PRACTICAL

Flertranice

AUGUST $197 E$

RADDO EXGHANEELID.

ALL PRICES NCLUDE VAT

NEW EDU-KIT MAJOR
COMPLETELY SOLDERLESS
ELECTRONIC CONSTRUCTION KIT
BUILD THESE PROJECTS WITHOUT SOLDERING IRON OR SOLDER

4 Transistor Earpiece Radio	o Transistor Push Puil Anplifer	- Batteryless Crystal Radio - Othe Tranastor Radio
Signal Trace:	- 7 Transistor Loud-	- 2 Transistor Regenera
Signal Injector	gpeaker Radio MW/LW	tive
Trangist or Tester NPN -PNP	${ }_{\text {Wave Radio }}^{\text {Transistor }}$	3 Transistor Regenera tivc Radio
4 Transistor Push Pull Amplifier	Electronic Metronome Electronic Noise Generator	
- 24 Resistors 21 Capacitors 10 Transistors 3 a' Loudspeaker Larpiece Mica Baseboard 312-way Connectors 2 Volume Controls 2 Slicler Switches 1 Tuning Condenser 3 Knobs Ready Wound MW/LW/SW Coils Ferrite Rod © fill $_{2}$ yards of wire 1 gard of bleeving, etc		
Complete kit of parts including construction plans		
Total building costs 19.00		

V.H.F. AIR CONVERTER KIT

Build this converter kit and receive the aircraft band by placing it by the side of a radio tuned to medium wave or the long wave hand and operating as shows in the insiructions supplied free with all parts.
Uses a retractable chome plated telescopic aerial, gain control, P.II.F. tuning capacitor, transistor, etc. All parts including case and plans $\mathbf{£ 3 . 9 5}{ }_{40 \mathrm{p}}^{\mathrm{p} p}$ ${ }_{40 \mathrm{p}}^{\mathrm{P} P \mathrm{P}, \mathrm{lns},}$

POCKET FIVE

Now with 3in Loudspea
3 tunable
bands.
WW,
WWe.
WW
and trawler band
7 stages, 5 transis.
tors and 2 diodes,
supersensitive ferrite rod
aerial, attractive black and
gold case. Si
$3 \frac{1}{2}$ in approx.
Complete kit
Complete kit of parts including construction plans.

NEW
Everyday
Series
Build this exciting

designs.

E.V.E. 5 Transistors an

2 diodes. MW/LW. Powered by 41
battery. Ferrite rod acrial, tuning condenser, volume control, aln now with 3 in . loulspeaker. Attractive case with red spealier grille. Size 9 in. $\times 5 \frac{1}{2} \mathrm{in} \times 2$ ith approx. All parts including Case and Plans.
Total Building costs $\leq 4 \cdot 30$
P. \& P + Ins. 50 D
E.Y.6. Case and looks as above. 6 Transistors 3 diodes. Powered by 9 V battery. Ferrite rod aerial 3in. loudspeaker, etc. MW/LW coverage. Push/Pull output.
All parta including Case and Plane
Total Building cost
£4.95 $\boldsymbol{P}_{\text {P. \& P. + Ins. } 65}$
E.V.7. Case and looks as above, 7 Transistors and diodes. Six wavebands, MW/L ${ }^{\text {W }}$, Trawler Band SW1 $\mathrm{SW} 2, \mathrm{SW} 3$, powerell by 9 V battery. Push pull output Telescopic rerial for short waves. 3in. Loudapeaker All parts including Case and Plans.

EIECTRONIC CONSTRUCIION KIIS

E.C.K. 2 Self Contained Multi-Band 8 transistors and 3 diodes. Push pull output 3in loudspeaker, gain controf, superb 9 section swivel ratchet and retractable chrome plated tele. sopic aerial, V.H.F. tuning capacitor, resistors, capacitors, transistors, etc. Will receive T.v. sound, public service band, aircraft, F.H.F. local trations, etc. Operates from a
Complete kit of parts $\mathbf{E T}$ I 5 P.P. and ins. 55p

E.C.K. 4

7 Transistors, 6 tuneable wavebands, MW. LW. Trawler Band, 3 Short Wave Bands. Receiver Kit
With 5 in $\times 3$ in londapeaker. I'ush pull output stage, gain control, and rotary switch. 7 transistors and 4 diodes.
6 section chrome-plated t.elescopic aeria! 8 in sengitive section chrome-plated telescopic aeria!, 8 in sensifive capacitors, ctc. Operatcs from a 9 volt $\mathbf{P} \mathbf{P}$, battery (nor supplied with kit).
Complete kit of parts $\mathbf{\ell 6 . 5 5}$ P.P. and Ins. 55p

EDU-KIT JUNIOR

Complety soder ess electronic Construction Kit. Build these projects without Soldering Iron or Solder

* Crystal Radio Medium Wave Coverage-No Battery necessary
* One Transistor Radio
* 3 Transiator Regenerative Raulio
* 3 Transistor Earpiece Radio Medium Wave Coverage $\star 4$ Transistor Medium Wave Loudspeaker Radio * Electronic Noise Gener
* 4 Transistor Push/Pu

All parts including loudspeaker, earpiece ar
Allat
Complete kit of parte

TRANSONA FIVE

NOW WITH $3^{\prime \prime}$
LOUDSPEAKER

Tuning condenser, 2 volume controts, 2 slider switches, fine tone 3 in moving coil speaker, terminal strip ferrite rod aerial, battery clips, 4 tag boards, 10 transistors, 4 diodes, resistors, capacitors. $3 \frac{1}{2}$ in knobs, Units once constructed are detachable irom master unit, enabling them to be stored for future use. Ideal for schools, educational authorities and all those interested in radio construction All parts including case and $\mathbf{S}+30$ P.P. and

JIFFY TESTER

Easy to buidd and operate, fits in the pocket. A quick checker for continuit y of resistors, chokes, tiodes, transistors, cirloudspeakers, SPECIAL APPLI-CATION-Can also be used as a versatile signal injector. Cont-
 plete with earpiece, jack plug and socket resistors, capacitors, components. etc

TO: RADIO EXCHANGE LTD.
61A High Street
Bedford MK4O 1SA
Tel.: 023452367 , REG NO. 788372

- Callers side entrance "Lavells" Shos
- Open 10.1, 9.30-4.30 Mon. Fri. 9.12 Sat

I enclosef

Name

Address
CONSTRUCTIONAL PROJECTS
GUITAR OVERDRIVE UNIT by J. D. Rogers
Get those overdriven amplifier sounds with this versatile effects unit 626
PROPORTIONAL RADIO CONTROL-3 by J.D. Whiteley
Details of the Servo Amplifier, Servo Drive and Relay Drive sections 630
POCKET TIMER by M. Plant
A portable interval timer with many applications648
KARNAUGH MAP DISPLAY by C. Cartlidge
A logic laboratory accessory 652
P.E. DIGISCOPE-2 by R.W. Coles \& B. Cullen
Remaining electronic circuitry of upper board together with constructional details 658
GENERAL FEATURES
INGENUITY UNLIMITED
Pulse Generator-F.E.T. Voltmeter-Rise Time Speed-up-Touch Switch-Better Display- Touch Tuner-Logic Probe 644
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices 665
RELAXATION OSCILLATOR CIRCUITS by P. Yap
Some applications of the complementary astable multivibrator 669
NEWS AND COMMENT
EDITORIAL-Down To The Sea 625
SPACEWATCH by Frank W. Hyde
Jupiter's Tail-Laser Satellite-Soviet Telescope-Solar Energy 636
IEA-ELECTREX SHOW by G. Godbold
Some exhibits seen at Birmingham's N.E.C. 639
MULLARD RESEARCH LABORATORIES
A review of some current work 643
BOOK REVIEWS
Selected books we have received 647
STRICTLY INSTRUMENTAL by K. Lenton-Smith
Electronic music matters 657
MARKET PLACE
Interesting new products 666
NEWS BRIEFS
British Amateur TV Club-Wireless Museum-British Amateur Electronics Club 670
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 673
PATENTS REVIEWThought provoking ideas on file at the British Patents Office674
Our September issue will be published on Friday, August 13, 1976(for details of contents, see page 651)precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable.We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those currentas we go to press.

B. BAMBER ELECTRONICS

Dept PE, 5 STATION ROAD, LITTLEPORT, CAMBS., CB6 10E
Telephone: ELY (0353) 860185 (2 lines) Tuesday to Saturday
PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

FREE WELLER 25W (SP25) SOLDERING IRON (worth [3-24 inc. VAT) wlth all orders over E20 MEAvY
HEAVY DUTY RELAYS. 2aV d.c. operated (around 10 , - 1 break contact. New. complete with mounting bracket (ideal for swliching MT on Linears) Many uses for this high qualliy unit $\$ 1.50$ each
Good Ouality Pressure Gwages. 2tin dla flange mounting 3 models avall $0-60 \mathrm{ib}$ sq.in,
$0-100 \mathrm{ib}$ sq in. $0-200 \mathrm{ib}$.sq in, state which E 1.25 aach
2 N 305 s iype Transistors. OK but unmarked. $2 \mathrm{~S}_{3} 305 \mathrm{~S}$

ALU.SOL ALUMINIUM SOLOER (made by Mult. core) Solders aluminium to itself or copper multicore flux. with instructions. ADprok 1 metre coll 30p pack Large reel lapprox 12 metres) 12.75.

MIXEO COMPONENT PACKS, contalning resisto's, capachors. switchen. Dots, alc. All new
(rancom sample bag revealed approx. 700 items., cz perple pack white stocks las!. TUNEO COILS, 2 section coils. around 1 MHz . with a black smart luning knob, which moves uses, easily rewounc. 3 for 50 p .
SMALL MAINS SUPPRESSORS IBMAll Chokes oeal for radio.
PERSPEX TUNER PANELS (for FM Band 2 tuners) marked $8 \mathrm{~A}-108 \mathrm{MHz}$ and Channele 0-70 clear numbers, rest blacked out, smart modern
appearance, size approx ofin. Iyin, 2 for 35 p. appearance, size approx 0$\} \mathrm{m}$, I ing, 2 for 35 p . leads. 4 for 50 p.
ImA Meters. 2 in square. plastic tronts linese have a paper scale sluck over the original marked
$0-1 \mathrm{~mA}$ which is eas liy peeled otf and an internal 10K restistor which is easily removed). E1.75 each or 2 for £3. MINIATURE PLIERS HIgh quali made in USA. [4. 35 + VAT (35p) in USA. 54.45 + VAT (44p).

HIGH QUALITY SPEAKERS, 8 Iin \times Ein elliptical. only 2 in deep inverse magnet. 4 ohms rated up 10 10W. $\mathrm{C1} \cdot 50$ esch. or 2 for $£ 2.75$ (aty discount
Ivallable $+12 \%$ VAT.
TV PLUGS AND SOCKETS
TV Plugs (metal type). 5 for 50 p .
TV Sockets (metal type). 4 tor 50 p . for 50 p. Plesie nod $12 \frac{1}{2} \%$ VAT.

PLUGS AND SOCKETS

NLTyPe Plugs 50 ohm 60 peach 3 tor $51-50$.
N -Typ N -Type Sockets (Whole chassig mounting onme (o small coax lead type), sop each
PL259 Plugs (PTFE), brand new. packed with recucers. 65 p or 5 for id
SO239 Sockets (PTFE) SO239 Sockets (PTFE). brand new (4 hole fixing type). 50p each or 5 for $\mathrm{c} 2-25$.
25 -way ISEP Plugs and Socke
25-way ISEP Plugs and Sockets, 40p se1 (1 plug
Plugs and sockets sold separately al 250 each. Bulgin Round Free Skis. 3 pln, for moins input
on leat equipment. etc. 2sp each
Mobile Converters. 24V DC input 13.8V at approx 3. AA DC output, fully stabilised. E3-50 lorry tattery).
\qquad
We now slock Spiralux Tools for the electronic enthusisst Screwdrivers. Nut Spannars BA and Metric sizes pop rivet ouns. etc SAE for list

```
1F Cans. \(\#\) in square.
tor \(30 \mathrm{p} .+12 \% \mathrm{VAT}\)
```

Minumare arphones with min jack plug. 2 for
TWIN I,F. CANS, approx. $11 \mathrm{I}_{\mathrm{x}} \mathrm{x}$ fink inn hrgh ars
1 can. insernally screened. 5 for $50 \mathrm{D}+12 \mathrm{t}^{2} \%$ VAT Oubilier Electrolytics. $50 \mathrm{uF}, 450 \mathrm{~V}, 2$ tor 50 p .
Oubilier Electrolytics. $100 \mathrm{wF}, 275 \mathrm{VV} 2$ for 50 p . Plessey Electrolytics. $470 \mathrm{uF}, 63 \mathrm{~V}, 3$ for 50 p . TCC Electrolytics. 1000 w . 30 V .3 for 50 p . Plessey Electrolyics. $1000 \mathrm{\mu F}$. 180 V . 40 p each 3 for 51). Oubitier Electrolytics. $5000 \mathrm{uF}, 35 \mathrm{~V}, 50 \mathrm{peach}$
Oubiler Electrolyics. $5000 \mathrm{uF} .50 \mathrm{~V}, 600$ each

PLEASE ADD 8% VAT UNLESS OTHERWISE STATED,

Electrolytics $6800 \mathrm{pF}, 25 \mathrm{~V}$, high grade.

terminals, with mounting clips, 50 p each Plessey Electrolytics, $10,000 \mu \mathrm{~F}$ at 63V, 75 p each
Plessey Cathodray Capactors. $0-0$ 4uF at 12.5 kV DC Screw torminals. $\Sigma 1.50$ each
PLEASE ADD $12 \% \%$ VAT TO ALL CADACITORS

A LARGE RANGE OF CAPACITORS AVA AT BARGAIN PRICES, S.A.E. FOR LIST

SPECIAL OFFER!

MAINS TRANSFORMEA TVDE 14/4. 14V at 4 A t2. 50.
TO3 thansistor insulator sels. 10 for 50 D
MINIATURE 2 PIN PLUGS ANO SOCKETS (hit into tin mole, oins enclosed, with covers for
chassis mounting. or ean be used for in-Hne connectors) Bargain pack of 3 plugs +3 sockets + covers. ${ }^{50}$ p.
PROGRAMMERS (magnelic devices) Contain 9 microswitches (suitsble for mains operation) with 9 rotating cams. all individually adjustable. or industrial machine programming (Need slow motlon motor to drive camm. not supplied) 9 swith version 51.50
HEAVY DUTY HEATSINK BLOCKS, undrilled oase areat 2 i in $=2 \mathrm{in}$ with 6 fins iotal neigh AUBBER MAGNETS fin square with mounting hole. 20 for 30 p
SPERAY 7.SEGMENT P.G.O. DISPLAVS. digit height o 3un red. with decimal polnts, 150 V to
200 V (nominal 180 V) operation these are highvoll industrial lype and therefore brighter than normal displays All brang now. AT THE
BARGAN PRICE OF 500 PEA DIGIT TYPE 332 BARGAIN PRICE OF SOD PEA OIGIT TYPE 332 (1wo diglte in one mount) 51 each. TYPE 333 single digut avallable J Data Supplled
BSX20 (VHF Osc. Mult). 3 for 50p
$B C 100$ (metal canl. 4 for 50 p .
$0 \mathrm{Cz00}$ Transistors. 8 for sop.

BCY72 Transistors, 4 for 500.
PNP audio type TOS Feansistora. 12 tor 250.
BF152 (UHF amp mixer). 3 for 50 p . BF152 (UHF amp mixer), 3 for 50 D 1N914 diodes. 10 for 25 p .

6 tor 300.
Mullard Tubular 6 , 6 Hur 50 T Tubular ceramic trimmers. 1 -18pF 1.C. eome coded it OIL type untested mixed, 20 for $25 p$.

WELLEA SOLDERING IRONS

 EXPERT, Bulle-in-spotlight Hlluminates work Pistor grtp with fingertip irigger. High atficiency EXPERT SOLDER GUN, SH.BO + VAT (54 s) EXPEAT SOLDER GUN KIT (spare bits case. otc.), $58 \cdot 80+\mathrm{VAT}$ (7 P p)SPARE BITS, PAIR, 30p \& VAT (20)
MARKSMAN SOLOERING IRONS

SP25DK 25 W + bits, otc kit cs $: 35$ + VaT (31p) SP40D 40 W ES. 44 +VAT (28p) BENCH STANO with spring for 22. $22+$ VAT (18p)
SPAAE BITS

MT8 for 15 W .48 s + VAT (40)
MT4 for 25 W .38 p - VAT $(3 \mathrm{p})$
MT10 for $40 \mathrm{~W} .42 \mathrm{~A} \%$ VAT (30
TCP1 TEMPERATURE CONTROLLED IGON Temperalure controlled fron \& PSU, 520 + VA
(51.80) SPARE TIPS
Type CC single flat. Type K double flat fine tip. Type p. very fine tip.
ALL SPARES AVAILABLE
multicore solder
Size 5 Savblt 18 s.w.g in alloy dispenser. 32p + VAT (
Size
C1SAV
18 Savbit 18s.w.g., $56 \mathrm{p}+$ VAT (40). Size 12 SAVBIT $18 \mathrm{~s}-\mathrm{w.g}$. on platic real E1-80

+ VAT (15p)

Terms of gusiness: CASH WITH ORDER. MINIMUM ORDER £1. ALL. PRICES INCLUDE POST \& PACKING (UK ONLY). SAE with ALL ENQUIRIES Please. PLEASE ADD VAT AS SHOWN. ALL GOODS IN STOCK DESPATCHED BY RETURN CALLERS SATURDAYS ONLY 9.30-12.00. 1.30-5.00.

Dimmit range of light dimmers and lighting conirol systems

lllustrated is the popular PMSDI000 module. A HW slider control dimmer, interference sup.
pressed, 60 mm slider range size $4 \times 2 \times 1$ in. Ideal for low cost stage and disco lighting. Used by schools, theatres, studios, etc. Complete with scale plate, fixin screws and full instructions. $\mathbf{i n} 9.06$

Complete compact light dimmer systems for stage, club and disco ighting, etc.

DD6IM (illustrated). Six IkW channels, six outlet sockets, master control, mains on/off switch, size $23 \times 8 \frac{1}{2} \times 5 \mathrm{in}$. Price $\mathbb{1} 140 \cdot 40$ inc. VAT.

DD61-B. Six lkW channels, using module PMSD 1000 , lowest cost system. Sizel $6 \frac{1}{1} \times 8 \times 5 \mathrm{in}$. Price $\mathbf{£ 6 4} 50$ inc. VAT.

DD62M. As DD6IM but with six 2 kW channels, size $25 \times 10 \frac{1}{2} \times 6 \mathrm{in}$. Price $\mathbf{6 2 0 5} \mathbf{2 0}$ inc. VAT.

Add $\mathbf{£ 2 . 2 0}$ postage and packing for all systems.

The Dimmit range includes rotary and slider control dimmers and sound to light converters for home, entertainment and professional applications. Ratings $1 \mathrm{~kW}, 2 \mathrm{~kW}, 3 \mathrm{~kW}$.

All products are guaranteed and are supplied with full instructions and applications. Full after-sales service. Technical advice given

For full information on all modules and lighting control systems send I5p for our illustrated catalogue and price list. Callers welcome, visit our showroom for a demonstration of any of the modules or systems. Mon.-Fri. 9.30 to 6.0 p.m. Sat. by arrangement.

184 Royal College Street, London NW1 9NN Tel. 01-267 0201

SUPERB VALUE AT

£7.80

WITH ACTIVE TONE CONTROL CIRCUITRY

UNIT 1, latest addition in the suriling Sound range of realistically priced constructional modules is going to assure many, many more constructors of obtalning quallty where structors of obtaining quality where Price has prevented it betore. is guaranteed and easy to connect up.

MADE IN OUR OWN FACTORY IN ESSEX POWER AMP Built for hard work

40 WATTS
R.M.S.

INTO 4Ω

£3.95

$+8 \%$ VAT

Resulting from research and development, the Mk. 3 version of thit most popular power amp. now Includes bullt-In output capacltor with improved stablity under severest working conditions. Greatly used for P.A., disco and similar work, SS140 offers fantastic value for the price

Build and save with Stirling Sound
 BASIC MODULES FOR BUILDING UP TO A STEREO TUNER-AMP

 \star POWER AMPSSS125 De-luxe hi-fi 25 W r.m.s. power amp. with a fantastic distortion rating of only 0.04% at all levels. 25 W into 8 ohms using 50 V supply
SS103 3 W r.m.s. amplifier incorporating I.C/SL60745 With current, short-circuit and thermal protection
SL103-3 Stereo version of above using 2 I.C.s
SS105 5 W amplifier to run from 12 V ($3 \frac{1}{2}$ in $\times 2$ in $\times \frac{\operatorname{zin}}{}$)
SS110 Mk. 3 Similar to SS105 but more powerful giving 10 W into 4 ohms, using 24 V
SS120 Mk. 320 W module when used with 34 V into 4 ohms

* CONTROL

SS100 Active tone control, stereo, $\pm 15 \mathrm{~dB}$ cut and boost with suitable network
SS101 Pre-amp for ceramic p.u., radio and tape with
SS102 Stereo pre-amp with R.I.A.A. equalisation mag., p.u., tape and radio in

* POWER STABILISER

SS300 Add this to your unstabilised supply to obtain a steady working voltage from 12 to 50 V for your audio system, workbench etc. Money saving and very reliable

* F.M. TUNING

SS201/X Front end, geared drive capacity-tuning, 88-108 MHz. AFC facility
SS202 I.F. amp A metes and/or A.F.C. can be connected (size 3 in $\times 2$ in)
SS203 Stereo decoder
For use with Stirling Sound modules, or with any other good mono F.M. tuning section. A L.E.D. beacon can be added to indicate when a stereo signal is tuned in ($3 \mathrm{in} \times 2 \mathrm{in}$)

TERMS OF BUSINESS:
 We have entended our premises and
opened up new demonstration
showroom, All welcome. showroom, All welcom.

Stirling Sound £5.00

£1.75
 £3. 25

 £2. 25$$
\text { £2. } 75
$$

£3. 25
£1-60

£1.60

L2. 25

E3•25*

2. 75

POWER

Not only do these excellent power packs stand up unflinchingly to hard work, inclusion of a take off point at around $13-15 \mathrm{~V}$ adds to their usefulness and once again price value is outstanding.
Add 50p for p/p any model.
Made to serve for years

SS312	$12 \mathrm{~V} / 1 A$	$£ 3 \cdot 75^{*}$
SS318	$18 \mathrm{~V} / 1 A$	$£ 4 \cdot 15^{*}$
SS324	$24 \mathrm{~V} / 1 A$	$£ 4 \cdot 60^{\star}$
SS334	$34 \mathrm{~V} / 2 A$	$£ 5 \cdot 20^{\star}$
SS345	$45 \mathrm{~V} / 3 A$	$£ 6 \cdot \mathbf{2 5}^{*}$

Direct from the makers and obtalnable only Irom Bi-Pre.Pak Lid. Striling Sound products are deslgned by protesslonal experts and made In our own factory. They are distributed exclusively through Bi-Pre-Pak Lid.

VAT at 121% muat be added to total value of order except for item marked * or $\mathrm{KB}_{\mathrm{B}} \%$) when VAT is to be added, at 8%. No VAT on overseas orders. POST
 ofder acceptable- £1. Overseas orders, add $£ 1$ for postage. Any difference
will be credted or charged. PRICES subject to alteratlon without notlce. WVAILABILITY. All items avallabie at timb of golng to press when every effort is made to ensure correctness of information.

TO STIRLING SOUND
ROAD, WESTCLIFF-ON-SEA, TO STIRLING SOUND
ROAD, WESTCLIFF-ON-SEA, ROAD, WESTCLIFF-ON-SEA, ESSEX SSO GDF

Please send

Inc. V.A.T
NAME
ADDRESS

222224 WEST ROAD, WESTCLIFF-ON-SEA: ESSEX SSO 9ÓF.

GREENWELD

443 Millbrook Road Southampton SO1 ロHX Tel：（ロフロЗ）フ72501

All mail orders and callers to this address please－cillers only to 21 Deptford Broadway，SE8（Tel．01－692 2009）and 38 Lower Addiscombe Road，Croydon

NEW 44 PAGE CATALOGUE
10p＋LARGE S．A．E．
DIGITALI．C．

DIGITAL I．C．					
7400	10p	7450	13p	7495	62
7401	12p	7451	12p	7496	729
7402	12p	7453	12p	74107	340
7404	15p	7454	12p	74121	$30 p$
7405	${ }^{20 p}$	7460	129	74122	46p
7406	25p	7472	24p	74123	54p
7408	12p	7473	24p	74132	40p
7410	11p	7474	24p	741501	14p
7413	25p	7475	44p	741541	120p
7414	54p	7478	24p	74155	82\％
7420	12	7483	7 p	74157	58p
7430	14	7486	35 p	741591	
74：2	18p	7490	40p	74174	829
7437	16p	7481	84	741791	100p
7440	13p	7492	45 p	741801	100p
7447	7\％	7493	45	743671	$100 p$

LINEAR I．C．

741 25p： 555 40p； 723 （T009） 50 p
Plastle Vohage；Requilatore：
TO126 cole 5 V 600mA ROp， 12 V 500 mA 100

ANSISTORS		BD131	${ }^{319}$
${ }^{\text {AC127 }}$	15p	BD132	40 p
AC128	15p	BFY50	15
AC178	16p	BFY51	15p
AC187	18p	BFY52	15p
AC188	1sp	TIP41A	
AD161	35p	TIP42A	
${ }_{\text {A0162 }}$	35p	－TIP2855	96p
BC107	10p	TIP3055	42p
BC108	10p	2N2219	29p
BC109	10p	2N2369	22p
BC109C	15p	2N2346	429
BC147	10p	2N2928G	12p
BC148	10p	2 N 3053	1sp
BC149	10p	2 N 3054	40 p
BC157	10p	2N3055	
BC158	10p	2N3440	54 p
BC159	10p	2 N 3412	81．20
BC169	1sp	2N3702	10 p
BC182	12	2N3703	10p
BC183	12p	2 N 3704	100
BC184	12	2N3705	100
BC212	14 p	2N3708	100
BC213	14p	2N3819	220
BC214	14 p	2 N 4059	10 p
BCY70	15p	2N4418	100
BCY71	15p	2N5294	30 p
BCY72	15p	40873	50p

DIODES AND LEDs AND SCR＇s 500 V 5A SCR 45p；400V 2A Triac 80p Diac BR100 2p； 400 V YAA Triac E1－50； LED 15p； 0.2 in LED Red 22p；green． Yellow or amber 24 p
1N4002 50
1N4148 4p；BYY27 12p；1N4007 Fp 400 V 3 A 15 p ；OAB1 5p；OA915p 12 $50 V$ 1A bridge 22p； 800 V 1A 40p $250 \mathrm{~V} 2 \dagger \mathrm{~A} 40 \mathrm{p}$
50030 A rect．+ or－gutud 40 p
Zenerb 400 mW BZYB8．All voltages 1.3 W io 30 W

RESISTOAS
Carbon film 5\％tW miniature．All values In E12 meries from in to $10 \mathrm{M} \Omega$（over $1 \mathrm{M} \Omega 10 \%$ ） 1 ＋
Motal Film 5\％1W．All values in E12 series from $27 \cap$ to $10 \mathrm{M} \Omega 2 \mathrm{tP}$ ． 1% and cotion－SAE for liate of over 250 vilues Wirawound 5 W all values from in to 47k 10p each．

TRANSFORMERS

$6-0-8 \mathrm{~V} 100 \mathrm{~mA} 90 \mathrm{p} ; 9-0-9 \mathrm{~V} 100 \mathrm{~mA} 95 \mathrm{p}$ ； $12-0-12 \mathrm{~V}$ 50mA $90 \mathrm{p} ; 12-0-12 \mathrm{~V} 100 \mathrm{~mA}$
 $1+\mathrm{A}$ ह1．95； $6-0-6 \mathrm{~V} 1+\mathrm{A} \mathrm{E2} \cdot 30$ ； 12 V
 c2．30；30－0－30V 1 A £3－70．
Multitapped type to give 3，4，5．6． 8 ． 10．12．15，18， 20,24 or 30 V ．or
 56．50．EBill transtormar in white case gives 4,8 or 12 V 1 A \＆2． $55-0-55 \mathrm{~V}$ 5A ع8． 50 ．

WIRE
Enamelled copper wire on $20 z$ reols SWa／price： $18 / 32 \mathrm{p}, 18 / 34 \mathrm{p}, 20 / 38 \mathrm{p}$, $32 / 4 \mathrm{p}, 34 / 50 \mathrm{p}, 38 / 52 \mathrm{p}, 38 / 54 \mathrm{p}, 40 / 5 \mathrm{p}$ ．
RF CHOKES
$0.75,8.8,10,27,47,88 \mu H$ ，all 10 p ach； $1.5,2.5,5.0,7.5 .10 \mathrm{mH}$ ，a 0p ach

CAPACITORS
Ceramic plate．22pF to $1,000 \mathrm{pF}$ 2pi polyester 000 to $6.800 \mathrm{pF} 5 \mathrm{p} ; 0.01$ $0.015,0.022,0.033,0.047,0.068,0.1 \mathrm{mF}$ 4p； $0.15,0.22 \mathrm{mF} 5 p ; 0.33 \mathrm{Gp} ; 0.47 \mathrm{mp}$
$0.88 \mathrm{tep} ; 1 \mathrm{mF} 12 ; 2.2 \mathrm{mF} 18 ; 3.3 \mathrm{mF}$

24 p ．

Polyatyrene 10 pF to $1,000 \mathrm{pF}$ 4p； $1,200 \mathrm{pF}$ to $10,000 \mathrm{pF} \mathrm{ep}$ ．All $2+\%$
Electrolytics：
Al $25 \mathrm{~V}: 0.47,1,2.2,4.7,10,22,47 \mathrm{mF}$ 6p； $100 \mathrm{mF} 7 p ; 220 \mathrm{mF}$ Ap； 470 mF 11p； 1，000mF $18 \mathrm{p} ;{ }^{2} 200 \mathrm{mF}{ }^{27 \mathrm{p} ;} 40 \mathrm{~m}:{ }^{47 \mathrm{mF}}$ $1.000 \mathrm{mF} 374 \mathrm{p} ; 2,200 \mathrm{mF}$ 4ep．
Tantalum bead，mF／V： $0.1 / 35 ; 0.22 / 35$ ； $0.33 / 35 ; 0.47 / 35 ; 1 / 35 ; 2 \cdot 2 / 16 ; 2 \cdot 2 / 35$ $3 \cdot 3 / 35 ; 4 \cdot 7 / 35 ; 6 \cdot 8 / 35 ; 10 / 16 ; 10 / 25 ; 15 / 10$ 22／8－3；22／10；22／18：33／10：47／6－3：100／3． 11p each．

VEROBOARD
100 eq．In good slze offcuts．Mixed．or all 0.121 － 30.
ALUMINIUM BOXES
Complete with base and PK Screws．
AB7， $133 \times 70 \times 38 \mathrm{~mm}$
AB8 $\quad 102 \times 102 \times 38 \mathrm{~mm}$
AB0 $\quad 102 \times 70 \times 38 \mathrm{~mm}$
$A B 10 \quad 102 \times 133 \times 38 \mathrm{~mm}$
AB11 $102 \times 84 \times 51 \mathrm{~mm}$
$\begin{array}{ll}\text { AB12 } & 78 \times 51 \times 25 \mathrm{~mm} \\ \text { AB13 } & 152 \times 102 \times 51 \mathrm{~mm}\end{array}$
AB14 $178 \times 127 \times 64 \mathrm{~mm}$
AB14 $203 \times 127 \times 64 \mathrm{~mm}$
$\begin{array}{ll}\text { AB15 } & 203 \times 152 \times 78 \mathrm{~mm} \\ \text { AB18 } & 254 \times 178 \times 76 \mathrm{~mm}\end{array}$
$\begin{array}{ll}\text { AB18 } & 204 \times 178 \times 78 \mathrm{~mm} \\ \text { AB17 } & 254 \times 114 \times 76 \mathrm{~mm}\end{array}$
$\begin{array}{ll}\text { AB } 18 & 307 \times 128 \times 76 \mathrm{~mm}\end{array}$
AB19 $307 \times 203 \times 76 \mathrm{~mm}$
AB23 $102 \times 102 \times 64 \mathrm{~mm}$ $\begin{array}{ll}\text { AB24 } & 133 \times 102 \times 84 \mathrm{~mm} \\ \text { AB25 } & 152 \times 102 \times 76 \mathrm{~mm}\end{array}$ AB25 $152 \times 102 \times 76 \mathrm{mt}$
VEROBOXES AND CASES
Professional 2 part boxes made of dark and light grey high impect polyetyrene． and $120 \times 65 \times 40 \mathrm{~mm}$ mact polyatyrene $2520150 \times 60 \times 50 \mathrm{~mm}$ $2522188 \times 110 \times 60 \mathrm{~mm}$ $2523220 \times 174 \times 100 / 52 \mathrm{~mm}$ for mixers ases．Whites tront and back aluminium and bottom lot in．Type；
$1411205 \times 140 \times 40 \mathrm{~mm}$
$412205 \times 140 \times 75 \mathrm{~mm}$
$1237154 \times 85 \times 40 \mathrm{~mm}$
$1238154 \times 85 \times 60 \mathrm{~mm}$
$1239154 \times 85 \times 80 \mathrm{~mm}$
small general purpoes piatic $\mathbf{5 2} .75$ $14131 \times 40 \times 24 \mathrm{~mm}$

DEVELOPMENT PACKS
Save Eccc＇s by buying full range of components at one OO ＇All fuli spec 50 V ceramic plate capacitors $5 \% 10$ of each value． 22 pF to 1.000 pF ．Total 210 capacitors $22 \cdot 70$ ．
CR25 carbon film resistors．+ watt 5% 10 of each value 10 n to M Mn ．total 610 Ef－ 00.
Extended range．I ohm to 10 M 850 esistors 5 － 30 ．
lectrolytics，wire ended 25 V working each oi．1．2－2，4．7，10，22， 47 and 280 polyesters 18 for $\mathbf{~} 3 \cdot 20$ ．
0.015 polyesters， 10 of each value： 0.01 $\begin{array}{lllll}1, & 0.022 . & 0.033 & 0.047 & 0.068\end{array}$ ¢ $4 \cdot 00$ ．
Zeners． $400 \mathrm{~mW} 5 \%$ BZY88． 10 each $3 V, 1030 \mathrm{~V}$ total 260 E 14.00 ．
pack． 5 of each value se． 20 ．
$0.1 / 35$ to $100 / 3$ ． 10 of 14 values from Caps $\$ 11 \cdot 00$

[^0]
ANNDUNCEMENT

Rhythm Generator．

TANGO．CHA CH_{4} ．MARCH．${ }^{(1)}$ MMA．
ALL COMPONENT
PARTS ARE
AVAILABLE
SEPARATELY，S．A．E． FOR LISTS，OR FOR
PRICING．
Tel．0246－31475

FULL KIT：$£ 37 \cdot 50+£ 1 \cdot 00$（includes＇V．A．T．）
KIT INCLUDES NEW UPDATED P．C．B．＇s
With Printed layout for easay asaembly，all components＂nice＂switches and knobs，case，in fact everything you need to complete this very exciting Project．
P．C．B．＇s ARE AVAILABLE SEPARATELY
Set of NEW UPDATED P．C．B．＇s with a printed layout，made in firat class
quality flbre－glase，by a well known national company．

Price on application to：
ASTRO／WKFINC．
1 QUEEN STREET NORTH WHITTINGTON MOOR CHESTERFIELD，
DERBYSHIRE
SPECIAL OFFER

Do you wath promotion．a better job higher pay？＂New Opportunities＂，hows you how ty course There are no books to buy and you can pay－ne－you－learn．

sata Marshall's

A Marshall (London) Ltd Dept: PE 40/42 Cricklewood Broadway London NW2 3ET Tel: 01-452 0161/2 Telex: 21492
\& 85 West Regent St Glasgow G2 200
Tel: 041-332 4133
\& 1 Straits Parade Fishponds Bristol BS16 2LX Tel: 0272-654201/2
\& 27 Rue Danton Issy Les Moulineaux
Paris 92

Top 500 Semiconductors from the Largest Range in the U.K

2N456	0.80	Yellow	0.12	2N5190	0.92	AF10sa	0.40	BC207	0.12	BF 160	0.23	LOO57 1 LM380	$\begin{aligned} & 1.50 \\ & 0.98 \end{aligned}$	OC42 OC45	$\begin{aligned} & 0.50 \\ & 0.32 \end{aligned}$
2N456A	0.85	Orange	0.12	2N5191	0.96	AF114	0.35	BC208	0.11	BF163	0.32	LM381	2.07	OC71	0.17
2N457A	1.20	2N3053	0.25	2N5192	1-24	AF115	0.35	BC212	0.16	BF166	0.40	LM702C	0.75	OC72	0.25
2N490	4.00	2N3054	0.60	2N5195	1.46	AF116	0.35	BC212L	0.16	BF167	0.25	LM709		OC81	0.25
2N491	4.38	2N3055	0.65	2N5245	0.29	AF117	0.35	BC214L	0.18	BF173	0.27	TO99	0.38	OC83	0.24
2N492	5.00	2N3390	0.45	2N5294	0.48	AF118	0.35	BC23 ${ }^{\text {c }}$	0.16	BFF177	0.29	8DIL	0.45	ORP12	0.60
2N493	5.20	2N3391	0.28	2N5295	0.48	AF124	$0 \cdot 30$	BC236	0.15	BF178	0.35	140iL	0.40	R53	1.80
2N696	0.22	2N3391A	0.29	2N5296	0.48	AF125	0.30	BC239	0.15	BF179	0.43	LM710	0.47	SL414A	$2 \cdot 35$
2N697	0.16	2N3392	0.15	2N5298	0.50	AF126	$0 \cdot 28$	BC251	0.25	BF180	0.35	LM723C	0.66	SL610C	$2 \cdot 35$
2N698	0.82	2N3393	0.15	2N5457	0.29	AF127	0.28	BC253	0.25	BF 181	0.36	LM741		SL611C	$2 \cdot 35$
2N699	0.59	2N3394	0.15	2N5458	0.26 0.29	AF139	0.65	BC257	0.16	BF182	0.35	T099	0.40	SL612C	$2 \cdot 35$
2N706	0.14	2N3402	0.18	2N5459	0.29 0.58	AF186	0.46	BC258	0.16	BF 183	0.35	8 DIL	0.40	SL620C	3.50
2N706A	0.16	2N3403	0.19	2N5492	0.58	AF200	0.65	BC259	0.17	BF184	0.30	140IL	0.38	SL621C	$3 \cdot 50$
2N708	0.17	2N3414	0.20	2N5494	0.58	AF239	0.65	BC261	0.25	BF185	0.30	LM747	1.05	SL623	5.75
2N709	0.42	2 N 3415	0.21	2N5496	0.61	AF240	0.90	BC262	0.22	BF194	0.12	LM74B		SL640C	4.00
2N711	0.50	2N3416	0.24	2N5777	0.45 0.45	AF279	0.70	BC263	0.25	BF195	0.12	8DIL	0.44	SL641C	4.00
2N718	0.23	2N3417	0.29	2N6027	0.45	AF280	0.79	BC300	0.38	BF196	0.13	14DIL	0.41	SN76003N	2.92
2N718A	$0 \cdot 28$	2N3440	0.59	3N128	3	AL102	1.00	BC304	0.34	BF197	0.15	LM3900	0.61	SN76013N	1.95
2N720	0.57	2N3441	0.97	3N139	2	AL103	1.00	BC302	0.29	BF198	0.18	LM7805P	1.60	SN76023N	$1 \cdot 60$
2N914	0.22	2N3442	1.40	3N140	. 00	BC107	$0 \cdot 14$	BC303	0.54	BF200	0.40	LM7812P	1.60	SN76033N	2.92
2N916	0.28	2N3638	0.15	3N141	0.81	BC108	0.14	BC307	0.17	BF225	0.23	LM7815P	1.60	ST2	0.20
2N918	0.32	2N3638A	0.15	3 N 200	2.49	BC109	0.15	BC308A	0.15	BF244	0.21	LM 7824 P	1.60	TAAz63	1.20
2N929	0.25	2N3639	0.27	40361 40362	0.40 0.45	BC113	0.15	BC309C	0.20	BF245	0.45	MC1303	1. 50	ta4300	1.84
2N930	0.26	2N3641	0.17	40362	0.45 0.88	BC115	0.17	BC317	0.12	BF246	0.58	MC+310	2.50	TAA350	1.96
2N1302	0.19	2N3702	0.12	40363 40389	0.88 0.46	BC116	$0 \cdot 17$	${ }^{\text {BC3 }} 318$	0.12	BF247	0.65	MC1330P	0.90	TAA550	$0 \cdot 32$
2N1303	0.19	2N3703	0.13 0.15	40389 40394	0.46 0.56	BC116A	0.18	BC337	$0 \cdot 20$	BF254	0.19	MC1351P	0.80	TAA611C	$2 \cdot 18$
2N1304	0.26	2N3704	0.15	40394 40395	0.56 0.65	BC117	0.21	BC338	0.20	BF255	0.19	MC1352P	0.80	TAA621	2.03
2N1305	0.24	2N3705	0.15	40395	0.65	BC118	0.14	BCY30	1.03	BF257	0.47	MC1466	3.50	TAA661B	$1 \cdot 32$
2N1306	0.31	2N3706	0.15	40406	0.44	8C119	0.29	BCY31	1.06	BF258	0.53	MC1469	2.75	TBA641B	$2 \cdot 25$
2N1307	0.30	2N3707	0.18	40407	0.35	BC121	0.35	BCY32	1.18	BF259	0.55	ME0402	0.20	TBA651	1.69
2N1308	0.47	2N3708	0.14	40408	0.50	BC125	0.16	BCY33	0.96	BFP39	0.24	ME0404	0.13	TBA800	0.89
2N1309	0.47	2N3709	0.15	40409	0.52	BC126	0.23	BCY34	1.00	BFRT9	0.24	ME0412	0.18	TBA810	0.98
2N1671	1.54	2N3710	0.15 0.15	40410 40411	0.52 2.00	BC132	0.30	BCY38	1.00	BFS21A	2.30	ME4 502	0.11	тBA820	$0 \cdot 80$
2N1671A	1.67	2N3711	0.15	4041 40594	2.00 0.74	${ }^{8 C 134}$	0.13	BCY39	1.50	BFS28	1.36	ME4 104	0.11	TBA920	1.79
2 N 1671 B	1.85	2N3712	1.20	40594 40595	0.74 0.84	8C135	0.13	BCY40	0.97	BFS61	0.27	M. 4 480	0.95	TIL209	0.35
2N1711	0.27	2N3713	1.20 1.38 1	40595 40601	0.84 0.67	BC136	0.17	$\mathrm{BCY}^{\text {c }}$	0.28	BFS98	0.25	MJ481	1.20	TIP29A	0.49
2N1907	5.50	2N3714 2N3715	1.38 1.50	40601 40602 4	0.67 0.61	BC137 BC 140	0.17 0.68	BCY58	0.30	BFX29	0.35	MJ490	1.05	TIP29C	0.80
2N2102 2N2147	0.60 0.78	2N3715 2N3716	1.50 1.80	40603	0.61	BC140 BC141	0.68 0.68	BCY59 BCY70	0.32 0.17	BFX 30 BFX84	0.34 0.30	MJ497	1.45 1.00	TIP30A TIP30C	0.58 0.85
2N2148	0.94	2N3771	$2 \cdot 20$	40604	0.56	BC142	0.23	BCY71	0.17 0.22	BFX84 BFX85	0.30 0.35	MJ2955 M E 340	1.00 0.48	TIP30C	0.85 0.62
2N2160	0.90	2N3772	1.80	40636	1.10	BC143	0.25	BCY72	0.18	BFX87	0.28	M JE2955	1-20	TIP31C	1.00
2N2218A	0.47	2N3773	2.65	40669	1.00	BC147	0.10	ED115	0.75	BFX88	0.30	MUE3055	0.75	TIP32A	0.74
2N2219	0.42	2N3789	2.06	40673	0.73 0.20	EC148	0.09	BD116	0.75	BFX89	0.90	MUE370	0.65	TIP32C	1-25
2N2219A	0.52	2N3790	2.40	${ }_{\text {AC126 }}$	0.20 0.40	BC149	0.13	80121	1.00	BFY50	0.30	M U E37 1	0.75	TIP33A	1.01
2N2220	0.25	2N3791	2.35	${ }^{\text {ACl127 }}$	0.40	BC153	0.18	80123	0.82	8FY5	0.28	MUESTO	0.60	TIP33C	1.45
2N2221	0.18	2N3792	2.60	AC128	0.35	BC154	0.18	BD124	1.20	BFY52	0.30	MJE521	0.70	TIP34A	1.51
2N2221A	0.21	2N3794	0.24	${ }_{\text {AC151V }} \mathrm{AC152V}$	0.27	EC157	0.16	80131	0.40	BFY53	0.26	MP8111	0.32	TIP34C	2.60
2N2222	0.20	2N3819	0.37	AC152V AC153	0.49	BC158	0.16	BD132	0.50	BFY90	1.27	MP8112	0.40	TIP35A	2.90
2N2222A	0.25	2N3820	0.29	AC153	0.35 0.40	8C160	0.78	ED135	0.21	BRY39	0.48	MP8113	0.47	TIP36A	3.70
2N2368	0.17	2N3823	0.58	AC153K AC154	0.40 0.25	BC1678	0.15	B0136	$0 \cdot 22$	BSX20	0.28	MPF102	0.39	TIP41A	0.79
2N2369	0.20	2N3904	0.19	AC176	0.25 0.41	BC1688	0.15	BD137	0.24	BS×21	0.30	MPSA05	0.25	TIP41C	1.40
2N2369A	0.22	2N3906	0.19 0.67	AC176 AC 176 K	0.41 0.40	BC168C	0.15	8D138	0.26	8U105	2.50	MPSA06	0.31	TIP42A	0.90
2N2646	0.55	2 N 4036	0.67 0.42	AC187K	0.40	BC169B	0.15	6D139	0.71	BUZ05	2.50	MPSA12	0.35	TIP42C	1.60
2N2647	0.98	2N4037	0.42	AC187K	0.35 0.40	BC169C	0.15	BD140	0.87	C106D	0.65	MPSA55	0.25	TIP2955	0. 98
2N2904	0.40	2N4058	0.18	AC188K AC187)	PR	BC170A	0.15	BD529	0.80	CA3020A	1.80	MPSA56	0.31	TIP3055	0. 50
2N2904A	0.45	2N4059	0.15	AC187)	0.95	BC171 BC172	0.16	BD530	0.80	CA3028A	0.79	MPSU05	0.65	TIS43	$0 \cdot 28$
2N2905	0.47	2N4060	0.15	AC188)	0.95 0.57	BC172 BC177	0.12	BDY20	1.05	CA3035	1.37	MPSU06	0.58	ZTX300	0.13
2N2905A	0.50	2N4061	0.15 0.15	AD143	0.58	BC177 BC178	0.19	BF115	0.29	CA3046	0. 70	MPSU55	0.63	$2 T \times 301$	0.13
2N2906	0.33	2N4062	0.15 0.21	AD 149 V	0.68 0.74	BC178 BCiP9	0.18	BF117	0.55	CA3048	2. 11	MPSU56	0.80	ZTX302	0.20
2N2906A	0.42	2N4126	0.21	ADI50	1.15	${ }^{8 C 179}$	0.21	BF121	0.35	CA3052	1.62	NE555V	0.70	2TX500	$0 \cdot 15$
2N2907	0.22	2N4289	0.34			BC182	0.12	BF123	0.35	CA3080A	1.08	NE556	1.30	ZTX501	0.13
2N2907A	0.24	2N4919	0.95			8Y182L	0.12	BF125	0.35	CA3089E	1.96	NE560	4.48	ZTX502	0.18
2N2924	0.20	2N4920	1.10		0.69	BC183	0.12	BF152	0.20	CA30900	4.23	NE561	4.48	ZTX530	$0 \cdot 23$
2N2925	0.20	2N4921	0.83	AD 162$\}$		BC183L	$0 \cdot 12$	BF153	0.25	LM301A	0.48	NE565A	4.48	ZTX531	$0 \cdot 22$
2N2926		2N4922	1.00 1.00	AD 106	1.58 0.40	BC184 BC.184L	0.13	BF154	0.20	LM308	1-17	OC28	1.48		
Green	0.12	2N4923	1.00	AF 106	$0 \cdot 40$	Br.184L	0.13	SF159	0.27	LM309K	1.88	OC35	1.16		

NEW RANGE TOOLS-HIGH QUALITY MINIATURE ELECTRONIC PLIERS INSULATED HANDLES
Round nose box joint 4 in
long
Diagonal cutters box joint
4in long
Flat nose box joint 4 in long
$\mathbf{~} 2.80$ Flat nose box joint tin long $£ 2.40$
Snipe nose box joint tin long $£ 2.40$
P.C. MARKER PEN-DALO 33PC. 87p

ZENER DIODES 400 MW 11p, IW 17p, 2.5 W 35 p
is sock

16 SOCKETS 8 DIL 12p, 14 DIL 14p, 16 DIL
16p. \%W 3p (100 per value 0.02 p)
CORPIO CAR IGNITION KIT £12.75
JUMBO 7 SEGM
DL $707 £ 1.75$.
MINITRON $£ 1.50$.
MINITRON $£ 1 \cdot 50$.

SEE MARSHALL'S FOR CMOS

NEW REDUCTIONS FOR TTL
SN7400 SN7401
SN7402 SN7402
SN
SN403 SN7 103
SNT404 SN7404
SN705 SN7405
SN7406 SN7406
SN7407
SN7408

SN7409 | 0.16 | SN7410 |
| :--- | :--- |
| 0.16 | SN7411 |
| 0.16 | SN712 |

0.16 SN7432 0.22 SN74 \begin{tabular}{|ll|ll|l|}
\& 0.20 \& SN7437 \& 0.22 \& SN744

SN7412 \& 0.28 \& SN745

SN74 \& 0.22 \& SN7438 \& 0.29 \& SN75

SN7413 \& 0.22 \& SN7438 \& 0.28 \& SN745

SN7416 \& 0.28 \& SN7440 \& 0.16 \& SN7453

SN7413 \& 0.28 \& SN7440 \& 0.16 \& SN7453 \& 0.16

SN7416 \& 0.28 \& SN7441AN \& 0.68 \& SN7454 \& 0.16

SN7417 \& 0.28 \& SN7442 \& 0.65 \& SN \& 0.1645 \& 0.29

SN7420 \& 0.23 \& SN

36 \& SN7417

SN7420

SN7423
\end{tabular} SN7420

SN7423

SN7425 \begin{tabular}{l|l}
0.19 \& SN7425

SNT727

\& SN7430

\& SN7445 \& 0.65 \& SN7460

SN7446 \& 0.84 \& SN7470

SN7472

SN7446 \& 0.84 \& SN7472

SN7447 \& 0.80 \& SN7473
\end{tabular}

15% DISCOUNT FOR 100

. 0. | 0.45 | SN |
| :--- | :--- |
| 0.45 | SN |
| 0.75 | SN |
| 0.68 | SN |

SN74141	0.75	SN74167	3.30					
SN74145	0.72	SN7474	0.99					
SN4	1.20	NN4175	0.70					
:---	:---							
18	0.90							
0.16								
53	0.16							
0.16								
0.16								
70	0.16							
72	0.29							
COUNT	0.31	SN7474		SN7475	0.45			
:---	:---	:---						
SN7492					SN7476	$\mathbf{0 . 3 0}$	SN7493	
:---	:---	:---	:---					
SN7494						SN74880	0.42	SNN494
:---	:---	:---	:---					
SN74481	1.00	SN749			SN7482	0.00	SN7496	
:---	---:	---:						
SN748	0.05	SN74100		SN 7483	0.65	SN74100		
:---	:---	:---						
SN7	0.82	SN 74107			SN7484	0.82	SN74107	
:---	:---	:---	:---					
SN7	0.95	SN74118		SN7484				

SN7485 SN7486		0.29	SN74121
	0.42	SN74122	$\begin{array}{ll}\text { SN7430 } & 0.23 \\ 0.15\end{array}$

OIN PLUGS- 18 D DIN CHASSHS SOCKETS- $11 p$ 3-pin, 4 -pin, 5-pin 180°. 5-pin 240°, 6-pin spkr., 7 -pin

FREE SOCKETS-18p each
3 pin. 5 pin 180° and spkr plugs

BULGIN PLUGS AND SOCKETS
P73 standard- 3 pln mains (male socket) 50p per pair P437 standard- 3 pin mains outout (maie plug) 70 par

JACK PLUGS AND SOCKETS
Hn mono plastic plug 18p
In mono chrome piug 22p
tin plastic switch socket (makes 2 circults) 18p
tin stereo plastic plug 26 p
in stereo chrome plug 50p
tin stereo plastic Inne socket 40p
in stereo chrome line socket 30p
tin stereo plastic switched socket (makes 3 circults) 26 p
tin stereo plastic switched socket (makes 3 circults) 26 p
3.5 mm plug $16 \mathrm{p} ; 3.5 \mathrm{~mm}$ socket $\mathrm{sp} ; 3.5 \mathrm{~mm}$ line socket 16p: 2.5 mm plug $16 \mathrm{p} ; 2.5 \mathrm{~mm}$ socket 8 p

Designed for the discerning D.J. of professional standard Offering a vast variety of functions. Controls: Mic Vol. Tone, over-ride depth, auto/manual sw: Tape Vol; L \& R Deck Faders; Deck Volume : Treble and Bass: H. Phon Vol Selector Master Vol On/Off sw. Max output 3V RMS
Specification: Deck Inputs- 50 mV into $1 \mathrm{M} \Omega$; Deck Tone Con trols-treble total range 36 dB at 15 kHz -Bass total range 36 dB at 50 Hz . Mic input-200 ohms upwards 2 mV into 22 k . Mic Tone Control-Total range 40 dB at 15 kHz . Tape input- 100 mV into 200 ohms. Power requirements $20-50$ volts d.c. at 50 mA R.I.A.A. comp mag inputs available 75 p extra.
£39.75
PANEL SIZE $18 \times 4 \frac{1}{2}$ in DEPTH 3in

Designed for use with TUAC power amplifier modules. Extensive research has gone into various wide range tone control circuits to produce superb sound quality. Thousands are already in use in high quality professional amplification systems.

VAO8 Vol. Treb, Mid and Bass controls. HI. IMP. FET. I/P suitable Mid. Guitar, Radio, Crystal/Ceramic P.U. Sensitivity 4 mV . Treble +35 dB at 16 kHz . Mid +20 -15 dB at 1 kHz Bass $+20-10 \mathrm{~dB}$ at 40 Hz .
£8.50
VAO6 Vol. Treb, and Bass controls. Sensitivity 8 mV . Treb $+28-15 \mathrm{~dB}$ at 12 kHz . Bass $\pm 18 \mathrm{~dB}$ at 40 Hz .
£7-50
SVAOB STEREO PRE AMP Voi. Treb, Mid and Bass controls, I/P suitable, Guitar. Radio. Crystal/Ceramic P.U. Sensitivity 4 mV . Treble +35 dB at 16 kHz . Mid +20 15 dB at 4 kHz . Bass $+20-10 \mathrm{~dB}$ at 40 Hz Plus Full Balance Control. Full I/C operation supply voltage $\pm 15 \mathrm{VDC}$.
£15.00

\star TUAC AMPLIFIER MODULES \star POWER AND QUALITY \star

$£ 23 \cdot 25$

- 4 R.C.A. 150 walt 15 amp output transistors
- Rugged layer wound driver transformer

Short-Open-and Thermal overload protection

- Only 6 connections

STOCKISTS-CALLERS ONLY

Geo Mathews, $85 / 87$ Hurst Street, Birmingham (Tel. 021.622 1941)

Arthur Salls Lid. . 28 Gardner Street (Tel. Brighton 65806) Gristol Oisco Centre, 26 The Promenade, Gloucester Road (Tel, Bristol 41666)
Socodi. 9 The Friars (Tel. Camterbury 60948)
Coohies Disco Centre, 132 West Sireet (Tet. Crewe 4739)
H. B. Electronics, 54 Montagu Sfreef (Tel. Kettering 83922)

Leighton Electronics Centre, 59 North Street (Tel. Leighton Buzzard 2316)
At Music Centre, 88 Oxford Street. Manchester (Tel. 061-236 0345)

Oamon Electronics, 99 Carrington Street (Tel. Nottingham 53880)

Eiectra Centre, 50 Lancaster Road (Tel. Preston 58486)
Luton Oisco Centre, as wellington Sireet, Luton Te: Luton 411733)
Mitchelf Electronics. 64 Winchester Street (Tel. Salisbury 23689)

Power supplies vacuum impregnated Transformers with supply board incorporating pre-amp supply

PS 250 for supplying 2 TP125s PS 60/60 for supplying 2 TL60s PS 125 ± 45 volts for TP125 PS 100 ± 43 volts for TL 100 PS 60 ± 38 volts for TL60 PS 30 ± 25 volts for TL30
PSU 2 for supplying disc mixer
£28.00 $£ 25 \cdot 50$ £25.50
$£ 16.75$ $£ 16.75$
$£ 15.50$ £15.50 £14.50 £9. 75 £. 6.50

- 60 watts R.M.S. continuous sine wave output
2 R C.A. 110 watt 15 amp transistors

£16.75

$5 \times 5 \times 3$ in
100 watts R.M.S continuous sine wave output

- 2 R.C.A. 150 watt 15 amp transistors
£18.75

Specification on all power modules: All output power ratings $\pm 0.5 \mathrm{~dB}$: Qutput impedance $8-15 \mathrm{ohms}$: THD at full power 2% typically 1%. Input sensitivity 60 mV into $10 \mathrm{k} \cap$; Frequency response $20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 2 \mathrm{~dB}$; Hum and noise better than -70dB

ELEGTROVALUE

The good components service

In relatively few years. Electrovalue has risen to a position of pre-eminence as mail-order (and industrial) suppliers of semi-conductors, components, accessories, etc. There are wide ranges and large stocks to choose from as well as many worthwhile advantages to enjoy when you order from Electrovalue
CATALOGUE 8 ISSUE 2 READY NOW! Second printing (Green cover) with up-dated information, 144 pagee.
New items. Opio-electronics. Diagram of componenta, applications. New items. circuits. etc. Post free 40p, including voucher for 40 p for use on order over $\mathbf{5} 5.00$ list value. A must for careful buyers

DISCOUNTS

On all C.W.O mail orders, except for some items marked NETT. 5% on orders liat value 10% on orders list value

FREE POST AND PACKING
On all C.W.O. mail orders in U.K. over $£ 2$ list value. If under, add $15 p$ handling charge.

PRICE STABILIZATION POLICY

Prices are held and then reviewed over minimum periods of 3 months. Next review period eflective from July 1 it .

QUALITY GUARANTEE

On everything in our Catalogue-No manufacturera relecta, seconds
or sub-standarda merchandise

ELECTROVALUE LTD

All communications to Oepr. 8/2, 28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURAEY Tw
$9-1$ pm Sats
NORTHERN BRANCH: Burnige Lane, Burnage, Manchester Mt INA Telephone (081) 432 4945. Shop nours Dally $9-5.30 \mathrm{pm}$; $g-1$ pm Sat

New to the UK from PRONTO

Battery operated LCD read out

CALENDAR CLOCK KIT-crystal accuracy Bold Digits-runs on two Penlight Cells.

Now is the time for the hobbyist to move into Advanced Technology with Pronto!
PRONTO MODEL 301 - The first completely portable liquid crystal display, digital CALENDAR CLOCK KIT offered in the United Kingdom.

- Battery operation - two small alkaline cells give a minimum life of 12 months.
* Superb accuracy through crystal control - of 3 minutes a year - Wide angle display with $\frac{1}{2}$ inch digits
* Push Buttons give choice of 3 display modes - hours minutes on 12 hour display with flashing colon, or seconds, or date. * PRONTO 301 comes complete with easy to follow
f29-50 including V.A.T. you save
Pounds off the recommended retail price of a comparable made up clock
TERMS: Cash with order - make a cheque and/or postal order payable to PRONTO ELECTRONIC SYSTEMS LIMITED
mode switch ${ }^{*}$ Full assembly instructions at $\mathrm{f} 15-50$ including V. A. t With all PRONTO products - enquiries from the Trade, as well as the Hobbyist, are wetcome, and you can also buy individual components! PRONTO CONSTRUCTOR'S CLUB When you buy your first Pronto kit you're automatically a Member of the PRONTO CONSTRUCTOR'S CLUB. It will not only keep you in the picture on new ideas and kits... but gives you FREE a $£ 2$ Voucher against the purchase of your next kit!
Isn't it time you joined the Club?

10:59

- \bullet © Paonta

Pronto Electronic Systems Lid.
645/647 High Rd., Seven Kings,
Essex IG3 8RA. 01-599 3041

EATON AUDIO

DEPT PE, P.O. BOX 3 ST. NEOTS, CAMBS PE19 3JB

TERMS: MAIL ORDER ONLY. C.W.O. MINIMUM ORDER £1. VAT: Please add $12 \downarrow \%$ to value of arder inc. P \& P unless otherwise stated. Cheques or P.O.s payable to Eaton Audio. Orders over $£ 5$ free of P. \& P.. otherwise please add 10p in the E1.

Col (1)
Coil ohm
Col. (2)
Working
d.c. volts
${ }_{c}^{\text {d.c.e. Volts }}$
Contacts
Col. (4)
Price
$\mathrm{HD}=$
Heavy duty

2	3	4
4-8	$2 \mathrm{c} / 0$	75p*
5-9	$6 \mathrm{c} / 0$	$85 p$
8-12	6 M	$65 p^{*}$
9-18	$2 \mathrm{c} / 0 \mathrm{HD}$	85p*
15-24	4 clo	${ }^{85} \mathrm{p}^{4}$
10-20	6M	855 ${ }^{\text {* }}$
12-24	2 c O	$65 \mathrm{P}^{*}$
$16-24$	$4 \mathrm{c} / 0$	85p*
16-24	4 M 2 B	65 P
18-36	$2 \mathrm{c} / 0$	$65{ }^{\text {P }}$
31-43	$2 \mathrm{c} / 0 \mathrm{HD}$	$65 p^{*}$
36-45	6 M	65 p
85-110	6M	$65 p$

OPEN TYPERELAY
9 VOLT D, C. RELAY

$3 \mathrm{c} / 05 \mathrm{amp}$ contacts. 120 ohm coil. 85p. Post 15 p
6 YOLT A.C. 1 make contaces 45p. Post $15 p$.
100 VOLTA.C. 2 c/o $75 p .3$ c/0 85p. Post $15 p$.
ENCLOSED TYPE RELAYS
ENCLOSED TYPE RELAYS
24 YOLTD.C. 3 c/o 85 p. Posc 20p. Base 15p extra. 24 VOLT A.C. Mrg. by ITT. 3 h.d. c/o contac 55 YOLT A.C. RELAY
3 h.d.c/ocontacts. Price $65 p$. Post 20p. Base 15p. 230 VOLT RELA
3 h.d. c/o contacts. Price 85p. Post 20p. Octal 210/240 VOLTA.C. RELAY. Mfg. by Arrow 2 h.d. 15 amp c/o contacts. Amp connectors. Price $E 1 \times 10$. Post 20 p .
$220 / 240$ VOLT A.C. RELAY
3 c/0 5 amp contacts. Sealed. Mig. ISKRA C1.35. Post 20p. Base ${ }^{15 p}$ extra.
CLARE-ELLIOTT TYPERP7641 G8
Miniature relay. 675 ohm coil. 24 Volt D.C. 2 cio. Miniature relay
80p post paid.

C'O MICRO SWITCH

VERY SPECIAL OFFER. Mf volt. 50 for 63 . Post 36 p . 100 for 45 Post 50p. 1,000 for 645. Post paid Bulk purchase means LOW! LOW!
DOUBLE POLE CIO or 2 make/2 break micro switch. 10 amp 250 v a.c. With decachable roller
assembly. 10 for $\mathbf{~} 2.50$. Post 50 (min. order 10).

MINIATURE C/O ROLLER MICRO SWITCH
OMRON Type V/5 FL22/IC. 10 for
E2. Post 50p. (Min order 10)
24 VOLT DC SOLENOIDS
UNIT containing I heavy duty solenoid approx. 251 b pull 1 inch travel. Two approx. Ilb pull $\frac{1}{\text { inch }}$ ravel d.c., i heavy duty single make relay. Price 23.00. Post $E 1$. ABSOLUTE BARGAIN
E3

600 WATT DIMMER SWITCH Easily fitced. Fully guaranteed by makers.
Will control up to 600 W of lizhting Will control up to 600 W of volitage.
except fluorescent at mains volite
Complete. with simple instructions. E2.75. Post 25 p .
1,000 watt model, E4. Post 25p
2,000 watt model, E8. Post 40p
CENTRIFUGAL BLOWER
Mrg by Smiths Industries. 230/240V 5 aize $95 \mathrm{~mm} \times 82 \mathrm{~mm} \times 82 \mathrm{~mm}$ 5ize 95 mm 3 mm
Aperture 32 mm
c.f.m., E2.75. Post 50 p .
Mig. by Airflow Developments Lid

Precision made, continuously rated, smooth running. $230 / 240 \mathrm{~V}$ a.c. mo:or. 80 c.f.m. As illustrated but

Extremely powerful. 220/250V a.c. 0.3A 2,700 r.p.m. continuously rated. Capacitor start. Cast construc-
tion. Aperrure $66 \mathrm{~mm} \times 50 \mathrm{~mm}$, OiA 200 mm . \&12.
Post Cl 1 Paryalux Type SD38B
Mlg, by
220 volt A.C., $50 \mathrm{~Hz}, 0.55 \mathrm{amp}$. Continuously rated

BLOWER UNIT

 200240 V a.e. precision German built. Dynamically balanced. quiet. 60mA. Size 120 mmdia
Price E 3.50. Post 50 p .

INSULATED TERMINALS
Incorororating ${ }^{4 \mathrm{~mm}}$ Asocket.
Available in black, red, white.
yellow, bue and green. 18_{p}

All Mail Orders-Callers-Ample Parking
Dept. PE8, 57 BRIDGMAN ROAD
CHISWICK, LONDON W4 5BB
Phone 01-995 1560

VARIABLE VOLTAGE TRANSFORMERS
INPUT 230/240V a.c. 50160 OUTPUT VARIABLE 0-260V All Types SHROUDED TYPE
200 watt (1 amp) 410.00
0.5 KVA ($2 \frac{1}{2} \mathrm{amp}$) (MAX) $£ 11.50$ $1 \mathrm{KVA}(5 \mathrm{amp})(\mathrm{MAX}) \in 16.50$
$2 \mathrm{KVA}(10 \mathrm{amp})(\mathrm{MAX}) £ 30.00$ 3 KVA (15 amp) (MAX) 633.00 $4 \mathrm{KVA}(20 \mathrm{amp})(\mathrm{MAX}) 660.00$
37.5 amp (MAX) $£ 102.50$

CARRIAGE AND PACKING EXTRA $4 \sim \sim$

L.T. TRANSFORMERS

0.6 .12 Volt at 10 amp

amp.

 $0,4,6,24,32 \mathrm{Volt}$ at 12 amp 0.12 .24 Volt at 10 amp 66.15. Post 70p.£8.70. Post E 1.00
(1.00. 28.90. Post E 1.00 69.90. Post E1.00 ¢ 10.30 . Post $£ 1.00$ $0,6,12,17,18.20$ Volsat 20 amp . Ell-80. Post Cl .00 Orher syp
enquiries

AUTO TRANSFORMERS

Step up, step down, $0.115 / 200 / 220 / 240$ volts at 75 watt $£ 3$. Post 40 p. 150 watt $\mathbf{£ 4}$. Post 60 p. 500 watt $£ 9 \cdot 20$. Post $75 p$. Watt watt 1000 .50. Post 90p.

STROBE! STROBE! STROBE!

HY-LIGHT STROBE MK IV

Build a Strobe Unit, using the latest type Xenon white light flash cube. Solid state timing and triggering circuit, $230 / 250 \mathrm{~V}$ a.c. Operation. For use in large rooms, halls and utilises a silica tube, printedcircuit. Speedadjustable 0-201.p. Light ourput greater than many (so called 4
Joule) strobes $\$ 1540$. Posi 15 p .

XENON FLASHGUN

 TUBESRange availablefr

ULTRA VIOLET BLACK LIGHT

 FLUORESCENT TUBES41 t 40 watt, $£ 6.05$ (callers only). (For use in
2 it 20 watt, $£ 4.68$. Post 60 p . (F standard bi-pin). MINI. 12in 8 watt, 61.76 . Post 25p. Complete ballast unit and holders for 9 in and 12 in rube, 61.87 . Post 30 p . (9in and 12 in
measures approx.

SQUAD LIGHT
A new conception in
light control. Four
channels each capable
 channels each capable
 of spot lights, flood lights or dozens of smatl mains lamps. Seven programs al speed
controlled plus flash modulation, effectively controlled plus tash modulation, effectively
giving l 4 different displays. Makes sound-togiving obsolere. Completely electrically and mechanically noise free. Price only 660 . Pos 75p. S.A.E. (Foolscap) for further details.

WIDE RANGE OF DISCO LIGHTING EQUIPMENT
6° graphic wheels, $3 \frac{1}{2}$ " cassettes. S.A.E. (Foolscap) for derails

COLOUR WHEEL PROJECTOR

TYPE PI50 INTACHANGE

200/240V a.c. SOmz 150 W lamp, complete with oil filled colour wheeland motor plate. Takes int achange accessories and full range oflenses, 629.95. Post \&l 35 Total inc. VAT \& Post, ©33.70.)

BIG BLACK LIGHT

400W Mercury Vapor Ultra Violet Lamp. Powerfu source of Foss E2. Spare bulb only E10. Post 80p.

GEARED MOTORS $100 \mathrm{r} . \mathrm{p}, \mathrm{m} .115 \mathrm{lb}$. in. 110 V ,
$50 \mathrm{~Hz}, \underset{2}{2} 8 \mathrm{~A}$, single phase, split capacitor motor. Immense power. Consinuously rated, Totally enclosed. Fan cooled in-tine gearbox Length 250 mm . Dia. 135 mm . Spindle dia. 15.5 mm engo
68. Post $75 p$.

60 R.P.M. REVERSIBLE
$220 / 240 \mathrm{~V}$ a.c. Small, powerful, continuously rated, reversible motor. M.f.g. Berger (Germany). Size $80 \mathrm{~mm} \times 65 \mathrm{~mm} \times 65 \mathrm{~mm}$. Spindle dia. $6 \mathrm{~mm} \times 15 \mathrm{~mm}$

BODINE TYPE N.C.I.
Types) 71 r.p.m. torque 10 lb .in
Reversible $1 / 70 \mathrm{th} \mathrm{h.p}$.50 Hz . (Type
2) 28 rip.m. torque 20 lb .

Reversible $1 / 80$ th h.p. 50 Hz . The above two precision made U.S.A. motors are offered in'as new condition. Input voltage of motor
115 V A.C. Supplied complere with transformer for 230/240V A.C. input. Price either rype 66
former $£ 3.75$. Post 65 p . (Type 3) 71 r.p.m. $4 \mathrm{lb} . \mathrm{ins}$. 230 V a.c. Continuously
rated. Non-reversible. 6.50 . Post 75 p .

15 R.P.M.
Type SD48 801 lb . in. Input $100 / 200$ volt A. C. Length inct. gearbox 270 mm . Height 135 mm . Width 50
mm . drive shaft 16 mm . Weight B.5 Kilos. BRAND NEW. Price flo. Carr. EI. $220 / 240$ vole A.C Suitable transformer for use on $220 / 240$ volt A.C.
\& 3.85 . Post 50 p . 24 R.P.M.
230Va.c Continuouslyrated. Mig. Mycalex. Ex-
Cully tested. E3.85. Post 75 p.
I R.P.M. 230/240V A.C. SYNCHRONOUS! Ex-equipment. Thoroughly tested and guaranteed.
ONLY $£ 1.50$. Post 20 p.

20 R.P.M.

230/240 volt a.c. miniature motor. Price f1. Post 20p.
PROGRAMME TIMERS 230 V operationa.c. 15 or 20 r
6 cam model $\mathrm{f5}$. Post 60 p .
9 cam model $66 \cdot 50$. Post 60p.
12 cam model $\mathbf{2 7} \cdot 50$. Post 60 p
INSULATION TESTERS NEW!
Test ro I.E.E. Spec. Rugged metal
construction, suteable for bench or field work, constant speed clutch. Size L. 8 in, W. $4 \mathrm{in}, \mathrm{H} .6 \mathrm{in}$, weight 61 b . $500 \mathrm{~V}, 500$ megohms, 440 . Post 80 p
$1,000 \mathrm{~V}, 1,000 \mathrm{M} \Omega$. $£ 46$. Post 80 p .

A.C. MAINS TIMER UNIT Based on an electric clock, with
$2 \$$ amp. single pole swith which can be preser for any
wing ata po switch on for any lenged to switch additional 60 mitch off. An timer is also incorporated. Ideal
For Tape Recorders, Lights,
Electric Blankets, etc. Attractive satin copper finish.

TIME SWITCH

Horstmann" Type V. Mk. II Time
switch. $200 / 250$ yolt A.C. Two on/two off every 24 hours, at any manually preset time. 30 amp contacts. 36 hour spring reserve in case of powerfailure. Day omitting device. Fitted in heavy high impact case, with glass observaBoard Spec. individually tested. Price

Superior Quality Precision Made
 \section*{NEW POWER RHEOSTATS}

New ceramic construction, vitreous enamel embedded winding, heavy

duty brush assembly, continuous
ated. $10 / 25150 / 100 / 15012501500 / 1 k / 1 / 5 k 0 h m$ f1.70. Post 20p. 50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k}$ ohm.
$52 \cdot 10$. Post 25p.
 Black Silver, Skirted knob calibrated in Nos.

Personal callers only. Open Sa
9 LITTLE NEWPORT STREET LONDON WC2H 7JJ

Phone 01.4370576

SYNTHESISERS, SOUND EFFECTS AND

PHONOSONICS
MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD.WIDE MARKET.

P.E. SYNTHESISER

(P.E. Feb. 73 to Feb. 74)

The well acclaimed and highly versatile largenscale mains-operated Sound Synthesiser complete with keyboard circuits. All function circuits may be used independently, or interconnected. The greater the number of circuits, the greater the versatility. Other circuits in our lists may be used with the Synthesiser to good advantage (notably P.E. Minisonic, Phasing Unit. Wind and Rain, Rhythm Generator, Sound Bender, Voltage Controlled Filter, Guitar Effects Pedal)

THE MAIN SYNTHESISER
 Seabilisad power supply
 Two Linear Voltage Controlled Oscillators
 and one Inverver-all 3 circuits
 PCB (2 are required) each Two Ramp Generators and Two Input Amplifiars all 4 circuits
 PCB (holds all 4 circuits)
 Sample-Hold and Nois
 PCB (holds both circuits)
 Tone Control
 Raverberation Amplifier
 Sprine Line unit for Reverb. Amp
 Ring Modulator
 Pank Leval Mater Circuit $100 \mu \mathrm{~A}$
 PCB to hold Reverb, Ring Mad and Meter
 Circuits
 PCB
 Yoltege Controlled Amplifier and Differential
 Amplifier
 (holds both circuits)
 612.05

THE SYNTHESISER KEYBOARD CIRCUITS
(Can be used without the Main Synthesiser to make an
Two Logarithmic Voltage
Oscillatore Coltage Controlled
Component set
PCB (holds both circuits)

Dividar, 2 Hold Circuits, 2 Modulation
Amplifiers, Mixer and 2 Envelope Shapers
PCB (holds the first 6 circuits)
PCB for both Envelope Shapers
Keyboard Stabilised Powers Supply
GUITAR EFFECTS PEDAL (P.E. July 75)
Will modify an audio signal not only from a guitar but from any audio source, producing 8 different switchable effects that can be further modified by manual controls. Possibly the most interesting of all the low-priced sound effects units in our range.
Component Set with special foot operated
switches
witches component set with panel mounting
switches
Printed Circuit Board
SOUND BENDER (P.E. May 74)
A multi-purpose sound controller, the functions of Which include envelope shaper, tremolo, voice-operated fader, automatic fader and frequency-doubler.
Component Set for above functions (excl. SWs)
Printed circuit board
Optional extra-additional Audio Modulator, the $\mathbf{£ 1 . 5 8}$ which, in conjunction with the above component ser Component Set (inet. PCB) rhythms.
PHASING UNIT (P.E. Sept, 73)
A simple but effective manually controlled unit for introdusing the "phasing' sound into live or recorded music.
43.75

For use with the above Phasing Unit to automatically control the rate of phasing)
Component Set (incl. PCB)

WAH.WAH UNIT (P.E. Apr. 76)

The Wah-wah effect produced by this unit can be controlled manually or by the integral automatic controller.
Component Set incl. PCB
$\mathbf{2 2 . 9 9}$

WIND AND RAIN UNIT

A manually controlled unit for producing the abovenamed sounds.
Component set incl. PCB

P.E. MINIMIX 6 (P.E. Nov./Dec. 75)

Each of the 6 input channels has its own gain, volume and panning controls. The volume of the twin channel outputs are fully manually controllable, as are the headphone and preofade monitoring facilities. Twin VU meters provide visual display of channel audio levels. For derails see our lisrs and synthesiser kits.

8-INPUT MIXER

A simple mixer having 8 inputs each of which has a preset level control and which are combined into one output master output volume contral. Designed for and a coupling our various sound effects and synthesiser kits.
25 WATT MONO AMPLIFIER (P.E. Sept. 75)
A zood general purpose integrated circuit power amplifier typically delivering 25 watts into 8 ohms. Power bandwidth 20 Hz to 20 kHz . 3dB, Input impedance 20 km . Distortion 0.2%. Suitable for use with any of our sound producing kits.
Component Set incl. power supply
Printed Circuit Board
For stereo use two sets and PCBs are required
TREBLE BODST UNIT (P.E. Apr. 76)
Gives a much shriller quality to audio signals fed through it. The depth of boost is manually adjustable.

P.E. JOANNA (P.E. May/Sept. 75)

A five-octave electronic piano that has switchable alternative voicing of Honky-Tonk piano, ordinary piano, with facilities including fast and slow tremolo, loud and soft pedal switching, and sustain pedal switching. The power amplifier typically delivers 24 watts into 8 ohms. The PCBs have been redesigned by ourselves making improved use of the space available.

Main Power Supply
 69.41
 Shaper Generator and Top C Envelope
 49.97
 PCB for Main PSU, Tone Gen \& Top C E.S. $£ 2.10$

Envelop Shapers for all notes (except Top C) $£ 32.16$
S) of PCBs for Envelope Shapers (except Top
c32.16

Voicing and Pre-amp Circuits
¢ 10.40
$\begin{array}{lr}\text { PCB for Voicing and Pre-amp } & \mathbf{2 8 . 3 7} \\ \mathbf{~} 2.64\end{array}$
Power Amplifier (incl, separate Power Supply) $£ 14.50$
PCE for Power Amp and PSU
RHYTHM GENERATOR (P.E. Mar./Apr. 74)
Programmable for 64,000 rhythm patterns from 8 effects
circuits (high and low bongos, bass and snare drums, long and short brushes, blocks and soft cymbal), and with variable time signatures and rhythm rates. Really fascinating and useful
PCB for above circuirs (douic circuits
Component set for alt 8 effects circuit
612.57
$£ 2.84$

PCB for all 8 effects
$\mathbf{4} 2.84$
$\mathbf{1} 10.49$
Simple mixer (our design) incl, PCB
Alternative mixer with external volume controls,
incl. PCB
Power Supply for T, T and L, and Effects, incl, (See ou

49.93

66.42

REVERBERATION UNIT (P.W. Nov./Dec, 72)
line input
pre-amps, and providing full control over reverberation level.
67.55
$\mathbf{6} .76$

Printed Circuit Board spring unit)
printed Circuit Board
9 in. Spring Unit
67.55
61.76
64.95
6.75

For automaticaliy reducing music volum
For automatically reducing music volume during "talkmovie shows.
Component Set incl, PCB
4.05

VOLTAGE CONTROLLED FILTER (P.E. Oct. 74)
An independently designed VCF that can be used with
the P.E. Synthesiser.
the P.E. Synthesiser.
Component Set
Printed Circuit Board
P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones. An LED monitor clearly displays all beat note adjust instruments alike.
Main Component Set incl. PCB
414.22

Power Supply set inel. PCB
66.57

P.E. SYNCHRONOME (P.E. Mar, 76)

An accented-beat electronic metronome, providine duple, triple and quadruple times with fuil control over the beat rate. Can also be used as a simple drum-beat Chythm generator. includes power supply.
Component Set incl. loudspeaker
610.20

Printed Circuit Board
41.70

PEAK LEVEL INDICATOR (P.E. Mar. 76
A twin-channel visual display unit for monitoring the peak level of audio signals. Well suired for use when avoid signal over-loading.
Component Set incl. PCB (as published)
\&3. 26
EXPORT ORDERS are welcome, though we advise that a current copy of our list should be obtained before ordering as it also shows Export postage rates. All payments must be cashowithoorder, in Sterling and preferably Bank. To obtain list for Europe send 20p, for other countries send 40p.

VAT

Add $12 \frac{1}{2} \%$ (or current rate if changed) to full total of goods, post and handling. (Does not apply to export

P.E. MINISONIC MK I

(P.E. Nov. 1974 to March 1975)

A portable, battery or mains operated, miniature sound synthesiser, with keyboard circuits. Although having the functions offered by this design give it great scope and versatility. Like the large Synthesiser it too may be advantageously used with other circuits in our lists.

Two Voltage Controlled Oscillators
45.22
43.41

Two Envelope Shapers and Two Voltage
© 7.25
42.66 keyboard used) (all are 2% tolerance): 2 Octave GI ; $\mathbf{3}$ Octave $£ 1.48$: 4 Octave $£ 1.96 ; 5$ Octave $\mathbf{£ 2 . 4 4}$. \quad \& 1.66
Ring Modulator. Noise Generator and Envelope
Two Power Amplifiers and Two Mixers
Battery Eliminator
Temperature Stabiliser
PCB to hold 2 VCOs, VCF and V-Ref
PCB to hold 2 ESs, 2 VCAs. 2 Mixers, Ring Mod, Keyboard Control and Hold
PCB to hold 2 Power Amps., Noise Gen.
PCB to hold Battery Eliminator and Temperature
£ 1.45
41.35
63.55
65.88
61.47

2
C2. 20
P.E. MINISONIC MK 2

Conversion kits and PCBs for updating the MK I version

ENVELOPE SHAPERS

Both of the kits below have manual control over their Attack, Decay, Sustain and Release functions. Both kits include PCB (VCA means Voltage Controlled Amplifier) Envelope Shaper and VCA (P.E. Apr. 76) $\quad 65.43$ Envelope Shaper (without VCA) (P.E. Oct. 75) 44.16 VOICE OPERATED FADER (P.E. Dec. 73) .16
\qquad
\qquad

POST AND HANDLING

U.K, orders-under $£ 15$ add 25p plus.VAT, over $\mathcal{C} 15$ add

Optional Insurance for compensation against loss or damage in post, add 35p in addition to above post and handing. Bire, C.I., B.F.P.O., and other countries are subject to

PHONOSONICS • DEPT. PE47 - 22 HIGH STREET • SIDCUP • KENT DAI4 6EH MAALORDERANOC.W.O. ONLY

OTHER PROJECTS

PHOTOGRAPHS in this advertise ment show two of our units containing some of the P.E. projects built from our kits and PCBs. The cases were built by ourselves and are not for sale, though a small selection of other cases is available.
LIST-Send Stamped Addressed Envelope with all U.K. requests for free
list giving fuller details of PCBs, kits, and other components.
OVERSEAS enquiries for list: Europesend 20 p ; Other Countries-send 40p.

KEYBOARDS ANO CONTACTS

Kimber-Allen Keyboards as required for many published circuits, including the P.E. Joanna, P.E. Minisonic, and P.E. Synthesiser. The manufacturers claim that koys are plastic, spring-loaded and mounted on a robust aluminium frame.
3 Octave (37 notes) $£ 20.50$. 4 Oct (49 notes) $\mathbb{2} 3.50$. 5 Oct (61 notes) $\mathbf{E 2 7}$.
Contact Assemblies for use with above keyboards: Single-pole change-over (type SP) as for P.E, Joanna and P.E. Minisonic. Two-pole normally open-make-break (type DP) as for P.E. Synthesiser. Special contact assembly (type 4PS) having 4 poles, 3 of which are normally-open make-break contacts and the fourth is a change-over contact -this special assembly enables THE SAME KEYBOARD to be used with the P.E. Synthesiser, P.E. Minisonic and the P.E. Joanna simultaneously thus avoiding the cost
of more than one keyboard.

PRINTED CIRCUIT BOARDS for use with the above contacts and thus eliminating most of the inter-wiring required, are available. Details in our lists.
SOUND.TO-LIGHT (P.E. Apr./Aug. 71)

SOUND.TO-LIGHT (P.E. Apr./Aug. 71) The ever-popular Aurora- 4 or 8 channels each responding to a diferent sound most audio systems and lamp intensities. A MUST for any Disco, and a fascinating visual display for the home.
4 Channel Component Set (excl. thyristors)
\& Channel Component Set (excl. thyristors)
Power Supply Component Set
PCB for power supply and 8 lamp drivers
IA 400 V thyristors (I per chan. req.) each
Panel meter ($1 \mu A$) (optional)
3-CHANNEL SOUND-TO-LIGHT (P.E. Apr. 76)
A simple but effective sound-ro-light controller capable of operating 3 lamps each of approximately 700 watts. Includes power supply, thyristors, and by-pass switches. Component Set incl. PCB

BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)
Multi-function circuits that. with the use of other external equipment, can serve as lie-detector, alphaphone. cardiophone etc
PrenAmp Module Component Ser incl. PCB E3.71
Basic Output Circuits-combined component set with PCBs, for alphaphone, cardiophone, frequency $\begin{array}{ll}\text { meter and visual reed-back lamp-driver circuits } & £ 5.38 \\ \text { Audio Amplifier Module Type PC7 } & £ 6.75\end{array}$

TAPE NOISE LIMITER

Very effective circuit for reducing the hiss found in most tape recordings. All kirs include PCBs Standard Tolerance Ser of Components uperior Tolerance Set of Components SINE AND SQUARE WAVE GENERATOR (P.E. July 75) Suitable for audio, digital, or general purpose. Controllable through 4 decade ranges 10 Hz to 100 kHz , switched att
 Component Set

Power Supply

ENGINEERS

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 44 page free book NOW! No obligation. nobody will call on you. It could be the best thing you ever did.

CHOOSE A BRAND NEW FUTURE HERE

Aldermaston College

Dept. TPE 20, Reading RG7 4PF
aleo at our London Advleory Office, $\&$ Fore Street Avenue, Moorgate, London EC2Y 5EJ. Tel. 01-828 2721.
NAME (Block Capitals)
ADDRESS

H.B. ELECTRONICS

Semiconductors							
M119					40p	TIP41A	70p
AC126/7/8	18p	BF194/5/6/7			10p*	TIP42A	85p
AC176/187/8	19p	BF198/9			12p*	TIS43	30 p
AD149/161/2	50p	BF200			30p	ZTX107/8/9	10p
AF114/5/6/7	25p	BFX29/30			2tp	21×300/500	20p
AF118	45p	BFX86/88			25p	in4148	$4 p$
BA145/日/154	18p	BFY50/1/2			18p	(N4001/2	4 p
BC107/8/9	10p	BRY39			40p	IN 4003/4/5	5 p
BC147/8/9	10p*	BY127			15p	IN4006/7	\%
BC157/8/9	10p*	MJE340			50p*	2N1613	20p
BC177/8/9	18p	MJE341			10p*	2N2646	45p
BC182/3/4L	12p*	MJE2955			120p	2N2926 (BROYC)	10p*
BC212/3/4L	12p*	MJE3055			75p	2N3053	18p
BC237/8/337/8	16p*	MPF102			$30 p$	2N3054	$45 p$
BC547/8/9	12p*	TIP31A			sop	2N3055	$50 p$
BCY70/1/2	15p*	TIP32A			55p	2N3819	20p
Bulk offers							
IN4001/2	$30 \mathrm{p} / 10$			7474	24p		
IN4003/4/5	45p/10	7400	12p	7476	24 p	Other components	
IN4006/7	50p/10	7401 7402	12p	7483 7486	$75 p$	Zener diode 400 mW	
BC107/8/9	spp/10 c2.10	7402 7403	12p	7486 7490	2\%p		
7418 dil NE555	$\varepsilon 2 \cdot 10 / 10$ $\Sigma 1 \cdot 70 / 4$	7403 7404	12p	7490 7491	40p	Reaistors, carbon film	
Ne5s5 LED 0-2in	$\varepsilon 1 \cdot 70 / 4$ $81 / 10$	7405	15p	7492	45p	IW 5' E12, 2p; Vero-	
Yellow/Green/A	Amber	7406	30p	7493	40p	board 0.1 in 0.15 in, $2 \operatorname{tin} \times 5$ in	and
LED 0.2in	\$1.50/10	7408 7410	15p	74100	19p	Sub. min vertical	, 40p;
BFY/50/1/2	81.50/10	7410 7413	$13 p$ $31 p$	74121 74122	2ep	set, it 0.1 in boar	d. ${ }^{1 p}$;
BC212L IN4148	$30 \mathrm{p} / 10$ $30 \mathrm{p} / 10$	7413 7432	31p	74122 74141	26p	Resistors WW	$2.5 \mathrm{~W}$
IN4148 ${ }_{\text {Push to make }}$	$30 \mathrm{p} / 10$	7441	62p	74141 74145	53p	0.22 to 10 ohm	E24,
switch	£1.50/10	7442	55p	74174	33p	20p; Clock chip MM5316. 55.50.	pecial
DPST alide	-1.	7445	71p	74177 74196	100p		

VAT: add high rate to * items, standard rate to all others POST: free on orders over 55 otherwise please add 30 p .

54 Montagu Street, Kettering, Northants. Tel. Kettering 83922

Shop open daily. PAYMENT: C.W.O., Access and Barclaycard for "phone orders. GUARANTEE: All devices are brand new and full spec. Any faulty item returned unused within 7 daye refunded or exchanged.

SPEAKERS

Baker Group 25, 3, 8 or 15 ohm Baker Group 35, 3, 8 or 15 ohm Baker Group 50/12 8 or 15 ohm Baker Group 50/15 8 or 15 ohm Baker Deluxe 124 or 15 ohm Baker Major 3. 8 or 15 ohm Baker Superb 8 or 15 omm Baker Regent 12 in 8 or 15 ohm Baker Auditorium 12 in 8 or 15 ohm Baker Auditorium 15 in a or 15 ohm
Castle 8RS/OD 4 or 8 ohm Celestion G12M 8 or 15 ohm Celestion G12H 8 or 15 ohm Celestion G $12 / 508$ or 15 ohm Celestion G12/50TC 8 or 15 ohm Ceiestion G12/50 2236 s/cone Celestion G12/50 2239 s/cons. slum. dome Celestion G15C 8 or 15 ohm Celestion G18C 8 or 15 ohm Celestion HF1300 8 or 15 ohm Celestion HF2000 8 ohm Celestion MH 10008 or 15 ohm Gelestion C03K

Decca London ribbon horn Decca London CO/1000/8 crossove Decce DK30 ribbon horn
Decca CO/1/8 crossover (DK30)
EMI 15013×8 in d/cone 8 ohm EMI 13×8 in 20 W bass 8 ohm
EMI 14×9 in bass 8 ohms, 14A770
EMI $8 \times 5 \mathrm{in}$, 10 W . d/cone, roll surr. EMH 6yin d/cone. roil surr.. 8 ohm EMI 8 in roli surr. bass
EMI Sin mid range
Elac 59RM 109 (15 ohm), 59RM114 (8 ohm)
Elac $6 \frac{1}{2}$ in d/cone, roll surr., 8 ohm
Elac 1oin 10RM23s, 8 ohm
Eagle Crossover $3000 \mathrm{~Hz} 3,8$ or 15 ohm
Eagle FR4
Eagle FR65
Eagle FRB
Eagle FR10
Eagle HT15
Eagle HT21
Eagle MHT 10
Eagle FF28 Multicell, horn
Fane Pop 15, 8 or 16 ohm Fane Pop 33 T. 8 or 16 hm Fane Pop 50. a or 16 ohm Fane Pop. 55, 8 or 16 ohm Fane Pop 60. 8 or 16 hmm Fane Pop 70,8 or 16 ohm Fane Pop 100, 8 or 16 ohm Fane Crescendo 12A, 8 or 16 ohm Fane Crescendo 12BL, 8 or 16 ohm Fans Crescendo 15/100A, 8 or 16 ohm Fane Crescendo 15/125, 8 or 16 ohm Fane Crescendo 18, 8 or 16 ohm Fane 910 Mk II horn

WILMSLOW AUDIO THE Firm for speakers!

SPEAKERS

c8. 64	Fane 920 Mk II horn	£36.95
£10.25	Fane HPX1 crossover 200W	£2. 50
¢14.00	Fane $13 \times$ ain, 15 W dual cone	25. 50
£18.62	Fane 8015 Bin d/c, roll surr.	ع8.96
£12.38	Gauss 12 in 200W	c84.00
£10.96	Gauss 15 in 200W	¢98.00
£16. 31	Gauss 18in 200W	£129.00
¢9.00	Goodmans Axent 100	£7.60
£14.65	Goodmans Audiom 2008 ohm	£13.45
£19.41	Goodmans Axiom 4028 or 15 ohm	£19, 80
¢9.29	Goodmans Twinaxiom 8. 8 or 15 ohm	£9. 50
¢12.95	Goodmans Twinaxiom 10,8 or 15 ohm	¢9.06
¢15.95	Goodmans 8P 8 or 15 ohm	¢5.95
£16.50	Goodmans 10P 8 or 15 ohm	£6.25
£18.00	Goodmans 12P 8 or 15 hmm	¢14.95
£16.50	Goodmans 12PG 8 or 15 ohm	£18.50
£17.00	Goodmans 12PD 8 or 15 ohm	£16.95
£26.95	Goodmans 12AX 8 or 15 ohm	¢39-00
£34.50	Goodmans 15AX 8 or 15 ohm	¢45.00
£ 7.75	Goodmans 15P 8 or 15 ohm	$\underline{22.50}$
19.50	Goodmans 18P 8 or 15 hm	£39-00
¢13.50	Goodmans Hifax 750P	£16.00
¢4.46	Goodmans 5 in midrange 8 ohm	24.05
228.80	Jordan Watts Module, 4, 8 or 15 ohm	¢15-36
26.75	Kef T27	[5.18
¢17.25	Kef T 15	26.25
£4.50	Kef B110	c6.75
22.94	Kef B200	c7.85
c9.00	Kef B139	¢15-08
£11.92	Kef DN8	E2.08
¢3.56	Kef DN 12	¢5.39
¢3.83	Kef DN13 SP1015 or SP1017	24.05
25.73	Lowther PM6	£30.60
23.50	Lowther PM6 Mk 1	£32.85
[3.38	Lowther PM7	ع48.60
£3.83	Peerless K0100T 4 or 8 ohm	17.25
£1.57	Peerless DTIOMFC 8 ohm	ce. 26
£5.51	Peerless KO40MAF 8 ohm	E9.50
عa. 66	Peerless MT225HGF 8 ohm	ع2.95
£11.08	Richard Allan CA12 12 in bass	¢19.80
£14.08	Richard Allan HPBE	£11.93
¢3. 96	Richard Allan LPaB	¢8.33
26.13	Richard Allan DT20	E8.05
£4.00	Richard Allan CN8280	£16.20
ce. 10	Richard Allan CN820	E3.15
£5-25	Richard Allan Super Disco 60W 12 in	£16.95
[9.25	Richard Ailen CG15 15 Sin bass	£27.45
£12.50	Richard Allan Super Disco 12in 60 watt	¢16.95
£15.50	Richard Allan Super Disco 10 in 50 watt	¢13.25
£17.95	Richard Allan Super Disco 8in 50 watt	\$12.95
£18.75	Radford BD25	£22.00
227.95	Fadford MD9	\$10.50
¢37.95	Fadford MD6	E12.50
[39.95	Radford TD3	¢7.25
¢49.95	Radford Cross Over Network	£13.00
259.95	STC 4001G	¢5.90
£67.95	Tannoy 10 in MPD	£78.00
£15.75	Tannoy 12 in HPD	286.00

Complete kits in stock for Radford Studio 90, Radford Monitor 180, Radford Studio 270, Radford Studio 360, Hi-Fi Answers Monitor (Rogers), Hi-Fi News No Compromise (Frisby), Hi-Fi News State of the Art, Wireless World Transmission Line (Bailey), Practical Hi-Fi and Audio Monitor (Giles), Practical Hi-Fi and Audio Triangle (Giles), Popular Hi-Fi (Colloms), etc.
Construction leaflets for Radford, Kef, Jordan Watts, Tannoy, Hi-Fi Answers Monitor, free on request.
P.A. amplifiers, microphones, etc., by Shure, Linear, Eagle, Beyer, AKG, etc.
FREE with orders over £10-"Hi-Fi Loudspeaker Enclosures' book.

SPEAKER KITS

HI-FI

ON DEMONSTRATION

in our showrooms:
Akal, Armstrong, Bowers \& Whkins, Castle, Celestion, Dual. Goodmans, Kef, Leak. Ploneer. Radiord, Richard Allan. Rotel, Tandberg, Trio. Videotone. Wharfedale, etc.-ask for our HI-Fl discount price list.

THIS MONTH'S SPECIALS!

Pioneer PL120
243.00

Pioneer PL15R
Pioneer SX434
Rotel R×202
$\mathbf{8 5 3} .00$
$\mathbf{5 8 8 . 9 5}$
588.95
580.00

Videotone Minimax ii
c39. 00
We stock the complete fadford range of amplifiers, preamplifiers, power amplifiers, tuners, etc. and also Radford Audio Labotatory equipment. low distortion oscillator. distortion measuring set, audio noise meter, etc.

ALL PRICES INCLUDE VAT
(PRICES CORAECT AT 10.6.76)
Send stamp for free 32 page booklet 'Choosing a Speaker
ALL UNITS GUARANTEED NEW AND PERFECT Carriage and insurance: Speakers 55p each (12in and up 85p each): Kits $£ 1$ each ($£ 2$ per pair): Tweeters and Crossovers $33 p$ each.

WILMSLOW AUDIO

Dept PE
Loudspeakers, mail order and export: Swan Works, Bank Square, Wilmslow. Hi-Fi, Radio and TV: Swift of Wilmslow. 5 Swan Street, Wilmslow, Cheshire.
PA, Hi-Fi and Accessories: Wilmslow Audio, 10 Swan Street, Wilmslow Cheshire.
Telephone: Loudspeakers, mail order and export-Wilmslow 29599; Hi-Fi, Radio etc.-Wilmsiow 26213.

my grandfather bought his first bits and pieces from Home Radio of Mitcham 30 years ago-and he still relies on them! So does my father. It's not surprising that I've been bitten by the same bug
When Dad saw how keen I was on electronic gadgets he bought me a Home Radio Components catalogue. Between you and me I think he was getting fed up with me keep borrowing his! I must say it really is a smashing book. I spend hours poring over it deciding what I shall save up for next. Although I can't afford to spend much yet, Home Radio treat me like a millionaire. I've been told that it's a small family business that hasn't grown too big to care for the amateur constructor.

Andther thing I like about Home Radio is that if I have any queries or problems I can go right to the man at the top. On several occasions I ve found him jolly helpful. Let me tell you a bit more about this catalogue. It lists about 5,000 items and has about 2,000 pictures (so they tell me-l haven't actually counted them) and it's laid out so clearly that even I can find my way around it easily. It also tells you all about their Deposit Credit Scheme which I will be able to join as soon as I'm eighteen. I find it quite exciting to think that I shall then be able to pick up the phone on a Sunday night and read over my order to their answerphone machine, and by Monday my gear will be on its way to me. I can hardly wait!

If you are a constructor, of any age between nine and ninety, you really must get a copy of the fabulous Home Radio Catalogue. The cost is only 90 pence, plus 35 pence for postage and packing. Why not send them a cheque or postal order for $£ 1 \cdot 25$ today?

r

DOWN-TO THE SEA

Atimeless cry of the island race-it may be either a bold statement of intent or a hopeful wish-becomes more meaningful and urgent when summer comes around. Down To The Sea has no single and precise meaning we realise. To the majority of folk it means escape to some not too distant coastal watering place, with or without accompanying blandishments of civilisation, depending upon taste. To the bolder and the true nautical spirits, it means a much more intimate relationship with open space and deep waters, afloat and accepting the challenge of the natural elements in some slight craft.

Even those of us incarcerated in office, factory or other place of work have been able to get a whiff of the wide open sea these past few weeks by following the progress of those intrepid yachtsmen battling their way across the wastes of the Atlantic in the biggest single-handed long distance race ever organised. Yet, sad to say, this romantic picture of man against nature is in one respect sullied by knowledge of the practically unbridled employment of advanced electronic navigational aids, beyond simple radio communication equipment such as is more or less the rule amongst all competing craft, by one participant.

The multitude of tiny craft participating in this race have been-over-shadowed in the news as well as physically on the water by the 236 ft colossus Club Mediterranée. This French craft is officially described as a schooner. Captain Onedin would be nonplussed if he stepped aboard, but an electronics engineer would be quite at home. Club Mediterranée is, we gather, a veritable paradise for the technical fanatic; also, we suspect, a valuable floating showcase for certain equipment makers. This cornucopia of electronic and electrical delights contains CCTV for monitoring sail positions, satellite-aided navigation computer, radar, radio weather map machine, sea temperature and visibility measuring and warning devices; plus the more commonplace assortment of marine electronics like two-way radio, d.f. equipment and depth sounder. (Use of satellite information and the radar screen was prohibited during the race.)
Yet, despite all this sophistication, something is missing. Where is the robot to take overall command of this wonderful prototype of the electronic-age sailing ship? It's rather a letdown to discover a solitary man at the wheel. But of course, this is a bona fide single-handed sailing vessel competing in the Royal Western/Observer transatlantic race, thanks to the elaborate aids and devices provided by modern technology.

To be fair, Club Mediterranée is something more than an entry in a race. It is a remarkable symbol of modern technology applied for an imaginative commercial end-the rebirth of sail as an economical form of transport. Its owner and sponsors declare it is a serious attempt to demonstrate the possibility of linking the old and the new: using the abundant and free natural force of the winds with maximum efficiency through scientific control, with the minimum of human intervention. We imagine the performance of this vessel extraordinary was studied closely by marine engineers and shipping concerns no less than by sporting yachtsmen of the world. And, who knows, there may be some exhilarating careers for electronics engineers (sailing vessel) in the near future. A prospect that might be particularly alluring to some readers as they dream of far-away places during this hot dry summer.

Editor

F. E. BENNETT

Editorlal

G. C. ARNOLD Assistant Editor
D. BARRINGTON Production Editor
G. GODBOLD Technical Editor
R. W. LAWRENCE, B.Sc.

Art Dept.

J. D. POUNTNEY Art Editor
D. J. GOODING
R. J. GOODMAN
K. A. WOODRUFF

Editorial Offices:
Fleetway House, Farringdon St.
London EC4A 4AD
Phone: 01-634 4452

Advertisement Manager

D. W. B. TILLEARD

Phone: 01-261 5148
P. J. MEW

Phone: 01-261 5190
C. R. BROWN Classified

Phone: 01-261 5000
Advertising Offices:
King's Reach Tower, Stamford St. London SE1 9LS
Phone: 01-261 5000

Many fuzz units, some of which depend on Schmitt or other forms of triggers, give a very harsh output with good sustain, but the attack and decay characteristics of the guitar notes are completely lost.
The present unit allows the user to produce many degrees of distortion, from a slightly overdriven, "dirty amplifier" sound through round "shifting" tones, to the more common hard spiky fuzz. In the first two types of distortion, the attack/decay characteristics of notes are not lost, and also the guitar volume controls are left at or near to maxioften have no effect in fuzz units, are able to alter the sound produced.
Throughout the following it is intended that the guitar volume controls are left at or near to maximum. The treble and bass controls of the amplifier to be used are also best left at or near maximum boost.
The input impedance of $49 \mathrm{k} \Omega$ will suit most guitars, and the relatively large input capacitors used allow for bass guitars.

CIRCUITRY

The circuit (Fig. 1) operates as follows: The maximum output voltage swing of IC3 is approx. $\pm 8 \mathrm{~V}$ ($\pm 9 \mathrm{~V}$ supply -1 V) and the gain (in position $\overline{1}$) is set by R5 and R12 at $10,000 / 620=16$. Hence an input swing to this operational amplifier of approx. $\pm 500 \mathrm{mV}$ will saturate the output at $\pm 8 \mathrm{~V}$. Any input above this amplitude will not increase the output swing but will cause symmetrical clipping.

Now if IC2 has a gain of, say, 100, it can be seen that any input above $\pm 5 \mathrm{mV}$ will be sufficient to cause clipping in IC3. If the gain is increased to

250, then the clipping limits are set 2.5 times lower at $\pm 2 \mathrm{mV}$. Thus it is arranged that changes in input voltage are amplified only within a "window" between the positive and negative clipping levels, the width of this window being set by the gain of IC2, which is variable over a wide range by means of the negative feedback control VR1a.

The larger the proportion of the input waveform that falls outside the window, i.e. the higher the gain, the shorter will be the rise time of the clipped waveform, and therefore the greater will be the intensity, and also the sustain of the output.

When a single note is played, as it decays, progressively less and less of the waveform lies outside the "window", and so clipping gradually reduces finally leaving an unclipped, normal note.

At the top end of the gain range, clipping occurs in IC2 as well as IC3, giving a more fierce spiky fuzz. Clipping does not damage the i.c.s as the maximum specified input voltages are neither reached nor exceeded.

Fig. 1. Full circuit diagram of the Guitar Overdrive Unit. Note $\mathbf{S} 3$ is shown in position 1

OPTIMISING R12

For best effects, the feedback resistor R12 must be within the range $6.8 \mathrm{k} \Omega 2$ to $15 \mathrm{k} \Omega$. If R 12 is less than $6.8 \mathrm{k} \Omega 2$ there is insufficient gain in the IC3 section, and also the current consumption rises somewhat whenever a signal is applied. The feedback properties of op. amps under clipping conditions are not as straightforward as is normal and it is found that if R 12 is greater than $15 \mathrm{k} \Omega$, the effects produced are not as unusual; $10 \mathrm{k} \Omega$ is therefore optimum.

By using a dual potentiometer for VR1, output volume compensation can be applied so that alteration of the gain of IC2 to control fuzz intensity, does not involve re-adjusting the balance control to keep the same approximate output volume. The compensation is designed to occur mainly at the lower end of the gain range, as a little beyond the onset of clipping, the output volume remains subjectively constant.

TONE FORMING

ऐल

In between the output of IC2 and the input of IC3.are four switched networks. Position 1 gives simple straight clipping. Position 2 gives possibly the most interesting sound available on the unit. The brightness produced in this channel is partly due to the anti-parallél arrangement of diodes in the signal path. These would normally produce crossover distortion due to the diodes being non-conductive during the period when the voltage across them is less than 0.6 V .

Under clipping conditions in IC3 however, these crossover regions become compressed into a shorter time, and a degree of ringing is produced due to the filter circuitry around the i.c. and the non-linearity of the diodes. At full gain these crossover regions are so small and fast as to be inaudible, although still faintly visible on a 'scope. This explains why the effect is at its optimum at mid gain settings of VR1. This setting is useful for guitar solo work, being especially effective when finger vibrato is used, when the tone shifts with the vibrato. Also in this setting, bass notes played with the thumb, rather than with a plectrum, have a distinctively sharp attack and decay.

In position 3, VR4 gives control of pulse width and towards the top of the range gives a percussive attack to notes.

In position 4, a powerful, "heavy" sound is available; the effect depending on the value of C6 which should 'be in the range $2 \mu \mathrm{~F}$ to $15 \mu \mathrm{~F}, 6 \cdot 8 \mu \mathrm{~F}$ being optimum. This capacitor. integrates the output of IC2 which reduces the h.f. somewhat, hence the feedback in IC2 is altered by R7/R8/C5 to give a higher gain range and also some treble boost to counteract the treble cut effect of C6. R5 prevents putting too great a load on IC2 output.

FILTER S̈̈

The addition of ohly a few components around IC3 converts it into_a manually controlled filter, which may be switched out of circuit when not.

Fig. 4. Stripboard cutting details, component layout and interwiring between the component board and panel mounted components

COMPONENTS . . .

Resistors

Capacitors

C1	$0.68 \mu \mathrm{~F}$ polyester
C 2	33 FF plastic or ceramic
C3	$4.7 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C4	$0.47 \mu \mathrm{~F}$ polyester
C5	$0.1 \mu \mathrm{~F}$ polyester
C6	$6.8 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C7	$0.22 \mu \mathrm{~F}$ polyester
C8	$0.68 \mu \mathrm{~F}$ polyester

Semiconductors

IC LM301C
[CR, $3 \quad 741$ D1-D4 OA91 (4 off)

Miscellaneous

Potentiometers
VR1 $250 \mathrm{k} \Omega$ dual log. (slider) RS Components ${ }^{2}$ VR2 $250 \mathrm{k} \Omega$ log.
VR3 $100 \mathrm{k} \Omega$ log. + d.p.d.t. switch \qquad
VR4 MM Ω log.
VR5 $10 \mathrm{k} \Omega \log$.

21
21

3-pole 4-way rotary (RS Midget wafer switch) 5E, S2 d.p.d.t. slide switch
S3 3-pole 4-way (as S1)
SK, 3 standard jack socket
SK2 single pole socket
Case and hardware (knobs, etc.) to suit. B1, 2. PP7 9 V batteries

required. When clipping in IC3 is slight, the effect of the filter is treble boost, then treble cut with a band-pass or accent type response, decreasing in frequency as VR3 is increased. When clipping occurs in IC3, it has only a treble boost/cut function, returning gradually to a band-pass response as the note decays and clipping becomes less.

If the filter is not required at all, the non-inverting input of IC3 must be earthed via a $10 \mathrm{k} \Omega$ resistor.

NOISE GATING

A d.c. offset can be applied by VR2, which is amplified by IC2. At low gains, when all of the input waveform is within the window, this can be used to push the waveform up against the positive clipping level, producing one sided or half-wave clipping, which gives a buzz tone.

At high gains, when hum or noise may be audible, and guitar strings may become oversensitive, a small d.c. offset can be used to "gate out" low level signals, by setting a level below which an input signal will not be amplified. In this case inverted clipping occurs, and notes decay to a cut off point, not to a normal note (see Fig. 2).

Hence sustain can also be controlled by varying the d.c. offset, causing notes to cut off at various stages of decay. For longest sustain .VR2 is generally at zero.

MODULATION

There are two ways in which modulation of the effects by control voltages can be achieved. The first is achieved by using a tremolo unit before the overdriver unit as shown in Fig. 3.

The second method is by applying the control voltage via C14. This allows positive or negative going control voltages to be used to give a small voltage swing about zero at the non-inverting input which in effect, sweeps the "window" up and down relative to the input waveform, giving a Stylophonelike tone.

Suitable control voltage sources are the slow-sine oscillator described for the "P.E. Sound Bender" or slow running oscillators of any type.

CONSTRUCTION

The Guitar Overdrive Unit was built on 0.lin stripboard; the component layout and cutting details are given in Fig. 4. An aluminium box of dimensions in the region of $200 \times 150 \times 80 \mathrm{~mm}$ was used to house the unit. The front panel layout is not

Fig. 3. The suggested method of using a tremolo (v.c.a./l.f. oscillator) with the Overdrive unit. A typical control oscillator that would be suitable for this application is that used in the "P.E. Sound Bender" (May 1974)-not available
critical, that shown in the photograph may be followed, but constructors may feel they would like to alter this somewhat or have one or two of the controls situated remotely on a foot pedal.

The component board is mounted under the front panel, and held clear of the pots and switches with suitable length spacers.

USE

To set up for use, the guitar volume controls should be set at or near to maximum. With S1 in the normal position (position 2) the amplifier volume control is adjusted to the desired level. The balance control is then used to obtain a comparable volume on switching to "effect" (position 3). When S1 is in position 4, "straight through" signal can be mixed with any amount of "effect" signal. After use S1 is returned to position 1 where the batteries are disconnected.

The unit gives by far the best range of sounds when single notes are played. For chord work, the intensity should be kept low.

UNLIKE most servo systems which use a centre tapped battery to obtain bi-directional motor drive, this system makes use of a "bridge" connected servo-amplifier which drives the motor directly from the TTL supply rails. Such a servo system is very cheap to construct when one compares it with the price of manufactured equivalents.

OPERATION OF THE SERVO DRIVE AND AMPLIFIER CIRCUITRY

The incoming negative-going pulse from the decoder is inverted at TR6 (Fig. 15) so that the
negative leading edge of the pulse can trigger the "B" Schmitt input to the monostable IC5.

The expanded pulse set by C21 and the position of the feedback potentiometer VR1 (coupled to the servo motor) appears at the \bar{Q} and Q outputs. The Q output pulse is compared in width with the incoming pulse at the open collector NAND gate IC6a, and in a similar way the \bar{Q} output is compared with the inverted incoming pulse from the collector of TR6 at the NAND gate IC6b. The unused inputs to IC6 are taken to the +5 V rail by R 22 . The open collector load resistances for IC6a and IC6b are on the servo amplifier board R23 and R30 forming the outside arms of the bridge.

With an unbalance setsop in the bridge by an alteration in the pulse width to the servo, an output is produced at either IC6a or IC6b thus driving the motor to a new position set by the servo feedback potentiometer VR1. The RC networks R24, C22 and R29, C24, enable the motor to sustain drive during the 20 ms period until the next pulse arrives from the decoder.

SWITCH

The servo amplifier (Fig. 15) is arranged as a two pole switch allowing the motor to be connected either way round to the supply rails by TR 7, TR9 or TR 10, TR 12 being turned on by TR8, TR11. Motor suppression is achieved by C23 which under certain conditions may require to be modified in value.

MOTOR CONSIDERATIONS

With the transistors shown most small servo motors can be driven as the unit can deliver up to about 300 mA . The author has found that the surplus cassette tape motors which work from 4-7V make an ideal servo. These are mostly 5 pole motors and therefore a good starting performance is obtained. An example of such a motor is illustrated mounted in the servo assembly.

CONSTRUCTION

The two printed circuit boards are made as shown in Fig. 16 and the notes on construction followed as indicated earlier in the series. It is intended that the constructor will be mounting the servo amplifier board on the servo unit he constructs.

Servo gearing to VR1 and cassette motor mounting used by the author

SERVO UNIT

The servo motor must be mechanically connected to the feedback potentiometer VRI. In the author's case this was accomplished with a gearing arrangement with the actual output of the servo unit being an extension of the pot. spindle.

Fig. 15 Servo amplifier and servo drive circuitry, showing connections to the servo unit

SERVO DRIVE BOARD

COMPONENTS . . .

SERVO DRIVE BOARD

Resistors
R20 $1.2 \mathrm{k} \Omega$
R21 $1 \mathrm{k} \Omega$
R22 $1 \mathrm{k} \Omega$
All resistors $\frac{1}{6}$ W 5\% carbon
Potentiometers
VR1 $1 \mathrm{k} \Omega$ wirewound, to suit drive from motor gearing

Capacitors

C20 $22 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum
C21 $1 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum

Semiconductors

TR6 BC107
IC5 SN74121
IC6 SN7401
Miscellaneous
Printed circuit board $66 \times 54 \mathrm{~mm}$
P.C.B. pins

SERVO AMPLIFIER BOARD

Resistors

R23	$10 \mathrm{k} \Omega$	R27	100Ω
R24	100Ω	R28	$1 \mathrm{k} \Omega$
R25	$1 \mathrm{k} \Omega$	R29	100Ω
R26	100Ω	R30	$10 \mathrm{k} \Omega$

All resistors $\frac{1}{6}$ W 5\% carbon

Capacitors

C22 $2 \cdot 2 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum
C23 $0.01 \mu \mathrm{~F}$ disc ceramic (not on board)
$\mathrm{C} 24 \quad 2.2 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum
Semiconductors
TR8, 11 2N3702
TR9, 12 AC128
TR7, 10 AC176
Miscellaneous
Printed circuit board $46 \times 44 \mathrm{~mm}$
P.C.B. pins

SERVO AMPLIFIER BOARD

Fig. 16 P.C.B. details of the servo amplifier and servo drive boards

(b)

Fig. 17 (a) Circuitry for the relay drive section (b) Waveforms showing operation of the relay driver. The relay is only activated when the monostable output and the incoming pulse are high simultaneously

COMPONENTS . . .

RELAY DRIVE BOARD

Resistors

R31	$1.2 \mathrm{k} \Omega$	R34	$1.2 \mathrm{k} \Omega$
R32	$4.7 \mathrm{k} \Omega$	R35	$10 \mathrm{k} \Omega$
R33	$10 \mathrm{k} \Omega$	R36	$10 \mathrm{k} \Omega$
All resistors	$\frac{1}{1} \mathrm{~W}$	5%	carbon

Capacitors

C25 $10 \mu \mathrm{~F} 10 \mathrm{~V}$ tantalum
C26 0.01μ F C280 type
C27 $0.1 \mu \mathrm{~F}$ C280 type

Semiconductors
TR13, 14 8C107

IC7	NE555
D2	1N4148

D3 $\quad 1$ N4001
Miscellaneous
Printed circuit board $57 \times 46 \mathrm{~mm}$ P.C.B. pins

Relay (RLA) see text

Fig. 18 Component layout and p.c.b. master for the relay drive board

Fig. 19 Interconnection diagram for all the cards involved in the radio control system. The connection points marked on the diagram correspond in position to the p.c.b. pins on the boards themselves

The extension consists of a rod of brass bored out at one end to fit onto the shaft of the pot. Affixed to it is a gear wheel which moshes with a worm drive which is in turn driven from the servo motor via further reduction gearing.

It is obvious that the application of the control system will ultimately determine the design of the servo drive unit, whether it be used to control ailerons, rudders or a steering system as in model cars or tanks.

RELAY DRIVE CIRCUITRY

The relay drive board enables on/off functions to be detected when connected to a decoder output. It is effectively a pulse width comparator which uses the popular 555 timer integrated circuit.

Only one circuit is shown as the constructor may wish to group several circuits on the one board using the layout shown in Fig. 17. The relay is shown connected to a +9 V rail; this may be a rail run from a small PP3 battery for relays of 120 ohms, but the +5 V rail could be used if a relay in a TTL package is used providing the circuit to be controlled is within the rating of the relay contacts (about 200 mA). A small tungsten lamp can also be driven directly from the +5 V rail provided the current rating of TR14 (100 mA) is not exceeded.

CIRCUIT DESCRIPTION

The 555 is connected as a monostable with the pulse length set by R36, R35, C27 using the formulae $\mathrm{t}=1 \cdot 1 \mathrm{RC}$ a time of 2.2 ms pulse length is obtained. The monostable is triggered at pin 2 by the negative going pulse from the decoder channel output via

R32 and it is also fed to the base of TR13 via R31. The collector of TR 13 is taken to the 555 output at pin 3 whereas the emitter is taken to ground as an emitter follower configuration. It will be seen from Fig. 17(b) that when the input pulse is equal to the inverted expanded monostable pulse then there will be no output across R33 since the base of TR13 is at ground when the collector is at approx $+3 \cdot 3 \mathrm{~V}$.

However, when the command pulse is reduced by the operation of the switch on the coder channel then an output across R33 will be detected. Diode D2 and C25 form a storage network so as to allow chatter-free operation of the relay, since an output will only occur across R33 every 20 ms or so. Diode protection is included across RLA with D3 to prevent the back e.m.f. from the relay coil damaging TR14.

CONSTRUCTION

The relay drive components are mounted on the printed circuit board and the board etched as shown in Fig. 18. The size of the p.c.b. is $57 \times 47 \mathrm{~mm}$. As with the other boards, printed circuit pins are used for lead connections. It is again important to observe the correct location of IC7.

Clean the board of flux when all the soldering is complete using the method described earlier.

BOARD INTERWIRING

Details of the interconnection of the various boards of the control system are given in Fig. 19. This needs little comment. Suffice it to say that excessive lead lengths should be avoided and that good decoupling of the supplies to each of the cards will help achieve proper operation of the system. Perhaps most important from this point of view is the decoupling of the supplies to the servo amplifier since this section supplies the drive to the motor and therefore handles the most current.

NOTE

Under the heading "Setting Up the Transmitter" (June issue) reference is made to adjustment of $\mathrm{C8}$, this should read C9. However, if adjustment is found to be outside the range of C 9 the value of capacitor C 8 should be altered accordingly (increased or decreased).

NEXT MONTH: An alternative system based on tonedecoding rather than T.D.M. which can be used with the same transmitter and receiver and employs phase-locked loops as the decoder elements. Particularly suitable for gliders.

50 A.C. ${ }^{128}$ TRANBISTORS. Branded but untested. 55p.
5 WATT TO 39 POWER OARLINGTON NPN TRANSISTORE, $20 p$.
TV CHOKES 2 AMP. $5 p$ each. 12 for 50 p .
SILICON BRIOQE AECTIFIEAS. 100 PIV 10A. 83p. 200 PIV 2A. 30p. 400 PIV 1A
VHFOUAL GATE MO8 FET LIKE 40673, 33p, 4 for £1-10.
GERMANIUM TRANSISTORS. AC141K. AC 142K. AC153K, AC176K. AC187K, AC18ak. ALL 20p each.
EAXAS BF 224600 MHz NPN TRANSISTORS. 6 for 55p.
30 WATT PLASTIC POWER TRANSISTORS. NPN 22p, PNP 25p, or 35p pair
VHF POWER TRANSISTORS. Unmarked. good. 2N3866 40p each. 3 for £1.
60 Assorteo wire wouno resistors. 2 W to 10 W 57 p .
$500 y$ d REEL OF PVC CABLE, 14 strand $0 \cdot 0048$ for 83.
OISC CERAMICS. 0.1μ F 63 VW . 20 p doz: $0.05 \mu \mathrm{~F} 30 \mathrm{VW}, 0.02 \mu \mathrm{~F}$ 50VW. $0.01 \mu \mathrm{~F}$
SOVW. $15 p$ GOZ.
OATTERY CHARGER AMMETERS. 2, 3, 4, 6 amp. all at 66p.
10 SILICON MINIATURE BRIOGES. io amp type untested fi- 25.
POWER TRANSISTORS. MP8112 NPN. 15p; MPB512 PNP, 15p.
50 ASSORTED TRÁNSISTOR ELECTROLYTIC8 for 57 p .
50 ASSORTED TRANSISTOA ELECTROLYTIC8 for 57ρ. 4 for 50 p
BRANDED 10 WATT ZENERS. 15, 18, 22, 33. $56,100 \mathrm{~V}, 30 \mathrm{p}$.
MULLARD SEMI AIR SPACED TRIMMERS, ip each.
20 STC BRANDED 750 mA ASSORTED SILICON DIODES, 50 p .
TV SEMICONOUCTORS. R2008 75p, A2010B £1. AY102 40p.
20 ITT A88ORTEO 250 mW BRANOEO ZENERS, 75p.
PLASITC TRIACS. 400 PIV BA 60 p each.
200 ASSORTEO TUBULAR CERAMICS, 57p.
TAG ENOEO ELECTROLYTICS. Size $2 \frac{1}{7} \times 1+3.300 \mu F$ 64VW. $50 \mathrm{p}, 4.700 \mu \mathrm{~F}$ $40 \mathrm{VW} .45 p$.
PLASTIC S.C.R. $\mathbf{3} .50$ PIV 6A 15p. 400PIV 6A 40p
BD187 4 AMP NPN POWER TRANSISTORS. 40 p each, 4 for £1.35.
BF180 or BF181 TRANSISTORS. 4 for 57 p .
20 AF117-OC170 TYPE TRANSISTORS. Untested, 57p.
20 SILICON PHOTO TRANSIBTORS ANO OARLINGTONS MIXEO. £1. SILICON SOLAR CELLS. $0.5 \mathrm{~V} 5 \mathrm{~mA} 35 \mathrm{p}, 0.5 \mathrm{~V} 50 \mathrm{~mA} 50 \mathrm{p}, 0.5 \mathrm{~V} \quad 100 \mathrm{~mA} 60 \mathrm{p}$, $0.5 V 200 \mathrm{~mA}$ \&1.
HIGH CAPACITY TUNING VARACTOR OIOOES. 180 to 300pF 5MHZ Untested. 3 for 30p
FERRANTI ZTX10A NPN TRANSISTORS. 6 tor $57 p$.
JACKSON VARIABLE CAPACITORS C402. 10pF, 75p each.
J. BIRKETT

RADIO COMPONENT SUPPLIERS 25 The Strait, Lincoln, LN2 1JF

Tel. 20767

\section*{\% W:K:F ELECTRONICS
 THE P.C.B. SPECIALISTS
 PRACTICAL ELECTRONICS "PRINTED CIRCUIT BOARDS" now available
 TYPE 'A': Made in 1.6 mm Epoxy/Glass-fibre. supplied Roll-tinned \& drilled TYPE 'B' : Made in 1.6 mm S.R.B.P., supplied Roll-tinned \& drilled.
 All units available Ex, Stock by return, Alt prices INCLUDE Post-Pack, and V. A.T
 TERMS: Cash with order. Cheques \& P.O.s payable to W.K.F. Electronics
 | ISSUE | PROJECT | | | TYPE PRICE |
| :---: | :---: | :---: | :---: | :---: |
| Sept. 1974 | Gas \% Smoke Detector | 1 | - | 1.75 |
| JAN. 1975 | ORION STEREO ZOW AMPLIFIER | 1 | 3.60 | 2.20 |
| May 1975 | I.C. Pulse Generator | 1 | - | t. 40 |
| DEC.-JAN. 1976 | $50+50 \mathrm{~W}$ GUITAR AMPLIFIER | 3 | 3.25 | 2.00 |
| JUNE 1976 | DIGITAL FREQUENCY METER | 4 | 4.25 | 3.50 |
| June 1976 | Audio Millivott Meter | 2 | - | 1.60 |
| JUNE-AUG. 19 | RADH CONTROL SYSTEM | 8 | 5.70 | 4.30 |

PRODUCTION SPACE ALWAYS AVAILABLE FOR:
P.C.E. PROOUCTION-ELECTROPLATING-SCREEN PRINTING-TINNING CONTRACT DPILLING-ANY PHOTOGRAPHIC ART PROCESS

SERVICE FOR:
P.C.B. MASTER PREPARATION + ANY GRAPHIC ARTS PROCESS

FROM:
ROUGH COPIES-EXISTING UNITS-CIRCUIT DIAGRAM EVEN FELT TIP PEN ON OLD FISH \& CHIP PAPER!!
QUOTATIONS FREE OF CHARGE BY RETURN
Large discounts given for long' runs. Run-on's and repeat orders. Also call-off orders accepted

FOR OUTLINE QUOTATIONS PHONE: WHITWELL (DERBY'S) 695 (STD 090974)

ALL OROERS \& MAIL TO: W.K.F. Electrontcs, Welbeck street, Whitwell, Near Worksop, Notts.

- Y FRANK W. H Y DE

JUPITER'S TAIL

On its way out of the solar system Pioneer 10 encountered the influence of the magnetic tail of Jupiter. The magnetosphere of the planet forced out of shape by the pressure of the solar wind streams outwards from Jupiter as far as the orbit of Saturn.

After the encounter with Jupiter Pioneer 10 passed on at a speed of 3 astronomical units a year. During a 24 hour period nearly two and a half years later the solar wind recorder indicated zero. Since it is not possible for the solar wind to suddenly cease and the instrument was not faulty only one explanation was possible. The spacecraft was within the envelope of the tail. At the time the position of Pioneer 10 was beyond the orbit of Saturn.

It had been thought that owing to the rapid rotation of Jupiter on its axis, less than ten hours, the tail would be short. The Jupiter tail is very much greater in extent than that of the Earth. It stretches for more than 680 million kilometres from the planet. The strength of the solar wind falls off as it gets to Saturn's orbit by more than four times. This may be the reason why the tail is greater in volume.

Saturn itself will pass through the tail in about five years' time and this should cause a period of significant magnetic phenomena. The passage of Saturn through the tail is expected to occur every 20 years. The next mission, that of Mariner Jupiter-Saturn flypast should bring a spacecraft to an encounter at this time.

LASER SATELLITE

Early in May a satellite was launched to help in the study of the movements of the Earth's crust.

The satellite Lageos (Laser Geodynamic Satellite) was put into a circular polar orbit at 5,800 metre level. The surface of the satellite is covered with laser reflectors.

This satellite described in its planning stage in "Spacewatch" some time ago is like a large golf ball. It weighs 9031b but is only 24in diameter and because of its high density and its small size offering low drag, stability for long periods is assured. In consequence precise location by ground stations will be possible and the short term movements of the crust of the Earth will be apparent in a number of master earth based stations.

Over a period of several years the plots of changes will indicate the movements in direction and magnitude. By this method it will be possible to form ideas of the large scale movement of land masses and assess the behaviour of the tectonic plates. Particularly the forecasting of earthquakes will be made easier when the crustal movements are detected in earthquake areas.

The technique is to measure the time taken for the pulses of a laser beam to travel from the earth station to the satellite and return. Because of the stability of the satellite and the narrowness of the laser beam, it is expected that the degree of measurement difference of any movement will be as accurate as one inch.

NON-COMMERCIAL SATELLITE

The US Navy and the US Airforce have embarked on a joint services project for a special programme with a communications satellite called Fitsatcom. This is to provide the most advanced system of global communication.
The satellite will weigh some 1.8541 b in orbit, have three axis stabilisation and large panels of solar cells to take care of the high power needed for its operation. It is designed to provide 30 u.h.f. voice channels and 12 teletype channels for simultaneous use.

Fleet communications are to be at super high frequency for satel-lite-ground links. It is expected that the Navy will use 75 per cent of the facilities and the Air Force the remainder with provision for Army participation.

Though there have been a number of technical difficulties mainly with the communications equipment and rising costs, it is now expected to be launched in November 1977.

NATO LAUNCH

The first of three satellites, Nato 3. designed to take over from the smaller Nato 2 type was launched into its stationary orbit in two stages to its final position at 15.5 degrees W.

The weight of the vehicle in orbit is 8251 lb . It is 10 ft high by 7 ft in diameter. It is spin stabilised and has much greater power levels and wider bands of coverage. Two spot beams are transmitted, one to cover NATO countries in the northern hemisphere and the other western Europe. The channels frequency bands are 7 GHz to 8 GHz .

Two more of these satellites will be launched and the dates for these at the moment are 1977 and 1979. These satellites are in a sense comparable with Skynet II in stationary orbit over the Indian Ocean.

SOVIET RADIO TELESCOPE

The new Soviet radio telescope set up in the form of a square with sides 600 metres long is progressing well at the special astrophysical observatory. in the Caucasus. It is one of the largest radio telescopes in the world. Two of the sides. the north and the south have become operational and the east and west sides are expected to commence observations shortly.

The radio telescope consists of 895 aluminium reflectors so arranged that they can be oriented in three axes. The whole array is controlled by a computer. The effective area is 10.000 square metres. It is intended primarily for the band of wavelengths between 8 millimetres and 30 centimetres.

SOLAR ENERGY

A test power tower is being built by Sandia Laboratories at Alberquerque in the United States.

It consists of a boiler mounted on the top of a 200 ft tower and surrounded by over 300 mirror modules in the form of heliostats. These will follow the sun by motor control so that the boiler is irradiated during the available sunlit part of the day.

Each heliostat will consist of 25 mirrors 4 ft by 4 ft . These are in 78 strategic positions and focus 1MW of solar power on the boiler. A further 240 heliostats will be required to provide for the 5 MW target contemplated. High pressure steam will be produced at the boiler at 1.000 degrees Fahrenheit.

This facility will not produce electricity though the 5 MW unit could produce about 1.5 MW if the steam were applied to this purpose. The purpose of this complex is to act as a test bed for equipment designed as part of the proposed 10 MW electrical solar power station.
A site for this larger plant is not yet decided but will be later in the year. It is planned to be in an operational state in 1980. The 10 MW pilot plant will provide enough electricity for a town of 10.000 people.

This hobby brings big rewards.

A soldering iron and a screwdriver. If you know how to use them, or at least know one end from the other, you know enough to enrol in our unique home electronics course.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You build, see and learn as, step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered and add a new dimension not only to your hobby but also to your earning capacity.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

2
Build an oscilloscope.
As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

PLUS

 FREE GIFT!

ALL STUDENTS ENROLLING IN OUR COURSES RECEIVE A FREE CIRCUIT BOARD ORIGINATING FROM A COMPUTER AND CON. TAINING MANY DIFFERENT COMPONENTS THAT CAN BE USED IN EXPERIMENTS AND PROVIDE AN EXCELLENT EXAMPLE OF CURRENT ELECTRONIC PRACTICE

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

[^1]

Carry out over 40

 experiments on basic circuits.We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

ELECTRONIC DIGITAL CLOCK with olarm and snooze features

SPECIAL OFFER £18.95

inc. VAT and P \& P.

Features: 0.7 Inch High Digits Varlable Intensity 24-hour Alarm 5-minute Repeating, Snooze Alarm Alarm Set Indicator Snooze Indicator Pulsing Second Indicator Power Interrupt Indicator Alarm Cancei Features-Tilt Operation - Alarm Tone Output A.M.-P.M. Indicator

Size: $130 \mathrm{~mm} \times 90 \mathrm{~mm} \times 95 \mathrm{~mm}$. Weight: 100 z . Power supply: 110 V a.c. $\pm 10 \% 60 \mathrm{~Hz} ; 230 \mathrm{~V}$ a.c. $\pm 10 \% 50 \mathrm{~Hz}$.
Manufactured to high standards by a major American alectronics corporation, this superbly styled solid-state timepiece is made available to all readers fully guaranteed.
Free trid in your home- Try out the clock in your home. If digital time is not for you return it in original condition within 10 days and we'll refund your money without question

TIME MICROELECTRONICS
P.O. Box 29, Brighton Hill Parade, Basingstoke, Hants RG22 11EH.

Please send \square electronic clocks as illustrated. I enclose cheque \square postal order \square money order \square for $£ 18.95$ which includes P. \& P

Name

Address

Signature

THE International Electrical, Electronic and Instrument Exhibition IEN/ELECTREX (3-7 May), combined for the first time, two major London exhibitions under the one vast roof of the world's most modern exhibition centre-NEC Birmingham.

To house what was the Instruments Electronics and Automation Exhibition and the International Electrical Exhibition, four of the largest halls of the National Exhibition Centre were needed.

But everything about the Centre is big. It is set in a landscaped park of 310 acres with a 16 acre lake and an enormous fountain. The seven exhibition halls cover a total of 90,000 square metres. The whole concept is really remarkable and worth a visit just to see it.

IISTRUMENTS

The oscilloscope market is an intensely competitive one with an enormous number of instruments to choose from. Advancing technology has brought the high bandwidth instrument within the purchasing orbit of many constructors.

New from Scopex, which really does represent value for money is the 4 S6-LS selling at f 105 . Based on the successful 4 S 6 this single beam instrument has a 6 MHz bandwidth and a timebase speed down to one second/cm.

The trend in general purpose scopes now is extreme portability, large displays for easy readability and simple to use controls. Reflection from c.r.t. faces has been a common problem for many years in affecting readability and to combat this, Scopex are treating graticules with a non-reflective acrylic coat.

With an avowed intention of concentrating on scopes from 50 MHz and down Gould Advance have upgraded and restyled their successful OS250. The OS250A is a 10 MHz dual trace unit with a maximum sensitivity of $2 \mathrm{mV} / \mathrm{cm}-\mathrm{a}$ general purpose workhorse; but there is a version available inconporating an active TV sync. separator capable of maintaining a stable trigger

A look at two major exhibitions combined under the one roof of Birmingham's National Exhibition Centre

By G.GODBOLD

lock for the examination of television waveforms.

Other new instruments from Gould Advance are the J3A and J4A a.f. oscillators with a $10 \mathrm{~Hz}^{-}$ 100 kHz range in both sine and square modes. The J4A can provide 7 W into 1.5 ohms.
The widespread use of l.e.d. displays and microcircuits have added an almost artistic elegance to many measuring and test instruments.. A fine example is the low profile Gould Advance DMM7A digital multimeter with a total of 28 current, voltage and resistance ranges.

Marconi Instruments, determined to have their cut of the cake in the digital counter market, have introduced three new equipments bracketing the frequency range from 10 Hz to 560 MHz . The TF2430, TF2431 and TF2432 are relatively low cost, for example, the TF2430 with a measurement capability of $10 \mathrm{~Hz}-80 \mathrm{MHz}$ costs $£ 165$. A custom designed microcircuit makes this possible as it contains much of the circuitry, including the entire low frequency element.
The commonest measuring instrument is the multimeter. Unfortunately, the pocket variety are usually the most likely to succumb to damage. With the cheaper varieties servicing is a "throw-away" exercise and for the better types, repair and calibration can be costly. Alcon Instruments have come up with a solution in their multimeters from Miselco. Modular assembly of the instruments means that any one module may be replaced by the user using only a screwdriver. Factory matching of modules means that there is no need for recalibration.
Multimeters from Miselco appear in two styles-the pocket Tester range and Master range which is designed to meet more stringent applications. Both ranges include an optional signal injector. The "do-it-yourself" feature applies only to the Tester range.

Avo had their range on display. These include the Model 8 Mk 5 , Model 73 and the high impedance models EM272 and EA113.
The digital Avometer DAll4
maintains the tradition of rugged reliability with a choice of d.c., a.c., and resistance ranges. High input impedance and comprehensive built in calibration check facilities also feature.

Two versions are available-one for mains operation and the other with built-in rechargeable battery.

ENERPY SAVIMB

With the recent five-fold increase in oil, it's obvious that the era of cheap energy from this source is over. Coal, gas and electricity follow this spiral so it's obvious that any energy saving investment must be money well spent.

Something for nothing is always desirable and in the long run solar panels provide this. Redpoint claim that two of their S175 panels will save about $1,850 \mathrm{kWh}$ in an average year and give 40 gallons of hot water on a sunny day, all without running cost.
On the subject of conservation, did you know that there are more battery electric vehicles in Britain than in any other country?

These are ideally suited to fixed route journeys such as general urban delivery. A number of electrical road vehicles on show demonstrated their potential. These included a taxi with a range of 100 miles/ charge and' a top speed of $55 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., a saloon car, range 55 miles and top speed $40 \mathrm{~m} \cdot \mathrm{p} . \mathrm{h}$., and a number of vans and a tractor.
The hybrid petrol-electric vehicle is another exciting concept. Here the petrol engine has just sufficient power to drive the vehicle on the level. Extra power for acceleration and hill climbing is provided by the electrics. Power drawn from the battery is regenerated during the journey, this means very high m.p.g. returns.

WIRIMG AIDS

Today's complex equipments usually require many terminal connections. With advanced technology and dense component assemblies, there has been a re-think on methods of making fast, more reliable and inexpensive connections. An idea born in the Bell Telephone Laboratories was the technology of wire wrapping. Here a connection is made by coiling a wire, under tension, around the sharp corners of a terminal. In doing so the oxide layer on both wire and terminal is crushed and a clean contact obtained. An advantage of this method is that wires may be easily removed without damage to the terminal.

To implement a wrap, special tools are required ranging from power to manually operated. Vero displayed a complete range of these.

Included on the Vero stand was a new kind of wiring system-Vero-wire-which enables prototype cir-
cuits to be rapidly and reliably constructed. It could be of particular use to a designer as it enables maximum packing density to be achieved using i.c.s and/or discrete components.

The two main parts of the system consist of a wire dispenser in the form of a pen which is used to route pre-assembled wire from one point to another and plastic moulded wiring combs which are designed to retain the wire in a neat fashion.

Unlike the wire wrapping technique the Vero wire system requires a soldering iron to complete a joint.

It appears that the applications range of the microprocessor has barely been tapped. We've heard' of automatic car safety devices which warn of dangerous driving conditions or mechanical fault. For the home, programmable sewing machines, dishwashers, washing machines and central heating systems are already under development.

To aid the potential user, Vero have introduced a range of boards suitable for the evaluation and production of microprocessor based systems. This consists basically of a Central Processor Board, Memory Board and Interface Board.

The design of the boards allows the user to construct his system
using any of the currently available microprocessor chip sets.

CASES

Much of the attractiveness of instrumentation lies in the casing. The variety in both shapes and colours available was very much in evidence. Foxall introduced their new range of Tring small instrument cases in nine standard sizes and a choice of colours. Vero have extended their range of plastic boxes with three additional sizes which clip together for ease of assembly. These follow the pattern of those with metal front and rear panels for mounting meters, switches, sockets, etc. An additional size of sloping front box has also been added.

West Hyde Developments who boast a holding of more than 250 different case models, showed their new Contil Elan anodised case. This is black with blue p.v.c. top and bottom panels, incorporating builtin board supports and a special rear section that includes heat sinking for transistors.

NEW CONMECTORS

The manufacturers of the highly successful EZ hooks have added two new connectors to their present range of instrument test probes.

Currently available are two basic sizes of EZ-hook. one designed for standard use (adequate for attaching to most p.c.b. mounted components) and one miniature version which allows direct clipping to i.c.s.

These particular probes are so small that it becomes an easy task to have one on each leg of an i.c. without overcrowding. The standard and miniature versions are fine for small components, but they cannot be attached to larger components due to their physical size. The new range therefore is a magnified version of the standard type and has been designed with heavy-duty work in mind. Spring-loaded and heavily insulated to a single contact point to ensure true readings. the hooks are of heat and chemical resistant nylon and come in ten different colours.

Also from EZ Hook čomes a new concept in probe, thinking, the "Pistol-Grip Probe". As well as having the unique EZ hypodermic action, the Pistol-Grip Probe also has an epoxy glass board for builtin circuitry which is incorporated in the handle. This will enable one to easily construct a $\times 10$, or an r.f. probe to suit one's own requirements. The hooks are designed to attach to component leads up to 1 mm in diameter.

1. The new Scopex model 4S6-LS oscilloscope
2. From Gould Advance, the J3A and J4A high performance, low cost test oscillators
3. The Miselco Tester range from Alcon Instruments
4. Examples of Verobox plastic range
5. The Verowire prototyping kit enables prototype circuits to be rapidly and reliably constructed

CRESCENT RADIO LTD. 164-166 HIGH ROAD, WOOD GREEN, N22 (also) 13 SOUTH MALL, EDMONTON, N.g

8 KILOTATTS PSYCHEDELIC LIGBT CONTROL UNIT
Three Channel: Bass, Middle,
Treble. Each channel han lis own enaitivity control. Juat connect the input of thle unit to the loudspeaker terininals of 250 V up to and connect three 250 V up to 1000 w lampa to the output terminale of the unit, and you produce s iascl-
nating sound-light display. (All guaranteed)
© 18.50 pius $75 \mathrm{p} . \mathrm{P} . \& \mathrm{P} .+8 \%$.
CABLE LESS SOLDERING IRON WAML "ISO-TIP

* Completely portable * Bomplets up to 150 joints per charge.
* Recharges in its oun etand.
* Fine tlp for all types of solder lng
+ Onip
* Only Bin long and weighe just
6 ozs. 6 07s.
OUR PRICE $\mathbf{1 9} 75$ \qquad
BARGAIF PROJECT BOX
BARGAIF PROJECT BOX
A plastic box with moulde
A plastic box with moulded extrusion raile for PC or Chassis panele with metal front plate supplled).
An in ideal
project a prof to give a gnall
Broject a professional fnish.

CRESCENT'" 100 WATT R.M.S ALL PURPOSE AMPLIFIER U.BUILD. IT

We supply the three modules fol you to build

 this Disco-Group-P.A. amplifier into the cablnet of your cadice* THE POWER AMP MODULE
inow r.mn.s. sq. wave 300 W inatantancous peak into 8 ohin (60 W into 16 olm)

F THE PRE-AMP MODULE

Four control pre-amp, Vol. Bass, Treble. Mlddle controls. Designed to drive most nmpllifern using F.E.T. frrst stage. * THE POWER SUPPLY Is suppled complete with the maine transformer. Complete Axing instructions are bupplied and no technical knowledje is required to connect the three ready wired modules. A fantastic bargata. 627.50, carr. \& 3-20. Bend B.A. C. for further detalla on this or our ready bult amplifers, $+8 \%$

12-0-12V $500 \mathrm{M} / \mathrm{A}$

240 V yrlmary tranatormer bargaln. Approx. uize $60 \mathrm{~mm} \times 40 \mathrm{~mm} \times 50 \mathrm{~mm}$; nxing centres: 7 fimm
Our price $81.20 . \quad+8 \%$.

GOODMANS CROSSOVER
Bargain price Crobsovers manufactured by $\boldsymbol{M P P}=\mathbf{8 0 H M}$. $\quad \mathcal{I}$ each $+12 \frac{1}{2} \%$ VAT.

Low Voltage Stereo Amplifier

8 transistor atereo ainplifer with volume, bess, balance and tone controls. Approx. 3 W Into 8 ohm per channel. Needs a 9/12V d.c. supply and in Ideal for domestic record players, etc.

A BARGAM AT $45+12 \frac{1}{2} \%$ VAT

U.K. CARRIAGR 50p UKLESS OTEERWISE STATED

VAT-All pricer aro oxeloding VAT. Piense add to ench litem the VAT rate fadicated.

| ndustrial research is performed on a day-to-day basis, and is generally afforded scant attention except when a significant and perhaps exciting development is revealed to the public gaze. The continual investigation into new electronic techniques is an essential activity pursued by large electronic organisations in self-interest, though the whole industry and the ultimate users of its products are joint beneficiaries of the successful developments that emerge from such backroom work.
A notable example of such vital backroom activity is provided by The Mullard Research Laboratories, Redhill, Surrey, part of the multinational Philips concern. These laboratories (MRL) contribute to the total research effort of Philips, and in particular undertake work on behalf of the companies within the U.K. group. These include the MEL Equipment Co., Mullard Ltd., Philips Electrical Ltd., and the Pye of Cambridge Group.
Some of the work currently in progress at MRL was demonstrated during a recent "open day" at Redhill. As the Director of MRL, Professor K. Hoselitz pointed out, work had to be selected for viewing on the basis of its demonstrability, and this did not necessarily imply that the work shown was the most significant in the total programme at present being undertaken at MRL.

PULSED TRAPATT OSCILLATORS

In microwave equipments, solid state devices have partially superseded vacuum tubes, magnetrons etc., but for certain applications they cannot provide the required peak power. Avalanching silicon devices operated in the TRAPATT mode offer considerable peak power potential and are likely to replace triodes and travelling wave tubes in low and medium power pulsed radars.
TRAPATT is derived from Trapped Plasma Avalanche Triggered Transistor. MRL is one of the leaders in the international
state of the art "league table" relating to power output for avalanche diodes. This laboratory has recently achieved peak power levels of up to 120 W at 2.3 GHz (S-band) from a single device in a coaxial oscillator with an efficiency of greater than 45 per cent. Both planar and mesa device structures have been used.

Probable uses for this kind of oscillator include airborne radar, aircraft altimetry, M.L.S., pulsed doppler radar and aircraft/marine radar. See photo below.

MAGNETO-OPTIC BUBBLE DISPLAY

A new portable display concept for mobile radio systems is being developed at MRL. It uses a thin film of a special magnetic material which supports magnetic bubbles and has a very large Faraday effect in the visible region of the spectrum. Magnetic bubbles can be easily moved over the surface of the film, and can be made visible by means of the Faraday effect. They can therefore be made to act like mobile light spots. In the display, a sequence of magnetic bubbles is propagated serially along a folded shift register fabricated on the display chip, and is used to form a dot matrix picture. Since the display is magnetic, it has a nonvolatile memory and requires low drive voltages.

At the moment, chips have been made with 10×10 bubble positions. Various alpha - numeric characters were written into these registers using $10 \mu \mathrm{~m}$ diameter bubbles. These characters could be clearly seen using a simple $\times 10$
eyepiece. Bubble chips with capacities of $10^{ \pm}$, for magnetic memory applications, have been fabricated in many laboratories. MRL intend to make 100×100 folded shift registers for the display application. For a 10,000 bubble position display operated at a rate of 10 kHz , it would take 1 second to build up the picture. If alpha-numeric characters of the 7×5 format were used then over 100 characters could be written into the display.

TELEPHONE/TV INFORMATION SYSTEM

The new field of electronic home information services is being investigated at MRL. A home terminal for requesting, storing and displaying data was demonstrated. The information may be derived either from a computer organised data bank or from a local data source, and connection is made via the public telephone network. An alphanumeric keyboard is used to request pages of information for display as text on a standard TV receiver. In addition to information retrieved, certain interactive facilities, such as games, classified advertisements and a diary facility have been included. The use of an unmodified domestic cassette recorder for local storage was described.

OPTICAL CHARACTER RECOGNITION

A prototype optical character recognition (OCR) reader intended for eventual high volume production at very low unit cost has been designed and built. The reader uses a simple hand-fed paiper transport and recognises machine printed numerals at 50 per second. Extensive use is made of standard LSI circuits, including a microprocessor.
This OCR is aimed at the new and growing market, wherever documents are presented; for example. airline ticket offices, banks, electricity board offices-where there is a steady trickle of documents, each containing perhaps only a single line of numerals which need to be entered into the data system.

PULSE GENERATOR FOR BATTERY OPERATED CLOCKS

Fig. 1

THis simple circuit has proved very satisfaciory in a 1.5 V battery clock (alarm). The clock has two balance wheels on a common spindle and each has a small mag. net attached. Between these magnets there is a fixed coil connected to the battery via contacts. The clock was never satisfactory and while cleaning and adjusting contacts and fitting a new battery helped, the improvement was only temporary. The monostable device takes no current until the clock contacts make, then TR1 switches on TR2 which passes a constant current pulse to the coil (see Fig. 1).

The six components are mounted on a piece of Veroboard which should be fastened to the clock. The existing connection from the balance whecl to the coil should be broken. It may then be necessary to move the diode already fitted so that it is again connected across the coil. If the contacts require adjustment move the fixed spring contact until it just touches the wheel contact when the wheel is at rest. Check that no steel washers etc. have attached themselves to the magnet.

Using this circuit the clock has kepi perfect time for over six months without once stopping and is still going. Whether this is the complete answer only time will tell.
J. Hassitt, Bootle Lancs.

F.E.T. VOLTMETER

CIRCUITS for high-impedance voltmeters have been widely featured, invariably using an integrated circuit or a f.e.t. However the i.c. versions usually require a balanced supply of a rather "high" voltage (usually $\pm 9 \mathrm{~V}$) and a rather substantial current of about $5-7 \mathrm{~mA}$. The f.e.t. version uses a high source resistor but the linearity is critical.
The circuit given here (Fig. I) is simple and linearity obtained is very good. A high degree of negative teed-back is used and voltage gain is one. A potential divider may be used in place of R1 to provide the langes of voltage required. As the linearity is very good, the voltmeter used should be a quality one with good linearity as well.

This circuit can be easily modified into a linear ohmmeter as shown in Fig. 2. Here another f.e.t. is used as a constant-current source with Si to provide different constant currents. The source resistance for a particular constant current depends on the characteristic of the f.e.t. and can be easily obtained by adjusting R whilst measuring the
current between $S I$ and the negative line. The resistance range can go up to 10M!? without difficulty and voltmeter reading is R_{x} multiplied
by the constant current (Ohm's Law).

Pek Yaw Kee, Sarawak, E. Malaysia.

Fig. 1

Fig. 2

RISE TIME SPEED.UP

THOUGHT your readers may be interested in a circuit I recently devised to improve the rise time of the astable multivibrator. The problem is simply that in the conventional circuit the leading edge of the output pulse is generated by an RC network. (Fig. 1).

It is not practical to use low values of load resistor, since, although this would improve the rise time, it would also lead to high

collector currents. However, if a complementary transistor, with its base driven from the opposite stage is included, this problem can be overcome (Fig. 2). Operation should be self explanatory.

Care should be taken with large values of C to ensure that the high charging current does not damage the base emitter junctions of TR1
and TR2. The pulse repetition frequency remains unchanged at

$$
\text { p.r.f. }=\frac{1}{2 C R \log _{\mathrm{e}} 2}
$$

If both outputs are not required TR4 may be removed and a resistor put in its place.
M. J. Nicholas,

Ashburton.

multi-way touch switch

THe circuit shown in Fig. 1 was developed as a multi-way touch switch. Transistors TR1 and TR2 form a Darlington pair, and when a finger bridges the touch plates TR2 goes into saturation. This provides a Logic 1 pulse at $G 1$ and at the same time l.e.d. D1 lights. G1 and G2 act as a simple memory by means of positive feedback, so that when the finger is removed point 1 remains at Logic 1 . The ouput goes from Logic 1 to Logic 0. The l.e.d. is wired so that it will stay on when the finger is removed. The output remains at Logic 0.

To enable the touch-switch to be multi-way, some form of cancelling is needed when one of the other slages is turned on. This is achieved by taking the output at point 1 and applying it via an inverter to the equivalent point in the other stages. This will result in the memory circuit being reset in these stages, and their outputs will go from Logic 0 to Logic 1 (if they were not already at Logic 1); also, any lit l.e.d.s will go out.
The circuit can be extended from two to nine stages, it is cheap and easy to build, each section using one half of a 7404 TTL i.c. An attractive layout can be achieved using a p.c.b. with the l.e.d.s showing through holes in the board.

Transistors TR1 and TR2 may be replaced with a single Darlington transistor. The l.e.d.s may be dispensed with, but NOT their associated resistor. The transistors in one of the stages may be replaced by a light-sensitive Darlington, in which case the unit could be used as a burglar alarm or remote control.
The original unit was designed for direct interface with TTL. but if heavier loads are required the outputs could be used to drive a relay.
T. J. Hill,
$\begin{gathered}\text { Reading, } \\ \text { Berks. }\end{gathered}$

Fig. 1

BETTER DISPLAY

With reference to the Digital Clock presented by Mr A. J. Sutton as featured in the August, 1975 issue of Practical Electronics. the respective " A " and " D " seg-
ments of the 6 and 9 digits were unable to display. I wish to suggest two simple additional circuits which 1 hope will be interesting to other readers. These alditional circuits (shown in dotted lines in Fig. 1 and Fig. 2) will enable the clock to display better figures.

To get the " A " segment to light simply add a diode across the "A" and "D" outputs of ICI (pins 3 and 6 respectively) as shown in Fig. 1.

For the " D " segment. a Nind gate is connected as shown in Fig. 2.

Cheong Yip Tham. Singapore.

Fig. 1

Fig. 2

TOUCH TUNER

SOME readers may be interested in my solution to a touch tuner for the LP 1886 luner. It has the advantages over Mr. Bonfield's design (see P.E. May, 1975) of inuch lower power consumption. and simple extension to any number of presets. The component cost is also less.

The current source R5/6. D3; TR4 supplies 15 mA . The "thyristor" TRI/2 passes this through resistors R4. VRI to produce a constant voltage, part of which is picked off by VRI to provide the tuning voltage.

Assume pre-set VRla is conducting, $C 2$ is then charged to about 11 V and C 2 b is discharged. Touching the touch terminals on TR3b switches on TRIb and TR2b so bringing the common supply to all
units down to a few volts which reverse biases TR1a/2a, switching them off.

Components $\mathrm{R} 1 / 2 / 3$, and C 1 are to eliminate pulse triggering of other units by the surges with the switching. The 680 ohm resistor R4 gives a maximum of about 9.5 V for tuning. This can be increased, if necessary, by raising the value of R4 and the supply voltage.
R. E. Thomas, Cambridge.

Fig. 1

THE circuit shown is for a very simple logic probe capable of indicating "H1" (+5 volts) when D 1 is tit, "LO" (0 volts) when D2 is lit and also a floating probe condition when both l.e.d.s are dimly lit. Thus the circuit can distinguish between +5 volts, earth and open circuit.
The circuit may be miniaturised and enclosed in a hand-held container such as a 35 mm film can. The supply. leads may be connected to the +5 volis and earth supply of the circuit under test by means of crocodile clips.

Basically the logic probe consists of two complementary emitter followers with both bases connected to the probe.

Both lamps are normally lit due to base current flowing via R2, D2, TR2 base emitter junction. TR1 base emitter junction, D1 and R1.

With the probe testing for a logic 1 level. TR 1 is forward biased, thus D1 lights fully and D2 is extinguished due to insufficient voltage across it. With the probe at logic 0 volts the reverse occurs. i.e. TR2 is forward biased, hence D2 lights fully and DI is extinguished

With the resistance values shown the circuit was found to work effectively but since the brightness of different I.e.d.s supplied with the same current may vary and also the $\mathrm{H}_{\mathrm{FE}} \mathrm{s}$ of the transistors may vary, it may be found necessary to adjust the resistance values to achieve the same l.e.d. brightness in the floating probe condition. The brightness of the l.e.d.s for the "H!" and "LO"

Fig. 1

conditions may also difter slightly due to the collector load resistance of the logic circuit under test.

The Fig. I shows the approximate voltage levels in the floating probe condition when both lamps are dimly lit.

Any miniature l.e.d, with a plastic diffusing dome will be suitable.
V. Brett,

Luton

THis timer provides an audio-visual alarm after the elapse of a preset period of time. Time delays of 10 s (for test and initiating the timing periods), 1 minute, 4 minutes, 15 minutes, 30 minutes and 1 hour with a repeatability of better than 2 per cent can be obtained. Accuracy is largely determined by the care taken in selecting resistor values and the constructor can easily design his timer to provide other timing periods as desired, although 60 minutes appears to be the maximum reliable delay which can be achieved.

The 4 minute delay is suitable for boiling eggs, and the longer delays have been of particular value in reminding the author to return to his car parked in a limited time zone.

The timer is provided with a push-button so that the preset times can be readily recycled. Games and other competitive events are possible uses for the timer.

CIRCUIT

Fig. 1 shows ,the complete circuit of the pocket timer making use of monostable and actable circuits with the 555 and 556 . Note that the output pin of IC1, the single 555 timer chip, is connected to the positive power rails of IC2, the dual timer, via the transistor. Thus a low voltage at pin 3 of

IC1 turns on this transistor which allows current to flow into the positive voltage supply pins of IC2 to start the astable oscillators.

Suppose PL1 makes connection to one of the timing resistors ($\mathrm{R} 10-\mathrm{R} 15$). Initially, assume that the output voltage at pin 3 is high so that the transistor is off and no drive current is supplied to the dual tastable based ongIC2. When the voltage across caracitor C4 rises to $2 / 3$ of the supply voltage, the internal flip-fitptof IC1 sets the voltage at pin 3 low hence switching.on TR 1 and starting the astables working. The approximately 1 kHz astable is formed by one internal timer chip of IC2 and components R7, R8 and C3, and the low frequency 1 Hz oscillator by the other timer and components R5, R6 and CI.

These two astables are d.c.-coupled by R9 so that the changing voltage at pin 5 regularly alters the time constant of the 1 kHz astable to produce a twotone alarm in the earpiece. The visual signal is produced by the 1 Hz astable switching on D1 and D2 which flash in time with the audio alarm tone change.

ALARM RESET

Note that once the alarm sounds, it can be stopped by pressing S1 which resets the internal flip-flop of IC1 to put the voltage at'pin 3 high so turning off TR 1 and the alarm. Capacitor C4 then immediately begins to charge on a new timing cycle. If during a timing cycle S 1 is accidentally pressed, the timing period will not be affected. This is clearly fortunate since, after a timing period has been initiated, subsequant accidental pressing of the push switch is quite likely to occur as the timer is carried around.

COMPONENTS . . .

Resistors	
R1	$12 \mathrm{k} \Omega$
R2	470Ω
R3, R4	220Ω
R5	$6.8 \mathrm{k} \Omega$
R6	47k Ω
R7	$1.2 \mathrm{k} \Omega$
R8	470Ω
R9	$12 \mathrm{k} \Omega$
R10-R15	see text
All \ddagger W 5	\% metal film

Capacitors

C1 $\quad 0.47 \mu \mathrm{~F}$ tantalum 15 V
C2 $10 \mu \mathrm{~F} 15 \mathrm{~V}$
C3 $1 \mu \mathrm{~F} 15 \mathrm{~V}$
C4 $270 \mu \mathrm{~F} 6 \mathrm{~V}$

Semiconductors

TR1
BC212L or ZTX500, BC477
IC1
555
IC2
556
D1, D2 ` miniature red l.e.d.s

Miscellaneous

7 miniature sockets (1 mm), 2 miniature 1 mm plugs, S1 press-to-make switch, S2 on/of toggle or slide switch, LS1 miniature earpiece (35Ω)

Fig. 2. Veroboard component assembly details

CURRENT DRAIN

The current drain from Bl is about $3 \mathrm{~mA}^{\prime}$ during the timing period and is not excessive for this low capacity battery. However, the current drain rises to about 20 mA when the alarms operate so that the user should switch off the circuit with S 2 , or press the timing button S 1 , without delay to ensure economical use of the timer. As a guide to the state of discharge of the battery, it will be found that the rate of flashing of the l.e.d.s and the pitch of the audio alarm will increase slightly with continued use of the timer. However, provided the monostable delay circuit is operated by a voltage greater than 4.5 V , the delays obtained will be substantially independent of the supply voltage.

CONSTRUCTION

The timer was housed in a modified transparency box intended to hold $36,35 \mathrm{~mm}$ slides. A PP3 battery fits neatly into this. The lid was discarded and a purpose-made lid cut from a piece of Paxolin (any other rigid insulating material will do) and shaped so as to snap fit into recesses cut into the two top ends of the box. The components were assembled on a piece of Veroboard which was fixed to the underside of the lid, and from this lid wires were taken to the battery, earpiece, push switch, on-off switch and l.e.d.s.

The component layout on a piece of 26×11 hole 0.1 matrix Veroboard is shown in Fig. 2. In order for it to be the same width as the lid of the box, the Veroboard needs to be filed slightly, so that its long edges lie flush with the 1st and 1lth tracks. The l.e.d.s should be soldered into place so as to come out on the copper track side of the Veroboard. Their leads should be sleeved and adjusted in length so as to lie directly opposite each other for they are to be pushed through two holes drilled into the lid.

Nylon nuts and bolts fix the Veroboard to the lid. Ensure that the tantalum timing capacitor, which is mounted over the top of R4, is not in contact with any components.

A ring of six miniature sockets, and a central one, are required for selecting the timing resistors. The central socket is connected to the positive rail on the Veroboard and into this socket a plug is permanently inserted. This plug carries a wander plug on a short lead for selecting the timing resistors via the other sockets.

TESTING AND CALIBRATION

Once the circuit board has been fitted to the Paxolin lid, the l.e.d.s are positioned, and the various wires are connected to $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~B} 1$ and the earpiece. Upon switching on the unit the alarm should not sound since there is no charging path for the timing capacitor. However, if a short is made between the central socket and the junction of R2 and pin 3 of IC1, the alarm should sound and the l.e.d.s flash. Once the short is removed, the alarm will continue to sound. Press the push button switch and the alarm will stop.

It may be necessary to tailor the timing resistor values according to individual capacitor spreads. Any alterations should be based on the following: 1 minute, $180 \mathrm{k} \Omega$; 4 minutes, $680 \mathrm{k} \Omega$; 15 minutes, $2.5 \mathrm{M} \Omega ; 30$ minutes, $4.7 \mathrm{M} \Omega$ in series with the $180 \mathrm{k} \Omega$ used for the 1 minute resistor; 60 minutes, $10 \mathrm{M} \Omega$. All resistors were 5 per cent metal oxide types. Note that the resistor values required for the longer delays fall increasingly short of the calculated value. For instance, for a 30 minute delay, the calculated value is $6 \mathrm{M} \Omega$. Ensure that the resistors are rigidly soldered into place and not touching each other. The wander plug is then used to select the appropriate resistor for a particular delay.

USING THE TIMER

Put the plug into the 10 s socket and switch on the timer. Once the alarm sounds, remove the plug (which does not stop the alarm) and insert it into the appropriate socket. Press the push switch briefly and the alarms will cease and begin again after the preset delay. A momentary press of the push switch will then reset the delay. The unit is now ready for use.

Next Month...

 CROSS-HATCH GENERATOR

 CROSS-HATCH GENERATOR}

This completely self-contained unit uses six CMOS i.c.s and two transistors to generate a cross-hatch signal at u.h.f. for servicing
 pick-up is required-simply connect to the aerial socket.

GAS/SMOKE DETECTOR

Smoke/gas detectors are always extremely popular, especially with those involved with boats or caravans. This unit features small size, fast response time and warm-up time, high sensitivity to smoke and gases, and at the same time retaining low sensitivity to steam or dust.

LIGHT-UPALARM

Driving in poor light conditions can be hazardous. This alarm senses ambient light level outside the car and lets you know when to "light-up".

An exciting follow up to the RADIO CONTROL SERIES

An alternative system based on tone-decoding using the same transmitter and receiver and employing phaselocked loops as the decoder elements.

PRACTICAL
 ELECTRONICS

PLEASE NOTE
It is In your Interest to place a firm order with your newsagent-in advance. Back numbers are not avallable, so make sure of your copy now!

OUR SEPTEMBER ISSUE WILL BE PUBLISHED ON FRIDAY, AUGUST 13, 1976

Akarnaugh map is a simple visual representation of a two state function, and may be used to obtain a simplified Boolean expression from a truth table. The mapping is usually done with a pencil and paper, and four functions are about a comfortable limit, giving sixteen possible mappings of the four variables.

It was after using this technique with a group of computer degree students that the idea of constructing a "real time" Karnaugh map display developed; thus bringing initial theory and practice together hopefully in a successful conclusion. The students could prepare their maps on paper for a given logic problem, patch up the hardware in the department's logic laboratories, and then display the results on
the Karnaugh map display unit. For those readers not too familiar with logic and mapping techniques, a brief explanation is included at the end of this article.

This unit is fairly compact and not too expensive to build, and should be of particular interest to those who have their own "logic labs" and to many schools and colleges who have science or electronics laboratories.

Fig. 1. General system of the Karnaugh map display

COMPONENTS

Resistors
R1 $680 \Omega \frac{1}{4} \mathrm{~W} 5 \%$ carbon

Capacitors

$\mathrm{C} 1, \mathrm{C} 2 \quad 1 \mu \mathrm{~F}$ polyester (2 off)
C3 $10,000 \mu \mathrm{~F} 40 \mathrm{~V}$ elect
C4 $0.22 \mu \mathrm{~F}$ polyester
C5 $0.47 \mu \mathrm{~F}$ polyester
Diodes
D1-D16 TIL209 I.e.d.s (16 off)
D17-D20 2A 200VRKM silicon bridge
Integrated Circuits

IC1, IC2	74121 (2 off)
IC3	7493
IC4-IC8	7404 (5 off)
IC9	74154 (8 off)
IC10-IC17	7475 (
IC18	7440
IC19	LM309K $5 \mathrm{~V}, 1.2 \mathrm{~A}$ regulator

Misćellaneous
T1 Mains primary, 9V1A (minimum) secondary, e.g. R.S. Components (access through Doram) 207-122
S1 D.p.s.t. mains toggle
FS1 500 mA fuse and holder
LP1 Neon indicator 240 V
Output and input sockets (9 off); perforated board (0.1 in matrix) or i.c. stripboard; case.
being on light-emitting diodes. Fig. 2 shows the layout of the l.e.d.s and their map interpretation, and the photographs give an impression of the overall packaging.

A clock signal is fed to a four bit binary counter. This counts from zero through to fifteen as in Table 1. Each of the output lines from the counter is taken to the four-to-sixteen line decoder, this giving sixteen mutually exclusive pulses at its output lines. The counter output lines are also fed via the double inverters, which act as isolators, and the
single inverters to provide A, B, C, D and $\bar{A}, \bar{B}, \bar{C}$, $\overline{\mathrm{D}}$ on the front panel. These signals are used as input functions to the logic circuit to be mapped.

As the four-to-sixteen line decoder outputs go to logic 0 when addressed by the appropriate inputs, inverters are required in each of the sixteen lines. From the inverters the lines are taken to the clock inputs on the latch circuits. It is these latches that store each bit and display it finally on the lightemitting diodes. All of the data inputs on the latches are connected together and fed from the function input socket on the front panel of the unit, this signal being derived from the external logic under examination.

As the functions $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are clocked into each of their sixteen possible states an input will be available on the data lines of the display latches for each condition in which the external logic system is asserted. Thus after sixteen clock pulses a complete mapping of the external logic function can be read on the light-emitting diode display. The counter is then back at the beginning of its cycle, and the

Table 1

Clock	A	B	C	D	Lamp
$\mathbf{1 6 (0)}$	0	0	0	0	D1
1	1	0	0	0	D2
2	0	1	0	0	D3
3	1	1	0	0	D4
4	0	0	1	0	D5
5	1	0	1	0	D6
6	0	1	1	0	D7
7	1	1	1	0	D8
8	0	0	0	1	D9
9	1	0	0	1	D10
10	0	1	0	1	D11
11	1	1	0	1	D12
12	0	0	1	1	D13
13	1	0	1	1	D14
14	0	1	1	1	D15
15	1	1	1	1	D16

Fig. 2. Top panel layout, showing l.e.d. identification and map interpretation

Fig. 3. Clock generator, which produces two antiphase outputs

Fig. 4. Binary counter circuit with output inverters and isolators. On IC4, links should be added from pin 2 to pin 11, and from pin 4 to pin 13

Fig. 5. Four-to-sixteen line decoder with output inverters

Fig. 6. Output latches. The Function Input signal is buffered in IC18 before application to the latch data inputs. Connections labelled D1-D16 go to the display l.e.d.s, see Fig. 2
process repeats itself. It is only necessary to keep the clock speed above the persistence of vision in order to obtain a bright flicker free display, and thus a Karnaugh map of the logic function under examination.

CLOCK CIRCUIT

The clock circuit is shown in Fig. 3. It uses two SN74121 monostable multivibrators and operates as follows. The basic monostable will "one shot" when either its A1 or A2 inputs go to logic 0 with its B input at logic 1. Alternatively the B input will trigger the "one shot" when it goes to logic 1 with either A1 or A2 or both at logic 0 . By cross coupling two such "one shot" circuits as in Fig. 3 a continuous clock pulse train may be generated.

BINARY COUNTER AND OUTPUT INVERTER-ISOLATORS

The circuitry of these stages is shown in Fig. 4. The binary counter is a SN7493 four-bit counter wired as in the diagram, while the inverter-isolator stages use two SN7404 hex inverters. The inversion provides $\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}$ and $\overline{\mathrm{D}}$ outputs from the counter's A B, C, D lines, while the double inversion provides the A, B, C, D outputs, but isolates the external circuitry from the counter, thus minimising any loading which may take place.

FOUR-TO-SIXTEEN LINE DECODER

This ominous function can be achieved in one integrated circuit. It is the 74154 , and is shown in Fig. 5. Unfortunately, the output of any line addressed is asserted to ground and so the inverters also shown in this diagram are required to provide assertion to logic 1 level.

OUTPUT LATCHES AND L.E.D. DISPLAY

The output latches are used to store each bit of information one or zero, and feed it to the lightemitting diode display panel. SN7475 quad bi-stable latches are used here, their data inputs being commoned and fed from the external logic while each latch is individually clocked from the sixteen line decoder.

LIGHT-EMITTING DIODE DISPLAY

The light-emitting diodes should be mounted on the top panel, and labelled as in Fig. 2. This clearly shows the A lights, B, C and D lights as two rows of four. All the possible combinations of the outputs are given in Table 1. The cathodes of the diodes should be commoned together and wired to the 0 V rail and each anode should be wired from the latch output lines as shown in Fig. 6. In the prototype unit l.e.d.s type TIL209 were used, although any general purpose 1.e.d. should suffice. Also the prototype, shown in the photographs, was wired somewhat differently to this design making the numbering of the l.e.d.s on the top panel differ from the D1-D16 numbering given with these circuits. In this context, the photographs should be ignored, and the top panel laid out and marked as in Fig. 2.

Fig. 7. Circuit of a suitable power supply, providing a 5 V regulated output. Note that the $0 V$ line is not connected to chassis anywhere within the unit, since an earth may well be present somewhere on the logic circuitry under test

POWER SUPPLY

The unit requires +5 V regulated supply at about 600 mA , and the circuit to provide this is shown in Fig. 7. It is a straightforward bridge rectifier circuit followed by a monolithic voltage regulator.

Interior view of a prototype version of the map display, which also incorporated a number of transistors. Most of the circuitry is mounted on a plain perforated board, the wiring being point-to-point between the i.c. pins

1

The unit was built on a single "Lektrokit" panel and enclosed in a "Lektrokit" housing as shown on the photographs. Although the photographs are of a prototype unit involving transistors, a general impression of the layout can be seen.

TESTING THE UNIT

On completion of the display, plug in and switch on. No light-emitting diodes should be lit. Connect a jumper lead from the function input socket on the front panel, to the A output socket; both rows of l.e.d.s bracketed and labelled A should now light up. Repeat this for the B, C and D outputs when the corresponding two rows of l.e.d.s for each case should light up. Now proceed to the Not A output. In this case all the l.e.d.s except those two rows bracketed and labelled A should light up. Repeat this test for the Not B, Not C and Not D outputs; in each case all 1.e.d.s other than those labelled B, C, and D should light up for the appropriate input function. If all the above tests work satisfactorily, the unit is performing correctly and ready for use.

INTERPRETATION OF THE DISPLAY

The above test routine gives some idea of how the map is interpreted; each of the four functions A, B, C, D is bracketed and labelled as two rows of four l.e.d.s. Each function has its own side of the map, and by intersecting on the map any com$\frac{b i n a t i o n ~ o f ~ t h e ~ f o u r ~ f u n c t i o n s ~ f r o m ~}{B}, B, C, D$ to $\overline{\mathrm{A}}$, $\overline{\mathrm{B}}, \overline{\mathrm{C}}, \overline{\mathrm{D}}$ can be displayed.

For example, let us assume that we have fed the appropriate input functions to a "black box" on the bench, and from its output we have jumpered a lead to the input of the map. Further assume that 1.e.d. D1 is the only one to light. By reading across from the bracketed labels we see that D1 is on neither of the rows labelled A, nor the rows labelled B. By reading down from our bracketed labels we find that $D 1$ is not on rows C or D either. The function in the "black box" is therefore Not A , NOT B , Not C and Not D ($\overline{\mathrm{A}} . \overline{\mathrm{B}} . \mathrm{C} . \overline{\mathrm{D}}$.).

Let us take another example. The "black box" is wired as before, but this time l.e.d.s D9, D13 and D5 are lit. Starting at the rows bracketed and labelled A we see that no l.e.d.s on these rows are lit. Neither are any l.e.d.s lit on the two rows bracketed and labelled B; but on rows C, D13 and D5, and on rows D, D13 and D9 are lit. Thus the function in the "black box" must be NOT A, NOT B , AND C Or $\mathrm{D}(\overline{\mathrm{A}} \cdot \overline{\mathrm{B}} .(\mathrm{C}+\mathrm{D})$).

The oscillator modulates the chain, as in the Hammond design of two decades ago, but the VCO provides "chorale" or "fast" according to its voltage. When the speed (voltage) is switched the change is arranged to be gradual, thus the electronic "rotor" appears to slow down or speed up. This must be taken as a compliment to makers of the L'eslie speaker!

A small p.c. board carrying a few i.c.s, f.e.t.s and other components is an improvement on 12AX7s, 12AU7s and their associated "heavy" engineering, but surely some enterprising i.c. manufacturer can condense this into a single 14-pin device?

FUNKY

Literature describing the Rocky Mount Instruments Keyboard Computer tells the reader that he can alter the voice from "funky organ . . . to kicking in the sliding sound of a fuzz guitar with compressor/expander down center stage". The technical description of this new instrument all sounds vaguely familiar, permanent storage waveforms, card reader etc. So it is no surprise to learn that the RMI Keyboard Computer has been sired by the Allen Organ Company.

This single manual instrument would appear to be the ultimate keyboard for a pop group. Fully polyphonic, it has an inbuilt digital computer to plot and read out waveforms at many different frequencies simultaneously. For the C Major expert, a transposing control allows total freedom of key signature and by varying the Transposer whilst holding the keys, chromatic chord glissandos may be obtained. Bass tones may be taken down to 32 ' and pitch bending used.

Twenty-nine waveforms are permanently stored between solo and ensemble divisions, whilst the card reader gives access to hundreds of additional voices. Controlled by a pedal, there are three output channels for: standard pitch and pure tones; ensemble chorus and percussion; and brass accents. Increasing the readout frequency by about 2 Hz on one channel produces a celeste or chorus generator effect.

The Allen Computer Organ is a brilliant piece of electronics but has met with a mixed reception by serious musicians; lack of proper scaling has been a frequent criticism. This should not deter the performer who plays this mini-skirted version as he should be able to throw in every-thing-including the kitchen sink!

PE

DIGISEOPEBy R.W. Coles and B. Cullen PART 2

THe physical construction of Digiscope is based on a "double decker" circuit board arrangement and this month the remaining electronic circuits of the top deck are described along with the necessary constructional details. Last month the Y Amplifier was covered in detail, and this leaves the Timebase Oscillator, the Timebase Dividers and the Trigger Amplifier to be described this month.

TIME BASE OSCILLATOR

Since the circuitry of Digiscope is digital rather than analogue in nature, the Timebase Oscillator is not a sawtooth generator as would be expected in a conventional oscilloscope, but a square wave clock oscillator of the type found in most digital logic systems. Despite this inherent operating difference, however, the purpose of the Timebase Oscillator remains what it has always been, an accurately timed, gated oscillator to produce a linear sweep of the trace across the display. As with any other oscilloscope, Digiscope requires a variety of timebase sweep speeds to facilitate the examination of waveforms with periods of between 1 microsecond and several seconds.

DIVIDERS

To achieve a wide variety of sweep speeds by switching resistors and capacitors would be rather cumbersome and difficult to calibrate, so in Digiscope only four basic oscillator frequencies are used, with the other sweep rates being produced by division in the ratios $1: 2 \quad 1: 5 \quad 1: 10 \quad 1: 20 \quad 1: 50 \quad 1: 100$. This 1-2-5 sequence has been used in test equipment for many years because of its good practical coverage between decades with the minimum of switching, and in Digiscope division is readily achieved with programmable decade counters.

DUAL MONO

The Timebase Oscillator itself utilises a 74123 dual monostable connected as a gated astable. This connection of the 74123 is very convenient because it provides good pulse stability, simple range switching and straightforward gating, together of course with a high fanout TTL drive capability. Because
the fastest sweep speed required is 100 ns per division, the Timebase Oscillator is required to run at 10 MHz maximum. This repetition frequency is near the upper limit of operation for a 74123 astable, and may require the use of values of R Ext lower than the data-sfifet minimum of 5 kilohms, this was true of the prototype but will vary from device to device.

No problems have been encountered due to the use of low values of R Ext, but if anyone is dubious about breaking the rule in this way, it is of course possible to scale all timebase oscillator frequencies down by a factor of 2 , to give a fastest sweep speed of 200 ns per division which is readily obtainable with approved R Ext values!

Fig. 2.1. The basic astable circuit. The CR network with each monostable is referred to as C Ext, R Ext in the text

A view of the upper deck of Digiscope

OPERATION

A monostable produces a single output pulse with a duration determined by the CR network C Ext and R Ext, in response to a triggering pulse edge. The 74123 monostables have complementary outputs and both positive and negative edge trigger inputs.

To form an astable it is necessary to use two monostables arranged so that the output of one provides the trigger input to the other and vice versa. With the versatile 74123 the astable connection can be configured in several different ways, the connection used in Digiscope being chosen for its superior high speed performance.

Referring to Fig. 2.1, when a negative going gate signal is applied to the active low gate input of monostable (1) this mono is triggered, causing the $\overline{\mathrm{Q}}$ output to go low for a time set by C Ext. When this mono times-out, its \bar{Q} output goes back to a logic 1 and in doing so, triggers the active high input of monostable (2). The Q output of mono (2) goes to a 1 and the $\overline{\mathrm{Q}}$ goes to a 0 for a time (not necessarily the same as that of mono (1)) set by C Ext, R Ext. At the end of the mono (2) pulse, \bar{Q} (2) goes back to a logic 1 and thus triggers mons (1) again, and so on, until the gate signal goes high, inhibiting the trigger to mono (1) and breaking the cycle.

Notice that this astable always completes a full cycle, even when the gate signal is removed early in the cycle.

PULSE LENGTHS

The basic astable circuit of Fig. 2.1 operates at a single fixed-frequency determined by the sum of the two monostable pulse periods. The relationship linking monostable pulse length and the values of C Ext R Ext is the straightforward formula pulse length (seconds) $=0.28$ C Ext R Ext, making it a simple matter to change the frequency by varying the values of C Ext or R Ext, or both. Luckily it is not necessary to alter these values for both monos, a better plan is to set the pulse length of one of them to some fixed, minimum value, and then vary the frequency by varying the C Ext R Ext values of the other.

A moment's thought should show that this is certainly possible, but you may be worried about the resulting assymetry of the output waveform,
especially at the slower timebase speeds. This assymetry is really of no consequence, and makes choosing the values of C Ext R Ext for the switched ranges very simple since for all but the fastest timebase range, the narrow, fixed, pulse length can be ignored and the total period assumed to be 0.28 C Ext R Ext (switched).

The shortest pulse which can be achieved with a 74123 monostable even without any external C Ext component is about 50 ns , governed by the stray capacitance around the package, and other circuit constants. Since this is a useful minimum for our purposes, no external capacitor is used on the fixed duration mono.

RANGE SWITCHING

The variable pulse length monostable has C Ext and R Ext values selected by S5 (Fig. 2.2), a two pole four way d.i.l. switch. Both timing components are switched to facilitate the calibration required, and to make possible the two orders of magnitude change in pulse length between adjacent ranges. The 100 ms , 1 ms and $10 \mu \mathrm{~s}$ ranges are provided by a switched resistor and capacitor combination, but the 100 ns range, being at the limit of device capability, uses no capacitor apart from the unavoidable strays associated with the switching layout.

The resistor network for the three slower ranges uses a common, fixed, 10 kilohm resistor in series with individually selected trimming resistors which are chosen to give the required oscillator period during calibration. The 100 ns range uses a single resistor which again is selected during calibration, although as mentioned earlier, the value of this resistor may have to be lower than the data sheet minimum to achieve a 100 ns period. In the prototype a 2.2 kilohm resistor was used in this position.

PROGRAMMABLE DIVIDERS

The required final timebase frequencies are obtained from the basic Timebase Oscillator by division in two cascaded b.c.d. counters which are switch programmed. The counters used must be capable of operating at a maximum frequency of 10 MHz with easily altered division ratio, and this led to the choice of the very versatile 74160 synchronous counters which have the advantage of a parallel load facility.

To achieve the desired 1:1 1:2 1:5 1:10 1:20 $1: 50$ division ratios the first counter divides by either 1 or 10 , and the second counter by either 1,2 or 5 . under the control of a single switch. A six way switch is all that is really needed, but the nearest available type in the d.i.l. switch format is a single pole eight way, and it was decided to utilise the extra two ways to provide a divide by 100 range. This extra division ratio is not strictly necessary but it does provide an overlap between Timebase Oscillator ranges, and also provides one extra timebase range at the slow end, making a total of 25 in all.

PARALLEL LOAD

Perhaps the most obvious way to change the divition ratio of a counter is to let it count up to some selected count and then reset it to zero to shorten the unmodified full count. This method is not the most satisfactory in many cases, and in Digiscope a better system is employed made possible by the parallel load facility of the 74160 .

To achieve, say, a division ratio of 6 , the counter is preset to 4 , and then allowed to count normally to its full count of 9 which is detected as a terminal count and used to preset the counter on the next clock pulse. Using this method the count of zero never appears unless a division requiring a full count of 10 is selected. The 74160 has a ready decoded "Terminal Count" output and this can be used to prime the "Preset Enable" input via an inverter so that on the next low to high clock transition, the data present at the "Preset" inputs are entered into the counter in parallel.

COMPONENTS

TIMEBASE OSCILLATOR AND TIMEBASE

 DIVIDER| Resistors | |
| :--- | :--- |
| R26-R29* | (see text) |
| R30 | $10 \mathrm{k} \Omega$ |
| R31 | $3.9 \mathrm{k} \Omega$ |
| R32-R40 | $1.2 \mathrm{k} \Omega$ (9 off) |
| All +F 5 5% | metal oxide miniature |

\section*{Capacitors
 | C 8 | $22 \mu \mathrm{~F}$ elect. 15 V |
| :--- | :--- |
| C9 | $0.22 \mu \mathrm{~F}$ |
| C 10 | $0.002 \mu \mathrm{~F}$ |
| $\mathrm{C} 11-\mathrm{C} 13$ | $0.01 \mu \mathrm{~F}$ ceramic (3 off) |}

Semiconductors

IC2	SN74123
IC3	SN74160
IC4	935
IC5	SN74160
D3-D17	Any silicon switching type (15 off)

Switches

$\begin{array}{lll}\text { S5 } & \text { DS16A } & \text { 2-pole 4-way (Erg Components) } \\ \text { S6 } & \text { DS16A } & \text { 1-pole 8-way (Erg Components) }\end{array}$

Fig. 2.2. Circuit of Timebase Oscillator and Timebase Dividers

Table 2.1

74160 PROGRAMMING CODES					
Division Ratio	Decimal Input		Bin quiv		
		A	B	C	D
1	9	1	0	0	1
2	8	0	0	0	1
3	7	1	1	1	0
4	6	0	1	1	0
5	5	1	0	1	0
6	4	0	0	1	0
7	3	1	1	0	0
8	2	0	1	0	0
9	1	1	0	0	0
10	0	0	0	0	0

COUNTER TWO					
Division Ratio	Decimal Input	Binary Equivalent			
		A	B	C	D
1	9	1	9月	0	1
2	8	0	\%	0	1
5	5	1	(\$)	1	0

DIVISION RATIOS		
Overall	Counter One	Counter Two
1	1	1
2	1	2
5	1	5
10	10	1
20	10	2
50	10	5
100	10	10

[^2]
DIODE R.O.M.

For each different division ratio, a unique binary word must be present at the "Preset" inputs to each counter, and these are summarised in Table 2.1. One way of generating the required binary programming code for the counter inputs would be to use a ready coded thumbwheel switch, but these are expensive and bulky and may have redundant positions. A much simpler and more flexible solution is to generate the necessary binary codes in a diode matrix arranged as a read-only-memory. A diode r.o.m. suitable for use with the specified divider circuits is shown in Fig. 2.2.

The r.o.m. in this case has eight inputs connected to a one pole eight way earthing switch, so that only one of the inputs is at a logic zero at any one time, the others being pulled up to +5 V by 1.2 kilohm pull-up resistors.
You may think that eight outputs are also required, since the counters have a total of eight preset inputs, but examination of Table 1 shows that three of these eight inputs never change and so can be hard-wired. In addition the two programmed inputs (A and D), on "Counter One" change in the same way (both "ones" or both "zeros") and so can share a single output from the r.o.m., leaving a need for only four outputs in all, one for "Counter One", and three for "Counter Two".

DTL INVERTERS

Unfortunately, diode logic cannot be connected directly to TTL inputs because of the diode V_{t} of about 800 mV which cancels any noise immunity the TTL circuit has, making false operation a distinct possibility. Luckily in the DTL family there can be found the 935 device which is a hex-inverter without internal input diodes, which is made specifically for this sort of situation. In effect, the DTL inverter, when connected to a particular diode r.o.m. line, becomes a multi-input DTL gate, with the number of inputs depending on the number of diodes connected to its particular r.o.m. output.

The inverters invert the logic levels out of the r.o.m., so that where a diode is present and selected, the signal presented to the preset inputs of the counter is a logic one. To programme the r.o.m., then, one simply goes through the "Binary equivalent" columns of Table 2.1 , inserting a diode into the matrix wherever a one is found, and doing nothing wherever a zero is found.

DIVIDING BY ONE

Some readers might be a little puzzled by the prospect of division by one. Table 1 shows that to divide by one it is necessary to load the counter with binary 9 (1001) and then clock as usual. This seems a little strange since 1001 is the terminal count for the 74160 decade counter, and so another parallel load is initiated immediately. The end result is, of course, that the 74160 outputs remain in the 1001 state indefinitely, but, and this is the important point, the "Terminal Count" output also remains in the one state, and thus continuously enables the following counter which can count normally. A division by one then, means "do nothing" which is just as it should be!

Fig. 2.3. Circuit of Trigger Amplifier

TRIGGER AMPLIFIER

As mentioned in part one, Digiscope has a readyavailable source of trigger pulses in the form of the Comparator outputs which are tTL level signals each undergoing a level transition at a different point on the input signal waveform. There are nine Comparator outputs and any one out of this nine can be used as a trigger signal.

A switch used to select one of these signals provides a simple "Trigger Level" control (Fig. 2.3) which enables the start of the timebase-sweep to be synchronised to a particular amplitude level of the input signal waveform. In fact an eight way switch is used but only seven of the eight positions available are connected to the Comparator outputs. These seven possible trigger levels seem perfectly adequate in practice, and the eighth switch-way is put to good use to give the option of an "External Trigger" source, which can be fed in via a front panel socket.

EMITTER FOLLOWER

The Comparator outputs are fully loaded by the Row Decoder inputs, and so it is important that the Trigger Amplifier does not significantly add to this loading. To achieve a relatively high input impedance an emitter follower stage is used as a buffer before the Trigger Amplifier proper. The other two transistors in this stage are operated as saturated switches and are required simply to give a sufficient TTL fan-out to satisfy the drive requirements of the Trigger Latch circuit which follows, and to provide trigger pulse inversion when necessary for triggering the sweep from negative edges.
The selection of positive or negative slope triggering is made possible by 54 d which is connected so as to pass either the collector output of TR4 or the collector output of TR5 on to the Trigger Latch which always triggers on the positive edge of the Trigger Amplifier output. The output from TR4 is inverted once with respect to the selected Comparator output, and causes the sweep to be triggered by a positive transition of the signal under examination, but the output of TR 5 is inverted twice and so causes triggering on negative transitions.
In the first case, the Trigger Latch circuits ignore the first (negative going) transition at the output of TR4, but respond to the positive transition as the
input signal itself swings negative. On very low frequency, or slowly changing input waveforms, it is possible for the output of the selected Comparator to oscillate as the input passes'slowly through its sensitive threshold region, this of course will cause

Fig. 2.4. Control panel details

a miss-trigger to the extent that if negative slope is selected, triggering may be indicated by a positive transition of the input.

In general, the Digiscope triggering circuits all perform very well indeed, and the conventionally commonplade phenomena of a free-running or unlocked timebase, cannot occur.

CIRCUIT BOARDS

Because of the "long and thin" format necessary for a probe type shape, standard Veroboard is not suitable for the construction of Digiscope. A type of stripboard is employed, however, and it is of a layout which lends itself perfectly to the probe shape. The two $7 \frac{1}{2}$ in $\times 2$ in stripboard decks are both cut from an Imhof-Bedco plug-in d.i.p. board type MCV/ $5 \mathrm{CX} / 100$ which is available from the manufacturers and has also been available in the past, at very low cost, from West-Hyde Developments in the form of "manufacturer's rejects". The sort of slight imperfections found in these rejects do not render them unsuitable for use in Digiscope, and if available, they are a very good buy.

The two decks can be easily cut from the larger card with the aid of a hacksaw or nibbling tool, following the layout shown in the diagrams. The pad layout is very convenient for this application, and requires only a minimum of spot-face cuts, those required for the top deck being shown in the diagrams. Six holes are necessary in the top and bottom decks for the assembly bolts, and since these must match, it is necessary to drill them with the two boards clamped tightly together. The top deck also needs an additional hole to accept the Sorrel pillar which is used as an attachment anchorage for the case-cladding.

COMPONENTS

It cannot be emphasised too strongly that subminiature components must be used in the construction of Digiscope for success to be guaranteed. It is admitted that in constructing the prototype a number of larger components were used and this caused several problems. Electrosil TR4 resistors are ideal, although cheaper $\frac{1}{8}$ watt carbon film types could be substituted as an economy if necessary.

Fig. 2.5. Component layou* of top deck. For interwiring details reference should be made to the appropriate circuits. The diode rom is made up of 13 diodes sandwiched between a piece of Veroboard and the main deck

Showing sandwich construction of Digiscope

Decoupling capacitors should be ceramic discs, and electrolytics are resin dipped tantalum-beads. The two trimming potentiometers mounted on the upper deck must be of the multi-turn variety, but the exact type is unimportant providing this condition is satisfied. All other components are as specified in the components list.

UPPER DECK

On the upper stripboard the switches should be mounted first, followed by the i.c.s and the trimmers, then the diode matrix and the discrete components. The diode matrix construction is detailed in the diagram Fig. 2.5. It can be seen that the diodes are sandwiched between an X-Y matrix framed by the upper deck and a small piece of 0.1 in matrix Veroboard.

There are a few tips which help to make this part of the construction relatively straightforward. First solder the diodes into the main-board making sure that their glass envelopes are flush with the surface, then crop the bare lead of each diode to about $\frac{3}{26}$ in in length and gently bend them to the vertical if they are not so already. The Veroboard may fit easily over the diodes at this stage, but this tricky operation can be made much easier by countersinking the holes with the aid of a $\frac{1}{4} \mathrm{in}$ drill bit so as to form funnels to guide the diode wires.

When all the main components have been soldered to the upper-deck board, wiring up can be started using fine, single core p.v.c. covered tinned copper wire, using a different colour for each main circuit section. This should be done using the circuits as reference.

CIRCUIT TESTING

The Y-Amplifier, Timebase-Oscillator and Timebase Dividers can all be checked out in isolation if desired, before proceeding with the construction of the lower deck, but this will require the use of +12 , -12 , and +5 V power supplies, and the loan of an oscilloscope. If an oscilloscope is not available, it is necessary to construct the display and the lower deck before attempting these procedures.

Y-AMPLIFIER

With an oscilloscope (d.c. coupled) connected to pin 6 of IC1 VR1 can be adjusted to set the output d.c. level to 0 V . A square wave oscillator can be used to examine the dynamic performance of the amplifier and check the gain settings etc, exact gain setting being achieved with VR2. The attenuator h.f. compensation can be checked by observing the
"overshoot" on the output edges. Too much overshoot means that C2 or C3 are too large, "rounding" means that they are too small.

TIMEBASE

To set up the timebase frequencies a 10 kilohm pot should be substituted for R26, R27, R28 and R29 in turn, and adjusted until the required accuracy is achieved. The resistance of the pot should be measured (out of circuit) with a multimeter set to the "Ohms", range so that an appropriate fixed resistor can be substituted.
Timebase Divider operation can be checked by monitoring the output on pin 15 of IC3 with an oscilloscope or counter and then operating S6 to change the division ratios, remembering that for a division ratio of one the output on pin 15 should be a steady logic "one", not a frequency. There is no real need to check out the Trigger Amplifier at this stage since it is such a simple circuit and needs no calibration.
Next month: Lower deck circuitry and constructional details

- - A VOLUME OF PRACTICAL KNOW-HOW

\ldots can be mace using these new-look self binders for PRACTICAL ELECTRONICS to become your most valuable source of reference. With the EasiBinder current copies can be inserted as they are received, without waiting for the completion of twelve issues.
They are attractively made with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers, please advise year and volume and a separate set of gold transfer figures will be supplied.
At $£ 2.10$ incl. VAT and postage they are obtainable from:

Post Sales Department, IPC Magazines L.td. Lavington House, 25 Lavington Street London SE1 OPF
I enclose P.O./cheque value for binders at £2.10 each for Practical Electronics Vol. No's.....
Name..
Address

SiM IMIUUTIDR

LITTLE DARLING(TON)

From Ferranti comes a new transistor, coded BCX38, which could be a really useful addition to any enthusiast's semiconductor "stock-pile". The BCX38 is a "Darlington" device which means that really it's two transistors in one, connected as a super-alpha-pair to obtain high current gain and high input impedance. The resultant compound device appears to the outside world very much like an ordinary transistor, except that the $\mathrm{V}_{\text {be }}$ is double the usual 700 mV and, more useful, the $\mathrm{H}_{\text {fe }}$ is the product of the individual transistor $H_{t e}$'s, or between 1,000 and 10,000 !
Of course you may be saying "so what's new?' because power Darlingtons have been around for some time, and are often used in audio power amplifiers, etc. The thing which makes the BCX38 different is the fact that it comes in a teeny-weeny plastic E line package and so can be sprinkled around in your everyday circuits, wherever you need its particular advantages. A particular application could be when driving lamps or relays from cmos logic where the CMOS source current is measured in 100's of microamps and the load requires $\mathbf{\$ 0 0}$'s of milliamps. You don't have to be a genius to see that you need a drive transistor with a gain of about 1,000 , and that would normally mean you would have to use a two transistor drive circuit. The $\mathrm{BC} \times 38$ makes the whole thing simple, and you needn't stop at a 1 k gain either; this little darling is available in three gain selections (suffix A, B, C) up to a whopping $10 \mathrm{k} \mathrm{H}_{\mathrm{fe}}$!
With a $V_{\text {CBO }}$ rating of 80 V and an 800 mA collector current rating this device is sure to be a winner.

BIG TURN OFF

Conventional thyristors provide an extremely efficient means of power switching and this fact has made them the natural choice for most a.c. power control applications where their superior performance can be used to advantage. Despite the inherent efficiency of thyristor devices, they have essentially been limited to a.c. only circuits because they are difficult to
turn off once triggered. In a.c. circuits this does not pose a problem since turn-off is achieved by reducing the current through the device to zero, and this happens quite naturally twice in every cycle of an a.c. supply, as the voltage passes through zero.
In d.c. circuits the thyristor is still an efficient switch, but one which can only be turned on, never off, via the control, or gate input, restricting its usefulness to latching applications where it can occasionally be used to replace bistable flip-flops. The powercontrol engineer's dream is a thyristor which can be both turned on and off at the gate, and to some extent this dream has been fulfilled in a new range of devices from RCA called GTO (gate turn off) silicon controlled rectifiers, the G5001, G5002 and G5003 series.
The GTO devices employ the same basic four-layer regenerative semiconductor structure and can be turned on in the normal way by means of a positive current pulse applied to the gate. Turn off is achieved by applying a negative voltage pulse to the gate, but the rub is that a voltage of between 30 and 70 V is necessary.

These new devices will undoubtedly be in direct competition with power transistors and will probably be the better choice when currents of more than a few amps have to be switched or where high off state voltages are encountered. As an example, the G5001M will switch 15A and block 600 V , a combination of features which cannot be found in any power transistor currently available.
The new devices are housed in TO3 power transistor cans and are available from RCA distributors.

FET FRONT END

The high input impedance of junction f.e.t. devices makes them ideal for use in the "front-end" of operational amplifiers, but if you leaf through any semiconductor catalogue you'll find very few j.f.e.t. op amp integrated circuits, and those which you do find will have a high price tag.

The reasons for this apparent oversight on the part of semiconductor manufacturers are not hard to find,
because until recently it was possible to make j.f.e.t.s, and it was possible to make bipolar amplifiers, but it was not possible to make both on the same chip! To make an integrated j.f.e.t. input amplifier it was necessary to put two interconnected chips in the same can (a hybrid) which meant double-trouble for the manufacturers and double prices for the long suffering users. Most users have found it cheaper and better to use a discrete j.f.e.t. pair and a cheap op amp such as the 741 to achieve the desired results, but from now on they won't have to bother because National have got it together, and produced a new technology called BI-FET which makes possible cheap monolithic j.f.e.t. amplifiers.

To start the ball rolling they have introduced three new devices, the LF155, LF156 and LF157 which together form an integrated family of cheap, robust, j.f.e.t. input, op amps with characteristics to suit every electronic occasion. All three have extremely high input impedance and low offset voltage coupled with high gain and low noise.
The LF155 is optimised for low supply drain applications, drawing only 2 mA (typical) from plus and minus 15 V supplies (see Fig. 1) while the LF157 is optimised for high frequency, wideband applications where it exhibits a 50 V per microsecond slew rate and offers about 20 dB gain at 1 MHz .
The LF156 is a middle of the road version with internal compensation and a reasonable slew rate for general purpose applications.

The LF155 as a High Q notch filter

MARHET PLACE

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

NEW MULTI-FAMILY LOGIC PROBE

Designed to simplify and speed logic circuit testing, this new Model 545A Logic Probe from HewlettPackard indicates digital states and pulses in both high level (cmos) logic and low level (TTL) logic.

An unambiguous single lamp indicator displays high or low level or detects bad level and open circuit conditions. CMOs and TTL operation is selected with a slide switch. cmos logic threshold levels are variable and set automatically. Now nearly all positive logic up to +18 volts d.c. can be sensed using one probe.

Another feature is a built-in pulse memory which, along with the display, will catch intermittent pulses. When a logic change occurs, the indicator lamp turns on and remains lighted until the memory is reset. Pulse stretching is provided so the operator can see fast pulses as short as 10 nanoseconds with the blinking display. Pulse trains to a frequency of 80 MHz are detected in TTL logic, and to 40 MHz in cmos logic.
This hand-held model is fully protected against voltage overload. Power required for TTL operation is 4.5 to 15 volts d.c., and for cmos operation is 3 to 18 volts d.c.
To use, the operator connects the probe to the circuit's highest level
power supply, sets the slide switch to the appropriate logic family, then probes. Open, pulsing, or stuck nodes and gates are quickly detected.

Further information can be obtained from Hewlett-Packard Ltd., King Street Lane, Winnersh, Wokingham, Berkshire.

ENCLOSURE

The RS6 is a floor standing fully integrated moving coil loudspeaker system having performance characteristics akin to the very best electrostatic speakers. All hint of "boxiness" and other cabinet colouration has been eliminated is the claim for this enclosure from Tangent Acoustics.

It is claimed that by a unique application of "acoustic negative feedback" it has resulted in the virtual elimination of room effects at upper bass frequencies, and the lower bass down to well below 35 Hz . Precise control of the phase charactreistics through elaborate crossover circuits provides a very high standard when used in pairs for stereo reproduction.

A special feature of the RS6 is a guarantee for 5 years when used with amplifiers rated at 25 to 100 W per channel into 8 ohms. Each enclosure contains three drive units: a 19 mm wide-dispersion dome tweeter; a 900 mm Bextrene cone midrange unit in sealed enclosure and a 140 mm Bextrene cone low-resonance unit in ported reflex enclosure.

The RS6 is finished in teak veneer with brown Vynair grille and the frequency response is $\pm 3 \mathrm{~dB} 30 \mathrm{~Hz}$ to 30 kHz . The impedance of the system is 8 ohms nominal and 6 ohms minimum.

The complete range of Tangent enclosures available and prices can be obtained from Tangent Acoustics Ltd., Dept P.E., 3 Kesters Close, Hardwick, Cambs, CB3 7QV. A stamped addressed envelope is requested.

RIGHT ANSWER

It has often been said of equipment, "if only manufacturers would consult us before designing their equipment, we could tell them that we don't need that facility, but why the hell didn't they include that facility." Well now, with the introduction of the TI-1270 calculator from Texas Instruments, any shortcomings should be levelled at our educators.

Designed specifically for secondary school students, the calculator keyboard and functions were evolved after recommendations from mathematics teachers on the basic problems encountered by pupils. It does not include, for instance, a percent key, as it was felt that this function should be worked through by students.

The four function machine features a store and recall "scratch pad" memory and four specially recommended keys: reciprocal $\left(\frac{1}{x}\right)$ square (x^{2}); square root ($\sqrt{ } x$); and π (pi).

The recommended retail price for the TI-1270 is $£ 12.95$ including VAT and further details of local stockists can be obtained from Texas Instruments Ltd., European Calculator Division, 165 Bath Road, Slough SL1 4AD.

RADIO CONTROL

The current series on "Radio Control" has aroused such a great deal of interest that we understand several of our advertisers are now supplying complete kits, component packs and printed circuit boards.

We would suggest that any readers, who are about to start or having difficulty in obtaining any parts for this project, should first check through the advertisements appearing in this and future issues of P.E.

The comments above are valid for all the more popular projects published, i.e. see the ABC Electronics (Oldham) advertisement for the "Digital Frequency Meter" project.

NOTICE

We have been asked to point out that some of our readers may be experiencing delays in completion of orders from RST Valve Mail Order Co.

This is due to the fact that one of their warehouses was severely damaged by fire and their move to new premises added to the delays.
All correspondence should be addressed to RST Valve Mail Order Co., Climax House, Fallabrook Road, SW16 6ED.

15

HY5
Preamplifier

The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner, etc.) are catered for internally, the desired function is achieved either by a multi-way switch or direct connection to the appropiate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.
FEATUAES: complete pre-amplifler in single pack; multi-function equalisation; low nolse; low distortion: high overioad: two simply combined for stereo.
APPLICATIONS: hi-fi; mixers: disco: guitar and organ: public address.
SPECIFICATION: Inputs-magnetic pick-up 3 mV : ceramic pick-up 30 mV ; tuner 100 mV : microphone 10 mV ; auxillary $3-100 \mathrm{mV}$; input impedance 47 kS at 1 kHz . Outputs-tape 100 mV ; main output 500 mV R.M.S. Active Tone Controls-treble $\pm 12 \mathrm{~dB}$ at $\ddagger 0 \mathrm{kHz}$; bass $\pm 12 \mathrm{~dB}$ at 100 Mz . Distortion- 0.1% at 1 kHz ; signal/nolse ratio 68dB. Overioad-38dB on magnetic pick-up. Supply Voltage- $\pm 16-50 \mathrm{~V}$. Price $84.75+59 p$ VAT. P. \& P. free HY5 mounting board B.1. 48p + 6p VAT. P. \& P. free
The HY30 is an exciting New kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of: I.C., heatsink. P.C. board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up to date technology available.
FEATURES: complete klt; iow distortion; short, open and thermal protection; easy to build. APPLICATIONS: updating audio equipment; puitar practice amplifier; test amplifier: audio oscillator. SPECIFICATION: Output Power-15W R.M.S. Into 8Ω. Distortion- 0.1% at 15 W. Input Sensitivity500 mV . Frequency Response- $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
Price $84 \cdot 75+59 p$ VAT. P. \& P. free
The HY50 leads I.L.P.s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World. FEATURES: low distortion: integral heatsink; only five connections: 7 amp output transistors: no external components.
APPLICATIONS: medium power hi-ft systems; low power disco; guitar amplifier.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power- 25 W R.M.S. into 8Ω. Load ImpedanceSPECIFICATION: input Sensitivity- 500 mV . Output Power- $25 W$ R.M.S. into 8 n . Load Impedance-
$4-16 \Omega$. Distortion- 0.04% at 25 W at 1 kHz . Signal/Noise Ratio- 75 dB . Frequency Response- $10 \mathrm{~Hz}-$ $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage $\pm 25 \mathrm{~V}$. Size- $105 \times 50 \times 25 \mathrm{~mm}$.
Price $\mathbf{8 6} \cdot \mathbf{2 0}+77$ p VAT. P. \& P. free
The HY120 is the baby of I.L.P.'s new high power range, designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: very low distortion; integral heataink; load line protection; thermal protection. five connections; no external components.
APPLICATIONS: hi-fi; high quality diaco: public address: monitor amplfier; guitar and organ.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power- 80 W R.M.S. Into 8Ω. Load ImpedanceSPECIFICATION: Input Sensitivity- 500 mV . Output Power- 80 W R.M.S. Into 8 . Load Impedance-
416Ω. Distortion- 0.04% at 60 W at 1 kHz . Signal/Nolee Ratio- 90 dB . Frequency Response- $10 \mathrm{~Hz}-$ $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage- $\pm 35 \mathrm{~V}$. Size- $114 \times 50 \times 85 \mathrm{~mm}$.
Price $\mathbf{\Sigma 1 4} \cdot \mathbf{4 0}+\mathrm{E} 1 \cdot 16$ VAT. P. \& P. free
The HY200 (now improved to give an output of 120 watts) has been designed to stand the most rugged conditions such as disco or group while still retaining true hi-fi performance.
FEATURES: thermal shutdown; very low distortion; Ioad line protection; integral heatsink; no external Components.
APPLICATIONS: hi-fi; disco: monitor: power'slave; industrial; public address
SPECIFICATION: Input Sensitivity- 500 mV . Output Power-120W R.M.S. Into B $\mathrm{B}_{\text {. Load impedance- }}$ $4-16 \Omega$. Distortion- 0.05% at 100 W at $1 \mathbf{k H z}$. Signal/Noise Ratio- 98 dB . Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Vottage- $=45 \mathrm{~V}$. Size- $114 \times 100 \times 85 \mathrm{~mm}$
Price $\mathbf{\Sigma 2 1 - 2 0}+\mathbb{E 1} \cdot 70$ VAT. P. \& P. free
The HY400 is I.L.P.'s "Big Daddy" of the range producing 240 W into 4Ω ! It has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: thermal shutdown; very low distortion; load line protection; no external components. APPLICATIONS: public addreas; disco; power slave: industrial.
SPECIFICATION: Output Power-240W R.M.S. into 4Ω. Load Impedance-4-16 . Distortion- 0.1% at 240W at 1 kHz . Signal/Noise Ratio-94dB. Frequency Response- $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage $- \pm 45 \mathrm{~V}$. Input Sensitivity- 500 mV . Size $-114 \times 100 \times 85 \mathrm{~mm}$.
Price £22. 25 + £2. 34 VAT. P. \& P. free
 77p VAT. P. \& P. free. PSU70-suitable for two HY120s £12-50 $+£ 1 \cdot 00$ VAT. P. \& P. free. PSUpo-suitable for one HY200 £11.50 + 92p VAT. P. \& P. tree. PSU1s0-suitable for two HY200s or one HY400 E21 + £1-68 VAT. P. \& P. Iree.

AVAILABLE JUNE 1976

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

Please supply
Total Purchase price
I Enclose: Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number .
Name and Address

I.L.P. Electronics Ltd.
 Crossland House, Nackington, Canterbury Kent CT4 7AD

Tel (0227) 63218

Semiconductors from LYNX ELECTRONICS

THYRISTORS

, PIV	8 8	1 A	3 A	4 A	${ }^{64}$	${ }^{8 A}$	10A	15A
	(TO92)	${ }^{3 T O 55}$	(C106)	(TO220)	(TO220)	(TO220)	(T0220)	(TO220)
50	$0 \cdot 20$ *	0.25	0.35	0.32	0.41	0.42	0.47	0.98
100	0.25 *	0.25	0.40	0.37	0.47	0.48	0.54	1.02
200	0.27*	0.35	0.45	0.40	0.58	0.60	0.68	1.14
400	0.30*	0.40	0.50	0.45	0.87	0.88	0.98	1.40
600	-	0.65	0.70	-	1.09	1.19	1.2\%	1.80

TRIACS (PLASTIC TO-220 PKGE ISOLATED TAB)

	4 A		6.5A		5A		10A		15A	
	(a)	(b)								
100 V	0.60	0.80	0.70	0.70	0.78	0.78	0.83	0.83	1.01	1.01
200 V	0.64	0.64	0.75	0.75	0.87	0.67	0.87	0.87	$1 \cdot 17$	$1 \cdot 17$
400 V	0.77	0.78	0.80	0.83	0.97	1.01	$1 \cdot 13$	1.19	1.70	1.74
600 V	0.96	0.99	0.67	1.01	1.21	$1 \cdot 26$	1.42	1.50	$2 \cdot 11$	$2 \cdot 17$

N.B. Triacs without internal rigoger diac are priced under column (a). Triscs with inta
are priced under column (b). When ordering plesee indicste clearly the type required

P. \& P. 20p per order-overseas 80p. Matching 20p per pair

AT 8% except 7 or items * which are $12 t \%$. No VAT on deverseas

LYNX ELECTRONICS (LONDON) LTD

Higham Mead, Chesham, Bucks
Telephone (02405) 75151. Telex 837571

OSMABET LTD We make transtormers
LOW VOLTAGE TRANSFORMERS
Prim. 200.240V a.C. 5V 1A 50p; 6.3V 1.5 A £1.65; 3A

 50 V 6A
LT TRANSFORMERS TAPPED SEC. PrIm 200/240V 30 V 2 A -14-16-18V 2 A, £ $8 ; 4 \mathrm{~A}$, £5.25. 0-12-15-20-24 2A. E8-75. 0-40-50-60-80-100-110V 1A. £7.
MIDGET RECTIFIEA TRANSFORMERS
For FW rect. $200 / 240 \mathrm{~V}$ E.c. 6-0-8V $\$$.5A or 9-0-9V 1 A 1.80 each; $12-0-12 \mathrm{~V} 1 \mathrm{~A}$, or $20-0-20 \mathrm{~V} 0.75 \mathrm{~A}$, or $9-0-9 \mathrm{~V}$ 0.3 A , or $12-0-12 \mathrm{~V} 0.25 \mathrm{~A}$. or 20-0-20V 0.15A, or 6 V
$0.5 \mathrm{~A}+6 \mathrm{~V} 0.5 \mathrm{~A}$ or 9 V 0.35 A - 9 V 0.35 A or 12 V 0.35 A $+12 V 0.25 A$. or $20 V 0.15 A+20 V 0.15 A$, all at $£ 2$ each LOUDSPEAKERS
2 ln 8 or $75 n, 2 \operatorname{lin} 8$ or $25 n$. 3 in 3,8 or 35Ω. $34 \operatorname{lin} 15 \Omega$. byin twin cone. hi-fi. $4 \Omega, E 2 \cdot 50 ; 7 \times 4 \operatorname{in}, 3 \cdot 8,15$ or 25Ω. 11.50
"INSTANT" BULK TAPE/CASSETTE ERASER
Instant erasure any diameter tape spool or cassotte.
SYNCHRONOUS GEARED MOTORS 200/240V A.
SYNCHRONOUS GEAAED MOTORS 200/240V a.c. paper tubular condensers
$7 \mathrm{mF}, 160 \mathrm{~V}, 30 \times 20 \mathrm{~mm}$. 20p (100 for E 10)
SPEAKER MATCHING AUTO TRANSFORMER
G.E.C. MANUAL OF POWER AMPLJFIER COVERING

CABLES CABLES CABLE
MICROPHONE TWIN H/DUTY, BRAIDEO SCREEN overed, grey. 20p per metre. Grey. Singie cable lack, 10p per metre
MULTI WAY SCREENED, PVC COVERED
36 way £1. 25 way 75p; 14 way 50p; 4 way 14p; ww
LOW LOSS CO-AXIAL CABLE TSO
LEXIELE PVC MINI 3 CORE CABLE, too matres e3 MINI 3-CORE CABLE, 19/0-TOMM winfig. a cable
2.50100 metres

ALL TYPES DOME STIC AND COMMERCIAL CABLES ALL SIZES AND COLOURS CONNECTING WIRES
$M U L T I$ SCAEENEO AND UNSCREENED CABLE CREENEO AND UNSCREENED
TRADE ENQUIRIES INVITED
S.A.E. ENGUIRIES. LISTS. MAIL ORDER ONLY

46 Kenllworth Road, Edgware, MIddx. HA8 BYG Tel. 01-958 9314

Solve your communlention problems with thls - Station Tranaistor Intercom system (1 mester and 3 Subs). In robust plastle cablnets for deak or wall nounting. Call/talk/listen from Master to Subs and subs to Mater. Ideally suitable for Business, 8urgerg, Bchools. Hosplais,
on one 9 V battery. On/otf switch. Volume controh. Complete with 3 connecting wires each g8it and ther bccessories P B 85D

MAINS INTERCOM NEW MODEL
No batteriss-no wires. Just plug in the malng On off rwitch and volume control. Price e88-24 per pair. F. \& P. 8bp
NEW! AMERICAN TYPE CRADLE TELEPHONE AMPLIFIER

Iatest transistoriaed Telephone Amplifier with detached plug-in apeaker. Placing the receiver on to the cradle activates on/off switch for Immediate two-may conversation without holding the handat. Many people can ilsten at a time. Increase efticlency in ofnce, shop, workshop. Feriect for coaference consult fles. No long waiting, saves time with long-distance calie. Volume. Direct tape recording model at $213 \cdot 85$ + VAT $21-12$ P. \& P. 75p. 10-day price refund guarantee.

WEST LONDON DIAECT 8UPPLIES (PE8)
168 KENSINGTON HIGH STREET, LONDON, W. 8

Relayation Oscillatar Circuiltse, exe

WHEN faced with a choice of an audio oscillator design for a circuit, the first type that comes up in the constructor's mind is the astable multi-vibrator. This circuit is not, however, without its disadvantages, among which are: the mark-space ratio of the simple circuit cannot be more than about $10: 1$; the necessity for two timing capacitors; the emitter-base junctions must be protected by two silicon diodes if the supply voltage exceeds the emitter-base reverse breakdown voltage, which is about $7-8 \mathrm{~V}$ in modern silicon planar transistors; and finally, high current loads require the use of lowvalue base resistors and correspondingly large capacitors for given frequency.

This article introduces two other types of relaxation oscillators that may be more suitable for certain applications.

COMPLEMENTARY ASTABLE

The complementary astable circuit requires only one timing capacitor and the working frequency can be selected from 5 kHz to 0.1 Hz by the choice of an appropriate capacitor. There is no reason why it should not work beyond these frequencies, though the author has not tested this. It has also been found to work with a supply voltage as low at two volts.

Referring to Fig. 1, when power is applied to the circuit, both transistors are off. The capacitor C commences to charge through R1, R3 and R4 and when the voltage across C reaches 0.6 V , transistors TR1 and TR2 turn on, pulling the potential of point A to 0 V . The capacitor then charges very rapidly through R3 and the emitter-base junction of TR1 with the polarity shown.
The charging current keeps the transistors hard on, and when the sum of this current and that through R1 drops to a level sufficient to take TR1 out of saturation, the voltage at A rises. This change is communicated through C and causes rapid switchoff. R1 then discharges C , the voltage at the base of TR1 falling from approximately $2 \mathrm{~V}_{\mathrm{S}}$ to V_{s} -0.6 V , to repeat the cycle.
Since R1 does not have to (in fact, must not) saturate TR1, as in the case of the astable multivibrator, high values can be used. Values of up to 10 megohms have been used by the author. Thus long periodic times can be obtained with small Cs.

The on-time is governed by C, R3 and the offtime by C, R1. Since R1 is up to 1,000 times greater than R3 typically, the frequency of operation is wholly determined by R1. A simplified analysis yields frequency, $f=1 \cdot 4 / R 1 C$.

Fig. 1. A basic complementary astable circuit. The transistors should be silicon types

Fig. 3. A simple organ circuit based on the complementary astable. The range of notes can be extended by adding further resistors above R1

Fig. 2. A car brake-lamp failure indicator. All transistors are silicon types-TR3 must be capable of carrying the indicator lamp current

Fig. 4. An operational amplifier square wave generator

Fig. 5. A complementary astable square wave generator derived from the circuit of Fig. 4

Fig. 6. A "warbling" modulated output can be obtained by interconnecting two astable square wave generators as shown here. The input connection to the second astable is made at the base of TR1 (Fig. 5 above)

In the event that the supply voltage exceeds the e-b breakdown voltage of TR1 a diode may be inserted in series with the base of TR 1 for protection.

Pulses of opposite polarity may be obtained by reversing the polarity of all transistors, diodes and capacitors (if polarised), as well as the supply.

SOME TYPICAL APPLICATIONS

As the circuit gives a short duty cycle, it is suitable as a lamp flasher. Fig. 2 shows a brake lamp failure indicator. If the lamps are functional, the voltage across R1 turns on the lamp via TR1 and TR3. If there is a failure, TR1 remains off and TR2 functions as an oscillator in conjunction with TR3.

As we have shown, the frequency is determined by one resistor and one capacitor. This makes it suitable for the simple organ circuit in Fig. 3. As the waveform is not pleasant to listen to, it is squared by a bistable. The values of the resistors required in the chain can be calculated from the fact that to decrease the frequency by one semitone, the total resistance in the circuit must be multiplied by the twelfth root of 2 .

SQUARE WAVE OSCILLATOR

The square wave oscillator is best understood by first considering the op amp version in Fig. 4. At switch-on the capacitor is discharged Since the noninverting input is more positive than the inverting input, the output is at V_{S} and the voltage at the non-inverting input $2 / 3 \mathrm{~V}_{\mathrm{s}}$. Capacitor C charges to this voltage whereupon the output drops to 0 V and the voltage at the non-inverting input to $1 / 3 \mathrm{~V}_{\mathrm{s}}$. The capacitor then discharges to this voltage to repeat the cycle.

A square wave is available at the output, the frequency of which is determined mainly by R4 and
C. The hysteresis is fixed by R3. For a $1: 1$ markspace ratio $\mathrm{R} 11=\mathrm{R} 2$. A triangular waveform is available from the top end of C but it must be buffered to avoid loading C unduly, especially at high values of R4.

If the load is of low resistance, we can dispense with the active pull-down at the output. Also if the current through R4 is much greater, then we can dispense with the differential pair if the comparator current is small.

Thus we arrive at the circuit in Fig. 5. Some typical component values are given. R_{t}, can be a high impedance speaker or a speaker transformer. The only point to watch is that TR2 has sufficient base drive to saturate on the positive half-cycles.

The oscillator can be modulated by another waveform injected at the base of TR1. Thus in conjunction with a slower oscillator of similar design, a warbling circuit as in Fig. 6 can be built.

This circuit can be used for electronic doorbells, warning alarms, tone generators and any other application the ingenuity of the experimenter can devise.

NEWS BRIEFS

British Amateur Television Club

The B.A.T.C. is holding its next Amateur Television Convention on Saturday, September 18 in Parkinson Court at the University of Leeds, from $10 \mathrm{a} . \mathrm{m}$. until $5.30 \mathrm{p} . \mathrm{m}$.

Admission will be free, and everyone with an interest in amateur television will be most welcome. There will be displays and demonstrations of members' equipment. including slow scan as well as 625 line systems. In addition, there will be some trade stands and a bring-and-buy stall.

Further details are available from A. R. Watson, Somerby View, Bigby, Barnetby, South Humberside.

Museum Piece

T he National Wireless Museum has now opened in the isle of Wight, and is situated at Arreton
Manor, home of Count and Countess Slade de Pomeroy.

One of the more interesting exhibits is a genuine 30 line Televisor made by J. Logie Baird in the late twenties, but also on show are antique crystal sets with cat's whiskers; one in the form of Felix the Cat who kept on walking!

The National Wireless Museum is under the auspices of the Wireless Preservation Society, a non-profit mảking organisation exclusively devoted to the collection, restoration and preservation of old wireless, television and sound-reproduction equipment for purely cultural, historical and educational purposes.

On Show

T HE British Amateur Electronics Club's summer Exhibition will take place on July 17 to 24 . Held at the Shelter at the centre of the Esplanade, Penarth, South Glamorgan, the show will be open every night from 7 p.m. and the afternoons of July 17, 18 and 24.

A wide range of projects from members in all parts of the country will be on show, including projects built from articles appearing in Practical Electronics and Everyday Electronics.

SAKON ENTERTANNWENIS LTD
 SA1208 (120 w.r.m.s/8』/95V) SA1204* (120 w.r.m.s/4 $\Omega / 75 \mathrm{~V}$) SA608 (60 w.r.m.s/8 $/ 65 \mathrm{~V}$) SA604* (60 w.r.m.s/4 $\Omega / 50 \mathrm{~V}$) SA308 (30 w.r.m.s/8 $\Omega / 50 \mathrm{~V}$) - Only 4 con- Input- 240 mV nections - Size-6in $\times 3$ in - Distortion typically 0.4\% - Single supply rail Power Supplles for $1 \times$ SA1208-PM1201/8 $\quad £ 11 \cdot 60 ; 2 \times$ SA1208PM1202/8 $\quad \mathrm{E} 15 \cdot 30 ; \quad 1 \times$ SA1204-PM1201/4 £11-60; $2 \times$ SA1204-PM1202/4 £15.30; 1 or $2 \times$ SA608-PM601/8 £10.50; 1 or $2 \times$ SA308PM301/8 88.80

SAXON CENTAUR 100W STEREO SOUND-LIGHT MOBILE DISCO

To-day's most challenging value-with sound-light converter, synchronous motor iwin turntables, and fealures that give you protessional levels of opera-
tion, it stifl costs under $£ 200$ (V.A. T extra) With full-range heavy duty speakers which pack to make a single complete transportable unit. ABSOLUTELY COMPLETE INC. HEADPHONES. CONDENSER MIC. AND CONNECTING CABLES.

- 4-channel sound/hight converter, varlable speed - X-fade and P.F.L.
- Tape and microphone inputs
- Strong wood cabinets, Vynide covered
£199.00

MINOTAUR 100

100 WATT RMS TOTAL RANGE AMPLIFIER

Compatible with all Saxon System 7000 units, this is a superb amplifier readily adaptable to a wide range of applications

- 100 w.r.m.s into 8Ω
- Two mixed imputs, wide range bass and treble controls.
- May be operated as a slave amplifie

Extremely compact ($27 \mathrm{~cm} \times 16 \mathrm{~cm} \times$
10 cm)

SYSTEM 7000 MODULAR MIXING

UP to 20 CHANNELS MONO/STEREO/MIXED

- Inputs for all sources inc. mag, cartridge
- Wide range bass and treble controls

E W monitor power outlet

- Echo send/return facility

E Feeds most amplifiers

- With front panels, ready to use
- Individual monitor buttons

INPUT
Mono
ع8. 50 Stereo
PCB Modules only
Mono $\quad £ 5.50$
Stereo $\quad \$ 9.00$

$\left.$| MIXER |
| ---: |
| Mono |
| Sterso |$\quad \mathbf{~} 8 \cdot 50 \right\rvert\, 2 \cdot 00$

SYSTEM 7000

LIGHTING CONTROL

- Full control of 3 kW of lights (1kW/channel)
- Audlo control plus sequence plus override
- Variable speed sequence
- Stainless steel two tone panelmatches mixer
- Operates from any amplifier
- Attractive Bondene case-free standing or panel mounting

Inc. case and plug-ready
to usa
£38.00 £27. 75 On P.C.B. Papert modelenting 227 Soundlle 3 kW Converter Sounde with any amplifiar
£15. 50

SAXON STROBES \& LIQUID WHEEL

SUPERSTROEE

- 1 flash/2 secs.-up to $20 / \mathrm{sec}$.
- Compact black Bondene case PRO-STROBE

RO-Sit 80 wit tube

- Discharge energy up to 6 Joules
- External trigger-audio up to 240 V

150 WATT LIQUIO WHEEL PROJECTOR - Complete with wheel and 950 w

- Wids range of extra effects may be attached
Soare wheels $£ 4.90$

NOW
ONLY £17.50 NOW ONLY £29.50

£29-20

Loudspeakers ${ }_{12}^{12 / 150 W}$ high grade chassis units: Cablnets Attractive range of speaker and other cabinets
ACCESSORIES
Mics: Headphone: Special Lamps. at our showrooms. Enquiries welcomed. Mics: Headphone: PRICES include carr. and packing. VAT must be added to all orders at 8%. C.O.D. 650 extra: S.A.E. all enquiries please

[^3]
$240 \mathrm{v}-50 \mathrm{~Hz}$ from your 12 v car battery 25 watt- £4.75 300 watt ($24 v$)- $£ 26.45$ 40 watt- EA .27 75 watt- 812.03 75 watt- $£ 12.03$
150 watt- $£ 21.27$ 150 watt- 221.27 300 watt (12v)-533.03 1 $1 \mathrm{~kW}(50 \mathrm{v})-848 \cdot 18$ All above invert $031.5 \mathrm{~kW}(110 \mathrm{v})-£ 140.80$ be purchased built are in kit form but may be purchased built up in metal case 8 ready for use. Prlce list sent on recelpt of saa.e Prices include post \& packing
P.W. AUTOMATIC EMERGENCY SUPPLY
$240 v-50 \mathrm{~Hz}-150$ watt invertor with built in battery charger. In event of power fallure switches over automatically from battery charging to invertor operation. Cct as appeared in Dec. 72 P.W. Complete kit of parts (excluding meter) $£ 24 \cdot 50+\varepsilon 1 \cdot 70 \mathrm{p}$ \& p . FLUORESCENT LIGHT INVERTOR KIT 8 watt-12v-Fluorescent light, suitable for tents, caravans. houses, boats \& secondary lighting for factories, hotels, etc.
$12^{\prime \prime}-8$ watt- $£ 3.90+35$ p p. \& p. Built up£4.90 + 35p p. \& p.
$21^{\prime \prime}-13$ watt- $£ 4 \cdot 20+52$ p p. \& p. Built up£5.80 +52 p p. \& p.

TRANSFORMERS \& COILS
Both high volume \& small order capacity avallable
Speciel offer. Miniature mains transformer $6-0-6 v-6 \mathrm{~V} . \mathrm{A}$. -85 p plus 10p p. \& p
TRADE \& EXPORT ENQUIRIES WELCOMED

P.E. ORION STEREO

 AMPLIFIER
$20+20$ Watts r.m.s. into 8 ohm load. Distortion less than $0.01 \% 100 \mathrm{~Hz}-10 \mathrm{kHz}$. Frequency response $\pm 1 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 kHz . Hum level virtually nil with volume full on.
This is a power amplifier of superb quality incorporating the very latest design features. Professional hi-fi enthusiasts have classed it as fantastic and real value for money. The CCT incorporates a low flux transformer and inputs for disc. tape, tuner, etc
Complete kit of parts including slim line bookend case, silk screened front panel \& knobs. £47-30 incl. VAT \& p. \& p.
The bookend case, I.C.s \& semiconductors, P.C board. Transformer, etc. may be purchased separately if desired. Send S.A.E. for further information

INSTRUMENT CASES

Bookend Amplifier and attractive styled Instrument Cases available. Send S. and A. envelope for Price List.

ASTRO IGNITION SYSTEM Complete kit of parts for this proven and tested system £10-45 incl. VAT. Ready built with only two connections to alter $£ 13-75$ incl. VAT. Thousands have used this system both home and abroad. Consider these advantages more power, faster acceleration, fuel economy, excellent cold starting. smoother running, no contact breaker burning. Also because of the high energy spark, the fuel mixture can be made weaker giving further economy and fewer plug problems. Fitting time when built 5 minutes approx. Please state whether positive or negative earth. Trade and export enquiries welcomed.

ASTRO ELECTRONICS
Spring Bank Road, West Park Chesterfield

ELECTROT IME SPECIALISTS IN ELECTRONIC TIMEKEEPING	LCD MODEL TLC4 Continuous	LED MODEL TLE5
ELECTRONIC DIGITAL ALARM CLOCK MODEL EC3 \star LARGE 4 DIGIT DISPLAY $\star 24$ HOUR ALARM \star A.M.IP.M * BRIGHTNESS CONTROL \star FLASHING SECONDS SNOOZE ALARMTRACTIVE WHITE CASE * 5 MINUTE REPEATING Complete Built Clock £14 inc. VAT	Utilising Liquid Crystal Display with Backlight for night reading	
THE "MISTRAL" 1 DIGITAL CLOCK	We are proud to announce the opening of our new showroom in which you will find one of the largest ranges of digital electronic clocks and watches available in the U.K. So why not call and see us? One year's guarantee with all models. Electronic accuracy to within seconds per week.	
	ELECTROTIME, Dept. 3/7, 11 Shepiey's Yard, Shopping Precinct, Town Centre, Chesterfield, Derbyshire. Tel. (0246) 35804	
	Please supply I enclose cheque/postal order	
READOUT \star PUSH BUTOON SETTING \star FULLY ELECTRONIC * BUILDING TIME 1 HOUR Complete Kit	address	
Bullt Clock \quad ¢14.95 inc. VAT		

IT'S ACTION YEAR

Half way through 1976 we can already see that this is "Action Year'" in electronics. The hardpressed consumer. sector has had some relief from reduction in VAT but, alas, not until severe and, in some cases, irreversible damage had been done.

The All-Electronic Show in April and the IEA-Electrex Show in May both demonstrated present buoyancy and optimism for the future. The latter, in the new National Exhibition Centre at Birmingham, spurted into life after the slackest opening day ever experienced.

At first it looked as if the critics would be right and that the move from London to Birmingham would be the monumental flop they had been predicting. Day two saw the first big rush and then it was all go until the close.

The smaller "intimate" and often specialist exhibitions which have grown greatly in popularity in recent years have posed a big threat to the "spectacular" event. Now it seems that the large exhibition is fighting back, assisted by a setting worthy of such occasions.

One wonders, of course, how many of the 70,000 visitors were there for the novelty of a new venue. Not too many, I suspect, because so many of the exhibitors came away smiling. The crunch comes when the thousands of enquiries are followed up and the cost of exhibiting is analysed in terms of cost per enquiry and the conversion rate of enquiries into orders.

Even exhibiting very modestly at a big exhibition can cost as much as a salesman on the road for a whole year. On the other hand, a single order from an unexpected visitor may more than pay all the
exhibition costs. It's a gamble which most companies are willing to accept.

The next IEA show will again be at Birmingham in 1978. After that it is expected to switch to a threeyear cycle with Germany's Interkama and France's Mesucora.

EEA REPORT

Action Year was again confirmed by the annual report of the Electronic Engineering Association. During the past 18 gloomy months I have often commented that the capital goods sector has been holding up exceptionally well. Total output in 1974 was up 20 per cent over 1973 and last year with output at $£ 1,090$ million represented a further gain of 23 per cent. Direct exports were 40 per cent for both years. Best of all, the capital goods sector increased its positive trade balance (i.e. excess of exports over imports) from $£ 6$ million in 1974 to $£ 96$ million in 1975.

The lead time in capital goods between obtaining an order and its delivery completion is frequently two years or more and so it can be argued that to some extent the capital goods sector has been living on past orders. One factor, for example, which pushed the ground radio communications figures up substantially was the start of delivery in quantity of Clansman radios for the British Army and for export.
Inflation has had a serious effect on total production costs while selling prices have not risen comparably because of market pressures and the necessity in many cases of having to contract at fixed prices. This, together with high taxation, has depressed profits.

Last year was difficult for capital goods as, indeed, for everyone, but there were many bright spots, the brightest of all being in medical electronics and X-ray equipment due almost entirely to the rush of overseas orders for the EMI-Scanner equipment.

The Ministry of Defence remains the biggest single customer for the capital goods sector and despite the pressures for defence cuts it is likely that the requirements for all three services for electronic equipment will rise rather than fall during the next five years.

Overall, the capital goods sector is well poised for further expansion, provided the Government takes a realistic view and lets industry get on with the job. This was, in fact, the view of retiring EEA president, Commander D. W. Malim, in his speech at the Association's annual dinner.

Unhappily, the guest of honour Mr. Eric Varley, Secretary of State for Industry, in replying said little to dispel the fears of industry leaders that Government tinkering,
if not outright interference, would continue. But Mr Varley, in praising and welcoming the "historic agreement" with the TUC on wage restraint did hold out the hope of economic stability through to 1978 and this was the only crumb of comfort. Glowing talk of the merits of the National Enterprise Board and tripartite agreements failed to impress his listeners.
Now, Peter Bates, divisional manager of Plessey Radar, takes up the reins of presidency of the EEA.

MARINE SALES

Three British companies have had notable recent success in marine electronics.

Decca Radar, still retaining world leadership in civil marine radar, recently took its 70,000 th order. It came through the Belgian agent and the radar is scheduled for fitment in a $15,000 \mathrm{dwt}$ cargo ship. Recent orders included one for 15 radars for the Peoples' Republic of China.

Marconi Communications Systems has won its largest single export order ever for naval communications equipment for the Royal Netherlands Navy. The contract, worth £8 million, is for equipment" for the new " S " Class frigates, the first of which starts sea trials in 1978. This is a particularly important breakthrough for Marconi as it is customary for countries in NATO to source equipment, where possible, from their own manufacturing industry and the Netherlands has plenty of indigenous capability.

Described as based on the ICS-3 system developed by Marconi for the Royal Navy, the equipment for the Royal Netherlands Navy will provide all external communications with land, sea and air. Philips equipment will, however, be used for internal communications, both video and audio, and for message switching.

Our third good-news marine story concerns the £300 million 700ft high oil production platform which Burmah Oil will place in position in the North Sea later this year. The huge structure will be towed out on its side and upended in position and settled on the sea bed by controlled flooding of the ballast tanks in the main legs.

The whole operation will be by remote control using nearly $£ 1$ million of electronic equipment supplied by EMI Electronics. This might seem a lot of money until one realises that 150 functions of the structure will be controlled, monitored and recorded. The digital data system will transmit 200 platform status indications, 60 analogue indications and 150 control signals. Let's hope it all works!

LIE DETEGTOR

BP 943012

L. Ron Hubbard, inventor of Scientology, holds a patent on an electric gadget for members' use as a lie detector. The patent is dated 1960 (BP 943 012), and if a current attempt by Hubbard to have its normal life extended fails, the patented circuit will fall into the public domain in July, 1976.

The basic theory is shown in Fig. 1. A bridge has, as one side, resistors R1, R2, forming a potential divider of ratio 4:1 and, as its other side, a 1.5 volt battery B1 and a 6 volt battery B2.

Electrode terminals are provided at $A B$ for grasping by a human subject. Terminal A is connected via a $5 \mathrm{k} \Omega$ pre-set potentiometer VR1 to junction X of R1, R2 and terminal B is connected via VR2 slider, a 20 k ! linear potentiometer, across battery B2. The junction Y of $\mathrm{B} 1, \mathrm{~B} 2$ is connected to electrode A by the d.c. amplifier
shown in Fig. 2 and comprising pnp transistors TR1, TR2 and TR3. Full circuit details and values are given in the patent specification.

A meter ME1 is switchable between a shunt position for transit and connection to TR3 collector for use. In use, the subject grasps electrodes A, B, and control VR2 is adjusted for a null on the meter. Any slight subsequent change in the resistance between A and B will affect the base current of transistors TR1 and TR2 to alter the collector current at TR3 and cause a substantial deflection of the meter. Such a change of resistance between the electrodes A, B, will be caused by any variation in the grasp of the subject, any tendency to perspire or any change in the characteristic resistance of the body cells.

Although the meter is intended for use by Scientologists to help them attain the so-called state of "clear", informed opinion is that it can, when used with a carefully graded set of questions, serve as a highly accurate lie detector.

Fig. 1

IN BRIEF

BP 1426 242_-Industrie Pirelli: Device for Detecting Variations in a Physical Characteristic of a Wheel. Devices exist to signal abnormal tyre pressure to a driver and sound an alarm. The difficulty is always communicating between the air pressure sensor on the moving wheel and the fixed axle.

Pirelli have patented an ultrasonic excitor and detector system to combat this problem. An air préssure sensitive switch brings a pair of signal transfer coils into circuif as soon as abnormal conditions arise.

BP 1427238 - Shalako Inter= national Inc.: Providing Electronic Restoration of Speech Discrimination in Aurally Handicapped Persons. A hearing aid system that splits the audio frequency band into a number of sub-bands and boosts individual bands independently and to the necessary extent. Enables hearing defects at various frequencies to be separately corrected and so produce an overall flat hearing response.

BP 1426 492-Matsushita Electric Industrial Co. Ltd.: Electric Remote Control Apparatus. Existing ultrasonic remote controls for television and the like may suffer interference from domestic noise sources (e.g. one commercially available ultrasonic switch can be triggered by the overtones in the sound of a vacuum cleaner). Radio remote controls are similarly prone.

To overcome these problems the Matsushita device uses a combination of both radio and ultrasonic signals, reception of an ultrasonic command opening a gate to allow reception of a radio command, or vice versa. In practice it is unlikely that the system can be legally used in the U.K., except possibly on the already cluttered model control band, owing to the Home Office regulations on radio transmission.

RETURN OF POST MAIL ORDER SERVICE

Thiskit is suitable for record players, tape play back. guitars, electronicinstruments or small P. A.systems Two vertions are available. A mono kit or a atereo kit. The mono kit usel 13 semiconductors. The stereo kit uses 22 semiconductors with printed front panel and volume, bass and treble controls. Spec. 10W output into 8 ohms, 7 W into 15 ohms. Res ponse $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{ke} / \mathrm{s}$, input $100 \mathrm{M} . \mathrm{V}$. high imp Bize 9 in x in $\times 2$

Easy to build. Fuil instructions supplied

ELAC 10 inćh

Dual cone plasticised roll surround. ILarge ceramic magnet $50-16,000 \mathrm{c} / \mathrm{s} . \quad$ Bass resonance
$55 \mathrm{c} / \mathrm{s}$.
ohm 10w.
14.95

MAINS TRANSFORMERS ALL post $250-0-250 y^{\prime} 80 \mathrm{~mA}, 6 \cdot 3,2 \mathrm{EA} \quad 50 \mathrm{peach}$ $350-0-35080 \mathrm{~mA}, 6-3 \cdot 3 \cdot 5 \mathrm{~A}, 6 \cdot 3 \mathrm{~V}$ 1 or 5 V 2 A है. 80

 HEATER TRANS, 6.3V' $3 \mathrm{~A}, \mathrm{si} \cdot 45$ tamp. 95 p GENERAL PURPOAE LOW VOLTAGE. Tapped outputs at $9 \mathrm{~A} 3,4,5,6,8,9,10,12,15,18$, 24 and 30 V
$146,8,10,12,16,18,20,24,30,36,40,48,6024-60$ $2 A, 6,8,12,12,16,18,20,24,30,36,40,48,60 ~$
$3 \mathrm{~A}, 6,8,10,12,16,18,20$ $3 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,6048$
$\mathrm{BA}, 6,8,10,12,16,18,20,24,30,36,40,48,60$

 40 V 2 A tapped 10 V or 30 V 28. 50 . 20 V 3 A fes. 40 V 3 A 28-50. $30 \mathrm{~V} 5 \mathrm{~A}+34 \mathrm{~V} 2 \mathrm{~A}$ ct. 28.75 .
AUTO TRANSFORMERS. 115 V to 230 V or 230
 CHARGER TRANBFORMERS. Input $200 / 250 \mathrm{~V}$ or 8 or I2V 1iA 28-76; 4 A E4060.

6 or 12 V outputs $11 \mathrm{~A} 40 \mathrm{p} ; 2 \mathrm{~A} 55 \mathrm{p} ; 4 \mathrm{~A} 85 \mathrm{p}$.
R.C.S. STABILISED POWER PACK KIT All partsincluding printed circuitand instructions to 2 V . Up to 100 mA ontput. 12v. Up to 100 mA ontput.
Please atate voltage required. $\quad \mathbf{2 0 9 5} \begin{aligned} & \text { Post } \\ & 40 \text { p. }\end{aligned}$
R.C.S. STEREO FM TUNER

Thim completely cased mains powered Hi-Fi $27 \cdot 50$
Tuner with brushed aluminiunufacia is Britioh 20 made using the latest circuitry, Bargain Post 4ip

BARGAIN 3W AMPLIFIER. 4 Transiato Push-Pull Ready built with volume, treble and bass controls. 18 volt battery operated.

```
                            {3.95
```


WAFER HEATING ELEMENTS

Size $10 \frac{1}{4} \times 81 \geqslant$ din. Operating voltage 200/250V W.C. 250W approx. Suitable for Heating Pads, Food between two sheet of metal or asbestos be clamped ONLY 40p EACH (FOUR FOR EI.50) ALL POST PAID-Diacounta for quantity.
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$

SPEAKER SALE!
$\underset{\substack{\text { With tweeter. } \\ \text { crossover. } \\ \text { IOw. }}}{\text { And }} \quad \mathbf{E 5 - 2 5}$
crossover.
state 3 or 8 ohm.
Asillustrated. Poat $4 \overline{\mathrm{j}} \mathrm{p}$
I5W model $£ 7.95$
8 or 15 ohme.
20W model $£ 8 \cdot 95$
8 or 15 ohms.

BAKER MAJOR $12 \quad\{10.35$

10-14500 30-14,500 e / s. i2in double cone, woofer and tweeter cone together with \& BAKER ceramle magnet assembly having a flux density of of 145,000 Maxwells Bas resonance $40 \mathrm{c} / \mathrm{s}$. Rated 25 F NOTE: 3 or 8 or 15 ohm must be atated

Module kit, 30-17,000 c/ with tweeter, crossover, bafle and instructions. As illugtrated.
"BIG SOUND" BAKER SPEAKERS Robustly constructed to stand up long perioda of electronic power. Asefed by leading groups an Bass Resonance $55 \mathrm{c} / \mathrm{s}$. GROUP "25" 12 in 30 W
3,8 or 15 £8.95 Post 40p
GROUP "35" 12 in 40 W
3.8 or 15 ohms $\notin 10.50$ Post 40p Group 50, 12 in $\mid 4 \cdot 50$ with aluminium
GROUP 450
I5in 75 W
8 or 15 ohms.

Post 80p
Group + PA Cabinets in stock
Send for Leafet

BAKER I50 WATT
ALL PURPOSE
TRANSISTOR
AMPLIFIER

All purpose transistorised
deal for Groupa, Disco and P.A
4 inputs speech and music. 4 way
mining. Output $8 / 15$ ohm. a.c. Mains
Beparate treble and bass controls. \& 08 Carr. joparate treble and bass contr.
NEW "DISCO 100 WATT"
LLL PURPOSE AMPLIFIER CHASgIS nd bass control ideal diaco or alave amplifier chasais WOOD CABINET AVAVLABLE 89.

PW SOUND TO LIGHT DISPLAY
Complete kit of parts with R.C.S. printed circult.
Three $1,000 \mathrm{~W}$ channels. As featured in December
Practical WIreless. $\{12.50$ CABINET extra 23 .
GOODMANS CONE TWEETER
$18,000 \mathrm{c} / \mathrm{s}$. 25W 8 ohm. Price $\quad \mathbf{E 3 . 2 5}$
R.C.S. 100 WATT VALVE AMPLIFIER CHASSIS

Professional model. Four inputs. Treble, Bass, Master Volume Controls. Ideal disco, P.A. or groupe. S.A.E. for details, 5 speaker outputs.
E.M.I. GRAM MOTOR \& 1.25
120 V or 240 V a.c. $2,400 \mathrm{r}$.p

Post 30p
E.M.I. TAPE MOTOR 4 pole, 240 V 185 mA
1,400 r.p.m. Spindle \neq in dia. Size virsion si, (Illustrated)
62.00

Post 30 p

NEW BSR HI-FI AUTOCHANGER STEREO AND MONO Plays 12 in , 10 in or 7 in recor Auto or Manual. A high quality unit backed by $\mathbf{B 8}$ guarantee. A.c. $200 / 250 \mathrm{~V}$ Slarantee. A.c.
Above motor board 3 3in,
Below motor baard 2 ifin
With STEREO/MONO
CARTRIDGE
$\{10.95$
Nersion $315 \cdot 50$
Post 750
PORTABLE PLAYER CABINET $\mathbb{£ 4 \cdot 5 0}$
Modern design. Size $16 \mathrm{in}, 1 \overline{\mathrm{w}} \mathrm{in} \times 7$ in Post 50p. covered Large front mrill Hingedilin rexine fittings. Motor board cut for Garrard or BSR deck

R.C.S. DISCO DECK SINGLE RECORD PLAYER
Fitted with auto stop, stereo/compat. cartridge Baseplate. Size $11 \ln \times 81 \mathrm{in}$. Turntable. Size 7 in diameter. A.c. mains. 220/250V
3 speeds plays all size records.
Two for $£ 12 \quad$ Poat 75p. Post
45 p
HEAVY METAL PLINTHS With P.V.C. Cover. Cut out for most B.S.R. or Garrard decks. Silver grey finish. Model "A", Bize I2 $1 \times$ 65.95 $13 i \times 7 \mathrm{in}$. Moddel $B \cdot$ size $86 \times$

Post 75p.
TLNTED PLASTIC COVERS ONLT

Ideal for record decks, tape decks, etc. Post 75p.
BAKER HI-FI SPEAKERS HIGH QUALITY—BRITISH MADE SUPERB
12 in 25 watts
A high quality loudapeaker, its remarkable low cone reproduction of the deepent basa. Fitted with a special copper drive and concentrle tweeter cone resulting in full range reproduction with remarkable efficiency in the upper reginter.
 Flux Density 16,500 gaus 8 or 15 ohms models.
£ $15 \cdot 50$ 品品

AUDITORIUM

I2in 35 watts
full range reproducer for
high power. Electric Guitars, public address, multi-speaker ystems, electric organs. deal for $\mathrm{Hi} \cdot \mathrm{Fi}$ and Discotheques.
Bars Resonance $3 \bar{u} \mathrm{c} / \mathrm{s}$ lux Density 15,000 gaue Iseful responte $25-16,000 \mathrm{c} /$ or 15 ohms models.
E $15 \cdot 50$ gool

15 in model 45 watte $\in 19 \cdot 50$. Post 90p.

BLAAK ALUMINIUM CHASSIS, 1^{19} s.w.g. 2$\}_{j} \mathrm{in}$ sides, Bin $\times 4 \mathrm{in}, 70 \mathrm{p} ; 8 \mathrm{in} \times 6 \mathrm{in}, 90 \mathrm{p} ; 10 \mathrm{in} \times 7 \mathrm{in}, 81 \cdot 16 ; 14 \mathrm{in} \times$ $\mathrm{in}, 21-50 ; 16 \mathrm{in} \times 6 \mathrm{in}, 81.45 ; 12 \mathrm{in} \times 3 \mathrm{in}, 87 \mathrm{p} ; 16 \mathrm{in} \times 10 \mathrm{in}$ 21.70.

ALUMINIUM PANELS, 18 a.w.g. $6 \mathrm{in} \times 4 \mathrm{in}, 15 \mathrm{p} ; 8 \mathrm{in} \times 6 \mathrm{in}$, $25 \mathrm{p} ; 10 \mathrm{in} \times 7 \mathrm{in}, 80 \mathrm{p} ; 12 \mathrm{in} \times 3 \mathrm{in}, 80 \mathrm{p}: 12 \mathrm{in} \times 8 \mathrm{in}, 40 \mathrm{p}$ $16 \mathrm{in} \times 6 \mathrm{in}, 45 \mathrm{p} ; 14 \mathrm{in} \times 9 \mathrm{in}, 50 \mathrm{p} ; 12 \mathrm{in} \times 12 \mathrm{in}, 55 \mathrm{p}$; $16 \mathrm{in} \times$
ALUMIMIUM ARGLE BRACKET, $6 \mathrm{in} \times \frac{7}{\mathrm{i}} \mathrm{in} \times \frac{3}{3} \mathrm{in}$, 20p.

"I MADE IT MYSELF"
Imagine the thrill you'll feel! Imagine how impressed people will be when they're hearing a programme on a modern radio you made yourself.

Now! Learn the secrets of radio and electronics by building your own modern transistor radio!

Practical lessons teach you sooner than you would dream possible.

What a wonderful way to learn-and pave the way to a new, better-paid career! No dreary ploughing through page after page of dull facts and figures. With this fascinating Technatron Course,-you learn by building!

You build a modern Traniiltor Redio . . . Burglar Alarm. You learn Radio and Electronics by doing actual projects you enjoy-making things with your own hands that you'll be proud to own! No wonder it's so fant and easy to larn this way. Because learning becomen hobby! And whet e profitable hooby. Because opportunities in the field of Radio and Electronics are growing faster than they can find people to fill the jobs?

No soldering-yet you learn faster than you ever dreamed posalble.

Yes! Faster than you can imagiae. you pick up the technical know how you need. Specially prepared step-by-step lessons show you how to: read circuits -ssemble components-build things of it!
You get everything you need. Tools. Components. Even a versatile Multimeter that we teach you how to use. All included in the course. AT NO EXTRA
CHARGE! And this is a course anyone CHARGE! And this is a course anyone
can afford. (You can even pay for jt by easy instalments.)

So fast, so easy, this personallsed course wlll teach you even if you don't know a thing today!

No matter how little you know now.
no matter what your background or education, we'll teach you. Step by tiep. in simple easy-to-understand language. you pick up the secrets of radio and electronics.

You become a person who makes things. not just another of the millions. who don't understand. And you could pave the way 10 a great neu career. to add to the thrill and pride you receive when you look at what you have achieved Within weeks you could hold in your hand your own transistor radio. And afte the course you can go on to acquire highpowered technical qualifications. be cause our famous courses go right up to City \& Guilds levels.

Send now for FREE
44 page book-see how
easy it is-read what oiners sey!

Find out more now! This is the eateway to a thrilling new career, or a wonderful hobby you'll enjoy for yearts. Send the coupon now. There's no obligation.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 N 21 \& \({ }_{\substack{\text { ip } \\ 0.17}}\) \& \[
\text { AFl81 } \cdot{ }_{0}^{2 p} 0
\] \& BY213 \& \[
\begin{aligned}
\& 20 \\
\& 0.25
\end{aligned}
\] \& \& 28170 \& \[
{ }_{0.12}^{e_{p}}
\] \\
\hline 1N23 \& 0.85 \& AF186 0.48 \& BYZ10 \& 0.45 \& OAZ206 0.45 \& z8271 \& \\
\hline 1 N 8 J \& 0.88 \& AFZ11 1.15 \& BYZ11 \& 0.40 \& OAZ207 0.45 \& ZT2 \& 0.25 \\
\hline 1N253 \& 0.50 \& \& BYZ12 \& 0.40 \& OAZ208 0.40 \& \({ }_{\text {2TX107 }}\) \& \\
\hline 1 N 256 \& 0.50 \& \begin{tabular}{ll}
AsY 29 \& 0.45 \\
\hline 0
\end{tabular} \& BYZ13 \& 0.42 \& OAZ209 0.40 \& ZTX108 \& 0.10 \\
\hline 1N64 \& 0.16 \& AsY36 0.25 \& BYZ13 \& 1.25 \& OAZ210 0.40 \& ZTX 300 \& 0.18 \\
\hline 1N725A \& 0.20 \& ASY50 \& BYZ16 \& 0.6 \& OAZ211 0.40 \& ZTX304 \& 0.24 \\
\hline 1N914 \& 0.06 \& ASYO1 0.40 \& BZY88 \& 0.10 \& \(0 \mathrm{~A} 2222 \quad 0.45\) \& ZTX600 \& 0.1 \\
\hline \(1 \mathrm{~N} 400{ }^{-1}\) \& 0.12 \& AsYa 3 \& \& S5 \& \& ZTX 631 \& 0.18 \\
\hline 18113 \& 0.25 \& \(\begin{array}{ll}\text { ABY62 } \\ \text { ASY } 62 \& 0.20 \\ 0.25\end{array}\) \& ck \& 0.85 \& \(\begin{array}{ll}\text { OAZ224 } \& 0.45 \\ 0 \text { AZ241 } \& 0.25\end{array}\) \& \& \\
\hline 18202 \& 0.23 \& AsY66i 0.33 \& \({ }_{\text {crs }}\) \& 0.85
1.80 \& \(\begin{array}{ll}0 \text { Az242 } \& 0.15\end{array}\) \& INTEG \& TED \\
\hline 26371 \& 0.75 \& AsZ21 1.00 \& C34B \& 1.80 \& \({ }_{0} \mathrm{AZ244} \quad 0.25\) \& CLBCU \& \\
\hline 2G381 \& 0.22 \& ASZ23 0.75 \& Csiob \& 3.60 \& OAZ246 0.15 \& 7400 \& 0.18 \\
\hline \(2 \mathrm{Cl4} 14\) \& 0.30 \& AU104 1.00 \& DD000 \& 0.15 \& OAZ290 0.38 \& 7401 \& \\
\hline \(2 \mathrm{Cal7}\) \& 0.25 \& \& \& 0.25 \& \({ }^{0} \mathrm{C} 16 \quad 1.00\) \& \& \\
\hline \({ }^{2} \mathrm{~N} 404\) \& 0.22 \& \(\begin{array}{ll}\mathrm{BCl}^{\text {BCIO }} \& 0.14 \\ \text { BC108 }\end{array}\) \& DD00\% \& 0.40 \& \(\begin{array}{ll}\text { OC167 } \& 1.00 \\ \text { OC22 } \& 1.00\end{array}\) \& 7403
7404 \& 0.26 \\
\hline - 697 \& 0.16 \& BC109 0.14 \& DD00\% \& 0.48
0.38 \& OC22
OC23 \& 7405 \& 0.22 \\
\hline \({ }^{2} \mathrm{~N} 698\) \& 0.30 \& BC113 0.15 \& GD3 \& 0.38 \& \({ }_{0} \mathrm{C} 241.10\) \& 7406 \& 0.42 \\
\hline \({ }_{2}^{2 N 706}\) \& 0.12 \& \(\begin{array}{ll}\text { BC11 } \& 0.20\end{array}\) \& GL4 \& 0.10 \& \({ }^{\text {OC2 } 23} \quad 0.40\) \& 7407 \& 0.42 \\
\hline \[
\begin{aligned}
\& \text { 2N706A } \\
\& \text { 2N708 }
\end{aligned}
\] \& 0.15 \& \(\begin{array}{ll}\mathrm{BC1} 16 \& 0.20 \\ \text { BC116A } \& 0.23\end{array}\) \& GDE \& 0.38
0.25 \& \({ }^{\text {OC26 }} 10.40\) \& 7408 \& 28 \\
\hline 2 N 709 \& 0.40 \& \(\begin{array}{ll}\text { BC116A } \& 0.23 \\ \text { BC118 } \& 0.20\end{array}\) \& GD8 \& 0.25
0.10 \& \(\begin{array}{ll}\text { OC28 } \\ \mathrm{OC} 29 \& 0.75 \\ 0.65\end{array}\) \& 7410 \& 0.16 \\
\hline \({ }_{2}^{2 N 1091}\) \& 0.55 \& BC121 0.20 \& GET10: \& 0.50 \& \({ }_{0} \mathrm{C} 30 \quad 0.40\) \& 7411 \& 0.25 \\
\hline \({ }^{2} \mathrm{~N} 1131\) \& 0.25
0.24 \& \(\begin{array}{ll}\text { BC122 } \& 0.20\end{array}\) \& GET103 \& 0.40 \& \({ }_{\text {OC35 }} 0\) \& 7412 \& 0.80 \\
\hline \[
\begin{aligned}
\& \text { 2N1134 } \\
\& 2 \mathrm{~N} 1302
\end{aligned}
\] \& \({ }_{0}^{0.18}\) \& \(\begin{array}{ll}\mathrm{BC125} \\ \mathrm{BCO}^{1220} \& 0.68 \\ 0.65\end{array}\) \& GET113 \& 0.35 \& \({ }^{0} \mathrm{C} 36{ }^{0} \mathrm{O} \cdot 60\) \& 74 \& 0.36 \\
\hline \({ }_{2}\) 2N1303 \& 0.18 \& \(\begin{array}{ll}\text { BC140 } \& 0.55\end{array}\) \& GET115 \& 0.80 \& \(\begin{array}{ll}\text { OC41 } \& 0.35 \\ \text { OC42 } \& 0.40\end{array}\) \& 7417 \& 0.86 \\
\hline \({ }_{2}^{2 N 1304}\) \& 0.28 \& BC145 0.10 \& GET116 \& 0.85 \& \(0 \mathrm{C} 43 \quad 0.70\) \& 7420 \& \(0 \cdot 16\) \\
\hline \({ }^{2} \mathrm{2N1305}\) \& 0.28
0.28 \& BC148 0.08 \& GET120 \& 0.50 \& \(0 \mathrm{C} 44 \quad 0.20\) \& 7422 \& 0.25 \\
\hline \[
\begin{aligned}
\& \text { 2N1306 } \\
\& \text { 2N } 1307
\end{aligned}
\] \& 0.28 \& BC149 0.10 \& GET87\% \& 0.30 \& 0 C 44 M \& 74 \& 0.87 \\
\hline 2N1308 \& 0.2 \& BC15\% 0.14 \& GET875 \& \& \(0 \mathrm{C} 55 \quad 0.20\) \& \& \\
\hline 21 \& 1.25 \& 0.12 \& GET880 \& \begin{tabular}{l}
0.60 \\
0.25 \\
\hline
\end{tabular} \& \(\begin{array}{ll}\text { OC45SI } \& 0.18 \\ \text { OC46 } \& 0.27\end{array}\) \& 7428 \& . 10 \\
\hline 2N2148 \& 0.60 \& BC160 0.63 \& GET882 \& \({ }_{0}^{0.85}\) \& \({ }_{0}^{\text {OC4 }}\) \& 7430 \& . 18 \\
\hline \({ }_{2}^{2 N 2160}\) \& 0.78 \& \(\begin{array}{ll}\text { BC169 } \& 0.14\end{array}\) \& GET88亏 \& 0.40 \& \({ }^{0} 50880\) \& 7432 \& 0.87 \\
\hline \[
\begin{aligned}
\& 2 \mathrm{~N} 2218 \\
\& 2 \mathrm{~N} 2219
\end{aligned}
\] \& 0.25 \& \(\begin{array}{ll}\text { BCY31 } \& 0.45 \\ \text { BCY32 }\end{array}\) \& GEX44 \& 0.4 \& \& 7433
7437 \& 0.87
0.37 \\
\hline 2 N 2369 A \& 0.16 \& \({ }_{\text {BCY } 33}{ }^{\text {BCY }} 0\) \& GEX 941 \& 0.45 \& OC66
OC70 \& 7438 \& 0.87 \\
\hline \({ }_{2} \mathrm{~N}^{2} 2444\) \& 1.98 \& BCY34 0.45 \& GJ3M \& 0.50 \& \& 7440 \& 0.82 \\
\hline 2 N 2613 \& 0.750 \& \(\begin{array}{ll}\text { BCY38 } \& 1.00 \\ \text { BCY } \& \\ 1.50\end{array}\) \& GJ4M \& 0.50 \& \({ }^{\text {OC72 }} 0\) \& \({ }_{7442}^{7414}\) \& 0.92 \\
\hline 2N2904 \& 0.20 \& \(\begin{array}{ll}\text { BCY39 } \\ \text { BCY } 40 \& 1.50 \\ 0.80\end{array}\) \& \({ }_{6} \mathrm{GJ5M}\) \& 0.25 \& OC73 0.50 \& 7450 \& 0.18 \\
\hline 2 N 2906 \& 0.20 \& \({ }_{\text {BCY } 42} \quad 0.30\) \& HG100 \& 0.50 \& \(\begin{array}{ll}\text { OC74 } \& 0.30 \\ \text { OC75 } \& 0.80\end{array}\) \& 7451 \& 0.16 \\
\hline 2 N 2907 \& 0.23 \& BCY70 0.18 \& H8100A \& 0.20 \& OC76 0.30 \& 7463 \& \\
\hline 2N 29294 \& 0.18
0.15 \& \(\begin{array}{ll}\text { BCY71 } \& 0.28 \\ 0.60\end{array}\) \& MAT100 \& 0.20 \& \({ }^{\text {OC7 }} 70\) \& 7454
7460 \& 8 \\
\hline 2 N 2926 \& 0.12 \& \({ }_{\text {BCZ }} \mathrm{BC} 10\)
BD121 \& MAT101 \& 0.25 \& \(\begin{array}{ll}0 \mathrm{C78} \& 0.25 \\ \mathrm{OC79} \& 0.80 \\ 0.80\end{array}\) \& 7470 \& . 88 \\
\hline 2 N 3054 \& 0.48 \& \({ }^{\text {BD } 123} \quad 1.00\) \& MAT121 \& 0.25 \& \({ }_{0} \mathrm{C} 81\) \& 7472 \& . 38 \\
\hline 2N3055 \& \& \({ }^{\text {BD124 }} 40.65\) \& MJE340 \& 0.47 \& OC81M 0.20 \& \({ }^{7473}\) \& 1 \\
\hline \[
\begin{aligned}
\& \text { 2N } 3702 \\
\& \text { 2N } 3705
\end{aligned}
\] \& 0.15 \& BDY1」 1.45 \& MJE520 \& 0.63 \& \(\bigcirc \mathrm{OC81DM} 0.18\) \& 7474 \& 1 \\
\hline 2N3708 \& 0.11 \& \(\begin{array}{lll}\text { BF115 } \& 0.20 \\ \text { BF16 } \& \\ 0.25\end{array}\) \& MJE2955 \& 1.27 \& 0 C 8120.45 \& \({ }_{7476}\) \& \\
\hline 2N3707 \& 0.18 \& \(\begin{array}{ll}\text { BF16\% } \& 0.25 \\ \text { BF173 } \& 0.28\end{array}\) \& MJE3055 \& 0.77
0.40 \& \(\begin{array}{ll}0 \mathrm{C} 82 \& 0.28 \\ \mathrm{OC} 2 \mathrm{D} \& 0 \\ 0.25\end{array}\) \& 7480 \& . 40 \\
\hline 2N3709 \& 0.10 \& \({ }_{\text {BF181 }}^{\text {BF1 }}\) \& MPF103 \& \({ }_{0}^{0.48}\) \& \(\begin{array}{ll}\text { OC82D } \& 0.25 \\ \text { OC83 } \& 0.80 \\ 0\end{array}\) \& 7482 \& 0.87 \\
\hline 2N3710 \& \({ }_{0}^{0.11}\) \& BF184 0.22 \& \& 0.35 \& OC84 0.30 \& 7483 \& 10 \\
\hline 2N3711 \& 0.11 \& BF185 0 \& MPF105 \& 0.38 \& OC114 0.88 \& 7484 \& 00 \\
\hline 2N3819 \& 0.38
0.30 \& \({ }^{\text {BF194 }}\) \& NKT128 \& 0.45 \& OC122 1.00 \& \({ }_{7490}^{7486}\) \& 0.47 \\
\hline \[
\begin{aligned}
\& \text { 2N4289 } \\
\& \text { 2N } 0207
\end{aligned}
\] \& \({ }_{0}^{0.30}\) \& BF190 0.13 \& NKT129 \& 0.30 \& OC123 1.10 \& \& \({ }^{0.65}\) \\
\hline \[
2 \mathrm{~N} 508 \mathrm{~s}
\] \& \({ }_{0.23}^{0.53}\) \& \(\begin{array}{ll}\text { BF196 } \& 0.15 \\ \text { BF19 } \& \\ 0.15\end{array}\) \& NKT211 \& 0.25 \& \({ }^{0} \mathrm{C} 13911.00\) \& 74912 \& 1.00 \\
\hline 2 S 301 \& 0.59 \& \(\begin{array}{ll}\text { BF19\% } \& 0.15 \\ \text { BFS61 } \& 0.25\end{array}\) \& NKT213 \& 0.25 \& \(\bigcirc{ }^{\text {OC14U }} 1.14\) \& \({ }_{7493}\) \& 70 \\
\hline \({ }_{2} \mathbf{3} 304\) \& 1.15 \& \({ }_{\text {BFS98 }}{ }^{\text {BF8 }}\) \& NKT214 \& 0.40 \& OC141
OC169

0 \& 7494 \& 0.80

\hline 28501

28703 \& 0.75
1.00 \& BFX12 0.20 \& NKT215 \& 0.45 \& \bigcirc \& 7495 \& 80

\hline ${ }_{40250}$ \& 0.54 \& $\begin{array}{ll}\text { BFX13 } \\ 3 \mathrm{BFX} 29 & 0.28 \\ 0.28\end{array}$ \& NKT218 \& 0.45 \& OC171 0.30 \& 749 \& 85

\hline 40251 \& 0.81 \& $\begin{array}{ll}\text { BFX29 } \\ \text { BFX } 30 & 0.28 \\ 0.28\end{array}$ \& NKT219 \& ${ }^{0.33}$ \& ${ }_{\text {OC200 }} \mathrm{C} 201.00$ \& 74100 \& 1.89

\hline AA129 \& 0.20
0.75 \& $\begin{array}{ll}\text { BFX } 35 & 0.88\end{array}$ \& NKT224 \& 0.25 \& $\begin{array}{ll}\text { OC201 } \\ \text { OC202 } & 1.50 \\ 1.50\end{array}$ \& 74107 \& 0.45

\hline AAZ12 \& 0.75 \& ${ }^{315 \times 63} \quad 0.50$ \& NKT251 \& 0.24 \& -C203 1.25 \& 74110 \& 88

\hline AAZ17 \& 0.13 \& $\begin{array}{ll}\text { BFX84 } & 0.25 \\ \text { BFX } \\ \\ 0.28\end{array}$ \& NKT271 \& 0.20 \& OC204 1-50 \& 741118 \& O

\hline AC107 \& 0.51 \& $\begin{array}{ll}\text { BFX8i } & 0.28 \\ \text { BFX86 } & 0.25\end{array}$ \& NKT272 \& 0.20 \& OC205 1.75 \& 74119 \& 1.88

\hline ${ }_{\text {ACl }}{ }_{\text {ACl }}$ \& 0.25 \& ${ }^{\text {BFX } 87} 90.25$ \& NKT275 \& 0.25 \& OC206 1.10 \& 74121
7422 \& 0.50
0.70

\hline ${ }_{\text {AC128 }}$ \& 0.15 \& $\begin{array}{ll}\text { BFX88 } & 0.24 \\ \text { BFY } 0 & 0.50\end{array}$ \& NKT27\% \& 0.20
0.25 \& ${ }^{0 \mathrm{OC} 207}$ \& ${ }_{74123}$ \& 1.00

\hline ${ }^{\text {AC1 }} \mathrm{Cl} 8^{\prime}$ \& 0.21 \& BFY11 0.50 \& NKT301 \& ${ }_{1.20}$ \& $\begin{array}{ll}\text { OC460 } \\ \text { OC470 } & 0.20 \\ 0.80\end{array}$ \& 74141 \& 0.00

\hline ${ }_{\text {ACl }}{ }^{\text {Cli }}$ \& 0.20
0.75 \& BFY $1: 000$ \& NKT304 \& 1.00 \& $\begin{array}{ll}\text { OC470 } & 0.80 \\ 0.20 \\ 0 & 1.20\end{array}$ \& 74145
74150 \& 1.28

\hline ACY18 \& 0.35 \& $\begin{array}{ll}\text { BFY18 } & 0.45 \\ \text { BFY19 }\end{array}$ \& NKT403 \& 1.00 \& $0^{0 \mathrm{PPP12}} 00.60$ \& 74150
74151 \& 00

\hline ACY19 \& ${ }^{0.35}$ \& BFY 24
BF \& NKT404 \& 0.30 \& $\begin{array}{ll}\text { ORP60 } & 0.55 \\ \text { ORP61 } & 0.48 \\ \text { SX68 }\end{array}$ \& 74154 \& 8.00

\hline ${ }^{\text {ACY }} 20$ \& 0.35
0.35 \& BFY44 1.00 \& NKT713 \& 0.80 \& \& 74155 \& 1.00

\hline ${ }_{\text {ACY }}{ }^{\text {A }}$ \& ${ }_{0}^{0.35}$ \& BFY50 0.21 \& NKT733 \& 0.25 \& $\begin{array}{ll}\text { SX68 } & 0.20 \\ \mathbf{S X 6 3 1} & 0.45\end{array}$ \& ${ }_{7415156}$ \& O

\hline ACY2 ${ }^{2}$ \& 0.25 \& $\begin{array}{ll}\text { BFY51 } & 0.20 \\ \text { BFY52 } & 0.20\end{array}$ \& NKT \& 0.38 \& SX63̄ 0.55 \& ${ }_{74170}$ \& 2.62

\hline ACY28 \& 0.78 \& $\begin{array}{ll}\text { BFY } & \\ & 0.17\end{array}$ \& OA, \& 0.72
0.12 \& SX 64000 \& 74174 \& 1.57

\hline \& 0.78
0.22 \& BFY64 0.36 \& \& 0.12
0.08 \& $\begin{array}{ll}\text { SX } 640 \\ \text { SX } 641 & 0.75 \\ 0.75\end{array}$ \& 74175 \& 1.10

\hline ${ }_{\text {ACY }}{ }^{\text {ACY }} 4$ \& 0.22 \& BFY90 0.81 \& OA70 \& 0.10 \& $\begin{array}{ll}\text { SX } 64: & 0.80 \\ \text { SX }\end{array}$ \& 74176
74190 \& 1.26
2.00

\hline ACY44 \& 0.82 \& $\begin{array}{ll}\text { BR100 } & 0.40\end{array}$ \& OA71 \& 0.20 \& SX 644 - 0.85 \& ${ }_{74191}$ \& 2.00

\hline AD140 \& 0.50 \& $\begin{array}{ll}\text { BSX27 } & 0.50 \\ \text { BSX60 } & 0.98\end{array}$ \& \& 0.15
0.15 \& SX645 0.85 \& 74192 \& 2.00

\hline AD149
AD161 \& 0.0 .75 \& $\begin{array}{ll}\text { BSXX60 } & 0.88 \\ \text { BSX76 } & 0.18\end{array}$ \& OA74
OA79 \& 0.15
0.10 \& $\begin{array}{ll}\text { TIC44 } & 0.88 \\ & \end{array}$ \& 74193
74194 \& 2.00
1.80

\hline AD162 \& 0.44 \& BSY26 0.17 \& OA81 \& 0.18 \& $\begin{array}{lll}\text { V15/30P } & 0.75\end{array}$ \& 74194
74195 \& ${ }_{1} 1.10$

\hline AF106 \& 0.30 \& B8Y2\% 0.20 \& onso \& 0.15 \& V30/201P 0.75 \& 74196 \& 1.20

\hline AF114 \& 0.25 \& $\begin{array}{ll}\text { B8Y51 } & 0.50 \\ \text { BSY95A } & 0.12\end{array}$ \& OA8\% \& 0.15 \& | | |
| :--- | :--- |
| V | $6 / 201$ | \& 74197 \& 1.20

\hline AF115 \& 0.0 .25 \& $\begin{array}{ll}\text { BSY95A } \\ \text { BSY95 } & 0.12\end{array}$ \& OA90 \& 0.07 \& V60/201P 0.75 \& 74198
74199 \& 2.77
2.62

\hline AF117 \& 0.24 \& BT102/500R \& ${ }^{\text {OA9] }}$ \& 0.07 \& XA101 0.10 \& \&

\hline AF118 \& 0.57 \& 0.75 \& OA9a \& 0.07 \& | XA102 | 0.18 |
| :--- | :--- | \& \multicolumn{2}{|l|}{\multirow[t]{9}{*}{Plug in sockets -low prolle 14 pin DIL 0.15 16 pin DIL 0.17}}

\hline AF119 \& 0.20 \& BTY42 ${ }^{0.92}$ \& 0.420 \& 0.08 \& XA151 0.15 \& \&

\hline AF124 \& 0.30 \& /100R \& OA20: \& 0.06 \& $\begin{array}{rl}\mathbf{X A 1 5 2} & 0.15 \\ \times 4161 & 0.25\end{array}$ \& \&

\hline AF125 \& 030 \& ${ }_{400 \mathrm{R}}^{0.75}$ \& OA210
OA21] \& 0.20
0.35 \& $\begin{array}{ll}\text { XA161 } & 0.25 \\ \times \mathbf{A 1 6 2} & 0.25\end{array}$ \& \&

\hline AF127 \& 0.30 \& 1.50 \& oazzon \& 0.50 \& $\times \mathrm{XB101} \quad 0.43$ \& \&

\hline AF139 \& 0.41 \& BY100 0.27 \& OAZ201 \& 0.45 \& XB102 0.80 \& \&

\hline AF178 \& 0.55 \& BY126 0.14 \& OAZ.0:2 \& 0.45 \& $\times \mathrm{XB103} \quad 0.35$ \& \&

\hline AF179 \& 0.85 \& BY127 0.12 \& oaz203 \& 0.45 \& X8113 0.38 \& \&

\hline AF180 \& 0.65 \& BY18: 0.85 \& OAZ204 \& 0.45 \& XB121 0.48 \& \&

\hline \multicolumn{6}{|l|}{| Open daily to callers: Mon.-Fri. 9 a.m. -5 p.m. |
| :--- |
| Valves, Tubes and Transistors - Closed Saturday |
| Terms C.W.O. only - Tel. 01-677 2424-7 |
| Quotations for any types not listed. |
| Post and Packing $15 p$ per order. |
| V.A.T. Plastic Transistors $12 \frac{1}{2} \%$. Metal Can |
| Transistors 8\%. Integrated Circuits 8%. |} \& \multicolumn{2}{|l|}{Prices correct when going to press.}

\hline
\end{tabular}

complete DIGITAL CLOCK KITS TEAK CASES

$\begin{array}{lr}\text { NON-ALARM } & £ \mathbf{9 . 6 0}+£ 0 \cdot 76 \text { VAT } \\ \text { ALARM } & £ 11 \cdot 95+£ 0 \cdot 96 \text { VAT }\end{array}$

'DELTA"

"NOVUS" CALCULATORS: 650 Mathbox $£ 5 \cdot 40 ; 850$ Mathbox $£ 6 \cdot 75$; 4510 Mathematician $£ 16 \cdot 20 ; 6020$ Statistician $£ 21 \cdot 60$

PULSE ELECTRONICS LTD
 Dept. P.E. 2, 202 SHEFFORD ROAD CLIFTON, SHEFFORD, BEDS.

Telephone: Hitchin (0462) 814477

Cash. Cheque or Postal Order, or if you wish to use Barclaywhen ordering by phone or post.
prompt order despatch
"DELTA" 4 RED O 5in LEDs. 12 hr display GENUINE TEAK or PERSPEX CASE

Alarm Sid.
Electronic Module excl case $\begin{array}{llll}\text { Electronic Module excl case } & \text { Built } & 11.00 & 8.50\end{array}$ Complete Clock
$\begin{array}{lll}\text { Kit } & 12.91 & 10.36\end{array}$
$\begin{array}{llll}\text { Complete Clock } & \text { Built } & 16.50 & 14.00\end{array}$
"ALPHA" 4 GREEN 0.5 in DIGITS 12 or 24 hr PERSPEX CASE ONLY Alarm Std.
$\begin{array}{llll}\text { Electranic Module excl. case } & \text { Kit } & 12.00 & 9.00\end{array}$ $\begin{array}{llll}\text { Electranic Modute excl, case } & \text { Built } & 13.00 & 10.00\end{array}$ Complete Clock
$\begin{array}{lll}\text { Kit } & 14.00 & 11.50\end{array}$ Complete Clock Built $17.00 \quad 14.50$ Perspex colours: Black. White, Red. Green. Blue, Orange

Send S.A.E. for complete range annmontacces an macru

VHF-UHF MANUAL

by D. S. Evans

Price $\mathbf{5} 5 \mathbf{6 0}$

ELECTRONICS POCKET BOOK by P. $]$. 99 WAYS TO KNOW AND USE YOUR ELECTRONIC CALCULATOR by
Frichzel. E.
TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR by A. Douglas. $£ 470$.
FOUNDATIONS OF WIRELESS AND ELECTRONICS by M. G. Scroggie. Price $\mathbf{6 4} 35$.
WORLD RADIO T.V. HANDBOOK 1976 by J. M. Frost. Price $\mathbf{E S}$. ELECTRONIC TEST EQUIPMENT by PRINCIPLES OF TRANSISTOR CIRPRINCIPLES OF TRANSISTOR CIR-
CUITS by $S . W$. Amos. SERVICING WITH THE OSCILLO. SCOPE by G.J. King. Price $\mathbf{6 4 8 0}$. THEELECTRONIC MUSICALINSTRUMENTMANUAL by A. Douglas. Price EB. MINICOMPUTERSAND MICRO. PROCESSORS by M. Healey, Price 6680.
\star PRICES INClUDE POSTAGE *
THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKISTS of British and American Technical Books

19-21 PRAED STREET

 LONDON W2 INP Phone 01.723 4185 Closed Saturday 1 p.m.

INSTANT ATMOSPHERE SOUND TO LIGHT WITH A.G.C.
Adds visual impact to sound and beat-Essential for mobite discos-Outperforms all manual control unitsFeatures advanced electronics which automatically set each channel for optimum performance-Infinite combinations of any three coloured lights-Creates the perfect atmosphere for dancing-Functions
consistenty on any sysiem at any volume from tW to 200 W without adjustment-Provides instant atmosphere for any occasion.

- AGC range 2V to 40 V input (RMS). Suits 4. 8. inpur impedteras.
- Input impedance greater than 1,000 ohms Completely isolated for absolute safety
- Full wave operation. Ensures dazzling brilliance * Total lamp rating 3000 W . Allows for future expansion
* Two through-connected input jacks. Ensures tidy
wiring to speakers via unit.
* Illuminated switch makes controller visible in the dark.
$\begin{aligned} & \text { - Size: } 8 \text { in } \times 44 \mathrm{in} \times 24 \mathrm{in} \\ & 215 \times 108 \times 58 \mathrm{~mm}\end{aligned}$

| UNBEATABLE |
| :---: | :---: |
| VALUE |$\quad 832.95$

inc. VAT, P. \& P., 3 plugs plus generous mains lead.
Sturdy, reliable, attractively finished and casy to use. Just plug in three sets of lights. Many practical design send today to sole distributors Money back euarantee

A1 FACTORS

Dept. En3, 245 North Sherwood Street. Nottingham, NG1 4EQ. Demonstration to callers. Tei. Nottingham 54694 or $\$ 12255$

BRITAIN'S FASTEST SERVICEI

NEW 74 PRICES	SERIES TTL			NEW EXTENDED RANGE			
		25-99	$100+$		-2		100 +
	1-24			CD4000AE	19p	17p	P 14p
7400	11p	10p	10p	CD4001AE	19p	17p	p 14p
7401	14p	12p	10p	CD4002AE	19p	17p	p 14p
7402	11p	10p	10p	CD4006AE	1.06p	86p	p 70p
7403	16p	14p	10p	CD4007AE	19p	17p	p 14p
7404	16p	13p	11p	CD4008AE	$87 p$	70p	p 58p
7405	16p	13p	11p	CD4009AE	50p	40p	p 34p
7408	16p	13p	11p	CD4010AE	50p	40p	p 34p
7409	16p	13p	11p	CD4011AE	19p	17p	p 14p
7410	11p	10p	10p	CD4012AE	19p	17p	p 14p
7413	27p	24p	20p	CD4013AE	50p	40p	p 34p
7420	16p	13p	11p	CD4014AE	94p	74 p	p 61p
7425	23p	22p	22p	CD4015AE	94 p	74 p	p 61p
7430	16p	13p	11p	CD4016AE	50p	40 p	p 34p
7440	18p	16p	15p	CD4017AE	94p	74p	p 61p
7441	75p	62p	50p	CD4018AE	$94 p$	74p	p 61p
7442	65p	55p	43p	CD4019AE	50p	40 p	p 34p
7445	85p	71p	57p	CD4020AE	1.06p	86p	p 70p
7447	80 p	75p	65 p	CD4021AE	94p	74p	p 61p
7450	16p	13p	11p	CD4022AE	87 p	70p	p 58p
7451	16p	13p	11p	CD4023AE	10p	17p	p 14p
7453	16p	13p	11p	CD4024AE	72 p	56p	P 46p
7454	16p	13p	11p	CD4025AE	19p	17p	p 14p
7460	16p	13p	11p	CD4026AE	1.60p	$1 \cdot 25 p$	p 1.03p
7470	27 p	25p	23p	CD4027AE	50p	40 p	P 34p
7472	25p	21p	17p	CD4028AE	87 p	70 p	- 58p
7473	30p	25p	20p	CD4029AE	1.06p	86p	- 70p
7474	32p	26p	21p	CD4030AE	50p	40p	- 34p
7475	47p	39p	31p	CD4035AE	$1.06 p$	86 p	- 70p
7476	32p	26p	21p	CD4040AE	94p	74p	-61p
7480	60 p	56p	42p	CD4042AE	78p	60p	- 50p
7482	75p	62p	50p	CD4043AE	$94 p$	74p	-61p
7483	70 p	65p	62p	CD4044AE	$87 p$	70 p	- 58p
7485	1.25p	1.08p	$85 p$	CD4046AE	1.24p	99p	-80p
7486	32p	26p	21p	CD4049AE	50p	40p	- 34p
7490	44p	39p	30p	CD4050AE	50p	40 p	- 34p
7491A	65p	55p	45p	CD4052AE	87 p	70 p	- 58p
7492	57p	46p	36p	CD4056AE	1.24p	99 p	-80p
7493	45p	40p	32p	CD4060AE	1-24p	99p	80p
7494	73p	$65 p$	58p	CD4066AE	87 p	70p	58p
7495	70 p	60 p	54p	CD4068BE	20p	18p	- 16p
7496	70p	60p	54p	CD4069BE	20 p	18p	16p
74100	1.08 p	89p	78p	CD4070BE	${ }^{20 p}$	${ }^{18} \mathrm{p}$	- 16p
74107	35p	28p	22p	CD40718E	20 p	18p	- 16p
74121	34p	28p	22 p	CD4073EE	20 p	18 p	16p
74141	75p	62p	52p	CD4077BE	${ }^{20} \mathrm{p}$	18p	16p
74150	1.05p	95p	87 p	CD40818E	20p	18p	16p
74151	65p	59p	56p	CD4082BE	20p	18p	16p
74153	62p	58p	54p	CD4085BE	$65 p$	52p	42p
74154	1.00p	92 p	85p	CD4086BE	$65 p$	52p	42p
74155	70p	63p	58p	CD40938E	$75 p$	65p	60 p
74156	70p	63p	58p	CD40998E	1.65p	1.35p	1-10p
74174	1.00p	83p	67p	CD45118E	1.65p	1.35p	1.10p
74180	1.00p	83p	67p	CD4528BE	1.30p	1.08p	87p
74181	2.31p	2.05p 1	1.82p	Pricing on this series is calculated on the total pieces ordered regardless of mix.			
74190	1.15p	1.00 p	95p				
74191	1.15p	1.00p	95p				
74192 74193	1.00p	83p	67p				
74193 74196	1.05p	95p	87 p				
74196	1.29p	1.05p	95p	DIL SOCKETS-NEW ULTAA			
74197	1.29p	1.05p	95p				
				8 DILUP			12p
				14 DILUP			15p
Pricing on culated ordered	on this s on the	series is		16 DILUP			16p
		total pi	ieces	24 DILIUP			26p
		of mix.		DIL PINS			
		(100 FOR			65p

VAT Prices are exclusive of VAT. Add VAT at 8% except for items marked when $12 \frac{1}{2} \%$ should be added.
POSTAGE Still no-charge.

SOLDERING EQUIPMENT \& TOOLS

DST Mk. 1	"Solder Sucker" a truly indispensable tool
DST Mk. 9.	Spare Nozzle 46p
CCN-15W	Miniature Iron 240 V
X25-240	25 Watt lron 240 V (£2.95p
X50-TC	Temperature Controlled Iron $\mathbf{£ 9}^{\mathbf{9}} \mathbf{7 5 p}$
MLX ${ }^{\text {2 }}$	12 V Battery Iron £3.50p
ST3	Soldering lron Stand For allmodels ¢1-25p
S167	Thermal shunt for delicate com-
BIT2	Spare bit Nickel clad for CCN
	iron 3/32" ${ }^{\prime \prime}$ 36p
BIT3	Spare bit Nickel clad for CCN
BIT4	iron $5 / 32^{\prime \prime}$ Spare bit Nickel clad for ${ }^{36} \mathrm{CN}$
	iron 3/16" ${ }^{\prime \prime}$
BIT1100	Iron coated for CCN 3/32" 46p
BIT50	Spare bit for X25 and MLX12
	irons-iron coated 3/32
	irons-iron coated $1 / 8^{\prime \prime}{ }^{\text {M }}$ 46p
BIT52	Spare bit for $\times 25$ and MLX12
	irons-iron coated 3/16" 46p

TRANSDUCERS
40kHz Ultrasonic transducers as used in many
Mag. articles complete with suggested circuits: Mag. articles complete with suggested circuits: Order type: RL400PP \&4-20 pair

IC TEST CLIP
New low price $£ 1.95$ each. Clips on to $14 / 16$ lead IC's under test. Can be used as a removal tool.

TIMER CHIP NE555V			
New	Low	Prices:	LM380
$1-24$	25	100	3 Watt IC
55	49	40	$98 p$

741 OP-AMP MINIDIP
New bulk prices and SPECIAL! YOU CAN INCLUDE YOUR 741 WITH YOUR TOTAL TTL 74 SERIES MIX to get best price:

30	$25+$	$100+$

3.2 mm LEDS

Extended range plus ARROW bulk prices:
All prices include free bushes.

	$1-24$	$25+$	$100+$
Red	14	12	10
Green	27	24	22
Amber	27	24	22

(All are TIL209 size)

THE GREEN GIANT

Jumbo sized Green LED-jump while they las $5 \mathrm{~mm} \quad 1-12 \quad 13-24 \quad 25+\quad 100+$

3 WATT ZENERS
Axial lead, miniature plastic case full 3 Watt Disc. Following voltages only:
$6 \cdot 8,8 \cdot 2,10,11,12$. $+5,16,18,22,24,27,32,33$, $62.68,91,100$.

ALL ONE PRICE 40p

MM5314 CLOCK CHIP

With hold/advance count, output strobe 7 Seg. output. With data

7 WATT AUDIO CHIP
TBA810S with data

SENSATIONAL STOCK
CLEARANCE
PAK: AA1 Twenty assorted transistors our choice \quad \&1.00

PAK: AA2 Ten TAA243 Op. Amps (high gain 702) $\quad \mathbf{~ 1 . 0 0}$

PAK: AA3 Ten BCW54 300 mW 300 mHz 64 V Transistor NPN S1. 00

PAK: AA4 Three 2N3055 £1.00

PAK: AA5 Twenty Diodes- \& Rectifiers/Bridges our choice
\&1. 00
PAK: AA6 Five BD187 (preformed) Plastic Power Transistor

PAK: AA7 Ten assorted Zeners our choice
£1.00
SUPERPAK Our Guaranteed Value pack of clearance lines. Semic's Resistors. Caps, Pots. etc. etc.
\&1.00

GREAT TRIAC
CLEARANCE.
SC35A 3A 100V 50p $\begin{array}{lll}\text { SC35B } & 3 A & 200 \mathrm{~V} \\ \text { SC40B } & 6 A & 200 \mathrm{~V}\end{array}$ $\begin{array}{lll}\text { SC40D } & 6 A ~ 400 \mathrm{~V} & 80 \mathrm{p} \\ \text { SC40E } & 6 A 500 \mathrm{~V} & 85 p\end{array}$ $\begin{array}{lll}\text { SC 40E } & 6 A 500 \mathrm{~V} & 85 p \\ \text { SC45A } & 10 \mathrm{~A} & 100 \mathrm{~V}\end{array}$ $\begin{array}{llll}\text { SC45B } & 10 \mathrm{~A} & 200 \mathrm{~V} & 75 \mathrm{p} \\ \text { SC45E } & 10 \mathrm{~A} & 500 \mathrm{~V} & 90 \mathrm{p}\end{array}$ $\begin{array}{lll}\text { SC50D } & 15 \mathrm{~A} 400 \mathrm{~V} & \text { £1.00p } \\ \text { SC50E } & 15 \mathrm{~A} 500 \mathrm{~V} & £ 1.10 \mathrm{p}\end{array}$ All stud mounted, fixing nuts supplied.

4-TRACK TAPE HEADS

Record/pb
83.00 each

Stereo heads rec./pb. + erase
£1.80 pair*

SEMICONDUCTORS \& IC'S
Our huge availability of transistors. diodes. Triacs SCA's Zeners, etc., is too large to list. See previous catalogues and advertisements for price and availability or Telephone Alan Green on 0277219435 for a quick price.

Our 1976/7 catalogue is well under way and will be bigger and better than ever.

Our Retail shop (5 mins. from Brentwood mainline station is being enlarged with many new lines. Pay us a visit.

COPTFOLD ROAD BRENTWOOD ESSEX

RETAIL SHOP

Our shop is open six days per week-many more items stocked than we could ever list. (Thurs. early, closing).

C280 KIt-PC MPECIAL Mounting polyester 250 V 5 of each value: $0.01,0.022,0.047,0.1,0.22 \mu \mathrm{~F}, 2$ ot $0.47,1 \mu \mathrm{~F}$
$\mathrm{f1.81}$ net. C296 Kit-Tubular polyester, 400 V , 5 of each value $0.01 .0 \cdot 022.0 \cdot 047.0-1.022 \mathrm{uF} .2$ of $0.47 \mu \mathrm{~F} . £ 2-43$ net Ceramic Kit-square plaque. 52, 47000 pF . 220. 4700 pF $0.01 \mu F$, \&1. 71 net

SPECIAL RESISTOR KITS (CARBON FILM 5\%) (Prices include post \& packing) 10E12 JW or JW KIT 10 o each E12 value. 22 ohms- 1 M , a total of $570 \mathrm{\Sigma 5} .04$ ne 25E12 fW or tw 23 of each E12 value, 22 hms -
B. H. COMPONENT FACTORS LTD.

Greenbank Electronics

DIGITAL CLOCK MODULES, KITS Further details free on reques
"E" LEO OISPLAYS
DL-704E 0.3in
OL-728E $2 \times 0.5 \mathrm{in}$
OL-727E $2 \times 0.5 \mathrm{in}$

CMOS WITH DISCOUNTS! (Any mix: disc. $10 \% 25+, 25 \% 100+$

CA 3130	0.75	4033/-	$1 \cdot 20$	4067/-	$3 \cdot 10$	14160/-	0.95	14530/-	0.75
4000/14000	0.15	4034/14034	1.65	4068/14068	0.20	14161/-	0.95	14531/-	1.45
4001/14001	0.15	4035/14035	1.00	4069/14069	0.20	14162/-	0.95	14532/4532	1-25
4002/14002	0.15	4036/-	$2 \cdot 20$	4070/14070	0.45	14163/-	0.95	14534/-	6.80
4006/14006	1.00	4037/-	0.80	4071/14071	0.20	14174/-	0.90	14536/-	$3 \cdot 30$
4007/14007	0.15	4038/14038	0.90	4072/14072	0-20	14175/-	0.85	14537/-	11.00
4008/14008	0.80	4039/-	$2 \cdot 20$	4073/14073	0.20	14194/-	0.95	14539/-	1.00
4009/14009	0.45	4040/14040	0.90	4075/14075	0.20	4700/-	1.50	14541/-	1.35
401014010	0.45	4041/-	0.70	4076/14076	1.30	7083/-	4.25	14543/-	1.65
4011/14011	0.15	4042/14042	0.70	4077/14077	0.45	14501/-	0.15	14549/-	3.40
4012/14012	0.15	4043/14043	0.85	4078 44078	0.20	14502/4502	1.05	14552/-	8.76
4013/14013	0.45	4044/14044	0.80	4081/14081	$0 \cdot 20$	14505/-	$3 \cdot 65$	14553/-	3.75
4014/14014	0.85	4045/-	1-20	4082/14082	.0.20	14506/-	0.50	14554/-	1.35
4015/14015	0.85	4046/14046	1.15	4085/-	0.60	14508/4508	2.55	14555/4555	0.75
4016/14016	0.45	4047/-	0.75	4086/-	0.60	14510/4510	1.15	14556/4556	0.75
4017/14017	0.85	4048/-	0.45	4089/-	1.30	14511/4511	1.35	14557/-	3.85
4018/-	0.85	4049/14049	0.45	4093/14093	0.65	14512/-	1.05	14558\%-	1.00
4019/14519	0.45	4050/14050	0.45	4094/-	1.60	14514/4514	$2 \cdot 70$	14559/-	3.40
4020/14020	0.95	4051/14051	0.80	4095/-	0.90	14515/4515	$2 \cdot 70$	14560-	1.80
4021/14021	$0 \cdot 85$	4052/14052	0.80	4096/-	0.90	14516/4516	1. 15	14561/-	0.55
4022/14022	0.80	4053/14053	0.80	4097/-	$3 \cdot 10$	14517/-	$3 \cdot 35$	14562/-	4.65
4023/14023	$0 \cdot 15$	4054/-	1.00	4098/14528	1.00	14518/4518	1.05	14566/-	1.35
4024/14024	0.65	4055/-	1.10	4099/-	1.55	14519/4019	0.45	14568/-	2.60
4025/14025	$0 \cdot 15$	4056/-	1.10	40101/-	1.55	14520/4520	1.05	14569/-	$3 \cdot 10$
4026/-	1.50	4057/-	21-55	401041-	$2 \cdot 00$	14521/-	2.30	14572/-	0.20
4027/14027	0.45	4059/-	4.75	40107/-	0.55	14522/-	1.75	14580/40108	6.95
4028/14028	0.75	40601-	0.95	40109 -	1.90	14524/-	N/S	14581/40181	3.55
4029/-	0.95	4061/-	18.92	40108/14580	6.95	14526/-	1.75	14582/40182	1.35
4030/14507	0.45	4062/-	7.75	40181/14581	$3 \cdot 55$	14527/4527	1.35	14583/-	0.65
4031/-	1.90	4063/-	0.95	40182/14882	1. 35	14528/4098	1.00	14585/-	0.90

Terms: C.W.O. Add VAT to all prices at 80°. Post etc.. U.K. 10 p per order Orders processed same day Otficial govt.. varsity, poly. etc. orders welcomed

PRECISION PETITE LTD.

119a HIGH STREET, TEDDINGTON, MIDDX.
TEL. 01-977 0878
Now with the

- NEW Mk. II DRILL

10,000 r.p.m., 120 cmg .

"MORE POWERMORE TORQUE"
 12v.-14v. DC

 DRILL ONLY £8.00(P.P. 35p)

STAND £4.00
(P.P. 35p)

Including VAT
(Together 50p P.P.)
S.A.E. for illustrated leaflet
and order form

P. F. RALFE

Phone 01-723 8753

\section*{10 CHAPEL ST. LONDON NW1

ADVANCE TYPE 62 RF SIGNAL

GENERATORS

$150-220 \mathrm{mHz}$ in 6 bands. Output $1 \mu V-100 \mathrm{mV}$. Modulation and A.F. o/p. Sold in excellent guaranteed condition. $827 \cdot 50$

MINIATURE DEAC NI-CADMIUM batterles type 700K. 3 cells in package making $3 \cdot 7 \mathrm{~V}, 25 \times 17 \times$ 15 mm . 75 p each

DIGITAL FREOUENCY
 METERS

Manufactured by Schneider, type FT300. Reads as fre quency meter up to 99.99 kHz or as tacho to 99.990 rpm . Solid state. Size only 8×5 $\times 3$ in., $4 i \mathrm{lb}$. Brand new in original packaging. Price only 555.

500V TRANSISTORISED NSULATION TESTERS Small size, light-weight, $13 \times 7 \times 4 \mathrm{~cm}$. Reads insulation from 0.2 to $100 \mathrm{M} \cap$. Brand new. only $£ 18 \cdot 50$. Battery (PP3), leads and case E 1 extra.

ADVANCE type 63A AM/FM R.F. signal generators. $7.5-230 \mathrm{mHz}$ $\begin{array}{ll}\text { Dev. 0-22. } 5 \text { and } 0-75 \mathrm{kHz} \text {. X-sweep } \\ \text { output. } & \text { Crystal }\end{array}$ Scope output. 75 Calibrator

250V WEE MEGGER
Insulation testers (wind-up type) Quantity of secondhand, good condition, available at only $\mathbf{8 8} \cdot 50$
E.M.I. oscilloscopes type Sin CRT. 10kV E.H.T. We can offer these quality oscillaoffer these quality oscilla-
scopes at the exceptional price of only e35 each to callers only.

ICL 8-hole tape readers. As new
E 60.
TELETYPE 8-hole tape punches 875.

APT POWER SUPPLY UNITS. Variable 4-7V at 2A. Brand new in original packing, z22.

SWISS HOUR METERS
National Watch Co. 110 V 50 Mz .5 digits. Size approx. $5 \times 3.5 \times$ digits. Size approx. $5 \times 3.5 \times$
2.5 cm . Digit height 3 mm . Brand new, $\varepsilon 1.50$.

ALL GOODS QUOTED ARE InCLUSIVE OF POSTAGE AND PACKING BUT EXCLUSIVE OF 8% VAT. USUAL DESPATCH TIME FOR GOODS 1-3 DAYS

WENTWORTH RADIO

1A WENTWORTH COURT, ALSTON ROAD, BARNET
Telephone: 0†-440 0409, 01-44† 2329

TIP29	$40 p$	AC127	17p	BC125	16p	80117	55p	TBA540	
TIP29A	40p	AC128	17p	BCl26	12p	BD131			
TIP298	40p	AC142	17p	8C138	19p	BD132	52p	TBAS400	
TIP29C	48p	AC142K	220	BC139	26p	BD144	[1.20	feas60C	
TIP30	$4{ }^{4} \mathrm{p}$	AC175	$19 p$	BC142	$25 p$	ED375	36 p	TBA673	E2.65
TIP30A	50p	AC176K	34 p	BC143	22 p	BD376	38 p	TBA7500	12.25
TIP308	48p	AC179	34 p	BC147	9 p	B0509	$96 p$	TBA800	95p
TIP30C	50p	AC187	19p	BC148	$9 p$	BD510	96	TBA9200	2.90
TIP31	55p	AC187K	21p	BC149	9 p	BDX32	52-20	TBA9900	[2.90
TIP31A	48p	AC188	18p	BC152	18p	BF160	20p	TCAZ700	¢2.00
TIP318	50p	AC188K	23p	BC154	16p	BF16?	25p	TCAR70SO	[2.15
TIP31C	66p	AD140	46p	BC157	13p	BF173	21p	TDA440	¢2.80
T1P32	60p	AD142	46p	BC158	10p	BF178	30 p		
TIP32A	58p	AD149	50p	BC159	10p	EF179	30 p		
THP32B	60 p	AD161	30 p	EC1718	10p	BF180	29p	UHF	uners
TIP32C	51.08	AD162	$35 p$	BC172	10p	EF182	$35 p$	ELC1043/05	Mul-
TIS90	19p	AF116	22p	BC177	19p	BF 183	31p	lard brand	new,
Tis91	19p	AF17	18 p	BC178	19p	BF184	16p	c3 each.	plus
2N697	15p	AF124	$24 p$	BC179	18p	BF186	25p	$12 \mathrm{t} \%$ VAT.	Cross
2N3055	38p	AF139	28p	BCt92	15p	BF194	11p	hatch ge	nera-
2N6178	840	AF239	36 p	ECtaze	14p	BF195	12p	tors. by	Video
2SC643A	E1.70	AU110	600	BC 183LB	14p	BF196	12p	Circuit	Ltd.
2SC1172Y	£2.24	AU113	80 p	BC184	15p	BF197	14 p	second-hand	ad but
MJE340	38 p	BA100	10p	BC1842	15p	BF198	18p	in perfect w	work-
E1222 $=$ BF		BA144	18 p	BC186	25p	EF199	18p	ing order.	¢15
	E32p	BA145	20p	BC187	25p	BF6LC	40p	each. plus	§1 P.
E5024	18p	BA148	$14 p$	BC212L	12p			8 P. Plus	8\%
E5386	14p	BA154	12p	BC214L	12p	INTEGRAT		VAT	
R20088	¢1.50	BA155	18p	BC225	25p	CIRCUITS			
R2010B	\$1-50	Bax16	20p	BC251A	17p	ETTR6016	E2.15		
IN4002	6 p	BC 107	8 p	BC256LC	$34 p$	TAÅ550	22p		
IN4005	9 p	BC109	$9 p$	BC308	20p	TAA700	¢3.25		
[N 414 B	6 p	8Ci13	10p	EC309	18p	TAA840	¢2.30		
AC110	60 p	BC116	${ }^{16 p}$	BC327	24p	TBA1205	90 p		
${ }_{\text {ACL1 }}$	${ }^{80}$	BCi16A	17p	BC547	15p	TBA4800			
AC125	15p	BC117	17p	B0115	50 p	TBA5200	52.50		
AC126	14p	BC119	26p	BD116	60p	TEA5300			
All Devices top quality-By return service-Trade enquiries welcomed-C.w.O. min. order 75 p-S.A.E.for complete-lists-VAT to be added- $12 \frac{1}{\%} \%$ semiconductors. 8% erystals, integrated circuits.									
Prices firm to end 1976									

Join the Digital Revolution

Understand the latest developments in calculators,

 computers, watches, telephones, television, automotive instrumentation. . .Each of the 6 volumes of this self-instruction course measures $11 \frac{1}{\prime \prime}^{\prime \prime} \times 8 \frac{1}{4}$ " and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories. counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems.

£6. 20
plus 80p packing and surface post anywhere in the world.

Payments may be made in foreign currencies

Quantity discounts available on request.

VAT zero rated.

Also available-a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics
In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

plus 80p P. \& P.
Offer Order both courses for the bargain price $89 \cdot 70$, plus 80p P. \& P.

Designer
Manager Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

```
To: Cambridge Learning Enterprises (Dept. ENG)
FREEPOST. S1. Ives, Huntingdon, Cambs. PE17 4BR
*Please send me....set(s) of Design of Digital Systems at \(£ 7 \cdot 00\)
each, p \& p included
*Or....set(s) of Digital Computer Logic and Electronics at C .00
each, p \& p included
*or ....combined set(s) at \(£ 10 \cdot 50\) each. \(p\) \& \(p\) included
Name
Address
*delete as applicable
No need to use a stamp-just print FREEPOST on the envelope. PE8
```


TIMEKEEPING KITS
 CMOS and DISPLAYS

GUARANTEE; Telephoned orders recelved by $4.30 \mathrm{p} . \mathrm{m}$. (Mon.-Fri.) guaranteed dispatched the same day. First Class Poat. The same applies to written orders Tolephone Ordert: Private customers (min. tel. order $£ 5$) quote AcC
or Barclaycard no. Offictal orders, no minimum telephone order value.

gREEN CLOCK KIT

Four digit 12 or 24 hr mantel-piece lectronic clock with $0.5 i^{2}$ GREEN display in a white slim-line case.

CCK: Crystal-Controlled, 6 Digit, Car Clock Kit with Independant Journey Timer (P.E. Feb. '76)
Runs off 12 V (car) battery protected against low voltage drop-out-internal battery back-up allows temporary disconnection-6 digit timer times journeys up to 24 hours in hours, minutes and seconds-automaticer as CCK $£ 39 \cdot 50$

ATTRACTIVE 6- DIGIT ALARM CLOCK KIT
With optional CRYSTAL CONTROL for high accuracy
and battery back-up-blesp alarm, snooze. automatic
intensity control-uses Red 0 - Sin LEDs-optlonal touch-
intensity control-uses Red Order as "ACK" 528.80
Complere kit as above, plus crystal control and batiery back-up. Order as ACK + XTK + BBK £33.58
50 Hz Crystal Timebase Kit: provides an extremely stable oútput of one puise every 20 msec . Uses: Improving accuracy of digltal clocks if used with battery back-up also makes clocks power-out or switch-of proof Replacing 50 Hz signal on battery-powered equipment - Providing film synchronisation Monitoring or improving turntable speed. Complete kit Order as x. 6.28 50 Hz Cryatal TImebase Module: as above, "c.
preset to within ± 5 p.p.e. Module. Use as a pulse generator for any system counting in $1 / 1001 \mathrm{~h} \sec$. units. High stability, low current consumption (3 mA counting- Easily intertaced to TTL (requires 1 transistor)-5 to 14 V operation (typical) - Buill and tested and output preset to within ± 5 p.p.m. Order as $821-100$ £12. 70 ADD VAT at $8 \%-25 \rho$ P. \& P. on all orders. Access and Barclaycard orders welcomed, by post or phone (see Guarantee above). Price Ilst sent with orders or tree on request (send S.A.E.). Export orders welcome: No VAT but include 10% (Europe). 15% (Overseas)
for Air Mail P. \& P.

53b ASTON STREET, OXFORD TEL. 086549791

CO4000	0.15	CO4028	0.78	C04053	0.81	CD4086	0.62	Clock Chips	
CD4001	0.15	CD4029	0.99	CD4054	1.11	CD4089	1.34	MK50250	5.00
CO4002	0.15	CO4030	0.48	CO4055	1.14	CD4093	0.69	MK50253	5.60
CO4006	1.02	CD4031	1.92	CO4056	1. 14	CD4094	1.62	AY51202	
CD4007	0.15	CD4032	0.92	C04057	21.58	CO4095	0.91	Arsizz ${ }^{4}$	3. 5
CD4008	0.13	C04033	1.21	C04059	4.77	CD40\%	0.91		
CD4009	0.48	CD4034	1.65	CD4060	0.17	CD4097	12	Flat Cabis	
CO4010	0.48	CD4035	1.02	04061	18.92	CD4099	59	20-w	
CD4011	0.16	CD4036	$2 \cdot 23$	CD4062	$7 \cdot 7$	C04502	1.07	10 m for	
CO 4012	0.15	CD4037	0.83	CO4063	0.95	CDas 10			
CO4013	0.48	CD4038	0.93	C04066	0.81	CO4511	1.36	Veroces	
CD4014	0.87	CD4039	2.23	CD4067	3.12	CD4514	2.72	751410	
C04015	0.47	CD4040	0.92	CO406a	0.18	CO4515	2	7514110	
CO4016	0.48	C04041	0.93	CO4069	0.18	CO4516	$1 \cdot 18$	${ }^{7512375}$	
CD4017	0.87	CO4042	0.73	CO4070	0.48	CO4518	1.08	751238D	
CD4018	0.57	CD4043	0.37	CO407t	0.18	C04520	1.08		
CD4019	0.41	CD 4044	0.81	C04072	0.18	CDS 527	1.3 1.25		
CD4020	0.97	CO4045	1.22	CD4073	0.18	CO4532	1.28	CA3130	
CD4021	0.87	CO4046	1.16 0.78	CO4075	0.18 1.34	CD2555	O.78	7549 t	
CD4022	0.63 0.15	CD4047	0.78 0.48	${ }^{\text {CO4 }}$ C0707	0.48	MC 14528	1.01	75492	
CD4024	0.67	CD4049	0.48	CD4076	0.18	MC14534	C-04		
CD4025	0.18	CD4050	0.45	CD4081	0.11	MC14553	4.07	RCA ${ }^{4}$	
CD4028	1-50	CD4051	0.81	C04082	0.11	MCt4566	1.27	Mini-dip	
CD4027	0.40	CO4052	$0 \cdot 1$	CD4085	0.62	MCM14552	05	for	

Motorola me MOS Databook (Vol. 5. Series A) c. 500 pages c2. 77 (no VAT) MEMORY IC from Intel: P2102A-6 (new version of 2102-2) 16 pin. TTL compatible, 1024×1 bit Static RAM (Data supplied with IC)
8 -way BOSS Swith: 8 ultra-miniature toggle switches in 16 pin DiL. $\quad \mathbf{~ C 2 . 6 0}$
 LOW COST IC SOCKETS
Soldercon IC socket plns are the ideal tow cost method of providing sockets for TTL, CMOS, IC's. Displays. Simply cut off the lengths you need, solder into Strip of 100 pins for 50 p . 1,000 pins for $£ 4.3 .000$ pins for $£ 10-50$.

SINTEL

anclal Orders Welcomed. Terms 30 days for written or phoned orders from Companies. Govt Depts.. Nat. Industrles. Univs. Polys. atc. Fast dellvery for R. \& D.

SINCLAIR IC20

IC20 10W + 10W stereo IC amplifier kit with free booklet and printed circuit, 54.95.
PZ20 Power supply kit for the above. E3-95
VP20 Volume. tone-control and preamp kit, $\mathbf{~ 7}$ - 50
Send S.A.E. for free leafiet.

JC12 AMPLIFIER

6W IC audio amp.
with pree data and
with free data an
printed circuit
£1.95*.

DELUXE KIT FOR JC12.

Contains extra parts lor the pcb and volum
JC12 POWER KIT
Supplles 25 V 1 A , £3. 25.
JC12 PREAMP KITS
Type 1 tor magnetic pickups, mics and tuners Mono £1-50, Stereo £3. Type 2 for ceramic or crystal pickups. Mono ${ }^{86}$ p. Stereo $\mathrm{E1} .76$.
Send S.A.E. for free leaflet
S-DECS AND T-DECS*
S.DeC E2-24
T-DeC 54.05
μ-DeCA 54 -45
μ-DeCE 87.65
IC carriers-
16 dil: plain $£ 1 \cdot 07$, with socket $£ 2 \cdot 21$. 10TOS: plaln 99p,
with socket $£ 1.95$

FERRANTI ZN414

IC radio chip $£ 1 \cdot 34$. Extra parts and pcb tor radio $\mathrm{E3} .45$. Case sop. Send S.A.E. for free data

SINCLAIR PROJECT 80 AUDIO

MODULES

FM tuner 113.25 . Q16 59.50. PZ5 E3.95. PZ6 58.70, PZ8 59. 10. Trans for PZ8 $\mathbf{5 5} \cdot 60$. $240 \quad$ [5.75. Stereo $80 ~[11 \cdot 95$. Project 8050 £18-95. Quad decoder £14-95.

BI-PAK AUDIO MODULES

\$450 Tuner £18.95. AL60 £4.33. PA100 £13.45. MK60 audlo kit $\mathbf{2} 27 \cdot 20$. Teak 60 £9.95. Stereo 30 £15.95. TC30 $44 \cdot 60$. AL250 £16.15. Send S.A.E. for free data

SAXON ENTERTAINMENTS AUDIO

MODULES

SA1208D 518 -95. SA608 511 .95. SA308 59 -40. PM120/ 1 £11-45. PM1202 £14.95. PM601/2 59.95 . PM301/2 £a.70. Send S A.E. for free leaflet.

SINCLAIR BLACK WATCH
 Fully assembled
 with black

Bracelat, s2*.
SINCLAIR CALCULATORS*
Scientific 87.95 . Cambridge $\% \quad$ £7.35. Cambridge Scientlfic £11.45. Oxtord 100 £4.95. Oxford 300 £13.30 Programmable Scientific $\mathbf{E 2 4}$.95. Mains adaptors for pro grammable
Scientific $\mathbf{~ 5 3 - 1 5 . ~}$

CBM CALCULATORS*

796MD 8 digit, \%, memory 55.98. 897 D 8 digit, $\%, 4$ func tion memory $E 6 \cdot 45$. SR7919D 8 digit or $5+2$, memon trig, log, pi, powers $\$ 11.90$. SR1800 SRatur figh rechar adaptors $53 \cdot 20$.

CASIO CALCULATORS*

Pocket 85 a digits, \%, const, E6-95. Memory 8 R a digit. \% memory, const. \&a-95. Pocket Mini P-810 a digits. \% memory, const, miniature fits into your shirt pocket $£ 1.95$ FX20 8 digit or $5+2$ memory, trig, log, powers $£ 16-95$
NOVUS CALCULATORS*
7506 digit $£ 5 \cdot 45.835$ a digit. \%, const. 89 root, 4 function memory $57 \cdot 60$. 452510 digit programmable scientific
 Free charger with 4515,4520 and 4525 .

MISTRAL 24 HR. DIGITAL CLOCK KITS*

Includes pcb. power supply, case, tin display, chip and all parts. Kit £10-95. Builf £12-50. Also Mistral 2, de fuxe assembled version with alarm and titt sleep-over faciitity \$13.95.
NATIONAL MA1001H DIGITAL CLOCK

MODULE*

Complete moduie including in display and clock chip fully assembled on a 1 tin $\times 31 \mathrm{n}$ pcb. Just add a power supply, switches, etc., to produce a 24 hr . clock with alarm
Send S.A.E for our Digital Clock leaflet

PRINTED CIRCUIT KIT $\mathbf{2 3} \cdot 95^{*}$

Make your own printed circults. Contains etching dish 100 sq . In of pc board, 1 lb ferric chloride, etch resist pen small drill bit, laminate cutter.

SWANLEY ELECTRONICS

Dept. PE, PO Box 68, Swanley, Kent

Battery Eliminator Bargains

55 WAY SUPER

New switched model, 3 to 30 V in $\frac{\mathrm{V}}{} \mathrm{Vteps}$. Fully stablized. 1A output. Kit $\mathrm{fB} \cdot 95$
6-WAY SPECIAL $£ 5 \cdot 20$
Switched output of $3 / 4 \frac{1}{2}$
$6 / 7 \mathrm{t} / 9 / 12 \mathrm{~V}$ at 500 mA
6-WAY DOUBLE
RADIO MODEL £6•20
Switched output
$3+3 / 4 \frac{1}{2}+4 / 6+6$
$7+7 / 9 / 9$ at 250 mA . Also $15 / 18 / 24 \mathrm{~V}$ single.

3-WAY MODEL

Switched output of $6 / 71 / 9 \mathrm{~V}$ at 250 mA with 4 -way multi-jack plug and tres matching socket, [2-95*.
RADIO MODELS
50 mA with press-stud battery connectors. $9 \mathrm{~V} \quad \mathbf{8 3} \cdot 25$. 6 V £3.45. $9+9 \mathrm{~V} £ 4 \cdot 45.6+6 \mathrm{~V} \mathrm{E4} \cdot 45.4 \mathrm{t}+4 \mathrm{~V} \mathrm{E} 4 \cdot 45$ Also 9V 300 mA 〔3. 95

CASSETTE MAINS UNITS

$7+V$ output with 5 pin DIN plug. 50 mA £3.45. $300 \mathrm{~mA} £ 3.95$. CAR CONVERTORS
Input 12 V d.c. Ouput $6 / 7 \mathrm{z} / \mathrm{gV}$ d.c. 1 A regulaled. s4.75*

BATTERY ELIMINATOR KITS

Send S.A.E. for free leaflet on range.
100 mA radio type with press-stud battery terminals. $4+\mathrm{V}$ £1.95.6V £1.95.9V 11.95
100mA double radlo lype with press-stud battery terminals $4 \mathrm{VV}+4 \mathrm{~V} \mathrm{Ez} \cdot 60.6 \mathrm{~V}+6 \mathrm{~V} \mathbf{2} 2 \cdot 60.9 \mathrm{~V}+9 \mathrm{~V} \mathrm{E} \cdot 60$ 100 mA cassette type with 5 pin DiN plug. $7 \frac{1}{2} \mathrm{~V} \mathrm{E1} .95$
Stabllized 8 -way type transistor stabilized to give low hum. $3 / 4 \frac{1}{2} / 7 / 7 / 9 / 1215 / 18 \mathrm{~V} \quad 100 \mathrm{~mA}$ \&3. $15 ; 500 \mathrm{~mA}$ \& $\mathrm{E} \cdot 65$. Heavy duty 13 -way types $4 / / 6 / 7 / 8 \frac{1}{4} / 11 / 13 / 14 / 17 / 21 / 25 /$ 28/34/42V. 1 amp model E 4.20 . 2 amp model $\mathrm{f6}$-90. Input 12 V d.c. Output $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ d.c. 1 A

MAINS TRANSFORMERS

$6-0.6 \mathrm{~V} \quad 100 \mathrm{~mA} 95 \mathrm{p} .9-0-9 \mathrm{~V} \quad 100 \mathrm{~mA} 95 \mathrm{p}$. $18 \mathrm{~V} \quad 1 \mathrm{~A} \mathrm{\Sigma} 1.65$. 10. 12. 15, 20. 24, 30 V 1 A 53.40. 12-0-12V 100 mA E1. 05 .

Post 30 p on orders under $£ 2$, otherwise free. Prices include VAT (Overseas customers deduct 7% on items marked *, otherwise 11%). Official orders welcome.

TRANSFORMERS

ALL E
MAINS

60 VOLT RANGE

Prim. 200-240V
Sec. $0-24-30-40-48-60 \mathrm{~V}$
Sec. $0-24-30-40-48-60 \mathrm{~V}$
A.t.

Sec.	O-24-30-40-48-60V	
Ref	Amps	$£$
124	0.5	3.54
126	1.0	4.04
127	2.0	6.78
125	3.0	8.72
123	4.0	11.58
40	5.0	12.54
120	6.0	14.69
121	8.0	17.014
122	10.0	20.95
189	12.0	21.874

50 VOLT RANGE			SWITCMES				
Prim. 200-240V			SPST	TOGGLE	3	FOR	51.06
Sec. 0-19-25-33-40-50V			DPDT	TOGGLE		FOR	[1-30
			DPDT	SLIDE	6	FOR	[1.06
No.	Amps	ε	ANTEX SOLDERING IRONS				
402	0.5	3.63					
103	1.0	4. 70	15W E3. 57 18W \&3. 31 25W SOLDERING IRON KIT E4.48 STAND FOR ABOVE E1-49				$\underline{2} \cdot 9$
104	2.0	6.37					
105	30	7.78					
106	4.0	9.97	MAGNÉYIC TO CERAMIC CARTRIDGE CONVERTOR				
107	6.0	15-21					
118	8.0	18.59				20-4.5V	
119	10.0	19.47 \dagger	[5.17.	,		20-4	only

OPER
53.17

NO. HIDDEN EXTRAS-prices include VAT and P. \& P. EXCEPT WHERE CARRIAGE WILL BE ACCORDING TO WEIGHT \& DISTANCE-BRS. Electroseal audlo accessorles, emiconductor*, panel melert and multi-meter*.

CALLERS WELCOME (MON.-FRI.) OR SEND STAMP FOR LISTS.

OO Mixed value PONENT PAKS

 150 Mixed value resistors (count by wolght) 30 Mlxed value capacitors (count by weight) 15 Assorted pots \& pre-sets 10 Reed switches 20 Assorted tag strios PLEASE STATE PAK REQUIRED 90D PER PACK

AUDIO KIT 25 W
$2+25 W$ Ampllfiers $1+$ Per-Amp 1 + Power supply
1 + Tiansformer $1+$ Front Panel $1+$ Kit of parts to include onvoff switch. neon ind. Stereo head phone socket. Plus Instructions book £32-18.

TEAK AUDIO KIT 25W

Teak veneered cablnel $164:+114:+3$ in, aluminium chassis. heat sink and front panel brackets plus back panel and sockels etc. [11.21

CARTRIDGES	
Magnetic Sonotone 100	¢5. 31
Ceramic E.E.I.CS 2000	c2.72
ALOS GP93-1	12.11
TCC AT55	54.4

TCC AT55

Barrie Electronics Ltd.
3. THE MINORIES, LONDON EC3N 1BJ TELEPHONE: 01-488 3316/7/8
nearest tube stations aldgate \& liveapool st

Complete Kit of semiconductors
High quality glass fibre P.C.B.
£2.75

PHASE LOCKED STERED DECODER
 To MOTOROLA specificatio

 COMPLETE KIT £3-50 Includes MCli31OP. Glass fibre p.e.b. altasistoris capacitors, LED indicator and tull instructions

FERRANTI

BC107P	119	27×108	9 p	27×330
8С108P	9	2TX109	11p	$2{ }^{2} \times 331$
BC109P	11p	27×212	15p	21 $\times 382$
8Ca15P	17p	T1 $\times 213$	15p	21×383
日F559	$14 p$	T1 $\times 214$	17p	21×384
BF560	150\%	27×239	10p	21×450
BF581	150	21 $\times 300$	12p	21×451
BFS96	14p	21×301	13p	ZTX500
BF597	15p	$2 \mathrm{~T} \times 302$	15p	27X501
BFS98	$18 p$	21×303	18p	T1×502
zTXAZO	10p	27×304	19p	2TX503
27×107	11p	27×320	16p	$2 \mathrm{~T} \times 504$

PE DIGITAL FREQUENCY METER

Genulne.	top grade.	Ferranti	devices
ZN1040E*	$\underline{81} .25$	ZN7490*	£1-01
ZN7400*	29p	2N74123*	11.44
2N7403*	29p	ZTX312	$14 p$
2N7474*	480	27×4403	$18 p$

We can supply all Ferranti semiconductor devices used in this project
$\begin{array}{ll}17 p & 2 T \times 530 \\ 18 p & 2 T 15531\end{array}$

$17 p$	$2 T \times 530$	18
$18 p$	$2 T \times 531$	$19 p$
$16 p$	$2 T \times 550$	$18 p$
$15 p$	$2 T \times 551$	$17 p$
$17 p$	$2 N 3055$	$70 p$
$18 p$	70	
$18 p$	DIODES	

\qquad
\qquad
2S176
2S178
2S270.
ZS271.
2S272.
2S274.
2S276.
ZS278*
ZENERS

FERAANTI CDITNTEGAATED CIRCUITS. AII
ZN414 radio mierocircult 51. ZN1036 ${ }^{*}$ prec

PE TV SOUND SEPARATOR

Cliters-SFE6.OMA 359, CDAE. OMC 350 . 30 . Hion

MOTOROLA MC1310P only $£ 1 \cdot 80$

Glass fibre p.c.b. to sult MC1310P sep, Red LED with ctip 27p. MOTOROLA: MC1357PO 81.85
 PE OPTO REV COUNTER:
POSTAGE AND PACKING 15p per order. Ordert over 55 post free. All davices top prade, brand new and to full manufacturers spec. We do not self seconde or repects. Send SAE for our data PRICES DÓ NOT INCLUDE VATーADD $\% \%$ TO ITEMS MARKED * AND $12 \% \%$ TO ALL OTHERS
DAVIAN ELECTRONICS
PO BOX 38 . DLDHAM . LANCS
OL2 6XJ

Practical Electronics Classified Advertisements

REGEIVERS AND COMPONENTS

VALVE8, RADIO, TV, TRAN8MITTING, INDU8TRIAL. 1930 to 1975 . 2,200 types in stock, many obsolete. List 20p. Quotation S.A.E. Postal export service. We wish to purchase new and boxed valves. Dealers, wholesalers, etc., stocks purchased. COX RADIO (SUSSEX) LTD., The Parade, East Wittering, Sussex. Tel. West Wittering 2023

A-MP I4 PIN DIL IC HOLDERS with nonrev's clip. Ilp each; 10 for $\frac{1}{2}$. Belling 20 for Instrument Pointer Knob. 8p; Toler witeh,
Diamond H. 20A, 250 v , D.P.S.T. Toggle Swither $65 p$ each; $£ 5.50$ for 10 . BZ $\times 795.1$ volts 400 mW , 8p each, 10 for 60p. 121515 volt I watt, 10 p each; 10 for 90 p . IN9/4 50 for $£ 1$. Motorola 2N3055, 50 p each, 10 for $\mathbf{~} 4.50$. Texas Zener
Diodes $6 \mathrm{v}, 7 \mathrm{v}, 8 \mathrm{v}, 9 \mathrm{v}, 10 \mathrm{v} 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 15 \mathrm{v}, 16 \mathrm{v}$ Diodes $6 v, 7 v, 8 v, 9 v, 10 v, 11 v, 12 v, 13 v, 15 v, 16 v$
$18 v, 20 v, 22 v, 39 v$, all $10 w, 20 p$ each. Bush set for T.I.P. transistors, 10 for 20p; 100 for $£ 1 \cdot 75$. Sude Sw. S.P.C.O., I'sp each; $£ 1 \cdot 20$ for 10. Minimum post 20 p . All prices include VAT. All components full spec. FIELD ELECTRIC LTD.;
$\mathbf{3}$ Shenley Road, Boreham' Wood, Herta. 01-953 6009

MINIATURE CARBON FILM RE8I8TOR8. 5\% W, $1 \mathrm{~W}, 1 \mathrm{~W}, \mathrm{E} 12$ Series. 22ohm to $1 \mathrm{M} \Omega .10$ for $15 p, 50$ for $50 p, 100$ for $85 p, p$. \& p. $10 p$ Mixed values and wattages to your choice OANDAR, Freepost, Reading RG1 1BR.
BRAND NEW COMPONENTS BY RETURN
Electrolytic Capacitor: $16 \mathrm{~V}, 25 \mathrm{~V}, \cdot \mathbf{5 0 V}-0 \cdot 47,1 \cdot 0$
$50 \mathrm{~V} 8 \mathrm{p}) ; 2208 \mathrm{p}(50 \mathrm{~V} 10 \mathrm{p}) ; 50011 \mathrm{p}(50 \mathrm{~V} 16 \mathrm{p})$
$1,000(16 \mathrm{~V}) 15 \mathrm{p}, 1,000(25 \mathrm{~V}) 18 \mathrm{p}, 1,000(50 \mathrm{~V}) 28 \mathrm{p}$.
subminiature Tantalum Bead Electrolyttcr- 0.1
$\begin{aligned} & 0.22,0.47,1.0,2.2 \text { at } 35 \mathrm{~V}, 4.7 / 25 \mathrm{~V} 11 \mathrm{p} ; 10 / 25 \mathrm{~V}, \\ & 22 / 16 \mathrm{~V} 47 / 6 \mathrm{~V} \text { sid } 100 / 3 \mathrm{~V} \text { i2p. }\end{aligned}$
$22 / 16 \mathrm{~V}$, $47 / 6 \mathrm{~V}$ and $100 / 3 \mathrm{~V} 12 \mathrm{p}$.
Mullard Min. Caramic E12 Serien 88V $2 \%-10-47 \mathrm{pF}$
$\begin{aligned} & 8 \mathrm{p} \text { : } 66-330 \mathrm{pF} \text { 4p. Ceramic plate 50V E12 serie } \\ & 22-1,000 \mathrm{p} \text { and } \mathrm{E} 6 \text { series } 1,500-47,000 \mathrm{pF} 2 \mathrm{p} \text {. }\end{aligned}$
Pol
$10-1.000 \mathrm{pF} 8 \mathrm{p}$; $1,200-10,000 \mathrm{pF} 4 \mathrm{p}$.
Mullard Polyeater 250V Vertical Mounting e6
8eries- $0.01-0.14 \mathrm{p} ; 0.16,0.225 \mathrm{p} ; 0.33 .0 .47 \mathrm{8p}$
$0.6811 \mathrm{p} ; 1.018 \mathrm{p} ; 1.5$ 20p; 2.2 22p.
Mylar (Polyenter) Pim 100 V Vertical Mounting-
$0.001,0.002,0.0058 p ; 0.01,0.0281 \mathrm{p} ; 0.04,0.054 \mathrm{p}$.
Minlaturs Reaiators Highatab. El2 Serien $5 \%-$
$\begin{aligned} & 10 \bigcap-2 \mathrm{M} \\ & 1.75 \mathrm{p} \text {. }\end{aligned}$
$1 \mathrm{~N} 4148 \mathrm{3p}$; $1 \mathrm{~N} 40025 \mathrm{p} ; 1 \mathrm{~N} 40067 \mathrm{p}$;
BC107/8/9, 147/8/9, 157/8/9, BF194/7'9p.
Fuses 20 mm glass, 1 tin glass, lin ceramic 8 p
Post 10p (free over C4). Prices inclugive of VAT.
THE C.R. SUPPLY CO.
127 Chesterfield Road, Sheffield 58 ORN

TURN YOUR SURPLU8 capacitors, transistors, etc. into cash. Contact COLES-HARDING \& CO. P.O. Box 5, Frome, Somerset. Immediate cash settlement

$\underbrace{S}_{\substack{\text { panel } \\ \text { clip } 1 p}}$		0.125	02	INFRA RED 550 HW Axiad lead 49p 6 mW [1-55 OPTODatafree	
	RED	15p	19p		
	G/Y	27p	33p		
	OR	27 p	33p	ORP12 55p	
			SCR 50 V 100 V 400 V Diac TOS 1 A 25 p 27 p 40 p OR100 TO66 3 A 27 p 35 p 50 p 21 p 400 V TRIACS 2 A 60 p 10 A $51-50$		
Avdelbond 2gm		$65 p$			
		2N2926(G)	G) $12 p$		
		$2 N 3053$2N3054	15p	$5 V 7805$ Plastic	
		45p	12V 78121 Amp		
		2N3054 2N3055	41p	$15 \vee 7815$ all	
		2N3702 3	$4 / 12 p$$5 / 6 p^{16 p}$	18V $7818 \quad \mathrm{E1} \cdot 50$	
		2N3903/45		723 DIP14 50p	
		2N2646 35p	BRIDGE RECTS.		
		MPF102 40 p	2 A 50 V - 30 p		
		$\begin{aligned} & 2 N 3819 \\ & 2 N 3823 \end{aligned}$	25p	2 C	
		$2 N 3823 \quad 30 \mathrm{p}$	$2 A 200 \mathrm{~V}$		
		\|N914 3p	2A 400V 45		
		IN4002/3 6p		ZENEAS 27.33 V	
		BZY88 or sim 9p			
		IN4006/? 8 p	555 Timer 60p		
		IN4148 ${ }^{\text {d }}$	$5562 \times 555 ¢ 1 \cdot 10$		
		BA100	LM380 $\quad \$ 1.00$		
		OA47	2N414 $\quad 1.10$		
		OA70 OA7	7400 16p		
		OA91 OA95 6p	D.I.L. SOCKETS		
		$\begin{array}{ll}\text { OA200 } & 6 p \\ \text { OA202 } & 7 \mathrm{p}\end{array}$		$\begin{array}{ll}\text { g-pin } & \text { 12p } \\ \text { 14-pin } & 13 \mathrm{p} \\ \text { 16-pin } & 14 \mathrm{p}\end{array}$	
		OP. AMPS			
		$\begin{array}{ll}709 \\ 7418 \text { all } \\ 74 \text {-oin } & \text { 29p } \\ \text { 29p }\end{array}$			
		$\begin{array}{lr} 103 & 5066 \\ \text { Dalo Pen } & 70 \mathrm{p} \end{array}$			
		748 D.I.	L. 36p		
PRICESINCLUSIVE + 15pP. \& P. (1siclass)					
ISLAND DEVICES, P.O. Box 11, Margate, Kent					

ORCHARD ELECTRONICS

C.s. TTL. C/Mos. Linear. Capacitors. Resistors (E12) SIL/Rectifiers. Diodes. LED. Thyristors. Zeners. Voltage Reg. DIL Sockets. Bridge Rectifiers. Potentiometers. Presets. Triacs. Diac. Plugs. Sockets. Cable. Vero. Carefully selected round. S.A.E. List. Flint House, High St., Wallingfor
Telephone 0491-35529

Precision Polycarbonate Capacitors

$$
\begin{aligned}
& \text { All High Stability - extromely Low Leakage } \\
& \text { DSy DANGE }
\end{aligned}
$$

0.1
0.15
0.22
0.25
0.3
0.4
0.
0.
1
1

15	27		
.22	27		
.25			
.33			
.33			
0.47			
0.5			
0.68			
1.0			
1.5			
2.0			
			788 p
:---	:---	Value $\mu \mathrm{F} \quad \pm 1 \% \quad \pm 2 \% \quad \pm 5 \%$	

.22
.23
.25
.33
33

$6 \mathrm{~V} / 10 \mathrm{~V}$ or $16 \mathrm{~V} ; 330 \mu \mathrm{~F}$ at 6 V or $10 \mathrm{~V} ; 47.04 \mathrm{~F}$ at 3 V or $6 \mathrm{~V} ; 100.0 \mu \mathrm{~F}$ at 3 V . All at $12 \mathrm{D}^{\circ}$ each, 10 for $\varepsilon 1.10^{\circ}$, 60 for $25^{\circ}{ }^{\circ} 100$ for 29°
transistors \& I.C.'

 POPOLAR DIODES-1N914 8p, 8 for 45p, 18 for 90 D ;

 LD LD P PRICE ZENER DIODES-400mW, Tol $\pm 5 \%$ at ${ }^{5 \mathrm{~mA} .} 3 \mathrm{~V} ; 3 \mathrm{~V} 3 ; 3 \mathrm{V6} ; 4 \mathrm{V7} ; 5 \mathrm{V1;} \mathrm{3V6;6V2;} \mathrm{6V8;} \mathrm{7V5;}$ $8 \mathrm{~V} 2 ; 9 \mathrm{V1;} 10 \mathrm{~V} ; 11 \mathrm{~V} ; 12 \mathrm{~V}: 13 \mathrm{~V} ; 13.5 \mathrm{~V} ; 15 \mathrm{~V} ; 16 \mathrm{~V} ; 18 \mathrm{p}$,
$20 \mathrm{~V} ; 22 \mathrm{~V} ; 24 \mathrm{~V} ; 27 \mathrm{~V} ; 30 \mathrm{~V} ; 33 \mathrm{~V}$ All at 7 peach, 5 for 38 p , 10 for 65 p , 50 for $£ 3.12$. SPECIAL OFFER: 100 Zeners (may be mixed) for 86.00 .
RESISTORS-High stability, low nolse carbon film 5% 1 W at $40^{\circ} \mathrm{C}$, , W at $70^{\circ} \mathrm{C}$. E12 series only-from 2.2Ω to 2.210 . ALL each value 2.2Ω to $2.2 \mathrm{M} \Omega$ (730 resistors) 255^{*} SILICON PLASTIO RECTIFIERS-1.5 mmp , wire-ended DO27: 100 P.I.V. 7p (4 for 28p); 400 P.I.V. 8 p (4 for 30 p), BRIDGE RECTIFIERS- $21 \mathrm{amp}: 200 \mathrm{~V} 40 \mathrm{D} ; 350 \mathrm{~V} 45 \mathrm{D}$;
SUBMINIATURE VERTICAL PRESETS-0.1W only; All at 5 p . each; $50 ; 100 ; 220 ; 470 ; 680$ olhm; $1 \mathrm{k} ; 2 \mathrm{k} 2 ;$
4 k 7 ; $6 \mathrm{k} 8 ; 10 \mathrm{k} ; 15 \mathrm{k} ; 22 \mathrm{k} ; 47 \mathrm{k} ; 100 \mathrm{k} ; 320 \mathrm{k} ; 680 \mathrm{k} ; 1 \mathrm{M}$; 4k7; 6k8; 10k; 15 k ; 22k; 47k; 100k; 320k; 680k; 1M; 2M5; 5M.
PLEASE ADD 20p POST AND PACKING ON ALL ORDERS. EXPORT-ADD COST OF SEA/AIRMAIL. Add 8% VAT to all items except those marked with * Send S.A.E. for additlonal
Wholesale price lists available to bona ide companles.
MARCO TRADING (Dept. P.3)
The Old School, Edataston, Wem, Shropshire
(Proprs, Mlalcost Trading Ltd.)

250 WATTS

Power Amplifier 250W into $40 \mathrm{hms}, 140 \mathrm{~W}$ into 8 ohms. Very low noise. Suitable for public Hi-Fi Very relizble, hish quality power amp. Power amp kit includes transistors, special heat sinks, circuit board, fuse, etc., and full instruc| tions. |
| :--- |
| Circuit board and instructions only |
| $\mathbf{E 2 3 . 5 0}$ |
| $\mathbf{E 2 . 2 5}$ | 120 V power supply for 250 W amp. kit 118.00 (Transformer weighs over 5 kg . Postage overseas extra.)

Guitar or microphone preamp with two inputs, with volume, bass, and treble controls and extra high switch. Kit
Circuit board and instructions only \quad \& $1-20$ Mierophone preamp to suit microphones of
200 ohms to 50 k . Very low noise. Will take 200 ohms to 50 k . Yery 10 w noise. Win. take control. Ideal for stage mixers or group amplifiers. Complete kit
Cirrcuit board and instructions only
Note. The kits do not include cabinets.
61.00

Note. Other kits available. Send S.A.E.for more information.
Prices include taxes and postage in U.K.
Mail order only. Callers by arrangement only.
ALFA ELECTRONICS 96a Glengall Road, London, N.W. 6

500 COMPONENT8. Resistors, capacitors, diodes, transistors, pots, coils, etc. Identifled, formed leads, fall-out and surplus. Good value at $£ 1 \cdot 60$. All inclusive (U.K. postal rates only). C.W.O. please to: L. PENSENJY (PE), Bankhead Farm, South Queensferry, West Lothian.

TTL SPECTACULAR!

R.T. SERVICES
 (MAIL ORDER ONLY)

77 Hayfield Rd., Salford 6, Lancs.
Tapped Auto Transformer, 240 V -lloV, 80 watts, $\mathbf{\ell} 2$ P.P. New.
Heat Sinks $5 \times 4 \mathrm{in}$, drilled for 2 TO3 ransistors. New 65p.
Transformer 240 V primary 25 volts at 13 amps. New E2. P.P.
FM Tuner with R.F. Stage and A.G.C., 3 transistors, neg. earth, $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with circuit, $\mathbf{£ 1} 75$ P.P.
Crouzet Geared Motors 240V. 5/6/15/20 r.p.m. New $£ 1$-75 P.P

Panel with 220 approx. marked IC's only $4 \cdot 50$ inc. VAT. P.P.
Memory Array Panel. $£ 1 \cdot 50$ inc. VAT. P.P.
Electrolytic Capacitors. 2,500 at 40 V . Size $3 \times 1 / \frac{1}{2} .2$ for $£ 1$ P.P. NEW.
Transformers. $12-0-12 \mathrm{~V}, 100 \mathrm{~mA}, 9-0-9 \mathrm{~V}$, $100 \mathrm{~mA}, 6-0-6 \mathrm{~V}, 100 \mathrm{~mA}, 99 \mathrm{p}$ each P.P.
P.C. Board. $S / S, 5 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in}, 10$ for $\mathrm{fl} \cdot 25$ P.P.

Mixed Pack of C280 series Mullard ca pacitors. 100 for $£ 1 \cdot 30$ inc. P.P.
Very large quantity of Mullard C280 capacitors. In sacks. Mixed values. Also Mullard electrolyties in sacks. Mixed values. Enquiries invited from bulk buyers.

Tel. 061-236 1541
All prices include VAT and P.P.

21.33 Inc. VAT and P. \& P for the following

1 Mains T/F 240 V PRI/240V $20 \mathrm{~mA}+20 \mathrm{~V} 50 \mathrm{~mA}$ SEC
1 Pulse T/F
HV spark T/F
Discharge tube Seimens KASO2
Motorola Uni Junctjon $2 N 4871$
Ferranti transistor ZTX450 and heat sink
1 A fuse $250 \mathrm{~V} 20 \mathrm{~mm} \times 5 \mathrm{~m}$
$120 \mathrm{~mm} \times 5 \mathrm{~mm}$ P.C. MTG fuse holder
6 Diodes
13 Capacitors
16 Resistors
All the above are mounted on a P.C. board but guaranteed unused.
Also available: Bank of 8 Decimal output, miniature Thumbwheel Switches. $\mathbf{2} 2 \cdot 50$ per bank inc. VAT, P. \& P. Bridge Rectifier $1 A 400$ p,iv.
full spec. Motorola. $\& 1-20$ per pack of 4 inc. $V A T, P$ \& P.
PAYLOR CONTROLS LTD.
Wellington Gardan*
Bury, Lance. BL8 2Pa

BOOK8 AND PUBLICATIONS

START YOUR OWH BUSINESS REWINOING ELECTRIC MOTORS

This unique instruction manual shows step by step how to rewind motors, working part or full time, without previous experience.
Everything you need to know easily explained, including where to obtain materials, how to get all the work you need, etc., etc. A goldmine of information and knowledge.
Only $\in 3.65$ pus 25 p P. \& P. From:
MAGNUM PUBLICATIONS, Dept. PE5
Brinksway Trading Estate, Brinksway Stockport SK3 OBZ
Overseas Distributors wanted.

ELECTRICAL

ITYLI AND CARTRIDGEs. For the best at keenest prices send SAE for free illus. list to FELSTEAD ELECTRONICS (PE), Longley Lane, Gatley, Cheshire, SK8 4EE.

FOR 8ALE

ELECTRONICS ENTHUSIAST disposing of components and over 100 electronics magazines. Tel. 01-359 1933.

2-MANUAL 2×61 note (- C switched keyboard, E15 o.n.o. JAMES, 61 Bustleholne Lane, West Bromwich.

PRACTICAL ELECTRONIC8. Complete set Nov. 1964 to June 1976. 65-67 bound volumes. Offers-Mr. BEATTIE, 33 Lovers Walk, Dumfries.

WANTED

TOP PRICES PAID

NEW VALVES AND TRANSISTORS
Popular T.V. and Radio types
KENSINGTON SUPPLIES (B)
367 Kensington Street
Bradford 8, Yorks.

LADDERS

LADDER8, varnished $20^{\prime} 9^{\prime \prime}$ extd. \$19.82. Carr. £1•40. Leaflet. Also aluminium ext. and loft ladders. Tel. Telford 586644 .

SITUATIONS WANTED

PHY8IC8 TEACHER seeks to broaden his horizons during year from September, Experience in writing, editing, electronics. Full, part time or home work considered. Box No. 64.

EDUCATIONAL

CITY \& QUILDS EXAMS.

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical•Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from: ICS SCHOOL OF ELECTRONICS, Dept. 771W, Intertext House, London, SW8 4 UJ . Tel. 01-622 9911 (all hours).

> TAPETALK
> THE CLEVER WAY TO LEARN TWO C60 Cossettes entitled INTRODUCING ELECTRONICS E5.44 plus 55p VAT/P. \& P.
> TAPETALK, P.O. Box 99 (PE)
> Milton Keynea MK3 5BR
> Tel.: Milton Keynes (0908) 77710

COLOUR TV BERVICING.

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from: ICS SCHOOL OF ELECTRONICS. Dept.
771W, Intertext House, London, SW8 4UJ. Tel. 01-622 9911 (all hours).

technical training.

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio. TV, Audio Eng. and Servicing. Electronics. Computers; also selfbuild radio kits. Full details from: ICS SCHOOL OF ELECTRONICS, Dept.
771W, Intertext House, London, SW8 4UJ. Tel. 01-622 9911 (all hours).

PROFE88IONAL/8ERVICES

PATENT8 AND TRADE MARK8. KINGS PATENT AGENCY LIMITED (Est. 1886). B. T. King, Director, M.I.Mech.E., Registered Patent Agent, 146a Queen Victoria Street, London, EC4V 5AT. Booklet on request. Tel. 01-2486181. Telex 883805.

SERVICE SHEETS

8ERVICE 8HEET8 for radio, TV, tape recorders, stereo, etc., with free fault-finding guide, $50 p$ and S.A.E. HAMTLTON RADIO, 47 Boheniia Road, St. Leonards, Sussex.

BELL'S TELEYI8ION 8ERYICE8 for service sheets on radio, TV, etc., 75p plus S.A.E. sheets on radio, TV, etc., 75 plus S.A.E.
Colour TV service manuals on request. S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. 042355885.

8ERVICE 8 HEET8, radio, TV, etc. 10,000 models. Catalogue 24 p plus S.A.E. with orders-enquiries. TELRAY, 154 Brook Street, I'reston, PR1 7HP.

MISCELLANEOUS

CLEARING LABORATORY, scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.

CABINET FITTINGS

Stage Loudspeakers and Amplifier Cabs Fretcloths, Coverings, Recess Handles, Strap Handles, Feet, Castors, Locks and Hinges, Corners, Trim, Speaker Bolts, etc., etc.

Send 2×8 Pp Stamps for samples and list.
ADAM HALL (P.E. SUPPLIES)
Unit Q, Starline Works, Grainger Road Southend-on-Sea, Essex.

COLCHESTER's COMPONENT SHOP open Sunday-Friday, 12-6'p.m. J. K. ELECTRONICS, 11 Mersea Road. Tel. 64433.

BUILD YOUR OWN

YOU ARE INVITED TO SEND S.A.E. FOR LISTS ON OUR VERY EXTENSIVE RANGE OF HIGH QUALITY AMPLIFIERS, PRE-AMPS, F.M. TUNERS, INSTRUMENTS, RADIO CONTROL, IGNITION UNITS AND MANY OTHER KITS. STATE REQUIREMENTS.
TELERADIO ELECTRONICS 325 Fore St., Edmonton, London N9

DO-IT-YOUR8ELF LOUDSPEAKER for hi-fi are our speciality. Full range of components and accessories including chassis apeakers, cross-overs, sound absorbent, grille fabrics, etc., always available. We stock the fabulous value Helme speaker kits (complete with full and easy instructions), also Peerless and Wharfedale kits. Just about the lowest prices anywherel Send 8tp stamp for bargain list to: anywhere
AU DIOSCAN, Dept. PL, 876,4 Princes Square, AUDIOSCAN, Dept. PE-876,
Harrogate, North Yorkshire.

> I.C. EXPERIMENTER'S KITS
> Learn about modern electronics with our new series of Kits on digital logic techniques. Each Kit contains specially selected I.C.s, Holders,
> $\begin{aligned} & \text { Yeroboard, L.E.D.s, and Instr uctions. } \\ & \text { Available at } £ 3.50 \text { each (including P. \& P.) }\end{aligned}$
> $\begin{aligned} & \text { Available at } £ 3 \cdot 50 \text { each (including P. \& P.) } \\ & \text { Kit One-Gates Kit Two-Flip-Flops }\end{aligned}$ Kit One-Gates Kit Three-Shift Registers-
> Kit Four-Counters Kit Fivers-Displays AUTOr further details to
> 69 High Street, Ryton, Coventry CVe 3FJ eat, Ryton, Covent
(Mail Order Only)

PRINTED CIRCUITS and HARDWARE

Readily available supplies of Constructors' hardware, Aluminium sheet and sections. Printed circuit boards, top quality for individual or published designs.
Prompt service.
Send I5p for catalogue.
RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratford on Avon Warwicks.

Tel. 4879

TRANSMIT!

* Unique TRANSMITTER RECEIVER Kit. No licence examinations or tests required to operate this transistorised equipment. Easy to build. Get trans mitting. Send $E 7 \cdot 95$ plus $20_{\text {P }}$ P. \& P.
* Psychedelic MINI-STROBE Kit. Take ${ }^{2}$ a pocket-sized iightning storm, to with vari-speed stop-motion flashes. Includes super case too. Send $£ 3.50$ plus 20 p P. \& P.
(All prices include V.A.T.)
Send remittance to:
BOFFIN PROJECTS
CUNLIFFE ROAD
Stoneleigh, ewell, surrey (Mail order U.K. only)
Or for more details, send 20p for lists

LOW COST I.C. MOUNTING for any size IDI package. 100 Shlteren sockets 60 p. 7 and 8 hole plastic supports 5p pair. Quautity rates, S.A.E details and sample. Trial pack 60 p . ($\mathrm{P}, \& \mathbb{P}$ 10p order). P.K.G. ELECTLONICS, Oak Lodge, Tansley, Derbyshire, DE4 5FE.

H.M. ELECTRONICS

275a Fulwood Road. Broomhill, Sheffield S10 38D

Give your project that professional looking finish. Build it in a BEC Dry transfer lettering now available

ORION cabinet stul available punched or unpunched. Send 15p (refundabie) for leaflets.

PRINTED CIRCUIT 8ERVICE. P.C.B. made to your design, give jour projects a neat professional appearance. Estimates by return on receipt of design. I'lease enciose S.A.E. for reply. MAX WALLS, 107 Boughton, ('hester, CHS 5BH

GLASS FIBRE P.C.B.'s

From your own tape, film or ink master. Send S.A.E. for quotation

Practical Electronicsradio control systemboards in glass fibre, drilled and tinned,
June 76 Transmitter 93p; Coder 84p. !uly 76 Receiver90p; Dccoder 73p; Interface 56p. August 76 Servo drive 69p; Servo amp 54p Relay driver 62p.
Complete set of 8 boards $\mathbf{6 5} 30$.
C.W.O. please.

4 Highcliffe Wrow. Wickford, Essex SSII 8LA

PRINTED CIRCUIT BOARDS. Supliled complete, ghass fibere with a solderimg varnish

 [ット, (6533) 16923 .

ENAMELLED COPPER WIRE
 S.W.G. 10 . 10
 20 to 29
 30 to 34 35 to 40
 1 lb ree $\$ 2.40$ 52.45

 $\begin{array}{lll}35 \text { to } 40 & \text { \& } 2 \cdot 60 & \text { \& } 1 \cdot 50 \\ \text { All } & \text { \& } 1.60\end{array}$

the above prices are inclusive of packing in the U.K.
COPPER SUPPLIES
102 Parrswood Road, Withington,
Manchester 20
Telephone $061-4458753$
SUPERB INSTRUMENT CASES by luazelli, manufactured from heavy duty pve faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range, competitive prices start at a low 75 p . Lxamples: width, tepth, height, $\sin . x$ $\sin \times 3 \mathrm{in}, 21.55 ; 10 \mathrm{in} \times 6 \mathrm{in} \times 3 \mathrm{in}, 22.20 ; 10 \mathrm{in} \times$ $\mathrm{Min} \times 3 \mathrm{in}, \quad 82.75$; $\quad 12 \mathrm{in} \times 10 \mathrm{in} \times 3 \mathrm{in}, \quad \mathbf{2 3 . 6 0}$ $\sin \times 4 \mathrm{in} \times 4 \mathrm{in}, 21.80 ; 10 \mathrm{in} \times 6 \mathrm{in} \times 4 \mathrm{in}, 22.70 ;$ $12 \mathrm{in} \times \sin \times 4 \mathrm{in}, 23.60 ; 7 \ln \times 7 \mathrm{in} \times 5 \mathrm{in}, 82.65$; $8 \mathrm{in} \times 10 \mathrm{in} \times 6 \mathrm{in}, 23 \cdot 60 ; 12 \mathrm{in} \times 8 \mathrm{in} \times 7 \mathrm{in}, 24$; $12 \mathrm{in} \times 12 \mathrm{in} \times 7 \mathrm{in}, 24.40$. Plus over 400 models to choosefrom. Prompt despatch. Freeliterature (stamp would be appreciated): BAZEILII, (stamp would he appreciated): BAZEL,LI,
Dept. No. 23, St, Wilfrid's, Foundry Lane, Halton, Lancaster LA2 6LT.

PHOTOTECH (EUROPE)
Now Optoelectronic Detectors Type 1: Photodiode, 2 pin Configuration: Photosensitive area $0.85 \times 10-4$ square inches,
Type 2: Photoswitch, 4 pin Configu $20 \mathrm{~V}-30 \mathrm{~V}$ supply. switching threshold set by external R.C. Type 3: Photoswitch with automatic threshold adjustment. 6 pin Configuration $20 \mathrm{~V}-30 \mathrm{~V}$ supply, diode.
Data and operating notes sent with each order. Prices: (including VAT, packaging and carriage)

Type 1: 75 p each. Type 2: $\mathbf{~} 1 \cdot 00$ each
LED: Type 17 p : $\mathrm{E} 1{ }^{\circ} 50$ each
optoelectronic detector ordered.
Please send C.W.O. or S.A.E. for data only to: Phototech (Europe), 23a Upper Elmers End

$5,000^{\circ} \mathrm{F}$. Cuts metals, welds, brazes and solders pold, silver. Ideal electricians, clockmakers, electronic and computer servicing. Up 10 minutes use on fuel supplied. f 1.65 extra including post. $£ 15.95+90 \mathrm{p}$ P. \& P. Can be worn over from Continental glassworks. in industry, Homie. Workshop, Collecting. Modelling Jewellery, watchmakers. Any fine work. Dejuxe models with superior quality lenses PLUS hinged lens mount. +75 p P. \& P. $3 \times$ mag $610.95+75 p$ P

JOHN DUDLEY \& CO LTD
Dept. PE13, 301 Cricklewood Lane, Finchley Road, London, NW2. Tel. 01-458 5917 Callers walcome. Access accepted

DIGITAL CLOCK MODULE SIZE $3^{\prime \prime} \times 1.75^{\prime \prime}$
C/W $15 \mathrm{~V}+4 \cdot 5-0.4 \cdot 5 V$ TRANSFORMER Requires only switches and case. DATA SUPPLIED.

OUR PRICE ONLY $\mathbf{6 9 7 4}$
Features:
Bright $0.5^{\prime \prime}$ Display. 12 hr . Formar with 24 hr alarm cabability. Flashjng Colon, Power Failure Indication P. M. Indicator, Alarm Ser Indicator Hrs. and Mins. or Mins. and Secs. Display, Output Drives from Alarm and Sleep Timers, 9 min. Snooze Timer and 59 Min . Sleep Timer.

CAR, BOAT OR CARAVAN
CLOCK MODULE
We have at the expense of a slightly reduced display brig heness operated this unit successfully rom a 12 V d.c. supply. Data for conversion to crystal time base, less transformer.

PRICE $\left\{13^{\prime} 88\right.$
IF REQUIRED WITH
TRANSFORMER $\{14 \cdot 75$
CRYSTAL TIME BASE SUITABLE
OR C.MOS CLOCKS
(Built and Tested)
OUR PRICE ONLY $65 \cdot 25$
ALL PRICES INCLUDE VAT AND POST AND PACKING
Terms: Cash With Order Mail Order Only
Orders to: F.E.K. SUPPLIES,
18 STARRING LANE,
LITTLEBOROUGH, LANCS.

RECHARGEABLE MICAD BATTERIE8. Pencell, AA 94p; Sub. "C' $21 \cdot 16$; " C " $81 \cdot 92$; " D " 52.59: PP3 84-48. Chargers: 24-48, 24.48, 84.98, $84 \cdot 98, \$ 3 \cdot 98$ respectively. Others available, All prices include VAT. Add 10% P. \& P. B.A.E. for price list plus 25 por information booklet. SANDWELL PLANT LTD., 1 Denholm Road, Sutton Coldfleld, West Midlands. Tel. 021-354 9764.

EEELTFITI:KIT
 Bulld, Dismantle and Rebulld Over 100 Different Projects and Design New Circults too

[^4]man
Firted with Fureday amisid
4.000 atready sold
Probulli eaarch coti a
Thoroughly profosesional fimish

- You only noed soldering iron, screw
driver. pllers and anipe
At meen on Bec-1 and BBC-2 TV
Send stamped, adorresed envelope
Send stame
tor teatio!

MINIKITS ELECTRONICS, 6 g CLEVELAND ROAD
LONDON E18 2AN (Mail Order Only)

SYNTHESISER Modules by Dewtron ${ }^{\circledR}$

The synthesiser illustrated was built using Dewtron modules, as sold to constructors for some years now. With over 10 years experience in mail-order, we have supplied many famous people and groups. Over 30 types of synthesis modules, some of extremely precision design, e.g. VCO-2 log-law oscillator; 3-wave o/ps; sample/hold/envelope module; 3-octave keyboards, contacts, special tuning-ladder resistors, etc. Famous "Modumatrix" patching system makes other patching a thing of the past! Send just 20p for full catalogue to:

D.E.W. LTD.

254 Ringwood Road, Ferndown Dorset BH22 9AR

40a Dalston Lane, London E8. Tel. 01-249 5624
(1 min. walk trom Dalston Junction Station. Open 9 a.m. to 7 p.m.)

INDEX TO ADVERTISERS

A1 Factors) 6788A.B.C. Electronics (Oidham) Ltd	
Adam Hall (P.E Supplies)	685
Alben Engineering	618
Alfa Electronics ..	684
Arrow Electronics	679
Astro Electronics612. 672	
Automated Homes	685
Bamber. B. Electronics 610	
Barclay Electronics	677
Barrie Electronics 683	
Bazelli 686	
B.H. Components	
Bi-Pak	
Bi-Pre-Pak 611	
Birkett. J.	635
Boffin Projects, 686	
British Institute of Engineering Technology	
British National Radio \& Electronics	
School	637
Bywood Electronics-........... 687	
Cambridge Learning	681
Chiltmead Ltd. 683	
CLEF Products 678	
Copper Supplies	
Crescent Radio LId.	642
Crotton Electronics 616	
C.R. Supply Co. 684	
Davian Electronics 683	
Design Engineering 687	
Dudley. John. \& Co Ltd 686	
Eaton Audio	. 618
Electronic-Kıt	686
ectronics Design Asso	642

Electronics Design Associates

Electrotime

Elvins Electronics ... 687
F.E.K. Supplies

Field Electric Ltd
Flairline Supplies
GJD Electronics
Greenbank Electronics
Greenweld Electronics
Harverson's Surplus H.B. Electronics Helme Audio Henry's Radio H.M. Electronics Home Radio
L.P. Electronics Lid International Electronics Unlimited Intertext ICS Island Devices

Jones. J. C.
J.W.B. Radio

Kensington Supplies
Lynx Electronics
Magnum Publications
Maplin Electronic Supplies
Marco Trading
Marshall, A. \& Sons
Milward. G. F
Minikits Electronics
Modern Book Co.

668

Orchard Electronics 684	
mabet	. 668
Paylor Controls 685	
Phonosonics 620.621	
Phototech (Europe)	. 686
Precision Petite 680	
Pronto Electronics 618	
Proto Design 678Pulse Electronics	
Radio Components Specialists	
Radio Exchange .. 681	
Ramar Constructor Services 685	
R.S.T. Valve Mail Order Co. 676	
Salop Electronics 685	
Saxon Entertainments Lid 671	
Service Trading 619	
Sintel 682	
Swanley Electronics 682	
Tapetalk 685	
Technomatic Ltd. 688	
Teleradio Electronics 685	
Time Microelectronics 638	
Trampus Electronics 638	
T.U.A.C.614.615	
Vero Electronics 622	
Wentworth Radio 681	
West London Direct Supplies 668 Williams. Michael. Electronics 616	
Wilmslow Audio 623	
W.K.F. Electronics 635	
Young Electronics	

SUPERSOUND is HI-FI MONO superb solid state audio
amplifier. Brand new amplifier. Brand new
components throughout. components
5
Silicon troughout.
transistors 5 Silicon transistors
plus 2 power out-put plus 2 power out-put
transistorsin push-pull. Full Fave rectification. Output approx.
13 watts r.m.s. into 13 Fatts r.m.s. into reaponse 12 Hz . 30 KHz
3db. Fully
Treble pre-amplifier stage Fith Input for controls. Suitable for 8-15 olim speakers. approx. 40 mV for full output. Supplied ready huilt and tested, with knobs, escutcbeon panel, input and output

DE LUXE STEREO AMPLIFIER

 heavy duty fully isola. $\left\lvert\, \begin{aligned} & \text { ted mains } \\ & \text { transform } \\ & \text { er Fith fuli }\end{aligned}\right.$ er with full
wave recti-
ication Valve line-up:-2 \times smoothing witl। negligible a hum. $\begin{gathered}\text { giving ade- }\end{gathered}$ Valve line-up:-2 \times ECL86 Triode Pentodes, $1 \times$ EZ80
as rectifler. Two dual potentiometers are prover as rectifler. Two dual potentiometers are provided for
hass and treble control, giving bass and treble boost and cut. A dual volume controlis used. Balance of the lest and right hand clannels can be adjusted by means of a seps. rate 'Balance' control fitted at the rear of the cliassis. Inputs sensitivity is approximately $300 \mathrm{~m} / \mathrm{v}$ for full peals out put of 4 watts per channel (8 watts mono), into 3 obm speakers. Full negative feedback in a carefully calculated circuit, allows high volume levels to be used with negligible distortion. Supplied complete with knobs, chassis size
$11^{\prime \prime} W \times 4$. Overall height including valves $5^{\prime \prime}$. Ready
$\frac{\text { HARVERSONIC STEREO } 44}{}$

A solid state
stereo amplifier chassis, with an
output of 3.4 watts per channel into 8 ohm
speakers. Us speakers. Us-
ing the latest ligg the latest logy integrated citcuit auplifiers with built in short term rectifler smoothing capacitor, fuse, tone control including controls, 2 pin din spaciker, focke, tone control, rolume rec. /play socket are mounted on the printed circuit brand new and leated, with knobs, brnshed anodised aluninium 2 way escutcheon (to allow the amplifier to be mounted horizontaliy or vertically), at only \&7-50 plus
50 p P. \& P. Mains transformer with an output of 17 V 50 p P . \& P. Mains transformer with an output of 17 V
a/c at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at $\mathrm{E1.50}$ plus 40 p . \& \mathbf{P}. ajc at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at $£ 1.50$ plus $40 \mathrm{p} \mathbf{P}$. \& P.
if required. Full connection details supplied. BRAND NEW MULCTIRATIO EAPDNS TRANSFOR-
MERS. Giving 13 alternatives. Primary: $0-210-240 y$. MERS. Giving 13 alternatives. Primary: $0-210-240 \mathrm{v}$.
Secondary combinations $0-5.10-15-20-25-30-35-40-60 \mathrm{v}$. half wave at I amp, or $10-0-10,20-0-20,30-0-30 \mathrm{v}$, at 2 amps full wave. Size 3 in. long $\times 3 \frac{1}{2} \mathrm{in}$. wite $\times 3$ in. deep. Price $22.90 . P_{M}$ \& $P .90 \mathrm{p}$.
MAINS TRANSFORMER
MAINS TRANSFORMER. For power supplies,
Prl. 200/240v. Sec. $12-0-12$ at 1 amp . 81.65 . P. \& P. 60 p . 60 p Pri. 200/240v. Sec. $10-0-10$ at 2 amp. \&2.35. P. \& P. 90 p .
Pri, $200 / 240$. Sec. 23 , at I

GENERAL PURPOSE HIGH STA BILITY
For P.U. TAPe, Mike, Guitar, etc and sur
$\begin{aligned} & \text { use with valve or transistor equipment. } 9-18 \mathrm{v} \text {, } \\ & \text { battery or from } \mathrm{H} . \mathrm{T} \text { line } 200 / 300 \mathrm{v}\end{aligned}$
response $15 \mathrm{~Hz}-25 \mathrm{KHz}$. Gain 2 jdB . Solid encap-
with instructions Price $1 \cdot 80$ rand new complete

STEREO-DECODER SIZE 2"
Ready built. Pre-aligned and tested.
Sens. $20-560 \mathrm{mV}$ for $9-16 \mathrm{~V}$ Sens. $20-560 \mathrm{mV}$ for $9-16 \mathrm{~V}$ neg.
earth operation. Can be fitted to earth operation. Can be fitted to
almost any FM VHF radio or tuner.
Stereo beacon light can be fitted it Btereo beacon light can be fitted it
required. Full details and instructions (inclusive of hints and tipe) supplied. $25 \cdot 62$ plus $20 \mathrm{p} P$. \& \mathbf{P}.
Stereo beacon light if required 40 p extra. A top quality record player amplifier employing beavy
duty double wound mains transiormer. ECC83, ELA4, and rectifier. Separate Bass, Treble and Volume controls. speaker. Size 7 in wide $\times 3$ in deep $\times 6$ in high 3 ohm speaker. Size 7 in wide $\times 3$ in deep $\times 6$ in high. Ready
built and tested. PRICE £6.20. P. \& P. 90 p. ALSO AVAILABLE mounted on board with vutput
transformer and speaker. PRICE $£ 7.30$. P. \& P. $£ 1.00$.

HARVERSONIC MAINS OPERATED SOLID STATE STEREO FM TUNER

Designed and styled to match our $10+10$ amplifler The design incorporates the very lateat circuitry techniques with highngrain, low noise II stages. Automatic frequency control to "lock on" station and prevent drift. IC stereo decoder for maximum stereo separation. L.E.D. for stereo beacon indicator. Nom. inal output of tuner 100 mV . Approximate size 12 in inide
$\times 8$ in deep by 2 in ligh. Supplie.l ready built, fully $\times 8$ in deep by 2 in high. Supplied ready built, fully
tested and fully guaranteed.
AC mains $200 / 240 \mathrm{~V}$ (not rested and fully guaranteed. AC maine $200 / 240 \mathrm{~V}$ (not
Special Offer $£ 22 \cdot 50+£ 1 \cdot 40$ P. P.
LATEST ACOS GP91/1SC mono compatible cartridge with t/o atylus for LP/EP/88. Universal mounting bracket. C1.BO, P.
CERAMIC STERE.
CERAMIC STEREO CARTRIDGE. Universal mounting brackets and turnover stylus. $70 \mathrm{~m} V$ per channel output. SONOTONE 9 TAEC COMPATIBLE STEREO CARTRIDGE T/O stylus Diamond Stereo LP and Sapphire 78 . Diamond T/O stylus for stereo LP. £2.86. \mathbf{P}. LATEST CRYETAL T/O STEREO/COMPATIBLE CARTRIDGE for EP/LP/Stereo 78. 21.80 . P. \& P. 18 p . LATEST T/O MONO COMPATIBLE CARTRIDGE for playing EP/LP/78 mono or stereo records on mono equipment. Oniy \&1-58. P. \& P. I8p.

SPECIAL OFFERS

Mullard LP1159 RF-IF Double Tuncd Amplifter Module
 and connection details supplied $\mathbf{2 2 . 2 5}+$ P. \& P. 12p.

PRECISION MADE
Push Button $\$$ Witch bank. 8 Buttons giving 16 S/P C/O

HI-FI LOUDSPEAKER SYSTEM MkII

Beautifully made simulated teak finish enclosure now With most attractive slatted front. Size $161^{\prime \prime}$ high \times
100^{n} wide $\times 9^{n}$ deep (approx.). Fitted with E.M.J. Cerannic Magnet $13^{\prime \prime} \times 8^{\circ}$ bass unit, H.F. tweeter
$\times 1$ unit and crossover. AVAILABLE IN NOMINAL
OUR PRICE 12.00 each. Carr. $£ 1.90$ Cabinet Available Separately £7.25. Carr, $£ 1,40$. Also available in 8 ohms ${ }^{\text {Hith }}$ EMI $13^{*} \times 8^{*}$ base
speaker with parasitic tweeter $£ 10.25$. Carr. $£ 1.90$

LOUDSPEAKER BARGAINS
 $8 \times 5 i n .3$ ohm with high tlux magnet $£ 2 \cdot 06, \mathbf{P}$. \& P . 50 p E.M.I. tweeter. Approx. $3 \lambda^{\prime \prime}$. A vailable 3 or 8 or 1 ŏ ohms, $22 \cdot 00+2 \bar{p}, \mathbf{P} . \& \mathbf{P}$.

VYNAIR \& REXINE SPEAKERS \& CABINET FABRICS
app. 54 in. wide. Our price $£ 1.50$ yd.length. P. $\&$ P. 35 p app. 54 in. wide. Our price £1.50 yd. Iengt
per yd. (min. 1 yd.). S.A.E. for sampleg.
"POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
 Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can teak). Impedance 8 ohm only Send S.A.E. for details. Only $\mathbf{E 7} 75$ each. P. \& P. 75 p or one, 9 op for two.

OUR PRICES INCLUDE VAT AT
CURRENT RATES

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amplifer Kit. Uses 14 transistors including Silicon Transistors in the first five level with improved sengitivity. Integrated pre-amp with Bass, Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cartridges. Very simple to modify to suit magnetic cartridge-instructions included. Outputatage for any speakers from 8 to lō ohms. Compac deaign, all parts supplied including drilled metal work luigh quality ready driled printed circuit board with anodised aluminiun front panel pith matching knobs anodised ahminium front panel rith matching knobs, by step instructions enable any constructor to build an amplifier to be proud of. Brief specifications: Pow output: 14 watts r. ni.s. per channel into σ ohms. Fre
quency response +3 dB i2- $30,000 \mathrm{~Hz}$ Sensitivity; better
 $12-15,000 \mathrm{~Hz}$. Bass, loost approx to 412 dB . Treble cut approx. to - $16 d 13$. Negative feedback 18 d 13 ob main amp. Power requirements 35 r , at 1.0 amp .
Fverally detailed 7 page construction manual and part AMPLIFIER KIT $\quad £ 13.50$ P. \& P. 65p (Magnetic input components 33 pextra)
POWER PACK KIT
\&4.85 P. \& P. 85 p POWER PACK KIT
$\begin{array}{ll}\mathbf{4} 4.85 & \text { P. \& } \\ \mathbf{8} 4.85 & \text { P. } 8.85 p \\ \text { P. } 85 p\end{array}$
Special offer-only $£ 22 \cdot 50$ if all $\mathbf{3}$ units ordered at one time plus El 1.00 P . \& P.

Full after sales gervice
Also a vailable ready thilt and tested $£ 29.25$. P. \& P, $£ 1+00$, Note: The above amplifier is suitable for feeding two mono sour ces into inputs (e.g. mike, radio, hein record decks, etc.) and willthen provide mizing and fading factilties for med-
ium powered Hi-Fi Discotheque use, etc.

3-VALVE ADDIO
AMPLIFIER HA34 MK II AMPLIFIER HA34 MK II
Designed for Hi-Ti reproduction of records. A.C. Mains operation. Ready built on
plated heavy gauge netal
 4a"h. Incorporates ECC83,
EL84, FZ80 valves. IIeavy duty, double wound mains transformer and output trans.
former matched for 3 obn speaker. Separate volume control and now with improved wide range tone controls giving bass and treble litt and cut. Negative feedback line. Output th watts. Front panel can be detached and leads extended for remote wired and tested for only £j 80 , P. \& P. \&1 00.
HSL "FOUR" AMPLIFIER KIT. Similar in appearance to HA3s above hit eniploys entirely ilifferent and advanced circ
P. \& P. $£ 1.00$

10/14 WATT HI-FI AMPLIFIER KIT A stylishly finished
monaural amplitier rith an output of 14 watts from EL84s in push-pull. Super reproduction speech, with neglispeech, with negil-
giblehum. Separate nputs for mike and gram allow records
 o follow each other.
Fully shrouded section wound output transiormer to match 3-15 Ω speaker and 2 independent volume controls, and separate base and treble controls are provided
giving good lift and cut. Valve line-up 2 EL84s ECC83, giving good lift and cut. Valve line-up 2 EL84s, ECC83, $2 \bar{p} \times$ SAE (Free with parte). All parts sold separately.
ONLY and teated $815 \cdot 20$. P. \& P. $£ 1 \cdot 35$.

SPECIAL OFFER

Limited number of the latest BSR Cl 41 R1 Auto/Manual changer de-hixe. Lightweight tubular arm cue-ing lever changer de-huxe. Lightweight tubular arm
bias compensator $£ 12 \cdot 60+£ 1 \cdot 40 \mathrm{P}$ \& P .
Also similar but without cue-ing lever or hias compensator

Now also available $8^{\prime \prime}-8$ ohm. 10 watts r.m.e. 20 watt peak $40 \mathrm{~Hz}_{2} \cdot 20,000 \mathrm{~Hz}$, O verall depth $1 \geqslant$. Ideal for $\mathrm{Hi} \cdot \mathrm{Fi}$ or for
use in cars. $84 \cdot 90+\mathrm{P}$. \& P . (one 35 p , two 65 p).

Open 9.30-5.30 Monday to
Friday. 9.30.5 Saturday Friday. $9.30-5$ Saturday
Closed Wednesday. Closed Wednesdoy.
Prices ond specifications correct alteration without notice

HARVERSON SURPLUS CO. LTD.
(Dept. P.E.) 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel. : 01-540 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly)
PLEASE NOTE:P. \& P. CHARGES OOOTED APPY TO DTK. ONLY. P. \& P ON OVERSEAS ORDERS
CGARGED EXTRA.

Published approximately on the 15 th of each month by IPC Magazines Litd. Fleetway House, Farringdon Street, London
Hants. Sole Agents for Australia and New Zealand-Gordon \& Gotch (A/sia) Ltd: South Africa-Central News Agency Ltd
Hants. Sole Agents for Australia and New
Subscriptions not available at home or overseas.
Subscriptions not available at home or overseas.
Practical Electronics is sold subject to the following conditions, namely, that jit shall not, with out the written consent of the Publishers first given. be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to V. A.T., and that it shall not be lent, resold
or hised out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade, or affixed to or as part of any publication or advertising, literary or pictorial
matter whatsoever.

We stock all the parts for this brilliantly designed synthesiser, including all the PCB's, metalwork and a drilled and printed front panal, giving, a superb professional finish. Opinions of authority agree the ETI International Synthesiser is technically superior to most of todays madels. Complete construition details in our baoklet now available price $£ 1.50$, or send SAE for specification.

Get sterted with a 49 note instru. ment - faatures tremulant and reverberation. Idesi to learn on. Leaflet MES 51, Price 15p gives full details to build this complote instrument.
Extend the range of MES 51 by adding another keyboard and several new tone colours. Leafiet MES 52. Price 15p also shows how to use 61 note keyboards.

Fully controllable attack and decay controls (normatly found only on the most expensive organs), up to seven footages on aach keyboard, up to 70 controls including drawbers, and a 13 note pedalboard, make up the additions described in the step-by-step 32 paga instruction leaflet MES 53. Price 35 p.

- Automatic voice operated fader
- Belt drive turntables
- Monitor foclisties
(Headphones and VU meters)
- Sound operated light show plus many other advantages.

Full construction detalls to be bublished in Auguat

A really superior nign quallty stereo graphic equalizer featuring nine octaves per channel. We stock all the parts (except wooowork) Including the metalwork dillied and printed. 15 p brings you a reprint of the article.
 electrantc clock module as lliustrated. Data sheet supplled. Simple to connect to alarm and your battery/mains radio. Smart case avallable.
Data sheet available separately. Please send SAE.

- Bright 4 Digit 0.5" Display - Sleep Timer
- Flashing Colon $(1 \mathrm{~Hz})$
- Switch for Display Seconds

Alarm Set Indicator
-P.M. Indicator

- Power Failure Indicator

SIMPLE ALARM KIT - $£ 9.38$ ALARM CLOCK KIT - £10.99. ALARM CLOCK \& RADIO CONTROLLER KIT - E11.51. SMART PLASTIC CASE with fully punched chmesis - £2-49. Please sand SAE for our Clock dota aheet

- Snooze Timer
- Time can be set accurately to
within one second
- Leading Zero Blankin

Get our fabulous NEW197T/78 CATALOGUE PUBLICATION DATE OCT.28. IOTE ON APPROVAL

\section*{Completely re-writen

JOIN OUR MAILING LIST NOWI
Published overy two months our Nowslettor
giver full detelis of our latest guaranteed pricos.

- SAVE ef's on special

OFFERS!

- DETAILS OF NEWPROJECTS AND NEW LINES

Please push me a copy of your brand new 1977/78 catalogue the instant it is published (October 28th 1976). Only if I am completely satisfied that it is worth every penny will I send 50 p within 14 days of receipt. If am not satistied 1 may return the catalogue to you within id days without obligation. I understand that I need not purchase anything from your catalogue should I choose to keep it

NAME
ADDRESS
\qquad

[^0]: See Practical Wireless for detalis of packs of components，surplus goods，atc All prices quoted include VAT．Add 15p postage on orders under £2．SAE with anquiries or for List please．Send 10p for Multimeter cataloque－free on request on orders over $\mathrm{E3}$ ．Offlcial Orders accepted from Schools，etc．Export Wholesale enquirles welcome．Surplus components alweys wanted

[^1]: Brochure without obligation to:
 BRITISH NATIONAL RADIO
 \& ELECTRONICS SCHOOL, Dept. EL86
 P.O. Box 156, Jersey, Channel Islands

 NAME

[^2]: Note: No change required on those inputs shown shaded

[^3]: Send or phone your BARCLAYCARD
 No. for prompt attention After $5.0 \mathrm{p} . \mathrm{m}$. leave your
 message on our answermessage on our answer-
 phone.

 Orders by post-Please make cheques or crossed $P O$'s payable to

 SAXON ENTERTAINMENTS LTD. 327-333 WHITEHORSE ROAD, CROYDON, SURREY CRO 2HS Telephone: 01-684 6385/0098
 Shop Hours 9am-5pm (Lunch 12.30-1.30): Sat. $9.30 \mathrm{am}-5 \mathrm{pm}$. Prices and specifications subject to
 alteration without notice.

 TRADE ENQUIRIES NORMAN ROSE (ELECTRICAL) LTD London 01-837 9111 : Birmingham

 phone.

[^4]: ELECTRONI-KIT LTD, 408 St. John's Street,
 London, E.C.1. (01-278 4579)

