CROSS-HATCH GENERATOR

ALSO INSIDE...
- GAS/SMOKE DETECTOR
- CAR LIGHT-UP ALARM
V.H.F. AIR CONVERTER KIT
Build this converter kit and receive the aircraft band by placing it by the side of a radio tuned to medium wave or the long wave band and operating as shown in the instructions supplied free with all parts.

- Uses a retractable chrome plated telescopic aerial, gain control, V.H.F. tuning capacitor, transistor, etc.
- All parts including construction plans.

£3.95 P.P. & Ins.

POCKET FIVE
Now with 3in Loudspeaker
3 tunable wavebands. MW, LW and Trawler band.
7 stages, 5 transistors and 2 diodes, super-sensitive ferrite rod aerial, attractive black and gold case. Size 5in x 1in x 3in approx.

Complete kit of parts including construction plans.

Total Building Costs: £3.60 inc. 60p

NEW ROAMER TEN
MODEL R.K. 3
MULTIBAND V.H.F. AND A.M.
RECEIVER
12 TRANISTORS AND FIVE DIODES.
QUALITY 5 × 3 LOUDSPEAKERS.

Complete kit of parts including carry-case, Building instructions and operating Manuals.

£13.99 P.P. & Ins. 85p

New Everyday Series
Build this exciting new series of designs.

E.V.V. 5 Transistors and 2 diodes. MW/LW. Powered by 4.5 volt battery. Ferrite rod aerial, tuning condenser, volume control, and now with 3in. loudspeaker. Attractive case with red speaker grille. Size 9in. x 5in. x 2in. approx. All parts including Case and Plans.

Total Building Costs £4.30 P. & P. + Ins. 50p

E.V.S. Case and looks as above. 6 Transistors and 3 diodes. Powered by 9 volt battery. Ferrite rod aerial, 3in. loudspeaker, etc. MW/LW coverage. Push/Pull output. All parts including Case and Plans.

Total Building Costs £4.95 P. & P. + Ins. 55p

E.V.T. Case and looks as above. 7 Transistors and 3 diodes. Six wavebands, MW/LW, Trawler Band SW1, SW2, SW3, powered by 9 volt battery. Push Pull output. Telescopic aerial for short waves. 3in. Loudspeaker. All parts including Case and Plans.

Total Building Costs £6.95 P. & P. + Ins. 55p

To: RADIO EXCHANGE LTD.
61A High Street
Bedford MK40 1SA
Tel.: 0234 50887, RHO NO. 783372

Name: ..
Address:

Enclosure £.............................. P. & P.

To: R.W. 11, 11-32-4.30 Mon. Prit. 9-12 Sat
... ...

P.S. 7/76
CONSTRUCTIONAL PROJECTS

CROSS-HATCH GENERATOR by A. A. Birch
A self-contained instrument providing a u.h.f. signal for TV fault finding and adjustment

RADIO CONTROL SYSTEM by J. D. Whiteley
Full constructional details for a multi-channel on/off system based on tone coding

GAS/SMOKE DETECTOR by M. D. Page
Invaluable fire alarm/smoke and gas detector for the house, boat or caravan

P.E. DIGISCOPE—3 by R. W. Coles & B. Cullen
Lower deck circuitry and constructional details

LIGHT-UP ALARM by M. Plant
Don't be a danger to yourself and others on the road: make sure you "light up" at the right time with this simple alarm

GENERAL FEATURES

SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices

CITIZENS’ BAND by Pat Hawker
The pros and cons of radio communications for the man in the street (and his family)

INGENUITY UNLIMITED

NEWS AND COMMENT

EDITORIAL—Tapping the Glass

SPACEWATCH by Frank W. Hyde
Space Seeds—Salyut Research

HEDA SHOW REPORT by G. C. Arnold
An impression of the Home Electronics section

PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office

POINTS ARISING
Shoot—Digital Frequency Meter—P.E. Digi-Probe

NEWS BRIEFS
VAT Leaflet—Fog Bound—Microprocessor Symposium—Courses—Sonax Electronics

INDUSTRY NOTEBOOK by Nexus
What's happening inside industry

Our October issue will be published on Friday, September 10, 1976 (for details of contents and special announcement, see page 735)
Sparkrite MK2
Capacity discharge electronic ignition kit

- Smoother running
- Instant all-weather starting
- Continual peak performance
- Longer coil/battery/plug life
- Improved acceleration/top speeds
- Up to 20% better fuel consumption

Sparkrite MK2 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tied, tested, proven, reliable and complete. It can be assembled in two of three hours and fitted in 15/50 mins.

Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no machine due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about 1/50th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions incorporate a short circuit protected inverter which prevents the unit firing if the points bounce)

Because of the superb design of the Sparkrite circuit it completely "phone (09221 33008.

Also available RPM limiting control for dashboard mounting

RPM Limit systems n above units ea £2.42

VAT: add high rate to * items, standard rate to all others.

POST: free on orders over £5 otherwise please add 30p.

DISCOUNT: 10% discount on orders over £15 (excluding bulk offers)

54 Montagu Street, Kettering, Northants. Tel: Kettering 83922

Shop open daily, PAYMENT: C.W.O. Access and Barclaycard for phone orders. GUARANTEE: All devices are brand new and full spec. Any faulty item returned unused within 7 days refunded or exchanged.

W:K:F ELECTRONICS
THE P.C.B. SPECIALISTS
PRACTICAL ELECTRONICS "PRINTED CIRCUIT BOARDS"
NOW AVAILABLE

TYPE 'A' - Made in 1.6mm Epoxy/Glass-fibre, supplied Roll-tinned & drilled.
TYPE 'B' - Made in 1.6mm S.R.B.P., supplied Roll-tinned & drilled.

All units available Ex. Stock by return. All prices INCLUDES & P.O.'s payable to W.K.F. Electronics.

ISSUE PROJECT GQTY OF TYPE A PRICE TYPE B PRICE

Sept. 1974 Gas & Smoke Detector 1 1.75 1.75
JAN. 1975 ORION STEREO 20W AMPLIFIER 1 3.60 2.20
May 1975 I.C. Pulse Generator 1 1.40 1.40
DEC. 1975 100 + 20W GUITAR AMPLIFIER 3 3.25 2.00
JUNE 1976 DIGITAL FREQUENCY METER 4 3.50 3.50
June 1976 Audio Millivolt Meter 2 1.60 1.60
JUNE-AUG. 1976 RADIO CONTROL SYSTEM 8 5.70 4.30

PRODUCTION SPACE ALWAYS AVAILABLE FOR:
P.C.B. PRODUCTION—ELECTROLETTING—SCREEN PRINTING—TINNING CONTRACT DRILLING—ANY PHOTOGRAPHIC ART PROCESS

SERVICE FOR:
P.C.B. MASTER PREPARATION + ANY GRAPHIC ARTS PROCESS

FROM:
ROUGH COPIES—EXISTING UNITS—CIRCUIT DIAGRAMS

EVEN FELT TIP PEN ON OLD FISH & CHIP PAPER

QUOTATIONS FREE OF CHARGE BY RETURN

Large discounts given for long runs. Run-in's and repeat orders. Also call-off orders accepted

FOR OUTLINE QUOTATIONS PHONE:
WHITWELL (DERBY'S) 695 (STD 090974)

ALL ORDERS & MAIL TO:
W.K.F. Electronics
Welford Street,
Whitwell, Near Worksop,
Notts.
20x20 Watt STEREO AMPLIFIER

Superb Viscount IV unit in teak-finished cabinet. Black fascia with aluminium rotary controls and pushbuttons, red mains indicator and stereo jack socket. Function switch for mic, magnetic and crystal pick-ups, tape, tuner, and auxiliary. Rear panel features two mains outlets, DIN speaker and input sockets, plus fuse. 20-20 watts rms, 40-40 watts peak.

HOW YOU CAN SAVE £29.90

SYSTEM 1B

For only £30, you get the 20+20 watt Viscount IV amplifier, a pair of our 12-watt rms Duo Type II matched speakers, a BSR MP 60 type deck complete with magnetic cartridge, de luxe plinth and cover.

+ P & P £2.10

Carriage surcharge to Scotland: System 1B £2.20, System 2 £5

DIY 30x30 AMPLIFIER KIT

Specially designed by RT-VC for the experience constructor, this kit comes complete in every detail. Same facilities as Viscount IV amplifier. Chassis is ready punched, drilled and formed. Cabinet is finished in teak veneer. Black fascia and easy-to-handle aluminium knobs. 20x30 watts rms, 60+60 peak.

+ P & P £2.10

35-WATT DISCO AMP

Here's the mono unit you need to start off with. Gives you a good solid 35 watts rms, 70 watts peak output. Big features include two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches. Independent bass and treble controls and master volume.

+ P & P £1.10

PORTABLE DISCO CONSOLE with built-in pre-amplifiers

This is the big-value portable disco console from RT-VC! It features a pair of BSR MP 60 type auto return, single-play professional series record decks. Plus all the controls and features you need to give fabulous disco performances. Simply connects into your existing slave or external amplifier.

+ P & P £6.50

70-WATT DISCO AMP

Brilliantly styled for easy disco performance! Sleek black fascia, so that you can use the controls without fuss or bother. Brushed aluminium fascia and rotary controls. Five smooth-acting, red-lit aluminium knobs, master volume, tape level, mic level, deck level, PLUS INTER-DECK FAADER for perfect graduated change from record deck No. 1 to No. 2, or vice-versa. Pre-fade level control (PFL) lets YOU hear next disc before it finishes. 70 watts rms, 140 watts peak output.

+ P & P £13.00

EASY-TO-BUILD, WITH ENCLOSURE

Specialy designed by RT-VC for cost-conscious hi-fi enthusiasts, these kits incorporate two leak-simulate enclosures, two EM1 13" x 8" (approx.) woofers and a pair of matching crossovers. Easily constructed, using a few basic tools. Supplied complete with an easy-to-follow circuit diagram, and crossover components. Input 15 watts rms, 30 watts peak, each unit. Cabinet size 20" x 11" x 9 1/2" (approx.).

+ P & P £5.50

15-WATT KIT IN CHASSIS FORM

When you are looking for a good speaker, why not build your own from this kit. It's the unit which we supply with the above enclosures. Size 13" x 8" (approx.) EM1 woofers, 3 1/4" (approx.) tweeter, and matching crossovers. Power handling capacity 15 watts rms, 30 watts peak.

+ P & P £7.50

20-WATT HI-FI KIT IN CHASSIS FORM

For extra power, choose this RT-VC kit! EM1 12" x 8" (approx.) triple-laminate-cored woofers with massive 5" (approx.) magnet, plus 5" (approx.) mid-range unit with concentric 2" tweeter and 2 1/4" (approx.) magnet. Complete with circuit diagram and crossover components.

+ P & P £10.50

DIY SPEAKER KITS

'COMPACT' FOR TOP VALUE

How about this for incredible bookshelf value from RT-VC? Simply designed for the experienced constructor — for mounting into his own cabinet. Features include solenoid-assisted AUTO-STOP, 3-digit counter, record/playback control, mains transformers and input and output controls. This kit is especially designed for cost-conscious constructors.£89.50

+ P & P £1.15

DIY TURNTABLES BY BSR

Big value from RT-VC! Two units COMPLETE WITH PUNTHS. First, the popular MP 60 type semi-professional deck...

£1750 + P & P £2.50

Second, the lower-cost C141 automatic unit, fitted with a stereo ceramic cartridge...

£1195 + P & P £2.55

Both units have plinths finished in superb teak veneer. Either way, you're on to a bargain from RT-VC.

+ P & P £1.55

STEREO CASSETTE DECK KIT

Again, this kit is specially designed for the experienced constructor — for mounting into his own cabinet. Features include solenoid-assisted AUTO-STOP, 3-digit counter, record/playback control, mains transformers and input and output controls. This kit is especially designed for cost-conscious constructors.£3250

+ P & P £11.50

SYSTEM 2

Comprising our 20+20 watt Viscount IV amplifier; a pair of our large Duo Type III matching speakers which handle 20 watts rms each; and a BSR MP 60 type deck with magnetic cartridge, de luxe plinth and cover.

£9200 + P & P £7.50

DIFFERENT SPEAKERS

For further information, please send -

AT CURRENT RATES

FOR DESPATCHED

NO GOODS

OUTSIDE

MINIMUM QUANTITY - £15 FOR DESPATCHED

BARCLAYS DEPARTMENT STORE ACCEPTS

ORDER GIVING YOUR CREDIT CARD NUMBER

£65.00

£275.00

£65.00

£45.00

£5.50

£10.50

£75.00

£105.00
GOOD GOODS COME FAST AND EASY FROM SINTEL

TIMEKEEPING KITS-CMOS-DISPLAYS-MEMORY-BOOKS

GUARANTEE: Telephone orders received by 5.30 p.m. (Mon.-Fri.) guaranteed dispatched the same day. First Class Post. The same applies to written orders. Telephone Orders: Private customers (min. tel. order £5) quote Access or Barclaycard no. Official orders, no minimum order value.

GREEN CLOCK KIT
Four digit 12 or 24 hr, mantel-piece electronic clock with 5-pin GREEN displays in a white sisterside case. Easy to build. Order as "GCK" E25.90

CRYSTAL CONTROL and BATTERY BACK-UP Kit can be added to this clock. If mains power is disconnected (a through power cut, accidental switching off or moving of clock) the clock will keep perfect time. Order as "GCK + XTK + DBK" E19.65

CCK: Crystal Controlled, E Digit, Car Clock Kit with Independent Journey Timer (F.E. Feb.'79)
Runs on 12V (car) battery—protected against low voltage drop-out—internal battery back-up allows temporary disconnection. 6-digit timer times journeys up to 24 hours in minutes and seconds—automatic intensity control—uses 5-pin RED LED digits. Complete kit including case. Order as "CCK" E52.80

ATTRACTION 6-DIGIT ALARM CLOCK KIT.
With optional CRYSTAL CONTROL, for high accuracy and battery back-up—sleep alarm, snooze, automatic intensity control—uses 5-pin RED LED—optional touch switch for snooze—extra—complete kit including case. Order as "ACK" E20.80

COMPLETE KIT as above, plus crystal control and battery back-up. Accurate to within a few seconds a month—no need to reset your clock each time power is disconnected—automatic intensity control—uses 5-pin Red LED digits. Complete kit including case. Order as "ACK" E25.00

50Hz Crystal Timebase Kit provides an extremely stable output of one pulse every 5 seconds. Improving accuracy of digital clocks & used with battery backup also built clocks move power or switch-off proof. Replacing 50Hz signal on battery-powered equipment. Providing 60Hz synchronisation & improving accuracy of the day. Complete kit. Order as XTK £8.38

50Hz Crystal Timebase Module: as above, but built and tested and with output ready to within ±1 p.p.m. Order as ET 8.05

ADD VAT at 8½—2½ P. & P. on all orders. C) Access and Barclaycard orders welcomed, by post or phone (see above) & Price List sent with orders or on request (send P.S.E) E) Export orders welcome: No VAT but add 10% (Europe), 15% (Overseas) for Air Mail P. & P. (Contact us first for Export rates on books).

You can rely on a CROFTON KIT
Whether professional, student, teacher or amateur, the field of electronics can open up a new world for you.

SPECIAL OFFER
COMPLETE Camera Kit with lens and tube £90 (including VAT and P. & P.).

This offer is open for 30 days from publication of this magazine.

Delivery.—We would expect to be 3/4 weeks from receipt of order, but should demand exceed our expectations we could not guarantee such delivery. All orders will be dealt with strictly in date order, and customers will be advised.

NOTE PCBs for most published projects available to order from CROFTON ELECTRONICS LTD Dept. E, 35 Grovener Road, Twickenham, Middx. 01-891 1922.

GOOD GOODS COME FAST AND EASY FROM SINTEL

TIMEKEEPING KITS-CMOS-DISPLAYS-MEMORY-BOOKS

GUARANTEE: Telephone orders received by 5.30 p.m. (Mon.-Fri.) guaranteed dispatched the same day. First Class Post. The same applies to written orders. Telephone Orders: Private customers (min. tel. order £5) quote Access or Barclaycard no. Official orders, no minimum order value.

GREEN CLOCK KIT
Four digit 12 or 24 hr, mantel-piece electronic clock with 5-pin GREEN displays in a white sisterside case. Easy to build. Order as "GCK" E25.90

CRYSTAL CONTROL and BATTERY BACK-UP Kit can be added to this clock. If mains power is disconnected (a through power cut, accidental switching off or moving of clock) the clock will keep perfect time. Order as "GCK + XTK + DBK" E19.65

CCK: Crystal Controlled, E Digit, Car Clock Kit with Independent Journey Timer (F.E. Feb.'79)
Runs on 12V (car) battery—protected against low voltage drop-out—internal battery back-up allows temporary disconnection. 6-digit timer times journeys up to 24 hours in minutes and seconds—automatic intensity control—uses 5-pin RED LED digits. Complete kit including case. Order as "CCK" E52.80

ATTRACTION 6-DIGIT ALARM CLOCK KIT.
With optional CRYSTAL CONTROL, for high accuracy and battery back-up—sleep alarm, snooze, automatic intensity control—uses 5-pin RED LED—optional touch switch for snooze—extra—complete kit including case. Order as "ACK" E20.80

COMPLETE KIT as above, plus crystal control and battery back-up. Accurate to within a few seconds a month—no need to reset your clock each time power is disconnected—automatic intensity control—uses 5-pin Red LED digits. Complete kit including case. Order as "ACK" E25.00

50Hz Crystal Timebase Kit provides an extremely stable output of one pulse every 5 seconds. Improving accuracy of digital clocks & used with battery backup also built clocks move power or switch-off proof. Replacing 50Hz signal on battery-powered equipment. Providing 60Hz synchronisation & improving accuracy of the day. Complete kit. Order as XTK £8.38

50Hz Crystal Timebase Module: as above, but built and tested and with output ready to within ±1 p.p.m. Order as ET 8.05

ADD VAT at 8½—2½ P. & P. on all orders. C) Access and Barclaycard orders welcomed, by post or phone (see above) & Price List sent with orders or on request (send P.S.E) E) Export orders welcome: No VAT but add 10% (Europe), 15% (Overseas) for Air Mail P. & P. (Contact us first for Export rates on books).

You can rely on a CROFTON KIT
Whether professional, student, teacher or amateur, the field of electronics can open up a new world for you.

SPECIAL OFFER
COMPLETE Camera Kit with lens and tube £90 (including VAT and P. & P.).

This offer is open for 30 days from publication of this magazine.

Delivery.—We would expect to be 3/4 weeks from receipt of order, but should demand exceed our expectations we could not guarantee such delivery. All orders will be dealt with strictly in date order, and customers will be advised.

NOTE PCBs for most published projects available to order from CROFTON ELECTRONICS LTD Dept. E, 35 Grovener Road, Twickenham, Middx. 01-891 1922.
The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner, etc.) are catered for internally, the desired function is achieved either by a multi-way switch or direct connection to the appropriate pins. The internal volume and tone circuits merely connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.

FEATURES: very low distortion; integral heatsink; only five connections; 7 amp output transistors, no external components.

APPLICATIONS: hi-fi equipment; disco; guitar and organ; public address.

SPECIFICATION: Output Power - 15W R.M.S. Into 8Ω. Load impedance - 4Ω-16Ω. Distortion - 0.1% at 15W. Signal/Noise Ratio - 96dB. Frequency Response - 10Hz-45kHz -3dB. Supply Voltage - ±12V. Size - 114 x 50 x 25mm.

Price £14.40 + £1.16 VAT. P. & P. free.

The HY120 is the baby of I.L.P.'s new high power range, designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.

FEATURES: very low distortion; integral heatsink; load line protection; integral heatsink; no external components.

APPLICATIONS: hi-fi, high quality disco; public address; monitor amplifier; guitar and organ.

SPECIFICATION: Input Sensitivity - 500mV. Output Power - 60W R.M.S. Into 8Ω. Load Impedance - 4Ω-16Ω. Distortion - 0.04% at 60W at 1kHz. Signal/Noise Ratio - 90dB. Frequency Response - 10Hz-45kHz -3dB. Supply Voltage - ±15V. Size - 114 x 50 x 85mm.

Price £29.25 - 02.34 VAT. P. & P. free.

The HY200 is now improved to give an output of 120 watts has been designed to stand the most rigorous conditions such as disco or group while still retaining true hi-fi performance.

FEATURES: thermal shutdown; very low distortion; load line protection; integral heatsink; no external components.

APPLICATIONS: hi-fi; disco; monitor; power; stage; industrial; public address.

SPECIFICATION: Input Sensitivity - 500mV. Output Power - 120W R.M.S. Into 8Ω. Load Impedance - 4Ω-16Ω. Distortion - 0.05% at 120W at 1kHz. Signal/Noise Ratio - 90dB. Frequency Response - 10Hz-45kHz -3dB. Supply Voltage - ±12V. Size - 114 x 100 x 85mm.

Price £32.25 + £2.34 VAT. P. & P. free.

The HY400 is I.L.P.'s Big Daddy of the range producing 240W into 4Ω! It has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.

FEATURES: thermal shutdown; very low distortion; load line protection; no external components.

APPLICATIONS: public address, disco, power stage; industrial.

SPECIFICATION: Output Power - 240W R.M.S. Into 4Ω. Load Impedance - 4Ω-16Ω. Distortion - 0.1% at 240W at 1kHz. Signal/Noise Ratio - 90dB. Frequency Response - 10Hz-45kHz -3dB. Supply Voltage - ±45V. Input Sensitivity - 500mV. Size - 114 x 100 x 85mm.

Price £92 - 25p VAT. P. & P. free.

POWER SUPPLIES: PSU50 - suitable for two HY30s £4.75 + 59p VAT. P. & P. free. PSU55 - suitable for two HY50s £20 + 77p VAT. P. & P. free. PSU70 - suitable for two HY120s £12.90 + £1.30 VAT. P. & P. free. PSU90 - suitable for one HY200 £21.50 + £2.34p VAT. P. & P. free. PSU180 - suitable for two HY200s or one HY400 £21 + £1.68 VAT. P. & P. free.

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd.
Crossland House,
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Registered office No. 1032830

Please supply
Account number
Name and Address
Signature
DORAM KITS

CONTAIN

EVERYTHING

DOWN TO THE LAST NUT!

AM-FM-MPX Stereo TUNER

- **£44.95**
- Output 100mV
- Complements audio separates

CAR PUSH-BUTTON MW/LW RADIO

- **£16.95**
- Dual Polarity
- Short Circuit Proof
- Complete with fitting kit & speaker

POWER SUPPLY

- 0-30V and 0-1A with a variable current limit
- Available now
- **£19.95**

TV Sound-0-Rama TUNER

- Picks up UHF signals from the transmitter and relays this through your hi-fi equipment
- **£36.95**

TRANSISTOR TESTER

- Measures hFE leakage for PNP or NPN transistor either silicon or germanium transistors - includes battery check facility
- **£9.95**

HERE'S JUST A FEW OF THE MANY NEW AND INTERESTING KITS AVAILABLE

- **ELECTRONIC IGNITION £9.95 + S**
- **CASSETTE POWER SUPPLY £3.20 + S**
- **DARKROOM EXPOSURE METER £4.75 + S**
- **6V ACCUMULATOR CHARGER £9.95 + H**

FULL BUILDING INSTRUCTION DETAILS OF KITS IS AVAILABLE ON REQUEST PRICE 25p EACH REFUNDABLE IF KIT SPECIFICALLY APPLIED FOR IS PURCHASED

S = 8% V.A.T.

H = 12% V.A.T.
DORAM'S NEW CATALOGUE HAS BEEN SPECIFICALLY DESIGNED FOR THE AMATEUR RADIO, ELECTRONICS & HI-FI ENTHUSIAST.

DORAM'S SERVICE ALSO INCLUDES:

- MANY PRICE REDUCTIONS - QUANTITY DISCOUNTS ON CAPACITOR, RESISTOR OR SEMICONDUCTOR ORDERS
- FREE - UP-DATE PRODUCT INFORMATION SERVICE DURING LIFE SPAN OF CATALOGUE
- ALL ORDERS SENT BY RETURN-OF-POST
- NO-QUIBBLE REPLACEMENT PART SERVICE
- POST & PACKING FREE FOR ORDERS OVER £1 (Only applies for Great Britain N.Ireland and B.F.P.O. Nos.- Overseas orders F.O.B.)

SEND FOR YOUR NEW CATALOGUE AND/OR KIT BROCHURE NOW!

DORAM ELECTRONICS LTD.
P.O. Box TR8,
Leeds, LS12 2UF.

PLEASE PRINT BLOCK CAPITALS

NAME: ..
ADDRESS: ..
POST CODE: ..

I enclose Please send me by return my new catalogue and/or kit brochure. (Over seas orders except for N.Ireland please add 30p for post and packing surface only.)

An Electrocomponents Group Company.
THE MODERN BOOK CO.

696 19-21 PRAED STREET LONDON W2 INP

Opened Saturday 1 p.m.

THE ELECTRONIC MUSICAL INSTRUMENT MANUAL
by A. Douglas
Price £8.00

ELECTRONICS POCKET BOOK by P. J. McGoldrick
Price £1.50

TRANSISTOR ELECTRONIC ORGAN FOR THE AMATEUR by A. Douglas
Price £6.90

DESIGNING WITH TTL INTEGRATED CIRCUITS by W. A. Hildebrand
Price £7.90

TRANSistor POCKET BOOK by R. G. Hibberd
Price £6.00

RAPID SERVICING OF TRANSISTOR EQUIPMENT by G. G. King
Price £2.00

IC OP-AMP COOKBOOK by W. G. Jung
Price £6.75

COLOUR TV WITH PARTICULAR REFERENCE TO THE PAL SYSTEM by G. N. Patchett
Price £5.40

SOLID STATE COLOUR TV CIRCUITS by G. R. Williams
Price £8.00

WORKING WITH THE OSCILLOSCOPE by A. C. W. Saunders
Price £1.95

RADIO VALVE AND SEMICONDUCTOR DATA by A. M. Biggs
Price £4.50

* PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET
LONDON W2 INP

24 Cricklewood Broadway, London NW2
Tel. 01-450 4544

Practical Electronics September 1976
RETURN OF POST MAIL ORDER SERVICE

R.C.S. 10 WATT AMPLIFIER KIT

This kit is suitable for record players, tape play backs, guitars, electronic instruments or small F.A. systems. Two versions are available. A mono kit or a stereo kit. The mono kit uses 12 semi-conductors. The stereo kit uses 22 semi-conductors with printed front panel and volume, bass and treble controls. Spec. 125% output into 8 or 15 ohms into 10 ohms. Response 20/40 to 30kHz. Input 100MV. High Imp. 5000 ohms. Mono £14.25 Stereo £18.50 post kit. Easy to build. Full instructions supplied.

ELAC 10 inch

Dual cone plasticised roll surround. Large ceramic magnet. 30-15,000 c/s. Base resonance 55 c/s. 8 ohm impedance. 100V 8 x 8m. model £23. 495. 4.95

MAINS TRANSFORMERS ALL POST 50p each
230V-0-230V 80mA 6-3 2A £5.45
230V-0-230V 80mA 6-3 2A or 5V 2A £5.80
230V-0-230V 120mA 6-3 4V 3A £7.65
MIDGET 220VA 6-3V 7A 23-91 £8.40
H.T. TRANS 0-200V 6-3V 11A £8.40
TAP TRANS. 12V 0-12V 4A £6.95
GENERAL PURPOSE LOW VOLTAGE. Tapped output at 2A 4, 6, 8, 9, 10, 12, 15, 20, 24, 30 and 50V. £4.05
A.F.C. TRANSFORMERS 110V to 230V or 230V to 115V 100VA 5-3 1A £8.00
200-230V and 110-120V 5-3 2A £9.80
20-230V 0-30V 3A £10.15
SIZE BARE 12 in. £1.85
SIZE STABILIZED 12 in. £2.85
ALL POSTED. £6.25. BARGAIN 3W AMPLIFIER 4 Transistor. Push-Pull Ready built with volume, treble and bass controls. £2.45 battery operated.

R.C.S. STEREO FM TUNER

This completely aimed mains powered Hi-Fi £75. 25. Tuner with brushed aluminium finish is British made using the latest circuitry. Bargain. Post 40p Stereo Tuner/Amplifier Chassis. Brand new £6.50.

BARGAIN 3W AMPLIFIER 4 Transistor. Push-Pull Ready built with volume, treble and bass controls. £2.45 battery operated.

WAFER THIN HEATING ELEMENTS
Size 10 x 8 x 4 in. Operating voltage 500/250V a.c. 200W approx. Suitable for Heating Pads, Food Warmers, Conveyor Heaters, etc. Must be clamped between B.S.R. or Garrard decks. Ideal for Hi-Fi and Discotheques. Base Resonance 35 c/s. Flux Density 15,000 gauss. Useful response 30-17,000 c/s. £2.60 each. Order for 10 or more and 5% discount.

E.M.I. 13¾ X 8in SPEAKER SALE!

With tweeter and crossover. Group 4. £5.25
8 or 10 ohms. £5.25
15W model £7.95
20W model £8.95

NEW BSR HI-FI AUTOCHANGER

Plays 12in, 10in or 7in records. Auto or Manual. A high quality unit backed by BSR reliability with 12 Months guarantee. A.C. 200/250V. Size 13¾ x 12in. 3¼ in. £10.95. Above basket board 3½in. Below basket board 2½in. Will STEREO/MONO. CARTRIDGE. Single Player version £5.95. All Post 70p.

PORTABLE PLAYER CABINET £5.40

Modern design. Size 14½ x 15½ x 2½ in. covers. Large front grilles. Roped leaf. Chrome fittings. Mains board cut for Garrard or BSR deck.

R.C.S. DISCO DECK SINGLE RECORD PLAYER

HEAVY METAL PLINTHS

TINTED PLASTIC COVERS ONLY
Sizes: 1½ in. 4½ in. 71in. 1¼ in. 21½ in. 3¼ in. £1.00. B顼 21½ in. 4½ in. £1.25. C顼 1¼ in. 3½ in. £1.35. D顼 1½ in. 1¼ in. £2.50. Ideal for record decks, tape decks, etc. Post 70p.

BAKER HI-FI CARTRIDGE

HIGH QUALITY—BRITISH MADE SUPERB

12in 25 watts A high quality loudspeaker, its remarkable low cone resonance ensures clear reproduction of the deepest bass. Fitted with a copper drive and concentric tweeter cone resulting in full range reproduction with remarkable efficiency in the upper register. Base Resonance 35 c/s. Flux Density 10,500 gauss. Useful response 30-17,000 c/s. £16.30 post 80p.

AUDITORIUM

12in 35 watts A full range reproducer for high power. Electric Guitars, public address, multi-speaker systems, electric organs. HI-FI and Discotheques. Base Resonance 35 c/s. Flux Density 15,000 gauss. Useful response 25-20,000 c/s. 8 or 15 ohm models. £15.50 Post 80p.

RADIO COMPONENT SPECIALISTS

337 WHITEHORSE ROAD, CROYDON

Open 9—6 Wed. 9—1 Sat. 9—5 (Closed for lunch 1—4.30)

967
MONO DISCO MIXER
WITH AUTO FADE

Designed for the discerning D.J. of professional standard. Offering a vast variety of functions. Controls: Mic Vol; Tone, over-ride depth, auto/manual sw; Tape Vol.; L & R Deck Faders; Deck Volume, Treble and Bass; H Phon Vol Selector; Master Vol On/Off sw. Max output 3V RMS.

Specification: Deck Inputs-50mV into 1MC1; Deck Tone Controls—treble total range 36dB at 15kHz—Bass total range 36dB at 50Hz.

Moni input =200 ohms upwards 2mV into 22k. Mic Tone Control—Total range 40dB at 15kHz.

Tape input-100mV into 200 ohms. Power requirements 20-50 volts d.c. at 50mA. R.I.A.A. comp mag inputs available 125 extra.

PANEL SIZE 18 x 4fin. DEPTH 3in.

£39.75

TUAC AMPLIFICATION

Lollo 125 watt with sustain...£81
Lollo 60-watt with sustain...£65

Combo twin 60 reverb...£140

Combo 30...£75

4 x 12 200-watt cabs...£135

2 x 12 100-watt cabs...£80

Mini PA Bin...£125

Disco Reflex Cab...£95

STOCKISTS—CALLERS ONLY

Geo Mathews, 85187 Hurst Street, Birmingham (Tel. 021-622 1941)
Arthur Sallie Ltd., 28 Gardner Street (Tel. Brighton 65806)
Bristol Disco Centre, 26 The Promenade, Gloucester Road (Tel. Bristol 41666)
Socodi, 9 The Friars (Tel. Canterbury 60948)
Cookies Disco Centre, 132 West Street (Tel. Crewe 47391)
Leighton Electronics Centre, 59 North Street (Tel. Leighton Buzzard 2316)
Al Music Centre, 88 Oxford Street, Manchester (Tel. 061-236 0340)
H.B. Electronics, 59 Montague Street (Tel. Kettering 83922)
TUAC Sound Centre, 163 Mitcham Road, Tooting (Tel. 01-672 3413)

Mon-Sat. 9.30 a.m.—5.30 p.m.
Half day Wed. 9.30 a.m.—1 p.m.

Our Technical and Production facilities are available for special projects to clients' requirements

N.A.D.J. 'DISCO 76' EXHIBITION

AMPLIFIER MODULES

TL30 D.C. COUPLED POWER AMPLIFIER MODULE.

Output power: 30 watts R.M.S. continuous sine wave into 8 ohms
T.H.D. at full power 0.5%
Signal to noise ratio -95dB
Input sensitivity 80mV into 500 ohms
Frequency response 25Hz-50kHz
6 transistors, 4 diodes
Rugged layer wound power transformer
Thermal overload protection

£12.50

TL60* 5 x 5 x 3 in.

50 watts R.M.S. continuous sine wave output
7 R.C.A. 110 watt 15 amp output transistors
8 transistors, 4 diodes

£16.75

TL100* 5 x 5 x 3 in.

100 watts R.M.S. continuous sine wave output
2 R.C.A. 150 watt 15 amp output transistors

£18.75

TL125* 7 x 6 x 3 in.

125 watts R.M.S. continuous sine wave output
4 R.C.A. 150 watt 15 amp output transistors
Specification on * power modules:
Rugged layer wound power transformer
Rugged layer wound power transformer
Thermal overload protection

£23.25

N.A.D.J. 'DISCO 76' EXHIBITION

Bloomsbury Centre Hotel, Coram Street, Russell Square, London

TECHNICAL INFORMATION TEL 01-672 3137
TRADE AND EXPORT ENQUIRIES TEL 01-672 9080

ALL PRICES INCLUDE V.A.T. POSTAGE AND PACKING FREE

Practical Electronics September 1976
MANUFACTURERS OF ELECTRONIC & AMPLIFICATION EQUIPMENT

5 POWER SUPPLIES

Vacuum varnish impregnated. Transformers with supply board incorporating pre-amp supply:

- PS 250 for supplying 2 TP125s - £28.00
- PS 60/60 for supplying 2 TL60s - £25.50
- PS 125 ±45 volts for TP125 - £16.75
- PS 100 ±43 volts for TL100 - £15.50
- PS 60 ±38 volts for TL60 - £14.50
- PS 30 ±25 volts for TL30 - £9.75
- PSU 2 for supplying disc mixer - £6.50

4 CHANNEL SOUND TO LIGHT SEQUENCE CHASER—4LSMI

- RCA 8A Triacs
- 1000W per channel
- Fully suppressed and fused
- Switched master control for sound operation from 1W to 125W
- Speed control for fixed rate sequence from 6 per minute to 50 per second
- Full logic integrated circuitry with optical isolation for amplifier protection
- Full wave control
- 13 easy connections

Model 501 500W per channel as above without sound triggering £12.25

12 STEREO DISCO MIXER

With touch sensitive switching and auto fade

INPUTS: Four identical stereo inputs available with any equalisation. Two magnetic and two flat supplied as standard. High quality slider control on each channel. Volume, treble and bass controls for each pair of sliders. Sensitivity mag. 5mV (R.L.A.A. comp.), flat 50mV at 1kHz. Base controls ±16dB at 1kHz. Treble controls ±16dB at 1kHz. OUTPUT: Up to 3 volts (+12dB) available. Attenuated output for TUAC Power Modules. Rotary master and balance controls. Bandwidth 15Hz-25kHz ±1dB

Size: 25in long x 6in high x 3in deep

£115

9 FRONT PANELS FOR LIGHTING EFFECT MODULES

complete with switches, neon and knobs as illustrated

For S1LMB £6.50

For 4LSMI £5.00

£7.50

FUZZ LIGHTS

Suppliers to H.M. Govt. Depts. Manufactured and assembled in Gt. Britain fully tested and guaranteed.

TO ORDER BY POST

Make cheques/P.O.s payable to TUAC LTD. (PE9) or quote Access/Barclaycard No. and post to TUAC LTD. (PE9), 119 Charlton Road, London, SW17 9AB. We accept phone orders from Access/Barclaycard Holders. Phone: 01-672 3137/9080.

£19.50

Send large stamped addressed envelope with all enquiries for fully illustrated 12 page catalogue

Practical Electronics September 1976 699
SYNTHESIZERS, SOUND EFFECTS AND PHONOSONICS

COMPONENT SETS include all necessary resistors, capacitors, integrated circuits, transistors, diodes, etc., excluding sockets, knobs, etc. All components are new and unused.

ORDER FORM SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS, COMPONENTS FOR A WORLD-WIDE MARKET.

P.E. SYNTHESIZERS

PRATT AND LAMM (P.E. Ltd) (P.E. Ltd) (P.E. Ltd)

THE SYNTHESIZER KEYBOARD CIRCUITS

Amplifier

Stabilised power supply

Two Linear Voltage Controlled Oscillators and one Inverter—all 3 circuits $120.50

VOCAL AMPLIFIERS and INVERTER

Component Set incl. PCB $2.99

Reverberation Amplifier

Stabilised power supply

PCB for Main PSU, Tone Gen & Top C.E.S. $9.97

RHYTHM GENERATOR

PCB for Effect Shapers (as per) $10.40

Phasing Unit

PCB for Voltage Controlled Amplifier and Differential Amplifier $3.68

Component Set incl. PCB $3.12

THE SYNTHESIZER KEYBOARD CIRCUITS

CAN be used without the Main Synthesizer to make an independent musical instrument.

Two Logarithmic Voltage Controlled Oscillators

Component set incl. PCB $4.55

Dividers, 1, 2 and Noise Generators

Component Set incl. PCB $3.75

Voltage Controlled Amplifiers, Mixer and Envelope Shaper

Component Set incl. PCB $4.00

A Envelope Shaper and VCA

Component Set incl. PCB $3.41

WAVE AND RAIN UNIT

A manually controlled unit for producing the above-mentioned sounds.

Component Set incl. PCB $2.03

P.E. MINIMAX 6 (P.E. Nov./Dec. 75)

Each of the 6 input channels has its own gain, volume control, and a separate level metering. The outputs of the twin channel outputs are fully manually controllable, as are the headphone and pre-fade monitoring facilities. Twin VU meters provide visual display of channel audio levels. Ideal for use with effects and synthesizer kits.

Component Set incl. PCB $10.00

P.E. MINIMIX 2 (P.E. Nov./Dec. 75)

A stereo mixer having 8 inputs each of which has a preset level control and which are combined into one output channel having a preset overall level control and a master output volume control. Designed for intercoupling our various sound effects and synthesizer kits.

Component Set incl. PCB $10.00

A good general purpose integrated circuit power amplifier typically delivering 25 watts into 8 ohms.

Component Set incl. PCB $10.00

A twin-channel visual display unit for monitoring the levels of 8 individually controllable inputs.

Component Set incl. PCB $10.00

A simple mixer having 8 inputs each of which has a preset level control and which are combined into one output channel having a preset overall level control and a master output volume control. Designed for intercoupling our various sound effects and synthesizer kits.

Component Set incl. PCB $10.00

TREBLE BOOST UNIT (P.E. Apr. 76)

Component Set incl. PCB $2.15

VACUUM TUBE AMPLIFIERS

WATT-MATT UNIT (P.E. Apr. 76)

Component Set incl. PCB $2.99

POST AND HANDLING

U.K. orders—under £50 add 50p plus VAT, over £50 add 70p plus VAT.

Additional Insurance

£5.50

Optional insurance for compensation against loss or damage in post, add 35p in addition to above post and handling charges.
PHOTOGRA PHOTOSHOP in this advertisement show two of our units containing some of the P.E. projects built from our kits and PCBs. The cases were built by ourselves and are not for sale, though a small selection of other kits is available.

LIST—Send Stamped Addressed Envelope with all U.K. requests for free list giving fuller details of PCBs, kits, and other components.

OVERSEAS enquires for list: Europe—send 20p, Other Countries—send 40p.

KEYBOARDS AND CONTACTS
Kimber-Allen Keyboards as required for many published circuits, including the P.E. Joanna, P.E. Minisonic, and P.E. Synthesizer. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves, as far as we are aware. Keys are plastic, spring-loaded and mounted on a robust aluminium frame.

4 Octave (1.1/4 octaves) £35.50. 5 Octave (4 octaves) £47.95.

Contact assemblies for use with above keyboards: Single-pole change-over (type SP) as for P.E. Joanna and P.E. Minisonic. Two-pole normally open-make-break (type DP) as for P.E. Synthesizer. Special contact assembly (type DSD) having 4 poles, 3 of which are normally open make-break contacts and the fourth is a change-over contact—this special assembly enables THE SAME KEYBOARD to be used with the P.E. Synthesizer, P.E. Minisonic and the P.E. Joanna simultaneously thus avoiding the cost of more than one keyboard.

4 Channel Component Set (excl. thyristors) £13.05
8 Channel Component Set (excl. thyristors) £22.56
Power Supply Component Set £8.96
PCB for 4 frequency channels £13.95
PCB for power supply and lamp drivers £1.15
Panel meter (1/2A) (optional) £4.35

3-CHANNEL SOUND-TO-LIGHT (P.E. Apr, 76)
A simple but effective sound-to-light controller capable of operating 3 lamps each of approximately 300 watts. Includes power supply, thyristors, and by-pass switches.

Component Set incl. PCB £11.36

BIOLOGICAL AMPLIFIER (P.E. Jan/Feb, 73)
A multi-functional module that, with the use of other external equipment, can serve as an EEG, lead-off, anaphone, telephonist etc. etc.

Pre-Ampl Module Component Set incl. PCB £3.71
Basic Output Circuits—combined component set with PCBs, for anaphone, cardiophonic information meter and visual feedback lamp-driver circuits £3.30
Audio Amplifier Module Type PCB £8.60

TAPE NOISE LIMITER
Very effective circuit for reducing the hiss found in most tape recordings. All kits include PCBs.

Standard Tape Set of Components £2.60
Superior Tolerance Set of Components £3.22
Regulated Power Supply (will drive 2 sets) £3.80

SINE AND SQUARE WAVE GENERATOR (P.E. July 75)
Suitable for audio, digital, or general purpose. Controllable through 4 decade ranges from 10Hz to 10kHz, switched attenuator through 10 steps from 10V to 1Vrms peak-to-peak.

Component Set £8.88
PCB for above components £8.70
Power Supply £3.70
PCB for Power Supply £9.60

PHOTOGRAPHIC

DELIVERY SUBJECT TO AVAILABILITY.

PRICES ARE CORRECT AT TIME OF PRESS. E. & O. E. DELIVERY SUBJECT TO AVAILABILITY.

PHONOSONS

Join the Digital Revolution

Understanding the latest developments in calculators, computers, watches, telephones, television, automotive instrumentation...

Also available—a more elementary course assuming no prior knowledge except simple arithmetic.

Digital Computer Logic and Electronics

In 4 volumes:
1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flip-flops and Registers

£4.20

plus 60p packing and surface post anywhere in the world.

VAT zero rated.

Designer
Manager
Enthusiast
Scientist
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning.

Quality discounts available on request.

Guarantee—no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

To: Cambridge Learning Enterprises (Dept. ENG)
FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR

*Please send me... set(s) of Design of Digital Systems at £7.00 each, p & p included
*or... set(s) of Digital Computer Logic and Electronics at £5.00 each, p & p included
*or... combined set(s) at £10.50 each, p & p included

Name
Address

Practical Electronics September 1976
SAVBIT
handy solder dispenser
Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Solder.
Savbit increases life of copper bits by 10 times.
Size 5 39p
For soldering fine joints
Two more dispensers to simplify those smaller jobs.
PC115 provides 6.4 metres approx. of 0.71 mm solder for
fine wires, small components and printed circuits.
PC115 50p
Size 19A 43p

NEW
handy size reels of SAVBIT,
40/60, 60/40 & ALU-SOL solder alloys
These latest Multicore solder reels are ideal for the toolbox. Popular specifications
cover all general and electrical applications, plus a major advance in soldering aluminium. Ask for a free copy of 'Hints on Soldering' containing clear instructions to make every job easy.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Alloy</th>
<th>Diam. (mm)</th>
<th>Length metres approx.</th>
<th>Use</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 3</td>
<td>40/60</td>
<td>1.6</td>
<td>10.0</td>
<td>For economical general purpose repairs and electrical joints. Also solders aluminium to copper, brass etc.</td>
<td>£1.49</td>
</tr>
<tr>
<td>Size 4</td>
<td>ALU-SOL</td>
<td>1.6</td>
<td>8.5</td>
<td>For aluminium repairs and printed circuits.</td>
<td>£1.99</td>
</tr>
<tr>
<td>Size 10</td>
<td>60/40</td>
<td>0.7</td>
<td>39.6</td>
<td>For fine wires, small components and printed circuits.</td>
<td>£1.49</td>
</tr>
<tr>
<td>Size 12</td>
<td>SAVBIT</td>
<td>1.2</td>
<td>13.7</td>
<td>For radio, TV and similar work. Increases copper-bit life tenfold.</td>
<td>£1.49</td>
</tr>
</tbody>
</table>

BIB WIRE STRIPPER & CUTTER
Fitted with unique 8-gauge selector and handle locking device. Sprung for automatic opening. Strips flex and cable in seconds. Model BB 86p

SOLDER- WICK
Absorbs solder instantly from tags, printed circuits etc. Only needs 40-50 Watt soldering iron. Quick and easy to use. Non-corrosive.

Countless uses in industry and offices
*QUICK AND EASY TO APPLY - EVEN IN AWKWARD PLACES
*SAVES DAMAGE TO WOOD AND PAINTWORK
*STICKS ON INSTANTLY: HOLDS WIRE FIRMLY
You’ll save enormous time and trouble with the new Brandauer adhesive staple. Just peel off the backing strip and press staple into place. Then bend clip over to hold wire firmly in position. No messing with pins, tacks, soldering or drilling. No damage to woodwork, e.g. skirting boards. Use the Brandauer Staple for any wall, frame or cabinet wiring jobs — it’s wonderfully easy for fitting in those awkward corners.
Send now for details to:
SPECIAL PRODUCTS DISTRIBUTORS LTD.
81 Piccadilly, London W1V OHL. Tel: 01-629 9556.
TRANSISTOR DATA BOOK

DIODES

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N140</td>
<td>0.28</td>
</tr>
<tr>
<td>1N142</td>
<td>0.24</td>
</tr>
<tr>
<td>1N143</td>
<td>0.20</td>
</tr>
<tr>
<td>1N144</td>
<td>0.15</td>
</tr>
<tr>
<td>1N145</td>
<td>0.10</td>
</tr>
</tbody>
</table>

ZENER DIODES

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10V</td>
<td>0.08</td>
</tr>
<tr>
<td>11V</td>
<td>0.07</td>
</tr>
<tr>
<td>12V</td>
<td>0.06</td>
</tr>
</tbody>
</table>

SILICON RECTIFIERS

<table>
<thead>
<tr>
<th>Type</th>
<th>300mA</th>
<th>500mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4004</td>
<td>0.15</td>
<td>0.30</td>
</tr>
<tr>
<td>1N4005</td>
<td>0.14</td>
<td>0.28</td>
</tr>
<tr>
<td>1N4006</td>
<td>0.13</td>
<td>0.26</td>
</tr>
</tbody>
</table>

GP300

GP Switching Trans

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N2222</td>
<td>0.12</td>
</tr>
<tr>
<td>2N2223</td>
<td>0.16</td>
</tr>
<tr>
<td>2N2224</td>
<td>0.20</td>
</tr>
</tbody>
</table>

THYRISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N6026</td>
<td>0.15</td>
</tr>
<tr>
<td>2N6027</td>
<td>0.18</td>
</tr>
</tbody>
</table>

ZENER DIODES

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3V</td>
<td>0.10</td>
</tr>
<tr>
<td>3.6V</td>
<td>0.13</td>
</tr>
<tr>
<td>4.0V</td>
<td>0.16</td>
</tr>
</tbody>
</table>

SILICON RCTIFEROS

<table>
<thead>
<tr>
<th>Type</th>
<th>300mA</th>
<th>500mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4004</td>
<td>0.15</td>
<td>0.30</td>
</tr>
<tr>
<td>1N4005</td>
<td>0.14</td>
<td>0.28</td>
</tr>
<tr>
<td>1N4006</td>
<td>0.13</td>
<td>0.26</td>
</tr>
</tbody>
</table>

HANDBOOKS

TRANSISTOR EQUIVALENT BOOK

Price: $1.25 - $5 each

DIODE EQUIVALENT BOOK

Price: $1.25 - $5 each

THE WORLD'S BROADCASTING STATIONS

Price: $1.25 - $5 each

FULL RANGE IN STOCK

Price: $1.25 - $5 each
Linear IC's

<table>
<thead>
<tr>
<th>Type</th>
<th>Quantities</th>
<th>Type</th>
<th>Quantities</th>
<th>Type</th>
<th>Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>25400</td>
<td>7401</td>
<td>25400</td>
<td>7402</td>
<td>25400</td>
</tr>
<tr>
<td>7410</td>
<td>25400</td>
<td>7411</td>
<td>25400</td>
<td>7412</td>
<td>25400</td>
</tr>
<tr>
<td>7413</td>
<td>25400</td>
<td>7422</td>
<td>25400</td>
<td>7423</td>
<td>25400</td>
</tr>
<tr>
<td>7432</td>
<td>25400</td>
<td>7444</td>
<td>25400</td>
<td>7445</td>
<td>25400</td>
</tr>
<tr>
<td>7447</td>
<td>25400</td>
<td>7448</td>
<td>25400</td>
<td>7450</td>
<td>25400</td>
</tr>
<tr>
<td>7451</td>
<td>25400</td>
<td>7452</td>
<td>25400</td>
<td>7453</td>
<td>25400</td>
</tr>
<tr>
<td>7454</td>
<td>25400</td>
<td>7455</td>
<td>25400</td>
<td>7456</td>
<td>25400</td>
</tr>
<tr>
<td>7457</td>
<td>25400</td>
<td>7458</td>
<td>25400</td>
<td>7459</td>
<td>25400</td>
</tr>
<tr>
<td>7460</td>
<td>25400</td>
<td>7461</td>
<td>25400</td>
<td>7462</td>
<td>25400</td>
</tr>
<tr>
<td>7463</td>
<td>25400</td>
<td>7464</td>
<td>25400</td>
<td>7465</td>
<td>25400</td>
</tr>
<tr>
<td>7466</td>
<td>25400</td>
<td>7467</td>
<td>25400</td>
<td>7468</td>
<td>25400</td>
</tr>
</tbody>
</table>

DTL 930 Series

<table>
<thead>
<tr>
<th>Type</th>
<th>Quantities</th>
<th>Type</th>
<th>Quantities</th>
<th>Type</th>
<th>Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPS50</td>
<td>12 x 74000</td>
<td>BPS64</td>
<td>12 x 74000</td>
<td>BPS92</td>
<td>12 x 74000</td>
</tr>
<tr>
<td>BPS52</td>
<td>12 x 74000</td>
<td>BPS66</td>
<td>12 x 74000</td>
<td>BPS94</td>
<td>12 x 74000</td>
</tr>
<tr>
<td>BPS63</td>
<td>12 x 74000</td>
<td>BPS68</td>
<td>12 x 74000</td>
<td>BPS96</td>
<td>12 x 74000</td>
</tr>
<tr>
<td>BPS65</td>
<td>12 x 74000</td>
<td>BPS70</td>
<td>12 x 74000</td>
<td>BPS98</td>
<td>12 x 74000</td>
</tr>
</tbody>
</table>

DIL Sockets

<table>
<thead>
<tr>
<th>BP55 8 pin type (low cost)</th>
<th>BP58 8 pin type (low cost)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12x 74000</td>
<td>12x 74000</td>
</tr>
</tbody>
</table>

Voltage Regulators

TO 3 Plastic Encapsulation
- **μA7805** (equiv. to VR105V) £1.25
- **μA7812** (equiv. to VR125V) £1.25
- **μA7815** (equiv. to VR155V) £1.25

PNP Power
- **R.C.A. 2N4295 NPN to 3 Plastic**
- **Power VCE 50V**
- **Power AVC 50V**
- **Power AVC 50V**
- **Power AVC 50V**

P.O. BOX 6, WARE - HERTS
'There's only one way to master electronics... to see what is going on and learn by doing.'

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a self-employed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1. Build an oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2. Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

3. Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, TV etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.

Write to:- British National Radio & Electronics School, P.O. Box 156, Jersey, Channel Islands.
TAPPING THE GLASS

One of the earliest indications of a positive recovery trend in economic affairs should be a resurgence in business amongst the makers of electronic capital equipment. In general, any re-equipping and modernising of factories implies extensive use of electronic products, whether in the form of computers, machine tool and process control systems, or multifarious instruments and devices for equally multifarious uses. Investment in such capital equipment is an essential prelude to the economic miracle we all fervently await.

Thus the fortunes of a sector of the electronics industry are, in a sense, a barometer of the national economic condition. The current reading based largely on comment heard at some trade exhibitions earlier this year is set “Fair”. Probably nothing more definite can be interpreted at this stage in our affairs, but this is a reasonably happy state and, in comparison with 12 months ago, gives cause for hope.

But it will take time for any recovery to work its way through to all strata of the economy. In the electronics consumer area for example, home entertainment products are still in the doldrums and may remain there for some time to come. The reduction in the rate of VAT has done little, it appears, to alleviate the general shortage of cash in the pocket. The long hot summer has aggravated the situation, of course.

When the consumer market revives this will be taken as a sure sign of national recovery. Yet it may not herald a full and complete recovery in the U.K. electronics industry, for it cannot be assumed that the home industry will reap most of this trade. On present form, overseas competitors, especially those in the Far East, are set to capture a large and it is feared ever increasing share of the radio, television and audio market.

The real threat to the future of our own electronics industry must not be ignored. Already we have seen the colour tube manufacturing capacity of the U.K. drastically cut, with the resultant loss of self-sufficiency and of jobs, because of the great influx of Japanese television sets. This could extend to other types of components. Our component industry exists essentially to supply the needs of our set and equipment makers. If the latter are hit by increasing imports, our component makers likewise suffer. Any diminution in range or quantity of components made could in turn seriously affect all other parts of our electronics industry including the makers of capital goods. Naturally, any weakening here would give greater opportunities for overseas competitors to get a foothold in that most valuable sector of U.K. electronics which has an eminent position, often leading the field worldwide.

The home constructor's personal interest in the components situation is self-evident.

What is the answer—higher tariffs or some form of limitation of imports by quotas? The latter course has been strongly advocated by Jack Akerman, Managing Director of Mullards, the largest electronic component manufacturers in Britain. It has to be faced that the average person will not take kindly to any restriction on his access to cheaper goods, no matter that they could mean in the long term the death knell for the British electronics industry. Such defensive action by the Government thus seems unlikely. But something so basic to modern life as the electronics industry must somehow be protected so that it can perform its rightful role in the vanguard of our economic affairs and be widely recognised as a genuine barometer of national prosperity.

F.E.B.
The cross-hatch generator is primarily intended for use when correcting colour television receiver convergence errors. However, the generator's usefulness extends to geometry correction of both colour and black and white 625-line receivers. In the design to be described, the squares of the cross-hatch pattern have a height to width error of less than 1 per cent.

BLOCK DIAGRAM

Referring to Fig. 1a, the heart of the cross-hatch generator is a master oscillator, the output of which is applied to a series of dividers shown in more detail in Fig. 1b. Four frequencies are derived which correspond to the vertical and horizontal components of the cross-hatch video, and also line and field sync. The mark-space ratios of each of these four waveforms are set by means of timing circuits consisting of C/R differentiators and integrators. Further timing circuits derive line and field blanking pulses which along with the four waveforms previously mentioned are applied to a system of gates. The resulting two waveforms, "mixed and blanked video" and "mixed sync", are themselves mixed in the video/sync mixer. Finally, the composite video waveform thus produced is used to modulate a u.h.f. carrier.

CIRCUIT OPERATION (Fig. 2)

The master oscillator is formed using two of the six inverting amplifiers in the CD4069 package, IC4a and IC4b. The frequency of this oscillator is adjusted by
means of VR1, SET SYNC, and is normally 625.0kHz. The rounded square wave at pin 10 of IC4b is applied to the input of a seven-stage binary counter (only the first five stages are used). The first stage acts as a buffer, providing a more square waveform at half master oscillator frequency at the output Q1. The differentiator formed by C4, R8 and IC6a converts the 312.5kHz, one-to-one mark space square wave to narrow positive-going pulses of approximately 400ns in duration. These define the width of the vertical lines in the cross-hatch pattern. The 2nd, 3rd, 4th and 5th stages in IC1 are arranged to divide by ten. D1, D2 and R2 form an AND gate which detects the binary number 1010 (decimal 10). At this instant the logical 1 is buffered by IC3a and used to reset the counter to zero. The logical 1 falls to zero as the counter resets, and a fast positive pulse results. These pulses occur every 32μs, the duration of each pulse is equal to the sum of the propagation delays in the loop circuit.

MONOSTABLE

Inverters IC4c and IC4d plus associated components form a monostable with a time constant of approximately 48μs, i.e. \(\frac{1}{2}\) times the input pulse rate. The monostable thus acts as a divide-by-two stage, the output frequency being 15.625kHz. This is applied to the differentiator formed by C5, R11 and IC4e. The resulting compressed pulses are 4μs in duration at line frequency. These are line sync pulses. The 15.625kHz waveform is also applied to the input of the counter IC2, again only the first five stages of this binary counter are used. The counter is arranged to divide by 21 by the detection of the binary number 10101 which initiates reset pulses in the same way as IC1.

Fig. 1b. Basic arrangement of the frequency divider chain
In this instance, the reset pulses are fed back to the counter via D9, one input of the OR gate formed by D8, D9 and R6. The reset pulses are integrated by C3, R7 and IC5c. The result is a train of stretched pulses, each approximately 60µs in duration occurring every 1-34ms, i.e. one line scan width every 21 lines. These pulses form the horizontal component of the cross-hatch video. The output of the NOR gate IC6a consists of mixed video (horizontals plus verticals), the pulses are negative-going.

DIVIDERS
The first ten stages of IC3, a 12-stage binary counter, are used to provide a divide-by-625 function. R10, combined with the input capacitance of IC3, serves to increase the loop propagation delay and thus broaden the reset pulses. The latter are thus more easily stretched by the integrator C7, R13 and IC5e to approximately 300µs. These pulses are at 20ms rate and are the field sync pulses. Line and field sync pulses are OR gated together at the input of TR1. Integrators C6, R12, IC6b and C8, R14, IC5f further stretch the line and field sync pulses respectively to form line and field blanking pulses which are combined in IC6b and inverted by IC6c. The positive-going mixed blanking pulses applied to pin 13 of IC6d inhibit the passage of video through IC6d during the blanking periods. Mixed and blanked video is taken via R17 to TR1 collector. TR1 forms the video-sync mixer. Its function is to invert the sync pulses relative to the video, and convert the voltage levels giving a 70 per cent video to 30 per cent sync ratio. This composite video waveform modulates the u.h.f. oscillator transistor TR2 via its emitter. The modulated u.h.f. carrier is picked off the emitter circuit by L3 and taken to the coaxial output socket SK1.

Returning to the field-frequency reset pulses appearing at IC5d pin 6, these are also used to synchronise the counter IC2 via D8. This ensures that the horizontal lines in the cross-hatch pattern occur in the same relative position in every field.

Practical Electronics September 1976

Fig. 2. Circuit diagram of the complete cross-hatch generator
CONSTRUCTION

A printed circuit board (see Fig. 3) is necessary for this project as the u.h.f. oscillator can most easily be fabricated in this form. The oscillator components are soldered directly to the copper areas on the underside of the p.c.b., see Fig. 4b. No holes are required to be drilled in this area. A screening can is mounted over the u.h.f. oscillator components. A double-sided p.c.b. is required not only to help produce a more condensed and tidy unit, but also to provide an unetched area of copper to complete the screening for the u.h.f. oscillator. This copper screening on the top side of the board also prevents any movement of the battery from detuning the oscillator. Layout of the remaining parts of the board is not excessively critical, therefore deviation from the p.c.b. design or specified components is most likely to result in mechanical rather than electrical difficulties.

Having produced the p.c.b., assembly should start with the 46 through connections; these are represented

COMPONENTS

<table>
<thead>
<tr>
<th>Resistors</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 56kΩ</td>
<td>R13 220kΩ</td>
<td></td>
</tr>
<tr>
<td>R2 56kΩ</td>
<td>R14 150kΩ</td>
<td></td>
</tr>
<tr>
<td>R3 22kΩ</td>
<td>R15 10kΩ</td>
<td></td>
</tr>
<tr>
<td>R4 68kΩ</td>
<td>R16 5kΩ</td>
<td></td>
</tr>
<tr>
<td>R5 56kΩ</td>
<td>R17 1kΩ</td>
<td></td>
</tr>
<tr>
<td>R6 22kΩ</td>
<td>R18 22kΩ</td>
<td></td>
</tr>
<tr>
<td>R7 150kΩ</td>
<td>R19 2kΩ</td>
<td></td>
</tr>
<tr>
<td>R8 18kΩ</td>
<td>R20 33kΩ</td>
<td></td>
</tr>
<tr>
<td>R9 56kΩ</td>
<td>R21 12kΩ</td>
<td></td>
</tr>
<tr>
<td>R10 220kΩ</td>
<td>R22 22kΩ</td>
<td></td>
</tr>
<tr>
<td>R11 47kΩ</td>
<td>R23 10kΩ</td>
<td></td>
</tr>
<tr>
<td>R12 220kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All 5% carbon film</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometer</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1 50kΩ linear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 in multiturn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cermet (RS Components)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 10pF 63V sub. min. plate ceramic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2 1nF 250V MKM polycarbonate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3 1nF 250V MKM polycarbonate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4 47pF 63V sub.min. plate ceramic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 100pF 63V sub.min. plate ceramic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6 100pF 63V sub.min. plate ceramic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7 1nF 250V MKM polycarbonate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8 10nF 250V MKM polycarbonate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9 10pF 63V sub.min. plate ceramic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10 220pF 63V sub.min. plate ceramic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11 10nF 100V Wnee-C ceramic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12 100pF 10V bead tantalum elect</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: MKM polycarbonate capacitors are available from Electrovalue Ltd. Remainder from RS Components (access through Doram)

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D1-D20 1N914 (20 off)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR1 BC109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR2 2N3663</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC1 CD4024AE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC2 CD4024AE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC3 CD4040AE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC4 CD4069BE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC5 CD4010AE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC6 CD4001AE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic instrument case, 150 x 80 x 50mm (RS Components, Inst. Case Code 509-691—or available with transparent top from Vero Electronics Ltd. Code 90-30-081)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double sided copper clad fibreglass laminate, 142 x 72mm (5.6 x 2.85in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slide switch d.p.d.t. (RS Components)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coaxial socket, flush mounting (RS Components)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery connector, size PP3/PP6, 6 spacers, 6BA x 10mm (0.375in) (Electrovalue). 6 soldercon i.c. pins (optional 88 extra pins, see text). Tinplate and battery bracket plus sponge rubber, see Fig. 5. TO18 transistor mounting pad. 4 printed circuit terminal pins. 1 solder tag, 6BA, screws, wire, solder etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1, L2 and L3 are formed by adjacent copper tracks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 3a. Upper side pattern of the p.c.b., drawn full size

by dots in Fig. 4a. All components should be mounted in profile order, that is, starting with the lowest profile components and working up, with the exception of the i.c.s which should be left until last. Reference should be made to Figs. 4a and 4b and the photographs when mounting p.c.b. components. The usual precautions should be taken when handling the CMOS i.c.s to eliminate possible damage caused by static electricity. A properly earthed soldering iron must be used. If the constructor prefers, Soldercon i.c. pins may be used so that the i.c.s can be plugged into the p.c.b. Note that there is insufficient clearance around the i.c.s to fit full sockets. TR1 should be mounted on a TO18 pad/spreader.

The u.h.f. oscillator screening can is produced from a piece of tinplate which may be provided by a discarded biscuit tin, etc. The tinplate should be cut as shown in Fig. 5a and any paint taken off using paint remover. The four sides are bent at right angles. The screening can is held in place on the p.c.b. using six modified

Fig. 3b. Under side pattern of the p.c.b., drawn full size
Soldercon i.c. pins. This method of mounting allows rapid access to the oscillator components for any future frequency trimming, and also the screening can edges are raised from the surface of the p.c.b. sufficiently to prevent short circuiting copper tracks. Referring to Fig. 4b, break the two side pieces and the tail off six i.c. pins. Mark the six mounting positions on the p.c.b. as shown, and very lightly tin them with solder. Also tin the bases of the six pins and push them onto the edges of the screening can in the appropriate
places. Offer the screening can up to the board, check the alignment of the pins and the screening can, and heat the pins in turn at their bases until the solder runs. Care should be taken not to solder the pins to the screening can.

Make the battery bracket as shown in Fig. 5b from springy metal such as rolled phosphor bronze. Stick a piece of sponge rubber on the under side of the top section of the bracket and also a piece on the p.c.b. in the area where the battery will be positioned. Mount the bracket on the p.c.b.

Cut and drill the ends of the plastic case as shown in Fig. 6. Make sure that the end of the case that will bear the slide switch and coaxial socket is that which has its p.c.b. mounting studs closest together. Cut all the terminals on S1 and the centre terminal of SK1 down to 4mm (0.15in) before mounting them in the case. A solder tag should be attached to SK1 using the lower fixing screw. Mount the p.c.b. in the case using spacers 10mm (0.375in) long; note that the four screws required are metric, M3 15mm. Wire S1, and SK1 as shown in Fig. 2.
The completed p.c.b. lit from behind to show the relationship of the two track patterns

TESTING AND ADJUSTMENTS

Install a PP3 battery and bridge the contacts of S1 with a milliammeter. If all is well, a reading of approximately 12mA should be observed. Connect the output of the cross-hatch generator to the aerial socket of a 625-line television receiver and tune the receiver to approximately channel 50, where the signal should be located. If more than one signal is present, the strongest of these should be selected. If the pattern is not locked, adjust VR1, but do not disturb the hold controls of the receiver. Tune the receiver to give optimum definition, a reduction in brightness setting may be necessary.

The CMOS gates used have a spread in input transfer voltage of up to 33 per cent of supply voltage. It may thus be found necessary to trim one or two of the timing circuits in the cross-hatch generator. The following list may be used to identify and correct any observed pattern malformations.

1. Verticals too narrow, or too wide in comparison to the horizontals.
 Remedy—increase or reduce respectively the value of R8.

2. Horizontals not present at right-hand side of screen, or double thickness at left-hand side of screen.
 Remedy—increase or reduce respectively the value of R7.

3. Field flyback lines showing, or no video present at top of screen.
 Remedy—increase or reduce respectively the value of R14.

4. Line flyback lines/striations showing, or no video present at left-hand side of screen.
 Remedy—increase or reduce respectively the value of R12.

Having established a satisfactory cross-hatch pattern, VR1 should be given a final accurate trimming. Most modern television receivers will lock to the output of the cross-hatch generator over a wide range of sync frequency. Care should be taken to set the sync as near as possible to the correct frequency to minimise possible pattern distortion caused by the generator. For those constructors not having access to an oscilloscope, the following procedure should be carried out. Making bodily contact with a metal object such as a small screwdriver blade, bring the latter into contact with pin 5 of IC5c. This causes the length of the displayed horizontals to be modulated at mains frequency. The observed beat frequency should be reduced to zero by adjusting VR1. This adjustment should be checked periodically, but it will be found that the master oscillator is quite stable under changing conditions of temperature and supply voltage. To improve supply voltage stability and thus prolong optimum performance, a Mallory Duracell battery type MN1604 may be fitted which will give approximately six times the life of the standard battery.

Finally if it is required to alter the frequency of the u.h.f. oscillator, C9 should be changed in value.

P.E. STAFF VACANCY

There is a vacancy for a technical sub-editor on the staff of PRACTICAL ELECTRONICS. An interesting and satisfying job for an electronics enthusiast. Sound technical knowledge and practical experience more important than journalistic experience.

Write with brief personal details to The Editor, Practical Electronics, Fleetway House, Farringdon Street, London EC4A 4AD.
The recent Radio Control series (Practical Electronics: June-August) has met with such popularity that we have decided to continue it and publish details of an alternative system which can be used with the same transmitter and receiver, and which provides multi-channel switched output rather than the fully proportional capability of the original system.

This section therefore, is aimed at the constructor who requires a switched output system (e.g. for use with escapement type actuators commonly used in the control of model gliders and light aircraft).

System operation depends on the transmission of tones of different frequencies (one for each channel) which are decoded at the receiver and used to provide on/off control for each channel. The tone generator at the transmitter uses a 566 function generator, and at the receiver decoding is performed by a 567 tone decoder i.c. The 567 is basically a phase locked loop with additional circuitry to detect the "locked" condition.

THE TONE GENERATOR

The circuit diagram of the tone generator is shown in Fig. 1. The NE566 (IC1) is a voltage controlled function generator producing a square and triangle wave output from pins 3 and 4 respectively. The oscillator frequency can be adjusted over a 10 to 1 range by selecting the appropriate resistance using the same value of capacitance. The frequency can also be adjusted by altering the voltage to the control terminal pin 5; this is the method adopted in this case.

The triangle wave output is used in preference to the square wave due to the problem of harmonics being generated in the receiver at the frequencies selected. The frequency can be determined from the following formula:

\[f_0 \approx \frac{2}{R} \left(\frac{V_{ce} - V_e}{V_{ce}} \right) \text{Hz} \]

where \(V_{ce} \) is the supply voltage \(V_e \) is the voltage at the control terminal \(R \) is the total resistance (between 2kΩ and 20kΩ).

Adjusting VR1 will correct all three frequencies if three channels are selected, thus making alignment a simple process.

CONNECTION TO THE TRANSMITTER

At this stage it is worth referring to the circuit diagram of the transmitter which was published in the June issue of Practical Electronics, page 488. The tone generator is connected to the modulator input (R22 on the transmitter board). Capacitor C2 on the generator board isolates the output d.c.-wise, and resistors R3 and R4 set the bias of the modulator stage TR7 and TR6 (also on the transmitter board).
TONE GENERATOR

Fig. 1. Circuit diagram of the tone generator

COMPONENTS . . .

TONE GENERATOR

Resistors
- R1: 1.2kΩ
- R2: 10kΩ
- R3: 10kΩ
- R4: 27kΩ

R: 6.8kΩ 2%

All resistors are 1W 5% carbon, unless otherwise stated.

Potentiometer
- VR1: 500Ω min. preset (0-1in. matrix)

Capacitors
- C1: 0.022µF plastic
- C2: 0.1µF plastic

Semiconductors
- IC1: NE566V function generator

Miscellaneous
- Single sided p.c.b. 55mm x 45mm
- 8 pin d.i.l. i.c. socket
- S1-3: Single pole switches (push to make, release to break)

Given for channel A only (1,860Hz). See Table 1 for values for other channels.

Fig. 2. Tone generator p.c.b. master and component layout
TONE DECODER

RESISTORS
*R5 5.6kΩ
R6 1.8kΩ
R7 220Ω
R8 100Ω
All resistors ±W 5% carbon

CAPACITORS
C3 0.1µF plastic
C4 1µF 16V tantalum
C5 2.2µF 16V tantalum
C6 22µF 16V tantalum

SEMICONDUCTORS
IC2 NE567V p.i.l tone decoder
TR1 BCY70
TR2 BFY51
D1 1N4148

MISCELLANEOUS
Single sided p.c.b. 48mm x 48mm
P.c.b. pins
8 pin d.i.l. i.c. socket
*Given for channel A only (1,860Hz). See Table 1 for values for other channels.

Fig. 3. Circuit of the tone decoder

Fig. 4. Tone decoder p.c.b. master and component layout
Table 1
Channel operation frequencies and resistor values for generator and decoder circuits. The values in brackets indicate how the resistance given is made from standard resistors.

<table>
<thead>
<tr>
<th>Channel</th>
<th>(f_0) (Hz)</th>
<th>Resistor Ra, b, c</th>
<th>Decoder resistor R5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1860</td>
<td>6.8k(\Omega)</td>
<td>5.7k(\Omega) (3.9k(\Omega) + 1.8k(\Omega))</td>
</tr>
<tr>
<td>B</td>
<td>1438</td>
<td>8.6k(\Omega) (6.8k(\Omega) + 7.6k(\Omega))</td>
<td>7.6k(\Omega) (6.2k(\Omega) + 1.8k(\Omega))</td>
</tr>
<tr>
<td>C</td>
<td>1109</td>
<td>11.3k(\Omega) (6.8k(\Omega) + 1.5k(\Omega))</td>
<td>10k(\Omega)</td>
</tr>
</tbody>
</table>

THE DECODER

The decoder circuit diagram is shown in Fig. 3, and as can be seen, is built around a NE567 tone decoder. The decoder receives its drive from the output of the receiver (C16 on the receiver circuit diagram shown on page 569 of the July issue).

The 567 is a highly stable phase locked loop which contains additional circuitry to detect when the loop is in a locked condition. When a phase locked loop is locked to an incoming signal, the p.l.l. v.c.o. is in phase quadrature with the input signal, and therefore the locked condition can be detected by a quadrature phase detector monitoring both the v.c.o. output and the input signal. The detector causes pin 8 of the 567 to go low when the loop is locked.

The capture range (bandwidth) of the p.l.l. can be independently controlled and the detection frequency is set by means of an external resistor and capacitor. The maximum voltages which can be applied are 10V to pin 4 and +15V to the resistor connected to the open collector output at pin 8 (Ic max 100mA).

CIRCUIT DESCRIPTION

The phase-locked-loop free running frequency \(f_0\) is set by R5 and C3 using the formula \(f_0 = 1/2\pi R5C3\).

The bandwidth for inputs greater than 200mV is a function of \(f_0\) (Hz) and C4 (\(\mu\)F) and in this case will be about 14 per cent. This can, however, be reduced to around 7 per cent by increasing C4 to 2.2\(\mu\)F. The capacitor C5 (whose value is not critical) is used to prevent chatter at the output (pin 8).

As stated above when the selected frequency is present pin 8 is driven low. This causes TR1 to be switched on which in turn switches on TR2. It will be noted that the supply rail voltage for the output stage is 3 volts and this should not be exceeded otherwise TR1, TR2 may be damaged, since typical escapements have winding resistances of between 8 and 12 ohms. The diode D1 is included for protection of TR2.

Further tone decoders may be connected simply by connecting the inputs in parallel as shown in Fig. 5.

CONSTRUCTION

The circuit boards are etched to the pattern given in Fig. 2 and Fig. 4 and the components soldered in the positions shown. As before, pins are used for wire take-off points. It was felt best to use i.c. sockets on these printed circuit boards since the i.c.s are rather costly and if found to be faulty probably could not be replaced if they have been soldered.

TESTING AND SETTING UP

The circuits can be tested independently of the transmitter and receiver by connecting the boards together via a 0.1\(\mu\)F capacitor and a 27k\(\Omega\) resistor in series. The selected tone is generated by operating a switch, and with an ammeter in the tone decoder supply (0-100mA) a current rise from 10mA to about 18mA should indicate the presence of a tone when VR1 is adjusted. By rotating the pot about the “operate” position, the centre of the capture range of the p.l.l. can be located. From Table 1 the values of R5 for the other boards can be determined.

LICENCE

We would like to warn constructors that a licence is required to operate any Radio Control system. This licence may be obtained from: The Home Office, Radio Regulatory Department, Waterloo Bridge House, Waterloo Road, London SE1 8UA. (A licence for 5 years costs £2.40)
SPACE SEEDS

Seeds of Canadian spruce brought back from space have been sown in the botanical gardens of the Academy of Sciences in Moscow. These seeds were part of the exchange made between the U.S.S.R. cosmonauts and the American astronauts during the joint link up of the Soyuz-Apollo mission.

The Americans handed over Canadian spruce seeds and the Russians handed over seeds of pine from the Volga region, larch from Tuva, balsam fir from the north Caucasus and cedar from the banks of the Yenisei river in Siberia.

It was decided that the two crews should on their return home sow the seeds as a commemoration of the first joint Space Flight. The members of the crews were Alexei Leonov and Valeri Kubasov from Russia and Tom Stafford, Vance Brand and Donald Slayton from the USA.

Academician Tsitsin, director of the botanical gardens, said he hoped the Soviet seeds would thrive on American soil. Every seed sent to space was checked with the help of X-rays and the best ones were selected for the flight.

INTERCOSMOS

The space vehicle Intercosmos 15 was launched by the Soviet Union on June 19. Its purpose is to conduct large scale scientific research in the field of flight conditions, testing new systems of operation, including telemetry.

A number of countries associated with the U.S.S.R., East Germany, Hungary, Poland, and Czechoslovakia took part in the development and manufacture of the telemetry system. Specialists from the participating countries prepared the equipment for launching and are controlling its operation. The single system of telemetry will be in action for the first time.

The principal ground stations which are receiving signals are in East Germany, Hungary and the U.S.S.R. This will also extend to Czechoslovakia. Previously only the Soviet ground stations collected the data and processed it, now other countries are participating.

It is seven years since the first Intercosmos was launched and a great deal had been learned during that time. When the whole network is complete there will be nine participants which will include Bulgaria and Cuba.

The scientific research is mainly in the communication field, and space physics. These include meteorology, biology, medicine and allied subjects. During the past experiments new data had been acquired regarding the mechanism of solar terrestrial links and the Earth's atmosphere.

During the study of radiation round the Earth is enabling the medical researchers to predict more accurately the safe periods for manned flight.

The Satellite orbital period is 94.6min, perigee 487km, apogee 521km and the orbital inclination 74.0 degrees.

VENUS PROBES

A year has passed since the launching of the Venus 10 automatic station and eight months since it went into orbit round Venus. A great deal of scientific information has been received from the station during this time. The on-board systems and equipment are operating normally.

The Venus 9 and Venus 10 automatic stations fulfilled the main flight programme by March 22 this year, after which each continued their scientific independent individual programmes. Venus 9 completed the additional programme and has now ceased functioning. Venus 10, which is now at a distance of 260 million km from the earth, is continuing its research work.

From the point of view of an observer on Earth the planet is now passing behind the sun. This opens up a rare opportunity to carry out a radio trans-illumination of near-solar space with the aim of studying the solar corona. On June 16, a radio beam sent to earth by Venus 10 passed within 1½ million km from the surface of the sun.

An analysis of the parameters of radio signals coming from Venus 10 shows that the streams of near-solar plasma are very heterogeneous and subjected to rapid changes in time. The processing of this data will produce quantitative characteristics of these conditions. Also studied during the radio sessions was the possibility of receiving information and controlling spacecraft which depends on the radio beam condition during its passage near the sun.

SALYUT RESEARCH

The speed of plasma reaches 50km/sec in the active regions of the sun. This observation, says cosmonaut Dr Konstantin Feoktistov, is among the most interesting results of investigation carried out in the Salyut orbital station. The solar telescope installed has helped to obtain hundreds of spectograms of such active regions on the sun as flares, prominences and floculi.

The data collected by two expeditions aboard the Soviet station last year are still being processed. The irregularities of radiation have been measured from well-known X-ray sources such as those in the constellations of Scorpius, Cygnus and Virgo.

CHECK UP ON EINSTEIN

A test of the general theory of relativity has been carried out by the use of a probe launched from Wallops Island, Virginia.

It was named GP-A (Gravity Probe-A). The sensitivity of this experiment will be some 300 times more sensitive than any method so far used. The test will be of the principle of gravitational and inertial equivalence.

The principle states that within small regions of space the effect of accelerating a body cannot be distinguished from the effect of a gravitational field on the body. This could be put another way by saying that if an observer is enclosed in a vehicle he has no way to determine whether he is stationary in a gravitational field or is accelerating in the absence of a gravitational field.

The missionobserver system observes the changes such as length or time in the other. Checks are made of these parameters and both length and time can be referred to clocks. Such changes, however, are minute and very difficult to measure.

Now a hydrogen maser clock has been devised with a stability of one part in 10^{11}. This means it could gain or lose not more than about 2 seconds in a hundred million years.

It is planned to use the clock developed by the Smithsonian Astrophysical Observatory in this experiment. The clock will fly in a two hour elliptical trajectory over the Atlantic and the readings compared with a similar clock on the ground. The probe borne clock will, because of the weaker gravity field, appear to run faster than the earth borne clock.

The duration of the synchronisation is about 5000s of one per cent. The cost of the experiment is of the order of 6 million dollars.
DOING THE SPLITS

Sports fans will be electrified by the new ICM7205 from Intersil, because it crams into a 24-pin plastic package all the electronic springwork of a sophisticated two function stopwatch. Not just a modified clock-chip this, but a set of circuit functions optimised for use in the demanding sporting environment, designed to provide accurate interval timing over periods of up to one hour with hundredths-of-a-second precision.

The chip uses CMOS technology for low power battery operation, and will drive a small six digit I.E.D. display without the need for interface components. The internal oscillator is synchronised by an external 3.2768MHz crystal for high accuracy, control inputs are provided for great versatility of timing circuit and display operation, and the thoughtful designers have even added a "low battery" indication output which can drive the display decimal points or a discrete I.E.D.

Two timing modes can be switch selected, "Taylor" or "Split". In the Taylor mode the clock can be reset to zero and will commence counting when the START/STOP switch is pressed; when the START/STOP switch is next pressed the display indicates the time so far, but the counter is reset to zero and then continues counting. On subsequent presses the display changes to indicate the new "lap" time, but not an overall total.

In the split mode the "lap" times are accumulated and the display updated at each press of the START/STOP switch so that a running total of lap times are recorded. In both modes the display is stationary between presses of the START/STOP switch unless the "DISPLAY UNLOCK" is pressed to allow the display to catch up with the counter, and "RESET" can be activated at any time to restart the process.

To sports fans the promise of this new chip will be obvious but I wouldn't mind betting that a lot more applications will be found for this exciting device.

FAMILY REGULATOR

Fixed voltage, three terminal, positive regulator integrated circuits have been around for a few years now, and I for one have certainly not stopped appreciating them! When I think of the trouble I had to go to get a really stable output voltage in the face of varying loads and line voltages before these devices came along, I offer up a silent prayer of thanks.

"Well O.K. I can hear you saying "they're very good, but what's new?" The Signetics micro A7800 series is new, that's what, and it is not just a single regulator i.c. but a whole family of regulators for different output currents and different voltages.

The 7800 family must cover 90% of regulator requirements; if you want a voltage of 2.6V, 5.0V, 6.0V, 8.0V, 12.0V, 15.0V, 18.0V or 24.0V—no problem, they're all standard. A 1A current rating? no problem either. How about that audio preamplifier though, you only need 20mA at 12V for that, it wouldn't seem right to have to use a TO3 can regulator, would it?

Well, why not use the µA78L12S which comes in the little TO-92 plastic small-signal-transistor package and offers a 100mA current rating. You don't like plastic packages? Then use the A78L12DB, which also has a 100mA rating but comes in a little TO39 metal can.

This plastic/metal can choice is not limited to the 100mA tiddlers either; the 1A versions can be had in the traditional TO3 metal pack, or the TO220 power-tab plastic pack.

POWER PAK

A couple of new audio amplifier circuits have been introduced by Texas Instruments, and as befits the easy-to-use electronic design, a new easy-to-use plastic package, called Power Pak, has been designed to house them.

The Power Pak package is a simple 5-pin plastic power transistor arrangement which can be easily heat-sunk with a single, central, nut and bolt without the problems associated with the more usual d.i.l. designs.

The new devices are the SN76008N and the SN76018, each of which will deliver a creditable 10W of audio power at full output. The difference between the two lies in the design load impedance and supply voltage, the SN76008N delivering 10W to a 4 ohm load while the SN76018N will deliver the same to an 8 ohm load at a higher supply voltage.

These devices are not in the hi-fi class, and the T.H.D. starts to climb rapidly after about 8W, but at less than £3 apiece, what can you expect?
HEDA—the International Home Electronics and Domestic Appliances Exhibition—was the second big electronics and electricals show to be staged at the new Birmingham National Exhibition Centre. It was open to trade visitors only from May 23-27, but the home electronics section carried on under the name Sound and Vision '76, open to the public from May 28-31.

TELEVISION

Developments in television were principally in two fields, remote control and teletext reception. Cordless, ultrasonic remote-controlled receivers were displayed by amongst others Rank Radio International (Bush), Thorn Consumer Electronics (Ferguson), Tandberg, Roberts Video, Telefunken and ITT. All of these provide channel selection and most also allow sound muting or volume control from the comfort of your armchair.

Also on some ITT sets is a button called Ideal Colour—otherwise known as a “Granny Button”. When pressed, this returns the display to predetermined levels of colour and contrast, regardless of control settings—very helpful for those who are baffled by the multiplicity of controls on a colour TV receiver. On ITT’s latest models, this feature is extended even further by the addition of a photo-electric cell which adjusts the Ideal Colour levels to compensate for changes in room brightness.

TELETEXT

On the teletext front, several manufacturers were showing experimental receivers, and there were also comprehensive exhibits on the BBC and IBA stands. The question mark which has been poised over the future of the teletext services has to a large extent been removed by the recent BBC decision to make a continuing financial provision for the Ceefax service. In fact, a second service, providing a second magazine, was inaugurated on BBC 2 on the HEDA Exhibition opening day.

Two manufacturers have demonstrated their faith in the future of teletext by announcing launch dates for production models of a complete teletext receiver and an add-on adaptor. The receiver, to be sold under the Bush marque, is due to go into production at Rank’s Plymouth factory during August. Price for a 22 inch model with full cordless remote control will be about £1,100.

The add-on adaptor comes from Labgear, part of the Pye group, and provides all normal teletext facilities without need of any internal connections or modifications to the TV receiver. The adaptor, which makes use of TIFAX l.s.i. decoder circuits from Texas Instruments, fits into the lead between the aerial and any standard 625-line set, colour or monochrome. The unit is expected to be on sale in 1977 at a price in the region of £200.

VIEWDATA

Viewdata, the Post Office system for displaying information on TV receivers, was being shown on several setmakers’ stands and also on the Post Office Telecommunications stand. Here, two Viewdata terminals were on view, one based on a domestic television receiver and the other a prototype specially designed for office use and known as “Viewdataphone”. The Viewdata system is now undergoing pilot trials, a full public trial period is planned to commence in the autumn of 1977.

SOUND

In the hi-fi department there seemed to be little that was really new; generally it was a case of “bigger, better and more features”. Telefunken were introducing their TRX2000 AM/FM 4-channel receiver. A digital read-out is included which displays tuned frequency on radio, or otherwise operates as a 24-hour clock. Providing 50W r.m.s. per channel, and with enough knobs and dials to satisfy the most demanding, the TRX2000 incorporates an SQ-matrix decoder. Price is yet to be announced.

From Bib Hi-Fi Accessories Limited comes a natty little instrument called a Cassette Opener. Made of tempered steel and spring operated, this opens welded cassettes safely in seconds. Price including VAT is 48p.

FIGURES

Coming finally to calculators, CBM Business Machines Limited announced the first of their new range of third generation scientific calculators. This one, the Commodore Statistician, offers a wide range of pre-programmed functions for the statistician, plus all the usual mathematical and trig functions. The display handles a ten digit mantissa and two digit exponent and signs for each. Price is £99.95 including mains adaptor/charger.

The Labgear Teletext Adaptor in operation

The Viewdata system handles

The TRX2000 receiver from Telefunken

The CBM Statistician calculator
P.E. ORION STEREO AMPLIFIER

240–50Hz from your 12v car battery.
25 watt £4.75
100 watt (12v) £38.05
200 watt (24v) £46.18
300 watt (24v) £127.00

ASTRO IGNITION

Complete kit of parts for this proven and tested system £10.45 incl. VAT. Ready built with only two connections to alter £13.75 incl. VAT. Thousands have used this system both home and abroad. Consider these advantages more power, faster acceleration, fuel economy, excellent cold starting, smoother running, no contact breaker burning. Also because of the high energy spark, the fuel mixture can be made weaker giving further economy and fewer plug problems. Fitting time when built 5 minutes approx. Please state whether positive or negative earth. Trade and export enquiries welcomed.

INVERTORS

P.W. AUTOMATIC EMERGENCY SUPPLY
£120–50Hz–150 watt invertor with built in battery charger. In event of power failure switches over automatically from battery charging to invertor operation. Cct. as appeared in Dec '72 P.W. Complete kit of parts (excluding meter) £24.50 + £1.70 p. & p.

FLUORESCENT LIGHT INVERTOR KIT
8 watt–12v–Fluorescent light, suitable for DJ's, karaoke, boats, sealed lighting for factories, hotels, etc.
12–8 watt £2.60 + 35p p. & p.

TRANSFORMERS & COILS
Both high volume & small order capacity available.

INSTRUMENT CASES
Bookend Amplifier and attractive styled instrument cases available. Send S. & A. envelope for price list.

PRECISION PETITE LTD.
119a HIGH STREET, TEDDINGTON, MIDDX.
TEL. 01-977 0878

MA1002F Alarm 12 Hour
MA1002H Alarm 24 Hour
With transformer and Vero case

£12.50 inclusive.

Only switches and earpiece for tone alarm required to make a four digit alarm clock.

BYWOOD

68 Ebberns Road, Hemel Hempstead. VAT: All prices exclude VAT (6%) Herts HP3 5QR
P/P: 15p
TEL: 0442 62757
A dog collar which emits a signal when the dog has been away from the owner for greater than a preset length of time, and is thus regarded as being lost, is described in a patent (BP 1 418 680) taken out by Herbert, Enid and Mary Corbin together with Mary Nicholas.

The circuit, built in a small box mounted on the collar (Fig. 1), includes a field effect transistor with source and drain electrodes connected, via R2, across the supply and the gate connected to VR1 and S1b. The drain is also connected to a Darlington pair, TR2 and 3, which switches the multivibrator, TR4 and 5, and causes the lamp LP1 to flash. The timing of the multivibrator is determined by C2 and R5.

Before the start of a dog walk the owner closes S2 and S1 to charge C7. The gate and source electrodes of TR1 settle at the same potential, the Darlington conducts and power is supplied to the multivibrator and LP1 flashes on and off.

As the walk commences S1 is switched back to the position in Fig. 1 and C1 begins to discharge, applying a voltage between the f.e.t. gate and source causing it to cease conduction and LP1 to be extinguished. After a predetermined time, set by VR1, the capacitor C1 has discharged to such a value that the voltage across the gate and source of TR1 is reduced sufficiently to allow conduction to recommence again. TR2 and 3 again become conductive and LP1 begins to flash.

The lamp will generally be arranged behind a translucent panel carrying the legend "I am Lost" or similar wording.

VOICE BOX

There have recently been granted several patents for gadgetry to help would-be singers join in with a record in their own homes. In BP 1 427 607, the Sony Corporation of Tokyo, Japan, patents a sophisticated system of artificially improving the quality of the amateur singer's voice, to make it resemble the sound of a voice recorded in a professional studio.

As shown in Fig. 1, the stereo record player feeds left and right signals through a conventional audio train to left and right loudspeakers. The singer "sings along" into the microphone, Mic. 1, and the signal is amplified and fed direct into a mixer to blend with the left-hand channel sound. But the signal is also fed to an "effects circuit, which adds delay and vibrato to the voice before blending it in the right channel mixer.

The effects circuit includes variable delay, in which the microphone signal is delayed and frequency modulated. This is achieved by using a bucket-brigade device (BBD) in which a series of f.e.t.s are provided with capacitors connected between their source and gate electrodes. The gate electrodes of the odd-numbered f.e.t.s are connected to a first clock pulse input terminal, and the gate electrodes of the even numbered f.e.t.s are connected to a second clock pulse input terminal. The clock oscillator produces first and second clock pulses which are shifted in phase by 180° relative to each other and applied to the terminals.

The resultant alternate switching of the f.e.t.s causes the charge stored in the first capacitor to be shifted through the capacitor chain. As a result, delayed signals are delivered at the output terminal. The order of delay time envisaged is a few tens of milliseconds, this time being made variable by making the oscillator an astable multivibrator.

In one alternative embodiment, the delayed voice signal is fed to both stereo channels. A further interesting suggestion is a matrix differencing circuit used to eliminate the centre-front (in-phase, equal amplitude) content of the professionally recorded stereo pair and permit its replacement by the injected delay signal.

Most professional recordings place the lead singer centre-front, so this technique enables the amateur singer to replace the professional at sound centre stage.

Copies of Patents can be obtained from the Patent Office Sales, St. Mary Cray, Orpington, Kent Price 75p each
This unit is designed to monitor the level of gas or smoke concentration in an enclosed space, and to operate an external warning device (e.g. lamp or siren) when a predetermined threshold is exceeded. The sensing device is a thermal gas sensor, whose operation was described in detail in *Practical Electronics*, September 1973 (back copies are not available). Briefly, it consists of two electrodes encapsulated in a bead of doped semiconductor material, one of the electrodes acting as a heater. In the presence of oxygen, a high resistance of some 10-50kΩ exists between the electrodes. In contact with a deoxidising gas or vapour, ionic action increases the number of free electrons in the material, and the interelectrode resistance falls to about 1kΩ. A flash-proof wire mesh shield surrounds the device, also helping to reduce the cooling effects of draughts.

The particular sensor used in this design is the TGS105 made by Figaro Engineering. This was chosen for its fast warm-up time of 1½ minutes, fast response and fast decontamination. It does not respond to steam or dust. Connections are by four pins which are arranged so that the sensor may be mounted in a B7G valve base.

CIRCUIT DESCRIPTION

The thermal gas sensor requires a heater supply of 1 volt at 600mA which is supplied by a high efficiency sine-wave inverter TR1/T1 (see Fig. 1). Transistor TR1 and C1 have to withstand a voltage several times that of the supply line due to the inductive effects of transformer T1. Therefore C1 should be a good quality, high voltage capacitor, and TR1 the quoted specially chosen high voltage device, though these are less critical for the 12V version. Base bias for TR1 is provided by R11, R2 and decoupled by C2.

The output side of the sensor, X1, feeds a Schmitt trigger TR2/TR3, whose input is decoupled by C3 to reduce the possibility of false triggering by noise spikes. When the interelectrode resistance of X1 is reduced in the presence of gas or smoke, the voltage at the base of TR2 will fall due to potential divider action. The trigger threshold is set by R4/VR1, thus providing control of sensitivity. The bias for TR2 is fed via the output electrode of the sensor, so that should the sensor be removed inadvertently from its socket, the Schmitt circuit will be triggered and the output will go to the alarm state. The unit is thus fail-safe under these conditions, though TR1 may be damaged as a result of the oscillator output being unloaded.
The output of the Schmitt trigger is taken to TR4 which acts as a driver stage for a miniature thyristor CSR1. The network R11, R14, C4 is for decoupling. When fired, CSR1 completes the circuit to the OV rail for the external load (which will normally be a relay) and also for the local I.E.D. indicator, D4 with its associated dropping resistor R13. The I.E.D. is included so that when several units are used in an installation, the particular unit which has triggered may be identified. The diode D3 is to isolate the output when units are paralleled.

The supply lines are decoupled by C5, and the circuit protected from damage due to supply polarity reversal by D2. The Schmitt trigger is provided with its own stabilised nine volt supply by D1 and R3, again to provide immunity to supply line fluctuations.

COMPONENTS

As mentioned above, several of the components around the sine-wave inverter are rather critical, and the types specified in the components list should be adhered to. Winding details for T1 are given in Fig. 2 and the associated table. The printed board layout is shown in Fig. 3.

Fig. 2. Winding details for T1

The supply lines are decoupled by C5, and the circuit protected from damage due to supply polarity reversal by D2. The Schmitt trigger is provided with its own stabilised nine volt supply by D1 and R3, again to provide immunity to supply line fluctuations.

COMPONENTS

As mentioned above, several of the components around the sine-wave inverter are rather critical, and the types specified in the components list should be adhered to. Winding details for T1 are given in Fig. 2 and the associated table. The printed board layout is shown in Fig. 3.

Fig. 2. Winding details for T1

The supply lines are decoupled by C5, and the circuit protected from damage due to supply polarity reversal by D2. The Schmitt trigger is provided with its own stabilised nine volt supply by D1 and R3, again to provide immunity to supply line fluctuations.

COMPONENTS

As mentioned above, several of the components around the sine-wave inverter are rather critical, and the types specified in the components list should be adhered to. Winding details for T1 are given in Fig. 2 and the associated table. The printed board layout is shown in Fig. 3.
APPLICATIONS

The unit has only three external connections and thus lends itself to an installation using standard three-core mains lead for the wiring. Many units can be wired in parallel. The thyristor specified has a maximum rating of 800mA, and is capable of driving a low power 24V or 12V lamp, or a relay to control higher powered or mains voltage equipment. Care should be taken not to short the output lead to the positive supply rail as this will result in a blown thyristor.

Intending constructors should note that the 24V version has proved to be more reliable in operation, and is to be preferred where a choice of supplies is available. The total quiescent current consumption is only 45mA on 24V and 90mA on 12V. A cable size of 16/0.2mm (14/0.0076in) should be adequate for runs up to 30m (100ft) on 24V or half this distance on 12V. For reliable operation, the power supply voltage should be maintained within ±10% of the nominal value.

The unit will find uses in the home, boat or caravan as a fire alarm, gas detector, and also as a carbon monoxide detector in the boiler house of oil or gas fired central heating systems.

POINTS ARISING

SHOOT (April 1976)
Several readers have reported that their game produces a circulating chain of illuminated i.e.d.s, instead of the pattern described in the article. This would appear to be due to the track break under the top end of R14 (Fig. 2, p. 320) having been missed, so applying a permanent +5.5V to pin 8 of IC3 and thus to one input of IC4a.

DIGITAL FREQUENCY METER (May 1976)
In the circuit diagram on page 378, the pin connections for IC1 pins 1 and 14 should be transposed (i.e. pin 14 should be connected to GND line).

P.E. DIGI-PROBE (April 1976)
In Fig. 7, page 292, the component below R3 should be annotated D1. Also, diode D3 anode should be connected to the junction of R3 and D2 (i.e. strip above). There should be a link from IC2/P11 to IC3/P3. The link from pin 7 to 8 of IC3 should be moved at the right-hand end to allow a break between IC3/P8 and C1 negative (and IC3/P7 via above link). There should be a link from the negative end of C1 to TR3 emitter.
ANYONE who has crossed the Atlantic recently can confirm the tremendous upsurge in the use being made of the 27MHz Citizens' Band two-way radio in the United States and the corresponding "General Radio Service" in Canada. Or again, in some countries in Europe, including the Federal German Republic, CB operation is legally established; in others it is, in effect, tolerated.

It would be contrary to our curious Wireless Telegraphy Acts for me to describe what anyone in the U.K. can hear on 27MHz whenever "Sporadic E" conditions prevail, since none of those many, many stations are either "authorised broadcasting stations for general reception" or "licensed amateur stations".

Six million U.S. citizens—including innumerable long-distance lorry drivers and ordinary motorists—have two-way radios in their vehicles as an interactive traffic information service; others have "base" units in their homes or offices to talk to the drivers or to one another. Countless others use compact two-way hand-held transceivers which, if the output power is less than 100mW, do not even require registering.

New Language

A whole new communications industry has been created; a new colourful jargon of CB slang has emerged and one finds, among many other publications for the CBers, "slang" dictionaries running into hundreds of pages. The radio shops, department stores, discount houses and auto-suppliers feature CB equipment under the brand names of Regency, Lafayette, Johnson, Panasonic, Sony, Craig, Pace, Radio Shack, Hallicrafters, Cobra, etc. Many equipments are for single-sideband (s.s.b.) operation with synthesiser systems for channel switching, fully as modern in concept and design as current professional and amateur radio equipment, often costing several hundred dollars. Some of the equipment is made in the United States where even television factories are being converted for CB production; much of it comes from Japan. Amateur radio enthusiasts complain of the shortage of crystals and components diverted to CB; a new outlet for technicians—servicing CB radio—is blossoming. CB pop songs have made the hit parade. Everyone seems to want a CB radio; some of them are even prepared to acquire a licence to operate.

Is it all a transient craze that, like the yo-yo and the hula hoop, erupts across a nation for a few months or a few years, only to fade away? Or is the present popularity a genuine reflection of the pent-up demand for, and usefulness of, a low-cost (or relatively low-cost) communications facility of an inherently different nature to the orthodox "business radio" service and the long-established amateur radio service?

Then again there is the possibility that the frequencies assigned to CBers will become so congested that effective communications, even at short range, may become virtually impossible so that the whole system could collapse under its own popularity.

There is no provision for authorised CB operation in the United Kingdom. Indeed, under Section 7 of the Wireless Telegraphy Act, 1968, the licensing authority (nowadays this is the Radio Regulatory Division of the Home Office) has specifically prohibited the import or manufacture of such equipment. Until that Act was passed, CB equipment was widely offered for sale in the U.K. and possibly up to almost 100,000 small hand-held units, mostly from Japan, were sold. Many still exist, and recently such units seem to be reappearing in the shops; certainly they can be bought over the counter in many European countries. But few of the more elaborate base and vehicle s.s.b. units have been seen here.

How CB developed

Why has CB boomed in some countries while severely frowned upon and harassed in others? Should two-way radio communication be freely available to the ordinary citizen without formality?

To examine such questions it is necessary to go back almost 30 years to the beginnings of the "Citizens' Radio Service", inaugurated in the U.S.A. in 1947 to provide two-way radio for the private citizen in the conduct of his personal affairs or business activities. The FCC authorised this service to use frequencies from 460 to 470MHz, at powers up to 50W. At that time 460MHz was a virtually unexploited band, at least for such applications as land mobile communications.

There was no early rush to take advantage of this new service, and very few firms marketed suitable u.h.f. equipment. Indeed interest remained very slight, and firmly within the United States, until 1958 when a new Class D system was established, using frequencies around 27MHz (currently 23 channels between 26-985 and 27-265MHz).

This new Class D facility quickly registered an appeal to a type of user for which the service was not originally intended, the "hobby" enthusiast; many with a largely frustrated interest in radio communication but who, for various reasons, were not prepared to study for and sit the technical and Morse examinations needed to obtain an "amateur" licence. The CB regulations were intended to discourage hobby operation, by limiting the power to 5W, restricting the height of aerials, prohibiting inter-State operation.

CB Permit

But even with communication officially limited to around 15 miles, the CB permit seemed a far softer option than the amateur licence. Furthermore, as the American licensing authority (the Federal Communications Commission) quickly found out: it is one thing to try to tell the citizen what he should and should not do with his two-way radio; quite another matter to enforce such regulations.

It would have needed an army of inspectors, equipped with every type of surveillance equipment, to have traced the most flagrant offenders or to limit the amount of interference caused to television in urban centres.
At times of high sunspot activity 27MHz signals are effectively reflected by the F-layer of the ionosphere and bounce down at good strength hundreds and thousands of miles away. At many other times unpredictable “Sporadic E” conditions may allow communication over hundreds of miles.

Soon the number of CB permits had passed the quarter-million mark. From around 40,000 in 1959 to around a million in 1971-72. It was the energy crisis of late 1973 and the subsequent 55 m.p.h. speed limit in the U.S.A. that proved a further turning point: American long-distance truckers began using CB to help colleagues locate petrol supplies and to avoid speed traps.

Unofficial Service

In no time an unofficial traffic information service was attracting the attention of millions of motorists. Not all the lorry drivers bothered with the formality of a licence. In 1974 a check of 36,000 vehicles revealed that 7,000 were carrying CB equipment, more than half of them unlicensed and many exceeding the power regulations.

CBers and Radio Amateurs

The Class D Citizens’ Band system fell foul of the American amateur radio movement from the outset. The 27MHz frequencies, although not internationally allocated to amateurs, had for some years been made available to them in a number of countries, including the United States. So they felt that CB had deprived them of valuable frequencies. Further, any transmissions by CBers (and there were many) were usually within the agreed tolerance, have been assigned radio frequencies to specific uses and defines the various services that may use them.

The amateur service is formally defined as a service of self-training, intercommunication and technical investigations carried on by amateurs, that is, by duly authorised persons interested in radio technique solely with a personal aim and without pecuniary interest.

But nowhere in the current Radio Regulations is there any mention of or any definition of anything resembling a Citizens’ Radio Service. What has become numerically the largest of all radio-communication services is entirely ignored, both in the American (1970) and the Geneva (1959) Regulations.

If it does not exist officially how can it be assigned any frequencies? The answer is to be found in footnotes to the ITU frequency table. Certain spot frequencies, with an agreed tolerance, have been assigned to “industrial, scientific and medical” (i.s.m.) purposes, including 27,120kHz±0.6%. The Radio Regulations make no attempt to define precisely what it meant by i.s.m. equipment—a low-priority communication system that presumably be regarded as an industrial use of the frequency.

Then again, there is nothing to prevent any country from allocating any frequency for any purpose it chooses if this is deemed incapable of causing interference to the services of other countries. For example, FCC could, within the terms of the Radio Regulations, allocate 220MHz to CB, but would have to ensure either that no such stations were located within range of the Canadian border or alternatively to secure the agreement of the Canadians to this variation of the ITU allocations.

The FCC are now proposing to shift the very low power hand-held transceivers to the frequency band 45MHz to 48MHz. It could equally decide to put CB around 40-68MHz, another of the i.s.m. spot frequencies.

There is thus still a lot of power invested in national administrations to set up CB should they wish to do so, even when bound by the Radio Regulations that appear not to recognise such a service.

CB and the U.K.

So why no CB in the U.K.? The FCC standard reply is that the 27MHz i.s.m. allocation is already in use for radio-paging and by many thousands of radio-control modellers—and that these services would be seriously jeopardised by CB operation. If anyone attempted to shift CB operation into the amateur 28MHz band it would not only incur the wrath of radio amateurs throughout the world but under Radio Regulations the licensing authorities would be obliged to ensure that no harmful interference could be caused to amateurs in any country outside the U.K.—a virtual impossibility with “Sporadic E” and F-layer propagation.

But it would be naive, as the American experience shows, for the Home Office to claim that no frequencies could possibly be found for CB or even for radio-controlled garage door openers. For example, large blocks of frequencies in the U.K. were reserved for military communications at a time when channel-widths were much wider than are now necessary, and when British military commitments were very different from those which would have to be there. And everything in the history of radio in the U.K. shows the reluctance of the licensing authorities, whether the Post Office or the Home Office, to extend the use of radio by the public unless absolutely worn down by external pressures.

In the early 1920s they hesitated long before allowing the man-in-the-street to have “oscillating detector” receivers and delayed the start of broadcasting. In 1925 they attempted to stifle all communication overseas by radio amateurs ... the list is a long one.

The Home Office is of course well aware that even low-power CB transmitters can be used for odd purposes or may cause an embarrassing amount of interference. The escape of the Russian double-agent, George Blake, from prison was facilitated by the use of illegal CB equipment. The Baker Street bank robbers of September 1971 used CB radio to their look-out man, unaware that their messages were being intercepted. Some of the smaller CB units can be used as radio "bugs".

732
Amateur Opposition

The Radio Society of Great Britain as the body representing British radio amateurs, goes along with the Home Office in opposing the extension of CB to the U.K. saying: "No support can be given to the establishment of a communications band in this part of the spectrum. Reports of CB activities in the U.S.A. show gross violations of the regulations, leading in some cases to heavy fines and prison sentences. The Society has no desire to see the spread of these practices to the U.K."

The author, holder of an amateur licence for 40 years, finds it difficult to support fully this view, though recognising that amateurs have very real reasons to fear and resent some aspects of CB operation. It is easy to imagine how those with a Class B amateur licence, who have had to pass the Radio Amateur's Examination to use frequencies above 144MHz, would resent the issue of lower-frequency CB licences on request. There is plenty of evidence that licences that are obtained without personal effort are but little respected by the hobbyist.

Friendly Service

Yet the American Radio Relay League, the national society of American and Canadian amateurs, is currently striving to reduce tensions between amateurs and CBers, pointing in glowing terms to some of the more socially useful aspects of CB operation and carefully distinguishing between the hobby users of CB (who the League feels should be encouraged to become amateurs) and those who simply want low-priority communications.

Even the much-publicised "Smoky Bear" warnings of police speed traps are now often tolerated and made use of rather than opposed by the American law enforcement agencies. A Channel 9 emergency service - "REACT" - exists in many areas and has been credited with useful services rendered to the public.

Sailing and power-boat enthusiasts often use CB equipment as a safety measure in circumstances where normal marine radio would be far too costly. Mountain rescue teams have made good use of CB radio.

Much of the argument for CB is philosophical. Two-way radio has been developed to the stage where it can be used by the public with only a small amount of risk to others. Are we then right to deny such a service to the citizen on the grounds that it would inevitably be abused by a small minority? We do not try to deny the public access to the telephone service because a few people use it to make obscene calls.

If six million transmitters in the U.S. can be accommodated in only 23 channels and yet the public still finds it worthwhile acquiring more CB units, is there not an obligation on the U.K. licensing authorities to find some space for such a service?

The radio spectrum is a national resource but not one that is diminished by use. It is a wasting asset only if it is not well managed and fully utilised for the public good. We need to weigh the pros and cons carefully, not to argue from our prejudices.

Good Citizen

In brief, the Home Office Radio Regulatory Division should surely be encouraged to explore how modern two-way radio systems could be extended to the public domain for such purposes as traffic information and "companionship", and for the original concept of assisting the private citizen in the conduct of his personal affairs or business activities. On the other hand there is a strong argument for firmly channelling the hobbyist into amateur radio, where, he belongs, with its self-training and technical investigations, possibly by provision of temporary novice or beginner licences, but with a built-in incentive to progress to the standard licences.

Short-range two-way radio has reached the stage where the public at large can benefit by the facilities it provides - is it not time that the U.K. licensing authorities recognise this?

Microprocessor Symposium

The Society of Electronic and Radio Technicians is holding a residential symposium on microprocessors and their applications at Sussex University from 26-29 September 1976. Associated with the symposium is a competition for an application of MPUs by the home constructor which is simple, economic, original and useful or entertaining. First prize is £150.

Details from the MPU Secretariat, SERT, 8-10 Charing Cross Road, London, WC2H OHP.

Courses

The Bury Radio Society will be running a RAE course in the 1976/77 session. Enrol: Tuesday Aug 31 and Sept 7, time, 8.00 p.m. at the Mosses Youth and Community Centre, Cecil Street, Bury.

The Shelburne Radio Club are starting a new RAE course aimed at the December 1977 exams to allow time for practical experience.

A course for the RAE City & Guilds No. 765 giving tuition in theory, Morse and practical work is being run by the Walsall College of Technology.

Enrol: Wednesday September 8, time, 6.30 p.m. at the Walsall College of Technology, Walsall, WS1 1XN.

-WONAX ELECTRONICS-

We are advised that Sonax Electronics are now in liquidation and that all claims outstanding against this company are being handled by the Official Receiver at Atlantic House, Holborn Viaduct, London, EC1N 2HD.
INVESTMENT/EXPANSION

For too much is heard from the groaners about lack of investment in British industry. Investment, of course, is one of those things you can't have too much of but investment doesn't come out of thin air. The tax-payer foots the bill, like it or not, for nationalised industries, at least for the unprofitable ones which means most. For private enterprise, new investment must come out of profits, which are hard to come by, or from investors who, these days, are more timid than they used to be having suffered from dividend restraint and then being taxed to the hilt on the dividends they get.

Far from grumbling about how little is invested I find it astonishing that, in all the circumstances, there is so much.

Take Mullard, part of the Philips International Group. The new clean room facility for the production of N-MOS memory circuits has cost £3 million as a first instalment. Only one third of it is in current use and by the time it is full up the grand total invested will be more like £6 million.

The Mullard semiconductor plant at Southampton is being turned into the main European manufacturing centre for MOS circuits. The products will be marketed as Signetics, the Californian based company which Philips acquired last year and the first product line is to be the Signetics 4k RAM.

The decision to build the new facility was taken, however, before the acquisition of Signetics, taken in fact at the very depth or nearly so of the recession.

Ploughing in a steady £400,000 a year into new plant and machinery is Marconi Instruments. British Physical Laboratories (Racal Electronics Group) has just opened an extension to its factory at Radlett, part of a £13 million expansion scheme. Racal Communications has also just moved receiver production to a larger factory—it needed more space.

Flushed with success from world-wide demand for EMI-Scanner X-ray equipment, EMI has had to find new premises for what is virtually a brand new business. The Medical Electronics Group has acquired a £2 million 40,000 sq ft office complex at Slough. By the end of the year some 200 staff will have moved in, increasing to 260 during 1977. The staff will be mainly administration and sales with some engineering support. Building the EMI-Scanner takes half a dozen manufacturing centres, all of which have needed investment in equipment and space.

This, in turn, has caused another spin-off in investment. SE Labs (EMI) Ltd. has increased turnover by £5 million in the past year, some of it coming from the supply of instrumentation to EMI's medical group. So SE Labs has had space to expand, and has taken over the 40,000 sq ft factory at Frimley previously occupied by Shandon Southern Instruments, who themselves have moved on to Ash Vale. SE Labs is additional to SE's existing plants. It's a nice acquisition for SE Labs because they have taken over a number of skilled people already employed on the site who didn't want to move and will be recruiting another 150 people over the next year.

PLENTY OF ACTION

If you just look at worn-out industries, sure you won't see much movement. Look at electronics where there is a big future and there's still plenty of action.

Trade figures are looking better all the while. ICL, once the slumbering giant of the computer industry, had a record six months to the end of March. Turnover up 23 per cent to £116 million, operating profit up 35 per cent to £10.5 million over the comparable period in 1975. STC, the British end of ITT, reports turnover up 15 per cent at £383 million with exports up 20 per cent from £57 million to £68 million. Net income, however, was down £4 million but, on the other hand, over £4 million extra was spent on R and D.

Order books are firm with some nice single contracts like a £1.25 million flight simulator from Redfin destined for Brazil, and a colour TV broadcast contract worth £5 million for EMI from Nigeria. Of course there is still anxiety and uncertainty in some quarters of the industry, particularly over the general economic situation, but there is still plenty of business to be had for those who are prepared to go and get it. But the consumer market is still in the doldrums. A rumour that the TV licence fee is going up to £27 is discouraging buyers and has already nullified the boost for the industry from last year's VAT reduction recently made.

COMMUNICATIONS

I was one of the crowd of 14,000 sweltering in the heatwave which coincided with the Communications '76 Conference and Exhibition at Brighton. Both the conference and the exhibition were a triumph for organiser Tony Davies. There were 750 exhibitors and organisations in the show and the conference attracted 659 delegates from 32 countries. The British Overseas Trade Board did a great job in organising a sponsored tour of British manufacturing for buyers from over 40 countries.

I hope to discuss some of the commercial implications of the communications business in future issues but here are a few statistics to be getting on with. Today's U.K. population size and we could get on with. Today's U.K. population size and we could get on with. Today's U.K. population size is full up the 40,000 sq ft. factory at Frimley previously occupied by Shandon Southern Instruments, who themselves have moved on to Ash Vale. SE Labs is additional to SE's existing plants. It's a nice acquisition for SE Labs because they have taken over a number of skilled people already employed on the site who didn't want to move and will be recruiting another 150 people over the next year.

Two-way radios, excluding the military, is some 200,000 installations with an anticipated increase to 500,000 by 1985.

London's Post Office public radio paging system, due to open in a few weeks, will eventually cater for 100,000 users although only 20,000 are being allowed for in the first period of operation. A central solid state 100W transmitter is situated atop the Post Office Tower and a ring of at least nine supplementary transmitters will give coverage over the whole of the capital. A user can be paged from anywhere in the U.K. automatically through STD.

But these figures are small fry in comparison to those postulated for Citizens Band radio for the U.K., if it comes, and there is plenty of commercial pressure to make CB come (see special article elsewhere in this issue—Ed.). Expect an announcement shortly.

If we look to the United States for the pattern we find over six million CB licences already issued and the authorities now grappling with half a million licence applications a month. So bound up in the U.K. population size and we could have a 1.5 million CB radios in action in a few years. Chaos!

But nice revenue for the Government and a bonanza for set manufacturers.
FREE
with NEXT MONTH'S Issue

WIRE BENDING GAUGE
A useful workshop aid for the home constructor. Suitable for horizontally or vertically mounted components, with graduated spacing for 0.1 and 0.15 inch matrix layouts.

PLUS THESE SOUND DESIGNS

DIGITAL PPM
This l.e.d. Peak Programme Meter possesses the same characteristics as the standard p.p.m. (attack and decay times, etc.), but uses two columns of 16 l.e.d.s for the display rather than the expensive stereo meter movements normally used. An added benefit of the system is that it allows a greater dynamic range to be displayed.

CINE/TAPE SYNCHRONISER
This circuit uses digital techniques to count and compare trains of pulses coming from the cine projector and the associated tape recorder, which may be either stereo or mono. The article describes how to use the resulting signals to control the speed of various types of projector motor in common use. Automatic starting of the projector is also provided.

PRICE INCREASE—As from the October issue, the cover price of Practical Electronics will be 40p. This increase is regretted, but rising production costs make this unavoidable.

PLEASE NOTE: It is in your interest to place a firm order with your newsagent—in advance. Back numbers are not available, so make sure of your copy now!

PRACTICAL ELECTRONICS
OUR OCTOBER ISSUE WILL BE PUBLISHED ON FRIDAY, SEPTEMBER 10, 1976
The lower deck of Digiscope is based on a piece of strip board identical to that used for the upper deck and it carries the circuitry which makes up the Reference Generator, Comparators, Row Decoder, Blanking Gates, Row Drivers, Trigger Generator, Trigger Latch and Sweep Generator.

You may remember from Part I that the output of the Y-Amplifier is "digitised" with the aid of a series of comparator circuits each connected to a unique reference voltage differing from its neighbours by about 800mV.

REFERENCE GENERATOR

The reference voltages required by the Comparators are generated by the Reference Generator circuit which is made up of a series string of forward biased silicon diodes so that the basic reference increment is the V_f of the diodes or about 800mV.

The choice of reference voltage increment is fundamental to the design of Digiscope since it sets the gain required of the Y-Amplifier and determines the d.c. trace shift error with time and temperature. Using Zener diodes in the Reference Generator could make each increment more precise and increase stability against temperature fluctuations but would require the use of larger voltage increments because Zener diodes start at about 3V and are not much good up to about 5V. Even using 3V devices the voltage required at the Y-Amplifier output would be excessive and difficult to achieve in practice without resort to expensive types of op-amps. Reducing the reference increment below 800mV would be possible if suitable, dependable, reference diodes were available although large reductions would not be possible anyway, because the d.c. drift at the output of the Y-Amplifier would cause a significant shift in trace position with time and temperature. A resistor chain could be used to set these reference increments but the supplies to the chain would have to be floating with respect to other Digiscope supplies because Y-shift is achieved by connecting an appropriate point on the reference chain to 0V via an eight way switch.

In practice the 800mV reference provided by forward biased diodes works very well and gives a cheap and easy to implement system with repeatable results.

Transistor base-emitter junctions are used as the reference diodes since these tend to give a tighter spread on their forward voltage characteristics, and are also in easier-to-handle packages. The Reference Generator circuit can be seen to the left of Fig. 3.1. R42 and R43 set the diode current to between 4 and 7mA depending on the setting of S3. C14 and C15 decouple any h.f. noise which could cause jitter at the Comparator outputs, and S3 is, of course, the Y-shift control. Using S3 to control the reference chain zero means that the Y-Amplifier can run without any d.c. offset and so is easier to design.

COMPARATORS

The Comparators are required to give a logic-type output indication of whether their common input is above or below their particular reference voltage. 741-type op-amps can be used as comparators by operating them "open-loop" so that a very small voltage difference at their inputs causes the output to switch to one or other of the supply rails, but this solution is not practical for Digiscope for two reasons. First, the output of a standard op-amp operated as a comparator is not compatible with TTL logic levels and so would require level shifting circuitry to achieve an interface with the Row-Decoder. Secondly, and perhaps more fundamentally, the Digiscope Comparators are required to switch very rapidly indeed from one state to another as the input signal passes their threshold, and standard op-amps are really too slow for this job, requiring times in the order of 1 microsecond to switch states. When you consider that an input signal of 1MHz will have completed one whole cycle during the 1 microsecond transition period you will be able to see why a purpose built comparator integrated circuit is necessary with switching times at least an order of magnitude faster.

Fortunately there is a cheap solution to the problem in the form of the 710 high speed voltage comparator which has been around for quite a while now, available in a variety of package styles. The 710 runs from plus 12V and minus 5V supplies and has an output with TTL voltage levels. The response time is a mere 40 ns which guarantees a faithful display of high TTL voltage levels. The response time is a mere
As can be seen in Fig. 3.1, nine 710 devices are used in all, each with its non-inverting input connected to a unique reference voltage from the Reference Generator circuit. The Y-Amplifier output drives all the inverting inputs of the Comparators in parallel, so that the same signal voltage is applied to each. R41 and the back-to-back Zeners form a limiter circuit to prevent the Y-Amplifier output swinging further than about plus and minus 6V from ground, this being necessary to comply with the data sheet ratings for the 710 input voltages during overload conditions, when the Y-Amplifier attenuator is set wrongly, for example.

ROW DECODER

The nine Comparator outputs drive the Row Decoder inputs, and the operation of these two circuit blocks together is best understood by referring to Fig. 3.2, which is a simplified block diagram. For the sake of this diagram, an instantaneous Y-Amplifier output voltage of $\frac{5}{2} \times V_{ref}$ is assumed, and the Y-shift control is set so that the lowest comparator reference is at 0V. Since the input is equivalent to $\frac{5}{2} V_{ref}$ then the outputs of comparators 1, 2, 3, 4, 5 and 6 will switch to give a logic 1 out, and comparators 7, 8 and 9 will give a logic 0 out.

The Row Decoder consists of a series of exclusive-or gates whose purpose is to detect the transition point between Comparator outputs which are 1's and those which are 0's. The exclusive-or gates are of the TTL 7486 type, and unlike familiar NAND and NOR gates each 7486 gate gives a logic 1 output only when its two inputs are different, i.e. 10 or 01, and a logic 0 output when its inputs are the same, i.e. 00 or 11.

For any instantaneous value of input voltage, then, only one of the eight Row Decoder outputs will be a logic 1 and this output will light up a particular row on the i.e.d. matrix. Because only one column of the matrix is enabled by the Sweep Generator, however, only a single i.e.d. in the matrix can be on at any instant.

![Fig. 3.1. Reference Generator, Comparators, Row Decoder, Blanking Gates, Row Drivers, Trigger Generator, Trigger Latch and Sweep Generator. The diode chain is made up of transistors as indicated](image-url)
Fig. 3.2. Example of Y deflection logic operation

BLANKING GATES

The outputs of the Row Decoder drive the l.e.d. matrix via level shifting and gating circuits. The 7401 open collector NAND gates provide both the necessary inversion to interface with the pnp Row Driver transistors, and a common inter-trace blanking facility, which when driven low by the Trigger Latch output, disables all the Row Drivers so that the display is off. This facility is necessary because at the end of a single timebase sweep the timebase halts whilst awaiting another trigger pulse. The Sweep Generator would enable column 1 during this pause and would give an incorrect display.

ROW DRIVERS

The 8 pnp Row Driver circuits have a critical job to do since they have to switch the l.e.d. drive current as quickly as possible to allow good picture definition at high timebase speeds. The l.e.d. current is set by the 100 ohm resistor to about 30mA peak, and each Row Driver has to be able to switch this current in less than 100ns. General purpose silicon pnp transistors were used to achieve this performance in the prototype, but no doubt an improved performance could be achieved with a transistor optimised as a fast switch.

HORIZONTAL DEFLECTION

We have now followed the vertical deflection system from the Y-Amplifier to the Row Drivers, and now need to consider the remaining parts of the horizontal deflection system which follow the timebase system described last month. In a conventional oscilloscope, horizontal deflection is achieved by driving the X plates of the c.r.t. with a high voltage, linear, ramp waveform. This has the effect of moving the spot across the tube face from left to right during the linear rising ramp period, and causing it to return rapidly to the left during the fly-back period.

Since Digiscope does not employ an electron beam to drive its display the word “deflection” is really a misnomer, and in fact no high voltage ramp is necessary, only a simple binary counter and decoder. The rising ramp is simulated by the binary counter starting from zero and incrementing on each clock pulse until the terminal count is reached, and the flyback occurs as the counter returns to zero on the next clock pulse.

Initiation of the ramp is of course normally brought about by the triggering circuitry, and a similar operation takes place in Digiscope though with the advantage that no analogue circuitry is involved at all.

TRIGGER GENERATOR

Fig. 3.3 shows the core of the horizontal deflection circuitry, and the best place to start is with the Trigger Generator. The output from the Trigger Amplifier is a logic compatible positive edge coincident with a transition of the Y-Amplifier signal through a selected threshold level, and in a selected direction (positive or negative). This positive going edge triggers a 74123 TTL monostable to give a very short, negative going pulse at its Q output which can be used to initiate a single horizontal sweep. The second monostable in the 74123 package is triggered by the output of its neighbour, although in this case the CR network is set to produce a long pulse. This second monostable is used to provide the important facility of auto-trigger.

AUTO-TRIGGER

This is a technique for ensuring that there is always a bright-line trace on the screen, even if there is no triggering signal available for synchronisation. This facility is useful because a reference trace is always displayed, allowing measurements of d.c. voltages and offsets to be made easily. The old way to achieve a bright trace in the absence of a signal was to allow the timebase to “free-run” and use the trigger signal to synchronise the timebase free-run frequency. This led to the exasperating phenomenon of “dodgy” triggering where the trigger sensitivity had to be painstakingly adjusted for each new signal waveform.

The problem was due to the fact that the timebase was basically a free running oscillator, and had to be coaxed into synchronisation, whereas with the Digiscope circuit the timebase is not allowed to free-run unless a suitably long time interval has elapsed since the last trigger pulse was received. Once the Digiscope Trigger Generator has switched to the free running mode then a single trigger pulse will cause it to switch back instantly to the triggered mode whereupon it will again wait for a period before reverting once more to the free-run mode if no further trigger pulses are received.

738
OPERATION

The length of period is set by the time constant of monostable IC23b, and the operation of this novel circuit can be followed with reference to Fig. 3.3.

When a normal input signal is present then each transition causes IC23a to be triggered to produce a single, narrow, negative-going output pulse which is presented to the input of IC19a and to IC23b. The time constant of IC23b is long, at about 40 milliseconds, so that an input frequency of greater than about 25Hz will cause this monostable to retrigger so that its Q output remains in the logic 0 state. The Q output is inverted by IC19b so that the second input to IC19a is a logic one and the trigger pulses from IC23a are allowed through to the Trigger Latch.

If the trigger pulses stop, or their frequency drops below about 25Hz then IC23a and IC23b are not triggered, although of course the Q output of IC23b cannot return immediately to a logic 1 because of its long time constant. When it does go to a logic 1 then the output of IC19a is forced to the logic 1 state, enabling IC19c and initiating another sweep by clearing the Trigger Latch. If no more trigger pulses are generated then IC19c remains enabled so that the Trigger Latch clears itself at the end of each sweep to give a virtual "free-running" timebase.

The circuit will remain in this state until further trigger pulses are detected so that a continuous trace is produced on the screen even with d.c. input signals.

TRIGGER LATCH

The Trigger Latch is a D type flip-flop and is normally set by the terminal count output of the SN74160 at the end of a sweep and cleared via IC19c on the receipt of a trigger pulse. The outputs of the Trigger Latch control both the Timebase Oscillator and the Blanking Gates as previously described.

SWEEP GENERATOR

The Sweep Generator consists of a 74160 synchronous t.r.l. decade counter and a 74145 four line to ten line decoder driver. The clocking of the Sweep Generator is performed by the Timebase Oscillator and is enabled by the output of the Timebase Dividers giving a range of clock periods from 100ns to 10s depending on the control settings. The four line b.c.d. output from the counter drives the decoder inputs to give ten unique outputs per sweep to drive the ten column inputs of the l.e.d. matrix, each output remaining on for one clock period only.

After nine clock pulses the terminal count goes high to prime the Trigger Latch, and on the tenth clock pulse the counter returns to a count of zero and the Timebase Oscillator is gated off by the Trigger Latch until another sweep is initiated by a trigger pulse.

The 74145 decoder has ten high sink-current outputs and is ideal for driving the heavy load represented by the l.e.d. matrix drive current.
DISPLAY MATRIX

Fig. 3.4 is a simplified schematic of the l.e.d. display and its associated drives, and at this point it is possible to tie together the X and Y deflection systems to see how the display operates. The essential thing to remember is that at any instant, only one l.e.d. in the matrix can be on, and the particular l.e.d. required is selected by the intersection of a valid row drive and column drive. The Row Drivers are driven asynchronously by the Y input signal, and the Column Drivers are driven synchronously by the Timebase Oscillator so that the combination of these two drives results in a graph of the input signal being plotted, relative to time, on the points of the display matrix.

LOWER DECK CONSTRUCTION

The construction of the lower deck circuits follows the same pattern as the upper deck, and, as before, the use of fine connecting wire and miniature components is absolutely essential. Terminal pins were used extensively on this board, in particular to allow the distribution of power supply voltages via tinned copper wire buses on the upper side of the board, as shown in Fig. 3.5.

The outputs from the Reference Generator diodes are also terminated on pins, as are the main supply voltage inputs from the power pack. The minus 5V for the 710 comparator circuits is derived from the minus 12V rail by a resistor/Zener network mounted under the board near the main supply inputs, since there is little point in producing a separate minus 5V supply in the power pack when the current drain on this rail is so low.
COMPONENTS...

Resistors
- R41: 560 Ohm
- R42, R43: 1.5k Ohm
- R44-R52: 1k Ohm
- R53-R60: 2k Ohm
- R61-R68: 820 Ohm
- R69-R76: 620 Ohm
- R77-R84: 100 Ohm
- R85: 10k Ohm
- R86: 5.6k Ohm
- R87: 5.6k Ohm
- R88: 1k Ohm
- R89: 1k Ohm

Capacitors
- C14-C17: 0.01µF ceramic
- C18: 24µF
- C19: 10µF elect 25V

Semiconductors
- TR14*-TR21*: Any silicon pnp (plastic)
- D18-D19: BZY88 5.6V 400mW Zener (2 off)
- D20: BZY88 5.1V 400mW Zener
- D21*-D28*: 2N2926 (8 off) (see text)
- IC6-IC14: 710 dip (9 off)
- IC15-IC16: SN7486 (2 off)
- IC17-IC18: SN7401 (2 off)
- IC19: SN7410
- IC20: SN74160
- IC21: SN7474
- IC22: SN74145
- IC23: SN74123

The 710 circuits themselves can be obtained in a wide variety of package styles some of which are incompatible with the board layout so it is important to shop around for the correct type. The 8 pin mini-dip style was used in the prototype, coded N5710V from Signetics, but there is no real reason why the TO5 style package should not be used if you don't mind all the lead forming necessary to mate with the "square" hole matrix.

CIRCUIT TESTING

It is probably best to wait until the overall interconnections (to be detailed next month) are completed before testing the Trigger Generator, Trigger Latch and Sweep Generator, but the Reference Generator, Comparators and Row Decoder can be tested in isolation if desired. The lower end of TR13 should be connected to 0V (to simulate the d.c. level shift control) and voltage source variable between zero and about 8V should be connected between 0V and the left hand end of R41. (A variable power supply or a potentiometer could be used). With appropriate power supplies connected the voltage source can be adjusted while individual comparator outputs are observed with a multimeter.

The performance of the Comparator outputs should conform to the principles described in Fig. 3.2, and of course, using the same test set-up, the Row-Decoder outputs can be checked against this figure also.

Next month: Final construction and power supply details.
LIGHT-UP ALARM

By M. PLANT

THE "law" is becoming increasingly impatient with drivers who fail to switch on their lights soon enough during the approach of darkness or in conditions of poor daylight generally. Commercially-made units which provide an audible warning of lighting-up time are costly, but the circuit described below shows how to build a low-cost warning system which can be installed in the car simply and unobtrusively. The circuit provides the warning by flashing a lamp and is designed to stop flashing as soon as the lights are switched on.

CIRCUIT

The circuit uses a dual operational amplifier in integrated circuit form. This is the 747 type which contains two identical op amps of the common 741 variety. As a matter of interest, this dual op amp is good value for money since it can be bought for less than the price of two individual 741s. Note that the two op amps share the same negative supply connection but have independent positive supply pins. Otherwise the two internal circuits are quite separate from each other.

Fig. 1 shows how the two integrated circuit op amps are used to provide the alarm circuit. The dotted line divides that part of the circuit which responds to the failing daylight from that part designed to flash the warning lamp.

First the circuit employing IC1a. This is used to detect the sign of the voltage difference between the midpoints of the bridge of the four resistors VR1, R9, R1 and R2. The inverting input (pin 1) of IC1a is held at half the supply voltage by means of the voltage divider R1 and R2. The voltage at pin 2, the non-inverting input, is at a voltage determined by the resistance of the photocell for a given setting of the preset resistor VR1. Under bright light conditions, the resistance of R9 is low, therefore holding the voltage at pin 2 below that of pin 1. This ensures that the output voltage at pin 12 is low, usually just above 0V. But as darkness falls, the resistance of R9 increases, raising the voltage at pin 2.

When this voltage reaches a fraction above that at pin 1, the op amp amplifies the small difference and the output voltage rises sharply to near the value of the supply voltage. Since IC1a is operated open-loop, no feedback resistor being connected between the output and the inverting input to control the voltage gain of the amplifier, the change in light intensity required to make the output voltage swing from near zero to the supply voltage is very small. In other words, the circuit operates at a very precise level of light intensity. The required setting of VR1 is described later.

OSCILLATOR

Now to concentrate on the way IC1b is used. This op amp is powered from pin 12 of IC1a by connecting this pin to the positive supply pin of IC1b. This second op amp is connected as a free-running astable multivibrator providing square wave pulses at pin 10 varying from just above 0V to near the supply voltage. When the output voltage is low, the npn transistor TR1 is off, and when it is high TR1 switches on and lights the lamp. Briefly, the astable multivibrator works as follows.

COMPONENTS . . .

<table>
<thead>
<tr>
<th>Resistors</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, 2</td>
<td>470kΩ</td>
<td></td>
</tr>
<tr>
<td>R3, 4, 5</td>
<td>100kΩ</td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>33kΩ</td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>47kΩ</td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>100Ω ½W</td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>ORP12 or similar</td>
<td></td>
</tr>
<tr>
<td>All resistors ½W carbon 10% unless otherwise stated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometer</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1</td>
<td>47kΩ min. preset for 0-1in matrix board</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>10uF 25V elect.</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>22uF 16V elect.</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>100uF 16V elect.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>747 (SN72747, µA747C etc.)</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>OA200, OA202, OA91, 1N4001 etc.</td>
<td></td>
</tr>
<tr>
<td>TR1</td>
<td>BC107, BC108, 2N2926, 2N3704, ZTX3000 etc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LP1</td>
<td>6V, 60mA LES lamp and holder</td>
<td></td>
</tr>
<tr>
<td>0-1in stripboard 3in × 1.5in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-way terminal block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suitable case</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If capacitor C1 is initially charged so that the voltage at pin 7 is higher than at pin 6, the output voltage is low. However, C1 will discharge through R6 so that the voltage at pin 7 decreases exponentially. When this voltage falls just below that at pin 6, the op amp immediately drives the output into positive saturation, thereby driving on TR1 causing LP1 to light. Capacitor C1 now begins to charge up through R6 and the voltage at pin 7 rises. When once again this voltage exceeds that at pin 6, the output voltage sharply drops to near zero and the cycle repeats. The repetition rate is determined by the value of C1 and all the values R3 to R6, decreasing for higher values of C1 and of R3, R4 and R6, but for lower values of R5. For the values indicated in the circuit diagram, the lamp flashes at a frequency of about 1-5Hz. The lamp used in the prototype was a generally available 6V, 60mA type in a lamp holder and lens and its voltage necessitated the inclusion of a 100 ohm resistor in series with it in the collector load of the transistor. Capacitor C2 in parallel with the photocell ensures that

ASSEMBLY

As illustrated in Fig. 2, the circuit board can be a 30 x 14 hole 0.1in matrix stripboard. The components may be assembled in a different way to that shown, if their physical size necessitates this.

Once the components are soldered into place and excess component lead showing underneath removed, the stripboard should be cut in the places indicated. Leads are then taken out from this board to the terminal block as also shown in Fig. 2. Having decided where the unit is going to be firmly fixed in the car (e.g. behind the steering column), you must determine the length of leads required for the lamp and the photocell, the lamp being mounted preferably on the dashboard, and the photocell positioned somewhere near a window so that ambient light is caught by it. You should take care to make the lamp is not momentarily switched on by sudden changes in light intensity. Capacitor C3 across the supply lines ensures that the operation of the circuit is immune to the effects of voltage spikes on the vehicle's electrical circuitry.

LAMP CONTROL

There are two methods for ensuring that the lamp ceases to flash as soon as the sidelights or headlights of the car are switched on. The first method requires that the photocell is positioned inside the lamp housing so that it becomes illuminated by the car’s lights as soon as they are switched on. This arrangement, however, is only possible if the headlights are not of the sealed-beam type.

The second method relies upon the circuit being able to detect the rising voltage across the lamp which is being switched on. A diode D1 is connected as shown with its cathode to pin 7 and its anode to the switch terminal on the car rising from 0V to 12V when the switch is operated to bring on the side or headlights. This positive voltage at pin 7 ensures that capacitor C1 remains charged and the lamp remains off.
firm connections to the photocell to avoid the possibility of the leads to it breaking off. It is a good idea to put the photocell inside a short length of plastic tube to protect it and provide it with an ability to respond to light substantially from one direction. The prototype circuit was housed inside a small plastic box used for photo transparencies. The circuit board should be firmly held inside this box by a piece of foam rubber or expanded polystyrene. Take leads from the terminal block sufficient in length to reach the chassis (negative connection for negative earth vehicles) and to the positive connection of the battery via the ignition switch.

INSTALLATION

The circuit should be tested by connecting the supply leads from the terminal block to the car battery and, by covering the photocell, adjusting the preset resistor VR1 until the lamp begins to flash. Upon allowing light to reach the photocell, the lamp should remain off. Leave the final setting of VR1 until the unit is installed. When the lamp and photocell are firmly positioned, the OV lead from the terminal block is connected to a convenient point on the chassis of the car for negative earth operation.

You will need to gain access to the side/head switch and to use a voltmeter or 12V lamp to find a switch terminal which rises from 0V to 12V when either the side or head lamps are switched on. When you have found this terminal, the lead from the terminal block connected to the “inhibit” connection I is joined to it, ensuring that the connection is reliable. In order to set the circuit to respond at the correct twilight level you will need to wait for the right conditions (or drive into a partially darkened garage) in order to set VR1 to bring the light on. Subsequently you may need to make fine adjustments to this setting.

COMPONENT VALUES

Many of the components in the circuit are not critical although the values used in the prototype are listed. VR1 may range from 100kΩ to 22kΩ. R1 and R2 may each be 100kΩ or 220kΩ. C3 may be as high as 1000µF if room can be found for it but, to be effective, should not be less than the value listed. Similarly, C2 may be as high as 220µF. D1 may be any general purpose silicon or germanium diode. The values of C1 and R6 are open to experiment since they determine, more significantly than the other components, the rate at which the lamp flashes. However, to obtain approximately the same flashing rate as in the prototype (about 1.5 per second), an increase of R6 to, say, 120kΩ requires C1 to be decreased to about 2.2µF. The transistor can be any medium current switching transistor capable of handling the maximum filament current of the lamp (i.e. about 100mA). Alternative transistors are listed.
A RANGE OF STURDY, PRE-FABRICATED WOODEN CABINETS

All these cabinets are accurately machined, rebated and radius, with all baffle holes cut out and fixing holes drilled. All the cabinet covering, fretcloth and fittings are included, along with detailed assembly instructions.

ALL YOU PROVIDE IS GLUE AND MANPOWER!

<table>
<thead>
<tr>
<th>Cabinet Kit</th>
<th>Dimensions</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 12" (or 1 x 15")</td>
<td>28" x 17½" x 11½"</td>
<td>£14.90</td>
</tr>
<tr>
<td>4 x 12" (or 2 x 15")</td>
<td>29" x 28" x 11½"</td>
<td>£17.90</td>
</tr>
<tr>
<td>Disco Console Kit</td>
<td>36" x 19" x 9"</td>
<td>£16.90</td>
</tr>
</tbody>
</table>

All prices inc. V.A.T. and carriage

Cheque or Postal Order to: KITKABS, P.O. Box 41, Stadium Works, Grainger Road, Southend-on-Sea, Essex

THE
"Manta" Capacitive Discharge Electronic Ignition Unit

IMPORTANT NEWS:

We are pleased to announce that the "Manta"—one of the highest quality ignition units available—is now supplied in Kit Form.

Construct this top performance electronic ignition unit and benefit from improved petrol consumption, smoother running and instant starting for your vehicle.

Kit price (including postage and packing, VAT, full assembly and installation instructions):

ONLY £16.50

(Ready-made unit available at £19.85, including VAT, postage and packing)

Send S.A.E. today for full details of this top quality unit to:

ELECTRO SPARES
Dept. P.E., 187a Sheffield Road, Chesterfield, Derbyshire S41 7JQ. Tel. (0246) 36638

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order (and industrial) suppliers of semi-conductors, components, accessories, etc. There are wide ranges and large stocks to choose from as well as many worthwhile advantages to enjoy when you order from Electrovalue.

CATALOGUE 8 ISSUE 2 READY NOW!

Second printing (Green cover) with updated information, 144 pages. New items. Opto-electronics. Diagrams of components, applications. I.C. circuits, etc. Post free 40p, including voucher for 40p free goods. Price £5.95 list value. A must for careful buyers.

DISCOUNTS

On all C.W.O. mail orders, except for some items marked NETT.

5% on orders list value 10% on orders list value

not applicable to credit card purchases.

FREE POST AND PACKING

On all C.W.O. mail orders in U.K. over £2 list value. If under, add 15p handling charge.

PRICE STABILIZATION POLICY

Prices are held and then reviewed over minimum period of 3 months. Next review period effective from October 1st.

QUALITY GUARANTEE

On everything in our Catalogue—No manufacturers rejects, seconds or sub-standard merchandise.

ELECTROVALUE LTD

All communications to Dept 92, 26 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 9HR. Telephone Egham 3620. Telex 284475. Shop hours 9-5.30 daily, 2-1 pm Sat.

NORTHERN BRANCH: 685 Burnage Lane, Burnage, Manchester M19 1NA. Telephone (061) 432 4446. Shop hours Daily 9.30-5.30 pm, 9-1 pm Sat.
NUMEROUS circuits have been published for "heads/tails" indicators, based on multivibrators. These usually consist of a gated astable multivibrator with a 1:1 mark to space ratio, running at a frequency such that individual states cannot be recognised during the gating period. The 1:1 mark to space ratio ensures equal probability of either state being achieved.

Many games use a random indication of one of two states, but require a weighting to be applied to these states such that there is not an equal probability of either state being achieved. An obvious though not very satisfactory way of achieving this uses an astable multivibrator with a variable mark to space ratio.

The circuit shown in Fig. 1 overcomes most of the difficulties and consists of three main blocks:

(a) A resettable binary counter with a decoded decimal output of 0-99. It uses two 7490s, each wired to divide by 10, the output from the first driving the second. The respective BCD outputs from each are decoded to a decimal form using two 7442s.

(b) A gated astable multivibrator using 3 of the 4 gates of an SN7400. The frequency of the 1:1 square wave output is controlled by the value of capacitor C1 (1nF produces a frequency of approximately 1MHz).

Oscillation is achieved by the application of a logic 1 signal to the enable gate IC7c.

(c) The gating and parity detecting circuitry of IC6 (SN 7427) together with half of a D-type flip-flop (SN 7473), control the resetting of the BCD counters to zero, and the alternate enabling of two reset gates IC6a and b.

Assume that the "heads" probability is set to 40 and the "tails" probability to 60; the BCD counters IC1 and IC2 to zero (QA, QB, QC and QD all at logic 0) and the flip-flop IC5 with Q at 0 and Q at 1.

On applying a logic 1 signal to the enable input of the clock generator (IC7c) square wave pulses are applied to the A input of the first decade counter (IC1). The binary output is decoded to a decimal equivalent by the corresponding BCD decoder (IC3) and each 10th pulse passes to a similar counter (IC2) and decoder (IC4).

When the decimal output of IC4 = 4 and IC3 = 0 the output of IC6b goes from 0 to 1 (since all three inputs of IC6b are at 0). Any 1 at IC6c produces a corresponding change from 1 to 0 at its output. This produces two simultaneous effects.

1. After inversion by IC7d the positive pulse resets both IC1 and IC2 to a binary equivalent of zero, and

2. The negative-going pulse from the output of IC6c, applied to the clock input of IC1 when a similar sequence of events occurs except that the reset pulse is now derived from IC6a.

The counting now continues in a similar fashion until the decimal output of IC3 and IC4 correspond to 0 and 6 respectively, when a similar sequence of events occurs except that the reset pulse is now derived from IC6a.

The net effect is that the Q and Q outputs of IC5 are alternatively switched on and off with a mark to space ratio of 6:4. Indication may be taken directly from the Q and Q outputs of IC5 using i.e.d.s or suitable lamp drivers.

No external reset for the 7490s or the 7473 are provided since the gating period is significantly longer than the clock period, and the states at switch on or at the end of a gating period will have little effect on the output obtained.

Dr M. J. Hacker,
Chirk, Clwyd.
SI LICONPNP
Hold Isolator MS/2-7
PE19 3JB
DEPT PE, P.O. BOX 3
Ring Modulator MS/2-9
Voltage
Keyboard Controller MS/2-3
Cabinet Kit (including Keyboard, etc.)
assemblies are also in stock.
Enhanced performance, a complete cabinet kit is available, incorporating a fully finished black enameled, silk-screened front panel, with matching back and base, and solid aluminum side panels.
Minitronics to Mk. 2 specification. Conversion details apply to Eaton Audio.
Kits are available for complete instruments or individual sections, or for the conversion of Ms. 1 Minis to Mk. 2 specifications. Conversion details apply to Eaton Audio P.C.B.s, but may be adapted to suit others.
In order to ensure that the appearance of the complete instrument enhances its performance, a complete cabinet kit is available, incorporating a fully finished black enameled, silk-screened front panel, with matching back and base, and solid aluminum side panels. This kit also includes all switches, knobs, sockets, and panel indicators. Suitable keyboards and contact assemblies are also in stock.

THE
MINISONIC 2
probably represents the best value for money in electronic musical instruments.
CONVERSION KITS
An Ancillary Functions Kit MS/2-14C.
Oscillator Conversion Kit MS/2-15C.
Oscillator 1-2 off MS/2-15C required.

READY-MADE INSTRUMENTS AVAILABLE
Cabinet Kit (inc. Keyboard, etc.)
MS/2-1-3
Keyboard Controller MS/2-3
$18.96
Voltage Controlled Oscillator MS/2-4
$25.96
Switch-Off MS/2-5
$25.96
Sync kit MS/2-8
$25.96
Environment Controller MS/2-9
$25.96
H.F. Filter Controller MS/2-10
$25.96
Low Noise Generator MS/2-11
$25.96
Dual Transistor MS/2-12
$25.96
Stabilized Power Supply MS/2-13
$25.96

Practical Electronics September 1976
New to live from PRONTO

Battery operated LCD read out

CALENDAR CLOCK KIT - crystal accuracy

Bold Digits - runs on two Penlight Cells.

Now is the time for the hobbyist to move into Advanced Technology with Prono!

PRONTO HI-MOLL - The completely portable liquid crystal display digital calendar clock kit offered in the United Kingdom.

*Battery operation - two small alkaline cells give a minimum life of 18 months.

*Superb accuracy through crystal control - of 3 minutes a year.

*Wide angle display with 4 inch digits.

*Push button interface of 3 display modes - hours minutes seconds.

TERMS: Cash on delivery - make a cheque and/or postal order payable to PRONTO ELECTRONICS LTD (P & P - U.K. £0.45 Overseas £1.50)

Please send me -

PRONTO 301 KIT/S

AT £29.50 EACH (Plus P & P)

PRONTO 304 KIT/S

AT £15.50 EACH (Plus P & P)

My cheque/P.O. for:

is enclosed

NAME

ADDRESS

B. BAMBER ELECTRONICS

Dept PE, 5 STATION ROAD, LITTLEPORT, CAMBS., CB6 1OE

Telephone: ELY (0533) 680185 (2 lines) Tuesday to Saturday

PLEASE ADD 8% VAT UNLESS OTHERWISE STATED

FREE WELLER 2E (EB5) SOLDERING IRON

With 24V 50W valve type. 12 volt fuse ready over 25K. Limited period only. Band limited.

VARIABLE ESTABLISHED POWER SUPPLY, mains 0-12V, 100mA, transistor current limiting at 500mA ± 2V of 50mA. Brand new by British manufacturer: Superex 3 x 3 in 4 x 4 complete with external 24 volt 5mm pot for voltage control. (1) Cleveland Coath bar supplied? £7.95. (2) 500mA (25-0-55mA) EDGEBURNE Meters, modern type by Sentinel Western, display area 3 x 6 in. 6 with 2 mounting lugs. Can be bored or left on right hand. £1.51 each, while stocks last.

MAINS ISOLATION TRANSFORMERS, Tapped mains type, 1 x 12V, 1 x 120V, 1 x 240V. New, boxed, made by Gardner. £25.

FLEXIBLE & CABLES, 8mm dia. PVC, approx. 1 metre long (insulated with fiberglass) with main connector block. Many, many uses. 40p each.

HEAVY DUTY RELAYS, 85V c/a, with 8 pin socket. New, boxed, made by Gardner. £1.69 each, while stocks last.

TUNED COILS, 2 section coils, round 1MHz. Many uses. 10 each.

HEAVY DUTY HEATSHIELD BLOCKS, undrilled. 20 for 30p.

MINIATURE 2N3055 type Transistors. £1.00 each. While stock lasts.

MARKSMAN SOLDERING IRONS

WELLER BENDER ELECTRONICS

Printed Circuit Board, 1 to 4 layers, 150W. £12.95 each. Many, many uses. 5 for £40.00.

NEW TO CHECK OUT... LIQUID CRYSTAL DISPLAYS - VERY LOW COST FROM PRONTO!

LOW COST RANGE 7-SEGMENT, faults new or untested. £25.00 for 10. £20.00 for 20.

HIGH QUALITY SPEAKERS, 5 x 6in elliptical, only to 1200 Watts peak. 10 for £28. £4.50 each or 5 for £12.50. (2) £7.50 each.

1000VA Mains Transformer, 13A. £15.95 each.

THE PROSPECT OF NEW TO CHECK OUT...

Please use the following table to check out...

NEW TO REPORT...

1000VA Mains Transformer, 13A. £15.95 each.

USEFUL IDEAS FOR YOUR NEXT KIT!

Isn't it time you joined the Club?
SQUARE WAVE CONVERTER

The circuit shown has been designed to add extra versatility to the Minisonic synthesiser by way of providing another waveform from the v.c.o.s.

This circuit converts the sawtooth waveform of the integrator to a pulse waveform by means of a differential comparator. The pulse waveform can be varied from very short, through square to a rectangular form; either by manual control or by voltage control. The switching between manual and voltage control proved beneficial when the synthesiser was being used for live performance work.

IC1 is functioning as a differential comparator, the reference voltage level decides the wave shape. In normal operation the comparator is swinging between positive and negative saturation levels; diode D1 serves to clip off the negative cycle and D2 is present in order to attenuate the positive swing to around 0.6V. Capacitor C3 blocks any d.c. which might be present at the output of IC1. C1 and C2 are necessary in order to prevent any ripple spreading to the v.c.o.s. Voltage control is provided by using an n channel f.e.t. as a voltage controlled resistor. IC2 is a simple buffer/summing amplifier with unity gain. Its function is similar to that of the control nodes in the v.c.o.s.

The circuit is simple to set up. With a high impedance voltmeter across VR2, VR1 is adjusted so that the potential is 350mV. The voltage control may be set up by applying a slow positive-going ramp from a v.c.o. and adjusting VR3 until the best effect is heard. The setting of VR4 will alter the minimum pulse length available.

By careful adjustment of these two presets, the waveform shapes that are shown may be obtained.

P. R. Symons, East Acton, London W.12.

LIGHT PIPE CONTROLLER

This unit can be inserted into the circuitry of the Light Pipe. Practical Electronics. January 1975, with connection A attached to the collector of TR3 and connection B attached to pin 1 if IC1. The line connecting these two points must, of course, be broken.

With the unit off the Pipe runs normally, but with the unit on the Pipe runs then freezes, runs then freezes, and so on. The speed control in the original design still controls the running speed of the Pipe, whilst this unit's VR1 controls the number of times that the Pipe starts and stops per minute.

Some experimenting may be necessary with R3 and R4 to get the correct start-stop speeds, as the gain of TR1 and TR2 will obviously vary from transistor to transistor.

When the unit is off, S1 shorts out TR3 and also removes power from the unit.

S. J. Baxendale, South Shields.
IMPROVED PHASER CONTROL

![Circuit Diagram](image)

Fig. 1

Here is an updated design prompted by the Phasing Control (Oct. 1974). This has several advantages over the original circuit. First of all it uses a 9V rail, also it uses fewer, but more-common components.

With the values shown, the circuit has a fixed frequency of 1 cycle per 8 secs. The capacitor C3 enables a fast start at switch on. To set up, adjust VR1 for a reasonable maximum minimum brightness. Since the impedance through VR1 is relatively high, this has no effect on the timing of the multivibrator.

Two things worth noting: TR4 gets hot, and since the unit uses 150mA of current it would be ludicrous to use a battery. A suitable mains unit would suffice as these can be bought for around £2.

Q. A. Rice, Mitcham, Surrey.

3-CHANNEL SOUND-TO-LIGHT CONVERTER

![Circuit Diagram](image)

Fig. 1

The circuit in Fig. 1 is a sound-to-light converter with 3 independent channels handling the low, middle and high frequency ranges respectively.

Signal from an amplifier speaker output is first passed through an attenuator (to allow accommodation of a wide range of input levels). Filters then divide the input into the three separate frequency ranges.

The filter outputs are then fed via an amplifying stage to the gate of CSR1 which is acting as a switch.

Table 1

<table>
<thead>
<tr>
<th>Filter</th>
<th>Low</th>
<th>Middle</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>R8, 9</td>
<td>12kΩ</td>
<td>3-3kΩ</td>
<td>820Ω</td>
</tr>
<tr>
<td>R12, 13</td>
<td>56kΩ</td>
<td>12kΩ</td>
<td>3-3kΩ</td>
</tr>
<tr>
<td>C2, 3</td>
<td>10µF</td>
<td>10µF</td>
<td>1µF</td>
</tr>
</tbody>
</table>

The CA 3059 provides an output pulse at the next zero crossing point of the mains after the thyristor is fired. No RFI suppression is therefore required, as all switching is performed at the zero-crossing point.

The output pulse from the CA-3059 then fires the triac via the 1:1 pulse transformer T1.

Component values for the three filters are given in Table 1, the actual circuitry being the same for all three.

D. G. J. Kingsbury, Soulby.
Complete kits in stock for Radford Studio 90, Radford Monitor 180, Radford Studio 270, Radford Studio 360, Hi-Fi Answers Monitor (Rogers), Hi-Fi News No Compromise (Frisby), Hi-Fi News State of the Art, Wireless World Transmission Line (Bailey), Practical Hi-Fi and Audio Monitor (Giles), Practical Hi-Fi and Audio Triangle (Giles), Popular Hi-Fi (Coloms), etc.

On dem. Answers Monitor, State of Art, etc.

Construction leaflets for Radford, Kef, Jordan Watts, Tannoy, Hi-Fi Answers Monitor, free on request.

P.A. amplifiers, microphones, etc., by Shure, Linear, Eagle, Beyer, AKG, etc.

FREE with orders over £10—"Hi-Fi Loudspeaker Enclosures" book.
Cresting Radio Ltd.
164-166 HIGH ROAD, WOOD GREEN, N22
(Also) 13 South Mall, Edmonton, N1
Mail Order Dept.
ST. MICHAELS TERRACE, WOOD GREEN, LONDON N22 4SI

Phone: 888.4474

Sensational Stock Clearance

PAK: AA1 Twenty assorted transistors Our choice £1.00-Pak.
PAK: AA2 Ten TAA243 Op. Amps (high gain 702) £1.00
PAK: AA3 Ten BCW84300W 300Hz Transistor PNP £1.00

Great Triac Clearance

SC35A 3A 100V 50p
SC4B 6A 200V 65p
SC40D 6A 400V 80p
SC40E 6A 500V 95p
SC4A 10A 100V 70p
SC45B 10A 200V 5p
SC45E 10A 500V 90p
SC50D 15A 400V £1.00
SC50E 15A 500V £1.00
All stud mounted, fixing nuts supplied.

Semiconductors and IC's

Our huge availability of transistors, diodes, Triacs, SCR's, Zeners, etc., is too large to list. See previous catalogues and advertisements for price and availability or telephone Alan Green on 0277 219435 for a quick price.

Small Parts

Soldering Iron Stand DST Mk. 1.
Soldering Equipment and Tools

VEROBOARD

ALL SPEC. DEVICES

ALL COMPONENT PARTS ARE AVAILABLE SEPARATELY S.A.E. FOR LISTS, OR FOR PRICING.
Tel: 0246-31475

Full Kit: £37.50 + £1.00 (includes V.A.T.)

Kit Includes New Updated P.C.B.'s

With printed layout for easy assembly, all components 'nice' switches and knobs, case, in fact everything you need to complete this very exciting Project.

P.C.B.'s Are Available Separately

Set of New Updated P.C.B.'s with a printed layout, made in first class quality three glass, by a well known national company.

Price on application to:
ASTRO/WKF INC.
1 Queen Street North
Whittington Moor,
Chesterfield,
Derbyshire
Tel: 0246-31475

Special Offer

Cresting 100 Watt R.M.S. All Purpose Amplifier to Build IT

We supply the three modules, for you to build this Disco-Group P.A. amplifier into the cabinet of your choice. * The Power Amp Module

230V t.r.m. up wave 300W Instantaneous peak into 8 ohm 300W into 6 ohm.

* The Pre-Amp Module

Four control pre-amp. Bass, Treble, Middie Controls. Designed to drive most amplifiers using F.E.T. filter stage.

The Power Supply

It is supplied complete with mains transformer. Complete fixing instructions are supplied and no technical knowledge is required to connect the three ready wired modules. A fantastic bargain £27.90, earr. £27.00. Send £.B.E. for further details on this or any ready built amplifiers. + 8%.

12-0-12 Volt 500mA

240V primary transformer Bargain. Approx. size: 80mm x 150mm x 150mm-stacking fittings: 18mm. Our price £3.00 + 8%.

Goodmans Crossover

Bargain price Crossover manufactured by Goodmans for the "Havant", loudspeaker system. £39.95 ORM.

£1 each + 12½% VAT.

Low Voltage Stereo Amplifier

B transistor stereo amplifier with volume, bass, balance and tone controls. Approx. 3W into 8 ohm per channel. Needs a 9V/12V d.c. supply and is complete on a 21in x 71in P/c board.

Ideal for domestic and players.
A Bargain at 95 + 12½% VAT

U.K. carriage 50p unless otherwise stated.

VAT - All prices are exclusive VAT. Please add to each item the VAT rate indicated.
The circuit in Fig. 1 was originally constructed to control the X and Y axial travel of an X-Y recorder and has since found use as a servo unit for a radio-controlled car.

A voltage at pin 3 of IC1 between 0 and 10V will drive the motor via TR1 and TR2, or TR3 and TR4 and hence adjust the feedback pot VR2 until the slider voltage is identical to that on pin 3.

How often have readers parked their cars and forgotten to turn off the sidelights, only to return to find the battery flat? This simple circuit can be used to sound a buzzer or to drive a multivibrator connected to a loudspeaker, to give an audible alarm when the ignition is switched off with the lights still on. A push button is provided to override the alarm should it be necessary to park the car with the sidelights on.

The alarm is driven from the sidelight circuit via relay contacts RLA1 and RLB1. When the ignition is on, relay RLA is operated disabling the alarm. Switching off the ignition releases RLA and contact RLA1 closes to sound the alarm. RLA2 makes which allows the override circuit to operate. If the sidelights must be left on, then, pushing S1 will operate relay RLB. RLB1 opening breaks the alarm circuit and RLB2 holds RLB operated.

The type of relay used is not critical, except that both relays RLA and RLB should be 2 pole changeover types.

J. D. Jardine, Dewsbury.

M. Spendley, Arnos Grove.
REAR WINDSCREEN WIPER CONTROLLER

This circuit makes use of the well known NE 555V timer chip in an astable mode of operation. Potentiometer VR1 is linked to S1a and S1b and provides on/off and varies the delay between sweeps (between continuous operation and up to two minutes is available with values shown). VR2 controls the time the relay is closed and therefore the length of the wiper sweep. Careful adjustment of VR2 gives a uniform sweep and a self-parking facility.

Fig. 1

The circuit is contained in a small box approx. 4in wide 2½in high and 1½in deep, and can be used in negative or positive earthed cars according to relay contact connection.

G. T. McDermid, Ramsbottom.

CAR SEAT-BELT ALARM

Now that it is almost law that you and your front seat passenger wear seat-belts, this circuit was devised to provide a reminder to "Clunk, click every trip". It is loud and shrill in operation so it cannot be ignored, is cheap to build and consumes only 100mA when on and only 300μA when off (at 15V).

The circuit consists of a two transistor oscillator (multi-vibrator) TR1 and TR2, a one transistor amplifier TR3 and a switch TR4. The reed switch is of the normally open type and the speaker is an ex-t.v. 302 type. The unit will run on a flat car battery with reduced volume. The reed switch is taped or glued to the buckle unit and a small but powerful magnet is similarly secured to the belt tongue. A seat switch is useful to stop the alarm sounding when working on the car with the ignition on.

If both front seats are to be equipped, a seat switch (normally closed) and a reed switch (normally open) should be fitted to the passenger seat. These two switches should be connected in parallel and wired in series with the driver's reed switch.

A. R. Knight, Blackbird Leys, Oxford.

CAR-CASSETTE POWER SUPPLY

The unit shown here was designed to run a cassette tape recorder in a car. Diode D1 protects the circuit against wrongly connected supply lines. A reference voltage provided by R1/D2 controls the series transistor TR1. C1 removes any noise that may be generated by D2, while C2 deals with any spurious signals at the output.

Overload protection is provided by means of R2/TR2. Because the load current is flowing through R2 there is potential difference across it. Once this p.d. exceeds 0.6V TR2 will begin to conduct. This will turn off the series transistor TR1 by diverting its base current to the negative line, and the output voltage will fall to zero. Once the overload is removed, the supply will return to normal.

The voltage rating of D2 can be chosen to suit the voltage of the cassette player. A 6.2V zener will provide an output of six volts.

G. Luck, Gosport, Hants.
Stirling Sound Products

UNIT 1 PRE-AMP/CONTROL
SUPERB VALUE AT
£7.80

WITH ACTIVE TONE CONTROL CIRCUITRY

UNIT 1, latest addition in the Stirling Sound range of realistically priced constructional modules is going to assure many, many more constructors of obtaining quality where price has prevented it before. UNIT 1 offers full stereo facilities, is guaranteed and easy to connect up.

MADE IN OUR OWN FACTORY IN ESSEX

Build and save with Stirling Sound

BASIC MODULES FOR BUILDING UP TO A STEREO TUNER-AMP

POWER AMPS

SS125 De-luxe hi-fi 25W r.m.s. power amp. with a fantastic distortion rating of only 0.04% at all levels. 25W into 8 ohms using 50V supply

SS103 3W r.m.s. amplifier incorporating I.C. SL67456. With current, short-circuit and thermal protection

SL103-3 Stereo version of above using 2 I.C.s

SS110 5W amplifier to run from 12V (3in x 2in x }in)

SS110 Mk. 3 Similar to SS110 but more powerful giving 10W into 4 ohms, using 24V

SS120 Mk. 3 20W module when used with 34V into 4 ohms

CONTROL

SS100 Active tone control, stereo, ±15dB cut and boost with suitable network

SS101 Pre-amp for ceramic p.u., radio and tape with passive tone control details

SS102 Stereo pre-amp with R.I.A.A. equalisation, mag., p.u., tape and radio in

POWER STABILISER

SS300 Add this to your unstabilised supply to obtain a steady working voltage from 12 to 50V for your audio system, workbench etc. Money saving and very reliable

F.M. TUNING

SS201/X Front end, geared drive capacity tuning, 66-108 MHz, AFC facility

SS202 I.F. amp A meter and/or A.F.C. can be connected (size 3in x 2in)

SS203 Stereo decoder

For use with Stirling Sound modules, or with any other good mono F.M. tuning section. A L.E.D. beacon can be added to indicate when a stereo signal is tuned in (3in x 2in)

£3.25

MORE POWER—LESS VAT
GREATER VALUE

SS140 POWER AMP
Built for hard work

RESULTING FROM RESEARCH AND DEVELOPMENT, THE Mk.3 VERSION OF THIS MOST POWERFUL AMP. NOW INCLUDES BUILT-IN OUTPUT CAPACITOR WITH IMPROVED STABILITY UNDER SEVEREST WORKING CONDITIONS. GREATLY USED FOR P.A., DISCO AND SIMILAR WORK, SS140 OFFERS FANTASTIC VALUE FOR THE PRICE.

STIRLING SOUND
POWERS PACKS

5 MODELS TO CHOOSE FROM

Not only do these excellent power packs stand up unflinchingly to hard work, inclusion of a take off point at around 13-15V adds to their usefulness and once again price value is outstanding. Add 50p for p/p any model.

Made to serve for years

SS312 12V/1A £3.75*

SS318 18V/1A £4.15*

SS324 24V/1A £4.60*

SS334 34V/2A £5.20*

SS345 45V/3A £5.85*

Direct from the makers and obtainable only from Bi-Pre-Pak Ltd. Stirling Sound products are designed by professional experts and made in our own factory. They are distributed exclusively through Bi-Pre-Pak Ltd.

TERMS OF BUSINESS:

VAT at 15% must be added to total value of order. Unless marked otherwise, no VAT on overseas orders. POSTAGE & PACKING added at 50p for UK orders. Overseas orders, add £1 for postage. Any difference will be credited or charged. PRICES subject to alteration without notice. We have extended our premises and opened up a new demonstration showroom. All welcome.

Order your Stirling Sound products from

BI-PRE-PAK LTD

222 224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SS0 9DF

PHONE: SOUTHEND (0702) 4634

CHEQUES/MONEY ORDERS PAYABLE TO BI-PRE-PAK LTD

FROM BI-PRE-PAK

 гармонии
TAMBA ELECTRONICS

A BRAND NEW RANGE OF AMPLIFIER MODULES 5 to 100 WATT/RMS

Choose the power you need from these five pure complementary amplifiers

Two-year guarantee

All amplifiers feature a pure complementary symmetry output stage for low distortion and high reliability—the highest grade components (by Mullard—Texas, Plessey—RCA etc.) used throughout.

- Suits loads 4–16 ohms (optimum load 8 ohms, TAM50/100/250, 4 ohms TAM500/1000)
- Low distortion (0–1%)
- 20–20,000 Hz ±1dB
- Silicon circuitry throughout
- Inherently open circuit proof
- Four simple connections
- High sensitivity—100mV
- Low profile (1in high x 3in)
- 75% efficient
- Glass fibre printed circuit board
- Accepts most mixers/pre-amplifiers

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc) C.O.D. (50p extra). We accept Access and Barclaycard—send or telephone your number—do not send your card. Add VAT at 8% to orders for 50–100W units and at 12.5% for 5–25W units.

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc) C.O.D. (50p extra). We accept Access and Barclaycard—send or telephone your number—do not send your card. Add VAT at 8% to orders for 50–100W units and at 12.5% for 5–25W units.

TAMBA ELECTRONICS

Bensham Manor Road Passage, Bensham Manor Road, Thornton Heath, Surrey.

Greenbank Electronics

DIGITAL CLOCK MODULES, KITS

Further details free on request:

SOLDIERCON PINS

CMOS WITH DISCOUNTS! (Any mix)

CA 3150
4030-1 20 607-0 10 11600-0 55 15320-0 75
4000-1 16 4085-0 65 14058-0 75 14320-0 75
4011/4012 18 4040-0 65 14070-0 45 14750-0 75
4016/4018 0 50 14037-0 10 14072-0 0 14037-0 0 14750-0 75
4019/4020 0 50 14097-0 0 14037-0 10 14072-0 0 14037-0 0 14750-0 75
4036/4038 0 50 14037-0 10 14072-0 0 14037-0 0 14750-0 75
4040/4042 0 50 14037-0 10 14072-0 0 14037-0 0 14750-0 75
4041/4043 0 50 14037-0 10 14072-0 0 14037-0 0 14750-0 75
4014/4016 0 50 14037-0 10 14072-0 0 14037-0 0 14750-0 75
4015/4017 0 50 14037-0 10 14072-0 0 14037-0 0 14750-0 75

Terms: C.W.O. Add VAT to all prices at 8%. Post etc. U.K. 10p per order. Orders processed same day. Official Govt. varsity, poly, etc. orders welcome.

GREENBANK ELECTRONICS (Dept. E9P)

94 New Chester Road, New Ferry, Wirral, Merseyside, L62 5AG, England. Tel: 051-645 3391

OSMABET LTD We make transformers amongst other things

LOW VOLTAGE TRANSFORMERS

Primo: 200–240V a.c., 6–8V 1A, 12–18V 1A, 24V 0.5A, 36V 0.25A, 45V 0.15A, 50V 0.1A, 60V 0.075A, 75V 0.05A. All transformer cases £10.00. D.E.C. Manual of Power Amplifier Covering Speaker Matching Auto Transformer

CABLES—CABLES—CABLES

MICROPHONE TWIN CORE, BRAIDED SCREEN

Professional cable for stage, studio, outdoor. PVC covered, grey 25p per metre. Grey single cable, black. 10p per metre. MULTI WAY SCREENED, PVC COVERED

36 way £1.25, 25 way £1.00, 20 way £0.80, 16 way £0.65, 12 way £0.50, 8 way £0.35, 4 way £0.25, 2 way £0.12. £3.00 per metre. 16 ways £4.00, 8 ways £5.00, 4 ways £7.00, 2 ways £10.00. £2.90 (carr 50p)

LOW LOUDSPEAKER COAXIAL CABLE 75p. UHF, white, 20m per metre. PLEASANT MINI 3-WAY CABLE 15/50/100M 100 metres £3.50. Ideal for speakers, intercoms, etc.

SMALL WIRE & CABLE

Polarised, 25–50p. 10p per metre. All types domestic and commercial cables. All sizes and thicknesses. Multi-screened and unscreened cable. TRADING LICENCES INVITED

Osman Electronics 1976

756

Practical Electronics September 1976
LARGE MINISTRY RELEASE
ENABLES US TO OFFER THE FOLLOWING

MARCONI PORTABLE FREQUENCY METER
TF1026/11
100-160MHz
Very fine condition

THE LATE MODEL MARCONI OSCILLATOR
TF565A/1
in superb condition.
Covering 25Hz to 12MHz sine wave in 3 ranges and 50Hz to 150kHz square wave.
High output 31.6V.
Meter scaled in volts and dBs.

SOLARTRON A.C. MILLIVOLT METER
VF252
1 5mV to 150V full scale in 10 ranges. 6in meter ± 1%
GOOD CONDITION.

ALL ITEMS £22-50 each
OR
3 DIFFERENT UNITS FOR £60

AVO R.F. SIGNAL GENERATOR—A.M. MODULATION
Freq. range 2-250MHz
240V operation.
Suitcase style.
Size approx. 15in wide x 10in high x 6in deep.

A wide range of keyboard instruments for the D.I.Y. enthusiast.
Our low prices are based on component costs only, and no extras.
Send large S.A.E. for details.

AVO VALVE TESTER
CT160—
"THE SUITCASE",
Size approx. 15in wide x 10in high x 11in deep.

Electronic Organ with 4 footages, 11 voices and sustain

Super touch sensitive Piano Kit with special effects

Electronic Musical Instruments

Organ Centre: 12 Brett Road, Hackney, London E8 1JP
01-986 8455. New Component Shop: 40/42s Dalston Lane,
London E8 2AZ (01-249 5624)—1 minute walk from Dalston
Junction Station. 8 Putney Bridge Road, London SW15
1HU (01-870 4949).

Available Now

PROJECT PLANNING AND BUILDING
Morris A. Colwell
This guide will help the constructor to plan, design and lay out his electronic projects.
The book explains planning, use of tools, component board layout, the design and layout of chassis and cases, and assembly and wiring.
There is also an extremely useful Appendix.
128 pages 216 x 138mm Illustrated
0 408 00229 8 £1.95

SIMPLE CIRCUIT BUILDING P. C. Graham
This guide provides a logical introduction to general purpose circuits for the home constructor and to converting theoretical circuits into practical layouts.
The book covers a wide range of easy to assemble circuits, including switching and logic circuits and their layouts, operational amplifiers, a.c. amplifiers and d.c. power supplies.
128 pages 216 x 138mm Illustrated
0 408 00230 1 £1.95

PRACTICAL ELECTRONIC PROJECT BUILDING
Alan Ainslie and Morris A. Colwell
A concise but informative guide to some of the current popular methods of construction and techniques employed in home construction. Contains hints on finishing and fault-finding methods.
128 pages 216 x 138mm Illustrated
0 408 00231 X £1.95

For details of all Newnes Technical Books please write for a free catalogue and watch for announcements in following issues of Everyday Electronics.

Newnes Technical Books
NEWNES-BUTTERWORTHS
Borough Green, Sevenoaks, Kent TN15 8PH

Practical Electronics September 1976
DIGITAL CLOCK KITS
TEAK CASES

prompt order despatch

"DELTA" 4 RED 0.5in LEDs, 12hr display
GENUINE TEAK or PERSPEX CASE

<table>
<thead>
<tr>
<th></th>
<th>Alarm</th>
<th>Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Module excl. case</td>
<td>Kit</td>
<td>£10.50</td>
</tr>
<tr>
<td></td>
<td>Built</td>
<td>£11.00</td>
</tr>
<tr>
<td>Complete Clock</td>
<td>Kit</td>
<td>£12.91</td>
</tr>
<tr>
<td></td>
<td>Built</td>
<td>£16.50</td>
</tr>
</tbody>
</table>

"ALPHA" 4 GREEN 0.5in DIGITS 12 or 24hr
PERSPEX CASE ONLY

<table>
<thead>
<tr>
<th></th>
<th>Alarm</th>
<th>Std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Module excl. case</td>
<td>Kit</td>
<td>£12.00</td>
</tr>
<tr>
<td></td>
<td>Built</td>
<td>£13.00</td>
</tr>
<tr>
<td>Complete Clock</td>
<td>Kit</td>
<td>£14.00</td>
</tr>
<tr>
<td></td>
<td>Built</td>
<td>£17.00</td>
</tr>
</tbody>
</table>

Perspex colours: Black, White, Red, Green, Blue,
Orange.

NON-ALARM £9.60 + £0.76 VAT
ALARM £11.95 + £0.96 VAT

"NOVUS" CALCULATORS: 650 Mathbox £5.40; 850 Mathbox £6.75; 4510 Mathematician £16.20; 6020 Statistician £21.60

Send S.A.E. for complete range

Cash, Cheque or Postal Order, or if you wish to use Barclaycard or Access simply quote name, address and card number when ordering by phone or post.

PULSE ELECTRONICS LTD
Dept. P.E. 2, 202 SHEFFORD ROAD
CLIFTON, SHEFFORD, BEDS.
Telephone: Hitchin (0462) 814477

Become a radio amateur.

Learn how to become a radio amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Free!

Brochure, without obligation to:
BRITISH NATIONAL RADIO & ELECTRONICS SCHOOL, Dept. PE96
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

Block caps please.
M. DZIUBAS
158 Bradshawgate • Bolton • Lancs. BL2 IBA

All prices quoted include V.A.T. LARGE S.A.E. for New List.
Special prices for quantities quoted on request.

J. BIRKETT
RADiO COMPONENT SUPPLIERS
25 The Strait, Lincoln LN2 1JF
Tel. 20767
ELECTROTIME

SPECIALISTS IN ELECTRONIC TIMEKEEPING

ELECTRONIC DIGITAL ALARM CLOCK MODEL EC3

- Large digit display
- 24 hour alarm
- A.M./P.M. indicator
- Brightness control
- Flashing seconds
- Attractive white case
- 5 minute repeating snooze alarm

Complete Built Clock £14 inc. VAT

THE “MISTRAL” 1 DIGITAL CLOCK

- PLEASANT GREEN DISPLAY
- PULSATING COLUMN
- 12/24 HOUR READOUT
- PUSH BUTTON SETTING
- FULLY ELECTRONIC
- BUILDING TIME 1 HOUR

Complete Kit £11.07 inc. VAT

Built Clock £14.95 inc. VAT

LCD MODEL TLC4

Continuous Readout utilising Liquid Crystal Display with backlight for night reading

Features:
- Hours
- Minutes
- Seconds
- Date
- Day of Week

Rhodium £39.95 inc. VAT
Gold £41.50 inc. VAT

LED MODEL TLE5

Gold or Rhodium plated

£29.50 inc. VAT

We are proud to announce the opening of our new showroom in which you will find one of the largest ranges of digital electronic clocks and watches available in the U.K. So why not call and see us? One year's guarantee with all models. Electronic accuracy to within seconds per week.

ELECTROTIME, Dept. 37, 11 Shelley's Yard, Shopping Precinct, Town Centre, Chesterfield, Derbyshire. Tel. (0246) 35804

Please supply
Enclose cheque/postal order

NAME

ADDRESS
express component service
same day turn round

QUALITY—SERVICE
RELIABILITY—CARE
FULL SPEC DEVICES
COMPETITIVE PRICES

S.A.E. brings Stock
List and Freepost
Order Service plus
Special Offers of the month

SPECIAL OFFER
NEW MULLARD ELC1043/05 U.H.F. TUNERs
£3.50

Prices firm to end of 1976
Dimmit range of light dimmers and lighting control systems

Illustrated is the popular

![](PMS1000 module. A1 1kW slider control dimmer, interference

![](supported, 60mm slider range

![](45 x 2.5 x 15cm. Ideal for low cost

![](staging and disco lighting. Used by

![](schools, churches, studios, etc.

![](i.e. Full scale placement, fixing

![](screws and full instructions. £9.06

![](inc. VAT and postage and

![](complete compact light dimmer

![](systems for stage, club and

![](disco lighting, etc.

. Six 1kW

![](channels, six output sockets,

![](master

![](controls, mains on/off switch,

![](size 23 x 8 x 5 in.

![](Price £140-40 inc. VAT.

![](DD62B. Six 1kW channels, using

![](PMS1000, lowest cost system.

![](Size 16 x 8 x 5 in. Price £64-50 inc. VAT.

![](DD62M. As DD61M but with six

![](2kW channels, size 25 x 10 x 6 in.

![](Price £250-20 inc. VAT.

![](Complete passage and packing for

![](all systems.

![](The Dimmit range includes

![](rotary and slider control

![](dimmers and light

![](sensors to light

![](converters for home,

![](entertainment and

![](professional

![](applications. Ratings 1kW,

![](2kW, 3kW.

![](All products are

![](guaranteed and supplied

![](with full instructions

![](and applications. Full

![](after-sales service.

![](Technical advice given.

![](For full information on all modules and lighting control systems send

![](15p for our illustrated catalogue and price list. Callers welcome,

![](view our demonstration

![](for a demonstration of

![](any of the modules or systems. Mon.-Fri.

![](9.30 to 6.00 p.m. Sat. by arrangement.

YOUNG ELECTRONICS LTD.

184 Royal College Street, London NW1 9NN Tel. 01-267 0201
SYSTEM 7000 MODULAR MIXING

UP TO 20 CHANNELS MONO/STEREO/MIXED

- **Inputs for all sources except mag cartridge**
- **Wide range bass and treble controls**
- **W monitor power out**
- **Echo send/return facility**
- **Feeds most amplifiers**
- **With front panels, ready to use**
- **Individual monitor buttons**

INPUT

<table>
<thead>
<tr>
<th>Mono</th>
<th>£6.50</th>
<th>Mono</th>
<th>£6.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stereo</td>
<td>£12.00</td>
<td>Stereo</td>
<td>£12.00</td>
</tr>
</tbody>
</table>

MIXER

<table>
<thead>
<tr>
<th>Mono</th>
<th>£6.50</th>
<th>Mono</th>
<th>£6.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stereo</td>
<td>£12.00</td>
<td>Stereo</td>
<td>£12.00</td>
</tr>
</tbody>
</table>

Power Supply

| £7.50 |

PCB Modules only

<table>
<thead>
<tr>
<th>Mono</th>
<th>£5.00</th>
<th>Mono</th>
<th>£5.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stereo</td>
<td>£9.00</td>
<td>Stereo</td>
<td>£9.00</td>
</tr>
</tbody>
</table>

PCB Modules only

<table>
<thead>
<tr>
<th>Mono</th>
<th>£5.00</th>
<th>Mono</th>
<th>£5.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stereo</td>
<td>£9.00</td>
<td>Stereo</td>
<td>£9.00</td>
</tr>
</tbody>
</table>

TRADE ENQUIRIES

NORMAN ROSE

(ELECTRICAL) LTD

London SE12 9NN

Orders by post—Please make cheques or crossed P.O.'s payable to

SAXON ENTERTAINMENTS LTD.

327-333 WHITEHORSE ROAD, CROYDON, SURREY CR0 2HS

ACCESSORIES

Mics: Headphone: Special Lamps

Prices include carriage and packing. VAT must be added to all orders at 8%. C.O.D.: 65p extra. S.A.E. enquires please.

Send your order on BARCLAYCARD or phone in your order number for prompt attention. After 8 p.m., your message on our ansswering service.

SAXON STROBES & LIQUID WHEEL

SUPERSTROBE

- 1 flash/sec. — up to 20 sec.
- Compact black Bondene case
- Deal for mobile disco or smaller club

PRO-STROBE

- Giant 80 watt tube
- Discharge energy up to 6 Joules
- External trigger — audio up to 240V

150 WATT LIQUID WHEEL PROJECTOR

- Complete with wheel and 150 watt tungsten lamp
- Wide range of extra effects may be attached

SOUND-LIGHT SEQUENCER

SOUND-LIGHT 3KW CONVERTER

ACCESSORIES

Mics: Soundlights: Special Lamps

Prices include carriage and packing. VAT must be added to all orders at 8%. C.O.D.: 65p extra. S.A.E. enquires please.
NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser before ordering to ensure that the goods and availability of goods are correct from non-current issues of the magazine.

TTL SPECULATURAL!

(All famous makers. Prices include VAT)

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7401</td>
<td>100mA, 15V</td>
<td>£1.25</td>
</tr>
<tr>
<td>7402</td>
<td>100mA, 15V</td>
<td>£1.25</td>
</tr>
<tr>
<td>7403</td>
<td>100mA, 15V</td>
<td>£1.25</td>
</tr>
<tr>
<td>7404</td>
<td>100mA, 15V</td>
<td>£1.25</td>
</tr>
<tr>
<td>7405</td>
<td>100mA, 15V</td>
<td>£1.25</td>
</tr>
<tr>
<td>7406</td>
<td>100mA, 15V</td>
<td>£1.25</td>
</tr>
<tr>
<td>7407</td>
<td>100mA, 15V</td>
<td>£1.25</td>
</tr>
<tr>
<td>7408</td>
<td>100mA, 15V</td>
<td>£1.25</td>
</tr>
<tr>
<td>7409</td>
<td>100mA, 15V</td>
<td>£1.25</td>
</tr>
<tr>
<td>7410</td>
<td>100mA, 15V</td>
<td>£1.25</td>
</tr>
<tr>
<td>7411</td>
<td>100mA, 15V</td>
<td>£1.25</td>
</tr>
<tr>
<td>7412</td>
<td>100mA, 15V</td>
<td>£1.25</td>
</tr>
<tr>
<td>7413</td>
<td>100mA, 15V</td>
<td>£1.25</td>
</tr>
<tr>
<td>7414</td>
<td>100mA, 15V</td>
<td>£1.25</td>
</tr>
</tbody>
</table>

Precision Polycarbonate Capacitors

All High Stability — Extremely Low Leakage

<table>
<thead>
<tr>
<th>Value Range</th>
<th>Maximum Voltage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 pF to 0.1 μF</td>
<td>500V</td>
<td>£1.25</td>
</tr>
<tr>
<td>0.1 μF to 1 μF</td>
<td>1kV</td>
<td>£2.50</td>
</tr>
</tbody>
</table>

VALVES, RADIO, TV, TRANSMITTING, INDUSTRIAL, 1975. 2,200 types in stock, including Mullard and Bury capacitor, S.A.E. Postal service. We wish to purchase new and boxed valves. Dealers, wholesalers and others interested, please contact COX RADIO (SUSSEX) LTD, The Parade, East Wittering, Sussex. Tel. West Wittering 2023.

BRAND NEW COMPONENTS BY RETURN

Electronic Components, Quality Guaranteed, Direct from Manufacturers. Specialise in I.C.s, Bridge rectifiers, Filter capacitors, etc. Large quantity of Mullard C280 capacitors, 100 for £1.30 inc. P.

Send 80p add post & packing on all orders. EXCEPT ADD COST OF REGISTERED MAIL. 5% VAT on all items except those marked with *.

Send SAE for additional stock lists. Wholesale prices available to bona-fide companies.

MARCO TRADING (Dept. P3)

The Old School, Edenthorpe, Wom, Earlham, Sheffield S9 9RS

(Progs: Minoford Trading Ltd.)

Bank of 20 New, 80p (20p), 55p (10p), 15p (1p), and 5p (1/2p). Valves in store. All prices include VAT. All components are new. Send SAE with order.

8 Barnfield Crescent, Sclat, Chichester, Sussex. Mail order only.

100 POLYESTER CAPACITORS £23

Fully guaranteed, electrolytically tested polystyrene capacitors. Non-polarised, ±10% tolerance. Many makes IF, MULLARD, ERIE, etc. Mix pack of 16 values from 0.001 μF to 220μF. Value list £2.50. Prompt despatch.

Send 8p add post & packing on all orders. EXCEPT ADD COST OF REGISTERED MAIL. 2% VAT on all items except those marked with *.

Send SAE for additional stock lists. Wholesale prices available to bona-fide companies.

STYLITE AND CARTRIDGES. For the best at keenest prices send SAE for free list. Last to FELSTEAD ELECTRONICS (PE), Longley Lane, Gatley, Cheshire, SK8 4EE.

PRICES INCLUSIVE + 5p (1st class)

ELECTRICAL
FOR SALE

OSCILOSCOPE. Heath 10-18U unused £50. GRANT, 29/5 Hillmeads Road, Kings Norton, Birmingham.

LIMITED OFFER, MM5014 full spec with data £25. BC106A (plastic) 10 for 75ป. IN4002 10 for 80ป. 1N9815 10 for 95ป. BC1470 7 for 20ป. MAN35 with data 35ป. 8P232B (2K 5V flip flop) 15ป. Add 10ป. P. & P. L.B., 43 Westcott, Hayes, Middlesex UB4 8AH.

MINISONIC part built including keyboard for sale. FISHER, 54 Waterloo Road, Waterloo, Surrey.

 wishes for catalogue, 50p

SERVICE SHEETS, with enquiries to B.T.S. 190 Kings Road, London W1. Tel. 786644. Order C.D.

EDUCATIONAL

TECHNICAL TRAINING.

GET the training you need to move up into a higher paid job. Take the first step now—write or phone ICS for details of ICS specialist homework courses on Radio, TV, Audio Eng. and Servicing. Electronics Technicians, Radio and TV Technicians, Radio Amateurs. Full details from: ICS SCHOOL OF ELECTRONICS, Dept. 711X, Intertest House, London, SW8 4UJ. Tel. 01-622 9911 (all hours).

DO-IT-YOURSELF LOUDSPEAKERS for hi-fi are our speciality. Full range of components and accessories including chassis speakers, cross-overs, sound absorbing, grille fabrics, etc., always available. We stock the fabulous value Helme speaker kits (complete with full and easy instructions), also Peerless and Wharfedale kits. Just about the lowest prices anywhere! Send 8p stamp for bargain list to: A. D. ELECTRONICS, Warbreck Moor, Aintree, Liverpool L9 0HU. 051-825 3460

PRINTED CIRCUITS and HARDWARE

BURGLAR ALARMS

Supply and equipment

MAGNETIC CONTACTS

with magnet. Flush and Surface

BELLS, BIBS, BAILAR-UNITS, CABLE, BELL COVERS, WINDOW FOIL, VIBRATION CONTACTS. Send S.A.E. for free cat.

COMPLETE KIT. FANTASTIC VALUE

Everything you need only £40

Please add V.A.T. at 12½%, plus 50p P.P.

A. D. ELECTRONICS, Warbreck Moor

Aintree, Liverpool L9 0HU.

12 VOLT FLUORESCENT LIGHTS

MADE BY THORN LIGHTING, ideal for Caravans, Boat, Tent, Emergency Lighting etc. All lamps guaranteed for 12 months.

C60 CASSIETTES 32p

C69 CASSIETTES 45p

All Cassettes in Plastic Cases with Index and Screwed Assembly.

All prices include VAT. Add postage 5p in C.

Quantity Discounts:

10 Units 14p

50 Units 7p

100 Units 3½p

12 ins.

£4.00

12 ins.

£2.50

13 watt

£4.90

13 watt

£4.00
QUESTIONS?
Learn about modern electronics with our new....

QUALITY ASSORTED nuts, screws, washers. Brass and steel, various sizes. Approx 600...

LOW COST I.C. MOUNTING for any size DIL package. 100 Socketron sockets 65p, 7-

PUBLIC ADDRESS ENGINEERING!
Find out more, join the Association of Public Address Engineers—Details from:

RECHARGEABLE NIMH BATTERIES. Penell, AA/84p; Sub “C”/1 1/16; “D”/1 1/22; “D”/2 1/29; PP3/4 45p, Charged: “C”/4 45; “D”/4 98, “98”/98, respectively. Others available. All prices include VAT. Add 10% P. & P. B.A.E. for price list plus 25p for information booklet. SANDWELL PLAN LTD, 1 Denholme Road, Sutton Coldfield, West Midlands. Tel. 021-524 9784.

BUILD THE TREASURE TRACING MILL ELECTRONICS
Motor (Metal) Location

GLASS FIBRE P.C.B.’s
From your own tape, film or ink master Send S.A.E. for quotation

SUPERB INSTRUMENT CASES by Bazelli, manufactured from heavy duty pvc faced

TRANSMIT!
* Unique TRANSMITTER RECEIVER Kit. No licence examinations or tests required to operate this...unique equipment. Easy to build. Get transmitting. Send £3 95 plus 20p P. & P.

ZIN 104E inc. data £7 50
Unmarked resistors above £3 50
Counts/Displays/Resets O.K.
7490 Full Expandable 64 Bit
Ram-Speed Failures 90p.
2-Dual/Matched NPN Trans.
4-Tested Silicon Photodiodes £1
All prices inc. (Mail Order Only)

GUD ELECTRONICS, 105 Harper Fold Road, Radcliffe, Manchester M26 0FN

G8CZW DIGITAL FREQUENCY METER
COMPLETE 50MHz Kit £5 inc. VAT and Post

PUBLIC ADDRESS ENGINEERING!
Find out more, join the Association of Public Address Engineers—Details from:

When ordering, please provide full details of any questions or inquiries you may have. This includes the specific product or service you are interested in, as well as any additional information that may be relevant. Your request will be processed promptly, and you will receive a response from a member of our team. If you have any further questions, please do not hesitate to contact us. We look forward to hearing from you soon!
ELECTRONIC DIGITAL CLOCK with alarm and snooze features

SPECIAL OFFER

£18.95 inc. VAT and P. & P.

Features:
- 0.7 Inch High Digits
- Variable Intensity
- 24-hour Alarm
- 5-minute Repeating, Snooze Alarm
- Alarm Set Indicator
- Snooze Indicator
- Pulsing Second Indicator
- Power Interrupt Indicator
- Alarm Cancel Features – Tilt Operation
- Alarm Tone Output
- A.M.-P.M. Indicator

Size: 130mm x 90mm x 95mm. Weight: 1 oz. Power supply: 230V a.c. ±10%, 50Hz.

Manufactured to high standards by a major American electronics corporation, this superbly styled solid-state timepiece is made available to all readers fully guaranteed.

Free trial in your home—Try out the clock in your home. If digital time is not for you return it in original condition within 10 days and we'll refund your money without question.

TIME MICROELECTRONICS
P.O. Box 29, Brighton Hill Parade, Basingstoke, Hants RG22 1EH.

P.E. JOANNA
Electronic Piano

ALL PARTS CAN BE SUPPLIED
Keyboard, Keyswitch, P.C.B.s, Hardware, Semiconductors, Resistors, Capacitors, Cabinets Complete kits or easy stages

Send S.A.E. for details

Clef Products
31 Mountfield Road, Bramhall
Stockport, Cheshire SK7 1LY

INSTANT ATMOSPHERE SOUNDS TO LIGHT WITH A.G.C.
 Adds visual impact to sound and beat—Essential for mobile discos—Outperforms all manual control units—Features advanced electronics which automatically set each channel for optimum performance—Infinite combinations of any three colored lights—Creates the perfect atmosphere for dancing—Functions consistently on any system at any volume from 1W to 200W without adjustment—Provides instant atmosphere for any occasion.

* AGC range 2V to 40V input (RMS). Suits 4, 8, or 16 ohm systems.
* Input impedance greater than 1,000 ohms. Completely isolated for absolute safety.
* Full wave operation. Ensures dazzling brilliance.
* Total lamp rating 3000W. Allows for future expansion.
* Two through-connected input jacks. Ensures tidy wiring to speakers via unit.
* Illuminated switch makes controller visible in the dark.

Size: 8in x 4in x 2in plus non-slip feet.

UNBEATABLE VALUE £32.95
Inc. VAT, P. & P. 2 plugs plus generous mains lead.
Sturdy, reliable, attractively finished and easy to use. Just plug in three sets of lights. Many practical design features. Full details S.A.E. Money back guarantee.

Send today to sole distributors:
A1 FACTORS
Dept. EAB 245 North Sherwood Street, Nottingham, NG1 4EQ. Demonstration to callers. Tel. Nottingham 54694 or 41255.
SUPERSOUND 13 HI-FI MONO AMPLIFIER

A superb solid state radio amplifier. Brand new component construction, 38 Silicon transistors plus 2 power transistors in push-pull. Full wave rectification. Output approx. 8 watts into 8 ohms. Frequency response 20Hz-20KHz, RMS 20W. Fully tested and approved stage with separate Volume, Balance, Treble and Volume controls. Suitable for 8-ohm speakers. Input for ceramic or crystal cartridge. Supplied with instruction sheet. Price £20-00. \[Please state reason for payment, “message to payee”\]

HARVERSONIC MAINS OPERATED SOLID STATE FM Tuner

Designed and styled to match our 10+ amplifier and will suit any standard stereo system. The design incorporates the very latest circuitry techniques with the use of 13 IC stages and 14 dual-gate transistors. Automatic frequency control to lock on station and prevent drift. IC stereo decoder for maximum stereo separation, L.F.D. for stereo beacon indicator. Nominal output of 5 watts into 8 ohms. Supplied fully tested and fully covered. 150 volts 240VAC (not available in kit form).

Special Offer £22-50 + £1-00 P. & P.

LATEST ACOS 160/180 mono compatible with 160/180 Universal mounting bracket. \[P. & P. £1-00 P. & P.\]

LATEST ACOS 240/260 monophonic compatible with 240/260 Universal mounting bracket. \[P. & P. £1-00 P. & P.\]

HARVERSONIC SUPER 10 + 10 STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors and 3 ICs. Transistorized in the first five stages on each channel resulting in even lower noise levels than any comparable integrated preamp with a bias. Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cartridge. Complete with all parts required including vacuum tube instructions included. Output stages for tony frequencies from 15 to 150. Compact design with all parts included except VC pins. Preamp circuitry, high quality hand drilled printed circuit board with component identification clearly marked. Kit for 6x16 and onodised aluminium front panel with matched knobs, switch, etc., in large box – no extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of. Brief specifications: Power output: 14 watts r.m.s. per channel into 8 ohms. Power consumption approximately 115W 240VAC 50/60Hz; sensitivity better than 12mV into 8 ohms. Full power bandwidth: ±1000Hz. Total harmonic distortion from 1W output. Baccalau for 6x16. Bass boost. Bass and treble boost cut to ±10dB. Negative feedback 15dB over main amp. Power requirements 240v, 1 amp. Overall size 11“W x 9“D x 2“H. Fully detailed 7 page construction manual and parts list free with kit or send 25p plus large B.A.E. AMPLIFIER KIT. \[£35-00 P. & P. 50p\]

BRAND NEW MULTI-RATIO MAINS TRANSFORMER

A transformer and speaker. PRICE 17.30. P. & P. 11.00.

INTERNATIONAL GIRO facilities Account No. 5122007. Please state reason for payment, “message to payee”.

OPEN 9.30-12 noon & 2-5.30 Monday to Saturday. Closed Wednesday. BEST OFFERS SUBJECT TO ACCEPTANCE. We reserve the right to alter our prices without notice.
Make it with MAPLIN!
ELECTRONIC COMPONENTS
WIDE RANGE-HIGH QUALITY-FAST SERVICE

ELECTRONIC ORGAN
BUILD IT YOURSELF... IN STAGES
Get started with a 49 note instrument — features tremulant and reverbation. Ideal to learn on. Leaflet MES 51. Price 15p gives full details to build this complete instrument. Extend the range of MES 51 by adding a second keyboard and several new tone colours. Leaflet MES 52. Price 15p also shows how to use 61 note keyboards.

100 W PER CHANNEL STEREO DISCO
* Automatic voice operated fader
* Belt drive turntables
* Monitor facilities (Headphones and VU meters)
* Sound operated light show — plus many other advantages.
Full construction details to be published in August.
Send for our leaflet MES 41, giving full details for construction. Price 20p. Soon you’ll be the Deejay everyone wants at their party!

GRAPHIC EQUALIZER
A really superior high quality stereo graphic equalizer featuring nine octaves per channel. We stock all the parts (except woodwork) including the metalwork drilled and printed. 15p brings you a reprint of the article.

DIGITAL CLOCK KITS
This is a fully constructed and tested electronic clock module as illustrated. Data sheet supplied.
Simple to connect to alarm and your battery/mains radio. Smart case available.

Data sheet available separately. Please send SAE.
* Bright 4 Digit 0.5" Display
* Flashing Colon (1Hz)
* Switch for Display Seconds
* Alarm Set Indicator
* P.M. Indicator
* Power Failure Indicator

SIMPLE ALARM KIT — £9.38 ALARM CLOCK KIT — £10.99 SMART PLASTIC CASE with fully punched chassis — £2.49. Please send SAE for our Clock data sheet.

Get our FABULOUS NEW 1977/78 CATALOGUE
PUBLICATION DATE OCT. 28, 1976 ON APPROVAL
All new * Completely re-written * Thousands of new lines
Lots of exciting new projects to build — PRICE 50p.
SEND NO MONEY NOW. Overseas send 8 International reply coupons.

JOIN OUR MAILING LIST NOW!
Published every two months our Newsletter gives full details of our latest guaranteed price.

* SAVE ££s ON SPECIAL OFFERS!
* DETAILS OF NEW PROJECTS AND NEW LINES

Please rush me a copy of your brand new 1977/76 catalogue the instant it is published (October 28th 1976). Only if I am completely satisfied that it is worth every penny will I send 50p within 14 days of receipt. If I am not satisfied I may return the catalogue to you within 14 days without obligation. I understand that I need not purchase anything from your catalogue should I choose to keep it.

NAME __
ADDRESS __

If you do not wish to cut magazine, write your request for catalogue on separate sheet.
1975/76 GREEN COVER CATALOGUE STILL AVAILABLE — PRICE 40p.