PRACTICAL

MAY 1977
40p
Fis3]

Electranic

Bon
don hame amusement Also inside... Organ Tremolo Digital

Darkroom Iimer Eurglar Alarm

TRNMSISTOR GUIITL...

Stirling Sound

SAVE £1.95 ON THIS 100 WATT R.M.S. AMPLIFIER WITH POWER SUPPLY UNIT

SS. 1100 POWER AMP. Delivers 100 watts R.M.S. into 4 ohms using a 70 volt/2A supply. Inpu1 sensitivity: 500 mV for full output.
Response 10 Hz to $50 \mathrm{kHz} \pm 1 \mathrm{~dB}$. S/N ratio better than 75 dB Response 10 Hz to $50 \mathrm{kHz} \pm 1 \mathrm{~dB}$. S / N ratio better than 75 dB
Distortion at half oower typically 0.1% With heatsink mounting bracket. 5 in $\times 3 \frac{1}{2}$ in $\times 1 \frac{1}{4} \mathrm{in}$.
SS. 370 A new heavy duty power supply unit to deliver 70 volts. 2 amps. complete with mains transtormer and low-volt outlet (P \& P.ET)
£9.45* Full size
heatsink \boldsymbol{f}^{\star} haasinn

MORE Q.V.MODULES FOR COST-CONSCIOUSCONSTRUCTORS

POWER AMPLIFIERS

3 TO 40 WATTS R.M.S.
SS. $103 \quad 3$ watt r.m.s. mono. Uses an I.C. Protected against short circuit SS.103-3 Stereo version of above, using IWO I.C.s
SS. 1054 watts r.m.s. into 3 ohms. using 12 V
SS. $110 \quad 10$ watts r.m.s. using 24 V and 4 ohm load
SS. 12020 wats r.m.s. into 4 ohms,
using 34V
SS. 14040 watts r.m.s. into 4 ohms,
using 45 V supply. Ideal small disco or
P.A. unit
P.A. unit

VAT on power units ordered with amplifiers SS. 103 -SS. 120 becomes $12 \frac{1}{5} \%$.

TONE CONTROLS/ PRE-AMPS

SS. 100 Active tone control. Stereo $\pm 15 \mathrm{~dB}$ on bass and on treble SS. 101 Pre-amp for ceramic cartridges. etc. Stereo. Passive tone control details supplied
SS. 102 Stereo pre-amp for low output magnetic P U.S. R.I.A.A. corrected

Combined pre-amp with active tonecontrol circuits. $\pm 15 \mathrm{~dB}$ at 10 kHz treble and 30 Hz bass. Stereo Vol./balance/ treble/bass. 200 mV out for 50 mV in. Takes $10-16 \mathrm{~V}$
UNIT TWO As above, but with input for magnetic cartridges and 1 to 5 mV , R.I.A.A. corrected

FM TUNING MODULES

SS. 201 Front end tuner, slow geared drive, two gang. A.F.C. facility. Tunes $88-108 \mathrm{MHz}$
SS202 $\mathrm{l} . \mathrm{F}$ amplifier. Metering and A.F.C. facilities

SS. 203 Phase lock-loop. Stereo Decoder for use with the above or other FM mono tuners. A LED may be fitted
SS.203/1 Coll type stereo decoder: Neg. earth, with l.C.
Pos. earth, with I.C.

QUICKER DELIVERY

WE MAKE DELIVERY QUICKER by saving time in turning round your orders. Now when ordering you send direct to our factory where $Q V$ (Quality and Value) modules are made. Our shop and showroom continue as usual for those calling personally.
WATCH HOW THE STIRLING SOUND RANGE GROWS'
17.80
$\varepsilon 10 \cdot 85$

POWER SUPPLY UNITS

A range of units to meet constructors" almost every requirement. Made in our own factory Complete with mains transformers and low-volt take-off points (except SS.312). All a: 8% VAT rate.

SS.310/50 COMPLETE STABILISED
POWER SUPPLY with variable output from 10 to $50 \mathrm{~V} / 2 \mathrm{~A}$. (P. \& P. add 50p) $£ 11$-95*

SS. 300 STABILISING UNIT $10-50 \mathrm{~V}$ adjustable. For adding to unstabilised supplies. Built-in protection against shorting (P. \& P. 35p)

A GOOD START FOR MOTORISTS!

and unbeatable value, too!

with a Stialing souno super spark Mk. 5 Electronic lgnition Unit Made in our own 1.300 Super Spark Units have been soid by us. Adjustabie for + or - earth. simple rev. limiting contral. on-otf imobilising switch, switch for instant revert to car's own Ignition: nean indicator.
 transtormer. (P. \& P. 50 p ether model $+8 \% \mathrm{VAT}$.)
KIT £8.95* $\begin{gathered}\text { READY } \\ \text { BULT } \\ \text { E10.95* }\end{gathered}$
Shop \& Showroom: 220/24 West Road, Westcliff-on-Sea. Phone Southend (0702) 46344

WHEN ORDERING add 35p for P. \& P. unless stated otherwise. VAT add $12 \frac{1}{2} \%$ to total value of order uniess price is shown* when the rate is 8%. Make cheques. etc.. payable to Bi-Pre-Pak Lid. Every effort is made to ensure correctness of information at time of going to press. Prices subject to alteration without notice.

Stining Souni

A member compeny of the OF-Pra-Pak group, Eal. 1959
Mall orders to
Dept. PE5, 37 Vanguard Way, Shoeburyness, Essex Telephone Shoeburyness (0702-28) 5543

ELECTRONICS

VOLUME 13 No. 5 MAY 1977

CONSTRUCTIONAL PROJECTS

ORGAN TREMOLO UNIT by L. F. Reeve

A solid state phase modulator for electronic organs

BURGLAR ALARM by P.J. Fasoli

A sensitive amplified bridge design
ONE ARM BANDIT by K. Amor
A scaled down version of the popular gaming machine
DARKROOM TIMER by A. Koltai \& G. S. Brimble
An accurate, reliable timer with digital readout

GENERAL FEATURES

MICROPROCESSORS EXPLAINED-3 by R. W. Coles
The instruction set and programming techniques
SEMICONDUCTOR UPDATE by R. W. Coles 346 355
A look at some recently released devices

MOBILE DISCO TECHNIQUES-2 by N. McLeod
Equipment and operating techniques for the disco enthusiast

INGENUITY UNLIMITED

INGENUIT Score-Motor Driver--Programmable Melody Generator-
TV Tennis Sce
Joanna Modification

NEWS AND COMMENT

EDITORIAL—New Voice for Components Industry 337
NEWS BRIEFSDIY Computing Conference-All Electronics Show-Sound '77 Exhibition-345
Microprocessor Forum352Venus-Infra Red Telescope-Landsat
356
MICROPROCESSOR REPORT
Products discussed at a Cambridge Seminar
370
MARKET PLACE371
STRICTLY INSTRUMENTAL by K. Lenton-SmithElectronic music matters
POINTS ARISINGDigital Voltmeter-Putting It Together-Solar Heating Controller-Hazard Warning Flasher-pH Meter382
INDUSTRY NOTEBOOK by Nexus 385
What's happening inside industry386
PATENTS REVIEW386
(for details of contents see page 365)

[^0]
GREENWNELD

443 Milibrook Road Southampton Sロ1 ロНХ

Tel：（ロ7ロ3）フフ2501
All mail orders and callers to this address please－callers only to 21 Deptlord Broadway．SE8（Tel．09－692 2009）and 38 Lower Addiscombe Road，Croydon

44 PAGE CATALOGUE

Free with orders over
DIGITALI．C．s

7400	12p	7450	15p	7495 73p
7401	14p	7451	14p	${ }^{7496} 885$
7402	14 p	7453	14 p	74107 37p
7404	17p	7454	140	7412133 p
7405	23p	7450	14 p	74122 51p
7406	${ }^{29} \mathrm{p}$	7472	29p	${ }_{74123} 84 \mathrm{p}$
7408	14p	7473	29p	74132 58p
7410	13p	7474	29p	74150173 p
7413	28p	7475	51p	74154 144p
7414	82p	7476	29p	7415573 P
7420	$14 p$	7483	91p	74157 68p
7430	140	7486	40p	74159 200p
7432	18p	7490	46 p	74174110 p
7437	18 p	7491	75p	74179120 p
7440	15p	7492	520	74180120 p

$744784 \mathrm{8} \quad 7493 \quad 52 \mathrm{p} \quad 74367120 \mathrm{p}$
SLD2128．dual 128 bit static shitt registe £2．
DIL Sockets－8 pin 12p： 14 pin i3p
LINEAR I．C．S
741 25p： 555 40p； 723 （TO99）50p
Plasitic Voltage Regulators：
TO 126 case 5 V 600 mA 80p， 12 V 500 mA ${ }^{80 p}$
TRANSISTORS

AC127	${ }^{15 p}$	BC183	12p	2 N	52p
${ }^{\text {ACP }} 128$	15p	BC184	12p	2 N 2926 G	12p
AC176	$16 p$	BC212	14 p	2N3053	$1 \mathrm{~Pb}^{\text {p }}$
AC187	18 p	BC213	14p	2N3054	49p
AC188	18p	BC214	14 p	2N3055	38p
AD 161	35p	BCY70	15p	2N3440	54p
AD162	35p	BCY71	15p	2N3442	20
BC107	10p	BCY72	15p	2N3702	10p
BC108	10p	ED131	38p	2 N 3703	10p
BC109	10p	BD132	40p	2N3704	11p
BC109C	15p	BFY50	15p	2N3705	10 p
BC147	10p	BFY51	15p	2N3708	10p
BC148	10 p	BFY52	15p	2N3819	22p
8 C149	10p	TIP41A	60p	2N4059	10p
BC157	10p	TIP42A	75p	2 N 4418	10p
BC158	10p	TIP2955	96p	2 N 5294	30p
BC159	10p	TIP3055	42p	73	60

$\begin{array}{llll}\text { BC } 161 & 18 \mathrm{P} & 2 \mathrm{~N} 2219 & 28 \mathrm{D}\end{array}$

VEROBOARD

Good size offcuts：all packs contain 100 sq in．（About 8 pieces）All packs $£ 1 \cdot 20$. Pack A．alfo 1 in pitch．
Pack C．mixed 0 1 and 0.15
Pack D，all 0 in plarn．
Also available by－welght：Ilb $£ 3.45$ 10 bs £ 30 ．
17×3 \＆$\times 0.1$ in sheets $£ 7.90 ; 0 \quad 15$ £1－60． sided or 35 p 15 in pins，single or double sided 35p／100

DIODES AND LEDS AND SCR＇s
500 V 5A SCR 45p： 400 V 2 A Triac 80p Dlac BR100 25p： 400 V 15A Triac $£ 1.50$ OED 150 p ，MRD450 40p：Til209 Red LED 15p； 02 in LED Red 22p；green yellow or amber 24p
iN4002
5 p ． 1 N 4004
1N4148 ${ }^{\text {5p }}$ ； 1 NY 4004 6p；1N4007 9p 400 V 3 A 15 p ；OAB1 5 p ；OA91 5p：OA47 10p 50 V 1 A bridge 22p； 800 V 1 A 40 p 250 V 2 A 40 p ； 200 V 5 A 70 p Zoners－ 400 mW BZY88．All voltages from $3 V$ to 30 V 10 p
13 W plastic from 3 V to 200 V 20 p

RESISTORS

Carbon film 5% fW miniature．All values in E12 series from 1 \cap to $10 \mathrm{M} \Omega$（over

series trom 27Ω Al values in $E 12$ seples from 27』 to $10 \mathrm{M} \cap 2 \frac{1}{3} \mathrm{p}$
values from 20Ω to $4 \mathrm{M} 7 \Omega$ ． 7 p ．horiz．al Standard pots．lin or log．22p．
Wirewound 2iw 0 25． 0 33． 0 47 in 8p． Wirewound 5 W all values from in to 47K 10p each

TRANSFORMERS

6－0－6V 100 mA 90 p ； $90-9 \mathrm{~V} 100 \mathrm{~mA} 95 \mathrm{p}$ $120-12 \mathrm{~V} 50 \mathrm{~mA} 90 \mathrm{p} ; 12012 \mathrm{~V} 100 \mathrm{~mA}$ ह1 12－0－12V 1A $\mathbf{2 2} 80$ ； $20 \mathrm{~V} 55 \mathrm{~mA} 90 \mathrm{p} ; 22 \mathrm{~V}$ 100mA 1 ： $29 V 50 \mathrm{~mA} 85 \mathrm{p} ; 6$ 3V $1 \mathrm{H} \mathrm{A} £ 1.95$

REEDS

1in inserts． $5 p$ ： $10 / 40 \mathrm{p} ; 100: £ 3.50$ ．OIL
relay． 3.7 －10V．$£ 2.60$ ，

WIRE

Enametled copper wire on $20 z$ reals

$22 / 42 \mathrm{p}$,	$24 / 44 \mathrm{p}$,	$26 / 46 \mathrm{p}$,	$28 / 45 \mathrm{p}$,
$32 / 52 \mathrm{p}$,	$34 / 54 \mathrm{p}$,	$36 / 56 \mathrm{p}$,	$38 / 58 \mathrm{p}$,
	$40 / 60 \mathrm{p}$.		

RF CHOKES
$0.75,2,95,6.8,10,22$ ．all 10p each 15 $2.5 \quad 5 \quad 0.7 \quad 5 \quad 10 \mathrm{mH}$ ．all 30 p each

CAPACITORS

Ceramic plate，22pF to 1.000 pF 2 p polyester 1,000 to 6.800 pF 5p： 0.01
$0.015,0.022,0.033,0.047,0.068,0.1 \mathrm{mF}$ 4p： $0.15 \quad 0.22 \mathrm{mF} 5 \mathrm{p}: 0336 \mathrm{p} ; 0.47 \mathrm{gp}$ 0.6810 p ； 1 mF 12p； 22 mF 16p； 3.3 mF $24 \mathrm{p}, 1,000 \mathrm{pF}$ feedthrough 5 p ． 1% 1．000pF 10.000 pF 15p；0．1 $0 \mathrm{~F}, 0.2 \mu \mathrm{~F}$ $0 \cdot 25 \mu \mathrm{~F} 30 \mathrm{p} ; 2 \cdot 2 \mu \mathrm{~F} 55 \mathrm{p}$ ． Polystyrene 10 pF 101.000 pF 4p； 9.200 pF
to 10,000 pF 6 p ．All $2 \frac{1}{2} \%$ ． Electrolytict
All $25 \mathrm{~V} \quad 0.47,1,2 \cdot 2,4 \cdot 7,10,22,33,47 \mu \mathrm{~F}$ 7p． $100 \mu \mathrm{~F} .150 \mu \mathrm{~F}$ 8p，220 $\mu \mathrm{F}$ 10p； $330 \mu \mathrm{~F}$ 12p；470 HF 15p；1，000 $\mathrm{FF} 23 \mathrm{p} ; 2.200 \mu \mathrm{~F} 33 \mathrm{p}:$ 3，300 MF 45p：4，700 uF 58p．40V 10， 22, $470 \mu \mathrm{~F}+7 \mathrm{p}$ ： $1.000 \mu \mathrm{~F} 30 \mathrm{p}: 2020 \mu \mathrm{~F}$ 14p $470 \mu \mathrm{~F}$ 77p： $1.000 \mu \mathrm{~F} 30 \mathrm{p} ; 2.200 \mu \mathrm{~F}$ 58p；
4．700（can） 72 p ．
Tantalum Bead uF／ $0.1,0.22 \quad 0.33$
$0.47 .068,1.15 .2 .2 .3 .3 .35 \mathrm{~V}, 4.7 / 25$ 6 8，35，10／25，15／10，22 16，33 10．47／6，68／6 1003 ．12p each

BREADBOARDS
S－DEC Breadboard $£ 2 \cdot 10$
T－DEC Breadboard $£ 3.75$
T－DEC Breadboard $£ 3 \cdot 75$
Special price to colleg
quantities－ring for quote
ORGAN TREMOLO UNIT
All parts required to bulld this project reatured in this issue of P．E．obtarnable plete kit．Send S．A．E for individual part prices．Complete kit only $£ 6$ inc VAT and post

VEROBOXES AND CASES
Professional 2 part boxes made of dark 2518 light grey high impact polystyrene． $\begin{array}{ll}2518 & 120 \times 65 \times 40 \mathrm{~mm} \\ 2520 & 150 \times 80 \times 50 \mathrm{~mm}\end{array}$ $2522188 \times 110 \times 60 \mathrm{~mm}$ Sloping Iront version，Ideal $2523220 \times 174 \times 10052 \mathrm{~mm}$ Cases，white plastic top $\mathbb{C} 75$ ront and back aluminium panels that fot in Type．
$\begin{array}{ll}1410 & 205 \times 140 \times 40 \mathrm{~mm} \\ 1411 & 205 \times 140 \times 75 \mathrm{~mm}\end{array}$
$1412205 \times 140 \times 10 \mathrm{~mm}$
$\begin{array}{ll}1237 & 154=85 \times 40 \mathrm{~mm} \\ 1238 & 154 \times 85 \times 60 \mathrm{~mm}\end{array}$
$1238 \quad 154 \times 85 \times 60 \mathrm{~mm}$
$1239 \quad 154 \times 85 \times 80 \mathrm{~mm}$ Small generał purpose plastion $\quad \begin{array}{r}£ 250 \\ \boxed{83} 00\end{array}$ $\begin{array}{ll}1413 & 71 \frac{1}{2} \times 40 \times 24 \frac{2 m m}{2} \\ \text { PB1 } & 115 \times 75 \div 36 \mathrm{~mm}\end{array}$

DEVELOPMENT PACKS

Save โूรEs by buying a full range of mapked devices．no rejects or old stock 50 V ceramic plate capacitors 5% of each value． 22 pF to $\$ 000 \mathrm{pF}$ Total 210 capactiors $£ 270$.
CR25 carbon film resistors watt 5° to of each value ton to $1 \mathrm{M} \Omega$ total
$610[6.00$ Extended
Extended range 1 onm to 10 M 850 esistors is 30
10 each of $1.22 .47 \quad 10.22 \quad 47$ and 100 mF 70 capacitors for $£ 3 \cdot 20$ ． 10 each Zeners． $400 \mathrm{~mW} 5 \%$ BZY88 10 each $3 V$ to 30 V total 260 £14． 00
f pack 5 of each value $\mathrm{fs} \cdot 20$
Tantalum Bead caps 14 values from 0,35 to 1003.10 of each total 140
caps $512 \cdot 00$.

See Practical Wireless for details of packs of components．surplus goods，etc All prices quoted include VAT at 8 or $12 \frac{1}{2}$ ．Add $20 p$ postage on orders under £3．Minimum order £1．Most orders despatched on day of receipl．SAE with〔3．Official Orders accepled from Schools，elc．Export wholesale enquiries welcome Surplus components always wanted

A New Miniature Soldering Iron

220－240 Volts 16－18 Watts Insulation tested at 1500 Vac ＊Lightweight BIT TYPE
191.5 mm 2030 mm 2145 mm 2260 mm

$7 \star$ Slim，easy to hold \star Four tip sizes Complies with Consumer Protection Regulations B．S №3456 2／14 \star All parts easily replaced \star New bit securing method \star Built in suspension hook

PRICES：IRONS $£ 3.70$ each BITS 41p each （Inc．VAT and P\＆P） Trade enquiries welcome． S．\＆R．BREWSTER LIMITED 86－88 UNION STREET，PLYMOUTH，PLI 3HG Telephone
0752.65011

NOW AVAILABLE IN THE U．K！

ONE OF ITALY＇S LEADING TEST EQUIPMENT MAKERS PRESENT THE CORTINA MINOR

One of a range of professional quality instruments now available to U．K．users
－SENSITIVITY 20,000 I2 VOLT（D．C．） 4.000 ת／VOLT（A．C．）－ROBUST DIODE PROTECTED PRECISION MOVEMENT O 33 RANGES D．C
 $25 \mathrm{~V}, 75 \mathrm{~V}, 250 \mathrm{~V}, 750 \mathrm{~V}$ ， $1,500 \mathrm{~V}$ A．C CURRENT O－25mA， 250 mA $2.5 A, 12.5 A$ dB RANGES， 10 to + G9．RESISTANCE RANGES $10 \mathrm{~K} \Omega$ IOM F．S．D．CAPACITANCE RANGES $100 \mu \mathrm{~F}$ ，IF F．S．D．AC．
CURACY－RESISTANCE A．C VOLTAGE AND CURRENT 3.5° ．OHM BY INTERNAL BATTERES O COMPACT SIZE 150×85 ． 40 mm 350 gr －PROFESSIONAL QUALITY COMPONENTS EMPLOYED THROURG OUT FULLY GUARANTEED FOR 12 MONTHS－AFTER SALES SERVICE AND SPARES FACILITIES SUPPLIED WITH ADDITIONAL SHOCKPROOF PLASTICS CARRYING CASE，TWO HIGHLY INSULATED TEST LEADS AND INSTRUCTION BOOKLET－SPECIAL JOKV PROBE FOR D．C MEASUREMENT AVAILABLE AS AN OPTIONAL EXTRA．
PRICE $£ 35 \cdot 10$（ p \＆$£ 1$ ）PROBE $£ 12.85$ inc．of VAT
For full details of the Chinaglia range contact

CBM

5190 R

 ${ }_{2}^{2}$ Exx. 90 function ${ }^{10-21011}$ pre-programmed. Metrlc conversions. Extra Perms and combinations. Gamma. Polsson and Binomial distributions, factorial, complex numbers, hyperbollc functions, linear gratiop of $Y=f(x)$.(R)£29.95

7949850 functions. $10+2$ mems. logs \& trigs. etc. Polar rec colord.

$$
£ 11 \cdot 75
$$

4148. $10-\mathrm{d}$ git +2 Exp. Full \log and 48. nates, 2-store mem. Mean and Standard deviation. (R)£21-95 1800. As 4148 but Green dlsplay and
£19.95*
PR100 New Prog. Sclentific $\quad \underset{512.95}{ }$ N50 (Navlgator)

ROCKWELL
64RD ${ }_{12}$ (Illilisif)
or 8 -dlgit +2 Exp. Additional to the
44RD. Polar rec. co-ordinates, Log Trig, rad of grad. £24.50*

44RD. $\quad \substack{9 \text {-digit } \\ 5 \text {-digit }}$

44RD. 5 -digit and 2 Exp
Green DIsplay. Store,
Similar to the $63 R$
Similar to the 63R
£19-50*
24K. Stainless Steel Slimline. Green display. In beautiful leatherette wallet to hold pen, note pad and credit cards (all included). Rurgeable. (R)€21.95 butlons. Rechargeable. (R)£21-95
Including recharger.

DECIMO DIGITAL CLOCK RADIO
T Finctiga large
NEW ZYTRONIC TELE-GAMES
DE LUXE

THIS DELUXE MODEL HAS Tennis, Football Squash, Solo. 2 bat slzes, 2 Ball speeds. 3 distinc

Tennis, Football, Squash. Score marker Ball sound effects- 2 plngs. Player
indicator $539 \cdot 90$
pings-one for point score, one for bat strike ball, one for bail strike boundary and automatic scoring. E 48.90

These games are easy to play and a joy for all the family!

NOVUS

4640 (!llus.)
 memories. Logs, Trigs, Stat and Metric converslons etc. (R)£42.95 4650. $\frac{8}{2}$ digit, 2 Exp, Alevel parenthesis. Full memic Addressable. Trig, sin, cos, fan and
inverse trig functions. Deg rad. Reciprocal, Sa root. Powers and P1 entry Mem Ex' and Register Ex (R)£27-50 4525. $8+2$ Exp. 100 step Prog. R.P.N. Mem. roll stack; sklp, delete. Additional progs within the 100 step
(R)£34-50
4515. 100 step prog
(R)£23-80

6010 . Metric.
£15.95*
6035. tician. Rer'argeable.
(R)\&34-95 6025. Rechargeable. Financier 1004510.8 digits. 3 level sta
log functions.
rocal Memory, etc.
6030.
4520. $\begin{gathered}\text { Sci. } 8 \text { Dig. } \\ \text { roll stat. et }\end{gathered}$

SINCLAIR

 a deg. rads etc
OXFORD SCIENTIFIC Iarget version of

PHONE CALLS AND PERSONAL CALLERS WELCOME MON ${ }^{(0}$
 TE: BPLE FORTUNE, LONDON N.W. 11 (Near the M1)
Please send me.
with/without optional malns adaptor. I enclose cheoue/money order total
value \&...ase add 55p to all ltems to cover D. \& D.
NAME
ADDRESS

This is the most unique clock/radlo In the country today having a soft, $1 \frac{18}{}$ "high completely silent and non-pulsating In a beautifully styled enclosure with up-to-date VHF/MW radio. You can awake to soft music or alarm. Automatic 80 minute 'sleep' button in case

OUR PRICE £33.95

SAVBIT
handy solder dispenser
Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times.
Size 5 49p
For soldering fine joints
Two more dispensers to simplify those smaller jobs. PC 115 provides 6.4 metres approx. of 0.71 mm solder for fine wires, small components and printed circuits.
PC115 57p
Or size 19A for kit wiring or radio and TV repairs.
2.1 metres approx. of
1.22 mm solder.

Size 19A 53p

Handy size Reels \& Dispensers OF THE WORLD'S FINEST CORED SOLDER TO DO A PROFESSIONAL JOB AT HOME

Ersin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.
 containing clear instructions to make every job easy.

Ref.	Alloy	Diam. mm	Length metres approx	Use	Price
$\begin{gathered} \text { Size } \\ 3 \end{gathered}$	$\begin{gathered} \hline 40 / 60 \\ \text { Tin/Lead } \end{gathered}$	1.6	10.0	For economical general purpose repairs and	£1.79
$\underset{4}{\text { Size }}$	ALU-SOL	1.6	8.5	electrical joints. For aluminium repairs. Also solders aluminium to copper, brass etc.	£2.42
$\begin{aligned} & \text { Size } \\ & 10 . \end{aligned}$	$\begin{gathered} 60 / 40 \\ \text { Tin/Lead } \end{gathered}$	0.7	39.6	For fine wires, small components and printed circuits.	£1.79
$\begin{gathered} \text { Size } \\ 12 \end{gathered}$	SAVBIT	1.2	13.7	For radio, TV and similar work. Increases copper-bit life tenfold.	£1.79

Pat. No
1443913

BIB WIRE STRIPPER \& CUTTER

Fitted with unique, 8 -gauge selector ánd handle locking device. Sprung for automatic opening. Strips flex and cable in seconds.

SOLDER-

 WICKAbsorbs solder
instantlyfrom
tags, printed
circuits etc. Onlyneeds 40-50 Wattsolderingiron. Quick andeasytouse. Non-corrosive. Size 18 97p

Sole U.K Sales Concessionaires:

:3b Hin Accessories iinited,
Prices shown are recommended retail inc. VA T. From Electrical Kelsey House, Wood Lane End, Hemel Hempstead, Herts. HP2 4RQ and Hardware Shops. In difficulty send direct, plus 20p P\&P. Prices and specifications subject to change without notice.

THE 'METAC' DIGITAL ALARM CLOCK

8

- Choice of Bright Orange 12 Hour Display, or
- Soft Green 24 Hour Display - 24 Hour Alarm
- 10 Minute Repetition - Alarm Set Indicator - Accurate Silent Timekeeping - British Designed and Built
SAME DAY DISPATCH orders received before 2 pm are posted same day
$£ 12 \cdot 99+£ 1.04$ VAT
Cash. Cheque or Postal Order or if you wish to use Barclaycard or Access. simply quote name, address and card number when ordering

Metac-Electronics and Time Centre

67 High St., Daventry, Northants Tel. Daventry (032 72) 76545.
3 New Arcade, High St., Uxbridge, Middx
Tel. Uxbridge (0895) 56961

P.O. BOX 3 6 JUTLAND RISE ST. NEOTS CAMBS PE19 3JB

TERMS MAIL ORDER ONLY C W O MINIMUM ORDER £1. VAT Please add $12 \frac{1}{2} \%$ to value of order inc. P \& P unless otherwise stated. Cheques or P.O.s payable the Eaton Audio. Orders over $\& 5$ free of P. \& P., otherwise please add 10 p in the $£ 1$

StEREO TUNER
Complete set of semiconductors
£4.99
Mullard LP1186 tuner head
£7.75
High quality glass fibre P.C.B.
£2.45

ORION STEREO AMPLIFIER

Complete set of semiconductors
£9.40
High quality glass fibre P.C.B.
£2.99

PE DIGITAL VOLTMETER

ZNA116 £6•00* with circuits and data

Complete set of semiconductors for the P.E. DVM including all I.C.s. transistors, displays. etc
£20.50 (+ 8\% VAT)
Set of two protessional orade glass fibre PC.B.s
£3.40
ZN424 [1, ZN423* £1, ZN7447* \&1 75, 78MO5* rag. 5 .
, OL707* (0-9) 51.75
SEVEN SEGMENT DISPLAYS DL701* $(+1-1) 51 \cdot 75$, DL707* $(0-9) £ 1 \cdot 75$
FERRANTI SEMICONDUCTORS-WE ARE THE EXPERTS

zeners 10p	BFS96 1	ZTX107	11p		10p		
All types	MS 4 A* 11.35	2TX10	9 p	ZTX320	18p	BD699*	[1
BC415P 17p	ZS170 13p	$2 T \times 109$	11p	27×384	17p	B0700*	\&1. 26
560 15p	ZS178 54p	2TX212	15p	$2 T \times 450$	16p	MC1310P	c1.80
61 15p	2S271* 23p	$2 T \times 213$	15p	$2 T \times 550$	18p	C1357PD	1.
F997 15p	ZTXAZO 10p	2TX214	17p	$2 \mathrm{~T} \times 4403$		N-13)	
We can supply any FERRANTI semiconductor device to order S.A.E for quotation FERRANTI CDI INTEGRATED CIRCUITS. All with circuits and data							
N414 radio mic	clrcuit	$\underline{1}$	2N425	to	onver		13.50
N424E low no	dio I.C	$\Sigma 1$	2N103	* preci	tir		¢1.80
NA103E* TV	tor	c2	2N10		co	displa	C7. 50

PE TV SOUND SEPARATOR

Complete set of semiconductors $£ 2-30$, High qualify glass fibre p.c.b. £1
POSTAGE AND PACKING 15p per order. Orders over $£ 5$ post free. All devices are top grade, brand new and to full manufacturer's spec. We do not sell seconds or rejects Pricen do not Include VAT-add 8% to
DAVIAN ELECTRONICS
13 Deepdale Avenue, Royton, OIdham OL2 2 XD

SPEAKERS

Baker Group 25．3． 8 or 15 ohm Baker Group 35，3， 8 or 15 ohm Baker Group 50／12 8 or 15 ohm Baker Group 50／15 8 or 15 ohm Baker Deluxe 124．8 or 15 hm Baker Major 3.8 or 15 ohm Baker Superb 8 or 15 ohm Baker Superb 12 in 8 or 15 ohm Baker Regent 12 in 8 or 15 ohm Baker Auditorium 121 n 8 or 15 hm Baker Auditorium 15 in 8 or 15 ohm
Castle 8RSIDD 4 or 8 onm Celestion G12M 8 or 15 hm Celestion G12H 8 or 15 ohm Celestion G12／50 8 or 15 ohm Celestion $G 12 / 50$ TC 8 or 15 onm Celestion G12／50 2236 s ／cone Celestion G12／50 2239 s／cone，alum．dome Celestion G15C 8 or 15 hmm Celestion G18C 8 or 15 ohm Celestion HF1300 8 or 15 ohm Celestion HF2000 8 chm Celestion MH 10008 or 15 hm Coles 4001G Coles 4001 G

Decca London ribbon horn Decea London CO／1000／8 crossover Decca DK30 ribbon horn
Decca CO／1／8 crossover（DK30）
EMI 14×9 in bass 8 ohms．14A770
EMI $8 \times \sin$ ， 10 W ，d／cone．roll surr
EMI 6 tin dicone，roll surr．， 8 ohm
EMI gin roll surr．bass
EMI 5 in mid range
Elac 59RM 109 （ 15 chm ），59RM114（ 8 ohm ）
Elac 6 tin d／cone，roll surr．， 8 ohm
Elac 10 in 10 RM 239 ． 8 ohm
Elac 10 in
Eagle FR4
Eagle FR4
Eagle FR65
Eagle FR8
Eagle FR8
Eagle FR10
Eagle HT15
Eagle HT21
Eagle MHT10
Eagle FF28 Multicell horn
Fane Pop 15， 16 ohm
Fane Pop 33T． 8 or 16 ohm
Fane Pop 50， 8 or 16 ohm
Fane Pop 55，8 or 16 ohm
Fane Pop 60， 8 or 16 ohm
Fane Pop 70,8 or 16 ohm
Fane Pop 100.8 or 16 ohm
Fane Crescendo 12， 8 or 16 ohm
Fane Crescendo 128L． 8 or 16 ohm
Fane Crescendo 15／100A． 8 or 16 ohm
Fane Crescendo 15／125． 8 or 16 ohm

SPEAKERS

Fane Crescendo 18．8 or 16 ohm

Fane 910 Mk II horn
Fane 920 Mk II horn
Fane HPX1 crossover 200W
Fane $13 \mathrm{E} \times 8 \mathrm{in}$ ． 15 W dual cone
Fane 801T 8 in d／c，roll supr
Gauss 12in
Gauss 15 in
Gauss 18 in
Goodmans Axent 100
Goodmans Audiom 2008 ohm
Goodmans Axiom 4028 or 15 ohm
Goodmans Twinaxiom 8， 8 or 15 ohm
Goodmans 8P 8 or 15 ohm
Goodmans 10P 8 or 15 ohm
Goodmans 12P 8 or 15 ohm
Goodmans 12PG 8 or 15 ohm
Goodmans 12PD 8 or 15 ohm
Goodmans 12AX 8 or 15 ohm
Goodmans 15AX 8 or 15 ohm
Goodmans 15P 8 or 15 ohm
Goodmans 18P 8 or 15 ohm
Goodmans Hifax 750P
Goodmans 5 in midrange 8 ohm
Jordan Watts Module，4， 8 or 15 ohm
Kef T27
Kef T15
Kef B110
Kef B200
Kef B139
Kef DN8
Kef DN12
Kef DN13 SP1015 or SP1017
Lowther PM6
Lowther PM6 Mk
Lowther PM7
Peerless KO10DT 4 or 8 omm
Peerless DT10HFC 8 ohm
Peeriess KO40MRF 8 ohm
Peerless MT225HCF 8 chm
Richard Allan HP8B
Richard Allan LP8B
Richard Allan DT20
Richard Allan CN8280
Richard Allan CN820
Richard Allan Super Disco 60W 12in
Richard Allan CG15 15 in bass
Richard Allan Super Disco 10 in 50 watt
Richard Allan Super Disco $\sin 50$ watt
Radford BD25
Radford MD9
Radiord MD6
Radford TD3
Radford Cross Over Network
Tannoy 10 in Monitor HPD

Tannoy 12 in Monitor HPD
c $25 \cdot 00$ Tannoy 15 in Monitor HPD
$\varepsilon 99.00$

ع75．95 \＆15．75 $\Sigma 45.95$ £2．50 55．50 Eg． 50 £115．00 E139．00 $\$ 139.00$
$£ 185.00$

ع8．50
£8．50
£14．85
$\mathbf{1 4 . 8 5}$
$\mathbf{2 2} .00$
222．00
10． 10
56.50

E6．95
$\varepsilon 16.50$
£16． 50
ع17．75
ع18．75
โ44．00
849.00
£24．00
范
E16．95
$£ 4.2$
$£ 16.2$
88.50
510.75
$E 10.75$
810.95
$E 11.95$
C24．95
ع2．75

Complete kits in stock for Radford Studio 90，Radford Monitor 180，Radford Studio 270，Radford Studio 360， $\mathrm{Hi}-\mathrm{Fi}$ Answers Monitor（Rogers），Hi－Fi News No Com－ promise（Frisby），Hi－Fi News State of the Art，Wireless World Transmission Line（Bailey），Practical Hi－Fi and Audio Monitor（Giles），Practical Hi－Fi and Audio Triangle （Giles），Popular Hi－Fi（Colloms），etc
On dem．Answers Monitor，State of Art，etc．
Construction leaflets for Radford，Kef，Jordan Watts， Tannoy，Hi－Fi Answers Monitor，free on request． P．A．amplifiers，microphones，etc．，by Shure，Linear， Eagle，Beyer，AKG，etc．
FREE with orders over £10－＂Hi－Fi Loudspeaker Enclosures＇book．

SPEAKER KITS

Baker Major Module 3． 8 or 15 ohm
Fane Mode One Mk II 15W Fane D40 Disco Kit
Goodmans DIN 204 or 8 ohm
Goodmans Mezzo Twin Kit
Helme XLK 30
Helme XLK 35
Helme XLK 40.
Kefkit 1
Ketkit If
Peerless 1060
Peerless 1070
Peerless 1120
Peerless 2050
Peerless 2060
Richard Allan Twin assembly Richard Allan Triple 8 Richard Allan Triple 12 Richard Allan Super Triple Richard Allan RA8 Kit Richard Allan RA82 Kit Richard Allan RA82L Kit
Whariedale Denton 2XP kit Whartedale Linton 3 XP kit Wharfedale Glendale $3 \times P$ kit

each	$£ 18.00$
each	$£ 10.35$
each	$£ 19.95$
each	$£ 15.75$
pair	$£ 51.95$
pair	$£ 21.95$
pair	$£ 26.75$
pair	$£ 38.50$
pair	$£ 59.50$
each	$£ 56.00$
pair	$£ 61.50$
each	$£ 54.95$
each	$£ 81.50$
pair	$£ 43.95$
pair	$£ 58.50$
each	$£ 13.95$
each	$£ 20.75$
each	$£ 25.95$
each	$£ 29.50$
pair	$£ 37.40$
pair	$£ 59.40$
pair	$£ 85.70$
pair	$£ 23.25$
pair	$£ 34.25$
pair	$£ 49.50$

HI－FI

ON DEMONSTRATION

 in our showrooms：Akai，Armstrong．Bowers \＆Wilkıns，Castle，Celestion． Chartwell Dalesiord，Dual，IMF RAM，J．R．Formula 4 Kef．Leak，Linn Sondek．Neal．Ortoton，Pickering． Pioneer．Radford，Richard Allan．Rotel，Sansui， Stanton．Tandberg，Trio，Videotone．Wharfedale etc．－ask for our Hi－FI discount price list

THIS MONTH＇S SPECIALS！（Carr £2 50）

Rotel RA312

£66－00
Sansul 331
ع109．00
Trio KR2600
Videotone Minımax I
Sansui SC2000＋2002
Pioneer CTF2121

Rotel RX15211 E91．00
We stock the complete Radford range of amplitsers preamplifiers．power amplutiers．tuners，etc，and also Radford Audio Laboratory equipment．low distortion oscillator，distortion measuring set．audio noise meter，etc．

ALL PRICES INCLUDE VAT
（PRICES CORRECT AT $9 / 3 / 77$ ）
Send stamp for free 38 page booklet Choosing a Speaker
ALL UNITS GUARANTEED NEW AND PERFECT Carriage and insurance Speakers up to 12 in 60 p 12 in £1． 15 in £1－75． 18 in $£ 250$ ．Kits $£ 1$ each（ $£ 2$ per pair）．Tweeters and Crossovers 330 each．

WILMSLOW AUDIO

Dept PE

Loudspeakers，mail order and export： Swan Works，Bank Square，Wilmslow． Hi－Fi，Radio and TV：Swift of Wilmslow， 5 Swan Sireet，Wilmslow，Cheshire
PA．Hi－Fi and Accessories：Wilmslow Audio， 10 Swan Street，Wilmslow， Cheshire．
Telephone：Loudspeakers，mail order and export－Wilmslow 29599：Hi－Fi．Radio， etc．－Wilmslow 26213
Acceas and Barciaycard orders accepted by phone

Gelinme Capacitive discharge electronic ignition kit

VOTED BEST
OF 8 SYSTEMS
TESTED BY TESTED BY
POOPULAR MOTORING. MAGAZ 74

* Smoother running
* Instant all-weather starting
* Continual peak performance
* Longer coil/battery/plug life
* Improved acceleration/top speeds
* Up to 20\% better fuel consumption

Sparkrite Mk 2 is a high performance, high quatity capacitive discharge electronic ignition system in kit form. Tried, tested. proven, reliable $15 / 30$ mins
Because of the superb design of the Sparkrite circuit it completely eisminates probtems of the contact breaker. There is no misfife due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce
open at high R.P.M. Contact breaker burn is eliminated by reducing the open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, otd, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and. therefore, eliminates the possibifity of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Ready drilled pressed sleel case coated in matt black epoxy resin, ready drilled base and heat-sink, top quality 5 year guaranteed transformer and components, cables, coil connectors, printed circuit board, nuts, bolts, silicon grease, full instructions 10 make the k it negative or positive earth, and 10 page installation instrucions.
OPTIONAL EXTRAS
Electronic/conventional ignition switch.
Gives instant changeover from "Sparkrite" ignition to conventiona ignition for performance comparisons, static timing etc., and will also switch the ign!tion off completely as a security device, includes switch connectors, mounting bracket and instructions. Cables excluded. Also available RPM limiting control for dashboard mounting
fitted in case on ready built unit)
CALLERS WELCOME. For Crypton tuning and fitting service -
PRICES INCLUDE VAT, POST AND PACKING
Improve performance \& economy NOW
NOTE-Vehicles with current impulse tachometers (Smiths code on dial RV will reauire a tachometer pulse slave unit. Price $£ 3 \cdot 35$ inc. VAT, post \& packing ELECTRONICS OESIGN ASsOCIATES, 22 Bath St. Waleail. W\$1 3DW

Quick installation No engive modification required

Electronics Design Associates, Dept. PE5
82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 33652

CMOS WITH DISCOUNTS: Any mix: $10:=$ for 25 , $25^{\circ}:$ for 100 , $33:$: for 1.000

4000	0.20	4037	1.06	4075	0.24	14175	1.04	14528	$1 \cdot 22$	E LED displays	
4001	0.20	${ }^{4038}$	1.20	4076	1.71	14194	1.17	14529	1.72	Di. 704 EO 3	70_{0}
4002	0.20	4039	3.0s	4077	0.65	14410	570	14530	0.95	DL.P07E $03{ }^{\text {a }}$	700
406	1.31	4040	1.11	4078	0.24	14491	9.54	14531	1.74	DL-728E 25×0.5	14.t0
4007	0.20	4041	0.93	4081	0.24	14492	17.07	14532	139	DL-727E 25.0.5	[1. 10
4008	1.07	4042	0.93	4082	0.24	13415	7.35	14534	4. 15	OL.FSOE O6.	\$1.50
4009	0.50	4043	1.12	4085	0.80	14419	2.67	14536	4.00	DL.74TE O 6	[1. 50
4010	0.60	4044	1.04	4086	0.90	14422	4.98	14537	13.17	PEDED	
4013	$0 \cdot 20$	4045	1. 56	4089	1.74	14.35	7.93	14539	1.24	RED LEDS	150
4012	0.20	4048	1.48	4093	0.88	14440	11.58	14541	1.52		150
4013	0.60	4047	1.01	4094	2.08	14450	2 -67	14543	1.82		
4014	1.12	4048	0.40	4095	1.16	14451	2.87	14549	4.10	CLOCK CHIPS	
4015	1.12	4049	-60	4096	1.16	14490	6.51	14552	10.58	AY-5-1224A	58.50
4016	0.60	4050	0.60	4097	4.13	14501	0.20	12553	4.66	MK 50253	t5. 50
4017	1.12	4051	104	4098	1.22	14502	1.38	14554	1.67	MK S03062	4.00
4018 4018	112 0.60	4052	1.04	4099	2.03	16503	0.75	14555	1.01	(MK 50366 coming)	
4020	1.24	4054	1. ${ }_{\text {1. }}$	40102	1.76 2.16	114505	1.35 0.57	${ }_{1}^{14556}$	1.01 4.65	SOLDEACON PINS	
4021	$1 \cdot 12$	4055	1.46	40103	$2 \cdot 18$	114507	060	14558	1.25	100	00
4022	1.07	4056	1.46	40104	2.26	14508	3.0	14559	4.10	1000	54.00
4023	0.20	4051		40107	0.66	16510	1.51	14550	2.17	2500	${ }_{56} 75$
4024	0.1	4059	6.20	40108	8.16	14511	1.74	14581	0.70	10000 (half prices)	130.00
4025	0.20	${ }^{4060}$	1.24	40109	2.21	14512	1.03	14562	5.59 ।	OIL SOCKETS :/1416	PIN 15
4026	1.92	4061	25.60	40181	4.30	14514	347	14566	8.67	OL SOCKETS afdio	PN
4027	0.60	${ }^{4062}$	10.10	40182	1.73	14515	3.47	14568	$3 \cdot 15$	TIMER I.C.	
40208	1. 1.47	${ }_{4063}$	1.22	40194	2.28	${ }^{1} 1515$	1.51	14569	3.72	NE5	450
4029	1.27	4056	0.69	40257	2.26	14517	4. 02				
4030	0.60	4067	$4 \cdot 13$	4700	1.75	14518	1. 39	14580	1.35	Type Sw9	
4031	2.46	4068	0.24	7083	4.25	14519	0.57	14581	4.30		
4032	1.19	4069	0.24	14160	$1 \cdot 11$	14520	1.38	14588	1.64	OP-AMPS	
4033	1.55	4070	0.85	14161	1.10	14524	2.77	14583	0.44	CA 3130 (COS MOS)	¢1.00
4034	2.11	4071	0.24	14162	1.11	14522	2.15	14584	71p	CA 3140 (ВімоS)	$95 p$
4035	1.31	4072	0.24	14163	1.18	14528	2.15	14585	1.90	741 Minue ${ }^{\text {a }}$	25p
4036	3.89	4073	0.24	1417	1 - 08	14527	1.76				

Terms: C W.O. Add VAT to all prices at 8%. Post, etc. UK. $25 p$ ($\{+2 p=27 p$ per
order. All orders processed same day. Official Govt., Varsity. Poly, etc orders written or telephoned) welcom

GREENBANK ELECTRONICS (Depl. WSP)
 94 New Chestel Roag. New Ferry, Wjrial, Merseyside. L62 5AG, England Tel: 051.6453391

Bring'scope'to your interest.

'There's only one way to master electronics... to see what is going on and learn by doing.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1Build an oscilloscope.
As the first stage of your training, you actually build your own Cathode ray oscilloscope? This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profesision. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read,draw and understand circult diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computors and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuils.
We show you how to conduct experiments on a wide variety of different circuits and turn the unformation gained into a working knowledge of testing, servicing and maintaining all ty pes of electronic equipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

VALVE MAIL ORDER CO.

Climax House

159 Fallsbrook Road, London SWI6 6ED SPECIAL EXPRESS MAIL ORDER SERVICE

CRESCENT RADIO LTD.

3 KILOWATTS PSYCHEDELIC LIGET CONTROL UHIT
Three Cbannel: Bass, Middle, Treble. Each channel has its
own sensitivity control. Just connect the input of this unit to the loudspeaker terminals of an ainpltfier, and connect three 250 V up to 1000 W lamps to the output terminals of the unit, and you produce a fasciunting sound-llght dlsplay. 618.50

CERRIC CHLORIDE
FERRIC CHLORIDE
Anhydrous ferric chloride in Anhydrous ferric chloride in Our Price 65p + P/P + VAT at 8% per lb.
BARGAIN PROJEGT BOX
A plastic box with moulded extrusion rails for PC or Chassis ftted with four screws (all supplied). Size (internal) 81 mm 51 mm
$50 \mathrm{p}+8 \%$
EFFECTS PROJECTOR "150" No disco should be without our new effects projector, we believe that this is the most, versatile machine for projecting coloured
mages to supplement your Jnages to supplement your
music. spec.: Volts-220/240, a.c., $50 \begin{gathered}\text { Hz, } \\ \text { Hamp-A1/ } \\ \text { ald }\end{gathered}$ a,c., 50 Hz , Lamp-A1/167 A sturdy metal construction and
 sories. Comes and acces
son complete with 6 in wheel and ready to use, A bargain
at $827+$ VAT at $927+V A T$
3%. ocked. Prices on request

Dimmit

range of light

 dimmers and lighting control systemsIllustrated is the popular PMSDI000 module. A 1 kW slider
control dimmer, interference suppressed, 60 mm slider range size $4 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in. Ideal for low cost stage and disco lighting. Used by
schools, theatres, studios, etc. Complete with scale plate, fixing screws and full instructions. $£ 9.06$ inc. VAT and postage and packing.

Complete compact light dimmer systems for stage, club and disco lighting, etc.

DD61M (illustrated). Six 1 kW channels, six outlet sockets, master control, mains on/off switch, size $2.3 \div 8 \frac{1}{2} 5 \mathrm{in}$ Price $f 131$ inc. VAT and P. \& P

DD61-B. Six IkW channels, using module PMSDI000. lowest cost system. Price $£ 66.50$ inc. VAT and P. \& P. ALL PRICES REDUCED FOR A LIMITED PERIOD
The Dimmit range includes rotary and slider control dimmers and sound to light converters for home, entertainment and professional applications. Ratings $1 \mathrm{~kW}, 2 \mathrm{~kW}, 3 \mathrm{~kW}$.

All products are guaranteed and are supplied with full instructions and applications. Full after-sales service. Technical advice given.

For full information on all modules and lighting control systems send for our FREE Nustrated catalogue and price list. Callers welcome, visit our
show room for a demonstration of any of the modules or systems. Mon.-Fri show room for a demonstration of any
9.30 to $6.0 p . m$. Sat. by arrangemen:

YOUNG ELECTRONICS LTD.
184 Royal College Street, London NW1 9NN Tel. 01-267 0201

Join the Digital Revolution

Understand the latest developments in calculators,

 computers, watches, telephones, television, automotive instrumentation. .Each of the 6 volumes of this self-instruction course measures $11 \frac{1}{}^{\prime \prime} \times 8 \frac{1}{4}^{\prime \prime}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories. counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems

£6. 20

plus 80p packing and surface post anywhere in the world.

Payments may be made in foreign currencies.

Quantity discounts available on request.

VAT zero rated.

Also avaitable-a more elementary course assuming no prior knowledge except simple arithmetic
igital Computer Logic and Electronics
In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

£4-20

plus 80p P. \& P
Offer Order both courses for the bargain price 89.70 , plus $80 p$ P. \& P.

Designer

Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.
Γ To: Cambridge Learning Enterprises (Dept. ENG)
| FREEPOST, Rivermill House, St. Ives, Huntingdon. Cambs. PE174BR
*Please send me....set(s) of Design of Digital Systems at $\$ 7 \cdot 00$ each. p \& p included
*Or . set(s) of Digital Computer Logic and Electronics at $55 \cdot 00$ each. $p \& p$ included
*or . .combined set(s) at $£ 10.50$ each. $p \& p$ included
Name
Address
-delete as applicable
No need to use a stamp-just print FREEPOST on the envelope. PE5

NEWS FROM JOSTY MTMO

JOSTYKIT-a product from Denmark

HF 61-2 DIODE MEDIUM WAVE RECEIVER

By means of a very simple technique reasonable reception ts attained HF 61-2 is built on asmall circuit oard of the same size as the general purpose amplifier AF 380. The two assemblies should be connected to produce power for a loudspenker HF 61-2 is especially useful for eginnors, who have not tried to essemble electronic kits before.
£4.30
HF 305 VHF RADIO-CONVERTER
Extend the range of your transstor
radio. Listen to Amateurs (2
metre band), Arcraft,
Trawsistor circuit with pinted circuit coils varactor
diodes and
uperior circuit desion. Converts adio
signals in the $100-200 \mathrm{MHz}$
range to output signse at
WHF receiver and you're in
new dimension.

AT 365 3-CHANNEL DISCO LIGHT

A now concept in psychodelic lighting. Uses bultt-in microphone. Avoids awkward connections to amplifiert. Position light-show to best advantage without long trailing leads-just plug in to nearest power point. Circuit combines latest integrated circult tech-
niques with solid-state power control. Quad op. amp. makes selection of bass, midrange and treble frequencies easy. Three thyriators (SCRs) control three separate lampbanks. Kit includes fused dc
power supply and FET zero light adjustment. WARNING
Only experienced persons should attempt the intercon- 117.00 nection of mains equipment.

HF 385-2 VHF/UHF AERIAL AMPLIFIER

A quality, printed circuit, no trimming, aerial amplifier. Fantastic frequency range due to use of printed coils. 21dB amplification at 400 MHz . Two separate inputs tor UHF and VHF. No loss of signal or intercommunication problems

NT 410 AERIAL AMPLIFIER CURRENT SUPPLY

NT 410 is a current supply, speclally built for aerial mplifiers, such as HF 385-2, but can also be used for other aerial amplifiers. NT 410 is supplied with input and output clamps tor 75 ohm or 50 ohm aerial cablet. It ls therefore not necessary to solder -just cut and strip the aerial cable and attach the Nial Thelifier to the from the aerial amplifier to the receiver passes withour complicallifier and the current to the aerial amolifier passes through the same together with HF 395 and HF 385-2.
£4.50

MAIL ORDER DIVISION
P.O. BOX 68, MIDDLESBROUGH,

CLEVELAND, ENGLAND B1 5CO
SEND FOR OUR FREE CATALOGUE

SYNTHESISER AND SOUND EFFECT KITS

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS，KITS AND COMPONENTS TO A WORLD－WIDE MARKET．

COMPONENTS SETS include all necessary esistors，capacitors．semiconductors potentio－ meters and transformets Hardware such as cases sockets，knobs．etc are not included but most of these may be bought separately Fuller details of kuts PCBs and parts are shown in ou lists
CIRCUIT AND LAYOUT OIAGRAMS are supplied ree with all PCBs designed by Phonosonics

HOTOCOPIES of the PE lexts for most of the kits are available－prices in our lists

P．E．SYNTHESISER（P．E．Feb． 73 to Feb． 74
The well acclaimed and highly versatile large－scale mains－operated Sound Synthesiser complete with with the Synthesiser to good advantage．notably P．E Minisonic．Phasing Unit．Wind and Rain，Rhythm Generator．Sound Bender．Voltage Controlled Filter． Guitar Effects Pedal and Overdrive．Fuzz．Tremolo and Wah－Wah units．
The Maln Synthesiser：PSU． 2 linear VCOs． 2 ramp oenerators． 2 input amps sample hold noise generator reverb amp．ring modulator，peak tevel cricuit envelope shaper．voltage controlled amp Full details in lists

Set of basic component kits
883.03
$\$ 11.45$

The Synthesiser Keyboard Circults（can be used without the Main Synthesiser to make an independent musical modulation amps．mixer． 2 envelope shapers and additional PSU．Full details in our lists

Set of basic component kits
Set of printed circuit boards
548.18
57.66

P．E．MINISONIC Mk． 1 SYNTHESISER（P．E．Nov． 74 to Mar． 75
A portable，battery or mains－operated Miniature Sound Synthesiser．with keyboard circuits Although having slightly fewer facilities than the large P E Synthesiser the
functions offered by this design give it great scope and versatility Consists of 2 log VCOs．VCF． 2 envelope shapers． 2 voltage controlled amps．keyboard hold and control circuits．HF oscillator and detector．ring modulator，noise generator．output amp and mixer． temperature stabiliser，power supply
Set of printed circuit boards．Whale stocks $\mathbf{\text { S } 4 . 5 1}$

P．E．MINISONIC MK． 2

A more sophisticated version of the Mk． 1
$\begin{array}{ll}\text { Set of basic component kits } & \text { from } \mathbf{5} 54.25 \\ \text { Set of printed curcuit boards } & 89.71\end{array}$
ELEKTOR＂FORMANT＂SYNTHESISER（Elektor Magazine 1977）

Details of component kits and PCBs are in our lists

GUITAR EFFECTS PEDAL（P．E．July 75）
Modulates the attack．decay and filter characteristics of an audio signal not only from a guitar but from any audio be further modified by manual controls Possibly the mos interesting of all the low－priced sound effects units in our range．Circuit does not duplicate effects from the Gutar
Overdrive Unit
Component
switches
Alternative
Alternative component set with panel mounting
switches
Printed circuit board

SOUND BENDER（P．E．May 74）
A multi－purpose sound controller．the functions of which nclude envelope shaper．tremolo，voice－operated tade
automatic fader and frequency－double
Component set for above functions（excl SWs）$\quad \mathbf{~} 7.84$ Printed circuit board
Optional extra－additional Audio Modulator，the use o which．in conjunction with the above component set．can Component set（incl PCB）

PHASING UNIT（P．E．Sept．73）
A simple but effective manualiy controlled unit for introducing the phasing sound into live or recorded music．
Component set（incl PCB）
PHASING CONTROL UNIT（P．E．Oct．74）
For use with the above Phasing Unit to automatically Component set（incl PCB）

WAH－WAH UNIT（P．E Apr 76）
The Wah－Wah effect produced by this unit can be controlied manually or by the integral automatic controller
Component set（Incl PCB）
［3． 55

POST AND HANDLING

U．K orders－under $£ 15$ add 25ρ plus VAT．over $£ 15$ add $50 p$ plus VAT．Keyboards $\mathbb{} 1$ ． 50 plus VAT
Optional Insurance for compensation against loss or damape in post．add 35p in addition to above post and handling．
Erre．C1．BFPO．and other countries are subject to Export postage rates

AUTOWAH UNIT（P E Mar 77）

Automatically produces Wah－pedal and Swell－pedal sounds each time a new note is played

Component set and PCB．with spectal foo
switches
Component set and PCB，with panel switches
£7．27
P．E．JOANNA（P．E．May／Sept．75）
A five－octave electronic plano that has switchable alternative voicing of Honky－Tonk plano．ordinary pano harpsichord．or a mixiure of any of the three．together with facilities including fast and slow tremolo．loud and sof pedal switching．and sustain pedal switching．The powe amplifier typically delivers 24 watts into 8 ohms The PCB have been redesigned by ourselves making improved us Main power avaply
oicing and prep．Tone Denerator． 61 envelope shapers
so a pon

Set of basic component kits for above Sel of printed circutt boards for above Power amplifier

RHYTHM GENERATOR（P．E．Mar Apr．74）
Programmable for 64,000 ehythm patterns from 0 eftect circuits（high and low bass and pare drums 8 effect short brushes．blocks and soft cymbal）and with varieb time signatures and rhythm rates．Reelly fascinating and useful．
Tempo．Timing．Logic． 8 Effects circults PSU Set of basic component kits for above $\$ 36.14$
57.03

> SEE OUR OTHER ADVERT FOR KEYBOAROS, OUR LISTS FOR OTHER COMPONENTS AND ACCESSORIES STOCKED-ALSO SOME NEW KITSI

REVERBERATION UNIT（P．W．Nov Dec．72）
A high quality unit having microphone and line inpu pro－amps．and providing full contral over reverberation evel

Component set（excl．spring unit）
c9． 73 printed circuit
gin spring unit
9inspring unit
Panel meter $(50 \mu \mathrm{~A})$（optronal）

WIND AND RAIN UNIT

A manually controlled unit for producing the above－named
Component set（incl PCB）
GUITAR OVERDRIVE UNIT（P．E．Aug．76）
Sophisticated．versatile Fuzz unit，including variable and switchable controls affecting the fuzz quality whilst taining the attack and decay，and also providing filtering can be used with it and with other elecironic can be with it and with other electronic sumpons
$\begin{array}{ll}\text { Component set using dual slider pot } & \text { \＄6．35 } \\ \text { Component set using dual rotary pot } & \mathbf{5 6 \cdot 2 0}\end{array}$ Printed circuit board
$\mathbf{2 6} \cdot 26$
$\mathbf{5 1 . 2 0}$
$\mathbf{5 1 . 6 2}$

FUZZ UNIT

Simple Fuzz unif based upon PE Sound Design Com

Component set（incl PCB）
02.03

TREMOLO UNIT

Based upon PE Sound Design circuit Component set（incl PCB）
TREBLE BOOST UNIT（P．E．Apr 76
Gives a much shrilter quality to audio signals fed through The depth of boost is manually adjusiable

ENVELOPE SHAPERS

Both of the kits below have manual control over their Attack．Decay．Sustain and Release functions Both kits Enve PCB（VCA means Voltage Controlled Amplifier）

LIST－Send Stamped Addressed Envelope with all UK
requests for free list giving fuller detalls of PCBs．kits and requests for free lis
other components OVERSEAS enquiries for list send $40 p$

DON＇T FORGET VAT！

Add 12；（or current rate il changed）to tull total of goods．

VOICE OPERATED FADER（P．E．Dec．73）

For automalically reducing music volume during tak－over－－particularly useful for Disco work or
Component sel（inct PCB） \＄3． 97
VOLTAGE CONTROLLED FILTER（P．E Oct．74）
An independently designed VCF that can be used with the E Synthesiser
Printed cricuit board
$\$ 3 \cdot 80$
$\$ 1.38$
SOUND－TO－LIGHT（P．E．Aurora）（P E．Apr．－Aug．71）
Four channels each responding to a different sound frequency and controlling its own light Can be used with most audio systems and lamp intensities Basic component set（excl thyristors）
Printed circuit board tor above
Power supply
PCB for power supply
515.92
53.90
53.90
65.78

3－CHANNEL SOUND－TO－LIGHT（P．E．Apr 76
A simple but effective sound－to－light controller capable of operating 3 lamps each of approximately 700 watts ncludes power supply，thyristors．and by－pass switches
Component set（incl PCB）
£11－95

DISCOSTROBE（P．E．Nov．76）

4 －channel light－show controller giving a chotce of
sequential，random，or full strobe mode of operation
Basic component set
$£ 18.19$
53.45
P．E．TUNING FORK（P E Nov．75）
Produces 84 swith－selected frequency－accurate tones．An
Produces 84 swith－selected frequency－accurate tones．An
LED monitor clearly displays all beat note adjustments ideal for tuning acoustic and electronic musical instruments alike musical Main component set（incl PCB）
$\begin{array}{r}15.59 \\ \\ \hline 7.83\end{array}$

P．E．SYNCHRONOME（P．E．Mar．76）

An accented－beat electronic metronome providing duple iriple and quadruple fimes with full control over the bea aie Can also be used as a simple drum－beat rhythm
generator Includes power supply Component set（incl loudspeaker）
Printed circull board
111.62
52.04

PEAK LEVEL INDICATOR（PE．Mar．76）
A twin－channel visual display unit for monitoring the peak
level of audio signals Well suited for use when level of audio signals Well suited for use when inter－coupling our many sound producing kits to help avord signal over－loading
Component set（incl PCB）（as published）
c3．8新

BIOLOGICAL AMPLIFIER（P E Jan．Feb．73）

Multi－function circuits that，with the use of other external equipment．can serve as lie－detector alphaphone ardiophone etc
Pre－Amp Module Component set（incl PCB） 54.22
Basic Output Circup
sel with PCBs．for alphaphone cardiophone
Trequency meter and visual feed－back lamp－
driver circuits

TAPE NOISE LIMITER

Very effective cricuit for reducing the hiss found in most ape recordings All kits include PCBs
Standard tolerance set of components
Superior tolerance set of components
12.96

Superior tolerance set of components
Regulated power supply（will dive 2 sets）
$\mathbf{8 2} .76$
$\mathbf{~} 4.69$
SEMI CONDUCTOR TESTER（P E．Oct．73）
Essential test equipment lor the enterprising home onstructor While stocks last
potentiometers，makaswitches and PCB Panel meter $(500 \mu \mathrm{~A})$

8－INPUT MIXER

A simple mixer having 8 inputs each of which has a preset evel control and which are combinad into one output channel having a preset Over－all level control and a master output volume control Designed for inter－coupling our Component set（incl PCB）
¢3．95

Prices are correct at time of press．E．\＆O．E．dellivery abject to avallability subject to avallabillty．

EXPORT ORDERS are welcome，though we advise that a current copy of our list should be obtained before ordering as 11 also shows Export postage rates All payments mus e cash－with－order．in Sterling and preferably by obtain IIst send 40 p Order or through an English Bank To

\section*{The Finest

The S．K．A．Plastic Keyboard was developed by Kimber Allen Ltd．In co－operation with a Swedish company and the manufacturers state that in their opinion it is the finest moulded plastic keyboard made and is not to be confused with cheaper keyboards available

The keys are moulded in Acrylic plastic，a material chosen for its hard wearing properties and ideal feel to the touch．They are moulded in two parts，the key face，which has to be perfect in appearance and finish，and the action，which has to be strong and carry the mechanism．The strong section of aluminium extrusion upon which they are mounted is specially designed to take all the pressures of playing．Springs，felts，and contact actuators are supplied ready－fitted

The contact assemblies are constructed of laminated bakelite．thus giving smooth stot walls and completely free movement of the gold－clad contact wires． Types avalable as follows（Contact pairs normally open）

GJ－SPCO	$24 p$ each	GH 5 pairs	57p each
GB－2 pairs	27 p each	$4 P S-S P C O$ and 3 pairs	$53 p$ each
GC－3 pars	$36 p$ each	Palladium Wire Bus Bars． 1 octave	
GE－4 pairs	$45 p$ each	lengths 50 e each	

SEE OUR OTHER ADVERT FOR SYNTHESISER AND SOUND EFFECT KITS AND SEE OUR LISTS FOR OTHER COMPONENTS AND ACCESSORIES STOCKED SEND S A．E．FOR FULL LIST（OVERSEAS SEND 40p）

PHONOSONICS

DEPT．PE55， 22 HIGH STREET

 SIDCUP，KENT DA14 6EH\section*{KEYBOARDS

KEYBOARDS

U．K．Post and Handling：
Keyboards $\{1.50$ each
Contacts：orders under $£ 15$ 25p orders over £15：50p

37 Note C－C Keyboard §25． 50
49 Note C－C Keyboard
〔32． 25
61 Note C－C Keyboard〔39．75

VAT：Add $12 \frac{1}{2} \%$ to final total on all U．K．orders
EXPORT ORDERS ARE WELCOME but please see our price list for Export Postage Rates．N．B．Eire，Channel Isies and B．F．P．O． classify as export．

Mall Order and C．W．O．only－Sorry but no callera plosee
Prices are correct at time of Prese．E A O．E．Dellivery subiact to avaltebillty

Pocket TTY can be used for microprocessor programming． production data entry，warehousing，mobile data collection training and education．

complete digital clock kits
 TEAK CASES

＂DELTA＂
GENUINE TEAK OR PERSPEX CASE indication．Beautiful Burma Teak Case or Pretty Perspex in white black blue red green．Power failure is indicated by llashing display
MODULES：Kits can be bought without case－Non－Alarm E9；Alarm $\mathbb{1} 12.50$ inclusive．
READY BUILT：Buy a working tested module and fit your own case－Non Alarm 59.50 ．Alarm £13；Complete clock ready built，2yr guarantee－Non－ Alarm £13－50：Alarm E18－50．
ALARM FEATUAES：Pulsed tone．Tilt operated 10 minute＂Snooze＂period Single switch setting．Optional extra mercury switch（45p）sllows alarm reset by tilting clock．Digit brightness is automatically controlled to suit lighting level．

Pulse Electronics Ltd

Dept．PE11， 202 Shefford Road Clifton Shefford，Beds．

Telephone：Hitchin（0462） 8144,77

THE 'NUTS \& BOLTS' OF THOSE PROJECTS

TRANSFORMERS

MINIATURE MAINS Primary 240 with two independent secondary	
No	Type
2024	MT280 0-6V. 0
2025	MT $15000-12 \mathrm{~V}, 0-1$
miniature mains Primar	
No.	Second
2021	$6 \mathrm{~V}-0-6 \mathrm{~V} 100$
2022	9 V -0-9V 100
2023	$12 \mathrm{~V}-0-12 \mathrm{~V} 10$
1 AMP MAINS Primary 240 V	
No	Secondary
2026	$6 \mathrm{~V}-0-6 \mathrm{~V} 1 \mathrm{amp}$
2027	$9 \mathrm{~V}-0-9 \mathrm{~V} 1 \mathrm{amp}$
2028	12v-0-12V 1 amp
2029	$15 \mathrm{~V}-0-15 \mathrm{~V} 1 \mathrm{amp}$
2030	$30 \mathrm{~V}-0-30 \mathrm{~V} 1 \mathrm{amp}$

STANDARD MAINS Primary 240 V
Multi-tapped secondary mains transformers avalable in t amp. 1 amp and 2 amp current rating. Secondary taps are 0-19-25-33-40-50V
Voltages available by use of taps

No. 2031	Rating tamp	$\begin{aligned} & \text { Price } \\ & \text { E3:42* } \end{aligned}$
2032	1 amp	¢4.40*
2033	2 amp	£5.45*

AUDIO OUTPUT Primary 12 k , Secondary 5 onms
200 mW Dimensions $20 \times 16 \times 15 \mathrm{~mm}$
Order No 203
50. 25^{*}

MINIATURE INTER/DRIVER
$\begin{aligned} & \text { Primary 20k } \Omega \text {. Secondary } 1 \mathrm{k} \Omega \text {. Ratio } 51 . \\ & \text { Order No. } 2038\end{aligned} \quad \mathbf{~} 0.23$.
LTT10 MIN. INPUT
Primary $100 \mathrm{k} \Omega$, Secondary $1 \mathrm{k} \Omega$. $15 \times 13 \times 13 \mathrm{~mm}$. $. ~ . ~$

Primary 10k $\Omega, \begin{aligned} & \text { LT711 MIN. DRIVER } \\ & \text { Order No } 2040\end{aligned}$
$\begin{aligned} & \text { Dendary } 2 \mathrm{k} \Omega, \text { C.T. }\end{aligned} 15 \times 13 \times 13 \mathrm{~mm}$
E. 0.35
LT712 MIN. OUTPUT
Pimmary 500 ohm. Secondary 8 otims $100 \mathrm{~mW}, 15 \times 13$

13 mm

Order No 204
LT717 MIN. INPUT
Primary $150 \mathrm{k} \Omega$. Secondary $1 \mathrm{k} \Omega, 20 \times 15 \times 15 \mathrm{~mm} \quad \mathbf{~} 0.52^{\circ} \mathrm{C}$
Order No 2042
Primary $20 \mathrm{k} \cap$ LT719 MIN. INPUT
Primary 20 N, Secondary $1 \mathrm{k} \Omega, 20 \times 15 \times 15 \mathrm{~mm}$
LT722 MIN. DRIVER
Primary $10 \mathrm{k} \Omega$, Secondary $2 \mathrm{k} \Omega, \mathrm{CT} 20 \times 15 \times 15 \mathrm{~mm}$.
Order No 2044
IO. 32^{*} Order No 204
LTZ24 MIN, OUTPUT
Pumary $1.2 \mathrm{k} \cap \mathrm{C}$. T Serondary 3.2 and 8 ohm, 200 mW
Dimensions $20 \times 15 \times 15 \mathrm{~mm}$ Dimensions $20 \times 15 \times 15 \mathrm{~mm}$
Order No 2045
£0. 38 *
Primary 500 ohm, Secondary 32 and 8 onm, 200 mW Dimensions $20 \times 15 \times 15 \mathrm{~mm}$
Order No. 2046
Primary $1 \mathrm{k} \cap$ C.T.TRB MIN. DRIVER
Secondary 500 ohm C T. Dimensions $\begin{array}{ll}25 & 20 \times 20 \mathrm{~mm} \\ \text { Order No } 2047\end{array}$

Primary 200 IT7T9 MIN OUTPUT Dimensions $25 \times 20 \times 20 \mathrm{~mm}$
Order No 2048
LTT30 MIN. OUTPUT
Primary 500 ohm C.T. Secondary 32 and 8 ohm, 500 mW Dimensions $25 \times 20 \times 20 \mathrm{~mm}$
Order No 2049
L.E.D. 8

Type	Stze	Order No	Colour	Price
THL209	$0.125 i n$	1501	RED	$12 p$
TIL211	$0.125 i n$	1502	GREEN	$25 p$
TIL213	$0.1251 n$	1503	YELLOW	$25 p$
FLV115	0.2 in	1504	RED	12 p
FLV310	02 nin	1505	GREEN	$25 p$
FLV410	022 n	1506	YELLOW	$\mathbf{2 5 p}$

2nd Grade L.E.D.s

A pack of standard sizes and colours which tail to perform to their very ridged specification. but which are ideat fo experiments. Order No 1507
50.90
L.E.D.CLIPS

L.E.D.CLIPS			
	Size	Order No.	Pilce
	0 125in	$1508 / 0.125$	15 p
Pack of 5	0.2 in	15080.2	30 p
Pack of 5			

NUTS AND BOLTS
BA BOLTS-packs of BA threaded cadmium-plated screws. slotted cheese head

BA NUTS-packs of cadmium-plated full nuts in multiples of 100

INSTRUMENT CASES. In two sectione vinyl covered top and sides, aluminlum bottom, front and back.				
No.	Length	W/dth	Helght	Price
155	8 in	5 fin	210	£1-40*
156	11 in	6 in	310	£1.80*
157	6in	4tin		¢1.25*
158	$91 n$	5 tin	2tin	¢1-60*
ALUMINIUM BOXES. Made from bright all., folded conetruction each box complete with half inch deep lid				
and screws.				
No.	Length	Whath	Height	Price
159	$5 \frac{1}{6}$	2\%1n	1 fin	62p*
160	4 in	4 in	$1 \frac{1}{\text { in }}$	62p*
161	din	2 2in	1tin	$62 p^{*}$
162	5 ¢ın	417	1, in	74p*
163	$4 \mathrm{in}^{\text {n }}$	$2 \frac{1}{2}$ in	2 in	64p*
164	31 n	2 in	1 in	44p**
165	7 n	5 in	2in	\$1.04*
166	8 in	6 in	3 n	[1.32*
167	6 in	4 in	2 in	86p*

BRIDGE RECTIFIERS

SILICON 1 amp		
Type	Order No	Price
50 V RMS	BR1/50	\$0. 25
100V RMS	BA1/100	50.28
zoov RMS	BR1/200	c0. 30
400 V RMS	BR1/400	[0. 35
SILICON 2 mmp		
50 V RMS	BR2/50	10. 40
100V RMS	BA2 100	c0.45
200 V RMS	B42 200	10.50
400 V RMS	BR2:400	¢0. 55
1000 V RMS	BR2 1000	\$0.65

FUSE HOLDERS AND FUSES

Description
$20 \mathrm{~mm} \times 5 \mathrm{~mm}$ chassis mounting
1 in \times in chassis mounting
lifin car inline type

Order N	Pric
506	¢0.07*
507	c0.10*
508	¢0. 20 -
509	50.22

Panel mounting 1 tin

QUICK BLOW 20 mm					
Type	No.	Type	No	Type	No.
150 mA	611	1 A	615	3A	619
250 mA	612	1.5 A	616	4 A	620
550 mA	613	2A	617	5A	621
800 mA	614	2 5A	618	All 5	

 SEE OUR 1977 CATALOGUE 126 pages packed with valuable intormation ORDER NOW ONLY 50p plus tip P \& P

SWITCHES

ROCKEA SWITCH
A range of rocker
switches
SPST
moulded in hion insula-
moulded in high insula a choice of colours ideal for small apparatus
Description
Description
Miniature SPST toggle. 2 amp
250 V a.c.
250 V a.c.
Miniature DPD toggle, 2 amp
Miniature
250 V ac
Miniature DPDT toggle centre oft, 2 amp 250 V a.c.
Push button SPST. 2 amp
Push bution SPST. 2 amp
250 V a.c.
Push button SPST. 2 amp
250 V a.c.
Push bution DPDT. 2 amp
250 V a.c.
MIOGET WAFER SHIT- suitable for switching at 250 V a.c 100 ma of 150 V of c . in non-reactiver loads make-before break contacts These switches have a spindle 0.25 in dia and 30° indexing
Description
1 pole 12 way
2 pole $\quad 6$ way
3 pole
$\begin{array}{ll}2 \text { pole } & 6 \text { way } \\ 3 \text { pole } & 4 \text { way } \\ 4 \text { pole } & 3 \text { way }\end{array}$
MICRO SWITCHES
PlastIc bution glves simple
on-off action
Rating 10 amp 250 V a.c.
Button give 1 pole change
Button givee 1 pole ch
over actiom
Rating 10 smp 250 V a.c.
Colou
RED
BLACK
WHITE
BLUE
BLUE
$\begin{array}{ll}\text { LUMINOUS } & 1984 \\ & 1985\end{array}$
No.
1958
1959
1960
1961
1962
1963
1964
No.
1980
1991
1982
1983
1984
1985
10.22
10.22
10.22
50.22
10.22
50.22
Prlc

DISPLAYS

Type
BOH $7070 \cdot 3 \mathrm{in}$ single
BDL7470 6ir single
BDL727 0 Sin double
Order No.
1965
1966
1967
1968
Order No.
co
50
50

COLD CATMODE ITT 5087 S
side viewing indicator tubes Displays $0-9$ and decimal points Wide viewing angle operates from 180 V with $16 \mathrm{k} \Omega$
series anode resistors-character height 16.5 mm pin connections supplied

Order no. 7513 Price EO-60

voltage regulators

Positlve Regulators TO220 cas* MVR 7805 SV 51.35
$\begin{array}{lll}\text { MVR } 7815 & 15 V & £ 1 \cdot 25 \\ \text { MVR } 7824 & 24 V & \mathbf{5} \cdot 25\end{array}$

Neganlye Reguiators TO220 case $\begin{array}{lll}\text { MVA } 7905 & 5 \mathrm{~V} & \mathrm{E2} \cdot 00 \\ \text { MVR } 79+2 & 12 \mathrm{~V} & \mathrm{E2} .00\end{array}$

MVA 7915 15V £2.00 MVR7912 12V $£ 2.00$ MVR $792424 \mathrm{~V} \quad £ 2.00$

ORDERING

PLEASE WORD YOUR ORDERS EXACTLY AS PRINTED, NOT FORGETTING TO INCLUDE OUR PART NUMBER

VAT
ADD $12 \frac{1}{2} \%$ TO PRICES MARKED*
ADD 8% TO OTHERS EXCEPTING
THOSE MARKED \dagger THESE ARE ZERO

Dept. P.E.5, P.O. Box 6, Ware, Herts COMPONENTS SHOP: 18, BALDOCK STREET, WARE, HERTS

Manufactured by A. R. Sugden \& Co (Engineers) Ltd., Atlas Mill Road. Brighouse. West Yorkshire, HD6 1ES. Telephone: Brighouse (0484) 7121421. Telegrams \& Cables: Connoiseur, Brighouse

"Manta"

CAPACITIVE DISCHARGE ELECTRONIC IGNITION UNIT
the new, higher reliability version of the p.e. "SCORPIO MK II"' IS NOW AVAILABLE IN KIT FORM!! Our thousands of satisfied customers report
M
e miles per gallon (customers reports give $10 \%-\mathbf{2 5 \%}$ saving -letters availabie)
A
increase in overall performance-your 4 cylinder car feels like a 6 cylinder
N
more cold morning splutters-saves you even more petrol through much less use of choke.
Th
e price? A snip at only $£ 16 \cdot 50$, fully inclusive of all parts, instructions, postage/packing and V.A.T. (ready built unit A available- $£ 19 \cdot 85$ fully inclusive)
parts to high specification, first quality and brand new Construct this invaluable accessory, following our easy step by step instructions (also available separately, price 30p post paid). Send for our free interesting six page brochure- "Electronic IgnitionHow it Works" (S.A.E. Please) to

ELECTRO SPARES

Dept. P.E., 187a Sheffield Road, Chesterfleld, Derbyshire S41 7JQ. Telephone: Chesterfield (0246) 36638

NEW VOICE FOR COMPONENT INDUSTRY

THe formation of the Electronic Components Industry Federation (ECIF) by a marriage between the Radio and Electronic Component Manufacturers' Federation and the Electronic Components Board provides the UK components industry with a single and powerful voice to represent its interests.
The creation of this new body coincides with the recognition by the Government of the component industry's importance to our economic affairs. For the electronic component industry is one of five selected industries from an original list of 40 , that have been deemed of strategic importance for the future. With this recognition comes the establishment of a Department of Industry support scheme for British-based component makers, with an initial sum of $£ 20 \mathrm{~m}$ to be made available. The new streamlined association ECIF will be working in very close cooperation with the NEDO Sector Working Party on components.
The ECIF is important in that it represents about 90 per cent of the entire component manufacturing business in the United Kingdom. The list of 145 member companies embraces the smaller firms, many of these producing the less exalted components without which the glamorous components like semiconductor devices would be deprived of their chance to shine, as well as the big companies with household names. Included amongst the latter are well-known American semiconductor makers who have established factories in the UK.

But the exclusion of other well-known names in the semiconductor field is equally notable. General Instrument Microelectronics, for one, has a manufacturing establishment in Scotland and many of their current i.c. devices have been designed and developed here. Yet this multi-national company has declined the invitation to join ECIF. Apparently GIM are rather sore at being treated as "foreigners" whenever there is any Government hand-out to help finance research and development work by UK firms. So they feel reluctant to chip-in for the common cause by contributing to an organisation such as ECIF.

Wholly British owned firms such as Ferranti, GEC and Plessey have, from time to time, received financial backing from the Government. This is part of a determined effort to strengthen the indigenous semiconductor industry. But facts of life concerning the semiconductor industry in general suggest that those US firms that have set up development and manufacturing facilities in the UK should be equally encouraged in their efforts, which do of course contribute directly to our economy. On the very important technological plane, these companies keep the UK in the main stream of big developments originating in their home bases across the Atlantic. How better to encourage them develop their roots over here than by making them eligible for consideration for financial backing? There are signs that the Government is beginning to think this way; if so, any coolness towards the ECIF will no doubt disappear and that body will become all the more relevant to the component situation in the UK and thus be better able to fulfil its intended purpose: to help maintain a thriving and forward looking components industry in this country.
F.E.B.

Editor

F. E. BENNETT

Editorial
G. C. ARNOLD Assistant Editor
D. BARRINGTON Production Editor
G. GODBOLD Technical Editor
M. ABBOTT

Art Dept.
J. D. POUNTNEY Art Editor
D. J. GOODING
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager

D. W. B. TILLEARD

Phone: 01-634 4504
P. J. MEW

Phone: 01-634 4181
C. R. BROWN Classified Phone: 01-261 5762

Make-up and Copy Dept Phone: 01-634 4372

Editorial \& Advertising Offices:
Fleetway House, Farringdon St.
London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4504

Fig. 1. Circuit diagram of Organ Tremolo Unit. LED1 is optically coupled to R23, and likewise LED2 with R24

Fig. 2. (a) Vector diagram of inductive stage. (b) Capacitive stage. (c) Phase shift versus frequency

TREMOLO EFFECTS

The unit was specifically designed for injecting phase modulation into the electrical signal available at the organ's auxiliary output socket; this signal then being fed to a conventional power amplifier loudspeaker extension. The tremolo speed is approximately 5 Hz , which will blend acoustically with the tremolo from the organ's Leslie speaker system, regardless of the latter's precise speed. With both tremolos on, the effect is similar to theatre organ tremolo, and a modified effect can also be obtained by running the organ's unit at "chorus" speed (about one cycle in 1.5 seconds), with full external tremolo. If the control of the external tremolo is now eased back to a low level, a very reasonable "straight" organ sound is obtained.

Although the author disliked the idea of having both the internal and external units running at chorus speed, there is no reason why an experimental oscillator, running at the slower speed, should not be added to this unit in conjunction with suitable changeover switching.

Obviously the electronic tremolo unit can be used on its own, with an organ not fitted with its own system In this case the tremolo unit and the PA/LS extension can be regarded as a relatively inexpensive alternative to a rotation loudspeaker type extension, with considerable improvement in tone ambience as a whole.

CIRCUIT DESCRIPTION

Referring to the diagram in Fig. 1, the organ signal passes through two phasing stages, and then a conventional output stage. The first stage contains an inductance/resistance combination and the second stage, a capacitance/resistance combination, the latter being subjected to a 180 degree phase inversion by the second transistor.

The resistance element in each case is a light dependent resistor coupled to a light emitting diode, and mounted in a light-proof container.

The oscillator section (TR6 and TR7) drives the two transistors TR4 and TR5 through the tremolo control potentiometer VR4. Because TR4 is npn and TR5 is $p n p$ the two l.e.d.s are driven in antiphase. This causes the respective resistances of R23 and R24 to swing alternately between the arbitrary limits of $5 \mathrm{k} \Omega$ and $20 \mathrm{k} \Omega$.
The phase changes imposed on the signal by the two stages are shown in Figs. 2a and 2b, and as can be seen, the inductive stage creates the phase lag θ_{1}, and the capacitive stage produces a phase lead of α_{1}. The maximum total phase variation for any given frequency can be read from the graph in Fig. 2c, and this is $\theta_{1}+\alpha_{1}$ degrees. The plots were produced mathematically with formulae derived from the vector diagrams.

ORGAN TREMOLO BOARD

Fig. 3. Component layout on $0 \cdot 1$ inch Veroboard. The arrangement of the optical couplings using cabinet feet is shown

COMPONENTS . . .

Resistors

R1	$33 \mathrm{k} \Omega$	R13	$47 \mathrm{k} \Omega$
R2	$47 \mathrm{k} \Omega$	R14	$47 \mathrm{k} \Omega$
R3	100kS	R15	1kS
R4	1.5kS	R16	330Ω
R5	$1.5 \mathrm{k} \Omega$	R17	$1.5 \mathrm{k} \Omega$
R6	$27 \mathrm{k} \Omega$	R18	$1.2 \mathrm{k} \Omega$
R7	$1 \mathrm{k} \Omega$	R19	$18 \mathrm{k} \Omega$
R8	$1 \mathrm{k} \Omega$	R20	$18 \mathrm{k} \Omega$
R9	$27 \mathrm{k} \Omega$	R21	150Ω
R10	$2 \cdot 2 \mathrm{k} \Omega$	R22	2.2k Ω^{*}
R11	680Ω	R23	ORP12 I.d.r.
R12	$1 \mathrm{k} \Omega$	R24	ORP12 I.d.r.

Potentiometers
VR1 $4.7 \mathrm{k} \Omega$
VR2 100k Ω
VR3 100ks
VR4 $10 \mathrm{k} \Omega$ linear slider
VR5 220Ω
VR6 $10 \mathrm{k} \Omega$
All miniature horizontal presets unless otherwise stated

Capacitors

C 1	$4.7 \mu \mathrm{~F}$ tantalum bead
C 2	$100 \mu \mathrm{~F} 16 \mathrm{~V}$ Teletron
C 3	$0.022 \mu \mathrm{~F}$ polyester
C 4	$470 \mu \mathrm{~F} 16 \mathrm{~V}$ Teletron
C 5	$0.1 \mu \mathrm{~F}$ or $4.7 \mu \mathrm{~F}$
C 6	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ elect
C 7	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ elect
C 8	$470 \mu \mathrm{~F} 16 \mathrm{~V}$ Teletron
C 9	$1 \mu \mathrm{~F} 25 \mathrm{~V}$ elect. or tantalum
C 10	$1 \mu \mathrm{~F} 25 \mathrm{~V}$ elect. or tantalum

Inductors

L1 800 turns of $40 \mathrm{~s} . \mathrm{w} . \mathrm{g}$ enamelled copper wire on FX2239 ferrite pot core assembly*

Semiconductors

TR1-TR4 BC108
TR5 BCY70
TR6-TR7 BC108
D1-D2 0.2 inch dia, red
(must be clear encapsulation)*

Miscellaneous

0.1 inch Veroboard ($127 \times 95 \mathrm{~mm}$)

Veropins
$2 \times$ rubber bushes for l.e.d./l.d.r subassembly*

* see text

CONSTRUCTOR'S NOTE
The following components:
Clear encapsulated red l.e.d.
Suitable plastic cabinet feet for optical couplers
Ferrite pot core assembly, and suitable wire,
are available from
Greenweld Electronics, 443 Millbrook Road, Southampton SO1 OHX.

From the trigonometrical ratios applicable to a right-angle triangle:
$\operatorname{Tan} O_{2}=\frac{\omega \mathrm{L}}{\mathrm{R}} \ldots$. equation (1)
It can be shown that $\theta_{1}=2()_{2}$ degrees.
Since $\left.\theta_{3}=90-1\right)_{2}$ degrees
and also $\Pi_{3}=\frac{180-)_{1}}{2}$ degrees.
Therefore $90-1)_{2}=\frac{180-11_{1}}{2}$
Multiplying by 2: $180-2()_{2}=180-0_{1}$
$\therefore \theta_{1}=2 \theta_{2} \ldots .$. equation (2)
Combining equations (1) and (2) we get
$\theta_{1}=2 \tan ^{-1}\left(\frac{\omega \mathrm{~L}}{\mathrm{R}}\right)$
or $\theta_{1}=2 \tan ^{-1}\left(\frac{2 \pi \mathrm{fL}}{\mathrm{R}}\right)$
Similar rules define α_{1} as being $2 \tan ^{-1}(2 \pi \mathrm{fCR})$.
The graphical plots of these formulae correspond closely to measurements taken with the unit in operation.

Most electronic organs have a high signal level at their extension output sockets, and for this reason the value of $33 \mathrm{k} \Omega$ has been chosen for R1, to give an audio output signal which is about -10 dB with respect to the input level. This attenuation can be reduced if required, by lowering the value of R1.

The purpose of R22 is to regulate the maximum depth of tremolo available at VR4. The value of $2 \cdot 2 \mathrm{k} \Omega$ found suitable in the prototype, can be changed up or down in value, to cover tolerances in l.e.d. performance.

Capacitor C5 should be $0 \cdot 1 \mu \mathrm{~F}$ for a $200 \mathrm{k} \Omega$ output, or $4.7 \mu \mathrm{~F}$ for a $10 \mathrm{k} \Omega$ impedance output.

If the second oscillator is required for the chorus effect, it can be constructed using the same circuit as the oscillator section of Fig. 1, and making R19-22k Ω, $\mathrm{R} 20-12 \mathrm{k} \Omega, \quad \mathrm{C} 9-10 \mu \mathrm{~F} \| 4 \cdot 7 \mu \mathrm{~F} \quad(14 \cdot 7 \mu \mathrm{~F})$, and C 10 $-50 \mu \mathrm{~F}$. The decoupling components R 21 and C 4 may be omitted in this instance. The period of oscillation is about 1 to 1.5 seconds.

CONSTRUCTION

The two l.e.d./l.d.r. sub assemblies need no explanation, being put together as indicated in Fig. 3. It should be borne in mind that the l.e.d.s are required to be withdrawn from their housings, to carry out the adjustments detailed later.

The winding of the inductor coil can be done using a handbrace held in a bench vice. The bobbin is lightly clamped between two oversize washers on a 50 mm long 2BA screw, and secured with a nut, the end of the screw being held in the handbrace chuck. The nut is lightly tightened, after the bobbin has been centred to rotate concentrically. It is advisable to clean the end of the wire and anchor it to the chuck with adhesive tape, before starting to wind.
Have a piece of sticky tape cut to size and ready to wrap around the coil after the 800 turns of 40 s.w.g. enamelled copper wire have been wound on. There is plenty of room on the bobbin, and ordinary "pile" winding is satisfactory.

The coil ends should be brought out of diametrically opposite slots, which after assembly of the inductor,

are soldered to the pins as shown on the circuit board layout. An carth connection is soldered between the fifth pin, and the adjacent clip.
Components are mounted on Veroboard, the layout of which is shown in Fig. 3. It is recommended that the complete panel should be mounted in a vacant space inside the organ's housing, to allow the audio and tremolo control connections to be made more readily. The only outgoing signal will then be the phase processed output lead.

POWER SUPPLY

The total current consumption of this 12 volt positive earth system is 25 mA , and may be available from the organ's supply. If this is not possible, and a mains power pack is not desired, then two PJ996 or similar batteries would provide a generous source of supply.

ADJUSTMENTS

(1) Before switching on, VR2 and VR3 should both be turned to an almost fully clockwise position, thus cutting off TR4 and TR5.
(2) After switching on, VR5 and VR6 should be adjusted to obtain a sinusoidal waveform from the oscillator. This is best done by connecting an oscilloscope across VR4, but it can also be done by ear, as a non-sinusoidal waveform will produce audible harmonics if connected to the P.A./L.S. extension. This of course would be done after installation.
(3) With zero drive from the oscillator, and with the 1.e.d.s removed from their housings, turn VR2 anticlockwise until LEDI begins to glow. Similarly turn VR3 anticlockwise until LED2 begins to glow. Replace the two l.e.d.s in their housings.
(4) Adjust VR1 to the point where the unit accepts full organ signal without overloading.
This completes the adjustments, and the unit should now be ready for use.

This alarm is suitable for all types of security application, in a house, shop or any other place that needs to be protected from an intruder.

It can be used with open and closed circuit sensors, and is of bridge design to give the maximum protection. Entry and exit delays are provided, allowing one to enter and leave the building without need for a key switch at the door.

The alarm is run from internal batteries, an HP1 was used in the prototype. This battery will give up to six amperes. Since the unit consumes only 10 mA in the Guard condition, the cost of providing a mains power supply unit was hardly felt to be justified.

THE CIRCUIT
As will be seen from Fig. 1, the alarm is built around a 741 operational amplifier, operating in the open loop mode as a voltage comparator. The alarm voltage V_{1} is set by the divider chain comprising resistors R_{x} and \mathbf{R}_{y}. The voltage at the junction is applied to the inverting input (pin 2) of ICl. A similar voltage V_{2} is set on the non-inverting input (pin 3) by the potential divider formed by R1, VR1 and R2.

Providing that V_{1} remains more positive than V_{2}, the output of the 741 (pin 6) will stay at about two volts.

COMPONENTS . . .

Resistors			
R1, R2	$3.9 \mathrm{k} \Omega$		
R3,	R4		
	$3 \mathrm{k} \Omega$		
R5	$12 \mathrm{k} \Omega$		
R6	$22 \mathrm{k} \Omega$		
R7	560Ω		
R8	47Ω		
R9	220Ω		
All			
Anspecified resistors $\frac{1}{2} \mathrm{~W}$			

Potentiometers
VR1 $50 \mathrm{k} \Omega \mathrm{lin}$. VR2 $1 \mathrm{M} \Omega \mathrm{min}$. preset
Capacitor
C1 $470 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
Semiconductors

TR1	BFY51	TR2	TIS43
IC1	741	D1 1 N4148	
CSR1	BTY79-400R (400V 6 A thyristor $)$		

Miscellaneous
S1 Push-on, delay switch (see text)
S2 3-pole, 4-way key-operated switch*
S3 S.P.C.O. microswitch
RLA D.P.C.O. relay, $185 \Omega 12 \mathrm{~V}$ coil, continental type
WD1 Audible warning device, 12 V (RS Compo-
LP1 12 V lamp with holder, green lens
LP2 12V lamp with holder, red lens
B1 HP1 battery
Plug for B1; heat sink for CSR1 (see Fig. 2); socket for IC1 (if required); 12-way terminal strip; aluminium box (see text); $\underset{\text { text) }}{\text { alarm bell, } 12 \mathrm{~V} ; \mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}} \text { and sensors (see }}$ text)
*The key-operated switch is available from F \& G Electronics (Manchester), 28 Middleham Street, Manchester M14 7NG

In this condition, the forward bias on TR1 is not sufficient for RLA to be energised. If, however, the resistance of line A increases or line B decreases, the balance will be upset, changing the state of the input stage and making the output rise to about 10 volts. As soon as this happens, transistor TR1 will saturate and energise relay RLA/2. When the unit is in the Guard condition, the relay will latch when set off, thus keeping the bell powered. The only way to stop it is by means of the key-operated switch S 2 .

When the alarm is triggered, power will be applied via RLA2 and S2c to the timer, based on the unijunction TR2. The delay, set by the charging rate of Cl via R6/VR2, will allow up to eight minutes to enter and switch off the alarm. Power will also be applied to an audible warning device WD1, to indicate that the timer has started. The bell will not ring until the timer has completed its cycle and fired thyristor CSR1.

A microswitch $\mathbf{S 3}$ fitted to the case operates if the lid is opened. The switch contacts place a short circuit across the gate and anode of the thyristor, causing the bell to ring if the unit is tampered with.

EXIT DELAY

The exit delay is simply a push-to-make, delay switch Sl connected across the base emitter junction of TR1 to hold off the alarm until the exit door has been closed. This type of switch is intended for use on the stairways of blocks of flats, etc. turning the lights on when pushed, but turning them off again after a period of a couple of minutes or so, depending
upon its setting, to save power. Such switches are available from most good electrical shops.

If an intruder enters he will not be able to silence the alarm by pushing $S 1$, as the relay will have latched on via its contact RLA1. Lamps LP1 and LP2 are for setting the unit, and for indicating the state of the alarm loops when switching the unit on. If the alarm loops are upset, RLA will be energised, illuminating the red lamp instead of the green when $\mathbf{S 2}$, is turned to the Set Balance position. The doors and windows should then be checked before turning S2 to Guard, otherwise the bell will ring.

Resistor R9 maintains a holding current of about 30 mA through the thyristor, which would otherwise switch off when the bell trembler contacts open.

CONSTRUCTION

The prototype unit was built in an aluminium box $180 \times 205 \times 75 \mathrm{~mm}$, large enough to accommodate the battery and all the electronics. Most of the components are mounted on a printed board, as shown in Fig. 2. Of the remainder, VR1, LP1, LP2, S1 and S2 are mounted on the lid, and the audible warning device is mounted at the top of the box, with a hole to let out the sound. All external connections are made via a 12 -way terminal strip.

SETTING UP

To set up the alarm, fit R_{x} and R_{y}, which can be any value from $10 \mathrm{k} \Omega$ to $56 \mathrm{k} \Omega$. In the prototype system, $33 \mathrm{k} \Omega$ and $27 \mathrm{k} \Omega$ were used. Place the key in S 2 and

Fig. 1. Circuit diagram of the complete burglar alarm. The values of R_{x} and R_{y} are discussed in the text. Circled numbers identify connections to the $\mathbf{1 2 - w a y}$ terminal block

Burglar Alarm Board

Fig. 2. Printed board pattern shown full size and component layout. The thyristor heat sink is in contact with the mounting stud (anode) and is therefore live. Keep clear of earthed metalwork or wiring
turn to Set Balance. Adjust the balance potentiometer VRI to the point where the green lamp just comes on, then remove R_{x} and short out R_{y} in turn. In each case the green should go out and the red come on. This indicates that all is well.

Next turn S2 to Test, and as before open and short circuit the resistors. The relay should latch and not reset until S2 is returned to Set Balance.

To set the timer, connect two links, one from No. 7 on the terminal strip to battery positive, and one from No. 8 to battery negative. Disconnect the audible warning device to stop the noise while setting up. Connect a 12 volt lamp to terminals 9 and 10 to indicate when the thyristor has fired, and adjust preset VR2 to give the required delay.

The only remaining item to be tested is the tamper switch. To do this remove all the links and reconnect the audible warning device. Remove the temporary lamp from terminals 9 and 10 and wire in the bell. Turn S2 to Guard, i.e. alarm on, and remove the lid, whereupon the bell should ring.

The setting of VRI should be checked when the unit is installed with the external sensors connected to lines A and B. These sensors may be reed switches. microswitches, pressure mats, etc. as required.

To make the alarm more difficult for an intruder to bypass, line A and line B can be run in one four-core cable. The intruder will then not know the correct ones to cut or join.

Competition winners A. Mackintosh and A. Challinor receiving their Introkit prizes from Mrs. J. L. Marshall
facturers, and A. Marshall (London) Ltd., one of the largest distributors of electronic components.

Audiences of about 200 attended each staging of the Forum at Berners Hotel, London W1, listening attentively to two National Semiconductor engineers, Dave Brown and Stewart May, who spoke on different aspects of microprocessors and answered questions from the audience.

A feature of the first Forum was the presentation by Mrs J. L. Marshall of prizes to the first two winners of the PE Microprocessor Competition, A. Mackintosh of Brighton, and A Challinor of Stoke-on-Trent.

An eliminati. competition is under way to find the third main prize winner, and we hope to publish a full list of winners in our June issue.

Abstract

A "Miss World" contest for microprocessor chips would be difficult to judge. There would be those who liked their MPUs well stacked (see Part 2), the bipolar brigade who preferred speed to comfort, and of course the "leg men" hooked on long graceful instruction sets! At the end of the day, though, the vital statistic which would receive the most scrutiny, and receive the most admiration and wolf-whistles, would undoubtedly be the instruction set. It is the very existence of the instruction set which sets MPU chips apart from standard LSI, and as far as we are concerned, "Vive la difference!"

'T"HE instruction set is, in effect, a rudimentary "language" through which we earthlings can communicate our desires to the inner recesses of the semiconductor chip, a language which is designed by the chip makers in most cases. Of course the ideal language for microprocessor programming would be English, or if you happen to be French, French, but microprocessors are far removed from our intellectual level (thank goodness!) and require us to "talk down" to them using a basic language with a very limited vocabulary, namely, the instruction set.

With larger computer systems much effort has been expended in writing special programs called compilers which translate instructions written in "almost English" into the currency of the computer instruction set, but while this is a universally practised technique for large systems, it is a newcomer to microprocessors and can only be used on MPU systems with a lot of memory space available.

It seems unlikely that we will see microprocessor systems in our price range which are capable of running compilers for some time yet, which means that when we do use microprocessors we have to think in terms of the basic instruction set that the MPU is born with, and be familiar with the way the MPU chip operates in a hardware sense. This fact of life is not unpalatable since it gives the whole subject a distinct "hardware" or "gates and wire" flavour which should make using microprocessors a natural and exciting experience for most electronics enthusiasts.

INSTRUCTION CODING

Fig. 3.1 gives some examples from an mpu instruction set, and as you can see, there is an English sentence or two to describe the effect of the instruction to us mortals, and a binary code word which specifies the instruction to the MPU. Now the MPU can't read English, and we find it very difficult to remember and use patterns of l's and 0's, and so to write a program we would use a list of instructions like the one in Fig. 3.1 to "look-up" the binary code for a specific operation so that we can use it in our program.

To make it a little easier for us to remember the binary patterns of MACHINE CODE as it is called, most people find it best to use a notation called HEXADECIMAL which represents groups of four binary bits as a single character from the set 0 to 9 and A to F which provide the necessary 16 possibilities.

Using hexadecimal the eight-bit instruction 11101000 becomes E , which is both easier for us to use and straightforward for a program to convert into binary if required.

An alternative to hexadecimal is octal code where the binary is split into groups of three bits, each represented by a decimal digit from the set $0-7$, so that the binary instruction above would be coded as 350 in this notation.

Octal is losing a lot of ground these days to hexadecimal which is undoubtedly a more powerful and easy-to-use technique for microprocessor use, especially since it has the added protection that in a list of

INSTRUCTION SET

Summary of Processor Instructions									
-Two Cycle Instructions		Instruction Code							
Mremonic	Description		OP	R			DPA		
		D_{3}	D_{2}	O_{1}	D_{0}	D_{3}	O_{2}	01	D_{0}
MACHINE GRDUP									
NOP	No Operation	0	0	0	0	0	0	0	0
HLT	Halt	0	0	0	0	0	0	0	1
BBS	Branch Back and SRC	0	0	0	0	0	0	1	0
LCR	Commiand Register to Accumulator	0	0	0	0	0	0	1	1
OR4	Logical QR, Index Register 4 and Accumulator	0	0	0	0	0	1	0	0
OR5	Logical OR, Index Register 5 and Accumulator	0	0	0	0	0	1	0	1
ANG	Logical AND, Index Register 6 and Accumulator	0	0	0	0	0	1	1	0
AN 7	Logical AND, Index Register 7 and Accumulator	0	0	0	0	0	1	1	1
D80	Designate ROM Bank 0	0	0	0	0	1	0	0	0
081	Designate ROM Bank 1	0	0	0	0	1	0	0	1
SBO	Select Index Register Bank 0	0	0	0	0	1	0	1	0
SB1	Select Index Reguster Bank 1	0	0	0	0	1	0	1	1
EIN	Enable Interrupl	0	0	0	0	1	1	0	0
DIN	Disable Interrupt	0	0	0	0	1	1	0	1
RPM		Half-Byte per Instruction							
*JCN	Jump Conditional to Address	0	0	0	1	C_{1}	C_{2}	C_{3}	C_{4}
$\begin{array}{ll}A_{2} A_{2} A_{2} A_{2} A_{1} A_{1} A_{1} A_{1} & A_{2} \\ A_{2} & A_{2} \\ A_{2} & A_{1} \\ \text { Condition Code, } C_{1} C_{2} C_{3} C_{4}\end{array}$									
* FIM	Fetch Immediate, ROM Data $\mathrm{D}_{2} \mathrm{D}_{1}$	0	0	1	0	R	R	R	0
	to Index Register Pair R RR	D_{2}	D_{2}	D_{2}	D_{2}	D_{1}	D_{1}	D_{1}	D_{1}
SRC	Send Register Control	0	0	1	0	R	R	R	1
FIN	Fetch Indirect. Data from ROM to Index Regrster Parr RRR	0	0	1	1	R	R	R	0
JIN	Jump Indirect to Address in Register Pair RRR	0	0	1	1	R	R	R	1
*JUN	Jump Unconditional to Address	0	1	0	0	A_{3}	A_{3}	A_{3}	A_{3}
$A_{3} A_{2} A_{1}$		A_{2}	A_{2}	A_{2}	A_{2}	A_{1}	A_{1}	A_{1}	A_{1}
*JMS	Jump to Subroutine at Address	0	1	0	1	A_{3}	A_{3}	A_{3}	${ }_{3}$
	$A_{3} A_{2} A_{1}$	A_{2}	A_{2}	A_{2}	A_{2}	A_{1}	A_{1}	A_{1}	A_{1}
INC	Increment Register ARRR	0	1	1	0	R	R	R	A
${ }^{4}$ ISZ	Increment Register RRRR. Go 10	0	1	1	1	R	R	R	R
	Address $A_{2} A_{1}$ if result is not zero, otherwise go to next instruction	A_{2}	A_{2}	A_{2}	A_{2}	A_{1}	A_{1}	A)	A_{1}
ADO	Add Register RRRR to Accumulator with Carry	1	0	0	0	R	R	R	R
SUB	Subtract Register RRRR from Accumulator with Borrow	1	0	0	1	A	R	R	R
LO	Load Contents of Register RRRR to Accumulator	1	0	1	0	R	8	R	R
XCH	Exchange Contents of Register RRRR and Accumulator	1	0	1	1	R	R	8	R
BBL	Branch Back and Load Data DDDD to Accumulator	1	1	0	0	D	D	D	0
LDM	Load Data OROD to Accumulator	1	1	0	1	0	0	D	0

Fig. 3.1. The complete instruction set of the Intel 4040. Note that although the 4040 is a 4 bit MPU, it uses an 8 bit instruction code
"hex" code there are always a few letters to remind you that this is "hex" whereas a list of "octal" can look very like a list of decimal numbers which of course it is not, since, for example, 77 octal equals 63 decimal when interpreted as a numerical value. See Fig. 3.2 and Fig. 3.3.

INSTRUCTIONS AND NUMBERS

This last point concerning octal code raises the interesting question of just how the mpu differentiates between 11101000 the instruction which means (say) "subtract from memory", and 11101000 the number

Mnemonic	Description	Instruction Code							
		DPR				DPA			
		O_{3}	O_{2}	D_{1}	D_{0}	0_{3}	D_{2}	D_{1}	0_{0}
	I/O and RAM GROUP								
WRM	Accumulator to Selected RAM Maın Memory Character	1	1	1	0	0	0	0	0
WMP	Accumulator to Selected RAM Dutput Port	1	1	1	0	0	0	0	1
WRR	Accumulator to Selectad RDM Dutput Port	1	1	1	0	0	0	1	0
WPM	Accumulator to Selected Half-Byte in Read/Write Program Memory	1	1	1	0	0	0	1	1
WRO	Accumulator to Selected RAM Status Character 0	1	1	1	0	0	1	0	0
WR 1	Accumulator to Selected RAM Status Character 1	1	1	1	0	0	1	0	1
WR2	Accumulator to Selected RAM Status Character 2	1	1	1	0	0	1	1	0
WR3	Accumulator to Selected RAM Status Character 3	1	1	1	0	0	1	1	\dagger
SBM	Subtract Selected RAM Main Memory Character from Accumulator with Borrow	1	1	1	0	1	0	0	0
ROM	Selected RaM Main Memory Character to Accumulator	1	1	1	0	1	0	0	1
ROR	Selected ROM Input Port 10 Accumulator	1	1	1	0	1	0	1	0
ADM	Add Setected RAM Maın Memory Character to Accumulator with Carfy	1	1	1	0	1	0	1	1
RDO	Selected RAM Status Character 0 to Accumulator	1	1	1	0	1	1	0	0
ROI	Selected RAM Status Character 1 to Accumulator	1	1	1	0	1	1	0	1
RD2	Selected RAM Status Character 2 to Accumulator	1	1	1	0	1	1	1	0
RO3	Selected RAM Status Character 3 to Accumulator	1	1	1	0	1	1	1	1
ACCUMULATOR GROUP									
CLB	Clear Accumulator and Carry	1	1	1	1	0	0	0	0
CLC	Clear Carry	1	1	1	1	0	0	0	1
IAC	Increment Accumulator	1	1	1	1	0	0	1	0
CMC	Complement Carry	1	1	1	1	0	0	1	
CMA	Complement Accumulator	1	1	1	1	0	,	0	0
RAL	Rotate Left, Accumulator and Carry	1	1	1	1	0	1	0	1
RAR	Rotate Right, Accumulator and Carry	1	1	1	1	0	1	1	0
TCC	Transmit Carry to Accumulator. Clear Carry	1	1	1	1	0	1	1	1
DAC	Decrement Accumulator	1	,	1	1	1	0	0	0
TCS	Transfer Carry Subtract and Clear Carry	1	1	1	1	1	0	0	
STC	Set Carry	1	1	1	1	1	0	1	
DAA	Decımal Adjust Accumulator	1	1	1	1	1	0	1	
KBP	Keyboard Process	1	1	1	1	1	1	0	
DCL	Designal Command Line	1	1	1	1	1	1	0	

NOTES:
11) The condtition code is assigned as follows
$\mathrm{C}_{1}=1$ Invert jump condition
$\mathrm{C}_{1}=0 \quad$ Not invert jump condition
$C_{2}=1$ Jump if accumulator is zero
$C_{3}=1 \quad$ Jump if carry/link is a 1
$C_{4}=1$ Jump if test signal is a D
(2) RRR is the addréss of 1 of 8 index register pairs in the CPU.
(3) RRRR is the address of 1 of 16 index registers in the CPU.
(4) Each RAM chip has 4 registers, each with twenty 4 bit characters subdivided into 16 main memory characters and 4 status characters. Chip number, RAM register and main memory character are addressed by an SRC instruction. For the selected chip and register. however, status character locations are selected by the instruction code (OPA).
which has a value of 232 in decimal.
The answer is that the MPU cannot differentiate between these two possibilities at all; it interprets anything that is placed in its instruction register as an instruction, and it will interpret any part of the store content (including instructions) as data if told to do so by the program.

This means in practice that if, for example, a programmer inadvertently jumped the program counter into a table of data in store, the MPU would endeavour to use the data as a program sequence, probably with bizarre results!

INSTRUCTION TYPES

Even small, four-bit MPU chips have a repertoire of about fifty distinct instructions, and powerful eightand sixteen-bit devices may boast one hundred or more. At first reading, the instruction repertoire of a microprocessor can be a bit bewildering, and it's not easy to see the potential usefulness of such instruction names as RAR, POP, PSW, JCN, or even bra!

Rather than examine each instruction in isolation it is better to group instructions which perform similar operations under common headings, and very often the manufacturers do this for us in their handbooks.

Unfortunately, no two manufacturers have the same ideas as to what the group titles should be, and so we have picked four general headings into which it should be possible to place any of the instructions of any microprocessor currently available. (You might like to examine the instruction set of Fig. 3.1 and decide which group each instruction belongs to.)

(a) DATA TRANSFER INSTRUCTIONS

Data transfer instructions are used to move data about in the microprocessor system, either word by word (parallel transfers) or bit by bit (serial transfers). Data is the raw material upon which the MPU chip operates, and it is important that the mpu chip should be able to fetch data from input ports, store data in RAM, move data from register to register and manipulate the position of individual bits in the accumulator, and so on. Examples are.
STA - Store accumulator in memory (Intel 8080)
TSX - Transfer stack pointer to index register (Motorola MC6800)
ld - Load data from memory into the accumulator (National SC/MP)
RAR - Rotate accumulator and carry to the right (Intel 4040)

Binary	HEX	decimal
0000	0	0
000 .	1	1
0010	2	2
001 :	3	3
0.00	6	\checkmark
010%	5	5
$01: 0$	6	6
0111	7	7
1000	8	8
1001	9	9
10:0	A	10
10:1	B	11
+100	c	12
1101	0	13
$11: 0$	E	14
111%	F	15

Fig. 3.2. Binary to hexadecimal conversion table

Fig. 3.3. Binary to octal conversion table

Glossary of Terms

ASSEMBLERS-Software programs which translate instructions in Assembly Code (e.g. mnemonics) into Machine Code instructions which can be recognised by an mpu chip.
COMPILERS-Software programs which are used to translate instructions written in a High Level Language into Machine Code instructions which can be recognised by an MPU chip
DIRECT ADDRESSING-An addressing mode where the address of the operand is contained in the instruction.
HEXADECIMAL-A base-16 number system using the character set 0 to 9 and A to F which can be used interchangeably with binary. This coding system is easier to use and remember than binary, and is widely used in microprocessor literature.
HIGH LEVEL LANGUAGE-A computer language which is easy to use and understand but which requires extensive translation (compiling) into Machine Code before it can be used to control an MPU chip.
IMMEDIATE ADDRESSING-An addressing mode which uses part of the instruction itself as the operand data.

INDEXED ADDRESSING-A form of Indirect Addressing which uses a special location known as an Index register to hold the address of the operand. Index registers can be incremented or decremented under program control.
INDIRECT ADDRESSING-An addressing mode where the address of the location where the address of the operand is located is contained in the instruction.
LANGUAGE—A systematic means of communicating instructions and data to a microprocessor (or computer) system.
MACHINE CODE-A "low-Level" language understood directly by a microprocessor chip and using binary notation.
MULTI-WORD (BYTE) INSTRUCTIONS-Instructions which require more than one line or location, in program memory.
OCTAL_A base-8 number system using the character set 0 to 7 which can be used interchangeably with binary. Not as popular as Hexadecinial.
OPERANDS-Data used in machine operations (e.g. Addends, Subtrahends, Dividends, etc.).
RELATIVE ADDRESSING-An addressing mode where the address of the operand is built up by combining the current program count with a displacement value which is part of the instruction.
(b) ARITHMETIC AND LOGICAL INSTRUCTIONS

Arithmetic and logical instructions generally operate on a pair of data words, one of which is resident in the accumulator. The result of the instruction is generally a single word which is stored back into the accumulator. The execution of this group of instructions requires the arithmetic and logic unit (alU) described last month.

Examples are:

or 4 - Logical or the accumulator with index register 4 (Intel 4040)
ADC - Add with carry (Motorola MC6800)
subr - Subtract register from accumulator (Intel 8080)

DAD - Decimal add to accumulator (National SC/MP)

(c) BRANCH INSTRUCTIONS

Branch instructions are used to modify the sequence in which the instructions in a program are carried out. Without these instructions program operation would start at address zero and continue by incrementing the address counter after each instruction until address N was reached and the counter recycled to zero.
Branch instructions allow the contents of the program counter to be replaced by some address which may be unrelated to its previous contents, so that program flow continues by incrementing from the new start address.

This group contains a sub-group which may be termed the "conditional-branch" group, which is especially important because it allows a microprocessor to make decisions on the basis of the nature of data with which it is provided. Conditional branch instructions replace the program counter content only if some specified conditions are true; if these conditions are false, program flow continues unchanged, by counter increment.
Examples are:
JNZ - Jump if accumulator content is not zero (National SC/MP)
jun - Jump unconditionally (Intel 4040)
JSR - Jump to subroutine (Motorola MC 6800)
RET - Return (e.g. from subroutine) (Intel 8080)

(d) CONTROL AND MISCELLANEOUS

The group control and miscellaneous contains a bit of a hotch-potch of instruction types, and is included really to provide a home for those instructions which do not fit into the other three groups!

Examples are:

halt - Halt processor and do not carry out any further instructions (National SC/MP)
nop - No operation. Do nothing but move on to next instruction (Intel 8080)
EIN - Enable interrupt detection logic (Intel 4040)
CLR - Clear (Motorola MC 6800)

INSTRUCTION FORMAT

By now you should be getting a feel for the sort of things we can tell the MPU chip to do when we write an instruction in a program, but you may be wondering how the microprocessor knows which memory locations it must use as operands when carrying out instructions such as LOAD, or ADD.

Taking an ADD instruction as an example, just what does the microprocessor need to be told, or to assume, in order to carry out the addition in the required way? Well, it needs to know . . .
(i) The operation to be performed (In this case ADD) ,
(ii) Where the first operand is
(iii) Where the second operand is
(iv) Where it must put the result
(v) Where the next instruction is

An instruction word could be imagined where all these facts are specified by certain sections of the instruction code, but a moment's thought reveals that this would demand a very long word length, say four bits to specify ADD, eight bits for the first operand address, eight bits for the second, and so on.
An MPU chip using explicit instructions like this would be extremely versatile and powerful, but impossibly clumsy and difficult to work with, and so unsuited to the low cost applications microprocessors are intended for. A less versatile but much more compact instruction word format is generally used for MPU chips where most of the required information is assumed by microprocessor rather than being explicitly stated when the instruction is written into the program.
(i) The operation to be performed remains explicit (e.g. ADD)
(ii) The first operand remains explicit and is coded as a memory or register address
(iii) The second operand address is assumed to be the accumulator
(iv) The result is automatically stored back into the accumulator
(v) The next instruction address is assumed to be the next in numerical sequence (unless a branch instruction is involved) and so is found by incrementing the program counter.
Even with this more compact instruction format it is often necessary to use more than one instruction word to store the necessary code, giving rise to what are termed "multi-word" or "multi-byte" instructions, which of course carry with them the necessity to increment the program counter by more than I to find the next separate instruction in sequence.

ADDRESSING MODES

We saw above that most microprocessor instruction words contain a single address, the address of the first operand, but we now have to examine the way in which the address is specified because there are a variety of addressing modes which can be employed, and using them wisely can make our programs more efficient. As an example, the Motorola MC 6800 has no fewer than seven addressing modes, which puts it ahead of the SC/MP and 8080 with four, and the 4040 with three, unless you happen to be of the opinion that seven modes are excessive and tend to leave you "spoilt for choice".
mPU chip manufacturers all have their own ideas about what their addressing modes should be called, and how they should operate, and it will be necessary to study these in the handbooks when the use of a particular chip is contemplated.

For the purposes of this introductory series we have chosen to describe four modes which can be considered fundamental, and from which the others have evolved.

You may find it useful to compare the addressing modes of a particular MPU chip with the modes described here, trying to spot the similarities and the differences, where there are any.

IMMEDIATE ADDRESSING

The most straightforward mode of the lot is lmmediate addressing because the instruction does not actually contain an address: it contains the data itself which may be part of the first instruction word or contained in a subsequent word.

This mode is useful for fetching constants which do not change once the program has been written; this "unchanging" quality is vital because instructions, and therefore immediate data, are often stored in ROM.

DIRECT ADDRESSING

direct addressing is the mode which one would instantly recognise as being a necessary part of any processing system. In this mode the instruction contains the address in an explicit form, so that for an ADD instruction for example, the MPU chip is told precisely where to go in store to find the number to be added to the accumulator.

INDIRECT ADDRESSING

Indirect addressing is a very useful but at first rather tricky-to-understand mode where the instruction contains the address of the address of the data (now read that again!). That is to say that the address contained in the instruction does not point to the data itself but to a location (which may be a location in store or a register) which contains the address where the data is to be found. A particularly common form of indirect addressing is called indexed addressing where the instruction points to a special register called the index register which contains the required address.

The strength of indirect addressing lies in the fact that it is not necessary to know precisely what the final address is when the program is being written, it can be computed in, say, the index register so that it is in effect data dependent rather than program dependent.

RELATIVE ADDRESSING

In relative addressing the instruction contains not the address of the data, but a displacement value which is added to the program counter contents to make the effective address. This addressing mode is used only with branch type instructions where it allows looping backwards or forwards through a program without the need to specify absolute addresses. Looping backwards is possible because the displacement can be a negative number in "twos-complement" binary notation.

PROGRAMMING TECHNIQUES

Programming a microprocessor is a fascinating and rewarding experience and well worth the investment in time required 10 learn the necessary fundamentals. The best way to learn is by actually doing, and to get to the stage where you are ready to try your hand at simple programs, you should start by studying examples of the type which MPU manufacturers often provide in their literature. The Intel "MCS-40 USERS MANUAL"" is particularly rich in programming tips
and examples, although of course these are restricted to the particular case of the 4040 chip.

Even if you are quite used to writing programs for a large computer in a high level language like Fortran, you will find the strict format of microprocessor machine code a challenge at first, but by becoming familiar with the hardware and instruction set of your choice of MPU you will soon become adept at the art!

HARDWARE/SOFTWARE TRADE OFF

The success of the microprocessor is due to the fact that it enables a large amount of hardware to be replaced by changeable software in the form of programs. When an MPU is applied to a particular application, however, the designer has to decide just how to create a balance between the amount of hardware and the amount of software employed, so as to suit his particular circumstances.

Take the case of a decimal keyboard connected to an mpu system. Should the designer provide a series of gating functions to turn each of the "one out of ten" .key closures into a corresponding four bit BCD code, or should he read all ten lines into the MPU and provide a program which does the job? Should he provide a TTL monostable key-debounce circuit, or should he incorporate some timing routines into his program which achieve the same result?

Fig. 3.4 Switch Check flow chart

These are questions which can only be answered in context, depending as they do on how much program space is available and how much it costs, and how much room there is for extra hardware, and how much it, in turn, costs.

A PROGRAMMING EXAMPLE

We do not have sufficient space here for a comprehensive programming course, but in order to at least set the scene, we can trace through the evolution of a particular program example.

The job is to examine four toggle switches and depending on which one of them is set (if any) to jump to a particular segment of a program. The microprocessor to be used is the Intel 4040, and the switches are connected to ROM input port number four.

The first step in writing the program is to draw up a flow chart which describes in an easy to understand, graphical form the operations necessary to complete

Fig. 3.5. Action of RAR instruction
the task. Flow charts can be of a very general form which can be understood by everyone and could be adapted for use with any microprocessor, or they can be detailed, and suited only to a particular chip architecture and instruction set. We find it helpful to let flow charts evolve from the general to the detailed form as ideas are added and the constraints of the chip are taken into account. Our final flow charts usually detail the actual instructions we intend to use.

SWITCH CHECK

Fig. 3.4 shows the flow chart for our Switch Check program in an "Inbetween" stage which is flavoured by the 4040 but nevertheless easy to follow for those new to the concept.

The flow chart already shows that a strategy has been chosen to achieve the goals set down, but it should be remembered that there are several other ways to achieve the same ends, and this one is not necessarily the best. The strategy used is that of a "skip chain", a simple but effective technique for examining the state of input lines, which in this case also incorporates a "wait loop".

When the Switch Check routine is entered (from the larger program of which it is a part) it begins by reading the state of the four switches into the accumulator by first addressing port 4 (FIM, SRC) and then reading it (RDR). The switch states can be examined by shifting each bit in turn into the carry flip-flop and using the JCN (jump on condition) instruction to either vector the program to the appropriate routine if a switch is SET, or to continue round the loop if it is not.

Once "Switch Check" has been entered there is no way of leaving it until a switch is closed, hence the "wait loop" tag, although this feature could be dispensed with, if appropriate, by leaving out the JUN instruction and allowing a further exit from the bottom of the routine if no switches are set.

Table 3.1
"SWITCH CHECK" PROGRAM SEGMENT

LABEL	MNEMONIC	OPERAND	COMMENT
LOOP	FIM	RP0, 40 Hex	Load port address code to register pair 0.
	SRC RDR	RP0	Select port. Read port into
			accumulator.
	RAR		Rotate switch 1 into CARRY.
	JCN	CARRY SET, "ROUTINE 1"	Jump to address "Routine
			1 '' if CARRY is set.
	RAR		Switch 2 to CARRY.
	JCN	CARRY SET, "ROUTINE 2"	Test switch 2.
	RAR		Switch 3 to CARRY.
	JCN	CARRY SET, "ROUTINE 3"	Test switch 3.
	RAR		Switch 4 to CARRY.
	JCN	CARRY SET "ROUTINE 4"	Test switch 4.
	JUN	"LOOP"	Jump to LOOP since no switches set.

Notice that the switches are ranked into a priority order by the fact that switch one is checked first and so on. If the routine is entered with more than one switch set, the lowest number switch will be the only one recognised.

The JCN instruction can be used to test for a variety of different conditions such as jump if carry is 0 , jump if carry is 1 , jump if accumulator contains all zeros, etc. In our case we wish to test bits individually and so we rotate them into the carry flip-flop one at a time using rar which rotates the accumulator and the carry data one bit at a time as shown in Fig. 3.5.

The complete program, using mnemonic instruction codes is shown in Table 3.1. Before this could be entered into a PROM and used, the mnemonics would have to be replaced by their hex and binary equivalents and the addresses which here are represented by names such as loop or routine no 1 would have to be specified absolutely.

ASSEMBLERS

If an ASSEMBLER facility was available on a larger computer or a development system it would be possible to enter the mnemonic codes as shown in Fig. 3.6, complete with address names, or labels as they are called. In this case the assembler program would convert the mnemonics into the required machine code and insert absolute addresses where necessary, a facility which helps the programmer a great deal but which of course is expensive in storage space and not available for use with the cheaper prototyping and development systems.
NEXT MONTH: Peripheral Chips and Hardware.

VENUS

The Russians have tackled the problem of the brilliant but hostile planet Venus with great vigour.

Mythology would have us believe that Venus represented love and happiness in the form of a goddess and that Mars was the warlord and the mark of aggression. In the event it is clear that the roles are reversed. However, in spite of the millenia of observations it is only in the last few years, the space years, that knowledge of the planet and its puzzles has been brought to the stage of acceptance in some detail.

Before the advent of the Mariner and Venera spacecraft the cloud cover was all but completely opaque. Many enterprising amateurs spent countless hours observing the planet. The members of a section of the British Astronomical Association devoted to observations of Venus produced drawings which were built up into a conjectured picture of the surface features. As it turned out these pictures and the drawings were remarkable for their anticipation of the real surface. These features were first confirmed by radar measurements.

CHANGES

The rotation period of the planet had undergone many changes and the figures varied from a few days to hundreds of days. Finally it was found to be 243 days, and that its direction was opposite to that of the Earth. Thus the Sun would rise in the west and set in the east. Its year is shorter than that of the Earth, just over 224 days. The poles are only tilted by 3 degrees and therefore the planet does not experience seasonal changes like the Earth.

CLOUDS

The cloud cover rotates very rapidly and the tops of these clouds have a rotation period of about four days. Their velocity is therefore very high reaching as much as 100 metres a second.

The white clouds of the Earth consist of drops of water but Venus is very different. The quantity of water vapour is very small being only 5 parts in 10^{4}. This was established spectrographically. The nature of the spectogram showed that there were liquid drops in the clouds. Such a condition at the temperature of 233 K indicated that the liquid could not be water.

The surprise that awaited the investigators was that it could only be due to sulphuric acid. It was found that these liquid drops were 75 per cent concentrated sulphuric acid. This was finaliy resolved in 1973.

Between the years 1967 and 1975 the Russians launched seven vehicles of the Venera class and in addition there were probes which entered the atmosphere. In 1967 Venera 4 indicated that there was at least 97 per cent of carbon dioxide in the atmosphere.

Though liquid water cannot exist on the surface of Venus, a reaction between the surface and the carbon dioxide of the atmosphere takes place. On Earth this reaction is a slow one. On Venus, with a temperature of the order of 750 K , such a reaction is very rapid. The other similar reactions that take place include hydrochloric and other acids. The whole chemical effect in the atmosphere contrasts with that of the Earth.

There is little or no magnetic field on Venus but an ionosphere does exist. This does fit in with current thinking, that the intensity of a dipole field depends on the angular velocity. A great deal of data is now available about the Venusian atmosphere and the ionosphere. One interesting fact that emerges is that short wave radio signals would be limited to the daylight hours for global communication.

There are few signs of mountains though some radio-astronomy telescopes have shown 2 km high hills. It is possible that as a result of the high surface temperature, the crust is more malleable and that the possibility of mountain formations is remote. There is no sign of impact modification of the surface and this could mean that almost all the effects will have been by volcanic action.

Much still remains to be done before a conclusive picture of Venus can be drawn. The effect of the solar wind shows quite a different picture as compared with the Earth. The density of the corona is directly dependent on solar activity.

HAWAIIAN INFRA-RED TELESCOPE

A new development is possible in connection with the Hawaian telescope. The $£ 2.5$ million telescope is being built by Grubb Parsons and is to be put into service next year. The mirror is 3.8 metres in diameter and is the largest of its kind in the world.

Designed for infra-red operation the tolerances can be much wider than for optical work. This is reflected also in the guidance systems. The original tolerance was set at 2-3 arc seconds, but Grubb Parsons have indicated that the mirror now in the polishing stage is so good that a little extra polishing could bring the tolerance to 1.0 arc second.

This would effectively halve the time for observations. This will not be to the standard for optical work except for very short exposures. In spite of this there would be a gain for optical astronomers. The improvement for the infra-red application is very great.

The cost of doing this extra polishing is $£ 12,000$. Surely this is a small price to pay for such an improvement. Since this means that the instrument will carry out a programme in half the time originally scheduled it is the same as saying that for an extra $£ 12,000$ the astronomers will have the equivalent of two telescopes at a cost of $£ 2.5$ million each. This is a bargain too tempting to be ignored. No doubt the SRC will see it this way.

LANDSAT

The value of the services that can be offered by Landsat has been so much in evidence that the Soviet Union is pursuing plans to build a terminal for themselves. So far applications have come from a number of countries. These include Australia, Norway and Sweden, India, Japan and at least one Arab State.

For over a year a new 13 -channel scanning system has been the subject of a cleaning up process. Interference has been very considerably reduced and the false colour reproduction developed to a specialised degree. This enables colour to indicate differing conditions of surfaces, leaves and plants as well as tree growth.

Extensive research has shown that water, because of its changed state when taken up in plants, can be an indicator of great value. It is certainly the case that the value of the pictures for countries which have plans for long term development in agriculture and forestry will be considerable.

You may be that rare person who gets his circuit designs right first time, everytime.

But it's much more likely that you experiment to see what works, and what doesn't.

In which case you ought to know about Bandridge Decs.

Bandridge Decs enable you to try almost any number of possible circuits, without having to use your soldering iron.

You simply push the wires of your circuit components into the holes in the Dec to make a perfect solderless contact.
*Which means that you can use the components over and over again.

And, of course, we don't have to tell you how much time it will save you.

There are four Decs available

The Blob Story.
 Yes, they have got a funny name:

Blob Boards.

And if you've never heard of them, you might wonder what on earth they're for. After all they sound more like sci fi than practical electronics.

But in fact there is a good reason for the name.

It actually describes the way these printed circuit boards work. You just put a tiny blob of solder onto circuit board and component and you've made a perfect contact.

Every time.
There are of course a few other printed circuit boards around.

But we think the prices are a bitshocking.
Our prices, we think you'll agree, are more down to earth.

These Blob Boards are about half the price of the few comparable alternatives.

And unlike those alternatives, on most Bandridge Blob Boards you won't have to break the contact rails to make your circuit. So you'll be able to use them again and again.

The roller tinned copper on Blob Board makes soldering easy, and it won't corrode, so
they'll work for as long as you want them to. You'll find a Bandridge Blob Board for every circuit you'll ever want to make, from the simplest to the most complex. And if you're using Bandridge solderless DEC's for your prototypes you'll be pleased to learn that there's a Blob Board that exactly matches every DEC.

So when you're looking for a circuit board itll be worth your while remembering Blob Boards.

As if you'd ever forget a name like that.

"IC" Range - For integrated circuit work.

Sin IEDIUCTIUR
 UPDOATBosenweas

T100
TL340
F100L

HI-Z PRE. AMP

Are you bored with analogue integrated circuits which do everything but polish your shoes, and digital integrated circuits which boast so many gates and functions that it sometimes seems that their I.Q. is higher than yours? Do you yearn for the simple life again, a return to the days when an individual transistor was treated as something to be revered, rather than as a sort of plastic giveaway? You do? Well then perhaps I can interest you in the T100 and T300 devices from Siliconix, which do not boast kilo-transistors or mega-gates, but simply a well designed single j.f.e.t. stage which with the aid of a simple four-pin package, forms a useful and capable high-Z preamplifier stage for use with microphones and other transducers.
Inside the TO72 can there lives just the j.f.e.t., a source load resistor, and back-to-back Schottky diodes which form the high impedance gate bias resistance. The devices feature an input impedance of at least 200 megohms, and an output resistance of between 500 and 1,300 ohms, together with a very low noise voltage output of less than 4.0 microvolts in a 10 kHz audio bandwidth.

These integrated circuits are, of course, high-to-low impedance converters, and can be used wherever such a function is required. The T100 is intended specifically for low power applications such as hearing aid input stages, where its 50 microamp supply drain is important, while the T300 is a general purpose device drawing 350 microamps. Both can operate from supplies of from 1.3 volts to 30 volts, and are ideal for matching to ceramic, electret-capacitor, air-capacitor, and piezo-electric microphones.

GOODBYE ZENERS

If you could design your own ideal Zener regulator diode what would you list as desirable characteristics? I would want low impedance, a sharp knee, temperature compensation, low noise, high dissipation, and a really easy to use package. If you added to
that list a programmable voltage rating, so that only one type of component has to be purchased to provide any voltage between three and thirty volts, you would have designed yourself a Texas Instruments' TL430 which must surely replace standard Zeners in most applications.

The manufacturers call it a "precision three terminal shunt regulator" but it is almost as easy to use as a standard Zener, and nowhere near as pricey as it sounds. "Zener" voltage is normally programmed with the aid of two fixed resistors, but if you like, you could use a skeleton pot, and hence build yourself a "VariableZener" which could be very useful in a wide variety of applications which at present require numerous resistors and an op. amp., in addition to a conventional reference diode.
Performance of the TL430 is better than its predecessor in every respect, slope impedance is only 1.5 ohms, over the current range 600 mic oamps to 100 milliamps, as compared with 5 ohms to 100 ohms for standard Zeners over a more restricted current range. Temperature stability is 0.005 per cent per degree Celcius, which is as good as the most expensive Zener devices, which are themselves restricted to a voltage of around 5 to 6 volts to achieve that sort of performance. Noise output is low, and the three-lead TO92 or eight-pin Minidip package will dissipate a creditable 775 milliwatts to make the TL430 almost twice the regulator that the standard 400 milliwatt BZY88 is!

BRITANNIA RULES O.K.?

I sometimes get a bit demoralised when I realise that most of the devices I talk about in this column actually originate in that former colony of ours, where they eat hamburgers and chew gum!
Wouldn't it be nice, I muse, if just for once, a British firm could summon the courage, the know-how and the money, to produce a real worldbeater of a product which would give us something to be really proud of, something which would demonstrate that we really do have a part to play
in advanced semiconductor technology.

Well, I can stop musing, because Ferranti have actually gone out and done it, by producing a super, wonderful, powerful, 16 -bit, and above all, BRITISH microprocessor which really promises to deliver the goods in this, the most challenging semiconductor technology of them all!
The name of this patriotic new chip is the F100L, and it has the distinction of being the first microprocessor which has been wholly designed, developed and manufactured in Europe, without any American connection at all. Development was sponsored by the Ministry of Defence, God Bless them, and this will no doubt guarantee a market in a host of advanced defence projects and give a hefty boost towards profitability. The F100L can stand on its own, though, and should provide some healthy competition for other 16 -bit micros such as the Texas 9900 and the National Pace, which it can outperform in many respects.

The chip is produced in the homegrown Ferranti CDI process which is a bipolar technology providing LSI circuit density and low power (375 mW) along with typical instruction execution times of only 3 to 4 microseconds. The chip is just 0.23 inches square and uses no less than six feet of aluminium track interconnections to hook up about 7,000 separate components into a microprocessor which is not far short of a full sized computer in the performance that it offers.

As far as we, as amateurs, are concerned, the F100L will enable us to put together a home computer of formidable power and ability when the chips become freely available during the next year or two. The single phase TTL clock and the simple 5 volt supply requirements should make the assembly of an F100L computer fairly straightforward, and Ferranti are going to back up the basic MPU chip with a range of CDI interface chips in the near future to replace the standard TTL components presently necessary.
This is a chip we can all be proud of (after all we do have an investment in it) so let us wish it every success for the future.

MICRO '77 is the name of Cramer's current series of microprocessor seminars being given at various points in the country, culminating with one in London on April 25. Cramer call themselves the "Heavyweight Microcomputer Team". perhaps because for each of their three main franchises, Motorola, Texas Instruments, and Zilog, they have two specialists available, one with hardware and one with software knowledge.

We went along to the Cambridge seminar held on February 8.

THE PAST AND THE FUTURE

The first part of the programme was an extremely lively introduction to microprocessors presented by Ian Perry. It is almost impossible to talk about the history of microprocessors without mentioning Intel; the first microprocessor was the 4004, designed in 1971 by them for Decimo, the calculator manufacturer, who saw that the way their small firm could compete in the mass calculator market would be to divide the single calculator chip into its four parts: the CPU, Ram, ROM and I/O. A whole range of calculators could then all use the same cPU and Ram, differing only in the rom programme and in the $1 / 0$ and keyboard.

Today about 50 per cent of cPus produced go into data terminals. Most second-generation CPUS, such as Motorola's 6800 and the Intel 8080, have followed along similar lines but now the trend seems to be going full circle with the re-integration of all the parts onto one chip. Again the innovator is Intel, and their 8748 , to be released later this year, will combine the CPU, a PROM and programmable $1 / \mathrm{o}$ onto one chip.

In a glance into the future Ian Perry predicted some interesting advances. Memory is to grow ever cheaper, and 16 K dynamic rams should soon be available at a competitive price. The first low-power cmos prom is now available from Harris, though the price is high. The greatest possiblities lie in the area of subfunctions: chips which work alongside a CPU to extend its capabilities.

For example, Advanced Micro Devices have a numbercruncher chip on its way which will give multiply and divide functions; also in the pipeline are floppy-disc controllers, c.r.t. controllers, keyboard interfaces and sophisticated I/O packages, all of which leave the CPU free to do greater things.

Low power systems are still a year away; although TI make an $I^{2} \mathrm{~L}$ version of their 9900 , the price is prohibitive. The present cmos cpus from Intersil and RCA have reduced instruction sets due to the unsolved problems of mass integration, but silicon on sapphire cmos may provide the answer.

MOTOROLA

The M6800 from Motorola is now the most popular CPU in Europe, and perhaps because of its familiarity, this part of the programme was less interesting. This popularity may in part be due to Motorola's sensible policy of providing a wide spread of development products, and the whole range was on show at the seminar. Although Cramer will be glad to sell you an Exorciser plus TI Silent 700 terminal for around $£ 4,000$, for the impecunious among us there is now the self-contained D2 kit which. like the SC/MP kit with keyboard, eliminates the need for a terminal by enabling you to enter programs directly in machine code from a hex keyboard, with readout of the address and data on six seven-segment displays.

The problem of how to store programs is overcome by the provision of an audio cassette interface, and the system includes 256 words of RAM and a PIA. At $£ 188$ it seems good value. (A review of this kit will appear in a subsequent issue.)

In the mid-price range there is the Polyvalent Development System, comprising an ASCII keyboard, a tiny vDU with interface board, and various computer boards which can be bought separately, or together for $£ 771$. For example, the Display Interface board will convert any TV into a VDU with the addition of a keyboard, and costs $£ 200$.

ZILOG

In presenting the Zilog Z80, Roger Phebey was understandably enthusiastic as the Zilog story seems to be one of uninterrupted success. Zilog Corp. was founded in 1974 by two Intel executives, who have since been joined by top men from Intel, Motorola and Fairchild. In 1975 M. Shima came from Intel, where he had designed the masks for the 8080 , and developed the 280 CPU . The first units were manufactured in mid-1976 by Mostek for Zilog while their factory was being completed, and now Mostek second-source it.

From the start Zilog decided to make a souped-up 8080 , and in fact the $\mathbf{Z} 80$ contains the actual 8080 codes as a subset. But the likeness ends there; the Z 80 has twice as many registers, twice the number of instructions including additional 16-bit operations, block transfer and search which in one instruction operate on blocks of up to 256 words of memory, and there are two modes of interrupt besides the 8080 mode. The chip uses a single 5 V power rail, and a single-phase clock. The $Z 80$ is not very accessible to the amateur as yet; the cheapest complete system includes two floppy discs and sells for $£ 4.200$, and the only board available as yet is the MCB at $£ 347$; for this you get 4 K of ram though.

TEXAS

The Texas Instruments' TMS9900 is one of the few 16-bit cpus currently available, and with its multiply and divide instructions it seems very minicomputer-like. It has none of the usual on-chip registers; instead a block of 16 contiguous Ram locations pointed to by the workspace pointer provides 16 "primary" registers, making interrupt and subroutine handling especially efficient. The chip has 16 data lines and so needs an impressive and expensive 64-pin package; furthermore it requires a four-phase clock.

Prospective computer builders may prefer to wait for the TMS 9800 due later this year, which provides an onchip oscillator and uses multiplexing to fit the same functions in a 40 -pin package. At present there is only the 990/4 development system available which with a Silent 700 terminal costs about $£ 4,000$, but Cramer is developing in collaboration with Ti a Micro-99 microcomputer board which, when it is available, will be $£ 310$.

Finally a point stressed at the seminar was: do not feel obliged to buy the whole system from one manufacturer. It is perfectly good practice to link up one CPU with a different memory and a third i/o device. Also once the application is decided upon it is probably cheaper to replace general purpose $1 / 0$ devices by custom wired latches. Amateurs now have an extremely wide range of devices to choose from, and can construct a complete microcomputer for well below the cost of comparable ready-built development systems.

SAXON ENTERTAINMENTS LTD

A FULL RANGE OF MODULES \& READY-TO-USE EQUIPMENT TO PROFESSIONAL STANDARDS FOR THE PROFESSIONAL modules and indivioual units
 SYSTEM 7000
 COMPLETE \& READY-FOR-USE EQUIPMENT

POWER AMPLIFIER MODULES 30-240 WATTS

Fully tested \& guaranteed. Distortion typlcally 0.2% 10 Transistors 4 Diodes Response $30 \mathrm{HZ}-30 \mathrm{KHZ}$ Fully short \& open circult proof Built-In surge most mixers Twir D.C. \& output fuses.
Top-grade components throughout.

SYSTEM 7000 COMPLETE DISCO MIXERS (with Autofade) Mono or Stereo

eneady to plug in \& use Ready to piug in \& use Automatle Mic override Two tone panel Lett/Right deck tader inputs Left/Right deck fader
$20 \mathrm{Mz}-20 \mathrm{kHz}$ Noise - 77
The choice of the professional D.J. A Controls: Mic volume, Bass, Treble, A/F ade Depth, Tape, L/Deck, R/Deck volumes, Bass, Treble, Master, Headphone volume, Selector \& On/Off.
 IN MODULAR FORM- All you require is front panel (see below) knobs \& sockets etc. All electronics are assembled \& tested. All Potentlometers supplied \& fitted Low cost do it yourself with step by step easy to follow Instructions.
Mono $£ 19 \cdot 50 \quad$ Stereo $£ 29 \cdot 50 \quad$ Panel $£ \mathbf{£ 3} \mathbf{5 0} \quad$ Supply unlt $£ 8 \cdot 50$

SYSTEM 7000 LIGHTING CONTROL UNIT MK II (Four channel)

Has your light unit got?

- 4,000 Whandiling Sequence facility Smart 2 tone panel - Advanced IC circuitry

All your needs in
one superbly designed unit
Integral dimmers Automatic audio level OURS HASI

ONLY E42.50
IN MODULAR FORM-THE QUADRAFECT
As with the mixers the Mk II L.C. unlt may be
(Panel £2.50) purchased in modufe form with all controls, requi case 1.240 w Audlo $\square 8 \mathrm{RA}$ RCA triacs $\quad 0.5-20 \mathrm{~Hz}$ Sequence \square Fully suppressed

CUSTOM MIXER MODULES (Complete or In printed circuit form only) Make your own mixer, mono or stereo, up to 2 channels, with full monitoring facilitles. and provision for echosend/return et
andic
cartridge etc.

- Feed mote modules per single ming module Professional Infinitely adaptable-Exiremely economical
COMPLETE MODULES With facla panel, Knobs \& socknts, Monitor buttons, Ready wired \& tested
Mono Input $£ 8.50$ Mono mixing stage $£ 8.50$ Stereo Input $\mathbf{£ 1 2 . 0 0}$ Stereo mixing stage $\mathbf{£ 1 2 . 0 0}$

- 0.5W headphone - circult
- Fuir mat bass/ treble controls

PRINTEDCIRCUIT MODULES With controls fitted, requires only

$$
\begin{array}{lll}
\text { Mono Input } & £ 5.50 & \text { Mono mixing siage } £ 5 \cdot 50 \\
\text { Stereo Input } & £ 9.00 & \text { Stereo mixing stage } \\
£ 9.00
\end{array}
$$

Power supply for up to 20 channels-PPM18-£8-50
SYSTEM 7000 SOUND-LITE (3-CHANNEL)
IN COMPLETE OR MODULAR FORM
(Modular form illustrated)

- Complete unit similar to Mk II unlt above

Long established \& proven design
3 Channels-100W per channel
1.240 W Input-master audio level plus Bass/Middle/Treble

COMPLETE UNJT-Fully
MODULAR FORM Facla \& knobs otc. Needs only 11 simple connections
£16.50 (Panel £2.50)

CENTAUR-THE IOOW RMS STEREO DISCO
COMPLETE WITH SOUND-TO-LIGHT SEOUENCER \& LIGHTS
ONLY $£ 199(+4.50 \mathrm{carr})$ or Low interest terms Deposit $£ 24.7$

- 100W RMS stereo output Twin heavy duty loudspeake
Four channel sound Ittesequencer complete with display
Separate mic
a treble conirolslc bass
a treble controls
all leads
- Twin BSR decks with lift arm

NOW AVAILABLE

SUPER CENTAUR

200W Stereo output-other details as above $\mathbf{£ 2 6 5}$ (carr. 4.50)
or Deposit £31-06 $\mathbf{1 2}$ months at £25 03 or 24 months at £14-20
Cut-price condensermic \& headphones $£ 15 \cdot 00$ (only with complete discos)
SAXON MINI-DISCO 50WRMS £119.00 (carr. £2.50)

Complete with twin heavy duty loudspeaker
Includes mic input \& headphone monitor circuit

- Twin BSR decks with liftarm
- Tremendous value-just plug In \& go

Cut-price condenser mic \& headphones $£ 15 \cdot 00$ (only with complete discos) SEND YOUR SPECIAL REQUIREMENTS FOR A CUSTOM DISCO QUOTATION

SYSTEM 7000
MINOTAUR 100—All Purpose Wide Range Amplifier

STROBES \& PROJECTORS (We stock the full Pluto range) Send for details SUPERSTROBE $\mathbb{E 1 9 . 7 5}$

- 2-3 Joules
- 80W Tube for long Ilie

Compact $4^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$
PRO-STROBE E32.50

- 5-8 Joules

External trigger
Long Llife tube timer
circuit

150 WATT LIQUID WHEEL PROJECTOR

- Accepts all accessorles C/w with wheel \& motor plate
Sturdy steel construction Remarkable value-
Sold elsewhere at
$£ 39 \cdot 50$. Our price
is only:
£33.00
ACCESSORIES Condenser micr ECM77 600 ohm $£ 12 \cdot 50$
ECM 81 Dual Impedance E13.95 Crown headphonea £ Heavy duty boomstand E12.50

[^1]
WALLINGFORD

Flint House, High St., Wallingford, Oxon (By Public Library) (0491) 35529
Both premises open 9 a.m.-5 p.m. Monday-Saturday Lunch 1-2p.m,
Exporters to 17 countrles-enquirles welcomed
Ring Sue Abegg on (01) 6846385 for U.K. trade enquiries

B. BAMBER ELECTRONICS

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

 PLEASE ADD VAT AS SHOWN. ALL GODDS 'IW STOCK DESPATCHED BY RETURW CALLERS WELCOME BY APPOINTMENT ONLYCHINAGLIA DINO-ELECTRICAL AND ELECTRONIC TEST EQUIPMENT MANUFACTURERS

PRESENT THE

DOLOMITI

$20 \mathrm{k} \Omega / \mathrm{V}$ a.c. and d.c
A NEW HIGH SENSITIVITY MULTIMETER WITH ALL THE FEA TURES YOU WILL EVER NEED

Accuracy: D.C ranges. $\pm 2.0 \%, A . C . \& \Omega$ ranges $\pm 2.5 \%$

 500 V . 5 kV a.c. $5 \mathrm{~mA} .50 \mathrm{~mA}, 05 \mathrm{~A} .5 \mathrm{~A}$. dB -10 to t + 65 in 6 ranges

Automatic overioad protection and high current range fusing.
Scale mirror and fine pointer for accuracy of reading. Single knob main range
 bearings Extendsd 99 mm scale engh or extra clarity. Compact ABS cease 125
$\times 131 \times 37 \mathrm{~mm}$. Weight 750 g with batteries. Suplied complete with carrying case used ieads, handbook and full 12 -monith guarantee Optional 30 kV d.c. probe avaitabie
Meter $£ 45 \cdot 90$ incl. VAT ($£ 1$ P \& P.)
30 kV Probe $£ 12.85$ incl. VAT
For details of this and the many other exciting instruments in the Chinaglia range. including mutt-meters, component measuring, automotive and electronic instruments

A! $\mathbb{C H}(\mathbb{O}$

19 MULBERRY WALK. LONDON SW3 6DZ TEL: 01-352 1897

adjust ment of worn of pitted contact breakers. based on the electrical contact time and not on the mechanical distance between the points The improved accuracy obtatnable by using this self contained unit ensures greater precision than may be obtained using Feeler Gauges.

[^2]

This unit was designed with the younger generation in mind. However, it has certain differences with its popular electromechanical counterpart. First. instead of the usual apples, plums and cherries forming combinations, numbers from 0-9 are displayed in the form of three seven segment displays. Second, the machine will only indicate when a player has won, but will not actually pay out. However, it is possible to bring a signal out to operate an electromechanical device if a prize giving feature is required.

FEATURES

Six winning numbers are internally set-up and when displayed the "Win" l.e.d. will light. As can be seen from the prototype these selectable numbers must be carried on the panel for the player's reference when making a decision for "holding" one or two numbers.

It is possible to change the six winning combinations from time to time as desired.

74 series TTL logic is used in the main which allows a compact unit to be made- $\mu \mathrm{p}$.

TIMING CIRCUITRY

When the start lever is operated a positive going pulse is produced as a result of the microswitch opening (Fig. 1). This pulse triggers monostable IC2 into operation so that pin 6 goes high $(+5 \mathrm{~V})$ for approximately five seconds. The pulse period is not critical, hence the use of the electrolytic in the timing circuit.

As pin 6 is high the three gates that form IC3 are all enabled so that pulses from the three unijunction oscillators can pass through and be counted by the three 7490 divide-by-ten counters.

By K. Amor

Fig. 1. The timing, display and win logic circuitry for the One Armed Bandit. The shaded panel embraces the Veropins used for patching arbitrary winning combinations. The six combinations used in the prototype are in the top table with patching for combination " A " indicated by linking the $X s, Y s$ and $Z s$. Pin diagrams for all semiconductors are given
 connected to the emitter and the actual running frequency value is $1 / 0.7 \mathrm{CR} \mathrm{Hz}$.

As can be seen from Fig. I the oscillators run at three different frequencies of approximately $4 \cdot 5,7 \cdot 6$ and 9 kHz .

These frequencies are sufficiently high and different so as to reduce the possibility of the same number appearing in successive operations of the machine. Also, since they are free running, random number selection is better.

NUMBER DISPLAY

The gated serial pulses from the unijunction oscillators are converted to parallel binary form at the counter outputs. When the monostable pulse finishes, the gates of IC3 are cut-off inhibiting the drive to the counters. Since these will have rippled through many times during the five second period, random binary numbers will be stored at their outputs.

To convert these to decimal at the l.e.d. displays they are fed to 7447 decoder/drivers. Resistors R13-R33 are for limiting current to the segments. With the values given the current is approximately 10 mA /segment which is an economical figure but provides adequate display brilliance.

"HOLD" CIRCUITRY

The negative going edges of the five second start pulses are counted by IC1 which forms the basis of the "Hold" circuitry.

Every four start pulses will cause ICl pin 8 to go low. This stays low for a further six operations of the machine.

During this time a "Hold" will be available since the 7410 gates can be inhibited by the operation of the switches S2-S4. When any one of these are thrown the associated gates are connected to the "Hold" counter which means that the number in this arm is retained.

To show "Hold Available" the output from ICl is inverted by IC10 to drive TR1 so lighting the l.e.d.

At the end of a "Hold Available" period the circuit will automatically release the display irrespective of switches in the "Hold" position. However, it is advisable to clear switches prior to the "Hold Available" light coming on again.

"WINNING" LOGIC

Six winning number combinations in groups are available but the selection of groups is arbitrary. In the prototype these were $888,750,625,542,427$ and 314.

To implement the "Win" light signal Veropins are arranged as in Fig. 1. Three groups of ten take the 0-9 outputs from the decoders and six groups of three provide the inputs to inverter.

Fig. 2. The power supply circuit

Fig. 3. Suggested i.c layout for the 0.1 in matrix win logic Veroboard. A Veropin arrangement for patching is shown

To wire a "Win" combination, say 888 , leads are connected from the 8 s at the decoder outputs and then to a group of three pins (the order of wiring is shown as X, Y, Z in the figure).

The inverters and gates are used to get the logic levels right.

An eight input NAND gate receives the six levels from IC18 and IC19. When any one of these is low a "Win" condition will be indicated due to base current flow. For illustration, the various required logic levels to achieve an 888 win are shown.

POWER SUPPLY

The power unit is shown in Fig. 2. Here a mains transformer supplies 6.5 V r.m.s. to a full wave rectifier. The rectified output appears at C5 as +9 V for supplying the u.j.t. circuits.

For the logic and display a 5 V 1 A regulator is used. This is short circuit protected and will allow almost an amp to be drawn before limiting.

Fig. 4. In the prototype the timing and display logic circuitry was mounted on an ITT ISEP dilboard. Since this could be difficult to obtain and expensive, an alternative Veroboard layout for just the semiconductors is given

Showing the control panel and internal assembly of the prototype. The p.s.u. is mounted on the base panel. The timing and win circuit boards are shown sandwich mounted on the rear panel using nylon nuts and screws. Cable ties should be used with looms

CONSTRUCTION DETAILS

A suitable case is the "U" type from H. L. Smith Ltd. With all the holes drilled and display cutout completed. the panel is ready for lettering. Before this is carried out the aluminium front panel should be rubbed with steel wool. This produces a very pleasing brushed surface.

The front panel lettering can now be carried out having decided what the winning sets of numbers are This type of dry transfer lettering can be purchased at a good stationer's.

Numbers. letters and lines come in sheet form and are best applied by rubbing over the top of the transfer with a soft lead pencil, taking care that no grease is allowed on the surface below. It is advisable to spray the whole panel with a protective lacquer to prevent lettering from being removed and the aluminium discolouring. Leave this to harden for about three
hours before mounting components. The back bottom, and sides may be finished off by spraying with a cellulose aerosol paint.

A dark colour is suggested so as to contrast with the front panel.

LEVER ASSEMBLY

The mechanism in the prototype for the microswitch S l is made-up of an Arrow-Hart rotary switch shaft unit. The modification to the assembly for limiting the rotary switch action and operating S 1 is shown in Fig. 5.
It should be possible for constructors to modify some $\frac{1}{4}$ in shaft multiway switch. making up a handle and so achieve this assembly cheaply. Others will probably opt for a simple press switch rather than this elaboration for authenticity.

Fig. 5. Switch assembly modification for both limiting the shaft movement and actuating a microswitch

CAR IEATS

This simple unit provides an audible warning if lights are left on unintentionally at the end of a journey, but allows parking lights to be used when required.

PRACTICAL

OUR JUNE ISSUE WILL BE PUBLISHED ON FRIDAY, MAY 13, 1977

Amateur photographers often express a need for an accurate, reliable and repeatable timer for enlarger control or for timing various darkroom jobs; such a need also occurs in other hobbies. This article describes an accurate, repeatable solid state countertimer. By using digital techniques, an accuracy of about ± 0.5 seconds is achieved with no need for calibration, and the circuit has been designed to be as simple and cheap as possible to construct.

THE DESIGN

Analogue circuits which provide these facilities have been described in the past, but these always depend ultimately on CR networks for timing accuracy. As home constructors have found, it is neither cheap nor easy to obtain components, especially capacitors, of sufficient accuracy and stability to produce useful results. Furthermore, accurate calibration of the control element (usually a variable resistor) implies access to an accurate timer, which is rarely the case.
This circuit overcomes both these problems by using the mains power frequency as a standard frequency source. The electricity generating boards maintain this frequency to better than one per cent; since the frequency and thus the period of the mains is well known ($50 \mathrm{~Hz}, 20 \mathrm{~ms}$), and the division factor in counting this frequency is known, the timer is self-calibrating.
Another requirement in darkroom timers is a visible indication of elapsing time. In an analogue circuit this can only be provided by a meter, with attendant problems of lighting and reading accuracy. It is often difficult for the home constructor to provide safe-light illumination of the meter movement. The present design takes advantage of light-emitting diode sevensegment displays as numeric digit indicators. The great majority of l.e.d.s emit in a narrow band of wavelengths in the red part of the spectrum, and consequently provide self-illuminating digits which are inherently "safe".

CIRCUIT DESCRIPTION

Mains power is transformed down to 9 V r.m.s. which is rectified by D2 and regulated by IC3 to provide +5 V d.c. (see Fig. 2). This regulator is more expensive than a Zener diode or simple series-pass transistor regulator, but it is overload- and overheatprotected and virtually impossible to destroy. It automatically limits current to about one ampere and this feature provides excellent protection of expensive components during testing.

The 9 V a.c. is also passed through a current limiter to a Zener diode D1 which half-wave rectifies and clips the top off the remaining half cycle to provide an approximately square 50 Hz waveform, as shown in Fig. I. Note that the low level of the waveform is not 0 V due to the diode forward drop (about 0.6 V). However, TTL manufacturers guarantee that any voltage below 0.8 V will be accepted as a low so this 50 Hz is fed directly into a scaler or divider. This consists of two chips, type 7490 , which each contain a divide-byfive scaler and a flip-flop to divide by two. The first chip ICl divides the 50 Hz by 5 to give 10 Hz , then the next, IC2, divides by 10 to produce a 1 Hz signal, i.e. a square wave of period exactly one second. This constitutes the standard frequency which is counted in the timer section.

Fig. 1. The a.c. output of T1 is rectified and clipped by Zener D1 to provide a 50 Hz square wave drive to the divider chain

Fig. 2. Circuit diagram of the complete darkroom timer. Relay RLA is a twincoil reed type with the two coils connected in parallel for 5 V operation (see Components list)

TIMING

The actual timing is done by a chain of up-down decade counters type 74192. These devices count up from zero to nine, then provide a carry out to the next stage, or count down from nine to zero, then provide a borrow signal to the next stage. Control of direction of counting is simply a matter of routing pulses to either count up or count down inputs. As well as this serial mode (one bit at a time), the counters can be preset by a parallel load (all four bits which define a decimal digit are used at the same time). This facility is the key to the timer mode of operation. The contents of the counter appear as a parallel 4-bit binary-coded decimal ($B C D$) digit on the four output lines, which can be displayed on a l.e.d. digit by using a $B C D$ decoder chip.

In this design, three such counters are connected in series; that is, the carry and borrow outputs of the low digit IC 10 (units) connect to the up and down inputs respectively of the higher digit IC9 (tens), and similarly for the tens digit to hundreds digit (IC8) connections. The bCD output from each stage is taken to a Fairchild 9368 decoder-driver which converts BCD to 7 -segment code suitable for driving commoncathode l.e.d. digits, which in this case are Fairchild FND 3570.375 in digits. If needed, more digits can be included by simply adding identical stages.

PARALLEL LOAD

The 74192 chips are provided with a "clear" input which when pulsed high sets the contents to zero. These pins are connected together and taken to a pushbutton S4 to provide zeroing of the counter. Each chip also has its "parallel load enable" input taken to an individual button $\mathrm{S} 5-\mathrm{S} 7$, which when pressed,

Fig. 3. (a) A heavy current is drawn from the 5 V supply via the low value resistor if a BCD thumbwheel switch is used to drive the counter chip direct
(b) Using a BCD complement switch and one inverter considerably reduces the load on the 5 V supply as a higher value resistor can be used

The prototype timer was built in a specially made aluminium case providing separate compartments for the logic and mains wiring for improved interference rejection
causes the contents of that counter to be set to the BCD digit coded on its input lines. Since both these functions set a determined state in the counter, switch bounce cannot alter the contents, so simple, inexpensive switches can be used.

THUMBWHEEL SWITCH

The preset input digit is set on a BCD-coded thumbwheel switch. The switch is wired up to produce complement or inverted code, that is, logic one is low and logic zero is high. The code is then inverted to the correct levels by part of a hex inverter type 7404 (IC10). The reason for this is that if the code is generated directly by the switch, each bit in the digit must be connected to 0 V by a low resistance to provide current sinking for the inputs of the 74192 chips when logic zero is selected; so when logic one is selected, this resistor draws heavy current from the +5 V supply (see Fig. 3). The inverter chip is needed anyway to provide the alarm clear function, to be described shortly.

Two gates of a triple three-input NAND chip are used to make a set-reset flip-flop to detect and operate the alarm function which indicates timeout in timer mode; this flip-flop is set by the start switch and reset by either the CLEAR switch or a carry output from the top digit of the counter chain. The outputs of this flip-flop and of the start switch are ored with the 1 Hz pulse input in lC4a to inhibit this pulse from reaching the counter if the flip-flop is reset or the sTART button is being held down.

The output of the flip-flop drives a reed relay RLA via a switching transistor TR1. This arrangement isolates the logic and mains portions of the circuit. The relay switches a triggering signal to a triac to connect and disconnect mains power to an output socket SKA. A s.p.s.t. switch in parallel with the relay allows the socket to be permanently powered independent of the timer for focusing, etc.

OPERATION

To see how the unit operates, first consider the counter mode of operation. When the clear button is pressed, the flip-flop is reset which means the output which feeds back to the start gate IC4a is low, forcing the output of that gate to be high. This line is switched to the count up input of the counter chain, which contains all zeros. Thus the digits displayed are all " 0 ", and the carry output of each chip is high, and in particular, the top digit whose carry is connected to the flip-flop.

COMPONENTS

Resistors	
R1, R2	$1 \mathrm{k} \Omega$
R3	200S 1W
R4, R8-R14	$10 \mathrm{k} \Omega$ (8 off)
R5-R7, R15	220Ω (4 off)
$\frac{1}{2} W$ unless	therwise specified
Capacitors	
$\begin{array}{ll} \text { C1 } & 2,2 \\ \text { C2, C3 } & 0 \cdot 1 \end{array}$	20 F 16 V electrolytic F ceramic disc

Semiconductors

IC1, IC2	7490
IC3	LM309K 5V regulator
IC4	7410
IC5-IC7	9368 PC Fairchild (3 off)
IC8-IC10	74192 (3 off)
IC11	7404
TR1	BC107
LED1-LED3	FND357 Fairchild (3 off)
D1	BZY88 C5V1 $5.1 V 400 \mathrm{~mW}$ Zener
D2, D3	1N4004
CSR1	6A 400V Triac

Switches

S1	D.P.S.T. mains toggle
S2	S.P.S.T. mains toggle
S3-S7	S.P. push-to-make push buttons, see text (5 off)
S8	3 -pole 2 -way rotary or toggle (e.g. RS Components 339-471)
S9	Thumbwheel edge switch, BCD complement output (e.g. RS Components 338 181, plus mounting cheeks 338-197)

Miscellaneous

T1 9 V 2 A secondary
RLA Reed relay, 5 V coil, 240 V a.c. contacts (e.g. RS Components coil 349-030, windings paralleled, plus reed switch 338-147)
LP1 240 V neon indicator; F1 2A fuse with holder; Heat-sinks for IC3 and CSR1

Note:

The 9368 PC and FND357 are available from S.C. European Components Ltd., Unit 9, M40 Industrial Centre, Blenheim Road, High Wycombe, Bucks. Prices are $£ 2.07$ and $£ 1.29$ each respectively, plus 50 p post and packing per order, plus 8% VAT

When the sTart switch is pressed, it holds the start gate IC4a off but sets the flip-flop so that input to the start gate goes high. Releasing the start switch then allows the 1 Hz signal through the gate, where it is inverted, to the count up input of the counter chain. Thus seconds are counted and the current count is displayed. Note that up to one second error can occur here because the counter will increment when the 1 Hz signal goes high regardless of when in the previous second the button was released.

TIMER

Operation in the timer mode is similar, except that the up-down switch S 8 connects the output of the start gate to the count down input of the counter chain, and the borrow output of the chain to the flipflop. The clear button initialises the logic as before. Then each digit of the time interval to be measured is set in the counter by dialling it on the thumbwheel switch S 9 and latching it into the counter by the appropriate parallel load switch S5-S7.

Thus to time 54 seconds the numbers 0,5 and 4 would be set into the hundreds, tens, and units digits respectively. When the start switch is pressed and released RLA is energised via TRI, and the 1 Hz pulses from the standard frequency source cause the counter to subtract seconds until zero is reached. When the digits are all zero, and the clock signal into the count down input goes low, the borrow output of each counter and thus the input to the flip-flop goes low which resets the flip-flop. This switches off the transistor and thus the relay which turns the triac off and interrupts the power to the output socket.

Note, however, that the clock signal goes low half a second after the high transition which caused the zero to appear. Thus the alarm operates half a second late: this effect couples with the $+0 .-1$ second error in starting to yield ± 0.5 second accuracy. This is a fraction of a stop at normal processing times.

CONSTRUCTION

The prototype unit was housed in a specially-made folded aluminium box, as shown in the photograph. With this arrangement it is possible to keep all mains voltages in the rear compartment which is shielded from the TTL circuit to avoid interference problems. The rectifier and regulator circuit is constructed on a piece of stripboard and mounted in this compartment. The regulator itself requires a $4^{\circ} \mathrm{C} / \mathrm{W}$ heat-sink.

The counter circuit is easily constructed on i.c. stripboard. This assembly bolts beneath the panel carrying the pushbuttons. In the prototype these buttons were home-made to provide large size (for finding in the dark) without being expensive.

DISPLAYS

The seven-segment displays and decoder-drivers are mounted on a further piece of i.c. stripboard, forming a single module requiring only power and data bits to be connected. This module bolts behind the top panel which has a cutout to let the displays show through.

Layout is not critical in this circuit but it is best to keep all wires as short as possible and to shield the logic from mains, because in the high state logic gates have high input impedance.

m
 mR K E

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

INFRA-RED LISTENING

Complete freedom of movement as well as uninterrupted listening to your favourite hi fi record or radio and television programme is possible with the new range of infra-red transmitters and headphone receivers manufactured by Sennheiser and being marketed by Hayden Laboratories.

For home use there are mono and stereo systems available. The prices are not cheap but for the housewife she can keep an eye on her children or carry on with the housework while listening to a programme. Using infra-red techniques means that there are no wires to the head phones for people to trip over. This makes it ideal for business and educational lectures.

The two channel headphone receiver, type HDI 434, is claimed to be a completely new development. A feature of the headphones is the three position channel selection. The centre gives stereo reception. In position 1 only the sound of the 95 kHz channel is fed to both headphone capsules. In position 2 the signal of the 250 kHz channel is received. This allows true twochannel operation even of completely different audio signals.

The volume and also the balance for stereo operation can be easily set by two slider controls. The receiving lens of the infra-red diodes is mounted in the edge of the earpiece.

The companion two-channel transmitter, type SI 434, is specially designed for covering an area the size of most large living rooms. The electronics for both transmitting channels and the 12 necessary infrared luminescent diodes are contained in a small case measuring only $200 \times$ $80 \times 17 \mathrm{~mm}$. The transmitter is powered from an external supply.

The transmitter audio connection cable is plugged in to a DIN headphone output socket of the selected equipment, i.e. radio, television or hi fi, and the transmitter is then modulated with the available signal. These modulated signals are picked up by the receiving lens in the headphones.

The cost of the two channel HDI 434 headphones is $£ 86.50$ and the SI 434 transmitter is $£ 72 \cdot 50$, excluding VAT. A lightweight mono stethoset type headphone type HDI 40 is available from $£ 44.66$ and a mono transmitter, type SI 406 , from $£ 44 \cdot 10$, excluding VAT.

Further information and technical details of the Sennheiser range of domestic and professional infra-rer? equipment is available from Hayden Laboratories Ltd., Hayden House, Church Road, Chalfont St. Peters, Bucks, SL9 9EW.

CLOCK/CALCULATOR

"The all action time computer" is the simplest way of describing the new Casio CQ-1 Computer Quartz available from Tempus.

Ideal for the executive to salesman and the sportsmen/women to the student, the $\mathrm{CQ}-1$ is a timepiece (including day/date), stopwatch, alarm and calculator all in one very small case.

The clock function has a useful four alarm feature which can be used for numerous applications. The alarm can be set in four time positions and at intervals of one minute or more. The command for a.m. and p.m. setting is also possible. The alarm output is generated by a miniature buzzer and emits a different tone for each alarm setting.

For the sports enthusiasts the stopwatch facility has a stop/start key and a lap key. The stopwatch will read hours, minutes, seconds and lapsed time up to 9 hours, 59 min 59.9 secs. The lap key enables the timing display to be "frozen" for lap times to be recorded, the timing sequence continuing until the lap key is again pressed and the readout reverting to a total time elapsed.

The calculator is a basic four function (,,$+- \times, \div$) type including constant. Calculations up to 8 digits are possible and by operating

the keys, time and date calculations are possible. Also, as the calendar is programmed from 1901 to 2099 inclusive, any day of the week or the number of days for a certain period of time can be calculated.

With suggested functions such as setting for the time to leave for school, office, shopping, taking medicine, as well as a reminder for important business appointments, telephone calls and meetings. Not to mention the usefulness of the calculator for homework, household and business accounts, the Casio CQ-1 Computer Quartz would seem a reasonable family investment at $£ 29.75$; particularly for late risers and for keeping parking meter fines to a minimum.

Whilst still on time, Tempus have an excellent range of digital watches, including attractive ladies' slim-line types and a range of World time watches.

For full details of Casio CQ-1 Computer Quartz and the complete range of digital watches readers should contact Tempus, 19-21 Fitzroy St., Cambridge (0223-312866)

BREAKDOWN TESTER

Some time ago now we published a design for a "Breakdown Tester". An instrument using similar principles is now being manufactured by Stoneleigh Electronics.

The type 3C15 Tester determines the breakdown voltage of transistors and diodes (including Zener diodes) at the current you select. The device to be tested is connected across the test terminals of the instrument and when the "test" button is pressed", a constant current source is applied to the device. The constant current source can be set within the range $1-15 \mathrm{~mA}$ and has an output potential of up to 300 V .

The breakdown voltage is displayed on a voltmeter which has switched ranges of $10,30,100$ and 300 f.s.d. A polarity switch allows rapid checking of forward and reverse characteristics. There is visual indication when the device is either open circuit or the breakdown voltage is in excess of the 300 volt capability of the instrument.

Details of price and further information on the 3 C 15 Break down Tester can be obtained from Stoneleigh Electronics, Ltd., Mawney Road, Romford, RM7 7SE.

BOUNCING CHEQUES

We have been informed by A. Marshall (London) Ltd., that because so many cheques have not been honoured by several banks they are forced to announce that in future most cheques will be cleared before any goods are despatched.

Postal orders, cash and approved accounts will be dealt with in the normal way.

Old habits die hard, we are told, and this is particularly true when playing piano or organ. With the organ especially it is necessary to extemporise to a large degree and thus easy to develop bad habits such as chord clichés, the same old key changes and registrations. However hard the grey matter is working, one of the most difficult habits to break is playing "chords" on a monophonic keyboard. A number of synthesisers will give a rude response to this oversight.
The Wurlitzer organs were among the first to be fitted with a small synthesiser but the shape of its manual was a reminder in itself: white keys were only as long as the index finger (black keys being about an inch in length), so that it was almost impossible to play chords-let alone forget!
three voices, but is sufficient to provide a most desirable extra keyboard for the one-man performance.

Needless to say, it is essential to place the additional keyboard on top of the organ so that the keys line up up at 8^{\prime} pitch! The only real disadvantage is its short compass but extending this to 88 notes would rule out the advantage of portability. The classicist would, in any case, prefer to play the acoustic parent instrument.

ORGANISATION

Mention of the Electronic Organ Constructor's Society may seem a little out of place at this point. My first reason is because a number of readers have enquired about this Society following my note in last December's edition on the demonstration of MES 53 at their London meeting.

ONE MAN BAND

Most commercial organs include a Rhythm Unit these days which, used in moderation, is a useful device. Adding an R.U. is not difficult at present as chips which will generate the various patterns are freely available; several pulse-operated 'voices'" and the switching are the only additional requirements. Like TV sets, the essential control is the off switch! Even so, with the tempo control set to enable him to count the beats, the beginner will be helped to struggle through new music. The more expert performer is spurred on by his "sideman", especially in the LatinAmerican vein.
Something else to play as well? My choice would be Electric Piano, rather than synthesiser, because of its polyphonic nature. Faced with pedals, three keyboards and their controls, there is plenty to think about but the technique is the same for all.

For some weeks past I have experimented with organ/piano versus organ/synthesiser and there is no doubt in my mind which is the better combination. Although most organs are fitted with percussion, the piano envelope complements the organ admirably. The tonal capability of the piano is purposely limited to nethaps

The E.O.C.S. was founded some twenty years ago by a small group o' enthusiasts headed by Arthur is Boutillier. In those days there was very little technical information available and the idea of the Society then as now, was pooling of data anc experience. Publications sent to members eventually developed into the Society's own '"organ"', the Electronic Organ magazine. Membership now extends across the world and regular meetings are held in London, Coventry and Manchester.

The Society's brief does not cover electronic organs alone: it is interested in all forms of electronic music and pipe organs. Membership is mixed, from church organists to pop group performers, but most are simply concerned with building an organ to their own specification. Readers interested in this Society should write to Ralph Purdy (Membership Secretary, E.O.C.S.), 11 The Avenue, Station Road, Billericay, Essex.

TECHNICAL ENQUIRY

While on the subject of E.O.C.S., Douglas Shaw has suggested in Sourd Design (nage 32) that enquiries
on addıng a "Minisonic $1 \|^{\prime \prime}$ to an existing organ might best be answered by joining that Society. Under the heading "Technical Enquiries' he also mentioned the different playing technique required and the possibility of using a gating system to ensure response from one key only.

In case my previous remarks on combining electric piano (such as "Joanna'", also in Sound Design), rather than synthesiser, with an organ sound biased, perhaps I should pursue my theme. For "live" playing, there is not enough time to do justice to a synthesiser; minute adjustments to its many controls are not possible, except perhaps for solo performance. Attempting to play it whilst also manipulating two other manuals, pedals and their controls must relegate the synthesiser to a "Univox" type of keyboard (which had a shortlived existence three decades ago).

Listening to the expert synthesiser player on disc, and reading the record sleeve notes, brings one message home forcibly. A few minutes of a L.P. recording probably involved many hours work. It needs time to obtain the precise effect you are looking for, so multi-recording at leisure is the only respectful way to treat one of Moog's progeny. My experience shows that the "Minisonic II" sounds impressive through a reverberated system and Leslie speaker but its resources can only be used in a cursory fashion when playing an organ with it.

HOOK-UP

Notwithstanding these comments, there should be no problem in adding a "Minisonic" to an existing organ or including it in a constructional project. If space is at a premium, the synthesiser could be placed on top of the organ console: the music stand has to be raised in this case, bifocal-wearing readers should be warned!

The low-level outputs should couple into the organ's main amplifier quite satisfactorily, though it should be noted that d.c. levels are present. For this reason it is best to use 0.1 _F coupling capacitors, between synthesiser and organ as a permanent feature, otherwise there is the possibility of upsetting the amplifier by directly connecting the output of IC18 to a d.c. carrying point on the organ. In the case of a single-channel organ, these coupling capacitors can be joined at the organ end to produce a monophonic input signal.

Signals from the "Minisonic" can be inserted before or after the swell pedal according to taste. On the whole, I would suggest using the synthesiser unenclosed, i.e. after the swell control, if signal levels allow.

THIs month we deal with monitoring systems, speakers and ancillaries.

VU METER

By far the most logical place to put any VU meters in your system is right at the end, so that they measure, albeit roughly, the actual power supplied to the loudspeakers. They should be calibrated so that 0 VU (the transition point from black to red) occurs comfortably before the amplifier starts to clip. This can be done with a test tone and an oscilloscope, or failing that, a sensitive pair of ears.

A suitable circuit for driving a VU meter direct from the output of a power amplifier is shown in Fig. 6a Note that it draws all its power from the signal itself.

If you wish to include a meter prior to the main volume control, it should be calibrated so that with the main output control at maximum, OVU on the console meter corresponds to $0 V \mathrm{~V}$ on the power amplifier(s). When the limiter is in circuit, 0 VU on the console should correspond to the maximum output from the limiter, and a preset volume control, connected in series with the main output control, will probably be needed to match the level from the limiter to the sensitivity of the power amplifier. A circuit for driving VU meters from signals in the range 200 mV upwards is shown in Fig. 6b.

PRE-FADE

All disco equipment ought to have some form of prefade listening. This is a means by which the DJ can listen to any of his inputs on a pair of headphones, regardless of whether they are being used to play through the mixer or not. By this means he can cue up records and tapes while a record is playing, and with an effective system this can be done very efficiently and
simply. All that is basically required is a switch which will select any of the inputs, or the main output, and present them, via a low-power amplifier, to his headphones.

Fig. 6a. How to drive a VU or similar meter directly from the loudspeaker terminals of an amplifier

Fig. 6b. This circuit will drive VU meters from ordinary line-level sources

A simple rotary switch can be used, but more elegantly, PO keyswitches, of the type used on telephone switchboards, can be used in a series arrangement which supplies the main output to the headphones except when one switch is operated, whereupon the output of that particular channel will be heard instead. Each channel has a switch of its own, which can be arranged in a logical position on the control panel.

The wiring of a four-channel bank of pre-fade switches is shown in Fig. 7, with all the switches in their "normal" position. As you can see, operating any one of the switches causes the series line carrying the main output to be interrupted, and the channel output (taken from the top of the channel fader) is substituted for it.

It will be necessary to attenuate the main output in order to avoid deafening the operator when switching from the relatively quiet output of a record deck to the amplified main output. The preset shown in the diagram could be set so that with the VU meter reading normally, that is, peaking around -3 , the output from the record decks whether heard directly through prefade only, or after having passed through the disco mixer, is more or less the same.

HEADPHONES

When choosing a pair of headphones, bear in mind that you could be wearing them for up to five or six hours at a stretch. Above all, therefore, they must be light and comfortable. Personal favourites are the AKG K 140, a fairly new model available at around $£ 13$ from the discount stores, with the lightweight Sennheisers, just as comfortable but a little shrill, a close second.

Fig. 7. How a bank of PO keyswitches may be used to select pre-fade inputs or the main output from the console mixer

Fig. 8. High quality Class A headphone driver circuit for high impedance headphones ($600 \Omega 2$ and above)

Table 1: POWER OUTPUT FOR VARIOUS SUPPLIES AND LOUDSPEAKER IMPEDANCES

Supply Voltage	Load Impedance		
	4Ω	8Ω	16Ω
80	178W	89W	45 W
70	134 W	67 W	34 W
60	96 W	48W	24W
55	80W	40W	20W
50	64 W	32 W	16 W
45	50 W	25W	13 W
40	38W	19W	10W
35	28W	14 W	7W
30	20W	10W	5W

Notes:

1. The supply voltages reter to total supply volts e.g. 60 V or $\pm 30 \mathrm{~V}$.
2. Output figures are for typical amplifier modules using direct-coupled output stages, and assume unlimited current capability.

My preference is for high impedance headphones, as they can be driven by a simple but very high-quality Class A driver circuit (Fig. 8). Lower impedance phones, below about 300 ohms, will require a Class $A B$ driver-there are a multitude of integrated circuits which will do this job adequately.

STEREO

Four years ago I would have said that stereo was a waste of time for a mobile discotheque. Nowadays, with nearly all new singles recorded in stereo, and having tried it in practice, I am not so sure. The problem with stereo is that people have to be roughly equidistant from the two loudspeakers in order to appreciate it, and with a mobile set-up this is difficult to achieve. Of course there is great benefit to be drawn from having all your circuitry duplicated, since any failure can, with the addition of a stereo/mono switch at input and output, be quickly by-passed, and the equipment run in mono.

THE POWER AMPLIFIER

The power amplifier is the link between the duly processed low level signal from the control circuits of your console and the loudspeakers. Its purpose is to take a signal of a few hundred millivolts and amplify it to a power of tens or even hundreds of watts at an impedance level suitable for driving loudspeakers. It is better to have a power output less than the maximum your loudspeakers can handle so that a fault, such as an open-circuit earth connection on the input, can never cause enough power to be delivered to the speakers to damage them.

Kits for this application are legion and represent a cheap and effective way of obtaining the necessary power. Bear in mind, though, that the use of units originally designed for domestic applications may cause problems when they are subjected to the gruelling conditions at a disco. In short, the poor little things may overheat and expire, much to your dismay and embarrassment. So use one capable of more power than you actually require, and then limit its power output by using the minimum supply voltage which will deliver the necessary swing. A table of supply voltages for particular outputs is given in Table 1. The figures are approximate but should prove useful.

LOUDSPEAKERS

Avoid using 12 or $15 \operatorname{in}$ bass units as your only link with the outside world. All you will get is a murky, muddy sound, and nobody will be able to hear the words of the songs, or anything you try to say to them. That many disco devotees do not seem to mind this is no excuse for sloppiness in this department!

Do not expect to right matters with the inclusion of a couple of tweeters from domestic hi-fi units. Either they will be too quiet to be effective, or you will blow them up.

Consider a domestic louds'peaker system, containing, say, one 8 in bass/midrange unit and a 3 in tweeter. This achieves a reasonable "balance of power" over the whole frequency range. But a 15 in bass unit, with four times as much cone area, will require four such tweeters to achieve the same balance. Plus, in all probability, some midrange units to fill in the gap between the two widely different systems. So unless you use tweeters specifically designed for high power use (and they should be labelled as such), or your tweeters fall off the back of lorries, you will have an expensive time making up multi-way systems for your disco.

A good idea is to use twin-cone units, where one large assembly handles most of the frequency range fairly comfortably, or, if you can afford them, the excellent Tannoy "dual concentric" speakers where the bass unit and matched tweeter are mounted concentrically together with a crossover all in a single chassis.

When making cabinets for your speakers, preferably stick to one of the manufacturers' recommended designs. Although the larger the cabinet the more efficient the system and the deeper the bass (as a rough rule), do not go berserk; you will, after all, have to cart them about. Castors, too, are one of man's greater inventions.

PLACEMENT OF SPEAKERS

The absorption of sound by a thick layer of human flesh is quite rapid at frequencies above about 200 Hz and it simply does not make sense to put your speakers on the floor unless they are about 7 ft high and with the business end at the top! They must be placed so that the axes of the speakers are at least 6 ft from the ground so that people can hear them with as few obstructions as possible between speaker and ear.

If this is impossible, they should at least be tilted upwards so that sound may be reflected back over the audience from the ceiling. Having them tilted has the additional advantage that people will usually then refrain from putting their half-consumed drinks on them. Drinks at parties have a habit of getting spilt, and brown ale does little to improve the accoustic properties of a sound cabinet!

With your speakers up high you will be able to cover a greater area at less power than you would were your speakers below shoulder height. This technique is just as valid for small parties, where the music is provided by a normal domestic stereo system, usually pushed to the limits of its endurance. Placing the speakers on a high shelf or on top of a wardrobe will enable your guests to hear the music much more clearly when the room is full.

THE LIGHT SHOW

Once upon a time, dances and discos frequented by young people took place in near darkness, and lots of unkind jokes were told about discoveries made by eager young men on bringing their chosen partner into better lighting conditions. Nowadays, however, matters are somewhat different, and many operators take an almost savage delight in exposing their audience to varying coloured lights.

The heart of many a lighting system is the miniature spotlight bulb, usually rated around 75 to 100 watts and driven by a thyristor or triac to flash either sequentially with its neighbours or in time to a selected part of the audio spectrum. These bulbs are available in two formats, BC, which is a bayonet fitting like an ordinary light bulb, and ES (Edison Screw) which, as its name suggests, screws into the holder like a torch bulb. BC is to be recommended for lower power lamps, up to 150 watts, as it is cheaper, and screw-in types tend to unscrew themselves. Higher power bulbs are almost universally screw fitting.

There is a large number of commercially-made units, as well as a host of constructional designs for flashing spotlights on and off. A well designed one should take an utterly minimal amount of current from the audio power amplifier but unfortunately this is not always the case. It is a good idea to use a rough old amplifier solely to drive your light show if you have any doubts on this score. The spikes produced by the thyristors turning on and off can play havoc with your sound system if the light cables come near any sensitive part of the mixer circuitry, so do keep them well out of the way.

EFFECTS PROJECTORS

Effects projectors work on two principles; first there is the wheel, which is spun round like a gramophone record between the bulb and the lens, heating up and causing the coloured oils inside to drift in and out of each other.

Then there is the cartridge, which is driven from its edge and produces moiré patterns as its two sides interact with each other. Both can be very pretty, though you may have to look around before you see one you really like.

STROBES

Stroboscopic lighting has been used for a long time in industry to observe moving pieces of machinery as if they were stationary by arranging that the moving part is always in the same place when the flash occurs. Recently, though, it has found a less precise application in conjunction with discotheques. You take a strobe light, set it at a few cycles per second, and shine it on the dancers. Hopefully you stop before they start falling over or being sick.

People with epileptic tendencies of which they may themselves be unaware, may even throw fits when exposed to lighting of a particular strobe frequency. That apart, it can still be fun but do not use the strobe for more than five minutes in any hour and if anyone complains or looks disturbed by the flashing light. stop using it immediately.

SAFETY PRECAUTIONS

Your equipment should be earthed at all times to the mains earth and if you are using an extension lead it should be checked regularly for continuity along the
earth lead. All mains connections should be made with proper plugs and sockets and kept well out of any areas where drink may be spilled or where people may trip over them.

Connections to spotlights should be of stout cable and all the holders should be securely earthed. The greatest care should be exercised when operating on spotlights with the power on, since the output from sound/light or sequencer units is usually not isolated from the mains, as all audio equipment would be.

Always string your cables well out of harm's way: if you have them up along the ceiling they will not get dirty or wet but be sure they will not fall down, either.

INTERCONNECTIONS

By far the easiest way of interconnecting your audio department is to use standard jack sockets, available everywhere. They are robust. positive and reliable, which is more than can be said for most of the minia ture connectors that adorn hi-fi systems. Of course, they do not have to stand up to such rigorous use. Have a set of leads exclusively for use with your disco. If you use jacks throughout, all you will need are a series of jack-to-jack leads of various lengths. It is useful to have a short and a long set of loudspeaker leads, so that you need not have an excessive amount of cable trailing around.
All the pluggery needed with sound to light units usually comes with the unit, or can be bought from the same shop. This should not present any problems if the plugs are wired securely.

STORAGE

On an average night you will get through roughly a hundred singles. To ensure an adequate selection, you will need to take perhaps three to five times as many as this. Any more is really a bit excessive. Whatever sort of order you decide to keep them in, you will soon learn where to find everything provided nobody messes about with your collection.
Cardboard boxes are useful for keeping singles in, but have a rather limited life. Smart record boxes made out of half-inch chipboard can be fitted with a lid and a padlock to keep marauding fingers out while you go and fetch your car at the end of the evening.
A travelling bag can be filled up with leads, notepaper for requests, your advertising material, a soldering iron and all the other odds and ends that come in useful.

MUSIC

It is outside the scope of this article to go deeply into the fraught waters of musical taste. However, the music papers feel free to pontificate on electronic equipment so perhaps a word or two on their subject might not be amiss.
Lately the disco audience has been polarising swiftly into two camps; broadly, soul and rock. There has always been a split of this kind but in the last couple of years it has become much worse. The problem now is that if you play two soul records in a row someone with more persistence than imagination will insist on the Rolling Stones or Status Quo.

Conversely, play too much rock and the soul freaks will descend on you breathing fire-their requirements are usually more diverse but no less enthusiastic. Of course, if the event is specifically a soul or rock or
reggae disco this problem will not arise, but you may still find yourselves bombarded with requests for things you have never heard of. Do not fret, but do take a note of what you are asked for and attempt to hear it on your next trip to the record shop.
Do not waste too much time buying up the latest releases; many people, quite understandably, will not dance to anything they have not heard at least a dozen times and by then the record in question is probably available from one of the second-hand shops at half the original price. Always note requests on a piece of paper, whether or not you have the records asked for; not only can you use this to guide your choice of material but it is also much easier to read a dedication from paper than it is to try and memorise it.

COPYRIGHT

Round every record label is the legend "Unauthorised Copying, Public Performance and Broadcasting of this record prohibited", or words to that effect. Most DJs ignore it completely. The organisation concerned with administering the public performance of gramophone records is the Performing Rights Society Ltd., 33 Berners St., London, WIP 4AA, who will send you on request details of the legal position regarding the public performance of gramophone records, the gist of which is that you can please yourself what you do at Johnny's birthday party, and if you are playing somewhere where there is a fee for admission then the onus for obtaining a licence falls on the person hiring you.

CONCLUSION

Don't kid yourself: despite the claims of the advertisers, "easy money earned with our $£ 350$ disco console!" (for whom?)-operating a mobile discotheque is really hard work--the public only sees the easy bit. You may not get home till 2 or 30° clock in the morning and you'll be worn out when you do.
You will have to put up with requests for records you have played so often you wish they had never been recorded, and you may have to cart your equipment up and down stairs cluttered with people who display as much reluctance to move out of your way as they did to dance to your music. Don't underprice yourself; better to do two discos for $£ 40$ than three!
All the same, it can still be a rewarding pastime, and a great deal of enjoyment can be had from your mobile disco, especially when you've built some or all of it yourself. I hope this article has made clear to you something of the art of running a mobile discotheque. Good Luck!

A selection of readers original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to its merits.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

TV TENNIS SCORE UNIT

THe TV tennis Score Unit is designed to attach to the Videomaster TV tennis game, to display the score on the television screen immediately after each goal or point is scored. The score is displayed in the seven segment format, with each score being shown on its own side of the screen, as shown in Fig. 2b. The game progresses until one or other player reaches a score of nine, at which point that player is the winner. This condition is detected b_{y} G5, which prohibits the game from proceeding any further. A new game is started by pressing the reset button.

The four input gates (Gl to G4), update each player's score counter (CTR A and CTR B). Switch A is controlled by the Line Sync timing circuits, and switches at the correct time during the sweep, to display each counter score on its side of the screen. The timing circuits consist of two Line "single shots" and three Frame "single shots", and these define the character position and size. The gating at the Video Output (G9 to G18), suitably blanks the seven segment decoded counters to give the correct television screen representation of the score, and also inhibits the display during play.

Fig. 3 shows how the third Line "single shot" (LS3) produces double score, by pulling up LS1, and switches the two-way switch giving "ghost" figures which do not mask the bats or ball.

The prototype was constructed on two d.i.I. circuit board offcuts, which fitted within the lid of the Videomaster unit. The logic is COSMOS throughout, which consumes very little current from the Videomaster batteries.
D. E. Launchbury,

Shirley,
Solihull.

Fig. ib

Fig. 20

Fig. 2b

(D)ELECTRONICS
 54 Montagu Street, Kettering, Northants. Phone Kettering 83922 shop open Monday to Saturday 9.00 to 6.00 ; early closing Thursday 1.00 p.m.

JOANNA MODIFICATION

BY means of simple modifications. the PE "Joanna" by A. J Boothman, may be given an alternative organ sound. Figure 1 shows one Joanna envelope circuit. One resistor (RS), and two diodes (DA and DB) are added to each key circuit, and one control switch with pull-up resistor are common to all sixty-one circuits. A switch is also added to the 19 volt connection to the keyswitch busbar, labelled attack control.

With the organ switch "on" and the attack control "off", when a key is depressed CT charges through RT but has no effect on the signal output. CS charges through RT, RS and DA, up to about +5 volts, at which point $D B$ conducts and prevents any further increase in voltage. When the key is released, the discharge of CS is via the normal path, variable by means of the sustain pedal. When the organ switch is "off", diode DB clamps point A to about +0.7 volts, and prevents CS charging through DA.

The result of this is an output signal which rises slowly; remains constant as long as the key is held down, and fades out slowly when the key is released. There are now a number of variations in the sound available. Resistor RS determines the rate of attack, and may be between $10 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ as required. A variable attack time may be provided by varying VT as shown in Fig. 1. With both organ and attack control switches "on", the keyboard touch sensitivity gives a further increase in the speed of attack. The organ output level may be varied by altering the clamp voltage of DB (as in Fig. 2), and when set to a low level gives the familiar organ percussion sound.

If the organ control line and +19 volt keyswitch busbar are split into two at note 25 . with suitable switching the lower two octaves can play the organ, and the top three octaves can play the piano, or vice versa. In this case it is advisable
to provide two separate organ level controls, otherwise the piano can be drowned by the organ sound. Extra filters to give the "flute" organ voice are also useful, especially when sustained chords are played in the lower octaves.

The above modification adds less than five pounds to the cost of the Joanna. However, for anyone who is prepared to completely rebuild the master oscillator board, a circuit is given in Fig. 3 which includes vibrato, and the possibility of switching to $2,4,8$, or 16 foot pitches as required. The higher pitches, used with the organ stop, slow attack, and vibrato, give a useful "string synthesiser" sound. As the frequencies of the piano filters are fixed, alternative voice filters are required to make the best use of the higher pitches. The pitch selector inputs are shown in Table 1.

If miniature resistors have been used, there is room on the envelope boards for the extra components.

Three extra holes are drilled for each envelope circuit, and RS fits between R57 and C16, DA between D12 and D17, and DB between D17 and R72 with a bend in the anode lead to pass between R 57 and D17. The DB cathodes are strapped together on the copper side of the board, using uninsulated wire, and are brought out to a Veropin near the +5 volt connection.

All earth wiring should be as low resistance as possible, otherwise the discharge of CT when a key is released, can cause a "thump" to be heard! Finally, a warning is given that heavy vibrato, when using one of the piano stops can produce a most sickening sound.

> D. A. Boyd,
> Walton,
> Liverpool.

Table 1.
Point E

Pitch	Point E	Point F
$2{ }^{\prime}$	0	0
4	0	- 1
+5v 8^{\prime}	1	0
16^{\prime}	1	. 1
Pitch	ctor cont	inputs

T
HE melody generator shown in Fig. 1, makes use of subminiature preset resistors acting as a small analogue "memory bank", enabling a short tune to be stored. A continuous cycle of ten notes of equal duration is produced, permitting a considerable variety of simple tunes to be set up.

The overall circuit consists of three blocks; a pulse generator, a decade counter, and an audio frequency oscillator driving a loudspeaker. The decade counter consists of two TTL i.c.s which require a power supply of 4.5 to 6 volts. This is derived from the 9 volt supply via resistor R10.

The pulse generator comprises TR1 and TR2, and is powered by the same 5 volt supply line used by the i.c.s, to avoid too high a voltage being applied to the input of ICl from the collector of TR2. TR1 is a unijunction transistor operating as a relaxation oscillator producing pulses at intervals dependent on the setting of VR1 (approx. 0.5 to 5 Hz with specified values). This pulse is boosted
by TR2, which operates as a switching transistor to advance the decade counter.
The counter consists of ICl and IC2, in which the former counts the pulses appearing at pin 14 , and represents the count in binary at pins 12, 9, 8 and 11. The 7490 counts from zero, and may be reset to zero after any number. As wired in Fig. 1 the circuit resets to 0 after 9 in order to make full use of IC2. The latter i.c. converts the binary output of ICl to decimal in the ten output lines, each one sequentially dropping to almost the potential of the negative supply rail, while the other nine remain at very high resistance.

Transistors TR3 and TR4 form an oscillator producing an audio frequency square wave which is amplified by TR5 and fed to the loudspeaker. Frequency may be varied by changing the time constant at the base of TR3. Thus by connecting ten different resistances in the outputs of IC2, the time constant at TR3 base, and therefore the frequency of oscillation, will change as the decade counter
goes through its cycle. By making these resistors independently variable, a tune may be programmed into the device.

To ensure that the multivibrator will oscillate when the presets are at their minimum setting, VR12 is used to provide a threshold resistance so that each preset may cover two full octaves.

A note may be blanked by inserting a slip of paper between the wiper and track of the relevant preset. A good tune to start with is the chime of Big Ben: A F G C blank C G A F blank.

The most obvious application of the unit is a doorbell. Callers, and the constructor can both be kept entertained by ever changing themes. Alternatively the unit might be included in a communication system as a station identifier. The prototype ran from a 6 volt 100 mA mains power pack, but would work from a 9 volt battery.
J. R. Skeels, Upminster,

Essex.

pollits hilinin

DIGITAL VOLTMETER (April 1977)

In the specification table, the figure for accuracy should read 0.1 mV per ${ }^{\circ} \mathrm{C}$.

PE SUPPLEMENT "PUTTING IT TOGETHER"

 (April 1977)In the section on Wiring Pens, it was stated that only one colour of wire was available. This is incorrect. The Verowire system offers four different colours.

SOLAR HEATING CONTROLLER (February 1977)

The relay contact RLA1, connected across R5, should be a normally closed contact, shorting out R5 until the relay has operated.

The value of R5 may need to be reduced, depending upon the type of relay used. In some cases, a value as low as 22Ω has been found necessary to ensure reliable operation.

HAZARD WARNING FLASHER (November 1976)

A reader has pointed out to us a potential danger in this unit. If the hazard flasher is switched on whilst the turn indicator switch is not returned to the off position, power can be fed back through the latter switch into the ignition system, possibly causing damage.
This may be overcome by inserting a diode in series with the live supply feed to S1 in Fig. 1, with polarity appropriate to the car's electrical system (anode to supply for negative earth systems, and vice versa). A 10 A device is required, such as the RS Components 261-019, mounted on a suitable heat-sink with an insulating kit.

pH METER (March 1977)

As a result of the pH Meter featured in our March 1977 edition, Uniprobe Instruments Ltd have made a special offer to the PE reader, of the combination glass and reference electrode used with their 300 series pH meters.
Suitable for the PE pH Meter, this probe set is available at the special price of $£ 9.50$ including VAT, from:
Uniprobe Instruments Ltd, Clive Road, Cardiff, CF5 1 HG .

INFRA RED BINOCULARS mumediately after purposes during and hmediately after the war to ece in the dark. The binoculary have he fed from a high voltage ноurce ${ }^{5} \mathrm{KV}$ pprox.) and providing the objects ar nthe rays of an infra red bean then the be seen. Each binocular eye tube well as the infared is well ats the infra red cell, technical data in which is available. The binocular are unused, believer to be in good orter. In fact they were never issued, but since they were made a long time ago they can hardly be called new. Sold without

SMITHS CENTRAL HEATING CONTROLLER
Push button gives 10 variations as follows (1) continuous hot water and continuous central beating (2) continuous hot water but central heating off at
night (3) contiouous hot water but central heating on only for 2 perions durlag
 the day (4) hot water and central heating both on but (lay inie only (5) hot water all day but central heating only for periods sluring the liay (6) hot water and central heating ime use with central heating off (7) hot water continuous 8) hot water day time only (9) hot water twice daily (10) everything off.
hansomm looking unit with -4-hour movement and the switches and othe parts necesary to select the desired programme of heating. Supplied complet With wiring diagrant. Originaly sold we helieve it over 215 -we offer these hile stocks last at 8750 each including VAT and postage

MULLARD UNILEX

A mains operated $4+4$ stereo system. Rated one of the finest performers in the stereo field this woull make a womlerful gift for almost any one in with a pair of Goolmans speakers this should sell at about 230 -but due to a special bulk buy ant as an incentive for you to buy this month we offer
the system complete at only 214.00 including
VAT and postage.

250 WATT TRANSFORMER

Heavy duty power transformer which can be used for many purposes. Rated at 250 watts it is very well built with frames for upright mountiug and is . Rarnish mpregnated. Its primary is for $230 / 240$ volta 50 cycles, it hats four secondarie ach 10 v very high current windings. Just a few of the circuits it can power are $0 \cdot 6-10 \mathrm{v}$ at up to $12 \mathrm{amps}, 20 \cdot 0-20 \mathrm{v}$ at up to 6 amps ; single 10 v at 25 anps single 20 v at 121 amps; single 30 v at 9 anps, single 40 v at 6.5 amps. The trins former can be usell for power circuits (charging, etc.) or for amplifiers, there being an earth screen between primary andi secondaries. A transformer like this today would cost at least \&15 from the makers, however, we are making a
special offer at e5. 95 . Post \& VAT Paid. (irabsome while you cin ratr utork
may wot last long.

RELAY BARGAIN

Type 600 relay with twin 500 ohl be joined in series or parallel thus relay wif Operate off voltages between 5 and 30 volta $\mathbf{D O}$. MULTISPEED MOTORS
 powerful and useful motor size
appror, 2 In. dia x In. Iong.
Price $\& 2.00$ incluillig Post \& VAT, SWITCH TRIGGER MATS

SPIT MOTOR WITH CARTER GEAR BOX
Probably one of the beat apit
motors made. Originally in tended to be used In very htgh priced cookers bowever thle can be put to plenty of other uses, for instance your garilen brbeque or todrive a tumbler
or stone polishing: in fact, there are no ends to ts uses. Normal maine operatlon. 83.25 including

ROOM THERMOSTAT
Famous Satchwell, elegant design, intended for wall mounting. Will switch up to 20 amps at mains voltage,
covers the range $0.30^{\circ} \mathrm{C}$. Special anip covers the range $0.30^{\circ} \mathrm{C}$. special anip
MULLARD AUDIO AMPLIFIERS
All in module form, each ready built complete Model $\quad 1153 \quad 500 \mathrm{~mW}$ power output $£ 1.50 \mathrm{~m}$ cluding Post \& VAT. output 81.85 inclurling Model EP9000 power output 22.90 in EP ${ }^{2}$, Fost \& VAT. EP 9001 twin channel
NEED A SPECIAL SWITCH
joule leal rontact. Very slight pressure, closes
hoth contacts 12p each.
Plastic pushrod supplied
for operating. 10p each.
10 for 68 p.

SHORTWAVE CRYSTAL SET

Although this uses no battery it gives really amazing results. You will receive an amazing assortment of contains chassis front panel and all the parts $£ 1.90-$

8 POWERFUL BATTERY MOTORS For models, Meceano's, drills, remote control
planes. boats. etc., ctc. s2 00.

ROTARY PUMP
elf priming, portable fits drill pumps up to, 200 gailots per hour depending upon petrol, fertilizer, chemicals, apything Jiquile. Hose petrol, fertilizer, chemicals, anything liquif. Hose
connectors each emu. $£ 2.00$ Post Paid.

MOTORISED DISCO SWITCHES With six 10 amp changeover switches, Multi to a total of $2000 \mathrm{w}^{-\prime} \mathrm{s}$ can be controlled and mains operating ef 25 post \& VAT Patd.

MAINS RELAYS With triple 10 amp ehangeover contacts "p" ritumg
coil wound for 230 volts AC, chassis mounting, one ncrew fixing, ex unused equipment 60 p each, 10 for \& 5 ,
post and VAT paill.

TWTN OUTPUT POWER PACKS

These have two separately Ji.C. smoothed outputs so can operate two battery radios or a stereo amp
without cross modulation (they will of course operate one radio/tape cassette/calculator, in fact any battery appllance, and will save their cost in a few montha). Specs: Full wave rectification, double insulated mains transformer-total enclosed in a output-when orlering please state output voltage $41 \mathrm{v}, 6 \mathrm{v}, 7 \mathrm{~F}, 9 \mathrm{v}, 12 \mathrm{y}$ or 24 v .
Price 23.05. Post and VAT included.

CAR STARTER

Most drivers who use their car arount town find that on a very cold morning Most drivers who use their car arount town find that on a very cold morning This always geems to happen on the morning when you are in a particular hurry so a charger/atarter is well worth having. Our kit for this comprises: a heavy duty 250 w transformer and full wave rectifler which for short periods will dellver 20 amps. This is usuaily enough to get the car started, directly it has tarted of course it can be disconnected from the battery as the car's internal charger will take over. Special offer price of this is 26.50 p including post and

TERM8: Where order fe ander 86 plases add sop uroharge to offet packing

(Dept. P.E.), 103 TAMWORTH ROAD, CROYDON CR9 ISG.

ITS FREE!

Our monthly Advance Advertising Bargains List gives details of bargains which sell out before our advertinement can appear-les an interesting list and its free-just end S.A.E. Below ars a few of the Bargains still available from a recent list.
100 watt
100 watt Mains Translormer. 240 v 50 hz primary wound in separate halves, primary screen. This has three secondries $24-0-24 \mathrm{v}, 0-49 \mathrm{v}$ and $0-88 \mathrm{v}$ tapped to 80 v . Any one of these secondrien may
be londed up to the 100 watts or the load can of course be apread over to and the load can of Upright mounting, impregnated and varnished. Slze $4^{\prime \prime} \times 3 a^{\prime \prime} \times 3^{\prime \prime}$. Price $83 \cdot 50+28 \mathrm{p}$. Pobt 80p
Connector Strip for Pash on tags. 7 pole, each pole accepting ${ }^{6}$ push on tags on atrong plastic base With fxing holes. Prlce 45p +4 p .
Stereo Flex twin screen fig. 8 type. PVC insulated overall. 10 netres for $81+8 p$.
Latching Relay by Guardian Electric, mains metal base plate. The relays being mounted in such a way to ensure that when one closed the other opens and vice versa thus when closed relay A would remain locked untll manually released or electrically released by energising relay B. Each relay has 2 seta of 10 amp changeover contacts, Ahould be ideal for burglar alarms and similar applications. Price $81-95+18 \mathrm{p}$.
Connecting Wire, 7 Stranded PVC insulated on Connecting Wire, 7 Stranded PVC insulated on
500 metre drums, 8 difierent colours avaliable, price $\& 4$ per 500 metres $+32 p$. Post $81+8 p$. Mains Motor-double ended with normal mounting feet, ideal for small fan heater, etc. Price 75p + 6p. Post 30p Pagnetic Clutch rerom ref. nos. 1215494 and pection-10. This is a two part device, the maln mection with the coil ats to the spindle of the mounteri close to the main section. Price $83.00+$ 24p. Pont $30 \mathrm{p}+3 \mathrm{p}$. Photo Maltiplier Tabe. American RCA, their million or 110 ore, regular price over $£ 20$ but we offer these hrand new at $\mathbf{2 4} 50+36 \mathrm{p}$.
Puah Button Double Changeover Switch. Honeywell type No. 14 DMG. Contact rated at 10 amps 250 volts, a tough spring return switch deflnitely strong enough to be used an a foot switch. Price
$50 \mathrm{p}+4 \mathrm{p}$ $50 \mathrm{p}+4 \mathrm{p}$
Clockwork Time Switch for lelaying switch for up to 12 hours. Being clockwork this is independent of the mains and is theretore lieal for remote places, worked by batteries. Front disl,
which is calibrated in houra, is turned through the required degrees together with preset tline up to 12 hours. Double pole switch rated 15 amps 30 volts. Price $\$ 3.00+24 \mathrm{p}$.
Delay Switch electrically operated-will give delay of up to 2 hours-contact suitable for 0 pen Type Relan with 10 7pp $+8 p$. Open Type Relsy with 10 nump Changeover contacts. Mains operate pertect. Price 0 D
Portable Radio Case, size
ing studs for standard $5^{\prime \prime}$ speaker 3 , mount take the normal three controls. Price $21 \cdot 50+19 \mathrm{p}$, Post el +12 p .
Tuning Dial, fita normal slow motion type conlenser нuitable for ubove cabinet. Price $50 \mathrm{p}+6 \mathrm{p}$. Self adhesive scale L \& M, price $95 p+3 p$. Disco Black Light Lsmp. We have juat received a new clellvery of these li5w ultra violet lampe $51 \cdot 00+12 p$.
For the benefit of of our readers not knowing this limp we wish to point out that it is probably the Host useful ultra violet lamp available eapecially
for lligeo work as it does not require choke or starter. It can simply be plugged into the nearest lamp holder. 1t is n true black light andi has
proper "Woods" filter klass. Ferric Chlorlde Cryitals for etching copper, making printell circuit boards, etc. special $50 \mathrm{p}+4 \mathrm{p}+20 \mathrm{p}+2 \mathrm{p}$.
7 Digit Counter. Another special purchase enables us to offer this mains operated counter for only about a quarter of its proper price. It works of U40v 50 hz thains and requires no step down.
There is only one point about this that is it. counts in even numbers only, $2,4,6,8,10$, etc. If you want to count single you must divide the
thal figure by 2 . Price $80 \mathrm{p}+4 \mathrm{p}$. Post $10 \mathrm{p}+1 \mathrm{p}$ Hinal hgure by 2 . Price $80 \mathrm{p}+4 \mathrm{p}$. Post $10 \mathrm{p}+1 \mathrm{p}$.
$2 k w$ Heater Assembly, Spiral elements in metal 2Kw Eeater Assembly, spirsi elements in metal can be used for 1 kw or 2 kw . Unusual shape, looking at it sideways the frame looks rather like a ship's ventilator, Probably made for mome
well known fan heater. Price $21+8 p$. Post well known fan heater. Price $81+8 \mathrm{p}$. Post
$\mathbf{3 0 p}+3 \mathrm{p}$. $30 p+3 p$
Stereogram Cabinet. Long low modern teak $15^{\prime} \times 5^{\prime}$ probable coat to make today over $£ 20$ We have a few of theae, they are slightly second at prices ranging from es each, depending on condition-sorry but these are tor callers only. Digital Display Unit (Digivieor). A precision made instrument which is basically a moving coil voltmeter. Instead of having a pointer, however,
the scale fo punched out with numerals, $0,1,2,3$, the bcale is punched out with numerals, $0,1,2,3$, 4 and so on. When 5 ou apply a voltage for and is focussed on to the screen. This device which must have cost a small fortune to develop and make can also be used for a varjety of other purposes. Voltage regulation by making beam of alves-send for your requirements, most type in stock.

（4）INATITIS －$=$ FIEATMDILSS

58.60 GROVE RD． WINDSOR，BERKS．
SL4 IHS．
TEL． 54525

ADD 8\％VAT TO PRICES MARKED ADD $12 \frac{1}{2} \%$ TO ALL OTHER PRICES． OR AS CURRENT VAT LEGISLATION
SEND C．W．O．（EXCEPT GOV＇T DEPT） SEND C．W．O．（EXCEPT GOV＇T DEPT）
POST \＆PACKING 2OP FOR THE U POST \＆PACKING 20P FOR THE U．K BARCLAYCARD \＆ACCESS BY POST
OR 5 MIN ON TELEPHONE ORDE OR \＆ 5 MIN ON TELEPHONE ORDEAS NEW CATALOGUE LIST FREE S．A．E
MONEY BACK IF NOT SATISFIED

SEVEN SEGMENT LED DISPLAYS BRIGIT DL7O7 COM ANODE \＆
DL704 COM CATH， $0.3^{\prime \prime} £ 1^{*}$ DL747 0．6＂JUMGO CA £1．25＊ DIGITAL CLOCK IC 51224 £ 4^{*}
ZENON STROBE TUBES \＆ 4 \＆$£ 7^{*}$ RED LEDS IDP． REU LEDS 209 STYLE O．125＂
OR $0.2^{\prime \prime}$ DIA．NO CLIP 10p＊ TILLO9 RED LED \＆CLIP $12 \mathrm{p} *$ BIG 0.2^{*} RED LED \＆ $14 \mathrm{p}^{*}$
GREEN OR ORANGE LEDS $29 \mathrm{p}^{*}$ GREE $\operatorname{ORP12} 54 \mathrm{p} * 2 N 5777 /$ OCP71 $34 \mathrm{p} *$

TRAMPJS THE GREAT

THE GREAT
BRITISH
DISTRIBUTOR

INDUSTRIAL，EDUCATIONAL，TRADF \＆EYPORT SIPPPIIED．SEND FOR OUR FREE CATALOGUE LIST SAE WANUFACTURERS EXCESS STOCKS
PURCHASED．DISCOUNTS 10% OFF PURCHASED．DISCOUNTS 10%
$100 \mathrm{up} .15 \%$ OFF 1000 up ．

TOP DISCOUNTS．

DIL SOCKETS PROFESSIONAL QUALITY
Spin，14pin
SOLDERCONS 10049 p＊$^{*} 1000 £ 3.95^{*}$

NEW LOW PRICES．

TRANSTSTORS AND DIODES

INS BUSH SET Sp ea＊TIP31／32 50p＊
 $\begin{array}{ll}\text { AC127／8 } 176 \text { 15p＊TIP41／42ea 66p＊} \\ \text { AD161／162 ea36p＊} & \text { TIP41c42c＂c1．50 }\end{array}$
 BC107B 13p＊TIP3055 65p＊ 3C108 8p＊TIS43 UJT 26p＊ BC108B or C 13p＊ 1 N914／4148 4p BC109 9p＊1N4001／2 4p $\begin{array}{llll}\mathrm{BC1} \\ \mathrm{BC1} 47 / 8 / 9 & \text { or } & 12 \mathrm{pp}^{*} & 1 \mathrm{~N} 4004 \\ 1 \mathrm{~N} 4007 & 5 \mathrm{p}^{*}\end{array}$ BC147／8／9 8p BC157／8／9 11p BC167／8／9 12p BC177／8／9 16p $\mathrm{BC} 182 / 3 / 4 a / 210 \mathrm{p}$ BC212／3／4a／t12p BCY70／1／2 15p＊ BD131／132ea 36p＊ BFY50／51 15p＊ BFY52／53 16p＊ BSX 19／20／21190＊ BZY88 ZENER 10 p C106D SCR $54 \mathrm{p}^{*}$ MJ2955 T03 99p＊ MJE2955 99p＊ MJE3055
OA81／91
65 1N4007
2N706／8 N2646 U．TT 140 p ＊ 2N2904／ 5 pnp29p＊ 2N2926 ory 7p＊ 2N3053 17p＊ 2N3055 90w 33p＊ 2N3055 115w45p＊ 2N3614 T03 E1＊ 2N3702／3／4 10p 2N3705／6／7 9p 2N3708／9 9p 2N3710／11 15p 2N3819 \＆23e17p 2N3820 PFET40p 2N3904／5／6 15p 2N5457 FET 32p

$$
\text { TIP29 \& } 30 \text { 40p* BRIDGE1A50 20p* }
$$

BARGAIN PAKS FULL SPEC \＆lea
PAK A： 11 RED LEDS full spec

PAK B： 5741 C 8 PIN OP AYP PAK B： 5741 C 8 PIN OP AMP PAK C： 42 N 3055 〔1＊D 12 BC109 £1＊ PAK E 11 BC182 \＆1 F 11 2N3704 \＆1 | PAK G： | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PAK | 7 BFY51 | £ $1 *$ | H | 8 | $2 N 3819$ | £ 1 | PAK M： 3 TO99 3055 £I＊N 25 OA91£1 PAK P 20 PLASTIC BC109 TYPEnpn£1

$10-365 \mathrm{PF}$ TUNER．SINGLE GANG FOR MED／SHORT WAVE，XTAL SET etc £1＊
SET3／TF CANS 455／470KHZ TOKO \＆1＊

Full spec devices

PCB ETCH KIT 3 ITEMS E2＊ ETCH RESIST PEN 2TIPS 75p＊ $6 \times 4^{\prime \prime}$ SRBP $45 p^{*}$ NYLON F／G〔1＊ SCR AND TRIACS BR100 25p＊ TAG $1 \mathrm{~A} 400 \mathrm{~V} 50 \mathrm{p} * 1 \mathrm{~A} 600 \mathrm{~V} 69 \mathrm{p} *$ 1A50V 37p＊，C106D 4A400 60p TRIACS：SC146D 10A400V £1＊ AUDIBLE WARNING BLEEPER
 CAPACITORS 22pf－． 015 p ELECTROLYTIC IN 10 \＆ 25 V $1 / 2 / 10 / 50 / 1007 \mathrm{p} 50 \mathrm{~V} 10 \mathrm{p}$ 200／500 10p． $1000 / 25$ 20p POTENTIOMETERS AB etc20p PRESETS 6p 1 WRESISTORS $2 p$ T03 16 p ．T03 4＂finned 50 p DIN：PLUGS all 15p．Sock $10 p$ SWITCHES SPST 20p Dpdt 29p GAS DETECTOR TGS 308etce 4＊

ero

VERO O．1＂PITCH COPPERCLAL 2t＂x5＂40p＊3：＂x5＂45p＊ $34 \times 17^{\prime \prime} \S 2$ FACE CUTTER 65p＊ DIL BREADBOARD $2^{\prime \prime} \times 4^{\prime \prime} 61^{\circ}$ $6^{+*} \times 4^{n}$ \＆2．VERO PINS 36 30p＊ BLACK PLASTIC CASES $42 \operatorname{mmx}$ $80 \times 6050 \mathrm{p} * 100 \times 7560 \mathrm{p} * 99 \mathrm{x}$ 120 70p．DESOLDER BRAID 50p

EDGEWISE 200；A CENTRE ZERO METERS，90p each．
CRYSTALS， $5 \mathrm{mHz} 10 \times$ type， $50 \mathrm{p} ; 500 \mathrm{kHz} 10 \times \mathrm{Al}$ type． 50 p ．
SUB－MINIATURE 1 gin die．ohm LOUDSPEAKERS， $75 p$ each
20 PHOTO DARLINGTON and PHOTO TRANSISTORS assorled untested for $\mathbf{I} 1$
200 ASSORTED $\ddagger W$ ，\ddagger W RESISTORS for 750 ．
$10.000 \mu \mathrm{~F}$ 16V．W．ELECTROLYTICS，size 3in $\times 1$ itin． 15 p ； 4 for 50 p ．
AUDIBLE ALARM SYSTEM with transistors and IC． $12 \mathrm{~V}, 75 \mathrm{p}$ ．
30 ASSORTED CRYSTALS， $10 \times$ al type between 5 to $8 \mathrm{mHz}, ~ \& 1 \cdot 10$
$1,000 \mu \mathrm{~F} 40 \mathrm{~V} . \mathrm{W}$ ．ELECTROLYTICS，size it $\times+$ in， 3 for 35 p ．
soov 2A PLASTIC TO3 NPN TRANSISTOR，50p； 3 tor $£ 1 \cdot 10$.
BRANDED TO92 TRANSISTORS，BC108．BC212 types， 10 for 60p．
STANDARD 5K POTENTIOMETER WITH S．P．SWITCH， 3 for $£ 1$ ．
PLASTIC TAIACS，6A 50 P．I．V．， 15 p ； 400 P．I．V，60p．
PLASTIC S．C．R＇s， 6 A 50 P．I．V．，15p； 400 PIV， 40 p ．
10A S．C．Re，Stud Mounting． 100 P．I．V．25p； 400 P．I．V．， $50 \mathrm{p} ; 800$ P．I V．． 60 p.
TO39 NPN POWER DARLINGTON TRANSISTORS，20p each．
50 ASSORTED TRANSISTOR ELECTROLYTICS for 57p．
2． 5 gHz DUAL NPN TRANSISTORS，untested with data， 4 for 57 p ．
50BY 100 Type SILICON DIODES，Untested， 57 p．
EMI，HUGHES O TRANSITRON GOLD BONDED DIODES， 50 for 40 p ．
VARIABLE CAPACITORS WITH DIRECT DRIVE． $500+500 \mathrm{pF} .60 \mathrm{p} ; 500+500+25+$
$25 \mathrm{pF}, 60 \mathrm{p} ; 250 \rightarrow 250$ pF． 50 p； $100+200$ pF 50 p．
$50 \mathrm{BC} 108-7-9$ Types untested for 57 p ．
2A WIRE ENOED R．F．CHOKES， 6 for 50 p ．
TEXAS PNP POWER DARLINGTONS TIL 117，35p．
100 SILICON OIODES BA SERIES for $57 p$ ．
6 to 1 FRICTION IS With data，II．
，
to MULTI－TURN TRIAPOTS，assorted for 60p．
60 ASSORTED WIRE WOUND RESISTORS， 1 to IOW tor 57p．
SILICON PHOTO TRANSISTORS，15p；SILICON PHOTO DARLINGTON， $22 p$.
TBA 120 S I．C＇s，untested with data， 6 for 60 p ．
600 mHz TRANSISTORS，type BF224， 10 for 57 p
BOOKS＂Practical Test Equipment＂．75p；Simple Short Wave Receivers＂．60p； Practical Electronic Projects＂，75p．The three for $\$ 1 \cdot 60$ ．
20 VARI－CAP DIODES untesled tor 45 p ．
DUAL GATE MOS FETS LIKE 40673，33p； 4 for $£ 1 \cdot 10$.

Please add 20p post and packing on orders under 玉2．Overseas orders at cosi

J．BIRKETT

RADIO COMPONENT SUPPLIERS 25 The Strait，Lincoln LN2 1JF

Tel． 20767

SOLDERLESS BREADBOARDING — DECS

The fomous DEC System of Solderless Breadboarding is ideal for both the young and tested without the use of soldering and because of the specially designed contacts allows components to be used over and over again．It is also extremely useful for the Circult Destgner who wishes to experiment with and perfect his circuit quickly yet economically

S－DEC（Model PB11）

This，the most popular Board．is designed solely for the use of discretecomponents and is particularly useful for basic educational purposes．

T－DEC（Model PB21）

Thim Board allows 2 OS DIL IC Siation to be used and 80 is primarily intended for discrate work or for linear IC application required．

1
5
5

μ－DEC＇A＇（Model PB31）

The u－DEC A is speciarly designed for aase of use with IC＇s and allows 2 OL or 4 TOS stations to be used but will accommodate discrete components
（No．of Contacts．208）
$\begin{array}{lll}1 \text { off } & 23-97 \\ 5 \text { off } 23-53\end{array}$

H．DEC＇B＇（Model PB41）

iC sockets as part of the Board
（No of Contacts：208）
1 oft 86.97

DEC ACCESSORIES

16 DIL adaptor（with socket）PB062
Single ended teads（set of ten）PB101
Double ended leads（set of ten）PB 102
1 mm plugs（set of ten）PB103

51.92
51.80

All prices include 8% VAI
\＆P．25p
81.80
$\varepsilon 0.90$
50.99

Our retall counter is now open，stocking a large variety of audio and electronic parts WE ARE SITUATED 2 MIN．WATFORD JUNCTION STATION

THE COMPONENTS CENTRE

7 Langley Road，Watford，Herts．，WD1 3PS．
Tel．：Watford 45335

MOVING IN ...

The President of Fairchild Camera and Instrument Corporation, Wilfred Corrigan, has now got his Stock Exchange listing allowing Fairchild shares to be traded through London. Sales world-wide were up 52 per cent last year to 433.2 million dollars and Corrigan says Fairchild has moved aggressively to obtain funds for future growth.

Reading between the lines, it would seem that he sees the growth coming in Europe and specifically in the United Kingdom where he is looking for take-over opportunities. If Fairchild does start buying in companies then the extra capital will probably be raised in the UK. Fairchild is also reported to be thinking of applying for listings on other major stock exchanges in Europe, as well as in Japan and Hong Kong.

The company is currently strong in digital watches and TV games in the consumer market. The newest Fairchild TV game is actually an entertainment system centred round an F8 microprocessor and deliveries have already started in the USA.

AND
 RATIONALISING

With 15,000 semiconductor devices in the product catalogue Motorola has decided to call a halt, at least in Europe. After conducting an analysis of all applications and who uses what for which purpose, Motorola's back room boys in Geneva have concluded that Europe ought to be able to manage with only 4,000 devices to choose from. These have now been grouped in a new catalogue "The

European Selection" expected to cover at least 90 per cent of European requirements.

The other 11,000 devices will still be available but may be harder to obtain as distributors may no longer stock them, and prices may go up to discourage their use. On the other hand, distribution costs will go down on the preferred range of devices and although there is no mention of price reduction the move clearly will help keep Motorola in a strongly competitive position, delaying price rises that otherwise might be needed.

COMPONENT BOOST

The British electronic components industry is one of five industry sectors selected for special government assistance in the industrial strategy programme. A figure of £20 million is suggested as the sort of support expected to be made available. Brave plans for a brave future!

This new initiative is a re-run of a similar initiative of ten years ago. Only the names have changed. In he old days the slogan was "the white heat of technological revolution' and its instrument was the Ministry of Technology. Today the slogan is "the regeneration of British industry" and its focal point is the NEDC. The only real change is that today the trade unions have an equal say in the strategy, more than an equal say according to some commentators. Even the amounts of money involved, allowing for inflation, are practically the same.

These endlessly sitting industrial strategy committees are no substitute for action. In fact they are mostly counter-productive. Who in their right minds will use their own money today when government money will be available tomorrow? So those who hope to gain from the scheme defer their investment plans until more details are available, the applications for aid submitted, further committee meetings held, the recommendations of the civil servants put forward, the Minister's and Union's final approval given, the ordering of new equipment, the arguments at shop floor level over new manning agreements, the negotiation of new rates of pay. Let's be optimistic and say that this tortuous process takes only two years. By that time, in a volatile industry like electronics, the market has changed and the opportunity missed. And like all forms of heavily institutionalised charity the administrative costs eat deeply into the capital sum.

How much simpler and faster to give the money in the form of tax relief in general and an additional relief on profits from exports, thus assisting all firms equally. As it is.
only firms with schemes costing £50,000 or more will qualify for aid which eliminates many worthy enterprises. It is also uncertain what the attitude of the Government and Unions will be towards aid for foreign-owned multinationals in Britain which, between them, form a very large part of the components manufacturing industry, especially semiconductors.

All signs point to a stiffening of resistance by well-run companies against Government meddling. A number of public companies are thinking of re-forming themselves into private companies to obtain more freedom of action, and I have already heard of contingency plans being made by some businessmen to move overseas should the Bullock Report be implemented in fts present form by the Government.

WINNERS

Despite all the difficulties there is still ample vigour in the industry. Hewlett-Packard Ltd., the UK arm of H-P has not only turned in its best results ever but is the most profitable of all H-P's 27 manufacturing plants round the world. The Scottish plant is the world design centre for communications instrumentation with 80 per cent of production exported to 65 countries. Export sales are up 49 per cent, home sales up 32 per cent in a turnover of $£ 36$ million and pretax profit was nearly $£ 6$ million.

The electronics content of record aerospace exports ($£ 904$ million in 1976) has risen dramatically. The category of airborne radio, navigation and radar aids exported shot up to over $£ 15$ million and instruments to almost $£ 40$ million. Plessey Electronic Systems has an export order book of over $£ 130$ million. The BAC Rapier Missile System export order book has now topped $£ 600$ million. The add-on radar units for Rapier are built by Marconi and feed millions into the electronics industry.

If only all manufacturing industry did as well, or is that asking too much?

LIKE JEWELLERY - BUT DEARER

I have often commented on semiconductor prices tumbling so that simple items like transistors and diodes are two a penny-or almost. But move up to the qualitv end of the market and look at the prices. I see from H-P some new Schottky diodes at $£ 17.89$ each in lots of 10-100 and if you want a lownoise microwave transistor you can pay as much as $£ 97.56$ each in lots of $1-10$. But you do get titanium/platinum/gold metallising thrown in.

PRTENTE REDEENO

ENERGY CONVERTER
 BP 1458702

In BP 1458 702, Siegfried Reinhold Lehr of Munich claims a miniature device for converting mechanical to electrical energy. Although this is intended for implant into the human body it may well have other applications.

The claimed object is to provide a converter small enough to be implanted into a blood vessel or heart muscle which will produce enough power to trigger a heart pacemaker and so makes the additional implant of nuclear or storage batteries unnecessary

The patent shows a small cobaltsamarium magnet and a soft magnetic core with yokes. An armature completes the magnetic circuit and the generator coil is wound round the soft magnetic core. The armature is secured to a spring steel membrane surrounded by a corrugated support.

The spring and corrugation force constant are balanced with respect to the magnetic force, so that when the ambient pressure around the device increases, for instance due to contraction of a muscle in which it is implanted, the membrane and armature move closer to the yokes and snap-latch. This stores energy in the corrugations. When the
ambient pressure falls, as for instance when the muscle relaxes, the spring force exceeds the magnetic force and the membrane jumps back into its rest position, inducing an e.m.f. in the coil as it does so.

It is claimed that because most of the energy available from the pressure change is converted instantly when the armature jumps, simple diode rectification, with half the voltage drop compared to full wave rectification, can be employed. The rectified output may be fed direct to a pacemaker, which actuates a stimulating tip via another core of the same cable which connects the generator to the pacemaker.

SURROUND SOUMD

Two patents, BP 1 (taken out a few years ago) and more recently BP 1454894 , for an interestingly different approach to the derivation of 4 -channel surround sound from a 2 -channel stereo amplifier are held by EMI.

The conventional approach is to use an extra pair of loudspeakers connected in so-called Hafler fashion, to reproduce the difference signal between left and right at the rear. For the Hafler system,

Fig. 1

Fig. 2
the extra rear loudspeakers are of conventional type; the EMI proposal is to use modified loudspeakers at the rear.

Each of the two extra rear loudspeakers has not one but two voice coils, operable on the same cone. The two coils of each loudspeaker are dissimilar in impedance and are wound in opposite sense. The coil windings and their connection to a stereo amplifier are shown in detail in Fig. 1 and in simplified equivalent form in Fig. 2.

Voice coils 3 and 6 are connected in series to the left channel output of the stereo amplifier and coils 4 and 5 in series to the righ channel output. Coils 3 and 5 have 5 ohm impedance and coils 4 and 6 have 11 ohm, to give an impedance ratio of $2 \cdot 2: 1$. Coil 3 operates in opposite sense to coil 4, and coil 5 operates in opposite sense to coil 6.

As a result of this combination. rear right loudspeaker reproduces sound representing a proportion of the left channel output subtracted from a proportion of the right channel output; rear left loudspeaker reproduces sound representing a proportion of the right channel outbut subtracted from a proportion of the left channel output. The front left and front right outputs are unaffected

IN BRIEF

BP 1451 090—Nippon Gakki Seizo KK: Audio Power Amplifier. Circuit for an audio amplifier, including a power stage and a driver stage, with the driver stage bias switchable between three settings, to provide a choice of A. B, or $A B$ class operation

BP 1456 541-Greenwood Mills: Colour Measuring Spectrophoto meter. A digital spectrophotometer intended to enable the colour of a cloth or material to be scientifically analysed and recorded.
Several different photosensitive 'eyes" are used, each with a different sensitivity to different colours. The outputs of their devices are registered and a definitive analysis of the object's colour derived from a comparison.

BEFORE YOU BUY AN AMPLIFIER MODULE-CHECK: DOES IT HAVE \star 30A power transistors
 * 3A drivers (100W unit)
 \star Glass fibre P.C.B
 * Integral output capacitor
 Then compare with the Tamba range-excellent value- 25 , 50 and 100 W R.M.S

- Suits loads 4-16 ohms
- $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
- Silicon circuitry throughout
- Glass fibre P.C.B.
- High sensitivity (100 mV 10 k)

High grade components used throughout: Texas, Mullard, R.C.A., Plessey, etc.

- Low distortion (0.1\%)
- Low profile (1in high $3 \frac{1}{2}$ in $\times 3$ in) 75% efficient Accepts most mixer/pre-amplifiers Four simple connections

ALL PURPOSE MIXER/PRE-AMP.
(with 60 mm sllder volume)

- Suitable for multiple input systems
- High and low impedance inputs
- High sensitivity
- Built-in supply smoothing
- $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
- -80dB noise level
- Accepts a wide variety of inputs

Wide range bass and treble controls Use up to 10 PRE-AMPS with 1 power

Printed circuit board assembly with treble and bass controls plus slider volume control
£6.50

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc)-C.O.D. (60p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at 8% to orders for 50 and 100 W units and at $12 \frac{1}{2} \%$ for 25 W units.

Hours, 9.30 a.m. -5 p.m Monday - Saturday Callers welcome Tel: (01) 6840098

TAMBA ELECTRONICS

Bensham Manor Road Passage, Bensham Manor Road, Thornton Heath, Surrey.

A MINIATURE POWER TOOL to speed your building

Super 30 Kit (30 Tools) (incl. drill without stand) £ 17.62 plus P. \& P. 85p

Mk. II Drill Stand
£4.40 plus P. \& P. 35p
Mk. II Drill only
©8.79 plus P. \& P. 35p
Flexible Drive Shaft
£5.46 plus P. \& P. 25p
Transformer 240 V a.c. $/ 12 \mathrm{~V}$ d.c. \&6 plus P. \& P. 70p

Variable Speed Transformer \&8.25 plus P. \& P. 70p

Replacement drills, stones, burrs, etc. 40p each. Circular saw blades 50p each. 62 per set of 4 sizes. P. \& P. any quantity 20 p .

All VAT inclusive

PRECISION PETITE LTD.

119a High Street, Teddington, Middlesex TW11 8HG Tel. 01-977 0878 (24-hour answering service)
$9^{\prime \prime} \times 4^{\prime \prime}$ S.A.E. please for leaflet and order form
4.STATION INTERCOM

Solve your communica-
tion problems with this 4-Etation Transistor Intercom system (1 master and 3 Subs), in robust plastic cabinets for desk or wall mountiag to Master. gery, Schools. Hospitals. Office and Home. Ouerates on one $9 V$ Lattery. On/off switch. Volume control. Complete with 3 connecting wires each 66 ft and other accessories. J. \& P. 90p
MAINS INTERCOM NEW MODEL No batteries-no wires. Just plug in the mains for Instant twoway, loud and clear communication. On of switch and volume control. Price $823-74$
per pair. P. A P. 90 p. NEW' AMERICAN TYPE CAADLE TELEPHONE AMPLIFIER
 Latest transistorised Telephone Amplifier with
detached plug-in epcaker. Placing the receiver on to the cradle activates on/off switch for immediate two-way conversation without holding the bandset. lany people can listen at a time. Increase emciency in office, shop, workshop. Perfect for "conference" calls: leaves the user s hamis free to make notes. conault files. No long wating, saves time with long-distance calls. Volume. Direct tape recording model at $£ 16.95$ + VAT $£ 1.36$ P. \& P. $75 \mathrm{p}, 10$-day rice refund guarantee

WEST LONDON DIRECT SURPLIES (PES) 169 KENSINGTON HIGH STREET, LONDON, W. 8

Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat

Trade and export enquiries welcome
A. MARSHALL (LONOON) LTD. DEPT. P.E LONDON-40-42 Cricklewood Broadway NW2 3ET GLASGOW-85 Wesi Regent Street G2 200 el: 041-332 4133 Tel: 0272654201
NEW CATALOGUE
168 page catalogue with 500 new

TOP 400 SEMICONDUCTORS FROM THE LARGEST RANGE IN THE U.K

"SEE US AT THE ALL ELECTRONIC SHOW

 GROSVENOR HOUSE 19-21 APRIL
\qquad
2N720A
2NG14

2N91
2N 29
2N93
$2 N 11$

2 N 1
$2 \mathrm{~N}:$
2 N 1

2N1893 2N2103

2N2218A
2N2219
2N2219A
2N2220
2N2221A
2N2222
2N22222
2N2368
2N2369
2N2359A
2N2646
2N2647
2N 2904
2N2904A
2N 2905
2N2906
2N 29006
2N2906A
2N2907
2N2907A
2N2924
2N3019
2N3053
2N 3054
2N 3055

2 N 3440
2 N 3441
2N3442
2N3638
2N3638

2N3702

TTL FROM NATIONAL, ITT, TEXAS, SIGNETICS, ETC
SN7400
SN7401
SN7401
SN7402
SN7403
SN7405
SN7406
SN7406
SN7407
SN7408
SN7409

displar

SEE MARSHALL'S FOR CMOS

ClOCK MODULES

\qquad

MA1010G 24 hr Bdin disolay
CAR CLOCK MODULE

Mail Order Protection Scheme

The Publishers of Practical Electronics are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response co mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation
In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Electroncs within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence.
For the purpose of this scheme, mail order advertising is defined as:-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail order advertising are excluded.

RETURN
R.C.S. 10 WATT AMPLIFIER KIT

Thiskit is suitable for record players, tape play back, guitars, electronic instruments or small P.A.systems. kit. The mono kit uses is yemiconductors. The stereo kit uses 22 semiconductors with printed front panel and volume, bass and treble controls. Spec 10w output into 8 obms. TW into 15 ohms. Res ponse $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{ke} / \mathrm{s}$, input $100 \mathrm{M} . \mathrm{V}$. high imp

Easy to build. Full instructions supplied

ELAC 10 inch
Ribbed cone. Large ceramic
magnet. $50-16,000$ cen magnet. $50-16,000 \mathrm{c} / \mathrm{s}$. Bass 15 obm inpedance. $£ 4.50$

MAINS TRANSFORMERS

ALL POST
 $350-0-35080 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V} 3 \cdot 5 \mathrm{JA}, 6 \cdot 3 \mathrm{~V}$ A or 5 V 2 A 85.80 $300-0-300120 \mathrm{~mA} .6 .3 \mathrm{~V} 4 \mathrm{~A} \mathrm{C} . \mathrm{T} ., 6.3 \mathrm{~V} 2 \mathrm{~A} \quad 87.00$ $220 \mathrm{~V} 45 \mathrm{~mA}, 6 \cdot 3 \mathrm{~V}$ HEATER TRANS, 6.3 V 3A, 21.45 , amp 95 p GENERAL PURPOSE LOW VOLTAGE. Tapped outputs at 2A 3. 4, 5, 6, 8, 9, 10, 12, 15, 18 . 24 and 30 V IA $^{2}, 8,10,12,16,18,20,24,30,36,40,48,6014 \times 60$ $2 \mathrm{~A}, 6,8,12,12,16,18,20,24,30,36,40,48,6027-00$
$3 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,6048.70$ $5 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60$ 38-70
 12 V .300 mA \&1. $12 \mathrm{~V} 500 \mathrm{~mA} \& 1$. $12 \mathrm{~V} \quad 750 \mathrm{~mA} \leqslant 1$. $40 \mathrm{~V}, 2 \mathrm{~A}$ tapped 10 V or 30 V 22.95 . 20 V 3 A $40 \mathrm{~V} 9 \mathrm{~A} 22.9530 \mathrm{~V} 5 \mathrm{~A}+34 \mathrm{~V} 2 \mathrm{Act} .23 \cdot 75$. $20-0-20 \mathrm{~V} 1 \mathrm{~A}$ \&2. $30 \mathrm{~V} 1 \neq \mathrm{A} 81 \cdot 75.20 \mathrm{~V} 1 \mathrm{~A} 21.80$. $60 \mathrm{~V}, 40 \mathrm{~V}, 20$ or $20-0 \cdot 20 \mathrm{~V}, 1 \mathrm{~A} 23.50$. AUTO TRANSFORMERS. 115 V to 230 V or 230 Y to 115 V 150 W E5: 250 W £6;400W 27; 500 W . 8. CHARGER TRANAFORMERS. IOPUT 200/250V FILL WAVEBRIDGECHARGE
For 12 V outputs
R.C.S. STABILISED POWER PACK KIT All parts including printed circuit and instructiona to build this unit. Voltages available: $6 \mathrm{~V}, 7.5 \mathrm{~V}, 9 \mathrm{~V}$
12 V . Up to 100 mA output. 12V. Up to 100 mA output.
Pleaee atate voltage required. $\quad \mathbf{2 0 9 5} \begin{aligned} & \text { Post } \\ & 45 \mathrm{p} .\end{aligned}$
R.C.S. STEREO FM TUNER

This completely cased mains powered Hi-Fi $\mathbf{2} 27.50$ made using the latest circuitry. Bargairs. Post 4op

BARGAIN 3W AMPLIFLER, 4 Transistor Push-Pull Ready built with volume, treble and $\mathbf{4 3} \mathbf{8 5}$

wafer heating elements

Size $10 \frac{1}{2} \times 8 \frac{1}{2} \times \frac{1}{4}$ in. Operating voltage $200 / 250 \mathrm{~V}$ 2.e. 550W approx. Suitable for Heating Pads, Food betwen two sheets of metal or asbertos.
ONLY 40P EACH (FOUR FOR E1.50) ALL POST PAID-Diseounta for quantity
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$ SPEAKER SALE!
With tweeter, And
crosoover. 10 w .
$£ 5.95$
crossover. 10 W
State 3 or 8 ohm
tate 3 or 8 ohi
15W model E8:50
8 or 15 ohms. Pobt 65p
20W model $£ 9.50$

BAKER 150 WATT

ALL PURPOSE
TRANSISTOR
MIXER AMPLIFIER

ldeal for Groups, Disco, P.A. and biupieai inatruments. 4 inputs opeech and music 4 way mixing. Output $4 / 8 / 16$ ohm. a.c. M 50 watt model 449.
NEW 'DISCO 100 WATT' $£ 52$ ALL TRANBISTOR AMPLIFIER CHASSIS 2 inputs. 4 outputs separate rolume treble Carr. \& 1 BLACK CARBYING CABINE'

PW SOUND TO LIGHT DISPLAY

 Complete kit of parta with R.C.S. printed circuit
GOODMANS CONE TWEETER
 E.M.I. 13×8 in, 25 W Base Unit Celestion Mid Range ITnit $\mathbf{2 6 5 0}$
R.C.S. 100 WATT VALVE AMPLIFIER CHASSIS

Professional model. l'our inputa. Treble, Bass, Master tolume Controls. Ideal disco, $\mathbf{1}^{\mathrm{P}}$. A. or groupa, $\mathbf{6 8 5}$ S,A, W. for details. is speaker outputs. phue 22.50 cmar 3 or 8 or 15 ohm. 100 y line to order. Suitable carrying casc $£ 16 \cdot 50$. E.M.I. GRAM MOTOR $£ 1 \cdot 25$ 70 mA . Size 27.212 c E.M.I. TAPE MOTOR 4 pole, 240V a.c. 185 mA $1,400 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Spindle 3 in dia
 Post 30p size 3_{1}^{1}.
COLLARO GRAM MOTOR İOV BOX 25:1 95p.
PHILIPS GRAM MOTOR 6 VOLT A.C. 75

ENGINEERS

[4]
YOURSELF FOR A BETTER JOB "w MORE PAY!

Do you want promotion, a better job, higher pay" "New opportunities" shows you how to get them through a low-cost, Home Study Course. There are no books to buy and you can pay as you learn.

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this heipful 44 page free book NOW' No obligation, nobody will call on you. It could be the best thing you ever did.

CHOOSE A BRAND NEW FUTURE HERE

4tin \times 3tin METER. $\quad 30 \mu \mathrm{~A}$, $50 \mu \mathrm{~A}$ or $100 \mu \mathrm{~A}, \mathrm{E4.75}$. 16 PP P. \& P.

MICROPHONES FOR TAPE RECORDERS

DM228R 200 ohm with 3.5 and 2.5 mm Jack Plugs DM229R 50K with 3.5 and 2.5 mm Jack Plugs
DMIBD 200 ohm with 5 and 3 pin Din Plugs Postage on above microphones $11 p$

CARDIOID

 DYNAMIC MICROPHONEModel UD-I30. Frequency response 50$15,000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50 K and 600 ohms, 67.50. 26p P. \& P.
$42 \times 42 \mathrm{~mm}$ meters $1 \mathrm{~mA}, 500 \mathrm{~mA}$. E2.92. 16p P. \& P.
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $500 \mu \mathrm{~A}$ and ImA VU meter, $£ 4 \cdot 14$. IIp P. \& P.
Edgewise meters $90 \mathrm{~mm} \times 34 \mathrm{~mm}$, $500 \mu \mathrm{~A}$, and 1 mA , 63.40. 16p P. \& P.

Multi. Meter Model ITI-2 20,000 ohm/ volt, $£ 10.05$. 26p P. \& P.

3 WATT STEREO $\left(1 \frac{1}{2}+1 \frac{1}{2}\right)$ PER CHANNEL AMPLIFIER
E4.30. 16p P. \& P.

All above prices include V.A.T. LARGE S.A.E. for New List. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate • Bolton • Lancs. BL2 IBA

RADO EXCHINGEETITD.
 NEW EDU-KIT MAJOR COMPLETELY SOLDERLESS ELECTRONIC CONSTRUCTION KIT BUILD THESE PROJECTS WITHOUT SOLDERING IRON OR SOLDER

V.H.F. AIR

 CONVERTER KITBuild this converter kit and receive the aircraft band by placing it ly the side of a radio thened to medmm wave operaling aq slown in the onstructions supptted iree with all parts.
Uses at retractable chuome plated telescopic acrina, gain control, ".11.ry luning capacitor, transiator, cte.
All parts including ease and plans
$\notin 3.95$ ${ }_{450}$

POCKET FIVE

 P.P. and
Ins. 6Cp

EIECRRONIC CONSTRUCCTON KIIS

E.C.K. 2 senf continied Mmutr-rand 8 transiators and 3 diodcs 3 in loudspeaker, gais control, supert, 9 section swivel ratchet and retractable chrome plated telescopic aerial, V.|.P. t-ming capracitoc, resistors, capacitors, transistors, ete. Will repeive T.V. sound, public service band, sircraft, W. 1f.F. local hattery (not supplied with kit)
Complete kit of parts $\mathbf{E T} 95$

E.C.K. 4

7 Transistora, 8 tuneable wavebands, Mw, LW, Trawier Band, 3 Short Wave Bands. Receiver Kit gain control, and rotary switch. Pusi pull output stage. r_{i} section chrome-plated teleacopic a-rial. Sin sensitive ready wound ferrite rod acrial, tunin : capacitor, resistors, capacitors, etc. Operates from a 9 volit P.P. 7 battery (not supplied witi kit)

Complete kit of parts $\mathbf{£ 7 \cdot 2 5}$ P.P. and Ins. 70 p

NEW ROAMER TEN

MODEL R.K. 3

UULTIBAND V.H.F. AND A. M RECEIVER.
13 TRANSISTORS AND FIVE DIODES QUALITY $5^{*} 3^{-}$LOUDSPEAKERS
WITH Multiband V.H.F. section covering Mobiles. Aircraft, T.S. Sound, Public Service Band, Local 4, H.F. Stations, etc. and Multiband A.M. seetion with Airspaced Slow Motion Drive Tuning Capacitor for easier and accurate tuning, covcring M.W.1. M.W.? L. W. Tiree Short Wave Bandss. W. I.S.W.e.s.W.3and Trawler Band. Built-in Ferrite Rod Aerial for Medium Wave, Long Wave and Trawler Band, etc., Chrome Plated 7 section Telescolic Aerial. angled and rotatable lor peak Short Wave and V.H.F, leception. PushP'ull output using 600mW Transistors. Gain, Whee. Change and Tone Controls. Pins two Slider Switches. Negative Feelback circust and SPECLAL POWER BOOATER SOCKET AND RESISTOR, to virlualty louble gain if required. Powerell by P.P.9-9 volt Battery
Complete kit of partsineluding carry
\& 13.99 perating Manuals

NEW

Everyday
Series
Ruild thim exciting
new beries
deaigna.
H.V.5. 5 Transiators and
attery. Ferrite Powered by 4ty
ontrol. and rerite rod aerial, tuning condenser, volume ase with red spegiver will 31D. loudspeaker. Attractive approx. All parts including Case and Plars.
Total Bulding costs tite30 P. \& P. + Ins. 60p
E.V.t. Case and looks ins above, 6 Transivtors 3 diodes. Powered by 9 V battery. Ferrite rod aerial. Bin. loudupeaker, etc. MW/LW coverage. Push/Pull output.
parts including Case and Pians
Total Building cost9 $\mathbf{E 4 - 9 5}$ P. \& P. + Ins. 65p
E.V.7. Case and looks as above, 7 Tranaistors and 3 dioder. Six wavebands, MW/LW, Trawler Band sW1, Teiescopic aerial for ahort waves. 3in. Loudspeaker All parta including Case and Plans.
Total Building Costs $\mathbf{E 6 \cdot 9 5}$ P.\& P. +Ins . 70p

To: RADIO EXCHANGE LTD. 61A High Street
Bedford MK40 1SA

- Callers aide entrance "Lavells"' Shop.
- Open 10-1, 230-4.30 Mon.-Fri. 9-12 Sat

I enclose \& 2
其的

Aldrens

EDU-KIT JUNIOR

Completely Solderiess Electronic Construction Kit. Build these
thout Soldering Iron or Solder.
\star Crystal Radio Merlium Wave Coverage - No Battery One Tran

* Onc Transistor Radio
* 3 Transistor Earpiece Radio Mectium Wave Coverage * Transistor Medium Wave Loudapeaker Radio * Electronic Noise Generator
\star Electronic Metronone
$\star 4$ Transistor Push/Pull Annplifier
All parts including loudspeaker, earpiece, MW ferrite rod aerial capacitors, resistors, transistors, etc
Complete kjt of parts
ineluding construction plans SOST P. \& P.

WHAT IS

IT'S-
a cuartz digital clock Hrs. Mins. AM/PM. Day, Date AN alanm clock
${ }^{4}$ AlirmP MATCH
TO ${ }^{\text {S hrs. }} 59$ mins.. 599 secs.
a calculatoa
Timo and Date calculations
ANOTHER WORLD FIRST FROM CASIO

THE CQ-1
ONLY lin $\times 2$ in $\times 5$ itin. ONLY 5.2
ONLY £29.95 (R.R.P. £35.95)
NEW
977 Caslo Caslotron watches 8 functlons and becklight Stopwatch. Dual timezones

Arguably the best watches in the world-at any price. Certainly the mosi versatile A16日 (R.R.P. 875.95)
S16B (R.R.P. §89.95)
S158 (R.R.P. $£ 99.95\}$ (Illustrated) Other CASIOTRON watches

258.50 $\mathbf{5} 68.50$

$\begin{array}{r}568.50 \\ 578.50 \\ \hline\end{array}$ from £38.50

Falrchlld TImeband L.C.O. NEW

Falrchlld Timeband L.C.O.s
Battery Hatch for Selt-change Battery Hatch for Self-change
Free Replecement Battery Lower prices-HIgher quellty
$5+4$ functions. Round watch on strap TC411. Chrome $£ 25 \cdot 95$. TC410. Gold £28.95 $5+4$ functions. Illustrated.
rC413. Chrome $\{31.00$. TC412. Gold £33.95
NEW. TIMEBAND DIGITAL ALARM CLOCK with snooze bution $£ 14.95$ Send 10 p for our ILLUSTRATED CATALOGUE. Probably the WIDEST Send $10 p$ for our ILLUSTRATED CATALOGEE Probably the prices. Accurist, lbico RANGE of the BEST watches at the LOWEST prices. Accurist, ibICO
National Semiconductor. OptIm, SEIKO. Texas, etc. Also LADIES National
Watches.

TECRINICRE TRRINING IN ELECMRONICS RND TE[ECOMNUNICRMIONS

ICS can provide the lechnical knowledge that is so essential to your success; knowledge that will enable you to lake advantage of the many opportunities open to trained people. You sudy in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantes coaching until you are successful.
City \& Guilds Certificaten:
Telecommunications Technicians
Radio, TV, Electronice T'echniciane
Technical Communicatione
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificato
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET.
To: International Corrospondence Schools
1 Dept, 771F Intertext House, London
SW8 4UJ or telephone 01.622 9911
Subject of interest
Name
Address

Dept. PE, 19-21 Fitzroy Streat
Cambriage CB1 1EH. Tel. 0223312866

Forgive the terrible puns. If you don't quite twig 'em just have a word with your opera-going friends and they will reveal all! Frankly, we've used the characters above simply to catch your attention and to lead you on to the more interesting point that Home Radio Components Ltd. are the people to deal with when you need components for the projects in this magazine, or any other electronic gadget you may be creating. Thousands of constructors have proved that they get good advice, good components, good value, good service from Home Radio. Many buy over the counter at Mitcham, many purchase by Mail Order, sending a cheque or P.O. each time they need something, and a growing number of customers are proving the advantages of joining the Home Radio Credit Scheme. Whichever method you opt for you'll need a Home Radio catalogue. Read all about it in the paragraph below.

No - I do Verdi well by
 getting all my components from HOME RADIO!

The famous Home Radio Components catalogue comprises 200 pages, listing about 5,000 items, nearly 2,000 of them illustrated. Everything is set out so clearly and concisely that the catalogue is a pleasure to use. When you buy one we also send you a free mini catalogue filled with extra special bargains. The saving on some purchases from this bargain list alone can more than pay for the catalogue, which costs $£ 1$ plus 40 p for post and packing. Send off the coupon with your cheque or P.O. for $\mathbf{£ 1 . 4 0}$ now. The catalogue and bargain list will come to you by return post.

HOME RADIO (Components) ITD Dept PE 234-240 London Roal Mitcham.CR4 3HD Phune 01. 6488422

Op-Amp Circuit design and application

 by J. Carr Price $\mathbf{6 4 \cdot 0 0}$
UNDERSTANDING MICROPROCES. SORS by Motorola Price $£ 3.25$

 RADIO COMMUNICATION HANDBOOK Yol. I by R.S. G. B. Price $£ 8.00$ HI FI YEAR BOOK 1977 Price $\mathbf{6 3 . 5 0}$ MASTER ELECTRONICS IN MUSIC by T. D, Towers Price $£ 2.75$110 ELECTRONIC ALARM PROJECTS FOR THE HOME CONSTRUCTOR by R. M. Marston Price $£ 3.30$ BUILD YOUR OWN WORKING ROBOT by D. L. Heiserman Price $£ 3.60$ PROBLEMS AND SOLUTIONS IN LOGIC DESIGN by D. Zissos Price $\mathbf{£ 2} 10$ MINICOMPUTERS AND MICRO. PROCESSORS by M. Healey Price $£ 6.85$ BUILD IT BOOK OF MINIATURE TEST \& MEASUREMENT INSTRU. MENTS by R. P. Haviland Price $\mathbf{£ 3} \mathbf{3 0}$ ARRL ELECTRONICS DATA BOOK
\star ALL PRICES INCLUDE POSTAGE \star

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET

 LONDON W2 INPPhone 01-723 4185
Closed Saturday I p.m.

G8CZW DIGITAL FREQUENCY METER

COMPLETE 50 MHz KIT $£ 54$ inc. VAT and Poat (U.K.)

ZN 1040E Count/Display 10 E | Integrated Circuit Pack | Designer | $\mathbf{9 . 2 5}$ |
| :--- | :--- | :--- |
| | Bpproved | 7.25 | Displays and Filter Bpproved

Semiconductor and Diode Pack
Resistor and Capacitor Pack
Logic and Display P.C.B s
5 MHz Crystal
Tranaformer 8-0-8V (+ 60p P \& P)
I.C. Sockets Pack

Switches. Krob. BNC Sockets. etc
Hardware and Wire Pack
Case Two-tone PVC-faced steel punched
and lettered (+ 75p P \& P)
Spare min. BNC Sockets (50 ohm)
Spare min BNC Plugs (50 ohm)
Complate kit of parts for High Impedance
Buffer (includes PCB)

Complete kit for VHF pre-scaler (includes PCB
but less IC)
VHF Pre-scaler printed circuit board only
SP86318 500MHz Pre-scaler IC
ZN1034E Precision Timer 1 C.
ZNA116E $3 \frac{1}{2}$ digit digi-voltmeter $1 C$
Digital Voltmeter PC B s and Circuits NES92 Wideband video amplifier I.C. Reprint of full GBCZW article (post tree) 9.25
$7 \cdot 28$
2.38 7.28
2.38
2.08 20p P. \&. for packs. S.A.E. for full llate

abc ELECTRONICS (OLDHAM) LTD.

83 Lees Road, Oldham OL4 1JW Tel. 061-624 8812

RECEIVER8 AND COMPONENT8
BRAND NEW COMPONENTS BY RETURA Electrolytic Capacitors 16V，25V， $50 \mathrm{~V}-0.47$ ， 1.0 ， $2 \cdot 2,4.7$ and $10 \mathrm{mP} 5 p ; 22.47518 p(50 y$ 6p）； 1007 p $50 \mathrm{~V} 8 \mathrm{p})$ ； $2208 \mathrm{p}, 000(16 \mathrm{~V}) 15 \mathrm{p}, 1,000$（25V） $18 \mathrm{p} .1,000$（ 50 V） 22 p ． Subministure Bead Tantalum．Electrolytics $3-0.1$
 $0.22,0.47,1.0,2.2$ at $100 / 3 * 15 p$
$18 \mathrm{p}, 22 / 16 \mathrm{~V}, 476 \mathrm{~V}$ and
Mullard Min，Ceramic E12 Seriea $63 \mathrm{~V} 2 \%-10 \mathrm{FF}$ to $47 \mathrm{pF}^{-}-3 \mathrm{p} ; 56 \mathrm{pF}^{\text {t }}$ to 330 pF 4 p ．
Vertical Monnting Ceramic Plate 50 V －E12 series $22-1,000 \mathrm{pF}$ and $\mathrm{E6}$ series $1,500-47,000 \mathrm{pF} 2 \mathrm{p}$ ．
Polystyrene E12 Series 63V Horizontal Mounting－ $10-1.000 \mathrm{pF} 3 \mathrm{p} ; 1.200-10,000 \mathrm{pF} 4 \mathrm{p}$ ．
Mullard Polyester 250 V Vertical Mounting E6 Series－ $0.01-0.14 \mathrm{p} ; 0.15,0.22 .5 \mathrm{p} ; 0.33 .0 .47 \mathrm{8p}$ $0.6811 \mathrm{p} ; 1.013 \mathrm{p} ; 1.520 \mathrm{p}, 2 \cdot 222 \mathrm{p}$ Mylar（Polyester）Film 100 V Vertical Mounting－ Miniature Resistors Hikhistab E12 Series 5% Carbon Film $0.25 \mathrm{~W} 1 \Omega$ to 1031Ω ．（ 10% over 13 M 1p．Metal Film $0.125 \mathrm{~W}, 0.25 \mathrm{~W}$ and $0.5 \mathrm{~W} 10 \Omega$ to $2 \mathrm{ML} 2 \Omega 1$ p．Metal Film＇ $1 \mathrm{~W} 27 \Omega$ to $10 \mathrm{M} \Omega 2 \mathrm{p}$ ． 1N41483p：1N4002 $5 \mathrm{p}: 1 \mathrm{~N} 40067 \mathrm{p}$ ； 1 N 40078 p 3C107／8／9，BC147／8／9，BE157／8／9，BF194，1978p． Fuses 20 mm glass， 1 tin glass．Iin ceramic 2！p．
Post 10 p （free over $\mathrm{f4}$ ）．Prices inclusire of $V A T$ THE C．R．SUPPLY CO．

LED＇s．Mixed hags of 4 different sizes and 4 different colours． $50, \mathbf{5 5 \cdot 2 5} ; 100, \mathbf{8 9 \cdot 2 5}$ ，inchutl－ ing VAT and post and packing（＇．W．O． Vicarage Avenue，Cheatle llume，theshire， SK8 7JP．

ISLAND DEVICES，P．O．Box 11， 19 Carroways Place． Margate，Kent．Morder only．Prices inc．＋15p P．\＆P．

SMALL ADS

The prepaid rate for classified advertisements is 15 pence per word（minimum 12 words），box number 40 p extro．Semi－display setting $£ 12.00$ per single column inch（ 2.5 cm ）．All cheques，postal orders etc．，to be made payable to Practical Electronics and crossed＂Lloyds Bank Lid．＂Treasury notes should always be sent registered post．Advertisements， together with remittance，should be sent to the Classified Advertisement Manager，Practical Elec－ tronics，Room 2337，IPC Magazines Limited， King＇s Reach Tower，Stamford St．，London， SE1 9LS．（Telephone 01－261 5918）．

CONDTTONS OF ACOEPTANCE OF CLASSFREDADVERTISEMENTS

1．Advertisemants wire secepted subject to the conditions appestimg on our curtent sdvertise． ment rate cavd and en tha axpress underatma－ ing that the Advertiser warrenta that the edvertisoment dow not contravant eny Act of Pariament nor is it on infringement of the British Code of Advartising Prectice．
2．The publighars raserve the right to refuse or withdraw my edvertisemont
3．Aithough overy cars is teken，the Publishers shall nat be liable for clarical or printers＇ errers of thair consequences．

AMPLIFIERS

New，boxed，guaranteed，working． 1 watt andio amplifier panels with 2 －speed motor controller incorporated，uses i．c．type TM380N and runs from $9 V^{\prime}$ power supply， only $£ 1$ each inc．VAT，P．\＆P．，etc．Draw ings and i．c．data add cxtra $60 p$ to
From：INDUSTRIAL RF SERVICES From：INDUSTRIAL RF SERVICES
51 Deptford Groadway，London SE8 4PH Tel．01－692 4284

FULL SPEC．TTL					
7400	p	7445／7／8	78p	74121	$31 p$
7401／2／3	14p	7450／3／4	14p	74122	43p
7404／5／8	16p	7472	22p	74123	59p
$7410 / 20$	14p	7473／4／6	29p	74141	66p
7411／2	20p	7475	47p	74145	72p
7413	30p	7480	44p	74150	¢1 05
7414	67 p	7483	73p	74153	$65 p$
7417	30p	7484	$97 p$	74154	£1．10
7422	16p	7485	¢1．03	74155	69p
7425／7	28p	7486	29p	74157	68p
7430	14p	7489	£2．50	74164	61.10
7432	26p	7490	43 p	74174	$97 p$
7437	27p	7491	64p	74175	92 p
7440／60	14p	7492／3	46p	74181	¢2．19
7441	66p	7496	69p	74190	¢ 1.25
7442	59p	74100	97p	74193	¢1．08
DL707E 0.3 in ．displays 69p．IN4148 2p． Intel 2102A－6（650ns）IK Memories £3．$\frac{1}{3} \mathrm{~W} 5^{\circ}{ }_{0}$ El2 series Piher resistors Ip each，90p／l00． All prices include VAT S．A．E．or full list．P．\＆P．（ 1 st class）20p．C．W．O． J．C．JONES（PE23） Mail order only 46 Burstellars，St．Ives，Cambs．，PEI7 $4 \times \times$					

RESISTORS：A以IS Trpe．（＇arlom film higit stab． 5% W24 range．Noll in mits of 10 ．$\frac{1}{4} W$ per 10．Also triansistors lí108／9，75p per 10. LEDS red，12p；mepen and yellow， 20 p ，type T1L209／Fi，Y117 0－2in：potentionneters（Phillip，
 Lin／Log at 21p cach＋VAT（high rate） $12 \frac{1}{2}$
 lbritwell Fstate，slousht，berkshire．We also have a trade and export dept．

P．C．Bs Paxolin 5 in $\times 5$ in 6 for $£ 1,12 \mathrm{in} \times 9 \mathrm{in}$ 70p． $171 \mathrm{in} \times 9$ in， 1. Fibreglass $13 \mathrm{in} \times 5$ in ， El．I 3 in \times Ilin，$£ 1.75$ ．D．S． 7 in \times Bin，80p．
Bank of 10 Neons with $10 \times C 407$ transistors gank of 10 Neons with 10 x 4 figure Resettable Counter 1822 V works An 12 V £3．10．P．S．U．panel $2 \times 2 \mathrm{~N} 3702,2 \times$
ACl53，bridge rect．electrolytics，etc． 55 p ． ACi53，bridge rect．electrolytics，etc．55p．
Three assorted meters $£ 210.7$ ib assorted components $£ 2 \cdot 75$ ．List $15 p$ ．Refund on purchase． Over $f 1$ post paid；under add 20 p ；ins．add l0p． J．W．B．RADIO
2 Barnfield Creacent，Sale，Cheshire，M33 1NL

R．T．SERVICES

（MAIL ORDER ONLY）
75 Hayfield Rd．，Salford 6，Lancs． BRAND NEWS／S P．C，BOARD，8lin，x 7 in ． 5 pieces，$£ 1 \cdot 20$ inc
PANEL with 62 N 3055 transistors plus 6 N．P．N． and 6 P．N．P．transistors fl 175 ine．
FM TUNER with R．F．Stage and A．G．C． 3 transistors，neg．earth $2 \frac{1}{2} \times 2 \times 1 \frac{1}{2}$ in with circuit，El．75，
MAINS INP UT TRANSFORMERS 20V－0． 20 V at $2 \mathrm{amp}, \mathbf{4 3} 95$ ．New．6V at I amp，$£ 1 \cdot 45$ ． New． 12 V at $\frac{1}{2}$ amp． $\mathrm{E} 1 \cdot 45$ ．New．
Mixed Pack of C280 series Mullard capacitors．
100 for $£ 1.15$ inc．，P．\＆P．Send S．A．E．for our 100 for f 1.15 inc．，P．\＆P．Send S．A．E．for our list prices．

```
        Tel; 061-236 1541
```

All price：include VAT and P．\＆P．

Brand New Components

Precision Polycarbonate Capacitors 40 All High Stability－extremely Low Leakage 440 V A．C．RANGE 18 V D．C．RANGE Value Dimen－Price © © © 6

TANTALUM BEAD CAPACITOPS $0.1,0 \cdot 22,0.33,0.47,0 \cdot 68,1 \cdot 0,2 \cdot 2,3 \cdot 3,4 \cdot 7,6 \cdot 8 \cdot 4 \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or $35 \mathrm{~V} ; 10 \cdot 0 \mu \mathrm{~F}$ at $10 \mathrm{~V} / 20 \mathrm{~V}$ or $25 \mathrm{~V} ; 22 \cdot 0 \mu \mathrm{~F}$ at $5 \mathrm{~F} ; 100 \cdot \mathrm{hF}$ at＇3Y：All at $12 \mathrm{p}^{\circ}$ each， 10 for $£ 1 \cdot 10^{\circ}$ ， 50 for 55° ． 100 for 59^{*} ．
TRANSISTORS \＆I．C．＇s
13C107／8／9 9p

 | $-1 \mathrm{CC182/1821.11p}$ | AF178 | 40p | ZN414 | \＆1．15 |
| :--- | :--- | :--- | :--- | :--- | :--- |

 6年； 002 6p； 003 61 p ； $0047 \mathrm{p} ; 0057 \frac{1}{\mathrm{p}} \mathrm{p} ; 0068 \mathrm{p} ; 0078 \frac{1}{2} \mathrm{p}$ ． LOW PRICE ZENER DIODES－ 400 mW ．Tol．$+5 \%$ at

 10 tor $65 \mathrm{p}, 50$ for $23 \cdot 12$ ．Sl＇ECIAL OFFEIA： 100 Zener （mar be mixed）for $£ 8 \cdot 00$ ．
RESISTORS－Lligh stability，low noise carbon flm t．W at $40^{\circ} \mathrm{C}$ ，tW at $70^{\circ} \mathrm{C}$ ． $1 \mathrm{id2}$ geries only－from 2.2Ω
to $2.2 M \Omega$ ．AL at $1 \mathrm{p}^{*}$ each， $8 \mathrm{p}^{*}$ for 10 of anv one value． 70 p （ for 100 of any one value．SPECLAL PACK； 10 of each value $2 \cdot 2 \Omega$ to $2 \cdot 2 \mathrm{LI} \Omega$（ 730 resisturs） $\mathrm{S}^{\circ} 5^{\circ}$ ．
SILICON PLASTLC RECTIFIERS－ 1 －5 amp，wre－ended DU27： 100 P．I．V． 7 p （ 4 for 26p）； 400 P．1．V． 8 p （ 4 for 30p）． BRIDGE RECTIFIERS－2六 amp： $200 \mathrm{~V} 40 \mathrm{p} ; 350 \mathrm{~V} 45 \mathrm{p}$ ； 600 V 55 p
SUBMINIATURE VERTICAL PRESETS－0．1W only： All at $5 \mathrm{p}^{*}$ each； $50: 100 ; 290 ; 470: 680$ ohm； $1 \mathrm{k} ; 2 \mathrm{k} 2$ ； 2M5：5M． ORDEILS．EXPOITT－ADI COST OF SEA／AIRMALL． Add 8% Y $\boldsymbol{A T}$ to all items except those marked with which are 12 1%
Send S．A．E．for additional stock lists．
Wholesale price lists available to bona fide companies．
MARCO TRADING（Dept．P．3）
The Old School，Edstaston，Wem，Shropshire
Tel：Whixall 464／465（STD 094872 ）
（Proprs，Minicost Trading Ltd．）

SOLAR POWER ARRAYS					
	13 mA	\$5.00	6 V	26 mA	£8.00
	13 mA	4.00	4.5 V	26 mA	86.50
	13 mA	¢3.00		26 mA	45.00
	13 mA	¢2.00	1.5 V	26 mA	63.50
SOLAR POWER CELLS					
425 mA	$A \text { il } \underset{ }{1.5 / c \text {. values typical }} \underset{ }{250 \mathrm{~mA}}$				A 35p
C.W.O. P. \& P. 25p. VAT inclusive P. A. ELECTRONICS 21 Kendal Drive, Shaw, Oldham, Lancs.					

VALVE8-Radio, TV, industrial, transmitting. We dispatch to any part of the world by returi of post, Alr or Sea Mail. 2,700 types in stock 1930 to 1976 obsolete types a speciality. Ist 20p. Quotation S.A.E. Open to callers. Mon to Sat. $9.30-5.00$, closed Wed. 1.00 . We purchase all types of new and boxed valves. COX RADIO (Sussex) Ltd., Dept. P.E., The Parade East Wittering, Sussex, Po20 sibN. West Wittering 2023. (STD code 024366).

MAIL ORDER ACCESSORIES all PRICES TOTALLY inciusive Magnetic earpiece with $\mathbf{3 . 5 m m}$ or 2.5 mm plug ion ... ${ }^{\text {PLI }} 2$ univeral lead assembly with movable pins. Will fit most 8-track and cassette car stereo units. Complete with fuse and fuse holder FM radio aerial. Folded dipole of 300 hm ribbon twin feeder fitted with spade terminals 5 -pin din plug to $\overline{5}$-pin din plug recording lead connected by 4 -core screened cable 2 -pin din speaker plug to in-line socket connected by 5 metres of 2 -core coded speaker cable Speaker extension as above 10 metres Iong $£ 1 \times 35$ Guitar lead standard angled jack plug to screened cable Headphone ext to stereo in-line socket. 6 m coiled screened cable Norman replacement Speaker $2 \frac{1}{2}$ in 8 ohm $0.3 \dddot{W}, 85$ p each, 2 for $£ 1.60$ 2,000 ohm high impedance mono head- Enamelled copper wire 30 to $40 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. Ip per yd. Quality crystal desk or hand mike. High ¢ 1.60 14p; 4 way, 22p; DPDT toggle switch, 48p; SPST toggle, 34 p ; 200 ohm cassette mike remote control, 3.5 and 2.5 plugs, only E1. 85 . Telephone pick-up coil with 3.5 plug, $95 p$. All prices inc. P. \& P. Cheques and P.O.s to: 29 Roseburn Drive, Edinburgh, Scotland

CARBON FILM RE8I8TOR8. 5% E12 Series, $\frac{1}{6} \mathrm{~W}$,
90 p . Electrolytics $50 / 15 \mathrm{Y}, 7 \mathrm{y}$. Microprocessor 90p. Electrolytice $50 / 15 \mathrm{~V}, 7 \mathrm{7p}$. Microprocessorp
NC/MP \&18. MM6800 \&33.
P. \& P. 15p, Mail order only CANDAR, \& Almond Drive, Caversham Park, Reading.

```
SPECIAL OFFER
MULLARD OC28 TRANSISTORS com
Mlete with mounting nuts and bolts. Ex
equipment but FULLY GUARANTEED.
        20p each, 90p/5, £8/50.
        All prices include VAT.
    P. & P. (Ist class) 20p. C.W.O.
        S.A.E, for full lists.
        J. C. JONES (ESI)
        Mail Order only
46 Burstellars, St. Ives, Cambs., PEI7 4XX
```

TURN YOUR SURPLU8 capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO., 103 South Brink, Wisbech, Cambs. Tel. 09454188 . Immediate settlement.

Power Electrolytics, $800 \mu \mathrm{~F}, 450 \mathrm{~V}$ (value not stamped on can). Single end connections with screw terminals, $2 \frac{1}{2}$ in dia. $\times 4 \frac{1}{2}$ in high, includ60 p P. \& P.). Sub-min. mains transformer, $12 \mathrm{p}-12 \mathrm{~V}, 50 \mathrm{~m} / \mathrm{a} 82 \mathrm{p}$. Mains transformer $0-12 \mathrm{~V}$, $100 \mathrm{~m} / \mathrm{a} 45 \mathrm{p}$. Bridge rectifier $2 \mathrm{~A} / 100 \mathrm{~V} 40 \mathrm{p}$. Phono plug. to phono plug (6 ft lead) 16 p . Items 2,3,4 and 5, prices include VAT (add 20 p P. \& P.) 843 Uxbridge Road, Hayes End, UB48HZ. Tel. Ol-573 3677
Offers of company surpluses always welcomed. Cash settlement.

EDUCATIONAL

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:
ICS SCHOOL OF ELECTRONICS
Dept. 771F, Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)

TELIMETON TBAINING

I2 MONTHS' full-time course in Radio and TV for beginners (GCE-or equivalent-in Maths and English).
26 WEEKS' full-time course in Mono and Colour TV (basic electronics knowledge essential).
13 WEEKS' full-time course in Colour TV (Mono TV knowledge essential).
These courses incorporate a high percentage of practical training.
Next session starts on September 12th.
Prospectus from London Electronics College, Dept. A5, 20 Penywern Road, London SW5 9SU. Telephone OI-373 8721

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also selfbuild radio kits. Full details from:
ICS SCHOOL OF ELECTRONICS
Dept. 771F, Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical 1nstallations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:
ICS SCHOOL OF ELECTRONICS
Dept. 771 F , Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)

SERVICE SHEETS

SERVIGE SHEETS, radio, TV, etc. 10,000 models. Catalogue $24 p$ plus s.A.E. with ordersencuirirs. TELRAY, 154 Brook Street, Preston, Plat 7HP.

SERVIGE SHEETS, Radio, TV, etc., 50p and
 Riluo, 47 buhemia lioad, ft. Leonards, sussex.
BELL'S TELEVISION SERVICES for service slicets on radio, TV, etc., 75p plus S.A. A . Colour TV service manuals on request. S.A. A with enquiries to B.T.S.. 190 Kings Road, Marrogate, N. Yorkshire. Tel. 04235

START YOUR OWN BUSINESS REWINOING ELECTRIC MOTORS

This unique instruction manual shows step by step how to rewind motors, working part or full time, without previous experience. Everything you need to know easily explained, including where to obtain materials, how to get all the work you need, etc., etc. A goldmine of information and knowledge. Only $£ 3.90$ plus 26 p P. \& P. From:
MAGNUM PUBLICATIONS, Dept. PES
Brinksway Trading Estate, Brinksway Stockport SK3 0BZ
Overseas Distributors wanted.
SIMPLIFIED TV REPAIRS. Full repair instruetions, individual Britis! sets, $\mathbf{5 4 - 5 0 \text { ; request }}$ frep circuit diagram. Stamp brings details unique TV Publieations. AUSEPE, 76 Church Street, Larkhall, Lanarkshire.

miscellaneous

Musical Miracles!

by Dewtron ${ }^{(1)}$

Build your own synthesiger or musical effects using some of the huge range of DEWTRON modutes. Or, build fuzz or waarwa at budget prices using apecial kits.
Sead 2 n for Catalogue from:
D.E.W. Ltd., 254 Ringwoad Road, Ferndown, Dorset BH22 9AR.

REGHARGEABLE NIGAD BATTERIES "AA" (HP1), £1-26; Sub. "C" £1'29; "C" (HP11) £2.38;""1)" (IP P\%) \&2.92; PP3 \&4.98. Matching chargers, respectively, $84.48,44.48$, $85 \cdot 24$, $£ 5 \cdot 24, £ 3 \cdot 98$. All prices include V AT. Add 10% P. \& P. A.A.E. for full list, plus, if wanted, 50 p for "Nickel Cadnium Power" booklet. SANDWFLL PLANT LTD., 1 Denholm Road, Sutton Coldfield, West Midlands, $B 73$ 8PP. Tel. 021-3549764.
P.C.B.'s-FAST SERVICE FROM YOUR MASTER 1.6 mm glass fibre +1 oz copper + solder varnish $\mathrm{E} /{ }^{\circ} 35+4 \mathrm{p} / \mathrm{sq}$.in. (VAT and P. \& P. inc.)
+100 volt sweep amplifiers. $\mathrm{C} 4 \cdot 50$ (VAT and $\frac{1}{\vec{p}} 100$ volt sweep amplifiers, $14{ }^{\circ} 50$ (VAT and
\& P . inc.). 10 cpme PCB with BUSS lines ($2 \frac{1}{2}$ in $\times 1 \frac{1}{2} \mathrm{in}$)-DIP and TOS IC to 0 .lin. edge conn adaptors 30 p each, 10 up 25 p each (add P. \& P. I5p). S.A.E. for quantity discounts/specials, prototype service-circuit design, layouts, assy and test.
MICRO

MICRONICS ELECTRONICS ERG. SERVICES 13a Clive Road, Birkdale, Southport, Merseyside,

PR8 4RZ. Tel.: Southport (0704) 84935

MISCELLANEOUS (Cont.)

AUDIO TEST OSCLLLLTOR

Based on a Linsley Hood design it provides both SINE and SQUARE wave signals over range $10 \mathrm{~Hz}-100 \mathrm{kHz}$ in four steps. Output over I volt fully attenuated. Self powered with $9 V$ battery. In Kit form Eil.
S.A.E. for leaflets. Also available T.H.D. Analyser. MVMT. F.M. Sig. Gen. O/60V IA P.S.U.

ORION F.M. TUNER

Complete kit of parts for this system shortly available.

S.A.E. for details to:

TELERADIO ELECTRONICS

325 Fore Street, Edmonton N9 OPE
Tel. 01-807 3719

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state TRANSMITTER RECEIVER kit. Only ©8.25 plus 20p P. \& P.

- Brain-freeze' 'em with a MINI.STROBE kit, pocket-sized 'lightning flashes', varispeed, for disco's and parties. A mere $£ 3.80$ plus 20p P. \& P
Experiment wirh a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher: ready-made multiofunction modules. $\& 5$ plus 20p P. \& P. LOTS MORE! Send 20p for lists.
(Prices include VAT).
(Mail Order U.K. only)
BOFFIN PROJECTS
4 Cunliffe Road
Stoneleigh, Ewell, Surrey (P.E.)

SUPERB INSTRUMENT CASES by Bazelli, manufactured from hoars-duty pric faced steel. Humblreds of yeople and industrial users are choosing the cases they reaniae from our vast range. (ompetitive prices start at a low 82p. Examples: width, depth. licight, Sin. x $5 \mathrm{in} \times 3 \mathrm{in}, \varepsilon 1.70 ; 10 \mathrm{in} \times \sin \times 3 \mathrm{in}, 82.42 ; 10 \mathrm{in} \times$ sin $\times 3 \mathrm{in}$ £3.02. $13 \mathrm{in} \times 10 \mathrm{in} \times 3 \mathrm{in}, \quad \mathrm{e3.96}$; sin $\times 4$, $\times 4.02$, 1.98 ; 10in \times fin $\times+i n, 22.97$,

 $12 \mathrm{in} \times 12 \mathrm{~m} \times$ Tin, 84.84 . I'hus 55 p carriage and soo VI'L'. Over 400 motels to choose from. lrompt despatch, Free literature (stamp would
 Wilfrid's, Foundry lane, Halton, Lancaster LAE6LT

PRINTED CIRCUITS and HARDWARE

Readily available supplies of Constructors' hardware, 'Aluminium sheet and sections. Printed circuit boards, top quality for individual or published designs.
Prompt service.
Send 15 p for catalogue.
RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratford on Avon Warwicks.

Tel. 4879
(abc ELECTRONICS (0여AM) LTD.
$3 \frac{1}{2}$ DIGIT DIGITAL VOLTMETER KIT ZNAII6E 3t digit low power DVMIIC $\mathbf{6 6 . 0 0}$ Integrated circuir pack $\mathbf{£ 4 . 8 5}$ Displays and filter pack Semiconductor and diode pack $\mathbf{6 7} \cdot \mathbf{2 0}$
$\mathbf{~} 2.30$ Semiconductor and diode pack
Resistor pack (inc. 3 M*T Cermets) Resistor pack (inc. 3 M.T Cermets)

Capacitor pack | $\mathbf{4} .30$ |
| :--- | Capacitor pack 41.40 Logic and display P.C.B.'s

Special offer on all packs when purchased together, 624.95. Plus VAT. Post Free.
Send S.A.E. for lists on DVM, plus lists on G8CZW DFM, still at 654.00 inc. VAT.
83 LEES ROAD, OLDHAM OL4 IJW Tel. 061 -624 8812

WIRE THREADING KIT wire digtribution system intro-kit 55.95 inc. of VAT and P. \& P. (Mail order only) KIT CONSISTS: WIRE DISTRIBUTION PENCIL, W-D BOARD, W.D STRIPS, SPARE SPOOL OF WIRE, IC LEG DEFORMER. COMPREHENSIVE INSTRUCTIONS. Or for further details please send a S.A.
Trade and overseas enquiries welcome.
ZARTRON|X 115 Lion Lane, Haslemere,
ZARTRONX $\begin{array}{r}\text { Surray GU27iJL } \\ \text { Sun }\end{array}$

GLASS FIBRE P.C.B.'s

From your own tape, film or ink master. Send S.A.E. for quotation. PRACTICAL ELECTRONICS P.C.B.'s in glass fibre, tinned and drilled. June 76 Transmitter 98p, Coder 91 p . July 76 Receiver 98p. Decoder 79p,
Interface 58p. August 76 Servodrive 74p Servo Amp 58p, Relay Driver 68p. Completeset of above boards $\mathbf{5} 5 \cdot 80$. Sept. 76 Tone Generator 71 p . Tone Decoder 78p. Sept. 76 Cross-Hatch Generator $\mathbf{4 2} 85$. Nov. 76 Hazard Warning Flasher 68p Dec. 76 FM Stereo Tuner $£ 258$. Feb. 77 Decoder 1302.1 £1.32. Send S.A.E. for information on current boards. C.W.O. please.
R.S. Components. All of this well known supplier's components available. PROTO DESIGN
4 Highcliffe Way, Wickford, Essex SS11 8LA
PRINTED CIRCUIT BOARDS supplied in glass fllore drilled, tinned or varnished from your own or mblished designs. Send S.A.E. for quotations. R. F. BARLISON, 12 Whiteoalis limal, Oadby, Leicester.

CLEARING LABORATORY, scopes, recorders, testmeters, bridges, alldio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beedng 236.

STARTER PACK containing 5 sheets (lines, pads, i.c. pads) $£ 1 \cdot 30$ (P. \& P. etc. I Sp.) SPARE SHEETS 27p. Easy to use. S.A.E. details and sample.
LOW-COST I.C. MOUNTING for any size DII mounting. 100 Soldercon sockets $65 p$. 7 or 8 hole plastic supports 5 p/pair (P, \& P. etc. 10p/order). Quantity rates. S.A.E. for details and samples.

H.M. ELECTRONICS

275a Fulwood Road, Broomhill, Sheffield S10 380

BEC
CABINETS
OAION cabinet still available punched or unpunched Send 15p (refundabie) for leaflets

METER REPAIRS. Ammeters, voltmeters, multi-meters, etc., contact: METER REl’AIRS, 21 Mount Road, Benflect, Essex, SS7 1HA.

I.C. EXPERIMENTER'S KITS

Learn about madern electronics with our new series of Kits on digital logic techniques. Each Kit contains specially selected I.C.s, Holders, Available at $\mathbf{4} \mathbf{4} 00$ each (including P. \& P.) Kit One-Gates Kit Two-FlipoFlops Kit Three-Shift Registers Kit Four-Counters Kit Five-Displays S.A.E. for further details to:

69 High Street, Ryton, Coventry CV8 3FJ (Mail Order Only)
BURGLAR ALARM COMPONENTS. White oblong rect and magnet, 65p pair, minimum 10. Flush circular and magnct, 60p pair, minituum 10. 12V sirens, $£ 4 \cdot 88$, Key Pass switches, £2.25. All prices inclusive. ('OLIX WHITELEX, 11 Denbrook Walk, liradford, W. Yorkshire, B1) 40 (2s

CABINET FITTINGS

 FORStage Loudspeakers and Amplifier Cabs Fretcloths, Coverings, Recess Handles, Strap Handles, Feec, Castors, Locks and Hinges, Corners, \quad Trim, Speaker Bolts, etc., etc.
Send $2 \times 8, \mathrm{p}$ Stamps for samples and list. ADAM HALL (P.E. SUPPLIES)
Unit Q, Starline Works, Grainger Road Southend-on-Sea, Essex.

TELEPHONE PICK-UP LEADS

Phone sucker in either 3 DIN \ddagger Jack. $3 \cdot 5$ Jack Phóno or Philips EL3581/ 3582/84 or other Philips models. Please state which one.

Dept. PE, 1115 Finchley Road, Temple Fortune, London NW11.

Tel: 01-458 4755

ENAMELLED COPPER WIRE				
SWG	$1 \mathrm{lb}$	807	$\begin{gathered} 40 z \\ t \end{gathered}$	202
14.19	$2 \cdot 40$	$1 \cdot 20$	0.60	0.50
20-29	2.45	1.60	0.82	0.59
30-34	$2 \cdot 60$	$1 \cdot 70$	0.89	0.64
35-40	2.85	$1-90$	104	0.75
S.A.E. brings catalogue of copper and resistance wires in all coverings.				
THE SCIENTIFIC WIRE COMPANY P.O. Box 30, London, E4 9BW				

RADIO TECHNICIANS

Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over.
Standards required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radio and electronic test gear.
Duties cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.
Qualifications: Candidates must hold either the City and Guilds Telecommunications Part I (Intermediate) Certificate or equivalent HM Forces qualifications.
Salary scale from $£ 2,230$ at 19 to $£ 2,905$ at 25 (highest pay on entry) rising to $£ 3,385$ with opportunity for advancement to higher grades up to $£ 3,780$ with a few posts carrying still higher salaries. Pay supplement of $£ 313.20$ per annum.
Annual leave allowance is 4 weeks rising to 6 weeks after 27 years service. Opportunities for service overseas.

Candidates must be UK residents.
Further particulars and application forms available from:
Recruitment Officer, Government Communications Headquarters Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ

Tel.: Cheltenham (0242) 21491 (Ext. 2270)

FOR SALE

[^3]
COURSES

LINCOLNSHIRE gAINSBOROUGH COLLEGE OF FURTHER EDUCATION radio, ellectronics and television MECHANICS COURSE

Full time course leading to City and Guilds Certificates suitable for those wishing to prepare for a career in radio and television servicing and maintenance of electronic equipmenc
Courses start in September. Full details from:
gainsborough college of further EDUCATION
Morion Terrace, Gainsborough, CN21 25 U Telephone (0472) 2942

ELECTRICAL

STYLI, CARTRIDGES AND AUDIO LEADS etc. F'or the best at keenest prices send S.A.E. for free illustrated list to: FELSTEAD ELECTRONICS (PE), Longley Lane, Gatles, Cheadle, Cheshire, SK8 4EE.

WANTED

WANTED, NEW VALVE8, TRAN8I\&TOR8, top prices, popular types-KENSINGTON SUPPLIES (B), 367° Kensington Street, Bradford 8, Yorkshire.

LADDERS

LADDER8, varnished, $25 \frac{1}{2} \mathrm{ft}$. extul., $\mathbf{2 3 0 . 4 1 .}$ Carr. \&1-90. Jeaflet. Immed. despatch. THE LAIDDER CFNTRE (12EE3), Halesfeid (1), Telford, Salop. Tel. 580644.

INDEX TO ADVERTISERS

Home Radio I.L.P. Electronics Lid.	387
Industrial RF Services	396
hternational Electronics Unlimited	390
Intertext ICS	394. 397
Island Devices	396
Jones, J. C.	397
Josty Kıt (U.K.) Ltd.	331
J.W.B. Radio	396
Linway Electronics	397
London Electronics College	397
Lynx Electronics	380
Magnum Publications	397
Maplin Electronic Supplies	cover iv
Marco Trading	396
Marshall, A., \& Sons	389
Metac	324
Micronics Electronics Eng. Services	397
Minikits Electronics	397
Modern Book Co.	395
Osmabet	395
P.A. Electronics	397
Phonosonics	332, 333
P.K.G. Electronics	398
Precision Petite Lid	388
Proto Design	398
Pulse Electronics	333
Radio Component Specialists	391
Radio Exchange Ltd.	393
Ramar Constructor Services	398
RST Valve Mail Order Co.	330
R.T. Services	. 396
Saxon Entertainments	357
Scientific Wire Co.	88
Service Trading Co.	-
Stevenson, C. N:	396
Sugden, A. R., \& Co. Lid.	336
Swanley Electronics	380
Tamba Electronics	388
echnomatic Lito.	400
Teleradio Electronics	398
Tempus	394
Trampus Electronics Lid.	384
T.U.A.C.	325
Vero Electronics Lid.	392
West London District Supplies	
Wilmslow Audio	. 327
Young Electronics	
Zartronix	

* TELEPHONES-Modern style 706 Black or two tone grey $£ 4 \cdot 50$ each. Older black style $51 \cdot 50$ each P. \& P. 75p. All with bells and dial.
\star SEMICONDUCTORS-All at ap each". P. \& P.
extra. Guaranteed all tull spec. devices. Manufacturer's markings: BC147; BC158; 2N3707; BC107; BF197; BC327. 2N4403 BC172B BC261B; BC251B: BC348B: BC171AB 2N3055RCA 50p each, P. \& P. 8p.
2N5879 with $2 N 5881$ Motorola 150 wall Comp. par - Linear amp 709 25p each. P. \& P 8p. © BEEHIVE TRIMMERS. $3 / 30 \mathrm{pF}$. Brand new. 10 off * TRP P \& \& P. 15p.
each, P. \& P. 15P
* Meter PACKS. 3 ditferent meters © P . P. OON'T FORGET YOUR MANUALS. S.A.E. with requirements.
GRATICULES
GRATICULES $12 \times 14 \mathrm{~cm}$ high quality plastic 150 eachip. apitor 9 50 p, P. \& P. 48 p .
* 3ib Electronic Goodies 51-60, post paid.
\star High Value Printed Board Pack-hundreds of components, transistors, etc,-no flat to the board transistors is 65 post paid.
$\star 1000$ Foed thru Capacitors 10 for 30p. P. \& P. 15p HiVAC Min Neons. Approx 60 V Brand New. 10 off 20p P. \& P extra.
* POT PACK. All Brand New Modern. Single and Ganged. Our choice. 7 for 25p. P. \& P. 48p. money 95p, P. \& P. 65 p .
OON'T FORGET YOUR MANUALS-S.A.E. with Your requirements.

TRANSFORMERS—AH 240V 5OHZ

Type A $17-0-17 \mathrm{~V} \quad 250 \mathrm{~mA} ; 7 \cdot 5-0-7.5 \mathrm{~V} \quad 250 \mathrm{~mA} 0-20 \mathrm{~V}$ 5 amps ; $0-4 \mathrm{~V} 5$ amps: $0-1-1.5 \mathrm{~V} 5$ amps, \& 2 each, P. \& P. ह1. 25 .
 5 amps; 0-1.5-2V 5 amps: $\Sigma 1 \cdot 50$ each, $P+$ \& P. $£ 1$.
Type C $19-0-19 \mathrm{~V}$ 250mA; $2-0-8 \mathrm{~V}$ 250mA, $0-7.5 \mathrm{~V}$ $5 \mathrm{amps}: 0-1 \mathrm{VV} 5 \mathrm{amps}$ fil:25 each, P. \& P. $\$ 1 \cdot 25$.

VAT 12%. otherwiae 8%
Minimum order E2. Excess postage refunded
-MILTMER:LTO 7/9 ARTHUA ROAD, READING, BERKS. (rear Tech, College)
el. Reading 582605

RELAYS
 SIEMENS, PLESSEY, Et MINIATURE RELAYS

RELAYS. WIDE RANGE OF A.C. and D.C RELAYS

CONTACTOR

mfg by Hendrey Relays type C2839 $220 / 250 \mathrm{AC}$ ops
Concact $4 \mathrm{C} / \mathrm{O}$ at 20 amp at 440 volts AC price $\mathbf{6} 6.00$ Concact 4C
P. \& P. 75 p .

CITENCO

FHP motor type C $7333 / 15220 / 240$ volts AC 19RPM reversible motor. torque 14.5 kg gear ratio 1441
brand new incl. compacicors, our price 614.25 .

21 WAY SELECTOR SWITCH WITH RESET COIL. The ingenious electro mechanical device can be switched up to 21 positions and can be reset from any position by energising the reset coil. $230 / 240 \mathrm{~V}$ a.c. Operation. Unit is mounted on strong chassis complete with cover. Price $\mathbf{5 5} \mathbf{5 0}$. P. \& P. 75 p .

MINIATURE UNISELECTOR
2 volt Il-way, 4 bank (3 non-bridging, I homing)

RODENE UNISET

TYPE 7I TIMER
0-60 sec. 230 V a.c. operation. Incorporating a lapsed time indicator and
repeat facilities. A precision motorised timer ideal for process timing, photography, we
P. $\&$ P 60 p

MICRO SWITCH \qquad
M. Switch Type VI5 FL22/IC 10
for $\mathbf{6 2}$. Post 50 p . (Min. order 10).
Sub miniature Burgess Button Type
V.4.T.I. 10 fo $\mathbf{~} \mathbf{2} 50$. 50 for $£ 10$. Post

BF LEVER OPERATED 20 amp . C/O. Mfg

24 VOLT DC SOLENOIDS

UNIT containing \& heavy duty solenoid approx. 25lb pulf 1 inch travel. Two approx. Ilb pull $\frac{1}{2}$ inch
travel. 6 approx. Aoz. pull $\frac{1}{2}$ inch trave!. One 24 volt d.c., i heavy duty single make relay.
$\mathbf{£ 3 . 0 0 . ~ P o s t ~} £ 1$. ABSOLUTE BARGAIN
 600 WATT DIMMER SWITCH
Easily fitted. Fully guaranteed by makers Wasly control up to 600 W of lizhting except fluorescent at mains voltage.
Complete with simple instructions £3.65. Post 25 p.
1,000 wast model, 5560 . Post $25 p$
CENTRIFUGAL BLOWER

INSULATION TESTERS NEW!

Test to 1.E.E. Spec. Rugged meta construction, suitable for bench or
field work, constant speed clutch Size L. 8 in , W. 4 in, H. 6 in, weight 61 l . $1.000 \mathrm{~V}, \stackrel{0}{ }, 000 \mathrm{M} \Omega . \ddagger 46$. Post 80 p .

BLOWER UNIT
$200 / 240 \mathrm{~V}$ a.c. precision German built. Dynamically balanced, quiet, 60 mated, reversible. Consumption
60 mA . 5 ze . 120 mm dia. 60 mm deep Price E 3.50 . Post 50p.

> Dept. PEII, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 0l-995 1560

VARIABLE VOLTAGE TRANSFORMERS

L.T. TRANSFORMERS

$0-12 \mathrm{~V} / 24 \mathrm{~V}$ at $1 \mathrm{amp}, \mathbf{2 2 . 5 0}$ (P. \& P. 50p) , 0-15V at $1 \mathrm{amp}+0-15 \mathrm{~V}$ at 1 amp (30 V I amp). ± 2.50 (P . \& P $50 \mathrm{p}) \cdot 25-0-25 \mathrm{~V}$ a.
$24 \mathrm{~V} 10 \mathrm{amp}, 612.35(\mathrm{P}, \& \mathrm{P}, \mathrm{F}, 50(\mathrm{P}) .0-4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}$
 $18 \mathrm{~V} / 20 \mathrm{~V}$ at $20 \mathrm{amp}, 614$ (P. \& P. $\mathrm{E} \mid \cdot 50$). $0-6 \mathrm{~V} / 12 \mathrm{~V}$ at $20 \mathrm{amp}, \pm 11.85$ (P. \& P. $£ 1\rangle$
Other types in stock--phone your enquiries.

STROBE! STROBE! STROBE,

HY-LIGHT STROBE KIT MK IV Latest type Xenon white light flash tube. 50 lid
state timing and triggering circuit. $230 / 240 \mathrm{~V}$ state timing and triggering circult.
a.c. operation.
Designed for larger rooms, halls, etc. Spee Designed for larger rooms, halls, etc. Speed
adjustable $1-20$ f.p.s. Light output greater
Ret than many (so called 4 Joule) strobes $£ 18$ for Hy-Light EB:25. P. \& P. $f 1$

GALVANOMETER

50 micro mirror galvo. Calibrated $50-0-50$ and $0-100$ Mfg. by Griffin \&

 George Led. Offered at a fraction of maker's price, in originalpacking, 12 . P. \& P. 60 p.

WIDE RANGE OF DISCO LIGHTING EQUIPMENT
S.A.E. (Foolscap) for details.

FT3
High intensity multiturn, high voleage, neon glow, discharge flash tube. Design or ignition ti
$£ 1.50$. P \& P. 25 p . 3 for $£ 3.00$. P. \& P. 50 p .

RESET COUNTER

230 volt AC 3 digits mfg Veeder Root type LL/i44
C1.75. P. \& P. 25p

BIG INCH

Tiny precision built 3RPM USA motor size onfy
o 100 volt AC op supplied with resistor for
230 volt AC price $\pm \mathbf{2} \cdot \mathbf{0 0}$. P. \& P. 20 p. 4 for $£ 500$

GEARED MOTORS 100 r.p.m. 115 tb . in. IloV,
50 Hz . $2 \cdot \mathrm{gA}$, single phase, split
capacitor mocor capacitor motor. Immense power. Contínuously rated. Totally enclosed. Fan cooled in-line gearbox Length 250 mm . Dia. 135 mm . Spindle dia. 15.5 mm fl 50 . Suitable transformer $230 / 240 \mathrm{~V}$ operation 88. Post 75p.

DRAYTON MOTOR Type RQR
230/250V 50c. Continuously rated $1 \mathrm{r} . \mathrm{p} . \mathrm{m} .90 \mathrm{lb}$ in. Reversible Motor
Twin spindle size 100 mm by 40 mm by 125 mm . Shaft 50 mm by 8 mm . Weight 2 kg .
New Price $£ 16.50$, P. \& P. Cl
BODINE TYPE N.C.I.
(Type J) 71 r.p.m. corque 10 lb . in
Reversible $1 / 70$ th h.p. 50 Hz .

The above precision made U.S.A. ifered in as new condition. Input voltage of motor $\mathbf{2 3 0 / 2 4 0 V}$ A.C.input. Price, either tyoe $£ 6.25$. Post 75 p or less trans
former $£ 3.75$. Post 65 p . (Type 3) 7 I r.p.m. 4 lb .ins. 230 V a.s. Continuously rated. Nonnreversible. $\mathbf{6 6} 50$. Post 75p.

15 R.P.M.

Type SD48 80 lb . in. Input $100 / 200$ volt A.C. Length incl. gearbox 270 mm . Height 135 mm . Wideh 150 mm . drive shaft 16 mm . Weight 8.5 Kilos. BRAND NEW. Price $E 10$. Carr. EI 63•85. Post 50p.
24 R.P.M. 230V a.c. Continuously rated. Mfg. My-
R. Ex-equlp. Fuly tested. E3.85. Post 75p. R.P.M. $230 / 240 V$ A.C. SYNCHRONOUS! Ex-equipment. Thoroughly tested and guaranteed.
ONLY $£ 1.50$. Post 20 p . 20 R,P.M. $230 / 240$ volt a.c. miniature motor. Price

PROGRAMME TIMERS

 330 operation a.c. 15 or 20 r.p.m

Also available for 50 V operation. Prices as above.
METERS NEW - 90 mm Diameter Type: 65CSD.C.M/C 2,5, 10
\&3. 100 amp \& 3.25 . 20 p .
Type: 62 T2 A.C. M/1 1, 10, 50 amp. 63 . Post 20p.
$\frac{\text { 63. P. \& P. 30p }}{\text { WHY PAY MORE? }}$
MULTI RANGE METER.
25-500. D.C. volts 2.5-500 A.C. volts $25-500$. D 2000 R/VD.
$0 / 1 / 10 / 100 \mathrm{~m}$ compact moving coil instrument with 1 ranges, dime isions $120 \times 80 \times 44 \mathrm{~mm}$. veight 0.32 kg . SERVICE TRADING CO. Price $\mathbf{6 5} 50$. Incl. leads and battery.
post 50 . (Total price incl. VAT and Post $\mathbf{6 6 4}$).

TIME SWITCH
Horstmann' Type V. Mk. II Time
switch. $200 / 250$ volt A.C. Two on/two off every 24 hours, at any manually preset time. 30 amp contacts. 36 hour spring reserve in case of power failure.
Day omitting device. Fitted in theavy high impact case, wish glass observationwindow. Buit to highest Electricity
Board Spec. individually tested. Price E7.75. Post 50p (Total inc. VAT 6B.91)
 25 Wated $10 / 25 / 50 / 100 / 150 / 250 / 500 / 1 \mathrm{k} / \mathrm{l} \cdot 5 \mathrm{k}$ ohm. 61.90 . Post 20 p .
50

50 WATT i/5/10/25/50/100/250/500/1k ohm.

100 WATJ 1/5/10/25/50/100/250/500/1k/1.5k/2.5k.
$\mathbf{3 . 5 k} / 5 \mathrm{k}$ ohm E 3.70 . Post 35p. Black Silver Skirked knob
Black Silver, Skirted knob calibrated in Nos.
$1 \frac{1}{2}$ in. dia. brass bush. Ideal for above 22p each.
Personal callers only. Open Sat.
ITREET LONDON WC2H 7JJ

Phone 01-437 0576

[^4] Hants. Sole Agenis for Australia and New Zealand Gordon \& Gotch (A/sia) Lid South Africa-Central News Agency Led.
Subcrptions not availatie
Subserptions not available at home or overseas
Practical Electionics is sold subject to the following conditions, namely, that it shall not, without the written consent of the Publishers first given, be lent, resold. hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover. excluding Eire where the selling price is subject to V A T, and that it shall not be fent, resold
or hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade, or affixed to or as part of any publication or advertising, literary or pictorat matter whatsoever.

[^0]: (C) IPC Magazines Limited 1977. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: All prices subject to VAT @ 8\% except SA308/PM301, mics. \& headphones (121\%) All prices include carrlage packing except where shown other wise Ordering: By Telephone-Access, Barclay Card or COD Ring (01) 884 6385/0098 By post -Send cheque or crossed P.O's or 60p for COD or send In your Access/Barciay card NUMBER ONLY MAIL ORDERS \& CALLERS TO: CROYDON
 327-333 Whitehorse Road, Croydon Surrey CR0 2HS
 24 Hour Ansafone service (01) 6846375

[^2]: O'seas orders -add 15% for P +P All items offered for sale subject to the Terms of Business set out in Doram Edition 3 catalogue price 60 p . The Doram Kit brochure is also avatrable price 250 . Combined price only $70 p$ which also entitles you to $2 \times 25 p$ vouchers. each one usable on any order placed to the value of $£ 5.00$ or more (ex. VAT) DORAM ELECTRONICS LTD
 PO BOX TR8, WELLINGTON RD IND EST. LEEDS LS 122 UF
 An Electrocomponents Group Company

[^3]: NEW J8sUE8 of "Practical lilectronics" avallable from A pril 1974 edition up to date. I'rlce 55 cach-BELL'S TELENISIONSERV1GES, 190 Klngs Thoad, JIarrogate, N. Yorkshire Tel. (0423) 55885.

 ELECTRONIC ORGAN. ('omplete but nefls assembling. Cost £110. Offers around $£ 80$. Tel. Carlisle 36660.

 CALCULATORS. Bankrupt stock of as uew rondition but faulty calculators. Ifand and desk. Many makes, 200 to clear. $\$ 1.50$ each. S. \& M. MVERS LTU., 100/106 Mackenzic hoad, London, N.7.

 VERO INSTRUMENT CASES $19 \mathrm{in} \times 4 \mathrm{in} \times 12 \mathrm{in}$ new £7-50. Cat. No. ICD-2U-S. Tel.01-5553755.

[^4]: Published approximately on the 15 th of each month by IPC Magazınes Lid., Fleetway House, Farrmgdon Street, London EC4. Printed in England by Chapel River Press, Andover

