PRACTICAL

 cdeal for

ALEO INSHIE =

Plus

 as
日BBB

HF *aCOF

500 MHZ D.F.M.
DIHITII Firdulenc intir

Biriownsonle electronics

=	委	5
L ® 깐		
utansemacecest		
scumarevers		
val' INC		

CONSTRUCTIONAL PROJECTS
DIGITAL FREQUENCYMETER by A. J. Buxton
Gives digital readout of frequency measurement of up to 500 MHz 376
ADD-ON CAPACITANCE UNIT by.R. W. Lawrence
Direct measurement of capacitance on your multimeter.
Can be built on the free printed wiring board provided with this issue.* 390
AUDIO COMPASS by M. Kenward
An off-course alarm for use on self-steered yachts and power craft. Allows ears to replace eyes when steering a compass course at night 394
COMPUTER VOICE by E. A. Parr
Generates those "Dalek'-type voice effects 406
GENERAL FEATURES
USING CMOS DIGITAL I.C.s-5 by D. B. Johnson-Davies \& A. M. Marshall Electronic switches and oscillators 384
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices 404
HELLS, BELLS AND DECIBELS by D. Maynard
Ever get confused about dB's? This article helps clarify the subject 411
INGENUITY UNLIMITEDMultiple Octave Organ-Time Switch-Burglar Alarm-Frequency Divider-Indicator forDiscotheque PFL System-Light-on Indicator-Courtesy Light Timer-Dual Fade for SlidePresentation-Low Voltage Indicator-Car Alarm-Recording Level Indicator-Touch Keyboard413
NEWS AND COMMENT
EDITORIAL-Under-Sold? 375
NEWS BRIEFS
Summer School 382
BOOK REVIEWS
Selected books we have received 382
POINTS ARISING
How Inventive Competition-Digi-Probe-Opto-Coupled R.P.M. Meter 382
SPACEWATCH by Frank W. Hyde Soviet Venus Probes-Powersat-Set Backs 383
MARKET PLACE
Interesting new products 410
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 412
PATENTS REVIEW
Latest patent information including price increase 424
*FREE WITH THIS ISSUE - PRINTED WIRING BOARD

Our June issue will be published on Friday, May 14, 1976
(for details of contents, see page 405)

[^0]
ERSIN

for fast easy relfable soldering EASY TO USE DISPENSERS AND REELS IDEAL FOR HOME CONSTRUGTORS
Ersin Multicore Solder contains 5 cores of non-corrosive flux, instantly cleaning'heavily oxidised surfaces. No extra flux is required.

SAVBIT handy

solder dispenser

A coil of Ersin Multicore Savbit Solder in a dispenser 71t 6 in of 18 s.w.g. (2.2 metres of 1.22 mm) The Solder that reduces the weaf of soldering iron bits.

Size 5
32p

SAVBIT solder

 for general purpose workA handy plastic reel of SAvBiT alloy. 63 th of 18 s.w.g. (19.2 metres of 1.22 mm)

Size 12 £1.80

ALU-SOL for

soldering aluminium
New Multicore Alu-sol flux-cored solder!n 16 flux-cored solder In
s.w.g. No extra flux s.W.g. No extra llux
needed. Plastic reel holds needed. Plastic reet hol
36 ft . Supplied with full instructions. Also available in solder dispenser.

Size 4 £2.32

Fine gauge solder for soldering small components
Fine gauge solder for soldering small components 138 it of $22 \mathrm{~s} . \mathrm{w.g}$. (42.0 metres of 0.71 mm) Ersin Multicore 5 core solder wound on a plastic reel. Suitable for intricate work and small components

Size 10 £1.44

NEW SOLDER WICK

For soldering fine joints

Bib Mi-Fi Accessories Limited,
Sole U.K. Sales Concessionaires. P.O. Box 78 Hemel Hempstead, Herts. HP2 4RH

Prices shown are recommended retair excluding VAT, From Electrucal
and Hardware Shous. If uncblanable. send 200 P \& Plus VAT at $8 p$ and Hardware Shops. If uncblarnable. send $20 \mathrm{D} P$ \& P plus VAT at 8 D in the [1. Prices and specificalions sut)

Vero Electronics Limited, Retail Dept. Industriaf Estate, Chandler's Ford, Hants., SO5 3ZR Telephone: Chandler's Ford 2956 (STD 04125)

SA1208D-120 WATTS RMS POWER AMP USES 150W 16A RCA DEVICES

All three types include
- 10 Transistors 4 Diodes-Fibre Glass P.C.B Typical Distortion- 0.4% : Noise - 80dB
Ehort, Open Circuit prooi-Load line limiting
- Only FOUR Connections-Simplicity!
- High sensitivity (240 mV) suits most mixers
- $30 \mathrm{H}-40 \mathrm{kHz} \pm 1 \mathrm{~dB}$ frequency response
- Single supply fine-No output capacitor needed (95V) - Standard 8Ω output-will operate on other impedances
- Compact- $6^{\prime \prime} \times 3^{\prime \prime} \times 1 \frac{1_{2}^{\prime \prime}}{}(15 \times 8 \times 4 \mathrm{~cm})$
E All units individually tested and guaranteed

SA1208D $£ 19.50$

Large S.A.E. brings leallet

POWER SUPPLIES

On glass-fibre P.C.B., high grade transformer, fully fused and ready to wire: PM1201 for one SA1208D £11.60
PM1202 for two SA1208D

PM601/2 for one or two SA608
£10. 50
PM301/2 for one or two SA308
£8.80

IN MODULAR FORM

Printed circuit sub-assembly ersion of disco control unit. Al electronics included. Only plugs, socket and one switeh required
Mono Stereo
£18.50 $£ 27 \cdot 50$

Front panel for elther version
£3.50

SOUNDLITE

3KW CONVERTER MODULE
O/p up to $1 \mathrm{~kW} / \mathrm{ch} a n n e l$ Individual tone and master controls: RCA BA triacs SCINTILLATING LIGHT DISPLAY: Operates from any amplifier: glass-fibre PCB: Unbeatable value at

$$
\mathfrak{£ 1 5 \cdot 5 0}
$$

SUPERFECT MODULE
On P.C.B. Requlres only plug/sockev panet for mounting as destred £27.75
n CONTROLS-L. to R.: Mic Vol/Treble/Bass, Autofade depth, LDeck Vol, R/Deck Volume, Tape Volume. Selector-On-Off

- Individual deck controls AND left/right fader
- Low noise (-80 dB) $20 \mathrm{~Hz}-50 \mathrm{kHz} \pm 1 \mathrm{~dB}$
- Suits all Saxon amplifiers and most other makes t watt headphone monitor-five position switch with

Mono $£ 34.50$
Stereo $£ 49.50$

SYSTEM 7000 LIGHTING CONTROL UNIT

- High audio sensitivity-operates from any amplifier
- Individual tone controls plus master audio control

$$
\text { 238. } 00 \begin{aligned}
& \text { tnc. case and plug } \\
& \text { ready to use }
\end{aligned}
$$

IN PCB

MODULAR FORM
With samt faclltien and performance an complete unite with panole as lliustrated. Up to 20 input modulee may be used with one
mixer. On glene-fibre PCBs mixer On gleat-fibra PCBs
Soldered or edge connections. IM7001/M $\begin{array}{ll}\text { mono input } & \text { E5:50 } \\ \text { IM7001/s } & \text { E }\end{array}$ $\begin{array}{ll}\text { IM7001/s } \\ \text { stereo Input } & \text { E9.00 }\end{array}$ im700e/M
mono mixing
$£ 5.50$ mono mixing
lu7002/s
stereo mixing $\quad \$ 9.50$

- Wputs for sll sources inc. mag. cartridge
 - Only one mixing moduls reautred
 - Only one mixing module required
 - Weeds most amplifiers
 - Modern low noise eircultry

SYSTEM 7000 MODULAR MIXING

- COMPLETELY WIRED WITH STAINLESS PANEL:
- UP TO 20 CHANNELS MONO, STEREO OR MIXED

INPUT
$\begin{array}{lr}\text { Mono } & \mathrm{E} .50 \\ \text { Stereo } & \mathrm{E} 12.00\end{array}$

- $20 \mathrm{~Hz}-30 \mathrm{kHz} \pm 1 \mathrm{~dB}$
- Echo send/return facillty
- Complete-ready to plug in or solde - Individual monltor banel - Send for detalis with panels as Illustrated

MIXER

Mono
Stereo $\quad 12.00$
paocmone
Giant gow whlube Diecharge onergy
Externst Prigogen sudio up to 240 V
Ueo with Bound tive tor ceinbow

- slrobe withect

Smart. Iough Bondone ceace $\sin x$
$\sin x \sin$ apprax.
$\$ 30 \cdot 50$

150 WATT LIQUID WHEEL PROJECTOR

- Complete with whet and tso wath tungeten tamp

Wide range of extre affecte may be attrached - Adjuatable fest
£29-20

LOUDSPEAKERS

12"/50W high grade chasels unite: 14000 gause: preunite: 14000 gause

SAXON ENTERTAINMENTS LTD.

言品 OWI 6

LASKYS now offer this Sinclair Scientific Calculator for a fraction of the original cost. All parts are supplied - all you need provide is a soldering iron and a pair of cutters, complete step-bystep instructions. Assembly time is about 3 hours. The Sinclair Scientific performs logs, trigs and arithmetic at the touch of a button.

FEATURES OF THE SINCLAIR
SCIENTIFIC
Functions summary Four
 and Arctan. Automatic squaring. Automatic doubling. Log 10 and
Antilog10, giving quick access to $x y$ (including square and other roots). Sclentific notatlon. Display shows Sclentific notatlon. Dispiay
5 -digit mantissa and 2-digit

exponent, both signable. 200 decad e range. - 9.9999×10.99 9.9999×1099. Post-fixed operators. Post-fixed oper ators (reverse Polish notation): allow chain calculations of unlimited length. "Upper and lower case" operation. Basic arithmetic keys each have two extra functions. Pocket-sized. $4 \mathrm{~g}^{\prime \prime} \times 2^{\prime \prime} \times \mathrm{H}^{\prime \prime}$. Weight: 402 . Trim-fit plastic carrying case.

LONDON 481 Oxlord Street, W1. 01.493864]

 10 Tottenham Court Road, Wi. $01-6372232$ 33 Tottenham Court Road, WL. $01-6362605$ 257 Tottenham Court Road, W1. 01.5800670 3 Lisle Street, WC2. 01-4378204 118 Edgware Road, W2. 01.7239789 193 Edgware Road, W2. 01.723621। 311 Etgware Road. W2. O1-2620387 346 Edgware Road, W2. 01.7234453 382 Edgware Road, W2. 01-7234194 109 Fleet Street, ECA. O1.3535812 BIRMINGHAM 176Corporation St. 2363503 GRENT CROSS Unil DI9 Brent Cross Shopping Centre, Now open8RISTOL 16-18. 20 Penn Street. 20421 CHATHAM The Pentagon Centre. 407104

CROYOON1O46 Whitgift Centre. 681302

 COLCHE STER Unit AS Lion Walk Shopping Centre, opening FEBRUARY DARTFORD The Arndale Centre. 327348.KINGSTON $38 / 40$ Eden Sliret. 5461271 KINGS TON 38440 Eden Slieet. S46 123
LEICESTER 45 Market Place. 537678 LEWISHAM 29Riverdale, The Centre. 318228 NORTHAMPTON 78 Abington St. 35753 NOTTINGHAM 5.7 Lower Parliament ST. 4898 OXFORD 16 Westgate Centre. 122870 REAOING 6 Friars Walk, Friar Si. 595459 RICHMOND 32 Hill Street, 9481441 SOUTHEND 205;206 Chu chill West 61224) SLOUGH 65 Queensmere Centre. 752401 SWINDON 12 Brunel Plaza. TUNBRIDGE WELLS 53/57 CamdenRd. 23242 WOLVERHAMPTON 30 Wulfrum Way. 23384

To LASKY S CUSTOMER SERVICES DIVISION (Dept. K) Audiotronic House, The Hyde, London NW9 6JJ. Tel:01-200 1321 Please send me Sinclair Scientific Calculator Kits at $£ 6.50$ plus 50p p\&p
NAME
ADDRESS

SIGNATURE

TOTAL PURCHASE PRICE

Please send me FREE Hi-Fi catalogue price list \square I enclose cheque \square postal order \square money order \square wish to pay by Barclaycard/Access/Diners Club and my number is

Registered in England No. 347947 at Löwer Grosvenor Place, London SW1 OEX

12In LONG PERSISTENCE CRT. Full spec. Pilce 58 - 50 to include V.A.T. and Carriage.
MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITM OUR NEW LOW PRICED SOLID STATE SWITCH. 2 Hz to aMHz. Hook up to a 9 volt battery and connect to your scope and have two races for ONLY E8.25, P. \& P. 25p. (Not cased, not callbrated.)
WIDE RANGE WOBBULATOR. 5 MHz to 150 MHz up to 15 MHz sweep width, Only controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV If alignment, illters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect $6 \mathrm{3V}$ a.c. and use within minutes of receiving All this for ONLY £s-75, P. \& P. 35p. (No cased, not calibrated.
20 Hz to 200 kHz WB, SINE and SQUARE GENERATOR. Four ranges, Independen mplitude controls, thermistor stabilised Ready to use 9 V supply required fe - B each. SINE WAVE only \& 8 each P. \& P. 35p. (Not cased, not calibrated.) GRATICULES $12 \mathrm{~cm} \times 14 \mathrm{~cm}$ high quality plastic 15p each. P. \& P. 8p.

* Large quantity of good quility com-ponents-NO PASSING TRADE-SO we offer 3 bb of ELECTRONIC GOODIES for $£ 1 \cdot 70$. Post paid.
METEP PACK-3 different meters for 22 P. \& P. 550

MIN TAANSFORMER. 240 V input, 3 V 1 A output. Brand new 85 p each, P. \& P. 20p P.C.B. PACKS. S \& D. Quantity 2 sq. 1 no tiny pieces. 50p, P. \& P. 37p.
-CAPACITOR PACK-50 brand new com. ponents. only 50 p, P. \& P. 37p
SOME OSCILLOSCOPES ALWAYS AVAILABLE. S.A.E. stating specification and price range

-TAIMMER PACK. 2 twin $50 / 2000 \mathrm{~F}$ ceramic, 2 twin 10/60pF ceramic; 2 min strip with 4 preset $5 / 20 \mathrm{pF}$ on ench; 3 air spaced preset 30 100pF on ceramic base ALL BRAND NEW. 25p the lot, P. \& P 15p.
 - PHOTOCELL equ. OCP7t. 13p mach - MULLARD OCP70, 10p each.
 LISTS OF EQUIPMENT, etc. now availeble. S.A.E. please. Callers always welcome.

*MODERN TELEPHONES. Type 706: two tone grey or black. E3.75 each. Style similar to Type 746. grey or black each As above but discoloured arey only, 22 oach. P. \& P. all types 45 p each.
-HANDSETS. Complete with 2 Inserts and iead, f1 25 each, P. \& P. 37P
-DIALS. ONLY 50 each, P. \& P. 25p.

- HIGH VALUE-PRINTED BOARDPACK Hundreds of components. transistors. etc.- No 2 boards the same. No short leaded transistor computer boards [1-75, post paid.
*CRYSTALS. $4 \cdot 43 \mathrm{MHz}$. Brand new, $51-25$ each. P. \& P. 15p.

RESETTABLE COUNTERS- d digit by Sodeco/Stonebridge. 1,000 ohm coll, 12 each. P. \& P. 35p.
*BEEMIVE TAIMMER $3 / 30 \mathrm{pF}$. Brand new. Qty 1-9 13p each. P. \& P. 15p: 10-99 10p each. P. \& P. 25p: 100-999 70 each. P. \& P Pres.

ME CAYSTAL DAIVE UNIT 191 in rack mount. Standard 240 V input with superb crystal oven by Labgear (no crystals) is each. Carr. 12.
-1,000 FF FEED TMRU CAPACITORS Only sold in packs of 10.30 p, P. \& P. 15 p .
(rear Tech. College)

ELECTROOIC DIGITAL CLOCK ulth alarm and snooze features

Features:

- 0.7 INCH HIGH DIGITS
- VARIABLE INTENSITY
- 24-HOUR ALARM
- 5-MINUTE REPEATING, SNOOZE ALARM
- ALARM SET INDICATOR
- SNOOZE INDICATOR

Size: $130 \mathrm{~mm} \times 90 \mathrm{~mm} \times 95 \mathrm{~mm}$
Weight: $100 z$

- PULSING SECOND INDICATOR
- POWER INTERRUPT INDICATOR
- alarm cancel featuresTILT OPERATION
- alarm tone output
- A.M.-P.M. INDICATOR

Power supply: 110 V a.c. $\pm 10 \% 60 \mathrm{~Hz}$ 230 V a.c. $\pm 10 \% 50 \mathrm{~Hz}$

Manufactured to high standards by a major American electronics corporation, this superbly styled solid-state timepiece is made available to all readers fully guaranteed.

SPECIAL OFFER $£_{12}$

Plus 99p VAT
Free trial in your home-Try out the clock in your home. If digital time is not for you return it in original condition within 10 days and we'll refund your money without question.

Mail order customers: Please enclose $55 p$ for postage and packing.

TIME MICROELECTRONICS
33 Wateridge Road, Basingstoke, Hants RG21 2RA. Tel. (0256) 66961

Please send \square electronic clocks. as illustrated. I enclose cheque \square postal order \square money order \square

Name
Address \qquad

[^1]
Δ
 Rising to the occasion at High Fidelity 1976

Room 1006 at the Heathrow International Hotel gives London another opportunity to see the New BD3 in action, alongside the rest of the Connoisseur range.

Down to the last detail the Connoisseur BD3 transcription turntable is a must for the serious audiophile, all present day requirements being met with an ease only the finest products can maintain, with accuracy as the keynote. The BD3 incorporates a studro-style rising turntable principle giving accurate cueing; the turntable rising to the pickup height on quick start, with run-up time being almost immediate - a fraction of a second. Plus a pickup arm without drift. Other interesting features include the
electronically controlled variable speed DC motor. The power source which converts mains to a stabilised 9 v . DC supply is external, and consequently there is no hum field. Three speeds: 33 45 and 78 rpm , all with variable control. The belt driven $11 \frac{1}{2^{\prime \prime}}$ diameter turntable with a neon illuminated stroboscopic disc, complete on wood plinth and a hinged acrylic dust cover.
The BD3 arm is an ideal companion to the turntable, being constructed from lightweight aluminium tubing, incorporating unipivot with a unique method of magnetic stabilisation for the horizontal bearings, and knife edges for the vertical, adjustable magnetic bias and an inter-changeable lightweight head shell which will accept the majority of cartridges, and enabling tracking weights in the region of 0.6 gms . to be used.
For further details of the BD3 or the BD1 Kit, SAU2 arm, the BD2 integrated assembly and SCU1 ceramic cartridge, please contact your dealer or send a stamp for brochure.

Commoissertr BD3 tanscription unit

Manufactured by:-
A. R. Sugden \& Co. (Engineers) Ltd.

Atlas Mill Road, Brighouse,
Yorkshire, HD6 1 ES.
Telephone: Brighouse (04847) 2142.
Telegrams \& Cables: Connoiseur, Brighouse.

PLEASE ADD 8\% VAT UNLESS OTHEAWISE STATED

BAROAIN OFFEM

 MIXED COMPONENT PACKB, containing renietors, capachors, ewitches, pote. etc. All newirsidom sample beg reveled approx. 700 (random sample bag reveled app
 TuHED Clith 2 giack sman tuning knob, which moves an internal core to vary the inductance. many ute iafly rawound, 3 for 50 p .
TWiN I.F. CAN8, approx, $1 \mathrm{in} \times \not \mathrm{in} \times 1 \mathrm{in} \mathrm{hlgh}$,
around $3.5-5 \mathrm{MHz} 2$, around $3.5-5 \mathrm{MHz}, 2$ eeparate transformere in SMALL MAINS SUPPRESSORS (mall chokes. suALL MAINS SUPPRESAORS (smail chokes.
tdoal for redio. HLFI inpute. ic.) approx. fin x
PERBPEX TJNER PANEL (for FM Band 2 tunvere) marked se-108 MHz and Channele 0.70, clear numbera, rest blackod out, omart modern appearance, size approx. of in $\times 1 \mathrm{Hn}, 2$ for 35 p .
Multiturn Pote, 10 Purn, tin apindie (ex equip). Multiturn Pote, 10 Purn, tin spindie (ox-aquip).
following values avaliabte. $2 \mathrm{kohm}, 5 \mathrm{kehm}$, following valutes
$400 \mathrm{mohm}, ~$ el wach
Lead suppressore (10 kohm) for moble plug
fesid, 4 for 30 p . $1 \mathrm{~mA}, 4$ for 50 p .
1 mA Meters, 2 in aquare, plestic fronte these have ese paper scale stuck over the original marked
$0-1 \mathrm{~mA}$ which la sally peolec ofl and an internal 18K roulator which ia seally removed). E1-75 ach or 2 for cs .
A/S Mlidget 3 pole 4 way, rotary awitches.
40p ench. op each
SPECIAL OFFER
Miniature 500 hm Coan. high quality, PTFE naulation and blua PTFE cover, solid silver plated inner, and allver plated brald. approx 3 m . overail diamuter (|deal for untt witing of RF tagoe up to 23 cms . otc.). 4 metree for 5 ep .
THANSISTOM HEATIINKS, to take $2 \times$ TOIB ranslatore. ecrew in clempe, block size $1 \times \dagger$ thr, with holes for mounting, 3 for Sop.
MIOH QUALITY BPEAKERS, 8 tin \times Bin Allotical, only 2in deep, inverse magnet. 4 ohms, rated up to $10 \mathrm{~W}, \mathrm{tc}$ - 5 . avaliabie). $+23 \%$ VAT.
TV Plưa Ano sockets
TV Plug (mbetal type). 5 for sep.
TV Sockota (metal trpe). 4 for sep.
TV Line Connectore (beck-to-bseck sock wia).

2-6pFin 10 mm circular caramic trimmart (for VH/F/ UHF work) 3 pin mounting. 5 for 50 p . TO3 tranalator Ingulator sots, io for sep. PC Board Withdrawal hendlet. mixed cols. Soldor. 20 SWG. 60/40 alloy, approx 8 y da for 25 . MINIATUAE 2 PIM PLUGS AND SOCKEFS (fit into tin hole. pins anclosed, with covers for chasele mounting, or con be used for in-line + coveru. 50 p .
PROQRAMMERS (magnetic devicea). Contsin 9 microswitchot (sultable for malna operation) with 8 rotating came. all individually edjustable. deal for witching dieco llonts. displaye, ete. slow motion motor to drive cams, not supplied) 9 switch veraton $\mathbf{~ + 1 . 5 0 , ~ o r ~} 15$ switch veraion 82 . HEAVY DUTY HEAT INK BLOCKS, undriliod. base area $2 \mathrm{ifin} \times 2 \mathrm{in}$. with of 1 nm . total height
ov RELAYB. Continental pype. 2 pole change Over. 33 MA MAGETS jin equare, with mounting
 height 0.3 in red, with declmal points, 150 V to 200 V (nominal 180 O) operation. These are highvoll induetrial type and therefore brighter than normal diaplaye. All brand new. AT THE BARGAIN PRICE OF SOp PER DIGIT. TYPE 332
(two dight in one mount) $\$ 1$ ouch. TYPE 333 (three digits on ona mount) $51 \cdot 50$. (Sorry, no aingle diglt avallabte.) Date Suppliad.

BS 20 (VHF OEC/Mult). 3 for 50 mp .
BC100 (mater can. 4 for 50 p .
PBC 100 (piastle ECi00). 5 for sop.
oczoo Trunsilitorn, 8 for sep.
BCY72 Transistars. 4 for Eep.
PNP eudio type TOS Tranalators, 12 for 2sp BF152 (UHF ampimixer). 3 for sep.
BA121 Varicap Dlodes, 4 for 500 .
tin polythene chasein mounting tuseholdere

$1+$ in polyt. 8 for ner
 Mulard Tubular coramic trimmers, 1-18pF, 8 tor 5 ep .
 C. ss. some coded. 14 DIL type. untented.

 mixed, 20 for 250 .PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

PLUGA AND SOCKETE

aNC Socket (Single-hote mounting type) Ex* BNC PYuge ($\mathrm{Ex} x$-quilpment), F for ci .
N-Type Pluge 50 ohm. ©00 esch, 3 for $\mathrm{\Sigma 1} 1.50$. N-Type Sockete (4-hole chassia mounting. 50 ohmes (a small coax lasd type). Sep siech. PL25s Pluga (PTFE), brand naw. packed with sonucera, Up or 5 for ts)
type), sop ench or 5 for $42 \cdot 21$
type. 1 on Ph or for 2 2as. $+10 k t)$.
+1

+ 1tikt).
 on toest equipment, tic., 2sp each.
Oulgin Flat 2-pin Flex Connectors non-reveralbis tep yach. Mocite Converters, 24 V DC input $13 \cdot 8 \mathrm{~V}$ at each (ldeal for running 92 V car radio from 24 V lory battery).
Pkte. of 2BA Nute (the seit-
the nyion Insert) 100 for 50 p .
We now stock Spiralux Toole for the electronlc onthuaiant. Screwdrivern, Nut Spannars, BA and Metric slzes. pop rivet guns, otc. S.A.E. for liat. F. Cane, fin equare, eultable for rewind. 6 for $30 \mathrm{p}+25 \%$ VAT.
Mindature
$50 \mathrm{p}+25 \%$ Varphon
with min. jeck plug. 2 for
Dubliter Electrolytice, $50 \mu \mathrm{~F}, 450 \mathrm{~V}, 2$ for 80 p . Dubiller Elactrolytice. $100 \mathrm{uF}, 275 \mathrm{~V}, 2$ for Sko . TCC Eiectrolytics, $1000 \mathrm{\mu F}, 30 \mathrm{~V}, 3$ for 6 Fop . Plesey Electrolytich, $1000 \mu \mathrm{~F}$. 180 V . 40p each (3 for It).
Dubilier Elecirolytica, $5000 \mathrm{uF}, 35 \mathrm{~V}$. 50 peach .
 TTT Electrolyticy, 86000 uF . 25V, high grade. ecrew

 OC. Screw torminale 11.50 each.
PLEASE ADD 25% VAT TO ALL CAPACITORS
A LARGE RAMGE OF CAPACITOAS AVAILABLE

SPECIAL OFFERI
MANS TRANSFORMER, TYPE 14/4. 14V at 4A, -

DIECAST BOXES (epprox aize in Inehet $1.3 \times 2.3 \times 4-2$
$4.6 \times 2.3 \times 4.5$ $4.8 \times 2.3 \times 1$.
$4.8 \times 3.8 \times 1$
$4.8 \times 3.8 \times 2$

$8 \times 4.8 \times 1$
$8.8 \times 5.8 \times 2$
$10.8 \times 8.8 \times 2$
Please add 8\% Vat

WELLER BOLDEAING INONA
EXPELT. Bulit-In-wootlight Illuminates work
 EXPEAT SOLDER GUN. En- $20+$ VAT (54 p) EPPEMT SOLDER OUN KIT (apare bitu case
 MA贝KEMAN SOLDERING IAON
SP150 $15 \mathrm{~W} 2 \mathrm{z} \cdot 52+\mathrm{VAT}$ (20p)
SP25D $25 \mathrm{~W} 2.52+\mathrm{VAT}$ (20p)
$\begin{array}{ll}\text { SP2SD } 25 W & 22.52+V A T \\ \text { SP250 } & \text { (20P) }\end{array}$
SP25DK $25 W+$ bits, otc, kit Es 12 + VAT. (2sp) $\mathrm{cr} \cdot \mathrm{HO}+\mathrm{VAT}$ (14p)
spanti bite

TCP1 TEMPEAATURE CONTROLLED IRON. Temperature controlisod iron a PSU, $\mathbf{£ 1 0 . 4 3}$ +VAT EL1.4n).
\&PARE TIP span: TIP
Type CC single Plat. Type K double fitt tine tip. ALL SPARES AVAILABLE
MULTKCORE SOLDER
Size 5 Savblt it B.w.g. In alloy dispenser, 32 p

 + VAT (15p)
MINALATUAE PLIERS High quality "Crescent". crade In USA. $14 \cdot 38+$ VRT (90p) in USA, © $5 \cdot 45+$ VAT (44p).

[^2]

WILMSLOW THE Firm for speakers!

Beker Group 25, 3, 8 or 15 ohm Baker Group 35, 3, 8 or 15 ohm Baker Group $50 / 128$ or 15 ohm Baker Group $50 / 158$ or 15 ohm Baker Deluxe 1248 or 15 ohm Baker Major 3, 8 or 15 ohm Baker Superb 8 or 15 ohm Baker Regent 12In 8 or 15 ohm Baker Auditorlum 12in 8 or 15 ohm Baker Auditorlum 45in 8 or 15 hm
Castie ARS/DD 4 or 8 ohm Catestion G12M 8 or 15 ohm Colestlon G12H8 or 15 ohm Celestion G12/50 8 or 15 ohm Celestion G12/50TC 8 or 15 ohm Celestlon G12/50 2238 e/con Celestion G12/50 2239 /cone, alum. dome Celestion G15C 8 or 15 ohm Colestlon G18C 8 or 15 ohm Celestion HF1300 8 or 15 ohm Calestion HF2000 8 ohm Celestlon MH1000 E or 15 ohm Celestlon C03K
Decea London rlbbon horn
Decea London CO/1000/8 croseover Decce DK30 rlbbon horn
Decca CO/1/8 croseover (DK30)
EMI $15013 \times$ Bin d/cone 8 ohm EMI 13×8 ln 20 W base 8 ohm
EMI $14 \times$ 9In base 8 ohms, 14A770
EMI 8×51 n. 10 W , d/cone, roll aurr
EMI $8+\ln \mathrm{d} /$ cone, roll surr. 8 ohm
EMI sin roll surr, base
EMI 5in mid renge
Elac 59RM109 (15 ohm), 59RM114 (8 ohm)
Elac sjin d/cone, roll surr., 8 ohm
Elec 10In 10RM239, 8 ohm
Eagle Crossover 3060 Hz 3.8 or 15 ohm Eagle FR4
Eagle FR85
Eagle FR8
Eagle FR10
Eagle HT45
Eagle HT21
Eagle MHT10
Eagle FF28 Multleell, horn
Fane Pop 15, 8 or 16 ohm Fane Pop 25T, 8 or 18 ohm Fane Pop $33 \mathrm{~T}, 8$ or 18 ohm Fane Pop 50, 8 or 16 ohm Fane Pop 55, 8 or 18 ohm Fane Pop 60, 8 or 18 ohm Fane Pop 70, 8 or 18 ohm Fane Pop 100, 8 or 18 ohm
Fane Crescendo 12A, 8 or 18 ohm Fane Crescendo 12BL, 8 or 18 ohm Fene Crescendo $15 / 100 \mathrm{~A}$, , or 18 ohm Fane Cresecendo $15 / 125,8$ or 18 ohm

54-64	SPEAKERS	
10.25	Fane Crascendo 18, 8 or 18 ohm	ct7.05
\$14.00	Fane 910 Mk II horn	c15.75
¢18.62	Fine 920 Mk It horn	c35.05
\$13.75	Fane HPX1 crossover 200W	c2.50
[11.37	Fane $13 \times$ 8in, 15 W dual cone	c5. 50
E18. 12	Fine 801 T in d/c, roll eurr.	c. 05
510.00	Gause 12 ln 200 W	cele 400
[16.25	Qause 15in 200w	cte $\cdot 00$
[21.5	Geuea 18 in 200W	[123.00
[$5 \cdot 8$	Goodmans Axent 100	ct.44
[12.85	Goodmane Audiom 2008 ohm	[14. 25
115.95	Goodmane Axlom 4028 or 15 ohm	122.00
[18-5	Goodmans Twinaxlom 8, 8 or 15 ohm	[10.55
[18.00	Goodmans Twinaxiom 10, 8 or 15 ohm	[18.95
218.50	Goodmane 8P 8 or 15 ohm	15.95
117.00	Goodmant 10P 8 or 15 ohm	c. 25
[24.t5	Goodmana 12P or 15 ohm	514.35
[34.50	Goodmans 12PG 8 or 15 ohm	218.50
[7×75	Goodmane 12PD 8 or 15 ohm	[18.95
4.50	Goodmene 124×8 or 15 ohm	$\mathbf{8 3 0} .00$
¢13.50	Goodmane 15Ax 8 or 15 ohm	[45.00
[4. 95	Goodmane 15P 8 or 15 ohm	122.50
\$32.00	Gooomans 18P 8 or 15 ohm	132.00
47.50	Goodmans Hlfax 750P	c18.00
f1s.65	Goodmans 5in midrange 8 ohm	[4.50
45.00	Jordan Watte Module, 4, 8 or 15 ohm	817.06
12.94	Kof T27	4.5.75
¢0.00	Kof T15	15.94
\$13.25	Kof B110	17.50
[3.5	Kof B200	fer 70
4.37	Kot B139	¢18.75
[6.37	Ket DN8	12.31
[3.50	Kef DN12	[5. 5
[3.75	Kof DN13 SP1015 or SP1017	[4.50
[4.25	Lowther PM8	154.00
[4.25	Lowther PM6 Mk I	138.50
¢1-75	Lowther PM7	E54.00
[$5 \cdot 12$	Peerlese KO10DT 4 or 8 ohm	c4.03
[${ }^{\text {b }}$ - 82	Peerlese DT 10 HFC 8 ohm	ct. 16
[12. 31	Peerleee KO40MRF 8 ohm	\$10.31
¢15. 2	Peerlees MT225HFC 8 ohm	c3.12
84.40	Richard Allan CA12 12In base	122.60
ce. 11	Rlchard Allan HP8B	[13.25
c4.44	Richard Allan LP8B	cs. 35
ce.00	Rlchard Allen DT20	c5. 75
15.25	Rlchard Allan CN8280	[15.00
17.50	Rlchard Allan CN820	13.50
c9. 25	Rlchard Allen Super Dlaco 60W 12In	[16. ${ }^{\text {c }}$
121.50	Richard Allen CQ15 15In base	c27.95
E15.50	Rlchard Allen Super Dleco 12in 60 watt	115.95
E17-95	Rlcherd Allen Super Dleco 10In 50 watt	c3. 35
E18.75	Rlchard Allen Super Dieco 8in 50 watt	[11.85
E27.08	Radford BD25	[18.44
[37.05	Radiord MD9	[11.50
c3t. 05	Radford MD8	511.50
[4te. ${ }^{5}$	Radtord TD3	cit.04
c5\%. 5	Radiord Croee Over Network	[14.25

Complete kits in stock for Radford Studio 90, Radford Monitor 180, Radford Studio 270, Radford Studio 360, Hi-Fi Answers Monitor (Rogers), Hi-Fi News No Compromise (Frisby), Wireless World Transmission Line (Bailey), Practical $\mathrm{Hi}-\mathrm{Fi}$ and Audio Monitor (Giles), Practical Hi-Fi and. Audio Triangle (Giles), Popular $\mathrm{Hi}-\mathrm{Fi}$ (Colloms), etc.
Construction leaflets for Radford, Kef, Jordan Watts, Tannoy, Hi-Fi Answers Monitor, free on request.
P.A. amplifiers, microphones, etc., by Shure, Linear, Eagle, Beyer, AKG, etc.
FREE with orders over £10—"Hi-Fi Loudspeaker Enclosures' book.

Akal, Armstrong, Bowers a WIIkins, Catie, Celestion, Dus, Goodmans, Kof, Leak, Ploneer, Radiord, Dusi, Goodmans, Kef, Leak, Ploneer, Radiord,
Rlchard Allan, Rotel, Tandberg, Trlo. Videotone, Wharfedale, etc.-ask for our Hi-FI discount price Ilst.

ALL PRICES INCLUDE VAT
(PRICES CORRECT AT 26.2.78) Send stamp for free 32 page booklet "Choosing a Speaker')
ALL UNITS GUARANTEED NEW AND PERFECT Carriage and insurance: Speakers 50p ench (12In and up 75p each): Kite 80p each ($\mathrm{i} 1 \cdot 60$ per pair): Tweeters and Croseovers 30p esch.

WILMSLOW AUDIO

Dept HFA
Loudspeakers, mall order and export: Swan Works, Bank Square, Wilmslow, HI-FI, Radio and TV: Swift of Wilmslow, 5 Swan Street, Wilmslow, Cheshire.
PA, HI-FI and Accessories: Wilmsiow Audio, 10 Swan Street, Wilmslow, Cheshire.
Telephone: Loudspeakers, mail order and export-Wilmslow 29599; Hi-FI, Radio. atc.-Wilmslow 26213

ENGINEERS

Do you want promotion, a better job, higher pay? "New opportunities" shows. you how 10 get them through a low-cost. Home Study Course. There are no books to buy and you can pay asook to buy and you can pay as you
his easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 44 page free book NOW! No obligation, nobody will call on you. It could be the best thing you ever did.

CHOOSE A BRAND NEW FUTURE HERE

Aldermaston College

Dept. TPE 17. Reading RG7 4PF
also at our London Advisory Oplice, 4 Fore Street Avenue, Moorgate, London EC2Y 5EJ. Tel, 01-828 2721.
NAME (Block Capitals)
ADDRESS

Postcode
Other subjects of interest
HOME OF BAITISH INSTITUTE OF ENGINEERING TECHNOLOGY

REVERSIBLE ASSEMBIY FRAME FOR PRINIED CIRCUTIS Simply assemble, turn over and solder

Ist GRADE COMPONENTS

We hold $£ 250,000$ worth of components and oll items listed in this advertisement are ex-stock ot the time of going to press - All products guaranteed - No minimum order charge

SIGNETICS 74 series TTL

N7400	14p	N7453	p	N74148	f 1.26
N7401	p	N7454	18p	N74150	62.45
N7402	14p	N7460	18p	N74151	¢ 1.44
N7403	$18 p$	N7470	36p	N74153	68 p
N7404	18p	N7472	24p	N74154	C1.44
N7405	20p	N7473	36p	N74155	72p
N7406	41p	N7474	30p	N74156	$72 p$
N7407	$41 p$	N7475	54p	N74157	68p
N7408	$41 p$	N7476	37p	N74158	68p
N7409	20p	N7480	50p	N74160	$99 p$
N7410	15p	N7483	99p	N74161	$99 p$
N7411	$21 p$	N7485	61.17	N74162	99 p
N7413	29p	N7486	32p	N74163	99p
N7414	45p	N7490	63p	N74164	\$1.26
N7416	27p	N7491	90p	N74165	¢ $1 \cdot 26$
N7417	27p	N7492	63p	N74166	C1. 26
N7420	15p	N7493	48p	N74170	¢1.80
N7421	$21 p$	N7494	90p	N74174	fl.13
N7426	23p	N7495	72p	N74175	$81 p$
N7430	15p	N7496	6.1.63	N74180	90p
N7432	23p	N74100	¢ 1.35	N74181	63.24
N7433	27p	N74107	32p	N74182	90p
N7437	27p	N74109	54p	N74190	6.1 .44
N7440	18p	N74116	¢1.35	N74191	61.44
N7442	70p	N74121	36p	N74192	61.44
N7443	\&1.35	N74122	50p	N74193	61.44
N7444	¢1.35	N74123	90 p	N74194	61.08
N7445	t1.35	N74125	43p	N74195	90p
N7446	¢1.35	N74126	43p	N74198	61.98
N7447	¢1.12	N74128	45p	N74199	¢ 1.80
N7448	\&1.35	N74132	45p	N74221	90 p
N7450	18p	N74145	90p	N74279	72p
N7	18p	N74147	[1.44	N74298	61.28

LINEAR ICs

SIGNETICS

M301AV Ext. comp. operational amplifie	p
LM307V Int. comp. operational amplifier	45p
C1458V Dual comp. operational am	80 p
NE510A Video amp	C1.58
- NE540L Audio power driver	61.17
NE555V Timer	44p
NE556A Dual S55 14 pin	95p
NE561B Phase locked loop with A.M. demod	C2.70
NE562B Phase locked loop with V.C.O.	62.70
NE566V Phase locked loop fur	C1.50
- pa239a Dual low noise st	95p
A741CV Op	42p
A747CA Dual op. amp.	90 p
MOTOROLA	
MC1303L Dual stereo pr	A
- MC1306P dW audio amp	N/A
MC1304P F.M. multiplex stereo	1.52
C1310P Stereo demo	¢ 1.83
-MC1312P	(61.94
-MC1314P	63.31
*MC1315P	63.59
*MC1330P Low level video detector	77p
	$88 p$
C6040	N/A
G.I.M. CONSUMER CIRCUITS	
AY-5-1224 12/24 hour digital clock circuit	c4.25
Y-5-3510 $3 \frac{1}{2}$ digit DVM circuit	C6.10
- AY-1-0212 Master cone generator	C5.55
*AY-I-5051 4 stage divider	81.20
*AY-1-6721/5 5 stage divide	61.30
-AY-1-6721/6 6 stage divider	61.45
- AY-1-5050 7 stage divider	61.75
C550 8 digit calculator chi	66.50
C500 B digit calculator chip	63.25
SIGNETICS MEMORIES	
N82SO6B 256 bit bipolar RA	64.50
2602B MOS 1024 bit static	63.00
FERRANTI ICs	
ZNI040E Universal counter/display cct	
ZNI034E Precision timer cet	¢2.99
ZN414 A.M. radio circuit	¢1.00
Data and circuits on ZN414	5 p

MOTOROLA

C-MOS

MC14000CP
MCl400ICP
MCl4002CP
MCI4006CP MC 4006 CP f 1.57 MCl 4040 CP MC14007CP 19p MCl 4046 CP C Cl 1.67 $\begin{array}{ll}\mathrm{MCl} \\ \mathrm{MCl} 4009 \mathrm{CP} & \mathrm{E} 1.17 \mathrm{MCl} 14049 \mathrm{CP} \\ \text { \& } 1.04 \mathrm{M}\end{array}$ $\begin{array}{lll}\text { MC14009CP } \\ \text { MCI4010CP } 1.04 \\ \text { MC14050CP } & 53 p \\ \text { MC14071CP } & 19 p\end{array}$ MCl
MCl
MCl MC14012CP 19 p MCl4081CP $19 p$ MCI4013CP 53p
$\begin{array}{ll}\text { MC14014CP } & \text { fl.54 } \\ \text { MC14015CP } & \text { fl.17 } \\ \text { MC1 }\end{array} 4500$ serjes MCl4016CP 53p MCl4510CP \&1.26 MC14017CP fl.13 MCI451ICP $\& 1.35$ MCl 4021 CP \& 1.17 MCl 4528 CP \&1.01

 $\mathrm{MCl} 4024 \mathrm{CP} \underset{\mathrm{M}}{\mathrm{M}} .14 \mathrm{MCl} 455 \mathrm{CP} \mathrm{C} 4.07$ MCl
MCl MCI4027CP 78p MCI4585CP fl. 46

COMPLETE LIST AVAILABLE ON MCI4500 SERIES.

 SEND S.A.E.MULLARD AUDIO AND RADIO MODULES
*LPII73 loW Audio Amp
LPII8I RF-IF
LPIIB3/2 Stereo Pre.amp Module
LPII84/2 Very low distortion preamp stereo
LPII85 FM IF Amplifier
*LPI 186 FM Tuner Module
64.46

	E7.78

MONSANTO LEDS AND DISPLAYS-THE FINEST IN THE WORLD
R.3" seven segment displays

Red Groen Yollow
MAN7I MANSI MAN8I common anode R.H. decimal 41.34 MAN72 MAN52 MAN82 common anode L.H. decimal $£ 1.34$ MAN74 MAN54 MAN84 common cathode R.H. decimal 11.34

LEDS

TIL209 typecase, high intensity
MV5074B red $15 p$ MV5274B green 32p YOLTAGE REGULATORS
Motorola Variable
Motorola $\mathrm{MCl} \mathrm{Cl}^{2} \mathrm{CP} 2$ pos.oriableg. $2-37 \mathrm{~V} 150 \mathrm{mAd.c}$
MCli23CP2 pos, or neg. $2-37 V$
MCI46IG
positive $0-40 \mathrm{~V}$
500 mA d.c.
$57 p$
3.22 Motorola Fixed
MC7805CP 5 V positive tI.42 MC7905CP 5V negative CI.84 MC7812CP 12 V positive ©1.42 MC7912CP 12 V negative E1.84 MC7815CP 15 V positive \&1.42 MC7915CP 15 V negative \& 1.84 MC7818CP 88 positive C1.42 MC7918CP 88 negative $\mathbb{C 1} \cdot 84$ MC7824CP 24 V positive $£ 1.42 \mathrm{MC7924CP} 24 \mathrm{~V}$ negative 41.84 MLM 309 K 5 V positive TO-3 can

TRMACS	Motorola Darlington	
MAC92-2 60V 0.8A, 50p	Transistors	
MAC92-6 400V 08A,	$\begin{aligned} & \text { MJ2501 } \\ & \text { MJ3001 } \end{aligned}$	$\begin{aligned} & 61.94 \\ & 61.68 \end{aligned}$
N6069 60V 4 A, 67	Motorola Plastic	
2N6073 400V 4A, 84p.	Transistors	
	MJE340	55p
	MJE370	69p
S	MJE371	$81 p$
2N5060 30V $088,31 \mathrm{p}$.	MJES20	63p
2N5061 60V 0 8A, 32p.	MJE2955	95p
MCR107-6 400V 4A. 54p.	MJE3055	65p

MULLARD

CONSUMER ICs
-TAA550
TAA570
TAA630
TAA630
*TAA700
TADI00
-TBA480

- TBA480Q
*TBA500
-TBA500Q
- T8A510
-TBA510Q
+TBA520
-TBA520Q
*TBA530Q
-TBA530Q
TTBA540Q
-TBA550
-TBA5500
-TBA560C
-TBA560CQ
*TBA570
TBA570Q
TBA673
TBA690
*TBA690
TBA6900
*TBA690Q
*TBA700
- TBA700Q
- TBA720AQ
-TBA750
-TBA7500
- TBA7500
- TBA920
*TBA9200
*TBA990Q
*TA160B
-TCA160C
-TCA270
- TCA290A
-TCA290A

TRANSISTORS, DIODES, ETC.

							140	6p
20p	BA182	20p	* B	10p			BD142	56p
22p	BAVIO	$11 p$		$11 p$		8 p	BDI44	¢ 2.32
36 P	BAW62	9p	* BC238B	$11 p$	BC352	14p	-BD157	50p
AC127 43p	BAW63	40p	- BC238C	14p	BC352A	$15 p$	59	62p
37	AXI3	8p	-	13p	* BC352B	$18 p$	B160	95
12 p	BAX 16	10p	239	17p	-BC352L	15p	30165	46p
75K 40p	-B8105B	63p	BC261	12p	- BC 388	28p	BD166	9p
Cl76 42p	*BE105G	44p	BC261A	15p	BC445	15p	BD167	3p
C176/128	BCIO7	18p	BC268A	$11 p$	BC446	16p	175	p
77 p	$107 A$	19p	- BC307	14p	BC447	15p	176	p
81	1070	19p	* BC307A	13p	BC448	17p	177	p
48	108	18p	* BC307B	14p	BC449	17p	178	p
8.01	10 B	18p	BC 308	12p	BC485	$16 p$	9	8p
99p	108 B	18p	C308A	13p	485	17 p	180	2 p
88 42p	109	19p	C308B	13p	486		18	1.04
CY19 35p	09B	20p	309	13p	BC487	7	O182	61.14
CY20 20p	109	20p	- BC3098	15p	BC488	18 p	BD183	1.24
ACY22 15p	113	10p	* BC317	14p	BC489	18p	BD185	62p
CY220 15p	C115	16p	- BC318B	13p	$8 \mathrm{BC} \times 25$	17 p	BD186	70p
ADI40 31p	C121	16 p	* BC319	14p	BCX26	19p	BD187	0p
ADI49 85p	BCI3IC	15p	* BC320B	16p	BCX47	19p	BD189	4p
1/162	136	20p	* BC321		8 BC 48	20p	BD190	
62.7	137	20p	322	16	BCY21	62p	DI	4p
D162 $¢ 1.23$	C147	10p	C327		BCY58	22p	8019	
14 25p	BCl48	9p	C328	19p	Y59	$23 p$	BD199	
15 22p	C148	12p	C337	19p	BCY70	33 p	BD200	5p
AFII6 19p	* BCI49	12 p	* BC338	18 p	BCY7	40p	BD201	P
AFII7 18p	BCI53	11 P	* BC347	15p	BCY72	28p	BD203	P
AFI18 60p	*BC157	12 p	BC347A	15 p	BDII5	99 p	BD206	9p
AF121 20p	* BC158	$11 p$	BC347B	17p	BDII7	45p	BD207	85p
AFI25 24p	* BC159	$13 p$	BC347L	15p	*BD124	86p	BD208	1.10
AFI26 22p	BC170	15p	BC348	13p	* BDI31	$51 p$	BD232	66p
AF139 45p	BC177B	19^{9}	BC348A	14p	* BDI 32	54p	BD233	54p
AF239 60p	BC178	18p	BC348B	14p	-BDI33	54p	BD234	57p
25p	179	20p	BC349A	14 p	*BD135	34p	BD235	78p
BAll4 12p	208A	10p	BC3498	14p	BD136	35p	BD236	62p
BA154 10p	214 K	10 p	349 L	14p	D137	37p	BD237	4p
BAI55 12p	* BC237	13p	C350	16p	*BD138	39p	238	96p
9 p	* BC237A	12p	*BC350A	16p	*BD139	42p	BD311	41.06

Terms of Business
Postage 30 p U.K.

London Colney
St. Albans, Herts. AL2 IEZ
Postal orders only-no callers
PRICES EXCLUSIVE OF V.A.T. WHICH MUST
BE ADDED AS SHOWN BELOW
V.A.T. 8% except where marked thus * these items $\mathbf{2 5 \%}$

回

Tr

[そ-2

ELIZABETHAN STEREO TUNER AMPIIFIER

This compact Tuner Amplifier gives you full medium wave and V.H.F. coverage and FM stereo. With inputs for your turntable and tape recorder. It has rotary tuning. Volume. Balance. Bass and Treble Balance. Bass and Treble
controis and push button

setection switches for Phono/tape FM stereo beacon and switched headphone socket.
Technical Specifications 15 transistors, 11 diodes, initegrated circuit Power output 8 watts. Size of tuner amplifier: $4 \times 10^{\prime \prime} \times 15 \frac{1_{2}^{\prime}}{2}$ approx Finished in selected rosew. panel and matching controls. Output into 15 ohms speakers only.
29.00
$+p \& p \mathrm{f} 1.50$

COMPLETE ONLY
£23.20

INCORPORATING A GARRARD DECK Garrard 3 speed Deck automatic, manual facilities together with stereo cartridge and cueing device.
Stereo 21, easy to assemble audio system kit. No soldering required. The unit is finished in Sim Teak , and the acrylic top presents an unusually interesting variation on the modern deck plinth. Includes - $\mathbf{3}$ speed deck, automatic manual facilities together with sterea cartridge and cueing device.
Two speakers with cabinets
Amplifier module. Ready built with control panel, speaker leads and full, easy to follow assembly instructions. Specifications - For the technically minded. Input sensitivity. 600 mV . Aux. input sensitivity 120 mV . Power output 2.7 watts per channel. Output impedance 8-15 ohms. Stereo headphone socket with automatic speaker cutout. Provision for auxiliary inputs - radio, tape, etc., and outputs for taping discs.
Overall Dimensions. Speakers approx 12 " $\times 9^{\prime \prime} \times 5$ ". Complete deck and cover in closed position approx. $15 \frac{1}{\frac{1}{2}} \times 12 \times 6$.
Extras if required. Optional Diamond Stylif $\mathbf{f 1 . 6 0}$.
Specially selected pair of stereo headphones with individual leval controls and padded earpieces to give optimum performance $f 5.80$.

BSR DECKS WITH PLINTHS AT EASY TO BUILD SPEAKER KITS

 FANTASTIC REDUCTIONSTME'RD, DARTE EASY BUILD SPEAKER KIT
A compact bookshalf speaker system giving a high electro accoustic efficiency for the low powered amplifier.
The professional finish can be obtained with the minimum of tools, the intinite baffle type enclosures come ready mitred and professionally finished, and fix together with masking tape till
The cabinat measures $12^{\prime \prime} \times 9^{\prime \prime} \times 5^{\prime \prime}$ deep approx finished in simulated teak, incorporating a quality 7 " $\times 4$ "elliptical speakér power handling 4 watts, flux density 30.000 maxwells mpedance $8-15$ ohrms nominal, voice coil dia $\frac{3}{4}$ " magnet size $\mathbf{I} \mathbf{0} 00$

These superb simulated teak-finishad speaker kits have been specially designed by RT-VC for the cost-conscious hi-fi enthusiast who wants top quality speakers but doesn't want to spend the earth. Built to EMI's exacting specification, these new RT-VC speaker kits (350 type kit) incorporate 13×8 "woofer, $3 \div$ " iweeter and matching crossover. Easily put together with just a few basic tools.
Specification (each speaker): Impedance 8 ohms. Power handling 15 watts RMS (30 watts peak). Response $20-20,000 \mathrm{~Hz}$. Size $20^{\prime \prime} \times 11^{11} \times 9 \frac{1}{2}$ approx. Comparabla built units (EMI LE3) sold elsewhere for over $£ 45$ pair.
£22.00 pair complete
Complete with crossover $+\mathrm{f} 5.20 \mathrm{p} \mathrm{\& p}$ diagram

EMI 350 KIT $£ 7.25+f 1.20$ p 8 . Complete with crossover Components and circuit diagram

System consists of a $13^{\prime \prime} \times 8$ approx, woofer with a $3^{\prime \prime}$ tweeter, crossover components and circuit diagram. Frequency response: 20 Hz to 20 KHz . Power handling 15 watts RMS inio 8 ohms. (Peak 30 watts.)

VISCOUNT IV STEREO AMP

 NOWAVALLAKLE SOX 3W KIT FORM: WATS RMS

COMPLETE 20×20 SYSTEMS

SYSTEM1A $\mathbf{f 6 9 . 0 0}$
pair inclusive

The new $20+20$ watt Stereo Amplifier incorporating the latest silicon transistor solid state circuitry, the RT-VC VISCOUNT IV gives you a powerful 20 watts RMS per channel into 8 ohms. Superb teak-finished cabinet with anodised lascia to harmonise with any decor. Polished trim and knobs.
The VISCDUNT IV has a comprehensive fange of controls -volume, bass, treble, balance mono/stereo, mode selector, and scratch filter.
Front panel socket for stereo headphones. And a host of sockets at the rear - for leff and right speakers, tape recorder, auxiliary, tuner, disc and microphone
SPECIFICATION: 20 watts RMS per channel 40 watts peak. Suitable $8-15$ ohms speakers. Total distortion at 10 watts better than 0.2%. Six switched inputs: 1. Magnetic P.U. -3 millivolts at 47 K ohms (R.I.A.A.); 2. Crystal/ ceramic P.U. -50 millivolts at 50 K ohms (R.I.A.A.): 3, 4.6. Tape Tuner/Aux. -140 millivolts at 50 K ohms (flat frequency response); 5 . Microphone -3 millivolts at 50 K ohms (flat frequency resporse).
frequancy response); 5.Microphone - milivalts at sok ohms flat frequency responsel.
CONTROLS: Push button ON/OFF, stereo/mono, scratch filter. 6 position rotary selector. Individual rotary controls for treble, bass, balance and volume. Headphone socket, tape out socket. Aux mains output. Frequency response: 25 Hz to 25 kHz at full rated output. Signal to noise ratio: better than -50 dB on all inputs. Tone control range: Bass $\pm 15 \mathrm{~dB}$ at 50 Hz : Complate System Treble $\pm 12 \mathrm{~dB}$ at 10 KHz . Power requirements: '250V A.C. mains at 60 watts. with these speakers
 in simulated teak. Drive unit 13×8 with 3 tweeter. 15 watts hand ling. 30 watts peak
f6.50 pqp.

SYSTEM 2 £85.00
Viscount IV amplifier (As System la) MP60 type deck (As System 1a)
Two Duo Type III matched speakers - Enciosure size approx $27^{\prime \prime} \times 13^{\prime \prime}$ $\times 11 \frac{1^{\prime \prime}}{2}$. Finished in teak simulate. Drive units $13^{\prime \prime} \times 8^{\prime \prime}$ bass driver, and two 3" (approx.) tweeters. 20 watts RMS. 8 ohms trequency range 20 Hz to $18,000 \mathrm{~Hz}$.
Complete System with these
speakers $£ 85.00+£ 7.60^{-}$p p

PAICES; SYSTEM 1 I
Viscount IV R103
2 amplifier Type lla
2 Due Type lla
MP60 type deck $\mathrm{E} 30.00+56.50 \mathrm{p} \AA \mathrm{B}$
Pbotype deck with Map. cattridge
de luxe plint
and cover $£ 22.00+£ 3.30 \mathrm{p} \& \mathrm{D}$.
Toul if purchased
avilut
Available completas for only:. $\mathbf{f 6 9 0} 0$
+66.50 of

PRICES: SYSTEM 2
Viscoum IV 103
amplifier $£ 27.50+\mathrm{f}_{1} 90$. p a p 2 Dua Type !II
speakers $£ 46.00+£ 7.50 \rho$ \& MP60 type deck with Mag. carrridge de luxa plinith
 Total if purchased
Toual ipurchased 595
Available complete for onhy $£ 85.00$ + + 7.60 p \& p.

PUSH BUUTTON CAR RADIO KII-

 THE TOURIST TT*

NO SOLDERING REQUURED

NOW BUILD YOUR OWN
$\mathbf{f} 9.50$ PUSH BUTTON CAR RADIO $+£ 1.05 p \& p$ Easy to assemble construction kit comprising fully completed and tested printed circuit board on which no soldering is required. All connections are simple push fit type making for easy assembly. Fine tuning push button mechanism is fully built and tested to mate with printed circuit board.
TECHNICAL SPECIFICATION: (1) Output 4 watts RMS output. For 12 volt operation on negative or positive earth. (2) Integrated circuit output stage, pre-built three stage IF Module. Controls volume manual tuning and five push buttons for station selection, illuminated tuning scale covering full, medium and long wave bands. Size chassis $7^{\prime \prime}$ wide $2^{\prime \prime}$ high and $4 \frac{3}{4}$ " deep approx.

Speaker including baffle and fixing strip $£ 2.00$ $+45 p p$ \& p. Cal Aerial Recommended - fully retractabie $£ 1.60+40 p$ p \& p.
The Tourist I Kit For the experienced canstructor. If you can solder on a printed circuit board you can build this model. Same technical specification as Tourist Π. Price $\mathbf{f 8 . 2 0}+\mathbf{f 1 . 0 5} \mathrm{p} \& \mathrm{p}$.

SPECTAL OFFER

The Tourist I Kit. same specification as Tourist IT complete with speakers, fixins kit and fullyre $\quad £ 10.50 \quad+0 \& n$
£10.50

Cl .50

STEREO CASSETTE TAPE DECK KIT*

Kit comprises of ready built cassette tape transport mechanism. Featuring pause control. solenoid assisted auto-stop. 3 digit tape counter, belt-driven balanced fly wheel. DC motor with electronic speed contral. ready built and mounted record/ replay PC board. and two VU meters; power supply. PC board, mains transformer. Input and output sockets and fwo level controls. Specification power source 240 AC 50 Hz . Output more than 0.5 v imput mike $-65 \mathrm{~dB} .10 \mathrm{~K} \Omega$. DIN $-47 \mathrm{~dB} .100 \mathrm{~K} \Omega$. Track system 2 channel stereo record play-back. Tape speed. $4.8 \mathrm{CM} /$ SEC. Frequency response $50 \cdot 12.00 \mathrm{r} z$ signal to noise ratio -42 dB . Recording system AC Bias. Erasing system $A C$ erase. Bias frequency 57 KHz . Size of me:hanism $8^{\prime \prime} \times 5^{\prime \prime} \times 3^{1 / 2 "}$ approx unit easy to mount into your cabinet
$3^{\prime \prime}$ required to clear
base of mechanism approx.

This is an advanced tat
 nor suitable for those without electrical knowledge and those unable to solder

 Elegant self selector push button player CARTRIDGE PLAYER for use with your steren system. Compatible with Viscount IV system, Unisound module and the Stereo 21 ,
Technical specification Mains input, 240 V . Output sensitivity 125 mV

SPECHALOFFER

As above but complete with build yourself Unisound Amplifier Kit (see opposite panel) +2 'Compact' easy to build
± 25.00 for only f14.00 speaker kits (see opposite page)

"DISCO AMPLIFIER

Reliant Mk IV Mono Amplifier, ideal for the small disco or house parties. Output 20 watts RMS into 8 ohms (suitable for 15 ohms).
Inputs * 4 electrically mixed inputs. *3. individual mixing controls. *Separate bass and treble controls common to all 4 inputs. Mixer employing F.E.T. (Field Effect Transistors). "Solid State circuitry. Attractive styling.
INPUT SENSITIVITIES - Input - 11. Crystal mic. guitar or moving coil mic, 2 and 10 mV . (Selector. switch for desired sensitivity.) - Inputs - 2), 3), 4). Medium output equipment - ceramic cartridge, tuner, tape recorder, organs, etc. - all 250 mV sensitivity. AC Mains, 240 V operation. Size approx: $12 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times 6^{-1} \times 3 \frac{1}{2}$
\&20.00 $+\mathrm{f} 1.35 p \& p$.

For the man who wants to design his own stereo - here's your chance to start, with Unisound - pre-amp, power amplifier and control panel. No soldering-just simply screw toge ther. 4 watts per channel into 8 ohms. Inputs 120 mV (for ceramic cartridge). The heart of Unisound is high efficiency I.C. monolithic power chips which ensure

> dio spectrum. 240V. AC only Also available with 2 speakers $\left(7^{\prime \prime} \times 4^{n}\right) £ 10+£ 1.75 p \delta p$. 88.95 £1.05 p 8 p. Also available with the 'Compact' (see opposite page) easy build speakerkitf13. $50+f 2 p$ \& p

PORTABLE DISCO CONSOLE*

INCORPORATES: Pre-Amp with full mixing facilities, including switched input for mic with volumé control, switched input for auxiliary with volume control, bass and trebla controls. volume control and blend control fat turitables. Two B.S.R. MP60 type single play professional series decks, fitted with crystal cartridges.

TECHNICAL SPECIFICATION:

Pro-mmp - Output - 200 mV Auxiliary inputs - 200 mV and 750 mV into 1 meg. Mic input -6 mV into 100 K .240 volt operation. into 100K. 240 volt operation $12^{\prime \prime}$ records. Rumble, wow and flutter $12^{\prime \prime}$ records. Rumble, wow and flutter
Aumble Better than $-35 d B$. Wow Aumble Better than -358 . Wow
Better than 0.2% Flutter Better than Better than 0.2\%. Flutter Bett
0.06% (Gaumont kalee metes).
0.06% (Gaumont kalee metee).
Finish -. Satin black mainplate with black turntable mat inlaid with brushad aluminium trim. Tonearm and controls in black and brushed aluminium.

Console size -
 Unit Open $-35 z^{\prime \prime} \times 13 z^{\prime \prime} \times 4$ f", lapp. 2 This disco console is ideally matched This disco console is ideally matched
for the Reliant IV and Disco 50 or any for the Reliant IV and
other quality amplifier.
other quality amplifier.
The unit is tinished in
The unit is tinished in black PVC with contrasting simulated teak edging, diamond spun control knobs with matching control panel.

Yours for only

£49.00 +8.50 ค 8 p.

DO NOT SEND CARD
Just write your order giving
your credit card number
include VATiat current rates Mail orders to Acton. Terms C.W.O. All enquirias stamped addressed anvelope Goods not despatched outside U.K.
Leaflats available for all items listed thus ${ }^{\text {* }}$ Send stamped addressed envelope. All items subject to availability. Prices correct at 1st Mar. 1976 and subject to change without notice.

- Minimum order on ACCESS/BARCLAYCARD-f11

21 D HIGH STREET, ACTON, LONDON W3 6NG 323 EDGWARE ROAD, LONDON W2
Personal Shoppers EDGWARE RD: 9 a.m.-5.30p.m. Half day Thurs ACTON: 9.30a.m.-5p.m. Closed all day Wed.

It's here!

The Minisonic Mk. 2 has arrived-avallable NOW for the first time in kit form, the Minlsonic 2 probably represents the best value for money In electronic music today.
Kits are avallable for complete instruments or individual sections, or for the conversion of Mk. \& Minlsonics to Mk. 2 specification. (Conversion detalls apply to
Eaton Audio P.C.B.s, but may be adapted to sult others.)

In order to ensure that the appearance of the complete
Instrument enhances Its performance, a complete cabinet klt is avall
able, incorporating a fully flinished black enamelled, sllk-screened front panel, with matching back and base, and solid Atromosia end-cheeks. This kit also includes all switches, knobs, sockets, screws and panel Indicators, keyboard and contact assemblles.

Cablnet Kit, including end cheeks, panels, switches. knobs, sockets, LED indicators, keyboard, set of G (double pole) contacts
Kit MS/2-1
Keyboard Controller-incorporating long duration Hold circuit - 8

Kit MS/2-3 \quad [8.67 Voltage Co

โ15. 96
Kit MS/2-4
Nole. 2 off MS/2-4 are required.
Synchronlestion Components (required for one VCO only) Sync. Kit
Envelope Shaper/VC Kit MS25
Note. 2 off MS/2-5 are required H.F. Oscllastor/Detector

, ST. NEOTS. CAMBS PE19 3JB

Hold Isolator (including relay)
Voltage Controlled Filter
Kit MS2/8
Aling Modulator
KIt MS2/9
Nolse Generato
Kit MS2/10.
Output Amplifiers (including panning, mixer and $£ 2 \cdot 00$
phone amplifiers-2 channels)
Control Envelope Inverter
KIt MS2/12
Stablised Power Supply (includes reference supply and the transformer)
Kit MS2/13
Send large S.A.E for further detalts of contents of kits

Conversion KIts
Anclliary Functions KHI-for conversion of kbd control, H.F. osc. detector, envelope shapers, V.C. filter, ring modulator inverter, power supply, reterence rails. output Kit MS2:14C
acillator Converaton Kit (for one VCO only) Kit MS/2-15C
SEPARATE ITEMS
P.C. Boards-Maln Board (all modules except power upply, hold isolator. reference supply)
Board EAD14
ower Supply Board
Board EAO15
MD 8001 Dual Transistor
LM318N high speed op. amp.
Multiturn Preset Pots- \mathbf{k}, 10k or 20k (Cermet)

TEAMS MAIL ORDEA ONLY C W O MINIMUM ORDER \&
order inc P \& P untess otherwise stated Cheques or $P O$ os payable to Eaton Audio Orders ove sh iree of P \& P oinerwise please add 10p in the E 1

Newest, neatest system ever devised for storing small parts and components
resistors capacitors, diodes, transistors. etc. Rigid plastic units Interlock logether in vertical and horizontal combinations. Transparent plastic drawers have label slots. 1D and 2D have space dividers. Bulld up any size cabinet for wall. bench or table top

> As supplied to Post Office
> Industry and Government Depts.

SINGLE UNITS (1D) $(5 \mathrm{in} \times 2!\mathrm{in} \times 2 \mathrm{i} \mathrm{in})$ £2.40 DOZEN
DOUBLE UNITS (2D) ($5 \mathrm{in} \times 4 \frac{1}{2} \mathrm{in} \times 2$ 年 in) §4.20 DOZEN
TREBLE (3D) E4. 20 for 8
DOUBLE TREBLE 2 drawers, in one outer case (6D2), 85 . 90 for 8.
EXTRA LARGE SIZE (6D1) $£ 5 \cdot 40$ for 8
PLUS OUANTITY DISCOUNTS
Orders over $£ 20$. less 5%.
Orders over E 60 . less $7 \frac{1}{2} \%$
PACKING/POSTAGE/CARRIAGE: Add 75p to all orders under $£ 10$. Orders $£ 10$ and over. please add 10% carriage.
oUotations for larger quantities
FLAIRLINE SUPPLIES
(Dept. PE5)
24 Cricklewood Broadway, London NW2 Tel. 01-450 4844 HANDBOOK 1976

Price 65.00

ACTIVE-FILTER COOKBOOK by D 99 WAYS TO KNOW AND USEYOUR ELECTRONIC CALCULATOR bY L. E Frezel
HAANISTOR \$UBSTITUTION HAND. BOOK No. I5. Price 62.50.
EXPERIMENTS WITH OPERATIONAL AMPLIFIERS LEARNING BY DOING by UNDERSTANDING IC OPERATIONAL AMPLIFIERS by R. Melen. Price $\mathbf{6 2} 45$ SEMICONDUCTOR CIRCUIT ELE MENTS by T. D. Towers: Price 6590.
THE RADIO AMATEUR'S HANDBOOK 1976 by A.R.R.L. Price E4•B5. SERVICING WITH THE OSCILLO SCOPE by G.J. King. Price E4'80 FOUNDATIONS OF WIRELESS AND ELECTRONICS by M. G. Scroggie. Price $\mathbf{\& 4} \mathbf{4} \mathbf{2 5}$
\star TOTAL PRICE INCLUDE POSTAGE \star

THE MODERN BOOK CO.

BRITAIN*S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET

 LONDON W2 INPPhone 01-723 4185
Closed 5aturday 1 p.m

	4		1		
${ }^{\text {AC126 }}$	0.13	80138	0.28	2N2218A	0.18
${ }^{\text {AC127 }}$	0.13	80139	0.29	2N2218	0.171
AC128	0.11	BD 40	0.32	2N2219A	0.18
AC151	0.18	BDY56	1.00	2N2221	0.171
AC152	0.25	8F115	0.20	2N2221A	0.1t
AC153	0.27	BF200	0.25	2N2222	0.171
AC176	0.14	EF194	0.09	2N2646	0.30
AC187K	0.27	BF195	0.09	2N2904	0.14
АСів8к	0.27	EF198	0.12	2N2905	0.16
A0161	0.35	BF199	0.12	2N2906	0.16
AD162	0.35	BF257	0.24	2N2907	0.10
BA102	0.10	8F258	0.24	2N2926G	0.09
BAX13	0.03	BF259	0.24	2N3053	0.20
BAX16	0.04	EFX29	0.22	2N3054	0. 40
BC107	0.04	EF× 30	0.22	2N3055	0.45
BC108	0.09	BFX84	$0 \cdot 20$	2N3393	0.12
8C109	0.09	8FX85	0.27	2N3441	0.56
BC147	0.00	BFYSO	0.19	2N3442	0.0
BC148	0.00	BFY59	0. 19	2 N 3638	0.10
EC149	0.09	BFY52	0.19	2N3638A	0. 10
BC167	0.10	BY126	0.11	2N3702	0.10
BC168	0.10	8Y127	0.11	2N3704	0.10
BC169	$0 \cdot 10$	0 O47	0.08	2N3706	0.10
BC^{8182}	0.09	OA90	0.04	2N3708	0. 10
EC183	0.09	OA91	0.04	2N3771	1-25
BC184	0.08	OAz00	0.05	2N3772	1.35
BC212	0.09	OA202	0.08	2N3773	2.00
BC213	0.00%	IN914	0.04	2N3904	0.11
BC214	0.0.	In4004	0.05	2N3906	0.12
©C237	0.00	IN4007	0.06	2N5294	0.35
8С238	0.04	\| N 4148	0.03	2N5296	0.35
ВС239	0.09	15920	0.05	2N3794	0.20
BC307	0.09	2N697	0.15	2N3619	0.30
BC308.	0.09	2N698	0.14	2N4036	0.55
EC309	0.09	2N706	0.10	2N4037	0.40
EC327	0.12	2N708	0.10	2N4921	0.80
-C 328	0.12	2N916	0.23	2N5060	0.25
ECY70	0.13	2N1305	0.25	2N4289	0.25
ECY71	0.13	2N1307	0.25	2N547	0.12
ECY72	0.12	2N 1308	0.25	2N5449	0.12
80135	0.25	2N1813	0.15	2N5457	0.30
ED136	0.28	2N1711	0.15	2 N 5458	0.27
80137	0.27	2N2218	0.17	2N6027	0.40

FULLY GUARANTEED

Mail order only VAT extra p\&ip 20p

Bridge Electronics
PO Box No. 10 Fishponds Bristol BS16 2LX

P.E. SYNTHESISER

(P.E. Feb. 1973 to Feb. 1974)

The well acclaimed anid highly versatile large wish keyboard circuits. All function circuits may be used independently, or interconnected. The greater the number of circuits, the greater the versatility. Other circuits in our lists may bo used with tho
Synthesisar to good advantage. Synthesiser to good advantage.

THE MAIN SYNTHESISER

Stabilised Power Supply Stabilised Powor Supply
Two Linear Voltage Controlled Oscillators
and one Inverter-all 3 tircuits:
\& 16.058 and one lnverter-all 3 circuits:
616.38
61.48

Two Ramp Generators and Two Input Amplifiars-all 4 circuits PCB (holds all 4 circuits)
Sample-Hold and Noise GeneratorPCB (holds both circuits)
Tone Control, E2.43; PCB, 20p Reverberation Amplifier ${ }^{\mathrm{b}} \mathrm{Amp}$ Sprine Line unit fo
Ring Modulator
Ring Modulator
Pask Leval Meter Circuit
PCB for Rev., R.Mod
Envolope Shaper, R5.35; PCB. © Voltage Controlied Amp. and Dif 146 PCB (holds THE SYNTHESISERKEYBOARD CIRC 1.32 Can be used without the Main Synthesiser to make an independent musical instrument) 2 Log, Voltage Controlled Oscillators Cl 4.55 Divider, 2 Hold Circuits, 2 Modulation AmpliDivider, 2 Hold Circuits, 2 Modulation AmpliPCB' (Holds the first 6 circuits) PCB for both Envelope Shapers Keyboard Stabilised Power Supply Printed Circuit Board

SYTHHEESSERS AVO KEYBOAROS

P.E. JOANNA

(P.E. May to Aus. 1975)

The new electronic piano that has switchable alsernative volcing of Piano Honky-Tonk and Harpsichord. All PCB's are "as published". Power Supply Tone Generator and ToD C Envelope Shaper PCB for above 69.25 Envelope Shapers
12 sets (full requiromens)
632.16
615.60

Set of 12 PCB s full requirement)
615.60
68.37

PCB for and Pre-Amplifier Circuita

KEYBOARDS

Kimber-Allen Keyboards as required for maniy Published circuiss, Mincluding the P.E. Joanna, turers claim that these ara the finest moulded plastic keyboards made. 3 Octave Kayboard 37 .
3 Octave Keyboard (37 notes C to C) 820.50 1 Octave Keyboard (19 notes C to C)
5 Octavo Keyboard (61 notes C to C) Contact Assemblies for use with above keyboards: Single-pole change-over (SP) as for P.E. Joanna and P.E. Minisonic. Two-pole normally-open make-
break (2P) is for P.E. Synthesiser, Special contact assembly (4PS) having 4 poses 3 of which are normally-open make-break contacts and whe fourth is a change-over contact-this special assembly enables the same keyboard to be used with the simultarieously thus avoiding the cost of more than one keyboard. 3 Octave 4 Octave 5 Octave

Printed Circuit Boards for use with the above contacts and thus eliminating most of the inter. wiring required, are svailable-details in our lists.

P.E. MINISONIC

(P.E. Nov. 1974 to March 1975)

A portable, battery or mains operated, iminiature sound synthesiser, with kerboard circuits. Although having slightly fewer facilities than the large P.E. Synthesiser, the functions offored by this design give is sreas scope and versetilisy.
Two Voltage Controlled Oscillators \quad E5.22 Voltage Controlled Filter
43.41 and Voltage Reforence Circuit
Two Envelope Shapers and Two Voltage Controlled Ampliffers
67.25
62.66

Keyboard Controllerand Hold Circuits $\$ 2.66$ Keyboard Divider Resistors (seiect sype so suit keyboard used, all are 2\% tolerance), 2 Octave, El :
3 Oct., $\mathrm{fl}-48$; 4 Oct., $£ 1 . \% 6$; 5 Oct., E2.44.
H.F, Oscillator and Detector \quad Il.66

Ring Mod., Noise Gen, Env. Inverter $\mathbf{5 5 . 2 7}$
Two Power. Amplifiers and Two Mixers $£ 3.55$
Battery Eliminator C5. 日is
Temperature Stabiliser \quad \& 1.47
PCB to hold 2 VC0s, VCF and V-Ref 12.02
PCB to hold 2 ESs, 2 VCAs, 2 Mixers, Ring Mod, Keyboard Control and Hold $\mathbf{1 2 . 2 0}$ PCB to hold 2 Power Amps, Noise Gen, Envelope-
finverter, HF Osc, and Detector PCB for Battery Elim. \& Temp. Stab. $\& 1.35$

FOR ADDRESS, INFORMATION REGARDING POST AND PACKING, VAT, LISTS, AND EXPORT TERMS SEE OUR OTHER ADVERTISEMENT ON OPPOSITE PAGE
Photos: 2 of our units containing some of che
P.E. projects built from our kits and PCBs. P.E. projects built from our kits and PCBs.
(The cases were built by ourselves and are not (Tor sale.)

PLEASE ADD 40p P. \& P. and VAT
Now range of cases at 45° sloping panels. Attractively designed, of robust construction. and finished in, two tone colour. supplled complete with four rubber feet. Available from stock in three different widths.
materials
Cases made from 20 g steel. Front panels made from 20 g aluminium.

COLOUAS

Cases sprayed in light brown hammer finish.
Front panels sprayed in lighi grey semi gloss enamel.

PORTABLE POWER DISTRIBUTION
Complete with 8 ft cable and 13 A plug. 4 sockets 13A $58 \cdot 00$ 6 sockets 13A ¢9. 50 4 sockets 13A +5W E9.15 6 sockets $13 \mathrm{~A}+5 \mathrm{~W} \quad \mathrm{E} 10 \cdot 10$

Please add VAT and 50p post and packaging
Trade counter is open for personal callers from 9 a.m.- 5 p.m.. Monday-Friday OLSON ELECTRONICS LTD.

5-7 LONG STREET, LONDON E2
Tel. 01-739 2343

ELEGTROVALIE

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order (and industrial) suppliers of semi-conductors, components, accessories, etc. There are wide ranges and large stocks to choose from as well as many worthwhile advantages to enjoy when you order from Electrovalue.

CATALOGUE 8 ISSUE 2 READY NOW!

Second printing (Green cover) with up-dated information, 144 pages
Now items. Opto-electronics. Diagram of components, applications. C. circuits, etc. Post free 40p, including voucher for 40 p for ute on order over $\mathrm{E5}$-00 list value. A must for careful buyers

DISCOUNTS

On sll C.W.O. mall orders. except for some Items marked NETT 5% on orders list value 10% on orders list valu*

FREE POST AND PACKING

On all C.W.O. mail orders in U.K. over c2 liat value. It under, add 15p handling charge

PRICE STABILIZATION POLICY

Prices are held and then reviewed over mintmum periods of 3 monthe. Next review period effective from Aprll ist.

QUALITY GUARANTEE

On everything in our Catalogue-No manufacturers rejects, seconds
or sub-standerds merchandise.

EIECTRONALUE LTD

A/f communications to Dept. $5 / 2,28$ ST. JUDES ROAD, ENGLEFIELD OREEN, EChAM, SURAEY TWze WHB. Telophone Egham 3003 . Telex 284775 . Shop hour
 Telephone (001) 432 4945. Shop hours Dully $0-5.30 \mathrm{pm} ; \mathrm{\rho}-1 \mathrm{pm}$ Sata.

PHONOSONICS
SOUND-TO-LIGHT (P.E. Apr./Aug. 7I)
The ever-popular AURORA-4 or 8 channels each responding to a different sound frequency and controlling its own light. Can be used with most audio rystems and lamp intensities. A MUST for any Disco, and a fascinating visual display for the home.
4 channel component set (excl. thyristors)
$\$ 13.05$ 8 channel component set (excl. thyristors) Power supply component set
Bor frequency chamnels
PCB for power supply and 8 lamp drivers $\quad \$.56$ I Amp 400 V thyristors (I per chan. requ.) each 75 p
Panal meter ($\mid \mu \mathrm{A}$) (optiona|)
VOICE OPERATED FADER (P.E. Dec. 73)
For automatically reducing musie volume during home-movie shows.
Component set incl, PCB
© 3.05
TAPE.NOISE LIMITER
Very effective circuit for reducing the hiss found in most tape recordings.
Component set (incl, PCB)
Regulated power supply (inel, PCB)
62.60

P.E. MINIMIX 6
 DETAILS IN LIST

GUITAR EFFECTS PEDAL (P.E. July 75)
Will modify an audio signal not only from aguitar but from any audio source, producing 8 different witchable effects that can be further modified by manual controls. Possibly the most interesting of a the low-priced sound effects units in our range.

Component set with special foot operated switches
Alternative component set with panel
mounting switches
Printed Circuit Board
HI-FI TAPE-LINK (P.E. Mar./Apr. 73)
Designed for use with reasonable quality tape-decks his high performance pre-amp includes record playback and metering circuits. While stocks last
Stereo component set (excl. panel meter) 624.25 Mono component set (excl. panel meter) \quad fl4.70
Stereo main PCB
Stereo sub-assembly PCB
12.80
98

VOLTAGE CONTROLLED FILTER (P.E. Oct. 74)

An independently designed VCF that can be used with the P.E. Synthesiser.
Component set
63.41

ENVELOPE SHAPER AND V.C.A.
 The ADSR Envelope Shaper published in P.E. April 1976 and having its own voltage controlied Reiease and Sustain functions.
 Component set incl. PCB

AUTO WAH-WAH
 Component Set and P.C.B. ©2.99.

Transistors		BFY51	22p	2N3055	48p
AC128	20p	BFY52	24p	2N3702	12p
ACl76	20p	BSY95A		2 N 3703	12p
BC107	13 p	MJE2955		2N3704	12p
BCl08	13 p	MJE2955		2 N 3819	35p
BCl09	13p	OC28		2N3823E	39p
BC147	12 p	OC71		2N4060	12p
BCl48	12 p	OC72		2N4871	36p
BC149	12 p	OC84		2N5245	$51 p$
BC157	$13 p$	ORP12	66p	2N5777	45p
BC158	13p	ZTX107	12P		
BC159	13p	ZTX108	71 p	Diodes	
BCI82L	12p	ZTX501	13 p	1 N 914	4 p
BC184	12p	ZTX503	13p	IN400\|	6p
BC187	25p	ZTX531	23P	iN4002	7p
BC204	14p	2N706	13p	IN4004	8p
BC209C	14p	2N914	22p	IN4006	9 p
BC212L	15p	2NI304	22p	IN4007	10p
BC213	15p	2N2905	27p	OA91	7p
BC478	29p	2N2907	22p	-A202	$8 \mathrm{8p}$
BCY71	22p	$2 N 3053$	18p		$75 p$
BFY50	22p	2N3054	66p	ZS171	16 p

LIST

Send S.A.E., with all U.K. requests for
free list siving fuller details of PCBs,
kits, and other components.
Europe-send 20p.
Oroper countries-send 30 p .

RHYTHM GENERATOR

(P,E. Mar,/Apr. 74)
Programmable for 64,000 rhythm patterns from 8 effects circuits (high and low bongos, bass and snare drums, long and short brushes, blocks and
soft cymbal), and with variable time signacures and rhythm rates. Really fascinating and useful. and rhythm rates. Really fascinating and useful.
 Component set for all 8 effects circuits $\$ 10.49$ 5 et of 4 PCB's to hold all 8 effects Simple mixer (no PCB available) 64.74
62.76

Alternative mixer with external volume controls and adjustable gain (independently designed), including PCB
Power Supply, including PCB

SOUND BENDER (P.E. May 74)

A multi-purpose sound controller, the functions of which include, envelope shaper, tremolo, voice doubler.
Component set for above functions (excl. 5Ws) 66.58 Printed circuit board
41.58

Optional extra-additional Audio Modulator, the use of which, in conjunction with the above com$\begin{array}{ll}\text { ponent set, can produce "jungle-drum rhythms. } \\ \text { Component set (incl. PCB) } & \$ 2.55\end{array}$
PHASING UNIT (P.E, Sept, 73)
A simple but effective manually controlled unit for introducing the "phasing" sound into live or recorded music,
Component set (incl. PCB)
PHASING CONTROL UNIT (P.E. Oct, 74)
For use with the above Phasing Unit to automatically control the rate of phasing.
Component set (inel. PCB)
\& 3.75

ENVELOPE SHAPER

The ADSR Envelope Shaper published in P.E. October 1975 and having manual control of its Attack, Release and Sustain functions.
Component set incl. PCB
\$4.16
WIND AND RAIN UNIT
A manually controlled unit for producing the abovenamed sounds.
Component set incl. PCB
$£ 2.83$

POWER SUPPLIES

Sophisticated low-noise highiy-stabilised power supply kits complete with PCB's and deta
formation are now available, Details in list.

Other PCBs (all "as published") While stocks last Bench Power Supply (P.E. Sept. 1974) CETV:

Master Logic, Video Amp., Sync Mixer and
Cathode Switch PCB (P.E.'Oct. I 974) 1974) 82.20 Digital Power Supply (P.E. Aug. 1972) Elactronic Piano:

Pre-amp PCB (P.E. Oct. 1972)
Power Slavas: Power Supply PCB (P.E. Aug. $\quad 55 p$ 1974)

Rondo: Pre-Amp PCB (P.E. Oct. 1973)
Tone, Balance and Volume Control PCB (P.E. Oct.)

8UPPLIERS OF QUALITY PRINTED CIRCUIT BOARD8, KITB. AND 8 TO A WORLD-WIDE MARKET BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)
Multi-function circuits that, with the use of other external equipment, can serve as lie detector, alphaphone, cardiophone, etc.
Pre-Amplifier Module
Component set and PCB
Basic Output Circuita
Combined component set with PCBs, for alphaphone ardiophone, frequency meter and visual feed-back lamp driver circuits
Audio Amplifier Module
45.39

Audio Am
65.50

SINE AND SQUARE WAVE GENERATOR (P.E. July 75)
Suitable for audio, digital, or general purpose Controllable through 4 decade ranges 10 Hz to 100 kHz . Switched attenuation through 10 range from lov to ImV peak-to-peak,
Component set
Power 5upply
PCB for Power Supply
96p

\section*{P.E. TUNING FORK
 (P.E, NOVEMBER, 1975)
 | Main component set inel. PCB | $\$ 13.50$ |
| :--- | ---: |
| Power supply set incl. PCB | $\$ 6.57$ |}

REVERBERATION UNIT (P.W. Nov./Dec. 72)

A high quality unit having microphone and line input pre-amps, and providing full control ove reverberation level.
Component set'(exi. spring unit)
Printed circuit board
9 inch spring unit
SEMI-CONDUCTOR TESTER (P.E, Oct. 73)
Essential test equipment for the enterprising home constructor. While stocks last.
Set of resistors, capacitors, semiconductors, potenPers, makaswitches and PCB

PHOTOPRINT PROCESS CONTROL (P.E. Jan./Feb. 72)
For colour and $\mathrm{B} \& \mathrm{~W}$, an indispensible dark-room unit for finding exposure, controlling enlarger timing, and stabilising mains voltage. Component set (excl. meter)
Printed Circuit Board

P.E. SYNCHRONOME AND
 PEAK LEVEL INDICATOR
 detall in list

PHOTOCOPIES
of P.E. texts for most of our kits are available. Prices in our lists.

POST AND HANDLING

U.K. orders: under $£ 15$ add 22p. over 615 add 40. Optional: Fee for compensation against loss or damag
Eire \& C.I. only): 35 p

vat

Add $\mathbf{2 5 \%}$ (or current rate if different) to full total of goods, post and handling, apply.

	Electrolytic Capacitor		
15p	$0.47 / 63$		
15p	$1.0 / 63$	6p	100/63
25p	1.5/63	6p	$150 / 16$
15p	2.2/63	6p	150/63
25p	4.7/63	$6 p$	220/10
$15 p$	6.8/40	6p	220/16
20p	10/25	6p	220/25
15p	10/63	6p	220/40
15p	15/40	$6 p$	$220 / 63$
15p	22/10	6p	$330 / 10$
15p	22/25	6 p	470/6.3
25 p	33/6.3		470/10
15p	$33 / 16$		470/25
25p	33/40	6p	470/40
15p	33/50		680/6.3
25p	47/10		680/25
15p	47/25	$6 p$	1000/10
25p	$47 / 40$	6p	1000/
15p	47/63	7 P	$1000 / 25$
25p	10014	$6 \mathrm{6p}$	1000/40
15p	100/25	6 p	2200/25

Zeners

PHONOSONICS, DEPT. PE45, 22 HIGH STREET, SIDCUP, KENT DA14 6EH MAILORDERANDC.W.

Join the Digital Revolution

Understand the latest developments In calculators,

computers, watches, telephones,

television, automotive instrumentation. . .
Each of the 6 volumes of this self-instruction course measures $11 \frac{1}{\prime \prime}^{\prime \prime} \times 8 \frac{1}{\prime \prime}^{\prime \prime}$ and contains 60 pages packed with information. diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of
the design and operation of calculators and computers.
Design of Digital Systems.

$£ 5.95$

plus 50p packing and surface post anywhere in the world

Payments may be made in foreign currencies.

Quantity discounts available on request.

VAT zero rated

Also available-a more elementary course assuming no prior knowledge except simple arithmetic
Digital Computer Logic and Electronics
In 4 volumes

1. Basic Computer Logic
2. Logical Circult Elements
3. Designing Circuits to Carry Out Logicai Functions
4. Flipflops and Registers

£3-95

plus 50p P. \& P.
Offer Order both courses for the bargain price $59 \cdot 25$, plus 50 p P. \& P.

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning You work at your own speed and must respond by answering questions on each new piece of information betore proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.
Γ To: Cambridge Learning Enterprises (Dept. $\overline{\mathrm{EN} G}$)
FREEPOST, St. Ives, Huntingdon. Cambs. PE17 4BR

- "Please send me...set(s) of Design of Digital Systems at $\mathrm{\varepsilon 6.45}$ each. p \& p included
*or....set(s) of Digital Computer Loglc and Electronics at $\mathbb{E 4} 45$ each. p \& p included
*orcombined set(9) at $\varepsilon 9-75$ each; $p \& p$ included
Name
Address
*delete as applicable
No need to use a stamp-just print FREEPOST on the envelope. PE5

TrHatid Elemimiso

TRANSIETORS												
AC125	20p	A8Y67	70p	BC147A	Op*		05 A	5p*	BC309	p*		
ACl28	20p	BA145	15p*	BC147B	0p*		2061	$15{ }^{\circ}$	BC317	$2 p^{*}$		
AC127	20p	BA154	10p	BC148	90*		207A	11 p *	BC319	8p*		
ACl 28	20 p	BA155	12D	BC148B	10p*		208A	11p*	BC3221	6p.		
AC132	86p	BAX12	10p	BCl498	11p*		209B	13p ${ }^{\text {c }}$	BC327	20p*		
AClil	20p	8AX13	4D	BC149C	11p*		212A	13p*	BC328	18p*		
AC142	17p	BAX16	6p	BC153	18p*		212L	16p.	BC337	18p*		
AC151	24p	BC107	11p	BC154	18p ${ }^{\text {² }}$		213 B 1	12p*	BC338	16p*		
ACl53	27p	BC107A	12p	BC157B	12p*		2131	14p.	BC461	85p		
AC178	20p	BC108	10p	BC158A	120**		214	15p.	BC557	8p		
AC188	20p	BC108B	11p	BC159A	12D*		21451	17p.	BC558	90		
AD161	42p	BC109	$11 p$	BC167A	110"		237A	16 p	BC559	08		
AD162	42p	BC109B	12p	BC168B	14p*		238A 1	15 p 。	BCY70	160		
AF114	24 p	BC1090	18D.	BC171A	140*		239 B 1	15p.	BCY71	18p		
AFl15	24p	BC115	15p**	BC172A	15p*		261A	16p	BCY72	14D		
AFl16	24p	BC118	180^{*}	BC173B	16 y		262A	16p	BD115	60p		
AF117	24p	BC117	180'	BC177	170		266A	18 y	BD121	80p		
AF118	47D	BC1 18	10p*	BC178B	18p		267A	14p	BDI23	80p		
AF124	80p	BC119	28D	BC179B	19 p		268B	18p	BD124	68p		
AF125	80p	BC120	14p*	BC182B	10p		2691	$13 p$	BD131	86 p		
AF128	28y	BC132	11p*	BC182L	119*		287	20p	BD132	88p		
AF139	84p	BCl 35	120*	BC183B	100*		300	87p	BD133	86p		
AF186	60p	BC138	$18 \mathrm{p}^{*}$	BC183L	10D*		301	26p	BD135	$87{ }^{\circ}$		
AF299	37 p	BC137	10D*	BC184B	12p*		302	24p	BD138	890*		
ASY26	30 p	BC138	15p	BC184L	11p*		303	30 p	BD137	440*		
A8Y27	84p	BC130	85D	BC186	25 p		304	27 p	BD138	470*		
A8Y28	80p	BCl42	22p	BC187	260		307 A 1	160°	BD139	540*		
ARY29	84p	BC143	24p	BC204A	$16{ }^{\circ}$		308A 1	$14{ }^{*}$	BD155	780		
							DIL Sockets INTEGRATED					
							8 pin		CIRCUITS			
709 (8 p	n DIL	BZX83/BZY88 (T03)					14 pia		TTL Digtal			
741 (8 p	n DIL	L) 33 p 3 V 3 ,	3VB,	9V9, 5 V		11.75	16 pia					
NE565		60 p 4V3,	4V7.	SV1, 12 V		81.76						
RESIETO	R 8	5 V 6.	8V2,	$6 \mathrm{~V} 5,15$			Dloden		7402	18p		
$1 \frac{1}{2} \mathrm{peach}$		$7 \mathrm{V5}$,	8V2,	9 VI			IN4002	2 8p	7403	18 p		
	E12	range 10 V ,	12 V,	13 V .			IN4148	8 6pp	7404	28 p		
1 $\beta^{3}-10$	Ω	All at	12p	ch					7405	880		
Bridge Roctifiers 8iLICON RECTLEIERS				THYEISTORS		LED			7406	40 D		
				100 V 1 A	80 p	125R RED 20p			74077408	40p		
${ }^{\text {Roctinar }} 100 \mathrm{~V} 1 \mathrm{~A}$		50 V 3 A	13p	200 V 1 A	40 p	125A AMBER				24 D		
$\}$ W0 0124p		$\begin{aligned} & 100 \mathrm{~V} 3 \mathrm{~A} \\ & 200 \mathrm{~V} 3 \mathrm{~A} \end{aligned}$	15p	600V1A	60 p21.20	125 Y 27D			7409	28p		
$\} \begin{aligned} & 200 \mathrm{~V} 1 \mathrm{~A} \\ & \mathrm{wo} \mathrm{02} \mathrm{25p}\end{aligned}$							7410	18 D				
								TIL209 RED ${ }_{\text {25D }}$			7411	285250
3 400 V	1 A	S.A.E. for full litat of components Mtn. order \&1, P. \& P. 86p,							7412			
\} wo 04	26p					17413	88p					

Flint House, High Street, Wallingford, Oxon OX10 ODE Tel.: Wallingford (0491) 35529 Telex 4SPW ALFRD 849349

CROFTON don't just sell kits, we offer you a technical back up service to ensure your success
The following is a selection of some of the more popular kits* Mullard CCTV Camera

* PE CCTV Camera
* "Mistral" Digital Clock Kit $£ 12 \cdot 50$ (inc. VAT +50p P. \& P.); Built £18 + 50p P. \& P

$*$ Electronic lgnition

* Sound Operated Flash
* PW Tele-Tennis Game
\star UHF Modulator
* Bench Power Supply
\star Woobulator
\star All ETI Top Projects
* Many of the Elektor Projects

NOTE PCBs for most published projects available to order
CROFTON ELECTRONICS LTD
Dept. E, 35 Grosvenor Road, Twlckenham, Middx. 01-891 1923

BI-PAK

 High quality audio

 High quality audio}

Fitted with Phase Lock-loop Decoder

* FET Input Stage
* VARI-CAP diode tuning
* Switched AFC
\star Multi turn pre-sets
\star LEO Stereo Indicator

Typlcal Specification: Sensitivity 3μ volts Stereo separatlon 30 dB Supply required 20-30V at 90 Ma max.
especially designed to power 2 of the AL60 Amplifiers, up to 15 watts (r.m.s.) per channel simultaneousiy. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Slze: $63 \times 105 \times 30 \mathrm{~mm}$. Incorporating short circuit protection.

```
INPUT VOLTAGE 33-40V A.C.
```

INPUT VOLTAGE 33-40V A.C.
OUTPUT VOLTAGE 33V D.C. Nominal
OUTPUT VOLTAGE 33V D.C. Nominal
OUTPUT CURRENT
OUTPUT CURRENT
OVERLEAD CURRENT
OVERLEAD CURRENT
DIMENSIONS
DIMENSIONS
TRANSFORMER BMT8O
TRANSFORMER BMT8O

OUR PRICE ONLY
$£ 19.95$
The 450 Tuner provides instant programme selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations, any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls.
Used with your existing audio equipment or with the BI-KITS STEREO 30 or the MK60 Kit etc. Alternatively the PS12 can be used if no suitable supply is available, together with the Transformer T461. The S450 is supplied fully built, tested and aligned The unit is easily installed using the simple

- Max Heat Sink temp. $90^{\circ} \mathrm{C}$. Frequency response 20 Hz . - Distortion better than 0.1 at 1 kHz . Supply voltage $15-50 \mathrm{~V}$. - Thermal Feedback. Latest Design Improvements. Load-3, 4, 5 or 16 ohms. Signal to nolse ratlo 80dB. - Overall size $63 \times 13 \mathrm{~mm}$.

Especially designed to a strict specification. Only the finest components have been used and the latest solidstate circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F. enthusiast.

£3.95

Stabilised Power Supply Type SPM80

STEREO 30
 COMPLETE AUDIO CHASSIS

$7+7$ WATTS R.M

power supply. This, with only the adoition of aremplitier. power amplifiers and high qualty audio unit sultable for use a franstormer or overwind will produce capable of producing up. stereo tuner. stareo tape derkge of inputa t.e. high tions. black front ping really first class 'esults. this unit is supplied wimple to install. mounting brackets enaboling it mains switch, tuse and fuse holicer and universal own construction of the cabinet avallable ed in a record pilnth, cabinets of your ifficulty (can be inequires HI-FI pertormance with beginner or the adyanced
transfoamea $£ 2.45$
trax caze £3.65
\qquad $£ 15.75$

IT＇S NEW！
 IT＇S POWERFUL
 IT＇S THE AL250

 125 watts

POWER AMPLIFIER
Specially designed for use in－
Disco Units，P．A．Systems，high power Hi－Fi，Sound reinforcement systems

TThe module has a sensitivity of 450 mV and a frequency response extending from 25 Hz to 20 kHz whilst distortion levels are typically below $0 \cdot 1 \%$ ．The use of 4 ， 115 W transistors in the output stage makes the unit extremely rugged while damage resulting from incorrect or short－circuit loads is prevented by a four transistor protection circuit．
The unit is intended for use in many applications such as disco units，sound reinforcement systems，background music players，etc．

SPECIFICATION：

Output Power： 125 watt RMS Continuous
Operating voltage：50－80
Loads：4－16 ohms
Frequency response： $25 \mathrm{~Hz}-20 \mathrm{kHz}$ Measured at 100 watts
Sensitivity for 100 watts output at $1 \mathrm{kHz}: 450 \mathrm{mV}$
Input impedance：33k ohms

Total harmonic distortion 50 watts into 4 ohms： 0.1% 50 watts into 8 ohms： 0.06% S／N ratio：better than 80 dBs Damping factor， 80 hms ： 65
Semiconductor complement： 13 transistors 5 diodes
Overall size：Heatsink width 190 mm ．length 205 mm ，height 40 mm

NEW PA12 Stereo Pre－Amplifier completely redasigned for use with Al10 2030 Amplifier Modules．Fob turoe include On／of volume Complete with tape output． Frequency Response $20 \mathrm{~Hz}-20 \mathrm{kHz}$ Beas and T
coss and Troble range $\pm 12 \mathrm{~dB}$ input impedance 1 meg otm 8 supply requifemente 24 V .5 mA
$8120152 \times 84 \times 33 \mathrm{~mm}$

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new Bi－Pak M．P．A． 30 which is a high quality pre－amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only．Used in conjunction are 4 low noise．high gain silicon transistors．It is provided with a standard DIN input socket for ease of connection Supplied with full．easy－to－follow instructions．
$£ 2.65$

 $22-30 \mathrm{~V}$ d．c．Output Current． 800 mA Max Size $60 \times 43 \times 26 \mathrm{~mm}$ ．

UNDER-SOLD?

MANY of the great achievements and commercial successes of electronics are due to the amazing cheapness of semiconductor devices, no less than to their technical versatility. But the first of these attributes could well prove an embarrassment or liability when considering its effect upon the popular image of electronics, and this is especially important now when the whole question of salaries and status of technical employees in the industry has come to the fore, as discussed by Nexus in this month's Industry Notebook.

Cheapness of components has helped reduce certain consumer type products to the expendable grade. Cheap transistor radios provided the first examples of modern electronic products which are sometimes deemed not worth repairing but are discarded when trouble appears. With the arrival of the digital watch, this custom could be carried to its ultimate absurdity. For if prices continue to fall as confidently predicted, it could eventually become more economical and certainly more convenient to throw away the cheaper type digital watch when the batteries expire and buy another.

There is a further interesting aspect well illustrated by this product, since the digital watch is also invading the fine jewellery market. These up-market models owe everything to their external appearance-to the case-since the electronic assembly might be identical to that used in a cheaper version. Cheap, common, and expendable plastics versus expensive,

- exclusive, and indestructible fine metals. Micro-electronics has made it all possible, but the case designers and makers seem likely to skim off the cream.

The digital watch thus offers an illuminating but disturbing example of highly advanced technology selling for a song, and the packaging alone determining whether the final product be a cheap and expendable item or a lasting and valuable possession. Moreover, in more general terms, as the ordinary constructor knows only too well, it is not unusual for the major cost of an electronic project to be taken up by non-active components and also items such as the hardware used in the assembly of the components and to encase the completed project. We all welcome and enjoy low cost active devices, but to the technically-appreciative, values must seem somehow to have become reversed.

Almost too late it seems semiconductor makers sense that they have been blinded by their own technological success and have been unwise in waging price wars on one another in order to acquire a bigger portion of the cake. The short term gains have been considerable, but what of the future? Has then electronics sold itself short? Any cheapening of the technology, any equating of its products with, say, easy-come easy-go plastics commodities must in the long term be detrimental to the status and financial well-being of those employed in electronics. Perhaps the semiconductor industry should recall that charity begins at home, and that cut-price technology is not really in everyone's best interests, and that it often leaves the biggest plums for outsiders to gather.
F.E.B.

Editor

F. E. BENNETT

Editorlal

D. BARRINGTON Production Editor
G. GODBOLD Technical Editor
R. W. LAWRENCE, B.Sc.

Art Dept.

J. D. POUNTNEY Art Editor
D. J. GOODING
R. J. GOODMAN
K. A. WOODRUFF

Editorial Offices:
Fleetway House, Farringdon St.
London EC4A 4AD
Phone: 01-634 4452

Advertisement Manager

D. W. B. TILLEARD

Phone: 01-261 5148
P. J. MEW

Phone: 01-261 5190
C. R. BROWN Classified

Phone: 01-261 5000

Advertising Offices:

King's Reach Tower, Stamford St.
London SE1 9LS
Phone: 01-261 5000

Dibitial ferioney mitr

THis article describes the design, construction and testing of a digital frequency meter (D.F.M.). This particular instrument has been designed as a radio society construction project and with this in mind it was necessary to use straightforward, logical design.

Ease of fault-finding has been one of the main considerations and to this end a design has been produced which can be tested and maintained using simple test gear.

The entire logic is contained on a single printed circuit board, and the four-digit display (in this case seven-segment light emitting diodes) is on another board. The power supply and the range switching are the only items that need free wiring.

The basic unit to be described has a 50 ohm input impedance and can measure up to at least 50 MHz . Modifications will be described ta extend

By A.J.BUXTON

the frequency range to 500 MHz and to give a high input impedance.

A major innovation in this instrument is the use of a large scale integrated (l.s.i.) circuit to replace the majority of the logic. The Ferranti ZN1040E counts, stores, decodes and drives up to four sevensegment displays.

THE ZN1040E

The ZNIO40E is a large scale integrated circuit fabricated using the "collector diffusion isolation" (c.d.i.) process. Fig. 1 shows the internal functions contained within this device together with the pin connections.

Fig. 1. The internal functions and pin connections of the Ferranti ZN1040E integrated circuit

SPECIFIGATION . . .

Frequency Ranges	$10 \cdot 00$ to 99.99 kHz
	$100 \cdot 0$ to $999 \cdot 9 \mathrm{kHz}$
	$1 \cdot 000$ to $9 \cdot 999 \mathrm{MHz}$
	10.00 to $99 \cdot 99 \mathrm{MHz}$
	50 ohm
Input Resistance	40 mV
Sensitivity	
Input Voltage d.c. bias	400 V
(max)	10 Hz on Range 1
Frequency Resolution	5 MHz
Timebase Frequency	Timebase Ageing Rate
Timebase Temperature	± 10 p.p.m. per year
Stability	± 10 p.p.m. $\left(10^{\circ} \mathrm{C}\right.$ to
	$\left.55^{\circ} \mathrm{C}\right)$

The device is contained in a 28 -lead plastic encapsulated package. By directly driving from the multiplexed, seven-segment outputs or by decoding the binary coded decimal (b.c.d.) outputs, any contemporary display can be used.

The seven-segment drivers can sink a current of 80 mA , which results in an average current of 20 mA per segment when multiplexed.

When free-running, the internal multiplex clock oscillator gives a frequency of about 500 kHz . This frequency can be lowered by the addition of a capacitor to pin 12. In this instrument a $0.01 \mu \mathrm{~F}$ capacitor is used to give a frequency of 3 kHz .

A direct drive at TTL logic levels will override the multiplexing to the driven frequency.

The ZN 1040 E requires a single 5 V supply and consumes an internal current of 90 mA . It is fully compatible with TTL devices.

CIRCUIT DESCRIPTION

A circuit diagram of the complete unit minus the power supply is shown in Fig. 2. This circuit shows the basic unit with a 50 ohm input impedance. All the circuitry is contained on two printed circuit boards: one for the logic and input circuits and one for the display. The two boards are shown as dotted lines in Fig. 2.

The circuit is more easily understood if considered in sections.

THE OSCILLATOR

The oscillator is the single most important function within a digital frequency meter as the accuracy depends almost entirely on the crystal oscillator.

Variations in temperature, crystal age and supply voltage all affect crystal frequency. Adding all the effects together, one can be faced with an error of 30 Hz in 1 MHz or 0.003 per cent.

Initial crystal frequency inaccuracy can be trimmed out using a capacitor (VCl). This can also be used to trim out the effects of ageing. There is admittedly room for improvement of the oscillator used in this design but it is simple and in line with the basic design concept.

A 5 MHz crystal (X 1) is used, this frequency being useful as temperature and mechanical stability are optimised at this frequency.

MAIN UNIT	
Resistors	
R1-R5	270Ω (5 off) R25
R6-R15	100Ω (10 off) R26
R16	$2.2 \mathrm{k} \Omega$ R27
R17	100Ω R28
R18	150S R29
R19, R20	$5.6 \mathrm{k} \Omega$ (2 off) R30
R21	$15 k \Omega$ R31
R22	$10 \mathrm{k} \Omega$ R32
R23	$1 \mathrm{k} \Omega$ R33-R
R24	100Ω
All $\pm 5 \% \frac{3}{4}$ or $\frac{1}{9} \mathrm{~W}$	
Capacitors	
C1	6,800pF
C2-C4	$0.05 \mu \mathrm{~F} 6 \mathrm{~V}$ disc (3 off)
C5	10pF mica
C6	$0.01 \mu \mathrm{~F}$ disc
C7	$0.05 \mu \mathrm{~F}$ disc
C8	$50 \mu \mathrm{~F} 10 \mathrm{~V}$ elect
C9	$0.05 \mu \mathrm{~F}$ disc
C10	30 pF mica
C11	$0.05 \mu \mathrm{~F} \mathrm{disc}$
C12	$0.1 \mu \mathrm{~F} 6 \mathrm{~V}$ disc
C13	$100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect
C14	30 pF mica
C15	10pF mica
C16, C17	330 pF mica (2 off)
C18	$0.05 \mu \mathrm{~F}$ disc
C19	470 pF disc
C20	$0.05 \mu \mathrm{~F}$ disc
C21	1,000pF 6V disc
C22-C28	$0.05 \mu \mathrm{~F} \mathrm{disc}$ (7 off)
C29	2,200 F 25 V elect
C30	$330 \mu \mathrm{~F} 16 \mathrm{~V}$ elect
C31	$0 \cdot 1 \mu \mathrm{~F} 6 \mathrm{~V}$ disc
C32	$100 \mu \mathrm{~F} 6 \mathrm{~V}$ elect
VC1	3-60pF trimmer

Transistors and Diodes

TR1-TR4	ZTX4403 (4 off)
TR5, TR6	ZTXX300 (2 off)
TR7	ZTX312
TR8, TR9	ZTX500 (2 off)
TR10-TR12	ZTX312 (3 off)
D1	$4.7 V 400 \mathrm{~mW}$ Zener
D2-D4	ZS170 (3 off)

Integrated Circuits

IC1	NE592	IC6	ZN7400
IC2	ZN74196	IC7	ZN7403
IC3	ZN1040E	IC8-IC14	ZN7490 (7 off)
IC4	ZN7474	IC15	78M05
IC5	ZN74123		

Display
LED1-LED4 DL707 (4 off)
Switches

$$
\begin{array}{ll}
\text { S1 } & 2 \text { pole } 4 \text { way rotary } \\
\text { S2 } & \text { Single pole on/off toggle } \\
\text { S3 } & \text { D.p.d.t. mains toggle }
\end{array}
$$

Miscellaneous
T1 Mains primary, $8-0-8 \mathrm{~V} 500 \mathrm{~mA}$ secondary (Douglas MT207CT)
X1 $\quad 5 \mathrm{MHz}$ crystal
SK1 BNC socket
FS1 2 A 20 mm fuse and holder 9 -way tag strip
Filter for display, p.c.b.s, sockets for i.c.s if required, case, nuts and bolts, standoffs, etc.

Fig. 2. Circuit diagram of the Digital Frequency Meter (50 ohm version). The dotted lines indicate the boundaries of the two printed circuit boards. The circles with numbers inside refer to the pads on the circuit boards to which wires are connected

Transistor TR10 and associated components form the basic oscillator whose output is fed to the amplifier TR11 and then to TR12 which interfaces the signal to TTL logic levels. As mentioned earlier, the frequency of this clock oscillator is set by trimming the 3 to 60 pF capacitor VCl .

THE CLOCK DIVIDER CHAIN

The clock oscillator frequency is divided down to generate logic control pulses. These pulses determine the time for which the main signal gate (IC6c) is open. They also control the transfer of information to the displays and the clearing of the counters in the ZN1040E.

This four-range, four-digit counter has four orders of magnitude of full scale display, so four lengths of timing pulse are needed to cover them.

Full scale ranges are 99.99 MHz (in practice limited to 50 MHz by the limitations of the ZN1040E), $9.999 \mathrm{MHz}, 999.9 \mathrm{kHz}$ and 99.99 kHz .

Fig. 6. Circuit diagram of the power supply which produces the 5 V and -9 V lines to the main board

Fig. 3. The timing of the control pulses at various points in the circuit

If the counter is to display, say, 6.800 MHz , then 6,800 pulses must pass to the counters. A decade divider connected to the input (IC2) divides the input frequency by ten, giving a frequency of 680.0 kHz at the signal gate input (IC6c pin 9). This means that to let 6,800 pulses through, gate IC6c must be open for $1 / 100$ th of a second (10 ms). The figure " 6.800 " will then be displayed, the range switch S 1 inserting the decimal point to compensate for the prescaler.

The four ranges thus require the following gate times:

Frequency Range	Time gate open (secs)
10.00 to 99.99 kHz	1
100.0 to 999.9 k Hz	$0.1(100 \mathrm{~ms})$
1.000 to 9.999 M Hz	$0.01(10 \mathrm{~ms})$
10.00 to 99.99 MHz	$0.001(1 \mathrm{~ms})$

To obtain these length pulses the 5 MHz clock is divided by six and a half decade counters (IC8 to IC14). The remaining divide-by-two is used to start the transfer, clear and reset logic.

Control pulse selection is effected by selecting one of the open collector NAND gates in IC7 using switch S1b. Each of the four gates is connected to a different point in the divider chain. The nonselected gate inputs are held low by the resistors R33 to R36. The outputs of the four nand gates are WIRED-OR connected via resistor R25.

THE CONTROL LOGIC

The control logic determines when a transfer or clear pulse is required and when the signal gate can be opened, thus ensuring a correct sequence of events. The timing diagram (Fig. 3) shows the sequence when the fastest range is selected and the circuit of Fig. 4 shows the control logic in more detail.

The output from the end of the divider chain (IC4, pin 12) is a one second high, one second low series of pulses.
Consider the state when the two bistables of IC4 have been set by a pulse from IC7, so that $2 \bar{Q}$ is high and output $1 Q$ is high. The next negative edge from the divider chain will produce a positive edge at the output of IC6b. This will trigger monostable MS2, producing a 120 ns positive "transfer" pulse at

Fig. 4. The control pulse generation circuitry in more detail. The logic shown here produces the clear and transfer pulses required by the ZN1040E and the signal gate control pulses

its 2 Q output. This pulse transfers the information from the counters to the latches and hence to the display in the ZN 1040E.

When the 2Q output of MS2 returns to low, its 2 \bar{Q} output goes high, triggering monostable MS1 which also produces a 120ns "low" pulse. This pulse is used to clear the counters to 0000 . Meanwhile the 1 Q output is high for 120 ns , taking the output of IC6a low which sets BS2's 2Q output high, clearing BS1' whose $1 Q$ output goes low, thus closing the signal gate IC6c. The logic is now set for the timing period.

TIMING SEQUENCE

The 7474 is a positive edge triggered bistable. On receiving the first positive edge from IC7 after being set, BS 1 is triggered. 1 Q goes high thus opening gate IC6c. I \bar{Q} goes low which has no effect on 2 CLOCK input as a positive edge is required.

The pulse from IC7 goes low, this having no effect on 1 CLOCK. However, when it goes high again (after the required timing period of one second) 1Q wilt go low thus closing the signal gate. At the same time $1 \bar{Q}$ goes high which triggers BS2, setting 2 Q low and clearing $\mathrm{BS} 1.2 \overline{\mathrm{Q}}$ remains high in readiness for the next negative edge which starts the whole sequence.

The action of the bistable BSI divides the pulses from IC7 by two. A 100 Hz frequency, with 2.5 ms high and 7.5 ms low pulses, causes the gate to be open for 10 ms .

COUNTING AND DISPLAY

After the counters of the ZN1040E are cleared, the signal gate will be opened for a fixed period. The frequency of the pulses entering the count input (pin 22) will be a tenth of the frequency to be displayed. The ZN1040E has a minimum count rate of 5 MHz so the measured frequency can be as high as 50 MHz or greater.

The pulses at the count input are counted on the four cascaded decade counters (Fig. 1). When the signal gate is closed the control logic generates a pulse to transfer the counter information to the latches. The clear pulse then sets the counter to zero. Should there be more than 9,999 pulses, the most significant digits will be lost, only the four least significant digits of the number of pulses being retained.

This feature is most useful when measuring a frequency with more than four significant digits. If, say, 29.215 MHz is to be measured, the instrument can be deliberately over-ranged to read 9.215 MHz , the " 2 " being remembered from the measurement on the next range.

An internal clock generates the multiplexing signals which control the gating that scans the latches, and addresses the digit select output.

When any particular digit is addressed, the latch information relevant to that digit is presented at the seven-segment decoder/driver output. As each display is addressed with a one-in-four time slot, the average power supplied to each segment is 0.25 the peak power.

Resistors R9 to R15 are used to limit the output current to about 25 mA peak. 6 mA per segment average is adequate for most applications.

Fig. 5. Frequency plotted against sensitivity for the NE592 integrated circuit amplifier

The frequency of the internal clock can be lowered by the addition of a capacitor or overriden by driving pin 12 with an external TTL clock. A capacitor of $0.01 \mu \mathrm{~F}$ has been used in this design to give a multiplex frequency of 2.8 kHz .

The displays used in this meter are four DL707 (LEDI to 4). Being common anode l.e.d. displays, they are suitable for driving directly from the ZN1040E, i.e. without interface circuitry. The anode pull-up transistors TR1 to TR4 are used because of the high currents that are required if an " 8 " is to be displayed (all segments used). A current of 200 mA peak can flow in this case. Resistors R2 to R5 limit the current flowing into the bases of these transistors.

Decimal point selection is carried out using the same switch as is used for the gate period selection (S1).

PRESCALER CIRCUIT

In order to measure frequencies higher than the 5 MHz limit imposed by the ZN 1040 E , it is necessary to pre-divide the input frequency. IC2 is a 74196 decade divider capable of operating at 50 MHz . It is wired as a divide-by-two then a divide-by-five. The 10 pF capacitor C 5 connected to the divide-bytwo output (pins 5 and 6) acts as a load to prevent instability under no-signal conditions.

Though the frequency capability of the ZN1040E is 5 MHz and of the 7419650 MHz , these are minimum figures; a typical pair of i.c.s will operate above this range.

INPUT AMPLIFIER

The input impedance of the instrument as shown in Fig. 2 is 50 ohm. If a high input impedance is required, then the buffer board to be described next month will be required.

A capacitor at the input (Cl) protects the input from d.c. bias potential up to 400 V . Two transistors (TR5, TR6) connected as diodes are used to limit the input voltage to ICI. Transistors are used as a
cheap alternative to high speed switching diodes. If diodes are used here they must have a reverse recovery time of less than 6 ns if the full capabilities of the instrument are to be realised. Resistor R7 limits the current in these two transistors.
The power input to the instrument must not exceed the power handling of R6.
The input amplifier ICl is a wideband video amplifier type NE592 connected in the inverting mode.

The emitter follower TR7 is used to interface ICI to IC2. Under no signal conditions, $2 \cdot 1 \mathrm{~V}$ will be measured at " B ".

The i.c. has four outputs ($\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$) used to set the gain. By linking X and Y a gain of 400 at a bandwidth of 40 MHz is obtained. The graph of Fig. 5 shows frequency plotted against sensitivity.
Shorting W and Z gives a gain of 100 with a 90 MHz bandwidth. A $10 \mathrm{k} \Omega$ variable resistor between X and Y allows a variable gain of unity to 400.

The -5 V line required by the NE592 is supplied by the simple stabiliser (TR8 and TR9) fed with -9 V .

THE POWER SUPPLY

The power requirements of the instrument are 5 V at 500 mA , and -5 V at 30 mA . The power supply and stabiliser for the +5 V line is shown in Fig. 6. The -9 V line is fed to the stabiliser on the main printed circuit board which produces the -5 V for ICl .

The current drain is 350 mA with no-signal input and 500 mA with all eights displayed.

Next month: Constructional details, high impedance buffer and v.h.f. prescaler

NEWS BRIEFS

Summer School for Teachers

The Department of Electrical Engineering Science at Essex University will be holding its annual Electronics Summer School for teachers during the week July 12-16 and, this year, three courses Linear Circuit Design, Digital Circuit Design and Small Computer Systems will be run simultaneously.

The Linear Circuit Design course is concerned with the use of transistors and operational amplifiers in analogue applications and the basic circuits of a hi-fi amplifier are investigated in detail.

The Digital Circuit Design course concentrates on the use of the transistor as a switch and develops a design using integrated logic circuits; a digital patchboard is used to introduce the concepts of combinational and sequential logic design.

Small Computer Systems is a new course which should be of interest to mathematics teachers as well as those interested in electronics; the aims of the course are to introduce a typical small computer, the PDP-8, to investigate how it is used and to discuss its function in schools.

Further information on the Summer School can be obtained from Mr R. J. Mack at the Department of Electrical Engineering Science, University of Essex, Wivenhóe Park, Colchester CO4 3SQ.

INTRODUCTION TO QUANTUM ELECTRONICS
By P. A. Lindsay

Published by Pitman

202 pages, $240 \mathrm{~mm} \times 160 \mathrm{~mm}$. Price $£ 6.00$
uantum Electronics is no longer confined to the scientific laboratory. An impórtant and growing technology has emerged based on the practical utilisation of electromagnetic radiation interaction with matter on the atomic scale through the medium of devices such as lasers. The applications of lasers are likely to increase in the future and already they play an important part in industry and in the medical field.

Thus the subject covered by this book could be a very rewarding one for the engineering student to pursue. The term "Introduction" might be misleading. This is an advanced level textbook and it explores the subject in a rigorous analytical manner with extensive use of maths. The author is Professor of Physical Electronics at King's College, University of London.
D.D.K.

MULLARD DATA BOOK 1976

176 pages, $134 \times 96 \mathrm{~mm}$. Price 50 p.
THIS is a handy pocket reference containing abnidged data on the Mullard range of components for use in consumer applications, including valves, semiconductor devices, TV tubes, capacitors and resistors. Equivalents and comparables are also listed.

For easy reference different coloured pages are used for each of the main sections; blue for semiconductors, yellow for picture tubes and receiving valves and green for capacitors and resistors.

The book is obtainable from specialist components stockists or direct from Technical Press Ltd., Freeland, Oxford, OX7 2AP

HOW INVENTIVE ARE YOU COMPETITION
Full results will appear next month. Unfortunately it was not possible to include them in this issue, as originally hoped.

DIGI-PROBE (April 1976)
In Fig. 7 (p. 292) the resistor on the left-hand edge of the top board should be annotated R16. Also the lead from the junction of R15, R16 and R17 should go to IC2 pin 12 and not as shown to pin " e " on the DL704 display. The lead from pin " e " of the display should be connected to the other side of R16.

OPTO-COUPLED R.P.M. METER (February 1976)
Some constructors have had difficulty in obtaining the MS4A photo-cell specified. This can be obtained from: Davian Electronics, PO Box 38, Oldham, Lancs, OL2 6XJ.

This is an error on the p.c.b. master (page 146). The track in the top left-hand portion, of Fig. 2 which connects the collector of TR1 to the positive supply line (shorting out R2) should be removed.

SOVIET VENUS PROBES

The Soviet satellites Venera 9 and Venera 10 , continuing their orbiting studies of Venus, have measured the temperature of the clouds near their upper boundary. This was at a level of -35 degrees centigrade. Records of the glow on the night side of the planet indicate that the spectrum differs from that of the Earth glow.

The electron density on the day side is much higher. than the night side and about 90 per cent less than that of the Earth. Another feature is that the ionosphere of Venus appears to be closer to the planet and much thinner than that of the Earth.

The pictures that have been sent back so far have encouraged the Soviet investigators to examine the radio method of exploring through the cloud layer. Although some five years ago Yuri Spiridinov had devised a system of measuring relief using data sent back by Mariner 5, this was not pursued because the general consensus of opinion was that the surface of the planet would be mainly smooth.

The technique involves the critical refraction layer of the Venusian atmosphere about 30 kilometres or so above the surface. The angle of refraction of the radio beam is so great that it must also be reflected by the surface. Using the split beam technique, similar holography in the visible spectrum, one half of the beam passes below the critical level and the other half above the critical level.

A signal sent from Earth will be received by a space probe on the dark side, and will be the sum of the direct and reflected wave. Thus, a picture can be built up from the
recordings and the result is, when computerised, a picture of the surface in the radio frequency spectrum. More than one line scan is needed of course, but since Venus moves very slowly on its axis, 243 terrestrial days, and the probe needs to be in radio shadow, a line by line scan is easily obtained.

Although the original data received from Mariner 5 was insuffcient to produce a full picture, nevertheless the contour was shown at, two frequencies. The indicated variation of height ranged from 0.3 to 2.7 metres. This agreed very well with the pictures that were received from the probes landed on the surface. This technique could be applied in a number of other cases and may prove a very useful tool of the future.

OUTER BOUNDARY

Spacecraft Pioneer 10 crossed the orbit of Saturn on February 10 and headed out to the boundary of the solar system. On that date it was some 1,000 million miles from the Earth. lts velocity was about $26,000 \mathrm{mph}$.

The equipment has continued to function normally and data continues to be sent back. It is considered that with the sensitivity of the Deep Space Network, Mariner 10 will be in communication until it reaches the orbit of Uranus and maybe further. The orbit of Uranus is about 2,000 million miles from the Earth.

POWERSAT

The American Congress now has the results of Boeing's power generation satellite proposals. This will require some 30 spacecraft each of which will have a system of converting solar energy to microwaves which are beamed to Earth. The system has been described in detail in an earlier Spacewatch.

The Earth stations will be situated on the equator in desert areas such as Nevada in America. Provision will have to be made for heavy lifting transporters to raise some of the structures. These transporters will be about 90 ft high with a cluster of 21 engines around a 100 ft diameter base. The cost, if the pilot experiments are successful, would be something of the order of 60,000 million dollars over a period of 30 years.

SET BACKS

A number of casualties have resulted from the new American finance cuts in the space budget. Some of the cuts mean that decades may pass before missions can be set up again.

It is the Space Science area that has suffered most. A Jupiter orbiter probe for launch in 1981 has been deferred. The Moon orbiter and the fly-by for Comet Encke have also been abandoned. Although, here there is a possibility that Helios could be diverted so that the opportunity is not lost.

A tragic loss to astronomy is the withholding of further finance for the 94in orbiting telescope. It will not be possible to advance this project for at least 18 months.

The Venus Pioneer programme which will release probes for different depths of penetration into the Venusian atmosphere will still go ahead.
The mission which was planned for a journey via Jupiter, Saturn Uranus has been postponed and this is the one which means decades in terms of delay because the astronomical positions will not be suitable. This was the "sling-shot" mission where the precise position of the trajectories would have enabled the gravitational effects to help the vehicle on its way.

FUTURE PLANS

However, some good news is available and the studies planned for the next 11-year period of solar activity will go ahead. The mission will cost 85 million dollars using a 3,000lb satellite which will be known as the Solar Maximum Mission. This will be the first modular design to carry instrumentation retrievable by Shuttle.

At the time of going to press, four launchings have taken place this year. They are: Helios B, the second of the German Solar probes; Communications Technology Satellite, a joint effort of NASA and Canada; Intelstat IV-A-B, owned by International Telecommunications Organisation and Marisat. launched for Comsat General Corporation. Marisat- B will follow in May and Marisat- C later in the year.

The RCA Satcom, second of the domestic communications satellites, was due for launch in March. A NATO satellite $3-A$ will be in geostationary orbit in April for North Atlantic Treaty Organisation Relay. LAGEOS, which is Laser Geodynamic Satellite for predicting ocean surface conditions and circulating patterns. It will alṣo be concerned with earthquake hazards and is due for launch in April. Comstar $I-A$ and Comstar $I-B$ will be launched in May and August.

Finally, the Tiros Operational Satellite for the National Oceanic and Atmospheric Administration will be placed in orbit in September

Usimg
 Mos digtatal.C.

By D.B. JOHNSON-DAVIES \& A.M. MARSHALL a.a.

PART 5

THIS part concerns electronic switches and oscillators with practical circuit examples.

MONOSTABLES

The monostable is basically a single-shot oscillator. It produces an output pulse of constant width independent of the duration of the input pulse, thus curtailing long pulses and extending short ones. The simple differentiating circuit of Fig. 5.1 performs the first function, as shown by the waveforms in (a). The period of the output pulse depends on the transfer voltage V_{T} of the inverter as the time constant $R C$ charges from $V_{S S}$ to $V_{D D}$, and will vary between devices from about $0 \cdot 4 \mathrm{RC}$ seconds with V_{T} $=30$ per cent of V_{DD} to 1.2 RC seconds with $\mathrm{V}_{\mathrm{T}}=$ 70 per cent of V_{DD}. If, however, the input pulse is shorter than this period, as in the waveforms (b), the capacitor does not charge fully to V_{T} and the output pulse will be constrained to the length of the input pulse. In other words this circuit will only act as a pulse shortener.

This differentiating circuit can be used as a simple delay unit, and Fig. 5.4 shows a frequency doubler using two such circuits, one triggering on each edge of the clock pulse.

For the circuit of Fig. 5.1 to function as a monostable, it must be made to latch on until the full output pulse has been delivered. This is achieved in Fig. 5.2 by using a Nor gate to hold the input to the differentiating circuit "high" until the capacitor has charged to V_{T}. This excellent monostable does however suffer from the variation in period between devices, mentioned above.

The circuit of Fig. 5.3 can be used if a more predictable period is needed. Two gates fabricated on the same chip will have closely matched transfer voltages, and by using two identical RC time constants, the between device variations are effectively cancelled out.

SCHMITT TRIGGERS

At the interface between analogue and digital circuits comes the Schmitt trigger, which gives a snappy "yes" or "no" for an undecided analogue input signal. The perfect Schmitt has a characteristic as represented in Fig. 5.5. The Schmitt, if presented with a slowly rising input voltage, will switch sharply
off at V_{UT} (the upper threshold voltage) and will not switch back on again until the voltage has fallen below V_{LT} (the lower threshold voltage). This difference $\mathrm{V}_{\mathrm{UT}}-\mathrm{V}_{\mathrm{LT}}$, is called the hysteresis, and it prevents the circuit from going into oscillation when the input is held at one of the thresholds.

One way of obtaining hysteresis is to make the transfer point unstable by applying positive feedback, as in Fig. 5.6. The feedback is equal to R1/R2, and this should be less than the combined gain of the inverters for switching to occur. The average thréshold voltage V_{T} can be varied, if required, by connecting a resistor R 3 to V_{DD} for V_{T} of greater than $\mathrm{V}_{\mathrm{DD}} / 2$, and to V_{SS} for V_{T} less than $\mathrm{V}_{\mathrm{DD}} / 2$.

Another type of Schmitt trigger, unique to cmos, makes use of the variation of the transfer characteristic of multi-input gates described earlier. Fig. 5.7 shows a circuit with a hysteresis of about 30 per cent of V_{DD}. This can be reduced to 15 per cent of $V_{D D}$ if required by taking one of the three inputs of gate A to $V_{D D}$. The other two gates are arranged as a familiar R-S latch.

TRANSFER CURVE

If one of the inputs of a two-input gate is held at somewhere between the two logic levels (i.e. between 3 and 7 volts with a 10 volt supply) the transfer curve for the other input is altered as shown in Fig. 5.8. The Schmitt triggers of Fig. 5.9 make use of this property of cmos gates. The circuit in (a) using NAND gates triggers at above $\mathrm{V}_{\mathrm{DD}} / 2$, whereas using Nor gates as in (b) gives trigger levels below $\mathrm{V}_{\mathrm{DD}} / 2$. In both circuits the hysteresis can be varied from 0 to 40 per cent of $V_{D D}$ by altering V_{x}.

SCHMITT PACKAGES.

As an alternative to constructing Schmitt triggers from discrete gates, the cmos family contains a few ready-made Schmitt packages. The 4093 contains four 2 -input Nand gates each with Schmitt circuits on both inputs. The 40106 is a hex-inverter with Schmitt inputs, and the package outline is the same as the 4069 . In both these devices V_{T} is approximately $\mathrm{V}_{\mathrm{DD}} / 2$, and the hysteresis is 2 V with a 10 V supply.

Fig. 5.1. Simple differentiating circuit. The period of the output pulse depends on the transfer voltage V_{T} of the inverter. For explanation of waveshapes below, see text
(3) \qquad (3)

Fig. 5.4. Frequency doubler using two differentiating circuits, one triggering on each edge of the clock pulse, as can be seen from the waveshapes

Fig. 5.3. With gates fabricated on the same chip and identical RC time constants output pulse periods can be more accurately predicted

WAVEFORMS

(2)

(3)

(4)

Fig. 5.2. Monostable circuit achieved by connecting a NOR gate to hold "up" the input to the differentiating circuit until the capacitor has charged to \mathbf{V}_{T}

(4)

(5)

Fig. 5.5. The ideal Schmitt trigger characteristic. It can be defined either in terms of $V_{\text {LT }}$ and $V_{\text {UT }}$ (the lower and upper thresholds) or in terms of V_{T} and H (the average threshold voltage and hysteresis)

Fig. 5.6. Schmitt trigger formed from two inverters with positive feedback. R1 can be from 1 to 100 times R2. With the values shown (R3 not connected) and a supply of $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{LT}}=5.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{UT}}=5.8 \mathrm{~V}$ approximately

Fig. 5.7. Schmitt trigger using threeinput gates

Fig. 5.9. Schmitt trigger circuits with hysteresis determined by the voltage V_{X}. (a) With NAND gates the circuit triggers at a voltage greater than $\mathrm{V}_{\mathrm{DD}} / 2$.
(b) Equivalent circuit with NOR gates triggers at below $V_{D D} / 2$
v_{x}

Fig. 5.10. Crystal oscillator

Fig. 5.8: Transfer curve variations for non-logic levels V_{x} at one input of a two-input NAND gate. The supply is 10 V

Fig. 5.11. Showing an L/C oscillator the frequency of which being stable to within about 0.001 per cent for a 2 V change in the supply voltage

This hobby brings big rewards.

A soldering iron and a screwdriver. If you know how to use them, or at least know one end from the other, you know enough to enrol in our unique hame electronics course.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You build, see and learn as, step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered and add a new dimension not only to your hobby but also to your earning capacity.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

Build an oscilloscope.
As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

PLUS

 FREE GIFT!

Read, draw and understand circuit diagrams.
In a short time you will be able to read and draw circuit diagrams. understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

Carry out over 40

 experiments on basic circuits.We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing. servicing and maintaining all types of electronic
equipment. radio, t.v. etc.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

ALL STUDENTS ENROLLING IN OUR COURSES RECEIVE A FREE CIRCUIT BOARD ORIGINATING FROM A COMPUTER AND CONTAINING MANY DIFFERENT COMPONENTS THAT CAN BE USED IN EXPERIMENTS AND PROVIDE AN EXCELLENT EXAMPLE OF CURRENT ELECTRONIC PRACTICE

Greenbank Electronics

The illustration shows the two P.C.B. module kits already assembled, one has 8 mm high sigits. the other has 16 mm high digits. Also shown is an example of a completed clock

CLOCK CMIPS
AY-5-1224A 4 drgit basic clock £3-50 MK 50253 4/6 digit alarm/snooze $\mathbf{£ 5} 50$
ECONOMY RED LED DISPLAYS ('Class II' quality, Dut guaranteed by us, fully returnable if not satisfied). $\mathrm{DL}-707 \mathrm{E} / \mathrm{DL}-704 \mathrm{E} 8 \mathrm{~mm}\left(0.3^{\prime \prime}\right) 70 \mathrm{p}$. DL-727E/DL-728E $12 \mathrm{~mm}\left(0.5^{\prime \prime}\right)$ Double Digit $\mathrm{f} 1 \cdot 80$. DL. $747 \mathrm{E} / \mathrm{DL}-750 \mathrm{E}$ $16 \mathrm{~mm}\left(0.6^{\prime \prime}\right)$ - $£ 1.50$

CMOS WITH DISCOUNTS! (Anymix disc. $\mathbf{1 0 \%} 25+, 25 \% 100+$)

4000, 14000	0.15	4023/14023	0.15	4043/14043	0.80	4066/14466	0.55	4096;	0.85	14515/4515	2.55	14543/--	1.50
4001/14001	0.15	4024/14024	0.60	4044/14044	0.75	40671-	2.95	4097/-	2.95	14516/4516	1.10	14549i-	2.95
4002/14002	0.15	4025/14025	0.15	4045i-	1.15	4088/14068	0.15	4099/-	1.50	14517/-	5.40	14552-	9. 05
400614006	0.95	4026/-	1.40	4046/14046	$1 \cdot 10$	4069/14069	0.15			14518,4518	1.00	14553-	3.50
4007/14007	0.15	4027/14027	0.45	40471-	$0 \cdot 70$	4070/14670	0.15			14520/4520	1.00	14554/-	1.20
4008.14008	0.75	4028/14028	0.70	4048/-	0.45	4071/14C71	0.15			14521/-	2.00	14555,4555	0.70
4009, 14005	N/S	4029/-	0.90	4049/14049	0.45	4072/14072	0.15	4700\%-	1.50	14522/-	1.50	14556/4556	0.70
4010/14010	N/S	4030/14507	0.45	4050:14050	0.45	407314073	0.15	7083i-	4.25	14524/-	N/S	14557/-	3.20
4011/14011	0.15	40311-	1.80	4051/14051	0.75	4075/14075	0.15			14526/-	1.50	14556, -	0.90
4012/14012	0. 15	4032/14032	0. 85	4052/14052	0.75	4076/14C76	1-25			14527/4527	1.20	14559/-	2.95
4013/14013	0.45	4033/-	1. 10	4053,14053	0.75	4077/14C77	0.15			14528/4089	0.85	14560/-	1.55
4014/14014	$0 \cdot 80$	4034/14034	1.55	4054/-	0.95	407814078	0.15	14501/-	0.15	145291-	1.30	14561/-	0.45
4015/14015	0.80	4035/14035	0.95	4055-	1.05	4081/14081	$0 \cdot 15$	14502/4502	1.00	14530/-	0.65	14562-	5.25
4016/14016	0.45	40367-	1.80	4056/-	1.05	4082/14C82	0.15	14505-	3.30	14531/-	1.25	14566, -	1.20
4017/14017	$0 \cdot 80$	4037/-	0.75	4057 $/$ -	20.35	4085/-	0.55	14506-	$0 \cdot 35$	14532 4532	1.80	14572]-	0.35
4018/-	0.80	4038/14038	0.85	4059/-	10.60	4086/-	0.55	14508/4508	2.35	- 145341	6.00	14580/40180	6.00
4019/14519	0.45	4039/-	2.85	4060/-	0.90	4089/-	0.65	14510/4510	1.10	14536/-	2.85	14581/40181	3.05
4020/14020	0.90	4040/14040	0.85	4061/-	18.40	4093/14C33	0.65	14511/4511	1.25	145371-	15.25	14582/40182	1.15
4021/14021	0.10	4041- -	0.65	4062 - -	N/S	4094/-	1.50	14512i-	1.05	14539/-	1.05	14583/-	0.71
4022/14022	0.75	4042/14042	0.85	4063 -	0.90	4095/-	0.85	14514/4515	2.55	14541/-	1.80	14585.-	1.45

DIGITAL CLOCK

P.C.B. MODULE KITS

(ex. VAT, p \& p)

With 8 mm digits
 £9. 29

With 16 mm digits $£ 12 \cdot 53$

Features

* High quatity fibreglass P.C.B. $112 \times 89 \mathrm{~mm}$ (both types); case is available as illustrated, or you can make your own.
* All componente mount on one side of the board for neatness and easy construction.
* AY-5-1224A chip and L.E.D.s plug-in for simple assembly and servicing
* Uses L.E.D. display (believed to have the Jongest lifetime of all electronic display types known at present).
* A single $12 \mathrm{~V}, 500 \mathrm{~mA}$. 50 Hz supply is the only input required $(0.9$ our $2 \times 8 \mathrm{~V}$ Min. Tr. at $£ 1.52$ ex. VAT, etc.).
Elght pages of 'step-by-atep' instructions are provided, and back up assistance if you need it-success guaranteed! Sultable for even the absolute beginne
* 12 or 24 hr display modes.
* Easily converted to give additional 4 range stopwatch' facility. e.g. darkroom timer
* All parts availab
- Modules can be supplied already assembied and tested for an extra 75 p (+ VAT atc.)
Module kits include. P.C.B.. AY-5-1224A chip. 4 L.E.D. digits. transistors, diodes, resistora. capacitors, fuse and holder, pins CA3130 COS/MOS Operational Amplifier 75p

Terms: C.W.O. Add VAT 10 all prices at 8%. Post etc.. U.K. 10 p per order, export 75 p (no VAT). All orders processed on day of receipt

GREENBANK ELECTRONICS (Dept. W4P)
 94 New Chester Road, New Ferry, Wirral, Merseyside, L62 5AG, England. Tel:-051-645 3391

(1 TH CJL LTD.P.O.BOX 34.CANTERBURY,CT11YT ALL PRICES INCLUDE PEP AND V.A.T.

ANTEX SOLDERING IRONS

(with slide on \& off bits) 15W ' C ' miniature irons 3/32," 1/8,'3/16'bits-each 'C' Elements
18w 'G' miniature irons 3/32;" $1 / 8,{ }^{\prime \prime} 3 / 16^{\prime \prime}$ bits-each -G' Elements 15W'CCN'Low leakage irons 3/32," $1 / 8,43 / 16$ " bits-each 'CCN' Elements 25W: $\times 25^{\prime}$ Low leakage irons 3/32", $1 / 8,3 / 3 / 16^{\prime b}$ bits-each ' $\times 25^{\prime}$ ' Elements
\qquad 'SK1!'SK2!Soldering Kits ST3 Stands-for all models SOLDEA in Bib dispenser

WIRE STRIPPER A CUTEER 0.85 HAND DRILLS Leytool precision, compact, $5 / 16^{\prime \prime}$ ehuck $£ 3.99$ AERIALS Extend $15-120 \mathrm{~cm} £ 1.50$ CASSETTE 'Head Demagnetigers' Shaped pole-saves time $£ 3.65$ EARPMONES Stethoscope $£ 1.25$ Crystal earphone, lead\& plug $£ 0.65$ Headphone, 2,000 n MTERCOMS 2 -station WICROPHONES Dynamic $£ 2.15$ PAINTED CIRCUIT KITS -AII items for producing p.c's £3.99 sigmal INHECTOR -Audio through video signals, self contained £4. 25 STEREO MEADPHONES 日n E4. 85
SPEAKERS -75 mm dia. 8 n E1.00

TIDY TRAY TOOL BOX

Detachable tool box lid, hardboard line. doubles as a portable working surface. 18 transparent standard size "A" component drawers.
Extension plug and socket for Soldering iron or small portable tools.
Substantial steel construction, finished in blue hammer enamel.
Overall size: 18 in high $\times 16 \frac{1}{2}$ in deep \times 7in wide
Price: $\{8.75$ including VAT
Postage and package: $£ 1 \cdot 25$ extra.

WOOD-JEFFREYS LTD.

North Road, Kirkburton, Huddersfieid HD8 ORJ
Telephone: Kirkburton 3323

Fig. 5.12. Ring oscillator which uses only one capacitor which is charged and discharged through the inverters

Fig. 5.14. Low-power astable with current limiting resistors $R 1$ and $R 2$. These can be any value up to about $470 \mathrm{k} \Omega$. With the values given the frequency is about 450 kHz

STABLE OSCILLATORS

For more critical applications, stable oscillators can be made by connecting a crystal or L-C network as a feedback network across an inverter. A crystal oscillator circuit is shown in Fig. 5.10, and crystals resonating at up to several megahertz can be accommodated by altering the values of the two capacitors. Fig. 5.11 shows an L-C oscillator, the frequency being stable to within about 0.001 per cent for a 2 V change in the supply voltage.

The ring oscillator of Fig. 5.12 uses only one external capacitor which is charged and discharged through the mosfets of the inverters. It will oscillate at between 1 kHz and 10 MHz for values of C from $1 \mu \mathrm{~F}$ to 1 pF .

The Schmitt trigger will operate as an oscillator giving a range of 1 Hz to 1 MHz with suitable values of R and C (Fig. 5.13). Six discrete oscillators can be built with one 40106 package.

LOW POWER

Where power consumption is critical, as in battery: powered circuits, it may be worth modifying these simple oscillator circuits given in the previous part in order to conserve a few milliwatts.

Fig. 5.13. Schmitt used as an oscillator

Fig. 5.15. Low-power crystal oscillator. Frequencies of up to 10 MHz are possible with a supply of 15 V

The quiescent current drawn by a gate is negligible; of the order of nanoamps. The major part of the dissipation of a cmos oscillator occurs during the transition between states, due to the charging and discharging of circuit capacitances, and therefore increases with frequency. This dissipation can be reduced at the expense of decreased output drive capability by the addition of resistors between the source and $V_{S S}$, and the drain and $V_{D D}$ of the mosfet pair, thus decreasing the current that flows during conduction. The 4007 dual complementary pair plus inverter provides access to the individual mOSFETS and so can be used in such circuits.

Fig. 5.14 shows a low-power oscilla tor constructed from a 4007 package, with a frequency of about $1 / 2 \cdot 2 \mathrm{RC}$. The power consumption at 10 volts falls from about 5 mW with R1 and R2 shorted as in the simple oscillator circuit, to about $200 \mu \mathrm{~W}$ with R1 $=\mathrm{R} 2=100 \mathrm{k} \Omega$. Due to the increased output impedance the oscillator is very sensitive to loading, and so an inverter is added as an output stage.

The crystal oscillator of Fig. 5.15 requires only about $30 \mu \mathrm{~W}$ with a supply of 5 volts, and the presence of R1 and R2 has the added effect of stabilising the frequency against variations in supply voltage.

THE measurement of capacitance has always been more difficult than the measurement of resistance, voltage, etc.

The traditional method of performing the operation is with some form of impedance bridge, but this can involve a lengthy ritual of balancing and adjustment to obtain a final reliable reading.

The circuit to be described will allow instant measurement of capacitance from less than 1 pF to greater than $10 \mu \mathrm{~F}$, displaying the result on an ordinary multimeter.

THEORY OF OPERATION

The add-on capacitance unit uses simple, conventional techniques and relatively few components. Referring to the block diagram (Fig. 1) it will be seen that there are three basic sections: an oscillator, a virtual earth amplifier, and a precision rectifier arrangement whose output feeds a voltmeter (a multimeter set to a range whose f.s.d. dies between $1-3 \mathrm{~V}$).

Fig. 1. Block diagram of the Add-on capacitance unit

If we assume the sinewave oscillator is set to a frequency f_{0}, its output voltage is V_{0}, and the unknown capacitance value is C , then simple theory yields the current flowing into the virtual earth as being:

$$
i=\frac{V}{Z}=\frac{V_{0}}{1 / 2 \pi f_{0}} \overline{\mathrm{C}}
$$

This current is directly proportional to the admittance (the reciprocal of impedance) of the capacitor which, in turn, is proportional to the value of the capacitance and the frequency.

VIRTUAL EARTH

Since the current cannot flow into the inverting input of the operational amplifier, an equal and opposite current from the output will flow via the feedback resistor R_{a} such that the two cancel out at the inverting input providing the so-called "virtual earth".

The voltage appearing at the output of the op. amp. will thus be $i \times \mathrm{R}_{\mathrm{a}}$. However, since i itself is proportional to capacitance and frequency (of the oscillator) and the output of the virtual earth amplifier is proportional to i, it follows that this output voltage will also be proportional to the feedback resistor R_{a} as well as the capacitance and frequency.

In practice R_{a} and the frequency f_{0} are switched to allow a very wide range of capacitors to be measured (less than lpF to well over $10 \mu \mathrm{~F}$) with good accuracy (dependent on the quality of the meter and components, but can be as good as 1-2 per cent).
The output from the virtual earth amplifier is then rectified with a precision rectifier and presented to the voltmeter (multimeter) for display. The precision

Fig. 2. Full circuit diagram
rectifier merely uses a further op. amp. to overcome diode forward voltage drops and thus obtain accurate rectification down to low output levels.

The circuit diagram is shown in Fig. 2.

INTEGRATION

The output from the unit consists of half sinewaves, and it is left to the meter to integrate these and provide a continuous reading. No problems were encountered with the larger type of meters (AVOs, etc.), but with smaller ones needle "judder" may cause annoyance. If this arises the effect can be alleviated with the simple addition of two extra components.

If a $100 \mu \mathrm{~F}$ capacitor is connected across the output of the unit via a 330Ω resistor and the meter output is taken across the capacitor, the integration process is greatly improved and the judder cut down considerably. The addition of these components increases the meter reading a certain amount and therefore the gain of the rectifier stage must be reduced to maintain accurate callibration.

COMPONENTS

The only components that are required to be of any appreciable accuracy or stability are the range resistors R8 to R11. If possible these should be 1 per cent types, otherwise 5 per cent types can be used if they are "hand-picked" with an accurate ohmmeter.

The integrated circuits are all 741 s . Although it was initially suspected that bandwidth/slew rate limitations would prohibit their use this was not found to be the case in practice, and high accuracy was maintained throughout all ranges. This obviously keeps the price down and maintains appeal to the economy-minded constructor.

Resistors mounted on the Veroboard have to be small if they are to be mounted horizontally. There is no reason why slightly larger resistors should not be used provided they are end-mounted.

STABILISATION

The thermistor specified is the popular R53 type. When used in Wien bridge oscillators of conventional design these have the property of stabilising the output at a little less than 1 V r.m.s. This was found to be rather low for this application and hence a potential divider has been inserted between the output of the 741 and the thermistor.

This causes the thermistor to think that the output level is lower than it is and the circuit stabidises at an output level of around 2 V r.m.s. as opposed to the original $700-800 \mathrm{mV}$.

One of the unfortunate side effects of using some types of thermistors as amplitude stabilising elements is the time required for the output to stabilise after range switching. This is particularly so in this case where a large frequency change is performed. If it is felt that the settling time is too long (it in fact
then be checked to be at approximately at earth potential this is a good test as it is a quick method of checking all is well throughout the complete circuit). Solder bridging, missing Vero breaks and components not properly soldered in are the sort of faults usually found to be at the root of any problems encountered.

The oscillator section should begin to oscillate within a few seconds of switching on; checking and re-checking once again being necessary if no output is obtained.

Calibration should commence with the rectifier gain potentiometer VR3 being set to minimum gain (slider nearest to D2 cathode). The two operating frequencies 20 Hz and 20 kHz should then be set as accurately as possible with a scope. If one is not available then VR1 and VR2 should be adjusted to their mid-positions.

Fig. 3. Component layout and board-cutting details
amounts to about 3 or 4 seconds) án alternative f.e.t. stabilised arrangement can be substituted (see "Modifications").

CONSTRUCTION

A certain amount of dexterity is required in the construction of the Veroboard as space is very much at a premium. If the specified components are used no great problems should be encountered, and the unit can easily be built on the free board provided.
Construction should commence by cutting the breaks on the Veroboard with either a proper Vero spot-face cutter or a drill of correct size. Components should then be soldered in with care to avoid bridging of parallel tracks. Wire links can be made from stripping ordinary single cored connecting wire or using greater than 22 s.w.g. tinned copper wire from other sources.

C1, R1, C2, R2 and R5-9 are mounted on their respective switches to ilessen the number of components on the Veroboard. Obviously, if a larger piece of board is available they can be mounted adjacent to the other components.

CALIBRȦTION AND TESTING

Firstly, it is worthwhile mentioning that initial setting up and testing of the device is made easier by having an oscilloscope at hand.

As a precautionary measure the current supplied to the unit should be measured when the unit is first tested. This should be in the region of $5-10 \mathrm{~mA}$ using 9 V supplies. The outputs of the 741 s (pin 6) should

COMPONENTS .

Resistors

All resistors $\frac{1}{10}$ W 5\% unless otherwise specified

Capacitors

C1, 3 1nF plastic or ceramic
C2, $4 \quad 0 \cdot 47 \mu \mathrm{~F}$ plastic or ceramic (pref. type C280)
C5 $\quad 2.2 \mu \mathrm{~F}$ tantalum 10 V

* C6 2.2 $\mu \mathrm{F}$ elect. 10 V

Potentiometers
VR1-3 $10 \mathrm{k} \Omega \mathrm{min}$. vertical
Semiconductors

D1-3	1N4148
*D4	1N4148
*TR1	2N3819
IC1-3	741

Miscellaneous

R.S. Components "midget" wafer switches, 3 -pole 4 -way, and 4 -pole 3 -way. Case: Vero plastic box $120 \times 65 \times 40 \mathrm{~mm}$ code no. 65-2518. Knobs and hardware, crocodile clips, two PP3 batteries

* Components marked with an asterisk required for optional modification only-see text

Internal layout of the add-on unit. The batteries are held in place with an aluminium bracket and a 30 mm CSK 6BA bolt. There is enough room either side of the free board to allow it to be held in place with the 6BA bolt/nut arrangement as shown

Fig. 4. Alternative f.e.t. stabilising network around oscillator section

PRECISION CAPACITORS

At some stage in the calibration procedure it is necessary to refer to either one, or (preferably), a range of accurate capacitors. These can often be found on ex-equipment circuit boards which are generally on sale at many electronics stores. An ideal range would contain such values as $10 \mathrm{pF}, 100 \mathrm{pF}$, $1 \mathrm{nF}, 1 \mu \mathrm{~F}, 10 \mu \mathrm{~F}$, all within 20 per cent tolerance. Obviously it may prove difficult for some constructors to obtain such capacitors, in which case less accurate ones will have to be resorted to. The majority of the above mentioned capacitors are in fact used for checking and it is possible to calibrate the capacitance unit successfully with only one $10,000 \mathrm{pF}$, exploiting the fact that two ranges overlap $(10,000 \mathrm{pF}$ and 10 nF). It may therefore be considered worthwhile to invest in one precision $10,000 \mathrm{pF}$ capacitor and use standard types for spot checks throughout the other ranges.
Set the $\mathrm{nF} / \mathrm{pF}$ switch to nF and check that the oscillator output is about $1.5-2 \mathrm{~V}$ r.m.s. Set the multiplier switch to $\times 10$. Connect the $10,000 \mathrm{pF}$ capacitor to the test leads and the "meter output" to
an appropriately adjusted multimeter (a low voltage d.c. range with an f.s.d. between 1 and 3 V). The capacitance unit is designed to give 1 V output for "full-scale" reading on each range; hence, if a 1 V range is available this would do best.

The rectifier gain control should now be increased with VR3, and if all is well it should be possible to adjust the output level such that the meter is reading 1V. The nF/pF switch should now be set to the pF position and the multiplier switch to 10,000 (corresponding to $10,000 \mathrm{pF}$ f.s.d.). The meter should read in the region of 1 V and any discrepancy adjusted out with the 20 kHz trimmer VR1.

If this cannot be done, and no scope was initially available to set the two operating frequencies reasonably accurately, VR1 should be adjusted to give as near 1 V output as possible and VR3 then used to set it exactly. In doing this the nF range will be misaligned, and therefore, with the $10,000 \mathrm{pF}$ capacitor still connected, and the range and multiplier switches once again set to read 10 nF, VR 2 should be used to adjust the output to read 1 V once more. It is a question of juggling with the three calibration potentiometers (VR1-3) as outlined above until the unit is satisfactorily calibrated, although it is worth stressing that an oscilloscope can save quite a lot of time in this process.

MODIFICATIONS

Earlier it was mentionted that the response time of the thermistor was rather long and that it could be reduced by inserting an f.e.t. stabilising arrangement in place of it. The modified section is shown in Fig. 4. The output of the oscillator is rectified and then used to bias the gate of an n-channel f.e.t. If the output level reduces the f.e.t. is turned on which increases the gain of the amplifier and stabilises the level. In practice the value of the feedback resistor R14 is a little critical; if it is too large the output level will not be held stable, and if too small, no output will result. A value of between 270Ω and $1 \mathrm{k} \Omega$ was found to be suitable.

Some time ago we were asked to design and construct an inexpensive unit to enable a blind man to steer a yacht on a straight course. The design, which is a direct result of that request, is fully described in this article.
In addition to being of immense help to blind sailors, the design will also assist those sailors who use wind vane steering, as it can provide an off course alarm, and also power boat enthusiasts, as it can be used to steer a straight course without the need to look away from the water ahead. It could also prove very useful on a long passage where a compass course must be sailed, particularly at night, as it allows the use of ears rather than eyes, which can become tired.
The audible output from the unit is provided through a crystal earpiece and can be a high frequency, no output or a low frequency. The no output indicates that the yacht is on course and the high or low frequency that the yacht has gone off course in one direction or the other. The width of the no output (or dead) band can be varied from about 5 degrees (2.5 degrees off course on either side) up to about 50 degrees (25 degrees off course either side) this is to suit the conditions and the response of the boat/helmsman and is adjusted by the helmsman with a sensitivity control.

In use the boat is put on course, the compass is revolved until the unit gives no output at maximum sensitivity and the helmsman then steers to keep no output, adjusting the volume and sensitivity to suit himself. When used as an of course alarm a relay switches on a loud alarm to indicate that the boat has gone off course by more than the amount previously set.

CIRCUIT OPERATION

Two Hall effect probes are mounted on a suitable compass to detect the position of the magnet inside that compass. The Hall effect probes (H1 and H2) are fed with a constant voltage by TRI (Fig. 1), the voltage being derived from the forward voltage drop of D1 and D2 in series (about $1-4 \mathrm{~V}$). The output from each probe is fed to an input of the 741 op . amp. ICl, one to the inverting input and one to the non-inverting input Provided both inputs are at the same level the output at pin 6 will be zero (comparator arrangement) this can be corrected by adjustment of the offset control VR1.

If the pole of the compass magnet is between the two probes the output from them will be similar. If the pole moves towards one probe the output from that probe will increase (see section on Hall effect later) and from the other decrease-this will cause the output of ICI at pin 6 to rise or fall at a rate dependent on the setting of the sensitivity control VR2 (this provides a variable degree of negative feedback to IC1).

The output from pin 6 is fed directly to the bases of TR2 and TR3 which act simply as switches to prevent the relays from loading the output of ICI. If the output goes high, TR2 is turned on, thus connecting the two relays across the 0 V and +9 V lines. Relay RLA will be turned on, thus connecting the supply to the unijunction oscillator formed by TR4 and its associated components and producing an audible output in the crystal earpiece connected to SK1. Relay RLB will not turn on due to the presence of D3.

If however the output at pin 6 goes low TR3 will be turned on thus operating RLA and RLB, this

The complete Audio Compass also showing the audible warning device used as the off course alarm
not only connects the oscillator but also shorts out R5, thus greatly increasing the frequency of the oscillator and hence of the output at SK1. The audible note thus indicates towards which probe the compass magnetic pole has moved.

The sockets SK2 and SK3 across RLA1 may be used to trigger an audible alarm, powered by the yacht's or other supply, to give an audible off course alarm. This facility can be set to trigger from about 2.5 degrees off, to about 25 degrees off by means of VR2 but does not indicate which way off course the yacht has gone (more about this later), and when in operation prevents the use of the normal audible output. The facility is added for those who use some form of wind vane self steering. It will provide an audible alarm if the yacht has been steered off its original course by the preset amount. The alarm recommended is the RS type audible warning device 12 V or 24 V , as required.

COMPONENT NOTES

One or two further points concerning the circuit operation should be made clear before we proceed, these concern the components used and their siting in the unit. It was found necessary to provide a stabilised supply for the two probes as their output varies considerably with the current flowing through them. The simple supply formed by TR1, R1, D1

Fig. 1. The complete circuit diagram of the Audio Compass

and D2 was found to be perfectly adequate, provided internal cells are used and the unit is not connected to the boats supply. The components forming this stabiliser are sited as near the two probes as possible in order to negate any lead resistance which may prove troublesome.

The values of resistors R2 and R3 set the limits to the sensitivity of the unit and those shown were found to be most suitable. Reduction of R3 will decrease the minimum dead band, but if this is taken too far the unit will be difficult to set up and it would become impossible to keep within the dead band when in use.
Similarly, reduction of R2 will increase the dead band, but if this is taken too far, the limits of the sensing probes will be reached and either no output will result or only one note may sound. Experimentation with these values, either up or down, will not harm the unit and some constructors may find it helpful to do this. It is not recommended that preset resistors are permanently employed as their value could easily be altered with a knock.

It should be fairly obvious from the circuit description above that relay RLB must operate at the same instant or preferably before RLA. If this is not the case the output will always start at a low frequency and then go high if the voltage at TR2/TR3 emitters goes low.
To prevent this, the working voltage of both relays must be checked and that which operates at the lowest voltage used for RLB; the operating voltage will probably be around 3 V . For this same reason a germanium diode must be used for D3 since the voltage drop across this will only be about 0.2 V , instead of $0: 7 \mathrm{~V}$ for a silicon diode.

The two diodes used in the stabiliser circuit must be silicon diodes and are used to provide a "Zener" voltage of about 1.4 V .

hall effect

The Hall Effect was discovered by E. H. Hall about 90 years ago and the principle involved accounts for the deflection of cathode ray beams in magnetically deflected tubes, so it has been employed for some considerable time, although many readers may not be aware of it.

Basically the effect causes a voltage (the Hall voltage) to be set up in a conductor or semiconductor in the presence of a magnetic field when an excitation current flows through the conductor or semiconductor. The effect is illustrated by Fig. 2. The
current I_{e} is the excitation current flowing in the material which is in the presence of a magnetic field β this causes the Hall voltage V_{h} to be set up.
The Hall voltage is actually caused by the effect of the field on the electrons flowing in the conductor. The electron flow is illustrated in Fig. 3a and the distorted flow caused by a magnetic field in Fig. 3 b .

The electrons tend to build up along the edge of the conductor and, since they are negatively charged give rise to the Hall voltage as indicated. The maximum Hall voltage is limited because the abundance of negatively charged electrons tends to repel further electronis (like charges repel), hence a state of equilibrium is reached when the magnetic force equals the repulsion of further electrons. This state is reached in much less than a microsecond and the Hall voltage will therefore quickly follow any variations in magnetic field. If the excitation current is varied, a greater number of electrons are introduced and hence V_{h} increases.
It is thus easy to see why V_{11} is directly proportional to both I_{e} and β.

PRACTICAL CONSIDERATION

In the application described the Hall voltage is minute since the field around the compass magnet is also very small. In addition to this an offset voltage is set up in the device which causes a continuous voltage of about 1.5 V per ampere (excitation current) to appear in addition to the Hall voltage. This offset voltage can be greatly reduced by the design and material of the probe-of the order of 2 mV or less per ampere-but such probes are expensive (about $£ 30$ each-as opposed to about $£ 1$ each for those used).

The effect of the offiset voltage is taken care of in the circuit of Fig. 1 by using the 741 a comparator so that it only senses the difference in the input voltage and not its level. Since two similar probes are used the offset voltage on each will be similar and any slight variations can be cancelled by the offset control VR1 (a multiturn preset) which varies the bias on the two input circuits of ICI.

We have shown that variations in the excitation current will provide variations in the Hall voltage. To provide stability both probes are fed by the stabiliser. Although this does not hold the current through each probe constant it has been found to be perfectly adequate since the probes are similar and therefore have a similar resistance/temperature
characteristic. They are also mounted relatively close to each other.

The current through each probe has been set to about 15 mA to provide enough sensitivity, consistent with reasonable battery life when using a PP9 battery. This current could, if required, be increased-by increasing the Zener voltage set by D1-D2-up to a maximum of 75 mA for each device. If this maximum is approached, steps must be taken to ensure that no one probe is exceeding that current.

HOUSING

The construction of the unit has been kept as simple and straightforward as possible. It was decided that to be of use to the blind yachtsman it

COMPONENTS . . .

Resistors

Resistors		
R1 $22 \mathrm{k} \Omega$	R4	$22 \mathrm{k} \Omega$
R2 $150 \mathrm{k} \Omega$	R5	$120 \mathrm{k} \Omega$
R3 $5.6 \mathrm{k} \Omega$	R6	$1 \mathrm{k} \Omega$
All $\pm 10 \% \frac{1}{4} \mathrm{~W}$ carbon		

Capacitor

C1 $0.039 \mu \mathrm{~F}$
Potentiometers
VR1 $10 \mathrm{k} \Omega$ multiturn preset
VR2 $100 \mathrm{k} \Omega \mathrm{lin}$. carbon
VR3 $2 \cdot 2 \mathrm{k} \Omega \log$ carbon
Semiconductors
H1, H2 SE3V 566 Hall effect probes (2 off-Electrovalue)
D1, 2 any small silicon diodes (2 off)
D3 any small germanium diode
TR1, 2 2N2926
TR3 2N3702
TR4 TIS43
IC1 741 op amp

Miscellaneous

RLA1, 2 6-9V d.c. 700 coil reed relay (348-970 Doram 2 off)
SK1 Line jack socket and plug (PL1) to suit X1
SK2, 3 Plastic encapsulated banana sockets and plugs (PL2, 3) to suit (2 off each)
S1 D.p.d.t. switch with thread to match dolly cover-see miscellaneous
B1 PP9 9V battery and clips
B2 PP39V battery and clips
X1 Crystal earpiece with plug and lead at least 1 metre long.
WD1 Audible warning device 12 V or 24 V as required (Doram). Only required for off course alarm function.
Cases $188 \times 110 \times 60 \mathrm{~mm}$ and $100 \times 50 \times 25 \mathrm{~mm}$ Vero or Bocon (West Hyde Developments) plastic boxes with interlocking lid; cable gland ENCGQ (West Hyde Developments); plastic dolly cover for S1 (WS234 Home Radio Components); knobs pointer (2 off-see text); Veroboard 0.1 in matrix approx. $100 \times 100 \mathrm{~mm}$; connecting wire; 4B.A. fixings; 4 way cable at least 2 inetres (see text); three suction pads, two terry clips for 25 mm diameter tube (stern pulpit).

Compass

Sestrel Junior dingy compass with gimbálled mount (see text).

One way of mounting the compass unit on the rail. It could also be inverted so that the compass is more easily accessable
would not only need to be portable but also easily able to be fixed and used on any yacht, as few blind people own their own boats.

It is necessary to mount the compass where it can be adjusted to set the course and where it is free from knocks. To this end the compass unit has been equipped with two Terry clips so that it can be fitted to the stern pulpit of most yachts.

Similarly, the control unit which measures about $190 \times 110 \times 65 \mathrm{~mm}$ is fitted with rubber suction pads so that it can be attached to any smooth fiat surface near the helmsman. The two units are linked by a single four-way lead. This lead must be long enough to cover most situations (about 2 metres)

The control unit carries the batteries and has an output for the earpiece as well as sockets for an audible alarm. Both boxes carrying circuitry should be fairly splash proof and all metal work must be able to stand up to salt water type environment.

The control box of the Audio Compass, this is fitted with three suction pads for mounting purposes

Obviously if the unit is to be used only on one craft or if it is to be used only as an off course alarm, it could be permanently fixed and in the latter case could be completely housed below deck. The off course alarm only application allows certain sections of the circuitry to be omitted, more about this later, however, since the cost of these sections is relatively low we would advise the constructor to build the complete unit so that the audio compass can be used should the need arise. This also means that the owner would be able to offer a blind crew a useful position and, from the author's own experience, this could prove to be valuable and interesting for both parties.

CONSTRUCTION

Construction of the two units is shown in Figs. 4 and 5 . There are no special precautions other than saying it is probably safer to use a holder for ICI. This is useful when changing i.c.s as we have found that there are a number of duff ones about. It is also necessary to take the usual precautions when soldering D3, since this is a germanium device and thus casily damaged by excess heat.

The output socket for the crystal earpiece is mounted on a 300 mm length of twin-cable which passes out of the case through the cable gland. This adds extra length to the lead and allows the box to remain sealed (it is difficult to get a sealed jack

CONTROL UNIT

Fig. 4. Construction and wiring of the control unit. Veroboard layout is shown above with connecting points indicated by numbers which tie up with the lower diagram and Figs. 5 and 6

socket). The socket can be a "line" type or can be mounted in any suitable small container and may be easily changed if it becomes badly corroded.
The fitting and wiring of the two probes is shown in Fig. 6. These probes are very small and must be handled and soldered with great care in order not to damage the leads. They do not seem to be particularly heat sensitive but excess heat should be avoided. The probes are eventually covered with Araldite to protect them and fitted--square marked side inwards-against the plastic ring which is fitted over the compass, in line vertically with the magnet.
Construction of the compass unit is shown in Fig. 6. The materials used should be plastic or brass as
indicated, because these are non magnetic and corrosion resistant. The revolving ring is made of Contiboard white iron-on edging which is used glue side inwards with the ends overlapped and "ironed" together to form a ring.

INITIAL TESTING

Before testing the unit the supply current on the positive line should be checked to ensure the probes are not consuming too much current. Supply current should be about 30 to 50 mA (depending on the output of ICl) and definitely not more than 60 mA . If all is in order the unit can be tested for correct operation.

COMPASS UNIT

Fig. 5. Layout and wiring of the compass unit. The lead outlets can be sealed with silicon compound

Fig. 6. Fitting and wiring of the two Hall effect probes. Basic arrangement of the compass unit is also shown, the wires to the probes should be extra-flexible to allow the compass to swing freely

The Black Watch kit

* Practical-easily built by anyone in an evening's straightforward assembly.
* Complete-right dówn to strap and batteries.
* Guaranteed. A correctlyassembled watch is guaranteed for a year. It works as soon as you put the batteries in. On a built watch we guarantee an accuracy within a second a day-but building it yourself you may be able to adjust the trimmer to achieve an accuracy within a second a week.

The Black Watch-using the unique Sinclair-designed state-of-the-art IC.

The chip..
The heart of the Black Watch is a unique IC designed by Sinclair and custom-built for them using state-of-the-art technologyintegrated injection logic.
This chip of silicon measures only $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ and contains over 2000 transistors. The circuit includes
a) reference oscillator
b) divider chain
c) decoder circuits
d) display inhibit circuits
e) display driving circuits.

The chip is totally designed and manufactured in the UK, and is

Complete kit 814.95

The kit contains

1. printed circuit board
2. unique Sinclair-designed IC
3. encapsulated quartz crystal
4. trimmer
5. capacitor
6. LED display
7. 2-part case with window in position
8. batteries
9. battery-clip
10. black strap (black stainlesssteel bracelet optional extrasee order form)
11. full instructions for building and use.
All the tools you need are a fine soldering iron and a pair of cutters. If you've any queries or problems in bulding, ring or write to Sinclair service department for help.

Take advantage of this no-risks, money-back offer today!

The Sinclair Black Watch is fully guaranteed. Return your kit in original condition within 10 days and we'll refund your money without question. All parts are tested and checked before despatch-and correctlyassembled watches are guaranteed for one year. Simply fill in the FREEPOST order form and post it-today! Price in klt form: $£ 14.95$ (inc. black strap, VAT, p\&p).
Price in built form: $£ 24.95$ (inc. black strap, VAT, p\&p).

[^3]Reg.no: 699483 England. VAT Reg. no: 213817088.

To: Sinclair Radionics Ltd, FREEPOST, St lves, Huntingdon, Cambs., PE17 4BR. Please send me

Total $£$
........ (qty) Sinclair Black Watch kit(s) at £ 14.95 (inc. black strap, VAT, p\&p).
(qty) Sinclair Black Watch(es) built at £. 24.95 (inc. black strap, VAT, p\&p).
....... (qty) black stainless-steel bracelet(s) at £2.00 (inc. VAT, p\&p).

Name (please print)

[^4]\square
*Delete as required

Internal view of the control box showing general layout. Foam rubber can be used to hold the batteries in place

To do this switch on and, with the sensitivity control turned fully up and the probes away from the compass, adjust the offset control VRI until no output results or until the output frequency is just on the point of changing. Next introduce a metal screwdriver between the two probes and move it setween the probes. The magnetism usually contained in the screwdriver should be enough to cause the two output signals to be produced, depending on which probe is approached.

If the unit does not function correctly the output of the i.c. can be checked, it should vary from +7 to - -7 volts with variation of magnetic field at the probes. Once this is established a similar voltage should appear at the emitters of TR2 and TR3 and this should cause RLA and RLB to operate. Check this by measuring the resistance across RLAI and RLBI. If all is well but no output results the fault must be in the unijunction oscillator, check the wiring and test for fatulty components.

Voltages on ICl pins 2 and 3 -the Hall voltage
Construction of the compass unit. Use of a connecting block allows the two units to be separated

plus offset-should be about 0.3 V and it may be possible to see slight variation of this on a high impedance voltmeter (20.000$) \Omega / \mathrm{V}$ plus) if one pole of a magnet is brought close to the relevant probe.

ALARM ONLY
Should it be decided to construct only an off course alarm the unijunction oscillator, relay RLB and D3 may be omitted. The contacts of RLAI then go only to SK2 and SK3 and are wired to the alarm and external supply as shown in Fig. 1.

The omission of these parts will save very little current and make little difference to the duration of the battery supply. With the above omissions the alarm will sound whichever way off course the craft has gone and thus no indication of direction is provided. If direction indication is deemed necessary for the alarm function, two different alarms should be employed e.g. that specified and a bell. The second alarm being wired to RLBI-which, together with D3 must be retained-in the same way as indicated for WD! and RLAI. In addition to this a second germanium diode must be inserted in series with RLA, in the opposite polarity to D3. Thus when the output voltage of TR2/3 goes positive RLA will operate and when negative RLB will operate.

If as suggested earlier, the complete unit is constructed although only to be used as an alarm, the output carpiece can be left disconnected while in use-this will not affect operation of the unit or do any harm.

FINAL ASSEMBLY
The compass is gimballed in one direction only to take care of the heel of the craft, the floating card and magnet can move to overcome any pitching. The probes must be covered in Araldite and fixed to the ring on the compass housing in line with the magnet. A course setting line can be drawn between the probes.

It has been found that Araldite will not produce a good bond on the plastic ring and this is all to the good as it means that the probes and their Araldite covering may be prised off if necessary.

The possibility of using compasses other than that specified can be investigated simply by affixing the probes in the most suitable position (as near to, and on the same plane as the magnet) with insulation lape and trying the unit. The compass should be of good enough quality to function correctly without violent swings when in use.

Once in place the probes and their wiring can be protected by a couple of layers of plastic insulation tape. It must be noted that the ring should not be continually rotated on one direction as this will eventually break the leads. If this is thought to be a problem a slop should be fitted to the rotating section to prevent it going past 360 degrees.

When complete the unit can be set up by arranging the compass so that the north pole lines up with the line between the probes. Preset VRI should then be adjusted with VR2 at maximum sensitivity, until no output results or the frequency just changes. The unit is then ready for use.

The complete unit is intended to be reasonably water resistant and to this end a cable gland is used where the wires enter the main case. Also a flexible plastic dolly cover is used to protect SI from the influx of water.

Another method of mounting the compass unit. It should be remembered that the gimbal takes care of yacht heel

The simplest method of sealing the two potentiometers is to employ knobs with a fairly large diameter and flat underside. Two cut-down babies" teats are then glued to the case so that when the knobs are fitted they push down on the rubber ring forming a reasonable seal. The teats can be easily and cheaply replaced when worn.

The cable entries to the compass unit can be sealed with silicon bath sealing compound and this could also be used around the joint on the smaller case once final testing is complete. The larger case must be easily taken apart to facilitate battery charging.

IN USE

Due to the design of the unit similar output notes and dead band are produced with respect to both the north and south poles of the compass. This is not a problem once the boat is on course but should none the less be noted.

The off course signal will continue to sound, should a correction not be made, until the craft has passed through 180 degrees. Because of this action it is always best to set the probes to sense one pole,
say north, as this then provides a standard output with variation in course, e.g. if going off course in an easterly direction a high note would sound if in a westerly direction a low note. Should the other pole be sensed, these notes would reverse.

Due to the fact that the compass specified cannot be corrected and that its environment will change, it should not be used as an accurate course indicator. It is better to put the craft on the correct heading and set the audible compass (at maximum sensitivity) to suit. It is possible to make up a normal deviation chart for the compass, if it is mounted in a fixed position, to enable accurate setting should this be required.

The prototype compass has been successfully tested in various yachts and it has been found that in most sea conditions the movement of the craft gives rise to bleeps from the unit before a continuous note sounds, these bleeps gradually increasing in length as the craft goes off course until a continuous note sounds. This provides a good indication of the rate of change of heading, of how far off course one has gone, and therefore of the amount of correction required. This also provides good indication when coming back on course, since the reverse then happens with the bleeps getting shorter until silence prevails.

A similar output will result when an off course alarm is employed-if the first few bleeps do not arouse the crew the continuous note soon would.

COST

The complete unit can be constructed for approximately $£ 20$, about half of this being the cost of the compass specified. The audible alarm, if required, will add approximately $£ 1.50$ to the overall cost. Please note that the above prices are only estimates and do not include V.A.T.

ACKNOWLEDGEMENT

The author wishes to thank Des Sleightholme, editor of Yachting Monthly, who put forward the original idea, for his assistance in testing the unit and Jeff Bull who acted as a "guinea pig" and provided valuable criticism from the blind helmsman's point of view.

A happy man. The Audio Compass

 allows Jeff Bull, who is totally blind, to take full control of the helm without any directional assistance from other crew members

STM RDIUUTIT: UPDAIIE

V-F-V BREAKTHROUGH

There has been available for a number of years, an extremely useful and versatile class of circuit modules known as V to F 's or F to V 's, to those professional engineers fortunate enough to be able to justify their expense. Yes, you guessed it, the reason why V to F 's and F to V 's have not been seen in these pages before is because they have been much too expensive for amateur use. I am very pleased to report that this situation has now changed with the introduction by Teknis Electronics of a monolithic V-F-V which knocks spots off the expensive hand-made modules on the grounds of cost, size and performance!
The abbreviation V to F stands for "voltage-to-frequency" and F to V stands for "frequency to voltage" and the new device from Teknis, the A8400, will do both, unlike some of its more expensive predecessors which were often just single-function devices.
The usefulness of a device which can convert a d.c. input voltage into a directly related output frequency of between 0 and 100 kHz , and vice versa, is really quite mind boggling. Fancy turning your frequency counter into a digital voltmeter with 0.05 per cent linearity and 5 digit resolution? Just hook up an A8400 as a V to F and feed the output into your counter and you've done it-just like that ...:
Or, do you want to record slowly changing d.c. signals on a tape recorder with simple replay? Use an A8400 connected as a V to F to turn those d.c. signals into audio tones, then replay them later through an A8400 connected as an F to V-it's that easy. The possible applications go on and on, and are limited only by your imagination, the availability of a cheap monolithic device brings to amateurs the advantages enjoyed by instrumentation engineers for years.
The A8400 does cost rather more thian a 741 , in fact about $£ 12$ in small quantities, but this is about a third of the cost of its nearest rival, and a bargain in my book!

PSEUDO-SINE

Consumer Microcircuits Ltd. are a British firm who make a very usetul range of m.o.s. integrated circuits
intended for use in audio-tone signalling and control system applications. Their range already includes tone transceivers, frequency sensitive switches and tone triggered timers, and has recently been extended with a fascinating little device known as the FX205 sinewave oscillator. As expected the FX205 is as unique as the other circuits in the Consumer Microcircuits range, and could well be useful for use in a wide range of amateur projects, from radio control systems to intercoms.

The FX205 generates a stable audio tone of between 25 Hz and 5 kHz using only a single external resistor and capacitor, the output signal being of a "pseudo-sinewave" shape generated entirely by the digital circuitry of the chip. Internal circuitry includes an astable oscillator, a monostable, a digital to analogue converter and a four bit binary counter.
In operation the astable is timed by the external RC network and the resulting output is divided down by the counter, the outputs of which drive the D to A converter which is weighted so as to produce the "pseudo-sine" output signal which is sufficiently pure for use as a signailing tone. The internal monostable can be used, if desired, to produce "tone bursts" up to ten seconds in length under the control of an external trigger signal, which could be just a push switch closure.
A "tone enable" input is also provided for use when gated operation is required, and the option is available of using an external synchronising signal instead of the internal oscillator. Where multiple-tone signals are required, the outputs of several FX205s can be "WIRE-OR'd" together.

Fig. 1. A8400 as a V to F converter

PAINLESS POWER

Monolithic audio power amplifiers are limited in power dissipation due to chip size constraints, so if you want to make those woofers throb with a bit more than the paltry 10 watts afforded by even the sturdiest monolithic devices, you'll have to either use a discrete design or go in for a pre-packaged hybrid.

A new series of hybrid amplifiers with output powers of $10,20,30$ and 50 watts is now available from Rastra Electronics Ltd., and you may find that one of these is more costeffective than a conventional discrete design, especially if you are suffering from the dreaded "wiring-up-itis" (wiring-up-itis, has of course been known to make expensive woofers disappear up their own infinite baffles, to make 2N3055's glow like beam tetrodes, and make grown men cry!)

The new hybrids from Rastra the S1-1010G, S1-1020G, S1-1030G and S1-1050G are made in Japan by Sanken and are complete power amplifiers suitable tor Hi-Fi, musical instruments and public address applications. The output stage is a quasi-complementary class B type using passivated power transistors with good "second-breakdown" resistance, and built-in current limiting on the S1-1030G and S1-1050G. The oerformance specification seems quite yood, for the S1-1050G for example, full power bandwidth is from 20 Hz to 20 kHz while delivering 20 V r.m.s. to an 8 ohm load with a 66 volt supply. Full power t.h.d. is 0.5 per cent maximum, and the signal to noise ratio is typically 90 dB .

Fig. 2. FX205 as a tone-burst generator. The burst length is determined by R_{T} and C_{T}

NEXT момти! OUT AND ABOUT

 with PE

 with PE} of models, this system features 7 channels with full proportional control and 2 channels which provide basic "on-off" control. The system operates on a time-division multiplex principle, and compares very favourably with the more

PLUS

 expensive commercial units on the market at the moment
for the MOTORING DIGITAL MILOMETER

Designed for use on car rallies or for applications where accurate map reading and navigation from a car are essential, or merely as an accurate elapsed distance indicator.
The use of $\mathbf{7}$-segment displays allows easy reading Day or Night

AUDIO MILLIVOLTMETER

With a frequency response extending from below $\mathbf{2 0 H z}$ to above 200 kHz and a sensitivity which allows a f.s.d. of 1 mV to be obtained, the Audio Millivoltmeter will no doubt find a ready home on many an audiophile's test bench

PRACTICAL
 ELECTRONICS

Our June issue will be published on Friday, May 14, 1976
PLEASE NOTE
It is In your Interest to piace a firm order with your newsagent-in advance. Back numbers are not avallable, so make sure of your copy now!

Simple EMMPHItin

ORiginally intended to generate a computer sounding voice for an amateur dramatic society, this device can be used to make "Dalek" type voices, and as such can provide hours of entertainment for children.'

The circuit is simple, easy to set up, uses little current, can be battery operated, and is suitable for fitting into a child's space suit or Dalek outfit, as well as its original application.

The output level is 500 mV , hence it is compatible with both the AUX input on most amplifiers (for stage use) and the many available i.c. power amplifiers for battery operation in a child's toy.

CIRCUIT DESCRIPTION

The usual way of producing a mechanical voice is by synthesiser techniques such as ring modulation. An oscillator giving a sine wave output is used to amplitude imodulate the audio signal.

A circuit similar to this was tried, but whilst it worked and gave good results, it was somewhat tricky to set up, and there were doubts about its long term stability.

modulation input

Fig. 1. Voice input before and after modulation

The final circuit behaves in a similar way to a conventional amplitude modulator, but the modulating waveform is a square wave (Fig. 1).

The circuit diagram of the final circuit is shown in Fig. 2. ICl is a 741 operational amplifier arranged as an inverting amplifier. The circuit is designed for a single power supply, hence. R3, R4 provide a mid rail voltage at their junction. The gain of the amplifier is determined by the ratio R5/R2. The microphone used has an output of 15 mV so the gain is set to 30 to give the required 500 mV output.

COMPONENTS

Resistors
R1 $10 \mathrm{k} \Omega$ ($100 \mathrm{k} \Omega$ for high output microphone)

R2 $1 \mathrm{k} \Omega$ ($39 \mathrm{k} \Omega$ for high output microphone)
R3 $1 \mathrm{k} \Omega$
R4 $1 \mathrm{k} \Omega$
R5 $39 \mathrm{k} \Omega$
R6 $1 \mathrm{k} \Omega$
R7 $100 \mathrm{k} \Omega$
R8 $22 \mathrm{k} \Omega$
All resistors $10 \% \frac{1}{2}$ W carbon
Potentiometers
VR1 $50 \mathrm{k} \Omega \mathrm{tin}$.
VR2 $50 \mathrm{k} \Omega \mathrm{lin}$.
VR3 $500 \mathrm{k} \Omega \mathrm{lin}$.
All horiz. min. presets

Capacitors

C1	$0.1 \mu \mathrm{~F}$ plastic or ceramic
C2	$25 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C3	$1 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.
C 4	$0.1 \mu \mathrm{~F}$ plastic or ceramic

Integrated circuits, diodes
IC1 741
D1 Any general purpose silicon diode (1N914, 1N4148, etc.)
Miscellaneous
Relay RLA R.S. Components (access through Doram) type: D.l.L. reed relay, Form A (for 6-12V supplies)
Veroboard $2 \frac{1}{2}$ in \times. 3 in $(65 \mathrm{~mm} \times 80 \mathrm{~mm}$), case and hardware to suit

Fig. 2. Circuit diagram of the modulator

Fig. 3. Details of the modulation oscillator

Fig. 4. Component layout and Vero cutting details

When relay RLA1 contact closes, the gain is reduced and is given by the ratio (VR1 + R6 in parallel with R5)/R2.

RV1 therefore controls the "depth" of the modu-- lation and thus the amount of distortion.

MICROPHONE

The moving coil microphone used was somewhat bassy, so capacitor Cl was included to give a certain amount of bass cut. As the gain of the amplifier is determined by negative feedback, it is very easy to add shaping should such features as bandpass filtering be required.

If a ceramic or other high output microphone is used, resistors R1 and R2 should be increased in value to reduce the gain of the amplifier.

CONSTRUCTIONAL DETAILS

The circuit is constructed on $0 \cdot 1$ in Veroboard, and layout and track cutting diagrams are given in Figs. 3 and 4. These are straightforward and should present no problems.

Trim pots are used on the circuit although there is no reason why the pots should not be mounted remotely.

To sum up: VRI controls the depth of the distortion, VR2 the volume, VR3 the rate of distortion. In theory VR1 should affect the volume, but in practice at the levels of distortion necessary, the effect is not unduly noticeable.

MODULATION OSCILLATOR

The relay is "buzzed" by an oscillator (shown in Fig. 3) constructed from the ubiquitous 555 timer. The frequency of oscillation is controlled by R7, R8, C4 and VR3.
VR3 controls the "rate" of the modulation. The relay can be driven up to 250 Hz but it was found that the best results were given in the range $20-60 \mathrm{~Hz}$.
Diode DI clips any inductive spikes generated as the relay coil de-energises. This is included in the reed relay used in the prototype.

It might be thought that the life of the relay would be very short being maltreated in this manner, but as the relay used (and most reeds) have a mechanical life in excess of 10 million operations the author did not feel this posed any problem.

Contact life is not so easy to assess as it is determined by two conflicting factors. A large switched current causes contact burn, conversely a small arc helps to clean oxidation off the contacts. The current being switched in this circuit is infinitesimal, so the contact life will be determined by the dirt on the contacts. It is impossible to say when failure will occur, but the prototype has been working for several months without showing any signs of iminent death.

The supply can be anywhere in the range 6 to 15 volts (with suitable choice of reed relay). The prototype was built for 9 volts operation.

With a 9 volt supply, the current consumption is about 12 mA .

CMOS DIGITAL I.C.s
continued from page 389

Fig. 5.16. The bilateral switch as a voltage-controlled variable resistor. The curve shows the variation in resistance with control voltage. The measuring arrangement is also shown.

Fig. 5.17. Voltage-controlled oscillator. The voltage V_{C} determines the frequency, and with a 10 V supply a range of between 10 and 15 kHz is obtained with the values shown

VOLTAGE CONTROLLED CIRCUITS

The bilateral switch has so far been considered as an almost perfect switch; its resistance changes from about 300 ohms with the control pin at $V_{D D}$ to several megohms with the control grounded. However, it can also operate as a voltage-controlled variable resistor (VVR) if non logic-level voltages are applied to the control input (Fig. 5.16).

The resistance depends somewhat on the voltage levels at the terminals of the bilateral switch, and this causes slight distortion of the transmitted signal. The voltage at either terminal should not go above V_{DF} or below V_{ss}. This simple $\mathrm{VVR}_{\mathrm{R}}$ features extremely good isolation between the control input and the terminals, the resistance being greater than 10^{12} ohms, and can be used as the basis for voltage controlled filters, amplifiers and oscillators. A single n-channel device can also act as a $\mathrm{VVr}_{\mathrm{R}}$, and a similar curve is obtained although the minimum "on" resistance may be as high as 1,000 ohms. A simple vco (voltage controlled oscillator) based on this and built from a single 4007 package (one device is not used) is shown in Fig. 5.17. The paralleled resistance of the n-channel mosfet and R1 varies between approximately 1,000 ohms with the mOSFET "on", and R1 with mosfet "off". A range of between 10 and 15 kHz is obtained with the values shown for V_{c} of between 0 and 10 volts.

Next month : Retriggerable monostable and digital low pass filters

 keyboard and additional choice of harpsichord or honky-tonk voicing.
THE ORION STEREO AMPLIFIER

A hi-fi amplifier with output of over $20+20$ watts. Compact and complete in one unit, it measures only $14^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime}$.

THE MINISONIC MK2 SOUND SYNTHESISER

An up-dated version of the published Mk 1, the Mk 2 has an integral keyboard, two 250 mW monitoring channels and loudspeakers, and facilities for amplitude, frequency and harmonic modulation.
PLUS
Some great sound effects units for guitars, keyboard instruments and general recording.
(Please allow at least 2 weeks for delivery)

If you do not wish to mutilate your copy of the magazine, please send your order on a separate sheet.

To: Practical Electronics, Post Sales Dept., IPC Magazines Ltd., Carlton House, 66-68 Great Queen Street, London WC2.
Please send me..........................copy(ies) of "Sound Design". I enclose a Postal Order/Cheque for $£ 1.20$ ($£ 1+20$ p post. \& pack.) or (state amount for more than one copy) (p \& p 35p for 2 copies).

PLEASE WRITE IN BLOCK LETTERS
Name
Address \qquad

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are chose at the time of going to press.

CASES

To complement their range of Minicases, Olson Electronics have just introduced a new range of robust, sloping front instrument cases.

Ideal for housing many of the constructional projects published in this magazine, particularly test gear, the cases are made from 20 g mild steel and the 45 degree sloping front panel from 20 g aluminium. The cases are only 95 mm high by 95 mm deep and supplied in three width sizes: $150 \mathrm{~mm}, 200 \mathrm{~mm}$ and 250 mm . The front panel is 100 mm by the required width.

Supplied with four rubber feet they are sprayed in light brown hammer finish and the front panels are finished in light grey semi-gloss enamel.

Full particulars of these excellent cases can be obtained from Olson Electronics Ltd., Factory No. 8, 5-7 Long Street, London, E2 8HJ.

WORK HOLDER

A unit which allows the constructor a free hand when soldering components into small circuit boards is the latest product from. Special Product Distributors.
Called the JA500 Reversible Assembly Frame, a small board is clamped in position and a foam pad. in a covering lid, holds the components to be soldered firmly in position which allows the work piece to be turned over for soldening.

The frame will handle circuit boards up to $220 \mathrm{~mm} \times 170 \mathrm{~mm}$ and the overall dimensions of the assembly is $250 \mathrm{~mm} \times 280 \mathrm{~mm}$.

Further details and price of the Reversible Assembly Frame can be obtained from Special Product Distributors Ltd., 81 Piccadilly, London, W1V 0HL.

CERAMIC SOUNDERS

There are very many practical applications for audible warning or indicating devices, some of which include paging, systems failure, etc. where the sound output requirement, whilst being less than, say, an intruder alarm, has the composite advantages of reliability and efficiency.

ITT are marketing a range of five piezo ceramic sounders of sound outputs varying below 93 dB . The tones available are continuous or pulsed:

Details are available from ITT Components Group Europe, Materials Division, Edinburgh Way, Harlow, Essex.

NEW TOOLS

A new range of high quality American tools for electronics are being offered by West Hyde Developments. These consist of $4 \frac{1}{2}$ in curved needle pliers, $5 \frac{3}{4}$ in long: nosed pliers, 44 in side-cutters and 4in face-cutters.

Made from finest alloy steels, they have p.v.c. handles and are supplied in strong p.v.c. pockets which can be easily hung up.

As well as the tools, there are two mirrors with useful features; one has a magnetic base, the other a variable angle head that can be remotely controlled.

Further details are available from West Hyde Developments Ltd., Ryefield Crescent, Northwood, Middlesex.

CATALOGUE

The new 100 -page Electronics Catalogue from Tandy now lists a very large range of components from light emitting diodes and integrated circuits to calculator keyboard and printed circuit etohant kits.

Although the semiconductors seem rather expensive they are all guaranteed to be first quality and not rejects or "fall-outs".

The catalogue is devoted mainly to their vast range of audio hi-fi equipment and includes complete systems. Test gear, car radios and aerials are also included.

Copies of the 1975/76 Electronics Catalogue can be obtained from Tandy Corporation (Branch UK), Bilston Road, Holyhead Road, Wednesbury, Staffs.

Ceramic sounders from ITT

TERTRELS

ONE of the things which usually causes students problems is the use of the decibel. In specifications it is quite common to find it used as the unit for gain. Somel mes the decibel is used for the power gain of an amplitier and sometimes for the voltage gain. Often the unit is used erroneously, and we must be sure of the meaning presented to us.

THE DECIBEL DEFINED

First, let us took at the definition of the decibel. The "deci" means one tenth of" and the bel is a logarithmic snit of the ratio of two powers. Normally we use the Lnit when measuring gains or losses. Consider Fig. I which shows an anplifier of input impedance Z_{1} with a load impedance $Z_{2} I_{1}$ and I_{2} represent input and output currents, white V_{1} and V_{2} are input and output voltages respectively.

Fig. 1 Loaded power block from which equations are derived

Let us assume that V_{1} is $10 \mathrm{mV} . Z_{1}$ is $10 \mathrm{k} \Omega, V_{2}$ is 10 volts and Z_{2} is 100 . Then by Ohm's Law:

$$
I_{1}=\frac{V_{1}}{Z_{1}}=0 \cdot 1,1 / \mathrm{A}
$$

and

$$
I_{2}=\frac{V_{2}}{Z_{2}}=1 \mathrm{~A}
$$

Voltages and currents are all r.m.s. Numerically, the power gain (G) is therefore:

$$
G=\frac{v_{1} \cdot 1 .}{v_{1} \cdot I_{1}}-\frac{10.1}{10^{-2} \cdot 10^{-i}}=10^{10}
$$

Note that this is a number. It means that the output power is ten thousand million times greater than the inpui power. The voltage and current gains are respectively:

$$
\frac{V_{2}}{V_{1}}=10^{3} \text { and } \frac{I_{2}}{T_{1}}=10^{7}
$$

Obviously the voltage gain multiplied ty the current gain is equal to the power gain.
So far we have made no mention in our calculations of decibels. If the input power is P_{1}, and the output power P_{2}, then the gain in bels is:

$$
G=\log _{10} \frac{P_{2}}{P_{1}}=10 \text { bels }
$$

The decibel is only one tenth of a hel and therefore there are ten times more decibels than bels for a given gain.

$$
G=10 \log _{114} \frac{P_{2}}{P_{1}}=00 \text { decibels }
$$

VOLTAGE GAIN IN DECIBELS

We sometimes find voltage gains expressed in decibels. and this is where the error and confusion arise. The definition we used said that the decibel contains a power ratio. We can rewrite our expression for gain as follows:

$$
G=10 \log \frac{V_{8^{2}}}{Z_{2} \cdot Z_{1}} \cdot \frac{V_{1}{ }^{2}}{V^{2}} d B
$$

When, and only when, $Z_{1}=Z_{2}$ we can say that:

$$
\begin{aligned}
& G=10 \log \left[\frac{V_{2}}{V_{1}}\right]^{2} d b \text { which in turn gives us: } \\
& G=20 \log \frac{V_{2}}{V_{1}} d B
\end{aligned}
$$

Students find difficuliy in remembering when to use $10 \log$ and when to use 20 log. If in doubt, always use $10 \log$ and always consider power Having said that we are then faced with information that gives voltage gains in decibels whe the input and output impedances of the device are differe it. Theoretically, the figures are meaningless but in practice the person specifying the gain has used $20 \log V_{2} v_{1}$, regardless of the fact that it does not apply. In our example, the voltage gain would be incorrectly stated as 60 dB .

Finally. may I appeal to uriters of specifications to either stick to power gain figures or else to quote the maximum sensitivity of the amplifier. We would then have the figures we are really interested n. That is the input voltage (and impedance) required to produce the quoted maximum output power.

SALARY AND STATUS

Looking through the situations vacant columns in the professional electronics press it is clear that experienced engineers are still in demand both at home and overseas. But it is equally clear that the salaries offered to professional engineers have increased only relatively marginally during the past three years while unqualified people have enjoyed unprecedented increases in income.

Registered dock workers, for example, now enjoy a guaranteed minimum of $£ 3,000$ a year whether they work or not. Coal face workers are in sight of $£ 5,000$ a year. Shift workers on London Transport are in the $£ 3,000$ to $£ 4,000$ bracket, and complaining assembly-line workers in automobile plants are not nearly as bankrupt as their employers. There are even well-authenicated examples of unemployed people drawing up to $£ 5,000$ a year from the State, providing they have enough children and hire-purchase commitments.

Now and again one spots what looks, from the salary point of view, a winner. Up to $£ 8,000$, for example, was recently offered for a product planning manager in communications technology which, in this instance, meant satellite communications. Candidates were required to have "the maturity, standing and personality to nego tiate at all levels from Director downwards and the necessary drive to lead a team in expanding the company's capability in the microwave field and particularly space'.

But that was only the beginning. A candidate also needed to have had practical field experience,
have developed hardware, and preferably have commercial experience in the preparation of tenders. He must have knowledge of the national and international agencies concerned with space communications and, of course, all the technical standards in force. It would also be helpful if the candidate had some knowledge of line transmission and analogue and digital modems, multiplexing and switching equipment, data programs and video circuits.

The job entails forecasting the forthcoming market and defining the hardware needed, and producing in collaboration with development engineers, a programme to ensure that hardware is available at the right time at the right price. Quite rightly, the advertisement states that "This is possibly one of the most important appointments to be made in the Company for some time."

Clearly then, this is a key job which was no doubt keenly contested and ably filled. But it seems strange that such an important position, central to the company's future prosperity and that of possibly hundreds of work people should, in gross money terms, be worth no more than two bus drivers or one and a half hewers of coal, however worthy the drivers and hewers may be. After tax, of course, the differential becomes even less attractive.

MAINSTREAM

If we now drop our sights a little and look at the mainstream of engineers we find experienced chartered engineers attracting salaries in the range $£ 3,000$ to $£ 4,000$ and technician engineers from $£ 2,000$ to a little over $£ 3,000$ for the best people.

Generally, the best payers are the Civil Service and the nationalised corporations. But, even here, salaries tend to be low. A communications technician for a gas board with at least five years' experience of u.h.f./v.h.f. mobile radio and a sound knowledge of the principles of microwave/multiplex links and digital systems can start with as little as $£ 2,361$.

At an armed services resettlement briefing for electronics tradesmen earlier this year, people soon to leave the services were surprised and dismayed to learn that their service pay and allowances were superior to the salaries they could command in "civvy street". They were mostly mature people, many with family responsibilities, to whom a salary of $£ 2,500$ and the need to find accommodation represented a major fall in standard of living and probably quality of life as well. They'd be better off to stay on.

WORK OF LOVE

From a strictly financial point of view electronic engineers, be they of chartered or technician status or even totally unqualified academically, are their own worst enemies. They tend to love their work and regard it as a vocation more than a job. If they need to have employment to live, then there is nothing they'd rather be in than electronics with its everchanging technology and novelty, and its intellectual challenge. Provided they were receiving a reasonable reward they were contented.

Unhappily, 25 per cent per annum inflation has overtaken the professional electronics engineer, and those in the lower pay brackets are now barely above the poverty line. With inflation currently at 15 per cent and scheduled not to drop to single figures before the end of the year, the more poorly paid will soon be in distress and the better-off still steadily sinking in real terms.

POINT OF CONFLICT

The Council of Engineering Institutes has now come out firmly with the proposal that professional engineers should join a trade union. By the Government sanctioning and even encouraging the widespread introduction of the closed shop, this move was perhaps inevitable. A great number of engineers will discover that if they are not union members they will have no job. A second compelling reason for the recommendation is that union muscle, ruthlessly applied, always achieves its objective. This is an established fact of which there are many recent examples.

The professional engineers are now in a dilemma. Professionally they have one code of conduct and as union members they will have another and these will often be in conflict. In a universally closed shop, to defy union instruction can mean expulsion from the union and thus expulsion from employment for the remainder of a working life. But equally, to comply with union instruction may involve both agonies of conscience and breaches of professional codes of conduct.

How this muddle of loyalties will be resolved remains to be seen. Perhaps there is no solution except to emigrate to the United States or West Germany where industrial affairs are conducted more logically and where real merit is rewarded realistically.

MULTIPLE OCTAVE ORGAN

THIS is my original circuit for a simple organ, using the NE555V, which can play through several musical octaves on a limited keyboard of eight keys in two different ways.
The circuit (Fig. 1a) uses a NE555V operated in its astable mode, frequency of oscillation being given
as $f_{1}=\frac{1}{t}=\frac{1.44}{\left(R_{\text {in }} 8+2 R_{\mathrm{B}}\right) \mathrm{C}}$.
Thus $\frac{f_{2}}{f_{1}}=\frac{R_{\mathrm{A}_{1}}+2 R_{\mathrm{B} 1}}{R_{\mathrm{A}_{2}}+2 R_{\mathrm{B} 2}}$
The musical notes are in the ratio of $9 / 8: 10 / 9: 16 / 15: 9 / 8:$ 10/9:9/8:16/15.

This also shows that the musical ratio depends only on the ratio of the resistors R1 to $\mathrm{R} 8, \mathrm{R}_{\mathrm{B}}$ being kept constant; also the capacitor between pin 6 and pin 1 of ICl kept constant.

From eqn 1, with the note C at $262 \mathrm{~Hz}, \mathrm{~S} 1$ at 2:
$R 1=53 \mathrm{k} \Omega$ (i.e. $33 \mathrm{k} \Omega+20 \mathrm{k} \Omega$)
$R 2=47 \mathrm{k} \Omega$
$\mathrm{R} 3=42 \mathrm{k} \Omega$ (i.e. $20 \mathrm{k} \Omega+22 \mathrm{k} \Omega$)
$\mathrm{R} 4=39 \mathrm{k} \Omega$
$R 5=34 \cdot 5 \mathrm{k} \Omega$ (i.e. $33 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega$
$\mathrm{R} 6=30 \mathrm{k} \Omega$
$\mathrm{R} 7=27 \mathrm{k} \Omega$
$\mathrm{R} 8=25.8 \mathrm{k} \Omega$ (i.e. $24 \mathrm{k} \Omega+1.8 \mathrm{k} \Omega$).
S 1 is a single pole, 3-way switch used for octave selection. At position 1 the notes range from C_{1} to $C^{\prime \prime \prime}$, i.e. 131 Hz to 262 Hz . Similarly at position 2 , the range is C^{\prime} to $\mathrm{C}^{\prime \prime}$ ($262-524 \mathrm{~Hz}$) and position 3 covers $\mathrm{C}^{\prime \prime}-\mathrm{C}^{\prime \prime \prime}(524 \mathrm{~Hz}-1,024 \mathrm{~Hz})$.

As the organ notes consist of a pulse of fixed duration (determined by R_{B} and capacitor selected by Sl) repeated at musical frequencies, it is desirable to clamp the output pulses to a fixed duration to produce a "smooth" octave selection. A suitable monostable circuit using a NE555V is shown in Fig. 1 lb .

One of the inherent disadvantages of a simple organ is that the pressing of two or more keys will give only a note. However, this is exploited here to play two musical octaves on the eight keys without using the octave selection switch S1. It can be shown from eqn 1 that pressing key c^{\prime} and key d^{\prime} will produce note of $C^{\prime \prime}$ and that this occurs systematically as shown in Fig. 1c below.
This method will enable one to play notes in the upper octave without bothering to operate Sl .

The output is melodious as it consists of a pulse of short duration repeated at musical frequencies; a tweeter is recommended at the amplifier output to reproduce these short pulses more clearly. For simplicity the semitone keys are omitted but can easily be added by calculating the required resistor from eqn 1. With the semitone keys added, there will be 13 keys and the corresponding ratio of each frequency to the one before it is 1.0595 . Since the musical ratio is virtually dependent on R1 to R8, they should be preferably better than ± 5 per cent. Close tolerance capacitors should be used for S1 for octave selection as they maintain musical ratios of the musical octaves.

Pek Yaw Kee,
Sarawak, E. Malaysia.

Fig. 10

EXAMPLE WITH S 1 AT 2
KEYS OF ORGAN

Fig. Ic

Fig. 1

automatic time switch

This automatic time switch was designed to switch a radio and itself off after about half-an-hour, so that I could leave the radio on and go to sleep. The tuner has a start/reset switch which is illuminated by an l.e.d., see Fig. 1.

The circiut uses a NE555 timer as a monostable. The delay period is adjusted by VRI which compensates for the tolerances of R2 and Cl . The relay is a 6 V 2 -pole make type, with as high a coil resistance as possible. SI is a 2 -pole make switch and K3 is selected to suit the l.e.d. The relay contacts RLA1 interrupt the positive supply line to the radio.

> P. Levey,

London, S.E. 26.

FURTHER USES FOR UNIJUNCTIONS

Fig. 1. Burglar Alarm

Rarely does one see the Unijunction transistor being put to any use other than as a relaxation oscillator. It can of course be put to many diverse uses.
In Fig. 1 it is used as a Burglar Alarm. Even if the microswitoh circuit is remade after it is broken the bell, buzzer, etc. will stay on. Most common unijunction transistors will sink up to one amp, and so relatively heavy loads can be used without resorting to a relay. To reset the alarm, one of the load leads is broken.
In Fig. 2 the Unijunction transistor is used as a Frequency Divider.

If half-wave rectified a.c. from the mains is put in the input, the first stage divides by five, as with the second, and the third divides by two. Surplus unijunctions and transistors can be used, but the capacitor charging resistors may have to be changed. Generally if each stage is disconnected from the previous one, it should run at a slightly lower frequency than its expected working frequency. The circuit can be adapted readily for other applications as it is cheaper than TTL dividers.
A. F. Rabagliati,

Oundle, Northants.

Fig. 2. Frequency Divider

Precision Petite LTD. Dept. P.E.

 119A HIGH STREET, TEDDINGTON TW11 8HG Tel. 01-977 0878INTRODUCING A MINIATURE PRECISION 12V. D.C. DRILL DESIGNED FOR THE ELECTRONIC ENGINEER

Mk. II Drill only
£8.00 p.p. 35p
Stand £3.76 p.p. 58p

Complete kit as illustrated (less batts.) with a variety of 30 tools. Space for Stand and Transformer.

KIT 30 TOOLS	$£ 16.00$ p.p. 75p
STAND	$£ 3.76$ p.p. 35p
TRANSFORMER	$£ 5.50$ p.p. 75p

TRANSFORMER £5.50 p.p. 75p

FOR DETAILS
P.E.JOANNA Electronic

ALL PARTS CAN BE SUPPLIED

Keyboard, Keyswitch, P.C.B.s, Hardware, Semiconductors, Resistors, Capacitors, Cabinets Complete kits or easy stages

Send S.A.E. for details

Clef Products

31 Mountfield Road, Bramhall Stockport, Cheshire SK7 1LY

HB ELECTRONICS

 Mini Bulk OffersAll devices brand now and full spec. All

prices includa Vat.					
IN4001/2 /N4003/4/5 \|N4006/7 iN4148 BC107		$30 \mathrm{p} / 10$	BC109		$75 p / 10$
		45p/10	8 C 109		75p/10
		50p/10	7418 dil		1.95/10
		20p/10	NE555		E1.80/4
		75p/10	Red LED		1.00/10
Mini or sub-mini slide switches Micro switches				$\begin{array}{r} \mathbf{E 1} \cdot \mathbf{5 0 / 1 0} \\ \mathbf{E 1 . 5 0 / 5} \end{array}$	
74 SERIES TTL					
Typo	Price	Type	Price	Type	Prico
7401	12p	7441	${ }^{62}$	7492	45p
7402	12p	7442	55p	7493	40 p
7403	12p	7445	71p	74100	
7404	13p	7447	79p	74121	289
7405	15p	7474	26	74122	$33 p$
7406	30p	7476	28p	74141	63p
7408	15p	7483	$75 p$	7145	56
7410	${ }^{13 \mathrm{p}}$	7486	26	74174	130
7413	31p	7409	409	7477	¢1.00
7432	25p	7491	55p	74196	[1.34

10% discount may be deducted from TTL prices for orders of 25 piecess or more
400 mW Zener 3 to 30 V 12 p each. Wafer switches 50 p each. Submin. prentis 10 p each. 80 ohm 3 n speakers (5p each. 10 W impedance earphones 20 p each. tW $2 t$ in $\times 5 \sin 45$ p esech. Car radio supprs. $0.05 \mu \mathrm{~F} 150 \mathrm{~V} 20 \mathrm{O}$ each. 35 ohm 31 n speakers E 1.55 each . $\mathbf{C 8 0} 35 \mathrm{peach}$. C90 35p each
Please send S.A.E. for enquirien or full componeni ligti. Please add 30 p P. \& P. on all orders under $£ 5$ otherwise post free.
All anove prices are mail order only. Shop pricea may
differ.

HB ELECTRONICS

34 MONTAOU STREET, KETTERING NORTHANTS, Phons Kettering 83922 SHOP OPEN DAILY $9.00-600$
Accese and Barclaycard orders welcome for orders over E ?

PPECIAL CAPACITOR KIT8
C280 Kit-PC Mounting polyenter 250 V 5 of each value: $0.01,0.022,0.047,0.1,0.22 \mu \mathrm{~F}, 2$ of $0.47,1 \mu \mathrm{~F}$ ct -9 not
0.01 . 0.02 Tubular polyemter, 400V. 5 of each value Ceramic Kit-047, $0.1,0.22 \mu \mathrm{~F}, 2$ of $0.47 \mu \mathrm{~F}$, cz . 67 ne $22,33.47,100,220,330,470,1000 \mathrm{pF}$. $220,4700 \mathrm{pF}$, $0.01 \mu \mathrm{~F}, \mathrm{E} 1$ - हet net.
SPECIAL RESISTOR KITS (CARBON FILM 5\%) (Pricea include post \& packing) 10 E 12 iW or 1 W KIT. 10 of 25E12 iW or IW KIT: 25 of aech E12 value 220hms 1 M , e total of $1425 \mathrm{E} 12 \cdot 84$ net

B. H. COMPONENT FACTORS LTD.

MULTIMETER U4323 22 Rangea plus AF/IF Oscilla- tor $20.000 \mathrm{~s} / \mathrm{Volt}$. Vde- $0.5-1000 \mathrm{~V}$ in 7 ranges Vac- $2.5-1000 \mathrm{~V}$ in 6 ranges ide- $0.05-500 \mathrm{~mA}$ in 5 ranges Resintance-5 $-1 \mathrm{M} \Omega \ln 4$ ranges. Accuracy 5% of F.S.D. OSCILLATOR- 1 KHz and 465 KHz (A.M.) at approx. 1 Volt. SIze $-160 \times 97 \times 40 \mathrm{~mm}$. Supplied complete whith carrying case, teat leada and battery. PRICE E9-95 net P. \& P. 75p	U4323
MULTIMETER U4324 34 Ranges. High sensitivity. 20.000 న/Volt. Vdc-0. 6-1200V in 9 renges. Vac-3- 900 V in 8 ranges. ido- $0.06-3$ A in 8 ranges. lac-0.3-3A in 5 ranges. Resiatance:- $25 \Omega-5 \mathrm{M} \Omega$ in 5 ranges. Accuracy-dc and R- $2 \downarrow \%$ of F.S.D Size $-167 \times 98 \times 63 \mathrm{~mm}$. ac and $\mathrm{db}-4 \%$ of F.S.D. Supplied complete with storage case, teat leads. spare diode and battery PRICE \&11. 72 not P. \& P. 75 p	U4324
MULTIMETER U4341 27 Rangea plus Transistor Tester. 16,700 R Volt. $\mathrm{Vdo}-0.3-900 \mathrm{~V}$ in 8 ranges. Vac- $1.5-750 \mathrm{~V}$ in 8 ranges. idc- $0.06-600 \mathrm{~mA}$ in 5 ranges. lac- $0.3-300 \mathrm{~mA}$ in 4 ranges. Pesistance- $2 \mathrm{~K} \Omega-2 \mathrm{M} \Omega$ in 4 rangen. Accuracy-dc- 27%. ac- 4% of F.S.D. 1fe- $10-350$ in 2 ranges. Size- $115 \times 215 \times 90 \mathrm{~mm}$. Complete with carrying case, tast leads, and battory. PRICE E12-10 not P. \& P. 75p	U4341
MULTIMETER U4313 33 ranges. Knife edge with mirror acale. 20.000 NV Volt. High accuracy, $\mathrm{mVdc}-75 \mathrm{mV}$ $\mathrm{Vdc}-1.5-600 \mathrm{~V}$ in 9 ranges. Vac- $1.5-600 \mathrm{~V}$ in 9 ranget. Ide- $60-120$ microamps in 2. Idc- $0 \cdot 6-1500 \mathrm{~mA}$ in 6 ranges. lac $-0.6-1500 \mathrm{~mA}$ in 6 ranges. Resistance- $1 \mathrm{~K} \Omega-1 \mathrm{M} \Omega$ in 4 ranges. db scale -10 to +12 db . Accuracy-dc- 11%, ac- $2 \pm \%$. Size $-115 \times 215 \times 90 \mathrm{~mm}$. Complate with carrying case. test leads, and tattery. PAICE ¢18-09 net P. \& P. 75p	U4313
(P.E,), LEIGHTON ELECTRONICS 59 NORTH STREET, LEIOHTON BUZZARD Tel.: Leighton Buzzard 2316 (Std. Co	NTRE, 7 7EO 05253)

Readers who run mobile discotheques, like myself, may be interested in this simple yet effective visual cueing device to be used in place of headphones on existing equipment with PFL (Pre-fadelisten) facilities. For those readers not familiar with PFL, it is a system which allows the operator or DJ to locate the start of a second record whilst a first is playing, and so eliminate the time gap between one record and the next.

This device described, gives the operator a visual indication of the start of a record by means of an l.e.d. modulated in brightness by the music signal.

The circuit, see Fig. 1, consists of an REC70 bridge rectifier DI and a small red l.e.d. type TlL 209, D2, connected as shown. The music signal is rectified by the bridge and produces a varying d.c. voltage across the l.e.d.

The prototype was constructed inside a standard jack plug, of the type with a long plastic barrel, see Fig. 2.

The system has been tested with several makes of disc mixer, and found very successful. In most cases a gain control for the PFL is incor-

porated in the mixer, and when using the visual cueing light, this invariably needs to be set at maximum for highest sensitivity. In this case the d.c. peak voltage is unlikely to exceed 3 V and result in any damage to the l.e.d. With this setting, it may be found that once
the record is playing the l.e.d. appears continuously on, but this is no disadvantage as the cueing light has only to indicate the start of the record.

S. E. Grist, Guildford,

"LIGHTS ON" INDIGATOR

THIS is a useful aid for motorists in that it gives a warning that the car lights are still on when attempting to get out of it.

The circuit (Fig. 1) is a simple unijunction transistor oscillator which gives a continuous note for about five seconds when the door is opened, that is, when the door switch is closed. The period selting can be changed by altering the value of C ?

When power is removed from, the circuit it will reset in five minutes.

As the audible warning is for negative earth vehicles, for positive earth interchange connections at A and B.

$$
\text { R. A. Sudron, } \begin{aligned}
& \text { Shadwell. }
\end{aligned}
$$

courtesy light timer

THE circuit in Fig. 1 is designed to extinguish a car interior light approximately 20 seconds after the car door is closed, allowing time to fasten seat belts, etc. The timer starls when the switch contacts open, and the light is extinguished automatically after the delay period has elapsed.
TR3 and Darlington pair TR4 and TR5 form a complementary bistable which is triggered on when TR5 collector is earthed by the switch S1, whose contacts carry the current for the interior lamp, LP1
When SI contacts open, the lamp current flows through TR5. About 1.5 V is dropped across this. turning on TRI via R3; C1 then charges through TRI and R1. When C1 has charged to about $5 \mathrm{~V}, \mathrm{TR} 2$ conducts and diverts base current from TR3. The bistable then turns rapidly into the off state, discharging C1 via D1 and R2 ready for the next operation. Battery drain in the off state is about 1 mA . which is taken by R3.

Fig. 1

For loads of up to 6 W no heatsink is needed for TR5 and a very compact unit can be built, possibly in the lamp housing itself. Loads of up to 36 W can be switched with a heatsink. If the load is shorted the bistable should switch off without damage.

The circuit shown is for negative earth vehicles. A positive earth version can be made using a BD132 for TR5, transposing ZTX300 and ZTX500 transistors and reversing the polarities of C1, D1 and D2.
P. Albericci,

Stockport

THE following might be of interest to some of your photographically minded readers.

The latest fashion for Dual Fade Slide Presentation seemed a natural subject for solid state control, so triac circuitry came to mind. Most modern slide projectors use a low voltage halogen lamp and the low voltages necessitated a slightly different approach to circuitry.

Fig. 1 shows the basic interface circuitry which was built into a projector. This had spare pins available on its standard 6-pin DIN socket (pin 3 to earth, pin 2 is the slide change solenoid). The triac is simply wired in parallel with the existing lamp on/oft switch.

Fig. 2 shows the simple manual control used to fade the projector lamp. Zeners DI. D2 take the place of the diac used in mains voltage circuits. The high value of capacitance is required to provide the relatively large gate current to the triac which is sluggish in the low voltage conditions. VRI is a slider potentiometer for ease of use during a show, and VR2 is a preset which enables the full scale of the slider to be used.

A pair of projectors using this circuitry has been used for several successful slide-tape shows and the

dUAL FADE FOR SLIDE presentation

Fig. 1

Fig. 2

How togeta reputation overnight for making HiFi equipment asgoodas ours.

To be perfectly honest, it's not that difficult.

Simply go out and buy a Goldring CK2 turntable construction kit. Follow the simple step by step instructions.

And in no time at all you'll be the proud owner of a superb, hand built, precision engineered deck.

Which can hardly fail to make your reputation amongst those who know about HiFi . And all acheived with the minimum capital outlay: around $£ 28.00$.

The Goldring CK2 kit is, in fact, based around the rather more widely known G102 turntable.

Which means it's belt driven, to reduce wow, flutter and rumble to an absolute minimum. (The same system most really expensive decks employ.)

The pick-up arm features a viscously damped raising and lowering device.

For the protection of your records, there's an anti-skate mechanism. And with an
easily adjustable playing weight, the arm will accept a wide range of cartridges, such as the Goldring G800.

A final touch is that both the on-off function and speed selection are via neat rocker switches.

If you fill in the coupon, we'll send you our free colour brochure, which describes the CK2 construction unit in detail.

And if you're serious about HiFi , you couldn't hope to ask for a better start than that.

GREENWELD
 443 Millbrook Road Southampton SO1 DHX Tel：（ロ7ロ3） 772501

All mail order and callers to this addrass please－callers only to 21 Deptiord Broadway，SEB（Tel．01－692 2009）and 38 Lower Addiscombe Road，Croydon （Tel．01－888 2950）

RECTIFIERS
1N4001 8p；1N4002 7p；1N4003 tp； N4004 p； $1 N 4005$ 10p；1N4006 11p N4007 12p；1N41484p；BY127 17p

TRANSISTOR PACKS
200 assorted mainly out of spec tran－ sistors．moatly unmarked－NPN．PNP plastic，TO5．TO18，RF，AF，mal signal and TO3 power devices．About 75% usable devices．Only $£ 1$－ 80 ． $\mathbf{. 0 0 0}$ unmarked 1N4148 dlodes， 95% OK．Only $£ 4$.
100 unmarked BC108，unteated E －10． SCR＇s
2N1595 30p；2N2323A 34p；500V5a （TO66 case）30p；600V 1A 75p．
RESISTORS
Mullard CR25 tW 5\％（10\％over 1MS）．All values in E12 Series from 1 ohm to $10 \mathrm{M} \Omega 2 \mathrm{e}$ each．Metal Film $1 \mathrm{~W} 5 \%$ ．All values in E12 series from 27 ohms to $10 \mathrm{M} \Omega 3 \mathrm{p}$ each．
${ }^{2}+\mathrm{W}$ wirewound 8 Sp ； 5 W wirewound 10p； 15 W wirewound 12p．
1% and better．S．A．E．for list

ZENERS

400 mW BZY88 series，all voltages from 3 V to 30 V 10 p each． 1 Watt plastic：all voitages from 3 V to 200 V 20p each．

723 TO99 60p；741C 8 pin DIL 30p； 74：C 14 pin DIL 4Dp； 555 55p；LM301A 50p；SL5218 \＆5．2；SN76013ND £1－25；
TAD100 \＆1．30；TCA2700 £4．10； TAD100 £1－30；TCA2700 £4．
ZN414 £1－35
ELECTROLYTIC CAPACITORS
Wire ended horizontal mounting （some of the smaller values may be vertical mounting）

0．47 HF	25 V	6p	$250 \mu \mathrm{~F}$	18 V
1uF	25 V	7p	$470 \mu \mathrm{~F}$	18 V 10 p
2．2 $\mu \mathrm{F}$	25 V	7p	470 $\mu \mathrm{F}$	25V $12 p$
4．7MF	25 V	7p	470山F	35 V 14 p
10ヶF	25 V	7p	470 $\mu \mathrm{F}$	83 V 20 p
$22 \mu \mathrm{~F}$	25 V	7p	1000， F	90V 12p
47 $\mu \mathrm{F}$	25 V	7p	$1000 \mu \mathrm{~F}$	18V 17p
47 $\mu \mathrm{F}$	40 V	\％p	$1000 \mu \mathrm{~F}$	25 V 200
47 $\mu \mathrm{F}$	63 V	4	$1000 \mu \mathrm{~F}$	50 V 38 p
100 $\mu \mathrm{F}$	10V	7p	$1000 \mu \mathrm{~F}$	83V 44 p
100 $\mu \mathrm{F}$	25 V	4p	$2200 \mu \mathrm{~F}$	10V 200
100 $\mu \mathrm{F}$	40 V	$9 p$	2200，F	16 V 24 p
200uF	10 V	7p	$2200 \mu \mathrm{~F}$	25V 30p
200 ${ }^{\text {F }}$ F	50 V	14 p	2200， 1 F	40V 53p
220） F	25 V	10p	4700～F	18V 44p
$220 \mu \mathrm{~F}$	30 V	11p		

POLYESTER C200 250 Y
$0.01,0.015,0.022,0.033,0.047,0.068$. all ip each． $0.1,0.15 .5 p ; 0.22 .7 p$ ； －33．8p；0．47，9p；0．68，11p； $1 \mu F, 14 p$ ； $2 \cdot 2 \mu \mathrm{~F}, 1 \mathrm{p}$ ； $3 \cdot 3 \mu \mathrm{~F} 63 \mathrm{~V}, 24 \mathrm{p}$ ．

CERAMIC PLATE 50V

22pF to 820pF E12 serlos 2p esch： 1000p F 3p．
VEROBOXES AND CASES
Case type
$1410,205 \times 140 \times 40 \mathrm{~mm} \quad \mathrm{E} 2.90$

1412． $205 \times 140 \times 110 \mathrm{~mm} \quad$| E．3．25 |
| :--- |
| 4.20 | Plastic Boxes－Professional quality， two tone grey polystyrene boxes with threaded inserts for mounting PC boards．

Type 2518， $120 \times 65 \times 40 \mathrm{~mm}$ \＆1．52； $2520,150 \times 80 \times 50 \mathrm{~mm} \times 1 \cdot 75!2522$ ， $188 \times 110 \times 60 \mathrm{~mm}$ \＆2．40；sioping front type： $220 \times 174 \times 100 / 52 \mathrm{~mm}$ 4．20．

ALUMINIUM BOXES

Supplied complete with base and PK screws．

AB7 $133 \times 70 \times 38 \mathrm{~mm}$	80p
AB8 $102 \times 102 \times 38 \mathrm{~mm}$	\＄0p
AB9 $102 \times 70 \times 38 \mathrm{~mm}$	55p
AB10 $102 \times 133 \times 38 \mathrm{~mm}$	60p
AB $11102 \times 64 \times 51 \mathrm{~mm}$	55p
AB12 $76 \times 51 \times 25 \mathrm{~mm}$	48
AB13 $152 \times 102 \times 51 \mathrm{~mm}$	30p
AB14 $178 \times 127 \times 64 \mathrm{~mm}$	［1．06
AB15 $203 \times 1152 \times 76 \mathrm{~mm}$	L1．42
AB16 $254 \times 178 \times 76 \mathrm{~mm}$	\＄ 1.70
AB17 $254 \times 114 \times 78 \mathrm{~mm}$	E1．22
$A B 19305 \times 203 \times 76 \mathrm{~mm}$	E2．00

BATTERY HOLDERS

For $4 \times$ HP7 2 by 2 or side by side． Both types 1ep．For $4 \times$ HP11， 2 by 2 or side by side．Both types 24p．

RF CHOKES

10，47，68，$\mu \mathrm{H}$ 10p．1．5，2．5，5， 7,5 10 mH 33 p ．

OPTO DEVICES

Light sensor type H61．Only 15 mm long by 2.1 mm dia．Dark current $0.01 \mu \mathrm{~A}$ ．Light current $250 \mu \mathrm{~A} 70 \mathrm{p}$ ． MRD 450 Phorodiode 50p．LED s red or green 0.2 in 22p．TIL 209 red LED 15p．
DEVELOPMENT PACKS
50 V ceramic plate capacitors． 5% ： 10 of each value 22 pF to $1,000 \mathrm{pF}$ ， tolal 210 caps．， 83 ．
CA25 carbon film 1 W resistors， 5% ： total 610 resistors， $87 \cdot 50$ ．
Electrolytics．wire ended 25 V work－ ing， 10 each of： $1,2 \cdot 2,4 \cdot 7,10,22,47$ and $100 \mathrm{mF}, 70$ capacitors for $53 \cdot 80$ ． 400 mW zeners $5 \%, 10 \mathrm{each} 3 \mathrm{~V}$ to 30 V ． 260 in alf．Only $£ 14$.

Ses Practical Wireless for details of packs of components，surplus goods．etc． All prices quated include VAT．Add 15p postage on orders under £2．SAE with enquiries or for List please．Send 10p for Multimeter cataloguo－free on request on orders over £3．Official Orders accepted from Schools，etc．Export／Wholesale enquiries welcome．Surplus components always wanted．

4 itin $\times 3$ in METER． $30 \mu \mathrm{~A}$ ， $50 \mu \mathrm{~A}$ or $100 \mu \mathrm{~A}, \mathbf{1 3 - 8 5}$ ．I6p P．\＆P．

$500 \mu \mathrm{~A}, 80 \mathrm{p} .10 \mathrm{p}$ P．\＆P．

Model UD．130．Fre－ quency response 50－ 15，000c／s．Impedance Dual 50 K and 600 ohms， 87．50．26p P．\＆ P ．
$42 \times 42 \mathrm{~mm}$ meters $1 \mathrm{~mA}, 10 \mathrm{~mA}$ ， $100 \mathrm{~mA}, 500 \mathrm{~mA}, \mathbf{2 2} 76.16 \mathrm{p}$ P．\＆P． $60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ ， $500 \mu \mathrm{~A}$ and 1 mA VU meter， $62 \cdot 92$ ． llp P．\＆P．

Edgewise meters $90 \mathrm{~mm} \times 34 \mathrm{~mm}$ ImA．63．40，16p P．\＆P．

MULTI． METER
Model ITI－2 20，000 ohm／ volt， $\mathbf{E 6 . 9 0}$ ．
26p P．\＆P．

3 WATT STEREO $\left(1 \frac{1}{2}+1 \frac{1}{2}\right)$ PER CHANNEL

AMPLIFIER
64．30．16p P．\＆P．

All above prices include V．A．T．LARGE S．A．E．＇for List No． 12. Special prices for quantity quoted on request．

M．DZIUBAS

158 Bradshawgate－Bolton－Lancs．BL2 IBA

F．M．Tuners．e－transiator chasgis with stereo decoder and L．E．D．indicator
Aircratt－band Recaiver．Just place near any radio． Echo－chamber（endlese tape）．Veriable delay． Field－strength indicators． $1-250 \mathrm{MHz}$
Stereo Ampliflers complete．3－watt， 0 －ohm
10 －watt Amplifiers． 12 volt d．c． $3 / 8 / 15$－ohm
Cartridges．Acos GP104．Ceramic／diamond
Cartildges．Acos GP101．Crystal／sapphire／compatlble
Speakers． 24 ln .8 ohm
Spaakers．Car Stereo． 8 ohm， 5 watt．In cablnets
Cryatal Tape Recórder Mikes
Crystal Mike Inserts with bracket
Indicators． 12 volt L．E．D．In chrome bezel
Bargain Bags＂4b cape／reshetorw／transistorm／diodes
Controls．Volume／pro－set（rotary and slider）．Assorted 100
Transistors． $20 \mathrm{npn} / \mathrm{pnp}$ ．All new and marked
Transiators． 100 npn untested
Diodes． 100 germanium unteated
Diodes． 100 silicon untested
olodes． 100 zener untested
＇Pack 1 ＇＇－100 resistors， 100 ceramics． 100 diodes
Pack $2 \cdots-100$ resistors， 100 ceramics． 100 polystyrene Pack $3 "-100$ resiators， $100 \mathrm{~s} / \mathrm{mica}$ ceramic， 100 polyester ALL ABOVE ITEMS PLUS 25% VAT
 Flourescent 12 －volt Cemping Lights 21 in .13 watt
Disco．Type 3－Channel Flashing Light Units．Bullitin mike．No Disco＂Type 3－Channel
connection needed to smp ． $0-1000 \mathrm{~V}, 0-100 \mathrm{~mA}, 0-150 \mathrm{k} \Omega$

Mus． $0-500 \mathrm{~V}$（ 10 ranges），d．c． $0-500 \mathrm{~V}$（ 12 ranges）
d．c．current $0-25 \mu A$ to $0-10 \mathrm{amps}$（ 10 ranges）
Resistance $0-100 \mathrm{ohms}$ to $0-16 \mathrm{M} \Omega$（4 ranges）
Panel Meters． $0-50 \mu \mathrm{~A}$ ． 2 Iin $\times 11 \mathrm{in}$
Soldering Irons． 15 watt．Pencil bi
Soldering Irons． 15 watt ．Pencil bit
Servisol Switch Claaner（with snorkel）
Copper－clad Fibre Glass Board
Single－sided．Square foot
＂Fotolak．＂Light Sanaitive Spray for printied circuit making
Developer for same
Ferric Chtoride for etching
ALL ABOVE ITEMS PLUS 8\％VAT
$\Sigma 10.90$
$£ 3.90$
$£ 3.50$
$£ 3.30$
$£ 2.75$
$£ 3.90$
$£ 1.50$
$£ 0.50$
$\Sigma 0.35$
$£ 2.50$
$£ 0.90$
$£ 0.60$
$£ 0.20$
$£ 0.35$
$£ 4.00$
$£ 2.50$
$£ 1.00$
$£ 1.00$
$£ 0.50$
$£ 0.50$
$£ 0.50$
$£ 1.00$
$\Sigma 1.00$
$£ 1.00$
54.90
53.90
817.50
83.50
all above fims plus a\％vat

```
G. F. MILWARD, }369\mathrm{ Alum Rock Road,
Tel. 021-327 2339 Birmingham B8 3DR

THis circuit (Fig. 1) was designed for use with an electronic voltmeter to indicate when the battery voltage falls below 7.5 V where the accuracy of the meter begins to deteriorate.

The circuit can be made to switch at any voltage by altering R1, R2, D1, and by swopping pins 2 and 3 there is a choice of either normally on or normally off operation. The normally off arrangement is shown as in this state the circuit only takes 1.4 mA .

\section*{P. Boscott, Banbury}
low voltage indicator


Fig. 1

CAR ALARM


THE requirements to be met for the car alarm were that it should give an audible/visual alarm for a preset interval and then reset to a "ready" state, the car meanwhile being immobilised. The quiescent power consumption must also be low.

The following circuit was devised which gives an alarm lasting about 20 seconds (bleeps horn and/or flashes headlamps) and breaks the ignition circuit, after which it resets ready to be triggered again. The methods used to trigger the alarm are door courtesy switches and/or a trembler switch. This alarm has the advantage over other types that it attracts attention and immobilises the car, but does so without being a public nuisance and without draining the battery (the alarm might be set off by an innocent party accidentally).

With power applied, in the quiescent state, the CSR1 is switched off and current is only drawn through

TR2, this being about 20 microamps.

If any of the alarm switches are earthed TR1 conducts, both causing TR2 to conduct and switching on the CSR. TR2 thus shorts the timing capacitor each time a switch is made and the timing period starts from this point. The CSR supplies power to the Schmitt trigger and, as TR6 is conducting initially, to the multivibrator. RLA contacts then open and close periodically to give the alarm. These contacts can be connected to the horn or headlamps but must therefore be of suitable rating. The writer used a miniature 700 ohm relay which closed at 20 milliamps and fitted heavier 5 amp contacts salvaged from defunct microswitches so obtaining a 10 amp capacity relay at low cost.

As the timing capacitor charges up, TRS base voltage is raised until the Schmitt switches, TR6 being cut off and TRS conducting. TR5's current is less than the hold-
ing current of the CSR which switches off, leaving the circuit in its quiescent state again.

Relay RLB is enabled when the CSR is on, and must be a latching type, either electrically or mechanically. The latter is probably preferable as the ignition reset switch can be hidden away.
If trouble is experienced by spurious triggering of the alarm, this should be cured by connecting a capacitor across TR1 base as shown and decoupling the supply if required.

Layout is completely non-critical, as are components. BC108's were used because they were to hand, but lower gain types are suitable. Note that TR1 is \(p n p\), the rest are \(n p n\). The CSR was a sunplus item. The time delay can be altered by varying the values of R6 and C2.
D. W. Bickley, Wolverhampton.

\section*{recording level indicator}

ORDINARY tape recorder VU meters cannot respond quickly enough to sudden loud peaks. One can therefore record at too high a level without knowing, resulting in distortion. Peak-reading meters solve this problem to some degree, but are complex and not always totally successful.
The circuit (Fig. 1) eliminates this problem, and can easily be added to almost any transistor tape recorder. If the peak level of the input a.c. signal exceeds a certain level,
the 555 timer wired as a monostable is triggered, illuminating the l.c.d. for about 0.4 sec , as a warning that the recording level is too high. VR1 sets the trigger level, low resistance corresponding to a high trigger voltage, between 0 and 2.5 V .

Input impedance is over \(10 \mathrm{k} \Omega\) for most settings of VR1, and the unit can be connected direct to the output of the record amplifier. It should however be connected in front of the tape head driver, as this is a constant-current driver, not constant-voltage.

D1 may be any l.e.d. D2, C3 and R4 stabilise the trigger level against
changes of \(\mathrm{V}_{\mathrm{cc}}\). If \(\mathrm{V}_{\mathrm{cc}}\) is stabilised, these components can be omitted, connecting point \(X\) to \(V_{c c}\) and leaving pin 5 of the NE555 unconnected, VR1 should now be 100 k 12 . This circuit will work for any \(\mathrm{V}_{\mathrm{cc}}\) from 6 to 15 V , although R2 may need reducing to \(680 \Omega 2\) at low voltages. The maximum current demand with l.e.d. on, is 20 mA , and less than 5 mA with it off. In use, it is best to set it to trigger at a level corresponding to \(+2-3 \mathrm{~dB}\) record level.
N. R. Arnot,

Welwyn Garden City, Herts.

\section*{TOUCH KEYBOARD}

For those not wishing to spend
t20 on keyboard inechanics for their synthesiser, 1 have devised an electronic alternative.

The complete circuit is shown in Fig. 1. The contacts are made by etching a keyboard on fibreglass p.c.b. The circuit marked \(A\) is dupli-
cated for as many keys as required. A finger pressed on the contacts switches the transistor pair, producing about 5.3 V across the resistor. The diodes "code" the key position into a 6-bit binary signal passing. on to circuit \(B\). (The key shown is the 13th.)

This circuit is a sampling digitalanalogue convertor, which takes an input from the keyboard when a key is pressed.

The output may be taken to a
buffer stage as shown, allowing the keyboard to be compressed, expanded or offset up and down the spectrum. An integrator would produce a portamento effect.

A typical key design is shown in Fig. 2. If single plate operation is required the circuit of Fig. 3 could replace the two transistor circuit of Fig. 1, but it may be found unreliable.
N. B. Sargeant,

Fleet.


Fig. 1


Pig. 1


Fig. 2


Fig. 3

\section*{TRANSFORMERS}

ALL EX-STOCK - SAME DAY DESPATCH. VAT \(8 \%\) MAINS ISOLATING

\[
\begin{array}{lr}
\text { 13. } & \text { Watts } \\
64 & 70 \\
64 & 75 \\
4 & 150 \\
66 & 300 \\
67 & 500 \\
84 & 1000 \\
93 & 1500 \\
95 & 2000 \\
73 & 3000 \\
\hline
\end{array}
\]

\[
\begin{aligned}
& \text { CASEO AUTO TRANSFORMERS } \\
& \text { 240Vmains leadinput and U.S.A. 2-PIN } \\
& \text { outlets: } \\
& \begin{array}{llll}
\text { 20VA } & \mathbf{~} 3.29 & \text { P. \& P. } 72 \mathrm{p} & 113 \mathrm{~W} \\
150 \mathrm{VA} & 8 . .37 & \text { p \& P R5m }
\end{array}
\end{aligned}
\]
\[
\begin{array}{llll}
500 \mathrm{VA} & £ 10.97 & \text { P. \& P. } 1.2567 \mathrm{~W} \\
\text { 1000VA } & \varepsilon 18.39 & \text { P. \& PRS } 84 \mathrm{~W} \\
\text { 2000VA } & 128.71 & \text { P. \& P. BRS } 95 \mathrm{~W} \\
\hline
\end{array}
\]
\[
\text { 2000VA \&28.71 P. \& P. BRS } 95 \mathrm{~W}
\]
\[
\begin{aligned}
& \text { Prim. 200/220V or } 400 / 440 \mathrm{~V} \\
& \text { Sec. } 100 / 120 \mathrm{~V} \text { or } 200 / 240 \mathrm{~V}
\end{aligned}
\]

TEST METEAS
AVO 8 MK 5
AVO 72
AVO 72
\(U 4313^{*}\)
\(\mathrm{U} 4313^{*}\)
\(\mathrm{U} 4315^{*}\)
*(USSR) inc. steel carrying \(\begin{array}{r}\mathbf{5} 11.80\end{array}\)

> (USSR) inc. steel carrying p: \& P. \(£ 1 \cdot 10\) VAT \(8 \%\)

15 W ANTEX SOLOERING IRONS Soldering Iron Kit £3.61,
Stand for above \(£ 1\) - 13.
P. \& P. 25p. VAT 8\%

MAGNETIC TO CERAMIC
CARTAIDGE CONVERTOR
Operating valage \(20-45 \mathrm{~V}\)
only \(£ 2.65\) P. \& P. 18p. VAT \(25 \%\)
\[
\begin{aligned}
& \text { BSR MINI-DECK } \\
& \text { 4Speed Autochanger } \\
& \text { P. \& P. } 72 \text {. VAT } 25 \%
\end{aligned}
\]

COMPLETE STEREO CHASSIS INC \(7+7 W\) RMS AMP. Pre-smp. power supply, front panel, knobs (needs malns trans.). Stereo 30 . \(£ 15 \cdot 75\). Mains trans. £2.45. Teak veneered cab.
£3.65. P. \& P. 850 . VAT \(25 \%\).
 \begin{tabular}{c} 
Ref. \\
No. \\
111 \\
213 \\
71 \\
18 \\
70 \\
108 \\
72 \\
116 \\
17 \\
115 \\
187 \\
226 \\
\hline
\end{tabular}

12 AND OR 24 VOLT PRIMARY \(240-250\) VOLTS PRIMARY


AUTO TR
\[
\begin{aligned}
& \text { If } \\
& \text { VA } \\
& \text { Wattos) }
\end{aligned}
\]
\[
\begin{aligned}
& 67 \\
& 84 \\
& 98 \\
& 93 \\
& 95 \\
& 73 \\
& 73 \\
& 2 \\
& 240 \\
& 2 \\
& \text { out } \\
& 2
\end{aligned}
\]
\[
\text { VA. Sec. } 1
\]
\begin{tabular}{rccc} 
& & \(\&\) & \(\rho\) \\
60 & 243 & 4.37 & \(\rho\) \\
350 & 247 & 10.93 & 1.41 \\
1000 & 250 & 28.31 & BRS \\
2000 & 252 & 44.12 & BRS \\
\hline
\end{tabular}

CC12-05 POWER UNIT
3-4-5-67 Output Switched 48p. VAT \(25 \%\)

WHIGH QUALITY MODULES
3 W RMS Amplifter
5W RMS Amplitier
30W RMS Amplitler
25W RMS Amplifier
Pre-Amp for 3-5-10W
Power Supplies 3-5-10W
Power Supplies 25W Transformer 3W Transtormer 5-10W
Transformer 25W
P\& \& Amps/Pre imps/Power \(\frac{\mathrm{S} 2 .}{}\) plios 18 p
P. \& P. Transformers 37p. VAT \(25 \%\) ELECTROSIL
OXIOE RESISTORS Style Tol. Omic Aange Pricelper \(\begin{array}{llll}\text { TR4 } & 2 \% & 10 n-300 \mathrm{k} \Omega & \text { Pricelper } 10 \\ & 5 \% & 10 \cap-300 \mathrm{k} & \mathrm{EB} .50 \\ \text { TR5 } & 2 \% & 10 \Omega-470 \mathrm{k} & \mathrm{E} .50\end{array}\)
NEW STEREO 30
\[
T R
\]

TRE
TRE
TAB \(510 \mathrm{k} \Omega-1 \mathrm{M} \Omega\) 10R -47 M \(10 \mathrm{~h}-4 \Omega\)
\(51 \Omega-510 \mathrm{k} \Omega\) \(560 \mathrm{k}-2 \mathrm{M} \Omega\) 10』-91ก \(10 \Omega-91 \Omega\)
\(100 \Omega-100 \mathrm{k} \Omega\) \(110 \mathrm{k}-1 \mathrm{M}\) ?

OTY-P.O.A. P. \&
Audio Accessories and Bargaln Component Paks. Semi-Conductor stockists.
Callers walcome (Mon-Fri) or send stamp for lists
Barrie Electronics Ltd. 3,THE MINORIES,LONDONEC3N 1BJ TELEPHONE: 01-488 3316/8

\title{
PRIENTI REETEWO
}

\section*{PATENT INCREASE}

On January 1, 1976, the price of a printed copy of a British Patent rose, by more than 100 per cent, to 75 p . This is still cheap for a fact-packed specification of a hundred-or-so pages, accompanied by a dozen-or-so sheets of drawings, and is tolerable for the more average length of a dozen pages. But it makes any patent of brief content rather expensive.

For this reason, readers should remember that most of the official publications of the British Patents Office can be consulted free of charge at over two dozen libraries dotted around the United Kingdom. Fortunately, this situation is unlikely to change, because it would undermine the basic principle of patenting, whereby an inventor is awarded a monopoly in return for disclosing details of his invention to the public in a Patent Office publication.

Free access to any patent mentioned in this column should currently be available through the public, commercial or central library in the following towns:

Aberdeen; Aberystwyth; Belfast; Birmingham; Bradford; Bristol; Coventry; Edinburgh; Glasgow; Huddersfield; Hull; Leeds; Leicester; Liverpool; London (British Museum; Science Museum; Science Reference Library attached to the Patent Office); Loughborough (University of Technology): Manchester; Middlesbrough; Newcastle upon Tyne; Norwich; Nottingham; Plymouth; Portsmouth; Preston; Sheffield; Swindon; Wolverhampton.

\section*{LICENSING GUIDE}

The British Library recently pub. lished another of its extremely useful "Guides to Literature". These are available free by post from the Bayswater Branch of the Science Reference Library (10 Porchester Gardens, Queensway, London W2 4DE), or on personal request from the SRL attached to. the Patent Office at Southampton Buildings, Chancery Lane, London WC2.

Each guide has the same general format; a background to the subject and clear references to all the most useful literature that is available to the public in the SRL.

So far there have been no publications specifically on electronics topics (subjects covered have been artificial polymers, automotive fuels and odd protein sources), but news of any guideline on a selected area of electronics will be reported if and when it is published.

The latest guideline relates to "Patent Licensing Opportunities", and could be of considerable interest to both inventors and manufacturers working in the electronics field. Some of the source references given relate to regular publications which publicise both inventions available for licence and potential licensees seeking inventions; other references relate to the legal aspects of licensing, both here and abroad.
In the latter context, it is important to bear in mind that since we have joined the EEC the situation in Europe has become somewhat confused. Briefly, the Treaty of Rome forbids any restriction or distortion of competition within the EEC and thus would appear to ban any exclusive licence, i.e. any licence that gives any one manufacturer in a territory the right to corner a market without fear of competition from other manufacturers.

In 1962 the Common Market Commission issued its now famous, so-called "Christmas message" which appeared to condone exclusive licenses if tied to a patent. But this 1962 exemption has been steadily confused and eroded. Currently, to the publicly admitted dismay of the CBI, inventors and manufacturers must realistically regard any straightforward exclusive licence in Europe as void under the Treaty of Rome.
There is legal machinery for asking the Commission in Brussels to give its advance opinion on a draft licence, but this is a lengthy procedure, riddled with red tape. Thus anyone with an electronic invention to license and hopes of profit without problems, is best advised to steer clear of licensing any one manufacturer to the
exclusion of others. Likewise firms are best advised to avoid entering into exclusive licences if humanly and commercially possible.

\section*{REMOVING DENTS}

A simple but allegedly previously ignored approach to straightening out dents in car bodywork is claimed by Erwin Schill, of Switzerland, in BP 1403164.

According to the inventor, it is well known that to use a welding tool to soften the damaged metal leaves stresses in the sheet after removal of the dent. The proposed solution is to use a welding tool in the manner of a hammer, so that a multitude of tiny spots are heated briefly to a high temperature, rather than a whole area.

The necessary tool is shown in Fig. 1; the handle incorporates a hammer head with a central copper electrode which is surrounded by a safety sheath. The dent is flattened using short tapping movements so that the electrode briefly contacts the metal and heats spots of around 1 mm square to \(1,000^{\circ} \mathrm{C}\) for a fraction of a second at a time. The material surrounding each contact point draws in and if the spots are peppered over the surface to be treated (Fig. 2) the result is an overall flattening without undesirable stressing of the metal.

BP 1403164


Fig. 1
Fig. 2

THE ‘MISTRAL’ 1 DIGITAL CLOCK

－Pleasant green display－12／24 Hour readout
－Silent Synchronous Accuracy ．Fully electronic
－Pulsating colon．Push－button setting
－Building time 1 hr ．Attractive acrylic case
－Easy to follow instructions－Size \(10.5 \times 5.7 \times 8 \mathrm{~cm}\)
－Ready drilled PCB to accept components

\section*{THE ‘MISTRAL’ 2 DIGITAL ALARM CLOCK}

WITH SLEEP－OVER FEATURE

－Soft Green Display
24 Hour Alarm
10 Minute Repetition
Alarm Set Indicator
Accurate Silent Timekeeping
British Designed and Built

COMPLETE PRICE \(£ 14 \cdot 35\)
Inc．P．\＆P．+ 上1－15 VAT


SPECIFICATION
SPECIFICATION 14 digit LED display
－ 10 digit mantissa with sign and 2 digit exponent with
sign for data entry or results（ \(10^{-} \mathrm{w} \sim 10^{\infty}\) ）
－Automatic selection of correct notation for result dis－
play（scientific or floating point）
Dome keyboard tor excellent response and preventing
double entry input
BASIC FUNCTION（,,\(+- \times .+\) ）AND MEMORY
－Algebraic mode operation
Constant operations
Chain operations
Change sign operation
Display and Y register exchangeable
－One accumulating memory
－Display and memory exchangeable
SPECIAL FUNCTION
－Trigonometric functions（sin．cos，tan）
Inverse trigonometric functions（sinn－1， cos \(^{-1} \cdot \tan ^{-1}\)
Inverse hyperbolic functions（sinh \({ }^{-1}\) ．cosh \({ }^{-1}\) ，tanh \({ }^{-1}\) ）
Radian or degree selectable
\(\pi\) constant
Logarithms（ \(\mathrm{In} . \log\) ）
Anti－iogartihms（ \(e^{\circ}, 10^{\prime}\) ）
Power function（ \(y\)＇）
Reciprocal \((1 / x)\)

PRICE \(£ 25.89\)
P．\＆P．75p＋VAT £2． 13

\section*{1420 －SENIOR}
－ 14 digir LED display
－ 10 digit mantissa with sign and 2 digit exponent with sign for data entry or results \(\left(10^{-m} \sim 10^{m}\right)\)

－Automatic selection correct notation for result display（scientific or flcat－
－Dome key
Dome keyboard for excel－
lent response and prevent ing double entry input
－Algebraic mode operation
－Chain operations
－Change sign operation
－Three memories
－Display and memory ex－ changeable

（sin，cos．（an）
－tions（sin－trigonometric func－
－Radian or or degree
selectable
－constant
Logarithms（In．｜og）
－Anti－logarithms（ \(e^{\prime}, 10^{\circ}\) ）
Combinatorial functions（ \(n^{\prime}\) ．（玄），（ \(n\) ），
－Normal distribution function \((\operatorname{Pr}(x))\)
－Gamma function（ \(\Gamma(x)\) ）
－Group operationa（ \(= \pm\), O．\(^{\text {．}}\) ．II x \(\|\) ）

－Power function（y＇）
－Reciprocal（ \(1 / x\) ）
－Square toot \((\sqrt{x})\)
Square（ \(x^{2}\) ）
－Sum of squares（ごメマ）
－Item count（ \(n\) ）
－Mean value（ \((x)\)
－Mixed chain operations with parentheses approach （up to two levels）

PRICE £55．63 \(^{6}\)
P．\＆P． \(75 p+\) VAT \(£ 4.51\)

1421 －PROGRAMMABLE

BESIDES MAVING TME CAPAEILITY DF A CAPAEILITY DF A 9 digit LED display
－ 8 digits eapacity for data entry or results（ \(10^{\circ} \sim 10^{\circ}\) ） Full floating point
－Automatic display blanking
Three register operational
stack
Change sign operation
Reverse polish notation
exphay angle
－One accumulating memory （Memory store．Memory－re call．\(M+X, M-X\) and \(\left.M+X^{2}\right)\)
Trigonometric functions （sin．cos．tan）
Inverse trigonometric functions trigonometric \(\left.\tan ^{-1}\right)\)
－Radians and degrees exchangeable
\(\pi\) constant
－Logarithms（in．log）
－Anti－logarithms（ \(e^{\prime}\) ）
－Power function（ \(y^{\prime}\)＇
Reciprocal（t／x）
Square root \((\sqrt{x}\)
Square（ \({ }^{2}\) ）
IT CAN LOAD ANY 102 STEPS PROGRAM TO HELP YOU SOLVE THE REPEATED．ENORMOUS，COMPLEX PROBLEMS：
The Qualitrón Programmable calculator can be used to memorize any combination of key entrys while in the LOAD mode，then automatically plays back the pro－ grammed sequences as often as desired in the RUN mode． Up to 102 steps can be stored in multiprogram sequence blocks．Each block or program can be executed in－ dividually or you can make the deciston to branch to speclfic program，run each in series or perform inter－
mediate calculations from the keyboard．

PRICE \(140 \cdot 80\)
P．\＆P．75p＋VAT \(£ 3 \cdot 32\)


Cash，Cheque or Postal Order or if you wish to use Barclaycard or Access，simply quote name，address and card number when ordering．


ITTTELH PRDDULTS LTD
IMP HOUSE，ASHFORD ROAD ASHFORD，MIDDX．TW15 1XB Telephone：ASHFORD 44211 （4 Ilnes） Telex： 936291 WESSIMP ASHFORD


\section*{POST TODAY!}

\section*{Quick installation} Mo engine modification required

Electronics Design Associates, Dept. PE5, 82 Bath Street, Walsall, WS 1 3DE. Phone: (0922) 33652 Name

Address


\section*{SAVE SAVE SAVE}

Save your money on \(\star\) TOUCH SENSITIVE PIANO KIT
* SYNTHESISER KIT
\(\star\) ELECTRONIC PIANO KIT

Portable Organ kit with 4-
Octave keyboard 2 pitches,
external tuning. 10 Voices Vibrato. Plywood cabinet and cover finished in black rexine. Price \(599-00\) * Portable Organ kit with 4-Octave keyboard, 3 pitches, external tuning, 10 Voices Vlbrato. Plywood cabinet and cover finlahed In black rexine. Price \(£ 145=28\). * Portible Plano kit with touch-sensilive 5 -Octave keyboard. Plywood cabinet and cover finighed in black rexine. Price £145-00. \# Console Organ kit with 5-Octave keyboard 3 pitches, external tuning, 10 Voices, Sustain, Delay Vibrato, Plano Marimba and Wah Wah effects. Console finished In walnut. Price \(\mathbf{\Sigma 2 5 0} \cdot 93\). \# Console Organ kit with \(2 \times 4\) Octave keyboards and 13 note pedal board, 4 pliches external tuning, 15 Vaices on upper keyboard, 5 pltches and 10 Voices on lower keyboard. 2 Voices on pedal, Sustain Reverberation Delay Vibrato. Snare Drum and Cymbal on Pedal, Plano Marimba and Wah Wah effects, 4 Drum Unit buttons. Console finished in Teak or Walnut. Price \&474-65. Console Organ kit with with \(2 \times 5\)-Octave keyboards and 32 note R.C.O. Pedal Board. 6 pliches all fflects and finith es Octave keyboards and 32 note polyphonic R.C.O. Pedal Board, 9 pitches, magnificent range of voices. Price £980-00.
* Components: 4-Octave keyboard C-C \(£ 15.50\), 5-Octave keyboard C-C and F-F ع20.00. Top octeve tone generator, complete with external tuning capacitor. GU500, capacitor, GD500 \(£ 50 \cdot 00\). Construction Manual for Portable Organ, using discrete componente \(£ 2-25\). Catalogue 60p.

\section*{ELVINS ELECTRONIC MUSICAL INSTRUMENTS}

Organ Centre: 12, Brett Rd., Hackney, London E8 1JP. 01-986 8455 Component Shops: 8, Putney Bridge Rd., London SW18 1HU, 01-870 4949. 40/42a, Dalston Lane, Hackney, London Es 2AZ, 01-249 5624. All prices are excluslve of VAT.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{ELECTROLYTIC CAPACITOR OFFER} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{ZN414 IC Radio, 51-20. 741 59p.}} \\
\hline 10000/83 & £1. 88 & 2200/40 & 30p & 220/63 & 1ap & & & & \\
\hline 10000/50 & \&1. 50 & 1000/180 & 63p & \(180 / 25\) & \(p\) & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Complete range of components}} \\
\hline 5000/70 & 74p & 1000/40 & \({ }^{25 p}\) & 100/40 & \(13 p\) & & & & \\
\hline 5000/50 & \(75 p\) & 1000/30 & 25p & 100/12 & 7 p & \multicolumn{4}{|l|}{Resiator C.F. 0.5 W and 0.25 W .} \\
\hline 5000/35 & 50 p & 1000/25 & 259 & 81450 & 16p & \multicolumn{4}{|l|}{all 2p. C.F. 0.5 W and 0.25 W .} \\
\hline 5000/12 & 25p & 470/63 & 23p & 18/450 & 25p & \multicolumn{4}{|l|}{Metal Oxide 0.5W. 5p.} \\
\hline \(3000 / 25\) & 30 p & 470/35 & \({ }^{20 p}\) & 50/450 & 30 p & \multicolumn{4}{|l|}{MYLAR Capas.:} \\
\hline 2500/70 & \({ }^{319}\) & 330/100 & 30p & \(32+32 / 450\) & 38 p & \multicolumn{4}{|l|}{\(1 \mathrm{nF}, 2 \mathrm{nF} .5 \mathrm{nF} .8 \mathrm{sp}\); 10 nF .20 nF .} \\
\hline 2200/6. 3 & \(20 p\) & 250/64 & 20p & 50/50 & tp & 30 nF . 40 & nF. 47 & F. Ap; 0 & \(0 \cdot 1 \mu \mathrm{~F}\). \\
\hline \multicolumn{6}{|l|}{Micro Swltchen (make or break) 33} & \multicolumn{4}{|l|}{0.2出, 12p.} \\
\hline \multicolumn{6}{|l|}{Cabie Tiea 3p} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{C280. Polyester 250V:
\(10 \mathrm{nF}, 22 \mathrm{nF}, 4 \mathrm{p} ; 33 \mathrm{nF}, 47 \mathrm{FF} .4 \mathrm{p}\);}} \\
\hline \multicolumn{6}{|l|}{TOS Hent Sinke} & & & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Pot cores ( 14 mm or 18 mm ). complete}} & \multicolumn{4}{|l|}{} \\
\hline & & & & & 13p & \multicolumn{4}{|l|}{\(0.22 \mu \mathrm{~F}, 8 \mathrm{sp} ; 0.33 \mu \mathrm{~F}, \mathrm{sp} ; 0.47 \mu \mathrm{~F}\),} \\
\hline \multicolumn{6}{|l|}{OIGITAL I.C.s} & \multicolumn{4}{|l|}{\(1 \cdot 5 \mu \mathrm{~F}, 25 \mathrm{p} ; 2\) - \(2 \mu \mathrm{~F}, 24 \mathrm{p}\).} \\
\hline \multicolumn{6}{|l|}{Large range of 7400 series in stock. Prices from 18p} & 1 N 4004 & p & S7/40 & 3 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
INTEGRATED AUDIO POWER AMPS. \\
20W RMS, 1 off [E:35, Stereo pair £11-95.
\end{tabular}}} & 1N4007 & 9 p & CRS1/80 & 11.25 \\
\hline & & & & & & 1N4148 & , & CRS7/80 & 51.00 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{30W RMS 1 off \(\mathbf{\$ 7 . 9 5}\), Stereo palr \(£ 14\). 80 . 50W RMS 1 off \(£ 12 \cdot 3\), Stereo pair \(\mathbf{~ 2 2} \cdot 78\).}} & & & 40689 & 1.1 \\
\hline & & & & & & 0 & Ap & & \\
\hline \multicolumn{6}{|l|}{50 W RMS (4n) amp. kits complete with bullaing} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{ZENER DIODE8} \\
\hline & ato & & & & & 40 & & & \\
\hline  & Fi, & & & & & CRS3/40 & \&1. & 1, wat & \\
\hline \multicolumn{10}{|l|}{SEMICONDUCTORS} \\
\hline AC141 & 57p & BC157 & 14p & BD115 & 87p & MJ3000 & c2.e & 2N30S3 & \\
\hline AC142 & 42p & BC158 & 12p & B0121 & 81.4 & M J3001 & 12.40 & 2N3054 & \\
\hline AC187 & \(30 p\) & BC159 & 12p & BD124 & 97p & MJ4200 & 45-65 & 2N3055 & \\
\hline \(A^{\text {A }} 188\) & 30.0 & BC167 & 14p & BD131 & 52p & MJE2955 & \$1.44 & 2N3702- & \\
\hline AC187K & 41p & 8C168 & \(14 p\) & BD132 & 440 & MJE3055 & 75p & 2N371 & 14 \\
\hline AC188K & 41p & BC189 & \(15 p\) & EDI35 & 58p & & & & \\
\hline AD161 & 62p & BC182 & 13p & BD136 & 63p & TIP29A & 89p & & \\
\hline AD182 & 82p & BC212 & 18p & BFY50 & \(23 p\) & TIP30A & 95p & 40361 & 53 \\
\hline BC107 & 13p & BC301 & 32 p & BFY51 & 22p & TIP31A & 87 p & 40362 & 60 \\
\hline BC108 & 12p & BC302 & \(58 p\) & BFY52 & 240 & TIP32A & 90p & 40408 & 5 \\
\hline BC409 & \(18 p\) & BC303 & 37 p & MJ481 & 81.35 & TIP41A & 72 p & 40407 & \\
\hline BC147 & 14p & BCY70 & 18 p & MJ491 & 51.52 & TIP42A & £1.27 & 40408 & \\
\hline BC148 & 12p & BCY71 & 50 p & MJ2500 & c2.75 & TIP2955 & ¢1.36 & 40409- & \\
\hline BC14 & 14p & BCY72 & 18 & MJ250 & [2. 05 & TPP3055 & 75p & 40410 & \\
\hline
\end{tabular}

ALL PRICES INCLUDE VAT
P. \& P. 25p on all orders. Hundreds of other types of semiconductors held in stock. S.A.E. with all inquiries.


40 YORK STREET, TWICKENHAM, MIDDX. Tel. 01-891 1692
Opening hours 9.30 a.m. to 6 p.m. Tuesday to Saturday

This exciting new series, provides clear and easily understood descriptions, advice and general help for amateur constructors, students and technicians aimed at breaking down the barriers that often deter beginners in electronics.

\section*{Available Now...}

\section*{ELECTRONIC DIAGRAMS}

\section*{M. A. Colwell}

One of the first things that newcomers tc radio and electronics need to come to terms with is the language used. This book, which is aimed primarily at beginners, attempts to break down the barriers which so often deter students from taking up the subject. It takes the reader through the logical steps of building up circuit diagrams from elementary circuit symbols to complex systems.
112 pages
\(216 \times 138 \mathrm{~mm}\) Illustrated 0408002018 £1.80

\section*{PRINTED CIRCUIT ASSEMBLY}
M. J. Hughes, MA, AMIERE and M. A. Colwell This Guide describes the characteristics of the various bases used in printed circuit systems and guides the reader through the stages of translating circuit diagrams into printed circuit layouts. Image transference, etching, milling and trimming methods are described. Some special techniques such as through-hole plating, edge connector tabs and multi-layer assembly are also outlined, and reliability and maintenance procedures are discussed. The merits of alternative ready-made proprietary assembly systems are reviewed and tabular comparisons made.
96 pages \(\quad 216 \times 138 \mathrm{~mm} \quad\) Illustrated 0408002034
£1.80

\section*{ELECTRONIC COMPONENTS}
M. A. Colwell

This book forms an introduction to electronic components, what they are and what they do, and provides guidance on recognition and
choice of component for particular applications. Included are resistors, capacitors, transformers, chokes, coils and tuned circuit components, semiconductors and electromechanical and electromagnetic devices. It also shows how to recognise faults and prevent breakdowns. 112 pages \(216 \times 138 \mathrm{~mm} \quad\) Illustrated 0408002026
£1.80

\section*{Available June...}

PROJECT PLANNING AND BUILDING

\section*{Morris A. Colwell}

This guide will help the constructor to plan, design and lay out his electronic projects. The book explains planning, use of tools, component board layout, the design and layout of chassis and cases, and assembly and wiring. There is also an extremely useful Appendix.

\section*{SIMPLE CIRCUIT BUILDING}
P. C. Graham

This Guide provides a logical introduction to general purpose circuits for the home constructor and to converting theoretical circuits into practical layouts. The book covers a wide range of easy to assemble circuits, including switching and logic circuits and their layouts, operational amplifiers, a.c. amplifiers and d.c. power supplies

\section*{PRACTICAL ELECTRONIC PROJECT BUILDING}

Alan Ainslie and Morris A. Colwel!
A concise but informative guide to some of the current popular methods of construction and techniques employed in home construction. Contains hints on finishing and fault-finding methods.

For detalls of all Newnes Technical Books please write for a free catalogue and watch for announcements in following issues of Practical Electronics.


FA＠T＠RDVIMK


\section*{ALL FULL SPEC．} DL707 COM，ANODE DL704 COM．CATHODE
\(0.3^{\prime \prime} 0-9 D P\) 89p．ea 747 JUMBO 0．6＂CA LJED DISPLAY \＆1．75＊
\(\mathbf{3 0 1 5 F} 0-9 D P\) £ 1.25 ＊ DISCO etc STROBE Ted I29，

209 STYLE OR b． \(2^{\prime \prime}\) NO CLIP 11p GiLEEN or GREEN LARGE／SALL CLIP 22p ORP12 57p＊2N5777 33p＊TEC12 50p＊ DIGITAL CLOCKS MOS316 £5＊
MW5314 £3．39＊MO55311 £5＊
AY51224 £3．49＊PCB ．c1＊＊
CAPACITORS
CERAMIC 22pf－0．1up 50v 5p． ELECTROLYTIC： \(10 / 50 / 100\) uf 10 or 25V 7P．50V 9p．2ur／10V 6p． POTENTIOMETERS LIN／LOG 16 p e PRESETS 6p．RESISTORS 1 P ea

HEATSINKS TO5／18 7p．TO3 15 p ． SWITCHES：SPST 19p．DPDT 24p． DIN PLUGS ALL 12p．SOCKETS \(9 p\) ALI CASES：A95／AB7 50p AB13 65p TRANSFORMERS 100 mA 89 p ea＊ ta／1A 6／12 ori2／24 \＆2 each NET AUDIBLE WARNING BLEEPER ©1 TRAMPUS FULL SPEC PAKS ALE il ea \(\begin{array}{lrl}\text { PAK A } & 10 & \text { RED LEDS our choice } £ 1 * \\ \text { PAK B } & 5 & 741 \mathrm{C} \text { OP AMP } 8 \text { PIN }\end{array}\)

 PAK G 8 BFY51 £1 PAK J 9 2N3053 £1＊．K 40 1N914 £1

IC＇s COW PRICES


TRANSISTORS

\section*{PRICE EACH：－ \\ C127 \％ 128} AC176 128 15p＊ AC187 \％ 188 15p＊ \(\begin{array}{rl}\text { AC187 } & 18818 \mathrm{p}^{*} \\ \text { AD1 } 49 & 45 p^{*}\end{array}\) AD161 \＆ \(1622^{45 p^{*}}\) 8C1 07 8p＊ BC107
BC107B BC107B
BC1 108 BC108B BC109 BC 109 C
\(\mathrm{BC} 147 / 8 /\) 3C147／8／9 3C157／8／9 BC167／8／9 12p \(\mathrm{BC177/8/9} 18 \mathrm{p}\) \(\mathrm{BC1} 82 / 3 / 4 \mathrm{~A} 18 \mathrm{p}\) BC182／3／4A8L10p BC212／3／4A6L12p
BCY70／1／2 BD131 \＆ 132 39 \({ }^{16 *}\) BD131 \＆ \(13239 \mathrm{p}^{*}\) BFR88 250V 35p BPY50 BFY51 \(14 \mathrm{p}^{*}\) \(\begin{array}{lll}\text { BFY52 \＆} & \text { 83 } & 14 p^{*} \\ \text { BSX19／20／21 } & 16 p^{*}\end{array}\) BSX19／20／21 \(16 \mathrm{p}^{*}\) \(\begin{array}{ll}M J 2955 ~ T O 3 ~ & 75 p^{*} \\ M J E 2955 & 89 p^{*}\end{array}\) MJE3055 MPU131 IP42 IP2955 TX107／8／9 11p N3054

20p＊ IP2 SET 6p＊ IP29＊ 30 43p＊ TIP31 \＆ 32 54 \({ }^{*}\)＊ IP41 63p＊ IP3055 67p TIS43 UJCT＇ \(26 \mathrm{p}^{*}\) 2TX300 \＆304 20p ZTX500 504 42p 2N2646 708 11p 2N2904 \＆ 5 20p＊ N2926brove N2926brove 9p N3055 115 圊 \({ }^{42 \mathrm{p}}\) 2N3055 RCA 60 p N3702／3／4／5 8p 2N3702／3／4／5 8p N3710 \({ }^{\text {N }} 11\) 8p N3710 \＆ 11 8p \(\begin{array}{ll}2 N 3819 E & \text { PET } \\ \text { 2N3820 } \\ \text { FET }\end{array}\) 2N3820 FET 40 p 2N3904／5／6 15p 2N4289 mini 31p


\section*{ETMD 돈}

NET MOTOROLA
CD4000 15p＊
CD4001 16p＊
CD4002 16p＊
CD4009 45p＊ CD4013 CD4013
CD4016 CD4016 CD4017 CD4018 CD4022
CD4023 CD4023 CD4024

\section*{LDEIL}

CD14533 £2．35＊ CD4028 73p＊ CD4 446 C1 CD4047 73p＊ CD4049 45p＊ CD4054 94p＊ \(\begin{array}{ll}\text { CD4071 } & \text { 17p }\end{array}\) CD4081 17p＊ CD4510 £1．19＊ CD4511 £ \(1.90^{*}\)


TELEPHONE 54525
DIODES
OA81 \＆OA91 GERHIANILM 5p．
1N4001 1A5OV \＆1N4002 5p 1 N4004 6p＊1N4007 9p＊ 1N4148 1N914 SILICON 4p ZENERS BZY88 400 mm 9p ZENERS 1t要17P．Z1Jnoisefl BRIDGE RECTIFIER 1A50 18p 1A400V 25p．4A100V 45p

SCR＇s TRIACS SCR＇s TAG1／400 1A400V 50p＊ 1A50V 38p＊1A 600V 70p＊ C106D 4A400V SCR ONLY 47p TRIAC SC146D 10A400V E1＊ \(\begin{array}{lll}\text { TRIAC DISCO 16A400V } & 〔 1.75 \\ \text { DIACS：ST2 20p，BR100 } & 25 p\end{array}\)

\section*{\(V=\square\)}

36PINS 28p＊PACE CUTTER49p COPPERCLAD 0.1 PITCH VERO 2＂x5＂32p＊2！＂x3i＂29p＊ 3\｛＂x5＂37p＊3ł＂x3z＂32p＊ 34＂x17＂£1，70＊ 3 ＂＇x17＂PLAIN 0．1＂¢1．06＊
DIL BREADBOARD \(6 \times 4^{\prime \prime}\) \＆ \(2^{*}\)


Den


DALO ETCH RESIST PEN 69p＊ \(\begin{array}{ll}\text { PEC ETCH PAK 500gm } \\ 6 \times 4^{\prime \prime} \text { COPPER BOARD } & \text { 50表＊}\end{array}\) PCB KIT 3 ITEMS CASSETTE MECHANISM \＆9 \＆ASE12 TGS GAS DETECTORS 308etc£2＊

\section*{Dil sochets}

TOP QUALITY NYLON 4PIN 12p＋16PIN 12 p SOLDERCON PINS：

\section*{fiels}

YOURSELF FORA



Do you want promotion．a better job． higher pay＂＂New Opportunities＂shows you how to get them through a low－cost buy and you can pay－as－you－learn．

This helpful guide to success should be read by every ambitious enginee Send for this helpful 44 page FREE book now．No obligation and nobody will call on you．It could be the best thing you ever did．


20 SILICON NPN PHOTO TRANSISTORS untested for \(£ 1\)
80 ASSORTED WIRE WOUND RESISTORS 1 to 10W 57p．
\(1000 \mu \mathrm{~F}\) 40V．W．ELECTROLYTIC CAPACITORS size ifin \(\times\) in at 3 for 35 p
SILICON SOLAR CELLS 0.3 to \(0.5 V 5 \mathrm{~mA}\) at \(35 p\) each．
VHF MOS FETS Ike 40673 at 33 each or 4 for \(£ 1\)－ 10 ．
PLASTIC TRIACe 400 PIV 6A at 60p each
35 ASSORTED PRE－SETS and SLIDERS at 57p．
50 ASSORTED POTENTIOMETERS at E1
PLASTIC SCRe 30 PIV 6A at 15p， 400 PIV 6 a at 40 p．
STACKPOLE 5A ROCKER SWITCHES at 18p each．or 4 for 80 p ．
50 ASSORTED TRANSISTOR ELECTROLYTICS for 57 p ．
FLASTIC 30W POWER TRAN8ISTORS npn 22p－pnp 25p，35p pair
00yd AEEL of PYC CABLE 14 sffand 0.0048 at 53.
100 ASSORTED SILVER MICA CAPACITORS at 570.
240V GREEN NEONS at \(25 \rho\) each．
TAPE RECORDER DIGITAL MECHANICAL COUNTERS at 20 p each
20 STC BRANDED 750 mW SILICON DIODES assorted at 50p．
20 ITT BRANDED 250 mW ZENERS assorted at 75 p
POSTAGE STAMP TRIMMERS 10pF，30pF，50pF， \(150 \mathrm{pF}, 750 \mathrm{pF}, 1,000 \mathrm{pF}\) at 6 p each 200 ASSORTED TUBULAR CERAMICS at 57p．
300 to 500 ASSORTED POLYESTER CAPACITORS at \(£ 1\)
UHF TRANSISTOR TV TUNER－brand new at \(\$ 1.10\)
FM I．Ce like TAA 570 untested with data at 5 for 57 p ．
BYX 91250 PIV 1A SILICON DIODES at 12 for 51.00
20 ASSORTED TUNING VARACTOR DIODES untested for \(45 p\)
HIGH VOLTAGE NPN TRANSISTORS TYPe BF 177 100V 6 for 57p．
IW AUDIO I．C．Type TAA 6118 with clrcuits at 70p each．
SPECIAL PACK OF SUB－MINIATURE SOV CEAAMIC PLATE CAPACITORS 100 assorted
from 3．3pF to \(0.01 \mu \mathrm{~F}\) for 57p．
AADIO I．C．ZN 414 with data at 51.20.
IBV 1A MAINS TRANSFORMER 240V input at B5p．
TO39 POWER DARLINGTON TRANSISTORS at 20p each
25 TRANSISTOR I．F．TRANSFORMERS assorted at 44 p
PLSOA CERAMIC VALVE BASES at 4 for 50p．
2OP CHANNEL MOS FETs with circuits for BAp．

Please add 20p for post and packing for orders undenc2

\title{
J．BIRKETT \\ RADIO COMPONENT SUPPLIERS
}

25 The Strait，Lincoln，LN2 1JF

Col. (1) Col. (2) Working d.c. volts
Col. 3 Contacts Col. (4) Price
\(\mathrm{HO}=\)
Heavy
\begin{tabular}{|r|r|r}
\multicolumn{1}{|c}{1} & \multicolumn{1}{c}{2} \\
\cline { 1 - 2 } 52 & \(4-8\) \\
58 & \(5-9\) \\
185 & \(8-12\) \\
230 & \(9-18\) \\
430 & \(15-2\) \\
600 & \(10-2\) \\
700 & \(12-2\) \\
700 & \(16-2\) \\
700 & \(16-2\) \\
1,250 & \(18-36\) \\
2,500 & \(31-4\) \\
2,500 & \(36-4\) \\
\(15 k\) & \(85-1\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline 3 & 4 \\
\hline \(2 \mathrm{c} / \mathrm{o}\) & 75p* \\
\hline \(6 \mathrm{c} / \mathrm{o}\) & 85p \\
\hline 6M & 65p* \\
\hline \(2 \mathrm{c} / \mathrm{oHD}\) & 85p* \\
\hline \(4 \mathrm{c} / \mathrm{o}\) & \(85{ }^{\text {8 }}\) \\
\hline 6M & 85p" \\
\hline \(2 \mathrm{c} / \mathrm{o}\) & 65p* \\
\hline \(4 \mathrm{c} / \mathrm{o}\) & \(85 p^{*}\) \\
\hline 4M2B & 65p* \\
\hline \(2 \mathrm{c} / \mathrm{o}\) & 65p \({ }^{\text {\% }}\) \\
\hline \(2 \mathrm{c} / \mathrm{HO}\) & 65p* \\
\hline 6M & 65p \\
\hline 6M & 65p* \\
\hline
\end{tabular}

OPENTYPE RELAYS
6 VOLT D.C, I make contacts 45p. Post 15p.
9 VOLT D.C. RELAY
3 c/o 5 amp contacts. 70 ohm coil. 85p. Post 15 p 3 c/o 5 amp contacts. 120 ohm coil. 85 p. Post \(15 p\).
100 VOLT A.C. 2 c/o 75 p. 3 c/o 85p. Post 15 p.
24 VOLT D.C. \(3 \mathrm{c/o} 85 \mathrm{p}\), Post 20 p . Base 15 p extra, 65 p . Post 20p. Base 15 p .
55 VOT A.C. RELAY
55 VOLT A.C. RELAY
\(3 \mathrm{~h} . \mathrm{d} . \mathrm{c} / \mathrm{o}\) contacts. Price 65p. Post 20p. Base 15 p
230 VOLT RELAY 3 h.d.c/o contacts. Price 85 p. Post 20p. Octal plug in base 15p extra. \(230 / 240\) VOLT A.C. RELAY. Mfg. by Arrow 2 h.d. 15 amp c/o contacts. Amp connectors. Price \(\mathbb{I} \mathrm{I}^{\circ} 10\). \(220 / 240\) VOLT A.C. RELAY 3 c/o 5 amp contacts. Sealed. Mfg. ISKRA. CLARE\&ELLIOTT TYPERP7641 G8 Miniature relay. 675 ohm coil. 24 Volt D.C. \(2 \mathrm{c} / \mathrm{o}\).
80 p post paid.

\section*{LATCHING RELAY}

Twin latching relay, "flip-flop" Twin latching relay, "flip-flop" \(2 \mathrm{c} / \mathrm{o}\)
each relay. Mains contacts. 115 V
\(\mathrm{~A} . \mathrm{C}\) or 50 V O C operation. 240 V A.C. with 2.5 K resistor. 85p. Post 20 V

C/O MICRO SWITCH C.E.M. 3 amp 250 volt. io Mfg. C.E. M. 50 for \(€ 3\). Post 36 p. 100 for \(£ 5\)
volt. Post 50D. 1,000 for 445. Post paid Bulk purchase means LOW! LOW!
DOUBLE POLE CIO or DOUBLE POLE C/O or 2 make/2 break micro switch. 10 amp \(250 \mathrm{va.c}\). With detachable rolle
assembly. 10 for \(\mathbf{~} 250\), Post 50 p (min. order 10 ).
MINIATURE C/O ROLLER
MICRO SWITCH
OMRON Type V15 FL22/IC. 10 for
E2. Post 50 p. (Mini. order 10 ).
230/250 VOLT A.C.SOLENOID Approximately \(\left.1 \frac{1}{2} \right\rvert\, \mathrm{b}\) pull. Size of feet \(15 \times \times 1\) s HEAVY DUTY TYPE. 10 lb . (approx.) pull, \(\mathbf{\text { C2.50. }}\) Post 50p
24 VOLT DC SOLENOIDS
UNIT containing I heavy duty solenoid approx. 251b pull linch travel. Two \(x\) approx. Ilb pull \(\frac{1}{2}\) inch travel. \(6 \times\) approx. \(40 z\), pull \(\frac{1}{t}\) inch travel. One
24 volt d.c., 1 heavy duty single make relay. Price 24 volt d.c., I heavy duty single make relay.
E2.50. Post \(\mathbb{I}\). ABSOLUTE BARGAIN.


600 WATT DIMMER SWITCH
Easily fitted. Fully Easily fitted. Fully guaranteed by makers.
Will control up to 600 W of lighting Will control up to 600 W of lighting
except fluorescent at mains voltage. except fluorescent at mains voltage.
Complete with simple instructions. Complete with
€2.75. Post 25 p.
1,000 watt model, \&4. Post 25p.
\(\mathbf{2 , 0 0 0}\) watt model, \(£ 8\). Post 40p.
CENTRIFUGAL BLOWER \(\mathrm{M} / 8\) by 5 miths Industries. \(230 / 240 \mathrm{~V}\)
a.c. Miniature Model. Series \(5 \mathrm{E} / 200\) Size \(95 \mathrm{~mm} \times 82 \mathrm{~mm} \times 82 \mathrm{~mm}\).
Aperture \(38 \mathrm{~mm} \times 31 \mathrm{~mm}\). 12 Aperture \(38 \mathrm{~mm} x\)
c.f.m., E2.75. Post 50 p .
 Mfg. by Airflow Developments Led.
 Precision made, continuousiyrated, 5 mooth runining.
\(230 / 240 \mathrm{~V}\) a.c. motor, 80 ef \(230 / 240 \mathrm{~V}\) a.c. motor, 80 c.f.m. As illustrated but
with round aperture, \(£ 6.50\). Post 75 p. With round aperture, \(£ 6.50\). Post 75 p
Mfg. by Woods.
Extremely powerful. 220/250V a.c. 0. 3A 2,700 r.p.m. continuously rated. Capacitor start. Cast construc-
tion. Aperture \(66 \mathrm{~mm} \times 50 \mathrm{~mm}\). O/A 200 mm . \(\mathbf{L 1 2}\). Post Cl
Mfg . by Parvalux Type SO38B.
2800 ron 120 fin price. \&io. Post El .

All Mail Orders-Callers-Ample Parking Dept. PE5, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560

L.T. TRANSFORMERS \(0,6,12 \mathrm{Volt}\) at 10 amp \(0,10,17,18\) Volt at 10 amp \(0,4,6,24,32 \mathrm{Volt}\) at 12 amp . \(0,6,22\) Volt at 20 amp .

2 amp. 66.15. Post 70p. 68.70. Post \(\subset 1.00\) £10.90. Post \(£ 1.00\)
60.90 . Post \(£ 1.00\) E9'90. Post \(\mathrm{E} \mid .00\)
© 10.30 . Post E .00 \(0,6,12,17,18,20\) Vole at 20 amp. \(\mathbb{C l} 1.80\). Post \(£ 1.00\) Other types
enquiries.

\section*{AUTO TRANSFORMERS} Step up, step down, \(0-115 / 200 / 220 / 240\) volts at 75
watt E3. Post 40 p. 150 watt \(64 \cdot 30\). Post 50 p . 300 watt \(\mathrm{C}^{\circ} \mathbf{2 0}\). Post 60 p . 500 watt \(69 \cdot 20\). Post 75 p . watt E620, Post 60p. 500
1000 watt \(\& 13 \cdot 50\), Post \(90 p\).

\section*{STROBE: STROREE STROBEI}

\section*{HY-LIGHT STROBE MK IV} Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing and triggering circuit. \(230 / 250 \mathrm{Va.c}\). operation.
For use in large rooms, halls and utilises a silica tube, printed circuit. Speed adjustable 0-20 f.p.s. Light output greater than many (so called 4 Joule) strobes \(£ 15 \cdot 40\). Post 75 p.

\section*{XENON FLASHGUN TUBES}

Range of Xenon tubes available from stock. S.A.E. for details.


\section*{SQUAD LIGHT}
 of spot lights, flood lights or dozens of small mains famps. Seven programs all speed giving 14 different displays. Makes sound-tolight obsolete. Completely electrically and mechanically noise free. Price only E 60 . Post
75 D . S. A. E. (Foolscap) for further details.

WIDE RANGE OF DISCO LIGHTING EQUIPMENT
\(6^{*}\) graphic wheels, \(3 \frac{1}{2}^{*}\) cassettes. S.A.E. (Foolscap) for details.

\section*{TIME SWITCH}
'Horstmann' Type V Mk. II Time 'Horstmann 25 vpe V.C. Two on/two
switch. \(200 / 250\) volt A.C. Twnually preoff every 24 hours, at any manually pre-
set time. 30 amp contacts. 36 hour spring reserve in case of power failure. Day omitting device. Fitted in heavy high impact case, with glass observa-
tion window. Built to highest Electricity tion window. Built to highest Electricity B7-75. Post 50 p. (Totalinc. VAT E8'91)
WHY PAY MORE ?
MULTI RANGE METER. A.C. volts \(2 \cdot 5-500\), D.C. volts \(2 \cdot 5-500\) (Sensitivity \(2000 \Omega / \mathrm{V}\) d.c. and a.c.). D.e. current
\(0 / 1 / 10 / 100 \mathrm{~mA}\), Ohms range. Sturdy compact moving coil instrument with 21 ranges. Dimensions \(120 \times 80 \times\) 44 mm . Weight 0.32 kg .
SERVICE TRADING CO. Price 65.00 .
 SERVICE TRAOING CO. Price \(\mathbf{6 5} \cdot 00\). Post 50p. ( battery price inc. VAT and post E5-94). Incl. leads and


ROTARY VACUUM AIR PUMP AND COMPRESSOR
Carbon vane, oilless, \(100 / 115 \mathrm{~V}\) a.c., \({ }_{1}{ }^{1} 2\) h.D. motor, \(50 / 60\) cycle, \(2875 / 3450\) r.p.m., 20 in vacuum, comp. \(1 \cdot 25\)
c.f.m. 10 p.s.i. (approx. figures). New unused surplus stock. Supplied
with electrical connection data. FRACTION OF MAKERS' PRICE \(\mathbb{1} 2\). Post \(£ 1 \cdot 00\). Suitable \(\mid 10 / 240 \mathrm{~V}\), 150 watt auto transformer \(€ 3 \cdot 50\). Post SOp. (Both
items together Post \(£ \mid \cdot 25\) ).
GEARED MOTORS
100 R.P.M.
115 lb . ins. 110 volt, 50 Hz . 2.8 amp , single phase, split capacitor motor. Immense power. Continuously
rated. Totally enclosed. Fan cooled in-line gearbox. rated. Totaly enclosed. Fan cooled in-line gearbox. Length 250 mm . Dia. 145 mm . Ex-equipment tested E14. Post £l.50. Suitable transformer \(230 / 240\) volt operation E8. Post 75p.
60 R.P.M. REVERSIBLE
\(220 / 240 \mathrm{~V}\) a.c. Small, powerful, continuously rated, reversible motor. M.f.g. Berger (Germany). Size
80 mm \(80 \mathrm{~mm} \times 65 \mathrm{~mm} \times 65 \mathrm{~mm}\). Spindle dia. \(6 \mathrm{~mm} \times 15 \mathrm{~mm}\) long. Weight 725 g . \(25 \cdot 50\). Post 50 p

\section*{BODINE TYPE N.C.I.}

\section*{(Type J) 71 r.p.m. torque 101 b . in} Reversible \(1 / 70\) th h.p. 50 Hz . (Type 2) 28 r.p.m. torque 20 lb .
Reversible \(1 / 80\) th h.p. 50 Hz .

The above two precision made U S.A motors are offered in as new' condition. Input voltage of motor \(115 \vee\) A.C. Supplied complete with transformer for Price, either type \(\mathbf{6} \mathbf{2 5}\). Post 75p or less transformer 83.75 . Post 65p.

\section*{15 R.P.M.}

Type SD48 80 lb , in. Input \(100 / 200\) volt A. C. Length incl. gearbox 270 mm . Height 135 mm . Width 150 mm . drive shaft 16 mm . Weig̀ht 8.5 Kilos. BRAND NEW. Price \(£ 10\). Carr. Cl.
Suitable transformer for use on \(220 / 240\) volt A.C. 6385. Post 50p.

20 R.P.M.
\(230 / 240\) volt a.c. miniature motor. Price \(f 1\). Post 20 p.

\section*{REVERSIBLE MOTOR}

\section*{General Electric, 230 V a.c. 1.60} r.p.m. 0.25 A . Complet
\(\qquad\) capacitor. O/A size \(110 \mathrm{~mm} \times 95 \mathrm{~mm}\)
Spindle hin. dia. 20 mm long Spindle hin. dia. 20 mm long.
equipment tested, 63 . Post 50 p .


INSULATION TESTERS Test to I.E.E. Spec. Rugged metal
construction, suitable for bench or, field work, constant speed clutch.
Size L, Bin, W.4in, H. 6 in, weight 6lb. \(500 \mathrm{~V}, 500\) megohms, f36. Post 80 p . \(1,000 \mathrm{~V}, 1,000 \mathrm{M} \mathrm{\Omega}, 444\). Post 80 p .

\section*{TRIAC}

Raytheon Tag symmetrical Triac. Type TAG. triac. Swiss precision product for long term application sheet.) Suitable Diac I8p.
A.C. MAINS TIMER UNIT

for Tape Recorders, Lights, Size \(135 \mathrm{~mm} \times 130 \mathrm{~mm} \times 60 \mathrm{~mm}\). Price \(\mathbf{2 2} 25\). Post 40p. (Total incl. VAT and Post E2-87).

\section*{POWER RHEOSTATS 1 : 1}

\section*{Superior Quality Precision Made} NEW POWER RHEOSTATS

\section*{New ceramic construction, vitreous
enamel embedded winding, heavy} duty brush assembly, continuously
25 Wated. \(10 / 25 / 50 / 100 / 150 / 250 / 500 / 1 \mathrm{k} / 1.5 \mathrm{k}\) ohm.
 E2.10. POSt 25p. \(10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1 \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k} /\) 100 W ATT 1/5/10/25/50/100/2
\(3.5 \mathrm{k} / 5 \mathrm{k}\) ohm E3.30. Post 35D.
Black Silver, Skirted knob calibrated in Nos. 1-9
Personal callers only. Open Sat.

\section*{9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone 01-437 0576}

\section*{Designed by}

\section*{IEMAS}

\section*{Featured by PRACTICAL WIRELESS SOLE U.K. DISTRIBUTORS-HENRY'S}


THE NATURAL FOLLOW-ON - THE TEXAN FM TUNER KIT!
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}

Build the matching Texan stereo tuner! Features advanced vaticap tuning. Phase lock loop decoder in the kit. From the glass fibie DCD to the cabinet itself. Excellent spec: 2.5 uV aerial sensitivity. 500 mV output (adiustable). Tuning range 87-102 MHz. Mains powered.
Built and tested \(\mathbf{£ 3 0 . 9 5}\) inc. VAT +50 p pfp.

all the electronic excitement you could wish forl An up-to-the-minute game. Plugs into you own TV aetial sockel
5 witch on. And you're away! Switch on. And you're away!
Choose yourgame - football, tennis or hole-in-the-wall. Absolutely safe. For you. Your children. And your TV. Mains powered. List Price \(£ 42.50\)
HENRY'S PRICE-ONLY £29.50
WHATEVER YOU DO, DON'T FORGET
 For this new edition, we have made
hundieds of changes and additions. hundreds of changes and addinions virtually everything for amateurs and protessionals. And you'll have no bother at all finding everything you
want, because there's a complete alphabetical index as well as a section index. Togethel, they put you light on Sinclair projects to educational kits. Oscilloscopes to panel meters, Coils Osciloscopes to panel meters. C
capacitors. Transistors to valves. Loudspeakers to miciophones - all


FAEE to Educátional Establis hments whern ordered on official headed notepaper.


SELF-SERVICE CENTRES 404 and
309 EDGWARE PODAD Bargating galoro Collina. LONOON W2
404/6 EDGWARE ROAD, LONDON W2 01.4028381
LOWER SALES FLOOR, 231.TOTTENHAM CT. RD., LONDON W1 01-636 6681



\section*{ADVANCED CLOCK KIT}
(P.E. Mains Clock Feb./Mar. 76)

Complete kit including attractive slim case for 6 digit alarm clock with bleep alarm, nooze, high brightness driving of Jumbo LED displays, automatic intensity control-with optional add-ons of touch switch snooze control
and crystal control/battery back-up.

\section*{P.E. CAR CLOCK with Journey Timer}

6 digit clock for use in any car with 12 V battery, with an independent journey timer incorporated. Bright Jumbo LED display comes on with ignitionautomatic intensity control. Complete kit of all parts needed including case. CBy ald
Easy to Build E.E. DIGITAL CLOCK (Jan, issue). Kit of all components, including case etc., for this attractive clock with 12 mm green display. Ful instructions.
base Kit for clocks (inel. advanced kit above)
\begin{tabular}{l|ll|ll|ll|l} 
CMOS ICS & CD 4029 & 0.94 & CD4059 & 3.64 & CD4510 & 1.12 & Displays
\end{tabular} \(\begin{array}{ll}\text { CO4000 } & 0.17\end{array}\)

 \(\begin{array}{lll}\text { CO4006 } & 0.97 & \text { CO } \\ \text { CD4007 } & 0.17 & \end{array}\) \begin{tabular}{ll|ll|ll|ll|} 
CO4007 & 0.17 & \(C 04036\) & 1.81 & \(C D 4067\) & 2.95 & \(C D 4520\) & 1.03 \\
CD4008 & 0.79 & \(C D 4037\) & 0.78 & \(C D 4068\) & 0.18 & \(C 04527\) & 1.30 \\
\hline
\end{tabular}
 \begin{tabular}{ll|ll|ll|ll|l} 
CO4009 & 0.46 & CD4038 & 0.88 & CO4070 & 0.18 & CO4555 & 0.74 & Flat Cable \\
CD4010 & 0.48 & C04039 & 2.86 & CD4071 & 0.18 & CO4556 & 0.74 & 20WAY 1M
\end{tabular} \begin{tabular}{ll|llll|lll|l} 
CO4011 & 0.17 & CD4040 & 0.88 & CD4072 & 0.18 & MC14528 & 0.86 & 20WAY 1M
\end{tabular}
 \begin{tabular}{ll|ll|ll|l|l} 
CD4014 & 0.83 & CD4043 & 0.83 & CO4076 & 1.27 & MC14566 1.21 & 1OWAY 1M \\
CD4015 & 0.33 & CD4044 & 0.77 & CD4077 & 0.10 & MCM14552 & 0.80
\end{tabular}
 \begin{tabular}{ll|ll|ll|l|l} 
CD4017 & 0.83 & CO4046 & 1.10 & CD4081 & 0.18 & Clock ChIps & IC Socket \\
CD4018 & 0.83 & CO4047 & 0.74 & CD4082 & 0.18 & MK50253 5.60 & PIns
\end{tabular} \begin{tabular}{ll|ll|ll|ll} 
CD4018 & 0.83 & CD4047 & 0.74 & CD4082 & 0.18 & MK50253 & 5.60 \\
CD4019 & 0.46 & CD4048 & 0.46 & CD4085 & 0.59 & MM5314 & 4.44
\end{tabular} \begin{tabular}{ll|ll|ll|ll} 
CD4019 & 0.46 & CD4048 & 0.46 & CD4085 & 0.59 & MM5314 & 4.4 \\
CD4020 & 0.92 & CD4049 & 0.48 & CD40.6 & 0.59 & AY51224 & 3.66 \\
CO 4021 & 0.83 & CO 4050 & 0.46 & CD4089 & 1.27 & AY51202 & 4.76
\end{tabular} \begin{tabular}{ll|ll|ll|ll} 
C04021 & 0.83 & CO4050 & 0.46 & CD4089 & 1.27 & AY51202 & 4.76 \\
C04022 & 0.79 & CD4051 & 0.77 & CD4093 & 0.68 & MK50250 & 5.00
\end{tabular} \begin{tabular}{ll|ll|ll|l|} 
CD4023 & 0.17 & CO4052 & 0.77 & CD4094 & 1.53 & \\
CO4024 & 0.84 & CO4053 & 0.77 & CD4095 & 0.88 & CMOS \\
CD4025 & 0.17 & C04054 & 0.95 & CD4096 & 0.86 & Books
\end{tabular} \begin{tabular}{ll|ll|lll|l} 
CD4025 & 0.17 & C04054 & 0.95 & CO4096 & 0.86 & Sooks \\
CD4028 & 1.42 & CD4055 & 1.08 & CD4097 & 2.95 & No VAT or \\
CD4027 & 0.46 & CO4056 & 1.08 & C04099 & 1.50 & P \& P \\
CDO
\end{tabular}

5LT-01 5 .80 DLTO4E \(\quad 0.75\) FND500 1.02
Display Int. \(\begin{array}{ll}\text { SN75491 } & 0.81\end{array}\) \(\begin{array}{ll}\text { SN75491 } & 0.81 \\ \text { SN75492 } & 1.02\end{array}\) CA3130 0.88 IC Soc
Pins
100
1000
\(\begin{array}{lr}100 & 0.50 \\ 1000 & 4.00 \\ 3000 & 10.50\end{array}\)
veroce 10.50
751410 J 2.04
\(\begin{array}{ll}751410 \mathrm{~J} & 2 \cdot 84 \\ 7514110 & 2.94\end{array}\) \(\begin{array}{ll}7514110 & 2.94 \\ 751412 \mathrm{~K} & 4.00\end{array}\) UA78L12WC ADD VAT at \(8 \%\) (Higher rate does not apply to any of above) 25 p P \& P on all orders. Despatch is by 1st Class Post
Price list and data sent FAEE with an order, or on request (an SAE helps) Export orders: Wo VAT, add 50 p (Europe) \(£ 1\) (overseas) for Airmail P \& P (No Export jutside Europe for databooks and transformers).
SINTEL, 53b Aston Street, Oxtord. Tel. 086549791

\section*{Test Equipment}


\section*{Multimetess}

The Eagle range of multimeters covers every possible need of the electrical or electronic engineer. Thev cost from about \(£ 6\) to \(£ 58\) (inc V.A.T.). There's at least one which suits your job precisely.
We have a lot of other test equipment too Send the coupon and we'll send you our complete catalogue.


\section*{Efocteril \\ Bargains in Semi-Conductors, components, modules \& equipment.}

\section*{B.P.P Paths}

Originated in 1959 by the company's managing director, his were the first semi-conductor and component packs to be marketed in this country, and indeed, the company's name grew out of ''British Industrial Pre-Packed Components". Today. Bi-Pre-Paí continues to occupy a position of preeminence in the supply of packs as wall as a vastly extended range of products detailed in our latest 24 page A4 size free catalogue. Send 10p stamped large peli-addressed envelope for your capy by return IT'S ALL IN OUR FREE CATALOGUE

\section*{Componant Pactis}

CP1 150 Capacitors. mixed bag of paper, silver mica. electrolytics, etc. Approx quantity. counted by weight. (post so packing) (aseistors. mixed bing of dittereht types, values. watteges, etc. Approx. quantity, counted by weight........... \(50 p\) tages ett. Approx. quantity, counted by weight....
\(\mathrm{CP}_{3} 40\) Wirewound resiators, mixed types. values
 Mixed types and values.
lo low impedance for transiator ra CPS 5 Earphones, single low impedance for trenaietor radio. cassattes, etc. Lest plugs, for auitable plugs aee PAKs CP9 and CP10...
CP
50
cpi 50 TO-5 mounting pads. fits between transistor and board, for that pro. finiah CPS 500 Cable clipe for G.P.O. if dia. cable. Nylon with hardened steel pin (probsbly tungaten) per sealed box of \({ }_{C P 5} 5 \mathbf{3} .5 \mathrm{~mm}\) plugs. miniature jack, to fit earphones in PAK
 CP10 52.5 mm sub miniature jack, to fit earphones in PAK CP11 6 Screwdrivers. \(1 \times\) mains neon tester, \(5 \times\) grub screwdrivert 10 Reed relay inserta. 1 in long tin di........................................ CP12 10 Reed relay inserts. lin long fin dia. These will operate from an external magnet or colil. For Magnets see CP13 to
cPls to magnets of various sizes for operating reedwindows, ttc ...........................................................epp* CP14 40 Potentiometers, pre-sets, carbons, dualgangs. with and without switches. etc. Mixed values and watteges \(\$ 1 \cdot 20\)
CP15 12 Standard crocodile clips. screw fixing, good CP15 12 Standard crocodile elips. screw fixing, good
quality quality CP18 5 P.C. Boards each containing aF 180 UHF amplifier transifitor. A good basis for building a TV aerial pre-smp as variou parte inc..................................................... 600 voltages, many uselul types, from TV to transiator radio and Hi-Fi (oost and packing 23 p
CPI 1 Light activatod SCA. 50 volta 1.6 amps type L9F.

Semi-Gondudurs

\section*{ESTED AND GUARANTEED}

TP4 SN7490 integrated circuits, 14 pin dual in line TTL type. Decade counter. Get one FREE these are 60p each in singles

\section*{All the following are at 60p each pack}

TPS* 5 SN7400 integrated circuits. 14 pin dual in line TTL type. Qued 2 -input NAND gate. Get one FREE, these are 15p ch
TP10 2 light dependant reeistors. 400 ohms light 1 megohm dark, tin dia.
TP11 10 Tranaistors XB 102 and XB 112 equiv. 10 AC 126. AC156. OC81/2. OC72, etc.
TP12* 4127 Silicon rectiflers 1000 piv 1 amp. Plastic TV rectifier.
TP13* 5 OCP71 Light aansitive tranaiators.
TP14 20 OC71 germanium PNP eudio pre-amp iranaistor, black glass lype.
P15 20 OC81 germanium PNP audio output transistor white giass type
TP16 20 OC200

OC200/1/2/3 transistors. PNP silicon TO-5. un TP17 20 : watt zener diodes. mixed voltages. 6.8 to 43 VPlts. \(20 \quad 2\) N3707/8/9/10 transistors. NPN silicon platic unmarked.
TP18 100 Diodes. mixture of germenium. gold bonded aticon, etc.. utafut selection of many types. marked and un-
TP20 10 Mullard OCA5 iransistors. I.F. amp PNP germanium. Muhard
TP23 20 BFY50/1/2. 2N696/7, 2N1613. etc. NPN silicon TO-5 uncoded. Complementary to PAK TP24.
TP24 20 BFY64. 2N2904/5. etc., PNP sillicon TO-5 uncoded Complomentery to PAK TP23.
TP30 20 NPN aliticon planar tranaistors, TO-18 similar to EC108 etc. uncoded.
TP31 20 PNP mincon planar tranaiators. TO-18 similar to SC178 etc. uncoded.
TP32 20 2N2926 Silicon Platic tranalators, uncoded and ungraded for colours.

\section*{UNTESTED PACKS - 60 E EACH}

UT1 50 PNP germanium transistors, AF and RF. Very good
yleld.
UT2 150 Germanium diodes. miniature glass type good.

POWER TRANSISTORS
Vee
40P1
40P2

Price
\(20 p^{*}\)
\(30 p^{*}\)
\(30 p^{*}\)
\(25 p^{*}\)
\(25 p^{*}\)
\(35 p^{*}\)
\(35 p^{*}\)
Many other types avallable from 3 to 115 watt
Integrated Clrcults: MM5314 Dual in line clock chips \(53 \cdot 00^{*}\) LMS \(380 / \mathrm{SL} 60745\) Dual in line 2 W audio amp. with dita. Dual in line iC sockets 8-pin-14p; 14-pin-15p*; 16-pin18p*

\section*{Sundiy}

Signal Generator: For MW and IF covers 550 kHz to 1.6 MHz for MW and 400 to 550 kHz for IF; Fully porteble to 1 . \(\mathrm{D}^{\prime}\) 40 p ) ........................................................................ 44.25 Pocket Signal Injector: Fountain-pen type. Invaluable for finding fault
apo sin Long Noee Pliere: Not new, but in perfect order er pair
dains Tranaformers
AT6 6V 0 8V 100 mA
MT12 12 V o 12 V 50 mA
STg/1 9V lamp.
ST18/1 18V 1 amp
SST25/2 25 V 2amp
SST30/2 30 V 2amp
SST35/4 35V 4amp
51 - 22*

PC EOGE CONNECTORS
Typec 6 way

\section*{S8EC 10 way \\ SSEC 12 way \\ 38EC 16 way}

SSEC 18 way

\begin{tabular}{lr} 
Pltch & Price \\
0.156 in & \(32 p\) \\
0.156 in & \(50 p\) \\
0.156 in & 60 p \\
0.156 in & \(75 p\) \\
0.156 in & \(85 p\) \\
0.156 in & \(100 p\)
\end{tabular}

OTHER UNTESTED PACKS UT10 15 power transiators. PNP germainum and NPN sllicon, mostly TO-3 but some plastic and some marked. UT13 is integrated circuits. experimenters pak, dual in line O-5. TTL. OTL but old types.

\section*{For full rangeg-Spe Cafalogue}

\section*{OOKS}

All free of VAT-We carry very lerge stocka of technical books by Babent Bernard PubHthera, by M Hechaical
 mon Market in EngHah/Corman/ltallon. All detalled in our catillogue.
BY 164 equiv. SKB2/02 400 V 1.5 amp

Ready mounted on PC board with pate realitor and leads fitted. Full date and circuit diagrame for 14 projecta, include: CP1 3 photo flash unit. burglar atarm. etc CP1 3 Micro switches 1 pole change over, standard modei 1/in \(\times\) tin voltages ........................................................... 51 -20* CP21 200 Square inches of copper laminate P.C. board, in approx. 8 pieces ..................................................60p* CP22 3 Fibreglase plain printed circuit bodrds, approx \(2 \frac{1}{4}\) in \(x\)

F.E.T.E: 2N4416 20p

2N3919 18p;
Mos F.E.T.
Mos F.E.T. 日:
3N141/MEM616 ..................... .50p

2N2160 \({ }^{55} \mathrm{P}_{\text {TIS }} 43\) 31p* \({ }^{2 \mathrm{~N}}\)
46p*
.50p
P.U.T.B: 2N28027 ...... .............50p

YIL211. Green ................ ........33p*
Alsa:
POWER DIOOES
THYRISTORS,
TRIACs.
OIAC.
ZENEA DIODES
OPTO-ELECTRONICS,
Etc.

\section*{EXCITING NEW \\ STIRLING SOUND AUDIO MODULES SEE NEXT \\ MONTH'S ISSUE}


222224 wLSt ROAD,WESTCLIFF-ON-SEA, ESSEX SSO 9OF
TELEPHONE: SOUTHEND (0702) 46344.
WRITE ORDER SEPARATELY ANO ATTACH COUPON IF REOUIRED

\section*{B-P-P SECURITY CHECK POINT}
- Write your own name and address clearly in block capital letters. - Check that your order Is correct for description, quantity and price.
- Don't forget VAT at \(25 \%\) of total value of order unless otherwise stated.

\section*{MAKE SURE YOU GET} OUR NAME ANDADDRESS RIGHT WHEN ORDERING - Cash (cheque, money or postal order) with your order, please - Mention this Journal when orderlng If you don't went to cut out the coupon.

TERMS OF QUSINESS:
VAT at \(25 \%\) must be tided to total value of orders except for heme marked * VAT at \(25 \%\) must be added to total value of orders axcept for heme marked
or (3\%), when VAT ie to be added at \(1 \%\). No VAT on overeens orders. POBT and
 order acceptable- E 1 . Oversear orders, add \(\& 1\) for pontege. Any difference will be credited or charged. PRICES subject to alteration, without notice. WVAILABILITY: Ail lteme avallable at time of golng to prese when every - Hort is made to eneure correctnees of information.

\section*{SINCLAIR IC20}

C20 10W＋10W atereo iC amplifier kit with free bookle and printed circuit，Es．5．
P820 Power supply kit for the above，84－05．
VP20 Volume，tone－control and preampkit， \(\mathbf{2 7}\)－35．
SP20 10W 4 ohm apeaker for IC20， \(\mathbf{5 2}\) ．05．
Send S．A．E．for tree leaflet．
JC12 AMPLIFIER
8 W IC sudlo amp．
with free data and printed circult，
1． 85 ＂
DELUXE KIT FOR JC12
 Includee extra parts for the pcb and vol．，bass and treble
controle for mono version，\(\& 2 \cdot 2\) ．Stereo model with balance control， \(\mathbf{4} \cdot \mathbf{2 5}\) ．

\section*{JC12 POWER KIT}

Supplies 25V lamp， \(\mathbf{E 2} .85\).

\section*{JC12 PREAMP KITS}

Type 1 for magnatic pickups，mica and tunara．Mono \(£ 1 \cdot 55\). Sterso 53－10．Type 2 for ceramic or crybtal plckups．Mono 2Sp，Stareo \＄1－70．

LOUDSPEAKERS FOR JC12
sin．\(\times\) Sin． 8 ohme 5 W E2． 50 ．
Send S．A．E．for free leaflet on kite．
SINCLAIR PROJECT 80
FM tuner E13－25．PZ5 83．©5．O18［10．e5．PZ8 51．70．PZ8 E8．10．Trant for PZ8 E5•40．Z40 E5－75．Storeo 60 E11． 5 ． Project 605 22t－05．Próject 8050 E18－53．Quad decoder E14．55．ZB0 diecontinued but we tock 30W equbralent amp， \(\mathbf{t 1 0 - 3 0 .}\)

\section*{PRINTED CIRCUIT KIT £3．95＊}

Make your own printed clicults．Containe etching dith， 200 sq．ins．of copper clad boerd，ito ferric chloride，ste realat pen，mall drill blt，laminate cutter and Instructione．

\section*{MAINS TRANSFORMERS}
 \(0,12,15,20,24,30 \mathrm{~V}\) 1A E2．＊5＊，12－0－12V 1A 部． 85 \(0,12,15,20,24,30 \mathrm{~V} 2424 \cdot 20 *, 20 \mathrm{~V} 24 \mathrm{~A} 2 \cdot 20\) ．
of and ov trane are d．c．rated，othera are a．c．volte．

\section*{SINCLAIR BLACK WATCH}

\section*{Fully assembled}
with black
strap，Eas．gs
Bracelet，e2＂．

SINCLAIR CALCULATORS＊
Cambridge 87.85 ．Cambridge Memory 811 －20．Scientiflc
c11．5．Oxford 100 85＇5．Cam．Scl． E 14 ． 5 ．Oxford 300 E16．ES．Programmable ecientific E25．e5．Malna edaptor for programmable and Oxforda \(\mathbf{~ E 3}\) ．13．Maina adaptor for
Cambridge and Scientific \(\$ 3 \cdot 15\) ．

\section*{CBM CALCULATORS}

769MD Ls－45，8970 c7． 40 ．SR1800 e23－25．776MD 7 diglt \％／memory es．is．SR79190 8 digitmemory／trlolog pl powere／sclentiflc notation，E13－20．SR4148R with malne unit，E34－85．Malne unit for other machines， \(\mathbf{2}\) ． e ．

\section*{CASIO CALCULATORS＊}

Personal mini 6＋6 digite \(55 \cdot\) ．5．Pocket 8 S 8 digite／\％／ const．ct－25．Memory 8 R 8 digita／\％／memory／const． 59.25. FX20 £10－95．Mains adeptor for all models \(\mathbf{E 3}\) ． 0 ．5．

\section*{24－HR．DIGITAL CLOCK KIT＊}

Includes pcb，malns power supply，attractive ciem， 0.5 ln ． jumbo orean alsplay，clock chlp，and all other parts． colon．Kit \(\mathbf{5 1 2} \cdot 50\) ．Bulit［13．50．Send S．A．E．for tree leaflet．

\section*{S－DECS AND T－DECS}

Speclal Offer：25p or 50p off ordera eccompanled by 25 p or Speclal Offer：25p or \(50 p\) off
sop PB Electronics adverts．
S－DeC E2． 24
S－DeC E2． 24
T－DeC 24.05
u－DeC A 24 －45
\begin{tabular}{l} 
u－DeC A \(27-45\) \\
\hline
\end{tabular}
ic carriers－
18 dill：plain \(£ 1.07\) ，
with socket 82．21，
10 TO5：plaln 90p，with socket L 1 －95．SST1 80p，SSU1 s0p 10 TO5：pla
SSN1 BOp．

\section*{SWANLEY ELECTRONICS}

Dept．PE，PO Box 68，Swanley，Kent

\section*{Battery Eliminator Bargains}

\section*{55 WAY SUPER}

Now awitched model． 3 to 30 V in \(\ddagger \mathrm{V}\) ateps．Fully atabllized． 1A output．KIt E．7．es．Aesembled E10．en． 2 Amp model．Kit cs．\({ }^{2}\) ．Bult E 12 ． 85
G－WAY SPECIAL
Switched output of \(3 / 4 \mathrm{t}\)
6／71／6／12V at 500 mA with 4way multi－jack pluc
and fret，match
6－WAY DOUBLE RADIO MODEL \(56 \cdot 80\)
Similar to above，but with proas－atud battery connectors． \(3+3 / 4 \mathrm{t}+41 / 6+8 / 7 \mathrm{f}+7 \mathrm{t} / 9+9 / 12+12 \mathrm{~V}\) at 250 mA ．Also gived \(15 / 18 / 24 \mathrm{~V}\) aingle．

\section*{3－WAY MODEL}

Switched output of \(6 / 7 \mathrm{p} 9 \mathrm{~V}\) at 250 mA with 4 －way multi－jack plug and free matching socket，\(\frac{12}{2} \cdot \frac{25 *}{}\) ．

RADIO MODELS
50 mA with prese－atud battery connectors for radios，atc． 6 V


\section*{CASSETTE MAINS UNITS}

7 V output 10 run cassette recorders from the mains． Completo with 5 pin DIN plup．［3．45．

\section*{CAR CONVERTORS}

Input 12V DC．Output \(6 / 7 \$ / 9 \mathrm{~V}\) DC 1 A regulated， \(\mathrm{m} \cdot \mathrm{sg*}\)
BATTERY ELIMINATOR KITS
Send S．A．E．for tree leaflet on range．
Sond S．A．E．for tree leaflet on range．
100 m a radio type with prese atud battery terminale． 4 iV E1－95． \(6 \mathrm{~V} \mathrm{E1} \cdot \mathrm{g5}\) ． \(9 \mathrm{~V} \mathrm{E1}\)－95．
s0mA doe
with preas stud terminala． \(4 \mathrm{~V}+4 \mathrm{~V} \mathrm{~V} 2.75 .8 \mathrm{~V}+8 \mathrm{VE2} \mathrm{F5}\) ． \(9 \mathrm{~V}+8 \mathrm{VE2} .75\).


Heavy suty 12－way typen \(4 / / 8 / 7 / 8 / / 11 / 13 / 14 / 17 / 21 /\)
\(28 / 34 / 42 \mathrm{~V}\) ． 1 Amp \(23 \cdot 55.2\) Amp \(55 \cdot 55\) ．
Post 30p on orders under £2，otherwise free． Prices include VAT（Overseas customers deduct \(7 \%\) on Items marked＊，otherwise \(20 \%\) ）．Official orders from schools，government labs．，etc．， welcome．

\section*{New Clock Chips and Clocks}

In addition to National，Mostek and Caltex clock chips．we are now selling range of General Instrument chips．
AY－5－1202
12 or 24 hour． 50 or 60 Hz ．interfaces directly with Futaba 5LT01

14．78
AY－5－1230
Similar to 1202．ON／OFF program－
mable alarm．In 7 segment mode can drive 5LTO1，or BCD to drive logic or TV display chips
\(\mathbf{5} \cdot \mathbf{2 5}\)
MISTRAL CLOCK KIT
Uses AY－5－1202＋Futuba 5LT01
Completekltincluding case \(\mathbf{\Sigma 1 1 . 5}\)
CHEVIOT ALARM CLOCK
24 hour 4 digit alarm clock， 0.5 in
gresn．display，tilt to snooze．
Finished clock－not kit
5L．T01．Green Phosephor Dhode
Futaba 5LT01 display has 4 digita with
AM／PM．Seconds indication on
colon．Requires multiplexed input \(\mathbf{5 5} 80\) 5LT02
Similar to 5LT01．Requires non－multi－ plexed input，e．g．MM5316 E5． 80 5LT03
5 digit multiplexed for use as counter or DVM module

Terma：CWO．Accees，Barchaycard fimply quope your number and sign）．Credit facillites to aceredted ecoount
var－all prowe exelude Var（a＊）．©．A．1fp


\section*{68 Ebberns Road，Hemel Hempstead Herts．HP3 9QRB}

Tel． 044262757


Latest transiatorised Telephone Ampllfer with Latest transiatorised Telephone Ampiner with to the cradle activates on／onf awitch for inmediate two－way conversation without holding the handset． Many people can listen at a time．increase efticiency in office，shop，workshop．Perfect for＂conference calla：leaves the user＇s handa free to make notes， consult fles，No long waiting，saves time with long－diatance calls．Volume．Direct espe recording model at 318－85＋VaT 01．12，P．\＆P．70p．10－day price refund guarantee．

WEST LONDON DRECT SUPPLIPS（PES）
16）XRNSINGTON HICH STREET，LONDON，W． 8

\section*{OSMABET LTD \\ We mike transformers}

LOW VOLTAGE TRANBFORMEAS


 sov 8 â．
LT TRANBFORMERE TAPPEO BEC，FHIM 290／240Y －10－12－14－10－18V 2A． \(84 ; 4 A, 85 \cdot 25.0-12-15-20-24\) 2A， \(54 \cdot 75.0-40-60-60-50-100-110 \mathrm{~V}\) 1A． 87 ．
MIDGIET RECTIFIER TRANB FOAMERE
For FW rect．200／240V a．c．， \(6-0-6 \mathrm{~V} 1.5 \mathrm{~A}\) or \(9-0-0 \mathrm{~V} 1 \mathrm{~A}\) c1． 20 ench； \(12-0-12 \mathrm{~V} 1 \mathrm{~A}\) ，or \(20-0-20 \mathrm{~V} 0.75 \mathrm{~A}\) ，or \(9-0-0 \mathrm{~V}\)


LOUDBPEAKERE
LOUDAPEAKERA
2 tin 8 or \(75 \Omega\) ． 2 tin s or \(25 \Omega, 3\) in 3.8 or \(36 \Omega, 34 \ln 8,15\)
 mans apeakert， 5 In full throw \(8 \Omega 10 \mathrm{~W}\) ， \(44-25\) ； 6 tin double cone 4 n ， \(\mathbf{e 3}\) ； 12 in 25 W 4 or 15 n ，fe．
＂INBTANT＂BULK TAP曹ICABEETTE EAABER
 TAPE RECOMDED MOTORS
ew，blowers，fans，etc． 110 V e．c．， 50 p （ 7 sp peir） BYNCHRONOUS GEARED MOTORS 200／240V a．c arand new Smithe，bult in gearbox， 6 r ph． 7 ． 7 p each． PAPEA TUBULAR CONOENBERE
\(7 \mathrm{mF} 180 \mathrm{~V} 30 \times 20 \mathrm{~mm} 20 \mathrm{p}\)（ 100 for \(\mathrm{t1a}\) ）
害PEAKER MATCHING AUTO TRANBFOMMER
\(12 \mathrm{~W}, 3\) to 8 or \(15 \Omega\) ，up or down， \(51-85\) ．
O．E．C．MANUAL OF POWER AMPLIFIEA COVERINO
CABLES－CABLES－CABLES
MICROPHONE TWIN H／DUTY，BRAIDED BCREEN
Proteselonal omble for oteget studio，outdoor．pVC
covered．groy，isp per motre．Grey：Single cable． black．10p per meire．
MULTI WAY BCDEENED，PYC COVEMED
36 why 11 ； 25 way 7pp； 14 way 50p； 6 way 20p； way 14p； 2 way 10p； 1 way ep per metr
FLEXIELE PVC MINI 3－CORE CABLE
19／010 100 metre 3 －core for speakers，intercoms，otc．， tw．
TWIN FIG．CABLE
Polurited，E2．50 100 motres．
ALL TYPES OOMESTIC ANO COMMERCIAL GABLES， MULTI SCREENED AND UNSCREENED WIRES TRADE ENQUIRIES INVITED THADE ENGUITES INVITED
 4．Kenilworth Road，Edgware，MIddx．HAE EYG Tel．01－958 9314

\section*{RETURN OF POST MAIL ORDER SERVICE}

\section*{R.C.S. 10 WATT AMPLIFIER KIT \\ }

This kit is auitable for record playern, tape play back, cuitars, electronic instrumenta or small P.A. syateme. Two veralons are avilable. A mono kit or a atereo kit. The mono kit uses 13 semiconductors. The atereo kit unes bas end treble controls, Spec, - 10 watts output into \(8 \mathrm{ohm}, 7\) wetts into 15 ohms. Reiponte 20 CPs to \(30 \mathrm{~K} / \mathrm{Cg}\).

 teny to beild. Full inatructioni mupplied.


\section*{ELAC 10 inch}

Dual cone planticired roll aurround. Large corsmic megnet \(50-16,000 \mathrm{cpr}\). Bant rotonence

\(£ 4.95\)

\section*{TEAK VENEER HJ-FI SPEAKER CABINETS \\ ODEL "A". \(20 \times 18 \times 12\) in \\  \\ YODRL "B". \(16 \times 10 \times 9 \mathrm{n}\) \\ cor \(18 \times 8 \mathrm{in}, \quad \mathbf{6} 6.95\) Post}

LOUDSPEAEER CABINET
WADDIMG 18in. wide, 80 p ti


BAEER RECOMMENDED 12 inch Enclosure 4 cubic ft .
 TEAKWOOD LOUDSPEAKER FROXT ARILL Modernive your cebinets with the Grooved look. \(102^{\prime \prime} \times 72^{\prime \prime} 45 \mathrm{p}\).
BARGAIM CRANHEL TRANSISTOR MONO TIXER Will mix Ticrophone. whth separsto controls into dingle output
polt battery
parated.
55.20

TEREO VERSIOF OF ABOVE eses.
R.C.S. STEREO FM TUNER


This completely cased mains powared Ei-Fi \(\mathbf{5 0}\) medo asing the letest circuitry Repge in

Poat 45p.
BARGAIM A WATT AYPLIFIER. \&Tranistor
Puah-Pall Raady built with volume, treble and \(\mathbf{1 3 . 9 5}\) control. 18 voit betwery oporatod
WAEER HEATING ELEMENTS Tled \(101 \times 8 t \times\) hin. Operating voltage 200/250V. a.c. \%o with for Heating Pad. Yood Warmers, Convector Hesters, etc, Mast be clamped
between two gheets of metal or anbeitos. between two gheets of metal or asbeatos.
ONLY 40 DACH (FOUR FOR \(\leq 1.50\) ) ALL POBT PAID-Diacounte tor quantity.
E.M.I. \(13 \frac{1}{2} \times 8\) in. SPEAKER SALE!
With flared tweter cone and ceramic
 LLL PURPOSE TRANSISTOR AMPLIFIER
All purpose tranaistoriend.
Idoal for Grouph, Diseo and P.A.

NEW 'DISCO 100 WATT'
ALL PURPOSE AMPLIFIER CHAS8IS \(£ 52\)
inpats. 4 ontpote reparate volume troble Carr. 51 and base controls. Ideal disco or sieve amplifer chassir.

PW SOUND TO LIGHT DISPLAY
Complete kit of parth with R.C.s. printed circuit. Tirree 1000 watt chanaela. As leazured in December Practical Wreleat. \& 12.50 cabinet exta 23 .

> \begin{tabular}{l}  GOODMANS CONE TWEETER \\ \(18,000 \mathrm{cpm}\). \\ \hline 25 watt 8 ohm. Price \(£ 3.60\) \end{tabular}
R.C.S. 100 WATT VALVE AMPLIFIER CHASSIS


Prolezuional roodel. Fowr inputs. Troble, Bens, Mestor Volame Controla. Ideel digco, P.A. or groups. 185 8.A.E. for details. 5 speaker 81.50 cart Duptable carrying case sie-60 plua 81.50 cars.
E.M.I. GRAM MOTOR
macrat. 10 Writ. 8 ohm. \(\{3 \cdot 45\) Flux 10,000 ganis. Post 45p
With tweator,
and crossover. \(10 \quad \$ 5 \cdot 25\)
rett. Stere 3 or 8 ohm
As illuatrated.
Pont 46p
15 watt model 8 or 15 ohm 28.
1. 1.25

720 v . or \(840 \mathrm{~F} . \mathrm{A} . \mathrm{C} .8 .400\) In.
E.M.I. TAPE MOTOR

4 pole, 840 v .185 mA .
1400 rpm 8pindle In. dameter. 180 veraton 21 . (IIlustrsted). 8ise \(8 t \times 2 t \times 2 t \mathrm{in}\).

Minimum post 30p.

\title{
Practical Electronics Classiiied Advertisements
}

RATES: 13p per word (minimum 12 words). Box No. 35p extra. Semi-Display f10.00 per single colum inch. Advertisements must be prepaid and addressed to GMG Classified Advertisement Manager, Room 2337, "Practical Electronics" IPC MAGAZINES LTD., King's

Reach Tower, Stamford Street, London SE1 9LS. Tel. 01-261 5918
RECEIVERS AND COMPONENTS

\section*{R.T. SERVICES (MAIL ORDER ONLY)}

77 Hayfield Rd., Salford 6, Lancs.
Timers. 0-30 secs. variable. 14-30V D.C. 11 pin plug-in base, \(62 \cdot 95\) P.P. NEW. Tapped Auto Transformer, \(240 \mathrm{~V}-110 \mathrm{~V}\) 80 watts, 12 P.P. New.
Heat Sinks \(5 \times 4 \mathrm{in}\), drilled for 2 TO3 transistors. New 65 p .
Transformer 240 V primary 25 volts at 1 amps. New E2. P.P.
FM Tuner with R.F. Stage and A.G.C. 3 transistors, neg. earth, \(2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}\) in with circuit, zil-75 P.P.
Crouzet Geared Motors 240V. 5/6/15/20 r.p.m. New \(£ 1\)-75 P.P

Panel with \(31 \mathrm{amp} \dot{\mathrm{F}} / \mathrm{W}\) bridge rect. 6 transistors, 5 pre set pots, etc., etc. Price 3 for \(\mathrm{El} 175 \mathrm{P} . \mathrm{P}\)
Panel with 2 small Burrough's Nixie_tubes, t1-65 P.P.
Electrolytic Capacitors. 2,500 at 40 V . Size \(3 \times 1 \frac{1}{2}\). 2 for \(\in I\) P.P. NEW
UHF TV Tuners. Transistorised, \(\mathbf{E 2} \cdot 10\) P.P. Transformers. \(12-0-12 \mathrm{~V}, 100 \mathrm{~mA}, \mathrm{E} 1 \cdot 25\) inc. P.P. \(9-0-9 \mathrm{~V}, 100 \mathrm{~mA}, \mathrm{fl} \cdot \mathbf{2 5}\) inc. P.P. \(6-0-6 \mathrm{~V}\), \(100 \mathrm{~mA}, \mathbf{6} \cdot \mathbf{2 5}\) inc. P.P
Transformer. 22 volt, \(100 \mathrm{~mA}, € 1 \cdot 25\) P.P. Tranaformer. 45 volt, \(2 \mathrm{amp}, £ 3+38\) P.P. P.C. Board. \(S / \mathrm{S}, 5 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in}, 10\) for \(E 1 \cdot 10\) P.P. P.C. Board. S/S, \(5 \frac{1}{2} \times 5 \frac{1}{2}\) in, 10 for \& \(1 \cdot 10\) P.P.
Power Unit Components Transformer. Power Unit Components Transformer.
18 volt 1 amp F/W bridge rectifier, 21250 mfd capacitors, all new \(\mathbf{E l} 1.60\) per kit. P.P. Mixed Pack of C280 series Mullard capacitors. 100 for \(£ 1 \cdot 30\) inc. P.P.

Tel. 061-236 1541
All prices include VAT and P.P.

300 COMPONENT8. Resistors, capacitors, diodes, transistors, pots, coils, etc. Identified, formed leads, fall-out and surplus. Good value at \(£ 1 \cdot 60\). All inclusive (U.K. postal rates only). C.W.O. please to: L. PENSENEY (PE), Bankhead Farm, South Queensferry, West Lothian.


TURN YOUR SURPLU8 capacitors, transistors, etc. into cash. Contact COLES-HARDING \& CO. P.O. Box 5, Frome, Somerset. Immediate cash settlement.
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Bank of 20 Neons 74p (16p); 5.figure resettable Counter \(18 / 22 \mathrm{v}\), works on 12 ; \(\mathbf{2 2 . 5 0}\) (50p); Box with \(20 \times\) LA2 Pot Cores \(+20 \times 1 \%\) Caps \(£ 1.75\) (75p); Copper clad Pax Panels 51" \(\times 51^{\prime \prime} 6-75 p .\), \(12^{\prime \prime} \times 12^{\circ} 75 p_{i} 17 \frac{1}{2}^{\prime \prime} \times 9 \frac{1}{* " ~}^{\prime \prime} 78 p_{i} 8 \frac{1}{2}^{\circ} \times 91^{\prime \prime} 3-£ 1 \cdot 25^{\circ}\) Fibre Glass \(12 \mathrm{f}^{\prime \prime} \times 7^{\prime \prime} 90 \mathrm{p}, 15^{\prime \prime} \times 3 \frac{t^{\prime \prime}}{} 65 \mathrm{p}, 7^{*} \times 8^{\prime} 60 \mathrm{p}\), Double-5ided plus \(10 \%\). All CP. 74 Series ICs on Panel(s) \(10-85 p\) (10p); 100 Ass. Polystyrene Caps 80 p ( 10 p ). Lists 15 p . Refund on purchase. \\
7 lbs assorted components \(\mathbf{E 2} \cdot 50\) c.p. \\
J. W. B. RADIO \\
2 Barnfield Crescent, Sale, Cheshire M33 INL \\
Postage in brackets \\
Mail order only
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{Precision Polycarbonate Capacitors 440 © All High 8tability-extromely Low Leakage 440 V A.C. RANGE

 \(\begin{array}{llll}0.1 \mu \mathrm{~F} & 27 & 12.7 & 51 \mathrm{p} \\ 0.15 \mu \mathrm{~F} & 27 & 12.7 & 59 \mathrm{p} \\ 0.47 \mu \mathrm{~F} \\ 0.68 \mu \mathrm{~F}\end{array}\)
 \(0.25 \mu \mathrm{~F}\)
\(0.33 \mu \mathrm{~F}\)
\(0.47 \mu \mathrm{~F}\)



 TANTALUM BEAD CAPACTORS-Value a ailable:
 \(6 \mathrm{~V} / 10 \mathrm{~V}\) or \(16 \mathrm{~V} ; 33.0 \mu \mathrm{~F}\) at 6 V or \(10 \mathrm{~V} ; 47.0 \mu \mathrm{~F}\) at 3 V or
\(6 \mathrm{~V} ; 100 \cdot 0 \mathrm{~F}\) at 3 V . All at \(12 \mathrm{p}^{\circ}\) each, 10 for \(\mathrm{El} 1.10^{\circ}\), 50
 TP 100 or 88.}

\section*{BC107/8/9 \(\mathrm{Op}_{\mathrm{p}} \mathrm{AB}_{\mathrm{B}}\)}

 \({ }_{-1}\) BC153/154 12p


 POPULAR DIODES-IN914 6p, 8 for 45p, 18 for 90p;
 54p; 002 6p; 003 6\$p;004 7p; \(00577 \mathrm{p} ; 0068 \mathrm{D} ; 00787 \mathrm{p}\). LOW PRICE ZENER DIODES- 400 mW , Tol. \(+5 \%\) at \({ }^{5 \mathrm{~mA} .3 V ; 3 V 3 ; 3 V 6 ; 4 V 7 ; 5 V 1 ; 5 V 6 ; 6 V 2 ; 6 V 8 ; 7 V 5 ; ~}\) \({ }_{20 \mathrm{~V}}\); \(22 \mathrm{~V} ; 24 \mathrm{~V} ; 27 \mathrm{~V} ; 30 \mathrm{~V} ; 33 \mathrm{~V} ; 13 \mathrm{All}\) at 7 p p each, 5 for 38 p . 10 for 65 p , 50 tor 83.12 . SPECIAL OFFER, 100 Zeners (may be mixed) for \(28-00\).
RESTETORS-HIgh stability, low noise carbon film \(6 \%\) 1 W at \(40^{\circ} \mathrm{C}\), \({ }^{5} \mathrm{~W}\) at \(70^{\circ} \mathrm{C}\). E 12 aeries only-from \(2.2 \%^{\circ}\) to \(2 \cdot 2 \mathrm{Mn}\). ALL at \(10^{*}\) each, \(8 \mathrm{p}^{\circ}\) for 10 oi any one value,


DO27: 100 P.IV. 7 p ( 4 for 26 p ); 400 P.I.V. 8 p ( 4 for 30 p ) BRIDGE EECTLFLERS- 2 imp a \(200 \mathrm{~V} 40 \mathrm{p} ; 350 \mathrm{~V} 45 \mathrm{p}\);
SOBMIMLATURE VERTICAL PRESETS- 0.1 W only: All at 5 p each; \(50 ; 100 ; 220 ; 470 ; 680\) ohm; 1K ; 2K2 4 K 7 ; \(6 \mathrm{~K} 8 ; 10 \mathrm{~K} ; 15 \mathrm{~K} ; 22 \mathrm{~K} ; 47 \mathrm{~K} ; 100 \mathrm{~K} ; 250 \mathrm{~K} ; 680 \mathrm{~K}\); 1M; 2M5; 5M.
PLEASE ADD 20p POST AND PACKING ON ALL ORDERS. EXPORT-ADD COST OF SEA/AIRMAIL Add \(8 \%\) VAT to all items except those marked with Send S.A.E. for additional stock lists.
Wholesale price lists available to bona fide companies. MARCO TRADING (Dept. PE5)
The Old School, Edstaston, Nr, Wem, Shropshire (Proprs. Minicost Trading Ltd.)

METAL BOXE8/IN8TRUMENT CASEs. Range of over 100 standard sizes with punched holes to your specification. if required. B.M.S. cut to size. Components. Audio equipment, kits and complete. \(2 \times 6 \frac{1}{2} p\) stamps for lists. NOTTINGHAM AUDIQ SERVICES, 13/15 Foxhall Road; Nottingham, NG7GNA.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
MAD, MAD PRICES FOR TTL!! \\
(All famous makes. Prices include VAT)
\end{tabular}} \\
\hline 7400 & 0.09 & 74 & 0. & 7410 & \\
\hline 7401 & 0.10 & 744 & 73 & 741 & 54 \\
\hline 7402 & 0.10 & 745 & 0.11 & 74121 & 0.27 \\
\hline 7403 & 0.10 & 745 & 0.11 & 74122 & 疗 \\
\hline 7404 & 0.10 & 7453 & 0.11 & 74123 & 0.54 \\
\hline 7405 & 0.10 & 7454 & 0.11 & 74141 & \\
\hline 7406 & 0.27 & 7460 & 0.11 & 74145 & 0.70 \\
\hline 7408 & 0.11 & 7472 & 0.22 & 74150 & \\
\hline 7410 & 0.09 & 7473 & 0.24 & 7415 & \\
\hline 7411 & 0.20 & 7474 & 0.25 & 74153 & 0.65 \\
\hline 7412 & 0.16 & 7475 & 0.44 & 74154 & 35 \\
\hline 7413 & 0.27 & 7476 & 0.27 & 74155 & 65 \\
\hline 7414 & 0.65 & 7480 & 0.38 & 74157 & \\
\hline 7417 & 0.26 & 7483 & 0.74 & 74160 & . 05 \\
\hline 7420 & 0.10 & 748 & 0.87 & 7416 & 1.19 \\
\hline 7422 & 0.20 & 7485 & 1.03 & 74174 & 0.97 \\
\hline 7425 & 0.26 & 7486 & 0.27 & 74175 & 0.92 \\
\hline 7427 & 0.26 & 748 & 2.70 & 74181 & 1.9 \\
\hline 7430 & 0.11 & 7490 & 0.35 & 74190 & . 25 \\
\hline 7432 & 0.24 & 7491 & 0.54 & 74191 & 1.25 \\
\hline 7437 & 0.24 & 7492 & 0.38 & 74192 & .08 \\
\hline 7440 & 0.11 & 7493 & 0.38 & 74193 & . 08 \\
\hline 7441 & 0.63 & 7495 & 0.54 & 74195 & 0.76 \\
\hline 7442 & 0.57 & 749 & 0.69 & 7419 & . 0.3 \\
\hline 7445 & 0.60 & 74100 & 0.97 & IN414 & 0.02 \\
\hline ZTX107 & 0.09 & ZTX108 & 0.07 & ZTX109 & 0.09 \\
\hline in 4001 & 0.04 & IN 4003 & 0.04 & N4004 & 0.04 \\
\hline \multicolumn{6}{|l|}{Intel 2102 lk Memory \(\mathbf{E 3}\)} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
DL707E 0.3in. Display 0.69 \\
Min. order E2, P. \& P. \(20_{p}\) ( 1 st class) C.W.O.
\end{tabular}} & \begin{tabular}{l}
\[
20_{\mathrm{p}} \text { (I) }
\] \\
for fuld
\end{tabular} & class) C. list & W.O. \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multicolumn{3}{|l|}{46 Burstellars, St. lves, Cambs.} & & & \\
\hline &  & PEI7 & 4XX & & \\
\hline \multicolumn{6}{|c|}{(Mail Order on} \\
\hline
\end{tabular}
abc Electronics (Oldham) Ltd
ZN1040E COUNT/DISPLAY I.C., \(£ 12\)
\begin{tabular}{|c|c|c|c|}
\hline ZN7400 & 16p & 2TX300* & 13p \\
\hline 2N7403 & 16p & 2TX312* & 14p \\
\hline ZN7474 & 31p & 2TX500* & 14p \\
\hline ZN7490 & 42p & ZTX4403* & 17p \\
\hline ZN74123 & ¢1.00 & 5 V ¢ A Reg. & [1.40 \\
\hline SN74196 & E1. 58 & 5 MHz Xtal & [3. 20 \\
\hline NE592 & E1-27 & DL707 & [1.80 \\
\hline
\end{tabular}

8-0-0V \(\ddagger\) A Transformer \(£ 2 \cdot 30+40 \mathrm{p} \mathrm{P}\). \& P. *VAT at \(25 \%\), rest at \(8 \%\), S.A.E. Mista. Plesee add 25p poat and packing.
83 LEES ROAD, OLDHAM OL4'1JW ' Tol. 061-624 8812
\begin{tabular}{cc}
50 PACK- \(1-68 \mu \mathrm{~F}\) & \(£ 1.00\) \\
100 PACK-1-68 F & \(£ 1.84\) \\
50 PACK- \(10-1,000 \mu \mathrm{~F}\) & \(£ 1.52\) \\
100 PACK- \(10-1,000 \mu \mathrm{~F}\) & \(£ 2.52\)
\end{tabular}
———ASH WITH ORDER
PLUS \(25 \%\) VAT \(\qquad\)

M.C.L.
(Dept. "C")
12 Oakington Avenue Raynars Lane Harrow, Mlddx
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{FUL EPEC. new devices, by hetumn} \\
\hline \[
\begin{aligned}
& \text { eciof } \\
& 0 \subset 100
\end{aligned}
\] & 10 & Tip42A & \(7{ }^{7}\) & 1N4004 1N4007 & 4 \\
\hline \({ }_{\text {BGIOe }}\) & 140 & Tppsoss & 40 & 3 N 800 V & Roc. 15p \\
\hline  & 140 & \({ }_{2 T \times 3000}^{17843}\) & 等p & -mioges: & \\
\hline BCIM & 14 & \({ }_{2}\) & \({ }^{250}\) &  & \({ }_{\text {20p }}\) \\
\hline  & 149 &  & \({ }_{20}{ }^{10}\) & DM 1.c. & \\
\hline BC214L & 140 & \(2 \times 3005\) & 40 &  & , \({ }^{25 p}\) \\
\hline \({ }_{\text {TiPSOA }}^{\text {Tr }}\) & 48 & - & \({ }_{4}\) & otaplay & \% LeD \\
\hline 7p31A & Sto & [101488 & \({ }^{\circ}\) & & \\
\hline \(\underset{T 1 p 39 A}{ }\) & 0 & \({ }^{\text {in }} \mathbf{1}\) & 40 & 0. 0.35 sin & c1. 18 \\
\hline TP41A & n & 1 N 4000 s & 0 & 0.51 m & 1.4.4 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
meaulatone To-s \\
7006 (5V) \\
Tets (t5V \\
7824 (24V)
\end{tabular}}} & \({ }^{20} 1.15\) & capact
\[
10 \mathrm{mF} / 12
\] & & 08 \\
\hline & & & & & \\
\hline & & \({ }_{81.50}^{81.50}\) & 1000 mF & & 100/10210 \\
\hline \multicolumn{6}{|c|}{VAT Included. P. A P. 20p. OHaplay Date-S.A.E. plowte} \\
\hline \multicolumn{6}{|c|}{AUDIO-OPTICS} \\
\hline \multicolumn{6}{|c|}{19 Mlddieway. Chinhor. Oxon. Tel. Kingetion Biount s2es3} \\
\hline
\end{tabular}

BRAND NEW COMPONENTS BY RETURN. Electrolytics \(16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}, 0 \cdot 47,1 \cdot 0,2 \cdot 2,4 \cdot 7\), \(10 \mathrm{mfds}, 5 \mathrm{p} ; 22,47,5 \frac{1}{2} \mathrm{p}(50 \mathrm{~V}, 6 \mathrm{p}) ; 100,7 \mathrm{p}(50 \mathrm{~V}\), 8 p ); 220, 8 p ( \(50 \mathrm{~V}, 10 \mathrm{p}\) ); 500 , 11 p (50V, 16p); \(8 \mathrm{p}) ; 220,8 \mathrm{p}(50 \mathrm{~V}, 10 \mathrm{p}) ; 500,11 \mathrm{p}(50 \mathrm{~V}, 16 \mathrm{p})\);
\(1000 / 25 \mathrm{~V}, 18 \mathrm{p}\). Subminiature bead-type tan\(1000 / 25 \mathrm{~V}, 18 \mathrm{p}\). Subminiature bead-type tan-
talums. \(0.1 / 35 \mathrm{~V}, 0.22 / 35 \mathrm{~V}, 0.47 / 35 \mathrm{~V}, 1.0 / 35 \mathrm{~V}\), \(\begin{array}{ll}\text { talums, } \\ 2.2 / 35 \mathrm{~V}, & 0.1 / 35 \mathrm{~V}, \\ 4.7 / 35 \mathrm{~V}, & 0.22 / 35 \mathrm{~V}, 0.47 / 35 \mathrm{~V}, \\ 22 / 10 \mathrm{~V}, & 47 / 3 \mathrm{~V},\end{array}\) \(100 / 3 \mathrm{~V}, \mathrm{I} 1 \mathrm{p}\). Mylar Film \(100 \mathrm{~V}, 0.001,0.002\), \(0.005,0.01,0.02,3 p ; 0.04,0.05,3 \frac{1}{2} \mathrm{p}\). Mullard tubular polyester 400V E6 series, \(0.001-0.022\), \(3 \frac{1}{\mathrm{p}} ; \mathbf{0 . 0 3 3 - 0 . 1 , ~} 4 \frac{1}{2} \mathrm{p}\). Mullard polyester 160 V tubular or 250 V miniature for vertical mounting E6 series, \(0.01-0.047,31 \mathrm{P} ; 0.068,0.1,4 \frac{1}{2} \mathrm{P}\) \(0.15,0.22,6 p ; 0.33,7 p ; 0.47,9 p ; 0.68\), 1 pp ;
 \(\begin{array}{ll}1 \cdot 0,14 \mathrm{p} ; 1 \cdot 5 / 250 \mathrm{~V}, 18 \mathrm{pi} & 2 \cdot 2 / 250 \mathrm{~V}, \\ \mathrm{Mullard} \text { miniature } 333 \text { ceramics } & \text { 63V } \\ \text { E12 }\end{array}\) series \(2 \% \quad 18 \mathrm{pF}-47 \mathrm{pF}, 3 \mathrm{pi} \quad 50 \mathrm{pF}-330 \mathrm{pF}\), 3 1p. Plate ceramics 50 V E6 series 470 pF \(47,000 \mathrm{pF}, 2 \mathrm{p}\). Polyst yrene 63V. E12 series \(10 \mathrm{pF}-1,000 \mathrm{pF}, 3 \mathrm{p} ; 1,200 \mathrm{pF}-10,000 \mathrm{pF}\), 4 p . Miniature highstab carbon film resistors fo E 12 series \(5 \%(10 \%\) over \(1 \mathrm{M} \Omega) 1 \Omega-10 \mathrm{M} \Omega\), 1-2p; 1N4002, 6p; 1N4006, 8 p ; 1 N 4148 , 4 p . Postage 10p. Prices VAT inclusive. THE Postage 10p. Prices VAT inclusive. THE
C.R. SUPPLY CO., 127 Chesterfeld Road, C.R. SUPPLY CO
Sheffeld, S8 ORN.

Yes, still the same JUMBO bottle Beware of imitations
175cc P.C.B. Ink \(£ 1.50\) Quick drying ferric chloride etch resist ink, applied by pen or brush. MAWSON ASSOC.
64 Brookbank Road, London, SEl3

\section*{FOR 8ALE}

PE, PW since 1967 and EE, 75p. S.a.e. for availability. Mr. J. GILKESON, 34a, Chevet Lane, Wakefteld.
PRACTICAL ELECTRONICs. Indexed bound volumes 1967-1975, offers? Mr. MORAN, 53 Betenson Avenue, Sevenoaks, Kent.

TWO FIVE OCTAVE KEYBOARD8. One set of four pole contacts. All unused. Bargain Price. Tel. 01-949 1654.
P.E. JOANNA KIT. Incomplete. Contains \(90 \%\) components, P.C.B.s, keyboard, contacts, instructions. Worth \(£ 100\) New. Offers. Phone Dorking 2668.

PRACTICAL ELECTRONICB Magazines 1965 to 1974. Mint condition. Offers. MANSFIELD, 97 Spencefield Lane, Leicester. Tel. Thurnby 3646.
P.E. SYNTHE8ISER KEYBOARD, pair log V.C.O.s, assembled, working, +48 note divider and contracts, 20 . Chester 41707.

\section*{ELECTRICAL}

STYLI AND CARTRIDEEs. For the best at keenest prices send SAE for free illus. list to FELSTEAD ELECTRONICS (PE), Longley Lane, Gatley, Cheshire, SK8 4EE.

\section*{EDUCATIONAL}

\section*{COLOUR TV BERVICING.}

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufecturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from: ICS SCHOOL OF ELECTRONICS, Dept. 771S, Intertext Hoase, London, SW8 4UJ. Tel. 01-622 9911 (all hours).

TAPETALK
The CLEVER way to LEARN
TWO C60 Cassetres entitled INTRODUCING ELECTRONJCS
45.44 plus 55p VAT/P. \& P.

TAPETALK, P.O. Box 99 (PE)
Milton Keynes MK3 5BR
Tel.: Milton Keynes (0908) 77710

\section*{TECHNICAL TRAINING.}

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing. Electronics. Computers; also selfbuild radio kits. Full details from: ICS SCHOOL OF ELECTRONICS, Dept.
771S, Intertext House, London, SW8 4UJ. Tel. 01-622 9911 (all hours).

\section*{TELEVISION TRAINING}

If MO NTHS' full-time practical and theoretical training course in Radio and TV Servicing (Mono and Colour) for beginners, with GCE (or equivalent) in Maths \& English.
13 WEEKS' full-time Colour TV Servicing course. Includes 100 hours practical training. Mono revision if necessary. Good electronics background essential.
NEXT SESSION commences on April 20th.
Prospectus from London Electronics College, Dept. A5, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721.

\section*{CITY a QUILDS EXAMS.}

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio. TV \& Electronics Technicians, Radio Amateurs. Full details from: ICS SCHOOL OF ELECTRONICS, Dept
771S, Intertext House, London, SW8 4UJ. Tel. 01-622 9911 (all hours).

\section*{LADDERS}

LADDERs, varnished \(20^{\prime} 9^{\prime \prime}\) extd. 219.82. Carr. £1•40. Leafiet. Also aluminium ext. and loft ladders. Tel, Telford 586644.

\section*{WANTED}

WANTED-FLUKE 8000A, Advance DMM3 or similar Digital Multimeter. Also "X-Y" recorder any make or condition considered. Cash waiting. Tel. Brighton 684286.

TOP PRICES PAID NEW VALVES AND TRANSISTORS Popular T.V. and Radio types KENSINGTON SUPPLIES (B)

367 Kensington Street Bradford 8, Yorks.

\section*{BOOK8 AND PUBLICATION8}

\section*{START YOUR OWN BUSINESS \\ REWINDING ELECTRIC MOTORS}

This unique instruction manual shows step by step how to rewind motors, working part or full time, without previous experience. Everything you need to know easily explained, including where to obtain materials, how to get all the work you need, etc., etc. A goldmine of information and knowledge. Only \(£ 3.65\) pus 25 p P. \& P. From: MAGNUM PUBLICATIONS, Dept. PE5 Brinksway Trading Estitte, Brinksway Stockpart SK3 OBZ
Overseas Distributors wanted.

\section*{8ERVICE 8HEET8}

8ERVICE 8HEET8 for radio, TV, tape recorders, stereo, etc., with free fault-finding guide, 80 p and S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

BELL'S TELEVISION SERVICES for service sheets, manuals and books on Radio/TV, etc. Service sheets 50p plus S.A.E. Service sheet catalogue 25p. Back issues of magazines from April, '74 onwards. Cover price plus 12 p post. Free booklists on request. S.A.E. with enquiries please to: B.T.S. 190 Kings Road, Harrogate, Yorkshire. Tel. Harrogate (0423) 55885.

SERVICE 8HEET8, radio, TV, etc. 10,000 models. Catalogue 24p plus S.A.E. with orders-enquiries. TELRAY, 154 Brook Street, Preston, PR1 7HP.

\section*{TAPE8}


THE NATURAL WAY TO LEARN
Two C60 cassettes entitled
THE SCIENCE OF SOLDERING \&5.44 plus 55p VAT/P. \& P.
TAPETALK, P.O. Box 99 (PĖ) Milton Keynes MK3 5BR
Tel.: Milton Keynes (0908) 77710
MISCELLANEOUS



LOW CO8T I.C. MOUNTING for any size DII, package. 100 Soldercon sockets 60p. 7 and 8 hole plastic supports \(5 p\) pair. Quantity rates. S.A.E. details and sample. Trial pack 60p. (P. \& P. detaits and sample. Trial pack order). P.K.G. ELECTRONICS, Oak. Lodge, Tansley, Derbyshire, DE4 5FE.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{7}{*}{\begin{tabular}{l}
 packing in the U.K. \\
COPPER SUPPLIES \\
102 Parrswood Road, Withington, \\
Manchester 20 \\
Telephone 061-445 8753
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}

DO-IT-YOUR8ELF LOUDSPEAKER8 for hi-fi are our speciality. Full range of components and accessories including chassis speakers, and accessories cross-overs, sound absorbent, grile fabrics, etc., always availabe. We stock the fabulous and easy instructions), also Peerless and Wharfedale kits. Just about the lowest prices anywhere! Send 81 p stamp for bargain list to: AUDIOSCAN, Dept. PE575, 4 Princes Square, Harrogate, North Yorkshire.

\section*{BUILD YOUR OWN}

YOU ARE INVITED TO SEND S.A.E. FOR LISTS ON OUR VERY EXTENSIVE RANGE OF HIGH QUALITY AMPLIFIERS, PRE-AMPS, F.M. TUNERS, INSTRUMENTS, RADIO CON: TROL, IGNITION UNITS AND MANY OTHER KITS. STATE REQUIREMENTS.
TELERADIO ELECTRONICS
325 Fore St., Edmonton, London N9

SUPERB INSTRUMENT CA8E8 by Bazell, manufactured from heavy duty PVC faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range, competitive prices start at a low 75p. Examples, Width, Depth, Height, \(8^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}\) E1.55; \(10^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime} 22.20 ; 12^{\prime \prime}\) 82.70; \(14^{\prime \prime}\)

\subsection*{2.75; \(12^{\text {n }}\)}

 \(14^{\prime \prime} \times 6^{\prime \prime} \times 4^{\prime \prime} \times 3.25 ; 12^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime} 83.60 ;\) \(14^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime} 83.80 ; 7^{\prime \prime} \times 7^{\prime \prime} \times \times 5^{\prime \prime} \times 2.65\); \(8^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime} 83 \cdot 60^{\prime \prime} 12^{\prime \prime} \times 8^{\prime \prime} \times 7^{\prime \prime} \times 7^{\prime \prime} ;\)
\(14^{\prime \prime} \times 8^{\prime \prime} \times 7^{\prime \prime} £ 4 \cdot 80 ; 12^{\prime \prime} \times 10^{\prime \prime} \times 7^{\prime \prime} 84 \cdot 25 ;\) \(14^{\prime \prime} \times 8^{\prime \prime} \times 7^{\prime \prime} 8480 ; 12^{\prime \prime} \times 10^{\prime \prime} \times 7^{\prime \prime} \mathrm{E4-25} ;\)
\(12^{\prime \prime} \times 12^{\prime \prime} \times 7^{\prime \prime} 84-40 ; 14^{\prime \prime} \times 10^{\prime \prime} \times 7^{\prime \prime} 85 ;\) \(12^{\prime \prime} \times 10^{\prime \prime} \times 8^{\prime \prime} \times 25 ; 14^{\prime \prime} \times 10^{\prime \prime} \times 0^{\prime \prime} \times 8^{\prime \prime} 85 \cdot 30 ;\) \(14^{\prime \prime} \times 12^{\prime \prime} \times 7^{\prime \prime} \times 5 \cdot 20 ; 12^{\prime \prime} \times 12^{\prime \prime} \times 8^{\prime \prime} 85 \cdot 50\); \(8 \%\) VAT. \(16^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime} 87.60^{\prime \prime} 16^{\prime \prime} \times 10^{\prime \prime} \times 8^{\prime \prime}\) \(8 \% 0^{\circ} 11^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime} 29 \cdot 50 ; 18^{\prime \prime} \times 10^{\prime \prime} \times 8^{\prime \prime} \times 1\)
\(88^{\prime \prime} 40 ; 18^{\prime \prime} \times 10\)
 \$12.30. Plus \(£ 1.25\) Carriage and \(8 \%\) VAT. Over 400 models to choose from. Prompt despatch. Free literature (stamp would be appreciated). BAZELLI, Dept. No. 23, St. Wilfrid's. Foundry Lave, Haiton, Lancaster LA2 6LT.

\section*{I.C. EXPERIMENTER'S KITS}

Learn about modern electronics with our new series of Kits on digital logie techniques. Each Kis contains specially selected I.C.s, Holders, Avaboard,,\(E . D . S\), and instructions. \(P\) ) Available at \(\mathbf{G} \mathbf{3} \mathbf{g o}\) each (including P, \& P.)
Kit One-Gates Kit Two-Flip-Flops

Kit Four-Counters Kit Five-Displays S.A.E. for further details to:

69 High Street, Ryton, Coventry CV8 3FJ (Mail Order Only)

NICKEL CADMIUM fully sealed rechargeable batteries. Equivalent dry cell sizes. Discount. S.A.E. brings full details by return. Charges available. SANDWELL PLANT LTD., 1 Denholm Road, Sutton Coldfleld, West Midlands, B73 6PP. Tel. 021-354 9764.

> PHOTOTECH (EUROPE)
> New Optoelectronic Datectors Type 1:Photodiode, 2 pin Configuration: Photosensitive area \(0.85 \times 10^{-3}\) square inches Type 2: Photoswitch, 4 pin Configuration, 20V-30 supply. Switching threshold set by Type 3: Photoswitch with automatic threshold adjustment. 6 pin Configuration 20V-30V
> \(\begin{aligned} & \text { supply. Gallium Arsenide Phosphide red emitting } \\ & \text { LED: }\end{aligned}\) diode.
> Data and operating notes sent, with each order. Prices: (including VAT, packaging and carriage)
> Type 1: 75p each. Type \(2: \leqslant 1.00\) each
> LED: Type 17 p each, or free
> \(\begin{aligned} & \text { optoelectronic detector ordered. } \\ & \text { Please send C. W.O. or S. E. for data only to: }\end{aligned}\) Phototech (Europe), 23a Upper Elmers End Road, Beckenham, Kent

PRINTED CIRCUIT BOARDS, all epoxy/ glass-flbre. Roll tinned, ready for immediate assembly. Prices include post and pack, no extras. P.C.B.s available by return for Practical Electronic Ampliffers: IC50 (Dec. '75) \(23-80\) per set (3 P.C.B.s); Orion Jan. \({ }^{75}\) 23.98; others: Scorpio Mk. 2 \&1.40; Joanna \(\$ 15\) per set (14 P.C.B.s S.R.B.P.). Practical Wireless: Disco Ampliflers 84.28 each. Production space available for: P.C.B. production, silk screen printing, tinning, I.C.B. design and screen printing, tinning, P.C.B. design and
modifcations, electroplating full art/graphic, photographic and design facilities. Production estimates, by return upon submission of "Roughs". Full masters existing units or circuit diagram to: W.K.F. ELECTRONICS, Welbeck Street, Whitwell, Worksop, Notts. S80 4 TW . Callers by appointment to 1.3 Station Road, Whitwell. Tel. Whitwell (Derbyshire) 695 or 544 (STD Code 090974).

\section*{CABINET FITTINGS}

Stage Loudspeakers and Amplifier Cabs Fretcloths, Coverings, Recess Handles, Strap Handles, Feet, Castors, Locks and Hinges, Corners,
Send Trim, Speaker Bolts, ete., etc. X atp Stamps for samples and list. ADAM HALL (P.E. SUPPLIES)
Unit Q, Starline Works, Grainger Road Southend-on-Sea, Essex.

\section*{TRANSMIT!}
* Unique TRAMSMITTER RECEIVER Kit. No licence examinations or tests required to operate this transistorised equipment. Easy to build. Get trans
mitting. Send \(£ 7.95\) for yours now! mitting. Send E/ St for yours now! a pocket-sized lightning storm, to Disco's and parties. 'Brain-freeze' 'em with vari-speed stop-motion flashes Includes super case too. Send \(\mathbf{~} 3.50\) now!
(All prices include V.A.T., packing and postage.)
Send remittance to:
BOFFIN PROJECTS
4 CUNLIFFE ROAD
STONELEIGH, EWELL, SURREY
(Mail order U.K. only)
Or for more details, send 20p for lizts

D1G THI8! Already over \(£ 500,000\) worth of treasures have been uncovered with electronic metal detectors. C. SCOPE offer the best in BFO, IB and TR machines at competitive prices. Tel. Ashford 29141 for details.

\section*{THE P.E. "VARICAP" STEREO PUSH BUTTON TUNER}


Using the latest Mullard modules for R.F. and I.F. circults-pre-aligned for ease of construction-this KIT has an F.M. tuner with stereo decoder, push button tuning. self regulated power supply. etc., etc., for highest quality reproduction

Price 243 . 50 inc. VAT, \(P\) \& \& \(P\).
S.A.E. for FREE brochure

We also still supply ALL components for the P.E. "GEMINI" STEREO AMPLIFIER. Send 55p + 12p P. \& P. for a full constructional booklet containing performance details. specification assembly instruction and fault finding guide.

\section*{ELECTRO SPARES \\ Dept. P.E. 288 Ecclesall Road, Sheffleld, S118PE}

CLEARING LABORATORY, scopes, recorders, téstmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.


DRY TRANBFER LETTERING for that one-off panel. "BEC" cabinets. Orion case still available. Sent for leaflets \(15 p\) (refundable): M.M. ELECTRONIC'S, 275 F Fulwood Road, Shetfield, S10 3B1).

\section*{PRINTED CIRCUITS and HARDWARE}

Readily available supplies of Constructors' hardware, Aluminium sheet and sections. Printed circuit boards, top quality for individual or published designs.
Prompt service.
Send 15 p for catalogue.

\section*{RAMAR CONSTRUCTOR SERVICES Masons Road, Stratford on Avon Warwicks. \\ Tel. 4879}

QLA8s FIBRE P.C.B.s. \(1: 1\) master and \(7 p\) per square inch tinned or \(9 p\) per square inch drilled and tinned Plus 30 p per board. Send for quotation on double sided boards. Discount for quantity. PROTO DESIGN, 4 Highcliffe Way, Wlekford, Essex SS11 8LA.

\title{
Marsholl's \\ Call in and see us 9-5.30 Mon-Fri 9-5.00 Sar \\ A Marshall (London) Lid Dept PE \\ 42 Cricklewood Broadway London NW2 3ET Tel 01-452 01612 Telex 21492 \& 85 West Regent St Glasgow G2 200 Tet 041-332 4133 \\ \& : Straits Parade Fishponds Bristol BS 16 2LX \\ Tel 02726542012 \\ 827 Rue Danton Issy Les Mólineaux Paris 92 \\ Tel 6442356 \\ Catalogue price 25p
}

Top 500 Semiconductors from the Largest Range in the U.K.
TOP

I NEW YEAR REDUCTIONS FOR TTL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline NEW & & & & & & & TL & SN7475 & 0.4 & SN7493 & 0.45 & SN74145 & 0.72 & SN74174 & 0. \\
\hline SN7400 & 0.16 & SN7440 & 0.16 & & 0.22 & & & (1) \(\begin{aligned} & \text { SN7476 } \\ & \text { SN7480 }\end{aligned}\) & 0.3
0.4 & SN7494 & 0.75
0.88 & SN74150 & 1.20
0.68 & SN74175
SN74176 & O. \begin{tabular}{l}
0.8 \\
1. \\
\hline
\end{tabular} \\
\hline SN7401 & 0.16 & SN7411 & 0.20 & SN7437 & 0.28 & SN7450 & 0.90
0.16 & SN7481 & 1.0 & SN7495 & \begin{tabular}{l}
0.88 \\
0.68 \\
\hline
\end{tabular} & SN7/151 & O.68 & SN74176
SN74180 & 1. \\
\hline SN7401AN & 0.29 & SN7412 & 0.22 & SN7438 & 0.28 & SN7451 & 0.16 & SN7482 & 0.6 & SN74100 & 1.10 & SN74154 & 1.20 & SN74181 & 1. \\
\hline SN7402 & 0.16 & SN7413 & 0.28 & SN7440 & 0.16 & SN7453 & 0.16 & SN7483 & 0.8 & SN74107 & 0.30 & SN74155 & 0.78 & SN74190 & 1. \\
\hline SN7403 & 0.16 & SN7416 & 0.28 & SN7441AN & 0.86 & SN7454 & 0.16 & SN7484 & 0.95 & SN74118 & 0.85 & SN74157 & 0.78 & SN74191 & , \\
\hline SN7404 & 0.19
0.19 & SN7417 & 0.28
0.15 & SN7442 & 0.65 & SN7460 & 0.16 & SN7485 & 1.0 & SN74119 & 1.75 & SN74160 & 0.88 & SN74192 & 1. \\
\hline SN7405 & 0.19 & SN7420 & 0.16 & SN7445 & 0.78 & SN7470 & 0.29 & SN7486 & 0.2 & SN74121 & 0.32 & SN74161 & 0.88 & SN74193 & \\
\hline SN7406 & 0.36 & SN7423 & 0.23 & SN7446 & 0.84 & SN7472 & 0.21 & SN7490 & 0.4 & SN74122 & 0.42 & SN74162 & 0.88 & SN74196 & 1. \\
\hline SN7407 & 0.36
0.19 & SN7425
SN7427 & 0.23
0.23 & SN7447 & 0.80 & SN7473 & 0.31 & SN7491 & 0.7 & SN74123 & 0.65 & SNT4183 & 0.88
1.80 & - \({ }^{\text {SN74197 }}\) & 1.5 \\
\hline SN7409 & 0.18 & SN7430 & 0.15
0.15 & 15 & \% & DIS & UN & FO & & MIX & & SN74164
SN74165 & 1.60
1.60 & SN7498 & \\
\hline
\end{tabular}

GET A GREAT DEAL FROM MARSHALLS. TV SPARES FOR BONA FIDE DEALERS, ITT, MULLARD, NATIONAL AND MOTOROLA. SEND FOR OUR NEW TWO PART CATALOGUE ON YOUR HEADED PAPER, £1 INCLUDING POST AND PACKING. REFUNDABLE WHEN YOU PLACE YOUR FIRST ORDER OVER \(£ 10\).


MICRO-MIN SWITCHES
2P 2W 60p; 1P 2W 50p.
SUB MIN SWITCHES
1P 2W 55p; 2P 2W 60p; 2P 2W centre off 60 p ; 1 P on-off 45p.

\section*{MAIL ORDER}

ALL PRICES EXCLUDE VAT
POSTAGE \& PACKING 25p

RSI

VALVE MAIL ORDER CO.
16a WELLFIELD ROAD, LONDON SWI6 2BS SPECIAL EXPRESS MA/L ORDER SERYICE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1N21 & \[
0.17
\] &  & BY218 & \[
0.8
\] & OAZ205 & 519 & 28170 & \[
0
\] \\
\hline 1N28 & 0.65 & \(4 \mathrm{Fr186}\) 0.48 & BYZ10 & 0.45 & OAZ206 & 0.45 & Z8271 & 0.18 \\
\hline 2N8s & 0-88 & AFZ11 & BYZ11 & 0.40 & OAZ207 & 0.45 & ZT21 & 0.25 \\
\hline 2N268 & 0.60 & \({ }_{\text {AFY }}{ }^{\text {AFZ }}\) & BYZ12 & 0.40 & OAZ208 & 0.40 & ZTX107 & 0.18 \\
\hline 12588 & 0.50 & ABY20 0.80 & BYZ13 & 0-48 & 0az200 & 0.40 & ZTX108 & 0.10 \\
\hline 1N64 & 0.16 & A8Y88 0 0.25 & BYZ15 & 1.25 & 0az210 & 0.40 & ETX300 & 0.18 \\
\hline 1N725A & 0.80 & ABY \({ }^{\text {A }}\) ( 0.20 & BYZ18 & 0.80 & OAZ211 & 0.40 & ZTX 804 & 0.24 \\
\hline \(1 \mathrm{NPl4}\) & 0.06 & A8Y51 0.40 & BZY88 & 0.10 & 0AZ222 & 0.45 & ZTX 503 & 0.18 \\
\hline 1N4007 & 0.18 & ABY63 0.20 & C111 & 0.55 & 0Az223 & 0.45 & ZTX 681 & 0.8 \\
\hline 18113 & 0.85 & \(\begin{array}{ll}\text { A8Y55 } & 0.80 \\ \text { ABY62 } & 0.85\end{array}\) & CREIfos & 0.85 & OAT224 & 0.4 & 218081 & \\
\hline 18202 & 0.88 & ABY 680 & CRE1/40 & 0.60 & OAZ242 & 0.15 & Indze & TSD \\
\hline 2 C 371 & 0.75 & ABZ21 1.00 & C84B & 1. & OAZ244 & 0.25 & cra & \\
\hline 2 C 381 & 0.28 & ABZ23 0.75 & Cs108 & 3.50 & OAZ246 & 0.15 & 7400 & 0.16 \\
\hline \(2 \mathrm{G414}\) & 0.80 & AU104 1.00 & DD000 & 0.15 & OAZ290 & 0.88 & 7401 & 0.18 \\
\hline \(2 \mathrm{G417}\) & 0.8 & \({ }_{\text {AUY10 }}{ }^{1.50}\) & DD008 & 0.15 & 0018 & 1.00 & 7402 & 0.16 \\
\hline 2 N 404 & 0.28 & \(\begin{array}{ll}\text { BC108 } & 0.18\end{array}\) & DD007 & 0.40 & \({ }_{0}^{006162}\) & 1.00
1.00 & 7404 & 0.88 \\
\hline 2N697 & 0.16 & \({ }^{\text {BCl09 }} 0\) & DD008 & 0.88 & \({ }_{0} \mathrm{CO} 23\) & 1.25 & 7405 & 0.88 \\
\hline 2N698 & 0.18 & BC113 0-16 & GD3 & 0.38 & 0024 & 1.10 & 7406 & 0.48 \\
\hline \({ }_{2 N 7064}\) & 0.18 & BC115 0.20 & GD4 & 0.10 & 0 C 25 & 0.40 & 7407 & 0.48 \\
\hline \({ }^{2 N 7084}\) & 0.18 & BC116 0 -20 & ads & 0.88 & \(0 \mathrm{Cl}^{8}\) & 0.40 & 7408 & 0.28 \\
\hline 2N709 & 0.40 & BC118A 00.88 & GD8 & 0.25 & \(\mathrm{Oc}^{28}\) & 1.00 & 7409 & 0.88 \\
\hline 2 NL 1091 & 0.65 & \(\begin{array}{ll}\text { BC188 } \\ \text { BC121 } & 0.80 \\ 0.80\end{array}\) & \({ }_{\text {GET102 }}\) & 0.10 & -0C29 & 0.65 & 7411 & \\
\hline 2 N 1181 & 0.25 & \(\begin{array}{ll}\text { BC122 } & 0.20\end{array}\) & GET103 & 0.40 & \({ }_{0} \mathbf{0} 85\) & 0.75 & 7412 & 0.80 \\
\hline 2 N 1132 & 0.18 & BC125 0.68 & GET118 & 0.35 & 0c88 & 0.60 & 7418 & 8 \\
\hline \({ }_{2}{ }^{2 N 1303}\) & 0.18 & \({ }^{\text {BC126 }}\) & GET114 & 0.80 & OC41 & 0.85 & 7416 & 0.86 \\
\hline 2 N 1304 & 0.88 & \(\begin{array}{ll}\text { BC140 } & 0.5 \\ \text { BC147 } & 0.10\end{array}\) & GET116 & 0.80 & OC42 & 0.40 & 7417 & \\
\hline \({ }^{2} \mathrm{~N} 1305\) & 0.88 & \({ }_{\text {BC148 }} 0.08\) & GET120 & 0.50 & \({ }_{0} \mathrm{CO} 4\) & 0.80 & 7422 & 0.85 \\
\hline \({ }^{2} \mathbf{2 N 1 3 0 6}\) & \({ }_{0}^{0.28}\) & \(\begin{array}{ll}\text { BC149 } & 0.10\end{array}\) & GET878 & 0.80 & 0 CSk & 0.17 & 7428 & 7 \\
\hline 2N1308 & 0.28 & BC157 0.14 & GET875 & 0.40 & 0 C 45 & 0.80 & 7426 & 0.87 \\
\hline 2 N 2147 & 0.78 & \(\begin{array}{ll}\text { BC158 } & 0.18\end{array}\) & GET880 & 0.80 & \({ }_{0}^{0 \mathrm{O} 45}\) & 0.18 & \({ }^{7428}\) & -3.87 \\
\hline 2 N 2148 & 0.60 & \begin{tabular}{ll}
\(\mathrm{BC1} 60\) & 0.68 \\
\hline 18
\end{tabular} & GET882 & 0.85 & \({ }^{\text {OC56 }}\) & 0.80 & 7430 & 0.16 \\
\hline \({ }_{2}^{2 \mathrm{~N} 2160}\) & 0.78 & \(\begin{array}{ll}\text { BC169 } & 0.14\end{array}\) & GET885 & 0.40 & \({ }^{\text {OCSO }}\) & \(0-60\) & 7432 & 0.87 \\
\hline 2 N 2219 & \(0 \cdot 25\) & \(\begin{array}{ll}\text { BCY } 91 & 0.45 \\ \text { BCY } 22\end{array}\) & GEX 44 & 0.08 & \({ }^{0088}\) & 0.60 & \({ }_{7437}^{7483}\) & 0.87
0.87 \\
\hline 2 N 2369 A & 0.16 & \(\begin{array}{ll}\text { BCY83 } & 0.88\end{array}\) &  & 0.45 & OC86 & \({ }_{0}^{0.50}\) & \({ }_{7488}\) & 0.87 \\
\hline \({ }^{2 \mathrm{~N} 2444}\) & \({ }^{1} .98\) & BCY84 0.45 & GJ8M & 0.50 & OC71 & 9.25 & 7440 & 0-29 \\
\hline 2N2813 & \({ }_{0} 0.50\) & BCY88 \({ }^{1.00}\) & GJ6M & 0.50 & Oc72 & 0.88 & 74414N & 0.08 \\
\hline 2 N 2904 & 0.20 & \(\begin{array}{ll}\text { BCY89 } \\ \text { BCY } 40 & 1.50 \\ 0.80\end{array}\) & GJBM & 0.85 & OC78 & \(0 \cdot 60\) & 7442 & \\
\hline 2 N 2906 & 0.20 & BCY42 0.80 &  & 0.50 & OC74 & 0.80
0.10 & 7451 & 0.16 \\
\hline 2 N 2907 & 0.28 & BCY70 0.18 & H8100A & 0.90 & OC76 & 0.80 & 7458 & 0.18 \\
\hline \({ }^{2} \mathrm{~N} 29295\) & 0.15 & BCY71 0.88 & MAT100 & 0.90 & 0c77 & \(0 \cdot 54\) & 7464 & 0.18 \\
\hline 2N2926 & 0.18 & \(\begin{array}{ll}\text { BCZ10 } & 0.80 \\ \text { BD121 } & 1.00\end{array}\) & MAT101 & 0.20 & Oc78 & 0.85 & 7460 & 0.16 \\
\hline \(2 \mathrm{NaO54}\) & 0.48 & \({ }_{\text {BD123 }}{ }_{\text {BD }}\) & MAT120 & 0.85 & 0 Cl 9
\(\mathrm{OC81}\) & 0.80 & 7472 & 0.88 \\
\hline 2 N 3055 & 0.45 & BD124 0.65 & MJE940 & 0.47 & \(0 \mathrm{OC81m}\) & 0.20 & 7478 & 1 \\
\hline 2N3702 & \({ }_{0}^{0.15}\) & \({ }_{\text {BDY11 }} \mathbf{1 . 4 5}\) & MJE530 & 0.08 & OC81DM & 0.18 & 7474 & 0.48 \\
\hline 2N3706 & 0.11 & \(\begin{array}{ll}\text { BF115 } & 0.80 \\ \text { BF167 } & 0.85\end{array}\) & \({ }_{\text {MJ E2965 }}\) & 1-27 & \({ }_{0}^{0} 0 \mathrm{C812}\) & 0.45 & 7475 & 0.45 \\
\hline 2N3707 & 0.18 & \(\begin{array}{ll}\text { BF173 } & 0.28\end{array}\) & MPF102 & 0.70 & \({ }_{0}^{0} \mathrm{CO} 82 \mathrm{~L}\) & O-88 & 7470 & 0.60 \\
\hline 2N8709 & 0.10 & 3 Fl 18100.85 & MPF108 & 0.36 & \({ }^{\text {OC83 }}\) & 0.60 & 7482 & 0.87 \\
\hline \({ }^{2 N 3710}\) & \({ }_{0} 0.11\) & BF184 0.28 & MPF104 & 0.85 & OC84 & 0-80 & 7488 & 1.10 \\
\hline 2N3819 & 0.85 & \begin{tabular}{ll} 
BF185 & 0.89 \\
Br194 & 0.10 \\
\hline
\end{tabular} & MPF105 & 0.88 & \({ }^{\text {OC114 }}\) & \(0-88\) & \({ }^{7484}\) & 7 \\
\hline 2 N 4289 & 0.80 & \(\begin{array}{ll}\text { BF195 } & 0.18\end{array}\) & NET128 & 0.80 & \({ }_{0}^{0} \mathrm{OC122}\) & 1.100 & 7480 & O.65 \\
\hline \(2 \mathrm{2N5027}\) & 0.68 & BF198 0.15 & NKT211 & 0.85 & \({ }_{0} \mathbf{O C 1 3 9}\) & 0.75 & 74914N & 1.00 \\
\hline 2 N 0088 & 0.85 & BF197 0.15 & NKT218 & 0.85 & OCl10 & 1.14 & 7492 & 0 \\
\hline 28301 & 0.69
1.15 & BFA61 0.85 & NKT214 & 0.81 & OC14 & 0.80 & 7493 & 0.70 \\
\hline \({ }_{28501}\) & 0.75 & \({ }_{\text {BFG98 }}\) & NET216 & 0.40 & OC169 & 0.20 & 7494 & 0 \\
\hline 28703 & 1.00 & \(\begin{array}{ll}\text { BFX12 } & 0.80 \\ \text { BFX13 } & 0.86\end{array}\) & NET217 & 0.4 & \({ }_{0}^{0 \mathrm{OCl}} \mathrm{O} 171\) & 0.30
0.30 & \({ }^{74965}\) & \\
\hline 40250 & 0.54
0.81 & \({ }_{\text {BFX } 29}{ }^{\text {Bra }}\) & NET219 & 0.23 & OC171
OC200 & 03007 & 7497 & 8.87 \\
\hline 40251 & 0.81
0.20 & BFX30 0.88 & NET222 & 0.80 & OC201 & 1.50 & 74100 & 1.89 \\
\hline \({ }_{\text {AAZ }}\) & 0.75 & \(\begin{array}{ll}\text { BFX } 35 & 0.08 \\ \text { BFX } 68\end{array}\) & NET224 & 0.95 & OC202 & 1.50 & 74107 & \\
\hline AAZ18 & 0.18 & \(\begin{array}{ll}\text { BFX83 } \\ \text { BFX84 } & 0.65 \\ 0.85\end{array}\) & NET231 & 0.84 & OC203 & 0.76. & 74111 & 8 \\
\hline AAZ17 & \({ }^{0.18}\) & BFX85 0.28 & NET272 & 0.80 & OC204 & 1.50 & 74118 & 0.90 \\
\hline AC107 & 0.05 & BFX86 0.\% & NET278 & 0.20 & 00205 & 1.75 & 7418 & 1.68 \\
\hline \({ }_{4 \mathrm{Cl27}}\) & 0.85 & BFX87 0.96 & NET275 & 0.25 & 00208 & 1.10 & 71121 & \% \\
\hline \({ }_{4}{ }^{\text {c128 }}\) & 0.15 & \({ }_{\text {BFY } 10}{ }^{\text {Bra }}\) & NET277 & 0.20 & OC207
OC460 & 1.00
0.20 & 74128 & 1.00 \\
\hline \({ }^{\text {ACl }}\) (187 & 00.81 & BFY11 0.50 & NKT301 & 1.00 & OC470 & 02008 & 74141 & 0.80 \\
\hline \({ }_{\text {ACYI7 }}\) & \({ }_{0}^{0.20}\) & \({ }^{\text {BFY }} 170\) & NET304 & 1.00 & OCP71 & 1.80 & 74145 & 1.90 \\
\hline ACY18 & 0.85 & \(\begin{array}{ll}\text { BFY18 } & 0.45 \\ \text { BFY18 } & 0.55\end{array}\) & NKT408 & 1.00 & ORP12 & 0.60 & 74180 & 00 \\
\hline ACY 19 & 0.95 & \(\begin{array}{ll}\text { BFY19 } & 0.65 \\ \text { BFY } 24 & 0.45\end{array}\) & NET404 & \({ }_{0}^{1.0}\) & \({ }_{\text {ORP6 }}\) & 0.65
0.48 & 74154 & \\
\hline ACY20 & 0.85 & BFY44 1.00 & NET718 & 0.80 & & 0.20 & 74155 & 1.00 \\
\hline \({ }_{\text {ACY } 22}\) & 0.85 & BFY50 0.91 & NKT778 & 0.95 & 8X 681 & 0.80 & 74156 & 1.00 \\
\hline \({ }^{4} \mathbf{C Y} 27\) & 0.85 & \(\begin{array}{ll}\text { BFY51 } \\ \text { BFY } 52 & 0.20 \\ 0.20\end{array}\) & NET & 0.88 & 8X \(\times 885\) & 0.55 & 74157
74170 & 5 \\
\hline \({ }_{4} \mathrm{CrY}^{28}\) & 0.86 & \(\begin{array}{ll}\text { BFY58 } & 0.20 \\ \text { BFY }\end{array}\) & \({ }_{04} 0\) & 0 & GX640 & 0.75 & 74174 & 1.67 \\
\hline ACY 39
ACY 40 & 0.78 & BFY84 0.86 &  & 0.08 & \(8 \times 641\) & 0.75 & 74178 & \\
\hline ACY41 & 0.22 & BFY90 0.81 & OA70 & 0.10 & BX 842 & 0.80 & 74176 & \\
\hline ACY44 & 0.38 & \(\begin{array}{ll}\text { BR100 } & 0.40 \\ \text { B8X27 } & 0.50\end{array}\) & 0471 & 0.80 & 8X644 & 0.85 & 74190 & 8.000 \\
\hline AD140 & 0.50 & \begin{tabular}{ll} 
B8X27 & 0.50 \\
B8x & \\
\hline 0.90
\end{tabular} & OA78 & 0.15 & 8X 845 & 0.85 & 71192 & 8.00 \\
\hline \({ }_{\text {ADl }} \mathrm{AD149}\) & 0.75 & & OA74 & 0.15 & TIC4 4 & 0.89 & 74188 & 2.00 \\
\hline AD161 & 0.041 & \begin{tabular}{ll} 
B8X78 & 0.18 \\
BGY26 & 0.17 \\
\hline SGY
\end{tabular} & 0A81 & 0.10 & V15/30? & 0.75 & 74194 & 1.80 \\
\hline AF106 & 0.90 & B6Y27 0.20 & 0a85 & 0.15 & V80/201P & 0.75 & 74198
74196 & \\
\hline AF114 & 0.25 & \(\begin{array}{ll}\text { B6Y51 } \\ \text { B6Y } 954 & 0.50 \\ 0.12\end{array}\) & OAB6 & 0.15 & V60/201 & 0.50 & 74197 & 1.80 \\
\hline AF115 & & & OAB6 & 0.16
0.07 & ve0/201P & 0.75 & 74198 & \(8 \cdot 7\) \\
\hline AF116 & 0.25
0.24 & \({ }_{\text {BT }}\) BYY \({ }^{\text {a }} / 500 \mathrm{R}\) & OA90
OA91 & \({ }_{0}^{0.07}\) & XA101 & 0.10 & 74189 & \%.58 \\
\hline AFl18 & 0.57 & 0.75 & 0a9b & 0.07 & XA102 & 0.18 & \multicolumn{2}{|l|}{} \\
\hline AF119 & 0.20 & \({ }^{\text {BTY }} 42{ }^{0.92}\) & OAL200 & 0.08 & XA151 & 0.0 & \multicolumn{2}{|l|}{Plug in socketa -low prodle} \\
\hline AF124 & 0.80 & BTY79/100R 0.75 & OA202
OA210 & 0.06
0.20 & XA152 & 0 & \multicolumn{2}{|l|}{14 pin DIL 0.15} \\
\hline \({ }_{\text {AFP126 }}\) & 0.80
0.80 & BTY79/400R & OA210
OA211 & 0.80 & XA161 & 0.25 & \multicolumn{2}{|l|}{\multirow[t]{6}{*}{\[
16 \text { pin } \mathrm{DHL}_{0.17}^{0.15}
\]}} \\
\hline AF127 & 0.80 & 1.50 & OAZ200 & 0.50 & X \({ }^{1} 101\) & 0.48 & & \\
\hline AF139 & 0.11 & BY100 0.87 & OAZ201 & 0.45 & XB102 & 0.80 & & \\
\hline AF178 & 0.55 & BY126 0.14 & OA2202 & 0.45 & X \(\mathrm{B108}\) & 0.85 & & \\
\hline AF170 & 0.65 & BY127 0-18 & OA2203 & 0.45 & XB118 & 0.80 & & \\
\hline AF180 & 0.55 & RY182 0.85 & OAZ204 & 0.45 & X 8121 & 0.48 & & \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
Open daily to callers: Mon.-Fri. 9 a.m. -5 p.m. \\
Valves, Tubes and Transistors . Closed Sat. I p.m.-3 p.m. \\
Terms C.W.O. only - Tel. 01-677 2424-7 \\
Quotations for any types not listed. \\
Post and Packing 12p per order, \\
V.A.T. Transintors 25\%. Integrated Circuits a\%.
\end{tabular}} & \multicolumn{2}{|l|}{Prices carruct when going to preas.} \\
\hline
\end{tabular}

\section*{Dimmit range of light dimmers and lighting confrol systems}

Illustrated is the popular PMSD 1000 module. A IkW slider control dimmer, interference suppressed, 60 mm slider range size \(4 t \times 2 \times 1 \frac{1}{2} \mathrm{in}\). Ideal for low cost stage and disco lighting. Used by schools, theatres, studios, etc. Complete with scale plate, fixing screws and full instructions. \(\quad\) E. 9.06 inc. VAT and postage and packing.

Complete compact light dimmer systems for stage, club and disco lighting, etc.

DD6IM (illustrated). Six IkW channels, six outlet sockets, master control, mains on/off switch, size \(23 \times 8 \frac{1}{2} \times 5 \mathrm{in}\). Price \(£ 140.40\) inc. VAT.

DD6I-B. Six 1 kW channels, using module
PMSD 1000 , lowest cost system. Sizel \(6 \frac{1}{2} \times 8 \times 5 \mathrm{in}\). Price \(664 \cdot 50\) inc. VAT.
OD62M. As DD6IM but with six 2kW channels, size \(25 \times 10 \frac{1}{2} \times 6 \mathrm{in}\). Price \(6205 \cdot 20\) inc. VAT.

Add \(\mathbf{k 2} 20\) postage and packing for all systems.
The Dimmit range includes rotary and slider control dimmers and sound to light converters for home, entertainment and professional applications. Ratings \(1 \mathrm{~kW}, 2 \mathrm{~kW}, 3 \mathrm{~kW}\).

All products are guaranteed and are supplied with full instructions and applications. Full after-sales service. Technical advice given.

For full information on all modules and lighting control systems send I 5p for our illustrated catalogue and price list. Callers welcome, visit our how room for a demonstration of any of the modules or systems. Mon.-Fri. 9.30 to 6.0 p.m. Sat. by arrangement.

\section*{YOUNG ELECTBONICS LTD.}

184 Royal College Street, London NWI 9NN Tel. 01-267 0201

\title{
SYNTHESISER Modules by Dewtron \({ }^{8}\)
}


The synthesiser illustrated was built using Dewtron modules, as sold to constructors for some years now With over 10 years' experience in mail-order, we have supplied many famous people and groups. Over 30 types of synthesis modules, some of extremely precision design, e.g. VCO-2 log-law oscillator: 3-wave o/ps; sample/hold/envelope module; 3-octave keyboards, contacts, special tuning-ladder resistors, etc. Famous "Modumatrix'' patching system makes other patching a thing of the past! Send just 20 p for full catalogue to:


254 Ringwood Road, Ferndown Dorset BH22 9AR

SUPERSOUND 13 HI-FI MONO AMPLIFIER A superb solld state audio amplifier. Brand new plus 2 power out-put ransistorain push-pull Fuli wave pasifa tlon. Output approx 13 patts r.m.e. int ohms. Frequency reaponse \(12 \mathrm{~Hz}, 30 \mathrm{KHz}\) pre-amplifer Fully Integrated
 Input for ceramic or crystal or \(8-15\) ohm speakera approx. 40 m V for full output. Supplied ready built and tested, with knobs, escutcheon panel, input and outpu plugs. Overall size \(3^{\circ}\) blgh \(\times 6^{\circ}\) wide \(\times 71^{\circ}\) deep
AC \(200 / 250 \mathrm{~V}\). PRICE 215.00 P. P 85 p

\section*{DE LUXE STEREO AMPLIFIER}
 A.C. mains
\(200-240\)
 heavy duty tully liools transform er with full wave recti-
ication giving ade
Valve Ine-up:-2 \(\times\) ECL86 Tring with negligible hum as rectifer. Two dual potentiometers are provided for bass and treble control, giving bass and treble boost and cut. A dual volume control is used. Balance of the left and righe hand channels can be adjusted by means of a sepa Input senaitivity control Atted at the rear of the chassia Input senaitivity is approximately \(300 \mathrm{~m} / \mathrm{v}\) for full peak apeakers. Full negative feed (s watts mono), into 3 obm circult, allows high volume levels in a carelully calculated distortion. Supplied complete with knobs, chagis
 built and tested to a high standard. \&12.50. P. \& P. 85 p ALL PURPOSE POWER SUPPLY UNIT 200/240v. A.C input. Four switched fully smoothed D.C. outputs giving Fitted insulated output and 12 r . at 1 amp on load, Hamtmer finish metal case overall alze \(6^{\prime \prime} \times 3 z^{*} \times 2 t^{*}\) Ready bulit and
teated. Price 66.35 . P \& P \(85 p\)
VYNAIR \& REXINE SPEAKERS \& CABINET FABRIC8 app. 54 in . Wide. Our price \(\$ 1.50\) yd. length. P. \(\&\) P. 35 p per yd. (min. 1 yd.). S.A.E. for samples

HARVERSON'S SUPER MONO AMPLIFIER A super quality grain amplifier using a double wound fully isolated mains transformer, rectifier and ECL82 triode pentode valve as audio ampllfier and power output
stage. Impedance 3 ohms. Outputapprox \(3-5\) wats Volume and tone controls. Chassis aize only 7 in wide \(\times\) 3in. deep \(\times 6\) in. high overall. AC mains \(200 / 240 \mathrm{v}\) supplied absolutely Brand New completely wired and tested with good quallty output transformer. \(\mathbb{E} 5 \cdot 00\)
BRAND NEW MULTI-RATLO MAINS TRANSFOR MERS. Giving I3 alternatives. Primary: \(0-210-240 \mathrm{v}\) Secondary comblnatione \(0-5-10-15-20-25-30-35-40-60 \mathrm{v}\)
hali wave at 1 amp. or \(10-0-10,20-0-20,30-0-30 \mathrm{y}\), at atmph full wave. Size 3in. long \(\times 3\) inin. wide \(\times 3\) in deep. Price \(£ 2.90 \mathrm{P}\) \& \(P\). 75 p .
MAINS TRANSFORMER. For
MAINS TRANSFORMER, For power supplies Pri. 200/240v. Sec. \(9-0-9\) at 500 mA . 81.50 . Pr. 200/240v. 8ec. 12-0-12 at 1 amp. 21-65 P. \& P. 35p Pri. 200/240v. Sec. 10-0-10 at 2 amp . £2.35. P. \& P. 70 p

\section*{GENERAL PURPOSE HIGH STABILITY} PRE-AMPLIFIER use with valve or transistor equipment battery or from H.T line \(200 / 300 \mathrm{v}\). Frequency response \(15 \mathrm{~Hz}-25 \mathrm{KHz}\). Gain 26 dB . Solid encapsulation size \(1^{\prime \prime} \times 11^{\prime \prime} \times 1^{\prime \prime}\). Brand new complete
with Instructions. Price \(£ 1^{\prime} 60 \quad\) P. \& P. 10 p.

\section*{STEREO-DECODER SIZE \(\mathbf{2}^{\prime \prime} \times \mathbf{3}^{\prime \prime} \times \frac{1}{2}\)}

Ready built. Pre-aligned and tested.
Sens. \(20-660 \mathrm{mV}\) for \(9-16 \mathrm{~V}\)
Sent. \(20-660 \mathrm{mV}\) for \(9-16 \mathrm{~V}\) neg.
earth operation. Can be fitted to almost any FM VHF radio or tuner. Stereo beacon light can be fitted if structions (inclusive of hints and insupplied. \(28 \cdot 26\) plus \(20 \mathrm{p} P\). P Stereo beacon light if required 45p extra.


QUALITY RECORD PLAYER AMPLIFIER ME. II A top quallity record player amplifler employing heavy and rectifier seund maina transiormer, ECC83, EL84, and rectifier. Separate Bass, Treble and Volume controls, Complete with output tranoformer natched for 3 ohm
apeaker. Size 7 in wide \(\times 3\) in deep \(\times 6\) in built and tested. PRICE \(56-50\). P. \& P. 90 p . ALSO AVAILABLE mounted on boerd transformer and speaker. PRICE £7.75. P. \& P. £l.00.

HARVERSONIC MAINS OPERATED SOLID STATE STEREO FM TUNER


Enjoy Fabulous Stereo Radio at this Low Introductory Price! Designed and atyled to match our \(10+10\) amplifier but will suit ang other standard atereo amplifier. The design incorporates the very latest circuitry techniques with high-grain, low noise IF stages. Automatic frequency control to "lock on" station and
prevent drift. IC stereo decoder for maximum stereo prevent drift. IC stereo decoder for maximum stereo separation. L.E.D. for atereo beacon indicator. Nom-
inal output of tuner 100 mV . Approximate size \(12 \nmid\) in wide \(\times\) Bin deep of tuner 100 mV . Approrimate alze 12 in wide teated and tully guaranteed. AC malns \(200 / 240 \mathrm{~V}\) (not available in lit 10 rm )
Special Offer for I month only \(\mathbf{£ 2 5} \mathbf{0 0}+\) \&1-20 P. \& P.

LATEST ACOS GP91/1SC mono compatible cartridge with t/o stylus for LP/EP/78. Universal mounting bracket. CERAMIC STERED
CERAMIC STEREO CARTRIDGE. Universa! mounting brackets and turnover atglus. 70inv per channel output SONOTONE 日TAHCCOMPATIBLE STEREO CARTRIDGE T/O stylus Diamond Stereo LP and Sappbire 78 . ONLY \(£ 2 \cdot 62\). P. \& P. 10 p . Also a vailable tited with Diamond T/O atylue for Stereo LP. £3-18. P. \& P. 18 p LATEST CRYSTAL T/O STEREO/COMPATIBLE CARTRIDGE for EP/LP/Stereo 78. £1•88. P. \& P. 18p. LATEST T/O MONO COMPATIBLE CARTRIDGE for playing EP/LP/78 mono or atereo recorde on mono equipment. Only 21.75 . P. \& P, 18p

\section*{SPECIAL OFFERS}

Mullard LP1159 RF-IF Double Tuned Amplifter Module for nominal 470 kHz . Size approx. \(23^{\circ} \times 14^{\circ} \times{ }^{\circ}\)
\(7.6 \mathrm{~V}+\) earth. Brand new pre-aligned. Full speciftcation and connection details supplied. 82•50 + P. \& P. 12p.

Pye VHF/FM Tuner Head covering \(\quad 88.108 \mathrm{M} / \mathrm{Hz}\) \(10.7 \mathrm{M} / \mathrm{Hz}\) IF output \(7.8 \mathrm{~V}+\) earth. Supplied pre-aligned, With (gang) full circuit diagram and connection details
supplied. Beautifully with precision-geared FM and \(323 \mathrm{Pr}+323\) PI AM Tunin 323 Pr +323 Pi AM Tun
only \(£ 3.50+\) P. \& P. 3 pp.


PRECISION MADE
Push Button Switch bank. 8 Buttons giving 16 \$/P C/O Interlocked switches plus i Cancel Button Plus \(3 \mathrm{~d} / \mathrm{p} / \mathrm{c}\). chrome finished switcb buttons 2 for \(£ 1 \cdot 50+10 \mathrm{p}, \mathrm{P}\). \& \(P\)

\section*{HI-FI LOUDSPEAKER SYSTEM MkII}

Beautifully made simulated teak finish enclosure now With most attractive slatted front. Size \(16 f^{*}\) high \(\times\) \(101^{\prime \prime}\) wide \(\times 9^{*}\) deep (approx.). Fitted with E.M.I
Ceramic Magnet \(13^{*} \times 8^{\prime \prime}\) bass unit, H.F. tweeter Ceramic Magnet \(13^{*} \times 8^{\prime \prime}\) bass unit, H.F. tweeter
unit and crossover. AVAILABLE IN NOMINAL unit and crossover. AVAILABLE IN NOMINAL
\(40 \mathrm{hm}, 8 \mathrm{ohm}\) or 16 ohm impedance (state which). OUR PRICE \(£ 12 \cdot 50\) each. Carr. \(£ 1.60\) Cabinet Available Separately £7-50. Carr. £1-20. Also avalable in 8 ohms with EMI \(13^{\prime \prime} \times 8^{\prime \prime}\) ba speaker with parasitic tweeter \(£ 11\)-00. Carr. \(£ 1.60\)

LOUDSPEAKER BARGAINS
\(5 \mathrm{in} 3 \mathrm{ohm} £ 1.45, \mathrm{P} . \& \mathrm{P}: 35 \mathrm{p}, 7 \times 4 \mathrm{in} .3 \mathrm{ohm} \mathrm{f1} \cdot 69\), P. \& \(P\) \(48 \mathrm{p} .10 \times 6 \mathrm{in}\). 3 or 15 ohm \(£ 2 \cdot 50\), P. \& P. 75 p . E. M. I
\(8 \times 5 \mathrm{in} .3 \mathrm{ohm}\) with high 甘ux inagnet \(£ 2 \cdot 08\), P. \& P. 50 p \(8 \times\) E.M.I.tweeter. Approx. \(31=\). Available 3 or 8 or 15 ohm E.M.I.tweeter. Approx. \(31^{\circ}\). Available 3 or 8 or 15 ohm
\(\mathrm{EQ} .00+25 \mathrm{p}, \mathrm{P}\). \(\& \mathrm{P}\).
"POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAEER
Size \(111^{\circ} \times 144^{\circ} \times 1 \frac{1}{4}^{\circ}\) deep. Weight 19 oz . Power handling 20 Wr r.m.s. (40 W peak). Impedance 8 ohm only Response \(40 \mathrm{~Hz}-20 \mathrm{kHz}\). Can be mounted on ceilings, walts
——

Now also avails ble \(8^{-} .8 \mathrm{ohm} .10\) watts r.m.s. 20 watt peak
\(40 \mathrm{~Hz}-20,000 \mathrm{~Hz}\). Overall depth \(40 \mathrm{~Hz}-20,000 \mathrm{~Hz}\). Overall depth \(1^{\prime \prime}\). Ideal for \(\mathrm{H}_{i} \cdot \mathrm{Fi}\) or for
use in cars. \(£ 5 \cdot 18+40 \mathrm{p}\). p

\section*{HARVERSONIC SUPER SOUND} 10 + 10 STEREO AMPLIFIER KIT


A really first-class HI-Fi Stereo Amplifer Kit. Uses 14 tranaistors including Silicon Tranaistors in the first Ave stages on each channel resulting in even lower noise with Improved sensitivity. Integ wass, Treble and two Volume Controis. Vulable simple to modity to suit magnetic cartrdige-instructiona included Outputstage for any speak ers from 8 to 15 ohms. Compact desigh, all parts supplied including drilled metal work. high quality ready drilled printed circult board with component identification clearly marked, smart brushed wire, solder, nuts, bolts- po extras to buy. simple otep by step inatructions enable any constructor to build an amplifier to be proud of. Brief apecifications: Powe output: 14 watts r.m.s. per channel into 5 ohma. Fre quency response \(\pm 3 \mathrm{~dB} 12-30,000 \mathrm{~Hz}\) Bensitivity: better than 80 mV into \(1 \mathrm{M} \Omega\). Full power bandwidth: \(\pm 3 \mathrm{~dB}\) \(12-15,000 \mathrm{~Hz}\). Rass, boost approx. to \(\pm 12 \mathrm{~dB}\). Treble cut approx. to -16 dB . Negative feedback 18 dB over maln amp. Power requirements 35 v . at 1.0 amp
Overall Size \(12^{\prime \prime} w . \times 8^{\prime \prime} \mathrm{d}\). \(\times 25^{\prime \prime} \mathrm{h}\).
Filly detailed 7 page construction manual and parta list free with kit or send 25p plus large 8.A.E.
AMPLIFIER KIT

\(\begin{array}{lll}25.35 & \text { P. \& P. } 85 \mathrm{p} \\ \text { 25.35 } & \text { P. \& P. } 75 \mathrm{p}\end{array}\)
Special offer - only \(\mathbf{C 2 4}\) if all 3 units ordered at one time including P. \& P.

Full after sales service
Also available ready built and tested \(\mathbf{2 9 2} 50\). P. \& P. £1,00. Note: The above amplifier is anitable for feeding two mono tources into inputs (e.g. mike, radio, twin record deeks, etc.
and willthen provide mizing and fading facililies for med


AMPLIFIER HA34 ME II Designed for Hi-H1 reproduc tion of records. A.C. Mains operation. Ready built on plated heavy gauge metal
 \(41^{\prime \prime} \mathrm{h}\).
EL84, Incorporates EC80 valvea, Heavy duty, double wound mains former matched for 3 ohm peaker. Separate voluine control and now with improved wide range tone controls giving bass and treble lift and ut. Negative feedback line. Output \& watts. Front panel can be detached and leads extended for remote wounting of controls. Complete with knobs,
wired and tested for only \(\$ 8-75\). P. \& P. 85p
BSL "FOUR" AMPLIFIER KIT. Similar in appearance to HA34 above but employs entirely diferent and advanced circuitry. Complete set of parta, etc. 87.75 . P. \& P. 85 p .

10/14 WATT HI-FI AMPLIFIER KIT
A otylishly finished monaural smplifier with an output of 14 watts from 2 uper reproduction of both music and speech, with negligible hum. Separate inputs for mike and and announcementa
 and announcementa
Fully shrouded bection wound output transtormer match \(3-15 \Omega\) speaker and 2 independent volume controla and separate base and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83, EFS6 and EZ80 rectifier. Simple instruction booklet \(25 \mathrm{p} \times 8 \mathrm{AE}\) (Free with parts). All parts sold separately. ONLY £12-50. P. \& P. \(£ 1 \cdot 20\). Also available ready built and tested 218.87 , P. \& P. \&1. 20 .

\section*{SPECIAL OFFER}

Limited number of the latest BSR C141R1 Auto/Manual changer de-luxe. Lightweight tubular arm cue-ing lever bias compensator \(114 \cdot 00+£ 1 \cdot 10 \mathrm{P} . \& \mathrm{P}\).

Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday Closed Wednesday.

\author{
az qime of specificotrons correct
} alteration without notice

\section*{HARVERSON SURPLUS CO. LTD.}
(Dept. P.E.) I70 HIGH ST., MERTON, LONDON, S.W. 19 Tel. : 01-540 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO D.K. ONLY. P. \& P. ON OVERSE
CEARGED EXTRA.


\section*{INDEX TO ADVERTISERS}
A.B.C. Electronics (Oldham) Lid. ............... 434

Adam Hall (P.E. Supplies) ........................... 436
Alben Engineering ....................................... 356
Audio-Optics .................................................. 435
Automated Homes ........................................ 436
Bamber, B., Electronics ................................ 358
Barclay Electronics ............................................... 369
Barrie Electronics ............................................. 423



Botfin Projects .................................................. 436
British Institute of Engineering
\(.360,428\)
Technology
British National Padio \& Electronics
School ...................................................... 387
Burnaze
.354
Butterworths
.432

Cambridge Learning
.368
.356
Chiltmead Lid
Chromasonic Electronics .......................cover ii
Clet Products
.388
Copper Supplies
.416
.436
Copper Supplies
.436
360
Crofton Electronics .................................................. 368
Design Engineering
.438
Doram
.420
Eagle International
Eaton Audio
.430
.364
Electronic Design Assocs.
Electro-Spares
Electrovalue Ltd. ........................................... 366

Elliot Blunt Audio .......................................................................... 426

Goldring ...................................................................................................... 488


H.B. Electronics ....................................................................... 436
Helme Audio ..........................

Henry's Radio ................................................ . . 430
I.L.P. Electronics Ltd. .................................... 371
imtech (Exetrontine) ................................................. 425
nternational Electronics Unlimited ............ 365
intertext ICS .................................................. 435
sland Devices ......................................................... 434
Jones, J. C. ..................................................... 434
J.W.B. Radio ......................................................... 434

Kensington Supplies ................................... 435
Lasky's........................................................ 356
ondon Electron
Magnum Publications ................................... 435
Maplin Electronic Supplies ..................cover iv
Marco Trading ............................................... 434
Marshall. A., \& Sons ..................................... 437
Mawson Associates ....................................... 435
M.C.L

Milward, G. F. ................................................................ 420
Minikits Electronics ......................................... 436
Modern Book Co. ............................................. 364
\begin{tabular}{|c|c|}
\hline Olson Electronics Orchard Electronics Osmabet & \[
\begin{array}{r}
.366 \\
.368 \\
.432
\end{array}
\] \\
\hline Phonosonics & .366, 367 \\
\hline Phototech (Europe) & 436 \\
\hline Precision Petite & 416 \\
\hline Pulse Electronics Ltd. & 370 \\
\hline Radio Component Specialists & 433 \\
\hline Radio Exchange & cover iii \\
\hline Ramar Constructor Services & . 436 \\
\hline R.T. Services & 434 \\
\hline R.S.T. Valve Mail Order Co. & 438 \\
\hline Radio \& T.V.Components & 362, 363 \\
\hline Salop Electronics & 436 \\
\hline Saxon Entertainments Ltd & 355 \\
\hline S.C.6. Components & 361 \\
\hline Selray Book Co. & 370 \\
\hline Service Trading & . 429 \\
\hline Sinclair Radio & 400. 401 \\
\hline Sintel & 430 \\
\hline Special Products & 360 \\
\hline Sugden, A. R..... & 358 \\
\hline Swanley Electronics & 432 \\
\hline Tapetalk & 435 \\
\hline Technomatic Lid. & 440 \\
\hline Teleradio Electronics & 436 \\
\hline Time-Micro Electronics & 357 \\
\hline Trampus Electronics & 428 \\
\hline Vero Electronics & ..354. 374 \\
\hline * & \\
\hline West London Direct Supplies & . 432 \\
\hline Wood Jeffreys & 388 \\
\hline Wilmslow Audio & 359 \\
\hline Young Electronics & . 438 \\
\hline
\end{tabular}

\section*{RADIO EXGHANGELTD.}

COMPLETELY SOLDERLESS
ELECTRONIC CONSTRUCTION KIT
BUILD THESE PROJECTS WITHOUT SOLDERING IRON OR SOLDER
 4 Transig - 312 -way Connect Capacitury 10 1ransiaturs 3, Loudspeaker Earpicce Mica Baseboard Wonn 3w/LW/aW Coils - Ferrite Complete kit of parts including construction plan Total building costs \(\mathbf{8 9 . 9} 9\) P.P. and Ins. 65p
P. \& P. \(£ 3 \cdot 50\)
- hatteryless Cry hal Rad
- One Transistor Radio
- Transis
- 3 Transistor
- Transistor Regenera-
- Andible Continuity
- Sensitive Pre-Amplifier

\section*{V.H.F. AIR CONVERTER KIT}

Build this converter kit and receive the aircraft band by placing it by the side of a radio tuned to inediuns wave or the long wave band and operatiag as shown in the instructions supplied free with all parta.
Uses a retractable chrome platerl telescopic aerial, kain control, r.IT.J. tuning capacitor, fransistor, etc. All parts including case



\section*{POCKET FIVE}

Now with \(3 \frac{1}{t}\) in Louds
3 tunable Wave-
bands. MW, LW
bands. MW, LW
7 stages, 5 transis-
supersensitive ferrite rod
serial, attractive black and
gold case. Size 5 主in \(\times 1 \frac{1}{2}\) in
\(3 \frac{1}{4}\) in approx.
Complete kit of parts including construction plans.
\(\left.\begin{array}{l}\text { Total } \\ \text { Building Costs }\end{array}\right\}\)

\section*{NEW}

Everyday Series
Build this exciting
new series of

designs.
E.V.5. 5 Transistors and
diodes. MW/LW. Powered by 41
battery. Ferrite rod aerial. tuning condenser, volume control, and now with 3 in . loudspeaker. Attractive case with red speaker grille. Size \(9 \mathrm{in} . \times 5 \mathrm{ith} \times 23 \mathrm{in}\) approx. All partsincluding Case and Plans
Total Building costs 34075 P. \& P. +1 Ins. 50 p
E.V.6. Case and looks as above. if Transistors 3 diodes. Powered by \(9 V\) battery. Ferrite rod aerial, 3 in . Ioudspeaker, etc. \(\mathrm{MW} / \mathrm{LW}\) coverage. Push/Pul output.
All partsinchuding Case and Plans
\(\mathbf{f 5} \mathbf{5 0}_{\text {P. \& P. }+ \text { tho. } 5 \mathrm{sp}}\)
E.v.7. Cuse and lookta a a above, 7 Transitotors and 3 diodes. Six wavebands, MW/LW, Trawler Band SW1, SW' 2 , sw 3, powered by 9 V battery. Push pull output Telescopic aerial for short waves. 3in. Loudspeaker All parts ineluding Case and Plans. Total 1 nimidid

\section*{ROAMER TEN MARK 2}

\section*{WITH VHF INCLUDING AIRCRAFT}

Nou with free earpiece and switched socket. 10 tran
 VHF and local stations, also aireralt hanil. Built is ferrite rod aerial for MW/LW. Chrome plated 6 section telescope aerial, cant be angled and rotated for peak hort wave and virf listening. Push puli output using Cansistors. Car aerial pocket. 10 transistora plus 3 diodes. Ganged tuning condenser with VHF section. Separate
Folume aircraft bani


Volume on/oft. Wave
change and tone contro
Attractive Cane in rich gold blocking. win. \(x\) in. \(\times\) \$n.



\section*{EIECTRONIC CONSTRUCTION KIIS}
 8 transistors and 3 diodes. Push pull out 3 in loudspeaker, gain control, usipert, 9 geetion swivel ratcliet and retractable chrome plated tele-
 capacitors, transistors, etc. will receive T. \(V\). sound, public service bannl, aircraft. V.H.F. Iocal battery (not supplied with kit).
Complete kit of parts \(\$ 7.95\) P.P. and ins. 55p

E.C.K. 4

7 Trandistorn, 8 tuneable wavebands. MW, LW , Trawler Band. 3 Short Wave Bands. Receiver Eit With Uin \(X\) in Ioudspeaker. Push inull ontput stage, gain control, and rotary switch. 7 transistors and 4 diodes.
\(f\) sition chrome-plated telescopic aerial. 8 in sensitive ready pound ferrite rod aerial, tuning capacitor, resistors. capacitors, etc. Operates from a 9 volt P.P. 7 battery (not supplied with kit)
Complete kit of parts \(£ \mathbf{7 - 2 5}\) P.P. and Ins. 55p


\section*{EDU-KIT JUNIOR}
orojects withouerless Electromt Construction Kil. Build these projects without Soldering I ron or Soldes.
\(\star\) Crystal Radio Mediun Wase Coverage-No Battery One Transistor Kadio
* Trangistor Regenerative Radio * 3 Transistur Earpiece Radio Medium Wave Coverage * Transistor Medium Wave Loudspeaker Radio * Electronic Noise Genera
* 4 Transistor Puil/Pu

Al parts including loudspeaker, earpjece, MW ierrite rud aerial, canacitors, resist ors, transistors, etc
Complete kit of paris
including construction plans
\(\mathbf{I}\)
\(\mathbf{N}\)


Tuning condenser, 2 bolume controls, 2 slider awitches, ferite errite rod aerial. hattery clips, tag boards, 10 Units once constructed are detachable irom master nit enabling them to be stored for future use. Iusal or schools, educational authorities and all those interested in radio construction All parte including case and plans.
£ 6.99 inf. find
JIFFY TESTER
Easy to buitd and operate, thes in the pooket. A quick checker for continuity of resistors. cuit wiring (not mains) an loudspeakers. Complete with earpiece, jack plng and socket
reatstors, capacitors. cmponents,


To: RADIO EXCHANGE LTD.
61A High Street
Bedford MK40 1SA
Tel. : 0234 52367. REG NO. 788372
- Callers side entrance "Lavells" stopp.
- Open 10-1. 2.30-4.30 Mon Fri. 9-12 Sat
\& enclosef.
Vame
Address


\section*{ELECTRONIC ORGAN}


Build yourself an exciting Electronic Organ. Our leaflet MES51, price 15p, deals with the basic theory of electronic organs and describes the construction of a simple 49 -note Instrument with a single keyboard and a limited number of stops.
Leaflet MES52. price 15p, describes the extension of the organ to two keyboards each with five voices and the extension by an octave of the organ's range.
Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are shown in leaflet MES53, priced at \(35 p\)

\section*{No more doubts about prices}

Now our prices are GUARANTEED (changes in VAT excluded) for two month periods-and we ll tell you about price changes in advance for just 30p a year (refunded on purchases). If you already have our catalogue send us an S.A.E. and we'll send you our latest list of GUARANTEED prices. Send us 30p and we'll put you on our mailing list-you'll receive immediately our latest price list then every two months from the starting date shown on that list you'll receive details of our prices for the next GUARANTEED period before the prices are implemented!--plus details of any new lines, special offers, interesting projects-and clip-off coupons to spend on components to repay your 30p when used as directed
NOTE: The price list is based on the Order Codes shown in our catalogue so an investment in our super catalogue is an essential first step
Call in at our shop, 284 London Road, Westcliff-on-Sea, Essex. Please address all mail to P.O. Box 3, Rayleigh, Essex, SS6 8LR.

\section*{SYNTHESISER}


A reprint of the complete article giving full construction details published by Electronics Today International' between JanuarySeptember 74 of the International Voltage Controlled Synthesiser, developed as a "state of the art"' now available, price £1-50. S.A.E please for detailed price list.

\section*{GRAPHIC EQUALISER}


A really superior high quality stereo graphic equaliser described in the January edition of Electronics Today Inter-
national' \({ }^{\prime}\). We stock all
the parts (except woodwork) including the metalwork drilled and printed. 15p brings you a reprint of the article.```


[^0]:    © IPC Magazines Limited 1976. Copyright in all drawings, photographs and artickes published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressiy forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]:    Signature

[^2]:    Terms of Business: CASH WITH ORDER. MINIMUM ORDER \&1. ALL PRICES INCLUDE POST \& PACKING (UK ONLY). SAE with ALL ENQUIRIES Please. PLEASE ADD VAT AS SHOWN, ALL GOODS IN STOCK DESPATCHED BY RETURN.

[^3]:    Sinclair Radionics Ltd,
    London Road, St lves,
    Huntingdon, Cambs., PE17 4HJ.
    Tel: St lves (0480) 64646.

[^4]:    Address

