PRACTICAL

ranice

APRIL 1977
40p

puttine IT I

 yuth 1 IR A Practical Guide forAlso:
Transient Generator
Day Indicator
Microprocessors

Stirling 5ound

NEW THIS MONTH

UNIT TWO MAGNETIC PRE-AMP WITH ACTIVE TONE CONTROLS

Heres another real money saver from Stirling Sound Wire this unit into your system and style it how you wish. Full system and siyluctions make this completely straight-forward Use Stirling Sound straight-forward Use Silring Sound
work superbly in any system Active tone contro circuits give bass and treble rise and cut of $\pm+5 \mathrm{~dB}$ each accepts inputs from 1 to 5 mV . RIAA corrected adaptable also input for ceramics, etc. S / N ratio 60 dB channel separation typically 56 dB frequency range $30-20,000 \mathrm{kHz} \pm 1 \mathrm{~dB}$ Tested before despatch (ready built) and guaranteed For $10-20 \mathrm{~V}$ operation

100 Watt R.M.S. POWER AMP and matching 7OV POWER SUPPLY Your chance to save $£ 1 \cdot 95$

Todays best 100 watt value now made even greater for disco. P A guitar use etc Normal selling price for items bought separately is $£ 22.95^{*}$

SS. 370

 70 V 2 Asupply with power
$\mathbf{1}$
wow volt take-off
SS. 1100H
(with large heat
sink) and SS. 370 2 $\boldsymbol{1}$ SS. 1100 100 Watt R.M.S $\mathbf{8} \mathbf{9}$. 45* heatsink type mounting flange Fult size heat. $\mathbf{f 1 *}$
sink

MORE STIRLING SOUND Q.V. MODULES TO SAVE YOU MONEY

POWER AMPLIFIERS

3 TO 40 WATTS R.M.S.
SS. 1033 watt r.ms mono i.C with short circult protection
SS.103-3 Stereo version of above using
SS. 1055 watts im.s into 3 ohms. using 12 V
\&2 25
SS. $110 \quad 10$ watis rm s using 24 V and 4 ohm load
SS. 12020 watts r.ms into 4 ohms using 34 V

40 walts rim.s into 4 ohms
SS. $140 \quad 40$ watts r.m.s into 4 ohms
using 45 V supply ideal small disco
or P.A unit $\{3.95$ *
VAT on power units ordered with amplifiers
SS 103 -SS 120 becomes $12 \frac{1}{2}$
TONE CONTROLS/
PRE-AMPS
SS. 100 Active tone control. Stereo +15 dB on bass and on reble SS. 101 Pre-amp for ceramic cartridges etc Stereo Passive tone control details supplied
SS. 102 Stereo pre-amp for low oulput magnetic PU.S. R.IA A corrected

UNIT ONE TONE

 CONTROL PRE-AMPA real money saver this. Compatible with all relevant Stirling sound modules as welf as other makes.
Combined pre-amp with active tonecontrol circuits. $\pm 15 \mathrm{~dB}$ at 10 kHz treble and 30 Hz bass. Stereo, Vol/balance treble/bass 200 mV out for 50 mV in Takes $10-16 \mathrm{~V}$
FM TUNING MODULES
SS. 201 From end tuner. slow geared drive, two gang. A.F.C. facility. Tunes $88-108 \mathrm{MHz}$
SS. 202 I.F amphifier. Metering and A.F.C facilities

SS. 203 Phase lock loop Stereo
Decoder for use with the above or
other FM mono tuners A LED may be
fitted
SS.203.1 Coil-type stereo decoder for use with SS. 201 and SS 202. recommended
where economy is called for
SS.203-1N with IC for neg earth SS.203-1P transistor type for pos earth

WHAT Q.V. MEANS TO YOU

It means Stirling Sound qUALITY and Value from modules made in our own Essex factory They are all tested, guaranteed and offer unbeatable value. Designed by highly specialised electronic engineers with wide experience of the constructor and experimenter market. WATCH HOW THE STIRLING SOUND RANGE GROWS

POWER SUPPLY UNITS
WITH 13-15V
TAKE-OFF POINTS
Except
SS. 312

MODELS

TO CHOOSE FROM

Complete with mains transformers and low-volt take-off points (except SS.312). All at 8% VAT rate. Add 50 p for P. \& P any model (except SS. 300 at 35 p and SS 370 at £1)

SS 312	$12 \mathrm{~V} / 1 \mathrm{~A}$	¢3.75*
SS. 318	$18 \mathrm{~V} / 1 \mathrm{~A}$	¢4.15*
SS. 324	$24 \mathrm{~V} / 1 \mathrm{~A}$	¢4.60*
SS. 334	$34 \mathrm{~V} / 2 \mathrm{~A}$	¢5. 20°
SS. 345	$45 \mathrm{~V} / 2 \mathrm{~A}$	£6.25*
SS. 350	50V/2A	¢6.75*
SS. 370	$70 \mathrm{~V} / 2 \mathrm{~A}$	£12.50

SS. $310 / 50$ STABILISED POWER SUPPLY with variable output from 10 to $50 \mathrm{~V} / 2 \mathrm{~A}$. Protected against shorting (P \& P 50p)
£11.95*
SS. 300 POWER STABILISING UNIT $10-50 \mathrm{~V} / 2-8 \mathrm{~A}$ adjustable. For adding to unstabilised supplies. Built-in protection against shorting (P \& P 35p)

WHEN ORDERING add $35 p$ for P \& P unless stated otherwise VAT add $12 \frac{1}{2} \%$ to total value of order uniess price is shown* when the rate is 8%. Make cheques etc, payable to Bi-Pre-Pak Lid Every effort is made to ensure correctness of information at time of going to press. Prices subject to alteration without notice.

A member comogny of the Bl-Pre-Pak group, Est. 1959
Dept. PS4, 220-224 West Road, Westcliff-on-Sea, Essex SSO GDF

Phone Southend (0702) 46344

De-luxe 25 watt hi-fi amp bargain
Made to sell at $£ 7 \cdot 25$
LIMITED NUMBER AVAILABLE AT

£5. 20

This is the BI-Pre-Pak SS.125, designed and made for the connoisseur market of hi-fi and technical specialists. 25 W r.m.s. into 8 ohms using 50V: 22 W r.m.s. into 4 ohms from 33 V inpu: sensitivity- 150 mV for full output; distorfion less than 0.05% at all powers. With full instructions. Tested and guaranteed. Limited number only available.

SS. 125
De-luxe Power Amp
CONSTRUCTIONAL PROJECTS
DIGITAL VOLTMETER by A.J. Buxton
A mains powered $3 \frac{1}{2}$-digit d.c. digital voltmeter using the Ferranti ZNA116 i.c. 258
DAY INDICATOR by M.H. George
This unit uses CMOS logic and displays the day of the week on a row of l.e.d.s. 266
pH METER-2 by K. E. Langford
Constructional details, calibration, and f.e.t. alternative input stage. How to use the meteand where to get the electrodes288
TRANSIENT GENERATOR by R. Gwinn
An envelope shaper circuit giving keyboard triggered transient profiles for driving v.c.a.s and v.c.f.s 296
GENERAL FEATURES
SEMICONDUCTOR UPDATE hy R. W. Coles
A look at some recently released devices 265
MOBILE DISCO TECHNIQUES-1 by N. McLeod
Equipment and operating techniques for the disco enthusiast 270
INGENUITY UNLIMITED
Bistable Touch Switch—D.C. Motor Speed Controller-Initial Reset 279
MICROPROCESSORS EXPLAINED-2 by R. W. Coles
A vital introductory series dealing with the newest technology 280
PROGRAMMING A MICROPROCESSOR by D. B. Johnson-Davies
Step by step instructions, based on the SC/MP kit 299
NEWS AND COMMENT
EDITORIAL-The Essence of Constructing 257
SPACEWATCH by Frank W. Hyde
Faster and Faster-Space Spying-Russian Activities 269
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 286
NEWS BRIEFS
Microprocessors at Seminex '77-Alex Marshall 298, 306
POINTS ARISING
Cine/Tape Synchroniser-Games Machine-
Car Exhaust Monitor-Solar Heating System Controller 306
SPECIAL 8-PAGE SUPPLEMENT
PUTTING IT TOGETHERA practical guide for constructors1-8

Our May issue will be on sale on Thursday, April 7, 1977
(for details of special free booklet and other contents, see page 287)

[^0]
TAMBA ELECTRONICS
 年年 An aroititis cus uss

 \section*{AMPLIFIER AND MIXER MODULES}

 \section*{AMPLIFIER AND MIXER MODULES}}

TAM 1000100 W 4 ohms 65 V
TAM 50050 W 4 Ohms 45 V TAM250 25W 8 ohms 45 V

POWER SUPPLIES
For 1 or 2 TAM250/500
For 1 or 2 TAM1000
(Carriage 50p on supplies)

Suits loads 4-16 ohms

- $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
- Silicon circuitry throughou
- Glass fibre P.C.B
- High sensitivity (100 mV 10 K)

High grade components used through out: Texas, Mullard, R.C.A., Plessey, etc

\author{

- Suitable for multiple input systems
 - High and low impedance inputs
 - High sensitivity
 - Built-in supply smoothing
 - $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
 - 80 dB noise level
 - Accepts a wide variety of inputs
 - Wide range bass and treble controls Use up to 10 PRE-AMPS with 1 power
}

Printed circuit board assembly with treble and bass controls plus slider volume control
£6.50

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc)-C.O.D. (60p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at 8% to orders for 50 and 100 W units and at $12 \frac{1}{2} \%$ for 25 W units.

Hours, 9.30 a.m. -5 p.m Monday - Saturday Callers welcome
Tel: (01) 6840098

TAMBA ELECTRONICS

Bensham Manor Road Passage, Bensham Manor Road, Thornton Heath, Surrey.

$L E M T \mathrm{ROPA}$																
17 Turnham Green Terpace, Chiswick, London, W.4. Tel: 01.9942784																
* NEW * FULLY GUARANTEED CCMPONENT PACKS * FULL SPEC. SEMICONDUCTORS * AVAILABLE IN LOW COST PACKS OF TEN * ALL PRICES INCLUDE VAT AND U.K. POSTAGE * NO HIDDEN EXTRAS * TEN PACKS LESS 15%																
		Price per 10		Price per 10		Price per 10			Price per 10							
		B0131	\$3.00	OAzO2	50.40		5 A ¢1	\$13.50	2N2906	c2. 50						
${ }^{\text {ACC128 }}$	11.20	BO132	53.50	OA211	12.50		58	E14.50	2 N 2907	¢2.00						
${ }^{\text {ACP176 }}$	¢1. 20	BF 194	51.00	OC71	[1. 00		5 C	¢15.30	2N29\%	51.20						
BC107	\$1.00	BF 195	51.00	tipraa	14.50		6 A	¢30.00	2N3053	[2. 20						
BC108	\$1.00	BFY50	12.20	T1P298	55.50			¢32.00	2 N 3054	54.50						
BC114	[1.00	BFY52	c2. 60	T1P29C	6.6.90		6 C	538.00	2N3055	53.00						
BC126	[1.00	BFY90	¢10.00	TIP30A	55.40			58.30	2 N 3643	c2. ${ }^{\text {co }}$						
BC147	11.20	BFX29	c2.80	T\|P30B	[6.90			20. 10	2N3702	\$1. 50						
BC148	[1. 20	BFX84	13.00	TIP30C	[57.80		L228B 3A		2N3703	¢2.40						
BC168	\$1.20	BFX87	53.00	tip31A	c5.50		Triac	19.50	2 N 3706	\$1.20						
BC182	51.20	BFX88	[2. 50	T1P318	[5.90			10.00	2N3707	\$1.50						
BC183	[1.20	BY127	51.20	tip31c	[7.80			[0. 80	2N3819	c2. 20						
BC184	[1.20	BZY59	51.00	TIP32A	56.30			50.70	2N3820	22. 50						
BC212	[1.20	C108B	55.00	T1P32B	¢5.50			¢0.75	2 N 3904	51.60						
BC213	51.20	030 Diac	\$1.50	TIP32C	c9.00			50.90	2N3905	[1.20						
BC214	51.20	MFC 4000	ES. 00	tip33a	c9.00			80.70	2N3906	c2.00						
BC237	\$1.20	MPF103	c3.00	T1P338	\$11.90			11.20	40360	¢4.00						
BCY38	10.00	MPF 104	¢3.60	TIP33C	[13.00			11.50	40361	E4.00						
BCY70	12.20	NKT135	12.00	TIP34A	[13-50			c2. 200	40362	E. 00						
BCY71	[2.00	OA10	2. 200	T1P348	\$14.00			L2. 20								
BCY72	¢2.00	OAZ00	CO BO	TIP34C	[15.30			$\underline{L 2}$								
SUB-MINIATURE PRESET POTS (horiz. or vert. P.C. Mounting) 10 for 50 p . $50,100,250,500,1 \mathrm{~K}, 2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, 250 \mathrm{~K}, 500 \mathrm{~K} .1 \mathrm{M}$, ohms.																
THERMAL GAS SENSOR. FIgaro TGS105 $\mathbf{\Sigma 2} 25$ each. As used in Sept. 76 PE . Gas/Smoke Detector. Organ Constructors 13-NOTE BASS PEDAL BOARD Hard weacing plastic covered steel levers. Change-over contacts on each note Slightly shop-soiled theretore lass than half price $£ 12 \cdot 50$ each Minlature maina Tranaformers Pri. 240 V a.c. Sec. 12 V 150 mA .10 for $\mathrm{E5} .75$.																
CELESTION 3 in and 3n Twestere. Sultable for systems up to 20 W Avaneble in 4, 8. Th anms impedance. $£ 1 \cdot 50$ each. 2 tor $£ 2 \cdot 90,10$ for $£ 12 \cdot 50$. Crossover network suitablever above tweeters $\$ 1.50$.																
WIRE ENOEO ELECTPOTYTIES (Muliard, Sprague, of) 10 for 60 p																
					$\sin \times 2 i n \quad 3 \Omega \text { ce }$			alestio	¢1.00							
							ca. 00									
					$\operatorname{Bin} \times \sin$ Elac low	8Ω		c3. 50								
					Bin Elac Twin Cone 8Ω, $E 4.25$ 10 in Elac 8Ω low dee 4.75											
BLANK CASSETTES																
Professlonal				Standard		Super		X.H.E.								
C60				0.60			10	110								
		5.50	0.96		0.90	1.3311		11.00								
20				11.50		. 82	7.20	$\begin{aligned} & 1.33 \\ & 1.84 \end{aligned}$	12.2015.00			$15 \cdot 50$18.50				
		. 00	$2 \cdot 24 \quad 18$													

MINI CONSOLES Ideal for small desk control panels and consoles. Mouided in orange, blue, black and grey ABS. Incorporates slots for holding 1.5 mm thick pcb's Aluminium panel sits recessed into front of console and held by screws running into integral brass bushes. MC $161 \times 96 \times 58 \mathrm{~mm} \quad £ 1.53 \quad(1-9) \quad £ 1.50(10+)$ MC $215 \times 130 \times 75 \mathrm{~mm}$ £2.20 (1.9) \quad £2.17 (10+1) Add 25 per $£ 1$ order value for Post \& Packing	Stop wasting time soldering The NEW MW BREADBOARD accepts Transistors, LED's, Diodes, Resistors, Capacitors and all DIL packages with 6 to 40 pins	SC BOXES (square corners) Easily drilled or punched, orange, blue, black and grey ABS. Incorporate slots for holding 1.5 mm thick pcb's. Aluminium panel sits recessed into front of the box and held by screws running into integral brass bushes.
ECONOMY QUALITY LED's 50 for only $£ 5-100$ for only $£ 9$ Mixed bags. all sizes, various colours Full specification LED's also available Red (specify size) 75p per pack Green, Yellow, Orange (specity size) $\mathbf{f} 1.20$ per pack Packs contain 5 LED's, mounting ctips and data	Includes slot in Component Support Bracket and has over 400 individual sockets, plus Vcc and Ground Bus Strips Price $£ 9.72$ (includes VAT \& P.P.) TYPE MP NE ON INDICATOR Supplied with resistor for 240 Volts operation 150 mm leads, held in 6.4 mm hole by nut Red. Amber, Clear. Opal 20p each	240 VOLTS MINI HAND DRILLS Ideal for drilling peb's, chassis etc as well as model making. Supplied with 3 collets that accept tools and drills with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ and $1 / 8^{\prime \prime}$ dia shanks. £9. 72 (includes VAT \& P.P.) Accessory tools... 5 Burrs, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 1 / 8 \mathrm{th}$ Drills, 3/32" Collet Price $\mathbf{f} 1.75$ (ncludes VAT \& P.P.)
TYPE A NEON INDICATORS	SEVEN SEGMENT DISPLAYS Economy quatity Red, yellow and green Oniy 45p each Common Anode - 0.3"Lett Decimal Full specification displays also available as above Red @ 98p each Green and Yellow @ £1.35 each. Data supplied with full spec. displays only.	RC BOXES (round corners) Easily drilled or punched. orange, blue, black and grey ABS. Incorporate slots for holding 1.5 mm thick pcb's. Close fitting flanged lids held by screws running into integral brass bushes.
12 VOLTS MINI HAND DRILL Ideal for drilling pcb, chassis etc as well as model making. Supplied with 2 collets that accept tools and drills with $3 / 32^{\prime \prime}$ and $0.50^{\prime \prime}$ dia shanks. £7.56 (Includes VAT \& P.P.)	Quantity quotations on request P.P. Note Unless included in price add 25p Post \& Packing for orders totalling under $£ 10$. All prices include VAT and are valid in UK only for 2 months from journal issue date Mithael Williams Electranits 47 Vicarage Av. Cheadle Hulme, Cheshire SK8 7JP	 Polystyrene version in grey only with no slots, no integral brass bushes $R C(P) 112 \times 61 \times 31 \mathrm{~mm} \quad 35 \mathrm{p}(1-9) \quad 32 \mathrm{p}(10+)$ Add 25 p per $\mathfrak{£} 1$ order value for Post \& Packing

FROM THE BIGGEST RANGE OF GOOD QUALITY MULTIMETERS

PRESENT THE

For detasls of this and the many other exciting instruments in the Chinaglia range, including multimeters. component measuring, automotive and electronic instruments. please write or telephone

DOLOMITI

$20 k \Omega / V$ a.c. and d.c.

A NEW HIGH SENSITIVITY MULTIMETER WITH ALL THE FEATURES YOU WILL EVER NEED

Accuracy: d.c. ranges, $\pm 2 \cdot 0 \%$, a.c. and Ω ranges $\pm 2 \cdot 5 \%$
39 ranges: d.c. $V, 0-150 \mathrm{mV}, 500 \mathrm{mV} .1 .5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1.5 \mathrm{kV}$ d.c. $1,0-50 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 5 \mathrm{~mA}, 50 \mathrm{~mA}, 500 \mathrm{~mA} .5 \mathrm{~A}$, a.c. $\mathrm{V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}$, $150 \mathrm{~V}, 500 \mathrm{~V}, 1.5 \mathrm{kV}$, a.c. $1,5 \mathrm{~mA}, 50 \mathrm{~mA}, 500 \mathrm{~mA}, 5 \mathrm{~A} ; \mathrm{dB}-10$ to +65 in 6 ranges. $\Omega 0-05 \mathrm{k} \Omega$. $5 \mathrm{k} \Omega$. $50 \mathrm{k} \Omega$. $500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega .50 \mathrm{M} \Omega$. pF50kpF, 500 kpF .

Automatic overload protection and high current range fusing
Scale mirror and fine pointer for accuracy of reading. Single knob main range switching and all panel controls. C.E.I. Class 1 movement with sprung lewel bearings. Extended 92 mm scale length for extra clarity. Compact ABS case $125 \times 131 \times 37 \mathrm{~mm}$. Weight 650 g with batteries. Supplied complete with carrying case, fused leads, hand-book and full 12-month guarantee. Optional 30kV d.c. probe avallable

Meter $£ 45.90$ incl. VAT (1 P. \& P.)
30 kV Probe $£ 12.85$ incl. VAT

A] JCOMN Instruments Ltd.

London College of Furniture

Electronics for Musical Instrument Technology

A full-time three year course is offered in those aspects of electronics related to the design, building and repair of all types of equipment associated with music.

Students will be encouraged to involve themselves in project work in the fields of acoustics, group amplification, electronics organs, synthesizer design, etc.

Prospective students should have some knowledge of electronics or some basic science and mathematics at O' level GCE or the equivalent.

For details apply to: Department of Musical Instrument Technology, London College of Furniture, 41-71 Commercial Road, London E1 1LA. Telephone: 01-247 1953

Bring 'scope'to your interest.

'There's only one way to master electronics... to see what is going on and learn by doing:

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1Build an oscilloscope.
As the first stage of your training, you actually build your own Cathcde ray oscilloscope! This is no toy, but a test instrument that you will need not only for the ccurse's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read,draw and
understand circuit
diagrams.
lna short time vo will be able to
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio. computors and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working k nowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating froma computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

SEMICONDUGTORS-COMPONENTS

DIODES

Type	Price	Type	Price	Type	Price	Type	Price
AA129	50.08	BY100	co. 16	BYZ11	c0-31	0491	¢0. 07
AAY30	50.09	BY107	co. 12	BYZ12	c0. 31	OA95	¢0.07
AAZ 13	[0. 10	BY105	co. 18	BYZ13	c0. 26	OA182	¢0. 07
AAZ17	50.10	EY114	20. 12	BYZ16	¢0.41	OA200	¢0.08
BA100	50. 10	BY124	*50.12	BYZ17	50.36	OA202	c0.08
BA102	50. 32	BY126	*¢0.15	BYZ18	¢0.36	SD10	co. 06
BA148	c0-15	BY127	${ }^{\text {co }}$ - 16	BYZ19	c0. 23	SD19	¢0. 06
BA154	c0. 12	BY128	¢0. 16	OA10	c0. 35	1 N 34	50.07
BA155	c0-14	BY130	${ }^{\text {c }} 0.17$	OA47	c0. 07	JN34A	c0. 07
BA156	[0.14	BY133	* 50.21	OA70	50.07	IN914	¢0.06
BA173	c0. 15	BY164	c. 0.51	OA79	c0.07	IN916	co.06
B8104	c0. 15	BY176	-c0.75	OA81	¢0. 07	IN4148	¢0.06
BAX13	20.07	BY206	[0000	OA85	c0.09	IS44	c0.05
BAX16	c0.08	BYZ10	c0. 36	OA90	5.0-07	(S920	¢0. 06
Type IS920	$\begin{aligned} & \text { Price } \\ & \mathrm{EO} 0.06 \end{aligned}$	Type iN4003	Price 20.07	Type 15020	Price [0. 10	Type IS031	Price C0. 25
15921	20.07	iN4004	50.08	\|S021	c0. 11	IN5400	20.13
15922	c0.06	IN4005	c0. 09	15023	50.13	INS401	co. 15
15923	c0.09	1N4006	50. 10	1S025	E0. 14	IN5402	20.16
15924	20. 10	[N 4007	50.11	15027	50. 16	\| N 5404	¢0. 17
IN4001	50.05	IS015	10.09	15029	50. 20	IN5406	50.21
IN4002	\$0.06					IN5407	¢0.25

TRIACS

THYRISTORS

$600 \mathrm{~mA} \mathrm{TO18} \mathrm{CASE}$			7 AMP TO4A CASE		
Voltsi	No	Price	Volts	No.	Price
10	THY600 10	¢0. 13	50	THY7A 50	50. 48
20	THY600/20	c0. 13	100	THY7A 100	c0. 51
30	THY600;30	¢0. 19	200	THY7A 200	c0. 57
50	THY600 50	c0. 22	400	THY7A 400	10.62
100	THY600 100	c0. 25	600	THY7A600	c0. 78
200	THY600 200	£0.38	800	THY7A 800	10.92
400	THY600 400	¢0.45	10 AMP TO48 CASE		
1 AmP TOS CASE					
			Volt	No	Price
Volts	No.	Price	100	THY 10 A 100	¢0. 57
$\begin{array}{r} 50 \\ 100 \end{array}$	THY1A 50	50.26	200	THY10A 200	co. 62
	THY1A 100	c0.27	400	THY10A 400	c0.71
$\begin{aligned} & 100 \\ & 200 \end{aligned}$	THY1A 200	¢0. 28	600	THY10A 600	$\underline{50.99}$
400	THY1A 400THY1A600	£0.36	800	THY10A 800	51.22
600		£0.45			
800	THY 1A/800	¢0. 58	16 AMP TO48 CASE		
			Volts	No.	Price
3 AMP TOEG CASE			50	THY16A 50	c0. 54
			100	THY16A 100	50.58
50	THY3A 50	¢0. 25	200	THY16A 200	¢0.62
	THY3A/100THY3A.200	E0. 27	400	THY16A 400	¢0. 77
100		[0. 33	600	THY 16A600	£0.90
200 400	THY3A 400	10.42	800	THY16A 800	£1-39
$\begin{aligned} & 600 \\ & 800 \end{aligned}$	THY3A800	c0. 50	30 AMP TO94 CASE		
		50-65	Volts ${ }^{30}$	AMP TO94 CA	
			50	THY30A50	[1. 18
5 AMP TO66 CASE			100	THY30A 100	51.43
Volts50	No.	Price	200	THY30A 200	51.63
	THY5A 50	50.36	400	THY30A 400	51.79
100	THYSA 100	10.48	600	THY30A 600	53.50
200	THY5A 200	E0. 50	No		
400		50.57			Price
600	THY5A600	¢0. 69	ET101/5		co. 80
800	THY5A 800	50.81	BT102 500R		¢0. 80
			BT 106		¢1. 25
5 AMP TO220 CASE			ВT 107		¢0.93
			ET108		50.98
			2N3228		¢0.70
400	THYSA 400P	$\underline{50.57}$	2 N 3525		¢0.77
600	THYSA 600P	50.69	87×30		¢0. 33
800	THY5A 800 P	[0.81	8TX30/		£0. 46
			C106 4		¢0. 60

ORDERING

PLEASE WORD YOUR ORDERS EXACTLY AS PRINTED, NOT
FORGETTING TO INCLUDE OUR PART NUMBER

VAT

ADD $12 \frac{1}{2} \%$ TO PRICES MARKED \star ADD 8% TO OTHERS EXCEPTING THOSE MARKED \dagger. THESE ARE zero rated

SUPER UNTESTED PAKS

Pak	Qty		Order	
No.			No.	Price
U50	100	Germ gold bonded OA47 diode	16130	50.60
U51	150	Germ. OA70/81 diode	16131	¢0. 60
U52	100	Silicon diodes 200 mA OA200	16132	c0. 60
453	150	Diodes 75 mA in4148	16133	co. 60
U54	50	Sil rect top hat 750 mA	16134	50.60
U55		Sil rect stud type 3 amp	16135	50.60
456	50	400 mW zeners DO7 case	16136	c0. 60
U57	30	NPN trans BC107/8 plastic	16137	* 50.60
U58	30	PNP trans BC177/178 plastic	16138	- 50.60
U59	25	NPN TO39 2N697/2N1711 siticon	16139	50.60
U60	25	PNP TO59 2N2905 silicon	16140	c0. 60
461	30	NPN TO18 2N706 silicon	16141	50.60
U62	25	NPN BFY50/51	16142	co. 60
U63	30	NPN plastic 2 N 3906 sticon	16143	+20.60
U64	30	PNP plastic 2 N3905 silicon	16144	-50.80
U65	30	Germ 0071 PNP	16145	c0. 60
U66	15	Plastic power 2N3055 NPN	16146	51.20
U67	10	TO3 metal 2 N 3055 NPN	16147	51.20
U68		Unijunction trans TIS43	16148	50.60
U69	10	1 amp SCR TO39	16149	[1. 20
U70	8	3 amp SCR TO66 case	16150	51.20

COMPONENT PAKS

P
ZO

LINEAR PAKS
Manufacturers Fall Outs which include Functional and part-Functional Units. These are classed as out-ot-spec from the maker's very rigid specicalins, but are
w727-30 assorted Linear Types 709, 741, 747
7721-30 Assoried Linear Types 709. 741. 747.
C4. 710.588 , etc.
ORDER NO. 162
U76SD FM STEREO DECODER
SICS 76110 equivalent to MC1310P-MA767
Data suppliod with pak.
ORDER No. 16229
U76A AUDHO POWER OUTPUT
AMPLIFIERS
Dassorted types. SL403, 760 13, 76003, etc
Data supplied with pak.
Da'ta supplied with pak
ORDEA No. 16228

74 SERIES PARS

Manufacturers Fall Outs which include are classed as out-ot-spec from the deal for very rigid specifications. but are deal for learning about ICs and experimental
work. 74G-100 Gates assorted 7400-01-04-10-50-60. OIC. ORDER No. 16224
74F-50 Flip-Flops assorted 7470-72-73-74-76 104-109. etc.
OROER No 16225
$74 \mathrm{M}-30 \mathrm{MS}$. Assorted Types. 7441-47-90-154. ${ }^{\text {atc. }}$ ORDER No. 16226

VEROBOARDS PAKS
VB1—Approx 30sq. in various sizes. All 0 1ın
Matrix
ORDER No 16199
VB2-Approx. 30 sq in various sizes. $0{ }^{60 \mathrm{in}}$
Matrix.
ORDEA No 16200
ELECTROLYTIC PAKS
A range of paks each contanning 18 first quabity, mixed value minature electrolytics.
EC1-Values from 0.47 mF to 10 mF . ORDER No. 16201
EC2-Values from 10 mF to 100 mF ORDER No. 16202
ES3-Values from 10
ORDER No. 16203

C280 CAPACITOR PAK

75 Mullard C280 capactors. mixed values ranging from $0.01 \mu \mathrm{~F}$ to $2 \cdot 2 \mu \mathrm{~F}$ complete with Contification sheet.

CARBON RESISTOR PAKS

These paks contain a range of Carbon
Resistors, assorted inio the following groups
R1-60 mixed $1 / \mathrm{W} 100-820$ onms
ORDER No. 16213
A2 60 mixed $1 / \mathrm{aW} \mathrm{1-8.2k} \mathrm{\Omega}$
ORDER No 16214
R3- 60 mixed $1 / W 1$
R3- 60 mixed $1 / W$ W $10-82 \mathrm{k} \Omega$
ORDER No 16215
ORDER No 16215
R4- 60 mixed $1 / W 100-820 \mathrm{k} \Omega$
R OGDER No 16216
ORD
RS 40 mixed $1 / 2 \mathrm{~W} 100-820 \Omega$
ORDER No 16217
R6-40 mixed $1 / 2 W 1$
ORDER No 16218
A7-40 mixed $1 / 2 W 10-82 \mathrm{k} \Omega$.
ORDER No. 16219
R8-40 mixed $1 / 2 W 100-820 \mathrm{k} \Omega$
ORDER No. 16220
R9 $-60 \mathrm{mixad} \% \mathrm{~W}_{1-}$
R9- 60 mixed $1 / 6 \mathrm{~W} 1-10 \mathrm{M} \Omega$
ORDER No 16230
R10-40 mixed $1 / 2 \mathrm{~W}$ 1-10Mn
WORLD SCOOP! JUMBO SEMICONDUCTOR PAK Transistors, Germ and Silicon Rectifiers
Dlodes. Triacs. Thyristors. ICs and Zeners ALL NEW AND CODED Approx. 100 pleces Offering the amateur a lantastic bargain PAK and an ensimous Dak,
OROER No. 16222

		58.60 GROVE RD. WINDSOR, BERKS. SL4 1HS. TEL. 54525	
RED LEDS IDP.	TOP DISCOUNTS. \square ETTDS TTL	HEW LOW PRICES. \square BARGAII PAKS \qquad \qquad \qquad \qquad 10-365PF TUNER.SINGLE GANG F MED/SHORT NAVE. XTAL. SET etc SET3/IF CANS $155 / 470 \mathrm{KHZ}$ TOKO	Full spec devices DAD Den 75p \square ETCH FEC $6 \times 4^{\prime \prime}$ \square vero

Dimmit range of light dimmers and lighting control systems

llustrated is the popular PMSD 1000 module. A 1 kW slider pressed, 60 mm slider range size $4 \frac{1}{2} \times 2$ 1 $\frac{1}{2}$ in. Ideal for low cost stage and disco lighting. Used by Complete with sca!e plate, fixing serews and full instructions. $\mathbf{£ 9 . 0 6}$ inc. VAT and postage and packing. Complete compact light dimmer lighting, ete.

DDGIM (illustrated). channels, six outlet sock Price

DD61-B. PMSD1000, lowest cost system. Price 666.50 inc. VAT and P. \& P PRICES REDUCED FOR A LIMITED PERIOD

The Dimmit range includes rotary and slider control dimmers and sound to light converters for home, entertainment and professional applications. Ratings $1 \mathrm{~kW}, 2 \mathrm{~kW}, 3 \mathrm{~kW}$

All products are guaranteed and are supplied with full instructions and applications. Full after-sales service. Technical advice given.
For fill information on all modules and lighiing control systems send for our FREE illustrated catalogue and brice list. Callers welcome, visit our show room for a demonstration of any of the modules or systems. Mon.-Fri

YOUNG ELECTRONICS ETD.
184 Royal College Street, London NW1 9NN Tel. 01-267 0201

VALVE MAIL ORDER CO. Climax House
I 59 Fallsbrook Road, London SW 16 6ED SPECIAL EXPRESS MA/L ORDER SERVICE

it's a Quartz digital Clock. Shows Hours, Minutes, Second Dot. AM/PM, Date, Day of Week. IT'S AN ALARM. Can be set to sound 4 times a day. AM or PM every day until reset
IT'S A STOPWATCH. Hours. Minutes, Seconds to 9 hrs, 59 mins, 59.9 secs.

IT'S A CALCULATOR. Computerised for Time and Date calculations IT'S ANOTHER WORLD FIRST FROM CASIO-The CQ-1 IT'S ONLY $1 \times 2 \frac{1}{2} \times 5 \frac{1}{2}$ inches and costs only $£ 29.95$ (R.R.P. £35.95)
THE SECOND BEST WATCH IN THE WORLD?

8 Functions and Backlight STOPWATCH
DUAL TIME ZONES
Stainless Steel, Mineral Glass.
The Casio CASIOTRON R18B
R.R.P. $£ 75 \cdot 95$. Our price $£ 58 \cdot 50$

Full range of new 1977
NEW National Semiconductor LCDs from $£ 23.90$.
NEW $\begin{aligned} & \text { National Semiconductor LCDs from } \\ & \text { Fairchild Timeband low cost LCD. Many other }\end{aligned}$ SEND 10 P FOR OUR ILLUSTRATED CATALOGUE
The WIDEST range of the BEST watches at the LOWEST prices
Prices include VAT and P. \& P. Free battery(s). 1 year Guarantee Access and Barclaycard weicome. C.O.D., or send cheque or P.O. 10 :-

Talk of The Town 19/21 Fitzroy Street CAMBRIDGE CB1 1EH
A lot of Time for the Money Tel. 0223312866

FUNCTION GENERATOR KIT

FEATURES

Low sinewave distortion (THD 0.5\%)insensitive to signal sweep Excellent stability ($20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, typ) Wide sweep range (2000:1, typ) Low supply sensitivity ($0 \cdot 01 \% / \mathrm{V}$, typ) Linear amplitude modulation Adjustable duty-cycle (1% to 99%)
TTL compatible FSK controls

New Low Price!

* ONLY £10.96, complete
- BY RETURN POSTAL SERVICE includes: postage, packing, insurance and VAT
- IMMEDIATE EX-STOCK DELIVERY
* CALL-COLLECT SERVICE ALSO

Sine, triangle and square wave Total harmonic distortion (THD), 0.5% typ. AM/FM capability
Frequency range: 1 Hz to 100 kHz

XR-2206KA

Includes monolithic function generator IC, PC board, assembly instruction manual and Augat IC socket.
Note: The kit requires some additional parts and hardware for complete assembly in a laboratory equipment form

APPLICATIONS

Waveform generation-sine, square, triangle
Sweep generation
AM/FM generation
FSK and PSK generation
Voltage-to-frequency conversion
Tone generation
Phase-locked loops

We also supply a wide range of discrete semiconductors, linear and digital ICs (including clock and communication circuits), breadboarding equipment, accessories, and the entire range of Augat IC sockets, plugs, wirewrap boards and systems. Callers welcome.

SYNTHESISERS, SOUND EFFECTS AND COMPONENTS SETS include all necessary resistors, capacitors, semiconductors, potentiometers and trans. ormers, Hardwaresuch as cases, sockets. knobs, etc. are not included but most of these may be bought separately. Fuller details of kits, PCBs and parts are shown in our lists.

P.E. SYNTHESISER

(P.E. Feb. 73 to Feb. 74)

The well acclaimed and highly versatile large-scale mains-operated Sound Synthesiser complete with keyboard circuits. All function circuits may be used number of circuits, the greater the versatility. Other circuits in our lists may be used with the Synthesiser to good advantage (notably P.E. Minisonic, Phasing Unit, Wind and Rain, Rhythm Generator, Sound Bender, Voltage Controlled Filter, Guitar Effects Pedal).
THE MAIN SYNTHESISER
Stabilised power supply
Two Linear Voltage Controlled Oscillators
and one Inverter-all 3 circuits
PCB (2 are required)
Two Ramp Generators and Two Input Amplifiers
all 4 circuits
PCB (holds all 4 circuits)
SamplenHoid and Noise Generator
Tone Control circuits)
Tone
PCB
Reverberation Amplifier
Sprine Line unit for Reverb. Amp.
Ring Modulator
Peak Level Meter Circuis
$100 \mu \mathrm{~A}$ Panel Mer
100 1 A A Panel Meter
PCB to hold Reverb, Ring Mod and Meter Circuits
Envelope Shaper
Yolt
Voltage Controlled Amplifier and Differential
PCB (holds both circuits)
C14.36

THE SYNTHESISER KEYBOARD CIRCUITS
(Can be used without the Main Synthesiser to make an Two Logarithmic Voltage Controlled Oscillators
Component set
PCB (holds both circuits)
Divider, 2 Hold Circuits, 2 Modulation
Amplifiers, Mixer and 2 Envelope $\$$ hapers
PCB (holds the first 6 circuits)
PCB for both Envelope Shapers
Keyboard Stabilised Power Supply
Printed Circuit Board
GUITAR EFFECTS PEDAL (P,E. July 75)
Modulates the attack decay and fite) an audiosignal not only from a guitar but from any audio source, producing 8 different switchable effects that can most interesting of all manual controls. Possibly the most range. Circuit does not duplicate effects from the Guitar Overdrive Unit.
Component Set with special foot operated Compone
47.20

Alternative component set with panel mounting
5 witches
Printed Circuit Board
SOUND BENDER (P,E, May 74)
A multi-purpose sound controller, the functions of which include envelope shaper, tremolo, voice-operated fader, automatic fader and frequency-doubler. Component Set for above functions (exel. SWs) Printed circuit board
Optional extra-additional Audio Modulator, the use of which, in conjunction with the above component set, Component Set (incl. PCB)
PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlled unit for introducing the "phasing" sound into live or recorded music.
onent Set (incl. PCB)
PHASING CONTROL UNIT (P.E. Oct. 74)
For use with the above Phasing Unit to automatically control the rate of phasing.
Component Set (incl. PCB)
WAH-WAH UNIT (P.E. Apr. 76)
The Wahwah effect produced by this unit can be controlled manually or by the integral automatic controller Component Set inel. PCB

E3. 33

POST AND HANDLING

U.K. orders-under $£ 15$ add 25p plus VAT, over $£ 15$ add 50 p plus VAT. Keyboards $£ 1 \cdot 50$ plus VAT
Optional Insurance for compensation against loss or damage in post, add 35p in addition to above post and Eire, C.I., B.F.P.O., and other countries are subject to
Export postage rates.

CIRCUIT AND LAYOUT DIAGRAMS are supplied free with all PCBs designed by Phonosonics.
PHOTOCOPIES of the P.E. texts for most of the kits are available-prices in
P.E. JOANNA (P.E. May/Sept. 75)

A five-octave electronic piano that has switchable alternative voicing of Honky-Tonk piano, ordinary piano, harpsichord, or a mixture of any of the three, together
with facilities including fast and slow tremolo. loud and soft pedal switching, and sustain pedal switching. The power amplifier typically delivers 24 watts into B ohms. The PCBs have been redesigned by ourselves making improved use of the space available.
Main Power Supply
411.68

Tone Generator and Top C Envelope
Shaper
$\leqslant 10.90$
PCB for Main PSU. Tone Gen \& Top C E.S. $£ 2.31$
Envelope Shapers for all notes (except Top C) $\mathbf{6 3 8 . 2 8}$
Set of PCBs for Envelope Shapers (except Top C)

Voicing and Pre-Amp Circuits . $\quad \mathrm{El} 10.93$
PCB for Voicing and Pre-amp $\mathbf{E 2 . 8 0}$
Power Amplifier (incl. separate Powar Supply) $\mathbf{4 1 5 . 0 9}$
PCB for Power Amp and PSU
RHYTHM GENERATOR (P.E. Mar./Apr. 74)
Programmable for 64,000 rhythm patterns from 8 effects
circuits (high and low bongos, bass and snare drums,
long and short brushes, blocks, ting and useful.
Tempo, Timing and Logic circuits $£ 12.70$
PCB for above circuits (double-sided)
Component set for all 8 effects circuits
$E 12.70$
613.24
PCB for all 8 effects
Simple mixer (our design) inel. PCB
Alternative mixer with external volum
$\begin{array}{r}613.88 \\ \hline 63.74\end{array}$
$\$ 3.74$
$\$ 3.95$
incl PCB
incl. PCB PCB
610.94
(See our list for Power Supplies for Mixers)
c7.86
REVERBERATION UNIT (P:W. Nov./Dec. 72)
A high quality unit having microphone and line input
pre-amps, and providing full control over reverberation level.
Component Set (excl. spring unit)
88.95

9 Printed Circuit Board
9 in. Spring Unit
Panel Meter $(50 \mu \mathrm{~A})$ (optional)
61.96

Panel Meter ($50 \mu \mathrm{~A}$) (optional) . 65.20
WIND AND RAIN UNIT
A manually controlled unit for producing the abovenamed sounds.
set incl. PCB

GUITAR OVERDRIVE UNIT (P.E. Aug. 76)

Sophisticated, versatile Fuzz unit, including variable and switchable controls affecting the fuzz quality whilst retaining the attack and decay, and also providing filtering. Does not duplicate the effects from the Guitar Effects Pedal and can be used with it and with other electronicinstruments
66.68

Component set using dual rotary pot
Printed circuit board
FUZZ UNIT
Simple Fuzz unit based upon P.E. 'Sound Desien' circuit.
Component set inel. PCB
TREMOLO UNIT
Based upon P.E. 'Sound Design' circuit
omponent se
TREBLE BOOST UNIT (P.E. Apr. 76)
Gives a much shriller quality to audio signals fed through
Gives a much shriller quality to audio signals fed
it. The depth of boose is manually adjustable.
Component Set incl. PCB
42.36

25 WATT MONO AMPLIFIER (P.E. Sept. 75)

A good general purpose integrated circuit power amplifier eypically delivering 25 watts into 8 ohms.
Power bandwidth 20 Hz to 20 kHz 3 dB , Input impedance Power bandwidth 20 Hz to 20 kHz , 3dB, Input impedance
20km. Distortion 0.2%. Suitable for use with any of 20 km . Distortion 0.2%. Suitable for use with any of
our sound producing kits. our sound producing kits.
Component Set incl. power supply
415.09

Printed Circuit Board
For stereo use two sets and PCBs are required.
P.E. MINISONIC MK I
(P.E. Nov. 1974 to March 1975)

A portable, battery or mains operated. miniature sound synthesiser, with keyboard circuits. Although having
slightly fewer facilities than the large P.E. Synthesiser the functions offered by this design give it great scope and versatility. Like the large Synthesiser it too may be advantageously used with other circuits in our lists.
Basic component set
Set of PCBs
Full details in our list.
P.E. MINISONIC MK 2

More sophisticated version of the MK 1 . From $£ 52.91$
Basic component set
Set of PCBs
Basic component set
Set of PCBs
Full details in our list.
642.71
67.71

DISCOSTROBE (P.E. Nov. 76)
4-channel light-show controller giving a choice of sequential, random, or full strobe mode of operation $\begin{array}{lr}\text { Basic componentset } & £ 17.62 \\ \text { Printed circuit board } & £ 2.85\end{array}$

ENVELOPE SHAPERS

Both of the kits betow have manual control over their Artack, Decay, Sustain and Release functions. Both kits include PCB (VCA means Voltage Controlled Amplifier) $\begin{array}{ll}\text { Envelope Shaper and VCA (P.E. Apr. 76) } & \text { £6.51 } \\ \text { Envelope Shaper (without VCA) (P.E. Oct. 75) } \\ \text { \&4.63 }\end{array}$

VOICE OPERATED FADER (P.E. Dec. 73)
For automatically reducing music volume during "talkover', -particularly useful for Disco work or for homemovie shows.
Component Set inel, PCB
E.3.78

VOLTAGE CONTROLLED FILTER (P.E. Oct. 74)
An independently designed VCF that can be used with the P.E. Synthesiser.
Component Set
Printed Circuit Board
P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones. An LED monitor clearly displays all beat note adjustments. Ideal for tuning acoustic and electronic musical instruments alike
Main Component Set incl. PCB
414.94

Power Supply set inel. PCB
46.95
P.E. SYNCHRONOME (P.E. Mar, 76)

An accented-beat electronic metronome, providing duple, triple and quadruple times with full control over rhythm generator. Includes power supply. Component Set inel. loudspeaker $\quad \mathbf{E 1 0 . 9 5}$
Printed Circuit Board
f1. 87

PEAK LEVEL INDICATOR (P.E, Mar. 76)
A twin-channel visual display unit for monitoring the peak level of audio signals. Well suited for use when avoid signal over-loading.
Component Set inel. PCB (as published)

DON'T FORGET VAT

Add $12 \frac{1}{2} \%$ (or current rate if changed) to full total of goods, post and handling. (Does not apply to export

EXPORT ORDERS are welcome, though we advise that a current copy of our list should be obtained before ordering as it alsoshows Export postage rates. All pay. ments must be cash-withoorder, in Stering and preferabiy by International Money Order or through an English
Bank. To obtain list for Europe send 20p. for other countries send 40p.

PHONOSONICS • DEPT. PE54 - 22 HIGH STREET • SIDCUP • KENT DAI4 6EH MAILORDERANDC.W.OO ONLY

OTHER PROJECTS

PHOTOGRAPHS in this advertise ment show two of our units containing some of the P.E. projects built from our kits and PCBs. The cases were built by ourselves and are not for sale, though a smail selection of other cases is available

LIST-Send Stamped Addressed Envelope with all U.K. requests for free list giving fuller details of PCBs, kits, and other components.
OVERSEAS enquiries for list: Europesend 20p; Other Countries-send 40p.

KEYBOARDS AND CONTACTS

Kimber-Allen Keyboards as required for many published circuits, including the P.E. Joanna, P.E. Minisonic, and P.E. Synthesiser. The manufacturers claim that these are the finest moulded plastic keyboards available. Alloctaves are C to C . 3 Octave (37 notes) $E 24.85$. 40 Oct (49 notes) $E 29.50$. 5 Oct (61 notes) $\in 34.50$.
Contact Assemblies for use with above keyboards: Single-pole change-over (type SP) as for P.E. Joanna and P.E. Minisonic. Two-pole normally open-make-break (type DP) as for P.E. Synthesiser. Special contact assembly (type 4PS) having 4 poles, 3 of which are normally-open make-break contacts and the fourth is a change-over contact this special assembly enables THE SAME KEYBOARD to be used with the P.E, Synthesiser, P.E. Minisonic and the P.E. Joanna simultaneously thus avoiding the cost of more than one keyboard.

Contost	Eoch	3 Octave Set	4 Octove Set	5 Oetave 5
	24p	68.88	411.76	¢14.64
2 P	27p	69.99	613.23	616.47
4 PS	53 p	419.61	\$25.97	C.32.33

PRINTED CIRCUITBOARDS for $\mathbf{\$ 9 . 6 1} \mathbf{~} \mathbf{2 5 . 9 7}$ with the abover most of the inter-wiring required, are available. Details in our lists.

SOUND-TO-LIGHT (P.E. Apr./Aug. 7I)
The over-popular Aurora- 4 or 8 channels each rosponding to a different sound frequercy and controlling its own light. an bo used with most audio systems and lamp intensities. Ame.
4 Channel Componont Set (excl. thyristors) Channel Component Set (exel. thyristors) Power Supply Component set
PCB for 4 frequency channels
CB ror power supply and 8 lamp drivers
IA 400V thyristors (I per chan. req.) each
Panel meter ($1 \mu \mathrm{~A})$ (optional)
-CHANNEL SOUND-TO-LIGHT (P.E. Apr, 76)
A simple but offective sound-to-light controller capable of operating 3 lamps each of approximately 700 watts. Includes ower supply, thyristors, and by-pass switches.
Component Set inel. PCB
411.59

日IOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)
Multiofunction circuits that, with the use of other external oquipment, can serve as lie-detector, alphaphone, cardio hone etc
Pre:Amp Module Component Ser incl. PCB $\quad 4.19$
Basic Output Circuits-combined component set
with PCBs. for alphaphone, cardiophone, frequency
Audio Ampliflor Modul
46.37

TAPE NOISE LIMITER
Very effective circuit for reducing the hiss found in most ape recordings. All kits include PCBs
Standard Tolerance Set of Components Superior Tolerance Set of Components
Rogulated Power Supply (will drive 2 sets)

SINE AND SQUARE WAVE GENERATOR (P.E. July 75)
Suitable for audio, digital. or general purpose. Controllable through 4 desade ranges 10 Hz to 100 kHz , switched attenu to 1 mV peak-to-peak
Component Set. While stocks last
Power Supply
PCE for Power Supply
10.38
61.76

SEMI CONDUCTOR TESTER (P.E. Oct. 73)
Essential test equipment for the enterprising home constructor. While stocks last.
Set of resistors, capacitors, semiconductors,
potentiometers, makaswitches and PCB
anel meter ($500 \mu \mathrm{~A}$)
59.11
4.20

SEE OUR LIST FOR COMPONENTS AND ACCESSORIES STOCKED

8-INPUT MIXER

A simple mixer having 8 inputs each of which has a preset level control and which are combined into one output channel having a preset over-all level control and a master output volume control. Designed for intercoupling our various sound effects and synthesiser kits Compling our various sound

PRICES ARE CORRECT AT TIME OFPRESS. E. \& O.E DELIVERY SUBJECT TO AVAILABILITY.

TRANSISTORS
AC128
${ }_{\mathrm{ACl}}{ }^{\text {AC }}{ }^{\circ}$
BCl
BCl

O8

BCl 108
BCl

BCl
$\mathrm{BC} \mid 47$
109

$\mathrm{BC} \mid 48$
8 Cl

BC1
BC 159

BC 157
BC 158
BC 159
BC 182 L

BC 182 L
BCl
184

BC187

BCl
BC 204

BC 204
BC 209 C
BC 213
BC 478
BCY7
BDI3
8 BD 32
8 BYS0
BFYS
BFY 52
BSY 95 A
MJE2955
OC28
OC28
$-\mathrm{C} 72$
OC84
ORPI^{2}
ZTX107
ZTX108
ZTX501
ZTX501
ZTX $\mathrm{Z} \times 531$
2N706
$2 N 706$
2 N 914
2 N 1304
2 N 2219
2 N 2905
$2 N 2905 A$
N 2907
N3053
2 N 3055
N3055
N3703
N3704
N 3819
2N3820
2 N3823E
$2 N 4060$
$2 N 5245$
$2 N 5777$ 20 p
20 p 20 p
14 p $14 p$
$14 p$
$14 p$

£6-20

Understand the latest developments in calculators,

computers, watches, telephones,

television, automotive instrumentation. .
Each of the 6 volumes of this self-instruction course measures $11 \frac{1}{4}^{\circ} \times 84^{\prime \prime}$ and contains 60 pages packed with information. diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra. 10 memories, counters and simple arithmetic circuits. and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems.
plus 80 p packing and surface post anywhere in the world.

Payments may be made in forergn currencies.

Quantity discounts available on request.

VAT zero rated.
Also available-a more elementary course assuming no prior knowledge except simple arithmetic Digital Computer Logic and Electronics
In 4 volumes
Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipllops and Registers

£4-20

plus 80p P \& P
Offer Order both courses for the
bargain price $\mathbf{~ 9 . 7 0 , ~ p l u s ~ 8 0 p ~}$ P \& P

Designer Manager Enthusiast
 Scientist
 Engineer
 Student

These courses were written so that you could teach yourself the theory and applicaton of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and
Electronics, you may return them to us and your Digital Systems or Digital Computer Logic and
Electronics, you may return them to us and your money will be refunded in full, no questions asked.
INTEGRATED CIRTS.

$\begin{array}{lll}741 & 8 \text {-pin DIL } \\ 748 \\ 748 \\ 720\end{array}$
748 T05 63p
748 8-pin DIL 63 p
MA7805 T0220 205p
$\mu A 7808$ T0220 205p
$\mu A 7812$ T0220 205p
$\mu \mathrm{A} 7815$ T0220 2055
MA7818 T0220 205p
AY-1.0212 622°
AY-1-6721/6 188p
CA3046

PHONOSONICS

Join the Digital Revolution

```
To. Cambrioge Learning Enterprises (Dept. ENG)
```

To. Cambrioge Learning Enterprises (Dept. ENG)
FREEPOST, Rivermill House. St. Ives. Huntingdon. Cambs. PE174BR
FREEPOST, Rivermill House. St. Ives. Huntingdon. Cambs. PE174BR
*Please send me set(s) of Design of Digital Systems at £7.00
*Please send me set(s) of Design of Digital Systems at £7.00
each. p \& p included
each. p \& p included
*or.. set(s) of Digital Computer Logic and Electronics at \&5.00
*or.. set(s) of Digital Computer Logic and Electronics at \&5.00
each, p \& p included
each, p \& p included
*or .combined set(s) at £10 50 each, p\& p included
*or .combined set(s) at £10 50 each, p\& p included
Name
Name
Address

```
Address
```

*delete as applicable
No need to use a stamp-just print FREEPOST on the envelope. PE3

RELAYS
 SIEMENS, PLESSEY, Et MINIATURE RELAYS

RELAYS. WIDE RANGE OF A.C. and D.C. RELAYS AVAILABLE
write in your en quiries.
GENTS' 4 in ALARM BELL. $3-4 \frac{1}{2} V$ d.c. Price 44.50 , P. \& P. 50p. HONEYWELL PUSH BUTTON PANEL MOUNTING MICRO
Each bank comprises of changeover rated at 10 Amp .
250 V a.c. Black knob lin dia. fixing hole in. Prices: One
bank 40p. Two bank 50 p . bank 40p. Two bank 50p. Three bank 60p. Mi
5 pieces. P. \& P. 50 p .

21 WAY SELECTOR SWITCH WITH RESET COIL. The ingenious electro mechanical device can be switched up to 21 positions and can be reset from
any position, energising the reset coil. $230 / 240 \mathrm{~V}$ any position, energising the reset coil. 230/240V a.c. operation. Unit is mounted on strong ${ }^{\text {ch }}$
complete with cover. Price $£ 5 \cdot 50$. P. \& P. 75 p

MINIATURE UNISELECTOR
12 volt II-way, 4 bank (3 non-bridging, I homing),

RODENE UNISET

TYPE 7I TIMER
$0-60$ sec. 230 V a.c. operation. Incorporating a lapsed time indicator and repeat facilities. A precision motorised
timer ideal for process timing, photography. welding, mixing, erc. Prise $£ 6$

MINIATURE CO ROLLER MICRO OMRON Type VIS FL22/IC. 10 fo f2. Post SOp. (Min. order 10).
Sub miniature Burgess Button Typ BF LEVER OPERATED 20 amp . C/O. Mip by Unimax USA, 10 for E4, P. \& P. 50 p (min, order I 0).
24 VOLT DC SOLENOIDS
UNIT containing I heavy duty solenoid approx. 2SIb pull 1 inch travel. Two approx. Ilb pull
travel. 6 inch travel. 6 approx. 40 . pull $\frac{1}{\frac{2}{2} \text { inch trave!. One }} 24$ volt d.c., h heavy dury singe make relay. Price 24 volt d.c., heavy duty single make relay.
$\mathbf{6 3 . 0 0 \text { . Post } \mathrm { EI } \text { . ABSOLUTE BARGAIN. }}$

600 WATT DIMMER SWITCH Easily fitted. Fully guaranteed by makers. cxeept fluorescent at mains yoltage, cxcept fluorescent at mains yoltage. Complete with
E3. Post 25 p.
1,000 watt model, $£ 5 \cdot 60$. Post 25 p
$\mathbf{2 , 0 0 0}$ watt model, $£ 9.75$. Post 40 p
CENTRIFUGAL BLOWER Mfg by Smiths Industries. $230 / 240 \mathrm{~V}$
M. Miniature Model. Series SE/200 a.c. Miziature Model. Series SE/200 Aperture 38 mm
A.f.m. $£ 2.75$. Post 50 p . 31 mm . 12
. by
 Fracmo $115 / 230 \mathrm{~V}$ a.c. $2800 / 3400$ aperture $3^{*} \times 21^{\prime \prime}$ VBL4 25/L. Price E i2. Post f 1 . Also ailable exiremely powerful blower mig. by Fracmo.

INSULATION TESTERS

Test to I.E.E. Spec. Rugged metal
construction, suitable for bench or construction, suitable for bench or
field work. constant speed clutch Size L. $8 \mathrm{in}, \mathrm{W} .4 \mathrm{in}, \mathrm{H} .6 \mathrm{in}$, weight 61 b .
$500 \mathrm{~V}, 500 \mathrm{megohms}, ~$
540 . Post 80 p $1,000 \mathrm{~V}, 1,000 \mathrm{M} \Omega, 646$. Post 80 p .

BLOWER UNIT

200/240V a.c. precision German built. Dynamically balanced, quiet, con rated, reversible. Consumption
60 mA . Size 120 mm dia, $\times 60 \mathrm{~mm}$ deep Price $\mathbf{3 3} 50$. Post 50p.

All Mail Orders-Callers-Ample Parking
Dept. PEII, 57 BRIDGMAN ROAD
CHISWICK, LONDON W4 5BB Phone 01-995 1560

howroom open Mon.-Fri.

INPUT 230/240V a.c. 50/60 OUTPUT VARIABLE 0-260V
SHROUDED TYPE 200
 0.5 KVA ($2 \frac{1}{2} \mathrm{amp}$) (MAX, $£ 14.00$ 2 KVA $(10 \mathrm{mmp})$ (MAX) $\$ 30.00$ 2 KVA $(10 \mathrm{amp})($ MAX $) \neq 30.00$
3 KVA $(15 \mathrm{amp})$ (MAX) $£ 38.00$ 3 KVA $(15 \mathrm{amp})$ (MAX) $£ 38.00$
4 KVA $(20 \mathrm{amp})$ (MAX) $£ 60.00$ CARPIAGE AND PACKING EXT

L.T. TRANSFORMERS

$0-12 \mathrm{~V} / 24 \mathrm{~V}$ at $1 \mathrm{amp}, \mathbf{2} \cdot 50$ ($\mathrm{P} . \& \mathrm{P} .50 \mathrm{p}$). $0-15 \mathrm{~V}$ at $1 \mathrm{amp}+0-15 \mathrm{~V}$ at $1 \mathrm{amp}(30 \mathrm{~V}$ I amp), 62.50 (P. \& P 50 P) $25 \mathrm{amp}, ~ £ 12 \cdot 35$ (P. \& P. $\mathrm{fl} 1-50$). $0-4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}$ at $12 \mathrm{amp}, \pm 13$ (P. \& P. $\in \cdot 50$). $0-12 \mathrm{~V}$ at 20 amp or $18 \mathrm{~V} / 20 \mathrm{~V}$ at $20 \mathrm{amp}, £ 14$ (P. \& P. $£ 1 \cdot 50$). $0-6 \mathrm{~V} / 12 \mathrm{~V}$ a 20 amp , $\& 11 \cdot 85$ (P. \& P. f)
Other types in stock-phone your enquiries.

AUTO TRANSFORMERS

Step up, step down, 0-1 $15-200-220-240 \mathrm{~V} ; 75$ watt
$£ 3.50$ (P. \& P. 60 p); 150 watt $£ 5$ (P, \& P. 80p) : 800 watt $£ 7$ (P. \& P. 95); ; 500 watt $£ 10.75$ (P. \& P P (P) £1.25); 1.000 watt $£ 16$ (P. \& P. f1-50)

STROBE! STROBE! STROBE!

Abstract

HY-LIGHT STROBE MK IV Build a Strobe Unit, using the latest type Xenon white light flash tube. Solid state timing and triggering circuit. $230 / 250 \mathrm{~V}$ a.c. operation For use in large rooms, halls and utilises a silie For use in large rooms, halls and utilises a silica tube, printed circuit. Speed adiustable $0-20$ f.p.s. tube, printed circuit. Speed dolustable 0 Light output greater than many (so called loulc) strobes $\leqslant 1540$. Post 75 p . Specially de signed case and reflector $£ 8.25$. P. \& P. © Super high light approx. 4 times more output S.A.E. for leafle

XENON FLASHGUN TUBES

Range available fr
S.A.E. for details.

BIG BLACK LIGHT

 400W Mercury Vapor Ultra Violet Lamp. Powerful source of UVP.F. ballast unit is essential with thislamp. Price of bulb and matched ballast unit. $E 28$. Post $£ 2$. Spare bulb only $£ 10$. Post 80 p.

GALVANOMETER

50 micro mirror galvo. Calibrated $50-0-50$ and $0-100$. Mfg. by Griffin \&
George Led Offered at a rraction of maker's price, in original ministry packing. $\leqslant 12$. P. \& P. 60 p.

WIDE RANGE OF DISCO LIGHTING EQUIPMENT

COLOUR WHEEL PROJECTOR TYPE PI 50 INTACHANGE $200 / 240 \mathrm{~V}$ a.c. 50 Hz 150 W lamp. complete with oil filled colour wheel and motor plate. Tak
intachange accessories and fu les.
range of lenses 829.95 . Post
int flise (Toral
Post, 633.70 .)

GEARED MOTORS $100 \mathrm{r.p.m}$. 115 Ib . in. 110 V , 50 Hz . $2 \cdot 8 \mathrm{~A}$, single phase, split capacitor motor. Immense

Totally enclosed. Fan cooled in-line gearbox. Length 250 mm . Dia. 135 mm . Spindle dia. 15.5 mm . Length 145 mm . Ex-equipment tested $\mathbf{6 1 2}$. Post f8. Post $75 p$.
DRAYTON MOTOR Type RQR
230/250V 50c. Continuously rated r.p.m. 9016 . in. Reversible Motor. Twin spindle size 100 mm by 140 mm by 125 mm . Shaft 50 mm by 8 mm . Weight 2 kg .
New Price $£ 16 \cdot 50$, P. \& P. $£ \mathrm{I}$.

BODINE TYPE N.C.I.
(Type J) 71 rip.m. torque 10 lb .
Reversible I/70th h.p. 50 Hz .
The above precision made U.S.A. motor is fifered in as new condition. Input voltage of motor
1.5 V A.C. Supplied complece with transformer for $\mathbf{2 3 0 / 2 4 0 V}$ A.C. input. Price, either type $£ 6.25$
former $£ 3.75$. Post 65 p
(Type 3) 71 r.p.m. 4 lb.ins. 230 V a.c. Continuously ated. Non-reversible. $\mathbf{6 6 - 5 0}$. Post 75p.

I5 R.P.M.

Type SD48 80 lb , in. Input $100 / 200$ volt $A . C$. Length mm . driveshaft 16 mm . Weight 8.5 Kilos. BRAND NEW. Price $£ 10$. Carr. $f l$. $20 / 240$ volt A.C. E3.85. Post 50p.
24 R.P.M. 230 V a.c. Continuously rated. Mfg. My-
24 R.P.M. 230 V a.c. Continuously rated. Mf
calex. Ex-equip. Fully tested. $£ 3.85$. Post 75 p.
I R.P.M. $230 / 240$ V A.C. SYNCHRONOUS! Ex-equipment. Thorough
ONLYE1.50. Post 20p.
20 R.P.M. $230 / 240$ vols a.c. miniature motor. Price 61. Post 20p.

PROGRAMME TIMERS
230V operation a.c. 15 or 20 r.p.m
6 cam model 65.50 ct 60 p.
9 cam model 6.50 . Post 60 p
12 cam model $67 \cdot 50$. Post 60 p.
METERS NEW - 90 mm Diameter Type: 65 CS D.C. M/C 2,5, $10,20,50 \mathrm{amp}$. 2.75. Post 20 p . $100 \mathrm{amp} £ 3 \cdot 25$. Post 20 p .
Type: 62 T2 A.C. M/1 1, 20, 50 amp. E2'50. Post 20p $0-300$ volt. A.C.M/I $£ 2 \cdot 75$ and 300 volt A.C. R/M/C. 63. Post 30p.

WHY PAY MORE?!
MULTI RANGE METER. A.C. volts 2-5-500. D.C. volts 2.5-500 (Sensitivity 2000 Q/V D.C. and A.C.) D.C. current
$0 / 1 / 10 / 100 \mathrm{~mA}$. Ohms range. Sturdy compact moving coil instrument with 21 ranges, dimensions $120 \times 80 \times 44 \mathrm{~mm}$.
Weight 0.32 kg . SERVICE TRADING CO Price $65 \cdot 50$ Incl leads and bartery.
 Post 50p. (Total price incl. VAT and Post £648).

TIME SWITCH

'Horstmann' Type V. Mk. II Time
switch. $200 / 250$ volt A.C. Two on/two off every 24 hours, at any manually pre set time. 30 amp contacts. 36 hour spring reserve in case of power falure.
Day omitting device. Fitted in heavy high impast case, with glass observation window. Built to highest Electricity

VAT

AT CURRENT RATE MUST BE ADDED
TO ALL ORDERS FOR THE TOTAL
value of goods including
POSTAGE UNLESS OTHERWISE STATED.
SERVICE
TRADINGCO

Board Spec. individually tested. Price
$£ 7.75$. Post 50p. (Total inc. VAT $\mathbf{£ 8 . 9 1}$)

Superior Quality Precision Made

NEW POWER RHEOSTATS

 New ceramic construction, vitreous enamel embedded winding, heavyated. 25 WATT 10/25/50/100/150/250/500/1k/l.5k ohm.
 £2.40. POST 25p.
100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} / 1 \cdot 5 \mathrm{k} / 2 \cdot 5 \mathrm{k}$ $3.5 k / 5 k$ ohm $\mathbf{3} .70$. Post 35 p .
Black Silver, Skirted knob calibrated in Nos. 1-9 $1 \frac{1}{2}$ in. dia. brass bush. 1deal for above 22p each.

Personal callers only. Open Sot.
9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone 01-437 0576

THE ESSENCE OF CONSTRUCTING

ONE dare hardly take one's eyes off the semiconductor industry these days. Blink, and the arrival upon the electronics scene of some fabulous new chip or discrete might well be missed. So it is not at all surprising that other important matters, less exciting or glamorous maybe but still essential for our purposes as constructors of electronic equipment, are rather neglected or taken for granted.

Putting It Together is the title of our special supplement this month and the phrase describes in plain unadorned language what it's really all about. The practical realisation of a circuit is the central activity for constructors, and everything else is subservient to this end. The skills and techniques involved in building electronic equipment have no particular mystic attached to them and they are readily acquired and applied. This is not to suggest that in contrast to circuit developments, the mechanics of assembly and wiring of components are standardised, and unaffected by changes in electronic technology. The reverse is of course true.

We have all learnt to appreciate the blessings of solid state, for the lightening of labours concerned with assembly operations. Nowadays assembly work is performed on a miniature scale approaching that of the instrument maker. And present indications are that the nature of this work will become further refined. Some traditional methods may be replaced. For example, the soldering iron may have to give way to the wire wrapping tool in certain applications, notably where microprocessor chips are involved.

Another thing we have become accustomed to is the higher standard of appearance of projects now possible thanks to the wide range of housings available on the market. Plastics has come into its own here, providing wide choice in small cases and cabinets which are natural homes for many self-contained electronic gadgets and instruments. Metal cases are also offered in variety and meet the requirements of larger equipments or for applications where a metal enclosure is an advantage if not an actual necessity. Ready made cases and cabinets make the constructor's task easier and give his handiwork an attractive and acceptable appearance for all manner of environments.

Though "metal bashing" has largely disappeared from the scene, along with the valve, some experience in working with sheet metal remains a valuable attribute for any electronics constructor. There is always the possibility of special or unusual requirements arising that cannot be met by using ready-made items. Even if not for fabricating in the entire, some elementary knowledge and skill appertaining to metal working in general is desirable, if only for modifying existing articles or making accessories such as special brackets and the like.
The essence of constructing will be found in this month's supplement: from the mounting of components and their wiring up, to the enclosure of the completed circuit assembly within an appropriate housing and the final embellishing of its outer surface. Newcomers to electronics and also those many regular followers of P.E. who enjoy reading about electronics but have yet to become practically involved should find Putting It Together of especial interest and value.

Editor
F. E. BENNETT

Editorial

G. C. ARNOLD Assistant Editor
D. BARRINGTON Production Editor
G. GODBOLD Technical Editor
M. ABBOTT

Art Dept.
J. D. POUNTNEY Art Editor
D. J. GOODING
. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager

D. W. B. TILLEARD

Phone: 01-634 4504
P. J. MEW

Phone: 01-634 4181
C. R. BROWN Classified Phone: 01-261 5762

Make-up and Copy Dept. Phone: 01-634 4372

Editorial \& Advertising Offices: Fleetway House, Farringdon St. ondon EC4A 4AD
Phone: Editorial 01-634 4452 Advertisements 01-634 4504

$+$ 478

DIEGTAL
VOLTMETER
By A. J. Buxton

THis article describes the operation and construction of a $3 \frac{1}{2}$-digit digital volt meter using an integrated circuit made by Ferranti. The ZNA116 is a standard product application of the Ferranti Uncommitted Logic Array (ULA) and provides all the logic functions necessary for a ± 1999 range DVM. The dual slope integration technique of measurement is used, thus eliminating the need for a high stability capacitor and oscillator. The circuit is contained in an attractive steel cabinet, which provides a degree of r.f. protection. Most of the components are mounted on two printed circuit boards, the power supply and input attenuator being the only free mounted parts.

The construction and calibration of this instrument is very simple. The only test instrument required for fault finding is a multimeter. Providing reliable components are used, no problems should be experienced, the only difficulty may be in obtaining an accurate standard.

THE ZNA116 INTEGRATED CIRCUIT

The ZNAI 16 is a 24 -lead DVM logic circuit. The system diagram is shown in Fig. 1. This integrated circuit features:
$3 \frac{1}{2}$ decade drivers (± 1999 maximum reading).
Automatic polarity detection and indication.

Leading zero suppression.
Overload indication.
Multiplexed BCD outputs.
External input to blank display.
Internal adjustable oscillator.
Single five volt rail operation with a supply current of only 10 mA .

Fig. 1. System diagram of the ZNA116 DVM chip

SPECIFICATION

Maximum Display Reading:	± 1999
Readings Per Second:	$2 \frac{1}{2}$ typical
Typical Accuracy: (1 volt range)	0.1% per ${ }^{-} \mathrm{C}$
Input Impedance:	100ks for 1 volt range 200kS for 10 volt range $2 \mathrm{M} \Omega$ for 100 volt range $20 \mathrm{M} \Omega$ for 1,000 volt range
Total Supply Current: (all segments on)	200 mA typical

Table 1 gives all the pin details and operational functions of the ZNA116.

The dual slope integration method can be described best by referring to Fig. 2. At a time T1, S2, S3 and S4 are open and SI closes to apply an input voltage, Vin to the integrator. The integrator capacitor C charges up linearly until time T2 which is 4,000 clock pulses after T1. The voltage at the integrator output, Vx at time T2 is proportional to Vin.

At time T2, S1 is opened and either $\mathbf{S} 2$ or S 3 is closed, to apply a reference voltage of opposite polarity to Vin, to the integrator. Thus C is made to discharge at a constant rate and at time T3 the output voltage of the integrator will again be zero. This is detected by the comparator and the reference voltage is now switched off and the number of clock pulses corresponding to Tx will be transferred to latches and displayed. This number is proportional to Vx and hence is proportional to Vin. If Tx exceeds 2,000 clock pulses, an overload condition is indicated.

At a time T4, which is 3,000 clock pulses after T2, S 4 closes to completely discharge the capacitor. At time T5, which is 4,000 clock periods after T2, S4 opens and the cycle is repeated.

Table 1: PINNING AND FUNCTIONAL DETAILS-ZNA116

Pin	Name	Function
1	Earth	Supply 0 volts
2	f/100 output	Output at $1 / 100$ of clock frequency
3	Clock input	External clock input, or link to pin 14 for internal clock
4	M1	Digit drive output, M.S.D.
5	M2	Digit drive output, 2nd M.S.D.
6	M3	Digit drive output, 3rd M.S.D.
7	M4	Digit drive output, L.S.D.
8	Blank input	Hold at logic 1 to blank display
9	D.P. input	Hold at logic 1 to blank leading zeros
10	A	$2^{0} \mathrm{BCD}$ data output
11	B	$2^{1} \mathrm{BCD}$ data output
12	C	2^{2} BCD data output
13	D	$2^{3} \mathrm{BCD}$ data output
14	Oscillator output	Link to pin 3 for internal clock
15	Oscillator input	External components, connected to this pin, control clock frequency
16	+VE reference switch output	When at logic 1 , connects +ve reference voltage to the integrator
17	- VE reference switch output	When at logic 1 , connects ve reference voltage to the integrator
18	-Sign output	Goes to logic 1 when measuring - ve input
19	+ Sign output	Goes to logic 1 when measuring + ve input
20	Comparator input	Signal from the external comparator
21	Signal switch output	When at logic 1, connects voltage to be measured into the integrator
22	$V_{\text {ce }}$	Supply + 5 volts
23	Reset switch output	When at logic 1, turns on switch to completely discharge integrator capacitor
24	Overload output	Goes to logic 1 if count exceeds 2,000

(a)

(b)

Fig. 2. Dual slope integration technique.
(a) Basic circuit diagram
(b) Waveforms produced during measurement cycle

If S 1 is closed for a time which is a multiple of 20 ms , any 50 Hz mains ripple superimposed on Vin will be integrated to zero and thus good mains rejection is obtained. The integrating capacitor, C , and oscillator only need good short term stability to achieve high accuracy.

THE PRACTICAL DVM

The explanation of the dual slope system can be related to the practical circuit of Fig. 3. The integrator and comparator are ZN424 linear amplifiers which only need a single five volt power rail. The reference voltages are derived from the ZN423 precision voltage reference source. The switches are transistors operated by outputs from the ZNA116.
The measuring sequence is as follows:
A. Pin 23 goes to logic 0 , the capacitor C 7 has been fully discharged and is ready for integration.
B. Pin 21 goes to logic 1, the input signal is connected to the integrator for 4,000 clock periods.
C. Pin 21 goes to $\operatorname{logic} 0$, disconnecting the input signal. Pin 16 or 17 goes to logic 1 . This connects either the positive or negative reference to the integrator. The output from the comparator during (B) determines which one. Clock pulses are counted until the comparator changes state when pin 16 or pin 17 returns to logic 0.

Fig. 3. Circuit diagram of the complete instrument, excluding input attenuator and power supply

D. On the next negative edge of the clock pulse, the count is transferred to the latches. The display is multiplexed at one fortieth of the clock frequency.
E. 7,000 clock periods after the sequence start pin 21 goes to logic 1 for 1,000 clock periods. This discharges the capacitor and the sequence starts again.

The output from the ZNA1 16 is in BCD format. This is converted to seven-segment code by a 7447 which also drives the display. The display is multiplexed which means that only one of the seven-segment displays is driven at a time. The display to be driven is determined by the state of pins $4,5,6$ and 7 of ICl . For instance if pin 5 is at logic 0, TR3 is turned on. This allows current to flow through any driven segment of the second display, LED2. Pin 5 will then go high and pin 6 low, which will allow the third display to be driven. This sequence is carried out at 500 times a second so the human eye sees all the displays constantly lit.

The DVM has leading zero suppression which is accomplished by connecting logic levels to pin 9 of the ZNA116. On the I volt range, pin 5 is connected to pin 9 of the ZNAI 16 and will cause $\pm \cdot 000$ to be displayed. On the 10 volt range, pin 6 is connected to pin 9 which will cause ± 00 to be displayed with no input. On the 100 volt range and 1,000 volt range, only the last zero will be displayed. The decimal point is selected by the range switch.

The input attenuator is shown in Fig. 4. This is hardwired on the range switch which is a four-way, four-pole rotary switch. The $5 k \Omega$ variable resistors are miniature skeleton presets. The input impedance is $100 \mathrm{k} \Omega$ on the 1 volt range and $20 \mathrm{k} \Omega$ per volt on the other ranges.

Fig. 4. Circuit of input attenuator

Fig. 5. A flashing
"over-range" indication can be incorporated by adding this circuit

If the instrument is trying to measure a voltage that is greater than the range limit an overload condition is seen. Pin 24 will go to logic I. This instrument has the overload indicator output wired to the blank display input (pin 24 to pin 8). This will blank the display on overload. The display can be made to flash if a diode is connected from pin $8 / \mathrm{pin} 24$ to pin 2 , as shown in Fig. 5.

The ZNA116 has an internal oscillator, the frequency of which is set by R1, R2 and C1. This instrument has an oscillator frequency of 20 kHz , giving 2.5 readings per second and an integration time of 200 ms . As 200 ms is a multiple of mains frequency, any mains ripple on the input during measurements is cancelled out.
The power supply shown in Fig. 6 consists of an $8-0-8$ volts, 500 mA transformer, a full wave rectifier and an integrated circuit regulator. The 78 M 05 provides a stable 5 volt rail to enhance the linear circuit performance.

ASSEMBLY

The boards used in the DVM are shown in Figs. 7. 8, 9 and 10. The assembly should be carried out in the following order: wirc links, i.c. sockets, resistors, capacitors, transistors and finally diodes. Do this on both boards, then wire the interconnecting leads, power supply leads and decimal point leads. When this is finished, check the soldering and then insert the i.c.s and displays in their sockets. The Analogue board is kept clear of the case floor by 12 mm spacers on the fixing bolts. The Digital board is secured by means of two small angle brackets. The range switch is better wired before mounting on the box. Cut the leads to it to the correct length and then solder to the switch lugs. The attenuator resistors can be mounted directly onto

Fig. 6. Power supply circuit. Note that the d.c. supply is isolated from chassis

Internal view of author's prototype DVM, showing power supply components mounted on bottom of case

The cabinet used for the DVM is a standard instrument case drilled as shown in the photographs. After drilling remove all burrs, especially around the regulator fixing hole.

Before mounting the boards in the box, mount the input.sockets, mains switch and fuse and the power supply components. NOTE: THE REGULATOR MUST BE ISOLATED FROM EARTH. The power supply is isolated from earth so that a full positive and negative range can be realised. Wire up the power supply and test for $5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ output. If the supply leads are made long the boards may be tested outside the box. This may make checking and correcting mistakes a little easier.

When all connections are made check the wiring carefully including the external links on the two boards. There should be five on the analogue board and 12 on the digital board.

Front view of the Digital and Display board

ANALOGUE BOARD

Fig. 7. Printed circuit board track layout, shown full size

Fig. 8. Component layout and external connections

DIGITAL AND DISPLAY BOARD

Fig. 9. Printed circuit board track layout, shown full size

Fig. 10. Component layout and external connections, Links and connections shown in broken line are made on the copper side of the board

SAMEDNTUHIOR IPDAIIEnomanwans

FUN AND GAMES

By now everyone must be familiar with the new generation of TV games units on sale as kits, ready made units and even advertised on the back of the breakfast cereal package! Unlike previous games which had limited facilities and used large numbers of TTL i.c.s the new games all used that great equaliser, an MOS LSI chip which provides an interesting variety of games at a low cost!

You may have been thinking that the manufacturers of these new games units must have developed their own chip design and are probably sitting on it very tightly, but this is not so, and in fact of the various games available, most use a common chip made by General Instrument Microelectronics (G.I.M.) and coded the AY-3-8500.

As far as I can see, there is no reason why these chips should not be freely available to amateurs apart from the fact that the games manufacturers are gobbling up all that G.I.M. can produce, making them as rare as the proverbial rocking-horse droppings for the moment at least! If you can't wait (by the time this appears you may not need to) it is possible to obtain a chip at a price of £10 from Videomaster who offer them as spare parts for their own series of "Superscore" games, but I rather suspect that the open-market price will be less than this if you can hang on for a while.

Making a games unit with the AY-3-8500 is not difficult since all the clever bits occur inside the portals of the 24-pin plastic package, the only other major component required being a v.h.f. or u.h.f. modulator, which is available ready built at a reasonable price if you do not want to build one.

Just to whet your appetite, the AY-3-8500 provides six game types, three for two people, i.e. football, tennis and squash, and three for one person, i.e. solo and rifle shooting 1 and 2 which requires a photo-cell type rifle attachment.
The ball games have a variety of switchable options including ball

Fig. 1. An efficient lamp dimmer using the VMP2
speed and bat size, and all games feature on screen numerical scoring and an audio output to drive a speaker for realistic "Hit" sounds. The control of bat position can be achieved with a couple of slider pots, and the whole unit will run from a 9 V battery.

MORE VMOS

Recently, I featured the VMP1 from Siliconix, a breakthrough which brings power handling capability to the other well known advantages of Mos technology. The VMP1 was packaged in a TO3 can and could switch 1 amp in just 4 nanoseconds, without risk from the usual bipolar nasties of second breakdown, thermal runaway or minority carrier storage.

The VMP1 just had to be the forerunner of what will become a standard power device family and already Siliconix have announced "Son of VMP1', and some variation on the theme.
"Son of VMP1" is the VMP2 which comes in a TO39 can but can still switch currents of 1 amp or so in a few nanoseconds making it just about perfect for the interface of CMOS logic to the real world of hefty relays, thirsty lamps and strident speakers!

Variations on the theme are provided by the VMP11 and VMP12,
which have higher drain to source voltages (60 V and 90 V respectively) than the VMP1, and the VMP21 and VMP22 which have the same attributes but in the smaller VMP2 type package.

Siliconix have produced an application note (AN76-3) titled "VMOSA Breakthrough in Power Mosfet Technology" which describes the unique vertical channel construction of the VMP devices and is stuffed with interesting applications ranging from the simple CMOS driven switch to a 40 W hi-fi amplifier and a 144 to 146 MHz linear 5 W r.f. amplifier. The wide application spectrum and the simplicity of the supporting circuitry necessary when using VMOS devices gets it my vote for the technology most likely to succeed in 1977, and I feel that this is an area to keep an eye on!

REAL PROSPECT

Well it had to happen I suppose. Raytheon have gone and put a voltage to frequency converter into an 8-pin mini-dip package making those recently exotic devices a real prospect for a multitude of amateur projects.

The diddy V to F, coded Raytheon 4151, is no mini when it comes to performance though it offers up to $\pm 0.05 \%$ linearity and $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient, and can be wired as a frequency to voltage converter too.
If you can settle for 1 per cent linearity it is possible to use the 4151 with a single supply but for the 0.05 per cent specification you will need an extra op. amp. and split supplies.
The V to F 's can be used with counters as analogue to digital converters, used to record d.c. signals on to audio tape recorders, with a companion F to V as an analogue data transmission channel or for all kinds of electronic music applications which set the mind a boggling.

The 4151 can be programmed for a wide range of scale factors (volts in versus frequency out) from 1 Hz to 100 kHz pervolt, and its output is open collector to simplify interface to TTL or CMOS.

Fig. 1. Day indicator circuit diagram. No on/off switch is used, as the low current unit remains on permanent standby

Fig. 2. Printed circuit and component layout of prototype. Note that on the prototype, resistors R18 to R23 have been eliminated by placing R17 in series with the Read Day switch.

COMPONENTS . . .

Resistors			
R1	$820 \mathrm{k} \Omega^{*}$	R7	$6.8 \mathrm{M} \Omega$
R2	$1 \mathrm{M} \Omega$	R8	$1 \mathrm{M} \Omega$
R3	$1.5 \mathrm{M} \Omega$	R9	$1 \mathrm{M} \Omega$
R4	$2.2 \mathrm{M} \Omega$	R10-R16	$18 \mathrm{k} \Omega$ (7 off)
R5	$82 \mathrm{k} \Omega$	R17-R23	470Ω (7 off)
R6	$2 \cdot 2 \mathrm{M} \Omega$		
All resistors $\frac{1}{1} \mathrm{~W}$ 10\%. * see text.			
Capacitors			
C1	$0.1 \mu \mathrm{~F}$	C5	$0.01 \mu \mathrm{~F}^{*}$
	$0.47 \mu \mathrm{~F}$		
	$0.1 \mu \mathrm{~F}$		
	$0.01 \mu \mathrm{~F}$ disc ty		

Semiconductors

TR1	2N5777
TR2-TR8	BC108 (or equivalent) (7 off)
D1-D2	1N4148
D3-D9	TIL209 l.e.d. (7 off)
*D10	1N4148

Integrated Circuits
IC1 CD4093
IC2 CD4022

Miscellaneous

Metal box $164 \times 74 \times 50 \mathrm{~mm}$.
Microswitch pushbutton
Microswitch (to mount internally)
Battery holder
$4 \times$ MN 1500 (HP 7 size) cells
Printed circuit board
Eight way printed circuit connector, or Veropins
14 way d.i.l. socket
16 way d.i.l. socket
Two way connector (for sensor)*
*see text

day is effected by observing the dark to light transition at dawn. Phototransistor TRI forms a potential divider with R1, and the switching level is set by a Schmitt trigger. This in turn feeds a monostable which provides a short pulse output during the dark to light transition. This pulse advances a ring of seven counter, as can be seen in Fig. 1. Provision is also made for presetting the day, with an internal pushbutton.
Because of the exceptionally high input resistance of CMOS devices. a smal! capacitor, isolated by a diode at the Schmitt trigger input, immunises. the input from transient phenomena such as lightning flashes. On the prototype, the use of a $0.01 \mu \mathrm{~F}$ capacitor gave an input time delay of 15 seconds.

CONSTRUCTION

All the components except the 1.e.d.s are mounted on a fibreglass printed circuit board, the layout of which is shown in Fig. 2. The cmos integrated circuits should be fitted last, preferably in sockets, observing all the usual precautions when handling these devices. The eight way printed circuit connector is a convenient way of coupling to the front panel display, but may well be replaced by Veropins. It is preferable that the case be isolated from the circuit, although not essential. Practically any connector can be used to plug in the light sensor unit, but some will automatically earth the box, as in the case of the prototype, which used a phono plug and socket. The press to display pushbutton should be an easy action microswitch with a large button, and the press to set day switch is a microswitch which should be mounted where it cannot be operated accidentally. The general layout of the prototype is shown in the photograph.

Fig. 3. Light sensor unit construction
In the prototype, the light sensor (2 N 5777) had two flying leads soldered to it, and was cast in clear epoxy resin. This was then cast into an opaque body filler such as Plastic Padding, to complete the assembly. As can be seen in Fig. 3. for maximum sensitivity, the sensor transistor had to be mounted at a slight angle to expose the sensitive area to incident light.

SETTING UP

The main problem concerns the value of resistor RI. This will depend upon the location of the sensor, its encapsulation, and the transfer voltage of the cmos gate. Initial tests with the 2 N 5777 showed that it might be too sensitive, and the original method of encapsulafion was to reduce this sensitivity. But under freak weather conditions when the sun rose early in the morning, followed by a thick cloud build-up, and then the day finally brightening up once more, the gadget recorded two days, indicating a lack of sensitivity. In the prototype, this was cured by increasing RI to $5.6 \mathrm{M} \Omega 2$, but a more satisfactory method is to tilt the sensor in its casting, so that the sensitive area "looks out" at an oblique angle (as in Fig. 3). R1 should not be reduced below 680 k 52 in order to minimise battery drain. Care should also be taken to see that the device does not respond to bright moonlight.

The Day Indicator has been in successful use for some months, and even on dark mornings the reading was found to advance at about 8.30 a.m. A good direction to aim the sensor is East, but it certainly should be pointed well away from artificial sources of light.
Once the device has been preset to the correct day, operation simply consists of pressing the pushbutton and observing which 1.e.d. lights up.

FASTER AND FASTER

The Sun has been turning faster and faster on its axis. Since 1967 its rotational speed has increased by about 5 per cent. According to Dr R. Howard of Hale Observatory the acceleration is greatest at about 15 degrees on each side of the equator getting less toward the poles. He is suggesting that the changes are only affecting the photosphere and not the lower levels of the Sun.

Since the Sun is a gaseous body the different sectors rotate at different speeds. It could be the magnetic fields cause the energy differentials needed to accelerate the surface gas. If the speeding up is part of the sunspot cycle process it may be that there will be a slowing period to follow. It so happens that the quiet period of the sunspot cycle has lasted much longer with fewer events and it may be that this cycle will exceed the normal 11 years.

It is during these special lulls in the cycle that other effects have been noted. Some of these involve changes in the solar atmosphere and a greater number of particles penetrating the solar system.

The method used by Dr Howard to determine the speeding up, was that of the frequency shift of spectral lines due to the Doppler shift as one edge of the Sun recedes and the other approaches the observer.

SPACE SPYING

It is not the custom to use Spacewatch as a political news medium. However, the techniques of space spying are of interest per se and some details are now given. The operations have been going on for some 5 years though very little information has been made public.

The satellites used for these activities have extremely sophisticated cameras. These cameras built by Perkin-Elmer have exceptional resolution. It is claimed that from a height of 160 km individuals can be revealed to a degree which allows discrimination in dress. In other words military personnel can be distinguished from civilians. This is, of course, dependent on the air conditions being still and the cameras directed vertically downwards.

Some thirteen of these Big Bird missions have been operated. The launching used Titan IIIB's from the site at Vandenberg. The satellites have a diameter of 3 metres and a length of 15 metres and the weight at launching is between 12,000 and 13,000 kilograms. The orbits have a

perigee of 160 km and an apogee of 270 km . The orbital period is initially 88.8 minutes. The inclination of the orbit is 96 degrees.

PICTURES

As the orbits are sychronous with the Sun the satellites pass over the surface of the Earth at the same time, that is local time, each day. The lighting conditions are therefore reasonably constant and repeat pictures can be obtained. Thus any changes during the time between revolutions can be determined. This enables much easier interpretation of these changes. The progress of building or marshalling can be observed on an hourly basis.

The use of the low perigee is necessary to obtain the high resolution but brings some disadvantages. This is shown in the greatly increased drag and consequently rapid decay of the orbit. Very frequent use is therefore necessary of the manœuvring engines to maintain the correct levels. Enough fuel is carried by the satellites for an operational mission of 150 days. These satellites are not permitted to enter and burn up in the atmosphere but are destroyed at command from the ground.

The field of view of the cameras is a very narrow one. Films are normally stored in small canisters and these are ejected into the atmosphere periodically. They descend by parachute toward the Pacific
and are "snatched" by trapeze-carrying Hercules aircraft. If they are missed recovery is possible by frogmen.

Since these satellites have such narrow fields another type of satellite is required to take the "wide angle" view. These satellites are low resolution search and find craft. They carry video equipment for transmission direct to Earth. Because of their primary "search" and "find" facility they are also used for back up missions. They are about 4,000 kilogram payload vehicles with an operational life of something of the order of two months.
Another back up system particularly for meteorological information is the Defence Meteorological Satellite System ($D M S S$).

RUSSIAN READY FOR MORE EVA

It would seem that the failure of the Soyuz/Salyut mission in 1975 resulted in a change of plan in respect of EVA (Extra Vehicular Activity). There was to have been an attempt at $E V A$ after a long break during the 1975 mission.

The first ever space walk was carried out in 1965. The Soviet cosmonauts have not attempted one since 1969 though America has walked space and the Moon since then. That this was to have restarted with the 1975 mission of Soyuz/ Salyut was revealed by a Russian cosmonaut.

There has been some information about the Soviet attempts to acquire space suits of the American type but the order was blocked from a high level. Since 1971 an emergency garment has been worn at critica! phases of a mission.

This suit is a very simple one and is pressure sealed by a thin rubber layer. This is fastened to the wrists and ankles by twisting the rubber up in the hand and taping off. These knots are then sealed off under an outer garment. There is no sanitary system and such a suit would hardly do for normal $E V A$.
It is clear from the programmes of special training that have gone on recently in the Soviet Union and the personnel involved (one is a naval officer with four years as a commander of deep water divers in the Baltic) that something may be imminent.*
*Since the copy was received the Russians have announced the launching of a two man Soyuz space vehicle. Speculation is that they will link-up with their space laboratory for a prolonged stay.-Ed.

FUNDAMENTALLY, a mobile discotheque consists of a light show and a sound system. The light show may consist of various medium powered spot-bulbs, controlled sequentially, flashing randomly or made to pulse with the music, and possibly strobe lights or ultra-violet bulbs for extra effect.

The sound system will comprise two turntables with cartridges, some form of mixer, a microphone, a power amplifier or two, and a number (usually two) of loudspeaker cabinets. (The use of two loudspeakers, in addition to spreading the source of sound, is sufficient to convince most of the listeners that the music is stereophonic, whether it actually is or not, and is therefore to be recommended!) Let us examine all these items in turn, starting with the sound system.

TURNTABLES

You need two turntables to produce a continuous flow of music. As one record finishes, the next one bursts forth, bang on time, at exactly the right level.

It is essential to be able to control the turntable in order to achieve this; anything else is a secondary consideration. For example, singles are recorded at such high modulation levels as to make most rumble relatively inaudible. Delicate arms, with pretty little weights dangling on nylon cords, are going to be wrecked. Automatic lift-off is tiresome and quite unnecessary, since it takes the deck out of your control while it performs its function. Cueing arms, which lift and lower the pickup onto the record are just a joke, unless you don't mind your records arriving in a rather haphazard manner. Besides, if you have a shaky hand, disco work is not really for you. All you want is a basic turntable that will revolve your records at the desired speed, and that will start and stop quickly without causing the stylus to jump grooves.

MOUNTING

Normally record decks are supplied with springy clips to absorb the vibrations caused by movement near to the player. However, when they are used in a disco console this springy suspension, unless it is very stiff, can be more of a hindrance than a help, as any attempt to touch the deck causes the stylus to bounce merrily over the grooves.

The best idea is to bolt the decks down securely; provided the console rests on a solid table, and the hall in which you are playing doesn't have a bouncy wooden floor, you should have few problems with records jumping unless someone actually collides with you.

CUEING

Before you play a record on your disco you must cue it. To do this you will need a pair of headphones and some means of switching them to the output from either turntable regardless of whether it is turned up on the control panel. Check the speed, start the turntable and place the stylus at the beginning of the record. As soon as you hear the first few notes, stop the turntable and wind back to the beginning, plus a further quarter of a turn to give the turntable time to run up to speed when you start it again.

Should you miss the start by a few grooves, go back and start again. Winding a record backwards under a stylus does neither much good, but as a necessary evil it should be kept to a minimum. Note that when this operation is completed, the whole mechanism should be at rest. It should just wait there until it is needed. Nor should you have to sit there holding anything; your hands should be completely free.

Fig. 1. Representative quality disco console

THE SLIP MAT

Many operators use the slip-mat technique, which is very useful within its limitations. The slip-mat is a piece of felt slightly larger than an LP, with a hole in the middle to fit the centre spindle of the record deck. It is placed (not glued) on the turntable between the platter and the record, allowing the record to be wound back over the felt while the platter is braked. When the record is about to be played, the turntable is started and run up to speed while the operator holds the mat (not the record!). At the appropriate moment he releases the mat and off it goes.

This can be a very effective technique, particularly suited to heavy transcription turntables such as the Garrard 401. It does have the disadvantage, however, that you still have to hold something, namely the mat, until the instant when the record is due to go.

"QUICK-START" MODIFICATIONS

A method which works very well with cheaper idlerdriven decks such as the Garrard SP25 is the modification of the mechanism for "quick-start" operation. First the motor switch operated by the on-off lever is shorted out so that the motor is running all the time. Then the notch on the "Off-Man" section of the operating lever should be filed smooth to prevent possible jarring of the turntable as the switch lever is operated.

Finally, any automatic mechanisms should be removed and discarded, as they are of little value in a disco system, leaving a lever which engages and disengages the rubber wheel coupling the motor shaft to the turntable platter, and, of course, the original speed-change arrangements. An idler deck modified in this manner will generally start up to full speed in less than a second. requiring only about a quarter of a
turn of "back-cueing". A switch may be fitted to the front panel to rest the motor when the deck is not in. use, if required.

CARTRIDGES

Unfortunately, both for the records and the sound quality, many ready-made units come equipped with ceramic cartridges better suited to highly budget conscious stereo systems than to equipment with any pretensions to quality sound. Ceramic cartridges have the advantage of being cheap to buy, and cheap to keep in stylii. They have the advantage, too, of requiring very little circuitry before the pre-fade and mixer circuits, but they require a heavy tracking weight, generally around four to five grams, with consequent record wear.

Magnetic cartridges are only a littie more expensive, certainly compared to the cost of a total system. They track at less than half the stylus pressure and with a suitable RIAA preamplifier provide greatly superior sound quality. Something like the Shure M75-B or a Goldring G800 would suit systems using a deck of the calibre of the Garrard SP25. McDonald MP60 or similar.

Choose a cartridge for which you can obtain spare stylii easily and cheaply, and always take one with you.

INDIVIDUAL TONE CONTROLS

After the preamplifier you will have a signal which is "flat", that is with all the frequencies of the original recording in their correct proportions. You may, however, wish to equalise it by boosting or attenuating the bass, treble, or a selected part of the frequency

Fig. 2. (a) Impedance converter for ceramic cartridges. (b) "crossfade" control, typical arrangement
range to compensate for deficiencies either in your reproducing equipment or in the record itself. This will require tone controls or filters, of a complexity largely determined by the contents of your wallet.

Generally speaking, though, it should not be necessary to equalise each channel independently. Any records which are of really atrocious quality should not be played, and those with minor shortcomings, together with the limitations of your speakers, can be adequately taken care of by one set of tone controls after the mixing stage.

THE MIXER

The mixer is shown in block form in Fig. 1. There are, of course, many variations, but I have tried to show most of the facilities that can be usefully employed. The RIAA pre-amps are more usually contained within the mixer circuitry itself. A ceramic cartridge requires less of a pre-amp, but an impedance converter (Fig. 2a) is most useful to enable it to be used with the usual values of faders. Note that I have shown each record deck as having its own fader, capable of being independently controlled from maximum gain to zero. I prefer this arrangement to the other, common technique of using a single control with signals fed in at each end, the output being taken from the slider, the so-called "crossfade" control (Fig. 2b).

The trouble with the crossfade arrangement is that you can only do just that; it may not be what you want to do. You cannot compensate for differing modulation levels on your discs with a crossfade control without introducing crosstalk from the other deck. Doing it with the master control is abusing its purpose, as will be explained later, and the only other way is to have a separate "Grams Gain'" control, or whatever you decide to call it.

Now if you're going to have two controls for the record decks you may as well have them working like all the other inputs or life is going to get very confusing, and it's bad enough already!

Both record deck faders are taken via mixing resistors to the mixing amplifier. Also feeding the mixing amplifier I have shown a line input, which can be driven by a tape recorder to supply jingles or records you do not personally possess. The use of a tape recorder in this latter manner is even more illegal than using it to tape the records in the first place, and
of course I am not encouraging you to do this. Far better to use it for jingles and announcements to expand the entertainment.

THE MICROPHONE

I have been to a large number of discos where the records are recognisable for their tunes, but the intervening announcements have consisted of a totally unintelligible squawking noise. Do not use a microphone at a disco unless it is clearly audible. With the GPO telephone lines the frequency response is limited to between 300 and $3,000 \mathrm{~Hz}$, yet speech is usually quite intelligible even in the presence of interference. These, then, are the frequencies that count. An extension of the bass response gives fullness to the voice, but if overdone makes the sound muddy, and greatly increases the noise produced by handling or touching the microphone.

Extending the treble response makes the voice crisper and sharper unless taken to the extent where it is impossible to increase the gain above a very low level without a squeal of feedback. Generally, with a good microphone, the pre-amp should have a flat response from 300 Hz upwards and a steady bass roll-off below that frequency.

It is vital to use the microphone properly. Do not let other people make their own announcements; either they will nearly swallow the microphone while shouting at the top of their voice or they will hold it at waist level and murmur to themselves, both being equally disastrous. If you can obtain a "pop-shield" which fits over the top of the microphone, buy one and use it so that you can speak right up against it without introducing the characteristic "popping" sound. Failing that, speak directly into the mike from about three inches away, clearly and distinctly. You should not have to shout; if you do, you have the wrong microphone.

CHOOSING A MICROPHONE

There is a vast number of obscure oriental microphones around whose quality is not reflected by their appearance or price. If it was, they would be held together with string and exchanged for goldfish and plastic windmills at the fair.

Do not buy a microphone you have never heard of before until you have actually tried it in operation. Failing that, buy from a maker with a proven reputation for good microphones, like Shure or AKG. The AKG D190 is an excellent, though pricey, microphone for disco use with its smooth uncoloured sound and robust construction, while the Sony range of electret microphones produce a clear, crisp sound that is hard to beat at the price.

One warning about electret microphones; do remember to take the battery out when not in use. It doesn't last for ever, and when it leaks it makes a horrible mess. It is advisable to mount your microphone on a flexible "gooseneck" attached to your console so that you can adjust it to a position convenient for use, while leaving your hands free to work the controls.

THE MICROPHONE PREAMPLIFIER

The most important characteristics of a microphone pre-amp are a good overload margin and a reasonable noise level. A versatile design, which uses negative feedback to adjust the gain over a wide range, is shown in Fig. 3. It includes a switch to roll-off the bass

SAXON ENTERTAINMENTS LTD

A FULL RANGE OF PRINTED CIRCUIT MODULES FOR ALL P.A. \& DISCO \& GROUP APPLICATIONS

SYSTEM 7000
HAS IT!

A COMPLETE SELECTION OF READY TO USE PROFESSIONAL QUALITY AUOIO \& LIGHTING EQUIPMENT

POWER AMPLIFIER MODULES 30-240 WATTS

fily lested \& guaranteed. uif RMS Sine Wave output Distortion typically 0.2% Transistors, 4 Diodes. Fully short \& open circuit prool Sensitivity suits most mixers. buill-in surge suppression \& compensation Top-grade components throughout

POWER SUPPLIES FOR THE ABOVE MODULES-READY WIRED \& FUSED ON GLASS FIBRE PCE

PM301	PM601/4	PM601/8	PM1201/4	PM1201/8	PM1202/4	PM1202/8	PM2404/1
For 1/2	For 1/2	For 1/2	For 1	For 1	For 2	For2	For 1
SA308	SA604	SA608	SA1204	SA1208	SA1204	SA1208	SA2404
$\mathbf{£ 9 . 9 0}$	$\mathbf{£ 1 2 . 5 0}$	$\mathbf{£ 1 2 . 5 0}$	$\mathbf{£ 1 2 . 5 0}$	$\mathbf{£ 1 2 5 0}$	$\mathbf{£ 1 9 . 5 0}$	$\mathbf{£ 1 9 . 5 0}$	$\mathbf{£ 1 9 . 5 0}$

DISCO MIXER MODULES Mono or Stereo (with Auto Fade)

Mixes two decks, tape and mic. Wide-range bass \& trebie controls on nic. \& music channels.
Variable autofade (mic. override)
Ample headphone power.
Needs only front panel* knobs and selector switch.
Push-pull monitor circuit.

- $20 \mathrm{HZ}-20 \mathrm{KHZ}$-Noise - 77 dB
- Comprehensive wiring details provided - Perfect for incorporation in your system

ALL PURPOSE CUSTOM-MIXER MODULES (Mono or Stereo)

- Using these modules, mixers may be built to your specification up to 20 Channels, mono or stereo, or a combination of both. System 7000 custom-mixe modules have monitoring facilities tool

INPUT MODULES

- Accept low/hlgh 2 mics, ceramic magnetic cartridges, all musica instruments a line signals
- Low-noise circuitry-high grade components
- Wide-range bass \& treble controls (23dB)
20HZ-30KHZ Noise-80dB
Echo sound/return etc easily fitted
Mono-IM7001M
£5.50
Power supply for up to 20 modules-PPM98 £8 50

QUADRAFECT

FOUR CHANNEL 4KW SEQUENCER WITH DIMMERS

A COMPLETE
SHOWI

MIXING MODULES

- Only one required per mixer track whether mono or stereo
- Feeds up to ten power modules
- Complete with $\frac{1}{2} W$ monitor amplifier

Accepts up to 20 input modules

- Will match any other make of amplifier
Mono-IM7002M
£9.00

* PANEL $£ 2.50$

THE ONLY MODULAR SOUND TO LIGHT UNIT WITH

* Four integral dimmers.
- Two + Two sequencer

Automatic audio leve
RCA bA Triacs
Sequence $0 \cdot 5-20 \mathrm{~Hz}$ 1.C. circuitry

Needs only front panel*

Audio trigger 1-240 W Fully suppressed Complete with Complete with speed
Slider control

THREE CHANNEL 3KW SOUND/LITE-Low CostSuperb Value

SYSTEM 7000
MINOTAUR 100-All Purpose Wide Range Amplifier

100W rms - 10 B
A four

- Twin mixed inputs accept input, high a wide range of signals which will deliver up $30 \mathrm{HZ}-30 \mathrm{KHZ}+2 \mathrm{~dB}$ to 150 watts output An - 23dB bass/treble absolute must where multiple mixing \& power are required
An extremely compact and Four individually mixed inputs versatile amplifier with full protection and a clean Ideal for all groups.
disco's \& clubs
£49•50
- Vynide covered case

Fully short proof

SAXON 150 HEAVY DUTY AMPLIFIER
£59.00

SYSTEM 7000

COMPLETE DISCO MIXERS (with Auto Fade)

```
000000000000
```


The choice of the protessional D.J.
Controls: Mic. volume, bass, treble, A/fade depth, tape, l/deck r/deck vols. treble, bass, master, headphones vol., selector, left/right fader.
MONO 18 V £37.50 MONO MAINS £ 4350
*Ready to plug in \& use

* Mono or Stereo

Automatic mic. override

- Mixes two decks, tape \& mic - Facilities as for modular verston opposite
- Mute positions on headphone selector for ease of monitoring - Two tone stainless steel panel - Sockets on front \& rear panels Left/right deck tader
May be operated from any power supply or from malns
Stereo 18V £53.50 Stereo Mains $£ 59 \cdot 50$

SYSTEM 7000 COMPLETE CUSTOM MIXERS (Mono or Stereo)

Ideal for the economical \& quick assembly of a purpose bullt mixer with individual and optional extracities-consult our technical dept. to discuss your needs.
Stalnless steel panels
Bullt-in monitoring

- Will feed all amplifiers - Professlonal appearance Accepts alt types of slgnais - Infinitely adaptable

Mono input module	$£ 8 \cdot 50$
Stereo input module	$£ 12 \cdot 00$
Mono mixing module	$£ 8 \cdot 50$
Stereo mixing module	$£ 12 \cdot \mathbf{0 0}$
Power supply	$£ 8 \cdot 50$

SYSTEM 7000 LIGHTING CONTROL MK II

SUPERBLY DESIGNED HAS YOUR SOUND TO LIGHT CONVERTER GOT: 4000W Handling

- Integral individual dmmers - Automatic audio level control
- Two + Two sequence facility

OURS HASI - PLUS

- Stainless steel panel

Bondene case Matches System 7000 mixers

UNIT.
£42.50

SAXON SOUND-LITE-An old design with improved appearance

- Scintillating performance Complete with heavy
- Similar to Mk II lighting control in appearance
- 3KW power handiling
- Individual bass, treble, middle \& master controls

1-240W input

- Fully fused \& isolated
£24.75

LYNX ELECTRONICS (LONDON) LTD

92 Broad Street, Chesham, Bucks. Tel. (02405) 75151
P. \& P. 30 p -Overseas 90 p -Matching 20p per pair

VAT 8% except * which are $12 \frac{1}{2} \%$. Prices correct at 31 Jan. 1977

TRANSISTORS																
TIP																

parts and components
resistors, capacitors, diodes, transistors. etc. Rigid plastic units interlock together in vertical and horizontal combinations. Transparent plastic drawers have label slots. 10 and 20 have space dividers. Build up any
size cabinet for wall. bench or table top.

As supplied to Post Office,
 Industry and Government Depts.

SINGLE UNITS (10) $\left(\sin \times 2 \frac{1}{4} \mathrm{in} \times 2 \frac{1}{4} \mathrm{in}\right)$

C2.90 DOZEN

DOUBLE UNITS (2D) $\left(5 \mathrm{in} \times 4 \frac{1}{2} \mathrm{in} \times 2 \frac{1}{4} \mathrm{in}\right)$. £4.90 DOZEN
TREBLE (3D) $\mathbf{5 4} 90$ for 8.
DOUBLE TREBLE 2 drawers, in one outer case (6D2), $£ 7.25$ for 8 .
EXTRA LARGE SIZE (6D1) $\mathbf{6} 6.25$ for 8
PLUS QUANTITY DISCOUNTS
Orders over $£ 20$, less 5%
Orders over $£ 60$ less 71%
PACKING/POSTAGE/CARRIAGE: Add $75 p$ to all orders under $£ 10$. Orders £10 and over please add 10\% carriage.

QUOTATIONS FOR LARGER OUANTITIES Please add 8\% V.A.T. to total remittance

FLAIRLINE SUPPLIES

(Dept. PE4)

124 Cricklewood Broadway, London NW2 Tel $01-4504844$

G8CZW DIGITAL FREQUENCY METER

COMPLETE 50MHz KIT 554 inc. VAT and Post (U.K.)

83 Lees Road, Oldham OL4 1JW Tel. 061-624 8812

Fig. 3. Circuit of versatile microphone preamplifier for disco use. It requires $\pm 15 \mathrm{~V}$ at not more than $25 \mathrm{~m} \mathbf{A}$. The input and output impedances are unaffected by the settings of the controls. YR1 should be set for sufficient output from the circuit with VR3 in mid-position, and VR2 should be adjusted for the best tonal balance at the output of the whole system
response and an adjustment to improve the treble gain. It also includes a preset gain control to match the sensitivity of almost any microphone.

Note that the output is switched on and off, so that the panel gain control can be preset at a level just below that which causes feedback and then forgotten about, with the switch used to turn the microphone on and off when required.

GROUPING AND AUTOMATIC "DUCKING"

All the inputs, from records, microphone or tape recorder are fed into the mixing amplifier. This is just a fairly straightforward amplifier with enough gain to allow for the losses in the fader circuits with a bit to spare, a low input impedance and a low noise level, since any noise it generates will pass into the rest of the system.

If you want to have one of those arrangements where the music "ducks" down automatically whenever you speak, then the music inputs must be grouped together and then the output from the microphone preamp used to control the gain of that group and to feed the output separately. When tone controls are used, it is also a good idea to have the microphone feeding the output separately to avoid it being affected by the settings of the tone controls when they are used to correct deficient recordings (see Fig. 1).

LIMITER

Of all the circuits devised for use with my disco set-up the limiter is far and away the most useful. Its purpose is to control the output in such a way that it will never exceed a certain level, however large the input. Used properly it will eliminate most of the dynamic range of any material played. Why is this a good idea?

In Fig. 4 the vertical axis is scaled in sound level, the further up you go, the louder the environment. The slightly wavy line near the bottom of the graph is intended to show the residual noise produced in the hall by people talking and dancing, together with any

Fig. 4. Running a disco without compression (a) may result in the system running into distortion, or in the output from a very soft part of a recording being lost in noise.

Compressing the dynamic range (b) makes it easier to keep the equipment and the audience happy. A long, but not untypical evening's entertainment is shown in (c). Note that at no time is the disco short of power

Fig. 5. Limiter circuit to reduce dynamic range. Output around 250 mV r.m.s. maximum for inputs above limiting threshold set by.VR1. Requires +15 V at less than 50 mA
other sources of background noise. The straight line above it shows the maximuin sound level produced by your equipment when it is working at the maximum volume it can produce without undue distortion

Between, and in the first instance occasionally crossing the two, is a jagged line indicating the level actually produced by your equipment; in the first diagram without the limiter/compressor, in the second one with it connected in circuit. When the line crosses the top one, your equipment is running into distortion, and if it crosses the bottom one you are no longer properly audible.

Now although modern records contain a good deal of compression already, it is very advantageous to compress them still further for disco work to ensure that your amplifiers and speakers are always working
well within their power limits, and that excessive settings of the input controls do not really matter very much. The less discriminating of disco DJs quite often manage to obtain a limiting effect by driving their power amplifiers into clipping, but because this produces enormous amounts of distortion in addition to threatening the life of the output transistors this method is definitely out for anyone who cares in the least about his sound quality.

The construction of the limiter (Fig. 5) is not critical; $0 \cdot 1$ in matrix Veroboard is most suitable. For stereo use, link together the gain control lines (pin 2 of IC1) in the two channels.

Next month: More on choosing and using disco equipment

CALIBRATION

Set the range switch in the 1 volt position (A) and short together the input terminals. The set zero preset VR1 should be adjusted until the display just flickers between +0 and -0 . (If this won't work swap the ZN424s and try again. If still no success, see the section on testing.)

A known positive voltage between one and two volts should now be connected to the input terminals and VR3 adjusted until this voltage is displayed. The input voltage should be reversed and VR2 adjusted until the display is again correct. VRI, VR2 and VR3 are now correctly set and should not need altering again. The three input attenuators are set up with an appropriate voltage in their range. The accuracy of the calibration depends on the reference instrument used, this should preferably be another DVM. The calibration is now complete and the instrument can be used.

TESTING AND FAULT FINDING

Every fault on a piece of electrical equipment is an individual case. It is not possible to anticipate every condition and cause of faults. Experience gained from previous articles show that most faults are caused by missing components and interconnections or by mounting components the wrong way round.

As an aid to fault finding the circuit diagram shows voltages at certain nodes, measured using a standard AVO 8. These voltages are measured with respect to 0 volts.

Uniquefull-function 8-digit wrist calculator... available only as a kit.

A wrist calculator is the ultimate in common-sense portable calculating power. Even a pocket calculator goes where your pocket goes - take your jacket off, and you're lost!
But a wrist-calculator is only worth having if it offers a genuinely comprehensive range of functions, with a full-size 8 -digit display.
This one does. What's more, because it is a kit, supplied direct from the manufacturer, it costs only a very reasonable $£ 9.95$ (plus 8% VAT, P\&P). And for that, you get not only a highcalibre calculator, but the fascination of building it yourself.

How to make 10 keys do the work of 27

The Sinclair Instrument wrist calculator offers the full range of arithmetic functions. It uses normal algebraic logic ('enter it as you write it'). But in addition, it offers a $\%$ key; plus the convenience functions $\sqrt{x}, 1 / x, x^{2}$; plus a full 5 -function memory. All this, from just 10 keys! The secret? An ingenious, simple three-position switch. It works like this.

Dimensions $13 / 16^{\prime \prime}(46 \mathrm{~mm})$ wide 1 1/46" (37 mm) deep. Weight:
less than $1 \mathrm{Oz}(28 \mathrm{~g}$)

1. The switch in its normal, central position. With the switch centred, numbers - which make up the vast majority of key-strokes - are tapped in the normal way 2. Hold the switch to the left to use the functions to the left above the keys
2. and hold it to the right to use the functions to the right above the keys.
The display uses 8 full-size red LED digits, and the calculator runs on readilyavailable hearing-aid batteries to give weeks of normal use.

Assembling the Sinclair Instrument

 wrist calculatorThe wrist calculator kit comes to you complete and ready for assembly. All you need is a reasonable degree of skill with a fine-point soldering iron. It takes about three hours to assemble. If anything goes wrong, Sinclair Instrument will replace any damaged components free: we want you to enjoy assembling the kit, and to end up with a valuable and useful calculator.

B. BAMBER ELECTRONICS

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

SPECIALOFFER

STARPHONE HIGH BAND RF PC BOARDS, Converter. (All that for making into a good 2M Converter. (All that is needed: 1 xtal 7 caps.
L resistors, and $9 V$ DC) PCB contans 2 Uual gate Mos Fet RF stages (3 N 140). Diode ring mixer, 3 stage Osc/Multiplier. All on one PCB, approx. size
6
$\times \quad 1 \frac{1}{2}$. ext. connections. $9 V$ DC supply, AGC can be left fixed bias, or RF gain controll Ant. nput. IF output (works from a few MHz to ove 30 MHzl All
stocks last.

TELEPHONE HANDSETS with "PRESS-TO ALK buttons, on curly lead, brand new. $£ 3.50$

GARRARD 9V DC MINIATURE MOTORS Type 31 日M, 3200 RPM governed, siza approx tiv. Gia. x in. New. 60p each of 2 for $\mathbf{4} 1$
SILICON HIGH VOLTAGE RECTIFIER STICKS, CY185 (new) 35 kV 25 mA CT each. BY140 VARIABLE STABILISED POWER SUPPLY mains input, 0-24V output, stabilised and curren miting at $500 \mathrm{~mA}+32 \mathrm{~V}$ at 50 mA Brand new by British manufacturer. Size approx. $7 \frac{1}{2} \times 2 \frac{3}{3} \times 4$ in control. Connection data supplied $£ 7$
14 DIL REED RELAYS, 5 to 12 V DC, 450 ohm coil. Designed to work difectly from TL Logic. 3W £ 1.75 each.
PLASTIC BOXES $3 \frac{1}{2}$ " square, $1 \frac{13}{\frac{1}{4}}$ deep (wallmounting
sop each.
2N3055 type Transistors. O.K, but unmarked. 110V NEONS, SCREW-IN-TYPE, 4 for 50p. PROGRAMMERS (magnetic devices) Contain microswitches (suitable for mains operation) with 9 rotating cams, all individually adjustable. Ideal for switching disco lights, displays. etc or industrial mechine programming (Need slow notion motor to drive cams, not supplied. 9 switch version $\mathbf{£ 1} 50$.

MAINS ISOLATION TRANSFORMERS. Tapped mains input. 240 V at $3 \mathrm{~A}+12 \mathrm{~V}$ at 500 mA output
4 MHI XTAL PACKS 10 assorted x atals between $4 \mathrm{MHz} \mathrm{XTAL} \mathrm{PACKS} \mathrm{(10} \mathrm{assorted} \mathrm{xtals} \mathrm{betre}$ MINIATURE PLIERS. High quasity "Crescent made in USA ©4.35 + VAT (35p).
SIDE CUTTERS. Migh qualify, £3.70 + VAT 30p.
SPERRY 7-SEGMENT P.G.D. DISPLAYS, dig height 0.3 in. red, with decimal points, 150 V to 200 V (nominal 180 V) operation These are high voit industrial type and therefore brighter than PRICE OF 50p PER DIGIT TYPE 332 liwo digits on one mountl $\mathrm{E1}$ each. ISorry, no single digit -
BS $\times 20$ (VHF Osc/Muti), 3 for 50 p
8C 108 (metal canl. 4 for 50 p .
BFY51 Transistors, 4 for 60 p.

BF152 (UHF amp/mixer). 3 for 50 p . 2 N 3819 Fet. 3 for 60p.
BC148 NPN SILICON. 4 for 50p.
BC158 PNP SILLCON, 4 for 50 p .
BAY21 Varicap Dodes. 4 for 50 p .
iN914 Diodes, 10 for 25 p.
SMALL MAINS SUPPRESSORS (small chokes. ideal for radio, Hi-Fi inputs, etc.). approx. in ideal for radio,
$1 \frac{1}{2}$ in., 3 tor 50 p .
PERSPEX TUNER PANELS tuners) marked $88-108 \mathrm{MHE}$ and Channels 0-70 clear numbers, rest blacked out smart modern appearance, size approx. $8 \frac{1}{2} \mathrm{in}$. $\times 1 \frac{1}{\mathrm{f}} \mathrm{in}$., 2 for 35 p . Lead suppressors (10kohm) for mobile plug leads. HEAVY DUTY RELAVS 24 V d 0 operated (will work on 18 V) 3 heavy duty make contacts (around 10A rating) \& 4 change over contacts + 1 break contact. New, complete with mounting bracket.
(Idaal for switching HT on Linears.) Many uses for this high quality unit. $\mathbf{E 1} .50$ each

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

A LARGE RANGE OF CAPACITORS AVAIL ABLE AT BARGAIN PRICES, S.A.E. FOR LIST.

PLUGS AND SOCKETS
N-Type Plugs 50 ohm, 60p each, 3 for $\mathbf{£ 1 . 5 0}$
PL259 Plugs (PPTFE), brand new. packed with
reducers, 65 p or 5 for $£ 3$.
SO239 Sockets (PTFE), brand new 14 -hole fixing type), 50 p yach or 5 for $\mathbf{f z - 2 5}$.

SOLDER SUCKERS (Plunger Type). Standard Model. $£ 4.50$.
Nozzles 60 p each

WELLER SOLDERINGIRONS
EXPERT. Built-in-spotlight illuminates work. Pistol grip with fingertip trigger. High efficiency copper EXPEERT SOLDER GUN. $£ 6.80+$ VAT (54p) EXPERT SOLDER GUN KIT (spare bits case SPA.). $£ 9.80$ +VAT (78 p).
MPARE BITS, PAIR, 30p + VAT (2p).
SPI5
SP150 $15 \mathrm{~W} £ 3$ + VAT (24p).
SP250 $25 \mathrm{~W} £ 3$ +VAT (24p)
SP250K 25 W + bus, etc., kit $£ 3.85$ + VAT (31p). SP400 40W f3.44 + VAT (28p). BENCH STAND with spring Marksman Irons E2.22 + VAT 118 p).
SPARE BPTS
MT8 for 15 W .
MT8 or $15 W \cdot \mathbf{4 6 p}$ - VAT $(4 \mathrm{p})$.
MTA for $\mathbf{2 5 W} \cdot \mathbf{3 8 p}$ + VAT (3p).
MT10 fo 40W. $42 \mathrm{p}+$ VAT 3 Bp)
TCPI TEMPERATURE CONTROLLEDIRON. Temperature controlled iron and PSU. $\mathbf{£ 2 0}+\mathrm{VA}$ V
$(£ 1.60)$. SPARE TIPS
Type CC single flat. Type K double flat fine tip mOST SPARES AVAILAbLE.

MULTICORE SOLDER
Size 5 Savbit 18 s.w.g. in alloy dispenser, 32p + VAT (3p).
Size C1SAV18 Savbit $18 \mathrm{~s} . \mathrm{w} . \mathrm{g} ., 56 \mathrm{p}$ + VAT (4p). Size 12 Savbit $18 \mathrm{~s} . \mathrm{W} . \mathrm{g}$. on plastic reel $\mathbf{~} \mathbf{1 . 8 0}$
$+\operatorname{VAT}(15 \mathrm{p})$.

+ Kg. (1 116) $60 \times 40,20$ s.w.g. on plastic reel $\mathbf{£ 3}$.

Terms of Business: cash with order minimum onden f2. all faices hiclude fost \& packing luk owiv. sae with all evauifils please. PLEASE ADD Yat AS SHOWN. ALL GOODSTW STOCK DESPATCHED BY RETURN. CALLERS WELCOME BY APPOINTMENT ONLY.

CROFTON FOR USED VIDEO EQUIPMENT

Used Video Equipment bought and sold daily If we do not have what you want, we enter your requirements on our register and advise you when it is available. U.H.F. Modulators supplied for connecting a camera directly to a domestic TV or Phillips V.C.R. Camera Kits for the enthusiast also in stock.
Fujinon Lens available.
Repairs of all types of Video equipment undertaken.

WHATEVER YOUR VIDEO REQUIREMENTS FIRST CONTACT CROFTON

CROFTON ELECTRONICS LTD
Dept. E, 35 Grosvenor Road, Twickenham, Middx. Tel. 01-891 1923

D.G. MOTOR CONTROLLER

The circuit in Fig. 1 gives precise control of the speed of a miniature d.c. motor.

Ignoring inductive effects, the d.c. motor equation is:
$\mathrm{Vm}=\mathrm{IaRa}+\mathrm{Eb}$
Where the back e.m.f. is exactly proportional to speed.
A dummy resistor (R3) equal to the armature resistance is used to find IaRa. The operational amplifier and TR 1 produce an output of 2(IaRa) - Vc.
Therefore the voltage across the motor is:
$\mathrm{Vm}_{\mathrm{m}}=\mathrm{IaRa}-\mathrm{Vc}$
The control voltage is then equal in magnitude to the back e.m.f., and is proportional to motor running speed.

A control range of -0.1 volts up to $-5 \cdot 0$ volts gives a typical speed

range of 40 to 2,000 r.p.m. independent of supply voltage and load variations.
J. Lidster, Darlington, Co. Durham.

THIS network operates a self-clear for logic systems when initially switched on, thus inducing a condi-
tion which would otherwise be rather improbable, due to the switch-on transient.

Master-slave flip-flops are shown as an example in Fig. 1, where the initial state will occur when all flipflop outputs are at logical zero. The initial reset network consists of TRI and its associated discrete components. Resistors R2 and VR1 are arranged as a potential divider, the latter being shunted by non linear load TR1, whose value depends on the voltage developed across RI. Only during the switch-on transient of the supply will Cl produce a voltage across R1, and turn on the reset transistor. The resistor VR1 was chosen to be variable to make the design less critical.
E. V. Dias

Lisbon,
Portugal.

BISTABLE TOUCH SWITCH

THE circuit of Fig. 1 can be used to control mains equipment and is not prone to spurious triggering from too light a touch or a double touch.

The device works off the induced a.c. mains field which surrounds the human body when in a building containing a.c. mains wiring. When the touch plate is touched, the stray voltage is applied to the gate of TR1, which acts as an impedance buffer. The a.c. voltage on the drain is half-wave rectified by D1 and applied to capacitor Cl . The value of Cl is selected so that there is a slight delay between the plate being touched and the bistable changing state, so preventing false triggering.

The focal point of a microprocessor system is the MPU chip itself, and this is reflected in the way complete microprocessor systems are often referred to by the MPU chip name or number, regardless of the fact that numerous other chips are involved and are quite essential for system operation.

The MPU chip is of course in charge of the overall system and spends its time reading instructions from program memory, interpreting them, and then manipulating the system buses so as to carry out the wishes of the programmer. The MPU chip is in effect the "Foreman" of the system, reading the "Plans" provided by the "Architect" or programmer and making sure the "Workforce" in the form of peripheral chips like I/O ports, do as they are required by the "Plan" or program.

We must not take an analogy of this sort too far, because some of the "Workforce", are actually embodied in the MPU chip itself, but perhaps this could be explained by assuming that the "Foreman" has a "Calculator" and "Notebook" in his pocket for use where appropriate when following the "Plan".

One thing is certain, and that is that the "Foreman" will never act on his own initiative, and will always follow his instructions to the letter, even if they are wrong, a fact which puts a heavy burden on the programmer. The "Foreman" will be quite happy to start building operations in a "Bog" or to put doors on the 10th storey which lead out into "mid air"-if instructed to do so by an incompetent "Architect"!

THE MPU chip is a collection of system components which exist inside a single package, and the decisions as to which components should be included and which not, have to be taken by the semiconductor manufacturers themselves, and, needless to say, they do not always agree on where the boundary should be drawn. Fortunately for us, there is a large measure of agreement on the main MPU components, and this makes it possible to consider a "Typical" chip and the building blocks within.

A TYPICAL MPU

Fig. 2.1 shows a block diagram of a typical MPU chip. This will be used to examine the function of each of the most important internal building blocks in a dynamic, rather than a functionally static, way.

We can start with the assumption that the MPU chip has just been "reset" by means of a signal applied to its RESET input either manually (from a switch) or automatically, from a power-on reset circuit. The reset causes the internal MPU REGISTERS to be cleared of information so that they contain all zeros, and the particular register of initial importance is the PROGRAM

COUNTER because this is connected to the adDress bus which in turn is connected to an external program store such as the PROM mentioned last month.

With the address input to the prom being all zeros, the very first instruction word is accessed, and this PROM output data is connected back to the MPU via the data bus. What this first instruction word actually is, has of course been determined by the programmer who is happy in the knowledge that when the MPU "wakes up" it always starts in the right place, as required.

INSTRUCTION REGISTER

The first (and subsequent) instruction words is (are) latched by the mpu in the instruction register, the outputs of which are decoded by the instruction DECODER into a series of control signals which configure the MPU to perform the operation specified by opening and closing gates and generating clock or shift pulses via the timing and control circuits.

Let us assume that the first instruction was a $L O A D$ IMMEDIATE-which means that a constant stored in PROM in close association with the instruction itself is to be loaded into the MPU ACCUMULATOR register.

Fig. 2.1. A simplified block diagram of a "typical" MPU chip

The accumulator is a very important part of the MPU, Most instructions use the storage and manipulative functions it provides and it is always used to store the result of an arithmetic or logical operation.

Working data which is stored in, or retrieved from, external RAM memory is always routed through the accumulator, as is data intended for Output Ports or read from Input Ports. The number of binary bits which can be stored by this register is determined by the wordlength of the particular MPU chip in use, and so for example, an eight-bit mpU can store eight bits in its accumulator

Once the LOAD IMMEDIATE instruction has been completed the program counter is incremented to address the next instruction in the Prom which is interpreted as before by the instruction decoder. Let us assume that the programmer intends to perform an addition sum with the data loaded in step one and some other word to be loaded later.

REGISTERS

To make way for the second data word it is necessary to store the first word away somewhere, and to make this easy mpus are provided with a set of internal

Glossary of Terms

ACCUMULATOR-A storage register, where arithmetic and logical results are held. A majority of MPU insiructions operate on, or lest. the accumulator content.
ADDRESS BUS-A parallel group of connections used to carry binary addresses from the MPU chip to memory.
ALU-Arithmetic and Logic Unit. An essential part of a microprocessor where arithmetic and logical operations are performed.
CLOCK-An oscillator which provides the basic timing reference for the MPU chip. The clock is often crystal controlled.
DATA BUS-A general purpose bus, or group of parallel connections, used to carry instructions and data to and from the MPU chip.
HARDWARE-All the electronic components, including the MPU chip, which go to make up a microprocessor systeni (contrast with Software).
INSTRUCTION DECODER-A logic gating array or small rom internal to the MPU chip used to interpret instructions fetched from memory.
INSTRUCTION REGISTER-A register in the MPU chip used to hold instructions fetched from memory.

JUMP-A class of MPU instruction which causes the program to leap forwards (or backwards), either by a specified amount; or to a specified location.
LINK-A single-bit register used primarily to hold the carry out of the accumulator register during arithmetic operations.
MICROPROGRAM-A program, usually stored inside the MPU chip which controls the MPU during the basic fetch/execute sequence.
PROGRAM COUNTER-A special register which holds the current memory address. The register can be incremented or have its contents replaced during jump instructions.
REGISTER-A general purpose storage location which will hold one mpu "Word"
SOFTWARE-MPU programs stored on any media: even handbooks (and this article) came under this broad heading. Programs in ROM are sometimes called "Firmware".
STACK-A last-in-first-out store made up of registers or main memory locations and used to store, for example, subroutine return addresses.
SUBROUTINE-A sequence of instructions which perform an often required function, coded so that it can be called from any location in the main program.
registers which vary in number, in name, and in the facilities provided depending upon the type of mpU; but in every case they can be used for temporary data storage.

The second instruction in our program, then, would be an EXCHANGE instruction which exchanges the contents of the accumulator with a chosen register, effectively storing away the data loaded by instruction number one for future reference.

At this point the program counter is incremented once more, and the third instruction is placed in the instruction register, ready for execution. The third instruction might be another LOAD IMMEDIATE which loads a constant associated with the instruction into the accumulator, after which the program counter is again incremented and the fourth instruction read into the MPU.

Let's say the fourth instruction is an $A D D$ instruction which will add the first data word (in the register) to the second data word (in the accumulator) to produce an answer which is stored back into the accumulator.

ARITHMETIC LOGIC UNIT

To perform the addition we need another MPU component termed the arithmetic logic unit (or alu) and using our "Building Site" analogy the ALU is the calculator in the "Foreman's" pocket, which can be used to solve problems of an arithmetic, or logical nature.

The operation of the ALU is parallel in nature, which is to say that it is presented with two parallel binary words on which it performs an addition, subtraction, logical AND, logical OR, or one of a number of special "party tricks" which particular mpus usually boast, as commanded by the decoded instruction.

In arithmetic operations it is necessary to produce a $C A R R Y$ or a $B O R R O W$ output to allow arithmetic operations to be cascaded to give a longer effective word length and hence greater precision in the result.

For example, an eight-bit mpu can carry out 32 bit arithmetic by using four, eight-bit operations in series in the program with the $C A R R Y$ or $B O R R O W$ acting as the link between the cascaded program steps to ensure continuity. The CARRY/BORROW bit is stored in a flip-flop or register stage which is closely associated with the accumulator and which is often termed the LiNk for obvious reasons.

NO MULTIPLY OR DIVIDE

A thing to notice about the ALU is that multiplication and division are not normally included in its capabilities, and these operations have to be provided by a program sequence which controls the MPU in an $A D D$ and SHIFT or SUBTRACT and SHIFT routine to produce the product or dividend after a number of repetitive operations.

This is a good example of hardware versus software. Addition and subtraction are relatively simple and so can be easily performed by hardware (the alu), but although multiplication and division can be performed by hardware, a large logic array is necessary and it becomes much more economic to use a software program to achieve the required result, even though it takes longer.

CLOCK OSCILLATOR

Our four-step program has now finished the simple addition and has used all the major MPU building blocks, though by no means all the facilities available of course.

It is now time to consider the way the MPU coordinated its actions so that it was able to control the input of instructions and output of data on its internal and external data bus and yet avoid conflict.

The mpU keeps in step in true military fashion, and with a precision which would bring tears to the eyes of any nostalgic Sergeant Major, not by using the regular beat of a military band but by using the regular beat of a crystal controlled clock oscillator which may be entirely external to the MPU chip or may have only the crystal itself external.

The mpu uses the clock input as a reference to synchronise the sending of address information to the memory, the reading of the instruction from the memory, and any subsequent use of the data bus and address bus called for during the execution of the instruction itself.

THE FETCH-EXECUTE CYCLE

The MPU, you may have noticed, has to carry out some operations in the absence of specific instructions from memory, and in fact it has its own internal microPROGRAM through which it continuously cycles when power is applied, and which is intended to instruct the MPU to read user programs from memory and carry them out in an orderly fashion.

The sequence of operations controlled by this microprogram is called the FETCH-EXECUTE CYCLE and this cycle is carried out at leas! once for each instruction in the user progrann. We say at least once, because most MPU instruction sets include multipleword instructions which have to be read, or "fetched" from memory one word at a time.

In eight-bit mpu systems a word is termed a byte, and the LOAD IMMEDIATE instruction used in our fourstep example would normally be a "two-byte" instruction requiring two loops of the FETCH-EXECUTE CYCLE microprogram for operation. The first byte would inform the MPU that it was a LOAD IMMEDIATE and that it required a further memory read to fetch the data byte from the next prom location in sequence. Note that this also requires the program counter to be incremented twice, a point ignored in the earlier example because in some mPUs a LOAD $I M M E D I A T E$ can be achieved with only one instruction word.

DESIGN AID

The Prompt 80, a new microcomputer design aid from Intel incorporating a complete microcomputer with input keyboard and switches, output displays, a powerful 3k byte monitor and a complete EPROM programmer

Fig. 2.2. Single level subroutine operation

PROGRAM JUMPS

In our treatment of the MPU chip so far, it has been implicitly assumed that after reset the mpu starts executing instructions at address zero, and then continues on through the program by incrementing the program counter until it runs out of instructions to execute or is reset, or comes to a $H A L T$ instruction.

This treatment is adequate to get a "feel" for the way an mpU goes about its business, but there is a big improvement to be made, and all practical devices incorporate this useful facility which is the ability to change the program counter address not just by incrementing it but also by direct substitution of a new address word under program control.

Changing the program counter contents causes the program to continue at an address which may be quite unrelated to the step-by-step sequence followed up to
1 that point, and is not unnaturally called a $J U M P$.
The ways in which various MPU chips execute JUMPS and the internal MPU hardware provided to facilitate the operation is different in each case, but every mpu has a complement of JUMP or TRANSFER instructions in its instruction set and they can be used to make decisions (JUMP IF POSITIVE, JUMP IF CARRY SET) or to avoid repeated coding of often used program sequences (JUMIP TO SUBROUTINE). See Fig. 2.2.

JUMP TO SUBROUTINE

The JUMP TO SUBROUTINE instruction type is particularly worthy of note because it has interesting hardware and software implications and is a very powerful tool in the hands of the programmer.

It was mentioned earlier that multiplication had to be achieved by means of a program sequence of $A D D S$ and SHIFTS, and let's face it, this ends up as quite a lengthy and cumbersome section of program which you wouldn't want to write out in full each time a multiplication was necessary. With the aid of a JUMP TO SUBROUTINE it is possible to write the sequence just once and put it in a set of locations which can be accessed as a SUBROUTINE whenever necessary.

The SUBROUTINE can be "called" from any location in memory by putting its start address in the program counter with a JUMP TO SUBROUTINE

Fig. 2.3. A two level "nested" subroutine operation
instruction and then letting it perform the multiplication before returning to the main program where it left off by restoring the original contents of the program counter +1 .

The action of returning to the main program "undoes" the subroutine jump in effect, and most mpus have special instructions to achieve this, typically RETURN FROM SUBROUTINE or BRANCH $B A C K$. Notice that it is necessary to store the current contents of the program counter before a JUMP TO SUBROUTINE so that the subroutine can be called from anywhere in the main program and on completion a return to the correct instruction can be achieved even though the subroutine may be called many times in a particular program.

PAUSE FOR BREATH

If you are a newcomer to microprocessors you will probably have found the previous paragraphs on subroutine jumps quite hard going, and in this case you should, for the moment anyway, skip the next section which is intended for those who feet a reasonable familiarity with the aims of programming an MPU and can see the usefulness of subroutines and visualise what takes place when they are called.

NESTED SUBROUTINES

Subroutines are such a useful programming tool that they are used a great deal, and many programs are written with a short main program consisting almost entirely of subroutine calls, and backed by a "Library" made up of the subroutines themselves.

Sometimes a subroutine itself may call another subroutine, and this is where a problem can arise if the implications are not carefully examined. See Fig. 2.3.

When the main program calls the first subroutine a new address is loaded into the program counter and the original content of the counter is stored in (say) a register within the MPU so that it can be used by the subroutine to return to the main program. If the subroutine calls a further subroutine then the contents of the program counter must be changed again, and again its original contents must be saved so that the second subroutine knows how to get back to subroutine one.

If the program counter were to be saved in some fixed area in the mPU, like a register, then calling the second subroutine would overwrite the return address for subroutine one in this register and the net result would be that the program would get lost, probably ending its days in an infinite loop from which it could never exit.

What is required is some kind of storage area which could be used to store a number of these return address words, and some mechanism which takes the last address stored as the first return address, the last but one as the second return address and so on, so that without going to any special trouble in writing the program, nested subroutines are easily possible and do not require a lot of mental gymnastics in their preparation.

THEE STACK

The type of store just described is termed a stack in microprocessor parlance and most MPU chips have, or can use, a store of this type to save subroutine return addresses. See Fig. 2.4. The Intel 4040 mpu , for example, has a "Hardware" stack which can store seven return addresses without the direct involvement of the programmer, and without the need for external ram memory.

Fig. 2.4. Nested subroutines and the "stack". The "stack" is rather like a stack of plates in a canteen. A JUMP to subroutine puts a "plate" on the stack, and a BRANCH BACK takes a "plate" off. The "plates" are, of course, Memory Addresses. If many subroutines are nested, the stack grows upwards

Fig. 2.5. The SC/MP MPU chip organisation or flow chart

Fig. 2.6. The 4040 MPU chip organisation

An internal stack of this type is simple and effective but is limited in its extent so in larger systems such as the Intel 8080 a stack is created in ram and the address of the top of the stack is indicated by a register in the MPU called a stack pointer. With this arrangement a

CHIP FAMILY

The RCA CDP 1802 single chip CMOS microprocessor and some of the input/output and memory support circuits
return address is stored in external ram at the location pointed to by the stack pointer which is then incremented to point to the next available stack level ready for further subroutine calls. A RETURN FROM SUBROUTINE causes the stack pointer to be decremented and the data last stored to be retrieved and put in the program counter.
The SC/MP microprocessor falls into a unique category because as it comes it can only run subroutines to one level, having no register stack and no automatic stack manipulations for making a subroutine call or return. With a few instructions, however, it is possible to create one's own stack in RAM which will provide all the facilities of the 8080 system for the outlay of a little extra software.

This type of stack is called a software stack and because it is created by the programmer, it can be used for other jobs too, which makes it a very versatile tool indeed when writing prograns of the "Data-Processing" variety.

HEAVY GOING

This Part of "Microprocessors Explained" has, in all probability, been rather heavy going for some readers, but don't despair! If one can get a working familiarity with the major concepts introduced this month the rest of this Series should be fairly easy to digest, and let's face it, before long microprocessors will be a part of all our lives and so an early start will pay dividends!

If you now feel at home with the "Simplified MPU" (Fig. 2.1) you might like to have a go at finding your way around two "real" mpu chips, the National SC/MP (Fig. 2.5) and the Intel 4040 (Fig. 2.6).

NEXT MONTH: The Instruction Set and how to use it. Programming Techniques.

WHAT'S IT WORTH?

Pricing policy is the jungle in which many a marketing manager has perished. The golden rule is to charge what the market will bear which broadly speaking is what the customer is prepared to pay.

When a unique product is brought to the market it can command a good price. Later, when a competitive product appears, the original product is no longer unique and in order to maintain sales the downward price spiral starts. When lots of competitive products appear, prices can drop dramatically. Lowering of prices is often assisted by an increase in production giving lower unit costs as the product gains wider public acceptance.

The supreme example is electronic calculators which, since being manufactured by the million and with intense competition, have dropped in price for the simpler types by a factor of ten or more times since their introduction to the market. The same thing is happening with digital watches.

UNCONTROLLED

Unhappily, the system can easily get out of hand and we find manufacturers doubling production for half the profit and then doubling again for no profit and then making thumping losses. Then, when every tenth of a penny has been shaved off component prices and there are no more savings to be made on materials, the only thing left to be shaved is labour costs
and production moves overseas to the Far East.

The horrors of the downward price spiral are vividly illustrated in the balance sheets of Sinclair Radionics. In 1973 there was a pre-tax profit of $£ 306,200$ on $£ 1.8$ million turnover. In 1974 with a more than doubled turnover the profit declined to $£ 240,500$. In 1975 with $£ 6.2$ million turnover profits dwindled to $£ 45,000$ and in 1976 with $£ 5.6$ million turnover there was a loss of over $£ 350,000$.

The losses last year were mainly attributable, says Sinclair, to the Black Watch. launched in November 1975. Having spent $£ 200,000$ on publicity there were technical problems with the watch and crippling delays in the supply of components from sub-contractors. The downward price spiral on calculators was already hurting badly and the Black Watch shows how costly bad luck or bad management, or both, can be.

Clive Sinclair remains irrepressible. As recently noted in this column, he went up-market with a nicely packaged calculator in rolled gold selling at $£ 60$ which did rather well. I have since discovered that he went further up-market with a solid gold model at $£ 2,750$ inclusive of VAT. Half a dozen were bought by a buyer from the Middle East. A gold ingot with a built-in calculator gives the buyer the advantage that he can instantly calculate the day-to-day value of his investment by reference to the daily gold prices.

UP-MARKET

There is a lot to be said for going for the high qualitv end of the market, providing you can find customers. I was interested to see that with watch prices tumbling as the digital craze develops, one real old-fashioned clockwork watch has appeared on the market with a price tag of $£ 4,255$. And not in solid gold or platinum. It hasn't even got a face, only a transparency through which you can see in motion a wonderfully delicate movement of great beauty. It tells the time, too.

The new Sinclair Microvision TV, launched with enormous publicity is also up-market. At 300 US dollars ($£ 170$ in the UK) it's not cheap but while unique it could hold the price. Meantime, Sinclair is staying in the mass market with calculators and watches although he has dropped out of hi-fi.

The popular Oxford range of calculators is made in a Sinclair-controlled plant in Hong Kong but the Cambridge range, digital watches (an upgraded model) and the Microvision are now being built in-house at St Ives. Sinclair is also
staying in instruments with a $4 \frac{1}{2}$ digit multimeter scheduled for production later this year.

WHICH YEAR FOR MICROPROCESSORS?

The year 1975 was to have been the year for microprocessors. Then everybody was saying 1976 was the year of the microprocessor. Perhaps it could be 1977, but more likely 1978 before the big take-off. And yet the downward price spiral is already taking place.

The Managing Director of Warren Point Ltd., Geoff Evans, sees enormous activity but very little real action in applying microprocessor power to a staggering number of applications, over 20,000 in fact, which have been identified. But the expected stampede to use the device has turned out to be a mere doddle so far.

He thinks one of the reasons for slower acceptance than anticipated is the multiplicity of devices available and the mountain of literature supporting them. While lots of people are experimenting, few want to commit themselves in a big way on a microprocessor type which may, in the end, be only a half-way house or to a standard less than or possibly different from the final industry standard whenever that emerges.

The very fecundity of ideas in the business is, in fact, 'its own worst enemy. The situation should improve, says Evans, when one manufacturer achieves such dominance in the market that his device automatically becomes the industry standard. Meantime, the ding-dong continues with each contender claiming his device is best and with prices sinking as one way of establishing a market share which could lead to domination.

Eventually, the market leader. whoever it may be, will make a fortune. When, is a different question. But this could be a good year for specialist consultants, helping clients to thread their way through the maze of claims and counterclaims on specifications.

MORE CUTS

Apropos my opening paragraphs I note that Commodore Business Machines have slashed the price of the CBM 5000 5-function digital watch from $£ 17.50$ to $£ 11.95$ as a result of "mass production and decreased overheads'". Models with fancy cases (gilt, chrome, etc.) get lesser reduction, suggesting that the jewellery on the outside already costs more than the works inside. The $£ 5$ digital watch will not be long coming.

IN NEKT MONTH'S ISSUE...

Over 450 popular transistors are listed in this booklet with important parameters and somparables.

TRAMSISTOR GUIDE

transistors are listed this booklet. An Over 450 transis made to inchude most of the types attempthas bee available through the usual astive. that arels. While this list is obviously nomal amateur
hould satisfy the majority of nomal ama
requirements.
ull possible care has been taken in the preparation this booklet and no responsibility can be accepted of this booklet and no respons that may have occurred inadvertently.

Presented free with the May 1977 issue of PRACTICAL ELECTRONICS

ONE ARM BANDIT

Make sure you get your own back by building this machine. It offers hours of entertainment with six selectable winning combinaticns and a hold facility with each display.

Phase modulates the output signal of an electronic organ to give the effect of a rotating cabinet extension.

IIGITIL DARKROOM TIMER

Satisfies a need for an accurate, reliable and repeatable timer for enlarger control or for timing various darkroom jobs.

BURGLAR ALARM

A sensitive amplified bridge design that ensures meaningful protection to you home or business.

Don't be disappointed - place a firm order with your newsagent NOW

PRACTICAL
 ELECTRONICS

His final part deals with the construction, standardising, and use of the pH meter.,

CONSTRUCTION

An early decision will have to be made as to which glass and calomel electrodes shall be used, by checking designs from manufacturers' drawings, since appropriate sockets will need to be fitted to the unit quite early on. Purchase the electrometer valve (if the valve version is to be built), and also the special ceramic or nylon rotary switch SI. Decide between using batteries or power pack for the supply, and then obtain a die cast box of suitable size. The much cheaper aluminium boxes with open corners are less satisfactory since screening is incomplete. The prototype instrument is housed in a die cast box 8.75 in $\times 5.75$ in $\times 2.25$ in $(222 \mathrm{~mm} \times$ $146 \mathrm{~mm} \times 57 \mathrm{~mm}$). Doram Standard Switch Kits (type 327428,327440 , plus spacers) are suitable for $S 1$.

INPUT TERMINAL

Near the top left-hand corner of the lid, make a circular hole of 1 to $1.5 \mathrm{in}(25-38 \mathrm{~mm})$ in diameter, using an Abrafile or chassis punch. Clean the internal edges with a half-round file, finishing with emery paper. This will take input terminal 11, the assembly of which is shown in Fig. 5.

Obtain some new clean Perspex sheet $\frac{1}{16}$ in (1.6 mm) minimum thickness, and leaving the backing paper intact, cut out a circular hole of diameter half an inch greater than the diameter of the hole in the box lid. This will give a quarter of an inch $(6.3 \mathrm{~mm})$ all around when the Perspex is placed concentrically over the hole. Drill three equally spaced (120°) holes around the Perspex, and three coincident holes around the lid hole, so that the Perspex can be mounted above or beneath the lid like a window. Size 6BA nuts and bolts (nylon is ideal) complete the fitting. Avoid leaving scratches in the Perspex, as these fill with impurities and make excellent conducting paths which ruin the input characteristics.

Next, centrally drill the Perspex to accept the socket appropriate to the glass electrode, and fix it in place. Having finished, strip off the backing paper, wash the "window" in tepid soapy water, swill thoroughly, dry in warm air, and store in a clean dry box with the valve and zero/read switch. These items comprise the input, and need not be fitted until all the rough work is completed, neither should they be fingered or contaminated, particularly the switch wafer.

A little below the lid window, drill the lid and mount the positive input socket for the calomel electrode lead. An ordinary four millimetre insulated terminal socket is satisfactory, and no special precautions are necessary apart from cleanliness. To the right of the input, an uninsulated earth terminal or socket is mounted in direct contact with the lid. Other items to be earthed will be connected to the underside of this.

Fig. 5. High insulation assembly used for terminal I1 in the prototype instrument. A simplified version is described in the text

VALVE SCREENING

Next make a can for the electrometer valve, using a length of half inch diameter domestic copper hot water pipe. Cut off a 2.25 in length (57 mm), and to one end solder a disc made from copper foil. A piece of flattened copper tube, or even a small bronze coin will do. Clean up the edges with a file, wash to remove swarf and flux, and dry thoroughly.

The valve is located in the can either by wrapping it round with two inch wide clean polythene sheet to take up the slack between the inner diameter of the tube and the outside diameter of the valve, or by cutting two washers from foam nylon packing material. The outside diameter of the washer must be an easy push fit into the copper tube, while the centre hole takes the valve. Locate a washer at each end of the valve, and to prevent the glass contacting the cap end, insert a foam nylon disc or a few circles of polythene sheet cut to size. Using tweezers, carefully introduce the valve into its "snuggery" and store with the rest of the input components.

METER MOVEMENT

The meter MEI should be a $0-100$ micro-amp movement as any other range will make calibration exceedingly difficult. Shape or size is immaterial, providing the case will accept it, the resistance is about $1 \mathrm{k} \Omega$, and the accuracy is better than 3%.

Mount the meter on the lid a little above centre, and equidistant from each end. Leave space below for switch S1, the zero setting pot, the on/off switch S3, and the range switch S2. Make the holes for the meter and all the latter components, and work on the lid is almost complete. If a power pack is to be used, holes for a panel type mains switch and possibly a neon indicator will be required.

The power pack may be located at the top right-hand corner of the box itself. The transformer is fixed to the base of the box by 6BA countersunk screws from beneath. Other holes will be needed for the mains lead grommet and a brass saddle to anchor the lead, and for a three way barrier strip to terminate the mains. Mains earth is taken from the barrier strip to a solder lug fastened to one of the transformer bolts by an extra nut. The rest of the power pack components can be squeezed into the same corner, by mounting them on a piece of plain matrix board, and attaching to the side or base of the box with stand-off pillars. Extra flexible flying leads take the 18 volts d.c. from the power pack to the main circuit board rails.

CIRCUIT BOARD

Components for the main circuit are mounted on matrix board supported by the meter terminals. The valve assembly is mounted as near as possible to S 1 and the input terminal, and arranged if possible so that no other leads cross the input to the grid. The valve may be located on the matrix board by making a copper or brass saddle to take the can, and drilling 6BA clearance holes at each end, then bolting to the board. To one end of the saddle, solder an earth wire, and take the other end of this to a solder lug fixed to the underside of the earth terminal. At some convenient point, take the negative supply rail down to the same connection. Sound earthing is essential to prevent inexplicable drift sometimes encountered when measuring pH at the alkaline end of the range.

No special component layout is called for on the main board, but arrange for resistors R 8 to R12 to be readily accessible, as their values will have to be selected during calibration. The prototype layout is shown in Fig. 6.

Fig. 6. Simplified board layout for the pH meter circuit, using 0.25 in unclad matrix board secured by the meter terminals

When soldering the valve lead, use a heat shunt or pliers behind the joint. Never solder less than 15 mm from the seal, and do not bend nearer than 2 mm from this. Any extension to the grid lead is made with uninsulated stiff copper wire. The valve lead marked N.C. can be cut off at about 2 mm from the seal, but be sure the correct one is cut.

CONTROLS

Dials for the various controls are left to individual choice. The prototype was labelled with paper scales marked in ink and covered by discs of Perspex fastened to the lid with three 8BA bolts, equally spaced around the centre hole, and concealed by the boss of the knobs. For S1, S2 and S3, pointer knobs were used, and a circular one for the zero setting pot VRI.

Before final assembly, remove all blobs of solder, finger marks, and any extraneous material from the
box, lid, and matrix board, and thoroughly dry in warm air. Leave any painting of the box until calibration is complete, and the meter is seen to be functioning with satisfaction, then completely strip down and apply the final finish.

ACKNOWLEDGEMENT

The basic circuit of this instrument was published some years ago by Mullard Ltd., as a low voltage electrometer, and was modified by the author for use as a pH meter.

If a different type of indicating meter is fitted, it should be remembered that the current flow between X1 and X2 should not exceed one milliamp, to prevent overloading of the bridge.

The electrometer valve version has an input resistance of $10^{10} \Omega$ per volt, a maximum input voltage of 2 volts,

F.E.T. ALTERNATIVE INPUT STAGE by M. Abbott

It was decided to give the constructor an atternative, solid state front-end to the author's original design, and this is shown in Fig. 8. The input circuit is very simple, and would conveniently replace the valve at a later stage if required.
The i.c. is more expensive than the valve, but does give slightly improved linearity, and is available from Doram Electronics Ltd. (order code 305-456).
With the f.e.t. amplifier the input reference level is taken from the centre voltage of VR1, by means of the two $82 \mathrm{k} \Omega$ resistors. This ensures that balancing the bridge to zero should automatically be near the centre of VR1. The input resistance of the i.c. and consequently the instrument as a whole, is 10^{14} ohms. The base of TRI is driven directly from the amplifier output, and as
can be seen, there is no voltage gain, as the circuit is a voltage follower. However, unlike the valve input stage, there is no 180° phase inversion, therefore the meter connections must be reversed. As expected, there is no warm up time with the f.e.t. version (not to be confused with the electrode equilibrium time), and the function of S3 can be reduced to simply "on"' or "off". With the mains built unit, S 3 can be eliminated altogether, leaving the on/off function to the mains switch alone.

CONSTRUCTION OF F.E.T. UNIT

Veroboard and other conventional component boards are unsuitable for mounting the f.e.t. device, as their surface resistance and conductor spacing would shunt

Fig. 8. Meter circuit with f.e.t. front end. The shaded area remains the same. Note the polarity reversal of ME1
and the minimum readable input is 0.5 mV . A change of at least 0.02 pH should be detectable.

THE ELECTRODES

Both the pH sensitive glass electrode, and the calomel reference electrode will have to be purchased, and will constitute the most expensive single items. An experienced laboratory technician could fabricate a calomel electrode, but the purchasing and handling of scheduled poisons like mercury and calomel is not recommended for amateurs; furthermore, certain items would be difficult to obtain retail. Making a glass electrode is quite outside the scope of anyone except a scientific glass worker, even if the special glass and other materials were at hand.

The most suitable glass electrode for our use is the general purpose type, which works well in the range
$0-13 \mathrm{pH}$, but is not recommended for use at low temperatures. Since measurements will be taken at $25^{\circ} \mathrm{C}$ (explained later) this constitutes no hardship. The most convenient plug termination is either a 4 mm plug or spade lug. Avoid fittings which will only enter a special adapter in the maker's own pH meter.

This type of electrode can be purchased as a separate unit, and also combined with a calomel reference as a dual electrode showing a price advantage, but it requires a special socket to take the two leads and earth. It also lacks versatility, and can turn out to be more expensive in cases of breakage, since the complete unit bas to be replaced. Separate electrodes are preferable as the calomel standard can always be obtained with either spade or 4 mm connections, and therefore easily adapted to the constructed meter.

If the glass electrode purchased calls for a double socket for lead and earth, then a 4 mm plug can be substituted for the electrode lead, and earth taken

the input resistance of the amplifier. However, if a piece of Perspex is cut and drilled as detailed in Fig. 9a, the i.c. can be mounted on it, as shown in Fig. 9b, and the whole assembly could then be mounted at some convenient point.

Once the Perspex tablet has been constructed, it should be thoroughly cleaned with methylated spirit and wiped with clean dry tissue paper, before mounting the i.c. The integrated circuit should of course not be fingered too much around the lead-out area, to avoid contamination, and should not be cleaned with methylated spirit.

Location of the f.e.t. assembly should be as close to the input switch S1 as is practicable, so that all input leads can be short. In the prototype it was mounted on the end of one of the threaded retaining pillars of S 1 .

The only special points relating to wiring, are that solder joints to the i.c. should be relatively swift, a heat shunt being placed between the joint and the device. A pair of pliers with an elastic band around the handle can be used for this purpose. Stiff wire should be used for the input signal leads, as this can be encouraged to stay clear of other wires and objects more readily, which is a good idea even if it is insulated.

Fig. 9. Physical construction of the optional f.e.t. module

ELECTRODE SUPPLIERS

Electronic Instruments Ltd.,
Hanworth Lane, Chertsey,
Surrey, KT16 9LF.
The E.I.L. "Laboratory Electrodes" catalogue can be obtained from the above address, and the most suitable electrodes are:
Series 1070 all-purpose glass electrode, $0-14 \mathrm{pH}$ STANDARD (1070-1)
For banana termination to suit the PE pH Meter order No 1070-120.

Refillable, ceramic junction calomel reference electrode. For spade terminal type, suitable for above, order No 1370-710.
E.l.L. are also suppliers of buffer solutions and powders.
A. Gallenkamp \& Co. Lid.,

PO box 290, Technico House, London, EC2P 2ER.
Glass Electrode EJ-704 (0-12pH only)
Calomel electrode EJ-710
from the screening of the co-axial cable, with a clip wired for the meter earth terminal. Remember that the electrode plug must be a good insulator such as nylon or polythene, in order to preserve the high input resistance of the meter, by preventing a leak path between the electrode lead and earth sheath.
Glass electrodes need conditioning prior to use; usually by a twenty-four hour immersion in very dilute hydrochloric acid. Follow the maker's instructions. When not in use, the electrodes should be kept covered with clean distilled water to a depth of half an inch above the glass bulb. A small plastics container such as a 50 c.c. polythene beaker is ideal for this purpose. Repeated drying out and wetting of the electrode will drastically reduce its accurate working life.

Bulbs are very fragile, and if cleaning is needed to remove greasy films, immerse in tepid soapy water, and use an old tooth brush to assist the operation. Do not use household detergent, as this may temporarily upset the ion exchange characteristics and lead to inaccuracy.

After purchase, the calomel electrode will need filling with either distilled water, or saturated potassium chloride solution. The latter is made up from the analytical quality salt. This salt is a completely innocuous substance with no hazards attending its use. The salt bridge is represented by the porous plug at the end of the electrode, which allows a slight bleed of potassium chloride solution. During storage, this can be stopped by fitting the rubber cap usually supplied with the electrode. However, remember it must be removed before use, in order to achieve electrical continuity within the combined electrode system.

Maintenance consists of keeping the glass tube charged with potassium chloride solution, and an occasional wash down on the outside using distilled water. For pH work in general a worthwhile investment is a small three-hundred cubic centimetre polythene squeeze-type wash bottle, from which distilled water is quickly and conveniently delivered.

ELECTRODE STAND

An easily constructed electrode stand can be made as follows: A piece of flat board $152 \mathrm{~mm} \times 76 \mathrm{~mm} \times$ 19 mm (floorboard) is centrally drilled to accommodate a length of 12 mm dowelling, which is then glued into place. This centre rod can be 200 mm long. An adjustable cross piece is cut from wood $127 \mathrm{~mm} \times 13 \mathrm{~mm} \times 6 \mathrm{~mm}$, into the flat side of which is screwed centrally a Terry clip giving a good sliding fit on the dowel.

A further two smaller clips, preferably polythene coated, to clasp the electrodes, are attached near one end of the cross piece 25 mm apart. With this simple stand the electrodes are held conveniently side by side, and can be easily immersed in, or removed from the distilled water in which they are stored. The sample whose pH is required can then be introduced into the beaker, and the electrodes re-immersed. The stand may be rendered comparatively waterproof by two coats of polyurethane varnish.

STANDARDISING THE METER

To carry out the standardisation, an accurate source of potential is required. The classical approach is a Weston Standard Cell which in its commonest form consists of an H shaped glass tube, each limb of which houses a reference electrode, one positive and one negative, while the cross piece of the \mathbf{H} forms a salt bridge connecting the two electrolytes. Connections are made by platinum wires sealed into the glass, the whole cell being sealed from the atmosphere. Its potential at $20^{\circ} \mathrm{C}$ is 1.0183 ± 0.0001 volts, and it has a negligible temperature coefficient. In the form described it is fragile and expensive.

A much smaller version exists, shaped like a large cartridge fuse which can be housed in a special holder, connections being made by the end caps. This cell is much less expensive than its glass counterpart, produces an identical voltage, and delivers a current which must not exceed ten micro-amps. One or other of these cells is often incorporated in commercial pH meters for carrying out standardisation.

For anyone seeking results of the highest possible accuracy, its use is recommended, but for our own purpose a cheaper alternative exists. The Mallory mercury cell will, after a short initial period of discharge, give a potential steady to within 0.01 volts on very light load.

Fig. 7. Voltage reference source for standardising, using a Mallory PX1 cell

Type PX1 has a capacity of $1,000 \mathrm{~mA} /$ hours, and a p.d. of 1.35 volts. When brand new the voltage is slightly above this figure, but on discharging it for twenty-four hours through a $1 \mathrm{k} \Omega$ load, it steadies off at 1.35 volts.

This partially discharged cell, when connected into the potential divider illustrated in Fig. 7, serves admirably as a standard source of potentials for calibration purposes. The various voltages obtainable are accurate as long as the drain on the cell never exceeds about $12 \mu \mathrm{~A}$.

Table 1: METER CALIBRATION RESISTORS ($100 \mu A, 1 \mathrm{k} \Omega$ movement) used on valve prototype

Range	Exact resistance
$0-1$ volt	$13,750 \Omega$
$0-2$ volt	$28,800 \Omega$
$0-14 \mathrm{pH}$	$11,70 \Omega$
$0-10 \mathrm{pH}$	$7,420 \Omega$
$0-5 \mathrm{pH}$	$3,000 \Omega$

RANGES

The prototype instrument was constructed with different ranges, partly as a challenge to ingenuity, and partly to exploit all the positions on the two-pole sixway rotary switch. The ranges are as follows: 0 to 5 pH (or 5 to 10 pH), 0 to $10 \mathrm{pH}, 0$ to 13 pH , off, 0 to 2 volts, 0 to 1 volt. This order was chosen to offer some sort of overload protection, since the two coarsest ranges are adjacent to the off position. By using one of the second set of poles on S2, the meter is arranged to be shorted out in the off position, which greatly reduces needle oscillation when the meter is moved. An alternative would be to bring out the meter leads to exterior terminals on the box, so that ME1 could be used as a simple micro-ammeter. When not in use the terminals could be linked across.

Since the current gain varies with components, no accurate values can be given for R8 through R12 since the exact resistance of ME1 is unknown. As a guide, the multiplier resistors used in the prototype using a Ferranti $0-100 \mu \mathrm{~A}$ meter movement with $1 \mathrm{k} \Omega$ resistance, are given in Table 1.

MILLIVOLT RANGES

For calibration of these ranges, across the appropriate contacts of $\mathbf{S} 2$ for the range concerned, place a preset potentiometer of approximately twice the resistance given for that range in Table 1. Move S1 to zero position and switch on the mains (power pack type). Then rotate $S 3$ to the fully on position, and allow five minutes for the instrument to warm up and stabilise. Set the preset to maximum resistance, and turn S 2 to the $2,000 \mathrm{mV}$ range. Rotate VR1 until the meter reads zero, which ideally should be at centre position. If zero is found at an extreme setting, the relative values of R6 and R7 can be altered to correct this, but their sum value must remain the same.

Next connect the voltage source of Fig. 7 to inputs Il and I2, observing polarity. Select -1.35 volts (output G), and switch S 2 to the $2,000 \mathrm{mV}$ range. Zero ME1 again, then shift Sl to the read position. Adjust the preset in series with ME1 until the latter reads 67.5 micro-amps (i.e. $1 / 20$ th of $1,350 \mathrm{mV}$). Return S 1 to zero, and change the voltage source to -675 mV (output D). With S1 back to read, check that ME1 reads 33.75 micro-amps. Slight divergence from this is most likely due to inaccuracies within the meter.

Now zero all switches, remove and measure the resistance of the preset, and using a series or parallel combination of standard fixed resistors, insert that resistance in place of the preset. That range will then be calibrated to the scale factor: micro-amps $\times 20=$ millivolts.

Leaving R6 and R7 untouched, repeat the same steps to calibrate the $1,000 \mathrm{mV}$ range. Consult Table 1 for the preset value to be used, and set up using the voltage source outputs C, D, and E , relating these to the scale factor: micro-amps $\times 10=\mathrm{mV}$.

With the instrument warmed up, drift should be small, but always zero the meter between operations.

pH RANGES

From the Nernst equation, the following data can be calculated:

At $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
1 \mathrm{pH} \text { unit } & =59 \cdot 1 \mathrm{mV} \\
2 \mathrm{pH}, " & =118.2 \mathrm{mV} \\
3 \mathrm{pH},, & =177.3 \mathrm{mV} \\
10 \mathrm{pH}, " & =591.0 \mathrm{mV}
\end{aligned}
$$

It is apparent that the relationship between electrolytic solution pressure (E.S.P. in mV) and pH is linear, all the E.S.P. voltages being direct multiples of 59.1 mV .

The value of 1 pH is temperature dependent; at $0^{\circ} \mathrm{C}$ it drops to 54.1 mV , and at $30^{\circ} \mathrm{C}$ it rises to 60.1 mV . Consequently pH measurement should be made at the original calibration temperature, which in our case is the above set of figures $\left(25^{\circ} \mathrm{C}\right)$. Lower temperature values could be used, but the resistance of the glass electrode would increase sharply. More sophisticated commercial meters often have temperature compensation built in, but for this simple device the problem is resolved by always working at the convenient temperature of $25^{\circ} \mathrm{C}$.

None of the exact pH voltages are obtainable from the reference voltage source, but since 10 pH on the 10 pH range should be 100 micro-amps for f.s.d., the equation:

$$
\frac{225}{591} \times 100=38 \cdot 1 \mu \mathrm{~A}
$$

shows that output $\mathrm{B}(225 \mathrm{mV}$) from the voltage source should read 38.1 micro-amps on the meter, which would be 3.81 pH .

Similarly, for output $C(450 \mathrm{mV})$ of the voltage source:

$$
\frac{450}{591} \times 100=76.1, \mathrm{~A}(7.61 \mathrm{pH})
$$

These two positions are nicely spaced for calibration, and it is only necessary to carry out the previously described procedure tc find a suitable multiplier resistor to fix, the scaie at these two poirts.

Because oí meter non-linearities, finding a series resistor giving the closest average result from two points on the scale, should minimise the chance of fixing calibration against a particularly bad deviation from ideal within the meter.

The range $0-14 \mathrm{pH}$ is rarely required by amateurs, but can be included as it is useful to quickly find the approximate pH of a sample before switching to a more convenient range. To utilise the maximum deflection of the meter on this range, assume that 98 micro-amps is f.s.d. instead of 100 . This is divisible by 14 to give 7, so that $7 \mathrm{micro-amps}$ is equal to 1 pH urit, followed by multiples up to 98 micro-amps (14 pH units).

As before, using voltage source B :

$$
225 \mathrm{mV} \text { must } \operatorname{read} \frac{225}{59 \cdot 1} \times 7=26 \cdot 6 \mu \mathrm{~A}(3 \cdot 8 \mathrm{pH})
$$

For the $0-5 \mathrm{pH}$ range, and by an artifice, the $5-10 \mathrm{pH}$ scale, proceed as for the $0-10 \mathrm{pH}$ scale, substituting 5 pH units instead of 10 pH , and modify the equation accordingly. For working between 5 and 10 pH , the zero point has to be artificially offset to zero with a 5 pH input level.

USING THE METER

The recommended basic operational procedure is as follows:
(1) Check that $S 1$ is at zero, and S2 is off, along with S3.
(2) Earth the instrument (battery type), or plug in mains.
(3) Switch on mains (power pack type).
(4) Rotate $S 3$ to fully on position (valve type).
(5) Allow five minutes to warm up (valve type).
(6) Observing polarity, connect in the source of potential to be measured.
(7) Select S 2 range, or commence on highest range.
(8) Set meter to zero using VR1.
(9) Alter S1 to "Read".
(10) Take measurement.

When a different range is required always move S 1 to zero, set $\mathbf{S} 2$ to the new range, zero meter, and finally move S1 to "Read" again.

To shut down:
(1) Set Sl to zero.
(2) Switch S2 off.
(3) Switch S3 off.
(4) Turn mains switch off.
(5) Remove source of potential.

For pH measurements, the glass and calomel electrodes are now used for the first time. The potential delivered by the glass electrode is produced by three separate elements: (a) the pH dependent voltage generated by the glass bulb, (b) the difference in potential generated where the silver chloride coated silver wire dips into the hydrochloric acid within the glass bulb and (c), a peculiar variable not fully understood, called the "asymmetric potential" which is of a few millivolts. The voltage generated by the inner wire is constant, but the asymmetric potential slowly varies, though it may be considered stable over the short period involved in taking measurements. Its origin is rather obscure, but may be related to discontinuities in the special glass where alkalis were removed during flame working, or to strains remaining after annealing. Although of small value, it is usual to allow for it if accurate work is contemplated.

PRECISION WORK

For precision work then, only the pH dependent voltage should be measured, and this is done using substances of known pH value, called "buffer solutions". Two such buffer solutions are used for most routine pH measurements, one to cover the range 0 to 7 pH , and the other for the range 7 to 14 pH . The acid range buffer $(0-7)$ is a solution of potassium hydrogen phthalate, containing $10 \cdot 12$ grams per litre of the salt. At $25^{\circ} \mathrm{C}$ its pH is 4.01 . The second buffer is a solution of sodium tetra-borate deca-hydrate (borax) used at a concentration of 3.8 grams per litre, and has a pH of $9 \cdot i 8$ at $25^{\circ} \mathrm{C}$. A litre bottle of each solution, together with saturated potassium chloride, make up part of the essenticl equipment for readers.wishing to carry out pH measurements. The recommended technique for pH measurement is therefore as follows:

Carry out steps one to five of the operational procedure.

Immerse the glass and calomel electrodes in a suitable volume of the selected buffer, by raising the stand, removing the distilled water, and replacing by buffer solution.

Connect the electrodes to the input (glass negative and calomel positive).

Allow a minute or so for the glass electrode to come into equilibrium with the buffer.

Select a suitable pH range to cover the sample (not buffer) to be tested.

Set switch S2 accordingly.
Move Sl to "Read".
Using VR 1 , adjust the meter needle to the value of the buffer (not to zero).

Alter S1 to zero.
Remove the buffer solution and wash both electrodes with distilled water, and then immerse them in the sample whose pH is to be measured.

Follow steps nine and ten, after allowing a short time for the glass electrode to reach equilibrium.

After use, wash the electrodes and put them back in the distilled water in which they are kept. The small amount of buffer may be used again during a measuring session if it is not diluted by wash water, but do not pour it back into the stock bottle.

NOTE

Note that when measuring pH , the meter is never zeroed, and with S1 at zero, there is always a positive reading on the scale. Take note of this value, as it is the non pH dependent voltage, and may be restored if VR1 is accidentally moved during a session.

Buffer solutions left open will absorb atmospheric CO_{2} (particularly borax) and alter slightly in value. Buffers should be sealed from air and stored in the dark.

POWER PACK

The circuit in Fig. 4 (last month) will provide 17 to 18 volts at about 50 mA , and is recommended, as failing batteries when not checked will give rise to inaccurate results. The values of R1 and R2 are selected to maintain regulation during mains voltage variations, and produce a Zener diode current of four to five milliamps at nominal 240 volts a.c. input. On the prototype, the values of R1 and R2 were 20Ω and 290Ω respectively, and the output potential was 17.2 volts over mains variations from 215 to 255 volts.

SOIL

For soil pH measurement, accurate and comparable results are only obtained under certain prescribed conditions. For the official Ministry method, see Bulletin No. 209 "Fertilizer requirements" Appendix: Ministry of Agriculture, Food \& Fisheries, available from H.M. Stationery Office.

Before testing, the soil is dried in an air oven at a fixed temperature. Then a definite amount is weighed out and mixed with the correct quantity of distilled water, and the electrodes inserted into the fine slurry obtained.

For field work, a mixture is made of $2 \frac{1}{2}$ volumes of soil to 1 volume of distilled water, and well stirred to produce a similar slurry. Results between the two methods vary by as much as $\pm 0.2 \mathrm{pH}$ unit (sufficient to seriously affect the yield from a crop of barley!).

AQUARIUM WATERS

Measurement is best made by immersing the electrodes directly in the tank, avoiding air bubbles from the aerator. The pH of the water can then be adjusted while watching the meter. The small amount of KCl diffusing out of the calomel electrode during a test is insignificant.

The temperature of the water will not be $25^{\circ} \mathrm{C}$, but provided tests are carried out at the same temperature each time, results will be comparable.

Similar remarks apply to measurements made on nutrient solutions used in the water culture of plants (hydroponics), where acidity is very important.

PURE WATER AND BUFFERS

Wherever reference has been made to distilled water, the use of de-ionised water is equally good. Melted ice taken from the sides of a domestic deep freezer can be used, and is free from soluble salts, if not'perhaps CO_{2}. If a large clean plastics container is filled with mains water, placed in a freezer, and occasionally stirred, the ice produced will be practically pure, provided some of the water remains unfrozen at the bottom. The product is quite suitable for making up buffer solutions.

Both phthalate and borate buffers can be purchased in the form of tablets and sachets containing definite weights of the chemical, which when dissolved in the correct quantity of water, will make a buffer solution.

AGEING

A glass electrode nearing the end of its life becomes sluggish, and often reads low at high pH levels. Check by buffering at $4 \cdot 01$ and $9 \cdot 18$. A very slow response, or a low reading at the second point suggests that a new electrode is needed.

Inorganic films on a glass electrode are best removed with hydrochloric acid (50% by volume), while grease is dealt with by clean soft tissue. Dehydrating solvents such as alcohol or acetone are not recommended, neither are household detergents or abrasives. Avoid using the glass electrode at temperatures above $50^{\circ} \mathrm{C}$ in solutions of high pH , since attack on the glass is accelerated.

OTHER USES FOR THE METER

Very small currents can be measured (down to 10^{-9} amp), by finding the voltage drop across a high resistance such as 1 megohm, through which the current is passing.

Potentials between dissimilar metals, a fertile source of corrosion, can be measured by connecting a lead to each metal, and moistening with water or weak brine.

Leaking capacitors can be detected or compared with a satisfactory component, by connecting them across the input, charging to, say, 1.5 volts, and finding the time required for the voltage to drop to half its initial value. Using a capacitor of low leakage characteristics will likewise give a check on the input resistance of the meter.

Another possibility is a pH controlled alarm, giving audible warning of pH rise or fall from some preset value. The use of a 741 i.c. as a voltage comparator is a method of doing this, and could give either blind control, or measurement and control together.

During the last ten years, new electrodes have been developed which are sensitive to ions other than hydrogen. These are fluoride, nitrate, sulphide, sodium and calcium. Using a specially adapted meter, these ions, some of which are difficult to determine chemically, could be measured using electrochemical methods.

However the instrument is employed, the inputs should be shorted together when not in use, to prevent any static charge accumulating.

AIARGE number of acoustic musical instruments have an amplitude envelope which decays during the note, and it is the Transient Generator which synthesises this characteristic electronically. The basic envelope is illustrated in Fig. 1, and shows which components of the profile can be varied. As can be seen, first there is an attack up to a peak, then a decay down to a fixed sustain level, and then when the key is released there is a further decay to zero. The variable parameters are: Attack time, initial decay time, sustain level, and final decay time.

CIRCUIT DETAILS

The transient generator needs a TTL compatible input which is logical " 1 " when a key is depressed, and logical " 0 " when it is released. Referring to Fig. 2, ICIc and ICId form an edge-triggered latch, which is set via C1 and can be reset via either C2 or TR1. When a key is pressed, the latch is set, and the output of IC1c goes high. TR2 and TR3 turn on, and C3 begins to charge via R6 and VR1, which controls the attack rate. The voltage on C3 goes to the emitter follower TR7, which provides a low impedance at the output on VR5.

This rising voltage is fed back via R3 to TR1, and when it gets to its peak of about 5 volts, TR1 passes enough current to reset the latch. This turns off the attack part of the circuit, and IClb output goes to logical " 0 ". TR6 turns off and TR5 turns on, causing C3 to discharge via R9 and VR3, the initial decay time control. This continues until C3 is at the same voltage as the wiper of VR4, setting the sustain level. The circuit remains stable in this state until the key is released. The output of ICla goes high causing TR4 to turn on. Then C3 discharges to earth via R8 and VR2, the final decay control.

If the key is released before the attack and initial decay cycle has finished, the latch is reset by C2, and the circuit goes straight into the decay part of the envelope.

A Veroboard layout suitable for this circuit is shown in Fig. 3, which also includes the Keyboard Trigger circuitry of Fig. 5, overleaf.

COMPONENTS . . .

Resistors			
R1	$39 \mathrm{k} \Omega$	R8	100Ω
R2	$15 \mathrm{k} \Omega$	R9	100Ω
R3	$100 \mathrm{k} \Omega$	R10	$18 \mathrm{k} \Omega$
R4	220Ω	R11	$10 \mathrm{k} \Omega$
R5	$3.3 \mathrm{k} \Omega$	R12	$10 \mathrm{k} \Omega$
R6	100Ω	R13	$1.8 \mathrm{k} \Omega$
R7	$10 \mathrm{k} \Omega$	R14	$470 \Omega \frac{1}{2} W$

All resistors are $\frac{1}{6} \mathrm{~W} 5 \%$ unless otherwise stated
Potentiometers

VR1 $1 M \Omega \log$	VR4	$1 \mathrm{k} \Omega \operatorname{lin}$
VR2 $1 M \Omega \log$	VR5 $10 \mathrm{k} \Omega \operatorname{lin}$	
VR3 $100 \mathrm{k} \Omega \log$		

Capacitors
C1 $0.047 \mu \mathrm{~F}$
C2 $0.047 \mu \mathrm{~F}$
C3 $10 \mu \mathrm{~F} 15 \mathrm{~V}$ elect.
Semiconductors
TR1, TR2, TR4, TR5, TR6 and TR7 BC108
TR3 BC158
IC1 SN7400
D1 5.1 V 400 mW Zener

Fig. 1. The Transient Generator amplitude envelope

Fig. 2. Circuit diagram of the Transient Generator

Fig. 3. Veroboard layout suitable for the Transient Generator and also the Key Switch Trigger circuit shown in Fig. 5

TRIGGER CIRCUIT

If the transient generator is being interfaced with an existing synthesiser, a trigger circuit such as the one shown in Fig. 4 should be used. The preset should be set to a voltage in between the voltages corresponding to "key up" and "key down", so that the comparator changes state to follow the input.

This circuit is wired for an input which has the "key down" voltage higher than the "key up". If the reverse is true, the inputs (pins 2 and 3) to the operational amplifier should be swopped over.

DIRECT KEYBOARD TRIGGERING

Keyboard switches can give considerable contact bounce problems, and a circuit giving immunity to this is shown in Fig. 5. R2 and C1 form a low-pass filter which reduces the switch-bounce voltages, and feeds the signal to ICI which is wired as a Schmitt Trigger with a hysteresis of 28 volts. Using this circuit therefore, the transient generator could be run directly from a keyboard.

REPEAT EFFECT

The digital signal from either of these trigger circuits need not go straight to the transient generator If it is put through an and gate with an oscillator providing the other input, a repeat effect can be produced. A string of envelopes repeating at the frequency of the oscillator can be gated in by the keyboard. In imitating a mandolin for example, a short decay down to zero sustain level would be set up on the transient generator and an oscillator frequency of about 5 Hz would be used. A suitable repeat oscillator is shown in Fig. 6.

APPLICATION

The transient generator provides a voltage which is used to alter various parameters in a synthesiser. It was decided that this was more versatile than including a V.C.A. in the module. In its quiescent state. the output is at zero volts, and goes positive when triggered. The envelope generated during its operational cycle is then used to patch into a V.C.A. or V.C.F.

One transient generator, with a filter and, say, two oscillators. is perfectly adequate for a simple

synthesiser. A bank of these units, however, with each set to control a different aspect of the note, would be extremely useful in a large system.

Alex Marshall

ALexander Marshall, founder of A. Marshall (London) Lid. died on Saturday, February 5, following a short illness. The new owner of this retail and trade component business is the wife of the deceased, Mrs J. L. Marshall. The existing management team remain.

The sad news of Alex Marshall's death (received just as this issue was going to press) was a shock, more especially because of the amicable relationship that had grown up between his firm and this magazine over the past 10 years.

The firm was established in Cricklewood, London in the late 50 's. Alex's business acumen was shown in the subsequent expansion of his business as evidenced by the increase in size of advertisements in P.E. from 1 column inch in

February 1967 to whole pages in later years, reflecting the wide range of components stocked. The opening of additional shops in Glasgow, Bristol and Paris was part of this success story in the component supply business. Constructors have cause to be grateful to Alex for the high standard of service he instituted.

Recently Marshall's had been closely associated with P.E. in organising the Microprocessor Competition and Forum. Alex's tremendous personal enthusiasm for both projects and his bountiful gesture in providing prizes set an example and gave great encouragement to his cosponsors, National Semiconductor and P.E. That he would not be there on February 26 to present the prizes was something we have never of course contemplated. Somehow it seems most unfair.

Our commiserations go to Mrs Marshall and family and to all members of the staff of their company in their tragic loss.

The genial countenance and radiating charm of this friendly Glaswegian will be greatly missed.

$$
-F . E . B .
$$

With the arrival of low-cost development kits, the microprocessor is no longer just a pipe dream as far as the amateur is concerned. Last month the construction of one such kit was described: the National Semiconductor SC/MP Kit, and the following article explains in detail how to write and run simple programs which do what would otherwise require complex circuits of discrete components. The principles covered apply to any microprocessor, but the examples are specifically for the SC/MP and the article concludes with a program for a millisecond reaction timer.

THE heart of the microcomputer is the Central Processing Unit-CPU. In the SC/MP kit this is in a single 40 -pin package, and costs on its own as little as $£ 5$ in quantity. The CPU has been called a "Highly Obedient Moron"-it slavishly fetches instructions, interprets them, and obeys them; this three-stage process being repeated over and over again. The CPU is in no sense intelligent, and it takes an intelligent programmer to make it appear to behave intelligently.

BINARY NOTATION

The instructions tell the CPU to perform certain operations on numbers, or data. Since the CPU is built out of logic circuits operating only with binary numbers it requires instructions and data to be presented in this form; therefore it is important to understand the concept of binary notation.

In decimal notation we seem to get by with using just the ten digits $0-9$ for representing numbers as large as we please. This is achieved by giving the digits different values according to the column in which they occur; a 9 in the third column from the right in fact means 9×10^{2}.

Similarly in binary notation the two digits 0 and 1 can be used to represent any number, each bit (short for Binary Digit) denoting the absence or presence of a different power of two. Thus 1100_{2} (the suffix 2 denoting binary notation) represents from right to left:

$$
0 \times 2^{0}+0 \times 2^{1}+1 \times 2^{2}+1 \times 2^{3}=12_{10}
$$

However strange binary may seem, reflect that 12_{10} cannot be said to be any nearer to reality (e.g. twelve objects) than can 1100_{2}; they are each just notations.

HEXADECIMAL

Binary numbers are so awkward to remember and use that it is often more convenient to put them into hex (short for hexadecimal) notation in which sixteen digits are used: Decimal: $0 \begin{array}{llllllllllllllll} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$ Hex: $\quad \begin{array}{llllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { A } & \text { C D E }\end{array}$

By grouping the digits of a binary number into fours (from the right) and converting each group into a single hex digit, the hex equivalent is instantly obtained. For example $11000100_{2}=\mathrm{C4}_{16}$. Do not be put off by numbers such as DEAD! Unless otherwise stated, all numbers in this article will be in hex notation. Remember though that however the programmer chooses to represent them, the CPU deals only in bits.

Thus instructions and data are each just one or more 8 -bit (2 hex digit) binary numbers. Each instruction corresponds to a different number; for example C 4

OPCODE INDEX OF INSTRUCTIONS

Opcode	Mnemonic	Assembler Format	Operation
00	HALT		Pulse H-flag
01	XAE		Exchange $A C$ and Extension
02	CCL		Clear Carry/Link
03	SCL		Set Carry/Link
04	DINT		Disable Interrupts
05	IEN		Enable Interrupts
06	CSA		Copy Status to AC
07	CAS		Copy AC to Status
08	NOP		No Operation
19	SIO		Serial Input/Output
1 C	SR		Shift Right
10	SRL		Shift Right with CY/L
1 E	RR		Rotate Right
1 F	RRL		Rotate Right with CY / L
30	XPAL	ptr	Exchange Pointer Low
34	XPAH	ptr	Exchange Pointer High
3 C	XPPC	per	Exchange Pointer with PC
40	LDE		Load from Extension
50	ANE		AND Extension
58	ORE		OR Extension
60	XRE		Exclusive-OR Extension
68	DAE		Decımal Add Extension
70	ADE		Add Extension
78	CAE		Complement and Add Extension
$8 F$	DLY	disp	Delay
90	JMP	disp(ptr)	Jump
94	JP	disp(ptr)	Jump If Positive
98	JZ	disp(per)	Jump If Zero
9 C	JNZ	disp(ptr)	Jump If Nor Zero
AB	ILD	disp(ptr)	Increment and Load
B8	DLD	disp(ptr)	Decrement and Load
C0	LD	@disp(ptr)	Load
C4	LDI	data	Load Immediate
C8	ST	@disp(ptr)	Store
D0	AND	@dısp(ptr)	AND
D4	ANI	data	AND immediate
D8	OR	@dısp(ptr)	OR
DC	ORI	data	OR Immediate
EO	XOR	@displptr)	Exclusive OR
E4	XR1	data	Exclusive-OR Immediate
E8	DAD	$@_{\text {displptr) }}$	Decırial Add
EC	DAI	data	Decimal Add Immediate
F0	ADD	@dısp(ptr)	Add
F4	AD1	data	Add Immedhate
F8	CAD	@disp(ptr)	Complensent and Add
FC	CAI	data	Complement and Add Immediate

means "load the accumulator", the accumulator being a register for temporarily storing one 8 -bit number. The data to be loaded is taken as the next 8 -bit number; thus the instruction $\mathrm{C} 4,8 \mathrm{~F}$ will load the accumulator with 10001111_{2}.

In the SC/MP CPU all instructions are either one or two 8 -bit numbers long. Encountered in a different context though, 8 F might be interpreted differently; for example as the instruction, it represents "delay". Instructions and data are indistinguishable so the only way the CPU knows what to do is by the context.

The CPU is no use without a memory to contain the sequence of instructions to be obeyed-the program and the data.

The OPCODE INDEX OF INSTRUCTIONS (previous page) is reproduced from the SC/MP Instruction Guide.

MEMORY

The memory can be thought of as containing a number of locations, each capable of holding two hex digits (8 bits). The size of binary number around which the memory of a particular computer is organized is termed the word, and the SC/MP resembles most other microcomputers in having an 8 -bit word (large computers commonly have 32 -bit words). Each location of memory can be specified by a unique address, which is four hex digits; i.e. it can lie between 0000 and FFFF. The CPU can therefore address up to 65536_{10} words of memory. The word contained in a particular location is called the contents of that address.

Two types of memory are provided in the SC/MP kit: a ROM (Read Only Memory), and a Read/Write memory commonly called RAM (Random Access Memory) though strictly this is a misnomer. The ROM provided has 0200 locations ($=512_{10}$) with addresses 0000 to 01FF; see Fig. 1. This has fixed contents-the Keyboard Kit Program, which enables the user to modify the contents of any address in the RAM or to begin execution of a program there. The RAM provided occupies locations OF00 to OFFF, a total of $0100\left(=256_{10}\right)$, and these can be both written to and read from by the CPU. The RAM is used for one's own programs and data.

WRITING A PROGRAM

Having constructed a microprocessor kit, the owner may feel rather helpless since it is difficult to see what is going on inside it. Most instructions give unremarkable results, and it is necessary to go back and examine the memory or a register to see the effect. One instruction in the SC/MP Instruction Set is, however, ideal for experimentation; the delay instruction 8 F .

All the other instructions take from 5 to 22 microcycles to be executed, where a microcycle is 2 microseconds with the 1 MHz crystal supplied in the kit. The delay instruction can be programmed to take from 13 to 131593 microcycles depending on the value in the secord word and, to a lesser extent, the contents of the accumulator. The longest
delay is obtained when the second word and the accumulator both contain FF. Here is a sample program:

Address:	Contents:Comment: 0F20 C4 0F21 FF 0F22 CF 0F23 FF OF24 Load AC with: +255 Delay with:
Delay +25510 Exchange P3 and PC	

The last instruction, 3F, causes a jump back into the Keyboard Kit Program. The above program is executed by pressing GO, entering the start address 0F20, then pressing TERM to execute. The display will go blank for the duration of the delay; about one third ot a second.

THE REGISTERS

The SC/MP CPU contains seven different registers which can be used by the programmer, four of these holding two words and the other three holding a single word; see Fig. 1. These registers can be loaded with numbers by the relevant instructions, and each has a different role to play in the operation of the CPU. Most other makes of microprocessor have at least these registers, or close equivalents.

The most important register is the accumulator, or $A C$, which holds one word. In all, 37 of the 46 instructions of the SC/MP use the AC. Instructions are available to perform the following operations where the data can either be immediate (i.e. given in the second word), or else contained in a location specified in some way by the second word (see below):

Load AC with data

> AND AC with data
> OR AC with data

Exclusive-OR with data
Add AC to data
Decimal add AC to data
Add AC to complement of data
Instructions are also provided to exchange the AC with other registers, shift the contents of $A C$, and so on.

The extension register also holds one word, but is less versatile than the AC. It can be specified as the data for the instructions listed above. The status register contains the carry bit, and five bits controlled by or controlling the logic levels or corresponding pins on the microprocessor package.

THE PROGRAM COUNTER

The program counter or PC contains the two-word address of the instruction currently being or about to be executed. This automatically gets incremented after each instruction so that the instructions are read and executed in serial order. Sometimes it may be necessary

SUPERSOUND $13 \mathrm{HI}-\mathrm{FI}$ MONO AMPLIFIER amplifier components Brand new

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER

200/240 Mains operated solid state A/S1 F/SA stere
 AFC and ACC on AM and FW. Stereo Beacon Lamp
indicator, Builtin l're-anps with variable output volt age adjustable by preset control. Max of p Voltage 600 age and stable by preset control. Max of p voltage 600
$\mathrm{~m} / \mathrm{S}$ liMa into 20 k . simulated teak finish cabinet. Will approx. LIMITED NTMBER ONLY at £28 + i1-30

SPECIAL OFFERS

Millard Lir le $\% 6 V^{+}+$earth. Brand new pred aligned. Full pacification and connection details supplied. $\mathbf{£ 2 . 2 5}+\mathrm{P} . \& \mathrm{P} .12 \mathrm{p}$.

PRECISION MADE
Push luton Switch bank. \& buttons giving $16 \mathrm{~m} / \mathrm{T}$ Cl interlocked switches plus I Cancel Button Plus $3 \mathrm{~d} / \mathrm{p}$ coo neral size

HI-FI LOUDSPEAKER SYSTEM MRI
 Beautifulis invade simulated teal finish enclosure now with most attractive slatted front. Size $164^{\prime \prime}$ high x With most attractive slatted front. Size $16 t^{\prime \prime}$ high \times $101^{* *}$ wite $x 9^{\prime \prime}$ deep (approx.). Fitted with E.M.I 101^{*} Wite $\times 9^{\prime \prime}$ deep (approx.). Fitted with E.M.I Ceramic Magnet $13^{*} \times 8^{*}$ bass unit. H.F. tweeter unit and crossover. AVAILABLE IN NOMINAL
 OUR PRICE $\{12 \cdot 80$ each. Cary. $£ 1.90$ Cabinet Available Separately $£ \mathbf{f} \cdot \mathbf{6 0}$ each. Carr. 81.40 \& 1.90 .

LOUDSPEAKER BARGAINS

 $8 \times$ in 3 ohm with high flux magnet $£ 3.00$

VYNAIR \& REPINE SPEAKERS \& CABINET FABRICS pp. in in. Wide Our price £1-50 yd. ling
"POLY PLANAR" WAFER-TYPE, WIDE RANGE ELEETRO-D dYNAMIC SPEAKER
 Response $40 \mathrm{~Hz}-20 \mathrm{k}$ liz. Can be mounted on centiligs, wally details. Only $£ 840$ each. P \& P ale. Send S.A.E. fo for one, 90p

Now also available $8^{n-}-8$ ohm. 10 watts rimes. 20 watt peak $40 \mathrm{~Hz} \cdot 20.000 \mathrm{~Hz}$. Overall depth I^{2}. Ideal for Hi-Fi or for
118 ge in care. $£ 5 \cdot 10+\mathrm{P}$ \& P. (one 35 p , two 65 p).

LATEST ACOS GP91/1SC mono compatible cartridge with o straus for LP/EP/78. T'niversal mounting bracket
CERAMIC STEREO CARTRIDGE
ONOTONE 9TAHC COMPATIBLE STEREO CARTRIDGE TO stylus Ilanond Stereo L1 ${ }^{2}$ and Sapphire 78 .
 CARTRIDGE for EPP/I, C/Strra 78 £ $£ 1.80$.
LATEST T/O MONO COMPATLPLE CARTRIDGE for
playing EP/LIV/8 mono ar stereo
equipment. Only in neg.- P. \& T. Tsp.
OURPRICESINCLUDE VAT AT
PRICES INCLUDE Y
CURRENT, RATES

HARVERSON SURPLUS CO. LTD.

(Dept. P.E.) I70 HIGH ST., MERTON, LONDON, S.W. 19 Tel. : $01-5403985$ SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES

HARVERSONIC SUPER SOUND 10 + 10 STEREO AMPLIFIER KIT

really finst-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors includity Silicon Transistors in the first flue stages on each channel! resulting in even tower noise
level withamproved sensitivity. Integrated preamp with level with improved sensitivity. Integrated preamp with
bass, Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cartridges. modify to suit magnetic cartriage-instanctionsincladen Output stage forany speakers from 8 tolu ohms. Compact design, all parts supplied including drilled metal work, high (quality ready drilled printed circuit board with component identification clearly marked, smart brushed anodised aluminium front panel with matching knobs,
wire, solder, nuts, bolts -no extras to buy. Simple step wire, solder, nuts, bolts-no extras to buy. Simple step by step instructions enable any constructor to amplifier to we prom of. 14 watt rims. per channel into 5 ohms. Firequency response $\pm 3 d \beta 12-30,000 \mathrm{~Hz}$ Sensitivity; better
 cut approx. to -fiB. Negative feedback $18 \mathrm{~d} \beta$ over main amp. Power requirements $3 \overline{\mathrm{~J}}$. at 1.0 amp .
Overalls detailed 7 page construction manual and pat ts
 ABIPLFFIER KIT $£ 13,50$ POWER PACK KIT $\quad £ 5.50$ P. \& P. 85 p CABINET $\quad \$ 5.50$ P. P. Asp Special offer—only $\mathbb{E} 23 \cdot 75$ if all $\mathbf{3}$ units ordered at ne time plus $£ 100 \mathrm{P} . \& \mathrm{P}$.
 ide range tone controls giving bass and with improver HS HSL FOUR's AMPLIFIER KIT. Similar in appearance to HA34 above but employs entirely different and
advanced circuitry.

Fig. 2. Flowchart illustrating how a loop can extend the delay provided by the "delay" instruction. By convention, in flowcharts squares denote operations and diamonds decisions
to overrule this and jump to a different address. This is achieved by adding a number to the PC; for example:
\(\left.\begin{array}{cc}Address: \& Contents:

0 F24 \& 90

0 F25 \& FE\end{array}\right\}\)| Comment: |
| :--- |
| Jump by: |

The jump instruction 90 adds the number in the next word, the displacement or disp., to the PC. Since it is useful to be able to have negative jumps (as in this example) as well as positive ones, the disp. is interpreted by the CPU as what is called a twos-complement binary number. In this notation the leftmost bit is interpreted as a sign bit; if " 1 " the number is negative; if " 0 " it is positive. The 8 bits can then be used to represent the numbers from -128_{10} to $+127_{10}$ as follows:

$+127_{10}$ as follows:		
Binary: 10000000	Hex: 80	$\begin{gathered} \text { Decimal: } \\ -128 \end{gathered}$
11111111	$\stackrel{\text { FFF}}{ }$	-1
00000000	00	0
00000001	01	+1
01111111	7 F	+127

One way of looking at it is that FE is -2 in this notation since $F E+2=00$ (ignoring the carry). Thus in the above program the instruction executed after 0F25 is not 0F26 but 0F26-2 = 0F24 again. The program thus loops interminably and as such is fairly useless. The most useful jump instructions are those which only cause a jump if a certain condition is satisfied, such as "jump if $A C=0^{\prime \prime}$.

KEYBOARD KIT PROGRAM

The ROM supplied with the SC/MP kit interprets which key has been pressed, displays the address and contents entered, and loads new data into the RAM. It also enables one to jump to a location and begin execution there. Without this program there would be no way of writing programs into the memory; but it also serves other useful functions. When the Keyboard Kit Program is first entered, say by executing the "exchange P3 with PC" instruction at the end of a program, it conveniently saves the contents of the registers in the top 7 words of the RAM before using the registers itself. Similarly before executing one's own program following the GO command it loads the registers with the values from these locations. The locations are assigned as follows:

Address:	P1H	Higher word of P1
$0 F F 9$	Contents:	
0 FFA	P1L	Lower word of P1
$0 F F B$	P2H	Higher word of P2
0FFC	P2L	Lower word of P2
0FFD	AC	Accumulator
0FFE	E	Extension register
$0 F F F$	SR	Status register

Note that P3 is not included since this contains the return address to the Keyboard Kit Program, and so will not be used by one's own programs. The instruction "exchange P3 with PC" can be used to force a jump to the Keyboard Kit Program from the middle of one's own program by exchanging it temporarily for one of the instructions. The contents of the registers just before that point can then be discovered by examining the relevant memory locations.

ADDRESSING MEMORY

Suppose that a certain program needs to add 07 to a number at a certain address, say 0F60. There is no way of doing this in a single instruction; instead the AC must be loaded with the contents of 0F60, 07 added, and the AC stored back to 0F60-three instructions. How then can one specify the location required? The obvious way would be to give the full address in the two words after the instruction: $Y Z, 0 F, 60$, where $Y Z$ stands for the assumed "load" instruction.
Unfortunately Direct Memory Addressing, as this is called, is not available on the SC/MP (unlike the Intel 8080 or Motorola 6800). Instead Indexed Addressing is used; the address is specified relative to the PC or one of the three two-word pointer registers P1, P2, and P3 (see Fig. 1). The second word of the instruction is treated as a displacement to be interpreted as a twos-complement binary number, and added to the pointer register specified in the instruction, giving the effective address of the data. Using the PC this program can be written:

Address:	Contents:	Comment:
0F20	C0 $\}$	Load AC from PC+
0F21	3F	Disp.
0F22	F4	Add to AC:
0F23	07 \{	Data
0F24	C8	Store from AC to PC+
0F25	3B $\}$	Disp.
0F26	3F	Exchange P3 with PC

Notice that $0 \mathrm{~F} 21+3 \mathrm{~F}=0 \mathrm{~F} 60$ and $0 \mathrm{~F} 25+3 \mathrm{~B}=0 \mathrm{~F} 60$ so the load and store instructions both address the required location.

By using instead one of the three pointer registers, addresses at greater displacements from the current instruction than -128_{10} to $+127_{10}$ can be specified. If all the data for a program were stored from 0F50 to 0F70, one of the pointer registers-say P2-could be loaded with 0 F50 and these !ocations referred to as P2 + $0, \mathrm{P} 2+1$, etc. P2 is said to point to the area of memory containing the data. Using P2 the program becomes:

Address:	Contents:	Comment:
0F20	C2	Load AC from P2+
0F21	10 \}	Disp.
0F22	F4	Add to AC:
0F23	07 \}	Data
0F24	CA	Store from AC to P2+
0F25	10 \}	Disp.
0F26	3F	Exchange P3 with PC
OFFB	OF	Sets P2H
OFFC	50	Sets P2L

The contents of OFFB and OFFC will, as explained earlier, be loaded into P2 by the Keyboard Kit Program. In this example the displacement is the same since the contents of P2 do not change.

LOOPS

The delay instruction has already been used to give a short delay, and several such instructions placed in series will of course give proportionately longer delays. A better way is to use a loop as shown in the flowchart of Fig. 2. This will multiply the delay by $10\left(=16_{10}\right)$ giving just over 4 seconds. Location 0F29 is used to count the number of iterations, and a conditional jump causes a return to the Keyboard Kit Program when this reaches 00 . This must be set to 10 before re-running the program:
\(\left.\begin{array}{cc}Address:

0F20 \& Contents:

0F21 \& FF\end{array}\right\}\)| Comment: |
| :--- |
| Load AC with: |
| Data |

Brorluitamk Capacitive discharge electronic ignition kit
 VOTED BEST OF $8 S_{S S T E M S}^{S T S}$
 OFSTED BY 'POPULAR MOTORING' | MAGAZT |
| :---: |
| OT |
| 14 |
 * Smoother running
 * Instant all-weather starting
 * Continual peak performance
 * Longer coil/battery/plug life
 * Improved acceleration/top speeds
 * Up to 20% better fuel consumption
 Sparkrite Mk 2 is a high performance, high quality capacıtive discharge electronic ignition systern in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $15 / 30$ mins.
 Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm, It will perform equally well with new, old, or even badly pitted points and is not dependent upon the owell time of the contacr breakers for recharging thich eliminates the problems of SCR lock on and, therefore, eliminates the possibisity of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect
 THE KIT COMPRISES EVERYTHING NEEDED
 Ready drilled pressed steel case coated in matt black epoxy resin, ready
 drilled base and heat-sink, top quality 5 year guaranteed transformer
 and components, cables, coil connectors, printed circult board, nu bolts, sticon grease, full instructions to make the k it positive earth, and 10 page installation instructions
 optional extras
 Eiecronict conventional igntion swich
 Gives instant changeover from "Sparkrite" ignition to conventiona ignition for performance comparisons, static timing etc, and wit also switch the ignition off completely as a security device, Cos excluded Also available RPM limiting control for dashboard mounting (fitted in case on ready built unit).
 CALLERS WELCOME. For Crypton tuning and fitting service phone (0922) 33008
 PRICES INCLUDE VAT. POST AND PACKING Improve performance \& economy NOW NOTE-Vehicles with current impulse tachometers (Smiths code on dial RV
 puire a tachometer pulse slave unit. Price $£ 3.35$ inc VAT, post $\&$ packing

Electronics Design Associates, Dept.IPE4
82 Bath Street, Walsall, WS 1 3DE. Phone: (0922) 33652
Name
Address

cmos with discounts:

Any ${ }^{3}$ mix 10: for 25, 25 for 100. 33 . for 1.000

Quartz Crystals $100 \mathrm{kHz}, \mathrm{MHz}, \quad 2.097152 \mathrm{MHz}, \quad 32768 \mathrm{MHz}$, 4.194304 MHz , all same price $\mathbf{5 3 . 7 5}$. 32.768 kHz TO5 can. $\mathbf{4} 4.50$. 50 Hz time base kit for clocks. etc. E5.91 Dalo' pen. 75 p .

4000	$\mathbf{1 . 2 0}$	4037	1.04	4075	0.24	14175	1.44	14528	1.22	E LEO DISPLAY
4001	0.20	4038	1.20	4076	1.71	14194	1.47	14529	1.72	DL-TOUE 0.3

Terms C W.O. Add VAT to all prices at 8%. Post. etc U.K. $25 p(+2 p=27 p)$ per ordes. All orders processed same day. Official Govt, Varsity. Poly etc. orders (written or telephoned) welcome

GREENBANK ELECTRONICS (Dept. W4P)
94 New Chester Road New Feriy. Worral Merseyside L62 5 AG England

Especially designed for general purpose use with guitars, PA systems etc. This amp will provide 50 Watts RMS into 8 ohms with harmonic distortion level as low as $\mathbf{0 . 1 5 \%}$. Robust case and load fault protection contribute to the rugged design, which incorporates an IC mixer/pre-amp (giving 2 separate inputs) and a
£29.95 + H VAT (Order code 997-011)
thermally compensated po wer amplifier 00 KHz with sensitivity 30 mV for full output and 52 dB sig. to noise ratio.

O'seas orders-add 15\% for P+P. All items offered for sale subject to the Terms of Business sel out in Doram Edition 3 catalogue, price $60 p$ the Doram Kit brochure is also available, price $25 p$ Combined price only 70 p which also entitles you to 2×25 p vouchers, each one usable on any order placed to the value of $£ 5.00$ or more (ex. VAT) DORAM ELECTRONICS LTD
PO. BOX TR8. WELLINGTON RD IND EST LEEDS LS12 2 UF

0F22	8 F)	Delay with:
0F23	FF)	Data
0F24	B8	\{	Decrement \& load AC
0F25	04		from PC + Disp.
0F26	9 C		Jump if $A C \neq 0$ by:
0F27	F8		-8
0 F28	$3 F$		Exchange P3 with PC
0F29	10		Loop counter

The instruction at 0F24, B8, decrements the number at the specified location and loads the AC with the result. By changing the loop counter initial value delays of up to 67 seconds can be obtained.

SOUNDS

Unlikely as it may sound, an ordinary transistor radio is a useful tool for the microprocessor programmer. Consider what happens on running the following program:
\(\left.$$
\begin{array}{cc}\text { Address: } & \text { Contents: } \\
\text { 0F30 } & \begin{array}{l}\text { 8F } \\
0 \text { F31 } \\
0 \text { F32 }\end{array}
$$

FF

0F33 \& 90

FC\end{array}\right\}\)| Comment: |
| :--- |
| Delay with: |
| Data |
| Jump by: |
| -4 |

The program can never exit from the loop, each time jumping back to 0F30. On beginning execution at OF30 the keyboard display will go blank and nothing ostensibly happens. Now place the transistor radio near to the circuit board and turn it on. A click of about 3 Hz will be heard corresponding to each jump, due to radiation by the circuit's power supply lines. By decreasing the delay parameter at 0F31 a higher pitch may be obtained; for example, 06 gives a note near middle C. More complex programs have been devised to play tunes, and below is a program that generates a note which rises in pitch more and more rapidly; it is left to the reader to work out how!

Address:	Contents	Comment:
OF20	C4	Load AC with:
0F21	00 \{	
0F22	8 F	Delay with:
0F23	01	1
0F24	B8	Decrement \& load AC from PC+
0F25	$0 \mathrm{~B}\}$	$+0 \mathrm{~B}$
0F26	9 C	Jump if $A C \neq 0$ by:
0F27	F8 $\}$	-8
0F28	B8	Decrement \& load AC from PC +
0F29	F8	-8
0F2A	9C	Jump if $A C \neq 0$ by:
0 F2B	F6 $\}$	-0A
0F2C	B8	Decrement \& load AC from PC +
OF2D	F6 $\}$	-0A
OF2E	90 \{	Jump by:
OF2F	F0 $\}$	-10
0F30	00	Loop counter

Although crude, this method of listening to a computer is a useful one; in fact in the early days of computers the radio was a standard piece of fault-tracing gear. For more serious music synthesis the flag outputs on the microprocessor can be fed to the input of an audio amplifier; these outputs are controlled by loading the status register with suitable numbers.

DISPLAY INTERFACE

The keyboard and display look to the CPU just like a row of eight consecutive memory locations, OD00 0D07; see Fig. 1. To illuminate a digit, a binary number is stored in the location corresponding to that digit (0D00 is the rightmost digit). Each of the lower seven bits of the number controls the illumination of one of the segments of the display digit; when set to " 1 " the segment is lit, " 0 " not lit. The lowest bit controls the " a " segment through to the highest but one which controls the " g " segment.
In this way any combination of the seven segments, not only the numerals, may be formed. Only one display is illuminated at a time. The following program illustrates how this works by generating a character moving along the displays and changing as it goes:

Fig. 3. Flowchart for the millisecond reaction timer program, which consists of three basic parts: the random delay, the millisecond counter, and the display section

Address:	Contents:	Comment:
0F20	$8 F$ \}	Delay with:
0F21	40 \}	Data
OF22	A8	Increment \& load AC from PC +
0 F 23	02 \}	+2
0F24	C9	Store AC to P1 +
0F25	00 \}	Counter
0F26	90 \}	Jump by:
0F27	F8 $\}$	-8
0FF9	OD	Sets P1H
OFFA	00	Sets P1L

THE DISPLAY ROUTINE

One part of the Keyboard Kit Program, the Display Routine, reads the data in locations OF00 to OF07 of the RAM and uses these to light up the eight display digits in the way just described. This routine cycles repeatedly through the eight displays, giving an apparently continuous display, until a key-press is detected. Then the routine jumps either to the address in P3 (if a command key was pressed) or to $\mathrm{P} 3+2$ (if a number key was pressed).

Since this part of the ROM is written as a subroutine, one's own programs can use it to display the results of calculations, interpret key-presses etc. It assumes that P2 points to the first digit code, normally 0 F00, and it takes the eight words as the eight digit codes. By altering the value in the P2 register before entering the Display Routine, eight codes stored at a different starting address can be displayed.

The exercise in the SC/MP Keyboard Kit Users' Manual demonstrates this; on jumping to 0185 (the start of the

Display Routine) the codes previously entered in locations 0F20 to 0F27 cause "did good" to be displayed.

Another useful part of the Keyboard Kit Program, Address to Segments, takes the two words in P2+0C and $P 2+0 E$ and generates the four segment codes for the four hex digits in them. The final program given below uses this, which starts at 015A, to display the reaction time.

REACTION TIMER

The following program measures reaction times to the nearest millisecond, using one of the keys on the keyboard as the response button. After an unpredictable delay of between 2 and 30 seconds a segment lights up on the display. At this instant the program starts counting in milliseconds until the subject presses the "MEM" key. Then the reaction time is displayed (in decimal) as four digits on the display. Pressing the " 0 " key resets the program for another attempt. The flowchart of Fig. 3 should make the operation clear.

Reaction Timer Program

Address: Contents: Comment:

0F14	C2	Load AC from P2 +
OF15	$05\}$	Disp.
OF16	01	Exchange AC and E
0F17	8 F \}	Delay with:
0F18	A0 $\}$	Data
0F19	02	Clear carry bit
0F1A	70	Add E to AC
0F1B	9 E	Jump if AC $\neq 0$ to P2 +

$\left.\begin{array}{ll}\text { OF1C } & 15 \\ \text { OF1D } & \text { C4 }\end{array}\right\} \begin{aligned} & \text { Disp. } \\ & \text { Load AC with: }\end{aligned}$
0F1E

0 F22
0F23
0F24
0F25
OF26
0F27
0 F28
0F29
0F2A
0F2B
0F2C
0F2D
0F2E
0F2F
0F30
0F31
0F32
0F33
OF34
0F35
0F36
0F37
0F38
0F39
0F3A
0F3B
0F3C
0F3D
0F3E
0F3F
0F40
0F4
OF42
0F43
0F44
0FF9 0D
OFFA 00
OFFB
0FFC
$9 E$ Jump if $A C \neq 0$ to $P 2+$
$0 F 1 F \quad \mathrm{CA}\left\{\begin{array}{l}\text { Data } \mathrm{AC} \text { to } \mathrm{P} 2+ \\ \text { Store }+\end{array}\right.$
$\begin{array}{ll}\text { 0F20 } & \text { OC } \\ \text { 0F21 }\end{array}$ CA $\left\{\begin{array}{l}\text { Disp. } \\ \text { Store AC to P2 }+\end{array}\right.$
Disp.
Exchange AC and E
Delay with:
Clear carry bit
Jump if $A C \neq 0$ to P2 +

Data
Load AC with:
Data
Delay with:
Clear carry bit
Load AC from P2 +
Displ.
Decimal add to AC:
Data
Store AC to P2 +
Disp.
Load AC from P2 +
Disp.
Decimal add to $A C$:
0 (and carry bit)
Store AC to P2 +
Disp.
Load AC from P1 +
Disp.
Add to AC:
$+1$
Jump if $\mathrm{AC} \neq 0$ to $\mathrm{P} 2+$
Disp.
Load AC with:
Data
Exchange AC and P3H
Load AC with:
Data
Exchange AC and P3L
Exchange P3 and PC
Jump to P2 +
$\}$ Disp.
Jump to P2 +
Disp.
Sets P1H
Display \& keyboard
Sets P1L
Sets P2H
RAM

NEWS BRIEFS

Microprocessors at Seminex '77

A^{1} inis year"s Seminex London symposium, from April 18 to 22, special attention is being given to the developments in microprocessors.

Held in the main theatre of the Imperial College, three of the five days symposium will be devoted to six sessions (two each day) on various aspects of microprocessors. These sessions have been composed in association with SERT and are designed to attract delegates on a one. two or three day basis.

The microprocessor programme runs from April 19 to 21 and its contents are as follows:

Day One-Introduction, Some Microprocessor Sistems: Day Two-Sistem Development and Design Aids, Latest Developments in Design: Day Three-High Performance Applications, Using the Microprocessor.
Other subjects being covered during the symposium are: Digital I.C.s (7 papers), Linear I.C.s (8 papers), Hybrids and Optoelectronics (6 papers) and Power Semiconductors (7 papers).

Further details and procedure for obtaining tickets to the Seminex 77 London Symposium can be obtained from Seminex Ltd., 2 Old Stone Link, Ship Street, East Grinstead, Sussex, RHI9 4EF.

CINE/TAPE SYNCHRONISER (October 1976)

it has been brought to our attention that the motors fitted to some types of cine projector are not capable of being started on load. Constructors should therefore check that their projectors are suitable before using the Auto Start circuit.

GAMES MACHINE

(December 1976)
In Fig. 3, page 971, the pin connections for the plastics encapsulated UA7805 are shown incorrectly, Pins 2 and 3 should be transposed. Pin 1 is correct as shown.

CAR EXHAUST MONITOR

(January 1977)
We understand that some readers have been experiencing difficulty in obtaining the gas detector type TGS 308. This device can be obtained from Trampus Electronics Ltd., 58-60 Grove Road, Windsor, Berks. SL4 1HS. (See advertisement on page 70 of the same issue),

SOLAR HEATING SYSTEM CONTROLLER (February 1977)

The system shown in Fig. 1 is intended only to show the general principles of solar water heating. A practical system requires a number of additional features, such as expansion and header tanks.

A list of solar heating manufacturers and installation consultants is published by the International Solar Energy Society (UK Division), Royal Institution, 21 Albemarle Street, London W1.

In Fig. 4, the track fourth from the top of the board should be deleted, and the three tracks above it (and their connections) moved down by one space.
Trade and export enquiries welcome LONDON $-40-42$ Cricklewood Broadway NW2 3ET Tel：01－452 0161．Telex 21492

TOP 400 SEMICONDUCTORS FROM THE LARGEST RANGE IN THE U．K． All devices manufacturer＇s branded stock2N696

2N696	0.35	2N3703						
2N697	0.30			2N638	0.62	2N3704	0.15	40361
:---	:---	:---	:---	:---		N699	0.55	$2 N 3706$
:---	:---	:---	:---	$\underset{\sim}{2}$ $\begin{array}{ll}2 N 706 A & 0.12 \\ \text { 2N70 } & 0.21 \\ 2 N 709 & 0.50 \\ 2 N 718 & 0.27\end{array}$之之				

こ ふ
RGEST

$120 |$| BFX30 |
| :--- |
| BFX84 |
| BFX85 |
| BF |
| BFX8 |

0.15	40361
0.15	40362

0.45	$B C 158$	0.11	80115
0.45	$8 C 159$	0.14	80116
0.48	BC160	0.50	80131

15	40362			
16	40363		0.16	40363
:---	:---			
0.18	40406			
0.16	40407		0.16	40407
:---	:---			
.18	40408		.18	40408
:---	:---	19 40410	0.50	80131
:---	:---			
0.50	80132	$\begin{array}{ll}\text { BC161 } & 0 . \\ \text { BC167 } & 0 .\end{array}$ $\begin{array}{ll}7 & 0.5 \\ 8 & 0.12 \\ 0.12\end{array}$		

Full range of Bridge Rectifiers and
Diodes listed in new catalogue THYRISTORS

DISPLAYS 7 Segment

	Simple	Double	Display
DL704	2.00	$3 \cdot 00$	03 in Rod
DL707	200	3.00	0.3 in Read
DL747	2.80	3.40	0.5 in Rad
OL750	2.50	3.40	0.510 Red

SEE MARSHALL＇S FOR CMOS

CLOCK MODULES
Bulfi and tested－requires onty switches and transtons
modulas
MAl 1202 hr 5 in display $\begin{array}{ll}\text { MA } 102 \mathrm{FH} & 2 \text { ht } \sin \text { display } \\ \text { MA } 1010 \mathrm{E} & 12 \mathrm{hr} \text { s4in display }\end{array}$ MAl010G 24 hr 84 in display

CAR CLOCK MODULE
maio03 Buill Tested liv supdly
MAl0tG digit moduie

MICROPROCESSOR SYSTEM

SC／MP INTROKIT

£68． 61 exc．VAT Budget introduction to SC MP microprocessing－
Board，CPU，Memories．Crystal，etc．Built－in debugging．
Complete with explanatory data and applications－ Complete with explanato
National Semiconductors．

SC／MP
KEYBOARD KIT
Budget VDU lor Teletype substitute．The calculato yype Full instruction and data supplied with each introm and data supplied with each kit．Com

 ALL PRODUCTS FULLY GUARANTEED TO MANUFACTURER＇S SPECIFICATIONS

WE ALSO STOCK MOST COMPONENTS FOR E．E
\star PROJECTS $*$
OUA NEW CATALOGUE LISTS AN EXTENSIVE
RANGE OF COMPONENTS AND ACCESSORIES INVALUABLE INFO ON PYN CONNECTIONS ETC
CRYSTALS CASES TRANSFORMERS
$\begin{array}{lll}\text { GFYSTALS CASES TRANSFORMER } \\ \text { GALVES } & \text { FUSES } & \text { HEATSINKS }\end{array}$
$\begin{array}{lll}\text { VALVES } & \text { FUSES } & \text { HEATSINKS } \\ \text { CHOKES } & \text { BOOKS } & \text { MOICATORS } \\ \text { KNOBS } & \text { METERS } & \text { HAROWARE }\end{array}$
KNOBS METERS HARDWARE
CABLES DATA SOCKETS
CABLES DATA SOCKETS OROE
POST AND PACKING CHARGE 20

SOLDERLESS BREADBOARDING - DECS

The famous DEC System of Solderless Breadboarding is ideal for both the young and more mature students of Electronic Engineering as 11 enables circuits to be tried and allows components to be used over and over age of the specially designed contact Circuit Designer who wishes to experiment with and perfect his circuit quickly ye economically.

S-DEC (Model PB11)

This. the most popular Board, is designed solely for the use of discrete comporients and lis particularly usetul tor basic educational purposes.
ino. of Co
off $£ 1 \cdot 98$
5 of1 $£ 1.76$
T-DEC (Model PB21)
This Board allows 2 TOS or 1 OIL IC Station to be used and so is primarily intended for discrete work of for linear IC application where considerable numbers of discrete components may be required
(No of

1 OHf $£ 3 \cdot 62$
5 Ot1 E3. 21

M-DEC 'A' (Model PB31)

The u-DEC 'A' is specially designed for ease of use with IC s and allows 2 DL or 4 TOS stations to be used but will accommodate discrete components with equal tacility
(No. of Contacts
(No. of Contacts 208)
$\begin{array}{lll}1 \\ \text { oft } & 53.97 \\ 5 & 014 \\ 53.53\end{array}$

M.DEC 'B' (Model PB41)

The μ-OEC B ' is for mimilar uses as 4 -OEC A but has two 16 lead IC sockets as part of the Board
(No of Contacts 208)
101156.97

DEC ACCESSORIES

16 OIL adaptor (with socket) PBO62
10 TOS adaptor (with socket) PB072
Single ended leads (set of ten) P8 101
Oouble ended leads (set of ten) PB102
1 mm plugs (set of ten) PB103

1 mm plugs (set of ten) PB103 $\begin{aligned} & \text { All prices include } 8 \% \text { VAT }\end{aligned}$
P \& P 25p
Our retall counter is now open, stocking a large variety of audio and electronic parts WE ARE SITUATED 2 MIN. WATFORD JUNCTION STATION
THE COMPONENTS CENTRE 7 Langley Road, Watford, Herts., WD1 3PS.

Tel. Watford 45335

A MINIATURE POWER TOOL

 to speed your building- Super 30 Kit (30 Tools) (incl. drill without stand)
\& 17.62 plus P. \& P. 85pMk. II Drill Stand
E4.40 plus P. \& P. 35p
- Mk. II Drill only
\&8.79 plus P. \& P. 35p
- Flexible Drive Shaft
45.46 plus P. \& P. 25p

Transformer 240 V a.c. $/ 12 \mathrm{~V}$ d.c.
66 plus P. \& P. 70p

- Variable Speed Transformer 68.25 plus P. \& P. 70p

Replacement drills, stones, burrs, etc. 40p each. Circular saw blades $\mathbf{5 0 p}$ each. $\mathbf{6 2}$ per set of 4 sizes. P. \& P. any quantity 20 p.

All VAT inclusive

PRECISION PETITE LTD.

119a High Street, Teddington, Middlesex TW11 8HG Tel. 01-977 0878 (24-hour answering service)

WILMSLOW AUDIO THE Firm for speakers!
 Tannoy 12 in Monitor HPD Tannoy 15 in Monitor HPD
 587.00

SPEAKERS
Baker Group 25, 3, 8 or 15 ohm Baker Group 35. 3. 8 or 15 ohm Baker Group 50/12 8 or 15 ohm Baker Group 50/15 8 or 15 ohm Baker Deluxe 124.8 or 15 ohm Baker Major 3, 8 or 15 ohm Baker Superb 8 or 15 ohm Baker Regent 12in 6 or 15 ohm Baker Auditorium 12in 8 or 15 ohm Baker Auditorium 15 in 8 or 15 ohm
Castle 8RSIDD 4 or 8 ohm
Celestion G12M 8 or 15 ohm
Celestion G12H 8 or 15 ohm
Celestion G12/50 8 or 15 ohm
Celestion G12/50TC 8 or 15 ohm
Celestion G12/50 2236 s/cone
Celestion G12/50 $2239 \mathrm{~s} / \mathrm{cone}$. alum dome Celestion G15C 8 or 15 ohm Celestion G18C 8 or 15 omm Celestion HF1300 8 or 15 omm Celestion HF2000 8 ohm Celestion MH1000 8 or 15 ohm Coles 4001G
Coles 4001 K
Decca London ribbon horn
Decca London CO/1000/8 crossover Decca DK30 ribbon horn
Decca CO/1/8 crossover (DK30)
EMI 14×9 in bass 8 ohms. 14A770
EMI $8 \times 5 \mathrm{in}$. 10W, d/cone, roll surr
EMI $6 \frac{1}{2}$ in d/cone. roll surr.. 8 ohm
EMI 8 in roll surr. bas
EMI 5in mid range
Elac 59RM 109 (15 ohm). 59RM114 (8 onm) Elac $6 \frac{1}{2}$ in d/cone, roll surr.. 8 ohm Elac 10ın 10RM239. 8 ohm
Eagle FR4
Eagle FR65
Eagle FR8
Eagle FR10
Eagle HT15
Eagle HT21
Eagle MHT10
Eagle FF28 Multicell horn
Fane Pop 15, 16 ohm
Fane Pop 33T, 8 or 16 ohm
Fane Pop 50.8 or 16 ohm
Fane Pop 55. 8 or 16 ohm
Fane Pop 60, 8 or 16 ohm
Fane Pop 70, 8 or 16 ohm
Fane Pop 100, 8 or 16 ohm
Fane Crescendo 12, 8 or 16 ohm
Fane Crescendo 12BL. 8 or 16 ohm
Fane Crescendo 15/100A, 8 or 16 ohm
Fane Crescendo 15/125,8 or 16 ohm

SPEAKERS

SPEAKERS

Fane Crescendo 18, 8 or 16 ohm

Fane 910 Mk 4 horn

Fane 920 Mk II horn
Fane HPX1 crossover 200W
Fane $13 £ \times 8$ in, 15 W dual cone
Fane 801 T in d/c. roll surr
Gauss 12in
Gauss 15 in
Gauss 18in
Goodmans Axent 100
Goodmans Audiom 2008 ohm
Goodmans Axiom 4028 or 15 ohm
Goodmans Twinaxiom 8.8 or 15 ohm
Goodmans 8P 8 or 15 ohm
Goodmans 10P 8 or 150 hm
Goodmans 12P 8 or 15 ohm
Goodmans 12PG 8 or 15 ohm
Goodmans 12PD 8 or 15 ohm
Goodmans 12AX 8 or 15 ohm
Goodmans 15AX 8 or 15 ohm
Goodmans 15P 8 or 15 ohm
Goodmans 18P 8 or 15 ohm
Goodmans 18P 8 or 15
Goodmans Hifax 750P
Goodmans 5 in midrange 8 ohm
Jordan Walts Module, 4.8 or 15 ohm
Kef T27
Kei T15
Kef B110
Kef B200
Kof B139
Kef DN8
Kef DN12
Kef DN13 SP1015 or SP 1017
Lowther PM6
Lowther PM6 Mk 1
Lowther PM7
Peerless KOIODT 4 or 8 ohm
Peerless DT10hFC 8 ohm
Peerless KO40MRF 80 hm
Peerless MT225HCF 80 hm
Richard Allan HP8B
Richard Allan LP8E
Richard Allan DT20
Richard Allan CN8280
Richard Allan CN820
Richard Allan Super Disco 60W 12ın Richard Altan CG15 15 in bass
Richard Allan Super Disco 10 in 50 watt
Richard Allan Super Disco 8in 50 watt
Radford BD25
Fadford MD9
Radford MD6
Aadford TD3
Aadford Cross Over Network
Tannoy 10 In Monitor HPD

SPEAKER KITS

Baker Major Module 3.8 or 15 ohm	each	£18.00
Fane Mode One Mk II 15W	each	¢10.35
Fane D40 Disco Kit	each	\$19.95
Goodmans DIN 204 or 8 ohm	each	£15.75
Goodmans Mezzo Twin Kit	pair	251.95
Helme XLK 30	pair	E21.95
Helme XLK 35	pair	£26.75
Helme XLK 40.	pair	E38.50
Kefkit 1	pair	E59.50
Kefkit III	each	\$56.00
Peertess 1060	pair	£61.50
Peerless 1070	each	£54.95
Peierless 1120	each	£61.50
Peerless 2050	pair	£43.95
Peerless 2060	pair	£58.50
Richard Allan Twin assembly	each	£13.95
Richard Allan Triple 8	each	£20.75
Richard Allan Triple 12	each	£25.95
Richard Allan Super Triple	each	£29.50
Richard Allan RAB Kit	pair	£37.80
Richard Allan RA82 Kit	pair	£59.40
Fichard Allan RA82L Kit	pair	¢65.70
Wharfedale Denton 2XP kit	pair	E23. 25
Wharfedale Linton 3XP kit	pair	[14. 25
Wharfedale Glendale 3XP kıt	pair	£49-50
1-F]		
NDEMONST	1	N

Akai, Armstrong, Bowers \& Wilkins. Castle. Celestion Dual, Goodmans. Ket. Leak, Pioneer. Radford Richard Allan Rotel. Tandberg. Trio. Videotone. Wharfedale, etc —ask for our Hi-Fi discount price list.

THIS MONTH'S SPECIALS! (Cart £2 50) Videotone Minimax 1
143.00

Videotone Minimax
£ 114.00
Plonee 7070
Trio KR 2600
Sugden A21
Minimax Mk II
£199.00

Sansul SC2000/2002
£130.00
e stock he complete Radford range of amplifiers. preamplifiers. power amplifiers. luners. etc., and also Radford Audio Laboratory equipment. Iow distortion escillator. distortion measuring set, audio noise meter. etc.

ALL PRICES INCLUDE VAT
(PAICES CORAECT AT 9/2/77
Send stamp for free 38 page booklet Choosing a Speaker
ALL UNITS GUARANTEED NEW AND PEAFECT Carrlage and insurance. Speakers up to 12in 60p. 12in £1. 15 in $£ 175$. 18 in £2 50 Kits $£ 1$ each ($£ 2$ per pair) Tweeters and Crossovers 33 p each

WILMSLOW AUDIO
 Dept PE

Loudspeakers, mail order and export Swan Works, Bank Square, Wilmslow. Hi-Fi. Radio and TV: Swift of Wilmslow 5 Swan Street, Wilmslow, Cheshire
PA, Hi-Fi and Accessories: Wilmslow Audio, 10 Swan Street, Wilmslow Cheshire.
Telephone: Loudspeakers, mail order and export-Wilmslow 29599; Hi-Fi, Radio. etc.-Wilmslow 26213.
Access and Barclaycard orders accepted by phone

GREENWNELD
 443 Millbrook Road Southampton Sロ1 ロHX Tel：（ロフロ3）フフ25ロ1

All mail orders and callers to this address please－callers only to 21 Depttord Broadway．SE8（Tel 01－692 2009）and 38 Addiscombe Road，Croydon

4 PAGE CATALOGUE

10P＋LARGE S．A．E．
Free with orders over £3
UIGITAL I．C．s

7400	12p	7450	15p	7495 73p
7401	14p	7451	14p	749685 p
7402	14p	7453	14p	74107 37p
7404	17p	7454	14p	7412138 p
7405	23p	7460	14p	7412251 p
7406	29p	7472	29p	7412384 p
7408	14p	7473	29p	74132 S4p
7410	13p	7474	29p	74150173 p
7413	29p	7475	51p	74154144 p
7414	62p	7476	2 p	7415573 p
7420	14p	7483	91p	74157808
7430	14p	7486	40 p	74159200 p
7432	18 p	7490	46p	74174110 p
7437	18p	7491	75p	74179120 p
40	15p	7492	52	74180120 p
7447	84p	7493	52p	74367120 p

SLD2128 dual 128 bit static shift register ${ }_{6} \mathrm{C} 2$.
DiL Sockets－8 pin 12p； 14 pin 13p； 16 pin 14p． 100 －less 25\％
LINEAR I．C．s
741 25p： 555 40p； 723 （TO99）50p
Mastic Voltage Regulators： 12 V 50 ． ${ }_{80} 1012$

TRANSISTORS

$\begin{array}{lllllll}\mathrm{AC} 127 & 15 \mathrm{p} & \mathrm{BC} 183 & 12 \mathrm{p} & 2 \mathrm{~N} 2646 & 52 \mathrm{p}\end{array}$ $\begin{array}{llllll} & \text { AC128 } & 15 \mathrm{p} & \mathrm{BC} 184 & 12 p & \text { 2N2926G } \\ \text { 12p }\end{array}$ AD16 BC
 BC 1 BC 1
 BC 1 BC 1 BC
 BC147 BC14
 BC148 BC1
 $\mathrm{BC149}$ BC 57 BC 158
 BC 158 BC 159 BC 161

BC161
BC182

VEROBOARD

Good stze＇offcuts；all packs contain 100 （Styn．（About 8 piecesh All packs $£ 1-20$ ．
PackA，all 0 lin pitch．
Pack
PackC．Pack D．all 0 in plaind 0
Alse－avei
101bs $£ 30$ ． \qquad It 110 ع3．45；
 0.1 in or 0 sided 15 in pins，single or double

DIODES AND LEDs AND SCR＇s
500 V 5A SCR 45p；400V 2A Triac 80p； Diac BR100 25p； 400 V 15A Triac $£ 1.50$ ； ED 15p； 3 LED Red 22p；Green yellow or amber $24 p$
$\begin{array}{llll}1 N 4002 & 5 p ; & 1 N 4004 & 6 p ; \\ \text { 1N4007 } & 9 p ;\end{array}$ N4148 4p；BY127 12p； 100 V 3A 12p 400 V 3 A 15 p ；OA81 5p；OA91 5p：OA47 10p
 $250 \mathrm{~V} 2 \mathrm{~A} 40 \mathrm{p} ; 200 \mathrm{~V} 5 \mathrm{~A} 70 \mathrm{p}$ ．All volteges
Zeners－ 40 m m B BZ 888 ．All ＋ 34 V －plastic from 3 V to 200 V 20 p 3 RESISTORS
Carbon film 5\％$\frac{1}{2}$ W miniature．All values E12 series from 1Ω to $10 \mathrm{M} \Omega$（over iMn 10% 1 1 p each．
Metal Film 5% 1W．All values in E12 series from 27Ω to $10 \mathrm{M} \Omega 2$ 2tp．
Sub－min presets，vert．or horiz．all values from 20Ω to $4 \mathrm{M} 7 \Omega, 7 \mathrm{p}$ ．
 Wirewound 2 F W all values from in sp ． 47 K 10p each

TRANSFORMERS

$6-0-6 \mathrm{~V} 100 \mathrm{~mA} 90 \mathrm{p}: 90-9 \mathrm{~V} 100 \mathrm{~mA} 95 \mathrm{p}$ $12-0-12 \mathrm{~V} 50 \mathrm{~mA} 90 \mathrm{D} ; 12-0-12 \mathrm{~V} 100 \mathrm{~mA}$ 12－0－12V 1A E2－80： 20 V 55 mA 90 p ： 22 V $100 \mathrm{~mA} 51 ; 29 \mathrm{~V} 50 \mathrm{~mA}$ 85p； 6 UV 1 ；AE1．95 $6-6 \mathrm{~V} 1+\mathrm{A} \mathrm{E2}-30: 12 \mathrm{~V} 150 \mathrm{~mA} 80 \mathrm{p}: 17 \mathrm{~V}$ 1A

REEDS

 CIRIRE
WIRE

RF CHOKES
$075,295.6$ B．10，22，all 10 p each， 15 5． 50.75 .10 mH ，all 30 p each

CAPACITORS

Ceramic plate， 22 pF to 1.000 pF 2 p ； polyester $1.000 \quad 10 \quad 6.800 \mathrm{pF}$ 5p； 0.01 $0.015,0.022,0.033,0047,0.068,0.1 \mathrm{mF}$ $4 \mathrm{p} ; 0.15,0.22 \mathrm{mF} 5 \mathrm{p} ; 033 \mathrm{ep} ; 0.47 \mathrm{sp}$
$0.6810 \mathrm{p} ; 1 \mathrm{mF} 12 \mathrm{p} ; 2.2 \mathrm{mF} 18 \mathrm{p} ; 3.3 \mathrm{mF}$

$025 \mu \mathrm{~F} 30 \mathrm{p}$ ； $22 \mu \mathrm{~F} 55 \mathrm{p}$ ．
25uF 30p； $22 \mu \mathrm{~F} 5 \mathrm{p}$.
Polystyrene 10pF to 1.000 pF 4p； $1,200 \mathrm{pF}$ o 10.000 pF 6 p ．All 21%
Electrolytics：
All 25V： $0 \cdot 47,1,2 \cdot 2,4 \cdot 7,10,22,33,47 \mu \mathrm{~F}$ 7p， $120 \mu \mathrm{~F}, 150 \mu \mathrm{~F}$ हp． $220 \mu \mathrm{~F}$ 10p： $330 \mu \mathrm{~F}$ 12p；470uF 15p；1，000uF 23p；2．200uF 33p； $47 \mu \mathrm{~F}$ 80： 100 ； $4,700 \mu \mathrm{~F} 58 \mathrm{p} .40 \mathrm{~V} .10,22$. $470 \mu \mathrm{~F}$ 17p； $1.000 \mu \mathrm{~F} 30 \mathrm{p} ; 2,200 \mu \mathrm{~F} 56 \mathrm{p}$ ； 4.700 uF （Can） 72 p ．

Tantalum Bead：$\mu F / V 0.1,022,033$ | $1 \cdot 47$, | 0.68, | 1, | $1 \cdot 5$, | 2 | 2. | $3 \cdot 335 \mathrm{~V}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $8 / 35,70 / 25,15 / 10$ | $22 / 16$ | $33 / 10,47 / 6,68 / 6$ | | | | | 100／3， $12 p$ each

BREADBOAROS
S－DEC Breadboard E2－ 10
T－DEC Breadboard E3 75
Special price to colleges etc．for
CALCULATORS－ 22.75 ！
There has 10 be a catch－these Rapid－ man 1208 machines are a mains－ powered desk top calculator with 0－9 and ooc but the liquid crystal display inc \％，but the liquid crystal display is missing however．apart from this they components．Overall size 11×7 亿 $九 3$ in Only E2． 75 ．
KEYBOAARDS
Front half of calculator，really Case $130 \times 75 \mathrm{~mm}$ has display window． 2 slide

DISPLAYS

Brand new 7 －segment LEDs． 9 MAN3M VEROBOXES AND CASES

Professional 2 part boxes made of dark and light grey high impact polystyrene． | 2518 | |
| :--- | :--- |
| $2520 \times 65 \times 40 \mathrm{~mm}$ | $\mathbf{E 2 . 0 5}$ |
| $150 \times 80 \times 50 \mathrm{~m}$ | | $\begin{array}{ll}2522188 \times 110 \times 60 \mathrm{~mm} & \text { £3．15 }\end{array}$ Sloping front version，ideal for mixers

$2523 \quad 220 \times 174 \times 100,52 \mathrm{~mm} \quad \$ 5.75$ $2523220 \times 174 \times 100 / 52 \mathrm{~mm}$ \＄5．75
Cases．white plastic top and bottom， Cases．White plastic top and bottom，
front and back aluminium panels that front and back aluminium panels tha
slot in Type． slot in Type，
$1410 \quad 205 \times 140 \times 40 \mathrm{~mm}$
$1419205 \times 140 \times 40 \mathrm{~mm}$
$1412 \quad 205 \times 140 \times 110 \mathrm{~mm}$
$1237 \quad 154 \times 85 \times 40 \mathrm{~mm}$
$\begin{array}{ll}1238 & 154 \times 85 \times 60 \mathrm{~mm} \\ 1239 & 154 \times 85 \times 80 \mathrm{~mm}\end{array}$
$\begin{array}{ll}\text { Small general purpose } & \mathbf{~} 2.50 \\ \mathbf{3 . 0 0}\end{array}$
 DEVELOPMENT PACKS Save โ£ร£ s by buying a full range of
components at one go＇All full spec marked devices no rejects or old stock 50 V ceramic plate capacitors $5 \% 10$ of each value． 22 pF to 1000 pF total 210 capacıtors $\$ 2 \cdot 70$ ．
CR25 carbon tilm resistors．$\frac{1}{3}$ watt 5° ．
to of each value 10 ． 10 of each value 1052 to 1 Mri total 610 I6． 00.

Extended range resistors EA .30 ．
 esistors EA ． 30 ．

 Electrolytics．wire ended 25 V working10 each of 1.22 .4 .4 .10 .22 .47 and 100 mF 70 capacitors for $\mathrm{E} 3 \cdot 20$ ．
Zeners $400 \mathrm{~mW} 5^{\circ}$ B BZY88 10 each 3 V to 30 V total 260 £ 14 － 00.
；pack 5 of each value c8－20．
Tantalum Bead caps 14 values from 0135 to 1003 10 of each total 140 caps $£ 12.00$ ．

See Practical Wireless for detals of packs of components，surplus goods．etc All prices quoted include VAT at 8 or $12 \frac{1}{2} \%$ ．Add $20 p$ postage on orders under C3．Minimum order £1．Most orders despatched on day of receipt．SAE with enquiries．Send welcome．Surplus components always wanted．

Complete set of semiconductors $£ 4.99$
Mullard LP1186 tuner head £7．75
High quality glass fibre P．C．B．£2．45

ORION AMPLIFIER

Complete set of semiconductors $£ 9.40$ High quality glass fibre P．C．B．£2．99
Both the above PCB＇s are screen printed with component locations．
ERRANTI ZNA116E DVM I．C．Only $£ 6+8 \%$ VAT with circuits and data．Send S．A．E．for our list for the P．E．D．V．M．

\checkmark zenors		日FS98	，	27×107		27×239	${ }^{10}$	мот	
11 types	10 p	MS4A．	${ }_{11} 1.35$	21×108		21×320	${ }^{14 p}$		
BCA15P	17.	2 S 770	13p	$2 \mathrm{~T} \times 109$	119	27x384	170	887	
BFSSO	150			27x212	150	27×450	${ }_{160}$	MC1357p	
BFS88	158		${ }_{10} 29$		${ }_{179}$		100		
We can supply any FERRANTI semiconductor device to ordar SAE for list									
PE TV SOUND SEPARATOR									
Complete sat of semiconduciors $52 \cdot 30$ ．High quality glass llbre $D C D E 1$.									
PHASE LOCKED STEREO DECODER									
To Motorola apecification．COMPLETE KIT ONLY e3．50，including MC1310P，glaws flbre p．co all resistors and capacitora．LEO indicator，and full inatructions									
POSTAGE AND PACKING 15p per order．Orders over ES post free．All devices are top grade，brand new and to full manulacturer＇s spec．We do not sell seconds or repecta．Send S A．E for date sheet and price liat．									
PRICES do not include vat－ado im to items manked－AND 12\％\％TO ALL Others									
DAVIAN									

EEsCEM EAMD	
164－166 HIGH ROAD，WOOD GREEN，N22 888－3206 （also） 13 SOUTH MALL，EDMONTON，N． 9 803－1685	
MAL osper per I St．MICHAELS TERRACE，WOOD GREEN，LONDON N22 ASJ Phone：888－4474	
	＂C100＂ 100 WATT AMPLIFIER
	All built anif testect，mounted on a plain aluminiu
Treble．Each channel has it－	
own sensitivity conthis unit tr	
The loudspcaker terminals of	
$250 y^{\text {ap }}$ up to 1000 W lanps to	
the output lerminals of the	
wnit，and jou produce a fasci－ nating sound－light digplas （All guaranteed． 	GOODMANS Bin．HEADPHONES
FERRIC CHLORIDE	
\qquad	
BARGAIF PROJECT BOX A plastic box with moulded es－ trusion rails for PC or Chassis panels with metal front plate fitted with fous serews（all supplied）．Our Price $50 \mathrm{p}+8 \%$	
EPFECTS PROJECTOR＂150＂	
No diseo should be witlouth our new effects projector，we hetime	
that this is the most versatile machine for projecting coloured	
images to supplement sonrmusic．spec．：Yolls－2201240．	
A sturdy metal construction and	
U．K．CARRIAGE 50p UNLESS OTHERWISE STATED are excluding vat．Pleare add to each item the vat rate indicated．	

TTLs by TE				C-mos ics	OP AMPS	$\begin{aligned} & A C 125 \\ & A C_{1267} \\ & A A_{12828} \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & \hline \mathrm{BF} 200 \\ & \mathrm{BF} 244 \mathrm{~B} \\ & \mathrm{BF} 257 / \mathrm{B} \end{aligned}$					VOLTAGE REGULATORS		
${ }_{7}^{7400}$	${ }^{160}$			${ }_{\substack{4000 \\ 4000}}^{40}$	1458 150							(Plastic) Fixed			
	32p	7496	\%		+0			в ${ }^{\text {ara39/40 }}$							
74500		7497	30 p	${ }^{4006}$ 1200	${ }_{31140}$		208		30						
${ }_{7401}^{7401}$	120	74100 7104 100	${ }^{160}$		3300	${ }_{\text {AC1 } 197 / 8}$	200	в 8 ¢r9	30	2TK300	100	N412568 270	${ }_{-5 \mathrm{~F}} 7815$	${ }^{1300}$	15
\%	128	${ }^{\text {T4005 }}$	${ }^{60}$	${ }_{\substack{4011}}^{4001}$	${ }_{709}^{589}$		${ }^{25 p}$	${ }^{\text {BfRa }}$	34 p	2TK500	208			${ }^{1500}$	${ }^{7924} 9$
${ }_{7} 7404$	400	7409	300	${ }_{0013}^{4012}$	7615	${ }^{\text {AC188K }}$	${ }^{25}$	Bfrsa	${ }_{40} p^{2}$	${ }^{\text {2N697 }}$	${ }^{25}$	un		33] $5 \mathrm{VV} 1 \mathrm{~A} \cdot 150 \mathrm{P}$;	(70
${ }^{7} 405$	${ }^{259}$	$7{ }^{7+10}$	$5{ }^{50}$		${ }_{748}^{74}$	${ }^{10149}$	$5{ }_{5}$	${ }^{86 \times \times 29} 30$	$34 p$	${ }^{2 N 698}$	${ }^{200}$	N5298 35p			12 V
${ }_{7407}$		${ }_{7}$		${ }_{4016} 416$	776 17\%	${ }^{\text {a }}$	$3{ }^{3}$	${ }_{\text {BFXX }}$	80p			2Ns45778 40p	16 pin oil	300p; LM327	
${ }^{7408}$		${ }_{\substack{74118 \\ 74120}}$	900		1	${ }_{\text {a }}^{\text {AFT14/5 }}$	${ }_{20}^{20}$		30p	2N918	${ }^{138}$	$2 \mathrm{Ns459}$ 40p	$\stackrel{5}{4}$	100mA 14 , ${ }^{\text {a }}$	
${ }_{7410}$	1880	${ }_{7}+121$	3020	${ }_{\text {40, }} 0$	Linear ICs	AF12d	3^{2}	${ }_{\text {BFY 5 } 1}$	14 p	${ }_{2 N 1131 / 2}^{20}$		N6027 80	LM317 1 A 2 LV	-3N Toz20	340
${ }_{7}$	300	${ }_{\substack{74122}}^{\substack{4122}}$	${ }_{\substack{38 \\ 38}}^{\text {3, }}$	${ }_{602}^{4020}$	AY-1-0212	AF127	3_{p}	Bfy52	$1{ }^{\circ}$	304/5	${ }_{4}$	${ }^{2 \times 10247}$	OPTO DE	VICES	
${ }_{7412}$	${ }^{22_{p} p_{p}}$	${ }^{74125}$	${ }_{70}$	${ }^{4023}$	Ca323A ${ }^{\text {120 }}$	AFF139	430	8RY39	4sp	${ }^{2} 113067$	${ }_{4}{ }^{\text {p }}$	2N6254 140	${ }^{\circ} \mathrm{CPp} 9$	$4{ }^{40}$ T1209	
		${ }_{\substack{74126 \\ 74128}}$	900	$4023{ }^{218}$	${ }_{\text {ctis }}^{4}$		${ }_{4}^{4}$		20p	${ }^{2 N 1613}$	20	2N6292 ${ }^{100}$	${ }_{\text {ORP12 }}$	${ }_{70}^{109}$	
7416 7417	398	$\substack{74132 \\ 7436}$	${ }_{\substack{789 \\ 810}}^{\text {810 }}$		A3053		${ }_{10 \mathrm{p}}^{10 \mathrm{p}}$	8u10	175	N1893	${ }_{320}^{20}$	3N128 978	3015F		dED LED
${ }_{7}^{42014}$	\%	${ }^{14141}$		$c40284029$	Canese	вC109,	${ }^{11 p}$	$\mathrm{m}^{1} 29355$	1300p	${ }^{2} 21180$	sp	\% ${ }_{\text {po }}$	¢0707	Scop Mounting	
${ }_{7422}$	${ }_{27}$	$\underset{\substack{74142 \\ 7145}}{\substack{4 \\ \hline}}$	3		${ }_{\text {cher }}$		10		${ }^{450}$	${ }_{\text {2N2219 }}$	${ }^{220}$	${ }^{31877}$ 2000			
				${ }^{40400}$		${ }^{\text {BCIL4, }}$	110					403012 4Sp	SCR-THYR	ISTORS	مw
${ }_{7427}$	${ }_{40 \text { ap }}^{33}$	${ }_{741150}^{74}$	1550	$40633^{200 p}$	LM3		${ }_{112}^{119}$		${ }^{97 p_{0}}$	2012389	${ }^{135}$	40409:10 45	12 S0V Tos	${ }^{38}$	OHs STS
				130	175	${ }^{\text {BC } 169 C}$	129	MPF1045		${ }_{\text {2N264 }}$			iA toov tos		
${ }_{7}^{7} 37$	${ }^{37}$	${ }_{1454}$	${ }_{\text {164 }}^{1929}$	4048	MC1310P -200\%	BC172 ${ }^{\text {8 }}$	12p		37p	2N2904/A 27		${ }^{80}$	3a touv Stud	19	$8 \mathrm{pm}{ }^{10}$
${ }_{7}^{74.46}$	\%	${ }^{7455}$	${ }^{37}$		MClisipr	BC177	208	mPSA	810	205, A	$2{ }^{20}$		164.800 Y Plast	\%op	144 pin 13p
				${ }^{20555}$	${ }^{155}$	C179	20 p	MPSAS6	3\%	2 N 2006 A			14700 V	Stuo ${ }^{\text {40, }}$	16 pin 14p
	1350	${ }^{74145}$	${ }^{1820}$	${ }_{4060}$	${ }_{90}^{100}$	8C182		Ppsuog	$7{ }^{7}$	O		TRIACS	MCR 1010 SA	15v 1099230	18 pin 35
${ }_{7} 7444$	1309	74160	${ }_{\text {coinc }}$	${ }_{4071}^{4069}$	NESELOL	${ }_{\text {BCL18 }}{ }_{\text {BC18 }}$	${ }_{320}^{142}$	${ }_{\text {OCz }}$		20Yg		Plastic	-		$2{ }^{24} 818$
	109	${ }_{74162}^{74161}$	$\underset{\substack{1200 \\ 1220}}{\substack{120}}$	${ }^{4072}$	$\underset{\sim}{\text { NE556 }}$	ВС212	140	0×35136	$7{ }^{\text {mp}}$	$2{ }^{2} 3053$	200	Amp vor		VTo92 30	
7447	${ }^{80}$	74183	1200	${ }_{4081}^{4088}$	NES51 4235	213	$12 p$		25p	$2{ }^{2} 3054$		3400850			
			${ }^{1350}$	${ }_{4093} 0$	Ne552	BC2	180	2008	${ }^{235}$	${ }^{2} \times 3055$	549	$400{ }^{167 p}$	BRIDGE	${ }^{64}$ 6a bov 19040	${ }^{1 \mathrm{Ns}}$
7451	${ }^{2}$	74	${ }^{1338}$	${ }^{4510}$	NE566	¢C47	325	${ }^{\text {P2010 }}$	${ }_{23}{ }^{\text {a }}$	${ }^{2 \times 34} \mathbf{3} 215$		65001300	REC		
	20		340	$4516{ }^{100 p^{2}}$	${ }_{\text {cken }}$	${ }^{\text {BCY70 }}$	20 p	${ }^{\text {T1P29a }}$	Sop	2N37722.3	140	104001500	FIERS	Divo	1N000 7
$7+60$ 140	${ }^{20}$	74173	180		${ }_{\text {SG3 }}$	вСу7	240	${ }_{\text {IfPrac }}$	${ }^{820}$	${ }^{\text {N33704 }}$	${ }^{140}$	500 1700		${ }^{\text {BY126 }}$	1N4148 ${ }^{\text {a }}$
	${ }_{32 \mathrm{p}}^{32 \mathrm{p}}$	${ }_{74175}^{7417}$	${ }_{\substack{308}}^{130}$	${ }_{4553}$	273		${ }^{20 p}$		${ }_{60}{ }^{\text {apo }}$	2N37067	140			${ }^{\text {8Ya } 127}$	
7473 7474 184	${ }_{\substack{\text { a }}}^{380}$	${ }^{24176}$	${ }^{1360}$		${ }_{275}^{275}$	80135	340	Tip3	Sto	2N3773 320		${ }_{40430} \quad 1309$	${ }^{2 a} 5000{ }^{350}$	$\mathrm{O}^{\text {AR }}$	ZENERS
3475	${ }_{4}^{4}$	${ }_{74180}$	${ }^{1108 p}$	MEMORY	SN76003	80136	5sp	${ }_{\text {T1P31C }}$	840	819		${ }_{4068}$	${ }_{\text {at }}$	-	17
7480	540	${ }_{74182}$	${ }_{3}^{3248}$	${ }^{\text {a }}$		${ }^{80139}$	55^{5}	${ }_{\text {T1P3 }}$	${ }^{330}$	2N383				OA	
$\begin{aligned} & 74181 \\ & 7482 \end{aligned}$	${ }_{\text {Sosp }}$	${ }_{714185}^{71185}$		${ }_{450} 27$		${ }^{\text {BOY } 56}$	${ }_{\text {26p }}$		$3{ }^{5}$	2N300- 3	${ }_{35}$	${ }^{\text {binoo }} 32$		ON200	
	${ }^{935}$				TAA621										
745	1309	${ }_{7192}$	${ }_{130}$			8Fi67	250	TIP35A	438	C	CL	E PRICES			P. 8
7498	340\%	74	${ }^{130}$		2075		${ }^{270}$	${ }_{\text {ITP }}^{11}$	sop			ONLY	Govt., Cold	es orde	訨epled
7490 7791	${ }_{318}$	${ }^{74195}$	${ }^{1}$	Arombed dovicor	${ }_{125}$	${ }_{8 F 18}$	400	${ }_{\text {TIP36 }}$	\$00						
(7482	${ }_{545}$	741967	${ }_{\substack{1305 \\ 1309}}^{1305}$	Irom mea, tonat	${ }_{\text {TRABEO }}$		${ }^{300}$	T1P41A 7	100			N	T	M	ED
7493 749	${ }_{4}^{40}$	${ }_{741989}$	${ }_{214}^{214}$	muluers, ote.		BF966 7		$\begin{aligned} & T \mid P \& 4 C \\ & T i P \& 2 A \end{aligned}$	40	d	d		ndon NW	9. Tel. 01	4333

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success: knowledge that will enable you to take advantage of the many opportunities open to trained people. You study in your own home, in your own time and at your ou'n pace and if you are studying for an examination ICS guarantee coaching until you are successful.
City \& Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET.
To: International Correspondence
Schools
Depi. 771D Intertext House, London
SW8 4UJ or telephone 01-622 9911
Subject of interes:
Name
Address

The MINISONIC 2

probably represents the best value for money In electronic mualc today. Kits are avaliable for complete Instrumente or Individual sections, or for the conversion Audk. 1 Minisonics to Mk. 2 specincallon. (Conversion detali apply to Eston Audlo P.C.B.B, but may be ad
erformence abinet kit Is avallable completo instrument enhancea ite namelled, slik-arpiesed front panel, with matchingerting a fully finished black Afrormosia end-cheeks. Thls kit aleo Inciudes all back and base, and eolid screws and panel Indicatora. Sultable keybosis and contact assembiles fé kbe Control

Kbd Control MS2/3	c9.54	Output Amps. MS2/11	¢7-52
$V \mathrm{COO}^{\text {(single) }} \mathrm{MS2} / 4$	¢18-66	Inverter MS2/12	co-90
Env Shaper + V.C.A. MS2 5	[7.57	Power Supply MS2 13	c9.90
H.F Osc + Det. MS2/6	¢2.13	Conversion Kits	
Hold isolator MS2/7	¢3.56	V.C.O (single) MS2/5C	E12.15
V.C. Filter MS2/8	28.29	Ancillary Functions MS2 14C	¢12.84
Fing Modulator MS2/9	[4. 13	Main P.C B. EA0014	[4.20
Noise Gen MS2/10	c2.80	P.S.U P C.E. EA0015	c2. 05
COMPONENTS			
741	10.27		
LM318	52.86	MFC 4000 B	
FET-MOPA	[3.63	CA 3046	50.60
ZN 424E	50. 70	MD 8001	\&1. 56
MC 1306P	c0. 53	555	¢0.45

SILVER MICA CAPACITORS-Mixed bags of 10		
10pF-220pF	OUR SELECTION	50.80
$270 \mathrm{pF}-820 \mathrm{pF}$	OF VALVES	\$1.20
1000pF-3600pF	$\pm 1 \%$ or $\pm 1 \mathrm{pF}$	E1.50

$\pm 1 \%$ or $\pm 1 \mathrm{pF}$ ع1. 20
$81 \cdot 50$

LAST FEW TO CLEAR

Minimix-6 4 in 1 composite P.C.B. 81.00

McMurdo RS8 Sockets (sorry no plugs)
Stereo Jack Sockat
only $£ 0 \cdot 30$
$£ 0.35$
Pair-Plug and Socket as above
$80 \cdot 35$
$80 \cdot 20$
80.55
We also stock E24 Series Resistors in metal oxide and carbon film. all types of capacitors, pots, hardware, etc., all available oft the shelf at very reasonable prices. ExA send S.A.E. with all correspondence.
Example (all E24 Valves ex stock): Metal Oxide Resistors. high stability, $2 \% .4 p$

DEPT PE, P.O. BOX 3 ST. NEOTS, CAMBS PE19 3JB

TERMS MAIL ORDER ONLY. C.W.O. MINIMUM ORDER \&1 VAT Please add $12 \frac{1}{2} \%$ to value of order inc. P. \& P. unless otherwise stated. Orders over 85 free of P \& P \mathbf{P} to Eaton Audio add 10 p in the ε

Protect your family from fire and gasleak hazards by making our PW Gas/ Smoke Sensor Alarm! Run from battery or mains, it has a sensor unit that reacts to smoke, and also to many different gases, at preset sensitivity levels.

PW vhf STEREO TOUCH-TUNER

FM. 8 channels, automatic frequency control that can be overriden. Constructors, remember you get Part 2 of this special project in this month's issue!

DUAL REGULATED POWER SUPPLY

An imaginatively designed double output, continuously variable, fully stabilised and regulated bench power supply.

Tune in to

TRANSFORMERS

Type240 Prim101112131415	A.C. Range		D.C. Range			
	Volts	Amps	Type	Volts	Amps	Price
	6	1.0	100	5	0.65	(including
	9	0.8	101	6	0.55	P. \& P.)
	12	0.5	102	12	0.3	
	24	0.25	103	24	0.15	¢1.52
	12-0-12	0.25	104	12-0-12	0.15	2
	15-0-15	0.2	105	15-0-15	0.11	each
20 -	6	$2 \cdot 0$	200	5		
21	9	1.25	201	6		
22	12	1.0	202	12		
23	24	0.5	203	24		21.92
24	12-0-15	0.5	204	12-0-12		412
25	15-0-15	0.4	205	15-0-15		each
50	6	8.0	500	5		
51	9	5.0	501	6	5.0	
52	12	4.0	502	12	$2 \cdot 5$	
53	24	2.0	503	24	$1 \cdot 25$. 94
54	12-0-12	$2 \cdot 0$	504	12-0-12	1.25	
55	15-0-15	1.5	505	15-0-15	1.0	each

CASED TRANSFORMERS
110 V C.T. to earth, fitted with plugs and socket to BS 4343 CEE plugs
17
500 V
500VA 228 ; 1000VA 834 ; 1500VA £ 42 plus 86 P . \& P.

TIMERS

240 V in or 110 V . A1 $0-5$ seconds A2 0-10 seconds: A3 0-100 seconds $\$ 14 \cdot 50$ each. With Octal plug-in base.

DIODE BRIDGES

$1 \mathrm{~A} 50 \mathrm{~V} 32 \mathrm{p} ; 2 \cdot 5 \mathrm{~A} 50 \mathrm{~V} 48 \mathrm{p}$; $6 \cdot 0 \mathrm{~A} 50 \mathrm{~V} £ 1 \cdot 28$ (prices include P. \& P.).

CAPACITORS
$1,000 \mathrm{mF} 6 \mathrm{~V} 30 \mathrm{p}$; P.C.B. 10 V 35 p ; Mounting 16 V 37 p (prices include P. \& P.).

SUB-MINIATURE TRANSFORMERS
1.2VA with E/S. Secondaries B1: $3-0-3$; B2: 6-0-6; or B3: 12-0-12. 11 - 68 each.

All Prices $+8 \%$ VAT

O'seas orders-add 15% for $\mathrm{P}+\mathrm{P}$. All items offered for sale subject to the Terms of Business set out in Doram Edition 3 catalogue, price 60 p The Doram Kit brochure is also available, price 25p Combined price only $70 p$ which also entitles you to $2 \times 25 p$ vouchers, each one usable on any order placed to the value of $£ 500$ or more (ex VAT). DORAM ELECTRONICS LTD
PO BOXTRB. WELLINGTON RD IND EST. LEEOS LSi 22 2UF
An Electrocomponents Group Company

SINTEL FOR KITS-CASES-DISPLAYS-MEMORIES-BOOKS-MICROPROCESSORS

Components
from leading
mancitacturers o

HIGH QUALITY

KITS

CAYsTAL COMTMOLIE $\%$ DACI CAK CLOCK

CCK push buttons for Star-Stop-Reset, mins., secs. Runs off car 12 V supply O Nine - All controis functional irrespective of display mode Kht complete with case Order as CCK

 backup
AUT-CK 4×0.5 in red digit car clock with 12 V negative earth
GCK 4×0.5 in green digit mantleplece clack GCK 4×0.5 in green digit mantleplece clock ACK 6×0.5 in red digit alarm clock

USEFUL PRINTED CIRCUIT BOARDS

Order as Description COUNTER PCB SETS

Sets of PCBs to hold displays and all the ICs for building a 6 digit. 4 digit or 2 digil COUNTER MOOULE WITH LATCH USING TTL. The PCBs hold one each per digit of Venical PCB which holds the wisplays and and Cs. Each se horizontal board. which holds the remaining comporents (TIL 32 ts available from us-please order separately).
$\begin{array}{ll}610-950 & 6 \text { digit Set. Size h. } 30 \mathrm{~mm}, w .173 \mathrm{~mm} \text {, d. } 109 \mathrm{~mm} \\ 246-950 & 4 \text { digit Set Size } h \mathrm{~mm}\end{array}$ $\begin{array}{ll}246-950 & 4 \text { digit Set. Size } h .30 \mathrm{~mm}, \text { w. } 126 \mathrm{~mm}, \text { d. } 109 \mathrm{~mm} \\ 915-950 & 2 \text { digit Set Size } \mathrm{h} .30 \mathrm{~mm}, w .80 \mathrm{~mm} \text {, d. } 109 \mathrm{~mm}\end{array}$

876-001	DISPLAY HOLDING PCB NON-MULTIPLEXED		\%
875-001	6 digit counter formal for FND500 TIL321/TIL322	¢0.75	
675-001	4 digit counter formal for FNO500, TIL321/TIL322	¢0. 55	
472-001	2 digit counter format for FNO500 TIL321/TIL322	\$0.29	246-950
0500-6	DISPLAY PCBs WIRED FOR MULTIPLEXING 6 digit clock format for FND500/TIL321/TIL322	[1. 35	
D652-6	6 digit clock format for XAN652/ \times AN654		
0500-4	4 digit elock format for FNO500/TIL321/TIL322	¢1.35 ¢0.	+
D500-8	8 digit counter format for FND500/THL321/TIL322	\&1.35	15-950
142-269	COUNTEA KIT A complete kit for building a 2 digit. single PCB, CMOS Counter Module with latch. includes PCB 912-950, $2 \times$ TIL322 or FNDS00, $2 \times 4511.1 \times 4518$, R 8 . sockel		
	pins, ele. Size h. $67 \mathrm{~mm}, \mathrm{w} .71 \mathrm{~mm}$, d. 18 mm		4t.80
ORDERS add VAT at $8 \%+25 p$ P. P			

For Telephone Orders and Export charges see Catalogue or last month's advertisement. All prices valid until $31 \mathrm{st} \mathrm{March} 1977.$.

CMOS AND OTHER COMPONENTS									
CO4000	0.17	CD4023	0.24	C04042	0.95	CD4067	4.28	CD4096	1.20
C04001	0.18	CD4024	0.69	C04043	1.16	CDU068	0.24	CD4097	4.24
C04002	0.17	CD 4025	$0 \cdot 24$	C04044	1.07	C04069	0.24	CD4098	1.26
CO4006	1. 35	CD4026	1.98	CDO445	1.61	CD4070	0.67	CD4099	$2 \cdot 11$
CO4007	0.18	CD4027	0.64	CD4046	1.53	CD4071	0.24	CD4502	1.43
CD4008	1.11	CD4028	1.03	CD044	1.04	CD4072	0.24	CD4510	1.57
CO4009	0.64	CO4029	131	CDO 048	0.64	CD4073	0.24	CD4511	1.80
CO4010	0.64	CO 4030	0.64	CD4049	0.64	CO4075	0.24	CD45t4	3.15
CD4011	0.20	CO4031	2.55	CD4050	0.64	C04076	1.61	CO4515	3.60
CO4012	0.19	CO4032	1.23	C0405	1.07	CD4077	0.60	CD4516	1.56
CO4013	0.64	CDF033	1.60	CO405\%	1.07	CD4078	0.24	CO4518	1.25
CO4014	1. 16	CO4034	2. 19	CD405	1.07	CD4081	0.24	CD4520	1.43
CO4015	1.16	CO4035	1.35	CO 4054	1.33	C04082	0.24	CD4527	1.12
CO4016	0.64	CD4036	3.65	CO4055:	1.51	CDajes	0.12	C04532	1.65
CD4017	1-16	CD4037	1.09	CD4056	1.51	CD4086	0.12	C0.455	1.04
CD4018	1.15	CD4038	1.24	C0405	5.48	CD4069	1.75	CD4556	1.04
CD4019	0.64	CD4039	3-55	CD4060	1.29	CD4093	0.92	MC14528	1.22
CD4020	1.28	CD 4040	1.23	CD406	1.26	CD4094	$2 \cdot 15$	MC14553	4.6
$\mathrm{CO}_{4} 021$	1.16	CD404 1	0.96	CD406\%	0.71	CD4095	1.20	IM6508	8.05

FOR FULL RANGE send for FREE CATALOGUE

Verocases		displar		Solderco		MPU:	
751410	$3 \cdot 36$	FND500	1.02	PINS		$1 \mathrm{M6100CCDL}$	45.36
7514110	3.77	Thas ${ }^{\text {a }}$	1.30	100	0.50	8080 (2uS)	32.25
759237 J	2. 15	TIL322	1.20	1,000	4.00	MC6800	33.87
7512380	3.00	XAN652	2.45	10.000	34. 0		
751239 K	3.50	Xan654	2.45				
		SLTOH	5.98	memories		SCMP	
				9131 (New)	11.50	ISPBA 500	11.75
AY51202	2.19	TRANSFO		2102A-6	3.61	2650	27.00
AY51224	3.50	LEDTAF	1.95	2112A-4	$4 \cdot 76$		
MK50253	5.60	5LTRF	1.95	6508	1.05		
						MPU KITS	
CAYSTALS		Flat Cab		CAMDRIES	$1 \cdot 14$	MEK6SOOD INTRO KIT	137.00
32.768 kHz	4.50	2ow 1 m	1.00	HA74	0.35	ISPGKZ200E	93.55
5. 12 MHz	3.60	10m for	1.08	78L\2WC	0.77	MCS-80	176.55
NEW DATA FROM SINTEL See Catalogue for other fifles Motorola CMOS Databook Vol. 5 Series B TMS80BO Microprocessor Datasneet TMS550' (Multitunction VO Controller tor 8080) Datasheet							
							0.75
							0.75

Our offices are at Link Property, 209 Cowley Road. Oxford, but please $\begin{array}{lll}\text { SEND YOUR } & \begin{array}{l}\text { SINTEL } \\ \text { ORDER TO }\end{array} & \begin{array}{l}\text { PO BOX 75B, OXFORD SINTEL } \\ \text { Tel. } 086549791\end{array}\end{array}$

Careers and Hobbies in Electronics.

Enrol in the BNR \& E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.
Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

complete dIGITAL clock kits

 TEAK CASES
"DELTA"
GENUINE TEAK OR PERSPEX CASE
\qquad
DELTA DATA: 4 Radiant Red $\frac{t i n}{}$ high LEDs. 12 hr display with a.m./p.m Indication. Beautiful Burma Teak Case or Pretty Perapex in white, black blue, red. green. Power fallure is indicated by flaahing display.
MODULES: Kits can be bought without case-Non-Alarm c9: Alarm 512.50 inclusive.
REAOY BUILT: Buy a working tested module and fit your own case-NonAlarm $59 \cdot 50$: Alarm 113 ; Complete clock ready bultt. 2yr guarantee-NonAlarm $£ 13 \cdot 50$. Alarm $£ 16 \cdot 50$
ALARM FEATURES: Pulsed tone. Tilt operated 10 minute "Snoozs" period Single switch setting. Optional extre mercury switch (45 p) allows alarm reset by tilting clock. Digit brighiness is automatically controlled to suit tighting level.

"ALPHA"'	4 Glowing Green \ddagger in high digits 12 or 24 hour. Non-Alarm	Built and Tested ${ }^{\circ}$ Module plus Perspex Case	611 incl.
CLOCK CHIP: AYS-1202, Önly $\mathbf{\Sigma 2} .70 \mathrm{incl}$.			
DISCOUNT on orders over 5 kits or clocks Overseas airmail-Add £2.50.			
	Send payment with orde Pulse Ele	A.E. for comple ronics	$\begin{aligned} & \text { range } \\ & 8 \end{aligned}$
Buy it with Accest	Dept. PE10, 20 Clifton Sh Telephone: Hit	Shefford ord, Bed n (0462) 8144	d

BRANDED PLASTIC TO92 TAANSISTORS, BC108 or BC212 types. 10 for 60p. EMI HUGHES TRANSITRON GOLD BONDED DIODES, 50 for 40 p
$1,000 \mu \mathrm{~F}$ 40V.W. ELECTROLYTICS, size if \times tin. 3 for 35 p .
2.5CHz TRANSISTOA NPN PAIR 8 LEAD TOS CAN, untested, with data. 4 for 57 p . 200 ASSORTED CARBON FILM RESISTORS, iW. jW. odd values. 75 p HoQmuLEARD C2, CAPACITORS; assorted, for 57 p . TEXAS R.F. TRANSISTORS, 2G 106, 20 for 57 , for 57 P . PLASTIC POWER NPN BD $187,40 \mathrm{p}$ each or 4 for 5 MHz 10 X CRYSTAL, $50 \mathrm{p}, 600 \mathrm{kHz} 10 \times \mathrm{AJ} 50 \mathrm{p}$ UNMARKED 2 N 3866 VHF TRANSISTORS, 3 for 7 OUAL GATE MOS FETE IVk 40673 , 33p, or 4 for $£ 1.10$. TEXAS 800 V NPN 2A PLASTIC TRAMSISTORS 50 p TEXAS 800 NPN 2A PLASTIC TRANSISTORS, 50 p each, 3 for $\mathrm{c} 1 \cdot 10$. SOLDER-IN FEED THROs. 300 pF or 1.000 pF , 15 p doz TUR SSSORTEDTRANSISTOR ELECTROLYTICs, 150 pF . $1,000 \mathrm{pF}$. all 6 p each SOASSORTEDTRANSISTOR ELECTROLYTICS, for 57p.
DISC CERAMICS, $0.1 \mu \mathrm{H} 30 \mathrm{~V} . \mathrm{W} .005 \mu \mathrm{~F} ~ 30 \mathrm{~V}$.W., $0.02 \mu \mathrm{~F} 50 \mathrm{~V}$ W. 0.01 L F $50 \mathrm{~V} . \mathrm{W}$ 1.000 pF 100 V . W. all 20 p . RTNHATLIAE \& F-200\%W. ELECTROLYTICS, 10 ter 570- ROCKER SWITCHES, 240 V SA, 15p, 4 Tor 50p.
10.000μ F 16 V .W, EL5CFROLYTICS, size $3 \frac{3}{} \times 1 \frac{1}{1} \mathrm{in}$, 15 p each. 4 for 50 p PLASTIC TAIACS, 50 P.I.V. 6A, 15p; 400 P I.V. 6A. 60 p . 20 VARI-CAP DIODES, untested. 45p.
PLASTIC S.C.A.a, 50 P I.V.. BA. 15p; 400 P.IV. 6A. 40 p $200+200+100 \mu \mathrm{~F}$ 300V.W. ELECTROLYTICS, SIZe 27
 BOOKS: "Pracical Test Equipment", 75p; "Simple Shor Practical Elictral . sop MINIATURE SILICON DIODES, assorted 100 for 57p. 600 MHz R.F. TRANSISTORS, Texas BF224, 10 for 57 p.
SILICON PHOTO TRANSISTOR, 15p. SILICON PHOTO DARLINGTON, "2Rp SUB-MINIATURE LOUDSPEAKERS, 8 ohm , sIze 17 । n dia.; 75 p .
SQ AC128 TRANSISTORS, branded but untested. for 57p.
TBM 120 S I.C.s, untested, with data. 6 for 60 p .
MADTHCRO ALLOY PNP TRANSISTORS, unmarked. 10 for 57p.
DUBILIEAMGUF 450V.W. ELECTROLYTICS, size $3 \times 1 \mathrm{In}$. 10p, 7 for 57 p.

Please add 20 p post and packing on orders under $£ 2$. Overseas orders at \cos

J. BIRKETT
 RADIO COMPONENT SUPPLIERS 25 The Strait, Lincoln LN2 1JF Tel. 20767

NEWS FROM JOSTY RNT

JOSTYKIT-a product from Denmark

HF 61-2 DIODE MEDIUM WAVE RECEIVER

By means of a very simple techniqu a reasonable reception is attained HF 61-2 is built on small circuit board of the same size as the general purpose amplifier AF 380. The two assemblies should be connected to produce power for a loudspeaker HF 61-2 is especially useful for beginners, who have not tried to assemble electronic kits betore.

HF 305 VHF RADIO-CONVERTER
Extend the range of your transisto
radio. Listen to Amateurs (2
metre band) Aircraft
metre band), Aircraft,
Trawiers. etc
transistor circuit wo
printed circuit coils, varactor diodes arid
superior circuit design. Converts radio superior circuit design. Co
signais in the $100-200 \mathrm{MHz}$ range to output signal at 100 MHz . Pipe this into your VHF receiver and you're in VHF recein you're in a
£6. 70 new dimension

AT 365 3-CHANNEL DISCO LIGHT

A new concept in psyche delic lighting. Uses built-in microphone. Avolds awkward connections to amplifiers. Position light-show to best advantage without long trailing eads-just plug in to neares power point. Circuit combines latest integrated circuit tech
niques with solid-state power control. Quad op. amp. makes selection of bass, midrange and treble frequencies easy. Three thyristors (SCRs) control three separate lampbanks. Kit includes fused dc
power supply and FET zero light adjustment. WARNING:
Only experienced persons should attempt the intercon-
nection of mains equipment
£17.00

HF 385-2 VHF/UHF AERIAL AMPLIFIER

Aquality, printed circuit. no trimming, aerial amplifier Fantastic frequency range due to use of printed coils 21 dB amplification a 400 MHz Two separate inputs for UHF and VHF. No loss of signal or intercommunication problems

NT 410 AERIAL AMPLIFIER CURRENT SUPPLY

NT 410 is a current supply. specially built for aerial amplifiers, such as HF 385-2, but can also be used for other aerial amplifiers. NT 410 is supplied with input and output clamps or 75 ohm or 50 ohm aerial cables. It is therefore not necessary to solder -just cut and strip the aerial cable and attach to NT 410. The aerial signal from the aerial mplifier to the receiver passes withoul complications and the current to the aerial amplifier passes through the same cable. NT 410 describes how to use NT 410 together with HF 395 and HF 385-2

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is cor rectly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimun of delay.

RECEIVERS AND COMPONENTS

AMPLIFIERS

New, boxed, guaranteed, working. 1 watt audio amplifter panels with e-sperd motor controller ineorporated. uses i.t. type L.M3s0. ${ }^{+}$and runs fron ov power supply
 From: INDUSTRIAL RF SERVICES 51 Deptford Broadway, London SE8 4PH Tel. 01-692 4284

SMALL ADS

The prepaid rate for classified advertisements is 15 pence per word (minimum 12 words), box number 40 pextra. Semi-display setting $£ 12.00$ per single column inch $(2.5 \mathrm{~cm})$. All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Lid." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5918).

CONOTIONS OF ACCEPTANCE OF CLASSIFEDADVERTISEMENTS

1. Adventisements are sccepted subject to the conditions appearing on our current advertisemont rate card and on the oxpross understend ing that the movertiser warrants that the adventisement dow not contravens any Act of Parliement nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to reluse or withdrew eny advertisament
3. Although every care is 1aken, the Publishers shall not be liable for clerical or printers' arrors or their conseguences.

Brand New Components

ITT 58708T NIXI plus data. 50p; 'porry SP'
 $725-09$ (9-dipit display) plus data, \&1;
 EXTOOL (CT7001) \&5:50; 741 H1, 18p; TOM9 20p; miniature 5 -position tusple, f1. 1. \& ${ }^{1}$. 101. LIS, 43 Westacott, IFayes, Middx. I'134 $8: 11$.

VALVE8-Radio, TY, industrial, transmitting. We dispatch to any part of the world by return of post, Air or sea Mall. 2,700 types in stock. 1930 to 1976 obsolete $t y p e s$ a speciality. List 20 p. Quotation S.A.E. Upen to callers. Mon.
to sat. $9.30-5.00$, closed Wed. 1.00 . We purthase all types of new and hoxed valves. CUX

 wast Wittering, Sussex, PO20
Wittering 2023 . (STD code 024366).

FULL SPEC. TTL					
7400	14p	7445/7/8	78p	74121	$31 p$
7401/2/3	14p	7450/3/4	14p	74122	43p
7404/5/8	16p	7472	22p	74123	59p
$7410 / 20$	14p	7473/4/6	29p	74141	66p
7413	30p	7475	47p	74145	72p
7414	67p	7480	44p	74150	41.05
7417	30p	7483	$73 p$	74153	65p
7422	16p	7484	97p	74154	4.1.10
7425:7	28p	7485	± 1.03	74155	69P
7430	14p	7486	29p	74157	68p
7432	26p	7490	43 p	74164	¢ 1.10
7437	27p	7491	64 p	74174	97 p
7440160	14p	$7492 / 3$	46p	74175	92p
7441	66p	7496	69p	74181	¢2.19
7442	59p	74100	97p	74193	61.08
7411;2	20p	74107	29p	74195	$97 p$
DL704E, DL707E 0.3 in . displays 69p. IN4\|48 2p. Intel 2102A-6 (650ns) IK Memories 63. IW $5{ }^{\circ}$ El2 series Piher resistors tp each, 90p/100. All prices inelude VAT					
S.A.E. for	full J.	P. \& P. (MONE Mail order	(lst cla	$\text { 2) } 20 p \text {. }$	W.O.
46 Burst	llar	St. Ives,	Cam	, PE	4××

Precision Polycarbonate Capacitors All Hish Stability-extremely Low Leakage 440 V A.C. RANGE Value Dimeñ- Price $\begin{array}{llll}\text { (HF) } & \text { sions (mm) } & \text { (mach } \\ 0.1 & I_{4} & 1 & \\ 0.7 & 10.7 & 68 p\end{array}$

$$
\begin{array}{ll}
0.1 & \mathrm{I}_{4} \\
0.1 & 07 \\
0.15 & 27 \\
0.22 & 33 \\
0.2 .5 & 33 \\
0.33 & 33 \\
0.47 & 33 \\
0.5 & 33 \\
0.69 & 50 \\
1.0 & 50 \\
1.5 & 510 \\
2.0 & 50 \\
\hline
\end{array}
$$

 $0.1,0 \cdot 2.4,0 \cdot 33,0 \cdot 47,0.68,1 \cdot 0,2 \cdot 2,3 \cdot 3,47,6-8 \mu \mathrm{~F}$ a
 $6 \mathrm{~s}^{\circ} ; 100 \cdot 0 \mu \mathrm{~F}$ at $3 \mathrm{y}^{2}$. All at $12 \mathrm{p}^{\circ}$ each, 10 for $£ 1 \cdot 10^{*}$, 50 for ES^{*}. 100 for $\mathrm{E9}^{*}$

TRANSISTORS \& I.C.'s

 - 1BC147/8j9 10p \quad BC:144214L11p

 POPULAR DIODES-1N゙9146p, 8 for $45 \mathrm{p}, 78$ for 90 p ;
 5焎 $p ; 0026 p ; 0036 \frac{1}{2} p ; 0047 p ; 0057 \frac{1}{2} p ; 0068 p ; 0078 \frac{1}{2} p$ LOW PRICE ZENER DIODES-400MW, Tol. $\pm 5 \%$ at

 10 for 65p, 50 for $£ 3.12$. SPECIAL OFFLER: 100 Zeners (may be mixed) for $£ 6.00$.
RESISTORS-High stability, low noise carbon film 5°
 70 p for 100 of any one valie SDECIAL PACh; 10 of

SILICON PLASTIC RECTIFIERS- $\mathbf{l} \cdot \overline{5}$ amp, wire-ended DO27: 100 I'.I.V. 7p (4 for 26p): 400 P.I.V. 8 p (4 for 30 p) BRIDGE RECTIFIERS-2 $2 \ldots \mathrm{~s}$: $200 \mathrm{~V} 40 \mathrm{p} ; 350 \mathrm{~V} 45 \mathrm{p}$; 000 5 55p.
SUBMINIATURE VERTICAL PRESETS- 0.1 W only: All at $5 p^{*}$ cach; $50 ; 100 ; 220 ; 470 ; 680$ ohm; 1 k ; $2 \mathrm{k}^{4} 3$ 4k7; 6iks; 10k; 1-1k; 220 k; 47k; 100k; 300k; 680k; 13 2ML: WM. ADD 2ON POST ANI PACKING ON ALL PLEASE AUD 2OP POST ANI PACKING ON AIL
ORDERS. EXPOLT-ADD COST OFSEA/AIHMALI. Alld 8% i AT to all itema except those marked with send S.A. Wh. for additional stock lists.
Wholesale price lists available to bona fide companies MARCO TRADING (Dept. P.3) The old school, Eilstavton, Wem, Bhropqhire Tel: Whixall $464 / 46 \overline{5}$ (STU) 094872
(Proprs. Minicost Tralling Ltd.)

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. ('ontact COLBS-IIARDING \& CO., 103 Soutli Brink, Wisbedt, ('ambs. Tel. $09+5+18 R$.

R. T. SERVICES (MAIL ORDER ONLY)

75 Hayfield Rd., Salford 6, Lancs. PANEL with 62 N 3055 transistors plus 6 N.P.N and 6 P.N.P. transistors $£ 1 \cdot 75$ inc. FM TUNER with R.F. Stage and A.G.C. 3 transistors, neg. earth $2 \frac{1}{2} \times 2 \times 1 \frac{1}{1}$ in with MAINS INPUT TRANSFORMERS 20V-0 20 V at $2 \mathrm{amp}, £ 3 \cdot 95$. New. 6 V at $1 \mathrm{amp}, £ 1 \times 45$ New. I2V at $\frac{1}{2}$ amp, $£ 1 \cdot 45$. New.
Mixed Pack of C280 series Mullard capacitors,
100 for $£ 1.15$ inc., P. \& P. Send S.A.E. for our 100 for fl .
list prices.

Tel. 061-236 1541
All prices include VAT and P. \& P.

CARBON FILM RESI8TOR8. 5% E12 Serjes, $\frac{1}{8} W, \frac{1}{3} \mathrm{~W}, \frac{1}{2} W$. Mixed to your choice, 100 for $90 p$. Electrolytics $50 / 15 \mathrm{Y}$, 7 p . Microprocessore SC/MP 218. MM6800 \&33. P. \& P. 15p. Mail order only. CANDAR, \& Almond Jorive, Caversham Park, Reading.
BRAND NEW COMPONENTS BY RETURN
Electrolyife Gapacitors $16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}-0.47,1 \cdot 0$
$1,000(16 \mathrm{~V}) 15 \mathrm{p}, 1,000(25 \mathrm{~V})$) $8 \mathrm{pp}, 1.000$ (50 V$) 28 \mathrm{p}$.
Subminiature Bead Tantalum Electrolytics-0.
$0.22,0.47,1 \cdot 0,2 \cdot 2$ at $3 \overline{\mathrm{JV}}, 4 \cdot 7 / 2 \overline{\mathrm{VV}} 11 \mathrm{p} ; 10 / 25 \mathrm{~V}$
$18 \mathrm{p} ; 22 / 16 \mathrm{~V}, 47 / 6 \mathrm{~V}$ and $100 / 3 \mathrm{Y} 15 \mathrm{p}$.
Mullard Min. Ceramic E12 Series 68V 2\%-10pF to
$47 \mathrm{pF}-3 \mathrm{p} ; 56 \mathrm{pF}$ to 330 pF 4 p .
Vertical Monnting Ceramic Plate 50V-E12 series
$22-1,000 \mathrm{pF}$ and E6 series $1,500-47,000 \mathrm{pF} 2 \mathrm{p}$.
$\begin{aligned} & \text { Polystyrene E12 Series 68V Horizontal Mounting- } \\ & 10-1,000 \mathrm{pF} 3 \mathrm{p} ; 1,200-10,000 \mathrm{pF} \text { 4D. }\end{aligned}$
$10-1,000 \mathrm{pF} 3 \mathrm{p} ; 1,200-10,000 \mathrm{pF} 4 \mathrm{D}$.
Muliard Polyester 250V Vertical Mounting E6
$0.6811 p: 10.14 p ; 0.15,0.225 p ; 0.33 .0 .478 p$
Mylar (Polvester) Film 100才 Yert
$0.001,0.002 .0 .0053 \mathrm{p} ; .0 .01,0.024 \mathrm{p} ; 0.020$.
Miniature Resistors Highstsh $4 \mathrm{p} ; 0.04,0.054$ yp.
Carbon Film $0.33 \mathrm{~W} 1 \Omega$ to 10 M N . $(10 \%$ OVer 1 M$)$
Ip. Metal Film $0.125 \mathrm{~W}, 0.25 \mathrm{~W}$; and 0.5 W 10 10
CN4148 3p; 1N4002 5p: 1N4006 7p; 1N4007 8p;
Fuses 20mim glass, Itin glass fin BF194, 197 Op.
Post 10 p (free over c4). Prices inclusive of
$\begin{aligned} & \text { op (free over C4). Prices inclusive of V, } 1 T \\ & \text { THE C.R. SUPPLY CO. }\end{aligned}$

SILICON SOLAR POWER CELLS 500 mA \& $1-25,5 \mathrm{~mA} 20 \mathrm{p}$.
Photo-switches 40 p ; 3 for El . Blue response cells 20 PTt'or fon \mathcal{C} Bargain packs. T AND GTD 50p each 8 of 50 V 8 A rect.; 8 of 100 V 8A rectst: 6 of $200 \mathrm{~V}-8 \mathrm{~A}$ rect.; 20 off 50 V I.5A metal rect.; 7 off photo trans.g 5 off photo-darl; 7 of I/R LÉDS.
C.W.O. P, \& P. 25p. VAT inclusive. 21 Kendal P.A. ELECTRONICS

GLASS FIBRE P.C.B.'s

From your own tape, film or ink master. Send S.A.E. for quotation. PRACTICAL ELECTRONICS P.C.B.'s in glass fibre, tinned and drilled. June 76 Transmitter 98p, Coder 91 p. July 76 Receiver 98 p , Decoder 79p. Interface 58p. August 76 Servodrive $74 p$ Servo Amp 58p, Relay Driver 68p. Complete set of a bove boards $65 \cdot 80$. Sept. 76 Tone Generator 71 p . Tono Decoder 78 p . Sept. 76 Cross-Hatch Generator $\mathrm{E} 2 \cdot 85$. Nov. 76 Hazard Warning Flasher 68p. Dec, 76 FM Stereo Tuner $£ 2.58$. Feb. 77 Decoder $1302.1 \in \mid \cdot 32$. Send S.A.E. for information on current boards.
C.W.O. please. supplier's supplier's components saviable
PROTO DESIGN 4 Highclifie Way, Wikford, Essex SSII 8LA

RESI8TORS: Type AEL II Carbon Film 5% E24 range (4E7 to 2M2-10 M*). Sold in units of 10; $\frac{1}{4} \mathrm{~W} 7 \mathrm{p}$, $\frac{1}{2} \mathrm{~W}$ 8p. Also transistors 13C108/9 70p per 10. Min. Order fo. Postage 15 p plus VAT at $12 \frac{1}{2} \%$ (high ratr). Large S.A.E. for more details to-U.W. ELEC'TRONIC' H , Dept. PE, 10 Kingsley] ath, Britwell, Slough, Berkshire. We can also supply to the trade, sclools, colleges and export.

SITUATIONS VACANT

RADIO TECHNICIANS

Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over.
Standards required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radio and electronic test gear.
Duties cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.
Qualifications: Candidates must hold either the City and Guilds Telecommunications Part I (Intermediate) Certificate or equivalent HM Forces qualifications.
Salary scale from $£ 2,230$ at 19 to $£ 2,905$ at 25 (highest pay on entry) rising to $£ 3,385$ with opportunity for advancement to higher grades up to $£ 3,780$ with a few posts carrying still higher salaries. Pay supplement of $£ 313.20$ per annum.
Annual leave allowance is 4 weeks rising to 6 weeks after 27 years service. Opportunities for service overseas.

Candidates must be UK residents.
Further particulars and application forms available from:
Recruitment Officer, Government Communications Headquarters Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ Tel. : Cheltenham (0242) 21491 (Ext. 2270)

EDUCATIONAL

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers; also selfbuild radio kits. Full details from:
ICS SCHOOL OF ELECTRONICS
Dept. 772D, Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:
ICS SCHOOL OF ELECTRONICS
Dept. 772D, Intertext House, London Sw8 4UJ
Tel. 01-622 9911 (all hours)

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from

ICS SCHOOL OF ELECTRONICS
Dept. 772D, Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)

SERVICE SHEETS

SERVIGE SHEETS, radio, TV, etc. $10,00 \mathrm{n}$ models. Catalogue 24p plus S.A.k. with orders-enquiries. TELRAY, 154 Brook St reet, Preston, Plli 7 ILP .
8ERVIGE 8HEETS, Radio, TV, etc., 50 p amd S.A.N. Catalogue 20p and S.A.N. ILAMLLTON RADIO, 47 Lohemia Road, it. Leonards, russex.
BELL'S TELEVISION SERVICES for service gheets on radio, TV, etc., 75p plus S.A.E. Colour 'TV service mamuals on request. S.A.E' with enquiries to B.T.S.. 190 Kings Road, Harrogate, N. Yorkshire. Tel. 042355885 .

BOOKS AND PUBLICATIONS

START YOUR OWN BUSINESS REWINDING ELECTRIC MOTORS

This unique instruction manual shows step by step how to rewind motors, working part or full time, without previous experience. Everything you need to know easily explained, including where to obtain materials, how to get all the work you need, etc., etc. A goldmine of information and knowledge. Only $£ 3 \cdot 90$ plus 26 P P. \& P. From:
MAGNUM PUBLICATIONS, Dept. PE5 Brinksway Trading Estate, Brinksway Stockport SK3 OBZ
Overseas Distributors wanted.

FOR 8ALE

6 DEWTRON SYNTHESISER MODULES, 44 new, $2 \times \mathrm{VCO}-2,1 \times$ SHE-1, $1 \times$ OFT-2, $1 \times$ R.N. $-1,1 \times$ A' -1 , $\mathbf{8 1 0 0 . M r . M . F A R R A N C E , ~}$ 142a Kirkleatham Lane, Redear, (leveland.

NEW IS8UES of "Practical Electronics' available from April 1974 up to date. Cover price plus 17 p postage jeer copy - BELL's THS 17p postaqe per cony-BELL'S Harrogate, N. Yorkshire. Tel. (0423) 55885.

RONDO SQ QUADRAPHONIC amplifier and Hary"s terers Fy Tuner built, tested, less rabinets. Will separate. Offers. Biggleswade 40674.

BOUND VOLUNES P.E., P.W., TY. S.A.E. for details. ROSN, 32 Wuodheys, Mersey lioat, Heaton Mrrsey, Storkport, 'heshire.
P.E. MINISONIC with integral 3 ortave keyboard. P'S. Synthesiser main unit 2240 . F'or further dedails writr-49a Manor Park Romd. (ilossop, Derbyshire.

DEWTRON MODULES, worth $\mathbf{£ 2 2 0}$, case, kr $\%$ board, controls, pancls, ptr., £150: (rompToN, 1: Evorett Road, Withington, Manchester.

WANTED

WANTED, NEW VALVES, TRANBISTORS, top prices, popular types-KENSINGTOA SUPPLIES (B), 367 Kensington Street, Bradford 8, Yorkshire.

PRINTED CIRCUITS and HARDWARE

Readily available supplies of Constructors' hardware, Aluminium sheet and.sections. Printed circuit boards, top quality for individual or published designs.
Prompt service.
Send I5p for catalogue.
RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratford on Avon
Warwicks.
Tel. 4879

PRINTED CIRCUIT BOARD8 supplied in glass fibre drilled, tinned or varnished from your own or pulbished designs. Send S.A.E. for quotations. R. F. DARLISON, 1 Valentine Drive, Oadby, Leicester.

ENAMELLED COPPER W				
SWG	1 lb	$80 z$	402	2 Oz
14.19	$2 \cdot 40$	$1 \cdot 20$	$0 \cdot 60$	$0 \cdot 50$
20-29	$2 \cdot 45$	1.80	$0 \cdot 82$	0.59
30.34	2.60	1.70	$0 \cdot 89$	0.64
35-40	$2 \cdot 85$	1.90	$1 \cdot 04$	
Inclusive of P. \& P. and VAT. S.A.E. brings catalogue of copper and resistanc wires in all coverings. THE SCIENTIFIC WIRE COMPANY P.O. Box 30, London, E4 9BW Reg, Office: 22 Coningsby Gardens				

NO LICENSE EXAMS NEEDED

To operate this miniature, solid-state TRANSMITTER RECEIVER kit. Only
\&8.25 plus 20 p P. \& P.
Brain-freeze' 'em with a MINI-STROBE kit, pocket-sized 'lightning flashes', varispeed, for disco's and parties. A mere $£ 3-80$ plus 20p P. \& P.
Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher: ready-made modules. 85 plus 20p P. \& P.
LOTS MOREI Send 20p for lists. (Prices include VAT). (Mail Order U.K. only). BOFFIN PROJECTS 4 Cunliffe Road
Stoneleigh, Ewell, Surrey (P.E.)

8UPERB IN8TRUMENT CA8E8 by Bazelli, manufactured from heavy-duty pve faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 82p. Examples: width, depth, height, 8 in. x $5 \mathrm{in} \times 3 \mathrm{in}, 81.70 ; 10 \mathrm{in} \times 6 \mathrm{in} \times 3 \mathrm{in}, \$ 2.42 ; 10 \mathrm{in} \times$ $\sin \times 3 \mathrm{in}, \quad 23.02 ; \quad 12 \mathrm{in} \times 10 \mathrm{in} \times 3 \mathrm{in}, \quad \mathbf{3} .96$; $\sin \times 4 i n \times 4 i n, \$ 1.98 ; 10 i n \times 6 i n \times 4 i n, 22.97$; $12 \mathrm{in} \times 8 \mathrm{in} \times 4 \mathrm{in}, 53.96 ; 7 \mathrm{in} \times \operatorname{in} \times 5 \mathrm{in}, 22.91$; $\operatorname{Sin} \times 10 \mathrm{in} \times 6 \mathrm{in}, 23.96 ; 12 \mathrm{in} \times 8 \mathrm{in} \times 7 \mathrm{in}, 8440$; 12 in $\times 10$ in \times in, 84.84 . Plus 85 p carriage and 8% VAT. Over 400 models to choose from. Prompt despatch. Free literature (stamp would Prompt despatch. Free literature (stamp would
be appreciated): BAZELLI, Dept. No. 23 , St. be appreciated): BAZELLI, Dept. No. 23, St.
Wilfrid's, Foundry Lane, Halton, Lancaster LA2 6LT.

CABINET FITTINGS FOR

Stage Loudspeakers and Amplifier Cab* Fretcloths, Coverings, Recess Handles, Strap Handles, Feet, Castors, Locks and Hinges, Corners,
Send 2×8,
S

ADAM HALL (P.E. SUPPLIES)
Unit Q, Starline Works, Grainger Road
METER REPAIR8. Ammeters, voltmeters, meTER REPAR PAIRS, 21 Moun' Road, Benfleet, Essex, SS7 1HA.

CHEAPEST POSSIBLE-BEST QUALITY 5 Pin din plug 19p. 2 Pin din pluz 12p. 2 Pin din in-line skt. 12p. Standard jack plug 22p. Stereo jack plug 30p. 3.5 mm jack plug 10 p . Phono plug 12p. Stereo jack chassis socket 30p. Standard jack chassis socket 25 p . 3.5 mm jack skt. 10 p . D.P.D.T. toggle switch 4.P. S. T. 2A 240 V 240 V . Hekla rocker switch. S.P.S.T. 2A 240 V $28 p$ (colours).
Prices include P. \& P. Cheques and P.O.s to I. E. AICOIN. ALCORN, 29 ROSEBURN DRIVE, EDINBURGH (same day despatch).

WANTED PRACTICAL ELECTRONIC8 March 1967, offers: Practical Electronics Dec, 1968, 1969 three missing, Jan. 1972, Feb. 1973, Fel. 1974, March 1974, Nuly 1976. F. NONEY, 45 Templer Road, Paignton, Devon.

> Learn about modern electronics with our new series of Kits on digital logic techniques. Each Kit contains specially selected I.C.s, Holders, Veroboard, L.E.D.s, and Instructions. Available at $£ 4 \cdot 00$ each (including P. \& P.) Kit One-Gates Kit Two-Flip-Flops Kit Four-Counters Kit Five-Displays S.A.E. for further details to:

> 69 High Street, Ryton, Coventry CV8 3FJ (Mail Order Only)

CLEARING LABORATORY, scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.

BURGLAR ALARMS SUPPLIES AND EQUIPMENT

S.A.E. For free catalogue

LARGE SIZE PRESSURE MATS 28 in. $\times 15$ in. $£ 1 \cdot 20$

MAGNETIC SWITCHES with magnets from 75 p BELLS SIRENS • ALARM-UNITS CABLE BELL COVERS . WINDOW FOIL . VIBRATION CONTACTS . ULTRASONIC AND INFRA-RED DETECTORS . INTERTIA SWITCHES.
A. D. ELECTRONICS

217 Warbreck Moor, Aintree
Liverpool L9 OHU. Tel. 051-525 3440

Musical Miracles!

by Dewtron ${ }^{\circledR}$

Build your own syuthesiser or musical effects using some of the huge range of DEWTRON modules. Or, build fuzz or waa-maa at budget prices using epecial kits.
Send 25p for Catalogue from:
D.E.W. Ltd., 254 Ringwood Road, Ferndown, Dorset BH22 8AR.

WIRE THREADING KIT
WIRE DISTRIBUTION SYSTEM INTRO-KIT
£5-95 inc. of VAT and P. \& P. (Mail order only) KIT CONSISTS: WIRE DISTRIBUTION PENCIL, W-D BOARD, W-D STRIPS, SPARE SPOOL OF WIRE, IC LEG DE

Or for further details please send a S.A.E.
Or for further details please send a S.A.E.
Trade and overseas enquiries welcome.

RECHARGEABLE NICAD BATTERIE8 "AA" (HP7), \&1-26; Sub. " C^{+*} \& $21 \cdot 29$; " $\mathrm{C}^{* *}$ (HP11) (H238;""I)" (HP2) £2-92; PP3 ©4-98. Matching chargers, respectively, 84.48, 24-48, 85.24, 25.24, $\mathbf{8 3} \cdot 98$. All prices include V AT. Add 10% P. \& P. S.A.E. for full list, plus, if wanted, 50 p P. \& P. S.A.E. for fullist, plus, if wanted,
for "Nickel Cadmium Power" booklet. for "Nickel Cndminm Power" booket. SANDWELI, PLANT LTD., 1 Denholm Road,
Sutton Coldfleld, West Midiands, B73 bPP. Tel. 021-3549764.

H.M. ELECTRONICS

275a Futwood Road. Broomhill, Sheffield S10 3BD

MAKE YOUR OWN P.C. BOAROS-EASILY

Rub-on Transfers For Prolessional Finish

STARTER PACK containing 5 sheets (lines, pads, i.c. pads) $\mathbb{1} \cdot 30$ (P. \& P, etc, $15 p$.)
SPARE SHEETS 27p. Easy to use. S.A.E. details and sample.
LOW-COST I.C. MOUNTING for any size DII mounting. 100 Soldercon sockets 65 p. 7 or 8 hole plastic supports 5p/pair (P. \& P etc. $10 \mathrm{p} /$ order). Quantity rates. S.A.E. for details and samples.
P.K.G. Electronics

Oak Lodge - Tansley
Derbyshire DE4 5FE

MAIL ORDER ACCESSORIES ALL PRICES TOTALLY INCLUSIVE! Magnetic earpiece with 3.5 mm or 2.5 mm plug ... PLI 12 universal lead assembly with movable pins. Will fit most 8 -track and cassette car stereo units. Complete with fuse and fuse holder... FM radio aerial. Folded dipole of 300 ohm ribbon twin feeder fitted with spade terminals ... 5 -pin din plug to 5 -pin din plug recording lead connected by 4 -core screened cable. 2-pin din speaker plug to in-line socket connected by 5 metres of 2 -core coded speaker cable ... Guitar lead standard angled jack plug to standard straight jack plug. 6 m coiled screened cable Headphone extension lead stereo jack plug to stereo in-line socket 6 m coiled screened cable ... tin stereo jack ${ }^{30 p} \quad{ }^{30 p} \quad{ }^{30 p}$ Phono plug, 12p; chassis skt., single, 10 p ; dble., 14p; 4W, 22p; DPDT toggle switch, 48p; SPST toggle switch, 34p. AM 2-pin aerial plug, 18p; FM 2-pin aerial plug, 18 p . All prices inc. P. \& P. Cheques and P.O.s to: l. E. ALCORN 29 Roseburn Drive, Edinburgh, Scotland

of butane and compressed pencil lead thinflame size. Ad. justable to 5.000 F . Cuts metals, welds. brazes and solders gold, silver. Ideal electricians. clockmakers, electronic and computer servicing. Up to 40 minutes use on fuel supplied. Replacement set of 2 micronex. I butane cylinder, $\$ 1.98$ excraincluding post. $£ 1925+95 p$ P. \& P. Send 620.20 . JOHN DUDLEY \& CO. LTD. Dept. PE 14, 301 Cricklewaod Lane Finchley Rd., London, NW2. Tel. 01-458 5917 Callers welcome. Access accepted

TELEPHONE PICK-UP LEADS

Phone sucker in either 3 DIN \ddagger Jack 3.5 Jack Phono or Philips EL 3581 3582/84 or other Philips models. Pleas state which one

Dept. PE, 1115 Finchley Road, Temple Fortune, London NW11.

Tel: 01-458 4755

ELECTRICAL

BTYLI, CARTRIDGES AND AUDIO LEADB, etc. For the best at keenest prices send S.A.E. for free illustrated list to: FELSTEAD ELECTRONICS (PE), Longley Lane, Gatley, Cheadle, Cheshire, SK8 4EE.

LADDERS

LADDER8, varnished, $25 \frac{1}{2} \mathrm{ft}$. extd., $\mathbf{£ 3 0 - 4 1 .}$ Carr. \&1.90. Leaflet. Immed. despatch. THE LADDER CENTRE (PER3), Halesfleld (1), Telford, Salop. Tel. 586644

THE RADIO AMATEUR'S HANDBOOK 1977

by A.R.R.L.
Price $\mathbf{1 6} \mathbf{6 5}$

MAKING YOUR.OWN ELECTRONIC GADGETS. A BEGINNER'S GUIDE by
R. H. Warring
Price $\mathbf{E 2} \cdot 80$
THE CATHODE-RAY OSCILLOSCOPE
$\& 1 T S$ USE by G. N. Patchett Price 4.05 ELECTRONIC CALCULATOR USERS HANDBOOK by M. H. Babani Price El-20 COLOUR T.Y. WITH PARTICULAR REFERENCE TO THE PAL SYSTEM by
G. N. Patchett IC OP-AMP COOKBOOK by W. G. Jung TRANSISTOR ELECTRONIC ORGANS FORTHE AMATE UR by A. Douglas Price 4.80 VIDEOTAPERECORDING by I. F.Robinson TRANSISTOR AUDIO \& RADIO
CIRCUITS by Mullard RADIO COMMUNICATION HAND-
BOOKYOLI BYRSGB
\star ALL PRICES INClUdE POSTAGE *

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET LONDON W2 INP

Phone 01-723 4185
Closed Saturday 1 p.m.

PRINTED CIRCUIT KIT E4.95
Make your own printed circutts. Contains etching dish, copper ciad board, ferric chloride, etch resist pen. drilt bit and instructions.
JC12 AM PLIFIER
6W IC audio amp
with free data and
printed circuit.
DELU

Contains extra parts except JC12 needed to complete The amp including balance, volume, bass and treble
JC12 POWER KIT
Supplies 25V 1A ع. 95 .
JC12 PREAMP KITS
Type 1 tor magnetic pickups, mics and tuners. Mono £1.50. Steroo £3. Type 2 for ceramic or crystal pickups. Mono 3sp. Stereo $£ 1$-75.

SINCLAIR IC20

1C20 10W + 10W stereo integrated circuil amplitier kit with tree printed circuil and data $\mathrm{E4} .95$
VP20 Volume, tone-control and preamp kit ee.g5

JC40 AMPLIFIER

New integrated circult 20W amplifier kit complete with chip, printed circuit and data E4.45.

FERAANTI ZN414

IC radio chip 81.44 . Extra parts and pcb for radio

BATTERY ELIMINATOR BARGAINS

RADIO MODELS
50mA with press-stud battery connectors. 9 V £3.75. 6 V

CASSETTE MAINS UNITS
7iv with 5 pin din plug. 150 mA £3. 95.

3-WAY MODELS

Whth switched output and 4-way multi-jack connector Type 1: $3 / 4 \frac{1}{6} / 6 \mathrm{~V}$ at $100 \mathrm{~mA} \mathrm{c} 3 \cdot 20$. Type 2. $6 / 7 \downarrow / 9 \mathrm{~V}$ at
150 mA \& $3 \cdot 30$.
FULLY STABILIZED MODEL 55.45
Switched output of $3 / 6 / 7 \% / 9 \mathrm{~V}$ stabilised at 400 mA
CAR CONVERTORS $55 \cdot 10$
input 12 V d.c Output $6 / 7 \mathrm{k} / 9 \mathrm{~V}$ d.c. 1 A stabilized.
BATTERY ELIMINATOR KITS
Send S.A.E. for free leaflet on range.
100 m radlo typet with press-stud battery terminals

100 mA caseette type 7ivV with 5 pin din plug $\mathbf{E 2} \cdot 10$. Transiator stabllized a-way type for low hum $3 / 4+/ 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{~V}$. $100 \mathrm{~mA} £ 3 \cdot 50$. 1 A I5- 50 .
 $21 / 25 / 28 / 34 / 42 \mathrm{~V}$. IA model $£ 4 \cdot 95$. 2 A model $87 \cdot 95$. Car convertor kit input 12 V d.c. Output 6/7\%/9V d.c 1 A transistor stabilized 1.95
MILLENIA KITS
5 transistor highly stabilized power unts. Switched
$1-30 \mathrm{~V}$ in 0.1 V steps. Send S. A. E. for fres leaflet 1 amp $1-30 \mathrm{~V}$ in 0.1 V steps. Send S.A.E. for free leaflet. 1 amp kit $£ 12 \cdot 45$. 2 amp kit $£ 14 \cdot 95$. Case $£ 2 \cdot 95$ extra.

MAINS TRANSFORMERS

$6-0-6 \mathrm{~V} \quad 100 \mathrm{~mA}$ I1. $9-0-9 \mathrm{~V} 75 \mathrm{~mA}$ £1. 18V 1A $£ 1.95$. $0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V} \quad 1 \mathrm{~A}$ \& 4.30 . $12-0-12 \mathrm{~V} \quad 50 \mathrm{~mA}$ \&1
 $30-0-30 \mathrm{~V}$ 1A $£ 4 \cdot 10$.
S-DECS AND T-DECS
S-DeC 51-94.
T-DeC 53 -8.
T-DeC [3-88.
$\mu-D e C A ~ E 4-21$.
$\mu-D e C B ~ E 7.21$.
H -OeCB er
carriers
with sockets 16 dil £1-91. 10TO5 [1.79
SINCLAIR CALCULATORS AND WATCHES Cambridge Memory 55 -95. Cambridge Scientific cs-95. Oxford ScI. [13.30. New Sinclair Pocket TV 165. Mains adaptors for other modela (alaless stee bracelet £16-45. White watch โ13-95.

SINCLAIR PROJECT 80 AUDIO MODULES PZ5 [4-95. 240 55-75. Project 8050 ع 20.95.

BI-PAK AUDIO MODULES
S450 tuner £20-95. AL60 £4.60. PA100 £14.95. MK60 SPMRO £3.95. BMT80 £3.62. Send S. A. E. fortree deta SAXON ENTERTAINMENTS MODULES
SA1208 £20.50. SA1204 £14. SA608 £13. SA604 $£ 12$.
PM1201/8 £12. PM1202/8 \&19. PM1201/4 £12. PM1202/4 PM1201/8 £12. PM1202/8 119. PM1201/4 £12. PM1202/4 [19. PM601/8 £12. PM601/4 £12.

SWANLEY ELECTRONICS

Dept. PE, PO BOX 68, 32 Goldsel Rd., Swanley, Kent
Mail order only. We will not serve callers under any circumstances. Post 30p on orders under E2 23. otherwise free. Prices include VAT. Official orders welcome. Overseas customers please deduct VAT. Send S.A.E. for free leaflets on kits.

THE OBGN DOQRTO RUAMFY
 4th ISSUE INCLUDES NEW METERS
 as well as new switches and items from advanced optoelectronics to humble (but essential) washers. Many things listed are very difficult to obtain elsewhere. The company's own computer is programmed to expedite delivery and maintain customer satisfaction. Attractive discounts are allowed on many purchases; Access and Barclaycard orders are accepted
 SEMI-CONDUCTORS - COMPONENTS ACCESSORIES, ETC
 \star FREE POSTAGE on all C.W.O. mail orders over $£ 2$ list value (excluding

PLAIN PAK STRIP

Patents applied for

The easiest way to make p / c boards without etching. Plain PAK STRIP is a very thin flexible p / c board with a self adhesive backing. Cut out shapes with scissors or-lay a sheet on to paxolin-mark out design with a pencil-cut and lift unwanted copper sections with a scalpel or sharp model knife. It's so easy you can make a p/c board in minutes. 6 in $\times 4$ in sheet of plain Paxolin, 10p. 6in \times 4in PAK strip $39 p$ inc. VAT, postage and instructions. S.A.E. for details or ask your local retailer.

Print-A-Kit Electronic Supplies
408 Sharrowvale Road, Sheffield, S11 8ZP

Bramhall, Stockport, Cheshire SK7 1LY

INDEX TO ADVERTISERS

A.B.C. Electronics
Adam Hall (P.E. Supplies)
A.D. Electronics
Atben Engineering
Alcon Instruments Lid
Alcorn, 1. E
Astro Electronics
Automated Homes
Bamber, B , Electronics
Barclay Electronics
Barrie Electronics
Bi-Pak
Bi-Pre-Pak
Birkett, J.
Boffin Projects
Brewster, S. \& R., Ltd.
British National Radio \& Electronics School
Cambridge Learning
Chiltmead Lid
Clef Products
Click Shelving (Nexus)
Components Centre. The
Copper Supplies
Crescent Radio
Crofton Electronics
C.R. Supply Co.
Davian Electronics
Deltic Systems
D.E.W. Ltd
D.E.W. Ltd. . . 242 . 304
Doram $\begin{aligned} & \text { Dudley. John, \& Co. Ltd. }\end{aligned}$
Eaton Audio
Electronic Design Assoc
242, 278, 304,

304
4 318 252
246 . 246
318, 319 314 318

278
243.319
.. 244

cover ii
.$\quad .315$
315
318 318 250

247, 314

[^1]

8
18
18
10
278 7

0

8

Maplin Electronic Supp
Maplin Electronic Supplies
Marco Trading
Marshall, A. \& Sons
Minikits Electronics
Modern Book Co.

Osmabet	319
P.A. Electronics	317
Phonosonics	254, 255
P.K.G. Electronics	318
Precision Petite Lto.	308
Proto Design	317
Pulse Electronics	315
Radio Component Specialists	cover iii
Ramar Constructor Services	318
Rastra Electronics ..	253
RST Valve Mail Order Co.	252
R.T. Services .	316
Salop Electronics	. .318
Saxon Entertainments	- 273
Scientific Wire Co.	- 318
Service Trading Co.	256
Sinclair Instruments Co.	. 277
Sintel	-. 313
Stevenson C. N.	. 316
Swanley Electronics	319
Tamba Electronics	. . 242
Technomatic Lid.	. . 311
Tempus. .	- 252
Trampus Electronics Lid.	250
TUAC	245
Westlake W. M.	317
Williams, Michael	244
Wilmslow Audio	. 309
Young Electronics	250
Zartronix	- 318

RETURN OF POST MAIL ORDER SERVICE

ELAC 10 inch
Hibbed cone. large ceramic

MAINS TRANSFORMERS

R.C.S. STEREO FM TUNER

 made using the latest eircuitry Bargam. Post tipp Kiba Stereo Tuner/Amplifer Chassis. Brame

Push-Pull Ready bunt mith wh + Transistor bass controls. Is wit battery operated and $\mathbf{6 3 . 9 5}$

E.M.I. 131×8 in

SPEAKER SALE!

State 3 or 8 ohm
Ag illustrated
I5W model $£ 8.50$
20W model $£ 9.50$
RADIO COMPONENT SPECIALISTS
337 WHITEHORSE ROAD, CROYDON Open 9-6 Wed. 9-1 Sat. 9—5 (Closed for lunch 1.15-2.30)

[^2] understand that I I choose to keep it

Our bi-monthly newsletter keeps you up to date with latest guaranteed prices - our latest special offers ftbey save you pounds) - details of new projects and new lines. Send 30p for the next six issues (5 p discount voucher with each copy).

ELECTRONIC SUPPIIES P.O. BOX 3, RAYLEIGH, ESSEX SS6 8LR

Telephone Southend (0702) 715155

Call at our shop: 284 London Road, Westcliff-on-Sea, Essex (Closed all day Monday) Telephone: Southend (0702) 47379

[^0]: © IPC Magazines Limited 1977. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is iully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannoi accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: -

[^2]: Published approximately on the 15 th of each month by IPC Magazines Led., Fleetway House, Farmagdon Street, London EC4. Pinted in England by Chapel River Peess. Andover,
 Hants Sole Agents for Austrahia and New Zealand-Gordon a Gotch (Asta) Led South Africa-Central News Agency Lid
 Subscrotions not avalable at home
 Subscriptrons not avalable at horne or overseas
 disposed of by way of Trade al more than the recommended sellingely, that it shall not, without the written consent of the Publishers first given, be lent, resold, hired out or otherwise or hured out or otherwise disfesed of in a mutilated condition or in dny unauthorised cover by, excluding Eire where the selling price is subject to V.A T ., and that it shall not be lent, resold matter whatsoever

