PRACTICAL

MARCH 1977

®R in THIS DIDIE IIENTIGHARTI

WICiOPROG 7 F-GOR

a Vical Series... ctarting this mouth

EODHTHNT VOIUN:

INCLUDE VAT

NEW EDU-KIT MAJOR

COMPLETELY SOLDERLESS
ELECTRONIC CONSTRUCTION KIT
BUILD THESE PROJECTS WITHOUT SOLDERING IRON OR SOLDER

V.H.F. AIR CONVERTER KIT

Build this converter kit and reecive the alletaft band by placing it by the side of a or the long wave band and peratine 24 sliown il the with all parts Uses a retractabie clirone pated Celesconic aerial, Gain conltol, turing All parts including case and plans

POCKET FIVE

Now with Sid Loudsp cian Mw, LW
and trawler band
stages, transis
ors and 2 diodes.
supersensitive ferrite rou
acrial, attractive black and

$\times 3 \frac{1}{2}$ apptox
Complete kit of jarts melading construction plans

NEW ROAMER TEN MODEL R.K. 3

MOLTIBAND V.H.F. AND A.M.
RECEIVER.
13 TRANSISTORS AND FIVE DIODES. QUALITX 5" 3^{*} LOUDSPEAKERS.
WITH Multiband V.A.F. nection eovering Mobiles, Aircraft, T. Y'. Sound, Public Service Band, Local V. HI.F. Stations, etc. atsd Mutiband A. M, section with Arspaced Blow Motion Drive Tuning Capacitor for easier and accurate tuning. covering M.W.1, M.W.2. L W. Three Sliort Wave Bandss.W.1,S.W.2.S.W.3and Trawler Band, Built-in Ferrite Rod Aerial for Metium Wave. Long Wave and Trawler Band, etc., Chrome plated \boldsymbol{i} section Teleacopic Acrial, angled and rotatable for peah short wave and V,H.F. teception. fush. \mathbf{P}^{2} ull output uxing 600 n w Transistors, (tain, WaveChange and Tone Controls. Plag two Slider Switches. Negative F'eedback circhit and SPECLAL POWER BOOBTER SOCKET AND RESISTOR, (o virtually double gain if required. Powered by P.P.9-9 volt complete kit of parta including carry
ing strap. Building Instructions and 5 309 operating Manuals.
lnc. P \& P

EIECTRONIC CONSTRUCTION KITS

E.G.K. 2 Selt Contained Multi-Band . 2 V.H.F. Receiver Kit. in loudspeak and 3 diodes. Push pull output wirel aspeaker, gain control, superb 9 nection mich ratchet arnd retractable chrone plated telescopic actial, V.H.F. \& ning capacitor, resistors. capacitors, transistots, etc. Whi receive T. sound, public service dand, atrcrait, W.B.F. local battery (not supplied with kit)
Complete kit of parts $£ 7.95$ P.P. and Ins. 70 p
Cole

E.C.K. 4

7 Trangistors, 6 tuneable wavebands, MW, LW, Trawler Band
7 Transistors, 6 tuneable wavebands
With Were 3in loudspeaker P , phall outpui stage gain control. and rotary switeh. 7 transistort and 4 diodes. 6 section chrome-pfated telescopic aerial. Sin sensitive ready wound fertite rod acrial, thining capacitor, resistors. capacitors, etc. Operates from a 9 volt P.P. 7 batiers (no
supplied with kit).
Complete kit of parts $\mathbf{~} 7.25$ P.P. and Ins. 70 p

EDU-KIT JUNIOR

Completely Solderless Flectronic Construction Kit. Build these \star Cryatal Radju Medium Wave Coverage - No Battery - Oneco Transistor Radio

太 Transistor Regenerative Radio
Ł 3 Trangistor Earnicee Radio Miedium Wave Coverage \star Transistor Medium Wave Loulspeaker Kadio \star Electronic Noise Generato \star Electronic Metrononie
All parts including loudspeaker, earpiece MW
parts including loudspeaker, earpiece, MW ferrite rod aerial acitors, resistors, transis
Complete kit of parts

NEW
Everyday
Series
Build this exciting
new ser
designs.
 tesigns.
1). Transistors anı

2 diodes. MW/LW. Bowerell by 4
battery. Ferrite rom aerial, cuning condenser, volume control, and now with sin, Londspeaker. Attractive approx. All parts including Cant and l'tans.
Total muideling costs \$4.30 P, \& P + Ins. 60p
R.1.6. Case and looks as above, Transistors 3 diodes. Powered by 9v battery. Ferrite rod aerial. 3 in. loudspeaker. etc. $\mathrm{AW} / \mathrm{LW}$ coverage. Pusi/l'ull output.
All parts including Case and tlans
Total Building costs

F. V. 7. Case and looks as above, 7 Tansistors and 3 diodes Six wavebands, MW/LW, Trawler Band sWI, SW, sw3, powered by ! battery Push yulloutjut Telescopic aerial for ghort wave
Trotal Buildinn Coate
$\mathbf{6 6 . 9 5} \mathrm{c}$

To: RADIO EXCHANGE LTD
61A High Street
Bedford MK40 1SA
Tel. : 0234 52367, REG NO. 788372

- Callers side entrance "Lavells' Shop.
- Open 10.1. 2.30-4.30 Mon-Frı.9.12 Sat

Name
Address

ELECTRONICS

VOLUME 13 No. 3 MARCH 1977

CONSTRUCTIONAL PROJECTS

pH METER-1 by K. E. LangfordThe first of a two-part article explaining in simple terms the meaning of pH , how it is measured,and giving constructional details178
CONSTANT VOLUME INTERCOM by R. A. Penfold
A high sensitivity Master/Slave system with a.v.c. 184
AUTOWAH by P. J. Goodwin
An automatically triggered wah and swell pedal for guitarists 206
CAR SYSTEMS MONITOR by J. P. Seymour
A unit giving visible and audible warning of up to ten fault or alarm conditions 210
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices 192
MICROPROCESSORS EXPLAINED-1 by R. W. Coles
A vital introductory series dealing with the newest technology 199
INGENUITY UNLIMITEDBench Power Supply-Acoustic Relay-Simple Servo-Sawtooth Triangle Converter-Thermal A.G.C.-Computer Voice-Tuning Fork-Economical Relay-Logic Probe-Digitalto Analogue Converter-Simple Power Supply Regulator217
NEWS AND COMMENT
EDITORIAL—Microprocessors 177
SPACEWATCH by Frank W. Hyde
The Sun-Outer Planets-Comet Intercept 188
SELLING MICROPROCESSORS
Reports from two recent Seminars 191
BOOK REVIEWS
Selected new books we have received 191
FORUM
Important News of the "Microprocessor Forum for Constructors" 195
NEWS BRIEFS
Airborne-Call from New Zealand-Fibre Links-Russian First 195
SC/MP REVIEWED by R.W. Coles
A user's first experiences of constructing this kit 196
MICROVISION TV
Pocket receiver for European and US standards 198
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 209
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office 214
FREE WITH THIS ISSUE
DIODEIDENTICHART

Our April issue will be on sale on Friday, March 11, 1977 (for details of special supplement and other contents, see page 205)

[^0]
Eluins) Electronic Musical Instruments

 Showroom: 12 Brett Road, Hackney, London E8 1JP. Tel. 01-986 8455Component Shop: 40a Dalston Lane, Dalston Junction, London E8 2AZ. Tel. 01-249 5624

INSTANT CIRCUIT DESIGN WITH THE BUG SYSTEM

THE PROFESSIONAL BREADBOARDS FOR STUDENTS \& HOBBYISTS! NO SOLDERING! USE ICs AGAIN \& AGAIN!
SK10. Takes up to eight 14 pin DILs. All components insert directly Insertion life of 10.000 cycles. Contact resistance 5 milliohm average
 Housing is acetal copolymer $£ 13.38$

SK50. Hall size version of SK10 for tight places and student use Takes 4 DILs $\mathbf{£ 7 . 8 0}$.

LABEL THOSE ICs. Self adnesive 'Bug Backs' for many 7400 senes TTL ICs Identify pins and device Saves time and temper ' Pack of $500 £ 6.40$.

Lexayry LEARN DIGITAL ELECTRONICS

Bug Books Part I \& II 750 page learning system including 90 experiments on 50 different 7400 series TTL ICs $£ 13.50$ each.

LR25. A useful control package for digital

circuits on SK10/SK50 sockets Generates
pulses Monitors outputs 8 LED indicators. 4 logic switches 2 pulsers Variable frequency clock £41.75.

All prices include VAT and P \& P
Send for the Bug System leaflet and order form or cheque with order
HEPWORTH ELECTRONICS
Hepworth House. Worcester Road. Kiddermmster DY1018G Telephone Kidderminster 22 12/3

O'seas orders-add 15% for $P+P$. All items offered for sale subject to the Terms of Business set out in Doram Edition 3 catalogue, price 60 p. The Doram Kit brochure is also available price 25 p Combined price only $70 p$ which also entitles you to 2×25 p vouchers, each one usable on any order placed to the value of $£ 5.00$ or more (ex. VAT) DORAM ELECTRONICS LTD
PO BOX TR8, WELLINGTON RD IND EST. LEEDS LS 122 UF
An Electrocomponents Group Company

PANEL		
4in RANGE		
Size $4{ }_{\text {a }} \times$	$\times 1 \frac{13}{1}$	
Value	No.	Price
0-50uA	1302	¢4.50
0-1004 A	1303	¢4.50
0-500~A	1304	¢4.50
0-1mA	1305	¢6.00
0-50V	1306	¢6.00

MINIATURE BALANCE/ TUNING METER Size $23 \times 22 \times 26 \mathrm{~mm}$ Sensitivity $100 / 0 / 100 \mathrm{~mA}$ No. Price

$1318 \quad £ 1.95$

BALANCE/

TUNING
Size $45 \times 22 \times 34 \mathrm{~mm}$ Sensitivity $100 / 0 / 100 \mu \mathrm{~A}$ $\begin{array}{ll}\text { No. } & \text { Price } \\ 1319 & £ 2.00\end{array}$

MIN. LEVEL METER
Size $23 \times 22 \times 26 \mathrm{~mm}$ Sensifivity $200 \mu \mathrm{~A}$
$\begin{array}{ll}\text { No. } & \text { Price } \\ 1230 & £ 1.95\end{array}$

Vu METER
Size $40 \times 40 \times 29 \mathrm{~mm}$ Sensitivity $130 \mu \mathrm{~A}$
$\begin{array}{ll}\text { No. } & \text { Price } \\ 1321 & \text { £2.00 }\end{array}$

NEWNES TECHNICAL BOOKS

No. 229 Beginners
No. 237 Printed
Circuit Assembly Price $£ 1 \cdot 80 \dagger$
No. 238 Transistor Pocket Book
Price $53.90 \dagger$
No. 225110 Thyristor
Projects using SCRs and Triacs
Price $52 \cdot 50 \dagger$
No. 227110 COS/ MOS Digital IC Projects for the Home Constructor Price $\mathbf{1 2}$ 25 \dagger
No. 226110 Opera tional Amplifier Projects for the Home Constructor Price $\mathbf{\text { L2 }} \mathbf{5 0} \dagger$

No. 242 Electronics Pocket Book Price 53 -75 \dagger
No. 23930 Photoelectric Circuits and Systems Price $£ 1 \cdot 80 \dagger$
Also a full range of Technical and Data
Books-see our Catalogue

ORDERING

PLEASE WORD YOUR ORDERS EXACTLY AS PRINTED, NOT FORGETTING TO INCLUDE OUR PART NUMBER

VAT

ADD $12 \frac{1}{2} \%$ TO PRICES MARKED * ADD 8% TO OTHERS EXCEPTING THOSE MARKED \dagger. THESE ARE ZERO

SUPER UNTESTED PAKS

LINEAR PAKS
Manufacturer's "Fall Outs" which include Functional and part-Functional Units. These are classed as ou-on-spec rom the maker's very rigid specifications, but are ideal for learning about lics and experlmenta work.
U721-30 Assorted Linear Types 709, 741, 747. 748, 710,588 , tic.
U76SD FM Stereo Decoder
5 ICs 76110 equivalent to MC1310P-MA767
Data supplied with pak
U76A Audio Power Output
Amplifiers
8 assorted types. SL403, 76013, 76003, etc Data supplied with pak
ORDER No. 16228
74 SERIES PAKS
Manufacturer's Fall Outs which include Functional and part-Functional Units. These are classed as out of-spec from the ideal for learning about ics and experimental work.
$74 \mathrm{G}-100$ Gates assorted 7400-01-04-10-50-60
Otc. ORDER No. 16224
74F-50 Flip-Flops assorted 7470-72-73-74-76 104-109. Atc
ORDER No. 16225
74M-30 MSI. Assorted Types. 7441-47-90-154
ORDEA No. 16226
VEROBOARDS PAKS
VB1-Approx 30 sq in various sizes. All 0 in
matrix.
VB2-Approx 30 sq in various sizes. 0.15 in
matrix.
ORDER No. 16200
BIG VALUE
JUMBO COMPONENT PAKS
Mixed Electronic Componente
Resistors, capacitors, pots, electrolytics and
colls plus many olher useful items. Approxi colls plus many olher useful items. Approxi
mately 3ib. in weigh
ORDER NO. 16221 \&1-50 +85p p. \& p

C280 CAPACITOR PAK

75 Mullard C280 capacitors, mixed values
ranging from $0.01 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}$ complete with
identification identification sheet

CABLES		
	Order	Price
Description	No	(metre)
CP1 Single Microphone	3126	Tp
CP2 Twin Microphone	3127	130
CP3 Stereo Screned	3128	14 p
CP4 4-core Screened	3129	250
CP5 4-core Individual Screened	3130	${ }^{26}$
CP6 Single Microphone H/Duty	3131	120
CP7 3-core Mains (5 amp)	3132	9 p
CP8 2-core Oval (2.5 amp)	3133	${ }_{8 p}$
CP9 2-core Spaaker	3134	Pp
CP10 Low-Loss U.H.F.	3135	140
CP11 Muticore 8 way	3146	2 pp
15 way	3136	43 p
CP12 Standard VHF Coax	3232	19p

CASSETTES
 MAMMOTH I.C. PAK

APPROX. 200 PIECES
Assorted fall-out integrated circuits, including Logic, 74 series, Linear, Audio and D.T.L. Many coded devices but some unmarked - you to identify. Order No. 16223

Our Special Price $£ 1 \cdot 20^{*}$.

Just a selection from our huge stocks!

SEE OUR

1977 CATALOGUE
126 pages packed with valuable information
ORDER NOW, ONLY 50p
$\frac{\text { plus 15p P. \& p. }}{\text { WORLD SCOOP! }}$ JUMBO
SEMICONDUCTOR PAK
Transistors, Germ. and Silicon Rectifiers Diodes. Triacs. Thyristors. ICs and Zeners Offering the amateur a tantastic bargain pak and an enormous saving-identification and data sheet in every pak data sheet in every pa
ORDER No. 16222

P.O. BOX 6, WARE, HERTS

SHOP 18 BALDOCK ST., WARE, HERTS. AT OPEN 9 to $5.30 \mathrm{Mon} / \mathrm{Sat}$. Tel. 61593. SEMICONDUCTORS
POSTAGE AND PACKING Please add 25 p. Overseas add extra for airmail. Minimum order $£ 1$.

SAXON ENTERTAINMENTS LTD

A FULL RANGE OF PRINTED CIRCUIT MODULES FOR ALL P.A. \& DISCO \& GROUP APPLICATIONS

SYSTEM 7000 HAS IT!

- COMPLETE SELECTION OF READY TO USE PROFESSIONAL QUALITY AUDIO \& LIGHTING EQUIPMENT

POWER AMPLIFIER MODULES 30-240 WAT'S

30 Watts rms	60 Watts rms		120 Watts rms		240W rms
SA308 30 Wrms / 8 ohms C8. 50	SA604. 60 W rms/ 4 ohms c12.50	SA608 60W rms/ 8 ohms £13. 50	$\begin{aligned} & \text { SA1204 } \\ & 120 \mathrm{Wrms} / \\ & 4 \mathrm{ohms} \\ & \mathbf{E 1 4 . 5 0} \end{aligned}$	SA1208 120W rms/ 8 ohms £21. 00	SA2404 240 Wrms 4 ohms £25 50

POWER SUPPLIES FOR THE ABOVE MODULES-READY WIRED \& FUSED ON GLASS FIBRE PCB

PM301	PM601/4	PM601'8	PM1201/4	PM1201/8	PM1202/4	PM1202/8	4/1
For 1/2	For 1/2	For 1/2	For 1	For 1	For 2	For 2	For 1
SA308	SA604	SA608	SA1204	SA1208	SA1204	SA1208	SA2404
¢9.90	E12.50	E12.50	E12.50	$¢ 1250$	¢19.50	E19.50	C19-50

DISCO MIXER MODULES Mono or Stereo
(with Auto Fade)

	Mixes two decks, tape and mic. Wide-range bass \& treble controls on mic. \& music channels. Variable autofade (mic. override) Ample headphone power.
Printed circult module assembied \& tested with all components ready mounted.	Needs only front panel* knobs an selector switch Push-pull monitor circuit.
$£ 19.50$ stereo $£ 29$	
nel to suit £3-50	

ALL PURPOSE CUSTOM-MIXER MODULES

(Mono or Stereo)

告 Using these modules, mixers may be bullt to your
specification up to 20 Channels, mono or stereo, or a
combination of both. System 7000 custom-mixer modules have monitoring facllities too

NPUT MODULES

- Accept low/high $2 \mathrm{~m} / \mathrm{cs}$, ceramic \& magnetic cartridges, all musica instruments \& line signals
Low-nolae circultry-hlah
Wide-range bass \& treble controls
(23dB)
20HZ-30kHZ Noise-80dB
- Echo sound/return etc easily flited

Mono-IM7001M
Stereo-IM7001S $\quad £ 5.50$
Power supply for up to 20 modules-PPM18 \& 50

QUADRAFECT

FOUR CHANNEL 4KW SEQUENCER WITH DIMMERS

A COMPLETE SHOWII

£29.50

- PANEL £2.50

MIXING MODULES

- Only one requlred per mixer track hather mono or stereo
Feeds up to ten power modules
- Complete with 1 W monltor amplifier
- Accepts up to 20 Input modules

E WIII match any other make of amplifler
Mono-iM7002M
Stereo-IM7002S $\quad \mathbf{E 9 . 0 0}$

THE ONLY MODULAR

 SOUND TO LIGHT UNIT WITH- Four integral dimmers.
- Two + Two sequencer

Automatic audio level

RCA 8A Triacs
Sequence $0 \cdot 5-20 \mathrm{HZ}$
C.C. circultr

Needs only front panel*

- Audio trlggor 1-240W Fully suppressed Individual fuses Complete with speed Slider control

THREE CHANNEL 3KW SOUND/LITE-Low CostSuperb Value

SYSTEM 7000
MINOTAUR 100-All Purpose Wide Range Amplifier

SYSTEM 7000

COMPLETE DISCO MIXERS
(with Auto Fade)

The cholce of the professional D.J
Controls: Mic. volume, bass, treble, A/fade depth, tape, L/deck r/deck vols., treble, bass, master, headphones vol., selector, left/right fader.
MONO $18 \mathrm{~V} £ 37 \cdot 50$ MONO MAINS $£ 43 \cdot 50$
*Ready to plug in \& use * Mono or Stereo

- Automatic mic. override
- Mixes iwo decks, tape \& mic - Facllities as for modular version opposite Mute positions on headphone selector for ease of monitoring - Two tone stainless steel pansi - Sockets on front \& fear panels - Lett/right deck fader
- May be operated from any Dower supply or from mains STEREO 18V £53-50 STEREO Mains $559-50$

SYSTEM 7000 COMPLETE CUSTOM MIXERS
(Mono or Stereo)
SImilar to the modules opposite these mixing modules
are complete with front panels, sockets, knobs,
monitor swltch etc. Up to 20 channels (mono or
stereo) may be incorporated In one system with any
number of output tracks.

Ideal lor the economical \& qujck assembly of a purpose bulit mixer with indivldual channel monltoring, and optínnal extra facillties-consult our technical dept. to discuss your needs

- Stalnless steel panels E Bulli-in monltoring - WIll teed all ampliflers - Protessional appegrance - Accepts all types of signals

Mono Input module Stereo input module Mono mixing module Stereo mixing module Power supply

ALL YOUR ELECTRONIC Stalnless steel panel LIGHTING NEEDS IN ONE Heavy duty terminations SUPERBLY DESIGNED UNIT £42.50

SAXON SOUND-LITE-An old design with improved appearance

- Scintillating performance

Complete with heavy
Similar to Mk II IIghting control in appearance - 3KW power handling
individual bass, treble, middle \& master controls
1-240W input
Fully fused \& Isolated
£24.75

BRANCHES AT CROYDON \& WALLINGFORD LOW INTEREST CREDIT FACILITIES THROUGH MERCANTILE CREDIT

A READY-TO-USE 100W STEREO DISCO WITH

 BUILT-IN SOUND/LITE SEQUENCER AND LIGHTS FOR ONLY £199 (Carr. £4.50 U.K)Deposit £39 and 12 monthly payments of £17. 65 (total £250. 80 inc. carr. and VAT) - 100 W rms stereo output
 - Twin heavy duty loudspeaker - Four channel fully automatic sound lite with variable speed sequence

- I.C. pre-amp with tape input \& X fade
- Separate mic. \& music treble and bass controls
- Attractive Vynide cabinets

Twin BSR decks with autostop \& lift arm

Incredible value for money-2/3 cost of separate parts!

A READY-TO-USE 100W MONO DISCO COMPLETE WITH TWIN HEAVY-DUTY LOUDSPEAKERS FOR ONLY

- 100W rms output
- Twin heavy duty lou Separate mic. input
- Wide range bass \& treble controls
- Smart Vynide cases-clip together

£129
(Carr E2 50
50W
version
$£ 99$
neat package

Accessories for complete discos \& other systems

- Electret Condenser Mic ECM77 C/W windshield \& clip $£ 12 \cdot 50$
[ECM89-as above but dual impedance with removable lead $£ 13.95$
- Crown Stereo Headphones £6.75 Heavy duty boom mic. stand £12.50

CUSTOM BUILT DISCOS

A full range of custom consoles are available using System 7000, from 50 W mono to 500 W stereo Ask for our price list.

LOUDSPEAKER CABINETS

- Kick proot grills. Heavy duty unit

E Jointed construction Black Vynide
U Protective corners
e corners finished

Single Twelve Empty 114
Single Twelve Empty $£ 14$
With 60W unit $\varepsilon 33 \cdot 00$
Twin Twelve: Empty e29-00
Fith units from £59-00
Folded Horn-Full range P.A. Bin 100 W RMS
This cabinet $1 \mathrm{~s} 3-4$ times as loud as conventional systems for a given input power-thus there is a saving in overall
size cosi.

EMPTY DISCO CONSOLES

£19 with plain motorboard. $\mathbf{E 2 1}$ with cutouts
Black Vynide finish Protective corners With your choice of cutouts
STROBES \& PROJECTORS (We stock the full Pluto range) Send for details

SUPERSTROBE £19•75

2-3 Joules

- 80W Tube for long lite

E Compact $4^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$
PRO-STROBE 232.50

- 5-8 Joules
- External trigger

L Long Life tube timer
circuit

150 WATT LIQUID WHEEL

PROJECTOR

- Accepts all accessories - C/w with wheel \& motor Sturdy
- Sturdy steel construction Remarkable value-
Sold elsewhere at
£39.50. Our price
is only:
Please add 8% VAT to all orders (12 $\frac{1}{2} \%$ for SA308/PM301 and microphones/ headphones)
We accept Access \& Barclaycard-simply telephone or send
your card number-Do not send your card
You may pay by cheque, crossed postal orders, cash (registered) or bank draft
To order-or for advice phone (01) 6846385 or (01) 6840098
Shop open 9am-5pm Mon.-Sat. Mail order desk 10am-3pm Mon.-Fri
Wallingtord Branch Flint House, High St. Wallingford. Oxon (by Public Library)
(Callers only)
9am-5pm Mon-Sat \quad Telephone (0491) 35529
ROSE ELECTRICAL TO BONA FIDE TRADE CUSTOMERS

GREENWELD

443 Millbrook Road Southampton Sロ1 ロHX Tel：（ロ7ロЗ）フ725ロ1
All mail orders and callers to this address please－callers only to 21 Deplford Broadway．SE日（Tel．01－692 2009）and 38 Lower Addiscombe Road．Croydon

44 PAGE CATALOGUE
10P＋LARGE S．A．E．
Free with orders over $£ 3$
DIGITAL I．C．$:$

7400	12p	7450	15p	7495 73p
7401	14p	7451	$14 p$	7496 65p
7402	$14 p$	7453	14p	74107 37p
7404	17p	7454	14p	$7412{ }^{38}$
7405	23p	7460	14p	$74122{ }^{51 p}$
7406	20p	7472	29p	74123
7408	14p	7473	29p	74132
7410	13p	7474	29p	74150173 p
7413	29p	7475	51p	74154 144p
7414	82p	7476	20p	74155730
7420	14p	7483	91p	74157
7430	14P	7486	40p	74159
7432	18p	7490	4sp	741711
7437	18p	7491	75p	74179 120p
7440	15p	7492	52p	7418012
744	${ }^{14 p}$	7493	52p	74367120

Sockets－ 8 pin 12p； 14 pin 13p；
LINEAR I．C．s
741 25p；555 40p； 723 （TO99）50p
Pastic Voltage Regulatore：
10126 case $5 \mathrm{~V} 600 \mathrm{~mA} 40 \mathrm{p}, 12 \mathrm{~V} 500 \mathrm{~mA}$ ${ }^{80 p}$
TRANSISTORS

ACi2T	15p	BC183	12p	2 N	
AC128	15 p	BC184	$12 p$	${ }^{2} \mathrm{~N}^{29266}$	12P
AC176	15 p	BC212	$14 p$		
AC187	14p	BC213	14 p	2N3054	P
AC188	13p	BC214	14 p	2N3055	
AD161	35p	BCY70	15p	2 N 3440	
162	35p	BCry	15p	2 N	
BC107	10 p	BCY72	15p	2N3702	10 p
BC108	10p	B0131	34 p	2 N 3703	
BC 10	10p	B0132	40 D	2 N	Pr
BC109C	15p	BFY50	15p	${ }^{2} \mathrm{~N} 3775$	P
BC147	10p	BFY51	15	2×3708	P0
BC148	100	BFY52	15p	$2{ }^{2} 3819$	
BC149	${ }^{10 p}$	TIP41A	60p	${ }^{2} \mathbf{N 4 0 5 9}$	
BC157	100	TIP42A	75p	2 N 4418	10 P
BC158	10 p	TPP2955	\％p	2 N 5294	
59	10 p	TPP3055	42	40673	

VEROBOARD
Good size offcuts：all packs contain 100 3q．in．（About 8 preces）．All packs $£ 1-20$ ． pack A．all $0 \cdot 1$ in pitch．
Pack B．all 0.15 in pitch．
Pack D，all 0.1 in plain．
Also available by werg
1016s $\varepsilon 30$ ．
 olided $35 \mathrm{p} / 100$
DIODES AND LEDS AND SCR＇s
500 V 5 SCR 45p；400V 2A Triac 80 p Diac BR100 25p； 400 V 15A Triac 51.50 ORP 12 60p；MRD450 40p；TILL209 Red ED 15p： 0.2 in LED Red 22p：green， ellow or amber 24 p
N4002 5p； 1 N4004 6p； 1 N4007 9p；
 400 V 3A 15p；OA81 5p；OA91 5p：OA47 10

Zenere－ 400 mW BZY88．All voltages rom $3 V$ to 30 V 10p
1.3 W plastic from 3 V to 200 V 20 p

RESISTORS

Carbon film 5% tw miniature．All values in E12 series from in to $10 \mathrm{M} \Omega$（over $1 \mathrm{M} \Omega 10 \%$ ）1 $\downarrow \mathrm{p}$ each
Metal Film $5 \% 1 \mathrm{~W}$ ．All values in E12 series trom 27Ω to $10 \mathrm{Mn} 2 \ddagger \mathrm{p}$ ．

Standard pots，lin or log．22p．
Wirewound $2+W$ W 25， $0.33,0.471 \Omega \mathrm{Ap}$ ．
Wirewound 5 W all values from in to 47 K 10p each．

TRANSFORMERS

$6-0.6 \mathrm{~V} 100 \mathrm{~mA} 90 \mathrm{p} ; 9-0-9 \mathrm{~V} 100 \mathrm{~mA} 95 \mathrm{p}$ ： $12-0-12 \mathrm{~V} 50 \mathrm{~mA} 9 \mathrm{PD}: 12-0-12 \mathrm{~V} 100 \mathrm{~mA}$ ह1： $12-0.12 \mathrm{~V} 1 \mathrm{~A} 52.00 ; 20 \mathrm{~V} 55 \mathrm{~mA} 90 \mathrm{p} ; 22 \mathrm{~V}$

REEDS

 WIRE
Enamelled copper wire on $20 z^{\circ}$ reels SWG／Price：${ }^{16 / 36 \mathrm{p},}{ }^{18 / 38 \mathrm{p}^{2}} \quad 20 / 40 \mathrm{p}$.
 RF CHOKES
$0.75,2$ 95． 6 8．10．22，all 10p each． 1.5 2．5．5 0.7 5． 10 mH ．all 30 p each
CAPACITORS
Ceramic plate，22pF to 1.000 pF 2p； $\begin{array}{lll}\text { polyester } 1.000 \text { to } \\ 0.015 .800 \mathrm{pF} & 5 \mathrm{sp} ; & 0.01 \\ 0.022 & 0.033, & 0.047 \\ 0.068, & 0.1\end{array}$
 0.68 10p： 1 mF 12p： $2 \cdot 2 \mathrm{mF}$ 18p；．3．3mF 24 p .1 .000 pF feedthrough 5 p ．
$1 \%: 1,000 \mathrm{pF}, 10.000 \mathrm{pF} 15 \mathrm{p}: 0 \cdot 1 \mu \mathrm{~F}, 0.2 \mu \mathrm{~F}$ ．
0 $025 \mu \mathrm{~F} 30 \mathrm{p} ; 2.2 \mu \mathrm{~F} 55 \mathrm{p}$ ．
Polystyrene 10 pF to $1,000 \mathrm{pF}$ 4p： 1.200 pF to $10,000 \mathrm{pF} 6 p$ ．
Electrolytics：
Electrolytics：
All 25V： 0.47
All $25 \mathrm{~V} \cdot 0.47,1,2.2,4.7,10,22,47 \mathrm{mF}$ ${ }^{6 p} ; 100 \mathrm{mF} 7 \mathrm{p} ; 220 \mathrm{mF} 9 \mathrm{p} ; 470 \mathrm{mF} 11 \mathrm{p} ;$ $7 \mathrm{p} ; 100 \mathrm{mF}$ op； $220 \mathrm{mF} 10 \mathrm{p} ; 470 \mathrm{mF}$ 18p $1.000 \mathrm{mF} 32 \mathrm{p} ; 2.200 \mathrm{mF} 49 \mathrm{p}: 4.700 \mathrm{mF}$ 58p． Tantalum bead，mF／V： $0.1 / 35 ; 0.2235$ $0.33 / 35: \quad 0.47 / 35: 1 / 35: 2 \cdot 216: 2.2 / 35$ ： $3 \cdot 3 / 35 ; 4 \cdot 7 / 35 ; 6 \cdot 8 / 35 ; 10 / 16 ; 10 / 25 ; 15 / 10$ 226．3；22／10；22／16；33／10；47／6．3：68／6．3： 1003．12p each

BREADBOARDS

S－DEC Breadboard $£ 2 \cdot 10$ ；
T－DEC Breadboard 83.75
Spectial price to colleges etc．for quantities－ring tor quote
CALCULATORS－$£ 2.75$ ！
There has to be a catch－these Rapid－ man 1208 machines are a mains powered desk top calculator with 0－9 and dec point，and 7 function keys inc．
$\%$ ，but the hiquid crystal display is missing．However，apert from this they are complete with PSU， 3 ICs + discrete components．Overall size $11 \times 7 \times 3 i n$ ． Only £2－75．

KEYBOARDS

Front half of calculator，really．Case $130 \times 75 \mathrm{~mm}$ has display window， 2 slide switches and 25 keys．Only $£ 1$
DISPLAYS
Brand new 7－segment LEDs， 9 MAN3M on PCB with multiplexed output $\mathfrak{£ 1} 135$ ．

VEROBOXES AND CASES

Protessronal 2 part boxes made of dark | and light grey high impact polystyrene． |
| :--- |
| $2518 \quad 120 \times 65 \times 40 \mathrm{~mm}$ |
| $2520 \quad 150 \times 80 \times 50 \mathrm{~mm}$ |
| 2.05 |
| $\mathbf{2} .40$ | $\begin{array}{ll}2520150 \times 80 \times 50 \mathrm{~mm} & \mathbf{5 2} \cdot 60 \\ 2522188 \times 110 \times 60 \mathrm{~mm} & \Sigma .15\end{array}$ $2523 \quad 220 \times 174 \times 100 / 52 \mathrm{~mm}$ deal to

mm ［3．15 tor mixers Cases．white plastic top and bottom． slot in．Type． $1410 \quad 205 \times 140 \times 40 \mathrm{~mm}$
$1411205 \times 140 \times 75 \mathrm{~mm}$
$1412205 \times 140 \times 110 \mathrm{~mm}$
$\begin{array}{ll}1237 & 154 \times 85 \times 40 \mathrm{~mm} \\ 1238 & 154 \times 85 \times 60 \mathrm{~mm}\end{array}$
$1238 \quad 154 \times 85 \times 60 \mathrm{~mm}$
$1239154 \times 85 \times 80 \mathrm{~mm}$
Small general purpose plastuc bo 00

1413 | PB 1 | $115 \times 75 \times 36 \mathrm{~mm}$ |
| :--- | :--- |

DEVELOPMENT PACKS

Save execs by buying a full range of components at one go＇All fuli spec marked devices．no rejects or old stock． 50 V ceramic plate capacitors $5 \% 10$ of
each value， 22 pF to 1.000 pF Total 210 each value． $22 p$ ．
CR25 carbon film resistors．$\&$ watt 5% 10 of each value 10Ω to 1 Mn ．total $610 \mathrm{s6} \cdot 00$ ．
Extended range． 1 ohm to 10 M 850 resistors $58 \cdot 30$ ．
Electrolytics．Wire ended 25 V working 10 each of 1． 22.4 ．10．22． 47 and 100 mF 70 capacitors for $£ 3 \cdot 20$
Zeners． $400 \mathrm{~mW} 5 \%$ BZY88 10 each
$3 V$ to 30 V total 260 \＆14．00． ；pack． 5 of each value Es － 20
Tantalum Beach caps． 14 values from 0135 to 100,3 ． 10 of each total 140 caps £12－00．

[^1]
CRESCENT RADIO LTD．
 164－166 HIGH ROAD，WOOD GREEN，N22 （also） 13 SOUTH MALL，EDMONTON，N． 9

8 KILOWATT8 P8YCHEDELIC LIGHT CONTROL UNIT
Three Channel：Bass，Midde Treble．Each channel has its own sensitivity eontrol．Just connect the input of this unit tol the loudspeaker terminals of an armpifier，and connect tbree 250 V up to 1000 W lamps to
the output terminala of the the output terminala of the
unit，and you produce a fasci－ unit，and you produce a fasci－
nating sound－light display． nating sound－light
（All guaranteed．）
618．50
FERRIC CHLORIDE
FERRIC CHLORIDE
Anhydrous fertic chlorite Anhydrous ferric chloride in
double sealed one pound poly packs． Our Price 85
at 8% per lb．

BARGAIN PROJECT BOX

A plastic box with moulded ex． trusion rails for PC or Chase panels with metal front plate supplied）．Our Pricc $50 \mathrm{p}+8 \%$ ．
EPYPECTS PROJECTOR＂150＂ No disco should be without our new effects projector，we believe that this is the most．versatile machine for projecting coloured images to supplement your
 a，c，
100 w, Standard Lans－A
Le mm， A sturdy metal construction and t akes a range of lenses and accen－
sories．Conecy complete with fin wheel and ready to use．A bargain at $827+\mathrm{VAT}$

C100＂ 100 WATT AMPLIFIER

All built and tested，mounted on a plainaluminiun chassis which measures $18 \times 9 \frac{1}{2} \times 4$ in，and which you fan mount into a cabinet of your choice． Four controlled imputs．master volume，treble
midthe and bass controls，S／C protected output 100 W clean into 8 ohn L / S ．Theal for diaco music groups，PA．and clubs．
A bargain at $£ 42+£ 1$ carr．$+s \%$ VAT

	LTI－METER erybody interested in hing less than 100 $60 \times 24 \times 90 \mathrm{~mm}$. s： $0-10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}$ ． 3： $0-10 \mathrm{~V}, 50 \mathrm{Y}, 250 \mathrm{~V}$, ent： $0.1 \mathrm{~mA}, 0.100 \mathrm{~mA}$ ． kobm． VAT．
TIE－CLIP CONDE Ommi－Directional 600 $15,000 \mathrm{~Hz}$ ．Extra long for stage work，confere Price $29.50+1.12 \%$ V	ER MICROPHONE I．Ideal etc．
PPI POWER Switched $3,4 \frac{1}{2}, \quad$ b，	TPYLY ONIT 9 and $1 \underline{V}$ at 500 mA ． on／off 4 witcl and light． $\begin{aligned} & 130 \times 5 \times 75 \mathrm{nmm} . \\ & 85.50+8 \% \text { VAT. } \end{aligned}$
$\begin{aligned} & \text { CASSETTE } \\ & \text { MCROPHONE } \end{aligned}$	$\begin{aligned} & \text { DUAL/IMP HAND } \\ & \text { MICROPHONE } \end{aligned}$
／off switeh for	The perfect hand／
mete control．Split	stand mic．for stage，
tun plugs，stan－	group，liseo，etc，
dard cassette miss．to	Finished in matt silver
suit all typer，Cotil．	anil black．Cardiold
Plense state which	Dual lmp： 600 ohm；
inpedance resuired，	30 kohar， $50-15,000 \mathrm{~Hz}$ ．
200 olmm／j0 kolim．	With an on／off switch．
Price $81.60+12 \frac{1}{2} \%$	Price $58.75+12 \frac{1}{2} \%$

D．K．CARRIAGE 50p ONLESS OTHERWISE STATED
VAT－All prices are excluding VAT．Please add to each item the VAT rato indicated．

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success：knowledge that will enable you to take advantage of the many opportunities open 10 trained people．You study in your own home，in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful．
City \＆Guilds Certificates
Telecommunications Technicians
Radio，TV，Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses：
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming Radio，TV，Audio Engineering and Servicing
Electrical Engineering，Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET．
To：International Correspondence
Schools
1 Dept．771C Intertext House，London
SW8 4UJ or telephone 6229911
Subject of Interest．
Name
Address

CASIO

fx-201P

programmable

 10 digit or 8 digit, 2 Ex mems, cos, sin, tan All log functlons Donditional iump and manual jump as well as indirec address, subroutine eic. The programme function allows you to handle any type of calc. under any ondition

* £49-95
$\mathbf{f x}-102$. The world's first fractional plus 2 Exp. sin, cos, tan, Deg. rad. (exp. ogs. Reciprocals. Sexagesimal. P_{1} entry. Statistical calcs. incl. 2 kinds of Standard deviation and other applicatlons.
*£19.95
$\mathbf{f \times - 1 9 .} 8$ digits or 6 plus 2 Exp as log functions. Sar roots, Reciprocals. Sexagesimal/Decimal, conversions. Fractions. 2 kinds of Standard Deviation $4 \times-21 \quad 8$ digits 2 exponents. 21

$$
£ 15 \cdot 95
$$

AL8 8-dig. Fractional Catioe tlons remalnder from division. Time calics. 2 mem. facs. \&13.95
AL10. As AL8 but with 10 digigits

TEXAS

SR56.
programmable
0 Inde memories
all log trig
and Stat functlons.
Can be programmed for maths. elec-
tronlc engineering slatistical, finan and navigation.
E57.95(R)
SR52. 224 programme steps. 20 level parenthesis. Card programmable Supplied with 20 blank magnetic cards and prog. manual. (R)f199.00
Any of the following pre-programme Engineering. 3. Mathematics. 4. Finance ONLY £25 each
SR51 |I. 10 digit, 2 Exp RechargeHyperbolic x to the root of y. Rad \& Dea Factorial. Mem. 3 Inde. mems. Llnear regression. Mean, variance, standard deviation. Generation +7 basic converts, and their inverse Engineering
Notation.
(R)E47.95
T130. 48 functions plus Algebraic parenthesis. Constant, roots, powers. reciprocals. Sci notation. Log, trig, deg rad, mem, step function.
£15.95. Nickel Charger Kit $\mathbb{E} 7.95$

The $\mathbf{Z Y C O N}$ range of Quality

 L.C.D.KLC3
L.C.D. Constant dis
Shows Hrs Mins pulsating secs, Mins finish with Stain. Chrome Steel back and FREE Adjustable S/Steel bracelet. £22.50

Gold Plate $£ 2450$

KLC stop wato

Constantly shows hrs, min
$\&$ Pulsating secs. Press \& Pulsating secs. Press
command button for command button for mith \& date, press again for
mins \& secs. May be set mins \& secs. May be set mth \& date every 2 secs. resets to time, 4 yr cal. Nite Lite'. PLUS STOP WATCH $\mathrm{FACILITAES} \mathbf{E 4 5 - 9 0}$ Gold Plate £49.90. FREE matching bracelets KLC9
Continuous hrs, mins \& pulsating secs. Press \& date. Press again ior secs readout. Setting for alternating hrs \& mins to mith $\&$ date every 2 secs Auto-time reset 4 yr calendar. 'Nite-lite'. bracelet 839.95

LADIES DIGITAL

THE IDEAL PRESENTI

KED

window display shows Date. Day of week In letters. Single button. Auto-hold \& Fade-out. Heavy Rhodium Case In Heavy Rhodium on Bras

+ S/steel back. FREE natching S/steel diusiable bracelet $\mathbf{8 2 9 . 9 5}$ Gold Plate $£ 33.90^{\circ} \mathrm{L}$

KED6 PLUS

NEW ZYTRONIC TELE-GAMES

Tennis, Football, Squash. Score marker.
Ball sound effects-2 pings. Player identification. Red light point winner indicator. 539.90

DE LUXE
this deluxe model HAS Tennis, Football Squash, Solo. 2 bat sizes 2 Ball speeds. 3 distinct
and automatic scoring. $\quad £ 48.90$
These games are easy to play and a joy for all the family ALL ITEMS CARRY 1 YR GUAR. PRICES INCLUDE VAT

CBM

4190R (Illus.) 10-digit,

 2 Exp. 90 function pre-programmeo. Metr functions to the 4148 : Perms and combinations. Gamman Pois son and Binomla distributions, factorial, complex num bers, hyperbolic functions, llnear regression and inte-gration of $Y=f(x)$.

(R)£36.95

7919D. ${ }^{8}$-digit or 5 -digit +2 Exp. Sq root. Reciprocals Y^{x}, x^{2}, π. Register Sa root. Reciprocals
exchange. Memory plus. Store recall Sign change. Algebratc logic $£ 10.95^{*}$
4148. 10-digit + 2 Exp. Full log and 414. trig funct. X^{2}, Reciprocal. π poot of y. Polar rectangular co-ord-
imates. 2 -store mem. Mean and Standara deviation.
(R)£26.95
1800. As a148 but Green display and
£20.95*

44RD. ${ }_{5}^{9-\text { digit or }} \begin{gathered}5 \text {-digit and } 2 \text { Exp. }\end{gathered}$
Green Display, Store
Gremilar to the 63R
Simila
£19-50*
24 K Stainless Steel Stimline. Green 24K. Stainless Steal Simmine. Green to hold pen, note pad and credit cards (ail included). Full memory. Clich buttons. Rechargeable. (R)£21 95
Including recharger.

DECIMO DIGITAL CLOCK RADIO
 DIGITAL
READOUT

This is the most unlque clock/radio in the country today having a soft, $1 \frac{1}{2}$ high orange-glow digital readout which is in a beautifully styled enclosure with in a beautifully styled enclosure wlth
up-to-date VHF/MW radio. You can ap-to-date soft music or alarm. Automatic 80 minute 'sleep' button in case you drop of while the radio ls onl
OUR PRICE £33. 95

NOVUS

4640 (11lus.) \quad digit, 2 Exp. 54 functions 4-level roll stack. 3 Fully addressable
memories. Logs, Trigs, Stat and Metric conversions etc.
(R) £42.95
4650. 8 digit, 2 Exp, Algebraic logic Addressable. Trig. sin, cos, fan and Inverse trig functions. Deg rad. Re Mem Ex and Reglster Ex (R)E27.50 4525. ${ }^{8}+2$ Exp. 100 step prog. R.P.N Mem. 4 roll stack, skip. delete. AdMem. 4 roll stack, skip, delete.
ditlonal progs within the 100 step
(R)E34.95
4515. 100 step prog
(R)£31.95
6010. Metric.
£15.95*
6035. 100-step programmable Statis(R) $£ 34 \cdot 95$
6025. Rechargeable. Fina
(R) $\mathbf{E 3 4} 95$
4510. 8 digits. 3 level stack. All trig \& $\begin{array}{ll}\text { procal Memory, etc. } & £ 12.95^{*} \\ 6030 . & \text { Statisticiarm } \\ \text { 605.95* }\end{array}$

SINCLAIR

CAMBRIDGE SCIENTIFIC all trig, log \& deg. rads etc. OXFORD SCIENTIFIC larger version of
above. Green display above. Green display
PARENTHESIS.
£13.90*

PHONE CALLS AND PERSONAL CALLERS WELCOME MONS to THURS BETWEEN 2 \& 5 p.m. 01-45i 4755. SUNDAYS $10 \mathrm{a} . \mathrm{m} .101 \mathrm{p} . \mathrm{m}$. TO: BARCLAY ELECTRONICS Dept. I3PW, LONDON N.W.I1
Please send me.
with/wlthout optional malns adaptor. I enclose cheque/money order total
value £.................................... Please add 55p to all Items to cover p. 8 p .
NAME
ADDRESS

PHONE BARCLAYCARD OR
ACCESS ORDERS.

DORAM KITS CONTAIN EVERYTHING DOWN TO THE LAST NUT'

£29.95 + H VAT

(Order code 997-011)
Subject to avalabality

O'seas orders-add 15% for $\mathrm{P}+\mathrm{P}$. All tems offered for sale subject to the Terms of Business set out in Doram Edition 3 catalogue. price 60 p The Doram Kit brochure is also avallable price 25 p Combined price only $70 p$ which also entitles you to $2 \times 25 p$ vouchers, each one usable on any order placed to the value of $£ 500$ or more (ex VAT) DORAM ELECTRONICS LTD
PO BOXTR8 WELLINGTON RD IND EST, LEEDS LS 122 UF

A MINIATURE POWER TOOL

 to speed your buildingSuper 30 Kit (30 Tools) (incl. drill without stand)
\&17.62 plus P. \& P. 85p
Mk. II Drill Stand
\&4•40 plus P. \& P. 35pMk. II Drill only
68.79 plus P. \& P. 35pFlexible Drive Shaft K5.46 plus P. \& P. 25pTransformer 240 V a.c. $/ 12 \mathrm{~V}$ d.c. 66 plus P. \& P. 70p

- Variable Speed Transformer E8.25 plus P. \& P. 70p

Replacement drills, stones, burrs, etc. 40p each. Circular saw blades $\mathbf{5 0 p}$ each. $\mathbf{\ell 2}$ per set of 4 sizes. P. \& P. any quantity 20p.

All VAT inclusive

PRECISION PETITE LTD.
 119a High Street, Teddington, Middlesex TW11 8HG Tel. 01-977 0878 (24-hour answering service)

OSMABET LTD

We make transformers amongst other things
LOW VOLTAGE TRANSFORMERS
Prim 200/240V a c., 5 V 1 A 60p; 6 3V 1 5A 51 .65; 3A
 £5-25; 5A c. ; BA £11. 25; 12A £16. 50 ; 40 V 3 A CT $£ 7.50$ S0V 6A CT E18.75: $25 \mathrm{~V} 2 \mathrm{~A}+25 \mathrm{~V} 2 \mathrm{~A}$ E7: $12 \mathrm{~V} 4 \mathrm{~A}+12 \mathrm{~V}$ 4 A ह7.
LT TRANSFORMERS TAPPED SEC, PrIm 200/240V
 2A. ₹6. 75. $0-10-50-60-80-100-110 \mathrm{~V}$ 1A. 87 .
MIDGET RECTIFIER TRANBFORMERS
For FW rect $200 / 240 \mathrm{~V}$ a c.. $6-0-6 \mathrm{~V}$ 1 5 A or $9-0-9 \mathrm{~V} 1 \mathrm{~A}$ 82.25 each, $12-0-12 \mathrm{~V} 1 \mathrm{~A}$. of 20020 V o 75 A , or $9-0-9 \mathrm{~V}$ 0.3 A . or $12-0-12 \mathrm{~V} 025 \mathrm{~A}$, or $20-0-20 \mathrm{~V} 0.15 \mathrm{~A}$, or 6 V
$0.5 \mathrm{~A}+6 \mathrm{~V}^{2} 5 \mathrm{~A}$ or $9 \mathrm{~V} 0.35 \mathrm{~A}+9 \mathrm{~V} 0-35 \mathrm{~A}$ or 12 V 0.25 A +12 V 0 25A. Or 20V $015 \mathrm{~A}+20 \mathrm{~V} 0 \cdot 15 \mathrm{~A}$. all at E2-65each
LOUDSPEAKERS
2 in 8Ω, $2 \neq 1 n$ or $25 \Omega, 3 \ln 3,8$ or $35 \Omega, 3 \operatorname{in} 15 \Omega$ \&1 each, $8 \times \sin 3$. 8 or 25 Ω. 11.75 ; Goodmana $6 \neq 1 \mathrm{n}$ twin cone. hi-fi, 4Ω. 12.50; $7 \times 4 i n, 38$. 1 or $25 \Omega, \leqslant 1.50$.
"INSTANT" BULK TAPE/CABSETTE ERASER
Instant erasure any diameter tape spool or cassette
demagnetises tape neads. $200 / 240 \mathrm{~V}$ a c \& 75 . SYNGHRONOUS GEARED MOTORS $200 / 240 \mathrm{~V}$. Brand new Smiths, built in gearbox, 6 rp.h., $51 \cdot 25$ each
PAPER TUQULAR CONOENSERS
$47 \mathrm{mF}, 160 \mathrm{~V}, 30 \times 20 \mathrm{~mm} .20 \mathrm{p}$ (100 tor $\mathrm{\varepsilon} 10$)
SPEAKER MATCHING AUTO TRANSFORMER
12W 3 to 8 or 15Ω. up or down, $£ 1.65$
G.E.C. MANUAL OF POWER AMPLIFIER COVERING VALVE AMPLIFIERS OF 30 W TO 400W 50p. CABLES - CABLES - CABLES
MICROPHONE TWIN H/DUTY, BRAIDED SCAEEN Professional cable for stage. studio. outdoor PV Protessional cable for stage.
covered, grey. 20p per metre.
MULTI WAY BCREENED. PVC COVERED
36 way $\mathrm{E} 1 ; 25$ way 75 p; 14 way $50 \mathrm{p} ; 6$ way 25 p 2 way 10p; 1 way ep per metre
LOW LOSS CO-AXIAL CABLE 75
UHF, white. 16p per motre: VHF, white. 9p per metre. BALANCED TWIN FLAT FEEDER 300 R
40 p per 10 metres
FLEXIBLE PVC MINI 3-CORE CABLE, 19/0 10MM 100 metres 53 -50. Ideal for speakers. intercoms. et TWIN FIG. C CABLE
Polarised, $£ 3 / 100 \mathrm{~m}$, Screened stereo $\mathrm{E} 1 / 15 \mathrm{~m}$. ALL TYPES DOMESTIC AND COMMERCIAL CABLES ALL SIZES AND COLOURS CONNECTING WIRES.
MULTI SCREENED AND UNSCREENED CABLE SCREENED AND UNSCREENED
TRADE ENQUIRIES INVITED

Carrigige and VAT extra on all orders
S.A.E. ENOUIRIES. LISTS. MAIL ORDER ONLY

46 Kenilworth Road, Edgware, Middx. HAB 8YG Tel 01-958 9314

Bring 'scope'to your interest.

 'There's only one way
to master electronics...
to see what is going
on and learn by doing.'

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1Build an oscllloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowiedge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2Read, draw and
understand circuit
diagrams.
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computors and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

ERSIN

SAVBIT

handy solder dispenser

Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Savbit Solder Savbit increases life of copper bits by 10 times. Size5 39p For soldering fine joints
Two more dispensers to simplify those smaller jobs PC 115 provides 6.4 metres approx of 0.71 mm solder for fine wires, small components and printed circuits.
PC115 500
Or size 19A for kit wiring or radio and TV repairs 2.1 metres approx. of 1.22 mm solder.

Size 19A 43p

Handy size Reels \& Dispensers

OF THE WORLD'S FINEST CORED SOLDER TO DO A PROFESSIONAL JOB AT HOME

Ersin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.

Sole U.K Sales Concessionaires
Bhb MFFi Accessories Limited,
Kelsey House, Wood Lane End, Hemel Hempstead, Herts. HP2 4RO.

Prices shown are recommended retail, inc. VAT From Electrical and Hardware Shops. In difficulty send direct, plus 15 p P\&P. Prices and specifications subject to change without notice.

TRANSFORMERS

ALL EX-STOCK-SAME DAY DESPATCH

NO HIDDEN EXTRAS- Prices correct at $14 t h$ December 1976. Prices include BE ACCORDING TO WEIGHT AND DISTANCE-BRS Electrosil Resistors, Semiconductors; Multi-meters and Audio Accessories.

malns ISOLATING		
CENTRE TAP WITH		
Ret	VA(Watts)	£
07*	20	4.57
149	60	6.68
150	100	7.65 11.95
151	200	11.95
152	250	14.47
153	${ }^{350}$	17.14
154	500	19.73
155	750	$27.25 \dagger$
156	1000	37.979
157	1500	$43 \cdot 33$ t
158	2000	$45.34 \dagger$
159	3000	$76.38+$
*115V only	or 240 V	Sec
30 Volt range		
Sec 0-12-15-20-24-20V		
Ret	Amps	${ }_{5}^{\text {¢ }}$
112	0.5	3.15
79	10	4.00
${ }^{3}$	2.0	5.55
20	30	6.87
21	4.0	7.93
51	50	9. 55
117	60	10.69
88	80	14.15
89	10.0	14.51
60 volt range		
Prim. $220-240 \mathrm{~V}$		
Sec. 0-24-30-40-48-60V		
Ret.	Amps	¢
124	0.5	3.94
${ }^{126}$	10	5.43
127	2.0	7.85
125	30	11.00
123	4.0	13.07
40	50	14.20
120	6.0	16.85
121	8.0	10.56+
122	10.0	$24.08 \dagger$
189	12. 0	$25.16 \uparrow$

WIDE RANGE OF
 PANEL. METERS

200 Mixed value resistors (count by weight)

 150 Mixed value capacitors (count by weight) 15 Assoded pots and pre-sets 10 Reed switches3 Micro switches
15 wire wound res
1 Pack wire 50 metres, assorted colours PLEASE STATE PACK REQUIRED 90p PER PACK

ATURES

NIATURES Volts	\AA
3-0-3	2.50
0-6, 0-6	$2 \cdot 97$
9-0-9	2.28
0-9. 0.9	2.39
0-8-9, 0-8-9	3.14
0-8-9. 0-8-9	4.51
0-15, 0-15	2.28
0-20.0-20	$3 \cdot 22$
20-12-0-12-20	3.88
0-15-20, 0-15-20	$5 \cdot 37$
0-15-27. 0-15-27	4.77
0-15-27. 0-15-27	6.00
12, 15, 20, 24, 30	$3 \cdot 15$

DECS SOLDERLESS BREADBOARDING	
5 Dec 70 contacts	¢2.41
T Dec 208 contacts	£3.92
U Dec A forlc.s.etc	[4. 58
U Dec B forl Cis.etc	¢7. 82
BRIDGE RECTIFIERS	£
200V 2A	0.67
$400 \mathrm{~V} \quad 2 \mathrm{~A}$	0.72
200 V 4A	0.89
500 V 10A	$2 \cdot 70$

25W Amplifiers $1+$ Pre-Amp Power supply 1 Transtorme + Front Panel

1. Kit of parts to include on/otf switch. neon ind Stereo head phone socket Plus instructions book £32-18.

TEAK AUDIO KIT 25W Teak veneered cabinet
Aluminium chassis, heat sink and froni pand sockets otc plus back - CARTRIDGES

Magnetic Sonotone 100
Magnetic Sonotone
Ceramic E.E.I.CS 2000
ACOS GP93-1
AT55 (magnetic)
55.31
52.72
52.38

POWER UNIT
Plugs direct into 13 A 3 pin socket. $6-7.5-9 \mathrm{~V}$ en 300 mA with multi-plug
C3. 59.

AVO 8 MK5	¢67. 33
AVO 72	C26.86
AVO TT 169	¢28.94
AVO MM5	¢23.48
U4315 (USSR)	inc steal
carry case	¢16.52
POWER UNIT	
5	¢5. 18
STAB 3-6-7.5-9V	400 mA ¢6.

STEREO FM TUNER WITH PHASE-LOCK LOOP
Pre-selected stations supply $20-35 \mathrm{~V} \quad 90 \mathrm{~mA}$ Max $\quad \mathbf{2 4}-21$
Barrie Electronics Ltd.
3. THE MINORIES, LONDON EC3N 1BJ TELEPHONE: 01-488 3316/7/8
nEAREST TUBE STATIONS: ALDGATE \& LIVERPOOL ST.

Available to you in kit form at the same moment as its national launch, the brilliant new Videomaster Superscore contains the latest product of MOS technology: a TV game chip.

The logic contained in it had previously to be generated by 100 TL devices. Now it is condensed into one 28-pin chip.

This all-new Videomaster plugs into your 625-line UHF TV set (for overseas customers having VHF sets we can supply the necessary VHF modulator) to give you four exciting games (including tennis and football) and two future game options. It features on-screen digital scoring, realistic hit sounds, two bat sizes, two
ball speeds, automatic serving and much more. It runs on six $1 \frac{1}{2}$ volt SP11 type batteries (not supplied).

The Videomaster Superscore kit costs only £24.95 including VAT (recommended retail price of the ready built model is over $£ 40.00$) and comes complete with ready-tuned UHF or VHF modulator, circuit board with printed legend, all resistors, transistors and diodes, built-in loudspeaker, socket for mains adaptor, and, of course, the TV game chip itself.

Easy to put together the Superscore has full assembly instructions, circuit diagram and circuit description. Don't miss this chance to own the newest electronic game at such low cost.

POST TODAY TO:

Please send me (insert No. requ'd).................Videomaster Superscore Kits at $£ 24.95$ (inc. VAT \& P\&P in UK) or $£ 23.10+£ 4.00$ for $P \& P$ overseas)
I enclose my cheque/money order* for $£$... \qquad VHF modulator required $\mathrm{YES} / \mathrm{NO}^{*}$
NAME \qquad
ADDRESS \qquad

SYNTHESISERS, SOUND EFFECTS AND

P.E. SYNTHESISER
(P.E. Feb. 73 to Feb. 74)

The well acclaimed and highly versatile large-scale mains-operated Sound Synthesiser complete with keyboard circuits. All function circuits may be used numbendentiy, or interconnected. The greater the
number of circuits, the greater the versatility. Other circuits in our lisss may be used with the Synthesiser to good advantage (notably P.E. Minisonic, Phasing Unit, Wind and Rain, Rhythm Generator, Sound Bender, Voltage Controlled Filter, Guitar Effects Pedal).

THE MAIN SYNTHESISER

Stabilised power supply
 Two Linear Voltage Controlled Oscillators

 and one inverter-all 3 circuitsPCB (2 are required) each Two Ramp Generators and Two Input Amplifiers
afl 4 circuics
PCB (holds all 4 circuits)
$\mathrm{Sample-Hold}$ and Noise Generator
Tone Control
PCB
Reverberation Amplifier
Sorine Line unit for Reverb. Amp.
Ring Modulator
Pakk Leval Meter Circuit
PCB to hold Reverb. Ring Mod and Meter Circuits
Envelope Shaper
Volt
Voltage C
Amplifier
PCB (holds both circuits)
THE SYNTHESISER KEYBOARD CIRCUITS
(Can be used without the Main Synthesiser to make an
Two Logarithmic Voltare Controlled
Oscillators
Component set
PCB (holds both
PCB (holds both eircuits)
Divider 2 Hold Circuits, 2 Modulation
Amplifier, Mixer and 2 Envelope Shaper
PCB (holds the first 6 circuirs)
Korboard Stabilised Power Supply
Printed Circuit Board
GUITAR EFFECTS PEDAL (P.E. July 75)
Modulates the attack, decay and filter characteristics of an audio signal not only from a guitar but from any audio
source, producing 8 different switchable effects that can source, producing different switchable effects that can most interesting of all the low-priced sound effects units in our range. Circuit does not duplicate effects from the Guitar Overdrive Unit.
Component Set with special foot operated
swirches
Alternative component set with panel mounting
switches
Switches
Printed
Printed Circuit Board
SOUND BENDER (P.E. May 74)
A multi-purpose sound controller, the functions of which include envelope shaper, tremolo, voice-operated fader, automatic fader and frequency-doubler. Component Ser for above functions (excl. SWs) Printed circuir board
Optional extra-additional Audio Modulator, the use of
which, in conjunction with the above component which, in conjunction with the above component set. Component Set (incl. PCB)
PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlled unit for introducing the "phasing" sound into live or recorded Component Set (incl. PCB)
PHASING CONTROL UNIT (P.E. Oce. 74)
For use with the above Phasing Unit to automatically control the rate of phasing.
Component Set (incl. PCB)
WAH-WAH UNIT (P.E. Apr. 76)
The Wah-wah effect produced by this unit can be controlled manually or by the integral automatic controller.
Component Set incl. PCE

POST AND HANDLING

U.K. orders-under $£ 15$ add 25 pplus VAT, over C 15 add 5.K. orders under $£ 15$ add 25 p plus VAT.
50 p plus VAT. Keyboards EI .50 plus VAT.

Optiona! Insurance for compensation against loss or damaze in post, add 35p in addition to above post and handling. B.F.P.O., and other countries are subject to Export postage rates.

COMPONENTS SETS include all conductors, potenciometers and transor mers, Hardware such as cases, sockets. knobs, etc. are not included but most of these may be bought separately. Fuller details of kits, PCBs and parts are shown in our lists.
CIRCUIT AND LAYOUT DIA. G月AMS are supplied free with all PCBs designed by Phonosonics.
PHOTOCOPIES of the P.E. texts for most of the kits are available-prices in our lists.

614.36

$\underset{\substack{f 18.62 \\ E 1.63}}{ }$
55.9
P.E. JOANNA (P.E. May/Sept. 75)

A five-octave electronic piano that has switchable alternative voicing of Honky-Tonk piano, ordinary piano. harpsichord, or a mixture of any oo the three, together
with facifities including fast and slow tremolo, loud and soft pedal switching, and sustain pedal switching. The sower amplifier typically delivers 24 watts into 8 ohms. The PCBs have been redesigned by ourselves making improved use of the space available.

Main Powar Supply

.111 .68
Tone Generator and Top C Envelope
Shaper
PCB for Main PSU, Tone Gen \& Top C E.S.
Envelope Shapers for all notes (except
Set of PCBy for Envelope Shapers (except Top
C)
Coici

Voicing and Pre-Amp Circuits
PCB for Voicing and Pre-amp
te Powar Supply)
611.88
610.93

Power Voing and Pr $\quad \mathbf{\$ 2 . 8 0}$
PCE for Power Amp and PSU 950
RHYTHM GENERATOR (P.E. Mar./Apr. 74)
Programmable for 64,000 rhythm patterns from 8 effects
Programmable for 04,000 rhythm patterns from $\begin{aligned} & \text { efrects } \\ & \text { circuits (high and low bongos, bass and snare drums }\end{aligned}$ circuits shigh and variable time signatures and rhythm rates. Really fascinating and useful.
Tempo. Timing and Logic circuirs
PCB for above circuits (double-sided)
Component ser for all 8 effects circuits
$\$ 12.70$
$£ 3.24$
5
PCB for all 8 effects
Simple mixer (our design) incl. PCB
Simple mixer (our design) incl. PCB
Altarnative
Power Supply for T, T and L, and Effects, incl. PCB
(See our list for Power Supplies for Mixers)
REVERBERATION UNIT (P.W. Nov./Dec. 72)

W

A manually controlled

named sounds.
Componenr ser incl. PCB
GUITAR OVERDRIVE UNIT (P.E. Aug. 76)
$£ 13.88$

A high quality unit having microphone and line input pre-amps, and providing full control over reverberation level.
Component Set (excl. spring unit)
Printed Circuit Board
68.95
61.93

Panel Meter $(50 \mu \mathrm{~A})$ (optional)
61.93
$\mathbf{5 5 . 9 5}$
$\mathbf{5} .20$

Sophisticated, versatile Fuzz unit, including variable and switchable controls affecting the fuzz quality whilst retaining the attack and decay, and also providing filtering. Does not duplicate the effects from the Guitar Effects Pedal and can be used with it and with other electronic instruments
Component ser using dual slider por Component set using dual rotary pot
66.68 $\begin{array}{ll}\text { Printed circuit board } & \mathbf{6 1 . 3 7}\end{array}$

FUZZ UNIT

Simple Fuzz unit based upon P.E. 'Sound Design' circuit.
E2.01
Component ser incl. PCB
TREMOLO UNIT
Based upon P.E. "Sound Design' circuit.
Component set incl PCB
63.24

TREBLE BOOST UNIT (P.E. Apr. 76)
Gives a much shriller quality to audio signals fed through it. The depth of boost is manually adjustable.
62.36

25 WATT MONO AMPLIFIER (P.E. Sept. 75)
A good general purpose integrated circuit power amplifier typically delivering 25 watts into 8 ohms. Power bandwideh 0020 . 20 km . Distortion $0-2 \%$. Suitable for use with any of our sound producing kits
Component set incl. power supply
615.09

For stereo use two sets and PCBs are required.
P.E. MINISONIC MK
(P.E. Nov. 1974 to March 1975)

A portable, battery or mains operated, miniature sound synthesiser, with keyboard circuits. Although having the functions facilities than the large P.E. Synthesiser. and versatility. Like by this design give it great scope be advantageously used with other circuits in our lists.
Basic component set
Set of PCBs
Full details in our list.
$642 \cdot 71$
P.E. MINISONIC MK 2

More sophisticated version of the MK I. From $\mathbf{6 5 2}$.91
Set of PCBs
From $652 \cdot 91$
Full derails in our list.
$\mathbf{E P} \cdot 10$

DISCOSTROBE (P.E. Nov. 76)
4-channel light-show controller giving a choice of sequential, random. or full strobe mode of operation Basic component set
17.62
62.85

ENVELOPE SHAPERS
Both of the kits below have manual control over their Attack, Decay, Sustain and Release functions. Both kits include PCB (VCA means Voltage Controlled Ampifier) Envelope Shaper and VCA (P.E. Apr. 76) \quad (6.51 Envelope Shaper (without VCA) (P.E. Oct. 75) $\$ 4.63$

VOICE OPERATED FADER (P.E. Dec. 73)

For automatically reducing music volume during "talk. over"-particularly usefulfor Disco work or for homemovie shows.
Component Ser incl. PCB
$£ 3.78$

VOLTAGE CONTROLLED FILTER (P.E. Occ. 74)
An independently designed VCF that can be used with the P.E. Synthesiser.
Component Set
63.72

Printed Circuit Board
[1.38
P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones.
An LED monitor clearly displays all beat note adjust. ments. Ideal for tuning acoustic and electronic musical instruments alike. \quad C14.94
Main Component Sec PCB
P.E. SYNCHRONOME (P.E. Mar. 76)

An accented-beat electronic metronome, providing duple, triple and quadruple times with full control over rhythm generazor. Includes power supply.
Component Set incl. Ioudspeaker $£ 10.95$

PEAK LEVEL INDICATOR (P.E. Mar. 76)
A twin-channel visual display unit for monitoring the peak level of audio signals. Well suited for use when avoid signal over-loading.
Component Set incl. PCB (as published)

DON'T FORGET VAT

Add $12 \frac{1}{2} \%$ (or current rate if changed) to full total of goods, post and handling. (Does not appiy to export orders).

EXPORT ORDERS are welcome, though we advise that a current copy of our list should be obtained before ordering as it also shows Export postage rates. All payby Incernational Money Order or through an English Bank. To obtain list for Europe send 20 p . for other councries send 40p.

OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of the P.E. projects built from our kits and PCBs. The cases were buile by ourselves and are not for sale, though a small selection of other cases is available

LIST-Send Stamped Addressed Envelope with all U.K. requests for free list giving fuller details of PCBs, kits, and other components.
OVERSEAS enquiries for list: Europesend 20p; Other Countries-mend 40 p .

KEYBOARDS AND CONTACTS

Kimber-Allen Keyboards as required for many published circuits, including the P.E. Joanna, P.E. Minisonic, and P.E. Synthesiser. The manufacturers claim that these are the finest moulded plastic keyboards available. Alloctaves are C
3 Ketave (37 notes) $\mathbf{2 4 4} \cdot 85$. 4 Oct (49 notes) $\mathbf{E 2 9 . 5 0}$. $\$$ Oct (61 notes) $\mathbf{~} 34.50$
Contact Aesemblies for use with above keyboards: Single-pole change-over (type SP) as for P.E. Joanna and P.E. Minisonic. Two-pole normally open-make-break (type DP) as for P.E. Synthesiser. Special contact assembly (type 4PS) having 4 poles, 3 or which are normally-open make-break rontacts and the fourth is a change-over contact - this special assembly enables THE SAME KEYBOARD to be used with the P.E Synthesiser, P.E. Minisonic and the P.E. Joanna simultaneously thus avoiding the cost of more than one keyboard.

Each
3 Octave Se:
¢8.88
69.99
$E 19.61$
4 Octove Set
fll.76
Octove
614.64
416.47
632.33
 most of the inter-wiring required, are available. Details in our lists.

SOUND-TO-LIGHT (P.E. Apr./Aug. 71)
ho ever-popular Aurora-4 or 8 channels each responding :o a different sound frequency and controlling its own light A MUST for any Disco, and a fascinating visual display for the home.
4 Channal Component Set (excl, thyristors)
4 Channel Component Set (excl, thyristors)
Power Supply Component Set
PCB for 4 frequency channels
PCB for power supply and 8 lamp drivers
A 400 V thyristors (I per chan. req.) each
Panel metor ($1 \mu \mathrm{~A}$) (optional)
3-CHANNEL SOUND-TO-LIGHT (P.E. Apr. 76)
A simple but effective sound-to-light controller capable of A simple but effective sound-to-light controller capable of power supply, thyristors, and by-pass switches.
Component Set inct. PCB

TRANSISTORS

69.11
44.99

SEMI CONDUCTOR TESTER (P.E. Oct. 73)
Essential test equipment for the enterprising home construc cor. While stocks last
Set of resistors, capacitors, semiconductors.
potentiometers, makaswitches and PCB
P.E. MINIMIX 6 (P.E. Nov.IDec. 75)

Each of the 6 input channels has its own gain, volume and panning contromanully controllable the twin channel phone and pre-fade monitoring facilities. Twin Vu meters provide visual display of channel audio levels Ideal for use with efferts and synthesiser kits

8-INPUT MIXER

Aevel level control and which are combined into one outpu channel having a preset over-all level control and a couplin output volume control. Designed for inter Component set incl. PCB
$A C 12 B$
ACl 176
$\mathrm{BC}, 107$

BClo7 BClob

BC108
BC109
$\mathrm{BC1} 09$
BCl 47
BC 147
BC 148
BCl 49
BCl 157
BC 158
BC 159
BC 159
BC184
BC187
BC 187
BC 204
BC209C
BC 212 L
BC 213
BC 213
BC 478
$8 C 478$
$8 C Y 7$
$8 C Y 7$
BDI3
BD132
BFY50
BFY5
BSY95A
BSY95A
MJE2955
$\mathrm{OC28}$
$\mathrm{OC7}$
OC7
0 C 72
$0 \mathrm{OC72}$
$9 \mathrm{CR4}$
ORP12
7 CT 107
ZTX 107
ZTX10B
ZTX 108
ZTX501
$\mathrm{ZT} \times 501$
$\mathrm{ZT} \times 503$
$\mathrm{ZTX503}$
$\mathrm{ZTX531}$
2N706
$2 N 706$
$2 N 914$
$2 N \mathrm{~N} 1304$
2 N
2 N 1324
2 N 219
$2 \mathrm{~N}_{2} 90 \mathrm{~S}$
2 N 290 SA
2 N 2907
$2 N 3053$
$2 N 3054$
$2 N 3054$
$2 N 3055$
$2 N 3055$
$2 N 3702$
$2 N 3702$
$2 N 3703$
$2 N 3703$
$2 N 3704$
$2 N 3819$
$2 N 3820$
$2 N 3823 \mathrm{~F}$
2N4060
$2 N \$ 245$
$2 N 5777$

INTEGRATED CIRTS.
$\begin{array}{ll}709 & \text { TOS } \\ 709 & \text { 8-pin DIL } \\ \text { 48p }\end{array}$ 723 T05 DIL $98 \mathrm{95p}$ 41 B-pin DIL 32p $\begin{array}{lll}748 & \text { TO5 } & 63 p \\ 748 & \text { B-pin DIL } & 63 p\end{array}$ A780S T0220 205 p HA780S T0220 205p $\begin{array}{ll}\mu A 7808 \text { T0220 205p } \\ \mu A 7812 & \text { T0220 205p }\end{array}$
 LA7818 T0220 205p AY.1.0212
AY-1.6721/6
A 3046
SG3402N

ENGINEERS
Litill

Do you want promotion, a better job, higher pay" "New oppor tunities shows you how to ge them through a low-cost. Home Study Course. There are no boaks to buy and you can pay as you learn.

This easy to follow GUIDE TO UCCESS should be read by every ambitious engineer. Send for this heipfut 44 page free book NOW' No obligation, nobody will call on you. It could be the best thing you ever did.

CHOOSE A BRAND NEW FUTURE HERE

CUT OUT THIS COUPON ETE
ick or state subject of interest
Post to address below.

ELECTRICAL \&

ELECTRONICS
Practical Radio \&
Electronics (with kit)
Electronic Engineering Certificate
General Elect. Eng.
Certificate
C. \& G. Elect

Installations
Elect. Install. \& Work
C. \& G. Elect

Technicians
RADIO \& TELE-
COMMUNICATIONS
Colour TV Servicing
C. \& G. Telecoms

Technician's Cert.
Electronics Mech. Cert
Radio \& TV Engineering Course
Radio. Servicing \& Repairs
Radio Amateur's Exam
AUTO \& AERO
Motor Mechanics
C. \& G. Motor V

Mechanics
General Auto
Engineering
A.M.I.M.I.

POS:

Air Registration Board Certs.
MAA/IMI Dip.
CONSTRUCTIONAL
Heating Ventilating \&
Air Conditioning
Architectural Draughts manship \& Design
L.I.O.B.

Carpentry \& Joinery
Plumbing Technology
General Building Painting \& Decorating MECHANICAL
A.M.S.E. (Mech.)

General Mech. Eng. Inst. Engineers \&
Technicians
Maintenance Engineering Welding

MANAGEMENT \&

PRODUCTION
Computer Programming Inst. of Cost \&
Managements Accts
DRAUGHTSMANSHIP \& DESIGN
General Draughts-
manship
A.M.I.E.D.
\square Electrical Draughts.

G.C.E.

-58 'O' \& 'A' Level Subjects
-over 10,000 Group Passes!

Aldermaston College

Dept. TPE 21, Reading RG7 4PF

also at our London Advisory Office, 4 Fore Street Avenue,

 Moorgate, London EC2Y 5EJ. Tel. 01-628 2721.NAME (Block Capitals)
ADDRESS

Postcode.
Other subjects of interest

RETURN

00

This kit is auitable for record piayers, tape play back Guitars, electronic instruments or small P.A.systems Two versions are available. A monokit or a stereo kit. The mono kit uses 13 semiconductors. The stereo kit uses 22 semiconductors with printed front
panel and volume, bass and treble controls. Spec. panel and volume, bass and treble controls. Spec.
low output into 8 ohms, 7 W into $1: 5$ ohms, Response $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$, input 100 M . V. high imp. Size 9 in $\times 3$ in $\times 2 \mathrm{in}$.

Eesy to build. Full instructione supplie

ELAC 10 inch
Ribled cone, Large ceramic magnet. $50-16,000 \mathrm{c} / \mathrm{s}$. Bass $\begin{array}{ll}\text { resonance } 55 \mathrm{c} / \mathrm{s}, & 15 \mathrm{ohm} \\ \text { impedance. } 10 \mathrm{~W} . & \mathbf{5 4 - 5 0}\end{array}$

> MAINS TRANSFORMERS | ALL posf |
| :---: |
| sop |
| deach |

$250-0-25080 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 3 \cdot 5 \mathrm{~A}, 6 \cdot 3 \mathrm{~V}$ 1A or 5 V 2 A \$4.80
$\begin{aligned} & 300-0-300120 \mathrm{~mA} .6 \\ & 220 \mathrm{~V} 45 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}\end{aligned}$
HEATER TRANE 6
GENERAL PURPOSE LOW VOLTAGE
Tapped outputs at 2A 3, 4, 5, 6, 8, 9, 10, 12, 15, 18
24 and 30 V
$\begin{array}{r}15.18, \\ 84.60\end{array}$
$1 \wedge 8,8,10,12,16,18,20,24,30,36,40,48,6034 \cdot 60$
$2 A, 6,8,12,12,16,18,20,24,30,36,40,48,6027.00$
$3 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60,58,70$
$\begin{aligned} & 3 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60211 \cdot 25 \\ & 5,8,10,16 \mathrm{~V}, 1 \mathrm{~A}\end{aligned}$
$20-0-20 \mathrm{~V}$ IA 22.30 V 1 IA 81.75 . 20 V 1 A 21.80 .
$60 \mathrm{~V}, 40 \mathrm{~V}, 20 \mathrm{~V}$ or $20-0.20 \mathrm{~V}, 1 \mathrm{~A} 83.50$.
AUTO TRANSFORMERE. I15V to 230 V or 230 V
to 115 V 150 W \&5; $250 \mathrm{~W} 88 ; 400 \mathrm{~W}$ e7; 500W 230
CRARGER TRANSFORMERS. Input 200/250V
for 6 or 12V 1!A 28.75: 4A 24.60.
$\begin{aligned} & \text { FULL WAVEBRIDGECHARGER RECPIFIERS } \\ & 6 \text { or } 12 \mathrm{~V} \text { outputs } 11 \text { A } 40 \text { : } 2 \text { S5p: }\end{aligned}$
6 or 12 V outputa $11 \mathrm{~A} 40 \mathrm{p}: 2 \mathrm{~A}$ S5p; 4 A 85 p .
R.C.S. STABILISED POWER PACK KIT
All parta including printed circuit and inatructions to
build this unit. Voltages available: $6 \mathrm{~V}, 7.5 \mathrm{~V}, 9 \mathrm{~V}$.
12 V . Up to 100 mA output.
$\$ 2.95 \begin{gathered}\text { Pout } \\ \text { 4óp. }\end{gathered}$
R.C.S. STEREO FM TUNER

00

This completely cased maine powered Hi-Fi
Tuner with brushed aluminium facia ia British
\mathbf{T} $\mathbf{2 7 0}$ Tuner with brushed aluminium facia is British Post 4jp made uaing the fatest circuitry. Bargain. Kuba Stereo Tuner/Amplifier Chassia. Brand new 238.50
BARGAIN 3W AMPLIFIER. \& Transistor
Punh-Pull Ready built with volume, treble and $\mathbf{~} \mathbf{3 - 9 5}$

E.M.I. $13 \frac{1}{2} \times 8$ in

SPEAKER SALE!
 state 3 or 8 ohm . Asilluatrated. Porl 45 p
I5W model $£ 8.50$ B or 15 ohma, Post 65 p 20 M model ≤ 9.50 8 or 15 ohme. Post 65p

BAKER 150 WATT
ALL PURPOSE
TRANSISTOR

MIXER AMPLIFIER

Ideal for Groups, Ditco, P.A. and minscai Ingtruments. 4 inputs speech and music. 4 way
mixing. Output $4 / 8 / 16 \mathrm{ohm}$. a.c. Mains mixing. output
Separate treble and bass controls. 50 watt model $£ 49$.
NEW 'DISCO 100 WATT'
ALL TRANBIETOR AMPLIFIER CHASSIS $£ 52$ 2 inputn. 4 outputs neparate volume treble Carr. E 1 and bass controle. Ideal disco or ulave amplifier chassis. BLACK CARRYING CABINET AVAILABLE 29.

PW SOUND TO LIGHT DISPLAY Complete kit of parts with R.C.S. printed circuit.
Three $1,000 \mathrm{~W}$ channels. As featured in Practical Wireleas. $\mathbf{\&} 12-50$ CABINET extras3.

GOODMANS CONE TWEETER
 F.M.1. 13×8 in. 25 W Bass Unit 48.50

R.C.S. 100 WATT VALVE AMPLIFIER CHASSIS

Profensional model. Four inpute. Treble, Basi, Master Volume Controls. Ideal disco, P.A. or groups. $\mathbf{6 8 5}$ 3 A.E. for details. 3 speaker outputs. 685 Suitable carrying case $\mathbf{1 6 . 5 0}$.
E.M.I. GRAM MOTOR£ $1 \cdot 25$
E. M11. or 240 V a.c. $2,40 \mathrm{or}$. Pont 30p
E.M.I. TAPE MOTOR

4 pole, 240 V a.c. 185 mA
1,400 r.p.m. Spindle kin daa
75 V version \&1. (Illustrated)
Size 3: 4 21
COLLARO GRAM MOTOR I20V
GEAR BOX 25:195p.
PHILIPS GRAM MOTOR 6 VOLTA

BSR HI-FI AUTOCHANGER
Plays $12 \mathrm{in}, 10 \mathrm{in}$ or 7 in record Auto or Manual. A high qualiability with 12 months' guarantee. A.c. $200 / 250 \mathrm{~V}$ Size $13 \frac{1}{2} \times 11$ in. 200/250
Above motor board 3% in Below motor board 2 in With STEREO/MONO AARTRIDGE

 GARRARD AUTOCHANGER Model $6300 ~$
GARRARD MINICHANGER SIze 12×8 in 88.05
PORTABLE PLAYER CABINET $\mathbf{£ 4 . 5 0}$
Modern denign. Size $16 \mathrm{in} \times 15 \mathrm{in} \times 7 \mathrm{in}$ Pont 50 p p. covered. Largefront grille. Hinged lid. Chrome fittings. Motor board cut for Garrard or Bar deek

R.C.S. DISCO DECK SINGLE RECORD PLAYER
Fitted with auto stop, stereo/compat. cartridge. Baseplate. Size 1 lin $\times 81 \mathrm{in}$. Turntable. Size 7 in 3 speeds plays all size records.
Two for cll \quad Post 7 üp.

HEAVY METAL PLINTHS With P.V.C. Cover. Cut out for most B.S.R. or Garrard decks.
ilver gres flnisb.
Model '"A'. Size $121 \times 142 \times 71 \mathrm{in}$.
Post 75p. Ertra Largo Plinth and Cover
Size $20 \times 17!\times 9 \mathrm{in}$. Callera only 218.50
TINTED PLASTIC COVERS ONLY

 $\mathrm{D}^{\prime}-16 \frac{1}{2} \mathrm{in} \times 14 \mathrm{in} \times 4 \mathrm{in}, 23 \cdot 60$.
Ideal for record decks, tape decks, etc. Poat $7 \mathrm{u} p$.
BAKER HI-FI SPEAKERS HIGH QUALITY-BRITISH MADE SUPERB
I2in 25 watts
A high quality loudspeaker, esonance eneures cone reproduction of tbe deepest bass. Fitted witb a special copper drive and concentric tweeter cone resulting in fult range reproduction with remarkeble efficiency in the upper register.
 Flux Density $\quad 16,500$ gauss 8 or 16 ohms models.
£21.95

AUDITORIUM

|2in 35 watts
A full range reproducer for blgh power. Electric Guitars, public addreas, multi-speaker sistems, eal for $\mathrm{Hi}-\mathrm{Fi}$ and Dlsco theques.
Basa Resonance $\quad 35 \mathrm{c} / \mathrm{s}$ Useful response $25=16,000 \mathrm{c} /$ 8 or 16 ohms models.

$£ 20 \cdot 95$?
 15 in model 45 watts $\mathbf{8 2 4} 95$. Post $\mathrm{E} 1 \cdot 60$

BLANK ALUMINIUM CHASBIS; 18 g.w.g. 2 itin sides
 $6 \mathrm{in} \times 10 \mathrm{in}, \mathrm{E} .70$, $12 \mathrm{in} \times \mathrm{kin}, ~ \$ 1 \cdot 35$.
ALUMIMIOM PARELS, 18 s.w.g. 6 in - $4 \mathrm{in}, 15 \mathrm{p} ; 8 \mathrm{in} \cdot 6 \mathrm{in}$ 25p; 10 in -7in, 30 p ; $12 \mathrm{in} \times 3 \mathrm{in}, 30 \mathrm{p}$; $12 \mathrm{in} \times 8 \mathrm{in}$, 40p 6in 6in, 45p; 14ilt 9in, 50p; 12 in \times lein. 55p 6 in - $10 \mathrm{in}, 75 \mathrm{p}$
 ALUMIHJUM BOXES, MANY SIZES In gTOCK.

MICROPROCESSORS

How much invention is the result of directed endeavour; how much on the other hand is the result of some happy chance discovery? One thing we do know is that serendipity has figured significantly in the semiconductor story.
Remember how the transistor came about? Recall the development of the integrated circuit-a "reverse" development, from factory to lab-suggested by the technique involved in the bulk manufacture of discrete transistors. Now the microprocessor, invented by Intel in answer to a calculator manufacturer's request for a single LSI chip suitable for a whole range of different calculators.
The wider significance of this invention is now clear to see. The microprocessor has introduced an alternative approach to conventional logic design, based on a chip infinitely variable in arithmetic and control operations, and amenable to instructions.
That first microprocessor came about as the result of a determined investigation into a particular problem, but serendipity really comes into the picture again, as the consequential advantages of this new device-way outside the application which was the cause of its creation-were recognised. It has now become the intelligent centre of all manner of electronic control and computing systems. The sometime lavish-sounding claims made on its behalf are now seen to be credible, as the microprocessor finds its way into industrial, scientific and even domestic equipments.
Amateurs have naturally been keen, albeit complexed, sideline observers of the rapid developments in the microprocessor field. For most of them the relevance of microprocessors to their hobby is still represented by a big question mark.
One thing at least soon became clear, to professionals no less than to amateurs. This was not going to be an easy comfortable transition, like from discretes to i.c.s. Even the trauma of changing from valves to transistors would in no way equal the radical changes in the approach to circuit design that the microprocessor would bring about. For another discipline comes into play, as the keyboard takes over from the soldering iron as the most important implement during development work. The user of microprocessors must get on familiar terms with computer programming: with the peculiar language or jargon, as well as with the techniques which have to be learnt and practised. Peripherals have to be taken into account-more especially if one is interested in building a stand-alone minicomputer-and these are generally expensive pieces of apparatus.
And yet computing, as an end in itself, is not the only aspect of microprocessors that will interest the constructor. Microprocessors will also be used in "dedicated" functions. In such roles these devices are really to be seen as extra-powerful building blocks. The scope of amateur built equipment will expand to enormous proportions with the - a of such dedicated microprocessors.
As Mr. Coles says in his opening article, no one should ignore microprocessors. This without doubt is the message of the moment. Whether a "chance" invention or not, the coming of the microprocessor is an event equalled only by the discovery of the transistor.
F.E.B.

Editor
F. E. BENNETT

Editorial

G. C. ARNOLD Assistant Editor
D. BARRINGTON Production Editor
G. GODBOLD Technical Editor
M. ABBOTT

Art Dept.
J. D. POUNTNEY Art Editor
D. J. GOODING
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager

D. W. B. TILLEARD

Phone: 01-634 4504
P. J. MEW

Phone: 01-6344181
C. R. BROWN Classified Phone: 01-261 5762

Make-up and Copy Dept.
Phone: 01-634 4372
Editorial \& Advertising Offices:
Fleetway House, Farringdon St.
London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4504

ORIGINALLY a research laboratory curiosity, pH determination has now become one of the more important measurements needed by industry, technology, agriculture and medicine.

The pH value of a substance is a measure of its acidity, and is therefore dependent upon the concentration of Hydrogen ions present. The symbol for this concentration is $\left[\mathrm{H}_{3}^{+}\right]$, and the units are grams per litre. To convert this Hydrogen ion concentration figure to a pH value, it must be expressed as an exponent of ten (as a common logarithm), but with the exponent polarity reversed. It was the Swedish scientist Sorensen who devised this scale, and decided how the pH value should be arrived at, and this theory will be expanded later.

No modern electroplating plant could function without rigid pH control of its various electrolytes. Similarly, effluent treatment plant has pH controllers and recorders monitoring most steps in the purification cycle. Food preparation and brewing both rely heavily on tight control of acidity for successful functioning of the various fermentation stages upon which they depend. In medicine, blood pH measurements are sometimes wised as an index of the respiratory state during surgery, while another clinical application is a check on the acidic properties of certain body fluids. Special equipment and techniques are called for in these latter applications.

Determination of soil pH is a vital necessity, particularly where intensive agriculture methods are applied, since most crops have a definite narrow band over which optimum growth rate occurs. A deviation of soil pH by four units either side of neutrality would result in the extinction of almost all plant life, though needless to say this deviation is unlikely to occur.

Until recently the amateur has regarded pH measurement, apart from the use of colourimetric test sets, as being for the professional laboratory only. This has been partly due to the expense of such equipment, and
partly because facts about electrometric pH methods are only given in the more serious text books. However, there is no reason why anyone with a modicum of skill and plenty of patience should not be able to construct this device, and make accurate pH measurements, and voltage readings in the range zero to two volts.

THEORY

Many chemicals readily dissolve in water, producing a solution that conducts electricity. These chemicals have the property of splitting up, usually into two separately charged entities called ions. This ionization takes place when the solvent has a high dielectric constant, and can therefore separate and support unlike charges. Pure water is a poor conductor and so serves as a dielectric.

Two types of ion are produced: One is called the cation which is derived from the metallic part of the molecule and possesses a positive charge, and the other is called the anion, non-metallic in origin and negatively charged.

Common salt, sodium chloride (NaCl) splits up exactly as described.

$$
\mathrm{NaCl} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

(neutral molecule) (cation) (anion)
The double arrows in the equation indicate that the splitting up may not be complete, such that only a percentage of the salt is ionized. The amount will depend on certain physical conditions like the strength of solution, temperature, and type of salt. The unionized portion is assumed to consist of neutral molecules. Note how plus and minus signs are used to indicate the ion charges.

ACIDS AND ALKALIS

All acids produce Hydrogen ions H^{+}, and all alkalis produce Hydroxyl ions OH^{-}. This is in fact the modern definition of these substances.

Sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ ionizes:

$$
\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{--}
$$

A two-part article explaining an electronic method of pH determination; a field of interest to gardeners, aquarium owners, chemists, home brewers and students.
 An instrument is described which will not only measure pH accurately, but make very high impedance voltage readings up to two volts.

PART ONE
*Some basic theory of acids and alkalis, and electrometric detection techniques
PART TWO (next month)
: Complete design and construction details of a pH meter
\% Standardising and using the instrument

Since each Hydrogen ion H^{+}can carry one positive charge only, and each $\mathrm{H}_{2} \mathrm{SO}_{4}$ molecule is electrically neutral, the sulphate ion must have two negative charges $\mathrm{SO}_{4}-$.
The anion can be either a non-metallic element or, as in this case, a radical. A radical is a fundamental group of atoms such as sulphate (SO_{4}), nitrate $\left(\mathrm{NO}_{3}\right)$, phosphate $\left(\mathrm{PO}_{4}\right)$ and carbonate $\left(\mathrm{CO}_{3}\right)$, that behave as individual entities and remain unchanged by most chemical reactions.
The alkali caustic soda (NaOH) ionizes:

$$
\cdot \mathrm{NaOH} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{OH}^{-}
$$

This being an alkali molecule will produce a Hydroxyl ion OH^{-}, whereas the sulphuric acid molecule produced two Hydrogen ions $2 \mathrm{H}^{+}$. Note that Hydroxyl ions OH^{-}are in fact radicals.

WATER

Solutions which conduct electricity more readily (electrolytes) are those in which the percentage ionization is high, sometimes as much as 100 per cent. Such electrolytes include sulphuric, hydrochloric and nitric acids, and alkalis like caustic soda, caustic potash, ammonia and calcium hydroxide.
Water is a special case because it only slightly ionizes, and gives rise to both Hydrogen and Hydroxyl ions. The product of Hydrogen and Hydroxyl ions in pure water at $25^{\circ} \mathrm{C}$ has been found to be 10^{-14} grams per litre. This accounts for the very small but definite conductivity of even the purest water. Tap-water however, is generally a good conductor.

Therefore:

$$
\begin{equation*}
\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=10^{-14} \mathrm{~g} / 1 \tag{1}
\end{equation*}
$$

Also since water is electrically neutral, $\left[\mathrm{H}^{+}\right]$must equal $\left[\mathrm{OH}^{-}\right]$. Making this substitution, equation (1) becomes:

$$
\begin{equation*}
\left[\mathrm{H}^{+}\right] \times\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}^{+}\right]^{2}=10^{-14} \tag{2}
\end{equation*}
$$

Therefore:

$$
\begin{equation*}
\left[\mathrm{H}^{+}\right]=\sqrt{10^{-14}}=10^{-7} \tag{3}
\end{equation*}
$$

The Hydrogen ion concentration of pure water is $10^{-7} \mathrm{~g} / \mathrm{l}$.

THE pH SCALE

In 1922 Sorensen suggested taking the exponent of ten with the sign changed to + and using this to form a scale up to fourteen (at $25^{\circ} \mathrm{C}$). This would give
neutrality at pH 7 (based on water), so that equation (3) becomes:

$$
\left[\mathrm{H}^{+}\right]=10^{-7} \text { or } \mathrm{pH}+7
$$

Neutrality here refers to the balance between Hydrogen ions and Hydroxyl ions. At pH 7 both types of ion are present in equal quantities.
Were it not for the exponent reversal, the pH value would simply be the logarithm to base ten of the $\left[\mathrm{H}^{+}\right]$ value.

However, the mathematical translation is now:

$$
\begin{aligned}
& \mathrm{pH}=\log _{10} \frac{1}{\left[\mathrm{H}^{+}\right]} \\
& \text {and }\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}
\end{aligned}
$$

The "ionic product of water" $\left(\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]\right)$that Sorensen used to fix the length of the pH scale, depends upon temperature, and varies from about 14.9 at $0^{\circ} \mathrm{C}$ to 13.0 at $60^{\circ} \mathrm{C}$. This complicates pH measurement considerably, causing variation even at pH 7 . As a consequence, the scale of any pH meter will be correct only at the temperature at which it was calibrated.

Note that with the pH scale, increasing acidity is shown by a lower pH , and increasing alkalinity is shown by a higher pH . Also, halving the pH does not double the $\left[\mathrm{H}^{+}\right]$, but increases it ten times. A reading of zero pH (for $25^{\circ} \mathrm{C}$) will be a Hydrogen ion concentration of one gram per litre, and concentrations in excess of this would indeed give a negative pH value. Finally, the letters pH are an abbreviation of exponent of Hydrogen ion concentration.

CONCEPT OF POTENTIAL

All that is needed to measure pH then, is a method of counting the number of Hydrogen ions in a solution.
Consider a metallic electrode immersed in a solution containing its own ions, such as copper in copper sulphate, or zinc in zinc chloride. The metal will have a tendency to enter the solution by forming further metal ions. This tendency is called the Electrolytic Solution Pressure (E.S.P.) and is greater for some metals than others. This ion formation is opposed by the Osmotic Pressure (O.P.) which tends to do the reverse; depositing ions from the solution onto the metal electrode. If E.S.P. is greater than O.P. the electrode metal will release some positive ions, leaving behind a negative charge on the electrode. Conversely, if O.P. is greater than E.S.P., positive metal ions deposit themselves on the electrode, which then accumulates a positive charge. When E.S.P. is equal to O.P. a state of balance exists.

The imbalance is precisely what happens in a primary cell, where an electrode of each type described is immersed in the same electrolyte. The external circuit (the load) is the path through which electrons from the negative electrode return to the electron-starved positive electrode, constituting the electric current.
The most important factor influencing E.S.P. is the concentration of metal ions in the liquid. Also, E.S.P. $\propto\left[M^{+}\right]$, where M is the metal from which the electrode is constructed, and M^{+}is the ion quantity produced from M by loss of electrons.

ELECTRODES

Obviously probes are needed for the pH meter, and one type is the Hydrogen electrode. If E.S.P. is proportional to $\left[\mathrm{M}^{+}\right]$with a metal electrode, then E.S.P. is proportional to $\left[\mathrm{H}^{+}\right]$with a Hydrogen electrode. Unfortunately Hydrogen is a gas! However, there are metals such as platinum and palladium, that possess the property of adsorbing Hydrogen gas on their surfaces and causing it to ionize. In this condition it will come into equilibrium with the quantity of Hydrogen ions present, in any aqueous solution in which it is placed.
The Hydrogen electrode effectively produced acquires a potential proportional to the $\left[\mathrm{H}^{+}\right]$or the pH of the liquid. Therefore, E.S.P. (of Hydrogen electrode) $\propto \mathrm{pH}$.
Although the Hydrogen electrode is feasible and forms the basis of all reference standards, it suffers from serious practical limitations both constructional and manipulative, so that it is only rarely used outside the research laboratory.
As a standard of potential however, the Hydrogen electrode immersed in a solution containing H^{+}at a concentration of one gram per litre, is by convention assigned the value of zero volts. Values on either side of it receiving a plus or minus sign. This is the origin of the electrochemical series.

A voltaic cell presupposes two electrodes immersed in a suitable electrolyte between which a potential difference is developed. To find the E.S.P. the same need arises; to combine the detecting electrode (in this case Hydrogen) with another to form a complete cell, the potential difference of which can be measured. Also, if E.S.P. varies with pH , the second electrode must give an independent fixed potential to avoid a second variable. A standard reference potential is therefore chosen as the second half of the complete cell. Each electrode is often called a half cell, and the one providing the fixed potential, a standard half cell.
The most commonly used reference electrode is the calomel half cell, a modern form of which is shown in Fig. 1. The potassium chloride solution which functions as the electrolyte, is sometimes called the salt bridge. This dates back to when two separate electrodes were electrically connected by means of an inverted U tube containing potassium chloride, which bridged the two electrodes and so completed the circuit.
This particular salt is comparatively inexpensive, easily purified by recrystallisation, is a good conductor, and possesses ions which travel at similar velocities. This final advantage ensures that junction potentials at each end of the bridge are virtually eliminated. Originally the saturated salt solution linked the two electrodes, whereas in pH measurement the sample to be tested will link the two half cells, forming a complete cell whose voltage can be measured. The standard half cell still contains a salt bridge, but electrical continuity to the sample in which it is placed, is effected by a porous plug situated at the bottom of the electrode. This allows slow diffusion (about $3 \mathrm{cc} /$ day) of electrolyte, thus maintaining exterior electrical continuity.

Fig. 1. Calomel half cell

Although the Hydrogen electrode was considered impractical, it does, when combined with a calomel half cell, enable pH measurements to be carried out with comparatively simple circuitry.

THE GLASS ELECTRODE

There is, however. one electrode which is sensitive to Hydrogen ions, is unaffected by most chemical compounds, is more manageable and easily made commercially, and gives a rapid response to changes in $\left[\mathrm{H}^{+}\right]$. This is the glass electrode, and its construction is shown in Fig. 2.

Glass is generally considered to be an insulator, but since conductivity is a relative thing, it will be no surprise to discover that a glass electrode may have a resistance from 50 to $1,000 \mathrm{M} \Omega$, depending upon the type and temperature.

The electrode is constructed from a special glass with properties selected to enable it to function over as wide a pH range as possible (ordinary glass is attacked by strong alkalis at pH greater than ten), to possess a comparatively low internal resistance, and to respond rapidly to changes in pH . It usually consists of a Pyrex glass tube to which a special glass disc is attached at one end by partial fusion. The disc is then blown out into a small bulb of very thin wall, hence its fragility. After fabrication the electrode is annealed to reduce stresses which affect the "asymmetric potential".

To make electrical contact with the inner glass surface, since the pH -dependent voltage is developed between the inner and outer surfaces, a small volume of dilute hydrochloric acid or buffer solution is introduced into the bulb. Into this liquid dips a silver wire, the immersed end of which is electrically coated with

Fig. 2. Glass electrode
silver chloride (AgCl). This inner combination actually forms another electrode, but since its potential is constant and unaffected by external conditions, it plays no part in pH determination provided temperature is kept constant. At the opposite end of the Pyrex tube is an insulated cap, inside which the silver wire is soldered to a flexible coaxial connecting lead. The other end of the lead has a suitable termination for connection to the meter unit.

The glass electrode is considered to function as a kind of ion exchange membrane, in which Hydrogen ions in the liquid under test exchange with calcium, lithium, barium or other ions within the lattice structure of the glass. This phenomenon, which is not completely understood, gives rise to the potential difference across the glass membrane.

A glass electrode in combination with a calomel or other reference electrode and connected by a salt bridge, functions as a rather sophisticated primary cell, the potential difference of which depends upon two factors: (a) the reference potential, and (b) the potential developed by the glass electrode.

Assuming all controllable variables are kept constant, the potential difference across the electrode combination is proportional to the pH of the liquid in which the glass electrode is placed.

Nernst, a German electrochemist, derived an equation involving calculus which enabled E.S.P. to be calculated, and it is known from this equation that the E.S.P. of an electrode (usually expressed in millivolts), is a linear function of the ion concentration, except perhaps at the extreme ends of the pH scale. With the potential difference of our electrodes being a linear relationship to $\left[\mathrm{H}^{+}\right]$, the only remaining problem is how to measure this potential with a source resistance of, say, $100 \mathrm{M} \Omega$. The internal resistance of the calomel half cell is ignored since it falls within the Kilo-ohm range. The potential across the cell is about one volt, so the available current will be in the region of ten nano-amperes.

If we require the results to be within one per cent, we need a voltmeter with a resistance of $10,000 \mathrm{M} \Omega$ or greater. Few other measurements of potential except perhaps flame conduction, call for input resistances of such magnitude.

MEASURING POTENTIAL

Two distinct methods of measuring the potential developed by the glass-calomel electrode combination have been used in commercial meters. One method first amplifies the signal, then compares it with a standard potential from a Weston cell, or a secondary standard lead acid accumulator which has been itself standardised from the Weston cell. The comparison is made using the Poggendorf Potentiometer, incorporating a galvanometer as a null point detector. The circuit is essentially simple, and free from scale errors often associated with direct reading voltmeters. For routine pH measurements it has the disadvantage that pH changes cannot readily be followed, since a fresh null point must be found after any change in $\left[\mathrm{H}^{+}\right]$. It was used in the earliest pH meters, and is still used where results of the highest accuracy are needed as opposed to rapid routine measurements.

The alternative method gives rise to the direct reading pH meter, and is in effect a d.c. voltmeter with a very high input resistance. In view of the minute current available, the signal must be amplified before it can give a reading, even on a micro-ammeter. The first stage of the amplifier for both types of pH meter
is a valve acting as an impedance converter giving an output of a few micro-amps, and a voltage gain of slightly less than unity. For the direct reading meter this output current is further amplified, so that the resulting current can actuate a micro-ammeter which may be calibrated in pH units.

ELECTROMETER VALVE

For this particular application the electrometer valve still has much to offer, in the way of low noise and high input resistance. This valve is of rather special construction, and its peculiarities are that the cathode is directly heated with d.c., it requires a very low anode voltage, it is under-run by comparison with other types of valve, and the grid current is extremely low.

The exterior of the glass envelope is silicone coated to prevent condensation, and maintain a high surface resistance. As a consequence of this, the valve must NEVER BE HANDLED WITH THE FINGERS; TWEEZERS ShOULD be USED, and no insulation or sleeving must be placed on the grid lead.

By dispensing with the valve base, leakage via plastics insulation is avoided, while under-running the valve reduces ionization of any residual gas in the

CONSTRUCTORS NOTE

The ME1404 is no longer available direct from Mullard Ltd, but can be obtained from the following distributors:
R. S. T. Valve Mail Order Company, Cllmax House, Fallsbrook Road, Streatham, London, SW16 6ED.
Black Bow Electronics Ltd, Millbrook Road, Stover Trading Estate, Yate, Bristol.

Farnell Electronic Components Ltd,
Canal Road, Leeds, LS12 2 TU.
We recommend that due to the limited availability of the ME1404 electrometer valve, anyone intending to construct the pH meter should secure this device before purchasing any other item.

COMPOMENTS ...

Resistors

R1 220 (V)
R2 $100 \mathrm{k} \Omega(\mathrm{V})$
R3 $1 \mathrm{k} \Omega$ (V)
R4 $10 \mathrm{k} \Omega$
R5 $10 \mathrm{k} \Omega$
R6 $56 \mathrm{k} \Omega$
R7 $130 \mathrm{k} \Omega+10 \mathrm{k} \Omega$ in series
R8-12 (high stability) see text
VR1 $15 \mathrm{k} \Omega$ wire-wound

Semiconductors

TR1, TR2, OC140 or equivalent (2 off)
Valves
V1 ME1404 (V)

Miscellaneous

S1 1 pole 2 way nylon loaded or ceramic switch (see text).
S2 2 pole 6 way rotary.
S3 2 pole 3 way (from 2P 6W standard rotary switch). (V)
ME1 100μ A f.s.d. meter. $1 \mathrm{k} \Omega$ resistance or less.
Terminals to fit glass and reference electrodes.
Earth terminal. Matrix board. 4BA and 6BA nuts and bolts.
Suitable knobs. Perspex sheet, $\frac{1}{16} \mathrm{in}$. or $\frac{3}{32} \mathrm{in}$. thick ($1.6 \mathrm{~mm}-2.4 \mathrm{~mm}$).
Metal box to give good screening. Prototype used $222 \mathrm{~mm} \times 146 \mathrm{~mm} \times 5.7 \mathrm{~mm}$ die cast box.
(V) As valves become obsolete, they become difficult or impossible to replace. Therefore part two of this article will give details of an alternative f.e.t. input stage, which directly replaces the cheaper ME1404 with only a few modifications. Hence, components marked (V) should not be purchased if the f.e.t. version is to be constructed at the outset.

Fig. 3. Basic meter circuit using the Mullard electrometer valve

Fig. 4. Optional power pack

envelope, and maintains low grid current. Using d.c. to heat the cathode eliminates any noise or possible filament vibration.

THE pH METER UNIT

If the construction scheme is followed carefully, the resulting meter will be capable of measuring pH to 0.05 unit or better, but if corners are cut, accuracy will suffer. Because there is no ready way of knowing if a pH meter is reading correctly, as some meter deflection will result under almost any condition, accuracy must be built in if the user is to have confidence in the final results.

The basic meter circuit is given in Fig. 3. The valve is a Mullard ME1404 subminiature electrometer triode. The filament-cathode is fed at 1.2 to 1.3 volts, and passes a current of about 14 mA . The line potential of 18 volts is dropped by R3, while R1 has a similar function, in addition to giving the grid a bias of minus 2 volts. The output voltage is developed across the load resistor R2 when V1 conducts. Note the very low anode voltage with this class of valve.

The arms of the bridge are formed by TR1 and TR2, together with R4 and R5. With SI in the zero position there is a certain standing current in V1, and the bridge may be balanced by adjusting VR1. When balance is achieved there is no potential difference between points X 1 and X2, and the meter reads zero. On applying a p.d. across the input points 11 and 12, and switching SI to the READ position, the anode current changes, causing a corresponding change in anode potential and hence in bias to TR1. The change in current in TRI upsets the bridge balance, giving meter deflection.

Within the limits of accuracy of this circuit and over the restricted range involved, the anode current is linear with respect to the grid current, so the meter reading bears a straight line relationship with the input from the electrodes. The micro-ammeter can be calibrated to read directly in pH units, or millivolts. All that is required is to select the correct values for resistors R8 to R12 on a multi-range version.

The circuit is uncomplicated, needing very few components, but some special points need clarification. Switch SI is a two position selector and must be either ceramic or nylon loaded, and not a normal type with insulation of a lower order. The negative input terminal to which the glass electrode is connected must be
insulated from the case with Fluon, Perspex or polystyrene. All connections between the input, S1 and the grid of the valve must be made with stiff bare copper wire, insulation depending only on the air gap. These requirements preserve the high input resistance of the instrument on which its accuracy depends. Beyond the grid, no special precautions are necessary, normal good quality insulation and wiring being satisfactory. Detailed drawings of the construction of the unit will be given next month.

The transistors TRI and TR2, which ideally could be a matched pair, are mounted together in a double holder (or two bolted together), to give thermal coupling. S3 calls for an ordinary two-pole, three-way rotary switch, but is wired to ensure that the valve filament is switched on before the anode. This is a requirement for electrometer valves which promotes stability during their life. A make-before-break switch is preferred.

The meter is driven from two 9 volt batteries in series, if the instrument is to be portable, or the power pack shown in Fig. 4 can be used. The power pack is recommended, as unnoticed inaccurate results may arise from failing batteries. The selection of values for R1 and R2 in the power supply will be described in Part 2 of the project.

Next Month: Constructional details, calibration, and f.e.t. alternative input stage. Also, suppliers of glass electrode and calomel half cells will be detailed

Ponstamt

AMONG the most useful and popular of construc. tional projects for the electronics enthusiast is an intercom. Many designs for these have been published in the past, and in the author's experience these all suffer from one main shortcoming. This is the lack of any form of volume control.

This results in some users being barely audible over the system as they tend to talk tou softly at too great a distance from the microphone. On the other hand. some people tend to talk unusually loudly into the microphone at very close quarters. This results in excessive volume and distortion at the receiving end of the system.

One way of overcoming all this would be to merely fit manual volume controls to the circuit. but a more satisfactory method would be to incorporate some form of automatic volume control (a.v.c.) in the system. It is on this concept that the intercom described in this article was designed

THE CIRCUIT

The complete circuit diagram of the constant volume intercom is shown in Fig. 1. The input stage uses TRI, a dual gate mosfer, in the common source configuration (the FET equivalent of the bipolar common emitter circuit). The use of a dual gate mOSFET here may seem a little unusual as these devices are usually only used in r.f. applications. However, these devices do operate satisfactorily in audio applications such as this, where the fact that they do not provide quite such a low noise level as jUGFET or bipolar devices is not too important.
Of course, the reason that a dual gate mosfet is employed in the circuit is that it is ideal for circuits that use a.v.c. The device is biased in the usual way, with source bias resistor VRI and gate bias resistor R1. C4 is the source bypass capacitor and R3 is the drain load resistor,

The gain of this stage is controlled by the voltage at the g 2 terminal of TR1. Gain is at a maximum with this terminal held about 1 to 2 volts above the

COMPONENTS . . .

Resistors		
R1	56Ω	R6
R2	$100 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$
R3	$4.7 \mathrm{k} \Omega$	R7
R4	220Ω	
R5 680Ω	R8	390Ω
R $2.2 \mathrm{M} \Omega$	R9	$120 \mathrm{k} \Omega$
	R10	$12 \mathrm{k} \Omega$

All $\frac{1}{4}$ W carbon
Potentiometers
VR1, $22 \cdot 2 \mathrm{k} \Omega$ horizontal preset (2 off)

Capacitors

C1	$100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.	C7	100 nF type C280
C 2	$2 \cdot 2 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.	C8	$100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C 3	100 nF type C280	C 9	$100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C 4	$10 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.	C10	$2 \cdot 2 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C5	$10 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.	C 11	$100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C6	15 nF type C280		

Semiconductors

IC1 LM380N
TR1 40673
TR2 BC108
D1 and D2 OA91 (2 off)

Switches

S1 D.P.D.T. (see text)
S2 S.P.S.T. miniature toggle
S3 Push to make, release to break type

Loudspeakers

LS1 and LS2 Miniature (50 to 65 mm) 40 to 80Ω
Miscellaneous
Two plastics cases, one about $150 \times 80 \times 50 \mathrm{~mm}$, and one about $115 \times 75 \times 36 \mathrm{~mm}$ (Verobox type 65-2520J, and plastics box type PB1, both available from M.E.S.)
Connecting cable of three core sub-miniature mains lead
0.1 in . matrix Veroboard and Veropins

14 pin d.i.l. i.c. holder for IC1
Speaker cloth or fret, grommets, wire, solder, etc.

Fig. 1. Circuit diagram of the constant volume intercom
negative supply rail potential. Under quiescent conditions a bias voltage of approximately this level is obtained from TR1 source via R2. Reducing the g2 bias voltage results in a decrease in stage gain. and thus a simple a.v.c. action can be obtained by applying a negative a.v.c. bias to TR1g2.

INPUT IMPEDANCE

As usual with this type of equipment, each speaker also doubles up as a sort of moving coil microphone. In order to obtain a good frequency response from these the amplifier must have a low input impedance, the actual value required being approximately equal to the impedance of the speakers used. Although fets have extremely high input impedances, and are usually associated with high input impedance amplifiers. a low input impedance can be attained by simply using a low value gate bias resistor. The actual input impedance is approximately equal to the value given to this resistor. One advantage of this type of circuit is that there is no need to use a capacitor at the input, as there is no significant d.c. potential to block here.

TR2 is used in the common emitter mode, and is used to boost the output of TRI to a level that will fully drive the output stage, even with only a fairly weak input at TR 1 g 1 . This stage is quite conventional except for the unbypassed emitter resistor, R7. This introduces a degree of negative feedback to the circuit, and reduces the voltage gain of TR2 to the required level (about 26 dB).
C6 filters out any r.f. signals that might be picked up in the connecting cable, and could otherwise break through to appear as an audio signal from the speaker. It also slightly reduces the upper frequency response of the circuit which results in an improved signal to noise ratio.

OUTPUT STAGE

An LM380 i.c. is used in the output stage, and when used in its most simple form, as it is here, the only discrete components that are needed to complete a practical amplifier are the input and output coupling capacitors. These are C7 and C9 respectively. An internal feedback network sets the gain of the i.c. at typically 50 times.

Although this is a 2 watt i.c., at the supply voltage and speaker impedance used here it is limited to an output power of about 100 mW r.m.s. This is more than adequate for an intercom, and the quality of the output is quite good for this type of equipment.

A.V.C. ACTION

Some of the output signal of the LM380 is fed via C10 and VR2 to the rectification and smoothing network. C10 provides d.c. blocking and VR2 sets the level of compression. D1, D2, C11, R9 and C2 are the rectifying and smoothing network.

This network produces a negative bias at the g 2 terminal of TRI, and the level of this bias is proportional to the amplifier's output signal amplitude. On strong signals a large bias voltage is developed, the gain greatly diminishing. Low level signals produce only a very small bias voltage which does not greatly affect the gain of TRI. Intermediate output amplitudes produce an intermediate bias level and circuit gain.

As a result of this the circuit has a low gain on strong signals, medium gain on average signals, and high gain on weak signals. This produces a level of volume from the intercom that is relatively constant over a wide range of input levels, and thus is very simple but effective.

Interior view of the master unit showing component board mounting position and wiring to the control switches and loudspeaker

This a.v.c. action has a quite fast attack time. but the decay time has purposely been made comparatively long (about 2 seconds). This is to avoid the undesirable effects of the a.v.c. bias falling away during the brief pauses that occur during normal speech. The decay time is set by the values given to C11 and R10.

SWITCHING

Normally S1 is left in the position shown in the circuit diagram, with the master unit set to receive any call from the remote unit. For the remote unit to call the master one, S3 is pressed while the operator talks into the microphone. Then anyone hearing the call at the master unit switches the unit on by closing S2. "Send/Receive" switching is then controlled at the master unit using S1.

The master station can call the remote one by S 2 being closed, "and the position of S1 being reversed (set to the "Send" position). The operator then
speaks into the microphone and talks through to the remote unit.

Ideally S1 would be a biased type so that it would automatically return to the "Receive" position when a conversation had been completed. Unfortunately, biased switches are not easily obtained, and it will probably be necessary to use an ordinary unbiased type. It is then essential that this switch is always manually returned to the receive position, as otherwise it will be impossible for the remote unit to call the main one.

As the circuit is extremely sensitive, it is important in the interest of good low frequency stability that the supply lines are well decoupled. This is the purpose of C1, C5, C8, R4 and R8.

COMPONENT PANEL

All the small components are mounted on a $0 \cdot 1$ in pitch Veroboard panel. Details of this panel are shown in Fig. 2.

Fig. 2. Component layout and Veroboard cutting details

Physically small resistors and capacitors must be used if they are to fit into this very compact layout. Alternatively a slightly longer board could be used so that a slightly more spaced out layout can be adopted.

The mounting holes are drilled for 6 BA clearance using a 3.2 mm drill. Construction will be easier if the three link wires are soldered in before the other components. The LM380 is mounted in a 14 -pin d.i.l. socket. $0 \cdot l i n$ Veropins are used at the points where leads from the speakers, switches, etc. will eventually connect to the panel.

CASE

A plastics case measuring about $150 \times 80 \times 50 \mathrm{~mm}$ is used for the master unit. An oblong $45 \times 30 \mathrm{~mm}$ cutout for the speaker is made towards the left hand side of the front panel using a fretsaw. A piece of speaker fret or cloth is glued in place behind the cutout, and then the speaker is carefully glued in place behind this. S1 and S2 are mounted to the

Fig. 3. Rough chart showing the compression given by two settings of VR2. (Input and output values are r.m.s., 1 kHz sinewave)
right of the speaker. A hole for the connecting cable is cut in the right hand side of the case. Sub-miniature mains cable is ideal for use as the connecting cable. The panel is mounted on the base of the case using a couple of 13 mm 6 BA bolts, and it is advisable to space it a little way off the case using a few washers or short spacers, as otherwise there is a risk of the panel cracking as the mounting nuts are tightened.

REMOTE UNIT

This is built into a small plastics case measuring about $115 \times 75 \times 36 \mathrm{~mm}$, and uses much the same panel layout as the master unit, as can be seen from the photographs.

ADJUSTMENT

At the outset VRI is set with its slider at about the centre of its track, and VR2 is adjusted for minimum resistance (fully anti-clockwise). With the units placed in different rooms so as to avoid acoustic feedback, turn the unit on. Connect a sensitive test meter set to read 10 V f.s.d. across R3, and adjust VR1 for a reading of 4.5 V . Adjusting VR1 in a clockwise direction results in an increased reading, and vice versa.

Components mounted on the circuit board

Set S1 to the "Receive" position and feed kairly loud sound into the remote unit. If no helper is available to speak into the microphone and provide this lest signal, an operating radio placed near the remote unit will do.

VOLUME

The volume from the master unit should be fairly low with VR2 set at minimum resistance, and adjusting it for increased resistance should result in an increase in the volume level. VR2 is set to the position that gives the most satisfactory volume. The greater the resistance VR2 inserts into circuit, the less effective will be the a.v.c. action. This can be seen from the rough chart shown in Fig. 3 which shows input versus output level at two settings of VR2. Also if it is set too high, there will be considerable distortion on strong signals. For this reason care must be taken not to adjust it for too high a level of resistance, and it is worthwhile experimenting a little with various settings in order to find the optimum one.

The unit has a fairly high background noise level. and this is partly due to the use of a mOSFET input stage, but is mainly because of the high sensitivity of the circuit. It should be found that when someone speaks into the microphone, the background noise level goes down as the a.v.c. action reduces the circuit gain.

On the prototype the a.g.c. action is highly effective, and talking anything between about 2 m and 200 mm away from the microphone produces a fairly constant output volume.

Interior view of the remote unit showing interwiring

CLOSER INSPECTION OF THE SUN

The date of the Sun mission has been put back three times. The original plan was to launch in 1979 but this was later put back to 1981 and now to 1983. Any further delays would be limited to 1984 and possibly 1985. After that the mission would have to be shelved. From the scientific point of view this mission is an exciting one for this is an opportunity to study space away from the ecliptic.

First thoughts in this direction were made in 1974. It was last year that ESA (European Space Agency) and NASA (National Aeronautics and Space Administration) agreed that each should provide a spacecraft for the mission. Early studies were made with the idea that the highly successful Pioneer 10 and $/ /$ type of spacecraft with suitable modification would be used. However, as the responsibility for all deep space probes had been transferred by NASA from the Ames centre to the Jet Propulsion Laboratory a new situation arose. It was then agreed that ESA would build both spacecraft and during the design stage examine the possibility for a single craft project. The increased cost of the project would be shared by NASA.

THE MISSION

The basic mission would be two spacecraft launched toward Jupiter in 1983 by a four stage vehicle. The assembly would be taken to low Earth orbit by shuttle. The
gravitational field of Jupiter would then swing both spacecraft round so that one passed over the north pole of the Sun and the other over the south pole in October 1986. The northern craft would pass at a distance of 1.5 AU (AU is one astronomical unit and is equal to the mean distance between the Earth and the Sun: 93 million miles). The southern craft would pass over the pole at 1 AU .

FIRST TIME

For the first time information would be gathered from an area outside the ecliptic. The ecliptic is the plane in which all the planets rotate and within which all probes have so far travelled. The space characteristics outside this plane would be investigated. This is an area where there could be considerable differences between the activity in that region as compared with activity within the gravitational field of the ecliptic.

TOWARD THE OUTER PLANETS

Plans for 1977 missions called MJS (Mariner, Jupiter, Saturn) are scheduled for launch in August or September. These vehicles are spin stabilised and weigh about $1,600 \mathrm{lb}$.
They will fly past Jupiter in 1979. The planet's gravitational field will accelerate them on to a rendezvous with the planet Saturn in 1981. The vehicles are a new design and take advantage of the previous techniques explored with Mariner and Pioneer spacecraft.

DIFFERENT APPROACH

Journeys to the outer planets require a different approach from that needed for the inner planets. For one thing the greater distance from the Sun involved means that solar cell techniques are not satisfactory. The size of the sails required to carry enough cells to achieve the power necessary would take up too much of the payload. The power supplies are therefore similar to those on Pioneer 10 and 11 . These were isotope generators which have already been described in Spacewatch. In order to isolate them from the experiments and instruments on board they are carried on booms sticking out from the vehicle. These generators are called RTGs (Radio Isotope Generators) using Plutonium 238. The thermal heat is converted by thermocouples to electrical power.

Another departure for these vehicles is the use of spin rotation at four to five revolutions per minute with a radio antenna locked to the Earth. Thus the Sun is no longer needed for control. The precessing of the spin axis is achieved by firing attitude control adjusters to maintain Earth lock by the antenna.

Launch vehicles will be Titan 111E/Centaurs. These vehicles are similar to the launch vehicles for Mars but have an additional booster using solid propellant.

STUDY PROGRAMME

The programme for these two spacecraft will take them to Jupiter and Saturn on the first part of the journey. There will be studies of several of the satellites with a resolution of 1 kilometre. In the case of Io, the Jupiter satellite, the emission of the sodium radiation will be measured. The satellites of Saturn will also be surveyed.

The two cameras aboard each spacecraft will have lenses of 1,500 millimetres, and 200 millimetres focal length to provide a format of 800 lines with 800 pixels per line. The data from the cameras will be at the rate of 115,200 bits per second. With each pixel composed of 8 binary digits there will be a complete picture built up in 44.5 seconds. The data can be fed back to Earth at the 115,200 bits rate without an intermediate tape system. The transmission is via a 12 foot dish using a 26 watt transmitter. Storage is available if needed by tape with accommodation for 100 pictures. There will be 11 scientific experiments on each vehicle with a weight of 1901 b . Three Plutonium generators will deliver 450 watts for power.

After the vehicles have studied the Saturn area in 1981 they may be sent on to Uranus as a target for 1985.

COMET INTERCEPT

In the period 1984 to 1986 the programme may include two fly-by vehicles to Saturn accompanied by a Saturn Orbiter probe. It could be that there will also be a detachable probe to go to Titan, a moon of Saturn known to have an atmosphere. By 1982 there is a possibility of a Jupiter mission with a sounding probe for study of the atmosphere by penetration by a vehicle. One event that also is a possibility in 1980 is the interception or fly-by of Encke's Comet. This would be a major step toward settling the controversial question of the structure of comets.

Stirling 5ound Q.V. MODULES

Power and quality cost less! Special introductory offer to save you $£ 1$ • 95

SS. 1100
POWER AMP. Delivers 100 watts R.M.S. Into 4 ohms using a 70 volt/2A supply. Input sensitivity: 500 mV for full output Response: 10 Hz to $50 \mathrm{kHz} \pm 1 \mathrm{~dB}$. S / N ratio better than 75 dB Distortion at half power typically 0.1%. With heatsınk mounting bracket. 5 in $\times 3 \frac{1}{2}$ in $\times 1 \frac{1}{6} i n$.
SS. 370 A new heavy duty power supply unit to deliver 70 volts/ 2 amps. complete with mains transformer and low-volt outlet (P. \& P. E1)
£9.45*
$\begin{array}{ll}\text { Full size } \\ \text { heatsink } & \mathrm{L} 1 *\end{array}$
£12•50*

There is real power and reliability in this assembly. By buying them together you save nearly $£ 2$ on these £1 P. \& P) for SS. 1100 H (with full size heatsink) and Power Unit SS. 370

MORE Q.V. MODULES FOR COST-CONSCIOUS CONSTRUCTORS

POWER AMPLIFIERS

3 TO 40 WATTS R.M.S.
SS. 1035 watt r.m.s. mono. I.C. with short circuit protection
SS.103-3 Stereo version of above. using two l.C.s
SS. 1055 watts r.m.s. into 4 ohms. using 12 V
SS. 11010 watts r.m.s. using 24 V and 4 ohm load
SS. 12020 watts r.m.s. into 4 ohms, using 34 V
SS. 14040 watts r.m.s. into 4 ohms using 45 V supply. Ideal small disco or P.A. uniq
P.A. unit E3.95*

VAT on power units ordered with amplifiers SS. $103-$ SS. 120 becomes $12 \frac{t}{2} \%$.

TONE CONTROLS/

PRE AMPS

SS. 100 Active tone control. Stereo $\pm 15 \mathrm{~dB}$ on bass and on treble
SS. 101 Pre-amp for ceramic cartridges.
etc. Stereo. Passive tone control details supplied
SS. 102 Stereo pre-amp for low output magnetic P.U.s. R.I.A.A. corrected

UNIT ONE

Combined pre-amp with active tonecontrol circuits. $\pm 15 \mathrm{~dB}$ at 10 kHz treble and 30 Hz bass. Stereo Vol./balance/ treble/bass. 200 mV out for 50 mV in. Takes $10-16 \mathrm{~V}$

FM TUNING MODULES

SS. 201 Front end tuner, slow geared drive, two gang. A.F.C. facility. Tunes $88-108 \mathrm{MHz}$
SS. 202 I.F. amplifier. Metering and A.F.C. facilities
sS. 203 Stereo Decoder for use with the above or other FM mono tuners. A LED may be fitted

WHAT Q.V. MEANS TO YOU

It means Stirling Sound Quality and Value from modules made in our own Essex factory. £1.60 They are all tested. guaranteed and offer unbeatable value. Designed by highly specialised electronic engineers with wide experience of the £1.60 constructor and experimenter market. WATCH HOW THE STIRLING SOUND RANGE GROWS?

POWER SUPPLIES

WITH LOW-VOLT TAKE-OFF

 POINTSComplete with reans transformers and low-volt take-off points (except SS.312). All at 8% VAT rate. Add 50 p for P. \& P. any model (except SS. 300 at 35 p and SS. 370 at $£ 1$).

SS. 312	12V/1A	¢3.75*
SS. 318	$18 \mathrm{~V} / 1 \mathrm{~A}$	¢4.15*
SS. 324	24V/1A	¢4.60*
SS. 334	$34 \mathrm{~V} / 2 \mathrm{~A}$	£5.20*
SS. 345	$45 \mathrm{~V} / 2 \mathrm{~A}$	£6.25*
SS. 350	50V/2A	¢6.75*
SS. 370	70V/2A	£12.50

SS.310/50 Complete stabilised power supply with variable output from 10
to $50 \mathrm{~V} / 2 \mathrm{~A}$
£11•95*

SS. 300 Fower stabilising unit $10-50 \mathrm{~V}$ adjustable. For adding to unstabilised supplies. Built-in protection against shorting (P. \& P. 35p)

4 member company of the Bi-Pre-Pak group, Est. 1959 Dept. PE3, 220-224 West Road, Westcliff-on-Sea, Essex SSO 9DF

TAMBA ELECTRONICS

E Suits loads 4－16 ohms
－ $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
－Silicon circuitry throughout
－Glass fibre P．C．B
－High sensitivity（ 100 mV 10k）

High grade components used through－ out Texas，Mullard，R．C．A．Plessey，etc．

簢 Low distortion（0．1\％）
（⿴囗大 Low profile（ 1 in high $3 \frac{1}{2}$ in $\times 3$ in）圈 75\％efficient
－Accepts most mixer／pre－amplifiers Four simple connections

Printed circuit board assembly with treble and bass controls plus slider volume control
£6．50

You may order as follows：C．W．O．（crossed cheques，P．O．s，M．O．s etc）－C．O．D．（60p extra）．We accept Access and Barclaycard－send or telephone your number－do not send your card．Add VAT at 8% to orders for 50 and 100 W units and at $12 \frac{1}{2} \%$ for 25 W units．

Hours， 9.30 a．m．-5 p．m． Monday－Saturday． Callers welcome．
Tel：（01） 6840098

TAMBA ELECTRONICS

Bensham Manor Road Passage，Bensham Manor Road，Thornton Heath，Surrey．

Careers and Hobbies in Electronics．

Enrol in the BNR \＆E School and you＇ll have an entertaining and fascinating hobby．Stick with it and the opportunities and the big money await you，if qualified，in every field of Electronics today．We offer the finest home study training for all subjects in radio，television，etc．，especially for the CITY AND GUILDS EXAMS（Technicians＇Certificates）；the Grad．Brit．I．E．R．Exam；the RADIO AMATEUR＇S LI－ CENCE；P．M．G．Certificates；the R．T．E．B．Servicing Certi－ ficates；etc．Also courses in Television；Transistors；Radar； Computers；Servo－mechanisms；Mathematics and Practical Transistor Radio course with equipment．We have OVER 20 YEARS＇experience in teaching radio subjects and an un－ broken record of exam successes．We are the only privately run British home study College specialising in electronics sub－ jects only．Fullest details will be gladly sent without any obligation．

Become a Radio Amateur．
Learn how to become a radio amateur in contact with the whole world．We give skilled preparation for the G．P．O．licence．

selling MICROPROGESSORS

Familiarisation, education, and sales promotion are today three dominant and interlinked aims of microprocessor manufacturers. At present, there are more than thirty different types of microprocessors on the market. Will they all survive the intense campaigning now directed towards the customers that really count-the designers employed by makers of electronic equipments? These professional engineers will by their patronage of particular devices decide the ultimate survivors in this battle of the chips where large volume production wins over all.

Thus we have during the past months been witnessing a rash of Seminars for professional users (or potential users) of microprocessors. Reading (or rather listening) between the lines, there is quite a lot that could prove of great significance to the amateur in the not too distant future. Here we report briefly on two recent "happenings" that PE attended.

MOTOROLA: CONFIDENT AND ASSURED

In the next five years, completely committed on-board microprocessors will be in all automobiles. This spectacular use of microprocessors was confidently predicted by Colin Crook, Operations Manager, Motorola NMOS Products, from Austin, Texas.

As the opening speaker at the Motorola Seminar "Designing With Microprocessors" held at London's Royal Garden Hotel last November, Colin Crook explained Motorola's position in the microprocessor market and indicated future trends. Hardware costs will continue to fall, although, unfortunately, software costs will rise; the volume of 8-bit microprocessors will build up; the US hobby market will expand, from 25,000 systems sold in 1976 to double in 1977. Current development at Motorola includes work on the 4-bit single chip microprocessor for small computers and for single application purposes. Looking even further ahead-the big challenge is very large scale integration, where the entire system will be produced directly on to the chip. Within a few years we will see production of large scale integrated circuits containing a million and more transistor cells.

During the day other speakers elaborated on specific Motorola products, including the new M10800 Bipolar Processor Family, and a formidable range of Development Tools and other aids for system design and evaluation.

Industrial applications discussed included a proposed microprocessor control system for lifts. This application provides a good example of the considerable operational and cost advantages microprocessors offer over traditional control systems based on relays. Current uses of micro-processors-mainly in the US-include: all types of instrumentation, c.r.t. terminals (at airports), machine tool control, giant scoreboards, and petrol pumps.

G.I. MICROELECTRONICS: A STRONG TRIO

In the Scottish factory of General Instrument Microelectronics 400,000 mos I.s.i. devices are produced every month. They include a range of microprocessor chips introduced and described by technical representatives of this company at a Seminar organised by the well known distributors Semiconductor Specialists Ltd. This was a whole-day function held at the Bloomsbury Centre, London, in December last.

Three GIM microprocessor systems were featured in this presentation and brief details follow.

The Series 1600 Microprocessor System: Centred on a 16-bit single-chip n-channel device, this is designed for high
speed data processing and real time applications. A complete minicomputer system is available already assembled on one $14 \mathrm{in}\{16 \mathrm{in}$ board, costing less than $£ 500$. This could be an interesting proposition for schools and amateur computer societies.

The Series 8000 Microprocessor System: This incorporates an 8 -bit single chip p-channel microprocessor (developed and manufactured in Britain) and is designed to perform any digital function using far fewer packages than a TTL or СMOS implementation. A minimum system can be devised with two chips. The 8000 offers an ideal "one-off" approach: for use in test equipment, for system evaluation and also for amateur use. It can be supplied complete and wired up on one board, or as separate chips-suitable for home construction. A complete minicomputer can be realised with the addition of ROM, RAM, clock and A/D chips.

The Series 1650 Programmable Intelligent Controller: A single d.i.l. package containing an 8 -bit n-channel central processing unit, rom, ram, clock and $1 / 0$. Suitable for consumer products (e.g. sewing machines, cine cameras) and for telecommunications applications, this purpose designed one-chip microprocessor is already in large scale production. The cost in quantity (500 plus) is $£ 3$.

Also described was another device which has a large consumer market application potential. This is the electrically alterable read only memory (EAROM). This device is p-channel, non volatile, low cost and easy to use. Already incorporated in TV tuners in Germany, other likely uses are: phase locked tuner for v.h.f., telephone repertory dialer, electronic doorlock, and waveform generatorstoring digital information of analogue waveforms.

In microprocessor systems. the EAROM can be used for data storage; this was the original application for which it was invented by NCR.

VIDEO YEARBOOK 1977
 Published by The Dolphin Press 286 pages, $215 \times 137 \mathrm{~mm}$. Price $£ 4.75$

His is the first edition of a new reference work prepared
by the staff of Video and Audio Visual Review.
Equipment directly related to television use is given full coverage with technical descriptions and prices. This includes such items as cameras, monitors, video recording, control and effects equipment and lighting equipment.

Equipment indirectly related to television, such as audio equipment, is covered more briefly, generally only the company name and an indication of product range being given. Companies offering services in the video field are listed, and reference sections cover such items as video discs, TV standards and projection techniques. A comprehensive address directory rounds off the book. All in all, a most useful volume for anyone concerned with TV systems.

SiNIEDUNUTIDR

ZNA103E

VIDEO GEN

It's nice to see that at long last the full potential of the domestic television set is being recognised by the electronics industry. By utilising spare lines and clever encoding, many pages of text are transmitted by the "Ceefax" and "Oracle" systems, demonstrating the suitability of the humble "telly" for the display of textual information of the computeroutput type, and making it a natural candidate for use as a microprocessor output device in future domestic data-processing systems.
TV tennis games are already available at low cost, thanks to LSI technology, and in the future we can expect to see more sophisticated, perhaps (dare I say it) intellectual games, thanks once more to the microprocessor. With all these good things made possible by advancing electronic technology | am certain that home constructors will, as usual, be wanting to try out their own skills.
If you have grown tired of "Coronation Street" and feel the urge to cook-up a "Tele-Chess' game, or a microprocessor VDU, you may be interested in the Ferranti ZNA103E which is described as a "Monolithic digital video timing generator". This is a bipolar LSI circuit in a 24 pin package designed to provide all the horizontal, vertical, mixed blanking, and synchronising pulses required for raster generation in a 625 line, interlaced television system. Chip timing is derived from an external 656.25 kHz reference oscillator which would ideally be crystal controlled, and ten pulse waveform outputs are provided in all, making this new chip capable of handling the most demanding video generation tasks in closed circuit TV systems, video tape recorders and text generators. Inside the chip there is a divide by twenty one counter, a divide by six hundred and twenty five counter, and extensive decoding and addition circuitry which would require dozens of standard TTL circuits.
The ZNA103E runs from a five volt supply and has mainly TTL compatible inputs and outputs making it easy to use in that microprocessor game or CCTV camera you may have been dreaming about.

SNEAK PREVIEW

Microprocessors are in their infancy, and like all infant electronic products, new developments and price reductions can be expected to flow thick and fast as semiconductor manufacturers ascend the "learning curve". Let's face it, in these hard times we of the electronics fraternity are better off than most because we see exciting new components come along and we can be sure that before long we will be able to afford them no matter how sophisticated they may be. If you are ruefully passing microprocessors over because they are too expensive at present, you will be interested in a sneak preview of a future Intel chip, the 8748, which will surely bring a microprocessor system within everyone's reach in a year or two.

This device is part of a new Intel family called MCS-48 which is an eight bit family incorporating a complete microprocessor system on a single chip including the program memory!
"Ah!" I can hear you say, "That must mean a mask defined program, and that's only of interest to the big boys," but it's not so with the 8748 ,

Fig. 1. The ZNA103E being used in a TV system
because the microprocessor itself can be programmed, erased, and reprogrammed in the same way as the u.v. erasable PROMs which are now so common. To let your ingenuity run riot, and to control your electric toaster or lawn sprinkler, all you will need is a programmer, and simple programs can certainly be made at low cost if the programming operation is anything like that employed on the Intel 2107 and 2108 PROMs, as would seem very likely. With the 8748, when you get fed up with your pseudo-random lawn sprinkler you can pull the chip, erase it with ultra violet light, and start all over again.
The sneaky bit is that these chips are not due for release until well into 1977, and of course it will be a while before they appear in the PE ads at giveaway prices, but it will come, you can be sure of that!

CMOS DIVIDER

Among many new additions to the Motorola 14000 CMOS family is an interesting device designed for low power timing applications, the MC14451.

The MC14451 contains the active inverters for use as part of a crystal oscillator, no less than eighteen flip flops arranged as a frequency divider chain, and a buffered output flip flop which can be set and reset by any of the last eight divider stages to give a user controlled pulse width. An interesting thing about this chip is that it is designed to run from voltages between 1.3 volts and 3 volts, and to consume no more than about 20 microwatts of power, making long life, pen cell powered timers easy to implement.

The MC14451 is housed in a standard 16 pin d.i.l. and is a natural choice for miniature, low power equipment which needs an accurate time reference. Using a 32.768 kHz crystal eight output frequencies of 16 Hz to 0.125 Hz are simultaneously available, and if a CR oscillator can be used timing periods of several hours would be possible with the very minimum of components.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{TTLs by TEXAS} \& C-MOS ICs \& \multicolumn{2}{|l|}{OP AMPS} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{ll}
\text { AC125 } \& \text { 20p } \\
\text { AC126.7 } \& 20 p
\end{array}
\]}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { BF } 196 / 7 \\
\& \text { BF } 200
\end{aligned}
\]} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 18 p \\
\& 40 p
\end{aligned}
\]} \& TIP42C 96p \& 2N3866 95p \& \multicolumn{3}{|l|}{VOLTAGE REGULATORS (Plastic) Fixed} \\
\hline 7400
74 HOO \& \(18 p\)
\(30 p\) \& \& \& \[
\begin{array}{ll}
4000 \& \text { 21p } \\
4001 \& 21 p
\end{array}
\] \& 1458 \& \(75 p\) \& \& \& \& \& TIP295s 76p \& 2N3904.5 22p \& \& \& \\
\hline 74 HOO
74.500 \& 30p \& 7495
7496 \& \({ }^{790}\) \& \(\begin{array}{ll}4001 \& \text { 21p } \\ 4002 \& 21 p\end{array}\) \& 3014
3130 \& \(40 p\) \& \(\mathrm{ACl}^{28}\) \& 20 p \& BF244. B \& 40p \& T1543 40p \& 2N3906 22p \& SV 7605 \& 130p 5 V \& 2000 \\
\hline 74500 \& 44 p \& 7487 \& 340 p \& 4006 110p \& 3130
3140 \& 100 \& AC141/2 \& 20 p \& BF257/6 \& 38p \& TIS93 30p \& 2N4060 12p \& 12V 7812 \& 139p PV \& 12 200p \\
\hline 7401 \& 18 p \& 74100 \& \({ }_{\text {16p }}^{160}\) \& 4007 22p \& 3900 \& \(70 p\) \& AC176 \& 200 \& BFR39/40 \& 34 p \& 2Tx108 12p \& 2N41234 22p \& \(\begin{array}{ll}15 \mathrm{~V} \& 7815 \\ 18 \mathrm{~V} \& 7818\end{array}\) \& 139p 45 V \& 15 200p \\
\hline 7402
7403 \& \({ }_{180}\) \& 74104 \& \(60 p\)
\(60 p\) \& 4009 215 \& 5369 \& 300 \& AC187/8 \& 20p \& BFR79, 80 \& \(34 p\) \& ZTX300 16p \& 2N4125/6 22p \& 24V 7824 \& 150 p 24V \& 200p \\
\hline 7404 \& 24 p \& 74107 \& \(36 p\) \& 4012 \& 709
74 \& 25p \& AC187K \& 25p \& BFR88 \& 40p \& 2TX500 20p \& 2N4401/3 34p \& LM309K1TO \& \(5 \mathrm{~V} 1 \mathrm{~A}, 150 \mathrm{p}\) : L \& 323\% (TO3) \\
\hline 744 H04 \& 40p \& 74109 \& 70 p \& \begin{tabular}{ll}
4013 \\
4014 \& \(55 p\) \\
\hline
\end{tabular} \& 747 \& \(7{ }^{2}\) \& ACtark \& 250 \& BFX29/30 \& 34 p \& 2N697 25p \& 2N4427 97p \& 5 V 3 A .700 p ; \& BA625B (TO5) \& 0 5A 99p: \\
\hline 7405 \& \begin{tabular}{l}
25p \\
\hline 150
\end{tabular} \& 74110 \& 55 p \& \(\begin{array}{ll}4014 \\ 4015 \& \text { 120p }\end{array}\) \& \({ }^{748}\) \& 40p \& AD149 \& Stp \& \(\times 84 / 85\) \& 30 \& 2N698 40p \& 2N4871 40p \& 7805 (TO3). \& 50p: 1468 Dual \& eset - 15V \\
\hline 7406
7407 \& 45p
\(45 p\) \& 74111
74116 \& 200p \& 4016 40 \& 776 \& 175p \& AD161/2 \& 3ep \& \& \& 2N706/8 220 \& 2N5296 650 \& \({ }^{16}\) pin OIL \& 00p: LM327N \& al Polarity \\
\hline 7467
7468 \& 45p \& 74116 \& \({ }_{\text {220p }}\) \& 4017 110p \& \& \& AD161/2 \& 3ep \& BF \(\times 86.778\) \& 30 p \& 2N706/8 22p \& 2NS296 65p \& Variabie 723 \& 4 DIn DIL \& 300 p \\
\hline 7468
7409 \& 27p \& 74120 \& 950 \& 4018 120p \& \& \& AFita/5 \& 2ap \& BF \& \({ }^{16 p}\) \& 2N918 -43p \& N5457/8 40p \& LM317 1a 2 V \& 37V To220 \& 340 p \\
\hline 7410 \& 18 p \& 74121 \& \(32 p\) \& 4019 54p \& Linear 1 \& \& AF116/7 \& \(22 p\) \& BFY51 \& 16 p \& 2N930 19p \& 2N5459 \& \& \& \\
\hline \(74 \mathrm{H10}\) \& 30p \& 74122 \& 53p \& 120p \& \& \& AF124 \& 36p \& BFY52 \& 18 p \& 2N1131/2 25p \& 2N6027 80p \& OPTO DE \& CES \& \\
\hline 7411 \& \({ }^{28} \mathrm{p}\) \& 74123 \& \({ }^{73 p}\) \& \({ }_{4023}{ }^{4022}\) 200p \& \({ }_{\text {A CA3028A }}\) \& 1129 \& AF 127 \& 36 p \& BRY39 \& 45p \& 2N1304,5 45p \& 2N6107 70p \& OCP10 \& THL209 Ae \& \({ }^{16 p}\) \\
\hline 7412
7413 \& \({ }_{36 p}\) \& 74125
74126 \& \({ }_{76 p}^{70 p}\) \& 4024 \& CA3046 \& 119 \& AF \& 43p \& BS \(\times 19 / 20\) \& 20p \& 2N 1306.7 45p \& 2N6247 2000 \& OCP71 \& TIL32 Intre \& \[
\begin{array}{ll}
34 p \\
75 p
\end{array}
\] \\
\hline 7414 \& 96 p \& 74128 \& 90p \& 4025
4026
2200 \& CA3048 \& \({ }^{279} 9\) \& AF239 \& 48 p \& Bu105 \& 175p \& 2N1613 22p \& 2N6254 140p \& 3015 F \& 02 n Red \& LED 21p \\
\hline 7416
7417 \& 35 p \& 74132
74136 \& \({ }_{710}^{78}\) \& 4027 2209 \& CA3053 \& 759 \& BC107/日 \& 10p \& 8U108 \& 315p \& 2N1711 22p \& 2N6292 100 \& DL704 16 \& 0 in . Gre \& LED 34p \\
\hline 7417
7420 \& \({ }^{40 p}\) \& 74136 \& \({ }_{85 p}\) \& \(4028 \quad 1529\) \& CA3089E \& 2s0p \& BCT08. \({ }^{\text {c }}\) \& 10p \& M.J2955 \& 130 p \& 2N1893 32p \& 3N 128 97P \& OL707 \& Mounting \& aps \\
\hline 7421 \& 43 p \& 74142 \& 300p \& 4029 120p \& CA3090aO \& 506p \& BC109/C \& 11p \& MJE340 \& 45 \& 2N2160 99p \& 3N140 105p \& \& \& \\
\hline 7422 \& 27p \& 74145 \& 10p \& \(4030{ }^{\text {4 }}\) \& ICLB038C \& 370 p \& BC147/8 \& 90 \& MJE2955 \& 130p \& 2N2219 22p \& 3N141 97p \& SCR-THYR \& STORS \& Low \\
\hline 7423 \& \(36 p\)
330 \& 74147 \& 2750 \& \(\begin{array}{ll}4040 \\ 4042 \& 930 p\end{array}\) \& LM318N \& 175 \& BC.49/ \& 100 \& E3055 \& 97p \& 2N2222 220 \& 3N187 200p \& \& \& Profile \\
\hline 7425
7427 \& \({ }^{330}\) \& 74148
7450 \& 1750 \& 40438 \& LM381 \& 180 \& BC15 \& 11p \& F102 3 \& 40p \& 2N2369 15p \& 403612 45p \& 1A 100 V TOS \& 48p \& DIL SKTS \\
\hline 1430 \& \(18 p\) \& 74151 \& 17p \& \(\begin{array}{ll}4046 \\ 4047 \& \text { 150p } \\ \& 110 \mathrm{p}\end{array}\) \& LM3889 \& 175p \& BC158. 9 \& 12p \& MPF 104/5 \& 40 p \& 2N2484 32p \& 40409:10 65p \& 1A 400V TOS \& 580 \& by Texas \\
\hline 7432 \& 340 \& 74153 \& 92p \& 4049 68p \& M252 \& \({ }^{8500}\) \& BC 169 C \& \({ }^{16 p}\) \& MPSA06 \& \({ }^{37 p}\) \& 2N2646 48p \& 40411 325p \& \& 81p \& 8 pIn 12p \\
\hline 7437
7438 \& 37 p \& 74154
74155 \& \(764 p\)
\(97 p\) \& 4050 549 \& MC135 \({ }^{\text {P }}\) \& 104p \& BC172/B \& 12p \& MPSA12 \& 670 \& 2N2904, A 22p \& 40594 90p \& 16A 600V Plastic \& \(240 p\) \& 14 pin 13p \\
\hline 7440 \& 14 p \& 7456 \& 970 \& \begin{tabular}{ll}
4055 \\
4055 \& 1200 \\
\hline 1400
\end{tabular} \& MC1495 \& 370p \& BC1778 \& 200 \& APSA56 \& 370 \& 2N2905/A 22p \& 40595 97p \& BT 10614700 V \& Stud 140p \& 16 pin 14p \\
\hline 744
7442 \& 85 p
750
750 \& 74457 \& 98p \& 4056 145p \& MC3340P \& 160 p \& BCit9 \& 20 p \& MPSU06 \& 78p \& 2N2906 A 24p \& 40673 70p \& C1060 4A 400V \& Plastic 6 64p \& 18 pln 32p \\
\hline 7443 \& 130 O \& 74158
74159 \& 120p \& \(\begin{array}{ll}4060 \& 120 p \\ 4069 \& 400\end{array}\) \& MFC40008 \& 90 p \& BC1a2 3 \& 12p \& PSU56 \& 98p \& 2N2926RB 9p \& \& 2 r 352554400 V \& TO56 130p \& 24 pin 40p \\
\hline 7444
7445 \& 130 p
1080 \& 74160 \& \({ }_{1080}\) \& 4071 \& NES40L \& \(175 p\)
40 p \& BC184 \& 14p \& OC28 \& 7\% \& 2N2926OYG \& TRIACS \& 2N4444 8A 600 V \& Plastic 200p \& 28 pin 60p \\
\hline 7446 \& 108p \& 74161
74162 \& 1089
1080 \& 4072 \& NE556 \& 90p \& BC 187 \& 32p \& OC35. 36 \& 0 \& \(11 p\) \& Amp Volts \& 2N5064 O BA 20 \& \(\checkmark\) TO92 450 \& 40 pIn 75p \\
\hline 7447 \& 90p \& 74163 \& 105p \& 4081 25p \& NE561 \& 425p
4250 \& BC212 \& \(14 p\) \& OC71 \& \(25 p\) \& 2N303s 20 p \& \(3400{ }^{130} \mathrm{p}\) \& \& \& OA202 \\
\hline 7448
7450 \& 90p \& 74164 \& 130 p \& 4093 95p \& NES62
NE565 \& 425p \& BC213 \& 12p \& 720088 \& 2250 \& 2N3054 54p \& \(6400 \quad 162 \mathrm{p}\) \& \& 6 A 400 V 120 p \& 1N914 \\
\hline 7450
7451 \& \({ }_{180}^{10 p}\) \& 74165
74166 \& \begin{tabular}{l}
150p. \\
136 p \\
\hline
\end{tabular} \& 4510 142p \& NE566 \& 2000 \& BC214 \& \(16 p\) \& A20108 \& 225p \& 2N3055 54p \& 65001940 \& RECTI- \& \& (N4001 6 p \\
\hline 7453 \& \({ }^{18 \mathrm{p}}\) \& 74166
74167 \& 136p
340p \& \(\begin{array}{ll}4511 \& \text { 180p } \\ 4516 \& 140 p\end{array}\) \& NE567 \& 200 p \& BC478 \& 32p \& IIPRSA \& 50p \& 2N3442 151p \& \(10 \quad 4002000\) \& FIERS \& DIODES \& 1 N 4002 \\
\hline \begin{tabular}{l}
7454 \\
7460 \\
\hline
\end{tabular} \& 180
200 \& 74170 \& 250p \& 4518 140p \& \({ }^{2567}\) \& 4760p \& BCY70 \& 20p \& 11P29C \& 620 \& 23 14p \& \(10 \quad 5002700\) \& 1A 50 V \& BY100 35p \& iN4007 \\
\hline 7460 \& 20p \& 74173 \& 1600 \& 4528 130p \& SN72710N \& 275p \& BCr71 \& 24p \& TIP30A \& 60p \& 2N3704/5 14p \& \(\begin{array}{llll}15 \& 400 \& 300 \mathrm{p}\end{array}\) \& 1A 100 V 27p \& BY126 12p \& 1N4148 4p \\
\hline 7472 \& 32 p \& 74174
74175 \& 920p \& 4553 575p \& SN72733N \& 1500 \& 80131 \& 40 p \& TIP30C \& 72 p \& 2N3706.7 140 \& 500 \& 14.400 V 30 D \& BY127 12p \& \\
\hline 7473
7474 \& 36p \& 74176 \& \({ }^{130} \mathrm{p}^{130}\) \& \& SN76003N \& \({ }_{2759}^{275}\) \& 80132 \& 43 p \& TIP31A \& 56p \& 2N37089 14p \& 40430 120p \& \& OA47 \({ }^{8 p}\) \& ZENERS \\
\hline \& 37 p \& 74180
74181 \& \({ }^{118} \mathrm{p}\) \& , \& SN76018 \& \(275 p\) \& BD136 \& 55p \& tip32A \& 3p \& 2N3819 27p \& \& 24200 V 48p \& OASO 7p \& \\
\hline 7480 \& 54 p \& 74182
7418 \& 329 \& RAM 2702 \& SN76023N \& 175p \& B0139 \& 56p \& T1P32C \& 69p \& 2N3820 50p \& DIAC \& \(34600 V\)
44.00 V \& OA91 8p \& OTHER \\
\hline 7488 \& 106 p \& 74185 \& 144p \& \(\begin{array}{ll}2102 \\ 2112 \& \text { 270p } \\ \text { 450p }\end{array}\) \& SN76033N
SNT6660 \& 275p
85p \& BO140 \& 600 \& TIP33A \& 97p \& 2N3823 540 \& BR100 32p \& \& \(\mathrm{OACOO}^{\text {Op }}\) \& 25J 125p \\
\hline 7482
7483 \& \(85 p\)
950 \& \begin{tabular}{l}
74186 \\
\hline 7490
\end{tabular} \& 995p \& \& TAA621A \& 275p \& BOY56 \& 2250 \& TIP3 \& \& \& \& \& \& \\
\hline 7484 \& 1030 \& 74191 \& 155p
160 p \& ROM \& TAA651B \& \({ }^{1500}\) \& BF 115 \& 240 \& TIP35 \& \& VAT INC \& VE PRICES \& \& Add \& P. \& \\
\hline 7486
7489 \& 36 p
340 p \& 74193
74194 \& 130 p
130 p

120 \& \& TBA651 \& 275p \& BF 173 \& 27p \& TIP36A \& $297 p$ \& \& \& \& \&

\hline 7490 \& 43p \& 74195 \& 1040 \& Branded devicus \& T8A800 \& 100p \& BFF178 \& 40p \& TIP36C \& 360 p \& \& \& \& \&

\hline 7491 \& ${ }_{50} 9$ \& 74196 \& ${ }^{1305}$ \& from RCA, Teras, \& TBA810 tBAB20 \& $$
\begin{aligned}
& 125 p \\
& 100 \mathrm{p}
\end{aligned}
$$ \& BF180 \& ${ }_{40 \mathrm{D}}$ \& TIP41 \& 380 \& \& \& \& \&

\hline 7492
7493 \& 559 \& 74197
74198 \& +130 F \& Moterola, \& toazozo \& 400 p \& BF 184 \& 30 p \& TTP4IC \& 84p \& \& \& \& el. \& 44333

\hline 7494 \& 40 \& 74199 \& 244p \& MuHard, \%tc. \& 2N414 \& 140p \& BF 1945 \& 12p \& TIP42A \& 75p \& \& \& \& Telex \& 88

\hline
\end{tabular}

By order of Broadman Limited Meadow Mill, Eastington, Stonehouse, Glos
(exit 15, M5 motorway)

M. ISAACS \& SON, FSV A

Wish to announce regular Auction Sales to be held at the above address. The next Sale will take place in MARCH and consist of

A LARGE QUANTITY OF

ELECTRICAL AND ELECTRONIC STORES

IN 250 SUBSTANTIAL LOTS

Comprising very briefly: quantities of fractional h.p. mini motors and motorised fans, transformers, resettable counters, capacitors, resistors, solenoids, potentiometers, printed circuits, relays, double-sided mirrors, cabinet slides, humidity controllers, micro switches, bearings, coil winding machines, 2,000 galvanised tote bins $24 \mathrm{in} \times 12 \mathrm{in} \times 6 \mathrm{in}$ (as new), several tons of electric cable 70/0076 and 30/0.25 and a considerable number of other items.

Further particulars and Catalogues $15 p$ when available from the Auctioneers
10 Booth Street, off Chapel Street, Manchester M3 5DE; 061-833 9492/3

Join the Digital Revolution

Understand the latest developments in calculators,

 computers, watches, telephones, television, automotive Instrumentation. . .Each of the 6 volumes of this self-instruction course measures $11 \frac{1}{4} \times 8 \frac{1}{4}$ " and contains 60 pages packed with information diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra. to memories, counters and simple arithmetic circuits and on to a complete understanding of the design and operation of calculators and computers Design of Digital Systems

plus 80 p packing and surface post anywhere in the world

Payments may be made in foreign currencies

Quantity discounts available on request.

VAT zero rated

Also avaslable-a' more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics
In 4 volumes

1. Basic Computer Logic

2 Logical Circuit Elements
3. Desıgning Circuits to Carry Out Logical Functions
4. Flipflops and Registers

£4-20

plus 80p P. \& P
Offer Order both courses for the bargain price $\{9 \cdot 70$, plus 80 p P. \& P

Designer Manager Enthusiast Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

[^2]
WELBROOK STEREO

This new hi-fi amplifier from Welbrook is the result of painstaking design incorporating 5 I.C.s 22 transistors plus 10 diodes and offers outstanding value for money to the discerning enthusiast.
30W RMS per channel into 8 ohms load. Total harmonic distortion less than $0 \cdot 1 \%$ at all power levels.
Hum/Noise:

- 80dB Tape/Tuner
 -65 dB Disc (Magnetic Input)

Complete unit comprising power supply, preamplifier with filter networks, two power amplifiers and loudness control all in teak finished cabinet only $£ 88$ plus VAT.
As above but without filters and loudness control only $£ 79$ plus VAT.
Also available in module form complete with front panel but without cabinet-easily assembled by the average enthusiast.
Send for details and price list to:
Welbrook Engineering \& Electronics Ltd
Brooks Street, Hillgate Stockport SK1 3HT

The Post Office claim that the installation will be the longest optical communications link in Britain and possibly in the world. Some of the optical cable will be used in a variety of experimental systems and equipment. The twofibre glass cable is manufactured by the Corning Glass Works.

The new OS260 15MHz oscilloscope from Gould Advance incorporates a 10 kV high brightness splitbeam tube which gives true dual-trace operation.

Airborne

A^{\top}T a recent handing-over ceremony at the company's Airadio Division plant at Basildon, Essex, MarconiElliott Avionic Systems have just delivered to the British Army the first production model of the ARC 340 airborne communications and homing system. This system is claimed to be the most advanced of its kind ever produced.

The ARC 340, which is for installation in the British Army's new Gazelle and Lynx helicopters and other helicopters already in service, enables the pilot and crew to keep in constant contact with troops on a battlefield, by operating several communications channels from the same helicopter simultaneously. The system also enables the helicopter to "home" on to a desired objective with great accuracy and without impairing the system's use as a multi-station communication system.

A Call from New Zealand

Ahighspeed method which has halved the production time of UK telephone directories is to be used by the New Zealand Post Office.

The computer-controlled compiling process, developed by the UK Post Office and Her Majesty's Stationery Office, put Britain into the world lead when it went into operation in 1970.

Integrated with computerised photo-composition, it enables the average 'phone book to be prepared from scratch ready for printing in about four weeks. compared with the previous'time of eight weeks working from standing type.

The UK Post Office computer programs and complete documentary back-up have been bought by the NZ Post Office under licence.

Fibre Links

The UK Post Office recently ordered 21 kilometres (km) of two-fibre cable to link two telephone exchanges in East Anglia. The total distance to be spanned by the optical cable is 12 km . One link will cover 5 km , another, 7 km , with a repeater station between the two sections.

Russian First

J NDER a contract worth over $\$ 550,000$, EMI Medical Ltd., is to equip the Academy of Medical Sciences, USSR with one of its advanced EMI-Scanner diagnostic systems for brain examinations. The machine will be operated by the Academy`s Institute of Neurology located in Moscow.

The Institute will become the first Russian hospital ever to utilise computerised axial tomography X-ray technology pioneered by EMI. This new technology has revolutionised the diagnosis of cerebral diseases and other disorders in the Western world since its introduction in 1972.

MICROPROCESSOR FORUM

The meeting for February 26 has been fully subscribed.

This Forum will be repeated on March 5 and at the time of going to press bookings for this second date were well in advance. Tickets are being allocated strictly in order of application. See February issue for details and coupon.

RE
 A Volume of Practical Know-how

can be made using these new-look self binders for PRACTICAL ELECTRONICS to become your most valuable source of reference. With the Easi-Binder current copies can be inserted as they are received, without waiting for the completion of twelve issues.
They are attractively made with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers, please advise year and volume and a separate set of gold transfer figures will be supplied.
At $£ 2 \cdot 10$ inc. VAT and postage they are obtainable from:

Post Sales Department, IPC Magazines Ltd. Lavington House, 25 Lavington Street London SE1 OPF
lenclose P.O./cheque value. for.....binders at £2. 10 each for Practical Electronics Vol. No's.

Name

Address

Date

SC/MP REVIIWED

This is an eight-bit PMOS microprocessor which is different. It is different because it has been produced with small-system applications and low cost as prime design requirements, and it is different because from the outset the packaging and marketing have been arranged so that the emerging microprocessor hobby market can have a fair crack of the whip.

The SC/MP microprocessor (or to be more precise, ISP-8A/500D, which is the chip part number) has 46 very powerful instructions and has a clock generator on the chip to reduce the external chip count to the absolute minimum; in fact to a minimum of just a single PROM for a very simple system with limited input/output capability.

POWERFUL CHIP

The chip comes in a 40 -pin package and has ample control inputs and outputs to allow use in very large systems too, when required, with a total memory address range of no less than 65 kilobytes, and provision for such sophisticated techniques as direct memory access, interrupt driven input/output and distributed intelligence in a multiprocessor system.

However, SC/MP is much more than just a semiconductor chip: it is a whole technology, and consequently not as easy to use as, say, a calculator or clock chip, where most of the thinking has already
been done for us. To use SC/MP (or any other microprocessor for that matter) you have to create the program, and possibly the interface hardware, to make it work in your system, whether the application is a powerful general purpose computer system or just a control system for a model railway. This is the attraction of microprocessors really, the fact that the user has to do some thinking himself, and is not at the mercy of the LSI producers, as has been the general trend of late.

KNOWLEDGE REQUIRED

The knowledge required to make SC/MP jump through the hoop does not include a B.Sc. in computer science, or an A level in maths (or even, as some wags would have it, an O level in Swahili!!

Microprocessing is a subject which, while new and loaded with jargon can be readily assimilated by anyone who has some knowledge of logic systems or of using computers in a programming sense, or both.

To aid budding users and programmers of the SC/MP chip, National have produced an introductory kit called the SC/MP INTROKIT which is easy to assemble and can be used for running and modifying simple programs written by the user without the need for a PROM programmer.

Communication with the INTROKIT has to be carried out under the control of a program (supplied in a ROM), called KITBUG, and KITBUG will only talk to ASCII coded TTYs such as the Teletype ASR3320/JC or T.U. which, of course, is rather a problem for amateur users.

KEYBOARD KIT

National recognise that the small user is not going to be very happy about spending $£ 500$ or more on a Teletype, and so they have produced a companion to INTROKIT called KEYBOARD KIT which uses a calculator keyboard and display to provide the necessary user communication with the INTROKIT, under the control of a replacement INTROKIT program called SCMP/KB, also in a ROM and supplied with the KEYBOARD KIT.
Unlike another National innovation, TELEKIT, KEYBOARD KIT is not a direct substitute for a TTY and operates in a rather different way but with equal effectiveness.

INTROKIT

Our INTROKIT arrived in a handsome and sturdy ring-binder which contained all the electronic components on a well laid out "BubblePack" card, in addition to an impressive supply of "Software" in the form of data sheets for all kit components, a comprehensive programming manual, an SC/MP technical manual, and an INTROKIT user's manual. Also included was a useful pocket sized SC/MP instruction guide and a card informing us that we were entitled to a year's free membership of "Compute" SC/MP users' club, and its newsletter the "Bit-Bucket" (Ugghh!).

This club promises to be of great help to SC/MP users because it is fostering a software program library to which all members have access, and we are eagerly looking forward to our first issue of the newsletter which we hope will tell us more.

COMPONENTS

We were surprised at just how few components were required to make a working computer, only six i.c.s in all, including the SC/MP chip, the others being the KITBUG ROM (5214), two 2101 RAM chips, a hex TTL Schmitt trigger (7414), and an eight-bit TTL tristate bus buffer, DM81LS95N.

The INTROKIT p.c.b. is a high quality, glass fibre, double-sided board with plated-through holes,
and less than half of its $160 \mathrm{~mm} \times$ 100 mm Eurocard size is actually used for INTROKIT components, with the rest being laid out as a matrix board to house wire-wrap sockets provided by the user for his specific applications.

A 64-way wire wrappable edgeplug of the two-part variety is provided in the kit, although it is by no means essential to use it, and no matching socket is provided anyway.

A $40-\mathrm{pin}$ i.c. wire-wrap socket is provided for the SC/MP chip which is very useful because it gives ready access to all the important busses and control pins when adding extra facilities or expanding the capability of the basic kit. A socket of the solder-tail variety is provided for the ROM so that you can change operating programs at will.

REGULATOR

The INTROKIT requires 5 V and -12 V supplies, but actually generates a third (-7 V) internally by means of a LM 320 negative regulator which also goes on the p.c.b. and does not require a heat sink.

Consumption is 350 mA at 5 V and 200 mA at -12 V , but remember that this will increase if the KEYBOARD KIT is used, or any other user circuitry added.

CONSTRUCTION

The INTROKIT USER'S MANUAL is quite comprehensive and easy to follow, and we followed Chapter 2, "Kit Assembly and Checkout" religiously without incident, even section 2.2 which is quaintly titled "Stuffing Procedures'"

We mounted the RAM and TTL chips on Soldercon pins for flexibility and because, as pointed out in the manual, once you have soldered an i.c. into place on a p.t.h. type board, it is extremely difficult to remove it!

KIT EXPANSION

When all the INTROKIT wiring was complete we moved straight on to wire up the KEYBOARD KIT because, like most readers we did not have a TTY of the right type to start running programs using KITBUG. While still with INTROKIT however, it is worth drawing attention to Chapter 3 of the User's Manual which covers kit expansion, because not everybody will want to accept INTROKIT as it stands.)

We examined the possibility of using the INTROKIT as part of a more comprehensive "Development System" with extra PROM and RAM memory on additional

Eurocards. This would seem to be quite possible providing that buffers are provided for system busses, and of course these can be housed on the matrix section of the INTROKIT board.

The National DM81LS95 series of tri-state buffers would be ideal for this purpose, and you would need to use about six or seven of them to cover all requirements. In this case the board interconnections could use the edge connector to advantage.

SC/MP KEYBOARD KIT

Our SC/MP KEYBOARD KIT arrived packed on a similar vacuum "Bubble Pack" card to the INTROKIT, but with no ring binder. Another mound of software was included, but with some relief we realised that much of this duplicated manuals aiready received with INTROKIT!

There is no circuit board with this kit because the components have to be mounted on the matrix area of INTROKIT, of which the KEYBOARD circuitry becomes an intimate part. The implication here is of course that the KEYBOARD KIT is not a stand-alone peripheral, but is in effect an extension of the INTROKIT system which treats it as a series of memory addresses to which data can be sent (Display) and from which data can be retrieved (Keyboard).

CALCULATOR

The keyboard and display unit uses the case of a National Calculator with an overlay to re-label the twenty keys as the 0 to F hexadecimal characters and the four control operators GO, ABT, TERM, and MEM. The old ON-OFF slider is now used as INIT, or reset, switch to clear the SC/MP chip when required.

The calculator part of the kit comes complete with a prewired 21-way flat-strip cable and socket and there is no need to do anything to this part of the kit at all. it is ready for use when received.

The electronic "Meat" of the kit comes in the form of eight TTL dual in line i.c.s which act as address decoders, data latches and l.e.d. display drivers, and are wired into the SC/MP system addre is and data busses.

WIRE WRAP

We were a little apprehensive about the fact that the TTL i.c.s had to be connected up using wirewrapping techniques as upposed to the usual soldered connections, but wire-wrap sockets are provided, along with a simple wirewrap tool and an adequate supply
of prestripped, cut lengths, of 30 gauge Kynar wrapping wire; and in the event our apprehension was unnecessary because we found the tool and the wire easy to use, even a little boring!
Despite the ease of wiring up the KEYBOARD KIT, it is important to spend some hours studying the USER'S MANUAL before carrying it out-because mistakes could be difficult to rectify, and would of course require extra Kynar wire which is difficult to obtain, and expensive at the moment. We feel that an understanding of the circuit is important before construction, so that links can be crossed off on the circuit as well as the wiring list as construction proceeds.

USER MANUAL

We weren't quite so happy about the KEYBOARD KIT USER'S MANUAL as we were about the INTROKIT versions, because it refers to two different SC/MP kits: the SC/MP KIT (USA) and the SC/MP INTROKIT (EUROPE). The manual is written primarily for the former, with the extra information required for the latter listed as changes. This means a certain amount of cross-referencing and is rather annoying because at times you can qet confused about which board you are dealing with!

PROBLEMS

We must also point out that there are two versions of the European INTROKIT, and the KEYBOARD KIT will only easily interface with one of these.

The first INTROKIT we received was of the old type on an s.r.b.p. circuit board with the crystal located on the top left-hand corner of the board as viewed from the edae connector: and we found that although the INTROKIT itself was perfectly satisfactory, adding the KEYBOARD KIT was difficult and required the addition of an extra CMOS gate package which is not supplied. The KEYBOARD KIT USER'S MANUAL does not recognise this earlier INTROKIT and so no instructions are listed for this combination, making this a situation to avoid if at all possible.

We later received the new INTROKIT on the glass fibre board and with the crystal on the bottom right-hand corner of the printed area of the board. and this proved to be perfectly satisfactory (as reviewed earlier).

We have been assured by Marshall's that INTROKITS now on sale are of the new type, but I advise anyone to specify-to the supplier-that he or she is only interested in the new INTROKIT, if they intend to use the KEYBOARD KIT with it.

Unfortunately there are no part number differences that we can detect, and so visual identification is best. The new INTROKIT is packed in a ring binder, the old INTROKIT comes in a "Shirt-box".
If you already have one of the older INTROKITS you can of course ask the supplier of the KEYBOARD KIT to supply details of the modifications necessary to combine them. The modifications are not too difficult for 'experienced constructors.

USING THE SC/MP INTROKIT AND KEYBOARD

When we finished the KEYBOARD KIT additions to the IN TROKIT, we decided to build a special power supply for it to provide the well-regulated 5 V and -12 V supplies required. On the lid of the power supply case we mounted slide-in p.c.b. edge strips to hold the INTROKIT board securely while allowing free access to the circuit layout.

With the SC/MP system now ready to go we pluaged in the SC/MPKB program ROM and switched on-Success!
With power applied the display shows dashes in the four-digit address field and the two-digit
data field, which means that it awaits your command! A small step-by-step program is provided in the KEYBOARD KIT USER'S MIANUAL and we entered this and ran it with the result that SC/MP announced on its display that we '"Did Good'"-which was very satisfying.

WHERE NEXT

At this stage, unless you have done your homework well, you may feel a little lost, like us. But we armed ourselves with the PROGRAMMING MANUAL and remembering that the SC/MPKB keyboard and display routine is a callable subroutine, we soon had some simple programs running using the display as an output device.

We found the system for entering a program using the keyboard was a bit tedious because between each data entry we had to press TERM then MEM then TERM again, a sequence which is easy to bodge if you try to enter a program rapidly. We felt that an automatic memory address incrementer and separate "Enter address" or "Enter data" keys would have made life much easier for the user!
If you will be using the SC/MP kits to discover microprocessing
for the first time, you may find it a useful exercise to set the address field to 0000 and then step through the SC/MPKB program using MEM. This enables you to make notes on the program listing supplied with the KEYBOARD KIT which is a liftle difficult to decipher at first.

Once you have an understanding of the SC/MPKB program operation, writing new programs of your own should be child's play!

VERDICT

The INTROKIT is an excellent introduction to using the SC/MP microprocessor and is well presented and packaged. It can be used in a dedicated application or be expanded to form the heart of a capable development system if required. Adding the KEYBOARD KIT overcomes one of the main hurdles for the small user by providing the vital input/output interface at low cost, however. since it uses the INTROKIT matrix area. expansion of the INTROKIT is made corresspondingly more difficult.

One last thing, the SC/MP chip runs quite hot to the touch. which is nothina to worry about and could come in handy for keeping your coffee muq warm durina those long winter programming sessions!

MICROVISION POCKET TV

Gimmick? - or rich man's toy?

This 2 in screen, black and white, pocketsize TV receiver with a price tag of nearly $£ 200$ has been called both by some less-than enraptured TV and radio distributors here in the UK.

But what if it is, so long as it brings in the dollars? For Clive Sinclair is confident that a big market awaits his invention in high-class stores throughout the USA.

From a technical stand point, this tiny receiver with world-wide reception capability must be acclaimed as a brilliant achievement. The culmination of 12 years of research and development, doggedly pursued by Clive Sinclair despite set-backs and disappointments along the way.

The Microvision uses an electrostatically deflected tube with a 2 in screen, manufactured by Telefunken. The electronics have been designed entirely by Sinclair Radionics Ltd. Three of the five bipolar i.c.s used were specially designed by Sinclair, and without them the present model could not have been achieved.

The very word "Microprocessor" can strike terror into the hearts of those of us who still mourn the passing of the beam-tetrode; it can just as readily bring forth squeals of ecstasy from the dynamic, avant garde brigade, who see in this new technology the dawning of an electronic Utopia where every conceivable gadget from an electric toothbrush to a motor car has at its heart a one-chip computer!

At present micro-madness grips the electronic industry, everyone is learning to speak Microprocessor-ese and, believe it or not, some people are actually using these omnirotent devices in practical applications.

Where will microprocessors be when the dust of the electronic industries' first emotional reactions settle? Are they really the universal component or are they too difficult for most engineers, let alone amateurs to use?

In this series we will attempt to put down on paper the essence of the microprocessor technology, and where necessary, take a hard look at how these remarkable devices can be employed by the amateur.

THE MICROPROCESSOR is not new, the first true example was introduced by Intel, still the market leaders, as long ago as 1971 in the shape of their 4004, a four-bit device which is still in full scale production. New developments followed thick and fast and today we see a broad spectrum of microprocessor (MPU) devices, available from all the major semiconductor manufacturers and catering for every possible application which can currently be envisaged, many of them approaching the sophistication of "full size" computers when supported by memory and interface components.

Microprocessors were made possible by the giant strides made in lsı production, spurred on by such consumer products as the one-chip calculator. But don't confuse the MPU with calculator chips because although similar operations take place inside the respective packages the application of the two devices is very different indeed.

The mpu is very much a general purpose device which can be used to replace the large number of TTL or other logic functions which might otherwise perform a
particular task. The MPU is tailored to an application by means of a program, or sequence of simple instructions, which it carries out one after another.

It is well within the capability of an mpu for it to perform the tasks of a common or garden calculator, including keyboard processing and display driving, but the point is that simply by changing the program, which is usually held external to the MPU chip, it can also perform the tasks of a pig feed dispenser control system, a washing machine controller, or a TV tennis game. The versatility of an MPU chip can be summed up in the two words "Deferred Design".

DEFERRED DESIGN

Deferred design means that when the hardware of an mpU system is assembled the operations it is going to perform need not be known in detail since these will be controlled by the software, or program, which can be created or developed later on.

In the design process the question "Which resistor shall I solder in?" is replaced by "Which instruction
shall I enter in the program?', Of course, hardware is still very much involved, the mpu itself is hardware, and to make it work it is necessary to surround it with a number of other devices to provide program storage and the means to communicate with the outside world.

This external logic will vary from application to application but really it is only a small part of the microprocessor system because the lion's share of the circuitry is hidden inside the MPU chip itself.

APPLICATIONS

Applications for these amazing devices are legion. All you need is a creative mind, a grasp of the instruction set or rudimentary "language" of the mpu, and the hardware to try out the resulting programs.

While programs are being tried out on a general purpose microprocessor, or "development system" as it is usually called, it will often be unnecessary to add any application hardware to the system because l.e.d.s can be used to simulate switched outputs such as relays or motors, and panel switches can simulate labelled control switches or sensor inputs.

When you are happy that the program operates correctly and have made improvements where necessary, the program can be "frozen" in a prom (Programmable Read Only Memory) chip and the development system reused over and over again for designing and debugging other new systems.

The Рrom or "Firmware" programs are then plugged into a minimal microprocessor hardware circuit where only sufficient circuitry external to the mpu to perform the particular application is used.

This entire sequence of events is shown graphically in the flow chart Fig. 1.1.

Fig. 1.1 Example of a flow chart as used for developing a microprocessor system

Glossury of Temms

BCD-Binary Coded Decimal. A method of representing numerical values where each decimal digit is replaced by its binary equivalent.
BIPOLAR-Descriptive of the junction transistor, which is dependent on both types of charge carrier electrons and holes. One of the technologies used in i.c. manufacture. Has speed and drive capability advantages over mos. Frequently used to buffer mos I / P and O / P devices.
BIT-BInary digiT. A single binary digit which may be either logic " 1 " or logic " 0 ". In an MPU system these logic states are represented by voltage levels.
BUS-A collection of wires carrying parallel binary data. Several bus users can send or receive data along the bus; generally only one "Sender" and one "Receiver" active at any one instant.
BYTE-See "Word".
CMOS-Complementary mos. A semiconductor technology. Uses both n - and p-channel devices on the same chip. Has great advantages of power, but has both speed and packing density limitations.
DATA STORE-Memory that contains data. Usually a RAM.
DEBUGGING-The procedure of checking a program and eliminating any errors.

DEDICATED-A type of application where a microprocessor is programmed to perform one particular set of operations, and so is committed exclusively to one application.
DEVELOPMENT SYSTEM-An apparatus which normally includes the MPU in question in combination with sufficient memory and peripherals to enable development of MPU programs and hardware systems.
FIRMWARE-Instructions or data permanently stored within a rom.
FLOW CHART-A diagrammatic way of expressing program operation using boxes to represent "operations" and lines for execution sequence.
HARDWARE-The electronic components or equipment of a computing system.
HARD WIRED LOGIC-Systems built up with TTL or similar logic i.c.s (or relays) and involving handwired connections, the interconnection pattern determining the operation-rather than the contents of a memory as in the case of mpus.
INSTRUCTION-A binary "word" which is interpreted by the MPU instruction decoder as a command to open gates, generate shift pulses and increment counters. Typical MPU instructions would be: ADD, SHIFT LEFT, CLEAR REGISTER.
INSTRUCTION SET-The set of instructions that the microprocessor is able to perform. Unique to a given type of MPU.
LSI-Large-Scale Integration. Solid state microelectronics technology that permits very high densities of circuit functions on a single chip.

IN THE HOME . . .

The Singer Futura Sewing Machine, introduced to the domestic market last autumn. This is the first truly electronic sewing machine. The conventional stitch formation mechanism, involving some 300 parts in all, has been replaced by electronic controls. The "brain" is a microprocessor which is programmed to provide 25 patterns, including straight stitch and two buttonholes, at the touch of a button. There is some unused memory capacity available for future alterations or additions to the patterns.

IN INDUSTRY . . .

The Fluke 6010A Synthesised Signal Generator, a versatile 7 -digit 10 Hz to 11 MHz instrument with exceptional capabilities.

The 6010A is the first signal generator to incorporate a microprocessor (an Intel 4040). One of the unique features due to the use of a microprocessor is the instrument's ability to store and recall programmed data. Up to 10 frequencies, modulation and attenuator settings can be stored and recalled at the push of a button. The microprocessor also plays a part in several other operations, including automatic range selection.

MOS-Metal Oxide Silicon. Descriptive of the construction of insulated-gate field-effect semiconductor devices. One of the technologies used in i.c. manufacture.
MPU-Shorthand for Microprocessor, standing for Micro-Processor Unit, a collection of gates and flip-flops on a LSI chip which are arranged so that they will obey general purpose "Instructions" stored external to the MPU itself.
NMOS-n-channel mos. A semiconductor technology. Has speed and power advantages over pmos. Operates at lower voltage (5 V). TTL compatible.
PERIPHERALS-Terminal Units or equipments for "talking" to, or reproducing outputs from, computers, e.g. Teletype, vDU, paper tape readers, or magnetic tape equipment.
PMOS-p-channel mos. The first mos technology evolved. Requires a high voltage (12-15V). Can be made TTL compatible.
PORT-A terminal which the MPU uses to communicate with the outside world. Ports can be input only, output only, or bidirectional, and would in general carry parallel data $4,8,12$, or 16 bits wide.
PROGRAM-An assembly of MPU instructions which together instruct the processor to carry out a particular job.
PROM-Programmable Read Only Memory. Widely, used to hold MPU programs in the form of " n " parallel binary words accessed by means of "Address" inputs and "Chip Select" inputs.
proms are a special form of rom which can be programmed by blowing fuse links, making links by migration, or storing a charge on the gate of a mos device. Some proms can be erased with ultra-violet light and re-used, but all require special hardware for programming and so are not the equivalent of Read/Write ram.
Programs committed to ROM or PROM are referred to as "Firmware".
RAM-Random Access Memory. A bad choice of title this because, of course, Proms are also Randomly Accessible. RAM really refers to Read/Write Memory components which are used in MPU systems to store data words which can be erased or modified at will. Unlike prom storage, RAM data is destroyed by removing the power.
ROM-Read Only Memory. A device containing information which is fixed and is unalterable.
SOFTWARE-Programs which can be changed and loaded at will. Resides in RAM and is entered from keyboard, paper tape, or magnetic tape.
TTL-Transistor-Transistor Logic. A form of logic circuit design where multi-emitter transistors provide all required logic functions. Common in logic i.c.s.
VDU-Video (Visual) Display Unit.
WORD-A Word is a parallel collection of binary digits and MPU chips are sometimes compared on the basis of their "Word-Length" or number of bits they can operate on at any one time. The particular case of an eight-bit word is often referred to by the special term "Byte".

Fig. 1.2 A basic microprocessor system, comprising four chips

If you are fascinated by the creative possibilities of using microprocessors, then the starting point is acquiring a general purpose development system, and equally important, a means of communicating with it, e.g. keyboard and display.

AS A COMPONENT

If this creative use of mpus with its requirement for learning a lot of "new tricks" is not for you and you prefer the wire-it-up-and-switch-it-on, well-defined type of project, don't ignore microprocessors because eventually there will be projects appearing in this magazine which will use microprocessors just as components.

In such cases construction will be just as it's always been, with the added interest of a "program diagram" in addition to the usual circuit diagram. A project like this might be titled "TV Game" or "Ignition Control" and the circuit and program presented would be dedicated to performing just one job.

It would be unnecessary in this case to understand fully the program, only how to get a blank prom loaded with it, either by doing it yourself with the aid of a simple PROM programmer, or by post when you buy the PROM chip.

DEVELOPMENT SYSTEMS

If you do feel interested enough to invest in a general purpose system to try out your programming skills there are an increasing number of "Introductory Kits" (such as the SC/MP Introkit) appearing on the market which can usually be expanded to form quite capable development systems as your wings begin to spread.

Communicating with such a general purpose system is a bit of a headache because the most obvious way is to use a commercial teletypewriter or vDU, and these have prices which are unrealistic for our purpose to say the least!

The microprocessor itself can come to the rescue here though, because it can be programmed to imitate a Teletype, as in the National Telekit machine which provides most of the usual Teletype facilities but in a calculator case. This is quite a good idea, but unfortunately still a bit pricy in battered Britain at about $£ 180$.

The Telekit uses an extra MPU to do a dedicated job but it can be much cheaper to let the development system itself encode its own keyboard and drive its own display, and this is the approach used in certain microprocessor systems now under development.

Eventually it will be possible to construct low cost MPU peripherals such as vdus using a standard television set, or program stores using cassette tape players, so that amateurs can build up a very powerful data processing system and enjoy all the benefits of the computer age in their own homes.

EVERYDAY USE

Commercially speaking, microprocessors are already in everyday use, and are to be seen in cars, cookers, washing machines, petrol pumps, weighing scales, juke boxes, signal generators, sewing machines and elsewhere.

In most of these applications the mpu chip is used to replace mechanical gadgets such as cam-timers or boards full of "random logic" (like ttl counters), but they provide new facilities into the bargain which were out of the question before the power of the microprocessor came along.

The microprocessor can be all things to all people, so versatile and powerful that seldom, if ever, are all the available facilities of a particular chip used in an application, and it is quite possible that the same device could be used in, say, a heart monitoring machine, and also turn up in a food-mixer. In the first case a sophisticated lengthy program, requiring many proms would be necessary, in the second a single Prom would probably suffice.

The nice thing about all this is, of course, that once the finer points of a particular mpu become familiar to the designer then it can be designed into almost any application that enters his head: there is no need to swop from mpu chip A to mpu chip B except in extreme circumstances.

THE PROGRAM

A basic microprocessor system is shown in Fig. 1.2. It will be noted that the system can be split into four main areas:

1. The MPU itself, which is capable of performing arithmetic, logical and manipulative operations on data with which it is provided, under the control of a sequence of program steps.
2. The Program Store which in its simplest form is a PROM but which could also be Read/Write memory (RAM) and which holds the sequence of instructions to control the action of the mpu.
3. The Data Store, which consists of an array of Read/ Write memory and is used for storing input data, output data and intermediate results. (The Data Store is integrated with Read/Write program storage in some mpU designs, particularly development systems).
4. Input/Output Ports, which are simply the communications channels over which the MPU talks to the outside world. (These are of course binary channels, often four, eight, 12 or 16 bits wide for transferring parallel data words. An eight-bit port could represent $0-255$ in binary, $0-99$ in BCD, the state of eight separate and independent front panel switches, or the correct segment pattern to display the number " 4 " on a seven-segment display, for example.)

SYSTEM EXAMPLE

To see how these system components work together let us consider a simple example using an imaginary "one-bit" MPU to replace TTL which performs the following logical operation $\ldots D=\overline{(A . B)+C}$.

The tTL implementation of this expression can be achieved with a single two-input AND gate followed by a two-input nor gate as shown in Fig. 1.3 (a).

The same result can be achieved with a few program steps on our imaginary microprocessor by . .

Using a read 0 instruction to input the state of Port 0 .
Using a store instruction to file this away in the data store.
Using a read 1 instruction to input the state of Port 1.
Using an and instruction to solve A.B.
Using a store instruction to file away the result.
Using a read 2 instruction to input the state of Port 2.
Using an or instruction to solve $(A . B)+C$.
Using a COMPLEMENT instruction to form $\overline{(A \cdot B)+C}$.
Using a write 3 instruction to output the result D on Port 3.
The above sequence of instructions is stored in the Program Store and after "system reset" the sequence is carried out sequentially by the MPU to achieve the same result as the two titl gates would. (See Fig. 1.3 (b)).

This may seem a pretty futile exercise but of course in a real system this would be only a tiny part of a much larger program. Real world microprocessors handle not one bit at a time but four, eight, twelve or even sixteen!

WHICH MICRO?

Later on in this series, after we have become more familiar with the detailed workings of the microprocessor chips and systems, we will take a critical look at
the various MPU chips available so that you can choose the one(s) which would be best for your sort of applications. But before going into that sort of detail it may be useful to think about two of the most fundamental, and often most confusing aspects of MPU selection, namely "Word length" and "Semiconductor Technology".

WORD LENGTH

Anyone who has come into contact with binary arithmetic knows that with (say) four bits there are 2^{4} or 16 possible combinations and that with (say) 16 bits there are 2^{16} or 65,536 combinations possible. Applying this simple knowledge to MPU systems leads to the conclusion that with a four-bit answer the best definition possible is $1 / 16$ or about 6 per cent, whereas with a 16 -bit answer definition is: $1 / 65,536$ or about 0.0015 per cent.

On this sort of comparison it looks obvious that "The bigger the word length the better". But this can be a trap to catch the unwary because another dimension must be added before genuine conclusions on word length can be drawn, and the extra dimension is "Time".

A four-bit mPU can process data to give 16 -bit definition by simply cascading four, four-bit manipulations in its program; the only loss is in the time required to achieve an answer, and since even with slow mPUS 100,000 instructions can be implemented in one second, that may not be a limiting factor in your application!
Four-bit mpus are ideal for handling decimal calculations where input and output are in BCD (Binary

Fig. 1.3 Performing a logical operation
(a) the hard-wired logic approach
(b) the MPU programmed logic approach

Coded Decimal) format, straightforward logic control operations as may be needed for train sets or synthesizers, and most applications where very long programs or high speeds are not necessary.

Table 1.1 :
MICROPROCESSOR TECHNOLOGIES

	PMOS	NMOS	CMOS	Bipolar
Cost	Low Low	Medium	Medium	High
Speed		Medium	Medium	High
Power	Low	Low	Very low	High
Usage	Wide	Wide	Medium	Specialised
Examples of commercial devices	400440408008SC/MPTMS1,000	$\begin{aligned} & 8080 \\ & 6800 \\ & 2650 \\ & \text { Z80 } \end{aligned}$	IM6100 Cosmac	3000series

HOW THEY COME ...

The Intel SDK80 Microcomputer System Design Kit contains all components required to build a complete system based on the 8080A CPU Group. In addition, the board provides areas for expansion of the microcomputer system and for customised interfacing through a pre-drilled, wrapped-wire interconnection area.

ON ACTIVE SERVICE ...

The RCA COSMAC Microprocessor Development System modified into a prototype for an automatic TV audience monitor unit.

ALPHANUMERICS

Eight-bit mpus are more expensive, but have the useful facility of being able to handle alphanumeric data (0 to 9 . A to Z etc.) directly, because eight-bit words give more than enough combinations to handle all the characters to be found on a typewriter keyboard.

Eight-bit mpus are therefore ideal for data-processing applications where output is to a Teletype or vDu as well as for those applications which can be also handled by the four-bit chips.

Twelve- and 16 -bit microprocessors are more powerful than the eight-bit devices in that they have larger instructions sets and can give more precision in a shorter time, but needless to say you have to pay for these goodies, and in the author's opinion they are a little too complicated and expensive for use in present amateur projects.

SEMICONDUCTOR TECHNOLOGY

Microprocessor chips are made in all the currently popular semiconductor processes. Each of these has attendant advantages and disadvantages which are summarised in Table 1.1.

PMOS was the first usi technology and it is likely to be cheaper per bit than the others for some time to come, which makes it a likely first choice for amateur use-unless special characteristics like low power consumption (choose cmos) or high speed (choose nmos or Bipolar) are important.
NEXT MONTH: How the MPU chip works.

This unit will display the day of the week on a row of l.e.d.s for up to a year on manganese alkaline cells, by using CMOS logic circuitry.

GET ON THE RIGHT ROAD ...

 Wabile Disca Teduiques - Part I

THIS unit contains a novel guitar effects circuit which uses an operational amplifier as a filter and attenuator, to automatically generate either a wahpedal, or swell-pedal sound. The wah-pedal mode makes use of the Voltage Controlled Filter (v.c.f.), and the swell-pedal makes use of the Voltage Controlled Attenuator (v.c.a.); the effect being triggered by the start of each new note played through the unit. This leaves the guitarist's foot free to operate other effects pedals and switches, and also, especially when used in the attenuation mode, produces an effect not easy to achieve by conventional means.

PRINCIPLE OF OPERATION

Referring to the block diagram in Fig. 1 it can be seen that the input signal is buffered by an amplifier, and fed to a rectification and pulse generator circuit. This fires a pulse to the ramp generator at the start of each note. The pulse has the effect of resetting the ramp (which normally rests high), then allowing the output voltage to climb back up to the high end again, at a

Fig. 1. Autowah block diagram
rate set by the time control. This ramp voltage is fed to the signal processing circuit, which can be switched into either a v.c.f. or v.c.a. mode of operation. Thus each note produced by the guitar will initiate its own ramp, and consequently its own "wah" or "swell".

A switch is also fitted to connect the input directly to the output, and so allow the signal to pass unchanged.

THE CIRCUIT

The v.c.f./v.c.a. is formed by ICl and its associated components as illustrated in Fig. 2. Capacitors Cl and C2, and the field effect transistor TRI form a "T" filter in the feedback path of ICl when operating as a v.c.f., whilst for v.c.a. mode the f.e.t. becomes part of a purely resistive feedback path.

Amplification of the raw signal is required for the rectifier stage, and this is achieved through IC2. The gain of this pre-amp is set by R5 and R7, and the output is a.c. coupled (C4) to allow for the level shift generated by the diode pump rectifier, giving greater sensitivity. The components D1, D2 and C5 form the rectifier and smoothing circuit, with R8 providing a discharge path for C5. D3 provides a discharge path for C6. A d.c. voltage will appear across C5 throughout the duration of a note from the guitar, and due to the differentiating capacitor (C6), a pulse will be delivered to the base of TR2 at the onset of each note. Now C7 will be reset by TR2 and TR3, but because the pulse is very short, C7 will start to recharge almost instantly, at a rate set by VR2. It is this ramp, starting at the onset of each new note, that is used to control the v.c.f./v.c.a. via the gate of TR1.

Stereo jack sockets are used for input and output connections, to allow automatic connection of the batteries when the plugs are inserted.

COMPONENTS . . .

Fig. 2. Circuit diagram. All input and output leads to the jack sockets are screened, the screening providing an earth path

Miscellaneous

$4 B A+6 B A$ nuts and bolts. Two-pole c/o switches (2 off). Knobs, and a plastic or metal case. Two stereo jack sockets. 0.1 inch matrix Veroboard, $90 \times 100 \mathrm{~mm}$ approx. Battery connectors (2 off), and wire

Fig. 3. Component layout. Switch positions are numbered to simplify wiring. Note: C4 is shown with incorrect polarity and should be reversed

Rear view showing wiring to front panel controls

CONSTRUCTION

The unit was constructed on $0 \cdot 1$ in Veroboard as shown in the layout diagram (Fig. 3). The gate of TR1 may be left unconnected at the circuit board construction stage, to allow for a simple test later on.

A ready-made aluminium and steel box, $203 \times 140 \times$ 51 mm , was used for the prototype, but any convenient case will do, although metal is preferable for both screening and robustness.

Fig. 4. Additional pre-amplifier for use with low output guitars

COMPONENTS . . .

Although a miniature two-pole changeover toggleswitch was used as the bypass switch on the prototype, a footswitch could be used and mounted in the lid of the box. However, suitable two-pole changeover footswitches do seem to be both expensive and difficult to obtain from electronic parts retailers.

Current consumption is around 4 mA (measured in each supply rail), so PP3 or PP6 batteries can be used. The batteries were clamped into the prototype by an aluminium strip held by two long 6BA bolts.

The Veroboard was mounted on two $25 \mathrm{~mm} \times 4 \mathrm{BA}$ bolts using short lengths of plastic tube as spacers, and with additional support from a block of foam rubber glued to the floor of the box.
Letraset and Letrafilm were used on the front panel, and sprayed with Letracote gloss. This finish tends to be rather brittle, and so a coat of polyurethane varnish would give a more resilient finish.

TEST

A simple test can be carried out at this point to check the operation of the v.c.f./v.c.a. A fingertip brought close to the gate of TR1 should cause heavy 50 Hz mains hum modulation of any note fed through the unit to an amplifier. There should be a clearly audible difference between the v.c.f. mode and the v.c.a. mode. After this check, the gate of TRI can be connected to the circuit. The unit is sensitive enough to respond to most guitar pick-ups, although some low output guitars may give unreliable triggering.

ADDITIONAL PRE-AMPLIFIER

Should a low output guitar be used, the additional pre-amp shown in Fig. 4 can be employed to boost the low level signals. It may be fitted inside the Autowah Unit, or built as a separate item with its own case and batteries, so as to be a useful general purpose pre-amp. When used with normal guitar pick-ups, the pre-amp will cause a certain amount of clipping and distortion; but this does give the v.c.f. more harmonics to work on, and results in a stronger more aggressive sound, possibly preferred by some rock guitarists.

USING THE AUTOWAH

Since the trigger circuit responds to increases in the input level, it is not normally necessary to leave spaces between notes as with some circuits, and quite fast, fluid runs can be played after only limited experience with the unit. However, should the circuit not seem to respond quickly enough to successive notes, R8 may be slightly reduced in value.
For best results, some experimentation with the input levels may be necessary, compensating for any adjustments by a corresponding adjustment to the amplifier volume control.
The output volume of the Autowah is normally set to give no change in volume with the unit switched out of circuit. With the unit in circuit and switched to v.c.f. mode, the time control will vary the length of the "wah", from an extremely short "click" to something over one second. In the v.c.a. mode, most effective results are obtained when the time control is adjusted to just remove the sharp peak at the start of the guitar envelope, which changes the sound to a surprising extent. This produces something like a violin sound; or with fuzz, using the additional pre-amp, a harmonium sound is produced.

THE RECORD BREAKERS

British electronics companies art performing as never before. GEC is doing record business with sales in the current financial year certain to approach, if not surpass, $£ 2,000$ million with pre-tax profits of some £250 million. I base this forecast on first-half results of $£ 963$ million sales and profit of $£ 120$ million. an all-time record and the pace shows no sign of slackening. Moreover. GEC's liquidity position is remarkable with nearly $£ 350$ million cash in the bank which alone generated £15 million in interest,

Of course, GEC is also in heavy electrical engineering and consumer products but the telecommunications. electronics and automation sectors accounted for $£ 273$ million turnover in the first half and should top $£ 550$ million for the full vear. Capital investment is running at some $£ 80$ million a year, hardly deserving the taunts of those who are never tired of saying that British industry lacks the will to invest.

Proportional to its size. Racal Electronics Group is doing even better than GEC and breaking every record in the book. Turnover is now over $£ 100$ million a year and when the financial year closes on March 31, pre-tax profits are forecast as being not less than $£ 28$ million compared with $£ 19 \cdot 65$ million in the preceding year and $£ 9.5$ million the year before that.

Exports are better than ever, now running at 75 per cent of production for the whole group and 85 per cent in communications products. Chairman Ernest Harrison is not exaggerating when he claims that Racal is enjoying "exceptional years".

Having built up a dominating
position with its communications products, spearheaded by military manpacks and mobile radios, in Africa, the Middle East and the Far East Racal's problem now is where to look for further expansion. Harrison sees it in the United States. First moves have already been made in securing a 15 per cent stake in Milgo Electronic Corporation. Racal has had a 50/50 share in Racal-Milgo which markets Milgo data modems outside the United States. Now Racal will have a direct interest in manufacturing and product development through representation on the Milgo board.

Additionally, Racal's own company in the United States, Racal Communications Inc. at Rockville, Maryland, has now received its biggest ever contract from the U.S. government for a new communications receiver designed in the U.S.A. This could be the big breakthrough for which Racal has been patiently waiting over the years.

By the standards of U.S. military spending the present contract is comparatively insignificant in cash terms but if the receiver is made standard U.S. forces equipment the flood gates could open. It is only by having a company based in the United States that one can hope to get military contracts. Outsiders are heavily penalised through the "Buy America" act which protects the home industry.

Meantime, the Racal Group with its buoyant financial position is actively looking for take-over possibilities at home. The Group now has 23 companies in the U.K. and 12 overseas.

Britain's data processing giant $I C L$ continues to gain strength with 20 per cent growth of which very little is said to be due to inflation. Profits are up to $£ 12.5$ million from £9.5 million and overseas turnover is now 40 per cent of the total and expected to rise to 50 per cent. Nice work.

A NATIONAL ENTERPRISE

The cut-throat consumer market with ever-tumbling prices may be good for the customer but can be disastrous for manufacturers who can't stand the pace. Latest victim is Clive Sinclair's Sinclair Radionics, now baled out of trouble by the National Enterprise Board.

Whether we like it or not we are now all shareholders in Sinclair and therefore wish the company well. And Clive Sinclair has, in the end, seen his most cherished ambition, his miniature TV set project, come to fruition (see page 198).

But whether such a project is much related to the "regeneration of British industry" with which the NEB is reputed to be connected, is quite another matter. It seems that
in talks with other possible backers their commercial judgement in relation to such projects was lukewarm. One might have expected the NEB's response to have been in agreement with those with long professional experience.

The most astonishing aspect of the whole affair is that the key component. the miniature picture tube. is to be imported from overseas through a European supplier who will reap some of the benefit of the British tax-payers' investment in £650,000 of ordinary shares and 200,000 £1 preference shares.

ENTENTE CORDIALE?

Hard on the heels of an agreement between Plessey Semiconductors and Sescosem, the semiconductor division of the French giant Thomson-CSF. for mutual development and production of surface acoustic wave (SAW) devices came an announcement that the two companies were exploring a similar agreement on integrated circuits. Industry thinking is that only by mutual co-operation can European i.c. manufacturers stave off the enormous challenge of the big American producers who are only too anxious to capture the bulk of the important European market.

Recent successes in semiconductor exports have considerably strengthened Plessey's hand in negotiations. But co-operation agreements have proved difficult in the past in the semiconductor business. Attempts to re-group the British industry into larger units have always failed. Will an AngloFrench initiative prove more fruitiul? Or an Anglo-German? Or an Anglo-French-German, because Siemens is said to have been a party to informal discussions?

If one is to share one's R and D secrets and production know-how there is clearly great commercial risk and that has always been the stumbling block.

DISPLAYS

The increasingly booming business in electronic displays is proving more and more attractive. Rank Optics is investing heavily in a pdant in Leeds. claiming to be the first British company to go into mass production of professional quality liquid crystal displays.

The size of the LCD market can be gauged from the claim that this vear Brown Boveri will be churning out watch-sized LCDs at the rate of five million a year. And production of LED displays from various manufacturers is of similar astronomical oroportions. In fact, electronic disolavs are now a recognised specialist sector of electronics with its own exhibition and conference as an annual event.

「v any car there are a number of points which should be monitored by the driver. The number of instruments and warning lights fitted by the manufacturer varies widely according to model, and in many cases there is little dashboard space left to add any more.

The output of the self-diagnostic car systems monitor to be described is in the form of a single 7 -segment l.e.d. display which may be fitted to even the most crowded of car instrument panels. The circuit is capable of displaying up to ten fault conditions, and will indicate the existence of any number of these faults occurring at the same time, and their seriousness.

The central unit uses one five volt regulator i.c., five TTL i.c.s and three cmos i.c.s, with a few gates left over which could be used as part of the interface circuitry for the various inputs.

CIRCUIT DESCRIPTION

Two power supply lines are required for the unit. The -12 V supply for the cmos chips is taken direct from the car supply, while the +5 V supply for the tTL is derived from a 7805 regulator, ICI. See Fig. 1.
An NE555, IC2, operates as a clock oscillator driving IC3, a BCD counter. The output of IC3 is applied to IC5 (of which more later) and to IC4, a 7 -segment decoder/driver. The output from this i.c. to the display is blanked unless a fault occurs, in which event a preselected number corresponding to that fault will flash on and off with a mark/space ratio of $1: 10$. Should more faults occur simultaneously, more numbers will flash in sequence.

Scanning of the input lines is accomplished by connecting the outputs of IC5, а вCD to decimal decoder,
via switches to the blanking input of IC4. Thus as the counter counts from zero to nine the switches are scanned one by one and the display is held off as long as the switch being scanned is closed. The switches take the form of cmos devices, IC6 -IC8, which are closed so long as the control input to each switch is held at +12 V . Each package contains four switches.

The switch outputs are fed via two inverters contained in IC9. These act as a buffer amplifier, necessary because the maximum current rating of the cmos switches is not sufficient to drive the blanking input of IC4. The car-driver is alerted to more serious faults by means of a "bleeper", based on IC10 which operates as a gated oscillator. When an alarm signal is output by IC9, AND the A output of IC3 is high (signifying an odd number) the oscillator is activated and its output is fed via amplifier TR1 to a small loudspeaker or earpiece insert.

CONSTRUCTION

The prototype was built on matrix board (Fig. 2), which seemed the best method allowing as it does complete flexibility in the wiring of the various input interface circuits required. The voltage regulator circuit was built up on a separate small piece of board, so that the heat sink tab of ICI could be bolted to the car chassis. No insulation is required, since the tab is connected to the 0 V line. Note that the circuit as designed is suitable for NEGATIVE EARTH electrical systems only.

If the assembly order follows the order in which the i.c.s are numbered, power supply followed by timer, etc., each section of the circuit may be tested as it is completed.

Resistors			
R1	$4.7 \mathrm{k} \Omega$	R22, R23	$2 \cdot 2 \mathrm{k} \Omega$ (2 off)
R2	$1 \mathrm{k} \Omega$	R24	270Ω
R3-R9	270Ω (7 off)	R25	22Ω
R10	$4.7 \mathrm{k} \Omega$	R26	$4.7 \mathrm{k} \Omega$
R11	270Ω	R27	$1 \mathrm{k} \Omega$
R12-R21	$1 \mathrm{k} \Omega \frac{1}{8} \mathrm{~W}$ (10		
All $10 \% \frac{1}{4} \mathrm{~W}$ unless otherwise specified			
Variable Resistors			
VR1 $100 \mathrm{k} \Omega$			
$V R 2, V R 310 \mathrm{k} \Omega$ (2 off)			
All min. presets			
Capacitors			
C1	$0.22 \mu \mathrm{~F}$ polyest		
C2	$0.47 \mu \mathrm{~F}$ polyest		
C3	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ electr	lytic	
C4, C5	$0.22 \mu \mathrm{~F}$ polyest	(2 off)	

\section*{Semiconductors
 | IC1 | 7805 5V 1A |
| :---: | :---: |
| IC2 | 555 timer |
| 1 C 3 | 7490 |
| IC4 | 7447A |
| IC5 | 74145 |
| IC6-IC8 | 4016 (3 off) |
| IC9 | 7404 |
| 1 C 10 | 7400 |
| IC11, IC12 | 741 (2 off) |
| TR1 | 2N3704 |
| D1 | 1N5401 |
| D2 | BZY88 C4V7 |

LED $\{$ Any 7 -segment common anode l.e.d. display with I_{F} typical of about 10 m a per segment
Note Items in italics are for the over/undervoltage input interface (Fig. 3)

Fig. 1. Circuit diagram of the central unit of the monitor

Fig. 2. Component layout of the central unit, plus the interface circuit of Fig. 3

INSTALLATION

In operation the alarm inputs are normally held at +12 V and are taken down to near 0 V when a fault occurs. The values for R12-R21 are the minimum required to protect the cmos inputs from a low impedance source and may be increased considerably without affecting performance. Inputs which are being controlled by a s.p.s.t. normally closed switch, such as a mechanical thermostat, should be connected to one side of the switch and to -12 V via a $4.7 \mathrm{k} \Omega$ resistor. The other side of the thermostat is connected to chassis (0 V). The extra resistor is to stop the input from floating when the switch is open. If a normally open switch is being monitored, the resistor and switch are interchanged. Any unused inputs should be connected directly to the -12 V supply.

Fig. 3. An example of a suitable interface circuit, monitoring battery system voltage

The clock oscillator frequency is set by means of VR1 so as to give a reasonably fast scanning rate, but not so rapid as to make identification of two or more consecutively displayed numbers impossible.

The 12 V supply for the system should be taken from the accessory position of the ignition switch, so that the unit is isolated during operation of the car starter motor.

APPLICATIONS

Suitable faults to be indicated by odd numbers, where the audible warning is operational, might be an oil warning lamp, high battery voltage, over-temperature, brake lights fault, side lights fault. For even numbers the faults could be an ice warning device, low battery voltage, handbrake warning or choke warning, since these are perhaps less urgent.

Clearly, many of these ideas (and others) would require further interface circuitry such as voltage comparators and current sensing circuits. An example of one of these types of circuit is shown in Fig. 3 and will provide a warning of low or high battery voltage. The circuit consists of two 741 operational amplifiers operating in the open loop mode as voltage comparators. A reference voltage of +4.7 V is provided by $\mathrm{R} 27 / \mathrm{D} 2$, and this is connected to the non-inverting input of IC11, the over-voltage sensor, and to the inverting input of IC12, the under-voltage sensor. Samples of the battery voltage are applied to the other inputs from potentiometers VR2 and VR3, which are set so that the output of the related i.c. falls to near $0 V$ when predetermined voltage levels are reached. These might be +15 V for over-voltage and +10.5 V for undervoltage. This circuit has been included on the board shown in Fig. 2.

The prototype system was built for around $£ 7$, but this is not excessive when one considers the cost of repairing an engine damaged by overheating or similar fault.

Uniquefull-function 8-digit wrist calculator... available only as a kit.

A wrist calculator is the ultımate in common-sense portable calculating power. Even a pocket calculator goes where your pocket goes - take your jacket off, and you're lost!
But a wrist-calculator is only worth having if it offers a genuinely comprehensive range of functions, with a full-size 8 -digit display
This one does. What's more, because it is a kit, supplied direct from the manufacturer, it costs only a very reasonable $£ 9.95$ (plus 8\% VAT, P\&P). And for that, you get not only a high calibre calculator, but the fascination of building it yourself.

How to make 10 keys do the work of 27

The Sinclair Instrument wrist calculator offers the full range of arithmetic functions. It uses normal algebraic logic ('enter it as you write it'). But in addition, it offers a \% key; plus the convenience functions $\sqrt{x}, 1 / x, x^{2}$; plus a full 5 -function memory.
All this, from just 10 keys! The secret? An ingenious, simple three-position switch. It works like this.

1. The switch in its normal, central position. With the switch centred, numbers - which make up the vast majority of key-strokes - are tapped in the normal way 2. Hold the switch to the left to use the functions to the left above the keys
2. and hold it to the right to use the functions to the right above the keys.

The display uses 8 full-size red LED digits, and the calculator runs on readilyavailable hearing-aid batteries to give weeks of normal use.

Assembling the Sinclair Instrument wrist calculator
The wrist calculator kit comes to you complete and ready for assembly. All you need is a reasonable degree of skill with a fine-point soldering iron. It takes about three hours to assemble. If anything goes wrong, Sinclair Instrument will replace any damaged components free: we want you to enjoy assembling the kit, and to end up with a valuable and useful calculator.

Sinclair Instrument Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Tel: Cambridge (0223) 311488.

To: Sinclair Instrument Ltd,
6 Kings Parade, Cambridge, Cambs., CB2 1SN

* Please send me . . (qty) Sinclair Instrument wrist-calculator kits at $£ 9.95$ plus 80 p VAT plus 25 p P\&P (Total £11).
- I enclose cheque/PO/money order for $£$
- Complete as applicable.

Name
Address
(Please print)
l understand that you will refund my money in full if I return the
kit undamaged within 10 days of receipt. PE/3

PMIENTE

GAIN COMPENSATING AMPLIFIER

A British company based in the Channel Islands, Television Research Ltd., patents, in BP 1449 825, a novel audio amplifier system. The gain is automatically controlled, to compensate for changes in ambient background noise level, for instance to keep the level of reproduced speech, alarm signals or background music always audible.-Existing systems, which sense ambient level with a microphone, tend towards instability it is claimed.
The block diagram of the new patented system is shown in Fig. 1 The input signal (speech, music, warning alarm, etc.) is fed through a buffer amplifier to a variable gain amplifier for reproduction and also to a switching amplifier which detects periods when the input signal falls below a preset threshold.

The microphone senses the ambient sound level and feeds the detector circuit, via an amplifier. with a signal representive of total sound in the environment, i.e. reproduced sound plus ambient noise. An inhibitor circuit in the switching amplifier chain is used to control the detector so that its output is fed to the store during quiet periods only (i.e. when the switching amplifier detects that the
signal level at the buffer amplifier is below the preset thireshold)

The provision of the store between the detector and a variable gain amplifier effectively increases the normally short time constant of the detector during quiet periods This prevents a sudden change in ambient noise level, as for instance produced by a dropped eating utensil or sudden laugh, from altering the gain of the microphone amplifier when the reproduced programme is quiet.
Details of suitable switching amplifier, inhibitor and an ambient noise level detector (with converter from analogue detector voltage to four-bit digital code storage) are given in the patent. Also, suitable digital stores are described.

|IRREF

BP 1451817 - Chan Hue Yeh: Electronic Data Processing of Chinese Characters. A Chinese Teletype which functions without conventional code and decode means as so far employed for converting Oriental characters to electronic signals.

The characters are digitised by placing them under a grid formed as a 24×20 matrix, giving 480 grid portions. The digital results are converted to hexadecimal form stored, retrieved, transmitted and on reception, used to drive a conventional matrix printer corresponding to the matrix used for digitisation.

BP 1451 969-Telub A.B.: Appara tus for Converting Digital Information to Braille. This invention is a calculator modified to provide a Braille output.

A memory register is used, which senses and is triggered to commence entry by the leading edge of a received pulse. The pulse trailing edge triggers transmission of the memory content, to a mechanical Braille format indicator.

Calculator clock pulses are used as the memory triggering pulses.

BP 1449 371-Porsche AG: Elec. trical Speed and Distance Indicator. A simple, but apparently novel idea, because the patent has been accepted. A crossed pair of stationary reed switches lie adjacent to a single bar magnet on a rotating spindle, and produce sufficient discrete pulses, even at low rotational speeds, to provide a steady dial readout after integration.

BP 1448879 - M. Demetrescu: Generator. A novel approach to the generation of electric power at mains frequencies. A mass and spring combination is tuned to a resonant frequency equal to the a.c. frequency to be generated. The mass is moved by mechanical power pulses, for instance in an IC engine, under electronic ignition control to keep the system resonating. Power at the frequency of resonance is generated electromagnetically by interaction of moving coils and magnets.

SPEAKERS

Baker Group 25. 3, 8 or 15 ohm Baker Group 35, 3, 8 or 15 ohm Baker Group 50/12 8 or 15 ohm Baker Group 50/15 8 or 15 ohm Baker Deluxe 124. 8 or 15 hm Baker Major 3. 8 or 15 ohm Baker Superb 8 or 15 ohm Baker Regent 12 in 8 or 15 ohm Baker Auditorium 12in 8 or 15 omm Baker Auditorium 15 in 8 or 15 ohm

Castle 8RSIOD 4 or 8 ohm Celestion G12M 8 or 15 ohm Celestion G12H 8 or 15 ohm Celestion G12/50 8 or 15 ohm Celestion G12/50TC 8 or 15 ohm Celestion G12/50 2236 s/cone Celestion G12/50 2239 s/cone, alum. dome Celestion G15C 8 or 15 ohm Celestion G18C 8 or 15 ohm Celestion HF1300 8 or 15 ohm Celestion HF2000 8 ohm Celestion MH1000 8 or 15 omm Coles 4001G
Coles 4001 K
Decca London ribbon horn
Decca London CO/1000/8 crossove
Decca DK30 ribbon horn
Decca CO/1/8 crossover (DK30)
EMI 14×9 in bass 8 ohms, 14A770
EMI 8×5 in, 10 W , d/cone, roll surr EMI $6 \frac{t}{i n}$ d/cone, roll surr. 8 ohm EMI Bin roll surr. bass
EM1 5 in mid range
Elac 59RM 109 (15 ohm), 59RM114 (8 ohm)
Elac 6 tin d/cone, roll surr., 8 ohm
Elac 10 in 10RM239, 8 ohm
Eagle FR4
Eagle FR65
Eagle FRA
Eagle FR10
Eagle HT15
Eagle MHT 10
Eagle FF28 Multicell. horn
Fane Pop 15, 16 ohm Fane Pop 33T, 8 or 16 ohm Fane Pop 50, 8 or 16 ohm Fane Pop 55, 8 or 16 chm Fane Pop 60. 8 or 16 chm Fane Pop 70 , 8 or 16 hm Fane POP 100 or 16 onm Fane Pop 100, 8 or 16 onm Fane Crescendo 12BL, 8 or 16 ohm Fane Crescendo 15/100A. 8 or 16 ohm Fane Crescendo $15 / 125,8$ or 16 ohm

SPEAKERS

Fane Crescendo 18, 8 or 16 ohm
£13.00 Fane 910 Mk II horn
Fane 920 Mk ll horn
E21.00 Fane HPX1 crossover
Fane 801 T 8in d/c, roll surr.
Gauss 12 in
Gauss 15 in
Gauss 18ın
Goodmans Axent 100
Goodmans Audiom 2008 ohm
Goodmans Axiom 4028 or 15 ohm Goodmans Twinaxiom 8,8 or 15 ohm Goodmans 8P 8 or 15 ohm Goodmans 10P 8 or 15 ohm Goodmans 12P 8 or 15 ohm Goodmans 12PG 8 of 15 omm Goodmans 12PD 8 or 15 ohm Goodmans 12AX 8 or 15 ohm Goodmans $15 A \times 8$ or 15 ohm Goodmans 15P 8 or 15 ohm Goodmans 18P 8 or 15 ohm Goodmans Hifax 750P
Goodmans 5 in midrange 8 ohm
Jordan Watts Module, 4, 8 or 15 hm
Kef T27
Kef T15
Kef B110
Kef B200
Kef B139
Kef DN8
Kef DN12
Ket DN13 SP1015 or SP1017
Lowther PM6
Lowther PM6 Mk
Lowther PM7
Peerless KO100T 4 or 8 ohm
Peerless DT10HFC 8 ohm
Peerless KO40MRF 8 ohm
Peerless MT225HCF 8 ohm
Richard Allan HP8B
Richard Allan LP8B
Aichard Allan DT20
Richard Allan CN8280
Richard Allan CN820
Aichard Allan Super Disco 60W 12 in Richard Allan CG15 15 in bass
Richard Allan Super Disco 10 in 50 watt Richard Allan Super Disco Bin 50 watt Radford BD25
Radford MD9
Radford MD6
Radford TD3
Radford Cross Over Network
Tannoy toin Monitor HPD

Tannoy 12 in Monitor HPD Tannoy 15 in Monitor HPD
c103.00

SPEAKER KITS

Baker Major Module 3, 8 or 15 ohm	each	518.00
Fane Mode One Mk II 15W Fane 040 Disco Kit	each each	$£ 10.35$ §19-95
Goodmans DIN 204 or 8 ohm	each	£15.75
Goodmans Mezzo Twin Kit	parr	c51.95
Helme XLK 30	pair	\$21.95
Helme XLK 35	pair	¢26.75
Helme XLK 40.	pair	£38.50
Kefkit 1	pair	£59.50
Kefkit III	esch	[56.00
Peerless 1060	psir	c61-50
Peerless 1070	each	254.95
Peerless 1120	each	C61.50
Peerless 2050	psir	¢43.95
Peerless 2060	pair	£5t.50
Richard Allan Twin assembly	each	213.95
Richard Allan Triple 8	each	$\underline{20.75}$
Richard Allan Triple 12	each	¢25.95
Richard Allan Super Triple	each	[29.50
Richard Allan RA8 Kıt	pair	237.80
Richard Allan RA82 Kit	pair	C59.40
Richard Allan RA82L Kit	pair	[55.70
Wharfedale Denton 2XP kit	pair	223.25
Wharfedale Linton 3XP kit	pair	[34.25
Wharfedale Glendale 3XP kit	pair	¢49.50

HI-F

ON DEMONSTRATION

in our showrooms:

Akai. Armstrong, Bowerg \& Wilkins, Castle. Celestion. Dual, Goodmans. Kef, Leak, Pioneer. Radford Richard Allan, Rotel. Tandberg. Trio. Videotone Wharfedale, etc.—ask for our Hi-Fi discount pric list.

THIS MONTH'S SPECIALS! (Carr. £2•50)

 Sansui 331 £114.00 Pioneer 7070
Trio KR 2600
Sugden A21 199. 00 Minimax Mk II . 109.00 $130 \cdot 00$ Sansui SC2000/2002 $\begin{aligned} \text { £180.00 }\end{aligned}$ We slock the complete Radford range of amplifiers. preamplifiers, power amplifiers, tuners, etc.. and atso Radford Aldio Laboratory equipment. low distortion oscillator, distortion measuring set, audio nolse meter. etc

ALL PRICES INCLUDE VAT
(PRICES CORRECT AT 10/1/77)
Send stamp for free 38 page bookiet "Choosing a
Speaker" Speaker
ALL UNITS GUARANTEED NEW AND PERFECT Carriage and insurance: Speakers up to 12 in 60p 12 in £1: 15 in $£ 1 \cdot 75$. $18 \mathrm{in} \mathrm{E} 2 \cdot 50$. Kits $£ 1$ each ($\mathbf{~} 2$ per palr). Tweeters and Crossovers 33p each.

WILMSLOW AUDIO

Dept PE
Loudspeakers, mail order and export: Swan Works, Bank Square, Wilmslow Hi-Fi, Radio and TV: Swift of Wilmslow 5 Swan Street, Wilmslow, Cheshire.
PA. Hi-Fi and Accessories: Wilmslow Audio, 10 Swan Street, Wilmslow, Cheshire.
Telephone: Loudspeakers, mail order and export-Wilmslow 29599; Hi-Fi, Radio etc.-Wilmslow 26213.
Access and Barclaycard orders accepted by phone

DCYAm kits

OORAM KITS CONTAIN EVERYTHING DOWN TO

TRANSISTOR TESTER CUITOUT THE GUESSWORK!

The Doram Transistor Tester measures $h_{\text {FE }}$ and leakage for PNP or NPN transistors; Silicon or Germanium. TO5 socket, TO18 socket, flying leads and battery check facility inc S

COMPLETE WITH CASE AND BATTERY Order code 991-990)

O'seas orders-add 15\% for P+P All items offered for sale subject to the Terms of Business set out in Doram Edition 3 catalogue. price 60 p The Doram Kit brochure is also available price 25 p. Combined price oniy 70p which also entitles you to 2×25 p vouchers, each one usable on any order placed to the value of $£ 5,00$ or more (ex. VAT)

DORAM ELECTRONICS ITD
PO BOXTR8 WELLINGTON RD IND. EST, LEEDS LS 122 UF

GMOS WITH DISCOUNTS!
Any mix: Discount 10% for $25+, 25 \%$ for $100+, 385 \%$ for $1,000-$

A selection of readers. original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to its merits.

Articles submitted for publication should conform to the usual practices of this journal, e.g with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere

BENCH POWER SUPPLY

THe circuit of Fig. 1 uses two National Semiconductor integrated circuits to provide a short-circuit-proof one amp variable d.c. power supply, variable from 3 to 20 V .

Mains voltage is stepped down by transformer T1, type Douglas MT3, of which the 15 V winding is used. The a.c. voltage is rectified and smoothed by D1-4 and C1 and passes to pin 3 of the i.c. regulator type LM 305 H . This i.c. comes in an 8 -lead TO-5 can. The output from the LM305H is taken from pin 8 and drives the second i.c., the LM395K. This has three terminals like a normal transistor, but its internal circuitry limits the output current of the power supply to one ampere; thus the power supply is short-circuit-proof, as all that would happen if the output terminals were shorted would be that
the i.c. would current-limit. The LM395K also thermal-limits if it gets too hot due, for example, to insufficient heat-sinking. The LM395K comes in a TO-3 case, but note that the case is connected to the emitter. Potentiometer VR1 controls the feedback to the regulator i.c., but need not be a simple pot. It could be replaced by a rotary switch selecting $10 \mathrm{k} \Omega$ presets, or if the meter were omitted, could form a small power supply for intercoms. calculators etc., or radios-no hum appeared when used to power a radio.

Meter ME1 monitors the output voltage. Diode D5 shorts away any back e.m.f. which appears when a purely inductive load is connected and then disconnected from the output terminals. (Back e.m.f. destroyed an LM395K on the prototype.)

It may be worth noting that a higher voltage model could be built simply by adjusting the tapping on the secondary of Tl for a higher voltage. The LM395 can cope with 30 V , but care must be taken not to exceed 36 V absolute maximum. A higher current value can be achieved by placing two or more LM395s in parallel, one per ampere of output required.

The circuit was assembled on two pieces of Veroboard, one holding the rectification and smoothing components. the other the regulator. An 8-pin TO-5 i.c. socket was used for IC1, IC2 was mounted on the back panel using a mounting kit and a large heatsink. (The device got very hot under short-circuit conditions.)
A. R. Winstanley.

Brigg,
S. Humberside.

THIS circuit (Fig. 1) is very useful for a simple alarm system. When a sound is made, the voltage generated as the sound hits the microphone, trips the simple transistor switch and lights the lamp. The sensitivity of the circuit should be adjusted very carefully to obtain maximum performance.

The light will stay lit until the circuit is reset with the switch, thus this is a tell-tale alarm by which you could tell if someone had been into the house, etc. The circuit may also be used in conjunction with a light triggered alarm.
T. Robinson.

Malton, Yorks.

ACOUSTIC RELAY

Fig. 1

SIMPLE POSITION SERVO

given to RLB which energises the motor. The motor then rotates the feedback potentiometer until the out of balance signal is nulled, thus removing the feed to RLA and RLB An out of balance of negative polarity is fed via IC2 to RLB, which energises the motor. RLA is not energised because TRI is reverse biased, hence the motor is reversed.

The wiper motor drive to the feedback potentiometer should be made fail-safe to avoid damaging the pot, in case of failure to achieve a null. A probable cause would be the feed to the motor being reversed.

Helipots were used in the piototype to obtain a full 360° rotation. The motor supply voltage should be set at something less than the full 12 volts used for vehicle operation. The power resistor R in the order of five to ten ohms in series with the motor feed, should provide sufficient drop from a 12 volt source. This is best found by experiment, as it depends largely on the application. The same applies to the gain of KCl . The $1 \mathrm{M} \Omega$ resistors can be reduced in value for less gain, in order to avoid hunting if it occurs.
> J. C. Hardman,

> Leyland, Lancs.

Manufactured by:- A. R. Sugden \& Co (Engineers) Ltd., Atlas Mill Road, Brighouse, West Yorkshire, HD6 1 ES. Telephone: Brighouse (04847) 2142. Telegrams \& Cables: Connoiseur, Brighouse.

$4 \mathrm{in} \times 3 \mathrm{in}$ METER. $\quad 30 \mu \mathrm{~A}$. $50 \mu \mathrm{~A}$ or $100 \mu \mathrm{~A}, 44-75$. 16 P P. \& P .

MICROPHONES FOR TAPE RECORDERS

DM228R 200 ohm with 3.5 and 2.5 mm Jack Plugs DM229R 50K with 3.5 and 2.5 mm Jack Plugs $\quad \pm 1.60$ DMIBD 200 ohm with 5 and 3 pin Din Plugs $\in 1.75$ Postage on above microphones 11p

CARDIOID DYNAMIC MICROPHONE

Model UD-I30. Frequency response 50 $15,000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50 K and 600 ohms, 67.50. 26p P. \& P.
$42 \times 42 \mathrm{~mm}$ meters $1 \mathrm{~mA}, 500 \mathrm{~mA}$ E2.92. 16p P. \& P.
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $500 \mu \mathrm{~A}$ and 1 mA VU meter, $64 \cdot 14$. 11 pP \& P

Edgewise meters $90 \mathrm{~mm} \times 34 \mathrm{~mm}$, $500 / \mathrm{A}$, and 1 mA , $\mathbf{6 3} \cdot 40$. 16 P P. \& P.

MULTI. METER Model ITI-2 20,000 ohm/ volt, $\in 10.05$. 26p P. \& P

3 WATT STEREO ($1 \frac{1}{2}+1 \frac{1}{2}$) PER CHANNEL AMPLIFIER
64.30. 16p P. \& P.

All above prices include V.A.T. LARGE S.A.E. for New List. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate - Bolton - Lancs. BL2 IBA

CROFTON FOR USED VIDEO EQUIPMENT

Used Video Equipment bought and sold daily. If we do not have what you want, we enter your requirements on our register and advise you when it is available. U.H.F. Modulators supplied for connecting a camera directly to a domestic TV or Phillips V.C.R. Camera Kits for the enthusiast also in stock.
Fujinon Lens available
Repairs of all types of Video equipment undertaken.

WHATEVER YOUR VIDEO REQUIREMENTS FIRST CONTACT CROFTON
CROFTON ELECTRONICS LTD
Dept. E, 35 Grosvenor Road, Twickenham, Middx. Tel. 01-891 1923

(${ }^{\circ}$ INATITOLS

58.60 GROVE RD WINDSOR,BERKS. SL4 1HS
TEL. 54525

AllD 8% VAT TO PRICES MARKED ADD 12% TO ATL OTHER PRICES, OR AS CURREN'T VAT LEGISLATION
SEND C. \quad. O. (EXCEPT GOV'T SEND C. W. O. (EXCEPT GOV'T DEPT)
POST \& PACKING $2 O P$ FOR TIE U.K BARCLAYCARD \& ACCESS BY POST NEW CATALOGUE LIST FREE S.A.E NEW CATALOGUE LIST FREE S.A

- ¢	TOP DISCOUNTS.	HEW LOW PRICES.	Full spec devices
\% now	antebrate co	TRANSISTORS AND DIODES INS BUSH SET Sp ea* TIP31/32 50p*	-
		coit	
	(eater		
	$2:$		
S IDP.			
	ETILS TTL		
твмере		PaK PaK A: : 7	vero
			Neno
	- 1000		${ }_{80 \times 6}$

HOME RADIO (Components) ITO Dept. PE 234-240 Lonilon Roail Mitcham:CR4 3 HD Phone 01-648. 8422

COMPUTER VOICE OSCILLATOR

The computer, or Dalek voice generator devised originally for theatrical purposes, and described in PE May, 1976, used a 555 oscillator to drive a reed relay for voice modulation. The circuit in Fig. I replaces both the 555 timer and the relay with a CD4016 (mos switch package.

Switches S1 and S2, form an oscillator similar to the conventional CMOS NAND-gate oscillator arrangement. The output is taken from S1, and drives 53 which replaces the original reed relay.
W. H. Montgomery, Belfast.

Fig. 1

SIMPLE TUNING FORK

Fig. 1

THE circuit in Fig. 1 uses a NE555 i.c. timer, and a SN7493N i.c. The 555 is used as an astable multivibrator, and in this mode the output frequency is given by.
$\mathrm{f}_{1}=\frac{1.44}{\left[\mathrm{R}_{1}+2\left(\mathrm{R}_{3}-\mathrm{R}_{4}\right)\right] \mathrm{C}} \quad \begin{aligned} & \text { with S } \mathrm{S} \\ & \text { closed. }\end{aligned}$

$$
\mathrm{f}_{2}=\frac{1 \cdot 44}{\left[\mathrm{R}_{1}+2\left(\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}\right)\right] \mathrm{C}} \stackrel{\text { with }}{\text { Si }} \text { open. }
$$

Therefore the ratio $f_{2} / f_{2}=$

$$
\begin{aligned}
& \frac{\mathrm{R}_{1}+2\left(\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}\right)}{\mathrm{R}_{1}+2\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)}= \\
& \frac{170 \cdot 4}{161 \cdot 0}=1.0584
\end{aligned}
$$

This is a good approximation of the musical interval of 1.0595 . Since this ratio depends greatly upon R.3 and

R4, close tolerance of 2 per cent or better must be used for these two resistors. Resistor R2 should be of 5 per cent or better.

In conjunction with S2, tuning with VC1 will give about $2 \cdot 1$ to $4 \cdot 2 \mathrm{kHz}$ with S3 at position 1. With S3 at position 2, the range of frequency will be divided by two (i.e. about 1.05 to $2 \cdot 1 \mathrm{kHz}$) and similarly, positions 3, 4 and 5 each give further binary divisions.

To tune a musical instrument such as a home made electronic organ, starting with say note C which is known to be at the correct frequency. first connect the output of the organ to the input of the circuit and set S3 to the appropriate range. Then with the key C depressed and SI open. adjust VCI until there is at zero beat in the detector, also using S 2 if
necessary. Now the tuning fork circuit is at the same frequency as the C note. Next close Sl to short out R2, and press on the C \# key and tune the organ for zero beat. When this is done, still with C \# key down, open S1 and adjust VCI for zero beat. Next close S1 again and press on the D key, and tune the organ for zero beat. Then with D key still down, open S1 and adjust VCI for zero beat. Then close S 1 to tune the D \# note. Following this systematic procedure the rest of the notes can be tuned.
If a zero beat cannot be obtained after closing S2. and with S3 correctly set, a 500 pF capacitor temporarily connected across VCI should cure the problem.

Pek Yaw Kee, East Malaysia.

ECONOMICAL
 RELAY

WANTING to use a number of 700 ohm miniature relays, each drawing a current of 36 mA from a 25 volt supply, it was found that their combined load exceeded the rating of the available power source. Some way was needed of reducing the running current of each relay.
It was found that although the minimum pull-in voltage at room temperature was 11.5 volts, the relay would hold in down to about 3.5 volts, at a current of only 5 mA . A considerable saving in power was possible if the relay could first be energised.

Fig. 1

The circuit in Fig. 1 was devised to allow the relay to receive sufficient current to energise, and then restrict it to just above the minimum hold-in value. When voltage is first applied, TR1 switches on for a brief period, governed by the time constant of C1.R1, to allow the relay to energise After TR1 switches off, the necessary hold-in current flows through R3.
The circuit works well with other relays, although it will be necessary to make some adjustment to the value of R 3, which should be chosen to allow slightly more than the minimum holdin current to flow.
A. A. Farman,

Biggin Hill, Kent.

LOGIC PROBE

This logic probe uses a conventional 7447 decoder with a seven-segment readout to indicate logic states. The circuit is in three parts:

1. Logic 0 and 1 detection.
2. Pulse detection and BCD coding circuit (Fig. 1(a)).
3. BCD decoder and character formation (Fig. 1(b)).
4. This can be any circuit giving the required x and y outputs of the voltage levels given in Table 1, such as the circuit used in the PE Digiprobe.
5. Here, the y output is allowed to pass directly to the A output, unless either IC1 or IC2 is operating, by means of IC 3a and IC3b. IC 3c is used to drive the decimal point of the display, to provide continual monitoring of the probe input when the edge and pulse outputs are observed. If a transition edge or a single pulse appears at the probe input, ICl is clocked by the x output. This forces the A and B lines high, presenting BCD-3 to IC4. If a series of pulses is present. IC2 being retriggerable forces the A and D lines high and the B line low, giving BCD-9. Should the pulses be of low frequency, erratic operation of ICl will occur. However, such an input condition can easily be seen by the flashing of the decimal point.
6. An important feature of this part of the circuit is that the c and c, and the b and f connections are reversed between the decoder and display. This means that the 0 and 1 are unchanged, but the 3 becomes an " E " and the 9 becomes a "P". The ripple blanking input is connected to the x output, so that when the x and y ouputs are low, the display is blanked.
The time for which the " E " is displayed is set by VR1, and can be varied from approximately 300 ms to

Fig. 1b

Table 1:

PROBE INPUT	x	r	BCD	DISPLAY	FUNCTION
$<04 V$	1	0	0	$[\mathrm{D}]$	LOGIC ZERO
0 $6-2 \mathrm{LV}$	0	0	RB		anvalio state
$>2.6 \mathrm{~V}$	0	1	1	1	LOGIC ONE
$\Gamma_{0}^{5 v}$		5	3	[E]	0-1 TRANSITION
L or 7			3	E	SHORT PULSE
$\square \cap \square \square$			9	$F]$	Clock pulses

one second. The value of C 2 will depend upon the clock frequency of the equipment being tested. For general use it should be $2.2 \mu \mathrm{~F}$, as
shown, or a selection of switched values provided.
J. Froggatt.

Edwinstowe, Notts.

15-240 WATTS!
 The HY5 is a mono hybrid amplifier ideally suited for all applications All common input functions (mag Cartridge, tuner, etc.) are catered for internally, the desired

HY5
Preamplifier function is achieved either by a multi-way switch or direct connection to the appropiate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a PC. connector is supplied with each pre-amplifier.
FEATURES: complete pre-amplifler in single pack multi-function equalisation low noise. low distortion, high overload, two simply combined for stereo
APPLICATIONS: hi-ft, mixers, disco. gultar and organ public address
SPECIFICATION: Inputs-magnetic pick-up 3 mV . ceramic pick-up 30 mV funer 100 mV microphone 10 mV . auxiliary $3-100 \mathrm{mV}$ input impedance $47 \mathrm{k} \cap$ at 1 kHz Outputs-tape 100 mV . main output 500 mV RMS Active Tone Controls-treble $\pm 12 \mathrm{~dB}$ at 10 kHz bass $\pm 12 \mathrm{~dB}$ at 100 Hz Oistortion- 01% at 1 kHz signal/noise ratio 68 dB Overioad- 38 dB on magnetic pick-up Supply Voltage $- \pm 16-50 \mathrm{~V}$ Price $\mathbf{£ 4} \mathbf{4 5}+59$ p VAT. P \& P. free
HY5 mounting board B.1. $48 p+6 p$ VAT. P. \& P. free
The HY30 is an exciting New kit from I.L.P It features a virtually indestructiole I.C. with short circuit and thermal protection. The kit consists of: I.C.. heatsink. P.C. board. 4 resistors. 6 capacitors, mounting kit, logether with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up to date technology available.
FEATURES: complete kit, low distortion. short. Open and thermal protection, easy to build
FEATURES: Complete knt,
 500 mV Frequency Response $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$
Price $£ 4.75+59 p$ VAT. P. \& P. free
The HY50 leads IL.P.s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During.the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World. FEATUAES: low distortion integral heatsink only five connections. 7 amp output transistors no external components
APPLICATIONS: medium power hi-fi systems. low power disco. gutar amplifier
SPECIFICATION: Input Sensitivity -500 mV . Output Power- -25 W A M S into in Load Impedance $4-16 \Omega$ Distortion- 004% at 25 W at 1 kHz Signal/Noise Ratio-75aB Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{ab}$. Supply Voltage- $\pm 25 \mathrm{~V}$ Size $-105 \times 50 \times 25 \mathrm{~mm}$
Price $£ 6 \cdot \mathbf{2 0}+77 p$ VAT P \& P. free
The HY120 is the baby of I.L.P. s new high power range, designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: very fow distorion integral heatsink load line protection thermal protection five connections, no external components.
APPLICATIONS: hi-fi high quality disco. public address. monitor amplifier guitar and organ
SPECIFICATION: Input Sensitivity-500mV Output Power 60W R M.S into bn Load impedance-$4-16 \Omega$ Distortion-0 04% at 60 W at 1 kHz Signal Noise Ratı- 90 dB Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$. Supply Voltage- $\pm 35 \mathrm{~V}$ Size- $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 14 \cdot 40+£ 1 \cdot 16$ VAT P. \& P. 1 fee
The HY200 (now improved to give an output of 120 watts) has been designed to stand the most rugged conditions such as disco or group while still retaining true hi-fi performance.
FEATURES: thermal shutdown very low distortion load line protection integral heatsink no externa components.
APPLICATIONS: hi-fi disco montor power slave, industrial. public address
SPECIFICATION: Input Sensitivity- 500 mV Output Power-120W R M S into 8 In Load Impedance-4-16n Distortion-0 05\% at 100 W at 1 kHz Signal,Noise Ratio- 96 dB Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$ Supply Voltage $- \pm 45 \mathrm{~V}$ Size- $114 \times 100 \times 85 \mathrm{~mm}$
Price $\mathbf{2 1} \mathbf{2 0}+\mathbf{2} 1$ 70 VAT P. \& P. free
The HY400 is I.L.P. s Big Daddy of the range producing 240 W into 4Ω ' it has been designed for high power disco or public address applications if the amplifier is to be used at continuous high power levels a cooling fan is recommended The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: thermal shutdown very low distortion load line protection no external components FEATURES: thermal shutdown very low distortion load line pro
APPLICATIONS: public address, disco power slave, industrial
APPLICATIONS: public address. disco power slave, industrial SPECIFICAIION: Output Powertio-94dB Frequency Response- $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ Supply Voltage $-=45 \mathrm{~V}$ Input Sensitivity -500 mV Size $-114 \times 100 \times 85 \mathrm{~mm}$
Price £29.25 + £2 34 VAT P \& P free
POWEA SUPPLIES: PSU35-suitable for two HY30s $\mathbf{~ 4} \cdot \mathbf{7 5}+59 \mathrm{p}$ VAT P \& P free PSU50-sultable for two HY50s £5. $20+$ $77 p$ VAT P \& P free. PSU70-suitable tor two HY120s $£ 12 \cdot 50+£ 100$ VAT P \& P free PSU90-suitable for one HY200 $\varsigma 11.50+92 p$ VAT P \& P free PSU180-suitable for two HY200s or one HY400 \& $21+\varepsilon 168$ VAT P \& P free

AVAILABLE EX STOCK

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd.
Crossland House, Nackington, Canterbury
Kent CT4 7AD

Tel (0227) 63218

UNDERSTANDING MICROPROCESSORS

by Motorola
Price $1: 3 \cdot 25$

RADIO COMMUNICATION HANDBOOK Vol. I by R.S. G.B. Price 58.00 HI FI YEAR BOOK 1977 Price $£ 3.50$
MASTER ELECTRONICS IN MUSIC by T. D. Towers Price $\mathbf{\Omega 2} \mathbf{7 5}$
110 ELECTRONIC ALARM PROJECTS FOR THE HOME CONSTRUCTOR by R. M. Marston

Price 63.30
BUILD YOUR OWN WORKING ROBOT by D. L. Heiserman Price $\mathbf{£ 3 . 6 0}$
PROBLEMS AND SOLUTIONS IN LOGIC DESIGN by D. Zissos Price $\mathbf{E 2 \cdot 1 0}$
MINICOMPUTERS AND MICRO. PROCESSORS by M. Healey Price $\mathbf{E 6} 85$
BUILD IT BOOK OF MINIATURE TEST \& MEASUREMENT INSTRU. MENTS by R. P. Haviland Price $\mathbb{E 3} \mathbf{3 0}$

ARRL ELECT.RONICS DATA BOOK Price 63.30

* all prices include postage *

THE MODERN BOOK CO.
britain's largest stockist
of British and American Technical Books
19-21 PRAED STREET LONDON W2 INP

Phone 01.723 4185
Closed Saturday ip.m.

VERY

LATEST

 WATCHES FOR 1977
at lowest ever prices!

NEW from National Semiconductor: 5 -function L.C.D. with
backlight and automatic 28-, 30-, 31-day calendar.
On leather strap:
DAC5 WS Chrome
DAC5 YS Gold
E26. 95
On matching bracelet:
DAC5 WB Chrome
£25.95
DAC5 YB Gold
529.95

Stainless steel case and bracetet:
OAB5 WB
〔35.50
DAB5 YB Gold Plated
841.50

Superb Casio Casiotron L.C.D.s: prices from £4.50 to $£ 98.50$.
Swiss IBICD L.C.D.s from $\mathbf{8 1} \cdot 50$.
Ladies LED watches from $£ 19.90$.
NEW Sensor Touch L.E.D. $6+3$ functions for only 518.50. thin stalnless steel case and stainless sleel fully-adjustable milanese bracelet.

Send 10 p for our full catalogue
 TEMPUS

Dept. P.E., Talk of The Town 19/21 Fitzroy Street, Cambridge Tel. 0223312866

PRINTED CIRCUIT KIT \&4•25*
Make your own printed circuits. Contains etching Make your own printed circuits. Contains etching
dish, 100 sq . In of pc board, 1 b ferric chloride, dalo pen, drill bit, laminate cutter.

JC12 AMPLIFIER

6W IC audio amp
with free data and
printed circuit.
: $2 \cdot 25$ *
DELUXE KIT FOR JC12

Contains extra parts except JC12 needed to complete the amp including balance, volume, bass and treble controls. Mono E2-33. Stereo E4.85.

C12 POWER KIT

Supplies 25V IA ع3-85.
JC12 PREAMP KITS
Type 1 for magnetic pickups, mics and tuners. Mono pickups. Mono th. Stereo $\mathbf{2} 1 \cdot$ te teramic or crystal

SINCLAIR IC20

KC20 10W +10 W stereo integrated circuit amplifier KZ20 wower supply kit for it + data 44 -95.
VP20 Volume, tone-control and preamp kit 5 -55.

JC40 AMPLIFIER

New integrated circuit 20W amplifier kit complete with chip. printed circuit and data 84 -45.
FERRANTI ZN414
IC radio chip E1.44. Ex+ra parts and pcb for radio
E3-a5. Case 81 . Send S.A.E. for free data.
83-85. Case £1. Send S.A.E. for free data.

BATTERY ELIMINATOR BARGAINS

MILLENIA KITS*
5 transistor highly atabilized power units. Switched $1-30 \mathrm{~V}$ in 0.1 V steps. Send S. A.E. for free leaflet. 1 amp kit £12-45. 2 amp kit $£ 14 \cdot 95$. Case $\mathbf{~} 2$-95 extra.
RADIO MODELS
50 mA with prese-stud battery connectors. 9 V £3. 75.6 V
$\mathrm{E} .75 .9 \mathrm{~V}+9 \mathrm{~V} \mathrm{E5} \cdot \mathbf{4 5} .6 \mathrm{~V}+6 \mathrm{~V} \mathrm{ES} \cdot 45.4 \mathrm{~V}+4 \mathrm{~V} \mathrm{ES} \cdot 45$.
CASSETTE MAINS UNITS
7itV with 5 pin din plug. 150 mA e. 3.95 .
3-WAY MODELS*
With switched output and 4-way multl-jack connector. Type 1: $3 / 44 / 6 \mathrm{~V}$ at $100 \mathrm{~mA} \mathrm{E3} \cdot 20$. Type $2 \cdot 6 / 7 \mathrm{t} / 9 \mathrm{~V}$ at
FULLY STABILIZED MODEL $55 \cdot 4$ * *
Switched output of $3 / 6 / 7 \% / 8 \mathrm{~V}$ stabilised at 400 mA
CAR CONVERTORS $55 \cdot 10 *$
Input 12V d.c. Output $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ d.c. IA stabilized
BATTERY ELIMINATOR KITS
Send S.A.E. for free leaflet on range.
100 mA radio types with pressastud battery terminals.
 amA caseetie type 7 VV with 5
Trander cater type 7 IV with 5 pin din plug $\mathbf{c} 2 \cdot 10$. Transistor stabilized oway type for low hum Heavy duty 13 -way types $41 / 6 / 7 / 8 \cdot 511$ $21 / 25 / 28 / 34 / 42 \mathrm{~V}$. 1A model 54.95 .2 A model $\mathrm{f7} .85$. Car convertor kit Input 12 V d.c. Output $8 / 7 \mathrm{t} / 9 \mathrm{~V}$ d.c. 1 A
transistor stabilized 51.95 transistor stabilized $\mathbb{\text { S1-95}}$.

MAINS TRANSFORMERS

 $0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V} \quad 1 \mathrm{~A} \quad \mathrm{E4} \cdot 30$. $12-0-12 \mathrm{~V} \quad 50 \mathrm{~mA} \quad \mathrm{I}$.

S-DECS AND T-DECS*
S-DeC E2-24.
T-DeC $24-05$.
μ-DeCA $24-45$.
μ-DeCB 87.45.
IC carriers
SINCLAIR CALCULATORS ANO WATCHES* Cambridge Memory $5 \mathbf{5} .95$. Cambridge Scientific cis. Oxford stainless steel bracelet $£ 16-45$. Pocket T.V. price on application.
SINCLAIR PROJECT 80 AUDIO MODULES PZ5 E4.95. PZ6 sis $\mathbf{5 0}$. 240 E5.75. Project 8050 f11-95.
BI-PAK AUDIO MODULES
S450 tuner $520 \cdot 85$. AL60 $84 \cdot 80$. PA100 814 -95. MK60
 SAXON ENTERTAINMENTS MODULES SA1208 ExO.50. SA1204 §14. SA608 \&13. SA604 $£ 12$. PM1201/8 §12. PM1202'0 519. PM1201/4 £12. PM1202/4 \&19. PM601/8 512 . PM601/4 $\$ 12$.

SWANLEY ELECTRONICS

No Callers-Mall order onty
Dept. PE, PO BOX 65, 32 Goldsel Rd., Swanley, Kent Send S.A.E. for tree leaflete on all kite. Post 30p on order under E2-23, otherwise cue. Prices include var. Overaesa otherwise 11%. Officiel orders welcome.

Fig. 1

ACIRCUIT is shown in Fig. 1 which will visually indicate the state of a four bit binary counter, and simultaneously provide an output suitable for driving a chart recorder.

The design consists of four constant current generators connected in parallel. Each supplies current according to its position in the binary series when switched on by a logical 1 from the Q output of a 7475 latch. The output voltage obtained across R1 is directly proportional to the sum of currents flowing through it, and therefore to the binary state of the latch. The l.e.d.s give a visual indication of the logical states. With the values shown, a forward current of three milliamps was measured in the l.e.d.s, making them easily visible.

A 741 buffer working as a current to voltage converter allows con-

tinuously variable adjustment of the output voltage whilst maintaining the correct ratios, and such an addition is shown in Fig. 2. It also enables the zero point to be set at any desired level.

Ten turn trimpots were used for the emitter resistors, and the unit is stable when delivering a maximim output of less than one millivolt.
J. P. Fitzgerald, Ealing, London.

SIMPLE POWER SUPPLY REGULATOR

THIS circuit (Fig. 1) was originally developed from M. J. Meaken's Low Voltage Regulator, which appeared in Ingemuity Unlimited in March 1976, to power a cassette player from a car battery. It has, however, proved much more useful as a general purpose bench power supply.

When used in a car, where the battery voltage may vary bet ween 12 and 15 volts, there is no perceptible variation in output voltage. If the unit is connected to the output of a battery charger, the result is a humfree output at $6,7.5$ or 9 volts for indoor use. The series transistor TR2 should be mounted on a suitable heatsink.

Fig. 1

SAWTOOTH TRIANGLE CONVERTER

THis circuit will turn a sawtooth waveform into a triangle using two 741 op. amps. or both halves of a single 747 dual op. amp. i.c.

An ideal full-wave rectifier is formed by ICI and its associated components. For positive input excursions the output of ICl swings fully negative because DI effectively isolates it from the rest of the circuit. including the feedback path. The positive half of the input waveform does, however. find its way to pin 3 of IC2, attenuated slightly by the presence of R3. For negative input excursions ICl acts like an inverting amplifier, where $D 1$ is forward biased. R1 and R2 are chosen to give the same attenuation as for positive excursions. Provided that the input waveform is balanced about zero volts, a triangle will be generated at the input to IC2.

The triangle waveform is buffered by IC2, which is a straightforward non-inverting amplifier with its gain

set to give the same output voltage as the converter input. Also, a level shift facility is provided by VRI which can be used to eliminate any d.c. offset at the output. R7 should be chosen to give approximately the same voltage at point " x " as the peak to peak input voltage. Close tolerance resistors should be used for RI, R2 and R3, to maintain a
symmetrical output. Other components are not critical. The peak to peak input voltage should lie between 250 mV and 5 volts for offset and slew rate reasons. If the input is not balanced about zero volts, an input capacitor of a few microfarads can be used.

D. F. Bowers, Chesterfield.

THERMAL A.G.C. FOR TRANSISTOR 0.

THIS is a simple and effective method of preventing overheating, thermal runaway and breakdown of expensive power transistors due to prolonged overdriving of the power amplifier.

Unlike more conventional thermal cutout devices. which abruptly switch off the h.t. rail as soon as a predetermined temperature is reached, this method works on the feedback principle. and gradually reduces the drive to the power amplifier as soon as dangerous temperatures are approached. A safe maximum output/ safe maximum heatsink temperature compromise can be achieved by including a sensitivity control in the circuit (Fig. 1).

The circuit operation is selfexplanatory. Preset resistors VRI and VR2 and thermistor R1 form a potential divider across the output of the pre-amplifier. The thermistor is mounted in close thermal contact with the power amplifier heatsink, so that as output stage dissipation increases and heatsink temperature rises, the resistance of the thermistor decreases, reducing the drive to the power amplifier, and so limiting the increase in dissipation. A typical value for VR2, the sensitivity control
is 5 kilohms. All connections should be made using screened leads.

Some experimentation will be required in the selection of RI, depending on the input impedance of the power amplifier being used. As an example, an amplifier with an input impedance of 20 kilohms would require a thermistor type RA24 (R at $25^{\circ} \mathrm{C}=20 \mathrm{k} \Omega, \mathrm{R}$ at $220^{\circ} \mathrm{C}=150 \Omega$).

A cheaper compromise would be type VA1055s (R at $25^{\circ} \mathrm{C}=15 \mathrm{k} \Omega, \mathrm{R}$ at $150^{\circ} \mathrm{C}=540 \Omega$).

The circuit has been proved on a well known make of 70 watt amplifier. This was run for several hours into a load impedance of 4 ohms instead of the recommended 8 ohms , and very good thermal tracking was achieved.
R. Walsh,

Aldershot.

Fig. 1

Practical Motorist can help you. Tenting, trailer tenting, caravanning, motor caravanning or boating when you have to take your boat with you. It isn't too early to start planning now. Let PM show you. Practical Motorist compares costs, advises on maps and guides and takes a look at towing aids and leisure accessories. Package motoring holidays are included too, for home and abroad. All in the 32page PM Motoring Holiday Supplement.

ALSO

FIESTA SERVICE
BRAKE CARE AND REPAIR
VIVA TOP JOB
BL 1100/1300 BOX SWOP CHEVETTE 4-Dr GLS ROAD TEST

March issue on sale Thursday February 17

DUAL GATE MOS FET LIKE 40373, 33p, 4 for $\mathbf{5 1} \cdot 10$
30 ASSORTED $10 \times \mathrm{AJ}$ CRYSTALS from $5,100 \mathrm{kHz}$ to $7,900 \mathrm{kHz}, ~ \$ 1 \cdot 10$
$10,000 \mu$ F $18 \mathrm{~V} . \mathrm{W}$. ELECTROLYTICS, $812 \mathrm{ze} 3 \mathrm{i} \times 1 \frac{1}{1} 1 \mathrm{n}$, $15 \mathrm{p}, 4$ for 50 p .
50 AC128 TRANBI8TORS, branded but untested, 57p.
0 AF117-OC171 TRANSI8TORS, untested, 57p
50 EC 107-8~ TRANSISTORS, Untested. 57p.
S5kHz
F177 100 VOLT NPN 600mw THANSISTORS, 10p each. 6 for 50p
5 WATT DARLINGTON TO3 NPN TRANBISTORS, 20p each, 3 for 50 p .
SHLICON PHOTOBWITCH OPTICAL COUPLERS, with data. 50 p each.
T243 CAYSTALS, 8.040 kHz . $8.100 \mathrm{kHz}, 75 p$ each; $7.620,7,720,7.966 \quad 7.8 .166 \cdot 7$, $8,233 \cdot 3,8,300,8,366 \cdot 7,8,483 \cdot 3,8,5833,8,650,8,7167 \mathrm{kHz}$. all at 40p each 2 AMP RF CHOKES, wire ended. 6 for 50p.
akHz CRYSTALS, $\div 16=1,750, \times 36=1.008$, 50 p each.
VHF TUF 75K.V.W. VISCONEL CAPACITOR $8,50 \mathrm{p}$ each
VHF TUBULAR TRIMMERS, 3pF 5p, 8pF 8p, $12 p F 5 p$.
BD 147 4A NPN POWER TRANSISTORS, 5 for $\varepsilon 1$.
© 14 4 $10 \times$ CRY
SOMM 10X CRYSTALS. assorted frequencies. ©2.16.
LASTIC NPN POWER TRANBISTOR8, BD207 90 WATT, 55p
RF TRAN8ISTORS TYPE BF194 or BF332, 12 for 500 .
SILICON SOLAR CELLS, 0.5 V 5 mA , 35 p each.
ROCKER SWITCHES, on-off 240V 5A, 15p, or 4 for 50p.
10 ELECTROLYTICS, $8 \mu F 300 V$.W. $57 p$.
UNING CAPACITORS, $500+500+17+17 \mathrm{pF}$ with S.M. drive, 3ip.
SUB-MIN LOUDSPEAKERS, 14in dia.. 8 ohm, $75 p$ oach.
BF1s0 RF TRANBISTORS or BC136 TRANSISTORS, both 10 for 50 p .
SILICON BRIDCES, 100 PIV 1A, 20p; 200 PIV 1A, $25 \mathrm{p} ; 400$ PIV 1 A
SILICON BRIDGES, 100 PIV 1A, 20p; 200 PIV 1A, 25p; 400 PIV 1A, 30p; 600 PIV 1A. $40 \mathrm{p} ; 200$ PIV $2 \mathrm{~A}, 30 \mathrm{p} ; 100$ PIV 10A, $83 \mathrm{p} ; 40$ PIV 3.2 A .30 p
$1,000 \mu \mathrm{~F} 40 \mathrm{~V} . \mathrm{W}$. ELECTRONICS, size $1 \frac{1}{2} \times \frac{1}{2} \mathrm{IN}, 3$ for 35 p .
5 MHz 10X TYPE CRYSTALS, 50p each.
ITT BLOCK CRYSTAL FITERS, $10 \cdot 7 \mathrm{MHz}$ B.W. $\pm 6 \mathrm{KHz}$, ¢4.
50 ASSORTED TRANSISTOR ELECTROLYTIC CAPACITORS, 57p
10 MULTI-TURN TRIM-POTS, assorted values. 60p.
SO ASSORTED WIRE WOUND RESISTORS, 1 to 10W. 57p.

Please add 200 post and packing on orders under $\{2$. Overseas orders at cost

J. BIRKETT

RADIO COMPONENT SUPPLIERS
25 The Strait, Lincoln LN2 1JF
Tel. 20767

SOLDERLESS BREADBOARDING - DECS

The famous DEC System of Solderless Breadboarding is ideal for both the young and more malure students of Electrontc Engineering as it enables circuits to be tried and tested without the use of soldering and because of the specialty cesigned contache Circuit Designer who wishes to experiment with and perfect his circuit quickly yet economically

S-DEC (Model PB11)

This. the most popular Board. is designed solely for the use of discrete components and is particularly usefulfor basic educational purposes
(No of C

Contacts 70 $107151-98$
5 off $21 \cdot 76$

T-DEC (Model PB21)
This Board allows 2 TO5 or 1 DIL IC Station to be used and so is primarily intended for discrete work or for finear LC application where con (No of Conlacts 208) $\begin{array}{ll}1 & \text { off } 83.82 \\ 5 & \text { off } 83.21\end{array}$

H-DEC 'A' (Model PB31)
The μ-DEC A is specially designed for ease of use with ic s and allows 2 DIL or 4 TO5 stations to be used but will accommodate $\begin{array}{ll}\text { discrete components with equal racinty } & \text { oft } 53.97 \\ \text { (No of Contacts 208) } & 5 \text { oft } \mathbf{~ c 3 . 5 3}\end{array}$

M-DEC 'B' (Model PB41)
The μ-DEC B ' is for similar uses
C sockets as part of the Board No. of Contacts 208) off EE. 97

DEC ACCESSORIES

16 Dil adaptor (with socket) PB062
10 TOS adaptor (with socket) PBO72
Single ended leads (set of ten) PB101
Double ended leads (set of ten) PB102
1 mm plugs (set of ten) PB103

r 1.82
c 0
c

1 mm plugs (set of ten) PB103 PB102

Our retail counter is now open, stocking a large variety of audio and eiectronic parts WE ARE SITUATED 2 MIIN. WATFORO JUNCTION STATION

THE COMPONENTS CENTRE

7 Langley Road, Watford, Herts., WD1 3PS.
Tel..: Watford 45335

complete digital clock kits

 "DELTA"
 TEAK CASES prompt order detpaticen NON•ALARM £10-65
 $+85 p$ VAT ALARM £13-43
 + £1.07 VAT
 (Prices include P. \& P.)

genuine teak or perspex case
DELTA DATA: 4 Radiant Red tin high LEDs. 12 hr display with a.m./p.m indication. Beautiful Burma Teak Case or Pretty Perspex in white, black blue, red, green. Power failure is indicated by flashing diaplay
MODULE8: Kits can be bought without case-Non-Alarm 59, Alarm 512.50 inclusive.
READY BUILT: Buy a working tested module and fit your own case-Non Alarm 29.50; Alarm $\mathbf{2 1 3}$; Complete clock ready built. 2yr guarantee-NonAlarm £13-50; Alarm £1t. 50.
ALARM FEATURES: Pulsed tone. Tilt operated 10 minute "Snooze" period. Single awitch setting. Optional extra mercury switch (45p) allows alarm reset by tilting clock. Digit brightness is automatically controlled to suit lighting level.

Dept. PE9, 202 Shefford Road, Clifton Shefford, Beds.
Telephone: Hitchin (0462) 814477

Mews from josty iil

JOSTYKIT—a product from Denmark

HF 61-2 DIODE MEDIUM WAVE RECEIVER

By means of a very simple technique a reasonable reception is attained HF $61-2$ is bult on a small circul board of the same size as the geners purpose amplier AF 80 . The two ascomblues ano for loudspeaker produce power for a loudspeaker hF 61-2 is especially uselul assemble electronic kits betore.

〔4.30
HF 305 VHF RADIO-CONVERTER
Extend the range of your transistor
radio. Listen to Amateurs $(2$
$\begin{array}{ll}\text { metre band). Aircraft, } \\ \text { Trawlers. } & \text { Two }\end{array}$
Trawlers. etc. Two
ransistor circuit with
printed circuit coils, varactor diodes and superior circuit design.
signals in the $100-200 \mathrm{MHz}$ sange to output signal at range to output signa a VHF receiver and youre in
£6.70
new dimension
AT 365 3-CHANNEL DISCO LIGHT

now concept in psyche delic lighting. Uses buith-in microphone. Avoids awkward connections to amplifiers Position light-show to bes advantage without long tralling loads-just plug in to neares power poin. Circuir combine latest integrated circuit tech niques with solid-state power control. Quad op amp. makes selecion of bass. midrange and treble frequencies easy. Three thyristors (SCRs) control three separate lampbanks. Kit includes fused dc power supply and fet zero high adjusman. WARNiNG Only experienced persons should attempt the interconnection of mains equipment

HF 385-2 VHF/UHF AERIAL AMPLIFIER

A quality, printed circuit, no trimming, aerial amplifier. Fantastic frequency range due to use of printed coils. 21 dB amplification at 400 MHz . Two separate inputs for UHF and VHF. No loss of signal or intercommunication problems

NT 410 AERIAL AMPLIFIER CURRENT SUPPLY

NT 410 is a current supply. specially built for serial amplifiers, such as HF 385-2. but can also be used other aerial apt and output clamps for 75 onm or 50 ohm aerial cables. to is It is therelore not neceseary and attach to NT 410 The perial signal trom the erial amplitier to the recelver passes without complications rece the purrent to the aerigl amplifier passes through the same cable. NT 410 describes how to use NT 410 together with HF 395 and HF 385-2
£4.50

JOSTY BiT IUM, LTD

MAIL ORDER DIVISION P.O. BOX 68, MIDDLESBROUGH, CLEVELAND, ENGLAND B1 5CQ

[^3]
Hi-Fi Systems that GROW with you

At last someone has come up with a flexible approach to quality $\mathrm{hr}_{\mathrm{fI}} \mathrm{fi}$ that doesn't become obsolete as you become more discerning. Take an initial standard 20 W r.m.s. +20 W r.m.s. stereo and with simple modifications this can be expanded to give a powerful $40 \mathrm{~W}+40 \mathrm{~W}$ stereo system together with additional mult, frequency rumble, hiss and stereo image width controls.
Currently available from stock:-
Stereo Pre-Amp Module CP-P1

- 2 channel pre amplifier.
- Ideal for use with record player. tape, microphone, tuner inputs etc - No external components required other than potentrmeters for bass. treble. balance, volume controls and input selector switch
- The CP-P1 is internally protected against accidental reverse power connection. PRICE $£ 13.30$ specification

Input	Sersitivity	Signal/Noise	Impedanc
Magnetic	3 mv	$>70 \mathrm{~dB}$	47 kSt
Tuner	100 mV	$>70 \mathrm{~dB}$	$10 \mathrm{k} \Omega$
Tape	100 mV	$>70 \mathrm{~dB}$	$10 \mathrm{k} \Omega$
Auxiliary	$1-100 \mathrm{mV}$	6048-70d8	$200 \mathrm{k} \Omega$
Magnetic i/p overload: 33 dB . Distortion: $0 \quad 04 \%$ at 1 kHz : Output: IVr.m.s into 10k Ω : Supply voltage: $\pm 18 \mathrm{~V}$ nominal: Tone controls: Bass $\pm 12 \mathrm{~dB}$ at 100 Hz . Treble $\pm 12 \mathrm{~dB}$ at 10 kHz .			

Stereo Amplifier Module CP2-15-20

- The CP2-15-20 is designed to give either a 20W + 20W stereo amplifier or alternatively a 40 W single channel amplifier.
- No external components required
- Safety features include built-in protection against accidental reverse power connection and thermal shut down facility to prevent over dissipation
Specification:
PRICE $£ 12.85+£ 1.61$ VAT
Power output
40 Wr m s. into $8 \Omega .1$ channel; or
30 Wr m s into 15Ω. 1 channel; or
20W rm.s. 20 W mm into $4 \Omega .2$
channel; or
15 W rm.s.
$15 \mathrm{Wrms}+.15 \mathrm{Wrms}$. into $8 \Omega .2$
nput sen
nput sensitivity: 1V rm.s.: Frequency response: $20 \mathrm{~Hz}-20 \mathrm{kHz}$. at -3 dB ; Dis +18 V nominal; Size: $5.1 \times 4 \times 1.25 \mathrm{in}$. $(130 \times 102 \times 32 \mathrm{~mm})$

Also available:-

Audio Function Module CP-FG1

For those requiring a wider range of tacilities this module provides -- Bass and treble filter controls including switchable cut-off frequencies for rumble and hiss reduction.

- Stereo separatron control.

PRICE $£ 11.75$

- Complete except for switches and potentiometers. $+£ 1.47 \mathrm{VAT}$

Power supply: Module CP-PS 18/2D

Suitable for one $20 \mathrm{~W}+20 \mathrm{~W}$ complete system. A $40 \mathrm{~W}+40 \mathrm{~W}$ system can be produced using 2 power supplies.

PRICE $£ 5.75+72$ p VAT

These products carry a 2 year guarantee.

Dimmit

 range of light dimmers and lighling conirol systemsIllustrated is the popular PMSDI000 module. A 1 kW slider control dimmer, interference suppressed, 60 mm slider range size $4 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in. Ideal for low cost stage and disco lighting. Used by schools, theatres, studios, ecc. Complete with scale plate, fixing screws and full instructions. $£ 9.06$ inc. VAT and postage and packing.

Complete compact light dimmer systems for stage, club and disco lighting, etc

DD6IM (illuscrated). Six IkW channels, six outlet sockets, master control, mains on/off switch, size $2.3 \times 8 \frac{1}{2} 5 \mathrm{in}$. Price $£ 131$ inc. VAT and P. \& P.

DD61-B. Six lkW channels, using module
PMSDIO00, lowest cost system. Price $£ 666^{\circ} 50$ inc. VAT and P. \& P. ALL PRICES REDUCED FOR A LIMITED PERIOD
The Dinmit range includes rotary and slider control dimmers and sound to light converters for home, entertainment and professional applications. Ratings $1 \mathrm{~kW}, 2 \mathrm{~kW}, 3 \mathrm{~kW}$.

All products are guaranteed and are supplied with full instructions and applications. Full after-sales service. Technical advice given.

For full information on all modules and lighting control systems send for our FREE illustrated catalogue and price list. Callers welcome, visit our show room for a demonstration of any of the modules or systems. Mon.-Fri. 9.30 to 6.0 p.m. Sat. by arrangemen:.

YOUNG ELECTRONICS LTD.
184 Royal College Street, London NWI 9NN Tel. 01-267 0201

Semiconductors from LYNK ELECTRONICS

LYNX
 ELECTRONICS (LONDON)
 LTD

92 Broad Street, Chesham, Bucks
Telephone (02405) 75154. Telex 837571

G8CZW DIGITAL FREQUENCY METER

COMPLETE 50MHz KIT $£ 54$ inc. VAT and Post (U,K.)
ZN 1040E CountDisplay $1 . \mathrm{C}$ Integrated Circuit P
Displays and Filter

Semiconductor and Drode Pack
Resistor and Capacitor Pack
Logic and Display P.C.B s
5 MHz Crystal
Transformer $8-0-8 V(+60 p$ P. \& P.
C. Sockets Pack

Switches. Knob, BNC Sockets, etc
Hardware and Wire Pack
Case-Two-tone PVC-faced steel punched
and lettered (+ 75p P. \& P.
Spare min. BNC Sockets (50 ohm)
Spare min BNC Plugs (50 ohm)
Complete kit of parts for High Impedance
Bufter (includes PCB)
High Impedance Butter P C B only
Complete kit for VHF pre-scaler (includes PCB
Complete kit for VHF pre-scaier (includes
but less IC.)
VHF Pre-scaler printed circuit board only
SPF Pre-scaler printed circuit board only
ZN1034E Precision Timer 1 C
ZN1034E Precision Timer ZNA16E $3 \frac{1}{2}$ digit digi-voitmeter I.C
Digital Voltmeter PC.B s and Circuits
NE592 Wideband video amplifier I C
Aeprint of full G8CZW articie (post free)
8.10
9.25
all prices Inc. VAT at the efendard rate. Pleese 0.50

abc ELECTRONICS (OLDHAM) LTD.

83 Lees Road, Oldham OL4 1JW Tel. 061-624 8812

4STATION INTERCOM

Solve your communica.
tion problems with this 4. Station Tranaistor Intercom system (1 master and 3 Subs), in robust plastic cabinets for desk or wall Subs to Master. Ideally auitable for Business Surgery, Bchools, Hospitals, Onice and Horne. Operates on one 9 V battery. On/off switch. Volume control. Complete with 3 connecting wires each $66 f t$ and other accessories. P. \& P. 90 p
MAINS INTERCOM NEW MODEL No batteries-no wires. Just plug in the mains
for lnstant two-way, loud and clear communication. On off switch and volume control. Price $\& 31,49$ per pair. P. \& P. 90 p

TELEPHONE AMPLIFIER

Latest transistorised Telephone Amplifier with detached plug-in speaker. Placing the receiver on two way conversation mithout hoiding the handset. Many people can listen at a time. Increase efficiency a office, shop, workshop. Perfect for "conference calls: leares the user's hands free to make notes, consuit hles. No long wailing, asves time with model at $£ 14.95$ + VAT $£ 1 \cdot 20$ P. \& P 75 price refund guarantee.

WEST LONDON DIRECT SUPPLIES (PE3) 169 KENSDIGTON HIGH STREET, LONDON, W. 8

SINTEL FOR BOOKS AND MEMORIES

A FREE CATALOGUE requesiec by post or phone wits bemblies cmós details of our complete range of BOOKS DATASHEETS MEMORTES MPUS SWITCHES CLOCK CHIPS CA

USEFUL PRINTED CIRCUIT BOARDS

Order As Description DISPLAY HOLDING PCBs WIRED FOR MULTIPLEXING
D500-6 6 digit clock format for FND500/TIL321/TIL322
6 digit clock format tor XAN652 XAN654
4 digit clock format for FND500 TIL321/TiL322
0500-8 8 digit counter format for FND500/TIL321/TIL322
OISPLAY HOLDING PCBs NON-MULTIPLEXED
876-001 6 digit counter format for FND500 TIL321/TIL322
$675-0014$ digit counter format for FNO500 TiL321/TL322
COUNTEA PCBE
COUNTER PCB
Single PCB for building 2 digit CMOS counter with latch and C's. etc (please order components separately) Size
$67 \mathrm{~mm} \times 71 \mathrm{~mm}$ 8 $876-001$ and a PCB to hold all the 1 Cs for building a 6 digit COUNTER MODULE WITH LATCH USING TIL. Takes $6 \times$ TIL $321,6 \times 7447.6 \times 7475.6 \times 7490$, R's and CS. etc. Size of completed module h. $30 \mathrm{~mm} \times$ W. 173 mm $\times 0.109 \mathrm{~mm}$ (order components separately)

HIGH QUALITY KITS

ADVANCED CLOCK KIT (ALARM) ase Touch-switch Six red snozze Crystal timebase Battery backup plus other teatures. Complete less mains cable. plugg and
battery Order as ACK + XTK + BEK Also avalable less crystal control and battery backup which can be added later Order as ACK
GCK CLOCK KIT
Four bright green 0.5 in digit mantepiece or aftice clock - Crystal control Battery backup . White case piug and battery Order as GCK + XTK + GB8K \quad £19. 65 Also available less crystal control and battery backup. Order as GCK

THE SINTEL CAR CLOCK KIT
Four 0 5in red digits Neal white case Crystal control Battery backup. Suitable for asil 12 V negative earth cars $154 \mathrm{~mm} \times 85 \mathrm{~mm} \times 40 \mathrm{~mm}$. Kit complete less battery Order as AUT.CK Order as AUT-MODULE Also available less case. Order as AUT-MODULE SOH2 CRYSTAL TIMEBASE KIT
Uses. To improve accuracy of your digital clock As a 50 Hz source in a clock with battery backup - Accurate to within a few seconds a month CRYSTAL-CONTROLLED G DIGIT CAR CLOCK WITH INDEPENDENT JOURNEY TIMER
Shows time or elapsed time in hrs mins. secs. Runs off 12 V supply Same external appearance as ACK but with eight push-buttons for Siart-Stop-Reset. selecting display to show time or elapsed the alth case. less battery. Order
irrespective of display mode. Kit complete with as CCK
NEW BOOKS FROM SINTEL See CRtaiogue for other fities in stock Motorola MCMOS Datarook (Vol 5 Series 8 , $500 \mathrm{p} \rho$
RCA CMOS and Linear IC Oatabook (1976),
fCA Power Davice Databook (1976), 500po
TMS8080 Microprocessor Datasheet

art No	Manufacturer	Colo	Typ	Size	Price
FNDS00	Fairchild	Red	Common Cathode LE	0 Sin	E1. 02
TIL321	Texas instr	Red	Common Anode LED	0.5 in	E1
TIL322	Texas instr	Red	Common Cathode LED	0 Sin	\$1. 20
XAN652	Xciton	Green	Common Anode LED	06 in	c2. 45
XAN654	Xciton	Green	Common Cathode LED	0 6in	52.45
5LTO1	Futuba	Green	Phosphor Diode 4 dig	5 in	¢5-80
USING DISPLAYS WITH CMOS OR TTL? Send S.A.E. asking for free application SNi which gives simple curcuits with component values.					

Our offices are at Link Property. 209 Cowley Road. Oxford but please do not use this as a postal address.
ORDERS Add VAT at $8 \%+25$ p P. \& P
Export orders welcome No VAT but add 10\% (Europe). 15\% (Overseas) for Air (2) SEND YOUR SINTEL, ORDER TO P.O. BOX 75B, OXFORD
SINTEL

"Manta"
 "

THE
CAPACITIVE DISCHARGE ELECTRONIC IGNITION UNIT

THE NEW, HIGHER RELIABILITY VERSION OF THE P.E. "SCORPIO' MK II" IS NOW AVAILABLE IN KIT FORM" OUT thousands of satisfied customers report
M
ore miles per gallon (customers reports give $10 \%-\mathbf{2 5} \%$ saving -letters available)
A
increase in overall performance-your 4 cylinder car feels like a 6 cylinder
N
more cold morning splutters-saves you even more petrol through much less use of choke.
T price? A snip at only £16.50, fully inclusive of all parts, instructions, postage/packing and V.A.T. (ready built unit available- $\$ 19.85$ fully inclusive)
All parts to high specification, first quallty and brand new
Construct this invaluable accessory, following our easy step by step instructions (also available separately, price $30 p$ post paid). Send for our free interesting six page brochure- "Electronic IgnitionHow it Works' (S.A.E. Please) to

ELECTRO SPARES

Dept. P.E., 187a Sheffield Road, Chesterfield, Derbyshlre S41 7JQ. Telephone: Chesterfield (0246) 36638

LOW, LOW PRICES ON BRANDED COMPONENTS.
 - All 'bıg name' manufacturers - Same day service Money back guarantee

Rosebank Parade, Plough Road, Yateley, Camberley, Surrey Tel: 0252871388.
ROWNSGEM LTD.

INVERTORS

$240 \mathrm{v}-50 \mathrm{~Hz}$ from your 12 v car battery
 40 watt- 58.27 75 watt-E12.03 150 watt-E21.27 500 watt (24 v)- $\mathrm{E} 48 \cdot 18$ 500 watt (24v)-£48.18
$1 \mathrm{~kW}(50 \mathrm{v})-\mathrm{E} 127 \cdot 00$ $1 \mathrm{~kW}(50 \mathrm{v})-£ 127.00$
$5 \mathrm{~kW}(110 \mathrm{v})-£ 140.80$

300 watt (12v)- $£ 33.0315 \mathrm{~kW}$ (170v)- E 140.80 All above invertors are in kit form but may be purchased built up in metal case \& ready or use Price list sent on recelpt of s.a e. Prices include post \& packing
P.W. AUTOMATIC EMERGENCY SUPPLY
$240 \mathrm{v}-50 \mathrm{~Hz}-150$ watt invertor with built in battery charger. In event of power failure switches over automatically from battery charging to invertor operation. Cct as parts (excluding meter) $£ 24 \cdot 50+£ 170 p$ \& p.

DIGITAL WATCH

L.ED. display giving hours. minutes. seconds and date Design based on American technology, and fantastic value One year guarante

TRANSFORMERS a COILS

Both high volume \& small order capacity available
Special offer Miniature mains transformer $6-0-6 v-6 \mathrm{~V}$. A.- 8 Sp plus 10 p p \& p .
TRADE \& EXPORT ENOUIRIES WELCOMED
P.E. ORION STEREO ASTTRO IGNITION AMPLIFIER

$20+20$ Watts r.m.s. into 8 ohm load. Distortion less than $0 \cdot 01 \% 100 \mathrm{~Hz}-10 \mathrm{kHz}$. Frequency response $\pm 1 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 kHz . Hum level virtually nil with volume full on
This is a power amplifier of superb quality incorporating the very latest design features. Professional hi-fi enthusiasts have classed it as fantastic and real value for money. The CCT incorporates a low flux transformer and inputs for disc. tape, tuner, etc.
Complete kit of parts including slim line bookend case, silk screened front panel \& knobs. £47-30 incl. VAT \& p. \& p.
The bookend case, I.C.s \& semiconductors, P.C. board. Transformer, etc. may be purchased separately if desired. Send S.A.E. for further information

P.E. ORION TUNER

Full kit of parts for this superb tuner unit to compliment the now well established amplifier. Parts may also be purchased separately. Send S.A.E.

ASTRO IGNITION SYSTEM Complete kit of parts for this proven and tested system $\mathbf{1 1 0 . 4 5}$ incl. VAT. Ready built with only two coninections to alter $\{13.75$ incl. VAT. Thousands have used this system both home and abroad. Consider these advantages more power, faster acceleration, fuel economy, excellent cold starting. smoother running, no contact breaker burning. Also because of the high energy spark, the fuel mixture can be made weaker giving further economy and fewer plug problems. Fitting time when built 5 minutes approx. Please state whether positive or negative earth. Trade and export enquiries welcomed.

ASTRO ELECTRONICS Spring Bank Road. West Park Chesterfield.

Keyboard, Keyswitch. P.C.B.s. Hardware, Semiconductors, Resistors, Capacitors, Cabinets Complete kits or easy stages

Send S.A.E. for details

Clef Products

31 Mountfield Road
Bramhall, Stockport, Cheshire SK7 1LY

NEW
 from the newest name in Technical Publishing. Newnes Technical Books

ELECTRONICS POCKET BOOK—3rd Edition
P. J. McGoldrick

320 pages 19760408002093 £3•75
QUESTIONS AND ANSWERS ON RADIO AND TELEVISION-4th Edition
H. W. Hellyer \& I. R. Sinclair

128 pages $19760408002492 \quad £ 1 \cdot 25$

Order from your bookseller, or from:

MASTER ELECTRONICS IN MUSIC
T. D. Towers

128 pages $1976040800262 \times$
Approx. $£ 2 \cdot 50$
MASTER HI-FI INSTALLATION
Gordon J. King
128 pages approx. 19760408002379
£2. 50
MASTER STEREO CASSETTE RECORDING
I. R. Sinclair

120 pages approx. 19760408002387
Approx. £2. 50

40Butterworths, Borough Green, Sevenoaks, Kent TN 15 8PH
Telephone: Borough Green 884567

B. BAMBER ELECTRONICS

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

 12 in. dia. $x 1$ in. high, with
New 60 oach or 2 for $E 1$.

SILICON HIGH VOLTAGE RECTIFIER STICKS, BY185 Inewl 35 kV 2.5 mA f 1 each, BY140 (Bx-equip) 12 kV 25 mA 45 peach
VARIABLE STABILISED POWER SUPPLY mains inpul, $0-24 \mathrm{~V}$ output, stabilised and current limiting at $500 \mathrm{~mA}+32 \mathrm{at} 50 \mathrm{~mA}$ Brand new by
British manutacturer. Size apporox. $7 \frac{1}{2} \times 2 \frac{1}{2} \times 4$ in
 control. Connection data supplied $£ 7$.

14 DIL REED RELAYS, 5 to 12 VDC .450 ohm coll. Designed to work directly from ΠL Logic.
Single Pole Change over. Contact ratings 28 V \&A 3W $£ 1.75$ धach.
PLASTIC BOXES $3 \frac{3}{2}$ square 17 deen |wail-
mounting type) with 5 -pin din plug on front panel 50p each.
MAINS ISOLATION TRANSFORMERS. Tapped mains input. 240 V at $3 \mathrm{BA}+12 \mathrm{~V}$ at 500 mA output.
New, boxed, made by Gardners, $\mathbf{f 1 2}$. SOLDER SUCKERS \{Plunger Type). Standard
Modet, $£ 4.50$. Skirned Model. $\mathbf{E 4 . 9 5 \text { . Spare }}$ Nozzles 60 p each.
2N3055 type Transistors. O.K., but unmarked 5 for $£ 1$ 110V NEONS, SCREW-IN-TYPE, 4 for 50 p. SLOW MOTION MOTORS (suitable for programmers, displays. etc.) 230240 V a c. input
rotation.
fev every two to three minutes Sorry, sold out. MINIATURE PLIERS. High quality Crescent" made in USA. ©4.35 + VAT (35 p). SIDE CUTTERS. High quality. E3-70 + VAT 30p. MIXED COMPONENT PACKS, containing resistors, capacitors, pots. Atc. All new. Hundreds
of items. $\mathbf{E 2}$ per pack, white stocks last. 4 MHz XTAL PACKS 10 as sorted xtals betwean

Dapt. PE, 5 STATION BOAD. LITTLEPORT, CAMBS., CBG $10 E$ Telephone: ELY (0353) 860185 (2 lines) Tuestay to Saturday

[^4]

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimun of delay.

RECEIVER8 AND COMPONENTS

SMALL ADS

The prepaid rate for classified advertisements is 15 pence per word (minimum 12 words), box number 40 pextra. Semi-display setting $£ 12.00$ per single column inch $(2.5 \mathrm{~cm})$. All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5918).

CONDTTIONS OF ACCEPTANCE OF CLASSIFEDADVERTISEMENTS

1. Advertisaments are actuptod subject to the conditions appearing on our current advortisement rate card and on the express understanding that the Advertiser warrants that the advartisament dow not contravene any Act of Parlisment nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is taken, the Publishers shall not be liable for clerical or printers' errors or their consaquances.

Precision Polycarbonate Capacitors All High Stability-extromely Low Leakage 440 V A.C. RANGE Felue Dimen- Price
 0.1
0.1
0.2
0.2
0.3
0.4

CARBON FILM RESISTORS. 5% E12 Series, $1 / \mathrm{N}, \frac{1}{2} \mathrm{~W}$, Mixed to your choice, 100 for
90 p . Electrolvtics $50 / 15 \mathrm{~V}$, 7 pa . Microprocessor S'/M1 \&18. inll6800 \&33. P. \& P. 15p. Mai order only. ('ANIDAR, \& Almond Drive C'aversham Park, Reading.

BRAND NEW COMPONENTS BY RETURN Electrolytia Capacitori 16 V , 26V, $60 \mathrm{~V}-0.47 .1 .0$,
 $1,000(16 \mathrm{~V}) 16 \mathrm{p}, 1,000(25 \mathrm{~V}) 18 \mathrm{p}, 1,000(50 \mathrm{~V}) \mathrm{R} \mathrm{Rp}_{\mathrm{p}}$. Subminiature Bead Tantalum Electroly tles- 0.1
 $13 \mathrm{p}, 22 / 16 \mathrm{~V}, 47 / 6 \mathrm{~V}$ and $100 / 3 \mathrm{~V} 15 \mathrm{p}$ Muliard Min, Ceramice E18 serles 6sV $8 \%-10 \mathrm{DF}$ to $47 \mathrm{pF}-3 \mathrm{p}: 56 \mathrm{pF}$ to 330 pF ©
Vertical Mounting Ceramic Plate 50V-EE12 series $22-1.000 \mathrm{pF}$ and Ef sertee $1,500-47,000 \mathrm{pF} 2 \mathrm{p}$. Polyityrone E19 Serisa 88 V Horizontal Mounting-$10-1,000 \mathrm{DF}$ 9p; $1,200-10,000 \mathrm{pF} 4 \mathrm{p}$.
Mullard Polyeater 250 V Vertical Mounting EG
 Mylar (Polyestor) Film 100v Vertic M.
$0.001,0.002,0.0053 \mathrm{p}: 0.01,0.024 \mathrm{p}: 0.04,0-0544 \mathrm{p}$. Miniature Resintors Highutab. 6% \%iz Sories. Mullard Carbon Film 0.33 W 10 to $10 \mathrm{M} \Omega$. 10% over $1 \mathrm{M} \Omega$). Metal Fllm $0.125 \mathrm{~W}, 0 \cdot 2 ; \mathrm{W}$ and $0.5 \mathrm{~W} 10 \Omega$ to $3 \mathrm{M} 2 \Omega \mathrm{I}^{1.5 \mathrm{p}}$. Metal Fum iw 270 to 10 Mn 2 p . IN1483p; 1N40025p; 1N4006 7p; 1N40078p; $\mathrm{BCl} 107 / 8 / 9, \mathrm{BCl} 47 / 8 / 9, \mathrm{BF} 157 / 8 / 9, \mathrm{BF} 194 / 79 \mathrm{p}$.
 THE C.R. SUPPLY CO
127 Chesterfield Road, Shoffield S8 OR N
CARBON FILM RE8I8TOR8: Type AELII 5\% E24 range (4 E 7 to 10 M) div 7p, $\frac{1}{2} \mathrm{~W} 8 \mathrm{p}$ (sold in units of 10). Also Transistors BC108/9 70p per 10. Min. order exVAT $£ 2,5 \%$ discount on orders over $£ 5$. P . \& 1'. 15p plus VAT at 124% Large S.A.E. for more details to C. W. ELECT RONICS (PE), 10 Kingsley Path, Brit well Estate, Slough, Jerkshire. We can also supply the trade and schools, etc.

LOW COST QUARTZ CRYSTAL OSCILLATORS

TTL compatible. Two plastic encapsulated styles give high accuracy and stability. A D.I.L. package $12.5 \times 20 \times$ $10 \mathrm{~mm}(\mathrm{QCl} 3 \mid 3) 5$ to 25 mHz priced from $\notin 7$ and a $2 \times$ D.I.L. spacing, 20×26 $\times 12.7 \mathrm{~mm}$ (QCl453) for 1 to 4 mHz

Prices apply for production quantities. For full specification write or phone Ann Openshaw or Alan Pearson on Heywood 69911.
SALFORD ELECTRICAL INSTRUMENTS LIMITED, Peel Works, Barton Lane, Eccles, Manchester, M30 OHL

VALVE8-Radio, TV, industrial, transmitting. We dispatch to any part of the world by return of post, Air or sea Mail. 2,700 types in stoek. 1930 to 1976 ubsolete types a speciality. List 20p. Quotation S.A.E. Open to callers. Mon. to Sat. $9.30-5.00$, closed Wed. 1.00. We purchase all types of new and boxed valves. cox RADIO (Sussex) Ltd., Dept. 1'.E., The Parade, East Wittering, Sussex, PO20 8BN. West Wittering 2023. (STD code 024366).

Mullard Components

Electrolytic	Capacitors. $015 / 016$ Series.				
25 V	25 V	63 V	63 V	63 V	63 V
10	47	10	47	15	47
22	100	2.2	10	22	
$4 \frac{1}{2} \mathrm{p}$	5 p	4 p p	41 p	5 p	$6 p$

Polyenter Capacitors. C280 Series. 250 V PC mounting. $0.01,0.015,0.022,0.033,0.047,0.068$, $0.1,3 \mathrm{pp} ; 0.15,0.22,41 \mathrm{p} ; 0.33,61 \mathrm{p} ; 0.47$, 7tp; $0.68,10 p ; 1 \cdot 0,12 p ; 1-5,18 p ; 2 \cdot 2 \mu \mathrm{~F}, 21 \mathrm{p}$.
Carbon Film Resiators. $0.33 \mathrm{~W} 5 \%$ Hi-stability E12 series 4.7Ω-IM. Any selection Ip each, $0.9 \mathrm{p} 10+, 0.85 \mathrm{p}^{2} 100+$
Return of post service. Prices include 124% VAT. Allow 15p for carriage. Mail order only,

C. N. Stevenson (PE)

304 Avery Hili Road, London SE9 2JN

GENUINE HAMMOND Reverb units. Fraction of original cost. Size 8 din $\times 2$ in $\times 1 \mathrm{in}$. Absolute bargain 83.50 inclusive. Clieque/P.O.-COLIN WHITELEY, 11 Denbrook Walk, Bradford W. Yorkshire, 13 D 40 QS

AMPLIFIERS

New, boxed, guarantced, working. 1 watt audio amplifier pancls with 2 -speed mptor controller incorporated, uses i.c. thpe LM380N and runs from 9y power supply, only \&1 each inc. VAT, P. d P'., etc. Dfawings and i.c. data add extra 60p to yrder. From: INDUSTRIAL RF 8ERVICES
51 Deptford Broadway, London, \&8 4PH Tel. 01-692 4284

BOOKS AND PUBLICATIONS

START YOUR OWN BUSINESS
 REWINDING ELECTRIC MOTORS

This unique instruction manual shows step by step how to rewind motors, working part or full time, without previous experience. Everything you need to know easily ex plained, including where to obtain materials how to get all the work you need, etc., etc A goldmine of information and knowledge. Only $£ 3 \cdot 90$ plus 26 p P. \& P. From:
MAGNUM PUBLICATIONS, Dept. PE5
Brinksway Trading Estate, Brinksway Stockport SK3 OBZ
Overseas Distributors wanted
UFO CHART8: TV detection; Mars Pattern sighting recorder; "antigravity"; '"propulsion' optical transistor detector; radiation/optical 3 way MOS detectors; eack 80p. Programmable clock; multichannel recorder; circuits; $\mathbf{£ 1 2 0 .}$ Computerised optical detector $\$ 1-50$. Newsletter 60p. R. \& E. Highlands, Necdham Mrarket, Suffolk.

FREE T.V.
 CIRCUIT DIAGRAMS

All main British T.V. sets (plus many foreign) comprehensively covered in our easy-to-follo Just Rend model no.. if colour (mfrs. chassis type helps) with 84.50 and receive the manual covering yourset-plus your set's circuit diagram on request free. Set of 7 only $£ 27$. British T.V. Circuit Diagram Manuals-the main mono (over 37 series) for $£ 9.90$ and virtually every colour for $£ 17.50$.

T.V. TECHNIC

76 Church Street, Larkhall, Lanarks, ML9 IHE Tel. (0698) 883334

LADDERS

LADDER8, varnished, $25!\mathrm{ft}$. exti., $£ 27.64$. (arr. £1-90. Leaflet. Immiol. despatch. THF LADDER CENTRE (PEE3), Halesfleld (1). 'Telford, Salop. 'Tel. 586644.

EDUCATIONAL

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers; also selfbuild radio kits. Full details from:
ICS SCHOOL OF ELECTRONICS
Dept. 772C, Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)

TELEVISION TBAINING

12 MONTHS' full-time course in Radio and TV for beginners (GCE-or equivalent-in Maths and English).
26 WEEKS, full-time course
in Mono and Colour TV (basic electronics knowledge essential).
13 WEEKS' full-time course in Colour TV (Mono TV knowledge essential).

These courses incorporate a high percentage of practical training. Next session starts on April 18th.

Prospectus from London Electronics College, Dept. A3, 20 Penywern Road, London SW5 9SU. Telephone 01-373 8721

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians
Amateurs. Full details from:
ICS SCHOOL OF ELECTRONICS
Dept. 772C, Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from
ICS SCHOOL OF ELECTRONICS
Dept. 772C, Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)

SERVICE SHEETS

BELL'S TELEVISION 8ERVICES fur service sheets on radio, TV, ete., 75p plus S.A.F. Colour TV service manuals on request. S.A.F: with enquiries to 13.T.S. 190 Kings Road, Harrogate, N. Yorkshire. Tel, 042355885.
SERVICE \&HEET8, radio, TV, etc. 10,000 models. Catalogue 24 p phus S.A.E. with moders-enquiries. TELRAY, 154 Mrook Street, orders-enquiries.
Preston, PIR1 7 HI
SERVICE SHEETS, Radio, TV, etc., 50p and SA.E. Catalogne 20 ant S.A.E. HAMMLTON RADIO, 47 Bohemia Road, st. Lconards, Sussex.

MAPLIN stage Two Organ, complete with 15 Bhythms, ill Oak ('ase, for the price of the parts. BROMSGkOVE 71862.
P.E. MODULES. "Xinisomic" battery climinator temperature stabiliser, phase, phase control, reverberation, assembled but untested. Alsi 3 -octave keyhoard phes contacts. \&40 the lot Tel Dorking 2668

COMPONENT8 CLEARANCE. Transistors, connectors, integrated circuits, meters, units 1)YMs, valves, microphones. Free List. Stanul appreciated. Irivate Sale-Write Box No. 67

NEW I8SUE8 of "Jractical Electronies" available from April 1974 up to date. Cover price plus 17 J pustuge per copy-BELL' FHEEVINlON SERVI('LN, 190 Kings Road Harrogate, N. Yorkshire. Tel. (0423) 55885.

OUALITY TAPE RECORDER, marts, P.f., latr gain, £20. 4 Riversley Joanl, filoncester.
P.E. GEMAN1 stereo amplitior completely buit but owing to lack of equipment/expertise las ret to work, $\$ 25$ o.n.o. Full details fron IICK GARIRATT. Tel. (inisborough 620t (Onfice hours).

WANTED

WANTED, NEW VALVES, TRANSISTORS, top prices, popular types-KENSLNGTON SUPPLIES (B), 367 Kensington Street Bradford 8, Yorkshire.

ELECTRICAL

8TYLI, CARTRIDGE8 AND AUDIO LEAD8, otc. For the best at keenest prices send S.A.E for free fllustrated list to: FELSTEAD ELECTRONICS (PE), Longley Lane, Gatles; Cheadle, Cheshire, SK' 4 EE

MISCELLANEOUS

I.C. EXPERIMENTER'S KITS

 Learn about modern electronics with our new series of Kits on digital logic techniques. Each Kit contains specially selected I.C.s, Holders, eroboard, L.E.D.s, and instructions. Kit One-Gates Kit Two-Flip-Flops Kit Kit Three-Shift Registers Kit Four Counters Kit Five-Displays S.A.E. for further details to: AUTOMATED HOMES69 High Street, Ryton, Coventry CV8 3FJ (Mail Order Only)

MORSE CODE

MORSE CODE TUITION AIDS

Cassette 3-1-12 w.p.m. for amateur radio examination.
Cassette 5-12-24 w.p.m. for professional examination preparation.
Morse by light system available. Morse Key and Buzzer Unit for sending practice.
Prices: Cassettes (including booklets) £4; Morse Key and Buzzer £4. Prices include VAT, postage, etc., overseas f1 extra.

MHEL ELECTRONICS
12 Longshore Way, Milton
Portsmouth PO4 8LS

SWG	ENAMELLED COPPER WIRE			208
14.19	2.40	1.20	0.60	0.50
${ }_{30.34}^{20.29}$	${ }_{2}^{2 \cdot 45}$	1.60		
35-40.	$2 \cdot 85$	1.90	1.04	0.75
S.A.E. brings catalogue of copper and resistancewires in				
THESCIENTIFIC WIRE COMPANY				

PRINTED CIRCUITS and HARDWARE

Readily available supplies of Constructors' hardware, Aluminium sheet and sections. Printed circuit boards, top quality for individual or published designs.
Prompt service.
Send 15 p for catalogue.
RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratford on Avon
Warwicks.
Tel. 4879
RECHARGEABLE NIGAD BATTERIES "AA" (HP7), $£ 1 \cdot 26$; Sub. "C"' $£ 1 \cdot 29$; "C'" (HP11)
 chargers, respectively, $£ 4.48$, $£ 4 \cdot 48, \quad \mathbf{2 5} \cdot 24$, $\mathbf{2 5} \cdot \mathbf{2 4 , ~ £ 3 \cdot 9 8 \text { . All prices include VAT. Add } 1 0 \%}$ P. \& P. S.A.E. for full list, plus, if wanted, 50 p for "Nickel Cadmium Plus, if wanted, 50 p . SANDWELL PLANT LTD., 1 Denholm Road. Sutton Coldfteld, West Midands, B73 6PP* Tel. 021-354 9764.

GLASS FIBRE P.C.B.'s

From your own tape, film or ink master. Send S.A.E. for quotation. PRACTICAL ELECTRONICS P.C.B.'s in glass fibre, tinned and drilled. June 76 Transmiter 93p, Coder 84p. July 76 Receiver 90p, Decoder 73p,
Interface 56p. August 76 Servodrive 69p, Servo Amp 54p, Relay Driver 62p. Completeser of above boards C5.30. Sept. 76 Tone Generator 66p. Tone Decoder 72p. Sept. 76 Cross-Hatch Generator E2.85. Nov. 76 Hazard Warning Flasher 68p. Dec. 76 FM Stereo Tuner C2.58. Send S.A.E. for information on current boards. C.W.O. please.

PROTO DESIGN
4 Highcliffe Way, Wikkford, Essex SS1I 8LA

METER REPAIRB, Ammeters, voltmeters, multi-meters, etc., contact: METER REPAIRS, 21 Mount Road, Benfleet, Essex, SS7 1HA.

ORION cabinet still avallable punched or unpunched Send 15 p (retundable) for leallats

NO LICENSE

 EXAMS NEEDEDTo operate this miniature, solid-state TRANSMITTER RECEIVER kit. Only EB-25 plus 20p P. \& P.
'Brain-freeze' 'em with a MINI-STROBE kit, pocket-sized 'lightning flashes', varispeed, for disco's and parties. A mere 63.80 plus 20 p P. \& P.
Experiment with a psychedelic DREAM LAB, or pick Up faine speech/sounds with the BIG EAR sound-catcher: ready-made modules. $44 \cdot 75$ plus 20 p P. \& P .
LOTS MORE! Send 20p for lists.
(Prices include VAT).
(Mail Order U.K. only).
BOFFIN PROJECTS
4 Cunliffe Road
Stoneleigh, Ewell, Surrey (P.E.)

CABINET FITTINGS

 FORStage Loudspeakers and Amplifier Cabs Fretcloths, Coverings, Recess Handles, Strap Handes, Feet, Castors, Locks and Hinges, Corners, Trim, Speaker Bolts, etc., etc. Send $2 \times 8 \frac{1}{2} p$ Stamps for samples and list. ADAM HALL (P.E. SUPPLIES)
Unit Q, Starline Works, Grainger Road Southendion-Sea, Essex.

PRINTED CIRCUIT BOARDS suppliet in glass fibre drilled, tinned or varnished from your own or published designs. Send S.A.E. for quotations. R. F. DARLISON, 1 Valentinc Drive, Oadby, Leicester.

YERO BOXES, cases, boards, etc. Send stamp for Vero booklet and price list. GAVERS ELECTRONICS, 94 stratford Ruad, Wolverton, Milton, Keynes, MK12 5LU.

Musical Mirades !

by Dewtron ${ }^{\circledR}$

Build your owa synthesiser or musical effects using some of the huge range of DEWTRON modules. Or, build fuzz or waa-waa at budget prices using apecial kits.
Send 20p for Catalogue from
D.E.W. Ldd., 254 Ringwood Road, Ferndown, Dorset bH22 9AR.

CLEARING LABORATORY, scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeleads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.
LIGHTING CONTROL UNITS
Sound to Light. Quality 3 elannel display control
$(1.5 \mathrm{~kW}$ per channel) is designed for ruggedness,
safety and simplicity of construction, The kit
iacludes individual sensitivity controls and the
unique $\frac{1}{}$ intensity dimming control.
KIN PRICE \&13.90 (incl.). Bypass switches, 25p
each (3 required).
Strobe|Flasher Control Onit. KIT 87 -60. Pre-huilt
89.50. Flash rate. $20 \mathrm{ft} /$ sec. to 2 ft /min. Flash on
time variable,
Other sits and modules for diseos, shops \& theatres
SELEIETRON, 21 Priors Rd.,Windsor, Berks.SL4 4PD

PC BOARD containing over 50 new unused C-Moss i/cs $4001 \cdot 2-11-12$. E(TT5Y i.c. 6141)LS sorkets \&3. T, COOPER, 25 Larkswood Road, Chingford, London E4 9DS. Tel, 01-529 8255.

BURGIAR ALARMS
SUPPLIES AND
EQUIPMENT
S.A.E. FOR FREE CATALOGUE
LARGE SIZE PRESSURE MATS
DEEECTORS INTERTIA SWITCHES
A. D. ELECTRONICS 217 Warbreck Moor, Aintree

LOW cost I.C. MOUNTING for any size DIL package. 100 Soldercon sockets 65 p. 7 and 8 hole plastic supports 5p/pair. Quantity rates. S.A.E. details and sample. Trial pack 65p (P. \& P. 10p/order). P'KG ELECTRONICS, Oak Lodge, Tansley, Derbyshire, DE4 5FF.

AUDIO TEST OSCILLATOR
 VERY LOW DISTORTION (0.02%) $\leq 22+_{8 \%}^{\text {Tax }^{2}}$

Based on a Linsley Hood design it provides both SINE and SQUARE wave signals over range $10 \mathrm{~Hz}-100 \mathrm{kHz}$ in four steps. Outpur over I volt fully attenuated. Self powered with 9 V battery. In Kit form $\boldsymbol{E l} 7$.
S.A.E. for leaflets. Also available T.H.D. Analyser. MVMT. F.M. Sig. Gen. 0/60V IA P.S.U.

ORION F.M. TUNER

Complete kit of parts for this system shortly available.
S.A.E, for details to:

TELERADIO ELECTRONICS
325 Fore Street, Edmonton N9 OPE Tel. 01-807 3719

SUPERB INBTRUMENT CASES by Bazelli, manufactured from heavy-duty pyc faced ateel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 82 p . Examples: width, depth, leight, 8 in. \times $5 \mathrm{in} \times 3 \mathrm{in}, \mathbf{1 . 7 0 ;} 10 \mathrm{in} \times 6 \mathrm{in} \times 3 \mathrm{in}, \mathbf{£ 2 . 4 2 ; 1 0 \mathrm { in } \times}$ $8 \mathrm{in} \times 3 \mathrm{in}, \quad 3.02 ; \quad 1 \mathrm{in} \times 10 \mathrm{in} \times 3 \mathrm{in}, \quad$ e3.96; $8 \mathrm{in} \times 4 \mathrm{in} \times 4 \mathrm{in}, \mathrm{s} 1.98 ; 10 \mathrm{in} \times 6 \mathrm{in} \times 4 \mathrm{in}, \mathrm{c2.97}$;

 $12 \mathrm{in} \times 1 \mathrm{Din} \times 7 \mathrm{in}, \mathbf{£ 4 . 8 4}$. l'lus 85 p carriage and
8% VAT. Over 400 mod .
80 Prompt despatch. Free literature (stamp would be appreciated): BAZELLI, Dept. No. 23, St. Wilfrid's, Foundry Lane, LIatton, Lancaster LA2 6L'T.

TRANSFORMERS

1N21	$\begin{aligned} & £_{p} \\ & 0.75 \end{aligned}$	1ヶい	$\operatorname{spp}_{0.50}$	16゙ロ！	$\begin{aligned} & \text { £p } \\ & 0 \cdot 25 \end{aligned}$	10．2004	$£_{0.65}$		$\mathrm{flp}_{0.43}$
1523	0.35	入1：	1.80		0.45	0．12：0	0.45	Z $\$ 1.10$	0.10
iv8：	0.88		2.50	13\％24	0.45		0.65	$7{ }^{7}$	0.20 0.25
15203	$0 \cdot 50$	－11／	${ }_{\text {9．}} 9.50$	1321	0.40	0．2．	0.65	zT－	${ }_{0}^{0.25}$
152mit	0.50	－ister	${ }^{1} .45$	B1 21.	0.42	0．8Ze	0.40	ZTx	0.10
1N640	0.16	小心品	0.25	В1\％1．	1.85	$0.12=0$	0.40	zTx10\％	0.10
｜N－25．${ }^{\text {a }}$	0.20	Ascial	0.30	1：1\％113	0.60	OA	0.65	2 Cx 300	0.12
1 N 9 l ＋	0.06	Astil	0.40	12\％	0.10 0.55	－1． 1 \％	0.65 0.45	\％TXiot	${ }_{0}^{0.12}$
124607	0.11	$\begin{aligned} & A=Y ; \\ & \text { ABy } \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.20 \end{aligned}$		0.55		${ }_{0}^{0.45}$	ZTX 03	${ }_{0}^{0.16}$
15113	0.30		0.25 0.25		0.45 0.60	－	0.45	2TX 31	5
18202	0.23	Asiytits	${ }^{0.33}$	（x＋1）	1.90	0×8211	0.25		
20371 26351	1.00 0.22	$\begin{aligned} & \text { ASZ:1 } \\ & \text { ASZ } \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.75 \end{aligned}$	（－）${ }^{\text {che }}$	3.50	$\begin{aligned} & 0 . Z Z 2+2 \\ & 0.2 Z 44 \end{aligned}$	0.15 0.25	$\begin{aligned} & \text { INTEGI } \\ & \text { CIRCUI } \end{aligned}$	TED
26351	0.22 0.30	$\begin{aligned} & \text { A8Z昂 } \\ & \text { A1 } 10-4 \end{aligned}$	－ 1.75	1リハリ	0.15	OAZ	0.15	－100	0.16
20．317	0.25	Atrid	1.50	11）	0.15	uaze90	0.38	7401	0.16
2 C 404	0.40	BCLU HCL108	0.14 0.14	1） 1 が倍 Dレば＂	0.25 0.40	Octis	1.25	7.402 7403 7	0.16
2×169	0.17	BCl04	0.15	$\begin{aligned} & \text { DDur: } \\ & \text { DLMm: } \end{aligned}$	0.48 0.38		1.00 2.00	－	${ }_{0}^{0.18}$
2N698	0.30	MC113	0.15	（：1）：	0.38	0ce 3	2.25 2.25	7405	0.22
2 Na 706	0.12	BC115	0.20	（：i）．	$0 \cdot 10$	0 －${ }^{2}$	2.25	－ 706	0.42
2 y 706 A	0.12	BC11f	0.20	（ib）	0.25	00^{2}	0.65	7407	0.42
2N708	0.15 0.40	BC116．	0.23	（111：	$0 \cdot 10$	טく21	0.60	－40s	$0 \cdot 28$
$\begin{aligned} & 2 \mathrm{~N} 709 \\ & 2 \mathrm{~N} 1091 \end{aligned}$	0.40	BC^{13118}	0.20 0.20	CLid 10x	0.50	－428	$0 \cdot 75$	7409	0.28
2N1131	0.23	Beld	0.20 0.20	（EET103	0.85 0.85	Oct	${ }_{0}^{0.75}$	：410	0.18
2 N 1132	0.25	BC120	0.25	（iETH14	9．95	OC3．	0.75	7412	0.30
2N1302	0.30 0.40	BCL^{26}	0.25	GETH5	1.50	OC3	0.75	7413	0.36
$\begin{aligned} & 2 N 1303 \\ & 2 N 1304 \end{aligned}$	${ }_{0} 0.45$	BCly	0.55	CETldi	1.50	OC41	0.45	2416	0.36
2 N 1306	0.45	BC14	0.10 0.08	（ETEX	． 30	Ocs：	0.50	TH1	${ }^{6}$
${ }_{2} \times 1306$	0.50	13C149	0.10	（i）18tis	1.00	OCta	0.45	－	0.25
${ }_{2} \mathrm{~N} 13137$	0.50	BC15：	0.12	（ETbs\％	1.00	OC4．	0.17	7423	0.87
${ }_{2}^{2 \mathrm{~N} 2308}$	1． 0.60	13．56	0.10	6ETB81	0.25	0 CLS	0.45	7425	． 0.87
2N214＊	1.20	BCLeio	0.63	＂LT ${ }^{\text {che }}$	1.00	OC46．	0.18	7427 748	0.87
2N2160	0.75	BC169	0.15	（iEX 4	0.08	OC．${ }^{\text {O }} \mathrm{C}$	0.87 0.80	7430	0.16
2 N 2218	0.25	ВСР3	0.80	（ilXtu／1	0.55	－C6E	0.60	743：	0.87
$2 \mathrm{~N}_{2} 219$	0.25	BCY32	1.00	（iEX941	0.45	－ 0 －09	0.60	7433	0.87
$\begin{aligned} & \text { 2N2369. } \\ & \text { 2N } 24444 \end{aligned}$	0.25 1.89	BCY33	0.70	（3）3M	0.65	0c66	0.60		${ }_{0}^{0.37}$
2 N 2613	1.00	BCY35	1		0．85	Ociu	${ }_{0}^{0.85}$	74.8	0.22
2N2643	0.50	BCY39	1.50	13JM	0.65	0C72	0.45	7411．	0.82
2 N 2904	0.25	BCY40	1.25	Heliow，	0.50	UC73	0.75	7412	0.79
$\begin{aligned} & 2 \mathrm{~N} 2906 \\ & 2 \mathrm{~N} 2907 \end{aligned}$	0.22	BCY ${ }^{\text {dey }}$	0.30 0.18	18P109A	0.40	OC74	0.45	7450	0.18 0.16
$2{ }^{2} 2924$	0.16	BCY 71	${ }_{0} 0.22$	MAT120	0.20 0.25	OCH_{0}	0.50 0.45		0.16
2 N 2925	0.15	13CZ10	0.80	MJE340	0.42	${ }^{0} \mathrm{CH} 7$	0.75	$7+54$	0.16
2 N 2920	0.15	13D121	1.65	MJEご0	0.60		0.45	7460	0.16
2 N 3054	0.55	130123	1.50	MJE293：	1.25	OC79	0.45	740	0.38
233050	0.60	BDIE4	0.75	МЈЕ引й	0.75	OCb 1	0.50	74i	0.38
－ 233028	0.13 0.18	BDY15	1.45	MPF102	0.40	ocbix	0.20	2173	0.41
2 N 370 fi	0.13	${ }_{13 \mathrm{~F} 167}$	0.20 0.20	${ }^{\text {MPF103 }}$	0.40 0.40	0c81b	0.18	－	0.42 0.59
223807	0.13	${ }^{131} 175$	0.25	м1Privis	${ }_{0}^{0.40}$	0c812	1.00 0.75	－476	0.45
2 S 3709	$0 \cdot 12$	13F181	0.30	NEJ55	0.42	$0 \mathrm{C8} 21$	0.25	T480	0.60
2N3710	0	BF184	0.30	ミкT12\％	0.45	$0^{0.83}$	0.55	${ }^{7} 48{ }^{2}$	0.87
2N3411	${ }_{0}^{0.13}$		0.30 0.10	NKTlet	0.30	Ocs 4	0.45	T 783	1.10 1.00
N－1289	0.30	${ }^{81} \times 195$	0.10	－$\times 1$ KTı13	0．45	OC114．	0.38 1.35	${ }_{7}+886$	0.47
－nat	0.53	BF196	0.12	处「21．	0.50	OC123	1.55	7494	0.55
2n508：	0.38	B11197	0.12	XKT2li	0.60	OC139	1.10	T．69	1.00
${ }^{2 S 301}$	0.75 1.85	Brise	0.25	NKT2l＊	0.45	occ14	1.50	「492	0.70
28304	1.35 0.75		0.25 0.35	NKTery	0.33 0.50	$0 \mathrm{CL14}$	1.50	${ }^{7}+193$	0.70 0.80
$2{ }_{2803}$	1.50	131×12	0.35 0.35	NKTMer	0.50 0.25	0C169	0.20 0.50	7495	0.80 0.80
40250	0.54	B1729	0.28		0.25 0.24	OC1\％	0.50 0.50	\％493	0.95
40251	${ }_{0}^{0.81}$	151830	0.28 0.28	人KT2\％	0.20	${ }_{0}$	1.00	7497	3.87
	0.15 0.75	BFX35	0.28 0.98	入кт2\％	0.20	ucal	1.75	74100	1.89
AAZ13	0.18	${ }_{\text {BFX }} 63$	0.50	入кTe\％3	0.20	Oce $0: 2$	1.50	34101 +4111	0.45 0.58
AAZIT	0.16	Brxbt	0.24	大кте\％	0.25	－203	1.50	T＋111	0.88
ACl0	0.75 0.25	BLX：	0.28	N心T27	0.20	$0{ }^{\text {cen }}$	1.50	74118	0.90
ACle	0.25 0.25	BrXe	0.28 0.25		1.00	Oce 20	1.75	74119	${ }^{1} \cdot 68$
Actis	0.22	BFX8	0.25	－ 51301	1.25	ocrat	1.50	74121	0.50 0.70
AC187	0.25	Br－${ }^{\text {888 }}$	0.25	ミにT304	1.00	OC20	1.00	7 712	1.00
ACCi88	0.25	BFY10	0.50	－ KT 403	1.00			＋4141	0.90
Acris	0．55	BFr11	0.50		1.25	0 CPT	1.25	2114	1．26
AcYis	0.55	BFY ${ }^{\text {c }}$	0.40		0.30	ORP1\％	0.60	74150	1.75 1.00
ACP00	0.55	BPY18	0． 60	ォктこ：	0.30	ORPG6	0.65	74154	${ }_{2} .00$
derel	0.55	Bry］a	0.50	\кイ大弓	0.25	ORPA	0.65	¢ ¢ 1 Јu	1.00
Accer	${ }_{0}^{0.35}$	BFP 2	0.45	下Tに．	0.38	8 Sc	1.50	74151	1.00
ACP4	0.25	$1 \mathrm{HFS}_{4}$	1.00	0 ai	0.75		1.25 0.55	－ 4150	0.95 2.52
Acras	1.00	14FY00	0.21	OA	5	mXity	1.50	－+174	1.57
ACYd	0.55	BrY：	9.21	0.17	0.10	\％ s	1.50 0.75	7417．15	1.10
ACY4	0.55 0.32	BFY\％	0.23	0.170	0.15		1.75 1.50	－11i6	1.26
AM） 10	0.85	13FY\％：	0.23	0．51	0.20	－xt	1．50	－ 4190	2.00 2.00
A 10149	0.65	$\mathrm{BFY}^{\text {a }}$	0.45	1．S：3	0.15	－xici	0.85	－ 4192	$\stackrel{200}{2.00}$
A10161	0.45	BFC ${ }^{\text {a }}$	0.81	O．1．4	0.15	Trict	0.30	7193	2.00
AD162	0.45 0.35	BR100	0.40	0．134	0.12	V15／301	1.50	74194	
AF10\％	0.35 0.25	13sN2i	0.28 0.93	O．in	0.15 0.18	V30／20014	1.50 1.50	\％ 719.5	1.10 1.20
WF11：	0.25		0.93 0.20	O．thic	0.18	－60／201	0.50		1.20
＋F13\％	0.25 0.25	BS	0.20	OxM	0.15	＇60／2011＇	1.50	74194	2.77
MP1F	0.25 0.75	2		0．s：1	0.07	ㅈ．101	0.10	74199	2.52
AF19	0.20	13	0.50	OAs	0.08	X ${ }^{\text {cou }}$	0.18		
AP124	0.30	$115 \% 901$	0.20	0x＋0\％	0.10	X．4101	0.15	－ low	le
AFP\％	0.30 0.30	13s\％		$0 x 21$	0.10 0.20	XA15:	0.15	－pin	$0 \cdot 12$
$\pm{ }^{\text {a }}$	0.30 0.30	$\begin{aligned} & \text { BSOU! } \\ & \text { BTY4! } \end{aligned}$	0．92	$\begin{aligned} & 0.1210 \\ & 0 \end{aligned}$	0.20 0.35		0.25 0.25	14 p in	
AF＇0＇	0.30 0.40	BY10＂	9.45		0.85	XA10	0.48		0.15
－Pros	0.55	3Y12t	0.12	©，Z2el	0.65	X $\mathrm{B10}=$	0.30		
AF179	0.65	13Y12\％	0.12	O． $2: 20$	0.65	X 1103	0.35		
AF180	1.50	BY18：	0.85	O－3Z203	0.65	X $\mathrm{B13} 3$	0.30		
Open daily to callers：Mon．－Fri． 9 a．m．－5 p．m． Vaives，Tubes and Transistors－Closed Saturday Terms C．W．O．only－Tel．01－677 2424－7 Quotations for any types nor listed． Post and Packing 15p per order． V．A．T．to be added．Plastic Transistors 12：\％ etal Can Transistors 8 ：o．Integrated Circuits 8 \％								Prices correct when going to press．	

AMATELIP CDMPDNENTS
Orchard Works,Church Lane, Wallington, Surrey SM6 7NF MAL ORDER DIVIIION OF SEMICONDUCTOR SUPPLIE
For Semiconductors, Capacitors, Resistors, I/C Sockets, L.E.D.s and Hi-Fi Accessories

INDEX TO ADVERTISERS

A.B.C. Electronics	232
Adam Hall (P.E. Supplies)	. 238
A.D. Electronics	238
Alben Engineering	228
Amateur Components	240
Astro Electronics	234
Automated Homes	. 237
Bamber. B., Electronics	235
Barclay Electronics	169
Barrie Electronics	172
B.H. Components	. 224
Bib Hi-Fj Accessories Ltd.	. 172
B.I.E.T. (General)	175
Bi-Pak	165
Bi-Pre-Pak	189
Birkett, J.	228
Boffin Projects	238
British National Radio \& Electronics	
School	. 171
Broadman Ltd.	193
Butterworths..	235
Cambridge Learning	194
Chiltmead Ltd.	239
C.J.L. Ltd.	234
Clef Products	234
Click Shelving (Nexus)	. 170
Cliffpalm Ltd.	230
Components Centre, The	229
Copper Supplies	238
Crescent Radio	. 168
Crofton Electronics	219
C.R. Supply Co.	236
Deltic Systems	. 239
D.E.W. Ltd.	238

Phonosonics	.174, 175
Precision Petite Ltd	170
Proto Design	238
Pulse Electronics	229
Radio Component Specialists	176
Radio Exchange Ltd.	cover
Ramar Constructor Services	238
Rownsgem Ltd.	233
RST Valve Mail Order Co.	239
R.T. Services	236
Salford Electrical Instruments	236
Saxon Entertainments	166, 167
Scientific Wire Co.	237
Selektron	238
Service Trading Co.	cover iii
Sinclair Instruments Lid.	213
Sintel	233
Stevenson, C. N	237
Sugden, A. R. \& Co.	219
Swanley Etectronics	224
Tamba Electronics	190
Technomatic Limited	193
Tempus	224
Trampus Electronics Lid.	220
T.U.A.C. ..	. 163
Vero Electronics Ltd.	230
Videomaster Lid. 173
Welbrook Engineering \& Elect	td. .194
West London Direct Supplies	232
Wilmslow Audio	215

Young Electronics ..

RELAYY SIEMENS, PLESSEY, Et
RELAYS. WIDE RANGE OFA.C. and D.C. RELAYS AVAILABLE

2I WAY SELECTOR SWITCH WITH RESET be switched up to 21 positions and can be reset from any position, energising the reset coit. $230 / 240 \mathrm{~V}$ a.c. operation. Unt is mounted on strong chassis,
complete with cover. Price $£ 5-50$. P. \& P. 75 p .

NEW HEAVY DUTY SOLENOID. mfg. by Mag. netic Devices. 240 V operation approx. 201 b pu at 1.25 in. Price $\& 7$. $F, \& P$. 75 p.

 UNISELECTOR
 SWITCHES
 ${ }_{75}^{4}$ bank, 25 way
 $36-48 \mathrm{~V}$
 operation. Ex. Now equip- ment $£ 4.25, P$.
 \& P. 7Sp. Total
 price $£ 5.40$.

 MINIATURE UNISELECTOR

12 volt 11 -way, 4 bank (3 non-bridging. I homing),
MINIATURE C/O ROLLER
MICRO SWITCH
OMRON Type V15 FL22/IC.
E2. Post 50 p . (Min. order 10).

Sub miniature Burgess Butt
$£ 2 \cdot 50$. 50 for $£ 10$. Post paid.
BF LEVER OPERATED 20 amp. C/O. Mrg by Unimax
USA, 10 for E4, P. \& P. 50 (min. order 10).

24 VOLT DC SOLENOIDS

UNIT containing I heavy ducy solenoid approx. 251b travel. $6 \times$ approx. 40z, pull $\frac{t}{6}$ inch travel. One 24 volt d.c., I heavy duty single make relay.
$\mathbf{6 3 . 0 0}$. Post fl . ABSOLUTE BARGAIN.

BLOWER UNIT

200/240 built. Dynamically balanced, quict con rated, reversible. Consumption
60 mA . Size 120 mm dia, $\times 60 \mathrm{~mm}$ deep 60 mA . Size 120 mm dia, $\times 60 \mathrm{~mm}$ deep

All Mail Orders-Caliers-Ample Parking
Dept. PEII, 57 BRIDGMAN ROAD
CHISWICK, LONDON W4 5BB Phone 01-995 1560

VARIIBLE VOLTAGE TRANSTORMERS

L.T. TRANSFORMERS
$0-12 \mathrm{~V} / 24 \mathrm{~V}$ at l amp. 62.50 (P . \& P .50 p). $0-15 \mathrm{~V}$ at $1 \mathrm{amp}+0-15 \mathrm{~V}$ at $1 \mathrm{amp}(30 \mathrm{~V} \mid \mathrm{amp})$. $\mathbf{£ 2} \cdot 50$ (P. \& P
 at $12 \mathrm{amp}, f 13(P, \& P$. $f 1 \cdot 50)$. $0-12 V$ at 20 amp or $8 \mathrm{~V} / 20 \mathrm{~V}$ at $20 \mathrm{amp}, £ 14$ (P. \& P. $£ \mid 50$). $0-6 \mathrm{~V} / 12 \mathrm{~V}$ at $20 \mathrm{amp}, \& 1185$ (P. \& P. \& 1).

AUTO TRANSFORMERS

Step up, itep down, 0-115-200-220-240V; 75 wat 00 (P \& $P .80 \mathrm{P}$) ; 150 watt 85 (P. \& P. 80p)

STROBE! STROBE! STROBE!

HY-LIGHT STROBE MK IV Build a Strobe Unit, using the latest type Xenon whice light flash tube. Solid state ciming and triggering circuit. $230 / 250 \mathrm{~V}$ a.c. operation. For use in large rooms, halls and utilises a silica tube, printed circuit. Speed adjustable 0-20 f.p.s. Light output greater than many (so called 4 Joule) strobes $£ 15 \cdot 40$. Post 75 p. Specially designed case and reflector $\mathbf{£ 8 \cdot 2 5}$. P. \& P. £I. Super high light approx. 4 times more output. Super high light S.A.E. for leaflet.

XENON FLASHGUN TUBES
Range available from stock.
S.A.E. for details.

ULTRA VIOLET BLACK LIGHT		
41 t 40 watt, $£ 7 \cdot 00$ (callers only).		
2ft 20 watt, 64.60 . Post 60 p . (For use in		
Post 25 p. 9 in 6 watt, $£ 1.40$. Post $25 p$6 in 4 watt, $£ 1.40$. Post 25 p. Complete ballast		
unit and holders for 6 6in, 9 in and 12 in tube,		
BIG BLACK LIGHT		
400W Mercury Vapor Ultra Violet Lamp. Powerfu source of UVP.F. ballast unit is essential with this lamp. Price of bulb and matched ballast unit. 428 Post £2. Spare bulb oniy $£ 10$. Post B0p.		

RODENE UNISET TYPE7I TIMER $0-60$ sec. 230 V a.c. operation. Incorporating a lapsed
time indicator and repeat facilitics. A precision motorised timer ideal for process timing, photo

GALVANOMETER
50 micro mirror galvo. Calibrated 50-0-50 and 0-100 Mfg . by Griffin \& George Led. Offered at a fraction o P. \& P. 60 p

WIDE RANGE OF DISCO LIGHTING EQUIPMENT
COLOUR WHEEL PROJECTOR TYPE PI50 INTACHANGE
$200 / 240 \mathrm{~V}$ a.c. 50 Hz
150 W tamp com- come filled
plete with oil filled
colour wheel and
motor plate. Takes
intachange acces.
incachange acces-
sories and full rante
sories and full range
of lenses. $£ 29.95$.
Post EI.35. (Totai
inc. VAT \& Post

VAT
AT CURRENTRATEMUST BE ADDED
TO ALL ORDERS FOR THE TOTAL
VALUE OF GOODS INCLUDING
POSTAGE UNLESS OTHERWISE
STATED.
SAS
BAC

GEARED MOTORS $100 \mathrm{r} . \mathrm{p}^{2} \mathrm{~m}$. 115 lb .in. 110 V ,
50 Hz . 50 Hz . $2 \cdot 8 \mathrm{~A}$, single phase, split
capacitor motor. immense
 power. Continuously raced
 Length 145 mm . Ex-equipment tested $\mathrm{fl2}$. Post f|.50. Suitable transformer $230 / 240 \mathrm{~V}$ operation

DRAYTON MOTOR

 Type RQR230/250V 50c. Continuously rated 1 r.p.m. 901b. in. Reversible Moror. 140 mm spinde size 100 mm by 140 mm by 125 mm . 5 h
by 8 mm . Weight 2 kg .

BODINE TYPE N.C.I
 (Type J) 71 rip.m. corque 10

The above precision made U.S.A. motor is offered $\mathbf{2 3 0 / 2 4 0 V}$ A.C. input. 25 . Post 75 p or less cransPrice, either cype 665 . (Type 3) 71 r.p.m. 4 lb.ins. $230 \mathrm{Va} . \mathrm{c}$. Continuously rated. Non-reversible. $£ 6.50$. Post 75p.

IS R.P.M.

Type SD48 801 b . in. Input $100 / 200$ volt. A.C. Length ncl. gearbox 270 mm . Height 135 mm . Width ND NEW. Price $£ 10$. Carr. $£ 1$. Suitable transformer for use on $220 / 240$ volt A.C.
€ 3.85 . Post 50 p.
24 R.P.M. 230 V a.c. Continuously rated. Mfg. My-
calex. Ex-equip. Fully tested. 63.85. Post 75p.
I R.P.M. 230/240V A.C. SYNCHRONOUS! Ex-equipment. Thoroug
ONLY $£ 1.50$. Post 20p
20 A.P.M, $230 / 240$ volt a.c. miniature mocor. Price

PROGRAMME TIMERS

230 V operation a.c. I 5 or 20
6 cam model $\mathbf{6 5}$. Poss 60 p .

2 cam model $£ 7 \cdot 50$, Post 60
METERS NEW— 90 mm Diameter
Type: 65CSD.C.M/C 2,5, 10, 20,50 amp.
Type:
${ }_{20}{ }^{2}$
Type: 62T2 A.C. M/I 1, 20, 50 amp. $£ 2 \cdot 50$. Post 20 p
0.300 volt. A.C. M/I $£ 2 \cdot 75$ and 300 volt A.C. R/M/C
63. Post 30p.

WHY PAY MORE?
 MULTI RANGE METER. A.C. volts $25-500$. D.C. Volts $2 \cdot 5-500$ (Sensitivity
 compact moving col 1 sir $120 \times 80 \times 44 \mathrm{~mm}$. 21 ranges, dimensions 12 Weight 0.32 kg . SERVICE TRADING CO. Price $\$ 5 \cdot 50$. Incl. leads and battery st $£ 6.46$

TIME SWITCH
 set
spring reserve in case of power failure. Day omitting device. Fitted in heavy high impact case, with glass observa-
tion window. Built to highest Electricity
 Board Spec. individually tested. Price
$\mathbf{6 7} \cdot 75$. Post 50 . (Total inc. VAT $£ 8.91$)

Superior Quality Precision Made NEW POWER RHEOSTATS

New ceramic conseruction, vitreous enamel embedded winding, heavy

rated. $10 / 25 / 50 / 100 / 150 / 250 / 500 / \mathrm{lk} / \mathrm{l}$-5k ohm.
${ }_{50} \mathrm{f} 190$. POS: $20 \mathrm{PAT}_{\mathrm{i}} / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k}$
E2.40. Post 25p.
100 WATT 1/5/10/25/50/100/250/500/hk/l $5 \mathrm{k} / 2.5 \mathrm{k}$
$35 \mathrm{k} / 5 \mathrm{k}$ ohm 63.70 . Post 35p.
Black Silver, Skirted knob calibrated in Nos.
1tin. dia. brass bush. !deal for above 22p each.

9 LITTLE NEWPORT STREET LONDON WC2H 7JJ

Phone 01-437 0576

The new Maplin Catalogue is no ordinary catalogue...

 Catalogue includes a very wide range of components: hundreds of different capacitors

 cables; discotheque equipment; organ components; musical effects units; microphones; turntables; cartridges; styli; test equipment; boxes and instrument cases; knobs, plugs and sockets; audio leads; switches; loudspeakers; books; tools -Component section includes a wide compe of coils pot cores, ready-wound roils and chokes from microHenries to coils andies, plus ranges of Denco coils and henries, plus rers, etc

SEND THIS - - ON YOUR COPY OF OUR CATALOGUE ON APPRO CO ! Price 50p - SEND NO MONEY NOW. Please rush me a copy of your brand new completely
catalogue by return of post. Only will I send $50 p$ within satisfied that it is worth ev not satisfied. I may return the 14 days of receipt. If I am not satisfied. 14 days without obligation. catalogue to you I need not purchase
anderstand that I choose to keep it.
NAME AND MANY MANY MDRE

*- Our bi-monthly newsletter keeps you up to date with latest guaranteed prices - our latest special offers (they save you pounds] - details of new projects and new lines. Send 30p for the next six issues (5 p discount voucher with each copy).

ELECTRONIC SUPPLIES P.O. BOX 3, RAYLEIGH, ESSEX SS6 8LR

Telephone Southend (0702) 715155
Call at our shop. 284 London Road. Westcliff-on-Sea, Essex
(Closed all day Monday) Telephone: Southend (0702) 47379

[^0]: (C) IPC Magazines Limited 1977. Copyright in all drawings, photographs and articles published in PRACTiCAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: See Practical Wireless for details of packs of components，surplus goods，etc． See Practical Wireless for details of packs of components．surplus goods，etc．
 All prices quoted include VAT at 8 or 124% ．Add 20 p postage on orders under £3．Most orders despatched on day of receipt．SAE with enquiries．Send 10 p for Multimeter catalogue－free on request on orders over $£ 3$ ．Official Orders accepted from Schools．etc．Export／wholesale enquiries wetcome．Surplus components always wanted

[^2]: To Cambridge Learning Enterprises (Dept. $\overline{\mathrm{ENG} \text {) }}$
 FREEPOST, Rivermill House, St. Ives, Huntingdon, Cambs. PE174BR *Please send me setis) of Design of Digital Systems at $£ 700$ each. p \& p included
 *or sel(s) of Digital Computer Logic and Electronics at $£ 5 \cdot 00$ each. p\&pincluded
 *or combined set(s) at $£ 10 \cdot 50$ each. $p \& p$ included
 Name
 Address

[^3]: SEND FOA OUA FAEE CATALOGUE

[^4]: Tarms of Business: CASH WITh ORDER. MINIMUM ORDER f2. ALL PRICES IWCLUDE POST \& PACKING (UK ONLY). SAE with All ENOUIRIES Please. PLEASE ADD VAT AS SHOWN. ALL GOODS IW STOCK DESPATCHED \&Y RETURN. GALLERS SATURDAYS ONLY 9.30-12.00. 1.30-5.00.

