capacitive discharge,

Electronic Ignition Kit

Sparkrite MK2 is a high performance. high quality, capacitive discharge, electronic Ignition system.
Because of the superb design of the Sparksite circuit it completely eliminates problems of the contact breaker There is no misfire because contact breaker bounce is allminated electronically by a pulse suporession circuit which orevents the unit firing if the poins bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will pertorm equally welf with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breaker cuit protected inverter which eliminates the probleme of SCA lock on and therefore eliminates the possibility of SCA lock on and therefore eliminates the possibitity of charge ignitions are not complately foolproot in this re spect.)
Sparkrite can therefore give you:-
up to 20% belter fuel consumption instant afl weather starting cleaner plugs - thay last up to 5 itmes tonger without attention, fasfer acceleration, highse top speeds, anger coil and battery life. Hifient fuel buming and lasa air pollur
mance
ME KIT COMPAISES EVERYTHING NEEDED
Rosdy drillod prossad steel case coated in mall black epony
resin. ready drilled base and heatsink, top quality 5 year
guaranteed iransformer and componenis. cables, coil connectors. ptinted cireult board. nuts, bolts, silicon grease. full instructions to make the kit nega
and 10 page installation instructions

OPTHNAL EXTRAS

Elertronic R.P.M. limitation
Elertronic. A.P.M. limitation.
This can be included in the unit to prevent over revving. This can be included in the unit to prevent over revving. mance flrivers etc.
Elertronic/conventional hanition switch.
Gives Instant changeover from "Sparkrite" ignition to conventional ignition for pertormance comparisons. static timing etc., and will also switch the Ignition off completely as a security device Includes: switch, connectors, mounting bracket and instructions. Cables excluded

PRICES

DIY assembly kit f 10.93 incl VAT post and packing Rearty built unit $f 13.86$ incl VA.T. post and packing 8 (Both to fit all vehicles with coildistributor ignition up to 8 cylincers
Switch for instant changeover from "Sparkrite" Ggnition to Conventionat ignition f 2.79 inct. V A.T. post and packing fifter in case on reafly buill unit. dashbord mounting on hit.l

Cheques to the value of $\mathbf{f 3 0}$ accepted from personal
shoppert with bankers card. In other cases and for amounts
in excess of $\mathbf{E 3 0}$. Please allow time for clearance. Bankers
Drafts accepted. Cheques to any value accepted for mail orders.

IT MAKES SENSE TO

HIOKI 730X 30.000 opv. Overlosd protection. 6/30/60/300/600 1200 V DC. $12 / 60 /$ 120/600/1 200V AC 60/ $\mu \mathrm{A} /$ $30 \mathrm{~mA} / 300 \mathrm{~mA}$. 2K/200K/ 2 Meg Ohm . $-1010+63 \mathrm{~dB}$. OUR PRICE $£ 8.10$ P/P \& Ins 30p
U4323 MULTIMETER 20,000 opv. Simple nilletor suinolt tuning. Rangen: $0.5 / 2.5 / 10 / 50 / 2$ $500 / 1000 \mathrm{DC}$. 2.5/10/15/250/500/1000V AC. $0.05 /$ 0.5/6/50/600mA DC. Resiztance: $\times 10, \times 100 \times 1.000, \times 10.000$ (500 . 500Ω. $6 \mathrm{k} \Omega .50 \mathrm{k} \Omega$ centre scale) Bortery Opernted. Size: $160 \times 97 \times$ 40 mm . Supplied in carry ing case com. plote with thet leand. OUR PRICE f8. 60.P/P \& Ins 60p
TMK 200 MULTIMETER KIT Build vourseif a quality 20000 op multimeter and sevemoney. Complate kit with meterscale. movementand rotaryrange selector ready mounted in cabinet. All parts, bstteries, test prods and instructions. Ranges: $0 / 0.6 / 6 / 30 /$ $120 / 600 / 1200$ V D.C. $0 / 6 / 30 / 120$ 600/1200V A.C. Current: 0/0.6/6/ $60 / 600 \mathrm{~mA}$. Resistance: $0 / 10 /$ $100 \mathrm{~K} / 1 / 10 \mathrm{Meg}$ ohms. Decibels -20 to +63 db . Size: $90 \times 150 \mathrm{x}$ 36 mm OUR PRICE $59.65 \mathrm{p} / \mathrm{P}$ \& ins 30 p
MODEL C7208FM 30.000 opv DC 15.000 opv AC. 6/3/15/60/300/600 1200 V. DC. $6 / 30$ 120/600/1200 V. AC DC Resistance $\times 1$ $\times 10 . \times 100 . \times 1000$ (50s centresesale) DC Current 30uA/ $3 / 30 / 600 \mathrm{~mA}-20$ to +63 dB . OUR PRICE $£ 9.65 \mathrm{P} / \mathrm{P}$ \& Ins 30p
U4324 MULTIMETER High sansitivity. 20,0000py Ranges: $0.6 / 1.2 / 3 / 12 / 30$ $60 / 120 / 600 / 1200 \mathrm{~V}$ DC. 3/6/15/60/150/ 300/600/900V AC. Currant: $0.06 / 0.6 /$ $6 / 60 / 600 \mathrm{~mA} A \mathrm{BADC}$ $0.3 / 3 / 30 / 300 \mathrm{~mA}$ 3A AC. Revistonce: 25/500 ohms/0.5/5/50/500k ohms/5 Mohrms. Decibals: -10 to +12 ds . Size $167 \times 98 \times 63 \mathrm{~mm}$. Suppliod compintituctione. OUR PRICE f10.60p/P \& ins 60p
HIOKI 750X VOLT.OHM. MILLIAMETER 43 ranges: $0-0.3 / 0.61$$1.5 / 3 / 6 / 2 / 2 / 30 / 60 / 150$ $300 / 800 / 2 / 200 \mathrm{VCD}$ $0-3 / 6 / 15 / 30 / 60 / 120 /$ 300/600/ $1,200 \mathrm{VAC}$. 1.5/3/15/30/150/300 $\mathrm{mA} / 6 / 12 \mathrm{~A}$. Rexisence: Oecibots -10 to til +178 . Output:-$0-3 / 6 / 15 / 30 / 60 / 120 / 300 \mathrm{~V}$. Accur- meter. Built in protection. Size: $57 x$ $102 \times 153 \mathrm{~mm}$.

 accuracy 1%. $A C$ 1.5\%. Knife edge
pointer, mirror scie. Complate with sturdy, metal carrying case, leads and Instructions.
OUR PRICE $£ 11.60$ P/P \& Ins 60 p

U4315 MULTIMETER

 Sturdy 43 .rangemultimeter for currentend voltaga in DC AC circuits with frea. 45-20kHz
and DC resisand DC resiz-
tence capaci tance
Ranges,
RC 50 ${ }^{0} \mathrm{C} 50$
$0.5 \mu \mathrm{~A} / 1 / 5 / 26$ /
100/560/2500: DC $75 \mathrm{mV} / \mathrm{IV} / 2.6 / 5 /$ 10/25/100/250/500/1000: AC O.5 2.5/5/10/25/100/250/500/10000: DC 300Ω. DC $5 \mathrm{~K} \Omega / 50 / 500 / 5000$; -15 db +2dB. Complete with stosi OUR PRICE $£ 10.80$
 carrying case and leade. manual.
 OUR OHLC. -20 to +81.5 dB . OUR PRICE E13.50P/P \& Ins 60 p

MODEL AF. 105 VOM 50.000 opv. M
scale. Meter scale. Mbtar

protection. | $0 / 3 / 3 / 12 / 60 / 120 /$ |
| :--- |
| $300 / 600 / 1200 \mathrm{VDC}$ | 0/6/30/120/ $300 / 600 / 1200 \mathrm{VDC}$. $0 / 30 \mathrm{~A}$

$60 / 6 / 6 /$ $60 / 300 \mathrm{~mA} /{ }^{2}$
$12 \mathrm{Amp} .0 / 1 \mathrm{KK}$ 12 Amp. $0 / 10 \mathrm{~K}$ -20 to +17 dB OUR PRICEf13.50P/P \& Ins 60p

U4313 MULTIMETER

 High sonsitivity(20,000 opvon DC And 2,000 opv on AC and on DC and 2.5% on AC. R
DC and ${ }_{\text {DC }}^{\mathrm{DC}} \mathrm{and}$
currant
0.6 mA
3/15/60/
300/1.5A:
VC and A
1.5V/3/7.5/
$1.5 / 30 / 60 / 150 / 300 / 600$

16/30/60/150/300/600; DC resis-
tance $1 \mathrm{kohm} / 10 / 100 /, 000 .-10$ to tal
+12 dB , etc. Complete with steel OUR PRICE $£ 14.90$

50 OUR PRICE $£ 15.05$ P/P \& ins 60p
 U4317 MULTIMETER

 Knifo edget pointerk 86 m Ranges 100mVI $0.5 / 2.5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ VDC. $0.5 / 25 / 10 / 25 / 50 / 100 / 250$ $5 \mathrm{DC} .00 .5 / 2.5 / 10 / 25 / 50 / 100 / 250 /$ OUR PRICE $18.35 \mathrm{~F} / \mathrm{P} \& \operatorname{lng} 60 \mathrm{p}$

OUR PRICEf18.90p/P \& Ins 60D

KAMODEN 360 MUL TIMETER High sonsitivity
DC 100 konm
AC $10 \mathrm{kcohm} /$
 tess leads etc.
OUR PRICE $£ 18.90$ P/P \& Ins 60 p
Modet HT100B4 MUL TIMETER Ovarload protected.
shock proot shock Proot circruits. 9.5uA Mater with
mirror seble Sensivivity
100 kV . Pol irity chana 1wokV. Pol erity ch innge/
switch. Aaness: $0.5 / 2.5$ / 1/550/250/500/1.000
Volts DC $2.5 / 10 / 50 /$ Volts DC. 2. $2 / 10 / 50$,
$250 / 1,000$ Volts AC. DC resistence: 0-20i $200 \mathrm{k} / 2 / 20 \mathrm{Meg}$ ohms
DC current:- $10 / 250$ DC current:- 10/250. A/2.5/25/250 to +62 dB . Operates from $2 \times 1.5 \mathrm{~V}$ batreries. Size: $180 \times 134 \times 79 \mathrm{~mm}$. OUR PRICEE21.50p/P \& Ins 60 p

MODEL C7080EN

$50 / 250 / 1000 /$
500 DC
$0 / 2.5 / 10 / 50 / 250$
$0 / 2.5 / 10 / 50 / 250 /$
$1000 / 5000 \mathrm{~V} \mathrm{AC}$. $0 / 500 \mathrm{~A} / 1110 / 10$
$100 / 500 \mathrm{~mA} / 10 \mathrm{~A}$

$10+50 \mathrm{~dB}$
OUR PRICEf21.50p/P \& ins 60p

KAMODEN HMT20B FET VOM

OUR PRICE $\mathrm{f} 15.10 \mathrm{P} / \mathrm{P}$ \& Ins 60 D

SWR METER Model SWR3

 Handy SWB meter fortransmiter ment, with butitiona ditis 5 strongth moter. Accursicy 5\%, 'mpadinc. 52 . Inc
ator 100 AA OC. Full schate 5 mection colllapsibl
antenna. Sizo $145 \times 50 \times$ 3ntenna,
60 mm.
OUR PRICE f4.55 P/P \& Ins 60_{p}
U4341 Multimeter \&
 0.6/2/6/20/60/200 Bettery operated, Supplied complote with probes, losch and stoel caryin OUR PRICE $11.85 \mathrm{P} / \mathrm{P} \& \operatorname{Ins} 6^{\circ} \mathrm{O}_{\mathrm{P}}$

KAMOBEN TT35

TRANSISTOR TESTER High quality
instrument to
test reversh loak
currant and DC
current. Amplification fector of
NPN, PNP, diodes. transistors, SCR'
atc. 4^{*} square cleart scmie meter
Operates from Operates from
internal batteries Complete with

carrying handle.

OUR PRICE f 18.

S
TRANSISTOR TESTER
100.000 opv. Mirror
scale Overiod

$.0 .6 / 3 / 12 / 30 / 120 /$
$600 \mathrm{~V} 0 \mathrm{C} .0 / 6 / 30 /$
120

$3007 \mathrm{~A} / 6 / 12 \mathrm{~A} D \mathrm{DC}$
$0 / 10 \mathrm{k} / 1 \mathrm{Meg} /$
100 Meg.
100 Meg
$-2010+50 \mathrm{~A}$
$0.01-0.2 \mathrm{MFD}$
 and ICO. Compterto
batteries and leats.
OUR PRICE £22.65p/P \& Ins 60 p CI5 PULSE OSCILLOSCOPE For dieptay of pulsed
and priodic wave
forms in forms in elecertonic
fircuits VERT. AMP.
 Sensitivity at 100 kHz
VRMS $/ \mathrm{mm}: 0.1-25 ;$
HOR HOR. AMP. Ban
width: 500 kHz . widiti
Sonsivity ay 100 kH
VRMS $/ \mathrm{mm}: 0.3-25$

1-3000unec. Frem ranning 20-200
kHz in nine ranges. Calibrator pips:
$220 \times 360 \times 430 \mathrm{~mm} .115-230 \mathrm{AC}$.
OUR PRICE 547.50 P/P

Will measure $A C$ and $D C$ volts. $A C$ and DC current, and resistance in a
total of 20 ranges. The large light emitting diode display will read up to 1999 and automatically indicate polarity. Indication of positive and negative overload is also provided. The instrument is fiteed with a comblned carrying handle and bench stand and sockets are provided for the connection of an extarnal power supply
RANGES:
DC VOLTS: 1 v .10 .100 v .1000 v AC VOLTS: $1 \mathrm{v}, 10 \mathrm{v}, 100 \mathrm{v}, 1000 \mathrm{v}$ 100 mA .1000 mA
AC CURRENT: 1 mA .10 mA
$100 \mathrm{~mA}, 1000 \mathrm{~mA}$.
RESISTANCE: 1 k .10 k .100 k .1000 k
OUR PRICE E63.70[P/P \& Int 50p
ALL PRICES INCLUDE VAT

EXPORT Personal exports arranged for

 overseas visitors. Goods speclelly packed, world at minimum cost exclusive of VAT. pavment by bank trans for, certified cheque.CLSTOMER SERVICES our Customer Services Divislon at Head iffice will answer all your enquile as
just ring ot-200 1321

BUY AT LASAKys

make sense of Hi -Fi TE22 SINE SQUARE WAVE AUOIO GENERATOR Sind 20cps
to 200 Hz
on 4 bunds.
Square 20
cps^{2} to 30
k Hz . Outpu

impondence.
$200 / 250 \mathrm{~V}$
AC operation. Supplied brand new
guaranteed, with instruction manual OUR PRICE $26.90 \mathrm{P} / \mathrm{P}$ \& Ins 60p
ARF 300 AF/RF SIGNAL GENERATOR All transintoris
compect fully compoct tully wove $18+1 z$ to 220 kHz . AF qquare
Wava 18 Hz to 100 K Hz. Output Squar
Sine wave 10 V . Sine wave 10 V .
$P \rightarrow$ RF 100 kHz t 200 MHz . Output IV mestimum. $220 / 240 \mathrm{AC}$ operation. Complete with instructions and lasc). OUR PRICE $\mathbf{~ 4 0 . 5 0 P / P ~ \& ~ i n s ~ 6 0 p ~}$
MODEL TE20 RF SIGNAL GENERATOR Six bends. 120 kHz -
260 MHz . Dual outpui R6OMHz. Dual outpui
RF ferminass. Separate variable zudio output. Accuracy $\pm 2 \%$. Audi output to 8V. Power requirements:
$105-125 \mathrm{~V}, 220-240 \mathrm{~V}$ AC Size: 193 $\mathrm{K}-125 \mathrm{~V}, 220-240 \mathrm{VAC}$. Size: 193
$\times 265 \times 150 \mathrm{~mm}$. Complete with

DUR PRICE E20.45P/P \& Ins 60p HANIMEX HDC 1900 DIGITAL ALARM CLOCK

with lerge cleitr numbers, nighi light and 'snooze' switch. Attractively finished in white and

UR PRICE E8.10 P/P ains f 1.00

ALL PRICES
INCLUDE VAT

Belt-drive 2-speed turntable in kit form complete with pick uparm

AUOIOTRONIC AHA101 Stereo Headphone Amplifier All silicon.
tramsistor
 or tuner
inputs with
win stereo headphone outputs and sparate volume controls for aach
channel. Operates from 9 V battery. channal. Operates from 9 V battery
INPUTS: 5 mV and 100 mV OUTPUT: 50 mV per channel OUR PRICEE10.65P/P \& Ins 30p

RANK!AUDIO RA $210 T$ STEREO AMPLIFIER $71+7 \frac{1}{2}$ watts rms. Inputs for magnetic phono, tuner, tape and ouk. Separate base, treble, balance and volume controls. Headphone socket. Teak case. $\begin{array}{ll}\text { Unrepeatable offer. } & \text { P/P \& } \\ \text { OUR PRICE } \mathrm{f} 21.85 & \text { ns f1.00 }\end{array}$

your nearest store

CENTPAL LONDON	(01)
481 Oxiord Street. W1	4938681
10 Tottenham Court Rd. Wl	W1 6372232
33 Tottenham Court Ra. WI	W! 6362605
42/45 TottenhamCl Rd. W]	Wl 6360845
257/8 Tottenham Cl . Rd. W]	W] 5800670
3 Lisle Street. WC2	4378204
118 Edgware Road, W2	7239789
193 Edgware Road, W2	7236211
207 Edgware Road. W2	7233271
311 Edgware Road, W2	2620387
346 Edgware Road, W2	7234453
382 Edgware Road. W2	7234194
109 Fleet Street, EC4	3535812
152 / Fleet Street. EC4	3532833
gupmmeram	
116 Corporation Street 021	021.2363503
Botstal 16-18-20 Penn \$treet	20421
CNOYDON	
1046 Whitgitt Centre	6813027
MMCSSTON $38 / 40$ Eder St	St 5461271

ELIZABETHAN 8/LZ-1 8-Track Stereo F.ayer. Home 8-Traçk player with automatic anc illuminated channel indicators for use with your hifi system. Size $71^{*} w \times 12^{\circ} \mathrm{O} \times 2$ n "h. List Price 2 c28.90. OUR PRICE 114.90 P/P \& Ins

CATALOGUE
LASKYS 32 PAGE CATALOGUE AND PAICE LIST-absolurely free and vailable from all stores or by post (see coupon below). This exciting comprehensive selection from the largest Hi-Fion Getailer in EuropeMUST for every Hi-F enthusiast

ELECTRONIC CALCULATORS

We carry a tremendous range of both pocket and desk calcula ors from as little as $£ 6.20$ possible to include them in this advertisement. so esend for our atest price list or call into any

SPECIAL OFFER!

 SINCLAIR 4000 AMPLIFIER AND FM TUNEASlimline elegance and great performance from SIN CLAIR - the
4000 amplifier gives 17 W RMS per channal (both driven) into 8 ohme phones jack, active switchable scratch filter, low noise and List Price $£ 74.95$ P/P \& Ins OUR PRICE $£ 33.95 \quad \mathrm{f} 1.65$ A perfect match for the 4000 amplifier is tha 4000 FM tuner. 3 dB , sensitivity of $3 \mu \mathrm{~V}$ for 30 dB quioting, stereo beacon, etc. OURPRICE 0 - P / p \& Ins OUR PRICE $£ 29.95$ £1.65

日ELTEK C6260 AM/FM

 8-TRACKIN-CAR PLAYER The BELTEK C6260 includes A Mradio. and stereo 8-track and balance control, cartridge program indicator, atutomatic hea cleaning; comes complete with instsilation kit, suppressors, and ot includad) OUR PRICE 122.50 f 1.35| \rightarrow Whi | HIGH QUALITY
 CONSTRUCTION |
| :--- | :--- |
| KITS | |

 Aocina LIMITED STOCKS AT Oxford Streat, 42 \& 257 Totienham Court Road 162. Fleet Strent. 311 Edgware Road. CROYDON BIRMINGHAM KINGSTON SOUTMEND TUNBAMPTON WOLVERHAMPTON BTACHELLS

[^1]| AERIALS | |
| :---: | :---: |
| Tolescopic, 15-120 cm | $E 1.50$ |
| Telescoplc, H \& V Swlvel, 15-80cm | E2. 25 |
| Indoor FM antenne, Compact design | E2.45 |
| Loft mounting FM dipole antenna | E2. 45 |
| CAPACITANCE SUBSTITUTION BOXES | |
| $0001,001,0022,01,022,047,0.01,0.22$
 KEYNECTORS | £2. 35 |
| Rapid connect to malns. Built-in piano switches, neon \& 13A fuse | £3.50 |
| MULTIMETERS | |
| $\begin{aligned} & \text { Vac- } 10,50,250,1,000 . \text { Vac- } 10,50,250, \\ & 1,000 . \operatorname{Idc}-100 \mathrm{~mA}, R=150 \mathrm{k} \end{aligned}$ | £4.95 |
| PRINTED CIRCUIT KIT8 | |
| Contain alt items necessary to produce prlated circults | |
| Audlo through video signals, Ideal | |
| -serviclng amplifiers, radio \& iv TEST SWITCHE 8 | E4. 25 |
| 5 minlature push to test awitches | E1.00 |
| VERNIER DIALS | |
| Poaltive logging to $1 / 10$ th of a degree, 8: 1 ratio, clear scales | £2.45 |
| VU METERS | |
| Calibrated -20 to $+3 ; 0-100 \%$, ideal | |
| -recording level or power output | E3. 40 |

2AUDIO PRODUCTS

AUDIO LEADS

$5 p$ din plg to $5 p$ din plg. 1.5 m lead $2 p$ din plg to $2 p$ din skt. 10 m lead 5 pin din plug to 2 phono plugs HIE HI-FI ACCESBORIES GROOV-KLEENS-Ref. 42
4" TAPE EDITING KITS-Ret. 23 CASSETTE EDITING KITS-Ret. 24 CASSETTE MEAD CLEANERS-Ref. 31 HI-FI STEREOTEST CASSETTESRREt. 53

1
$\$ 1.20$
E 1.20
E 1.45
E1. 20
E1. 95
E1. 50
£1. 65
ع0.65

CASSETTE WALLET8 (HOLO 6)-Ref. 39 CASSETTE HEAD DEMAGNETISERS
Shaped pole piece-saves time EARPHONES
Stethoscope style, 8 onm dynamic Crystal earphore with lead \& plug High resistance, 2000 ohm headphone FOOT SWITCHES
Push on-push off. Anti skid base
$\varepsilon 2.70$ INTERCOMS
2-atation, ideal for the home-baby
alarm, office, with cable \& staples
$\varepsilon 6.35$

Door-phone 'Answer door befors
opening' Completely weatherproof
$\varepsilon 9.95$ MICROPHONES
Dynamic, remote start/stop,200 ohms, $100-10 \mathrm{kHz}, 6 \mathrm{mV}$ outpuk miniAtLRE TRANSISTOR MOOULES Mieroohone pre-ampllifler Power amplifier
80.90

ع3. 65
E1.20
£0. 65 £3. 20

E2. 15
E2.45
(Each plug-in with mounting socket) STEREO HEADPHONES
Superb stereo listening In comfort and privacy, $30-95 \mathrm{kHz}$ 日 ohms
STEREO HEADP HONE JUNCTION BOXES
3 way switch unit selects phones
only, speakers only or both

STEREO PRE - MAPLIFIERS

n: 3-30mV. Equelise:R|AA. Out:200-
B00mV flat . $20-20 \mathrm{kHz}$. Supply: PP3 SPEAKERS
Miniature, 75 mm dia, 8 onms
TWEETERS \& CROSSOVERS
Super Tweeters, 8 onms, $\mathrm{c} / \mathrm{f} 7 \mathrm{kHz}$,
For systems up to 30W RMS
Cone Tweeters, 8 onms, $\mathrm{c} / \mathrm{f} 3 \mathrm{kHz}$,
For systems up ta 10W RMS
£2. 35
Crossovers, 8 onms $, \mathrm{c} / 4800,3 \mathrm{kHz}$
$£ 5.85$
Crossovers, 8 ohms, $\mathrm{c} / 43 \mathrm{kHz}$
For systems up to 15 W RMS

BATTERY ELIMINATOR 8

Ministure AC adaptor-provides
9V at $50 \mathrm{~mA} D C$ output from mains E4.35 POWER SUPPLY UNITS
Py Switchable between $6 \& 9 \mathrm{~V}(200 \mathrm{~mA})$
ideal-most small radios, etc. E4.85
P2 Switchable to provide 6,7.5,
9 V at 400 mA
E7. 15
TRANSFORMERS
Mains (miniature), 2 secondaries
$0-6 \mathrm{~V}, 0-6 \mathrm{~V}$ RMS, $280 \mathrm{~mA} \quad £ 2.70$
$0-12 \mathrm{~V}, 0-12 \mathrm{~V}$ RMS, $150 \mathrm{~mA} \quad$ E2. 70
Mains (sub miniature)
$6-0-6 V$ RMS 100 mA

6-0-6V RMS, 100 mA
$12-0-12 \mathrm{~V}$ RMS, 50 mA

E 1.45
PEREONAL RADIOS
Philips RL077 wlth earphone \& case $£ 6.00$
Phllips RLO20 with earphone \& case
E7. 50

COMBINATION TRY E MITWE SOUARES

Cabinet/Cnassls/P.C.B.work. One
tool combinlng Try \& Mitre Square, Depth,
Height and Marking Guages. $300 \mathrm{~mm} / 12 \mathrm{in}$
Rule. Spirit Level/Plumb \& Steel Scriber E2.35
HAND ORILLS
Leytool compact, 5/16" chuck, Gears
totally enclosed, S / L bearlings
SOLDE RING IRONS
Antex $25 \mathrm{~W}, \times 25,240 \mathrm{~V}$, Low leakage, $1 / 8^{\prime \prime}$ interchangeable torg llfe bit $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ spare bits-each $\times 25$ Elements
Stands, ST3, High grade base, spring, sponges, accomodation-spare blts
SOLDER In handy Bib dispenser E1.00 WIRE STRIPPERS a CUTTERS日lb 8B, 8 guage selector, automatic opening, easy grip handes

Ist GRADE COMPONENTS
 MOTOROLA•MULLARD•SIGNETICS MONSANTO -FERRANTI GIM

We hold $£ 250,000$ worth of components and all items listed in this advertisement are ex-stock at the time of going to press - All products guamanteed - No minimum order charge

SIGNETICS 74 series TTL

N7400	14p	N7453	18p	N74148	¢ 1.26
N7401	14p	N7454	18p	N74150	C2.45
N7402	$14 p$	N7460	18p	N74151	¢1.44
N7403	18p	N7470	36p	N74153	68p
N7404	18p	N7472	24p	N74154	61.44
N7405	20p	N7473	36p	N74155	72p
N7406	41p	N7474	30p	N74156	72p
N7407	41p	N7475	54p	N74157	68p
N7408	$41 p$	N7476	37p	N74158	68p
N7409	20p	N7480	50p	N74160	9p
N7410	15p	N7483	99p	N74161	99p
N7411	$21 p$	N7485	¢1.17	N74162	9p
N7413	29p	N7486	32p	N74163	99p
N7414	45p	N7490	63p	N74164	61.26
N7416	27p	N7491	90 p	N74165	¢1.26
N7417	27p	N7492	63p	N74166	¢ 1.26
N7420	15p	N7493	48p	N74170	61.80
N7421	$21 p$	N7494	90p	N74174	61.13
N7426	23p	N7495	72p	N74175	$81 p$
N7430	15P	N7496	¢1.63	N74180	$90 p$
N7432	23p	N74100	C1.35	N74181	63.24
N7433	27p	N74107	32p	N74182	$90 p$
N7437	27p	N74109	54p	N74190	¢1.44
N7440	18p	N74116	61.35	N74191	C1.44
N7442	70p	N74121	36p	N74192	61.44
N7443	61.35	N74122	50p	N74193	¢1.44
N7444	\$1.35	N74123	90p	N74194	$¢ 1.08$
N7445	41.35	N74125	$43 p$	N74195	90p
N7446	f1.35	N74126	43p	N74198	£1.98
N7447	41.12	N74128	45p	N74199	$¢ 1.80$
N7448	41.35	N74132	45p	N74221	90p
N7450	18p	N74145	90p	N74279	72p
N7451	18p	N74147	C1.44	N74298	61.28

LINEAR ICs

SIGNETICS

LM301AV Ext. comp. operational amplifier	$36 p$
LM307V Inf. comp. operational amplifier	45p
MC1458V Dual comp. operational ampl	80 p
NE510A Video amplifier	61.58
- NE540L Audio power driver	61.17
NE555 Timer	44p
NE556A Dual 55514 pin	$95 p$
NE561B Phase locked loop with A.M. demod.	62.70
NE5628 Phase locked loop with V.C.O.	¢2.70
E566V Phase locked lood function gen.	<1.50
*PA239A Dual low noise stero pre-amp.	95p
A741CV Op. am	42 p
A747CA Dual op. am	90 p
MOTOROLA	
MCI303L Dual stereo pr	61.47
- MCl 306 P t W audio amp	64 D
MC1 304 P F.M. multiplex stereo demodula	E1:12
-MC1301P 5 tereo demodulator	£1.92
-MC1312P	11.94
*MC1314P \} Quadrophonic decoder kit	63.31
*MC1315P	C3. 59
- MC1330P Low level video det	67p
496 G Duble bal	
6040 Electronic	
G.I.M. CONSUMER CIRCUITS	
AY-5-1224 12/24 hour digital clock circuit	\$4.25
AY-5-3510 $3 \frac{1}{4}$ digit DVM circuit	C6. 10
*AY-1-0212 Master tone generator	¢5.55
- AY-1-5051 4 stage divider	ci. 20
- AY-1-6721/5 5 stage divider	C1.30
*AY-1-6721/6 6 stage divider	11.45
* AY-1-5050 7 stage divider	E1.75
C5S0 8 digit calculator chip	c6.30
C500 a digit calculator chip	63.25
SIGNETICS MEMORIES	
	54.50
2602B MOS 1024 bit seatic RAM	63.00
FERRANTI ICs	
ZNIO40E Universal cour	
ZNIO34E Precision timer cct	62.99
ZN414A.M. radio circuit	61.00

MOTOROLA C-MOS MC14000CP MC14001CP MC14002CP MCl4006CP MCl4007CP MC14008CP MC14009CP MC14010CP MCI401ICP MC14012CP MC14013CP MC14014CP MC14015CP MC14016CP MC14017CP MCl402ICP MC14022CP MC14023CP MC14014CP MC14025CP MC14027CP	19 p 19 p 19 p 61.45 19 p 61.54 91 p 91 p 19 p 19 p 53 p 61.42 61.17 53 p 61.13 6.17 61.54 19 p 61.14 19 p 78 p	MCl4028CP MCl4032CP MCl4034CP MCl4035CP MCl4038CP MCI4040CP MCl4042CP MCl4046CP MC14049CP MCl4050CP MC1407ICP MCI4076CP MCI408ICP MCl4500 s MC14510CP MCl4511CP MCl4528CP MCl4543CP MCl4536CP MCl4553CP MCl4558CP MCl4585CP	

COMPLETE LIST AVAILABLE ON MCI4500 SERIES.
 SEND S.A.E.

SPEEGiLL OFFER
MAN3M 0.127" red seven seginent display 25p each

Mullard audio and radio modules
*LP|1625W Audio Amp
-LPI173 10W
*LPII81 RF-IF
*LP1 $183 / 2$ Stereo Pre-amp Module
*LP I $83 / 2$ Stereo Pre-amp Module
-LPII85 FM IF A mplifier
-LPII86 FM Tuner Module
-LP|400 5tereo Decoder Module
Data and suggested circuits available price 5p per Module.
MONSANTO LEDS AND DISPLAYS—THE FINEST IN THE WORLD $0 \cdot 3^{*}$ seven 的ement displays
Red Grein Yellow
MAN71 MAN51 MANBI common anode R.H. decimal $£ 1.34$
MAN72 MAN52 MANB2 common anode L.H. decimal El.34 MAN73 MAN53 MAN83 common anode overflow (± 1) 61.34 MAN74 MAN54 MAN84 common ca*hode R.H. decimal El. 34

LEEDS

TIL209 typ case, high intensity
MV5074B red $15 p$ MV5274B green 32p $\begin{array}{lllll}\text { MV51748 orange } & \text { 32p MV53748 yellow 32p }\end{array}$

VOLTAGE REGULATORS

Motorola Variable
MC1723CP2 pos. or neg. 2-37V 150 mA d.c.
MCl461G positive $0-40 \mathrm{~V} 500 \mathrm{~mA}$ d.c.
Motorola Fixed
MC7805CP $5 V$ positive $\mathbb{C 1} 28 \mathrm{MC7905CP} 5 \mathrm{~V}$ negative $\mathbb{C 1} .80$ MC7812CP 12 V positive C1.28 MC7912CP 12 V negative E1.80 MC7815CP 15 V positive $61.28 \mathrm{MC7915CP}$ I5V negative 61.80 MC7818CP $8 V$ positive €i.28 MC7918CP 8 V negative E1.80
MC7824CP 24 V positive G1.28 MC7924CP 24V negative Ei.80 MLM309K 5 V positive TO-3 can 624.8 MLM309K 5 V positive TO-3 can

TRIACS	Motorola Darlington	
MAC92-2 60V 0.8A. 29p	Transistors	
MAC92-6 400V $088 \mathrm{8A}$,	$\begin{aligned} & \text { MJ2501 } \\ & \text { JJ3001 } \end{aligned}$	$\begin{array}{r} E 1.69 \\ 61.47 \end{array}$
1606960 V	Motorola Plastic	
2 N 6073 400V 4A, 74p.	Transisto	
	MJE340	45
	MJE370	60
SCRS	MJE371	1
2N5060 30V 088 Ac , 27p	MJE520	
2N5061 60V $08 \mathrm{AA}, 27 \mathrm{p}$.	MJE2955	95
MCR107-6 400V 4A, 47p.	MJE3055	

MULLARD

 CONSUMER ICsTTAA 350 A
-TAA550
TAA570
TAA630
-TAA 700

- TAD100
-TAD100
TTBA480
TBA 4800
-TBA480Q
TBA500
-TBA500Q
-TBA510Q
-TBA520
-TBA520Q
- TBA530
*TBA530Q
TBA540
-TBA550
TBA550Q
-TBA560C
-TBA560CO
*TBA570
-TBA570Q
TBA673
$-T B A 690$
- TBA690
- TBA690Q
*TBA700
*TBA700Q
TBA720AQ
-TBA750
*TBA920
- TBA920Q
- TBA990Q
-TCA160B
-TCA160C
- TCA270
- TCA270
*TCA290A
-TCA420A

TRANSISTORS, DIODES, ETC.

$12 A C$
128

P.E. SYNTHESISER

(P.E. Feb. 1973 to Feb. 1974)

The well acclaimed and highly versatile large scale mains-operated Sound Synthesiser complete with keyboard circuits. All function circuits may be used independently, or interconnected. The greater the number of circuits, the greater the versatility. Synehesiser to good advantage be used

THE MAIN SYNTHESISER
Stabilised Power Supply
© 12.05
Two Linear Yoltage Controlled Oscillators and one Inverter-all 3 circuits: Two Ramp Generators and Two Input Amplifiers-all 4 circuits
PCB (holds all 4 circuizs)
Sample-Hold and Noise Generator-
PCB (holds both sircuies)
Tone Control, C2.43; PCB, 72p
Sprine Line unit for Reverb Amp
Ring Modulator
Pakk Leval Meter Circuit
$100 \mu \mathrm{~A}$ Panel Meter
PCB for Rey., R-Mod, \& Meter Ccts.
Envelopo Shimper, 55.24 ; PCB,
Envelope Shaper, 55.24 ; PCB, \&1.42 THE SYNTHESISER KEYBOARD CIRCUITS Can be used without the Main Synthesiser to make an independent musicalinstrument PCB for borh log VCO's Divider, 2 Hold Circuits, 2 Modulation Amplifiers, Mixer and 2 Envelope Shapers $\& 19.46$ PCB (Holds the first 6 circuits) PCB for borh Envelope Shapers Keyboard Stabilised Power Supply Printed Circuiz Board

SYWTHESISERS AND KEYBDARDS

P.E. JOANNA

(P.E. May to Aug. 1975)

The new electronic piano that has switchable alternative voicing of Piano Honky-Tonk and Harpsichora. All PCB's are "as published"
Power Supply 88.85 Tone Generator e
Envelope Shapers
12 sets (full requirement)
Set of 12 PCB's (full requirement)
Voicing and Pre.Amplifier Circuits Voicing and Pre-Amp
PCB for above circuits

Remaining circuits: prices in lists.

KEYBOARDS

Kimber-Allen Kerboards as required for many published circuits. including the P.E. Joanna, P.E. Minisonic and P.E. Synthesiser. The manufacturers claim that these are the finest moulded plastic keyboards made.
3 Octave Keyboard (37 notes C to C) 820.50 4 Ocrave Kerboard (49 notes C to C) 423.50 5 Octave Keyboard (61 notes C to C) $\mathbf{~} 27.00$ Contact Assemblies for use with above keyboards: Single-pole change-over (SP) as for P.E. Joanna and P.E. Minisonic. Two-pole normally-open makebreak (2P) as for P.E. Synthesiser, ${ }^{\text {assembly }}$ (PS) having poles, which are assembly (4PS) having poles, $\begin{aligned} & \text { of which are } \\ & \text { normally-open make-break contacts and the fourth }\end{aligned}$ is a change-over contact-this special assembly enables the same keybosird to be used with the P.E. Synthesiser. P.E. Minisonic, and P.E. Synthesiser simultaneously thus avoiding the cost of more than one keyboard.

$\begin{array}{lllll}\text { Contact Each Sot } & \text { Set } & \text { Set } \\ \text { SP } & 20 p & 67.40 & 69.80 & 412.20 \\ 2 P & 24 p & 48.86 & E 11.76 & \text { E14.64 }\end{array}$
 Printed Circuit Boards for use with the above wiring required, are available-details in our lists.

PHONOSONICS

P.E. MINISONIC

(P.E. Nov. 1974 to March 1975) A portable, battery or mains operated, miniature sound synthesiser, with keyboard circuits. Although Synthesiser the functions offered by zhis design give it sreat scope and versatility.
Two Voltze Controlled Oscillintors 45.14 Voltaze Controlled Filter. Two Envelope Shapers and Two Voltage € 3.35 Controlied Amplifiers and Two Voitace $£ 7.25$ Keyboard Controllor and Hold Circuite <2.62 Keyboard Divider Resistors (select type to suit keyboard used, all are 2% tolerance), 2 Octave, 41 ; 3 Oct., il.4 ${ }^{2} 4$ Oct., $41.96 ; 5$ Oct., 22.44. H.F. Oscillator and Detector Ring Mod., Noise Gen. EEnv. Inverter 4.96 Two Power Amplifiers and Two Mixers 43.51 Battery Eliminator 45.68
Temperatur Stabiliser $\$ 1.47$
PCB to hold 2 VCOs, VCF and V-Ref \quad Cl.84
PCB to hold 2 ESs, 2 VCAs, 2 Mixers, Ring Mod, Keyboard Control and Hold \&1.99 PCB to hold 2 Power Amps, Noise Gen, EnvelopePverter, HF Osc. and Detector

C1.32
PCB for Batcery Elim. Temp. Stab.
C 1.25
FOR ADDRESS, INFORMATION REGARDING POST AND PACKING, VAT, LISTS. AND EXPORT TERMS SEE OUR OTHE
ISEMENT ON OPPOSITE PAGE
Photos: 2 of our units concaining some of the P.E. projects buile from our kits and PCBs. (The cases were built by ourselves and are not
for sale.)

DIGITAL CLOCK

inc. VAT, Post \& Packing
MATCHED CHIP \& DISPLAY £6.36

DISPLAY
Only Price
Inc. VAT

CHIP

Only Price
25.50

Inc. VAT

FUTABA 5-LT-01. 7 SEGMENT Phosphor Diode. 12.5 mm Digit AM/PM and colon

CALTEX CT7001. MOS LSI
28/30/31 Day Calendar
24-hour Clock
Snooze Alarm
Clock Radio Feature
Easily Settable Counters

Payment with order
IMTECH PRODUCTS LTD.
IMP HOUSE, ASHFORD ROAD, ASHFORD, MIDDX. Telephone: Ashford 44211 Telex: 936291

Dimmit range of light dimmers and lighting comerol systems

lllustrated is the popular PMSDIO00 module. A 1 kW slider control dimmer, interference suppressed, 60 mm slider range size $4 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in. Ideal for low cost stage and disco lighting. Used by schools, theatres, studios, etc. Complete with scale plate, fixing screws and full instructions. $\mathbf{4 8} 60$ inc. VAT and postage and packing.

Complete compact light dimmer systems for stage, club and disco lighting, ete.

DD61 (illustrated). Six 1 kW channels, six outlet sockets, master control, mains on/off switch, size $23 \times 8 \frac{1}{2} \times 5 \mathrm{in}$. Price $£ 97.20$ inc. VAT.

DD261. As above but with two-preset arrangement, i.e. two slider controls per channel, two master controls. Size $23 \times 10 \times 5 i n$. Price f 117.72 inc. VAT.

DD61-B. Six lkW channels, using module PMSD 1000 , lowest cost system. Size $16 \frac{1}{2} \times 8 \times 5$ in. Price $\mathbf{4 5 9 . 5 0}$ ine. VAT.

DD62. Six 2 kW channels, six outlet sockets, mains on/off switch. Size $25 \times 10 \frac{1}{2} \times 6$ in. Price $£ 156.60$ inc. VAT.

Add $\mathbf{£ 2 . 2 0}$ postage and packing for all systems.
The Dimmit range includes rotary and slider control dimmers and sound to light converters for home, entertainment and professional applications. Ratings $1 \mathrm{~kW}, 2 \mathrm{~kW}, 3 \mathrm{~kW}$.

All products are guaranteed and are supplied with full instructions and applications. Full after-sales service. Technical advice given.

For full information on all modules and lighting control systems send I5p for our illustrated catalogue and price list. Callers welcome, visit our show room for a demonst ration of any of the modules or systems. Mon.-Fri. 9.30 to 6.0 p.m. Sat. by ar rangement.

PHONOSONICS
SOUND-TO-LIGHT (P.E. Apr.'Aug. 71)
The ever-popular AURORA-4 or 8 channels each responding to a different sound frequency and controlling its own light. Can be used with most audio
systems and lamp intensities. A MUST for any Disco, systems and lamp intensities. A MUST for any Disco, and a fascinating visual display for the home.
4 channel component set (excl. thyristors) 8 channel component set (excl. thyristors, Power supply component set \&4.86 PCB for power supply and 8 lamp drivers $\begin{aligned} & \mathrm{E} .32 \\ & \mathrm{El} .56\end{aligned}$ I Amp 400 V thyristors (1 per chan. requ.) each $75 p^{2}$
Panel meter ($1 \mu \mathrm{~A}$) (optionai) VOICE OPERATED FADER (P.E. Dec• 73) For automatically reducing music volume during home-movie shows.
Component set incl. PCB
62.95

TAPE-NOISE LIMITER
Very effective circuit for reducing the hiss found in most tape recordings.
Component set (incl. PCB)
Resulared power supply (incl. PCB)
62.50

P.E. SYNTHESISER
SEE OUR ADVERTISEMENT ON OPPOSITE PAGE

GUITAR EFFECTS PEDAL (P,E. July 75)
Will modify an audio signal not only from a guitar but from any audio source, producing 8 different switchable effects that can be further modified by the low-priced sound effects units in our range.
Component set with special foor operated Switches
Alternative component set with panel mounting switches
Princed Circuic Boar
46.16
64.60
$\leqslant 1.10$

HI-FI TAPE-LINK (P.E. Mar./Apr. 73)
Designed for use with reasonable quality cape-decks, chis high performance pre-amp includes record. playback and mecering circuits.
Stereo component set (excl. panel meter) Mono component set (excl. panel merer) Power supply component set
Stereo sub-assembly PCB
VOLTAGE CONTROLLED FILTER (P.E. Oct. 74)
An independently designed VCF that can be used An independenty designed
Component set
Princed circuit board
63.41

ENVELOPE SHAPER

The new ADSP Envelope Shaper published in
P.E. October $\$ 975$ and having manual control of its Attack, Release and Sustain functions. Component set incl. PCB
$43 \cdot 87$

Component sets include all necessary resistors, capacitors, semiconductors, potentiometer
transformers. Fuller details are in our lists.

RHYTHM GENERATOR
 (P.E. Mar, 'Apr. 74)

Programmable for 64,000 rhychm patterns from 8 effects circuits (high and low bongos, bass and snare drums, long and short brushes, blocks and
soft cymbal), and with variable time signatures and rhythm rates. Really fascinating and useful and rhythm rates. Really fascinating and useful.
Tempo. Timing and Logic circuits
$\mathbf{1} 12.57$ PCB for above circuits (double-sided) $\quad \leqslant 12.57$ Component set for all 8 effects circuits $\quad \mathrm{E} 10.49$ $\begin{array}{ll}\text { Set of } 4 \text { PCB's to hold all } 8 \text { effects } & 84.74 \\ \text { Simple mixer (no PCB available) } & £ 2.76\end{array}$ Simple mixer (no PCB available)
Alternative mixer with external volume controls and adjustable gain (independently designed). including PCB
Power Supply, including PCB $\mathbf{~ 6 . 3 2}$

SOUND BENDER (P.E. May 74)

A multi-purpose sound contraller, the functions of which include envelope shaper, tremolo, voice operated fadar, automatic fader and frequency-
doubler.
Component set for above functions (exel. SWs) $\leqslant 6.36$
Printed circuit board
or, the use of which, in conjunction with the above component set, can produce 'jungle-drum" rhythms.
Component set (incl. PCB)
PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlled unit for introducing the "phasing" sound inco live or recorded music.
Component set (incl. PCB)
PHASING CONTROL UNIT (P.E. Oct, 74)
For use with the above Phasing Unit co automatically control the rate of phasing.
Component set (incl. PCB)

P.E. JOANNA

SEE OUR ADVERTISEMENT ON OPPOSITE PAGE

WIND AND RAIN UNIT

A manually controlled unit for producing the abovenamed sounds.
Component set incl. PCB

POWER SUPPLIES

Sophisticated low-noise highly-stabilised power upply kits complete with PCB's and detailed in formation are now available. Details in list.
Other PCBs (all "as published'") While stocks last Bench Power Supply (P.E. Sept. 1974) CTV:
Master Logic, Video Amp., Sync Mixer and Cathode Switch PCB(P.E. Oct, 1974) 1974) $£ 2.20$ PCB for remaining Circuits (P.E. Oct. 1974)
\&2.20
Digital Power Supply (P.E. Aug. 1972)
Electronic Piano:
Pre-amp PCB (P.E. Oct, 1972)
Power Supply PCB (P.E. Oct. 1972)
Power Slaves: Power Supply PCB (P.E. Aug.
CBS SQ Decoder PCB (P.E. Sept. 1973)
CBS SQ Decoder PCB (P.E. Sep
Pre-Amp PCB (P.E. Oct. 1973) Tone, Balance and Volume Conerol PCB (P.E. Oct.)
\&1.40

GUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITB AND 8 TO A WORLD-WIDE MARKET BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)

Multi-function circuits that, with the use of other external equipment, can serve as lie devector,

Pre-Amplifier Module
Gasic Output Circuit
Combined component set with PCBs, for alphaphone cardiophone, frequency meter and visual feed-back lap driver circuis
Audio Amplifier Module Type PC7
65.50

SINE AND SQUARE WAVE GENERATOR (P.E, July 75)
Suitable for audio, digital, or general purpose. Controllable through 4 decade ranges 10 Hz to 100 kHz . Switched attenuation through 10 ranges Cont peak-to-peak.
Compo
PCB for above components
Power Supply
\&7.16
41.55

P.E. MINISONIC
 SEE OUR ADVERTISEMENT ON OPPOSITE PAGE

REVERBERATION UNIT (P.W. Nov. 'Dec. 72)
A high quality unit having microphone and line input pre-amps, and providing full control over reverberation level,
(exl. spring unit)
9 inch spring unit
Panel meter ($50 \mu \mathrm{~A}$) (opcional)
64.95

ULTRASONIC TRANSMITTER-RECEIVER

(P.E. May 1972). A highly, sensitive, tight-beam, long-range, "invisible beam" detection circuit with numerous applications. s but excludine

SEMI.CONDUCTOR TESTER (P.E. Ocr. 73)
Essencial test equipment for the enterprising home constructor. While stocks last.
set of resistors, capacizors, semiconductors. potenPanel meter ($500 \mu \mathrm{~A}$) 63.75

PHOTOPRINT PROCESS CONTROL (P.E. Jan.'Feb. 72) For colour and B \& W, an indispensible dark-room unit for finding exposure, conerolling enlarger timing, and stabilising mains voltage. \quad \& 10.18 Printed Circuit Board $\quad \$ 1.74$ Panel meter (ImA)
3.75

ENLARGER EXPOSURE METER AND

THERMOMETER (P.E. Sept. 73)
Dual-purpose dark-room unit with good accuracy. Component set with PCB but excl. meter \&4.78 Component set with P
Panel meter $(100 \mu \mathrm{~A})$

WILMSLOW AUDIO

THE Firm for speakers!

SPEAKERS

Baker Group 253. 8 or 15 ohm Baker Group 50128 or 15 ohm Baker Deluxe 12 in d/cone
Baker Major 12in dicone
Baker Aegent
Baker Superb
Baker Auditorium 12
Castle Super 8 RS/DD
Celestion MH 1000. 8 or 15 ohm
Celestion PS\& for Unilex
Celestion G12M 8 or 15 ohm
Celestion G12H 8 or 15 hm Celestion G15C 8 or 15 ohm
Celestion G18C 8 or 15 ohm
Decca London Ribbon Horn
Decca London and crossover
EmI $13 \mathrm{in} \times \sin 150 \mathrm{~d} / \mathrm{c} 8$ ohm
EMI $13 \mathrm{in} \times$ Bin type 3508 or 15 ohm
EMI $13 \mathrm{in} \times \sin 20 \mathrm{~W}$ base
EMI 6 thin 938504 or 8 ohm
EMI $\sin 14 \mathrm{~A} \cdot 7030$ mid range 8 ohm
EMI 2tin tweeler 97492ar
Eagle DT33 30W iweeter
Eagle HT15 horn tweeter
Eagle CTS cone tweeter
Eagle CT 10 tweeter 8 or 16 ohm
Eagie crossover CN23. CN2B. CN216
agle FR 65
Eagie FR8
Elac $9 \times 559 \mathrm{RM} 10915 \mathrm{ohm}$, 59RM114 8 ohm
Elac $6 \frac{1}{2}$ in 6RM171 d / c roll surr
Elac 6tin 6RM220 d/cone
Elac din tweeter TW4
Elac 10 in dicone 10RM239 8 ohm
Elac \sin BCS175 3 ohm
Fane Pop 15W 121 त,
Fane Pop 50w $12 i n$
Fane Pop 55 60W 12 in
Fane Pop 60W 15 in
Fane Pop
Fane Crescendo 12A 100W 12 in
Fane Crescendo 12 B bass
Fane Crescendo 15in 100W
Fane Crescendo 8in sin dic roll surr
Fane 807T 8in d/c roll surr
Fane $808 \mathrm{~T} \mathrm{Bin} \mathrm{d/C}$
Fane 701 twin ribbon horn
Fane 910 horn
Fane 920 hor

Goodmans 8P 8 in 8 or 15 ohm
Goodmans 10P 8 or 15 ohm
Goodmans 12P-D 8 or 15 hm
Goodmans 12P.G 8 or 15 ohm
Goodmans Audiomiax 12AX 100W
Goodmans Audiomax 15AX
Goodmans 15P 8 or 15 ohm
Goodmans 18P 8 or 15 ohm
Goodmans Hifax 750
Goodmans Axent 100 tweeter
Goodmans Axtom 40212 in
Goodmans Twinaxiom 8
Goodmans Twinaxiom 10
Jordan Watts Module
Kef T27
Kef T15
Kef B110
Ket B200
Kef B200
Kef B139
Kef B139
Ket DN8
Kel DN8
Kel DN12
Kef DN13
Peerless Dome Tweeier KO10DT
STC 4001G Super Tweeter
Aadford BD25
Radtord FN1ta
Radford FN12a and 12b
Aadford MO9
Radford TD3
Richard Allan CGAT d/c r/surt
2 in 75 ohm
7 in $x 4 i n ~$
3
$\sin \times \sin 3$ or 8 ohm
$10 \mathrm{in} \times 61 \mathrm{n} \mathrm{3}$. 8 or 15 ohm

SPEAKER KITS

Baker Major Module	Each [13-44
Goodmans Mezzo twinkit	pair $\times 17 \cdot 19$
Helme XLK25	pair ¢25.44
Helme XLK30	pair ¢17.19
Helme XLK50	pair $546 \cdot 25$
Kefkit 1	pair ¢ 46.44
Kefkit 3	mach $542 \cdot 50$
Richard Allan Twinkit	each E10.37
Aichard Allan Triple 8	each [15.94
Aichard Allan Triple 12	each [23-12
Ruchard Allan Super Triple	each $\mathbf{2 7} 50$
Wharledale Linton 2 kit	pair $\mathbf{2 2 3}^{\text {2 }} 12$
Wharfedate Glendale 3 kit	pair 540.62
Whartedale Dovedale 3 klt	pair ¢63-12

Send stamp for list.

FREE with Speaker Orders over $£ 7$

All units guaranteed new and perfect. Prompt despatch. Carriage and packing speakers 38 p each. 12 in and up 50 p each, speaker kits 75 p each ($£ 1.50$ pair), tweeters and crossovers 25 p .

Send stamp for free booklet Choosing a Speaker
Including VAT 25\% on Hi-Fi, $\mathbf{8 \%}$ on PRO and PA WILMSLOW AUDIO (Dept. PE)
Loudspeakers: Swan Works. Bank Square, Wilmslow. Cheshire SK9 1HF Discount Radio. PA. Hi-Fi: 10 Swan Street, Wilmslow
Discount TV. Hi-Fi: Swift of Wilmslow. 5 Swan Street. Wilmslow
4,

WILMSLOW AUDIO
(DEPT. PE)
10 SWAN STREET, WILMSLOW, CHESHIRE, SK9 1HF
Cut-price prerecorded cassettes-send stamp for list

JCI2 AMPLIFIER

6W IC audio amp with
free data and printed
circuit $£ 2.95$
DELUXE KIT FOR

THE JC12

includes all parts for the
he printed circuit and
olume, bass and treble controls needed to model with balance control $£ 5.20$. Stereo
JCl 2 POWER KIT
Supdies 28 V 0.5 Amps 54.77 .
PREAMP KITS FOR THE JCI2
Type I for magnetic pickups, mics and tuners.
Mono model $£ 2 \cdot 15$. 5 tereo model $£ 3.70$. Type 2 for ceramic or crystal pickups. Mono SEND S.A.E. FOR FREE LEAFLET ON KITS

$1 C 2010+10 \mathrm{~W}$ stereo
amp. kit with free booklet and printed sircuit $\mathbf{8 8} 58$.

PZ20 power supply kit for above $\mathbf{4 . 9 1}$.

AMPLIFIERS VP20 volume, tone control and preamp kit £6-79. SEND S.A.E. FOR FREE DATA BOOKLET

JC40 AMPLIFIER

kits. 20 W ourput. With free booklet and
king on printed circuit $f 6$.
BATTERY Eliminator Bargains
6-WAY SPECIAL The most versatile
battery eliminator ever
offered Switched output of $3,4,6,7 t, 9$ and 12 V at $500 \mathrm{~mA} \quad 45 \cdot 45$. 3-WAY MODEL
5 witched outputs of 6 , $7 \frac{1}{2}$ and $9 V$ at 250 mA ack plug and socket out
put connector $\mathbf{6 3} 55$.
AADIO MODELS
50 mA output with
poppett battery connec-
ors for transistor radios
etc. $6 V$ \& $3.86 ; 9 V \& 3.86$

6 ouble
$4 \frac{1}{2}+44$
$4.43: 9+9 V$

64.43.

$\mathbf{4}$.

TAPE RECORDER MAINS UNITS
7 V output complete with S pin DIN plug to mains $\mathrm{E4} .61$.

SINCLAIR CALCULATORS

Cambridge $\quad \mathbf{9 . 9 5}$ MAINS UNITS
 Oxford $100 \quad 69.95$ For Cambridge, Can

FERRANTI ZN4I4
IC radio chip with data $\mathbf{f 1} \mathbf{6 9}$. Also available kit of extra parts to complete a radio $\mathbf{6 3} 38$. Send A.E. for free leaflet

SINCLAIR PROJECT 80

AFU $67.55 \quad$ FM Tuner $\mathbf{C 1 3 . 2 5}$
Z40 $65.75 \quad$ Stereo decoder for above $\mathbf{6 8 . 5 5}$
Z60 67.10 Transformer for PZ8 $\mathbf{C 5} .16$
Q16 49.71 Stereo $80 € 13.25$
PZ6 $88.70 \quad$ Project 805SQ $£ 46.65$
$\begin{array}{cc}\text { PZB } \mathbb{E 8 . 2 0} & \text { Project } 80 \text { Quadraphonic decoder } \\ & \mathbf{E 2 0 . 9 7}\end{array}$
S-DECS and T-DECS
S.DeC 62.34.

F-Dec
μ-DeC $A 44.55$
μ-DeC A $£ 4.55$.
μ-DeC B 87.85.
IC carriers: 16 dil: plain
10 T05: Plain El 09 ; with
socket $\mathbf{E 2}$.08.

SWANLEY ELECTRONICS

P.O. Box 68, Swanley, Kent BR8 8TQ Prices include post and VAT.
Official credit orders from schools, etc.,
weleome
No VAT charged on overseas orders.
All prices are special offers

IP

MONO ELECTRICAL CIRCUIT DIAGRAM WITH INTERCONNECTIONS FOR STEREO SHOWN

The HY5 is a complete mono hybrid preampllfier, ideally suited for both mono and stereo applications. Internally first contains frequency equatisation and gain correction while the second caters for tone control and balance.

TECHNICAL SPECIFICATION
Inputs: Magnetic Pick-up 3 mV R|AA; Ceramic Pick-up 30 mV : Microphone 10 mV ; Tuner 100 mV ; Auxillary $3-100 \mathrm{mV}$. Inputimpedance $47 \mathrm{k} \Omega$ at 1 kHz . Outpute: Tape 100 mV Main output Ocb (0.775V RMS). Active Tone Controls 0.5% - 18 Hz Signal/Nolse Rällo: 68 dB Overiod Cepe bility: 40 db on most sensltive input. Supply Voltage $\pm 16-25 \mathrm{~V}$
PRICE $£ 4.75$
$+£ 1 \cdot 19$ VAT
P. \& Pree
TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS
The HY50 is a complete solid state hybrid Hi-F amplifle incorporaling its own high conductivity hestsink her metically sealed in black epoxy resin. Only five connections mere provided input output. power lines and earth.

TECHNICAL SPECIFICATION
Output Power: 25W RMS into 8Ω Load Impedance 4-16ת. Input Sensitivity: Odb ($0-775 V$ RMS). Inpul Impedance: $47 \mathrm{k} \Omega$. Distortion: Less than 0.1% at 25 W typically 0.05%. Signal/Nolse Rallo: Better than 75 db Fraquency Response: $10 \mathrm{~Hz}-50 \mathrm{kHz}=30 \mathrm{~b}$. Supply Voltage mm
DBIP + +1.55 VAT TECHNICAL SPECIFICATIONS

The PSU50 incorporates a specially designed transformer The PSU50 incorporates a specially designed transt

[^2]\square\mathrm{ Postal Orders }\square\mathrm{ Money Order }
Please debit my Access account }\square\mathrm{ Barclaycard account }
Account number
Name and Address
Signature
Please Supply
Total Purchase Price
Please debit my Access account \square Barclaycard account \square
Account number
Name and Address
Signature

```
}

RST
VALVE MAIL ORDER CO．
16a WELLFIELD ROAD，LONDON SWI6 2BS SPECIAL EXPRESS MAIL ORDER SERVICE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1N21 & \[
\begin{aligned}
& 39 \\
& 0.17
\end{aligned}
\] & \[
\text { Ar'Z11 } \quad{ }_{10}^{20}
\] & BY： 13 & \[
\begin{aligned}
& \text { Ap } \\
& 0.25
\end{aligned}
\] & 0AZ205 & \[
\begin{aligned}
& 5 \\
& 0.45
\end{aligned}
\] & 281741 & \[
\begin{aligned}
& 8_{0} \\
& 0.10
\end{aligned}
\] \\
\hline in23 & 0.35 & AF\％12 2.00 & BYZı & 0.45 & OAzeog & 0.15 & 2．s271 & 0.18 \\
\hline \(1 \mathrm{~N}_{5} \mathrm{E}\) & 0.88 &  & HY\％ & 0.40 & 0azent & 0.45 & \({ }_{\text {Zr21 }}\) & 0.25
0.25 \\
\hline IN263 & 0.50 & AXY24 0 & ВYZE！ & 0.40 & oazsix & 0.40 & ZTX \({ }_{\text {2rivi }}\) & － 0.12 \\
\hline 1N256 & 0.50 & Antey 0.30 & － yzia \(^{\text {a }}\) & 0.42 & OAZE0S & 0.40 & ZTX108 & 0.04 \\
\hline 1 N 645 & 0.16 & AnY3i 0.25 & BYZ： & 1．25 & OAZSIO & 0.40 & 2TX3m & 0.18 \\
\hline 1N725A & 0.20 & AsY50 0.20 & HY\％\({ }^{\text {\％}}\) & 0.60 & OA\％\({ }^{\text {O }}\) & 0.40 & ZTX304 & 0.24 \\
\hline 1 N 914 & 0.08 & Anyijs 0.40 & BY Y ¢ & 0.10 & OAZさせ！ & 0.45 & ZTX \({ }^{\text {cou }}\) & 0.18 \\
\hline IN400： & 0.12 & Anyīa 0.20 & C111 & 0.55 & OAZz2\％ & 0.46 & 7TX \({ }^{\text {a }}\)［03 & 0.16 \\
\hline 18113 & 0.25 & AYYE5 0.20 & （1knfus & 0.35 & OAZEP4 & 0.45 & 7.2 & 25 \\
\hline 1820 & 0.88 &  &  & 0.50
1.90 & OAZ 24
OAZ \(2+2\) & 0．85 & ITREO & ED \\
\hline 201371 & 0.75 & AHZ21 \(\quad 1.00\) & csios & 3.50 & \(0 \mathrm{O} / 244\) & 0.25 & clacu & \\
\hline 26381 & 0.22 & \({ }^{\text {ASL23 }} 00.75\) & D150以 & 0.15 & OAzCut & 0.15 & ：3010 & 0.18 \\
\hline 20.414 & 0.30 & AC．04 1.00 & L1Duas & 0.15 & OAZ：290 & 0.88 & － \(\mathrm{SnL}_{1}\) & 0.16 \\
\hline 2 C 417 & 0.25 & Al＇yior 1.50 & bluodi & 0.25 & OCl1） & 1.00 & －302 & 0.16 \\
\hline \(2 \mathrm{NH04}\) & 0.22 & \(\begin{array}{ll}\text { BC10\％} & 0.14\end{array}\) & nduat & 0.40 & OClif & 1.00 & －103 & 0.18 \\
\hline \(2 \mathrm{~N}^{695}\) & 0.16 & \(\begin{array}{ll}\text { BrC108 } & 0.18 \\ \text { Be．} 109 & 0.14\end{array}\) & \({ }^{10}\) & 0.38 & Oc19 & 0.50 & T304 & 0.88 \\
\hline 2 N 69 N & 0.80 & \(\begin{array}{ll}\text { Bechas } & 0.14 \\ 0.15\end{array}\) & 1：173 & 0.38
0.10 & OCx & 1.00
1.25 & －\({ }^{\text {ans }}\) & 0.98
0.48 \\
\hline 2 N 703 & 0.12 & \(\begin{array}{ll}\text { BCIIS } & 0.20\end{array}\) & 1：115 & 0.10
0.83 & OC2， & 1.10 & \({ }^{\text {\％}} 807\) & － 0.42 \\
\hline 2N706A & 0.12 & 15116 0.80 & （110x & 0.25 & OC\％ & 0.40 & － 40 N & 0.88 \\
\hline 2 NTON & 0.15 & BC1181 0.28 & （：1）12 & 0.10 & OC\％\({ }^{\text {2 }}\) & 0.40 & \％404 & 0.88 \\
\hline 2 N 704 & 0.40 & Belis 0.80 & （：ETIい！ & 0.50 & \(\mathrm{OCH}^{2}\) & 0.86 & \(2+16\) & 0.18 \\
\hline 2 N 1091 & 0.65 & BC121 0.20 & （：ETIM\％ & 0.40 & 0じっ！ & 0.85 & 2111 & 0.85 \\
\hline 2 N 1131 & 0.25
0.24 & BC122 0.20 & （GETIH & 0.85 & OC3i） & 0.40 & ：112 & 0.80 \\
\hline \({ }_{2}^{2 N 1132}\) & 0.24
0.18 & Bc125 0.68 & CETIA & 0.30 & 0） 0 \％ & 0.55 & 7417 & 0.80 \\
\hline \[
\begin{aligned}
& 2 \mathrm{~N}_{13012} \\
& \text { N } 13003
\end{aligned}
\] & 0.18
0.18 & \(\begin{array}{ll}\text { He＇124；} & 0.65 \\ \text { bel }\end{array}\) & CETIIS & 0.90 & Oc：313 & 0.80 & －116 & 0.88 \\
\hline 2 N 1304 & 0.28 & \(\begin{array}{ll}\text { BC140 } & 0.65 \\ \text { HC14：} & 0.10\end{array}\) & （：ET116 & 0.85 & OC＋1 & 0.88 & －41\％ & 0.88 \\
\hline 2 N 1305 & 0.82 &  & （：ET120 & 0.80
0.80 & O184 & 0.40 & － & 0.18
0.85 \\
\hline 2Ni306 & 0.89 & HCi49 0.10 & （iETrifi & 0.40 & Octid & 0.70
0.20 & －\({ }^{\text {cos }}\) & 0.87 \\
\hline \(2 \mathrm{~N} 130{ }^{\circ}\) & 0.28 & Be＇si 0.14 &  & 0.80 & OC＇4s & 0.17 & － 725 & 0.87 \\
\hline \({ }_{2} 2 \mathrm{~N} 1308\) & U．28
0.78 & belas 0.12 & （EETAN 1 & 0.25 & \(\mathrm{OCH}^{4}\) & 0.20 & 7427 & 0.87 \\
\hline \({ }_{2}^{2 N 2147}\) & 0.78 &  & （：ETMA： & 0.35 & OC45， & 0.18 & －428 & 0.40 \\
\hline 3 N 218 n & 0.78 &  & （aFTMm． & 0.40 & \(0 \mathrm{Oc}+6\) & 0.87 & －436 & 0.16 \\
\hline 2N2\％\({ }^{\text {d }}\) & 0.28 & \(\begin{array}{ll}\text { BCy } \\ \text { BCY } 3: 2 & 0.85 \\ 0.85\end{array}\) & GEX44 & 0.08 & 06\％ & 0.60 & － 432 & 0.97
0.87 \\
\hline 2 N 2211 & 0.25 & \begin{tabular}{ll} 
BC＇Y33 & 0.88 \\
\hline
\end{tabular} &  & 0.45
0.45 & OCat & 0.60
0.60 & － 4 ＋14 & 0.87 \\
\hline \(2 \mathrm{~N}^{23694}\) & 0.18 & \(\begin{array}{ll}\text { Нс＇y34 } & 0.46\end{array}\) & CiJim & 0．80 & Ocest & 0.60
0.60 & －\(+3 \times 4\) & 0.87 \\
\hline \({ }_{2} \mathrm{~N}^{2} 2441\) & 1.9
0.75 & BC＇Y34 0．65 & （iJam & 0.80 & 以ぐ11 & 0.18 & － 440 & 0.22 \\
\hline 2N2F46 & 0.60 & HCY3H 1.60 & （ iJ 5.1 & 0.85 & O6： 1 & 0.18 & It1AN & 0.88 \\
\hline 2 N 2904 & 0.20 & \(\begin{array}{ll}\text { BCY40 } & 0.80 \\ \mathbf{H C Y} \\ 0.80\end{array}\) & iJTM & 0.50 & 0 O－ & 0.28 & －442 & \({ }^{0.78}\) \\
\hline 2 N 2904 A & 0.25 & \(\begin{array}{ll}\text { BCY49 } \\ \text { BCYOf1 } & 0.80 \\ 0.18\end{array}\) & Lid 1105 & 0.60
0.80 & OC\％ & 0.60 & － 4 ， & 0.18
0.18 \\
\hline 2N2906 & 0.20 &  & MATI告 & 0.20
0.20 & Oct & 0．80 & － 403 & 0.16 \\
\hline \(2 \mathrm{~N} 290{ }^{-}\) & 0.28 & BCzin 0.60 & MATIII & 0.25 & OC： & 0.80
0.80 & －454 & 0.18 \\
\hline 2 N 29.4 & 0.18 & BCzzil 0．66 & MAT12 & 0.20 & 以宁 & 0.64 & T－4610 & 0.16 \\
\hline 2 N 2925 & 0.15 & 3 \({ }^{\text {a }}\) & Mati21 & 0.25 & に年 & \(0 \cdot 25\) & 54510 & 0.86 \\
\hline \({ }_{2}^{2 N} 2 \mathrm{Nag} 6\) & 0.12
0.48 & B1123 1．00 & MJF：3才10 & 0.47 & 11－5！ & 0.80 & －472 & 0.88 \\
\hline \({ }_{2} \mathrm{~N} 30046\) & 0.48
0.45 & 1以リ4 0．68 & MJE．：－ & 0.63 & OCx1 & 0.29 & 543： & 0.41 \\
\hline 2N3046 & 0．11 & H2Y11 1.45 & MJE： & 1.87 & 0＊11 & 0.28 & 2474 & 0.42 \\
\hline 2N3：05 & 0.15 &  & MJF35 & 0.77 & （x，wy & 0.20 & －475 & 0.69 \\
\hline 2 N 3 O 106 & 0.11 &  &  & 0.40
0.86 &  & 0.18
0.45 & － & 0.60 \\
\hline 2 N 3707 & 0.18 & Br1＊ 0.85 & M1PF｜o4 & \({ }_{0.35}^{0.86}\) & OMN\％ & 0.45
0.88 & －4＊： & 0.87 \\
\hline \({ }_{2} \mathrm{~N} 3704\) & 0.10 & \(\begin{array}{ll}13 \mathrm{~F} \\ 184 & 0.28\end{array}\) & 31PF10\％ & \({ }_{0}^{0.38}\) & （1） & 0.88
0.25 & － \(4 \times 3\) & 1.10 \\
\hline \[
\begin{aligned}
& 2 N_{3710} \\
& 2 \mathrm{~N}_{3} 111
\end{aligned}
\] & 0.11 & 3FIms 0．22 & －kTl24 & 0.45 & （16x： & 0.27 & ism & 1.00 \\
\hline \(2 \mathrm{~N}_{2} 11\)
2 N 3 HI & 0.11
0.88 & 15194 0.10 & －＜T1建 & 0.80 & 以为4 & 0.80 & Evkij & 0.47 \\
\hline 2 N 4288 & 0.30 & \(\begin{array}{ll}13+195 \\ 3 F 196 & 0.18 \\ 0.15\end{array}\) & NKT：II & 0.25 & O－1 14 & 0.38 & －490 & 0.65
1.00 \\
\hline 2 N 5027 & 0.68 &  &  & 0.25
0.24 &  & 1．00 & －4， & 0.70 \\
\hline \({ }_{2} \mathbf{N} 50\)（0am & 0.38 & BFNGI 0.25 &  & 0.24
0.40 & （R1） & 1.10
0.40 & －4938 & 0.70 \\
\hline 29304 & 0.60
1.16 & НमНяs 0.85 &  & 0.45 & \(0 \cdot 1+11\) & \({ }_{1}^{1.14}\) & 2494 & 0.80 \\
\hline 28304 & 1.16
0.76 & MFX13000 &  & 0.45 & C－14 & 1.80
0.80 & － 4 ＋15 & 0.80 \\
\hline 28703 & 1.00 &  & NKTers & 0.83 & 00］4 & 0.20 & － 7496 & 0.96
8.87 \\
\hline AALEM & 0.80 & \(\begin{array}{ll}\text { 13FXe9 } & 0.88 \\ 1380 & 0.28\end{array}\) & NKTE22 & 0.30 & 0．1\％ & 0.80 & ¢49\％ & 8.87
1.88 \\
\hline AAZ！ & 0.75 & \(\begin{array}{lll}15 \mathrm{X} \\ 18 & 0.98\end{array}\) & －\({ }^{\text {NKT }}\) & 0.25
0.24 & 9017 & 0.30
0.64 & －115： & 0.45 \\
\hline AAZ13 & 0 & \(\begin{array}{ll}13+863 & 0.50\end{array}\) &  & 0.22
0.20 & O） & 1.00 & 741111 & 0.68 \\
\hline \({ }_{\text {ACl }}{ }^{\text {ACl }}\) & 0.61 & BFX 400.26 & 入кт & 0.20 & （1） & 0.80 & 34111 & 0.88 \\
\hline AClizt & 0.88
0.85 &  &  & 0.20 & いでき & 0.68 & －4114 & 0.90 \\
\hline Aclis & 0.15 & 13FXH6 0.85 & －\(\times 1.2\) & 0.20 & 6゙きロ4 & 0.65 & 31119 & 1－68 \\
\hline ACl8： & 0.21 &  & XKT2\％ & 0.25 & \(0{ }^{0}\) & 1.00 & 7412
\(7+1201\) & 0.50
0.70 \\
\hline Acins & 0.20 & \(\begin{array}{ll}13 \mathrm{~F} \\ 10 & 0.60\end{array}\) &  & 0.20
0.85 & 06906 & 1.10 & － \(412 \times 3\) & 1.00 \\
\hline Acyli & 0.40
0.97 & HFYil 0.60 & Хкт：101 & 0.85 & ¢9＊＊ & 0.20 & ＋ \(41+1\) & 0.80 \\
\hline ACYJ & 0.27
0.87 & 18F17 0.40 & Хкт：34 & 0.75 & いくすこ & 0.80 & 74145 & 1.26 \\
\hline ACPy & 0.87
0.82 & \(13+1 / 40\) & －кт＋13 & 0.70 & い「いう & 1．20 & 741510 & 1．75 \\
\hline ACY21 & 0.82 & \(\begin{array}{ll}18+114 & 0.65 \\ 1454 & 0.45\end{array}\) & － CT Tit & 1.00 & OHP10 & 0.60 & I 1515 & 1.00 \\
\hline ACre & 0.18 &  & ※KTti\％ & 0.80
0.80 &  & 0.55 & － & 2.00
1.00 \\
\hline ACY＇\％ & 0.25 & \(\begin{array}{ll}14 \mathrm{~F} 51 & 0.21\end{array}\) & ※кт涪 & 0.80
0.85 &  & 0.48
0.20 & － 415 s & 1.00 \\
\hline \({ }_{\text {ACPY }}{ }^{\text {a }}\) & 0.25
0.78 & 13F151 0.20 & 祖т曻 & 0.88 & cxis & 0.20
0.45 & －\(+15 \%\) & 0.95 \\
\hline ACY\％ & 0.88
0.82 & BFYSE 0．20 & \({ }^{\text {OAF }}\) & 0.78 &  & 0.45 & 741\％ & 2.62 \\
\hline ACY41 & 0.22 & \(\begin{array}{ll}13+153 & 0.17 \\ 13 & 0.54 \\ 142 & 0.88\end{array}\) & OAS & 0.12 & －x \(6+10\) & 0.60
0.76 & i 417 & 1.67 \\
\hline ACH4 & 0.32 & \(\begin{array}{lll}13 \mathrm{~F} 164 & 0.88 \\ 15+464 & 0.81\end{array}\) & OAt\％ & 0.08 & NX6＋1 & 0.76 & \％ \(711 \%\) & 1．10 \\
\hline ADIA & 0.50 & 185190 & OAII & 0.10 & nxise & 0.60 &  & 2．00 \\
\hline ADIsy & 0.60
0.44 & & OATI & 0.20
0.15 & \(\pm \times 644\) & 0.85 & －+141 & 2.00 \\
\hline AD161 & 0.44 & \(\begin{array}{ll}\text { B8X：7 } & 0.60 \\ \text { HSX6II } & 0.93\end{array}\) & OAT3
Qait & 0.15 & － N （its & 0.85 & －4142 & 2.00 \\
\hline ADIGN
AFIog & 0.44
0.30 &  & OAFI4
OAFS & 0.18
0.10 & Ticis & 0.20 & \％ 4194 & 2.00 \\
\hline AF14 & 0.85 & 8یצ\％ 0.17 & （1）AM & 0.18 & V15／314 & 0.78 & i－194 & 1．30 \\
\hline AFIIS & 0.25 & 3N1E\％ 0.20 & （1，Amis & 0.15 & V30／2117 & 0.75 & － & 1.10
1.20 \\
\hline AF116 & 0.95 & H8Y：1 0.60 & 0. ¢4\％ & 0.15 &  & 0.50 & － 4195 & 1.20 \\
\hline AFllis & 0.24
0.67 &  & OAYII & 0.07 & V60！201P & 0.75 & －119\％ & ¢．77 \\
\hline AFliy & 0.20 &  & 0.491 & 0.07 & X． 101 & 0.10 & \(7+194\) & 2.52 \\
\hline AFI24 & 0.80 & 0.75 & 10， \(\mathbf{H}_{0}\) & 0.07 & － & 0.18 & & \\
\hline AF129 & 0.30 & \multirow[b]{2}{*}{MT「\％9／ル01R} & 0．12011 & 0.08 & XA151 & 0.16 & Plug in & \\
\hline AF126 & 0.80 & & 0．AE02 & 0.06 & X Al 15 & 0.15 & & \\
\hline AFl2＇ & 0.30 & 0.76 & 0 CH 10 & 0.20 & XAlfil & 0.85 & & 0.16 \\
\hline AF139 & 0.41 & HTエ̇4／400R & O．AE11 & 0.35
0.50 & X \(\times 18101\) & & 1614111 & \\
\hline \({ }^{\text {AFIFH }}\) AF／9 & 0.56 & \(\begin{array}{ll}\text { Hriog } & 1.10 \\ 0.27\end{array}\) &  & 0 & X 8101
\(\times 180 \%\) & 0.43
0.80 &  & －17 \\
\hline AFian & 0.65 & BY1石 0.14 & OAZ\％O： & 0.45 & X Br 103 & 0.85 & & \\
\hline AF181 & 0.60 & 13Y127 0.12 & 0．7z：03 & 0.45 & X 8113 & \(0 \cdot 30\) & & \\
\hline AF188 & 0.48 & HYIN： 0.85 & oszrot & 0.45 & x Bl 21 & 0.43 & & \\
\hline
\end{tabular}

\footnotetext{
Open daily co callers：Mon．－Fri． 9 a．m．-5 p．m．
s．Tubes and Transiscors •Closed Sac．I p．m．－
Terms C．W．O．only © Tel． \(01-677\) 2424－7 Post and Packing 10p per order．
Y．A．T．Trancistors \(25{ }^{\circ}{ }^{\circ}\) ．
}

Priest correct when going to press．

\section*{CLOCK COMPONENTS}

ADVANCED CLOCK KITs－eryetal control－Battery Back－up－Can be fitted to ear or beat－The brightest \(0.3^{\prime \prime}\) or \(0.5^{\prime \prime}\) display＊－atractive ellm case－with alarm touch－wwitch snooza，mutomatic intonsity
Phone or write for details（A S．A．E．helos）
CHYBTAL TIMEEASE KIT－will provide stable 50 Hz for clock ICs giving time accurate to within af few seconds a month：containe PCB， \(32 \cdot 788 \mathrm{kHz}\) Xtel， 3 CMOS ICs trimmer．Cs，Rs，IC sockets．full instructions
DLTaEE 0.3 in Red Common Cathode 7 segment LED daplay only 85 p FNDS00 0.5 in Red CC LED \(£ 1.50\) MAN3M 0.13 in Red CC LED 48 p
 WKS0253 4 or 6 digit 12 or 24 hr format alarm clock IC with snooze

AY51224 4 digit clock IC \(\mathrm{ES} \cdot 25\) MM5314 46 diglt clock IC 84．44
SOLOERCON IC PLN SOCKET8
The sensible method for lowest cost sockets for ICs，diaplays，CMOS，TTL（nylon supports avaliable if required；samplea enclosed with any pin order）．Strip of 100 pins for \(50 p ; 400\) for \(£ 2 ; 1,000\) for \(£ 4 ; 3,000\) for \(£ 10 \cdot 50\).

\section*{RCA CMOS PRICES ARE DOWN}
 add 35p（Europe），70p（overseas）for air mail P．\＆P

53b Aston Street，Oxford Tel． 086543203

\section*{ELEGTROLILDE \\ The best of all！ CATALOGUE 7 ISSUE 3 \\ With 25 p refund voucher}

\section*{Up－dated Price and Product Information}

112 pages plus cover．As comprahensive and up－to－the－minute at poseible Thousende of ltame from vetst ranges of empi－conductore including I．C．e to componenta，tools，accetsories，techntcal Information and diagrame are value 55 or more SEND NOW FOR YOUR COPY for apending on ordere \({ }^{\text {an }}\) value 55 or more SEND NOW FOR YOUR COPY BY RETURN 30 pont
it＇s an investment in practical money－seving and rellability！

PRICES－Electrovalue pollcy is to review prices every three months rather than try to keep up with day by day changes as they occur．We have，in fact，held our prices for two such periods（Jan．1st－July 18t）and our next price review is due October 1st．
DISCOUNTS apply on all items except the few where prices are shown NETT． \(5 \%\) on orders from \(£ 5\) to \(£ 14.99\) ； \(10 \%\) on orders list value £15 or more．
FREE POST AND PACKING in U．K．for pre－paid mail orders over \(£ 2\)（except Baxandall cabinets）．If under there is an additional handling charge of 10p．
OUALITY GUARANTEE．Al goods are sold on the understanding that they conform to maker＇s specification． No rejects，seconds or sub－standard merchandise．

\section*{ELECTROVALUE LTD}

All communications to Section 2／5．23，sT．JUDEB MOAD，ENOLEFFELD GREEN，EGHAM，8URAEY TW20 OHR．Telephone Egham 3603．Telex 264475．Shop hours：9－5．30 dally．9－1 pm Sats．
NORTHERN BRANCH：©O，Burnage Lane，Burnage．Manchester M13 1NA．Telephone（061） 4324945 ．Shophours：Daily \(9-5.30 \mathrm{pm}: 9-1 \mathrm{pm}\) Sats．

RELAYS SIEMENS, PLESSEY, E
MINIATURE RELAYS Col ( 1 (
Coil
Cohm Col. (2) Working d.ci, volts Contacts \begin{tabular}{l} 
Price \\
\hline
\end{tabular} HD \(=\) \begin{tabular}{l|l|l|l|l}
9.000 & \(40-70\) & \(2 \mathrm{c} / \mathrm{o}\) & 65 p \\
& 15 k & \(85-110\) & 6 M & \(6 \mathrm{P}^{*}\)
\end{tabular}

OPEN TYPERELAYS
9 VOLT D.C. I make contacts 35p. Post \(15 p\).
12 VOLTD.C. RELAY ohm coil. 75p. Post 15p 3 c/0 5 amp contacts. 120 ohm coil. 75p. Post 15p 24 VOLT D.C. \({ }^{3}\) ClO 75 P. Poss 15 p .
24 VOLTO.C. 3 c/0 75 p . Pose 20 p . Base 15 p extra \({ }^{24} 5 \mathrm{~F}^{2}\) Post A.C. Mag. by
\({ }_{35}^{55}\) VOLT A.C. RELAY
\(3 \mathrm{~h} . \mathrm{d}\) clo contacts. Price 55p. Post 20p. Sase 15 p.
100 VOLTA . C 3 clo sealed rype. 75 p . Post 20 p . Base 15 p it RELAY
\(\mathbf{2 4 0}\) VOL
3 h.d. c/o contacts. Price 75p. Post 20p. Octal plug in base \(15 p\) extra.
\(230 / 240\) VOLT A.C. RELAY. Mrg. by Arrow 2 h.d. 15 amp c/o contacts. Amp connectors. Price f 1 . Post 20 p
\(\frac{20}{3} \mathrm{clo} 5\) amp contacts. Sealed. MIg. ISKRA CI. 25. Post 20 p Base 15 F extra.
CLARE-ELLIOTT TYPE RP7641 GB

Miniature relay. 675 ohm coil, 24 Volt D.C. 2 c/o. 70p post paid.
110 V . 2 cio. 20 amp contacts. \(\mathbf{6 1 . 2 5}\). Post 10 p Many others from stock-phone for details.

\section*{C, O MICRO SWITCH}

VERY SPECIAL OFFER. Mfg. by
C.E.M. 3 amp 250 volt. io amp 125 C.E.M. 3 amp 250 volt. 10 amp 125
volt. 50 for \(\epsilon 3\). Post \(36 p\). 100 for 65.
Post 50 . 1,000 for \(\epsilon 45\). Post paid.
 SUIk purchase means LOW! LO SUB-MINIATURE REED
RELAY 3-9V d.c. 250 ohm Coi RELAY 3-9V d.e.
Single make, size \(1 \frac{1}{2} \times\)
Outstanding Value \& for six, \(\mathrm{Cl} \mid .50\) for ten. Post Ifp. (Min. order

\section*{LATCHING RELAY}

Twin latching relay, "flipoflop" \(2 \mathrm{c} / \mathrm{o}\)
each relay. Mains contacts. 115 V each relay. Mains contacts. 115 V
A.C. or 50 V D.C. operation. 240 V
A.C. with 2.5 K resistor 85 .


\section*{TRIAC}

Raytheon Tag symmetrical Triac. Type TAG.
\(250 / 500 \mathrm{~V}, 10 \mathrm{mp}, 500\) p,i,y. Glass passivated plastic \(250 / 500 \mathrm{~V}\), \(10 \mathrm{amp}, 500 \mathrm{p} . \mathrm{i} . \mathrm{v}\). Glass passivated plastic triac. Swiss precision product for long term
reliability \(£ 1.00\). Post 10 p. (Inclusive of Data and application sheet.) Suitable Diac 18p.

\section*{230/250 VOLT A.C. SOLENOID} Approximately \(1 \frac{1}{2} l \mathrm{~b}\) pull
Price \(£ 1.00\). Post 20 p
HEAVYDUTY TYPE. 10 lb . (approx.) pull. \(\mathbf{\text { 2.50. }}\)

\section*{24 VOLT DC SOLENOIDS}

UNIT containing I heavy duty solenoid approx. 251b pull \(I\) inch travel. Two \(x\) approx. Itb pull \(\frac{1}{2}\) inch
travel. 6 approx. \(40 z\). pull \(\frac{1}{2}\) inch travel. One cravel. 6 approx. 4ox. pull inch travel. One 24 volt d.c.. heary duty single make relay.
E2-50. Post EI. ABSOLUTE BARGAIN.
COIN MECHANISM (Ex London Transport)
Unit containing, selector mechanism for 1p, 2p and 5p coins. Microswirches, relays, solenoid operated hopper. 24 volt D.C. Precision built to high standard. Incredible VALUE at only \(\mathrm{E2}\).50. Post \(£ 1 \cdot 00\).
VAT \(\mathbf{2 5 \%}\). (Total price inc. VAT and post \(£ 4.21\) ).
CENTRIFUGAL BLOWER
Mrg by Smiths Industries. \(230 / 240 \mathrm{~V}\) a.c. Miniature Model. Series SE/200.
size \(95 \mathrm{~mm} \times 82 \mathrm{~mm} \times 82 \mathrm{~mm}\). Aperture 38 mm
c.f.m..E2.75. Post 50p.


Mfg by Airflow Developments Led
Precision made, continuously rated, smooth running. \(230 / 240 \mathrm{~V}\) a.c. motor, 80 c.f.m. As illustrated but with round aperture, \(\mathbf{£ 6 - 5 0 \text { . Post } 7 5 \mathrm { p }}\)
Mfg. by Woods. continuously rated. Capacitor start. Case construc-
tion. Aperture \(66 \mathrm{~mm} \times 50 \mathrm{~mm}\), O/A 200 mm . \(£ 12\).

All Mail Orders-Callers-Ample Parking
Dept. PEII 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560


Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing
triggering circuit. \(230 / 250 \mathrm{~V}\) a.c. operation. HY-LYGHT STROBE MK III
iarge rooms, halls and urilises a silica tube, printed circuit. Speed adjustable 0-20f.p.s. Light output greater than
Joule) strobes \(\mathbf{E 1 4}\). Post 75 p .
RANGEE OF THREE OTHER STROBE KITS FROM STOCK. FROM C6. 30 to \(\mathbf{6 2 2}\).
S.A.E. (Foolscap) for derails.

\section*{BIG BLACK LIGHT}

400 Watt. Mercury vapour ultra violet la mp Powerful source of u.v. P.F. ballast is essentia Price of matched ballast and bulb \(£ 21\) Post \(61 \cdot 50\). Spare bulb \(\mathbf{4 8}\). Post 65p.
BLACK LIGHT FLUORESCENT U.V. TUBES 4 ft 40 watt, 65.50 (callers only) 2ft 20 watt,
standard bi-pin. MiNI. \(12 i n\). 8 watt, \(E 1.60\). Post 25p. 9in. 6 watt \& 1.30 . Post 25p. Complete ballast unit and holders for 9 in and 12 in tube, \(\mathbb{\ell} 1.70\). Post 30 p . ( 9 in and 12 in ,
measures approx.)

\section*{SQUAD LIGHT}
new conception in
light control. Four
channels each capable channels each capable of spot lights, flood lighes or dozens of small mains lamps. Seven programs all speed controlled plus flash modulation, effectively giving I 4 different displays. Makes sound-tolight obsolete. Completely electrically and mechanically noise free. Can be used on same circuit as radio mikes or sensitive amplifiers. A whole new range oflighting effects possible With astounding results. Already in use in discos. Conforms to all R.F.I. tests, including Common Market rezulations. Supplied in tough, well designed case with embossed
(Foolscap) for further detail

\section*{POWER RHEOSTATS I I 1}

\section*{Superior Quality Precision Made}

\section*{NEW POWER RHEOSTATS}

New ceramic construction, vitreous
enamel embedded winding, heavy duty brush assembly. continuously
rated WATT \(10 / 25 / 50 / 100 / 150 / 250 / 500 / 1 \mathrm{k} / 1 / 5 \mathrm{k} / 2 \cdot 5 \mathrm{k}\) ohm. 61.70 . Post 20 p .
50 50 WATT I/5/10/25/50/100/250/500/1k ohm E2.10. Post 25p. 100 WATT \(1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1.5 \mathrm{k} / 2 \cdot 5 \mathrm{k} /\) \(3.5 \mathrm{k} / 5 \mathrm{k}\) ohm 43.30 . Post 35p.
Black Silver, Skirted knob calibrated in Nos. I-9 Black Silver, Skirted knob cal abrated 22p each.

\section*{VAT}

VAT AT 8\% MUST BE ADDED TO ALL ORDERS FOR THE TOTAL VALUE OF GOODS INCLUDING POSTAGE UNLESS OTHERWISE STATED
SERVICE
TRADING CO

\section*{METERS NEW}

90 mm diameter
Type 65C5. 2A D.C. M/C; 5A D.C.M/C
1OA D.C. M/C:20A D.C.M/C. 10A D.C. M/C; 20A D.C. M/C. 50A D.C. M/C. MII: \(6 L L\) ABOVE C2.50, POSt 30 M
M/I; ALL ABOVE C2.50. Post 30p.
TYpe \(65 \mathrm{L5} .300 \mathrm{~V}\) A.C. R/M/C; C2.75. Post 30p
REVERSIBLE MOTOR
General Electric, 230V
p.m. 0.25 A. Complete with ant vibration mounting bracket and
capacitor. O/A size \(110 \mathrm{~mm} \times 95 \mathrm{~mm}\). spindle is in. dia. 20 mm long. Ex equipment rested, E3. Post 50p.

230/240 VOLT A.C. MINIATURE MOTOR. 20 R.P.M. Price EI, Post 20p.

\section*{BODINE TYPE N.C.I.} GEARED MOTOR
 amp. (Type 2) 28 r.p.m, torque 20
1b, in Reversible \(1 / 80 \mathrm{th}\) h.p. 50 cvele 0.28 amp .
The above two precision made U.S.A. motors are offered in 'as new' condition. Inpur voltage of motor \(115 V\) A.C. Supplied complete with transformer for Price, either type \(\mathbf{6} 6,25\). Post 75 p or less trans. frice, ermer 63.75. Post 650

CARTER' 230 VOLT A.C. GEARED MOTOR
\(230 / 240 \mathrm{~V}\) A.C., smooth, powerful, .om or \(110 \mathrm{r} . \mathrm{p} . \mathrm{m}\). Either eype ©4.75. Post 50p

ROTARY VACUUM AIR PUMP AND COMPRESSOR
Carbon vane, oilless, \(100 / 115 \mathrm{~V}\) a.c.. \(1 \frac{1}{2}\) h.p. motor, SO/60 cycle, 2875/3450 r.p.m., 20 in vacuum, comp. 10 p.s.i. (approx. figures).

New unused surplus stock. 5 upplied with electrical connection data. FRACTION OF MAKERS'PRICE \(\mathbf{E l}^{\prime} 2\). Post \(£ 1\) 00. 5uitable \(110 / 240 \mathrm{~V}\), 150 watt auto transformer \(\mathbf{6 3 - 5 0}\). Post 50p. (Both items together Post E(1.25)

\section*{PROGRAMME TIMERS}
\(230 / 240 \mathrm{~V}\) a.c. 15 r.p.m. Motor
Fach cam operates a c/o micro
witch. Ideal for lighting effects, 2 inf ineme:" animated displays, etc. Ex equipment rested.
2 cam model. \(15 \mathrm{r} . \mathrm{p} . \mathrm{m}\). \(\mathbf{4 2 . 0 0}\) post 35p 4 cam model. \(15 \mathrm{r} . \mathrm{p} . \mathrm{m}\). 62.50 post 40 p
8 cam model. \(20 \mathrm{r} . \mathrm{p} . \mathrm{m} . \mathrm{C} .75\) post 60 p 8 cam model. 20 r.p.m. 24.15 post 60 p

A.C. MAINS TIMER UNIT Based on an electric clock, with 25 amp. single pole switch. Which can be preset for any
period up to 12 hrs . ahead period up to 12 hrs. ahead
to switch on for any length
of time, from 10 mins. to 6 hrs. then switch off. An additional 60 min. audible
timer is also incorporated. Ideal
 Electric Blankets, etc. Attractive satin copper finish. 40p. (Total incl. VAT and Post \(£ 2 \cdot 87\) ).

\section*{TIME SWITCH}
'Horstmann' Type V. Mk. II Time
switch. \(200 / 250\) volt A.C. Two on/two switch. \(200 / 250\) volt A.C. Two on/two set time. 30 amp contaets. 36 hour spring reserve in case of power failure. Day omitting device. Fitted in heavy high impact case, with glass observation window. Built to highest Electricity Board Spec. individually tested. Price
\(\mathbf{E 7} \cdot \mathbf{7 5}\). Post 50 p. (Total inc. VAT \(£ 8.91\) ).


B/-PAK

\section*{SEMICONDUCTORS}

\section*{CARBON RESISTOR PAKS}

These Paks contain a range of Carbon Resistors, assorted into the ollowing groups
RI 50 Mixed 100 ohms -820 ohms R2 50 Mixed 1 K ohms- 8.2 K ohms R3 50 Mixed lok \(1 / 8 \mathrm{sh}\) W. 0.60 (10K ohms-82K ohms R4 50 Mixed 100 K ohms-820K \begin{tabular}{ll}
0 \\
\hline \(1 / 8 \mathrm{th}\) \\
\(1 / 0.60\)
\end{tabular} R5 30 Mixed 100 ohms -820 ohms R6 30 Mixed IK ohms 82 K ohms R7 30 Mixed 10 K ohms -82 K ohms R8 30 Mixed \(100 \mathrm{~K}^{2}\) ohms-820K 0.60 THESE ARE UNREPEATABLE
LOW COST CAPACITORS
500
SAV Elect
0.09 each \(\begin{array}{llll}500 & H F & 50 V & \text { Elect } \\ 001 & 0.09 \text { each } \\ 0.400 V & 0.03 \text { each }\end{array}\)

\section*{REPANCO CHOKES \& COILS}

\section*{\(\begin{array}{lll}\text { RF Chokes } & \mathrm{CHI} & 2.5 \mathrm{mH} \\ & \mathrm{CH} & 7.5 \mathrm{mH} \\ & \mathrm{CHS} & 1.5 \mathrm{mH} \\ & \mathrm{CH} & 5.0 \mathrm{mH}\end{array}\) \\ \(\mathrm{CH}_{2} \mathrm{CH}_{4} \quad 50 \mathrm{mH}\)}

COILS DRXI Crysral sec \(0 \cdot 29\) DRR2
0.27
0.29
0.26
0.28
0.31 range
0.42

CAREON POTENTIOMETERS
\(4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}\)
IM, \(2 M\). Single Less 5 witeh
VC 2 Single D.P. Switch
\(\begin{array}{ll} \\ V C & 0.14 \\ \end{array}\)
VC 5 look anti-Log

\section*{HORIZONTAL CARBON}
0.1W 0.06 each 00, 220, 470, IK, \(2 \cdot 2 \mathrm{~K}, 47 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}\),

REPANCO TRANSFORMERS 240 V . Primary. Secondary volrages available from selecred tappings \(4 \mathrm{~V}, 7 \mathrm{~V}, 8 \mathrm{~V}\). \(10 \mathrm{~V} .40 \mathrm{~V}, 50 \mathrm{~V}\) and \(25 \mathrm{~V}-0-25 \mathrm{~V}\).
\begin{tabular}{|c|c|c|c|}
\hline Type & Amps & Price & \(P\) \& \(P\) \\
\hline MT50/: & & \$1.79 & 0.45p \\
\hline MT50/I & I & 62.24 & 0.48 \\
\hline
\end{tabular}

COIL FORMERS \& CORES NORMAN: Cores \& Formers 0.07 p

WITCHES
DP/DT Toggle 0.28p SP/ST Toggle 0.22p

\section*{FUSES}
and \(20 \mathrm{~mm} .100 \mathrm{~mA}, 200 \mathrm{~mA}, 250 \mathrm{~mA}\) 500 mA . IA. \(1.5 \mathrm{~A}, 2 \mathrm{~A}\) QUICK BLOW Anti-serge 20 mm only \(\quad 0.08 p\) each

\section*{VEROBOARDS}

VBl containing approx. 50 sq.ins various
sizes all 0.1 matrix
\(\begin{aligned} & \mathbf{~} 0.60\end{aligned}\) B2 containing approx. 50 sq . ins various

DECON-DALO 33PC Marker
tch resistans printed circuit marker pen. Full instruetions supplied with
\(\quad * 0.92 p\)

\section*{BATTERY HOLDERS}
akes 6 H.P. 7 s complece with terminal clip and lead \(\quad \star 0.31\) peach

\section*{CABLES}

CP 2 Twin Common Scree
\(\star 0.08\)
four Core Common
CP 5 Four Coreindividually
CP 6 Microphone Fully Braided hree Core Mains Cable P 8 Twin Oval Mains Cable CP 9 Speaker Cable

\section*{INSTRUMENT CASES \(\star\)}
(In 2 sections, Black Vinyl covered top and sides and bezel)
No. Length Width Height Price
 \begin{tabular}{ll} 
BV2 & \(6^{\prime}\) \\
BV4 \\
& \\
\hline
\end{tabular}

> fi:

\section*{ALUMINIUM BOXES \(\star\)}
\begin{tabular}{|c|c|c|c|c|}
\hline & th & Width & Height & Price \\
\hline BAI & \(5{ }^{4}{ }^{\text {² }}\) & \(21^{\circ}\) & & +0.45 \\
\hline BA2 & 4* & \(4 *\) & \(1 \frac{1}{2}\) & * 0.45 \\
\hline BA3 & \(4{ }^{\prime}\) & \(2 \frac{1}{4}^{-}\) & \(1 \frac{1}{2}\) & * 0.45 \\
\hline BA4 & 5: \({ }^{\text {\% }}\) & \(4 *\) & \(1 \frac{1}{2}{ }^{*}\) & \(\star 0.54\) \\
\hline BA5 & 4" & 21** & 2 & + 0.45 \\
\hline BA6 & 3" & 2 " & 1 " & * 0.39 \\
\hline BA7 & \(7{ }^{-}\) & 5 " & \(2 \frac{1}{2}^{\prime \prime}\) & \(\pm 0.79\) \\
\hline BAS & \(8{ }^{\circ}\) & \(6 *\) & - \(3^{*}\) & + \(\$ 1.02\) \\
\hline BA9 & 6" & \(4 \times\) & 2 " & \(\star 0.65\) \\
\hline
\end{tabular} (Each complere with \(\frac{1}{3}^{-}\)deeplid \& screws) PLEASEADD 20P PACH BOXAND PACKING FOR EACH BOX.

\section*{COMPONENT BOXES}

Pak

\section*{No. Qty. Description Price
C1 200 Resistorsmixed values approx.}

C2 150 counc by weight \(\quad 0.60\)
C2 150 Capacitors mixed values C3 50 Precision Resistors mixed C4 75 Values \(1 / 8 t h\) width Resistors mixed 0.60 C5 preferredvalues \(\quad 0.60\) C5 5 Pieces assorted Ferrite Rods 0.60 c
c
C7 1 Pak Wire 50 metres assorted 0.60 C8 10 Reed Swirches \(\quad \begin{array}{ll} & 0.60 \\ & 0.60\end{array}\) \begin{tabular}{lll} 
C9 & 3 & Micro Switches \\
Clo & 0.60 \\
\hline
\end{tabular} Cll 5 Jack Sockers \(3 \cdot 3 \cdot 5 \mathrm{~m}, 2\) C12 30 Prandard Switch Type 0.60 0 eypes mixed values \(\quad \mathbf{0 . 6 0}\) C12 20 Electrolytics Trans. types 0.60 Cl4 1 Pack assorted Hardware. Nurs/Bolss, Grommers. 0.60 C15 5 Mains Slide Switches. 2 Amp. 0.60 C16 20 Assorted Tag Strips \& \(\begin{array}{lll}\text { C17 } 10 & \text { Panels } & \\ \text { Assorted Control Knobs } & 0.60 \\ 0.60\end{array}\) Cis 4 Rorssy Wave Change witches
\(\begin{array}{ll}C 192 & \text { Relays } 6.24 \mathrm{~V} \text { Operating } \\ \mathbf{C} & \mathbf{0 . 6 0}\end{array}\) 20 Sheets Copper Laminate approx. 200 sains.
\(+0.60\) Please add 20 p post and packing on all component packs. plus a furth

\section*{AVDEL BOND}
*
SOLVE THOSE STICKY

\section*{PROBLEMS}
with
CYANOCRYLATE C2 ADHESIVE
The wonder bond which works in seconds-bond plastic, rubber. transistors.

OUR PRICE ONLY 60p for 2 gm phial
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
ACCESSORIES \\
BIB HI-FI
\end{tabular} & - \\
\hline & Stylus and turntable clean & Price \\
\hline & Tape head cleaning kit & 太 68 p \\
\hline \(P_{9}\) & Hi-Fi cleaner & * \({ }^{\text {30p }}\) \\
\hline 31 & Wire stripper & \\
\hline 32 & Tape editing kit & + \({ }^{\text {Cl }} 1.64\) \\
\hline & Stylus balance & * 61.24 \\
\hline & Record stylus cleaning kit & \\
\hline 42 & De Luxe Gr & \\
\hline 43 & Record carekit & \\
\hline 45 & uto changer groove cleane & \\
\hline 46 & Spiric level & \\
\hline 58 & Mi-Fi stereo & \\
\hline &  & \\
\hline
\end{tabular}

\section*{ANTEX EQUIPMENT}

SOLDERING IRONS Model G. 18 W 18 W
15 W
King CCN 240. I5W
SK2. Soldering Kir
( +62.45
+62.70
+62.90 \(\star<2.70\)
+62.90
\(\mathbf{~} 63.90\)

\section*{BlTS AN}

Bit No model CN240 3/32-
102 for model CN240 \(3 / 16^{\circ}\)
104 for model CN240 3/16" 1100 for model CCN240 3/32
1101 for model CCN240 3/8" 1102 for model CCN240 \({ }^{+}\) 1020 for model G240 3/32" lo20 for model G240 3/32" 1022 for model G240 3/16 50 for model \(\times 253132^{\circ}\) 51 for model \(\times 251 / 8^{\circ}\)
52 for model \(\times 253 / 16^{\prime \prime}\) 52 for model \(\times 253 / 16^{\prime \prime}\)

\section*{ELEMENTS}

Model ECN240
Model EG240
Model ECCN240


SO
ST
An
SOLDERINGIRON STAND ST3 Suitable for ail models \begin{tabular}{l} 
A \\
\hline PL \\
PS \\
PS
\end{tabular}
UG
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

\section*{DIN 2 pin (Speaker)}

DIN 3 pi
OIN 4 Pi
DIN 5 Pin 190
4 DIN 5 Pin 180
5 DIN 5 Pin 240
DIN 6 Pin
DIN 6 Pin
DIN 7 Pin
Jack 2.5 mm Screened
Jack 3.5 mm Plastic
Jack \(\frac{1}{*}\) " Plastic
Jack \(\frac{1}{4}\). Screened
Jack Sterco Screened
Car Aerial

INLINE SOCKETS
PS 21 DIN 2 Pin (Speaker)
PS 23 DIN 3 Pin
PS 23 DIN 5 Pin 180
PS 25 Jack 2.5 mm Plastic
PS 26 Jack 3.5 mm Plastic

PS 28 Jack \(\frac{1}{2}\) Pl Screened
PS 29 Jack Stereo Plastic
PS 30 Jack Stereo Screene
31 Phono Screened
PS 33 Co-Axial
SOCKETS
PS 35 DIN 2 Pin (Speaker)
PS 36 DIN 3 Pin
PS 37 DIN 5 Pin 180
PS 38 DIN 5 Pin 240
PS 39 Jack 2.5 mm Switched
Jack 3.5 mm Switch
Jack Stereo Switche
Phono Single
Phono Double
PS 46 Co-Axial Surface

\section*{P.C.B. KITS \& PENS}

PROFESSIONAL D.I.Y. PRINTED CIRCUIT KIT \(\mathbf{E T} .80\)
Containing 6 sheers of \(6^{\circ} \times 4^{*}\) single sided laminate, a generous supply of etchant powder. etching dish. erchant measure. tweezers, etch resistant marking pen. high qualicy pump drill with spares, cutting knife with spare blades. 6" metal ruler. plus full easy to follow instructions.
Spare container of etchanc for above
PCB Pens \(2 \times\) Quality marker pens specifically designed for drawing fine line etch resistant circuits on copper lamin. ate. Complete with full instructions. \(\star 41.53\) per pair

\section*{LOW NOISE CASSETTES}
\(C 60\)
\(C 90\)
\(C 120\)

\section*{AUDIO LEADS}

S221 5 pin DIN plug to 4 phono plugs ength 1.5 m
41.08

52225 pin DIN plug to 5 pin DIN 5237 socket Dingth 5 pin Ding to 5 pin DIN plug mirror image length 1.5 m \&1.20 S238 2 pin DIN plug to 2 pin DIN 5268 socket length 5 m, 68p \(1 \& 4\) and 3 \& 5 length 1.5 m \& 1.00 S270 2 pin DIN plug to 2 pin DIN S271 5 pin DIN plug to 2 phono plugs connected to pins 3 \& 5 length 52755 pin DIN plug ro 2 phono sockers to pins 3 \& 5 length 5 pin DIN socker to 2 phono plug connected to pin 3 \& 5 length 23 cm
5404 Coiled stereo headphones ex \(5217{ }^{3}\) pin DIN plug to 3 pin DIN Plue length 1.5 m 80p S219 5 pin DIN plug to 5 pin DIN plug S474 3.5 mm . 5 mm to 3.5 mm Jack length 56005 pin DIN plug to 3.5 mm Jack connected to pins 3 \& 5 length
5 pin DIN plug co 3.5 jack connec ted to pins 184 length 1.5 m

\section*{CROSSOVER NETWORK}

K4007 1/P impedance 8 ohms. Insertion \(\begin{aligned} & \text { (2-way) Loss } 3 \mathrm{~dB} . \text { Crossover Frequency } \\ & 3 \mathrm{KHz}, \\ & \text { PRICE } £ 1.12\end{aligned}\)

\section*{H!PHONE JUNC. BOX}

H1012 Enables change over from loud-(3-way- speaker to headphone listening stereo) Also has a centre posicion for orh ourputs PRICE \(\& 1.7\)

\section*{ALL PRICES EX \\ PLEASE ADD VAT ITEMS EXCEPT \\ GIRO NUMBER 388-7006 \\ Postage \& Packing Add extra for airmail. \\ handbooks}

TRANSISTOR DATA BOOK
DRANSISTOR DATA BOOK DTE I 227 Pages packed with information
on European Transistors. Full specification including outlines. \(\quad\). Price \(\leqslant 2.95 \mathrm{each}\) TRANSISTOR EQUIVALENT
BPE 76256 Pages of cross references and equivalents for European. American and Japanese ransistors. This is the mos comprehensive equivalents book on the market today and has an introduction in DIODEEQUIVALENTBOORK DE 74144 Pages of cross references and equivalents for European. American and Japanese Diodes, Zeners. Thyristors, Triacs, Diacs and LED's.
THE WORLDS BROACASTING STATIONS
WBS 75 An up to the minute guide for those interested in DX-ing. Contains al and LW, as well as European FM/TV stations. \(A\) Price 6.56 each TTL DATA BOOK DIC 75 Now complete Data book of 74 series TTL (7400-74132). Covering 13 main manufacturers in the U.S.A. and Europe, this book gives full dara as well A full range of technical books available A full range of technical books available

\section*{PO BOX 6, WARE, HERTS. \\ AL 60 \\ 50W. PEAK (25W. R.M.S.)}


\section*{ONLY £3•95}

Max Heat Sink temp \(90^{\circ} \mathrm{C}\). Frequency Response 20 Hz to 100 kHz . Distortion better than 0.1 at 1 kHz . Supply voltage 15.50 V . Thermal Feedback. Latest Design Improvements. Load 3,4,5 or 16 ohms. Signal to noise ratio 80dB. Overall size \(63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 13 \mathrm{~mm}\).
Especially designed to a strict specification. Only the finest components have been used and the latest solid state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F. enthusiast.

\section*{STABILISED POWER MODUEE SPM80}

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watt (r.m.s.) per channel simultaneously. This module embodies the latest components and circuit techniques incorporating complete short circuit protection. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to \(1.5 A\) at 35 V . Size: \(63 \mathrm{~mm} * 105 \mathrm{~mm} \approx 30 \mathrm{~mm}\).
These units enable you to build Audio Systems of the highest quality at a hitherto unobtainable price. Also ideal for many other applications including:-Disco Systems. Public Address Intercom Units, etc. Handbook available 10 p .

PRICE \(£ 3.00\)
TRANSFORMER BMT80 \(£ 2 \cdot 60\)


\section*{CLUDE VAT}
add 20p* overseas Mimimum order 75p


\section*{STEREO 30 COMPLETE AUDIO CHASSIS}

\section*{\(7+7\) WATTS R.M.S.}

The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This with only comprises a complete sterer or overwind, will produce a high quality audio unit suitable for use with a wide range of inputs, i.e. high quality ceramic pickup, stereo tuner, stereo tape deck, etc.
tape deck. etc. simple co instapable of producing really first class results, this unit is supplied with full instruc. tions, black front panel, knobs, mains switch, fuse and fuse holder and universal mounting bracker, enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet vailable.
Ideal for the beginner or advanced constructor who requires Hi-Fi perfor mance with a minimum of installation difficulty. (Can be installed in 30 mins .) PRICE: 615.75 plus 45p postage and packing. TRANSFORMER: 62.45 plus 45 postage and packing. TEAK CASE: 63.65 plus 45p postage and packing.

\section*{AL 10/AL 20/AL 30}

The ALIO, AL20 and AL30 units are similar in their appearance and in , their general specification. However, careful selection of the plastic power devices has resulted in a range of output powers from 3 to 10 watts R.M.S.
The versatility of their design makes them ideal for use in record players, tape recorders, stereo amplifiers and cassette and cartridge tape players in the car and at home. ALIO £2.30, AL20 £2.65,

AL30 E2.95.

\section*{M.P.A. 38}

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new BiPak M.P.A. 30 which is a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only. Used in the construction are 4 low noise, high gain, silicontransistors. It is provided with a standard DIN input socket for ease of connection.
Supplied with full, easy to follow instructions. PRICE \(£ 2.65\)


\section*{CARTRIDGES} ACOS
GP91-1SC 200 mV at \(1 \cdot 2 \mathrm{cms} / \mathrm{sec} \quad\) c 1.11 GP93-1 \(\quad 280 \mathrm{mV}\) at \(1 \mathrm{~cm} / \mathrm{sec} \quad \quad 61.43\) GP96-1 100 mv at \(1 \mathrm{~cm} / \mathrm{sec} \quad \mathbf{6 2 . 3 1}\)
TTC
1-2005 Crystal/Hi Output
1-2010C Crystal/Hi Ourput Crystal/ Hi

97p
-2006S Stereo-HiOutput
1-2105 Ceramic/Med. Output
Magneric \(5 \mathrm{mV} / 5 \mathrm{~cm} / \mathrm{sec}\) including stylus
Replacement stylusfor above
Audiootechnica magneti cartridge \(4 \mathrm{mV} / 5 \mathrm{~cm} / \mathrm{sec}\). 63.06

\section*{DYNAMIC MIC'PHONE}

TYPE Bl223. 200 ohms impedance. Complete with stand, on/off switch and 2.5 mm and 3.5 mm plugs. Suitable for cassette tape recorders.

PRICE 61.67
JUST OUT!

\section*{STEREO FM} TUNER
WRITE NOW FOR
FULL DETAILS


The best thing about the Videomaster Home T.V. Game Mk. III is that the sheer pleasure of building it is immediately followed by the excitement of playing three fascinating games.

The famous Videomaster is now available for you to make. It plugs into any standard UHF 625 line TV set, and it shouldn't take you longer than a few hours to build.

\section*{POST TODAY TO:}

In detail . . . The Videomaster Mk. Ill has eleven integrated circuits . . . four transistors . . . eleven diodes . . . is easy to build . . . with no alignment necessary because with ready-built and tested transistorized UHF modulator, is complete with all parts . . . including fully drilled and prepared p.c.b. . . . handsome plastic box . . . controlleads . . . complete step by step assembly instructions . . . Runs on a PP79 volt battery . . . and has logic and analogue "state of the art" circuitry all with National Semiconductors CMOS devices . . . with full specification.

The cost? Only \(£ 19.95\) (+VAT)

\section*{Videomaster Ltd}

119/120Chancery Lane, London WC2A 1QU
Please send me . . . . . . . . . . (insert no.) Videomaster Mk. Ill kits at £21.55 ea. inc. VAT. P \& P
I enclose my cheque/money order for \(£\)
Tick if VHF Modulator required \(\square\) - \(£ 1\) extra

NAME
ADDRESS

\section*{A COMPELLING FORCE}

E
lectronics means many things to many people, as our post bag makes abundantly clear. Obviously the technology is a powerful force since it unites all manner of individuals who may have but little else in common. The powerful attraction offered by this highly technical and intellectual subject to vast numbers of persons who are not by trade or training "professionals" must be one of the more interesting and striking social phenomena of present times.

Particular areas of applied electronics have from time immemorial attracted their own devotees. These amateur enthusiasts have been easily identified as radio hams, audiophiles, radio control modellers or musical instrument builders. Outside such well defined areas the position is rather nebulous, the field is extremely wide and the applications too numerous for easy general classification. The equipments themselves are usually strictly functional and by and large fall within the definitions of sensing, measuring and controlling devices and systems. Highly valued for the duties they perform, they are installed and forgotten, or brought into use as a tool as the occasion demands. This is the comparatively new area of the hobby, and unlike the more traditional areas the end-products do not themselves directly foster any further creative or entertaining activities on the part of the owner.

As we all know this area is under constant exploration by the inventive minds. The probing into the vastness of this "application space" will continue, that's for sure, and will bring forth more and more rewarding discoveries. The enthusiast who pursues this kind of search may owe no allegiance to any well labelled group or sectional interest. He might be simply a devotee of electronics-just that; a member of a species that did not exist in any strength, outside the research laboratory, a couple of decades ago.

What should we call this free-ranging individual who respects no artificial bounds or limits in his pursuit of electronics in the common cause? The very universality of applied electronics gives the measure of the task. Frankly, we see no easy answer to our own question. But readers may think otherwise and may have their own ideas of an appropriate label.

\footnotetext{
Yet, as someone said, what's in a name? The bond of common interest in electronic circuitry and techniques is exceedingly strong and unites this huge band of enthusiasts, at least so far as the means are concerned. The end to which the technology is applied is entirely a personal affair. Here it must be admitted divergent views do sometimes emerge and even heated arguments can ensue between the various "specialists". But we should be tolerant in our approach to another man's uses or appropriations of electronics, and appreciate that the technology is free for all to apply and enjoy or benefit from, as they will.
F.E.B.
}

Editor
F. E. BENNETT

Editorial
D. BARRINGTON Production Edilor
G. GODBOLD Technical Edilor R. W. LAWRENCE, B.Sc.

\section*{Art Dept.}
J. D. POUNTNEY Art Editor
D. J. GOODING
R. J. GOODMAN
K. A. WOODRUFF

\section*{Advertisement Manager}
D. W. B. TILLEARD

Phone: 01-634 4202
P. J. MEW

Phone: 01-634 4210
C. R. BROWN, Classified

Phone: 01-634 4301
Editorial \& Advertising Offices: Fleetway House, Farringdon St.
London EC4A 4AD
Phone: Edilorial 01-634 4452
Advertisements 01-634 4202

THE tuning of keyboard instruments to the equal tempered scale is a task requiring considerable skill. The professional piano tuner uses a single tuning fork to obtain absolute pitch and then tunes all other notes by a system ascending tempered fifths and descending octaves.

The instrument described here uses two of the latest m.o.s. chips to produce 84 discrete tones from a single master oscillator. These tones can be used directly to tune any instrument by eliminating the beat frequency. Also included is a direct mixing input, which uses novel techniques to obtain the beat frequency. Also included is a direct mixing connection from an electronic organ, synthesiser, etc., or a microphone pick-up from any acoustic instrument, will produce visual beats via an l.e.d.

\section*{THE TEMPERED SCALE}

Before describing the instrument, it may be helpful if we delve a little way into the theory behind the equal tempered scale. The scientifically orientated reader who has taken up a musical instrument may have been surprised by the distinct nonlinearity in the musical scale. This is particularly apparent on the guitar, for if the scale of C is played on a single string, there is a separation of only one fret (a semitone) between E, F and B, C whilst all other notes have a whole tone separation requiring double fret intervals. On keyboard instruments this irregularity is tidied up by arranging the black notes in the familiar groups of two and three.

Why then is the scale in this form, and why don't we notice it? We don't notice it largely because we are accustomed to it. The formation of our scale goes back to Pythagoras in the 6th Century B.C. who discovered that strings harmonised best when their lengths were in simple ratios to each other. Thus the most consonant arrangement was a ratio of \(2: 1\),
the octave, followed by the ratio \(2: 3\) known as the fifth. The Pythagorean scale was based on just these intervals. In fact, there were several other scales in use until relatively recent times, but with the development of harmony (playing two or more notes together) most of these have become non-runners.
With the advent of keyboard instruments there was the requirement for playing in more than one key on a single instrument, without favouring a particular key. Clearly, the solution was to adopt a constant interval for the semitone. For this reason, the equal tempered scale was adopted in the 18th century, the only perfect intervals being the octaves and all semitone intervals equal to 1.0594, the twelfth root of two.

\section*{TUNING}

What all this means as far as we are concerned is that the traditional method of tuning a piano is not easy, for the professional will' tune in ascending fifths flattened by just the required amount. Moreover, as far as our tuning aid is concerned, it means that we cannot derive digitally from a master source, the exact frequency we require; the notes are not in exact simple ratios. We can, however, produce a set of notes of sufficient accuracy if we start with a very high master frequency and divide it by a set of large number integers.


Fig. 1. Block schematic of Tuning Fork

The AY-1-0212 master tone generator was developed specifically for this purpose, its application being electronic organs of course. The block schematic is shown in Fig. 1; a frequency of 841.28 kHz is produced by the master oscillator and fed directly to the tone generator chip. The outputs give directly the eleven notes of the highest octave. The lower octaves are produced by repeated division by two, a 6 stage divider chip AY-1-6721/6 being switched in directly.

Table 1 lists all the frequencies available from the instrument together with the pin number inputs for the master tone generator chip.

\section*{CIRCUIT DESCRIPTION}

The circuit design for the basic tuning aid is shown in Fig. 2. The master oscillator feeding pin 2 of IC1 is basically a Colpitts oscillator with certain refinements. The additional capacitor C3 in series with the inductance L1 gives a substantial improvement in the frequency stability of the oscillator with respect to variations of the transistor parameters with temperature and supply voltage.

Also the ratio of C 4 to C 5 sets the tapping point for minimum tuned circuit loading and improves the circuit ' Q '. The use of an f.e.t. rather than a bipolar transistor further reduces the circuit loading. The inductor L1 is a standard single tuned



\section*{Capacitors}
\begin{tabular}{|c|c|}
\hline C1, C2 & \(0.22 \mu \mathrm{~F}\) ceramic \\
\hline C3 & 100 pF silver mica \\
\hline C4 & 220 pF silver mica \\
\hline C5 & 820pF \\
\hline C6 & 82 pF \\
\hline C7 & 10pF \\
\hline C8 & \(100 \mu \mathrm{~F}\) elect. 35 V \\
\hline C9 & 10 nF \\
\hline C10 & 220pF \\
\hline C11 & \(0.22 \mu \mathrm{~F}\) ceramic \\
\hline C12 & \(100 \mu \mathrm{~F}\) elect. 35 V \\
\hline C13 & 100 pF \\
\hline C14 & \(100 \mu \mathrm{~F}\) elect. 35 V \\
\hline C15 & 100 pF \\
\hline
\end{tabular}

Semiconductors
\begin{tabular}{|c|c|c|}
\hline IC1 & AY-1-0212 & \\
\hline IC2 & AY-1-6721/6 & \\
\hline IC3 & 70914 pin di.i.l. & \\
\hline IC4, 5 & 7418 pin d.i.l. & \\
\hline IC6, 7 & 72314 pin d.i.l. & \\
\hline TR1 & 2N3823 f.e.t. & \\
\hline TR2 & 2N3823 f.e.t. & \\
\hline TR3 & BC214 & \\
\hline TR4 & BC184 & \\
\hline D1-D2 & 1 N914 & \\
\hline D3-D6 & Miniature moulded (400V 1A) & bridge rectifier \\
\hline D7-D10 & Miniature moulded ( 400 V 1 A ) (Both from R.S) & bridge rectifier \\
\hline D11 & TILzo9 & \\
\hline
\end{tabular}

Transformer
T1 Min. mains transformer-Sec. 20V (2 windings) 3VA/winding (RS)

Inductor
L1 Denco IFT13 470 kHz coil

\section*{Miscellaneous}

Diecast box \(73 \sin \times 4 \frac{3}{4} \mathrm{in} \times 2 \frac{1}{4} \mathrm{in}\)
Veroboard \(7 \mathrm{in} \times 3 \frac{3}{4} \mathrm{in}, 0.1 \mathrm{in}\) pitch
SK1, SK2 standard jack sockets
S1 12 way, single pole wafer switch
S2 7 way single pole wafer switch
14 pin i.c. sockets ( 4 off), 8 pin i.c. sockets (2 off)


470 kHz i.f. transformer with the parallel capacitor removed.

The high input impedance of the m.o.s. chip ICI allows it to be directly connected to the drain of TRI, eliminating the usual buffer transistor. The tone output from IC2 is taken through the attenuator R4. R5 which serves the dual purpose of reducing the 12 V amplitude to a suitable power amplifier input level whilst protecting the output of IC2 from short circuits.

Referring to the circuit in Fig. 1, the incoming musical waveform, from a microphone say (SK1) is amplified by IC3 which has a gain of 1,000 . The output from IC3 is a.c. coupled into IC4 which further amplifies it by a factor of 100 . These two stages utilise operational amplifiers in standard configurations. The first stage, because of its very high gain, utilises a 709 with its attendant frequency compensation components. For the second stage we can manage with the limited bandwidth of a 741.

\section*{HIGH AMPLIFICATION}

The reason for the high amplification of the signal is twofold. Firstly, it enables a magnetic pick-up or microphone with a sensitivity of a few millivolts to be used. Secondly, the over-amplification can be utilised to overcome the decay in amplitude, characteristic of stringed instruments. This is very important when tuning a piano, as the top notes decay very quickly; without this facility the beats would not be easily observed. There will be some initial squaring of the waveform, but this will not matter to us. The sampling circuit can cater for waveforms of any shape.

Passing on to the sample and hold circiuit, a signal from the output of the tone generator (pole of S2) is amplified by TR3 to give a square wave of amplitude limited by the rail voltages. The leading edges of the square wave are differentiated by C10, R18 to give positive going pulses rising from -15.5 V and rising to +12 V . The diode D2 serves to suppress the negative going pulses generated at the trailing edge. These positive spikes turn on the f.e.t. TR2 and allow the hold capacitor C9 to store the output of IC4. The attenuator R11, R12 is necessary to ensure that the signal voltage on the drain of TR2 exceeds the gate voltage by the required 8 V when TR2 is off.


Fig. 2. The complete Tuning Fork circuit


Fig. 3. Waveforms showing action of sampling circuit

\section*{SAMPLING WAVEFORMS}

The action of the sampiing circuil is depicted in Fig. 3. A simplified musical waveform (a) with period 4 ms , frequency 250 Hz is sampled by waveform (b) with period 3.5 ms , frequency 285.7 Hz . (c) is the output of the sample and hold circuit which corresponds in shape to the original waveform (a). (d) is formed from waveform (c) by the squaring circuit consisting of IC5 connected as a zero threshold comparator. The period of (c) and (d) is 28 ms corresponding to a frequency of \(35 \cdot 7 \mathrm{~Hz}\). This is the beat frequency as \(285 \cdot 7-250=35 \cdot 7 \mathrm{~Hz}\). Finally, the output of IC.5 feeds directly to the l.e.d. driver TR4 providing a visual beat display.

\section*{CONSTRUCTION}

The main circuit is built on a single piece of Vero stripboard as shown in the accompanying photographs.

Note that the pin connections to the 723 refer to the 14 pin DIL package; if it is intended to use the 723 in a TO case, the pin numbering will be different and a different layout will be required.
When completed the output voltages should be measured. The tolerance on the supplies is \(\pm 1 \mathrm{~V}\) on the +12 V rail and +I .5 V on the -15.5 V rail: With 2 per cent resistors for the potential dividers R25, R26 and R22, R23 the outputs should be in tolerance. If, for any reason, the outputs require adjustment, these are the resistors to vary.

With the power supply working satisfactorily, the rest of the circuit can confidently be built. The layout conveniently splits in two, so that the oscillator and divider circuit can be built and tested first.

It is strongly recommended that the expensive master tone generator i.c. is mounted in a socket. The divider i.c. will have to be soldered indirectly as it is packaged in a TO case. As this is an m.o.s. device precautions should be taken whilst soldering it. The metal spring ring, which shorts the leads together in transit, should be left in place until soldering is complete.

Mount the decoupling capacitors Cl and C 2 close to the oscillator components and ensure that the tracks around the oscillator are broken, thus preventing the high frequency oscillations being picked up in other parts of the circuit. The construction of the rest of the circuitry is straightforward.


Photograph of Fork interior showing board assemblies and ancillary wiring to control switches. Note the use of a film canister for screening the microphone socket.


Fig. 4. Main board showing component assembly and copper track cuts required

As can be seen from Fig. 4 the p.s.u. regulators are mounted at the end of the main board.

The bridge rectifiers and smoothing capacitors are mounted on a small piece of board affixed to the side of the case as shown in Fig. 5 using countersunk screws and stand-off pillars.


Fig. 5. Additional board for rectifiers and smoothing components

The complete instrument is housed in a diecast box. The microphone jack socket should be mounted close to the input connection to IC3. Also, shielding of this socket is necessary to prevent pick-up from the oscillator section. In the prototype, the complete socket was mounted inside a small aluminium canister and the connection to pin 5 of IC3 was made with screened lead.

\section*{TESTING}

After carefully checking your wiring, plug the output into an audio amplifier and switch on. You should have 84 musical notes at your command. If you possess an oscilloscope you can ensure you have the correct input to ICl by looking at the oscillator output ( ICl pin 2). This signal, which is not a sine wave, should have an amplitude which lies between the limits of +10 V and +12 V for the crest and +2 V and -8 V for the trough.

Before the visual beat circuitry can be tested, the instrument will have to be roughly calibrated against a known source; a musical instrument roughly in tune will suffice.

Select the note and octave required (middle \(C\) lies in range 4) and adjust the core of Ll for an audio beat frequency of about 1 beat per second.

Disconnect the audio output and connect a good quality magnetic microphone to the input jack; with the microphone in the vicinity of the musical instrument, the beat frequency should be clearly visible.

\section*{CALIBRATION AND USE}

If you have access to a digital frequency counter, you will have no difficulty in calibration,

Table 1: AY-1-0212 Master Tone Generator
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Pin No. & Note & Divisor & Frequency \(f\) Range 7 & \[
\begin{gathered}
f / 2 \\
\text { Range } 6
\end{gathered}
\] & \begin{tabular}{l}
\(f / 4\) \\
Range 5
\end{tabular} & \[
\begin{gathered}
f / 8 \\
\text { Range } 4
\end{gathered}
\] & \begin{tabular}{l}
f/16 \\
Range 3
\end{tabular} & \begin{tabular}{l}
f/32 \\
Range 2
\end{tabular} & \begin{tabular}{l}
\(f / 64\) \\
Range 1
\end{tabular} & Correct frequency for \(f / 8\) \\
\hline 8 & A & 239 & 3520 & 1760 & 880 & 440 & 220 & 110 & 55 & 440 \\
\hline 7 & G \# & 253 & 3325.22 & 1662.61 & 831.30 & 415.65 & 207.82 & 103.91 & 51.96 & 415.31 \\
\hline 11 & G & 268 & 3139.1 & 1569.55 & 784.78 & 392.39 & 196.19 & 98.10 & 49.05 & 392.00 \\
\hline 12 & F\# & 284 & 2962.25 & 1481.12 & 740.56 & 370.28 & \(185 \cdot 14\) & 92.57 & 46.29 & 369.99 \\
\hline 6 & F & 301 & 2794 & 1397.48 & 698.74 & 349.37 & 174.68 & 87.34 & 43.67 & 349.23 \\
\hline 5 & E & 319 & 2637.24 & 1318.62 & 659.62 & 329.66 & 164.83 & 82.41 & 41.21 & 329.68 \\
\hline 13 & D \# & 338 & 2488.99 & 1244.50 & 622.75 & 311.12 & 155.56 & 77.78 & 38.89 & 311.13 \\
\hline 14 & D & 358 & 2349.94 & 1174.97 & 587.49 & 293.74 & 146.87 & 73.44 & 36.72 & 293.67 \\
\hline 4 & C\# & 379 & 2219.74 & 1109.87 & 554.93 & 277.47 & 138.73 & 69.37 & 34.68 & 277.18 \\
\hline 15 & C & 402 & 2092.74 & 1046.37 & 523.18 & 261.59 & 130.80 & 65.40 & 32.70 & 261.62 \\
\hline 16 & B & 426 & 1974.84 & 987.42 & 493.71 & 246.85 & 123.43 & 61.71 & 30.86 & 246.92 \\
\hline 3 & A \# & 451 & \(1865 \cdot 37\) & 932.68 & 466.34 & 233.17 & 116.59 & 58.29 & 29.15 & 233.07 \\
\hline
\end{tabular}
\(2\left(f_{0}\right)\) input frequency \(=841 \cdot 28 \mathrm{kHz}\)
\(1+12 \mathrm{~V}\) supply
\(9 \quad-15.5 \mathrm{~V}\) supply
10 OV
however, do not connect the counter to the oscillator output at pin 2 of ICl as the loading effect will give a false reading. The best accuracy can be obtained by using the counter in the period timing mode with the instrument switched to the low frequency \(A\) of 55 Hz .

Alternatively, a tuning fork can be used-it may be worth purchasing one if the instrument is to be used a lot. Finally, if absolute pitch is not essential, the 50 Hz mains frequency may be used.

Referring to Table 1 we see that the lowest note G has a frequency of 49.05 Hz , in fact the correct frequency should be very near 49 Hz . All that is required to pick up some mains hum, is a looped lead placed near the mains transformer. With the lowest G selected, tune L1 for 1 beat per second,

\section*{Pick-up for steel stringed instrument}

check that you are tuning to 49 Hz and not 51 Hz by switching to the adjacent G\# which should give approximately two beats per second.

\section*{ELECTRO-MAGNETIC PICK-UP}

An alternative pick-up for steel stringed instruments is a coil wound round a permanent magnet as used for electric guitars. This type of pick-up gives a superior performance to a microphone for the very low strings on a piano and has advantages for tuning in noisy environments. The device shown in the photograph was fashioned from an old telephone earpiece of 1936 vintage. One of the coils was removed, together with the pole-piece and magnet. The components were mounted on a suitable handle in much the same way as in the original earpiece.

\section*{CONCLUSION}

The Electronic Tuning Fork has been used to tune several instruments, including a piano and a 37 string autoharp. The visible beat indicator proved to be a boon as it allowed piano tuning to proceed without switching off the sacred TV set! This particular piano, being a poor specimen, was incapable of holding its tune unless the tension on the strings was relieved by tuning about three semitones below concert pitch. This was easily facilitated by simply loosening the note select knob, and advancing it three semitones.

Finally, don't be put off by the fact that the instrument is not perfect, for if you wish to be fanatical about your tuning, the utmost precision can be obtained by tuning to a specific number of beats. Referring to Table 1, we see that for a perfect A, G has the largest error of 0.39 Hz at a frequency of 392 Hz . If the instrument is tuned for 39 beats in a period of 100 seconds, then it will be precise. This is not possible for a stringed instrument, as the note will decay too soon. However, it might be worthwhile for tuning a divider organ where there are only twelve master frequencies to adjust. \(\star\)

\section*{ICE AGES}

Talk of weather and ice ages has been increasing of late, so it is refreshing to have some new information on the subject. Recently. Professor McCrea, one of our most meticulous astronomers, has made certain suggestions regarding the advent of ice ages. He postulates that in the journey round the galaxy by the solar system, the Sun may pass through areas rich in dust. The infalling dust could reduce the effect of the Sun's output.

In McCrea's study, he did not attempt to explain how the changes occur, but looked at the evidence of the recurrence of ice ages related to the cosmic year. Support for this idea came from G. E. Williams of Australia, who quite independently made a detailed exami nation of the Sun's position during the cosmic year without offering any evidence of a link or mechanism for the ice ages.

These two approaches within a few weeks of each other has caused more attention to be given to a new model. In McCrea's calculations, orders of magnitude and estimates of the intervals were made. Williams, on the other hand, used geological evidence to an accuracy of a few tens of millions of years. This produced a fairly rigorous time scale for the glaciations.

In a summary, he indicates six principal occurrences. One of these has just been completed, one occurred in the Permo-Carboniferous period about 295 millions of years ago, another in the late Ordivician period some 450 millions of years ago and three in the late preCambrian. That is 615,770 and 940 millions of years ago. This reveals a gap at about 150 million years ago which was, however, a cool period.

From the evidence that Williams offers, a cosmic year for 303 mil lions emerges. This agrees with the impressions that the ice ages occur twice in the cosmic year. Williams offers the suggestion that this might be due to the bending of the galaxy due to the tides raised by the influence of the Magellanic clouds.

\section*{NEW PLANETS}

The news recently released that Russian theoretical astronomy has examined a computerised experiment dealing with perturbations or orbits reveals the existence of one or maybe two planets beyond Pluto. There has always remained some doubt that all the corrections have not yet been made to the discrepancies in the Uranus predictions.

At the Institute of Theoretical Astronomy in Leningrad, this experiment has been carried out under the direction of Professor Chebotaryov,

© Y FRANK W. HYDE
a specialist in celestial mechanics, who has been computing the effects on the comet 1862-3. The parameters of the orbit make it an en" ticing argument that a planetary body would produce the data to fit the observations.

The invisible planets would have positions way out beyond the Plutonian orbit. One would have a diameter of about 12,000 miles, which would give it a mass of about the same as that of the Earth, and would be 54 times as far away from the Sun as the Earth. The other would be twice as large as the Earth and at a distance of a hundred times that of the Earth from the Sun.

The ancients have always held that there were other planets; perhaps one of these will be called Lilith also, if and when they are optically observed. Is this perhaps a good argument for a very large telescope aboard an orbiting observatory.

\section*{SPACE BIOLOGY}

The Apollo-Soyız programme dealt with a number of joint biological tasks. One of these was concerned with fish embryonic development, with the object of discovering what effects weightlessness would have. Similar fish. Danyo Rerio, had been taken to outer space by Sovuz 16.

The main object was to study the vestibular apparatus. On the ground, living things learn from birth to distinguish the difference between up and down, by the use of this mechanism. In space these notions become non-existent and this seems to cause changes in the organ.

Another experiment concerned the growth of micro-organisms, since weightlessness had a considerable effect on the vital activity of monocellular life. The organisms chosen for the experiment were Chlamy Domonada, Flowers Crepsis, Arabysopsis and Protea Vulgaris.

Two experiments with microbial exchange were made from the USA module and the Russian Soyuz. Exchange was made from the astronauts themselves also. These will be compared back on Earth to discover how the microflora has changed.

This was an important joint venture to discover the effects of mutual exchange between the astronauts. It could reveal the processes by which illness develops especially during the first few days of a mission. It would also be of value to determine conditions of cross-infection between the individuals on Earth. Thus another spin-off appears for the benefit of mankind.

\section*{COMET TO ASTEROID}

A rare phenomenon, the transformation of a comet into an asteroid has been observed by Soviet astronomers.

A comet of the 15 th magnitude is moving between Jupiter's orbit and the asteroid belt. The comet has been named Tamara SmirnovaNikolai Chernkh, and was discovered in March this year.

Unlike most comets, this one does not follow the elongated elliptical orbit but moves in an almost circular one, its path close to the asteroids. It would seem, therefore, that the theory of capture obtains here as it does with other material particles.

If the comet has gathered enough material round its icy nucleus to attain a mass sufficient to make it also a minor planet, it may become another of the random bodies under the control of the gravitation of Jupiter or a lesser place in the asteroid belt.

\section*{POLES APART}

It is calculated that the magnetic poles are changing position. This will necessitate considerable changes in charts towards the end of the century.
If the Soviet scientist Nikolai Medvedev is correct, the Earth has already entered a new epoch of magnetic inversion. When it attains a maximum, the north magnetic pole will be in the area of the Persian Gulf, with the Southern pole in the area of the Phillipines.

The theory is based on the fact that the poles drift with the migration of the Earth's nucleus which is known not to coincide with the geographical poles.


LAST month the construction and wiring of circuits involving static tests, that is tests without the engine running, were described. The remaining circuits involve dynamic tests on the engine under normal running conditions, and the first of these, to be described this month, is the dwell and tachometer board. The dwell period is the portion of the ignition timing cycle during which the contacts are closed, and current is allowed to build up in the ignition coil primary. Too short dwell time will mean that, at high engine speeds, the current will not reach a sufficiently high value to produce a good spark and mis-firing will result.

Dwell is usually quoted in degrees of rotation of the distributor shaft. Since in one 360 degree rotation, the distributor connects once to each sparkplug, the distributor angle per contact breaker cycle is \(360 / \mathrm{N}\) degrees, where \(\mathrm{N}=\) number of cylinders. Hence, for a four-cylinder engine the maximum dwell angle is 90 degrees, for a sixcylinder 60 degrees and so on. On this instrument the meter scale for dwell has been calibrated 0 to 100 per cent of the maximum angle so that it applies to all engines. Of course, no engine will run with maximum dwell angle since the contacts would be closed all the time. The normal dwell angle for most cars is around 40 to 60 per cent of the total period.

\section*{INPUT WAVEFORM}

Both r.p.m. and dwell time measurements make use of the pulses obtained from the contact breaker terminal on the ignition coil. Much of the circuit, shown in Fig. 2.1, is common to both measurements.

The squared letters on the circuit diagram refer to the waveforms shown in Fig. 2.2 occurring at the points indicated. The waveforms and circuit are described relative to the negative terminal of the battery, normally connected to chassis. The signal obtained from the contact breaker is waveform. A.

When the contacts are closed, the terminal of the contact breaker is connected to chassis. When the contacts open the terminal is connected through the low voltage section of the coil to the positive side of the battery. At the instant the contacts open the energy stored in the coil inductance, due to the current flowing in it, is converted into potential energy and produces a series of high voltage oscillations (waveform A) which last for about 3 milliseconds. It is these oscillations which generate the high voltage energy necessary to produce the spark.

\section*{CARS WITH POSITIVE EARTH}

On cars which have the positive pole of the battery connected to the chassis, the c.b. terminal on the coil will go to minus 12 volts when the contacts open, and waveforms A and B of Fig. 2.2 will be inverted. One section of IC2 (4 NOR gates) is used as an inverter, brought into circuit by S 2 , so that the \(^{2}\), the input presented to pin 5 of IC1 is the same as waveform B.

\section*{METER SIGNALS}

At this point it is worth digressing to consider what signals are required to produce meter readings

\section*{SPECIFICATION•••}
- Ignition
timing
By strobe lamp fired from inductive coupling to No. 1 spark plug lead.
- Tachometer
- Dwell measurement

Ohmmeter
- Battery Charger
- Voltmeter
- Condenser check

Power input

0 to 2500 r.p.m. on \(1,2,4,6\) or 8 cylinder engines.

10 per cent to 80 per cent at 1000 r.p.m.

0 to 1000 ohms. 150 ohms centre scale.

12 volt 4A (High rate) or 2A (Low rate) or 6 volt 4A (High rate) or 2A (Low rate).

0 to 25 volts d.c. \(\pm 5\) per cent f.s.d.
\(0.22 u \mathrm{~F}\) condenser is sutstituted across contact breaker.

240 V a.c. at 50 Hz or \(12-16 \mathrm{~V}\) d.c. at 1 A .
proportional to engine speed and dwell time. If regular current pulses are passed through a meter. the meter will read current equal to the average value of the current pulses. Therefore, the meter


Fig. 2.2. The oscillograms to be found on test points of the dwell and r.p.m. circuit
reading will depend on the ratio of on to off time of these pulses. For instance, if current pulses of 1 mA flow for 50 per cent of the time, the meter will read 0.5 mA . Hence, considering waveform E of Fig. 2.2, it can be seen that if the dwell time is made the on part of the waveform, the meter will give a reading directly proportional to dwell angle. The 90 degree maximum dwell angle shown at \(E\) is for a fourcylinder engine. A six or eight-cylinder engine would have a maximum dwell angle of 60 degree and 45 degree respectively. If engine speed is varied.

\section*{TACHOMETER AND DWELL CIRCUIT}

Fig. 2.1. Board A, the dwell and r.p.m. circuit. The squared letters refer to the oscillograms in Fig. 2.2. For Veropin connections see Fig. 1.2

both the on and off parts of the waveform will change proportionally, and the average meter indication (dwell angle) is independent of engine speed.

Waveform C, is a fixed length pulse, produced once every time the contacts open. Here, changing engine speed does not alter the on time, but makes the pulse occur more or less often, depending on whether engine speed is increased or decreased. Thus doubling engine speed will double the current through a meter. These pulses (waveform C) are used to give an indication of r.p.m.

\section*{CIRCUIT DESCRIPTION}

Now to consider Fig. 2.1, the sircuit required to produce these two trains of pulses in a form suitable to give the required indications on a \(0-1 \mathrm{~mA}\) meter. The contact breaker signal is clipped by a \(5 \cdot 1 \mathrm{~V}\) Zener diode D13 so that it is at the correct level for use with standard 5 V logic integrated circuits. This produces waveform B at the input to ICl (pin 5). This integrated circuit is a monostable multivibrator with a level detecting trigger input. Once fired, it will ignore any further input triggering pulses occuring during the time constant of the timing components C6, R14-21.
Thus the pulse chopping on waveform B caused by the coil ringing is ignored by the multivibrator, and the output at pin 1 of IC 1 is waveform C. This signal is fed through series resistors R12 and VR2 to the meter, which will give a reading proportional to pulse repetition rate, i.e., r.p.m. The length of this pulse limits the maximum r.p.m. which can be measured, but if it is made too short there will be a risk of the i.c. double-firing and giving a false meter reading. About 3 milliseconds is the shortest pulse that can be safely tolerated. The integrated circuit has a maximum duty cycle of 60 per cent, which means that for 3 milliseconds on time, the total pulse period will be 5 milliseconds.
The formula for the maximum r.p.m. which can be measured with this circuit is given by
\(60 \times\) max. duty cycle
Pulse length \(\times \frac{1}{2}\) No. cylinders.
from which it will be seen that the greatest limitation will be on engines with the highest number of cylinders For an eight-cylinder engine, the limit will be
\[
\frac{1,000 \times 60 \times 0.60}{3 \times 4}=3,000 \mathrm{r} . \mathrm{p} . \mathrm{m} .
\]


For ease of use and calibration it was decided to make the range the same ( 2,500 r.p.m.) for all types of engines and accordingly, the time constant associated with ICl has been made switchable for a range of engines with differing number of cylinders from one to eight. This means that all carburettor adjustments are carried out with the r.p.m. meter reading near the centre of the scale, around 1,000 revolutions per minute.

As already described, dwell angle is measured by waveform E, which is a cleaned up version of B. The cleaning up is achieved by feeding waveform \(B\) and D into the two inputs of IC2a, or NOR gate A NOR gate produces " O " output when either of its inputs is a " 1 ". Hence, since the positive going output of IC1 holds one input positive during the ringing on the other waveform, this ringing will be removed from the output. IC2b is a second NOR gate on the same i.c., used to invert the signal so that the correct portion of the waveform is in the on state to drive the meter positively.

From examination of waveform E it will be seen that 100 per cent dwell will be represented by constant zero voltage and zero dwell by constant positive level. This fact is made use of later in the calibration process.

The board is supplied from the 10 V regulated supply which is further dropped to 5.1 V for the integrated circuits by R22 and Zener diode D7.

\section*{CIRCUIT BOARD CONSTRUCTION}

The circuit for r.p.m. and dwell angle measurement is constructed on a piece of \(0 \cdot 1\) in pitch Vero board measuring \(4 \cdot 8\) in long by \(2 \cdot 7 \mathrm{in}\) wide. Fig. 2.3 shows the layout of components on the top side of the board, and the points at which the printed circuit track should be cut.

Tags are inserted at all points where the circuits show connections to switches. If the constructor does not require all the facilities provided by the switching, links may be soldered between appropriate tags to set the circuits for one particular type of car, e.g. four-cylinder, negative earth. 14-pin d.i.1. sockets are recommended for the two i.c.s in preference to direct soldering to the board as there is a risk of damage by overheating with direct soldering. Both i.c.s are mounted with their orientation identity, i.e., pin 1, towards the top edge of the board. Two small angle brackets are fixed to the bottom corners of the board for bolting to the chassis, beside the power supply regulator board.

\section*{WIRING IN}

There is quite a considerable amount of wiring associated with this board. Fig. 2.3 shows the pin identities on the board and should be used in conjunction with Fig. 1.2 in the first article when wiring in. As well as the supply connections, which are made from the 10 V regulator board via the 150 mA fuse, connections must be made to the meter function, positive/negative, and number of cylinder switches and to the contact breaker socket on the front panel. A lead having a banana plug on one end and a crocodile clip on the other should be made up for connection to the contact breaker terminal.


\section*{Build an oscilloscope.}

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no that you will need not only for the course's practical experiments. but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving

\section*{PLUS} FREE GIFT!

ALL STUDENTS ENROLLING IN OUR COURSES RECEIVE A FREE CIRCUIT BOARD ORIGINATING FROM A COMPUTER AND CONTAINING MANY DIFFERENT COMPONENTS THAT CAN BE USED IN EXPERIMENTS AND PROVIDE AN EXCELLENT EXAMPLE OF CURRENT

\section*{This hobby brings big rewards.}

A soldering iron and a screwdriver. If you know how to use them, or at least know one end from the other, you know enough to enrol in our unique home electronics course.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You build, see and learn as, step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered and add a new -dimension not only to your hobby but also to your earning capacity.

All the training is planned to be carried out in the comfort of your own home and work in your own time. Yoú send them in when you are ready and not before. These culminate in a final test and a certificate of success.
toy, but a test instrument over buying a similar piece of essential equipment.


In a short time you will be able to read and draw circuit diagrams. understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.


> Read, draw and understand circuit diagrams.


To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

Carry out over 40 experiments on basic circuits.
 .




N

\section*{SONY HALF PAIGE}

These top quality SQ Decoder/Amplifiers are offered at half price whlle stocks last. Brand new in manufacturers' cartons with one year guarantee.


SOA 100
SO DECODER/AMPLIFIER
SOA 100 . A verualtio and apace saving SO ascoder/ampitiser ampifier heo o tapes source montior swhen) to exciting t-channel reallsm-fuat sdd model SOA 100 and e pair of rear epesakere. Other toaturititinclude tone controle. batance contreis, Ard volume control for simultaneoue adjuatiment of 4 chancole and decoder output controts for ing eposident ube of decodor Many of your tevourity artiont.

REC. RETAIL \(£ 52 \cdot 00\) incl. VAT OUR SPECIAL HALF PRICE OFFER ONLY E26.00 incl. VAT
Please add \& 1 - 50 P \& P and insurance

SQA 200
OUR SPECIAL HALF
PRICE OFFER
£38. 80 incl . VAT
REC. RETAIL PRICE 877.68 incl. VAT Please add \(£ 1 / 50\) P. \& P. and insurance

\section*{SQA 200}

SO DECODER/AMPLIFIER
SQA 200. Providing an output of 8W RMS per channel for the rear speakers. SQA 200 is a decoder/ amplifier designed specifically to work with those complete audo units systems provided with the addition of SQA 200 plus a pair of rear mpeakers wifl add a new dimension to your stereo system,

DECLON FOAM SPEAKER FRONTS as used by leading manufacturers NEW SPECIAL PRICE \(18 \frac{1}{2} \times 10 \times \frac{1}{2}\) black or brown \(£ 1.50\) each \(22 \times 12 \times \frac{2}{4}\) brown \(\quad £ 2.00\) each \(29 \times 11 \times+\) brown \(\quad\) 2. 50 each \(26 \times 15 \frac{1}{\frac{1}{2}} \times \frac{1}{4}\) brown \(\quad \mathbf{2} .50\) each Prices inciude VAT and Post and Packing. Can be easily cut to suit any loudspeaker enclosure.
Pattern as illustrated


REC. RETAIL PRICE \(£ 111.85\) incl. VAT OUR PRICE
£69.95 incl. VAT
\(+£ 1.50 \mathrm{P}\). \& P . and insurance
medway mail order co.
P.O. BOX 4G GILLINGHAM KENT, ME7 5LB



Fig. 2.3. Component layout and cutting details for Board A

\section*{TEST AND CALIBRATION}
lt only now remains, to set the two calibration potentiometers VR2 and VR3 so that the meter indicates correct dwell and tachometer readings. It has already been noted that 100 per cent dwell is represented by contacts permanently closed. To set the dwell calibration, switch the meter to 'Dwell', Earth switch to negative and connect the contact breaker socket to supply negative. The meter should read approximately full scale. Adjust VR3 to set the meter reading to 100 per cent. Check that with contact breaker socket connected to +12 V , the meter reading falls to zero. With the earth switch set to \(+v e\), the readings should be reversed, i.e., 0 with c.b. socket connected to supply - ve and 100 per cent with c.b. socket connected to +12 V .

To calibrate the tachometer scale, the 50 Hz mains supply is used. The r.p.m. corresponding to 50 Hz is \(50 \times \frac{60}{-2}=1,500\) r.p.m. for a four-cylinder engine. Set the function switch to r.p.m., the No. of cylinders switch to 4 , and connect the c.b. lead to one 12 V a.c. terminal of the bridge rectifier. Adjust VR2 to give a meter reading of 1,500 on the r.p.m. scale. Check that the reading falls to 1,000 r.p.m. on sixcylinders and 750 r.p.m. on eight cylinders.

\section*{DWELL MEASUREMENT}

To make measurements of dwell angle, the lead from the c.b. socket is connected to the c.b. terminal on the coil. A lead should also be connected between instrument chassis and car chassis. From the foregoing description it will be seen that the pulse produced by ICl forms part of the 'off' portion of the dwell waveform (E of Fig. 2.2). As the engine speed increases waveform \(E\) contracts to a shorter time scale.

This pulse therefore sets the upper limit of dwell which can be measured, since the off section of the waveform cannot be less than D. It should be noted that waveforms \(C\) and \(D\) are only 3 milliseconds
for the eight-cylinder engine setting, being increased in width for less cylinders in order to maintain tachometer calibration. However, the period between sparks is also proportionally longer for less cylinders at a given engine speed, and waveform \(D\) will remain the same proportion of total period of waveform \(E\) for all engines, and will limit the maximum dwell measurement to the same percentage in each case. The following table should clarify this point.

Table 2.1.
\begin{tabular}{|c|c|c|c|}
\hline No. of cylinders & Tach. pulse D & Period of E at 1,000 r.p.m. & Max. dwell at 1,000 r.p.m. \\
\hline 1 & 24 ms & 120 ms & 80 per cent \\
\hline 2 & 12 " & 60 " & \(80{ }^{\text {* }}\) \\
\hline 4 & 6 ", & 30 & 80 \\
\hline 6 & 4 ", & 20 ," & 80 ", \\
\hline 8 & 3 " & 15 ," & 80 \\
\hline
\end{tabular}

Increasing engine speed will reduce the maximum measurable dwell since it reduces the periodic time of waveform E. This limitation can be overcome to some extent, on less than eight-cylinder engines by leaving the "No. of Cylinders" switch on 8 for all dwell measurements. It must be remembered however, that the switch must be returned to its correct position when making tachometer readings.

\section*{SIX-VOLT SYSTEMS}

In a 6 V system the amplitude of the pulse obtained from the contact breaker will be only 6 V instead of 12. It may therefore be necessary to reduce the value of R10 in Fig. 2.1 to around 50!. The full value of \(240 \Omega 2\) must be used when setting the calibration of the tachometer and dwell scales, if this is done from 12 V .

Next month: Strobe circuit and instructions for using the Analyser

\title{
 UPDATIE monnwens
}

ULN3006T
IM5200
DD10R

\section*{HALL SWITCH}

We see less and less magnetic components in our circuits these days, coils are being replaced by active filters using only C's and R's, and relays are giving way to logic gates and thyristors in a general trend away from electromagnetics and towards electronics.

This state of affairs is not going to be tolerated for long by the ever loyal band of magnet-fanciers, and already they are launching a counter attack into the very heart of logic-land with a new device from Sprague called a Hall-Effect Switch.

Now for all you deviants who have forgotten what the Hall-Effect is, it goes something like this: If a current is made to flow from end to end of a bar shaped conductor, and a magnetic field is introduced perpendicular to the direction of current flow, then the effect of the field will be to deflect the end to end current flow, and to cause a small voltage, to be developed across the width of the bar. This principle has been known for a long time, and has been put to good use in the past to measure the strength of particular magnetic fields.

The new use for the Hall-Effect is in a very small magnetically actuated switch with no moving parts, and the trick has been to integrate a Hall-sensor cell with a silicon integrated circuit and then to put the whole thing in a tiny three pin plastic package. The device code is ULN3006T, and providing that all the chips that come off the assembly line aren't gobbled up immediately by industry, this one could be a very useful addition to any amateur's component box.

The chip contains an amplifier which converts the tiny Hall voltage into a logic swing at the output. Switch ON point is about 500 Gauss, and switch OFF point is about 225 Gauss, making operation with any kind of magnet possible.

The standard use for this device will be as a keyswitch for teletypewriters, where a small permanent magnet mounted in the key top will activate the sensor when the key is depressed, but, of course, other uses are limited only by your own imagination! And most readers are not short of this.

\section*{D.I.Y./L.B.I.}

We all know that l.s.i. (large scale integration) can squeeze very large logic arrays into very small spaces, but up to now this sort of production economy was strictly for the specialists, with no chance of the small man dictating chip design because of the high tooling cost involved for each new circuit. One glimmer of hope has been present for a number of years in the form of PROMs, or Programmable Read Only Memories, which are factory produced arrays which can be content-programmed by the user.

An ingenious new chip from Intersil, the IM5200, may at last bring the benefits of custom I.s.i. to everyone because it is the first Field Programmable Logic Array (F.P.L.A.) ever produced. A sort of Programmable Logic Array has been available in the past, but with these early devices programming had to be carried out at the final manufacturing stage. These were a help, because instead of having to order a new device in thousands, you could order in hundreds, but the new F.P.L.A. takes this idea much further because it is now economic to make a new device in only one-off quantities, and not only that, because programming is done by the user, a ready programmed chip can be edited or modified at will.

The IM5200 has 14 logic inputs which are buffered and inverted internally and then fed to a programmable array of 48 AND gates which can each have any combination of the 14 input terms used as inputs.

The outputs of the AND gate array are fed to an OR gate array where each of eight OR gates can have any combination of AND terms as their inputs, and finally the eight OR ouptuts can be further programmed to give active high or active low outputs from the chip.

The secret of the new device lies in the A.I.M. (Avalanche Induced Migration) links used to hook-up the gate array when high current programming pulses are applied momentarily. As supplied, all A.I.M. links appear as open-base
npn transistors (i.e. open circuits) but after programming a link is partially shorted to form a diode, and so from the outside of the package it is possible to selectively "wireup" the gating arrays.

There seems to be no reason why these devices should not be used by amateurs once a suitable (and simple) programmer has been built, and since each F.P.L.A. can replace up to 250 t.t.l. packages, do-it-yourself will take on a new meaning!

\section*{TEN TO THE BAR}

A modern trend is to replace all "old-fashioned" analogue displays with a trendy bunch of seven-segment l.e.d.s, to achieve a mathematically precise numerical readout. Of course, we all rather fancy a digital multimeter to replace the old faithful moving coil job, but in many circumstances the change to a digital type display actually docreases the amount, and clarity of available information; imagine for example the difficulties involved in reading a car speedo' which gave a digital output!

Now that the novelty of little flickering numbers is wearing off, the l.e.d. manufacturers are turning their skills to producing a new kind of analogue display, which, while being more suitable for use with today's advanced circuits than a moving coil meter, still gives a simple to read analogue information display which is not subject to misinterpretation.

An example of this practical thinking is the DD10R ten bar l.e.d. array from ITT which comes in a 20 pin d.i.I. package that can be stacked end to end to produce an array of light bars to any desired length. The anode and cathode of each of the ten l.e.d.s are individually accessible to ensure the utmost flexibility of application.

The usual way to display analogue variables such as speed, height, or depth on this sort of array is to illuminate more and more bars as the measured quantity increases, so as to give a variable length of column of light. Stacking several arrays alongside each other forms a histogram type display, and you can't do that with Nixie tubes!

Top 500 Semiconductors From the Largest Range in the U.K
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2N456 & 0.901 & Orange & 0.12
0.25 & 2N5192 & 1.24
1.45 & AF 106
AF 109R & 0.40
0.40 & BC186
BC187 & 0.25
0.27 & BF159
BFI60 & 0.27
0.23 & LOO5T1 & 1.50
1.10 & OC35 & \\
\hline 2N456A & 0.85 & 2N3053 & 0.25 & 2N5195 & 1.46 & AF109R & 0.40 & BC187 & 0.27 & BFI60 & 0. 23 & LM380 & \(1 \cdot 10\) & OC42 & \\
\hline 2N457A & 1.20 & 2N3054 & 0.80 & 2N5245 & 0.47 & AF114 & 0.35 & BC207 & 0.12 & BF163 & 0.32 & LM381 & \(2 \cdot 20\) & OC45 & \\
\hline 2N490 & 4.00 & 2N3055 & 0.75 & 2N5294 & 0.48 & AF115 & 0.35 & BC208 & 0.11 & BF166 & 0.40 & LM702C & 0.75 & OC71 & \\
\hline 2N491 & 4.36 & 2N3390 & 0.45 & 2N5295 & 0.43 & AF 116 & 0.35 & BC212K & 0.18 & BF167 & 0.25 & LM709 & & OC72 & \\
\hline 2N492 & 5.00 & 2N3391 & 0.28 & 2N5296 & 0.48 & AF117 & 0.35 & BC212L & 0.16 & BF173 & 0.27 & TO99 & 0.40 & OC81 & \\
\hline 2N493 & \(5 \cdot 20\) & 2N3391A & 0.29 & 2N5298 & 0.50 & AF118 & 0.35 & BC214L & 0.18 & BF177 & 0.29 & 8 OH & 0.38 & OC83 & \\
\hline 2N696 & 0.22 & 2N3392 & 0.15 & 2N5457 & 0.49 & AF 124 & 0.30 & BC237 & 0.18 & BF178 & 0.35 & 14 DIL & 0.40 & ORP12 & \\
\hline 2N697 & 0.16 & 2N3393 & 0.15 & 2N5458 & 0.46 & AF125 & 0.30 & BC238 & 0.15 & BF179 & 0.43 & LM710 & 0.47 & R53 & \\
\hline 2N698 & 0.82 & 2N3394 & 0.15 & 2N5459 & 0.49 & AF126 & 0.28 & BC239 & 0.15 & BF180 & 0.35 & LM723C & 0.90 & SL414A & \\
\hline 2N699 & 0.59 & 2N3402 & 0.18 & 2N5492 & 0.58 & AF127 & 0.28 & BC251 & 0.25 & BF181 & 0.36 & LM741 & & SL610C & \\
\hline 2N706 & 0.14 & 2N3403 & 0.19 & 2N5494 & 0.58 & AF 139 & 0.65 & BC253 & 0.25 & BF182 & 0.35 & TO99 & 0.40 & SL611C & \\
\hline 2N706A & 0.11 & 2N34 14 & 0.20 & 2N5496 & 0.61 & AF 186 & 0.46 & BC257 & 0.18 & BF183 & 0.55 & 8016 & 0.40 & SL612C & \\
\hline 2N708 & 0.17 & 2N3415 & 0.21 & 2N5777 & 0.45 & AF200 & 0.85 & BC258 & 0.18 & BF184 & 0.30 & 14DIL & 0.39 & SL620C & \\
\hline 2N709 & 0.42 & 2N3416 & 0.24 & 2N6027 & 0.45 & AF239 & 0.65 & BC259 & 0.17 & BF185 & 0.30 & LM747 & 1.00 & SL621C & \\
\hline 2N711 & 0.50 & 2N3417 & 0.29 & 3N128 & 0.73 & AF240 & 0.90 & BC261 & 0.25 & BF194 & 0.12 & LM748 & & SL623 & \\
\hline 2N718 & 0.23 & 2N3440 & 0.59 & 3N 139 & 1.42 & AF279 & 0.70 & BC262 & 0.25 & BF195 & 0.12 & 8DIL & 0.60 & SL640C & \\
\hline 2N718A & 0.28 & \({ }^{2} \mathbf{N} 3444\) & 0.97 & 3N140 & 1.00 & AF280 & 0.79 & BC263 & 0.25 & BF196 & 0.13 & 14DIL & 0.73 & SL641C & \\
\hline 2N720 & 0.57 & 2N3442 & 1.40 & 3N141 & 0.1 & AL102 & 1.00 & BC300 & 0.38 & BF 197 & 0.15 & LM3900 & 0.70 & SN76003N & \\
\hline 2N914 & 0.39 & N3638 & 0.15 & 3N200 & 2.49 & AL 103 & 1.00 & EC301 & 0.34 & BF 198 & 0.18 & LM7805 & 2.00 & SN76043N & \\
\hline 2N916 & 0.28 & 2N3638A & 0.15 & 40361 & 0.40 & BC107 & 0.14 & BC302 & 0.29 & BF200 & 0.40 & LM7812 & 2.50 & SN76023N & \\
\hline 2N918 & 0.32 & 2N3639 & 0.27 & 40362 & 0.45 & BC108 & 0.14 & BC303 & 0.54 & BF225 & 0.23 & LM7815 & \(2 \cdot 50\) & SN76033N & \\
\hline 2N929 & 0.37 & 2N3641 & 0.17 & 40363 & \(0 \cdot 8\). & BC109 & 0.14 & BC307 & 0.17 & BF244 & 0.21 & LM7824 & 2.50 & ST2 & \\
\hline 2N930 & 0.22 & 2N3702 & 0.12 & 40389 & 0.48 & BC113 & 0.15 & BC308A & 0.15 & BF245 & 0.45 & MC1303 & 1.50 & TAA263 & \\
\hline 2N1302 & 0.19 & 2N3703 & . 13 & 40394 & 0.56 & BC115 & 0.17 & BC309C & 0.20 & BF246 & 0.58 & MC4310 & 2.50 & taA300 & \\
\hline 2N1303 & 0.19 & 2 N 3704 & 0.15 & 40395 & 0.65 & BC116 & 0.17 & BC317 & 0.12 & BF247 & 0.65 & MC1330P & 0.90 & TAA350 & \\
\hline 2 N 1304 & 0.28 & 2N3705 & 0.15 & 40406 & 0.44 & BCi16A & 0.18 & BC318 & 0.12 & BF254 & 0.19 & MC1351P & 0.80 & tAA550 & \\
\hline 2N1305 & 0.24 & 2N3706 & 15 & 40407 & 0.35 & EC117 & 0.21 & 8С337 & 0.20 & BF255 & 0.19 & MC1352P & D. 80 & TAA611C & \\
\hline 2N \(\uparrow 306\) & 0.31 & 2N3707 & 0.18 & 40408 & 0.35 & BC118 & 0.14 & BC338 & 0.20 & BF257 & 0.47 & MC1466 & 3.50 & TAA621 & \\
\hline 2N+307 & 0.30 & 2N3708 & 14 & 40409 & 0.52 & EC119 & 0.29 & BCY30 & 0.80 & BF258 & 0.53 & MC1469 & 2.75 & TAA661B & \\
\hline 2N1308 & 0.47 & 2N3709 & 0.15 & 40410 & 0.52 & BC121 & 0.35 & 8CY31 & 0.85 & BF259 & 0.55 & ME0402 & 0.20 & TBA641日 & \\
\hline 2N1309 & 0.47 & 3710 & 15 & 40411 & 2.00 & BC125 & 0.16 & BCY32 & 1.15 & BFR39 & 0.24 & ME0404 & 0.1 & TBA651 & \\
\hline 2N1671' & 1.54 & 2N3711 & 0.15 & 40594 & 0.74 & BC126 & 0.23 & BCY33 & 0.85 & BFR79 & 0.24 & ME0412 & 0.11 & TBA800 & \\
\hline 2N1671A & 1.67 & 2, 3712 & 1.20 & 40595 & 0.84 & BC132 & 0.30 & 8CY34 & 0.79 & BFS21A & \(2 \cdot 30\) & ME4102 & 0.11 & TBA810 & \\
\hline 2N1671B & 1.85 & 2N3713 & 1.20 & 40601 & 0.67 & BC134 & 0.13 & BCY38 & 1.00 & BFS28 & 1.36 & ME4104 & 0.11 & TBAB20 & \\
\hline 2N1741 & 0.45 & 2N3714 & - 30 & 40602 & 0.61 & EC135 & 0.13 & BCY39 & 1.50 & BFS61 & 0.27 & MJ480 & 0.95 & tBa920 & \\
\hline 2N1907 & 5.50 & 2N3715 & . 50 & 40603 & 0.58 & BC136 & 0.17 & BCY40 & 0.97 & BFS98 & 0.25 & M. 1481 & 1.20 & TIL209 & \\
\hline 2N2102 & 0.60 & 2N3716 & 1.80 & 40604 & 0.56 & BC+37 & 0.17 & BCY42 & 0.28 & BFX29 & 0.30 & MJ490 & 1.05 & TIP29A & \\
\hline 2N2147 & 0.78 & 2N3771 & 2.20 & 40636 & \(1 \cdot 10\) & BC140 & 0.68 & BCY58 & 0.30 & EFX30 & 0.27 & MJ491 & 1.45 & T1P29C & \\
\hline 2N2148 & 0.94 & 2N3772 & . 80 & 40669 & 1.00 & BC14 & 0.68 & BCY59 & 0.32 & BFX84 & 0.24 & M 29555 & 1.00 & TIP30A & \\
\hline 2N2160 & 0.90 & 2N3773 & 2.65 & 40673 & 0.73 & EC142 & 0.23 & BCY70 & 0.17 & BFX85 & 0.30 & MJE340 & 0.48 & TIP30C & \\
\hline 2N2218A & 0.22 & 2N3789 & 2.06 & AC126 & 0.20 & BC143 & 0.25 & BCY71 & 0.22 & BFX87 & 0.28 & MJE2955 & 1.20 & TIP31A & \\
\hline 2N2219 & 0.24 & 2N3790 & 2.40 & AC127 & 0.20 & BC147 & 0.14 & BCY72 & 0.15 & BFX88 & 0.25 & MJE3055 & 0.75 & TIP31C & \\
\hline 2N2219A & 0.26 & 2N3791 & \(2 \cdot 35\) & AC128 & 0.20 & BC148 & 0.14 & BD115 & 0.75 & BFX89 & 0.90 & MJE370 & 0.65 & TIP32A & \\
\hline 2N2220
2N2221 & 0.25 & 2N3792 & 2.60 & AC451V & 0.27 & BC149 & 0.15 & BD146 & 0.75 & BFY50 & 0.23 & MJE371 & 0.75 & TIP32C & \\
\hline 2N2221 & 0.18 & 2N3794 & 0.24 & AC152V & 0.49 & \(\mathrm{BCH}^{83}\) & 0.18 & BD121 & 1.00 & BFY51 & 0.23 & MJE520 & 0.60 & tip33A & \\
\hline 2N2221A & 0.21 & 2N3819 & 0.37 & \({ }^{\text {AC }}\) C153 & 0.35 & ECT54 & 0.18 & B0123 & 0.82 & BFY52 & 0.21 & MJE521 & 0.70 & TIP33C & \\
\hline 2N2222 & 0.20 & 2N3820 & 0.64 & AC153K & 0.40 & BC157 & 0.16 & BD124 & 0.67 & BFY53 & 0.18 & MP8111 & 0.32 & TIP34A & \\
\hline 2N2222A & 0.25 & 2N3823 & 0.78 & AC154 & 0.25 & BC158 & 0.16 & ED134 & 0.40 & BFY90 & 0.75 & MP8112 & 0.40 & TIP34C & \\
\hline 2N2368 & 0.25 & 2N3904 & 0.27 & AC176 & 0.30 & BC160 & 0.60 & 8D132 & 0.50 & BRY3s & 0.38 & MP8113 & 0.47 & TIP35A & \\
\hline 2N2369 & 0.20 & 2N3906 & 0.27 & AC176K & 0.40 & BC1678 & 0.15 & ED135 & 0.43 & BSx20 & 0.21 & MPF102 & 0.39 & TIP36A & \\
\hline 2N2369A & 0.22 & 2N4036 & 0.67 & AC187K & 0.35 & BC1688 & 0.15 & ED136 & 0.47 & ES×21 & 0.29 & MPSA05 & 0.25 & TIP4IA & \\
\hline 2N2646 & 0.55 & 2N4037 & 0.42 & ACIP8K & 0.49 & BC168C & 0.15 & ED137 & 0.55 & BU104 & 2.00 & MPSA06 & 0.31 & TIP41C & \\
\hline 2N2647 & 0.98 & 2N4058 & 0.18 & ACY18 & 0.24 & BC1698 & 0.15 & BD138 & 0.63 & BU105 & 2.25 & MPSA12 & 0.35 & TIP42A & \\
\hline 2N2904 & 0.22 & 2N4059 & 0:15 & ACY19 & 0.27 & BC169C & 0.15 & 8p139 & 0.71 & C106D & 0.65 & MPSA55 & 0.25 & 11P42C & \\
\hline 2N2904A & 0.24 & 2N4060 & 0.15 & ACY20 & 0.22 & BC170A & 0.15 & ED140 & 0.87 & CA3018A & \(0 \cdot 85\) & MPSA56 & 0.31 & TIP49C & \\
\hline 2N2905 & 0.25 & 2N4061 & 0.15 & ACY21 & 0.26 & BC171 & 0.18 & BD529 & 0.80 & CA3020A & 1.80 & MPSU05 & 0.65 & TIP53 & \\
\hline 2N2905A & 0.26 & 2N4062 & 0.15 & ACY28 & 0.20 & BC172 & \(0 \cdot 17\) & ED530 & 0.80 & CA3028A & 0.79 & MPSU06 & 0.58 & TIP2955 & \\
\hline 2N2906 & 0.19 & 2N4126 & 0.21 & ACY30 & 0.58 & BC177 & 0.28 & BDY20 & 1.05 & CA3035 & 1.37 & MPSU55 & 0.63 & TIP3055 & \\
\hline 2N2906A & 0.21 & 2N4289 & 0.34 & AD142 & 0.57 & BC178 & 0.27 & EF115 & 0.36 & CA3046 & 0.70 & MPSU56 & 0.80 & TYY43 & \\
\hline 2N2907 & 0.22 & 2N4919 & 0.95 & AD143 & 0.68 & BC179 & 0.30 & 8F117 & 0.55 & CA3048 & 2.11 & NE555V & 0.70 & ZTX300 & \\
\hline 2N2907A & 0.24 & 2N4920 & 1.10 & AD149V & 1.20 & BC182 & \(0 \cdot 12\) & BF121 & 0.35 & CA3052 & 1.62 & NE556 & \(1 \cdot 30\) & ZTX301 & \\
\hline 2 N 2924 & \(0 \cdot 20\) & 2N4921 & 0.83 & AD150 & 1.15 & BY182L & 0.12 & BF123 & 0.35 & CA3089E & 1.96 & NE560 & 4.48 & 2Tx302 & \\
\hline 2N2925 & 0.20 & 2N4922 & 1.00 & AD161 & 0.50 & BC183 & 0.12 & BF125 & 0.35 & CA30900 & 4.23 & NE561 & 4.48 & 21 \(\times 500\) & \\
\hline 2N2926 & & 2N4923 & 1.00 & AD162 & 0.50 & BC183L & 0.12 & EF152 & 0.20 & LM301A & 0.48 & NE565A & 4.48 & 2TX501 & \\
\hline Green & 0.12 & 2N5190 & 0.92 & AD161 & PR & BC184 & 0.13 & BF153 & 0.25 & LM 308 & 2.50 & OC23 & 1.35 & ZTX502 & \\
\hline Yellow & 0.12 & 2N5191 & 0.98 & AD162 & 1.20 & BC184L & 0.13 & BF754 & \(0 \cdot 20\) & LM309K & 1.88 & OC28 & 0.78 & \(\underline{21} \times 530\) & \\
\hline
\end{tabular}

TTL Integrated Circuits-Quality and Prices You Can't Beat

 \begin{tabular}{ll|l|} 
& SN7402 & 0.16 \\
SN7403 & 0.18 & SN741 \\
SN7404 & 0.19 & SN7417
\end{tabular}

\begin{tabular}{ll|ll|ll|ll|llll} 
SN7406 & 0.45 & SN7423 & 0.29 & SN7445 & 0.90 & SN7473 & 0.36 & SN7490 & 0.45 & SN74121 & 0.37 \\
SN7407 & 0.45 & SN7425 & 0.29 & SN7446 & 0.95 & SN7474 & 0.36 & SN7499 & 0.85 & SN74122 & 0.50 \\
SN7408 & 0.19 & SN7427 & 0.29 & SN7447 & 0.95 & SN7475 & 0.50 & SN7492 & 0.45 & SN774123 & 0.
\end{tabular}
\(\begin{array}{lll}\text { SN74145 } & 0.95 \\ \text { SN74150 }\end{array}\) SN74150 SN74153 0.85 \(\begin{array}{ll}\text { SN74153 } & 0.85 \\ \text { SN74154 } & 1.50\end{array}\) \(\begin{array}{ll}\text { SN74154 } & 1.50 \\ \text { SN74155 } & 1.50\end{array}\) \(\begin{array}{ll}\text { SN74155 } & 1.50 \\ \text { SN74157 } & 0.95 \\ \text { SN74 }\end{array}\) \(\begin{array}{lll}\text { SN74160 } & 1 \cdot 10 \\ \text { SN }\end{array}\) \(\begin{array}{ll}\text { SN74161 } & 1 \cdot 10 \\ \text { SN }\end{array}\) \(\begin{array}{ll}\text { SN774162 } & 1 \cdot 10 \\ \text { SN74163 } & 1.10\end{array}\) \(\begin{array}{ll}\text { SN74163 } & 1.10 \\ \text { SN74164 } & 2.01 \\ \text { SN74165 }\end{array}\)

SN74167 SN74174
SN74175 SN74176 SN74180 SN74181 SN74181 SN74191
SN74192 SN74192
SN74193
SN7419 SN74196
SN74197 SN74197
SN74198
SN74198
SN74199

LONDON-GLASGOW-PARIS AND NOW BRISTOL!

1 STRAITS PARADE FISHPONDS
BRISTOL BS16 2LX
TEL: BRISTOL 654201/2

Constructlon Kits AV7 Aerial Amps
MUE7 Receiver for above EW18 Electronics dice
EX20 Electronic Dice + Sensor
Mall Order
TRY OUR GLASGOW SHOP



\section*{(P) MIEROPROEESSOR PART Z}

LAST month we covered the fundamentals of the microprocessor, the hexidecimal coding system, and the function of some of the pins of the Motorola chip. This concluding article deals with the programming language used in the processor and the various types of memory.

\section*{the language of the mpu}

All instructions within an MPU system are in the form of binary words-more commonly referred to as machine code. However, the sequence of instructions which form a programme are normally first written in mnemonic form, using the list of instructions illustrated in Fig. 6, and are then converted into machine code.
A programme consists of a series of statements each comprising an instruction (mnemonic operator) and the operand. The operand can be a numerical value, an address, or an address where a numerical value can be found. Sometimes the operand is only present by implication. For instance, the instruction to add the contents of accumulator A to the contents of accumulator B and to place the result in accumulator \(A\), represented by the mnemonic ABA, does not need an operand because it is obvious from the instruction that the operands must be in the accumulators.
Depending on the particular instruction an operand can be specified or located in a number of different ways:
Immediate: An example of immediate addressing is LDA A 05 (Load accumulator A with the number 05). In immediate addressing a programme statement comprises two bytes of machine code; in our example LDA A will form one byte and 05 the second. The machine code for LDA A in the immediate addressing mode is 86 , so the whole statement becomes 8605 .
Direct: A statement using the direct form of addressing is a two byte statement comprising a single byte which specifies the instruction and a second byte which is the address where the operand will be found.
For example, the instruction LDA A 05 in the direct form of addressing would tell the MPU to load accumulator A with the content of memory location 0005 . In machine code this is 9605.
The second byte of a statement employing the direct addressing mode forms the least significant
*Director, MOS Marketing, Europe. Motorola Inc.
eight bits of the address and the most significant eight bits are assumed to be 00 . Therefore, with direct addressing it is possible to address the memory locations from 0000 to 00 FF (the first 256 locations).
Extended: The only difference between extended and direct addressing is that three bytes instead of two are employed so that a full address can be incorporated in a statement. For example, LDA A 12 05 (load accumulator A with the contents of memory location 1205 using extended addressing) becomes B6 1205 in machine code.
Indexed: The MPU contained a register called the index register which is used in indexed addressing. The index register holds a two byte address which can be set to any value by the programmer. In indexed addressing the operand is found at the

address specified by the index register plus the number which is contained in the second byte of the instruction.

For example, the instruction LDA \(A+6\) in the indexed mode would load accumulator \(A\) with the contents of the memory location which is six locations higher than the location which is addressed by the index register. In machine code this is represented by A6 06 .

If the index register held the address 1202 , the instruction A6 06 would load accumulator A with the contents of memory location \(1202+6=1208\).

Relative: Certain instructions, namely branch instructions, for the MPU employ the relative mode of addressing. These instructions enable the MPU to carry out an instruction which is not the next one in sequence. Consider the following instruction programme:

\section*{LOOP DEC B \\ BNE LOOP \\ NEXT INSTRUCTION}

In this sequence \(D E C B\) causes \(a l\) to be subtracted from the content of accumulator \(B\). Instruction BNE compares what is left in accumulator \(B\) with zero and causes the next instruction to be carried out if the result is zero. If the accumulator is not zero BNE causes the MPU to branch back to "LOOP" and again subtract 1 from the accumulator. In machine code this instruction sequence is represented by
\begin{tabular}{lll}
0010 & 5A & (DEC B) \\
0011 & 26 & (BNE) \\
0012 & FD & \((-3)\) \\
0013 & Next instruction
\end{tabular}

At memory location 0011 the MPU encounters the instruction 26 (BNE). Memory location 0012 contains the relative address of the next instruction should the conditions for a branch be met. If they are, the relative address ( \(\mathrm{FD}=-3\) ) is added to the contents of the programme counter, so that the programme branches back to 0010 (DEC B): i.e. after reading the \(B N E\) instruction and the relative address the programime counter contains 0013 , to branch, the relative address is added to the programme counter; 00 \(13+(-3)=0010\).

Numerical information within the machine, as has been mentioned before, is represented in binary form. For relative addressing, and for some mathematical operation the numerical value is in the form of a signed two's complement number.

In signed two's complement representation the most significant bit (left hand bit) of a number is used to indicate the sign of the number: all numbers beginning with 1 are negative and all numbers beginning with 0 are positive. The remaining seven bits are used to indicate the value of the number.

Therefore while unsigned binary numbers of 8 bits can have any value from 0 to 255 (decimal), signed binary numbers can have values from +127 to -128 .

To find the signed two's complement of a negative number three steps are necessary.
For example, what is the two's complement of -23 ? Forget about the sign and express the number in binary form: \(-23=00010111\). Complement the number (change 0 to 1 and 1 to 0 ) so that it equals 11101000 . Add 1 to the result, \(11101000+1=\) 11101001 and so -23 is equal to 11101001 or E9 (hexidecimal) in signed two's complement form.

The MPU can also operate on decimal numbers in binary coded form. As each decimal number requires four bits, each byte of binary code can represent two decimal numbers.

\section*{PROGRAMMING THE MPU}

It is possible to programme the MPU directly in machine code, although this is rather a tedious and time consuming .business. The industrialist who intends to use the MPU in an instrument, control system or in other equipment will use a "full-sized" computer to assist him in the preparation of his microprocessor programme.

Basically the process involves writing the microprocessor programme using the mnemonic instruction set (this is called the source programme), and then using the main computer to convert it into a sequence of machine coded instructions known as the object programme.

The whole conversion process is known as "assembly" and the programme which is run on the main computer to perform the conversion is called an assembler. The assembler, and some associated programmes, enable the source programme to be easily edited and manipulated by the programmer.

\section*{THE MEMORY}

The MPU has, as we have seen, a 16-bit address bus for addressing locations in memory and input/ output units (Peripherals). It has also been explained that a 16 -bit binary word can have 65,536 different values, therefore the memory can have 65,536 locations.

Each 1,024 memory locations is referred to as 1 K (it being generally accepted that in data processing \(1 \mathrm{~K}=1,024\), while in electronics \(1 \mathrm{k}=1,000\) ) therefore, the memory for the Motorola MPU can have a capacity of up to 64 K bytes.

This memory will normally be made up from RAMs (Random Access Memories), ROMs (Read Only Memories) and PROMs (Programmable Read Only Memories). All these memory devices are semiconductor integrated circuits.
RAMs: A RAM consists of a number of storage cells-each cell capable of storing one bit-together with the necessary control and addressing circuitry. The design of the cells and the control circuit allows information to be written into, or read from, the memory at will.

ROMs: Like the RAM a ROM comprises a number of memory cells complete with the addressing and control circuitry. However, the design of the cells in a ROM is fundamentally different. The content (a binary 1 or 0 ) is set during the final stages of manufacture of the device and can never be subsequently changed.

The actual binary content of the ROM is determined by the customer who usually sends the ROM manufacturer a paper tape, or a set of punched cards, which specifies the content of the ROM. ROMs are only economic when a large number with the same binary content have to be manufactured.

PROMs: The difference between a PROM and a ROM is that the content of the memory is entered electrically by the user. Once a PROM has been programmed the contents cannot be altered.


Most microprocessors will employ RAMs, together with some form of read only storage. The ROM section of the store is used to hold frequently used programmes.

The RAM in Motorola's microprocessor set is known as the MCM6810 and is shown in Fig. 7. It will store 128 bytes and has eight bi-directional buffers for connecting to the microprocessing system's data bus. The 128 memory locations necessitate seven address inputs in order that each location can be individually selected. In addition, the MCM6810' has six chip select ( \(E\) ) inputs to facilitate easy memory expansion.

The ROM intended for use in the Motorola microprocessor will store 1 K bytes (1.024 8-bit

Fig. 9. PIA Block diagram



Fig. 8. ROM Functional block diagram
words). It is known as the MCM6830 and. as shown in Fig. 8, it has four enable inputs and eight buffer stages for connection to the data bus.

\section*{THE OUTSIDE WORLD}

A microprocessing system must be able to communicate with external equipment before it can be used. This equipment can take very many forms from simple relays to magnetic tape units, keyboards. video display units. printers and the like. Designing a circuit that will allow the microprocessing system to communicate with any or all of these is, to say the least, difficult.

In the Motorola microprocessor the problem is solved by a universal interface circuit known as the "Peripheral Interface Adaptor" (PIA) with the type number MC6820.

This is a complex LSI circuit of which a block diagram is given in Fig. 9. It is. as can be seen, divided into two sections: section \(A\) and section \(B\). Connection to the microprocessor is made via the data highway ( \(\mathrm{D}_{4} \mathrm{D}_{7}\) ), the address highway (A0, 1. 2. 13 and \({ }_{14}\) ) and several control lines. The peripheral can be connected to the PIA by two bidirectional data highways \(\left(\mathrm{PA}_{0}\right.\); and \(\left.\mathrm{PB}_{0-7}\right)\) and four control lines.

Each individual line in the two peripheral datal highways can be programmed to be either an input or an output by binary words held in the data direction registers. Binary words held in the control registers set the function performed by the various PIA control lines to adjust the function performed by the PIA to suit the peripheral to which it is connected.

\section*{PIA IN ACTION}

Let us consider an actual example of the PIA in action, as graphically illustrated in Fig. 10.
(1) Fig. 10(a). The peripheral tells the PIA that it wishes to input data by taking the PIA input ready line to logic " 1 ". This causes the left hand bit in the


Fig. 10(a). Data is presented on the A side by an external device. The Input Ready signal sets a status bit and pulls down IRQA. The Interrupt response routine will identify this interrupt by polling status bits

A control register to be set to 1 . This bit is called a "flag" bit.
(2) The flag bit forces the system's "Tnterrupt request" (TRQ) line to logic " 0 ". Normálly, all IRQ lines will be connected together (wire-OR). including the \(\overline{I R Q}\) input to the MPU.
(3) The MPU will go into an interrupt request sequence as described earlier. After storing the contents of all its internal registers away in the stack, the MPU will set the interrupt mask bit in the condition code register before going to a known location within memory for the first instruction in the interrupt programme.
(4) This programme will cause the MPU to examine each flag bit in all units capable of causing an \(\overline{I R Q}\) in turn (this is known as "Polling").
(5) Fig.10(b). The MPU "sees" the PIA A control register flag at logic 1 and instructs the PIA to write its data onto the data highway.
(6) This action resets the flag in the PIA control register. The \(\overline{I R Q}\) line goes high, the M.PU resets the interrupt mask bit to 0 , recalls the content of the stack and proceeds with its normal programme.

The situation resulting from a request from a peripheral for data is illustrated in Figs. 10(c) and \(10(d)\). The sequence starts with an "output request" from the peripheral. The reader should by now be able to trace the sequence without the assistance of the printed word.
The PIA can be used in many other ways apart from the one that has been described here.

Motorola have another interface device for use with their MPU which is called the Asynchronous Communications Interface Adapter (ACIA). This is another very complex device and it is not proposed to describe it in very great detail here. However. its function will be discussed in principle.

All information transfers discussed so far have been carried out in parallel (all eight bits at the same time). However. when data is to be transferred over a single line it has to be done serially (one bit at a time). The ACIA receives each input word one bit at a time (serially) from the reception line.


Fig. 10(b). The Interrupt Response routine reads the \(A\) data. This action automatically clears the interrupt and sends the Input Acknowledge signal


Fig. 10(c). An external device requests data on the \(B\) side with Output Request. This sets a status bit and pulls down IRQB


Fig. 10(d). The Interrupt Response routine identifies the interrupt by checking status bits. A read operation is used to clear the interrupt. Writing output data to the \(B\) side presents the data to the external device and automatically generates the output ready signal
performs certain checks, then transmits the data in parallel ( 8 bits) over the data highwaty to the MPU. In the reverse direction the MPU sends all eight bits of a word simultaneously to the ACIA and the ACIA re-transmits each word one bit at a time over the serial transmission line to the remote equipment.

Information on the serial transmission line appears as a string of is and 0 s in the form of electrical pulses and is carried out in accordance with rules which are internationally agreed. Pulses of different length to the data pulses are inserted to identify the beginning and end of each word transmitted. The ACIA performs in accordance with the agreed rules. If required, the ACIA can be used whenever it is necessary to interface the MPU with other equipment over a single pair of wires.

\section*{MORE MICROPROCESSORS}

We have examined the Motorola microprocessors in some detail. It was mentioned at the start of this article that there are now some thirty different microprocessors available. While we do not intend to mention all of these, it would be worth while having a brief look at some of them.

All the microprocessors consist of a central processing unit. a memory and suitable arrangements for input/output operations. In some cases the MPU itself has to be programmed to carry out the necessary handshaking routines with peripheral devices.

\section*{FIRST TYPES}

Intel were the first semiconductor company to produce a microprocessor. It consists of four integrated circuits which together made up a complete 4 -bit processing unit, known as the 4004 N . The basic four-chip set comprises the central processing unit (CPU), a RAM, a ROM and an I/O unit.

Using the basic building blocks a 4004 system can have up to \(4 \mathrm{~K} \times 8\)-bit words in the ROM, 1280 4-bit words in the RAM and up to \(1281 / \mathrm{O}\) lines. With the addition of a few gates' the system can be expanded to incorporate any combination of RAM and ROM up to 48 packages and to handle up to 192 1/O lines. The system has an instruction set comprising of 45 commands.

From the 4004 Intel progressed to the 8008, an 8 bit parallel central processing unit complete with associated integrated circuits. The 8008 was designed as a generat purpose processing unit. which can directly address up to 16 K bytes of memory.

The CPU unit itself comprises an 8-bit accumulator, two 8 -bit temporary registers, four flag bits and eight 14 -bit address registers. The instruction set consists of 48 commands which allow subroutine nesting up to seven levels. Asynchronous or synchronous operation with external memory and multiple interrupts are standard features.

\section*{THE 8080}

The next development from Intel was a more powerful and faster 8 -bit microprocessor which was designated the 8080 .

The 8080 provides 74 basic processor instructions including decimal and binary arithmetic and can address up to 65 K bytes of memory. Up to 256 input/output units can be interfaced directly with the , single chip processor unit. A basic 8080 system
consists of the CPU and seven other i.c. packages. A second 4-bit machine, known as the 4040, has been introduced by Intel. This is electrically identical to the 4004 but has an improved performance.

\section*{SERIES 3000}

For applications where greater speed is required there is the series 3000 . This employs Schottky bipolar circuitry throughout, and consists of a central processing element (3002), microprogramme control unit (3001) and seven other i.c.s including a look-ahead-carry generator and an interrupt control unit.

The main circuits are the 3001 and the 3002 which together form a 2 -bit section of a high speed processing unit expandable up to 320 bits. One microprogramme control unit is required for every eight central processing elements. Each of the i.c.s within the system have multiple logic systems which can be rearranged by microprogramming.

\section*{MICROPROGRAMMING}

Microprogramming is a technique which means that the function of the processor is determined by a series of short microprogrammes held in a RONi. The instruction set available is determined by the microprogramme and the user virtually chooses the instruction set he requires by writing the appropriate microprogrammes. Each instruction (called a microinstruction). when implemented, calls up, a microprogramme consisting of a series of microinstructions. The time taken by the machines to perform a microinstruction is called a microcycle.

\section*{BCD OPERATION}

Most microprocessors work in binary. following mainframe computer practice. However. a system has been introduced by Advance Electronics Ltd which operates in binary coded decimal (BCD). The decimal processor is contained on two LSI chips divided as follows: Chip 1-programme store (ROM) and input interface. Chip 2-arithmetic unit, data store ( RAM) and output interface. The unit is intended for use in applications where fairly large quantities are required, as the ROM section has to be programmed by the manufacturers and. once programmed, cannot be altered.

\section*{CMP8}

National Semiconductors have a fairly new microprocessor, designated CMP8. consisting of an 8 -bit arithmetic and logic unit (ALU). two 16-bit index registers with auto increment/decrement plus four 8 -bit registers. There are separate programme and address counters, a 16 -bit stack pointer and direct memory access (DMA). It has the capability of directly addressing 65 K bytes of memory. and comes in a 40-pin package.

Other microprocessor products available from National Semiconductors are designed around two p.m.o.s. I.s.i. chips which can be assembled in different combinations to form computer systems ranging from a simple 4-bit processor for elementary control functions upwards.

These two chips are the register, arithmetic and logic unit (RALU) and the control read-only


A miniature, battery operated, six-channel-into-two stereo mixer

SOUND mixing has, over the years, become more and more a part of the audio scene and is, of course, an essential prerequisite of the recording industry. Mixers of one form or another have always been in demand by the amateur constructor and find their place in p.a. work, discos, on stage live performances, and in the home studio. One of the difficulties has been to find a mixer which fits equally well into all these spheres of activity and which does not cost the earth to build.
Additionally the growth of interest in high fidelity reproduction and latterly, the boost given to interest in the creative manipulation of sound by the advent of instruments like the synthesiser has given rise to a fresh demand for sound mixers offering a little more than the "add or take away" requirement of a year or so ago.
It is with the synthesiser in mind, therefore, that the Minimix 6 has been designed but, at the same time, with the proviso that it should prove capable of employment in a diversity of applications.

\section*{USE OF THE 741}

Essentially the Minimix 6 is a tine mixer based on the ubiquitous 741 operational amplifier. However, the line preamplifiers have been given a gain range of up to +40 dB and thus each line channel is capable of being operated satisfactorily by devices such as crystal pickups or crystal microphones. It is fairly generally recognised that the 741 operational amplifier is unsuitable for quality audio applications because the typical input noise figure of around \(20 \mu \mathrm{~V}\) creates problems particularly when any degree of gain is involved. A large proportion of the signal to noise problems can be overcome, however, by careful specification of signal levels and circuit layout.

The Minimix 6 provides unity gain as a true line mixer, i.e. for a \(1 \mathrm{~V}(0 \mathrm{~V} . \mathrm{U}\).) input the output is also 1 V . In these circumstances, providing the input noise of the active units does not exceed \(20 \mu \mathrm{~V}\) then the theoretical signal/noise ratio is slightly less than -86 dB . In practice the measured value on the prototype instrument proved to be -80 dB , a figure which is likely to be more than adequate for the purposes specified. With a 10 mV input, i.e. operating at maximum gain for a 1 V output, the signal to noise ratio deteriorates to -70 dB . Again, a figure which would be acceptable for most purposes.

\section*{SPECIFICATION}
\begin{tabular}{|c|c|}
\hline equency Res & \\
\hline 1 V (0 V.U.) input & 14 Hz to 42 k \\
\hline 0.1 V input & 14 Hz to 16 \\
\hline
\end{tabular}

Signal to Noise Ratio (Input channels)
\[
\begin{array}{ll}
0.1 \mathrm{~V} \text { input } & -80 \mathrm{~dB} \\
0.01 \mathrm{~V} \text { input } & -70 \mathrm{~dB}
\end{array}
\]

Crosstalk
\begin{tabular}{ll}
100 Hz & -43 dB \\
1 kHz & -40 dB \\
10 kHz & -23 dB
\end{tabular}

Overload capacity
Input Amplifiers +14 dB
Output Amplifiers +14 dB
Master Fader Rejection \(\quad-80 \mathrm{~dB}\)

\section*{CROSSTALK}

Crosstalk between channels is another problem, particularly when an attempt is made to compress all the necessary circuitry into a confined space. In the Minimix 6 the crosstalk at 100 Hz is -43 dB deteriorating to -23 dB at 10 kHz . Although the latter figure leaves much to be desired it compares favourably with the crosstalk in almost any stereo cartridge and in practice, with both channels driven there appears to be no discernible intrusion or interaction between channels. If only one channel is driven with a signal containing significant high audio-frequency elements the master fader rejection of -80 dB ensures that the undriven output channel does not receive any unwanted signal.

\section*{BLOCK SCHEMATIC}

A block schematic of the Minimix 6 is shown in Fig. 1. In all there are six input channels grouped in pairs as shown by channels one and two in the diagram. Signals from the input preamplifier are routed via the channel fader to the wiper of a panpot the ends of which are linked into the left and right pan busses. These are in fact virtual earth leads into the left and right group output mixer amplifiers. The group outputs are routed via the master faders into their respective output stages.

\section*{P.F.L. FACILITY}

Cueing and monitoring facilities are often left out of home built mixers but are nevertheless frequently found to be useful, if not indispensible, in some circumstances. Aural and visual monitoring are provided in the Minimix 6 and may be switched so that the operator can monitor the outputs or any input irrespective of whether that input is actually driving into the group mixers. This latter facility is

known as Pre-Fade Listen (P.F.L.), and is extremely useful when setting up channel gains and signal levels prior to fading into the mix.

The monitoring of input signals is very much geared to the arrangement of the input channels which, as was explained above, are arranged into groups of two. For stereo operation the odd numbered channels 1, 3 and 5 are associated with the left output channel, while the even numbered channels 2,4 and 6 are associated with the right output channel.

When a stereo signal is being mixed from a prerecorded source (a tape or disc) it would normally be expected that the pan controls would be hard over to left or right since the stereo imaging would have been carried out during the original recording.

When mixing mono signals to form stereo, however, the pan controls on each channel have to be adjusted in order to give a subjective spatial position for the individual mono signals in the final stereo image. In these circumstances the signal has to be monitored twice. Firstly the input channel has to be adjusted for gain and the subjective quality of the sound assessed.


Fig. 1. Block schematic of the P.E. Minimix 6


Fig. 2. Full circuit diagram of the P.E. Minimix 6. Note that channels 3-4 and 5-6 are identical to channels 1-2 (shaded areas)

\section*{BULK COMPONENTS}

This list has been compiled to allow readers to take advantage of ordering all the components at once, and thus possibly obtain a quantity discount.

\section*{Resistors}
\begin{tabular}{ll}
\(l\) & \\
\(10 \Omega \Omega\) & 2 \\
\(100 \Omega \Omega\) & 6 \\
\(1.2 \mathrm{k} \Omega 2\) & 4 \\
\(10 \mathrm{k} \Omega 2\) & 2 \\
\(12 \mathrm{k} \Omega\) & 2 \\
\(20 \mathrm{k} \Omega\) & 6 \\
\(100 \mathrm{k} \Omega \Omega\) & 40 \\
\(3.9 \mathrm{M} \Omega\) & 6
\end{tabular}

Capacitors
680 pF Ceramic 2
2,000pF Ceramic 2
\(0.47 \mu \mathrm{~F} 35 \mathrm{~V}\) Tantalum 6
\(1 \cdot 0 \mu \mathrm{~F} 35 \mathrm{~V}\) Tantalum 2
\(2 \cdot 2 \mu \mathrm{~F} 35 \mathrm{~V}\) Tantalum \(\quad 2\)
\(10 \mu \mathrm{~F} 16 \mathrm{~V}\) Tantalum 2
\(330 \mu \mathrm{~F} 10 \mathrm{~V}\) Elect. 2
Potentiometers
\(20 \mathrm{k} \Omega\) log. Tocosa 35 mm stereo slider controls \(10 \mathrm{k} \Omega\) log. miniature rotary pots ( 16 mm dia.) \(10 \mathrm{k} \Omega \mathrm{lin}\). miniature rotary pots ( 16 mm dia .) 6
Integrated Circuits
7418 pin d.i.l. 12
MFC4000B 250 mW power amplifiers 2
Semiconductors OA80 4

\section*{Miscellaneous}

PP6 type battery press studs 2 prs
Printed circuit board \(200 \mathrm{~mm} \times 110 \mathrm{~mm}\)
Case: Instrument case type 22 (R.S.
components) or Vero case type 652523E (Vero Electronics)
Instrument case type 22
Rubber mounting feet, self-adhesive
5-way 180 DIN sockets
0.25 in. stereo; jack socket

Flush mounting V.U. meters type 3
Jean Renaud 2 pole changeover swtiches
10 -way mounting frame 2-way mounting frame
Round push button (red, green, grey) 1 each
Control knobs for slider controls9

Control knobs for rotary pots ( 4 mm spindle) 12
Sundry 6BA nuts, bolts, washers
2 mm dia \(\times 3.2 \mathrm{~mm}\) spacers for mounting 18 slider pots


This is done by closing the monitoring switch on the input channel in question and also by changing over the input/output monitor switch. In these circumstances the input signal is routed to both meter and monitoring amplifiers.

\section*{MONITORING ARRANGEMENT}

Whilst it is not too important to have two visual indications of signal level, it is nevertheless very important to the overall assessment of the sound to have it heard by both ears rather than one alone. The arrangement of the monitoring or P.F.L. switches on paired channels is such that closure of either switch alone routes the input signal to both monitoring amplifiers, while closure of both switches routes the odd channel input signals to the left monitor amplifier and the even channel input signals to the right.
The second stage of stero monitoring consists of checking the signal level and balance between output channels. This is done by switching the monitoring amplifiers so that they are coupled directly to the left and right group output mixers and adjusting the channel faders and panning level and, equally as important, that the spatial positioning of the respective signals appears to be correct.

\section*{CIRCUIT DETAILS}

The circuit diagram is shown in Fig. 2. It can be seen that, with the exception of the line inputs, each amplifier is connected in the inverting mode. This is quite important as far as the bus amplifiers. are concerned since the fact that the busses themselves are connected directly into the virtual earth points means that they are at very low impedance and therefore less likely to suffer from the induction of stray signals and/or hum.

The input channel or line amplifier has a variable gain and this would normally be set so that, with an input signal in the range 10 mV to 1 V , the output would be IV. The bus or group mixer amplifiers have a gain of -14 dB to allow for circumstances in which all channels might be routed at full level into one group amplifier and this is compensated for by the fact the output stage and output monitoring option have gains of +14 dB . Thus with only one input signal per channel the output stage is still capable of producing a 1 V signal.

\section*{BATTERY CHECK}

The meter driving section incorporates a momentary action battery check switch in order that the battery condition may be conveniently monitored. With the values given a good battery will give a reading between 0 V.U. and +1 V.U. Below 0 V.U. however the battery voltage is beginning to fall off and although the instrument will still operate satisfactorily with a reading of -IV.U. it would be imprudent to use the instrument on an important assignment with the batteries in this condition.

The headphone amplifiers are based on the MFC 4000 B and have an effective gain of -10 dB thereby providing an output signal of around 300 mV when the monitored channels are fully driven. This signal is quite sufficient to drive a pair of low impedance headphones to a listening level which is more than adequate.
Next month: Construction, testing and using the Minimix 6

\section*{PROTECTIMG IDEAS}

Although this is essentially a patent column, concerned with new British patents for interesting electronic inventions, brief reference must now be made to an alternative approach to patenting. This is prophylactic, protective or defensive disclosure, by the deliberate publication of invention details, so as to block for ever the possibility of a patent on the idea.

The defensive disclosure approach is usually adopted by firms or individuals who can no longer afford to patent every development that they make, but are, understandably, worried over the possibility of a rival firm coincidentally coming up with the same idea, patenting it, and thereby securing a wide monopoly. Especially, now that the British Government is flying in the face of advice from the patent profession, industry and inventors, by raising the official fees payable on patents to unprecedented levels, the concept of deliberate disclosure may be of interest to readers.
Once details of a development have been published, for instance in these pages as a constructional article, it will be quite impossible for anyone (the author of the article included) to apply for a British patent to cover his idea. Because this magazine will find its way onto the shelves of libraries all round the world, such publication will likewise block the possibility of future patents in most civilised countries.

Only a fraction of the ideas conceived by inventors and research teams find their way into magazines, and it would be unwise for anyone to rely on such publication to defend their idea against patenting by others. It is far safer for an inventor who has taken a positive decision not to apply for a patent on a new idea to have brief details published as quickly as possible in some other manner.

One possibility open to firms with a house magazine is that a few pages of the magazine should regularly be set aside for the purpose of disclosure. As every single publication made in the United Kingdom (from children's comics to bus timetables to local borough
council minutes) must be deposited with the British Library, and because the existence of a single copy of a document in a public library can constitute legal publication, details in a house magazine will carry heavy legal weight in the U.K. But house magazines may not find their way into foreign libraries, and thus foreign patents may not always be blocked.

To achieve reliable, widespread foreign blocking, it is necessary to ensure that published details are placed on the shelves of public libraries throughout the world. Research Disclosure, of Homewell. Havant, Hampshire, has a longstanding system of swiftly publishing (at a price, of course) details of any invention, on request of the inventor, and sending them automatically to strategic libraries in virtually every country of the world.

Inventors and small firms desperate over the continually increasing cost of patenting and the worry of what others may do, should at least consider the possibility of protective disclosure in all or some of the ways mentioned above.

\section*{FUSBLE LINK \\ BP 1395971}

A clever new type of fusible link for protecting circuitry against overheating is described by ITT Creed Ltd., in BP 1395971.

A circular wheel turns about a central pivot and has an inner wall and an outer wall which together define an annular cavity. Two pairs of contact pins protrude through the outer wall of the wheel into the cavity. One pair of contact pins at the top of the wheel engage fixed contact plates mounted outside and adjacent to the wheel. A solid slug of low melting point alloy bridges the ends of these pins where they protrude into the annular cavity.

The whole arrangement is mounted vertically and the power supply to the equipment under protection is passed through the electrical circuit formed by the series connection of these contacts and pins.

The wheel is in thermal contact with the equipment under protection, and if the latter overheats the alloy slug melts and falls under gravity to the bottom of the cavity.

Here it solidifies again to bridge the gap between the other pair of contact pins. Thus, as the power supply connection between the first pins is broken, an alarm circuit connection between the second set of pins is made, for instance to ring a bell or light a warning lamp.

Once the fault has been corrected, the wheel is turned about its central pivot through 180 degrees, so that the slug bridging the bottom set of pins is moved to the top position to bridge the power supply contacts again. The isolated contacts are simultaneously moved into the alarm circuit at the bottom. Thus the link may be re-set as new after each fusing operation.

\section*{MOVE INDICATOR \\ BP \\ 377381}

The Italian company Adriasud explains in BP 1377381 that problems arise in international bridge games, due to confusion at the moment of making a declaration. These problems are aggravated when the game is played by contestants speaking different languages.

The patent describes a circuit arrangement for enabling each contestant to positively indicate his declaration, with no possibility of thereafter altering it.

A series of indicator lights displaying the playing card numbers and symbols is shown in the patent. The lights are controlled using logic circuits, by a series of correspondingly marked switches. The circuitry is duplicated for each light and switch.

Each lamp is in series with a respective \(n p n\) transistor across a supply line. The base of each transistor is connected via a resistor to the supply line and also via a diode to a bistable circuit. Initially a capacitor keeps the bistable supply briefly at zero so that all bistable circuits assume a start condition blocking their respective transistors and extinguishing all lights.

The patent goes on to describe in detail the effect of operating the keyswitches and how the circuit ensures that the first key operated has an inhibiting effect on all other keys in the same series of card symbol lights.


\section*{GUITAR AMPIIFIER}
- Fifty watts output into 8 ohms
- Two independent input channels
- Bass and treble controls on each channel
- Output short circuit protection
- Low distortion

A 50 watt r.m.s. two-channel mono amplifier for use in pop groups/bands. Suitable for lead and bass electric guitars, electronic organs and can also be used for P.A. work


MTI B H

A low power, interference free design for the random flashing of lights either for Christmas tree or shop window displays. Flash rate is completely con-


\section*{UNIVERSAL THERMOSTAT}

A temperature controller with a host of useful applications. Simple to build and easy to calibrate

PRACTICAL
= =THTRNIES
DECEMBER ISSUE ON SALE NOVEMBER 14, 1975- PRICE 35p
 THERE have been many descriptions of enlarging exposure-meters, but the one described in this article has several unique properties.
It does not employ a milliammeter or microammeter (which can be expensive and easily damaged).

The components are cheap and readily obtainable: the cost being mainly determined by the "hardware"

It is designed from the point of view of the photographer and unlike expensive and sophisticated instruments it need not, nor in fact is, calibrated in terms of absolute illumination levels, which are seldom of interest to the practical amateur. It could best be described as an "illumination comparator"

Sufficiently sensitive to respond to weak illumination from dense negatives or shadow areas, and with a range of 5 stops or the equivalent in exposure time at any given stop. This is a ratio of at least \(32: 1\) with reference to any given illumination level.

Its usual method of use is to "calibrate" it in arbitrary terms of exposure with a given stop under "average" conditions, i.e. an average degree of enlargement with a negative of average density and contrast ratio. On any particular negative the contrast ratio can be determined because the light-sensitive cell area is so small. The operator can then determine whether it is more important for his purpose to expose for the shadows or the highlights or for any intermediate effect.

Comparison of the density of negatives can be made at a convenient "standard" stop and degree of entargement; then changes in ratio of enlargement is a simple matter of calculation. The great majority of competent amateurs are aware of these facts.


Fig. 1. Circuit diagram of the simple light comparator

The instrument is powered by small batteries twhich in the writer's instrument are housed in the case) and which, owing to the very low power requirement, have practically "shelf life".

\section*{PHOTODIODE}

Since one never obtains anything (except trouble!) for nothing, there is a price to pay for these advantages. As a very small photo diode (Mullard BPX90) is used (for "spot" readings) considerable amplification is required, which results in a limited range of light intensity readable. The range is \(1: 32\), i.e. " 5 stops". However, the intelligent photographer will know how to extend this range by operating procedure.

The circuit is shown in Fig. 1. The heart of the circuit is a 741 operating in the differential mode. In order to obtain a reasonably linear scale the potentiometer VR2 is logarithmic and used "backwards", i.e. with the high resistance end at the start of the reading. The preset potentiometers VRI and VR3 are adjusted for best range and linearity of scale. It is not possible to obtain a close approximation to linearity, but this is not very important. having regard to the way in which the instrument is intended to be used.

\section*{:TRIGGER CIRCUIT}

The transistors TR1 and TR2, with resistors R5 and R6, form a "trigger-circuit" which operates abruptly when the potential at the base of TR2 is about 150 mV with respect to 0 V , and lights the lamp LPI.

The lamp used in the prototype is a 6 V 0.04 A cycle-lamp bulb, which is also under-run, to minimise the load on the battery. The lamp is normally
on for only a few seconds at a time. Otherwise the current drain on the batteries is only of the order of a couple of milliamperes. The battery B1 is a PP6, since it has to supply the lamp current. B2 can be a PP3, since it only has to supply the photocell current and the-negative feed to the amplifier.



\section*{CONSTRUCTION}

The potentiometer VR2 is provided with a blank scale and a good pointer (a slip of "celastine" or thin Perspex, with a scribed line filled with Indian ink makes an excellent index. mounted with a suitable adhesive on the underside of the knob). The photocell is mounted on the end of a "probe". A piece of wood (such as a lolly-stick) with a protective coating of varnish was used in the prototype with the photocell covered by a layer of stretch-and-seal film. The leads from the probe can be of any convenient length, preferably of very thin flexible wire such as gramophone pickup lead. Be careful not to put tension on the photocell leads, and anchor the attachment of the external leads securely. The probe is then quite robust.

The lamp is mounted close to the scale, and most of the bulb is blacked out with black enamel, except for a small clear portion to allow illumination of the scale. The circuit is constructed on a piece of Veroboard \(2 \frac{1}{2}\) in \(\times 1 \frac{1}{2}\) in ( \(60 \times 40 \mathrm{~mm}\) ) Fig. 2, and the whole instrument, including batteries, is contained in a plastic box with outside dimensions 5 in \(\times\) \(2 \frac{3}{\mathrm{j}} \mathrm{in} \times 1 \frac{3}{\mathrm{~J}} \mathrm{in}(130 \times 70 \times 45 \mathrm{~mm})\).

\section*{CALIBRATION}

Set up the enlarger in the darkroom. Place the probe in the centre of the image space. Have the enlarger lens at maximum aperture and only the enlarger light switched on. (Even the "safelight" should be off.) Set VR1 and VR2 at about half scale. Set VR1 (the indicating scale) at "maximum". i.e. fully clockwise.

Switch the instrument on by S1. The lamp will light. Press the "Reset" button S2. The lamp should go out. If it does not, raise the enlarger lamphouse (to reduce the illumination intersity on the easel) until when the reset button is pressed, the lamp goes out. It should be possible, with careful adjustment of the height of the lamphouse to cause the lamp to come on when the potentiometer is turned slightly anti-clockwise. Make a mark with a pencil on the scale. This is a trial datum. Stop the lens down one stop.

Press the reset button. The lamp should go out. Move the potentiometer slowly further anti-clockwise until the lamp again lights. Make another pencil mark on the scale here.


Fig. 2. Component layout and Veroboard cutting details

Repeat this procedure to five stops down. You will have six marks on the scale, at whole stop intervals. If the first and last marks don't come near the ends of the scale. repeat the procedure after adjusting VRI and VR3, until the scale looks like Fig. 3. Having found the right values for these presets, they can be mounted inside the instrument and/or replaced by equivalent fixed resistors, and having finally obtained a convenient scale, make the markings permanent.

\section*{TIME SCALE}

These markings (representing stop numbers) can now for convenience have an added time scale. One can either mark the whole scale in time values, or mark the individual stop spaces with interpolating marks. or both. This is a simple mathematical exercise. It is probably most convenient to mark the individual stop spaces, having regard to the uses to which the instrument will usually be put. Each individual stop space will then be marked as in Fig.


Fig. 3. Scale markings for the unit

Fig. 4. Rear of front panel showing theinterwiring between controls and leads to the circuit board

3. Each stop space gives a time ratio of 2:1. Reading from right to left from the stop mark, we have time ratios of \(1: 1 \cdot 2,1: 1 \cdot 4,1: 1 \cdot 6,1: 1 \cdot 8,1: 2\) (next stop mark), each stop space being marked as in Fig. 3.

\section*{USE OF THE EXPOSURE METER}

Now as to method of use. You select a negative from which you have made an entirely satisfactory enlargement (by the method of "test strips" or trial and error). With the negative in the enlarger, decide whether you intend to establish your datum on the shadows (the brightest part of the image) or the highlights (the dimmest part of the image) or intermediately. Place the probe to receive the light at the selected part of the image (making a permanent note of what part of the image you have selected). Also make a permanent note of the paper used and the exposure time when making an entirely satisfactory print. This is your "standard" for that particular paper. Make a permanent note of the meter reading under these conditions. This is your "standard" meter reading.

\section*{EXAMPLE}

A standard meter reading is obtained as above (e.g. 2-2) and the standard exposure time is, say, 10 seconds. The conditions are then changed (but not the paper). For example, a larger or smaller degree of enlargement, denser or lighter negative, etc. One then chooses whether it is more important to expose for the highlights or the shadows. The probe cell is then placed at the most important point of the image and the reading taken. Say the reading obtained in this fashion is \(3 \cdot 4\).

\section*{MULTIPLICATION FACTOR}

The difference between this and the standard \(2 \cdot 2\) is 1.2 stops. The exposure multiplying factor is therefore \(2 \cdot 4\), i.e. mutiply by 2 for the one stop difference and by 1.2 of that value for the extra 0.2 of a stop. So one can either leave the stop unchanged and give 24 seconds exposure, or open the lens 1 stop and give 12 seconds. or close the lens 1 stop and give 48 seconds, according to choice.

If the reading goes the other way (due to a smaller degree of enlargement and/or a lighter negative, etc.)
say to 1.6 , there is a difference of one stop plus 0.4 in terms of time. The multiplication factor is then \(\frac{1}{2}\) (for the one stop difference) which is 5 seconds, and then this is multiplied by 0.4 for the extra 0.4 of a stop, making 7 seconds.

This may look like a clumsy way of reckoning, but it is a simple way that avoids mistakes, and is the reason why the stop interpolations are not marked over the scale (each stop space being marked as shown in Fig. 3). This last reading of 7 seconds is of course with an unchanged stop. If the lens is stopped down 1 stop the time would become 14 seconds. If another reading is now taken (taking care to place the probe in exactly the same place on the image) a reading of 2.6 would be obtained; that is to say, 10 seconds, the standard exposure, multiplied by 1.4 making 14 seconds.

\section*{STANDARD READINGS}

With a given enlarging paper, any set of conditions may be adopted as "standard". If a number of different makes and grades of paper are in use, it will be convenient to determine the standard exposure time and meter réading for each, making a permanent record. It would be a further convenience to arrange conditions so that either a convenient exposure time (say 10 seconds) or a convenient meter reading (say 2 or 3 ) is involved.

\section*{TEMPERATURE CONSIDERATIONS}

To minimise cost, no attempt has been made to design the instrument for use over a wide temperature range, but this is not usually important because darkrooms are usually occupied at normal room temperature for other reasons. If there is very strong light on the easel, the rise in temperature of the photocell may affect the reading, but this cannot occur at any light level that the instrument is capable of reading.

Other ways of using the instrument (e.g. classifying negatives with respect to density) will be obvious to the photographer. If the light level used during the exposure is below the range covered by the instrument, the datum can be established at a light level within the range and allowance made for the change in terms of stop settings. This is not so accurate as a direct reading, but is quicker than guesswork or the time taken to make test strips.


THIS mains-powered unit was originally built to replace the battery in a transistor radio and thus solve the recurring problem of deciding when the sound distortion caused by the falling battery voltage was noticeable enough to justify throwing away a far from dead battery and replacing it by a new and increasingly more expensive one.

The unit is very simple and lighter than the battery it replaces and generates virtually no heat. It is also over-load proof and will suffer no harm if a short circuit is. connected to its output indefinitely. It is therefore also a useful unit to use when doing repair or experimental work as accidental short circuits can easily occur at such times.

\section*{CURRENT LIMITING}

The circuit consists of series capacitors (2/C3 which controls the output current, in this case approximately 40 mA , followed by a bridge rectifier. smoothing capacitor, series resistor and Zener diode. Each rectifier is shunted by a capacitor to eliminate interference caused by the rapid switching on and off of each diode and a capacitor is also connected across the mains input to prevent mains wiring interference getting into the receiver (See Fig. I).

If a lower or higher voltage output is required it can be obtained by changing the Zener diode to one
with the desired voltage, but if higher, also change the electrolytic capacitor to one with a higher working voltage. The current will remain the same. For service work switched Zeners could be used. say 6V. 9 V , 18V. If a higher current is required, C2/C3 must be changed to a larger value. The current output is roughly proportional to the capacity of C2/C3, doubling its value will provide approximately twice the output current. For example, in a unit needed for an output of about 70 mA a \(1_{\mu} \mathrm{F}\) capacitor was used. The Zener should also be changed to one of a higher current rating.

\section*{SAFETY PRECAUTIONS}

It must be remembered that the output is connected to the mains via C2/C3 and the bridge rectifiers and it is therefore extremely important that safety precautions be taken. It would be unwise for instance to use the unit in a radio with exposed metal connected to the chassis. It is also safer to connect the live mains lead to C2/C3 as the current drawn from the mains is then at least timited to 40 mA or so and a non-reversible mains connector should therefore always be used.
If the unit is used for service work it would normally be used on a mains supply from an isolating transformer and such safety problems would not a rise.

\section*{COMPONENTS . . .}
```

Resistor
R1 270\Omega 1W
Capacitors
C1 4,700pF 400V polyester film
C2 }\quad0.15\mu\textrm{F
C3 0.47\muF 400V polyester film
C4-C7 4,700pF polyester film
C8 1,000\muF elect 25V
Diodes
D1-D4 BY127 (4 off)
D5 BZY88/C9V1

```

Miscellaneous
Mains lead and four self-tapping screws


Fig. 1. Circuit of 9 V.s.u.

The circuit components are easily accommodated in the metal case of the battery it replaces. Remove the inside of the battery and retain the metal case and end pieces.

All the components of the unit can be mounted on a piece of insulated board cut and drilled as shown in Fig. 2. The wire ends of the components are pushed through small holes drilled in the board and after soldering is completed all components are selfsecured. The two end pieces saved from the original battery are mounted on to the ends of the board by screws tapped into it. The Zener diode is soldered directly on to the two output connections, a small slot having been cut in the end of the insulating board to accommodate it. Make sure all components are well clear of the metal case.

\section*{COMPONENTS}

As in all projects, if satisfactory and trouble free operation is required, good grade components operating within their limits must be used.

The writer has used Mullard polyester film capacitors in all positions, except the electrolytic, and they have proved to be satisfactory. C2/C3 is made up from one \(0.47 \mu \mathrm{~F}\) and one \(0.15 \mu \mathrm{~F}\) capacitor in parallel. They are subjected to approximately the peak of the mains voltage, about 350 volts, so 400 volt working voltage types were used. The same working voltage was also chosen for the other film capacitors. The voltage across the \(1.000 \mu \mathrm{~F}\) electrolytic is about 20 and a 25 volts working type was therefore chosen. It is probable that a smaller calpacity would be satisfactory for most purposes so long as the working voltage is high enough.


If the unit is switched on and no current is taken from it then the full 40 mA passes through the Zener diode. The Mullard type BZY88 is rated at 400 mW up to an ambient temperature of \(50^{\circ} \mathrm{C}\). In this unit the 9 volts Zener passing 40 mA will dissipate 360 mW under no load; the worse conditions. As soon as a load is applied less current will flow through the Zener and its dissipation will reduce. It will therefore always be within, normally well within, its rating.


Fig. 2 Component assembly and board cutting details


The silicon diodes used are much better than necessary but are of proven reliability and easily available.
The current through the 270 ohm resistor remains at approximately 40 mA regardless of the output load current as it merely divides between the Zener and the load. If the ouptut is short-circuited all the 40 mA flows through the short circuit. If it is open-circuited all the current flows through the Zener. The power dissipated by the resistor is therefore just over 0.4 watts.

When the mains unit is completed and inserted into the metal case the metal can be swaged back over the bottom end pieces by lightly tapping with a small hammer. The unswaging and re-swaging of the metal case was found to be very much easier than expected and needs little skill.

\section*{USE AS A CHARGER}

The circuit can also be used in other applications where its current-limiting feature is important, such as a charger for re-chargeable cells. A conventional charger supplies a high current into a discharged cell. This may be too high until the cell becomes charged. and before that overheating and damage could result. With this circuit the current is constant. Components for the charger can be chosen as outlined for the above unit.
The capacitor size to establish the current and the Zener diode should be a few volts higher than the fully charged voltage of the cell or cells to be charged. The purpose of the Zener in this case is to limit the output voltage if no load was applied to the charger while it was switched on. The electrolytic capacitor need not be included.
A number of the 9 volts units have been made up and used during the last two years and have per'formed satisfactorily. Hum is negligible, indicating that the \(1,000 \mu \mathrm{~F}\) electrolytic is probably larger than necessary.

\section*{MICROPROCESSORS}

\section*{continued from page 903}
memory (CROM). The design is such that one to four CROM's may be used to control a single RALU and yet one CROM may control up to eight RALU's. Therefore, there are many possible combinations.

\section*{RALU's}

Within the RALU, which is a 4 -bit wide slice of a processor, are seven general-purpose registers, a status flag register, a 16 -word stack, an ALU, an I/O multiplexer, and three data buses. RALU's may be interconnected to form larger systems. by means of control lines. For example, when four are put together to form a 16 -bit computer, they all receive an instruction in parallel and all carry out the requisite fetches and data manipulations in parallel at the full system word size with a carry bit being transferred from the most significant bit of one RALU) to the least significant bit of the next one where required.
The logic elements within the RALU are interconnected by the data buses, so that data may flow from any element into any other element. The RALU is completely general in design; the flow of data through the chip and, thus, the instruction set of the processor, is not fixed by the RALU at all. but is defined from outside by the second chip, the CROM.
The CROM is a form of ROM. coupled with some masking and sequencing logic. It contains the microprogramme control commands that direct the RALU's and define the instruction set of the system. National Semiconductors have available standard CROM's which contain the basic instruction set.

\section*{THE HOME CONSTRUCTOR AND MICROPROCESSORS}

While difficult, these problems are not insurmountable. Likely applications home experimenters will have for microprocessors are electronic games, model railway control and television games.

> SOUND SYITHESSIS for the AMATEUR

Lecture by DOUGLAS SHAW with Live on stage Performance of the MINISONIC Mk. 2 SUNDAY OCTOBER 26th 1975 (Late Afternoon)

\section*{SPECIAL OFFER TO PRACTICAL ELECTRONICS READERS}


\title{
LED
}

As featured in the October 1975 issue of Practical Electronics SAVE ABOUT £8•75* (SPECIAL OFFER EXTENDED FOR A FURTHER PERIODI)
- SINGLE BUTTON OPERATION DISPLAYS hOURS, MINUTES, SECONDS, MONTH AND DATE (DAY OF MONTH) GOLD PLATED SWISS MADE CASE WITH STAINLESS STEEL BACK COVER - ACCURACY TO WITHIN 5 SECONDS PER MONTH © AUTOMATIC READOUT INTENSITY CONTROL: BRIGHTENS DISPLAY IN BRIGHT LIGHT: DIME DISPLAY IN SUBDUED LIGHT OR TOTAL DARKNESS BATTERIES LAST UP TO 1 YEAR WITH NORMAL USAGE WATER RESISTANT, SHOCK PROTECTED, ANTI-MAGNETIC

\section*{COMPLETE KIT}
(with batteries but £36•25* ASSEMBLED WATCH
(with leather ba id and 12 mth
£45.50*
without bracelet)

\section*{^ IMPORTANT INFORMATION ABOUT PRICES}

The above prices shown in British Pounds are approximate equivalents of the actual U.S. Dollar prices: Kits U.S. \(\$ 80 \cdot 00\). Assembled U.S. \(\$ 100 \cdot 00\). ALL PRICES INCLUDE AIRMAIL POSTAGE AND INSURANCE BUT DO NOT INCLUDE ANY TAXES LEVIABLE BY A PURCHASERS COUNTRY OF RESIDENCE. REMITTANCE BY U.S. DOLLAR BANK DRAFTS OR U.S. DOLLAR MONEY ORDERS. DO NOT SEND PAYMENT IN ANY OTHER CURRENCY PLEASE.
EXTRA SPECIAL You can have your SABCHRON DIGITAL parsonalized with any name or initials (maximum 12 tetters and spaces) engraved with gold coloured letters on the watch face for U.S. \(\$ 10.00\) additional. Print or type cle
personalized watch cases.)


ACTUAL SIZE

\section*{EURAY TRADING INC.}

PO. BOX.64683. DALLAS. TEXAS 75.306. US.A

\section*{THE HOT ONE}

DX FRONT END
VT03 88 -108 MHz
* 2 dual gate mosfets
* silver clad chassis
* A.G.C. and A.F.C.

A 4 stage Front End. Will pull out stations which on conventional recelvers would be lost in the noise
Gain 30dB + at 100 MHz Noise 6.5dB Typ.
* ADVANCED DESIGN
* DUAL-GATE MOSFET FIRSTSTAGE Covers: AIRCRAFT - WEATHER SATELLITES • AMATEURS VARICAP TUNED: input 118-150 MHz I.F. Output 10.7 MHz

Send \& 10.90

\section*{I.F10. HICH PERFORMANCE DELUXE I.F.STRIP}

NOW with 70dB gain
Send \&8.80
* SHARP SKIRT SELECTIVITY * CONTROLLABLE SQ JELCH
* CENTRE ZERO TUNING METER + SIGNAL STRENG H METER OUTPUT

\section*{all paices} QUOTED INCLUDE VAT AND P. \& P.

Send \(8 p+\) S.A.E. for Data Sheets. Sole U.K. Agents
REEDHAMPTON LTD.
182-184 Addington Road. Selsdon, Surrey CR2 8LB

\section*{V.H.F. FRONT ENO/GONYERIER}

VTO1
```

```



\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{B. BAMBER ELECTRONICS} \\
\hline \multicolumn{2}{|l|}{Vamalit bliow-ADO \% VVT} \\
\hline & 4 for 50 p .
50 mag . 7 mm inside dia.. 20 for
50 . \\
\hline & \\
\hline  & \\
\hline & \\
\hline cosem & comer \\
\hline 为 & cois \\
\hline 込 & Stion \\
\hline & \\
\hline as. & \\
\hline and &  \\
\hline &  \\
\hline mivo &  \\
\hline  &  \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{USINESS: CASH WITH ORDER (minimum order 1 1) POST FRE
PLEASE ADD VAT AS SHOWN
Export enquiries welcome Callars welcome. Tues: to Sat.} \\
\hline
\end{tabular}


\section*{WORLD-BEATER?}

The Ferranti affair is now almost forgotten since, short of cash flow, it had some public money pumped in. In the face of bigger and more newsworthy commercial and indus. trial disasters such as British Leyland, Ferranti mercifully dropped into the background and keeping a comparatively low profile went quietly about its business.

Now Ferranti has popped up again in the news to let the world know that although the company might not have been very clever at holding down losses in the heavy power transformer division, it has some very bright people in the electronic component division and particularly in that area devoted to integrated circuits.

Their latest venture in I.s.i. has to be a winner. It uses the Collector Diffusion Isolation (CDI) technique which gives bipolar speeds with all the benefits of low-cost processing and small power consumption of unipolar devices. The particular device I have in mind is a single chip incorporating some 1,500 transistors which forms the central component of a whole range of modern digital instruments.

Initially, there are nine instruments of varying complexity in the range, each using the same chip which may be likened to a tiny central processor around which peripheral circuits may be added as required to provide various functions in the instrument. The chip includes circuits for input and output gating, the clock, decade counters, time base, plus all the associated logic circuits, and if all these circuits were realised with discrete components you would need something like a thousand.

The single-chip instrument is therefore less costly to assemble
and should be far more reliable in service. Of course, such a chip costs a small fortune to develop and this has to be amortised over a long production run and so the instruments are not at greatly reduced prices though very competitive.

Co-sponsors of this project are Racal Instruments Ltd. who will, of course, have exclusive use of it. First showing of the instrument range was at Racalex '75 which opened in London on September 23. Racal Instruments is naturally delighted with the whole project and expect considerable export business as well as brisk home demand. Ferranti, too, has all the satisfaction of seeing another success for the CDI technique and a quickening of interest in its potentialities.

\section*{OPTICAL COMMUNICATIONS}

Ten years ago research started on communications by light through optical fibres as a possible alternative to electrons through metallic conductors. When it all started nobody knew whether a fibre could be made with low enough losses, whether a fibre could be made economically in commercial quantities, whether if a fibre could be made it would be capable of being handled and jointed, and nobdy knew if l.e.d.s and lasers of suitable type would become available as the transmitting source or whether suitable photodiodes would be produced.

Now, at the IEE headquarters in London we have had the first fullscale international conference on the subject and although there are still problems ahead they are comparatively minor. A whole new industry seems to be in the buildup stage. Some modest systems are already in use, for example in warships and other military applications, but despite the considerable volume of experience that has been accumulated, especially in the last five years when research has accelerated sharply, it is unlikely that really big business in optical communications by fibre will start for another seven, possibly ten years. But when it comes it could be the biggest thing for the electronics industry since the electronic computer.

\section*{TANKER RISKS}

Nobody likes to see disaster at sea but recent incidents involving supertankers do highlight the need for human navigating skills to be supplemented by the very bet electronic aids. Decca Radar has just announced that their Channel Approach Aid is now operational at the big oil terminal at Milford

Haven after some two years of costly R and D and sea trials.

The Channel Approach Aid is portable and is taken on board by the ship's pilot. Working in conjunction with transponder beacons at shore sites, it provides the pilot with a digital read-out of ship's speed, a measurement of deviation from the channel centre line and distance-to-go to pre-determined points of turn.

Both the philosophy of the Channel Approach Aid and its engineering realisation are first class. It was developed by Decca in association with the Admiralty Surface Weapons Establishment and the Radar Research Establishment and so has an excellent pedigree. But I fear that despite all its abvious virtues it may not prove commercially successful, even after the fine example set by Milford Haven in installing the first system.

\section*{CMOS RELIABILITY}

To kill rumours that CMOS plastic i.c.s are unreliable at supply voltages of 15 V and above, Motorola has produced some remarkable figures on randomly selected devices tested at the higher end of the voltage range and at elevated temperatures. Military types operated at 18 V and at 125 deg \(C\) survived with only four device failures in \(1,200,000\) device hours. Industrial quality circuits operated at 15 V and at 85 deg \(C\) had eight failures in \(5,819,500\) device hours. The devices, say Motorola, were ordinary production items taken straight from the line.

\section*{CUTBACKS}

Top spender in the industry is the Post Office as regular readers will already know. When the PO hiccups it reverberates all the way down the line and the PO with its unhappy financial situation is almost bound to trim its huge reequipment programme regardless of urgency. GEC and Plessey are reported to have developed a nervous twitch at the prospect, while STC with the big TXE4 electronic exchange programme is reported as being fairly relaxed on the assumption that this prestige project will remain unharmed.

Of the trio, Plessey has a strong export business in cross-bar equipment and hopes to alleviate any home cut-backs by increasing overseas sales. But whichever way the cookie crumbles the Post Office must, in the end, have the equipment it so badly needs, the only trouble being that it will cost more later. Which could, of course, mean dearer telephone charges which could mean less subscribers with shorter and fewer calls which could put up unit costs which

\section*{识进 \\ YOURSELF FOR A \\  BETTER JOB "w MORE PAY!}

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 76-page free book NOW: No obligation, nobody will call on you. It could be the best thing you ever did.

\begin{abstract}
Do you want promotion. a better ob. higher pay? "New opporUnities shows you how to gel through a low-cost. Home Study Course. There are no books to buy and you can pay as you
\end{abstract} CHOOSE A BRAND NEW FUTURE HERE

\section*{We don't miss anything out, so you won't miss out.}

Our 1214 Series stereo equipment comes to you in kit form. And, as you would expect, coming from Heathkit, they are absolutely complete kits. With nothing left out.

So you'll have all you' need to build our superb AR-1214 stereo receiver. Or, if you'd prefer, a separate amplifier and tuner (the AA-1214 and AJ-1214).

The easy to understand instruction manual you'll get makes assembly beautifully straightforward


And very enjoyable.
And the high performance of the 1214 Series means you won't miss out on listening pleasure in any way either.

From the stereo receiver, or separate amplifier, you'll get 15 watts r.m.s. a channel, with reproduction so good it makes many ready made systems really sit up and listen.

For full details of the 1214 Series, the rest of our audio range, including speakers, and our many other kits, just post the coupon now for your Heathkit catalogue.

Or call in at the London Heathkit Centre,
233 Tottenham Court Road.
Heath (Gloucester) Ltd., Dept. PE-115, Bristol Road, Gloucester GL2 6EE. Tel: (0452) 29451.

bargain project box
 panets with turtal font plate wunpilital
profect a montenaional fing an SIZE: (internal タ1mmxinlnmx

OXIS PRICl: 40p.


Oin 8ohm DUAL CONE L/B Matulact "d by a very ligk 1 hese loud
 Power \(16 \mathrm{Watts}\), ircyuency40.23 53.75 ca
1.C. SOCKETS + 8
pinn-13p
it piit-14p 24

\section*{MINIATURE RELAYS}

Mranu new range of britioh thade
 1-if cminacta and suitable for hiting un 0.1 m verolbans.

 \(33 M / \mathrm{A}\) l85 escb

MINI LOUDSPEAKERS

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{MIDGET} \\
\hline MAINS & \multicolumn{2}{|l|}{TRANSFORMER} \\
\hline \multicolumn{3}{|r|}{Varnish Impregnated} \\
\hline \multicolumn{3}{|l|}{Size \(45 \mathrm{~mm} \times 36 \mathrm{~mm} \times 31 \mathrm{~mm}\)} \\
\hline PRI 240 V & & \\
\hline sec & 3.0.3 & 100 mA \\
\hline sec & 6.0.6 & \(100 \mathrm{~m} A\) \\
\hline sec & \(19.0 \cdot 1\) & 100 n A \\
\hline fice & 12.0.12 & 100 ma \\
\hline & \(30 \cdot 00\) & 100 ma \\
\hline
\end{tabular}

CRESCENTBUBBLE LIGHT SHOW favourably with mere sophisticnteit and higher priced moilele.
sprecincat
Projector-
conled At :10f1 llee nrofected ithage iv 10 it.
Motor.
Motor
Liquid Whe
multi
The motor is tll
ant can only led hather projector

neryel aml hay lin purchaae
A hargai
Toral 280
Plus El (in)
CABLE LESS SOLDERING IRON WAHL "ISO.TIP
\(\star\) Cumpletely purtahip
chatge
\(\star\) Fine tiphes in is any stand.
\(\begin{array}{r}\text { lng. } \\ +\quad \mathrm{On} \\ \hline\end{array}\)
* Only Nin ling amilweighe just
© 178
O 1 © PRICE: \(\mathbf{£ 9} \mathbf{9 5}\)
U.K. CARRIAGE

20 p UNLESS OTHERWISE STATED

VAT-All prices are excludag VAT. Plesse add to each cated rate indicated.

CRESCENT" 100 WATT R.M.S ALL PURPOSE AMPLIFIER U. BUILD. IT
 * THE POWER AMP MODULE fron r.th.s. si, wave 300w instantapeone jeal oum.
- THE PRE-AMP MODULE
fin control pre-atup. ol. Bass, Treble. Mldde contrils. Dosigned
* THE POWER SUPPLY

1s anpplien complete with the mains trausformer welinical kiswledge is required to connect the 87.50 , *arr. \(\mathbf{k 1} 1=01\). Send 8 . A . for further detail rit this ur vur realy bullt amplifers. \(+8 \%\). \(120-12 \mathrm{~V} 500 \mathrm{M} / \mathrm{A}\)
24dN primaty transformer bargain. Approx. bize Out pitice \(81 \cdot 20\). +80 . Axing centres: 7 mmm
FERRIC CHLORIDE
nour Our Price 50 per

LOW NOISE, LOW PRICE CASSETTES (iuod quality tape in well made scexew type C60 31p \(\quad 19048 \mathrm{p} \quad \mathrm{Cl20} 88 \mathrm{D}\) \(10^{\circ} \mathrm{C}\) cliscousni on ten or more eassettes of one Hand ABS PLASTIC BOXES IIIands boxes for construction projects. Mouldei exirusion rails for P.C. or chassis pancele. Fitted \(40 \mathrm{~nm} 56 \mathrm{p} ; 1000\) panele. \(1000,105 \mathrm{~min} \times 3 \mathrm{~mm} \times\) \(10 \mathrm{~N}^{-} .184 \mathrm{~m} 1 \mathrm{n} \times 104 \mathrm{~mm} \times 60 \mathrm{~mm} \times 1.68\); 1021


This kit contain ETCHING KIT io etch the cirng all that the contruct or will need platic ne circuits of his own design. Contents: Lamininate cutter sample copperclad board Plastic Spoon. Etch Resist Pen. Full Inetructions. Complete and Big Klt Value at

2in. PANEL METERS
\begin{tabular}{|c|c|}
\hline \(0.50 \mu \mathrm{~A}-\mathrm{ME}\) Size &  \\
\hline (0.30 A \(100 \mathrm{~A}-\mathrm{MEG}\) & \({ }_{0}^{0.1000 \mathrm{~mA}-3120 \mathrm{ma}-31 \mathrm{El}}\) \\
\hline \(0.600 \mu \mathrm{~A}-\mathrm{HE8}\) & 0.1 A - ME15 \\
\hline 0.1 ma - 3E9 & (1.50V -ME10 \\
\hline 0.5mA - ME10 & 0.300 V a.c.-ME1 \({ }^{-1}\) \\
\hline 0.10 mA -ME11 & s meter -ME18 \\
\hline 0.50 mA -ME12 & V.C', meter-ME18 \\
\hline ¢ \(3_{\text {each. }}+8 \%\). & \\
\hline
\end{tabular}

\section*{POWER PACKS}

PTI \$withed 3.49 .6 .7 .9 and 125 at \(500 \mathrm{M} / \mathrm{A}\) with ollof switch and pilot ligbet. Size
 Appros. aize \(2 z\) in \(\times 2 z^{2}\) in \(\times 3\) zin. Ideal for

PP3 Car converter. Froun 12y Pos, or Nea to \(=15.91\) Easy to fl and tranaletor

TELESCOPIC AERIAL
Xinu wetinn fulls wivelling telegiopit aerlal with



KILOWATTS PSYCHEDELIC LIGHT CONTROL UNIT


Iomatpeaber terminaly of au atuplitief, and connect threw um in bond lan pa to the outple erminals of the unit, and ymy produce a fascinat ing Remncl-light display. (All giaranteed.) \& 18.50

SEND 30p FOR A
CRESCENT catalogue

\section*{* ELECTRONIC PIANO KIT * SYNTHESISER KIT \\ * ELECTRONIC C.ZGAN KITS}


WE are all tired of the oft quoted words--depressed economy. setback, downward climb, gloomy times-most of these could be applied to the music industry when the imposition of VIAT was applied. When I visited the British Musical Instrument Trade Fair (August 17-21) at Connaught Rooms, Bloomsbury Centre and Hotel Russell. I fully expected a reprise of last year's exhibits from a stagnant industry. No way-there was a lot of product range expansion notably at the low end of the organ market. Here, of course, electronics gimmickry, wizardry if you like. prevails.

It's an oft quoted fact that more than 90 per cent of the population do not own an instrument and for that matter cannot read music. With the range of "all singing all dancing" fun machines available and "at a glance" back up, music teaching software, the organ distributors have designs on reducing this statistic.

\section*{ANYONE CAN PLAY}

The low end of the market consists mainly of instruments anyone can play. In the majority of cases this is true even if you are unfortunate enough to have one foot and two fingers. Usually what they have in etceteras they lack in voicing and balance.

An addition to the Philips range, the "Automagic", has none of these problems. This has a professional specification, and most appealing to the beginner, illuminated touch controls that enable rapid and easy switching of preset registration and automatic bass chords coupled to rhythm.


The Thomas Majestic Royale 1157. Features of this include "Preset" and "Memo Chord" tabs, with these an ensemble of voices in chosen chords can provide an automatic accompaniment in time with the rhythmn

\section*{}

\section*{ORGAN INDUSTRY PIONEER}

To the cognoscenti the name Hammond is synonymous with organ excellence both in product and sound produced. Over 40 years they have moved from tone wheel generation to the multiple derivative divider system still maintaining, arguably, that distinctive Hammond sound.

The tone wheel, in fact, pioneered the organ industry as we know it today.

In 1972 the incredible Concorde made its appearance combining 1.s.i./m.d.d. technology with harmonic tone bar registration. The spin-off from this was evident in the Cougar and X2/X5 models. These offer tonebar performance, the latter being portable with a professional specification.

\section*{RHYTHM GENERATORS}

Another development with roots in Concorde is the Autovari 64 which introduces almost lifelike realism to rhythm patterns. Completely different from the crashingly boring ryhthm units attached to most organs.

That there is a demand for this type of unit is evidenced by the singular selling success of the Powerhouse drum rhythm unit when introduced this year at the Frankfurt International Spring Fair.

This consists of eight pre-recorded double-track tapes from which it is possible to obtain up to 64 different drum rhythms. Again, the emphasis is on authentic sound with each rhythm having a 32 bar sequence Distributors for this unit are Benelux Musical Instruments Ltd.

Before leaving this subject one would have to mention the Farfisa "Super-partner". A rhythm box that allows the organist to augment rhythmic sequences. An extra facility makes this box rather remarkable. It adds a variety of instrumental accompaniments such as trumpet, guitar, trombone, etc. to the lower manual in conjunction with the selected rhythm. Different sounds either singly or in combination are predetermined by whichever rhythm is selected.

The unit is available with the new Farfisa Beresford and Buckingham, the latter being a clubland theatre organ.

\section*{SYNTHESISER ULTIMATE}

Another extremely stylish clubland instrument, elegant in plastic and chrome, is the new EX42 from Yamaha. At \(£ 9.375\) worthy of a mortgage but this paled into insignificance compared to its similarly clad companion. the \(£ 30,000 \mathrm{GXI}\) fully polyphonic synthesiser.

If you watched "Tomorrow's World" on the lith of September you would have seen the American bandleader/arranger, George Fleury, give a commendable account of himself and the instrument. Orchestral instrument synthesis was convincing, particularly the big band brass tuttis. Unfortunately any one player can only skim the surface potential of this multi-million pound research development.

\section*{OTHER SYNTHESISERS}

1 was told that a derivative of the technology is the new SY-2 synthesiser which, like the ARP Pro-

Soloist, has a whole range of preset instrumental voices and effects. All of these can be modified with a variety of filters and shapers. Obviously, this type of synthesiser makes an excellent addition to an organ. Unless you are lucky enough to have a Wurlitzer with integrated Orbit.

Weighing in at 151 lb and checking out at around \(£ 460\) is the ARP Axxe. My introduction to this was the recreation of the unmistakable fired phasor and torpedo sounds from starship Enterprise by a dextrous Boosey and Hawkes demonstrator.

This is probably one of the simplest synthesisers to get to know; the fascia labelling and colour coded slide controls make this possible. An interface addition to the Axxe is "Little Brother" which can be slaved to provide extra effects. I was told that Little Brothers could be stacked endlessly, which promotes some speculation.

\section*{HOHNER KEYBOARDS}

New Hohner keyboards shown by Hornby-Skewes included the HiPiano String. I find these string ensemble units hard to resist as the impression is of playing in a cathedral. A melody picked out with piano or harpsichord voicing seems to have a full reverberant orchestral backing.

\section*{P.A. GEAR}

In P.A. equipment it seems that the old type column is out and the


system column and bin box in. This usually consists of h.f. horns and mixed diameter speakers and h.f. and woofer horns for the bin.
The diminutive Min Bin from Carlsboro is representative of the genre measuring a mere \(35 \times 20 \times\) 20 in but capable of pushing out 100W.
This company also had on display the comparatively low priced 35W Scorpion combination amplifier. This is described as the most exciting innovation in the small amplifier market for years.

Marshall provided continuous demonstrations of their Lead 100 , 100W transistor amplifier with guitarists Bert Kirby, Jim Wilmer and Steve Thomas.

\section*{EFFECTS UNITS}

Distortion is big business. Per-
haps this is a harsh term for electronic effects; some purists might prefer colourisation. From reader reaction to this magazine we can tell where the interest lies and have provided many designs that rival commercial specifications.
One of the biggest producers of effects units is Solasound. New additions to their range are Chuck-a-Wah, an automatic wah-wah that is responsive to speed and dynamics in performance and Phase Pedal 4 for that way out rushing sound. An extension to this unit's capability is Supa Phaze which gives a passable Leslie imitation.
Increasingly popular is the foot controlled v.c.f. providing as jit does an almost limitless range of tone colours in combination with voice or instrument. Two examples shown were the Univex Synthi Pedal and the Korg Traveler.


The Hohner Hi String, an electronic keyboard that synthesises the many sounds of a string orchestra


The Kimball Swinger 200. One of the new breed of two finger fun machines. One finger on the upper manual picks out the melody-one finger on the lower gives you rhythmic chords

\title{
BADIO EXCHANGETTD.
}


\section*{NEW EDU-KIT MAJOR}

COMPLETELY SOLDERLESS
ELECTRONIC CONSTRUCTION KIT
BUILD THESE PROJECTS WITHOUT SOLDERING IRON OR SOLDER

E.C.K. 1

Transiator Easy Stage Earpiece Recetver Kit. Full mediun wave coverage. Complete with ready paced tuning capactor. Bengitive arpiece and gain control. Operater froms a 9 voll
earpiece and gan controli, operates. Thms a ectronlc con-
P.P. 7 battery (not \#upplied with kit). Thin ested in kit buil
striction kit is a goon ntarter for those interested aructionkit is a gool ntarter for those interested in kit builling and soldering. Parts price list anti plans free with kit.
Complete kit of parts £4.50 P.P. and Ins. 45 p
E.C.K. 2 Sill Conained Mulit-Band 8 transistors and 3 diodes. Pugh pull output. 3in londspeaker, gain control. output. shin omperber, gain control. able chrome plated telescopic aerial, V.H.F. tuning capacitor, resistors, capacitors, trab* sistors, etc. Will receive (subject to local reception conditions) T.V. nound, public
 er-lce bald, aircraft. V. H.F. lucal stations, etc, Ouerate foni 9 volt P.P. 7 battery (not supplied with kit). Partaprice llat and planmsupplicd free with ki

Complete kit of parts \(£ 7.95\) P.P. and Ins. 55p

\section*{E.C.K. 3}

5 Tranaistor Medium Wave Receiver Kit. Claws A output with 3, in lollispeaker. Simple to Wonnd sin ferrite medimm wave coverage. Reaty required. 7 stages, \(\overline{3}\) transistors and iz diodes. Tuning capacitor, gain control, etc, Operates from a \(4 \frac{1}{2}\) valt Battery (not supplied). Parts price iat and y


Complete kit of parts \(\mathbf{£ 5} \mathbf{4 0}\) P.P. and Ins. 45p

\section*{E.C.K. 4}

7 Transiatiors, 6 tuneable wavebands, MW, LW, Trawler Band, 3 Short Wave Band, Receiver Eit Whth aill \(\times 3\) in laudspeaker. Push pull output stake. gain control, and rotary switch. 7 transistors and 4 diodes. 8 in sensitive ready wound ferrite rod aerial. uning capacitor, resistors, capacitors, etc. Operates from as 9 volt P.P. \({ }^{\text {' battery (not supplied with kit) }}\)
Parts price list and plans anppliell free with kit.
Complete kit of parts \(£ 7.25\) P.P. and Ins. 55p



\section*{EDU-KIT JUNIOR}

Completely Solderless Eiectronic Construction Kit. Build these Crystal radio medium wave coverage-No batter \({ }^{\text {a }}\). necessary. One transistor radio. 2 transistor regenerative radio. 3 transisior earpiece radin uudspeaker radiu, Electronic noise generator. Eleclounspeaker radio, Electronic noise generator. Elec paris including loudspeaker, earpiece, MW ferrite rod aerial. plans tree with kit.
Complete kit of paris \(£ \mathbf{5} 50\) P.P. and Ins. 45 p
-ound ferrite rod gerial, high etficienc

\section*{V.H.F. AIR CONVERTER KIT}

Build thin converter kit and receive the aircraft band by placing it by the side of a radio tuned to mellium wave or the long wave band and perating an shown in the instructions supplied free with all parts.
L'ses a retractable chrome
 control, V:H.F. tuning capacitor, transistor, etc. All parts including case and plans \$4.35 P.P. \& Ins. 40p

\section*{ROAMER TEN MARK 2}

WITH VHF INCLUDING AIRCRAFT Now with free earplece and switched socket. 10 apeaker. 9 tuneable wavebands, MW1, NW., LW SWl, swe, sW3, trawler band, VHF
and local stations, also aircraft bame.
Buitt in ferrite rot aerial for MW/LW. Chrome plat 6 section telescopic aerial, can he angled and rotated wave and VEF liatening. Push pull output using \(600 \mathrm{~m} W\) transiators. Car aerial and tape record sockets. 10 tranisistors plus 3 dioder. Ganged
VHing condenser whi on/olf. Wave Change and tone controls Attractive on/off. Wave Change andocking Size 9 in \(\times 7\) in \(\times 4 \mathrm{in}\), Easy to follow instructions and diagrame. Parte price list and plans ujop free with parta.

Total building \(51: 7\) P.P. \& Ins

\section*{RADIO EXCHANGE LTD.}

To: RADIO EXCHANGE LTD.
61A High Street
Bedford MK40 1SA
Tel.: 0234 52367, REG NO. 788372
- Callera side entrance "Lavella" Shop Open 10-1, 2.30-4.30 Mon riri. 9-1.2 gat

\section*{enclore}

Nalne

Address


600 WATTS PER CHANNEL Connects to your loudspeaker or loudspeaker socket. The unit can be connected to your existing spotlight fittings or to our type A or B fittings.

\section*{4
4
5 \\ including channel output plugs} and mains input socket.
ALL PRICES INCLUOE V.A.T. and POST \& PACKING ALL PRICES aply to the United Kingdom only)

\section*{Twin Bank 6 LIGHT}

(less lamps)
B.C. FITTING £ 9.55 (each)

Length \(141 / 2\) inches
E.S. FITTING
£10.35 (each)
Type A
(less lamp)
B.C. FITTING £1.95 (each)
E.S. FITTING
£2.12 (each)
100 WATT SPOT LAMPS Minimum
 blue, clear. \(\mathrm{O}^{-18}\) each £3.54 TRATALSA, STANDISH STREET, Only 1 B.C. or E.S. Fitting

Type B B BaNK UNT


FITTING £6. 90 (each) E.S. FITTING £7.26 (each)

Length \(31 \frac{3 / 4}{4}\) inches \(\mathrm{JNIT}^{2}\)

(each) B.C. FITTING £15.60 (each) E.S. FITTING £17.00 and 20 p for illustrated leaflet \& price list. BURNLEY, LANCS.
\begin{tabular}{|c|c|c|c|c|c|}
\hline  & &  & \begin{tabular}{l}
 \\
WINDSO \\
5640 \\
8ents. F . 0
\end{tabular} & \begin{tabular}{l}
BERKS \\
VE RD: \\

\end{tabular} & \begin{tabular}{l}
 What STOCKA. LOU RAYCES, \\
 \\
 \\
 BRRCTAFCARD AGCRSS \(A\) MOST. \\

\end{tabular} \\
\hline \multicolumn{3}{|l|}{Dinitita Displays} & \multicolumn{2}{|l|}{TRANSISTORS 8 DIODES} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { VERO PINSX36 } 28 \mathrm{p} \text {. NWMW RRIASS! } \\
& \text { COPPER CLAD VEROBOARD OI" }
\end{aligned}
\]} \\
\hline IGIT O-9DP & 709
555
DILIL
TIM &  & Price each & \multirow[t]{2}{*}{\(\begin{array}{lr}\text { MATCBING } & 16 \mathrm{p} \\ \text { INS: BUSH } \\ \text { SET10p }\end{array}\)} & \\
\hline GREEN\&YELLOW & \(703 \mathrm{RF} / \mathrm{IF} \quad 28 \mathrm{p}\) & LM381 \(2 \times \mathrm{Pre} \mathrm{E} 2\) & AC187 \& 188 19p & &  \\
\hline JUMBO LED \(0.6^{\prime \prime} 7\)
DISPLAY \&2.25 ea. &  & LM3900 \(4 \times\) OPA69p &  & TIP 41 70p & \multirow[t]{3}{*}{\begin{tabular}{l}
DIL IC's BOARDS \(6 \times 4 \frac{1}{2}\) § \(\$ 1.50\) \\
24 way edge connector 60 p . \\

\end{tabular}} \\
\hline 3015F 0-9D & 710 DIL 14 34p & MC1306 49p &  & TIP 2955 90p & \\
\hline  &  & MC1 3102LEDE 2.65
\(M C 1312\) SQ E 2.10 & BC109 10p & TIP 3055 55p & \\
\hline & 741 DIL 14 29p & MC1330 69p & \(\begin{array}{ll}\text { BC147/8/9 } & 10 \mathrm{p} \\ \mathrm{BC} 57 / 8 / 9 & 12 \mathrm{p}\end{array}\) & \[
z T \times 109 \& 301 \quad 13 p
\] & \multirow[t]{2}{*}{} \\
\hline & 741 T099 \({ }^{\text {29p }}\) & MC1339 \(2 \times\) Pre \({ }^{1} 1\) & BC167/8/9. 12 p & 1N4001 & \\
\hline (1) S (0) &  & MC1350 55p & BC177/8/9 18p & 1 N 4004 \& ? 7p & \multirow[t]{3}{*}{PRINTED CIRCUIT BOARD KIT \&1.69 DECON NO MESS ETCH PAK NET 69p decon desolder braid reel 59p} \\
\hline & 7805
780
5V
¢1.40 & NE540 Driver ¢1 & BC182/3/4A\&L10p & \multirow[t]{2}{*}{\(1 N 4148\)
2N697} & \\
\hline LEDS 209 STYLE ONLY 13p ea & 7812 \& 15 £1.40 & NE550 2vRef & & & \\
\hline TIL 209 WITH CLIP RED 15p ea & 76013 6W AF \(£ 1\) & NE555 Timer 55 p & BD131 \& 13239 p & \begin{tabular}{l}
2N70688 \\
2N2646 UJT
\end{tabular} & \\
\hline TIL 211 a CLIP GREEN 29p ea & 8038 SIG GEN \&3 & NE556 \(2 \times\) " 11.20 & BFR51 & 2 N 2904 \& \(5{ }^{20}\) & \multirow[t]{2}{*}{} \\
\hline Large 0.2" \& Clip red 17p ea & CA3028 ¢1 & NE560 PLL ¢3.15 & BFR50/51 23p & \multirow[t]{2}{*}{2N2926royg \({ }_{\text {2N3053 }} \begin{array}{r}\text { 9p } \\ 17 \mathrm{p}\end{array}\)} & \\
\hline  & CA3046 55p &  &  & & TV3/TO3 16p. EXTRUDED 4" 4 Y1 29p \\
\hline INFRA RED LED \(21.2 N 5777\) 33 & СА3052 £1.50 & NE565 PLL ¢2.69 & BFR88 250 V 29p & \(2 \mathrm{~N} 3563{ }^{\text {¢ }} 64\) & \multirow[t]{3}{*}{TGS308 GAS DETECTOR \(£ 1.80\) ea. logic probe tTl tester pen \(\mathfrak{c} 5\) CAPACITORS} \\
\hline & 054 & SN72709 709 28p & BFY50/1/2 15p & \multirow[t]{2}{*}{2N3614 \({ }_{2}\) 2 3702 \& 3} & \\
\hline  & LM300 2-20V ¢2 & SN72741 741 26p & BSX19/20/21 16p & & \\
\hline 2 рното amp/SCMIT & \(\begin{array}{ll}\text { LM301 } \\ \text { LM304 } & \text { OPA } \\ 0-40 V \\ 45\end{array}\) &  & MJE2955 \({ }_{\text {MJE3055 }}\) & 2N3704:5 10p & \multirow[t]{4}{*}{CERAMIC 22pf to \(0,1 \mathrm{uf} 50 \mathrm{v} 5 \mathrm{p}\), ELECTROLYTIC: \(10 / 50 / 100\) uf in 10 v 5 p .25 v 6p. 50 v 8p. \(2 \mathrm{uf} / 10 \mathrm{v} 5 \mathrm{p}\).
\(1000 \mathrm{uf} / 25 \mathrm{v} 18 \mathrm{p} .200 / 50025 \mathrm{v} 9 \mathrm{p}\),} \\
\hline \multirow[t]{2}{*}{DRIVER or LED TTL INTERFACE 81p} & \multicolumn{2}{|l|}{LM307 OPA 49p SN76611 IF¢1.25} & \multirow[t]{2}{*}{MPU1 31 PUT
OA9
OA81} & 2N3706 \& 7 & \\
\hline & LM308 H1Bo 95p & TAD110 \& 1 F ¢ & & 2N3708 \& 9 & \\
\hline & LM309K 5V \(£ 1.48\) & TBA810 7WAF 99p & OA81* OA91 6p &  & \\
\hline & LM372 IF \(\{1.80\) & 2N414 RX ¢1.09 & \(\begin{array}{lllll}\text { TIP } & 29 \\ \text { TIP } & 31\end{array}\) & 2N3823E FET 17p & \multirow[t]{3}{*}{POTENTIOMETERS (POTS) AB or EGIN DUAL 45p. SLIDERS 29p. STEREO 57p KNOBS 7p, Presets 6pResistors} \\
\hline & \multicolumn{2}{|l|}{SPECIAL OFFERS} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TIP 31 \& 32 69p 2N3904/5/6 15p full selection in our free lists,}} & \\
\hline FLUORESCENT LIGHTS 12 V MADE IN UK 8 WATT 13" £3. \(1.3 \mathrm{~W} 22^{\prime \prime} £ 3.50\) & \multicolumn{2}{|l|}{2N3055 FULL HIGH SPEC 115W 37p 741C 8PIN DIL 27p:MFC4000B 33p} & & & \\
\hline 8! & \multicolumn{2}{|l|}{NE555 TINER 55p.ZN414 RX £1,09 BC109 9p. 2N3819e 16p. BFY51 15p} & \multicolumn{2}{|l|}{NEW TRAMPUS FULL SPEC PAKS} & \begin{tabular}{l}
KNOBS 7p. PRESETS 6PRESISTORS 1 1p \\
SWITCHES: SPST 18p. DPDT 25p.
\end{tabular} \\
\hline  & & \multirow[t]{2}{*}{阿T} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multirow[t]{2}{*}{Din plugs all 12 p, Sockets 10 p, ALI CASES AB5/AB7 50p. AB13 65p. TRANSFORMERS 1A \(6 v 6 v\) or \(12 v 12 \mathrm{v}\)} \\
\hline & 18 & & & & \\
\hline & & 7473/74\%76 29p & & & \multirow[b]{2}{*}{DK Sachets} \\
\hline mathanics & 7400 GATES \(13 p\)
7404 INVERT 17 p & & \multicolumn{2}{|l|}{BZY88 400mW 1a/50V SCR 360} & \\
\hline & 7401/2/10etc 14p & 7491/2/3/4 59p & \multirow[t]{2}{*}{CENER DIODES 9p} & TAG1/400 55p & \multirow[t]{2}{*}{\begin{tabular}{l}
TEXAS GOLD \\
Low PROFILE
\end{tabular}} \\
\hline 8 8tk Cartridge mechanism & 7413 SCMITT 31p & 7410074175 \&1 & & \(C^{106}\) \& 7 SCR D1 & \\
\hline STEREO CASSETTE, MECHANISM \(£ 13.75\) & 7440 BUFFER 14 p & \(\begin{array}{ll}74121 & 32 \mathrm{p} \\ 74123 & 59 \mathrm{p}\end{array}\) & 1 A 50 V . 20 & 4A/400V
SC146D
53p & 8,14,\& 16 PIN 13p \\
\hline Suitable for 'PW ASCOT' recor
with heads etc & 7447
7470 &  & BR 100 DIAC 250 &  & \begin{tabular}{l}
SOLDERCON STRIPS: \\
100 PINS 50p.1K £3.
\end{tabular} \\
\hline
\end{tabular}


\section*{16 AND 14 PIN LOGIG CHECKER}
\(N^{0}\) doubt P.E. readers will have noticed the "Logic Testers" that have come onto the market recently. Whilst being a worthwhile investment for laboratories etc., the price renders them unsuitable for amateurs with limited resources to fall back on.
The display being critical as regards both cost and acceptability, an oscilloscope display was adopted. This necessitates a \(Z\)-modulation facility in the scope being used. This is easily incorporated into 'scopes without this facility by simply coupling a one-valve grounded cathode stage to the c.r.t. cathode by a suitably high voltage capacitor of about 0.1 uF .

IC4 and IC5 together with, one NAND gate from 1 C 3 form a sixteen-to-one line multiplexer, IC4 and 5 being alternately enabled by output \(D\) and the inverted output \(\bar{D}\) of 1C2. The input pins of the multiplexer are wired to a sixteen-pin d.i.I. i.c. test clip. When this is clipped onto an i.c., the multiplexer output will go low if the pin being addressed by the multiplexer is low or grounded.

The resistors R2 to R4 together with IC2 from a staircase generator, which, when applied to the "X" amplifier of the oscilloscope forms a row of dots. Connecting the D output to the Y amplifier produces a double row of dots.

If the output of the multiplexer is now connected to the Z -modulation input, and if a given pin on the i.c. being checked is at logic 0 , then the dot being drawn in the corresponding position on the oscilloscope face will be extinguished, thus indicating the state of the pin.
As can be seen from the circuit diagram, one of the NAND gates is being used to decode 7 (0111) and

15 (1111). These points in the cycle correspond to pins 9 and 8 respectively. If Sl is closed then on 7 and 15 the \(Z\) output will be forced low through DI, thus extinguishing pins 8 and 9, and modifying the output format to 14 pin.

The display was found easier to read using badly-focussed dots, and has proved invaluable in diagnosing faults in digital circuits.
G. Butler, Hertford

TRIFFID POWER SUPPLY


\section*{Fig. 1}

AVERY simple circuit which can be used to provide the 1.3 V necessary to power the ZN414 i.c. radio (as shown in P.E. Feb. 73) is shown in Fig. 1. Resistor RI provides current to forward-bias the silicon diodes D1 and D2 to provide about 1.3 V , and capacitor Cl decouples any noise to earth. The diodes can be any general purpose silicon types such as iN4002, 1N4148, etc.
S. Newington-Bridges.

Ampney Crucis.

\section*{SIMPLE ELECTROLYTIC COMPARATOR}

Asimple circuit which can be used to roughly determine the capacitance of an electrolytic capacitor is shown in Fig. 1.

A 555 timer in its monostable mode is used to provide a pulse, the duration of which being proportional to the unknown capacitor C4 and resistor R3. One simply times it with a capacitor of known value. the length of the pulse and compares Switch Sl commences the timing action.

A relay can be used instead of an l.e.d. which will make timing easier as one listens for the "click" of the relay dropping off whilst looking at a watch.
D. Lal, Amsterdam

\section*{MUSIC GENERATOR}

THE circuit of Fig. 1 can be used to play either repeating tunes of 32 notes or random tunes. Although the notes in the sequence cannot be individually determined, they are determined by the settings of only five controls. This simplifies both the circuitry and the operation.

The output is produced by a unijunction transistor oscillator, whose emitter is connected through five potentiometers to the outputs and input of a 4 -bit binary counter IC2, IC3. If pulses are applied to the input, 32 different states are obtained in


Fig. 1
sequence, and therefore 32 different notes. Diodes are connected in series with the potentiometers so that each potentiometer is isolated when the corresponding output is low.

The pulses for the counter can be produced either manually with a push button or automatically by a lowfrequency astable consisting of TR1 and TR2, whose tempo can be controlled by two independent potentiometers. The sequence can either be fixed in a 32 -note cycle or random. An and gate (IC1) is used to select these four modes.

With the switch on "fixed", one input to the gate is permanently high, and the other is connected to the
astable or push button. The output will be high when the input is high and low when it is low. With the switch on "random", one input is connected to an r.f. oscillator consisting of TR3 and TR4. When the other input, connected to the astable or push button, is high, the output is r.f. oscillation, and the counter counts at this frequency. When the voltage at this input drops, the counter will remain at the state at which it was before the voltage fell. Since the r.f. is much greater than the automatic pulsing frequency, this state cannot be predicted, and is therefore random.
J. Samson,

Bishop's Stortford


Fig. 1

SUPERSOUND 13 HI-FI MONO AMPLIFIER A superb solid state audio amplier. Brand new componente throughout. Sificon transistors transjatorsin push-pull, Full wave rectification. Output approz. \begin{tabular}{l}
13 watts r.m.s. Into \\
\multirow{1}{c}{ ohms. Frequency }
\end{tabular} response 12 Hz . 30 KHz tadb. Fully integrated
separate Volume, Bass boont and Input for ceramic. or crystal cartridge. Sensitivity approx. 40mV for full output. Supplied ready built and tested, with knobs, eacutcheon panel, input and output pluge. Overall size \(3^{*}\) high \(\times 6^{*}\) wide \(\times\)
AC 200/250V. PRICE \(£ 15.00\). P. \& P. 65 .
DE LUXE STEREO AMPLIFIER
 A.C. mains
\(200-240\)
\(\forall\) U a it
heary
duty heally izolated maning er with ful wave recti-
llcastion giving ade-
alve line-up:-2 \(\times\) ECLA6 Triode Pentodegigible hum. as rectifier. Two dual potentiometers are provided for bass and treble control, glving bass and treble boost and cut. A dual volune controlis used. Balance of the leftand right hand channels can be adjuated by means of a sepa. rate 'Balance' control fitted at the rear of the chassis Input sensitirlty is approximately \(300 \mathrm{~m} / \mathrm{v}\) for full peak out put of 4 watts per channel ( 8 watts mono), into 30 hm seakers. Full nexative reedback in a carefully calculated circuit, allows high volume le vels to be used with negligible
distortion. Supplied complete with knobs, chesig siz \(11^{\circ} \mathrm{w} \times 4^{*} \mathrm{~d}\) Opled complete wien knobs, chassis size huilt and tested to a high standard. inie.50, P. \& P. 85 p. ALL PURPOSE POWER BUPPLY OKIT 200/240v. A.C nput. Four switched fully smoothed D.C. out Fitted insulated output terminala amp on load
 Ready bult anil Price \&6-35. P. \& P, 55p.
teated. VYNAE \& REEITE SPEAKERS \& CABLHET FABRIC8 app. 84 in . Wide. Our price \(\$ 1 \cdot 80\) yd. lengt
per yd. (min. 1 yd.). S.A.E. for samples.

HARVERSON'S 8UPER MONO AMPLITIER
A super quality gram amplifier ubing a double wound fully isolated malna transformer, rectifler and ECL82 triode pentode valve as audlo amplifler and power output
atage. Impedance 3 ohms. Output approx. 3.5 watta Volume and tone controle. Chasels size only 7in. Wide \(\times 3 i n\). deep \(x\) bin. High overall. AC mains \(200 / 240 \mathrm{v}\). ested Winh good quality output tranaformer. \(\boldsymbol{5} 5.00\)
FRW OILY. High grade maina tranaformer with grain orlentated lamination. Primary 200/240. Secondary 18.5 volts at 0.6 amps and 4.8 volte at 0.3 almp. Size
\(2 \ln\). long \(\times 23 \mathrm{in}\), whde \(\times 2 \mathrm{in}\). deep overall. 21.40 plus 35 p P. \& P
BRAND NEW MULTI-RATIO MAIMS TRAISFORMEAR, Giving 13 alternatives. Primary: \(0-210-240 \mathrm{v}\) Secondary combinations 0-5-10-15-20-25-30-35-40-60 half wave at 1 amp , or \(10-0-10,20-0-20,30-0-30 \mathrm{v}\), at
2 amps full wave. Size 3 in . Jong \(\times 31 \mathrm{in}\). wife \(\times 3\) in deep. Price \&2.75, P. \& P. 65 p
deep. Price 2.76, P. \& P. 65 p
Pri. 200/240v. Sec. \(9-0-9\) mit 500 mA. 21.35 . P. \& P. 30 p Pri. 200/240v. Sec. 12-0-12 at 1 amp . 21.50 . P. \& P. 30 p Pri. 200/240v. Sec. \(10-0-10 \mathrm{at} 2 \mathrm{amp} .42-20\). P. \& P. 40 p \& VOLT RERAY. \(100 \mathrm{~m} / \mathrm{A}\) single pole rormally closed
GENERAL PURPOSE HIGH STABLITY
P.U. TRADSISTOR PRE-AMPLIPIRE
For P.U. Tape, Mike, Guitar, etc. and auitable for
\(\begin{aligned} & \text { use with valve or transiator equipment. 9-18s. } \\ & \text { battery or frotn H.T line } 200 / 300 \mathrm{v} \text {. Frequency }\end{aligned}\)
reaponse \(15 \mathrm{~Hz}-25 \mathrm{KHz}\). Gain 26 dB . Solid encap-

HANDBOOK OF TRAMEISTOR EQUIVS. AND SUBS. A must for servicernen and home constructors. Including many \(1000^{\circ}\) a of British. U.S.A. E
transistors. ONLY 40 p , Post 7p.
3 Relerence Encyclopedias tor Electronic Engineers and Designers, covering between them transistor characteristics, diode and transistor equivalen
of up to date European types ligted.
Diode Equivalents 21 . Tranaistor Equivalente el 20 Transistor Cbaracterintics \&1-40. POAT FREF, All three together \(\$ 3 \cdot 80\)
NEW ISSOE
Thyristur, Triac, Dlacetc. encyclopedian 21.70, Post Free. 8 pole 3 way ! bank low loss Yarley type switches \(1!^{\prime \prime}\)
sections. standard spindle. 2 switches \(75 \mathrm{p}+15 \mathrm{p}\). \& \(P\).

HARVERSONIC MAINS OPERATED SOLID STATE STEREO FM TUNER


Enjoy Fabulous Stereo Radio at this Low Introductory Price!
Designed and atyled to match uur \(10+10\) amplifier but will sult any other standard stereo amplifier The design incorporates the very lateat sircuitry Automatic frequency control to lock on ". station and prevent dritt. 1C stereo decoder for manimum stereo separation. L.E.D. tor stereo beacon indicator. NomInal out put of tuner 100 nLV . Approxinate aize 12 In wid
\(\times 8 \ln\) deep by 21 in high. Bupplled ready bult, fully \(\times 8\) in deep by 21 in high. Supplied ready bullt, fully Price \(£ 27 \cdot 50\). Post and Packing \(£ 1 \cdot 00\).
STEREO-DECODER SIZE \(2^{\prime \prime} \times 3^{\prime \prime} \times \frac{1}{2}\)
Ready built. Pre-aligned and teated
Rena. \(20-560 \mathrm{mV}\) for 9.16 Y Sena. \(20-560 \mathrm{mV}\) for \(9-16 \mathrm{~V}\) neg.
earth operation. Can be fitted to almost any FM VHF radio or tuner. Stereo bescon light can be fitted if
required. Full details and in reyuired. Full details and in-
structlons (inclusly ve of hint and tips)
 Btereo beacon light if required 45p


LATEST EII SEMSITIVITY OMI-DIRECTIONAL BLDILATEST GI 8EMSITVITY OHI-DIRECTIONAL BLIN LIAE CONDENBER MHCROPHONE as used by many
proteselonals. Very low acoustic feedbeck. Available H impedance or low imperlance. State which requiren 2102es. P. \& P P. 25 p .
LATEST ACOB COP91/18C mono compatible cartridge with t/o stylus for LP/EP/78. Universal mounting bracket.
 brackets and turnover stylus. 70 mV per channel output. ONLY 22.06. P. \& P. 15p.
80NOTONE 0 TABC COMPATIBLE STEREO CARTRIDGE T/0 stylua Diamond Stereo LP and §apphre 78 ONLY \&2. 62 P. \& P. 10 p . Also available fitted with \(t w i n\) Dlamond T/O atylua for Stereo LP. 28-18. P. \& P. 15 p . LATEST CRYSTAL T/O STEREO/COMPATIBLE CARTRIDGE for EP/LP/Stereo 78 . 21.98. P. \& P. 15 p
LATEST T/O
MONO COMPATIBLE CABTRIDGE LATEAT T/O MONO COMPATIBLE CARTRIDGE for playing EP/LP/78 mono or atereo
equipment. Only \&1-76. P. \& P. 15 p .
QUALITY RECORD PLAYER AMPLIFIER ME. II A top quality record player amplifier employlng heav duty double wound maine transformer, ECC83, EL84, and rectiffer. separate Bana, Treble and Voiume controls. Complete with output transiormer matched for 3 ohm spenker. Size 7in wide \(\times\) 3in deep \(\times 6\) in high. Ready Also AYAILABLE mounted on bord win


\section*{HI-FI LOUDSPEAKER SYSTEM Mkll}

Beautifully made ainulated teak finish enclosure now with most attractive slatted front. Size \(164^{\circ}\) high \(\times\) 101 wide \(x 9^{\circ}\) deep (approx.). Fitted with E.M. Ceramic Magnet \(\times 8^{\circ}\) bass unit. H.F. tweete unit and cromgover. AVAILABLE IN NOMINA.
4 ohm, 8 ohm or 16 ohn impedance (state which).
OURPRICE\&II. 25 each. Carr. £1. 25
Cablnet Available Saparately 26-25. Carr. \&1-10
Aloo a valable in 8 ohms with EM1 \(13^{\circ} \times 18^{\circ}\) base
LOODSPEAEER BARGAINS
\(5 \mathrm{im} .3 \mathrm{ohm} 21-45, \mathrm{P} . \mathrm{d}\) P. 15 p . \(7 \times 4 \mathrm{in} .3 \mathrm{ohm} 21.68\), P . \& P .
 E.M.I. 13 paratitic tweeter 3, 8 or 15 ohm 24.18, \(P\). \& \(P\). 38p. E.M.I. \(13 \times 8 \mathrm{in} 3,8\) or 15 ohm with inbuilt tweeter and cronaover network \(\mathbf{2 5} .60, \mathbf{P}\). \& \(\mathbf{P}\). 38 p .
E.M.I. tweeter. Approx. \(\mathbf{3}^{1}\)., Available
E.M.I.tweeter. Approx. \(3^{\frac{1}{*}}\). Available 3 or 8 or 15 ohms \(28 \cdot 00+35 \mathrm{p}, \mathrm{P} .8 \mathrm{P}\)
ERAMD NEW. Bakers Loudspeakers at substantial discounts. 12 in . \(15 \mathrm{w} . \mathrm{H} / \mathrm{D}\) Speakers, 3,8 or 15 ohms. glate which. Current pruduction by well-known Brition
maker. Now with Hiflux ceramic fergobar maker. Now with Hitux ceramic ferrobar magnet
assembly 29.50 . Guitar models: 30 w . 88.9535 w . 810.50 . P. d P. 7 5 p .

\section*{"POLY PLAMAR" WAYRE-TYPE, WIDE RANGE} ELECTRO+DYAAMIC SPEAEER
Size \(119^{\circ} \times 141^{\circ} \times 1{ }^{\circ}{ }^{\circ}\) deep. handling 20W r.m.s. (40 Wh peak). lmpedance 8 ohm only Response \(40 \mathrm{~Hz}-20 \mathrm{k} 1 \mathrm{zz}\). Can be mounted on ceilinge, walls doors, under tables, etc., and used with or without baffle Bend S.A.E. for details. Only \(87-68\) each. P. \& P. 60 p NOW ALSO AVAILABLE 8in- low rims now peak
\(40 \mathrm{~Hz}-20,000 \mathrm{~Hz}\). Overall depth lin. Iteal for Hi-Fi or \(40 \mathrm{~Hz}-20,000 \mathrm{~Hz}\). Overall depth 1 lin
for ute in cara. 5.18. \(P\). \& P. 40 p .
gPECIAL BARGAIN OFFER
Limited number of B8R Clo9/L2S Autu Changer De Luxe with ligbtweight tubular arm and
Brand new. ONLY\&21.0 + p. 8 p. 60 p.

HARVERSONIC SUPER SOUND \(10+10\) STEREO AMPLIFIER KIT


A teally first-clana HI-Fi Btereo Amplifier Kit. Uees 14 transistors fncluding sllicon Transistors in the first fly stage on each channel resulting in even lower nole
level with inproved senaitivity. Integrated pre-amp with Bass, Treble and two Yolume Controls. Suitable for uge Bass, Treble and two volutne Controls. Vitable for uic
with Ceramic or Cryatal cartrldges. Very simple to with Ceramic or Crystal cartrdges, Output atage for any speakersfrom 8 to ljo ohma. Compact design, all parts supplied including drilled metal work high quality ready drilled printed circuit board with component identifcation clearly marked, smart brushed anodised alumhrium front panel with matching knobs wre, solder, nuts, bolta-no extras to buy. slmple step by step in to be proud of Brief specificatlons: Power output: 14 watts ris quency response \(\pm 3 \mathrm{~dB} 12-30,000 \mathrm{H}_{2}\) Sensitlvity: better than 80 mV into \(1 \mathrm{M} \Omega\). Full power bandwldth: 工 3 dB \(12-15,000 \mathrm{~Hz}\). Bass, boost approx. to \(\pm 12 \mathrm{~dB}\). Trebl cut approx. to -16 dB . Negative feedback 18 dB ove nain a mp. Power requirements 35 v . at \(1-0 \mathrm{amp}\).
Overall Bize \(12^{*} \mathrm{w} . \times 8^{\mathrm{d}} \mathrm{d} . \times 22^{\mathrm{h}} \mathrm{h}\).
Fulty detailed 7 page construction manual and parts list free with kit or send 25 p plus large S.A.E.
AMPLIFIER KIT
AMPLIFIER KIT \(\begin{array}{llll}\text { (Magnetic input components 33p extra) } \\ \text { POWER PACK KIT } & \text { ES. } & \text { P. \& } & \text { P. } 85 p\end{array}\) CABINET
(Post Free Full after ales service
Also available ready built and teated \(\$ 32\).50. Pont Free. Note: The abote amplifier is suitable for feeding turo mono sourcesinto inpuls (e.g. mike, radio, fwin record decks, etc.)
and willithen provide mixing and fading facilities for med.
han pouered Hi-Fi Discotheque use, el


3-FALVE ADDIO
MPLIFIER HAB4 ME II Designed tor Hl-Fi reproducoperation. Ready built on plated heary gauge metal 1/h. Incorporates ECC83, EL84, Ez80 valves. Heavy ransformerand output traps.
former matched for 3 ohm control and now with inporoved speaker. Separate voluine contrg bass and treble lift and "ride range tive controis giving bass and trebie int and panel can be detached and leads extended for remote mounting of controla. Complete with knobs, valvea, etc., wired and tested for only z7-76. P. \& P. 70p.
HSL "FOOR" AMPLIFIER KIT. Blimilar In appearance to HA34 above but eniploys entirely different and
advanced circuitry. Complete set of parts, etc. \(26-50\). P. \& P. 70 p

1014 WATT EI-FI AMPLIFIER KIT A stylishly finished
monaura! amplifier with an output of 14 Watte from \({ }^{2}\) ELCAS in push-pull. Super reproduction
of both mufic and of both muaic and pible hum. Separate inputs for mike and gram allow recorile and announcements
 to follow each other.
Fully shrouded section wound output transformer to match 3-15 a speaker and 2 independent volume controls, and separate base and treble controls are provided
giving good lift and cut. Valve line-up 2 EL84s, ECC83, giving good lift and cut. Valve line-up 2 EL84s, ECC83, \(5 \overline{0} \mathrm{p} \times\) BAE (Free with parts). All parts sold separately ONLY \&18-00. P. \&P. \&1-00. Also available ready built and teated \(816-50\). P. \& P. \(£ 1 \cdot 00\).

\section*{HI-FI STEREO HEADPHONES}

Adjustable lieadband with comifortable fexifuam earinusis. Wired and fitted with stantard stereo tin jack
plug. Frequency response \(30-15,000 \mathrm{~Hz}\). Matching imperance \(8-16\) ohtus. Easily converted fur Mono. PRICE 24.05. P. \& P. 2jp.

OUR PRICES INCLUDE VA

Open 9.30-5.30 Monday to

Prices and specificotions correct
at time of press. Subject to
at time of press. Subject to
olteration without notice

SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly)
PLEASE NOTE; P. \& P.CHARGES QUOTED APPLY TO U.E. ONLY. P. \&P. ON OVERS
CHARGED EXTRA.

\section*{Towers' International Transistor Selector}
by
T. D. TOWERS

MBE, MA, BSc. CEng, MIERE


No professional or enthusiast engineer should be without this time saving, comprehensive reference work. Compiled by an expert to cater for the requirements of industry it is equally essential to the hobbyist. teacher, component buyer and service man.
The 142 large pages are crammed with concise information on over 10,000 British. U.S.. European and Japanese devices. sensibly tabulated for easy reference

Contents include electrical specifications. base types and connections. source of manufacture. maker's addresses and much other vital information

\section*{All for \\ £3.15}
including postage
To: Technical Book Services (PE2)
25 Court Close, Bray, Maidenhead, Berks. SL6 20L
Please supply (........) copies of Towers
International Transistor Selector
I enclose cheque/postal order for f .
Name
Address

BLOCK CAPITALS

\section*{DIGITAL CLOCK KITS}

MHI-A modular approach to digital clock building. An MHI Kit clock uses an MHI clock kit plus an MHI display kit. Any of the clock kits will interiace with any of the display kits or with any other common-anode LED display. Each clock kit contains basic components plus a PCB-all you have to supply is a few resistors, transistors, etc.
MHI-537s-This kit has full car/boat clock facilities. quartz time source, brightness control. etc. Display switchable with ignition for power saving.
KIt: MM5378, socket, CA3081, \(2 \mathrm{MH}_{3}\) Xtal and trimmers. PCB
\(\$ 15 \cdot 10\)
WHI-5024-The MHI-5024 kit will act as 6 or 4 digit stopwatch chip with remdouts down to \(1 / 10\) sec. Clock will count up or down and can (with additional componente) also ect is a calculator
Kit: MK50204, socket, CA3081. PCB
\(814 \cdot 00\)
MHI-5314-Six digit basic clock, \(12 / 24\) nour, MM5314
Chip Es.50
MHi-5025-Six digit alarm clock, Snooze, MK50250 chip ce. 35
MHI-7001-Six digit time/date/alarm/timer, can be used as electronic time-ewitch in addition to other functions
\(10 \cdot 00\)
WHFD707-FOU or six digit display kit, 0.3 in digite. Supplied with PCB 4 digit-Et 60. 6 digit-5.50 MHI-0727-Four or six digits, 0.5 in high digits. Supplied with 6 digit PCB 4 digit-cis. 50 .
MHI-D747-Four or elx digite 0. sin high diate Supplied with PCB for 6 digits
6 digit- \(\mathbf{2 1 4} .70\)
Tame: Cwo. Accoan, Barcioycord (imply quote your holderas.


68 Ebberns Road, Hemel Hempstead Herts. HP3 90RB

Tel. 044262757

\section*{OSMABET LTD We make tranatormers}

AUTO TRANBFORMEAS \(110-200 / 220 / 240 \mathrm{~V}\)

LOW YOLTACE TRANEFORMER
LOW VOLTAGE TRANBFORMEAS



\(4 A+12 V 4 A, 5 B \cdot 40\)
LT TRANSFORMERS TAPPED SEC, Prim 200/240V

\(0-12-15-20-24-30 V\)
\(0-5-20-30-40-60 V\)
\(1 A, ~\)
4 -20:2A. 2 A . ह6.
\(0-40-50-80-80-80-100-110 \mathrm{~V} 1 \mathrm{~A}\), , \(5 \cdot 40\)
MIDGET RECTIFIER TRANSFORMERS
For FW rect. \(200 / 240 \mathrm{~V}\) o.c. \(6-0-\mathrm{eV} 1.5 \mathrm{~A}\) or \(9-0 \mathrm{~V} 1 \mathrm{~A}\) 0.3 A or \(12-0-12 \mathrm{~V} 0.25 \mathrm{~A}\) or \(20-0 \mathrm{~V} 0 \mathrm{~V}\). 5 A or \(90-\mathrm{gV}\) \(0.5 \mathrm{~A}+6 \mathrm{~V} 0.5 \mathrm{~A}\) or \(9 \mathrm{~V} 0.35 \mathrm{~A}+9 \mathrm{~V} 0.35 \mathrm{~A}\) or 12 V or 0.25 A +12 V 0.25 A or \(20 \mathrm{~V} 0-15 \mathrm{~A}+20 \mathrm{~V} 1 \cdot 5 \mathrm{~A}\). all at 51.20 each

\section*{MAINB TRANBFORMERS}

 0-5-6.3V 3A. 511-25: MT3 Prim. 0-110-240V sec 250 V 100 MA . 8. 3 V 2 A . E/S. r3.75.
O/P TRANSFORMERS FOR POWER AMPLIFIERS
 G.E.C. MANUAL OF POWER AMPLIFIERS Covering valve emplifiers of 30 W to 400 W 35 p
HI-FI SPEAKER:
MI-FI SPEAKERA
\(\operatorname{Sin} 8 \Omega\). \(11.15 ;\) Goodman 10w Pult throw 8n, \(84 \cdot 23\);

LOUDSPEAKERS
\(2 \operatorname{lin} 8\) or \(75 n, 2\) in 8 or \(25 n\). 3in 3 , 8 or \(35 \Omega\). 34 in on


SPEAKER AUTO MATCHING TRANBFORMER 12 W 3 to 8 or \(15 \Omega\) up or down. \(£ 1 \cdot 50\).
PAPER TUBULAR CONDENSEAS W.E.
4. 7 mF . \(160 \mathrm{~V}, 30 \times 20 \mathrm{~mm}, 20 \mathrm{p} ; 100\) for E 10
'-INSTANT" BULK TAPE/CASSETTE ERASER Instant er asure, any diametor tape mpools. canteftes, demagnotises tepe hesds. \(200 / 240 \mathrm{~V}\) a.c., r3.75. FLEXIBLE PVC MINI 3-CORE CABLE, \(19 \times 0.10 \mathrm{~mm}\). 100 metras C3. Icaal for apeakera. intorcoms. stc. 8.A.E. ENOUIMIEE, LISTB. MAIL ORDER ONLY 46 Kenilworth Road, Edgware, Middx. HAE BYG Tol. 01-958 8314

\section*{Precision Petite LTD.}

119A HIGH STREET, TEDDINGTON TW11 8HG

Tel. 01-977 0878

\section*{INTRODUCING A MINIATURE PRECISION 12V. D.C. DRILL DESIGNED FOR THE ELECTRONIC ENGINEER}

Drill only
£7.00 p.p. 35p
Stand
£3.75 p.p. 58p


Complete kit as illustrated (less batts.) with a variety of 30 tools. Space for Stand and Transformer.
KIT 30 TOOLS
£15.01 р.p. 75p
STAND
£3.76 p.p. 58p
TRANSFORMER
£5.50 p.p. 75p

\section*{S.A.E. FOR \(\begin{aligned} & \text { DETAILS }\end{aligned}\)}

\title{
Readaut \\ SELECTION FROM OUR POSTBAG
}

Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the telephone.

\section*{Bridge that gap}

Sir-Gas ignitors of identical design to that featured in the July issue of Practical. Electronics have been in commercial production for some considerable time now. During this time 1 have been called upon to repair quite a few. In most cases the spark gap component was not functioning.

As l was unable to obtain direct replacements for these components, I replaced them with 200 V thyris tors, which worked just as well. The thyristor was connected directly in place of the spark gap. anode to cathode of rectifier and cathode to output transformer primary. The gate was not connected and the lead was cut off. Although the P.E. article mentions that a current of "several tens of amps" may pass through the spark gap under pulse conditions. a 3A thyristor was found to suffice. This is probably due to the extremely short time for which the current flows.

I feel sure that this information may prove useful to some of your readers who wish to construct a gas ignitor from your design.
S. Champion.

King's Langley.

I have been aware of the technique of using a thyristor for some time but because of the difficulties outlined below, did not use it in our design. However, in case any readers encounter problems in using the technique, I feel that I should briefly outline the drawbacks.

Although this solution will work in particular cases, semiconductor manufacturers have informed me that there are two drawbacks to triggering thyristors by applying excess voltage between anode and cathode:

Typically the excess voltage required between devices may vary from a few volts to twice the rated voltage of the device.

The magnitude of excess voltage is temperature dependent.
Therefore, anybody contemplating using this technique may have to experiment to find a suitable device.

With regard to the current carrying capability of the device, Mr Champion is generally correct in stating that a 3A device is suitable because of the relatively short duration of the pulse.-R.D.B.

\section*{Highest reward}

Sir-Having just completed building a \(£ 200\) synthesiser using Dewtron modules and our own bits and pieces. I recommend the v.c.o.. v.c.f., envelope shaper, etc. but warn people beware of gimmicks.
P.E. must be congratulated for stimulating interest in the field of musical synthesis; we think the patching used in both projects, i.e. plugs and sockets is unsatisfactory; we used slide switches along with slider potentiometers.

I think that the first project was too bulky and expensive; the "P.E. Minisonic" was good except for the use of a touchboard, which you yourself admitted leaves something to be desired. The actual choice of modules for Minisonic was good. the ring modulator, noise generator and v.c.f. are essential along with the sawtooth v.c.o.

The "Symbiosis" piece by Malcolm Pointon (June-July 1975) was very interesting and is the kind of use synthesisers should be put to. Synthesisers should explore new sounds rather than imitate conventional ones. I hope "Symbiosis" prompts other owners/composers to attempt their own recordings along these lines.

My synthesiser is designed for "experimental" sound exploration rather than conventional music and has virtually all patching routes possible, stereo output, noise. ring modulation. low frequency oscillator, v.c. phaser along with the more conventional modules I mentioned earlier.

Synthesisers give the highest reward from an involvement in electronics. a creative, artistic product. unlike some projects I could name.
R. D. Martin.
Congresbury.
Bristol.

Mr Martin raises some interesting points in his letter but I do feel that a number of them need some slight qualification.

I believe that synthesisers fall into two classifications. In the "live" performance area the instrument requires flexibility and yet has to be easy to play. In these circumstances some form of switch patching is ideal since it enables changeovers to be accomplished swiftly and accurately. The disadvantage to this method is that it provides a considerable restriction to the overall versatility of the instrument.

In the studio the requirement to achieve speed in patch changeover is not nearly so important and a method of patching can be adopted which allows the user to maximise on the interconnection options available. In these circumstances I strongly believe that a patch cord system is the ideal. In general terms the greater contact area and relatively wide spacing minimises noise and crosstalk problems and these are distinct advantages over the neater, but relatively costly, matrix patch boards now available.

The P.E. Sound Synthesiser was an attempt to provide an introduction to both types of instrument. The modular system was essentially a studio instrument featuring cord patching while the Keyboard Unit was geared for live performance and required no patching at all other than the options of coupling it directly to external processing devices if required. In the case of the Minisonic it was the aim to provide a design, aimed particularly at the younger constructor, which would offer a maximum of flexibility with the lowest possible price. The "touch" keyboard simply provided a very economical way of getting the constructor off the ground and there is always the option of adding a conventional keyboard at a later date.

Finally, a word on the use of the synthesiser. Mr Martin feels that the instrument should be used in an imaginative sense rather than in an imitative one. To a certain extent I go along with this but I make the qualification that, because of its inherent versatility, the synthesiser is not an easy instrument to master. If it is used in an entirely imaginative way there is a danger that performances will become stilted, at best, or that the listening public will become frightened off by the unaccustomed and rather weird sounds which can be produced. I believe that imitative sound synthesis is an extremely good exercise in the use of the instrument and serves to train the user to exploit the full potential of the instrument in terms of dynamic range and register.-G.D.S.

\section*{Funt control}

Sir-Mr Carter's fuzz effiect circuit (see Ingenuity Unlimited. August) is similar to a design of my own, and readers may be interested in a few further ideas. Mr Carter's "Fuzz" control only effectively reduces the length of sustain. which in itself is a continuous \(\pm 0.6 \mathrm{~V}\) square wave.
If a variable resistor is put in series with the diodes a very different range of effects is produced. At Lero setting \(\mathrm{R}=\) O!?, the effect is the same as Mr Carter's, However, if the resistance is increased the amount of clipping is reduced as the 8.2 k ! resistor and the variable resistor split the voltage between the amp output and the diode voltage.


\footnotetext{
Modified Fuzz
If the potentiometer is around 100 k IS the effect will be variable from square wave to almost no fuzz at all. A \(\log\) potentiometer is best wired so that half way \(=10 \mathrm{kS}\).

It now becomes necessary to look at another point; the amp is able under some signal conditions. to clip itself, which in the no fuzz mode, is undesirable. The important factor is the ratio between rail volts and diode volts. This ratio can easily be improved by increasing rail volts and/or easier still. using lower voltage diodes, germanium selenium or micro alloy.

> G. C. Cleasby.
> Reigate.
}


\section*{Suggested D/A converter improvement}

\section*{Right beam}

Sir-1 must congratulate A. C. Ainslie on the 8 -channel. irace multiplier design in the August issue of P.E. The facilities provicied by most reasonably priced oscilloscopes are inadequate, when working with logic circuitry, and techniques like Trace Multiplying help to fill the gap.

May I suggest an improvement to the \(D / A\) converter of rig. 3. In practice, it is essential to be able to compare any two traces by overlaying them at the same vertical position. particularly for well separated channels. The attached circuit permits this facility, by switching VRI to the appropriate channel.

I would also like to point out the trend in commercial instruments towards presenting displays of the actual logic states of a circuit by strobing the states at an appropriate time, using units such as the Hewlett-Packard pattern analyser.
While such instruments are obviously outside the range of the amateur. the use of digital timebase generation does allow some fairly powerful circuit analysis methods to be used. if the time base is designed to be accessible. For example, the time-base counter inputs to the internal D/A converter can be replaced by inputs from up to five test points in the circuit under test. This will immediately show up any disallowed combinations of logic levels on the five inputs, since each combination corresponds to a particular X-defection.

Also, the response of another test point to the allowed combinations can be checked by connection to the Y-amp, or Z-mod. Such displays are simpler to interpret than timing diagrams in most cases.

Other advantages are the presentation of the correct display is often automatic. without any knob twiddling. The display is independent of changes in clock rate. Direct readout of time (in terms of number of clock pulse.) between events is feasible, for example on 7 -segment l.e.d.s.

The addition of a data selector i.c.. e.g. a 74151 to the time base counter allows the states of up to eight test points to be shown in an
easily readable format. The timing diagram display can be more difticult to decipher if the logic levels on the channels do not change during the sweep. particularly with the smaller sizes of display tube.
As a user of a combined trace multiplier and digital time-base unit for some time. I have found the trace multiplying section rarely preferable to the more direct methods indicated above.

\section*{J. R. Keneally, Weymouth.}

Mr Keneally's simple D/A Converter was of the type tried originally but which had to be scrapped because of poor pulse response. This would appear to be because there is no defined system impedance, whereas with the ladder network a characteristic impedance, \(R\) (the ladder being \(R, R 2, R\), etc.) can be chosen for optimum performance. This type of converter, however, does not lend itself to providing trace shifting.
Trace overlay is usually used to give more accurate comparison between times than is possible with a spaced display. However, should modern c.r.t.'s and internal graticules still leave one in doubt with a separated display, it is a simple matter to trigger from one of the signals under consideration, there then being no ambiguity as to which of the two channels is "in the lead". Modern high performance 'scopes with dual timebases and trace expansion also simplify comparison.
The instruments to which Mr Keneally refers using digital discrete step timebase are most us eful and I have used one for several months from a commercial manufacturer. With little space it is not possible to go fully into their advantages but by using memories they allow complex and accurate investigation to be performed.
For the majority of uses, however, it is considered that a simple timing diagram display holds virtually "all the answers" in an unambiguous form, and it was for this reason that the Trace Multiplier was developed; to supplement, rather than replace, existing and costly digital instrumen-tation.-A.C.A.



\section*{P.E. SCORPIO MK II ELECTRONIC IGNITION}

DIRECT FROM MANUFACTURER SAVE PETROL-SAVE MONEY
The improved Scorpio Mk II Dual Capacitive Discharge Electronic Ignition Unit
This unit features one of the best tried systems on the market, giving more miles per gallon; longer Ilfe for points, plugs, battery; easler starting; smoother running, etc
Available in 12 V or 6 V version. Both models used on either positive ( + ) or negative ( - ) earth cars
The Scorpio-tested and guaranteed
ONLY £14
with full installation instructions. (Including post, packing and VaT State 12 V or 6 V when ordering.

\section*{SPECIAL OFFER}

FREE-741 Operational Amplifier I.C. with every copy of R. M. Marston's book '110 Operational Amplifier Projects for the Home Constructor", price \(£ 1 \cdot 80\). Includes circuits for musical instruments, fire alarm, burglar alarm, touchactivated switch and many other exciting projects

ZN414 £1-10
Ferranti Application Booklet for ZN414, 25p
ZN1034E New Ferranti Precision Timer I.C. £2.90
Ferranti Data Sheets for ZN1034E 10p 741 Operational Amplifier I.C. 33p

\section*{RADNAGE RADIO \& ELECTRONICS}

2 Bottom Road, Radnage, HIgh Wycombe, Bucks.
Prices inclusive. Add 15p Post and Packing UK, 60p Exports
Mail order only


\section*{OR SPEAKERS AT FANTASTIC REDUCTIONS}


\section*{LE－4 SPEAKERS}

Superb performance and beautifully finished in selected teak veneers．A professional standard four－way speaker system giving 25 watts RMS power handling．Bass unit is \(14^{\prime \prime} \times 9^{\prime \prime}\) with \(8^{\prime \prime} \times 5^{\prime \prime}\) unit for mid－range and twin \(3^{\prime \prime}\) high frequency units to give monitoo type quality and performance．
Specification－Size \(33^{\prime \prime} \times 14^{\prime \prime} \times 16^{\prime \prime}\) approx．Impedance 8 ohms．Power handling 25W RMS．（Peak 50 watts．） Frequency range \(35 \mathrm{~Hz}-20 \mathrm{KHz}\)

\section*{Our Price \(\mathbf{£} \mathbf{3 4 . 0 0}\) each}
（normally \(£ 66.00\) ）\(+£ 5.80 p\) \＆\(p\) ．
Scotland and the Orkneys P \＆P Surcharge \(£ 3.50^{\circ}\)

\section*{EMI 350 KIT}

System consists of a \(13^{\prime \prime} \times 8{ }^{\prime \prime}\) approx．woofer with a \(3^{\prime \prime}\) tweeter crossover components and circuit diagrám．Frequency response： 20 Hz to 20 KHz ．Power handling 15 watts RMS into 8 ohms．（Peak 30 watts．）
f7．25＋ \(1.20 p\) \＆\(p\)
Complete with crossover Components and circuit diagram

\section*{THE＇COMPACT＇ \\ EASY BUILD SPEAKER KIT \\ A compact bookshelf speaker＇system giving ahigh electro accoustic efficiency for the low powered amplifier． \\ The professional finish call be obtained with the minimum of tools，the infinite baffle type enclosures come ready mirred and professionally finished，simply ipply glue． fold up around baffle board，and fix to jether with masking tape till glue dries． \\ The cabinet measures \(12^{\prime \prime} \times 9^{\prime \prime} \times 5^{\prime \prime}\) deep approx finished in simulated teak，incorporating a quality \(7^{\circ} \times 4^{\text {＂}}\) elliptical speaker，power handling 4 watts，flux density 30,000 \\ £6．00} maxwells，impedance \(8-15\) ohms nominal，voice coil dia
pair inclusive．P \＆P \(£ 1.70\)

\section*{EASY TO BUILD SPEAKER KITS}

These sujperb simulated teak－finished speaker kits have been specially designed by RT－VC for the cost－conscious hi－fi enthusiast who wants top quality speakers but doesn＇t want to spend the earth．Built to EMI＇s exacting specification，these new RT－VC speaker kits （350 type kit）incorporate \(13^{\prime \prime} \times 8^{\prime \prime}\) woofer， \(3 \frac{11^{\prime \prime}}{}\) tweeter and matching crossover．
Easily put together with just a few basic tools．
Specification（each speaker）：Impedance 8 ohms Power handling 15 watts RMS（ 30 watts peak） Response \(20-20,000 \mathrm{~Hz}\) ．Size \(20^{\prime \prime} \times 11^{\prime \prime} \times 9 \frac{1^{\prime \prime}}{2}\) approx．Comparable built units（EMI LE3）sold else－ where for over \(£ 45\) pair

\section*{£22．00 pair complete \(+5.20 \mathrm{p} \&\) p．}

Complete with crassover Components and circuit diagram


\section*{回 VISCDUMT \\ TH \\ }

\section*{System 1a．£69．00}

The now \(20+20\) watt Stereo Amplifier incorporating the latest silicon transistor solid state circuitry the RT－VC VISCOUNT IV gives you a poweriul 20 watts RMS per channel into 8 ohms．Superb teak－ tinished cabinet，with anodised fascia to harmonise with any decor．Polished trim and knobs．
The VISCOUNT IV has a comprehensive range of controls－volume，bass，treble，balance．mono／stereo mode selector，and scratch filter．
Front panel socket for stereo headphones．And a host of sockets at the rear－for left and right speakers，tape recorder，auxiliary，tuner，disc and microphone．
SPECIFICATION： 20 watts RMS per channel 40 watts peak．Suitable \(8-15\) ohms speakers．Total distortion 10 watts better than \(0.2 \%\) ．Six switched inputs：1．Magnetic P．U．-3 millivolts 47 K zhms（R．IAA．）：2．Grystal／ceramic P．U．-50 millivolts 50 K ohms（R．I．A．A．）；3，4，6．Tape Tuner／Aux．－ 140 millivalts 50 K ohms（filat frequency response）； 5 ．Microphone－ 3 millivolts e 50 K mhms（flat frequency response）．
CONTROLS：Push button ON／OFF，stereo／mono，scratch filter． 6 position rotary selectos．Individual rotary controls for treble，bass，balance and volume．Headphone socket．tape out socket．Aux．mains output．Frequency response： 25 Hz to 25 KHz o full rated output．Signal to noise ratio：better than -50 dB on all inputs．Tone control renge：Bass \(\pm \$ 5 \mathrm{~dB}-50 \mathrm{~Hz}\) ；Treble \(\pm 12 \mathrm{~dB} 10 \mathrm{KHz}\) Powen requirements： \(200-250 V\) A．C．mains © 60 watts．Approx．size： \(15 \pi_{4}^{\prime \prime} \times 3^{\prime \prime} \times 10^{\prime \prime}\) ．
MP60 type deck with magnetic cartridge，de luxe plinth and cover．
Two Duo Type Ha matched speakers－tnclosure size approx． \(19 \frac{1^{\prime \prime}}{2} \times 10 \frac{3^{\prime \prime}}{} \times 73^{3 \prime}\) in simulated teak．Lrive unit \(13^{\prime \prime} \times 8^{\prime}\) with \(3^{\prime \prime}\) tweeter． 15 watts handling． 30 watis peak．
Complete System with these speakers \(\mathbf{f 6 9 . 0 0}+\mathrm{f6.50} \mathrm{p}\) \＆\(p\) ．

System 2．£85．00

Two Duo Type III matched speakers
－Enclosure size approx． \(27^{\circ} \times 13^{-}\) \(\times 11 \frac{1}{2}\) ．Finished in teak simulate Drive units \(13^{\prime \prime} \times 8^{\prime \prime}\) bass driver，and
 two lap 8 ohms trequency range－ RMS． 8 ohms freq
20 Hz to 18.000 Hz ．
Complite System with these
speakers \(£ 85.00+£ 7.60^{-} \mathrm{p}\) \＆p．

\section*{PRICES：SYSTEM I}
amplifiat \(52750+f 190\) \＆ 2 Oua Type lla
speakers \(f 3000+f 650 p\) \＆ Speakers \(\mathrm{E} 30.00+\mathrm{f} 6.50 \mathrm{p} \&\)
MP60 type deck with Map．cartridge MP60 type dec
de luxe plint
and cover \(\quad £ 22.00+£ 3.30 \mathrm{p} \&\) Totai if purchesed
separntily：\(\quad 879.50\)
Availsble complete for anly： \(\mathbf{£} 690\)
+66.50 \＆\＆

PRICES：SYSTEM 2
Viscount IV R103
amplifier \(£ 27.50+\mathrm{f} 1.90 \mathrm{p}\) \＆ p 20 uo Type lil speakers \(\quad \mathbf{£ 4 6 . 0 0 + f 7 . 5 0 p \& ~}\) MP60 type deck with Mag．carsiodge de luxe plinth
and cover \(\quad £ 22.00+£ 3.30 \mathrm{p} \& \mathrm{p}\) ．
Total if purchaseid
sep aratoly： \(\mathbf{£ 9 5 . 5 0}\) Available complete for only \(£ 85.00\)


\section*{PUSH BUTTON CAR RADIO KIT-THE TOURIST TT*}


\section*{NO SOLDERING REQUIRED}


Controls volume manual tuning and five push buttons for station selection, illuminated tuning scale covering full, medium and long wave bands. Size chassis 7" wide 2" high and \(4 \frac{1}{4}\) " deep approx. \(\quad \mathbf{f 9 . 5 0}+£ 1.05\) p \& p Speaker including baffle and fixing strip \(£ 2.00\) +45 p p \(\&\) p. Car Aerial Recommended - fully retractable \(£ 160+40 p p \& p\).
The Tourist I Kit For the experienced constructor If you can solder on a printed circuit board you can build this model. Same technical specification as Tourist \(T\). Price \(\mathbf{f 8 . 2 0}+£ 1.05\) p \& p.
"OISCO AMPLIFIER


Reliant Mk IV Mono Amplifier, ideal for the small disco or house parties. Output 20 watts RMS into 8 ohms (suitable for 15 ohms).
Inputs * 4 electrically mixed inputs. * 3 individual mixing controls. "Separate bass and treble controls common to all 4 inputs. "Mixer employing F.E.T. (Field Effect Transistors). "Solid State circuitry Attractive styling.
INPUT SENSITIVITIES - Input - 1). Crystal mic guitar or moving coil mic, 2 and 10 mV . (Selector switch for desired sensitivity.) - Inputs - 2). 31, 4\} Medium output equipment - ceramic cartridge tuner, tape recorder, organs, etc. - all 250 mV sensitivity. AC Mains, 240 V operation. Size approx \(12 \frac{1}{2}^{\prime \prime} \times 6^{\prime \prime} \times 3 \frac{1}{2}\)
\(£ 20.00+\varepsilon 1.35 \mathrm{p} \& \mathrm{p}\)


WCORPORATES: PreAmp with full mixing facilities, including switched input for mic with volume control, switched input for auxiliary with volume control. bass and treble controls, volume control and blend control for turntables. Two B.S.R. MP60 type single play professional series decks, fitted with crystal cartridges.

TECHNICAL SPECIFICATION: Pre emp - Output - 200 mV . Auxiliary inputs - 200 mV and 750 mV into 1 meg. Mic input -6 mV into \(100 \mathrm{~K} \quad 240\) voit operation. Turntbbles capaciry - \(77^{\prime \prime}\). \(10^{\prime \prime}\) or \(12^{\prime \prime}\) records. Rumble wow and flutter Rumble Better than -35 dB . Wow Better than \(0.2 \%\). Flutter Better than \(0.06 \%\) (Gaumont kalee meter).
Finish - Satin black mainplate with black turntable fat inlaid with brushed aluminium trim. Ionearm and brushed aluminium rrim. Tonearm and contols in black and brushed aluminium

Console size -
 Unit Open \(-35 \frac{1}{4} \times 133^{3} \times 4\) ? " (app.) This disco console is ideally matched for the Reliant IV and Disco 50 or any other quality amplifier.
The unit is fil ished in black PVC with contrasting simulated teak edging. diamond spun control knobs with matching control panel.

Yours for only
£49.00 +f6.50 p \& p.

21 D HIGH STREET, ACTON, LONDON W3 6NG 323 EDGWARE ROAD. LONDON W2
Personal Shoppers EDGWARE RD: 9 a.m. \(-5.30 \mathrm{p} . \mathrm{m}\). Half day Thurs ACTON: 9.30a.m.-5p.m. Closed all day Wed

Mail orders to Acton. Terms C.W.O. All enquiries stamped addressed envelope. Goods not despatched outside U.K.
-Leaflets available for all items listed thus" Send stamped addressed anvelopa. All items subject to availability. Prices correct at 1st Sept1975 and subiect to change without notice.

All prices include VAT at current rates

DO NOT SEND CARD
Just write your erder giving vour credit card number


\section*{ERSIN}

for fast easy rella ble soldering EASY TO USE DISPENSERS AND REELS IDEAL FOR HOME CONSTRUCTORS
Ersin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required

\section*{SAVBIT handy} solder dispenser

A coil of Ersin Multicore Savbit Solderina dispenser 7 tt 6 in of \(18 \mathrm{~s} . \mathrm{w} . \mathrm{g} .\{2.2\) metres of 1.22 mm ). The Solder that reduces the wear of soldering iron bits.

Size 5 32p

SAVBIT solder for general purpose work
A handy plastic reel of
SAVBIT alloy. \(63+8\) of \(18 \mathrm{~s} . \mathrm{w} . g\) ( 19.2 metres of 1.22 mm )

Size 12 £1.80


NEW BIB WIRE STRIPPER \& CUTTER


\section*{ALU-SOL for} soldering aluminium
New Multicore Alu-so flux-cored solder in 16 sw. g. No extra flux
needed. Plastic reel holds 36 ft . Supplied with full instruclions. Also available in solder dispense

Size 4 §2.32


Fine gauge solder for soldering small components Fine gauge solder for soldering small comporfents 138 ft of 22 s.w.g. ( 42.0 metres of 0.71 mm ) Ersin Multicore 5 core solder wound on a plastic reel. Suitable for intricate work and small components.

Size 10 §1.44


For soldering fine joints



\section*{ALL PARTS CAN BE SUPPLIED}

Keyboard, Keyswitch, P.C.B.s Hardware, Semiconductors Resistors, Capacitors, Cabinets Complete kits or easy stages Constructed Planos to order Send S.A.E. for details

\section*{Clef Products}

31 Mountfield Road, Bramhall Stockport, Cheshire SK7 1LY


FULLY GUARANTEED
Mail order only VAT extra p\&p 20p
Bridge Electronics
PO BoxNo. 10 Fishponds Bristol BS16 2LX
4. STATION INTERCOM


Solve your communde ion problems communica 4-Station Transiator Intercom system ( 1 mastor and 3 Subs), In robust plastic cabinets for desk or wall Sounting. Call/talk/listen from Master to Subs and gery, Schools. Hospitals. Otfice and Home. Operates Complete with 3 connecting witeh, Volume control. complete with \({ }^{3}\) connecting wires each 66ft and
otheraccessories, \(\mathrm{I}^{\prime}\). \& P. 70p. MAIN INTERCOM
MAINS INTERCOM NEW MODEL No bstteries-no wires. Just plug in the mains On off 5 witch and volume control. Price 229.98 per pair. F. \& P. 70p.
NEWI AMERLCAN TYPE CRADLE TELEPHONE AMPLIFIER


ONLY £12.95

Latest transistorised Telephone Amplifer with detached plug in apeaker. Placing the receiver on two-may conversation rithout holding the havdset, Many people can listen at a time. Increase efficiency in office, shop, workshop. Perfect for "conference" calls: leaves the user's hands free to make notea, consult files. No long waiting, saves time with long-diatance calls. Volume. Direct tape recording model at \(£ 13 \cdot 95\) + VAT \(\& 1 \cdot 12\). P. \& P. 70p. 10-day price refund guarantee
WEST LONDON DIRECT SUPPLIES (PE11) 169 KENSINGTON HIGH STREET, LONDON, w. 8


4tin \(\times\) 3tin METER. \(\quad 30 \mu \mathrm{~A}\), \(50 \mu \mathrm{~A}\) or \(100 \mu \mathrm{~A}, 63-85\). I 3 p P. \& P.

\(500 \mu \mathrm{~A}, 70 \mathrm{p} .10 \mathrm{P}\) P. \& P.


\section*{CARDIOID DYNAMIC} MICROPHONE

Model UD-I30. Frequency response 50 \(15,000 \mathrm{c} / \mathrm{s}\). Impedance Dual 50 K and 600 ohms, 67.40. 13p P. \& P.
\(42 \times 42 \mathrm{~mm}\) meters \(1 \mathrm{~mA}, 10 \mathrm{~mA}\), \(100 \mathrm{~mA}, 500 \mathrm{~mA}, 22.76\). 11 p P. \& P.
\(60 \times 45 \mathrm{~mm}\) meters \(50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}\) \(500 \mu \mathrm{~A}\) and ImA VU meter, \(\mathbf{1 2 . 9 2}\). IIp P. \& P.

Edgewise meters \(90 \mathrm{~mm} \times 34 \mathrm{~mm}\) \(\operatorname{ImA}, 63 \cdot 40.13 p \mathrm{P} . \& \mathrm{P}\).



3 WATT STEREO \(\left(1 \frac{1}{2}+11\right)\) PER CHANNEL AMPLIFIER
4430. \(12 \frac{1}{5}\) P P. \& P.

All above prices include V.A.T. LARGE S.A.E. for List No. II. Special prices for quantity quoted on request.

\section*{M. DZIUBAS}

158 Bradshawgate - Bolton - Lancs. BL2 IBA

\section*{helay unit}

Smart steal case \(12 \times 7 \times 4\) in with 22 PO ype relays, most whits at least
contacts. 4 reed relaye + coils. 2 pots ressitors. diodes. \(12 B H 7\) valve, captcitors. tag bourd. etc., etc. 53-75.
PC ETCHING KIT MKII
Conteining 11b Ferric Chioride. 100 sq.in copper clad bourd. DALO etch reslest pen, abrasive cleaner, etching dish. 2 miniature drill bite. and full instructions, \(\mathbf{5 1}\) - 85.

\section*{Tb BARGAIN PARCELS}

Hundreds of new components - pots, resiswith transistors and diodes. also loads of odds and ends. Amazing value at only [3-25.
COMPUTER PANELS
Large quantity alway zveliable. 3tb assorted c1.75; 710 £3; 56 lb [18. Pack with about 500 Pack with 12 high quality panels, inc. power transistors, multiturn trimpote, IC's, zeners. and stacks of ambll signa tranaisiore. resiatora and capacitors. Onty \(\mathbf{2 2}\).75 FERRIC CHLORIDE
Anhydrous technical quality in 1 lb double
 100 bb โ 36 .

\section*{TAANSFORMEAS}

All have mains primaries. \(6-0-6 \mathrm{~V} 100 \mathrm{~mA} 90 \mathrm{p}\) : \(9-0-9 \mathrm{~V} 100 \mathrm{~mA} 95 \mathrm{p} ; 12-0-12 \mathrm{~V} 50 \mathrm{~mA} 80 \mathrm{p} ; 12-0-12 \mathrm{~V}\) \(100 \mathrm{~mA} 51 ; 24-0-24 \mathrm{~V} 500 \mathrm{~mA} \mathrm{cz} \cdot 05\). Multitapped transformer to give \(3,4.5,6,8,9,10,12,15\), 18. 2.24 or 30 V or \(12-6-12 \mathrm{~V}\). or \(30-0-30 \mathrm{~V}\)


VEROBOARD
100 sq . in assorted aizes and pitches, sbout 8 pleces, \(51 \cdot 20\).
All prices quoted include V.A.T. at a\% or \(25 \%\) as appropriste, and U.K. postage. Price increates are due to new postiol rates which ceme into effect 29th Sept. S.A.E. list. enquiries. Sendicp for Multimeter brochure Surplus componente and equipment wanted

\section*{lor cash}

GREENWELD (PE11)
51 Shlrley Park Road. Southampton, SO1 4 FX . Tel. (0703) 772501. Also callers at 21 Depttord Broad way, SE8. Tel. 01-692 2009, and 38 Lower Addiscombe Road, Croydon. Tel. 01-688 2950.

\section*{SABGAIN PACKS 25 in4001}






 \(\begin{array}{lll}12 \mathrm{BF} 194 & \begin{array}{l}11.20 \\ 7 \mathrm{BF} 173 \\ \mathrm{I} 1.20\end{array} & 14100 \mu \mathrm{~F} 40 \mathrm{~V} \text { 25 } 10 \mu \mathrm{~F} 25 \mathrm{VPC}\end{array}\)
 All items full apec. and marked.

8 PIN DIL 741'尔
\(10+21 p ; 25+23 p ; 1.000+21 p\).
\(\underset{3+55 p ; 10+45 p ; 25+40 p}{ }\)

RESISTOR AND CAPACITOA PACKS
400 asatd. carbon resistors
250 Ht -Siabs, \(1.2 .5 \%\) HW \(^{1 \mathrm{~W}}\)
100 Wirewounde. 2-15W
200 Poly, mica, ceramic, etc.
200 Min electrolytices. but mainly un-
marked, so only
Airspaced and comprestion trim-
mera up to 12500 F
mera up to 12500F
200 Miniature roasistors,
mostly carbon film
mostly carbon firm til 14 §10. 90 value for 50.50111

\section*{TAANSISTOR PACKB}
nmarked out-of-apac transistors-NPN PNP Ge Si Small algnal and TO3 power types. About \(75 \%\) usaable devices. 200 for \(\$ 1.50\) Out-ot-roec 2N3055's-now 10 for £.2 2 BC100 £1, 100 E.

Cieartince of our warehouse at Tower Whar Aeymond strett, CHESTER onde on in November. 100 tons to cteap.

JUST IN—115V :5W SOLOERING IRONSuse 2 in sories for maing operation. Only OOW 41 2. MMEASION MEATENS, FLEX E1.30. \(150+\) AssonTED OHOMMETS, AII shapes and sizes 50p

\section*{TRANSFORMERS \\ ALL EX-STOCK-SAME DAY DESPATCH}


PLEASE ADD VAT AFTER P \& P
Audio Accessories and Bargain Component Paks. Electrosil and Semi-Conductor stockists.
Callers welcome (Mon-Fri) or send stamp for lists
Barrie Electronics Ltd. 3.THE MINORIES,LONDON EC3N 1BJ TELEPHONE: 01-488 3316/8
NEAREST•TUBE STATIONS: ALDGATE \& LIVERPOOLST.

\section*{RETURN} BSR HI-FI AUTOCHANGER STEREO \& MONO

Plays \(12^{*}, 10^{\prime}\) or \(7^{\prime} \mathrm{records}\).
Auto or Auto or Misnual. A high quality unit backed by BSR reliability with 12 months' guarante. AC 200/250 Above \(x\) or in


Above motor board 3yin. Below motor board eyin. With STEREO and MONO XTAL \(\mathbf{1 9 . 2 5}\) Pont 50 p .

PORTABLE PLAYER CABINET Lodern design. Rezine covered. Larke front grille. Lift-up Lid. Chrome fittings. Approx, tize \(17 \mathrm{in} \times 15 \mathrm{in} \times 7 \mathrm{in}\). Fow only in red and black rexine. \(\quad\) (5.25 Post 50p

\section*{B.S.R. SINGLE PLAYER MODEL P128. IREAL speeds. balaick ARM. CDEIMA DEVIGE

 \\  \\  \\ R.C.S. DISCO DECK SINGLE RECORD PLAYER}

Pitted with auto atop. Compatible cartridge. Baseplate. Sise 1 lin \(\times 8!\) in. Turnta ble. Size 7in diameter. A/C mains, 200, 850V motor hat a separate winding 14 volt to power amall amplifer. Three speeds. Plags all records.

E6.95 \({ }_{\substack{\text { Pant } \\ \text { Sisp } \\ \hline}}\)

SOLID MAHOGANY PLINTH Pot 75p With P.V.C. Cover. Cut out for most B.S.R. or Garrard decks
Size \(121 \times 143 \times 71 \mathrm{in}\)

COMPLETE STEREO HI-FI SYSTEM Two full size loudspeskers \(131 \times 10 \times 31 \mathrm{in}\). Player unit clips to loudspeakers making it extremely compact. all records \(33 \mathrm{r}, \mathrm{p}, \mathrm{m} .45 \mathrm{t}\) r.p.m. Separate volume and to ys


\section*{SPECIAL OFFER!}

SMITH'S CLOCKWORK
15 AMP TIME SWITCH UP TO 60 MINUTES
Odr price \(£ 2 \cdot 50\) pout 4sp


ALUMLNIDM BOXES. \(3 \times 3 \times 3 \sin 75 p ; 4 \times 4 \times 4\) in 90p; \(6 \times 4 \times 4 \ln 4110: 9 \times 4 \times 4\) in \(2130: 12 \times 4 \times 4 \ln 21 \cdot 50\).

BLAME ALUMINIUM CHASSIS. 18 g.w.R. 2 in sides \(6 \times 4\) in 55p; \(8 \times 6\) in 68p; \(10 \times\) 7in 80p; \(12 \times 8 i n\) e1: \(14 \times \operatorname{lin} 21 \cdot 20: 16 \times 6\) in \(21 \cdot 20 ; 12 \times 3 \mathrm{in} 60 \mathrm{p} ; 16 \times 10 \mathrm{in} 21 \cdot 40\). ALUMLNIUM PANELS 18 E.w.R. \(6 \times 4\) in \(15 p: 8 \times 6\) in 25p; \(14 \times \operatorname{3in} 25 p ; 10 \times \operatorname{in} 30 p ; 12 \times \sin 30 \mathrm{p} ; 12 \times \sin 40 p:\) \(16 \times\) Bin \(45 p: 14 \times 9\) in 50p; \(18 \times 12 i n 55 p ; 18 \times 10 i n 75 p\) 2 p. 2 -way, or 2 p. 6 -way, or 3 p. 4 -way. TOGGLE SWITCHES. 3p. 80p: dp. 25 p ; dp. dt. 30p.
BRITISH FM/VHF TUNING HEART 88 to 108 Mc . British made. 2 Transintors ready aligned requires \(10.7 \mathrm{Mc} / \mathrm{s}\) I.F. Complete with tuning kang connection supplied but some technical experience ensential.
SITABLE I.T. STRIP 44.95 . DECODER 2495

OF POST MAIL ORDER
R.C.S. STEREO FM TUNER BRITISH MADE


This completely cased maint powered Hi-Fj
830 Tunar whith bruahed alaminiom facia is British Post 75p. R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE Ideal Ior Mike, Tape, P.U., Guitar, etc. Can be used with
 For use with valve or trannistor equipment. \(1 . / 6\) Post Full instructions supplied. Details S.A.E.
R.C.S. POWER PACK KIT

12 VOLT, 750 mA . Complete with printed \(\mathbf{1 3 \cdot 2 5 \text { Post }}\) 12 VOLT 300 mA KIT, 839 VOLT 1 AMP KIT. 83.25.

4MFD B00V DC PAPER CAPACITOR
Block Capacitor. Ideal as Filter Unit in 100 watt Loudapasker 8 yitems. 95 peach , post 30 p .
NEW TUBULAR ELECTROLYTIC8 CAN TYPEB \(2 / 350 \mathrm{~V} \quad 20 \mathrm{p}: 250 / 25 \mathrm{~V} \quad 14 \mathrm{p}, 50+50 / 300 \mathrm{~V}\) \begin{tabular}{ll:ll}
\(4 / 350 \mathrm{~V}\) & 20 p & \(500 / 25 \mathrm{~V}\) & \(20 \mathrm{p}, 32+82 / 350 \mathrm{~V}\) \\
\(8 / 350 \mathrm{~V}\) & 22 p & \(100+100 / 275 \mathrm{~V}\) & 65 p \\
\hline \(28+82 / 450 \mathrm{~V}\)
\end{tabular}
 \begin{tabular}{ll|l|l}
\(18 / 350 \mathrm{~V}\) & \(30 \mathrm{p}, 150+200 / 275 \mathrm{~V} 70 \mathrm{p}\) & \(350+50 / 325 \mathrm{~V}\) & 65 p \\
\(82 / 500 \mathrm{~V}\) & \(50 \mathrm{p}, 8+8 / 850 \mathrm{~V}\)
\end{tabular} \begin{tabular}{lll|l}
\(82 / 500 \mathrm{~V}\) & \(50 \mathrm{p}, 8+8 / 850 \mathrm{~V}\) & 28 p & \(16+16+16 / 275 \mathrm{~V}\) \\
\(25 / 25 \mathrm{~V}\) \\
\(25 / 25 \mathrm{~V}\) & \(10 \mathrm{p}, 8+16 / 850 \mathrm{~V}\) & 25 p & \(32+82+32 / 850 \mathrm{~V}\)
\end{tabular} \(\begin{array}{lllll}20 / 25 \mathrm{~V} & 10 \mathrm{p} & 8+16 / 850 \mathrm{~V} & 25 \mathrm{p} & 32+32+32 / 350 \mathrm{~V} 8 \mathrm{p} \\ 50 / 50 \mathrm{~V} & 10 \mathrm{p} & 16+16 / 350 \mathrm{~V} & 40 \mathrm{p} & 90 / 350 \mathrm{~V} \\ 100 / 25 \mathrm{~V} & 10 \mathrm{p} & 32+32 / 350 \mathrm{~V} & 40 \mathrm{p} & 4700 / 68 \mathrm{~V}\end{array}\) LOW VOLTAGE ELECTROLYTICS
1. 2, 4, 5, 8, 16, 26, 30, 50, 100, 200 mF 15V 10p. \(500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}\).
1000 mP 12 V 20 D ; 25 V 35 D ; 50 V 47 D ; 100 V 70 D
2000 mF 6 V 25p; 25 V 42p; 50 V 57 p .

5000 mF 6V 25p; 12 V 42 p ; \(25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p} ; 50 \mathrm{~V} 95 \mathrm{p}\).
CERAMIC 1 pF to 0.01 mF , 4 p , Siver Micm \& to 5000 p .


 8low motion drive \(365 \mathrm{pF}+365 \mathrm{pF}\) with \(25 \mathrm{pF}+25 \mathrm{pF} .50 \mathrm{p}\) : Twin 500 pF 75 p . Twin 410 pF 50 p . Twin 120 pF 50 p .
8HORT WAVE SHGLE, SHORT WAVE SIIGLE. GAMGABLE 50 p F. 65 p . NEON PAREL INDICATORS 250V AC/DC. Amber 30 D . RESISTORS. \(1 \mathrm{~W}, \frac{1}{2} \mathrm{~W}, 1 \mathrm{~W}, 20 \% 2 \mathrm{p}: 2 \mathrm{~W}, 10 \mathrm{p} .10 \mathrm{Q}\) to 10 M . HIGH 8TA BILITY.
Ditto \(5 \%\), Prelerred \(\mathbf{2} \% 10\) ohms to 6 meg. 10 p ohms to \(10 \mathrm{meg} ., 4 \mathrm{p}\). WIRE-WOUND RESIBTORS 5 watt. 10 watt, 15 watt, 10 ohms to 100 K 12p esch.
TAPE OSCILLATOR COIL Valve type 35 p .
FERRITE ROD \(8 \times\) in \(20 \mathrm{p} ; 6 \times\) bin \(20 \mathrm{p} ; 3 \times\) hin 10 p


CASH PRICES INCLUDE VAT 30p MINIMUM POST AND PACKING CALLERS WELCOME RADIO COMPONENT

Illustrated Brochure, Radio Books Eomponent Lists 10 p Written ruarantep.

RETURN OF POST MAIL ORDER
JUST RELEASED
R.C.S. 100 watt ValVE AMPLIFIER


Four inputs. Four way mixing, master volume, treble and bass controls. Suits sli ppeakers, This protessionsl gusity amplifier chassis is snitable for all groups, diaco, P.A. Where hisb quality power is required. 5 apeaker outputs. A/C mains operated. 8lave output. Produced by demand lor a quality valve amplifier.

Price \(\mathbf{6 8 5}\), carr. \(\mathbf{2 2 . 5 0}\)

\section*{ANOTHER R.C.S. BARGAIN ! \\ ELAC \(9 \times 5 \mathrm{in}\). HI-FI SPEAKER TYPE 59RM This famous unit now available, 10 watte, 8 obm. Price \(£ 3.45{ }_{4}^{\text {Popp }}\) \\ \(8^{\prime \prime}\) or \(10^{\prime \prime} \times 6^{\prime \prime}\) ELAC HI-FI SPEAKER}

Dual cone plasticised poll eurround, Large ceramic megnet. \(50-16,000\) cpa. Basa resonance 10 watt.
£4.35
loin round \(\leqslant 5\).
TEAK VENEER HI-FI SPEAKER CABINETS Fluted Wood Fronts MODEL "A". \(20 \times 13 \times 18 \mathrm{in}\) For 12 in. dis. or
10in spoiker.
\(\mathbf{E} \mid 2.50\)
950
Pont MODEL "B". \(16 \times 10 \times 7 \mathrm{iu}\)
 MODEL "4C", \(30 \times 20 \times 12 i n\). Reflex cabinet will accept \(1-12 \mathrm{in}\). base unit, 1-5in. mid ranse, 1-8in. tweeter. Teak finimh. Grooved tront \(621.50^{\mathrm{Carr}}\) LOUDBPEAKER CABNET WADDIEG 18 in wide, 20 p It.

\section*{GOODMANS CONE TWEETER \\ 3 in. diam. 18.000 C.P.s. 25 WATTS \(8 \Omega \quad £ 3.60\)}

BARGAIN 4 CHANHEL
TRAK8ISTOR HONO
MIXER. Add musical highlight and sound effect to recordings. Will mir Microphone, records, tape and tuner with sepsrate controls into single output. 9 volt battery \(65 \cdot 20\)
Operated. VERSION OF ABOVE 26.85 ,
BARGAII 3 WATT AMPLIPIER. 4 Tranaigtor \(\mathbf{4 4 0} 50\) base controls. 18 volt battery operated. Mains Supply 23.45.

THE "INSTANT" BULK TAPE
THE "INSTAMT" BULE TAPE Suitable for cassettes, and all sizes of tape reels, A.c. mains \(200 / 250 \mathrm{~V}\). Leatiot S.A.E. \(\quad\) E4.35 Pont


\section*{WAFE HEATING ELEMENTS} THIN drying applications in the home, garags, greenhouse actory (available in manufacturing quantities) Approz 250 watt approx. Printed circuit element encloped in asbestos fitted with connecting wires. Completely flexible providing aale Black heat. British-made for use in photocopiers and print drying equipment.
desl for bome handymen and experimenters. Suitable or Heating Padi, Food Warmers, Convector Hesters, etc. Hust be clsmped between two sheets of metal or asbentos, tc., to make efficiont clothes dryers, towel rails-ideal for -preventing frozen radiator or acting as oil sump bester. Oie in greenhouse for seed raising and plant protection, Invaluable aid for bird houses, incubstors, etc., etc. Can be used in series for lower heat. Or in parallel for higher heat applicettions.
ONLY 40 EACH (FOUR FOR \(£ 1.50\) ) ALL POST PAID-Discounts for quantity.

\section*{BAKER MAJOR 12" \(\mathbf{E 1 1 . 5 0}\)}

\(30-14,500 \mathrm{c} / \mathrm{s}\), 12in. Post 60 D cone, wooter and tweeter cone together with a BAKER together
ceramic mith agnet amembly
mater bsving a fux density ol 14,000 ganse and a total fiux of 145,000 Maxwell. Bast resonance \(40 \mathrm{c} / \mathrm{A}\) Rated 20 watty. HOTE: 3 or 8 or 15 ohm must be atated.
Module kit, \(30-17,000 \mathrm{c} / \mathrm{s}\) with tweeter, crossover, bafle and instructions. \(£ 14.50\)
Please state 3 or 8 or 15 onms. Post 50p

\section*{BAKER SPEAKERS "BIG SOUND"}

Robuatly constructed to atand up to long periods of electronic power, As used by leading groupa. Trelul renponse \(30-18,000 \mathrm{cps}\). Ban Resonance 55 cps .
GROUP "25"
12in 25 watt
3,8 or 15 ohm:


GROUP "35"
12in 35 watt
3,8 or 15 ohms.
GROUP "50"
\(15 i n .50\) watt
8 or 150 hm .

\section*{£ 19.50}

Post 90p
GROUP "450/12"
18 in 50 watt profasaional
model. 8 ohms or 15 ohmit

model. 8 ohma or 15 ohms Post 80 p


Separate treble and basa controls.
Guaranteed. Details S.A.E.
(t) 2 \&1.00

DELUEE MODEL IN WOOD CABLIET. BLACK. 869.
NEW MODEL MAJOR 50 WATT
4 inputa, 2 way mising, £49.95. Carr. £1. Ideal disco amp.
QUALITY LOUDSPEAKER ENCLOSURE
Teas veneered fin thick wood cabinet.
Sige \(18 \mathrm{in} \times 18 \mathrm{im} \times 81 \mathrm{in}\). Weight 21b. This cabinet leatures a wide mesh Sulver Grill covering a soparate compartment for mounting Tweeters
bait compartment is cut out for
 Carr. 85p. Baffie could be cut for larger speaker.

3 CHANNEL SOUND TO LIGHT KIT 1,000 watts por channel. Full inatructions. \(\mathbf{f} \mathbf{1 2} \cdot 50\) 3 way light benk. To Suit \(\$ 11 \cdot 60\).
R.C.S. STEREO DECODER

Britinh made. Ready aligned and tented. Complete \(\mathbf{4 4 . 9 5}\) with instructions, Size 8 in \(\times\) Rin.

\section*{WEYRAD COILS}
\begin{tabular}{lllr} 
P50/20C & \(40 p\) & RA2W & \(85 p\) \\
P50/1AC & 600 & OPTI & \(65 p\) \\
P50/3CC & \(40 p\) & LFDT4 & \(65 p\) \\
PCA1 & \(85 p\) & Twin gang & \(81-20\) \\
\hline
\end{tabular}
E.M.I. TAPE MOTOR

4 pole, 240 v. 135 mA . size \(34 \times 2 \mathrm{x} \times 24 \mathrm{im}\). \(\mathbf{4} 1.85\) 1200 rpm . Spindle itim. diameter. \(26 \times 2 \mathrm{~m}\). Cl 120v version 21.
E.M.I. GRAM MOTOR

120 V or 240 V a.c. \(2,400 \mathrm{rpm}\). 2-pole
70 mA . Size 2 ? \(\times 2!\times 2\) in.
£ \(1 \cdot 25\)
Post 35p

SERVICE
BAKER HI-FI SPEAKERS
HIGH QUALITY - BRITISH MADE

\section*{REGENT}

I2in. 15 watts
An inexpenive unit for the eginner in high fidelify and or generai purpores, may Amplifer, Hi-Fi or Televinion seceiver.
Bass Resonence 45 cps Flux Denaity 18,000 gava relul response \(45-13,000 \mathrm{cp}\) or 8 or 15 ohm models.

\section*{\(\pm 10.50\) 吡品}


DE-LUXE Mk II
I2in. 15 watts
Enpecially deaigned to provide full range reproduction at an conomical cont, sultable foruse with sny hish Qdelity syatem. Built-in concentric tweeter cone.
Basa Resonance 30 cps Flux Denaity 14,000 gaune Jseful reaponse \(25-16,000 \mathrm{c}\) 8 or 15 ohms models.

\section*{€ 13.50 :}

\section*{SUPERB}

12in. 20 watts
A bigh quality loudapeaker, its remarkeble low cone resonance ensures clear reproduction of the deepent bals. Fitted with a special copper drive and concentric
tweeter cone reanting in ful! twater cone reanding in fith range reprodnction whem with
remarkabla upper rogiter.
\(\begin{array}{ll}\text { Bass Remonance } \\ \text { Flax Dentity } & \text { 25eps } \\ \text { 16,500 ganas }\end{array}\) \(\begin{array}{ll}\text { Flux Deraity } & 16,500 \mathrm{gansa} \\ \text { Useful response } & 20-17,000 \mathrm{cps}\end{array}\) Useful response
8 or 15
ohm
model

\section*{£ 17}


\section*{AUDITORIUM}

12in. 35 watts
A full range reproducer tor bigh power, Ehectric Guitari, public addreas, muld-apeaker Idesl for \(\mathrm{Hi}-\mathrm{Ei}\) and Disco: theques.
Basi Resonsnce 35 cps Plux Density 15,000 gavas Tseful reaponse \(25-16,000 \mathrm{cps}\) 8 or 15 ohme models.

\section*{£ \(15 \cdot 50\)}


\section*{AUDITORIUM}

\section*{I5in 45 watts}

A high watsage loudapeaker of exceptional quality with a level response to above \(8,000 \mathrm{cps}\). Ideal for Public Addres, Discotheques, Electronic inntraments and the bome \(\mathrm{Hi}-\mathrm{Fi}\).
Basa Resonance 36 cps Flux Density \(\quad 15,000\) Equss 8 or 15 ohmi models.

Hi-Fi Enclosure Manual containing plans, denigne crontover date and cable tables. 68 p .


\section*{TELEVISIONS AND SPARES TO THE TRADE}

\section*{MONOCHROME TELEVISIONS}

BBC 2 Dual Standard TVs (19in. 23in) in batches of 10- \(\mathbf{5 3}\) each (makes Include Bush. Thorn, Philips, Pye/Ekco. Baird). Many with transistorised tuners. GEC 2000. Thorn 950 series. Bush 141, Phılips Style 70 . Baird 600 and 700 series all at If each.
Thorn 1400. Bush 160/170 series. Philips 210. Pye-Ekco Olympic, etc., Baird 673. Push Button-all at \(\mathbf{\Sigma 1 2} \cdot 50\) each.
\(20 i n\) and 24 in square screen Dual Standard sets-Thorn. GEC. etc., 20 in E15, 24in-£18. 50.
20in and 24 in Single Standard Thorn 1500. GEC. Bush Acoustic. 20in- \(\mathbf{1 9} \cdot \mathbf{5 0}\), 24in- \(\mathbf{E R 2}^{22}\).
(1) Discounts for quantities. (2) All monochrome spares supplied free of (3) All tubes guaranteed. (4) All cabinets very good. (5) All sets "walk and talk". (6) All sets guaranteed complete inside and out. (7) Delivery and VAT extra.

\section*{COLOUR TELEVISIONS}

Colour TVs 19 in and 25 in. Makes include Thorn 2000. Bush CTV25. Decca CTV 19/25in. Pye-Ekco. Baird 700 and 710 series. Phillps G6. GEC 2028. All sets 19/25in. Pye-Ekco, Baird inside and out-cabinets first class and tubes guaranteed. From 585 each.
20 in and 22 in Colour Televisions are always available in varying quantitiesplease telephone for availability and cost.
Please Note: (1)' Wo deliver anywhere by our own transport. (2) All goods are blanket wrapped in our vans. (3) All orders with half deposit, balance on delivery after inspection. (4) Cheques most welcome. (5) Any quantity supplied. (6) We do not sell rubbish, and we stand by our guarantees. (7) We aim to please. (8) All spares supplied free of charge (mono only).
N.B. Special arrangements for delivery to North and South Ireland and worldwide exports orders welcomed.

TEST BENCH FACILITIES ALWAYS AVAILABLE
WORLD WIDE DELIVERIES OF TV象, SPARES

\section*{MISCELLANEOUS ITEMS}

Large quantities of stereograms, fridges, deep freezers. Hoovermatics, radios, etc., always at hand-prices on request.
Colour SCAN COILS

Alt dual standard \(£ 5\) plus \&1 P. \& P. All makes \(£ 2\) inclusive. VALVES
All colour valves 40p each plus \(5 p\) All mono valves 10p each plus \(2 p\) each P. \& P. per valve. P. \& \(P\)

TUBES
 insurance, packing \&5). \(£ 7\) (post, insurance, packing £3 50 ). CABINETS
19in- \(£ 12,22\) in- \(£ 16,25 \mathrm{in}-£ 14\) (post, All cabinets- 5 including post. insurance, packing £5). insurance. packing. LOPTs
All dual standard colour \(£ 5 \cdot 50\) plus \(£ 1\) All dual standard mono \(£ 2.50\) plus P. \& P. All makes available. £1 P. \& P. All makes available.

Colour
PANELS
Polour
PANELS
IF, Decoder and Convergence-frame IF Line timebase E 3 plus E 1 P . 8 P. All output for all dual standard models dual standard models in stock. from \&7-50 plus £1-50 P. \& P. Allmodels available.

SLOT METERS
10p meters- \(\mathbf{~} 1.50\) each including postage and packing.

\section*{SPEAKERS}

6 in \(\times 4 i n, 5\) in Round, \(\sin \times 2\) in 30 each plus \(10 p\) P. \& \(P\).

\section*{MAIL ORDER SERVICES}

BLACK/WHITE TELEVISIONS
Working: 19in- \(\mathbf{E 1 2} \cdot \mathbf{5 0}, \mathbf{2 3 i n}-\mathbf{E 1 5}, 20 \mathrm{in}-\mathbf{2 5}, 24 \mathrm{in}-\mathbf{E 2 9} \cdot \mathbf{5 0}\)
Untested (but guaranteed complete with good tubes): 19in- [4, 23in- \(\mathbf{E 5}\), \(20 \mathrm{in}-\mathrm{E} 15,24 \mathrm{in}-\mathrm{E} 19\).
(Postage, packing and insurance \(\mathbf{~} 4.50\) each, prices include VAT.)
N.B. All tubes guaranteed

COLOUR TELEVISIONS
Worklng: 19in-E05, 22in-E125, 25in- \(\mathbf{1 1 3 0}\).
Untested (but guaranteed complete whth good tubes): 19in-c70, 22in- \(\mathbf{E 9 0}\), 25in- 595 .
(Postage, packing and insurance \(£ 9\) each; prices include VAT.)
Thorn 2000. Bush CTV25, Philips G6, GEC2028. Baird 700. Decca CTV25

MAIL ORDER SPARES. Speclal Offor-Brand now apares:
BRC 2000 panels, video, convergence, and regulator-only \(£ 12 \cdot 50\) plus \(£ 1 \cdot 50\) P. \& P.

Bush CTV 25 Line imebase-tower unit including LOPT and valves Mk. 1 and II only- 18 pluṣ £3 P. \& P.
BRC single standard colour 4 button tuners colour and mono- \(\mathbf{8 7} \cdot 50\) plus Et P. \& P.

UHF Vari-cap tuner units- \(\mathbf{£} 6.50\) plus \(£ 1 P\). \& \(P\)
VHF Varimcap tuner units- \(\mathbf{8 7} 50\) plus \(£ 1 P\) \& \(P\).
Pye-Ekco CTV Tripler units- \(\mathbf{6 6} \cdot \mathbf{2 5}\) plus 75 p P. \& P
Philips G8 Tripler units- \(\mathbf{E 7} \cdot 50\) plus 75 p P. \& P.
Philips G8 Tripler units- \(\mathbf{E 7} \cdot \mathbf{5 0}\) plus 75p P. \&
KB VC Series LOPT \(£ 2 \cdot 50\) including P. \& P.
KB VC Series LOPT £2.50 including P. \& P.
Bush 125 and 135 IF PANELS- \(\mathbf{E 3} .50\) plus 75 p \(P\). \& \(P\)
Thorn 850 IF Panels- \(\mathbf{\Sigma 2} \cdot 50\) plus \(£ 1\) P. \& P.
GEC 2000 IF Panels- \(\mathbf{£ 3} \mathbf{- 5 0}\) plus E1 P. \& P.
EX-EQUIPMENT TUNERS:
Colour:
All dual gtandard colour push button-rotary and integrated models in stock from \(£ 4 \cdot 50\) plus \(£ 1\) P. \& P.
Mono:
All VHF tuners available from \&2 plus \&1 P. \& P.
All UHF tuners for dual standard models in stock. Push button- £4. 50 plus \(£ 1 \cdot 50\) P. \& P.

Rotary- \(\mathbf{2} .50\) plus \&1 P. \& \(P\)
Integrated (UHF and VHF) £4.50 plus £1-50 P. \& P
Comprehensive list af capacitors, resistors, etc. too numerous to mention. Prices on request.

PLEASE ALLOW 2 WEEKS DELIVERY. S.A.E. PLEASE FOR ENQUIRIES. ALL STOCK EX-EQUIPMENT BARCLAYCARD, ACCESS AND PROVIDENT WELCOME

\title{
TRADE DISTRIBUTORS
}

EMPIRE BUILDINGS, CHELTENHAM PARADE, HARROGATE, YORKSHIRE
Telephone: (STD 0423) 3498 and 62347

\section*{1 \\ SCREWS \\ WASHERS, NUTS, ETC.}

BARGAIN PACK FOR HOME CONSTRUCTOR
100 assorted steel screws, nuts and washers-various BA sizes and lengths-all plated for rust prevention \(£ 1 \cdot 50\) or 10 bargain packs for \(£ 13 \cdot 50\).

\section*{Packs of 10 individual parts}
 Also available 10A terminal block 3 -way moulded pre 250 V a.c. wkg. 10p each Panel mounting variable trans formers 0.9 A output complet formers 0 an with knob and dial, 27.50 вach. Temm: 0 . 0 . up to 55 : 50 p up to \(\varepsilon 10\); 75 p abov E10. Please add 8\% VAT to total
Phone: \(023-063542\).

High Street, Riseley, Bedford, MK44 1DX


\title{
 NEW PROFESSIONAL QUALITY MODULES TO SAVE YOU £ £ £s
}

\section*{THE NEW POWER AMPLIFIERS}

Three brilliant new power modules employing the same circuitry use 10 transistors, three diodes and one zener diode, with electronic over temperature cutout as well as normal thermal protection, load line short circuit and wrong load protection, integrally mounted output capacitor, etc. Fused supply terminal plug in, solder or screw connections. The input impedance is high enough to accept all types of mixer having an output of 250 mV or higher
* NEW \(90^{\circ} \mathrm{C}\) overtemperature electronic cutout, not mechanical
* NEW integral output capacitor means no external components normally required.
*Short circuit load line type protection with twin summing amplifiers.
* Inherently open circuit proof
* Input sensitivity -10 dBm ( 240 mV into 100 k ) permits use with most mixers
* Frequency response \(20 \mathrm{~Hz}-40 \mathrm{kHz} \pm 1 \mathrm{~dB}\).
* Distortion typically \(0.4 \%\). Noise - 80dB.
*Compact: only \(15 \mathrm{~cm} \times 8 \mathrm{~cm} \times 3 \mathrm{~cm}\).
*Suitable for all public address. discotheque. and group applications
* Fused supply terminal
* Single supply line (split supply not required). IMPROVED: MULTIPLE TESTED: GUARANTEED

120 W rms into \(8 \Omega\), of 60 W rms into \(15 \Omega\). Glass fibre pCb for strength and hard weap. 15A output transistors.

SA308
£9.00

\section*{THE NEW POWER SUPPLIES}

One piece units, ready to wire assembly with integral glass fibre pcb, size \(10 \times 8 \times 10 \mathrm{~cm}\) (PM \(120110 \times 8 \times 13 \mathrm{~cm}\) ). Grain oriented laminated transformers are used for compactness. Also facilities for preamp supply. Fully fused.
\begin{tabular}{llr} 
PM1201 & 95V for one SA1208 & £11.00 \\
PM1202 & 95V for two SA1208 & £14.00 \\
PM601 & 65V for one or two SA608 & £9.00 \\
PM301 & 45V for one or two SA308 & £7.50
\end{tabular}

\section*{SAXON SUPERFECT}
(illustrated)
A/l these features in ONE UNIT
No other commercially avallable module to our knowledge, offers all these facilttes in one complete unft.

Sequential display with variable speed, frequency dependent channels-individually fused, and continuously variable function control to give uninterrupted light display in absence of signal. Electronic override on each channel. RCA 8A triacs handling 1.000 W per channel, plus timer circuitry to reduce "Flicker". Individually controlled bass middie and treble plus master audio control for ease of adjustment.

£19•75

\section*{MODULAR} PRE-AMPS

Mono and Stereo
Up to 20 x IM1700t input modules may be used with mixer module module hash Input module has various monitor path outlets.


With equalisation to suit ceramic AND magnetic cartridges, low and high mp . mic. and all musical instruments. "Mono and stereo. Mono module may be matrixed into a stereo system. *Carbon film resistors In low noise controls-zero noise with volume at min. * For range bass and treble for monitoring and echo send. * May be used with the discotheque mixers and Minotaur amplitiers IM7001M (mono) 55.50

IM7001S (stereo) 89.00
IM7002 MIXER MODULE with output suitable for most amplifiers PLUS full 500 mW of monltoring power.
* Mccepts up to twenty IM7001 input modules
* Mono or stereo.
* Up to 3V output-will feed loads down to 600 ohms.
- Accepts echo and other effecta send feed higher impedance) Accepts echo and other effecta send and return signals
IM7002M (mono) \(55 \cdot 50\)
IM7002S (stereo) \(29 \cdot 00\)

\section*{SAXON SOUND-LITE}

Our ever popular 3000 watt unit is now available in module form at only \(\mathbf{£ 1 3 . 5 0}\)
Gives individual control of bass middle and treble plus master control for ease of adjustment. \(1,000 \mathrm{~W}\) per channel-individually fused. Negligible load on amplifier. ACA B AMP triacs for reliability.

The uftmate in mixer modules
- Inputs for two decks (ceramic cartridge) plus tape, with overall bass and treble controls Hillo imp mic. input with separate volume bass and treble controls. * Continuously variable autofade depth plus preset threshold control. "Up to 0.5 W from low distortion push pul monitor amplifier. Frequency response \(20 \mathrm{~Hz}-50 \mathrm{kHz}-18 \mathrm{~B}\). " Low noise ( -80 dB ) virtual stereo \(40 \times 10 \times 3 \mathrm{~cm}\). * Output \(-10 \mathrm{dBm}(240 \mathrm{mV})\) suits all Saxon and most other amplifiers.


\section*{SAXON ENTERTAINMENTS LTD.}

\section*{2\%.41:}

PROFESSIONAL STANDARD COMPLETE UNITS
A total range project to satisfy the mest discerning Note these compelling features:
* Stalniess Steel Escutcheons \(\dagger\)
* Totally compatlble whth all Saxon modules.
Tough easlly-read facla.
* Plug/socket terminatlons throughout.
- 100 W rme Into 8 .

Two mixed inputs, wide range bass and treble controls.
May be operated es slave ampliflor.
Amazlngly compact \(\{27 \times 16 \times\) 10 cm ).

* Fully protected againet all Incorrect losds and short circults.
MINOTAUR \(100 £ 47.50\)
\(\dagger\) Except Minolaur (anodised aluminium) noll

\section*{SYSTEM 7000 DISCO CONTROL UNIT}


Mono or stereo versions
Two deck and one tape inputs. individually controlled plus deck fader (ineffective in central position).
Wide range bass and treble controls plus separate mic. vol. bass and treble controls. Overall master control
Continuously variable autofade depth and threshold.

Five position monitoring switch with two mute positions-ample headphone power. \(20 \mathrm{~Hz}_{2}\) Nolse -80dB response 20 Hz \(50 \mathrm{kHz} \pm 1 \mathrm{~dB}\)
Complete. cased with all terminations by plug socket, eic.
MONO VERSION £28.50 STEREO VERSION \(£ 45 \cdot 00\)

\section*{SYSTEM 7000 MODULAR MIXING}

COMPLETE VERSIONS OF THE IM7001 AND IM7002 modules shown in our advertisement.
Let you make a professional quality versatile mixer to your requirements using these modules. Mono and stereo inputs may be combined.
* The mixing modules split mono signals.
* Each input module has own monitor swltch.
* Stalniess steel panel on \(15 \times 5 \mathrm{~cm}\) matrix (approx.)
* Input equalisation for all types of signal inc. magnetic

Cartridge. Complete system may comprise twenty channeis, mono or stereo with ample monitoring power
- May be patched in with discomixers or Minotaur amplifier.

* Echo send/return facility

MONO INPUT MODULE 58.50 STEREO INPUT MODULE \(£ 12 \cdot 00\)

STEREO MIXEA MODULE £12-00 POWER SUPPLY UNIT FOR UP MONO MIXER MODULE E8•50 TO 20 MODULES E7. 50

\section*{SYSTEM 7000 LIGHTING CONTROL UNIT}
1.000W per channel. Sound trght and SEQUENTIAL and OVERRIDE
Individual batas. mid. ond treble controis
Plup/socket terminations.
Slider control for function. for sound/light, sequencing or both combined.
Stainless steel front panei matching to diaco control unit Compact ( \(17 \times 10 \times 10 \mathrm{~cm}\) approx.)


High sensitivity, negliglble Input powe
£35

\footnotetext{
All Saxon Modules are guaranteed for two years from date of plurchase
To order, telephone 01-684 6385 now or call 01-684 0098 for more details.
WE ACCEPT TELEPHONE ORDERS FOR C.O.D. AND ACCESS/BAACLAYCAAD ACCOUNT HOLDERS
If ordering by post please send cheque/crossed postal orders made payable to Saxen Entertainments Lid. or aimply enclose your Access/Barclaycard number.
Shop hours Mon.-Sat. 9.00-5.00 p.m. Tel, 01-684 8385
All prices include postage and packing, but V.A.T. at \(8 \%\) must be added to total value of order. S.A.E. all enquiries please.
Trade enquiries
Saxon products are avallable from Norman Rose Electrical Lid.
Branches in:
London. Tel: 01-837 9111
Birmingham. Tel. 02t-236 4710
Manchester. Tel. 061 1-273 1498 Bradford. Tel. (0274) 24008
}

\section*{BARCLAY ELECTRONICS}

NOW OFFER YOU A FULL RANGE OF ORDINARY AND SCIENTIFIC
CALCULATORS
- FULLY GUARANTEED

- AT THE BEST POSSIBLE PRICES!

\section*{Price incl}

\section*{4 FUNCTION}

VAT
E
5.80
10.70
CBM 77407 digif, slim pocket"
\(5 \cdot 80\)
10.70
SINCLAIR CAMBRIDGE 8 digrt, stim pocket. constant
SINCLAIS OXFOAD 1008 algit. constant \({ }^{*}\)
4 FUNCTION \% CONSTANT
DECIMO VATMAN SPY \(\begin{aligned} & \text { digit, slim pocket } \\ & \text { DECIMO }\end{aligned}\)
CBM 385R 8 digit recharg green display
CBM 385R 8 digit rechargeable
CBM 986R
8 digit, green display, rechargeable
ROCKWELL 8A s'sigit. constant
4 FUNCTION, STORE MEMORY, \%
CBM 776 MD digit. pOcket stim
CBM GL976MA 7 digit, green display, rechargeable \(10 \cdot 70\)

AOCKWEL 18R Store memory. constant
- FUNCTION, FULL MEMORY, CONSTANT

SINCLAR CAMBRIDGE MEMORY 8 digit, pocket \(\mathrm{s} / \mathrm{im}\)
SINCLAR OXFORD 200
CBM 8870 8 digit, factor exchange, \% \% , grean display, rechargeable
DECIMO VATMAN MEMORY 8 digit, green display. \% factor exchange
ROCKWELL 2OR 8 digit \%*
ROCKWELL 21R 8 digit, \%, rechargeable
DECIMO COUNTER SPY 8 digit. \%, pocket slim muni*
DECIMO SUPER VATMAN 8 digit, green display, \(\sqrt{x}, x^{2}\), factor exchange.
\%, reciprocals*
CBM 9898 digit. green display \(\sqrt{x}, x^{2}\). factor exchange. \% reciprocals.
ROCKWELL 30 R 8 digif, \(\sqrt{x}, x^{2}\). factor exchange. \(\%\). reciprocals*
ROCKWELL 30R 8 digif \(\sqrt{x}, x^{2}\) facior
ROCKWELL 31R As 3OR but rechargegble
TEXAS SRT1 8 digit, 2 exponent. \(\sqrt{x}\), \(x^{2}\), reciprocal, factor exchange ino
TEXAS SRII \& digit, 2 exponent. \(x, x^{2}\). reciprocal, facior exchange
memory), rechargeable
DECMMO SUPER SPY digit. \(\sqrt{x} x^{2}\), factor exchange, reciprocals. \%.
pocket slim mini*
SOCKEt SIIM MIII*
SINCLAIR OXFORD 3005 digit. है exponents. trig. log. \(\pi, \sqrt{x}\), reciprocals, \(x^{2}\)
DECIMO 20018 digit. trig, log. \(\pi, \sqrt{x}\) reciprocats. memory, memory exchange,
\(y^{*} e^{x}\). \(x^{2}\), \(x-y\). degrees, radians, pocket stim
ECIMO VATMANSCIENTIFIC
DECIMO SCIENTIFIC SUPERMAN 8 digit, 2 exponents, log. 1 memory.

CBM SA 6120 A a digit. 2 exponents. trig, log. \(\pi\), \(\sqrt{x}\) reciprocals, \(e^{2}, x^{2}, x-y\), (parenthesis). exponent shilt, mean and standard deviation. polar rectangular, co-ordinates, rechargeable. 2 memory stores
ROCKWELL 61R \(a\) digit. large green display, trig. log. \(\pi, \sqrt{x}\), reciprocals. ROCKWELL 61 R
memory. \(e^{*}, y^{*}, x^{2}, M+x^{2}\), factor exchenge. memory exchange, degrees. rad. rechargeable
ROCKWELL 63 R 8 digit. 2 exponent. same as 61R but in addition 2 levet parenthesis. rechargeable
TEXAS SR16 8 digits, 2 exponent. logs, store memory, \(y^{x}, \sqrt{x}, x^{2}\), reciprocals, TEXAS SR50A 10 digit. 2 exponent, fig, log. \(\pi \sqrt{x}, \sqrt{y}\), reciprocals, \(x^{2}\) store memory, degree. rad. hyperbolic. factor exchange. \(y^{\prime}\). \(e^{\prime}\). factor key, rechargeabie
TEXAS SR51 Same as SR50A but in addition has mean variance and standard deviation. 3 memorles. \%, permutations. finear regressions
SCIENTIFICS, ALGEBRAIC LOGIC, SINGLE FUNCTION KEYS
OECIMO 200 tE 10 digit, 2 exponents, trig. \(\log\). a. \(\sqrt{x}\). reciprocals. memory degrees, rads. \(y^{*}, x^{2}, x-y\), memory exchange, hyperbolics, pocket simm*
CBM SF4148R same as SR120R but in addition has 10 digits. 2 exponents. 2
SCIENTIFICS, REVERSE POLISH LOGIC-SINGLE FUNCTION KEYS
SINCLAIR SCIENTIFIC 5 digit. 2 exponents, irig. log. stim pocket, dualfunction
NOVUS (BY NATIONAL SEMI-CONDUCTORS)
6010
4510
4515
4515
6020
6030
6035
102 step programmable

HEWLETT PACKARD
\begin{tabular}{l} 
HP21 \\
HP35 \\
\hline
\end{tabular}
\begin{tabular}{l|l} 
HP35 \\
HP45 & PLEASE SEND S.A.E FOR NEW LOW PRICES
\end{tabular}
HP55
HP65
*These models employ ordinary batteries but mains adaptors are available, as an optional extra
DECIMO ADAPTOR \(₹ 3.00\)
SINCLAIR OXFORD ADAPTOR \(£ 2.95\)
CBM ADAPTOR 52.70
Please add the correct amount to total if adaptor is required
NOTE-All rechargeable machines supplied complete with nicad batteries and chargers for the stated price.
All prices inctude V.A.T. at \(8 \%\) and although correct at time of going to press, may be subject to alteration without notice.

PHONE CALLS AND PERSONAL CALLERS WELCOME
MONDAY-THURSDAY BETWEEN 2 and \(5 \mathrm{p} . \mathrm{m}\).
To BARCLAY ELECTRONICS, 1115 Finchley Rd., London, N.W. 11 Please send me.................... of model(s)
with/without optional mains adaptor. I enclose cheque/money order total value E ....
packing charge
NAME
ADDRESS
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Don't miss your copy of \\
OVER 5,000 ITEMS - largear UK range of electronic components for home constructors. \\
* 200 PAGES - every aspect of electronics and components for amateurs and hobbyists kits, projects, test gear. \\
* DOZENS of new lines and new ranges. \\
* MANY price reductions throughout the new Catalogue. \\
* A Discount Voucher with every copy, worth 50p. \\
Now 231 TOTTENHAM COURT ROAD, W1 open: 94/96 Upper Parliament Street, Nottingham
\end{tabular}}} & \begin{tabular}{l}
ELECTRONIC FOOTBALL AND TENNIS WUTH THE. FABULOUS \\
VIDEO SPORT \\
ON YOUR OWN TV Play three exciting electronic ball games
FOOTBALL TENNIS HOLE IN THE WALL ON your own
plug Video Sport into the aerial socket of your TV and away you for you. your children and your TV. Mains operated. \\
OUR INCREDIBLE PRICE £29. 50 incl. VAT
\end{tabular} & \begin{tabular}{l}
BUILD THE TEXAN + FM TUNER TEXAN \(20+20 \mathrm{~W}\) STEREO AMP \\
henelec stereo fm tuner Features capacity diode tunlng, tead and tuning and sensltivity. Overall size In test \\
£26-25 (carriage 50p) \\
JOIN THE LARGE BAND OF CONSTRUCTOAS!
\end{tabular} \\
\hline & & \begin{tabular}{l}
AM/FM MODULES \\
LP1179 LP1171 \\
Combined AMiFM tuner modules, together with a smail number of R's and C's and Ferrite Aeriai, 6 Volts supply. supplied with date and circuit sheets \\
Lp1171 combined if strip E4. 80. \\
54.60. FMiront end and AM gang f8. 62 \\
Suitable Ferrite aerial 197p.
\end{tabular} & \begin{tabular}{l}
GARRARD CT4 \\
SPECIAL OFFER-STEREO CASSETTE TRANSPORT MECHANISM
\end{tabular} \\
\hline & & \begin{tabular}{l}
625 line receiver UHF transistorised tuners U.K pperaton. Brand new. (PosUpacking 25p each) TYPE A varlabie tuning slow motion drive \(\$ 3.50\). TYPE B 4 -button push button (adjustable) \(\mathbb{E} \cdot 60\). TYPE C variable tuning \(£ 2-90\). \\
TYPE D 6-button UHF/VHF tuner E5-20
\end{tabular} & AVO 9 MOVEMENTS NEW CONDITION £6.50, inc. VAT \\
\hline ALL PRICES INCLUSIVE OF VAT & & &  \\
\hline
\end{tabular}



FROM WORLD FAMOUS MAKERS! The greates Watch offer since time began! Everyone who sees it is tascinated by it! It's unbelievable! At the touch of a button, through the sub-atomic miracle of the L.E.D. which converts electrica energy into light to give you continuously changing hours, minutes and pulsating seconds instantly displayed on the ruby red time screen like a continuously changing TV picturel Clearly visible Day or Night! Now (just like you tavourlte "Telly" copl YOU can join the elite fewthe proud owners of a watch that is utterly different from
 HE WATCH HE WATCH OF TOMORROW KODAY! AND you buy a a price that's just a fraction of what you could have paid But remember-you can only buy at this amazing price fom Shopertunities * UNBELIEVABLY ACCURATE TO WITHIN SECONDS A YEAR! The system excelled in accuracy only by the Atomic frequency standard! Now TIM can phone you for a time check' \(\star\) NO MOVING PARTS! * NO MAINTENANCE! * ABSOLUTELY SILENT * BUILT TO GIVE A LIFE-TIME OF SERVICE' * 18CT GOLD PLATED CASEI * BRAND SPANKING NEW ADVANCE 1975 MODEL! WRITTEN GUARANTEE. Developed from the fantastic space-age techniques that first put men on the moon. this incredible watch is based on the natural action of Quartz Crystal, that vibrates approx 32.768 times per second! A veritable miracle of micro-circuitry' You could even spend up to \(£ 200\) or more for a Quartz Crystal watch OUR. fantastic cash price for this masterpiece, complet in handsome presentation case is ONLY 243.95 , registered post, pack, etc. 55p, matching adjustable satety bracele 2.50 extra Send quickly and test for vourself on 7 days il order Spoval DELIGHTED. Please hurry' Limited quantity! THIS is the greatest investment you'll EVER make! Or call at either store and see this fabulous watch for yourself! At this price you just can't lose!

- ACCESS \& BARCLAYCARDS WELCOME

PLEASE STATE NUMBER WHEN ORDEEING BY POST!
COMMERCIAL TRAVELLERS PLEASE NOTE: Merchandising affice t Holborn seno SHOPERTUNITIES LTD


\section*{THE RADIO SHOP}

16 Cherry Lane, Bristol BS1 3NG Tel.: Bristol 421196. STD Code 0272 Your West Country shop for electronic components and solid state devlces


TRIACS WITH INTERNAL TRIGGERS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PIV & 1.6A & 3.54 & 6A & 8 A & 10A & 15 \\
\hline 100 & 0.28 & 0.52 & \(0 \cdot 65\) & 0.68 & 0.72 & 0.8 \\
\hline 200 & 0.30 & 0.67 & 0.68 & 0.76 & 0.76 & 1.0 \\
\hline 400 & 0.39 & 0.68 & 0.72 & 0.88 & 1.04 & \\
\hline 600 & \(0 \cdot 50\) & 0.84 & \(0 \cdot 88\) & 1.10 & 1-31 & \\
\hline & tity p Diacs &  & \[
\begin{aligned}
& \text { appi } \\
& \text { with }
\end{aligned}
\] & atio acs & S.A.E
3p. & \\
\hline
\end{tabular}

THYRISTORS C106 SERIES 4 AMP
\(50 \vee 32 p ; 100 \mathrm{~V} 37 \mathrm{p} ; 200 \mathrm{~V} 46 \mathrm{p}\); 400V 58p; 600V70p.
INTEGRATED CIRCUITS
TAA 550 TO18 54p 70914 pin
TAA 263 TO18 62p 7418 pln
27p*
BAB10AS E1.08* 74814 pln ZN 414 TO18 75p* 72314 pin 67p CLOCK CHIPS
CT 700128 pin 54.95 AY-5-1224 16 pinc3. 75 28 pin skt. 55 p 16 pin skt. 18 p 15p Data 7 SEC. LED DISPLAYS 0.3 In high EVERY DAY ELECTRONICS TEACH IN KIT OCTOBER '75, £16 INC VAT. P \& P 50p Catalogue 20p post pald Please add \(25 \%\) VAT. Femainder Add \(8 \%\) Postage and packing 20p per order Phone in your Access and Barclaycard order
Callers welcome


\section*{INTERNATIONAL} TRANSISTOR SELECTOR
Over 10,000 USA, EURO..JAP. BRITISH TRANSISTORS, ELECTRICAL, MECHANICAL SPECIFICATIONS
MANUFACTURERS AND AVAILABLE SUBSTITUTES
by 1 D. Towers, M.B.E Price 53.40

PRINCIPLES OF TRANSISTOR CIRCUITS
by 5. W. Am Amos Price \(\mathbf{6 3 . 4 5}\) -

\section*{R.C.A. SOLID STATE HOBBY CIRCUITS \\ Price \(\mathbf{〔 1}^{1-20}\)}

\section*{RADIO CONTROL FOR MODELS}
by R. H. Warring \(\qquad\) Price \(55 \cdot 80\)

DIGITAL ELECTRONIC CIRCUITS AND SYSTEMS
by N. M. Morris
Price §2.50

\section*{RADIO SERVICING POCKET BOOK}
b, V. Cap=1
* PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET
LONDON W2 INP
Phone 01.723 4185
Closed Saturday 1 p.m

\title{
Practical Electronics Classilied Advertisements
}

RATES: 13p per word (minimum 12 words). Box No. 35p extra. Semi-Display \(£ 10.00\) per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Manager, "Practical Electronics" IPC MAGAZINES LTD., Fleetway House, Farringdon Street, London EC4A 4AD. Tel. 01-634 4451.

\section*{RECEIVER8 AND COMPONENT8}

\section*{R.T. SERVICES \\ (MAIL ORDER ÓNLY)}

77 Hayfield Rd., Salford 6, Lancs.
Tapped Auto Transformer, \(240 \mathrm{~V}-110 \mathrm{~V}\), 80 watts, 22 P.P. New.
Tapped Auto Transformer, 240V-115V, 200 watts, \(44 \cdot 50\) P.P. New.
100 Watt Valve Output Transformer. KT88s, etc. 8 or \(15 a\) or 100 volt line output, \(\{13 \cdot 60\) P.P.
put, Tis.60 P.P. 3 transistors, neg. earth, \(2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}\) in with circuit, \(61 \cdot 54\) P. P.
Crouzet Geared Motors, 30 r.p.m. New, 41.75 P.P.

UHFTV Tuners. Transistorised, \(62 \cdot 10\) P.P. Panels with I.C's on \(8 \frac{1}{2} p\) per I.C. min. order 10 I.C's.
Transformers. \(7.5 V+7.5 V, \frac{1}{\frac{1}{2}}, \mathbb{L} \cdot 12\) inc. P.P. 12-0.12V, 100 mA , \(11-25\) inc. P.P. 9-0.9V, \(100 \mathrm{~mA}, \mathrm{f} 1 \cdot 25\) inc. P.P. \(29 \mathrm{~V} 50 \mathrm{~mA}, 95\) p inc. P.P. \(6-0.6 \mathrm{~V}, 100 \mathrm{~mA}\), \(11-25\) inc. P.P.
Transformer. 24 volt, approx. I amp + \(6.3 V\) CT approx. 500 mA , \(\mathbb{} 1 \cdot 60\) inc. P.P Transformer. 20 volt, I amp, \(\mathrm{cl} \cdot 40\) P.P. Transformer. 45 volt, 2 amp, \(£ 3 \cdot 38\) P.P. P.C. Board. \(5 / 5,5 \frac{1}{2} \times 5 \frac{1}{2}\) in, 10 for \(\mathrm{Cl} \cdot 10\) P.P. Transistorised Timer. Variable delay. 110 or 250 V A.C. input. With instructions. Brand new, 62.25 inc. P.P. Size \(3^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}\). Power Unit Components Transformer. 18 volt \(1 \mathrm{amp} F / W\) bridge rectifier, 21250 mfd capacitors, all new \(\$ 1 \cdot 60\) per kit. P.P. Electrolytic Capacitors, \(4,000 \mathrm{MF}, 50 \mathrm{VW}\), \(41 \times 1{ }^{2} 90 p\). inc. P.P
Mixed Pack of C280 series Mullard capacitors. 100 for \(£ 1 \cdot 30\) ine. P.P.

VALVES, RADIO, TV, TRANSMITTING, INDUSTRIAL. 1930 to 1975. 2,200 types jn stock, nuny obsolete. Iist 20p. Quotation S.A.F. Postal export service. We wish to purchase new and boxed valves, Ibealers, wholesalers, etc., stocks jarchaserl. COX 1RADI0 (SUSSEX) ITJ., The Parade, East Wittering, Sussex. Tel. West Wittering 2023.

Bank of 20 Neons 74p (16p). 5 Figure Resett-
able Counter \(18 / 22 \mathrm{~V}\) works on \(12, \mathrm{f2} \cdot 50\) ( 45 p ). Box with \(20 \times\) LA2 Pot Cores \(+20 \times 1 \%\)
Caps \(£ 1.75(75 \mathrm{p})\). Coppor Clad pax Panels Caps \(£ 1.75\) (75p). Copper Ciad Pax Panole
\(5 \frac{1}{2} \times 5 \frac{1}{2}\) in. \(6-70 p 12 \times 12 \mathrm{in.75p} 16 \times 9 \frac{1}{2}\) in. \(75 p ; 8 \times 9 \frac{1}{2}\) in. 3-41.15; Fibre Glass Ditto \(12 \frac{1}{2} \times 7 \mathrm{in}\). \(90 \mathrm{p} ; 18 \times 4 \mathrm{in} .85 p ; 7 \times 8 \mathrm{in} .60 \mathrm{p}\); \(11 \frac{1}{2} \times 13 \frac{1}{\frac{1}{2}}\) in. \(\mathrm{Ei}-75\). All C.P. 74 Series ICs on Panel(s), \(10-85 p\) ( \(10 p\) ). Thrae Transiator Audio Amp. Transistors Equiv. to AC128,
 switches, II \(W\). \(W\). pots, 3 carbon presets, 5 witches,
2 ferrite chokes, etc. \(£ 1 \cdot 30\), carbon presets, Bank of 5 Neons with \(5-\mathrm{C} 407\) driver transistors, 55 p ( 10 p). Talking Page Panel 2 pots, 12 silicon transistors and \(5, C . R\). 8 nice electrolytics \(80 p\) (15p). Valupaks P3. 10 silicon diodes 650 V . \(1 \frac{1}{2} \mathrm{~A}\) on tagboard 50 p (10p). P6. 10 assorted small presets 50 p (10p). P9 \(1005 / \mathrm{Mica}\) Caps 55 p (10p). P11 100 Polystyrene Caps 80p (10p) Above Four 62, c.p. Lists 12p Refund on purchase.

Ib assorted components \(\mathbf{E 2} 50\)
assorted computer panels \(\mathbb{\$ 1} 70\) J.W.B. RADIO

2 Barnfield Crescent, Sale, Cheshire M33 1NL Postage in brackets Mail order only

\footnotetext{
BARCAIN RELPAK TESTED SEMICONDUCTOR
R6.7.2N2926-Mixed 75p R7.5.BC107NPN 75p 50 Mixed CARBON FILM Resistors i W Packs
 \(\begin{array}{llll}\text { R10.1K-8K2 } & 75 p & \text { IN4001 6p IN40027p } \\ \text { R1IIOK-82K } & 75 p & \text { IN4006 } 13 p \text { IN4148 } 8 p\end{array}\)
 \(\begin{array}{ll}\text { R12.100K-820K } \\ \text { Lists 25p } & \text { T5P TTL-74001/2/3/4 } 17 p \\ \text { Technical enquiries pro rata }\end{array}\) Export enquiries' welcomed. Deduct \(8 \%\) VAT. Mail Order only. Satisfaction guaranteed or money back. P \& P \& VAT included

RELTRAN LIMITED (Dept PE)
P.O. Box Is, Camberlioy, Surrey
}


TURN YOUR BURPLUS capacitors, transistors, olc., Into cash., Contact COLES-HARDING \& CO., P.O. Box 5, Frome, Somerset. Immediate cash settlement.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & 0.125 & 0. & \multirow[t]{4}{*}{MFRA RED \(550 \mu \mathrm{~W}\) Axial lend 4p 1.5 mW TO4 \(\$ 1 \cdot 10\)} \\
\hline & 15p & 19p & \\
\hline & 27 & 39p & \\
\hline & \(27 p\) & 33p & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} \\
\hline & & & \\
\hline & & & \\
\hline \multicolumn{2}{|l|}{Data free with all .0PT0} & & \\
\hline \multirow[t]{24}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{9}{*}{\[
\begin{aligned}
& \text { 2N2928(C) } \\
& \text { 2N3053 } \\
& \text { 1N3055 } \\
& 2 \mathrm{~N} 3702 / \mathrm{Y} 4 \\
& 2 \mathrm{~N} 3902 / 45 / 4 \\
& \text { 2N2646 } \\
& \text { MPF102 } \\
& \text { 2N3910 } \\
& \text { 2N3823 }
\end{aligned}
\]}} & \multirow[t]{6}{*}{voltaceneos. 5V 7005 Plastic 12V \(7 / 121\) Amp 15V 7 745 10V \(7015 \$ 1\). ? 723 TON} \\
\hline & & & \multirow[t]{5}{*}{\begin{tabular}{|lr|}
\hline \multicolumn{2}{|c|}{ BRIDGERECT8. } \\
\hline \(2 A 50 V\) & \(30 p\) \\
\(2 A 100 \mathrm{~V}\) & \(34 p\) \\
\(2 A 200 \mathrm{~V}\) & 41 p \\
\(2 \mathrm{~A} \mathrm{400V}\) & 48 p \\
\hline
\end{tabular}} \\
\hline & & & \\
\hline & & & \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }^{\text {ER } 100}\) Diac 21p}} & \\
\hline & & & \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{iN4002/3}} & 2 L \\
\hline & & & \\
\hline & \multicolumn{2}{|l|}{TN4004/5} & \\
\hline & \multicolumn{2}{|l|}{IN448} & \\
\hline & \multicolumn{2}{|l|}{OA47 8p} & LM380 \\
\hline & \multicolumn{2}{|l|}{OA70 OAPs 8p} & ZNal4 \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{OAM1OAN \({ }^{\text {OMP }}\)}} & 7400 \\
\hline & & & D.I.L. SOCKET8 \\
\hline & & 7 p & \\
\hline & \multicolumn{2}{|l|}{Op. Ampl} & \\
\hline & 700 all & & Mloe + \\
\hline & 741 b-pln & 29 & TOS TO \\
\hline & 748 & 38 p & Dalo Pe \\
\hline \multicolumn{4}{|l|}{PRICES INCLUSIVE + 15pP. \& P. (1st claso)} \\
\hline \multicolumn{4}{|l|}{ISLAND DEVICES, P.0. -ox 11, Margato, Kont} \\
\hline
\end{tabular}

GRAND NEW COMPONENTR BY RETURN, Electrolytics \(16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}, 0 \cdot 47,1 \cdot 0,2 \cdot 2,4 \cdot 7\), \(10 \mathrm{mfds}, 5 \mathrm{p} ; 22,47,5 \frac{1}{5} \mathrm{p}(50 \mathrm{~V}, 6 \mathrm{p}) ; 100,7 \mathrm{p}\) (50V, 8p); 220, 8 p ( \(50 \mathrm{~V}, 10 \mathrm{p}\) ); \(500,11 \mathrm{p}\) ( \(50 \mathrm{~V}, 16 \mathrm{p}\) ); \(1000 / 25 \mathrm{~V}\), 18p. Subminiature bead-type tantalums. \(0.1 / 35 \mathrm{~V}, 0.22 / 35 \mathrm{~V}, 0.47 / 35 \mathrm{~V}, 1.0 / 35 \mathrm{~V}\), \(2 \cdot 2 / 35 \mathrm{~V}, 4.7 / 35 \mathrm{~V}, 10 / 20 \mathrm{~V}, 22 / 16 \mathrm{~V}, 47 / 6 \mathrm{~V}\), \(100 / 3 \mathrm{~V}, 11 p\). Mylar Filin \(100 \mathrm{~V}, 0.001,0.002\), \(0.005,0.01,0.02,3 p ; 0.04,0.05,31 p\). Mullard tubular polyester 400V E6 series, 0.001-0.022, \(31 p ; 0.033-0.1,41 p\). Mullard polyester 160 V tubular or 250 V miniature for vertical mounting E6 series, \(0.01-0.047,31 p ; 0.068,0.1,41 p:\) \(0.15,0.22,6 p ; 0.33,7 p ; 0.47\), \(0 ; 0.68\), \(11 p ;\) \(1.0,14 \mathrm{~F} ; 1 \cdot 5 / 250 \mathrm{~V}, 18 \mathrm{p} ; 2 \cdot 2 / 250 \mathrm{~V}, 22 \mathrm{p}\) Mullard miniature ( 333 ceramics 63V E12
series \(2 \%\) \% \(1 \cdot 8 p \mathrm{~F}-47 \mathrm{pF}\), \(3 \mathrm{pi} \quad 56 \mathrm{pF}-330 \mathrm{pF}\),
 3 5 p. Plate ceranlics 50V E6 series 470pF
\(47,000 \mathrm{pF}, 2 \mathrm{p}\). Polystyrene 63 V . \(\mathbf{1 2} 2\) series \(10 \mathrm{pF}-1,000 \mathrm{pF},{ }^{3} ; 1,200 \mathrm{pF}-10,000 \mathrm{pF}\), 1 . Mininture highstab' carbon film resistors it W F12 series \(5 \%\) ( \(10 \%\) over \(1 \mathrm{M} \Omega\) ) \(1 \Omega-10 \mathrm{M} \Omega\), 1-2p; \(1 N 4002\), \(8 p ; 1 N 4006\), 8 pi 1 N 4148 , 4 Postage 10p. Prices VAT incfusive. THE C.R. SUPPIY ('O., 127 Chesterfipld Road,
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AXIAL PRODUCTS LTD.} & \multicolumn{3}{|r|}{\begin{tabular}{l}
DEPT. 29 \\
23 AVERY AVENUE HIGH WYCOMBE Bucks.
\end{tabular}} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
AERIALS \\
4 ELEMENT FM STEREO \\
s. 80 + 25\% VAT + 50 P. 8 P . \\
13 ELEMENTTV \\
ع2. \(00+25 \%\) VAT + 50 P. \& P. \\
10 ELEMENT TV \\
f1. \(\mathbf{7 5}+25 \%\) VAT + 50 P. 8 P. \\
Now design. auperior quality, including mounting bracket and full inetructiont.
\end{tabular}}} \\
\hline & & & & & \\
\hline \multirow[t]{13}{*}{} & \multirow[t]{13}{*}{} & \({ }_{4000 \mathrm{mb}}{ }^{\text {20, }}\) & & & \\
\hline & & 16 & & 774 & \\
\hline & & 1 N 4001 & 4 & 7403 & \\
\hline & & 1 N 4004 & 8 & 7404 & 00 \\
\hline & & 1 N 4007 & & 7405 & 15 \\
\hline & & ind 148 & 5 & 7410 & \(15 p\) \\
\hline & & 0 Pin Dll & & 7413 & 178 \\
\hline & & 741
\(301009 m\) & \({ }^{38}\) & 7442 & 7 \\
\hline & & 301 Op amer & & 7447 & 070 \\
\hline & & & & \({ }^{7400}\) & 4 \\
\hline & & & & 74121
74150 & \({ }_{113} 3\) \\
\hline & & akta & 10p & 74192 & 1400 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
All Semiconductor prices include VAT at appropriate ration. P. \& P. \(10 p\) per \(£\) under E 2 \\
C.W.O. MAIL ORDER ONLY
\end{tabular}} \\
\hline
\end{tabular}

ELEGTROLYTICA \(6 \cdot 3,10,16 V^{\prime} 10,25,33,50\), \(100 \mathrm{mik} 25,50,63 \mathrm{~V} 1,2 \cdot 2,4 \cdot 7,6 \cdot 6,10,25,33\), 50 mF . All at 5 peach or \(\$ 4-60\) for 100 . Resistors
 \(\frac{1}{\text { d }} \mathbf{W} 0.7 \mathrm{p}, 1 \mathrm{~W} 1 \mathrm{p}\) (prices are in fractions of 1 p ). Send 10 p for our catalogue for additional items and discounts. 1 . \& P. \(15 p+\) VAT \(25 \%\). C. W. ELECTRONICS 10, Kingsley Path, Britwell Est., Slough, Berks. (All coniponents are brand new.)

\section*{PREELSION POLYCARBOMATE CAPACCTORS \\ ALL HIGH 8TABILTTY-EXTREMEHY LOW LEAKAGE \(\begin{array}{ll}0.1 \mu F(27 \times 12.7) & 61 \mathrm{P} \\ 0.2 \mathrm{Value} \\ 0.2 \mu \mathrm{~F}(33 \times 16) & 65 \mathrm{p} \\ (\mu \mathrm{F})\end{array}\) \begin{tabular}{ll|l}
\(0.22 \mu \mathrm{~F}\) & \((33 \times 16)\) & \(65 p\) \\
\(0.25 \mu \mathrm{~F}\) & \((\mu 3 \times 16)\) & \(67 \mathrm{~F})\) \\
\(0.47 \mu \mathrm{~F}\)
\end{tabular} \(0.47 \mu F(33 \times 19)\)
\(0.5 \mu F(33 \times 19)\) \(0.68 \mu \mathrm{~F}(\mathrm{j} 0.8 \times 1\) \\ \begin{tabular}{ll|l}
\(0.88 \mu F(50.8 \times 19) 98 p\) & \(8.8 \mu \mathrm{~F}\) \\
\(1.0 \mu \mathrm{~F}(50.8 \times 19)\) & 11.08 & \(10 \mu \mathrm{~F}\)
\end{tabular} \(1.0 \mu \mathrm{~F}(50.8 \times 19)\)
\(2-0 \mu \mathrm{~F}(50.8 \times 25.4)\)
\(51-44\)
\(20 \mu \mathrm{~F}\)
202 F \\ \begin{tabular}{|c|c|c|}
\hline \(\pm 1 \%\) & \(\pm 2 \%\) & \(\pm 5 \%\) \\
\hline 67. & 50 & 43 \\
\hline 98 & 75p & 1p \\
\hline 1182 & 21.18 & 945 \\
\hline 21.90 & \$1.88 & 81.18 \\
\hline ¢8.40 & 11.95 & 21.84 \\
\hline 88.28 & 18.79 & 38. \\
\hline 24-28 & 48-68 & \% \\
\hline
\end{tabular}

TAKTALUM BEAD CAPACTIOBS-Valuea avaleble: \(0 \cdot 1,0 \cdot 22,0.47,1 \cdot 0,2 \cdot 2,4 \cdot 7,6 \cdot 8 \mu \mathrm{~F}\) at \(15 \mathrm{~V} / 25 \mathrm{~V}\) or \(35 \mathrm{~V} ;\)
\(10 \cdot 0 \mu \mathrm{~F}\) at \(16 \mathrm{~V} / 20 \mathrm{~V}\) or \(25 \mathrm{~V} \cdot 22 \cdot 0 \mu \mathrm{~F}\) at \(6 \mathrm{~V} / 10 \mathrm{~V}\) or 16 V : \(10.0 \mu \mathrm{~F}\) at \(16 \mathrm{~V} / 20 \mathrm{~V}\) or \(25 \mathrm{~V} ; 2 \mathrm{~g} \cdot 0 \mu \mathrm{~F}\) at \(6 \mathrm{~V} / 10 \mathrm{~V}\) or 16 V :
\(33.0 \mu \mathrm{~F}\) at 6 V or \(10 \mathrm{~V} ; 47-0 \mu \mathrm{~F}\) at 3 V or \(6 \mathrm{~V} ; 100 \cdot 0 \mu \mathrm{~F}\) at 3 V ALL at 10 p each. 10 for \(95 \mathrm{p}, 50\) for 84.
\begin{tabular}{l|ll|lll} 
TRAHEISTORS: & BC183/183L & \(11 p\) & BFY \\
BC107/8/9 & 8p & BC184/184L & \(18 p\) & BFYu1 & \(20 p\)
\end{tabular}
 \begin{tabular}{ll|ll|ll} 
BC1 & 12p & BC212/212L & \(18 p\) & BFY82 & \(20 p\) \\
BC1478/9 & \(10 p\) & BC547/558A & \(18 p\) & AF1/B & \(30 p\) \\
BC153/7/8 & 18p & BF194 & \(18 p\) & OC1 & 12
\end{tabular} \begin{tabular}{ll|ll|ll} 
BC153/7/8 & 18p & BP194 & 12p & OC 71 & 18 \\
3C182/182L & \(11 p\) & BF197 & 18p & 2N3055 & 50p
\end{tabular} POPULAR DIODEs-IN914 6p. 8 for 5bp, 18 for 90p;
 CPIN4003 6tp; IN 4004 7p; 1N 400 s 7 p ; 1N 40088 p : 1N40078tp. LOW PRICE ZERER DIODES- 400 mW . Tol, \(\pm 5 \%\) at 6 mA . Values avallable: \(3 \mathrm{~V}, 3.3 \mathrm{~V}, 3.6 \mathrm{~V}, 4.7 \mathrm{~V}, 5.1 \mathrm{~V}, 3.6 \mathrm{~V}\), \(\begin{array}{lllll}6.2 \mathrm{~V}, & 6.8 \mathrm{~V}, & 7.5 \mathrm{~V}, 8.2 \mathrm{~V}, 9.1 \mathrm{~V} .10 \mathrm{~V}, 11 \mathrm{~V}, & 12 \mathrm{~V}, 13 \mathrm{~V}, \\ 13.5 \mathrm{~V}, & 15 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V}, 20 \mathrm{~V} & 22 \mathrm{~V} & 24 \mathrm{~V} & 27 \mathrm{~V}, 30 \mathrm{~V} \\ 33 \mathrm{~V}\end{array}\)

 ResigTORs-HIgh atability, 10 m noise carbon \(1 / m 5 \%\)
tW at \(40^{\circ} \mathrm{C}\), W at \(70^{\circ} \mathrm{C}\). E12 series only-from \(2 \cdot 20\) to tW at \(40^{\circ} \mathrm{C}\), tW at \(70^{\circ} \mathrm{C}\). E12 series only-from \(2 \cdot 20\) to
\(2 \cdot 2 \mathrm{M} \Omega\). ALL at 1 p each, 8 p for 10 of any one ralue, 70 p for 100 of any one value. SPECIAL PACK: 10 of each value \(2.2 \Omega\) to \(2 \cdot 2 \mathrm{M} \Omega\) ( 730 realstors) 25 .
GILICOR PLASTIC RECTIPIERS- 1.5 ann brand new Fire ended DO27: 100 P.I.V. 7p ( 4 (or 26y); 400 P.I.V. 8 p BRIDGE RECTIFTERE-21 amp: 200V 40p; 350V 45p; 600V 65p. ALL At 5 p each: \(50 \mathrm{n}, 100 \Omega, 2200,470 \mathrm{O}, 680 \mathrm{O}, 1 \mathrm{k} \Omega\) \(2.2 \mathrm{k} \Omega .4 .7 \mathrm{k} \Omega, 6.8 \mathrm{k} \Omega, 10 \mathrm{k} \Omega\), \(15 \mathrm{k} \Omega .22 \mathrm{k} \Omega, 47 \mathrm{k} \Omega\), 100k \(0.250 \mathrm{G}, 680 \mathrm{~K}\) Q. \(1 \mathrm{MG}, 2.5 \mathrm{M}\). 5M.
PLEASE ADD 150 P POST AND PACKING ON ALL ORDER8 BELOW \&LD. ALL EXPORT ORDER ADL COST OF SEA/AIRMAIL.
gend S.A.E. for liets of gita.T. TO ORDERS
Wholesale price lists available to bona fide companies

> MARCO TRADINC Dopt. F.11, The Ola School, Edstaston, Nt, Wom, Shrophire Tel.: Whixall 464/465 (STD 0048 (Propra.: Miulcost Trading Ltu.)


\section*{WANTED}

TOP PRICES PAID NEW VALVES AND TRANSISTORS Popular T.V. and Radio types
KENSINGTON SUPPLIES (B)
367 Kensington Street Bradford 8, Yorks.

\section*{FOR 8ALE}

PRACTICAL ELECTRONIC8. Bommd volumes 1 to 10 phts 1975 issucs, offers to: BR1 MAR: 301 Od Road, Ashton-in-Makerfledd, Iatncashire.

\section*{8ITUATION8 VACANT}


Tens of thousands of new computer personnel needed over the next few years alone. With our revolutionary, direct-from-America, course, you train as a Computer Operator in only 4 weeks!
It can pay mround \(\mathbf{5 3 5}\) p.w. as a starter and can reach over \(£ 90\) p.w. After training, our exclusive ap. pointments bureau - one of the world's leaders of its kind - introduces you FREE to world-wide opportunities. Write or 'phone TODAY, without obligation.
London Computer Operators
Training Centre Y41, Oxford Hse. 9.15 Oxford St., W.1.Tel. 01-734 2874

\section*{EDUCATIONAL}

\section*{TECHNICAL TRAINING.}

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing. Electronics, Computers; also selfbuild radio kits. Full details from: ICS SCHOOL OF ELECTRONICS, Dept 316. Intertext House, London, SW8 dUJ. Tel. 01-622 9911 (all hours).

\section*{CITY \& GUILDS EXAMS.}

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio. TV \& Electronics Technicians, Radio Amateurs. Full details from: ICS SCHOOL OF ELECTRONICS, Dept. 315, Intertext House, London, SW8 dUJ. Tel. 01-6229911 (all hours).

\section*{COLOUR TV EERYCINQ.}

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manuficturers. Covers principles, practice and alignment with numerous ilfustrations and diagrams. Other courses for radio and audio servicing. Full details from: ICS SCHOOL OF ELECTRONICS, Dept. 317, Intertext House, London, SW8 4UJ. Tel. 01-622 991 | (all hours).

\section*{TELEVISION TBAINING}

16 MONTHS' full-time practical and theoretical trainIng course in Radio and TV Servicing (Mono and Colour) for beginners, with GCE (or equivalent) in Maths \& English. 13 WEEKS' full-time Colour TV Servicing course. Includes 100 hours practical training. Mono revision If necessary. Good electronics background essential. NEXT SESSION commences on January 5th.
Prospectus from London Electronics College, Dept. All, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721.

\section*{BUSINESS OPPORTUNITIE8}

BUEINESS OPPORTUNITY for young electronics man with experience in N.(\% I need asslstance to develop a unique automation system. Mid-lissex. Box. No. 61.

\section*{LADDER8}

LADDERE, timber and aluminium. Tel. Telford 886644 for brochure.

\section*{8ERVICE 8HEET8}

EERVICE BHEETB, radio, TV, etc. 10,000 models. Catalogue 24 p plus S.A.E. with orders-enquiries. TELRAY, 154 Brook Street, Preston, PR1 7HP.

SERVICE SHEET8 for radio, TV, tape recorders, stereo, etc., with free fault-finding guide, 50 p and S.A.E. HAMLLTON RADIO, 47 Bohentia Road, St. Leonards, Sussex.

BELL'8 TELEVI8ION 8ERVICE8 for service sheets, manuals and books on kadio/TV, sheets, melviluais and books on thets 50 p plus S.A. S. Service sheet cataloguc \(\mathbf{2 5 p}\). Back issues of magazines from April, 74 onwards. Cover price phus 12 p post. Free booklists on request. S.A.E. with enquiries please to: B.T..S. 190 kings Road, Harrogate, lorkshice. Tel. Harrogate (0423) 55885.

\section*{MISCELLANEOU8}

\section*{LIGHTING CONTROL UNITS}
\(3 \times 1 \mathrm{~kW}\) per channal sound-to-light converter ueing isolated control circuitry for maximum safety. The individual sensitivity controls, sensitivity range awiteh and dimming switch. (Bypass controls as an optional extra.) Kit: \(\mathbf{1 3} \cdot \mathrm{st}\). A Aady built: \(\mathbf{\Sigma 1 6} \cdot 50\)
Detally of dimmert, sequencere and other lighting Details of dimmere.
Mail order or written enquiries only 10
SELEKTRON
21 Prior' Rond, WIndsor, Berks. SL4 4PD

SUPERB INSTRUNENT CASE8 by 13azelli, manufactured from heary duty PVe faced steel. liundreds of people and industrial users are choosing the cases they require from our yast range, competitive prices start at a low 55p, Examples, Width, Depth, Height, \(8^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}\) \&1.55; \(10^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} 22.20 ; 10^{\prime \prime \prime}\)
\(20.75 ; 12^{\prime \prime} \times 10^{\prime \prime} \times 3^{\prime \prime} 23.80 ; 8^{\prime \prime}\)
21.80; \(10^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime} 22.70 ; 12^{\prime \prime}\)
83.60 ;

23-60; \(19^{\prime \prime} \times 8^{\prime \prime} \times 7^{\prime \prime} 24 ; 12^{* \prime} \times 12^{*} \times 7^{\prime \prime} 34-40\).
Plus s\% Vili \(50 p\) postage. Over 200 models to choose from. Prompt despatel. Free literature (stamp would be appreciated). BAZELII, Dept. No. 23, st. Wilfrid's Foundry Lane, Haton, Lancaster LA2 0L'T.

\section*{BUILDING YOUR OWN HI-FI \\ AMPLIFIER?}

WHY NOT USE A PROFESSIONAL CASE?
We have a limited number of high quality case assemblies valued at over CIS.00 which must be sold.
LOOK AT THESE FEATURES:
\(\star\) Ready punched steel chassis
* 3 piece, teak veneered case
\# Supplied complete with push switches
Overall dimensions \(17^{\prime \prime} \times 81^{\prime \prime} \times 3^{\prime \prime}\)
antastic value at only \(88 \cdot 9\)
(inc. VAT and \(P\). \(P\) ) (inc. VAT and P. \& P.)
end cheque or P.O. now to SOUND ELECTRONICS (NEWCASTLE) LIMITED
43 Heaton Grove, Hewcantlo apon Tyne, HE6 5yP Tel. (0632) 650108

\title{
"PE JOANNA" BULKCOMPONENTSLST \\ (page 388 Moy '75 iswue)
} EYERYTHING LISTED FOR JUST £44.61 inc. VAT + OUR USUAL DISCOUNT VOUCHERS or WITHOUT DISCOUNT VOUCHERS (4)blvat BY RETURN OF POST of course?
These are all top quality brand new components Capacitors and Resistors by Mullard, Diodes by I.T T etc. F or key bourds etc. see our catalogue 40p. - CT2 Trensformer in stock £2.72 ine. VAT Maplin Electronic Supplies PO. Box 3. Rayleigh. Essex

Large Computer Panel Packed with Poltester Caps Resistors, Transistors, etc., approximate size 14 in \(\times 12\) in our price only 32p (28p). Bumper parcel of electronic components and oddments, capacitors, resistors, pots, coils, switches, rectifiers, valves, knobs, PCB, panels,
etc. A 50.50 lot of new and ex equipment parts. ett. A stic value \(f 3\) ( \(£ 1\) ) for a 20 lb boxfull. 3 core
Fantas mains leads 6 A 2 metres long 10p (10p). Video Tape decks: all video equipment stripped but can be used as a tape deck with a little bit of work otherwise complete but untested, hence the ridiculously low price of \(£ 3\) ( \(£ 2\) ), TCC Block modules and wiring circuit for dual flasher, rain, fire and burglar alarms, anyone 75 p ( 28 p ), Large chassis containing 2 heat sinks 6 in \(\times 4\) in. 3 power transistors 2 N5496, \(2 \times 80 \mathrm{~V}\) F/W Solid State rectifiers at \(3.5 A \quad 1 \times 2 A\). choke
caps thyristors resistors, etc. \(\mathrm{E} 1.95(\subset 1.30)\). caps thyristors resistors, etc. \(£ 1.95\) ( \(C 1 \cdot 30\) ).
Panel containing \(95,1,000\) of capacitors 350 V 120 resistors, 120 diodes, etc. \&1 ( 750 ). Pof cores LA3 \(75 p\) ( \(16 p\) ), LAA fl ( 20 p ). Ever Ready
col 6 V heavy duty batteries PP8 54p (29p). Over 200 ceramic and mica capacitors and resistors \(65 p\) bag ( 200 ). Denco LA3 oscillator coils: new plus data \(54 p\) ( 30 p ). Panel containing 10 minia . ture relays \(130-700\) ohms iam packed with modern tranisistors, capacitors, 1 A , diodes, etc., etc., only \(\mathbf{E 2} \cdot 50\) ( 65 p ). P. \& \(P\). shown in brackets following prices, Lists availab
to all who eniquire or have eniquired.

\section*{INDUSTRIAL RF SERVICES 5I DEPTFORD BROADWAY LONDON, S.E. 8 \\ Tel. 01-692 4284}

PRINTED CIRCUIT BOARDS, all prices inclusive of 1'. \& \(1^{\prime}\). etc. No extras. We offer: "P.E." Joanna l'CB's, full spec., ready to assemble, any \(\$ 1.30\) each. Also full spec., ready to assemble PCB's for "P. E" Orion \&1-30p l'ower-siaves (2 PCB's) \&1.52, C.C. TV ( 2 led's) se-15. "Practical Wireless" Lasyluild organ ( 2 PCB's) 55.70 , telctennis ( 6 \(l^{\prime} \mathrm{CB}\) 's si . \({ }^{2}\), sound effects \(\$ 1 \cdot 10\), tricolour 21.35, Ferret locator 75p, nany others available. C.W.O. Send S.A.E. for lists, production space available for PCB production, silk-screen printing, tinning, plus all art/graphic, photographic and design facilities. We also sell direct art/graphic aids and supplics. Cat. 40p. l'roduction estimates by return or phone: W.K.F. ELECTRONICS, Welbeck Street, Whitwell, Worksop, Notts., S80 4TW. Tel. Whitwel' (Derby's) 605 or 544 , STD 090974. Callers seen by appointment only at Station load.

PCB DIY SUPPLIEs. We offer ferric chloride as used in our own plant, \(4 \mathrm{lb} \mathbf{8 . 5 0}\), 1 cwt 823 , 1 ton 258.1 lb makes 1 gall. gool strength. Solid carbide \(P \mathrm{Cl}\) drill bits from \(1 \mathrm{~mm} u p\), 22.50. Most supplies for l'Cb production available from: W.K.F. EII,ECTRONICS, Wralable from: W.K.F. JI, WCTRONICS, Tel. Whitwell (Derby's) 600 .

\footnotetext{
ALUMINIUM PROJECT BOXES, lids and screws included

Prices include VAT (at \(8 \%\) ) but \(18 p\) should be added to the total order value for postage \& packing.
a WATT IZV FLUORESCENT LIGHT KIT Complete Kit including all components, heatsink, channel, tube, etc. Only 53.49 inc . VAT \(p\). \& \(p\).
Ready buile \&4. 10 inc. VAT, p. \& \(p\). Diffuser \(59 p\) Ready buile \&4. 10 inc. VAT, p. \& p. Diffuser 59p
extra inc. VAT p. \& p. extra inc. VAT P. \& P. P.
Send cheque or P.O.'s
ELECTRONICS DESIGN ELECTRONICS DESIGN ASSOCIATES
Dept. PE, 82 Bath Sereet. Walsall, WSI 3DE. 32 Bath Sereet, Walsall,
Phone, Walsall 33652

DIGITAL CLOCK COMPONENTS. AY-5-1224 clock chip, 3.66. 0.3 in high conomy type LED displays, IJ,-i04 1, 85p; a-6in high ditto, wL-747E 1.70 P.C. 13 . to suit chip and displays, etc. (two types), 95 p cach. MK 50253 alarm clock chip, 550. Full details of both chips, circult diagrams, data, etc., free on request. Add 10 p per order and VAT at \(8 \%\). request. Add \(10 p\) per order and (Dept, ECP), 94 New Chester Road, New Ferry, Wirral, Merseyside, L62 5 AG .
}

\section*{THE SCIENTIFIC WIRE CO.}

Copper-Nickel Chrome-Eureka-Enamelled-Silk-Cotton-Tinned charges o S.A.E. Brings List.

Trade and export enquiries welcome.
P.O. BOX 30, LONDON E4 9BW

\section*{fibre oplic suppliers}
*ARE'S TAILs. Eulld a decorative display with this profeseionally finiehed unit, 221 In diameter with 7.000 mirnoplux siz
bundte dia. \(\dagger-14 \mathrm{~mm}\). kip per metre ( t giter light condult Flenorlex sere 4.2 .28 mm bundit ot 10 cm ).

CROFON 1010. 64 etrand plaetic Hght condult, bundte dit
 from one source dienlays, Internal mutippte itiumination rom one source. display, Inter
FP20 (0.5mm dif.) Oep per 10 m : 24 per 100 m .

FPeo (1.5mm dia.) -4 per 10 m ; se por 100 m .
OPTIKIT 103 . Contains 2 m Crofon 1610 plus 5 m each FP20 the experimenter poind ing compound. A handy peok to the experimenter and lebor itory, 24. .e.
and 5 reffectors for use in proximity detectore intrude detectors, betch counters, techometers, short runge optical communications.
optikit le. 1 each of 6 convex lenees, ca.
OPTIKIT ARE. 1 each of 5 retro-reflectors, E2-so.
CIRCULAR FOLARIsters. Cut that glare. Reduce epecular

 \((2 \mathrm{~mm})\) Red LED. 20 ( \(10+17 \mathrm{p}\) ): MLED 600 TCO2 Red LED

 photodarlington 8 ilicon Dethetor, gain \(\times 2,500\). . \((10+42)\) ) WhO150 8 Ilicon Photetri
*NEW mLetest. Latest Motorola Light Acthated sCR. High eeneltivity \(10 \mathrm{~mW} / \mathrm{em}{ }^{2}\) : high current 400 mA ( SA peetic):

 Prectical "Ultresonic Doppler 8nifinintruder Detector": COHEWT/R ULTHAsOM1C ThAMsouch pair EA. **NEW ** The aEOS日-4OT/A hee proved to bo an verofore introducing the 25 HkHz veralon. Although bend 8uiteble for burgtar aliarm eybitemb, proximity owitchae. Tountere, iovel metert, anth-ootiotion deviome. 25kikz Tx/Rx pair EA.

FIBRE OPTIC SUPPLIERS
(Depl. PE), 2 Loudoun Rond Mews London NWS ODN
mesce note ohenge of antreal

\section*{CABINET FITTINGS}

Stage Loudspeakers and Amplifier Cabs Fretcloths, Coverings, Recess Handles, Strap Handes, Feet, Castors, Locks and Hinges, Corners, Trim, Speaker Bolts, etc., etc.
Send \(2 \times 7 \mathrm{p}\) Stamps for samples and list ADAM HALL (P.E.SUPPLIES)
Unit Q, Starline Works, Grainger Road

HARDWARE. Comprehensive range of screws, nuks, washers, etc. in small quantities, and many useful constructors' items. Sheet aluminium to individual requirements, punched, drilled, etc. Fascia pancls, dials, naineplates in etched aluminium. Printed circuit boards for this magazine, and other individual requirements, one-off's and small runs. Machine engraving in metals and plastics, contour milling. Send \(24 \frac{1}{1} p\) stamps or catalogu SERVICES, Masons Roal, Stratford on Avon, Warwicks. CV37 9NF.

\section*{6-CHANNEL TOUCH TUNING UNIT}

Mechanical tuning a thing of the past. Our all electronic 6 channel unit, with AFC Mute outQut, feeds Varicap tuners for VHF or MW radio, glass fibre PCB, drilled and tinned, all electronic glass fibre PCB, drilled and tinn
components and instructions. components and instructions.
Only \& 5 , inclusive. Six L.E.D.s 41.20 extra. Mail order only.

TECHNALOGICS
8 Egarton Street, Liverpool Le 7LY

FANTASTIC NEW MICROTEST 80 MEASURES ONLY
\(90 \times 70 \times 18 \mathrm{~mm}\) ELECTRONIC ZERO \(\Omega\)


Amazing. Value at \(£ 11.95\) 8 fields of measurement and 40 ranges
PRINTED CIRCUIT BOARD IS REMOVABLE WITHOUT SOLDERING
Verte d.c. rangea: \(100 \mathrm{mV}, 2 \mathrm{~V}, 10 \mathrm{~V} .50 \mathrm{~V}, 200 \mathrm{~V}, 1.000 \mathrm{~V}\) (20k \(\cap / V)\). \(2 \%\) precision on d.c. and a.c. Vohts a.c. 8 ranges: 1.5 V . \(10 \mathrm{~V}, 50 \mathrm{~V} .250 \mathrm{~V} .1 .000 \mathrm{~V}(4 \mathrm{k} \cap / \mathrm{V})\) Amp. d.c. \(\mathrm{Branges}: 50 \mathrm{uA}, 5001 \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 500 \mathrm{~mA}, 5 \mathrm{~A}\) Ohme 4 ranpen: Low \(\cap \cap \times 1 . \cap \times 10 . \cap \times 100\) (from \(1 / 10\) di O until 5Mn)
\(\checkmark\) Outpul 5 ranges: \(1.5 \mathrm{~V} .10 \mathrm{~V} .50 \mathrm{~V} .250 \mathrm{~V}, 1.000 \mathrm{~V}\) Deckels \(s\) ranges: \(+6 d 8 .+22 \mathrm{~dB},+38 \mathrm{~dB} .+50 \mathrm{~dB}\),
+82 dB +82 dB .
Cepechy 4 rangen: \(25 \mu \mathrm{~F}, 250 \mu \mathrm{~F}, 2.500 \mu \mathrm{~F}, 25.000 \mu \mathrm{~F}\)


SUPERTESTER GOAR ICE 20.000 Omm per Voth enentivity - Fully acropned goeinstexternal and small capt dimensions ( \(121 \times\) os \(\times 32 \mathrm{~mm}\) ) Accuracy and trecirty (1\% in D.C., 2\% in A.C.) and sase of ues and readebilty Prill ranges of accessorios

£18.50 circuit board is removable without de-soldaring Aore ranges than any Accessorles (extra) avalitate io

Convert Microteat 80 and Supertester GeOR into following: LIGHTMETER GAUSS METER. ELECTAONIC VOLTMETER, AMPERCLAMP. TAANSISTOR TESTEA. TEMPEFATURE PROBE. PHABE SEQUENCE INDICATOA, \(n \times 100 \mathrm{kn}\) Multiplior, SIGNAL INJECTOA-Sond for detalle.
MORE RANGES FOR LESS MONEY!

\section*{AC/DC Multimator type U4324}

A-DC 0.08-3A-s Ranges
A-AC 0.3-3A-5 Rangee
-DC \(0.6-124 \mathrm{~V}\) V-9 Ranges
V-AC
\(3-000 \mathrm{~V}-8\) Renges
V-AC 3-000 V-A Renges.
Frequency in the range of 4510
20 kHz . Resietance: 500 ont 5 Mohm-5 renges. Decibel: -10 to +12 dB . Accuracy. \(\pm 2.5 \%\). DC
\(+4 \% \mathrm{AC}\). Dlmenaiont: \(167 \times 98\)
\(\times 83 \mathrm{~mm}\) Onty \(\mathrm{ES}-25\)
ALPHANUMERIC NIXIE TUBES B7971
The Alphanumeric ability to dlaplay all the letiers of the olphabet.
numerals 0 thru 9 and special charectera in single tube point of both read ability and olec trical characteris tics. the Alpha

numeric NIXIE tube provides many unique benafits including \(* 170 \mathrm{~V}-21 \mathrm{~mA}\) \& All d.c. operation * Uniform. Continuous dine characters of equal height * Memory with simple solid state drive circuits * Readability in
high ambient light. 200 footiamberts brightnesa high ambient light 200 footiamberts brightneas
\(t\) Long. life with no lose of brightnese \(\#\) Character theng, life
Bases for above sop each
Price only 99p ach plus 14p P./P.

\section*{JUST ARRIVED!!}

\section*{NUMERIC INDICATOR TUBES}

\section*{Ultra-long life. high quallty. o-g and 2 independent deci} mal points. Supply voltage 200 V d.c. Current 14 mA Pule duration \(100 \mu \mathrm{~s}\) Character haight 0.51 . averall
size 1.4 . Brand ne
requirements. Type 0585 j t Surplus to menufecturer's
\(1-25 \varepsilon 1 \cdot 00 ; 25+90 p ; 100+80 p ;\)
\(1,000+\) price on application.
ELECTRONIC BROKERS \({ }^{\text {And }}\) LTP.
49-53 Pancras Road, London NW1 2 QB Tel. 01-837 7781


OLEARING LABORATORY, scopes, recorder, testmeters, bridges, audio, R.F. generatora, turntables, tapeheads, stubilised I'S.S.U.e, sweep generators, test equipment, etc. Lower Beeding 236


SEEN MY LIST? Screws, electrical, all sorts. S.A.E.: C. BIRITTAIN, The Bungalow, Old Titness, Buckhurst Lane, Sunninglill, Áscot, Berks., SLF 7QB.

> I.C. EXPERIMENTER'S KITS Learn about modern electronics with our new series of Kits on digital logic techniques. Kits contain specially selected l.C.'s, Holders, Veroboard, L.E.D.'s, instructions and data. Now available at \(£ 3-50\) each: Kit Two: Flip-Flops Kit One: Gates Kit Three: Shilt Registers Experimenter's Pak, I.C.'s of Gates, Flip-Flops, Inverters, Counters, Holders and data. E3.00. S.A.E.forfurther detoils to: 69 High Street, Ryton, Coventry CV8 3FJ


LOW COST I.C. MOUNTING for any size DIL package. 100 pin sockets 50 p. 7 and 8 hole plastic supports \(5 p\) pair. Quantity rates. S.A.E. details and sample. Trial pack 50p. ( \(\mathrm{P}, \& \mathbf{P}\) 10p order). P.K.G. ELECTRONICS, Oak Lodge, Tansley, Derbyshire, DE4 5 FE .


EXTRA SPECIAL OFFERS "ALL NEW"
\(100 \times 11 \mathrm{~b}\) reels of Resin Cored Solder 18 and 22 s.W.B., price \(\pm 2\) per reel. P. \& P. 20p extra. 1.000 sub miniature Micro Switches S.P.D.T \(5 \mathrm{~A} 125-250\) VAC. Lever action, price 50 p for 2 switches. P. \& P. 10p extra. \(45,0007 / 324\) type \(Z\) c'sunk head self-tapping screws cadmium plated. Price \(f 1\) thousand
E.M.A. (MAIL ORDER)

6 Shaftesbury Road, London E4 7BW

\section*{BUILD YOUR OWN}

YOU ARE INVITED TO SEND S.A.E. FOR LISTS ON OUR VERY EXTENSIVE RANGE OF HIGH QUALITY AMPLIFIERS, PRE-AMPS, F.M. TUNERS, INSTRUMENTS, RADIO CON. TROL, IGNITION UNITS AND MANY OTHER KITS. STATE REQUIREMENTS.
TELERADIO ELECTRONICS 325 Fore St., Edmonton, London N9

\section*{HOME SCIENTISTS}

Get the key to a FANTASTIC WORLD of Previously UNHEARD.OF PROJECTS. The NEW Boffin earalogue lists LOTS of
HIGHLY UNUSUAL, LOW-COST BARHIGHLY UNUSUAL LOW-COS
GAINS, READY-BUILT MODULES.
Here are just a few examples, there are stacks more!
Dazzling MINI-STROBE (pocket sixe) PEOPLE DETECTOR PIg-Ear SOUND-CATCHER
MINI DREAM LABORATORY 63.50
64.20 84.20

Don't take our word for it thoughI GETA COPY AND SEE! SEND ONLY 20p and We'll RUSH YOU A COPY (YOU'LL GET TH 'GOODIES' JUST AS QUICKLY TOO!) BOFFIN PROJECTS
4 Cunliffe Road, Stonoloigh Ewoll, Surrey
(Mail Order U.K. only)

100 PRECISION TURNED SPACERS Build any project with the aid of our pack of 100 brand new top quality assorted spacers, containing 6 and 4BA threaded through and clearance types, round and hexagon, male and ment for only fl-00 post free Electro-Mech Products, 7 Chantry Avenue Bideford, Devon
Monufocturers of Precision Turned Components for the Electronics Industry

\section*{FREE CASE}

Blue Hooded Top-Vents-aluminium4 in \(\times 2\) in \(\times 1 \frac{1}{2}\) in with all orders from PE readers.

BRAND NEW. Full Spec. components in mixed PAK's (semiconductors, resistors, caps, heatsinks etc.). S.A.E. for details.

Normal price \(£ 7.50\) sale price \(\mathbf{£ 2 . 7 5}\) pe PAK including VAT and P. \& P.

Genuine Offer-we now manufacture in strument cases and must dispose of our remaining component scock

\section*{ADFONIC \\ 18 YEW LANE, ASHLEY NEW MILTON, HANTS.}


\section*{SYNTHESISER Modules by Dewtron \({ }^{\circledR}\)}


The synthesiser illustrated was built using Dewtron modules, as sold to constructors for some years now With over 10 years experience in mail-order, we have supplied many famous people and groups. Over 30 types of synthesis modules, some of extremely precision design, e.g. VCO-2 log-law oscillator; 3 -wave o/ps sample/hold/envelope module; 3-octave keyboards, contacts, special tuning-ladder resistors, etc. Famous Modumatrix patching system makes other patching a thing of the past! Send just 20p for full catalogue to

\section*{D.E.W. LTD.}

\section*{254 RIngwood Road, Ferndown} Dorset BH22 9AR

\begin{tabular}{|c|c|c|}
\hline &  & - \\
\hline Adam Hall (P.E. Supplies) ..................... 946 & Electrovalue Ltd. ................................... 876 & Phonosonics ................................. 872,873 \\
\hline Adfonic ............................................... 947 & Elliot Blunt Audio ................................... 888 & Precision Petlte ........................................ 928 \\
\hline Astro Electronics ................................. . 870 & Elvins Electronics ................................... 920 & Pulse Electronics Lid. ................................. 920 \\
\hline Automated Homet ................................ 947 & Euray Trading ....................................... 817 & Pulae Eloctronics Lid. ............................ 920 \\
\hline Axial Products ....................................... 844 & Fibre Optice .......................................... 948 & \begin{tabular}{l}
Radio Components Speciallats ..........936, 937 \\
Radio Exchange ........................................ 923
\end{tabular} \\
\hline Bamber, B., Electronice ........................ 917 & Fibre Optes ............................................. 848 & Radio Shop .................................................... 943 \\
\hline Barclay Electronics ................................ 841 & Gartields .............................................. . 947 & Radnage ................................................. 931 \\
\hline Barrie Electronice ................................. 935 & Greenweld Electronice .................................. 83. & Resedhampton ...................................... 917 \\
\hline Bellard Electronics ................................ 838 & Gromw & Reltran Lid. ........................................... 944 \\
\hline Beta Devlces ....................................... 944 & Harverson' \(\qquad\) & R \& TV Components Lid. .................932, 933 \\
\hline B. H. Components .................................... 931 & Heath (Gloucester) Ltd. \(\qquad\) 019 & R.S.T. Valve Mall Order Co. .................... 876 \\
\hline  & Henry's Radio .............................................. 842 & R.T. Services ......................................... 944 \\
\hline Bl-Pre-Pak Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.83 & I.L.P. Electronice Lid. ............................ 875 & Sales Team ........................................ 880 \\
\hline Bofin Projects ..................................... 947 & Imtech Producti . ............................................. 87872 & Selop Enterprises .................................. 947 \\
\hline \begin{tabular}{l}
British Institute of Engineering \\
Technology
\[
.882,819
\]
\end{tabular} & Industrial RF Service.......................................... 872 & Sexon Entertainments Ltd. .................. 940,941 \\
\hline Technology .882. 919 British National Radio \& Electronics & International Electronice Unilimited ............ 88.85 & Scientific Wine Co. ................................... 948 \\
\hline British National Radio \& Electronic: School ..........................................893, 938 & Instrumental Engineer ............................... 838 & S.C.S. Componente ................................ 871 \\
\hline Burneze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888 & intertext ics ........................................... 845 & Splray Book ............................................... 888 \\
\hline Bywood ................................................ 928 & falad Devices .......................................... 84. & Service Trading ......................................... 877 \\
\hline & JFH Supplies ........................................ 847 & Shopertunities ........................................ 943 \\
\hline Chlitmead Ltd. ......................................8.8. 8 8 & Jones, J. C. ..................................................... 9.45 & Sintel .............................................. 876 \\
\hline Chinaglie ............................................. \({ }_{\text {Corer }}\) & J.W.8. Redlo ...............................................\(^{4} 4\) & Sound Electronics (Newcestle) Lid. .......... 945 \\
\hline  & & Sugden, A. R. ........................................ 938
Swaniey Eiectronice ...................... 874 \\
\hline Clef Products ....................................... 834 & Kensington Supplies ............................... 845 & Swanty Eiectronice ................................. 814 \\
\hline Copper Supplies .................................... 947 & & Technical Book ......................................... 928 \\
\hline Crescent Radio Ltd. ............................... 820 & Light Solderlng Development ...............................38, 888 & Technalogics ............................................... 948 \\
\hline Crofton Electrontcs ............................... 884 & \begin{tabular}{l}
Light Soldering Development .................... 882 \\
London Computer Operatore Trading
\end{tabular} & Technomatic Ltd. .................................. 948 \\
\hline Davian Electronica ................................ 082 & \begin{tabular}{l}
London Computer Operators Trading \\
Centre .................................................. 945
\end{tabular} & Teleradlo Electronics ........................... 947
Trade Oletrlbutors ....................... 939 \\
\hline D.E.W. Ltd. .......................................... 947 & London Eiectronice Coilege .................... 945 & Trafalger Supplies ...................................... 924 \\
\hline Doram ........................................cover ifi & & Trampus Electronics Ltd. ........................ 924 \\
\hline Dzlubas, M. .............................................. 835 & Marco Trading & Vero Eisctronics Ltd. ............................. 943 \\
\hline E \& A Producte ...................................... 831 &  & \\
\hline E. M. A. (Mall Order) ............................. 847 & Medwey Melil Order .................................郎4 & West London Olrect Supplles ................... 934 \\
\hline Eaton Audio .......................................... . . der \(^{8}\) & Minikite Etectronics ............................... 947 & Wilmslow .............................................. 874 \\
\hline Electronic Brokers ................................ 946 & Modern Book Co. .................................. 943 & Wiroless World ........................................ 942 \\
\hline Electronic Design Astociates ............886. 946 Electro-Mech Products ............................. 947 & Osmabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928 & Young Electronics ................................. 872 \\
\hline
\end{tabular}


\section*{Use DORAM components for your project}


SWITCHES


\section*{The doorway to Amateur Electronics}


DORAM'S NEW CATALOGUE OFFERS THOUSANDS UPON THOUSANDS OF QUALITY ELECTRONIC COMPONENTS AND AUDIO ACCESSORIES FROM TRUSTED BIG NAME MANUFACTURERS.
ALL COMPONENTS ARE INDIVIDUALLY CODED AND PRICED - MANY NEW COMPONENTS ADDED FROM CUSTOMER REQUESTS.
16 EXTRA PAGE DATA SECTION.
UNIQUE FREE UP-DATE PRODUCT INFORMATION SERVICE DURING LIFE SPAN OF CATALOGUE.
戋
ALL COMPONENTS SENT BY RETURN OF POST.
POST AND PACKING FREE (only applies for Great Britain, N. Ireland and B.F.P.O. Nos. - overseas orders F.O.B.)
* NO QuIbBLE REPLACEMENT PART SERVICE


DMAM
Doram Electronics Limited | P. O. Box TR8
| Leeds LS 12 2UF
| i enclose 60 . Please send me by return my
new Doram Catatogue. (Overseas orders
\(\mid\) except for B.F.P.O., please add 30p for
| Dost and packing surface only).

NAME
ADDRESS \(\qquad\)
\(\qquad\)


\footnotetext{
Published approximately on the 15 th of each month by IPC Magazines Lid.. Fleetway House. Farringdon Street. London. EC4A 4AD Printed in Fngland by Chapel Raver Press. Andover. Hants. Sole Agents for Australia and New Zealand-Gordon \& Gotch (A/sia) Lid. South Africa-Central News Agency Lid.
Subscriptions not available at home or overseas.
International Giro facilities Account No. 5122007 . Please state reason for payment. "message to payee"
Practical Electronics is sold subject to the following conditions, namely. that it hath nol. without the written consent of the Publishers first given. be lent, resold. hired out or otherwise disposed of by way of Trade at more than the recommended selling price shoun on the cover. excluding Eire where the selling price is subject to \(V\) A. T.. and that it shall not be lent. resold or hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade. or affixed to or as part of any publication or advertising. literary or pictorial matter whatsocver
}

\title{
More than justa catalogue
}

\section*{Projects for you to build.}

4-digit clock, 6 -digit clock, 10 W high quality power amp., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc. CIRCUITS ...Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifers, Capacitance Multiplier, etc. etc.

Full details and pictures of our wide range of components, e.g. capacitors, cases, knobs, veroboards, edge connectors plugs and sockets, lamps and lampholders, audio lead adaptor plugs, rotary and slide potentiometers, presets. relays
resistors (even \(1 \%\) types!), switches, interlocking, pushbutton switches, pot
cores, transformers, cable and wire, panel meters, nuts and bolts, tools, organ
components, keyboards, L.E.D.'s, 7 -segment displays, heatsinks, transistors, diodes, integrated circuits, etc., etc., etc
REALLY GOOD VALUE FOR MONEY AT JUST 40p.

\section*{ELECTRONIC ORGAN}


Build yourself an exciting Electronic Organ. Our leaflet MES51, price 15 p , deals with the basic theory of electronic organs and describes the construction of a simple 49-note instrument with a single keyboard and a limited number of stops.

Leaflet MES52, price \(15 p\), describes the extension of the organ to two keyboards each with five voices and the extension by an octave of the organ's range.
Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are shown in leaflet MES53, priced at \(35 p\).

\section*{No more doubts} about prices
Now our prices are GUARANTEED (changes in VAT excluded) for two month periods-and we'll tell you about price changes in advance for just 30p a year (refunded on purchases). If you already have our catalogue send us an S.A.E. and we ill send you our latest list of GUARANTEED prices. Send us 30p and we'll put you on our mailing list-you'll receive immediately our latest price list then every two months from the starting date shown on that list you'll receive details of our prices for the next GUARANTEED period before the prices are implemented!-plus details of any new lines, special offers, interesting projects-and clip-off coupons to spend on components to repay your \(30 p\) when used as directed.
NOTE The price list is based on the Order Codes shown in our catalogue so an investment in our super catalogue is an essential first step.
Call in at our shop, 284 London Road, Westcllft-on-Sea, Essex. Please address all mall to P.O. Box 3, Raylelgh, Essex, SS6 8LR.

\section*{SYNTHESISER}


A reprint of the complete article giving full construction details published by "Electronics Today International between JanuarySeptember 74 of the international Voltage Controlled Synthesiser. developed as a "state of the art now available, price \(£ 1.50\). S.A.E. please for detailed price list.

\section*{GRAPHIC EQUALISER}


A really superior high quality stere o g raphic equaliser as described in the January edition of "Electronics Today International". We stock all the parts (except woodwork) including the metalwork drilled and printed. 15p brings you a reprint of the article or a S.A.E. please for our detailed price list.

\section*{MTA A P T ITN}```


[^0]:    © IPC Magazines Limited 1975. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are rellable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]:    TO LASKYS CUSTOMER SERVICES DIVISION
    Audiotronic House, The Hyde, London NW9 6JJ. Tel : 01-200 1321
    Please send me the following items

[^2]:    ```
    Please Supply
    Total Purchase Price
    I Enclose Cheque ```

