PRACTICAL

FEBRUARY 1977

Stirling QV* MODULES FOR COST-CONSCIOUS CONSTRUCTORS

STIRLING SOUND policy is to ensure customer satis faction by designing and making their products in their own factory in Essex and selling direct Production control-checked throughout. Alt QV Modules are com patible within the range and with much other PRE AMP/TONE CONTROL MODULES UNIT ONE

Combined pre-amp with active tone-control circuits $\pm 15 \mathrm{~dB}$ 10 kHz treble and 30 Hz bass Stereo Vol balance treble bass
200 mV
$\mathbf{~ 7 ~} .80$ 200 mV out for 50 mV in Takes $10-16 \mathrm{~V}$ SS100 Active tone control stereo $\pm 15 \mathrm{~dB}$ on bass and on reble $\quad \mathbf{~ 1 . 6 0}$ SS101 Pre-amp for ceramic cartridges. radio. tape Stereo Passive tone control circuit shown in data supplied [1. 60

SS102 Stereo pre-amp for low output magnetic PUs RIA.A corrected Linear feedback tacility
$£ 2.65$

POWER AMPLIFIERS FROM 3 TO 100 WATTS R.M.S.

THE NEW SS1100

Delfers 100 watts r.m.s. into 4 ohms using 70 volt supply. Heavy duty, ruggedly constructed module complete with output capacitor and heatsink-type mounting bracket. Size approx. $140 \times 76 \times 32 \mathrm{~mm}$. Just the fob for olisco or P.A. use. Large Heatsink- $\$ 1.00 \dagger$
SS103 3 watt rms mono : C with built-in current. short. and thermal protection
SS103-3 Stereo version of above
SS105 5 watts ims into 4 ohms. using 12 V (SS312 $\mathrm{m}^{\mathrm{m} \cdot 25}$ example) $\quad \mathbf{~} 2.25$ SS110 10 watts im.s using 24 V and 4 ohm load Use SS324 as the
power supply
E2.75 SS120 20 watts rms into 4 ohms using 34 V Use SS324 for your Modup SS105,110,120 atl measure $89 \times 50 \times 19 \mathrm{~mm}(3+\times 22 \mathrm{n})$ Suitable power supplies will be found in the accompanying range VAT for power supplies ordered with amps SS103-SS120 becomes 12\%

FM TUNING MODULES
SS201 Front end tuner. slow geared drive. two gang AFC faclity. Tunes 88108 MHz
$\mathbf{5} 5.00$
S\$202 I F amplifier Metering and A F.C tacilties $£ 2.65$
S\$203 Stereo Decoder for use with the above or other FM mono tuners. A LED may be fitted $\{3.85$

Appropriate technical data with all modules
*THE BUILT-IN QV FACTOR

Esirime samui

A member of the Bi-Pre-Pak group
220-224 WEST ROAD, WESTCLIFFE-ON-SEA, ESSEX SSO 9DF
Telephone Southend (0702) 46344
PERSONAL CALLERS WELCOME

TODAY'S BEST VALUE IN Power Supply Units
with 13-15V take-off

All the following are supplied assembled complete with mains transformers and low volt take-off points except Complete with mains transformers excepi except SS300

SS312	$12 \mathrm{~V} / 1 \mathrm{~A}$	£3.75 \dagger
SS318	$18 \mathrm{~V} / 1 \mathrm{~A}$	$\mathbf{4} .15 \dagger$

SS318 18V/1A E4.15 \dagger
SS324 24V/1A \quad E4.60 \dagger
SS334 34V/2A \quad 55.20 \dagger

SS345	45V/2A	$£ 6 \cdot 25 \dagger$
SS350	$50 \mathrm{~V} / 2 A$	$£ 6 \cdot 65 \dagger$

SS300 POWER STABILISING UNIT
Adjustable from $10 \mathrm{~V} / 2 \mathrm{~A}$ to $50 \mathrm{~V} / 8 \mathrm{~A}$ for adding to unstabilised supplies With builtin protection against shorting (p / p 35p)

SS310/5 Stabilised power supply with variable output $\begin{array}{ll} \\ 50 \mathrm{~V} / 2 \mathrm{~A} . & 10 \text { with }\end{array}$ built-in protection against shorting
f11.95 +

WHEN ORDERING

Add 350 tor p/p unless stated otherwise. VAT add $12 \frac{1}{2} \%$ to total value of order unless price is shownt when the rate is 8%. Make cheques, etc., payable to Br-Pre-Pak Lrd. Every effort is made to ensure pores subss of alteration without notice.

CONSTRUCTIONAL PROJECTS

SOLAR HEATING CONTROLLER by G.I. Williams An automatic controller for a circulating pump 98
RADIO CONTROL SYSTEM—2 by G. D. Southern The decoder and final adjustments 102
MILLIVOLTMETER by D. W. Easterling
A battery-powered a.c./d.c. instrument 120
SEVEN-SEGMENT DISPLAY FOR OSCILLOSCOPES by L. M. Newe/l An inexpensive unit generating numerals $0-9$ 126
I. C. SNAP by P. D. Scargill
A simple card game goes electronic 132
GENERAL FEATURES
MEMORIES-2 by A. Briar
This final article discusses Read Only Memories and Charge Coupled Devices 108
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices 119
NOISE SOURCES by D. Maynard
Investigating possible causes and ways of keeping noise down to a minimum 134
INGENUITY UNLIMITED
Polyphonic Keyboard System-Automatic Car Aerial-Car Overheat Indicator-Over-VoltageProtector-Digital Logic Checker-Percussion Effects-Simple Compressor-Clock Display-Head or Tails136
NEWS AND COMMENT
EDITORIAL-The Sunny Side 97
POINTS ARISING
Cine/Tape Synchroniser-Random Tone Generator 101
BOOK REVIEWS
Selected new books we have received 106
SPACEWATCH by Frank W. Hyde
Asteroid Numbered 1976 UA-Largest Radio Telescope-Pluto-Mars 107
COMPUTER HOBBIES in the U.S. by Roger Woolnough
A report on this new pastime for amateur electronics constructors in the States 115
NEWS BRIEFS
Amateur Tape Award-Permanent Magnet Machine-Scanner 116
MARKET PLACE
Interesting new products and catalogues 124
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 130
MICROPROCESSOR FORUM FOR CONSTRUCTORS
Details of a P.E., National and Marshall's joint sponsored event 131
PATENTS REVIEWThought provoking ideas on file at the British Patents Office145
READOUT
A selection of readers' letters 146

Our March issue will be on sale on Friday, February 11, 1977
(for details of special Free wallchart and other contents, see page 125)

[^0]
Join the Digital Revolution

Understand the latest developments in calculators,

 computers, watches, telephones, television, automotive instrumentation. . .Each of the 6 volumes of this self-instruction course measures $11 \frac{3}{1}^{\prime \prime} \times 8 \frac{1}{n}^{\prime \prime}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra. to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems.

£6. 20
plus 80 p packing and surface post anywhere in the world.

Payments may be made in foreign currencies.

Quantity discounts available on request.

VAT zero rated.

```
Also available-a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics
in 4 volumes:
1. Basic Computer Logic
```


£4-20

2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers
plus 80p P. \& P.
Offer Order both courses for the bargain price $59 \cdot 70$, plus $80 p$ bargain

Abstract

Designer Manager Enthusiast Scientist Engineer Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

[^1]LEKTROPACKS
17 Turnham Green Terrace, Chiswick, London, W.4. Tel: 01-994 2784 * NEW * FULLY GUARANTEED COMPONENT PACKS * FULL SPEC. SEML \star NEW \star FULLY GUARANTEED COMPONENT PACKS \star FULL SPEC. SEMCONDUCTORS * AVAILABLE IN LOW COST PACKS OF TEN \star ALL
VAT AND U.K. POSTAGE \star NO HIDDEN EXTRAS \star TEN PACKS LESS 15%

WIRE mF	Volts	mF	Volts	mF	Volts
4	64	10	63	47	10
4.7	63	15	40	50	40
5	50	22	10	64	64
6.8	40	22	35	100	10
10	12	33	40	100	16
10	25	33	100	100	40

SUB-MINIATURE PRESET POTS (horiz. or vert. P.C. Mounting) 10 for 50p.
$50,100,250,500,1 \mathrm{~K}, 2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K} .50 \mathrm{~K}, 100 \mathrm{~K} .25 \mathrm{~K}, 500 \mathrm{~K}, 1 \mathrm{M}$, ohms.
THERMAL GAS SENSOR. Figaro TGS $105 \mathbf{~} 2 \cdot 25$ each. As used in Sept. 76 P.E. Gas/Smoke Detector
13-HOTE BASS PEDAL BOARD
Hard wearing plastic covered steal levers. Change-over contacts on each note Slightly shop-soiled therefore less than half price
12. 50 each

Ministure Malns Tranaformers
Pri 240 V a.c. Sec. 12 V 150 mA . 10 for $\mathbf{£ 5} \mathbf{- 7 5}$
CELESTION 2in and 3in Tweeters. Suitable for systems up to 20 W .
Available in 4, 8, 16 ohms. Impedance. E1. 50 each. 2 for $\mathrm{E2} .90$, 10 for $£ 25.00$ Available in 4, 8. 16 ohms. impediance. $£ 1.50$ each. 2

SPECIAL REDUCTIONS OF EAGLE INTERNATIONAL PROOUCTS While Slocke Last
$\begin{array}{ll}\text { TPA160 P.A. Amplifier } 240 \mathrm{~V} \text { a.c. } \\ \text { TPA40 } & \text { P.A. Amplifier } 240 \mathrm{~V} \text { a.c. } / 12 \mathrm{~V} \text { d. }\end{array}$ AG71 Audio Signal Generator SG70 R.F. Signal Generator
$\begin{array}{ll}\text { SAC14 } & 7+7 W \text { Stereo Amp. Module } \\ \text { SAC30 } & 15+15 W \text { Stereo Amp Module }\end{array}$
All prices include VAT and U.K. Postage. Callers welcome

SPEAKERS
Baker Group 25. 3. 8 or 15 ohm Baker Group 35, 3. 8 or 15 ohm Baker Group 50/12 8 or 15 hm Baker Group $50 / 158$ or 15 ohm Baker Deluxe 124.8 or 150 hm Baker Major 3, 8 or 15 chm Baker Superb 8 or 15 ohm Baker Regent 12in 8 or 15 ohm Baker Auditorium 12in 8 or 15 ohm Baker Auditorium 15in 8 or 15 ohm
Castle 8RS/DD 4 or 8 ohm
Celestion G12M 8 or 15 ohm
Celestion G12H 8 or 15 onm Celestion G12/50 8 or 15 ohm Celestion G12/50TC 8 or 15 ohm Celestion G12/50 2236 s/cone Celestion G12/50 2239 s/cone. alum. dome Celestion G15C 8 or 15 hm Celestion G18C 8 or 15 hm
Celestion HF1300 8 or 15 hm
Celestion HF2000 8 ohm
Celestion MH1000 8 or 15 ohm Coles 4001G
Coles 4001K
Decca London ribbon horn
Decca London CO/1000/8 crossover
Decca DK30 ribbon horn
Decca CO/1/8 crossover (DK30)
EMI $14 \times$ Sin bass 8 ohms. 14A770
EMI $8 \times \sin , 10 w, d / c o n e$, roll surr
EMI $6 \frac{1}{2}$ in d/cone. roll surr., 8 ohm
EM 1 in roll surr, bass
EM1 5 in mid range
Elac 59RM 109 (15 ohm), 59RM114 (8 ohm) Elac $6 \frac{1}{2}$ in d/cone, roll surr., 8 ohm
Elac toin 10RM239. 8 ohm
Eagle FR4
Eagle FR65
Eagle FR8
Eagle FR 10
Eagle HT15
Eagle HT21
Eagle MHT 10
Eagle FF28 Multicell. horn
Fane Pop 15. 8 or 16 ohm
Fane Pop $33 \mathrm{~T}, 8$ or 16 ohm
Fane Pop 50.8 or 16 ohm
Fane Pop 55, 8 or 16 ohm
Fane Pop 60.8 or 16 ohm
ane Pop 70.8 or 16 ohm
Fane Pop 100, 8 or 96 ohm
Fane Crescendo 12. 8 or 16 ohm
Fane Crescendo 12BL, 8 or 16 ohm
Fane Crescendo 15/100A. 8 or 16 ohm
Fane Crescendo 15/125, 8 or 96 ohm

SPEAKERS

Fane Crescendo 18, 8 or 16 ohm

Fane 910 Mk II horn

Fane 920 Mk II horn
Fane MPXt crossover 200W
Fane 13×8 in, 15 W dual cone
Fane 801T 8 in d/c, roll surr.
Gauss 12 in
Gauss 15in
Gauss 18in
Goodmans Axent 100
Goodmans Audiom 2008 ohm
Goodmans Axiom 4028 or 15 chm
Goodmans Twinaxiom B, 8 or 15 ohm
Goodmans 5P 8 or 15 ohm
Goodmans 10P 8 or 15 ohm
Goodmans 12P 8 or 15 ohm
Goodmans 12PG 8 or 15 ohm
Goodmans 12PD 8 or 15 ohm
Goodmans 12AX 8 or 15 ohm
Goodmans 15AX or 15 ohm
Goodmans 15P 8 or 15 ohm
Goodmans 15P 8 or 15 ohm
Goodmans 18P 8 or 15 o
Goodmans Hifax 750 P
Goodmans Hifax 750P
Goodmans 5 in midrange 8 ohm
Jordan Watts Module. 4, 8 or 15 ohm
Kef T27
Ket T15
Ket B110
Ket B200
Kef B139
Kef DN8
Kef DN 12
Kef DN13 SP1C15 or SP1017
Lowther PM6
Lowther PM6 Mk 1
Lowther PM7
Peerless K0100T 4 or 8 ohm
Peerless.DT10HFC 8 ohm
Peerless KO4OMRF 80 hm
Peerless MT225HCF 8 ohm
Richard Allan HP8B
Richard Allan LP8B
Fichard Allan DT20
Fichard Allan CN8280
Richard Allan CN820
Richard Allan Super Disco 60W 12 in
Richard Allan CG15 15 in bass
Richard Allan Super Disco 10 in 50 watt
Richard Allan Super Disco 8in 50 watt
Radford BO25
Radford BO25
Radord MD9
Radford M09
Radford MD6
Radford MD6
Radford TD3
Radtord TD3
Radford Cross Over Network
Tannoy 10 in Monitor HPD

Tannoy 15 in Monitor HPD
Wharfedale Super 10 RSIDD 8 ohm
SPEAKER KITS

Baker Major Module 38 or 15 ohm

Fane Mode One Mk II 15W

Fane D40 Disco Kit
Goodmans DIN 204 or 8 ohm
Goodmans Mezzo Twin Kit
Helme XLK 30
Helme XLK 35
Helme XLK 40.
Ketkit 1
Kafkit ill
Peerless 1060
Peerless 1710
Peerless 1120
Peerless 2050
Peerless 2060
Richard Allan Twin assembly
Richard Allan Triple 8
Richard Allan Triple 12
Richard Allan Super Triple
Richard Allan RAB Kit
Richard Allan RA82 Kit
Richard Allan RA82L Kit
Wharfedale Denton 2XP kit
Wharfed ale winton $3 \times P$ kit
Wharfedale Glendale $3 X^{\circ} \mathrm{P}$ kit
ash 513.50

each $\mathbf{8 1 0 . 3 5}$ each $\mathbf{5 1 0 . 3 5}$ each 515.75 pair E51. $\frac{\text { es }}{}$ pair 211.85 pair [2e.75 pair e3s.50 pair 533.50 pach 249.60 ach 249.00 $\begin{array}{cc}\text { pair } & 554.00 \\ \text { asen } & 546.50\end{array}$ each 546.50 $\begin{array}{cc}\text { each } & \text { E54.00 } \\ \text { pair } & \Sigma 39.50\end{array}$ $\begin{array}{ll}\text { pair } & 553.00\end{array}$ each $£ 13.95$ each 520.75 ach 925.95 each £29.50 | pair | E37. |
| :--- | :--- |
| pat | | $\begin{array}{ll}\text { pair } & \mathbf{5} 59.40 \\ \text { pair } & \mathbf{8 5 5} .70\end{array}$ pair $\mathbf{5 6 5} .70$ pair c23.25 $\begin{array}{ll}\text { pair } & 534.25 \\ \text { pair } & 540.50\end{array}$

HI-FI

ON DEMONSTRATION

in our showrooms:

Akai, Armstrong. Bowers $\&$ Wikins, Castle, Celestion, Dual, Goodmans, Ker, Leak. Pioneer, Radiord. Fichard Allan. Rotel, Tandberg. Trio, Videotone. Wharedale. otc.-ask for our Hi-Fi discount price list.

THIS MONṪH'S SPECIALS! (Carr. ©2•50) Rotel RA412 Rotel RXz22 Mk. II
Videotone Minimax II
277.95

Videotone Saphir II
Pioneer SX450
£49.00
Sansui SC2000/2002
116.00

149.70

We stock the complete Radford range of amplifiers. preamplifiers, power amplifiers. tuners, eic., and also Aadford Audio Laboratory equipment. Iow distortion oscillator, distortion measuring set. audio noise meter, etc

ALL PRICES INCLUDE VAT

(PRICES CORRECT AT 10/12/76)
Send stamp for free 38 page booklet "Choosing a Speaker
ALL UNITS GUARANTEED NEW AND PERFECT
Carriage and insurance: Speakers up to 12 in 60 p ; 2ln £1: 15in £1-75: 18in £2.50. Kits £1 each ($\mathbf{~ 1}$ per pair). Tweeters and Crossovers 33p each.

WILMSLOW AUDIO

 Dept PELoudspeakers, mall order and export: Swan Works, Bank Square, Wilmslow. Hi-Fi, Radio and TV: 'Swift of Wilmslow, 5 Swan Street. Wilmslow, Cheshire.
PA, Hi-Fi and Accessories: Wilmslow Audio 10 Swan Street. Wilmslow Cheshire.
Telephone: Loudspeakers, mail order and export-Wilmslow 29599: $\mathrm{Hi}-\mathrm{Fi}$, Radio. etc.-Wilmsiow 26213.

Access and Barclaycard orders accepied by phone

For details of this and the many other exciting instruments in the Chinaglia range, including multimeters. component measuring, automotive and electronic instruments, olease write or telephone.

DOLOMITI

20k Ω / V a.c. and d.c.

A NEW HIGH SENSITIVITY MULTIMETER WITH ALL THE FEATURES YOU WILL EVER NEED

Accuracy: d.c. ranges. $\pm 2 \cdot 0 \%$, a.c. and Ω ranges $\pm 2 \cdot 5 \%$
39 ranges: d.c. $V, 0-150 \mathrm{mV}, 500 \mathrm{mV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1.5 \mathrm{kV}$; d.c. $1,0-50 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 500 \mathrm{~mA}, 5 \mathrm{~A}$; a.c. $\mathrm{V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}$, $150 \mathrm{~V}, 500 \mathrm{~V}, 1.5 \mathrm{kV}$; а. с. $1,5 \mathrm{~mA}, 50 \mathrm{~mA}, 500 \mathrm{~mA}, 5 \mathrm{~A}$: dB - 10 to +65 in 6 ranges. $\Omega 0-0.5 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$, +65 in 6 ranges
pF50kpF, 500 kpF .

Automatic overload protection and higt, current range fusing
Scale mirror and fine pointer for accuracy of reading. Single knob main range switching and all panel controls. C.E.I. Class 1 movement with sprung jewel bearings. Extended 92 mm scale length for extra clarity. Compact $A B S$ case $125 \times 131 \times 37 \mathrm{~mm}$. Weight 650 g with batteries. Supplied complete with carrying case, fused leads, hand-book and full 12 -month guarantee. Optional 30 kV d.c. probe available.

Meter $£ 45.90$ incl. VAT ($£ 1$ P. \& P.)
30kV Probe $£ 12.85 \mathrm{lncl}$. VAT

Instruments Ltd.
19 MULBERAY WALK • LONDON SW3 6DZ • TEL. 01-352 1897

WELBROOK STEREO

This new hi-fi amplifier from Welbrook is the result of painstaking design incorporating 5 I.C.s 22 transistors plus 10 diodes and offers outstanding value for money to the discerning enthusiast.
30W RMS per channel into 8 ohms load. Total harmonic distortion less than $0 \cdot 1 \%$ at all power levels.
Hum/Noise:

> -80 dB Tape/Tuner
> -65 dB Disc (Magnetic Input)

Complete unit comprising power supply, preamplifier with filter networks, two power amplifiers and loudness control all in teak finished cabinet only $£ 88$ plus VAT.
As above but without filters and loudness control only $£ 79$ plus VAT.
Also available in module form complete with front panel but without cabinet-easily assembled by the average enthusiast.
Send for details and price list to:
Welbrook Engineering \& Electronics Ltd Brooks Street, Hillgate Stockport SK1 3HT

Elumen）Electronic Thusical Snstruments ${ }^{*}$

Showroom： 12 Brett Road，Hackney，London E8 1JP．Tel． 01－986 8455
Component Shop；40a Dalston Lane，Dalston Junction，\star London E8 2AZ．Tel．01－249 5624
\star

Build yourself this high quality touch－sensitive plano．The design also features the new transpose control which is an external tuning control－this tunes the entire keyboard higher or lower than the concert pitch by one whole octave．Two models are available：TS50 which is a straight piano and TS53 has piano，honky tonk，harpsichord，and fast and slow tremolo effects．These professional pianos can be built in just 12 hours． Parts List
Partructional details
ESU／5 Oivider and Touch－Sensitive Keyer UnIt $1 \times$ AY－1－5051 i．c．divider
$5 \times$ diodes low noise high resistance（ 5 p each）
$5 \times$ transistors 2 N 3703 （ 12 p each）
$10 \times$ elect．caps $3.3 \mu \mathrm{~F} 25 \mathrm{~V}$（ 5 p each）
$48 \times$ resistors watt 5%（ 1 p each）
$1 \times$ erminal pins（tp each）
$2 \times 0.01(4)$ drilled
3×0.02（ 4 p each）
Total Price per unit（11 units required）
ESU／6 Divider and Touch－Sensitive Keyer Unit
$1 \times$ AY－1－6721／5
\times diodes low noise high resistance（ $5 p$ each）
$12 \times$ transistors 2 N 3703 （12p each）
$58 \times$ resistors watt 5%（1p each）
$4 \times$ terminal wint $\%$（1p each）
$1 \times$ P．C．board drilled
2×0.01（ 4 p each）
4×0.02（ 4 p each）
otal Price（only 1 unit required

Power Supply

$3 \times$ yards mein cable（10p yard）
\times mains plug and socket
$2 \times$ fuse holders（20p each
$2 \times$ fuses 1a（ 6 p each）
\times rectitier diodes（5p each）
$1 \times$ elect．caps $2,200 \mu \mathrm{~F} 40 \mathrm{~V}$（95p each）
\times lec．caps $1,000 \mu \mathrm{~F} 35 \mathrm{~V}$
x resisiors 5 W（12p each
\times neon lamp
$1 \times$ pot with switch
$1 \times$ metal knob
$2 \times$ capacitor ciamps（5p each）
Total Price
Total Price（only 1 unit required）
\times voltage regulator
\times－octave keyboard C－C or F－F
\times cabinet，front plate and fittings
\times jack socket
\times switched ja
\times stereo
$1 \times$ stereo jack plug
$1 \times$ rocker switches（29p each）
$1 \times$ toud and soft pedal
x tremolo unit for TS53 on
x toneforming unit for TS53 only
\times variable capacitor， 10 turns
$3 \times$ yards buitt and tested，M．T．
\times yards gold wire（59p yara）
$3 \times$ yard 25 corm bar（ 150 yard）
$1 \times$ yarmina core cable（500 yard）
$1 \times$ pre amp fors（\＄p each）
1 pre amp
TS50 Complete Kit
TS50 Complete Kit

30p ¢2．45				
$76 p$				
40p				
12p				
20p				
¢1．90	¢ ¢ ¢ ¢ ¢ ¢＋			
40p				
24p	<			
25p				
$54 p$	二゙〉－＞			
55p	てく《E日ッ《			
10p				
60p				
11． 75				
¢22．00 ¢ ¢ ¢ ¢ ¢				
［26．00	－ 0			
15p				
50p				
25 p －＞＞－				
25p	$\lll 00$			
¢1．16				
¢6．00 N．				
¢3．68	¢－－			
¢5． 50				
［3．72				
［14．05				
81.77	Nへのハ0			
c3．00	¢ 0_{1}			
21．74 ด－－－的 区0				
$30 \frac{1}{2} \mathrm{P}$				
$£ 168 \cdot 81+£ 21 \cdot 10$ VAT				
$£ 172 \cdot 72+£ 21.59 \mathrm{VAT}$				
available，i．e．Mayfair Mk．H pitches， 10 voices，sustain， I．Price £166 inc．VAT，carriage F．at cost． ntity of specialised I．C．s and ata Sheets for organ I．C．s 25p．				

announcing
The Bionic•Ferret 300
A new VCO differentiating metal locator， with the power to locate a $1 / 2 p$ at 8 inches Featuring：
Automatic tuning stabilizer，two levels of sensitivi，metar outpu，con battery drain variable plastic housings，shialded search coil（s）．headphone or speaker outlets
and our usual range of wireless components

complete digital clock kits TEAK CASES

GENUINE TEAK OR PERSPEX CASE

ALARM

$£ 13.43$

+ £1.07 VAT (Prices include P. \& P.)

DELTA DATA; 4 Radiant Red fin high LEDs. 12hr display with a.m./p.m. indication. Beautiful Burma Teak Case or Pretty Perspex in whlte, black, blue, red, green. Power fallure is indicated by flashing dieplay.
MODULES: Kits can be bought without case-Non-Alarm 89 : Alarm $512 \cdot 50$ inclusive.
READY BUILT: Buy a working tested module and fit your own case-NonAlarm 29.50, Alarm 513; or put it with our case parta (54.32) and save on complete clock price. Complete clock ready built. 2 yr guarantee-NonAlarm £13-50, Alarm E18-50.
ALARM FEATURES: Pulsed tone. Till operated 10 minute 'Snooze' period Single switch setting. Optional extra mercury switch (45p) allows alarm reset by tilting clock. Dlgit brightness is automatically controlled to suit tighting level.

NOVUS CALCULATORS 650 ह5.40 $\quad 4510$ e16.20

Send payment with order. S.A.E. for complete range
 Clifton Shefford, Beds.
Telephone: Hitchin (0462) 814477

Ideal for audio testing this handy portable unit is excellent value for money, giving an audio frequency signal variable in amplitude and frequency between 20 Hz and 20 KHz
£2.99+S (order code 991-906)

O'seas orders-add 15% for $P+$. P. All items offered for sale subject to the Terms of Business as set out in Doram Edition 3 catalogue, price 60 p. The Doram Kit brochure is also available, price 25p. Combined price only 70p which also entitles you to 2×25 p vouchers, each one usable on any order placed to the value of $£ 5 \cdot 00$ or more (ex. VAT). DORAM ELECTRONICS LTD
P.O. Box TR8, Wellington Road Industrial Estate, Leeds LS12 2 UF. An Electrocomponents Group Company

Bring 'scope'to your interest.

'There's only one way to master electronics... to see what is going on and learn by doing.'

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1Bulld an oscilloscope.
As the first stage of your trairing, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your k nowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read,draw and understand clicult diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computors and count less other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circulits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working k nowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

 SEMICONDUCTORS
POSTAGE AND PACKING Please add 25p. Overseas add extra for airmail. Minimum order $£ 1$.
P.O. BOX 6 WARE, HERTS 63a High Street, Ware, Herts

BT-PAM
 HIGH QUALITY AUDIO EQUIPMENT-MONO AND OTHER MODULES FOR STEREO

The 450 Tuner provides instant programme selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations, any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls
Used with your existing audio equipment or with the Bi-KITS Used with your existing audio equipment or with the Bi-KITS
STEREO 30 or the MK60 Kit efc. Alternatively the PS12 can be used STEREO 30 or the MK60 Kit efc. Alternatively the PS12 can be used
if no suitable supply is available, together with the Transtormer T461. if no suitable supply is available, together with th
The S450 is supplied fully built, tested and aligned The $S 450$ is supplied fully built, tested and alited
The unit is easily installed using the simple The unit is easily inst
instructions supplied

- Max Heat SInk temp. $90^{\circ} \mathrm{C}$. Frequency response 20 Hz . - Distortlon better than 0.1 at 1 kHz . Supply voltage $15-50 \mathrm{~V}$. - Thermal Feedback. Latesi Design Improvements - Load-3, 4, 5 or 16 ohms. Slgnal to nolse ratlo 80 dB . - Overall size $63 \times 13 \mathrm{~mm}$.

Especially designed to a strict specification. Only the finest components have been used and the latest solidstate circuitry incorporated in this powerful little amplifier which should satisfy the most critical A. F. enthusiast.

$$
\text { onLy } 5
$$

Stabilised Power Supply Type SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers up to 15 watts (r.m.s.) per channel simultaneously. With the addition of the Mains Transformer BMTB0, the unit will provide outputs of up to 1.5 A at 35 V . Size: $63 \times 105 \times 30 \mathrm{~mm}$. Incor porating short circuit protection

INPUT VOLTAGE
OUTPUT VOLTAGE OUTPUT CURRENT OVERLEAD CURRENT DIMENSIONS TRANSFORMER BMT80
$33-40 \mathrm{~A} . \mathrm{C}$.
$33 V$ D.C. Nominal
$10 \mathrm{~mA}-1.5 \mathrm{amps}$ 1.7 amps approx $105 \times 63 \times 30 \mathrm{~mm}$
£2. $60+62$ p posiage

Fitted with Phase Lock-loop Decoder

* FET Input Stage
* VARI-CAP diode tuning
* Switched AFC
* Multi turn pre-sets
* LED Stereo Indicator

Typlcal Specification: Sensillvity 3μ volts Stereo separation 30 dB Supply required 20-30V at 90 Ma max.

				58.60 GROVERD. ADD 8\% VAT TO PRICES MARKED * WINDSOR,BERKS. OR $12 \frac{2}{6}$ TO ALL OTHER PRICES. SEND C. H.O. (EXCEPT GOV'T DEPT) SL4 1HS. POST \& PACKING 2OP FOR THE OR \& 5 MIN ON TELEPHONE ORDERS TEL. 54525 MONEY BACK IF NOT SATISFIED.		
			Preampf2			
	748 DiL 8 p1n 32		FEPOPA			
			/1/2/5/6/7			
	ICL8038 Stgen 44		660 IF			
	H^{1}		611 IF E1			
ck IC 512			${ }^{5 W}{ }_{7}{ }^{\text {AF }}$ AF 84			
			Padio 1	BFX $19 / 20 / 119 \mathrm{p}$ *	$1 / 2 / 10 / 50 / 1007 \mathrm{7} 50 \mathrm{y}$ 10p	
- LEDS					potentiometers ab etc 20 p	
RED LEDS 209 STYLE 0.125	CMOS					
OR 0.2 dia no Clip				$\begin{aligned} & 54 \mathrm{p}^{*} \\ & 99 \mathrm{p}^{*} \\ & 99 \mathrm{p}^{*} \end{aligned}$	PRESETS 6p 3 tresistors 2p HEATSINKS TO5 or $187 p$	
L209 RED LED \& CLIP 12	$\begin{array}{llll}4000 \\ 4001 & 14 \mathrm{p} * & 7400 \\ 400\end{array}$	${ }_{13 \mathrm{p}}^{12 \mathrm{p}{ }^{\text {\% }} \text { * }}$	7490 7191	(later	 DN:PLUGS all 15p.Sock 10p	
EEN Of ORANGE LEDS 29			7492/93 45p*			
54p*2N5777/0CP71 34	$\begin{array}{lll}4007 & 16 \mathrm{p}^{*} & 740.1 \\ 1009 & 50 \mathrm{p}^{*} & 7408 / 10\end{array}$		7495/96 72p**	BARGAI', PAKS full spec fiea.		
	$4011{ }^{16 \mathrm{p} *}{ }^{\text {74, }}$ 74		7410732	PAK A: 11 RED LEDS Pup spea		
Ramp great	4012 4049 $17 \mathrm{p}^{*}$ 7440 8441		$\begin{array}{ll}74121 \\ 74123 & 29\end{array}$			
ITISA	$\begin{array}{llll}4069 & 20 \mathrm{p}^{*} & 7442 \\ 4501\end{array}$					
stributor	$\begin{array}{llll}4501 \\ 451161 & 26 p^{*} & 7447 \\ 7478\end{array}$		$74145{ }^{85 p}{ }^{\text {c }}$	PAK E. 11 BCCI82 81.	 	
	528¢1****73/74					
industrial, elucational, Trade * EXPORT SUPPLIED SEND' FOR			7151			
	DIL SOCKETS PROFESSIONAL QUAIIITY 8pin, l4pin \& 16pin ALL 12 p ea * SOLDERCONS 100 49p* 1000 £3.95*					
YANUFACTURERS EXCESS STOCKS PURCHASED DISCOUNTS 10% OFF				10-365pF TUNER. Single gang for MED/SHORT WAVE. XTAL SET EtC £1. SET3/LF CANS 455/470KHZ TOKO \&1*	black plastic cases 42mix 80×60 50p*100x75 60p*99x 12070 p . Desolder braid 50 p	
ap. 15\% OFF 1000 up						

PLAIN PAK STRIP

Patents applied for
The easiest way to make p / c boards without etching. Plain PAK STRIP is a very thin, flexible p / c board with a self adhesive backing. Cut out shapes with scissors or-lay a sheet on to paxolin-mark out design with a pencil-cut and lift unwanted copper sections with a scalpel or sharp model knife. It's so easy you can make a p/c board in minutes. 6 in $\times 4 i n$ sheet of plain Paxolin, $10 p$ 6 in $\times 4$ in sheet $39 p$ inc. VAT, postage and instructions. S.A.E. for details or ask your local retailer

Print-A-Kit Electronic Supplies

408 Sharrowvale Road, Sheffield, S11 82P

SYNTHESISERS, SOUND EFFECTS AND

P.E. SYNTHESISER
(P.E. Feb, 73 to Feb, 74)

The well acclaimed and highly versatile large-scale mains-operated Sound Synthesiser complete with keyboard circuits. All function circuits may be used number of circuits, the greater the versatility. Other circuits in our lists may be used with the Synthesiser to good advantage (notably P.E. Minisonic, Phasing Unit, Wind and Rain, Rhythm Generator, Sound Bender, Volt ge Controlled Filter, Guitar Effects Pedal).
THE MAIN SYNTHESISER
Stabitised power supply
Two Linear Voltage Controlled Oscilfator
and one Inverter-all 3 circuits
PCB (2 are required) eoch
Two Ramp Generatore and Two Input Amplifiers
all 4 circuits
PCB (holds all 4 circuits)
Sample-Hold and Noise Generator
PCB (holds both circuits)
Tone Control
PCB
Reverberation Amplifier
Sprine Line unit for Reverb. Amp.
Ring Modulator
Peak Leval Meter Circult
PCB to hold Reverb, Ring Mod and Meter
Circuits
Envelope Shaper
PCB
Voltage Controlled Amplifier and Differential
Amplifier
PCB (holds both circuits)

4.12 .05

617.80
61.63
45.92

65.92
$\mathbf{6} 1.51$
7.95

67.95
$\& 1.87$
$\mathbf{E} 2.68$
12.68
88 p
67.23
$\mathbf{6 5 . 5 0}$
64.24
$\Varangle 1.50$
64.99
22.14
$\$ 2.14$
$£ 6.04$
$£ 1.60$
88.69 61.45

PE SNTHESISER KEYBOARD CIRCUITS
(Can be used without tho Main Synthesiser to make an
independent musical instrument)
Two Logarithmic Voltage Controlled
Oecillatore
Component set
E15.28
PCB (halds both circuits)
Dividor, 2 Hold Circuits, 2 Modulation
Amplifiers, Mixer and 2 Envelope Shapera
PCB (holds tha first 6 circuits)
PCB for both Envelope Shapers
Kayboard Stabilised Power Supply
Printed Circuit Board
GUITAR EFFECTS PEDAL (P.E. July 75)
Modulates the attack, decay and filter characteristics of
an audio signal not only from a guitar but from any audio source, producing B different switchable effects that can be further modified by manual controls. Possibly the most interesting of all the low-priced sound effects units Guitar Overdrive Unit does not duplicate effects from the Guitar Overdrive Unit.
Component Set with special foot operated
witches
witches component set with panel mounting
Printed Circuit Board
16.79
44.90
41.43

SOUND BENDER (P.E. May 74)
A multiepurpose sound controller, the functions of which include envelope shaper, tremolo, voice-operated Component Set for above frequency-doubler.
Printed circuit board
47.24
$\mathbf{E} 1.74$

Optional oxtra-additional Audio Modulator, the use of
which, in conjunction with the above component set, can produce "jungle-drum" rhythms.
Component Set (incl, PCB)
62.76

PHASING UNIT (P.E. Sept. 73)
22.76

A simple but effectivo manually controlled unit for introducing the "phasing" sound into live or recorded music.
Component Set (incl. PCB)
PHASING CONTROL UNIT (P.E. Oct, 74)
$\$ 2.85$
tically control the rate of phasing.
Component Set (inci. PCB)
64.25

WAH-WAH UNIT (P.E. Apr. 76)
The Wah-wah effect produced by this unit can be controlled manually or by the integral automatic controller.
Component Set incl. PCB

POST AND HANDLING

U.K. orders-under $£ 15$ add 25 p plus VAT, over $£ 15$ add 50 p plus VAT, Keyboards $£ 1.50$ plus VAT.
Optional Insurance for compensation against loss or damage in post, add 35p in addition to above post and handling.
Eire, C.I., B.F.P.O., and other countries are subject to

COMPONENTS SETS include all necessary resistors, capacitors, semiconductors, potentiometers and transformers, Hardware such as eases, sockets, knobs, etc. are not included but most of these may be bought separately. Fuller details of kits, PCBs and parts are shown in our lists.
CIRCUIT AND LAYOUT DIA-
GRAMS are supplied free with all PCBs designed by Phonosonics.
PHOTOCOPIES of the P.E, texts for most of the kits are available-prices in most of t
our lists.

PHONOSONICS
MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET.
P.E. JOANNA (P.E. May/Sept. 75)

A five-octave electronic piano that has switehable harpsichard or a mixturky-Tonk piano, ordinary piano, harpsichord, or a mixture of any of the three, together with racilities including fast and slow tremolo, loud and sower amplifier typicaliy delivers 24 watts into 8 . The The PCBs have been redesizned by ourselves making improved use of the space available.
Main Power Supply $\quad \$ 10.09$
Tone Generator and Top C Envelope
$\begin{array}{lll}\text { Shaper } \\ \text { PCB for Main PSU, Tone Gen \& TOP C E.S. } & £ 10.61 \\ £ 2.31\end{array}$
410.61

Envelope Shapors for all notes (except Top C) $£ 37.68$
Set of PCBs for Envelope Shapers (except Top C)

Voicing and Pre-Amp Circuits
PCB for Voicing and Preamp
411.88
410.53

Power Amplifier (incl $\quad \mathbf{4 2 . 8 0}$
PCB for Power Amp and PSU Pow Supply) $\$ 15.06$
RHYTHM GENERATOR (P.E. Mar./Apr. 74)
Programmable for 64,000 rhythm patterns from 8 effects circuits (high and low bongos, bass and snare drums,
long and short brushes, blocks and soft cymbal), and with variable time signatures and rhythm rates. Really fascinaling and useful.
Tempo, Timing and Logic circuits
PCB for above circuits (double-sided)
Component set for alt 8 effects circuits
Simple mixer (our design) incl. PCB
Alternative mixer with external volume controls.
incl. PCB
Power Supply for T, T and L, and Effects, inel
PCB
(See our list for Power Supplies for Mixers)
± 12.68

REVERBERATION UNIT (P.W. Nov./Dec. 72)
A high quality unit having microphone and line input
pre-amps, and providing full control over reverberation level.
Component Set (excl. spring unit)
$\mathbf{£ 8 . 7 9}$
$\mathbf{£} 1.93$
9 Printed Circuit Board
spring unit)
Panel Meter $(50 \mu A)$ (optional)
$\mathbf{6} 50$
$\mathbf{4} 4.99$

WIND AND RAIN UNIT

A manually controlled unit for producing the abovenamed sounds.
Component set incl, PCB

GUITAR OVERDRIVE UNIT (P.E. Aug, 76)

Sophisticated, versatile Fuzz unit, including variable and switchable controls affecting the fuzz quality whilst ing. Does not duplicate the effects from the G uitar Effects Pedal and can be used with it and with other electsonic instruments
Component set using dual slider pot Component set using dual rotary pot Printed circuit board

FUZZ UNIT

Simple Furx unit based upon PE 'Sound Design circuit

E1.98

TREMOLO UNIT

Based upon P.E. 'Sound Design' circuit.
Component set incl. PCB
.

TREBLE BOOST UNIT (P.E. Apr. 76)
Gives a much shriller quality to audio signals fed through
it. The depth of boost is manually adjustable.
Component Set incl. PCB
25 WATT MONO AMPLIFIER (P.E. Sept. 75)
A good general purpose integrated circuit power amplifier typically delivering 25 watts into 8 ohms. Power bandwidth 20 Hz to 20 kHz , 3dB, Input impedance
20 km . Distortion 0.2%. Suitable for use with any of our sound producing kits. Suitable for use with any of Component Set incl. pow Printed Circuit Board
For stereo use two sets and PCBs are required.

DON'T FORGET VAT!

Add $12 \frac{1}{2} \%$ (or current rate if changed) to full total of goods, post and handling. (Does not apply to export orders).

P.E. MINISONIC MK I
 (P.E. Nov. 1974 to March 1975)

A portable, battery or mains operated, miniature sound synthesiser, with keyboard circuits. Although having sightly fewer facilities than the large P.E. Synthesiser and functions offered by this design give it great scope and versatility. Like the large Synthesiser it too may advantageously used with other circuits in our lists. Basic component set
Full details in our list.
E41.58
$67 \cdot 71$
P.E. MINISONIC MK 2

More sophisticated version of the MK 1
Basic component set from
Full details in our list.
$652 \cdot 15$
69.10

DISCOSTROBE (P.E. Nov. 76)
4-channel light-show controller giving a choice of sequential, random. or full strobe mode of operation. Basic componentset $\quad \$ 19.43$ rinted circuit board

ENVELOPE SHAPERS

Both of the kits below have manual control over their Attack, Decay, Sustain and Release functions. Both kits nelude PCB (VCA means Voltage Controlled Amplifier) Envelope Shaper and VCA (P.E. Apr. 76) 66.50 Envelope Shaper (without VCA) (P.E. Oct. 75) ©4.62

VOICE OPERATED FADER (P.E. Dec, 73)
For automatically reducing music volume during "talk-over"-particularly useful for Disco work or for homeCovie shows.
Component Set incl. PCB

VOLTAGE CONTROLLED FILTER (P.E. Oet. 74)
An independently designed VCF that can be used with the P.E. Synthesiser.
Component Set
Printed Circuit Board
Printed Circuit Board
P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones.
An LED monitor clearly displays all beat note adiust. ments. Ideal for tuning acoustic and electronic musical instruments alike.
Main Component Set incl. PCB $\quad 14.77$
Power Supply set incl. PCB
P.E. SYNCHRONOME (P.E. Mar. 76)

An accented-beat electronic metronome, providing duple, triple and quadruple times with full control over rhythm generator. Includes power supply. | Component Set incl, loudspeaker | $£ 10.68$ |
| :--- | ---: |
| Printed Circuit Board | |
| | |
| 1.70 | |

PEAK LEVEL INDICATOR (P.E. Mar. 76)
A twin-channel visual display unit for monitoring the peak level of audio signals. Well suited for use when inter-coupling our many sound producing kity to help Component Set incl. PCB (as published)

EXPORT ORDERS are welcome, though wo advise that a current copy of our list should be obtained before ordering as it also shows Export postage rates. All pay-
ments must be cash-withoorder, in Sterling and preferably by International Money Order or through an English Bank. To obtain list for Europe send 20p, for other countries send 40 p .

OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of the P.E. projects built from our kits and PCBs. The cases were built by ourselves and are not for sale, though a small selection of other cases is available

LIST-Send Stamped Addressed En velope with all U.K. requests for free list giving fuller details of PCBs, kits, and other components.
OVERSEAS enquiries for list: Europeend 20_{p}; Other Countries-send 40_{p}.

KEYBOARDS AND CONTACTS

Kimber-Allen Keyboards as required for many published circuits, including the P.E. Joanna, P.E. Minisonic, and P.E. Synthesiser. The manufacturers claim that these are the finest moulded plastic keyboards availabe. Alumintict frame.
keys are plastic, spring-loaded and mounted
3 Octave (37 notes) $£ \mathbf{2 4} \cdot 85$. 4 Oct (49 notes) $£ 29.50$. 5 Oct (61 notes) $\mathbf{6 3 4} 50$.
Contact Assemblies for use with above keyboards: Single-pole change-over (type SP) as for P.E. Joanna and P.E. Minisonic. Two-pole normally open-make-break (type DP) as for P.E. Synthesiser. Special concact assembly (cype 4PS) having 4 poles, 3 of which are normally-open make-break rontacts and the fourth is a change-over contact -this special assembly enables THE SAME KEYBOARD to be used with the P.E. Synthesiser, P.E. Minisonic and the P.E. Joanna simultaneously thus avoiding the cost of more than one keyboard

Contact	Eoch	3 Octave Set	4 Octave Set	5 Octave Se
SP	24p	C8.88	611.76	114.64
2 P	27p	69.99	613.23	616.47
PS	530	¢19.61	¢25.97	C32.33

PAINTED CIDCUIT BOADS for use wirhthe above contacts and thus eliminating PAIN

SOUND-TO-LIGHT (P.E. Apr./Aug. 7I)
The ever-popular Aurora-4 or channels each responding to a different sound frequency and controlling its own light. Can be used wis home.
4 Channel Component Set (excl. thyristors) Channel Component Set (excl. thyristors) Power Supply Component Set PCB for 4 frequency channels
PCB for power supply and 8 lamp drivers IA 400V thyristors (I per chan. rea.) each
Pariel meter $(1 \mu A)$ (optional)
3. CHANNEL SOUND-TO-LIGHT (PE Apr 76

A simple but effective sound-to-light controller capable of A simple but effective sound-to-light controller capable of operating 3 porps Component Set incl. PCB

BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)
Multi-function circuits that, with the use of other externa equipment, can serve as lie-detector, alphaphone, cardiophone etc.
Pre-Amp Module Component Set incl. PCB E4II Batic Output Cireuits-combined component set with PCBs. for alphaphone, cardiophone. frequency meter and visual feed-back lamp-driver circuits

TAPE NOISE LIMITER

Very effective circuit for reducing the
 Standard Tolerance Set of Component
 Standard Tolerance Set of Component

Regulated Power Supply (will drive 2 sets)
SINE AND SQUARE WAVE GENERATOR (P.E. July 75)
Suitable for audio, digital, or general purpose. Controllable through 4 decade rang 10 V Conter Component \quad el.76 Power Supoly $\quad \mathbf{6 6 . 2}$ PCB for Power Supply

SEMI CONDUCTOR TESTER (P.E. Oct . 73)
Essential test cquipment for the enterprising home construc While stocks las
Set of resistors, capacitors, semiconductors
potentiometers, makaswitches and PCB
Panel meter ($500 \mu \mathrm{~A}$)
P.E. MINIMIX 6 (P.E. Nov./Dec. 75)

Each of the 6 input channels has its own gain, volume and panning controls. The volume of the twin channe outputs are fully manually controllable, as are the head phone and pre-fade monitoring facilities. Twin VU meters provide visual display of channel audio levels tdeal for use with effects and synthesiser kits
For details see our list. While stocks las

8-INPUT MIXER

A simple mixer having 8 inputs each of which has a prese level control and which are combined into one output channel having a preset over-all level control and master output volume control. Designed for inter coupling our various sound effects and synthesiser kits. 63.95 65.95
66.75

68.86

ACl28

 AC176BC107 $C 107$
$C 108$
BC 108
BC 109

BC 148
BC 149
14.42
65.35
65.35 5.35
$£ 3.65$ 61.70
75 p 4.99

BC 157 BC 158

8 Cl 159
BC 1821
BC 184
BC 184
BC 187
BC187
B209C
BC2121
BC213

BDI 32
BFY 50
BFY50
BFY51
BSY95A
○C28
C71
$0 \mathrm{OC84}$
ORP12
ZTX 107
zTX 107
ZTX
$Z T X 108$
$Z T 501$

$2 T \times 501$
Z

ZTX503
ZTX531
2 N706
2 N 914
$2 \mathrm{~N} \mid 304$
2 N 2219
N2905A
2 N 2907
2 N 3053
2 N 3054
2 N 3055
2 N 3702
2N3703
2N3819
$2 N 3820$
$2 N 3823 \mathrm{E}$
$2 N 4060$
2 N 4871

INTEGRATED CIRTS.
109 T05 40p 09 8-pin DIL 40p 23 T05 $81 \begin{aligned} & \text { 95p } \\ & 8 \text {-pin DIL } \\ & 32 p\end{aligned}$ 748 T05 OLL 32 sip 748 8-pin DIL 63p AA7805 T0220 165p 147808 T0220 165p HA7812 T0220 165 p LA7815 T0220 165p LA7818 T0220 165 p AY-1-0212
CA3046
SG3402N

Hi-Fi Systems thatGROW with you

At last someone has come up with a flexible approach to quality hi-fi that doesn't become obsolete as you become more discerning

Take an initial standard $20 \mathrm{Wr.m.s}+20 \mathrm{Wr.m.s}$ stereo and with simple modifications this can be expanded to give a powerful $40 \mathrm{~W}+40 \mathrm{~W}$ stereo system together with additional multi frequency rumble, hiss and stereo mage width controls.

Currently available from stock:-
 Stereo Pre-Amp Module CP-P1

- Ideal tor use with record player, tape, microphone, tuner inputs etc
* No external components required other than potentiometers for bass, treble. balance. volume controls and input selector switch.
- rhe CP.P1 is internally protected against accidental reverse power connection. PRICE $£ 13.30$ Specification
+£1.66VAT

ut	Sensitivity	Signal/Noise	Impedar
Magnetic	3 mv	$>70 \mathrm{~dB}$	$47 \mathrm{k} \Omega$
uner	100 mV	$>70 \mathrm{~dB}$	$10 \mathrm{k} \Omega$
Tape	100 mV	$>70 \mathrm{~dB}$	10 kS
Auxiliary	1-100mV	60 dB -70dB	$200 \mathrm{k} \Omega$
Magnetic i/p overload: 33dB; Distortion: 0.04% at 1 kHz : Output: 1 Vrms into $10 \mathrm{k} \Omega$ Supply voltage: $\pm 18 \mathrm{~V}$ nominal; Tone controls: Bass $\pm 12 \mathrm{~dB}$ at 100 Hz , Treble $\pm 12 \mathrm{~dB}$ at 10 kHz .			

Stereo Amplifier Module CP2-15-20
 - The CP2-15-20 is designed to give either a $20 \mathrm{~W}+20 \mathrm{~W}$ stereo ampltier or

 alternatively a 40W single channel amplifier- No external components required

Safety features include buit-in protection against accidental reverse power connection and thermal shut down facility to prevent over dissipation.

Specification:
PRICE $£ 12.85+£ 1.61$ VAT
Power output
40W r.m.s. into $8 \Omega, 1$ channel: or
30W rms +20 W .
channel; or
15 W r.m.s
channel.
nput sensitivity: IV r.ms Frequency esponse: $20 \mathrm{~Hz}-20 \mathrm{kHz}$, at -3 dB ; Dis +18 V nominal Size: $51 \times 4 \times 1.25 \mathrm{in}$ $130 \times 102 \times 32 \mathrm{~mm}$)

Also available:-
 Audio Function Module CP-FG1

For those requiring a wider range of facilities this module provides: - Bass and treble filter controis including switchable cut-off frequencies for rumble and hiss reduction.

* Stereo separation control

PRICE $£ 11.75$

Power supply: Module CP-PS 18/2D

Suitable for one $20 \mathrm{~W}+20 \mathrm{~W}$ complete system. A $40 \mathrm{~W}+40 \mathrm{~W}$ system can be pro duced using 2 power supplies

PRICE $£ 5.75+72 p$ VAT
These products carry a 2 year guarantee.

Cliffpalm Ltd.

DEPT. HF/PE,
13 HAZELBURY CRESCENT LUTON, BEDS LU1 1DF
Prices include full application data, post and packaging

RETURN OF POST MAIL ORDER SERVICE

ELAC 10 inch
Dual cone plasticised roll surj0und. large ceramic magnet $10 \mathrm{w} / \mathrm{s}$. 8 olinı impedance. 10 W . $9 \times 5 \mathrm{in}$. model $43 \cdot 25 . \quad\{5 \cdot 50$

MAINS TRANSFORMERS
 A LLL POST

 $250-0-25080 \mathrm{~mA}, 6 \cdot 3 V 3 \cdot 5 \mathrm{~A}, 6 \cdot 3 \mathrm{~V} 1 \mathrm{~A}$ or $5 \mathrm{~V} 2 \mathrm{~A} \mathrm{E4}-80$
$350-0-35080 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 3 \cdot 5 \mathrm{~A} \cdot 6 \cdot 31 \mathrm{~A}$
 $20 \mathrm{~V} 45 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}$ HEATER TRANE, $6 \cdot 3 v^{+} 3 \mathrm{~A}, \mathbf{3 1}, 45$ I 2175 GENERAL PURPOSE LOW VOLTAGE Tapped outputs at 2A 3, 4, 5, 6, 8, 9, 10, 12, 15, 18 24 and 30 V 1A $6,8,10,1$, ЗА, $6,8,10,12,16,18,20,24,30,36.40,48,6027.00$ 5A. $6,8,10,12,16,18,20,24,30,36,40,48,60,88 \cdot 70$ $5,8,10,16 \mathrm{~V}$ +A 2 E . $6-0-6 \mathrm{~V}, 300,40,48,60211.25$ 12 V 300 mA 21. 12 V 000 mA \&1. $12 \mathrm{~V}^{\circ} 750 \mathrm{~mA}$ $40 \mathrm{~V}, 2 \mathrm{~A}$ tapped 10 V or 30 V 28-95. 20V 3 A 82
 $60 \mathrm{~V}, 40 \mathrm{~V}, 20 \mathrm{~S}$ or $20-0-20 \mathrm{~V}, 1 \mathrm{~A}$ e3.50. AUTO TRANSFORMERS. 115 V to 230 V or 230 V to 115V 150W $25 ; 250 \mathrm{~W} 8 \mathrm{~B} ; 400 \mathrm{~W} 27 ; 500 \mathrm{~W} 88$. CHARGER TRANSFORMERS. Input 200/250V

R.C.S. STABILISED POWER PACK KIT All partaincluding priated circuit and instructions to 12 V . Up to 100 mA out put, aliable. $1,75 \mathrm{~V}$ Please atate roltage required $\mathbf{2 2 9 5}$ Pont
R.C.S. STEREO FM TUNER

This completely cased mains powered $\mathrm{Hi}, \mathrm{Fi} \subset 27$-50 Tuner with brushed aluminium facia is Britioh 227 Sterso Tuner/Amplifer Chasis. Brand new es3'so.

BARGAIN 3W AMPLIFIER. 4 Tranaistor Push-Puli Ready built with volume, treble and $\mathbf{5 3 . 9 5}$
basa controls. 18 volt battery operated.

WAFER HEATING ELEMENTS

Size $101 \times 8 \pm \lambda$ hin. Operating voltage 200/250v a.c. 250W approx. Suitable for Hesting Pads, Food between t Convects of metal ec. Must be clamped between two skeets of metal or anbeatos. ONLY 40p EACH (FOUR FOR ÉI.50) ALL POST PAID-Discountafor quantit
E.M.I. $13 \frac{1}{2} \times 8$ in SPEAKER SALE!
 erosborer. 10W.
As illuatrated.

BAKER MAJOR 12 £ 14.95 Post El. 00

 $30-14,500 \mathrm{c} / \mathrm{s} .1$ tin double cone, woofer and tweeter cone together witl a BAKER ceramic magnet assembly 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance $40 \mathrm{c} / \mathrm{s}$. Rated 25 W . NOTE: 4 or 8 or 16 ohme must be stated
 Module kit, 30-17,000 c/s with tweeter, crossover, bafile and instructions. Asillustrated. $\mathbf{8 - 9 5}$ Pleave siate 3 or 8 or 15 ohms
 Poat $£ 1 \cdot 60$
 BAKER SPEAKERS Robustly constructed to stand up long periods of electronic power. As used by leading groups and Useful response $30-13,000 \mathrm{c} / \mathrm{s}$.
 GROUP (H25' L2in 30W 25 GROUP " $35^{\prime \prime}$ 12 in 40 W GROUP $50 / 12 \mathrm{in}$ 60W 8 or 16 ohm With aluminium E11.95 presence dome. GROUP "50" 15 in 76 W 8 or 16 ohme.
 8 or 16 ohms.
 Post et. 60
 Disco, Group +PA Cabinets in stock. gend for Ineaflet. Cabinet Fittings, Gandies, Corners, Feet, Covering Meferial all in stock.

BAKER 150 WATT ALL PURPOSE TRANSISTOR

MIXER AMPLIFIER

Ideal for Gronps, Disco, P.A. Ald Musical Instrumenta. 4 inputg speech and music. 4 way
miring. Output $4 / 8 / 16$ ohm.a.c. Mains
Separate treble and base controle.
50 wate tt model 449.

NEW 'DISCO 100 WATT'
ALL TRANBIBTOR AMPLIFIER CHABSIS £52
2 inputs. 4 outputa separate volumetrebie Carr. f$]$ and base controps. Ideal disco or alave amplifier chaseia BLACK CARRYING CABINET AVAILABLE $\& 9$

PW SOUND TO LIGHT DISPLAY Complete kit of parts with R.C.S. printed circuit Three 1,000
Practical Wirelear.
$\mathbf{S} 12.50$ CABINBTextra \&

GOODMANS CONE TWEETER

R.C.S. 100 WATT VALVE AMPLIFIER CHASSIS

Profesaional model. Four inputa. Treble, Bank, Master Volume Controls. 【deal disco, P.A. or groups. $\mathbf{S 8 5}$ S.A.E. f or details. $\overline{0}$ speaker outputs. plus $\mathbf{£ 2} \mathbf{5 0} \mathrm{car}$
3 or 8 or 15 ohm. 100 V line to order. Suitable carrying case 816 -50.
 COLLARO GRAM MOTOR 120 V GEAR BOX 25:1 95p.
PHILIPS GRAM MOTOR
VOLT A.C. $E 1$ '50

75p

BSR HI-FI AUTOCHANGER

 covered. Largefront grille. Hinged lid. Chrome fittings. Motor board eut for Garrard or BgR deck.

R.C.S. DISCO DECK SINGLE RECORD PLAYER
Fitted with auto stop, stereo/compat. cartridge Baseplate. Size 11 in $\vee 8$ in. Turntable. Size 7 in
, minn
HEAVY METAL PLINTHS With P.V.C. Cover. Cut out for most B.S.R. or Garrard decks. Bilvergrex finish.
Model "A". Size 12
Post 7 7 p. Extra Large Pinth 13 ; 7 in . 8 Bn 95 Extra Large Plinth and Cover Size $20 \times 17 \frac{1}{2} \times 9 \mathrm{in}$. Callers only 218.50. TINTED PLABTIC GOVERE ONLY
Sizes: 'A'-14itin $12 \frac{2}{2}$ in $4 t i n$, e2050. 'B'-60tin 12 lin 4 in in , 88. ${ }^{\prime} \cdot{ }^{\prime}-164 \mathrm{in} 14 \mathrm{in} 4 \mathrm{in}, 28.50$.
E- -19 in $\times 14 \mathrm{in} \times 4$ in, 23.50 .
Ideal for record decks, tape decks, etc. Post 7 jp

BAKER HI-FI SPEAKERS HIGH QUALITY-BRITISH MADE SUPERB

I2in 25 watts
A high quality loudspeaker. its remarkable low cone reproduction of the deepest bass. Fitted with a special copper drive and concentric treeter cone resulting in full range reproduction with remarkable efficiency in the upper register.
$\begin{array}{ll}\text { Bass Resonance } \\ \text { Flux Density } & \text { ens } \mathrm{c} / \mathrm{s} \\ \text { 16,500 }\end{array}$ $\begin{array}{ll}\text { Flux Density } \\ \text { U'seful response } & 160-17.000 \mathrm{c} / \mathrm{s}\end{array}$ 8 or 15 obms models.

£21•95

 AUDITORIUM
I2in 35 watts

A full range reproducer for

 bigh power. Electric Guitare, yateme. electric organs yatemp, electic and Disco theal for $\mathrm{Hi}-\mathrm{Fi}$ and DiscoBass Rebodance $3 \mathrm{j} \mathrm{e} / \mathrm{a}$ Flux Density 15,000 gauss lraeful response $2 \mathrm{~J}-16,000 \mathrm{c} / \mathrm{a}$
£20.95

ISin model 45 watts $624 \cdot 95$, Poot $x 1 \cdot 60$
BLAIK ALUMINIUM CHASSIS, 18 s.w.g. 2 !in sides,

ALDMINIUMPANELS, $14 \mathrm{~s}, \mathrm{w}, \mathrm{G} .6 \mathrm{in}$ tin, 15p; 4in 9 in , 25p; $10 \mathrm{in} 7 \mathrm{in}, 30 \mathrm{p}: 10 \mathrm{in}$ Sin. 30 p : I Sin 5 in . 40 p ;

THE SUNNY SIDE

S there a future for Solar Energy in this country? If in midwinter this seems a factitious question, remember last summer. It may happen again. In cold reality, the United Kingdom is in danger of losing out in this latest technological race. For in terms of investment by government and industry for research and development into ways of harnessing thermal and light radiations from the Sun we are lagging far behind the United States, France, Germany, and Japan.

Perhaps to some this seems to be right, in recognition of our geographical position and taking into account our indigenous sources of coal, gas and oil. Yet it has been computed that we may be able to derive $10-20$ per cent of our total energy requirements from the Sun. There is no basic shortage of solar energy, but the problem is finding economic techniques for collecting and storing this "free energy". These are salient points made in the report on the future of solar energy in the UK, published last year by the United Kingdom Section of the International Solar Energy Society.

From predictions to practice. At present the most obvious activity in harnessing solar energy for domestic purposes is its application to the heating of water supplies. Solar thermal systems are now offered by a number of companies, while it seems that quite a few private individuals have devised and built their own installations. Another fruitful area for the d.i.y. enthusiast has thus opened up.

Solar thermal systems are essentially plumbing jobs but they do call for a certain amount of attendant electronics, for example in the form of automatic pump control, for maximum efficiency in operation. Circuitry for a typical' control system is described in our pages this month. This is the first design we have presented tailored specifically for a solar power application. It is very possible that via the electronics some readers will be induced to having a go at building a complete system for themselves.

Our own interest in solar thermal energy is limited, being of but a peripheral nature. But Solar Energy in its wider and more general sense is a topic we cannot ignore. Apart from the increasing use of thermal radiation from the Sun, the direct generation of electricity from sunlight by means of solar cells holds out great promise for the future. The most commonly used solar cell is basically a silicon photo-diode, so we are on fairly familiar ground here. Arrays of solar cells are producing low wattage supplies for innumerable purposes in all kinds of situations around the world, frequently for unattended remote installations such as microwave repeater stations and railway signalling systems. They are also beginning to be used in consumer products like solar powered digital wristwatches. Unfortunately the cost of photovoltaic devices remains high, although large reductions in unit cost have been achieved in the last year or so.

Overall, terrestrial applications of solar cells will be more beneficial in the warmer countries than here, that is true. The export potential for solar cells and related hardware, especially to the developing countries in the Middle East and Africa, must be enormous. All of us in the UK have a vested interest in Solar Energy for our own use, and even more importantly as a earner of much needed foreign currency.
F.E.B.

Editor

F. E. BENNETT

Editorial
G. C. ARNOLD Assistant Editor
D. BARRINGTON Production Editor
G. GODBOLD Technical Editor
M. ABBOTT

Art Dept.
J. D. POUNTNEY Art Editor
D. J. GOODING
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager

D. W. E. TILLEARD

Phone: 01-634 4504
P. J. MEW

Phone: 01-634 4181
C. R. BROWN Classified Phone: 01-261 5762

Make-up and Copy Dept. Phone: 01-634 4372
Editorial \& Advertising Offices:
Fleetway House, Farringdon St.
London EC4A 4AD
Phone: Editorial 01-634 4452 Advertisements 01-634 4504

THIS article describes the construction of a unit which will control the circulating pump in a solar heating system. In solar heating systems it is sometimes impracticable to use the thermo syphon technique for heat transfer, especially when the solar panels are roof-mounted above the level of the storage tank.

TYPICAL SYSTEM

A typical domestic solar water heating system is shown in Fig. 1 and up to 60 per cent of the incident energy can be transmitted to the water using a flat-plate collector. The pipework from the collector to the tank and the tank itself are lagged with insulating material. A flat-plate collector can be made quite easily from an old radiator. The cast-iron radiators tend to be rather heavy and the more modern pressed-steel ones are preferable.

All paint is removed from the radiator by means of paint stripper or a blow lamp and the radiator repainted with matt black paint, for example, blackboard paint. The burning off of old paint is important since any light coloured paint under the black surface will reduce the collecting efficiency. A wooden box is made, about 150 mm in depth (see Fig. 2) and slightly larger than the radiator. A layer of fibreglass or polystyrene insulation is glued to the bottom of the box and over this is put a layer of cooking foil. The radiator is then fixed into the box. Ideally the box should have a glass front but polythene may be used with reduced efficiency.
If more than one collector is used then they may be plumbed together in series. In some installations an antifreeze is used as the heat transfer medium and therefore the system remains operational the whole year. In others the collectors are drained in winter months to prevent freezing. The collector is
installed facing south and at angle of 30° to the horizontal-this angle is considered optimum for fixed installations.

The estimated usable radiation in Britain on a warm summer day is $0.7-0.9 \mathrm{~kW} \mathrm{~m}^{-2}$ but alas this drops to about one tenth of this figure in winter. In summer water temperatures of up to $52^{\circ} \mathrm{C}$ carr be expected.

UNIT ACTION

The unit described senses the temperature of the solar panel and compares it with the temperature of the water in the storage tank. When heat is available from the solar panel then the circuit will switch on a pump for a set time period. The circuit is designed to be operated from mains, although it may be operated from a 12 volt car battery, which could be charged from a wind generator. The battery system may be of interest to those people in a remote situation where mains electricity is not available and a d.c. driven pump is used.

CIRCUIT DESCRIPTION

The circuit (Fig. 3) consists of a Wheatstone bridge made up of thermistor resistances TH1 and TH2 and the resistances each side of the wiper of VR 1

The operational amplifier acts as an open-loop voltage comparator with very low hysteresis. When the voltage at point A is negative with respect to point B the amplifier is driven into saturation and the output voltage approaches the 12 volt line. This is the quiescent state of the circuit.

When the roof thermistor THI increases above a preset value ($+5^{\circ} \mathrm{C}$ relative to TH 2) then the output of ICl switches to a low state (about 2 volts). This transition triggers the timing circuit IC2 and the relay operates for a period of about 9 minutes.

ELECTRONIC CONTROL UNIT for

Fig. 1. Typical solar water heating system

The resistor R5 is an economy resistor and is switched in by the relay contact RLAl when the relay operates. This is done to reduce the current drain from the power supply since the holding current for a relay is less than the operate current.

The circuit will continue to operate down to a supply of 9 volts but for reliable operation the supply voltage should not fall below 11 volts.

The thermistors used are miniature-bead types which have a nominal resistance of 4.7 kilohms at $25^{\circ} \mathrm{C}$. In the prototype the thermistors used did not have matched characteristics and tests at $10^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ showed that the differential switching point changed by less than $0.5^{\circ} \mathrm{C}$.

If the output of IC1 is still low at the end of the timing period then the timer will hold the relay in until the temperature of TH1 falls below the preset level. The diode D2 shorts the back e.m.f. transient voltages developed. A gold bonded germanium
diode should be used since retriggering of the circuit occurs if a general purpose silicon diode is used.

CIRCUIT ASSEMBLY

The main circuit was assembled on a piece of 0.1 inch matrix Veroboard as shown in Fig. 4. The completed circuit board, power supply and relay were mounted in a small, die-cast aluminium box. The Veroboard was mounted with 6B.A. nylon nuts and bolts ensuring that all leads beneath the Veroboard were cut short.

A suitable mains p.s.u. is shown in Fig. 5 but because of its simplicity no constructional details are given.

THERMISTOR PROBE ASSEMBLY

The connecting lead for the thermistors is a lightweight single-cored screened cable of 2 mm diameter.

First the thermistor leads are cut to lengths of

Fig. 2: Homemade solar collector panel

Fig. 3. Circuit diagram

Fig. 6. Thermistor probe assembly

Fig. 4. Board and wiring details

Fig. 5. Circuit of suitable p.s.u.

COMPONENTS ...

```
Resistors
    R1 300\Omega, 14 W
    R2 300\Omega, 1% W
    R3 5.6k\Omega, \frac{1}{4}W
    All 5% carbon
Potentiometers
    VR1 10k }\Omega\frac{3}{4}\textrm{in},20\mathrm{ turn cermet
Capacitors
    C1 25\muF,15V C3 0.01\mu\textrm{F}
    C2 470\muF,15V C4 1,000\muF,25V
IC1 Femiconductors 741C IC2 NE555V
    D2 OA47 Germanium diode
    D3-D6 Bridge Rectifier (R.S. Components
        261-772)
    D1 BZY88 Zener diode 5.6V
    D7 BZX61 Zener diode 12V
```


Abstract

Miscellaneous TH1 \& TH2 Bead thermistors type GM472 or V A3404. TI Mains transformer 12 volt 0.25 A secondary (R.S.). RLA Relay 12 volt (110S) 10A contacts (R.S.) with relay base. SK1 13-amp surface mounting socket, FS1-1A fuse. Die-cast box. Approx. $170 \times 114 \times 50 \mathrm{~mm}$. Lengths of single core screened cable (2 mm) depending upon installation. 100 mm length of copper tubing for probes. Heat shrink sleeving, 2.4 mm . Silicone rubber sleeving, 0.5 mm . 6B. A. nylon nuts and bolts, 25.4 mm long. Piece of 0.1 in Matrix board, $57 \mathrm{~mm} \times 57 \mathrm{~mm}$

30 mm and 10 mm as in Fig. 6. A 25 mm length of 0.5 mm silicone rubber sleeving is slid over the longer lead which is then soldered to the screen of the connecting cable. The shorter lead goes to the inner.

A 38 mm length of 24 mm heat shrink sleeving is slid over the assembly to cover from (a) to (b) leaving the bead free. The sleeving is now shrunk with an even heat.
Cut a 50 mm length of suitable size copper tubing and trim the ends, removing all burrs. The assembly is now cemented into the tube using Araldite so that the thermistor bead is just inside the end of the copper tube. This is best done by inserting the assembly into the tube so that the tube is over the connecting cable. The Araldite is then "plastered" from (a) to (b) and the assembly is gently pulled into the tube by the connecting cableall excess Araldite is then wiped off. Finally, when the Araldite is set, the point at which the connecting cable enters the tube can be waterproofed with a thin piece of self-amalgamating tape.

When finished, measure the resistance of the probe to ensure no short circuits and test to see that the resistance changes with temperature

SETTING UP

It is difficult to give exact instructions for this because nearly all solar heating installations are different. A trial and error process seems best but it is suggested that the following starting point is tried.

Set up the temperature differential switching poim to be $+5^{\circ} \mathrm{C}$. This is done by putting the "roof" probe into a jar of water and gradually heating until the water is $5^{\circ} \mathrm{C}$ above ambient. With a voltmeter on the output of ICl (pin 6) VR1 is adjusted so that the output goes high (12 volts) with both thermistor
probes at the same temperature. As the water temperature increases to $+15^{\circ} \mathrm{C}$, VR1 is adjusted to switch low (2 volts) at exactly $+5^{\circ} \mathrm{C}$. If the temperature of the water is raised slowly and the water stirred, then the switching point can be tracked with VR1.

The timing period may be adjusted by altering C2 or R4. The period is given bv the equation -

$$
t=1 \cdot 1 \mathrm{C} 2 \mathrm{R} 4
$$

where t is in scconds, R4 is in ohms and C2 is in farads.

The exuct ume required will depend upon pump flow, volur te of water in the system, positioning of thermist urs, etc.

The rool thermistor should be mounted in contact with the solar panel, but shielded from direct sun light. The tank thermistor should be placed on the outlet pipe of the heat exchanger unit and taped on with insulating tape. It is not considered that the waterproofing of the thermistors is good enough for the thermistor to be mounted in the tank

If needed, R 4 may be made variable together with VRI on the front panel of the box. The unit can then be calibrated with scales of degrees heat differential and timing period in minutes.

politis rilisin

RANDOM TONE GENERATOR (January 1976)

A number of errors unfortunately appeared in this article.
These were as follows
In Fig. 1, pin 6 of ICl should be connected to the negative supply rail and not to the top of R4.
In Fig. 2, pin 6 of ICI should be isolated from R4 and linked to pin 2 and 7.
In Fig. 2, the collector of TR4 should be linked to the positive end of C5.
Even after these corrections have been made, a number of constructors have told us that their unit still would not work, generally only a single tone being generated. The Author, Mr. W. G. Ross, has investigated this fault, and advises as follows:
"The problem with the unijunctions is probably due to the large spread in the characteristics of these devices. It is likely that the pulse from TR2 is insufficient to trigger IC2 and increasing R2 to 22Ω should solve this problem. With some UJT's a larger increase may be necessary.

It may be found with TR1 that some UJT's may not oscillate at 50 kHz and in this case R 3 should be increased to $15 \mathrm{k} \Omega$. This will reduce the oscillation frequency but will not adversely affect the operation of the unit".

CINE/TAPE SYNCHRONISER

(October/November 1976)
We understand that Fibre Optic Supplies have now ceased trading. Components D1, D18 and TR2, or suitable equivalents, can be obtained from the following sources.

D1: Use MRD450 avallable from Greenweld Electronics.
TR2: 2N5777 listed in current Phonosonics advertisement.
D18: MLED500, any general purpose l.e.d. can be used here,
The addresses of the two firms mentioned above can be obtained from the advertisement pages.

IN this final part details for constructing the decoder are given together with instructions for selecting the resistance values for both coders. These fix the centre frequency for each tone channel.

DECODER ACTION

The complete decoder is shown in Fig. 1. Here the receiver output is connected to pin 5 of a 74121 monostable. The time constant of this is set by the values of Rl and Cl .

The output from pin 6 is used to switch TR1 on and off thereby enabling the discharge and charge of the capacitor C 2 .

During the off state of the monostable, C2 charges via R3 and R4 (Fig. 2c). The increasing voltage on the positive plate is applied to the non-inverting input of IC2. When this is within 2 mV of the voltage set by the divider network R5 and R6 the output of 1 C 2 swings from negative to positive. The limits here are -3 V and +4 V .

Fig. 2c shows the preset voltage for triggering the comparator as Vc^{\prime}.

The output from IC2 is applied to the "D" input of bistable IC6 via resistor R7. From the waveforms it can be seen that when the comparator output and monostable clock output is positive a logic " 1 " level is stored in the bistable.

With the discharge of C2 the comparator output will fall to its negative value at a point when the capacitor voltage is lower than the 2 mV threshold. As the bistable is an edge triggered device, any change of information at the " D " input is irrelevant after the positive rise of the clock pulse, so the information will be held in the store until the next clock pulse arrives.

MULTI-CHANNEL SYSTEM

For a four channel system, four comparator circuits have their non-inverting inputs connected in parallel across C2. As their collective shunt impedance is about half a megohm the effect on the charge/discharge characteristics of $\mathbb{C} 2$ is negligible.

Although the circuit has been designed for four channels, there is a fifth channel in the form of a modulation detector which will provide an output whenever the transmitter is radiating a tone frequency as long as the tone frequency is within the overall limits of the system governed by the monostable time constant.

This channel was used to provide stop-start controls for the electric drive motor of a model boat. When the tone output of the receiver drops below the threshold level of the Schmitt-trigger in ICl the motor will stop. This is a useful feature giving the system a fail-safe device in the event of the model running out of range, or a failure in the transmitter/ receiver.

OUTPUT GATING

With a low frequency input all four outputs will be on, whereas at the high frequency end, only $0 / \mathrm{Pl}$ will be on. Some form of gating is required, so that only one output is on within a frequency band. $0 / P 5$, of course, is on for any frequency in the range. The simplest and cheapest method of doing this is to gate the "Clear" inputs of the bistables using diode gates. One of the problems involved in using this method is that the volts drop across diode junction is between 0.6 and 0.8 volts for a silicon diode.

For a TTL logical " 0 " input condition, the input voltage must be less than 0.8 volts. The typical

Fig. 1. Circuit of four channel tone decoder

Fig. 2. Circuit waveforms: (a) in from receiver at IC1 (pin 5); (b) Monostable output at pin 6; (c) charge and discharge of $\mathbf{C 2}$ controlled by the switching transistor TR1; (d) the comparators switch according to the Vc' level set by the potential dividers at the pin 2 inputs. These also fix the frequency "band" of operation for each channel; (e) Bistable Q output

logical " 0 " output voltage for a 7474 bistable is 0.22 volts, with a maximum figure of 0.4 volts.
Thus, under worst case conditions the voltage at the 7474 clear input could be 1.2 volts, which is well out of limit. (The low input at the "Clear" input sets the bistable " Q " output to " 0 ".)

The diode used in this circuit is a gold-bonded germanium type 0A47. This type of diode has a maximum forward volts drop of 0.4 V at 10 mA , so that the worst case condition will be less than the tTL " 0 " level input condition. When 0/P4 is triggered the bistables $\overline{\mathrm{Q}}$ (IC7 pin 8) output will fall to zero and diodes D5, D7, D8 will conduct, so presenting "low" inputs to the "Clear" inputs of the other bistables, setting $0 / \mathrm{P} 1,0 / \mathrm{P} 2,0 / \mathrm{P} 3$ to zero.

Similarly, when $0 / P 3$ is triggered the bistables \bar{Q} output (IC7/6) will fall to zero and diodes D4, D6 will conduct, presenting "low" inputs to the "Clear" inputs (pins 1,13) of IC6, setting $0 / \mathrm{P} 1,0 / \mathrm{P} 2$ to zero. It can be seen that each channel will work only within its own frequency band.

FREQUENCY BANDS

The frequency "bands" for the various outputs are as follows:

F1	$(0 / \mathrm{P} 1)$	$478-631 \mathrm{~Hz}$
F2	$(0 / \mathrm{P} 2)$	$381-478 \mathrm{~Hz}$
F3	$(0 / \mathrm{P} 3)$	$317-381 \mathrm{~Hz}$
F4	$(0 / \mathrm{P} 4)$	$150-317 \mathrm{~Hz}$

Note that $0 / \mathrm{P} 4$ is unreliable below 150 Hz because capacitor C 3 is able to charge during the $\mathrm{Q}=0$ period of the monostable owing to the lengthy switch off time.

The above "bands" can be easily altered by substituting resistors in the potential divider networks ((R5, R6 and R8, R9, etc. etc.). By choosing popular values, the above frequencies were arrived at.

COMPONENTS . . .

THE FIFTH CHANNEL

The "Q" output from the monostable is used to drive a transistor TR4 in the same way as transistor TR1. If $\mathrm{Q}=0$ for a long period-e.g. when the transmitter (Tx) is switched off. Capacitor C3 will charge to approximately half supply voltage. causing TR5 to saturate. This will apply a low input to the preset of IC7 (pin 10) and sets the "Q" output of IC7 (pin 9) to 1 , thus setting the " Q " outputs of the other bistables to " 0 ". $0 / \mathrm{P} 4$ is set to zero by the "AND" gate composed of diodes D9. D10, R16. So in the event of a transmitter or receiver switch off or failure the four bistable stores are set to zero.
As soon as the monostable is triggered and its " Q " output equals 1, transistor TR4 saturates, which discharges C3. If the monostable input frequency is above 150 Hz , capacitor C3 is unable to charge during the " Q " equals " 0 " period, because the time constant C3, R20, R21 is too large. When C3 is discharged, transistor TR5 switches off, allowing the bistables to function normally and a high output voltage level to be available at $0 / \mathrm{P} 5$.

STABILISER

The 7.5 volt supply line is stabilised at $5 \cdot 1$ volts by a Zener diode. The emitter voltage of TR3 will be equal to the Zener voltage minus the base emitter voltage of TR3. The circuit R17, D14, TR3, R18 provides a constant current drive for the base emitter junction of TR2. This drive current is amplified by TR2. However, the collector voltage of TR2 is held at the emitter voltage of TR3 plus the forward voltage drop of diode D11.

CONSTRUCTION

As the completed circuit board has to fit in a model, construction has to be as compact as possible. Although Veroboard is extremely convenient to use, construction of a circuit of this complexity and size is extremely difficult. Printed circuit board was thus used and the final board size was $114 \times 133 \mathrm{~mm}$ (Fig. 3). The board is drilled and then thoroughly cleaned and the circuit drawn out with a p.c.b. marker pen. (Using photographic methods the board size could probably be reduced still further). It is then etched with a ferric chloride solution and cleaned in the normal manner.

DECODER CIRCUIT BOARD

Fig. 3. Printed circuit board pattern and component layout

Fig. 4. Interconnections for adjustment of coders

ADJUSTMENT OF THE CODERS

The circuit is quite straightforward to set up. The decoder circuit is connected to its power supplies. Light emitting diodes are wired in series with $330 \leq 2 \frac{1}{2} \mathrm{~W}$ ballast resistors and connected from each respective output to the 0 V line (Fig. 6).

Coder 2 circuit is now connected to a 9 V battery (but not switched on) and its output wired to the input of the decoder board. Resistor R5 is now replaced with a 50 kilohm linear potentiometer with a 2.2 kilohm resistor in series.

Switch on the coder supply. The l.e.d. connected to $0 / P 5$ should now light. Rotate the potentiometer to its minimum resistance and then slowly increase its resistance until the l.e.d. on 0/P1 lights. Now switch off the coder circuit.

Disconnect the potentiometer and measure its resistance on an ohm meter. This value, plus the $2 \cdot 2$ kilohm resistor in series is the maximum value for R5. Choose a resistor with a value lower than this.

The maximum frequency limit for the decoder circuit monostable, with the values chosen, is around 850 Hz , so a preferred value will probably be suitable.

Connect R5 into circuit, and wire the potentiometer with its series resistor in place of R1. Short out push button 1 and switch on the coder supply. Slowly rotate the potentiometer from its position of minimum resistance. Check the points at which the l.e.d. on $0 / P 1$ lights and the point at which it extinguishes and the 1.e.d. on $0 / P 2$ lights. Switch off the supply to the coder unit and measure the resistance of the potentiometer and its 2.2 kilohm series resistance at both these points. These two values fix the band limits of $0 / P 1$. Now choose a fixed resistor as near to the centre of these limits as possible.

Remove the potentiometer and 2.2 kilohm resistor and substitute the fixed resistance and remove the short across push-button 1. Switch on the coder circuit, the 0/P5 l.e.d. should light. Press push-button 1 and the $0 / P 1$ l.e.d. should also light. If all is in order, repeat the above operation for resistors R2, R3, R4 that is, $0 / \mathrm{P} 2,0 / \mathrm{P} 3,0 / \mathrm{P} 4$. Choosing values near to the centre of the frequency bands ensures that any drift which occurs will only vary the frequency slightly within the individual bands.

Coder 1 is set up in a similar manner to the above method. Here, of course, R4 is the first resistor for adjustment.

ELECTRONICS POCKET BOOK (3rd Edition)
By P. J. McGoldrick
Published by Newnes Technical Books
349 pages, $185 \times 120 \mathrm{~mm}$. Price $£ 3.75$

A
NEW edition of this useful book, extended and reorganised to include more up-to-date information on semiconductor devices. Contents range from basic materials theory through thermonic, semiconductor, photo-electric and electro-magnetic devices, amplifiers, oscillators, logic and computers, to measurements, control and power supplies. A final chapter on installation, maintenance and safety is followed by 28 pages of reference data. The treatment is generally non-mathematical, being aimed at students, technicians and amateur constructors.

In retaining a considerable amount of material on valved circuits, treatment of most sections is necessarily brief. It does seem unfortunate, however, that no space could have been found to mention, for instance, Schottky or cmos devices.
G.C.A.

110 ELECTRONIC ALARM PROJECTS FOR THE HOME CONSTRUCTOR

By R. M. Marston
Published by Newnes Technical Books
112 pages, $215 \mathrm{~mm} \times 138 \mathrm{~mm}$. Price $£ 2 \cdot 95$

AGenuine step by step analysis of alarm logic, for those already familiar with linear and digital semiconductor devices. The book gives working circuit diagrams at every stage
M. A.

28 TESTED TRANSISTOR PROJECTS By R. Torrens
 Published by Bernards (Publishers) Ltd. 85 pages, $180 \mathrm{~mm} \times 108 \mathrm{~mm}$. Price 95 pence

AFAIRLY predictable arrangement for this sort of book, but with some good projects in it. The calculator as a timer and ultrasonic intruder alarm are interesting to name but two. All circuits have been built and tested by the author, and are designed in interchangeable blocks to allow the constructor to produce his own hybrid projects. Otherwise the exclusion of integrated circuits has resulted in limitations.

M, A.

SOLID STATE HI-FI AND AUDIO ACCESSORIES By M. H. Babani Published by Bernards (Publishers) Ltd. 95 pages, $180 \times 108 \mathrm{~mm}$. Price 85 p

F°Gor anyone interested in the audio field, here are eleven useful constructional projects, including a stereo decoder, a mixer, an assortment of preamps and a glidetone generator. Most of the material has appeared previously in Electronics Australia.
G.C.A.

B Y FRAMK W. HYDE

AN ASTEROID NUMBERED 1976 UA

An asteroid passed within 750,000 miles of the Earth in October 1976 This is the closest known approach for such a body. except Hermes which came to within half a million miles. Asteroid 1976 UA was photographed by three independent teams at Mount Palomar on the night of 24/25 October 1976, and the orbit of this small body was calculated. It orbits the Sun in 0.775 years.

At this speed it has the shortest period of any known asteroid. At its furthest distance from the Sun it is about 1.22 astronomical units, that is, 1.22 times the average distance from the Earth to the Sun. It would seem that its diameter cannot be more than a few hundred yards to fit these figures. The asteroid makes a close approach to the Earth every three years. However. according to Dr B. Marsden, who controls an international service for notifying astronomers of such events, it is not likely that 1976 UA will come as close again for hundreds of years.

LARGEST RADIO TELESCOPE

The Very Large Apenture (VLA) telescope is already taking shape on the plains of San Augustin in New Mexico. Six of the 27 steerable dishes have been accepted as operational and final completion is scheduled for the end of 1979.

The arrangement of the telescope units is in the form of a "Y" with equal arms of 21 km in length. It will operate on the aperture synthesis principle originated by Sir Martin Ryle, the Astronomer Royal, and his colleagues. Each of the units is a dish 25 m in diameter. When in operation the telescope will be
equivalent to a dish of 27 km in diameter. Part of the work to be done when it is in final operation will be the search for extra-terrestrial life. This programme will be under the control of Professor Carl Sagan who is a specialist in these matters.

PLUTO

A three man team consisting of D. P. Cruikshank, C. B. Pilcher and D. Morrison from Hawaii have been busy at Kitt Peak Observatory with the 4 m optical telescope. They examined Pluto in near infra-red and, from the absorption bands, now suggest that it is perhaps no larger than the Moon. Hitherto the estimate of size has been considered as being between 5,000 and $7,000 \mathrm{~km}$. The frost that appears to cover a large part of the surface is of a kind which differs very much from water or ammonia. It is thought that methane might be the element involved.

If indeed the visual brightness is due to the frozen methane, it could well be that the planet is still smaller than the Moon. In that case it would not be dense enough to cause the perturbations of Uranus and Neptune. It follows therefore that some other body or bodies are involved. This calls to mind the claim of the Russian astronomers to have found indications that there are two more Transplutonian planets. These were noted in a previous Spacewatch.

MARS

When Mars passed behind the Sun in November 1976 it marked the end of the first phase of the Viking mission. Out of touch with the Earth temporarily, it came as a natural break and a time to assess the progress that had been made. The next phase will continue for many months and if the equipment follows the same high standard of performance that has characterised space progress, it may continue for years.

Looking back on the last few months there have been five major surprises. The discovery that the two polar caps were water ice and not solid carbon dioxide, as had been supposed, was an important one. Allied with the fact that the two landing sites were of a similar nature. a new assessment of the planet was needed. To this also must be added the weather difference. The summers on Mars are mild.

Finally, two more surprises: the absence of organic molecules and the very perplexing biological results. Both the landing sites were similar in appearance and the soil similar in texture with a large proportion of iron. A test run on similar rocks on Earth revealed that the

Mars and the Earth rocks could be mixed together and it would be very difficult to decide which was which. The pictures from the orbiters show great variations over the terrain yet all local pictures show homogeneous conditions. This is an extremely puzzling matter.

The biological problems are also perplexing. The organic chemistry experiment was crucial to the life study because without the organic compounds life would seem to be impossible. Yet there were apparently life-like processes well known on Earth. Without the organic compounds it cannot be concluded that these life-like signs are life in the sense that it is generally understood. There is the further difficulty that experiments are not showing repetitive results.

The presence of water ice in large quantities indicates that water has played a prominent part in the history of Mars. Rough checks show that the ice caps may be many hundreds of feet thick. The weather has been mild with little wind and none of the very low temperatures that were expected. Of course this condition may vary when the northern hemisphere has been observed through the winter.

Another reassessment that had to be made was in regard to the seismic conditions. It was expected that high winds would give false results from the seismometers since the instruments were mounted on the tops of the landers. However not only were there no special effects from wind. neither were any Marsquakes recorded over a period of two months. In spite of the extreme sensitivity of the instruments no significant results have been found. This poses another question. Since the continuous movements of plates on Earth cause constant seismic effects, the absence of these on Mars may well mean that plate techtonics are not applicable to the planet.

Summarising some of the other outstanding points that have been highlighted:

Extensive evidence of volcanic action with wind and ice erosion over the whole planet
Quite spectacular evidence of water flooding on an extensive scale.
The age of Mars is rather greater than was thought
Innumerable high resolution photographs have made accurate measurements of craters and other features possible, with betler dating.
The sky is largely pink.
The rocks are of many varieties and form, but all are covered in fine red dust.
Confirmation has been found of very extensive glaciation which has modified the surface.
The evidence of a magnetic field.

M巨 M O R
 \square
 PART TWO

 A TWO-PART ARTICLE BY A.BRIAR

 A TWO-PART ARTICLE BY A.BRIAR}

|discussing briefly the function of ROMs in the beginning of Part 1 it was found that this type of memory had the information programmed into the device. Now what exactly is this type of memory?

READ ONLY MEMORIES (ROMs).

Perhaps the simplest way of explaining the actions and effects of Read Only Memories is with the help of a diode matrix. Fig. 7 shows a diode matrix which will convert all the letters of the alphabet into teleprinter code. This is a fixed format program and is never likely to change and thus is an ideal candidate for programming into an integrated circuit ROM.

In fact this diode matrix is a ROM in its own right since it fulfills all the requirements of the description already given for this type of memory. The information is already programmed into the matrix by reason of the fact that only the signal paths that are required are actually wired into it. Thus, by providing the Y •signal line with a high level the corresponding output is $H L H L H$ (which is the correct combination for the letter Y in teleprinter code).
Visualising a much larger ROM but programmed into an i.c.. it will be apparent that this device is ideal for computer microprograms and sub-routines.
There are many types of ROM and the family tree shown in Fig. 8 separates them for simplicity.

MASK PROGRAMMABLE ROM

Oŕiginally, the only ROMs available needed to be programmed for the user by the manufacturer of the device to the former's requirements and was usually only undertaken for orders of about $£ 30,000$ in one year.

The reason for this limitation was that a considerable amount of work needed to be undertaken by the manufacturer to prepare a mask for the final etching process in the manufacture of the i.c. with the required connections programmed onto it. This mask was used to selectively etch away the final coating of aluminium from the silicon wafer. Since this final coating is used to connect to the individual stages within the i.c. then only those required are left to be available at the output (the actual connections to the stages of the memory are the row and column contacts).
This method of programming is still available but is only of value to those users needing a large quantity of identically programmed ROMs.

PROGRAMMABLE ROM (PROM)

Programmable ROMs are much more versatile than the mask programmable ROMs in that the programming of the device can be done quite simply and economically for small quantities, and can even be done by the amateur. Within this family of devices are two major groups namely the FUSIBLE BIPOLAR PROM and the ERASABLE PROM (EPROM).

Fig. 7. Fixed format read only memory example using diodes (converts letters of the alphabet to Baudot code)

Fig. 9. Position of Nichrome fuse in circuit

Fig. 10. Schematic diagram for avalanche induced migration

Fig. 11. Cross section of a programmed cell showing effect of avalanche induced migration

FUSIBLE BIPOLAR PROM

The fusible PROM is a device where the required program can be easily selected by the process of burning out or fusing the unrequired links within the memory. There are three major ways of achieving this effect: the Nichrome Fuse, Avalanche Induced Migration and the Polysilicon Fuse.

The Nichrome Fuse: This method was the first attempted at the fusible PROM device. Nichrome is an alloy of nickel and chrome and is deposited in a very thin layer as a link between the column and row lines of the i.c. memory. By passing a heavy current through this link it can be "blown" thus open-circuiting the line.

Referring to Fig. 9 it will be noted that if the fuse is left intact, then by selection of the row the transistor is allowed to conduct and the column line is pulled towards V re. If the fuse is "blown" then the column line is kept floating and there will be no effect.

Fig. 8. Family tree-read only memories

There is a nichrome fuse associated with each element of the ROM and thus by selectively burning out the fuses the required program may be obtained. Unfortunately there are many problems with this type of device including:
(a) difficulty in obtaining a good and reliable nichrome contact.
(b) difficulty in obtaining the required thickness of nichrome deposit (which is approx. 200 ăngströms in order to achieve the desired resistance for the fuse.
(c) an extremely difficult phenomenon called "growback". The nichrome fuse, once blown, has been found to relink itself such that the i.c. can revert back to the unprogrammed state after a period of time. This makes the nichrome fuse unreliable for industry and as yet no way has been found to overcome this growback phenomenon.
Avalanche Induced Migration: This type of PROM relies on the effect of two reverse biased diodes as shown in Fig. 10. These diodes are across the row and column lines for each element of the PROM and, in the unprogrammed state there can be no current path between the two address lines due to the back biasing effect.

If a heavy flow of electrons is passed in the direction $A-B$ then DI will become short circuit due to the migration of aluminium atoms through the np-junction. Fig. 11 shows a cross-section through the junction of a programmed cell.

Although this method does not have the problems associated with the nichrome fuse only one major manufacturer seems to use it and that is Intersil (who invented the process).

There is conflicting information available as to the merits of this method, though it seems that the amount of current required to program the device is critical

Fig. 12. Floating gate avalanche injection storage cell
as too little can cause intermittent contact and too much can cause damage to other parts of the i.c. Once programmed, however, this device will retain the information indefinitely.

The Polysilicon Fuse: This method is the most popular amongst the major i.c. manufacturers. As with the nichrome fuse a small deposit of fusible material is deposited during the final stages of manufacture of the i.c. but in this case the material is polycrystalline silicon. The thickness of this fuse is approx. 3,000 ångströms (about 15 times greater than nichrome) and the fuse can be blown by application of successively wider current pulses. With this. method there is no problem at all with growback.

ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM (EPROM)

The erasable and electrically reprogrammable ROM, when introduced about five years ago, was a completely new step in the field of PROMs. It has all the characteristics of the normal PROM but in addition has the ability to have the programmed information erased thereby returning the i.c. to its unprogrammed state.
The device uses MOS technology and works on a method called the Floating Gate Avalanche Injection MOS (FAMOS) which was developed by Intel. This system does not use the conventional method of fusing but utilises a migrating charge within a silicon gate MOS field effect transistor (MOSFET) and can be seen in Fig. 12.
This MOSFET does not have any connection to the gate (which is considered to "float"). Now, if a junction voltage in excess of -30 V is applied to the device (which is of the p-channel type) then the floating gate will be injected with electrons from either the source or the drain due to the avalanche effect at that $p n$-junction.

The amount of charge is a function of amplitude and duration of the applied junction voltage and is retained within the foating gate since the latter becomes surrounded by thermal oxide which is a very low conductivity dielectric.

The charge can in fact be retained for years without any significant decay and the manufacturers claim that after ten years at 125 deg . C only 30 per cent of the stored charge will be lost. The presence or absence of the charge determines whether the MOSFET will act as a short circuit path or as a very high resistance between the row and column lines and so the device may be programmed as required.

ERASING BY UV LIGHT

Once the information is required to be erased the i.c. is subjected to ultra-violet light for about 15 minutes through a small access window located on the top of the device. This UV light causes a flow of photocurrent from the floating gate back to the silicon substrate thereby discharging the gate to its initial no-charge condition.

The access window itself is made from transparent quartz and, although always exposed to daylight, neither conventional and fluorescent lighting nor sunlight has any effect on the stored data. The programming and erasing operations can be carried out an indefinite number of times.

CHARGE COUPLED DEVICES (CCDs)

Charge Coupled Devices are more recent innovations in the field of memory systems and are internally organised as extremely long serial shift registers. A typical memory capacity is 16384 BITS where the i.c. is organised as sixty-four separate registers of 256 BITS.

Although there are two basic methods of operation of CCDs, only one will be discussed here, the Surface Channel method as used in the 2416 CCD device by Intel.
Imagine a p-type substrate with eight gates as shown in Fig. 13. Applying a positive potential to one of the gates causes a potential "well" to be formed beneath it by repelling all the majority substrate carriers from the vicinity. If a negative charge is now injected into this region it will be attracted into the "well" and, on removal of the positive potential on the gate, will remain trapped there.

By applying a sequence of pulses to the gates as shown in Fig. 14 the charge, once injected, may be successively moved along the substrate by the overlapping action of the "wells" thus created beneath the gates.
Although the system looks fairly straightforward there are drawbacks, one of these being that a small amount of the charge is lost as it traverses along the substrate. This necessitates the charge being "topped up" by refresh amplifiers every 64 stages. Now, since this device has 64 registers, each of 256 BITS, this creates a problem and so the register is in fact split up into four registers each of 64 BITS to make one long register of effective length 256 BITS. Also, due to the interleaving of the shift pulses, only two refresh amplifiers are required and the information travels through the complete 256 stages in the manner shown in Fig. 15.

Fig. 13. Cross section schematic of eight-gate charge coupled device

Fig. 14. Transference of charge along charge coupled device

NOTE

In Part 1 last month. the formulae quoted on page 28 are incorrect. For a logical "l" stored, the voltage on $C .$, will increase to

$$
\mathrm{V}_{\mathrm{F}}=\mathrm{V}^{\prime} \frac{\mathrm{C}_{1}+\mathrm{KC}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}
$$ where K is a function of C_{1}, and is usually slightly less than 2.

For a logical "0" stored. the voltage on C_{2}, will increase to

$$
\mathrm{V}_{\mathrm{F}}=\mathrm{V}^{\prime} \frac{\mathrm{C}_{1}}{\mathrm{C}_{1}+\mathrm{C}_{2}}
$$

Fig. 15. Data flow of one of the 64 256-bit registers in 2416 device

SIMILARITY TO DRUM STORE

Since there are a total of 64 registers. which are all independent from each other as far as the information is concerned, the organisation of the complete i.c. is analogous to a drum store of 64 tracks.

In a drum store the drum itself revolves thus presenting information on all tracks as the tracks pass the take-off point: in the CCD it is the information itself which is rotating past the take-off point and thus the memory may be accessed at will since the cyclic position of the individual registers will be known. This action is shown diagrammatically in Fig. 16.

FUTURE TRENDS

With so many developments in the last two decades in the field of semiconductor memories one could be excused for thinking that the limit has almost been reached in this technology. However, there are still numerous areas where, in a few years and after more research, further strides will in all probability be made.

The EPROM is a likely candidate for further improvement. At present the only method whereby the data may be erased is by use of ultra-violet light, exposing the chip to it for some minutes. This is obviously very time-consuming and is not practical to incorporate this erase function into an on-line computer memory system.
Further research must bring forth a new method of erasing the data stored which is significantly faster and which is comparativeiy easy to accomplish. Once this has been achieved a completely new breed of semiconductor memory will have been born combining the characteristics of the static RAM with the characteristics of the non-volatile ROM. These characteristics would include:

1. The ability to store the data as required and, should the power be lost or the memory itself be removed then the information within the memory would remain intact.
2. The ability to modify or update the information by erasing completely and then re-writing with the new data at comparable speeds to existing RAMs.

SOCIAL EFFECTS

The implications of the development of such a device are staggering for they would have immediate influences on our way of life. Some possibilities are suggested below.

There would be no need for conventional bank cheque cards and the use of cheques and even hard cash would be cut dramatically. It would be sufficient for each account holder to have his own card with a small and cheap memory built into it. When the holder needs to go to the bank to obtain or pay in money, the memory (which would hold all the information on his account including his current balance) would be automatically updated by a corresponding machine under the control of the cashier.
Similarly, the account holder could go shopping with his card using it in an identical way to the current credit cards.
Shopkeepers would have a similar device to that of the banks such that the cost of the goods or

Fig. 16. Drum store organisation analogy of 2416 device
services would be automatically deducted from the amount held in the account holder's memory card. A detailed record of all transactions completed would be printed out at the end of each day to be sent to the shopkeeper's bank.

Also, shopkeepers would have no further worries similar to stolen or "rubber" cheques with this system, since not only would the true account balance be held on the customer's memory card (including any overdraft facility granted by the bank) but also each card holder would have memorised his own personal privacy code (corresponding to the code hidden inside the memory) to prevent unauthorised use of the card.
A similar memory card could be held by individuals for medical purposes which would be invaluable in the event of an accident since it could hold all the necessary vital information that the hospitals need fast such as age, blood group, doctor's name, next of kin, home address, etc.

At present computer installations use a great deal of off-line storage in the form of magnetic tape, disc stores, drum stores, etc. which are bulky but comparatively cheap. Large scale production of this new generation of semiconductor memories would largely supplant these existing storage systems since, although perhaps not as cheap (per stored word) the floor area savings, the greater reliability (due to their non-mechanical operation) and also (and perhaps most important) the faster accessing time of these new memories would make them an economic necessity.

It must also be expected that even greater capacities within each chip will be forthcoming in the future. With so much data about personal incomes, bank accounts, criminal records, medical histories, bad debt records, etc. already held on computer memories, one wonders if in the future we really will say "Thanks-for the memory".

Uniquefull-function 8-digit wrist calculator... available only as a kit.

A wrist calculator is the ultimate in common-sense portable calculating power. Even a pocket calculator goes where your pocket goes - take your jacket off, and you're lost!
But a wrist-calculator is only worth having if it offers a genuinely comprehensive range of functions, with a full-size 8-digit display.
This one does. What's more, because it is a kit, supplied direct from the manufacturer, it costs only a very reasonable $£ 9.95$ (plus 8\%VAT, P\&P). And for that, you get not only a high calibre calculator, but the fascination of building it yourself.

How to make 10 keys do the work of 27

The Sinclair Instrument wrist calculator offers the full range of arithmetic functions. It uses normal algebraic logic ('enter it as you write it'). But in addition, it offers a \% key; plus the

All this, from just 10 keys! The secret? An ingenious, simple three-position switch. It works like this.

1. The switch in its normal, central position. With the switch centred, numbers - which make up the vast majority of key-strokes - are tapped in the normal way 2. Hold the switch to the left to use the functions to the left above the keys.
2. and hold it to the right to use the functions to the right above the keys.
The display uses 8 full-size red LED digits, and the calculator runs on readilyavailable hearing-aid batteries to give weeks of normal use. 6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Tel: Cambridge (0223) 311488.

Assembling the Sinclair Instrument

 wrist calculatorThe wrist calculator kit comes to you complete and ready for assembly. All you need is a reasonable degree of skill with a fine-point soldering iron It takes about three hours to assemble. If anything goes wrong, Sinclair Instrument will replace any damaged components free: we want you to enjoy assembling the kit, and to end up with a valuable and useful calculator.

Semiconductors from

LYNX ELECTRONICS

THYRISTORS

THYRISTORS								
PIV	$\begin{gathered} 8 A \\ (T O 92) \end{gathered}$	$\begin{gathered} 1 \mathrm{~A} \\ \text { (TOS) } \end{gathered}$	$\left(\begin{array}{c} 3 A \\ (106) \end{array}\right.$		$\stackrel{\text { (TO220) }}{\left(\mathrm{T}^{2}\right)}$	$\stackrel{8 \mathrm{BA}}{(T O 20)}$	$\begin{gathered} \text { 10A } \\ \text { (TO220) } \end{gathered}$	$\begin{gathered} 15 \mathrm{~A} \\ (\mathrm{TO} \mathrm{OB}) \end{gathered}$
50	$0.20 *$	0.25	0.35	0.32	0.41	0.42	0.47	0.96
100	$0.25 *$	0.25	0.40	0.37	0.47	0.48	0.54	1.02
200	$0.27 *$	0.35	0.45	0.40	0.58	0.60	0.68	1.14
400	－30＊	0.40	0.50	0.45	0.87	0.88	0.98	1.40
600	－	0.65	0.70		1.09	1.19	1.26	1．80

TRIACS（PLASTIC TO－220 PKGE ISOLATED TAB）										
	4A		6.54		8．5A		10A		15A	
	（a）	（b）	（a）	（b）	（a）	（b）	a）	（b）	（a）	（b）
100 V	0.60	0.60	0.70	0.70	0.78	0.78	0.83	0.83	1.01	1.01
400v	0．77	0.64	0.75	0.75	0.47	0.81	0.87	0.87	$1 \cdot 17$	$1 \cdot 17$
400 V	0.77	0.78	0.80	0.83	0.97	1.01	$1 \cdot 13$	1． 19	1．70	$1 \cdot 74$
600 V	0.96	0.99	0.87	1．01	1.21	1.26	1.42	1．50	$2 \cdot 11$	$2 \cdot 17$

NB Triacs without internal trigger diac are priced under column（a）．Triaca with internal trigger diac
are priced under column（b）When ordering please Indicate clearly the type required．

LINEAR ICS

LINEAR ICS
307
380
555
565
566
567
709
741
748
3900
CA3045
CA3040
MC1304P
MC1307P
MC1458P
TAA300
TAA310A
TAA550
TAA611B12
TBA530
TBA570
TCA270

OPTOELECTRONICS

CA3045
CA3046
MC1304P
MC1458P
TAA300
TAA310A
TAA611B12
TBA570

NPN TO－3 POWER
TRANSISTORS
Fully tested but unmarked． Similar to 2N3055 except BVCEO $=50 \mathrm{~V}+$
HFE（gain）$=20+$ at 3 A
VCE SAT $<1.3 \mathrm{~V}$ at 3 A
Pack of 10
Pack of 20
Pack of 20
Pack of 100
$\kappa 1.80$
83.40
87.50
ldeal for power supplies．
audio output，etc
TRANSISTORS，DIODES，RECTIFIERS

TRANSISTORS，DIODES，RECTIFIERS										CAS3－10	0.45	TIP		2 N 3054	0.40
${ }_{\text {AC }} 126$	0.15	BC117	$0.19{ }^{\circ}$	BC301	0.32	BDY60	1.70	BT 109	1.00	CRS3－20	0.50	T｜P34	1.05	2N3055	0.50
AC127	0.16	BC125	0.18.	BC323	0.60	BDY61	1.65	BTtic	1.00	CRS3－40	0.60	TIP41A	0.68	2N3440	0.56
AC128	0.13	BC^{126}	$0.20{ }^{\circ}$	BC327	0．18＇	BDY62	1.15	BU105	$1 \cdot 80^{*}$	CAS3－60	0.85	TJP42A	0.72	2N3442	1.20
AC128k	0.25	BC141	0.28	BC328	0.16 ，	BF178	0.28	BU105 02	21.90°	MJ480	0.80	（N2069	0.14	2 N 3525	0.50
AC141	0.18	8 C 142	0.23	BC337	0.17	BF179	0.30	But26	1．60\％	MJ481	1.05	1 N 2070	0.16	2N3570	0.80
AC141K	0.28	8C143	0.23	ВС338	$0.77^{\prime \prime}$	8F194	$0.10{ }^{\text {－}}$	BU204	1．60＂	M 430	0.90	1 40001	$0.04 *$	2N3702	$0 \cdot 10$－
AC142	0.18	BC14d	0.30	aCY30	0.55	BF195	$0 \cdot 10^{*}$	Bu208	$2.60{ }^{\circ}$	MJ491	1.15	in4002	$0.05 *$	2N3703	－10＊
AC142K	0.20	BC147	$0.09 *$	BCY31	0.55	BF196	$0 \cdot 12^{*}$	BY206	0.75	MJE340	$0.40{ }^{\circ}$	＋ 4003	0.06 －	2 N 3704	0.10°
AC176	0.16	8 C 148	$0.09 *$	ВСС32	0.60	BF197	$0.42 *$	BY207	0.20°	M ME371	0.60	［ 10604	$0.07 *$	2N3705	0．10．
AC476K	0.25	BC149	$009 *$	BCY33	0.55	BF224	$0.18{ }^{*}$	BYX 36		MJES20	0.45	｜ 14005	$0.08{ }^{\circ}$	2N3706	0.10 ＊
AC187	0.18	BC152	$0.25 *$	8С934	0.55	BF244	$0.17 *$		00．92＊	MJE521	0.55	in 4506	$0.09 *$	2N3707	0．10＊
AC187K	0.25	BC153	$0.18{ }^{*}$	8CY38	0.50	8 F 257	$0.30 *$		$00.15{ }^{\circ}$	OA5	$0.50{ }^{-}$	｜ A 4007	$0.10{ }^{\circ}$	2 N 3714	1.05
AC188	0.18	BC157	$0.09 *$	BCY 39	1.15	8F258	0.35		000．18＊	OAgO	0.08	2N696	0.14	2N3715	1.15
AC188K	0.25	BC158	$0.09 *$	BCry	$0 \cdot 12$	8F337	0.32		0 0．21．	OA91	$0 \cdot 08$	2N697	0.12	2N3716	1.25
AD140	0.50	BC159	$0.09 *$	8 Cr 71	0.18	BFW60	$0.17 *$	Byx38－		OC41	0.15	2N706	0.10	2N3771	1.60
AD142	0.50	BC150	0． 32	BCY72	0.12	BFX29	0.26		000.50	0 Ca 2	015	2N929	0.14	2N3772	1.60
AD143	0.46	BC161	0.38	80195	0.55	日FX30	0.30		000．55	$0 \mathrm{Ca4}$	0.32	2N930	0.14	2N3773	$2 \cdot 10$
AD149	0.45	BC168B	0.09 －	80131	0.36	BFX84	0.23		00060	$0 \mathrm{C45}$	0.32	2N1131	0.15	2N3819	0． $2 \mathrm{~A}^{*}$
AD161	0.35	BC182	0.11	80：32	0.40	BFX85	0.25		00.05	0 C 70	0.30	2N1132	0.16	2N3904	0.16 ＊
AD162	0.35	BC1821	0.11°	日D135	0.36	BFX88	0.20	B2X61	Series	$0 \mathrm{C71}$	0.35	2N 1304	0.45	2N3906	0．11＊
AL 102	0.95	BC183	0．10＊	BD136	0.38	BFY50	0.20	Zeners	0.20	$0 ¢ 72$	$0 \cdot 22$	2N 1305	0． 40	2 N 124	0.14
AL 103	0.93	BC183L	$0 \cdot 10{ }^{\prime}$	8D137	0.40	BFY51	0.18	82×83 or		0 CS 4	0.40	2N1711	0.18	2 N 4290	0.12
AF114	0.20	8 Cl 184	0.11°	80138	0.48	BFY52	0.19	BZX88 5	eries	SC4JA	0.73	2N2102	0.4	2 N 4348	1．20
AF115	0.20	8C184L	0.11	80139	0.5	BFY64	0.35	Zeners	0.11	SC408	0.81	2N2369	0.14	2 N 4870	$0 \cdot 35$ ．
AF116	020	BC2078	0.12	8D191	08	8FY90	0.65	C106A	0.40	SC400	0.98	2N2369A	0.14	2 N 4879	0.35 －
AF117	0.20	8C212	0.11^{2}	80182	0.92	8R100	0.20	C1068	0.45	SC40F	0.65	2N2484	0.16	2N4919	$0.70 *$
AF118	0.50	BC212L	0.11°	80183	0.97	$\mathrm{BFY}^{\text {P39 }}$	0.40	C1060	0.50	SC41A	0.65	2N2646	0.50	2 N 4920	0.50°
AF139	0.35	BC213	0．12＂	80232	$0.60 *$	BSX 19	0.16	C106F	0.35	SC418	0.70	2N2905	0.18	2N4922	0.58 ＊
AF239	0.37	BC213L	0.12 ＊	80233	0.40°	BSx20	0.48	CAS $1 / 05$	0.25	SC410	0.85	2 N 2905 A	0.22	2 N 4923	0.46°
BC107	0.09	BC214	$0.14{ }^{\text {\％}}$	80237	0.55	BSX21	0.20	CRS $1 / 10$	0.25	SC41F	0.60	2N2926R	$0 \cdot 10$＊	2N5060	0.20°
BC1078	0.09	BC214L	$0.14{ }^{\circ}$	ED238	$0.60{ }^{\circ}$	ESY95A	0.12	CRS 1,20	0.35	ST2	0.20	2N29280	$0.09 *$	2N5061	$0.25 *$
8C108	0.09	BC237	$0.16{ }^{\circ}$	BDi84	1.20	BT10\％	1．00	CRS1／40	0.40	TIP29A	0.44	2N2926Y	0．09＊	2N5062	0．27＊
8 C 109	0.09	BC238	$0.16{ }^{*}$	80Y20	0.80	BT107	\＄． 60	CRS 1,60	0.65	TIP30A	0.52	2N2926G	0． $10 \times$	2N5496	0.65
BC 109 C	0.12	BC300	0.34	B0Y38	0.60	ET 108	1.60	CRS305	0.34	TiP31A	0.54	2N3053	0.15		

P．\＆P． 20 p per order－overseas 80 p．Matching 20 p per pair．
VAT 8% except for items＊which are 12% ．No VAT Overseas Access and Barclaycard welcome

LYNX ELECTRONICS（LONDON）LTD

Higham Mead，Chesham，Bucks
Telephone（02405）75154．Telex 837571

\section*{OSMABET LTD | We make transtormers |
| :---: |
| amongst ofter thnoss |}

LOW VOLTAGE TRANSFORMERS

 50 V 6 A CT $£ 18 \cdot 75: 25 \mathrm{~V} 2 \mathrm{~A}+25 \mathrm{~V} 2 \mathrm{~A}$ E7： $12 \mathrm{~V} 4 \mathrm{~A}+12 \mathrm{~V}$
$4 \mathrm{~A} £ 7$ ．
LT TRANSFORMERS TAPPED SEC．PIIm 200／240V 0－10－12－14－16－18V 2A．I4：4A． $55 \cdot 25$ ． $0-12-15-20-24$
 MIDGET RECTIFIER TRANSFORMERS
For FW rect 200／240V a．C．， $6-0.6 \mathrm{~V} 1 \cdot 5 \mathrm{~A}$ or $9-0-9 \mathrm{~V} 1 \mathrm{~A}$
$\mathbf{6 2 . 2 5}$ each． $12-0-12 \mathrm{~V}$ 1A．or 20020 V 0.75 A or $9-0-9 \mathrm{~V}$ $82 \cdot 25$ each， $12-0-12 \mathrm{~V} 1 \mathrm{~A}$ ，or 20020 V 0.75 A ．or $9-0-9 \mathrm{~V}$
0.3 A ，or $12-0-12 \mathrm{~V} 0.25 \mathrm{~A}$ or $20-0-20 \mathrm{~V} 0.15 \mathrm{~A}$ or 6 V
 $+12 \mathrm{~V} 0 \cdot 25 \mathrm{~A}$ ．or 20V0． $15 \mathrm{~A}+20 \mathrm{~V} 0 \cdot 15 \mathrm{~A}$ ，all alc2－65each LOUDSPEAKERS

 or 25R．£1．50．
＂INSTANT＂＇BULK TAPE／CASSETTE ERASER Instant erasure any dlameter tape spool or casselte
demagnetlses tape heads．200． 240 V a．c．．［3． 75 ． SYNCHAONOUS GEARED MOTORS $200 / 240 \mathrm{~V}$ a．c Brand new Smiths bult in gearbox． 6 r．p．h．．E1 25 PAPER TUBULAR CONDENSERS
$47 \mathrm{mF} .160 \mathrm{~V}, 30 \times 20 \mathrm{~mm}, 20 \mathrm{p}$（ 100 for $£ 10$ ）．
SPEAKER MATCHING AUTO TRANSFORMER
$12 \mathrm{~W}, 3$ to 8 or 15Ω ．up or down．E1． 65.
G．E．C．MANUAL OF POWER AMPLIFIER COVERING
VALVE AMPLIFIERS OF 30 W TO LOOW 50 p Ch 30 W TO 400W 50p

MICROPHONE TWIN M／DUTY，BRAIDED SCREEN Professional cable for stage，studio，outdoor PVC MULTI WAY SCREENED PY
36 way E1： 25 SUREENED，PVC COVERED 2 way 10p； 1 way op per metre．
LOW LOSS CO－AXIAL CABLE 75Ω
UHF，white．16p per metre：VHF，white．9p per metre BALANCED TWIN FLAT FEEDER 300』
FLEXIBLE PVC MINI 3－CORE CABLE，19／0．10MM 100 metres $83 \cdot 50$ ．ldeal for speakers，intercoms．of TWIN FIG．a CABLE
Potarised，$[3 / 100 \mathrm{~m}$ ．Screened siereo §1／15m．
ALL TYPES DOMESTIC AND COMMERCIAL CABLES ALL SIZES AND COLOURS CONNECTING WIRES MULTI SCREENED AND UNSCREENED CABLE riage and VAT extra INVITED
S．A．E．ENQUIRIES．LISTS．MAIL ORDER ONL
46 Kenilworth Road，Edgwaré，Middx．HA8 8YG Tel 01－958 9314

THE CATHODE－RAY OSCILLOSCOPE AND ITS USE

by G．N．Patchett
Price $\mathbf{6 3 \cdot 8 5}$

COMPUTER TECHNOLOGY FOR TECHNICIANS AND TECHNICIAN ENGINEERS Vol．I by R．V．Wat $\mathrm{kin}_{\text {Price } 63.75}$ ACTIVE－FILTER COOKBOOK by
Lancaster PRACTICALSOLID STATE D．C． SUPPLIES by T．D．Towers Price E6．00 110 INTEGRATED CIRCUIT PROJECTS
FOR THE HOME CONSTRUCTOR FOR THE HOME CONSTRUCTOR by
Price $\mathbf{E 2} 75$
 FOUNDATION OF WIRELESS AND ELECTRONICS by M．G．Scroggie

PRACTICAL ELECTRONIC PROJECT BUILDING by A．C．Ainslie Price E2：30
COLOUR TELEVISION PICTURE
OPERATIONAL AMPLIFIERS DESIGN
AND APPLICATIONS by Tobey Price 47.00
＊PRICES INCLUDE POSTAGE＊

THE MODERN BOOK CO．

BRITAIN＇S LARGEST STOCKIST
of British and American Technical Book
19－2I PRAED STREET
LONDON W2 INP
Phone 01－7234185
Closed Saturday 1 p．m，

IN a hotel in Atlantic City last August, about 5,000 people attended a computer show at which more than 100 firms showed their products. By the standards of American computer events, it may sound modest. but what made this exhibition unusual was that the visitors were not professionals, but amateurs. The show, called Per. sonal Computing 76, was an example of the remarkable boom in computer hobbies in the United States, which has grown so rapidly in the past two years that it has taken both the electronics industry and the retail trade completely by surprise.

HOW IT BEGAN

Improbable though it may seem, it all began in Albuquerque, New Mexico, the home town of a smali company called MITS Inc. In December 1974, MITS introduced a computer in kit form called the Altair, built round an Intel microprocessor. The main market was expected to be the small business user, but MITS found that the Altair was being bought not by companies, but by individuals-and bought in incredible quantities. Within 18 months, MITS had sold some 8,000 Altairs, about 80 per cent going to the hobby market.

Before long, other companies entered the market, so that today there are about 30 computer kits being offered. At first, they were sold by mail, but there was a clear need for more direct contact with the customers-if anyone is in need of advice, it is surely an amateur building and using a computer. As a result, computer clubs and computer shops began to spring up.

There are now about 70 clubs for computer amateurs in the United States, and there are esti-

[^2]mated to be 100,000 people belonging to them or otherwise actively engaged in the hobby. One club. the Southern California Computer Society, was formed by a handful of enthusiasts in June 1975, and in little more than a year grew to over 8,000 members. Other clubs have experienced similar rates of growth.

Retail computer stores in the States now number about 50 and are also growing fast. One of the best known chains, the Byte Shop "Affordable Computer Stores". runs as a franchise operation. The first shop opened in Mountain View, near San Francisco, in December 1975, and it was expected that 30 Byte Shops would be operating by Christmas 1976.

Magazines for computer hobbyists have also appeared. The most successful, Byte Magazine, grew to a paid circulation of over 50,000 within a year of its first issue in September 1975.

GREAT APPEAL

Although the boom in hame computing took the electronics industry unawares, it is not difficult -in retrospect--to see its appeal. For the constructor, it offers the opportunity to use his ingenuity in building equipment and making it work-something which has attracted the enthusiast since at least the early days of radio. The microprocessor made possible a small and relatively low-cost central processing unit (some look more like hi-fi equipment than computers), while the rapid growth and high innovation rate of professional computing meant there was a lot of surplus equipment on the market in the form of teleprinters, VDUs. and other peripherals.

There is also a whole generation of people who have grown up with an easy familiarity with computers.

Even those who have not entered computing as a career have probably been taught simple programming at school or college.

What the hobby computers are used for is limited only by the imagination of the enthusiasts. There are applications groups for such activities as games, electronic music, education, and voice synthesis, as well as more way-out topics like biofeedback, biorhythms. astrology, and extra-sensory perception.

TYPES OF HOBBYISTS

Broadly speaking, the computer hobbyists can be placed into three groups. First there are the people whose main interest is in the hardware. They may even scorn the computer kits, and start from the basics with a microprocessor, a handful of i.c.s, and a bare board. Once their computer system is built, their joy will come from continually modifying and extending it. They are the equivalent of the hi-fi addicts who never listen to the music.

The next group consists of the people who are chiefly concerned with software. They may construct their computer from a kit, but will just as soon buy it ready-built (if they can afford it). What they really want to do is get ahead with devising programs as a form of intellectual exercise. They may use their computer to play mathematical games or run chess tournaments of mind-bending complexity.

The third group comprises people whose main hobby is something else altogether, but who feel that a computer can help them enjoy it much more. The model train enthusiast might want to automate his layout, amateur radio operators may wish to generate and decode high-speed morse, and the amateur astronomer will have many calculations which a computer can help him undertake.

There is a fourth group which, while important, is not strictly speaking in the hobby field at all. Many business and professional people in the United States are now finding that the hobby computer is iust what they need in their working lives. Their status in the hobby field may be a little suspect, but they are certainly enthusiasts. They take a full part in the activities of the computer clubs, and have no hesitation in sharing their experiences. For example, a Texas attorney has described how he tried to build an automatic typewriter for use in his office.

PROSPECT FOR BRITAIN

Will the boom in computing as a hobby come to Britain? It seems
quite likely, though how soon is difficult to decide. One problem is cost. Despite the fall in price of microprocessor chips, at the moment it would probably be necessary to pay out between $£ 150$ and $£ 1,000$ to set up a usable system to start computing at home.

Even in the United States, the price of entry is reckoned to be fairly high in relation to disposable income. One American commentator has said that anyone wishing to enter computing as a hobby would probably have to choose whether to spend his money on a new boat, car, or trailer, or on a computer system. In Britain, not many people are fortunate enough to be able to make that choice.
But in electronics, one thing certain is that any product based
on semiconductors is going to show rapid falls in price. So we can expect hobby computer kits which will be much cheaper than those on the market at present.

Another factor is the competitiveness which seems bound to enter the business before long. As the American hobby computer market is expected to be running at $15-20,000$ units a year by 1980 , the large semiconductor companies which make the microprocessor chips may well enter the business, just as they have entered calculators and digital watches. They can be expected to follow the same downward trend in pricing as they pass on the benefits of the semiconductor learning curve. These companies, too, already have established worldwide marketing outlets,
whereas many of the existing hobby computer firms are what are known as "mom and pop" companies.

Once hobby computers become freely available in Britain at the right price, there seems no reason why they should not find a ready market. Many people are now familiar with the principles of computing, and there is, of course, a flourishing interest in home constructional projects.

And apart from providing an outlet for endless ingenuity, the home computer may also appeal to those trying to reduce the odds against them in this robot-ridden age. As one American enthusiast said, "I wanted a small computer so 1 could take on all those big computers.'
achieved in motors rated at several kilowatts. Speed range is very wide and notable features are the smooth running at very low speed (say $5 \mathrm{rev} / \mathrm{min}$), and the ability to self start without forcing.
The machine uses a conventional stator with a new design of rotor based on disc magnets that produces a very high airgap field.

When this machine is used as an invertor-fed drive using a position sensor, the combination of a very high airgap field with a stabilising element gives it the capability of a very high torque over a wide speed range. The stabilising element minimises any hunting tendency (load angle oscillation) whether the machine is generating or motoring.

Companies interested in building motors of this type are invited to contact Peter Thompson, Electrical Engineering and Electronics Group, to discuss licensing arrangements. A demonstration of a working prototype at the University can be arranged for potential licensees.

EMI-Scanner for Thailand

THE EMI-scanner has scored its first success on the South-east Asia mainland, with a $£ 204,000$ order placed by the Siam Medical Company Limited.

The comprehensive system to be supplied, built around the EMI-Scanner CT1010 specialist neuroradiological tool, will be under the direction of a noted neuro-surgeon, Dr Rasmi Wannison, who was influential in negotiating the order for installation in the Siam General Hospital, Thailand. It will be delivered in December and installed for routine clinical investigations on patients displaying symptoms of neurological disorders, to coincide with the hospital's 5th anniversary in January 1977.

The CT1010 uses the technique of computerised axial tomography invented by EMI's Central Research laboratories in 1968, to provide the doctor with information about soft tissue structures in the head from a painless examination lasting only a few minutes. The head is examined as a series of cross-sectional slices from the top of the skull down to the larynx.

The CT1010, the most advanced equipment available for this purpose anywhere in the world, and its sister machine, the EMI-Scanner CT5005 for whole-body examinations, have revolutionised the application of X-rays to the investigation of bodily ailments and have been hailed as the most significant advances in this field since Roentgen's discovery of X-rays in 1895.

Available to you in kit form at the same moment as its national launch, the brilliant new Videomaster Superscore contains the latest product of MOS technology: a TV game chip.

The logic contained in it had previously to be generated by 100 TTL devices. Now it is condensed into one 28-pin chip.

This all-new Videomaster plugs into your 625-line UHF TV set (for overseas customers having VHF sets we can supply the necessary VHF modulator) to give you four exciting games (including tennis and football) and two future game options. It features on-screen digital scoring, realistic hit sounds, two bat sizes, two
ball speeds, automatic serving and much more. It runs on six $1 \frac{1}{2}$ volt SP11 type batteries (not supplied).

The Videomaster Superscore kit costs only £24.95 including VAT (recommended retail price of the ready built model is over $£ 40.00$) and comes complete with ready-tuned UHF or VHF modulator, circuit board with printed legend, all resistors, transistors and diodes, built-in loudspeaker, socket for mains adaptor, and, of course, the TV game chip itself.

Easy to put together the Superscore has full assembly instructions, circuit diagram and circuit description. Don't miss this chance to own the newest electronic game at such low cost.

POST TODAY TO:

14/20 Headfort Place, London SW1X 7HN			
Please send me (insert No. requ'd). \qquad Videomaster Superscore Kits at $£ 24.95$ (inc. VAT \& P\&P in UK) or $£ 23.10+£ 4.00$ for P\&\& overseas)			
I enclose my cheque/money order* for £................	VHF modulator required	YES/NO*	PE87
NAME			
ADDRESS			
ALLOW 21 DAYS FOR DELIVERY	* delete as necessary		

TAMBA ELECTRONICS P.A. GROUP AND CLUB USE

- Suits loads 4-16 ohms
$20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
- Silicon circuitry throughout
- Glass fibre P.C.B

High sensitivity (100 mV 10k)

High grade components used through out: Texas, Mullard, R.C.A., Plessey, etc

Low distortion (0.1\%)
0 Low profile (1 in high $3 \frac{1}{2}$ in $\times 3$ in)
75\% efficient
Accepts most mixer/pre-amplifiers Four simple connections

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc)-C.O.D. (60p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at 8% to orders for 50 and 100 W units and at $12 \frac{1}{2} \%$ for 25 W units.

Hours, 9.30 a.m. -5 p.m Monday - Saturday Callers welcome Tel: (01) 6840098

TAMBA ELECTRONICS

Bensham Manor Road Passage, Bensham Manor Road, Thornton Heath, Surrey.

S NEW, hIGHER RELIABILITY VERSION OF THE P.E. "SCORPIO MK II" IS NOW AVAILABLE IN KIT FORM!! OU thousands of satisfied customers report
M
re miles per gallon (customers reports give $10 \%-25 \%$ saving -letters available)
A_{n}
increase in overall performance-your 4 cylinder car feels like a 6 cylinder
N
more cold morning splutters-saves you even more petrol through much less use of choke
T
price? A snip at only $\mathbf{1 1 6} \mathbf{5 0}$, fully inclusive of all parts, instructions, postage/packing and V.A.T. (ready built unit available- $£ 19.85$ fully inclusive
All parts to high specification, first quality and brand new
Construct this invaluable accessory, following our easy step by step instructions (also available separately, price 30 p post paid). Send for our free interesting six page brochure--"Electronic IgnitionHow it Works" (S.A.E. Please) to

ELECTRO SPARES

Dept. P.E., 187a Sheffield Road, Chesterfleld, Derbyshire S41 7JQ. Telephone: Chesterfield (0246) 36638

Si IATMUTITR
 UPCOIIIE

8080 Z80 D17AL
DM71/LS95, LS96, LS97, LS98

MICROPROCESSORS I TO Z?

You may have heard of the Intel 8080 Microprocessor chip, a powerful 8 -bit device using fast n-channel MOS technology which comes about as close as it is possible to get to being the 8-bit "Industry Standard" at the moment. The 8080 has a powerful set of 78 instructions, can handle Interrupts and Direct Memory Access (D.M.A.) transfers and requires only a handful of extra peripheral chips for circuit operation.

It all sounds bang-up-to-the-minute and highly desirable stuff, but such is the pace of microprocessor development that it can now be made to look like a seven-stone weakling when compared to the amazing Zilog $\mathbf{Z 8 0}$ which seems to have been designed for the job of kicking sand into the face of its skinny Intel rival. It certainly is intended as a rival to the 8080 because it uses the same instruction types and so can run 8080 programs with little or no modification, making swopping to the new chip easy for established 8080 users.
The strength of the Zilog challenge lies in the fact that while the Z80 does everything the 8080 does, it also does lots more besides, and it does it with less hardware, less software and at a higher speed, in short it does it better, a fact which even Intel would have to concede!

Of course, clever chips are not the end of the microprocessor story, and Intel has an enviable reputation for supporting its own microprocessor range with development systems, prototyping cards and software facilities.

On the face of it Zilog also seem to be backing up their new fledgling very well with a powerful development system and software, but only time will decide whether they are capable of seriously denting the strong position of Intel, who, it is rumoured, are even now working up some potent "dynamic-tension" for retaliation!
The Z80 is distributed by: Lock Distribution, Neville Street, Oldham, Lancs., OL9 6LF.

VERSATILE BUFFER

New from National is the DM71/ LS95, LS96, LS97 and LS98 series of tri-state digital buffers which are intended for use in bus-orientated logic systems such as those associated with microprocessors.

These devices are noteworthy because they incorporate lots of useful features which make them a valuable addition to the TTL logic family. The LS stands for Low-power Shottky technology which means these devices exhibit the speed of standard TTL but consume only a fraction of the power-per-gate. Tristate means that in addition to the current sinking logic 0 state, and the current sourcing logic 1 state, a third, high impedance, state exists which allows the connection of several buffer outputs to the same "bus" wire as long as only one is active at a time.

These features are not entirely new of course, but the package they come in certainly is because it is a standard (16-pin) width package with no fewer than 20 pins to allow not six, but eight, separate buffers in a single compact DiL. Eight buffers in a package is desirable, particularly for eight-bit microprocessor applications, and the new series includes inverting and non-inverting types with a choice of dual four-bit outputenable or a gated eight-bit outputenable.

GOING DOTTY

Seven segment l.e.d.s, once so expensive are now freely available at knock-down prices and are widely used in amateur projects such as clocks and games.

With seven segment displays it is, of course, only possible to display the numerals 0 to 9 with ease, while the letters of the alphabet are impossible, or at best, weird representations which are unsuitable for most applications.

A need for a low cost alphnumerical display for hobby applications is now arising due to the increasing sophistications of homebuilt systems which can even include the power of the low cost microprocessors. But, untortunately, the cost per digit looks prohibitive due to the large number of separate I.e.d. "dots" required to provide a realistic character font. Professional 7×5 dot matrix l.e.d. displays have been around for some years, but have only been used in a limited way due to their high cost and the difficulty of connecting up the array in a practical system.

Now at last, ITT Components have had a real go at the problem and have come up with the D17AL dot matrix display in a low cost epoxy package and made easy to drive thanks to an on-chip MOS shift register which reduces the input data wires to just one! Appropriate dot patterns for an input data word are looked up in an external "Character Generator" ROM or a Microprocessor "look-up-table" and the on-chip 35-bit shift register is loaded with the pattern in serial form.

Any number of D17AL devices can be cascaded to produce multi character displays, since the end of the shift register is available on a package pin to provide the input to a following device, the whole display can then be loaded in serial form by applying the correct number of shift pulses to the common "clock" line.

The D17AL is available in red or green, and has a creditable 17 mm character height. Brightness is controlled by varying the control voltage on a single pin and current limiting for each l.e.d. is provided internally.

A device like this looks ideal material for future amateur projects, but at present, prices are still rather a problem. I have included the D17AL on this page to show that a potentially low cost solution is in sight and no doubt we shall all be "going dotty" in the near future.

Data on the D17AL is available from: STC Limited, Optical Equipment Division, Westfield Mill, Broad Lane, Bramley, Leeds.

input impedance, and is preceded by a switched attenuator to cover different ranges of input signal. Considerable negative feedback is used to stabilise calibration and minimise zero drift on d.c.

The practical circuit is illustrated in Fig. 1. Starting with the input sockets, it will be seen that the a.c. input JK1 is capacitively coupled to the d.c. input JK2. From there, the connection goes direct to the top of the attenuator network. The switching contact on JK2 is arranged so that only JK1 can be used when the 0.02 volt range is selected. Range switch S1 operates by controlling the negative feedback as well as changing the attenuator resistors. The sequence is shown in Table 1. Capacitors C2 and C3 are for frequency compensation. Adjustment of C2 is discussed later.
The input to the amplifier is via R4 which, together with diodes D1 and D2, give protection against excessive input voltage. Both the forward

MILLIULTMETER
 By D.W. EASTERLING

THE ordinary multirange meter is very convenient for general workshop use, but its relatively poor frequency response and sensitivity make it unsuitable for overall circuit analysis such as the determination of gain, attenuation and frequency response. The measurement of small d.c. voltages associated with bias, a.g.c. and discriminator networks, which often have impedances higher than the input resistance of the meter, is also difficult. The solution to these problems is to use an electronic millivoltmeter such as the one described here.

This instrument has three d.c. and four a.c. ranges, enabling readings to be made from 20 volts down to 5 millivolts d.c. and 2 millivolts a.c.. Both positive and negative d.c. voltages can be measured, the polarity being with respect to the metal case (earthy line). This helps to minimise the effect of mains hum, and prevents instability in the equipment being investigated. Calibration on a.c. ranges is in r.m.s. values and presupposes a sinusoidal waveform, or one close to it. Frequency response is flat from 20 Hz to 200 kHz , except on the 0.02 V range, when it is flat to 20 kHz , and 3 dB down at 50 kHz .

The instrument is powered by a 9 volt battery controlled by the range switch, and has connections brought out to front panel sockets for supplying auxiliary units when required. Zero drift on d.c. ranges, often a problem with electronic voltmeters, is negligible once initial adjustment is made to the zero control. In addition to cancelling out internal potential differences, the zero control can also be used over a limited range to balance out off-set voltages introduced at the input; a useful feature when using transducer probes.

CIRCUIT

The basic circuit consists of a wideband amplifier coupled via a bridge rectifier to a 0 to 200 microampere moving coil meter. The amplifier has a high

and reverse resistances on the diodes are high until the voltage across them exceeds 0.5 V (more than sufficient for full scale deflection) when the forward resistance decreases and considerably limits the signal at the gate of the field effect transistor TR1. Notice that the earthy end of the diodes and input circuit does not go to the negative rail, but via R 7 to the emitter of TR3. This is the main negative feedback line.

The output from the source of TR1 is the signal superimposed on a standing d.c. voltage of 5 V . Due to the low impedance at this point, adjustment of the zero control VR1 affects only the standing potential and not the signal. The signal, together with any changes in the standing potential due to adjustment of VR1, is passed by the Zener diode D3 to the base of TR2. The purpose of D3 is to preserve a fixed potential difference of 3.9 volts between the source of TR1 and base of TR2 without attenuating the sig. nal. This allows TR2 to be supplied by nearly the full battery voltage and so achieve maximum gain, linearity and dynamic range. The output of TR2 is taken from the collector direct to the base of TR3.

COMPONENTS

Resistors			Semiconductors
R1 $2 \mathrm{M} \Omega$	R10, R12	$4 \cdot 7 \mathrm{k} \Omega$ (2 off)	TR1 2N3819
R2 $220 \mathrm{k} \Omega$	R11	100Ω	TR2 BC109
R3 $22 \mathrm{k} \Omega$	R13	70Ω	TR3 BC107
R4, R7-R9, R16 10k ${ }^{\text {(} 5 \text { off) }}$	R14	2k Ω	D1, D2, D4 1N4148 silicon diode (3 off
R5 $22 \mathrm{k} \Omega$ (or $20 \mathrm{k} \Omega$ preset*)	R15	k Ω (or 1k Ω preset*)	D3 B6 BZY88 C3V9 400 m diode (2 off)
R6 220Ω (or 200Ω preset*)	R17	$00 \mathrm{k} \Omega$	D5, D6 \quad BZ91 germanium
R1-3 $2 \% \frac{1}{2} \mathrm{~W}$ metal oxide, rem	ainder 5\%	$\frac{1}{2}$ W See text	
Potentiometer			Miscellaneous
VR1 $5 \mathrm{k} \Omega \mathrm{lin}$.			ME1 Microammeter 0-200 $\mu \mathrm{A}$
Capacitors			S2 3-pole 4-way wafer switch
			JK1, JK2 $\frac{1}{4}$ in jacks with break contacts (2 off)
C2 ${ }^{\text {C }}$ 30pF trimmer	C6, ${ }^{\text {c }}$	$22 \mu \mathrm{~F} 10 \mathrm{~V}$ elect. (2 off)	Group board, miniature 18-way;
C 36680 pF 63 V ceramic	C8	$1,000 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.	9 volt battery; 176×1
C4 $47 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.			aluminium case $176 \times 125 \times 65 \mathrm{~mm}$.

Transistor TR3 contributes little gain, but does increase the output voltage sufficiently to operate the rectifier mainly over the linear part of its characteristic. At the same time, the emitter circuit provides a suitably phased low impedance source of negative feedback which is held at the required d.c. level by D4. This is not a Zener diode, but uses the forward current characteristic of a silicon diode to maintain a potential difference of 0.5 volts.

The main purpose of $S 2$ is to switch the microammeter to various parts of the circuit depending on the measurement required. Starting with battery CHECK, it will be seen that the meter is placed in
series with R17 across the battery so that the circuit behaves as a simple voltmeter. When $\mathbf{S} 2$ is at D.C. negative, the negative terminal on the meter is connected via R15 to the collector of TR3, and the standing voltage at this point is balanced out by the positive terminal going to the Zener network D7, R14. The meter connections are reversed when $S 2$ is switched to D.c. positive. Finally, with S2 at A.C. the meter is in series with R16 across the bridge rectifier. In this position S 2 a comes into use, bypassing some of the a.c. negative feedback to the negative rail via C 4 and R 5 . Greater sensitivity is obtained for the 0.02 V range when S1c shunts R5 by R6.

CONSTRUCTION

The instrument is housed in a standard aluminium box measuring $176 \times 125 \times 65 \mathrm{~mm}$. All components are mounted in the lid, which becomes the front panel. The drilling details are shown in Fig. 2. Because it is difficult to measure accurately from the radiused edges, all dimensions are from centre lines. The distance between holes E depends on the spacing of the holes in the tagboard. Boards made by different manufacturers may vary, and so it is well to check before drilling the panel. Holes F secure the microammeter, and again the actual positions may have to be varied slightly, those quoted being for an S.E.W. SD830 movement.

In order to provide a suitable background for the switch and socket legends, the front panel can be covered by self adhesive vinyl sheet such as Contact or Fablon. This material will accept transfers and instant dry lettering which should be protected by a coat of clear varnish. The vinyl sheet is applied after the panel has been drilled but before the com ponents are mounted. The tagboard is secured by 4BA countersunk bolts through holes E, one full nut being used on each bolt as a spacer to lift the board away from the panel and so prevent the tags shorting out. The spacer nut fitted to the bolt nearest RI also secures a solder tag which is used to connect a double earthing lead to the case. One lead subsequently connects the jack sockets, and the other goes to the earth tags on the board.

WIRING

The wiring diagram is shown in Fig. 3. For the sake of clarity not all the wiring is drawn but the connections are indicated. For instance, the left-hand tag of R1 goes to C2, C1 and JK2, and also to tag 4 on SIb. The other end of R1 goes to tags 2 and 3 also on Slb. All tags 1 on Sl are unused as all three switch segments are open circuit in the off position.

It will be noticed that although Fig. I shows resistors R5. R6 and R15 as adjustable, Fig. 3 does not. Cheap preset controls are unsuitable for this job and it would be better to use helical trimpots,

Fig. 2. Drilling details of the front panel of the millivoltmeter
but these are expensive. The writer used fixed resistors, trimming down to the required value by shunting them with higher values.

The usual base connections to TRI are shown going to the tagboard. Some field effect transistors marked 2N3819 have a different base configuration, but apart from the difference in connections the performance of the two types appears similar.

TEST AND CALIBRATION

Normal voltages are shown on the circuit diagram Fig. 1. Exact values will vary slightly from one instrument to the other and will also depend on the battery state. Voltages are with respect to the negative rail and were measured with a 20,000 ohms per volt multimeter. Total current consumption is about 5 mA .

Initial tests should be made with the instrument switched to 20 V r.m.s. The pointer after an initial kick should return to zero. If all appears well and the battery current is normal, switch the instrument to d.C. POSITIVE and adjust the zero control to bring the pointer to zero reading. Now switch to D.c.' negative; the zero should remain constant. Finally try the BATTERY CHECK; the meter should read between 75 and 95 microamperes (7.5 to $9 \cdot 5$ volts). Get into the habit of starting each test from the OFF position, and in the case of d.c. measurements, zero the meter on the 20 V range.

The calibration procedure starts with the 0.2 V d.c. range. Apply a d.c. input of exactly 0.2 volts. This can be derived from a potentiometer network across a battery, and should be monitored by the best quality d.c. voltmeter available to the constructor. Now trim R15 until the instrument being calibrated reads exactly 20 microamperes. The 2 V and 20 V ranges can be checked, preferably at or near the maximum end of the ranges, by applying the appropriate monitored input. Although for reasonable accuracy it should not normally be necessary to adjust the input attenuator, adjustment can be made to the 2 V range by changing the value of R 2 , and to the 20 V range by changing the value of R 3 .

Calibration on a.c. also commences with the 0.2 V range. This time R 5 is trimmed for a meter reading of 200 microamperes when $0.2 \mathrm{~V} \mathrm{r.m.s} \mathrm{is} \mathrm{applied} \mathrm{to}$ the a.c. input socket JK1. The frequency of the test signal must not exceed $1,000 \mathrm{~Hz}$ during this stage of calibration. Once R5 is set, the calibration on the 2 V and 20 V ranges should follow automatically. Finally, with the test signal reduced to 0.02 V r.m.s., the lowest a.c. range can be set by trimming R6.

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quored prices are those at the time of going to press.

CALCULATORS

Two new portable Oxford calculators, replacing all previous models. have just been announced by SinclairRadionics. These new models have been designed after analysing the views of a cross section of our society, including retailers and wholesalers.

In addition to the four normal arithmetic and six trigonometric functions (in degrees and radians), the Oxford "Scientific" offers logs base $_{\text {", }}$, logs base ${ }_{10}$, antilogs, y^{x}. memory, two levels of parentheses. sign change, plus the four slide-rule functions: $x^{2}, \quad \sqrt{x}, 1 / x$, and π.

Accuracy is claimed to be \pm one unit in the 8th significant digit on arithmetic and slide-rule functions, and ± 2 units on all other functions. The large green 8 -digit display shows results in normal or scientific (mantissa plus exponent) notation.

The Oxford "Universal" follows the proven formula of the nowdiscontinued Oxford 200, with + . ,$- \times, \div, \%$, a constant, a large green display, and a six-function memory. However, as a result of consumer demand, three convenience functions have been added: $\sqrt{ } \mathbf{x}$. $1 / x$, and x^{2}.

Both of these two new calculators offer mains or battery operation. A mains adaptor is available, or each calculator gives several weeks of normal use on a PP3 battery.
Available from most big stores and stationers, the Oxford "Universal" has a recommended retail price of $£ 11.95$ plus 8% VAT. This is £f cheaper than the previous Oxford 200 version. The Oxford "Scientific" has a recommended retail price of $£ 14.95$ plus 8% VAT.

MULTIMETER

Utilising established valve-voltmeter techniques to achieve a stable and reliable instrument, the Chinaglia VTVM 2002 electronic multimeter is the latest product being marketed by Alcon Instruments suitable for the servicing technician.

With a wide 100 degree mirrorscale movement for analogue display and some 21 ranges showing an input impedance of $22 \mathrm{M} \Omega 2$ on d.c.
and $1 \mathrm{M} \Omega$ shunted by 30 pF on a.c., the 2002 is capable of wide ranging measurements. For example, it can display d.c. volts, peak or r.m.s.; a.c. volts; power in dB and resistance in ohms.

Accuracy is claimed to be +2.5 per cent on d.c. and resistance and 3.5 per cent on a.c. When on a.c. the frequency range is 25 Hz to $100 \mathrm{kHz} \pm 1 \mathrm{~dB}$ and this can be extended by using an optional r.f. probe to cover up to 250 MHz .

The resistance ranges are particularly interesting, providing the ability to differentiate between resistance as low as 0.2Ω or as high as 100 M ?. To cater for the TV world there is an optional high voltage probe extending the upper voltage to 30 kV .

Complete with leads and instructions, the Chinaglia 2002 costs $£ 98 \cdot 60$, including VAT, postage and packing. Further information is available from Alcon Instruments Ltd. (Dept. P.E.), 19 Mulberry Walk, London SW3 6DZ.

DISPLAY SWITCHES

A new range of compact 7 -segment l.e.d. display modules with integral pushbutton-actuated decade switch is now available from Contraves Industrial Products.

Known as Multicount modules, these combined display and switch units can be assembled into multidecade display and switching banks, with any desired number of digits, for instrument control panel mounting. Front panel mounting of the modules is achieved with push-in end brackets and locating dowels ensure positive and accurate alignment of module stacks. A fulllength red filter spans all l.e.d. display in each bank.

A variety of optional functions is available, including built-in memory, up/down counter, comparator and sign display, Even TIL or cmos logic may be specified and dummy modules can be supplied for incorporation of additional electronics, pushbuttons, etc.

The bi-directional decade switch. with BCD output, can function independently from the digital display, or may be connected internally or externally to the display logic. This combination of switch and display within one single housing reduces panel space required and greatly simplifies mounting and interconnection. Applications include event counting and limiting, timing, clock displays and position control.

Addresses of nearest stockists and costings for the Multicount modules can be obtained from Contraves Industrial Products Ltd., Time House, (Dept P.E.), Station Approach. Ruislip, Middlesex HA4 8LH.

NEW CATALOGUES

We have received a fair selection of components and kit catalogues this month which we can recommend to readers for their reference library. Of course, all prices should first be checked with firms direct or with current advertisements before ordering any goods. The catalogues received are as follows:

Home Radio Components

Catalogue
Charge: $£ 1 \cdot 40.192$ pages
Home Radio (Components) Ltd., 234-240 London Road, Mitcham. Surrey CR4 3HD.

Arrow Electronics Components
 Catalogue No. 9

Charge: 40p. 44 pages
(overseas orders welcome)
Arrow Electronics Ltd., Leader House, Coptfold Road, Brentwood, Essex CM14 4BN.

Tandy 1977 Catalogue
Charge: Free. 100 pages
Available from any Tandy Store.
Heathkit Winter '76-77 Catalogue Charge: Free. 40 pages
Heath (Gloucester) Ltd., Bristol Road, Gloucester GL 2 6EE.

Scientific from Sinclair

Lists the most commonly available small signal, Zener and power diodes with important parameters and comparable types for easy replacement.

$\underset{* * *}{* *}$ pH METER

Gardeners, aquarium owners, home brewers and chemists; build your own pH meter. Learn the meaning of pH and how it can be measured accurately. This instrument may be used as a voltmeter too!

${ }_{\star \star}^{*}$ AUTOWAH

Look no feet! Most wah and swell pedals by definition have to be operated by a footswitch. This unit can give either effect, automatically triggering from each new note played on the guitar.

PRACTICAL

ELEETRONICS

OUR MARCH ISSUE WILL BE PUBLISHED ON FRIDAY, FEBRUARY 11, 1977

DURING the testing of a digital clock system wnich did not require a display in its final application. a need was found for a circuit that would permit display of the output. and of the intermediate stages, without wiring many I.e.d.s and their driving circuits. Such a circuit could also be used to display the output of instruments such as timers and DVMs, etc. and notes on possible applications are included later. It was decided to use an oscilloscope as the display medium, due to its flexibility and availability.
The circuit to be described is essentially a Read Only Memory (ROM) containing the numerals 0 to 9. in seven-segment format. Additional circuitry will permit numbers to be displayed on an oscilloscope. without intensity modulation being necessary. This is a considerable advantage, since most cheap oscilloscopes do not have a Z input: even when they do. it is often difficult to drive

The system uses TTL i.c.s throughout. and is cheaper and easier to use than an MOS ROM containing ASCII characters. The total cost is about $£ 7$. which is almost independent of the number of digits displayed.

CHARACTER GENERATION

The method of generation of characters on the oscilloscope will decide some of the features of the ROM, so this is treated first. Standard ASCII characters are formed on a 7×5 matrix of dots (e.g. see Practical Electronics, March 1972). For convenience, an 8×8 matrix is used here, in order to leave a space of three columns between adjacent
digits, and of one row beneath each digit. This leaves room for other symbols (e.g. a minus sign) to be added if desired.
The row and column numbering and segment identification are shown in Fig. 1. Notice that Row 1 is at the bottom of the character, for reasons to be explained shortly. Since seven-segment characters are used, the dots on each "bar" can be activated at the same time, thus minimising the logic necessary.

The dots are formed on the oscilloscope by a series of staircase waveforms, each with eight steps. By decreasing the timebase speed, the steps of the staircase will be contracted, and appear as dots. The transitions between levels are, by contrast. so fast that they are not seen.

Fig. 1. Digit element numbering and seven-segment identification

Fig. 2. Complete circuit diagram

The staircase is generated by a digital-to-analogue converter (DAC) using IC5, IC9 and an "R-2R" ladder network. See the circuit diagram Fig. 2. This circuit gives a voltage at the output that is proportional to the binary number set up at the input. The DAC is driven by a 3-bit binary counter, to give
a step on the waveform for each row of the character. Thus the DAC input is connected to the Row Address input. If the DAC output is examined with an oscilloscope, a series of staircase waveforms will be seen. With a slow timebase speed, the steps of the staircase will appear as dots.
a

d

e

Fig. 3. An example of character generation, the figure " 4 "
(a) DAC output-8 step staircase. (b) Dots on 'scope, unmodulated. (c) Modulation from ROM. (d) Resultant display. (e) Slower timebase

The method of character generation from these dots is shown in Fig. 3, which uses the digit "4" as an example. It can be seen that the parts of the waveform that are not required are "gated out" by the signals from the ROM. In order that the digits will stand clear of the baseline formed by these transitions to zero, a fourth section is added to the DAC, driven directly by the ROM output. This raises the characters up by a distance equal to their own height.

For ease of viewing, the line of numbers is separated into blocks of $1,2,4$, etc. digits by gating the output of the ROM with a signal from the addressing circuitry, described later. This makes alternate sections of the display appear blank.

READ-ONLY MEMORY

When the BCD code for the required character is set up on the input to the ROM, the elements of the digit are selected in sequence by the Row and Column Address inputs. The ROM generates a signal such that when an element is addressed, the output goes to a logic 1 , otherwise it is at logic 0.

The Row and Column Address inputs are decoded by BCD to 1 -of-10 circuits IC11 and IC12. These have "active low" outputs (i.e. the addressed output goes to a logic 0 , while all others are at logic 1). The character input is decoded by IC10, a seven-segment decoder with active high TTL outputs. The three decoders produce a unique set of outputs for any row, column and digit selected. These outputs are processed by a series of NAND gates (here acting as or gates) in order that the

The structure of the display is apparent when c.r.t. brightness is increased

COMPONENTS . . .

$$	$\begin{aligned} & \text { rs } \\ & \begin{array}{l} 330 \Omega \\ 1 \mathrm{k} \Omega \\ \text { (} 6 \text { off }) \end{array} \end{aligned}$
Capacitors	
$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 2-\mathrm{C} 4 \end{aligned}$	$0.047 \mu \mathrm{~F}$ disc $0.1 \mu \mathrm{~F}$ disc cer
Integrated	ed Circuits
IC1, IC8	87430 (2 off)
IC2-IC4	47410 (3 off)
IC5	7400
IC6, IC9	97404 (2 off)
IC7	7420
IC10	7448
IC11, IC12	C12 7442 (2 off)
IC13	7413
IC14-IC16	C16 7493 (3 off)

Miscellaneous
Vero DIP Breadboard 13401. Wiring pins

Fig. 4. Component layout. All wiring is carried out on top of the board
appropriate Row or Column is activated continuously for each horizontal or vertical segment respectively.

Since the DAC output will go from zero upwards when the Row Address counts from " 000 " to " 111 ", the staircase formed will lean to the right, giving a pleasing appearance to the characters. Thus it is necessary that Row input " 000 " selects the bottom row of elements of the digit, hence the wiring of the Nand gates.

Each of the three logic signals necessary to activate an element (i.e. Row, Column and Character) is applied to a series of 3-input NAND gates IC2, IC3 and IC4, one for each segment of the display. When a segment is selected, the output of the appropriate NAND gate will go low. The signals from each gate are combined in an 8 -input NAND gate IC1, again giving the OR function. Thus when an element is selected at the Row, Column and Character input, the output goes high as required. This completes the ROM itself.

ADDRESSING CIRCUITRY

A Schmitt trigger oscillator followed by a buffer (IC13) is used to drive three 4 -bit counters IC14, IC15 and IC16 (7493), the first two of which drive the Row and Column address inputs. Since the digits are to be displayed on a horizontal line, the row inputs are scanned at eight times the rate of the
column inputs. The last counter is used as a "memory address" output. It could be used to operate a multiplexer, or to select the location in a memory where the digit to be displayed is stored. By moving a wire link $1,2,4 \ldots 32$ digits may be displayed. This is used to gate the output of. the ROM, as explained earlier.

CONSTRUCTION AND SETTING UP

The prototype was constructed on a Veroboard DIL Layout Sheet as shown in Fig. 4. It is recommended that sockets be used for the i.c.s as a precaution against damage. The layout is in no way critical. The supply rail should be decoupled by a $0 \cdot 1 \mu \mathrm{~F}$ capacitor every four i.c.s $\mathrm{C} 2, \mathrm{C} 3$ and C 4 . The current consumption is about 300 mA , and it will be found that IC10 gets quite warm when many "blank" characters are displayed (i.e. all the 7448 outputs are on).

APPLICATION NOTES

As mentioned earlier, the circuit was designed to display the output of a digital clock. For this and most applications, a multiplexer is needed. It should be remembered that blank spaces between digits may be selected with the input " 1111 ". A digital voltmeter or calculator can also be used if provided with the correct interface. A simpler application would be to display an oscilloscope's calibration settings beside the waveform being examined, possibly for photographic purposes. This is done by using the range switching to control the character input. Indeed, any digital system that uses BCD data can be examined. when the circuit becomes a useful test instrument.

Fig. 5. Circuit for the addition of a decimal point

In practice, the circuit fulfilled the required function of a display for a clock. It has also proved useful in checking the operation of i.c. counters and flip-flops.

A decimal point may be added by means of the circuit in Fig. 5. Other symbols made of straight lines could be implemented. It should be noticed that there will be an additional input for each symbol, making multiplexing more complex. An advanced system with a large memory might display several lines of data.

how to save

I'm all tor economy in these difficult times. We all need to trim our spending a bit. How splendid, then, that the Post Office should announce equipment savings of no less than $£ 100$ million. And this on top of chopping 25,000 jobs.

Alas, the Post Office, when you read the small print, hasn't saved a penny. That $£ 100$ million is the amount of overspending that would have been made on new exchange equipment to 1980 but for the discovery by the planners that existing equipment is being used inefficiently. And on the iobs front the Post Office, again reading the small print, doesn't seem to have fired many. if any, of the workers, but has managed to save the equivalent of 25,000 jobs which is not quite the same thing.

Actually, the paper "savings" on equipment is to be $£ 220$ million if projected through to the 1980s. The revised programme of spending, says the Post Office, "will have a significant impact on the telecommunications industry" ${ }^{\prime \prime}$. They can say that again! Bad news for the industry, of course, because if over-capacity can't be switched to exports, many thousands of jobs are at stake, mostly in the Midlands.

How did the Post Office get its sums wrong? Well, it appears that a high-powered study team instituted in 1974 has been to the United States, Canada and Sweden to see how the administrations of these countries conduct their telephone business. And the team picked up a few ideas on methods of traffic measurement which gives a better appreciation of how to match equipment at the exchanges to the load it has to bear.

After generating tons of data and processing it through computers
the planners believe that with a bit of juggling and by re-using some of the old electromechanical equipment they can get by with far less new equipment than was originally thought. Bad news, as I have said, for the industry but good news for the 14 million telephone subscribers. Even with only $£ 100$ million saved they can all, theoretically, have a $£ 7$ rebate on their bills. And I can theoretically, as it were, forecast they won't get a penny.

Of course the Post Office is to be congratulated on putting its house in order. But I suspect that the high-powered team and all the data processing is only half the story. The other half is that a lot of the proposed new equipment is now unnecessary because ordinary folk can no longer afford to use the telephone so frequently since the last round of penal charge increases. This view seems to be supported by the reduction in charges on calls through the operator which came into effect on January 4. This was announced by the Post Office as a New Year "gift" to customers worth about E5 million.

Anyway, I was more than pleased to note the go-ahead for a fullscale trial of the millimetric waveguide system which is said to have good export potential. The 50 mm diameter glass fibre pipe can carry half a million simultaneous telephone conversations or 300 TV channels or a mixture of both. The enormous traffic capacity through a single pipe makes it truly costeffective although the pipe itself is expensive, according to one report costing about $£ 20$ per metre.

The operational link is to be between Reading and Bristol, a distance of some 123,000 metres so it will be a costly experiment but necessary to prove the system. Nice business for BICC who make the pipe and Marconi who make the electronics. Useful, too, if the present Reading-Bristol trunk suddenly needs up to another half million lines or the TV authorities go channel-mad.

ACCELERATED DELAY!

Odd item of new-speak is that members of the IEE in far away places like the USA can now get their journals by a system called Accelerated Surface Post (ASP) which suggests to me fast trains and ships. The extra fee is either $£ 1.50$ or $£ 2.00$ a year respectively for "IEE News" and "Electronics and Power" for rapid transit, which is fair enough. But reading the small print (at which I am becoming quite expert) 1 find that ASP is not fast surface post but slow bulk airmail. So slow that delivery time is quoted as of the order of 14 days. How's that for progress? Mavbe there was a misprint and

ASP really means Accelerated Service Post. Either way its a vivid example of the lowered standard in public services we have come to tolerate through the years.

MORE PROFITS

Last month I was taking to task those merchants of doom forecasting the demise of the British electronics industry. I can now report more good news. Plessey's third quarter results were 28 per cent up in sales over the corresponding period of the previous year and profits up nearly 20 per cent, confirming the underlying trend of improvement. Decca's turnover for the year was up $£ 15$ million to $£ 170$ million with record exports of $£ 49$ million. Cable \& Wireless, the consistently profitable earner of overseas currency, improved profits by 49 per cent while earning $£ 41$ million in foreign currency as against £27 million in the previous year.

Looking to the future we find GEC claiming to be the first European company with an all-solidstate TV camera using charge coupled devices, with production promised for this year. Big expansion in thick films is being forecast by ITT's David Boswell at the Paignton, Devon, plant. He forecasts a three-fold increase in the UK market by 1980. A Mackintosh survey forecasts a 12.9 per cent growth for the European electronics industry this year.

Meantime, solid orders are flowing in. MEL has just picked up some new Clansman business bringing the order book for Clansman military radios to over $£ 10$ million. On the investment side Marconi has iust opened a new £1 million PCB facility at Hillend. Fife. Helping to pay for this are bumper contracts such as the £1 million order from the Post Office for PCM equipment and another $£ 1$ million from Algeria for radio communications.

Marconi is now doing so well that they hardly bother to announce anything involving less than $£ 1$ million! But an interesting statistic is that in nearly 10 years of making PCM equipment, Marconi has averaged a PCM order intake of £1,200 every hour of every working day over the period. Another is that the Hillend plant had 850 people in 1974 and now has 2,000 with plenty of vacancies still available.

But if anyone believes that managing a big concern is easy they may like to dwell on the fact that with present interest rates it costs $£ 2,500$ a week to maintain £1 million of stock for work in progress. Just one of the headaches faced by managers who take all the kicks for an income not much more in take-home terms than shop-floor workers.

THE SPEAKERS WILL BE: Dave Brown and Stuart May of National Semiconductor

BERNERS HOTEL, BERNERS STREET, LONDON W. 1. SATURDAY FEBRUARY 26 1977 2-5p.m.

Admission $£ 2.50$ (inclusive of VAT), this includes a comprehensive Data Pack. Applications for tickets must be made on the coupon provided below. A maximum number of 3 tickets may be ordered on one coupon. Tickets will be issued strictly in order of receipt of completed coupons with correct remittances. Accommodation is limited. So book without delay.
Remittances must be by postal order or cheque (name and address on back of cheque please), and made payable to Dennis Dolling Ltd.

Please use BLOCK CAPITALS

$1 \mathrm{~S}^{\circ} \mathbb{N} \mathrm{D}$

 By P. D. SCARGILL

THE circuit described is an electronic equivalent of the well-known card game "snap", in which two players pit their reflexes against each other over the chance turning of a card.

The design shown in Fig. 1 overcomes two main problems associated with the card game: (a) the need for a fair card dealer, and (b) the problem of at draw. The first difficulty is overcome by means of a delayed action "pair" light which comes on after a time, which with the circuit values given will be from 10 to 15 seconds after the game is set

The second problem just does not itrise with this version of the game, as the electronics can register the first of two close responses to within a fraction of a microsecond using TTL, rendering the chances of a draw totally negligible. If a player gives a false response. or accidentally pushes his or her response button before the "pair" light comes on, the game is automatically nulled, and a "cheat" light comes on.

PLAY

Play commences when the reset button is pressed. After a fixed time delay, the "pair" light will illuminate, and the first player to press his or her response button wins. A "game accepted" light will come on together with the winning player's own light.

CIRCUIT OPERATION

A glance at Fig. I shows that the circuit is quite straightforward; G1 and G2 forming bistable A (for player A), and G3 and G4 forming bistable B. These bistables are interconnected via D4 and D5 so that the first one to be triggered will inhibit the other from latching. If, for example, Sl is pressed first, then bistable A becomes "set", and D6 illu-

Fig. 1. Circuit diagram of the IC Snap game. Pin details of TR1 and the i.c.s. shown viewed from underneath.
minates. In this condition G 4 input is held at logical 0 , therefore bistable B can be toggled by S2 but cannot latch. In the event of a near simultaneous response by both players, both D6 and D7 would light up; but the final decision as to the winner would come when the players released their buttons. The one whose l.e.d. remained alight would be the winner! The reverse is true of course if $\mathbf{S} 2$ is pressed first.

The bistable outputs are gated together at G8 and taken to the "game accepted" and "cheat" logic, while the time delay is generated by R1, R2, C1 and TRI. The "pair" light (D9) is driven by the output of G5, which is the inverted signal from the collector of TRI. The time delay components may be altered if desired. However, 10 to 15 seconds as set, is too long for the player to anticipate, and not long enough to allow boredom to set in. As can be seen, if the "cheat" logic is activated, G7 output goes to 0 and stops Cl charging, hence stopping the game. D1, D2 and D3, together with S3 will reset the two bistables and the timer. Pressing this switch starts off the game.

CONSTRUCTION AND LAYOUT

Layout is not in any way criticai and therefore construction is left to the individual. However, one or two points are made for guidance. Although the 7400 family of i.c.s are quite robust, care should be taken when soldering to avoid overheating. The prototype was made simply by placing the components on a piece of stiff board, and applying a drop of quick-set adhesive to hold them in place. Then they were wired together with fine plastic insulated single core wire, the whole assembly being covered with resin after testing.

TESTING

Check the wiring carefully and then connect to the batteries. Press S3, and upon release all lights should be out. Immediately press S1 or S2, and its associated I.e.d. (D6 or D7) should light up, along with the "cheat" light. Reset S3 and wait until the "pair" light comes on. Press S1 or S2, and again D6 or D7 will illuminate but this time with the "game accepted" light.

When all lights are checked the assembly can be encased, and encapsulated with resin if desired. except the batteries. lights and switches of course! Finally connect the on/off switch in the positive battery lead and the job is finished.

COMPONENTS . . .

Resistors ${ }^{\text {P3-R7 }} 2208$		
R1	680ks 2	R3-R7 220
R2	$470 \mathrm{k} \Omega$	R8-R9 ${ }^{2 \cdot 7 \mathrm{k} \Omega}$
		All $\frac{1}{6}$ W 10\%
Transistors TR1 BC108		Integrated Circuits IC1-IC3 7400 (3 off)
$\begin{array}{cl} \text { Diodes } & \\ \text { D1-D5 } & \text { 1N914 } \\ \text { D6-D10 } & \text { L.E.D.s (5 off) } \end{array}$		Capacitors
		C1 $470 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
Miscellaneous		
S1, S2 and S3 S.P. push to make (momentary action) switch.		
cells. Case (a cig: r box was used for the proto-		

A12 electronic systems suffer from noise to a greater or lesser extent. Sometimes, a large amount of noise can be tolerated; at other times noise becomes so significant that it causes circuits to mabfunction. Audio equipment is an example where the noise does not necessarily affect the electronics but has a disturbing effect on the listener. Lets have a look at various sources of noise, and then see how noise can be rept to a minimum.

NOISE SOURCES

Thermal Noise

Thermal noise occurs in all systems and is usually associated with resistors. The amount of noise from a resistor depends on its absolute temperature (T), the value of the resistor (R), and the bandwidth (\mathbf{B}) of the circuit which contains the resistor. Because noise is a random fluctuating signal and not sinusoidal, it is useless to quote the mean square noise voltage. It is then possible to calculate the noise power present in a circuit due to a resistor
Fig. I shows a noise equivalent circuit for a resistor. R_{1} is the input resistance of the circuit following the resistor. The simplest result for noise power comes if the input resistance is made equal to the resistor in question.

Mean square noise voltage $=4 \mathrm{KTBR}$ where K - Boltzmann's constant.
T Absolute Temperature in degrees Kelvin.
B $=$ Bandwidth in Hertz.
$\mathrm{R}=$ Resistor value in Ohms.
The equivalent r.m.s. voltage source has a value of $2 \sqrt{ }$ KTBR. The voltage $\left(V_{i}\right)$ across the input resistor is half of this if R_{1} is equal to R.

The power dissipated in R_{1} due to this voltage is then $\frac{\mathrm{KTBR}}{\mathrm{R}}$

KTBwatts. This result is very useful if we want to determine the noise power at the input to a radio receiver for example.

Shot Noise

In thermionic devices, a heated surface produces shot noise. Heating agitates the electrons and this is what is required for amplification. However, there is a random fluctuation in the quantity of electrons leaving the heated surface. The random lluctuaton appears as noise. The actual value of this noise depends on the current, the circuit bandwidth and also the type of device.

Partition Noise

In multi-electrode devices certain electrons hit the electrodes. The result is another random
variation in signal level-noise to you and me. The partition noise so produced depends on the electrode currents and the bandwidth again.

Transistor Noise

Noise from a transistor is due to three sources which can be equated to the three types of noise already mentioned. The base region has a resislance, producing noise equivalent to thermal noise. Minority carriers diffuse across the basecollector junction forming a leakage current. Fluctuations in this current produce noise. We can think of this as shot noise. Finally the reconbination of carriers in the base region, which fluctuates, can be likened to partition noise as electrons disappear into holes. All transistors produce noise but some are designed so that the noise is minimised.

Fig. 1. Noise equivalent circuit of a resistor

Fig. 2. Network noise factor

NOISE FACTOR

If the noise from a device or system is important, its noise factor is usually quoted. It may be in the form of a number, or alternatively it can be expressed in decibels. For any system, it is the ratio of the useful signal to the noise that we need to know rather than the absolute level of the noise.

Fig. 2 shows diagrammatically a network which could be a system or a single device. The input signal to noise ratio is $\frac{S_{i}}{N_{i}}$ and the output signal to noise ratio $\frac{S}{N}$. The noise factor is the ratio of the ratios.

$$
\text { Noise Factor } F=\frac{S_{1} / / N_{1}}{S / N}=\frac{S_{1} N}{S N_{i}}
$$

In decibels this is:

$$
F=10 \log _{114} \frac{S_{i} N}{S N_{i}}
$$

Or, if the input signal to noise ratio is $D_{1} d B$ and the output signal to noise ratio is $\mathrm{D} d \mathrm{~d}$, then

$$
F=\left(D_{i}-D\right) d B
$$

The network introduces noise and therefore the ratio of signal to noise at the input is always greater than the ratio at the output because of the contribution due to the network itself. Taking an example, we can
demonstrate this. The input signal to noise ratio is, let us say. 70 dB . If the network has a gain of 30 dB , then the signal at the output will be 30 dB higher. Assuming for the moment that the network contributes no noise, the noise power will be 30 dB higher as well. The signal to noise ratio has not changed. However, when a measurement is made, the output signal to noise ratio is found to be 57 dB , let us say. Then-

$$
F=70-57=13 \mathrm{~dB}
$$

In numerical terms the input signal to noise ratio is 20 times the output ratio. Fig. 3 shows the different signal to noise ratios at the input and the output of a network.

LOW NOISE CIRCUITS

Low noise devices are in general, more expensive than standard types. Also, because minimum noise is optimised, other parameters may suffer. We therefore like to limit the use of low noise devices to essential places in the circuitry.
Consider the amplifier of Fig. 4. It consists of a number of stages, all having gain. Noise due to the first stage N_{1} is amplified by the following two stages, noise in the second stage (N_{3}) is amplified by the final stage, and then we have noise due to the final stage itself $\left(\mathrm{N}_{3}\right)$. If there is noise at the input to the amplifier (N_{1}) then that is amplified by all three stages. We can say that at the amplifier output:

Total noise $\mathrm{N}_{13} \mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \quad \mathrm{~N}_{1} \mathrm{G}_{2} \mathrm{G}_{3}+\mathrm{N}_{2} \mathrm{G}_{3} \quad \mathrm{~N}_{3}$ If each of the stages has a gain of 10 , then we have:
Total Noise $-1,000 \mathrm{~N}_{13} \quad 100 \mathrm{~N}_{1} \quad 10 \mathrm{~N}_{2} \quad \mathrm{~N}_{3}$ It is cbvious from this that noise at the input and also that due to the first stage affect the total noise the most.

The noise at the input can only be changed by altering the temperature or the circuit bandwidth. Neither of these propositions are usually possible and so we are left with using low noise devices in the first few stages. If you are having problems with excessive noise, try substituting active devices in the input stages, Immersing the amplifier in liquid helium might cure the high noise but the solution would prove rather expensive.

Fig. 3. Signal to noise levels at input and output of a network.

Fig. 4. Three stage amplifier

A PRACTICAL ELECTRONICS PUBLICATION

A SPECIAL SELECTION OF MUSICAL PROJECTS FROM PE THE MINISONIC MK2

An up-dated version of the published Mk 1 the Mk 2 has an integral keyboard, two

250 mW monitoring channels and loudspeakers, and facilities for amplitude, frequency and harmonic modulation.

THE JOANNA ELECTRONIC PIANO

has realistic piano effect with touch-sensitive keyboard and additional choice of harpsichord or honky tonk voicing.

THE ORION STEREO AMPLIFIER

A hi-fi amplifier with output of over
$20+20$ watts. Compact and complete in one unit, it measures only $14^{\prime \prime} \times 6^{\prime \prime} \times 2$ " PLUS
Some great sound effects units for guitars, keyboard instruments and general recording.

Available

Now
E1.20
(Please allow at least 2 weeks for delivery)
If you do not wish to mutilate your copy of the magazine, please send your order on a separate sheet.

POST PAID

IPC Magazines Ltd., Receiving Cashiers Dept. King's Reach Tower, Stamford Street, London SE1 9LS Please send me copy(ies) of
'Sound Design". I enclose a Postal Order/Cheque for $£ 1.20$ (post paid) or (state amount for
more than one copy)
(f2.35 post paid
for 2 copies)
PLEASE WRITE IN BLOCK LETTERS
Name
Address

Post code
Remitiances whth overseas orders must be sulficient to covet despatch by sea or ait mail as required Payable by international Money Order only. PE 810
Company registered in England. Regd No 53626 A subsidialy of Reed internalional Limited.

A selection of readers. original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to its merits.
Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviafions and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the underisigned, and that it has not been accepted for publication elsewhere.

POLYPHONIE KEYBOARD SYSTEM

THE odd sounds, which on the average synthesiser, result from forgetful (or otherwise) depression of two keys at the same time, are due to the use in most keyboards of single pole switch contacts with all the keys wired in parallel. This can be overcome by using changeover switches in series. If the "Minisonic" has been built using GJ type switches in conjunction with the h.f. oscillator and detector system, a simple rewiring job is all that is required.

Where a keyboard has not yet been built, the system described here allows for simultaneous programming of two or more voltage controlled oscillators from separate keys.

Using change-over switches, one pole is required for each VCO to be programmed. This system is shown in Fig. 1. When key 1 is pressed VCOI is connected to control voltage point 1 , VCO2 is connected to the upper row of switches, and VCO3 to the middle row. If key, 2 is now pressed, VCO2 is connected to CV point 2 , and VCO3 to the upper row of switches. If key 3 is pressed VCO3 is connected to CV point 3. Thus all three VCOs

Fig. 1

can be programmed by separate points on the control voltage chain. Since the hold module for each VCO has an input impedance in excess of $2,000 \mathrm{M} \Omega$, there is minimal loading on the chain of resistors, and none is shorted out.

The switches may be either GJ types activated in pairs. or threes by one key, or else special assemblies can be made using printed circuit board and gold plated wire.
E. F. Flint,

Glasgow.

AUTOMATIC CAR AERIAL

Fig. 1

AcIrcuit which will raise an electric aerial to its limit on operating the ignition switch, and lower it again when switching off the ignition is shown in Fig. 1. The problem lay in supplying power to the "up" lead for two or three seconds only when the aerial was required, and to the "down" lead for a similar time. An extra requirement for the down operation was that no power be consumed by the circuit when the ignition switch was off.
When the ignition key is operated, power is supplied to relay RLA.

Capacitor $C 2$ is charged, and relay RLB is operated through contact RLAI. The down lead of the aerial motor is isolated via the now open contact RLA1. RLC operates, and power is supplied to the "up" lead via the closed contacts RLA2, and RLC1. Once Cl charges up. RLC drops out and power is no longer supplied to the aerial motor. Zener diode D2 is required to stabilise the voltage on the timer circuit. Diode D3 ensures that power is still supplied to the aerial when the starter motor is operated.

When the ignition switch is put back to the "off" position, RLA
drops out and power is supplied to the "down" lead via the closed contacts of RLA1 and RLB1. Power is disconnected from C2 and RLB. Capacitor C2 discharges through RLB, and after a few seconds RLB1 opens, breaking the power to the down lead. Contact RLB2 discharges C 1 in readiness for the next operational cycle.

The values of Cl and C 2 are chosen to ensure that the aerial goes fully up and down respectively.
R. J. Darling.

Uddingston,
Glasgow.

THIS device (Fig. 1) gives an audible or visual indication if the sensor temperature exceeds a preset value. The latter can be situated either at the engine. gearbox, or brakedrums. depending on requirements.

The sensor. R1. is a carbon rod thermistor which reduces its resistance value as the temperature increases. The temperature at which the relay operates is adjustable by VRI. When the thermistor temperature increases. the base voltage of TR1 is sufficient to produce energisation of the relay.
The transistor used for TR. 1 depends on the car earthing. With a negative earth TRI should be a 2N3053. or with a positive earth a BC461. With a positive earth DI polarity and the unit supply rails should be reversed. With either earthing system, D1 prevents backe.m.f. damaging TR1. The 12 V supply line is taken via the vehicle ignition switch.
J. W. Cheshire. Sutton Coldfield.

Fig. 1

Fig. 1

cheap over-voltage protector

F the regulator supplying TTL integrated circuits fails, the maximum V_{cc} rating of seven volts may be exceeded, causing expensive damage. The circuit shown in Fig. 1 will remove the supply if the voltage rises above about $5 \cdot 7 \mathrm{~V}$.
With a supply of 5 V , Zener diode Dl will not pass current and consequently TR1 will be switched off. Normally, therefore, the circuit draws no current. When the supply exceeds $5.7 \mathrm{~V} \quad(5.1 \mathrm{~V}$ Zener breakdown plus 0.6 V base-emitter potential) D1 will conduct. switching TR1
on. The current through TR1 will increase until it blows fuse $F 1$, so removing the supply. To blow a 1 amp fuse the Zener diode passes only about 25 mA . well within the capability of a 400 mV device.
By using Zener diodes of different voltage ratings, the circuit can be used on other supply lines, up to a limit of 30 volts when using the BFY50.
A. Damper,

Carshalton.
Surrey.

A^{s}s a very simple logic test clip and probe, it is possible to use an old integrated circuit package. The old i.c. will need to have its internal circuitry removed so that it doesn't affect the operation of the

dIGITAL LOGIG CHECKER

probe. This can be done by breaking open the i.c. and scraping away the silicon chip and fine gold connecting wires. Metal-plastic-metal sandwich type i.c.s are better for this purpose than plastic or ceramic packages, as it is generally easy to break off the top metal layer exposing the chip itself.
Connections can be made by soldering fine wires to the top of the pins, as close to the package as possible to avoid the pins becoming loaded with too much solder and wire, which would cause them to lose much of their natural resilience. The unit can then be glued to the base of the probe, which can be applied "piggy-back" to the i.c. under test (Fig. 1).

The method of wiring the indicator l.e.d.s is shown in Fig. 2, the circuit being repeated seven or eight times over for 14 or 16 -pin i.c.s. It was found that 0.125 in MAN3 l.e.d.s by Monsanto gave the brightest display consistent with a reasonable current consumption, allowing 1 k ! series resistors to be used.
P. D. Maddison, Black burn,

Lancs.

A Marshall (London) Ltd Dept: PE 40/42 Cricklewood Broadway London NW2 3ET Tel: 01-452 0161/2 Telex 21492
\& 85 West Regent St Glasgow G2 2QD Tel 041-332 4133
\& 1 Straits Parade Fishponds Bristol BS16 2LX Tel: 0272-654201/2

168 page catalogue with 500 new
lines, 55p post paid (40p to callers)

TOP 500 SEMICONDUCTORS FROM THE LARGEST RANGE IN THE U.K. All devices manufacturer's branded stock

2N465A
2N457
2N 40

2N49 2N49

2N492
2N493
2N696
2NG97
2N698
2N697
2N698
Z
2N706A
2N708
2N709
2N708
2N709
2N711
$2 N 719$
$2 N>18$
$2 N>181_{A}$
$2 N>7_{2}$
2N914
2N916
2N918

> 2NOTS
$2 N_{93} 30$

2N1305
2N1306
2N1307
2N1308
2N1309
2N130
2 N 16
2 N 16
2N1671A
2N1671B
2N1671B
2N1711
2N 9007
2N1907
2N2102
2N2102
2N2147
2N2148
2N2160
2 N 2218 A
2N2218A
2N2219
2N219A
2N2219A
2N2220
2N221
2N2221
2N2221A
2N2222
2N2222
2N222A
2N2222A
2N2368
2N2369
2N2369
2N2369A
2N2646
2N2647
2N2647
2N2904
2N2904A
2N2905
2N2905
2N2905A
2N2906A
2N2907
2N2907
2N2907A
2N2924
TTL FROM NATIONAL, ITT, TEXAS, SIGNETICS, ETC.

SN7400 | | SN7400 | $0.21 \mid$ |
| :--- | :--- | :--- |
| SN74412 | | |
| SN7401 | 0.21 | SN741 | SN7402

SN7403 SN7403
SN7404
SN7404
SN7405
SN7405
SN7406
SN7406
SN7407
SN7407
SN7408
SN7409
SN7410
$\begin{array}{ll}\text { SN7409 } & 0.22 \\ \text { SN710 } & 0.21\end{array}$
OIN PLUGS- 140 DIN CMASSIS SOCKETS
3-pin. 4-pin, 5-pin 180°. 5-pin 240 SOCKETS-10p 6 -pin. 7-pin and Speaker
LINE SOCKETS- $14 p$ each
3 pin. 5 pin 180° and Speaker
PHONO PLUGS (screw top)
hed white, black. green or pellow 10p, Chrome 15p
LINE PLUGS (same colour) 10p, Chrome 15p
PHONO CMASSIS, sockets
single 7p, double 10p, 3-way 12p, 6-way 25p, 8 -way 35 p
PHONO CHASSIS, sockets 12 p , 6 -way 25 p, 8 -way 35 p

JACK PLUGS AND SOCKETS tin mono plastic plug 15p
tin mono chrome plug 22p tin chrome line socket 15 p In plastic switch socket 18 p fin stereo plastic plug 20p tin stereo chrome plug 30p
In stereo plastic line socket 20p
tin stereo chrome line socket 35 p tin stereo chrome line socket 35p tin stereo plastic switched socket 25 3.5 mm plug $10 \mathrm{p} ; 3.5 \mathrm{~mm}$ socket 25 p

SUB-MIN CERAMICS 63 V TpF$0.015 \mu \mathrm{Fd} 5 \mathrm{p}$
5% POLYSTYRENE CAPACITORS $10 \mathrm{pF}-1.000 \mathrm{pF} \mathrm{gp}$
$1.500 \mathrm{p}=0.01 \mu \mathrm{Fd}$
Full range of MICA, POLYESTER POLYCARB. TANTALUM and ELECTROLYTICS Elways in stock.

WE ARE NOW IN NEWCASTLE-ON-TYNE!
 Marshall Aitken Ltd. 35 High Bridge Newcastle-on-Tyne
 Tel.: 063226729

P.C. MARKER PEN DALO 33PC. 77.

 ZENER DIODES 400MW 11p. IW 17p, 2.5 W 35 p . IC SOCKETS 8 DIL 14p, 14 DIL 15p, 16 DIL 16p.W W 3 p (100 per value © $2 \cdot 00$)
SCORPIO CAR IGNITION KIT £12.95. JUMBO 7 SEGMENT DISPLAYS $\mathbf{2} \cdot 16$. DL 707 £1-60.
MINITRON $51 \cdot 50$
LEDs Red. green and yellow, 0.2 in or 0.16 in
dia. 24 p .

SEE MARSHALL'S FOR CMOS

MICROPROCESSORS FROM MARSHALL'S
Read the article, buy the kits!
SCAMP INTRO KIT E62. 37
KEYBOARD KIT $£ 59.85$
Contact Marshall's for RAM's, ROM's and PROM's.
Full range of Low Power Schottky and Octal Tristate Butlers.

Potentiometers $1 \mathrm{k} \Omega$ to
2M Ω (E3)
Linear or Log Single Double Rotary Pots (no $1 \mathrm{k} \Omega \mathrm{log}$) $25 \mathrm{p} \quad$ 75p $\begin{array}{lll}\text { Rotary Switched } & \text { 55p } & \text { 55p } \\ \text { Sliders }\end{array}$ Full range of VERO products stocked. See catalogue for details
Presets-Horizontal or Verticai $9 p \quad 0.3 \mathrm{~W}$

[^3]| SHIPMENT MADE VIA AIR-POSTAGE P 3 DAYS FROM RECEIPT OF ORDER | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | $\stackrel{\text { A }}{ }$ | | | | | | | | | |
| | | | | AA | cos | (12) | | | | | | | |
| | | | | | | 21 | | | | | | | |
| | 13 | | | | | 21 | | \qquad | | | | | |
| | | | | | | ${ }_{\substack{48 \\ 81 \\ 81}}^{40}$ | | | | | | | |
| | | | | | | 17 s | | | | | | | |
| | | | | | | | | | | | | | |
| | | 783 | | | | | | | | | | | |
| | ${ }_{22} 2$ | | | | | | | | | | | | |
| | ${ }_{11}^{22}$ | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | 23 | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | 22 | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| | 11 | | | | | | | | | | | | |
| | ${ }_{55}^{60}$ | 4122
 120
 122
 55 | | | | | | | | | llem is priced below sop each. | | |
| | 5s | | | | | | | | | | | | |
| | | | | | | | | ANNEAMEFICARD BA=CLAYCARD MASTERCHARC HARGEX
 EUROCARD
 Satisfaction quaranleed. Shipment will be made postage prepaid within 5 days from receipt of order. Payment may be made with personal check, charge card (include number and exp. date), international money order (include receipt) or bank cheque made payable in U.S.
 Add 50 p to cover shipping and handling il order is less than $\mathbf{5} 5$
 The above prices do not include any laxes keviable by a purchasers country of residence.
 INTERNATIONAL ELECTRONICS UNLIMITED
 P.O. BOX 3036 / MONTEREY, CA. 93940 USA PHONE (408) 659-31/1 | | | | | |
| | | | | | | | | | | | | | | | | |
| ¢ 51 | ${ }_{12}^{30}$ | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |

INVERTORS

$240 \mathrm{~V}-50 \mathrm{~Hz}$ from your 12 V car battery 25 walt-- $£ 4.75 \quad 300$ watt (24 v)- $£ 26.45$ 40 watt- $88.27 \quad 400$ watt (12 v)- $£ 39.05$ 75 watt- $£ 12.03 \quad 500$ watt (24v)- 548.18 $150 \mathrm{watt-£21} \mathrm{\cdot 27} \quad 1 \mathrm{~kW}(50 \mathrm{~V})-£ 127-00$ 300 watt $(12 \mathrm{v})$ - $533.031 .5 \mathrm{~kW}(\mathrm{t} 10 \mathrm{v})-£ 140.80$ All above Invertors are in kit form but may be purchased built up in metal case $\&$ ready for use Price list sent on receipt of sa.e. Prices include post \& packing
P.W. AUTOMATIC EMERGENCY SUPPLY
$240 \mathrm{v}-50 \mathrm{~Hz}-150$ watt invertor with buitt in battery charger in event of power failure switches over automatically from battery charging to invertor operation. Cct as parts (excluding meter) $£ 24 \cdot 50+£ 1 \cdot 70 \mathrm{p}$ \& p

DIGITAL WATCH

L.E.D. display giving hours. minutes. seconds and date. Design based on American technology, and fantastic value American technot $£ 16+30 \mathrm{p}$ D. p .
One year guarantee
transformers a Coils
Both high volume \& small order capacity available
Special ofter Miniature mains transformer $6-0-6 \mathrm{~V}-6 \mathrm{~V}$ A -85p plus 10p p \& p
TRADE \& EXPORT ENQUIRIES WELCOME
P.E. ORION STEREO AMPLIFIER

$20+20$ Watts r.m.s. into 8 ohm load. Distortion less than $0.01 \% 100 \mathrm{~Hz}-10 \mathrm{kHz}$. Frequency response $\pm 1 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 kHz . Hum level virtually nil with volume full on
This is a power amplifier of superb quality incorporating the very latest design features. Professional hi-fi enthusiasts have classed it as fantastic and real value for money. The CCT incorporates a low flux transformer and inputs for disc. tape, tuner, etc.
Complete kit of parts including slim line bookend case, silk screened front panel \& knobs. £47-30 incl. VAT \& p. \& p.
The bookend case, I.C.s \& semiconductors, P.C. board, Transformer, etc. may be purchased separately if desired. Send S.A.E. for further information

P.E. ORION TUNER

Full kit of parts for this superb tuner unit to compliment the now well established amplifier. Parts may also be purchased separately. Send S.A.E.

ASTRO IGNITION SYSTEM

Complete kit of parts for this proven and tested system $£ 10 \cdot 45$ incl. VAT. Ready built with only two connections to alter $£ 13.75$ incl. VAT. Thousands have used this system both home and abroad. Consider these advantages more power, faster acceleration, fuel economy, excellent cold starting. smoother running, no contact breaker burning. Also because of the high energy spark, the fuel mixture can be made weaker giving further economy and fewer plug problems. Fitting time when built 5 minutes approx. Please state whether positive or negative earth. Trade and export enquiries welcomed.

ASTRO ELECTRONICS

Spring Bank Road, West Park
Chesterfield
 \title{
PERCUSSION EFFEGTS
}
 \title{
PERCUSSION EFFEGTS
}

Simple envelope shapers used in synthesisers like the Minisonic are unable to produce a percussive envelope shape since there is only control for the attack and decay, the sustain being controlled by the time the key is held. On ADSR envelope shapers the attack. decay, sustain and release can be pre-set and more variety in the envelope shapes obtained.

Using two AD envelope shapers, the control signals can be mixed with each other and a combination envelope formed which is used to control the VCA in the usual way. as in Fig. 1.

The mixer can be formed from a 741, the output level being equal to the sum of the input levels. As an example a piano envelope can be

Fig. 1

more realistically imitated by setting the attack on both ES to min, and the decay to a few milliseconds on one and to about three seconds on the other.

Other strange envelope shapes can be formed from the system. as in Fig. 2.

Miss L. Robinson, Wilmslow, Cheshire.

SIMPLE COMPRESSOR

Fig. 1

T
THIs circuit (Fig. 1) was designed to provide sustain on a guitar with a relatively insensitive pickup, though it could be used for other instruments or signals.

Transistors TRI and TR2 form a high gain self-stabilising pair. The output is rectified by DI, D2,
smoothed by C4 and applied to TR3 which controls the brightness of the l.e.d. D3. The light from the l.e.d falls on the light dependent resistor. varying its resistance and so controlling the level of the input signal by voliage divider action via VRI.

The l.e.d. used was a 0.2 in highintensity red type mounted over the l.d.r.. the whole assembly being enclosed in a lightproof screened box.
Q. A. Rice Mitcham.

Surrey.

71 SIMPLIFIED CLOCK dISPLAY

|NFig, 1, a circuit is shown which makes it possible for common cathode displays to be used in the electronic clock of P.E. August 1975, which made use of common ariode displays. Using this method, only seven resistors are used (instead of twenty-one) for the interfacing of the displays.

Thus, the clock can be made more economically, and a printed circuit board can be designed with ease. For the current limiting resistor, $120 \Omega 2$ should be suitable for a 16 V supply.
N. Coxhead,

Pyrford,
Surrey.

HEADS OR TAILS

MOST published designs for heads or tails circuits rely on a bistable whose state is changed by a squarewave, the bistable being in one state during the mark, and the other during the space. This means that if the bistable is not to be biased towards any one state, the mark space ratio of the squarewave must be exactly 1:1. This is hard to achieve, due to component tolerances in the oscillator.

The circuit in Fig. 1 overcomes this difficulty by using an edge triggered bistable, which changes state whenever a positive-going edge appears at the clock input. Since the time between two consecutive edges is independent of the mark space ratio, l.e.d.s D1 and D2 are on for equal periods.
The squarewave is provided by TR1 and TR2, and the bistable is one half of a 7474. The l.e.d. currents are limited by R5 and R6, preventing the outputs of IC 1 from being overloaded. SI is a push-tomake release-to-break switch, which could be replaced by a relay with a delay to simulate the spinning of

a coin. A suitable delay circuit of a few seconds is given in Fig. 2.

It should be noted that the frequency of the oscillator is twice the
switching frequency of the bistable. P. Chambers,

Winchmore Hill, London.

TRANSFORMERS

all EX-STOCK-SAME DAY DESPATCH

NO HIDDEN EXTRAS-- Prices correct at 14th December 1976, Prices include AT and P. \& P. EXCEPT + WHERE CARRIAGE WILL BE ACCOROING TO WEIGHT AND DISTANCE-BRS Electrosif Resistors, Semiconductors and Multi-meters.

FANGE OP

MAINS
ISOLATING
PRI $220 / 240 \mathrm{~V}$
SEC $120 / 240 \mathrm{~V}$ SEC $120 / 240 \mathrm{~V}$ SCREEN

187^{*}	20
074	600
150	100
151	200
152	250
153	350
154	500
155	750
156	100
157	1500
158	2000
159	3000

30 Volt range

Prim. $220-240 \mathrm{~V}$
Sec 0-12-15-20-24-20V

HIGH VOLTAGE

 Malns Isolating Prim 200/220 or $400 / 440$ VAAUTO
4.00
5.55
6.87
7.93
9.55
10.69
14.15
14.51

60 VOLT RANGE
Prim. $220-240 \mathrm{~V}$
Sec. 0-24-30-40-4
Ref
Amps

Careers and Hobbies in Electronics.

Enrol in the BNR \& E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation

Become a Radio Amateur.
Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

GREENWNELD
 443 Millbrook Road Southampton Sロ1 ロHX
 Tel：（0703）772501

All matl orders and callers to this address please－callers only to 21 Deptford Broadway，SE8（Tel 01－692 2009）and 38 Lower Addiscombe Road，Croydon

44 PAGE CATALOGUE
 10P＋LARGE S．A．E．

Free with orders over $£$ ？
DIGITALI．C．S

7400	12p	7450	p	7495 73p
7401	$14 p$	7451	14 p	7496 15p
7402	14p	7453	14p	74107 37p
7404	17 p	7454	14 p	74121 36p
7405	23p	7460	14p	74122 51p
7406	28p	7472	29p	74123 84p
7408	14p	7473	29p	74132 56p
7410	13p	7474	29p	74150173 P
7413	23p	7475	31p	$74154144 p$
7414	82p	7476	29p	74155 73p
7420	14p	7483	$81 p$	74157 Esp
7430	14p	7486	40p	74159 200p
7432	$1{ }^{1}$	7490	46 p	74174110 p
7437	$1{ }^{18}$	7491	75p	74179120 p
7440	15p	7492	52p	74180120 p
447	84 p	7493	52p	74367

SLD2 128 dual 128 bil static shift register 2.

OIL Socketz－8 pin 12p； 14 pin 13p； LINEAR I．C．S
741 25p： 555 40p； 723 （TO99）50p
Plastic Voltage：Rotulator：
70126 case 5 V 600 mA s0p， 12 V 500 mA 80p
TRANSISTORS

$\begin{array}{llllll}\mathrm{AC} & 127 & 15 \mathrm{p} & \mathrm{BC} \text { C183 } & 12 \mathrm{p} & 2 \mathrm{~N} 2646\end{array} \mathbf{4 2 p}$ $\begin{array}{llllll}\text { AC128 } & \text { 15p } & \mathrm{BC} 184 & 12 \mathrm{p} & \text { 2N2926G } & 12 \mathrm{p} \\ \mathrm{AC} 176 & 18 \mathrm{p} & \mathrm{BC} 212 & 14 \mathrm{p} & 2 N 3253 & 10\end{array}$ $\begin{array}{llllll}\mathrm{AC176} & 18 \mathrm{p} & \mathrm{BC} 212 & 14 \mathrm{p} & 2 \mathrm{~N} 3053 & 18 \mathrm{p} \\ \mathrm{AC} 187 & 18 \mathrm{p} & \mathrm{BC} 213 & 14 \mathrm{p} & 2 \mathrm{~N} 3054 & 19 \mathrm{p}\end{array}$ | $\mathrm{AC1B7}$ | 18 p | $\mathrm{BC213}$ | 14 p | 2 N 3054 | 49 p |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{AC188}$ | 18 p | BC 214 | 14 p | 2 N 3055 | 38 p | $\begin{array}{llllll}\text { AC188 } & \text { 18p } & \text { BC214 } & 14 \mathrm{p} & 2 \mathrm{~N} 3055 & 38 \mathrm{p} \\ \text { AD161 } & 35 \mathrm{p} & \mathrm{BCY70} & 15 \mathrm{p} & 2 \mathrm{~N} 3440 & 54 \mathrm{p}\end{array}$

 $\begin{array}{llllll}\mathrm{BC} 159 & \text { 10p } & \text { TIP3055 } & \text { 42p } & \text { 40673 } & 50 \mathrm{p} \\ \text { BC161 } & \text { 18p } & 2 \mathrm{~N} 2219 & 28 \mathrm{p}\end{array}$ BC182 12p 2N2369 22p
VEROBOARD
Good size oftcuts all packs contann 100 sq in（About 8 pleces）All packs $£ 1 \cdot 20$ ． Pack A．all 0 fin pitch．
Pack B all 015 in putch
Packo allo in and
Also ack all 0 in plain
tolbs $£ 30$ ．
1in or 0 ．sheets $£ 1.90: 015 \varepsilon 1.50$ sided $35 \mathrm{p}, 100$ pins，single or double

DIODES AND LEDS AND SCR＇S
500 V 5A SCA 45p； 400 V 2A Triac 80p： Diac BR100 25p； 400 V 15A Triac $\mathrm{E}^{1.50}$ ORP12 60p；MAD450 40p：ThL209 Red EED 15p： 0 2in LED Red 22p；green． yellow of amber $24 p$
 N4148 4p：BY127 12p； 100 V 3A 12p： 50 V 1A bridge 220 ：BOOV
$250 \mathrm{~V} 2 \nmid \mathrm{~A} 40 \mathrm{p} ; 200 \mathrm{~V} 5 \mathrm{~A} 70 \mathrm{D} ; 500 \mathrm{~V} 6 \mathrm{~A}$ £1．60． $20 n e r$－ 400 mW BZY88．All voltage rom 3 V to 30 V 10 p
13 W plastic from 3 V to 200 V 20 p

RESISTORS

Carbon film 5% ；TW minialure All velues E12 series from 1Ω to $10 \mathrm{M} \Omega$（over $1 \mathrm{M} \Omega 10 \%$ ）1tpeach
Metal Film 5\％iW All values in E12 series from 27Ω to $10 \mathrm{M} \Omega 2 \mathrm{idp}$ ．
Sub－min presets，vert or horiz all Standard pots．In or log． 22
wirewound 2jw 0 25．0．33．0．47 $1 \Omega \mathrm{sp}$ ． Wirewound 5 W all values from 1 n to 7k 10p each

TRANSFORMERS

$6-0-6 \mathrm{~V} 100 \mathrm{~mA} 90 \mathrm{p}$ ； $9-0-9 \mathrm{~V} 100 \mathrm{~mA} 95 \mathrm{p}$ $12-0-12 \mathrm{~V} 50 \mathrm{~mA} 90 \mathrm{p}: 12-0-12 \mathrm{~V} 100 \mathrm{~mA}$ ह1 $12-0-12 \mathrm{~V} 1 \mathrm{~A} £ 2.80 ; 20 \mathrm{~V} 55 \mathrm{~mA} 90 \mathrm{p} ; 22 \mathrm{~V}$

AEEDS

in Inserts．5p；10／40p；100／53．50．DIL alay，3．7－10V． $52 \cdot 20$

WIAE

Enamelled copper wire on 202 reels SWG／Price： $16 / 32 \mathrm{p}$ ， $18 / 34 \mathrm{p}, 20 / 36 \mathrm{p}$ $2238 \mathrm{p}, 24 / 40 \mathrm{p}, 26 / 42 \mathrm{p}, 28 / 44 \mathrm{p}, 30 / 46 \mathrm{p}$ ， 246p，34／50p，36／52p，38，54p，40／58p．

RF CHOKES

0 75．2．95．6．8．10．22．all 10p each． 15 25．50．75． 10 mH ，all 30 p each
CAPACITORS
Ceramic plate．22pF to 1.000 pF 2 p polyester 1.000 to $6,800 \mathrm{pF}$ 5p； 0.01

 Polystyrene 10DF to 1.00
10 10.000 pF 8p．All $2+\%$ ．
Eliectrolytics：
All $25 \mathrm{~V} \cdot 0 \cdot 47,1,2 \cdot 2,4 \cdot 7,10,22,47 \mathrm{mF}$ ${ }^{6 p_{i}} 100 \mathrm{mF} 7 \mathrm{p} ; 220 \mathrm{mF} \mathrm{mp}_{;} 470 \mathrm{mF} 11 \mathrm{p}$ 7p： 100 mF ： 2200 mF 10p； 470 mF 4 m $100 \mathrm{mF} 32 \mathrm{p} ; 2,200 \mathrm{mF} 40 \mathrm{pp}$ ． 470 mF 10p

 $3 \cdot 3 / 35,4 \cdot 7 / 35.6 \cdot 8 / 35,10 / 16 ; 10 / 25.15 / 10$
$22 / 6 \cdot 3 \quad 22 / 10.22 / 46 ; 33 / 10 ; 47 / 6 \cdot 3$ 22／6－3，22／40，22／16；33／10，47／6－3，100／3．

BREADBOARDS
S－DEC Breadboard $52 \cdot 10$ ；
Special price to colleges etc．tor quantities－ring for quote．
CALCULATORS— $£ 2.75$ ！
There has to be a cetch－these hapid． man 1208 machines are a mains－ powered desk 100 calculator with $0-9$ and dec point，and 7 function keys inc． missing However．apar from this they are complete with PSU． 3 ICs＋discrete components．Overall s1ze $11 \times 7 \times 3$ n Only $£ 2$ ． 75 ．

KEYBOARDS

Front half of calculator，really．Case
$130 \times 75 \mathrm{~mm}$ has display window． 2 slide $130 \times 75 \mathrm{~mm}$ has display window． 2 slide switches and 25 keys Only $£ 1$.

DISPLAYS

Brand new 7 －segment leds． 9 MAN3M on PCB wilh multiplexed output $£ 1.35$ ．

VEROBOXES AND CASES

Próessional 2 part boxes made of dark and light grey high impact polystyrene $2518120 \times 65 \times 40 \mathrm{~mm}$ $2520 \quad 150 \times 80 \times 50 \mathrm{~mm}$ $2522188 \times 110 \times 60 \mathrm{~mm}$ £3．15 Sloping front version．Ideal for mixers $2523220 \times 174 \times 100 / 52 \mathrm{~mm}$ E5． 75 front and back aluminium panels that slot in Type $1410205 \times 140 \times 40 \mathrm{~mm}$
$1411205 \times 140 \times 75 \mathrm{~mm}$
$1412205 \times 140 \times 110 \mathrm{~mm}$
$1237 \quad 154 \times 85 \times 40 \mathrm{~mm}$
$1238 \quad 154 \times 85 \times 60 \mathrm{~mm}$
$1239154 \times 85 \times 80 \mathrm{~mm}$ Small general purpose \quad £3．00 $\begin{array}{ll}1413 & 71 \times 40 \times 24 \mathrm{~mm} \\ \text { PB1 } & 115 \times 75 \times 36 \mathrm{~mm}\end{array}$

DEVELOPMENT PACKS

Save ciec s by buying a full range of components at one go＇All tull spec marked devices no rejects or old slock 50 V ceramic plate capacitors 5% 10 of each value．22pF to 1.000 pF Tolal 210 capacitors 22.0 ．
10 of each value 10Ω to $1 \mathrm{M} \Omega$ 610 cc 00 0 ． Extended range 1 ohm to 10 M 850 resistors $58-30$ ．
Electrolytics．wire ended 25 V working 10 each ot 1． 224 ， 1022.47 and 100 mF 70 capacitors for $£ 3.20$ ．
Zeners． $400 \mathrm{~mW} 5 \%$ BZYB8 10 each 3 V to 30 V total 260 c 14.00 O ．
t pack 5 of each value $88 \cdot 20$ ．
tantalum Bead caps． 14 values from
$0 \uparrow+35$ to $100,3.10$ of each total 140 caps $£ 12 \cdot 00$ ．

[^4]SOLDERLESS BREADBOARDING — DECS
The famous DEC System of Solderiess Breadboarding is ideal for both the young and ested without the use at soldering and because of the speclafly designed contacts allows components to be used over and over again．It is also extremely useful for the Circuit Designer who wishes to experiment with and perfect his circuit quickly ye aconomicall

S－DEC（Model PB11）

This．the most popular Board，is designed solely for the use of discrete components and is particularly useful for basic educationa No．of C

1 off $\varepsilon 1 \cdot$ •明
5 off $\varepsilon 1 \cdot 7$ ．
T－DEC（Model PB21）
This Board atlows 2 TOS or 1 DIL IC Station to be used and so is primarily intended ior discrete work or for linear ic apphcation nquired

1 off 53.82
5 off $\mathbf{5 3 . 2 1}$

μ－DEC＇A＇（Model PB31）

The W－DEC＇A＇is specially designed for ease of use with IC＇s and
allows 2 DIL or 4 TOS stations to be used but will accommodat discrete components with equal tacifity
$\begin{array}{ll}1 & \text { Off } £ 3.97 \\ 5 & \text { off } 83.53\end{array}$

M－DEC＇B＇（Model PB41）
The μ－DEC＇B＇is for similar uses as μ－DEC＇A＇，bul has two 16 lead （No of Contacts 208）

1 off $86 \cdot 97$
5 off $86 \cdot 48$

DEC ACCESSORIES
16 DIL adaptor（with socket）PBO62
10 TO5 adaptor（with socket）PB072
Single ended leads（set of ten）PB101
Double ended leads（eet of ten
mm plugs（set of ten）PB103
1 mm plugs（8et prices include 8% VAT．P．\＆P．25p．
51.92
51.80
10.90
20.90

20.45

Our retail counter is now open，stocking alarge variaty of audio and electronic parts WE ARE SITUATATED 2 MIN．WATFORD JUNCTION STATION
THE COMPONENTS CENTRE 7 Langley Road，Watford，Herts．，WD1 3PS． Tel．：Watford 45335

Deram kits

DORAM KITS CONTAIN THE LAST NUT

For audio fault finding，this battery operated unit may be simply attached at any point in the circuit to provide a 1 KHz square wave for pre－settable amplitude，up to 5 V ．Using only one IC the unit， complete with battery，is incorporated in a case only $50 \times 50 \mathrm{~mm} x$ 100 mm long with probes to provide connection to circuit．Easy to construct for only
f 2.20 ＋S VAT（Order code 991－877）Subject to avalubility
O＇seas orders－add 15% for $\mathbf{P}+\mathbf{P}$ ．All items offered for sale subject to the Terms of Business as set out in Doram Edition 3 catalogue，price 60 p ．The Doram Kit brochure is also avallable，price 25 p ．Combined price only 70 p which also entitles you to 2×25 p vouchers，each one usable on any order placed to the value of $£ 5 \cdot 00$ or more（ex．VAT）． DORAM ELECTRONICS LTD
P．O．Box TR8，Wellington Road Industrial Estate，Leeds LS12 2UF． An Electrocomponents Group Company

In BP 1445 369, the German company of Rowenta-Werke GmbH provides a useful technical recap on work to date on photo-electrically converting sunlight to electrical energy, for instance, using silicon cells to power domestic equipment such as clocks.

It is confirmed that the main problem to date lies in selecting a cell which will operate efficiently over the wide range of ambient lighting likely to be encountered in the earth's atmosphere. This is likely to be some 60,000 lux in bright sunlight and as little as 200 lux on a very cloudy day.

Curves are plotted for the energy conversion characteristics of presently available cells. It is claimed that the secret for efficient operation over a wide range of different illumination intensities is keeping the operating voltages of a mosaic of photoelectric cells always at the optimum working points on their characteristic curve locus.

This is achieved in the patent by connecting a storage capacitor across the photoelectric cells and applying the output to a d.c. converter circuit. This then supplies the working load, for instance a high value capacitor and accumulator serving as energy stores, with the necessary power.

According to the invention, the converter circuit has an adjustable frequency of operation automatically controlled by a photoconductive resistor which receives light from the same source of illumination as the generator cells. If necessary a neutral density filter is used to balance the light received by the two cell types.

Two circuits are given for light controlled transformer circuits, in which the frequency of operation rises with decreasing illumination and falls with increasing illumination. Another circuit is given where the frequency rises with rising illumination and falls with falling illumination. But in either case, the circuit operates to ensure that only that amount of energy is taken from the capacitor which can subsequently be delivered by the photoelectric cells under the sensed prevailing illumination.

SIMPLIFIED TELECINE BPI 444591

If a recent patent (BP 1444 591) were not from the giant Matsushita Electrical Industrial Co. Ltd., of Osaka, Japan, and named five separate inventors, it could easily be dismissed as yet another armchair invention inadequately thought inrough. The patent pedigree, however, suggests that the idea, although simple, may open up interesting avenues of experiment for anyone with an old cine projector available for modification.

The patent claims a generally conventional cine projector, but with the projection lamp replaceable (by the movement of a slide or the turn of a rotor) with a photoelectric converter. The lamp is used when it is required to project films on a matt reflective screen in the usual manner.

To display a film on the screen of a domestic TV set, the lamp is replaced with the converter and the projector optics focused on the screen of a television receiver. in this way the converter receives light from the flying spot on the screen via the film running through the projector. The converter converts the varying light signals into correspondingly varying electric signals which are used to modulate the brightness of a video display.

It is suggested that one TV tube can perform the function of both image display tube and flying spot tube, to provide a TV display of the film image.

Although such a technique sounds unworkable (for instance, there are the problems of video feedback and the effect of using intermittent film transport as com monly found in domestic projectors) electronics experimenters may well find the basic idea behind the patent a trigger for further thought.

JACKETED WIRES BP 1433526

A clever new method of producing a precision jacketed wire, for instance for use in temperature measuring and control techniques, is patented by G. Rau of Germany, in BP1 433526.

The object is to provide mechanical support for an extrerrely thin metallic resistor wire by means of a tough insulating jacket, but without interfering with its electrical resistance and the consistent transmission of heat to and from the wire. These requirements are normally mutually contradictory and the patented answer is to produce the insulating jacket by a gasmetal reaction.
A wire metal core is inserted into a silver tube. The core and tube are a mechanically manageable size, but are subsequently drawn to reduce their diameter to the desired size. The drawn composite is then heated to $800^{\circ} \mathrm{C}$ for three hours, permeation of oxygen from the air into the interface between the core and tube creating an oxide layer which serves as an insulating jacket of precision dimensions. As an alternative, a nitrogen reaction can be promoted to produce a nitrogen-based insulating layer.

IN BRIEF

BP 1446747 - Nissan Motor Co. Ltd: Vehicle Safety Harness. Complicated circuitry to prevent an engine being started and run from cold it the driver and passenger seat belts have not been fastened, but with over-ride circuitry which enables the engine to be re-started after a stall even without belt fastening. Intended to cope safely with emergencies such as engine stall on a level crossing, where rapid re-start is more important than belt fastening.

BP 1445883 - Sepro Soc. D'Etudes: Automatic Collision Alarm. An intertia electric switch system for incorporation in a motor vehicle, the switch being slugged sufficiently to prevent its closure under all normal drivina conditions. But it closes on substantial impact to trigger and hold an alarm circuit closed. In this way a car damaged by impact on a motorway can automatically transmit radio alarm signals and/or flash warning lights to following traffic to prevent another collision.

Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the telephone.

Transistor Socket

Sir-I recently made a transistor tester and had to find a simple. reliable method of connecting the transistors under test.
A 5 -pin 240 degree panel mounting DIN socket provided the answer. The tester leads were connected as shown in Fig. 1.
The DIN socket allows easy and firm connection for most transistor

Fig. 1
configurations, without having to bend or twist the often short leads!
H. Jacobs

Twickenham.

Seeking the truth?

Sir,-I feel duty bound to write in reply to the article on the Electropsychometer under the Patents Review section of Practical Electronics (August).

I have a document in front of me dated September 14, 1976, from one Lee Torbush, an employee of the Bureau of Medical Devices of the US Food \& Drug Administration. In his view "The E-Meter (electropsychometer) is not capable of, nor is it possible to use it as a lie detector, or any such similar instrument. It is a religious artifact used by a Minister of the Church of Scientology to help in the Pastoral Counselling process."

I hope this information will be of some value to any budding Kojaks who believed that the circuit diagram outlined in the article would produce a lie detector. To make any effective use of the instrument outlined in the article they would have to undergo training as a Scientology Minister.
P. Thomson,

East Grinstead.

Perhaps we can help you turn that old wish into reality

As all electronics constructors know, one of the secrets of happiness is to spend leisure time on work that is both interesting and constructive. Unfortunately, one's enjoyment of the hobby is soon spoilt if you can't obtain the right components. That's where Home Radio Components come in and if you're a regular reader of

these advertisements you'll know exactly what we three "typical customers' ' recommend. Here it is-the first step is to invest in a Home Radio Components catalogue. This will enable you to locate quickly and easily the parts you need for the project you have in mind. Then, to buy the components you have a choice of three methods. 1, You can visit Home Radio's shop in Mitcham. above Tesco's almost opposite Mitcham Baths. 2. You can send a cheque or P.O. for the items you need, in the normal Mail Order way. 3, You can join Home Radio's Credit Scheme and settle your account monthly. Full details of this popular scheme are given in the catalogue.
Whichever method you use, you will enjoy the prompt personal service Home Radio always strive to give. So, back to the first step, send off the coupon with $£ 1.40$ for your copy of the catalogue-it's a superb production!

[^5]SUPERSOUND 13 HI－FI MONO AMPLIFIER

 Input lot ceramic or crystal cartidge．Sensitivity 2pprox．Homy for full output．Supplied reaty builk ana tested，with knots，escutcheon
plugs．Overall size

LIFIER

 C．mains U a it 1 g gheary duty fully isols．
tell mains transiform．
er with fuli wave recti－ giving ade
4 it it
e valle line－up：－2 \times ECLSG Triole Pentodes． $1 \times$ EZ80 bass and treble control，civing bass and treble boost and cut．A dual volume cont rof is used．Balance of the left and right hand channeis can be auljusted by means of a sepa－
rate＇Balance＇cont ol fitted at rate＇Balance＇control fitted at the rar of the cbassis．
Input sensitivity is approximately $300 \mathrm{~m} / \mathrm{y}$ for full peak output of 4 watts per channel（ 8 watts mono），into 3 ohm circuit，allows high volume levels to be uscel with neqligitle

HARVERSONIC STEREO 44

stereo anplitie
chatssis，withan
whtput of $3 \cdot 4$
watts per chan－
nel into 8 obln
sucakers
fls
logy integrated cirenit amplifers with buitt in shont term rectiffer smoothing vapacitor．fuse，vame eontwo controls，！pin tin peaker soekets and of tin tapm ree play surket
panel，size apyrox
bratul new and tested，with kruby，growhed sumplice alumminn 2 way escutcheon（to allow the amplince to lo
mounted horizontally we verically），at endy $£ 9^{\circ} 00$ plus
 BEAND NEW MOLTI－RATIO MAINS TRANSFOR－
 Secondary combinations $0-\overline{5}-10-15-30-2 \overline{0}-30-3 \bar{u}-40-60$
 depp．Price $£ 2.90$ ．P．\＆P．？ 10 ．
MAINS TRANSFORMER．FUl power supplies
 Pri．200／240r．Sec． $10-0-10$ at 2 amp．£2－35．P．\＆P． 40 p Pri， $201 / 240 \mathrm{v}$ ．Sec．
$50 \mathrm{~mA} . ~$
$22 \cdot 00+65 \mathrm{l}$
ALL PURPOSE POWER SUPPLY UNIT ：00／240＊AC

 Fitted misulated ontput terninalsand pilot latap indicatot Hammer finish metal case overall size 6 IReady built ami Price 66．75．P．\＆P．85p STEREO－DECODER SIZE 2＂$\times 3$

Ready built．Tre－aligned and tested Sens． 20.560 mb for 9.16 V neg earth operation．Can be fitted to alnost any FM VHF radio or tuner． Stereo beacon ligbt can be atterl if required．Full details and in－ structions（inclusive of hinis and tips） supplied． $35-62$ plus 20p P A•P． Stereo beacon light if required upp extra．	
QUALITY RECORD PLAYER AMPLIFIER MK．II	
A top quality record player amplifer enploying beavy duty double wound wains transforniet．ECC83，EL84． and rectifier．Separate 1lass．Trebe and volune controls．	
Complete with output transformer matched for $\mathrm{S}^{\text {a }}$ ohm	
speaker．Size 7 in wide $\times 3$ in deep \times bin high．Ready luilt and tested pRICE $£ 7.00 \mathrm{P}$ \＆P 90 p	
ABLE mounted on	d with outpus

HARVERSONIC MAINS OPERATED SOLID STATE STEREO FM TUNER

Desigued andi stylet to match our $10+10$ amplifier but wh suit any other stamiand stereu，anplifier tcelniques with high－gaita．low nuise it stages Automatic ir equeney control to＂loch or station shim prevent drif．IC stereu decudet for maximunn stereo
separation．L．E．．for stereo leacon indicator．Nom－ inal output of tuner 100 m ！．Approximate size $12!$ in wide $\times \operatorname{Bin}$ deep by ${ }^{2}$ in high supplied ready built，fully ested and fuly guaranted．
Special Offer $\mathbf{£ 2 2} \cdot 50+$ \＆1．40 P．\＆P

SPECIAL OFFERS

Mullard IdP1159 \＆ド－IF Double Tuned Amplifier Vodule
 7 fil＋eath．Brand new pre－aligned．Pull specification
and connection letails supplied． $\mathbf{£ 2} \mathbf{2 5}+\mathrm{P} \& \mathrm{P}$ ． 2 g ．

PRECISION MADE
Push Button Switeh bank，\＆Buttuns giving 16 S／P C／U

HI－FI LOUDSPEAKER SYSTEM MkII

Beantifuly mule simuaten teak himsin enciosmre fro 10 ＂，wide x＂r leep（appox．）．hitter with E．MA

OURPRICE $1 \mathbf{2} .80$ each．Cart．£1． 90 Cabinet Available Separately $£ 7.60$
speakich with parasitic twecter $£ 11 / 10$
41.90.

LOUDSPEAKER BARGAINS

 E2－00

＂POLY PLANAR＂WAFER－TYPE．WIDE RANGE ELECTRO－DYNAMIC SPEAKER
 hatidling 201 l r．th．s．（40 Wh peak）．Impedance 8 ohm only Response $40 H z-20 \mathrm{kHz}$ ．San be frounted on ceilings，ualla cic．and used sith

Now also zraulable $\mathrm{s}^{\prime} .8 \mathrm{ohm} 10$ watte r．ms．F．$\because 0$ watt peah

LATEST ACOS GP91／1SC motio cunpralible cartridge whth
 brackets and turnover styius．MIm her hatinel omphis SONOTONE 9TAHCCOMPATIBLE STEREO CARTRIDGE ONLY £2 36，$]^{\prime}$ \＆ 1^{\prime} ． 10 p ．Also avaitable fitted with trin LATEST CRYSTAL T／O STEREO／COMPATIBLE

OUR PRICES INCLUDE VAT AT
 CURRENT RATES

HARVERSONIC SUPER SOUND 10 ＋ 10 STEREO AMPLIFIER KIT

really first－clask Ili．Fi Stereo Amplitier Kit．Uses 14 ransistors inchading Siticon Trathistors in the Gat in
 13ass．Treble and two lolume Controls．Suitable for nge with Cerannic or Clystai cartridges．Suty simple to
modify to suit nuagnetic cartridge－instructions included．
 Output stage for any speakers froms to lijobns．Compact
design，all parts supplied including difled metal work． esign，all parts supplied including dilled metal work high quality ready infied minted circun board wid anodised atuminiunt front pariel with matching linobs， nodiseder，nuts，bults－no extras to buy．Simple step by step instructions enalile any constructor to build a a amplifier to be proud of．Briei specifications：Porrer output：It watts r．mas．per clamnel into 5 oluns．Life quency response $3 \mathrm{~d} 1 \mathrm{I}: 2-30.0001 / 2$ Sensitivity：better Luan 80 m into 1 M g ．F゙ult power bandwhith： 3 （lb $12-15,000 \mathrm{H2}$ ．Bass，buost approx to $=12 d R$ ．Treble
 main annp．Power requirements
Fully detailed $\frac{5}{}$ page conatruction manual and parts Fuly free witulikit or send oup plus large S．A．E． AMPLIFIERKI＇$\quad £ 18.50$ I．\＆P．60b
 Special offer－only $\in 23 \cdot 75$ if all 3 units ordered at one time plus $\mathbb{E l} \cdot 00 \mathrm{P}$ ．\＆P．

| | 3－VALVE AUDIO
 AMPLIFIER HA34 MK II． Designed for Hi－J＂j reproduc－ tion of reconds．A．C．Maina opelation．lieady buill on plated heavy gange metal illassis．sice $71_{1 " w} \times 4^{\prime \prime} \mathrm{d} . \times$ f：＊＂In．Incorporates LeCe83， EL8：EZ80 valves．Heary suty，double wound maine transiormerand untputtrans－ |
| :---: | :---: | wealier．separate voinme cuntrol and now with improved

 jaamel cath be betached and learls extemidefl for remote wired and tested for only $£ 8 \cdot 20$ ． 1 ＇，＂1＇， $\mathbf{e l} 1$＇00，
HSL＂FOUR＂AMPLIFIER KIT．Xinila＇in uplearance to Hist abole hut employs mitirely different and
advanced circuitry，Complete set oi pate，etc．$£ 7.60$ ． 10／14 WATT HI－FI AMPLIFIER KIT
A stylishly finishel！
monatural amplifie！
wish an outppat of
14 wates from
EL8 fo it push－pmit
Super reproduction
of both music and
sucech，with ncgli－
gible hum．Separad．
mpuls for mike anis
gram allow iceord

Fulp en cach olh
 and separate baws and treble confols are provided giving good lift ind cut Jalve lime－up EL84s．ECC83． 205 amis fiz80 rectime Sinble instruction bookle ONLY $212 \cdot 00$ ．P ，\＆ 1 ，A\％．Alsu available ready buil and tested $£ 16.50$ ．

SPECIAL OFFER

 with cueing lever．luas whupensalor．conther－balance $£ 14 \cdot 50+\& 1.50 \mathrm{P}$ ．$\$ \mathrm{P}$

Limited number of the Jatest 13S1：Cl4：Automanua chatuger de－fuxe．Lightweight tubular arlm with adjust

 autumatic record changer lecke titted witheneng feyer， lightweight arn，and ceramic Hi－lis stercolcompatible
cartridge．Can bo used for autumatic or mannal play cartridge．can be used for autumatic or manmal play．
PRICt $\$ 9.56+\& 1.20 \mathrm{~F}$ ．\＆ P ．

Open 9．30－5．30 Monday to Friday．9．30－5 Saturday Closed Wednesday．
Prices and specifications correc
at time of press．Subjec
alteration without notice

HARVERSON SURPLUS CO．LTD．
（Dept．P．E．） 170 HIGH ST．，MERTON，LONDON，S．W． 19 Tel．：01－540 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
（Please write clearly）
PLEASE NOTE：P．\＆P．CHARGES PLEASE NOTE：P． QUOTED APPLY TO U．K，ONLY． QUOTED APPLY TO U．K．ONLY．
P．\＆P．ON OYERSEAS ORDERS
CHARGED EXTRA．

A full range of printed circuit MODULES FOR ALL P.A. \& DISCO \& GROUP APPLICATIONS

SYSTEM 7000 HAS IT!

A COMPLETE SELECTION OF READY TO USE PROFESSIONAL QUALITY AUDIO \& LIGHTING EQUIPMENT

POWER AMPLIFIER MODULES 30-240 WATTS

30 Watts rms	60 Watts rms		120 Watts rms		240W ims
SA308 30W rms/ 8 ohms c. 50	SA604 60 W rms/ 4 ohms £12.50	SA608 60W rms/ 8 ohms E13. 50	SA1204 120W rms/ 4 ohms £.14•50	SA1208 120W rms/ 18 ohms £21 00	SA2404 240W rms/ 4 ohms c:25-50

POWER SUPPLIES FOR THE ABOVE MODULES-READY WIRED \& FUSED ON GLASS FIBRE PCB

PM301	1	- $1 / 8$	-	For		PM1202/8	
For 1/2	For 1/2	For 1/2	For 1	For 1	For 2	For 2	
SA308	SA604	SA608	SA1204	SA1208	SA1204	SA1208	SA2404
¢9.90	£12.50	£12.50	£12.50	£12.50	£19.50	E19-50	£19.50

DISCO MIXER MODULES Mono or Stereo

(with Auto Fade)

SYSTEM 7000

MINOTAUR 100-All Purpose Wide Range Amplifier

An extremely compact and
versatile amplifler with
attractive protion and a clean. Ideai for all groups.
disco's \& clubs
£49.50

> Vynide covered case

Superb alue to
SAXON 150 HEAVY DUTY AMPLIFIER
£59.00

SYSTEM 7000

Printed circuit module assembied \& tested with all components ready mounted.
Mono $£ 19.50$ stereo $£ 29.50$

* Front panel to sult $£ \mathbf{\Sigma} \cdot \mathbf{5 0}$

Mixes two decks, tape and mic. Wide-range bass of treble controis on mic. \& music channels.
Variable autofade (mic. override)
Ample headphone power.
Needs only front panel* knobs and Needs only fron
selector switch.

- Push-pull monitor circuit.
- $20 \mathrm{HZ}-20 \mathrm{KHZ}-$ Noise -77 dB
- Comprehensive wiring detalls provided
- Perfect for incorporation in your system

ALL PURPOSE CUSTOM-MIXER MODULES

 (Mono or Stereo)- Using these modules, mixers may be built to your speciflication up to 20 Channels, mono or stereo, or a combination of both. System 7000 custom-mixer
modules have monitoring facilities too!

INPUT MODULES

- Accept low/high 2 mics, ceramic \& magnetic cartridges, afl musical instruments \& line signals
- Low-noise circultry-high grade components
Wide-range bass \& treble controls (23dB)
E $20 \mathrm{HZ}-30 \mathrm{KHZ}$ Noise -80 dB
\square Echo sound/return etc easily fitted
Mono-IM7001M
Stereo-IM7001S $£ 5.50$
Power supply tor up to 20 modules-PPM18 £8.50

QUADRAFECT

FOUR CHANNEL 4KW SEQUENCER WITH DIMMERS

THE ONLY MODULAR

MIXING MODULES

- Only one required per mixer track whether mono or stereo
- Feeds up to ten power modules
- Complete with 1 monitor ampllfier
- Accepts up to 20 input modules
- Will match any other make of amplifier
Mono-IM7002M
Stereo-IM7002s

THREE CHANNEL 3KW SOUND/LITE-Low CostSuperb Value

* Four integral dimmers.
* Two + Two sequencer * Automatic audio level
- RCA 8A Trlacs

Sequence $0 \cdot 5-20 \mathrm{~Hz}$
Needs only front panel

- Audio trigger $1-240 \mathrm{~W}$ Fully suppressed Indlvidual fuses Complate with speed
Slider control

Long-estabilshed Saxon design individual level controls + master - RCA 8A Triacs - $1 \mathrm{~W}-240 \mathrm{~W}$ input Individual channel fuses Neads only front panel*

COMPLETE DISCO MIXERS
(with Auto Fade)

The choice of the professional D.J.
Controls: Mic. volume, bass, treble, A/fade depth, tape, L/deck r/deck vols., treble, bass, master, headphones vol., selector, left/right fader.
MONO 18 V £37.50 MONO MAINS £43.50

SYSTEM 7000 COMPLETE CUSTOM MIXERS (Mono or Stereo)

- Similar to the modules opposite these mixing modules are complete with front panels, sockets, knobs, monitor switch etc. Up to 20 channels (mono or stereo) may be incorporated in one system with any number of output tracks.

Ideal for the economical \& quick assembly of a purpose bull mixer with indlvidual channel monitoring, and optional extra tacilities-consult our technical dept. to discuss your needs.

- Stainless steel panels
*Ready to plug in \& use
* Mono or Stereo

> Automatic mic. overrlde Mixes two decks, tape \& mic Facilitles as for modular version opposite Mute positions on headphone selectorforease of monitoring Two tone stalnless stéel panal Sockets on front \& rear panels Leftiright deck fader May be operated from any Dower supdly or from mains Stereo 18 V £.53. 50 Stereo Mains $\mathbf{£ 5 9} \cdot 50$

Bulit-In monitoring - Will feed ali ampliflers - Professional appearance - Accepts all types of slgnais - Infinitely adaptable

SYSTEM 7000 LIGHTING CONTROL MK II
 LIGHT CONVERTER GOT: E 4000W Handling

- Integral individual dimmers - Automatic audio level contro - Two + Two sequence facility OURS HASI - PLUS:
ALL YOUR ELECTRONIC Stainless steel panel LIGHTING NEEDS IN ONE Heavy duty terminations SUPERBLY OESIGNED

Mono input module	Es.50
Stereo input module	$\mathbf{£ 1 2 \cdot 0 0}$
Mono mixing module	$£ 8 \cdot 50$
Stereo mixing module	$£ 12 \cdot 00$
Power supply	$£ 8 \cdot 50$

SAXON SOUND-LITE-An old design with improved

 appearanceScintillating periormance
Similar to Mk II IIghting control in appearance

- 3KW power handling
- Indivldual bass, treble, middle \& master controls
- 1-240W input
Fully fused \& isolated
Complete with heavy duty terminations

- Bondene case Matches System 7000

EXPORTERS TO 17 COUNTRIES

BRANCHES AT CROYDON \& WALLINGFORD

CUSTOMERS INCLUDE BBC, LONDON WEEKEND TV, SCOTTISH TELEVISION, NATIONAL TYRES, POST OFFICE, GOVT. DEPTS.

A READY-TO-USE 100W STEREO DISCO WITH BUILT-IN SOUND/LITE SEQUENCER AND LIGHTS FOR ONLY £199

THE CENTAUR
(Carr free In U.K.) E 100 W ms stereo output - Twin heavy duty loudspeaker - Four channel fully automatic sound lite with variable speed sequence

- Sp.pro-aplo tape input a X lade
- Separate mic. \& music treble and bass controls
- Attractive Vynide cabinets
- Twin BSR decks with autostop \& lift arm

Incredible value for money-2/3 cost of separate parts!

- All connecting leads suppliedready to plug in
E Loudspeakers have kick-proof grilis - Four colour bullt-in light display glves ever changing pattern with or without music

A READY-TO-USE 50W MONO DISCO COMPLETE WITH TWIN HEAVY DUTY LOUDSPEAKERS FOR ONLY

- 50W rms output
- Twin heavy duty loudspeakers
- Separate mic. input
- Wide range bass \& treble controls Simart Vynide cases-clip together to form one neat package
- Twin BSR decks with lift \& autostop

Accessories for complete discos \& other systems

- Electret Condenser Mie ECM31 C/W windshleld \& cllp £12.00

ECM78-as above but duel impedance with removable lead £13-00

- Crown Stereo Headphones $\mathbf{£ 6} \cdot 75$

Heavy duty boom mic. stand $£ 12 \cdot 50$

CUSTOM BUILT DISCOS

A full range of custom consoles are available using System 7000, from 50W mono to 500W stereo.
Ask for our price list.

LOUDSPEAKER CABINETS
Kick proof grills. \quad Heavy duty units
Jointed construction \quad Black Vynide
Protective corners finished.
Smart \& professional
Single Twelve: Empty £i4
With 60 W unit $£ 33 \cdot 00$
TwIn Twelve: Empty $£ 24$
With units from $\mathbf{£ 5 9 . 0 0}$
Twin Twelve: Empty $£ 24$
With unlts from $£ 59.00$
Folded Horn-Full range P.A. Bin 100 W RMS
Folded
$120 \cdot 00$
This cabinet is $3-4$ times as loud as conventional systems for a glven input power-thus there is a saving in overall size cost

EMPTY DISCO CONSOLES
E19 with plain motorboard. £21 with cutouts.
Black Vynide finish \square Protective corners \square With your choice of cutouts
STROBES \& PROJECTORS (We stock the full Pluto range) Send for details

SUPERSTROBE £19.75

- 2-3 Joules

80W Tube for long lite
Compact $4^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$
PRO-STRORE $£ 32.50$

- $5-8$ Joules
- External trigger

Long Life tube timer circult

150 WATT LIQUID WHEEL
PROJECTOR

- Accepts all accessories
- C/w with wheel \& moto plate
- Sturdy steel constructio Remarkable value-
Sold elsewhere at
£39.50. Our price
is only:
£31.50

Please add 8\% VAT to a!l orders (12\% \% for SA308/PM301)
We accept Access \& Barclaycard-simply telephone or send
your card number-Do not send your card.
You may pay by cheque, crossed postal orders, cash (registered) or bank draft
To order-or for advice phone (01) 6846385 or (01) 6840098
Mail orders to: 327-333 Whltehorse Rd., Croydon, Surrey CR0 2HS
Shop open 9 am-5pm Mon.-Sat. Mail order desk 10am-3pm Mon.-Frl.
Wallingford Branch: Flint House, High St., Wallingford, Oxon
(Cailers only)
\$am-5pm Mon.-Sat. Telephone (0491) 35529
ROSE ELECTRICAL TO BONA FIDE TRADE CUSTOMERS

Manufactured by:- A. R. Sugden \& Co (Engineers) Ltd., Atlas Mill Road, Brighouse, West Yorkshire, HD6 1ES. Telephone: Brighouse (04847) 2142. Telegrams \& Cables: Connoiseur, Brighouse

CMOS WITH DISCOUNTS! Any mix: Discount 10%, for $25+, 25 \%$ for $100+, 33 \% \%$ for $1,000+$

				USS	
GR̨EENBANK ELECTRONICS (Dept. E2P) 					

PHILIPS

The top sellers for home assembly in Europe - now available in the U.K.
Now - read all about the Philips range of quality kits for home assembly - mixers, amplifiers, speakers, etc, etc. Send today to
S.S.T. Distributors (Electronic Components) Ltd.,

West Road, Tottenham, London N17 ORN

P. F. RALFE
 10 CHAPEL ST, LONDON NW1
 Phone 01-723 8753

MUFFIN INSTRUMENT FANS Dimensions $4 \cdot \operatorname{Sin} \times 4 \cdot \operatorname{Sin} \times 1$. Very quiet running. precision specially designed for coolin electronic equipment. amplifie eic. For 110 V , a.c. operation (practice is to run from sp primary of mains transformer use suitable mains dropper	MARCONI R.C. OSCILLATORS TF1101 $20 \mathrm{~Hz}-200 \mathrm{kHz}$ signal generators. Distortion 0.5% or with filter $0.1 \% .60 \mathrm{~dB}$ step attenuator Continuously variable output up to 20 V . Metered o/p. 250 V mains operation. In first class condition
11 Our price in brand new condition, is $\mathbf{5 4} 86$.	EDDYSTONE DIALS 898 Horizontal slide rule tuning dials type 898. Complete. Tuning knob un-marked scale plate, fiywheel. pointer. etc Brand new in boxes with cutting template. Lisi price is over $£ 15$. OUR PRICE ONLY 89.18. P \& P 32p.
500 V TRANSISTORISED INSULATION TESTERS Small size, lightweight. 13×7 $\times 4 \mathrm{~cm}$. Reads insulation from 0.2 to $100 \mathrm{M} \Omega$. Brand new. only \&17.28. P. \& P. 22p.	
HELIPOT TURNS COUNTER Beckman Duodial" counting dials Miniature type (22 mm dia) Counting up to 15 turns. Brand new, complete with mounting instructions. E2.70.	AVO MULTIMETERS Multiminor type Mk. 4. Small light-weight instrument $14 \times 9 \times$ $3 \% \mathrm{~cm}$. Measures V, acsdc. 10 1 kV d.c. 1 from 0.1 mA to 1 A . Fesistance ranges $10 \mathrm{k} \Omega / \mathrm{V} \mathrm{dc}$ and $1 \mathrm{k} \Omega / \mathrm{V}$ a c . Tested and in good condition Price only E9.18. P. \& P 32p.
BRIDGE RECTIFIERS Encapsulated silicon type	
12A. $52 \cdot 70 ; 400$ PIV. Postage 10p.	HELICAL POTENTIOMETERS Helipot $45 \times 50 \mathrm{~mm} .10$ turns $30 \mathrm{k} \Omega$. 11.62 . Beckman 33 $17 \mathrm{~mm} .360^{\circ} .10 \mathrm{k} \Omega$. $£ 1.62$. Reli ance $20 \times 50 \mathrm{~mm}, 10$ turns. $5 \mathrm{k} \Omega$. 51.62. Beckman double-gang 360°. $1 \mathrm{k} \Omega, \Sigma 1$. 62 . Beckman 22 37 mm .10 turns, $1 \mathrm{k} \Omega$. £2.16. Beck man $22 \times 37 \mathrm{~mm}$. 10 turns, 500Ω £1.62. Reliance $12 \cdot 40 \mathrm{~mm}$. 10 turns. 500 ת. \&1.62. Colvern 45. $35 \mathrm{~mm}, 3$ turns, 250Ω, £1-62. Colvern $45 \times 35 \mathrm{~mm}$. 3 turns. 20Ω E1-62. All brand new and guaran teed. Please add 10p each for postage.
ADVANCE R.F. SIGNAL GENERATORS E2 $100 \mathrm{kHz}-100 \mathrm{MHz}$ £37-80	
$62100 \mathrm{kHz}-220 \mathrm{MHz}$	
P1 $100 \mathrm{kHz}-100 \mathrm{MHz}$	
SG63A 7-5-230. AM/FM E81	
Tested and guaranteed Carriage on the above. $£ 2$ extra.	
SWISS HOUR METERS National Watch Co. 110 V 50 Hz 5 digits. Size approx. $5 \times 3.5 \times$ 25 cm . Digit height 3 mm . Brand new $£ 1 \cdot 62, P$ \& P. 10p.	

Dryam kits
 DORAMKITS CONTAIN EVERYTHING DOWN TO the Last nut
 SUPPLY湤 $\mathcal{f} 1095$

An invaluable piece of equipment for the enthusiasts workshop This $3-30 \mathrm{~V}$ d c power supply fulfils virtually all experimentation requirements. Avoid frustration and circuit damage with the variable current limit ($0-1 \mathrm{~A}$ max)
Regulation typically better than 05% (max 3%
Ripple voltage typically better than 20 mV (max 120 mV)
Only £19 95 + S (order code 997-027)

O'seas orders—add 15% for P + P. All items offered for sale subject to the Terms of Business as set out in Doram Edition 3 catalogue, price 60 p . The Doram Kit brochure is also available, price 25 p. Combined price only 70 p which also entitles you to 2×25 p vouchers, each one usable on any order placed to the value of $£ 5.00$ or more (ex. VAT).

DORAM ELECTRONICS LTD
P. O. Box TR8, Wellington Road Industrial Estate, Leeds LS12 2UF.

An Electrocomponents Group Company

VALVE MAIL ORDER CO.
Climax House
159 Fallsbrook Road, London SWI 6 6ED
SPECIAL EXPRESS MAIL ORDER SERVICE

C2s0 Kit-PC MPECIAL CAPACITOR KIT8 C280 Kit-PC Mounting polyester 250 V 5 of each
value $0.01 .0 .022 \quad 0.047 \quad 0.10 .22 \mathrm{~F}, 2$ of 0.47 lu value $0.01,0.022,0.047,0.1,0.22 \mu \mathrm{~F}, 2$ of $0.47,1 \mu \mathrm{~F}$ $21-11$ net.
C296 Kif-
$0.01 .0022,0$ o $047,0.1,0.22 \mathrm{~F}$, $200 \mathrm{~V}, 5$ of ench value Ceramic Kit $22,33.47 .100$. $220.330 .470,1000 \mathrm{pF}$. $220,4700 \mathrm{pF}$. $0.01 \mu F, 51.71$ net.
SPECIAL RESISTOR KITS (CARBON FILM 5\%) (Prices include post 8 packing) 10E12 tW or tW Kir: 10 of esch E12 value. 22 ohms- 1 M , a total of 570 ES . 04 net $25 E 12$ iW or $\ddagger W$ KIT: 25 of each E12 value. 22ohme-
1M, a total of 1425 Et1- 70 net
B. H. COMPONENT FACTORS LTD.

I-NTER L-Q C-K-N NG
Esimy
Newest, neates system ever
devised for storing small parts and components
resistors, capacitors, diodes, transistors, etc. Rigid plastic units interlock logether in vertical and horizontal combinations. Transparent plastic drawers have label slots. 1D and 2D have space dividers. Build up any size cabinet for wall. bench or table top
As supplied to Post Office,
Industry and Government Depts.

SINGLE UNITS (1D) ($5 \mathrm{in} \times 2 \mathrm{in} \times 2 \mathrm{in}$). £2.50 DOZEN.
DOUBLE UNITS (2D) (5in $\times 4 \frac{1}{2}$ in $\times 2$ fin) ع4.40 DOZEN
TAEBLE (3D) £ $4 \cdot 20$ for 8
DOURLE TREBLE 2 drawers, in one outer case (6D2), $\varepsilon 6 \cdot 50$ for 8 .
EXTRA LARGE SIZE (6D1) $\mathbf{5 5} \cdot 50$ for 8.
PLUS QUANTITY DISCOUNTS
Orders over £20. less 5\%.
Orders over £60. less $7 \frac{1}{\frac{1}{2}} \%$
PACKING/POSTAGE/CARRIAGE: Add 75p to all orders under £10. Orders $£ 10$ and over. please add 10% carriage.

QUOTATIONS FOR LARGER QUANTITIES
Please add 8% V.A.T. to total remittance
All prices correct at time of going to pres
FLAIRLINE SUPPLIES

(Dept. PE2)

124 Cricklewood Broadway, London NW2 Tel. 01-450 4844

CLEARANCE OFFER

At virtually cost price
INSTAR 103P LIQUID CRYSTAL DISPLAY WATCHES. As previously advertised ONLY £17.50 to clear

NEW FROM AMERICA

Liquid Crystal Display Watches from Fairchild Timeband
$5+4$ functions. Continuous readout of hrs., mins. and pulsating secs. Single command button. push once for month/date (auto reset), twice for secs. (manual resel)
PLUS Programmed 4-year calendar. backlight for night viewing. optional continuously alternating time/date display. a.m./p.m. setting indicato
High contrast L.C.D. display in Presentation Boxes, these are superb watches selling in jewellers' shops for up o 180
TC 411 White E20.50
TC 410 Gold 532 . 50
On Leather Sirap
TC 413 White E34. 50 Matchis cold $237 \cdot 50$ No adjuslable bracelel. oving parts to wear out acs or on. Accuracy to a few secs./month. We believe our prices are the lowest anywhere and include VAT at 8% and P. \& P. Free battery(s). No quibble 1 Year Guarantee.
Send Cheque/Money Order to:

TEMPUS

Dept. P.E., 5-7 Nortolk Street
Cambridge CB1 2LD
A Lot of time for the Monay

PRINTED CIRCUIT KIT E4-25*
Make your own printed circuits. Contains etching dish. tousq.in of pc board, 1lb ferric chloride, dato pen, drill bit, laminate cutter.

JC12 AMPLIFIER

6W IC audio amp
with tree data and
printed circuit.
c2.25*
DELUXE KIT FOR JC12
Contains extra parts except JC12 needed to complete the amp including balance, volume, bass and treble 23. Stereo 4 -95

JC12 POWER KIT

Supplies 25V 1A es-75.
JC12 PREAMP KITS
Type 1 for magnatic pickups, mics and tuners. Mono pickups. Mono 5 Sp. Type 2 for ceramic or crysta!

SINCLAR IC20

IC20 $10 \mathrm{~W}+10 \mathrm{~W}$ stereo integrated circuit amplifier kit with tree printed circuit + data $\mathbf{~ 4 . 9 5}$.
Z20 Power supply kit for above [3.gs.
VP20 Volume, tone-control and preamp kit e7-95

JC40 AMPLIFIER

New integrated circuit 20W amplifier kit complete with chip. printed circuit and data £a-45.

FERRANTI ZN414

IC radio chip $£ 1.44$. Extra parts and pcb for radio
A.E. lor iree data.

BATTERY ELIMINATOR BARGAINS
MILLENIA KITS*
5 transiator highly stabilized power units. Switched
$1-30 \mathrm{~V}$ in 0 1V steps Send SA E for tre日 kit £12.45. 2 amp kit £14.95. Case 82.95 extret. 1 amp RADIO MODELS
50 mA with press-stud battery connectors. 9 V es .45 .6 V £3.45. $9 \mathrm{~V}+9 \mathrm{VE5} \cdot 45.6 \mathrm{~V}+6 \mathrm{~V} 55 \cdot 45.4 \mathrm{~V}+4 \mathrm{~V} \mathrm{~V} 5.45$. CASSETTE MAINS UNITS
$7 \frac{1}{2}$ With 5 pin din plug. 150 mA E3. 95 .
3-WAY MODELS*
With switched output and 4 -way multi-jack connector. Type 1: $3 / 4 \downarrow / 6 \mathrm{~V}$ at $100 \mathrm{~mA} £ 3 \cdot 20$. Type 2: $6 / 7 \downarrow / 9 \mathrm{~V}$ at

150 mA £3.30.

FULLY STABILIZED MODEL $85 \cdot 45 *$
Switched output of $3 / 6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ stabilised at 400 mA
CAR CONVERTORS $\mathbf{5 5} \cdot 10$ *
input 12 V d.c. Output $6 / 7 \$ / 9 \mathrm{~V}$ d.c. 1 A stabilized.
BATTEAY ELIMINATOR KITS
Send S.A.E. for tree leaflet on range.
100mA redlo types with press-stud battery terminals.
 $6 \mathrm{~V}+6 \mathrm{~V} 2 \cdot 6 \mathrm{Cl} .9 \mathrm{~V}+9 \mathrm{~V} \cdot \mathrm{co}$
100mA cmaserte type 7iV with 5 pin din plug E2. 10.

Henvy duty 13 -way types $4 / / 6 / 7 / 8+11 / 13 / 14 / 17 /$ $21 / 25 / 28 / 34 / 42 \mathrm{~V}$. 1 A model $\mathrm{f4} .85$. 2 A model $\mathrm{E7} .05$. Car convertor kit Input 12 V d.c. Output $6 / 7 \downarrow / 9 \mathrm{~V}$ d.c. 1 A transiator atabilized £1-05.

MAINS TRANSFORMERS

6-0-6V 100mA E1. 9-0-9V 75 mA \&1. 18V $1 \mathrm{~A} \mathrm{\$ 1} .95$. $0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V}$ IA $84-30$. $12-0-12 \mathrm{~V} \quad 50 \mathrm{~mA}$ \&1. $0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V} 2 \mathrm{~A} 5.95$. 20 V 27 A 52.95 . 6-0.6V

S-DECS AND T-DECS*
S-DeC E2.24.
T-DeC E4.05.
μ-DeCA E4. 45.
1-DeCB E7-05.
${ }^{16}$ earriers

SINCLAIR CALCULATORS AND WATCHES Cambridge Memory 5 E. OS. Cambridge Scientific ct-05. Oxford Sci. \&13.30. Programmable Scientific with ree mains unit 19.95 . Mains adaptors for other
modeis (state type) $59 \cdot 20$. Assembled Grey Watch with free stainless steel bracelet £18-45. White waten 13 .es.

SINCLAIR PROJECT 80 AUDIO MODULES PZ5 E4.95. PZ6 Es.70. 240 E5.75. Project 8050
f18.95. E18.85.
BI-PAK AUDIO MODULES

 SPM 80 E4.25. BMTBO $\mathrm{is} \cdot \mathrm{To}$. Send S. A.E. for free data SAXON ENTERTAINMENTS MODULES
 PM $1202 / 4$ \& 18. PM $601 / 8$ \&12. PM601/4 £12.

SWANLEY ELECTRONICS

No Callers-Mail order only

Dept. PE, PO BOX 68, 32 Goldel Rd., Swanley, Kent send \$.A.E. for free leaflets on all kife Poet 30 g on ordera under e2-23, otherwles free. Prices include VAT. Oversen cuttomers deduct 7% on iteme marked
otherwise
11%. Ofticial orders welcome.

RELAYS

SIEMENS, PLESSEY, E

RELAYS. WIDE RANGE OF A,C. and D.C. RELAYS AVAILABL
GENTS' 4in ALARM BELL
3.4 $\frac{1}{2} \mathrm{~V}$ d.c

Price 44.50 . P. \& P. 50p .

miniature c/o roller MICRO SWITCH
OMRON Type VI5 FL22/IC. 10 for
C2. Post 50p. (Min. order 10).
C2. Post 50p. (Min. order 10).
Sub miniature Burgess Button Type V.4.T.I. 10 for
Sub miniature Burgess Butto
$\mathbf{6 2} 50$. 50 for $\mathbf{E 1 0}$. Post paid.
BF LEVER OPERATED 20 amp . C/O. Mfg, by Unimax USA, 10 for E4, P. \& P. 50 p (min. order 10).

MINIATURE UNISELECTOR

12 volt 11 -way, 4 bank (3 non-bridsing, 1 homing)

24 VOLT DC SOLENOIDS

UNIT containing I heavy duty solenoid approx. 251b

 pull 1 ineh travel. Two approx. Ilb pull $\frac{1}{2}$ inch travel. $6 \times$ approx. 40z, pull $\frac{1}{2}$ inch trave! One 24 volt d.c., 1 heavy duty single make relay£3-00. Post $£ 1$. ABSOLUTE BARGAIN

600 WATT DIMMER SWITCH Easilyfitted. Fully guaranted by makers.
Wit! control up to 600 W of lighting except fluorescent at mains voltage
Complete with simple instructions. Complete with
$\neq 3.65$. Post 25 p.
$!, 000$ watt model, $65-60$. Post $25 p$.
2,000 watt model, $\mathbf{4 9} 75$. Post 40 p .

BLOWER UNIT

$200 / 240 \mathrm{~V}$ a.c. precision German built. Dynamically balanced, quiet, con rated, reversible. Consumption
60 mA . Size 120 mm dia. $\times 60 \mathrm{~mm}$ deep. 60 mA . Size 120 mm dia
Price $£ 3.50$. Post 50p.

All Mail Orders-Callers-Ample Parking Dept. PEII, 57 BRIDGMAN ROAD
 CHISWICK, LONDON W4 5BB

 Phone 01-995 1560
VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/240V a.c. 50/60 OUTPUT VARIABLE O-260V SHROUDED TYPE
200
$0.5 \mathrm{KVA}(2 \mathrm{k}$ mp) (MAC) 11.50 . 5 KVA ($2 \frac{1}{2} \mathrm{amp}$) (MAX) $\leqslant 11.50$ 1 KVA (5 amp) (MAX) $\ddagger 88.00$ 3 KVA (15 amp) (MAX) $£ 38.00$ 3 KVA (15 amp) (MAX) $£ 38.00$
$4 \mathrm{KVA}(20 \mathrm{amp})(M A X) \in 60.00$ CARRIAGE AND PACKING EXTR

L.T. TRANSFORMERS

 $0,10,17,18$ Volt at $10 \mathrm{amp} \quad$ 6 $\mathbf{0 . 4 5}$. Post $£ 1.00$ $0,4,6,24,32$ Volt at 12 amp . $\quad 13.00$. Post $£ 1.00$
 O,6, 12,17, 18, 20 order at short notice-Phone your Other types to order at short notice-Phone your
enquiries.
AUTO TRANSFORMERS
Step up, step down, $0.115 / 200 / 220 / 240$ volts at 75 watt $£ 360$. Post 40 p . r 50 wate $\mathbf{6 5 \cdot 1 5}$. Post 50 p . 300 watt $67 \cdot 45$. Post 60p. 500 watt $\mathbb{1} 11 \cdot 00$. Post 75 p. 1000 watt $£ 16 \cdot 20$. Post 90 p .

STROBE! STROBE: STROBEI

HY.LIGHT STROBE MK IV Build a Strobe Unit, using the latest type Xenon white light flash cube. Solid state timing and triggering sircuit. $230 / 250 \mathrm{~V}$ a.c. operation. For use in large rooms, halls and utilises a silica tube, princed circuit. Speed adjustable $0-20$ f.p.s. Light output greater chan many (so called 4 Joule) strobes $\& 1540$. Post 75 p . Specially designed case and reflector $\mathbf{6 8} \mathbf{2 5}$. P. \& P. ©I. Super high light approx. 4 times more output. S.A.E. for leaflet

XENON FLASHGUN

 TUBESRanne available fr
S.A. E. for details.

BIG BLACK LIGHT

400W Mercury Vapor Ultra Violet Lamp. Powerful source of UV P.F. ballast unit is essential with this lamp. Price of bulb and matched ballas
Post $£ 2$. Spare bulb only $£ 10$. Post 80 p.

vat
 AT CURRENT RATE MUST BE ADDED TO ALL ORDERS FOR THE TOTAL VALUE OF GOODS INCLUDING POSTAGE UNLESS OTHERWISE STATED.
 SERVICE
 TRADINGCO

GEARED MOTORS 100 r.p.m. 115 lb .in. 110 V 50 Hz . 2.8 A , single phase, split power Continuously rated
 power. eontinuously rated. in-line gearbox. Length 250 mm . Dia. 135 mm , Spindle dia. 15.5 mm . Length 145 mm . Ex-equipment tested $\mathbf{5 1 2}$. Post E1.50. Suitable transformer $230 / 240 \mathrm{~V}$ operation C8, Posc 75p.

DRAYTON MOTOR

 Type R QR$230 / 250 \vee 50 \mathrm{c}$. Continuously rated I r.p.m. 901 lb . in. Reversible Motor Twin spindle size 100 mm by 140 mm by 125 mm . Shaft 50 mm by 8 mm . Weight 2 kg .

BODINE TYPE N.C.I

(Type J) 71 r.p.m. torque 10
Reversible 1/70th h.p. 50 Hz .
Reversibie liph h.p. SoHz.
offered in 'as new' condition. Input voltage of motor 15V A.C. Supplied complete with transformer for
 former $£ 3.75$. Post $65 p$.
(Type 3) 71 r.p.m. 4 lb ins 230 Va a.c. Continuously

I5 R.P.M.

Type SD48 801 lb . in. Input $100 / 200$ volt A.C. Length incl. gearbox 270 mm . Height 135 mm . Width 150 mm . drive shaft 16 mm . Weight 8.5 Kilos. BRAND NEW. Price EIO. Carr. El.
Suitable transformer for use on $220 / 240$ volt A.C. 63.85. Post 50p.

24 R.P.M. 230 V a.c. Continuously rated. Mfg. Mycalex. Ex-equip. Fully tested. 63.85 . Post 75p.
I R.P.M. 230/240V A.C, SYNCHRONOUSI Ex-equipment. Thoroughlytested and guaranteed. ONLY \&1.50. Post 20D.
20 R.P.M. $230 / 240$ volt a.c. miniature motor. Price \&1. Post 20p.

PROGRAMME TIMERS

230V operationa.c. 15 or 20 r.p.m
6 cam model 65 . Post 60p.
9 cam model $66-50$. Post 60 p
12 cam model 67.50 . Post 60 p.
12 cam model $67 \cdot 50$. Post 60 p
METERS NEW--90 mm Diameter
Type: 65CSD.C. M/C 2, 5, 10, 20, 50 amp.
£2.75. Post 200 . 100 amp $\mathbf{E 3 - 2 5}$. Post
E2.75. Post 20 p . 100 amp $\mathbf{E} 3-25$. Pos
Type: 62 T2 A.C. M/1 1, 20, 50 amp . $22-50$. Post 20p.
 E3. Post 30 p

WHY PAY MORE?!

MULTI RANGE METER. A.C. voles $2 \cdot 5-500$. D.C. voles $2.5-500$ (Sensitivity
$2000 \Omega / V D . C$. and A.C.) D.C. current $2000 \Omega / V D . C$. and A.C.) D.C. Current
$0 / 1 / 10 / 100 \mathrm{~mA}$. Ohms range. Sturdy compact moving coil instrument: with
21 ranges, dimensions $/ 20 \times 80 \times 44 \mathrm{~mm}$. Weight 0.32 kg . SERVICE TRADING
 CO. Price $\mathbf{6 5} 50$. Inel. leads and batcery.
post 50p. (Total price inel. VAT and Post 66'48).

TIME SWITCH

Horstmann' Type V Mk. II Time switch. 200/250 volt A.C. Two on/two off every 24 hours, at any manually pre-
set time. 30 amp contaets. 36 hour spring reserve in case of power failure. Dayomitting device. Fitted in heavy high impact case, with glass observation window. Built to highest Electricicy
Board Spec. individually tested. Price
$\mathbf{6 7} 75$, Post 50 p. (Total ine. VAT ©8-91)

Superior Quality Precision Made NEW POWER RHEOSTATS

New ceramic construction, viereous

enamel embedded winding, heavy
duty brush assembly, continuously
ated. 25 WATT $10 / 25 / 50 / 100 / 150 / 250 / 500 / 4 \mathrm{k} / 1.5 \mathrm{k}$ ohm 51.90 Wost $20 \mathrm{p}_{\mathrm{i}} / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k}$ ohm 62.40. Post $25 \mathrm{p} / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1 / 5 \mathrm{k} / 2 \cdot 5 \mathrm{k}$
100 W ATT $1 / 5 / 10 / \mathrm{l}$ 3.5k/Sk ohm $\mathbf{4 3} \mathbf{7 0}$. Post 35p.

Skek Silver, Skirted knob calibrated in Nos. $\downarrow-9$ $1 \frac{1}{3}$ in. dia. brass bush. !deal for above 22p each

[^6]
B. BAMBER ELECTRONICS
 Dept. PE, 5 Station road, litileport, cambs., cBg 10E
 Telephone: ELY (0353) 860185 (2 1inas) Tuesday to Saturday

A MINIATURE POWER TOOL to speed your building

- Super 30 Kit (30 Tools) (inct. drill without stand) € 17.62 plus P. \& P. 85pSuper 10 Kit (10 Tools) (incl. drill without stand) \& 13.74 plus P. \& P. 65p

O Mk. II Drill Stand £4.40 plus P. \& P. 35p

- Mk. II Drill only \&8.79 plus P. \& P. 35pFlexible Drive Shaft
\&5.46 plus P. \& P. 25p
6 Transformer 240 V a.c./I2V d.c. t6 plus P. \& P. 70p

Replacement drills, stones, burrs, etc. 40p each. Circular saw blades 50p each. 62 per set of 4 sizes. P. \& P. any quantity 20 p.

All VAT inclusive

PRECISION PETITE LTD.

119a High Street, Teddington, Middlesex TW11 8HG Tel. 01-977 0878 (24-hour answering service)

TELEPHONES-Modern style 706 Black or two-tone grey 54.50 each Older black style $£ 1.50$ each grey ${ }^{54.50}$ each Oider black
p. \& P 75 p . All with bells and dial SEMICONDUCTORS-All at ap each*. P. \& P extra Guaranteed ail full spec. devices. Manufacturer's markings.
BC147, BC158, 2N3707, BC107, BF197, BC327, 2N4403 BC172B: BC2618: BC251B. BC348B: BC171AB 2N3055RCA 50p each, P \& P P 8 p .
2N5879 with 2 N 5881 . Motorola 150 2N5879 with 2N5881 Motorola 150 watt. Comp. pair 2 pair. P \& P $15 p$

* Linear amp 709 25p each, P. \& P 8p

SPECIAL OFFER BC204 and BC207A 4p each, P. \&

* BEEHIVE TRIMMERS. $3 / 30 \mathrm{pF}$. Brand new. 10 oft ${ }_{\star}^{40 \text { P }_{1} \text { P. }}$ \& PIMMER 15 P PACKS. As previously advertised. 25 each. P \& P. 15 p
\star Meter PACKS. 3 different meters £2, P. \& P \&1. DON'T FORGET YOUR MANUALS. S.A.E with requirements.
sach. P \& $\mathrm{P}, 10 \mathrm{p} \times 14 \mathrm{~cm}$ high quallty plastic 15p ach. P \& P. 10 p
50 P , P. \& P P 480
* 31b Electronic Goodies 51.60 , post paid
* High Value Printed Board Pack hundreds of components, transistors, etc.--no flat to the board ransistors $£ 1$ - 65 post paid
$\star 1000$ Feed thru Capacitors 10 for 30 p. P \& P. 15 p . HIVAC MIn Neons. Approx 60 V Brand New 10 off 20 p . P \& P extra
FIBREGLASS BOARD PACK. More board-less monney Larger pieces. Not less than 2.5 sq ft for
Double or single sided cut to any size. New Lower Price ip Per sq in. P \& \& P extrai
TRANSFORMERS-All 240 V 50 Hz
Type A $17-0-17 \mathrm{~V} 250 \mathrm{mAA}, 75-0-75 \mathrm{~V} 250 \mathrm{~mA}$ O-20V $5 \mathrm{amps}: 0-4 \mathrm{~V} 5 \mathrm{amps}: 0-1-1.5 \mathrm{~V} 5 \mathrm{amps}$ e2 each P. \& ${ }^{2}$

Type 日 $17-0-17 \mathrm{~V} 250 \mathrm{~mA}: 8-0-8 \mathrm{~V} 250 \mathrm{~mA}, 0-12-5-13.5 \mathrm{~V}$ 5 amps, $0-15-2 V 5 \mathrm{amps} ; 51.50$ each. P \& $P . \& 1$

VAT $12 \% \%$ otherwiae 8%

Minimum order \&2 Excess postage refunded

EMILTMEARLTO

 7/9 ARTHUR ROAD, READING, BERKS.

Complete set of semiconductors
£4.99
Mullard LP1186 tuner head
£ 7.75 High quality glass fibre P.C.B. £2.45

ORION AMPLIFIER

Complete set of semiconductors $£ 9.40$ High quality glass fibre P.C.B. £2.99 Both the above PCB's are screen printed with component locations.

FERRANTI semiconductors

BZV zenors		BFS98		27×107		21×239	10p	MOTOR	OLA
all types	10p	MS4A:	[1.35	$2 \mathrm{~T} \times 108$		21×320	\%		[1.14
BCA15P	17p	2\$170	130	27×109		ZTM384	17 D	BD700*	¢1.29
BFS50	150	ZS178	$54 p$	21×212	$15 p$	ZTX450	15 p	MC1310P	1
BFS61	159	2S271*	23p	27×213	$15 p$	21×550	$16 p$	MC	E1.85
BFS97	15p	zTXAZ0	10p	$2 T \times 214$	17 p	2N3055*	70p		
We can supply any FERRANTI semiconductor device to order S A.E for list									
FERRANTI CDI INTEGRATED CIRCUITs. All with eircuits and data									
ZN414 radio microcirenit ZN424E low noise audiol				¢1.00$\$ 1.00$	ZN425E* D to A converterZN1034E* precision timer				¢3. 50
									E1.
			040k" universal counvoisplay ic						
PE TV SOUND SEPARATOR									
Complete sot of semiconductora $\mathbf{x 2} \cdot 30$. Migh quality glass tibre p.c.b $\mathbf{E 1}$.									
PHASE LOCKED STEREO DECODER									

PHASE LOCKED STEREO DECODER
o Motorols specification. COMPLETE KIT ONLY ES -50, including MC1310P. glass fibre p.c.b a all POSTAGE AND PACKING 15 p per Order Ordert over 55 post free. All devicea are top grede. brend new and to tull manufacturer's apec. We do not soll seconds or rejects. Send S.A.E. for dat sheet and price list.
PRICES DO NOT INCLUDE VAT-ADD E\% TO ITEMS MARKED - AND 12נ\% TO ALL OTMEAS

DAVIAN ELECTRONICS

13 Deepdale Avenue, Royton, Oldham, Lancs. (Mail order only)

Dimmit range of light dimmers and lighling control sysiems

Illustrated is the popular PMSD 1000 module. A 1 kW slider control dimmer, incerference suppressed, 60 mm stider range size $4 \frac{1}{2} \times 2 \times 1 \frac{1}{2} \mathrm{in}$. Ideal for low cost stage and disco lighting. Used by schools, theatres, studios, etc Complete with scale plate, fixing screws and full instructions. $\quad \mathbf{9 9 . 0 6}$ inc. VAT and postage and packing.

Complete compact light dimmer systems for stage, club and disco ligliting, etc.

DD6IM (illustrated). Six lkW channels, six outlet sockets, master control, inains on/off switeh, size $23,8 \frac{1}{2} 5 \mathrm{in}$. Price E|31 inc. VAT and P. \& P.

DD6I-B. Six IkW channels, using module PMSDIOOO, lowest cost system. Price $\mathbf{E 6 8} 50$ inc. VAT and P. \& P ALL PRICES REDUCED FOR A LIMITED PERIOD
The Dimmit range includes rotary and slider control dimmers and sound to light converters for home, entertainment and professional applications. Ratings $1 \mathrm{~kW}, 2 \mathrm{~kW}$. 3 kW .

All products are guaranceed and are supplied with full instructions and applications. Full after-sales service. Technical advice given.

For full information on all modules and lighting control systems send for our FREE illustrated catalogue and price list. Callers welcome, visit our show room for a demonstration of any of the modules or systems. Mon.-Fri. 9.30 to 6.0 p.m. Sat. by arrangemen:

The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Cortificates

Excellent job prospects await those who hold one of these ecognised certificates. ICS can coach vou for
Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour T.V. Servicing
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE
 ICS careers guide.

To ICS. Dept. 771C. Intertext House London SWE 4UJ or telephone 01-622 9911 (all hours)

RECEIVER8 AND COMPONENT8

R. T. SERVICES

(MAIL ORDER ONLY)
75 Hayfield Rd., Salford 6, Lancs. PANEL with 62 N 3055 transistorsplus 6 N.P.N. and 6 P.N.P. transistors $£ 1 \cdot 75$ inc. FM TUNER with R.F. Stage and A.G.C. 3 transistors, neg, earth $2 \frac{1}{4} \times 2 \times 1 \frac{1}{2}$ in with circuit, fl.75.
MAINS INPUT TRANSFORMERS 20V-0. 20 V at $2 \mathrm{amp}, \mathrm{f3} \cdot 95$. New. 6 V at $1 \mathrm{amp}, \mathrm{fl} \cdot 45$. New. 12 V at $\frac{1}{2}$ amp, $£ 1 \cdot 45$. New.
Mixed Pack of C280 series Mullard capacitors, ion for $\$ 1.15$ inc., P. \& P. Send S.A.E. for our list prices.

Tet. 061-236 1541
All prices include VAT and P, \& P.

Mullard Components

 Polyester Capacitors. C280 Series. 250V PC mounting. $0.01,0.015,0.022,0.033,0.047,0.068$, $0.68,10 p ; 1-0,12 p ; 1 \cdot 5$, $18 p ; 2 \cdot 2 \mu \mathrm{~F}$, 21 p .
 Carbon Film Resistors. 0-33W 5\% Hi-stability E12 series $4.7 \Omega-1 \mathrm{M}$. Your selection Ip each
 Return of post service. Prices include $12 \ddagger$ AIT. Allow 15p for carriage.
 C. N. Stevenson (PE) 304 Avery Hill Road, London SE9 2JN

BRAND NEW COMPONENTS BY RETURN Electrolylio Capaoltors $16 \mathrm{~V}, 25 \mathrm{~V}, 60 \mathrm{~V}-0.67,1.0$, $2.3,4.7$ and 10 mF 品; $92,4752 \mathrm{p}(50 \mathrm{~V} 6 \mathrm{p}) ; 1007 \%$ $(50 \mathrm{~V}$ 8p); $2208 \mathrm{p}(60 \mathrm{~V} 10 \mathrm{p}) ; 47011 \mathrm{p}(50 \mathrm{~V} 16 \mathrm{p})$ $1,000(16 \mathrm{~V}) 15 \mathrm{p}, 1,000(25 \mathrm{~V}) 18 \mathrm{p}, 1,000(50 \mathrm{~V}) 22 \mathrm{p}$. Subminature Bead Tantalum Eteotrolytice- 0.1 $0 \cdot 22,0 \cdot 47,1 \cdot 0,2 \cdot 2$ at $35 \mathrm{~V}, 4.7 / 35 \mathrm{~V}$ 11p; $10 / 25 \mathrm{~V}$
$13 \mathrm{p} ; 22 / 16 \mathrm{~V}, 47 / 6 \mathrm{~V}$ and $100 / \mathrm{sV} 15 \mathrm{p}$. Muliard Min Ceramic E18 Berles 2 Berlaz 9\% 68V-10-4 7 pF 8p: 86-350pF 4p

Ceranic Plate 50V-E12 series Polytyren and E6 serles 1,500-47,000pF 2p. $10-1.000 \mathrm{pF} 8 \mathrm{p}$ Series 88 V Horizontal MountingMuitard Polpentor 250 V Vertical Mounting E6 Sorlse -0.01-0.14p; $0.15,0.2 \mathrm{~J} 5 \mathrm{p} ; 0.33 .0 .47 \mathrm{8p}$ $0.6811 \mathrm{p} ; 1.013 \mathrm{p}$; $1.820 \mathrm{p}: 2.222 \mathrm{p}$
Mylar (Poljester) Film 200 V Vertical Mounting$0.001,0 \cdot 002,0.0058 \mathrm{p}: 0.01,0.024 \mathrm{p} ; 0.04,0.054 \frac{1}{2} \mathrm{p}$ Miniature Realators Highatab. E12 Series 5 a Toler-ance-Minilard C Film isw $10-10312\left(10^{\circ}\right.$ ave 1ip; Metsi Fum 1w 27 $\Omega-10 \mathrm{M} \Omega$ 13p. 1N41488p; 1N4002 5p: 1N4006 7p; 1N40078p BC107/8/0, BC147/8/9, BF1 $57 / 8 / 9,13 F 194 / 7$ 9p. Fusen 20 mm glass, $1 \frac{1}{2} \mathrm{in}$ glass, I in ceramic 2!p.
Post 10 p (tree over 4). Prices inclusive of Poat 10p (free over C4). Prices inclusive
THE C.R. SUPPLY CO.

127 Chetterfield Road, Sheffield S8 ORN

SMALL ADS

The prepaid rate for classified advertisements is 15 pence per word (minimum 12 words), box number 40p extra. Semi-display setting $£ 12.00$ per single column inch (2.5 cm). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5918).

CONDTIONS OF ACCEPTANCE OF CLASSIFEDADVERTISEMENTS

1. Advartisements are sccepted subject to the conditions appataing on our current advertisoment rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publizhers reserve the right to rifuse or withdraw any advertisement.
3. Atthough every care is taken, the Publishers shall not be liable for clerical or printers. errors or their consequences.
P.C.Bs Paxolin, 5 in $\times 5$ fin, 6 for $85 p$. 12 in \times 9 in $60 \mathrm{p}, 171$ in $\times 9$ in, 90 p . Fibre Glass, 13 in x 5 fin , 80p, I 3 in $\times 1 \mathrm{lin}$, $\mathrm{fl} \cdot 50$. D.S. Tin $\times 8 \mathrm{in}$, 70p. Neons, 20 for $\mathbb{1}$. 5 Figure Resettable 74 Series I.Cs on panel(s), 10 for 90 p . 3 Assorted Meters $£ 2 \cdot 10$. 100 Assorted S $/$ Mica Caps 75 p . Silicon Diodes 650 V IfA, 10 for 60 p. 7 List I5p. Refund on purchase. J. W. B. RADIO

2 Barnfeld Crescent, Sale, Cheshire, M33 1NL
All items post paid. Mail order only.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-IIARDING \& CO., P.O. Box 5, Frome, Somerset. Immediate cash settlentent.

		$0 \cdot 125$	0.2	INFRA RED $550 \mu \mathrm{~W}$ Axial lead 49p 6 mW £1-55 OPTO Data free	
	RED	15p	19p		
	G/Y	27p	33p		
	OA	27p	33p	ORP12 55p	
OPTO-180LATORS					
$\begin{array}{ll}\text { TIL111 } & 1.5 \mathrm{kV} \\ 4350 & 2.5 \mathrm{kV}\end{array}$		$\underline{51} 2$			
Avdelbond 2 gm		659			
		2N2926(G)	G) 12 p	VOLTAGEREGS.	
		2N3053	C) 15 p	$5 \vee 7805$ Plastic	
		$2 N 3053$ $2 N 3054$	45p	12 V 78121 Amp	
		2N3055	41p	15V 7815 all	
		2N3702/3/4	$3 / 4 \quad 12 p$	18V 7818 E1.50	
		2N3903/4/5/6 16p		723 DIP14 50p	
		2N2646	45p	BRIDGERECT8.	
		TIS43	25p	$2 \mathrm{~A} 50 \mathrm{~V} \quad 30 \mathrm{p}$	
		MPF102	40p	2A 100V 30p	
		2N3819	25p	2A 200 V 41p	
		2N3823	30 p	$2 \mathrm{~A} 400 \mathrm{~V} \quad 48 \mathrm{p}$	
			3 p	555 Timer 80p	
		N4001N $4002 / 3$	5p	$5562 \times 555 ¢ 1 \cdot 10$	
		$6 p$	LM380 $\quad 81.00$		
		1N4004/5	7 P	7400 16p	
		/N4006/7	4 p	OP. AMPS	
		IN4148	9p	709 all $25 p$	
		8Y127	16 p	7418 -pin 29p	
		6 p	748 D.1.L. 36p		
		OA70 OA79	D.I.L. SOCKET8		
		OA81 OA90	A90 7p	8-pin 12p	
		OA91 OA9	A95 6p	14-pin 13p	
		OA200	${ }^{6 p}$	16-pin 14p	
		7 p	Mica + buthet		
		ZENERS 2.7.33V	TO3 TO8S 5p		
		BZY88 or	or sim 9p	Dalo Pen 70p	
PRICES INCLUSIVE + 15p P. \& P. (1st class)					
ISLAND DEVICES, P.0. Box 11, Margate, Kent					

VALVES-Radio, TV, industrial, transmitting. We dispateh to any part of the world by return of post, Air or Sea Mail. 2,700 types in stock. 1930 to 1976 obsolete types a speciality. List 20p. Quotation S.A.E. Open to callers. Mon. to Sat. $9.30-5.00$, closed Wed. 1.00. We purchase all types of new and boxed valves. COX RADIO (Sussex) Ltd., Dept. P.E., The Parade, East Wittering, Sussex, Poio $813 N$. West Wittering 2023. (STD code 024366).

[^7]Precision Polycarbonate Capacitors 140 V A.C. RANGE 440 V A.C. RAMGE Value
$(\mu \mathrm{F})$ Dimen- Price (mm) oach Value $\mu \mathrm{F} \quad \pm 1 \% \quad \pm 2 \% \quad \pm 5 \%$

0.1
0.15
0.22
0.25
0.33
0.47
0.5
0.68
1.0
1.5
2.0
TANT
0.1
0.15
 15 , ${ }^{2} 22,0.33,0.47,0.68,1 \cdot 0,2 \cdot 2,3 \cdot 3,4.7,6-8, \mathrm{~F}$ at
 6 V ; $100.0 \mu \mathrm{~F}$ at 3 V . All at $12 \mathrm{D}^{\circ}$ each, 10 for $£ 1 \cdot 10^{\circ}, 50$ for $\$ 5^{\circ}, 100$ for 59°
TRANSISTORS \& I.C.'

 $-{ }_{-B C 182 / 182 L 11 D}{ }^{\text {BC1 }}$
 POPDLAR DIODES-1N914 6p, 8 for 45p, 18 for 90p; IN916 8p, 6 for $45 p, 14$ for $90 \mathrm{p} ; 13445$ p, 11 for 50 p.
 LOW PRICE ZENER DIODES- 400 mW , Tol. $\pm 5 \%$ at

 10 for $65 \mathrm{p}, 50$ tor $£ 3 \cdot 12$. SPECIAL OFFER: 100 Zener (may be mixed) for $£ 6.00$
RESISTORS—High stability, low noise carbon film 5% to $0.2 \mathrm{M} \Omega$. ALL at $1 \mathrm{p}^{\circ}$ each. $8 \mathrm{p}^{\circ}$ for 10 of any one value. $70 p^{\circ}$ for 100 of any one value. SPECLAL PACK; 10 of each value 3.2Ω to $2 \cdot 2 M \Omega$ (730 resistors) 85°.
SILICON PLASTIC RECTIFIERS-1.5 amp, wire-ended D027: 100 P.I.V. 7 p (4 for 26p); 400 P.I.V. 8 p ((for 30 p). BRIDGE RECTIFIERS- $2 \frac{1}{2}$ amp: $200 \mathrm{~V} 40 \mathrm{p} ; 350 \mathrm{~V} 45 \mathrm{p}$; 600V55p.
SUBMINLATURE VERTICAL PRESETS-0.1W only: All at $5 \mathrm{p}{ }^{*}$ each; $50 ; 100 ; 220 ; 470 ; 680$ ohm; $1 \mathrm{k} ; 2 \mathrm{k} 2 ;$
4 k 7 ; $6 \mathrm{k} ; 10 \mathrm{k} ; 15 \mathrm{k} ; 2 \mathrm{kk} ; 47 \mathrm{k} ; 100 \mathrm{~s} ; 320 \mathrm{k} ; 680 \mathrm{k} ; 1 \mathrm{M}$; $4 \mathrm{k} 7 ; 6 \mathrm{ks}$;
$2 \mathrm{MJ}: 5 \mathrm{M}$.
PLEASE ADD 20p POST AND PACKING ON ALL OROERS. EXPORT-ADD COST OF SEA/AIRMAIL. Add 8% vat to all items except those marked with * Send which are $1 \% \%$
Wholesale price lists available to bona fide companies. MARCO TRADING (Dept. P.3)
The Old School, Edstaston, Wem, Shropshir
Tel: Whirall 464/465 (STD 094872)
(Proprs. Minicost Trading Ltd.)

SERVICE SHEETS

BELL'B TELEVISION SERVICES for service sheets on radio, TV, ete., 75 p plus S.A.E. Colour 'TV service mannals on request. S.A. F with enquiries to B.T.S.., 190 kings Road, Harrogate, N. Norkshire. 'lel, 0423 5588.
SERVICE SHEETS, Radio, TV, etc., 50p and S.A.E. Catalogue 2Op and S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, sussex.
SERVICE SHEETS, radio, TV, etc. 10,000 models. Catalogue 24 p plus S.A.L. with orders-enquiries. TELRAY, 154 Brook Street, Preston, l'R1 71IP',

LADDERS

LADDERS, varnished, $25 \frac{1}{2} \mathrm{ft}$. extd., 227.64. Carr. £1.90. Leatlet. Immed. despatch. THE LADIER CENTRE (PELB), Halesfeld (1), Telford, Salop. Tel. 586644 .

EDUCATIONAL

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers; also selfbuild radio kits. Full details from:
ICS SCHOOL OF ELECTRONICS
Dept. 772B, Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians Electrical Installations, Radio, TV \& Electronics Technicians Radio Amateurs. Full details from:
ICS SCHOOL OF ELECTRONICS Dept. 772B, Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
COUR8E8-RADIO AMATEUR8 EXAMINATION. City and Guilds. Pass this important examination, and obtain your G8 licence with an R.R.C. Home study Course. For details of this, and other courses (G.C.E., Professional Examinations, etc.) write or phone: THE RAPID RESUL'S COLLEGE, Dept JS1, Tuition House, London, SW19 4DS Tel. 01-947 7272 (Careers Advisory Service) or for a prospectus only ring 01-946 1102 (24 hr . recording service).

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers Covers principles, practice and align ment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:
ICS SCHOOL OF ELECTRONICS
Dept. 772B, Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)

FOR 8ALE

AMATEUR DISPOSING of "as new" equipment. Many unused items. (Laskys) meters E 2, (EV) S-1)PC's, £1, Pots $20 p$. Send S.A.E. for List. 19 Albert Road, Southend, Essex.

NEW I88UES of "l'ractical Electronics" available from April 1974 up to date. C'over price plus 17p postage ier copy-BELL's
 Harrogate, N. Yorkshirc. Tel. (0423) 55885.

KENT COUNTY COUNCIL

Tenders are invited for the sale of surplus Constabulary Operations Room equipment consisting of a Mark IV Thermionic Tape Recorder, a Sealecto panel for indicating vehicle position and Panels containing numerous relays and uniselectors. Write for tender forms to the County Supplies Officer, County Supplies Department, Sandling Road, Maidstone, Kent MEl4 2LP, to whom sealed tenders must be returned by Friday, 4th February, 1977.

PRACTICAL ELECTRONICS, NOvemior 1964 (first issue) to December 1974. UP to 1971
in binders. All goot condition. Offers. in binders, All good condition. Offers. NEWNHAM,

DEWTRON. Iair matched YCO2s £40, SILE 1 £10, PPA \&5. Little used. N. TCRNBLLL, 6 Kingsley Road, Brighton.

SITUATIONS VACANT

RADIO TECHNICIANS

Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over.
Standards required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radio and electronic test gear.
Duties cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.
Qualifications: Candidates must hold either the City and Guilds Telecommunications Part I (Intermediate) Certificate or equivalent HM Forces qualifications.
Salary scale from $£ 2,230$ at 19 to $£ 2,905$ at 25 (highest pay on entry) rising to $£ 3,385$ with opportunity for advancement to higher grades up to $£ 3,780$ with a few posts carrying still higher salaries. Pay supplement of $£ 313.20$ per annum.
Annual leave allowance is 4 weeks rising to 6 weeks after 27 years service. Opportunities for service overseas.

Candidates must be UK residents.
Further particulars and application forms available from:
Recruitment Officer, Government Communications Headquarters Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ

Tef.: Cheltenham (0242) 21491 (Ext. 2270)

BOOKS AND PUBLICATIONS

IEHE DUGO READY

BP34 Practical Repair and Reno-95p

BP35 Handbook of IC Audio Preamp and Power Amplifier Construction
22128 Tested Transistor Projects 95p
$222 \begin{aligned} & \text { Solid State Shortwave Re- 95p } \\ & \text { ceivers for Beginners }\end{aligned}$

Obtainable through most large branches of W. H. Smith, good bookshops, component dealers, mail-order houses, etc.
S.A.E. BRINGS FULL LIST OF TITLES

BABANIPRESS \& BERNARDS (Publishers) LTD. the grampians, shepherds bush RD., LONDON, W6 7NF OI-603 7296/2581

PRACTICAL ELECTRONICS, Nowember 196t to May 1975 . (iood rondition, 3 copies missing. Offers $2 \times$ Kennion Road, st. (eeorge, Jrixtol 5.

START YOUR OWN BUSINESS
 REWINDING ELECTRIC MOTORS

This unique instruction manual shows step by step how to rewind motors, working part or full time, without previous experience. Everything you need to know easily explained, including where to obtain materials how to get all the work you need, etc., etc. A goldmine of information and knowledge. Only $£ 3 \cdot 90$ plus 26p P. \& P. From:
MAGNUM PUBLICATIONS, Dept. PE5
Brinksway Trading Estate, Brinksway Stock port SK3 OBZ
Overseas Distributors wanted.

WANTED

[^8]
ELECTRICAL

8TYLI, CARTRIDGE8 AND AUDIO LEAD8, etc. For the best at keenest prices send S.A.E. for free illustrated list to: FELSTEAD ELECTRONICS (PE), Longley Lane, Gatley, Cheadle, Cheshire, SK8 4EE.

miscellaneous

H.M. ELECTRONICS

275a Fulwood Road. Broomhill, Shetfleld \$10 38D

Give your project that protessional looking finish. Build it in a BEC Dry transfer lettering now available
cabinets
ORION cabinet still available punched or unpunched Send 15p (refundable) for leatlets

SUPERE INSTRUMENT CASE8 by Bazelli, manufactured from heavy-duty pve faced steel. Hundreds of people and industrial users are choosing the zases they require from our vast range. comprtitive prires start at a low 82p. Examples: width, depth, height, sin. \times $\sin \times 3 \mathrm{in}, \mathbf{8 1 . 7 0} ; 19 \mathrm{in} \times 6 \mathrm{in} \times 3 \mathrm{in}, \mathbf{£ 2 . 4 2 ;} 10 \mathrm{in} \times$ $8 \mathrm{in} \times 3 \mathrm{in}, \quad$ 23.02; $12 \mathrm{in} \times 10 \mathrm{in} \times 3 \mathrm{in}, \quad 83.96$;
 $12 \mathrm{in} \times \sin \times 4 \mathrm{in}, \mathbf{8 . 9 6}$; $\operatorname{in} \times$ in $\times \sin , \mathbf{\varepsilon 2 . 9 1 ;}$ $8 \mathrm{in} \times 10 \mathrm{in} \times \cdot 6 \mathrm{in}, \mathrm{£} 3.96 ; 12 \mathrm{in} \times \sin \times 7 \mathrm{in}, £ 4 \cdot 40$;
 8% VAT. Over 400 models to choose from. Prompt despatch. Free literature (stamp would be appreciated): 13AZELLI, lept. No. 23, St. Wilfrid's, Foundry Lane, Halton, Lancaster LA2 6LT'.

CABINET FITTINGS

Stage Loudspeakers and Amplifier Cabs Fretcloths, Coverings, Recess Handles, Strap Handles, Feet, Castors, Locks and Hinges, Corners, Trim, Speaker Bolts, etc., etc.

> ADAM HALL (P.E. SUPPLIES)

Unit Q, Starline Works, Grainger Road Southend-on-Sea, Essex.

LOW COST I.C. MOUNTING for any size DII,

 package. 100 soldercon sockets 65p. 7 and 8 hole plastic supports $5 p /$ pair. Quantity rates. S.A.E. details and sample. Trial rack 65p (P. \& P. 10p/order), PKG LLECTRONICS, Oak Lodge, Tansley, Derbyshire, DE 4 5FE.
AUDIO TEST OSCILLATOR
 VERY LOW DISTORTION (0.02%) $\quad £ 22+{ }_{8}^{+}{ }^{\circ}{ }_{0}^{\text {Tax }}$

Based on a Linsley Hood design it provides both SINE and SQUARE wave signals over range $10 \mathrm{~Hz}-100 \mathrm{kHz}$ in four steps. Output over I volt fully attenuated. Self powered with 9 V batcery. In Kit form El 7 .
S.A.E. for leaflets. Also available T.H.D Analyser. MVMT. F.M. Sig. Gen. O/60V IA. Analyse
P.S.U.

TELERADIO ELECTRONICS 325 Fore Street, Edmonton N9 OPE Tel. 01-807 3719

DIGITAL CLOCK KITS

of only 5 components with full instructions for assembly of 12 hour clock, excluding case $£ 11 \cdot 50$. Logic Checker for $1 C_{s}$ dual tone. Dat: op. for TTL and CMOS £26.50. All prices inclusive (mail order only).
FULSHAW ELECTRONIC CONTROLS LTD. 39 Thornsett, Birch Vale, Nr. Stockport, Cheshire, SK12'5BP.

Musical

 Miracles!
by Dewtron ${ }^{(B)}$

Build sour own synthesiser or nusical effecte using some of the huge range of DEWTRON modules. Or, build fuzz or waa-waa at budget prices using special kits.
Send 90 p for Catalogre from:
D.E.W. Ltd., 254 Ringwood Rosd, Ferndown, Dorget BH22 9AR.

RECHARGEABLE NICAD BATTERIES "AA" (HP7\}, £1.05; Sul. "C" £1•29; "C" (HP11) £2.02; " 1)" (I[P2) E2.92; PP3 84.98. Matching chargers, respectively, $\mathbf{8 4} \mathbf{4 8}, \mathbf{8 4 \cdot 4 8}, \mathbf{2 5} \cdot \mathbf{2 4}$ £5.24, \&3.98, All prices include VAT. Add 10% P. \&P. S.A.L. for full list, plus, if wanted, 35 p P. \& P. S.A.
for "Nickel for full list, plus, if wanted, 35 p
Power" booklet. for "Nickel Cadmiun Power" booklet. Sutton Coldtleld, West Midlands, 173 6PP Tel, 021-3549764.

ENAMELLED COPPER WIRE			
\$WG	$1 \mathrm{lb}$	402	$20 z$
1419	2.40	0.60	0.50
20-29	$2 \cdot 45$	$0 \cdot 82$	0.59
30-34	$2 \cdot 60$	$0 \cdot 89$	0.64
35-40	$2 \cdot 85$	$1 \cdot 04$	0.75
Inclusive of P, \& P. and VAT.			
S.A.E, brings catalogue of copper and resistance wires in all coverings.			
P.O. Box 30, London, E4 9BW			

VERO BOXE8, cases, boards, etc. Send stamp for Vero booklet and price list. CAVERN ELECTRONICS, 94 Stratford Road, Wolver ton, Milton, Keynes, MK12 5LU.

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state TRANSMITTER RECEIVER kic. Only ± 8.25 plus 20p P. \& P
'8rain-freeze" "em with a MINI-STROBE kit, pocket-sized 'lightning flashes', varispeed, for disco's and parties. A mere $£ 3$ '80 plus 20p P, \& P.
Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher: ready-made modules. 64.75 plus 20 p P. \& P.
L.OTS MORE! Send 20p for lists.
(Prices include VAT).
(Mail Order U.K. only).
BOFFIN PROJECTS
4 Cunliffe Road
Stoneleigh, Ewell, Surrey (P.E.)

I.C. EXPERIMENTER'S KITS

 Learn about modern electronics with our new series of Kits on digital logic techniques. Each Kit contains specially selected I.C.s, Holders, Veroboard, L.E.D.s, and Instructions.Available at $£ 4.00$ each (including P. \& P.)
Kit One-Gates Kit Two-Flip-Flops Kit Three-Shift Registers
Kit Four-Counters Kit Five-Displays AUTOMATher details to:
69 High Street, Ryton, Coventry CV8 3FJ (Mail Order Only)

METER REPAIR8. Ammeters, voltmeters, multi-meters, etc., contact: METER RE: PAIRS, 21 Mount Road, llentlect, Essex, SST 1HA.

GLASS FIBRE P.C.B.'s

From your own tape, filmor ink master. Send S.A.E. for quotation
PRACTICAL ELECTRONICS P.C.B.'s in glass fibre, tinned and drilled. June 76 Transmitter 93p, Coder 84p. July 76 Receiver 90p, Decoder 73p,
Interface 56 p . August 76 Servodrive 69 p , Servo Amp 54p, Relay Driver 62p. Completeser of above boards $£ 5 \cdot 30$. Sept. 76 Tone Generator $66 p_{\text {d }}$ Tone Decoder 72p. Sept. 76 Cross-Hatch Generator 12.85 . Nov. 76 Hazard Warning Flasher 68p. Dec. 76 FM Stereo Tuner E2.58. Send S.A.E. for information on current board C.W.O. please.

PROTO DESIGN

4 Highcliffe Way, Wickford, Essex SSII 8LA

ENAMELLED		
S.W.G	116 reep	
30		
All the above prices are inclusive of postage andpacking in the U.K.		
COPPER SUPPLIES 102 Parrswood Road, Withington, Manchester 20		

BURGLAR ALARMS SUPPLIES AND EQUIPMENT

S.a.E. For rree cataloge

LARGE SIZE PRESSURE MATS
28 in. $\times 15$ in. $\ldots 1 \cdot 20$
MAGNETIC SWITCHES
with magnets from 75p
BELLS SIRENS ALARM-UNITS CABLE BELL COVERS . WINDOW FOIL . VIBRATION CONTACTS . ULTRASONIC AND INFRA-RED DETECTORS . INTERTIA SWITCHES.
A. D. ELECTRONICS

217 Warbreck Moor, Aintree
Liverpool L9 OHU. Tel, 051-525 3440

P.C.Bs FAST.
 24-HOUR SERVICE FROM YOUR TAPE OR FILM ART

1.6 mm glass fibre +1 oz copper + solder S.A.E.for quantity discounts/spand P. \& P.inc.) S.A.E.for quantity discounts/specials, prototype
service-circuit design, layours, assy, and test.

MICRONICS ELECTRONICS ENG. SERVICES
13s Clive Rd., Birhdale, Southport, M/side, PR 8 4RZ Phone: Southport (0704) 64835

$\frac{1}{2} W 5 \%$ c/FILM $22 \Omega-2 \cdot 2 M \Omega(E 12)$ 10 each of any value	
C60 CASSETTES 32 p C90 Cassettes 45p	All Cassettes in Piastic Case with Index and Screwed Assembly
All prices include VAT.	Add Postage 10p in £ 1 .
Quantity Discounts	SALOP ELECTRONICS
10 Units 5%	23 WYLE COP.
	THR. 5320

PRINTED CIRCUIT BOARD8 supplied in glass Abre and drilled varnished (8 p per sqin) or tinned (10p per sq in). P. \& P. 30p. R.F. DARLISON, 1 Valentine Drive, Oadby, Leicester. Tel. (0533) 716273.

PRINTED CIRCUITS and HARDWARE

Readily available supplies of Constructors' hardware, Aluminium sheet and sections. Printed circuit boards, top quality for individual or published designs.
Prompt service.
Send I5p for catalogue.
RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratford on Avon Warwicks.

Tel. 4879

CLEARING LABORATORY, scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipinent, etc. Lower Beeding 236.

NOTA BENE

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requireB) Thats.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in

That capitals, and
(D) That your letter is correctly addressed to the advertiser.
despatching orders withthers in processing and

SINTEL FOR KITS-CMOS-DISPLAYS-MEMORIES-BOOKS-MICROPROCESSORS

KITS

CAR CLOCK
"AUT-CK"
£17.85

The SINTEL Auloctock is a four-dit car clock in an atractive mini white case. Features large 0.5 in red LED displays-bigh frequency quartz crystal timebase-an internal backup attery supplies power if the car battery voltage dropa below nine volts when starting the engine or if the clock is temporarily disconnected-only high quality components are used, Pihe circuitry gives you good pertormance at low cost. You benefit from our experience in clock Complate kit less battery-Order as AUT.CK
Also avallable less case-order as AUT-MODULE KIT
ACK. Advanced 6 digit alarm clock kit or Catalog
ACK A digit mini mantlepiece clock (gr
XTK 50 Hz crystal timebase kit
Send...____
Send or phone for FREE CATALOGUE giving details of our complete range of Clock kits, LED displays, Cases, and other components
memory ic's and microprocessors
Piasse: Microprocassors should only be bought by experienced constructors. Sorry
cannot anawer technical queries or supply date other than from our data selection

IM6100CCDL

1M6100CCDL
$8080 \mathrm{~A}(2 \mu \mathrm{~S})$
6800
6800
ISPA 500 (SC/MP)
1SPA
2650

MEMORYIC:
Intel 2102-5 (New version of 2102-2 16 pin IC. TTL compatibie. Single +5 V supply 650 nsec . 1024×1 bit Stalic NMOS RAM.
ntorsil Imesaec CMOS 1024×1 bl
SINTEL
Add $\%$ \% VAT +25 p P. G P. on ail orders. Phone orders see "Fast service" for details. Export orders welcome
but you must contact us first for special order form and postage rates OFFICIAL ORDEPS WELCOME.

FAST SERV/CE $\begin{aligned} & \text { We guarantee that telephone orders tor goode in } \\ & \text { stock, received Ly } 4.15 \text { p.m. Mon -Fri, will be }\end{aligned}$ taspetch the Clese Post (books and kits by parcel post) and ou tocking 000 Privete customers should telephone order quoting their Access or Barclaycard number, with a minimum order value of E 5 . Otticiat orders no minimum CMOS from the top manufaçurers, mainly RCA and MOTOROLA

CO4000	0.17	CO4628	1.03	CDiass	1.07	204086	0.12	CLOCK	CHIPS
CD*004	0.18	C04029	1.31	CD4054	1.33	204089	1.78	AY51202	89
CD4002	0.17	CO4030	0.54	CD4055	1.51	CD4093	0.92	AY51224	3.50
CD4006	$1 \cdot 35$	CD4031	2.55	CD4056	1. 51	CD4094	$2 \cdot 75$	MK50253	5.60
CO4007	0.18	CO4032	7.23	CD4057	27.95	CD4095	1.20		
CD4008	$1 \cdot 11$	CD4033	1.60	- CO4059	5.46	CO4096	1-20		
CO4009	0.64	CD4034	2-19	CO4060	1. 267	604097	4.28	VEROCAB	8ES
CD4010	0.64	CO4035	1-35	CO4062	9.07	CO4099	2.11	7514101	2. 4
CO4011	$0 \cdot 20$	C04036	3. 85	CD4063	1.26	CO4502	9.43	7514110	3.04
CD4012	0. 19	CD4637	1.09	CD4066	0.71	204510	1.57	751237J	1.72
CO4013	0.64	CD4038	1-24	CD4067	4.28	CD4511	$1 \cdot 60$	7512380	$2 \cdot 15$
CO4014	1. 16	CD4039	3. 55	CD4068	0.24	CO4514	$3 \cdot 15$		
CD4015	+16	CO4040	$1 \cdot 23$	CD4068	0.24	004515	3. 80		
CO4016	0.64	CD4041	0.96	CO4070	0.67	$9 \mathrm{CH516}$	1.58	SUNDR	
CO4017	1.16	CD4042	0.96	CD4071	0.24	204518	1.25	CA3130	1.14
CO4018	1.16	CD4043	1. 16	CD4072	0.24	204520	1.43	UA741	0.35
CD4019	0. 64	CD4044	1.07	CD4073	0.24	-04527	1. 22		
CD4020	1. ${ }^{\text {c }}$	CD 4045	1.61	CO4075	0.24	-04532	1.65		
CD4021	116	CD4046	1.53	CD4076	1.61	-04555	1.04		
CO4022	1.11	CO4047	1.04	CO4077	0.60	CD4556	1.04	SOLO	ON
CO4023	0.24	CO4048	0.54	CO4078	0.24	MC14528	$1 \cdot 28$	NS	
CO4024	0.89	COP049	0.84	CO4081	0.24	MC14553	4.68	100	0. 50
CO4025	0.24	CO4050	0.64	CO4082	024	M650	0.05	. 000	4.00
CD 4026	1.98	CO4051	1.07	CO40					
027	54	CO4052		538 ASTON STREET					
				Tel. 086549791			at baxe	BAPCLAYCARD	

MAGENTA
 electronics Itd.
 PE1, 61 Newton Leys, Burton on Trent, Staffs DE15 0DW

COMPONENTS AND HARDWARE

latest catalogue contains new products
(S.A.E for new products sheet oniy)

25p VOUCHER INCLUDED
Send for your copy now-25p

BUILD THESE PROJECTS!

EXPERIMENTERS POWER SUPPLY
TRANSISTOR TESTER
TEST METER RANGE EXTENDER
Circults and details-send 20 p per item-refunded when all parts are ordered. Or send S.A.E. for further information

IT’S EASY WHEN YOU KNOW !

To avoid missing your copy of PRACTICAL ELECTRONICS - simply complete this order form and hand it to your newsagent.

ORDER FORM

To
(name of newsagent)
Address

Please reserve/deliver every month one copy of PRACTICAL ELECTRONICS until further nctice.
My Name
Address

CRESCENT RADIO LTD. 164-166 HIGH ROAD, WOOD GREEN, N22 (also) 13 SOUTH MALL, EDMONTON, N. 9
 I ST. MICHAELS TERRACE, WOEOGREEN, LONDON N22 ist

3 KILOWATTS PSYCEEDELIC LIGHT CONTROL UNIT
Three Channel: Bass, Midile Treble. Each channel has its own sensitivity control. Just onnect the input of this linit to an amplifier, and connect three 250 V up to 1000 W lamps to the output terminals of the unit, and you produce a fascinating sound-lipht display 618.50

FERRIC CHLORIDE
lonirdrous fertic chloride in riacks
ancks
at 8% per 1 b
BARGAIN PROJECT BOX
A plastic box with monded es
trusion railz for P (or Chassis pancls with metal front plate supplied). Our Price $50 \mathrm{p}+8 \%$. EFFECTS PROJECTOR " 150 " No diaco should be withont our new effects project
hachine for the most versatile machine for trojecting colouret
imagea to sumptement you: mages fo supplement you
 a, 00 , Standari Lens- 60 mm A sturdy metal construction and takes a range of lenses and acees sories Comes complete with cin wheel and reatl use A hargain
e27 VAT
U.K. CARRIAGE 50p UNLESS OTAERWISE STATED

VAT-All prices are excluding VAT. Please add to each item the VAT rate indicated.

INDEX TO ADVERTISERS

A. D. Electronics 158	
Adam Hall (P.E. Supplies)	57
Alben Engineering	18
Alcon Instruments	84
Ambit International	86
Astro Electronics	40
Automated Homes	158
Babani Press \& Bernards (Publishers)	
Ltd.	157
Bamber, B., Electronics	54
Barclay Electronics 85	
Barrie Electronics	143
B.H. Components 152	
Bi-Pak	90. 91
Bi-Pre-Pak cover ii	
Birkett, J. 84	
Boffin Projects British National Radio \& Electronics	
Schoot	89. 143
Cambridge Learning 82	
Chiltmead Ltd.	
C.J.L. Ltd	
Cliffpalm Lid	95
Components Centre, The 144	
Copper Supply Co	158
Crescent Radio Ltd. 159	59
Crofton Electronics	
C.R. Supply Co.	
Davian Electronics 155	
D.E.W. Lid. 158	
Doram 82, 88, 144, 151	
Electronic Design Assoc. 149	
Electronic Supplies 92	
Elvins Electronics	

Fairline Supplies Fulshaw Electronics Controls Lid.	$\begin{aligned} & 152 \\ & 158 \end{aligned}$
Government Communications	
Greenbank Electronics	150
Greenweld Electronics	144
Grimsty Electronics	157
Harverson's Surplus	147
H.M. Electronics	157
Home Radio	. 146
I.L.P. Electronics Ltd. 93	
International Electronics Unlimited	140
Intertext ICS	.155, 157
Island Devices	... 156
J.W.B. Radio	156
Kent County Council	15
Lektropacks 82	
Lynx Electronics 114
Magenta 159	
Magnum PublicationsMaplin Electronic Supplies	
Marshall, A., \& Sons 139	
Micronics Electronics Eng. Services 158	
Minikits Electronics	158
Modern Book Co. 114	
Osmabet	114

TV games, Rhythm generaradio IC.s. op and off timer/clock-plus mono and amps. voltage regula. . s, etc stereo power amp. I.C.s. et

- SEND THIS CDUPDN FOR YOUR COPY OF OUR CATA SEN APPROVAL! Price 50p - SEND ND MONEY 19 catalogue the Please rush me a copy of your brand newletely satisfied that it is instant it is published. Only if 1 amo within 14 days of receipt. If 1 a instant itis porth every penny, will I send 50 palogue to you within 14 day not satisfied, I may return the catalogue to yot purchase without obligation. I understand that I need not palo keep it 1 wit
\qquad

Our bi-monthly newsletter keeps you up to date with latest guaranteed prices - our latest special offers (they save you pounds) - details of new projects and new lines. Send 30p for the next six issues (5 p discount voucher with each copy).

ELECTRONIC SUPPLIES P.O. BOX 3, RAYLEIGH, ESSEX SS6 8LR

Shop: 284 London Road, Westcliff-on-Sea, Essex (Closed on Monday) Telephone: Southend (0702) 47379

[^0]: © IPC Magazines Limited 1977. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: To Cambridge Learning Enterprises (Dept. ENG) ————— FREEPOST St. Ives. Huntingdon Cambs. PE17 4BR
 *Please send me....set(s) of Design of Digital Systems at $£ 7-00$ each. p \& p included
 *or. set(s) of Digital Computer Logic and Electronics at $£ 5.00$ each. p \& p included
 *or ..combined set(s) at $£ 1050$ each, $p \& p$ included
 Name
 Address
 *delete as applicable
 No need to use a stamp-just print FREEPOST on the envelope. PE2

[^2]: *Editor, Electronics Weekfy

[^3]: SEND FOR OUR NEW 168 PAGE CATALOGUE WITH 500 NEW LINESCRAMMED WITH NEW PRODUCTS TECHNICAL INFORMATION AND ALL BACKED BY THE USUAL SUPERLATIVE MARSHALL'S SERVICE-FOR
 ONLY 55p POST PAID OR $40 p$ TO PERSONAL CALLERS.
 NATIONAL CLOCK MODULE WITH ALARM OR SNOOZE E8. 50
 TRANSFORMER $£ 1 \cdot 30$
 SWITCHES $£ 1.55$

[^4]: See Practical Wireless for details of packs of components，surplus goods，etc． All prices quoted include VAT at 8 or $12+\%$ ．Add 20 p postage on orders under £3 Most orders despatched on day of receipt．SAE with enquiries．Send 10 p for Multimeter catalogue－free on request on orders over £3．Oificial Orders accepted from Schools．etc．Export／wholesale enquiries welcome．Surplus components always wanted

[^5]: HOME RADIO (Components) LID Depl. PE 234 -240 London Roall Mitcham.CR4 3HO Phune 01.6488422

[^6]: 9 LITTLE NEWPORT STREET LONDON WC2H 7.J Phone 01-437 0576

[^7]: IN41 48 4D, Disc Ceramics -01, 02, 04. 3p. Polyes. ter Caps C280.1 250 V 2 pea . 16 p doz. Large Red L.E.D.s 20 p ea. 6 for $£ 1$. Loudspeakers $8 \Omega 2^{\prime \prime}, 2 t^{\prime \prime}$ 75 pea Mains Relay Treble Polec/o $£ 1 \cdot 10$. Siren 6 V DC $£ 1 \cdot 28 \mathrm{p}$. 90 V Neons 8 p . IN $4001 \mathrm{8p}$. Small mains Motor 250 rpm 48p. Intercom Cases 35p, Asstd
 Transistor IFs 8 for 50 p . BC $107 / 8 / 9$ 15p. Resistors IW 2p ea. Prices include VAT. Add 15p Post.

 GRIMSBY ELECTRONICS
 64 Tennyson Road, Cleethorpes, Humberside ponents shop (open Saturdays) 1976 -77 List 9p.

[^8]: WANTED, NEW VALVES, TRANSISTORS, top prices, popular types-KENSINGTON SUPPLIES (B), 367 Kensington Street, Bradford 8, Yorkshire.

