PRACTICAL

RADIO EXCHANEELTID.
 ALL PRICES include Vat COMPLETELY SOLDERLESS

NEW EDU-KIT MAJOR

 ELECTRONIC CONSTRUCTION KIT BUILD THESE PROJECTS WITHOUT SOLDERING IRON OR SOLDER\author{

- 4 Transistor Earpiece Radio
}
- Signal Tracer
- Btgnal Xrjector
- Transistor Tester NPN
-PNP
- 4 Transistor Push Puli Amplifer
- : Traniator Push Pul

Amplifer

- One Transiator Radio - 7 Transistor Loud- $-\frac{\text { One Trankiator Radion Regenera }}{2}$

 Eave Radio - Electronic Noise Genera tor
- Audrade Rado Continuity
- Audlble

Tester

- Sensitive Pre-Amplifer. - 24 Hesistors - 21 Capacitore 10 Tranastora - 31" Luulspeaker © Earpiece O ylea Baseboara - Beady Wound MW/LW/SW Colls - Ferrite Rod © 61 yards of wirt- I yaril of sleeving, ete Complete kit of parts includlar construction plana Total building costs 1901 P.P. and Ins. 85p

V.H.F. AIR CONVERTER KIT

Build thar converter kit and receive the alrcraft band by placing ft ly tho sile of a radio thenel to mediuln way e or the long nave liand and operathing as shown in the inntructions wupplied free with all parts Uaca a retractable chrome plated telessupic arrial, gain
control. V.II.T. tuning conlrolor, transistor, etc. All parts including case and plans

POCKET FIVE

Now with 3 in Loudspeaker 3 tumable waveand trawler band. 7 日tagen, 5 tranaistorn and 2 dioden, supertenajitive ierrite rod aerial, attractive black and
 $\times 3 \pm$ in approx.
Complete ldt ol parta including construetlon plans. Total ${ }^{\text {thes }}$? P.P. and

NEW ROAMER TEN

 MODEL. R.K. 3MULTIBAND V.H.F. AND A.M.
RECEIVER
13 TRANSISTORS AND FIVE DIODES
OUALITY $5^{-} \times 3^{\prime \prime}$ LOUDSPEAKERS
WITH Multiland V.II.F. section covering Mobiles, Arreraft, T.N. Sound. L'ublic Scrvice Band. Iocal V.H.F. Stations, etc. And Multiband A.M. section with Atspaced Slow Motion Drtve Tuning Capacitor for easier and accurate tubing, dovering M.W.1, M.W.2. L.W.Three Short Ware Bands8.W.1,S,W.2,S.W.3ani Trawler Bade, Butilt + in Ferrlie Rod Aerial for Mediunt Ware, Long Wava and Trawler Band, etc., Chrome Plated 7 section Telescopice Aprlal, angeled and rotatable for peak Short wisve and V.H.F. reception. PushPull output using 600 m W Transistors. Gain Wave. Change and tone Controls. Plue two Allder Switehes Negative Feedback circuit and SPECLAL POWER BOOSTER SOCKET AND RESIBTOR, to virtually tlouble gain if reguired. Powercd by P. I $\$.9$ volt Battery
Cornplete kit of par ts including carry-
Ing strap. Buld ing Instruetions and opernting Manuals.

Inc. $P \& P$.

NEW
 Everyday
 Series

Build this exciting
new teries of
designs.
Tramsintora and
2 diodes. MW/LW. Powered by $4 y$
battery. Ferrite rod aerial, tan!ng callenser, volume control, and now with 3in. loudapeaker. Attractave case with retl speaker grille. Size 9in. $\times 5 \frac{1}{2} i n . \times 2 \frac{3}{1} 1 \mathrm{n}$. approx. All garia inclading Case and Planc.
Total Building costs ?
:4.31 P. \& P + Ins. 60p
E.Y.b. Case and looks as above, 6 Transiators 3 diodes. Powered by 9V battery. Ferrite rod aerial, 3 m . loudspeaker, efc. MW/LW coverage. Push/Puil output
All parta including Cage and Plans
Total Building costs 24 ? P \& P. + Ins. 65p
E.V.7. Case and looks as above, 7 Transistors and 3 dodes. SIX wavebande, MW/LW, Trawler Band SW]. SW2, SW3. powered by 9y battery. Puah pull output. Telescopic inerin for chort waver. 3in. Loudspeaker. All parts including Case and Plans.
Total Building Costa

To: RADIO EXCHANGE LTD.

61A High Street
Bedford MK40 1SA
Te1.: 0834 59367, REG NO. 788872

- Callers bide entrance "Lavells"' Shop.
- Open 10-1,2.30-4.30 Mon. Fri.9-12 Bat

Name

Addtess

CONSTRUCTIONAL PROJECTS

METAL PIPE OR WIRING LOCATOR by C. C. Whitehead
A simple safety aid for the D.I.Y. man 952
P.E. ORION TUNER-2 by D. S. Gibbs \& I. M. Shaw Construction, testing and final adjustments 956
GAMES MACHINE by D. Burn A programmed random number generator 969
BREAKDOWN TESTER by M. H. George
Check Zener diode and transistor breakdown voltages with this mains-driven unit 977
GENERAL FEATURES
GETTING TO GRIPS WITH MICROPROCESSORS by D. Brown Understanding and using these new devices 963
SEMICONDUCTOR UPDATE by R. W. Coles A look at some recently released devices 976
SOLID STATE TV CAMERAS by D.V.Eddo/ls
A survey of developments 980
INGENUITY UNLIMITEDCar Lamp Monitor-Simple Timer-Model Train Controller-L.E.D. VU Meter-Quiz Monitor-Simple Siren-"Preset-to-One" Counter-Variable Chance Ratio Device-VoltmeterImpedance Multiplier-Tell Taie Alarm987
NEWS AND COMMENT
EDITORIAL-A Disingenuous Few 951
SERT SYMPOSIUM "MICROPROCESSORS AT WORK" An impression 965
SPACEWATCH by Frank W. Hyde Space Shuttle-Mars-Soyuz 22 966
NEWS BRIEFSTV Import Restrictions-Code of Practice-Overseas Symposium \& Exhibition984
MARKET PLACE
Interesting new products 985
STRICTLY INSTRUMENTAL by K. Lenton-Smith
Electronic music matters 986
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 993
PATENTS REVIEW
Thought-provoking ideas on file at the British Patents Office 994
INDEX FOR VOLUME 12
Our January issue will be on sale on Friday, December 10, 1976(for details of contents see page 955)

[^0]FROM THE BIGGEST RANGE OF GOOD QUALITY MULTIMETERS

For details of this and the many other exciting instruments in the Chinaglia range. including multimeters, component measuring, automotive and electronic instruments, please write or telephone.

DOLOMITI

$20 \mathrm{k} \Omega / \mathrm{V}$ a.c. and d.c.

A NEW HIGH SENSITIVITY.MULTIMETER
 WITH ALL THE FEATURES YOU WILL EVER NEED

Accuracy: d.c. ranges. $\pm 2.0 \%$, a.c. and Ω ranges $\pm 2.5 \%$. $150 \mathrm{~V}, 500 \mathrm{~V}$. 1.5 kV 39 ranges: d.c. V. 0150 mV . 50 m . 50 mA 500 mA . 5 A ; a.c. V. $5 \mathrm{~V} .15 \mathrm{~V}, 50 \mathrm{~V}$ d.c. $1.0-50 \mu \mathrm{~A} .500 \mu \mathrm{~A} .5 \mathrm{~mA}, 50 \mathrm{~mA}, 50 \mathrm{~mA} .500 \mathrm{~mA} 5 \mathrm{~A}$ d8 - 10 to 150 V . $500 \mathrm{~V}, 1.5 \mathrm{kV}$: a.c. $.5 \mathrm{kmA}, 5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega .50 \mathrm{M} \Omega$ +65 in 6 ranges
pF $50 \mathrm{kpF}, 500 \mathrm{kDF}$

Automatic overload protection and high current range fusing
Scale mirror and fine pointer for accuracy of reading. Single knob main range switehing and all panel controls. C.E.I. Class 1 movement with sprung jewel bearings. Extended 92 mm scale length for extra clarity. Compact ABS case $125 \times 131 \times 37 \mathrm{~mm}$. Weight 650 g with batteries. Supplied complete with carrying case, fused leads. hand-book and full 12 -month guarantee. Optlonal 30 kV d.c. probe available.

Meter £40-50 incl. VAT (£1 P. \& P.)
30kV Probe $£ 12.85$ incl. VAT
AJ COM
Instruments Ltd.
19 MULBERRY WALK - LONDON SW3 6DZ - TEL. 01-352 1897

Sound to Light

 MASTER UNIT WADTSH
$10,000 \mu \mathrm{~F} 16 \mathrm{VW}$ ELECTROLYTICS. Size $3 \frac{3}{8} \times 1 \frac{3}{16} \mathrm{ln}$ at $15 \mathrm{p}, 4$ for 50 p .
5MHz 10X CAYSTALS. A: 50p each.
POWER TRANSISTORS. MP8512 p.n.p. at 15p, MP8112 n.pn. at 45p, R2008 at 50p. A2010 at 80p.
500 KHZ 1 OXA CRySTALS. AI 50 p Bach
OUAL GATE MOS FETS LIKE 40673. At 33p, 4 for $£ 1 \cdot 10$.
DUAL GATE POWER OARLINGTON TYPE TIL117. At 35p each
STC 12V OPDT RELAY. At 50.p.
GLASS WIRE ENDED 29KHz CRYSTALS at 50 p .
1 POLE 21 WAY ROTARY SWITCHES. Al 65p
1250 PIV 14 SILICON DIODES. BY294 at 12 for $£ 1$.
BF17 100 V NPN 600 MW TRANSISTOR. $10 \mathrm{p}, 6$ for 50 p
COMPRESSION TRIMMERS. 10PF, 30 PF , $50 \mathrm{PF}, 150 \mathrm{PF}, 750 \mathrm{PF}, 1,000 \mathrm{PF}$ All at 6 p each B7G GLASS CRYSTALS. $324,327.333 .335 \cdot 5$. $338.339,341,342 ; 345,346,348,349$,
$350,352354,355359,358,370,382.386 \mathrm{KHz}$. At 40 p each
ILICON SOLAR CELLLS. D-5V SMA at 35p each.
BOOV 2 P PLASTIC TO3 NPN POWER TRANSISTOR R2GNA. At 500 .
EXAS PNP OARLINGTON POWER TRANSISTORS TIP117. A1 35p
2,ONO PIV 100MA WIRE ENDED SILICON DIODES. 7 for $\mathrm{f1}$.
VHF POWER TRANSISTORS. Unmarked $2 N 3856$ at $40 \mathrm{p}, 3$ for $£ 1$.
PLASTIC SCR'S. 50 PIV $6 A$ at 15P, 400 PIV $6 A$ at 40 p
10A STUD MOUNTING SCR's. 1009IV at 25 p , 400 PIV at 50 p , 800 PIV at 60 p .
1,000 uF 40 VW ELECTROLYTICS. Size it x tin. at 3 for 35 p .
SILICON BRIDGES. 100PIV 10A at 83p. 200PIV 2 A at 30 p , 400 PIV 1 A at 30 p .
TAG ENDED ELECTROLYTICS. Size $2 \mathrm{f} \times 1 \mathrm{i} \mathrm{in}, 3.300 \mu \mathrm{~F} 64 \mathrm{VW}$ at $50 \mathrm{p}, 4,700 \mu \mathrm{~F} 40 \mathrm{VW}$ at 45p.
Gt ASSORTED WIRE WOUND RESISTORS. 1 to tow at 57 p.
200 CARBON FILM +W RESISTORS. Assorted odd values at 75 p.
100 ASSORTEO MIN. \%, fW RESISTORS. 17 ditferent values at 57 p
MULARD A55KHz VERSION OF LP 1175 FILTER wilh Data at 55 p .
TEXAS RF TRANS!STORS TYPE BFZ24. At 6 for 57p.
BO METRE 10X CAYSTALS. 3545 al 40p each.
50 AC128 TRANSISTORS. Branded but un"ested for 57ρ

Please add 20p for post and packing on orders under £2 Overseas orders at cost.

J. BIRKETT

RADIO COMPONENT SUPPLIERS 25 The Strait, Lincoln LN2 1JF

Tel. 20767

MONO DISCO MIXER WITH AUTO FADE

Designed for the discerning D . J. of prolessional standard. Offering a vast variety of functions. Controls: Mic Vol: Tone, over-ride depth, auto/manual sw; Tape Vol; L \& R Deck Faders; Deck Volume; Treble and Bass; H. Phon Vol Selector; Master Voi On/OIf sw. Max output 3V RMS.
Specification: Deck inputs- 50 mV into $1 \mathrm{M} \Omega$: Deck Tone Controls-ireble total range 36 dB at 15 kHz -Bass iotal range 36 dB at 50 Hz . Mic input200 ohms upwards 2 mV Into 22k. Mlc Tone Control-Total range 40 dB al 15 kHz . Tape input-100mV into 200 ohms. Power requirements $20-50$ volts d.c. at 50 mA . R.I.A.A. comp mag inputs availabie 75p extra.
£39.75
PANEL SIZE $18 \times 4 \mathrm{fin}$. DEPTH 3 in

THE PIEZO SUPER HORN

 has all the features! ONLY $£ 10.95$- NEEDS NO CROSS-OVER NETWORK
- FREQUENCY RESPONSE: $4,000-30,000 \mathrm{~Hz} \pm 3 \mathrm{~dB}$
- PATENTED MOMENTUM DRIVE PRINCIPLE
- NO VOICE COILS OR MAGNETS
- HIGH INTERNAL IMPEDANCEADAPTS TO ANY SYSTEM
- HIGH ACOUSTIC OUTPUT
- many Can be connected in SERIES TO FORM AN ARRAYINCREASES OUTPUT
- POWER HANDLING CAPACITY 25 volts RMS-see chart
- COMPACT- $3 \frac{3}{1} \times 3 \frac{3}{1} \times 2 \frac{2}{8} \mathrm{in}$.

Suppliers to H.M. Govi. Depls. Manulactured and assembled in Gi. Britain. fully tested and guaranteed.
TO ORDER BY POST
Make cheques/P.O.s payable to TUAC LTD (PE/12) or quote Access/Barclaycard No. and post to TUAC LTD (PE/12). 119 Charlmont Road, London. SW17 9AB. We accept phone orders from Access/Barclaycard holders. Phone $01-672$ 3137. 9080.

PRE AMPLIFIERS

VA08

Designed for use with TUAC power amplifier modules..Extensive research has gone into various wide range tone control circuits produces superb sound quality. Thousands are already in use in high quality professional amplification systems.
VA0a Vol. Treb. Mld and Bass controls. HI. IMP FET. I/P suitable Mid. Guitar Radio, Crystal/Ceramic P.U. Sensitivity 4 mV .
£8.50
VA06 Vol. Treb. and Bass controls. Sensitivlty 8 mV . Treb. $+28-15 \mathrm{~dB}$ a! 12 kHz .
Bass $\pm 18 \mathrm{~dB}$ and 40 Hz .
£7. 50
sVa08 STEREO PRE AMP Vol. Treb. Mid and Bass contros. WP sultable, Guitar, Radio, Crystal/Ceramic P.U. Sensitivity 4MV. Treble +35 dB at 16 kHz . Mid $+20-15 \mathrm{~dB}$ at 4 kHz . Bass $+20-10 \mathrm{~dB}$ at 40 Hz . Plus Full Balance Control. Fully I/C operation supply voltage $\pm 15 \mathrm{VOC}$.
$£ 15 \cdot 00$

AMPLIFIER MODULES

7 TL30 o.c. COUPLED POWER AMPLIFIER MODULE
Outpul power 30 watt R.M.S. continuous sine wave into 8 Onms

- T.H.D. al full power 0.5\%
- Signal to noise ratio-85dB
- Input sensitivity 60 mV into 50 k ohms

Frequency response $25 \mathrm{~Hz}-50 \mathrm{kHz}$

- 8 transistors 4 diodes

11 TL60 $5 \times 5 \times 3 \ln$

- 60 walt R.M.S. continuous sine wave output - 2 R.C.A. 110 watt 15 amp transistors
(11) TL100 $5 \times 5 \times 3$ in
- 100 watt R.M S. continuous sine wave output - 2 R.C.A. 150 watt 15 amp transistors

1) TP125 $7 \times 6+\times 3$ in

- 125 watt R.M.S. continujous $\sin \theta$ wave output
£23. 25
- 4 R.C.A. 150 watt 15 amp outpul transistors

23
Specification on power modulas: Rugged layer wound driver transforme - Short-Open-and Thermal overload protection Only 6 connections All output power ratings $\pm 0.5 \mathrm{~dB}$. Output impedance 8-15 ohms; THD at fu power 2% typically 1%; input sensitivity 60 mV Into $10 \mathrm{k} \Omega$; Frequenc response $20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 2 \mathrm{~dB}$. Hum and noise better than -70 dB .
stamped addressed envelope with all enquiries for fully illustrated 12 page catalogue

TRADE \& EXPORT ENOUIRIES 01-672 9080

5

POWER SUPPLIES

Vacuum varnish impregnated. Transformers with supply board incorporating pre-amp supply
PS250 for supplying 2 TP125s
£28.00
PS60/60 for supplying 2 TL60s
PS125 ± 45 volts for TP125
PS100 ± 43 volts for TL100
PS60 ± 38 volts for TL60
PS30 ± 25 volts for TL30
PSU 2 for supplying disco mixer

4 CHANNEL SOUND TO LIGHT SEQUENCE CHASER-4LSMI

- RCA BA Triacs
- 1000w per channel
- Fully suppressed and fused
- Switched master control for sound operation from $\frac{1}{2} W$ to $125 W$
- Speed canfrol for flxed rate sequence from 8 per minute to 50 per second - Full logic integrated circulliry with optical isolation for ampilfier protection - 13 easy connection
£18.75
Model 501 500W per channel as above without sound triggering
£12. 25

103 CHANNEL LIGHT MODULATOR

- ACA 8A Trlacs
- 1000w per channel
- Each channel fully suppressed and fused
- Master control to operate from 1 W to 100 W
£18.00
- Full wava control
(Single Channel Version 1500 Watts $\mathbf{8 9} \cdot 50$)

3

ADD SEQUENCE CHASING AND DIMMING EFFECTS TO YOUR

 TUAC 3 CHANNEL LIGHT MODULATOR- Speed Control 3 per min. to 10 per sec.
- Fuli logic integrated circuitry
- Oimmer control to each channel

SEOUAsy connections
SEQUENCE ОМММЕద MOOULE-ЗSOM $£ 13.00$
Factory reorganisation now completed. Assembly line capacity available for long and short runs to clients specification

12 STEREO DISCO MIXER

With touch sensitive switching and auto fade INPUTS: Four identical stareo inputs avaliable with any equallazation. Two magnetic and two flat supplied as standard. High quality slider control on each channel Volume. irable, and bass controls for each pair of silders. Sensitivity mag.. 3 mV (R.t.A.A. Comp.). Flat 50 MV at 1 kHz . Bass controls $\pm 18 \mathrm{~dB}$ at 60 Hz . Tiebie controls $\pm 78 d B$ at 15 kHz
OUTPUT: Up to 3 volts (+12 dB) avaliable. Altenuated output for TUAC Power Modules. Rotary master and balence controls. Band width $15 \mathrm{~Hz}-25 \mathrm{kHz} \pm 1 \mathrm{~dB}$. P.F.L.: Output 250 mV Into 8 ohms. Rotary volume control. Manitoring facllity for all 4 channals. Seleciion via touch sensitive illuminated switches. Switched visual cue indicator.
Miscellaneque Faciltief; Two illuminated deck on/off switches Mains lifuminated on/off switches. Auto fade illuminated on/off switch. Mains powared with integral screen and back cover. Complete with full instructions. Size $25 \operatorname{in}$ long $\times 6$ in high $\times 3$ in deep

FRONT PANEL FOR LIGHTING EFFECT MODULES

(complete with switches, neons and knobs) as illustrated

TUAC AMPLIFICATION

Loline 125 watt with sustain 581
Loline Slave 125 watt 870
Loline 60 watt with sustain $\mathbf{8 6 5}$
Combo Twin 60 reverb $£ 140$
Combo 30
.85

All prices include VAT
Postage and Packing

Long Life
Candle Bulb.
Revolving
Reflector, adds
a new
dimension to disco
lighting effects. £21.50
(6) FUZZ

LIGHTS
RED GREEN BLUE AMBER 240 volt a c

- Combo

STOCKISTS-CALLERS ONLY

Geo Mathews, 05 tit Hurst Strael, Btrmingham Tral. 021-602 1941).
Erisol Disco Centre, 25 The fromenada. difucester Aoad fel.

Cookiea Oisco Conire. 132 West Street Tral. Crawe 439).

Garland Eriss, LLd. Deptord Broadway, London (Tel. 01-692 4412).

Mitchell Eiectronics. 7 Queen Streat (Tel. Salisbury 2eses).

Mon-Sat 9.30 a m - 5.30 pm .

* MADE IT MYSELF"

Imagine the thrill you'll feel! Imagine how impressed people will be when they're hearing a programme on a modern radio you made yourself.

Now! Learn the secrets of radio and electronics by building your own modern transistor radio!

Practical lessons teach you sooner than you would dream possible.

What a wonderful way to learn-and pave the way to a new, better-paid career! No dreary ploughing through page after page of dull facts and figures. With this fascinating Technatron Course, you learn by building!

You build a modorn Transistor Radio . . . a Burglar Alarm. You learn Radio and Electronics by doing actue projectr you enjoy-making things with your own hands that you'll be proud to own! No wonder it's so fast and essy to earn this way. Because learning become hohby! And what a protitable hobby Becuse opportunitis in the field of Radio and Electronics are growlog faster than they can find people to fill the jobs!

No soldering-yet you learn faster than you over dreamed poailbe.

Yes! Faster than you ean imagine, you pick up the technicil know how you need. Specially preptred step-by-itep lessont show you gow to. read circuits \rightarrow assemhle components--build things -experiment. You enjoy every minute of it!
You get everything you need. Tools. Components. Even a versatile Multimeter thet we teach you how to use. All tived in the course AT NO EXTRA CHARCE! And this in course moyone can afford. (You can even pay for it hy can afford. (You
eary instalments.)

So fast, to easy, this personalised course will teach you even If you don't know a thing today!

No metter how little you know now, no metter what your backeround or education, we'll teach you. Step by step. in simple eas-to-underntand language. you pick up the secrets of radio and electronics.
You become a person who makes things. not just another of the millions. who don't understand. Ans you could pave the way 10 greal new yourecr.ive add to the imrill and pride you receved. when you look al what you have achieved. wour own Iransistor rado. And after your own Iransistior go on to acquire highpowered technical qualifications. behighpow famous courses go right up to City a Guilds levels.

Send now for FREE
44 page book-see how easy It is-read what oihers sav!

Find out more now! This is the gateway to \& thrilling new career, or a wonderful hobby you'll enjoy for ycmers. Send the coupgn now. There'ín no obligation.

All these cabinets are accurately machined, rebated and radiused, with all baffle holes cut out and fixing holes drilled. All the cabinet covering, fretcloth and fittings are included; along with detailed assembly instructions.

ALL YOU PROVIDE IS GLUE AND MANPOWER!

				All prices
$2 \times 12^{\prime \prime}$ (or $\left.1 \times 15^{\prime \prime}\right)$	Cabinet Kit-28" $\times 17 \frac{11^{\prime \prime}}{} \times 11{ }^{\frac{7}{\frac{7}{\prime \prime}}}$	$£ 15.40$	(3") board)	inc V.A.T
$4 \times 12^{\prime \prime}$ (or $2 \times 15^{\prime \prime}$)	Cabinet Kit-29"1 $\times 28^{\prime \prime} \times 11{ }^{\prime \prime} \times 1{ }^{\prime \prime}$	18.40 817.40	(3) ${ }^{\frac{3}{4}}{ }^{\prime \prime}$ " ${ }^{\prime \prime}$ and $\frac{\frac{1}{2}^{\prime \prime}}{}{ }^{\prime \prime}$ board)	and carriage

Cheque or Postal Order to: KITKABS, P.O. Box 41, Stadium Works, Grainger Road, Southend-on-Sea, Essex

SEMICONDUCTOR DEVICES

by N. M. Morris
Price $\mathbf{4} \mathbf{4} \mathbf{2 5}$

ELECTRONICS POCKET BOOK by P.
MoGoidrick. McGoidrick.
PRACTICALTRIAC/SCR PROJECTS FOR THEEXPERIMENTER bYR, W Fox. Price $\mathbf{2} 210$

SOLID STATE COLOURT.V. CIRCUITS by G.R. Wilding.

Price $£ 6.25$
ACTIVEFFILTER COOKBOOK by Price $£ 9.60$ PRACTICAL SOLID STATE D.C. SUP. PRACTICAL SOLID STATE D.C. SUP.
PLIES by T. D. Towers. RAPID SERVICING OF TRANSISTOR EQUIPMENT by G. I. King. Price $£ 2.75$ COLOUR T.V. WITH PART REF. TO THE PAL SYSTEM by G. N, Patchett. $\begin{aligned} & \text { Price } £ 5 \cdot 40\end{aligned}$

MAKING AND REPAIRING TRANSISTOR RADIOS by W. Oliver Price $£ 2.30$ AMATEUR RADIO TECHNIQUES by P. Hawker. Price $\mathbf{E 2} \cdot 50$

M6800 MICROPROCESSOR APPLICATIONS MANUAL by Motoroia. Price $£ 8^{\circ} 00$

* PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO.
 BRITAIN'S LARGEST STOCKISTS

of Britishand American Technical Books [9-2| PRAED STREET LONDON W2 INP

Phone Or-723 4185
Closed Saturday ! p.m.

P.E.JOANNA

 Electronic Piano
ALL PARTS CAN BE SUPPLIED

Keyboard, Keyswitch, P.C.B.s, Hardware. Semiconductors, Resistors, Capacitors, Cabinets Complete kits or easy stages

Send S.A.E. for details
Clef Products
31 Mountfield Road, Bramhall Stockport, Cheshire SK7 1LY

Stirling

 QV* MODULES FOR

 QV* MODULES FOR COST-CONSCIOUS CONSTRUCTORS

STIRLING SOUND policy is to ensure customer satisfaction by designing and making their products in their own factory in Essex and selling direct. Production control-checked throughout. All OV Modules are compatible within the range and with much other equipment.

UNIT ONE PRE-AMP/CONTROL

Combined pre-amp with active tone-control eircuits. $\pm 15 \mathrm{~dB}$ a 10 kHz treble and 30 Hz bass Stereo. Vol.'balance/treblefbass 200 mV out for 50 mV in. Takes $10-16 \mathrm{~V}$ E7. 80 OTHER PRE-AMP AND

CONTROL UNITS

SS100 Active tone control. stereo, $\pm 15 \mathrm{~dB}$ on bass and on trable $\quad \mathbf{~} 1.60$
SS101 Pre-amp for ceramic certridges, radto, tape. Stereo. Passive tone control circuit shown in data suoblied

E1. 60
 PU.s R.I.A A corrected. Linear feedback facility
12.65

New style for
nower style for SS105. SS110 and SS120

POWER AMPLIFIERS FROM 3 TO 100 WATTS R.M.S.

The new SS1100

Delivers 100 watta rm .s. into 4 ohms using 70 volt supply. Heavy outy, puggedly constructed module complete with output capacitor and heatsink-type mounting bracket. Size approx $140 \times 76 \times 32 \mathrm{~mm}$. Just the pab for disco or P.A. use. Large Heataink- E1.00 \dagger
SS103 3 watt r.m.e. mono I.C. with built-in current, short, and thermal protection
SS103-3 Starbo yersion of above
51.75
$12 \cdot 25$
SS105 5 watts fom.s. into 4 ohms, using 12 V (SS312 for
SS110 10 watts r.m.t. using 24 V and 40 hm load. Use SS324 as the power supply.
SS120 20 watts r.m.s. into 4 ohms, using 34V. Use SS324 for your powar supply.

FM TUNING MODULES

SS201 Front and tuner, slow geared drive, two gang A.F.C. facility. Tunes $88-108 \mathrm{MHz}$

SS202 I.F. amplifter Metaring and A F.C. Facilities
uners. A LED may be fitted
*THE BUILT-IN QV FACTOR

A member of the Bi-Pre-Pak group

220-224 WEST ROAD, WESTCLIFFE-ON-SEA, ESSEX SSO 9DF
Telephone Southend (0702) 46344

TODAY'S BEST VALUE IN - ONEF Qu001y Units
 with 13-15V take-off points
 7
 MODELS
 TO CHOOSE FROM

Al the following are supplied assembled complets with mains transtormars and low voll take-off points. Complete with mains transformers (except $\mathrm{S} S 300$). All at 8\% VAT rate. Add 50p for p/p eny model except Ssmo.
SS312 12V/1A £3.75 \dagger
SS318 18V/1A E4.15 \dagger
SS324 24V/1A E4.60 \dagger
SS334 34V/2A E5.20 \dagger
SS345 $45 \mathrm{~V} / 2 \mathrm{~A}$. $6.25 \dagger$
SS350 50V/2A E6.65 \dagger
SS300 Fower stabilising unft to-50V adjustable for adding to unstabilised supplies. With built-in protection against shorting ($\mathbf{p} / \mathrm{p} 35 \mathrm{p}$)

SS310/50
Stabilised power supply with variable output from 10 to
SOV/2A bullt-in protection against E11.95t

WHEN DRDERING

Add 35p for p/p unless steted otherwise. VAT add $12 \% \%$ to total value of order unless price is shown t when the rate ts 8\%. Make chaquas, atc., payabie to Bi-Pre-Pak Lid. Evary affort is made to ensurs carrectness of information at time of going to press Prices subject to alterstion without notice

AUDIO MODULES

A NEW APPROACH TO QUALITY HI－FI

Cliffalm Ltd．Introduce a flexible range of high quality modules to enable a sophisticated hi－fi system to be built up from simple beginnings．
An initial 20W r．m．s．+20 W r．m．s．stereo with standard controls can be expanded to give a $40 \mathrm{~W}+40 \mathrm{~W}$ system with（in addition to the normal bass，treble and balance controls）a further range comprising ＂rumble＂and＂hiss＂switchable controls with a range of frequencies； and a stereo image width control．

STEREO PRE－AMP：CP－P1

PRICE $£ 13 \cdot 30+£ 1 \cdot 66$ VAT

Specification

Input	Sensltivity	Signal／Noise	Impedence
Magnetic	3 mV	$>70 \mathrm{~dB}$	$47 \mathrm{k} \Omega$
Tuner	100 mV	$>70 \mathrm{~dB}$	$10 \mathrm{k} \Omega$
Tape	100 mV	$>70 \mathrm{~dB}$	$10 \mathrm{k} \Omega$
Auxiliary	$1-100 \mathrm{mV}$	$60 \mathrm{~dB}-70 \mathrm{~dB}$	$200 \mathrm{k} \Omega$

Magnetic V／p overlosd：33dB

Disiortion： 0.04% at 1 kHz ；
Output： 1 V r．m．s．Into $10 \mathrm{k} \Omega$ ；
Supply voltage：$\simeq 18 \mathrm{~V}$ hominal；
Tone controls：Bass $\pm 12 \mathrm{~dB}$ at 100 Hz ， Treble $\pm 12 \mathrm{~dB}$ at 10 kHz
Deacripllon：This is a general purpose 2 channel pre－amplifier sultable for use with gramophone，tape，microphone or tuner inputs．it requires no external components other than the potentio－ meters for the bass，treble，balance and volume controls and the input selector switch．The unit is internally protected against accidental reversed supply connection．

AMPLIFIER：CP2－15－20

PRICE：$£ 12 \cdot 85+£ 1 \cdot 61$ VAT
40W r．m．s．single
20W r．m．s．+20 W r．m．s．stereo

Specificatlon：

Power output：
40W r．m．s．into 8 Ω ， 1 channel；or 30W r．m．s．into 15Ω ， 1 channel，or 20W r．m．s．+20 W r．m．s．into $4 \Omega, 2$ 15 W channe or +15 W rm．s．into $8 \Omega, 2$ 15W r．m
Input sensitivity：IV r．m．s．：Frequency input sensitivity：iv r．m．s．；Frequency
response：$\quad 20 \mathrm{~Hz}-20 \mathrm{kHz}$ at -3 dB Distortion： 0.04% at 15 W ；Supply Voltage：$\pm 18 \mathrm{~V}$ nominal；Size： 5.1×4 $\times 1-25 \mathrm{in}+(130 \times 102 \times 32 \mathrm{~mm})$ ．
Descriptlon：This module is designed to give elther a $20 \mathrm{~W}+20 \mathrm{~W}$ stereo amplifier or alternatively a 40 W single channel．It has built－in protection against accidental reversed supply connection and it incorporates a thermal shut－down facility to prevent over－dissipation． No external components are required．

FUNCTION GENERATOR：CP－FG1

PRICE：$£ 11 \cdot 75+£ 1 \cdot 47$ VAT
For those requiring a whder range of facilities，this module provides bass and treble filter controls．comprising switchable cut－off fre－ quencies for rumble and hiss reduction．Also included is a stereo separation control．The unit is complete except for the potentiometers and switches．

POWER SUPPLY：CP－PS 18／2D

PRICE：$£ 5 \cdot 75+72 p$ VAT
This is sultable for one $20 \mathrm{~W}+20 \mathrm{~W}$ complate system
For a $40 \mathrm{~W}+40 \mathrm{~W}$ system，two power supplies are required．
Full application noles aro provided
Pomt and Facking wre free on all ordere
Alf unta ere fuarantoed for 2 yeart
Cuiffipalm Lid．
DEPT．HF／PE， 13 HAZELBURY CRESCENT LUTON，BEDS．LU1 1DF

IMHTIPIS

58－80 GROVE ROAD，WINDSOR，BERKS．，SLA 1HS Tel 54525．For industrial，Trade and Export LOW PRICES TELEX 27950，REF 1117 FAST SERVICE Add 8% to prices marked＊．Add $12 \% \%$ VAT to all other prices or curen VAT tagialation Sand C．W．O．excepl Government dept．，atc．Posi and packinc 20p U．K．Barctay Card sind Access by post or 55 min ，by telephone．Liat free，sand S．A．E．Money back if not satisfiad．
ALL FULL SPEC．DEVICES．NORMALLY 24 HOUA TURNFŌUNND ON STOCK ITEMS

ON STOCK							
IC＇s All price	All price owch	THANSISTORS		T16		CMOS	
555	${ }^{35} p^{*}$	AD161	$50{ }^{\circ}$	7400	15p＊	4000	15p＊＊
703 AF／IF	29 p	AD162	50 p ＊	7401	${ }^{18} \mathrm{p}^{*}$＊，	4001／2	19p＊＊
709 T099	25p＊	日C107	10p＊	7402	1衡＊	4008	c1－60＊
723 Aeg．	49p＊	ВС7078	13p＊	，7404	$19{ }^{\circ}$	4007	15p＊＊
741 DIL	22p＊	BC108	即。	7410	190\％	4010	500^{*}
741 TO99	$33 \mathrm{p}{ }^{*}$	BC108B	13p＊	7413	${ }^{26} \mathrm{p}^{*}$	4011	11p＊
741 DiL 14	35p＊	8C109	9p＊	7420	23p＊	4012	1ep＊
7472×741	899＊＊	BC109C	150＊	7430	22^{2}	4013	$50{ }^{\circ}$
748 DIL 8	33 p ＊	EC177／8／9	20p＊	7440	16p＊	4015	94p＊
7805 etc．£1	E1．50＊	日C182／3／4	10p	7441	${ }^{73 p}$	4016	$500^{* *}$
AY51224 £．3	£．3 49＊＊	GC212／3／4	12 p	7442	＊5p＊	4017	94p＊＊
CA3046	$85{ }^{*}$	BCY70／2		7447	7pp＊	4023	19p＊＊
LM300 £．	¢1． 500^{*}	BC131	38p	7470	200＊	4024	72p＊
L．M301	$3{ }^{\text {m }}{ }^{*}$	ED132	38 p	7472	259＊＊	4025	19p＊
LM309K ¢2	¢2．00＊	BFY51	15p＊	7474	310° ．	4028	87p＊＊
LM380	809p	M J 2955	$95{ }^{\text {a }}$	7475	49p＊	4040	94p＊
LM3900	80p＊	M．JE2955	950＊＊	7476	$38{ }^{3}{ }^{*}$	4042	$7{ }^{\text {73P＊}}$
M 4 C1310	22．00	M， L E3055	${ }^{85} p^{*}$	7490	42p＊	404？	？${ }^{\text {P }}$＊
MFC4000	$75 p$	T1P29／30C	85p＊	7491	$75 p^{*}$	4050	50p＊
NE536 ¢2	¢2．00＊	TIP31／32C	¢1． $\mathrm{DO}^{\text {a }}$	7492	45p＊	4526	E1．00＊
NE555	$35{ }^{*}$	TiP41C	E1 ${ }^{35}{ }^{\text {a }}$	74121	32p＊	4553	24．00＊
NE556	99p＊	TIP42C	E1． $50{ }^{*}$				
TBA800	80p	TIP2955	99p＊＊	DIODES OAS $1 / 91$ 5p			
TBA810	$95 p$	TIP3055	$\mathrm{cas}^{\text {p }}$	1 N 4002	5p＊	1 N 40	4 ep＊
TBA820	sop	TIS43	27p＊＊	IN4148 and IN914 ailicon 4p．			
ZN414 E1	E1．20	2 N 2846	49p＊	BZY88 ZENERS 400 mW 10 p ．			
		2N2905	29p＊				
		2N2926g	11p．	BRIDC	E 1A 5		220^{*}
LEDS 10p	10p elluch	2N3053	18p＊＊	6A 100			${ }^{55} p^{*}$
RED NO CLIP	CLIP $10 p^{\circ}$	2N3055	45p＊	SCA and TRIACs			
TIL209 mind Cup	C CLIP 12p．	2N3702／3	10p				
－0．2＇${ }^{\text {Ped and CLIP }}$	and CLIP 14p＊	2N3704／5	10p	SC146 10A 400V TRIAC E1＊			
coldur leds	LEDS 24．	2N3706／7	12p				
		2N3708／9	12p	OIL SOCKETS ${ }_{\text {／14／16 ALL }}$			
		2N38190	tep	$14 p^{*}$ SOLDEACON $10085 p^{*}$			
	I8plays	2N3904／6	17 p ＊	1000 r	－00＊		
030017047	1047 $\quad 81.00$	BUSH SETS	Sp＊	VERO DIL BREADEOARD			
$0 \cdot 6^{\prime \prime}$ DL747	$47 \quad 51.25$			£2－25＊，2才＂$\times 5^{\prime \prime} 40 \mathrm{p}^{*}, 34^{\prime \prime}$ $\times 5^{\prime \prime} 45^{*} .25^{\prime \prime} \times 34^{\prime \prime} 36 p^{*}$ ．			
DALO PEN	－75p						

TAMBA ELECTRONICS

A BRAND NEW RANGE OF AMPLIFIER MODULES 5 to 100 WATT／RMS

Choose the power you need from these five pure complementary amplifiers
 Two－year guarantee

All amplifiers feature a pure comple－ mentary symmetry output stage for low distortion and high reliability－the highest grade components（by Muliard－ Texas，Plessey－RCA etc．）used throughout
［．Suits loads 4－16 ohms（optimum load 8 ohms，TAM50／100／250， 4 ohms TAM500／1000）
－Low distortion（ $0 \cdot 1 \%$ ）
－ $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
－Silicon circuitry throughout
－Inherently open circuit proof
－Four simple connections

TAM50 5W RMS 25V supply	$£ 3.20$
TAM100 10W RMS 35V supply	$£ 3.75$
TAM250 25W RMS 45V supply	$£ 4.25$
TAM500 50W RMS 45V supply	$£ 6.95$
TAM1000 100W RMS 65 V supply	$£ 9.80$
（all modules carriage free）	

POWER SUPPLIES

For 1 or 2 TAM50／100 $£ 4 \cdot 25$（carr 50p）
For 1 or 2 TAM250／500 $\quad \mathbf{\varepsilon 6 . 9 5}$（carr 50p）
For 1 or 2 TAM1000 $£ 9 \cdot 80$（carr 50p）

You may order as follows：C．W．O．（crossed cheques，P．O．s，M．O．s etc）C．O．D．（50p extra）．We accept Access and Barclaycard－send or telephone your number－do not send your card．Add VAT at 8% to orders for $50-100 \mathrm{~W}$ units and at $12 \frac{1}{2} \%$ for $5-25 \mathrm{~W}$ units

Hours， 9 30a．m．－5p．m． Mon．－Sat．Callers welcome．
Tel：（01） 6840098

TAMBA ELECTRONICS

Bensham Manor Road Passage，Bensham Manor Road，Thornton Heath，Surrey．

OVER 2，000 ELECTRONIC COMPONENTS INA

THE ロREN ロロロA TO EUALTY

This catalogue－Electrovalue Catalogue No． 8 （Issue 2, up－dated）－offers items from advanced opto－electronic components to humble（but essential）washers．Many things listed are very difficult to obtain elsewhere．The company＇s own computer is programmed to expedite delivery and maintain customer satisfaction．Attractive discounts are allowed on many purchases；Access and Barclaycard orders are accepted．
＊FREE POSTAGE on all C W．O．mail orders over £2 list value（excluding VAT）in U．K．If under，add 15 p handling charge．

144 pages post paid

40p

inc．refund voucher worth 40p

The Experimentor is not so much a new breadboard, practically a new way of life!. Says Ronald J. Portugal (President, Continental Specialities Corporation.)

No soldering. No spoilt devices. No fuss. No fiddling. No wasted time.
Now you can put circuits together as quickly as you think them up. Just plug your devices in, pull them out, plug them in again, as many times as you want.

Experimentor 600. The world's first breadboard specially designed for 0.6 pitch devices. It gives you all the fan-out you need for complex MSIs, Micro-processors. Memories, Displays etc,(10 pins or more) with plenty of room for other components alongside.

Experimentor 300. This one is designed to be ideal for 0.3 pitch DILs, any kind, from 6 pins up. Excellent fan-out. (You can also use it for 0.6 devices, though for these the 600 version is recommended.)

Easy to Buy.
There's no problem buying from USA.
Just send name, address (block letters please), quantity of each required, and a perfectly nonnal UK bank cheque, made out in Pounds Sterling, to Continental Specialities Corporation.

Or you can use an International Money Order, from any Post Office. We also accept your American Express Card or Access number.

Then we post by return airmail, and you should receive the goods within $2-3$ weeks.
Dealer enquiries invited. Note that any UK taxes or duties
chargeable are soiely the responsibility of the buyer.

SYNTHESISERS, SOUND EFFECTS ANE

P.E, SYNTHESISER

(P.E. Feb. 73 to Feb. 74)

The well acclaimed anid highly versatile large-scale mains-opersted Sound Synthesiser complete with keyboard circuits. Alt function circuits may be used independently, or Inverconnected. The greaser ehe number of circuits, the greater the versatility. Other good adyantage inotably P.E. Minisonic, Phasing Unit, Wind and Rain, Rhythm Ganerator, Sound Bender, Voltmege Conerolied Filter, Guitar Effocts Pedal).
THE MAIN SYNTHESISER
Stabilised powar nupply
Two Linear Voltage Controlled Oserllators and one Inverter-all 3 circuits
PCB (2 are required)
£ 17.80
Two Ramp Generators and Two Input Amplifiers
all 4 circuizs
PCB (halds all 4 circuits)
Sample-Hold and Noise Generator
PCB (holds both circuits)
PCB
Reverberatión Amplifier
Sprine Lirie unic for Reverb. Amp
Ring Modulator
Peak Lavol Meter Circuit
$100 \mu \mathrm{~A}$ Panal Meter
PCB to hold Reverb. Ring Mod and Metar Circuits
Envelope Shaper
PCB
Voltage
Amplifier
PCO (holds boeh eircuies)
THE SYNTHESISER KEYBOARD CIRCUHTS
(Can be used wirhout the Main Synthesieer to make an independent musical instrument) Controlled Oscillatori
Componens set
PCB (holds both circuics)
Divider, 2 Hold Circuits, 2 Madulasion
Amplifiers, Mixer and 2 Envelope Shapers
PCB (holds the first 6 circuitas)
Keyborard Stubllised Power 5upply
Printed Circuit Board
GUITAR EFFECTS PEDAL (P.E, July 75
Modulates the attack, decay and filter characteristics of
Modulates the attack, decay and firter characteristics of an audto signal not only from a guiter but from any audio
source, producing s different switchable offects that can be further modified by manual cantrois. Possibly the most intercstint of all the low-priced saund effects units in our ranse. Circuit does not duplicate effects from the
Guitar Overdrive Unit, switches
Alternative component set with pariel mounting
Switches Printed Circuit Board
SOUND BENDER (P.E. May 74)
A mulsi-purpose sound coritroller, the functions of which include cnvclopeshaper, tremolo, volce-operated fader, automatic fader and requency-doubler.
Printed circuit board
Optional extra-addjtional Audio Modulagor, she use of
whtch, in conjunction with the above comporient set. ean produce "iun la-drum" rhythms.
Component Set (incl. PCB)
PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlied unis for introducing the "phasing" sound into tive or recorded
music.
E2.85
PHASING CONTROL UNIT (P.E, Oct. 74)
For use with she zbave Phasing Unit to automatically control the rate of phasing.
Component Ser (incl. PCB)

WAH-WAH UNIT (P.E. Apr. 76)

The Wah-wah effect produced by this unit can be con-
trolled manually or by zhe integral automatic conerolier. Component Set incl. PCB

POST AND HANDLING

U.K. orders-under $\mathcal{E} 15$ add 25p plus VAT, over $\in 15$ add

50p plus VAT,
Optionsl Ingurance for compensation ageinst toss or damage In post, add 35p in addition to above post and handling. B.F.P.O., and other countries are subject to Eire, C.f., B.F.P.O.., and
Export postage races.

COMPONENTS SETS include all necessary resistors, capacitors, semiformers. Hardware such as cases, sockets. knober, Hardwaresuch as cases, sockets. hose. etc. are not included but most or these may be bought separately. Fuller in our fists.
CIRCUIT AND LAYOUT DIA. GRAMS are supplied free
PCBs designed by Phonosonies.
PHOTOCOPIES of the P.E. texts for most of the kits are available-prices in our lists.

MAIL ORDER SUPPLIERS OF QUALIT PRINTED CIRCUIT BOARDS, KITS AN COMPONENTS TO A WORLD-WID MARKET.

WIND AND RAIN UNIT

A manually controtled unit for producing the above named sounds.
Component set incl. PCB
GUITAR OVERDRIVE UNIT (P.E. Aug. 76)
Saphisticated, versatile Fuzz unic, including variable and switchable controla affecting the fuzz quality whils retaining the attack and decay, and also providing filter: Effects Pedal arid can be used with ft and with other electronic instruments.
Comporient ser using dual slider pot Component set using dual rotary pot Princed circuit board
56.57

FUZZ UNIT
Simple Fuzz unit based upon P.E. 'Sound Design' circuit. Component set incl. PCB
TREMOLO UNIT
Based upon P.E 'Sound Design' circuit.
Comporient set Iricl. PCB
TREBLE BOOST UNIT (P.E. Apr, 76)
Gives a much shriller quality to audio signals fed through
it. The depth of boost is manually adjustable.
Componert Set incl. PCB
25 WATT MONO AMPLIFIER (P.E. Sept. 75)
A good general purpose integrated circuit power
amplifier typically delivering 25 watts into 8 ohms 20 km . Distortion 0.2% Suitable for use with any of our sound producing kits.
Component Set incl. power supply
Printed Circuit Board
P.E. JDANNA (P.E. May/Sept. 75)

A five-ocrave electronic piano that has switchable
alternative voicing of Honky-Tonk piano. ordinary piano.
harpsichord, or a mixture of any of the three, sogether
with facilizus fincluding fast and slow tremolo, loud and soft pedal switehink. and sustain pedal switching. The The PCBs have been redesigned by ourselyes maldins improved use of the space available.

Main Power Supply
Tone Ganorator and Top C Envelope
Shaper Main PSU, Tone Gen \& Top C E.S.
$\$ 10.09$
E2.31
Sot of PCBs for Envelode Shapers (exsepr Top C)

Voicing and Pre.Amp Circults E11.88
PCB for Voicing and Pre-amp E2.80
Powor Amplifior (inticl. separate Power Supply) $£ 15.06$
PCB for Power Amp and PSU
PCB far Power Amp and PSU
95
RHYTHM GENERATOR (P.E. Mar./Apr. 74)
Programmable for 64,000 rhythm patterns from 18 effoces
circuits high and low bongos, bass and snare drums,
variable time signatures and rhythm rates. Really fascina
ring and useful.
Tempo, Timing and Lotic circuits
PCB for abovo circuiss (dauble-sided)
Component sce for all 8 effects circuits
PCB for all a effects
Simple mixer (our design) incl. PCB

412.68
$[3.24$
12.74

Atcernative mixer with external volume conerois
Power Supply for T, T and L. and Effects. Incl.
(See our list for Power 5upplies for Mixers)
REVERBERATION UNIT (P.W. Nov./Dec. 72)
A high quality unit having microphone and line input
presamps, and providing full control over reverberation level.
Component Ser (excl. spring unit)
E8.79
Printed Circuir Board
11.93
5
5
5
P.E. MINISONIC MK I
(P.E. Nov. 1974 to March 1975)

A portable, battery or mains operated, miniature so synthesiser, with keytoard circuits. Although havi the functions offered by this desigri give it great sco and versatility. Like the farge Synthesiser it too m be adyantageously used with other circuits in our list Basic component set
Basic compor
Set of PCBs
Fult details in our list.
P.E. MINISONIC MK 2

More sophisticated versıon of the MK 1 .
Basic componerit sec from
Set of PCBs
Full decails in our list.

DISCOSTROBE (P.E. Nov. 76

4-channel light-show controller giving a choice sequential, random, or fult strobe mode of operation.
Basic componenis sct Brisic componentsct
Printed circuit board

ENVELOPE SHAPERS

Bath of the kits below have manual cantrol over th Attack, Decay, Sustain and Release functions. Both k inctude PCB (VCA means Voltage Controlled Amplifi Envelopo Shaper and VCA (P.E. Apr. 76)
Envelope Shaper (without VCA) (P.E.Oct. 75)

VOICE OPERATED FADER (P.E. Dec. 73)
For automatically reducing musie volume during "ta over"-particularly useful for Disco work or for tion movie shows.
Companent Ser incl. PCa

VOLTAGE CONTROLLED FILTER (P.E. Oct. 74)
An independently designed VCF that can be used w
the P.E. Synthesiser
Componarit Sct
Pringed Circuit Board
P.E. TUNING FORK (P.E. Nov, 75)

Produces 84 switch-selected frequency-accurate con An LED monitor elearly displays all beat note adju ments. Ideal for tuning acoustic and electronic muli instrumenee alike.
Main Component Set incl. PCB
Power Supply set inci. PCB
P.E. SYNCHRONOME (P.E. Már. 76) An accented-beat electronic metronome, provid tho beat rate. Can also bo used as a simple drum-b rhythm generator, Includes power supply.
Component Set incl. loudspeaker
Printed Circuit Board

PEAK LEVEL INDICATOR (P.E. Mar. 76)
A twin-charinel visual display unit for monitoring peak level of audio sigrials. Wall suited for use w inter-coupling our many sounid producing kits to h avoid signal over-loading.
Comporient Sct incl. PCB (as published)

DON'T FORGET VAT!
Add $12 \frac{1}{3} \%$ (or current rate if changed) to full total of goods, post end hendling. (Does not apply to export orders).

EXPORT ORDERS are welcome, though wa advi that a current copy of our list should be obtained befo
ordering as it aiso shows Export postage rates. All pt ordering as it aiso shows Export postage rates. Ali p
ments must be cash-with-order, in Sterling and preferab by International Money Order or through an Enel Eank. To obtain list for Europe send 20 p , for orh
countries send 40 p .

OTHER PROJECTS

PHOTOGRAPHS in chis advertise－ ment show ewo of our units eontaining some of the P．E．projects buitt from our kits and PCBs．The cases were built by ourseives and are not for sale，though a small selection of other cases is available．

LIST－5end 5camped Addressed En． velope＇with all U．K．requests for free list giving fuller details of PCBs，kits，and other components．

send 20p：Other Countries－send 40 p ．
KEYBOARDS AND CONTACTS
Kimber－Allen Kayboarda as required for many published circuics，including tho P．E．Joanna，P．E．Minisonie，and P．E，Synthesiser．The mantiacturers claim that chese are the finest moulded plastickeyboards available．All octaves are C to C．The keys are plastie，spring－loaded and mounted on a robusc aluminium frame．
3 Oetave（ 37 notes）$£ 23.10$ ． 40 cc （ 49 riotes） 627.45 ． 5 Ot（ 61 notes）$£ 32.10$
Contact ABemblifes for use with above keyboards：Single－pole change－over（cype 5P）as for P．E．Joanna and P．E．Minisonic．Two－pote normally open－make－break（type Op）te for P．E．Synthesiser．5pecial contact assembly（type 4P5）havirig 4 poles， 3 of －this apecial alsembly make－break contacs KM THE 5 AME KEYBOARD to be used wish ehe P．E 5ynchesiser PE Minisonic and the PE Joanria simuleaneously chus avoidinig the cos of more than ona keyboard．

PRINTEO CIRCUITBOARO5 for uso with the above COntaers and most of the Inter－wiring required，are svailabie．Details in our lises．

SOUND－TO－LIGHT（P．E．Apr．／Aug．71）
The over－popular Aurora－4 or B channels each respondirig to a different sound frequericy and controlling its own light． Can be used with most Eudio systems arid lamp intensitits． A MUST for any Disco，and a fascinating visual display for the home．
4 Channal Componant Set（axel，thyristors） Channal Componient Set（exel．thyristors） PCB for 4 frequency channels
PCB for power supply and 1 lamp drivers 1 A 400 V thyriscors（1 per chari，req．）eaeh Parial meter（ $1 \mu \mathrm{~A}$ ）（optional）

3－CHANNEL SOUND－TO－LIGHT（P，E．Apr．76）
A simpla bus offective sound－to－light concroller capable of operatinge 3 lamps each of epproximately 700 watts．Includes cower supply，thyristors，and by－pasi switches．
111.18

BIOLOGICAL AMPLIFIER（P．E．Jan．／Feb．73）
Multi－functlon eireuits thas，with the use of other externa equipment，can serve as lie－decector，alphaphone．cardio phone etc
Pre＝Amp Module Component Set inet．PCB \quad \＆ 1
Beaic Output Circulte－cambined componene set with PCB_{5} ，for a！phaphone，cardiophonie，frequency meter arid visual feed－back lamp－driver circuits Audlo Amplifier Module Type PC7

TAPE NOISE LIMITER
Very effoctive circuit for redueing the hiss found in mos spe recordines．All kirs Include PCB．
Standard Tolerance Ser of Comporienes
Regulated Power Supply（will drive 2 sets）
62.85
13.30
$\mathbf{4} 4.69$

SINE AND 5QUARE WAVE GENERATOR（P．E．July 75）
Suizable for audio．digital，or general ourpose．Conrrollable hrough 4 decade ranges 10 Hz to 100 kHz ，switched astenu ation through 10 ranges from 10 V to ImV peak－to－pea
Comporient 5et．While stocics last
PCB for abova companents
Power 5upply
PB for Powar 5upply
49.83

SENI CONDUCTOR TESTER（P，E．Occ．73）
Essenitial cest equipment for the enterprising fiome construs
or．While stocke fiest．
Set of resistors，capacitors，semiconductors
potientiometers，mak $(500 \mu A)$
18.86

P．E，MINIMIX 6 （P．E．Nov．／Dec．75）
Each of the 6 input channels has its own gein，volume and panning concrols．The volume of the swin channic autputs are fully manually eontroliabie，as are the head phone and pre－fade monitoring facilicies．Twin VU merers provide visual display of ehaninal audio levels For deralls see our list．While srocks last．

－1NPUT MIXER

A simple mixer having 8 inputs each of which has a prese evel consrol and whieh are eombined into orie output channel having a preser over－all level conerol and a master output volume control．Designed for inter－ coupling our various sound effects and synthesiser kits．
Component set incl．PCB

PRICES ARECORRECTAT TIME OF PRESS．E．A．O．E DELIVERY SUBJECT TO AVAILABILITY．

TRANSISTORS
ACI2B
ACI76
$A C 176$
BC107

BCl 108
BC

BCl 109
BC 147

BCl 47
BCl
BCl

$8 C 149$
$8 C 157$
BC158
BC159
BCI日2L
日CiB4
日CliB7
日C204
BC209C
20p
$20 p$
$20 p$
$14 p$
ng

B．BAMBER ELECTRONICS

PLEASE ADD 8% VAT UNLESS OTHERWISE STATED
\mathfrak{A} fterry ※mas
to all our Customers
VARIABLE STABILIEED POWER SUPPLY， mains inpul， $0-24 \mathrm{~V}$ outgut，stsblined and curfeni
 complate with axiemal $5 \mathrm{k} \cap$ 3－turn pol for volinge controt．Connaction antin mupplied． 67.
50 НA（ $25-0-25(\mu)$ ）EOGEWIBE METERE，Modern type by Sungamo Wasisisn，display mana if k 1fin with 2 mounling lug（Cidn be xeroud let or right handi）It 59 each，while atoctry lss
MAINS ISOLETION TAANSFOAMEASS．TAPDEG malne inpul， 240 V al $3 \mathrm{~A}+12 \mathrm{~V}$＝1 500 m
FLEXIILE HEATEA STAID， 240 V a．c 150 W ， approx． 1 matrus long（finsulated winh tibreglass） eop each．
Good Quality Preatarat Guagen． 2 fin dia．
 $0-10012$
0.12
0
2N3055 ypu Trunnistors．OK．，but unmarked，
5 ter t 1 ．
THOV NEONB．BCAEW－IN－TYPE， 4 for 50 P
SLOW WOTION MOTOAS（auituble for pro－ gLOW MOTION MOYOA\＄（auizabie for pro－ rolalion． 1 niv．avery two to three minutes， 51－23 oach．
MINIATUAE PLIERS High quality＂Crescent＂． made in USA．it－35＋VAT（3Sp）
SIDE CUTTENB，high quality．
pairs 30p． 7 P + VAT in
MIPEDCONPONEMT PACKB，conlalning ressia－
tofi，capacitort，wwithen，pota，etc．Al new
 （hams），© per pack，while atocks ispal．
TUNED COILE， 2 secitan ceile，sround 1 NHz with a blick emart luning knos，which movas；

HIOH QUALITY BPEAKERE，日月in \times Sin illiplical

PROGRAMMERS（magnetic devicea）Conten microawitenes（eutitabla far matna optration） with 9 rotuting tanna，all individually gajublable． icsal for witiching dikeo lighte，displeye，fic
or Industrim）machine progremming．（Need ar Industrial machine programming．（Need switch version El － s 0 ．
MEAVY DUTY HEATSINK SLOCKS，undrilled ousin ann 2 2tin
2 tin sep sach．
SPERAY 7－EEGMENT P．G．D．DISPLAYS，olgit hoight $0.3 i n$ red，with decimal pointa．SoV to oov（nominal 180Vi）opsration thase ars high volt induatial type sind tharelara brighlert than normal diaplayle All brand how．AT THE
BARGAHM PRICE OF SOP PER DIGIT．TYPE 332 QARGGAH PRICE OF SOP PER OIGIT．TYPE 332
thwo digith in one mount $t 1$ each，TYPE 333 ithroe digils on on mount）mi－50．（Sorry，no angle digli availabis．）Onta Suoplied．
BSX20（VHF Deci／Mult）． 3 ror 30 p ．
BC 100 （matal chn）． 4 for 55 p ．
BFYS1 Tranalalors， 4 for $\mathbf{~ E 0 p}$ ．
BCY 72 Tesnsha10re， 4 for 50 p
PNP audio type TOS Trangiators 12 for 25p
EF 152 \｛UHF ampimixer）， 3 for 50 p ．
2N3819 Fal 3 for mop．
Ba121 varicas Diodet ${ }^{4}$ for 50p．
1NP14 dioden． 10 for 23 p．
GMALL MAINS SUPPRESEORS（smali chokes． dasel lor radia．MI－FI inpula elc．）apprax f in x $1 \mathrm{in}, 3$ for 50 p
PERBPEX TUNER PAHELE for FM Band 2 tunera）marked $80-108$ MHz and Channels 0 （ -70 ． clear numbert，retif blacked out．memnil modern
 lunds． 4 for 50 g ．
meavy buty pelays．2ay die．operseded fwilt work on 18 Vk 3 heavy duly maks contects around 10A ratingi，${ }^{*}{ }^{4}$ change over contecte mounting bracket fideal tor switcting MT on Linsars）Many uses for this migh quality
unit，E1．so anch

TO3 irensiator insulator neta io far sep
ALU－SOL ALUMINIUM BOLDER（made by Muith－ cores）．Salders aluminium to lsall or coppar mulicora fiux．with insiruelione．Approx． F matre

1 in poly for 30 p

1．C．＇s，some coded，th DLL type，unteatea
mixed． 20 for 235 ．
 approx $3+4 \mathrm{~A}$ DC outpur，fulty stapilised．£3．50
anch fideal for running 12 V cer radio from 24V aach（idasal
lorry gallary）．

We now atock Sptralux Toole for the gletitranic
anthurinat Scrawdivers．Nut Spanners，BA and Melric nizes，poo rivet gung ett．S A．E，for lisi

Miniature earphones with min．jack plug． 2 fo $30 \mathrm{D}+\mathrm{T}_{2+1} \mathrm{~K}$ VAT

TWIN I．F．CAN

TCC Elecirolytics． $1000 \mathrm{uF}, 30 \mathrm{~V}, 3$ for HPp ．
Pincoor Electrolytics， $1000 \mu \mathrm{~F}$ ， $1 \mathrm{BOV}, 40 \mathrm{p}$ each （3 for \＆1）．
Dubliter ElecIrotytica． 5000 HF ．35V． 50 p such．
 ITT Elactrolvici， 5800 uF ． 25 V ，high grade，wcrew irninais．with mouniing ctipts，Sap eanch．
 X．Scrow terminsla．E1，se nach．

LARGE RAMOE OF
A LARGE RANGE OF CAPACITOREAVAILABLE

TV PLUQE AND BOCKET：
TV Pluga imital typal）， 5 for 50 p
YV Sackets（metal type）， 4 tor 50 p ．
TV Lime Connectori（back－to－b ick moakstal， 4

PLUGE AND SOCKETB

N －Type Sockets（4hole chasse mauntingi． 50
onima ohimn（a amall conx land rypes），sop anch，
PLZSE Plugs（PTFE），brand new．packed with
 SO239 Sockple（PTFE），trand
typa）．Sep eith of 5 for $\mathbf{2 z} 2.25$

Plaki）． Bulgin Found Frie Skts 3 pin，for maina input on iest squipment，stc．，25p asch．

WELLEA BOLDEAING IRONS
EXPEAT．BuIt－in－spollight aluminat
Pisiol grip with Hingerlip int iluger．High officiency
 EXPERT SOLDER GUN KIT（1pare blis cage

SPARE BITs，PAIR，30P＋VAT（2p）

SPZSO 2SW R－VAT（24P
SPSDK 2 WW －bitt 日te．Kit
SPRSDK 2wW＋bits．stc．kit E3－85＋VAT（31p） SP $40 \mathrm{C} 40 \mathrm{~W} \mathrm{D} \cdot 44+$ VAT（23p）
GENCH STAND with soring for Markaman irons SPARE BITS
MTO for $15 \mathrm{~W}, 4 \mathrm{4p}+$ VAT（4p）．
MTA for $25 \mathrm{~W}, \mathrm{sip}+\mathrm{VAT}(3 \mathrm{p}$ ）
MTA for $25 \mathrm{~W}, 3 \mathrm{sip}+$ VAT $(3 p)$
WT10 for $40 \mathrm{~W}, 4 \mathrm{Ap}$－VAT (2)
MT10 for $\angle 0 W$ W．APP＋VAT（\＄p）
TCPT TEMPERATURE CONTROLLEO IRON．
Temporature conirolled ron \＆PSU，s20＋VA （EI•紋）TIPS
SPAAE TIPS
ypa CC singla Mat．Type K double liat fint tip

MULTICORE AOLDER

Size 5 Savbil is a．w g．In alloy diepenasr， 3 zp －VAT SJot．

Terme ol Butiness：CASH WITH－ORDER．MINImum ORDER［1．ALL PAICES INCLUDE POST \＆PACKING（UK ONLY）．SAE with ALL ENQUIRIES Please． PLEASE ADO VAT AS SHOWN．ALL GOODS IN STOCK DESPATCHED EY RETURN．CALLERS SATURDAYS ONLY 9．30－12．00，1．30－5．00．

CALCULATOR DISPLAYS
1^{n} digit height, bright red LED 7 depment digplaysior caiculators clocki. DVMs, thmart etc. * Falrehlid FND-10, elngle digit common cathode E1.00 (+val 8ρ) 6 for $\mathbf{E S} .00(+v a t 40 \mathrm{p})$

* MP 74144 diglt. common cathode 12 pln d.I.t. pin out 99p+(vat 8p) है or es. 00 (t vat 400)
* Bownar it diglt, common cathol 81.15 (+ vat 15p) 6 and red (tvat 80p)
*Texas 3 digil common cathode 12 pln dili.I. pin out E5p $(+$ vat $7 p) 6$ fo 8. 4.00 (+ vat 32 p) * Texas. $4+5$ diglt, common cathode 2×14 pin d.t.l. E1.E5 pair (+val15p)
* 30 pln terminatlon board for all types excepi FND-10 20p (+ vat 2p) plated 'anap' type key contacte on gold-plated pcb. 75p (+ vat $6 p$) p \& p on all the above 25 p.

TAPE HEADS

BX12E343:TRACKERASE HEAD - E1. 25 (+val 15 p) BX12RP63 WITH BX12E343 295 (+val 36p) HEAD (200 ohm) - ES. 25 (trat28p)
TWINSTAGGEREO
MARRIOTTHEADS RIRP1 1.58 (+ vat 18p) MARRIOTTRECDRO REPLAY \& ERASEHEAD E1.75(+ val 21p) MiNIFLUXR9N ERASE - £2.25
GX11 E388 ERASE 675 ohm: 2 mA - E0. ta ($+\mathrm{vat} 11 \rho$) GX12 E387 ERASE 675 ohms 2 mA - 〔0. 2 \{ $\{+$ val 11p\} GX20 E362 ERASE 90 ohms
 R/RP1/3 TAPEHEAD I

MULLARD TUNER

 MODULES -LP1174 comblred AM/FM IF strlp - E4.23 (+vat 53p) * LP1179 pang, used with LP1171 tuning pang, used with LP1171- K4.2 +val 53p) * LP1171 \& 29 gair complele AM strip - E2.05 (t vat 26p) * Ferrite Aerial - 55 p (+ val 7p)
pA pall modules 25p each
HR-RPTAPE HEAD SINGLE TRACK £0, $55(+\mathrm{vai} 6 p)$ XRPS $17 \div T$
(+ vat 40 p) XRPS18 $\frac{1}{4}$ TRACK RED E3.28 (+yat 40 p) XRPS $36 \frac{1}{2}$ TRACK - Eif 75 (+vat 79p) XES11 1 TRACKERASE Et.25(+val 15p) EX/RP163!
(+val 26 p)

HEMELEC 3.1010 Coldici stsuth

Spacinily danigned to provido
aircrah and boad mone a low-cont, bant-to-upe radio controi. the Manielec, aytutem gives you overything from singlo chann Digital Praportional Syytam! Buy the componenis you went. ldenil tor any radio control application. * Simpla transmilter-ce. *s

HENRYS

For this latest edition. we

0 (a)

 \# INCLUOING PROPORTIONALLY CONTROLLED SWITCH FIEATURING COSMOS power consumption and extent power consumbattery life.
(+ vut 37p) * single-ch add-on ror recever- $511-75(4$ vel $\{\dagger-47 \mathrm{p})$

 it vat $87 p 1$ sind now for leaflel Wo. (35) for full dutaile Poat etc., SOp each. hatue made hundreds of changes and additions. Containing virtuatty and orofestonals. Henry's Radio Cata"must" for manufacturers. Ancluded a complete alphabetical index, aa well as a sectional index, 50 that you'll tiave no trouble et what younding \star OVER 5,000 ITEMS

+ OVER

200 Pages

* DIScOUNT VOUCHERS
※ QUANTITY DIScounts ON MOST ITEMS manufacturers when ordered on official headed notepaper,
 .
\square多 5 द0

P7. $98 \begin{aligned} & \text { +VAT 64p } \\ & \text { P\&P 25p }\end{aligned}$
THAEE FOA £22.00
+ VAT f1. 76 POST FREE

£29.95

$+$
Build the Texan stereo ampllfier, and ba entertalnment unit. And the pleasure of doing it yourself. Fully integrated siereo preamp and power amp, 6 IC's. 10 tranaistors, o rectiffers and zener diodes. Plus stabllised prolecied clrcuitry, glase flure ocb; Gardeners low-field low-Ine malins transiormer; all facilitles and conlrola. SIIm deshion,
chassis $44^{\prime} \times 5^{*} \times 2^{2}$ overall. 20 watts per channel RMS.

buill stage by stage. Ask for leatlet 2 .

* Everything necessary supplied. Full atter sales service and guarantees.

\section*{| TEXAN FM |
| :--- |
| TUNER KIT |
| TH: |} Bulli and tested £25.95+VAT $£ 3.24$

Bulld the matching Texan stereo tunerl Features advanced varleap tuning. Phese lock loop
 is in the kIt. From the glase fibre pcb to the cabinet lteelt. Excellent spec: $2.5 \mathrm{u} V$ aetiai sensitivity. 500 mV outpul (adjustable). Tuning range 87-102 MHz. Mains powered.

MAY BE ASSEMBLED IN AN EVE. NING. FEATURES * Buillin AM
 1.SMHz \because FM coverage ertommHz * 75Ω aerial for FM * $150 \mathrm{~m} V$ output

This new AM/FM tuner klt Easily adapled for stereo, using the pre-aljgned and tesled pilnted elrcult, the periormancs modular decolgn, phass lock nstructor onlyhas to build the PCB into the loop principle. Law pass filters for chassis, connect the power. aerial and outputioads. optimum perlormance.

We will be pleased to quote for parts for clrculis in this magazine. Send your Itat for
quotalion In S.A.E.
Ask for FRE leaflets and lints on our kits projectis.
All mail to: Henry's Radio $\mathbf{3 0 3}$ Edgware Rd.London W2
LONDON W2: 404/6 Edgware Road. Tef : 01-402 8381 LONDON W1: 231 Toutenham Ct Rd. Hfersfous Tel:01-636 6681

RST
VALVE MAIL ORDER CO. Climax House
159 Fallsbrook Road, London SWI6 6ED SPECIAL EXPRESS MAIL ORDER SERVICE

CAMERA KITS AND READY BUILT MODULES
 Whether professional, student, teacher or a amateurs
 a CROFTON module is the answer

Apart from our popular C.C.T.V. Camera Kits we are launching a range of ready built, tested, and guaranteed electronic modules both for trade and end user

The ultimate range will be extensive. Some of the existing modules available are:

- E.T.I. Master Mixer © E.T.I. Electronic Ignition
- Wide range A.F. Wobbulator E.T.I. Digital Voltmeter E.T.I. Frequency Meter Video Ampli-
fier Video Mixer Sound/Video Modulator - Guitar Amplifier As well as all E.T.I. P.C.B.s. V.L.F. Transmitters and Receivers Send S.A.E for information.
Secondhand cameras and montors always avallable CROFTON ELECTRONICS LTD
Dept. E, 35 Grosvenor Road, Twickenham, Middx. Tei. 01-891 1923

10 CHAPEL ST. LONDON NW1 Phone 01-723 8753

MUFFIN INSTRUMENT FANS Dimensions $4 \cdot \operatorname{Sin} \times 4 \cdot 5$ in $\times 1.5 i n$. very quiet running. precision fan electranle aquipment, amplifiers. etc. For thov, a.c. operation (practice is to run from split primary of maina transformer or use suitable malns droppers CC only 11 watts. Liat price over brand new condition. is $\Sigma 4 \cdot 86$.
MINIATURE DEAC NI-CADMIUM
battories type 7ODK. 3 cells in package making $3 \cdot 7 \mathrm{~V}, 25 \times 17$ 15 mm . 81 p . Post free.

HELIPOT TURNS COUNTER
Beckman "Duodial" counting dals. Miniature type (22 mm dia.). new, complete with mounting instructions, E2. 70.
BRIDGE RECTIFIERS
Encapsulated silicon type. Exequipment, Texas, ITI, 200 PlV.
$12 \mathrm{~A}, ~ \mathrm{I} 2.70 ; 400$ PIV, $4 \mathrm{~A}, ~$
1.35 . 12A, f2.70;
Postage 10p.
ADVANCER.F. SIGNAL
GENERATORS
E2 $100 \mathrm{kHz}-100 \mathrm{MHz}$ $017 \cdot 5-250 \mathrm{MHz}$ $62100 \mathrm{kHz}-220 \mathrm{MHz}$ P1 100kHz-100MHz
SG63A $7 \cdot 5-230$, AM/FM Tested and guaranteed. Carriage on the above, $£ 2$ extra
SWISS HOUR METERS
National Watch Co. 110 V 50 Hz .5 2.5 cm Sige approx. $5 \times 3 \times$ new. \&1-62. P. \& P. 10 mm . 日rand

MARCO
TF1101
$20 \mathrm{~Hz}-200 \mathrm{kHz}$ signal generators Distortion 0.5% or with filter 0.1%, GOdB step attenuator. Cantinuously variable output up to operation. in first class condition and guaranteed, 581 .
EDDYSTONE DIALS 998
Horizontal slide rule tuning dials type 898. Complete. Tuning knob. un-marked scale plate, flywheel. oolnter. stc. Brand new In boxes
with cutilng template. List price is over £15. OUR PRICE ONLY \&9.18. P. \& P. 32p.

AVO MULTIMETERS

Multiminor type MK. 4. Small Hght-waight Insirument. $14 \times 9 \times$ $3+\mathrm{cm}$. Measures V. a.c./d.c. to 1 kV ; d.c. 1 . from 0.1 mA 10 1 A Reslstance ranges: $10 \mathrm{k} \Omega / \mathrm{V}$ d.c. and $1 \mathrm{k} \Omega / \mathrm{V}$ a.c. Tested and in good condition. Price only 28.18 . P. \& P. 32p.

HELICAL POTENTIOMETERS Helipot $45 \times 50 \mathrm{~mm}, 10$ tupns 30 k . $17 \mathrm{~mm}, 660^{\circ}$ Beckman $10 \mathrm{k} \Omega 1.62$ Rell ance $20 \times 50 \mathrm{~mm} 10$, urns 5 k ance $20 \times 50 \mathrm{~mm}, 10$ turns, $5 \mathrm{k} \Omega$ $21 \cdot 62$. 1 keckman double-gang
$360^{\circ}, 1 \mathrm{k} \Omega$, $\mathrm{E} 1 \cdot 52$. Beckman 22 $37 \mathrm{~mm}, 10$ turns, $1 \mathrm{k} \Omega$ \&2.16. 22 ck $37 \mathrm{~mm}, 10$ turns, $1 \mathrm{kR}, ~ £ 2 \cdot 16$. Beck
$\mathrm{man} 22 \times 37 \mathrm{~mm}, 10$ turns. 500Ω $\mathrm{man} 22 \times 37 \mathrm{~mm}$. 10 turns. 500Ω
f 1.62 . Retiance $12 \times 40 \mathrm{~mm}, 10$ turns. 500N, 51.52 . Colvern 45 35 mm . 3 turns. 250 , $\{1.62$. Col vern $45 \times 35 \mathrm{~mm}$. 3 turns, 20Ω 11-62. All brand new and guaran teed. Please add 10p each for postage.

PAICES QUOTED INCLUOE VAT. USUAL DESPATCH TIME FOR MAIL ORDERS IS 1-3 DAYS. WE UAGENTLY AEQUIRE FOR STOCK QUALITY USED TEST EQUIPMENT, PLEASE CALL US AT THE ABOVE NUMBER

20×20 Watt STEREO AMPLIFIER

Superb Viscount IV unit in teak-finished cabinet. Black lascia with aluminium rotary controls and pushbultons, red mains indicator and slereo jack socket. Function switch for mic, magnetic and crystal pick-ups, tape, tuner, and auxiliary. Rear panel features two mains outlets, DiN speaker and input sockets,
plus fuse. $20+20$ walls $\mathrm{ms}, 40+40$ watts peak.

$+\rho \Leftrightarrow \rho \geq 10$

SYSTE素 18
For only $£ 80$, you get the $20+20$ watt Viscount IV amplifier; a pair of our 12 -wattrms Duo Type Ilb matched speakers; a BSA MP 60 type deck complete with magnetic cartridge.
£8000 de luxe plinth and cover

SYSTEM 2

Comprising our $20+20$ watt Viscount IV amplifier; a pair of our large Duo Type lil matching speakers which handie 20 watts ims each; and a BSR MP 60 type deck with magnetic cartridge, de fuxe plinth and cover.

Carriage surcharge to Scotland: Svstem1b $\mathbf{2 2 . 5 0}$, System 2 ع5

Sreciaily designed by RT-VC for the experience constructor, this kit comes complete in every detail. Same facilities as Viscount IV ampifier. Cnassis is ready punched. drilled and formed. Cabinet is finished in teak veneer Black fascia and easy-to-handle aluminium knobs. Dulpul $30+30$ walls ms, $60+60$ peak.
£2900

+ ps p. 210

SPEAKERS Two models- Duo lib teak veneer, 12 watts rms, 24 watts peak, 181/2"x $13 \%^{\prime \prime} \times 7 \%$ "approx. 2344 PER PAIR
Duo III 20 walts rms. 40 watts peak $27^{\prime \prime} \times 13^{\prime \prime} \times 11 \frac{1}{2}{ }^{\prime \prime}$ $240 \begin{gathered}\text { approx } \\ +p_{p} .8\end{gathered}$ PEA PAIR

STEREO CASSETTE DECK KIT
Again, this kit is specially designed for the experienced constructor - for mounting into his own cabinet
Features include solenoid-assisted AUTD-STOP, 3-digit counter, record/replay PC board, mains transformer and input and oütput $£ 3250$ controls. AC BIAS AND ERASE. + 88

DIY STEREO

 SYSTEMCOMPLETE WITH SPEAKERS Here's real value in DIY! Comprises ready-bull ampilfier module, 3 -speed Garrard auto-return deck, and leak-veneer simulate cabinets with clear plastic top. Easily built by hobbyists.
£2695

+ 08 D. E40

Sirn디리
 1.c20,20WaTTS STEREO AMPLIFIER KIT WITH PZ20 POWER UNIT

 FANTASTIC SAVING. A buid-it-yourself stereo power amplifier with tatest integrated circuitry. 10W RMS per channel output, full short-circuit and overheat protecridn.TOURISTIV
PUSH BUTTON CAR RADIO KIT (Motor Top 10 Award) Complete with speaker, haffle and fixing strips. The fourisiliv -for the axperitnced cansinuctor only. The Tounsif inas Fwe pusth bumbers, tous mexum basd and orit for lang wawe band The tuang scale is illumprited add altactive Grun al umitiugh ce:xrad knobs zee usad foct

The modar sple ibcia has been desoned is
blend with moss teir mitmors and de linisheg
radio. will slex inro a standart cer radio

Pones Sugpir. Hoonwal 12 wh's sositive or
negaine sarth iatiered I日fentiallyy Power Outpus 4 wates into 4 ohms
$£ 10.50+\mathrm{pRp} £ 550$

DELUXE ACCESSORY KIT
Comprises of a matched pair of dynamic mica. and two repiace ? ${ }^{5}$
 P. A P. FREE WHEN PURCHASED TOQETHER WITH ITEM GELOW

35-WATT DISCO AMP Here's the mono unit you need to start off with Gives you a good solid 35 walts ims .70 walts peak outpul. Big lealures include two disc inpuls, bolh lor ceramic cartridges, tape input and microphone input. Level mixing conitols Filled with integra! push-pull switches. Independent bass and lreble conirols and master volume. $\mathrm{\Sigma 2750+0.50}$

PORTABLE OISCO CONSOLE with buili-in pre-amplifiers Here's the big-value porlabie disco console from RT-VCI il leatures a pasi of BSR MP 60 type aulo-return. single-play prolessional series record decks. Plus all the conlrols and tealures you need to give tabulous disco $£ 5000$ connects into your exisling + DED 5650 slave or external amplifier.

70 and 100 WATT DISCO AMPLIFIERS

 PUUS InTEA DECX FADER la potect
 dech No. 1 to Mo 2 , a vice verse Fe late levei cantrol 84900
 sefore latrog 1 in Wu meter nxatlers artap ievel 70
wans mes. 140 walls peat
atpur Ail ine tig leatues as
on the 70 wall diste
 peak anpan power

EASY-TO-BUILD, WITH ENCLOSURE
Specially designed by RT-VC for cost-conscious hi-fi enthusiasts, these kits incorporate two teak-simulate enclosures, two EMI $13^{*} \times 8^{* \prime}$ (approx.) woofers, two 31/" (approx.) tweeters and a pair of matching crossovers. Easily constructed using a few basic tools. Supplied complete with an easy-to-follow circuit diagram, and crossove components. Input '15 watts ms, 30 watts peak each unit. Cabinet size \qquad $20^{\prime \prime} \times 11^{\prime \prime} \times 91 / 2^{\prime \prime}($ approx $)$ \qquad

15-WAT KT YOUCANER

 IN CHASSISWhen you are looking for a good speaker why not build your own from this kit. It's the unit which we supply with the above enclosures. Size $13^{\prime \prime} \times 8^{\prime \prime}$ (approx.) EM wooter, $31 / 4^{\prime \prime}$ (approx.) tweeter, and matching crossover.

8750 + $p \& p$
Power handing capacily
15 watts rms. 30 watts peak. PER SET

OECCA 20 WATTS STEREO SPEAKER

'COMPACT

FOR TOP VALUE

How about this lor incredible booksheit value from RT-VCI A pair of high efficiency units for only $£ 7.50$ - just what you need for low-power amplifiers. These infinite battie enclosures come to you ready mitred and prolessionally finished. Each cabinel measures $\uparrow 2^{\prime \prime} \times 9^{\prime \prime} \times 5^{\prime \prime}$ (approx.) deep, and is finished in simulated leak. Complete with two $8^{\prime \prime}$ (approx.) speakers for max. power handling of 7 watts
p\&p 1.70 per palr

This matchna Iourspeaker system is tand nade, as only Decca know how, built to a specification, fol down lo a pres.
The kit cormprises of two $\mathrm{B}^{\prime \prime}$ diameter approx. base drive unit, whitheavy die cast chassıs lamunated cones with rolied P. . C. surrounds Two 33" dianteier aporox domed iweeters conplate with crossover networks

ELECTROLYTIC CAPACITORS AT BARGAIN PRICES mil brand new from repulable international manutaclurers. PACK 1 -Contaning 30 mixed Electrolytica valves from 4.7 mF to 47 mF . Minimum T6 volt working. $55 p+20 p p \& p$.
PACK 2-Containing 17 mixed Electrolytic valves from 100 mF to 2200 mF . Minimum 16 volt working Majority 40 volt working $75 p+20 p p \& p$.

ALL PRICES ME. VAT

at cuarent hates
All items subject to svallability. Prices correct at 1st October 1976 and subject to change without notice.
We are unable to show all our products, so please send S.A.E. for our fully descriptive catalogue and any further information.

TO HGA aM EEF, ACTOM, LONDON WH $\$ 23$ EDOWARH MOAD, LONDOM Wr
Personal Snoppers EDGWARE AOAD 9 a.m-5.30p.m Hall day Thurs
ACTON 9 30a m -5p.m. Closed af day wed

Minimum order on Access and Barclaycards 15 DO NDT SEND CARD juIf whir your dorer giving

SiFIII－HOITIURTINGS （TRANSISTORS

Type Price	Typa	Price	Type	Price	$\begin{aligned} & \text { Type } \\ & \text { BC440 } \end{aligned}$		$\begin{aligned} & \text { Type } \\ & \text { BF517 } \end{aligned}$	Price 04	$\begin{aligned} & \text { Type } \\ & \text { 日FY53 } \end{aligned}$	$\begin{aligned} & \text { Price } \\ & 0 \cdot 13 \end{aligned}$	$\begin{aligned} & \text { Type } \\ & \text { Oc75 } \end{aligned}$	$\begin{gathered} \text { Prict } \\ 0 \cdot 16 \end{gathered}$	Typa 2N70		Type Prlce 2N20．	Type 2 N 3703	$\begin{aligned} & \text { Prie } \\ & \text { Stes } \end{aligned}$
AC113K 0.70	AF178	－$\quad .51$	日C169	$\text { - } 91$	BC440	0.31	$\begin{gathered} \text { BFI17 } \\ \text { QFit } \end{gathered}$	$\text { - } 41$	$\begin{aligned} & \text { QFY53 } \\ & \text { BSY19 } \end{aligned}$	$0 \cdot 13$	OC75	$\begin{aligned} & 0.16 \\ & 0.18 \end{aligned}$	$\begin{aligned} & \text { 2N706 } \\ & \text { 2N706A } \end{aligned}$		$\begin{array}{ll} \text { 2N2046 } & \cdot 34 \\ \text { 2N3904 } & \cdot 14 \end{array}$	$\begin{aligned} & 2 \mathrm{~N} 3703 \\ & 2 \mathrm{~N} 3704 \end{aligned}$	Col
AC125＊－14	AF179	－． 59	BC169C	6．90	8 C 460	0.37	EF119	$\cdots \cdot 0.71$	BSY 8		${ }^{0} \mathrm{C} 77$	－0．20	2N708	－0．11		2 N 3705	－ 0.01
AC126 0.14	AF180	－9．54	BC170	$8 \cdot 60$	80115	$0 \cdot 63$	EF119	－0．71	85×20	－9．18	${ }^{\mathrm{O}} \mathrm{O} 77$	$0 \cdot 0.16$	2N708	－0．15	2N2004A $=0 \cdot 18$	${ }^{2 N} \mathbf{N} 37005$	$8 \cdot 18$
$\mathrm{AC1}^{\circ} \mathrm{A}$ \％ 11	AF181	－ 0.51	BC171	6．00	80116	－ 11	8F152	0.58	BSY25	\cdots	OC810	－0．16	$2 \mathrm{CMO18}$	－13	2N2005A 0 －18	${ }^{2} \mathrm{~N} 3707$	0.08
AC128＊－11	AF188	－a． 51	BC172	$0 \cdot 0$	$8 \mathrm{B121}$	$0 \cdot 61$	EF153	－45	BSY28	－0．18	OC81	－0．16	${ }_{2} \mathrm{~N}: 131$	\cdots	2N2906－0．12	2 N 3708	$0 \cdot 01$
AC12aK $0 \cdot 0 \cdot 2$	AF239	－0． 38	8 Cl 173	6．0＊	80123	0.67	8F154	04		$0 \cdot 1$	\bigcirc	0.16	2 N 1132				6．01
AC141 $0 \cdot 9.18$	AL102	＊－75	BC174	－15	80124	$0 \cdot 70$	8Fi55	${ }^{\circ} \mathrm{O}$	BSY28	－0．18	${ }^{\circ} \mathrm{OC82}$	$\bigcirc \cdot 0.20$	2Nr132	－+1.95	2N2906A 2N2007 － 0.15	2N37310	C． 09
AC145K $0 \cdot \mathrm{H}$	AL103	－0．75	BC175	＊－22	8D131	$0 \cdot 0.35$	$8 F 156$	－ 49	BSY29	$0 \cdot 1$ ．	${ }^{\circ} \mathrm{C}$ C139	－0．20	2N：303	－\cdot－15	2N2907A $0 \cdot 18$	2N3711	－69
AC142 ${ }^{\circ} \mathrm{O}$	BC107	－ 1 － 0 ¢	BC177	－0．18	80132	－0．40	EF557	－0．58	BSY38	$0 \cdot 1$	OC140	${ }_{0} 0.23$	2 N 1301	3 c －11	2N2923 D．15	2 N 3819	0.14
AC142K $0 \cdot 2{ }^{\text {E }}$	BC108	－ 0 － 04	BC178	＊－18	EU133	－0．67	EFFS8	－ 51	BSY39	－0． 9			2N1305	－0．1］	2N2924 0．15	2N3820	－0．40
ACts3K＊－24	BC109	－80 0	BC179	－ 0^{-15}	80135	9.61	环58	－． 61	BSY40	－0．28		${ }^{*} 025$	2NT305	－${ }^{\text {cos }}$ 21	2N2025－15	2N3823	$0 \cdot 15$
AC178 00．19	BC113	－16	BC180	$0 \cdot 25$	80136	0.49	8F173	$\bullet 0.15$	BSY41	－ 0.21	OC170	－0．24	2NT307	$\bullet \cdot 21$	2N2026G 0．00	2 N 3003	－12
AC176K＊－25	BC114	－18	AC181	6． 25	80.137	0.44	BF176	0． 3	ESY95	－0．13	OC1700	$\bigcirc 0.24$	2N1307	$\cdot 0.24$	2 N 2926 Y －01	2N3E04	． 12
AC10） $0 \cdot 2$	$8 \mathrm{Cl15}$	－16	EC182	\％．08	80138	－ 6.51	Bri79	－-11	BUY5A	－1．10	OC201	－0． 20	2 N 1309	$\bigcirc \cdot-24$	2N2926O 0.06	2M3905	－14
AC150K \％${ }^{\text {A }}$	${ }_{8} \mathrm{Cl16}$	－18	BC182L	－08	ED139	$0 \cdot 56$	EF180 BF181	－9．31	MJE521	－9．58	OCz22	－0．21	2 N 1613	－－8	2N2926R 0．07	2N3DOA	－14
AC101	${ }_{\text {BC11 }}$	\％－1	BC123 8 C183L	－09	BDis．	－ 0.1	BF194	． 810	MJE295S	＊－部	0 O 203	－0．25	2N1711	$0 \cdot 18$	2N2926日 6.07	2N4287	8.18
AC181K ${ }_{\text {AC187 }}$	${ }_{8} \mathrm{BC118}$	${ }_{-0.71}^{0.31}$		－64	8015S	－${ }^{-1}$	BF195	－1 1	MJE305s	$\bullet \cdot .57$	DC204	$0 \cdot 25$	2N2147	－0．71	2N3053＊－15	2N428：	－16
AC197K＊－23	BCl20	－${ }^{-11}$	BC184L	－60	BD176	$\cdots \cdot 1$	BF196	－ 12	MJE3440	－8．51	0 CzOS	${ }^{*} \cdot 1.3{ }^{\text {a }}$	$2 \mathrm{NaH148}$	－0．54	$2 \mathrm{~N} 3 \mathrm{C5} 4{ }^{\circ} 49$	2N4280	－11
AC1s8＊\％．1t	BC137	$0 \cdot 18$	BC186	＊0．23	BD177	－0．17	BF197	－12	MPF102	${ }^{\circ} \mathrm{O} \cdot 27$	OCP71	$0 \cdot 0.44$	2N2218	$\because 0.11$	2N3055 ${ }^{\circ} \mathrm{A}$ ， 40	2N1290	－18
AC1AEK＊－23	BC139	$0 \cdot 41$	BC187	－0．23	B0178	－0．${ }^{\text {P }}$	BF198	－ 12	MPF104	－0．23	DRP12）		2N2218A	－ 19	$2 \mathrm{~N} 3402{ }^{\circ} \mathrm{O} \cdot \mathrm{z1}$	2144241	－ 19
AD140＊＊．45	日C140	＊－31	BC207	0.11	BD179	－0．71	BF198	－12	MPF105	－ $0 \cdot 2 \mathrm{c}$	NSL4938	－0．4	2N2219	0.18	2 N 3403 －0．21	2N4222	－18
AD142－0．35	BC141	－ 31	BC208	0.11	BD180	＊0．79	EF257	$\because 28$	OC19	$0 \cdot 38$	ORP60	＊－41	2N2219A	${ }^{\circ} \mathrm{O} \cdot 11$	$2 \mathrm{~N} 3404{ }^{\circ} \mathrm{O}, 24$	2N4293	－18
AD143＊．4t	日C142	－${ }^{-11}$	BC209	－ 92	BD185	$\bullet 0 \cdot 7$	BF258	－1． 36	OC20	－0．E0	ORP61	$0 \cdot 41$	$2{ }^{2} 2280$	－ 21	2N3405 $0 \cdot 4$	2NS172	${ }^{1} 12$
AD140＊．45	BC143	$0 \cdot 39$	BC212	－ 16	B0186	－0． 7	BF259	4.45	0 C 22	－0．47	T1P29	－ 40	2 N 2231	$0 \cdot 10$	${ }^{2 N} 3614{ }^{\circ} 0.6$	245457	－${ }^{\text {a }}$－ 20
AD150＊－${ }^{\text {es }}$	BC145	－ 44	BC212L	－10	BD187	－0．74	BF262	4． 56	0 C 23	－0．49	TIP30	＊ 0.45	2N2222	${ }^{\circ} 0 \cdot 17$	2N3615 0．74	2045	1．20
AD161－ 30	BC147	－ 0	BC213	0.98	BD188	$\bigcirc 0.71$	BF263	－． 56	$0 \mathrm{OC24}$	$\because 0.57$	TIP3A	$\because 0.52$	2N2368	＊－15	2N3616 $0 \cdot 76$	2×5450	$0 \cdot 23$
AD162＊－1＊	BC148	－60	BC2I3L	0.18	BD189	－0．77	自F270	${ }^{*} \cdot 3.36$	OC25	$\cdots 0.31$	TIP32A	$\bullet 0.6$	2N2369	$0 \cdot 12$	2N3646 0.04	361	31
D161 4	EC149	－ 4	BC14	－18	BD190	$\bullet 77$	EF271	40.31	OC26	－0．31	TIP41A	00.45	2N2369A	－17	$2 \mathrm{~N} 1 \mathrm{~T}^{2}$	40362	－0．35
AD162（MP）	BCi50	6．10	BC214L	－16	8D105	0.07	日F272	－ 41	$0 \mathrm{C}^{2} 8$	40.80	TIP4zA	－ 72					
${ }^{\circ} \cdot 58$	EC151	$0 \cdot 20$	BC225	－2\％	BD196	$\bullet 0.7$	BF273	－ 31	0 O 29	－0．40	TIS43	$\bullet 0.25$					
AF114－ $\mathrm{H}^{\text {－22 }}$	BC152	－10	$8 \mathrm{Cs}{ }^{5}$	－ 38	B0197	${ }^{\circ} 0.82$	日F274	－ 34	0 O 35	－0．45	UT45	${ }^{*} \cdot 20$					
	8C153	－88	BC251	$0 \cdot 20$	B0198	${ }^{\circ} 0.02$	$8 \mathrm{BX29}$	－4．25	$0 \mathrm{OC36}$	19.51	ZTX107	0.07					
AF116－ 22	$8{ }^{8154}$	－ 20	BC301	＊ 21	00199	$\because 9$	$8 \mathrm{BX84}$	－1．18	0 OC 41	＊0 20	2TX108	0.7					
AF117－ 72	日C137	－ 11	BC302	－0． 25	自D200	$0 \cdot 8$	EFX85	－6． 25	$0 \mathrm{OC42}$	＊0． 25	2 2Tx109	${ }^{-97}$					
AF118 12	日C158	$0 \cdot 11$	BC303	＊＊－31	80205	－${ }^{-11}$	BFX86	\cdots	DC44	＊0．11	27×300	－ 07					
AF124＊＊．zt	BC159	－ 11	BC304	－0．37	80208	－ $0 \cdot 1$	EFX87	－ 62	DC4S	＊ $0 \cdot 13$	ZTX500	－09					
AF125－${ }^{\text {a }}$	BC160	${ }^{\circ} 946$	BC327	－ 12	80207	－ 0 －	EFX88	$0 \cdot 72$	DC70	＊0．17	2N696	－-10					
AF126 25	EC161	－ $5 \cdot 51$	BC328	－12	ED268	\cdots	BFY50	－6．13	0 C 71	－0．10	2NG93	－4．19		ern	der add 12	Do	
AF127	BC167 BC168	\％．16 －10	$\mathrm{BCH37}$ BC 338	－12	EOY20	$+1 \cdot 02$ -0.15	EFY51 日FY52	－6．13	OC72 $0 \mathrm{OC74}$.0 .15 -0.15	2N698 2N699	0.20 -0.35			to prices	rked	

THE FINEST VALUE IN UNTESTED SEMICONDUCTORS

Pak No．	
U50	100 germ ．gold bonded OA47 diod
U51	150 germ．OA70／81 diode
U52	100 aillcon dlades 200mA OAZ00
U53	150 diodes 75 mA 1 N 4148
U54	50 sil．rect．top hat 750 mA
U55	20 sil，rect．stud type 3 amp
U5\％	50400 mW zeners 007 case
US7	30 NPN Irans．BC107／8 piastle
458	30 PNP trans．BC177／178 plastic
U59	25 NPN TO39 2N697／2N1711 sllicon
U60	25 PNP TO59 2N2005 ailicon
U61	30 NPN TO18 2N706 silicon
U62	25 NPN EFY50／51
U63	30 NPN plastic 2 N 3904 alilicon
U64	30 PNP plastic 2N3905 sllicon
U65	30 germ．OC71 PNP
466	15 plastic power 2N3055 NPN
U67	t0 TO3 metal 2N3055 NPN
U68	20 unljunction trans．TIS 43
U69	10 lamp SCR TO39
U70	$83 \mathrm{amp} \mathrm{SC8}$ TO66 case

$\underset{\substack{\text {＊sop } \\ \text { 60p }}}{ }$

${ }^{6609}$
$\underset{\substack{60 \\ \hline \\ \text { s．} \\ 60}}{60}$

8．20

＊ 1.20
$* 60 \mathrm{p}$
$\mathrm{E} 1 \cdot 20$
U70 83 amp SC8 TO66 case
＊ $81-20$
Code numbars mentloned above are given as a gulde to the type of device in the pak．The devices themselves are normally unmarked．

THYRISTORS

Piv	0 OA	0 BA	，	34	5 5	5A	7 A	10A	A	30A
	TO18	T092	tos	T066	T066	T064	TO48	TO48	T048	T048
10	$\bigcirc 0.13$	$\cdot 0.15$								
20	－0．75	－0． 27								
50	－0． 22	$\cdot 0.28$	$\cdot 0.20$	－1．85	－0．36	$\cdot 0.16$	$\cdot 0.48$	－0．51	－0．54	－1．18
100	－0．25	－0．31	－0．25	－0．25	$\cdot 1.48$	$\cdot 0.48$	$\cdot 0.51$	$\cdot 0.57$	0.5	－1．4］
150	-0.31	－0．38								
200	$\cdot 0.38$	$\cdot 0.44$	－0．25	． 0.30	－0．50	$\cdot 0.50$	－0．57	－0．62	－0．62	1． 63
400			$\cdot 0.30$	－0．39	－0．55	－0．57	－0．62	－0．71	$0 \cdot 7$	$1 \cdot 79$
600			－0．39	－0．49	－0． 089	\bigcirc	\bigcirc	$\bigcirc \cdot 0.69$	－0．90	
800			． 8.54	0.65	－	－0．81	$\cdot 0.9$	1.		

SLICONBEGTIFIETS

PIV	$\begin{aligned} & 300 \mathrm{~mA} \\ & 10077 \end{aligned}$	$\begin{gathered} 750 \mathrm{~mA} \\ (5016) \end{gathered}$	1 Amp Plastic		$1-3 \text { Amp }$ (SO 16)	3 Amp （SO 10）	10 Amp （SO 10）	$\begin{aligned} & 30 \text { Amp } \\ & \text { Yo } \end{aligned}$
50	0．05＊	$0.06{ }^{\text {＊}}$	IN4001	$0.05{ }^{\text {－}}$	0.07 ＊	0.14^{-}	0．15	0．38
100	$0.05{ }^{-}$	0.07°	｜N4002	0.06 －	$0.09{ }^{-}$	$0 \cdot 16$ ．	$0 \cdot 21{ }^{-}$	0.69°
200	$0.06{ }^{\text {\％}}$	$0.09{ }^{+}$	IN4003	$0.07{ }^{\text {\％}}$	0．12＊	$0.20{ }^{\circ}$	$0.23{ }^{\circ}$	$0.93{ }^{\circ}$
400	0 07＊	0.14 ＊	IN4004	0.08 ．	$0 \cdot 14{ }^{\text {－}}$	$0 \cdot 2 \mathrm{~s}$ ．	0.35 －	125
600	$0.08{ }^{\text {－}}$	$0.16{ }^{\circ}$	［ N 4005	D．09＊	－18＊	0.33 ．	$0.42{ }^{\text {－}}$	1．76＊
800	$0 \cdot 11$	－18＊	IN4006	0.10	$0 \cdot 18=$	0.35 ．	$0.51{ }^{\circ}$	194^{*}
1000	0 13＊	$0.28{ }^{\circ}$	IN4007	$0.11{ }^{-}$	0－23．	0.44 ．	0.60 －	$2 \cdot 31{ }^{\circ}$
1200	－	D．32＊			0．28．	0.54 ．	0.69 ＊	2．68＊

SIL．G．P．DIODES

300 mW 40 PIV（min）SUB－MIN FULLY TESTED

2 Amp 6 Amp 10 Amp	Case TOS T066 TO48	$\begin{aligned} & 100 \mathrm{~V} \\ & 00.31 \\ & 0.51 \\ & 0.0 .77 \end{aligned}$	$\begin{aligned} & 200 \mathrm{~V} \\ & 0.51 \\ & 0.81 \\ & -0.92 \end{aligned}$	$\begin{aligned} & 400 \mathrm{~V} \\ & 0.71 \\ & 0.77 \\ & -9.12 \end{aligned}$

GP300

115 WATT SILICON TOS METAL CASE Vcbo 100 V ．Vceo 60V．IC $\$ 5 \mathrm{~A}$ ．Hfa，20－100 suitable
replacement for 2 N 3055 ，日DY11 or BOY20

GP Switching Irans

TO18 SIM．TO 2N706 8 BSY27／28＇85A
Al Lusble devices，No apen Bnd shorts ALSO AVAIL－

1,000 for Cl 14.
When ordering please state NPN or PNP

WORLD SCOOP！！

JUMBO SEMICONOUCTOA PA
Trinsistore－Germ，and Silicon
Fectrifiars－Diodes Triecs－Thyrisiors－I．C．＇s anci Zeners．
ALL NEW AND COOED
Approx 100 pieces only $\mathbf{-} 1 \cdot \mathrm{~B}$ p

ZENER DIODES

$00 \mathrm{~mW} \cdot \mathrm{sp} \quad 1+5 \mathrm{~W} \cdot \mathrm{s7p} \quad 10 \mathrm{~W} \cdot 30 \mathrm{p}$

HANDBOOKS

TRANSISTOA OATA BOOK DTE 1151 Pages packed wilh information on Europeen Tranalsiars．Full spectication in． cluding autlines．
TRANSISTOA EQUIVALENY BOOKX TRANSISTOA EQUIVALENT BOOK gie 75256 Pagea of cross references and
squivalenis for European．Amerlcan and Japanese Trinsistors．This is the most com－ prehensive equivalents book on the merket today and has an ntroduction in 13 fan－ guages DIODE EQUIVALENT BOOK DE 741 144 Pages of cross refarences and equivgionts for Eurapemn，American and Díacs and L．E．D． THE WORLD＇S 日RDADCASTING STATATION5 WBS 75 An up to tha minuts gulde far those interested in ax－ing．Contains all the word＇ brandcasters on SW．MW and LW，as well as European FM TV gtations． TL DATA BOOK ITL（7400－74132）Coverting 13 maln maru－ facturera in the US．A．and Europe．this book Dives fuls date as well an equivalents．

Prica tEL3－74 each A fuil range of technical books avahtable on tequest．
 add 25 p unless other－ wise shown．Add extra for airmail． £1 minimum order．

R．C．S．IO WATT AMPLIFIER KIT

－

Thin klt la rulteble for record plager i，tape play back， guitari，electronle inatrumente or small \mathbf{H}^{\prime} ．A．．sytems． Two version are avalable．A mono kit or a stereo kit．The mono kit luats 13 semiconduetora．The ateren hit uses 22 semiconuluetora with printed front panel and volume，basi and treble controls．Spee． low output into 8 ontre，； inco 10 ohma．Res ponse $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{ko} / \mathrm{s}$ ，input 100 M ．V．high hmp

Easy to build．Fullinutructions supplied．

ELAC 10 inch

Danl cane plasticised roll sur－ round．Large caramic magnet．
j0－16，000 cia．Bass resonance

MAINS TRANSFORMERS

${ }_{\substack{\text { ALL } \\ \text { Sop eabl } \\ \text { earl }}}$

 $300-0-300120 \mathrm{~mA} .8$
220 V
$45 \mathrm{~mA}, ~ 6-3 \mathrm{~V}$
2 A
HEATERA， 6 R 2 A
GEATERTRANS， 6.3 y 3A，s1．45 $\frac{1}{1}$ am
Tapped outputs at 2Λ 3，4，5，6，8，9，10，12，15，18， 24 and 30V
1А $5,8,10,12,16,18,20,24,30,36,40,48,60 \underset{54}{240}$ 2A， $6,8,12,12,16,18,20, \frac{24}{2}, 30,36,40,48,6027 \cdot 00$ $3 A, 6,8,10,12,16,18,20,24,30,36,40,48,6068,70$ $6 A, 6,8,10,12,16,18,20,24,30,36,40,48,60 £ 11.25$
$5,8,10,16 V \mathrm{AA} 28.6-6 \mathrm{~V} 500 \mathrm{~mA} 21.9 \mathrm{~V} 1 \mathrm{~A} 1$
 $40 V 3 A 88.50 .30 V 5 A+34 V 2 A \mathrm{ct} .9875$.
 $60 \mathrm{~V}, 40 \mathrm{~V}$, nov or $20-0-20 \mathrm{Y}, 1 \mathrm{AA}$ 2s． 50.
 to $1157150 \mathrm{~W} 50 ; 250 \mathrm{~W} 26 ; 400 \mathrm{~W}$ 上7；500W 28. CHAROER TRANBFORMERE．Input 200／250V
 6 or 12 V autputa $1+440 \mathrm{~g} ; 2 \mathrm{~A} 55 \mathrm{p}$ ； 4 A 85 p ．
R．C．S．STABILISED POWER PACK KIT All partaincluding printed ciroult and inatractions to bulld thle onit．Voltages avalisble： $6 \mathrm{~V}, \mathrm{f}-5 \mathrm{~V}, 9 \mathrm{~V}$ ，

R．C．S．STEREO FM TUNER

Thin completely cased maln powered Hi－Fi $\mathbf{~ T} 27 \times 50$ Tuner with bruahed aluminium facla in Britioh 270

BARGAIN 3W AMPLIFIER． 4 Transistot Publh－Pull Ready buitt with volume，treble and $\mathbf{4 . 9 5}$
basiantrols．is volt battery operated． baif controle．is volt battery operated．

Wafer heating Elements

Size $102 \times 8!\times \frac{1}{2}$ in．Operating voltage $200 / 250 \mathrm{~V}$ a．c． 250 W appror．Buitable for Heating Padi，Food bitwecn twonhecty of metal ar arhestos．
ONLY 40 P EACH（FOUR FOR CI．50）
ALL POBT PATD－Diecounte Ior quantlif．
E．M．I． $13 \frac{1}{2} \times 8$ in
SPEAKER SALE！
With sweeter．And
croanover． 10 w. Btiste 3 or 8 ohm．
4ailluatrated．Post 45p
15 N model 67.95 8 or 15 ohms．Pont 50 p
20 N model 68.95
8 or 15 ohtne．Pont 50p

BAKER MAJOR $12 £ 10.35$ Post 50 p
 $10-14,600 \mathrm{cts} .12 i n$ double conc，wooter and tweoter con cerranic magnet issembly baving a flux denity of 14,000 gause and a total fox of 1＋5，000 Maxweils，Busp resonance $40 \mathrm{c} / \mathrm{g}$ ．Rated 25 FF ． NOTE： 3 or 8 or 15 ohms nuat be atated．

Hodute kit， $\mathbf{3 0 - 1 7 , 0 0 0} \mathrm{e} / \mathrm{s}$ Hith tweeter，crossaver，vafle and inmtructions．$<$ An fllurtrated．
-13
mlease state 3 or 8 or $\mathbf{2 5}$ ohma．Pont 80p
＂BIG SOUND＂ BAKER SPEAKERS
Robustiy constructed to ataod un to ong per by Useful remponse $30-13,000 \mathrm{c} / \mathrm{a}$ ． Bats Retonanco $\$ 5 \mathrm{e} / \mathrm{s}$ ． CROUP＂25＂ 12 n 30w
GROUP \＆ 45°
12 in 40 W
12 in 40 W
3,8 or 15 ohms．
GROUP 50／12 $€ 8.95$ 60W 8 or 15 ohma with alaminium GROUP＂ 50 ＂ 15in 75W 8 or 15 ohms． Port 50 p
 Disco，Group＋PA Cebinois tn 90 p Send for Leafet．Cabinet Fittinga Readles，Corners，Feat，Covering Msterial all in stock．

BAKER 150 WATT ALL PURPOSE

TRANSISTOR

MIXER AMPLIFIER

Ideal for Groups，Diaco，P．A，and M
4 input＂speech and muale． 4 way
input＂sjecech and muale． 4 way mixing．Out put $4 / 8 / 18$ ohm，inc．Main Separate treble and basa controle．
 ${ }_{5150}^{\text {cart．}}$

NEW＇DISCO 100 WATT＇
ALL TRANSIBTOR AMPLIFIER CHABBIG 652 2 1aput． 4 outputaseparate volume trebic Carr． 11 BLACK CARRYING CABINET AYATLABLE $\& 9$

PW SOUND TO LIGHT DISPLAY

Complete klt of parta with R．C．S．printed eircuit． Three 1，000\％channela．As feakured in Practical Wirelem． $\mathbf{4} 12: 50$ CABINET extra \＆3．

GOODMANS CONE TWEETER ${ }^{18,000} \mathrm{cif}$ ． 25 FW 8 olm ．Prites 63.25 8 in Woofer 26.75 ．
 C3．25

R．C．S． 100 WATT VALVE AMPLIFIER CHASSIS

Profesnional model．Four inputn．Treble，Bass，Master Volume Controll，Ideal diace，P．A．or grouph． 685 3 or 8 or 15 ohm． 100 V line to order．plus E － 50 carr Satiable carrying cese sit－50．

NEW BSR HI－FI AUTOCHANGER
Plays 12 in， 10 in or 7 in record Auto or Manual．A high quallty onit becked by BSR reliabinty 16 Bize 131×11 눈
Above motor bourd 3iza．
Aelow moker board 24 in Fith STEREOMMONO CARTRIDGE
Single Phayer version 615.50 ，All Post 75 p GARRARD AUTOCEANGER Mode！ 6300 214．95 GARRARD MINICHANGER 12×8111 PORTABLE PLAYER CABINET $\mathbf{~} 4.50$ Pont 50 p ． Modern design Size $16 \mathrm{in} \times 15 \mathrm{in} \times 7$ in rexine fittings．Motor board cut for Garraril or BSH dack

R．C．S．DISCO DECK SINGLE RECORD PLAYER

Fitted with auto stop，atereo／compat．cartridge． Baneplate．Slze $11 \ln \times 8$ itn．Turntable．Bize 7 tn 220／250
3 apeede playa all nize recorda
Two for El 3 ．Post 76p．

HEAVY METAL PLINTHS With P．V．C．Cover．Cut out for most B．S．R．or Garrard decks．
 Silver Ercy \AA nisb．
 £5．95

Model＂A＂＊，Bize $12 \frac{1}{2} \times 14 \frac{3}{4} \times 7 \pm \mathrm{in}$ ．
 Extra Larga Plinth and Cover．Size $20 \times 17 \frac{1}{2} \times 9$ in Callers only $218 \cdot 50$ ．
TINTED PLASTIC COVERS ONLY

 D $-162 \operatorname{in} \times 1 \sin \times 4 i n, 480$ ．
tieal for record deckn，tape decke，etc．Post 35p

BAKER HI－FI SPEAKERS HIGH QUALITY－BRITISH MADE SUPERB

12 in 25 watts A hisb quality loudepeaker， ta remarkable low cone
remonance etanure clear reproduction of the deepent bass．Fitted with a specia！ copper drive and coneentria tweeter cone reaulting in full range reproduction with remarkable effelencs in the upper register．
Mase Renonance
Flur Denity
16，600 gauss $\frac{25 \mathrm{c} / \mathrm{s}}{}$ Ureful reapones $20-17,000 \mathrm{c} / \mathrm{s}$ 8 or 15 abms models．
£ $16 \cdot 30$ 㽞
AUDITORIUM
I2in 35 watts
A full range reproducer lor hlgh power．ElectrieGuitars， nuble address，tictic organs． deal for HI－FI and Disco． ideal io
Веыи Resoдnnce $35 \mathrm{c} / \mathrm{s}$ Flux Density 15,000 gava Useful responte $25-16,000 \mathrm{e} /$ 8 or 15 ohms models．
$€ 15 \cdot 50$
15 in madel 45 watts $f 19-50$ ．Post 90 p ．
BLAKK ALUMINIUM CHAssig， 18 a．w．g．2！in bides， fin x 4in，70p； $8 \mathrm{in} \times 6 \mathrm{in}, 90 \mathrm{p}$ ；10in $\times 7 \mathrm{in}$ ，81－15； $14 \mathrm{in} \times 9 \mathrm{in}, 2150 ; 16 \mathrm{in} \times 6 \mathrm{in}, 81.45 ; 12 \mathrm{in} \times 31 \mathrm{n}, 87 \mathrm{p}$ ； $16 \mathrm{in} \times 10 \mathrm{in}, 21.70$ ， $12 \mathrm{in} \times 8 \mathrm{~m}, \mathrm{S1} \cdot 35$ ．
ALOMIRIOM PARELS， 18 s．W．g．Uin \times din， $15 \mathrm{~F} ; 8 \mathrm{in} \times 6 \mathrm{in}$ ， $25 \mathrm{p} ; 101 \mathrm{n} \times 7 \mathrm{in}, 30 \mathrm{p} ; 19 \mathrm{in} \times 5 \mathrm{in}, 30 \mathrm{p} ; 12 \mathrm{in} \times 8 \mathrm{in}$ ． 40 p ； $16 \mathrm{in} \times 6 \mathrm{in}, 45 \mathrm{p}$ ； $14 \mathrm{in} \times 91 \mathrm{n}, 50 \mathrm{p}$ ；igin $\times 12 \mathrm{in}, 65 \mathrm{p}$ ； $16 \mathrm{in} \times 10 \mathrm{in}, 75 \mathrm{p}$ ．
ALGMLNIUM ANGLE BRACRET， 6 加 $\times \ln \times 3$ in， 15 p ． ALUMINIUI BOXES MANY SIZES IA STOUK．

A DISINGENUOUS FEW

0NE of the most interesting duties performed by the P.E. editorial staff is the examination of circuit ideas offered for publication by readers. It is an important and illuminating task. The ideas offered provide an insight into the multifarious activities of electronics enthusiasts and show how they have solved a problem or achieved some desired effect through their own ingenuity.

This brings us quite naturally to the question of originality. The purpose of Ingenuity Unlimited is to present circuits that are original, if not in whole, at least in significant part. Thus, certain modifications to existing designs can come within this definition. Electronics being what it is. the chances of anyone producing a circuit which in all respects is entirely original are rather remote. The important and essential point is that the individual submitting a design genuinely believes it to be original.

It is our task and responsibility to make judgement upon this point, and many submissions have to be rejected because the idea is already common knowledge. Yet we are not and cannot be infallible in this regard. It is impossible to have complete awareness of all published circuits, at home or elsewhere in the world. Thus it is always possible that an idea published in this magazine may exactly or closely resemble a circuit already published elsewhere. This is unfortunate. It certainly defeats the object of Ingenuity Unlimited, but if the contributor himself was unaware of the pre-existence of the design when submitting his own version, the spirit of Ingenuity Unlimited at least has not been consciously violated.

There is, sad to report, another possibility we must face up to. Evidence has been presented to us on a few occasions over the past years suggesting deliberate attempts to defraud. Certainly we have unwittingly published two circuits, at anyrate, that subsequently proved to be the direct copies of circuits previously published in other magazines. In both instances the evidence was irrefutable. Fortunately the deceptions were detected in time to withhold the customary payments.

One can only marvel at the kind of person who can derive any satisfaction from seeing his or her, name appended as originator to a design which has been copied coolly and deliberately from someone else's published work.

Vigilant as we are, there is no guarantee that further abuse of our pages will not occur. But we know such dishonest persons are a tiny minority in the vast electronics fraternity. Ingenuity Unlimited is a continuing record of the undisputed creative abilities of genuine enthusiasts. Financial gain for them is but secondary to the reward of seeing something of their own creation in print. They are entitled to feel a little proud at this credit to their name, and at the realisation that perhaps hundreds or even thousands of their fellow enthusiasts will make some use of their brain child.

We will never knowingly permit these fine traditions to be besmirched by a few pirates and impostors whose actions are completely alien to the spirit of Ingenuity Unlimited.

Editor

F E. BENNETT

Editorial

G. C. ARNOLD Assistant Editor
D. BARRINGTON Production Editor
G. GODBOLD Technical Editor

Art Dept.
J. D. POUNTNEY Art Editor

D J. GOODING
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager
D. W. B. TILLEARD

Phone: 01-634 4504
P. J. MEW

Phone: 01-634 4181
C. R. BROWN Classified

Phone: 01-261 5762
F.E.B.

Make-up and Copy Dept Phone: 01-634 4372

Editorial \& Advertising Offices.
Fleetway House. Farrington St.
London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4504

W1 ITH house electric wiring now invariably buried beneath the surface of the plaster on the walls, many forms of d.i.y. activity such as putting up shelves can become potentially dangerous. Even where installation plans are available, these seldom give any reliable indication of the positions of wiring runs. Since the required detection range is a couple of inches at maximum, a sensitive, sophisticated unit is not required, just something small, cheap, simple and handy.
The first design tried was a simple super-regenerative receiver with a pick-up coil a couple of inches square. It worked, but the indications were not sufficiently definite, as a change of two or three decibels in output level is the minimum that can be detected by most people. However, almost anyone (except the tone-deaf) can easily distinguish a change of pitch of a semitone in a clean note. So the solution to the difficulty was a heterodyne oscillator.

CIRCUIT

Basically the instrument (Fig. 1) consists of a reference oscillator (TR3, etc.), the magnetic field of which cannot couple with external metal, and a second oscillator (TR1, etc.) energising the search coil. The latter oscillator, which also acts as a detector, has an unusually low L/C ratio, so that only the magnetic field of the search coil is affected by the approach of metal: other materials therefore have very little effect. The frequencies used are low, about 110 kHz , and are adjusted to give a beat note somewhere between 500 and $1,500 \mathrm{~Hz}$. Because of the low frequencies used, penetration through non-metallic materials is excellent.

The tone amplifier circuit based on TR2 is the simplest configuration possible. It was added simply to avoid the necessity for very sensitive headphones or earpiece, though sensitivity is not of great importance, since it is pitch, not level, that is the indication. The level varies only slightly and incidentally.

COMPONENTS

There is nothing critical about the components, operating frequencies or layout. Any transistors with characteristics approximating to the BC 108 are suitable. The reference oscillator, whose coil is mounted so as to have minimum coupling with external objects, should preferably be higher in frequency than the search oscillator. The whole of the audible heterodyne range is then available when the frequency of the search oscillator is increased by the proximity of metal, causing the pitch of the beat note to fall, passing through zero to rise again when the instrument is very close to a large mass of metal. It is wise to avoid frequencies within 10 kHz of 100 or 150 kHz on account of the existence on these frequencies of powerful transmitters and their harmonics, though the instrument is adequately shielded and a very poor receiver in this respect.

The prototype instrument was built in a standard two-ounce tobacco tin, which is a convenient shape and size and will also house the required PP3 nine-volt battery. The bottom of the box is cut out and replaced by a piece of perforated board on which the components, including the search coil, are mounted. All components except the battery are within the area of the search coil, the wiring being done on the underneath of the board and covered with a layer of felt or velvet to avoid scratching any surface over which it is moved in close contact.

CONSTRUCTION

Cut out the bottom of the box, leaving a surround of about 6 mm ($\frac{1}{4} \mathrm{in}$). Trim the perforated board as necessary to fit the box. When the board has been wired and tested, it will be fixed to the bottom of the box by means of a liberal application of Araldite.

All the wiring and coil-winding can be conveniently carried out with 36 s.w.g. enamelled wire, being careful to see that the insulation is not damaged where wires cross. Self-fluxing enamelled wire makes the job easier.

COMPONENTS
 - \quad -

Resistors
R1 $3.3 \mathrm{k} \Omega$
R2 $2 \cdot 2 \mathrm{k} \Omega$
R3 $5 \cdot 6 \mathrm{k} \Omega$
R4 $470 \mathrm{k} \Omega$
R5 $220 \mathrm{k} \Omega$
R6 $470 \mathrm{k} \Omega$
All $\frac{1}{6}$ or $\frac{1}{4} \mathrm{~W}, 10 \%$

Capacitors

C个 $5,000 \mathrm{pF}$ min ceramic
C2 $10 \mu \mathrm{~F} 10 \mathrm{~V}$ electrolytic
C3 $10 \mu \mathrm{~F} 10 \mathrm{~V}$ electrolytic
C4 390 pF silvered mica
C5 $5 \cdot 5-65 \mathrm{pF}$ min preset, RS Components 125-660
C6 $1,500 \mathrm{pF}$ min ceramic
C7 $0.05 \mu \mathrm{~F}$ min ceramic
C8 $5,000 \mathrm{pF}$ min ceramic
C9 $1,500 \mathrm{pF}$ min ceramic
Inductors
L1 Search coil-see text
L2 Wound onto L3
L3 2 mH r.f. choke, pie-wound
Transistors
TR1-TR3 BC108 or any similar non silicon

Miscellaneous

S1 Min slide switch SPST. JK1 Min phone jack. Perforated board, 0.1 in pitch, $108 \times 76 \mathrm{~mm}$ approximately to suit case used (see text). 36 s.w.g. enamelled copper wire for coils and board wiring. Earphone, about $1 \mathrm{k} \Omega$ impedance.

Fig. 1. Circuit diagram of the metal pipe and wiring locator

Fig. 2. Component layout and wiring details. All wiring shown in broken line is done on the underside of the board. The static screen is insulated from that wiring by a layer of Selfotape, etc. (see text)

The coils required are both ' specials", the search coil being mounted directly on the circuit board, as already mentioned, and the reference oscillator coil being a modified r.f. choke. In the prototype, a Cambion 2 mH choke was used, but any pie-wound component of about the same value should be satisfactory. Connect one end of the feedback winding L2 to the starting end of the choke and wind on a total of 78 turns in the spaces between the pies, divided more or less equally between them. Secure the end with a spot of adhesive. This added winding must be in the opposite sense to the choke winding. It is generally not

LICENCE

We would like to warn constructors that a Home Office Pipe Finder licence is required for this device, which has been tested and approved for licensing in the United Kingdom. Licence application forms may be obtained on request to Radio Regulatory Department, Waterloo Bridge House, Waterloo Road, London SE1 8UA.
(A licence for 5 years costs $£ 1.20$)
difficult to find the starting and finishing ends of the choke winding or the sense in which it is wound.

To locate the corners of the search coil, four pieces of 18 s.w.g. tinned copper wire about $10 \mathrm{~mm}\left(\frac{3}{x}\right.$ in) long should be fitted to the board in the appropriate positions (see Fig. 2). Wind on 12 turns of wire, bring out the tap, then wind on another 48 turns, securing the ends as shown in the drawing. Dope the coil liberally with coil varnish and leave it to set. It should then be fairly securely attached to the board, but to make certain tie each corner to the board with a couple of turns of stout thread. The wire pins at the corners can then be carefully bent inwards and removed, to avoid any possibility of short-circuited turns.

TESTING

If you have the means available, check the frequencies of the two oscillators. In any case, find out if it is possible, with the lid on the box, to cause them to beat over the whole of the audio frequency range by adjustment of C5. If not, the remedy is to change the value of C4 by a few picofarads. It is important that neither of the oscillators should show any tendency to "squeg". If such is the case, either choose transistors with lower gain or insert suitable resistors ($R \mathbf{x}$ and/or $R y$) in the emitter leads. In the prototype, these resistors were not necessary, and should not normally be required.

Fig. 3. Underside view of the prototype unit, showing the static screen laid across the board wiring and insulated from it

Once satisfactory results are achieved, the static screen can be added. A layer of insulation, such as p.v.c. tape or Sellotape, should be stuck over the board wiring over the area to be occupied by the screen (see Fig. 2), and a length of 36 s.w.g. enamelled copper wire "stitched" across it as shown, one end being soldered to the nearest convenient earthed point in the wiring. This screen cannot completely eliminate the capacitance effect of objects in contact with the working face, but it does reduce it. This effect is due to the rather high L/C ratio of the reference oscillator circuit. Finally attach the outer covering of felt or velvet, using Cow Gum, etc.

By means of C5, adjust the beat note to a tone somewhere between 500 and $1,000 \mathrm{~Hz}$. According to your hearing and the headphones or earpiece used, you may find a certain pitch that is easy to listen to and gives an apparently optimum sensitivity.

To test for sensitivity, the approach of a 10 p coin within 50 mm (2in) of the working face should result in a change in pitch of at least a semitone. Before trying to locate concealed wiring, leave the instrument on for a few minutes to let the beat note settle down to a reasonably steady value. Concealed metal will be located with certainty up to at least 50 mm below the surface, and house wiring or pipes are not usually run at a deeper level. A run of several leads or conduits together can be detected at even greater depths. Lateral location of the wiring depends upon many things, but generally it is possible to fix a run fairly exactly by "straddling" it, judging where the pitch changes equally on either side of the run.

INTERFERENCE

The power of the oscillators, and the frequencies used are such that the instrument cannot possibly interfere with any normal radio equipment, or even be detected by anything other than a very sensitive receiver close by. Very powerful external signals may occasionally be heard faintly, but are unlikely to be mistaken for the normal indications of the instrument. The same applies to its use near unsuppressed electrical equipment.

The instrument's range is deliberately and necessarily limited, and though it will readily find a 50 p piece lost beneath a carpet, it will be of no use in searching for Roman coins or World War II relics. *

NEXT MONTH...

VIN A

MICRRPROCFESOOR KIT FREE ENTRY COMPETIIION Full details and entry coupon in NEXT MONTH'S ISSUE

Car Exhaust Monitor

Petrol prices up yet again? Keeping an eye on your driving technique with this unit can cut motoring costs.

4-Channel Coder/Decoder
 A simple, low cost, four-channel tone

 coded system based on an NE555 coder and TTL decoder circuits.

HEHA||

A versatile two-channel stereo/fourchannel mono mixer with high and low impedance inputs available.

PRACTICAL

ELECTRONICS
JANUARY ISSUE ON SALE DECEMBER 10

THIS final part deals with construction, testing and the simple adjustments required.

PUSH-BUTTON UNIT

The push-button selector mechanism used in the prototype was a type manufactured by Imperial Metal Industries and is available from Anıbit International. A similar unit, but with six little plastic pointers to give an approximate indication of frequency, is manufactured by A. B. Metal Products Ltd., and is available from Integrex Ltd. However, both of these units are fairly expensive and many constructors will be able to find a suitable unit on the surplus market at much lower cost. The resistance of each potentiometer should be about 100 kilohm, i.e. 16 kilohm total resistance for a sixposition switch.

Alternatively a suitable selector can be built up with a six-position rotary or push-button switch and 100 kilohm preset potentiometers.

No provision has been made for variable tuning as this is of very limited value with six stations to choose from, but it is a simple matter to add a $100 \mathrm{k} \Omega$ pot on the front panel.

PRINTED CIRCUIT BOARD

The copper pattern for the printed circuit board is shown in Fig. 2.1 and the component layout in Fig. 2.2. Wiring up the p.c.b. is straightforward and should not present any problems. It is probably best to start by soldering in all the resistors and capacitors, followed by the transistors, diodes and the coil L1, and then the two integrated circuits and the Tuner Head module can be soldered in place.

A socket can be used for the MC1310P (IC2) if desired but it is not advisable to use a socket for the SN76660N (ICI) as the extra lead length and stray capacitance may cause instability. It is not
necessary to use heat shunts when soldering any of the semiconductors provided the joints are made quickly with a clean, hot iron.

When all the components have been mounted, flying leads for the external connections can be soldered to the p.c.b. A short length of standard aerial coaxial cable should be used between the p.c.b. and the aerial socket and a piece of single screened (microphone) cable between the tuning voltage input on the p.c.b. and the push-button unit -as this point is rather sensitive to hum pick-up.

MECHANICAL WORK

The box used in the prototype unit was a type G.B. 1 from H. M. Electronics, which was chosen to match the Orion Amplifier. But there is no reason why another type of box should not be used provided that the same layout is adhered to. A drilling diagram for the G.B.1. box is shown in Fig. 2.3, but note that some modifications will be necessary if an alternative push-button unit is used. The A. B. Metal Products unit mentioned earlier needs a small window for the six plastic pointers.

The G.B. 1 box is supplied with a protective plastic film over the aluminium front panel. This can be used for marking out and should be left in place until all the drilling is complete - when it can be removed and the front panel lettered with Letraset or a similar product.

ASSEMBLY

The l.e.d. indicator lamps are supplied with plastic mounting clips, but these sometimes need a certain amount of persuasion to get them in place. Trimming the moulding "flash" from around the 1.e.d. may help in stubborn cases. If desired, slide switches can be used instead of the miniature toggle switches shown, and are somewhat cheaper.

Fig. 2.1. Copper pattern for p.c.b.

Fig. 2.2. Disposition of components on p.c.b.

Fig. 2.3. Drilling details for the G.B.1 box

Mounting the other components on the chassis should not present any problems-but note that the aerial socket needs to be an insulated type (such as the Belling Lee L603/s) or an earth loop will be produced.

The printed circuit board should be fitted last and is mounted on $\frac{1}{4}$ in spacers (Fig. 2.4).

All wiring should be kept short and as neat as possible, and in particular wires from the mains transformer should be kept well away from the push-button unit or there will be an objectionable hum.

Before switching on, the wiring should be checked carefully for errors. In particular check that the two integrated circuits, all the transistors and diodes, and the electrolytic capacitors have been inserted the right way round-as these may be permanently damaged if they are wrongly connected.

TESTING

Switch on and check the voltage across C29. This should be between 11.0 and 12.5 volts. If the correct voltage is not obtained switch off immediately and check for errors.

The best way of aligning $L 1$ is to use a sweep generator-and constructors with this equipment will need no further instructions-but it is possible to obtain adequate results with only a voltmeter or even with no instruments at all.

Connect an aerial and connect the output of the tuner to an amplifier. Put the a.f.c. switch to the 'off' position. Now tune across the band to see whether any stations can be received. It should be possible to pick up something, even with L1 badly off tune, but at this stage reception will probably be weak and somewhat distorted.

Fig 2.4. External wiring to p.c.b.

Fig. 2.5. At the start of the alignment procedure the tuner will probably behave as shown in (A) as it is tuned through a station. With L 1 adjusted for maximum volume the discriminator curve should be as shown above (B) with V2 and V3 spaced equally about V1. If the adjustment of L 1 is not quite correct the response will be as shown in (C) and (D)

Choose the strongest station and determine the two points on either side of the station where noise and obvious distortion appear. Then try to set the tuning accurately mid-way between these two points (see Fig. 2.5). Note that the mid-point may not coincide with maximum volume.
Then adjust the core of L 1 for maximum volume. If you do not have a voltmeter you will have to adjust L1 for maximum volume by ear and leave it at the optimum point. It may be easier to do this on a steady tone-such as is transmitted on Radio 3 after the close-down of normal programmes at night.

If a voltmeter is available, check the voltage on the emitter of TR2 and make a note of the reading. Now tune off the station in both directions until noise and distortion are heard and make a note of the voltage readings at both points. These should be equally spaced above and below the first reading. If they are not equally spaced a further slight adjustment to L1 is necessary.

Once LI has been correctly adjusted, tune to the centre of the station and adjust VRI so that the two l.e.d tuning indicators glow with equal brightness. The two l.e.d.s need to be reasonably matched and it is a good idea to select the best pair from the three l.e.d.s required for the tuner, using the remaining one as the stereo indicator lamp.

No adjustments to the LP1186 are necessary as this unit is supplied pre-aligned.

STEREO DECODER

Constructors with access to a digital frequency meter can simply connect it to pin 10 of the MCl310P, tune in to a mono transmission, and adjust VR2 until the frequency meter reads 19 kHz . However, most constructors will have to use the following method.

Tune into a stereo transmission and adjust VR2 until the stereo indicator lamp comes on. Now turn VR2 in both directions noting the point at which the stereo indicator lamp goes out. VR2 should then be set mid-way between these two points.
The adjustment of VR2 is not very critical as once the oscillator is within the pull in range of the phase-lock loop its frequency is automatically corrected to the right value when the pilot tone appears.

PROBLEMS

The majority of problems with home built equipment are caused by simple wiring errors, so the first step should always be to carefully check the wiring. Then check that all components are the correct value and are inserted the right way round, and make sure that there are no obvious dry joints or bits of solder shorting out tracks on the p.c.b.

A table of voltages is given and this should be of some assistance in fault finding-but readings should be treated as approximate as component tolerances can cause slight variations from the values given. Readings were taken with an Avo Model 9.

It is difficult to give any specific advice for fault finding as anything could be at fault. and many faults would have the same general effect. However, the following general notes may be of some assistance.

1) If reception is noisy on stereo but all right on mono this indicates that the signal level is too low. The most likely cause is that the aerial is inadequate. A stereo signal needs to be some 26 dB higher than a mono signal for the same signal/noise ratio due to the much greater bandwidth of the stereo transmission. If the aerial is all right then there may be a fault in the Tuner Head or i.f. amplifier causing low gain.
2) Severe distortion or a total lack of output probably indicates a fault in the Limiter/Discriminator section. Weak output but with no significant noise indicates that the quadrature detector is badly off tune-possibly due to a faulty capacitor.
3) Mono output from a stereo signal indicates a fault in the stereo decoder section-or that VR2 is badly off tune.

A PRACTICAL ELECTRONICS PUBLICATION

A SPECIAL SELECTION OF MUSICAL PROJECTS FROM PE

THE MINISONIC MK2 SOUND SYNTHESISER

An up-dated version of the published Mk 1 , the Mk 2 has an integral keyboard, two 250 mW monitoring channels and loudspeakers, and facilities for amplitude, frequency and harmonic modulation.

THE JOANNA ELECTRONIC PIANO

has realistic piano effect with touch-sensitive keyboard and additional choice of harpsichord or honky-tonk voicing.

THE ORION STEREO AMPLIFIER

A hi-fi amplifier with output of over
$20+20$ watts. Compact and complete in one unit, it measures only $14^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime}$.

PLUS

Some great sound effects units for guitars, keyboard instruments and general recording.

Available
Now
£1.20
POST PAID
To: Practical Electronics IPC Magazines Ltd., Receiving Cashiers Dept., King's Reach Tower, Stamford Street, London SE1 9LS Please send me..........copy(ies) of
"Sound Design". I enclose a Postal Order/Cheque for $£ 1.20$ (post paid) or (state amount for more than one copy)
(£2.35 post paid for 2 copies)
PLEASE WRITE IN BLOCK LETTERS
Name
Address

Post code.
Remittances with oversess orders must be sufficient fo cover despatch by sea or arf maif as required. Payable by Infernational Money Order only.

Bring 'scope'to your interest.

'There's only one way to master electronics... to see what is going on and learn by doing'.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

4Build an oscilloscope.
As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read,draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computors and countless other electronic devices and their servicing procedures.

Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing. servicing and maintaining all types of electronic equipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and co.ttaining many different components that can be used in experiments and provide an excellent example of current electronic practice.

GETTING TO GRIPS WITH MICROPRDCESSDRS
 By D.BROWN*

Abstract

A concise explanation of what a microprocessor is and what it does. A Development Kit incorporating a microprocessor provides a valuable tool for system design. The National SC/MP Development Kit, featured here, is ideally suited for private users and experimenters, as well as for professional users.

MICROPROCESSORS are already in use or under evaluation in a wide range of applications in industry, and are even finding their way into domestic appliances. On the other side of the Atlantic, hobbyists are beginning to experiment with these devices too.

What are the attractions of the microprocessor? Principally, its ability to replace complex electromechanical process timers or boards full of logic i.c.s, but with the added advantage that the control sequence can be modified in part or in whole merely by altering the program stored in the associated memory-no circuit changes are involved.

When using wired random logic, many gates are connected in series and/or parallel, to produce the desired relationship between inputs and outputs. When
using a microprocessor, one general purpose gate carries out all the operations, one after another. Clearly some sort of MEMORY is needed, to store the result of one operation while the microprocessor gets on with the next operation, or pauses for breath. The memory also contains a sequence of instructions which tell the microprocessor what to do. This sequence of instructions is called a program.

Under control of the program, the microprocessor can perform logical or arithmetic Functions on data (input or intermediate), or take decisions to JUMP to a different part of the program. For example, when performing division, a subtraction is repeated until

* Appllcations Engineer, National Semiconductor (U.K.) Ltd.

there is no remainder, by repeating a few steps of the program in a loop. When the remainder is zero, or negative, the microprocessor jumps out of the loop, and carries on to the next instruction.

PROCESSOR CONNECTIONS

The microprocessor is connected to the memory by two sets of wires, the data bus and the adDress bus. The instructions and data flow in on the data bus. and results flow out some time later. At each step the address counter driving the address bus counts up by one. The memory is a matrix of storage elements. The
specification. For the sake of example we will consider a central heating controller, with temperature sensors in the lounge, hall and outside. The boiler system has two heat settings.

System definition:

1. If lounge temperature is less than $21^{\circ} \mathrm{C}$. turn on boiler and pump, open valve 1 .
2. If hall temperature is less than $18^{\circ} \mathrm{C}$, turn on boiler and pump, open valve 2.
3. If outside temperature is less than $0^{\circ} \mathrm{C}$, set boiler to high output if on.

Fig. 2. Flow chart representing the sequence of decisions and commands required to control the central heating system
address bus determines which set of storage elements are connected to the data bus. READ ONLY MEMORY (programmed before use, and retains its data with the power off) and random access memory (loses its contents with the power off) are both used. Any part of the program stored in RAM must be loaded every time the system is turned on.

A microprocessor connected to a memory is like a man looking at a "what the butler saw" machine. The eyepiece is the data bus. and instead of turning a handle to see the next picture, the microprocessor address counter advances by one. The analogy is incomplete because the microprocessor also sends data out on the data bus. Perhaps our voyeur could develop flashing eyes!

So far we have considered a system with a microprocessor and memory, but no inputs or outputs. A 16-bit address bus can address $2^{16}=65,536$ locations. Practical systems usually use a much smaller memory. Several unused addresses are decoded with gates, and the results used to enable (i.e. allow) inputs onto the data bus, or load outputs from the data bus into latches. These addresses are called up by the program when the microprocessor needs to input or output data.

SYSTEM DESIGN

When designing a microprocessor based system, the starting point (as in all logic system design) is the system

The hardware required to implement this system is shown in simplified block diagram form in Fig. 1.
Flow chart: The next stage is to construct a flow chart, such as that in Fig. 2, based on the system definition. A flow chart is simply a graphical representation of the series of decisions and commands required to make the system perform in accordance with that definition.

The SC/MP Introkit and its associated Keyboard Kit. The Introkit p.c.b. shown here is one for the U.S. market. The European version contains the same components but is a different shape

Program: The last stage is write a program in machine code (the "language" which the microprocessor understands), but with comments in plain English for future reference! This program is then entered into ram on a development system such as that described below. The input temperatures are simplated by putting numbers in the appropriate addresses.
When the program operates correctly, build up the hardware and try the two together. Next get your program put into Prom by your friendly Prom supplier, plug it in, and make sure it works.
In practice the microprocessor could easily do very much more. An input from the fuel tank of an oil-fired system would allow it to predict a run-out date, based on fuel consumption. Timing could also be built in.

The central heating controller is offered only as a simple example of how design is done, to show the procedures involved when developing a system.

NATIONAL SC/MP

So much for theory; what about practice? To start with you need a cheap microprocessor development system, like the SC/MP Introkit. This contains everything except power supply. A preprogrammed rom contains "Kitbug", a program to allow you to enter a program into ram in machine code from a Teletype, run the program, and print out the result on the Teletype. (No Teletype? Don't despair, read on!) The kit contains full paperwork, and some worked examples.
For those people wanting a cheap Teletype substitute, National Semiconductor have introduced Keyboard Kit. This kit consists of a cheap calculator, with the calculator chip removed. An umbilical cord connects it to the Introkit p.c.b., to which a handful of integrated circuits are added. All integrated circuits and sockets are included. also wire and a wire wrap tool. A new rom, containing SCMPKB, is included. This new program contains all the routines necessary to interpret the key depressions and drive the 7 -segment displays.
The comprehensive handbook gives step by step wiring instructions, and operating instructions for the completed kit. Using the keyboard. programs can be entered in hexadecimal (a shorthand form of machine code easier to use than binary). As well as the 16
hexadecimal keys ($0-9$ A. B. C. D. E. and F), there are 4 control keys, which allow the contents of any ram address to be examined or modified.
In the following example, the addresses are in hexadecimal: Hex $200=\left(2 \times 16^{2}\right)+(0 \times 16)+(0)$ $=2 \times 256=512$ in decimal. Address locations 0 to 1FF (511 in decimal) are occupied by SCMPKB in the ROM, 200 to 5FF are used by the keyboard and display so address location 600 is the first RAM address.
Address

location 600	Enter data C4	Meaning of data Load immediately the next data word into the accumulator
601	03	The value to be loaded 602
EC	Decimal add immediately to the next data word	
603	04	The value to be added 604
605	05	Store instruction Result of calculation stored 5 places on, i.e. 60A
606	C3	Finish, return to SCMPKB control Enter start address in RAM location EF7
FF8	06	00

The result of the addition of 03 and 04 (07) is found in location 60 A after the programme has been run by pressing the appropriate button.

To this simple system may be added some address decoding, tristate buffers (DM81LS95) and latches (DM74LS175), allowing real TTL inputs and outputs to connect to the system.

The Introkit at $£ 62 \cdot 37+8 \%$ VAT, the Keyboard kit at $£ 59 \cdot 85+8 \%$ VAT, and a pack of all relevant data ($£ 1 \cdot 50$ or free with kits) are available ex stock from A. Marshall (London) Ltd., 42 Cricklewood Broadway, London NW2 3ET, distributors of National Semiconductor consumer products.

SERT Symposium "Microprocessors at Work"

THE interest in and importance of microprocessors in the future development of electronics is indicated by the attendance of over 200 delegates at the three-day residential symposium organised by the Society of Electronic and Radio Technicians at the University of Sussex in September. The symposium highlighted the tremendous potential of the microprocessor as part of a microcomputing system for control, display and calculation. The delegates were drawn mainly from technical management of research and development, but also included representatives from marketing, training and education, maintenance, test and production engineering.

A total of 23 papers were presented by authors drawn from microprocessor manufacturers, electronic equipment manufacturers and universities. The opening papers served as an introduction to microprocessors and their features. A survey of all the currently available processors followed, with some hints on selecting the right device for a particular application. The hardware papers concluded with descriptions of prototyping aids and various testing procedures.

Next it was the turn of programming and software, then on to what was for many delegates the real "meat" of the proceedings, the applications papers. These dealt with such
varied subjects as railways, remote graphics displays, instrumentation, lift controls, domestic cookers and industrial weighing systems.

The recurring message from authors throughout the symposium was that prospective users should 'get their feet wet ${ }^{*}$. Get hold of one of the development kits now available and gain some practical experience. Better by far than spending hours poring over literature from the various manufacturers, trying to make up your mind which is the best microprocessor for you.

The previously announced competition to find the best application of a microprocessor by a home constructor had unfortunately to be cancelled. Although about half a dozen constructors had expressed an interest, none of them was able to complete his project within the time available. Symposium Papers

A volume containing reprints of all the papers presented at the symposium is available. This normally costs $£ 7 \cdot 50$, but is available to Practical Electronics readers at the specially reduced price of $£ 6.50$ including postage and packing. Orders, with remittance, should be sent to the Secretary, MPU Symposium (Dept. PE), S.E.R.T., 8-10 Charing Cross Road, London WC2H OHP.

BYFRANK W. HYDE

SPACE SHUTTLE

Aptly named The Enterprise a black, white and grey spaceship made its first appearance to the public gaze in September this year. It is America's first Space Shuttle Orbiter. Its name is partly a recognition of the popular TV programme "Startrek

This vehicle is a sort of aeroplane cum spaceship and is the next generation pioneer of the space age. It is designed for manned activities and near space missions in the 1980s. This is the simplifying generation which will bring space flight nearer to that of normal commercial travel.

In physical size the orbiter is about the size of a DC9 aircraft with swept wings. It is 122 ft long and when launched it has two solid fuel detachable rocket boosters plus its own three engines. The boosters are jettisoned and later recovered for re-use. This procedure can be repeated many times before the boosters are scrapped.

Though launch will be vertical in the normal mode, the orbiter will cruise to a normal aircraft approach landing, or rather, like a glider landing for it will not be under power.

The orbiter has two main sections, a double decker flight deck and a rear cargo bay. This will provide room for satellites or space experiments. It also has room for other space experiments in the working quarters where the crew of seven can work.

All this is in addition to the 72 cubic metres of the two deck cabin. This area is for the equipment which controls and maintains the spacecraft. The lower deck is for the scientists and engineers as passengers who will work and sleep in the quarters provided.

The Enterprise will have multiple tasks to perform and its large cargo area will be able to carry satellites which can be placed in orbit and later
recovered for servicing or even repaired on site. A Spacelab will be carried and the first one, built by the European Space Agency, is scheduled for operation in 1980. The Spacelab can be instrumented for astronomy, high energy physics and astrophysics, solar research, together with biological, technological and Earth related studies.
Spacelab 1 will have a pressurised module for the experiments, but Spacelab 2 will have instruments mounted on pallets and controlled from inside the flight deck. The pallets will be exposed directly in space. Canada is building a long arm manipulator for use with the pallet system as well as satellites.

TESTING

Tests of the orbiter will begin in January 1977 at the Dryden Spaceflight Centre. The orbiter will be placed on the back of a Boeing 747 and the first tests will be with unmanned conditions. The Enterprise will take off from the back of the 747 fly around and then land.

Fifteen such test flights will take between January and June. The shuttle pilots will then board the pick-a-back in late June and in July the first free flight will take place. For this test the orbiter will separate from the 747 at $28,000 \mathrm{ft}$ and the Enterprise will make a U-turn and land on the runway.

In March 1979 the second Enterprise will fly directly, manned, and after six test flights will be ready to go into scheduled operation in 1980.

The first pilots will be chosen from the Apollo astronauts. Although 28 men are attached to the Johnson Spaceflight Centre NASA is recruiting 15 pilots and 15 mission specialists. Applications by men or women will be open till June 30. 1977.

MARS

The vital experiments with regard to biological processes are not yet settled and a good deal of work is still to be done. Indeed, it may well be that until some of the Martian soil can be handled directly in Earth laboratories no final conclusion may be announced.

However, there are now indications that the surface of the planet is similar all over. The rocks appear to be the same and the manner of the debris that has been photographed confirms this. The fact that the two sites have similar signs in the soil, from the chemical point of view, all point to the view that the conditions are the same as the other planets, Earth, Venus and Mercury. Temperatures vary, atmospheres vary but the same basic materials are involved.

A new suggestion from the space centres now implies that the crust of Mars may be relatively thin. 1t is conceivable that there is water trapped as ice or in the form of permafrost not far below the surface. It is thought that this could be as much as a mile deep. Boreholes might well reveal this and
there would seem to be a case for a "mole" tunnelling device remotely controlled or at least a boring device when the first manned landing is made.

All things considered so far it would seem that the first colonies should be sited on Mars for even with present technology this is possible.

SOYUZ 22

A flash back to a unique spaceflight was called to mind when the name of Colonel Valery Bykovsky was announced recently as the commander of Soyuz 22. Indeed space history was made when Colonel Bykovsky and the only woman astronaut, so far, Valentina Tereshkova were partners in the flight of Vostok 5. This was in 1963 two years after Yuri Gagarin made his flight.

The sequel to the man and woman flight was that they were married. Much has happened since that time thirteen years ago, they now have two sons, Valery and Sergei, and Valentina is now chairman of the Soviet Women's Committee. Bykovsky has actively assisted in the training of Soviet space crews and the Soyuz flight missions.

The programme he now commands is a co-operative one by socialist countries. The main object is the improvement of scientific methods and the study from outer space of geological and geographical features of the Earth's surface.

The spacecraft carries multi-zonal photographic equipment developed by Germany and the USSR and manufactured by Zeiss. Medical and biological research is now a regular part of the Soyuz missions. The data from the spacecraft will be processed by the Soviet Flight Centre with the help of land based tracking stations and research ships in various parts of the world.

OZONE LAYER

Much confusion still exists regarding the ozone layer. A recent government report comes down in favour of a dangerous future if Freon is not banned from sale. At the same time another school of thought says that the activity of flights in the stratosphere by commercial aircraft may well inhibit the effects of contamination where the chlorofluoromethanes are concerned.

There seems to be some tendency to cry wolf in this area again and the fact should be recognised that wide ranging condemnations in these matters are based mainly on laboratory experiments. Just as the exact make up and "weather" changes in the upper atmosphere as a whole are still not extensively understood there has been too much conjecture as to the operation of the ozone layer. The fact that widely divergent percentages have been quoted (it could be as much as $7 \frac{1}{2}$ per cent or as little as 1 pér cent) is too random to start a scare, often to little purpose or benefit to mankind.

PHILIPS MIXER
 AMPLIFIER KITS

* Uniquely flexible - you build exactly what you need * Totally reliable-every component made to the highest Philips standards * Amazingly inexpensive * Available now from SST Distributors

Part of the overall range of Philips Electronic Kits, now available for the first time in Britain, Philips Mixer Amplifier Kits enable you to construct the kind of mixer amplifier you need-easily, confidently, to the highest professional standards. Unusually flexible, the Philips range is built up in such a way that you can choose from a number of combinations certain that the end result will always be a complete unit - in function and appearance.

Individual Kits cover the following functionsmixer unit, separate input amplifiers (for microphone, record playen tape recorder or tuner), tone-control unit, level-meter unit with two VU-meters, and a feeder amplifier. In every case, the dimensions of the chassis and the front panel have been standardised to allow for smooth and
simple construction:moreover, the units can be easily interchanged.

The mixer amplifier illustrated is built up of eleven kits; the front panel contains 16 slide controls, 10 rotary controls and 2 large VU-meters If a simple layout is required, one central tone control unit can be incorporated between the mixer and the feeder amplifier instead of three separate units. In any event, it is usually a good idea to block out your requirements initially in diagram form so that you can see how easily they can be engineered.

Whatever your choice, however you can be assured that the complete mixer amplifier will amply exceed true hi-fi standards with distortion and signal-to-noise ratio on a professional level.

Your skills.Philips quality. An unbeatable combination.

FAST SERVICE Wa gutnnioe that tolephone orders for oopds in despatched the same day First Class Pont（books and kits by parcol poot），and our stocking is good．Private customars should islephone ordar quoting their Access or Barclaycerd number，with a minimum order velue of 5.5 ．OHicial orders no minimum． CMOS from the lop manufacturers，mainly RCA and MOTOROLA

cosood	0.11	C0402\％	$0 \cdot 0$	CD405s	0－97	CO4086	0.74	clock	HIPs
CD4001	0.18	C04028	1． 18	C04054	120	CO40t9	1.81	AY51202	2．概
C04002	$0 \cdot 10$	CD4030	D． 58	CD405s	1.37	CD4093	$0 \cdot 0$	AY51224	3.50
CD4009	$1+22$	CD4031	$2 \cdot 24$	CD405a	137	CO40g4	$1 \cdot 4$	MK50250	5．${ }^{\text {d }}$
CD40c\％	$0 \cdot 17$	CD4032	$1 \cdot 11$	CD4057	27.05	CD4095	$1 \cdot 0$	nek 50253	5． 0_{0}
CD400s	0.45	CD4033	1.45	CO405	4．06	CD4098	1.04		
CD4009	0.58	CD4034	1．010	CO4060	1．76	CD4097	3.87		
cosalo	－3	C04035	122	CD4062	9． 07	CD4099	180	vemoca	ES
C（14011	0.77	C04035	$3 \cdot 11$	CO4063	1．14	CO4502	1.28	7514101	2． 44
CD401？	d．17	CDSa3？	0.98	CD40\％	0 ＊	CD4510	1.41	75141 ± 0	3.04
COMOT 3	15	C04031	1.22	CO4067	$3 \cdot 17$	C04511	1．${ }^{\text {ct }}$	7312371	1．72
CO4014	1.05	CD4038	300	CO4068	$0 \cdot 22$	COLS14	2． 35	7512380	$2 \cdot 15$
CD4015	1.05	C04040	$1 \cdot 11$	CO4089	0.22	CDP515	3．8		
CD4016	0.35	CD4041	0.37	CD4070	06	CO4S1a	1.41		
C04017	0.50	C04042	$0 \cdot 17$	CO407	0.22	CDasti	4．30	Sunday	
CO 4011	$1 \cdot 0$	C0．4043	1－03	CD4072	523	Codsio	1.30	CA3130	1.14
CD4a19	4．${ }^{\text {a }}$	CDS04	0．17	C04073	$0 \cdot 22$	C04537	1．54	WA741	0.35
CD4020	9．18	CD4045	1．45	C04075	0.22	C04532	1． 50		
CD4021	1.05	CO4046	1．3	CD4a7	1.51	CDASS5	$0 \cdot \mathrm{~m}$		
C0．022	1.00	CD．447	0.4	C0407	000	CO455s	6．m	SOLDE	
CO4023	0.17	CDS04	0.54	C0407	$0 \cdot 28$	MC14522	1．14	P1NS	
CD4024	0.61	CDent	0.55	CO4C01	0.28	MC145S3	A．24	100	0.5
CO4025	0.17	CD4050	0.35	COHOH 2	$0 \cdot 22$	1 m \％ 500	0.05	． 000	
C04026	1．76	C04051	0.07	couchs	0.74				
${ }^{04027}$	0.55	CD4052	7	P．O．日OX 758 OXFORD Tel． 048549791				BARCLATCARD	

KITS

 NEW

AUTOCLOCK ＂AUT－CK £17－85

The SINTEL Aufociock to a four－digit car clock in an attrsctive mint white case．Fasturas： arge or ming interal bickup ontrery supplies powar if the car betiery voitege drogs nigh qualty componenls are uned，piher
 circuity gives you good purformence at low cosi．You benefit from our oxperimen in olack
dexign Complete kit law battery－Order as＂AUY－CK．
Also avaliable lase cirio－order si AUT－MODULE KIT
Other Kita：For dotais ban provioua adde or Catiologu

Send or phone for FREE CATALOGUE giving details of our complete range of Clock kits，LED displays， Cases，and other components

memory ic＇s and microprocessors

SINTEL
Add 8\％VAT $+\mathbf{2 5 p}$ P． 1 P．an all orders．Phona orders see＂Fast service＂for detalls．Export orders welcome． postage rales OFFICIAL OROERS WELCOME．

PE ORION STEREO TUNER

Complete set of semiconductors $£ 4.99$ Mullard LP1186 tuner head $£ 7.75$ High quality glass fibre P．C．B．$£ 2 \cdot 45$ STEREO AMPLIFIER
Complete set of semiconductors
£9．40 High quality glass fibre P．C．B．
£2．75 FERRANTI semiconductors

BCID7P	$11 p$	21×108	90	21×330	17p	21×530	18p	25176	330，
BC108P	9 p	21X109	110	21×331	18 p	21×531	19p	75178	54.
BClosp	$11 p$	21×212	15口	2TX382	16p	21X550	169	ZS270＊	14 p
BC415P	17p	210213	15p	210383	15 p	270 551	170	2S271＊	230
BFS59	14 p	21×214	$17 p$	219394	17 p	2N3055＊	70p	${ }^{\text {S }} 277^{\circ}$	24p
BFS60	$15 p$	Z1×239	100	21×450	$15 p$			25274＊	290
BFS61	15p	21×300	12 \％	21×451	16a	DIODES		25276＊	36 D
BFS96	140	21×301	130	21×500	13.9	ZS142＊	${ }^{38} \mathrm{p}$	ZS278＊	57p
BFS97	15 p	27×302	150	21×501	140	$\underline{8170}$	13		
BFS98	$16 p$	2TX303	180	2×502	160	2517	16p	ZENERS	
Z1\％A20	10 p	$2 \mathrm{~T} \times 304$	19	21503	17 p	${ }^{2} 5172$	230	E2V19 senes	
27×107	11 p	270320	16p	21×504	201	2 S 174	25p	17 to 47\％	10p

2N425E＝D to A converter £350．ZN1034E＊precision timer Lc．E1．80
PE TV SOUND SEPARATOR

PHASE LOCKED STEREO DECODER

 orion
MOTOROLA：MC1357PQ E1．65．MC1310P E1．80，BD699 E1．14．BD70D＊£1 28

 and to tull manwifcturess spec．We do not sel secronds or repects．Send SAE for our dafer sheet and price list． PAICES DO MOT INCLUDE VAT－ADD 8% TO ITEMS MAAKED＝AND 12ł\％TO ALL OTHEAS DAVIAN ELECTRONICS PO BOX 38 OLDHAM LANCS．OL2 6XJ

The MINISONIC 2

probably repiesents the betivalue lot money in olectronic muale todey．Kltil are ayaliabie for complete instrumanti or Individual aections，or for the convaralon of Mk． 1 Minisonica to Mik， 2 epectfication．（Converaion delelle apply to Eaton Audlo P．C．B．a，but may be sdapted to sult othere．）
performance，complete cabinet thit k ave of the comple，incorporsinstrument onhancese its onampled，thk－acreened front panel，with maiching beck and bsate，and solld Afrormorte and－cheoks．Thle kil mleo includen all owilches，knobs，sockets． screwi and panel indicatori．Sultable keyboardis and conibcl assembllea are clso in atoctic．

Kbod．Contral MS2／3
V．C．O（single）MS2／4
Env．Shapet + V．C．A．MS2 Hold Isolator MS2／7 V．C．Filter MS2／6
Ring Modulator MS2／8
Norse Gen．MS2／10

COMPONENTS
L4 4318
FET－MOPA
ZN 424E ZNC 4324 E P

LAST FEW TO CLEAR
Mindmix－ 4 in 1 composite P．C．B
Minimix－8 scresned，black front panel
$\frac{1}{2}$ Stereo Jack Piugs tchromed brass）
Pair－Plug and Socket as above

E9．54	Output Amps．MS2／11	¢7．52
［14． 66	Inverter MS2／12	［1］．90
57.57	Power Supply MS2／13	90
122． 13	Conversion Kits：	
23．56	V．C．O．（single）MS2／15C	\＄12．15
50．29	Ancillary Functions MS2／14C	¢12 84
［4．13	Main P．C．B EADO14	84．20
［2．80	P．S．U．P．C．B．EAO015	¢2．05

EATON AUDIO

DEPT PE，P．O．BOX 3
ST．NEOTS，CAMBS
PE19 3JB

TERMS：MAIL ORDER ONLY．C．W．O．MINIMUM ORDEA 51．VAT：Please add $12 \downarrow \%$ to value of order inc．P．．P．unless otherwiso stated Cheques of P．O．a payabla to Eaton Audio． Orders avar E5 fres of P．\＆P．，otherwlse please add 10 p in the F 1

AChance remark, in humorous vein, by a neighbour sparked off the train of thought that led finally to a versatile random number generator. "Can't you," he asked, 'make a gadget that will win the 'pools' for me?' I explained that I didn't think that I could do an H. G. Wells and produce a time machine, and that perhaps some sort of random number device was the most likely alternative. At least, the chances should be about the same as with "Ernie" and a Premium Bond.
As the idea took shape, it became clear that any such device need not be limited to the football pools, and so the final design incorporates switching for four modes of operation; a random number generator up to a maximum of 99 , a pools game selector limited to 59 , a roulette wheel counting up to 36 , and a dice simulator in which each digit has a maximum value of 6 .

PRINCIPLE

In order that the circuit shall be as free as possible from external influences, two essentially random events are employed in selecting a number. First, a white noise generator produces a sequence of pulses which are quite random with respect to time and second, these pulses are counted for a relatively long and indeterminate length of time. A block diagram which demonstrates this principle is shown in Fig. 1.
Operation of the "play" switch sets the bistable which enables the gate so that the stream of very high speed pulses from the noise generator is passed into the counting circuit. When this happens, the free-running clock circuit will be at some unknown point in its operating cycle, so that a short and indeterminate time later its next output will reset the bistable, stopping the count and displaying the result on the two seven-segment displays. During this period, the
counters will have cycled through their count sequences a very large number of times, and it has been so arranged that the displays are blanked during counting so that there can be no possible indication of the final result until the number has been selected and displayed.

Fig. 1. Block diagram of unit

CIRCUIT

The major part of the circuit is shown in Fig. 2. The noise signal is derived from the base-emitter diode of transistor TR1 and is further amplified by TR2 and TR3; the resulting signal is squared and limited by IC1a, which is one half of a dual TTL Schmitt trigger, type 7413 , which also doubles as the signal gate. The clock pulse is produced by the very simple unijunction oscillator TR4, which has a period of about 3-4 seconds; its output is also squared, in the second half of
the Schmitt IC1b. The bistable IC2 is a TTL type 7472 J-K flip-flop, whose J inputs are permanently at a logic " 0 " level and K inputs are permanently " 1 ". Thus the clock pulses will keep it in the "reset" state in which the Q output is " 0 " (pin 8) which inhibits the signal gate IC1a.

Pressing S1 places a " 0 ". on the "set" input of the bistable which overrides all other inputs and causes a " 1 " to appear at the \bar{Q} output, so enabling the signal gate. At the same time, the " 0 " at the Q output (pin 6)

Fig. 2. Pulse circuitry for the Games Machine
is applied to the blanking inputs of the decoders IC5 and IC6, so blanking the displays while the count is in progress. The next clock pulse to arrive at the bistable after the "play" button is released resets it, stopping the count and enabling the displays. The counting chain consists of the two 7490 decade counters IC3 and IC4, the decoders IC5 and IC6, and the DL707 displays IC7 and IC8.

In a chain of counters, it is normal practice to drive each decade from the D output of the preceding decade, but in the present application this method will not work. Consider, for example, the dice option. The "units" counter cycles up to 6 and then resets, so that the D output never changes state, and cannot possibly provide the carry pulse for the "tens" counter. However, inspection of the truth table of the 7490 counter shows that the C output also changes state once per decade, and can therefore provide the necessary carry pulse. Unfortunately, the required " 1 " to " 0 " transition occurs on the count of 8 , and this gives rise to some further problems in the roulette option. Inverting the C output produces the required transition on the count of 4 , and it turns out that this is perfectly suitable for all the options that are to be provided. Of course, it does give rise to a most peculiar count sequence, since the "tens" counter will now increment each time the "units" counter reaches 4 . While this may appear very odd, no numbers are missed, and the actual sequence is quite irrelevant in this application.

MAINS POWER UNIT

Power for the circuit is applied by a simple mains power unit (Fig. 3) based on an integrated voltage regulator IC12 which provides a stabilised 5 volt output; the noise and clock generators require a higher voltage and so their supply is taken from the bridge output of about 17 volts. In the prototype, the seven-segment displays are also powered from the output of the i.c. regulator and the current limiting resistors R11-R24 were chosen accordingly to be 270Ω. However, the current drain is such that the regulator is running close to its maximum dissipation and it does get rather hot. While a small heat sink is shown in the constructional details, a better solution would perhaps be to run the displays from the unstabilised 17 volt line, and increase the limiting resistors to about $820-1,000 \Omega$: although this has not been tried out, it is standard practice and should not give any trouble.

GAMES SWITCHING

Without further modification, the circuit so far described will count from 00 to 99 and continuously recycle. This is fine for the random number option, but for the other options it is necessary to limit the count cycles. To do this, use is made of the reset-to-zero facility of the 7490 counter: in order to count, this input must be held at the logic " 0 " level. A " 1 " at this input will immediately reset the counter to zero and inhibit further counting until the " 0 " level is restored. In principle therefore, it is simply necessary to detect the required maximum count and to cause a " 1 " to momentarily appear at the reset-to-zero input. In practice, it is rather more complicated because several different counting cycles are required.
The switches which carry out this selection are $\mathrm{S} 3 / \mathrm{S} 6$, linked so that depressing one switch releases the others. They are all shown in the released position, so that there is a connection through all four switches from the reset-to-zero input to a logic " $" 1$ " level. Thus any attempt to operate the device without one of the games being correctly selected will cause the displays to permanently show zeros.
The required maximum count is detected by decoding its binary equivalent in the diode-resistor gates; at this time, all the inputs to the selected gate will be at a " 1 " level, so that its output will also go to " 1 ". This " 1 " level is then routed to the reset-to-zero input of the appropriate counter by one of the switches.
Switch S3 selects the random number option. Hence operation of S3 applies a logic " 0 " to counter IC4 via S3a, and to counter IC3 via S3b: both counters are therefore permanently enabled and cycle through the full 00-99 count as required.

Fig. 3. Mains power unit

Switch S4 selects the roulette option, in which the maximum count will be 36 ; the counters must therefore be reset as soon as the count of 37 is reached. Examination of the count sequence around this number reveals that two resetting operations will be necessary. First, 37 is detected by the gate D11, D12, D13, D14, D15 and R28 and the reset signal is applied, via S4a, to the units counter only. This ensures that the counts of $30-33$, which would have been lost if both counters had been reset to zero, do in fact appear. Next, the count of 44 is detected by gate D16, D17 and R29 and the reset signal is applied, via S4b, to the tens counter; if the full sequence is written out, it will be seen that no numbers are lost. The maximum number of matches on a football coupon never exceeds 60 , and so for the pools option the count is limited to this number. Looking once again at the counting sequence around 60 , we find that the first number that appears in the sixties is in fact 64:

57585950515253646566
so this is detected by the gate D8, D9, D10 and R27 and applied to the reset-to zero of the "tens" counter only; the modified count is then: 52536445 . Switch S5b is used for this reset signal; S5a applies a " 0 " to the reset of the units counter so that the full $0-9$ range is covered.
Finally, the much simpler dice option. Each counter is required to cycle up to 6 , so that 7 has to be detected individually for each counter and used to reset it. D5, D6, D7, R26 and S6a carry out this operation for the "units" counter, while D18, D19, D20, R30 and S6b do the same for the "tens" counter.

ZERO DETECTOR

The circuit that has so far been described may be built without further elaboration and will operate exactly as planned but, there is a small snag. We have so far been very concerned with the various maxima that are required for the different games, but the corresponding minima have been ignored. This is fine as far as random numbers and roulette are concerned, for a selection of 00 is perfectly acceptable. However, there is no match number 0 on a pools coupon, neither do dice have zero on any face.

An optional extra to the circuit is therefore some additional logic which will prevent these forbidden scores being selected. What then are the requirements for such a circuit? It must of course know which game has been selected so that it will know when and how to operate; clearly, some additional switching will be necessary. It must be able to detect the zeros, and determine whether a single zero is permissible (for example, 04 or 20) as for the pools, or whether neither digit is allowed (dice); should either of the forbidden states be selected, the circuit should initiate a new count, and continue to do so until an allowed selection is made.
The counter outputs are wired to two 4 -input NOR gates IC9a and IC9b (7425), each of whose outputs will be a " 1 " when, and only when, all its inputs are " 0 ". Next, these " 1 "s must be combined in a circuit that will distinguish between the "either" and "both" requirements, that is, it will perform the logical and and O functions at will.

Whilst there are several ways in which this may be implemented, a particularly simple way in practice is to use an i.c. full adder; the truth table for the 7480 one-bit adder shows that when the "carry" input is at a logic " 0 ", the "carry" output performs the NAND

COMPONENTS . . .

Switches
Push-button switches with 8 -switch mounting frame including latching bar and return spring (Doram), and 6 buttons (square opaque)
S1 2-pole changeover
S2 2-pole mains
S3 2-pole changeover
S4 2-pole changeover
S5 2-pole or 4 -pole changeover according to version built
S6 2-pole or 4-pole changeover according to version built

Miscellaneous
Two-tone polystyrene case, size $188 \times 110 \times 60 \mathrm{~mm}$ (Doram type 509-585)
Transformer miniature $6 \mathrm{VA}, 0-12 \mathrm{~V}, 0-12 \mathrm{~V}$ secondaries (Doram)
Miniature group panel
"Soldercon" pins
Veroboard, 0.1 in matrix, $86 \times 180 \mathrm{~mm}$
6BA threaded rod, sundry nuts and bolts Small pieces of celluloid and 18 swg aluminium Lightweight, colour coded, single core and stranded hook-up wire

Fig. 4. Main board wiring and assembly

Fig. 5. P.s.u. assembly and wiring from switch assembly to main board

The unit with the main board removed showing the p.s.u. Note the angled heat sink for IC12
operation on the inputs A and B, while a logic " 1 " on the "carry" input produces the NOR function:
$\left.\begin{array}{cccc}\text { A } & \text { B } & \text { Carry in } & \text { Carry out } \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0\end{array}\right\}$ NAND

Thus, by inverting the "carry' output of the adder, the desired AND and OR functions are obtained. The "carry" input is used as a control and is supplied by a further pole on the dice switch, S6c (Fig. 2), so that when dice is selected, a " 1 " is applied and the or operation is carried out; for all other options, the AND function results.

However, this circuit is only required to operate on the dice and pools options, so a second gate IC11b is enabled by application of a " 1 " to one of its inputs by S5c or S6d when these games are selected; selection of the other alternatives disables this gate so that its
output is permanently " 1 ". So now we have the result that whenever a forbidden selection is made, as determined by the extra switching, the output of the gate IC11b goes to a logic " 0 " level, and this is precisely what is required to set bistable IC2 and restart the count: it will be recalled.that the "set" input of the J-K flip-flop overrides all others so that correct operation is assured. Because the restart signal has to be combined with the "play" signal from S1, it is necessary to use an open-collector gate for IC11b so that the "wired-or" connection can be utilised: IC11a, b and c are therefore the three open-collector gates of the 7412 package, and each requires a pull-up resistor R8, R9, and R10.

CONSTRUCTION

Most of the components, and all of the i.c.s, are mounted on a single piece of $0 \cdot 1$ in matrix Veroboard approximately $86 \times 180 \mathrm{~mm}$; the length in particular should be trimmed so that the board is a snug fit in the case. Note the two cut-outs to clear the fixing pillars which are moulded into the case.

As may be seen from Fig. 4, the l.e.d. displays are set roughly centrally on the board, which is held in place just below the top of the case by four pillars cut from 6 BA threaded rod. Along the long side of the board is mounted the assembly of pushbutton switches, aIso on 6BA pillars, and underneath it is the mains transformer and the power unit.

The circuit board itself is fairly complex, and it is recommended that the following system is adopted in its assembly. First the i.c.s are mounted in position and then used as reference points to identify the breaks in the copper strips; it is vital that none of these are missed. Note that all the i.c.s with the exception of the displays are mounted directly on to the board. These latter are set in holders of Soldercon pins which, together with their extra long leads, ensures that they are higher off the board than any other component; it also conveniently allows some of the wiring to pass between the package and the board. Next, the connection of each individual i.c. to the supply strips, together with any connections to logic " 1 "' and " 0 "' levels, is tackled, using a lightweight, single-core insulated wire. Finally, the interconnections between the i.c.s are completed.

Showing how the Doram pushbutton switches are mounted on the eight switch mounting frame. For wiring details see Fig. 5

The majority of the flying leads to the main board are made up as a loom and numbered as shown in Fig. 4. Lead interconnections on the board, however, are shown lettered

The switch assembly is constructed from Doram pushbutton switches: although only six switches are used, they are mounted on an eight-switch mounting frame, with spaces between the first and last switch (on/off and "play") and the central group of four game selector switches. Assembly details should follow the instructions in the Doram catalogue, the following points being noted:

The on/off switch is of the push-on/push-off type and is used as supplied.
The "play" switch is push-on/release-off so that the action link should be removed.
The four selector switches are used in a latched mode. They are linked so that pushing one releases all the others. The action links are removed from all four and the latching bar, which must be cut down from the eight-switch length supplied to a four-switch length, should be fitted as per instructions; the latching return spring is fitted to the right hand switch.

The complete assembly is again mounted on long pillars cut from 6BA threaded rod so that the four-pole switches just touch the bottom of the case; the buttons will then be found to project through the top of the case by just the correct amount. There are several choices for the style and colour of these buttons: possibly the square, grey type best match the case and the dimensions given later are for this type.

The wiring of the switches is shown separately in Fig. 5.

TESTING

By its very nature, it is impossible to tell whether the completed unit is operating correctly. A test procedure must therefore be adopted, and this requires a few temporary modifications to the circuit. First, the noise and clock generators are disconnected from the remainder of the logic. The rather slow pulses from the unijunction oscillator may easily be seen by monitoring the voltage across $R 7$ with a multimeter; the noise generator can only really be checked with an oscilloscope-which incidentally will confirm the random nature of its output as it will be found impossible to synchronise the time-base to noise waveform. A push-on/release-off switch should be
connected between IC1, pin 9 and the 0 volt line, and the blanking inputs of the decoders IC3 and IC4, pin 4, should be wired to the logic "1" line so that the displays remain on. Finally, a slow pulse wave at, say, $1-2 \mathrm{~Hz}$ should be fed into the signal gate IC1, pin 5 : in the absence of a pulse generator, a simple unijunction oscillator such as that shown in Fig. 2, but with C4 reduced to $2 \mu \mathrm{~F}$, will suffice.
It is now possible to start and stop the logic circuit at will, and to observe the count sequences whilst it is running. The following checks are carried out:

1. With no game selected, that is, with all the switches out-which can occur if the switches are not fully depressed, the display will show 00 and will not count when the "Start" switch is pressed.
2. Random numbers selected: on pressing the "Start" button, the display will cycle from 00 to 99 in the rather curious sequence already described; it can be stopped-with the temporary "stop" switch-at any count, including 00 .
3. Roulette: the count will reach 33 , via 363031 32 , reset to 04 , and continue $050607 \ldots$; the count can again be stopped at 00 .
4. Pools: the count will follow the sequence . . $\begin{array}{llllllll}58 & 59 & 50 & 51 & 52 & 53 & 04 & 05\end{array} \ldots$ It can be stopped if a single zero is displayed, e.g.03, 40, but if two zeros are shown, the stop signal will be ignored and counting will continue.
5. Dice: neither display will show a number greater than 6 , and the count cannot be stopped if either or both displays show a zero.

Providing that all these responses are correct, the temporary connection between the decoder blanking inputs and " 1 " should be removed and these inputs should be reconnected to the \bar{Q} output of the bistable (IC2, pin 6). Now when the "Start" button is pressed, the display will blank out and will remain blanked until the "Stop" button is pressed, when the selected number will be displayed. If this also checks out, all the remaining temporary connections should be removed and the circuit completed.

STMEDNDUTIO:

RC4194
DF215
ZN423T

PERSONAL AWARD

As regular readers of this column will be aware, I am eternally gratefui for the way that integrated circuit technology continues to solve all those little housekeeping problems which crop up in all the circuits I put together. You know the sort of thing, when you are building a circuit with a sprinkling of 741 op -amps and a tew CMOS gates which will perform (you hope!) the most amazing electronic miracles, you really don't want to have to spend nail biting hours inventing a power supply regulator to provide the necessary milliamps. No, what you want is a ready-made, off-the-shelf solution so that you can concentrate on the creation of those electronic miracles, and these days, thanks to the variety of regulator chips available, to a large extent your needs (and mine) have been satisfied.
Any addition to this existing pool of labour-saving goodies is always welcome, and a new device from Raytheon, the RC4194 dual tracking voltage regulator, has just been awarded my own personal "GoodHousekeeping Award" for services to overworked designers.
The two outputs of the regulator track to within 2 per cent and their magnitude can be set with a single resistor to any voltage between the limits $\pm 50 \mathrm{mV}$ and $\pm 42 \mathrm{~V}$. Output current from each rail is a creditable 200 mA , although, of course, due attention must be paid to the power dissipation rating of the device in Individual applications.

To give flexibility in power dissipation the RC4194 is available in two package styles, the suffix D 14-pin d.i.1. which will handle 900 mW , and the suffix TK 9-pin TO66 which can handle 3 W .

POINT-TO-POINT

My next offering is something of a challenge, because what I want to describe is an all-singing, all-dancing new device, which I could ramble on about for at least a couple of pages, if space permitted!

The DF215 is described by its manufacturer, Siliconix, as a Dual Set Point Timer/Counter, for automatic control interval timing, but its true usefulness and originality can only be appreciated after an extended perusal of the bulging data-sheet. The DF215 is an MOS I, s.i. circuit in a 28-pin plastic package which will run happily on supplies between 8 and 20 V , and which offers a multitude of different timing, counting, and control functions.

The logic of the chip breaks up into three basic building blocks. A versatile counter which can count events or act as an accurate timebase when driven by 50 Hz mains frequency. A double comparator which can continuously compare the four most significant digits of the counter with the inputs from two banks of four digit thumbwheel switches, and a display driver which provides synchronised outputs to display the current contents of the counter in seven-segment decimal form.

Flexibility of the chip is ensured by four control inputs which configure the internal circuit blocks in a variety of different ways, making this much more than just another clock chip. With appropriate control functions switched (or wired) in, counting can be from 50 or 60 Hz mains frequency or from an asynchronous pulse (event) input. Counter range can be 0 to $999 \cdot 9$ seconds 0 to 99 minutes 59 seconds, 0 to $999 \cdot 9$ minutes or 0 to 99 hours 59 minutes. Using the

Fig. 1. The RC4194 used for an op amp supply

Fig. 2. The ZN423T as an accurate voltage reference
event input as a count source, 0 to 9999 events can be totalised.
The chip serialises the BCD data from the two four digit thumbwheel switch banks (set points A and B), and compares their setting with the counter. When either comparison is valid, a control output is produced providing accurately controlled intervals of 0 to set point A, and set point A to set point B, when a 50 Hz clock is used.

Inputs are provided to start the cycle or to reset it part way through if necessary, and by connecting the set point B output back to the start input, a continuous operating cycle can be maintained-Phew!

REFERENCE ONLY

I recently described the National LM399 voltage reference integrated circuit which had a temperature controlled heater as part of the chip in order to realise an extremely low apparent temperature coefficient. This novel idea yielded a high precision reference source, but there are other ways of realising a low temperature coefficient which are potentially cheaper to produce and which devour less current, if a small relaxation of specification is possible.

By clever design it is possible to produce a self-compensating reference such that a positive temperature coefficient in one part of a circuit is cancelled by a negative coefficient in another.

Past masters at ingenious chip design are Ferranti, and their new ZN423T device uses the selfcompensation principle to yield an accurate, iow voltage $(1.26 \mathrm{~V})$ reference with a temperature coefficient of just 0.01 per cent per degree C. The reference elements of the ZN 423 T do not employ the Zener or Avalanche breakdown principles but in fact depend on the energy band gap of transistor base-emitter junctions.

The low voltage reference which results can be a positive advantage in low voltage circuits where previously it was necessary to step down the 6 volts or so from a standard low T.C. Zener type reference. The use of the band-gap principle also removes the noise source inherently present with the alternative breakdown mechanisms, making this new device attractive on several counts.

Breakdou TSSITR By M.H.GEORGE
 THE unit to be described allows the testing of the voltage breakdown characteristics of electronic devices. This is particularly appropriate for checking the voltage ratings of transistors, rectifiers, Zener diodes, neon lamps, etc.

DEVICE CHARACTERISTICS

A voltage breakdown region is that area of the device characteristic where a large increase in current through the device results in only a small increase in voltage across it. A typical characteristic is shown in Fig. 1. This might represent current against voltage in a Zener diode, or the collector/emitter characteristic of a transistor with the base connection open-circuited.

Obviously if the current is allowed to increase too far, the power dissipated will eventually cause destruction of the device. If, however, the current is limited to a safe value, the breakdown may be observed non-destructively.

CONSTANT CURRENT GENERATOR

The ideal constant current generator is a power source which allows the voltage across any circuitry connected to it to rise until a set value of current flows in the network. This current is the same value, whatever the network connected. A generator of this type connected to a device having a voltage/current characteristic like that in Fig. 1 will cause the breakdown voltage to appear across the device, provided that the current generated exceeds the leakage current.

Fig. 1. Typical breakdown characteristic of a semiconductor junction

COMPONENTS
 - -

Resistors	
R1	$220 \mathrm{k} \Omega 1 \mathrm{~W}$ carbon film
R2	$25 \mathrm{k} \Omega 10 \mathrm{~W}$ wirewound
R3	$330 \Omega 2.5 \mathrm{~W}$ wirewound
R4	$1.5 \mathrm{k} \Omega 5 \mathrm{~W}$ wirewound
R5	$220 \Omega 1 \mathrm{~W}$ carbor film
R6	100Ω
R7	$56 \mathrm{k} \Omega$
R8	$33 \mathrm{k} \Omega$
R9	$910 \mathrm{k} \Omega$
R10-R13 $1 \mathrm{M} \Omega$ (4 off)	
R14	$10 \mathrm{k} \Omega$
(R6-R14 all 2% metal oxide)	

Potentiometers
VR1 $10 \mathrm{k} \Omega$ wirewound. At least 1 W rating

Capacitors

C1 $32 \mu \mathrm{~F} 450 \mathrm{~V}$ working electrolytic
Semiconductors

"TR1	2N5657 or MJE340
D1-D4	1N4007 (4 off)
D5	BZX61 C10 10V 1W Zener
D6	OA91 or any small germanium diode
D7	BZY88 C5V6 5.6V 400mW Zener

Miscellaneous
M1 $\quad 50 \mu \mathrm{~A}$ f.s.d. Coil resistance $1 \mathrm{k} \Omega$
T1 Pri: 240 V . Sec: 200 V 50 mA approx. (e.g. Belclere MS3173)
S1 DPST mains toggle switch
S2 Press to changeover, momentary action microswitch
S3 2P 4W rotary switch
FS1 300 mA A/S fuse and holder
LP1 Mains neon indicator
Heatsink and insulating kit for TR1
Instrument case. Red and Black 4 mm terminals.

- See text

Note-If an external multimeter is to be used, R6R14, D7, M1 and S3 are not required.

Fig. 2

Fig. 3

PRACTICAL CIRCUIT

The circuit diagram of the complete unit is given in Fig. 2. Transformer T1 provides isolation from the mains, and the associated rectifying and swoothing components develop about 250 volts d.c. across C1. When S 2 is depressed, about 8 mA passes through R2 and D5, providing a 10 volt reference at the top of D5. This voltage, minus the V_{BE} drop in TR1, appears across R5 and VR1, so that a constant current of about

$$
\frac{9 \cdot 3}{\mathrm{R} 5+\mathrm{VR} 1} \mathrm{amps}
$$

flows in the emitter circuit of TR 1. By transistor action, a fraction α (equal to the common base current gain-about 0.96 in the MJE340) of this current flows in the collector circuit, through R4 and the device connected to the test terminals. Thus VR1 varies the collector current, which is independent of the collector load until the transistor saturates. This occurs when the voltage drop across R4, R5, VR1 and the device under test approaches the voltage available across C1.

The meter circuit measures the voltage appearing across the test terminals, and thus across the device. Three ranges are provided, of $50 \mathrm{~V}, 100 \mathrm{~V}$ and 250 V f.s.d. With S 3 in position 1, the meter is connected as a milliammeter of 50 mA f.s.d., and is used to set the test current.

The meter circuit is entirely optional, and a multimeter connected across the test terminals would be an acceptable alternative, especially where only occasional use is to be made of the unit. The "Set current" measurements may then be made straight through the multimeter on a suitable current range.

CONSTRUCTION

Most of the components are mounted on a printed circuit board (Fig. 3), which should be of glass fibre for preference because of the high voltages on some of the tracks. The wirewound resistors should be spaced about $6 \mathrm{~mm}(0.25 \mathrm{in})$ off the board.

Requirements for TR1 and R4 depend to some extent on the transformer secondary voltage. If this is rated at 200 volts r.m.s. or more, use a 2 N 5657 for TR 1 and $1 \cdot 5 \mathrm{k} \Omega$ for R4. For 180 volts r.m.s. or less, a

MJE340 is suitable, and R4 (which merely protects TR1 and D5 in the event of collector/base breakdown) may be reduced to 820Ω or $1 \mathrm{k} \Omega$.

For TR1, a heatsink such as that employed in the prototype is hardly necessary unless prolonged operation into near-short-circuit loads is anticipated. In most cases it will be sufficient to bolt the transistor to the metal case, making sure that the two are electrically isolated.

OPERATION

Before connecting the device to be tested, set the meter range switch to SET CURRENT, depress the TEST switch and adjust VR1 for the desired test current. Release the TEST switch.

Connect the device to be tested to the test terminals (red positive). Set the range switch to 250 volts. Depress the TEST switch and read the breakdown voltage on the meter, adjusting the range switch for optimum meter deflection.

The principal use for this unit will probably be for testing the collector/emitter breakdown voltages of transistors. It should be borne in mind that the collector/emitter leakage of some power transistors, particularly germanium, may be of the order of a few milliamps. A quick check on a multimeter set to the ohms range will reveal this. Also bear in mind that at maximum current, the device connected may dissipate up to 10 watts $(250 \mathrm{~V} \times 40 \mathrm{~mA})$-easily enough to destroy a small high voltage transistor carelessly connected: also that 250 volts can give quite a nasty shock.

Conventional television cameras convert light to an electric charge pattern on a target in a vacuum tube. An electron beam scans the target producing a voltage waveform or video signal which is transmitted to the television receiver. However, these camera tubes are bulky, fragile and need a high voltage power supply.

Many military, industrial and commercial applications require compact, lightweight imaging systems. This need, combined with rapid advances in silicon technology, has resulted in all-solid state television cameras becoming commercially available. This article traces their development from relatively insensitive systems tested in the early sixties to present day cameras able to work at very low light levels.

INTEGRATED ARRAYS

In solid state imaging an array of light sensitive elements, such as photodiodes, replaces the continuous target of the conventional camera. The scanning electron beam is replaced by an electronic circuit which connects the output of each element in turn to the video amplifier.

Solid state colour TV camera (courtesy Bell Laboratories)

Integrated arrays of diodes are made by coating the semiconductor slice with a photosensitive resist, a solution of resins in organic solvents. This is exposed to ultra-violet light through a glass plate carrying an opaque pattern identical to the diode array.
The photoresist areas protected by the opaque pattern are dissolved away leaving a chemically resistant masking layer. The slice with its protective layer is then exposed to an n or p-type impurity under carefully controlled conditions. The impurity diffuses into the unprotected parts of the semiconductor to form diodes. Finally, the photoresist masking layer is removed.
Phototransistor arrays and integrated scanning circuits are made by the same technique. However, several stages of masking and diffusion are necessary.

PHOTODIODES AND PHOTOTRANSISTORS

When a semiconductor diode is used as a photodetector it is usually operated in reverse bias. Under this condition negligible current flows in the diode unless light falls on it.

Light shining on the diode raises electrons to higher energy levels allowing them to cross the potential barrier at the $p-n$ junction. This produces a current in the external circuit if its resistance is low compared with the junction resistancce. If the circuit resistance is high a voltage is generated.

One of the earliest solid state imaging systems was developed by the IBM Corporation in America. The imaging array consisted of a line of 75 diodes, each 0.075 mm by 0.25 mm , in a silicon slice 1.27 mm wide and 9.5 mm long. In operation the diodes were normally biased in the forward direction. By scanning the array with a ramp voitage each diode in turn was switched into reverse bias producing an output current pulse proportional to the incident light.

The array was used in a facsimile system by mounting the document on a rotating drum and focusing its image onto the array. A line of type was scanned vertically by electronically scanning the array and horizontally by rotating the drum.

This technique, called linescan, in which movement of the object or the imager provides one
direction of scan, is widely used to provide a two dimensional image with a linear array. Examples include airborne surveillance and the monitoring of continuous industrial processes.

The disadvantage of the IBM approach was that each diode only detected while it was generating a video signal. In an array of a hundred by a hundred diodes only one ten thousandth of the light incident on each device would contribute to the output.

This problem was solved independently by the Plessey Company in England and the Fairchild Corporation in America. They used the incident light to discharge the capacitance which is always associated with a $p-n$ junction. For a given semiconductor material this capacitance depends on the junction area, electron concentration and bias.

The capacitance is charged by connecting the diode to a voltage supply once in each frame period. With no incident light this voltage decreases slowly due to the very low leakage current which is always present. Light shining on the diode increases this current and the voltage decays more rapidly.

A video signal is generated once in each frame period by monitoring the discharge of the diode capacitance. This is done by measuring either the voltage remaining on the capacitance or the current needed to recharge it to its original value.

Whichever technique is used, light falling on the detector during the entire frame period contributes to the video signal. Imaging arrays using this approach, which is called light integration, have a frame storage sensitivity similar to that of a vidicon and are sensitive to much lower light levels than the IBM system.

The resolution of a vidicon is determined by the diameter of the scanning beam. The maximum value for an integrated array depends on the number of imaging elements. However, this resolution is degraded because part of each element is employed as a contact or to provide isolation from adjacent elements and does not detect light from the scene. Obviously this dead space must be kept to a minimum.

In addition to diodes, transistors can also be used as photodetectors. They operate with the base open circuit and light incident on the base-collector junction. A phototransistor operates in a similar way to a photodiode but also provides current gain.

Phototransistors were used in an imaging system developed for NASA by the Westinghouse Electric Corporation. By 1967 they had produced a complete television camera 254 mm long and 216 mm square. The image was detected by a matrix of 100 $\times 128$ phototransistors. each one 0.1 mm by 0.125 mm , on a 12.7 mm square silicon substrate.

In each of the 100 rows the collectors were common and in each of the 128 columns the emitters were connected by aluminium strips. Readout of a phototransistor $M N$ was achieved by simultaneously applying voltage pulses to collector row M and to the transistor switch connecting column N to the video amplifier.

The camera, which used a 6 volt supply, was capable of producing seven grey tones and working at up to 60 frames per second. Since it used silicon photodetectors it was sensitive over the visible spectrum and into the near infra-red.

A disadvantage was that the imaging array and scanning circuits were on separate substrates
mounted on integrated circuit logic cards. Thus it was necessary to make separate interconnections to each of the 100 rows and 128 columns. Another problem was the variation in gain between transistors. This meant that even with uniform illumination the response varied across the array.

Because of this variation in gain, diodes were generally preferred to transistors in later development work. By the early seventies completely integrated arrays with imaging and scanning circuits on a single silicon slice were available

The Plessey array shown in the photograph is an example of this technology. The elements are on a 0.06 mm pitch and each consists of a photodiode and transistor switch. In America, integrated arrays of up to 2,500 diodes are marketed by the Reticon Corporation. The largest of these is on a 6.35 mm square slice mounted on a 16 -pin dual in line package.

PHOTOCONDUCTORS

The imaging systems described so far used integrated arrays of silicon devices. All the diodes or transistors were made in a single silicon slice by carefully controlled diffusion of n or p-type impurities.

However, the difficulties encountered in producing very large numbers of close spaced devices by this technology led workers at RCA Laboratories to try a different approach. They evaporated a continuous photoconductive film and used conventional photoresist processing techniques to define an array of isolated photoconductors.

A photoconductor is made from a semiconducting material, in this case a mixture of cadmium sulphide and cadmium selenide. and has no $p-n$ junction. Incident light releases electrons normally bound to atoms and decreases the material's resistance. The RCA photoconductor arrays were able to store this photo-excited charge for a frame period, making them suitable for imaging.

Self-scanned imaging array. Each element consists of a photodiode and an MOS transistor switch (courtesy Plessey)

Fig. 1a. Construction of a mos transistor

Fig. 1b. Circuit symbol for a mos transistor

Fig. 2. Block diagram of self-scanned imaging array
Each photoconductor had one ohmic indium contact. The second contact, tellurium, was rectifying and normally high resistance preventing current flow through the photoconductor Once in each frame period the tellurium contact was biased positively. making it low resistance, and the stored charge read out.

The imaging array, X and Y scanning circuits and the video coupling transistors were on separate 25 mm square glass substrates. These were cemented together and mounted on a printed circuit card. Interconnections between the circuits were made by conducting strips evaporated through a mask.

In 1967 RCA delivered a solid state camera to the American Air Force in which the imaging array consisted of $180 \times 180(32,4.00)$ photoconductors on 0.05 mm centres. This camera was about the same size as a 35 mm camera and was powered by a selfcontained 14 volt battery. It was connected to the receiver by a u.h.f. link. By 1969 RCA had built a camera with 65,000 imaging elements. However, processing techniques were still at the research stage and the devices were unstable.

SCANNING THE ARRAY

Whether the imaging elements are photoconductors or silicon junction devices a switch is needed to connect them to the video amplifier once in each
frame period. The junction capacitance of a diode or transistor is simultaneously recharged.

One approach is to make each element in the array two back to back diodes. One diode is the photodetector and the other is the switch. When voltage pulses are applied to the element the diode switch is forward biased and of low resistance, allowing the junction capacitance of the reverse biased diode to recharge.

Two back to back diodes are equivalent to a transistor with its base open circuit, and transistors have been used in the dual role of detector and switch. The collector-base junction acts as the light detector and the emitter-base junction as the switch.

An alternative switch is the metal-oxide-semiconductor (MOS) transistor (Fig. 1). This is a high resistivity silicon substrate into which two p-type diffusions have been made. These are called the source and drain and are separated by a channel which is covered with an insulator, silicon dioxide, and a metal electrode called the gate.

With no voltage applied to the gate, negligible current flows between the source and drain. When a negative voltage is applied, positive current carriers or holes are drawn into the channel increasing its conductance and allowing current to flow.

Whether the switch is a diode or MOS transistor a shift register provides the scanning voltage pulse. For a two dimensional array, pulses from \mathbf{X} and \mathbf{Y} registers coincide at each element in turn to connect it to the video amplifier (Fig. 2).

Each stage of the shift register consists of two dynamic inverters. A voltage pulse injected at the first stage will progress through the register as clocking pulses are applied alternately to each inverter. The outputs are taken from alternate inverter stages in the register. The clock pulses are obtained from a master pulse generator which is either on the same chip as the scanning circuit or external to it.

When one voltage puise is moving through the shift register it is essential that it should reach the last stage before another is injected. This is achieved by feeding back the output from each stage except the last through a logic circuit called a Nor gate. This only allows a new pulse to be injected when no feedback pulse is obtained.

DISADVANTAGES

Imaging arrays for commercial broadcasting would need 250,000 close-spaced elements to give acceptable picture quality. By the early seventies integrated arrays of up to 10,000 silicon photodiodes with vertical and horizontal scanning circuits could be made. The main limitations were the size of the slice that could be produced with acceptable yield, and the processing technology.

There is also a fundamental noise problem with these systems. When each element is connected to the video amplifier, noise spikes are produced by the voltage pulses from the scanning circuits.

CHARGE-COUPLED DEVICES

A significant advance was made in 1970 with the invention of the silicon charge-coupled device (CCD) at Bell Telephone Laboratories. These devices use conventional silicon technology but are simpler to make than diode or transistor arrays. This allows
smaller elements with closer spacing to be made. In addition coupling between the scanning circuit and the video amplifier can be completely eliminated.

A two dimensional array of CCDs is shown in Fig. 3. It consists of a slice of p-type silicon with a silicon dioxide insulating layer covering the whole surface. On top of the oxide a two dimensional pattern of metal electrodes is deposited.

Each element in the array consists of three adjacent electrodes in each vertical column. A positive voltage of about 10 volts is normally applied to the centre electrode (P2) of each element, and I volt to the electrode above and below. The array is divided into an imaging area and a storage area.

When light is incident on the imaging area, photoexcited electrons will accumulate under the P2 electrode of each element because of its higher positive voltage. Once in each frame period this accumulated charge is transferred to the storage area (Fig. 4).

This is done by raising the P3 electrode in each group to 10 volts and gradually reducing the $\mathbf{P} 2$ electrode to 1 volt. All the stored electrons move down one row to the more positive P3 electrodes.

Next the P1 electrodes are raised to 10 volts and the P3 electrodes gradually reduced to 1 volt. The stored electrons again move down one row. This process is repeated until all the charge reaches the storage area. From here it is moved line by line into the serial readout section and transferred to the video output. Coupling between the scanning circuits and the video output is prevented by a positively biased gate after the last stage of the serial readout.

INTERLACING

Conventional television cameras use a picture scanning technique called interlacing to reduce flicker. The focused image of the scene is scanned in a series of horizontal sweeps every twenty-fifth of a second.

If the horizontal sweeps are numbered from top to bottom the odd numbered sweeps are made in the first fiftieth of a second and the even numbered sweeps in the second fiftieth of a second.

Interlacing is achieved with CCD arrays in the following way. In the first fiftieth of a second, charge is accumulated under the P2 electrode and then transferred to the storage area and the video output as described above. In the second fiftieth of a second, charge is accumulated simultaneously under the P3 and P1 electrodes and transferred to the storage area and output.

Accumulating charge under the P3 and P1 electrodes is equivalent to scanning along a line midway between them. Since this line is also mid-way between the P2 electrodes the desired interlacing effect is achieved.

CCD CAMERAS

Bell Telephone Laboratories have demonstrated both monochrome and colour transmission with CCD cameras. However, only monochrome cameras are commercially available.

In 1974 Fairchild became the first company to market CCD cameras. The model shown in the photograph is 76 mm diameter, 48 mm long and weighs 11 ounces. The light sensitive area is a 100 $\times 100$ array with each element 0.03 mm by 0.02 mm on 0.03 mm vertical and 0.04 mm horizontal centres.

Fig. 3. Layout of charge-coupled imaging array

(b)

Fig. 4. (a) When light is incident on a CCD imaging array photo-excited electrons are accumulated under the centre electrode in each element because of its higher positive voltage. (b) Once in each frame period the accumulated charge is transferred to the storage area by sequentially adjusting the positive voltage on each electrode

The Fairchild TV camera using a charge-coupled imaging array (courtesy Fairchild Corporation)
The array is mounted on a 24 -pin dual in line package with an optical glass window.

The camera uses interlitced scanning, produces nine grey tones and, since the imaging array is silicon, is sensitive into the near infra-red. The power consumption is 1.5 watts with all operating potentials less than 20 volts.

RCA are now marketing a CCD cannera with a resolution comparable with a $\frac{2}{3}$ in vidicon and capable of producing a usable picture with one third the scene illumination required by the vidicon. The imaging array contains 320 vertical columns each with 256 sensing elements 0.03 mm square. The effective number of vertical resolution elements is increased to 512 by interlacing.

As with the Fairchild camera the silicon imaging array is mounted on a hermetically sealed 24 -pin dual in line package with an optical glass window. The camera weighs 2.51 bs and the power requirement is 4 watts at 12 volts.

APPLICATIONS

Since these cameras can work with low levels of illumination they are suitable for security surveillance in commerce and industry. In industry they can be used to monitor processes in hostile environments, for example where high pressures or poisonous gases are involved.

Solid state imaging systems are already being used to transfer data into computers. In some American cities they are used to sort mail since they are faster and more accurate than manual sorting. The performance of available systems is also adequate for page and document reading.

Transmitting images of documents and drawings is one of the aims of the Picturephone system being developed at Bell Telephone Laboratories. By using a miniature camera and television display the Picturephone allows subscribers to both see and hear one another

In the immediate future solid state imaging systems will only reach a specialist market. However, as advances in technology and increased demand reduce prices, hand-held TV cameras may become as widely used in the 1980 s as photographic cameras are today.

NEWS BRIEFS

TV Import Restrictions

Following strong representations from British set makers, the government has decided to restrict imports of portable monochrome TV sets from Taiwan to a level of 70,000 sets during a 15 month period, commencing from October 1, 1976. This restriction applies to sets with cathode-ray tubes having a bulb diagonal measurement of 39 cm or less.

Transistorised television receivers originating in or consigned to the United Kingdom from the Eastern Area (which comprises Albania, Bulgaria, Czechoslovakia, The German Democratic Republic and Berlin (East), Hungary, North Korea,'North Vietnam, The People's Republic of China, The People's Republic of Mongolia, Poland, Romania and The Union of Soviet Socialist Republics) are already subject to quota licensing arrangements which are unaffected by the new restrictions.

Code of Practice

GOOD news for the consumer is the setting up and publication of a "Code of Practice" by the Radio, Electrical and Television Retailers ${ }^{\text {A }}$ Association (RETR A). Contained in a 12-page booklet, the Code was drawn up in consultation with the Office of Fair Trading and other professional bodies. The Code will be operated by over 4,000 member outlets, from the one man business to the larger independent High Street retailer and multiple companies.

Some of the subjects covered in the Code are pricing, refunds, deposits, retailer's guarantee, repairs and servicing and guarantee of repairs.

On the touchy subject of repairs, the Code stipulates specific time limits within which retailers must complete repairs. It is claimed that 80 per cent of repairs undertaken in the workshop will be completed within five working days.

Many dealers will be able to finish repairs undertaken in the home on the same day but if this proves to be impossible, then 15 working days is laid down as the maximum time to effect a repair under normal working conditions. All repairs will be guaranteed for a minimum of three months for parts fitted and workmanship.

If there is any delay, or a repair cannot be made, the retailer will ensure that his customer is kept fully informed of the reason.

Copies of the "Code of Practice" have been distributed to such bodies as the Citizens Advice Bureau, Local Authorities, Chief Trading Standards and County Consumer Protection Officers. Also, copies can be obtained from any RETRA dealer or direct from The Secretary, Radio, Electrical and Television Retailer's Association (RETRA) Ltd., 100 St Martin's Lane, London, WC2N 4BD. (s.a.e.)

Overseas Symposium \& Exhibition

THE 2nd Electromagnetic Compatibility Symposium and Exhibition will be held from June 28 to 30,1977 at Montreux, Switzerland.

The forthcoming conference will again be aimed at the problems of interaction of r.f. energy with electrical and biological systems, spectrum pollution and system immunity or, "protection of the electromagnetic environment".

Papers (in English) covering the above fields of research should be sent to Prof. Dr. F. L. Stumpers, Elzentlaan 11, Eindhoven, Netherlands. The last date for papers is October 30, 1976.

Further details of the exhibition can be obtained from the Secretary General, T. Dvorak, EMC Symposium \& Exhibition, Montreux, Switzerland.

marke PLACE

ltems mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quored prices are those at the time of going to press.

MICROPROCESSOR KITS

Elsewhere in this issue we are printing a special article on "Getting to Grips with Microprocessors' ' and a review of a recent "Microprocessor Symposium" In one of the articles it recommends that readers should "get their feet wet" as practical experience is far more informative than becoming too immersed in the theory.

This comment has been taken up by A. Marshall (London) Lid, who are stocking the SC/MP microprocessor kit discussed in the article, and Limrose Electronics.
The Marshall's SC/MP kit will sell for $£ 122 \cdot 22$, plus 8% VAT. The kit consists of the Introkit ($£ 62 \cdot 37$, plus 8\% VAT) and the Keyboard kit which will retail for $£ 59 \cdot 85$, plus 8% VAT. For further details readers should write to A. Marshall (London) Ltd. (Dept. P.E.), 42 Cricklewood Broadway, NW2 3ET.

A fast and an inexpensive way to develop a fundamental understanding of microprocessors is claimed for the Microtutor 8080 from Limrose Electronics.

The claim is that the 8080 gives you "hands on" experience necessary to master microprocessors. However, it is not just a learning module, it is a full 8 -bit microcomputer with an 8080 CPU, $\quad \mathrm{k} \times 8$-bit Random Access Memory, an input port, an output port, an interrupt instruction port and a status port.

Also, with facilities for manual loading of the memory and for single stepping, the processor can be used as a prototyping computer for development of applications software and can be expanded with additional memory and a Teletype interface, using plug-in cards for more advanced work.

All important signals, data bits and addresses are continuously displayed using over 40 l.e.d. indicators. Inputs are provided on several switch registers and pushbutton switches. The data paths, and how they relate to various registers, are clearly shown on the front panel of the unit.

By following the instruction book provided with the Microtutor, it is claimed, a person with limited technical knowledge can rapidly learn how
microprocessors work. Trained electronics engineers can quickly bridge the gap between conventional hardware and microprocessor software by making a step-by-step progression from developing simple alogrithms to complex programmes.
The Microtutor 8080 is available fully tested and assembled for $£ 249$, single units. Further information can be obtained from Limrose Electronics Ltd. (Dept. P.E.), 241-243 Manchester Road, Northwich, Cheshire.

LEARNING AID

As a Christmas present with a difference we suggest the "Little Professor'", a calculator-based learning aid with preprogrammed basic math problems for children (age group 6 to 9) now being marketed by Texas Instruments. This 16 -key machine has addition, subtraction, multiplication and division sequences in variable degrees of difficulty.

Problems can be selected according to degree of difficulty by the user. Once the type of problem and degree of difficulty is selected, the machine presents the problem (with function

The Microtutor 8080 from Limrose

Texas "Little Professor"

AM/FM Stereo Tuner from Eagle
and equal sign) in the large v.I.e.d. display. The user keys in an answer, if correct the complete equation appears for one second and then the next problem in sequence is displayed. If incorrect the problem reappears.

If a wrong answer is entered three times, the "Prof" automatically displays the correct answer. The answer remains in the display until the user presses the "go" key. If the next problem is also answered incorrectly three times, the correct answer would again be displayed.
The machine will, after ten problems, display a score out of ten. This "score" display would be followed by the next set of problems in sequence.

Addresses of nearest stockists and price of the Texas "Little Professor" can be obtained from Texas Instruments Ltd., Calculator Division (Dept. P.E.), Block C, Manton Centre, Manton Lane, Bedford, MK41 7PU.

AM/FM STEREO TUNER

The new a.m./f.m. stereo tuner now being marketed by Eagle International is a low cost unit which is claimed to match virtually any amplifier. The AA102 is based on Eagle's TST152 and retains a number of features including wide range, switchable a.f.c., stereo indicator beacon, noise filter and variable output to avoid mismatch.

The AA 102 has a frequency response of 25 Hz to $14 \mathrm{kHz} \pm 2 \mathrm{~dB}$. The sensitivity for 30 dB quieting is better than $7 \mu \mathrm{~V}$ and total harmonic distortion is less than 0.8 per cent. The signal to noise ratio is better than 54 dB .
Backed by Eagle's Iwo year guarantee and complete after sales service the AA102 recommended retail price is $£ 52$, plus VAT.

CATALOGUE

A new catalogue from General Instrument Microelectronics gives comprehensive details of their current range of over $200 \mathrm{MOS} / \mathrm{LSI}$ microcircuits. Applications covered are calculators, clocks, radio, television, TV games, electronic organs, appliance timers, telecommunications, data communications, counters and digital meters, microprocessors, RAMs, EAROMs, ROMs, and keyboard encoders and character generators.

Entitled MOS Data 1976 and priced $£ 1 \cdot 50$, the catalogue is available from GIM distributors (including SDS Components Ltd., Hilsea Industrial Estate, Portsmonth, Hants. PO3 5JW).
In our October issue we mentioned the excellent catalogue from Marshall's and the fact that an error had crept into the case outline drawings. This has now been corrected and Marshall's are now issuing a "stickin" amendment page.

Copies of the amendment page can be obtained from A. Marshall (London) Ltd., 42, Cricklewood Broadway, NW2 3ET.

by K. Lenton-Smith

AST August's British Musical Instruments Trade Fair-surely International rather than Britishoffered a number of new models, though the mixture was largely as before. Indeed, the common denominator is now so strong that it is difficult to differentiate between one organ and another once reverberation and the inevitable Leslie have been switched in.

SHARP'S THE WORD

I was highly tempted by the large Kawai organ being demonstrated by Brian Sharp. He was showing his audience how to cope with three manuals with only two hands-by playing the synthesiser with his nose. Fortunately, Brian's nose lives up to his name! The idea of inscribing the waveform on controls seems eminently sensible where electronic music is deviating increasingly from the conventional

Wurlitzer were showing an unusual electric piano, where the cabinet was arranged as a miniature baby-grand containing the electro-mechanical and speaker systems. The sound was good but the selling point in the U.S. is equally its attraction as a fine piece of furniture.

The Hammond Aurora is a very pleasant instrument to play, with an excellent poly-synthesised percussion piano sound. The Auto-Vari Rhythm Unit, which I referred to in the April issue, is fitted to thls model. Despite the multiple-deriva-tive-divider used in this series of Hammonds, voicing closely approaches the older tone-wheel instruments. But I find that the drawbar settings have to be slightly different with m.d.d. models.
The Japanese-made Hammond X-5, though falling short of the U.S. manufactured organs tonally, represents good value and is suited particularly to the combo player on grounds of portability. The highest compliment to Hammond is the use of their drawbar system by other manufacturers. On this stand, the "Old Organ Grinder" Robin Richmond was seen taking an active interest in
the Aurora: it is incredible to me how Robin's voice belies his age and experience in the organ field!

SOUND DESIGN

I suspect that a number of readers have still not seen the very useful P.E. publication Sound Design. Although convenient to have complete projects in one volume-to save thumbing through the series in back copies-the more important fact is that there has been up-dating, part/cularly with regard to the Minisonic. Douglas Shaw's original design had the younger constructor in mind, but it was soon to appeal to a wider range of readers. Since then, the Minisonic has been the study of a group of musicians and Synthesiser Musical Services and also republished in Sound Design as the Minisonic Mk. II.

MINISONIC

Ignoring the other projects in this book, the major changes to the Minisonic should be mentioned. The v.c.o.s have been greatly improved and phase-locking added: the phase lock helps enormously when using the Ring Modulator, of course, making for accurate tracking with a fixed interval between v.c.o.s. The Hold circuit of the original version was somewhat unstable and has been improved in the Mk. II by using a FETMOPA and a reed relay to reduce loading on the Hold capacitor. Modification of the Envelope Shapers includes visual indication of the envelopes by means of l.e.d.s. The $\pm 6 \mathrm{~V}$ supplies are now derived from the power pack through separate transistors, minor changes being made to the Ring Modulator, Noise Generator and Keyboard Controller.

From the playing aspect, inconvenient patch cords (which get tangled with fingers and playing keys at the wrong moment) have been replaced by press-button switches. Sound Design gives modification data for original owners, the Mk. II
version adding up to a reliable and useful small synthesiser. With printed circuit boards readily available for the Mk. II Minisonic, I suggest readers send for their copy of Sound Design before it goes out of print: this is available for $£ 1 \cdot 20$, post paid from Practical Electronics, IPC Magazines Ltd., Receiving Cashiers Dept., Kings Reach Tower, Stamford Street, London SE1 GLS.

THE ALLEN ORGAN

We must now differentiate between Allen organs, for this time the reference is to Model MES 53, designed by Roger Allen of Maplin Electronic Supplies and frequently mentioned on the back page of this magazine. The MES 53 was recently demonstrated to the London meeting of the Electronic Organ Constructors Society with great success: a full scale account of this organ by Alan Douglas will appear in P.E. shortly.

EOCS members were most impressed by this instrument. Minor criticisms were on layout of the controls only, a point totally at the constructor's discretion. This instrument has drawbars and rocker tabs, with attack/decay and seven keyed pitches on each manual. Individual voices were up to professional standards, whilst the total lack of "beehive" effect was considerably better than most commercial instruments. The Society's demonstrators put the MES 53 through its paces, to the delight of members, and summed it up as a very good organ indeed. Roger Allen is to be congratulated on his excellent circuitry, and Maplin on the price of the kit for such a comprehensive instrument. Readers further interested should write to Maplin Electronic Supplies for their leaflet MES 53.

GENERATION GAME

Mr. Francis T. Chambers of Ballycroy, Co. Mayo has written to me to describe his multi-recording technique, using a four-channel recorder for synthesiser build-up. His machine has four sets of record, play and erase heads and by using the low quality 'playback' signal from an unused record head he can obtain synchronous monitoring. He uses a carefully planned sequence of mixing and recording and believes that ten good quality voices are obtainable.

Four of these are reserved for the more important vöices and are first generation (i.e., direct) recordings the remaining six being second generation (re-recordings). Space does not allow publication of his sequence chart, but a recording plan that minimises re-recording is always well worth while if a multi-channe machine is available.

GAR LAMP FILAMENT MONITOR

THis simple design (Fig. 1) gives a constant indication of the condition of a car lamp filament, regardless of whether it is switched on or off. Now that the law requires the obligatory car lamps to be in good order, day or night, this is a useful safeguard.
Transistor TR1 is used as an electronic switch. Taking first the case where the lamp is switched off; if the filament is intact, the base of TR1 is grounded and the transistor cut off. This means that point A is approximately at the potential of the positive supply rail, and the red I.e.d. D1 is "off". The green l.e.d. D2 conducts,

however, and is lit to show that the lamp is healthy.
If the lamp filament goes open circuit, TR1 conducts and D1 is lit to show that the bulb has failed. The potential at point A is approximately 0.7 volts $\left(V_{c e}+V_{d}\right)$, and $D 2$ is therefore extinguished.

Two components have been included to allow the circuit to continue to function when the lamp is switched on. These are RLA, comprising a normally-open reed switch and a specially wound operating coil, and the germanium diode D3. The latter prevents the lamp supply being applied to the base of TR1. The lamp operating current flows through the coil of RLA, the contacts of which ground the base of TR1 provided the lamp is intact.
The reed switch requires approximately 40-50 ampere turns to operate, therefore the operating coil should be wound with 20 turns of $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. for headlamps, and with $40-80$ turns of 22 s.w.g. for other lamps, depending on their power. The total current consumption of the unit is less than 12 mA .
T. H. Gibson, Barnsley.

SIMPLE TIMER

Fig. 1

.

Fig. 1

THE circuit of Fig. 1 is extremely simple and has proved to be very reliable also. Variation of the sPEED control alters the conducting period of the thyristor, so producing varying pulse lengths. The torque of the motor remains constant, however.

The components are not at all critical. The thyristor rating should be sufficient to pass 1 ampere per engine controlled. The resisiors R1 and R2 control the "dead zones" of the potentiometer VR1; the values shown
are suitable for a CRS1/05 and may have to be altered for other thyristors.
P. D. Johnson, Chelmsford,

Essex.

L.E.D. VU METER

THE basis of this circuit (Fig. 1) is a Hex Schmitt trigger i.c. the SN7414. The unit is connected to the loudspeaker terminals of an amplifier and requires a minimum of 16 V peak signal. If the unit is required to monitor lower signal levels a simple voltage amplifier using an op. amp could be used to boost the signal up to this level.
The main advantages of the l.e.d. VU meter are its ease of reading, fast response without overshoot and in this case, cheapness.

The loudspeaker voltage is first rectified and then divided down by the presel. The resistor divider networks are so calculated that for 3 dB increase in power the threshold of another Schmitt is reached.

Calibration is done by driving the amplifier to clipping and adjusting the preset until all the l.e.d.s just come on. The +3 dB light then corresponds to full power, the 0 dB to half power, the -3 dB to quarter power etc. The unit can be extended to -18 dB by using an extra i.c. and the components
shown in the box. For a little extra cost different coloured l.e.d.s can be used (green, orange etc.). The value of R is given by (the + ve rail voltage $\times 10) \Omega$. The value of C is chosen to suit the attack and decay time desired and can be between 0 and $100 \mu \mathrm{~F}$.
J. S. Broadhurst,

Northwich.

THE circuit in Fig. 1 is of a two station latching quiz monitor, with l.e.d. indication
The circuit is built around a 7400 quad two input NAND gate: Two gates are used to make each latch. When one of the buttons S1 or S2 is pressed its corresponding latch will latch. The output drives an l.e.d. via a current limiting resistor (R1 or R2) and is also fed to the reset input of the other latch. This arrangement ensures that the first person to press their button is indicated, and the second is eliminated.

The circuit can be increased to as many stations as required. For more stations use a gate with the required amount of inputs for the l.e.d. driver gates, and a two input gate for the other gate in each latch.
Fig. 1
C. F. Shorto,

Weymouth.

GAR SIREN

THe circuit shown in Fig. 1 is for an electronic siren; it was designed for use in a car burglar alarm. As a car horn is a commonplace sound, I thought that a siren was a good way of making a distinctive noise.

The unijunction transistor 2 N 2646 is employed as a relaxation oscillator R 2 and C 1 determining the tone. The IC is a 555 timer, and here it is employed in an astable mode, the output pulses being fed to the oscillator from pin three via R1.

Fig. 1
Using the values given for R3 and C3, a pulse is given out about every half second, giving the siren its wailing sound. If the output is fed into a 5 watt amplifier driving a re-entrant

horn speaker it can be heard several streets away, and is sure to give the would-be burglar second thoughts.
P. Jones,

Gower.

"PRESET-TO-ONE" GOUNTER

| N certain counting operations it is necessary to have a counter which, on reset, starts counting from one rather than the more normal zero. A common example occurs in calendars, where both the day and month counts
must be reset to one at the end of the month or year. The hour counter in twelve hour digital clocks must also reset to one. As simple decade counters such as the 7490 reset to zero, the more expensive presettable
counters such as the 74163 are normally used. Fig. 1 shows a circuit which uses a 7490 in a "preset-to-one" mode, and is suitable for low-speed counting uses.

The reset input is connected to an output of the counter which before reset is at logic 1 , and after reset is at logic 0 . This output must only go high once during the count cycle. An example is the tens of months output of a calendar, which is high only for months 10,11 and 12 in each year. When the reset input goes low, G2 receives a short negative-going pulse from the collector of TR2. The counter input is low after reset, so the output of G1 and the input of G2 are high. The negative pulse at $G 2$ therefore causes a positive pulse at the output. This advances the count on the decade counter from zero to one.

John Cowking,
Ambleside,
Cumbria.

THE circuit (Fig. 1) consists of an astable producing a square wave, which, when the spin button. is depressed, is fed into a bistable. The l.e.d.s will indicate heads or tails depending on the state of the bistable when the button is released.
The circuit was originally developed for use as an electronic coin tosser, however, by varying the value of one of the timing resistors the mark/space ratio of the square wave can be altered thereby changing the chance ratio. In the original device the $10 \mathrm{k} \Omega$ resistor was a preset so an accurate ratio could be set and left unaltered, however, it could take the form of a panel mounted control. Ratios of between 1:1 and 1:4 can be obtained. When setting or calibrating the resistor the spin button should be depressed as resistances in the bistable will also affect the mark/space ratio and should be compensated for.

N. H. Quick, Bristol.

VARIABLE CHANCE RATIO DEVICE

Fig. 1

VOLTMETER IMPEDANGE MULTIPLIER

T is often necessary to take voltage readings around transistor circuits, for example when fault finding, where an ordinary voltmeter is not suitable due to its low resistance. A "front end" which effectively increases the input impedance of the meter is desirable, and the arrangement of Fig. 1 was evolved for this purpose.
The circuit is simply a voltage follower using a 741 operational amplifier, producing an input impedance of the order of 2 megohms. With the input lead floating, the output took up a potential of about $-6 \cdot 5 \mathrm{~V}$.

Fig. 1

This problem was overcome by providing a high resistance return path to ground for the input, and this is the function of the iN914 diode which should have very low leakage.

With ± 9 volt supplies, the linear range should extend to about 7.5 volts. With ± 15 volt supplies this should go up to about 12 volts. Input overload protection can be incorporated by connecting two Zener diodes back to back in series across the input terminals.
T. K. Wong, Plymouth.

TELL-TALE ALARM

THIS circuit (Fig. 1) is intended to operate a warning light or bell if someone such as a burglar enters a darkened room using a torch. When light from the torch falls on the light dependent resistor, R1, its resistance decreases, reducing the forward bias on the base of TR1. The rise in voltage at TR1 collector then turns on TR2, lighting the warning lamp LP1.

Once the circuit has been actuated, it will remain in the "alarm" state until the reset button, $S 1$, is pressed. The level of light at which the circuit operates can be set by means of VR1.
T. Robinson,
Malton,
Yorks.

HEWS FROM JOSTY Maic

JOSTYKIT

This is a 3 W complementary output stage, general purpose amplifier. Use it to boost the output from your record player. cassette recorder, transistor radio or drive it from one of the HF range of JOSTYKIT receivers. Try it with the HF 310 FM receiver in your car or boat.
£ 6.10

JOSTYKIT

HF 385 VHF/UHF AERIAL AMPLIFIER

A quality, printed circuit, no trimming. serial amplifier. Fantastic frequency range due to use of printed coils, 21 dB amplification at 400 MHz . Two separate inputs for UHF and VHF. No loss of signal or intarcommunication probiems.
£ 5.80

JOST YKIT

AT 365 3-CHANNEL. DISCO LIGHT

A new concapt in psychedelic lighting. Uses built in microphone. Avoids awkward connections to amplifiers. Position light-show to best advantage without long trailing leads lust plug in to nearest power point. Circuit combines latest integrated circuit echniques with solid-state power control. Quad op. amp. makes selection of bass, midrange and treble frequencies easy. Three thyristor (SCRs) control threa separate lampbanks. Kit Includes fused dc power supply and FET zero light edjustrnent. WARNING. Only experianced persons should attempt the interconnection of mains equipment.
£ 17.00

JOSTYKIT

HF 61 DIODE MEDIUMWAVE RECEIVER

HF 61 is an extended dioda racaivar for mediumwave-reception. By means of a very simple technique a reasonable reception even from foreign medium stations is attained,
HF 61 is buitt on a small circuit board of the same size as the general purpose amplifier AF 380. The two assemblies should be connected to produce power for a loudspeaker. HF 61 is especially useful for beginners, who have not tried to assemble electronic kits before.

E 4.30

JOSTYKIT

HF 305 VHF RADIO-CONVERTER

Extend the range of your transistor radio Listen to Amateurs $\{2$ metre band), Aircraft, Trawlers etc. Two transistor circuit with printed circuit coils, varactor diodes and superior circuit design. Converts radio sipnals in the 100 . 200 MHz range to output signal at 100 MHz . Pipe this into your VHF recelver and you're in a new dimension.
£ 6.70

JOSTYKIT

AT 347 ELECTRONIC ROULETTE

A set of excitling garnes for family and friends, In the home or in the pub they'fl envy your electronics wizardry. Two integrated circuits provide a randorn number system. A 7490 counts the pulses and a 7442 decodes. The decoded outputs turn on a sequentially rotaring L.E.D. light display. Your chance to try hand with TTL digital electronics. Supplied with six colourful game indicators.
£ 8.75
JISTM MTIUNLITIT
P.O. BOX 68, Middlesbrough, Cleveland, TS1 5DQ, Engtand Send for our 1966/7 Free Catalogue

Personal Tuition and Guaranteed Success

The expert and personed guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful. is the key to our outstanding record in the technical training field. You study at the time and pace that sults you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certiflcates. ICS can coach you for:
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour T.V. Servicing
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio. Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE.

Post this coupon or 'phone today for free ICS careers guide.

COST OF TRAVEL

Getting my bags packed in readiness to attend yet another international conference l came across some interesting statistics on the conference business-said to be the fastest growing sector of international travel.
As a patriot I was pleased to discover that the United Kingdom is Number One conference country in Europe, with Europe itself being the leading continent with (in 1974) 70% of all the world's conferences. North America is second with only 15\%.
Anothier interesting fact was that the average delegate, excluding travel and registration fees spends, and I quote the figure for London, £26 per day. Although it has always been a puzzle to me on how my cash disappears at these functions I'm glad to report that I must be a model of economy or just plain mean, because even my most reckless days are generally below the average.

The growth rate in conferences is such that for London alone the forecast for 1980 is that they will attract a million people who will spend some $£ 140$ million. On a world scale the projection is that 15,500 international conventions and conferences will be held in 1980 and attended by 10.5 million people.

But sending delegates to business, scientific or engineering conferences is only a small part of a company's travel budget. Most are big spenders and the biggest of all are multinationals with executives thinking nothing of several transatlantic trips a year. On high density routes like LondonBrussels or the internal LondonEdinburgh filghts it's hard to travel without meeting someone you know
in the electronics business. All of it seemingly essential, even at over £40 return to Edinburgh, over $£ 70$ return to Brussels plus hotels, meals and getting to and from the airport.
Are their journeys really necessary? Perhaps not all, but how do you measure the pay-off? Racal Electronics Group with a world wide business in over 130 countries makes no secret of spending over £1 million a year on travel and expenses of sales engineers.

SELLING TIME

The high cost of travel is one of the factors that is changing business methods. If you're In the big league then you may well be able to absorb all the costs of sending your own people into the world. For smaller businesses it can be a crippling expense. Hence the increasing use of agents overseas who do the selling for you and of wholesalers or distributors at home, some of whom have become highly specialised
One such specialist is Electroplan, distributing electronic instruments and accessorles. It is part of the Electrocomponents Group which, before it went public, was universally known as Radiospares with that part of the business still flourishing today under the name RS Components Ltd. Electropian, formed four years ago, acquired Dave Hall as managing director a year ago, and he has just completed a re-organisation of the product line.
The whole of the Electroplan business is based on the cost of selling and today this is as much the cost of travel as the cost of the salesman himself. To put a good person on the road with a car and expenses now costs between £10,000 and $£ 15,000$ a year and taking out non-productive travel and administration time there are about 1,000 hours of actual selling time available in a year at a cost price of $£ 10-15$ an hour.

The sales people have to support not only themselves but a whole series of operations behind them such as warehousing, accounts department, test laboratory, aftersales service, and to make a profit Hall says each of the sales force needs to generate business at the rate of $£ 200$ per selling hour minimum.
Looked at in this light, what chance has the small man?

ENG (or EJ)

ENG, sometimes called $E J$ is now the rage among t.v. professionals. The initials stand for Electronic News Gathering and Electronic Journalism through the use of lightweight t.v. cameras Spaceflight t.v. led the way to small is beautiful, and now every
major company is in on the act on pedestrian-portable systems, electronics now supplanting the longestablished cine camera with all its delay in film processing before the picture could be transmitted.

Probably the smallest and lightest portable colour camera is the Thomson-CSF Microcam with a camera package weighing only elght pounds plus an electronics package which can be slung at waist level weighing another three pounds. With a power consumption of only 20 W , the system can be operated in an emergency from flash light cells. The camera can be used for newscasting in real time or even if the event is taped, no re-processing is necessary at the studio.

Exploiting every promotional aspect, Thomson-CSF suggests that the Microcam may well broaden opportunities for women in t.v. journalism, clearly regarding the girls, even in the lib age, as being by far the frailer sex.

But even with heavier models you don't need to be a professional weight lifter to shoot pictures. RCA's TK-76 candid camera welghs 191b, all in one package without a back-pack. But the Ampex AVR-3 one-man t.v. news system weighs nearly 50 lb .

Britain's native contribution to ENG is the Marconi Mk Vill P which is the lightweight portable version of the outstandingly successful Mk VIII "hands-off'" automatic studio camera. It weighs 17Jb and is thus very manageable on a shoulder mount. After only a year since its introduction to the market it is already in use in the Soviet Union. Yugoslavia, the United States. Australia and Qatar.

Cashing in on the new craze for mobility. Marconi has just designed a "mini" OB vehicle which can shoot on the move, be used as a stationary base for pedestrian news gathering, or as a platform for roofmounted cameras on tripods. Video and audio mixers, sync generators. colour monitors, waveform monitors are all in the small vehicle and powered from an on-board generator.

While the domestic market for t.v. receivers remains flat, the professional broadcasting side of the business seems to be experiencing a boom. There are still plenty of countries with no t.v. service at all.

Even in recession-ridden Britain. 200 new t.v. relay stations have been introduced by the IBA in the past four years, bringing the total of IBA radio and t.v. stations to 300 . Low power relay stations are still opening at the rate of one every week. Nice work for the manufacturers but no extra employment for IBA engineers, whose numbers are no greater today than in 1969 when there were under 50 stations. Nearly all the new stations are unattended, including many high-powered ones.

SOUND/SYNG

The name of Alan Sidi, of Leeds, is well known in home movie circles, and in BP 1418776 he describes one of his sound-sync inventions. A sound recording to be synchronised is made on one track of the tape with a conventional pulse track applied during filming on an adjacent track.
The pulses (usually one per film frame) and the sound signals are read by adjacent playback heads of the tape machine (Fig. 1) and the sound signals conventionally reproduced. The pulses are fed to a transistor triggering circuit, which feeds a corresponding train of voltage pulses to a rotating light emitting diode or neon, via slip rings. The neon or l.e.d. 1 is carried by a rotary disc, either mounted on the projector shutter shaft or driven via a Bowden cable link.

When the frequency of the pulses from the tape exactly equals the frequency of rotation of the disc (which is directly proportional to the speed at which the film is passing through the projector) the spot of light will appear stationary relative to a stationary pointer outside the circumference of the disc.

If either the projector or the tape recorder is rotating too fast or too slowly the spot of light will appear to "creep" forwards or backwards with respect to the pointer in the manner of a stroboscopic display. Such movement is halted by adjustment of the tape recorder or (preferably) the projector speed, until the light again appears stationary.

Connoisseul' THE NEW BD2/A

Based on the popular BD2, the new BD2/A offers the hi-ft enthusiast atl the features usualiy associated with Connoisseur turntables. such as low rumble, wow and flutter, plus the addition of an automatic pick-up arm lift-off at the end of the recard. This is achieved by an ingenious, though simple, electromagnetic system, which avoids having any physical contact with the pick-up arm. It is possible, therefore, to use top quality cartridges, tracking at less than one gram, without putting any extra side pressure on the stylus
The BD2/A comes etther as a chassis model, or mounted on a slimline plinth, standing on rubber anti-vibration feet finished in peruine American walnut, stand fitted with a bronze, hinged dust cover. For those with restricted space a compact plinth measuring only $13 \frac{1}{3}^{\prime \prime} \times 15 \frac{1}{2}^{-} \times 5 t^{\prime \prime}$ is still avatlable. Specification
Specification
Rumble-65dB when measured in accordance with DIN 45539 using weighting network, referred to $7 \mathrm{~cm} / \mathrm{sec}$. al 330 Hz .
Wow and flutier Less than $0,1 \%$
Hum level - 80dB
The BD2/A sells for a recommended price of only $£ 55.00+$ VAT. Ask your local hi-f dealer, or write to the factory, for further details.

Manufactured by:- A. R. Sugden \& Co (Engineers) Ltd., Atlas Mill Road, Brighouse, West Yorkshire, HD6 1ES. Telephone: Brighouse (04847) 21.42. Telegrams \& Cables: Connoiseur, Brighouse.

Available to you in kit form at the same moment as its national launch, the brilliant new Videomaster Superscore contains the latest product of MOS technology: a TV game chip.

The logic contained in it had previously to be generated by 100 TTL devices. Now it is condensed into one 28-pin chip.

This all-new Videomaster plugs into your 625-line UHF TV set (for overseas customers having VHF sets we can supply the necessary VHF modulator) to give you four exciting games (including tennis and football) and two future game options. It features on-screen digital scoring, realistic hit sounds, two bat sizes, two
ball speeds, automatic serving and much more. It runs on six $1 \frac{1}{2}$ volt SP11 type batteries (not supplied).

The Videomaster Superscore kit costs only $£ 24.95$ including VAT (recommended retail price of the ready built model is over $£ 40.00$) and comes complete with ready-tuned UHF or VHF modulator, circuit board with printed legend, all resistors, transistors and diodes, built-in loudspeaker, socket for mains adaptor, and, of course, the TV game chip itself.

Easy to put together the Superscore has full assembly instructions, circuit diagram and circuit description. Don't miss this chance to own the newest electronic game at such low cost.

Videomaster Ltd
 14/20 Headfort Place, London SW1X 7HN

Please send me (insert No. requ'd)...............Videomaster Superscore Kits at $£ 24.95$ (inc. VAT \& P\&P in UK)
or $£ 23.10+£ 4.00$ for P\&P overseas)
I enclose my cheque/money order* for $£ ~ V H F ~ m o d u l a t o r ~ r e q u i r e d ~ Y E S / N O * ~$

NAME
VHF modulator required YES/NO*

ADDRESS

PRINTED CIRCUIT KIT $\left\{3.95^{*}\right.$
Make your own printed circuils. contsins etching dish. 1005 g in of pc board. Tib tertic chioride, dalo pen, drill bit, imminale cutler

JC12 AMPLIFIER
 OW IC audio amp
 with tree data and
 printed
 DELUXE KIT FOR JC1

Contains extra parts except JC12 needed to compiete the amp including balance, vofume, bass and treble Stereo 84 -95
JC12 POWER KIT
Supplieg 25V 1A t3-55.
JC12 PREAMP KITS
Type 1 for magnetic pickups, mics and tuners Mono pickups Mono 5 . Type 2 for ceramic or crystal

SINCLATR IC20
IC20 $10 \mathrm{~W}+$ WW stareo Integrated eifcuiq amplifier kit with tree printed circuit + date $\{4-95$.
pZ20 Power supply kit for above ci-95.
VP20 Volume, tone-conirol and preamp kit 57 - 5 .
JC40 AMPLIFIER
New integrated circuit zow amplifier kit complete with chip, printed circuit and data $£ 4 \cdot 45$.

FERRANTI ZN4 14

C redio chip E1.4. Extre parts and pcb for radio E3.65. Case 90p. Send S.A.E, for free data

BATTERY ELIMINATOR BARGAINS
STABILIZED POWER UNITS*
Millenta seriea. Switched 1 to 30 Y in 0.1V steps. 1A Kit E11-85. $\mathrm{Kit}+$ case E14.90 Built 523. 2A. KIt E14.45. Ki + casa 217-40. Built E28
6-WAY SPECIAL $\mathbf{5} 5 \cdot 20$
Switched output of
$3 / 4 \frac{1}{4} / 6 / 7 \frac{1}{\mathrm{~L}} / 9 / 12 \mathrm{~V}$ at 500 mA
3-WAY MODELS*

With awliched output and 4-way mulit-jack connector. Tyoe 1: $3 / 4 \frac{1}{2} / 6 \mathrm{~V}$ at $100 \mathrm{~mA} 52 \cdot 94$. Type $2 ; 6 / 7+/ 9 \mathrm{~V}$ at

RADIO MODELS
50 mA with press astud battery connectors, QV E3-25. $\mathbf{8 V}$ E3.45. $9 \mathrm{~V}+9 \mathrm{~V} 55.45 .6 \mathrm{~V}+6 \mathrm{~V} 55.45 .4 \mathrm{~V}+4 \mathrm{~V} £ 5.45$ CA SSETMA 53.95 . 6V 400mA E3.95.
CASSETTE MAINS UNITS
7 f V with S pin din plug. 50 mA E 3.45 .300 mA 53.25. CAR CONVERTORS $55 \cdot 10^{*}$
Input 12V d.c. Output $6 / 7 / 9 \mathrm{~V}$ d.c. 1 A stablized.
BATTERY ELIMINATOR KITS
Send SAE for free lealiot on range.
100 m a radio typee with oress-siud battery terminala $4 \mathrm{~V} 51 \cdot 85.5 V \mathrm{E1} \cdot 95.9 \mathrm{~V} 51 \cdot 95.4 \mathrm{~V}+4 \mathrm{~V} \mathrm{~V}-60$. $3 V+6 V E 2 \cdot 60.9 V+9 V E 2 \cdot 60$.
100mA capestite type $7 f V$ with 5 pin din plug E1-95. Transistor atabiltzad s-way type for low hum

Rasvy duty 13 -way types $41 / 6 / 7 / 64 / 11 / 13 / 1417 /$ Car convertor klt made 12 y -95. 2A model $\mathbf{7 7} \cdot 55$ tranalator stebilized E1.95.

MAINS TRANSFORMERS
6-0-8V 100mA 51. SO-5V 100 mA E1. 18V 1A E1-95. $01215 / 20 / 2430 \mathrm{~V} 1 \mathrm{~A}$ \&4. 30 . $12-0-12 \mathrm{~V}$ 50mA E 1 . $0 / 12 / 15 / 20 / 2430 \mathrm{~V} 2 \mathrm{~A}$ 25.95. 20 V 2ちA E2.95. 6-0-6V
 $15-0-15 \mathrm{~V}$ 1A $£ 3 \cdot 20.30-0-30 \mathrm{~V} 1 \mathrm{~A} \quad 54 \cdot 10 . \quad 6 \cdot 3 \mathrm{~V} \quad 1 \$ \mathrm{~A}$ $\mathrm{E} 1 \cdot 95$.
S-DECS AND T-DECS*

-DeCA $\mathbb{4} 4 \cdot 45$
μ-DeCB ${ }^{\prime} 7$ - 85.
carriers

SINCLAR CALCULATORS AND WATCHES* Cambridge Universal E5-60. Cambridge Scientific cil95. Oxiord 300 213.3.. Programmaio Sciantific with roe mains unt 23.00 . Marss adaplors loy oiner whith frea stainless aleal bracelet E15.45, Wrey Watch

SINCLAIR PROJECT 80 AUDIO MODULES PZ5 84-95. PZ8 58-70. Z40 E5.75. Project 805Q 40.95.

BF-PAK AUDIO MODULES
S4SO luner 118.95 , AL 80 [4-33. PA100 E13.45, MK60 C30 54. 50 A1 250 me 15. Cend Stereo $30 \Sigma 15 \cdot 95$

SWANLEY ELECTRONICS

Dept. PE, PO B0X 68, Swanley, Kent Send S.A.E. Ior free leallats on all klts. Post 30p on orders under £2-23, otherwlae free. Prices include VAT (Overseas customers deduct 7% on Itemb marked otherwise 11%). Official orders welcome.

PRECISION PETITE LTD.

119a High Street, Teddington, Middlesex TW11 8HG Tel. 01-977 0878 (24. (2nswernolephone)
S.A.E. please for leaflet and order form

- Super 30 Kit (30 Tools) (incl. drill without stand)
£ 17.62 plus P. \& P. 85p
- Super 10 Kit (10 Tools) (incl. drill without stand) £ 13.74 plus P. \& P. 65p
- Mk. II Drill Stand
£4.40 plus P. \& P. 35p
-

Mk. Il Drill only
£8.79 plus P. \& P. 35p
$-$
Flexible Drive Shaft
£5.46 plus P. \& P. 25p

- Transformer 240 V a.c. $/ \mathbf{2 V}$ d.c.
£6 plus P. \& P. 70p
Replacement drills, stones, burrs.
etc. 40 p each. Circular saw blades
50p each. $\mathbf{4 2}$ per set of 4 sizes.
P. \& P. any quantity 20p.

All VAT inclusive

see our stand at model engineering exhibition, Wembley, Jan. 4th-I Ith.

AN L.C.D. FOR UNDERE22:

Our introductory offer INSTAR 103P L.C.D.

mstar Continuous reardoui of hra, mina. and puisating secs

Special offer-new from U.S.A.
FAIRCMILD TIMEBAND L.C.D.S
$5+4$ tunetions constent readout of his., Mins. and pulisating sack. Single command bution punh ance readout PLUS Auto 4 yr calendar acjuar; beektight a.m p.m. soting indicator, optional cont. ath. time datid display.
TC410 gold plated

With matching bracelel and presentation box.
These are spautifui walchas
VERY SPECIAL L.E.D. OFFER GALA

anca
$6+3$ tunctions hra. mins, sace.. alpha day, date and month, PLUS auto 4 yr. celanday adjust: A.m.-
p.m. satting Indicator, auto nold and isde oul. Aveit
 abecher or fold piated whth zis buck ind mateching PAICE E1s-85.
No quibtis 1 Year Guarantee. Prices inctudn VAT and specificationg, Sand chequa/money order to: TEMPUS
Dept. P.E., 5-7 Nortolk Street
Cambridge CB1 2LD, Tel. 55094

G8CZW DIGITAL FREQUENCY METER

COMPLETE 50 MHz KIT C54 inc. YAT and Poat (U.K.)
ZN 1040E Count/Dispiay i.C. Designer 8.90 Integrated Circuit Pack approved
Displaye a
Semiconductor and Diode Pac
Resistor and Capacitor Pack
5 MHz Crysial
Transformer \&-0-BV $t+60 p$ P. \& P) Iranaformer
Switches, Knob, BNC Sock ils, etc.
Switches, Knob, BNC So
Herdware end Wre Pack
Case-Twotone PVC-feced steel punched
Case- Twotone PVC-faced
Spare min. BNC Socketa (50 ohm)
Spare min. BNC Sacketa (50 ohm)
Spare min. BNC Plugs (50 ohm)
Complete kit of parts for High impedance
Butfer finclude PCB) impedance
High Impedance Eutfer P.C.B only
Complets klt for VHF pre-scaler (includes PCB
but less t.C.)
VHF Pre-acaler printed circuit board aniy
SP8631日 500 MHz Pres-scaler I.C
ZN103AE Prectaion Timer I.C.
ZNA116E 3f digit digi-volimeler I.C
Digital Voitmater P.C B's and Circuits
NE592 Wideband video amplifier I.C.
Repr $n 1$ of full GBCZW articio (post fres)
Al prlces inc. VAT at the etanderd rate. PMene 0.50 20p P. a P. Ior pecks. B.A.E. for full lima.

abc. ELECTRONICS

 (OLDHAM) LTD.83 Lees Road, Oldham OL4 1JW Tel. 061-624 8812

PRACTICAL
 ELECTRONICS

INDEX

JANUARY 1976 TO DECEMBER 1976

VOLUME 12

PAGES	ISSUE	PAGES	ISSUE
1-88	January	$529-608$	July
$89-176$	February	$609-688$	August
$177-264$	March	$689-768$	September
$265-352$	April	$769-848$	October
$353-440$	May	$849-928$	November
$441-528$	June	$929-1016$	December

CONSTRUCTIONAL PROJECTS

Accented-beat Metronome 189
Add-on Capacitance Unit by R. W. Lawrence 390
ADSR Envelope Shaper by P. R. Williams 293
Alarm, Car Intruder 548
Alarm, Gas/Smoke 728
Alarm, Light-up 742, 822
Alarm, Off-course 394
Amplifier, IC50 Guitar 25
Audio Compass by M. Kenward 394
Audio Compressor by S. Whitt 56
Audio Millivoltmeter by R. A. Penfold 476
Auto-Stop for Model Railways by E. A. Parr 580
Boat Gas/Smoke Detector 728
Boat Off-course Alarm 394
Breakdown Tester by M. H. George 977
Capacitance Unit, Add-on 390
Caravan Clock 130, 225
Caravan Gas/Smoke Detector 728
Car/Caravan Clock by M. Fischer 130, 225
Car Hazard Warning Flasher 874
Car Intruder Alarm by J. Haggis 548
Car Light-up Alarm 742
Car Rally Milometer 464
Car Road-Ice Warning Indicator 22
Car Wash/Wipe Controller 112
Cassette Player Power Supply by H. T. Kitchen 790
Cine/Tape Synchroniser by N. V. Dovies 786
Compass, Audio 394
Compressor, Audio 56
Computer Voice by E. A. Parr 406
Controller, Programme Wash/Wipe 112
Cross-Hatch Generator by A. A. Birch 708, 887
D.C. Millivoltmeter by H. T. Kitchen 305
Detector, Gas/Smoke. 728 967
Dice
Dice
Digi-Probe, P.E. by B. Cullen \& R. W. Coles 288
Digiscope, P.E. by B. Cullen \& R. W. Coles
Digital Frequency Meter by A. J. Buxton 658, 736, 818
376, 499 ,382, 594, 730
Digital Logic Checker by D. Coles 594, 730, 887
Digital PPM with I.e.d. Display 808
Discostrobe by A. Briar 888
Doorbell, Random Tone 58
Envelope Shaper 293
Filter, Total Harmonic Distortion 116
Fire Alarm 728
Flasher, Hazard Warning 874
Fluorescent Light Inverter by A. J. Bassett 576
F.M. Stereo Tuner 868, 956
Frequency Meter, Digital 376, 499, 594, 730, 887
Game, Shoot 318, 730
Games Machine by D. Burn 967
Gas/Smoke Detector by M. D. Page. 728
Generator, Cross-Hatch 708, 887
Generator, Random Tone 58
Guitar Amplifier 25
Guitar Overdrive Unit by J. D. Rogers 626
Hazard Warning Flasher by C. J. Coker 874
Home Gas/Smoke Detector 728
IC50 Guitar Amplifier by B. W. Terrell \& C. F. Terrefl 25
In-Circuit. Logic Checker 52
Intruder Alarm, Car 548
Inverter, Fluorescent Light 576
Karnaugh Map Display by C. Cartlidge 652
L.E.D. Display Oscilloscope 553, 658, 736, 818
L.E.D. Peak Programme Meter 808
Light Inverter, Fluorescent 576
Light-up Alarm by M. Piant 742, 822
Logic Checker, Digital 52
Logic Display 652
Logic Probe 288, 382, 594, 730
Mains Power Supply for Cassette Player 790
Map Display, Karraugh 652
Metal Pipe or Wiring Locator by C. C. Whitehead 952
Meter, Digital Frequency 376, 499, 594, 730, 887
Meter, Soil Saturation 116
Metronome, Accented-beat 198
Millivoltmeter, Audio 476
Millivoltmeter 305
Milometer, Rally 464
Model Control 484, 568, 630, 716, 822
Model Control Rev Counter 144
Model Railways Auto-stop 580
Moisture Meter 116
Multimeters, Add-on Capacitance Unit for 390
Opto-Coupled Rev Counter by D. S. Bradbury 144
Orion Stereo Tuner, P.E. by D. S. Gibbs \& I. M. Shaw
Orion Stereo Tuner, P.E. by D. S. Gibbs \& I. M. Shaw 868 868956
Oscilloscope, Low Voitage l.e.d. Display 553, 658
Overdrive Unit, Guitar 626
Peak Level Indicator by J. T. Tiernan 203
Peak Programme Meter with I.e.d. Readout 808
Pipe Locator 952
Pocket Timer by M. Plant 648
Pools Game 967
Power Supply for Cassette Player, Mains 790
Probe, Logic 288, 382, 594, 730
Programmable Wash/Wipe Controller by D. W. Lee 112
Proportional Radio Control by J. D. Whiteley 484
$568,630,716$
Radio Control 484, 568, 630, 716, 822
Rally Milometer by P. Leak 464
Random Numbers Game 967
Random Sound to Light Unit 888
Random Tone Generator by W. G. Ross 58
Reaction Timer 318
Recording Peak Level Indicator 203
Rev Counter, Opto-Coupled 144
Road-Ice Warning Indicator 22
Roulette Game 967
Shoot Game by P. Adams 318, 730
Smoke/Gas Detector 728
Soil Saturation Meter by D. W. Lloyd 116
Sound Effects Unit 406
Sound to Light Modulator 888
Sound Effect Unit, Guitar 626
Stereo Digital PPM with I.e.d. Display by R. W. Lowrence 808
Stereo Peak Programine Meter 808
Stero Tuner, P.E. Orion 868, 956
Strobe Light 888
Synchroniser, Cine/Tape 786
Synchronome by A. Briar 198
Tape/Cine Synchroniser 786
Television Cross-Hatch Generator 708, 887
Timer, Pocket 648
Tone Generator, Random 58
Total Harmonic Distortion Filter by R. A. Penfald 216 977
Transistor Breakdown Tester
Transistor Breakdown Tester
Tuner, P.E. Orion Stereo 868, 956
U.H.F. Cross-Hatch Generator 708, 887
Voice, Computer 406
Wash/Wipe Controller 1 12
Wiring Locator 952
4-channel Discostrobe 888
9-channel 27 MHz Radio Control System 484, 568,

GENERAL FEATURES

Citizens' Band by Pat Hawker 731
Getting to Grips with Mieroprocessors by D. Brown 961
Hells, Bells and Decibels by D. Maynard 411
INGENUITY UNLIMITED 35, 150, 234, 324, 413.
$494,589,644,746,823,902,987$
Accenting Metronome F. Hayes 902
Anemometer I. Gray 834
Audio Signalling D. R. G. Self 157
Autotone Mk 2 C. R. Botchellor
240
240
Auxiliary Power Supply S. Bygrave 334
Better Display Cheong Yip Tham 646
B.F.O. E. Voughan 234
Car Alarm D. W. Bickley 421
Car Battery Condition Indicator M. J. Lorner 325
Car Cassette Power Supply G. Luck 754
Car Flasher Chow Yow Soon 324
Car Lamp Monitor T. H. Gibson 987
Car Seat-Belt Alarm A. R. Knight 754
Car Sidelight Alarm M. Spendley 753
Car Theft Alarm J. Dance 154
Car Theft Alarm O. Jensen 330
Charger for Nickel Cadmium Cells D. Torry 158
CMOS Magnetic Cartridge Preamplifier R. Heoton 823
Counter with Built-in Bounce Eliminator N. V. Smith 906
Courtesy Light Timer P. Albericei 418
Cycle Lighting Control A. R. G. Culder 157
Decoder for BCD to 7-Segment Display" R. I. Shute 329
Dice M. M. Malek, D. Relf 326. 593
Digital Calendar D. E. Clarke 494
Digital Circuit Tester G. Rutter 826
Digital Combination Lock N. M. de Smith 239
Digital Leaf D. Palak 824
Digital Model Control D. Osborne 594
Digital Stopwatch Conversion A. F. Hayden 158
Doorbell N. C. Roberts 495
Dual Fader for Slide Presentation P. Woods 418
Dwell Meter Modifications W. E. Priest 41
F.E.T. Voltmeter Pek Yaw Kee 644
Frequency Changer for Synthesisers B. Hatton 326
Fuse Failure Warning N. Ruiz 593
Fuse Monitor for Cars A. Foster 293
Gated Output Random Generator C. Cartlidge 36
Headlight Dimmer J. A. Heathcote 36
Heads and Tails D. W. Bickley 830
Heads-Tails Indicator M. J. Hacker 746
Indicator for Discotheque Pre-fade Listening S. E. Grist 417
Irregular Waveform Production I. Samson 496
L.E.D. VU Meter I. S. Broadhurst 987
Light Fiasher S. Judson 41
Light Operated Switch and Motor Driver P. V. Saduikis 236
Light Pipe Controller S. J. Baxendale 749
Lights-on Indicator R. A. Sudron 417
Lights-on Reminder D. Doughton 39
Logic Trace Multiplier C. J. E. Durrant 830
Low Voltage Indicator P. Boscott 421
Low Voltage Regulator M. J. Meaken 236
Model Train Controller P. D. Johnson 987
Multiple Octave Organ Pek Yow Kee 413
Night-Light T. L. Bunney 154
Novel Memory P. N. Hobson 594
Numerical Readout Improvement R. Mortimer 153
Output Meter J. C. Sadfer 40
Patch Board E. Swialski 324
Patch Panel R. A. Curtis 909
Phase Comparator P. Gopakumar 909
Phaser Control Q. A. Rice 750
Pip Tone Generator M. Plont 906
Presence Booster for Electric Guitars N. P. Stevens 829
"Preset-to-One" Counter J. Cowking 987
Programmable Logic Generator I. R. Keneally 902
Pulse Generator for Battery Operated Clocks l. Hassitt 644
Quiz Buzzer for Two or More Contestants P. Culverhouse 590
Quiz Monitor C. F. Shorto 987
Rear Windscreen Wiper Controller G. T. McDermid 754
Recording Level Indicator N. R. Arnat 422
Relay Trigger R. Parfitt 329
Rise Time Speed-up M. I. Nicholas 645
Sawtooth Generator J. N. Paine 35
Self-Stopping Counter N. V. Smith 906
Sequencing Oscillator W. H. Montgomery 39
Servo J. D. Jardine 753
Signal Injector/Tracer P. Dow 910
Simple Siren P. Janes 987
Simple Timer M. P. Wilson 987
Siren K. Bennett 823
Skin Resistance Indicator A. Russell 35
Sound to Light Converter D. G. J. Kingsbury 750
Sound to Light Modulator K. Caldwell 333
Sound to Light System K. P. White 589, 822

GENERAL FEATURES—Continued

Squarewave Converter P. R. Symons 749
Squarewave Generator G. Sowersby 496
Stereo Preamplifier M. W. Clarke 235
Surround Sound Matrix M. Greenfield 150
Tacho Slave F. C. Dunford 589
Telephone Bell Simulator K. D. Hooper 824
Tell-Tale Alarm T. Robinson 987
Temperature Sensing Device P. R. G. Reynolds 40
Thyristor Windscreen Wiper Delay
Thyristor Windscreen Wiper Delay M. P. Roberts 334
Time Switch S. L. Thompson, P. Levey 39, 414
Touch Dimmer N. Valentine 905
Touch Keyboard N. B. Sargeant 422
Touch Switch R. J. Hicks, V. Mouricio, T. J. Hill I53,235, 645
Touch Tuner R. E. Thomas 646
Traffic Light Controls E. A. Parr 910
Transistor Tester D. Warkander 325
TTL Logic Probe R. A. Jones 829
TTL Touch Circuits A. Gray 833
Tuning Indicator for Varicap Tuner B. W. H. Jesse 330
TV Sound Adaptor M. Greenfield 234
Unijunction Burglar Alarm A. F. Rabagliati 414
Unijunction Frequency Divider f. F. Rabaglioti 414
Variable Chance Ratio Device N. H. Quick 987
Voice Operated Fader N. Valentine 40
Voltage Controlled Zener I. D. Evans 41
Voltmeter Impedance Multiplier T. K. Wong 987
White Noise Generator J. Hoggart 150
Wide Range Staircase Generator J. A. Oliver 830
3-State TTL Logic Probe V. Brett 647
7-Segment to BCD Encoder A. Cornish 333
15 Hz Flasher D. White 905
50 MHz Counter Input Stage D. Welbourn 826
Introducing Wiring Pens by B. Cullen 794
Relaxation Oscillator Circuits by P. Yap 669
SEMICONDUCTOR UPDATE by R. W. Coles 48
General Instrument AY-3-9400, Litronix ILQ74, SGS-ATES MI42, Sprague ULN2275,ULN2277, ULX227648
Ferranti ZC5800, ZC2800, Harris HA2425,Motorola MCl4440L, MC14440Z, MC3490,MC349I, MC3494143
Perdix 1720R, I723R, Intersil 8038, Motorola MCI4419 224
Consumer Microcircuits FX205, Rastra SI- 1010G, SI -1020G, SI030G, SI-1050G, Tekn isA8400404
Ferranti ZN425E, Siliconix VMP-I, Motorola MCI4422, MCl4423 492
Dionics DI-445, National LM399, LMI8I2 558
Ferranti BCX38, RCA G5001/2/3, National LFI55/6/7 665
Intersil ICM 7205, Signetics A7800, Texas SN6008N, SN760I8 723
National SC/MP, Integrated Photomatrix MC904 883
Ferranti ZN423T, Raytheon RC4I94, Siliconix DF2I5 976
Solid State TV Cameras by D. V. Eddolls 980
Time Constants by D. Maynard 309
USING CMOS DIGITAL I.C.s by D. B. Johnson \&
A. M. Marshall 44, 123. 206, 300, 384, 470, 584
1--Introduction 44
2-Transmission gate; logic gates; part num- bering system; Quad analogue switch 123
3-Gate packages; driving circuits; latches 206
4 -Linear applications; tachometer circuit; oscilloscope trace doubler 300
5-Switches; oscillators. 384
6-Retriggerable monostables; digital filters and three-state output devices 470
7-Concluding Article; MSI and LS1 flip-flops 584

NEWS AND COMMENT

All Electronics Show G. Godbold 567
BOOK REVIEWS 32, 148, 382, 647, 887
British Musical Instrument Trade Fair G. Godbold 878
Clean Room 798
EDITORIAL 21, 111, 197, 287, 375, 463, 547, 625,$707,785,867,95 \mid$
HEDA Show Report G. C. Arnold 724
How Inventive Were You? 299, 490
IEA-Electrex Show G. Godbold 639
INDUSTRY NOTEBOOK Nexus 55, 149,
$222,336,412,510,579,673,734,800,884,993$
Kit Report 220
MARKET PLACE $42,129,322,410,666,803$
Mullard Research Laboratorie 643
489.
NEWS BRIEFS $60,62,126,314,382,472,489$.
Paris Components Show D. Gibson 563
PATENTS REVIEW 65, 159, 335, 424, 512, 583, 674 727, 804, 994
Product Review 243
POINTS ARISING 62, 382, 594, 730, 822, 887
Post Office Research Centre 142
READOUT $66,160,244,496,807,876$
SERT Symposium "Microprocessors At Work" 965
SPACEWATCH Frank W. Hyde ar 31, 120, 212, 296, $383,475,560,636,720,793,880,966$
Special Offer799, 877
Sound Design 215
STRICTLY INSTRUMENTAL K. Lenton-Smith 323
VAT and Components 914
SPECIAL SUPPLEMENTS

Free Printed Wiring Board
May 1976
Sounds Extraordinary April 1976

Wire Bending Gauge
October 1976

COMPETITION

How Inventive Are You?
229, 490

Spathitamp Capacitive discharge electronic ignition kit

vOTED REST
OF ESYSTEMS TESTED BY popular. Motarilic

* Smoother running
* Instant all-weather starting
* Continual peak performance
* Longer coil/battery/plug life
* Improved acceleration/top speeds
* Up to 20% better fuel consumption

Sparkrite Mk. 2 is a high performance, high quality capacitive discharge electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in 15/30 mins.
Because of the superb design of the Sparkrite circuit it completely eliminales problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a puise suppression circult which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new. old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. Sparkrite incorporates a shor1 circuit protected inverter which eliminates the problams of SCA lock on and, therefore, eliminates the possibility of blowing the tranststors ar the SCR. (Most capacitive discharge ignitions are not completely foolproat in this respect). All kits fit venicles with
coil/distributor ignition up to B cylinders. coll/distributor ignition up to B cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Ready drilled pressed steel case coated in matt black epoxy resin, ready drilled base and heat-stnk, top quality 5 year guaranteed transformer and components, cables, coil connectors, printed circult board, nuts bolts. silicon grease, tull instructions to make the kit negative or positive earth, and to page installation instructions.

OPTIONAL EXTRAS

Electranic/conventional ignition switch
Gives Instant changeover from 'Sparkrite" ignition to conventional ignition for performance comparisons, static timing etc., and will also switch the ignition off completrly as a security device, includes switch connectors, mounting bracket and instructions. Cables exclude Aiso availabla RPM limiting control for dashbordd mounting (fitted in case on ready built unit).

CALLERS WELCOME, For Crypton tuning and fiting service phone (0922) 3300B
prices include vat, post and packing.
Improve performance \&economy NOW

Yourfree start to a rewarding newhobby. Naym

Every one of which comes to you absolutely complete-right down to the last nut and bolt.

You'll also get a very easy to understand instruction manual that takes you step by step through the assembly.

So, besides making an attractive, useful piece of equipment, youll also have the makings of a satisfying, rewarding hobby.

To find out more, post the coupon well send you our latest catalogue. Heath (Gloucester) Ltd., Dept: PE - 126, Bristol Rd, Gloucester, GL2 6EE Tel: Glos (0452) 29451.
 HEATHKIT BETTER BUILT BECAUSE YOU BUILDIT YOURSELF The new Heathkit catalogue.Out now FREE

Showrooms at 233 Tottenham Court Road, London and Bristol Road, Gloucester.

SAXON ENTERTAINMENTS LTD

a full range of printed circuit modules for all pa. \& disco \& GROUP APPLICATIONS

SYSTEM 7000 HAS IT!

A COMPLETE SELECTION OF READY TO USE PROFESSIONAL QUALITY AUDIO \& LIGHTING EQUIPMENT

POWER AMPLIFIER MODULES 30-240 WATTS

Full Rested a guaranteed Olstortion typically 0.2% 10 Transistors, 4 DIodes Response $30 \mathrm{OHZ}-30 \mathrm{KHZ}$ Fully short \& open circuit proof Sensitivity suits most mixers. Builtin surge suppression \& compensation op-prade components th
-grade components throughout.

DISCO MIXER MODULES Mono or Stereo (with Auto Fade)

QUADRAFECT

FOUR CHANNEL 4KW SEQUENCER WITH DIMMERS

A complete
LIGHT:
show!
£29.50

- PANEL 5250

THE ONLY MODULAR THE ONLY MODULAR
SOUND TO LIGHT UNIT WITH: - Four integral dimmers
rs

- Two + Two sequencer RCA SA Triads Sequence $0 \cdot 5-20 \mathrm{HZ}$ 1.C. circuitry
Needs only front panel*

THREE CHANNEL 3KW SOUND/LITE-Low CostSuperb Value

SYSTEM 7000

MINOTAUR 100 -All Purpose Wide Range Amplifier

SAXON 150 HEAVY DUTY AMPLIFIER $\quad £ 59 \cdot 00$

SYSTEM 7000

COMPLETE DISCO MIXERS
(with Auto Fade)

The choice of the professional D.J.
Controls: Mic. volume, bass, treble, A/fade depth, tape. L/dack rideck vols., treble, base, mater, headphones vol., elector, left/right fader.
MONO 19V $\mathbb{E 3 7} \cdot 50$ MONO MAINS $£ 43 \cdot 50$
*Ready to plugin $\&$ use * Mono or Stereo

[^1]
SYSTEM 7000 COMPLETE CUSTOM MIXERS

 (Mono or Stereo)

SImilar to the modules opposite these mixing modules are complete with front panels, sockets, knobs,
monitor switch etc. Up to 20 channel monitor switch etc. Up to 20 channel (mono o number of output tracks.
ideal lar the economical a quick assembly of a purpose bull mixer with individual channel monitoring, and optional exits faclilales-consuit our technical dept. to discuss your need.

- Stalniess steel panel Bullt-In monitoring - WIII feed all ampilflers - Profesalonal appearance Accepts all types of signals Infinitely adaptable

SYSTEM 7000 LIGHTING CONTROL MK II
 HAS YOUR SOUND TO - 4000W Handllap

- Internat Individual dimmers - Automatic aud lo level control Two + Two sequence iacllit OURS HAST - PLUS

ALL YOUR ELECTRDNIC Stainless steel panel
Bondene case LIGHTING NEEDS IN ONE Heavy duty terminations Matches System 7000 SUPERBLY DESIGNED mixers

SAXON SOUND-LITE-An old design with improved

 appearance| Scintillating performance | Complete with heavy
 duty |
| :--- | :--- |
| Similar to Mk II lIghting control in appearance | duty termations |

Scintillating performance
Similar to Mk II lIghting control in appearance
3KW power handling
1-240W Input

- Fully fused \& Isolated

BRANOHES AT CROYDON \＆WALLINGFORD

CUSTOMERS INCLUDE BBC，LONDON WEEKEND TV， SCOTTISH TELEVISION，NATIONAL TYRES， POST OFFICE，GOVT．DEPTS．

A READY－TO－USE 100W STEREO DISCO WITH BUILT－IN SOUND／LITE SEQUENCER AND LIGHTS FOR ONLY £199

THE CENTAUR

（Carr free in U．K．）
－100W rma aterao output
－Twin heavy duty loudspeaher
Eour channel fully automatic sound－ Not with variable speed sequence
－．C．pre－amp with tape input \＆X fade Separate mle．
 base controls．
E Attractive Vynide cablnet
lift arm
E All connecting latid supplied－ ready to plug in －Loudspeakers heve kick pro Four colour bulit－jn llght display gives ayer changing pattern with or
without music

A READY－TO－USE 50W MONO DISCO COMPLETE WITH TWIN HEAVY DUTY LOUDSPEAKERS FOR ONLY

Accessorles for complete discos $\&$ other systems
Electret Condensar MIc ECM31 C／W windshleld \＆cllp £12－00
ECM78－as above but duel Impedance with removable lead $£ 13 \cdot 00$ Crown Slerea Headphones $\mathbf{£ 6 . 7 5}$ E Heavy duty boom mic．stand $\mathbf{£ 1 2 . 5 0}$

CUSTOM BUILT DISCOS
A full range of custom consoles are available using System 7000， from 50 W mono to 500 W stereo． Ask for our price list．

LOUDSPEAKER CABINETS
 Kick proof pribla．Heavy duty units Joinied contruction Black Vynlo Protective corners finlahed． E Smart a professiona
 Single Twolve：Empty $£ 14$
 With 60 W unit $£ 33 \cdot 00$
 Twin Twelve：Empty $£ 24$ With unite from $£ 55 \cdot 00$
 Folded Horn－Full range P．A．Bin 100W RMS
 £． 12 ed
 This eablinetia 3－4 times as loud as conventlonal systems
 lor a plven input power－－thus there is a saving in overall cize d cosi．
 －Many other cabinets avallable－ask for details．
 EMPTY DISCO CONSOLES
 \＆19 with plain motorboard．Ezil with cutouts．
 Black Vynlde finlah Protective corners With your choice of eutouts
 STROBES \＆PROJECTORS（We stock the full Pluto range）Send for details
 SUPERSTROBE £19．75
 80 W Tube for long llie
 PRO．STROBE £32．50
 －5－8 Joule
 Long Llfe tube tlmer circult

 150 WATT LIQUID WHEEL
 PROJECTOR
 －Accepts all accessories －C／w with wheel \＆motor plate
 Rermarkable valuo－
 Sold alsowhere at is only：
 £31－50

[^2]
GREENWELD
 443 Milbrook Road Southampton SD1 DHX Tel：（ロ7ロヨ） 772501

All mail ordert and callers to thls addrass please－callers only to 21 Daptford Groedway．SE8（Tel．0t－692 2009）and 38 Lower Addiscombe Roed，Croydon

44 PAGE CATALOGUE
10P＋LARGES．A．E．
Free with orders over £2
DIGITAL I．C．s

7400	12p	7450	15p	7495	73 p
7401	14p	7451	14p	7496	
7402	14p	7453	14p	7407	7
7404	17p	7454	14p	74121	1
7405	23p	7450	14p	41122	2
7405	2tp	7472	23p	74123	
7408	14p	7473	$29 p$	74132	2
7410	13p	7474	2tp	74150	0173
7413	24p	7475	51p	74154	14
7414	42p	7476	24p	74155	5
7420	14p	7483	91p	74157	7
7430	14p	7488	40p	74159	9200
7432	14p	7490	4sp	74174	1110 P
7437	14p	7491	75p	74779	120
7440	15p	7492	52p	74180	1
7447	e4p	7493	520	\％	

16 pin 14p． $100+$ lemas 25\％；
LINEARI．C．
741 25p； 555 40p； 723 （TO99）50p
Posi2c
TO126 case $5 \mathrm{~V} 600 \mathrm{~mA} 80 \mathrm{p}, 12 \mathrm{~V} 500 \mathrm{~mA}$
TRANSISTORS
$\begin{array}{llllll}\mathrm{AC} 127 & 15 \mathrm{p} & \mathrm{BC} 183 & 12 \mathrm{p} & 2 \mathrm{~N} 264 \mathrm{~S} & \text { 42p } \\ \mathrm{AC} 128 & 15 \mathrm{p} & \mathrm{BC} 184 & \text { 12p } & \text { 2N2926G } & \text { 12p }\end{array}$
$\begin{array}{lllll}\text { AC176 } & \text { 16p } & \text { BC212 } & \text { 14p } & \text { 2N2926G } \\ \text { 2N } & \text { 12p } \\ \text { A }\end{array}$
AC187 19p BC213

$\begin{array}{lllll}\text { BC109 } & \text { 10p } & \text { BO132 } & \text { 40p } & \text { 2N3704 } \\ \text { BC109 } & 10 \mathrm{p} \\ \text { BC147 } & 10 \mathrm{p} & \text { BFY50 } & \text { 15p } & \text { 2N } \\ \text { 10p } & \text { BFY5 } & 15 \mathrm{p} & \text { 2N3705 } & 10 \mathrm{p}\end{array}$

$\begin{array}{lllll}\text { BC158 } & 10 \mathrm{p} \text { TIP3055 } & \text { 42p } & \text { 40873 } & 50 \mathrm{p}\end{array}$
BC182 12p 2N2369 22p

VEROBOARD

Good size offcuts；all packs contain 100
q．In．（About 8 pieces）．All packs $£ 1 \cdot 20$
Pack A．all 0.1 ln pitch；
Pack E，all 0.15 in pitch：
Pack C，mlaed 0.1 and 015
ack ，alio．iin plain．
tolbs E30．
$17 \times 34 \times 0-1 \mathrm{in}$ sheal3 51.90
0.1 in or 0.15 in pins．single or double andad 35p．＇100．
DIODES ANO LEDA ANO SCR＇s
500V 5A SCR 45p；400V 2A Triec 80p； Diac EAR100 25p； 400 V 15A Trisc $51-50$ ； LEO 15p； 0 ．zin LEO Red 22p；grean． Yellow or ember 24 p
1N4002 5p；IN4004 Ip；1N4007 sp： 1Na148 4p：BY 127 12p： 100 V 3 A 12p； 400 V 3 A 15p；OAsi 5p；OAS1 5p
50 V 1A bridge 20p； 800 V 1 A 40 p ；
$250 \mathrm{~V} 2+\mathrm{A} 40 \mathrm{p} ; 200 \mathrm{~V} 5 \mathrm{~A}$ 万p； $500 \mathrm{~V} 6 \mathrm{~A} \mathrm{E} 1-80$ ．
$50 \vee 30 \mathrm{Arect}$ ．or－stud 40 p
Zenert 400 mW BZYBB．Al voltages
$1 \cdot 3 \mathrm{~W}$ plastic from 3 V to 200 V 20 p

AESISTORS

Carbon film 5\％iW minumera，All values in E12 marie from in to 10Mn（over 7Mn 10\％）1tp each
Meral Film 5% iw．Al values in E12 sories from 27 n to toMn 2 tp ．
Sub－min prosath vert．or horiz all values from $20 \cap 104 \mathrm{M}$ ， $7 p$ ．
Standsrd pots，lin of
Wirewound $2 \mathrm{fw} 0.25,0.33,0.47 \mathrm{in} \mathrm{sp}$ ． Wirewound 5 W ll values from 1Ω to 47 K 10 p esch．

TRANSFORMERS

6－0－6V 100m A 90p；9－0－9V 100mA 95p； $12-0-12 \mathrm{~V} 50 \mathrm{~mA} 90 \mathrm{p} ; 12-0-12 \mathrm{~V} 100 \mathrm{~mA}$

 52－30；30－0－30V 1A E3－70．

See Prectical Wirstess for detalia of pecks of componente，eurpluy goode，atc All prlces quoied include VAT．Add 20p postenge on orders under $\$ 2$ ．Mast orders despetched on day of raceipl．SAE wilh enquiriet Send top for Multimeter catalogue－frae on request on orders over £3．Official Orders accapted from Schoola，etc．Export／wholesale enquiries welcome．Surpius components alwaya wented

INVERTORS

$240 \mathrm{v}-50 \mathrm{~Hz}$ from your 12 v car battery.
25 watt-c.4.75 300 whtt $\{24 \mathrm{v}\}$-E26. 45 40 watt-5. 27 27 400 watl (12v)-E39.05 75 watt- 12.03 500 watt (24 v) -C 48.18 150 watt-E21-27 1 kW (50v)- 127.00 300 watt (12v)- 333 -03 1.5kW (110v)-E140.80 All above Invertore are in kit form but may be purchased bullt up in metal case \& ready for use. Price list sent on raceipt of s.a.e. Pricea include post a packing

P.W. AUTOMATIC EMERGENCY

 SUPPLY$240 \mathrm{y}-50 \mathrm{~Hz}-150$ watl Invertor with built in batiery charger. In event of power fallure awitches over automatically from battery charging to invartor oparatlon. Cet. as parls (excluding meter) $224 \cdot 50+\Sigma 1 \cdot 70 \mathrm{p}$. \& p .

E O DIGITAL WATCH
L.E O. display giving hours, minutes, seconds and date. Design based on American technology, and fantastic value at $£ 16+30 p p \& p$.
One year guarantee

TAANSFORMEAS \& COILS

Both high volume \& small order capacity available.
Speclal offer. Minlature mains transformer $6-0-6 v-5 \vee A$ - $85 p$ plus 10p p \& p
TRADE \& EXPORT ENQUIRIES WELCOMED
P.E. ORION STEREO AMPLIFIER

$20+20$ Watts r.m.s. into 8 ohm load. Distortion less than $0.01 \% 100 \mathrm{~Hz}-10 \mathrm{kHz}$. Frequency response $\pm 1 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 kHz . Hum level virtually nil with volume full on.
This is a power amplifier of superb quality incorporating the very latest design features. Professional hi-fi enthusiasts have classed it as fantastic and real value for money. The CCT incorporates a low flux transformer and inputs for disc. tape, tuner, etc.
Complete kit of parts including slim line bookend case, silk screened front panel \& knobs. £47-30 incl. VAT \& p. \& p.
The bookend case, IC.s \& semiconductors, PC. board, Transformer, etc. may be purchased separately if desired. Send S.A.E. for further information

P.E. ORION TUNER

Full kit of parts for this superb tuner unit to compliment the now well established amplifier Parts may also be purchased separately. Send S.A.E.

ASTRO IGNITION SYSTEM Complete klt of parts for this proven and tested system $£ 10 \cdot 45$ Incl. VAT. Ready built with only two connections to alter $£ 13.75 \mathrm{incl}$. VAT. Thousands have used this system both home and abroad. Consider these advantages more power. faster acceleration, fuel economy, excellent cold starting, smoother running, no contact breaker burning. Also because of the high energy spark, the fuel mixture can be made weaker giving further economy and fewer plug problems. Fitting time when bulit 5 minutes approx. Please state whether positive or negatlve earth. Trade and export enquirles welcomed.

ASTRO ELECTRONICS Spring Bank Road. West Park Chesterfield.

Brochure, without obl igation to:
BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL,
P.O. Box 156, Jersey, Channel Isiands.

NAME
ADDRESS

WILMSLOW AUDIO THE Firm for speakers！

SPEAKERS

Baker Group 25，3， 8 or 15 ohm Baker Group 35，3， 8 or 15 ohm Baker Group 50／12 8 or 15 ohm Baker Group $50 / 158$ or 15 hmm Baker Deluxe 124， 8 or 15 ohm Baker Major 3． 8 or 15 ohm Baker Superb 8 or 15 ohm Baker Fagant 12in B or 15 ohm Baker Auditorfum 12in 8 or 15 ohm Baker Auditorium $15 / \mathrm{n}$ 日 or 15 ohm Castle 日RS／00 4 or 8 ohm Celestion G12M 8 or 15 ohm Celastion G12H 8 of 15 ohm Celestion $\mathbf{G 1 2 / 5 0} 8$ or 15 ohm Celestion G12／50TC 8 of 15 ahm Calestion G12／50 2236 s／cone Celestion G12／50 2239 a／cone，alum．dome Celestion G15C 8 or 15 ohm Celestion G18C 8 or 15 ohm Celestion HF1300 日 or 15 chm Celestion HF2000 B chm Celestion MH 10008 or 15 ohm Celestion C03K
Coles $400 \% \mathrm{G}$
Coles 4001 G
Decca London ribbon horn
Oacca London CO／1000／8 crossover Decca DK30 ribbon horn Decce CO！1／8 Crossover（DK30） EMI $15013 \times$ Bin d Cane 8 ohm EMI $13 \times \sin 20 \mathrm{~W}$ bass 8 ohm
EMI $14 \times$ gin bass 8 ohme，14A770 EMI $8 \times 5 \mathrm{in}, 10 \mathrm{~W}$ ，dicone，rall surr． EMI 6子in d／cone，roll surr．， 8 ohm EMI 8 in rall surr．basa EMI 5 in mid range
Elac 5SRM 109 （ 15 ohm），59RM114（ 8 ohm） Elac $8 \frac{3}{3} \ln$ d／cone，roll surf．．B ohm Elac 10in 10RM239， 8 ohm Eagle Crossover 3000 Hz 3.8 or 15 ohm Eagle FR4
Eagle FR65
Eagle FR8
Eagla FR10
Eagle HT15
Eagla MHT10
Eagla FF2s Multicell horn Fane Pop 15，目 or 16 ohm Fana Pop 33 T ， 8 or 16 ohm Fane Pop 50， 8 of 16 ohm Fane Pap 55，B of 16 ohm Fana Pop 60， 8 or 16 ohm Fane Pop 70.8 or 16 ohm Fane Pop 100， 8 or 16 ohm Fane Crascendo 12． 8 or 76 ohm Fane Crescendo 12日L，\＆or 16 ohm Fans Crescendo 15／100A，s or 16 ohm Fane Crascenda $15 / 125$ ， 8 or 16 ohm

SPEAKERS

Fane Crescendo 18． 8 or 16 ohm

Fane 910 Mk II horn
Fane 920 Mk H horn
Fane HPX1 crossover zoow
Fane $13 \times \sin$ ． 15 W dual cone
Fane 801 T 8in dic，roll surs
Gauss 12in
Gauss 15 in
Gauss 18in
Goodmans Axent 100
Goodmans Audiom 2008 ohm
Goodmans Axiom 4028 or 15 ohm
Goodmans Twinaxiom 8， $\mathbf{3}$ or 15 ohm
Goodmans Twinaxiom 10， 8 or 15 ohm
Goodmans ap 8 or 150 hm
Goodmans 10p of or 15 ohm
Goodmans 12P 8 or 15 ohm
Goodmans 12PG a or 15 ohm
Goodmans 12PD or 15 ohm Goodmans 12AX 8 or 15 hm Goodmans 15 Ax or 15 ohm
Goodmand 15AX or 15 oh
Goodmans 15P \＆or 15 ohm
Goodmans 18P8 or 15 ohm
Goodmans Hifax 750P
Goodmans 5in midrange 8 ohm
Jordan Watts Module，4， 8 or 15 ohm
Ket T27
Kef T15
Kef Tr
Kef B110
Ket B110
Ket B200
Kef B 200
Kef 139
Kef
Kef ONB
Kof DNi2
Kef DN13 SP1015 or SP1017
Lowther PM6
Lowther PM6 Mk 1
Lowther PM7
Peerless KOIODT 4 or 8 ohm
Peerless OT10HFC \＆ohm
Peeriess KO 40 MRF a ohm
Peerless MT225HCF 日 ohm
Rithard Alian CA12 izin bass
Richard Allan HPBB
fichard Allan LP8B
Richard Allan OT20
Richard Allan CNB260
Richard Ailan CN820
Richard Allan Suoger Diseo 60W 12in Richard Allan CG15 95 in bass
Richard Allan Suder Disco 12 in 60 watt
Richard Allan Super Disco 10 in 50 watt
Richard Allan Super Disco Bin 50 watt Fadtord BO25
Hadford MOs
Hadford MO5
Fadford TO3
Gadford Cross Over Network
Coles 4001 G 8 K
Tannoy 10 in Monitor HPO
Tannoy izin Monitor HPD
［75－95
\＄15－75
C45．95
52.55
52.50
22.50
55.50
$\mathbf{8 5} 50$
$\mathbf{8} .96$
£8． 96
ع．95．00
ع110－00
\＄121．00 ch． 50
114．95
522.00
$\varepsilon 10.50$
£10．95
玉6． 20
26． 55
$\mathbf{5 6}$
$\mathbf{5} 6.95$
$\mathbf{1 6} .50$
816.50
$\mathbf{8 1 7} .75$
£17－75
$£ 18.75$
844.00
£49．00
24.00
839.95
£16．00
£4．05
£ $15 \cdot 36$
\＆5 18
$\$ 518$
$£ 10.75$
810.75
$\varepsilon 6.75$
$£ 6.75$
87.85
87.85
$\$ 16.50$
816.50
52.08
52.08
55
5.39
$\$ 4.05$
£4． 05
$£ 32 \cdot 00$
$£ 35 \cdot 00$
£48． 50
c8 25
£9． 50
£9－95
53－40
£ 19.80
$12 \cdot 50$
E12．50
E8． 50
£6．25
£6．25
$\mathbf{~} 16.95$
ع3 15
£16．95
277． 45
518．95
16.95
813.25
£13．25
£12．95
212．95
$123 \cdot 20$
$\varepsilon 11 \cdot 50$
15－75
ع8． 25
£14．75
£5．90
£78．00
£ 86.00
Complete kits in stock for Radford Studio 90，Radford Monitor 180，Radford Studio 270，Radford Studio 360， Hi－Fi Answers Monitor（Rogers），Hi－Fi News No Com－ promise（Frisby），Hi－Fi News State of the Art，Wireless World Transmission Line（Bailey），Practical Hi－Fi and Audio Monitor（Giles），Practical Hi－Fi and Audio Triangle （Giles），Popular Hi－Fi（Colloms），etc．
On dem．Answers Monitor，State of Art，etc．
Construction leaflets for Radford，Kef，Jordan Watts，
Tannoy，Hi－Fi Answers Monitor，free on request．
P．A．amplifiers，microphones，etc．，by Shure，Linear， Eagle，Beyer，AKG，etc．
FREE with orders over £10－＇Hi－Fi Loudspeaker Enclosures＇book．

Tannoy 15in Monitor RPD Wharfedale Super 10 RS／DD 8 ohm

SPEAKER KITS

Baker Major Module 3．日 or 15 ohm
each $[13 \cdot 2 \mathrm{~s}$ each $510 \cdot 35$ each 519.95
Fane D40 Disco Kit
Goodmans DIN 204 or 8 ohm Goodmans Mezzo Twin Kit Helme XLK 30
Helme XLK 35
Helme XLK 40.
Kefkit 1
Kefkit III
Pearless 1060
Peerless 1070
Pearless 1120
Peerless 2050
Peerless 2060
Aıchard Allen Twin assembly
Aichard Allan Tripia 8
Richard Allan Triple 12
Richard Allan Super Tripla Richard Allan RAB Kit Richard Allan RA82 Kit Richard Allan RA82L Kit Wharfedale Linton II kit Whartedale Giendale 3XP klt Wharfedale Dovedale III kit Wharfedale Denton 2XP kit Wherfedale Linton 3XP kit

HI－FI

ON DEMONSTRATION

in our showrooms：
Akai．Armstrong．Bowers \＆Wilkins．Castle．Celastion Dual，Goodmans，Kef，Leak，Ploneer，Radiord， Richard Allan，Rotel．Tandberg．Trio，Videotone， Wharfedale，etc．－ask for our Hi－Fi discount price ist．

THIS MONTH＇S SPECIALSI（Carr．$\varepsilon 2 \cdot 50$ ） Rotel RA412 Videotone Minimay II E97．50 Videctone Saphir II
Videctone Saphir II
Pioneer SX450
§ 49.00
5116.00
$\mathbf{5} 149.70$

We stock the complete Redford range of amplifiers． preamplifiers，power amplifiers，Iuners．etc．，and lso Radiord Audio Laboratory equipment，low diatortion oscifator，distortion measuring set，audio noise meter，atc．

ALL PRICES INCLUDE VAT
（PAICES CORRECT AT 6／10／76）
Send stamp for free 38 page booklet＂Choosing a Speaker
ALL UNITS GUARANTEED NEW AND PERFECT Carriage and insurance：Speakers up to 12in 60p 2in £1；15in $£ 1 \cdot 75$ ；18in $£ 2 \cdot 50$ ．Kits $£ 1$ each（ $£ 2$ par pair）．Tweeters and Crossovers 33 p each．

WILMSLOW AUDIO
 Dept PE

Loudspeakers．mall order and export Swan Works，Bank Square，Wilmslow． Hi－FI，Radio and TV：Switt of WIImslow 5 Swan Street，Witmslow，Cheshire
PA．Mi－Fi and Accessories：Wilmslow Audio， 10 Swan Street．Wilmslow Cheshire．
Telephone：Loudspeakers，mall order and export－Wilmslow 29599；Hi－Fi，Radio． etc．－WIImslow 26213.
Access and Barchaycard orders accepted by phone

Build yourself this high quality touch-sensitive piano. The design also features the new transpose control which is an external tuning control-this tunes the entire keyboard higher or lower than the concert pitch by one whole octave. Two models are available: TS50 which is a straight piano and TS53 has piano, honky tonk, harpsichord, and fast and slow tremolo effects. These professional pianos can be built in just 12 hours.
Parts List
Price
$\Sigma 1.50$
Constructional details are available with complete kit
Su/s Olvider end Touch-Sensitive Kayar Unit
$1 \times$ AY-1-5051 l.c. alvider
$25 \times$ diodes low noise high resistance (5 p each)
$5 \times$ transistors 2 N 3703 (12p each)
$10 \times$ elect. caps $3 \cdot 3 \mu \mathrm{~F} 25 \mathrm{~V}$ (5 p each)
$48 \times$ resistors watt 5% (1p esch)
$12 \times$ terminal pins (tp each)
$1 \times$ p.c. board. drilled
2×0.01 ($4 p$ each)
Total Price per unlt (11 units required)
12p
Tolar Price por unt (it units raquirad)
ESU/6 Divider and Touch-Sennltlve Keyer Unit $1 \times$ AY-1-8721/5
$30 \times$ diodes low noise high resistance (5 p each)
$6 \times$ transistors $2 N 3703$ (12p each)
$12 \times$ elect. Caps $3+3 \mu \mathrm{~F} 25 \mathrm{~V}$ (5ρ each
$58 \times$ resistors wait 5% (p each
$14 \times$ ierminal pins (ip each)
$1 \times$ P.C. board. drilled
2×0.01 (40 each
$\times 0.02$ (4p eacn)
Tolal Price (anly 1 unit required)
Power Supply
$3 \times$ yards main cable (10p yard)
x malns transformer 20-0-20 1A
$1 \times$ mains plug and socke
$2 \times$ luse holders (20p each
$2 \times$ luses 1A (6 p each)
$4 \times$ recthier ditodes (50 Aach)
$2 \times$ elect. caps 2.200 $\mu \mathrm{F} 40 \vee$ (95p each)
$1 \times$ etect. caps $1,000 \mu \mathrm{~F} 35 \mathrm{~V}$
$2 \times$ resistors $5 W$ (120 each)
$1 \times$ neon lamp
$1 \times$ pot with switch
$1 \times$ metal knob
$2 \times$ capacitor clemps (5p each)
$1 \times$ chassis
Total Price (only 1 unit required)
\times voltage regulator
1×5-octava keyboard C-C or F-F
$1 \times$ cabinet, front plate and fittings
$1 \times$ jack socke
$1 \times$ switched jack socke
$1 \times$ stereo jack socket
$1 \times$ stereo lack plue
$4 \times$ racker swiches (29p each)
$1 \times$ headphone amp, buili and tested
$1 \times$ loud and soll pedal
\times tremolo unit for TS53 only \times tonelorming unit for TS53 only $1 \times$ varisble capacitor, 10 turns $1 \times$ GU500 bultt and tested. M.T.G $3 \times$ yards gold wire (59p yerd) $2 x$ yerds fhodium bar ($£ 1 \cdot 50$ yard) $3 \times$ yards 25 core cable (58p yard) $61 \times$ terminal pins (tp each $1 \times$ pre amp for T 550 only TS50 Complete Kit TS53 Complete Kit

Make light work of wiring with the NWI Silidiliful Whir oflitis

Countless uses in industry and offices *QUICK AND EASY TO APPLY -

EVEN IN awkward places * Saves damage to wood and paintwork * STICKS ON INSTANTLY: HOLDS WIRE FIRMLY You'll save enormous time and trouble with the new Brandauer adhesive staple. Just peel off the backing strip and press staple into place. Then bend clips over to hold wire firmly in position. No messing with pins, tacks, soldering or drilling. No damage to woodwork, e.g. skirting boards. Use the Brandauer Staple for any wall, frame or cabinet wiring jobs - it's wonderfully easy for fitting in those awkward corners.

Send now for details to:
SPECIAL PRODUCTS DISTRIBUTORS LTD. 81 Piccadilly, London WIV OHL. Tel:01-629 9556.

GMOS WITH DISCOUNTS!

Any mix: Discount 10% for $25+, 25 \%$ for $100-33 \%$ for 1,000

4000	1.29	4097	$1 \cdot 6$	4075	0. 24	14175	1-4	14528	1-2	E LED DİPLAY*	
4001	- - ${ }^{\text {a }}$	4030	1.80	4074	1.91	14194	$1 \cdot 17$	14520	$1 \cdot \pi$	OL-70AE 0.3'	70.
4002	$0 \cdot 3$	4038	$2 \cdot 10$	4077		1418	37	14550	$0 \cdot 1 /{ }^{\text {a }}$	DL.707E 0.3	70p
4008	1.5	4040	1.18	407a	- 24	1411	14	14511	1.74	OL-728E $2 \times 0.5{ }^{\text {\% }}$	$\pi \cdot 0$
4007	$0 \cdot 2$	4041	$1{ }^{1}$	4051	- 21	14412	${ }^{17} \cdot 17$	14532	1.24	OL-T27E $2 \times 0.5{ }^{\prime \prime}$	ct-m
4000	1.17	4042	1.tio	40ea	-24	14615	P.	14534	- 15	OL-750E 0.5	ct. ${ }^{\text {a }}$
4509	16	404	$1+12$	4045	- *	14418	2.67	1453	- 4	OL-747E 0 -	tin.
40.0	10	4045	1. ${ }^{\text {d }}$	40\%	-1000	1428	4.\%¢	14537	73.17		
4011	- ${ }^{\text {\% }}$	4045	1.54	4000	1-74	14435	1.40	14530	$1 \cdot 24$	heo Lios	
4072	\cdots -	4046	1.4	4088		1440	${ }^{11} \cdot \mathrm{M}$	14541	$1 \cdot 6$	0.1 ${ }^{\text {² }}$	5p
4013	- \cdot 亩	4047	1.4	4094	8.m0	14450	2.87	1454	$1 \cdot 6$	$0{ }^{\text {* }}$	15p
4014	1-11	4048	10	4085	$1 \cdot 14$	1451	$2 \cdot 4$	11548	A+11		
4015	$1 \cdot 12$	4049	1.10	4096	1-14	1400	. 11	1455%	1830	CLOCR Chips	
4015	- $0^{\text {en }}$	4050	-1.t	4097	4.13	14501	1.9	1453]	4.81	AY-5-1234	c3 50
4017	1-1]	4051	1.4	4096	1-22	11502	1.3	14554	1\%	MK 50253	¢5 56
4018	1-12	4052	1. H	4099	1-43	14503	0.75	16454	1.61		
4019	1.70	4053	1.04	40101	1.7	14505	4.30	14556	1.81	SOLDEACON PER	
4020	1.24	4054	1.22	40102	$2 \cdot 18$	14505	- ¢\%	14557	15		40p
4081	1-12	4055	1. ${ }^{\text {ct }}$	40103	2+18	14507	1.10	14551	$1 \cdot 25$	1000	400
4022	1.07	4058	1.4	40704	- 1 d	14508	1-64	14559	4-16	2500	80.73
403	1-3	4057	2.11	40107	- 10	14510	1.51	14580	1.17		
4024	1-17	4059	5.28	40108	11	14519	1.74	14501	- \quad \%	DHL SOCRET 14	PIN 159
408	- ${ }^{\text {a }}$	4050	1-24	40108	$3 \cdot 2$	13612	1.81	11552	$5 \cdot 18$		
403	1 m	4061	28. ${ }^{\text {dem}}$	4071	4.31	1314	347	14556	17	med achyuc foly	
4027	1-40	40082	14.10	40112	1.2	16515	1.47	14588	J-11	Far L-E.C. disple	
4028	1.10	4063	1.22	60194	1.21	14518	1. 11	14500	17	\% $82 \times 3 \mathrm{~mm}$	700
403	1.71	4068	14	40257	$2 \cdot 8$	15517	4. ${ }^{\text {d }}$	14572	0.21		
4030	d. 51.	4067	4. 13	4700	1-75	14518	1.2	14580	\% 3	Pueh switches	
4031	2.4	4088	b. 24	7063	4.38	14518	1.	14561	4.31	Type sws	15p
4032	1.4\%	4088	3-24	14140	1.11	14520	1-3	14562	1. ${ }^{\text {c }}$		
4033	1.\%	4070	- 05	14161	171	14527	$2 \cdot 7$	14580	1.4	OP-AMPS	
4034	2-11	407	0.24	14152	1-1]	1452	2.13	14545	1. 16	CA 3130 (COS/MOS)	$1 \cdot 00$
4635	$1 \cdot 31$	4072	1.24	1418J	1-1\%	14328	215			CA 3140 (目MOS)	15p
4038	1-10	4073	314	14174	1-68	14527	1-7			741 Minidip	\%p
Terma: C.w.O. Add VAT to all pricen at $\mathbf{6 \%}$, Pont, atc. U.K. 25 p ($+2 \mathrm{p}=27 \mathrm{p}$) per order. All ordere procened atime day, Otticial Govt., Varaity, Poly., elc. ordert (written or telephoned) wilcome											
GREENBANK ELECTRONICS (Dept. E12P)											
94 New Chester Road, New Ferry, Wirral. Merseyside, L62 5AG, England. Tet: 051.6453391											

94 New Chester Road, New Ferry, Wirral. Merseyside, L62 5AG, England. Ter: 051-645 3391

15-240 WATTS!
 The HYS is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartidge, tuner, etc.) are catered for internally, the desired

 function is achieved either by a multi-way swltch or direct connection to the appropiate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P power amplifiers and power supplies. To ease constructlon and mounting a P.C. connector is supplied with each pre-amplifier.FEATURES: complate pre-amplifier in single pack, multi-function equalisation: low noise: low distortion: high overioad; two mimply combined for stereo.
disco: guitar and ofgan: publec addrass.
SPECIFICATION: inputm-magnatic pick-up 3 mV : ceramic plck-up 30 mV ; tuner 100 mV ; microphone M. M: auxinary $3-100 \mathrm{mV}$: input impedance $47 \mathrm{k} \Omega$ al 1 kHz . Outpuls-tape 100 mV : main output 500 mV $\pm 12 \mathrm{~dB}$ at 10 kHz , bass $\pm 12 \mathrm{~dB}$ at 100 Hz . Distortion -0.1% dB. Overioad-38dB on magnetic pick+up. Supply Voliage- $=16-50 \mathrm{~V}$. Price $\{4 \cdot 75+59 \rho$ VAT. P. \& P. free
HY5 mounting board B.1. 46p + 6p VAT. P \& P. free
The HY30 is an exciting New kit from I L.P it features a virtually indestructible C. with short circuit and thermal protection. The kit consists of: I.C., hataislnk. P.C. board, 4 resistors. 6 capacitors, mounting kit, together with easy to follow construction and oparating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up to date technofogy available. FEATUAES: Completa kit: low diatortion: short, open and thermal protection: enay to build. APPLICATIONS: updating audio equipment; guirar practice amplifier, test amplitiar; audio oscililator SPECIFICATION: Output Power-15W R.M.S. into 8Ω. Distorion- $0 \cdot 1 \%$ at 15W. Input Sengítivity500 mV . Frequency Response- $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
Price £4. 75 + 59p VAT. P. \& P. frbe
The HY50 leads I.L.P.'s total integration approach to power amplifier design The amplifier features an integral heatsink together with the simplicity of no external components During the past three years the amplifier has been refined to the extent that it must be one of the most reliabie and robust High Fidelity modules in the World. FEATURES: low dlatortion: integrai heataink; only five connections; 7 mmp output iransistors; no extornal components
APPLICATIONS: medium power hi-fi systems. Iow power disco. guitar amplifier
SPECIFICATION: Input Sensitivity -500 mV . Output Power-25W R.M. S. into 8Ω Load Impedance416 n . Distorion- 0.04% at 25 W at 1 kHz Signal/ Nolse Ratio- 75 dB . Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~d}$ E Supply Voltage- $\pm 25 \mathrm{~V}$. Size- $105 \times 50 \times 25 \mathrm{~mm}$.
Price $[6 \cdot 20+77 p$ VAT. P. \& P. free
The HY120 is-the baby of I.L.P.'s new high power range, designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design
FEATURES: very low distortion: integral heatsink, load line protection; thermal protection: five connections; no axternal comporients

SPECIFICATION: input Sensitivity- 500 mV . Output Power- -80 W R.M.S. into $B \Omega$ Load Impedance-$4-16 \Omega$. Diatorion- 0.04% at 60 W at 1 kHz Signal/Noise Ratio- 90 dB Frequency Response- 10 Hz $45 \mathrm{kHz}-3 d \mathrm{~B}$. Supply Voltage- $\pm 35 \mathrm{~V}$. Size- $114 \times 50 \times 85 \mathrm{~mm}$
Price $\mathbf{\Sigma 1 4 \cdot 4 0 + £ 1 \cdot 1 6 \text { VAT. P. \& P. free }}$
The HY200 (now improved to give an output of 120 watts) has been designed to stand the most rugged conditlons such as disco or group while still retaining true hi-fi performance.
FEATUAES: thermal shutdown: very low distortion; load line protection: integral heataink; no external component
APPLCATIONS: hi-h, diaco: monmor, powar glave: induatrial: pubic addreas
SPECIFICATION: Input Sensitivity- 500 mV . Oulpul Power-1zOW A M S. into An. Load Impedance48 L . Distortion- 0.05% al 100 W at 1 kHz . SignatiNaise Riatio- 96 de . Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Suppiy Voltage- $\mathbf{4 5 V}$. Size- $114 \times 100 \times 85 \mathrm{~mm}$ Price $£ 21 \cdot 20+£ 1 \cdot 70$ VAT. P. \& P. free

HY400 240 W into 4Ω

The HY400 is I.L.P.s "Big Daddy" of the range producing 240 W into 4Ω ! It has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a coollng fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hl-fldellty power module.
FEATURES thermal shutdown; very low distortion; load line protection: no external componenls APPLICATIONS: public address: diseo: power siave; Industrial.
SPECIFICATION: Output Power-2soW R.M.S. into in. Load Impedance-4-18R Distortion- 0.1% at 240 W nt 1 kHz . Slgnal' Noive Ratio stab. Frequancy Response- $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage $- \pm 45 \mathrm{~V}$. Input Sensitivity- 500 mV . Size- $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 29.25+£ 2.34$ VAT. P. \& P. free
POWEA SUPPLIES: PSU36-suitable for two HY30s [4. $75+59 \mathrm{p}$ VAT. P. \& P. free. PSU50-sultable for two HYS0s $5.5 \cdot 20+$ 77p VAT. P. \& P. fres. PSU70-suitable for two HY120s $\mathbf{5 1 2 \cdot 5 0}+5100$ VAT. P. \& P. free. PSUgo-suitable for one HY200 \&11. $50+92 p$ VAT. P. \& P. free PSU\{日D-suitable for two HY200s or one HY400 £21 + £1-68 VAT. P. \& P. free.

> AVAILABLE EX STOCK

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

> I.L.P. Electronics Ltd. Crossland House, Nackington, Canterbury Kent CT4 7AD

Name and Address

PLASTIC BDXES IN 5 SIZES
Easily driled or punched，grey ABS boxes incorporate slats for 1.5 mm peb＇s with lid fixing screws running into integral brass bushes
$100 \times 50 \times 25 \mathrm{~mm} 51 \mathrm{p} \quad(1.9) 49 \mathrm{p} \quad(10+\}$ $112 \times 62 \times 31 \mathrm{~mm} 59 \mathrm{p} \quad$（19）52p $\quad\{10+\}$ $120 \times 65 \times 40 \mathrm{~mm} \quad 68 \mathrm{p} \quad\{1-9\} 62 \mathrm{p} \quad(10+\}$ $150 \times 80 \times 50 \mathrm{~mm} 77 \mathrm{p} \quad(1-9) 74 \mathrm{p} \quad$（10＋）
$190 \times 110 \times 60 \mathrm{~mm} £ 1.33 \quad\{1.9\} £ 1.30 \quad\{10+1$ Palystyrene version
Plain inside，no integral bushes
$1\} 2 \times 61 \times 31 \mathrm{~mm} \quad 35 p \quad\{1-9\} 32 \mathrm{p} \quad(10+]$
Add 25 p per $£ 1$ order value for Post \＆Packing
TYPE A NEDN INDICATDRS
Held in 8 mm hole by plastic bezel 150 mm wire leads

Red，Amber，Clear，Opal 19p each Green 28p each
TYPE MP NEON INOICATOR
150 mm leads，held in 6.4 mm hole by nut
\qquad
Red，Amber，Clear，Opal
20p each
On all orders quote reference $\overline{\mathrm{PE} / 12 / 76}$

Stop wasting time soldering
Tha NEW MW BREADBOARD accepts Transistors，LED＇s，Diodes，Resistors，Capacitors and all DIL packages with 6 to 40 pins

Includes slot－in Component Support Bracket and has over 400 individual sockets，płus Vee \＆Ground Bus Strips Price $£ 9.72$（includes VAT \＆P．P．）
POWERFUL 12 VDLTS MINI HAND DRILL
 Ideal for drilling
acb＇s，chassis and
modet－making

EYE CATCHING INSTRUMENT CASE Removable Red，Orange or Grey covers． Black chassis with support brackets Overall size $250 \times 167 \times 68 \mathrm{~mm}$
Price £ 11.86 （includes VAT \＆P．P．）
ECONOMY QUALITY LEO＇S
50 for only f 5
100 for only $f 9$
Mixed bags，all sizes，various colours
－ $125^{\prime \prime} G^{\prime} \sqrt{\prime}$

```
Mins=
```

Ions

FULL SPEC．INOIVIDUAL LED＇s Red fany size）$£ 0.75 /$ pack Green，Yellow，Orange（any size）$£ 1.20 /$ pack Packs contain 5 LED＇s，clips and data

OH LAMPHOLDER
For LES or Midget flange larmps 13 mm hale fiking，lamp not included Red，Blue，Green，Amber，Clear，Opal．Orange Price 25p each（See P．P．Note below） Quantity quotations on request．

LEKTROPACKS

17 Turnham Green Terrace，Chiswlck，London，W．4．Tel：01－994 2784 \star NEW＊FULLY GUARNTEED COMPONENT PACKS＊FULL SPEC SEMI－
CONOUCTORS．AVAILABLEINLOW COST PACKS OFTEN．ALL PRICES CONOUCTORS \＆AVAIABLE IN LOW COST PACKS OF TEN \＆ALL PRICES INCLUDE
VAT AND U．K．POSTAGE VAT AND U．K．POSTAGE＊NO HIDDEN EXTAAS＊TEN PACKS LESS 15% ．

${ }_{\text {AC188 }}$	Price per 50		Price par 10	Price	por 10		Price per 10
	51.20	BFYS2		TIP31A	cs． 50	1N4005	c0．90
	${ }^{51.20}$	BFY90	10．00	Tip3is	${ }^{6}$－畋	1N4148	50.70
${ }^{\text {AC176 }}$	c1． 20	BFX\％	c－14	Tip3tc	［7． 析 $^{\text {c }}$	2N708	51.20
BC107	51.00	8Fx84	［2．00	Tpaza	ct． 20	2N70日	¢1．50
8C108	£	BFXB7	c3．06	T！P328	대． 50	2 N 930	\＄2．00
EC114	E1 00	日Fх88	［2． 50	TPP3C	ㄷ．1．0	2N2219	22.20
$8 \mathrm{BC126}$	51.00	EY＋27	£1－20	TiP33A	¢1．${ }^{\text {c／}}$	2 N 2904	22．00
BC147	51.20	B2Y59	fi．be	TIPS38	［11－\％	2 N 2906	¢2． 50
BC148	51.20	C1068	c5． 00	TIP33C	［13．09	2 N 2907	2． 2.00
BC165	¢1．20	O30 Diac	［ 51.54	TIP3AA	c13． 50	2 N 2926	
日C182	51.20	MFC4000	－£6．0\％	TIP34	［ 14.60	2N3053	ع1． 20 22． 20
BC183	¢1． 20	MPF103	c3．${ }_{\text {con }}$	TIP3AC	215．30	${ }_{2}{ }^{\text {N3054 }}$	12.20 54.50
BC124	¢1．20	MPF104	c3． 50	TiP3SA	513 50	2N3054	${ }_{85}^{24.50}$
BC212	£1． 20	NKT135	¢200	Tip3se	［14．50	2 N 3643	
BC213	5120	OA10	$\mathrm{c}_{2} \cdot 00$	TIP35C	¢15 30	2 N 3702	51.50
BC214	E1．20	O2200	¢0．${ }^{0}$	T1P38A	E 30.00	2 N 3703	\％ 40
${ }^{8} \mathrm{C} 237$	53.20	OA202	c0．${ }^{\text {d }}$	TIP33日	£32．00	2N3706	\＄1．20
${ }_{8 C Y}{ }^{\text {che }}$	E10．00	OA211	¢2． 50	T1P36C	E38．00	2 N 3707	\％1．50
BCY70	£2．00	0 C 71	¢1． 60	TIP41a	${ }_{56}^{56} 30$	2N3819	\＄2．20
ECY71	5200	TIP29A	44．50	TIP42A	58 10	2N3820	E2． 50
${ }^{\text {BCY72 }}$	200	$7 \mathrm{TP298}$	c5． 58	TXAL2288 3A		2N3904	E1．th
B8131	23－00	TIP29C	E6．90	400 V Triac	¢5．50	2N3905	E1．80
80132	¢3．	T1P30A	¢5． 40	1 N 914	50.60	2N3906	¢2．00
8F194	\＄1－${ }^{\text {cos }}$	TIF308	28．90	1 N 4003	co． BO_{0}	40360	24．00
BFFI95	51.00	TIP30C	［7－80	1 N 4004	E0．70	40361	54.00
BFY50	［2－20			1 N 4005	S0 75	40362	¢400

THERMAL OAS SENSOR．Figaro TGS105 $\mathbf{2} 225$ each．As used in Sept 76 P．E． Gas／Smoke Detector

Organ Conslructors
T3－NOTE BASS PEDAL EOARD
Hard wearing plastic covered steel levers．Change－over contacts on each note Slightiy shop－soiled therefore less than half price
£12． 50 each
MIniature Msinat Tranaformers
Pri．240V a．c．Sec．12V 150 mA ． 10 for $£ 5 \cdot 75$.

SPECIAL REDUCTIONS OF EAGLE INTERNATIONAL PRODUCTS While Stocks Leat

TPA160 TPA40 AG71 SG70 SAC14 SAC30	PA．Amplifier 240V a．c． P．A．Amplifier 240 V a $\mathrm{c}, 12 \mathrm{~V}$ d． c Audio Signal Genarator A．F．Signal Generator $7+7 W$ Siereo Amp．Madule $15+15 \mathrm{w}$ Stereo Amp．Madule	ARP $\mathbf{1 4 9 \cdot 6 0}$ 261.00 561.00 £9． 50 £14．50	Feduced to 599－00 £39－50 £39． 50 $£ 35.00$ 17．50 £10．95
All prices include VAT and U．K．Postaga，Callers welcome．Aiso in stock a large selection of second－hand records－callers only．			

＂Manta＂ ＂Capacitive Discharge
 Electronic Ignition Unit
 IMPORTANT NEWS：

We are pleased to announce that the＂Manta＂－one of the highest quality ignition units available－is now supplied in Kt Form，
Construct this top performance electronic ignition unit and benefit from improved petrol consumption，smoother running and instant starting for your vehicle．

ONLY
KIt price（including postage and packing，VAT，fult
£16．50 assembly and installation instructions：

T，postage and packing）
Plespe sead S．A．E．，Ioday for fall detalis of this lop quallity Enit and our mastrated
brochure＂Ejectroake Ipnition－How it Work

ELECTRO SPARES

Dept．P．E．，187a Sheffield Road，Chesterfield，Derbyshire S41 71Q．Tel．（0246） 36638

New to the UK from PRONTO

Battery operated LCD read out
CALENDAR CLOCK KIT-crystal accuracy Bold Digits-runs on two Penlight Cells.

Now is the tirme for the hobbyist to move into Advanced Technology with Prontol
PRONTO MODEL 301 - The first completely portable liquid Crystal display, digital CALENDAR CLOCK KIT offered in the United Kingdorn.

- Battery operation - two small alkaline cells give a minimum Hfe of 12 months.
*Superb accuracy through crystal control - of 3 minutes a year *Wide angle display with $\frac{1}{y}$ Inch digits
- Push Buttons give choice of 3 display modes - hours minutes
on 12 hour display with flashing colon, or seconds, or date.
*PRONTO 301 comes complate with easy to follow
instructions ATf2g-50 including V.A.T. Y ou save
Pounds off the recommended retail price of a
comparable made up clock.
TERMS: Cash with order - make a cheque and/or postal order payable to PRONTO EL.ECTRONIC SYSTEMS LIMITED.
($P \& P-U, K, £ 0.45$ Overseas $£ 1.50$)

PRONTO Fluorescent Display Alarm Clock KIT Wake up to the electronic age with the new PRONTO 304 Alarm Clock

- Large Bright Green Display
'Alarm with 10 minute 'snooze' feature
*AM/PM indication and simple serting
*Automatic brightness control on digits
governed by room lighting
* Ingenious gravity alarm - rime serting mode switch - Full assembly instructions
ATf15-50 including V.A.T.
With all PRONTO produces - enquiries from the Trade, as well as the Hobbyist are welcome, and you can also buy are welcame, and you ca
individual components!
individual components!
PRONTO CONST RUCTOR'S CLUB When you buy your first Pronto kit you're autornaticaliy a Member of tha PRONTO CONSTRUCTOR'S CLUB. It will not only keep you in the picture on new ideas and $k i t s$. . . but gives you FREE a E2 Voucher against the purchase of your next kit!
Isn't it tlme you joined the Club?

PRDNTロ

Please send me -
PRONTO $301 \mathrm{KIT} / \mathrm{S}$ AT £29.50 EACH (Plus P \& P) PRONTO 304 KIT/S AT E15.50 EACH (Plus P \& P)

> My cheque/P.O. for
\qquad is enclosed NAME \qquad ADDRESS

Pronto Electronic Systems Ltd.
$645 / 647$ High Rd., Sevan Kings,
Essex IG3 8RA. 01-599 3041

Are you only HALF a Constructor?

For a year or two / was only half a constructor-struggling along trying to find the right components by tramping from shop to shop. Then I discovered Home Radio and their marvellous Components Catalogue! It's made life so much simpler for me-I can soon locate just what I need and then order by phone. I really feel that now I can claim to be a complete constructor.

The Home Radio Components Calalogue consists of 200 pages containing some 5,000 items, nearly 2.000 of them illustrated. Everything is set out so clearly the catalogue is a pleasure to use. When you buy one you also receive free a mini catalogue filled with super bargains. The saving on some of yourpurchases from this bargain list alone can more than pay for your cataiogue The calalogue costs $£ 1$ plus 40 p for postage and packing. Why hesitate? Send off your cheque or P.O. for $£ 1 \cdot 40$ now, and discover the satisfaction of being a complete constructor!

HOME RADIO (Components) LTD Dept. PE 234.240 London Road, Mitcham, CR4 3HD Phone 01-648 8422

One of these could make
 December issue
 How to make a Chromachaser
 EVERYDAY ELECTRONICS
 December issue Two big projects how to make a Miniorgan and a 'Scrabble' T1mer. start of a new series explaining the mathematics used in OUT NOVEMBER 19 VHE Converter
 tart of a new

 a new man of youTake a look at the labels. Each one a formula for making you forget the stresses and strains of modern living.

The message of each name is: make something.
Make a digital clock ... make a coffee table .. . make some new sounds. The sheer concentration involved in constructional projects like these smoothes away the tensions.

Any one of these "Practical" magazines packs so many hours of creative satisfaction that it could make a new man of you.

TELEVISION

December issue
The art of alignment,
udio circuits
and servicing the
Philips G8 Colour Cl assis and the Phillps 320. OUT NOVEMBER 15
 SDeck Projects' series. OUT NOVEMBER 5

seme

Call in and see us 9－5．30 Mon－Fri 9－5．00 Sát
Trade and export enquirles weicome

A Marshall（London）Ltd Dept：PE
40／42 Cricklewood Broadway London NW2 3ET Tel：01－452 0161／2 Telex： 21492
\＆ 85 West Regent St Glasgow G2 2QD
Tel：041－332 4133
\＆ 1 Straits Parade Fishponds Bristol 日S 16 2LX Tel：0272－654201／2
\＆ 27 Rue Danton Issy Les Moulineaux Paris 92 160－page Catalogua full of new products，
data，Jap equivalents，etc．，40p
（30p to callers）
TOP 500 SEMICONDUCTORS FROM THE LARGEST RANGE IN THE U．K

All devices manufacturer＇s branded stock

								BC183	析	BF152	0.25	CA3130	$\begin{aligned} & 0.88 \\ & 0.47 \end{aligned}$
								BC103L	0.14	BF153	0.25	LA308N	1．37
2 N 456	1.40	2N2925		2N4922	0.65	AD161	PA	BC184	D． 12	BF154	0.25	LM309K	1－80
2N456A	1.54	Green	0.13	2N4923	0.70	AD162	1.70	BC184L	D－14	BF159	0.35	LM 380	d
2N457A	1－70	Yallow	0.13	2NS190	0.70	AF106	0.45	BC207	$0 \cdot 11$	EFT60	0.30	LM 3 S1AN	2－47
2 N 490	4.60	Oranga	0.13	2N5191	0.80	AF114	0.65	BC2Ca	0.10	BF161	0.60	LM702C	0.75
2N491	5.00	2N3053	0.25	2N5192	1.00	AF115	0.65	BC212	0．14	BF166	0.40	LM709	
2N492	5－75	2N3054	0.50	2NS 195	1.10	AF116	$0 \cdot 65$	BC212L	0.17	BF167	0.33	TO99	0.40
2 N 493	5．98	2N3055	$0 \cdot 5$	2N5245	O．${ }^{\text {a }}$	AF117	0.65	BC214L	0.17	BF173	0.33	BDIL	0.40
2N696	0．25	2N3390	0.37	2N5294	0.35	AF118	0.85	BC237	0－17	BF177	0.38	14 DIL	0.40
2N697	0.16	2N3391	0.34	2NS2S5	0.40	AF124	0.65	BC238	0.12	BF178	0.45	LM710	$0 \cdot 45$
2N6S8	0.12	2N3392	0.14	2NS296	0.36	AF125	0.65	BC239	0.16	BF179	0－4	LMP23C	0.60
2N699	0.55	2N3393	0.15	2N5298	0.40	AF126	0.65	BC251	0.15	BF180	0.45	LM741	
2N706	$0 \cdot 12$	2N3394	0.15	2N5457	0.29	AF127	$0 \cdot 5$	BC253	0.22	8F181	0.45	TO99	0.3
2N706A	$0 \cdot 12$	2N3402	$0 \cdot 30$	2N5458	0.25	AF139	0．19	BC257	0.17	日F182	0.45	9DL	0.35
2N708	$0 \cdot 21$	2N3614	0.15	2N5459	0.28	AF186	0.50	BC258	0.17	EF 183	0． 45	14 DLL	0．46
2N709	0.50	2N3415	0.17	2N5492	0.42	AF200	0.70	BC259	0.11	旦F1B4	0．35	LM747CN	0．78
2N711	0.55	2N3415	0.23	2N5494	0.45	AF239	0.74	BC265	0.21	日F185	0.30	L．M748	
2N718	0.22	2N3618	0.27	2N5496	0.50	AF240	0.90	BC262	0.19	BF194	0.12	6DIL	0.44
$2 \mathrm{N718A}$	0.40	2N3440	0.57	2N5777	0.45	AF279	0.80	BC283	0.30	BF195	0.11	14DIL	0.41
2N720	0.69	2N344！	0．71	2N50027	0.45	AF280	0．15	BC300	0.45	BF196	0.13	LM3900	0.55
2N914	0.22	${ }^{2} \mathrm{~N} 3442$	$1 \cdot 20$	3N128	6－80	ALf02	1.50	BC301	0.45	BF197	0.14	LM7805P	1.39
2 N 16	0.43	2N3638	0．10	3N139	1.45	AL 103	1.50	BC302	0.40	BF198	0.15	LM7812	1.38
2N918	0.34	2N3638A	0.16	3N140	$1-80$	BC107	$0 \cdot 14$	BC303	0.60	BF200	$0 \cdot 31$	LM7a15P	1.39
2 NS 29	0.25	2N3638	0.30	3N141	0.05	EC108	0.12	BC307	$0-20$	BF2051	0．25	LM7824P	1.31
2N930	0－28	2N3641	$0 \cdot 20$	3N200	2.40	日C109	0.15	BC308．	0－14	BF244	0.35	L005TI	1.60
2 N 1302	0－37	2N3702	0.17	40381	0.45	BC113	0.17	BC309C	0.25	BF245	0.34	MC1303	1.47
2N1303	0－37	2N3703	0．15	40362	$0 \cdot 41$	日C115	$0-19$	BC317	$0 \cdot 14$	BF246	0.75	MC1310	1 1．8t
2 N 1304	0． 40	2N3704	0.15	40363	1.00	EC116	0.19	BC318	0．13	BF254	0.20	MC 1330P	0.75
2N1305	0－40	2N3705	0.15	40369	0.60	日C116A	$0 \cdot 20$	8ču7	0．19	BF255	0.20	MC1351P	0－17
2NT306	9． 45	2N3705	0.14	40394	$0 \cdot 60$	日C117	0.22	8c33a	$0 \cdot 21$	BF25？	0.37	MC1352P	d 17
2N1307	0.45	2N3707	0.11	40393	1．20	日C118	0.16	BCS47	0.12	BF258	0.49	MC1466L	3.95
2 N 1308	$0 \cdot 60$	2N3708	0.14	40.406	$0 \cdot 44$	BC118	0.30	日C548	0.10	BF259	0.49	MC146SA	2． 50
2N1309	0．${ }^{\text {co }}$	2N3709	0.15	40407	0．3b	8C121	0.45	BC549	0.13	BFR 39	0．24	MEO402	0－20
2N 1671	1．60	2N3710	0.14	43408	0.50	BC125	$0 \cdot 10$	ECY30	1.03	BFR79	0.24	MEO404	0.15
2N1671A	1．12	2N3711	0.15	40409	0.55	日C126	0．28	日CY31	1.06	日FS21A	2.60	MEO412	0.20
2N16718	$2 \cdot 12$	2N3712	$1 \cdot 20$	$40-10$	0.55	EC132	0．30	BCY32	1.18	GFS28	1.04	ME4102	0．10
2N1711	0．27	2N3713	2． 30	40411	2－30	EC134	0.15	ВСу33	0.90	BFS61	0.30	ME4104	0.10
2N1907	5－50	2N3714	2.45	40594	0.75	BC135	$0 \cdot 15$	日CY34	0．98	BFSsia	0.27	M $/ 480$	1．05
2N2102	0－60	2N3715	2－45	40595	0.35	EC 136	0－19	BCY3B	2．00	日F×29	0.38	MJ4a1	1.30
2N2147	1.40	2N3716	2.80	40601	0－70	EC137	0.14	ECY42	0.60	BFX30	0.35	M－490	1.05
2N2148	1.65	2N3771	1.80	40602	$0 \cdot 50$	BC140	0.60	BCY58	0.55	BFX94	0.38	M $/ 49$ ？	1.55
2N2180	1.10	2N3772	1.70	40603	$0 \% 60$	EC141	0.65	BCY59	032	BFX85	0.41	M 2955	1－21
2N2218A	0.47	2N3773	$2 \cdot 65$	40604	$0 \cdot 60$	EC 142	0.30	BCY70	0.25	BFXB7	0.35	MJE340	0．58
2N2219	0.42	2N3789	2 －60	40636	1.15	BC143	0．30	BCY71	0.25	BFx88	0.32	M．JE2955	1.25
2N2219A	0.52	2N3790	2.75	40673	0.73	EC147	0.10	BCY72	0.24	EFX89	0.95	MJE3055	$0 \cdot 7$
2N2220	0.35	2N3791	2.75	${ }^{\text {AC125 }}$	0．37	EC148	0－19	B0115	1.20	BFY50	0.30	MJE370	0 －64
2N2721	0.22	2N3792	2.90	AC127	0.44	EC149	0.13	BDI16	1.20	BFY51	0.38	MJE371	0.81
2N2231A	0.28	2N3794	0.20	AC128	0.37	EC153	0.27	B0121	$2 \cdot 00$	BFY52	0.36	MUESTO	0－65
2N2230	0.25	2N3819	D． 35	AC151V	0.35	BCi54	0.27	BD123	2.00	BFY53	0.34	MJE521	0.75
2N2323A	0.25	2N3920	0.25	AC152V	0.50	BC557	0.12	BD124	2.00	BFY90	1.27	MPP111	0.35
2N2368	0.17	2N3823	0.61	AC153	0.40	8C158	0.11	ED131	0.53	BRY39	0.50	MP8112	0.40
2 N 2369	0.78	2N3904	0.21	AC153K	0.42	BC160	0．71	日D132	0． 54	BSx20	0.31	MP8113	$0 \cdot 45$
2N2389A	0.21	2N3906	0.22	${ }^{\text {AC154 }}$	0.45	BC187	0.12	EDi3s	0.42	ESX21	0.38	MPF102	$0 \cdot 30$
2N2648	0.55	2N4036	0.67	ACi76	0.40	－C158	0.12	ED136	0.42	BU105	3.05	MPSAL05	0.20
2N2347	$1 \cdot 10$	2N4037	0.55	AC176K	0.45	BC168	0.12	ED137	$0 \cdot 6$	BU205	2.40	MPSA05	－ 20
2 N 29 CH	0.36	2N4058	0.20	AC187K	0.44	白C169	0.12	ED138	041	C105D	0.85	MPSA12	$0 \cdot 35$
2N2904A	0.37	2N4059	0.15	AC18ak	0.45	BC169	0.12	BD139	0.50	casozea	$1+50$	MPSA5S	0.20
2 N 2905	0.37	2N4D60	0.20	AC197	0.45	8C170	0.12	8D140	0.50	cazozal	0－85	MPSA56	0－20
2N2905A 2N2906	0.90	2N4061	$0 \cdot 17$	AC188	0.42	8C17	0.14	BD529	0．35	CA3035	$1-35$	MPSU05	$0 \cdot 40$
2 N 2905	0.20	2N4062	0．10	AD142	0.55	BC172	0.12	BD530	D． 38	CA3046	0.73	MPSU06	0.40
2N2906A	0.25	2N4128	0.17	AD143	0.75	BCin	0.19	BDY20	$1 \cdot 13$	CA3049	2.15	MPSU55	0.45
2 N 2507	0.21	2N4289	0.30	AD149	0.74	BC178	0.18	BF115	0 3	CA3052	1－82	MPSUS6	0.45
2N2907A	0.23	2N4919	0.45	＇AD150	1－20	BC179	0.21	BF117	0.70	Ca3080a	1.10	NESSSV	0．4
2N2924	0.15	2N4920	0.90	AD161	0.75	BC1A2	0.11	BF121	0.55	CA3089E	2－00	NE556	1.30
2N2925	$0 \cdot 17$	2Na92\％	$0 \cdot 80$	AD162	0.75	BC182L	0.14	BF123	0.55	CA309aC	4－25	NES60D	4.46

NES61
NES6SA OC 28
OC 35
O OC35
OC42
OC45 0645
0671
0.72
0.81 R53
SL414 SL610
SL611
SL612
$\mathbf{S L} 820 \mathrm{C}$ SL621C
SLE23C
SLE 40 C SN76003N SN76013N
SN76023N SN76023N
SN76033
SN7603
ST2
TA
TAA263
TAASOO
TAASSO TAAS50

NEW RANGE TOOLS－HIGH QUALITY MINIATURE ELECTRONIC PLIERS AND CUTTERS INSULATED HANDLES Hound nose box Joint 4in culters box foint \quad E2．50 4 in long $82 \cdot 0$
Flat nose box jolnt 4 in long $£ 2$－40 Snipe nose box foint 4in tong． $\mathbf{E 2} \cdot 40$ IDESOLDERING TOOL

P．C．MARKER PEN DALO 33 PC． 87 p ．
ZENER DIODES 400 MW 11p， 1 W 17
IC SOCKETS 8 DIL 14p， 14 DiL 15p， 16 OIL RESI
Wh3（100 itw 2ρ（ 100 per value $£ 1 \cdot 30$ ） SCORP10 per value $52 \cdot 00$ ）
JUMBO 7 SEGMENT DISPLAYS $£ 2 \cdot 16$.
DL 707 t1－ 50 ．
MINITRON E1－50．
dia 24 m ．green and yellow， 0.2 in or 0 16in

SEE MARSHALL＇S FOR CMOS

MICROPROCESSORS FROM
MARSHALL＇S
Read the article，buy the kits？
SCAMP INTRO KIT $562 \cdot 37$
KEYBOARD KIT［59－85
Contact Marshall＇s for RAM＇s． ROM＇s and PROM＇e．
Full zange of Low Power Schattky and Octal Tristate Buffers．

TTL FROM NATIONAL，ITT，TEXAS，SIGNETICS，ETC．

 \begin{tabular}{lll|l}
SN7403 \& $0-18$ \& SN7417

SN7404 \& 0.18 \& SN7420 \& 0.18 \& SN7442

SN74
\end{tabular}

SN7409	0.11	SN7432	0.27	SN7451	0.15	SN7481
SN7410	0.18	SN7437	0.35	SN74S3	0.10	SN7482

DIN PLUGS－ 14 g OIN CHASS IS SOCKETS－ 10 p
3－pin．4－pin，5－pin $180^{\circ}, 5$－pin $240^{\circ}, 8$－pin． 7 －pin and Speaker
LINE SOCKETS－14p each
3 pIn， 5 pin 180° and Speaker
PHONO PLUGS（sctew tap）
Red．white，black，green or pellow 10p，Chrome 15p LINE PLUGS（asme cotout）10p，Chrome 15p PHONO CHASSIS，sockels SUB－MIN CERAMICS 63 V 10F $0.015 \mu \mathrm{Fd} 50$
5\％POLYSTYAENE CAPACITORS $10 \mathrm{pF}-1,000 \mathrm{pF} 69$
$1,500 \mathrm{pF}-0$－014Fd 10 p
Full range of MICA，POL YESTER POLYCARB，TANTALUM and
ELECTROLYTICS alway in
3.5 mm line socket 10 p ；

Potentiometers $1 \mathrm{k} \Omega$ to 2M（E3）
Linear or Log Single Double
Rotary Pois（no ikn log）25p
Rovary Switched
Sliders
Full range of YERO products stocked．See catalogue for detalls
Presets－Horizontal or Vertical －30p． POSTAGE AND PACKING 30 p ． UFACTUAEA＇S SPECIFICATIONS

[^3]
SMALL ADS

The prepaid rate lor classified advertisements is 15 pence per word（minimum 12 words），box number 40 p extra．Semi－display setting $£ 12.00$ per single column inch $(2.5 \mathrm{~cm})$ ．All cheques，postal orders etc．，to be made payable to Practical Electronics and crossed＂Lloyds Bank Lid．＂Treasury notes should always be sent registered post．Advertisements， together with remittance，should be sent to the Classified Advertisement Manager，Practical Elec－ tronics，Room 2337．IPC Magazines Limited King＇s Reach Tower，Stamford St．，London， SE1 GLS．（Telephone 01－261 5918）．

RECEIVERS AND COMPONENT8

ZN7447 BCD－7 segment decoder driver 00p CN707 commari anode 7 seg．display ZNA1I6E 3 d digit DVM IC inc．data ZNIO40E 4 digit Count／Display IC IO40E（R）unmarked reject of abave councs／displays／restes O．K． ZNI034E precision simer 50MS－2 weeks ZN425E B bit D－A／A－O converter ZN424 linear／gatedllow noise Imp ZN414 radio microcircuit
 7489 fulty funcrional 64
 \qquad $1 \cdot 20$ 6.90 65.90 67.00
 12.00
 82.50

 10.70

．\＆P．20p．Data sheers top each．（Mail Order）．
GUD ELECTRONICS
105 Harper Fold Road，Radcliffe， Manchester，M26 ORE

		0.125	$0 \cdot 2$	INFRA RED 550 uW Axal lend mp $6 \mathrm{~mW} 51 \cdot{ }^{3}$ OPTO Oste tree	
	ED	15p	19p		
	G／Y	27p	33p		
	OA	27p	33p	ORP12 ${ }^{\text {Fip }}$	
	15p	2N2926（G）	12p	VOLTAGEREG5：	
	40p	2N3053	15p	5V 7805 Plastic	
	20 p	2N3054	45 p	12V 78121 Amp	
	3p	2N3055	41p	15V7815 all	
	p	2N3702 3 22N303／4：5，6	12p	19878988	
	12p		18p	723 DIP14 50p	
	10p	$\begin{aligned} & \text { 2N3903/4:5/6 } \\ & \text { 2N2646 } \end{aligned}$		BRIDGERECTS．	
	$11 p$	TIS43	${ }^{5}$	24.50 V 30 p	
	11p	MPF102	40 p	2 A loov Jop	
	12p	2N3819	85p	$2 \mathrm{Am00V} 41 \mathrm{p}$	
	$17 p$	2N3823	309	$2 \mathrm{~A} 400 \mathrm{~V} \quad 46 \mathrm{p}$	
	30p	INS	$3 p$	555 Timer 0 ep	
	12p	IN4001	$5 p$	$5552 \times 555 \mathrm{t1} \cdot 10$	
	13p	IN4002／3	4 p	LM380 $\quad 11.00$	
	12p		7p	7400	
	14 p	IN4144	${ }^{\text {cp }}$	OP．MMP\％	
	1	BA100BYT27	$0 p$	709 all 35p	
	24 p		10	7418 b－pin	
	18 p		\％	748016	
	10 p	OA70 OA79		D．b．L．SOCKET8	
	10 p	CA81 OAgO	7p	B－0．L 12	
	209	OA이 OAg	ep	14－pin t3p	
	200	OA200	\％${ }^{\text {p }}$	16－pin 14p	
			7p	Mrice＋tuahmo	
	18p	ZENER8 27.33 V		ros rowe $5 p$	
	7p	BZY的 or sim		Dalo Pa	
PRICES INCLUSIVE＋15p P．\＆P．（18t class）					
ISUAND DEVICES，P． 0.80×11 ，Margate，Kent					

CAR8ON FILM REBI8TORS．5\％E12 Serles， $\frac{1}{5} W, \frac{1}{6} W, \frac{1}{1} W$ ．Mixed to Your choice， 100 for 90p．Electrolytics $50 / 15 \mathrm{~V}, 7 \mathrm{p}$ ．Microprocessors SC／MP，\＄18．MD6800，333．P．\＆P． $15 \mathrm{p}-$ SC／MP，818．MDM6800，33．P．\＆P．
CANDAR，Freepost，Reading RG1IBR．

PA NEL WITH 10 sCRs 200 V IA， 12 Trans．， 12 Ferrire Cores．etc．\＆1（25p）．T．V．CONVER－
GENCEPANEL $2 \times A C 128$ ． 3 Slugged Coils． 3 GENCE PANEL $2 \times$ AC 128， 3 Slugged Coils． 3
51 ide 5 wirches， 11 W．W．Potn， 3 Carbon Presets， 2
 62.50 （ 50 p ）．COPPER CLAO PAX WS On 12 V ．
 $0.5 .+10 \%$ ．All C．P．List 15 p．Refund on purchase． 71 b Assorted Components $\mathbb{2} .60 \mathrm{C} . \mathrm{P}$ ． J．W．A．RADIO
2 Barnfipld Crescent，5ale，Cheshira M33 INL
Postage In Brackers Mail Order Only

R．T．SERVICES
 （MAIL ORDER ONLY）

75 Hayfield Road，Salford 6 Lancs，
FM TUNER with R．F．Stage and A．G．C 3 transistors，neg．earth $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with MAINS INP
MAINS INPUT TRANSFORMERS 20V－0 20V ar 2 amp．©3．95．New．SV at I amp，$\& 1.45$ Mixed Pack of 200 seri Mull 100 for $\mathbb{E} 1.15$ inc．P．\＆P．Send 5 A E foritors A．E．for our All prices include VAT and P．\＆P

TURN YOUR SURPLUS capacitorg，transistors， etc．，Into cash，Contact COLES－HARDING \＆ CO．，P．O．Box 5，Frome，Somerset．Immediate cash settlement．

Precision Polycarbonate Capacitors All High siability－ariramely Low Leakage 400 V．A．RANGE Value Dimen－Price
$(\mu \mathrm{F})$ sloms（mm）each （ μ F）slons（mm）each 0.1
0.15
0.22
0.2
0.3
0.4
0.5
0.6
1.0
1.6
2.0 0.15
0.22
.25
0.33
0.47
0.5
0.68
1.0
1.5
1.0 28．88 ع6．4

 $6 \mathrm{~V} / 10 \mathrm{~V}$ or $18 \mathrm{~V} ; 33 \cdot 0 \mu \mathrm{~F}$ at 6 V or $10 \mathrm{~V} ; 43 \cdot 0 \mu \mathrm{~F}$ gt 3 V or
 for $15^{\circ}, 100$ for 29° ．
TRAMGISTORS \＆ $1.0 .{ }^{\prime}$

 $\begin{array}{llll}-B C 189 / 182 L 11 p & A F 178 & 40 D & \text { ZN414 }\end{array}$ －BCIEs／189L 11 D AF239 －BC184／184L12y ${ }^{-3 N 3702 / 4}$ 11p POPDLAR DIODES－1N914 8p． 8 for $45 p$ ． 18 for $00 p$ ； 20 for $11 \cdot 00$ ， $2 N 4148 \mathrm{Ep}$ ，a tor $27 \mathrm{p}, 12$ for 48 p ： 1 N 400
 LOW PRICE ZENER DIODES－ 400 mW ，Tol $\pm 5 \%$ I 8V2； $9 \mathrm{V1} ; 10 \mathrm{~V} ; 11 \mathrm{~V} ; 18 \mathrm{~V} ; 13 \mathrm{~V} ; 13.5 \mathrm{~V} ; 15 \mathrm{~V} ; 16 \mathrm{~V}: 18 \mathrm{~V}$ 10 for 65 p． 60 for 13.12 ．SPECIAL OFFER： 100 Zener （may bemised）for $\& 8000$ ．
REIETORG－HIgh itabilits，low noise carbon film 5%
tW at $40^{\circ} \mathrm{O}$ ，iW at $70^{\circ} \mathrm{C}$ ．E12 noise carbon fim to $2 \cdot 2 \mathrm{Ma}$ ．ALL at 10° each， $8 p^{\circ}$ for 10 of any one ralue $70 p^{\circ}$ for 100 of any one value．SPECIAL PACK； 10 al esoh ratue $2 \cdot 29$ to $2 \cdot 2 \mathrm{Man}$（ 730 renistors） $45{ }^{\circ}$
 DO27： 100 P．T．V，7p（ 4 for 26p）； 400 P．I．V．8p（ 4 for 30 p ） BRIDGE REDTIFIERS－2i amp：200V 40p；350\％45p； 600 V 65 p.
8DEMIMIATURE FERTIOAL PRESET8－0．1W only Allat $6 p^{\circ}$ ench； $60 ; 100 ; 220 ; 470 ; 680$ ohm；1k；2k 2M5： 6 M ．
PLEABE ADD 20p POST AND PACKING ON ALL ORDRRS．EX PORT－ADD COST OF SEA／AIRMAIL Add 8% VAT to all Itomi excest those marked with which are 12i\％
Send S．A．E．for additional atoek lfate．
Wholeania price listn avajable to bons ide companies
MARCO TRADING（Dept．P．3）
The Old Sohool，Edakeaton，Wem，Ghropiblre
Tel：Whixall 464／485（BTD 094872
（Propra．Mialcoat Trading Ltd．）

TTL SPECTACULARI
（All famous makes．Prices include VAT）

7400	12p	7447	80p	74107	29
7401	13 p	7448	82 p	74109	54
7402	13p	7450	13 p	74121	1p
7403	$13 p$	7451	13p	74122	50p
7404	15p	7453	13p	74123	59p
7405	15p	7454	13p	74141	74p
7406	$27 p$	7460	13p	7414S	78 p
740B	15 p	7472	22p	74150	$\uparrow 1.05$
7410	13p	7473	27p	74151	69p
7411	20p	7474	28p	74153	65p
7412	16p	7475	47p	74154	¢1．35
7413	33p	7476	28p	74155	74p
7414	65p	7480	44p	74157	$86 p$
7417	26p	7483	76p	74160	$\mathbf{1} 1.10$
7420	13 p	7484	97p	74164	\＆1．35
7422	20p	7485	¢1．03	74174	$\underline{1} 1.10$
7425	26p	7486	29p	74175	92
7427	26p	7489	22．50	74181	18219
7430	13p	7490	43p	74190	11.25
7432	25p	7491	$60 p$	74191	CP． 25
7437	29p	7492	46p	74192	C1．08
7440	$13 p$	7493	46p	74193	¢1．09
7441	69p	7495	60p	74195	90
7442	63 p	7496	69p	74196	1.1
7445	80p	74100	97p	1N414日	2
ZTX108	7p	ZTX300	12p	1 N4003	

Intel 2102 IK Memary 13
Min．order E2．P．\＆P． 20 p （Ist class）C．W．O． Send S．A．E．for full list
J．C．JONES（Dept．PE2I）
46 Burstellars，St．Ives，Cambs． PEI7 4XX
（Mail Order only）
BRANO NEW COMPONENTS BY RETURN
Tiectralyle Capnoitot 18 V ．25V， $50 \mathrm{~V}-0.47 .1 \cdot 0$ （50\％8p）： 220 mp （ 50 y 10p）： 500 11p（ 50 ） 1007 p ） $1.000(16 \mathrm{~V}) 15 \mathrm{p}, 1,000$（ $25 \mathrm{~V}^{\circ}$ ） $18 \mathrm{Bp} .1,000$（ 50 V ） RRp ． Sobminfthare Tankiom Bead Electralytico－ 0.1 $0 \cdot 22,0 \cdot 47,1.0,2.21435 \mathrm{~V}, 4.7 / 25 \mathrm{~V} 11 \mathrm{p}$ ； $20 / 25 \mathrm{~V}$ $22 / 16 \mathrm{~F} .47 / 6 \mathrm{~V}$ and $100 / 3 \mathrm{~V}$ 18p．
Muliard Hin Ceramic E12 Sarias 68v 2\％－ $10-47 \mathrm{pF}$ 8p； $56-330 \mathrm{pF}$ 4p．Ceramte plate $50 \mathrm{~V}^{2}$ El2 u erie 2－1，000pF and E6 rerled 1，500－67，000pF 2p
 $10-1.000 \mathrm{pF}$ Sp； $1.200-10,000 \mathrm{pF}$ ip．
 0.6811 p ； $1.018 \mathrm{~s} ; 1.520 \mathrm{~g} ; 2 \mathrm{2} 2 \mathrm{2RD}$ ．

Mylar（Polyather）Pllm 100 V Vortica！Sounting $0.001,0.002,0.0058 \mathrm{p}: 0.01,0.0231 \mathrm{D}: 0.04,0.054 \mathrm{~S}$ Miniatore Renfilori Righatab．Eip Sorier $\delta \%$ Carbon Film tw $10-10 M 0\left(10 \% 1 \mathrm{M}\right.$ up） 1_{D} Metal Fill
 1.760
1N4 BC107／8／9， $147 / 8 / 9,157 / 8 / 9$. BF194／7 9 p ．
Fuase 20 mm glans． $1 \frac{1}{2} \mathrm{in}$ glasi，Itn ceramic 2
Pant 10p（frea ovar \＆t）．Pricea inclualve of VAT．
THE C．R．SUPPLY CO．
127 Chenterfield Road，Sheffietd 58 ORN

Mullard Components

Polyester Capacitors．C280 Series， 0.01
$0.015,0.022,0033,0047.0 .068,0 \cdot 1,31 p ; 0.15$
 $0 \cdot 22,41 p: 0 \cdot 33,61 p ; 0 \cdot 47$
12p；1．5，i日p； $2 \cdot 2 \mu \mathrm{~F}, 21 \mathrm{p}$. Carbon Film Resistors． $0.33 \mathrm{~W} 5 \%$ Hi－stabilicy
El2 series $4 \mathrm{R} 7-1 \mathrm{M}$ ．Your selection Ip each． $0.9 \mathrm{p} 10+, 0.85 p 100+$

Rezurn of post service．Prices include 123%
VAT．Allow $15 p$ for carriage．Mail order only． VAT．Allow $15 p$ for carriag
All components brand new．

C．N．Stevenson（PE）

304 Avery Hill Road，London SE9 2jN

LOW COST QUARTZ CRYSTAL OSCILLATORS

TTL compatible．
Two plastic encapsulated styles give high accuracy and stablity．
A．D．I．L．package $12.5 \times 20 \times 10 \mathrm{~mm}$ （QC1313） $5-25 \mathrm{mHz}$ priced from £7，and a $2 \times$ D．I．L．spacing， $20 \times 26 \times 12.7 \mathrm{~mm}$ （QC1453）for $1-4 \mathrm{mHz}$ from $£ 6$ ，or for $5-10 \mathrm{mHz}$ from $£ 6$ ．
Prices apply for production quantities．
For full specification write or phone ANN OPENSHAW

ALAN PEARSON
on Heywood 69911

Illuminated thumbwheel switches, docimal Illuminated thumbwheel switches, dccimal output 50p each. End cheeks $25 p$ per pair. Sub min. Sub min. I c/o toggleswitch, non lacking 50 p cacl.. Relay 3 efo mains coils round II pin basc ह1 each. P.C. or salder tag sacket for relay 25p cach. 19 mm PVC adhesive tape. 33 metre rolls 50p per rall. Varo board 0.2 in pitch 4 in $\times 3 \sharp$ in (approx.) $10 p$ cach. 4-care comman screened cable 10p par metre. Still Electronica', June and August $\mathrm{E} \mid-33$ each.

All prices inciude VAT and P. \& P.
Minimum arder Cl .
Free set of four plastic clip on P.C. board supports for every full $\mathrm{f} \mid \mathrm{spent}$
Many other switches, relays and other componencs on special offer.

Free list sent with every order.
PAYLOR CONTROLS LTD.
I WELLINGTON GARDENS BURY, LANCS. BLB 2PG

YALVES, RADIO, TV, TRANSMITTBNG, INDUSTR1AL. 1930 to $1975.2,200$ types in stock, many obsolete. List 20p. Quatation S.A.E. Postal export service. We wish to purchase new and boxed valves. Dealers, wholesalers etc. stocks purchased COX RADIO (SUSSEX) L'DD. The Yarade, East Witteriug, Sussex. Tel. West Wittering 2023.

FOR 8ALE

DOUBLE BEAM O8CILLOBCOPE. Separate y-amps, accessories, manual, as new, carriage pald ${ }^{\text {bit }}$. Mr. MÁRSBALL, Hall Place, Harbledown, Canterbury, Kent, CT2 9AF.

DI8COLIGHTS: 3-chan soundlights $\$ 17.50$: Strobes C 22 ! Full catalogue from-AARYAK ELITCTRONICS, 12a (L) Bruce Grove, London N17. (01.808 8923)

PATCHBOARO and 9 unused Dewtron Synthesiser Modules, half price, S.A.E. for detailsSTEELE, 42 Quarry Road, Ryde, Isle of Wight.

EDUCATIONAL

UNIVERSITY OF ST. ANDREWS
 PHYSICS AND ELECTRONICS

A new Joint Honours BSc. Degrec course in Physics and Electronics (UCCA course No. 3350). Scocland's oldest University offers the opportunity to study this interesting combination of subjects. Details from Physics Department, Norsh Hetails from Physics Department, No

BOOKS AND PUBLICATIONS

START YOUR OWN BUSINESS REWINDING ELECTRIC MOTORS

This unique inseruction manual shows step by step how to rewind motors, working part or full sime, without previous experience.
Everything you need to know easily explained, including where to obeain materials, how to get all the work you need, esc., ete A goldmine of information and knowledge. Only E3.90 plus 26 p P. \& P. From: MAGNUMPUBLICATJONS, Dept. PE5 Brinksway Trading Estate, Brinkwway Stockport SK3 0BZ
Overseas Oistributors wanted

> Theory and practice of
> MOOEL RADIO CONTROL
> 2nd edition with latest circuitry Oevelopment of proportional digital systems explained. Gives practical examples of a modern digital system transmitter-receiver-decoder and scrvo's.
> 62-25 plus 3Sp P. \& P. C.W.O. SAE for lists to:
> D. J, \& D. MODEL GEAR

> S8 Lowther Grove, Garforth, Leeds LS25 IEN

WANTED

WANTED, NEW VALVE8, TRAN8I8TOR8, top prices, jopular types-KENSINGTON SUPPLIES (B), 36; Kensington Street, Bradford 8, Yorkshire.

ELECTRICAL

BTYLI, GARTRIDGES AND AUDIO LEAD8, etc. For the best at keenest prices send S.A.E. for fres illustrated list to: FELSTEAD CLECTRONICS (PE), Longley Lane, Gatley, Chendle, Cheshire, SK8 4EE.

SITUATIONS VACANT

RADIO TECHNICIANS

Government Communications Headquarters has vacancies for Radio

 Technicians. Applicants should be 19 or over.Standards required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radio and electronic test gear.
Duties cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.
Qualifications: Candidates must hold either the City and Guilds Telecommunications Part I (Intermediate) Certificate or equivalent HM Forces qualifications.
Salary scale from $£ 2,230$ at 19 to $£ 2,905$ at 25 (highest pay on entry) rising to $£ 3,385$ with opportunity for advancement to higher grades up to $£ 3,780$ with a few posts carrying still higher salaries. Pay supplement of $£ 313 \cdot 20$ per annum.
Annual leave allowance is 4 weeks rising to 6 weeks after 27 years service. Opportunities for service overseas.

Candidates must be UK residents.
Further particulars and application forms available from:
Recruitment Officer, Government Communications Headquarters
Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ
Tel.: Cheltenham (0242) 21491 (Ext. 2270)

SERVICE SHEETS

8ERYICE 8HEET8, Radio, TV, etc., 50p and S.A.E. Catalogue 20p and S.A.E. HAMLLTON RADIO, 4_{i} Bohemia Rond, St. Leonards, Sussex.

BELL'S TELEVISION SERVICES for service aheets on radio, TV, etc., 75p plus S.A.E Colour TV service mannals on request. S.A.E with enqulries to BT.S. 190 Kings Road, Harrogate, N. Yorkshire. Tel. 0403 55885.

QERVICE 8HEETS, radio, TV, etc. 10,000 models. Catalogue 24 p plus S.A.E. with orders-epquiries. TELRAY, 154 Brook Street Preston, PR1 7 HP .

PROFESSIONAL SERVICES

PATENTS AND TRADE MARK8. KINGS PATENT AGENCY LIMITED (Ebt. 1886) B. T. King, Director, M.I.Mech.E., Registerea Patent Agent, 146a, Queen Victorla Street, London, ECAV 5AT. Booklet on request. Tel. 01-24S 6161. Telex 883805,

LADDERS

LADDER8. Varnished, 20ft. otn. extd 223.03. Carr. 81-90. Leatlet. Alloy ext. and Loft ladders. Immed. despatch. THE LADDER CENTRE (PEE), Haiebfleld (1), Telford, Balop. Tel.: 586644. Order ©.O.D.

MISCELLANEOUS

NO LICENSE EXAMS NEEDED

To operate this miniature, solid-state TRANSMITTER RECEIVER kit. Only 48. 25 plus 20 P P. \& P.
'Bratn-freeze' 'em with a MINI-STROBE kit, pocket-sized 'lightning flashos', varispeed, for disca's and partics. A mere $53 \cdot 80$ plus 20 P P. \& P.
Experiment with a psychedelic DREAM Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher: r
modules. 4.75 plus 20 p P. \& P. LOTS MOREI Send 20p far lists
(Prices include VAT).
(Mail Order U.K. anly),
BOFFIN PROJECTS
4 Cunliffe Road
Stoneleigh, Ewall. Surray (P.E.)

CINE/TAPE 8YNGHRONI8ATION (STEREO TOO). Our kit converts Phlips mono cassette recorders to vartable speed with spare track for sync pulse recording or stareo. Ideal for the PE вynchroniger. Only 29.95 (P. \& P. 30p). A.M.P.C., 115 York Street, Cambridge.

CLEARINE LABORATORY, scopes, recorders, testmeters, bridges, nudio, R.F. generators, turatables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.

UPERE 〔NsTRUMENT CASE8 by Bazelli manufactured from heavy－duty pve faced steel．Hundreds of people and industrial users are choosing the cases they require from our vast range．Competitive prices start at a low 82p．Examples：width，depth，height，8in．x $5 \mathrm{In} \times 3 \mathrm{in}$ ， $81.70 ; 10 \mathrm{In} \times 6 \operatorname{in} \times 3 \mathrm{In}, ~ £ 2.42 ; 10 \mathrm{In} \times$ $3 \mathrm{in} \times 3 \mathrm{in}, \quad 33.02 ; \quad 12 \mathrm{in} \times 10 \mathrm{in} \times 3 \mathrm{in}$ ， $\mathrm{EB}_{3} .96$ ； $8 \mathrm{in} \times 4 \mathrm{in} \times 4 \mathrm{in}, 81.88 ; 10 \mathrm{in} \times 6 \mathrm{in} \times 4 \mathrm{in}, 22.97$ ； 12 in $\times 8 \mathrm{in} \times 41 \mathrm{n}, 53.96 ; 7 \mathrm{in} \times 7 \mathrm{in} \times 5 \mathrm{in}, \pm 2.91$ ； $\sin \times 10 \mathrm{in} \times 8 \mathrm{in}, 83-96 ; 12 \mathrm{in} \times 8 \mathrm{in} \times \operatorname{in}, 84.40$ ； $12 \mathrm{in} \times 12 \mathrm{in} \times 7 \mathrm{in}, 84.84$ ．Plus 85 p carriage and 8\％VAT．Over 400 modelg to choose from． Prompt despatch．Free literaturc（stamp would be sppreciated）：BAZELLLI，Dept．No．23，St． Wilfrid＇s，Foundry Lane，Halton，Lancaster LA2 6LT．

\section*{ENAMELLED COPPER WIRE
 | S．W．G． | Ifb reel | itb reel |
| :---: | :---: | :---: |
| 10 to 19 | E2．95 | $\leqslant 1.60$ |
| 20 to 29 | ＜3．15 | C1－80 |
| 30 ta 34 | 63.45 | 11.90 |
| 35 to 40 | C3．65 | c2．10 |
 All the thove priees are inelusive of postage and
 COPPER SUPPLIES
 102 Parrawood Road，Withineton，
 Maneharar 20

Talephona $061-\$ 458753$}

PRINTED GIRCUIT DESIGN SERYICE．COM－ petitive prices．Send S．A．E．with nircuit diagram and specificatlons for return of post estimate． G．GLOVER， 80 Ashridge Drive，S．Oxhey， Herts．

LOW COST－HIHH EFFICIEICY

RANGE： 10 Hz to 100 kHz ．OUTPUT：IV sine／sq．DISTORTION：less than 0.02% ． 9 V battery．Also available in Kic form at $£ 16.50$ Add 8% VAT．P．\＆P．and ins， 75 p．
Leaflet available．Also F．M．Signal Generator Millivolemeter，freq．meter，THD analyser， P．S．Units and high quality amplifiers．

TELERADIO ELECTRONICS
325 Fore Street，London，N9 OPE Tel．O1－807 3719

DO－IT－YOURSELF LOUDSPEAKER8 for hl－fil are our opeciality．Full range of components and accessories including chassis spenkers， cross－overs，sound absorbent，grilte fabrics， etc．，always available．We stock the fabulous value Hemle speaker kits（complete with full and easy Instructions），also Peerless and Wharfedale kits．Just about the lowest prices anywhere！Send 8！p．stamp for bargaln prices anywhere Send \＆ i ．stamp for bargain PrInces Square，Harrognte，North Yorkshire．

> GLAS5 FIBRE P.C.B.'s
> From your own tape, film or ink master. Send S.A.E. for quotation. PACTICAL ELECTRONICS printed cireuis boards in glass fibre, drilled and tinnedune 76 Transmirter 93p. Coder 日4p.
> Interface S6p. August 76 Servodrive 69 p .
> Serva Amp 54p, Relay Driver 62 D . Complete set of above boards $\mathbb{C 5} \cdot 30$.
> Sept. 76 Tone Garerazor 66 p , Tone Decoder
> 72p. May-June 76 Digital Frequeney Meter.
> Cross.Hateh Generator $\in 2$. GS. Send S.A.E. fo
> information on eurrent boardi. C.W.O. please.
> PROTO DESIGN
> 4 Highsliffe Way. Wiskford, Essex SSII 8LA

LIGETIG CONTROL URTR

Sound to Light．Quality 3 chamenel dieplay control （ $1 \cdot 5 \mathrm{k}$ W per channel）ts deslgned for ruggednces． satety and elmpiledty of constraction，The kit inclodes individual veninivviy co
unique intenmity dimming controi．
each（ 3 requitred）．
 titue rariable
 SELEETRON， 21 Priora RA，Windsor，Berka，SL44PD

CHROMASONIC Electronics

From Denco Coils，through TTL，C＇Mas，Quarts Crystals，Vero，DVM Chips，Clock Chips，LED＇s；LCD＇s；Displays，Transformers，Boxes，Cases，Knobs and millions of R＇s and C＇s，Transistors and Diodes．
It＇s all in our BRAND NEW illustrated CATALOGUE．FREE with every copy are 36p worth of vouchers．Send 35 p，incl．Free p \＆p to：
Dept．2，Chromasonic Electronics， 56 Fortis Green Road，London N 10 3HN

H．M．ELECTRONICS

275a Fulwood Road，Broomhll，Shefileld S 10380

Give your project that protessional tooking finish．Bulld it in a BEC Dry tranafer lettering now avaliable

ORION cabinet silil available punched or unpunched Send $15 p$（refundebie）for legflets

Musical Miracles！

by Dewtron ${ }^{(18}$
Build your own synthender or musieal eftech uning wome of the huge range of DEWTROX modales．Or，bulld fuxz or was－whe at budget pricea uning apecial kitn．
Send 20p for Catalogue from：
D．E．W．Ld．， 254 zinghood Road．Formdown． Dorset BER2 OAR．

RECHAREEABLE NICAD BATTERIE8．＂AA＂ （F＇P7）98p．＂Sub C＂R1－16．＂C＂（HP11）si－92． ＂D＂（HP2）制－58．＂PP3＂s4－48．Matching chargers respectively，84•49，24•48，84＇08，83－88． All prices lnclude VAT．Please add 10% poot and package．S．A．E．for full price list +30 p for information booklet if required． GANDWELI PLANT LTD， 1 Denholm Road，Button Coldfleld，Weat Midanda．Tel． 021－354 9784.

CABINET FITTINGS

 FORStage Loudapeakers and Amplifier Cabs Freteloths，Coverings．Recess Handles，Strap Handles，Feet．Castors．Locks and Hinges． Corners，Trim，Speaker Boles，etc．，ecc．

Send $2 \times 8 \nmid p$ Stamps for samples and list．
ADAM HALL（P．E．SUPPLIES）
Unit E，Starlina Worka．Grainger Road Southand－on－Sea，Eszex．

LOW COST I．C．MOUNTING for any size DIL package． 100 Soldercon sockets 65p． 7 and 8 hole plastic supports 5p／pair．Quantity rates． S A．E．details and sample．Trial pack 65p （P．\＆P．10p／order）．PKG ELECTRONICS， Oak Lodge，Tansley，Derbyshire，DE4 5FF．

PRINTED CIRCUITS and HARDWARE

Readily available supplies of Con－ structors＇hardware，Aluminium sheet and sections．Printed circuit boards，top quality for individual or published designs．
Prompt service．
Send I5p for catalogue．

RAMAR CONSTRUCTOR SERVICES Masons Road，Stratford on Avon Warwicks．
 Tel． 4879

WIND GENERATORB，golar electricity genera－ tors，inverters，etc．S．A．E．lists．COM－ MBECLAL RADIO SERVIOES， 125 Hazle－ bury Road，Fulham，Loddon，SW6 2LX．

ENAMELLED COPPER WIRE			
SWG	1 lb	402	202
14－19	$2 \cdot 40$	$0 \cdot 60$	$0 \cdot 50$
20－29	2.45	$0 \cdot 82$	0.59
30－34	$2 \cdot 60$	0.89	0.64
35－40	$2 \cdot 85$	$1-04$	0.75
Inclusive of P．\＆P，and VAT．			
S．A．E．brings eatalogue of copper and resistance wires in all eoverings．			
	E SCIENTI P．O．Box 30	RE CO	NY

COLCHEBTER＇S COMPONENT 8HOP open Suadsy－Fridsy， $12-6$ p．m．J．K．ELEC－ TRONICB， 11 Merses Road．Tel． 64433.

SURPLUS TO INDUSTRIAL REQUIREMENTS

25 assorted spindle potentiometers．
25 assorted electrolytics，axle wire ended．
25 assorted 7R，10R and 20R wire－ wound presets．
4 single pole 100 V d．c．relays．
20 neons（ 10 clear， 10 amber）．
5 miscellaneous lever key switches．
6 miscellaneous dual potentio－ meters．
£1．25 inc．VAT＋20p P．\＆P．－any selected pack C．W．O．to：
BLORE－BARTON LTD．
Reedham House，Burnham，Bucks．
VERO BOXES／CASE8，o．g．65－2520J $\quad 2.12$ VAT／Postage inclusive．Send S．A．E．for list． CAYERE ELECTRONICS， 94 Stratford Road，Wolverton，Milton Keynes，MK1？5LU．

> I．C．EXPERIMENTER＇S KITS
> Learn about modern electronics with our niew series of Kits on digital logic cechniques．Each Kit eontains specially ielecred I．C．5，Holders，
> Available at $\mathbf{K 4} \cdot 00$ eash（including P．\＆P
> Kit One－Gates Kit Two－Flip．Flops Kit Thres－Shift Registers
> Kit Four－Counters Kit Five－Displays S．A．E．for further derails to：
> AUTOMATED HOMES
> 69 High Street，Ryton，Coventry CVa jFs （Maif Order Only）

Dimmit range of light dimmers and lighting control systems

Illustrated is the popular PMSDIO00 module. A 1 kW slider cantrol dimmer, interference sup. pressed, 60 mm slider range size $4 \frac{1}{2} \times 2 \times 1$ in. Ideal for low cost stage and disco lighting. Used by schools, theatres, studios, etc. Complete with scale plate, fixing
scraws and full instructions. $\mathbf{~} 9.06$ rnc. VAT and postage and packing.

Complete compact light dimmer systems for stage, club and disco lighting, ecc.

DD6IM (illustrated). Six IkW channels, six outler sockets, master conPrice El40.40 inc. VAT.

DD6I-B. Six 1 kW channels, using module PMSDIO00, lowest cost system. Sizel $6 \frac{1}{2} \times 8 \times$ Sin. Price $£ 64.50$ inc. VAT

DD62M. As DD61M but with six 2 kW channels, size $25 \times 10 \frac{1}{2} \times 6$ in. Price E205.20 ine. VAT

Add E2-20 pastage ond packing for all systems.

The Dimmic range includes rotary and slider control dimmers and sound to light converters for home, entertainment and professional applications. Ratings $1 \mathrm{~kW}, 2 \mathrm{~kW}, 3 \mathrm{~kW}$.

All products are guaranteed and are supplied with full instructions and applications. Full after-sales service. Technical advice given.

For full information on all modules and lighting cantrol systerns send for our FREE illustrated catologue and price list. Callers welcome, visit aur show room for a demanstration of any of the modules or systems. Mon.-Fri. 9.30 to 6.0 p.m. Sot. by arrangemen:.

YOUNG ELECTRONICS ETD.
 184 Royal College street. London NWI 9NN Tel. 01-267 0201

OSMABET LTD We make trang torners
LOW VOLTAGE TRANSFORMERS
Prim. 2001240 V a c., $5 V$ 1A 60 p ; 6.3V 1-5A 51-65: 3 A

 50 V GA CT $\mathbf{~ 1 1 8 . 7 5 ;} 25 \mathrm{~V} 2 \mathrm{~A}+25 \mathrm{~V} 2 \mathrm{~A}$ 27: $12 \mathrm{~V} 4 \mathrm{~A}+12 \mathrm{~V}$ 4A 57.
LT TRANSFORMERS TAPPED SEC, PrIm 2001240 V
 2A. EF . 75 . 0 - $40-50-80-80-100-110 \mathrm{~V} 1 \mathrm{~A}$. 57 .
MIDGET RECTIFIER TRANSFORMERA
For FW rect 200.240V anc., 8-0.0V 1.5A or B-0-9V 1 A

 $+12 V 0.25 \mathrm{~A}$, or $20 V \mathrm{O} 0.18 \mathrm{~A}+20 \vee 0.15 \mathrm{~A}$. हll st 22 each. LOUDSPEAKERS
 E1 wach: a $x \sin 3,{ }^{2}$ or 25Ω. $\mathrm{ET}-75$; Goodmans 6 in twin cone
or 25Ω. $\mathrm{E} 1 \cdot 50$.
"JNSTANT" BULK TAPE/CASSETTE ERASER
 demagnalisea lape neads, $200 / 240 \mathrm{~V}$ a.0.0. 53.75 .
SYNCHRONOUS GEARED MOTORS 200/240V a.c. 25 Brand new Smilhs, bull in geartox, 6 p.p.h., 51. each
PAPER TUBULAR CONDENSERS
7mF. $160 \mathrm{~V}, 30 \times 20 \mathrm{~mm}$, 20p (100 for $£ 10$)
SPEAKER MATCHING AUTO TRANSFORMER
G E.C. MANUAL OF POWER AMPLIFIER COVERING GE.C. MANUALIEAS OF 30 W TO $400 \mathrm{~W} \cdot 35 \mathrm{p}$.

CABLES - CABLES - CABLES
MICROPHONE TWIN M/DUTY, BRAIDED SCREEN Professional cable for siage, studio. outdoor. PVC covered, grey, 20p per matot, Grey.
MULTI WAY SCREENED, PVC COVEREO
36 way $51 ; 25$ wily $75 \mathrm{~F} ; 14$ way 50 p i 8 way $25 \mathrm{p} ; 4$ way $20 p$
LOW LOBS CO-AXIAL, CABLE THR
UHF, white, 18p por milre, VHF, white, fp per matre BALANCED TWIN FLAT FEEDER 3OOR
BALANCED TWIN
40 p per 10 meires.
FLEXIBLE PVC MINI 3-COAE CABLE, 19/I-10MM 100 metres E. $\mathbf{3}-50$. Ideal for speakern, intercoms etc.
TWIN FIG. 8 CABLE
Polarised, SABLEm, Scramied alereo c1i15m ALL TYPES DOMESTIC AND COMMERCIAL CABLES ALL SIZES AND COLOURS CONNECTING WIRES
MULTI SGAEENED AND UNSCAEENED CABLE MULTI SCAEENED AND UNSCAEENED arripopa and VAT extra on all order
S.A.E. ENQUIAIES. LISTS. MAIL OADER ONLY

46 Kenilworth Road, Edgware, MIddy, HAs \&YG Tal. 01.958 9314

Still some of the following Low Cost Items available:
MARCONI OSCILLATOR TF885A/1 IT superb condition covering 25 Hz to 12 MHz sine wave in 3 ranges and 50 Hz to 150 KHz square wave. High output $31 \cdot 6 \mathrm{~V}$. Meter scaied in volts and dB.
MARCON] TF67SF WIDE RANGE PULSE GENERATOR- \pm variable outputs up to 50 V . Optional delay. small compact unst.
AVOVALVE TESTER CT160--The Suitcase ${ }^{-1}$. Size approx 15 in . wide $\times 10 \mathrm{in}$. high \times 11in. deep.
FURZEHILL VALVE VOLTMETER V200A Audio to 10 MHz with probe 1 mV FSD. Fine condition.
MARCONI TF1:106 NOISE GENERA-TOR-4 ranges 0-5: 0-10: 0-15: 0-30.
ALL ITEMS $£ 22 \cdot 50$ each or ANY THREE ITEMS FOR $\mathbf{5 6 0}$. Carriage $\$ 2 \cdot 50$ each or 65 for 3.

> COME AND LOOK ON OUA SHELVESHUNDREDS OF OTHER ITEMS TO INTEREST YOU. TOO FAR AWAY-THEN SEND FOR LISTS.

Low cast peripherals
5 Level Printers, Punches. Readers.
ASCII interface evailable.
8 Level items also avaitable at higher cost.
Vatious KE YBOARDS available.

7/9 ARTHUR ROAD, READING, BERKS.
(rear Tech. College)

INDEX TO ADVERTISERS

Paylor Controls	013
Phillos	967
Phonosonics	943
Precision Petlta	996
Pronto Electronics	1009
Proto Electronics	1014
Pulse Electronics	992
Radio Components Specialists	950
Radlo Exchange	erer ii
Ralig, P. F.	946
Ramar Constructor Services	1014
RST Valve Mail Order Co.	946
R.T. Services	1012
R \& TV Components	947
Saltord Electronics	1012
Salop Electronics	1014
Saxon Entertainments Lid.	2. 1003
Scientilic Wire Selaktron Co.	1014
Selektron	1014
Sintel	968
Specials Products Lid.	1006
Stevenson, C. N.	1012
Sugden, A. R.	994
Swanley Electronics	996
Tamba	940
Tandy Corp. (U.K.)	940
Technomatic Lid.	1016
Teleradio Electronics	1014
Tempus	996
Trampus Electronics	938
T.U.A.C.	2. 933
University of St. Andrews	3
Videomaster (Salas Team)	
Williams, Michael	1008
Wilmsiow Audlo	1005
W.K.F. Electronlcs	934
Young Electronlcs	5

SUPERSOUND 13 HI-FI MONO AMPLIFIER A superb aolid state audio componento throughout,
5 8yjicon trangistors 5 8llicon trangistors plus g jower out-put
translstorsin push-pull. tranalstorsin pusk-pull.
full wave rectitica. lull wave rectitica.
thon. Output approx. ol Fatta r.m.s. into reaponae 19Hzequency
+30 KHz . Fuls interated Treble separale Volume, Bass boost and Input for ceratnic or eryatal cartriblge. Sennitivits. approx. 40 mV for foll output. Supplied reads built and tested, with knoba, escutcheon panel, input and output pluga. overail nize high $\times 0^{*}$ whate $\times 71^{*}$ dreps AC 200/250V. PRICE $£ 13.76$. P. \& P. £1.00.
DE LUXE STEREO AMPLIFIER
 $\xrightarrow{\text { A.C. manne }}$ U- ${ }^{\circ}$ seany duty
tulls isolat
ind fully isola-
ted main: tranatorma
er with full er with ful
wave testi-
ifen tion ficantion
giving ade-
Valre inde-up:-2 \times ECLAB Triode Pentotieal $1 \times$ EZ80 is rectiofer. Two tual potentlomatera are provided fer busa and treble control, glving hass and treble boost and cut. A duslvolume controlls used. Balance of the left and right hand ohannels can be adjusted by mentin of a geparate 'Balange' cantrol Atted at the rear of the chassis, Input aensitirity is approximately $300 \mathrm{~m} / \mathrm{c}$ for full peak output of 4 watta per chansiel (8 watta mono), Into 3 ohm apeakera. Full negatlve feedback in a carcfully calculated diotortion. Bupplicil complete tith knolus, chasilg slye $11^{\prime \prime} \mathrm{w} \times 4^{\circ} \mathrm{d}$. Overall height including ralvas $\delta^{\prime \prime}$ Resaise built and tested to a high ntandard. \&12-40. P.\& p Rpady

HARVERSONIC STEREO 44
 tercatamplifier chereatign, rith an output of 3-4 wath per channel into 8 ohin
Bpeakers. Usspeakers. Un-
ing the latest ing the latest
higb technoilt in short term logy integrated circuit aupllfers wilt bull in shorl term rectifler moot ing capacitor, fuse, tone control, volume controla, $?$ pio din apeaker aockets and 5 pln diri tape rec./play socket are mounted or the prlnted circuit
 brand new and teated, with knobs, brushed anodised mounted horizontaily or verticaliy) at only 87.50 to be 50 p P. \& P. Mains transformer with an output of plus a/e at 500 infa can be supplied at $£ 1 \cdot 50$ plus $40 p$ P. \& P. if required. Full connection detaila mupplied,
BRAND NEW MOLTI-RATIO MAINS TRANSFORMERS. OVving 13 alternatives. I'rimary: 0-210-240v. Secondary combinations $0-5-10-15-20-25-30-35-40-60 v$.
halt wave at 1 amp . or $10-0-10,20-0-20,30-0-30 \mathrm{y}$ at 2 amps foll mave. Size Sin. long $\times 4 \nmid \mathrm{fn}$. Wide $\times 3 \mathrm{in}$

MAIIS TRAESFORMER, For power aupplles,
Pri. 200/240v. Sec. 9-0-9at $500 \mathrm{~mA} . E 1-50$. 1^{\prime}. \& P. 60 p .

 Pri, $200 / 240 \mathrm{v}$, Sec. 23v. at 1.6
$50 \mathrm{mi} . ~$
2
ALL PURPOSE POWER SUPPLY OAIT $200 / 240 \mathrm{v}$. A.C. input. Four sultehed full ©v. and 7iv. and 9 v. and 12 v . at 1 amp on load.

 Ready built and
tested. \quad Price f5.75. P. \& P. 85 p.
STEREO-DECODER SIZE $\mathbf{2}^{\prime \prime} \times 3^{\prime \prime} \times \frac{1}{2}$
leady buit. Pre-ailigned and tested
Sena. $20-560 \mathrm{mV}$ for $9-15 \mathrm{~V}$ neg parth opration. Can be atted to
oper altuost any FM VHF fadlo or tuner. Btereo beacan 1 lght can be fitted if raquired. Fuls details and in
 supplied.
Btered beacon light if required
40 p
extra
QUALITY RECORD PLAYER AMPLIFIER MK II A top quality record player amplifier emplosing braty dity double wround maine transtormer, ECca3, ELBA, and rectifer. Beparate Bask, Treble athd Volume controls, -penlicer. Size ì wide $\times 3$ in deep $\times 619$ high, Ready
 ALBO AVAILABLE mounted on board with ourpu transformer and speaker. PR1CE $£ 7$-30. P. \& P, E1-00.

Gesigned and atyled to match our $10+10$ amplife but will ault any other standard atereo amplißer The deajgn fincorporatea the very lateat cireuitry techniques with high-grain. low noine ip stager. Automatio frequenty control to "lock on" tation and prevent drift. IC atereo decoder ior maximum stereo ieparation. L E.D. For stereo beacon indicator. Norn \times nal output of tinner 100 mV. Approxlmate size 12 in wide x oin ceep by $2 t i n$ bigh. Supplied ready built, fully
teated and fully guaranteed. AO maina $200 / 240 \mathrm{~V}$ fiot avalable in kit gumanteed. (0 maina $200 / 240 \mathrm{y}$ (not Special Offer $£ 22 \cdot 50+$ E1.40 P. \& P.

SPECIAL OFFERS

Mullard LP1159 RF-IF Double Tunta Amplifier Mrodule for nominal 470 kHz . 8ize approx. $2 \mathrm{k}^{*} \times 1 \frac{y^{*}}{} \times \frac{1}{2}$ and connection deiails moppliad. $82-25+\mathrm{P}$. \& P, 12p.

Pye VHF/FM Tuner Ifead covering $\quad 88-108 \mathrm{M} / \mathrm{Hz}$ rarth. Supplied prazallgued with full circult diagram Connectlon details supplied
Beautifully made with pre Beautifully made whth ure cinion-genred FM gang and
$323 \mathrm{Pf}+323 \mathrm{Pf}$ AM Tunitg Gang onty £ $3 \cdot 15+1$ '. N 1' 35 p

PRECIBION MADE
Push Button Switch bank, \& Buttons giving 16 s/P C/O Overlocked minltehes plun 1 Cancel Button Plus 3 d $/ \mathrm{p}$ c/o

HI-FI LOUDSPEAKER SYSTEM MkII

Beautifully made slmulated teak finish enclosure now with most attractive alatted frout. Bize 161° high \times $10 \frac{1}{*}^{*}$ wide $\times 8^{\prime \prime}$ deep (approx.). Fited with E.M.I Ceramie Magnct $13^{\prime \prime} \times \mathrm{E}^{\circ}$ bass unlt. H.F. twecter unit and crossover. AVAILABLE IN NOMINAL
4 ohm, 8 ohm or 18 ohm impedance (state which). OURPRICE 12.00 each. Carr. $£ 1.90$

Cabinet Available Separately 87-25, Carr. \&1-40.

Also available in 8 ohms with EMI $13^{\circ} \times 8^{\prime \prime}$ bass
speaker with patasitic tweeter £10-25. Carr. 81.90
LOUDBPEAKER BARGAINS
5 in .3 ohun 81 -45, P, \& P. 35p. $7 \times$ tin 3 ohm fil-69, P. \& P
 $8 \times$. In. 3 ohim with high flux magnet $82-$ P. P. \& P. 50 p .

VYNAIR \& RETINE SPEAKERS \& CABINET FABRICS app. 54 int. wide. Our price $£ 1.50 \mathrm{yd}$. length. P. \& P. 50 p per 5 d . (min. I yd). S.A.E. for samples
"POLY PLAFAR" WAFER-TYPE, WIDE RANGE ELECTRO-DY言AMIC SPEAKER
 banding 20w r.m.e. (40 W peak). Impedance 8 obm onts. Response 40 Fr -20kBz. Can be mounted on ceilinga, walls, etc. and used with or without bafle. Send $8 . A . E$. for
detaile. Oniy $98-40$ each. P. \& P. i5p for ane, 90 p for detail
two

Now also availa ble B^{*}-B ohm. 10 watte r.iri.8. 20 uratt peak use in cars. $25-10+$ P. \& P. (one 35 p , (wo 65 p)

SPECIAL LINES OFFERED SUBJECT TO STOCK AYAILABILITY
Hi-Filelity atereo casactio tape dects qransport mechanomas an uned In HII-Fi Music Centres. Electronically sperd ingt re-settable counter. Itecorl/Flay pre-aing, Bias oschator. Recors/Play and crasic beadn, etc. Power supply required 125 D.C. Circuft diagramn, etc. sapplied. These utila are brand new. but un-tested anil are only offered to the mors ai sanced convtructor enthusiast PRICE E16:87 + 41×3 P. 5 P. WE KBGRET TH TT WE ARE UNABLE TO ENTER
ISTO CORRESPONDHEC ON TEGSE TNITS NTO CORRESPONDFANC\& ON TEESE UNITS

OUR PRICES INCLUDE VA
CURRENT RATES

HARVERSONIC SUPER SOUND $10 \div 10$ STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amphfier Kit. Uses 1t transintor! including Silicon Transistors in the firat five stages on each channel renult lng in even lower noise level with improved sensitirity. Integrated pre-amp with bass, Treble and tro volume Controln. Suitable for uae with Ceramit or Cryital cartridgea. Very simple to Outputstaye for any speakeratrom 8 to 15 ohms. Compact design, all parts aupplied jnciading drilled matal work high quality ready drilled printed eircuit board with component Identlication clearly cnarked, swart brushed anodiaed almoninim front pencl with matching knobs. wire, solder, nuts, bolts-no extras to buy. Simple step by itep instruction enable any conatructor to bulld an amplifer to be proud of. Bref specincatians: Powe
 than BDmy into 1 M a. Full power handwidth: + 3dB $12-15,000 \mathrm{~Hz}$. Hatg, boont approx. to +12 dB , Treble cut approx. to -16dB. Negative feedback 18113 over main amp. Power requirements 35v. at 1.0 mp Overali Bive $12^{\circ} \pi, \times 8^{\circ} \mathrm{d}, \times{ }_{2}^{2} \frac{7}{4}^{\circ} \mathrm{h}$.
Fully tatailed 7 page construation manual anid parts Hat free with kit or send 25 p phun large S.A.E AMPLIFIER KIT (Magnetic input comp

CABINET
Special offer—oniy $\mathbb{E 2} \cdot 50$ if all 3 units ordered at one time plus $\mathbb{E} 100 \mathrm{P}$. 8 P .

Full alter males service
Also available reads built and tested f29-25. F. \& 1 '. $81 \cdot 00$

3-VALVE AODIO
IPLIFIER HA34 MK
AMPLIFIER HA34 MK MI. Designed for Hi-Fl repraduc-
tion of records. A.C. Msins operation. Ready built on plated heary gauge meta
 ELS4, RZ80 valres. Heayy duty, double wound mains transtormer and outputt rana-
former matehed for 3 olm Heaker. Separale voluine control and now with improved wicie range tone controla giving bana and treble lift and panil can be feedback line. Output II watts, From mounting of controls. Complete with knobs, valven, cte. wired and lested for only $£ 7$. 80 , $\mathrm{P} . \mathrm{k} \mathrm{F} . £ 1 \cdot 00$.
HSL "FOUR" AMPLIFTER KIT
HSL "FOUR" AMPLIFIER KIT, Similar in appearance to Ha3s abare but employs entirely diferent and
advanced circuitry. Complete set of parts, ete. $87-00$ advanced elreuitry. Complete set of parts, ete. $87 \cdot 00$ 10/14 WATT KI-FI AMPLIFIER KIT
A styllohly finished A stylubly finished
monaural amplifier with an output of
it watte from ELS4n in juluh-pull Super reproduction of both musle ant speech, with neglJ. gible hum. Separate inputa for mike and gram allow record and anmouncement
 tollow each other
Fuly shrouded aection wound output trausformer to and separte beaker and 2 indepradent volume controls, giving good lift ind cut treble controle are provided EP36 and Ez80 rectitier. Simple inatruction booklet "jp \times SAE (Free with parts). All parta aold separately,
$0 N L \mathbb{Z}$ \&il.25. P. \& P. $£ 1.35$. Also available ready built and tested $£ 15-20$. P. \& P. $51-35$.

SPECIAL OFFER

Latest model Garrard 6300 Auto/Manual changer de luxe with cucing lever, bias compensaior, contiter-balancet

Limited number of the latest BSR C141R1 AuLofManual changer de-luxe. Lightweight tubular arim cueing lever,
bias compensator, PRICE $£ 1260+£ 2 \cdot 40 \mathrm{P}$. \& P .
Alro siruilar but without cueing lever or biak compensator ONLY $£ 11-00+£ 1.40 \mathrm{P}$ \& P
New hut very aljehlly marked OLENBUPN' BSR aulomatle record changer decks fithed with cueing lever, ightwelght arm and cartridgc. Can be used for sulo
P^{\prime} RICE $59-56+£ 1-20 P^{\prime} . \&$.

Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday
Closed Wednesday.
Prices and specificatians correc
at time of press. Subject to
alteration without notice

HARVERSON SURPLUS CO. LTD.
(Dept. P.E.) 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel, : 01-540 3985 SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES

(Please write clearly)

PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO 0 K . ONLY. P. \& P. OF OVERS

[^4]
The new Maplin Catalogue is no ordinary catalogue...

MULTICHANNEL MIXER

Projects section includes complete construction detalis of MUTTI-CHAN quality MULTI-CHANNEL MIXER with modular sections for complete Flexibility. Extremely low noise and distortion AND low cost.

Catalogue includes a very wide range of components: hundreds of different capacitors; resistors; transistors; I.C.'s; diodes; wires and cables; discotheque equipment; organ components; musical effects units; microphones; turntables; cartridges; styli; test equipment; boxes and instrument cases; knobs, plugs and sockets; audio leads; switches; loudspeakers; books; tools AND MANY MANY MORE.
Just one of the hundreds of new of fUliLY companent sectian. A new range SWITCHES INTERLOCKING Price - large range.
high quality - low price - large range
潼
SENO THIS COUPON FOR YOUR COPY OF OUR CATALOGU
ON APPROVAL! Price 50 - SENO Now $1977 / 78$ catalague the Please rush me a copy of your in ampletely satisfied that it is 1 am instant it is published will send $50 p$ within 14 days of rece 14 days worth every penny. return the catalogue ta not satisfied.iation. I understand that ineed ase to keep it.
an

* Our bi-monthly newsletter keeps you up to date with latest guaranteed prices - dur latest special offers they save you pounds) - details of new projects and new lines. Send 30p for the next six issues [5p discount voucher with each copy)

ELECTRONIC SUPPLIES P.O. BOX 3, RAYLEIGH, ESSEX SS6 8LR

Shop: 284, London Road. Westcliff-on-Sea. Essex (Closed on Monday) Telephone: Southend (0702) 44101

[^0]: (c) IPC Magazines Limited 1976. Copyright in all drawings, photograntis and articies published in PRACTICAL ELECTRONICS is fully protected, and reproduction or tmitations in whole or part are exoressiy forbldden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept lega! responsibility for it. Prices quoted are those current as we go to press.

[^1]: - Automatic mic. override Mixes two decks, laps \& mic Facilities as for modular version opposite
 Mute positions on headphone selector for ease of monitoring Two tone stalntess steel pane Sockets on front \& rear panels - Left/right deck fader

 May be operated from any power supply or from main Stereo $18 \vee \mathrm{f53} 50$ Stereo Mains $\AA 59 \cdot 50$

[^2]: Please add 8\％VAT to ali orders（12\}\% for SA300/PM301)
 We accept Accenz \＆earciaycord－sumply telephone or send
 You may pay by cheque，crossed postal ordara，cash（replstered）or bank draft
 To order－or lor advice phone（01） 6846385 or（01） 6840098
 Mall ordera 10：327－333 Whitehorsa Rd．，Croydon，Surrey CR0 2HS
 Shop open gem－5pm Mon．－Sat．Mail order deak 10am－3pm Mon．－Fri．
 Wallingford Branch：Fifit Houte，High St．，Wallingtard，Oxon
 gam－50m Mon．－Sat．Telephone（040t） 35529
 ROSE ELECTRICAL TO BONA FIDE TRADE CUSTOMERS

[^3]: SEND FOR OUA NEW 180 PAGE CATALOQUE－CRAMMED WITH NEW PRODUCTS，TECHNICAL INFORMA USUAL SUPERLATIVE MARSHALL＇S SERVICE－FOR ONLY SIP POST－PAID OR 30P TO PERSONAL CALLEAS OR 30p TO PERSONAL CALLERS． ALARM OR SNOOZE Ca．50
 TAANSFOAMER £1－30
 SWITCHES $53 \cdot 55$

[^4]: Published approxumately on the 15 th of each mozrh ty IPC Magazines Lid, Fletway House, Farringdon Street, London EC4. Printed in England by Chapel River Press, Andover,
 Hants, Sole Agents for Australia and New Zealand-Grordon Goch (A/sia) Litd: South Africa-Central News Agency Lid.
 Subscriptrons not available at home or averseas.
 Inicrational Giro facilities Acconsmi Nio. Si220107. Please state reason for payment. "message to payec
 Practical Electorus is sold subject to the following conditrons, namely, that it shall mot, with out the written consent of the Publishers first given, be lent, resold, hired out ar atherwise or hosed our or otherwise disposed of in a mutilated condition or in any phauthonsed cover by way of Trade, or affized solling price is subject to V A.T., and that it shall not be lent resold matter whatsocver.

