PRACTICAL

Stirling Sound FROM BI-PRE-PAK Droducts

 UNIT 1 PRE-AMP/CONTROLSUPERB VALUE AT

$£ 7.80$

WITH ACTIVE TONE CONTROL CIRCUITRY

UNIT 1, latest addition in the Stirling Sound range of realistically priced constructional modules is golng to assure many, many more constructors of obtaining quality where price has prevented it before. UNIT 1 offers full stereo facllitles, is guaranteed and easy to connect is
up.

- Input sensitivity- 50 mV , adjustable
- Output-200mV for 50 mV in
- Bass control- $=15 \mathrm{~dB}$ at 30 Hz - Treble control- $\pm 15 \mathrm{~dB}$ at 10 kHz - Balance control; ynlume control - Operating voltage- 10 to 16 V

MORE POWER-LESS SPACE

40 watts
R.M.S.

INTO 4Ω
$£ 3.95$
$+8 \%$ VAT

Resulting 'from research and development, the Mk. 3 version of this most popular power amp. now includes built-In output capacitor with improved stability under severest working conditions Greatly used for P A. disco and Imilar work SS140 ofiers tantasic imilar work, SSi40 offers fantastic value for the price

Build and save with Stirling Sound

BASIC MODULES FOR BUILDING UP TO A STEREO TUNER-AMP POWER AMPS
SS103 3W r.m.s. amplifier incorporating I.C/SL60745 With current, short-circuit and thermal protec tion
SL103-3 Stereo version of above using 2 I.C.s
SS105 5 W amplifier to run from 12 V ($3 \frac{1}{2}$ in $\times 2$ in $\times \frac{3}{6} \mathrm{i} \mathrm{n}$)
SS110 Mk. 3 Similar to SS105 but more powerful
SS120 Mk. 320 W module when used with 34 V into CONTROL ${ }^{4}$ ohms
SS100 Active tone control, stereo, $\pm 15 \mathrm{~dB}$ cut and
SS101 Pre-amp for ceramic p.u., radio and tape with passive tone control details
SS102 Stereo pre-amp with R.I.A.A. equalisation mag., p.u., tape and radio in
STABILISED POWER UNITS
SS300 Add this to your unstabilised supply to obtain a steady working voltage from 12 to 50 V for your audio system, workbench etc. Money saving and very reliable
SS310/350 Stabilized power supply unit with infinitely variable output from 10 to 50 V d.c. With anti-short protection and heat sink. Guaranteed.
F.M. TUNING

SS201 Front end, geared drive capacity turning, 88-108 MHz . AFC facility
SS202 I.F. amp A meter and/or A.F.C. can be connected (size 3 in $\times 2$ in)
SS203 Stereo decoder
For use with Stirling Sound modules, or with any other good mono F.M. tuning section. A L.E.D. beacon can be added to indicate when a stereo signal is tuned in (3in $\times 2 i n$)

Stirling Sound POWER
£11.00*

\qquad
We have extended our premises and opened up a new
showfoom. All welcome.

PACKS

NOW 7 MODELS TO CHOOSE FROM

Not only do these excellent power packs stand up unfiinchingly to hard work, inclusion of a take off point at around $13-15 \mathrm{~V}$ adds to their usefulness and once again price value is outstanding
Add 50 p for p / p any model.

Made to serve for years

SS312	12V/1A	23.75*
SS318	18V/1A	[4.15*
SS324	24V/1A	£4.60*
SS334	$34 \mathrm{~V} / 2 \mathrm{~A}$	25.20*
SS345	$45 \mathrm{~V} / 2 \mathrm{~A}$	c6. 25 *
SS350	$50 \mathrm{~V} / 2 \mathrm{~A}$	¢6. 75

Direct from the maker and obtelnable only from BI-Pre-Pak Lid. Stirling Sound products are designed by protessional experts and made in our own tactory. They are distributed excluaively through Bl-Pre-Pak Lid.

TERMS OF BUSINESS:
NEW SHOWROOM
VAT at $12 \frac{1}{\%} \%$ must be added to total value of order except for tiems marked * or (8%) when VAT is to be added at 8%. No VAT on overseas orders. POST \& PACKING add 30 p for UK orders unless marked otherwlse. MInImum mall order acceptable- $\mathrm{E1}$. Overseas orders, add $£ 1$ for pastage. Any difference will be credited or charged. PAICES sublect to alteration without notice. AVAILABILITY. All items avaliable at ilme of going to press when every
sflort is made to ensure correctness of information.

Please send
Order your Stirling Sound products from

222224 WEST ROAD, WESTCLIFF-ON-SEA, GSSEX SSO SDF. TELEPHOME: SOUTHEMD (0702) 46344
CONSTRUCTIONAL PROJECTS
CINE/TAPE SYNCHRONISER by N. V. Davies
Keeping pictures and sound in step in your home movies 786
CASSETTE PLAYER POWER SUPPLY by H. T. Kitchen
Cut battery costs with this short-circuit proof mains operated unit 790
STEREO DIGITAL PPM by R. W. Lawrence
Light emitting diodes replace the conventional Peak Programme Meter movement in this novel design 808
P.E. DIGISCOPE-4 by R. W. Coles \& B. Cullen
Final constructional details and power supply circuitry 818
GENERAL FEATURES
INTRODUCING WIRING PENS by B. Cullen.
User impressions of two models of this new constructional aid 794
INGENUITY UNLIMITED
Telephone Bell Simulator-Simple Siren-Magnetic Cartridge Preamplifier-Two-channel Trace Multiplier-Staircase Generator-Heads \& Tails-Digital Leaf-Guitar Presence Booster-Digital Frequency Meter-Logic Probe - TTL Touch Circuits - Digital Circuit Tester-Anemometer 823
NEWS AND COMMENT
EDITORIAL-Good measure 785
SPACEWATCH by Frank W. Hyde
Mars The Friendly Planet 793
THE CLEAN ROOM
New UK plant for MOS production 798
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 800
MARKET PLACE
Interesting new products and a look at some new catalogues 803
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office 804
READOUT
A selection of readers' letters 807
NEWS BRIEFSMarine Electronics Symposium-Tape Cassettes-Name Change for Novus-Amateur Convention-Courses817, 822
POINTS ARISING
Proportional Radio Control System—Sound to Light System 822
FREE WITH THIS ISSUE
COMPONENT WIRE BENDING GAUGE 792
SPECIAL P.E. OFFERNews of a special soldering iron kit being offered in next month's issue799Our November issue will be published on Friday, October 8, 1976(for details of contents, see page 817)

[^0]

Become a radio amateur.

Learn how to become a radio amateur in contact with the whoie world. We give skilled preparation for the G.P.O. licence.

Brochure, without obligation to
BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, Dept. PEE 106
P.O. Box 156, Jersey, Channel Islands.

Dimmit range of light dimmers and lighting control systems

Illustrated is the popular PMSD 1000 module. A IkW slider control dimmer, interference suppressed, 60 mm slider range size $4 \frac{1}{2} \times 2 \times 1 \frac{1}{3}$ in. Ideal for low cost stage and disco lighting. Used by schools, theatres, studios, etc. Complete with scale plare, fixing screws and full instructions. $\mathbf{E 9 . 0}$ inc. VAT and postage and packing.

Complete compact light dimmer systems for stage, club and disco lighting, etc.

DD6IM (illustrated). Six 1 kW channels, six outiet sockets, master control, mains on/off switch, size $23 \times 8 \frac{1}{2} \times 5 \mathrm{in}$. Price $\$ 140 \cdot 40$ inc. VAT.

DD61-B. Six lkW channels, using module
PMSDI 000 , lowest cost system. Size $16 \frac{1}{2} \times 8 \times 5 \mathrm{in}$. Price $£ 64.50 \mathrm{inc}$. VAT,
DD62M. As DD6IM but with six 2 kW channels, size $25 \times 10 \frac{1}{2} \times 6 \mathrm{in}$. Price $\boldsymbol{£ 2 0 5} \mathbf{2 0}$ inc. VAT.

Add $£ 2.20$ postoge and packing for all systems.

The Dimmit range includes rotary and slider control dimmers and sound to light converters for home, entertainment and professional applications. Ratings $1 \mathrm{~kW}, 2 \mathrm{~kW}, 3 \mathrm{~kW}$.

All products are guaranteed and are supplied with full instructions and applications. Full after-sales service. Technical advice given.
for full information on all modules and lighting control systems send for our FREE illustrated cotalogue and price lis?. Callers welcome, visit our showroom for a demonstration of any of the modules or systems. Mon.-Fri. 9.30 to $6.0 \mathrm{p} . \mathrm{m}$. Sat. by arrangemens.

TEXAS PNP DARLINGTON POWER TRANSISTORS TYPE TIPI 150
NEW BOOKS. Construcing simple short wave recelvers, sop: Quilding simple test gear. 75p.
VHF POWER ELECTROLYTICs, Size if x iny 3 for 35 s
SILICON SOLAR CELLS. $0.5 \mathrm{~V} 5 \mathrm{MA}, 35 \mathrm{p} ; 0.5 \mathrm{~V} 50 \mathrm{MA}$. $50 \mathrm{Pp}: 0.5 \mathrm{~V}$ 100MA $00 \mathrm{p}: 0 \mathrm{~V}$ $20 \mathrm{MA},\lceil 1 ; 0.5 \mathrm{~V} 500 \mathrm{MA}$ e2 20 . $25 \mathrm{~F} ; 0.5 \mathrm{~V} 5 \mathrm{MA} .50$
5V ASSORTED TRAMSISTOR ELECTROLYTICS JO 570
JEXAS TO3 PLASTIC POWER NPN TRANSISTOME THPE R2500A. No information, 50p 3 for $£ 1 \cdot 10$
50 PLASTIC
5) PLASTIC NPM TRANSI8TOAS. 85% good, 57 p

GERMANIUM TRANSISTORS. AC 141K, ACIA2K, AC153K, ACY76K, AC187K, AC188K
All 20p esch.

12V DOUBLE CHANGE OVEA SEALED RELLYS, 5MP
PLASTIC TRIACS. 50PIV 6A 15P; 400PIM 6A. 60 p .
AUDIO AMPEIFIER ICA. SN76001 6Sp; FAA6118 85p: TBA641 t0p; SNNE013ND A1: TBABOC A50
GERMANLUM DIODES. OA85, OA95 IN334 JO DD Pach
20 SILICON PHOTO TRANGISTORS AND PHOTO DARLINGTONS. Assorted, untested, 1
COMPRESSION TRIMMERS. 10 pF . $30 \mathrm{pF}, 50 \mathrm{pF}$, 15 p pF . $750 \mathrm{pF}, 1000 \mathrm{pF}$. Ail 6 p bach.
VHF DHAL GATE MOS FETs (IKE $40673,33 \mathrm{p}, 4$ for $£ 1 \cdot 10$.
100 ASSORTED 5 , WATT RESTSTORS. 17 Dittarent vitué. $37 p$.)
$50-A C 128$ TRANSISTORS. Branded but untested, 57 p .
100 MULLARD C280 CAPACITORS. Assorted with chart, 57p.
STC CRYSTAL
STC CRYSTAL FILTERS 10.7 MHz B.W. $\pm 6 \mathrm{KHz}$, \&
$2 \mathrm{k} \Omega 5 \mathrm{k} \Omega 10 \mathrm{k} \Omega 20 \mathrm{k} \Omega 50 \mathrm{k} \Omega$, $100 \mathrm{k} \Omega .200 \mathrm{k} \Omega .500 \mathrm{k} \Omega$. $50 \mathrm{n}, 100 \Omega, 200 \mathrm{n}, 500 \mathrm{n} .1 \mathrm{k} \Omega$
 $1 \mathrm{kG}, 2 \mathrm{k} \Omega, 5 \mathrm{k} \Omega$. $10 \mathrm{k} \Omega, 20 \mathrm{k} \Omega$. All 20 p each.
20 AB OORTED TUNING VARACTOR DIODES. Untested 450
$500+800+17-17$ PF TUNING CAPACITORS. With SM dive, 30 p .

CAYSTALS. $5 \mathrm{MHz} 75 \mathrm{p} ; 8,040 \mathrm{kHz} 75 \mathrm{p} ; 8$, $100 \mathrm{zHz} 75 \mathrm{p}, 28 \mathrm{kHz} 50 \mathrm{p} \mid 28.5 \mathrm{kHz} 50 \mathrm{p} ; 7,620 \mathrm{kHz} 25 \mathrm{p}$
 $8,650 \mathrm{kHz} 60 \mathrm{p} ; 6.22111 \mathrm{kHz} 50 \mathrm{p}$.
Please add 20p post and packing on U.K. orders under $£ 2$

J. BIRKETT

RADIO COMPONENT SUPPLIERS
25 The Strait, Lincoln LN2 1JF
Tel. 20767

meme Marshall's
 Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat
 Trade and export enquiries welcome

A Marshall (London) Ltd Dept: PE
40/42 Crickiewood Broadway London NW2 3ET Tel: 01-452 0161/2 Telex: 21492
\& 85 West Regent St Glasgow G2 200
Tel: 041-332 4133
\& 1 Straits Parade Fishponds Bristol BS16 2LX Tel: 0272-654201/2
\& 27 Rue Danton Issy Les Moulfneaux
Paris 92
CATALOGUE PRICE 40p (30p TO CALLERS)

TOP 500 SEMICONDUCTORS FROM THE LARGEST RANGE IN THE U.K. All devices manufacturer's branded stock

2N456 2N456A
 2N456A 2N457A

2N490
2N491
2N492
2N493
2N696
2N697
2N698
2N698
2N699
2N706
2N706A
2N706A
2N708
2N709
2N708
2N709
2N711
2N711
2N718
2N718A
2N720
2N914
2N916
2N916
2N9 18
2N9 18
2N929
2N930
2 N 1302
2 N 1303
2N 1303
2N1304
2N1305
2N1305
2N1306
2N1307
2N1308
2N1308
2N1309
$2 N 1309$
$2 N 1671$
$2 N 1671$
2N1671A
$2 N 1671$
2N1671B
2N1711
2N1907
2N2102
2N2147
2N2147
2N2148
2N2148
2N2218A
2N2218A
2N229
$2 N 2219 A$
2N22
2N229A
$2 N$
2N2220
2N2221
2N2221
2N2221A
2N2221A
2N2222
2N2222
2N222A
2N2236A
2N2368
2N2369
2N2369A
2N2646
2N2646
2N2647
2 N2904
2N2904A
2N2904A
2N2905
2N2905A
2N2905A
2N2906
2N2906A
2N2906A
2N2907
2N2907A
2N2925

2N2926
 N2926 Green

brand
. 65 AD161 AD161 $\left.\begin{array}{l}\text { AD162 }\end{array}\right\}$

0	AF114
AF115	
10	AF116
AF117	

BC183 | EK | BC 183 |
| :--- | :--- |
| | BC183L |
| PR | BC 184 |区R

0.11	BF 152

NE561

NE565A \begin{tabular}{l|ll}
0.25 \& CA3130 \& 0.88

0.25 \& LM M 301 A \& 0.47

0.32 \& 1.32

0.25 \& LM 301 A \& 0.47

0.25 \& LM 308 N \& 1.32
\end{tabular}

NE565A
OC25

NEW RANGE TOOLS-HIGH QUALITY miniature electronic pliers and cutters insulated handles Round nose box joint 4 in long $\mathbf{~ 2} \cdot 50$ Diagonal cutters box joint 4in long
Flat nose box joint 4 in long $\quad \mathbf{~} 2.80$ Snipe nose box joint 4 in long $£ 2 \cdot 40$

```
    DESOLDERING TOOL

\section*{P.C. MARKER PEN DALO 33PC, \(87 p\). \\ ZENER DIODES 4OOMW 11p, IW 17p,} 2. 5W 35p

1 C SOCKETS 8 DIL 14p, 14 DIL 15p, 16 DIL
RESISTORS \(\ddagger W 2 \%\) ( 100 per value \(£ 1 \cdot 30\) ) TW 3p ( 100 per value \(£ \cdot 00\) )
JCMBO 7 SEGMENT DISPIT 12.95
JUMBO 7 SEGMENT DISPLAYS \(52 \cdot 16\) OL 707 £1-60.
LEDs Red. green and yellow, 0.2 in dia. 240.

\section*{SEE MARSHALL'S FOR CMOS} \(C O 400\)
\(C O 400\)
\(C O 400\)
\(C O 400\)
\(C D 400\)
\(C 0400\)
\(C O 400\)
\(C O 401\)
\(C O 401\)
\(C D 40\)
\(C D 40\)
\(C O 40\)
\(C D 40\)
\(C D 40\)
\(C D 40\)

 \begin{tabular}{|c|}
\hline .01 \\
.10 \\
.12 \\
1.01 \\
.97 \\
.20 \\
0.79 \\
.20 \\
0.50 \\
0.81 \\
1.17 \\
0.87 \\
2.28 \\
0.87 \\
0.83
\end{tabular}\(|\) CO
CO
CO 4
COH
CO
CO
CO
CO
CO
CO
CO
CO
COA
CO
CO
CO
CO
 0.83
1.00
0.04
\(1 \cdot 43\)
1.32
1.15
0.50
0.84
1.54
1.54
1.40
1.25
1.25
1.07

Veroboard
\(2.5 \times 3\).in
\begin{tabular}{cccc}
\multicolumn{2}{c}{ Copper } & \multicolumn{3}{c}{ Pialn } \\
0.1 & 0.15 & 0.1 & 0.15 \\
\(36 p\) & \(29 p\) & \(22 p\) & \(17 p\) \\
\(44 p\) & \(40 p\) & - & \(19 p\) \\
\(44 p\) & \(40 p\) & - & \(32 p\) \\
\(49 p\) & \(54 p\) & \(32 p\) & \(32 p\) \\
1.73 & \(£ 1.4\) & \(\Sigma 1.00\) & \(£ 1.92\)
\end{tabular}
4.
34
\(\times 3\)

PINS \(\times 36\) \(\qquad\)
Trade and Retall Supplled

TTL FROM NATIONAL, ITT, TEXAS, SIGNETICS, ETC.

\section*{SN7400}
 \begin{tabular}{ll|l} 
SN7401 & 0.16 & SN7413 \\
SN7402 & 0.18 & SN7416
\end{tabular} \begin{tabular}{ll|l} 
SN7402 & 0.16 & SN7416 \\
SN7403 & 0.16 & SN7417
\end{tabular} \begin{tabular}{ll|l} 
SN7403 & 0.16 & SN7417 \\
SN7404 & 0.18 & SN7420
\end{tabular}
 \begin{tabular}{ll|ll|ll} 
SN7405 & 0.18 & SN7423 & 0.27 & SN7445 & 0. \\
SN7446 & 0.
\end{tabular} \begin{tabular}{ll|ll|l} 
SN77406 & 0.51 & SNN7425 & 0.27 & SN7446 \\
SN7407 & 0.27 & SN7447
\end{tabular} \begin{tabular}{ll|l} 
SN7407 & 0.10 & SN7425 \\
SN7427
\end{tabular}
\begin{tabular}{ll|l} 
SN74408 & 0.11 & SN7427 \\
SN7409 & 0.18 & SN7432
\end{tabular}
\begin{tabular}{ll|l} 
SN7409 & 0.18 & SN7432 \\
SN7410 & 0.18 & SN743
\end{tabular}
SN7448
SN7450
\begin{tabular}{l|ll|}
0.16 & SN 7437 & 0.27 \\
& 0.35
\end{tabular}
SN7451
SN7453
SN74100
\begin{tabular}{l|ll|l}
0.16 & SN7483 & 0.92 & SN74100 \\
0.16 & SN7484 & 0.85 & SN74107
\end{tabular} \begin{tabular}{l|ll}
0.16 & SN7483 & 0 \\
0.16 & SN7484 & 0 \\
0.32 & SN7485 & 1
\end{tabular}
\begin{tabular}{l|l}
0.35 & SN745
\end{tabular} \begin{tabular}{l|ll}
32 & SN7485 & 1 \\
SN7486 & 0 \\
30 & SN7490 & 0 \\
SN7491 & 0
\end{tabular} \begin{tabular}{l|ll}
30 & SN7490 & 0 \\
0 & SN741 & 0
\end{tabular} \begin{tabular}{l|ll}
30 & SN7491 & 0 \\
30 & SN7492 & 0 \\
SN7493 & 0
\end{tabular}

SN74119
SN74121
SN74122 SN74121 SN74122
SN74123
SN74141 SN74141
SN7445 SN74
SN7
N
N450

SN74154
1.15
0.30 \begin{tabular}{l|l}
1.30 & SN74 \\
0.90 & SN74 \\
1.00 & SN74 \\
0.34 & SN74 \\
0.45 & SN74 \\
0.40 & SN74 \\
0.72 & SN74 \\
0.74 & SN74 \\
1.20 & SN74 \\
0.71 & SN74
\end{tabular} SN74157
SN7460
SN74161
SN74162
SN7463
SN74164
SN74165
SN74167
SN74174


\section*{Potentlometers}

Linear or Log Single Double
\(\begin{array}{lll}\text { Rotary Pots } & \text { 25p } \\ \text { Rotary Switched } & \text { 55p } \\ \text { Sita }\end{array}\)
Rildars
Full range of capacitors
stocked. See catalogue for detalls
Presets-Horizontal or Vertical

OIN PLUGS- 140 DIN CHASSIS SOCKETS- 10 .
3 -pin, 4 -pin, 5 -pin \(180^{\circ}, 5\)-pin \(240^{\circ}, 6\)-pin, 7 -pin and Speaker
LINE SOCKETS- 140 each
PHONO PLUGS (screw top)
Red, white, black, green or pellow 10p, Chrome 15p
LINE PLUGS (same colour) 10p, Chrome 15p
PHONO CHASSIS, sOCkets
PHONO CHASSIS,
single 7p, double 10p, 3-way \(12 \mathrm{p}, 6\)-way 25p, 8-way 35p

JACK PLUGS AND SOCKETS \(t\) tin mono plastic plug 15p tin chrome line socket 150 tin plastic switch socket 18 p fin stereo plastic plug \(20^{10}\) flin stereo chrome plug 30p
fin stereo plastic line sockel 20 p tin stereoc chrome line socket \({ }^{\text {3n }}\). tin stereo plastic switched socket 25 p
3.5 mm plug \(10 \mathrm{p} ; \mathbf{3 . 5 \mathrm { mm }}\) socket 10 p
3.5 mm plug 10.p; 3.5 mm socket \(10 \mathrm{p} ; 3.5 \mathrm{~mm}\) line socket 10p;

SUB-MIN CERAMICS 63 V 1 pF \(0.015 \mu \mathrm{~F} 5 \mathrm{p}\)
5\% polystyanene
\({ }^{1,500 \mathrm{pF}-1,0001 \mu \mathrm{~F}} \mathrm{~F}_{10 \mathrm{p}}\)

SEND FOR OUR NEW 160 PAGE CATALOGUE-CRAMMED WITH NEW PRODUCTS, TECHNICAL INFORMATION AND ALL BACKED BY THE USUAL SUPERLATIVE MARSHALL'S SERVICE-FOR ONLY 40 p POST-PAID OR 30p TO PERSONAL CALLERS. - PLEASE ADD VAT TO YOUR ORDER. POSTAGE AND PACKING 30p.


LONDON: OXFORD SIREET•IOIIENHAM COURT ROAD- IISLE STREET EDGWARE ROAD-FIEET STREET•BRENI CROSS
ALSO AT: BIRMINGHAM - BRISIOL - CHATHAM - COICHESIER-CROYDON DARIFORD-KINGSION-LEICESTER-LEWISHAM - NORTHAMPION-OXFORD READING-RICHMOND-ROMFORD-SLOUGH-SOUTHEND-SWINDON IUNBRIDGE WELIS-WOLVERHAMPION.
MAIL ORDERS: LASKYS CUSIOMER SERVICES OIVISION, AUOIDIRONIC HOUSE. THE HYOE. HENOON NHG 6H


TO LASKYS CUSTOMER SERVICES DIVISION Dept. PE 9 Audiotronic House, The Hyde, London NW9 6JJ. Tel: 01-200 0444 Please send me . . . . Sinclair Scientific Calculator Kits at \(£ 5.40\) plus 50p p\&p
NAME
ADDRESS

\section*{SIGNATURE}

TOTAL PURCHASE PRICE
(inc. p/p \& Ins.) Please send me FREE Hi-Fi catalogue price list \(\square\) I enclose cheque \(\square\) postal order \(\square\) money order \(\square\) wish to pay by Barclaycard/Access/Diners/Countdown and my number is

\footnotetext{
Registered in England No. 347947 at Lower Grosvenor Place, London SW1 DEX
}

\section*{REVERSIBLE ASSEMBLY FRAME FOR PRINIED CIRCUITS Simply assemble,turn over and solder}


\section*{RELAYS} TEMENS, PLESSEY, Et Col. (1)
Coil ohm Col. (2) Working
d.e. yolts Col. (3) Col. (4) Price
HD \(=\) \begin{tabular}{r}
\multicolumn{1}{l}{} \\
\hline 52 \\
58 \\
185 \\
230 \\
430 \\
600 \\
700 \\
700 \\
1.250 \\
2.500 \\
2.500 \\
\(15 k\)
\end{tabular} \(4-8\)
\(5-9\)
\(8-12\)
\(9-18\)
\(15-24\)
\(10-20\)
\(12-24\)
\(16-24\)
\(18-36\)
\(31-43\)
\(36-45\)
\(85-110\)
 *Incl. Base OPENTYPE RELAYS
3 c/o 5 amp contacts. 70 ohm coil. 85p. Post 15p. 12 VOLT D.C. RELAY 3 clo 5 amp contacts. 120 ohm coil. 85p. Post I \(5 p\).
6 VOLT C . C . I make contacts 45 . Post \(15 p\). 6 VOLT D.C. 1 make contacts 45p. Post 15 p .
100 VOLT A.C. \(2 \mathrm{c} / \mathrm{o} 75 \mathrm{p}, 3 \mathrm{c} / \mathrm{o} 85 \mathrm{p}\). Post 15 p 100 VOLT A.C. 2 c/O 75p. 3 c/o
ENCLOSED TYPERELAYS
24 VOLT D.C. \(3 \mathrm{c} / \mathrm{o} 85 \mathrm{p}\). Post 20 p . Base 15 p extra. 24 VOLT A.C. Mrg. by ITT. 3 h.d. c/o contacts. 65 p . Post 20p. Base 15p.
3 h.d. clo contacts. Price 65p. Post 20p. Base 15p. 230 VOLT RELAY. 3 h.d. c/o contacts. Price 85p. Post 20 p. Octal plug in base I 5 pextra.
\(230 / 240\) VOLTA.C. RELAY. Mfg. by A
15 amp c/o contacts. Amp connectors. Price \(41 \cdot 10\). 220/240 VOLT A.C. RELAY
\(3 \mathrm{c} / 0 \mathrm{5}\) amp contacts, 5ealed. Mig. 15 KRA

Miniature relay. 675 ohm coil. 24 Volt D.C. 2 clo 80p post paid.
C/O MICRO SWITCH
VERY SPECIAL OFFER. Mrg.
C.E.M. 3 amp 250 volt. 10 mp roit. 50 for \(t 3\). Post 36 p . 100 for Post 50p. 1,000 for E45. Post paid Bulk purchase means LOW! LOW! prices. switch. 10 amp 250 va.c. With detachable roller MINIATURE C/O ROLLER MICRO SWITCH OMRON Type VIS FL22/IC.
E2. Post 50p. (Min. order 10 ).


\section*{24 YOLT DC SOLENOIDS}

UNIT containing I heavy duty solenoid approx. 25Ib pull 1 inch travel. Two \(x\) approx. Ilb pull \(\frac{1}{\frac{1}{2}}\) inch 24 volt d.e., I heavy duty single make relay. Price
£3.00. Posit \(£\). ABSOLUTE BARGAIN.
 600 WATT DIMMER SWITCH Easily fitted. Fully guaranteed by makers.
Will control up to 600 W of lighting except fluorescent at mains voltage. Complete with simple instructions. 1,000 watt model, 44.50 . Post \(25 p\).
2,000 watt model, 49 . Post 40 p. CENTRIFUGAL BLOWER Mig by 5 miths Industries. \(230 / 240 \mathrm{y}\) a.c. Miniature Model. Series \(5 \mathrm{E} / 200\)
Size \(95 \mathrm{~mm} \times 82 \mathrm{~mm} \times 82 \mathrm{~mm}\). Aperture 38
\[
\text { c.f.m.. } 42 \cdot 75 \text {. Post 50p. }
\]


METERS NEW 90 mm Diameter


 Post \(20 \mathrm{p}, 0-300 \mathrm{~V}\) A.C. M/1.
A.C. R/M/C. \(63 \cdot 00\). Post 30 p

\section*{WHY PAY MORE}

MULTI RANGEMETER. A.C. volts \(2.5 \cdot 500\) D.C. volts \(2 \cdot 5-500\) (Sen-
sitiviry \(2000 \mathrm{R} / \mathrm{V}\) D.C. \& C) D.C. current \(0 / 1 / 10 / 100 \mathrm{~mA}\) Ohms range. Sturdy compact moving coil instrument with ranges, dimensions \(120 \times 80\) 44 mm . Weight 0.32 kg . SERVICE
 TRADING CO. Price ©5.00. Incl. leads and battery.
Post 50p (Total price inc. VAT \& Post \(\mathbf{6 5} .94\) ).

\section*{BLOWER UNIT} \(200 / 240 \mathrm{~V}\) a.c. precision German
built. Dynamically balanced, quiet, buitt. Dynamically balanced, quiet, con rated, reversible. Consumption
60 mA . Size 120 mm dia, \(\times 60 \mathrm{~mm}\) deep. Price E3.50. Post 50p.

INSULATED TERMINALS
Incorporating 4 mm socket.
Available
Available in black, red, white,
yellow, blue and green. 180
yellow, blue and green. 18p
All Mail Orders-Callers-Ample Parkine Dept. PEI0, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560

\section*{VARIABLE VOLTAGE TRANSFORMERS}

\section*{INPUV 230/240V a.c. 50/60 OUTPUT} VARIABLE O-260V
SHROUDED TYPE 200 wa


\section*{L.T. TRANSFORMERS}
\begin{tabular}{|c|c|}
\hline 10 amp. & 66.15. Pos \\
\hline \(0,10,17,18\) Volt at 10 amp . & 68.70. Post £1.00 \\
\hline \(0,4,6,24,32 \mathrm{Volt}\) at 12 amp . & ¢10.90. Post ¢ 1.00 \\
\hline \(0,6,12\) Volt at 20 & 69.00. Past ¢1.00 \\
\hline & \\
\hline
\end{tabular} \(\begin{array}{lr}0,4,6,24,32 \text { Volt at } 12 \mathrm{amp} . & £ 9 \cdot 90 \text {. Post } £ 1.00 \\ 0,6,12 \text { Volt at } 20 \mathrm{amp} . & £ 10 \cdot 30 \text {. Post } £ 1.00 \\ 0,12,24 \text { Volt at } 10 \mathrm{amp} . & \end{array}\)
 Other types to order at short notice-Phone your

\section*{AUTO TRANSFORMERS}
 watt \(£ 6 \cdot 20\). Post 60p. 500 watt \(£ 9 \cdot 20\). Post 75 p 1000 watt \(613 \cdot 50\). Post 90 p .

\section*{STROBE! STROBE! STROBE}

\section*{HY.LIGHT STROBE MK IV}

Build a 5trobe Unit, using the latest type Xenon white light flash tube. Solid state timing and criggering circuit. \(230 / 250 \mathrm{~V}\) a.c. operation
For use in large rooms, halls and utilises a tube, printed circuit. Speed adiustable 0.20 f . \(\mathrm{p}, \mathrm{s}\) tube, printed circuit. Seed many (so called 4 loule) strobes E15'40. Post 75p.

\section*{XENON FLASHGUN TUBES}

Range available



\section*{SQUAD LIGHT}

A new conception in
light control. Four
 of spor lights flood lights or dozens of small of spot lights, flood lights or dozens of small mains hamps. Seven programs alled olus flash modulation, effectively giving 14 different displays. Maices sound-tolight obsolete. Completely electrically and mechanically noise free. Price only \(\mathbf{6 0}\), Post \(75 p\). S.A.E. (foolscap) for further details.

WIDE RANGE OF DISCO LIGHTING EQUIPMENT
\(6^{\prime \prime}\) graphic wheels, \(3^{\frac{2}{2}}\) cassettes. S.A.E. (Foolscap)

\section*{COLOUR WHEEL PROJECTOR} TYPE PI50 INTACHANGE
\(200 / 240 \mathrm{~V}\) a.c. 50 Hz 150 W lamp, complete with oil filled colour wheel and motor plate. Takes intachange accessories and full range of lenses. £29.95. Post \(£ 1 \cdot 35\).
(Total inc. VAT \& Post, \(£ 33.70\).)

\section*{BIG BLACK LIGHT}

400W Mercury Vapor Ultra Violet Lamp. Powerful lamp. Price of bulb and matched ballast unit. \(\mathbf{E 2 8}\). Post 62 . 5pare bulb only \(\mathbf{6 1 0}\). Post 80p.

\section*{VAT}

VAT AT \(8 \%\) MUST BE ADDED TO
ALL ORDERS FOR THE TOTAL VALUE
OF GOODS INCLUDING POSTAGE UNLESS OTHERWISE STATED. SERVICE
TRADING CO

GEARED MOTORS 100 r.p.m. 115 jb .in, IIOV, capacitor motor. Immense power. Continuously rated. Totally enclosed. Fan cooled in-line gearbox. Length 250 mm . Dia. 135 mm . Spindle dia. 15.5 mm . Length 145 mm . Ex-equipment tested 12 , Post £1.50. Suitable transformer \(230 / 240 \mathrm{~V}\) operation
£8. Post 75 p .
60 R.P.M. REVERSIBLE
\(220 / 240 \mathrm{~V}\) a.c. Small, powerful, continuously rated, reversible motor. M.f.g. Berger (Germany). Size
\(80 \mathrm{~mm} \times 65 \mathrm{~mm} \times 65 \mathrm{~mm}\). Spindle dia. \(6 \mathrm{~mm} \times 15 \mathrm{~mm}\) long. Weight 725 g . \(£ 6 \cdot 50\). Post 50 p .
BODINE TYPE N.C.I.
(Type J) 71 r.p.m. torque 10 lb in.
Reversible I/70th h.p. SoHz. (Type 2) 28 r.p.m. torque 20 Ib. in Reversible \(1 / 80\) th h.p. 50 Hz .
The above two precision ma
\(\qquad\)
offered in 'as new' condition In U.S.A. motors are \(115 V\) A.C. Supplied complere with transformer \(230 / 20\) eich.c.input. 5 Poss 75 or less rans Price, eithel type \(\mathbb{6} \mathbf{2 5}\).
former \(£ 3.75\). Post 65 p.
(Type 3) 71 r.p.m. 4 lb.ins 230 V a. C Continuously rype 3) 71 r.p.m. 4 lb.ins. 230 V a. C Continuousily
rated. Non-reversible. 66.50 . Post 75 p .

15 R.P.M.
Type SD48 80 lb . in. Input \(100 / 200\) volt A.C. Length incl. gearbox 270 mm . Height 135 mm . Width 150 mm . drive shatt 16 mm . Weighe 8.5 Kilos . BRAND
NEW . Price \(£ 10\). Carr. \(£ 1\). 5uitable transformer for use on \(220 / 240\) volt A.C. 4385. Post 50p.

24 R.P.M.
230Va.c. Continuouslyrated, Mfg. Mycalex, Ex-
equip. Fullytesced. 63.85 . Post 75 p.
I R.P.M. \(230 / 240\) Y A.C. SYNCHRONOUS! Ex-equipment. Thoroughly tested and guaranteed ONLYEI.50. Post 20 p.

\section*{20 R.P.M.}
\(230 / 240\) volt a.c. miniature motor. Price \&1. Post 20 p.
PROGRAMME TIMERS
230 V operationa.c. 15 or 20
5 cam model 65 . Post 60 p .
9 cam model 66.50 . Post 60 p .
12 cam model 67.50 . Post 60 p
Also availabie for 50 V operation. Prices as above.

\section*{INSULATION TESTERS NEW!}

A.C. MAINS TIMER UNIT Based on an electric cliock, with
25 amp . single pole switch whicll can single po pole switch,
period up to 12 for for any to switch on for any. length
of time, from 10 6 of time, from 10 mins additional 60 min. audible timer is also incorporated. Ideal
 Electric Blankets, etc. Attractive satin copper finish. Size \(135 \mathrm{~mm} \times 130 \mathrm{~mm} \times 60 \mathrm{~mm}\). Price \(\mathbf{6 2} 25\). Post 40p. (Total incl. VAT and Post \(£ 2 \cdot 87\) ).

\section*{TIME SWITCH}
"Horstmann \({ }^{\text {T Type V. Mk, II Time }}\)
switch. \(200 / 250\) volt A.C. Two on/two off every 24 hours, at any manually preset time. 30 amp contacts. 36 hour spring reserve in case of power failure. Dayomitting device. Fitted in heavy high impact case, with glass observa-
tion window. Built to highest Electricity Board Spec. individually tested. Price


Superior Quality Precision Made NEW POWER RHEOSTATS New ceramic construction, vitreous enamel embedded winding, heavy
dusy brush assembly. continuously 25 Wated. \(10 / 25 / 50 / 100 / 150 / 250 / 500 / 1 \mathrm{k} / 1.5 \mathrm{k}\) ohm. 51.90 . Post 20p. 50 WATT \(/ / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k}\) ohm. E2.40. POst 25p. \(10 / 25 / 50 / 100 / 250 / 500 / \mathrm{lk} / 1 \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k} /\)
100 WATT \(1 / 5 / 10 / 25 / 50 \mathrm{k}\)

Black Silver, Skirted knob calibrated in Nos. I-9
Itin. dia. brass bush. !deal for above 22 p each.
\(\frac{1}{2} i n\). dia. brass bush. Ideal for above 22p each.

\section*{9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone 01-437 0576}


4600 SYNTHESIZER
All parts stocked for this brilliantly designed drilled and printed front pansi, giving a superb professional finish. Opinions of authority agree the ETI Synthesizer is technically superior to most of oday's models. Send \(£ 1.50\) for construction book or S.A.E. for specification

\section*{100W STEREO DISCO}

Features: Voice operated fader. beit drive turn headphones end VU metera). sound operated Ilght show-oplus i. Send just 20p for our construction eaflet MES 41

\section*{ELECTRIC ORGAN}

Build it yourself-in stages-start with a 49 -note instument-leatures tremulant and reverb. ldeal to nother keyboard and 5i. price isp \(\star \star \star\) Add esflet MES 52, price 15 p. Also shows how to use 1-note keyboards. \# . Fully controilable attack expensive organs) up to seven only on the mos keyboard, up to 70 controls including drawbars and 3-note pedalboard are the additions described in the step-by-step 32 page leaflet MES 53, price 35p

\section*{GRAPHIC EQUALIZER}

A superior quality stereo graphic equalizeroctaves per channel. Alt parts stocked (excep Reprint of article 150 .

\section*{DIGITAL CLOCK KITS}
(All prices include VAT and P. \& P.)
Simple Clock Kit. 19.38 . Alarm Clock Kit, 110.99 Alarm Clock and Radio Controller Kit. ©11-51 (Smart All above include our fully built and tested electronic clock module (available separately. ce-60). Date sheet (supplied) shows how simple it is to connect alarm and your mains battery radio. Clock has bright red -digit 0 . \(i n\) display-Flashing colon-Switch to Display seconds-Alarm set indicator-P.M Snooze timer, etc S.A.E please for clock data clock data

ORDER OUR 1977/78 CATALOGUE NOW

Details in coupon on back cover. Everyone orderlng betore publication date will recelve a pack of ten super special offer coupons, giving big dis counts on ten different popular items-yOU COULO SAVE THE COS:-SO DON'T DELAY FIL

Here are just some of the new projects in the catalogue: Multi-channel audio mixer-13-note foot pedal unit for guitarist or organist-novel intercom ellminators and voltage converters, etc., etc

MAPLIN ELECTRONIC SUPPLIES
P.O. Box 3, Raylelgh, Essex, SS6 8 LR

Shop: 284 London road, Westcliff-on-Sea, Essex (closed on Monday) Tel: Southend (0702) 44101

Semiconductors from LYNX ELECTRONICS



Available to you in kit form at the same moment as its national launch, the brilliant new Videomaster Superscore contains the latest product of MOS technology: a TV game chip.

The logic contained in it had previously to be generated by 100 TTL devices. Now it is condensed into one 28 -pin chip.

This all-new Videomaster plugs into your 625-line UHF TV set (for overseas customers having VHF sets we can supply the necessary VHF modulator) to give you four exciting games (including tennis and football) and two future game options. It features on-screen digital scoring, realistic hit sounds, two bat sizes, two
ball speeds, automatic serving and much more. It runs on six \(1 \frac{1}{2}\) volt SP11 type batteries (not supplied).

The Videomaster Superscore kit costs only £24.95 including VAT (recommended retail price of the ready built model is over \(£ 40.00\) ) and comes complete with ready-tuned UHF or VHF modulator, circuit board with printed legend, all resistors, transistors and diodes, built-in loudspeaker, socket for mains adaptor, and, of course, the TV game chip itself.

Easy to put together the Superscore has full assembly instructions, circuit diagram and circuit description. Don't miss this chance to own the newest electronic game at such low cost.

POST TODAY TO:

\section*{Videomaster Lte 14/20 Headfort Place, London SW1X 7HN}
Please send me (insert No. requ'd)...............Videomaster Superscore Kits at \(£ 24.95\) (inc. VAT \& P\&P in UK)
or \(£ 23.10+£ 4.00\) for \(P \& P\) overseas)
I enclose my cheque/money order* for \(£ . . . . . . . . . . . . . . . . . ~ V H F ~ m o d u l a t o r ~ r e q u i r e d ~\)
NAME
ADDRESS
ALLOW 21 DAYS FOR DELIVERY


HERE'S JUST. A FEW OF THE MANY NEW AND INTERESTING KITS AVAILABLE
* ELECTRONIC IGNITION \(£ 9 \cdot 95+\) S
* CASSETTE POWER SUPPLY \(£ 3 \cdot 20+\mathrm{S}\)
\(\star\) DARKROOM EXPOSURE METER \(£ 4 \cdot 75+\mathrm{H}\)
* 6V ACCUMULATOR CHARGER \(£ 9 \cdot 95+\mathrm{S}\)
\(S=8 \%\) V.A.T.
\(H=121 / 2 \%\) V.A.T.
\(\star\) 60W GUITAR AMP. \(£ 29.95+\mathrm{H}\)
\(\star\) SOIL MOISTURE METER \(£ 1 \cdot 99+\mathrm{S}\)
\(\star\) INTERNATIONAL 25 AMP. \(£ 29 \cdot 95+\mathrm{H}\) * MOTORISTS DWELL METER \(£ 5 \cdot 70+\mathrm{S}\)

FULL BUILDING INSTRUCTION DETAILS OF KITS IS AVAILABLE ON REQUEST PRICE 25p EACH REFUNDABLE IF KIT SPECIFICALLY APPLIED FOR IS PURCHASED

\section*{Over 50,000 eusitmors
REGULARIY SERICED \\ \section*{LOOK WHAT'S IN IT FOR YOU}}
* sem conductoas * cápacitoas * ic's * mini ceranics * pesistors * FOTENTIOMETERS \& TMERMISTORS * BRIDGE RECTIFIERS * REGULATORS *
 SUPFRESSION FILTEAS * GRYSTALS * AELAYS \# CONNECTORS *PLUGS E SOCKETS * cases * knoss a dials * meat sinks * scaEws, nuts, tags, grommets \% ADMESIVES \& CLEANERS * DIODES \& NDICATORS \& PANEL METERS a BULES \& ILLUM PUSH BUTTION. TOGGLE, ROCKER a PROXIMITY SWITCHES \(\boldsymbol{*}\) SOLDERING IMONS 4 NI CADS \# DRILLS * REPLACEMENT STYI * SPEAKERS * BLANK CASSETTES * MICROPHONES \# CABINETS \# MULTIMETERS \# LOGIC PAOBES ANO MUCK MUCH MORE I

\section*{DORAM'S NEW CATALOGUE HAS BEEN} SPECIFICALLY DESIGNED FOR THE AMATEUR RADIO, ELECTRONICS \& HIFI ENTHUSIAST.

DORAMS SERVICE ALSO INCLUDES-

鱼 FREE - UP-DATE PRODUCT INFORMATION SERVICE DURING LIFE SPAN OF CATALOGUE
带 ALL ORDERS SENT BY RETURN.OF. POST

NO-QUIBBLE REPLACEMENT PART SERVICE
POST \& PACKING FREE FOR ORDERS OVER £1 (Only applies for Great Britain N.Ireland and B. F.P.O. Nos.- Overseas orders F.O.B.)
SEND FOR YOUR NEW CATALOGUE AND/OR KIT BROCHURE NOW!


\footnotetext{
DORAM ELECTRONICS LTD.
P. Q Box TR8,

Leeds, LS12 2UF.
I enclose \(\qquad\) Please send me by return my new catalogue and/or kit brochure. (Over seas orders except for \(\mathbf{N}\). Ireland please add 30 p for post and packing surface only.
}

\section*{PLEASE PRINT BLOCK CAPITALS}

NAME:
ADDRESS: \(\qquad\)
\(\qquad\)
\(\qquad\) POST CODE

An Electrocomponents Group Company.

\section*{TAMBA ELECTRONICS \\ QUALITY PRODUCTS FOR HI-FI, DISCO. P,A. GROUP AND CLUB USE}

\section*{A BRAND NEW RANGE OF AMPLIFIER MODULES 5 to 100 WATT/RMS}

Choose the power you need from these five pure complementary amplifiers Two-year guarantee

All amplifiers feature a pure complementary symmetry output stage for low distortion and high reliability-the highest grade components (by MullardTexas, Plessey--RCA etc.) used throughout
- Suits loads 4-16 ohms (optimum load 8 ohms. TAM50/100/250, 4 ohms TAM500/1000)
- Low distortion (0.1\%)
- \(20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}\)
- Silicon circuitry throughout
- Inherently open circuit'proof
- Four simple connections
\[
\begin{array}{ll}
\text { TAM } 505 \text { W RMS } 25 \mathrm{~V} \text { supply } & £ 3.20 \\
\text { TAM } 100 \text { 10W RMS } 35 \mathrm{~V} \text { supply } & £ 3.75 \\
\text { TAM } 25025 \text { W RMS } 45 \mathrm{~V} \text { supply } & £ 4.25 \\
\text { TAM } 50050 \mathrm{~W} \text { RMS } 45 \mathrm{~V} \text { supply } & £ 6.95 \\
\text { TAM } 1000 \text { 100W RMS } 65 \mathrm{~V} \text { supply } & £ 9.80 \\
\text { (all modules carriage free) } &
\end{array}
\]

\section*{POWER SUPPLIES}

For 1 or 2 TAM50/100 \(£ 4 \cdot 25\) (carr 50p) For 1 or 2 TAM250/500 £6.95 (carr 50p) For 1 or 2 TAM \(1000 \quad £ 9.80\) (carr 50p)

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc) C.O.D. (50p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at \(8 \%\) to orders for \(50-100 \mathrm{~W}\) units and at \(12 \frac{1}{2} \%\) for \(5-25 \mathrm{~W}\) units

Hours, 9.30a.m.-5p.m Mon.-Sat. Callers welcome.
Tel: (01) 6840098



Complete Kit of semiconductors
£9.40 High quality glass fibre P.C.B.

\section*{PHASE LOCKED} STERED DECODER ta MOTOROLA specification COMPLETE KIT £3.50 includer MClalop, Gloss fibre p.c.b, all
resistots \& opacitors, LED indicotor and

FERRANTI
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline BC107P & 11p & \(27 \times 108\) & 9 & 2T \(\times 330\) & 17p & 2TX530 & 14p & 25178 & , \\
\hline BC108P & \({ }^{9 p}\) & \(27 \times 109\) & 11p & \(21 \times 331\) & 18 p & \(27 \times 531\) & 190 & 2S178 & 549 \\
\hline BC109P & 11p & \(21 \times 212\) & 15p & \(27 \times 382\) & 18p & 21 \(\times 550\) & 18p & zS270* & 14p \\
\hline BC415P & 17 p & \(2 T \times 213\) & \({ }^{15} \mathrm{p}\) & 2T×383 & 15p & 2TX551 & 17p & 25271* & 23p \\
\hline BFS59 & 14 p & \(2 T \times 214\) & 17p & ZTX384 & 17p & 2N3055* & 70. & 25272* & \(24 p\) \\
\hline BFS60 & 15p & 2TX239 & 10p & \(21 \times 450\) & 16p & & & zS274* & 290 \\
\hline BFS61 & 15p & \(2 T \times 300\) & 12p & \(21 \times 451\) & \({ }^{18 p}\) & D10 & & ZS275* & 36 p \\
\hline BFS96 & 14 p & \(2 T \times 301\) & 13 p & \(27 \times 500\) & 13p & zS142* & \({ }^{34} \mathrm{p}\) & 25279* & 570 \\
\hline BFS97 & 15p & 2T \(\times 302\) & 150 & \(21 \times 501\) & \({ }^{44} \mathrm{p}\) & 2S170 & 13p & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{ZENERS}} \\
\hline BFS99 & 16p & \(\underline{2 T \times 303}\) & 18 p & \(27 \times 502\) & 16p & 2\$171 & \(16 p\) & & \\
\hline 2TXA20 & 10p & \(21 \times 304\) & 19p & \(21 \times 503\) & 17p & ZS172 & 23p & BZV19 & \\
\hline 2TX107 & 11p & 2TX320 & 18p & 2TX504 & \(20 p\) & ZS174 & 25p & 4.7 to & 10p \\
\hline
\end{tabular}

ZNA14 racio microcircuif £1. ZN1034E* prectsion timer l.c. E2.75. ZN4
ZN1040E* uñiversal count/display I.c. se 25.

\section*{PE TV SOUND SEPARATOR}

Complete kit of samiconductors \(12 \cdot 30\). Nigh quality glass fibre p.c.0. E1. Murate cermmic

\section*{MOTOROLA MC1310P only \(£ 1 \cdot 80\)}

Glass flbre p.c. D. to sull MC1310p stp, Red LED whith clip 27p. MOTOROLA: MC1357pO E1-85; BD699* \(51 \cdot 14\); BD700* \(£ 1\) 28; MJ4032* \(55 \cdot 17\); MJ4035" £4-95.
PE OPTO REV COUNTER: FERRANTI MS4A photocelte £1-35', PE JOANNA: 77 ZTX10a for E , 183 2S170 diodes for \(\mathbf{t 1 5}\).
POSTAGE AND PACKING 15p per order. Orders over E5 post free. All devices top grade, brand now and to full manufacturers spec. We do not sell seconds or rejecte. Send SAE for our data PRICES DO NOT I

\section*{DAVIAN ELECTRONICS \\ PO BOX 38 . OLDHAM . LANCS . OL2 6XJ}


\title{
SYNTHESISERS, SOUND EFFECTS AND \\ COMPONENTS SETS include all necessary resistors, capacitors, semi-
conductors, potentiometers and formers, Hardware such as cases, sockets. knobs, etc. are not included but most of these may be bought separately. Fuller details of kits, PCBs and parts are shown


\section*{P.E. SYNTHESISER}
(P.E. Feb. 73 to Feb. 74)

The well acclaimed and highly versatile largenscale mains-aperated Sound Synthesiser complete with keyboard circuits. All function circuits may be used independently, or interconnected. The greater the number of circuits, the greater the versatility. Other circuits in our lists may be used with the Syntheaiser to Wind and Rain, Rhythm Gonerator, Sound Bender, Voltage Controlled Filter, Guitar Effects Pedal).

\section*{THE MAIN SYNTHESISER}

Stabilised power auply and one Inverter-alt 3 circuizs PCB (2 are required) each Two Ramp Generators and Two Input Amplifiers
all 4 circuits
PCB (holds all 4 circuits)
Sample-Hold and Noise Genarator
Tone Control
PCB
Reverberation Amplifier
Sprine Line unie for Reverb. Amp.
Ring Modulator
Peak Level Meter Circult
\(100 \mu\) A Panel Meter
PCBE Ro hold Reverb, Ring Mod and Moter
Circuits Circuits
envelope Shaper
Yoltage Controlled Amplifier and Difforential Amplifier
PCB (holds both circuits)
THE SYNTHESISER KEYBOARD CIRCUITS
(Can be used without the Main Synthesiser to make an independent musical inserument) Two Logarithmic Voltage Controlled Oscillators
\(\begin{array}{lr}\text { Component set } & \mathbf{4 1 5 . 2 8} \\ \text { PCB (holds both circuits) } & £ 2.86\end{array}\)
PCB (holds both circuits)
Divider, 2 Hold Circuite, 2 Modulation
Amplifiers, Mixer and 2 Envelope Shapers PCB (holds the first 6 circuits)
Keyboard Stabilised Power Supply
Keyboard Stabilised
Printed Circuit Board
620.92
812.05
417.80
811.63
65.92

GUITAR EFFECTS PEDAL (P E July 75)
GUITAR EFFECTS PEDAL (P.E. July 75) an audio signal not only from a guitar but from any audio source, producing e diferent switchable effects that can most interesting of all the low-priced sound effects units in our range. Circuit does not duplicate effects from the in our range. Circuit does not duplicate effects fr
Guitar Overdive Unit.
Component Set with special foot operated Compone
Alternative component set with panel mounting
switches
Printed Circuit Board
\(\$ 6.79\)
4.90

SOUND BENDER (P.E. May 74)
A multi-purpose sound controller, the functions of
which include envelope shaper, tremolo, voice-operated fader, automatic fader and frequency-doubler.
Component Set for above functions (excl. SW \({ }^{\text {s }}\) )
Printed circuit board
67.24
81.74

Optional extra-additional Audio Modulator, the use of which, in conjunction with the above component set, can produce "jungle-drum"' rhythms.
PHASING UNIT (P.E. Sept. 73)
62.76

PHASING UNIT (P.E. Sept. 73) A simple but effective manually controlled unit for introducing the "phasing" sound into live or recorded
music.
Coment Set (incl. PCB) Component Set (incl. PCB)
PHASING CONTROL UNIT (P.E. Oct. 74)
For use with the above Phasing Unit to automatically control the rate of phasing
Component Set (incl. PCB)
WAH-WAH UNIT (P.E. Apr. 76)
The Wah-wah effect produced by this unit can be controlled manually or by the integral automatic controller.
Component Set incl. PCB

\section*{POST AND HANDLING}
U.K, orders--under CIS add 25p plus VAT, over 615 add 50p plus VAT.
Optional Insurance for compensation against loss or
damage in post, add 35 in addition to above post and handling, B.F.P.O., and other countries are subject to Eire, C.L., B.F.P.O., an
Export postage rates.
in our lises.
CIRCUIT AND LAYOUT DIA. GRAMS are supplied free with alt PCBz desiened by Phonosonics.
PHOTOCOPIES of the P.E. texts for most of the kitz are available-prices in our lists.

\section*{PHONOSONICS}

\section*{PHONOSONICS}

MAIL ORDER SUPPLIERS OF QUALITY. PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET.

\section*{P.E. JOANNA (P.E. May/Sept. 75)}

A flve-octave electronic piano that has switchable alternative voicing of Honky-Tonk piano, ordinary piano, harpsichord, or mixture of any of the three, together soft pedal switching, and sustain pedal switching. The sot pedal switching, and sustain ped a witenting. The
powar amplifier typically delivers 24 wates into 8 ohms. The PCBs have been redesigned by ourselves making improved use of the space available.
Main Power Supply
10.09

Tone Generator and Top C Envelope
10.61

PCB for Main PSU. Tone Gen \& Top C E.S. E2.31
Envalope Shapers for all notes (except Top C) \(£ 37.68\)
Sot of PCBs for Envelope Shapers (except Top
\(\begin{array}{ll}\text { Voicing and Pre-Amp Circults } & £ 10.15\end{array}\)
PCB for Voicing and Pre-amp 22.80
Power Amplifier (incl. separate Power Supply) \(\$ 15.06\)
PCB for Power Amp and PSU
95p
RHYTHM GENERATOR (P.E. Mar./Apr. 74)
Programmable for 64,000 rhythm pattorns from 8 effects circuits (high and low bongos, bass and snare drums, variable time signatures and rhythm rates. Really fascinating and useful.
Tempo, Timing and Logic circuits
PCB for above circuits (double-sided)
Component ser for all 8 effects circuits
PCB for all 8 effects
Simple mixer (our design) incl, PCB
Alternative mixer with axternal volume controls.
incl. PCB
PCB
(See our list for Power Supplies for Mixers)
REVERBERATION UNIT (P.W. Nov./Dec. 72)
A high quality unit having microphone and line input preamps, and providing full control over reverberation Covel.
Component Set (exel. spring unit)
Printed Circuit Board
412.68
61.93
64.95

9 in. Spring Unit
Panel Meter ( \(50 \mu \mathrm{~A}\) ) (optional)
64.95
4.99

WIND AND RAIN UNIT
A manually controlled unit for producing the above-
named sounds.
Componentset incl. PCB
4.3.37

\section*{GUITAR OVERDRIVE UNIT (P,E, Aug. 76)}

Sophisticated, versatile Fuzz unit, including variable and
switchable controls affecting the fuzz quality whilst switchable controls affecting the fuzz quality whilst retaining the attack and decay, and also providing filtering. Does not duplitate the effects from the Guitar Effects Pedal and can be used with it and with other
electronic instruments. ectronic instruments.
Component set using dual slider pot
omponent set using dual rotary pot
fUZZ UNIT
Simple Fuzz unit based upon P.E. 'Sound Design' circuit.
\& f .98
TREMOLO UNIT
Based upon P.E. 'Sound Design' circuit.
Component set incl. PCB
43.19

TREBLE BOOST UNIT (P.E, Apr. 76)
Gives a much shriller quality to audio signals fed through it. The depth of boost is man ually adjustable.
Component Set incl. PCB
62.31

25 WATT MONO AMPLIFIER (P.E. Sept. 75)
\(\{6.57\)

A good general purpose integrated circuit power
amplifier typically delivering 25 watt into 8 ohms.
Power bandwidth 20 Hz to \(20 \mathrm{kHz}, 3 \mathrm{~dB}\), input impedance 20 km . Distortion \(0.2 \%\). Suitable for use with any of our sound producing kits.
Component Set incl. power supply
415.06

For stereo use two sets and PCBs are required.
P.E. MINISONIC MK
(P.E. Nov. 1974 to March 1975)

A portable, battery or mains operated, miniature sound synthesiser, with keyboard circuits. Although having the functions offered by this design give it gratat scope and versatility. Like the large Synthesiser it too may be advantageously used with other circuits in our lists.

Two Voltage Controlled Oacillator: \(\mathbf{5 5 . 5 5}\)
Voltage Controlled Filter and Voltage
Two Envelope Shapers and Two Voleage
Keyboard Controller and Hold Circuit: \(\mid\) £8.11 Keyboard Divider Resistors (select type to suit 3 Octave f1.48; 4 Octave \&1.96; 5 Octave 62.44. H.F. Oscillator and Datector 5 Octave 22.44. Ring Modulator, Noise Generator and Envelope
Two Power Amplifiers and Two Mixers
Two Power Amplifiers and Two Mixers
Battery Eliminator
Temperature Stabiliser
Temperature Stabiliser
PCB to hold \(2 \mathrm{VCOs}, \mathrm{VCF}\) and \(V\) Ref
PCB to hold 2 ESs, 2 VCAs, 2 Mixers, Ring Mod, Keyboard Control and Hold
Envelope-|nverter, H.F. Osc and Derector Gen.,
PCB to hold Battery Eliminator and Tomperature
Stabiliser
41.59
P.E. MINISONIC MK 2

Conversion kits and PCBs for updating the MK I version are now available. Details in our list.

\section*{ENVELOPE SHAPERS}

Both of the kits below have manual control over their Attack, Decay, Sustain and Release functions. Both kits (PE Apr 76) A PRer) \(\begin{array}{ll}\text { Envelope Shaper and VCA (P.E. Apr. 76) } & \text { E6.02 } \\ \text { Envelope Shaper (without VCA) (P.E. Oct. 75) } & \text { \&4.62 }\end{array}\)

VOICE OPERATED FADER (P.E. Dec. 73)
For automatically reducing music volume during "talk-over't-parsicularly useful for Disco work or for homemovie shows.
Component Set incl. PCB
VOLTAGE CONTROLLED FILTER (P.E. Oct. 74)
An independently designed VCF that can be used with he P. Synthesiser.
Component Set
Printed Circuit Board
P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequencyaccurate tones.
Aroduces 84 switch-selected frequencyaccurate tones. ments. Ideal for cuning acoustic and electronic musleal instruments alike.
Main Component Set incl, PCB
414.77

Power Supply set incl. PCB
P.E. SYNCHRONOME (P.E, Mar, 76)

An accented-beat electronic metronome, providins duple, triple and quadruple times with full control over the beat rate. Can also be used as a simple drum-beat hythm generator. Includes power supply
Component Set incl. Ioudspeaker
Printed Circuit Board
PEAK LEVEL INDICATOR (P,E, Mar. 76)
A twin-channel visual display unit for monitoring the peak level of audio signals. Well suited for use when avoid signal ov Component Set incl. PCB (as published)

\section*{DON'T FORGET VATI}

EXPORT ORDERS are welcome, though we adyise that a current copy of our list should be obtained before ordering as it also shows Export postage rates. All payments must be cash-with-order, in Sterling and preferably by international Money Order or through an English countries send 40p.

\section*{OTHER PROJECTS}

PHOTOGRAPHS in this advertisement show two of our units containing some of the P.E. projects built from our kits and PCBs. The cases were built by ourselves and are not for sale, though a small selection of other cases is available.
LIST-Send Stamped Addressed Envelope with all U.K. requests for free list giving fuller details of PCBs , kits, and other components.
OVERSEAS enquiries for list: Europesend 20p; Other Countrios-send 40p.
KEYBOARDS AND CONTACTS
Klmber-Allen Keyboards as required for many published circuits, including the P.E. Joanna, P.E. Minisonic, and P.E. Synthesiser. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are \(C\)
3 Occave ( \(\mathbf{3 7}\) notes) \(\mathbf{6 2 3 \cdot 1 0 \text { . } 4 \text { Oct ( } 4 9 \text { notes) } \mathbf { 6 2 7 } \cdot 4 5 \text { . } 5 \text { Oct ( } 6 1 \text { notes) } \mathbf { 6 3 2 } 1 0 .}\)
Contact Assemblies for use with above keyboards: Single-pole change-over (type SP) as for P.E. Joanna and P.E. Minisonic. Two-pole normally open-make-break (type DP) as for P.E. Synthesiser. Special contact assembly (type 4PS) having 4 poles, 3 of which are normally-open make-break contacts and the fourth, is a change-over contact - this special assembly enables THE SAME KEYBOARD to be used with the P.E: Synthesiser, P.E. Minisonic and the P.E. Joanna simultancously thus avoiding the cost of more than one keyboard
\begin{tabular}{|c|c|c|c|c|}
\hline more than & Each & 3 Octave Set & 4 Octave Set & 5 Octove Set \\
\hline SP & 22p & \$8.14 & \&10.78 & \& 13.42 \\
\hline 2 P & 25p & 69.25 & 612.25 & 615.25 \\
\hline 4PS & 50p & ¢ 18.50 & E24.50 & \(£ 30.50\) \\
\hline
\end{tabular}

PRINTED CIRCUITBOARDS for use with the above contacts and thus eliminating PRINTED most of inter-wiring required, are available. Details in our lists.

SOUND-TO-LIGHT (P.E. Apr./Aug. 71)
The ever-popular Aurora- 4 or 8 channels each responding to a different sound frequency and controlling its own light. A MUST for any Disco and a fascinating visual display for the A Mus

\section*{home.}

4 Channel Component Set (excl, thyristors)
8 Channel Component Set (excl. zhyristors)
PCB for 4 frequency channels
PCB for power supply and 8 lamp drivers
IA 400 V thyristors (I per chan. req.) each
Panel meter ( \(1 \mu \mathrm{~A}\) ) (optional)
3-CHANNEL SOUND-TO-LIGHT (P.E. Apr. 76) A simple but effective sound-to-light controller capable of operating 3 lamps each of approximately 700 watts. Includes -pass switches.
Component Set incl. PCB
BIOLOGICAL AMPLIFIER (P.E, Jan./Feb. 73)
Multi-function circuits that, with the use of other external equipment, can serve as lie-detector, alphaphone, cardiophone etc.
Pre-Amp Module Component Set incl. PCB \(\quad 4.11\)
Basic Output Circuits-combined component set with PC8s, for alphaphone, cardiophone, frequency meter and visual feed-back lamp-driver circuits
Audio Amplifier Module Type PC7
TAPE NOISE LIMITER
Very effective circuit for reducing the hiss found in most tape recordings.
Standard Tolerance Set of Components Regulated Power Supply (will drive 2 sets)

SINE AND SQUARE WAVE GENERATOR (P.E. July 75)
Suitable for audio, digital, or general purpose. Controllable through i decade ranges 10 Hz to 100 kHz , switched attenu ation through 10 ranges from 10 V to 1 mV peak-to-peak Component Set
CB for above components
Powor Supply
PCB for Power Supply
SEMI CONDUCTOR TESTER (P.E. Oct. 73)
Essential test equipment for the enterprising home construc tor. Whilo stocks last.
Set of resistors, eapacitors, semiconductors,
potentiometers, makaswitches and PCB
\(\ell 8.86\)
\(\leftarrow 4.99\)
P.E, MINIMIX 6 (P.E, Nov./Dec. 75)

Each of the 6 input channels has its awn gain, volume and panning controls. The volume of the twin channel phone and prefade monitoring facilities. meters provide visual display of channel audio levels. ideal for use with effects and synthesiser kits.
For details see our list.

\section*{8-INPUT MIXER}

A simple mixer having 8 inputs each of which has a preset level control and which are combined into one output channel having a preset over-all level control and a
master output volume control. Desgned for intercoupling our various sound effects and synchesiser kits. Component set incl. PCB


\section*{\(A C 128\)}

20p

\section*{\begin{tabular}{l} 
Cl 176 \\
\hline
\end{tabular}}

C108
\begin{tabular}{l}
\(\mathrm{BC108}\) \\
BCl \\
\hline
\end{tabular}
BC147
BC148
BC149
BCI 57
BC 158
BCIS9
BCl 82 L
\(8 C 184\)
\(\mathrm{BC1} 87\)
\(\mathrm{BC1} 87\)
BC 204
BC 204
BC 209 C
3 C 212 L
BC213
BC478
BCY7 BDI32
BFYSO
BFYSI
BFYS2
MJE29SS
OC28
\(\bigcirc\)
OC84.
ORP12
ZTX 107
ZTX
zTXSO1
ZTX503
ZTXS31
2N706
\(2 N 706\)
\(2 N 914\)
2 Ni304
\(2 N 1304\)
\(2 N 2219\)
2N290S
2N290SA
2 N 2907
2 N 3053
\(2 N 3054\)
\(2 N 3055\)
2 N 3055
2 N 3702
2N3702
2 N 3703
\(2 N 3703\)
\(2 N 3704\)
2N3704
\(2 N 3819\)
2N3820
2N3823E
\(2 N 4060\)
\(2 N 4871\)
\(2 N 4875\)
\(2 N 52457\)
NTEGRATED CIRTS.
709 T05 809 -pin DIL 40p 723 T05 DIL 40p
741 8-pin DIL 32p
748 TOS 6IL 63p
748 8-pin DIL 63p
\(\mu A 7805\) T0220 \(165 p\)
\(\mu A 7808\) T0220
\(\mu A 7808\) T0220 \(165 p\)
\(\mu A 7812\) T0220 \(165 p\)
\(\mu A 7812\) T0220 165p
\(\mu A 7815\) T0220 165p \(\mu A 7815\) T0220 165p
\(\mu\) A7818 T0220 165p \(\mu A 7818\) T0220 165p
AY-1-0212 622p AY-1.0212 CA3046 MFC 4000 B MFC6040 SG3402N

"I MADEIT MYSELF"
Imagine the thrill you'll feel! Imagine how impressed people will be when they're hearing a programme on a modern radio you made yourself.

\section*{Now! Learn the secrets of radio and electronics by building your own modern transistor radio! \\ Practical lessons teach you sooner than you would dream possible.}

What a wonderful way to learn-and pave the way to a new, better-paid career! No dreary ploughing through page after page of dull facts and figures. With this fascinating Technatron Course, you learn by building!

You build a modern Transistor Qadio ... Burglar Alerm. You kearn Radio and Electronics by doing actual project you enjoy-making things with your own hands that you'll be proud to own! No wonder it's so fast and easy to learn this way. Because learning becomes hobby! And what a profitable hobby. Because opportunities in the field of Radio and Electronics are growing faster than they can find people to till the jobs!

No soldering-yet you learn faster then you ever dreamed poselble.

Yes! Faster than you can imariae. you pick up the technical know how you need. Specially prepared step-by-itep essons thow you tow to: read circuits -atemble componente-build thinge -experiment. You enjoy every minute of it!
You get everything you need. Tools. Components. Even a versatile Muhimeter that we reach you how to use. All that we teach you how to une., All included in the course. AI NO EXTRA
CHARGE? And this is a course anyone CHARGE! And this is a course wnyone
can afford. (You can even pay for it by easy instalments.)

So fast, so ensy, this personallsed course will teach you eyen If you don't know a thing today!

No matter how little you know now,
no matter what your back mound or no matter what your back Eround or in simple easy-to-underntand languate you pick up the secrets of radio and electronics.
You become a person who makes things. not just another of the millions. who don't understand. And you could pave the way to a great new career. lo add to the thrill and pride you receive when you look at what you have achieved Within weeks you could hold in your hand your own transistor radio. And after the course you can go on to acquire highpowered rechnical qualifications. because our famous courses go right up to City \& Guilds levels.

\section*{Send now for FREE \\ 44 page book-se how}
easy It Is-read what
oihers asul
Find out more now! This is the gateway to a thrilling new career, or a wonderful hobby you'tl enjoy for yest. Send the coupon now. There's no obligation.


VALVE MAIL ORDER CO.
Climax House
159 Fallsbrook Road, London SWI6 6ED SPECIAL EXPRESS MAIL ORDER SERVICE


Apart from our popular C.C.T.V. Camera Kits we are launching a range of ready built, tested, and guaranteed electronic modules both for trade and end user.
The ultimate range will be extensive. Some of the existing modules available are:

> E.T.I. Master Mixer E.T.I. Electronic Ignition Wide range R.F. Wobbulator E.T.I. Digital Voltmeter E.T.I. Frequency Meter Video Amplifier Video Mixer Sound/Video Modulator Guitar Amplifier As well as all E.T.I. P.C.B.s, V.L.F. Transmitters and Receivers Send S.A.E. for information.

Secondhand cameras and monitors always available
CROFTON ELECTRONICS LTD
Dept. E, 35 Grosvenor Road, Twickenham, Middx. Tel. 01-691 1923


Minisonics to Mk. 2 specification. (Converston detills apply to Eaton Audio P.C.B.s, but mey be sdapted to sult others.)

In order to ensure that the appearance of the complete instrument enhances ite performance, complete cabinet kit is aveilable, Incorporating and base, and solid Afrormosia end-cheeks. Thla kit ateo includes all ewichees knobs, ackets, acrewa and panel Indicatore. Sultabie keyboarde and contac essembliet are aleo In atock.

Cabinat Kit (inc. Koyboard, etc.)

Voltage
MS/2-4
Controlled Oncillator
cte
Sync. (Nit MS/2-4 sync 2 required)
Sync. Kit MS/2-4 sync
Envelope Shaper/VCA MS/2-5 H.F. Oscillator/Datector MS \(\mathrm{M} / 2-5\) (Nad) Hold laolator MS/2-7
Voltage Controlled Filter MS/2-8 Ring Modulator MS/2-9 Noige Gersrator MS/2-10
Output Amplifiera MS/2-1 Control Envelope Inverter MS/2-12
Stablised Powar Supply MS/2-13

\section*{EATON AUDIO}

DEPT PE, P.O. BOX 3 ST. NEOTS, CAMBS
PE19 3.J

CONVERSION KITS
Ancillary Functions Kit MS/2-14C [11.47 (Mcillator Conversion Kit MS/2-15C \(\mathbf{~} \mathbf{1 1}\) off MS (Moto-2 off MS/2-15C required)

\section*{SEPAAATE TTEMS}
P.C. Boards: Main PCE-EAO14
Power Supply-EAO15 Oual Transistor MDe001 Operational Amplitier LM318N Flakd Effect trinatiator 2N54S9

potand Packing \(15 p\) per order.
Metal Cin Transistors \(8 \%\). Integransed Circuits \(8 \%\)

\footnotetext{
Prices correct when soing to prest.
}

TERMS: MAIL ORDER ONL.Y. C.W.O. MINIMUM ORDER £1. VAT: Please add \(12+\%\) to value of order inc. P. \& P. unless otherwise stated. Cheques or P.O.s payeble to Eaton Audio. Orders over \(\& 5\) tree of P. \& P., otherwise please add 10 p in the \(\mathrm{\Sigma t}\).

\title{
WILMSLOW AUDIO THE Firm for speakers!
}

\section*{SPEAKERS}

Baker Group 25. 3. 8 or 15 omm Baker Group 35, 3, 8 or 15 ohm Baker Group 50/12 8 or 15 ohm Baker Group 50/12 8 or 15 ohm
Baker Group 50/15 8 or 15 ohm Baker Deluxe 124, 8 or 15 ohm Baker Major 3, 8 or 15 ohm Baker Superb 8 or 15 ohm Baker Regent 12 in 8 or 15 ohm Baker Auditorium 12 in 8 or 15 ohm Baker Auditorium 15 in 8 or 15 ohm
Catte 8RS/DD 4 or 8 ohm
Celestion G12M 8 or 15 ohm Celestion G12H 6 or 15 ohm Celestion G12/50 8 or 15 ohm Celestion G12/50TC 8 or 15 ohm Celestion G12/50 2236 s/cone
Celestlon G12/50 2239 s /cone, alum dome
Celestion G15C 8 or 15 ohm
Celestion G18C 8 or 15 ohm
Celestion HF 13008 or 15 ohm
Celestion HF2000 8 ohm
Celestion MH1000 8 or 15 ohm Celestion C03K
Decca London ribbon horn Decca London CO/1000/8 crossove Decca DK30 ribbon horn
Decca CO/1/6 crossover (DK30)
EMI \(15013 \times 8 \mathrm{in} \mathrm{d}\) /cone 8 ohm
EMI \(13 \times 81 \mathrm{n} 20 \mathrm{~W}\) bass 8 ohm
EMT \(14 \times 9\) fn bass 8 ohms, 14A770
EMI \(8 \times 5\) in, \(^{2} 10 \mathrm{~W}\), d/cone, roll surr.
EMI 6 ţin d/cone, roll surp., 8 ohm
EMI 8 in roll surr. bass
EMI 5 in mid range
Elac 59RM 109 ( 15 ohm ), 59RM114 ( 3 ohm Elac \(6 \frac{1}{2}\) in d/cone, roll surr., 8 ohm Elac 10in 10RM239. 80 hm
Eagle Crossóver \(3000 \mathrm{~Hz} 3,8\) or 15 chm Eagle FR4
Eagle FR65
Eagle FR8
Eagle FR 10
Eagle MT15
Eagle HT21
Eagle MHT10
Eagle FF28 Multicell, horn
Fane Pop 15, 8 or 16 ohm
Fane Pop 33T. 8 or 16 ohm
Fane Pop 50, 8 or 16 ohm
Fane Pop 55, 8 or 16 ohm
Fane Pop 60, 8 or 16 ohm
Fane Pop 70,8 or 16 ohm
Fane Pop 100.8 or 16 ohm
Fane Crescendo t2m, 8 or 16 ohm
Fane Crescendo 128L. 8 or 16 ohm Fane Crescendo \(15 / 100 \mathrm{~A}, 8\) or 16 ohim Fane Crescendo 15/125. 8 or 16 ohm
Fane Crescendo 18, 8 or 16 or.m
Fane 910 Mk II horn

\section*{SPEAKERS}
\begin{tabular}{|c|c|}
\hline ¢1. 00 & Fane 920 Mk II horn \\
\hline 510.75 & Fane HPX1 crossover 200W \\
\hline c14.00 & Farie \(13 \times\) Bin, 15 W dual cone \\
\hline cte. 2 & Fane 801T 8 in d/c, roll surr. \\
\hline [12.30 & Gauss 12in \\
\hline [10.53 & Gauss 15in \\
\hline c11.31 & Gauss 18in \\
\hline ct. 00 & Goodmans Axent 100 \\
\hline 514.05 & Goodmans Audiom 2008 ohm \\
\hline ع49.41 & Goodmans Axiom 4028 or 150 mm \\
\hline c9. 20 & Goodmans Twinaxiom 8, 8 or 15 ohm \\
\hline 513.50 & Goodmans Twintxiom 10, 8 or 15 ohm \\
\hline E16.75 & Goodmans 8P 8 or 15 ohm \\
\hline ¢16.50 & Goodmans 10P 8 or 15 hmm \\
\hline ¢18.00 & Goodmans 12P 8 or 15 ohm \\
\hline 518.50 & Goodmans 12PG 8 or 15 ohm \\
\hline £17.00 & Goodmans 12PD 8 or 15 ohm \\
\hline 126.95 & Goodmans 12AX 8 or 15 ohm \\
\hline £34.50 & Goodmans 15AX 8 or 15 ohm \\
\hline [7.75 & Goodmans 15P 8 or 15 ohm \\
\hline ¢9. 50 & Goodmans 18P 8 or 15 ohm \\
\hline £13.50 & Goodmans Hifax 750P \\
\hline £4.46 & Goodmans 5in midrange 8 ohm \\
\hline cas-95 & Jordan Watts Module, 4, 8 or 15 ohm \\
\hline citis & Kef T27 \\
\hline E15.95 & Kef T15 \\
\hline 24.75 & Kef B110 \\
\hline E2.94 & Kef B200 \\
\hline E9.00 & Kef B139 \\
\hline [11.92 & Kef DN8 \\
\hline 13.58 & Kef DN12 \\
\hline [3.93 & Kef DN13 SP1015 or SP1017 \\
\hline 55.73 & Lowthe, PM6 \\
\hline 53.50 & Lowther PM6 Mk 1 \\
\hline 23.38 & Lowther PM7 \\
\hline 23.83
53.83 & Peerless KO100T 4 or 8 ohm \\
\hline ¢1.57 & Peerless OT10HFC 8 ohm \\
\hline [5.51 & Peerless KO40MRF 8 ohm \\
\hline cit. \({ }^{5}\) & Peerless MT225HCF 8 ohm \\
\hline 工11-05 & Richard Allan CA12 12in bass \\
\hline E14.04 & Richard Allan HP8B \\
\hline 23. \({ }^{\text {c }}\) & Richard Allan LP8B \\
\hline 4.95 & Richard Allan DT20 \\
\hline 14.00 & Richard Allan CN8280 \\
\hline E. 10 & Richard Allan CN820 \\
\hline ¢5. 50 & Richard Allan Super Disco 60W 12 in \\
\hline 29.75 & Richard Allen CG15 15 in bass \\
\hline ¢12.50 & Richard Allan Super Disco 12in 60 watt \\
\hline 215.50 & Richard Allan Super Disco 10 in 50 watt \\
\hline ع17.95 & Richard Allan Super Disco \({ }^{\text {din }} 50\) watt \\
\hline E18.75 & Radford B025 \\
\hline ¢27.95 & Radiord MD9 \\
\hline 237.95 & Radford MO6 \\
\hline [39.95 & Radford TD3 \\
\hline [49.95 & Radford Cross Over Network \\
\hline 550.95 & STC 4001G \\
\hline ¢67.95 & STC 4001K \\
\hline & Tannoy 10 in Monitor HPD \\
\hline
\end{tabular}

Complete kits in stock for Radford Studio 90, Radford Monitor 180, Radford Studio 270, Radford Studio 360, Hi-Fi Answers Monitor (Rogers), Hi-Fi News No Compromise (Frisby), Hi-Fi News State of the Art, Wireless World Transmission Line (Bailey), Practical Hi-Fi and Audio Monitor (Giles), Practical Hi-Fi and Audio Triangle (Giles), Popular Hi-Fi (Colloms), etc.

\section*{On dem. Answers Monitor, State of Art, etc.}

Construction leaflets for Radford, Kef, Jordan Watts, Tannoy, Hi-Fi Answers Monitor, free on request.
P.A. amplifiers, microphones, etc., by Shure, Linear, Eagle, Beyer, AKG, etc.
FREE with orders over £10-"Hi-Fi Loudspeaker Enclosures' book.

Tannoy 12 in Monitor HPD

Tannoy 15 in Monitor HPD
Wharfedale Super 10 RSIDO 8 ohm

\section*{SPEAKER KITS}

Fane Mode One Mk II 15W Fane D40 Disco Kit

Goodmans DIN 204 or 8 ohm
Goodmans Mazzo Twin kit
Helme XLK 30
Helme XLK 35
Helme XLK 40
Kefkit 1
Kefkit III
Peerless 1060
Peerlese 1070
Peerlese 1120
Peerless 2050
Peerless 2060
Richard Allan Twin assembly Aichard Allan Triple 8 Richard Allan Triple 12 Richard Allan Super Triple Richard Allan RA8 Kit Richard Allan RA82 Kit Richard Allan RA82L Kit
Wharfedate Linton II kit
Wharfedale Glendale \(3 \times P\) kit Wharfedale Dovedale III kit Wherfedale Denton 2XD kit ial.

Baker Major Module 3, 8 or 15 ohm each \(£ 13.28\) each \(£ 10.35\) each \(\mathbf{1 9 . 9 5}\) each E13.28 pair 846.50 pair E21.05 pair \(\mathbf{2 6} .75\) pair ses. 50 palr 551.00 pach c48.00 pair 554.00 each 545.50 pair 32.50 pair \(\mathrm{ES3} .00\) each \(\mathrm{£13.45}\) each E20.25 sach 295.18 ach en 10 pair E37.00 palr cs9.40 pair s85.70 \(\begin{array}{ll}\text { pair } & 21.50 \\ \text { pair } & \mathbf{2 4 7} .70\end{array}\) pair \(847 \cdot 70\) pair c5s.40

\section*{HI-FI} ON DEMONSTRATION

\section*{in our showrooms:}

Akai Armstrong. Bowars s WHikins, Castlo Celestion, Dual, Goodmans. Kef, Leak, Ploneer, Radford Richard Allan, Rotel, Tandberg, Trlo, Vldeotone, Wharfodale, etc.-ask for our Hi-Fi discount price

THIS MONTH'S specials! (Carr. E2)


Loudspeakers, mall order and export Swan Works, Bank Square, Wilmslow. Hi-Fi, Radio and TV: Swift of Wilmslow, 5 Swan Street, Wilmslow, Cheshire.
PA, Hi-Fi and Accessories: Wilmslow Audio, 10 Swan Street, Wilmslow, Cheshire.
Telephone: Loudspeakers, mail order and export-Wilmslow 29599; Hi-FI, Radio etc.-Wilmslow 26213.
Access and Barclaycard orders accepted by phone

\section*{NEW ELECTRONIC MASTER KIT}

thother completely solderless Electronic Construction Kit with many more projecte, including transistor radios of various types and wavebands. Amplifers, metronome, sound amplitier, transietor tester signal generator, quick check component tester, tuners, crystal set, morse code practice oscillator with morse key, AF oscillator, etc. Also a special project VHF aircraft receivert

\section*{£14.99}

Complete kit of parts inclading conatruction


\section*{V.H.F. AIR} CONVERTER KIT
Build thls converter klt and receive the aircraft band by placing it by the side of a radio tuned to inedium ware or the long wave band and operatlug as shown In the instructlons supplied free with all parts. Uses a retractable chrome control, V.H.F. tuning capacitor, tranaistor, etc.
All parts including case and plans


\section*{POCKET FIVE}


NEW ROAMER TEN MODEL RK3

MULTIBAND V.H.F. AND A.M. RECEIVER.
13 TRANSISTORS AND FIVE DIODES. QUALITY \(5^{*} \times 3^{*}\) LOUDSPEAEERS.

WITH Multiband V.H.F. section covering Mobiles, Air, T.V. Sound, Local V.H.F. Stations, etc. And Muitiband A. M, section with Airspaced Slow Motion Drive Tuning Capacitor for easier and
accurate tuning covering M.W.1, M. W.2 L. W. accurate tuning, covering M.W.1, M.W.2, L.W.
Three Short Wave Bands S.W.1,S.W.2, S.W. 3 and Three Short Wave Bands s.W.1, S. W.2, B.W. 3 a
Trawler Band. Built-in Ferrite Rod Aerial for Trawler Band. Built-in Ferrite Rod Aerial for
Medium Wave, Long Wave and Trawler Band Medium Wave, Long Wave and Trawler Band, etc., Chrome Plated 7 gection Telescopic Aerial, angled and Puil Pull output using 600 mW Trangiators. Gain Wave-Change and tone Controls, Plus two Slider Switches. Negative Feedbaek circuit and SPECLAL POWER BOOBTER SOCKET AND REBISTOR, to virtually double gain if required. Powered by P. P. 9 9 volt Battery.
Complete kit of parts including carry-
ing strap, Building Inetructions and \(\mathbf{1}\). 3.99 operating Manuals.
Case enclosure kit (if required), \(21 \cdot 80\) inc. P.P. and Ins.

\section*{EIECTRONIC CONSTRUCTION KITS}
E.CoK. 2 Sell Contained Multi-Band 8 transistors and 3 diodes.iver Kit. 8 transistors and 3 diodes. Push pull output. 3in loudspeaker, gain control, superb 9 section swivel ratchet and retractable chrome plated telescopic aerial, V.H.F. tuning capacitor, reslators, capacitors, transiators, etc. Wil receive T.V.
sound, public service band, aircraft, V.F.F. local sound, public service band, aircraft, V.H.F. local
stathons, etc. Operates from a 9 volt P.P. 7 battery (not supplied with kit)
Complete kit of parts \(£ 7.95\) P.P. and Ins. 70p
Including Construction Plans
E.C.K. 4
\({ }^{7}\) Trancietors, 6 tuneable wavobsnds, MW, LW, Trawler Band, 3 Short Wave Bands. Receiver Kit. With \(\overline{3}\) in \(\times 3\) in loudspeaker. Push pull output stage gain control, and rotary switch. 7 transistors and 4 diodes. \({ }^{6}\) section chrome-plated telescopic aerial. Sin sensitive ready wound ferrite rod aetial, tuning capacitor, resistors, capacitors, etc. Operates from a \(\%\) volt P.P. 7 battery (not supplled with kit).
Complete kit of parts \(\mathbf{£ 7 \cdot 2 5}\) P.P. and Ins. 70 p


\section*{EDU-KIT MAJOR}

COMPLETELY SOLDERLESS
ELECTRONIC CONSTRUCTION KIT
BUILD THESE PROJECTS WITHOUT SOLDERING IRON OR SOLDER

- 4 Trangistor Earpiece Radio Signal Tracer - Signal Injector - Transistor Tester NPN-PNP - 4 Transistor Push Pull Amplifier - 5 Transistor Push Pull Amplifer - 7 Transistor Loudspeaker Radio MW/LW. 5 Transistor Short Wave Radio Electronic Metronome - Electronic NoiseGenerator Batterylesa Crystal Radio OneTranistor Radio - 2 Transistor Regenerative Radio - \({ }^{3}\) Transistor Regencrativc Radio - Audible Continuity Tester - Sensitive Pre-Amplifier,

Components include: 24 Resistors - 21 Capacitors - 10 Transistors
- 3 an Loudspeaker Larpiece Mica Baseboard \({ }^{3}\) 12-way Connectors - 2 Volume Controls - 2 Slider Switches 1 Tuning Condenser - 3 Knobs - Ready Wound MW/LW/SW Coils - Ferrite Rod - \(6 \frac{1}{3}\) gards of wirc - 1 yard of sleeving, etc.

Complete kit of parts including construction plans
\(\$ 9.00\) Total building costs. P.P. and Ins. 85p

\section*{TRANS EIGHT \\ AND 8 DIODES}

6 tunable wavebands: MW, LW, SW1, SW2, SW3 and trawler band. Sensitlve ferrite rod aerial for MW and LWW. type transistors plus 3 diodes. Attractive case in black with red grille, dial and black knobs with polished metal inserts. Size \(9 \times 5 f \times 2 t\) in approx. Push-pull output. Battery economiser switch for extended battery life. Ample power to drive a larger apeaker.
Complete kit of


And all these components: 2 interchangeable control pancls (ready drilled); 4 solderless construction boards (ready drilled); large \(13 \times 9 \frac{1}{2} \mathrm{in}\). baseboard (ready drilled); readywound medium wave, long wave, short wave and VHF coils; 7in. ferrite rod; quality \(5 \times 3 \mathrm{in}\). loudspeaker; crystal earpiece, Also: knobs, dial, wire, sleeving, capacitors, resistors, tran. sistors, battery straps, connector clips, screws. nuts and bolts, potentiometers, tuning capacinuts and bolts, potentiometers, tuning capaci-
tors, instruction manual and pictorial diagrams.


\section*{GOOD MEASURE}

HOME constructors have the good fortune to be involved with a technology based essentially upon devices which have tended to become cheaper over the years. Translated into terms of cost per circuit function, the fall in semiconductor prices is quite dramatic. This fact may be overlooked when costs for a project appear to mount up. The real reason is likely to be the inherent, but not always obvious, advanced design features leading to a more versatile and reliable piece of equipment. In real value-for-money terms, item for item there is no doubt that electronics sets a fine example for all other manufacturing businesses.
From the hardware of electronics let us now turn to the important matter of communication between designer and constructor. This is our own particular neck of the woods, nevertheless what we have to say in this regard is strictly objective and will we hope receive a broad measure of agreement from our readers.
If we look back five or more years ago, an average type of design for the home constructor would involve, typically, six active devices, each performing a single function. This circuit diagram would occupy about half a page in this magazine. Today that same area of page is likely to contain a diagram incorporating that same number of i.c.s. And what a magnification of circuitry this indeed represents: For if we consider a simple digital system, this could amount to a sixfold increase in circuit functions; or if linear i.c.s are considered, the function performed by each one if converted to discrete component terms would probably require for itself more space than that occupied by the entire circuit in its contemporary form. The kind of circuit composition we are considering is now commonplace and is accepted without a further thought (although all-discrete circuits continue to flourish alongside). And it does not stop there. Larger and more complex diagrams frequently appear and they may occupy a whole page or several-in the latter event being broken down into convenient sections that usually coincide with practical assemblies.

It is demonstrably clear that overall the wealth of circuit information carried per square inch ( \(\mathrm{or} \mathrm{cm}^{2}\) ) of printing area has steadily increased over the years. This brings us to another point which normally escapes attention. Even though much detailed 'conventional'' circuitry is not revealed, but is represented by i.c. symbols, the work involved in preparing diagrams for publication is greater than in pre i.c. days. And circuit diagrams are only part of the graphics called for in constructional articles. The component layout and wiring diagrams reflect in the practical form the increased complexity of many designs. The high population density of p.c.b.s and circuit boards entails correspondingly greater effort in their detailed illustration.

Productivity-wise we believe there is justification for drawing a parallel between the good value-for-money performance of electronic component manufacturers over past years and a publication such as ours. Within our standard format we have packed an ever-increasing amount of technical information and practical know-how, whether in the discrete or integrated form. We shall continue to do so. It is therefore all the more important to make clear to our readers that the extra 5 p on the cover price as from this month has nothing at all to do with electronics. We are caught up in the general problems affecting the publishing world. The most serious being the rising cost of newsprint.
F.E.B.

\section*{Editor}
F. E. BENNETT

\section*{Editorial}
G. C. ARNOLD Assistant Editor
D. BARRINGTON Production Editor
G. GODBOLD Technical Editor R. W. LAWRENCE, B.Sc.

\section*{Art Dept.}
J. D. POUNTNEY Art Editor
D. J. GOODING
R. J. GOODMAN
K. A. WOODRUFF

\section*{Advertisement Manager}
O. W. B. TILLEARD

Phone: 01-634 4444
P. J. MEW

Phone: 01-634 4444
C. R. BROWN Classified Phone: 01-261 5762

Editorial \& Advertising Offices:
Fleetway House, Farringdon St. London EC4A 4AD
Phone: Editorial 01-634 4452 Advertisements 01-634 4444


ALTHOUGH sound cameras and projectors which allow disect recording of a sound track on magnetic striped film are now available, these are necessarily more expensive and usually offer fewer facilities than their silent counterparts.

The displacement of the sound along the film from the pictures to which it relates causes problems when editing the film. A system where the sound track is recorded separately therefore still has much to recommend it.

\section*{USING TAPE RECORDERS}

Many cine enthusiasts must have considered using the domestic tape recorder for the purpose of recording film sound tracks, but anyone who has tried this will have discovered that minor variations between the projector and tape recorder speed soon result in the sound and film becoming out of sync.

Various systems have been devised for synchronising the film and tape but these usually either involve some form of mechanical linkage between the projector and tape recorder (which would be difficult for the home constructor to produce) or an electronic system in which the phase of pulses obtained from the projector and tape recorder is compared and the difference signal used to control projector speed. An excellent synchroniser which worked on this principle was described in Practical Electronics, September 1969 (not available).

Synchronisers of the type described suffer from two basic weaknesses: it is necessary to start the projector and tape recorder simultaneously, and a sync error can occur during the run up before the two pulse trains lock into sync; also, if a momentary loss of sync occurs during projection (due, say, to a poor splice slowing the projector) an error of one or more pulses can occur before the trains lock into sync.

\section*{CMOS SYNCHRONISER}

The CMOS Synchroniser overcomes the problems described above by using the pulses from the projector and tape recorder to clock two binary counters. The
numbers in each are continuously compared by a magnitude comparator and any difference is used to correct the projector speed.

Provided both counters are first reset to zero, it is possible to start the tape recorder first followed by the projector. The counter associated with the tape recorder will begin to clock up as soon as the tape recorder starts and will already contain a certain number by the time the projector is started while the projector counter will still be at zero.

The comparator will detect the difference between the two counters and control the projector to run at above synchronous speed until the numbers in the two counters become equal. This will be detected by the comparator which will slow the projector to synchronous speed. Any future loss of sync will result in a difference in the numbers in the two counters which will be detected and an appropriate correction made to the projector speed to restore sync.

\section*{COUNTER CAPACITY}

In theory, each counter should have sufficient capacity to count the total number of pulses produced during the entire length of the reel of film as, if, due to loss of sync, one counter reaches its terminal count before the other and begins counting again from zero, the comparator will give the opposite correction signal to that required until the second counter also passes its terminal count.

In practice, the sync error at any time should be so small that both counters will reach their terminal count almost simultaneously and the period during which an incorrect speed correction signal will be given will be too short to be of practical significance.

Even so, the counter capacity should be as large as is reasonably practical. The author has found by experiment that a minimum count period of about one minute is necessary. At 54 Hz (projector shutter frequency at a projection speed of 18 frames per second) this indicates a minimum counter capacity of 3240 and a twelve-stage binary counter which has a count capacity of 4096 will be the minimum suitable.


Fig. 1. Complete circuit of the Sync Indicator excluding the power supply

The construction of a twelve-stage binary counter using discrete components would be a formidable task and the cost prohibitive. Even using TTL a number of i.c.s would be required.

A twelve-stage binary counter with separate outputs from each stage is available in a single 16 -pin dual-inline package in the CMOS range of i.c.s-the CD4040. This, together with the CD4063 four-bit magnitude comparator, enables the heart of the synchroniser to be built with five i.c.s.

\section*{PRACTICAL CONSIDERATIONS}

Many constructors may be reluctant to risk invalidating manufacturers' guarantees by modifying their projectors or tape recorders. The CMOS Synchroniser has therefore been designed as a basic sync indicator which may be used with any variable speed projector and stereo tape recorder without modification. The projector speed must be adjusted manually as indicated by the sync indicator.
Next month, in Part 2, modifications and additions will be described which cover fully automatic synchronisation, automatic start and stop of the projector controlled by the tape pulses, and use with a mono tape recorder either by fitting an additional pulse head or by using perforated tape.

The use of the unit with cameras fitted with sound sync contacts to record full "lip sync sound" will also be covered. Some modifications to the projector and/or tape recorder may be necessary to incorporate these features.

\section*{THE SYNC INDICATOR CIRCUIT}

The circuit diagram of the CMOS Synchroniser is shown in Fig. 1 and, as can be seen, this contains rather more than the five i.c.s mentioned earlier. The purpose of the additional components will be explained during the description of the circuit operation.

A photodiode, D1, is positioned so as to pick up light from the projector lens and is used to detect the opening and closing of the projector shutter. This photodiode is connected between one input of a two-input NAND gate IC1a and 0 V and the same input is also connected to the 10 V line by R1. The other input to the gate is unused and is connected to 10 V .

When the projector shutter opens, the photodiode will conduct and the voltage at the input of IC1a will fall, switching its output to logic 1.

When the shutter closes the opposite will occur and the output of IC1a will switch to logic 0 . Thus, when the projector is running, the output of ICla will be a train of pulses at the projector shutter frequency and these pulses are used to clock the projector counter IC2.

\section*{MODULATION}

Eight millimetre projectors operate at either 16 or 18 frames per second, depending on whether standard or Super 8 films are being used, and are usually fitted with three bladed shutters so the output of ICla will be 48 or 54 Hz .

Unfortunately the response of the average tape recorder to low frequency pulse waveforms leaves a lot to be desired and if these pulses were recorded directly the resulting distortion on playback could cause erratic operation of the tape pulse counter.

The pulses are therefore converted into bursts of about 1 kHz square waves by the gated multivibrator IClb and c and it is this waveform which is recorded, the output level being set by VR1.

COMPONENTS . . .

\section*{SYNC INDICATOR}

Resistors
\begin{tabular}{lr} 
Resistors \\
R1 & \(560 \mathrm{k} \Omega\) \\
R2 & \(220 \mathrm{k} \Omega\) \\
R3 & \(100 \mathrm{k} \Omega\) \\
R4 & \(47 \mathrm{k} \Omega\) \\
R5-R8 & \(1 \mathrm{k} \Omega\) ( 4 off) \\
R9 & \(10 \mathrm{k} \Omega\) \\
R10 & \(220 \mathrm{k} \Omega\) \\
R11 & \(220 \mathrm{k} \Omega\) \\
R12 & \(1 \mathrm{M} \Omega\) \\
R13 & \(100 \mathrm{k} \Omega\) \\
R14 & \(1 \mathrm{M} \Omega\) \\
R15 & \(100 \mathrm{k} \Omega\) \\
All \(\pm 5 \% \frac{1}{4} \mathrm{~W}\) carbon
\end{tabular}

\section*{Potentiometers}

VR1 \(10 \mathrm{k} \Omega\) vertical skeleton preset
Capacitors
C1 3300 pF
C2 \(0.01 \mu \mathrm{~F}\)
C3 \(0.1 \mu \mathrm{~F}\)
C4 \(\quad 0.01 \mu \mathrm{~F}\)
C5 \(10 \mu \mathrm{~F} 10 \mathrm{~V}\) elect.
C6 \(0.047 \mu \mathrm{~F}\)
C7 \(0.1 \mu \mathrm{~F}\)
All polyester or polycarbonate except C5

\section*{Diodes}

D1 MRD150 photodiode (Motorola)
D2-D5 TIL209 I.e.d.s (4 off)
D6 1N4001
D7 1N4001
Integrated Circuits
\begin{tabular}{ll} 
ntegrated & Circuits \\
IC1 & CD4011 (or MC14011) \\
IC2 & CD4040 (or MC14040) \\
IC3-IC5 & CD4063 (or MC1403) (3 off) \\
IC6 & CD4040 (or MC14040) \\
IC7 & CD4050 (or MC14050) \\
IC8 & Type 7418-pin D1L \\
IC9 & CD4011 (or MC14011)
\end{tabular}

Miscellaneous
S1 Single pole on/off
SK1, SK2 Sockets to suit (2 off)
8-pin DIL socket, 14-pin DIL socket (2 off), 16-pin
DIL socket (6 off)
\(114 \times 165 \mathrm{~mm}\) DIP Breadboard (Vero)

\section*{PLAYBACK}

On playback, the output from the tape recorder is amplified by IC8, a 741 operational amplifier connected for single supply operation.
The gain is set at 100 by R9 and R12, giving an input sensitivity of about 50 mV which should be suitable for most tape recorders.
The output from IC8 is connected to a monostable, IC9a and b, which converts each burst of square waves back into a single pulse and these pulses are used to clock the tape pulse counter IC6.
The pulses are also applied to a further monostable (IC9c and d) with a longer time constant, the output of which will go to logic 1 and remain in this state so long as the train of pulses is applied to its input, but will revert to logic 0 when the pulses cease.


Fig. 2. Waveforms associated with the circuit of Fig. 1

The output from this second monostable is used to drive the start l.e.d. (D5) via the non-inverting buffer driver IC7d and is also used to reset the two counters after being inverted by ICId. The result of this arrangement is that, with S1 closed, while no pulses are received from the tape recorder, both counters will be reset to zero and disabled, but as soon as pulses are received the counters will be enabled and the start l.e.d. will light.

\section*{MAGNITUDE COMPARATORS}

The Q1 to Q12 outputs of the two counters are connected to the A and B inputs respectively of a twelve-bit magnitude comparator formed by connecting three CD4063 four-bit magnitude comparators in cascade.
The \(\mathrm{A}=\mathrm{B}, \mathrm{A}>\mathrm{B}\) and \(\mathrm{A}<\mathrm{B}\) outputs of the comparator are used to drive the sync, fast and slow 1.e.d.s ( D 2 to D 4 ) via the non-inverting buffers IC7a, b and c. IC7 is a CD4050 hex non-inverting buffer driver and the two remaining buffers in the package are not used in this circuit so their inputs are tied to 10 V to prevent damage due to static build up. ICl and IC9 are both CD4011 quad two-input NAND gates and the two counters are CD4040 12-stage binary counters.
The purpose of S 1 is to disable the automatic counter and its use will be described next month.

\section*{COMPONENTS . . .}

MAINS POWER SUPPLY
Resistor
R16 100 1 W
Capacitors
C8 \(100 \mu \mathrm{~F} 35 \mathrm{~V}\) elect.
C9 \(100 \mu \mathrm{~F} 35 \mathrm{~V}\) elect.
Diodes
D8-D11 1 N4001 (4 off)
D12 10V 1.5W Zener
Transformer
T1 Mains primary, 12 V 100 mA secondary (see text)
Miscellaneous
S2 Double pole mains switch
FS1 1A fuse and holder
LP1 Mains neon indicator

Waveforms at various points in the circuit are shown in Fig. 2.

\section*{POWER SUPPLIES}

The power consumed by the CMOS i.c.s is extremely small at the frequency involved and the complete Sync Indicator uses only about 20 mA . The CMOS i.c.s operate from as little as three volts, but a minimum of about eight volts is needed for the 741 and to obtain adequate brightness for the l.e.d.s. The unit may therefore be powered by a small nine volt battery such as a PP3 or PP9.

The circuit of a suitable mains power supply with a simple Zener stabilised supply for the ic.s is shown in Fig. 3. The supply has sufficient capacity to power the fully automatic version of the synchroniser to be described next month.

If the unit is built into a tape recorder, it may be possible to obtain power supplies from the tape amplifier power supply. The stabiliser circuit from Fig. 3 could then be used, R16 being changed to suit the supply available.

If the unit is built into a projector fitted with a low voltage projection lamp, it may be possible to obtain power supplies from the lamp transformer using this in place of T1 in Fig. 3.

It is most important to check that this is an isolated winding and not an auto transformer with one side of the winding connected to the mains. If there is any doubt whatsoever about this point, then this power source should not, in any circumstances, be used.
Next Month: Construction, Setting-up and using the Synchroniser.


Fig. 3. Circuit diagram of a suitable mains power supply. This supply is capable of driving the automatic synchroniser. The transformer can be that used for the projector lamp if this is suitable


By H.T. K̇ITCHEN

THE power supply to be described was built to enable a battery powered cassette recorder to be mains powered, thereby enabling the internal batteries, which grow increasingly more expensive, to be reserved for outdoor use.

\section*{DESIGN REQUIREMENTS}

Measurements made on a fresh battery pack, reading precisely 6 volts on load, showed that on replay the current consumption varied between 125 mA on quiet passages to 260 mA at full blast. The maximum current on rewind or fast forward was 220 mA , whilst stall current was 300 mA .300 mA was, therefore, the minimum current to be delivered by a mains powered supply. The initial outlay on such a supply is fairly modest, and if the cassette recorder is at all much used-as most are, at full blast-then the initial outlay is speedily recouped in that batteries only have to be purchased infrequently, if at all.

Anticipating future requirements, of various kinds, it was decided that some form of voltage stabilisation was desirable, and since the power supply was intended for use by a young child, who is as careless as most children of her age, protection against short circuits was definitely essential.

\section*{CIRCUIT}

The circuit is shown in Fig. 1. The mains transformer, T1, has two secondaries of 12-0-12 volts and \(2-0-2\) volts at \(\frac{1}{2} \mathrm{~A}\), of which only the former is used in this application. The a.c. voltage is rectified by D1 and D2, to provide about 16.8 volts across C1 off-load, this being the peak value of the 12 volts a.c. This voltage is applied to the collector of the series pass transistor, TR2, the base of which is held at a constant \(6 \cdot 8\) volts-or what ever the Zener voltage happens to be, the Zener current being provided by R2. The output will therefore be the Zener voltage, minus the \(\mathrm{V}_{\mathrm{be}}\) of TR2, typically 0.7 volts.


Fig. 1. Circuit of Power Supply


To provide any given voltage, it is only necessary to select a Zener having a voltage exceeding the required voltage by 0.7 volts.
Zeners, like all components, have tolerance spreads, the best being held to a tolerance of \(\pm 5\) per cent. Cheaper Zeners have tolerances of \(\pm 10\) per cent. In other words, the actual Zener voltage will lie within the tolerance for that particular device. The output voltage obtained may therefore be above, or below, the nominal Zener voltage, again minus the \(\mathrm{V}_{\mathrm{be}}\) of TR2. If this happens, the constructor has several choices. He can put up with the voltage he has; he can replace the Zener, but he will have no guarantee that the replacement will do the trick, unless he can preselect the actual voltage from a batch of nominally similar Zeners; or he can resort to level shifting.

This is an old trick whereby an ordinary silicon diode is connected in series with the Zener, and since this has a voltage drop of, again, 0.7 volts, the output will be correspondingly raised. This is a useful ploy where, say, a 9 volt output is required from a \(9 \cdot 1\) volt Zener, the nearest standard value.

\section*{BASE CURRENT}

To ensure that the series pass transistor operates correctly, and that the output voltage does not sag excessively under load, it is necessary to provide it

COMPONENTS . . .

with an adequate base current. The simplest way of achieving the required result is to ensure that the Zener is passing more than the current required by the base of TR2, and this is simply calculated by dividing the required maximum emitter current by the \(h_{\mathrm{FE}}\) of TR2. For the 2 N 3055 used, this is 13.5 mA .
'To ensure that the Zener's slope resistance is not adversely affected, we can double the current flowing in the Zener, and this will enable a 250 mW Zener to be used.

Capacitor C2 across the Zener serves to suppress Zener noise, and must not be increased in value; to do so is to invite the destruction of TR2, for in the event of a short circuit at the output the capacitor will discharge through the low impedance offered by the base/emitter junction of TR2.

\section*{CURRENT LIMITING}

The total output current flows through R1, and this includes the current consumed by the Zener and by the l.e.d.: these are small in comparison to the load current and can be disregarded.


Fig. 2. Small Veroboard layout and general component assembly

The \(\mathrm{V}_{\text {be }}\) necessary for a silicon transistor to turn on is around 0.7 volts, and until the voltage across R1 approaches this value TR1 plays no active part in the proceedings. As soon as the \(\mathrm{V}_{\text {be }}\) is sufficient, TR 1 turns on and, since its collector is connected to the junction of D3, R2, and TR2's base, it begins to divert current away from D3, and then from the base of TR2.

The total current that TR2 can pass is therefore directly related to the voltage dropped across R1. In the prototype R1 just allowed 500 mA to flow, at which point the supply voltage had dropped by only 200 mV . Short circuiting the output increased the current to only 600 mA , well within the ratings of the components used.

The heatsink used was a piece of \(\frac{1}{16}\) in aluminium \(2 \frac{3}{8} \times 3 \frac{1}{2} \mathrm{in}\) secured to the bottom of the case. Since the collector and case of TR2 are common, a mica washer and insulating bushes must be used.

Indication that the power supply is switched on is by means of an l.e.d. connected across the output. R3 limits the current to the l.e.d. to 20 mA . If the output is short circuited, the l.e.d. should extinguish, making the user look for the reason.

\section*{CONSTRUCTION}

The unit was built into a Mod-2 case from West Hyde Developments. With the exception of T1, C1 and TR2, all the components were accommodated on a piece of plain \(0 \cdot 1 \mathrm{in}\) Veroboard \(2 \mathrm{in} \times 2 \frac{1}{4} \mathrm{in}\), with a little room to spare. All interconnections were on the reverse, flying leads being used to connect the board to the other components.
With all wiring completed, a careful check should be made for errors. The supply can then be
switched on and the output voltage checked which should be about 6V.

\section*{LOAD MEASUREMENTS}

The regulation can be checked by applying various resistive loads and checking the fall in output voltage with increasing current; on the prototype a fall in output voltage of 200 mV occurred when the maximum rated current was drawn. The ripple voltage. measured on an a.c. millivoltmeter was \(440 \mu \mathrm{~V}\) at maximum current.

The output short circuit current can be checked by applying a suitable current meter straight across the output terminals, and although the resistance of the meter will mean that the real short circuit current will be somewhat greater, the difference is not worth worrying about. The measured short circuit current was, in fact, 600 mA .

\section*{CAR USE}

The circuit from Cl onwards is an ideal one for running equipment requiring less than the nominal 12 volts of the car battery. The author has built such a regulator straight into an extruded finned heat sink, the components, Cl excluded, being self supporting in the area reserved for the TO3 power transistor, that is, held together by their leads, and then being encapsulated in an epoxy resin.
The encapsulation serves a dual purpose. It prevents the components moving around, and it also serves to prevent the ingress of contaminants thus allowing the complete assembly to be mounted in any convenient position, but not in the vicinity of the exhaust pipe or other heat radiating members of the engine.

\section*{The PE MTRIE EENDTNR RATRE}

YOUR free PE Wire Bending Gauge has been designed mainly for use on 0.1 inch matrix perforated circuit board and Veroboard, but can also be employed on 0.15 inch matrix boards or on printed circuit boards where a similar matrix layout is adopted.
From the component layout diagram decide how many holes each component should span, and whether it should be mounted horizontally or vertically.
For horizontal mounting use the gauge as shown in (A). The number of holes for 0.1 inch matrix are indicated on

the left, and for 0.15 inch matrix (odd numbers only) on the right.
Use the flat side for vertically mounted components, as shown in (B). Push one straightened lead of the component up through the slot and align it with the required groove, again 0.1 inch matrix on the left, 0.15 inch on the right.
In both cases, the lead(s) should be bent down at right angles so that they lie parallel before removing the component from the gauge.


\section*{THE FRIENDLY PLANET}

Mars has pink skies, red soil, rocks that are greyish-green and black and an atmosphere that once could have been very similar to Earth's today. These were the conclusions by scientists at the Jet Propulsion laboratory as the first Viking Surface Data came back to Earth.
"Mars somehow looks much more friendly than the Moon", said Dr. Thomas Mutch of Brown University when looking at the first colour pictures of the surface on July 21. "You see these colours in the Painted Desert" (the Painted Desert is in Arizona in the south western part of the United States).

The atmosphere of Mars, measured as the Viking Lander made its way to the surface, has about two per cent argon and three per cent nitrogen, compared with Earth's one per cent argon and 78 per cent nitrogen. "But", said Dr. Michael McElroy of Harvard University, "that amount of nitrogen is enough to support microbial life on Mars today, if at times in the past, when liquid water was abundant at the surface, life got started."

The major constituent of the atmosphere is carbon dioxide, although there is some oxygen. Mars' skies are pink because of dust in the atmosphere that scatters sunlight, the same mechanism that produces blue skies in Earth's much more dense atmosphere. The red soil is produced by oxidation of the surface material, like rust on Earth. It can be produced by weathering. The weathering could have resulted from a reaction with surface water and oxygen in the atmosphere.

\section*{MARTIAN BUGS}

While the amount of nitrogen on Mars is low compared to Earth, it is sufficient to support any Martian bugs. Dr. McElroy says that "Most nitrogen in Earth's atmosphere is wasted". The atmosphere's nitrogen is mainly in a form useless to plants and animals, the two nitrogen atoms must be broken apart, or fixed by legumes or bacteria before they can be incorporated into the tissue of plants and animals. Dr. McEIroy said "Martian bugs would have to be pretty smart to fix nitrogen for themselves."

According to Dr. McElroy's model, the Martian atmosphere could do the "fixing" for the bugs. Sunlight hitting the upper atmosphere could break the nitrogen atoms apart to form nitric oxide ( NO ) that could rain down on the surface, supplying as much as one million tons of fertilizer a year to the soil. Earth's living systems fix about 100 million tons of nitrogen per year, in addition to that fixed artificially by fertilizer.


The limiting factor in the possibility of Martian life now seems to be the absence of the liquid water that oxidized the red soil and cut the enormous stream channels seen in the Viking photographs. Viking scientists have thus chosen landing sites in low warm regions in the hope of outwitting cold Mars.

The theory is, that while most of the time the water is frozen, during the day the sun melts the surface ice to water and the dust protects the water from immediately evaporating. Any Martian bugs might have sufficient water to sustain life. The weather station at the Viking-I Chryse site will indicate whether or not the ice does turn to temporary water and the cameras will be able to photograph the rising ground fog.
The biology experiments will supply vital answers to these questions. While the first results may not be definitive, scientists will know more about Martian life, or the lack of it, than was known hitherto, but the atmospheric results have already raised hopes.

\section*{MARTIAN ATMOSPHERE}

The atmospheric measurements verify that Mars probably had an atmosphere of nitrogen like Earth's earlier in its history. The atmosphere was also probably more dense, allowing surface water to remain in that kind of environment. Mars would then have had everything needed to start life: Energy (from the sun); water, nitrogen, carbon and phosphorus.
According to a theory developed by Dr. McElroy and supported now by the first data from Mars, the early nitrogen atmosphere escaped; Earth with its higher gravity, held on to its atmosphere. Argon which is
heavier than nitrogen and oxygen did not escape. It is the amount of that inert gas in the atmosphere that gives scientists a means of measuring what has escaped.

The first direct measurements of two per cent argon in the atmosphere contradict earlier measurements made by Soviet scientists who reported as much as thirty per cent on Mars. Nevertheless, even two per cent argon, twice Earth's amount, is a large amount. It says that Mars, like Earth, had a very active volcanic period during its first one billion years when a great deal of gas in the interior was ejected 'into the atmosphere.

The amount of oxygen and hydrogen that has escaped Mars since would form a 3 -metre thick layer of ice all over the Planet, says Dr. McElroy. The reddened surface seems to support the theory that large amounts of oxygen and water have interacted with the surface. Scientists agree that while Mars has lost much of its water, it still has plenty, in frozen form.

Mars is much colder than earth. The average surface temperatures are now below the freezing point of water, although the landing site of Viking-1 probably gets warm enough during the day to melt that ice. Geologists now think that beneath the dusty surface lie deep layers of frozen water mixed with dust permafrost. This source would continually resupply the atmosphere with water.

\section*{QUASAR REDSHIFT}

For the first time, large redshifts have been seen in both the visible and radio spectra of one object (AO \(0235+164\) ). This was an absorbing cloud in front of a quasar.

During 1975 two teams of astronomers in the United States recorded a redshift of \(z=0.5240\) in the optical spectrum of a quasar. Now a team of radio astronomers at the National Radio Astronomy Observatory, West Virginia, have looked at the same object, which was a known radio source. They set up their apparatus to scan for the 21 cm line at what could be its redshifted wavelength. Several sets of observations were made with the NRAO 91 metre radio telescope. A careful analysis of the data confirmed that the absorption feature corresponded to the 21 cm line, but shifted by an amount that gave a redshift of \(\mathrm{z}=\mathbf{0} .52385\).

Astronomers interpret the redshift as being due to the Doppler effect (the variation of the perceived frequency of a signal with the motions of emitter and receiver). In that interpretation the relative velocity of Earth and AO \(0235+164\) is over half the speed of light. In the expanding universe, that means that this source is over 2,500 megaparsecs or \(8 \times 10^{17} \mathrm{~km}\) from the Earth.

\section*{INTRODUCING}

\section*{By B.CULLEN}

WHEN I first learnt of the new constructional aid, the wiring pen, I immediately realised that this would have a great potential for both professional and amateur use, as the pens were primarily designed to simplify and speed up the construction of prototype circuits. Before venturing further-don't let the "prototype" designation put you off. These pens are not strictly for professional use only

To the reader who has dabbled in the construction of electronic circuits it must be fairly obvious that the bugbear is the tediousness of the hand wired interconnections. Let us take, for example, the construction of a dense logic card, where the enormous number of interconnections needed leads to painfully slow progress. The same is, of course, true for discrete component circuits. The wiring pen system is a way of easing this type of problem.

As the name suggests, the wiring pens are simply pentype holders for spools of very fine polyurethane insulated wire. This insulation melts when heated with a soldering iron. In theory it is then a simple matter to link up all the required components by threading the wire from the pen around each individual component, soldering each joint and producing a completed circuit, made up in a fraction of the time and without being 100 tedious an operation. In practice, however, I found that it was not quite so easy as putting pen to board.

Two of the types I was able to test, and that are available at the moment, are the Vero wiring pen and the Vector P173 wiring pencil. These are marketed by Vero Electronics and Vector Electronics.

\section*{VERO PEN}

The Vero wiring pen comes with one spool of wire, and is also available in a very comprehensive prototype kit form containing pen, spools of wire, magnifying eyepiece, lead forming tool, wiring combs, cutters, various types of terminal pins and a pin insertion tool, also a Eurocard, International Card or American Card, depending upon which kit you purchase, at around \(£ 16.00\) complete.
I feel it is a little too luxurious for the "one off" amateur, although the manufacturer's claim that the kit contains sufficient materials and basic tools to enable one to assess
the system's general application, is more than justified.
All the items mentioned are available separately, and the pen, with a spool of wire, at approximately \(£ 2.00\) with VAT plus postage, is good value.

For these or the kit you should write Vero Electronics Ltd., Industrial Estate, Chandler's Ford, Hampshire.

\section*{VECTOR PENCIL}

The Vector wiring pencil comes complete with one spool of wire fitted, plus a spare spool and a wire threading tool. The instructions enclosed do, however, refer to accessories such as lead forming tool and plain Vectorboard.

The cost is around \(£ 7.00\) and, although it seems rather more expensive than the Vero pen, is of a much more robust design. This pencil is available from J. H. Equipment Ltd., 91, Redbrooke Rd., Timperley, Trafford, Lancs.

\section*{COMPARING BOTH}

The only similarity between the two pens is their mode of operation. The Vero pen is a slim shape resembling a pencil, with the spool of wire clipped into a holder at the top. The fine wire runs through the centre, and a slide, conveniently placed at the finger tip, allows the wire to run freely, or with tension, as required. Somewhat surprisingly the carrier at the top of the pen does not make it unbalanced or awkward to use.
Only one disadvantage appeared in use, namely that threading the very fine wire into the pencil and slide was not quite so easy as the leaflet led one to believe. Fine wire has a mind of its own when being guided into places, and bends in ways not required. It took a few attempts to succeed.
The Vector pencil is much larger in size, shaped like a torpedo, and again with the spool of wire at the top, but this time the spool is fitted inside the barrel of the pen.
Almost at the top of the pen are two holes on the left and right, from which the wire is fed, depending upon left or right hand operation. At the tip there is a fine metal tube through which the wire is passed and fed to the work. Tensioning the wire is controlled by one's index finger, placing pressure on the wire running out of the hole and through the tube.

For its size the pen is well balanced and easy to use and has the following advantages:
1. Its robustness would be a distinct advantage if the pen were to be put to a good deal of use.
2. The threading tool, much like a giant needlethreader, made child's play of fitting new spools of wire.
For those who are wondering, I reached these conclusions on the advantages and disadvantages of the pens after much practice on both discrete and i.c. component circuits. This enabled me to get the feel of the pen's operation, which is essential if a fair assessment is to be given. At this stage \(\$\) followed the manufacturers' instructions closely before drawing my own conclusions.

Common to both the Vero, Vector or, for that matter, any type of wiring up system, is the planning and assembly of the components on the type of board in use, whether it be plain matrix board, Veroboard, Vectorboard, or a specialised wiring card.

When hand wiring is used, a lot of thought must be given to the placement of the components to ensure sufficient space is left for the wired runs and routing of wires. The advantages of this new type of wiring system really speak for themselves, in that considerable time is saved at the planning stage as components can now be placed on a board in an orderly flow pattern similar to the circuit diagram of the project being built. Less board space is needed as cabling space can be virtually discounted and, of course, an inherent advantage is the neat appearance of the finished job as there are no unsightly wires on the component side of the board.

\section*{VEROWIRE TECHNIQUES}

The Verowire instructions recommend planning and assembly in the conventional manner, mounting the components from the ground side of the board-that is the side with less copper-and mounting the i.c.s first to enable the use of the lead deforming tool. This cunning little device is simplicity itself, being made of one piece of aluminium and designed to accommodate 7.62 and 15.24 mm pitch i.c.s. The very nature of the design will always ensure correct deformation of i.c. pins as its shape forms an internal built-in stop.

Once the i.c.s have been inserted the board should be turned over onto a clean flat surface, and the deforming tool placed between the i.c. pins. A gentle downward pressure together with a sideways rocking action will bend the pins to a uniform 120 degree angle (Fig. 1).

Discrete components, such as resistors and capacitors, can now be mounted on the board, either by soldering them to terminal pins fitted in place on the board, or,
alternatively, the wire ends can be fed through the appropriate holes in the board, bent to the approximate angle on the i.c.s and cut to a suitable length so that they can be wired with the wiring pen. See Fig. 2.

\section*{COMB ATTACHMENT}

Having attached all i.c.s and components to the board, plastic wiring combs can now be fitted between i.c.s and up or down the entire width of the board. The wiring combs are used to provide a guide and pegs which control and hold the wire ensuring a neat stable layout. Fig. 3 shows a cross section of a comb inserted between an i.c.

The Vero wiring pen comes complete with one spool of wire already threaded to start the point to point wiring, as follows: with approximately 3 mm of wire protruding from the tip (Fig. 4a) this is inserted into the hole containing the lead of the first component connection. The wire is kept taut by depressing the slider/clamp.
At least two turns should be wrapped around the i.c. lead ensuring a tight wrap as in Fig. 4b.

Two turns are then wound around the nearest peg on the wiring comb.
The appropriate pins on the components are next wired using the combs and wherever possible routing the wire through a gap in the comb adjacent to the component to be connected. Generally speaking, multiple turns are only required at the start and end of a wiring run.

All that now remains is to solder all wrapped joints, using a miniature soldering iron with a hot tip temperature of \(380^{\circ}\) to \(400^{\circ} \mathrm{C}\) and resin cored solder. It will be found that a reasonable application of the soldering iron together with an appropriate quantity of solder is needed to ensure that the polyurethane insulation melts sufficiently to effect a good soldered joint between wire component lead and, where appropriate, the pad on the board.

\section*{VECTOR WIRING TECHNIQUES}

It does not take long to realise that if the operation of the two pens is similar, then the instructions recommending use must be similar. The leaflet accompanying the P173 wiring pencil is brief but adequate and the mounting techniques described for the Vero system also apply. Unfortunately the pencil does not have the same number of accessories as the Vero system, but accessories such as the P133A lead staking tool, and plain Vectorboard, are often referred to, as already mentioned. I think the lead staking tool explains itself, and one can quite easily imagine it will have a similar action to that of the Vero lead forming tool.
The P173 pencil also comes threaded for action, although this time one has the choice of altering the fced of the wire

The Vero Verowire prototyping kit


The Vector wiring pencil with threader and combs


FOR 15,24 I.C.

LEAD DEFORMATION



Fig. 1.
(a) Presenting the lead deformation tool to the board mounted i.c. The tool is then pressed gently down on the leads (b) together with a rocking action (c) to splay them to a unifom \(120^{\circ}\)

Fig. 2.
Showing a/ternative assembly methods for discrete components here (a) a resistor is soldered to terminal pins and (b) a capacitor is inserted and leads deformed to \(120^{\circ}\) prior to pen wiring


Fig. 4.
With about 3 mm of wire protruding from the tip of the pen, insert wire in hole containing i.c. lead (a) a tight wrap of wire is then made around the lead (b) a two turn wrap is then made around the nearest peg on the comb (c) which holds the wire and ensures a neat layout when wiring to other leads on the chip (d)

(b)


Fig. 3.
After deforming the i.c. lead the combs are inserted. The combs are fitted adjacent to each other

(c)

(d)
for right or left hand operation by running the wire through the appropriate hole in the cone of the pencil. When assembling components onto the board no preference is given to which components should be inserted first, and i.c. leads are bent by hand to approximately a 45 degree angle.

Discrete components are fitted and bent first at right angles to the board, then upright to form a terminal point to wrap with wire. Here the use of the lead staking tool is described and its action is simply to insert component wires through the appropriate holes in the board. Place the lead staking tool on the wire, leave a \(\frac{1}{8}\) in gap between the end of the tool and board, press downwards and the tool will first anchor the component lead at right angles and then leave the rest of the lead vertical to form a terminal. Wiring is very similar to the Verowire method.

Vector use a 36 AWG wire as opposed to the 34 and 39 AWG of the Vero system but specify a similar soldering bit temperature requirement.

\section*{COMPONENT REMOVAL}

To replace a component for both systems simply snip off the component leads to leave a short length left in the board and soldered to the wire joint. Solder the new component lead to the short length left in the board, and the faulty component has been replaced. To prevent the short leads dropping back through the board when the solder melts, and if space permits, bend the shortened lead at right angles to the board. If a wiring fault has been made snip out the wrong length of wire and replace it with a new run.

\section*{EVALUATION}

In the test piece attempted it was found that the i.c.s virtually held themselves in place quite rigidly, but a transistor, for instance, will wobble about in the holes in the board if not mounted flush to the board and the leads, bent at right angles on the underside to lock it into place. Considering the large application of heat needed to melt the polyurethane wire, 1 felt that this method had its drawbacks. Admittedly, soldering discrete components

\section*{Demonstrating point-to-point wiring with the Verowire pen. The d.f.p. board enables extremely high packing} densities to be achieved



The illustration demonstrates the best hand position when using the Vector pencil. The index finger controls the tension on the wire
to terminal pins leads to easy and fast replacement, but this method too seemed to take up a good deal of valuable time compared to soldering components straight onto a circuit board. It was also strange having to work from the underside of the circuit board and having to virtually count pin numbers backwards.

Both manufacturers refer to plain matrix board. I found stripboard costs very little extra, so I combined the best of both worlds by soldering my components straight into the board, leaving the leads long enough to act as terminal pins with which to wire wrap. It also has an added advantage of cutting down the number of wire runs to the discrete components.

\section*{SOLDERING}

A few words on soldering will not go amiss here. It is essential that the bit of the soldering iron be kept clean when making a joint and the use of a moist sponge to clean it is highly recommended. With sufficient solder on the tip to help with heat conductivity, the solder must be melted against the joint and not the iron and even if you use the correct tip, don't be surprised if it takes just that little bit longer to melt both the insulation and solder. Finally, it will be noticed that a little char remains at the soldering joint, but this need not give cause for concern as regards the quality of the joint.

To sum up, I would not like to argue as to which pen or system is the better; they both do the same job very effectively, only differing in their physical appearance. It is a matter for the individual to decide which suits him best.

In the first place you either like the idea of this new system or you don't. If you do, you go out and buy one, together with the accessories you think fit. Once committed, however, persevere in the using and developing of your own skills. This type of wiring system gives me the impression that it is the type to which you will commit yourself wholly, or lose interest in quickly. In my opinion it is a very practical system, provided that the owner adapts it to his personal needs.


\section*{EXPANSION IN U.K. MEMORY PRODUCTION}

ANEW clean room of 30,000 square feet, believed to be the largest and most modern in Europe, has been built in eight months flat at the Mullard Southampton semiconductor plant. This is to be used for the manufacture of \(n\)-channel mos products, principally memories. This large investment by the parent company Philips follows last years acquisition of the U.S. company Signetics. Philips claim to be the largest manufacturers of semiconductors in the world; now the world's second largest producer of i.c.s, and Europe's largest manufacturer of i.c.s.

The Mullard Southampton works was the first purpose-built semiconductor factory in the United Kingdom (1956). Successive extensions culminating in the new clean room area bring the total plant area to some 375,000 square feet.

\section*{HOW CLEAN IS CLEAN?}

The unit of measurement of cleanliness is expressed as the number of particles of a size of 0.5 micron or greater per cubic foot of air. A typical factory may have as many as a million such particles per cubic foot and a "clean" factory (in the ordinary sense) 100,000 particles. No part of the new Clean Room at Southampton
is worse than Class 10,000 (i.e. \(10 ; 000\) particles) with more critical areas Class 1,000 and super-critical areas Class 100. These are maximum figures, but in practice Class 100 zones may have a particle count of less than 10.

The basic problem is not airborne dust introduced by the air-conditioning system. This can be eliminated by washing and filtering the air input. The problem is that people, however well bathed and scrubbed are "dirty" inasmuch as they are constantly shedding particles of skin tissue and hair. This can be alleviated to some extent by lint-free clothing. A change of shift causes a noticeable increase in particle count for a short period until external dust introduced by incoming personnel has been eliminated.

The specification for services such as de-ionised water and various gases-oxygen, hydrogen and nitrogen-became more and more critical with each technological innovation. Particular attention has been paid to the purity of gases and a Reverse Osmosis plant (the largest in the U.K.) has been installed for the treatment of the "raw" water used in the de-ionising process.
Production is normally on a twoshift basis, \(0600-1400\) hours and

1400-2200 hours. A third shift could be introduced if necessary

The level of automation is continually increasing although very critical operations such as alignment, are still hand-controlled. The loading and unloading of slices is fully automated, not for speed but for cleanliness and care of slices. Speed is not always a necessary characteristic of i.c. and L.S.I. processing. It is more important to obtain maximum yield of good devices. The slice through-put time is sometimes quoted as a measure of efficiency but speed cannot be taken in isolation. The fastest through-put time is not necessarily the most economic.

Production is currently based on a standard 3-inch slice but all the new equipment is capable of conversion to larger slices if justified by advancing process technology. The ultimate capacity of the clean room is estimated at approximately 2,500 slices per day

Perhaps the most impressive item of new equipment is the ionimplantation machine which enables shallow doped regions to be formed with great precision. This single item of equipment costs \(£ 100,000\). A second machine is to be purchased in the next expansion phase.

THE PRODUCTS . . .

The first main product being manufactured in the new unit-Clean Room No. 6-is the Signetics Type 2680 4k RAM. This is a 22-pin dynamic device already established as an industry standard and is equivalent to the intel 2107 B . Its principal market is computer mainframe manufacture. Final assembly is undertaken in the Far East where the current package is CERDIP. However, Southampton is currently developing a plastic package as a cheaper alternative

A 16 -pin 4 k RAM (Signetics 2660-an industry standard) has been under development at Southampton and is now at the sampling stage. The attraction of the 16-pin package is that it is suitable for automatic insertion on printed circuit boards as well as occupying a smaller board area. Its disadvantage is that it needs external multiplexing and is slower in operation, but in its main applications in computers these negative qualities are not
of over-riding importance.
Southampton is thus already uniquely equipped to respond rapidly to market demand for 4 k RAMs of all types including static versions now scheduled for production. There is also development work going on for the next leap forward, the 16 k RAM.
Looking to the future, Southampton will also be a main production unit for microprocessors for both the professional and consumer sectors of the industry and for the mos products used in electronic telephone exchanges and other professional telecommunications equipment.

Initially, because of the nature of the product, nearly all output will go to third parties with practically no in-house sales. However, as new products are introduced, in-house use will increase, a typical example being devices for Teletext in which Philips will have a strong interest as a leading manufacturer of television sets.


The ion implantation machine (left) with its control console (right)


\section*{Loading wasers prior to.ion implantation}

The final test installation for hot testing of MOS memories



\section*{OLYMPIC PAY-OFF}

Whether you found the Montreal Olympics thrilling or boring or a little of both, it is worth noting that such events generate powerful business for the electronics industry. The obvious case is a temporary boost in the sales of colour TV receivers. But the behind-the-scenes electronics, to my mind, is more impressive.

In an imperfect world electronics played a big part in the security arrangements. The Racal Electronics Group was involved but to what extent is not revealed.

Protection against fiddling by competitors was provided by Hewlett-Packard with a dozen gas chromatographs to analyze 3,000 urine samples from the top four finishers in each event plus hundreds of samples taken at random from the competitors. The chromatograph complex was com-puter-controlled and programmed to recognise any of 200 different drugs that may be used. An interesting sidelight on what is still called sport and games.

The control centre in Montreal that assembled the TV programmes for Europe was supplied by EMI Sound and Vision Equipment Ltd under a \(£ 400,000\) contract. Subcontractors included Mercury Electronics Ltd and Oxley Developments Ltd. The centre enabled TV pictures from 28 different locations and with up to 160 separate sound commentaries to be beamed to Europe by satellite to the European Broadcasting Union (EBU) distribution centre in Liege.

The whole equipment was built in 27 air-transportable containers which can be quickly assembled and commissioned on arrival. The EBU will be using the equipment
at a number of big events in the future, flying or trucking it to new locations as required. A great concept.

Even the vexed issue of international TV standards had its pay-off. The most advanced standards converter in the world is DICE designed by the British Independent Broadcasting Authority (IBA) and it is now commercially engineered and marketed by Marconi. The Montreal Olympics provided the first two sales, one to Russia, one to Yugoslavia. The equipment in Russia converted the Canadian NTSC 525-line pictures to SECAM, that in Yugoslavia to PAL.

1 understand that the one-off price for DICE is of the order of \(£ 250,000\). Nice business and likely to continue because DICE, as a completely digital system, is well ahead in technology. It uses computer techniques achieved through the use of 8,000 integrated circuits. The main store is said to contain the equivalent of more than 15 million (yes million) transistors.

\section*{UPTURN CONTINUES}
'What's good for General Motors is good for the United States" is an old tag. We might paraphrase it to "What's good for GEC is good for British electronics" because the fortunes of GEC, the UK giant, are an excellent barometer of the outlook. Sales are up from \(£ 1,400\) million to \(£ 1,750\) million, profits up from £165 million to \(£ 207\) million.

Then we see Ultra, not a record performer in the past, turning in a profit of \(£ 0.9\) million on sales of £11.3 million. Hardly a shattering performance but still 26.5 per cent up on sales and \(62 \cdot 8\) per cent up on profits. Electrocomponents, the component distributors (I still think of them by their old name Radiospares), have zipped up to \(£ 15.8\) million turnover and \(£ 2.85\) million profit. Membrain, in the automatic testing business, and still small with \(£ 1.5\) million turnover, has nevertheless grown 36 per cent in a recession year, has a strong order book and reports a "considerable upturn in the market".

Best results of all in percentage terms came from Racal Electronics Group. Sales up 48 per cent at £80 million and, wait for it, profits up 105 per cent at \(£ 19.6\) million. The Racal sales force commandos attacking world markets surely deserve to be called "The Unstoppables".

The only sour note is in the consumer electronics business. When the manaqina director of Mullard. Jack Ackerman. calls for import quotas on equipment and components from the Far East. things must be reallv bad.

\section*{QUIET AMERICAN}

It's not every day that you meet a man who, at a stroke, has boosted his business turnover from a substantial 0.8 billion to a whacking 1.3 billion dollars, his biggest single jump in the past ten years. That is what happened when Gould Inc. notched up I-T-E Imperial as the latest acquisition to the Gould empire, putting Gould up to number three in size of the American electrical/electronic giants. Well, this still leaves Gould some way behind US General Electric and Westinghouse but William T. Yivisaker, Gould's chairman and chief executive is clearly working at it.

When Ylvisaker joined Gould in 1967 the company was primarily a battery manufacturer with a turnover of 115 million dollars. Today Gould is a multinational conglomerate more than ten times as big. So when I was invited to meet Ylvisaker I looked forward to meeting a tough operator, a fast talker, a whizz-kid, a hirer and firer, who would be sure to be wearing a bow tie and have a cigar butt jutting from his lip.

The reality came as a shock. Could this soberly dressed, quiet spoken, modest character be the great Ylvisaker? It was. Totally relaxed, he answered questions with a shy smile, almost apologetic in manner and, for an American, incredibly low-key in approach.

Ylvisaker was in London as part of a world tour visiting newly acquired companies such as Advance Electronics, bought in September 1974 and since renamed Gould Advance. Was he pleased with Advance? No, he wasn't. It wasn't as profitable as he had hoped. But Advance had just introduced some new products and these would go well. He also revealed that Advance-designed switching power supplies for the OEM market would be made in the United States for sale there and in Canada, and lots of standard catalogue items from Advance are now being shipped to the US where they have had a good reception.

But beneath Ylvisaker's quiet demeanour there is a man of iron determination. He is, in fact, a tough operator who has few scruples about ditching companies or people who don't or won't perform , and his yardstick of performance is the simple one of profit. Commenting on the growth of Gould, Ylvisaker considers size as merely incidental. It is iust one wav to achieve his goals.

Gould's private venture R and D is now running at the rate of 35 million dollars a year but the corporation is "not looking for great scientific breakthroughswe are a profit making company".

\section*{\(20 \times 20\) Watt STEREO AMPLIFIER}

Superb Viscount IV unit in teak－finished cabinet．Black lascia with aluminium rotary controls and pushbuttons，red mains indicator and stereo jack socket Function switch for mic，magnetic and crystal pick－ups，tape，tuner，and auxiliary．Rear panel features two mains outlets，DIN speaker and input sockets plus fuse． \(20+20\) watts rms， \(40+40\) watts peak．

\section*{SYSTEM IB}

For only \(£ 80\) ，you get the \(20+20\) watt Viscount IV amplifier；a pair of our 12 －watt－ rms Duo Type IIb matched speakers；a BSR MP 60 type deck complete with magnetic cartridge，
de luxe plinth and cover

\section*{SYSTEM 2}

Comprising out \(20+20\) watt Viscount IV amplifier；a pair of our large Duo Type III matching speakers which handle 20 watts rms each；and a BSR MP 60 type deck with magnetic cartridge，
de luxe plinth and cover
E9200

Carriage surcharge to Scotiand：Sustem10 £2，50，System 2 £5


AMPLIFIER KIT
Specially designed by RT－VC for the experience constructor，this kit comes complete in every detail．Same facilities as Viscount IV amplifier．Chassis is ready punched，drilled and formed． Cabinet is finished in teak veneer． Black fascia and easy－to－handle aluminium knobs． Output \(30+30\) watts rms， \(60+60\) peak．
£2900
＋ 0 \＆p．\(\$ 210\)

SPEAKERS Twe models＿Duo lib teak veneer， 12 watts rms， 24 watts peak， \(18 \frac{1}{2}{ }^{\prime 2} \times 131 / 2^{\prime \prime} \times 7 y^{\prime \prime}\) approx． \(234{ }^{+8} 8 \&_{\text {PR PAIR }}\)
Duo ill 20 watts ims， 40 watts peak
\(27^{\prime \prime} \times 13^{\prime \prime} \times 111_{2}^{\prime \prime}\)
\(849_{27.50}^{+\rho \&}\)
PER PAIR


Popular BSR MP with magnetic cartridge，diamond stylus，and de luxe olinth and cover． f2400 \(+p \& p \sum 3.50\) Nallu


STEREO CASSETTE DECK KIT
Again，this kit is specially designed for the experienced constructor－for mounting into his own cabinet．Features include solenoid－assisted AUTO－STOP 3－digit counter，record／replay PC board，mains transformer and iaput and output controis．AC BIAS and ERASE．
£3250

DELUXE ACCESSORY KIT
Comprises of a matched palr of ment silder level controls
\＆3．5＋p \＆p． 1
p．\＆P．FREE WHEN PURCHASED TOGETHER WITH ITEM BELOW．


DIY STEREO SYSTEM
COMPLETE WITH SPEAKERS
Here＇s real value in DIY！Comprises ready－built amplifier module， 3 －speed Garrard auto－return deck，and teak－veneer simulate cabinets with clear plastic top．
Easily built by hobbyists．

\section*{DISCO EQUIPMENT}

TURNTABLES BY BSR
Big value from RT－VC！Two units COMPLETE WITH PLINTHS．First，the popular MP 60 type semi－professional deck． \(\mathbf{\$ 1 7 5 0}\)
＋p\＆p\＆250
Second，the lower－cost C141 automatic unit，fitted with a stereo ceramic cartridge \(\$ 195^{+p \& p}\) ．
Both units have plinths finished in superb teak veneer．Either wav．vou＇re on to a Dargain rrom RT－VC．

Build up a 4－watts rms per channel stereo amplifier with Unisound MK2 modules．For only \(£ 9.95\) you get pre－amp，power amp，and all the control panel parts．Features include IC power chips for low distortion．For the experienced constructor only

\section*{PORTABLE DISCO CONSOLE} with built－in pre－amplifiers
Here＇s the big－value portable disco console from RT－VC！It teatures a pair of BSR MP 60 type auto－return， single－play professional series record decks．Plus all the controls and features you need to give fabulous disco \(5 \mathbf{5 0 0}\) connects into your existing \(+p \& p .86 .50\) slave or external amplifier

\section*{70－WATT DISCO AMP Notillustrated}

Brilliantly styled for easy disco performance Sloping fascia，so that you can use the controls without fuss or bother．Brushed aluminium fascia and rotary controls．Five smooth－acting， vertically mounted slide controls－master volume，tape level，mic level，deck level，PLUS INTER－DECK FADER for perfect graduated change from record deck No． 1 to No．2，of vice－versa．Pre－fade level control（PFL）lets YOU hear next disc before fading it in． VU meter monitors output level． 70

84900 watts rms， 140 watts peak output．

EASY－TO－BUILD，WITH ENCLOSURE
Specially designed by RT－VC for cost－conscious hi－fi enthusiasts，these kits incorporate two teak－simulate enclosures，two EMI \(13^{\prime \prime} \times 8^{\prime \prime}\) （approx．）wooters，two \(3^{1} / 4^{\prime \prime}\)（approx．）weeters and a pair of matching crossovers．Easily constructed using a few basic tools．Supplied complete with an easy－to－follow circuit diagram，and crossover components．Input 15 watts rms， 30 watts peak， each unit，Cabinet size \(\mathbf{5 2} \mathbf{5 0}+\mathrm{D} 8 \mathrm{p}\) ． \(20^{\prime \prime} \times 11^{\prime \prime} \times 9^{1} / 2^{\prime \prime}\)（арргох）．

\section*{ \\ 15－WATT KIT YOU CANTER}

When you are looking for a good speaker， why not build your own from this kit．It＇s the unit which we supply with the above enclosures．Size \(13^{\prime \prime} \times 8^{\prime \prime}\)（approx．）EMI wooter， \(3^{1 / 14^{\prime \prime}}\)（approx．）tweeter，and matching crossover． Power handling capacity
\(8750+\rho \& p\) 15 watts rms， 30 watts peak．PER SET


20－WATT HI－FI KIT IN CHASSIS FORM

\section*{COMPACT}

FOR TOP VALUE
How about this for incredible bookshell value from RT－VC！A pair of high efficiency units for only \(£ 7.50\)－just what you need for low－power amplifiers． These infinite baffle enclosures come to you ready mitred and professionally finished．Each cabinet measures \(12^{\prime \prime} \times 9^{\prime \prime} \times\) （approx．）deep，and is finished in simulated teak．Complete with two \(8^{\prime \prime}\)（арргох．）speakers for max．power handling of 7 watts．
\＆750 per pair For extra power，choose this super RT－VC kit！EMI \(13^{\prime \prime} \times 8^{\prime \prime}\)（approx．）triple－ laminate－coned wooter with massive \(5^{\prime \prime}\)（approx．）magnet，pius \(5^{\prime \prime}\)（approx．） mid－range unit with concentric \(2^{\prime \prime}\) parasitic tweeter and \(2^{33} / 4^{\prime \prime}\)（approx．）magnet Complete with circuit diagram and crossover components．\＆ 750 P6p \(£ 2\)

\footnotetext{
ELECTROLYTIC CAPACITORS AT BARGAIN PRICES all brand new from reputable international manulacturers． PACK 1－Containing 30 mixed Electrolytics valves from 4.7 mF to 47 mF ．Minimum 16 volt working． \(550+200 \mathrm{p} \& \mathrm{p}\) ．
PACK \({ }^{2}\)－Contaning 17 mixed Electrolytic valves from 100 mF to 2200 mF ．Minimum 16 volt working．Majority 40 voll working \(75 p+20 p p \& p\)
}

\section*{ALL PRICES INC．VAT}

All items subject to availability Price correct at 1st August 1976 and subject to change without notice．
For further inlormation，please send stamped addressed envelope

\section*{回和吅}

\section*{תD HON BTAEET，MCTON LOMDON WI IMO} 323 EDOWARE ROAD，LOHDON WZ
Personal Snoppers EDGWARE ROAD． 9 a m－5．300．m
Hall day Thurs
ACTON \(9.30 \mathrm{am}-50 \mathrm{~m}\) ．Closed all day wed


Here＇s the mono unit you need to stat with．Gives you a god solid 35 watts mms ， 0 watts peak output．Big teatures include two disc inputs，both for ceramic cartioges，tape input and controls fitted with integral push－pull switches．Independent bass and treble
\(£ 2750\)
master volume



\section*{CRESCENT RADIO LTD. \\ 164-166 HIGH ROAD, WOOD GREEN, N22 (also) 13 SOUTH MALL, EDMONTON, N. 9 I St. MICHAELS TERRACE. WOOO GREEN, LONDON N22 ASI}

3 KILOWATTS PSYCHEDELIC LIGHT CONTROL UNIT
Three Channel: Bass, Midcle, Treble. Each channel has its own sengitivity control. Just connect the input of this unit to an ampllaer, and connect three 250 V up to 1000 W act three the output terminals of the unit, and you produce a fascinating sound-light diepisy. (All guaranteed.)
618.50 plus 75 p. P. \& P. \(+8 \%\). CABLE LESS SOLDERING IRON WAHL "ISO-TIP
* Completely portable.
* Solders up to 100 joints per
charge.
* Recharges In lts own stand.
* Fine tip for all types of solder
ing.
* Only 81n long and weighs just 6078
OUR PRICE \(\mathbf{6 9} 75+8 \%\). (SARGATH PROJECT BOI BARGAIN PROJECT BOX A plastlc box with moulded
extrusion rails for PC or Chassis extrusion rails for PCor with metal front plate panels with metal front plate supplied).
An ideal box to givc a small project a profesaional finish. \(91 Z \mathrm{E}\) (internal) \(81 \mathrm{~mm} \times 51 \mathrm{~mm} \times\) 28 mm .
OUR

"C100" 100 WATT AMPLIFIER
All built and tested, mounted on a plain aluminium chassis which measures \(18 \times 9 \frac{1}{\frac{1}{2}} \times 4\) in, and which you can mount into a cabinet of your choice. Four controiled inputs, master volume, treble, 100 W clean into \(8 \mathrm{hm} \mathrm{L} / \mathrm{g}\). Tdeal for disc music craup PA and clubs.
\(\frac{\text { A bargaln at } 242+\& 1 \text { carr. }+8 \% \text { VAT. }}{\text { TI MULTI-METER }}\)
Ideal tester MULTI-METER
electronics. for everybody interested in grammes and Weighing less than Ranges: A.c. volts: \(0-10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}\) \(1,000 \mathrm{~V}\). D.c. volts: \(0-10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}\),
1.000 V . D.c. current: \(0-1 \mathrm{~mA}, 0-100 \mathrm{~mA}\) Resiatance: current: \(0-1 \mathrm{~mA}, 0-100 \mathrm{~mA}\) Prlce \(84 \cdot 70+8 \%\) VAT
TEE-CLIP CONDENSER MICROPEONE Omnl-Directional 600 ohm \(40-\) \(15,000 \mathrm{~Hz}\). Exira long lead. Ideal Price \(88.50+121 \%\) VAT.
PPI POWRR SUPPLY UNIT Bwitched \(3,4 \frac{1}{3}, 6,7 \frac{1}{3}, 9\) and 12 V at 500 mA . Naty \(\begin{aligned} & \text { With on/off switch and } \\ & \text { pilot light. }\end{aligned}\)
\begin{tabular}{c|c} 
& Only \(£ 4.50+8 \%\) VAT. \\
\hline CASSETTTE & DUAL/IMP HAND
\end{tabular} On MICROPHORE On/of switch for re-
mote control. Split lead with \(2 \cdot \mathrm{Jmm}\) and 3.5 mm plugs, stan. dard cassette mics. to suit all types, Com Please whate which Please state which 200 imma \(/ 50 \mathrm{kohm}\). Price \(21.60+12 \frac{1}{2} \%\)

DUAL/IMP HAND
MICROPEORE
The perfect hand
stand mic. for stage group, disco, etc Finlshed in matt silver and black. Cardioid dynamic.
Dual Imp: 600 ohm \(50 \mathrm{kohm}, 60-15,000 \mathrm{~Hz}\) With an on/of switch
Price \& \(8.75+12 \frac{1}{2} \%\) Price \(28.75+12 \frac{1}{2} \%\)
VAT.
U.K. CARRIAGE 50p UNLESS OTHFRWISE STATED

VAT-All prices are excluding VAT. Please add to each item the VAT rate indicated.

\section*{WENTWORTH RADIO}

1a Wentworth Court, Alston Road, Barnet Telephone: 01-440 0409, 01-441 2328

\section*{INTEGRATED CIRCUITS}
ETTR6016 [2.15 \(\qquad\) 90p TBA540
TBA5400
TBA5500 \(12 \cdot 10\)
52.50 \(\begin{array}{ll}\text { TBA673 } & \mathbf{2 2 . 6 5} \\ \text { TBA750O } & \mathbf{5 2 . 2 5} \\ \text { TBA }\end{array}\) \(C 2.65\)
\(\mathbf{c 2} 25\)
\(95 p\) TBA9900 \(\quad 12.90\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{SEMICONDUCTORS} \\
\hline 2N696 & 12p & 2N2369A & 15p & BF337 & 25p & E5386 & \(11{ }^{\text {1 }}\) p & TIP32C & [1.00 \\
\hline 2N697 & 130 & 2N 2646 & 44 p & BFT42 & 40 p & MUE34O & 38 p & TIS90 & \({ }^{19} 9\) \\
\hline 2N698 & 23p & 2N2904 & 15p & BFX29 & 28 p & OA47 & \({ }^{6} \mathrm{p}\) & TIS91 & 18p \\
\hline 2N699 & 340 & 2N2904D & 19p & BFY50 & \({ }^{18 p}\) & OA90 & 8 & BA100 & 10p \\
\hline 2N706 & 11p & 2N2906 & 14 p & BR100 & 20p & OA91 & 89 & 6A144 & 15p \\
\hline 2N708 & 14p & 2 N 4287 & 17p & B9101 & 30 p & 0.70 & 12 & BA145 & 20p \\
\hline 2 N 914 & 140 & 2N4288 & 18 p & BAY39 & 40 p & IN4002 & \({ }^{6} \mathrm{P}\) & BA148 & 14 p \\
\hline 2 N 918 & 31p & BF160 & 20p & BSY51 & 200 & IN4006 & 9 P & BA154 & 12p \\
\hline 2N1132 & 210 & BF167 & 25p & BT106 & \({ }^{95 p}\) & INA148 & \({ }^{51}\) & BA155 & 18 p \\
\hline 2N1131 & 200 & BF173 & 21p & Bu105\%02 & 52.00 & 2N697 & 15p & BAX16 & 20p \\
\hline 2N1302 & 14 p & BF178 & 30 p & Bu105/04 & 12.40 & 2N3055 & 35p & BC 107 & 8 p \\
\hline 2N1303 & 14p & BF179 & 30 p & BY103 & 17p & 2N6178 & \({ }^{60 p}\) & BC108 & 8 p \\
\hline 2N1304 & 11 p & BF180 & 29p & BY126 & 10p & 2SC643A & ¢1.70 & BC108C & \({ }^{\text {p }}\) p \\
\hline 2N+305 & 16p & BFI81 & 270 & BY127 & 10p & 2SC1172Y & 12.24 & BC109 & 9 p \\
\hline 2N1306 & 20 p & BF182 & 35p & BY133 & 15p & TIP29 & 40 p & BC113 & 10 p \\
\hline 2N1307 & 19p & BF193 & 31p & BY164 & 29p & TIP29A & 40 p & BC118 & 18p \\
\hline \(2 \mathrm{~N}+308\) & 220 & BF184 & 16p & Byx 10 & 15p & IIP298 & 40p & BC116A & 17p \\
\hline 2N1309 & 240 & BFis5 & 20p & BZX61CB & 15p & TIP29C & 45 p & BC117 & 17p \\
\hline 2N1618 & 19p & BF186 & 25p & 82×61C16 & 15p & TIP30 & 48 p & BC119 & 28p \\
\hline 2N1711 & 20 p & BF194 & \(11 p\) & B2X61C43 & 15p & tip30a & 50p & BC125 & 16p \\
\hline 2N2147 & 700 & BF195 & 12p & 82×61C81 & 15p & TIP30B & \(4{ }^{40}\) & BC138 & 19p \\
\hline 2N2148 & 50p & 8F196 & 129 & 82×61C39 & 18p & TIP30C & 50p & BC139 & 26p \\
\hline 2N2218 & 20p & BF197 & 14p & 82Y88C12 & 129 & IIP31 & 55 p & BC142 & 25p \\
\hline 2N2219 & 199\% & EF198 & 18 p & BZY88C7V8 & 12p & TIP31A & 4 sp & BC143 & \(22 p\) \\
\hline 2N2220 & 23 p & BF199 & \(18 p\) & BZY88C8V2 & 12p & TIP318 & 50p & 8C147 & 9 p \\
\hline 2N2221 & 19\% & BF 256LC & 40 p & 日ZY88C11 & 12p & TIP31C & 56p & 8C148 & 4 \\
\hline 2N2222 & 79p & BF259 & \(28 p\) & BZY88C18 & 12 p & THP32 & \(60 p\) & BC149 & 9 p \\
\hline 2 N 2368 & 17p & 8F271 & 18p & E1222 & 329 & TIP32A & 58 p & BC152 & \(1{ }^{1}\) \\
\hline 2N2369 & 18 p & 8F336 & 330 & E5024 & 169 & TIP320 & 80p & \[
\begin{aligned}
& \text { BC154 } \\
& \mathrm{ACl} 5
\end{aligned}
\] & \({ }_{80} 8\) \\
\hline
\end{tabular}

\section*{SPECIAL OFFER}

NEW MULLARD ELC1043/05 U.H.F. TUNERS £3. 50
All devices top quality. By return service. Trade enquiries welcomed. C.W.O Minimum order 75p. S.A.E. for complete tists. VAT to be added: \(12 \frac{1}{2} \%\) Semiconductors; \(8 \%\) Integrated Circults. Postage and packing: add 25p for all orders under \(£ 1 \cdot 50\); add extra for airmall

Prices firm to end of 1976


Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

\section*{WATCHES AND CALCULATORS}

Seven new calculators and a range of 12 low-cost digital watches have recently been announced by Texas Instruments. There are two slimline pocket calculators, the TI- 1600 at \(£ 17.95\) and the TI-1650 (with memory) at \(£ 19.95\). The rechargeable TI-41 at \(£ 34.95\) includes special preprogrammed functions for business and finance use. The TI-30, a "students" scientific" offers 48 functions for \(£ 19.95\). Two new printing calculators make their appearance, both with dual memoriesthe T1-5040 at \(£ 109.95\) is a desktop model with automatic constant, while the portable TI-5050 costs £ 99.95.

Top of the range is the \(\mathrm{SR}-60\), a prompting programmable desktop calculator with a suggested retail price of \(£ 1,506 \cdot 60\). Basic capability is 480 program steps and 40 data memories, with an option to expand to 1,920 steps and 100 memories. Programs can be keyed in as required or recorded on magnetic cards for future use.
The watches all use the same basic five-function module based on a single \(I^{2} \mathrm{~L}\) chip and an l.e.d. display. Cases are in metal or plastics and there is a choice of colours and strap styles. Prices start at \(£ 15.95\). All prices quoted include VAT. Further details can be obtained from Texas Instruments Ltd., European Calculator Division, Dept P.E., 165 Bath Road, Slough SL1 4AD.

\section*{STICK-ON WIRING}

Some of our older readers may remember Cir-Kit stick-on copper strips for making your own printed circuit boards. Another company, Print-A-Kit, have now introduced a similar product which comes in sheets of self-adhesive plain copper, group board pads and sheets of dual-in-line strips.
Known as P.A.K. Strip, the large d.i.l. Type A sheets are useful in that they can be used for in-line pin i.c.s and also for the staggered pin type of packages. The pins mate directly to the soldering pads, as do miniature and standard p.c. mounting preset potentiometers.

To make a printed circuit using Type A strip to mount d.i.l. i.c.s., the complete circuit is drawn on the board using the strip as a pattern guide to align the pin pads with those on the board. Etch board in the usual way and then stick the strip in position to the underside of the board. The adhesive used is such that the board can be drilled in one operation, drilling through both the strip and board.

An obvious advantage with this flexible type of stick-on wiring is that it can be used on plastic sheet, wood or even cardboard and mounting holes pierced with a sharp pointed instrument.

Further information and complete price list for the various ranges of P.A.K. Strip can be obtained from Print-A-Kit, Electronics Supplies, Dept. P.E., 408 Sharrowvale Road, Sheffield, S11 8ZP.

\section*{CATALOGUES}

Just in time for the new season of Electronics Courses at the evening institutes, which start at this time of the year, are three new components catalogues.

The 20 -page 1976 Chromasonic catalogue contains, apart from a fairly large stock of i.c.s., a new range of Chèkit audio amplifier modules with outputs up to 10 W . Included in the range is a "Poor Man's Digital Tuner" kit.

The catalogue costs 35 p, but includes redeemable vouchers, and is available from Chromasonics, Dept P.E., 56 Fortis Green Road, London, N 10 3HN.

The new Maplin catalogue, published at the end of next month (October), should please our organ constructor readers. Listed amongst the new items is a complete twomanual organ kit. This organ is a "progressive" kit in that the constructor can stop at a single-manual version and add the extra manual and other tone colours at a later date.

Listed separately are keyboards, special organ integrated circuits, keying contact sets and complete kits of parts for articles published in various magazines, including Practical Electronics.

Sheets of P.A.K. Strip from Print-A-Kit


Of course, there are the usual large lists of stock items such as transistors, integrated circuits, resistors/capacitors, loudspeakers, control knobs, transformers and equipment cases. Listed amongst these sections are numerous "new lines".

For the organ constructor, the Maplin and the Elvins catalogues, who specialise in keyboards and complete organs and pianos, should cater for all their needs.

Copies of the Maplin catalogue will cost 50 p and can be ordered from Maplin Electronic Supplies, P.O. Box 3, Rayleigh, Essex SS6 8LR, and the Elvins catalogue (not new), price 60p, from Elvins Electronic Musical Instruments, 12 Brett Road, Hackney, London E8 1JP.

The new Marshall's catalogue seems excellent value for money at 40 p . With over 150 pages the catalogue is broken down into seven sections; Transistors; Integrated Circuits; Diodes and Rectifiers; Opto Electronics; Resistors; Capacitors and Accessories.

There are 22 pages devoted to transistors and 34 pages on integrated circuits. Included in the optical section are l.e.d.s and opto couplers. The accessories section includes such items as switches, DIL sockets, technical books, soldering irons and stands, transformers, heatsinks, cases, knobs and test meters.

The catalogue is nicely laid out and easy to use, but the Japanese transistor equivalents list could be expanded to include general transistor types as well as Marshall's own reference type numbers. Also, it would seem that an error has crept into the transistor leadout data on page 21. The tabulated information on the left of the page lists a drawing reference letter and pin connection numbers from 1 to 6 , but the case outline drawings have omitted these pin numberings which makes it difficult, in some cases, to work out the correct connections.

Copies of the Marshall's catalogue can be obtained from any of their branches or direct from A. Marshall (London) Ltd., 42 Cricklewood Broadway, NW2 3ET. Price 40p by post and 30 p to callers.
One of the new digital watches (TI 401-3) from Texas using 12L technlques


\title{
PRTENTE RECUENO.
}

\section*{OVERLOAD PROTECTION}

The Hungarian company, Elektroakusztai Gyar, in BP 1407824, give full details, including component values, for a circuit intended to offer better protection for loudspeakers against overload. The system is claimed to be able to distinguish between, on the one hand, signals with occasional peaks and, on the other hand, signals with a high average energy content.

The invention is based on the belief that the latter condition is more dangerous; i.e. that the longterm average of the programme signal is more important than its peak content because it dictates the extent to which the drive unit coil is likely to overheat and burn out.

In one form of conventional circuit (Fig. 1) D1 rectifies the audio input applied across \(A, B\), and applies it to the coil of relay RLA in parallel with capacitor C 2 . When the current in the coil exceeds a selected threshold value, the relay contacts open to put resistor \(R_{\mathrm{s}}\) in series with the loudspeaker LS1. Because the circuit functions essentially as a peak rectifier loaded with the resistance of the relay coil, the operational time constant of the circuit depends on an average of momentary peak values.

In Fig. 2, however, the Zener diode D2 stabilises the d.c. voltage from D1. The relay coil and an indirectly heated thermistor R3 are wired in parallel with D2, the thermistor filament being in series with R2 across the input A, B. The Zener voltage is selected to be 10 per cent lower than that which causes RLA to operate.

Apart from a constant factor, the heating power is proportional to the square of the r.m.s. value, so the temperature of the thermistor is proportional to the square of the r.m.s. value across \(A B\). It follows that when the voltage across \(A B\) exceeds a predetermined danger level the thermistor heats up, its resistance drops, and the voltage stabilised by the Zener drives a current through RLA coil sufficient to operate the relay. This switches the loudspeaker LS1 out of circuit.

Because the resistance of the thermistor is dependent also on ambient temperature, the time period for trip operation will decrease as ambient temperature increases.

\section*{UNDERWATER BEACON LOCATOR}

A clever idea for helping divers home in on a submerged beacon emitting sounds is patented by Graseby Instruments Ltd, in BP 1432 774. The idea could well be modified to meet other audio direction-finding requirements.

A submarine sound beacon emits audio pulses of frequency

BP 1432774


Fig. 1

\section*{BP 1407824}


Fig. 1


Fig. 2
around 9 kHz . The diver carries a battery-powered locator which resembles a torch having a crossbeam with a piezoelectric hydrophone at each end. The hydrophones are spaced apart by a distance which is much greater than one wavelength of the beacon sound in water.

The block diagram, Fig. 1, shows the left-hand hydrophone and the right-hand hydrophone connected to the inputs of the leftand right-hand amplifiers. When sound is received by one hydrophone, it is amplified to illuminate an associated light-emitting diode, D1, D2. At the same time an inhibit signal is sent, via a delay network, to the input of the other amplifier.

The delay imparted is sig. nificantly less than the time taken for sound to travel in water between the left and right hydrophones. Thus, if the beacon is to the left of the locator the left hydrophone will receive sound before the right and the diode D1 will be illuminated, while an inhibit signal prevents illumination of diode D2. Similarly, D2 is illuminated and D1 inhibited when the beacon is to the right of the locator.

When the beacon is straight ahead both diodes are illuminated. The diver thus need only swim in the direction which lights bothdiodes.

\section*{N BRIEF}

BP 1435 954, V E Tesler of Moscow: Compatible Stereoscopic Colour Television System. This Russian patent gives details of a mono-compatible stereo colour TV system which uses phase quadrature modulation of the colour sub-carrier to convey the necessary extra information.

BP 1438 063, Motoh Industry Ltd, of Japan: Drawing apparatus. An electronically controlled automatic drawing board which draws lines at predetermined angles with respect to imaginary lines on the board, using as a base reference position lines of the earth's magnetic field.

\section*{RETURN OF POST MAIL ORDER SERVICE}


Thiakit in auitable for record players, tape play back, guitara, electronicinstrumente or small P.A.syatems.
Two versions are avallable. A mono kit or a stereo Two versions are avallable. A mono kit or a stereo
kit. The mono kit uses 13 semiconductore. The stereo kit uses 22 semiconductors with printed front panel and volume, bass and treble controls. Spec. 10W out put into 8 ohms, 7 W into 15 ohms. Response \(20 \mathrm{c} / \mathrm{a}\) to \(301 \mathrm{c} / \mathrm{s}\), input \(100 \mathrm{M} . \mathrm{V}\). high imp. size 9 in \(\times 3\) in \(\times 2\) in

Eany to bulld. Full instructions supplled.


\section*{ELAC 10 inch}

Doal oons plasticised roll surround. large ceramic magnet \(50-16,000 \mathrm{c} / \mathrm{a}\). Basa resonance
\(55 \mathrm{c} / \mathrm{g} .8\) ohm impedance. 10 W . 8 ohm impedance \(9 \times\) bin. model \(£ 3 \cdot 25\). \(\leq 4 \cdot 95\)
MAINS TRANSFORMERS \begin{tabular}{c}
\(\substack{\text { ALL ProgT } \\
\text { bop }}\) \\
\hline ench \\
\hline
\end{tabular}
 \(250-0-25080 \mathrm{~mA}, 0 \cdot 3 \mathrm{~V} 3 \cdot 5 \mathrm{~A}, 6 \cdot 3 \mathrm{~V} 1 \mathrm{~A}\) or \(5 \mathrm{~V} 2 \mathrm{~A} 84-60\) \(350-0-35080 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 3 \cdot 5 \mathrm{~A}, 6 \cdot 3 \mathrm{~V} 1 \mathrm{~A}\) or \(8 \mathrm{~V} 2 \mathrm{~A} .85-80\) \(300-0-300120 \mathrm{~mA}, 6-3 \mathrm{~V} 4 \mathrm{~A}\) C.T., \(6 \cdot 3 \mathrm{~V} 2 \mathrm{~A}\)
 GENERAL PURPOSE LOW VOLTAGE. \({ }^{\text {Iamp. }}\) Tapped outputs at \(2 A 3,4,5,6,8,9,10,12\) 24 and 30 V \(1 \mathrm{~A} 6,8,10,12,16,18,20,24,20,36,40,48,60 \frac{24}{24} \cdot 60\) \(2 A, 6,8,12,12,16,18,20,24,30,36,40,48,6027 \cdot 00\) 3A, 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 40, 48, 60 48.70 ©A, \(6,8,10,12,16,18,20,24,30,36,40,48,60 \leqslant 11 \cdot 25\) \(5,8,10,16 \mathrm{~V}\) \& A \(22.6-0-6 \mathrm{~V} 500 \mathrm{~mA} 11\). 9 V 1 A ह1 12 V 200 mA al. 12 V 500 mA 21.12 V 760 mA en 40 V 3 A 28.50 . \(30 \mathrm{~V} 5 \mathrm{~A}+34 \mathrm{~V} 2 \mathrm{Act} .3875\). \(20-0-20 \mathrm{~V}\) 1A 62 . \(30 \mathrm{~V}+34 \mathrm{~V} 2 \mathrm{~A}\) ct. 3877.
60 V tapped 40 V . 20 V 1A \(29 \cdot 60\). 20 V IA 2180 . UUTO TRANSFORMERE 115 F
to 116 V l50W 26 ; 260 W 46; \(400 \mathrm{~W} 97 ; 500 \mathrm{~W} 230 \mathrm{~V}\) CHARGER TRANSFORMERS. Input 200/260V or 8 or 12V 11 A 82.75 ; 4A \(24-80\).
FULL WAVE BRIDGECHARGER RECTIFIERE:
6 or 12 V outputh 11 A \(40 \mathrm{p} ; 2 \mathrm{~A} 55 \mathrm{p} ; 4 \mathrm{~A} 85 \mathrm{p}\).
R.C.S. STABILISED POWER PACK KT All partaincluding printed circuit and instructions to build this unit. Voltages available: \(6 \mathrm{~V}, 7.5 \mathrm{~V}, 9 \mathrm{~V}\), 12 V . Up to 100 mA output.
Please state voltage required.
R.C.S. STEREO FM TUNER

\section*{}

Thin completely caned unains powered \(\mathrm{Hi}-\mathrm{Fi} \leq 27.50\) made using the latest circultry. Bargaln. Poat 45 8toreo Tuner/Amplifier Chasif, Brand new 298.50. BARGAIN 3W AMPLIFIER. 4 Transiator Push-Pull Ready bullt with volume, treble and \(\mathbf{4} \mathbf{3 . 9 5}\)
basa controle. 18 volt battery operated.

\section*{wafer heating elements}

Size \(10 \frac{1}{6} \times 8 t \times\) in. Operating voltage \(200 / 250 \mathrm{~V}\) a.c. 250 W approx. Suitable for Heating Pads. Food Wamers, convecta between two gheets of metal or asbeatos.
only 40p each (four for el:50)
ALL PO\&T PAID—Discounte for quantity.
E.M.I. \(13 \frac{1}{2} \times 8\) in

SPEAKER SALE!
With tweeter. And \(\quad\{5.25\)
crossover. 10 w ,
state 3 or 8 ohm
Asillustrated.
\(\begin{array}{ll}15 \mathrm{~W} \text { model } & £ 7 \cdot 95 \\ 8 \text { or } 15 \text { ohms. } & \begin{array}{l}\text { Post } 50 \mathrm{I} \\ 20 \mathrm{~W} \\ \text { model } \\ \\ £ 8.95\end{array}\end{array}\)

BAKER MAJOR \(12 £ 10.35\)


30-14,000 c/ Post 60p 121n double together rith weetercone ceramic magnet asambly having a flux denaity of 1,000 gaus and a total fux f 145,000 Maxwella. Baas esonance \(40 \mathrm{c} / \mathrm{s}\). Rated 25 W NOTE: 3 or 8 or 15 ohm nuat be atated.

Module kit, 30-17,000 c/ with tweeter, croseover, banfie and instruction
\(\leq 13\)
Please atate 3 or 8 or 15 ohms. "BIG SOUND"
BAKER SPEAKERS Robuatly constructed to atand up to long perlods of electronic power. As used by leading groups and dlacos Useful response \(30-13,000 \mathrm{c} / \mathrm{s}\). Basa Reaonance 55 GROUP "25" 12in 30W 3,8 or 15 ohme
68.95

GROUP (435" 12 in 40 W

15
Post 40p GROUP \(50 / / 2 \mathrm{in}\) sow 8 or 15 ohm .50 Fith aluminiun Post 80p GROUP "50" 15ln 75 W £ \(19 \cdot 50\)

Disco, Group +PA Cabinets in stock. gend for Leallet

BAKER 150 WATT ALL PURPOSE TRANSISTOR
 MIXER AMPLIFIER
Ideal for Groups, Disco, P.A. and Musical Inairuments. 4 inputs speech and muaic. 4 way
mixing. Output \(8 / 15\) ohm. a.c. Maing
geparate trebie and bass controls. to Carr. 50 watt model 449 .

\section*{NEW 'DISCO 100 WATT'}

ALL TRANBISTOR AMPLIFIER CHASSIS 152 2 inpute. 4 outputs separate volume treble Carr. 51 BLACK CARRYING CABINET AVAILABLE \(£ 9\)

\section*{PW SOUND TO LIGHT DISPLAY}

Complete kit of parts with R.C.S. printed circuit. Three \(1,000 \mathrm{~W}\) channels. As featured in December Practical Wireless. 12.50 CABINET extra 13.

GOODMANS CONE TWEETER \(18.000 \mathrm{c} / \mathrm{s}\). 25 W 8 obm . Price \(\quad £ 3.25\)

\section*{R.C.S. \(100 \cdot\) WATT VALVE AMPLIFIER CHASSIS}


Professjonal model. Four inputs. Treble, Bass, Master Volume Controls. Ideal disco, P,A. or groupe. S.A.E. for details. 5 speaker outputs

Suitable carrying case \(816 \cdot 50\).
plus e2-50 cart.
E.M.I. GRAM MOTOR <|-25
120 V or 240 V a.c. \(2,400 \mathrm{r}\).
 Post 30p
E.M.I. TAPE MOTOR E.M... TAPE MO
4 pole, 240 V 185 mA
pole, 240 V 185 mA an 120 V version El . (Illustrated)



COLLARO GRAM MOTOR I20V

NEW BSR HI-FI AUTOCHANGER
Plays \(12 \mathrm{in}, 10 \mathrm{in}\) or 7 in reco Auto or Manual. A high quallabiltt with 12 months guarantee. A.c. 200/250V Size \(13 \ddagger \times 11\) tin.
Above motor board 34 in Below motor board 2 fin With STEREO/MONO
GARTRIDGE.
Single Player veraion \(516 \cdot 50\)
 \(£ 10.95\)

\section*{PORTABLE PLAYER CABINET \(£ 4 \cdot 50\)}

Modern design. Size \(16 \mathrm{in} \times 15 \mathrm{in} \times 7\) in rexine covered. Largefront grille. Hinged IId. Chrome fittinge. Motor board cut for Garrard or B8R deck


\section*{R.C.S. DISCO DECK SINGLE RECORD PLAYER}

Fitted with auto atop, stereo/compat. cartridge. Baseplate. Slze 1 lin \(\times 8 \frac{1 m}{} \mathrm{~m}\). Turntable. Size 71 n diameter. A.c. mains. \(220 / 260\) 3 speeds plays all size records. ©
Two for \& \(12 . \quad\) Post 75 p.

\section*{HEAVY METAL PLINTHS} With P.V.C.Cover. Cut out for most B.8.R. or Garrard decks.

Silver gret finish.
Model 'A". Size \(121 \times 14 \frac{1}{2} \times 7 \mathrm{it}\).
Post 75p. Model 3 .
TISTED PLASTIC COVERS ONLY
Sizes: ' \(A\) ' -14 itin \(\times 12 \frac{12}{2} \times 4\) in, 82.50 . ' \(B\) ' \(-201 \mathrm{in} \times\)
 Ideal for \(\times 14 \mathrm{in} \times 4 \mathrm{in}\), 88.50 .
BAKER HI-FI SPEAKERS
high quality-british made SUPERB
I2in 25 watts A high quality loudapeaker, its remarkable low cone resonance ensures clear reproduction of the deepes
 tweeter cone reaulting in full range reproduction with remarkable efficlency in the \(\begin{aligned} & \text { upper register. } \\ & \text { Bass Regonance }\end{aligned} \quad 25 \mathrm{c} / \mathrm{l}\) Flux Density 16,500 gausa Uneful response \(20-17,000 \mathrm{c} / \mathrm{s}\) 8 or 16 ohms models

\section*{£ \(16 \cdot 30\) 号}

\section*{AUDITORIUM}

I2in 35 watts
A full range reproducer for high power. Electric Guitars, public address, mult-speaker ystems, electric organs. deal for \(\mathrm{Hl}-\mathrm{Fi}\) and Dilaco heques.
Bess Resonance \(35 \mathrm{c} / \mathrm{s}\) Flux Density 15,000 gauan Ueefulresponse \(25-16,000 \mathrm{c} / \mathrm{s}\)

\section*{or 15 ohms models.}
€ \(15 \cdot 50\) Rool
15 in model 45 watts il 945 . Post 90 p
BLANK ALUMINIUM CHASSIS, 18 a.w.g. 24 in siden \(6 \mathrm{in} \times 4 \mathrm{in}, 70 \mathrm{p} ; 8 \mathrm{in} \times 6 \mathrm{in}, 90 \mathrm{p} ; 10 \mathrm{in} \times 7 \mathrm{in}, 21.15\); \(16 \mathrm{in} \times 10 \mathrm{in}, \$ 1.70\).
ALUDIMIUU PANELS, 18 s.w.g. \(6 \mathrm{in} \times 4 \mathrm{in}, 15 \mathrm{p} ; 8 \ln \times 6 \mathrm{in}\), \(25 \mathrm{p} ; 10 \mathrm{ln} \times 7 \mathrm{in}, 80 \mathrm{p} ; 12 \mathrm{in} \times 5 \mathrm{in}, 30 \mathrm{p} ; 12 \mathrm{in} \times 8 \mathrm{in}, 40 \mathrm{p}\) \(6 \mathrm{in} \times 6 \mathrm{in}, 45 \mathrm{p} ; 14 \mathrm{in} \times 9 \mathrm{in}, 50 \mathrm{p}\) : \(12 \mathrm{in} \times 12 \mathrm{in}, 55 \mathrm{p}\) ALOMIFIU:
ALOMIFIUM BOXRS VARIOUS' SIZES.

\section*{Complete the couponand we'll send you our complete, new catalogue.}


The new Heathkit catalogue is now out. Full as ever with exciting, new models. To make building a Heathkit even more interesting and satisfying.

Clip the coupon now (enclosing a 10p stamp for postage) and we'll send you your copy to browse through.

With the world's largest range of elect ronic kits to choose from, there really is something for everyone

Including our full range of test equipment. amateur radio gear, hi-ft equipment and many general interest kits.

And, if you happen to be in London or Gloucester.call in and see us. The London Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

Heath (Gloucester) limited, Dept.PE-106 Bristol Road, Gloucester, GL2 6EE. Tel: Gloucester (0452) 29451.



\title{
Rididat \\ A SELECTION FROM OUR POSTBAG
}

Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the telephone.

\section*{On-course}

Sir-In a recent issue of Practical Electronics (May 1976) you published details for the construction of an "Audio Compass" which could be used as an off-course alarm for yachtsmen.

I was a competitor in the singlehanded transatlantic yacht race and was able to try out and evaluate your prototype unit and think that your readers may be interested in my observations. Unfortunately, I had to retire from the race when I was about one third of the way across, after my self-steering was broken when I hit a submerged object of some sort.

I was at sea for twenty days and for all that time, despite the instrument being wet for a good part of the time and getting soaked on several occasions as well as receiving the battering one might expect in a North Atlantic gale, it operated very well. My main comments are on one or two details and on the use of the instrument.

When sailing singlehanded for any length of time sleep becomes of major importance and very often one is only able to snatch cat-naps of a few minutes for several days. Because of this, when one gets the chance of a few hours at a stretch, sleep is of prime consideration. Hence, when I first used the off-course alarm on the third night of the race after 48 hours without sleep and it woke me up minutes after I had fallen asleep I felt like throwing the whole thing overboard! I had set it to go off with a course change of about 15 degrees, forgetting that in the open sea a temporary wind shift of that magnitude is quite common.

The first important lesson I learnt from this was that one needs to set the alarm on a fairly broad band, i.e. so it will only sound when a change of course of about more than 35 degrees occurs. In this way, the minor meanders off course will not wake the exhausted sailor, but if he strays far enough off his course the alarm will sound and prevent him sailing back the way he has come or sailing toward a danger. Later in the race I set the alarm so that it would only sound if the course altered more than 45 degrees and this proved most satisfactory for both progress in the right direction and sleep.

The alarm itself is very strident, especially when connected to the ship's supply of 12 V . In fact, I considered it to be far too noisy and think that a far gentler tone would have been just as effective and considerably less wearing on my nerves.

I believe that in the construction of the sensor ring housing the Hall Effect probes you used a piece of "Conti-Strip" so that it could slide easily round the compass bowl. I found that after this had been wetted it was very difficult to slide, probably because it swelled. Some sort of plastics strip might have been more satisfactory.

Apart from these two minor comments I found the instrument generally most satisfactory and had I been able to finish the race think that it would have saved me a good number of miles.

Andrew Bray, Assistant Editor, yachting monthly

\section*{Missed Point}

At this late stage, due to the fact that as a New Zealand reader, 1 do not receive P.E. until about three months after publication, 1 would like to enter the fray started by your reader Mr B. Timson who in Readout, February issue, deplored the appearance of what he felt were "unnecessary" projects in P.E.

I feel that he has missed the point behind magazines such as P.E. and 1 wonder that he even bothers to read it. These "useless" projects he refers to are so important because of what they teach people who read
them, and more, what they teach people who build the projects and even who fail in the attempt and have to find out why they don't work. As one who has had all this sort of thing happen, I think that your correspondent may have missed out on the pleasure of discovering mere principles which seem to be fairly dry at the time of learning them, but which often quite unexpectedly open up to be something most interesting and rewarding.

He reminds me a bit of a man who wrote to "Electronics Australia" a few years ago to air his impatience with all the new integrated circuits which were flooding the markst. He regarded it as laziness on the part of a constructor to use an i.c. instead of using discrete components. I wonder why he ever stopped using valves. I wonder what he would say now we have l.s.i.
Although, as I said, I entered this argument late, might I suggest that if you think it would do any good, you might see fit to publish an edited version of my letter. I have never written to the editor of any publication outside New Zealand before, but I felt that Mr Timson should realise that even people as far away as N.Z. may disagree with him.
D. A. Arthur,

New Zealand

\section*{Project Boxes}

Sir-Perhaps some of your readers may be interested in my idea for a simple projects box.

A length of plastic downpipe of the section shown in Fig. 1 can be made into a whole range of project boxes by cutting as shown in the diagrams. They can be any length, since the downpipe can be bought at any good builders, suppliers in anything up to 12 ft lengths, so the cost per box would be quite small.

1 hope this idea will help your younger readers who cannot afford those expensive boxes just to case up a cheap experiment.
F. W. Camping, Hoddesdon.



For many years the Peak Programme Meter has been in this country the most popular and widely used level monitoring device in professional sound engineering circles. Its tight technical specifications allow precise and repeatable level measurements-so important when trying to achieve high quality sound recording and reproduction.

The rigorous performance specifications of the device cover not only the electronics, but also extend to the ballistics of the meter movement (rise-time, overshoot, etc.).

Being mechanical the movement is therefore the most costly single item in the whole unit, and if one considers a high quality stereo PPM movement (with two needles sharing the same axis), the cost of the necessary drive electronics may well only be a fraction of the cost of the movement itself.

This article describes an all-electronic alternative to the standard PPM which does away with the need for the costly meter movement, and, although having one or two disadvantages, does have several advantages over its traditional forerunner.

\section*{THE NEED FOR A PPM}

Considering for the moment tape recording; if one attempts to record any normal programme material with an average responding type meter, then the chances are that short duration peaks are liable to slip through this type of monitoring arrangement and cause momentary saturation of the tape. Although this only occurs during these short peaks, the effect is to reduce the fidelity and general "brightness" of the recording.

It is for this reason that a peak detecting level monitoring system was eventually arrived at, whose risetime was fast enough to capture all but the fastest and shortest duration transients, and which also possessed a relatively long decay time to allow these to be easily seen.

The necessity for this becomes obvious if one considers the following test. If a standard recording level meter is adjusted to read a certain value with a square wave input of, say, 100 Hz , and then the mark/space ratio of the square wave is altered (the amplitude remaining the same) then the meter reading will change despite the fact that the peak level of the input has not changed. With a PPM monitoring system the measured level will remain substantially the same, even down to a low mark/space ratio.

Although these types of waveforms are very unnatural and unlikely to occur, the test does serve to demonstrate the PPM's superior peak detecting abilities, and its advantages over standard monitoring from this point of view.

Also, the final output of the PPM appears on a meter with a logarithmic scale allowing a good relation to the human ear's sensation of loudness.

\section*{PPM SCALING}

The scale of the standard PPM consists of seven equidistant divisions (Fig. 1) numbered 1-7. The


Fig. 1. The scale of the standard PPM. The separation between graduations is 4 dB , the whole scale therefore covering a dynamic range of 24 dB

fourth division appears in the centre of the scale and represents 0 dB (the reference level from which measurements are made on the logarithmic scale). This is the BBC system and the one most universally accepted.
The level difference between each interval is 4 dB , which therefore allows a dynamic range of 24 dB to be displayed on the meter.
Since the scale is logarithmic there is of course, no zero; the meter needle coming to rest a little below the first division. The scale's 4 dB /interval no longer applies beneath this first interval.

\section*{LOGARITHMIC GENERATION}

One of the most important characteristics of the PPM other than its peak detecting capabilities then, is logarithmic scale. In the first valve PPMs, the logarithmic scale was derived by exploiting the logarithmic properties of the "variable \(\mu\) " pentode.
The advent of the transistor allowed the log. effect to be generated more easily by using its inherent and very accurate relationship between the base-emitter voltage and the current through it. This relationship unfortunately has a temperature dependent term in it which, although possible to reduce, does lead to a further degree of circuit complexity.
A more popular approach has been the use of nonlinear feedback networks around operational amplifiers. These use diodes or transistors to progressively switch in greater and greater amounts of feedback as the output level increases, thus achieving the logarithmic generation by the so-called "piecewise linear approximation" method. The logarithmic curve is usually split into several linear sections to accomplish this (see Fig. 2).

\section*{ATTACK AND DECAY TIME CONSTANTS}

Earlier it was mentioned that the PPM's attack and decay times were rigidly defined. This allows the meter to be used on any sort of programme material with the sure knowledge that any other PPM will respond in exactly the same fashion.

The actual standard set for the attack time is 2.5 ms , and for the decay time: 1 s . The effect of these widely differing values is to enable the device not only to respond to short impulses or bursts of high level signal, but also to hold them long enough for one to see them. If the decay time was as short as the attack time, it would be virtually impossible to obtain a sensible reading from the meter since the needle would at almost all times be a blur, and high level, short duration transients would escape unnoticed. The relatively large release time therefore makes reading the meter far easier.

The ballistics of the meter are important here as if, for instance, its overshoot is excessive, then one may be led to believe when monitoring a programme full of short abrupt changes (e.g. percussive instruments) that the programme level is higher than it really is. At the same time, should the meter be excessively sluggish in its response, then the reverse may occur, i.e. that the programme level appears lower than it is.

Here, then lie the main reasons for the tight mechanical specifications laid down for the PPM movement and therefore its relatively high cost.


Fig. 2. The "'Piecewise linear approximation method" of generating the logarithmic scale

\section*{ALTERNATIVE DISPLAYS}

An alternative to the meter as the final display device is therefore a reasonable proposition.

The "bar-graph" type display with a large number of individual segments is an obvious choice, since although the resolution may'be reduced, the problems associated with ballistics are dispensed with, and the attack and decay characteristics can be set by the electronics.

Typical bar-type displays include those entirely constructed from individual l.e.d.s, and also a gas variety possessing a large number of electrodes arranged in a linear or circular format. In this system every third electrode is connected together, the system operating on the principle that the triggering voltage required to initiate ionisation (thus forming the glow) in neon is greater than that required to sustain it. It is therefore possible for only one of the large number of electrodes to be illuminated whilst the rest-which are connected to the same potential-remain off.

With sequential switching the ionisation can be arranged to jump from one electrode to the next, and with appropriate logic and scanning, display a desired length of illuminated column.

This system, however, requires the use of a special display tube and fairly complex drive logic. For simplicity, then, and to a certain extent economy, an 1.e.d. system is described.


Fig. 3. Block diagram of the system using two separate I.e.d. displays, each of 16 levels; for a stereo PPM which does not use a meter as the display element


Fig. 4. The portion of the circuitry which full-wave rectifies the signal, and provides the required rise and fall time constants

\section*{BLOCK DIAGRAM}

A block diagram of the system is shown in Fig. 3. An advantage of this particular method of generating a bar-type display is that it can easily be "multiplexed" for stereo operation (as this in fact is) and since the same control circuitry is used for both channels, there are no channel matching problems.

We will now look at the various sections of the unit individually.

\section*{RECTIFIER/T\|ME-CONSTANTS SECTION}

First we consider that portion of the circuitry which derives the peak value of the incoming signal and provides the appropriate rise and fall time constants (Fig. 4).
IC1 and IC2 perform the full-wave rectification function with diodes D1-4 and resistors R2-4, whilst IC3 acts as a voltage follower providing a low output impedance.

The full wave rectification circuitry used here has the advantage over other types having virtual earth inputs in that no impedance buffering amplifier is required between it and the input, since it has an inherently high input impedance.

The circuit works as follows: on positive-going input half cycles D3 conducts, the amplifier adjusting the voltage at point A (and thus the output of the voltage follower, IC3) to cause the junction of R2 and R3 (IC1 inverting input) to be the same as the non-inverting input.

Since IC2 is working with its non-inverting input grounded, current flowing into the R2, R4, D2 junction from R2 or R4 will be conducted away by D2 which will become forward biased.

The voltage at this junction is therefore held at the potential of the non-inverting input, i.e. ground.
Since one end of R2 is effectively grounded and the other at input potential, it follows that the potential of the output (the end of R3 not connected to R2) is at twice the input potential. Diodes D1 and D4 meanwhile remain non-conductive.

\section*{NEGATIVE HALF CYCLES •}

Considering now negative-going half cycles: D1 will be caused to conduct allowing IC1 to adjust its output to maintain the potential between its inverting and non-inverting inputs at zero.

ICl can be considered to be operating as a voltage follower whose input is taken from the R2, R3, D1 junction. IC2, however, is operating in a virtual earth configuration with D4 being brought into conduction and the feedback loop closed via IC3 and R4. The gain for negative half cycles is'therefore determined by the ratio \(R 4 / R 2\), which, as for positive half cycles, equals two. Diodes D2 and D3 this time remain nonconductive.

C4 can only charge via D3 and D4 and the rate is limited only by the maximum current that can be supplied by the 748 ( 20 mA approx.). This allows an output rise time which is considerably smaller than the attack time constant set by R6 and C5, which therefore dominates the response at the output.

\section*{LOGARITHMIC STAIRCASE GENERATOR}

The 'logarithmic staircase generator determines the characteristics of the logarithmic scale of the PPM and at the same time provides the l.e.d. drive via buffer transistors (Fig. 5).


Fig. 5. Circuit diagram of the rest of the PPM. The values of resistors marked with an asterisk (R39 to R54) are given in Table 1. See text for more details (these resistors determine the scale characteristics). IC7 supply connections are: Pin \(7,+10 \mathrm{~V}\); Pin \(4,-5 \mathrm{~V}\).

\section*{COMPONENTS . . .}

L.e.d.s

D9-40 TIL209, or any other suitable I.e.d. (32 off). Note that the l.e.d.s may be red or green as desired
Miscellaneous
Veroboard \(210 \mathrm{~mm} \times 65 \mathrm{~mm}\), \(100 \mathrm{~mm} \times 100 \mathrm{~mm}\), \(160 \mathrm{~mm} \times 30 \mathrm{~mm}\)
2 feet (approx.) 10-way rainbow cable
6BA nuts and bolts, spacers etc. to suit
Box to suit (if necessary), the prototype box measured \(220 \mathrm{~mm} \times 145 \mathrm{~mm} \times 30 \mathrm{~mm}\)
Transformer \(12-0-12 \mathrm{~V} 500 \mathrm{~m} \mathrm{~A}\)
Heatsink ( 3,300 sq. mm. approx) and insulating kit for IC13.

The staircase is generated by a 4 -bit counter (7493) and a 4 to 16 line decoder ( 74154 ) which switches one by one a series of resistors between the virtual earth point of an operational amplifier, and a reference voltage.
The smaller the resistor between the reference voltage and the virtual earth point, the greater the current through the resistor and thus the greater the output of the operational amplifier. The values of the resistors are arranged to yield the negative going logarithmic staircase.
This system has the advantage over similar bar-type display systems of allowing the interval between adjacent l.e.d.s to be set at any desired value, which therefore allows the scale to be expanded or compressed to suit. This is a useful feature as it allows a large dynamic range to be displayed on the scale whilst enabling reasonable precision to be maintained around the centre of the scale. In the author's case, the scale has been expanded at the centre and compressed at the extremities although, of course, any format may be adopted.

\section*{COMPARATOR}

The output from the staircase generator is then fed into one input of a comparator (IC8). This compares the incoming signal with the log staircase and provides a negative output when the staircase voltage is more negative than the input.
When negative the comparator output switches a transistor (TR23) on which then enables the transistors TR7-TR22 to pass current to the display 1.e.d.s when required. The output of IC8 drives the base of TR23 direct, current being limited by the resistor R17 in its positive supply line.
The transistors TR7-22 derive their switching commands from the 4-16 line decoder IC12, which provides a logical 0 at each output pin in turn. At all other times they are in the logical 1 state, therefore leaving the l.e.d. drive transistors off.

\section*{BISTABLE}

The bistable section contains the circuitry which switches the input to the comparator from the output of one channel's rectifier stage to the other, and at the same time switches the l.e.d. display channels over.

The bistable section consists of half of a 7474 dual D-type flip-flop and suitable interface circuitry drives the displays and input channel switches.

A \(0-1\) transition is required to change the bistable state at the end of each scan, and this is obtained from the sixteenth output of the 74154. As mentioned earlier, the outputs of the 74154 are at logic 1 unless they are selected by the 4 -bit binary input code which causes them to go to \(\operatorname{logic} 0\). The required \(0-1\) transition occurring at the end of each scan is therefore obtained at output 16.

The bistable's outputs \(Q\) and \(\bar{Q}\) feed TR5 and TR6, one therefore being on whilst the other is off. These in turn control the f.e.t. switches TR1 and TR2, resulting also in only one being on at any one time.

TR 3 and TR4 are arranged in common base configuration such that current flow into the emitter is transmitted via the collectors to the bases of TR24 and TR25. Hence the bistable determines which input channel and which l.e.d. display are selected.

Table 1: Scale details and values of the resistors assoclated with the individual levels. These can be altered to suit individual requirements
\(\left.\begin{array}{lll}\hline \text { 74154 Output } & \begin{array}{l}\text { Level } \\
\text { Number }\end{array} & \mathbf{d B}\end{array}\right]\)\begin{tabular}{l} 
Resistor Value \\
\(\mathbf{k} \Omega\)
\end{tabular}

\section*{THE SCALE}

As explained previously, the scale characteristics are determined by the values of the resistors between the virtual earth input of IC7 and the outputs of IC12.

The sixteen selected input levels at which an on or off transition occurs (depending on whether the input is increasing or decreasing) are shown in Table 1. As can be seen a dynamic range of 44 dB is covered -14 dB above the 0 dB reference level, and 30 dB below it \((0 \mathrm{~dB}\) being the standard reference level; i.e. the voltage across \(600 \Omega\) when 1 mW is being dissipated in it775 mV ). This is limited only by the performance of the operational amplifiers-offset voltage, noise, etc.at the lower end, and by the necessary voltage excursion required at the upper end.

\section*{RESISTOR SERIES}

The resistors marked R39 to R54 are those which, as explained above determine the scale characteristics. As can be seen (Table 1) they are mostly of nonstandard values. In the prototype PPM the values were either arrived at by using a potentiometer alone or a potentiometer plus a fixed resistor. It is recommended that fixed resistors be used ultimately for stability.

The series was computed by first selecting the largest reasonable value that was to be used ( \(500 \mathrm{k} \Omega\) ) and then working the rest of the series out relative to this. This value is not necessarily the limiting one, but it does allow for larger resistors to be used and thus the possibility of lower levels being displayed.

Due to the basic properties of a logarithmic scale, when one voltage is twice another, there are 6 dB between them, and when one is ten times another there are 20 dB between them. Thus, in this case if \(500 \mathrm{k} \Omega\) is used for the -30 dB i.e.d. then it follows that the -24 dB level will be generated by \(250 \mathrm{k} \Omega \Omega\), the -18 dB : \(125 \mathrm{k} \Omega,-12 \mathrm{~dB}: 62.5 \mathrm{k} \Omega\). Similarly the -20 dB level (not used in this particular scale) will be generated by \(50 \mathrm{k} \Omega\), and the +10 dB by \(5 \mathrm{k} \Omega\). A combination of these simple manipulations gives almost all of the rest of the resistor series, log. tables only needing to be used to calculate some of the 1 dB increments. The relationships provide an easy method of calculating other resistor values should operation at levels other than those specified be required.


\section*{CONSTRUCTION}

The actual construction of the 1.e.d. PPM will be determined by its application. This may be a "standalone" unit or perhaps built into a mixer or other system. Veroboard was chosen for the prototype as it allowed modification to be carried out more easily than on p.c.b.


Fig. 6. Some waveforms generated in the I.e.d. PPM. (a) Log staircase plus one IC12 output. (b) Staircase plus IC8 output with both channels operated. Note the 1 dB increments in the middle of the staircase

\section*{(a) INPUT BOARD}


Fig. 7. The component layout, Veroboard cutting details and board interwiring for the PPM
(a) Input board
(b) Main board
(c) Display board

The bulk of the electronics in the prototype PPM was constructed on two boards with the l.e.d. columns and two drive transistors on a third. Veroboard of \(0 \cdot 1\) in pitch was found to provide a very convenient method of mounting for the l.e.d.s and unless a proper p.c.b. is to be made up, this technique is recommended as being both simple and effective.

The component layouts and Veroboard cutting details * are given in Fig. 7. This requires little comment except perhaps to stress that small resistors ( \(\frac{1}{8} \mathrm{~W}\) ) should be used as recommended as the layout is fairly compact.

The actual layout of the boards is not critical with the exception possibly of that associated with the open loop 748 (IC8), where oscillation may result if track lengths are not kept to a minimum. Rainbow wire was used for connecting the l.e.d. columns to their appropriate driver transistors and Veropins (or p.c.b. pins) for connecting the rainbow wire to the Veroboard. The use of pins reduces the possibility of the track lifting underneath the board where wires are to be connected to it.

\section*{TEST POINTS}

To aid in the testing of the unit and possible fault finding, it is a good idea to put test points around the circuit. Small loops of wire were found to be ideal for this purpose ( 22 s.w.g., say). Test points were inserted in the following positions on the prototype: the output of both of the rectifier/time constant sections, the inverting input to IC8 (Pin 2), the output of IC7 (Pin 6) to monitor the logarithmic staircase, the 555 output (Pin 3), the 7474 clock input (Pin 11) and Q and \(\overline{\mathbf{Q}}\) (Pins 9 and 8 ).

POWER SUPPLY




Fig. 8. Power supply arrangement for the unit. N.B. 1 C13 case is not earthed.

\section*{POWER SUPPLIES}

The power supplies required by the PPM are -5 V , +10 to 15 V , and a negative rail of -15 to 20 V . The -5 V rail should be of high stability since it acts as a voltage reference for the staircase generator. This is obtained very simply by using a 3095 V precision i.c. voltage regulator. Details of the power supply are given in Fig. 8. If possible a lower value of negative rail should be used as this would decrease the dissipation in R55. The arrangement shown was chosen for its simplicity however.

\section*{CALIBRATION}

Calibration of the PPM basically depends on the values of the scale resistors R39-54. This can be done with reference to Table 1 and the use of a digital multimeter (or some other accurate means of ohms measurement).

The only other adjustment to be made is that of the \(10 \mathrm{k} \Omega\) helical pot. VRI. The effect of adjusting this is to alter the amplitude of the logarithmic staircase which in turn sets the sensitivity of the unit. Perhaps not as one would first expect, reducing the amplitude of the staircase increases the sensitivity and increasing the amplitude reduces it. This is best explained by considering what happens if one maintains a constant input level to the PPM whilst the staircase amplitude
is varied. As it is increased, the comparator will switch at earlier and earlier times in the scan resulting in fewer l.e.d.s (and thus an indication of less level) being activated.

If the popular voltage reference of 0.775 V r.m.s. ( 1 mW into \(600 \Omega\) ) is used the PPM can easily be adjusted to this by arranging that the 0 dB 1.e.d. is just on, with a 0 dB tone present at the input.
Individual adjustment of each level can be carried out at this stage by setting the input tone source to the selected known accurate signal levels and adjusting the presets (if these are used) of the scale resistors until the respective l.e.d. indicating that particular level just lights. This is only recommended as a fine adjustment however; they should be set to approximately the correct value obtained by calculation (as outlined under "Resistor Series").

\section*{L.E.D. COLOURS}

In order to obtain an enhanced indication of overload rather than simply that an l.e.d. above a certain level has lit, one can exploit the fact that there are both red and green l.e.d.s available. Green I.e.d.s can be chosen for levels up to, say, +8 dB and red (to indicate overload) for levels above this. The level chosen for the red-green transition is of course up to the individual constructor.


\section*{NEWS BRIEFS}

\section*{Marine Electronics Symposium}

S
ome 110 delegates attended a symposium on Marine Electronics, organised by the Society of Electronic and Radio Technicians, at Southampton University in July. Eighteen papers were presented, covering a wide range of topics of concern to all involved in electronics at sea, whether in yachts and small craft, the fishing industry or coastal and deep-sea vessels.

Of outstanding interest were contributions on satellite navigation and communications, computer-backed navigation systems, speech processing for h.f communications, and applications of surface acoustic wave devices.

Reprints of all the papers are available, priced \(£ 7\) including postage and packing, from SERT, Faraday House, 8-10 Charing Cross Road, London WC2H 0HP.

\section*{Tape Cassettes}

A \({ }^{\text {lтноиgн }}\) well known in the professional recording industry, to whom they supply more than 15 million cassettes each year, HCL are unheard of in the domestic field. They plan to change this with a range of professional quality, unrecorded High Energy tape cassettes called HCL Super. With recommended prices ranging from 98p for a C60, to \(£ 1.73\) for a C120, these tapes are at present available only in London and the South East, but should be on sale in the rest of the U.K. at the end of 1976.

\section*{Name Change for Novus}

A from June 1976 National Semiconductor's Novus division changed its name to "National Semiconductor Corporation, Consumer Products Division". The name National Semiconductor was little known to consumers when the company produced its first calculator in 1973-hence the choice of the more easily remembered name "Novus". Since then National Semiconductor, through its \({ }^{\text {C Consumer Products Division, has become one }}\) of the world's biggest producers of calculators, and digital watches and clocks.
New high-end calculators, such as the 4640 Scientific, will be introduced carrying the National Semiconductor name and symbol, although the Novus brand name will be retained in some product areas.
National's headquarters are in Sunnyvale, California, but their products are made in locations as diverse as Salt Lake City and Penang. Malaysia. The Consumer Products Division has sales offices in major countries throughout the world. U.K. operations are based at Bedford.

Two distinct ranges of digital watches are being launched onto the U.K. market during 1976. Traditionally cased models will be available at prices from \(£ 19.95\) to \({ }_{£ 32} \cdot 95\). A cheaper "plastic" model, using the normal module but house in a glass fibre case with leather-type grain finish, will be marketed at \(£ 17.50\).

> WANT TO BRUSH UP ON YOUR LOGIC?

A new theory and practice series entitled Doing it Digitally starts in the October issue of Everyday Electronics-on sale Friday, September 17.


This stereo tuner has been designed to complement the Orion Amplifier providing the same low profile styling and high standard of performance at low cost. Construction is easy and no instruments are required for alignment.



\section*{ALSO INSIDE...}

\section*{DISCOSTROBE}

A four-channel light show controller giving a choice of sequential, random or full strobe modes of operation.

\section*{HAZARD FLASHER}

This simple design, based on a 555 timer i.c., is suitable for fitting to any car to flash all direction indicators simultaneously in an emergency.

\section*{panaticat \\ ELECTRONICS}

NOVEMBER 1976 ISSUE ON SALE OCTOBER 8, 1976


THis concluding article covers the construction of the Display Matrix and case, the interconnection of the individual circuit boards, and calibration and use of the completed instrument.

\section*{DISPLAY MATRIX}

A good deal of thought was invested in the design of the Digiscope Display Matrix to make for simple assembly, accurate alignment and above all, low cost. The purchase of 80 l.e.d. devices is obviously something of an investment, and efforts were made to find the cheapest suitable 1.e.d. which could meet the performance and size criteria dictated by the circuitry and layout. The final choice was the Litronix Red-Lit \(50-01\) which is a GaAsP device with a diffused lens emitting red light and utilising an extremely compact "pill" package.
The light rise and fall times from the RL50 are typically 1 nanosecond which is quite fast enough for our purposes, and the maximum forward current rating of 40 mA ensures that there is no danger of overdriving, even with very slow timebase speeds. The data sheet on this device claims "high reliability" but a small number of the 80 I.e.d.s in the prototype Matrix were either dead-on-arrival or failed in the first few hours of use.
Once these duds were weeded out, however, the rest iived up to the data sheet claim, but the experience did show the advisability of testing the RL50s before
incorporating them in the Matrix. Fortunately the l.e.d.s are easy to check with the aid of a 6 volt battery and a 150 ohm resistor, and this precaution is highly recommended since while it is possible to replace defunct devices in the Matrix, the exercise is rather tedious.

\section*{MATRIX CONSTRUCTION}

The physical construction of the Matrix is based on the use of 0.15 in Veroboards arranged in an X-Y configuration. The X lines Veroboard forms the main support and provides the eight horizontal row drive lines to which the l.e.d. anodes are connected. The Y lines Veroboard is mounted behind the X lines board and is arranged with ten vertical copper strips for the l.e.d. cathode column lines.
Getting the l.e.d. cathodes through the X lines without actually touching them is, of course, the main problem, but this was solved by drilling rows of new holes between the copper strips forming the X lines. The diagonal spacing between the original X line holes and the new Y line holes is about 0.17 in , which is just enough to accommodate the RL50 with bent leads while keeping a tight 0.15 in matrix-element spacing. The \(Y\) lines Veroboard could be formed as a single piece but in the prototype it was split into five separate strips each of two tracks for the simple reason that this makes it much easier to replace any defective l.e.d.s should this ever be necessary.

Details of the Matrix assembly are shown in Fig. 4.1 and the photograph, where it can be seen that once the Veroboards have been prepared and the diodes tested, assembly is quite straightforward.


Fig. 4.1. Board assembly details for Display Matrix. The adjacent photograph shows final assembly of the \(Y\) line Veroboard strips, the fifth strip not yet being soldered


Fig. 4.2. Case assembly details

\section*{CASE CONSTRUCTION}

The case is intended to be a snug fit on the main electronic assembly and to achieve this, Formica cladding material was chosen for its thinness and rigidity. The case components were joined with Araldite epoxy resin which formed a strong bond but suffered from the usual slow setting problem which it may be possible to avoid by using the new cyano-acrylate adhesives, which are now freely available.

The case is formed in two sections (Fig. 4.2), the base, on which is mounted the two circuit boards and the l.e.d. Matrix, and the cover, which comprises the top, sides, front panel and viewing window. The circuit boards are attached to the Formica base by means of 4BA bolts which do not actually penetrate the cladding but have their heads cemented to the base with epoxy. At the rear of the base an aluminium bracket is mounted to provide a rear anchor point for the cover, and also to provide some lateral protection for the l.e.d. Matrix.


This bracket is cemented to the base with contact aghesive.

The cover is box-like in shape and some care is needed in the assembly of the six separate components to minimise distortion. A wood-block former makes a useful assembly jig for this part of the construction and with the aid of stout elastic bands the job is soon accomplished.

\section*{INTERCONNECTIONS}

When the two circuit boards and the Display Matrix have been built, the electrical interconnections between these sub-assemblies can be made (Fig. 4.3). The inter-deck wiring should be done with fine p.v.c. insulated stranded wire which can be loomed if desired. It makes good sense to take all the wiring over one long edge of the upper deck because this allows the completed assembly to be opened like a book, with the wiring forming the hinge, when access to the underside of the top deck or the upper surface of the lower deck is required. When the decks have been interconnected the Display Matrix can be wired in using fine single core wire for extra stiffness. The stiffness of the solid wire is very useful because it makes any rigid mounting for the Display Matrix unnecessary.
It is important that fine.wire should be used since a total of 18 connections have to be made to the display and thick wire would make display positioning very unwieldy. The power for Digiscope comes from external supplies, and this is connected via a four-core cable terminated in a seven-pin din plug. Connections at the Digiscope end are made to the terminal pins on the front left-hand side of the lower deck. The four-core cable runs alongside the lower deck, on the base, and runs out through the cut-out in the viewing screen. The cable can be anchored to the base with contact adhesive.

The front panel carries the input/output sockets for external connections and these can be connected up


Fig. 4.3. Showing electrical connections between sub-assemblies
at this stage. The bnc socket is for the main Y Amplifier input, and a standard (large) bNC connection is used in this position because it fits in with current oscilloscope practice and allows the connection of standard probes and accessories when the probe-tip is removed. The three 0.5 mm sockets can be used for a variety of purposes although a good combination is: SK1-Signal ground; \(S K 2-+5\) volt output (can be used as a Y amp calibration signal, or to power external low drain circuitry); SK3-External trigger input (a direct coupled logic type input which accepts TTL edges).

Screened cable is not required for the connection of any of these inputs to the circuit boards, although wiring should be kept as short as possible, and carried out with durable, stranded wire.


\section*{POWER SUPPLIES}

As previously mentioned, Digiscope requires three separate d.c. supplies, plus 5 volt at 350 mA ., plus 12 volt at 60 mA . and minus 12 volt at 60 mA . Each of these should be well regulated and free of mains ripple, but providing these conditions are met the exact nature of the supply source is not important and many constructors may wish to utilise existing supplies or even batteries. The Digiscope prototype had its own special mains Power Supply Unit, and this is described here
for those who wish to make a dedicated unit especially for their own Digiscope. The circuit for this supply is shown in Fig. 4.4 and as you can see it is quite a simple arrangement with no frills.

The 5 volts are stabilised by one of the TO3 case integrated circuit regulators now freely available, and this choice guarantees a good performance even at high currents with the minimum of ancillary components. An added advantage of these regulators is that they are short-circuit proof and cannot be destroyed by overloading.

The lower current 12 volt supplies are derived from the same transformer as the +5 volt supply although instead of a full wave bridge rectifier, two simple half wave rectifier circuits are employed. Regulation for the 12 volt supplies is provided by Zener diode shunt regulators which have an adequate performance at these low currents, and are of course, like all shunt regulators,

\section*{COMPONENTS . . .}

\section*{POWER SUPPLY UNIT}
```

Resistors
R1-R2 82\Omega 1W (2 off)
Capacitors
C1
C4 22\mu\textrm{F}12\textrm{V}\mathrm{ (tantalum bead)}

```

\section*{Semiconductors}

D1-D4 2A or 4A 50V Bridge Rectifier
D5-D6 IN4001
D7-D8 12V 1 W Zener (2 off)
IC1 L005TI 5 V IA regulator (A. Marshall)

\section*{Transformer}

T1 TRC type (West Hyde Developments)

\section*{Miscellaneous}

LP1-mains neon, FS1-1A with holder, 0.1 in . matrix Veroboard, West Hyde 'SAMOS' style 55. SK4 7-pin DIN socket


Fig. 4.4. Mains Power Supply Unit. A single Veroboard carries the majority of components with the diode bridge and regulator case attached with adhesive (see photograph)
inherently short-circuit proof, provided the short circuit does not last long enough to overheat the series dropper resistors.

\section*{POWER SUPPLY CONSTRUCTION}

A West-Hyde Developments samos case was chosen to house the mains supply because it is a cheap but sturdy and attractive housing of compact dimensions. The sAMOS case comes complete with plastic guides for mounting circuit boards, and it was found convenient to mount the smoothing capacitors and other components of the 12 volt supplies on a piece of \(0 \cdot 1\) in matrix Veroboard resting in these guides at the rear of the case. The transformer fits snugly in the front of the case, alongside the output socket, on-off switch and mains neon, while the mains lead and the mains fuse holder project through the rear.

The current drawn from the 5 volt supply does not justify extensive heat sink arrangements for the 5 volt regulator and the diode bridge, so these components were attached to the bottom of the case with contact adhesive.

\section*{SETTING UP DIGISCOPE}

If the wiring up and interconnections have been correctly carried out, there should be little difficulty in getting the display and other circuitry operating to specification. The only essential test equipment required is a calibrated variable frequency generator of some kind, preferably with a square wave output, although other items of test gear might prove useful if available. Set the controls as follows:
1. Y GAIN to 1 volt per division
2. Y SHIFT to half travel
3. AC/DC/GND to GND
4. TRIGGER to AUTO
5. TRIG. SLOPE to POSITIVE
6. TIMEBASE to 1 ms per division
7. TRIG LEVEL to half travel
(The first check is to get a trace on the screen, and this will require a functioning timebase oscillator, so if you did not calibrate the timebase after building the top deck it will now be necessary to connect a 10 kilohm potentiometer in place of the 1 ms per division select-on-test (s.o.t.) resistor.)

Connect up the Power Supply and switch on. What we want to see now is a straight line trace somewhere on the display, but it is more than likely that the trace will be off screen and will-have to be brought to centre screen with VRI. If the trace is not visible-or some l.e.d.s are on continuously, switch off and check the Timebase and l.e.d. Driver circuit wiring.

With a centre screen trace visible, it is now necessary to try to display waveforms from the signal generator, so the AC/DC/GND switch should be set to AC, and the output of the generator should be connected to the Y Amplifier input socket, with the output signal set to give an 8 V peak-to-peak 100 Hz square wave. This signal should just fill the screen from top to bottom and side to side, but adjustment will probably be necessary to the Y gain pot VR2, and to the timebase pot connected in place of the s.o.t. resistor in the Timebase Oscillator. If this procedure is successful then the other three timebase ranges can be calibrated by substituting the pot for each of the s.o.t. resistors in turn and by setting the signal generator to 1 MHz , 10 kHz and 1 Hz as appropriate. The value of the potentiometer when it has been adjusted for a full screen signal should be measured with a multimeter set to the ohms range, and an appropriate fixed resistor substituted.


Since the timebase division ratios are rigidly fixed, there is no need for calibration of these, and it may be helpful to calibrate the Timebase Oscillator at some other division ratio than the X1 range mentioned, depending on the characteristics of the square wave generator used.

When you are happy with the timebase calibration the Y Attenuator can be checked by ensuring that square waves of 80 millivolt, 800 millivolt, 8 volt and 80 volt just fill the screen with the appropriate attenuator setting selected. The XI to X 8 Y gain settings can also be checked, but don't try to check the \(10 \mathrm{~V} \times 8\) range with a 640 volt signal because although this is the f.s.d. of this range, it is wise to restrict the input voltages to Digiscope to 200 volts or less to avoid the possibility of flash-overs between tracks!
With these essential preliminaries over, it is now possible to check all the other control settings and permutations using the signal generator set to different frequencies, levels, and waveshapes, and perhaps using a variable d.c. supply to examine the d.c. performance. This exercise is important in that it allows one to gain familiarity with the effect of various control settings on the displayed waveform, a task which is difficult to co-ordinate at first, particularly if one is not already familiar with the operation of a conventional scope.

\section*{USING DIGISCOPE}

Obviously, the definition provided by the 80 point Digiscope Matrix is not as good as that of a cathode ray tube, and this necessitates a slightly different approach when using it to examine a.c. waveforms. It is important to use the ample Timebase and Y Amplifier control settings to get the signal waveform to fill the display, so that all the available definition is utilised. This means, for example, that when looking at a sinusoid, the aim should be to display a single cycle, or at most two cycles, on the screen. Fortunately, the very good trigger performance enables one to select control settings to optimise the display without the need to adjust the trigger after each change.

Digiscope is a prototype design which could form the basis for a new family of l.e.d. display scopes with larger matrices and perhaps improved performance. As the price of semiconductor technology falls there seems to be no real reason why larger displays and, of course, fully integrated drive logic could not be produced, perhaps as an l.s.i. chip set incorporating such "goodies" as dual trace and storage modes, all of which are quite feasible.


\section*{NEWS BRIEFS}

\section*{Amateur Convention}

THe 1976 Welsh Amateur Radio Convention will be held on Sunday September 26, at the Oakdale Community College, Blackwood in Gwent, South Wales.

This year's programme will enable visitors to attend both the technical lectures and film \(/ \mathrm{slide}\) shows. Further details can be obtained from Mr. R. B. Davies, GW3KYA, Blackwood \& District Amateur Radio Society, 16, Vancouver Drive, Penmain, Blackwood, Gwent, NP2 0UQ. (SAE required).

\section*{Courses}

T
he Bridgnorth College of Further Education will be running a RAE course for the 1976/77 session. Comm: Monday September 20, tinne: \(7.30 \mathrm{p} . \mathrm{ml}\), at the Bridgnorth College of Further Education, Stourbridge Road, Bridgnorth, Shropshire.
The Gosforth Ádult Association Classes are starting a new RAE course for the \(1976 / 77\) session. Enrol: Monday September 6, time: 7.00 p.m. at the Gosforth Secondary School. Gosforth, Newcastle upon Tyne.
Two courses, each of nine lectures, are being run by the South London Colfege, Knights Hill, SE27, on Teletext Systems and Integrated Circuits.

Comm: Thursday October 14, time: 6.30 p.m. Title: Integrated Circuits, Fee: \(£ 3.00\)
Comm: Tuesday October 12 , time: \(6.30 \mathrm{p} . \mathrm{m}\).
Title: Teletext Systems (Ceefax, Oracle Viewdata), Fee: \(£ 4.80\).

\section*{polnis nilinit}

\section*{RADIO CONTROL SYSTEM RECEIVERS (July 1976)}

Some readers have experienced difficulty with the receiver's local oscillator failing to oscillate. The author has informed us that the problem can be cured by increasing the values of L 3 and L 4 to \(30 \mu \mathrm{H}\) and 1 mH respectively. The 1 mH r.f. choke can be obtained from most suppliers, whilst the \(30 \mu \mathrm{H}\) is constructed by winding 20 turns of 30 s.w.g. enamelled copper wire on an i.f. core ( 4 mm in diameter, 10 mm long) and using glue to secure the ends of the winding only.

Also please note that the value of C 7 -should be as shown in the components list-47pF-and not 22pF as shown in Fig. 7 .

\section*{LIGHT-UP ALARM (September 1976)}

The National LM747 cannot be used for IC1 in this design, since pins 9 and 13 are internally strapped.

\section*{SOUND TO LIGHT SYSTEM}
(Ingenuity Unlimited, July 1976)
In the circuit diagram Fig. 1, the Live terminal should only be connected to the lamp (LP) and not as shown.

It is most important that the positive 9 V line and the Live terminal are not connected together.


\section*{GMOS MAGNETIC CARTRIDGE PRE-AMPLIFIER}

The circuit shown in Fig. 1 is a simple pre-amplifier for a magnetic gramophone pick-up based on the now readily-available 74C04 cmos hex inverter.

Each inverter is operated as a linear amplifier by the application of d.c. negative feedback and has an open loop voltage gain of approximately 50 . The first stage of the circuit is arranged to have a voltage gain of about ten to bring the signal from the pick-up to a workable level. The output of this' is coupled by a \(1 \mu \mathrm{~F}\) capacitor to the second stage which provides RIAA equalisation by means of an RC filter connected in the feedback loop and this reduces the stage gain from 10 at 50 Hz to 0.1 at 20 kHz .

The equalised output of this stage which is about 50 mV in amplitude is fed through a coupling capacitor to the tone control stage. The amplification for the tone controls
is provided by three cascaded 'inverters to give a high open-loop gain, but otherwise it is of the conventional Baxandall type. The gain of the tone control stage is close to unity with the bass and treble controls set for flat response. The output of the tone control circuit is then passed to a single inverter output amplifier with a voltage gain of about nine.

The output is provided through a \(4.7 \mathrm{k} \Omega\) volume control. With an input of 5 mV at 1 kHz the maximum output is about 500 mV into a \(10 \mathrm{k} \Omega\) load which is suitable for most commercial power amplifiers.
The power supply for the circuit is not critical provided that it can supply 25 mA at a voltage between five and 15 volts. However, it should be well decoupled to prevent noise being introduced into the amplifier stages.
R. Heaton, Christchurch.

\section*{SIMPLE SIREN}


Fig. 1
The circuit (Fig. 1) uses one transistor and a transistor portable radio output transformer to develop feedback from collector to base. When S2 is pressed C1 charges up at a rate determined by R2. The siren oscillates at a steadily increasing frequency determined by C2 and R3. When S2 is released the oscillations continue decreasing at a rate determined by C2 and R1. An on/OFF switch prevents battery leakage through the transistor ( 9 V ).

The larger the speaker the better the effect. If you plan to use an amplifier omit the speaker and ground that transformer lead. Couple the output from the collector via a capacitor of \(0 \cdot 1-10 \mu \mathrm{~F}\) depending on the input impedance. Use \(0.1 \mu \mathrm{~F}\) for \(100 \mathrm{k} \Omega\) or higher, increase for lower impedances. If there is no oscillation, reverse the transformer secondary connections.
K. Bennett, Middlesbrough.


\section*{TELEPHONE BELL SIMULATOR}
\(T\) is occasionally desirable to ring a bell in the same pattern as a Post Office telephone bell. The usual pattern of ringing is two "rings", followed by three "spaces". Regarding each ring as an "on" followed by an "off", and each space as an "off" followed by another "off", this adds up to a count of ten.
This count is provided by a SN7493 wired as a decade counter (a SN7490 could have been used). It can be seen that the numbers 5 and 7 (binary 0101 and 0111) in the counter output, being the only ones with 1 s in both digits A and C , will satisfy the conditions for the "ons". These is are detected by one NaND gate of the SN7400 and the output is inverted by a second, the other two gates being connected as an astable


Fig. 1
NOTE: Resistors R1 and R2 should be connected to the opposite side of C1 and C2 to that shown in Fig. 1. In other words, R1 should be between IC1 pins \(1 / 2\) and OV, R2 between IC1 pins \(4 / 5\) and OV.
multivibrator supplying the count input to the SN7493. The optimum values of \(R 1, R 2, C 1\) and \(C 2\) are best found by experiment. The BC107 drives the relay operating the bell circuit, the relay used being a
small 180』 reed type. To simulate the pattern of two "rings" followed by two "spaces" found in some areas connect X to Z instead of to Y .
K. D. Hooper, B.Sc.

Gillingham, Dorset.

\section*{SIMPLE dIGItal LEAF}


Fig. 1
|n Practical Electronics. January 1975, a design was published for a "Digital Leaf" for use in greenhouses. Here is a simplified version which achieves the same ends and also incorporates an l.e.d. to allow testing on a 9 V battery, which is less hazardous than with mains connected (Fig. 1).

The NE555 timer can be triggered quite happily by a slowly changing potential at pin 2, the arrangement shown working well and without chatter. The supply is not stabilised, and the original zener diode is omitted to put less load on the miniature transformer and give about 9 V . The sensor is built as in the original article-two carbon rods connected to a twin lead and set in Araldite epoxy resin along with a supporting spike, the ends being exposed on a flat upward face. When the sensor is dry. pin 3 of the NE555 goes positive for a period
depending upon the values of R 2 and C2. This gates the triac and will allow water to flow through the mains operated water valve. Remember to earth the water valve body as shown-if in doubi seek professional advice on this matter.

Water sprays on to sensor and when the timer has completed one cycle the potential at pin 2 bas been lifted and inhibits the timer from starting the next cycle until the water on the sensor evaporates. During the "water off" period, pin 3 goes negative and the l.e.d., DS is lit. Some increase in the values of \(R 4\) and R5 may be needed to limit the current through the l.e.d. during the "water on" period and to ensure that the triac is not gated on if it happens to require a very low current. No such problems were encountered in the prototype.
If variation in the duration of the "water on" time is required, two
alternatives are possible. The first method is to connect point " \(b\) " in the circuit to "a" or "c" via a \(500 \Omega\) resistor and a switch. The second alternative is 10 replace R2 by a switched series of ten timing resistors and an 11-way switch in series with a \(10 \mathrm{k} \Omega\) resistor to make up a total value of about \(500 \mathrm{k} \Omega\).

During construction do not connect R1. Testing can proceed without the mains connected but with a \(9 \mathbf{V}\) battery wired temporarily across C1. Check polarity carefully before connecting the battery. With damp blotting paper across the sensor the circuit will complete a cycle and then the l.e.d. will remain lit until the blotting paper is removed. It can be replaced at any time before or after a cycle to start the whole procedure again.
D. Polak,

Middlesbrough.

15
Preamplifier

The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner, etc.) are catered for internally, the desired function is achieved either by multi-way switch or direct connection to the appropiate pins. The internsl volume and tone circuits merely require, connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.
FEATURES: complete pre-amplifier in aingle pack; multi-function equalisation; low nolse: low distortion; high overload; two simply combined for stereo.
APPLICATIONS: h l-fi; mixers; disco: guitar and organ; public address.
SPECIFICATION: Inputs-magnetic pick-up 3 mV ; ceramic pick-up 30 mV ; tuner 100 mV ; microphone 10 mV : auxiliary \(3-100 \mathrm{mV}\) : input impedance \(47 \mathrm{k} \cap\) at 1 kHz . Outputg-tape 100 mV ; main putput 500 mV
 Price \(\mathbf{~ L 4 . ~} 75+59\) p VAT. P. \& P. free

> HY5 mounting board B.1. 48p + 6p VAT. P. \& P. free
C. What is an exciting Now kit from I.L.P. It features a virtually indestructible with short circuit and thermal protection. The kit consists of: I.C., heatsink, P.C. board. 4 resistors, 6 capacitors, mounting kit. together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up to date technology available.
FEATURES: complete kit: low diatortion; short, open and thermal protection: easy to build.
APPLICATIONs: updating audio equipment: guitar practice amplifier: test amplifier: audio oscillator. SPECIFICATION: Output Power-15W R.M.S. into \(8 \Omega\). Oistortion- \(0.1 \%\) at \(15 W\). Input Sensitivity500 mV . Frequency Response- \(10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}\).
Price \(£ 4 \cdot 75+59 p\) VAT. P. \& P. free
The HY50 leads I.L.P.'s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World. FEATURES: low distortion; integral heatsink; only five connections: 7 amp output tranaisiors; no
Axternal components.
SPECIFICATION: Inpul Senaitivity- 500 mV . Output Power- 25 W R.M.S, Into 8 R , Load ImpedanceSPECIFICATION: Inpul Sensitivity- 500 mV . Output Power- 25 W R.M.S, Into \(8 \Omega\). Load impedance-
\(4-16 \Omega\), Oistortion- \(0.04 \%\) at 25 W at 1 kHz , Signal/Noise Ratio- 75 dB . Frequency Response- \(10 \mathrm{~Hz}-\) \(45 \mathrm{kHz}-3 \mathrm{~dB}\). Supply Voltage \(- \pm 25 \mathrm{~V}\). Size- \(105 \times 50 \times 25 \mathrm{~mm}\).
Price \(56 \cdot 20+77 p\) VAT. P. \& P. free
The HY120 is the baby of I.L.P.'s new high power range, designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: very low distontion; integrai heatsink: load line protection: thermal protection; five connections: no external components.
APPLICATIONs; hi-fi; high quality disco; public address; monitor amplifier: guitar and organ.
SPECIFICATION: Input Sensitivity- 500 mV . Output Power- 60 W R.M.S. Into 8 A . Load Impedance-\(4-16 \mathrm{O}\). Oistortion- \(0.04 \%\) at 60 W at 1 kHz . Signal/Noise Retio- 90 dB . Frequency Response- \(\mathbf{1 0 H z}\) \(45 \mathrm{kHz}-3 \mathrm{~dB}\). Supply Vottage - \(\pm 35 \mathrm{~V}\) Size \(-114 \times 50 \times 85 \mathrm{~mm}\).
Price \(£ 14 \cdot 40+£ 1.16\) VAT. P. \(\&\) P. free
The HY200 (now improved to give an output of 120 watts) has been designed to stand the most rugged conditions such as disco or group while still retaining true hi-fi performance.
FEATURES: thermal shutdown; very low diatortion: load line protection, integral heataink; no external cdmponents.
APPLICATIONS: hi-fi; disco; monitor; power' slave; Industrial; public address.
SPECIFICATION: Input Senaitivity- 500 mV . Output Power-120W R.M.S. Into \(8 \Omega\). Load Impedance-\(4-16 \Omega\). Oistortion- \(0.05 \%\) at 100 W at 1 kHz . Signal/Noise Ratio- 96 dB . Frequency Response- 10 Hz \(45 \mathrm{kHz}-3 d \mathrm{~B}\). Supply Voltage- \(\pm 45 \mathrm{~V}\). Size- \(114 \times 100 \times 85 \mathrm{~mm}\) Price \(\mathbf{2 1 \cdot 2 0}+\mathbf{\Sigma 1 \cdot 7 0 V A T , ~ P . ~ \& ~ P . ~ f r e e ~}\)
The HY400 is I.L.P.'s "Big Daddy" of the range producing 240 W into \(4 \Omega\) ! It has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: thermal shutdown: very low distortion: load line protection: no external components. APPLICATIONS: public address: disco: power slave: industrial.
SPECIFICATION: Output Power-240W R.M.S. into 4N. Loded Impedance-4-16 . Olatortion-0.1\% at 240 W at 1 kHz . Signal/Noise Ratio- 94 dB . Frequency Response- \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\). Supply Voltage — \(\pm 45 \mathrm{~V}\). Input Sensitivity- 500 mV . Slze- \(114 \times 200 \times 85 \mathrm{~mm}\).
Price \(229.25+\) E2.34 VAT. P. \& P. free
POWER SUPPLIES: PSU38-suitable for two HY30s ع4-75 + 59p VAT. P. \& P. free. Psu50-suitable for two HY50s \(\mathbf{~ 8} \cdot \mathbf{2 0}+\) 77p VAT. P. \& P, free. PSU70-suitable for two HY120s £12.50 + £1.00 VAT. P. \& P. free. PSUg0-sultable for one HY200 £11.50 + 92p VAT. P. \& P.'free. PSU180-suitable for two HY200s or one HY400 \(821+£ 1 \cdot 68\) VAT. P. \& P. tree.


> AVAILABLE JUNE 1976


\section*{TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS}

Please supply
Total Purchase price
I Enclose: Cheque \(\square\) Postal Orders \(\square\) Money Order \(\square\)
Please debit my Access account \(\square\) Barclaycard account \(\square\)
Account number
Name and Address

\section*{digital circuit tester}


Fig. 1

IN addition to showing the state (positive or negative) at a point in a digital circuit, this device will also show the presence of brief pulses which would not otherwise be seen Two l.e.d.s are used as indicators
The circuit is as shown in Fig. 1. The gates are DTL 946. A TTL 7400 package could be used, with the addition of a resistor of \(470 \Omega\) or \(1 \mathrm{k} \Omega\) in series with each of the i.e.d.s.

Gates 1 and 2 form an input amplifier and inverter. Gates 3 and 4 are connected to operate as a monostable which latches on to any negative pulse at the input to gate 3 , causing I.e.d. D3 to light up for about a second. A two-way switch is included, so that the device can latch on to positive or negative pulses.
G. G. R. Rutter,

Woking, Surrey

\section*{50MHz COUNTER INPUT STAGE}

THE first two stages of a digital frequency meter capable of operating at frequencies up to at least 50 MHz are shown in Fig. 1. This employs a 74196 (8290) for the first divider stage, IC6. At these frequencies it is necessary to use a Schottky barrier gate (G2) for the mixing of the input from an amplifier, and the timebase control from a crystal oscillator and divider chain. This is often a deterrent to would-be constructors, not because of the increased cost of the gates, but because of the lack of availability.

To overcome this necessity for Schotiky devices. the broadside loading facility of the 74196 is utilized as in Fig. 2. The input signal is fed directly to the clock 1 input (pin 8), and the timebase is fed directly to the load control (pin 1). When the timebase is al logical 1 the counter is enabled, but placing a logical 0 onto this control inhibits the count, and loads the counter with data at the inputs. Thus if the inputs are unused, this action effectively resets the display.

This unwanted action is overcome by connecting the outputs of the counter back to their corresponding inputs. Now these inputs are inhibited whilst counting, but at the end of the counting period, the clock is disabled, and the outputs at that instant are fed back to the inputs and reloaded into the device. The count is thus self sustaining until the device is reset by application of a zero logic level pulse at the clear line (pin 13). The necessity for the Schottky devices is eliminated, and control logic for the whole display is simple.


The timebase is also fed to the trigger input of a monostable, such that a high to low transition will cause it to trigger. The Q output of this monostable controls the latch clocks, and also triggers another monostable, the \(\bar{Q}\) output of which gives the reset pulse. The sum of their pulse durations must be less than the timebase off period.
D. Welbourn (G8KRH), Brighouse, Yorks.

\section*{Bring 'scope'to your interest.}


\section*{'There's only one way to master electronics... to see what is going on and learn by doing:}

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.


1Build an oscilloscope.
As the first stage of your training, you actually tuild your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.


\section*{Read,draw and understand circuit diagrams. \\ In a short time you will be able to} read and draw circuit diagrams, understand the very fundamentals of television, radio, computors and countless other electronic devices and their servicing procedures.


3 Carry out over 40 experiments on basic circults.
We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.


All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

PLASTIC BOXES IN 5 SIZES
Easily drilled or punched, grey ABS boxes incorporate slots for 1.5 mm pcb's with lid fixing screws running into integral

\title{
brass bushes \\ \(100 \times 50 \times 25 \mathrm{~mm} \quad 51 \mathrm{p} \quad(1.9) 49 \mathrm{p} \quad(10+\) \\ \(112 \times 62 \times 31 \mathrm{~mm} 59 \mathrm{p} \quad(1-9) 52 \mathrm{p} \quad(10+\) \(120 \times 65 \times 40 \mathrm{~mm} 68 \mathrm{p} \quad(1-9) 62 \mathrm{p} \quad(10+1\) \(150 \times 80 \times 50 \mathrm{~mm} \quad 77 \mathrm{p} \quad(1-9) 74 \mathrm{p} \quad(10+1\) \(190 \times 110 \times 60 \mathrm{~mm} £ 1.33(1.9) £ 1.30 \quad(10+\}\) Polystyrene version \\ Plain inside, no integral bushes \\ \(112 \times 61 \times 31 \mathrm{~mm} \quad 35 \mathrm{p} \quad(1-9) 32 \mathrm{p} \quad(10+)\) Add 25 p per \(£ 1\) order, value for Post \& Packing TYPE A NEON INDICATORS \\ Held in 8 mm hole by plastic bezel 150 mm wire leads \\ Qiva \(A C\) (1) \(A H\)
}

Red, Amber, Clear, Opal
19p each Green

TYPE MP NEON INDICATOR
150 mm leads, held in 6.4 mm hole by nut

Red, Amber, Clear, Opal
20p each
On all orders quote reference \(\mathrm{PE} / 10 / 76\)

Stop wasting time soldering
The NEW MW BREADBDARD accepts
Transistors, LED's, Diodes, Resistors, Capacitors and all DIL packages with 6 to 40 pins

ncludes slot-in Component Support Bracket and has over 400 individual sockets, plus Vcc \& Ground Bus Strips Price \(£ 9.72\) (includes VAT \& P.P.)

POWERFUL 12 VOLTS MINI HAND DRILL Ideal for drilling pcb's, chassis and
 F


Supled wh 2 collets that accept drills and tools with up to 2.4 mm dia. shanks Price \(£ 7.56\) (includes VAT \& P.P.) SEVEN SEGMENT DISPLAYS

Full spec. 0.3" common anode L.H. decimal, Red, Green, Yellow £ 1.35 each inc. data

Economy Quality, as above, Red oniy, 73p.
P.P. Note. Unless included in price add 25 p post \& packing for orders totalling under \(£ 10\) Prices include VAT and are valid in UK only for 2 months from journal issue date.
Michael Williams Electronics
47 Vicarage Av., Cheadle Hulme, Cheshire SK8 6JP


EYE CATCHING INSTRUMENT CASE Removable top and bottom covers are available in Red, Orange or Grey Black Steel chassis incorporates support brackets for pcb's, transformers etc. Overall size \(250 \times 167 \times 68 \mathrm{~mm}\). Ideal for amplifiers, power packs, mixers, control units, radios Price \(£ 11.88\) (includes VAT \& P.P.)


DH LAMPHOLDER
Accepts LES or Midget flange lamps (Adaptor provided but not lamp) Held in 13 mm hole by nut Red, Blue, Green, Amber, Clear, Opal, Orange Price 25 peach (See P.P. Note below) FULL SPEC INDIVIDUAL LED's Packs of 5 inc . clips and data \({ }_{\text {lens }}^{1250} \mathrm{C}\)
iens

\(\stackrel{2 n}{\square=2}\)
Red (any size) £0.75/pack Green, Yellow, Orange (any size) \(£ 1.20 / \mathrm{pk}\) ECONOMY QUALITY LED'S
Mixed bags, all sizes, all colours
\(50 @ £ 5,100 @ £ 9\)
Quantity quotations on request.

\section*{B. BAMBER ELECTRONICS}

Dept PE, 5 STATION ROAD, LITTLEPORT, CAMBS., CB6 1QE Telephone: ELY ( 0353 ) 860185 (2 lines) Tuesday to Saturday

PLEASE ADD \(8 \%\) VAT UNLESS OTHERWISE STATED
FREE WELLER 2SW (8P25) SOLDERING IRON
(worth E3. 24 inc. VAT) with (worth E3. 24 inc. VAT) whth ill ordere over E20 mauale tabi
VARLABLE STABILISED POWER SUPPLY, mains input, \(0-24 \mathrm{~V}\) output, stabiliesd and currept
1 mmiting at \(500 \mathrm{~mA}+32 \mathrm{~V}\) at 50 mA . Brand new ot British manufacturer. Size approx. \(7 \ddagger \times 2 \& \times 4 \mathrm{in}\). complete with external 5 k n 3 -turn potionsoltage control. Connection data supplied. IT.
SOUA (25 O-25uA) EDGEWIBE METERS, modern type by Sangamo Western, display sean hl \(14 / \mathrm{n}\) whit ) fl 1.50 on ch, while elocks last.
MAINS ISOLATION TRANSFORMERS. TAPpOI mains input, 240 V at \(3 \mathrm{~A}+12 \mathrm{~V}\) at 500 mA output New, boxed, mude by Gardners, \(\mathrm{f12}\)
FLEXIBLE REATEA STRIP, 240 V a.c. 150 W approx. 1 metre long (insulated. with fibreglass) 60 p gach.
HEAVT DUTY RELAYS, 24V dE operated will worf on-18V) 3 heavy duty make contacts (around 10A rating) +4 change over contact: +1 break contect. Now, complete with mounting bracket fideal for awitching 14 on Lineart.) Many uees for this migh quality Git. E1. 50 each
lange mounting. olinge mounting. 3 models svail. O-60 lb/sq.in,
each. 2 N 305 s type Transistors OK but unmerked 5 for 11 .

MOV NEONE, BCHEW-IN-TYPE, 4 for Sop. Now motlon motore (authable for programmert. diaplays. etc.) \(230-240 \mathrm{~V}\) a.c. input, rotation

\section*{Miniature plefes high quality "Cescent"}

MINIATURE PLEERS High qualdit
made in USA \(4.4 .35+\) VAT (3Sp).
SiDE CUTTERS, high quarity "Crescont", mede U USA. 54 -5 + VAT (49p).
MIXED COMPONENT PACKS, containing resistors, cepacitori, wwithes, pote otc. All new (rancom sampie bag revealed approx. 700 TUNF). \(\mathbf{C z}\) por pack, while atocks last. \(1 \mathrm{MH}_{\mathrm{M}}\), TUNED COtL8 o section coils, around 1 MHz , an internal core to vary the inductance, many uses, waily rewound. 3 for 500

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

ALU-8OL ALUMANIUM SOLDER (made by MUHITcore). Solders stumimium so taif or copper,
brase, Btesi, nickel or tinplan 16 s.w.gi with brase, stose, nickel or tinplane 168 .w. 9 I with os 3tp gack Lerge roel (approx. 12 metces) 4
Ifin pelythene chassia mounting fusehoiders 6 for \(\begin{aligned} & \text { Multer } \\ & \text {. }\end{aligned}\)
Multird Tubular corgmic trimmers. 1-18pf I.C. some coded, 14 DIL type, untested, mixed, 20 for 250

Mobile Convecters \(2 a y\) DC input 13 av mobile Convertorn, 24 V DC input \(13 \cdot \mathrm{sV}\) at approx 3.4 A OC output, fully stabilised. IJ. 50 Iorry battory).
A/S Midget 3 pole 4 way, rotary awitches.
Weach We now atock Splraiux Tools for the atectronle
onthusiast. Scrowdrlvera, Nut Spannart BA and onthusiast. Scrowdrivers, Nut Spannart. MA and
Metric sizes, pop rivet guns. ©tc. SA.E. Por list.
i.f. Cans, itn square, witable for rewind. 6

1or \(30 \mathrm{p},+12 \%\) VAT.
Minimiture sarraches with min. jack plug. 2 for
TWIN i.F. CANs, approx lin \(\times \operatorname{tin} \times 1 \mathrm{in}\) high around \(3.5-5 \mathrm{MHz}, 2\) eparate transtormere in 1 can, internally screoned, 5 for \(50 \mathrm{p}+124 \%\) VAT.
 TCC Electrolytices. \(1000, \mathrm{~F}, 30 \mathrm{~V}, 3\) for 80 p . Plessey Electrolytics, \(1000 \mu \mathrm{~F}, 180 \mathrm{~V}\). 40 p . ed (h (3 for 1 ). Oublier Electrotytics, \(5000 \mu \mathrm{~F}, 35 \mathrm{~V}\), 50 p each.
Oublier Electrolytice, \(5000 \mu \mathrm{~F}, 50 \mathrm{~V}\), 50 p ench. \(17 T\) Esectrolytice. 6800 uF . 25 V , Migh orace. terminala, with mounting clips, sop oach Plassey Electrolytics, \(10.000 \mu \mathrm{~F}\) at \(63 \mathrm{~V}, 75 \mathrm{P}\) each,
Plensey Cathodruy Capacitors, \(0-0-4 \mathrm{~F}\) at 12.5 kV DC. Screw torminum. ITT SO onch. CAPACITOAS

LEABE ADO \(12 \%\) VAT TO ALL CAbacitons
ALAMGE RANGE OF CAPACITORS AVAILA

TV PLUQS AND 80CKETS:
TV Pluga (metal type), 5 for sop.
TV Sockets (metal type), 4 for sop. TV Line Connectors (back-to-back sockete), 4

\section*{PLUGS AND SOCKETS}

N-Type Pluga 50 ohm, 60 esech. 3 for 51.50. N-Type Sockets (4hole chasale mounting). 50 PL259 P4ugs (PTFE), brand now, packed with reducerre, isp or 5 for \(\mathbf{i s}\).
SO239 So
SO239 Sockets (PTFE), brand new (4-hole flxing type), sop each or 5 for \(22 \cdot 25\).
25 -way ISEP P
+ 19kt). Chuge and Sockets, 40p eet (1 plug
Plups and sockets aold separately at 25p each. Bulgin Round Froe Skls. 3 pin, for malns input on test equipment, atc. 23p each

WELLER SOLOERING IRONS
Expeng built-in-spotlight illuminates work copper


MARKSMAN SOLDEADING IRONS
SP15D \(15 \mathrm{~W} \mathrm{C3}+\mathrm{VAT}\) (24p)
SP250 \(25 \mathrm{~W} \mathrm{Ct}+\) VAT
(24p)
SP250K 25 W + Dita. sic. kil c3- \(85+\) VAT (310) SP2SOK 25W + bita. Btc. kil
SP40D 40 W ca. 41 + VAT (2ip) BENCH STAND with apring for Markaman Irons E2. 22 + VAT (19P)
SPARE BITs
MT8 for \(15 \mathrm{~W}, 44_{\mathrm{p}}+\) VAT (4p). MT4 for \(25 \mathrm{~W}, 3 \mathrm{~s}\) + VAT (3p)
MT10 for \(40 \mathrm{~W} .42 \mathrm{p}+\) VAT (3p TCPI TEMPERATURE CONTROLLED IRON. Temperature controllod iton \&SU, \(220+\) VAT (E1-40) SPAAE TIPB
 ALL SPARES AVAILABLE

\section*{multicore soloer}
 SizaT (3P).
 + VAT (15p)

Terms of Business: CASH WITH ORDER. MINIMUM ORDER \&1. ALL PRICES INCLUDE POST \& PACKING (UK ONLY). SAE with ALL ENQUIRIES Please. PLEASE ADD VAT AS SHOWN. ALL GOODS IN STOCK DESPATCHED BY RETURN. CALLEAS SATURDAYS ONLY 9.30-12.00, 1.30-5.00.

\section*{tTL LOGIG PROBE}


AHANDY logic probe can be made from a minimum of components such as you might find in a "spares" box, see Fig. 1

The first gate of the circuit ensures that the logic level being tested is only loaded by one extra gate. A high level on the input of Gl gives a low output, thus the A input of the 7447 stays high while the rest go low. The Minitron therefore displays 1 . Similarly a low level on the input gives a
low level on the output of the second gate thus grounding all the inputs to the 7447. A zero is thus displayed on the Minitron.

If, however, the input is being pulsed, the 74121 will stretch the pulse to about 0.5 s , giving a low on the lamp test of the 7447 and bringing on all the segments of the Minitron thus displaying 8 . The 8 may flash or not depending on the frequency, width
and sense of the pulses. TTL components are used here, but a very similar device could be constructed from cmos components for use with cmos circuitry.

Power can be derived from the circuit being tested; alternatively, three \(1 \frac{1}{2} \mathrm{~V}\) batteries would probably do for TTL.
R. A. Jones,

Worcham, Dorset

THIS simple but effective circuit is designed for use with electric guitars to give a variable, even boost to the middle and upper frequencies without the excessive "treble" of some similar devices.

The boost control VR1 adjusts the frequency-selective negative feedback in the emitter circuit of TR1. With the control fully anticlockwise, the response of the amplifier is level and the gain is approximately \(1 \cdot 3\). As the control is advanced, frequencies above about 250 Hz are progressively boosted. The gain levels off at about 3 kHz where the maximum available voltage gain is approximately 131, or about 42 dB .
Although a BC109C was used because of its low noise properties, almost any small-signal silicon \(n p n\) transistor could be used.
The prototype is housed in a small aluminium box and arranged such that the battery is switched on when a guitar lead is inserted. The connection to the amplifier is via a short length of screened lead "wired"' into the unit and terminated by a jack plug.

\section*{PRESENCE bOOSTER FOR ELEGTRIC gUITARS}


Fig. 1

Under full boost conditions, r.f. interference can be caused at certain settings of the guitar and main amplifier controls. This trouble can be eliminated by connecting a 820 pF capacitor across the Presence Booster input.

Although this device could be used to advantage with any guitar or bass (or even organ), it works best in combination with guitars having humbucking pick-ups.
N. P. Stevens,

Brighton.

\section*{HEADS AND TAILS}

WITH reference to the Ingenuity in the August 1975 issue by D. Manoharan on a "Head or Tails" circuit, the arrangement as shown would seem only to be suitable for the particular i.c. that the author was using. 7400 s do tend to be slightly variable: I have three by different manufacturers, none of which worked in that circuit. All three however worked perfectly in the circuit shown in Fig. 1

The oscillator formed by 1Cla and \(b\) is reliable and well known. and the remaining two gates are connected in the familiar flip-flop fashion, alternately driving the two l.e.d.s. DI serves two purposes: with a fresh battery and SI (SPIN) on, the two l.e.d.s light alternately,

simulating a coin throw. When SI is released, the flip-flop remains in one of its two stable states, indicating "Head" or "Tail". When the battery voltage drops to about 6 V . only D3 lights during the spin period thus providing low battery indication although the circuit
works down to a battery voltage of 5 V or below. R4 and R5 must be included to drop the voltage to that recommended by the i.c. manufacturers. i.e. \(5 \cdot 25 \mathrm{~V}\) nominal. Current consumption is low. about 20 mA .
D. W. Bickley,

Wolverhampton.

\section*{WIDE RANGE STAIRGASE GENERATOR}

THE pulse output from Bl of the 2N2646 u.j.t. Fig. 1 is coupled via the diode and this pumps the \(4.7 \mu \mathrm{~F}\) tantalum capacitor up in steps until the p.u.t. fires. The firing point is adjusted by altering the position of the \(10 \mathrm{k} \Omega\) potentiometer wiper. The output is taken via a Darlington pair to maintain the high impedance necessary at the anode of the p.u.t. If the output is taken to an impedance less than about \(500 \mathrm{k} \Omega\). a further emitter follower may be necessary to prevent droop at low frequencies

The capacitor values shown produce an output timing range ideal for playing scales if fed into a v.c.o. However the values may be altered considerably so as to produce good waveforms up to \(50 \mathrm{kHz}-100 \mathrm{kHz}\) The linearity of the staircase is good at low anode-gate p.u.t. voltage which can be set by the \(10 \mathrm{k} \Omega\) pot. This may be improved if

\section*{Fig. 1}

desired by adding a single transistor constant current source in place of the diode. The \(500 \mathrm{k} \Omega\) and \(5 \mathrm{k} \Omega\) pots adjust frequency and number of steps respectively. The big advantage of this circuit is the ability to vary the trigger level of the p.u.t. thus increasing the frequency range and division ratio by at least a decade over the conventional dual
u.j.t circuits. With the use of a d.c. 'scope the peak voltage and step voltage can be set very accurately making it an ideal programming source for v.c.o.s or for use in curve tracers. The u.j.t could be replaced by another p.u.t. thus further increasing the range.
J. A. Oliver Maunbarki

New Zealand


Fig. 1

\section*{CHEAP LOGIC TRACE MULTIPLIER}

While the 8 channel logic (1975) trace multiplier (P.E. Aug. (1975) is an excellent instrument. it is also rather cosily and thus may be beyond the means of some. who like myself. have limited funds.

The circuit is shown in Fig. 1. The active components are six 2 input Nand gates. The first two gates ICla and IClb are wired as inverters and make up an oscillator with two complementary outputs which alternately enable the NAND gates ICIC and ICId, thus displaying first one channel then the other

Resistors R1-R4 form a summer (R2 provides a d.c. potential on top of which input 1 is added). Sync is provided for either channel by Si . The nand gates wired as inverters (ICle and ICIf) invert the inputs so that after passing through gates ICIC and ICld the output presented to the scope is the same as the inputs: if these inverters were not used the output would be inverted. However it would mean that the unit could be built with only one 7400.
C. J. E. Durrant. Norwich.



FAST SERVICE


\section*{ALL FULi，SPEC，} DL707 COM．ANODE \(\&\)
DL704 COM．CATHODE DL704 COM．CATHODE
\(0.3^{\prime \prime}\) 0－9DP 89p．ea 747 JUMBO 0．6＂CA LED DISPLAY £1．75＊ 3015F 0－9DP £1．25＊ DISCO etc STROBE『ed \(12{ }^{2}{ }^{2}\) LEDS

209 STYLE OR \(0.2^{\prime \prime}\) NO CLIP \(11 p^{*}\) TIL209 or 0．2＂RED A CLIP 13p＊ GREEN LARGE／SMALL \＆CLIP 22p＊ ORP12 57p＊2N5777 33p＊TEC12 50p＊． DIGITAL CLOCKS M5316 £5＊ MS314 〔3．39＊MM5311 \＆5＊ AY51224 £3．49＊PCB £1＊ CAPACITORS
CERAMIC 22pi－0．1uf 50v 5p．
ELECTROLFTIC： \(10 / 50 / 100\) uf 10 or 25V 7R．50V 9p．2uf／10V 6p． 1000uf 25v 18p．200／500uf 9p POTENTIOMETERS LIN／LOG \(16 p\) ea PRESETS 6p．RESISTORS 1 P ea
HEATSINKS TO5／18 7p．TO3 15p． SWITCHES：SPST 19p．DPDT \(24 p\) ．
DIN PLUGS ALL， 12 p ，SOCKETS 9 p DIN PLUGS ALL，12p，SOCKETS \(9 p\)
ALI CASES：AB5／AB7 \(50 p\) ABI3 65 ALI CASES：AS5／AB7 50p AB13 65
TRANSFORMERS ． 100 mA 89 ea＊ TRANSFORMERS 100 mA 89p ea＊
\(\frac{1}{2} \mathrm{~A} / 1 \mathrm{~A}\) 6／12 ori \(2 / 24\) \＆ 2 each NEw AUDIBLE WARNING BLEEPER C 1 TRAMPUS FULL SPEC PAKS ALL EI Ba PAK A 10 qED LEDS our choice \(\tau 1\)＊


 2N3053 £1＊，K 40 I

\section*{IC＇s LOW PRICES}

\section*{03 RF／IF 26p MC1303 £1．47} 709 TO99 22p＊YC1310 \(\quad \mathbf{2} 2.09\) 709 DIL 14 28p＊WC1312 SQ E1．50 710 DIL 14 31p＊MC1318 £2．50 723 Regul＇r 45p＊MC1330 75 p 741 DIL 8 20p＊MC1339 £1．49 741 DIL \(143^{31 \mathrm{p}^{*}}\) MCI350／1／2 75 p \(\begin{array}{llllll}741 & \text { T099 } & 31 p^{*} & \text { MC1466 } & / 9 & £ 3 \\ 747 & 2 \times 741 & 67 p^{*} & \text { MFC } 4000 & \text { \＆} & 59\end{array}\)
 7805 5V £1．39＊NE540 £1．10＊



 \(\begin{array}{llll}\text { CA3046 } & 590 & \text { NE561 PLL } & \text { \＆} 4.00 \\ \text { CA3n48 } & \text { \＆} 20 & \text { NE562 PLL } 4.00\end{array}\) \(\begin{array}{lccc}\text { CA3054 } & \text { £2 } & \text { NE563 } & £ 2.25 \\ \text { ICL8038 } & £ 2.69 & \text { NE565 } & \text { £2．50 }\end{array}\) \(\begin{array}{llll}\text { 1CLB038 } & \text { £2．69＊} & \text { NE565 } & \text { £2．50 } \\ \text { LM300 } & \text { 1．50＊} & \text { NE566 } & \text { 11．55 }\end{array}\)
 LM304 0 －40V £3＊SN72741 741 20p＊ LM308 Hi Bo 95p＊SN76660 IF 75p L4309K 5V £1．75＊SN76611 IF 1
 LM380 60745 89p TBA810 7WAF 80p



58－60 GROVE RD． WINDSOR，SE KKS STH MIS
ADD \(8 \%\) VAT TO PRICES MARKEED＊ ADD \(12 \frac{1}{1} \%\) VAT TO ALL OI＇HBR PRICES SEND C．W．
POST \＆PACKING 20p FOR THE UK
 Mor ER HCCX TP HOT BATISFIRD．


 BARCLAYCABD 1 ACOCEAS AX POST


\section*{TRAMSISTORS}

\section*{PRICE EACH：－ \\ matceing} AC 127 \＆ 128 10p＊ AC176 188 15p＊ AC187 \＆ \(188.18 p^{*}\) AD149 45p＊ AD161 \＆ 162 33p＊ \(\begin{array}{ll}\mathrm{BC} 107 \\ \mathrm{gC107B} & 8 \mathrm{p} \\ \text {＊}\end{array}\) BC107B \(12 \mathrm{p}^{*}\) \(\begin{array}{lr}\text { BC108 } & 7 p^{*} \\ \text { BC108B } & 12 p^{*}\end{array}\)

\section*{BC108B}

BC109
BC109C INS．BUSG SET \({ }^{20 p^{*}}{ }^{*}\) TIP29＊ 30 43p＊ TIP31＊ 32 54p＊ TIP41 63p TIP42 TIP2955 TIP3055
TIS43
UJCT TIS43 UJCT＇ \(26 \mathrm{p}^{*}\) ZTX300 304 11p 2TX300 2304 20p
 2N2646 UTT \({ }^{2 N p^{*}}\)
 2N2904 \＆ 5 20p＂
2N2926brovg 90 2N2926brove 9p 2N3053
 2N3055 115
2N3055
RCA
20 2N3702／3／4／5 80 2N3706／7／8／9 8p \(\begin{array}{lll}2 N 3710 & \text { R } & \text { II } \\ \text { 2p }\end{array}\) 2N3819E FET 12p 2N3820 FET 400 2N3823E PET 16 p 2N3904／5／6 15p 2N4289 mini 31p
2N5457 FET \(45 p\)

\section*{LOEIL}

CD14533 £2．35＊ CD4028 73p＊ CD4046 CD4047
CD4049 CD4049
CD4054 CD4054
CD4055 CD4055
CD4060 CD4060 CD4071
CD4081 CD4081 17p＊ CD4510 £1．19＊ CD4528 \(11.10^{*}\)

TELEPHONE 54525

\section*{DIODES}

OA81 O OA91 GERMANIUM 5p． 1 N 4001 1A50V \＆ 1 N 4002 5p 1N4004 6p＊iN4007 9p＊ 1N4148 1 N914 SILICON 4p． ZENERS BZY88 400 mm 9p． ZENERS 1t 1 17P．Z1Jnoisefi BRIDGE RECTIFIER 1A50 18p 1 A400V 25p．4A100V 45 p SCR＇s TRIACS SCR＇s TAG1／400 1A400V 50p＊
IASOV \(380^{*}\) ． 1A50V 38p＊1A 600V 70p＊ CIO6D 4A400V SCR ONLY 47p＊ TRIAC SCI 46 D 10A400V If TRIAC DISCO 16A400V £1．75 DIACS：ST2 20p．ER100 25p

\section*{vero}

36PINS 28p＊PACE CUTTER49p＊ COPPERCLAD 0.1 PITCH VERO 2立＂天5＂32p＊2q＂x3\}" 29p* 3\}"ォ5" 37p* 3ұ"х3\}" 32p* 3）＂ス17＂£1，70＂ 3：＂x17＂PLAIN 0．1＂£ \(1.06 *\)

\section*{DA1O Den \\ DALO DCH} FEC ETCH RESIST PEN 69p＊ FEC ETCH PAK 500gm 89p＊ 6x4＂COPPER BOARD SOP＊ PCB KIT 3 ITEMS CASSETTE MECHANISM \(£ 9\) \＆AS£12 TGS GAS DETECTORS 308etc£2＊ TH S L Hets TOP QUALITY NYLON SOCKETS BPIN 12 pt \(^{*}\) 14PIN 12p事16PIN 12p SOLDERCON PINS： 100 65p＊ 1000 〔3． 5


Fig. 1

\section*{TTL TOUCH CIRCWIS}

THE following circuits form tseful building blocks for the implementation of touch-controlled inputs to TTL circuits, with s mple circuitry and hig.a reliability of operation.

Fig. I shows a s:mple arrangement for six touch-to-operate switctes The operation of one will be described all being identical. When the input electrode is bridged to the commor "live" electrode a current of typically \(2 \mu \mathrm{~A}\) is fed irto the basz of a Darlington pai- of high-gan transistors (either discrete or a monolizhic array as indicated!. The second transistor saturates and pulls down the potentia at the put to the irverter gate to below its threshald thas switching on the gate output which is fed to the circuit 0 be contralled. Normal TTL getes can te damaged b: operation with injuts at or around their threshold level, and will oftem oszillate causing false outputs. Im this application, the imput to she gat: may well be around the threshold if the inplt is touched very slowly or very lightly, and alse the finger may tremble against the touch plate before irm contact is made. To overcore these dificu ties, gates with Schmitt trigger inputs are used (7417 in this case). On failing inputs these have a thresnold of about C .9 V and on a rising input about \(1 \cdot 7 \mathrm{~V}\) an! are una fected by the maintenance of inputs around these tireshold level.. The difference between rising and falling arigge levels, or hysteresin, means that small variations of insur-,


Fig. 2


\section*{Fig. 3}
evel near the threshold. do not cause similar valiations in output level. This hysteresis prevents false double operation due to finger tremble as pre ssure is being applied

Many variations on this basic schzme are possible using the other TT - gates available with Schmitt inputs. Fig. 2 shows two of the gates in a 7413 used to form a latch (RS flip-flop) to give a touch-on/ touxh-off action (normal toggle switch action). When an input is touched, the associated NAND gate output goes high. This output is cornected back to an input of the other NAND gate which causes its oulput to go low and the circuit to res. in this state even when the touch inputs are removed. This diagram also shows a simple means of indicating which output is low that car be used with any of the gates described. When the output goes low the l.e.d. is biased on at a forward current limited by the \(330 \Omega\) resistor, (giving a current of about 10 mA ). If much more current is recuired a buffer must be used. Low cuirent relays (e.g. reed relays) capable of operation on 5 V and with coils of greater than \(300 \Omega\) resistance may also be used provided a reverse
biased diode is cornected in parallel to remove swibching transients

Fig. 3 shows how an input nay be used to praduce a single, fixedleng:h pulse le.g. for clocking of counters). The \(I\) input of the 74121 TTL manostable has a Schmitt action similar to the gates previously mentioned. The \(A\) inputs may be permanently wired as shown or used as enabling inpus from other circuitry. The pulse produced has a length proportiona to the product of \(\mathrm{C}_{\mathrm{ext}}\) and \(\mathrm{Reat}^{\text {. }}\) The l.e.d. shown lights during the pulse period.

These circuits have shown possible uses with all :he currently available one- and two-inpu: Schmitt triggered gates. The Darlington input transistor pairs may be SN75492 as shown or may be discrese or wired from morolithic arrays of individual transistors. Of course the circuits may be extended :o controlling a wide variety of other systems by the use of buffer amplifers. thyristors, triacs etc. The l.ed.s shown may also be the infut l.e.d.s of optical isolators allowing safe isolation from highvoltage circuits.
A. Gray,

London


Fig. 1

THE anemometer circuit in Fig. 1 uses a NE555 timer i.c. in the monostable mode to give a pulse of fixed length ( .047 sec ) regardless of what length the input pulse is.

A wind driven assembly of cups has at its base a pair of diametrically opposite magnets arranged on a disc. Obviously with varying wind speeds the switching rate will be a function of this. The meter MEl integrates the output pulses and provides an indication with suitable calibration of the meter scale.

A four cup assembly is made up
of four short lengths of \(\frac{1}{4}\) in dowelling and one 6 in length of \(\frac{1}{2}\) in. The \(\frac{1}{2}\) in piece is drilled with \(\frac{1}{4}\) in holes at right angles to each other (Fig. 2).

Insert \(\frac{1}{6}\) in of the shorter \(\frac{1}{4}\) in pieces into each of the holes and glue if necessary. Cut two ping-pong balls in half and stick the ends of the short pieces through them.

On the end of the \(\frac{1}{2}\) in length fix a disc of approximately the same diameter as the length of one of the short pieces of dowelling. On this mount the two magnets.


Fig. 2

Mount the whole assembly so that it can spin freely, fix the reed switch underneath the disc and check that the 555 triggers twice for every revolution of the disc. There is bound to be someone in the neighbourhood who already has one and he will probably let you calibrate the markings on your meter with his. An alternative is to calibrate against a car speedometer.
J. Gray,

Helensburgh.


Perhaps you have to be of my vintage to know the phrase 'a Double Feature', but up to a few years ago cinemas always ran a main film and a supplementary film. I was reminded of it because with their new catalogue Home Radio Components are now giving away a supplementary catalogue of bargain lines.
It sounds a very practical and sensible idea. After all, most electronic component firms accumulate surplus stocks of various items, and rather than dispose of them, why not offer them to customers at exceptionally low prices? I'm told that this bargain list will continue for several months and be up-dated from time to time. No constructor should be without the Home Radio Components Catalogue (it contains 5,000 items clearly listed plus about 2,000 illustrations) but now you have a double incentive for buying one. In addition to getting one of the finest components catalogues available, you also receive a list of bargains at unbelievably low prices. For example, Gemini Mains Transformers: normal-price \(£ 11 \cdot 48\), bargain list price \(£ 5\), saving \(\mathbf{£ 6} \cdot \mathbf{4 8}\) ! This means that with a single purchase from the bargain list you can save the price of your catalogue several times over!

\section*{HOME RADIO (Components) LTD Dept. PE \(234-240\) London Road. Mitcham.CR4 3HD Phone 01-6488422}


HIGH IN POWER-LOW IN COST! POWER AMPS 30-120 W.R.M.S. (120W from £13.50)
SA1208 (120 w.r.m.s/8 \(/ 95 \mathrm{~V}\) )
£19. 50 SA1204* (120 w.r.m.s/4ת/75V) \(\quad £ 13.50\) SA608 ( 60 w.r.m.s \(/ 8 \Omega / 65 \mathrm{~V}\) ) SA604* ( 60 w.r.m.s/4 \(/ 4 / 50 \mathrm{~V}\) ) SA 308 ( 30 w.r.m.s/8 \(\Omega / 50 \mathrm{~V}\) ) 10.50 §9. 50
- Only 4 con- input- 240 mV nections Size- 6 in \(\times 3\) in
- Distortion "typic ally 0.4\%
- Single supply rail
- Individually tested and guaranteed
Power Supples for
\(1 \times\) SA1208-PM1201/8 £11-60; \(2 \times\) SA1208PM1202/8 \(\quad\) \&15.30; \(\quad 1 \times\) SA1204-PM1201/4 £11.60; \(2 \times\) SA1204—PM1202/4 \&15.30; 1 or \(2 \times\) SA608-PM601/8 £10.50; 1 or \(2 \times\) SA308PM301/8 ¢8-80


SET


\section*{LIQUID WHEELS}
\begin{tabular}{|c|c|}
\hline Light years ahead with super SYSTEM 7000 & \\
\hline contor ot zux & \\
\hline & \\
\hline mex suor mom ono pant & \%om \\
\hline 为 & min \\
\hline
\end{tabular}

To: SAXON ENTERTAINMENTS LTD. 327-333 Whitehorse Road, Croydon, Surrey, CRO 2HS Please send to:
Name
Adaress


Mix it perfectly with modular SYSTEM 7000 MIXERS
```

UP to 20 CHANNELS MONO/STEREO/MIXED

- Inputs for all sources linc. mag. cartridge
-Wide range bass and treble controls
* Echo monitor power outlet
- Feeds most amplifiers
With front panels, ready to use
- Individual monitor buttons

```
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{- Individual monitor button} & mise \\
\hline InPUT & & MIXER & & - \\
\hline Mono & c1. 50 & Mono & c8. 50 & \\
\hline Stereo & ¢12.00 & Stereo & [12.00 & \\
\hline PCB Modules only & & PCB Modules only & & \\
\hline Mono & E5. 50 & Mono & 55. 50 & Power Supply \\
\hline Stereo & c9.00 & Stereo & c9.00 & ¢7.50 \\
\hline
\end{tabular}
\begin{tabular}{c}
5.50 \\
c. \\
\hline
\end{tabular}


Power Supply

BARCLAYCARD
No. Tor prompt attention
Niter 5.0 pm leave your
message on our answer
message on our answer- Shop Mours 9am-5pm (Lunch 12.30-1.30): Sat. \(9.30 \mathrm{am}-5 \mathrm{pm}\). Prices and specifications subject to
atreration whihout notice

\section*{GREENWELD}

443 Millbrook Road Southampton SO1 OHX Tel:(ロ703) 772501

All mail orders and callers to this address please-callers only to 21 Deptrord Broadway, SE8 (Tel. 01-692 2009) and 38 Lower Addiscombe Road, Croydon

NEW 44 PAGE CATALOGUE
10P + LARGE S.A.E.
Free with orders over £2
DIGITAL I.C.


DIODES AND LEDE AND SCR's
500 V 5A SCR 45 p ; 400V 2 A Triac s0p; Diac be 120 2spi ED 15p; 0.21n LED Red 20p; green.
 1N4002 Sp; 1N4001 ep; 1NA007 12p NN4148 4p; BY127 12p; 100 sp 12 \(400 \mathrm{~V} 3 \mathrm{~A} 15 \mathrm{p} ; \mathrm{OAB1} 5 \mathrm{p} ; \mathrm{OA} 915\)
50 V iA bridge 2pi 800 V 1 A 4 p
50 V 30 A rect; 200 V 5 F 7ep.
50 V 30 A rect, + or - stud 40p
Zenere 400 mW BZY88. All voltages
1-3W plastic from 3 V to 200 V 20 p

\section*{RESISTORS}

Carbon film 5\% iW miniature. All valuen in E12 series from in to 10 Mn (ove Me 10\%) 1 +p each.
Meta from \(2 \%\) 1W. All values in E12 series from \(27 \Omega\) to \(10 \mathrm{M} \cap 2 \mathrm{tp}\).
sub-min presets. vert. or horiz. all Standard pots, lin or lag. 79.
Wirewound \(2 \mathrm{iW} 0.25,0.33,0.47\) in ep. Wirewound 5 W all values from in to 47 K 10 p each.

\section*{TRANSFORMERS}
(200V 100 mA 90 p ; 9-0-9V 100mA 95p \(12-0-12 \mathrm{~V} 50 \mathrm{~mA} 90 \mathrm{p} ; 12-0-12 \mathrm{~V} 100 \mathrm{~mA}\) ع1; 12-0-12V 1 A ع2. 50 ; 20 V 55 mA 90 p ; \(22 \mathrm{~V} 100 \mathrm{~mA} 51 ; 29 \mathrm{~V} 50 \mathrm{~mA}\) 85 56.3 V \(1+\mathrm{A}\) \&1.95; \(6=0-6 \mathrm{~V}\) 1+A E2-39; 12 V 150 mA 80p; \(17 \mathrm{~V} 1 \mathrm{~A} \mathrm{E} 1-30 ; 25 \mathrm{~V} 14 \mathrm{~A}\) \(2 \cdot 30 ; 30-0-30 \mathrm{~V}\) 1A £3. 70.
Multitapped type to give 3, 4, 5, 6, 8 \(12-0-12\) or \(15-0-15 \mathrm{~V}\). tA version £3-20, 2 A version 54-50; 16 V 20 A 46-50. Bell transformer in white case, gives 4 , 8 or 12 V 1 A E2. 55-0-55V case. gives
\(5 A\) es. 50.

\section*{REEDS}
lin Inserts. 5p; 10/40p; 100/Es-50. DIL relay, 3•7-10V, \(2 \cdot 20\).

\section*{WIRE}

Enametled copper wire on 202 reels SWG/price: \(18 / 3 \% p_{+}\)i8134p, covsep, 32/44p, 34/50p, 36/52p, 38/54p, 40/50p.

\section*{RF CHOKES}
\(0.75,6 \cdot 8,10,47 \mu \mathrm{H}\), all 10 p each; \(1 \cdot 5,2.5\) \(5 \cdot 0,7 \cdot 5,10 \mathrm{mH}\), alf 30 p each.

\section*{CAPACITORS}

Ceramic plate. 22pF 10 1,000pF 2pi polyenter 1.000 to \(6.800 \mathrm{pF} 5 \mathrm{sp} ; 0.01\) \(0.015 .0 .022,0.033,0.047,0.088,0.1 \mathrm{mF}\) p; © 15, 0.22mF sp; 3 mF . 0.4 .2 mF
24p.
24.
\(0 \cdot 25 \mu \mathrm{~F}\) 3p; \(2 \cdot 2 \mu \mathrm{~F}\) S6
Polyatyrene 10 pF to \(1,000 \mathrm{pF}\) 4p; \(1,200 \mathrm{pF}\) to \(10,000 \mathrm{pF}\) 4p. All \(2+\%\).
Electrolytice:
Al 25V: \(0.47,1,2.2,4.7,10,22,47 \mathrm{mF}\) \(\mathrm{p} ; 100 \mathrm{mF} 7 \mathrm{p} ; 220 \mathrm{mF}\) 8p; 470 mF 11p 100 100 mF ; \(2,200 \mathrm{mF}\) 10p; \(470 \mathrm{mF} 1 \mathrm{~T}^{2}\) \(\mathrm{p} ; 100 \mathrm{mF}\) ep; 220 mF 10p; 470 mF 18p 1.000 mF 32 p ; \(2,200 \mathrm{mF}\) 48p.
\(\begin{array}{llll}\text { Tantalum beid, } \mathrm{mF} / \mathrm{V}: & 0.1 / 35, & 0.22 / 33 \\ 0.33 / 35 & 0.47 / 35 & 1 / 35 & 2.2 / 18 \\ 2.2 / 35\end{array}\) \(3 \cdot 3 / 35\). 4.7/35 6. \(8 / 35 \quad 10 / 16 \quad 10 / 25,15 / 10\) \(2 / 6 / 3,22 / 10,22 / 16,33 / 10.47 / 6 \cdot 3,100 / 3\). 12 p atch.
VEROBOARD
100 eq.in good size offcuts. Mixed, or
 *in \(\times 0\) 1 heet. 1 .
ALUMINIUM BOXES
Complete with base and PK Scrows.
AB7 \(\quad 133 \times 70 \times 38 \mathrm{~mm}\)
AB8 \(\quad 102 \times 102 \times 38 \mathrm{~mm}\)
\(102 \times 70 \times 38 \mathrm{~mm}\)
AB11 \(102 \times 133 \times 38 \mathrm{~mm}\)
AB11 \(102 \times 64 \times 51 \mathrm{~mm}\)
AB12 \(76 \times 51 \times 25 \mathrm{~mm}\)
AB13 \(\quad 752 \times 102 \times 51 \mathrm{~mm}\)
AB15 \(203 \times 152 \times 78 \mathrm{~mm}\)
AB16 \(254 \times 178 \times 78 \mathrm{~mm}\)
AB17 \(254 \times 114 \times 78 \mathrm{~mm}\)
AB18. \(307 \times 128 \times 76 \mathrm{~mm}\)
AB19 \(307 \times 203 \times 78 \mathrm{~mm}\)
AB23 \(102 \times 102 \times 84 \mathrm{~mm}\)
AB24 \(133 \times 102 \times 64 \mathrm{~mm}\)
VEROBOXES AND CASES
Professional 2 part boxes made of dark and light grey hlgh impact polystyrene. \(2520150 \times 80 \times 50 \mathrm{~mm}\) \(2522188 \times 110 \times 60 \mathrm{~mm}\) Sloping front version, Ideal for \(2523220 \times 174 \times 100 / 52 \mathrm{~mm}\)
\&4.95 Cases. white plastle top and bottom ront and back aluminium panels that alot in. Type:
\(1410205 \times 140 \times 40 \mathrm{~mm}\)
\(1412205 \times 140 \times 110 \mathrm{~mm}\)
\(1412 \mathrm{Z} 205 \times 140 \times 110 \mathrm{~mm}\)
\(1238154 \times 85 \times 60 \mathrm{~mm}\) \(1239 \mathrm{Cl} 154 \times 85 \times 80 \mathrm{~mm}\) \(23 \cdot 25\)
54.20
\(1239 \times 85 \times 80 \mathrm{~mm}, \quad\left[\begin{array}{l}25 \\ \hline 2.25\end{array}\right.\)
1413 general purpose plastic box 1413
PB1 \(115 \times 75 \times 36 \mathrm{~mm}\)

\section*{DEVELOPMENT PACKS}

Save ECEE \& by buying a full range of components at one go' All full spec 50 V ceramic plate capacitors \(5 \% 10\) of each value, 22 pF to \(1,000 \mathrm{pF}\). Total 210 capacitors \(\mathbf{E 2 - 7 0}\).
CR25 carbon film resistors, \& watt \(5 \%\) 10 of each value \(10 \Omega\) to \(1 \mathrm{M} \Omega\), total 610 ct .00.
Extended range. fohm to rom 850 esistors \(88-30\).
Electrolytics. wire ended 25 V working 100 mF 70 capacitors for \(\mathbf{2} 3-20\).
Zeners. \(400 \mathrm{~mW} 5 \%\) BZY88
pack. 5 of each value 8 . 20 .
Tantalum Bead caps. 14 values from \(0.1 / 35\) to \(100 / 3\). 10 of each total 140 caps 512.0.

See Practical Wireless for detaile of packs of components, surplus goods, etc. Alt prices quoted include VAT. Add 20p postege on orders under \(£ 2\). Mostorders deapatched on day of receipt. SAE with enquiries. Send 10p for Multimeter catalogue-free on request on orders over £3. Official Ordara accepted from Schools, etc. Export/wholesale enquiries welcome. Surplus component alway wanted


SAVE POUNDS by building this SOLID STATE CONTROL then CONTINUE TO SAVE On your ELECTRICITY BILLS by AUTOMATICALLY TURNING LIGHTS OFF when not required. PLUS the added advantage of an AUTOMATIC BURGLAR DETERRENT from dusk to dawn when you are not at home.
GREAT GIFT for family or friends or even MAKE MORE MONEY by building these in your spare time for others.
IDEAL FOR STUDY, KITCHEN, WORKSHOP OR CHILDRENS' ROOM NIGHT LIGHTS.

Complete KIt of parts*, drawings and assembly Instructlons. Send \(£ 5 \cdot 40\) for your Kit. This includes VAT and P. \& P. (U.K. only).
\(\star\) 220-250V \(50 / 60 \mathrm{~Hz} \star\) Fully Adjustable \(300-1,000\) lux
\(\star\) Switches 250VA \(\star\) Attractive enclosure
Available from:
MCA ELECTRONIC CONTROLS LTD 11 Aston Road, Waterlooville, Hants. P077XG

\author{
Connecting lead not supplied
}

Quantity discounts: \(10-19 \mathrm{£}\) each; \(20+£ 4 \cdot 65\) each inclusive

\section*{complete digital clock kits TEAK CASES}
prompt order despatch NON-ALARM £9-60 \(+76 p\) VAT ALARM E11-95 +96p VAT
genuine teak or perspex case (Prices include P. \& P.)

DELTA DATA: 4 Radiant Red fin high LEDs. \(12 h r\) display with a.m./p.m indication. Beautiful Burma Teak Case or Pretty Perspex in white, black blue, red, green. Power failure is indicated by flashing display
MODULES: Kits can be bought without case-Non-Alarm fe; Alarm \(\mathbf{5 1 0 . 5 0}\) inctusive.
READY BUILT: Buy a working tested module and fit your own case-NonAlarm 58.50; Alarm f11; or put it with our case parts ( \(\mathbf{5 3} \mathbf{3} 7\) 7) and save on complete clock price. Complete clock ready built. 2yr guarantee NonAlarm f14; Alarm \(\mathbf{5 1 6} 50\).
ALARM FEATURES: Pulsed tone. Tilt operated 10 minute "Snooze" period Single awitch setting. Optional extra mercury switch (45p) allows alarm reset by tilting clock. Digit brightness is automatically controlled to sult lighting level.
6 DIGIT: "Comet" Non-Alarm with 6 red 0.6 in high digits. Complete kit \(£ 17\) Case style as Delta

\section*{NOVUS CALCULATORS \\ 650 上5. \(40 \quad 4510\) £16. 20 \(850 £ 6 \cdot 75 \quad 6030 £ 21 \cdot 60\)}


Send payment with order. S.A.E. for complete range

\section*{Pulse Electronics Ltd}

Dept. PE4, 202 Shefford Road, Clifton Shefford, Beds.
Telephone: Hitchin (0462) 814477
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{TRANSFORMERS} & Double section bobbin P.C.B. pins and clamp varnish dipped \\
\hline \multicolumn{5}{|c|}{Herin} & \multirow[t]{3}{*}{Price List (all prices include P \& \(P\). and \(8 \%\) VAT Discounts \(1-24\) list price: \(24-100\) less 5\%)} \\
\hline Typ* & & Amps & Volts \({ }^{\text {D.C. }}\) & Amps & \\
\hline 101
102 & \multicolumn{2}{|l|}{o.c. values} & 5.0 & 0. 05 & \\
\hline 102
103 & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{are obtained}} & 6.0
9.0 & 0.55
0.35 & \multirow[t]{2}{*}{TRANBFORMERS: 101-111 [1.32; 201-211 E1.77; 501-502 £2.83.} \\
\hline 104 & & & 10.0 & \(0 \cdot 33\) & \\
\hline \({ }^{105}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Bridge Rect.
and a 4.000 mF
cmpactor}} & 12.0 & 0. 275 & \multirow[t]{2}{*}{CAPACITORS: 1.000 mF 10-16-25V 52p: 4.700mF 6.3-10V \(\{1 \cdot 2 \mathrm{ze}\).} \\
\hline 106
107 & & & \({ }_{15-0-15}^{12-0.12}\) & - \({ }^{\text {O. }} 14\) & \\
\hline 108 & \multicolumn{2}{|l|}{} & 24 & 0.14 & \multirow[t]{2}{*}{DIODE BAIDGE:1A 50V 49p; 2 SA 50V 31p; 6A \(50 \mathrm{~V} 51 \cdot 14\).} \\
\hline 409 & 12 & \(0 \cdot 5\) & & & \\
\hline \({ }_{118}^{110}\) & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{0.5
0.25} & & 二 & \multirow[t]{3}{*}{Note: Deduct 45 ( \(\mathrm{P} . \&\) \& ) if transtormer. drode bridge and capacitor are ordered together} \\
\hline & & & & & \\
\hline 201 & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{O.C. values}} & 5 & 2.0 & \\
\hline \({ }^{202}\) & & & \({ }_{6}\) & 1.5 & SUB-MINIATURE TRANSFORMERS: 1.2 VA , \\
\hline 203 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{With \({ }_{\text {Witdgo }}\)}} & 989 & 1.1
1.0 & \multirow[t]{3}{*}{240 V . E/5, pins and ciamp. Secondary volts 3-0-3V, 6-0-6V, 12-0-12V \(£ 1.73\) each.} \\
\hline 205 & & & 12 & 0.8 & \\
\hline 206
207 & \multicolumn{2}{|l|}{and a 1.000 mF
capactor} & \({ }_{15-0-12}^{12-15}\) & O.4 & \\
\hline 208 & \multirow[b]{4}{*}{} & \multirow{4}{*}{\[
\begin{aligned}
& 20 \\
& 1.0 \\
& 0.5
\end{aligned}
\]} & 24 & 0.4 & \multirow[t]{3}{*}{MINIATURE MAINS: \(2.4 \mathrm{VA}, 6 \mathrm{~V}, 12 \mathrm{~V} \mathrm{E} 1.55\) each.} \\
\hline 209 & & & & - & \\
\hline 210
211 & & & & & \\
\hline 501 & & & & & \multirow[t]{2}{*}{C.W.O please. Send SA.E. for detalls of transformers, diodes and capacitors.} \\
\hline 502 & & & 6 & 6. 0 & \\
\hline \multicolumn{5}{|l|}{} & 507 Burnley Road Rossendale, Lancs. BB4 8LZ \\
\hline
\end{tabular}

OVER 2,000 ELECTRONIC COMPONENTS INA



\section*{CLEAR PLASTIC PANEL METERS-MODEL MR 8SP}


85-95 each
'S'Meter 1 m
YU Meter
\(p P+\) Ins. 150

Dimensions: Front \(110 \mathrm{~mm} \times 120 \mathrm{~mm}\) wide Accuracy \(\pm 2.5 \%\)

RANGES
\begin{tabular}{|c|c|c|}
\hline \(50 \mu \mathrm{~A}\) & 10 mA & 50 V DC \\
\hline \(200 \mu\) A & 50 mA & 150 V DC \\
\hline \(500 \sim 4\) & 100 mA & 300 V DC \\
\hline \(50-0-50 \mu A\) & 500 mA & 300 V AC \\
\hline 100-0-100 \(/ \mathrm{A}\) & 1 ADC & 1A AC* \\
\hline 500-0-500 \(\mu \mathrm{A}\) & \$A DC & SA AC' \\
\hline 1 mA & 15ADC & 10A AC* \\
\hline \(1-0.1 \mathrm{~mA}\) & 30A DC & 20A AC* \\
\hline 5 mA & 10V DC & 30 AAC \\
\hline
\end{tabular}
- Moving iron (all others are moving coll)

\section*{EDUCATIONAL METERS-MODEL ED 107}


\section*{Available for personal shoppers at LASKYS}


\(240 \mathrm{v}-50 \mathrm{~Hz}\) from your 12 v ear battery.
 40 watt-[8. 27 75 watt- 12.03 150 watt- 12.03
151.27 150 watt-c21.27 500 watt (24v)-[48.18 300 watt (12v)- \(53.03 \quad 1.5 \mathrm{~kW}(50 \mathrm{~V})-\mathrm{E} 127.00\) All above inverters \(15 \mathrm{~kW}(110 \mathrm{v})-\mathrm{£} 140 \cdot 80\) be porch inverters are in kit form but may be purchased built up in metal case \& ready for use. Price list sent on receipt of s.a.e. Prices include post \& packing

PW, AUTOMATIC EMERGENCY SUPPLY
\(240 \mathrm{v}-50 \mathrm{~Hz}-150\) watt inverter with built in battery charger. In event of power failure switches over automatically from battery charging to inverter operation. Cat. as appeared in Dec. 72 P.W. Complete kit of parts (excluding meter) \(\mathbf{2 4} \cdot 50+\mathrm{s} 1 \cdot 70 \mathrm{p}\). \& p . FLUORESCENT LIGHT INVENTOR KIT 8 watt-12v-Fluorescent light. suitable for tents, caravans, houses. boa ta secondary lighting for factories, hotels, etc.
12 "-8 watt- \(\mathbf{5 3} \cdot 90+35 p\) p. \& p. Built \(4 \mathrm{p}-\) cs. \(00+35\) pp. \& p.
\(21 "-13\) watt- \(\mathrm{f} 4 \cdot 20+52 \mathrm{p}\) p. \& p. Built up\(\mathbf{5 5} \cdot 80+52 \mathrm{p} p \cdot \& \mathrm{p}\).

TRANSFORMERS \& COILS
Both high volume a small order capacity available.
Special offer. Miniature mains transformer 6-0-6v-6V.A.-85p plus 10 p p. \& p.
TRADE \& EXPORT ENQUIRIES WELCOMED

\section*{P.E. ORION STEREO AMPLIFIER}

\(20+20\) Watts r.m.s. into 8 ohm load. Distordion less than \(0.01 \% 100 \mathrm{~Hz}-10 \mathrm{kHz}\). Frequency response \(\pm 1 \mathrm{~dB} 20 \mathrm{~Hz}\) to 20 kHz . Hum level virtually nil with volume full on.
This is a power amplifier of superb quality incorporating the very latest design features. Professional hi-fi enthusiasts have classed it as fantastic and real value for money. The CCT incorporates a low flux transformer and inputs for disc. tape, tuner, etc.
Complete kit of parts including slim line bookend case, silk screened front panel \& knobs. \(£ 47 \cdot 30\) incl. VAT \& p. \& p.
The bookend case, I.C.s \& semiconductors, P.C board, Transformer, etc. may be purchased separlately if desired. Send S.A.E. for further information INSTRUMENT CASES
Bookend Amplifier and attractive styled Instrument Cases available. Send S. and A. envelope for Price List.


ASTR IGNITION SYSTEM Complete kit of parts for this proven and tested system \(£ 10 \cdot 45\) incl. VAT. Ready built with only two connections to alter \(£ 13.75\) incl. VAT. Thousands have used this system both home and abroad. Consider these advantages more power, faster acceleration, fuel economy, excellent cold starting, smoother running, no contact breaker burning. Also because of the high energy spark, the fuel mixture can be made weaker giving further economy and fewer plug problems. Fitting time when built 5 minutes approx. Please state whether positive or negative earth. Trade and export enquiries wetcored.

ASTR ELECTRONICS
Spring Bank Road, West Park Chesterfield.


This fine Super Touch-Sensitive Piano can be built in just 12 hours. All component parts are brand new and guaranteed, and sold at wholesale prices. Visit our showroom and see how simple and profusional the end product is.
For further details on our complete range including Organ kits and components for musical instruments, telephone 0l-986-8455/5063, 01-870-4949, 01-249-5624.

Electronic
Musical
Instruments
Showroom: I2 Brett Road, Hackney, London, E8 IJP.


Capacitor Discharge IGNITION
- MAXIMUM PERFORMANCE - MAXIMUM ECONOMY EASY COLD START

SYSTEM I
Professional photoelectric ignition using L.E.D. light source and reflective disc. This machined aluminium disc gives a timing accuracy far superior to other methods and is simple to fit. Unit housed in diectest box \(4 \mathrm{t}^{\prime \prime} \times 34^{\prime \prime} \times 2 \mathrm{f}^{\prime \prime}\). Price玉11.20 (KIt \(\mathbf{\Sigma 1 8} \cdot 60\) ). State carimodel/measurement across cam lobes.
SYSTEM II
Contact breaker model as above lest sensor. Price \(512 \cdot 00\) (KIt \(810 \cdot 80\) ). W/C Twin unit Price E15-69. S.A.E. for descriptive leafiet-AHI UNITS IN STOCK. Mail order to CDI Electronic Systems Lid., 275 Vale Road, Ash Vale, Aldershot, Hints.
Demonstration/Callers to Hillside Motors, 292 Carshalton Road, Carshalton, Surrey Telephone \(01-6429973\).

This catalogue-Electrovalue Catalogue No. 8 (Issue 2, advanced opto-electronic
 to obtain elsewhere. The company's own computer is programmed to expedite delivery and maintain customer satisfaction. Attractive discounts are allowed on many purchases; Access and Barclaycard orders are accepted.
\(\star\) FREE POSTAGE on all C.W.O. mail orders over \(£ 2\) list value (excluding VAT) in U.K. If under, add \(15 p\) handling charge.

inc. refund voucher worth 40p


\section*{54 Montagu Street, Kettering, Northants.}

Tel. Kettering 83922
Shop open daily. PAYMENT: C.W.O. Access and Barclaycard for phone orders. GUARANTEE: All devices are brand new and full opec. Any taulty item returned unused within 7 days refunded or exchanged



The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of twition until successful, is the key to our outstanding record in the technical training field. You study at the tirne and pace that suits you best and in your own hame. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates

Excellent job prospects aweit those who hold one of these recognised certificates. ICS can coach you for
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour T.V. Servicing
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE.


\section*{TRANSFORMERS}

ALL EX-STOCK-SAME DAY DESPATCH

MAINS
ISOLATING
PRI. \(120 / 240 \mathrm{~V}\)
SEC. \(120 / 240\)
CENTEE TAP WITH SCREEN
Ref


30 VOLT RANGE Prim. 200-240V Sec. 0-12-15-20-24-30V
\begin{tabular}{|c|c|c|}
\hline Rof. & Amps & \(\Sigma\) \\
\hline 112 & 0.5 & \(2 \cdot 75\) \\
\hline 79 & 1.0 & 3.58 \\
\hline 3 & 2.0 & 4.93 \\
\hline 20 & 3.0 & 6.10 \\
\hline 21 & 4.0 & 7.03 \\
\hline 51 & 5.0 & 8.45 \\
\hline 117 & 6.0 & 0.47 \\
\hline 88 & 8.0 & 12.49 \\
\hline 89 & \(10 \cdot 0\) & 12.84 \\
\hline
\end{tabular}

\section*{POVOLT AANGE} Sec. 0-24-30-40-48-60V
\begin{tabular}{ccc} 
Ref. & Amps & \(E\) \\
124 & 0.5 & 3.54 \\
126 & 1.0 & 4.84 \\
127 & 2.0 & 6.78 \\
125 & 3.0 & 9.72 \\
123 & 4.0 & 11.58 \\
40 & 5.0 & 12.54 \\
120 & 6.0 & 14.69 \\
121 & 8.0 & \(17.01 \dagger\) \\
122 & 10.0 & \(20.95 \dagger\) \\
189 & 12.0 & \(21.87 \dagger\)
\end{tabular}

D.C. -1.000 V . A.C. \(-1,000 \mathrm{~V}\). \(1.000 \Omega \mathrm{~V}\) D.C. 1-100mA. Res - \(150 \mathrm{k} \Omega\). Bargain

ANTEX SOLDERING IRONS
 SOLDERING IRON KIT £4.48 STAND FOR ABOVE E1. 49
MAGNETIC TO CERAMIC
CARTRIDGE CONVERTOR OPER
E3.17. 13.17.

OR SEND STAMP FOR LISTS.
COMPONENT PAKS
200 Mixed value resistors (count by weight) 50 Mixed value capacitors (count by weight) 30 Mixed value precision resistors \(\mathrm{f} w 2 \%\) 15 Assorted pots \& pre-sets
10 Reed switches
3 Micro switches
20 Assorted tag strips
PLEASE STATE PAK REQUIREO
9Op PER PACK PLEASE STATE PAK PEQUIREO
90p PER PACK
\(2+25 W\) Amplifiers
\(1+\) Per-Amp
1 + Power supply
1 + Transformer
\(1+\) Front Panel
\(1+\) Kit of parts to include onforf switch, neon Ind. Stereo headphone socket. Plus instructions book 5.32-18.

TEAK AUDIO KIT 25W
Teak veneered cabinet \(164:+11:+3\) : aluminium chessis. heat bink and front panel brackets plus ba
\(\mathbf{t 1 1 . 2 1}\)
CARTRIDGES

Magnetic Sonotone 100 Ceramic E.E.I.CS 2000 ALOS GP93-1
TCC AT55
5.31
62.72 \(28 \cdot 72\)
\(52 \cdot 11\) \(\mathrm{C2} \cdot 11\)
EA .42
CASED AUTO TRANSFORMERS 240 V mains lead input \(\&\) USA 2 pin outiets \(\begin{array}{lll}20 \mathrm{VA} \\ 150 \mathrm{VA} & 5.42 & \text { Ref } 133 \mathrm{~W}\end{array}\)
\begin{tabular}{ccc} 
150VA & \(£ 7.90\) & Ref 4 W \\
500 VA & \(£ 13.32\) & Ref 67 W \\
1000 VA & \(£ 19.86 \dagger\) & Ret 84 W
\end{tabular}
\(\qquad\)

ON SITE TOOL ISOLATORS (to BS3535) Send for details

TEST METERS TEST Q MKT 5 AVO 72
AVO TIT
169 AVO 71169
AVO MM5
U4315 (USS carry case
POWER UNIT
POWER UNIT
CC12-05 Output Switched
\(3=4.5-6-7.5-9-12 V\) at 500 mA . \(55 \cdot 18\)

\section*{HIGH QUALITY MODULE} HIGH QUALITY MODULES 5 Watt RMS AMPLIFIER 10 Wat1 RMS AMPLIFIER 25 Watt RMS AMPLIFIER
125 WMS AMPLIFIER 125W RMS AMPLIFIE
PRE-AMP for \(3-5-10 \mathrm{~W}\) PRE-AMP for 25 W POWER SUPPLLES 3-5-10W POWER SUPPLIES 25 W TRANSFORMER \(3 W\) TRANSFORMER 5-10W TRANSFORMER 25W
4 BS MINI-DECK BSR P128R Single and Auto (Cnasis) Garrard SP25 (Chassis)
NEW STEREO 30
Complete Stereo Chassis inc
\(7+7 \mathrm{w}\) RMS, Amp. Pre-amp. Power Supply, Front Panel. Knobs (Only Mains Trans 53.58 . Teak veneered cab. £4.54.

STEAEO FM TUNER WITH PHASE-LOCK LOOP 4 Pre-selected stations supply 20.35 V . 90 mA Max. cea. 72
Barrie Electronics Ltd.
3. THE MINORIES, LONDON EC3N 1BJ TELEPHONE: 01-488 3316/7/8
nearest tube stations aldgate \& liverpool st


\section*{"Manta" Capacitive Electronic Ignition Unit IMPORTANT NEWS:}

We are pleased to announce that the "Manta"-one of the highest quality ignition units available-is now supplied in Kit Form.
Construct this top performance electronic ignition unit and benefit from improved petrol consumption, smoother running and instant starting for your vehicle.

ONLY
Kit price (including postage and packing, VAT, fuli
£16.50 assembly and installation instructions:
(Ready-made unit available at \(£ 19 \cdot 85\), including VAT, postage and packing)
Send S.A. E. today for full details of the top quality anit to:

\section*{ELECTRO SPARES}

Dept. P.E., 187a Sheffield Road, Chesterfield, Derbyshire S41 7JQ. Tel. (0246) 36638

\section*{芳 \\ W:K:F ELECTRONICS}

THE P.C.B. SPECIALISTS
PRACTICAL ELECTRONICS *PRINTED CIRCUIT BOARDS NOW AVAILABLE

TYPE 'A': Made In 1.6 mm Epoxy/Glass-fibre. supplied Roll-tinned \(\&\) drilled TYPE 'B': Made in 1.6 mm S.A.B.P., supplled Rolltinned a drilled:

All units avallable Ex. Stock by return. All prices INCLUDE Post-Pack, and V.A.T TERMS: Cash with order. Cheques \& P.O.s payable to W.K.F. Electronics.
\begin{tabular}{|c|c|c|c|c|}
\hline ISSUE & PROJECT & QTY of P.C.E. & TYPE A PRICE & TYPE 'B' PRICE \\
\hline Sept. 1976 & Cross-Hatch Generator & 1 & 3.75 & - \\
\hline Sept. 1976 & Gat-Smoke Detector & 1 & 2.25 & 1.65 \\
\hline Sept. 1974 & Gas \& Smoke Detector & 1 & - & 1.75 \\
\hline JAN. 1975 & ORION STEREO ZOW AMPLIFIER & 1 & 3.60 & 2.20 \\
\hline May 1875 & I.C. Pulse Generator & 1 & - & 1.40 \\
\hline OEC. JAN 1976 & \(50+50 \mathrm{~W}\) GUJTAR AMPLIFIER & 3 & 3.25 & 2.00 \\
\hline JUNE 1876 & OIGITAL FREQUENCY METER & 4 & 4.25 & 3.50 \\
\hline June 1976 & Audio Millivoll Meter & 2 & - & 1.80 \\
\hline JUNE-AUG. 1976 & RADIO CONTROL SYSTEM & 8 & 5.70 & 4.30 \\
\hline
\end{tabular}

\section*{PRODUCTION SPACE ALWAYS AVAILABLE FOR:}
P.C.B. PRODUCTION-ELECTROPLATING-SCREEN PRINTING-TINNING CONTHACT ORILLING ANY PHOTOGRAPHIC ART PROCESS

\section*{SERVICE FOR:}
P.C.B. MASTER PREPARATION + ANY GRAPHIC ARTS PROCESS

FROM:
ROUGH COPIES-EXISTING UNITS - CIRCUIT DIAGRAM
EVEN FELT TIP PEN ON OLO FISH \& CHIP PAPER!!
QUOTATIONS FREE OF CHARGE BY RETURN
Large discounts given for long runs. Run-on's and repeat orders. Alsq call-otf orders accepted

FOR OUTLINE QUOTATIONS PHONE:
WHITWELL (DERBY'S) 695 (STD 090974)
\(\frac{4}{6}\)
all ohders \& mail to W.K.F. Electronics Welbeck Streot, Whitwell, Near Workeop, Notes.

\section*{TIMEKEEPING KITS-CMOS-DISPLAYS-MEMORY-BOOKS}

GUARANTEE: Telephoned orders recelvéd by 4.30 p.m. (Mon.-Fri.) guaranteed dispatched the same day. Flrst Clase Post. The same applies to written orders. Teiephone Orders: Private customers (min. tel. order \(£ 5\) ) quote Access or Barclay-
card no. Official orders. no minimum telephone order value.

\section*{GREEN CLOCK KIT}

Four dight 12 or 24 hr . mantel-plece electronic clock with 0.5 in GREEN displays in a white slim-line case
Easy to bulld. Order as "GCK" \(\$ 12\)-90
CRYSTAL CONTROL and BATTERY BACK-UP can be added to this clock. If malns ower is disconnected (through a power cut, accldental switching of or movin CCK: Crystal-Controlled, 6 Digit, Car Clock Kit with Independant Joupney Timer (P.E. Feb. '76)
Auns off 12V (car) battery-protected against low voltage drop-out-internal battery back-up allows temporary disconnection-6 digit limer times journays up to 24 hours in hours, minutes and aeconds-automatic intensity control-
uses 0.5 in Red LED digits. Complete kit including case. Order as "CCK' \({ }^{\circ} 39.50\) ATTRACTIVE 6-DIGIT ALAAM CLOCK KIT.
With optional CRYSTAL CONTROL for high accuracy
and battery back-up-bleep alarm. snooze, automatic
intensity control-uses Red 0.5 in LEDs-optional 'touchswitch for snooze (ext
Order as "ACK" 266.40
Complete kit as above. plus crystal control and batter
 back-up. Accurate to within a few seconds a month-no need to reset your clock each time power is disconnectedalarm operational while clock is on back-up Order as 'ACK + XTK + BBK \(£ 33.58\)
50hz Crystal TImebase KIt: provides an extremely stable output of one puise every 20 msec. Uses Improving accuracy of digital clocks if used with battery back-up also makes clocks power-out or switch-ott proof Replacing 50 Hz signal on battery-powered equipment Providing film synchroniaation
Monitoring or improving turntable speed. Complete kit. Order as "XTK \(56-20\) Monitoring or improving turntable speed. Complete kit. Order as 50 Hz Cryatal Timebase Module: as above, but
presel to within \(\pm 5 \mathrm{p} . \mathrm{p} . \mathrm{m}\). Order as \(671-50\) c9.s0
100 Hz Cryotal Timebses Module. Use as a pulse generator for any system counting in \(1 / 100\) th sec. units. High stability. Iow current consumption ( \(3 \mathrm{~m} A\) typical)-Easily interfaced to TTL (requires Y transiator)- 5 to 14 V operation (typical) -Bullt and tested and output preset to within \(\pm 5\) p.p.m. Order as " \(821-100\) " \(\mathbf{~ 1 2 . 7 0}\) ADD VAT \(13 \%-25\) P P. 8 P. on all orders Access and Barclaycard orders welcomed, by post or phone (see above) Price List sent with ordore or free on
request (send S.A.E.) Export orders welcome: No VAT but add \(10 \%\) (Europe), \(15 \%\) (Overseas) for Alr Mail P. \& P. (Contact us flist for Export rates on books).

SINTEL sid aston street
OXFORD. TEL, 086549791

CMOS from the top manutacturers, mainly RCA and Motorola
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline CMO & & \({ }^{\text {CD } 4026}\) & 1.79
0.55 & CD4051 & \({ }_{0}^{0.17}\) & CD4085 & \begin{tabular}{l}
0.74 \\
0.74 \\
\hline 1
\end{tabular} & Clock chipu & \\
\hline CD4000 & 0.15 & CD4028 & 0.9 & CD4053 & 0.97 & CD40es & 1 & AY51202 & 2.940 \\
\hline CD4001 & 0. \(\%\) & C04029 & 1-1t & CD4054 & 1.20 & CD4093 & -60 & MK50250 & 5.00 \\
\hline CD4002 & 0.16 & CD4030 & 0.58 & CD4055 & \(1 \cdot 37\) & CD4094 & 1.94 & MKK50253 & 5.00 \\
\hline CO4006 & \(1 \cdot 281\) & CD4031 & 2 -24 & CD4056 & \(1 \cdot 37\) & CD4095 & 1.09 & & \\
\hline C04007 & 0.17 & CD4032 & \(1 \cdot 11\) & CD4057 & 27.95 & CD4096 & 1-6 & & \\
\hline CD4008 & 0.95 & CD4033 & 1.45 & CD405 & 4-98 & CD4097 & 3-47 & Fiot Cable & \\
\hline CD4009 & \(0 \cdot 5\) & CD4034 & 1-84 & CD4080 & 1.15 & CD4099 & 1.50 & 20-w 1 m & 1.00 \\
\hline CD4010 & 0.58 & CD4035 & \(1 \cdot 22\) & C04062 & . 07 & CO4502 & 1.28 & 10 m for & . 0 \\
\hline CD4011 & 0.17 & CD4036 & 3-14 & CD4063 & \(1 \cdot 14\) & CD4510 & 1.41 & & \\
\hline CD4012 & 0.17 & CD4037 & 0.41 & CD4066 & 0.44 & COH519 & 1. 62 & Verocas & \\
\hline CD4013 & 0.50 & CD4038 & 1.22 & CD4067 & 3. 87 & CO4514 & \(2 \cdot 65\) & 7514101 & \\
\hline CO4014 & 1.05 & CD4039 & 3.09 & CD4088 & 0.22 & CO4515 & 3.25 & 7514110 & 3.54 \\
\hline CD4015 & 1.05 & CD4040 & 1-11 & CD4069 & 0.28 & C04516 & 1.41 & 751237 J & 1.72 \\
\hline CD4016 & 0.55 & CD404 & 0-37 & CD4070 & - 60 & CO4518 & 1-30 & 751236 D & 2.15 \\
\hline CD4017 & 0.89 & CD4042 & 0.47 & CD 4071 & \(0 \cdot 22\) & CO4520 & 1.30 & 751238 & \(2 \cdot 5\) \\
\hline CD4018 & 0.90 & CO4043 & 1.05 & CD 4072 & \(0 \cdot 22\) & CD4527 & 1.4 & & \\
\hline CO4019 & 0.56 & CD404 & \(0 \cdot 67\) & CD4073 & 0.22 & CD4532 & 1. 50 & Sundry & \\
\hline CD4020 & 1.16 & CD4045 & 1.45 & CD4075 & \(0 \cdot 22\) & C04555 & 0.94 & CA3130 & 1.14 \\
\hline CD4021 & 1.05 & CD4046 & 1.30 & CD4076 & 1.1 & CD4558 & 0.94 & HA741 & -35 \\
\hline CD4022 & 1.00 & CD4047 & 0.94 & CD407 & \(0 \cdot 10\) & MC14528 & 1.14 & (RCA 8 DIL) & \\
\hline CD4023 & 0.17 & CD4048 & 0. 58 & CD4078 & -. 22 & MC14553 & 5. 24 & 78L12WC & \(\cdot 7\) \\
\hline CD4024 & 0.11 & CD4049 & 0.55 & CD4081 & -2 & MC14552 & -65 & 78LizWC & - 7 \\
\hline CD4025 & 0.17 & CD4050 & 0.55 & CD4082 & 0.22 & |M6508 & -05 & & \\
\hline
\end{tabular}

New 1976 RCA Cmos and Lnear IC combined Databook
Now 1976 RCA 'Power and Microweve' Databook
Motorola McMO8 Databook (Vol. 5 Series A). c. 500 pages Intel Memory Dealen Handbook, c. 260 pages
4.7

MEMORY IC from Intel: P2102A-6 (new version of 2102-2) 16 pin. TTL compatible \(1024 \times 1\) bit Static RAM (Data supplied with IC)
 \(32 \cdot 768 \mathrm{kHz}\) Min. Watch Quartz Crystal 4.50 \begin{tabular}{l}
.65 \\
\hline 60
\end{tabular} LOW COST IC SOCKETS
Soldercon IC gocket pins are the ideal low cost method of providing sockets for TTL. CMOS, IC's. Displays. Simply cut off the lengths you need, solder into board and snap off the connecting carrier.
Strip of 100 pins for \(50 \mathrm{p}, 1000\) plns for \(£ 4,3,000\) pins tor \(£ 10 \cdot 50\).
 or phoned orders from Companies. Govt. Depts. Nat Industries, Univs. Polys etc. Fast dellvary for A. a D

\title{
PRACTICAL SOLID STATE D.C. SUPPLIES
}

\author{
by T. D. Towers
}

Price \(\mathbf{6 5} \mathbf{- 8 5}\)

AUDIO AMPLIFIERS FOR THE HOME CONSTRUCTOR by I. R. Sinclair

Price \(\mathbf{6} 2.50\). THYRISTOR AND RECTIFIER THE OSCILLOSCOPE IN USE by I. R. sinclair.

Price £2.75. \(^{2}\). UNDERSTANDING SOLID STATE ELECTRONICS by Texas Instruments. \(\begin{aligned} & \text { Price } \mathbf{1 1} \mathbf{7 0} \text {. }\end{aligned}\) TTL COOKBOOK by D. Lancaster Price 66.20.
TRANSISTOR ELECTRONIC ORGANS FOR THE AMATEUR by A. Douglas. 4 price 645 ,

MAKING YOUR OWN ELECTRONIC GADGETS - A BEGINNER'S GUIDE by R. H. Warring. Price \(\mathbf{5 2} \mathbf{2 5}\). ACTIVE-FILTER COOKBOOK by D. PROBLEMS AND SOLUTIONS IN LOGICDESIGN byD. Zissos. Price \(£ 2 \cdot 15\). SOLID STATE COLOURT.V. CIRCUITS by G. R. Wilding. Price \(\mathbf{E S}^{2} 25\).
* PRICES INClUdE POSTAGE *

THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKISTS
of British and American Technical Books
19-21 PRAED STREET LONDON W2 INP

Phone OI-723 4185
Closed Satturday I p.m.

\section*{PRECISION PETITE LTD.}

\section*{119a High Street, Teddington, Middlesex TW11 8HG Tel. 01-977 0878}
S.A.E. please for leaflet and order form
- Super 30 Kit ( 30 Tools) (incl. drill without stand) £17.62 plus P. \& P. 85p
- Super 10 Kit ( 10 Tools) (incl. drill without stand)
\&13.74 plus P. \& P. 65p
Mk. II Drill Stand
44.40 plus P. \& P. 35p

Mk. II Drill only 68.79 plus P. \& P. 35p
- Flexible Drive Shaft 65.46 plus P. \& P. 25p
* Transformer 240 V a.c. \(/ 12 \mathrm{~V}\) d.c.
\&6 plus P. \& P. 70p
Replacement drills, stones, burrs, etc. 40 p each. Circular saw blades 50p each. \(\mathbf{E 2}\) per set of 4 sizes. P. \& P. any quantity 20 p.

All VAT inclusive


SINCLAIR IC20
IC20 10W + 10W stereo IC a
and printed circuit, £4.95.
PZ20. Power supply kit for the above, £3.9
V.20 Volume. tone-control and preamp kit. £7.95

Send S.A.E for tree leaflet.

\section*{JC12 AMPLIFIER}

6W IC audio amp.
with free data and
printed clrcuit

\section*{DELUXE KIT FOR JC12}


Contains extra parts for the \(p C b\) and volume and tone controls. Mono version £2.33. Stereo \(\mathrm{EA}-95\).
JC12 POWER KIT
Supplies 25V tA. £3.55.
JC12 PREAMP KITS
Type 1 for magnetic plokups. mics and tuners, Mono £1 50 , Stereo £3. Type 2 for ceramic or crystal pickups Mono sip, Stereo §1-76.
Send S.A.E. for tree leaflet.

\section*{S-DECS AND T-DECS*}
S.DeC 22.24
T-DeC 24.05

T-DeC £4.05
\(\mu\)-DeCA 84.45
\(\mu\)-DeCB 27.85
IC carriers-


16 dil: plain 51-07, with socket \(\$ 2 \cdot 21\). НOTO5 plain 99p, wilh socket E : 95 .

\section*{FERRANTI ZN414}

IC radio chip 51.44 . Extra parts and pcb ton radio E3-85. Case \%0p. Send S.A E for tree data

\section*{SINCLAIR PROJECT 80 AUDIO}

MODULES
FM tuner \(513 \cdot 25\). Q16 £9.50. P25 54.95. PZ6 \&s 70 . PZ8 /A. Trans for PZ8 \(55 \cdot 60\). Z40 £5.75. Sterec \(80 \quad\) £11.85 Project 8050 £18.95. Quad decoder \(£ 14\). 95
BI-PAK AUDIO MODULES
S450 Tuner \(£ 18 \cdot 95\). AL60 £4.33. PA 100 £13. 45. MK60 audio kit \(\mathbf{E 2 7} \cdot 20\). Teak \(60 \mathrm{c9} 95\). Stereo \(30 \mathrm{£15} \cdot 95\). TC30 £4.60. AL250 [16.15. Send S.A.E. for tree data
SAXON ENTERTAINMENTS AUDIO MODULES
SA1208 £18-95. SA1204 £13-30. SA608 £11-95. SA604 £10. 30. PM1201/8 511 .45. PM1202/6 \(\quad 14.95\). PM1202/4 514.95.
 S.A.E. for free leatlet

\section*{JC40 AMPLIFIER}

New-integrated circuit 20W amplifier kit complete with chip printed circuit and data \(\mathbf{\$ 3} \cdot 95\). Send S.A.E. for free leaflet

\section*{PRINTED CIRCUIT KIT. £3.95*}

Make your own prlnted circuits. Contains etching dish 100sq. in of pc board, 11b ferric chloride. etch resist pen small drill bit. laminate cutter

SINCLAIR BLACK WATCH
Fully assembled
with black
strap, 220 -95*

\section*{SINCLAIR CALCULATORS*}

Cambridge \% \(£ 7 \cdot 35\). Cambridge Scientific \(£ 11 \cdot 45\). Oxford 300 £13. \(\mathbf{3 0}\). Programmable Scientific with free malns unlt \$24.95. Mains adaptors are available for all models (state model) £3-20.

\section*{CBM CALCULATORS*}

796 MD 8 digit, \%, memory N/A. 8970 B digit, \%, function memory \(57 \cdot 50\). SR79190 8 diglt or \(5+2 /\) memory trig. / log/pi/powers C 11 .90. SR 1800 [20.55. SR4148R (R) \(\{30 \cdot 10\). SR4190R (R) 442.95 . ( R ) \(=\) free charger. Mains adaptors for other models ミ3-20.

\section*{NOVUS CALCULATORS*}

750 6-digit 55-30. 835 8-digit. \%. sq. root, const, 4 function memory 57.60. 452510 digit programmable scientific ( \(R\) ) (R) - tree charger Mains adaptors for other models \((\mathrm{R})=\) tree charger. Mains adaptors for other models

MISTRAL 24 HR. DIGITAL CLOCK KITS* Includes pcb, power supply, case, \(\frac{1}{2}\) in dlsplay, chip and all parts. Kit \(£ 10 \cdot 95\). Bulft £12.50. Also Mistral 2. de luxe assembled version with alarm and tilt sleep-over facility £13. 95.
NATIONAL MA1001H DIGITAL CLOCK MODULE*
Complete module including \(t\) in display and clock chip fully assembled on a \(1+\mathrm{in} \times 3 \mathrm{in}\) pcb. Just add a power supply, switches, etc., to produce a 24 hr . clock with Send S.A.E. for our Digital Clock leaflet

\section*{SWANLEY ELECTRONICS}

Dept. PE, PO Box 68, Swanley, Kent

\section*{Battery Eliminator Bargains \\ STABILIZED POWER UNITS*}

Millenta series. Switched 1 to 30 V In 0.1 V steps. 1 A output Kit \(£ 11.45\); Kit + case \(£ 14 \cdot 40\); Bulit \(£ 18 \cdot 40\). 2 A output: Kit £13.95; Kit + case £16.90; Built \(£ 20 \cdot 95\).
6-WAY SPECIAL 55 ) 20
Switched output of \(3 / 4 \frac{1}{2}\) \(6 / 7 / 9 / 12 \mathrm{~V}\) al 500 mA .
6-WAY DOUBLE
RADIO MODEL £6-20
Switched output
\(3+3 / 4++4+6+6\)
\(3+3 / 4 \frac{1}{2}+4 \frac{1}{2} / 6+6\)
\(7 \frac{1}{3}+7 \frac{1}{2} / 9+9 / 12+12 \mathrm{~V}\) at 250 mA . Also \(15 / 18 / 24 \mathrm{~V}\) single..\(~\) 3-WAY MODEL
Switched oufput of \(6 / 7_{\frac{1}{2}} / 9 \mathrm{~V}\) at 250 mA with 4 -way multi-jack plug and tree matching socket. \(\mathrm{E} 2 \cdot 95^{*}\).

\section*{RADIO MODELS}

50 mA with press-stud battery connectors. 9 V £3.25. Also 9V 300mA £3. 95 .
CASSETTE MAINS UNITS
\(7 \frac{1}{2} \mathrm{~V}\) output with 5 pin DIN plug \(50 \mathrm{~mA} £ 3.45\). 300 mA £3. 95 . CAR CONVERTORS
input 12 V d.c. Ouput \(6,7 \frac{1}{2} / 9 \mathrm{~V}\) d.c. 1 A regulated, \(54.75 *\).

\section*{BATTERY ELIMINATOR KITS}

Send S.A.E. for free leaflet on range.
 \(9 \mathrm{~V}+\mathrm{gV} \mathrm{E} 2 \cdot 80\).
100 mA ceseette type with 5 pin DIN plug. \(7+V \mathrm{I} 1.95\). Tranalator stablired t-way type for low hum \(3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{4} / 9 / 12\) 15/18V 100mA £. 13; 1A £5.50.
Heavy duty 13 -wey types \(4 \frac{1}{2} / 6 / 7 / 8 \frac{1}{2} / 11 / 13 / 16 / 17 / 21 / 25\) / \(28 / 34 / 42 \mathrm{~V}\). 1 amp model 54.40 . 2 amp model \(56 \cdot 95\). Car Convertor klt. Input 12 V d.c. Output \(6 / 7 \frac{1}{\mathrm{t}} / 9 \mathrm{~V}\) d.c. 1 A regulated £1-95.

\section*{MAINS TRANSFORMERS}
\(6-0-6 \mathrm{~V} \quad 100 \mathrm{~mA} 95 \mathrm{p} . \quad 90-9 \mathrm{~V} \quad 100 \mathrm{~mA} 95 \mathrm{p}\). 18 V 1A E 1.65 . 12. \(15,20,24,30 \mathrm{~V} 1 \mathrm{~A} \mathrm{\xi} 3.60\). \(12-0-12 \mathrm{~V} 100 \mathrm{~mA} \mathrm{E} .05\)
 E2.85. 30-0-30V 1A [3.60. 6-3V 1łA E1.85. 0-24V twice
100 mA [1-65.

Post 30 p on orders under 22 , otherwise free. Prices include VAT (Overseas customers deduct \(7 \%\) on items marked *, otherwise \(11 \%\) ). Official orders welcome.
 parts and components: etc. Rigid capacitors, diodes, transistors vertical and horic units interlock together in parent plastic drawers have label slots. 1D and 2D have space divlders. Build up any size cabinet for wall, bench or table top

As supplied to Post Office, Industry and Government Depts.
SINGLE UNITS (10) (5in \(\times 2\) fin \(\times 2 \mathrm{i} i n)\) £2.50 DOZEN
DOUBLE UNITS (2D) (5in \(\left.\times 4 \frac{t}{\mathrm{f}} \mathrm{in} \times 2 \mathrm{fin}\right)\) \&4.40 DOZEN.
TREBLE (3D) \&4. 20 for 8
DOUBLE TREBLE 2 drawers, in one outer case (6D2), \(\mathbf{~ 6} 6 \cdot 50\) tor 8.
EXTRA LARGE SIZE (601) \(£ 5 \cdot 50\) for 8
PLUS OUANTITY DISCOUNTS
Orders over \(£ 20\), less \(5 \%\).
Orders over 560 , less \(7 \frac{1}{5} \%\)
PACKING/POSTAGE/CARRIAGE: Add 75p to all orders under \(£ 10\). Orders \(£ 10\) and over, please add \(10 \%\) Carriage.

QUOTATIONS FOR LARGER OUANTITIES
Please add \(\%\) V.A.T. to totel remittence
All prices correct at time of going to press
FLAIRLINE SUPPLIES
(Dept. PE10)
124 Cricklewood Broadway, London NW2 Tel. 01-450 4844


Electronic


\section*{ALL PARTS CAN BE SUPPLIED}

Keyboard, Keyswitch, P.C.B.s, Hardware, Semiconductors, Resistors, Capacitors, Cabinets Complete kits or easy stages

Send S.A.E. for details
Clef Products
31 Mountfield Road, Bramhall Stockport, Cheshire SK7 1LY

\section*{G8CZW DIGITAL FREQUENCY METER}


ZN 1040e Count/Display I.C.
Integrated Circuit Pack
Displays and Filter
Semiconductor and Diode Pack
Resistor and Capacitor Pack
Logic and Display P.C.B. s
5 MHz Crystal
Transformer 8-0-8V ( +60 P P. \& P.)
I.C. Sockets Pack

Switches. Knob. BNC Sockets, etc.
Hardware and Wire Pack
Case-Two-tone PVC-faced steel punched
and lettered ( + 75p P. \& P.)
Spare min. BNC Sockets ( 50 ohm )
Spare min. BNC Plugs ( 50 ohm )
Complete kit of paits for High impedance Buffer (includes PCB)
High Impedance Butfer P.C.B. only
Complete kit for VHF pre-scaler (includes PCB but less I.C.)
VHF Pre-scaler printed circult board only
SP8631B 500 MHz Pre-scaler I.C
ZN1034E Precision Timer
2NA116E \(3 \frac{1}{2}\) digit digi-voltmeter I.C.
Digital Voltmeter P.C.B's and Circults
NE592 Wideband video amplifier I.C.
Reprint of full G8CZW article (post fre
Feprint of full G8CZW article (post free) \(\quad \begin{aligned} & 1.43 \\ & 0.50\end{aligned}\)
All prices Inc. VAT at the standard rate. Please add
20 p P. \& P. for packe. S.A.E. for full liate.

\section*{abc ELECTRONICS (OLDHAM) LTD.}

\section*{83 Lees Road, Oldham OL4 1JW} Tel. 061-624 8812


\section*{SINE WAVE OSCILLATOR \\ }

Simplify circuit dealgn. Use S-DeC. Sockets In plastic block are connected In prearranged pattern. To bulld clrcult, bimply plug in components. Afterwards, unplug components ready to bulld more circuits. Use same components again and agaln.
Every S-OeC comes complete with step-by-step Instructlone. free control panel, and bookiet with nine clrcuits you can bulld. Sine wave oscillator, radio receiver, blnary counter. VHF radio mIcrophone-they're all easey with S-DeC (see free booklet for circults and Instructions).

Send cheque/P.O. now and start deslgning the easy way, with S-Dec. Each S-DeC costs only \(\mathbb{E 1} \cdot 96\) plus 37 p post, packaging and VAT

Prease rush me............S-DeCs so that I csin start designing circuits the easy way. I enclose a cheque/P.O. for E.

Name
Address

PB Electronics (Scotland) Ltd
57 High Street, Saffron Walden, Essex CB10 1AA
Telephone: Saffron Walden (0799) 22876

\section*{SPECIAL \\ ANNOUNCEMENT}

We are adding a further 800 new items to our stock list of components. Watch for our advertisement in next month's issue! Better still, write NOW for our NEW 1976 Catalogue. It shows our complete range of Electronic Components, Semiconductors, Audio Modules, \(\mathrm{Hi}-\mathrm{Fi}\) Accessories etc., in fact, everything for the electronic enthusiast. AND all at unbeatable bargain prices!

Order your copy NOW Only \(50 p+15 p\) postage

P.O. BOX 6, WARE, HERTS.


RECEIVERS AND COMPONENT8

\section*{PADEC COMPONENTS}
(Dept. PE)
C-D IGNITION TRANSFORMERS
Laminated core, clamp fixing, \(15: 1\) turns
ratio (FREE application circuit with trans'f, if requested), \(£ 1.95\) plus 25 p P. \& P .
I.T.T. DIECAST BOXES
( \(47 \times 37 \times 2\) in. approx.) \(\& 1 \cdot 30\) plus 30 p. P. \& P. GLASS WIRE ENDED NEONS 7 p each, 10 off 60 p.
RESISTORS: \(\frac{1}{2}\) W CF 2.2 ohm- 2.2 Mohm (EI2), 2p each, 10 off (any mix) 12p.
400 mW ZENERS: \(6.8 \mathrm{~V}, 8.2 \mathrm{~V}, 9.1 \mathrm{~V}, 10 \mathrm{~V}, 12 \mathrm{~V}\), \(13 \mathrm{~V}, 16 \mathrm{~V}, 20 \mathrm{~V}, 22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}, 30 \mathrm{~V}, 9 \mathrm{p}\) each, 10 off (any mix) 832 p .
\(\begin{array}{lllll}\text { IN4001 } & \because & \text { 5p } & \text { IN4004 } & . . \\ \text { IN4005 } & \text { 6p }\end{array}\)
P. \& P. as indicated or 15 p minimum
P.O. BOX 71, SOUTHEND-ON-SEA ESSEXSS2 50Z

COMPONENT8. BRAND NEW. Full marked, full spec. BC107/109C 9p, 1N4002 \(4 \frac{1}{2}\) p, 1N4004 5p, 1600/10 15p, 2200/16 18p, 1000/25 15p, \({ }_{2}^{5 p_{j}} 1600 / 10\) 15p, \(2200 / 1618 \mathrm{p}\), \(1000 / 2515 \mathrm{p}\). \(250 / 6412\) p. Prices inclusive of VAT. Send for
free list to THOMPSON ELECTRONICS, free list to THOMPSON ELEUTiRONICS,
105 Park Road, Adlington, Chorjey, Lancs., 105 Park
PR
4JW.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & & \(0 \cdot 125\) & 0.2 & \multirow[t]{3}{*}{\begin{tabular}{l}
INFRA RED 550 w \\
Axial lead 49p 6 mW §1. 55 OPTOData free
\end{tabular}} \\
\hline & RED & 15p & 19p & \\
\hline & G/Y & 27p & 33p & \\
\hline & OR & 27p & 33p & ORP 12 55p \\
\hline \multicolumn{3}{|l|}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multicolumn{2}{|l|}{Avdeloond 2 gm} & 850 & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{26}{*}{}} & 2N2926(G) & G) 12p & \\
\hline & & 2N3053 & 15p & VOLTAGEREGS.
5 S 7805 Plastic \\
\hline & & 2N3054 & 45p & 12V 78121 Amp \\
\hline & & 2N3055 & 41p & 15 V 7815 aH \\
\hline & & 2N3702:3/4 & 3/4 12p & 18V \(7818 \quad \$ 1.50\) \\
\hline & & 2N3003/4/5
2N7646 & /6 18p & 723 DiP14 50p \\
\hline & & \multicolumn{2}{|l|}{2N2646 35p} & \multirow[t]{2}{*}{BRIDGE FECTS.} \\
\hline & & MPF102 & 40p & \\
\hline & & 2N3819
2N3823 & 25p & 2A 500 V \\
\hline & & 2N3823 & 30p & 2A 100 V \\
\hline & & IN914 & 3 p & 2A 400V \\
\hline & & IN 4001 & \({ }^{5 p}\) & \\
\hline & & \multirow[t]{2}{*}{IN4002/3
IN4004/5} & 6p & 2ENEAS 2 7-33V \\
\hline & & & 7p & BZY88 or sim 9p \\
\hline & & IN4006 \({ }^{\text {\% }}\) & \(8 p\)
\(4 p\) & 555 Timer 60p \\
\hline & & IN4148 & 9 p & \(5562 \times 555\) £1-10 \\
\hline & & BA100 & 9p & LM380 \(\quad 11.00\) \\
\hline & & \multirow[t]{2}{*}{OA70 OA7} & A79 \(\begin{aligned} & \text { 6p } \\ & \mathbf{8 p}\end{aligned}\) & 2N414 \(\quad 81.10\) \\
\hline & & & A99 \({ }^{\text {Ap }}\) & 7400 \\
\hline & & \multicolumn{2}{|l|}{OA91 OA95 6p} & D.I.L. SOCKETS \\
\hline & & \multirow[t]{2}{*}{OA202} & 6 p & 8-pin 12p \\
\hline & & & 7p & 14-pln 13p \\
\hline & & \multicolumn{2}{|l|}{OP. AMPS} & 16-pin 14p \\
\hline & & 709 all & 25p & Mica + bushes \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& 741 \text { 8-pin } \\
& 748 \text { D.I.L. }
\end{aligned}
\]} & n 29 p & TO3 TO66 5p \\
\hline & & & L. 36p & Dalo Pen 70 \\
\hline \multicolumn{5}{|l|}{PRICESINCLUSIVE + 15pP. \& P. (1st class)} \\
\hline \multicolumn{5}{|l|}{ISLAND DEVICES, P.O. Box 11, Margate, Kent} \\
\hline
\end{tabular}

\section*{SMALL ADS}

The prepaid rate for classified advertisements is 15 pence per word (minimum 12 words), box number 40 p extra. Semi-display setting \(£ 12.00\) per single column inch ( 2.5 cm ). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephane 01-261 5918).

\section*{CONDITIONS OF ACCEPTANCE OFCLASSIFED ADVERTSEMENTS}
1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is laken, the Publishers shall not be liable for clerical or printers' errors or their consequences.

Precision Polycarbonate Capacitors
All High Btablity
extromoly Low Leakage All High 8tability ortromoly Low Le
440 A.C. RANGE
Value Dimen- Price
68V D.C. RANGE Value Dimen- Price ( \(\mu \mathrm{F}\) ) \(\underset{\mathrm{L}}{\text { slont }} \underset{\mathrm{D}}{(\mathrm{mm}) \text { bach }}\) \(\begin{array}{ll}0.33 \\ 0.47 \\ 0.5 & 3 \\ 0.68\end{array}\) 1.0
1.5
2.0
 TANTALUM BEAD CAPACITORS-Value available \(0.1,0 \cdot 22,0.33,0.47,0.68,1 \cdot 0,2 \cdot 2,3 \cdot 3,4.7,6.8 \mu \mathrm{~F}\) at
\(15 \mathrm{~V} / 25 \mathrm{~V}\) or \(35 \mathrm{~V} ; 10 \cdot 0 \mu \mathrm{~F}\) at \(16 \mathrm{~V} / 20 \mathrm{~V}\) or \(25 \mathrm{~V} ; 22.0 \mu \mathrm{~F}\) at t \(6 \mathrm{~V} / 10 \mathrm{~V}\) or \(16 \mathrm{~V} ; 33.0 \mu \mathrm{~F}\) at 6 V or \(10 \mathrm{~V} ; 47.0 \mu \mathrm{~F}^{\mathrm{F}}\) at 3 V or \(6 \mathrm{~V} ; 100.0 \mu \mathrm{~F}\) at 3 V . All at \(18 \mathrm{p}^{*}\) each, 10 for \(\mathrm{El} 10^{\circ}\), 50 for \(\mathrm{Ef}^{*}, 100\) for \(89^{*}\).
BC1071810 \& I.C.'s


 \(\begin{array}{llllll}\text { BC154/7/8/9 12p } & \text { BFY50/1/2 } & 20 \mathrm{p} \\ \text { - BC182/182L 11p } & & 82 \mathrm{AF178} & 40 \mathrm{p} & \text { ZN414 } & \text { 81.15 }\end{array}\)
 POPOLAR DIODES-1N914 6p, 8 for 45 p , 18 for 90 p ; POPULAR \(8 \mathrm{p}, 6\) for \(45 \mathrm{p}, 14\) for 90 p ; 18445 p , I1 for 60 p ; 26 for \(81.00,1 N 41485 \mathrm{p}, 6\) for \(27 \mathrm{p}, 12\) for 48 p ; \(1 N 4001\) 51 \(\mathrm{p} ; 0026 \mathrm{p} ; 00361 \mathrm{p} ; 0047 \mathrm{p} ; 00571 \mathrm{p} ; 0088 \mathrm{p} ; 00781 \mathrm{p}\). LOW PRICE ZENER DINDES-400m6, T01, \(\pm 5 \%\) at \(8 \mathrm{~V} 2 ; 9 \mathrm{VI} ; 10 \mathrm{~V} ; 11 \mathrm{~V} ; 12 \mathrm{~V} ; 13 \mathrm{~V} ; 13 \mathrm{VV} ; 15 \mathrm{~V}: 16 \mathrm{~V} ; 18 \mathrm{~V}\) \(20 \mathrm{~V} ; 22 \mathrm{~V} ; 24 \mathrm{~V} ; 27 \mathrm{~V} ; 30 \mathrm{~V} ; 33 \mathrm{~V}\). All at 7p each, b for 88 p 10 for 65 p , \(\overline{0} 0\) for 83 -12. SPECIAL OFFER: 100 Zener (may be mixed) for 28.00 .
RESISTORS-High atability, low noise carbon film \(5 \%\) WW at \(40^{\circ} \mathrm{C}\), bW at \(70^{\circ} \mathrm{C}\). E12 serles only-from \(2 \cdot 2 \mathrm{a}\) \(70 p^{*}\) for 100 of any one value. SPECIAL PACK; 10 o each value \(2 \cdot 2 \Omega\) to \(2 \cdot 2 \mathrm{Mn}\) ( 730 resistors) 55
SILICON PLASTIC RECTIFIERS- \(1 \cdot 5 \mathrm{amp}\), wire-ended DO27: 100 P.I.V. 7p ( 4 for 28 p ); 400 P.I.V. 8p ( 4 for 30 p ) BRIDGE REGTIFIERS-21 amp: 200 V 40p; 350V 45p 600 V 68p.
SUBMINIATURE VERTICAL PRESETS-0.1W only All at 5p \({ }^{4}\) each; 50; 100; 220; 470; 680 ohm; 1k; 2 kZ \(4 \mathrm{k} 7 ; 6 \mathrm{k} 8 ; 10 \mathrm{k} ; 15 \mathrm{k} ; 22 \mathrm{k} ; 47 \mathrm{k} \cdot 100 \mathrm{k} ; 320 \mathrm{k} ; 680 \mathrm{k} ; 1 \mathrm{M}\) 2M5; 5M.
PLEASE ADD 20p POST AND PACKING ON ALL ORDERS. EXPORT-ADD COST OF GEA/AIRMAIL Add \(8 \%\) VAT to all items except those marked with Send 8 which are \(121 \%\)
Whotesale price lists available to bona fide companies MARCO TRADING (Dept. P.3)
The Old School, Edetaston, wem, Shropshite
Tel. Whxall 464/465 (STD 094872 ) (Propas-MILIcost Trading Ltd.)

CONPONENTS AN HARDWARE-FAST. Free catalogue and samples. Send \(2 \times 6 \frac{1}{2} \mathrm{p}\) stamps. MAGENTA ELECTRONICS LTD. PE9. 61 Newton Leys, Burton-фn-Trent Stafts. DE15 0DW.

VAT INC. SPFOIAL OFPER PACES. FULL SPEC. P. \& P, 15p. LESS THAN \(\& 1\) each. \(\frac{1}{2}\) in. 7 -seg Comm. Cath. LED DISPLAYS. FND 5004 for 23.95 .0 .375 in , FND 3574 for \(\mathbf{2 8} \cdot \mathbf{1 5} .0-2 \mathrm{in}\), Red LED W/Clip 5 for 85p. 5 each IN \(4002 / 3 / 460\) p. 4 off \(0 \cdot 125 \mathrm{in}\), LED W/Clip (I each R, G, Y, O) 75p, 2 off each TIP 30 ab5/2955 \(88 \cdot 10\) ine. Mtg. Kits, LM741CN DIL 8 pin 4 for 21,29 p each. 2N 30554 for 21, 30 p each. BFY \(50 / 57 / 32450-45+20 \mathrm{p}\) eanh. BC109/1841 10 for \(81,12 \mathrm{p}\) (each. IN4148/g1s - jo0 for \(83 \cdot 50,10\) for \(40 \mathrm{p}, 5 \mathrm{p}\) eack. \(10 \mathrm{mid} / 10 \mathrm{y} 100\) for 81.30 for 80 p . 5p each.

AUDIO-OPTICS
19 MIDDLEWAY, CHINNOR, OXON Tel. 084452683

BRAND NEW COMPONENTS BY RETURN
Electrolylic Capacitors 18 V , \(88 \mathrm{~V}, 80 \mathrm{~V}-0.47,1.0\),
 ( 50 V 8 p ); \(2208 \mathrm{p}(50 \mathrm{~V} 10 \mathrm{p}\) ); \(50011 \mathrm{p}(50 \mathrm{~V} 16 \mathrm{p}\) ); 1,000(16V) \(18 \mathrm{pp}, 1,000(25 \mathrm{~V}) 18 \mathrm{p}\), \(1,000(50 \mathrm{~V}) 88 \mathrm{p}\). \(0.22,0.47,1.0,2.2\) at \(35 \mathrm{~V}, 4.7 / 25 \mathrm{~V}\) 11p; \(10 / 25 \mathrm{~V}\), \(22 / 16 \mathrm{~V}, 47 / 6 \mathrm{~V}\) and \(100 / 3 \mathrm{~V}\) i2p.
Mullard Min. Ceramic E12 Series 68V 8\%-10-47pF 8p: 66-330pF 4p. Ceramic plate 50 V E12 aerles Polyitren E 18 Series 68 y Horlsontal Moun 10-1.000pF \(8 \mathrm{p} ; 1,200-10,000 \mathrm{pF} 4 \mathrm{p}\) -\(10-1.000 \mathrm{pF} 8 \mathrm{p}\); \(1,200-10,000 \mathrm{pF} 4 \mathrm{p}\).
 \(0.6811 \mathrm{p} ; 1.018 \mathrm{p} ; 1.520 \mathrm{p} ; 2.2\) 22p.
Mylar (Polyenter) Fllm 100 V Vertical Mounting\(0.001,0.002,0.0058 p ; 0.01,0.028 \geq \mathrm{p} ; 0.04,0.054 \mathrm{p}\). Minjaiture Resistors Highitab. E12 Series \(5 \%\) Carbon Film \&W \(1 \Omega-10 \mathrm{Mr}\) ( \(10 \% 1 \mathrm{M}\) up) ip: \(10 \Omega-2 \mathrm{M} 7 \Omega\) 1-5p; Metal Film \(1 \mathrm{~W} 27 \Omega-10 \mathrm{Mn}\) 1.75 p .

1N4148 8p; 1N4002 8p; 1N4006 7p; 1N40078p; BC107/8/9, 147/8/9, \(157 / 8 / 9\), BF194/7 Op.
Fuses 20 mm glass, \(1 \frac{1}{\mathrm{in}}\) glass, lin ceramic Rp. Post 10p (free over c4). Prices inclusive of VAT THE C,R. SUPPLY CO.
127 Chesterfield Road, Sheffield S8 ORN
COPPER 8TRIP. \({ }^{3} \mathrm{in} . \times\) lin soft, \(42 \mathrm{p} / \mathrm{ft}\), 1 mHz , Xtals new, 4.38 , post \(25 \mathrm{p}, \mathrm{C} . \mathrm{W} . \mathrm{O}\) SENSION LTI., Goostrey, Crewe.

\section*{- AUTOMATIC 2-SEGMENT PHASE MODULE \\ \(\star\) For electric guitar/organ/ \\ microphone t Fibreglass p.c.b. \\ \(\star\) Only \(60 \times 50 \mathrm{~mm}+\) Can fit inside control section of instrument \\ * Continuously variable rate of phase \(\rightarrow\) Powered by PP3 (not supplied). \\ Only \(£ 8 \cdot 90\) incl. S.A.E. All Enquiries \\ EXPRESS COMPONENTS (PE), 29 White Road, stratford, London E15 4HA}

RELAYS
ENCLOSED PLUG-1N TYPE, 220/240V a.c. 3 c/o contacts, complete with 11 -pin base. FLATPACK, for p/c mounting 24 V d.e. \(1 \mathrm{e} / \mathrm{o}\) contact. 50 p each, \({ }^{\text {ol lus }}\) 10p post.
OPEN TYPE, \(220 / 240 \mathrm{~V}\) a.e
OPEN TYPE, 2207240 V a.c. 3 c/o contacts. Single hole fixing, 35 peach, plus \(15 p\) post.
REED SWITCHES, Omo, Aporox Approx lin. long, 50 p per 25 , plus 10 p post. excess of 700 usable components, transistors excess of
SCR's diodes, etc., and includime encapsulated relays, also transistor seatilizer for power supply, \(55 \cdot 80\) per pack,' plus \(\subset 1\) post.
CONSTRUCTOR'S KIT
CONSTRUCTOR'S KIT, comprising components, hardware, relays, etc. Numerous new
and part used items, \(E 5 \cdot 40\) per pack, plus \(\& 1\) and part used items,
post. MICRO SWITCHES, button, roller, low
torque, latehing, etc., mixed lot, 10 for \(\mathrm{El} \cdot \mathrm{50}\), torque, latehing, etc., mixed lot, 10 for \(\mathbf{4 1 . 5 0}\),
plus 50 , PROCESSTTIMERS, adjustable \(1-100\) seconds, 24V operation, includes trip switch with reset PROGRAM TIMERS, suitable for lighting displays, etc., complete with C/O micro switches and fully adjustable operating cams. SOV a.c. operation. 6 camm model, \(\mathbf{~} 2.50\) each. 12 cam model, \(£ 4\) each. Plus 60 p post. All prices inclusive of VAT; all items tested ex-equipment except where stated. Cash with
B. A. JONES (ELECTRONICS)

39 Ashgate Valley Road, Brockwell

> Chesterfield, Derbyshire

500 COMPONENTS. Resistors, capacitors, diodes, transistors, pots, coils, etc. Identifed, formed leads, fall-out and surplus. Good value at 81.75. All inclusive (U.K. postal rates only). C.W.O. please to: L. PENSENEY (PE), Eankhead Farm, South Queensferry, West Iothian.

TTL-SPECFACULAR!
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{(All famous makes, Prices include VAT)} \\
\hline 7400 & 12 p & 7447 & 80 p & 74107 & 29p \\
\hline 7401 & \(13 p\) & 7448 & 82p & 74109 & 54p \\
\hline 7402 & \(13 p\) & 7450 & \(13 p\) & 74121 & \(31 p\) \\
\hline 7403 & \(13 p\) & 7451 & \(13 p\) & 74122 & 50p \\
\hline 7404 & \(15 p\) & 7453 & \(13 p\) & 74123 & 59p \\
\hline 7405 & \(15 p\) & 7454 & \(13 p\) & 74141 & 74p \\
\hline 7406 & 27p & 7460 & 13p & 74145 & 78p \\
\hline 7408 & \(15 p\) & 7472 & 22p & 74150 & ¢1.05 \\
\hline 7410 & \(13 p\) & 7473 & 27p & 74151 & 69p \\
\hline 7411 & 20p & 7474 & 28p & 74153 & 65p \\
\hline 7412 & 16p & 7475 & \(47 p\) & 74154 & £1.35 \\
\hline 7413 & \(33 p\) & 7476 & 28p & 74155 & 74p \\
\hline 7414 & \(65 p\) & 7480 & 44p & 74157 & \(86 p\) \\
\hline 7417 & 26p & 7483 & 76p & 74160 & \& 1.10 \\
\hline 7420 & 13 p & 7484 & \(97 p\) & 74164 & ¢ 1.35 \\
\hline 7422 & 20p & 7485 & \& 1.03 & 74174 & \$1.10 \\
\hline 7425 & 26p & 7486 & 29p & 74175 & 92p \\
\hline 7427 & 26p & 7489 & £2.50 & 74181 & E2.19 \\
\hline 7430 & 13p & 7490 & 43 p & 74190 & £ 1.25 \\
\hline 7432 & 25p & 7491 & \(60 p\) & 74191 & ¢ 1.25 \\
\hline 7437 & 29p & 7492 & 46p & 74192 & ¢ 1.08 \\
\hline 7440 & \(13 p\) & 7493 & 46p & 74193 & \(\pm 1.08\) \\
\hline 7441 & \(69 p\) & 7495 & 60p & 74195 & 90p \\
\hline 7442 & 63 p & 7496 & 69p & 74196 & \&1.19 \\
\hline 7445 & 80p & 74100 & 97 p & 1N4148 & 2p \\
\hline ZTX108 & 7p & ZTX300 & 12p & IN4003 & 4p \\
\hline
\end{tabular}

Intel 21021 K Memory 63
DL \(707 \mathrm{O}=0.3 \mathrm{Bin}\). Display 69 P
Min. order E2. P. \& P. 20 p (Ist class) C.W.O.
Send S.A.E. for full list

> J. C. JONES (Dept. PE2I) 46 Burstellars, St. \(y\) yes, Cambs. PEI7 4 XX
> (Mail Order only)

VALVES, RADIO, TV, TRANSMTTING, INDUST\&LAL. 1930 to 1975 . 2,200 types in stock, myny obsolete. List 20 p . Quttation S.A.E. Postal export service. We fish to purchase new and boxed valves. Dealers, wholes lers, etc., stocks purthased. COX RADId (SUSSEX)-ETD., The Parade, East Wittering, Sussex. Tel. West Wittering 2023.

\section*{R. T. SERVICES (MAIL ORDER ONLY)}

75 Hayfièld Road, Salford 6 Lancs.
FM TUNER with R.F. Stage and A.G.C. 3 transistors, neg. earth \(2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}\) in with circuit, E1.75.
Memory Array Panel. 61.50 inc. VAT, P. \& P.
P.C. Board S/S. \(5 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in} 10\) for \(£ 1 \cdot 25\), P. \& P.

Mixed Pack of C280 series Mullard capacitors, 100 for \(11 \cdot 15\) inc., P. \& P. Send S.A.E. for our list prices.

Tel. 061-236 1541
All prites include VAT and P. \& P.
TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO., P.O. Box 5, Frome, Somerset. Immediate cash rettlement.

Bank of 20 Neons. 80 p ( 20 p ). 5 Figure Resettsble Counter, \(1 H / 2 N\), works on 12 V , 22.50 ( 60 p ). Boz with \(20 \times\) LA, Pot Cores \(+20 \times 1 \%\) caps, 21.75 (80p). Copper clad pax. Panels: \(51 \times 5 \mathrm{in}, 6\) for \(85 p ;\)
\(12 \times 12 \mathrm{in} .80 \mathrm{p}: 171 \times 9 \mathrm{itin}, 80 \mathrm{p} ; 81 \times 91 \mathrm{in}, 3\) for
 21-85. Fibre Glass: \(7 \times 8 i n, 65 p ; 13 \times 51 \mathrm{in}\), 80 p ;
\(13 \times 11 \mathrm{in}\), 81.50 ; double-sided plus \(10 \%\). All C.P. 74 \(13 \times 11 \mathrm{n}\),
Serien ICs on Panels, 15 for EL (20), 100 Ass . 8/Mica Caps, 70p c.p. List 15p. refund on purchase. 71 b Assorted Components, \(22 \cdot 60 \mathrm{c} . \mathrm{p}\)
J. W. B. RADIO

2 Barnfeld Crescent, Sale, Cheshire M33 1NL
Postage in brackets, Mail order only
MINIATURE RESISTORS GARBON FHLM. \(5 \%\) E12 series \(\frac{1}{6} \mathrm{~W}, \frac{1}{} \mathrm{~W}, \frac{1}{2} \mathrm{~W}\), Mixed values and wattages to your choice 100 for 90 p ) P. \& P. 15 p . CANIAR, Freepos., Heading RG1 1 BR .

\section*{LADDERS}

LADDERS, varnished, 20ft. 9in. extd., \(\mathbf{8 2 0} 50\). Carr. £1.90. Leaflet. Alloy ext. and loft ladders. Immed, despatch. THE LADDER CENTRE (PEE), Halesfleld (1), Telford, Salop. Tel. (PEE), Halesfeld (1)
586644, Order C.O.D.

\section*{EDUCATIONAL}

\section*{COLOUR TV SERVICING}

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:
ICS SCHOOL OF ELECTRONICS
Dept. 771 Y, Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
RADIO AMATEURS EXAMINATION. City and Guilds. Pass this important examination, and obtain your G\& licence, with an R.R.C. Home Study Course. For details of this, and other courses (G.C.E., Professional Examinations, etc.) write or phone: THE RAPID RESULTS COLLEGE, Dept. JS1, Tuition House, London, SW19 4DS. Tel. 01-947 7272 (Careers Advisory Service) or for a prospectus only ring \(01-946 \quad 1102\) ( 24 hr . recording service).

CITY \& GUILDS EXAMS
Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians Radio Amateurs. Full details from:
ICS SCHOOL OF ELECTRONICS
Dept. 771 Y, Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)

\section*{TECHNICAL TRAINING}

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng, and Servicing, Electronics, Computers: also selfbuild radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 771 Y , Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)

\section*{SITUATIONS WANTED}

\section*{CITY OF LONDON POLYTECHNIC}

The Library and Learning Resources Service AVA TECHNICIAN (Maintenance)
(Media Services) Technician Grade 3
A keen young electronics technician is required to join a team engaged in providing a basic epair service for a wide range of audio visual Applicants should have.
knowledge of relevant electronics and mechanics with experience and qualifications
in the field,
5 alary: \(£ 2,325-£ 2,655\) per annum plus \(£ 465\) p.a. London Allowance, and \(£ 312\) p.a. supplement. Entry point determined by age, qualifications and experience.
Application forms and further details are available from:

The Assistant Secrotary
City of London Polytechnic
Administrative Headquarters
117/119 Houndsditch, London EC3A \(78 U\)

\section*{PROFESSIONAL SERVICES}

PATENTS AND TRADE MARK8. KINGS PATENT AGEN(Y LIMITED (Est, 1886). B. 'T. King, Director, M.I.Mech.E., Kegistered Patent Agent, \(146 a\) Queen Victoria Street, London, EC4V 5itT. Booklet on request. Tel. 01-2486161. Telex 883805 .

\section*{BOOKS AND PUBLICATIONS}

\section*{START YOUR OWN BUSINESS REWINDING ELECTRIC MOTORS}

This unique instruction manual shows step by step how to rewind motors, working part or full time, without previous experience. Everything you need to know easily exEverything you need to know easily ex-
plained, including where to obtain materials, plained, including where to obtain materials,
how to get all the work you need, etc., etc. how to get all the work you need, etc., ete.
A goldmine of information and knowledge. A goldmine of information and know
Only \(£ 3-90\) plus \(26 p\) P. \& P. From:
MAGN UM PUBLICATIONS, Dept. PE5
Brinksway Trading Estate, Brinksway Stock port SK3 OBZ
Overseas Distributors wanted.

\section*{SERVICE SHEETS}

BELL'S TELEVISION SERVICES for service gheets on radio, TV, etc., 75 p plus S.A.E. Colour TV service manuals on request. S.A.E. With enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. 042355885.
8ERVICE 8HEET8, Radio, TV, etc, 50p and S.A.E. Catalogue 20p and S.A.E. HAMILTON RADIO, 47 Bohemia Road, st. Leonards, Sussex.
BERVICE SHEETS, radio, TV, etc. 10,000 models. Catalogue 24 p plus' S.A.E. with orders-enquiries. TELRAY, 154 Brook Street, Preston, PR1 7HP.

\section*{FOR 8ALE}

PE JOANNA PIANO 61 note keyboard (C-C) \&17. Sixty-one contacts, 26. Assembled, guaranteed P.C.B's: 12 envelope, \(\$ 2 \cdot 50\) each; generator \&.C.Bs: 12 envelope, \(22 \cdot 60\) each; generator 27, pre-amp e6; supply, \({ }^{\text {complete. TAYLOR, } 79 \text { Nightingale Road, }}\) Hampton, Middlesex (01-979 7511).
HEATSINK 8ALE. Popular sizes. Popular prices. S.A.E. for list. PHOTONICS, 16 Montrose Drive, Nuneaton.
DISCOLIGHTs. Summer sale. Soundlights (3-channel) E16. Strobes 222. Free catalogue: AARVAK ELECTRONICS, 12a(L) Bruce Grove, London N17. (01-808 8923).

AMPs. We have some 8-track car stereo Amp Modules for sale. They are \(2 \frac{1}{2}+2 \frac{1}{2} \mathrm{~W}\), and are complete with volume, tone, balance, sliders. And wiring diagram. These are excellent for headphone amps and most other small amp headphone amps and most other small amp
applications. Price \&3, post 23p. Cheques/ P.O.s to W. B. SPENGEN Hytichase Qud Mill Road, Cafter-ortses, Norfotk, NR30 S.A.E, to above.

THE P.E. SOUND SYNTHESISER, fully built, PCB's throughout. Offers to CHRIS, 052-285 345 (Bassingham).

ORGAN KIT, 2 manual and pedals playable, almost completed, ideal to incorporate synthesizer, \(\mathbf{2 0 0}\) o.n,o. MR. JAMES, 86 Alexandra Road, Edgbaston, Birmingham, B5.

WANTED
TOP PRICES PAID
NEW VALVES AND TRANSISTORS
Popular T.V. and Radio types
KENSINGTON SUPPLIES (B)
367 Kensington Street Bradford 8, Yorks.
WANTED. Small Oscilloscope. REID-JONES, 6 Meadow Close, Clifton, Preston, Lancs.

\section*{MISCELLANEOUS}

LOW cOsT I.C. MOUNTING for any size DII, package. 100 Soldercon sockets 65p. 7 and 8 hole plastic supports 5p/pair. Quantity rates. S.A.E. details and sample. Trial pack 65p (P. \& P.. 10p/order). PKG ELECTRONICS, Oak Lodge, Tansley, Derbyshire, DE4 5FE.

\section*{MI8CELLANEOU8 (Continued)}


RECHARGEABLE NICAD EATTERIEs, Pencell, AA 94ק; Sub. "C" 1 1-16; "C" 81.92 ; "D" 42.59; PP3 4.48. Chargers: \(4 \cdot 48\), \(84 \cdot 48\) 34•98, \(4 \cdot 98,33 \cdot 98\) respectively. Others avail able. All prices include VAT. Add \(10 \%\) P. \& \(P\). B.A.E. for price list plus \(25 p\) for information boorlet. SANDWELL PLANT LTD., 1 Denholm Road, Sutton Coldfeld, West Midlands. Tel. 021-354 9764

\section*{PRINTED CIRCUITS and HARDWARE}

Readily available supplies of Constructors' hardware, Aluminium sheet and sections. Printed circuit boards, top quality for individual or published designs.
Prompt service.
Send \(15 p\) for catalogue.
RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratford on Avon
Warwicks.
Tel. 4879

COLCHESTER'8 COMPONENT 8HOP open Sunday-Friday, \(12-6 \mathrm{p} . \mathrm{m} . \quad\) J. K. ELECTRONICS, 11 Mersea Road. Tel. 64433.

\section*{INSTRUMENT CASES}

Range of over 100 standard sizes in stove enamelled steel with hole punching service to customer's requirements.
Specials, prototypes and quantity.
\(2 \times 6 \frac{1}{2} \mathrm{ptamps}\) for lists to:
NOTTINQHAM AUDIO 8ERVICES
13/15 Foxhall Road, Nottingham NG7 6NA
BULD THE TREASURE TRACER MK III metal Locatol


KNOCKDOWN PRICE TO CLEAR: 22 inc. post for a partly completed Electronic Music Module in strong metal box \(17 \times 12 \times 5 \mathrm{~cm}\), with printed circuit, pots, jaok sockets, IC's, transistors, etc. Clear Plastic Sheet, stiff, 1 mm thick, any rectangle up to \(35 \times 50 \mathrm{cms}, 30\) sq.cm for 1 p . plus post 11p. Oscar Satellite Predictor, pins to shack wall and shows time and longitude of 7 successive equator crossings, 70 p inc., post. S.A.E. for lists please. TRISAGION LIMITED, Dall, Rannoch, Perths (08822 379 most evenings).

SUPERB IN8TRUAENT CA8E8 by Bazell manufactured from heavy duty pve faced steel. Hundreds of people and industrial user are choosing the cases they require from our vast range, competitive prices start at a low 75 p. Examples: width, depth, height, Bin.x \(5 \operatorname{in} \times 3 \mathrm{in}, 81.55\); \(10 \mathrm{in} \times 6 \mathrm{in} \times 3 \mathrm{in}, 82.20\); \(10 \mathrm{in} \times\) \(8 \ln \times 3 \operatorname{in}, \quad 52.75 ; \quad 12 \mathrm{in} \times 10 \mathrm{in} \times 3 \mathrm{in}, \quad 3.60\); \(8 \mathrm{in} \times 4 \mathrm{in} \times 4 \mathrm{in}, 81 \cdot 80 ; 10 \mathrm{in} \times 6 \mathrm{in} \times 4 \mathrm{in}, 82.70\) \(12 \mathrm{in} \times 8 \mathrm{in} \times 4 \mathrm{in}, 83.60\); \(7 \mathrm{in} \times 7 \mathrm{in} \times 5 \mathrm{in}, 32.65\); \(8 \mathrm{in} \times 10 \mathrm{in} \times 6 \mathrm{in}, 83.60 ; 12 \mathrm{in} \times 8 \ln \times 7 \mathrm{in}, 84\) 12 in \(\times 12 \mathrm{in} \times 7 \mathrm{in}, 44 \cdot 40\). Plus over 400 models to choose from. Prompt despatch. Free literature (stamp would be appreciated): BAZELLI, Dept. No. 23, St. Wilfrid's, Foundry Lane, Halton, Lancaster LA2 6LT.

\section*{PUBLIC ADDRESS ENGINEERING!}

Find out more, join the Association of Public Address Engineers-Details from:
The Secretariat
APAE
47 Windsor Road
Slough, Berks.
CLEARING LABORATORY, scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.B, sweep generators, test equipment, etc. Lower Beeding 236.


DO-IT-YOUR8ELF LOUD8PEAKER8 for hi-fl are our speclality. Full range of components and accessorias including chassis speakers, cross-overs, sound absorbent, grille fabrics, cross-overs, sound absorbent, grille fabrics,
etc., always available. We stock the fabulous etc., always a vailable. We stock the fabulous
value Helme speaker kits (complete with full and easy instructions), also Peerless and Wharfedale kits. Just about the lowest prices anywherel Send \(8 \frac{1}{2} p\) stamp for bargain list to: AUDIOSCAN, Dept. PF-1076, 4 Princes Square, Harrogate, North Yorkshire.
\begin{tabular}{|c|c|c|}
\hline ENAMELLED & COPPER & WIRE \\
\hline S.W.G. & 116 reel & \$16 reel \\
\hline 20 to 29 & 22.95
43.15 & 81.80 \\
\hline 30 to 34 & 63.45 & ¢1-90 \\
\hline 35 to 40 & 63.65 & \&2•10 \\
\hline All the above prices.a & re inclusive of & e and \\
\hline
\end{tabular}

All the above prices, are inclusive o
packing in the U.K.

> COPPER SUPPLIES 102 Parrswood Road, Withington, Manchester 20 , Telaphone \(081-4458753\)

QUALITY A8sORTED nuts, screws, washers. Brass and-steel. Various sizes. Approx. 6oz 65 p inclusive: BRITTAIN, The Bungalow, Buckhurst Lanc, Sunninghili, Berks. SL5 7QB.

\section*{GERSS FLBEE P.CB.'s \\ From your own tape, film or ink master} Send S.A.E, for quotation PRACTICAL ELECTRONICS printed circuit boards in glass fibre, drilled and tinned. boards in glass fibre, drilled and tinned.
Radio Control System June to Aug. 76. Complete set of 8 boards \(\not 5^{\circ} 30 \mathrm{p}\).
Digital Frequenty Meter May to June 76. Complete set of 4 boards \(£ 4 \cdot 20\) p. C.W.O. please. PROTO DESIBN, 4 Highelifife Way, Wicklord, Essax SSII 8LA

\section*{LOW. COST - HIH EFFICEICY} AUDIO osclilator \(\begin{gathered}\text { tis } \\ 20\end{gathered}\)


RANGE: 10 Hz to 100 kHz . OUTPUT: IV, sine/sq. DISTORTION: less than \(0.02 \%\). 9 V battery. Also available in Kit form at \(£ 16.50\). Add \(8 \%\) VAT. P. \& P. and ins. 75 p. Leafler available. Also F. M. Signal Generaror, Leaflet available. Also F.M. Signai Generator,
Millivoltmeter, freq. meter, THD analyser, P.S. Units and high quality amplifiers.

TELERADIO ELECTRONICS
325 Fore Street, London, N9 OPE
Tel. 01-807 3719

\section*{CABINET FITTINGS FOR}

Stage Loudspeakers and Amplifier Cabs Fretcloths. Coverings, Recess Handles, Strap Handles, Feet. Castors, Locks and Hinges, Corners, Trim, Speaker Bolts, ete., ete.

ADAM HALL (P.E. SUPPLIES)
Unit Q, Scarline Works, Grainger Read Southend-on-Sea, Essex.

\section*{TRANSMIT!}
* Unique TRANSMITTER RECEIVER Kit. No licence examinations or tests required to operate this transistorised
equipment. Easy to build. Get eransequipment.
\(\star\) Psychedelic MINI-STROBE Kit. Take a poeket-sized lightning storm, to Disco s and parties. Brain-ireezo em Includes super case too Send 63.50 plus \(20 \mathrm{PP} \& \mathrm{P}\). (All prices include V.A.T.)
Send remittance to: BOFFIN PROJECTS 4 CUNLIFFEROAD STONELEIGH, EWELL, SURREY (Moil arder U.K. only) Or for more details, send 20p for lists

COIL WINDING 8ERVICE. Contact EMS, 21 Mount Road, Benfleet, Essex, SS7 1HA.
> 1.C. EXPERTMENTER'S KITS Learn about modern electronics with our new series of Kits on digital logic techniques. Each Kit contains specially selected l.C.s, Holders, Veroboard, L.E.D.s, and Instructions. \(P\) Available at \(\pm 3 \cdot 50\) each (ineluding \(P\), \& \(P\).) Kir One-Gates Kit Two-Flip-Flops Kit Three-Shift Registers Kit Four-Counters Kit Five-Displays AUTOMATED HOMES
> 69 High Street, Ryton, Coventry CV8 3FJ (Mail Order Only)

\section*{OSMABET LTD}

We make transtormers
amongst other things amongst other things

\section*{LOW VOLTAGE TRANBFORMEAS}

Prim．200／240V a．c．．5V 1A E0p：6．3V 1．5A £1．65；3A

 50V 6A CT E10．75； \(25 V 2 A+25 V 2 A E 7: 12 V 4 A+12 V\)
LT TRANSFORMEAS TAPPED SEC，PPIM 200／240V

 MIDGET RECTIFIEA TRANSFORMERS
For FW rect．200．240V ac．，6－0－6V i 5A or 9－0－9V 1A 81.80 oach； \(12-0-12 \mathrm{~V} 1 \mathrm{~A}\) ，or \(20-0-20 \mathrm{~V} 0.75 \mathrm{~A}\) ，or \(9-0-9 \mathrm{~V}\) 0.3 A, or \(12-0-12 \mathrm{~V} 0.25 \mathrm{~A}\) ，or 20－0－20V O．15A，or 6 V
 LOUDSPEAKEAS
2 inn 8 or \(75 \Omega, 2\) inn 8 or \(25 \Omega, 3 \ln 3,8\) or \(35 \Omega, 3\) in \(15 \Omega\) ，
c1 each； \(8 \times 5\) in 3,8 or \(25 \Omega, 81.75 ;\) Goodmans
 or 25 月．§1．50．
＂INBTANT＂BULK TAPE／CABSETTE ERASEA Inatant erasure any diameter tape spool or cassett
demagnetises tape heads， 200240 Vac .53 .75 ． SYNCHRONOUS GEARED MOTORS \(200 / 240 \mathrm{~V}\) a．c． SYNCHAONOUS GEARED MOTORS 200／240V ©．c．
Brand now Smblhs．built In gearbox． 6 r．p．h． 75 peach PAPER TUBULAR CONDENBERS PAPER TUBULAR CONDENBEAS
\(4.7 \mathrm{mF}, 180 \mathrm{~V}, 30 \times 20 \mathrm{~mm}, 20 \mathrm{p}(100\) for 510\()\) SPEAKER MATCHING AUTO TAANSFORMER 12W， 3 to 8 or \(15 \Omega\) ，up or down，\(\{1.65\)
G．E．C．MANUAL OF POWER AMPLIFIER COVERING CABLES－CABLES－CABLES MICROPHONE TWIN H／DUTY，ERAIDED SCREEN
Proteselonai cable for Etage，studio．outdoor．PVC covered，grey． 20 p per matrie．Grey，Single cable black．10p per matre
MULTI WAY SCREENED，PVC COVERED
36 way \(11 ; 25\) way 75 p ； 14 way \(50 \mathrm{p} ; 4\) way 14 p
2 way \(10 \mathrm{p} ; 1\) way 8 p per metre． 2 way 10p： 1 way ep per metre． LOW LOSS CO－AxIAL CABLET5 FLEXIBLE PVC̈ MINi 3－CORE CABLE，1e／0－10MM
100 merrea f3．Idoal for apeak TWIN FIG．CABLE
Polarised，CABLE 50.100 m ．Screened stereo \(51 / 15 \mathrm{~m}\) ．
ALL TYPES DOMESTIC AND COMMERCIAL CABLES MULTI SCREENED AND CONNECTING WIEL TRADE ENQUIGIES INVITED
Carrlage and VAT extra on all orders
A．E．ENQUIRIEs．LISTS．MAIL OADER ONLY 46 Kenlworth Road，Edgware，MIddx．HA8 8YG Tel．01－9589314

Dear Customer，
We are selling off large quantities of stock（test gear，components，etc．）lat much reduced prices，and would sincerely welcome callers any time Monday to Saturday between 9 a．m． and 5p．m．Many thousands of items－are priced and listed．If you cannot visit us，please send for lists． If you wish to purchase an item on the list a short telephone call will secure （providing it isn＇t already sold）．Barclaycard and Access orders are taken over the telephone．

CHILTMEAD
P．S．So don＇t delay－come today and PLEASE take－something away．
－ホMLTMEA•LTD
7／9 ARTHUR ROAD，READING，BERKS． （rear Tech College）Tel．Reading 582605


\section*{Greenbank Electronics}
（Established 1970）

DIGITAL CLOCK MODUL
Catalogue free on reques ＇＂E＇LED DISPLAYS DL－704E 0.3 in PLAYS DL－707E 0．3in DL－728E \(2 \times 0.5 \mathrm{in}\)
DL－727E \(2 \times 0.5 \mathrm{in}\)
£1．50 CA3140（BIMOS） £1．50 74个 Minidip SOLDERCON PINS E3． 50
55 C5．50 1000 DIL SOCKETS
51.00 14／16 pin

95p
25p

60p
E4． 00
15p
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 4000／14000 & 0.20 & 4037／－ & 1.06 & 4075／14075 & 0.24 & 14415／－ & \(7 \cdot 35\) & 14526／－ & 2－15 \\
\hline 4001／14001 & 0.20 & 4038／14038 & 1.20 & 4076／14076 & 1.71 & 14419／－ & 2.87 & 14527／4527 & 1.76 \\
\hline 4002／14002 & 0.20 & 4039／－ & 3.09 & 4077／14077 & 0.65 & 14422／－ & 4.98 & 14528／4098 & 1.22 \\
\hline 4006／14006 & 1.31 & 4040／14040 & 1.19 & 4078／14078 & 0.24 & 14435／－ & 7.93 & 14529／－ & 1.72 \\
\hline 4007／14007 & 0.20 & 4041／－ & 0.93 & 4081／14081 & 0.24 & 14440／－ & 11.58 & 14530／－ & 0．95 \\
\hline 4008／14008 & 1.07 & 4042／14042 & 0.93 & 4082／14082 & 0.24 & 14450／－ & 2.67 & 14531／－ & 1.74 \\
\hline 4009／14009 & 0.80 & 4043／14043 & 1.12 & 4085／－ & 0.80 & 14451／－ & 2．87 & 14532／4532 & 1.39 \\
\hline 4010／14010 & 0.80 & 4044／14044 & 1.04 & 4086／－ & 0.80 & 14490／－ & 6.51 & 14534／－ & 8． 15 \\
\hline 4011／14011 & 0.20 & 4045／－ & 1.56 & 4089／－ & 1．74 & 14160／－ & 1.18 & 14536／－－ & 4.00 \\
\hline 4012／14012 & \(0 \cdot 20\) & 4046／14046 & 1.48 & 4093／（14093） & 0.89 & 14161／－ & 1．18 & 14537／－ & \(13 \cdot 17\) \\
\hline 4013／94013 & 0.60 & 4047／－ & 1.01 & 4094／－ & 2 －08 & 14162／－ & 1－18 & 14539／－ & 1.24 \\
\hline 4014／14014 & 1．12 & 4048／－ & 0.60 & 4095／－ & 1－16 & 14163：－ & 1．18 & 14541／－ & 1．82 \\
\hline 4015／14015 & \(1 \cdot 12\) & 4049／14049 & 0.80 & 4096／－ & 1－16 & 14174／－ & 1．08 & 14543：－ & 1． 22 \\
\hline 4016／14016 & 0.60 & 4050／14050 & 0.80 & 4097／－ & 4． 13 & 14175／－ & 1.04 & 14549／－ & 4.10 \\
\hline 4017／140 & 1.12 & 4051／14051 & 1.04 & 4098／14528 & 1.22 & 14194／－ & 1.17 & 14552／－ & \(10 \cdot 50\) \\
\hline 4018／14010 & \(1 \cdot 12\) & 4052／14052 & 1．04 & 4099／－ & 2.03 & 14501／－ & \(0 \cdot 20\) & 14553 － & 4.66 \\
\hline 4019／14519 & 0.60 & 4053／14053 & 1.04 & 40101／－ & 1．76 & 14502／4502 & 1.38 & 145541－ & 1.67 \\
\hline 4020／14020 & 1.24 & 4054／－ & 1.29 & 40102－ & 2－16 & 14503－． & 0.75 & 14555／4555 & 1.01 \\
\hline 4021／14021 & 1.12 & 4055／－ & 1.46 & 40103／－ & \(2 \cdot 16\) & 14505／－ & 4.38 & 14556／456 & 1.01 \\
\hline 4022／14022 & 1.07 & 4056／－ & 1.46 & 40104／－ & \(2 \cdot 26\) & 14506／－ & 0.57 & 14557／－ & 4.65 \\
\hline 4023／14023 & 0.20 & 4057／－ & 29.81 & 40107／－ & 0.68 & 14507／4030 & \(0 \cdot 60\) & 14558／－ & 1.25 \\
\hline 4024／14024 & 0.87 & 4059／－ & 6.20 & 40108／14580 & 5－18 & 14508／4508 & 3.08 & 14559／－ & 4． 10 \\
\hline 4025／14025 & 0.20 & 4060／－ & 1． 24 & 40109／－ & \(2 \cdot 21\) & 14510／4510 & 1.51 & 14560－ & \(2 \cdot 17\) \\
\hline 4026／－ & 1.92 & 4061／－ & \(25 \cdot 60\) & 40181／14581 & 4． 30 & 14511／4511 & 1.74 & 14561／－－ & 0.70 \\
\hline 4027／14027 & \(0 \cdot 60\) & 4062－－ & \(10 \cdot 10\) & 40182／14582 & 1.73 & 14512／－ & 1.03 & \(14562 /\) & 5.59 \\
\hline 4028／14028 & 1.00 & 4063／－ & 1.22 & 40194／－ & \(2 \cdot 26\) & 14514／4514 & \(3 \cdot 47\) & 14566 & 1.67 \\
\hline 4029／－ & 1.27 & 4066／14066 & 0.69 & 40257／－ & 2.28 & 14515／4515 & 3.47 & 14568／－ & \(3 \cdot 15\) \\
\hline 4030／14507 & 0． 60 & 4067／－ & 4． 13 & & & 14516／4516 & 1.51 & 14569／－ & 3.72 \\
\hline 4031／－ & 2.45 & 4068／14068 & 0.24 & 4700／－ & 1.75 & 14517／－ & 4.02 & 14572／－ & 0.27 \\
\hline 403214032 & 1.19 & 4069／14069 & 0． 24 & 7083 － & 4.25 & 14518／4518 & 1．39 & 14580／40108 & 8.35 \\
\hline 4033／－ & 1.55 & 4070／14070 & 0.65 & & & 14519／4019 & 0.57 & 14581／40181 & 4.30 \\
\hline 4034／14034 & \(2 \cdot 11\) & 4071／14071 & 0.24 & 14410／ & \(5 \cdot 70\) & 14520／4520 & 1.39 & 14582／40182 & 1.64 \\
\hline 4035／14035 & 1.31 & 4072／14072 & 0.24 & 14411／－ & 9.54 & 14521／－ & 2.77 & 14583－ & \(0 \cdot 84\) \\
\hline 4036／－ & 3.09 & 4073／14073 & \(0 \cdot 24\) & 14412／－ & 17.07 & 14522 － & \(2 \cdot 15\) & 14585／－ & 1． 10 \\
\hline \multicolumn{10}{|l|}{Terms：C．W．O Add VAT to all prices at \(8 \%\) Post etc．．U．K． 25 p per order．Orders processed same day Official govt．，varsity poly etc orders welcomed} \\
\hline
\end{tabular}

GREENBANK ELECTRONICS（Dept E10P）
94 New Chester Road．．New Feriy．Wirral．Merseyside．L62 5AG．England．Tel：051－645 3391


SPECIAL CAAPACITOR KITS C280 Kit－PC Mounting polyester 250 V 5 of each value： \(0.01,0.022,0.047,0.1,0.22 \mathrm{\mu F} 2\) of \(0.47 \mathrm{~m} \mathrm{\mu F}\) n．
C 296 Klt \(0-01.0\)－ 022 Tubular polyester． 400 V ． 5 of each value Ceramic Kit－square plaque．sof 5 of each value \(22,33,47,100,220.330,470.1000 \mathrm{pF}, 220,4700 \mathrm{pF}\) \(0.01 \mu F, 51.71\) net
SPFCIAL RESISTOR KITS（CARBON FILM 5\％）（PrICes include post \＆packing） 10 E 12 iW or 1 W KIT： 10 of \(25 \mathrm{E}, 1 \mathrm{~W}\) or tW KIT 25 of M ，a total or 512 Ks －04 ne
1M．a total of \(1425 \mathrm{~K} 11 \cdot 70\) net
B．H．COMPONENT FACTORS LTD．



GOVT DEPTS COLLEGES (OFFICIAL ORDER 55) ETC ORDERS WELCOME

OFFICIAL ORDER \&5)
VAT INVOICE SUPPLIED

\section*{TECHNOMATIC LTD}

54 SANDHURST ROAD
LONDON NW9
Tol. 01-204 4333

\section*{INDEX TO ADVERTISERS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{A.B.C. Electronics (Oldham) Lid.} \\
\hline Adam. Hall (P.E. Supplies) & \\
\hline \multicolumn{2}{|l|}{A.D. Electronics ...................................... 846} \\
\hline Alben Enginee & 806 \\
\hline \multicolumn{2}{|l|}{APAE ................................................... 84.8} \\
\hline Astro Electronics & .778, 838 \\
\hline \multicolumn{2}{|l|}{Audio Optics .......................................... 844} \\
\hline \multicolumn{2}{|l|}{Automated Homes ................................ 846} \\
\hline \multicolumn{2}{|l|}{Bamber, B.. Electronics ........................ 828} \\
\hline Barclay Electronics & 831 \\
\hline \multicolumn{2}{|l|}{Barrie Electronice ................................. 840} \\
\hline \multicolumn{2}{|l|}{B.H. Components ................................... 847} \\
\hline Bi-Pak & 843 \\
\hline \multicolumn{2}{|l|}{Bi-Pre-Pak ............................. ......cover ii} \\
\hline Birkett, & 770 \\
\hline \multicolumn{2}{|l|}{Boftin Projects ................................................. 846} \\
\hline \multicolumn{2}{|l|}{British Ingtitute of Engineering} \\
\hline Technolo & \\
\hline \multicolumn{2}{|l|}{British National Radio \& Electronics} \\
\hline Schoo & 827 \\
\hline \multicolumn{2}{|l|}{Burneze ..................................................... . 838} \\
\hline \multicolumn{2}{|l|}{C.D.I. Holdings ..................................... 838} \\
\hline Chiltmead Lid. & 84 \\
\hline \multicolumn{2}{|l|}{City of London Polytechnic ..................... 845} \\
\hline Clef Producta & 842 \\
\hline \multicolumn{2}{|l|}{Copper Supplies} \\
\hline Crescent Radio & 802 \\
\hline \multicolumn{2}{|l|}{Crofton Electronics ................................ 782} \\
\hline \multicolumn{2}{|l|}{C.R. Supply Co. .................................... 844} \\
\hline \multicolumn{2}{|l|}{Davian . ................................................ 778} \\
\hline \multicolumn{2}{|l|}{Deltic .................................................. 837} \\
\hline \multicolumn{2}{|l|}{Doram ..........................................776, 777} \\
\hline \multicolumn{2}{|l|}{Eagle International ................................ 839} \\
\hline \multicolumn{2}{|l|}{Eaton Audio ......................................... 782} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Electronic Design Assoc. ....................... . . 802}} \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Electrotime & \\
\hline Electrovalue Ltd & 838 \\
\hline Elvins Electronics & 338 \\
\hline \multicolumn{2}{|l|}{Express Components ............................ 844} \\
\hline \multicolumn{2}{|l|}{Flairline Supplies ................................... 842} \\
\hline Greenbank Electronics & 847 \\
\hline Greenweld Electronics & 836 \\
\hline \multicolumn{2}{|l|}{Harverson's Surplus ........................cover iii} \\
\hline H.B. Electronics & 838 \\
\hline Heathkit & 806 \\
\hline H.M. Electronics & 846 \\
\hline Home Radio & 834 \\
\hline \multicolumn{2}{|l|}{I.L.P. Electronics Ltd. ............................. 825} \\
\hline \multicolumn{2}{|l|}{International Electronics Unlimited ........... 779} \\
\hline Intertext ICS & 845,839 \\
\hline \multicolumn{2}{|l|}{Ifiand Devices ...................................... 844} \\
\hline \multicolumn{2}{|l|}{Jones, B. A. .......................................... 844} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Jones, J. C. ....................................................... 845 \\
J.W.B. Radio ............................................. 845
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Kensington Supplies ............................. 045} \\
\hline \multicolumn{2}{|l|}{Kit Kabs .................................................. 832} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Laskys
\[
.772,837
\] \\
Lynx Electronics
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Magnum Publications ............................. 845} \\
\hline \multicolumn{2}{|l|}{Maplin Electronic Supplies .........774, cover iv} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Marco Trading \({ }^{\text {a }}\) Ma.................................. .844}} \\
\hline & 771 \\
\hline \multicolumn{2}{|l|}{M.C.A. Electronic Controls ...................... 836} \\
\hline \multicolumn{2}{|l|}{Milward, G. F. ........................................ 806} \\
\hline \multicolumn{2}{|l|}{Minikits Electronics ................................. 848} \\
\hline \multicolumn{2}{|l|}{Modern Book Co. ................................... 841} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Nottingham Audio Services ..................... 848} \\
\hline Orchard Electronics & 2 \\
\hline Osmabet & 847 \\
\hline \multicolumn{2}{|l|}{Padec Components .............................. 844} \\
\hline P.B. Electronics & 843 \\
\hline \multicolumn{2}{|l|}{Phonosonics .................................780, 781} \\
\hline \multicolumn{2}{|l|}{Precision Petite ..................................... 811} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Proto Design ........................................................ 8487}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Radio Components Specialists ............... 805} \\
\hline \multicolumn{2}{|l|}{Radio Exchange ................................... 784} \\
\hline Ramar Constructor Services & 846 \\
\hline \multicolumn{2}{|l|}{RST Valve Mail Order Co. ....................... 782} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{R.T. Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Salop Electronics ................................... 846} \\
\hline \multicolumn{2}{|l|}{Saxon Entertainments Ltd. ...................... 835} \\
\hline Service Trading & . 773 \\
\hline \multicolumn{2}{|l|}{Sintel ................................................. 841} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Special Products ...................................... 772 \\
Swanley Electronics .................................. 842
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Tamba ................................................ 778} \\
\hline \multicolumn{2}{|l|}{Tandy Corporation (U.K.)} \\
\hline \multicolumn{2}{|l|}{Technomatic Ltd. . .................................. 848} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Taleradio Electronics ............................... 848 \\
Trampus Electronics ................................. 832
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Videomaster (Sales Team) ....................... 775} \\
\hline \multicolumn{2}{|l|}{Wentworth Radio .................................. 802} \\
\hline \multicolumn{2}{|l|}{Williams, Michael .................................... 828} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Wilmelow Audio \(\qquad\) 783 \\
W.K.F. Electronics \(\qquad\)
\end{tabular}}} \\
\hline & \\
\hline Young Electronics & 770 \\
\hline
\end{tabular}

SUPERSOUND 13 HI-FI MONO AMPLIFIER
 nimplifer. Brand mew 5 Silicon transistors plus \(\because\) power out-put transistors in push-pul cion. Wave rectifica 3 watts rios. into
ohms. Frequency esponse 12 Gr . 30 KHz separate Volume, Bass ho wit Input for controls. Suitabic for 8.10 ohm speakers approx. 40 mV for full output. Supplied te. Sensitivity. tested, with knobs, escutcheon panel in read hit an

DE LUXE STEREO AMPLIFIER
 \(200-240\)
\(y^{8} 1\) fully sola
ted mains transform \(00^{20}\) wave rect
exigible hum
s rectifier - 0 dual potentiometers are prove \(\times 28\) bass and treble control, giving bass and treble boost and cut. A diva volume control is used. Balance of the left and fight hand channels can be adjusted by means of a sep ate 'Balance control fitted at the rear of the chassis Input sensitivity is approximately \(300 \mathrm{~m} / \mathrm{v}\) for full peal output of 4 watts per channel ( 8 watts mono), into 3 olin circuit, allows high volume levels to he used with negligible distortion. Supplied complete with knobs, chassis si be \(1^{*}\) ar \(\times 4^{n} \mathrm{~d}\). Applied complete with knobs, chassis size
built and tested to a high standard. £12.40. P.

\section*{HARVERSONIC STEREO 44}

stereo amplifier chassis, with an
output of \(3 \cdot 4\) watts perchan rel into 8 ohm
speakers. Using the latest logy integrated circuit amplifiers with bait in short term thermal overload protection. All components including controls, 2 pin din speaker sockets and \(\bar{o}\) pin din tape panel, size approx. \(91^{\prime \prime} \times 22^{*} \times 1^{\prime \prime}\) max. depth, Supplied brand new and tested, with knobs, brushed anodised aluminium 2 way escutcheon (to allow the amplifier to be 50p P. \& P. Mains transforincr with on en plus a/c at \(500 \mathrm{~m} / \mathrm{a}\) can be supplied at \(£ 1-50\) plus 40 p P. \& P. if required. Full connection details supplied,
BRAND NEW MULTI-RATIO MAINS TRANSFERMERS. Giving 13 alternatives. Primary: \(0-210-240 \mathrm{v}\) half wave at 1 amp . or \(10-0-10\) 50 \(0-00\), \(30-0-40-60 \mathrm{~N}\) half wave at 1 amp. or \(10-0-10,20-0-20,30-0-30 \mathrm{v}\). a deep. Price 82.90 . P. \& P. 90 p .
MAINS TRANSFORMER. For power supplied
Mri. \(200 / 240 \mathrm{v}\). Sec. \(2-0-9\) at 500 mA .21 .50 . P. \& P. 60 p. Mri. 200/240v. Sec. 12-0-12at 1 amp . £1.65. P. \& P. 60p.
Mri. 200/240v. Sec. 10-0-10 at 2 amp . £2.35. P. \& P. Mri. 200/240v. Sec. \(23 v\), at \(1.5 \mathrm{amp}, 6 v\) at \(6 \mathrm{amj}, 8 \mathrm{v}\). at

ALL PURPOSE POWER SUPPLY UNIT 200/240ヶ. A.C input. Four switched fully sinoothed D.C. out p
five. and 7 f . and 9 v . and 12 v , at 1 amp on load Fitted insulated output terminals and pilot lamp indicator Readrerilt and
Ready built and Price 65.75. P. \& P. 85p.
tested.
STEREO-DECODER SIZE \(2^{\prime \prime} \times 3^{\prime \prime} \times 1^{\prime \prime}\)
Ready built. Pre-aligned and tested
Sens. 20.560 mV for 9.16 V
Sens. 20.560 mV for \(9-16 \mathrm{~V}\) neg.
earth operation. Can be fitted to
almost any FM VHF radio or tuner.
Stereo beacon light can be fitted if
required Full details and its.
otructions (inclusive of hints and tips) supplied. \(\mathrm{E}^{5} 5^{\circ} 62\) plus \(90 \mathrm{p} \mathrm{P}^{\prime}\), \& \(\mathbf{P}\). Stereo beacon light if required 40 p
extra.
QUALITY RECORD PLAYER AMPLIFIER MK. II duty double wound mains transformer. ECC83. EL84, and rectifier. Separate Bass, Treble and Volume controls. Complete with output transformer matched for 3 ohm speaker. Size Fin wide \(\times 3\) in deep \(\times 6\) in high. Ready
built and tested, PRICE \(£ 6.20\). \(\quad\). 90 . built and tested, PRICE \(£ 6-20\). \(P\). \& F.90p.
ALSO AVAILABLE mounted on board with output


\section*{harversonic mains operated} SOLID STATE STEREO FM TUNER


Designed and styled to match our \(10+10\) amplifier Tide design incorporates standard stereo amplifier chniques with high-grain, very latest circuitry Automatic frequency control to "lock on" station and prevent drift. IC stereo decoder for maximum stereo hal output of tuner 100 mV . Approximate size 121 in will \(x\) gin deep by 2 in high. Slipplied ready built, fully tested and fully guaranteed. AC mains 200/240V (not

Special Offer \(\mathbf{£ 2 2} \cdot 50+\boldsymbol{E 1} \cdot \mathbf{4 0} \mathbf{P}\). \& P

\section*{SPECIAL OFFERS}

Mutlard LPLI59 RF -IF Double Tuned Amplifier Module
 and connection details supplied. \(£ 2.25+1^{2}\). \& P. 12p.


PRECISION MADE
Push Button Switch lank. S Buttons giving 16 S/P C 0 interlocked switches plus 1 Cancel Button Plus 3 ill \(\mathrm{c} / \mathrm{o}\) overall size

\section*{HI-FI LOUDSPEAKER SYSTEM MRI}

Beautifully made simulated teak finish enclosure now \(10{ }^{1 "}\) when \(\times 9^{\prime \prime}\) deep (approx.). Fitted with E.M.I Ceramic Magnet. \(13^{\prime \prime} \times 8^{\prime \prime}\) bass unit, HF. tweeter impedance (bate which)
OUR PRICE \(£ 12.00\) each. Carr. \(£ 1.90\)
Cabinet Available Separately \(£ 7-25\). Carr. \(£ 1 \cdot 40\)
\(\qquad\)

\section*{LOUDSPEAKER BARGAINS}
 \(48 \mathrm{p} 10 \times 6 \mathrm{in} .3\) or 15 ohm \(£ 2.50\), P. \& P. 7 inp . E.M.I E.M.I. tweeter. Approx. 31.n A A mailable 3 or 8 or \(I\) P. 50 p


VYNAIR \& REXINE SPEAKERS \& CABINET FABRICS app. 64 in. Wide. Our price \(£ 1-50\) yd. length
"POLY PLANAR" WAFER-TYPE, WIDE RANGE "POLY PLANAR" WAFER-TYP
ELECTRODYNAMIC SPEAKER
Size 113** \(\times 14\) it \(^{*} \times 1 \frac{7}{16}{ }^{*}\) deep. Weight 1902 . Power
 Response \(40 \mathrm{~Hz}-20 \mathrm{k} 11 \mathrm{z}\). Can be mounted once ceilings, walls, etc. and used with or without baffle. Send S.A.E. for
fletailg. Only 87.25 each. P. \& P. Tip for one, 90 p for

Now also available \(8^{n}-8\) ohm. 10 watts r.m.s. 20 watt peak \(40 \mathrm{~Hz}-20,000 \mathrm{~Hz}\). Overall depth \(1^{\prime \prime}\). Ideal for Hi -Gi or for \(40 \mathrm{~Hz}-20,000 \mathrm{~Hz}\). Overall rept 1 ". Ideal for Hi -
ne in cars. \(£ 4-90+\mathrm{P} . \mathbb{\mathrm { P }}\). (one 35 p , two fop).
SPECIAL LINES OFFERED SUBJECT TO STOCK AVAILABILITY
f-Fidenty stereo cassette tape deck transport mechan isms as user in \(11 \mathrm{i}-\mathrm{Fi}\) Music Centres. Electronically speed
controlled motor, belt-driven tlywherl capstan t three digit. resettable counter. Reoord/Plas pre-amps. Bia oscillator. Recort/Play and erase heads, etc. power
supply required 12Y D.C. Circuit diagrams, ct e. supplied These mitt are brand new, but molested and arc only offered to the more ad vance con
PRICE \(516.87+\Sigma I\) I 27 P. \& P.
WE REGRET THAT WE ARE UNABLE TO ANTE INTO CORRNSPONDEVCH ON TIRESE INTIS. New but very slightly marked GLEN BURN ISBR ightweight arm and ceramic \(H \mathrm{i}-\mathrm{Fi}\) stereolcompatitle cartridge. Can be used for automatic or mammal plat

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT


A really first-class Ili.Fi Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the first five stages on each channel resulting in even lower noise bevel withmproved sensitivity, Integrated preamp with Bass, Treble and two Volume Controls. Suitable for use With Ceramic or Crystal cartridges. Very simple to Out to sui magnetic cartridge-instructions included design, all high , ability component identification ed printed circuit board with anodised aluminium front panel with matching knobs wire solder nuts, bolts - panel with matching knobs step instructions enable any constructor to bull a amplifier to be proud of. Brief specifications. Power output is watts \(r\) un per chanel into 5 ohms Fire quincy response \(+3 \mathrm{Al} 1312-30,000 \mathrm{~Hz}\) Sensitivity : bette than 80 mp into \(1 \mathrm{M} \Omega\). Full power bandwidth: \(\pm 34 \mathrm{~B}\) \(12-15,000 \mathrm{~Hz}\). Bass, boost approx to \(\pm 12 \mathrm{~dB}\). Treble ut approx. to - 16 dB . Negative feedback 18 dB over main amp. Power requirements 35 r . at 1.0 atop

Fully detainer page construction tranual and parks hist free with kit or send 25 p plus large S.A.E. MPLIFIER KIT Magnetic input compo 1.50 P. \& P. 65 P
\(\begin{array}{ll} \\ 84.85 & \text { P. \& P. } 85 \mathrm{p}\end{array}\) Special offer-only \(£ 22 \cdot 50\) if all 3 units ordered at one time plus EI•00 P. \& P.

Full after sales service
Also available ready built and tested £29.25. 1'. \&P. £1.00,


AMPLIFIER HE AUDIO
AMPLIFIER HA34 MK II
Designed for hi-Fi reproduc
ion of records. operation. Ready built on plated heavy gauge metal
 EL84, EZ80 valves. Heavy duty, double wound mains former match output trans former matched for 3 ohm beaker. Separate volume control and now with improved vide range tone controls giving bass and treble lift and anal can be detached and leads extended for remote Fred and tested for only \(£ 7.80\). P \& P. £1-00
HSL "FOUR" AMPLIFIER KIT. Similar in appearance o Hast above employs entirely different and advanced circuitry. Complete set of parts, etc. \(£ 7,00\) \(0 / 14\) WATT HI AMPLIFIER KIT A stylishly finished
monaural amplifier with an output of 14 rats from? Super reproduction. of both music and of both music and giblehum. Separate inputs for mike and gram allow records
 o follow each oilier.
Fully shrouded section wound output transformer t natch \(3-15 \Omega\) speaker and 2 independent volume controls wing good lift and cut Value lineup o EL8 provide ERSt and EZ80 rectifier. Simple instruction booklet ap \(\times\) SAE (Free with parts). All parts sold separately ON I, Y \&11.25. P'\& P. £1.33. Also available ready built
and tested \(£ 15 \cdot 20\). P. \& P. £ -35 .

\section*{SPECIAL OFFER}

Latest model darrard 6300 Auto/ Manual clanger de luxe curing lever, has compensator, counter-balanced nice resonance armand filled with Aces 104 diamond era
ne

Limited number of the latest BS IR CI 41R1 Auto/ Manual hanger deluxe. Lightweight tubular arm curing lever ias compehantor. PRIC'E \(£ 12.60+£ 1.40\)
Also similar but without cuing lever or bias compensator
ONLY fls:00 +
RICES INCLUDE VAT AT
CURRENT RATES

Open 9.30-5.30 Monday to
Friday. 9.30-5 Saturday
Closed Wednesday.
Prices and specifications correct
at time of press. Subject

\section*{HARVERSON SURPLUS CO. LTD.}
(Dept. P.E.) I70 HIGH ST., MERTON, LONDON, S.W.I9 Tel. : 01-540 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly)
PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO USK. ONLY. P. \& P. ON OVERSEAS ORDERS
CHARGED EXTRA.

\title{
ORF \\ ES \\  \\  \\ 1
}

THE MAGIC WORDS TO A HUGE CACHE OF ELECTRONIC
```


[^0]: © IPC Magazines Limited 1976. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is iully protecied, and rebroduciion or imitations in whole or part are expressiy forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility ior it. Prices quoted are those current as we go to press.

