## PRACTICAL

= =CTRONICE

## RETURN OF POST MAIL ORDER SERVICE



## ELAC 10 inch

Ribbed cole. large ceramic magnet. $50-16,000 \mathrm{c} / \mathrm{s} . \quad$ Bass
resonance $55 \mathrm{c} / \mathrm{s}$.
10 W. 15 ohm impedance. $\quad \leq 4 \cdot 50$

MAINS TRANSFORMERS
ALL POST
Jop each. jop each,
22.95

 $300-0-300120 \mathrm{~mA} 2 \times 6.3 \mathrm{~V}$ - A (.T. 6.3 V 2A 48.50 HEATERTRANS, 6
GENERAC P['RPOSE NOW VOLTAL
Tapled outputs at 2A $3,4,5,6,8,9,10,12$
24 and 301
 $24,6,8,12,12,16,18,20,24,30,31,40,48,6027-00$ $3 \mathrm{~A}, 6,8,10,10,16,1 \times,=0,24,30,36,40,48,60 £ 8-70$ $5 A, 6,8,10,12,16,18,30,24,30,36.40,48,60 £ 11-25$
$5,8,10,16 \mathrm{~V}$
 $40 \mathrm{~V}^{\circ} \mathrm{IA}$ tapped 101 or $30 \mathrm{M}^{21} £ 2.95$ 20 3 J \&2

 AVTOTRANSFORMERS IISV to 230 V or 230
 CHARGER TRANFFORMERS Inlut 200/LDO for 6 or 119 11A $£ 2.75 ; 4,1$ £4- 60.

R.C.S. STABILISED POWER PACK KIT All partsiuseluding printed curcuit and invtructions io Suld this unit Please state roltage required $\quad \mathbf{2 0 9 5}$
R.C.S. STEREO FM TUNER

 Tuner with brushed aluminiumfatians Brifich Kubs stereo TuneriA

BARGAIN 3W AMPLIFIER. 4 Tranmistor
Pugh-Pull Ready built with volume, treble and $\mathbf{6 3 . 9 5}$
bass controls. 18 volt lattery operated.

## wafer heating elements <br> Size $10 \frac{1}{1} \times 8 \frac{1}{2}$, hin. Operating voluage 200/350V a.c. 250 W approx. Suitable for Heating Pads, Food between two sheets of metsl or asbestos <br> only 40p each (four for 61.50 ) ALL POST PAID-Diseounts for quatity

E.M.I. $13 \frac{1}{2} \times 8$ in SPEAKER SALE! With iwecter
crossover. And
and State 3 or 8 ohm As illustrated. 15W model 68.50 20W model $\quad \mathbf{6 9} 50$ or 8 or 15 ohns

|  | 3-14,500 c/s. 12 in double cone, wooter and tweeter cone tegether with a BAKER eeramic magnet assembly having a fiux density o 14,000 gauss and a total fux of 145,000 Maxwells. Bass resonance $40 \mathrm{c} / \mathrm{s}$, Rated 25 h. Note: 4 or $k$ ot 16 ohns must be stated. |
| :---: | :---: |
| As illustr | As illustrated. |
| Please state 4 or 8 or 16 oinms. | 16 oims. ${ }^{\text {a }}$ |
| "BIG SOUND" |  |
|  |  |
|  |  |
| 12 in 30 W <br> 4.80 W |  |
|  |  |
| $\begin{aligned} & \text { bow sor } 16 \text { ohms } \\ & \text { with aiuminium } \\ & \text { mesence dome. }\end{aligned}$Post $£ 1 \cdot 60$ |  |
|  |  |
| GROUP "50" 124.95 |  |
|  |  |
|  |  |
|  |  |



BLACK CARRYING C'ABINET AVALLABLE CG.

|  |
| :---: |
| GOODMANS CONE TWEETER <br>  |

## R.C.S. 100 WATT VALVE

 AMPLIFIER CHASSIS
rolensional model. Four inputs. Treble, Bana, Master olume Controls. Ideal disco, P.A. or groups. S.A.E. ior details. Is speaker outputs. 485 Suitalle carrying case $£ 16.50$.

LOW VOLTAGE ELECTROLYTICS $\therefore 2,4,5,8.16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V}$ 10p

 $2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V}$ 47p; 50 V 65p. 3900 mF 100 V fi. 60 . 4700 mF 63V fi . 20 . 6 p .

RCS STEREO PRE-AMP KIT
Complete kit includes all componemts, volmme contro can te ganged to mak Multiay lum inputs per chamme


HEAVY METAL PLINTHS With P.V.C.Cover Cut out for most
B.S.R.or Garard decks.
Sitvergrey finish.
$\qquad$
 Extra Large Plinth and Coper. For transcription decks.
 TINTED PLASTIC COVERS ONLY


 ldeal for record decks, tape decks, etc. Post 75 p .

## BAKER HI-FI SPEAKERS high quality-british made SUPERB

i2in 25 watts A high quality loudspeaker. resonance ensures clear reproduction oi the deepest bass. Fitted witb a special copper drive and concentric tweeter cone resulting in full remarkable efficiencr in the upper register.
Bass Resonance
Flux Density 16,500 gauss
Tseful response $20-17,000 \mathrm{c} / \mathrm{s}$
$£ 21.95$
AUDITORIUM
I2in 35 watts
A full range reproducer for pubic aduress, multi-speaker systems. electric organs. Ideal for $\mathrm{Hi}-\mathrm{Fi}$ ant Discotheques.
Bass Resonance $35 \mathrm{c} / \mathrm{s}$ Flus bensity 15,000 gauss 9 or 16 alhms mod


## $£ 20 \cdot 95$

Post
i' 1.60
BLANK ALDMINIUM CHASSIS, 15 s.w.g. 2thit sides $6 \mathrm{in} 4 \mathrm{in}, 70 \mathrm{p}$; 8 m tim. $90 \mathrm{p} ; 10 \mathrm{in}, 7 \mathrm{in}$, E1.15 $14 \mathrm{in} \times 9 \mathrm{ith}$, £1-50: 16 in fin. $£ 1.45$ : 15in 3 in .87 p ; ALUMINIUM PANELS, $\times$ Nin, $\mathbf{k l}$. 35
ALUMINIUM PANELS, $1 \times 2, \mathrm{w}-\mathrm{g} .6 \mathrm{in} \cdot 4 \mathrm{in}, 15 \mathrm{p} ; \sin \times 6 \mathrm{in}$
 16 in 6in, 45 p ; 14in $9 \mathrm{in}, 50 \mathrm{p}: 12 \mathrm{in} \times 12 \mathrm{in}, 55 \mathrm{p}$
ALDMINIDM AN
ALUMINIUM ANGLE BRACKET. Un $\times$ in $1 \mathrm{in}, 15 p$.
ALUMINIUM BOXES, MANY SIZES IN STOCK.
CONSTRUCTIONAL PROJECTS
EARTH LEAKAGE CIRCUIT BREAKER by $K$. A. Smith
An electronic, current-operated protection unit for photographic darkroom, workshop or garden safety ..... 488
TWIN TRACE DOUBLER by R. A. Penfold
Four trace display for a double beam oscilloscope ..... 496
POCKET STOPWATCH by M. W. Headington A state of the art digital stopwatch for sporting events ..... 508
SYNTHESISER TUNING INDICATOR by C. Yallop
Silent tuning aid for synthesisers and organs ..... 522
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices ..... 495
MICROPROCESSORS EXPLAINED-5 by R. W. Coles
Peripheral Chips: Input/Output Devices ..... 515
INGENUITY UNLIMITED
Solar Panel Controller-Touch Switch—Side-Light Controller-Sequential Timer ..... 531
NEWS AND COMMENT
EDITORIAL-Time Is The Essence ..... 487
D2 KIT REVIEWED by D. B. Johnson-Davies
A report on the new Motorola D2 microprocessor pack ..... 500
MICROPROCESSOR COMPETITION
A list of prize winners ..... 507
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry ..... 514
NEWS BRIEFS
Video Disc '77-Teach-in—Pilot's Eyes ..... 524
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office ..... 527
MARKET PLACE
Interesting new products ..... 528

Our August issue will be on sale Friday, July 8, 1977
(for details of contents, see page 521)

[^0]
## EEELTFGIT:KKIT <br>  <br> The Famous DENSHI kits —now even better value

The klte are sultable both for the beginner to gain a wide practical understanding of electronics and for the more experienced to carry out many advanced experiments not avallable eisewhere

Illustreted is the SR-4ADX kit-over 150 different actual working projects can be built, dismantied and rebuilt any number of times, plus any circuits of your own design
Each component is beautifully encapsulated in transparent plastic enit and yis this electronic symbis No solde the is involved with any every pespect, including educational manula and batteries. NOTHING ELSE NEEDED.

This is the most practlcal and effective way to learn about electronics-the kits are also first-class testing kits for laying-out and testing new circuits quickly. There is no danger whatsoever in the use of
these kils.

Add-on kite and epares are available too to increase the scope of each kit if required

SR-3A-over 100 experimente-radio receivers, transmitters, ampliorgans. interies, alarms, morse code. electronic birds, cats, sirens. generator, circuits demonstrating Amps. Onms. Watts. etc.. etc. E26.45 COMPLETE

SR-3ADX-over 105 experimente-similar to SR-3A plus sophisticated control panel and solar cell circuits. 日ic, etc. [.33.45 COMPLETE

SA-taOx-over 150 experiment \&-similar to SR-3ADX plus Relay and Multi-meter circuits-ammeter, voltmeter. resistance meter. water purity - ion concentration -, volume - output --1. field intensity meter, llfuminometer, etc. etc. $\$ 41.45$ COMPLETE
PRICES include vat, p. P., manuals, batteries, otc. NOTHING ELSE TO PAY-FANTASTIC VALUE for MONEY

Educational and Trade enquines welcomed
Personal callers welcome
CHEOUE/P.O. (or 11p tor illustrated literature) to: DEPT. PE


## G8CZW Digital Frequency Meter



Complete 50 MHz kit $\$ 54 \cdot 00$ inc VAT, post free (U.K.)

2N1040E Count/Display IC
E 10 Integrated Circuit Pack Displays and Filter Pack Semiconductor and Diode Pack Pesistor and Capacitor Pack Logic and Display P.C.B.s 5 MHz Crystal
Transiormer 8-0-0V 0.5A
(+75p P. \& P.)
Switches, Knob, BNC's etc

Hardware and Wire Pack Case. Two-tone p.y.c.-faced steel, punched and lettered $(+95 \mathrm{p}$ P \& P)
Min BNC Sockets ( 50 ohm Min BNC Plugs ( 50 ohm) 500 MHz Prescaler Kit SP8631B 500 MHz I.C. NE592 Wideband Video Amp Hi-Z Buffer Kit
D.F.M. Reprint (post free)

## G8CZW Digital Voltmeter



## ELECTRONICS (OLDHAM) LTD. <br> 83 Lees Road, Oldham OL4 1JW

 Tel. 061-624 8812 $88-108 \mathrm{MHz}$
SS. 202 I.F. amp. Metering and A.F.C. facilities
SS. 203 Phase Lock Loop Stereo Decoder. A LED may be fitted

SS.203-1 COIL-TYPE STEREO DECODER With I.C. for neg. earth (SS.203-1) Transistor for pos. earth (SS.203-2)

## POWER SUPPLY UNITS

All except SS. 312 and SS. 300 are fitted with low volt ( $13-15 \mathrm{~V}$ ) take off points for pre-amps, tuners etc.

| SS. 312 | 12V/1A | 26. 35 |
| :---: | :---: | :---: |
| SS. 318 | $18 \mathrm{~V} / 1 \mathrm{~A}$ | 26.54 |
| SS. 324 | 24V/1A | 27.27 |
| SS. 334 | $34 \mathrm{~V} / 2 \mathrm{~A}$ | 28. 31 |
| SS. 345 | $45 \mathrm{~V} / 2 \mathrm{~A}$ | ¢9.98 |
| SS. 350 | 50V/2A | [10.38 |
| SS. 370 | 70V/2A | [14.63 |

SS.310/50 Stabilised power supply, variable output. 10 V to $50 \mathrm{~V} / 2 \mathrm{~A}$. Built-in protection against shorting Built-in protection against shorting

Special terms for quantity buyersU.K. and overseas trade enquiries invited.

USE COUPON TO AVOID DELAY
TO STIRLING SOUND, 37 VANGUARD WAY, SHOEBURYNESS, ESSEX

57 Vanguard Way
Shoeburyness, Essex
Telephone, Shoeburyness (0702-28) 5543
SHOP (open all day Saturdays) 220-224 West Road,
Westcliff-on-Sea, Essex SSO 9DF



SAVBIT
handy solder dispenser
Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times Size 5 49p

For soldering fine joints
Two more dispensers to simplify those smaller jobs. PC 115 provides 6.4 metres approx. of 0.71 mm solder for fine wires, small components and printed circuits. PC115 57p
Or size 19A for kit wiring or radio and TV repairs.
2.1 metres approx. of 1.22 mm solder

Size 19A 53p

# Handy size Reels \& Dispensers OF THE WORLD'S FINEST CORED SOLDER TO DO A PROFESSIONAL JOB AT HOME 

Ersin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.

| handy size reels of SAVBIT; 40/60, 60/40 \& ALU-SOL sildors <br> These latest Multicore solder reels are ideal for the toolbox. Popular specifications cover all general and electrical applications, plus a major advance in soldering aluminium. Ask for a free copy of 'Hints on Soldering' containing clear instructions to make every job easy. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ref | Alloy | Diam. mm | Length metres approx | Use | Price |
| $\underset{3}{\text { Size }}$ | $\begin{gathered} 40 / 60 \\ \text { Tin/Lead } \end{gathered}$ | 1.6 | 10.0 | For economical general purpose repairs and | £1.79 |
| $\begin{gathered} \text { Size } \\ 4 \end{gathered}$ | ALU-SOL | 1.6 | 8.5 | electricaljoints. <br> For aluminium repairs. Also solders aluminium to copper, brass etc. | £2.42 |
| $\underset{10}{\text { Size }}$ | $\begin{gathered} 60 / 40 \\ \text { Tin/Lead } \end{gathered}$ | 0.7 | 39.6 | For fine wires, small components and printed circuits. | £1.79 |
| $\begin{gathered} \text { Size } \\ 12 \end{gathered}$ | SAVBIT | 1.2 | 13.7 | For radio, TV and similar work. Increases copper-bit life tenfold. | £1.79 |


$42 \times 42 \mathrm{~mm}$ meters $1 \mathrm{~mA}, 500 \mathrm{~mA}$, 62.92. 16p P. \& P.
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $500 \mu \mathrm{~A}$ and I mA VU meter, $\mathbf{2 4 . 1 4 .}$ IIP P. \& P.
Edgewise meters $90 \mathrm{~mm} \times 34 \mathrm{~mm}$, $500 / \mathrm{A}$, and ImA, 63.40. 16p P. \& P.
$50 \mu \mathrm{~A}$ or $100 \mu \mathrm{~A}, 64.75$. 16 p P. \& P.

## MICROPHONES FOR TAPE RECORDERS

DM228R 200 ohm with 3.5 and 2.5 mm Jack Plugs $61 \cdot 30$ DM229R 50K with 3.5 and 2.5 mm Jack Plugs 61.60 DMIBD 200 ohm with 5 and 3 pin Din Plugs $£ 1.75$ Postage on above microphones IIp


## CARDIOID

 DYNAMIC MICROPHONEModel UD-130. Frequency response 50 $15,000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50K and 600 ohms. 67.50. 26p P. \& P.


3 WATT STEREO $\left(1 \frac{1}{2}+1 \downarrow\right)$ PER CHANNEL AMPLIFIER

$$
\text { E430. } 16 \text { P P. \& P. }
$$

All above prices include V.A.T. LARGE S.A.E. for New List. Special prices for quantity quoted on request.

## M. DZIUBAS

158 Bradshawgate - Bolton • Lancs. BL2 IBA



| $\cdots \sim 88$ | 으웅융 |
| :---: | :---: |
|  |  |
|  |  |
| . | $\sum^{\infty}$ |
| - | $\omega$ |

88888

THE TUAC RANGE includes
MONO DISCO MIXER with auto fade
4 Channel Sound to Light Sequence Chaser
FRONT PANELS for above LIGHTING UNITS FUZZ LIGHTS. Red, Green. Blue and Amber
TUAC AMPLIFICATION Loline 125 watt with sustain
Loline Slave 125 watt
Loline 60 watt with sustain. Loline 60 watt with sustai
Combo Twin 60 reverb
Combo 30 1SOd 人日 y yato O1 TO ORDER BY POST
Make cheques/P O.s payable to TUAC LTD (PE 77) or
quote Access/Barclaycard No. and post to TUAC LTD.
(PE77) 119 Charlmont Road. London SW17 9AB. We
accept phone orders from Access/Barclaycard Holders.
Phone 01-672 9080 .
SUPPLIERS TO H.M. GOVT. DEPTS. MANUFACTURED AND ASSEMBLED IN GT.BRITAIN FULLY TESTED AND GUARANTEED.



> PRE AMPLIFIERS


- 4 R.C.A. 150 watt 15 amp output fand Thermal overload protection Only 6 connections.
All output power ratings $\pm 0.5 \mathrm{~dB}$. Output impedance $8-15$ ohms; THD at full power $2 \%$ typicaliy $1 \%$. input
sensitivity 60 mV into $10 \mathrm{k} \Omega$, Frequency response 20 Hz -
$20 \mathrm{kHz} \pm 2 \mathrm{~dB}$. Hum and noise better than -70 dB .
ALL PRICES INCLUDE V.A.T.
POSTAGEAND PACKING FREE
Send large stamped addressed enveiope with all Send large stamped addressed envelope with all
enquiries for fully illustrated 12 page catalogue. Trade
and Export Enquiries $01-6729080$
 Geo Mathews 8587 Hurst Street. Birmingham (Teel 021-622 1941)
Ahthur Salus Lid. 28 Gardner Street iTel Braghton 65806 )
Bristol Disco Centre. 25 The Promenade Gloucester Road (Tel
 Treble
10dB at
voltage
$\mathbf{5 . 0 0}$


## $$
\begin{aligned} & 0 S \cdot 93 \\ & S L \cdot 63 \\ & 0 S \cdot \forall 13 \\ & 0 G \cdot G 13 \\ & 5 L \cdot 913 \\ & 0 S \cdot 923 \\ & \text { SL.923 } \\ & 00 \cdot 8 Z 3 \\ & \text { p.eod } \end{aligned}
$$

£15.00

| Vacuum varnish impregnated. Transformers with supply boardincorporating pre-amp supply. |  |
| :---: | :---: |
|  |  |
| PS250 for supplying 2 TP125s | £28-00 |
| PS200 for supply to TL100 | £26.75 |
| PS60/60 for supplying 2 TL60s | £25-50 |
| PS125 $\pm 45$ volts for TP125 | £16.75 |
| PS100 $\pm 43$ volts for TL100 | £15.50 |
| PS60 $\pm 38$ volts for TL60 | £14.50 |
| PS30 $\pm 25$ volts for TL30 | £9.75 |
| PSU 2 for supplying disco mixer | er £6.50 |

PSU 2 for supplying disco mixer PRE AMPLIFIERS
$\begin{aligned} & \text { Designed for use with TUAC power amplifier modules. Extensive } \\ & \text { research has gone into various wide range tone control circuits } \\ & \text { produces superb sound quality. Thousands already in use in protessional }\end{aligned}$ amplification systems. and Bass controls. HI IMP. FET. I/P suitable Mid 09.83 zHOt ie gpol-0z+ sseg zHyt ie gpgl-0z+p!w zHy91 va06 Vol. Treb and Bass controls. Sensitivity 8 mV . Treb $+28-15 \mathrm{~dB}$ £7.50 SVAOB STEREO PRE AMP Vol. Treb. Mid and Bass controls. U
suitable. Guitar, Radio, Crystal/Ceramic P.U. Sensitivity 4 MV . Treble
+35 dB at 16 kHz . Mid $+20-15 \mathrm{~dB}$ at 4 kHz . Bass $+20-10 \mathrm{~dB}$ proplification systems. Specification on power modules: Rugged layer wound ns uo
5. POWER SUPPLIES
PS200 for supply to TL100
PS60/60 for supplying 2 TL60s PS125 $\pm 45$ volts for TL 100
PS100 $\pm 43$ volts for TL PS120 $\pm 43$ volts for TL100
PS60 $\pm 38$ volts for TL60
PS30 $\pm 25$ volts for TL30

## SAMICONDUGTORS-COMPONENTS

## DIODES

| Type | Price | Type | Price | Type | Price | Type | Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AA129 | ¢0.08 | BY100 | c0. 22 | BYZ11 | ¢0.45 | OA91 | ¢0. 07 |
| AAY30 | c0.09 | BY107 | c0. 22 | BYZ12 | 50.45 | OA95 | c0. 07 |
| AAZ13 | co. 15 | BY105 | co 22 | BYZ13 | 50.40 | OA182 | ¢0. 13 |
| AAZ17 | c0.15 | BY114 | \$0. 22 | BYZ16 | c. 0.41 | OA200 | c0.08 |
| BA100 | c0. 10 | BY124 | *¢0.22 | BYZ17 | ¢0.36 | OA202 | c0.08 |
| BA102 | c0. 32 | BY126 | * $50 \cdot 15$ | BYZ18 | c0.36 | SD10 | c0. 06 |
| BA148 | c0.15 | BY127 | *¢0. 16 | BYZ19 | 50. 36 | SD19 | [0. 06 |
| BA154 | co. 12 | BY128 | c0. 16 | OA10 | c0. 35 | \|N34 | ¢0.07 |
| BA155 | 50. 14 | BY130 | - 20.17 | OA47 | c. 08 | [N34A | ¢0.07 |
| BA156 | co-14 | BY133 | * 0 - 21 | OA70 | c0-08 | [ ${ }^{1} 914$ | E0.06 |
| BA173 | 50.15 | BY164 | 20.51 | OA79 | 50.13 | IN916 | ¢0.06 |
| B8104 | c0. 15 | BY176 | * 50.75 | OAB1 | co. 13 | (N4148 | c0.06 |
| EAX13 | c0. 07 | BY206 | c0. 30 | OAB5 | [0.13 | 1544 | c0. 05 |
| + BAX 16 | c0. 08 | BYZ10 | 50.45 | OA90 | 50.07 | 15920 | ¢0.06 |
|  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Type } \\ & \text { is920 } \end{aligned}$ | $\begin{aligned} & \text { Price } \\ & \text { co. } 06 \end{aligned}$ | Type INa003 | $\begin{aligned} & \text { Price } \\ & \text { ع0.08 } \end{aligned}$ | $\begin{aligned} & \text { Type } \\ & \text { IS020 } \end{aligned}$ | $\begin{aligned} & \text { Price } \\ & \mathrm{co} \cdot 10 \end{aligned}$ | Type IN5400 | Price <br> §0. 14 |
| IS921 | c0. 07 | IN4004 | ¢0.09 | !S021 | c0. 11 | IN5401 | £0. 15 |
| IS922 | c0.08 | 1 N 4005 | £0. 10 | !S023 | c. 13 | iN5402 | co 16 |
| 15923 | c0. 09 | IN4006 | £0. 11 | (S025 | c0. 14 | IN5404 | co 17 |
| - $\$ 924$ | co. 10 | IN4007 | ¢0. 12 | 15027 | co-16 | IN5406 | ¢0-21 |
| \| N 4001 | 10.05 ${ }^{\text {d }}$ | IS015 | ¢0.09 | IS029 | c0-20 | IN5407 | ¢0. 25 |
| \|N4002 | co. 07 |  |  | IS031 | co-25 | IN5408 | co. 30 |


|  | 2 AMP TOS CASE |  | 10 | AMP TOAA CASE |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| volts | No. | Price | Volts | No. | Price |
| 100 | TR12A 100 | c0.31 | 100 | TR110A 100 | ¢0. 77 |
| 200 | TR12A 200 | c0. 51 | 200 | TR:10A200 | 50.92 |
| 400 | TR12A 400 | ¢0.71 | 400 | TR1104 400 | E1. 12 |
|  | 6 AMP TOEE CASE |  |  | AMP TO220 CAS |  |
| Volts | No. | Price | Volts | No. | Price |
| 100 | TR16A 100 | c0.51 | 400 | TR110A 400P | £1.12 |
| 200 | TR16A 200 | 50.61 |  | DiACS |  |
| 400 | TR16A 400 | 50.77 | BR 100 | ¢0.23 D32 | ¢0. 23 |


| THYRRSTORS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 600mA TO18 CASE |  |  | 7 AMP TO48 CASE |  |  |
| Volts | No | Price | Volts | No. | Price |
| 10 | THY600 10 | c0. 15 | 50 | THY7A 50 | c0. 48 |
| 20 | THY600 20 | ¢0.16 | 100 | THY7A 100 | co. 51 |
| 30 | THY600/30 | c0. 20 | 200 | ThyTa 200 | ¢0. 57 |
| 50 | THY600/50 | ${ }_{50} .22$ | 400 | THY7A 400 | co. 62 |
| 100 | THY600/100 | ${ }^{50} 2.25$ | 600 | THY7A 600 | ¢0.78 |
| 200400 | $\begin{aligned} & \text { THY600/200 } \\ & \text { THY600/400 } \end{aligned}$ | $\begin{aligned} & 50.38 \\ & 50.45 \end{aligned}$ | 800 | thy7a 800 | c0.92 |
|  |  |  |  |  |  |
|  | 1 AMP TOS CASE |  | 10 AMP TOAA CAS |  |  |
|  |  |  | ${ }^{\text {Voli }}$ | NOMY:OA 50 | ${ }_{\text {crice }}^{\text {coice }}$ |
| Volts | No. | Price | 100 | THY10A. 100 | ¢0. 57 |
| 50 | THY1A 50 | £0. 26 | 200 | THY 104200 | \$0.62 |
| 100 | ThYıA 100 | co. 28 | 400 | THY 10 A 400 | 50.71 |
| 200 | THY1A/200 | ¢0. 32 | 600 | THY 10 A 600 | 50.99 |
| 400 | Thr 1 a 400 | ${ }^{20} 0.38$ | 800 | THYT0A 800 | \$1.22 |
| $\begin{aligned} & 600 \\ & 8000 \end{aligned}$ | (thY1A600 | ${ }_{80} 58$ |  |  |  |
|  |  |  | AMP TO48 CAS |  |  |
|  |  |  | Volts | No | ce |
|  | AMP TO66 CASE |  |  | THY 16A 50 | c0. 54 |
|  | No |  | 100 | THY16A 100 | ${ }^{\text {c }}$. 58 |
| 50 | thyas 50 |  | 200 | THY16A 200 | ${ }^{20.62}$ |
| 100200 | THY3A 100 | ¢0.30 | 400 600 | THY16A 400 | ¢0.77 ¢0. co |
|  | THY3A/400 | c0.5050 | ${ }_{800}$ | THY16A 800 | ¢1.39 |
| 400 |  |  |  |  |  |
| $\begin{aligned} & 600 \\ & 800 \end{aligned}$ | THY 3 A 800 | c0.50 | AMP tog 4 CAS |  |  |
|  |  |  | Vofis | No. | Price |
| 5 AMP TO66 CASE |  |  | 50 | TMY30A 50 | ¢1. 18 |
|  |  |  | 100 | THY30A 100 | £1.43 |
| Volt50 | No | Price | 200 | THY30A 200 | ¢1.63 |
|  | THY5A 50 | ¢0. 36 | 400 | THY30A 400 | ¢1.79 |
| 100 | THY5A'100 | \$0. 46 | 600 | TMY30A 600 | E3. 50 |
| 200400 | THY5A 200  <br> THY5A 400 ¢0. 50 <br> 0.57  |  |  |  |  |
|  |  |  | No |  | Price |
| 600 | $\begin{aligned} & \text { THY5A } 600 \\ & \text { THY5A 800 } \end{aligned}$ | $80.69$ | BT 101/500R |  | ¢0. 80 |
| 800 |  | E0. 81 | BT102 500R |  | ¢0.80 |
|  |  |  |  |  | 51.25 |
| 5 AMP TO220 CASE |  |  | BT107 |  | ${ }^{20.93}$ |
|  |  |  | ET108 |  | c0.98 |
| Volts | No. | Price | 2 N 3228 |  | c0. 70 |
| 400 | THY5A 400P | 50.57 | 2 N 3525 |  | ¢0. 77 |
| 600 | THY5A 600P | 80.69 | BTx30/ |  | ¢0. 33 |
| 800 | THY5A ${ }^{\text {coip }}$ | ¢0.81 | ${ }^{\text {BT }} \times 304$ |  | c0.46 |
|  | THSACBOP |  | C106/4 |  | ¢0. 60 |

## ORDERING

PLEASE WORD YOUR ORDERS EXACTLY AS PRINTED NOT FORGETTING TO INCLUDE OUR PART NUMBER

## VAT

ADD $12 \frac{1}{2} \%$ TO PRICES MARKED * ADD $8 \%$ TO OTHERS excepting those marked $\dagger$. these are zero RATED

## POSTAGE AND PACKING

Add 25 p for postage and packing unless otherwise shown. Add extra for airmail. Min order £1

## SUPER UNTESTED PAKS

| Pak |  |  | Order |  |
| :---: | :---: | :---: | :---: | :---: |
| No. | Oty |  |  | Price |
| 450 | 100 | Germ. gold bonded OA47 diode | 16130 | 50.60 |
| 051 | 150 | Germ. Oa70/81 diode | 16131 | co. 60 |
| 052 | 100 | Slicon diodes 200 ma OA200 | 16132 | c0. 60 |
| 453 | 150 | Diodes 75mA 1 IN4148 | 16133 | 50.60 |
| 454 | 50 | Sil rect top hat 750 mA | 16134 | co. 60 |
| U55 | 20 | Sil rect stud type 3 amp | 16135 | 50.60 |
| $\cup 56$ | 50 | 400 mW zeners DO7 case | 16136 | ¢0.60 |
| U57 | 30 | NPN trans BC 107/8 plastic | 16137 | -co. 60 |
| 458 | 30 | PNP trans BC177/178 plastic | 16138 | +50.60 |
| U59 | 25 | NPN TO39 2N697/2N1711 silicon | 16139 | 50.60 |
| U60 | 25 | PNP TO59 2N2905 silicon | 16140 | c0.60 |
| U61 | 30 | NPN TO18 2N706 silicon | 16141 | c0. 60 |
| 462 | 25 | NPN EFY50/51 | 16142 | c0. 60 |
| U63 | 30 | NPN plastic 2N3906 silicon | 16143 | - 50.60 |
| 164 | 30 | PNP plastic 2N3905 silicon | 16144 | -50. 60 |
| U65 | 30 | Germ 0071 PNP | 16145 | c0. 60 |
| U66 | 15 | Flastic power 2N3055 NPN | 16146 | ¢1. 20 |
| U67 | 10 | TO3 metas 2N3055 NPN | 16147 | 51.20 |
| U68 | 20 | Unijunction trans TIS43 | 16148 | ¢0. 60 |
| 469 | 10 | 1 amp SCR TO39 | 16149 | [1. 20 |
| U70 | 8 | 3 amp SCR TO66 case | 16150 | 11.20 |

in the pak. The devices themselves are normally unmarked

## COMPONENT PAKS

Pak
No
$\mathrm{C}:$
C 2
C 3
C
C 4

C
C
C
C
$\mathrm{C8}$
C
$\mathrm{C}+0$
C 11

```
cor value approx
(count by welght)
Capacitors mixed value approx
(count by weight)
        C(count by weight)
```

values
vatues
Pieces assorted ferrite rods
Tuning gangs. MW/1W VHF
Pack wire 50 metres ass
colours single sitrand
Reed switches
Assorted pots
Metal jack sockets $3 \times 3.5 \mathrm{~mm}$
aper condensers preferred
types mixed values
Electrolytics trans. types
Pak assorted hardware-
nuts bolts. gromets. el
Assorted tag strips and panels
Assorted tag strips and
Rotary wave change sw
Relays 6-24V operating
Pak, coppe
200 sq.in
5 Assorted fuses $100 \mathrm{~mA}-5 \mathrm{amp}$
Metres PVC sleeving assorted
size and colour
watt resistors mixed preferred
values
Metres stranded wire assorted
Order
No
16164
values resistors Mixed
Mixed
16165
16166
6167
16167
16168
16168
16169
16170
$6170 \begin{array}{r}+\begin{array}{l}20.60 \\ 20.60\end{array} \\ \hline\end{array}$
50.60
50.60
(-Approx 30 sa in various sizes All
matrix.
ORDER No. 16199
ORDER No. 16199
VB2-ADProx 30 sq. in various stzes 0.15 p
V82-Approx 30 sq in various stzes. 0.15 in
matrix.
ORDER No. 16200
ELECTROLYTIC PAKS
A range of paks each containing 18 firs
quality, mixed value miniature electrolytics.
ORDEA No 16201
C2-Values from 10 mF to 100 mF
ORDER No. 16202
EC3-Values 16202 (o 100 mF
ORDER No 16203
C280 CAPACITOR PAK
75 Muliard C 280 capacitors, mixed values
ranging from $0.01 \mu \mathrm{~F}$ to $22 \mu \mathrm{~F}$ complete with
anging from $0.01 \mu \mathrm{~F}$ to $22 \mu \mathrm{~F}$ complete with
dentification sheet.
ORDER NO 16204
CARBON RESISTOR PAKS
These paks contain a range of Carbon
Resistors, assorted into the following groups
A1-60 mixed 1/w $100-820$ ohms
ORDER No. 16213
R2- 60 mixed $1 / 6 \mathrm{~W}$ i-8. $2 \mathrm{k} \Omega$
R2-60 mixed $1 / \mathrm{W}$ i-8 $2 \mathrm{k} \Omega$
ORDER No 16214
R3- 60 mixed $1 / w \mathrm{w} 10-82 \mathrm{k} \Omega$
ORDER No. 16215
ORDER No. 16215
A4 $60 \mathrm{mixed}, \mathrm{W} 100-820 \mathrm{k} \Omega$
R4 60 mixed ${ }^{2} \mathrm{~W} 100$
ORDER No 16216
ORDERNO. 16216
R5 40 mixed
${ }^{2} \mathrm{w} ~$
$100-820 \mathrm{k}$
R5 40 mixed ${ }_{2} W$ 10
ORDER No 16217
R6 40 mixed $1 / w 1-8 \cdot 2 \mathrm{k} \Omega$
ORDER No 16218
R7-40 mixed $1 / 2 \mathrm{~W} 10-82 \mathrm{k} \Omega$.
ORDER No 162
R8-40 mixed $162 \mathrm{~W} 100-820 \mathrm{k} \Omega$.
ORDER No 16220
R9-60 mixed 16220
ORDER NO 16230
R10-40 mixed $1 / \mathrm{W} 1-10 \mathrm{M} \Omega$
ORDER No $16231{ }^{10} \quad{ }^{*} 60$
WORLD SCOOP!
JUMBO
SEMICONDUCTOR PAK
Transistors, Germ. and Silicon Rectifiers
Diodes. Triacs. Thyristors. ICs and Zeners
ALL NEW AND CODED
Approx. 100 pieces. Offering the amateur a
fantastic bargain PAK and an enormous
saving-dentlifation and data sheet in every
ORDER No. 16222


## THE 'NUTS \& BOLTS' OF THOSE PROJECTS

TRANSFORMERS
MINIATURE MAINS Primary 240 V

| with two independent secondary windings |  |  |  |
| :---: | :---: | :---: | :---: |
| No |  |  | Price |
| 2024 | MT 2800 O-6V. | 0-6V AMS | ¢1.30** |
| 2025 | MT150 0-12V O- | 0-12V RMS | [1. 30* |
| MINIATURE MAINS Primary 240 V |  |  |  |
| $\begin{array}{ll}\text { No } \\ 2021 & \text { Secondary } \\ 6 \mathrm{~V}-0-6 \mathrm{~V} \text { 100 ma } & \text { Price } \\ \text { cop }\end{array}$ |  |  |  |
|  |  |  |  |
| 2022 9V-0-9V 100mA 90p* |  |  |  |
| 2023 | $12 \mathrm{~V}-0-12 \mathrm{~V}$ | $\checkmark 100 \mathrm{~mA}$ | 95p* |
| 1 AMP MAINS Primary 240 V |  |  |  |
| No. | Secondary | Price |  |
| 2026 | $6 \mathrm{~V}-0-6 \mathrm{~V} 1 \mathrm{amp}$ | c2.70* |  |
| 2027 | 9V-0-9V 1 amp | ¢2.20* | P \& P 30p |
| 2028 | 12V-0-12V 1 amp | ¢2.60* | P \& P 30p |
| 2029 | 15V-0-15V 1 amp | ¢2.75* | $P$ \& P ${ }^{30} \mathrm{p}$ |
| 2030 | $30 \mathrm{~V}-0-30 \mathrm{~V} 1 \mathrm{amp}$ | c3.45* | p. \& P. 30p |

STANDARD MAINS Primary 240 V
mitt-tapped secondary mains transiormers available in are $0-19-25-33-40-50 \mathrm{~V}$

AUDIO OUTPUT Primary ${ }^{1} 2 \mathrm{k}$. Secondary 5 ohms
200 mW Dimensions $20 \times 16 \times 15 \mathrm{~mm}$
Order No 2037
MINIATURE INTER/DRIVER
Primary 20kの. Secondary $1 \mathrm{k} \Omega$. Aatio 51.
Order No 2038
LT710 MIN. INPUT
$\left.\begin{array}{l}\text { Primary } 100 \mathrm{k} \Omega \text {. Secondary } 1 \mathrm{k} \Omega .15 \times 13 \times 13 \mathrm{~mm} \quad \text { co. } 42^{*} \\ \text { Order No. } 3051\end{array}\right)$.

Order No 2040
Primary 500 ohm . ST712 MiN. OUTPUT $100 \mathrm{~mW} .15 \times 13 \times$ 13 mm .
Order No. 2041
LT717 MIN. INPUT
Primary $150 \mathrm{k} \Omega$. Secondary $1 \mathrm{k} \Omega, 20 \times 15 \times 15 \mathrm{~mm} \quad \mathbf{~} \quad \mathrm{CO} .52^{*}$ Order No 2042
Order No 2042
LT719 MIN. INPUT
Primary $20 \mathrm{k} \Omega$. Secondary $1 \mathrm{k} \Omega .20 \times 15 \times 15 \mathrm{~mm}$,
Order No 2043
722 MIN. DAIVER
Primary 10 k . Secondary 2 k . C. T. $20 \times 15 \times 15 \mathrm{~mm}$. Order No. 2044

LT724 MIN. OUTPUT
Primary $1.2 \mathrm{k} \Omega$ C. T. Secondary 3.2 and 8 ohm .200 mW Olmensions $20 \times 15 \times 15 \mathrm{~mm}$
Order No. 2045

LTT26 MIN. OUTPUT
Primary 500 ohm. Secondary 32 and 8 ohm. 200 mW Dimensions $20 \times 15 \times 15 \mathrm{~mm}$
Order No 2046 Order No 2046

## LT728 MIN. DRIVER

Primary $1 \mathrm{k} \cap$ C.T, Secondary 500 ohm C.T Dimensions $25 \times 20 \times 20 \mathrm{~mm}$

```
LTT29 MIN OUTPUT
```

Peimary 200 onm C.T. Secondary 32 and 8 ohm. 400 mW Dimensions $25 \times 20 \times 20 \mathrm{~mm}$. Order No 2048
Primary 500 onm CTT. Secondary 3.2 and 8 onm, 500 mW Dimenstons $25 \times 20 \times 20 \mathrm{~mm}$
Order No 2049
$\mathrm{co} .42^{\circ}$

| L.E.D.8 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Type | S12* | Order No. | Colour | Price |
| T/L209 | 0.125 in | 1501 | RED | 12p |
| T1L211 | $0.1251 n$ | 1502 | GREEN | 25p |
| T\|L213 | $0.1251 n$ | 1503 | YELLOW | 25p |
| FLV115 | $0 \cdot 2 \mathrm{n}$ | 1504 | RED | 12p |
| FLV310 | $0 \cdot 2+n$ | 1505 | GREEN | 25p |
| FLV410 | 0.2 m | 1506 | YELLOW | 25p |

2 nd Grade L.E.D.s
A pack of standard sizes and colours which tail to perform to their very

| experiments |
| :--- |
| Order No | 507

L.E.D. CLIPS

|  | L.E.D.CLIPS |  |  |
| :--- | :--- | :--- | ---: |
|  | Size | Orde No, | Price |
| Pack of 5 | 0 125in | $1508 / 0^{125}$ | 15p |
| Pack of 5 | 0.2 in | 15080.2 | 18p |

## NUTS AND BOLTS

BA BOLTS packs of BA threaded cadmium-plated screws. slotted cheese head


BA NUTS-packs of cadmium-plated tull nuts in multiples



## BRIDGE RECTIFIERS

| SILICON 1 amp |  |  |
| :---: | :---: | :---: |
| Type | Order No | Price |
| 50 V RMS | BR1/50 | co 28 |
| 100V RMS | BR1/100 | ¢0. 30 |
| 200V RMS | BR1/200 | ¢0. 32 |
| 400 V RMS | BR1/400 | ¢0.36 |
| SILICON 2 amp |  |  |
| 50 V AMS | BR2/50 | ¢0.45 |
| 100V RMS | BR2/ 100 | ¢0. 48 |
| 200 V RMS | BR2/200 | $\mathrm{CO}_{0} 52$ |
| 400 V RMS | BR2/400 | ¢0. 58 |
| 1000V RMS | BR2/ 1000 | c0. 68 |

## FUSE HOLDERS AND FUSES

## Description

$20 \mathrm{~mm}=5 \mathrm{~mm}$ chassis mountung 1-in $x$ in chassis mounting
1 i. in car inline type
Panel mounting 20 mm
Panel mounting $1_{\dot{z}} / \mathrm{m}$
QUICK BLOW 20 mm

| Type | No. |
| :--- | :--- |
| 10 mA | 611 |
| 250 mA | 612 |
| 550 mA | 613 |
| 800 mA | 614 |

Type
1 A
1.5 A
2 A
25 A




| ype | No |
| :--- | :--- |
| 100 mA | 622 |
| 250 mA | 623 |
| 500 mA | 624 |


| Type | No |
| :--- | :--- |
| 1A | 625 |
| 2A | 626 |
| $16 A$ | 627 |

## QuICK BLOW 1tin <br> Type 250 mA <br> 

Just a selection from our huge stocks SEE OUR 1977 CATALOGUE 126 pages packed with valuable information ORDER NOW ONLY 50P plus 150 P. \& $R$.

## SWITCHES



Single-bank water type-sultabie for switching at 250 V a.c 100 mA or 150 V d c in non-reactiver loads make-beforebreak contacts. These swithes have a spindle 0.25 in dia. and $30^{\circ}$ indexing

| Descriptlon |  |
| :--- | :--- |
| 1 pole | 12 way |
| 2 pole | 6 way |
| 3 pole | 4 way |
| 4 pole | 3 way |

$\underset{1965}{ }$

MICRO SWITCHES
Order No Price
Rating 10 amp 250 V a.c.
Bution glves 1 pole change
Rever ctlon

| Rating 10 amp 250 V e.c. | 1970 |
| :--- | :--- |
| $\mathbf{0 0 . 2 5}$ |  |

## DISPLAYS


side viewing indicator tubes. Displays 0-9 and decima points. Wide viewing angle-operates from 180 V with $16 \mathrm{k} \Omega$ series anode resistors-character height 165 mm pin
connections supplied. connections supplied.

Order no 1513 Price $\mathbf{£ 0 . 6 0}$

## VOLTAGE REGULATORS

Positive Regulatore TO220 cate
$\begin{array}{lll}\text { MVA } 7805 & 5 V \\ \text { MVA } 7812 & 12 \mathrm{~V} & \mathbf{1} \cdot \mathbf{2 5}\end{array}$
Negatlve Regulatore TO220 case MVR 7905 5V $£ 1.85$
$\begin{array}{ll}\text { MVR } 7915 & \text { 15V } \\ \text { MVR } 7924.85 \\ 24 \mathrm{~V} & £ 1.85\end{array}$

## ORDERING

PLEASE WORD YOUR ORDERS EXACTLY AS PAINTED. NOT FORGETTING TO INCLUDE OUA PART NUMBER VAT
ADD $12 \frac{1}{2} \%$ TO PRICES MARKED* ADD $8 \%$ TO OTHERS EXCEPTING THOSE MARKED $\dagger$ THESE ARE ZERO RATED
POSTAGE AND PACKING
Add 25 p for postage and packing unless othe wise shown. Add extra for armall Min order $£$


Dept. P.E.7, P.O. Box 6, Ware, Herts COMPONENTS SHOP:



## TECHNICRE TRAINING IN ELECTRONICS RND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success: knowledge that will enable you to take advantage of the many opportunities open to trained people. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching if you are studying for
City \& Guilds Certificates
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation
and Contracting
POST OR PHONETODAY FORFBE FBOOKLET.
To: International Correspondence
Schools
1 Dept. 772 H Intertext House, London
SW8 4UJ or telephone 01.6229911
Subject of Interest
Name
Address


## DCYAm kits

DORAM KITS CONTAIN EVERYTHING DOWN TO THE LASTNUTI


Completely self contaned unit requiring only connection to mains and TV UHF aerat socket. Incorporates its own pulse generator giving fully interlaced scan and has unique frequenoy adjustment control, calibrated using
visual display on $T V$ screen to ensure correct field trequency.
Choice of outputs blank raster dots crosshatch and greyscale plus set frequency position. Facilitates setting static and dynamic convergence, purity, black level, linearity, focus.

> O'seas orders-add $\$ 5 \%$ for $\mathrm{P}+\mathrm{P}$. All items offered for sale subject to the Terms of Business set out in Doram Edition 3 catalogue, price 60 The Doram Kit brochure is also available, price 25 p. Combined price only 70 p which also entitles you $102 \times 25$ vouchers, each one usable on any order placed to the value of $£ 500$ or more (ex. VAT) DORAM ELECTRONICS LTD. $$
\text { PO. BOX TR8. WELLINGTON RD.IND EST. LEEDS LS12 2UF }
$$

An Electrocomponents Group Company

## Mews from Josty in

## JOSTYKIT-a product from Denmark

HF 61-2 DIODE MEDIUM WAVE RECEIVER


By means of a very simple technique a reasonable reception is attained. HF 61-2 is bulit on a small circuit board of the same size as the general purpose amplifier AF 380. The two assemblles should be connected to produce power for a loudspesker. beginners, ho have not tried to assemble electronic kits betore.

HF 305 VHF RADIO-CONVERTER
Extend the range of your transistor
radio. Listen to Amateurs (2
$\begin{array}{ll}\text { metre band }) & \text { Aircraft, } \\ \text { Trawlers, etc } & \text { Two }\end{array}$
$\begin{array}{lcl}\text { Trawlers, etc } & \text { Two } \\ \text { transistor circuit } & \text { with }\end{array}$
printed circuit colls, varactor diodes and superior circuit design. Converts radio signals in the $100-200 \mathrm{MHz}$ range to output signal at 100 MHz . Pipe this into your VHF recelver and you're in a 56.70 new dimension.

## AT 365 3-CHANNEL DISCO LIGHT



A new concept in psychedelic lighting. Uses built-in microphone. Avoids awkward Position light-show to best advantage without long tralling leads-iust plug in to neares power point. Clrcuit combines latest integrated circuit techniques with soltd-ate power control Quad op amp makes selection of tass, midrange and treble frequencies easy. Three thyrigtors (SCRs) control three separate lampbanks. Kit includes fused dc power supply and FET zero light adjustment. WARNING Only experienced persons should attempt the interconnection of mains equipment.

HF 385-2 VHF/UHF AERIAL AMPLIFIER

A quality, printed clicuit, no trimming. aerial amplitier Fantastic frequency range due to use of printed coils, 21 dB amplification a 400 MHz TwO separate loss of signal or intercommunication problems


NT 410 AERIAL AMPLIFIER CURRENT SUPPLY


NT 410 is a current supply, specially built for aerial amplifiers, such as HF 385-2, but can also be used for other aerial amplitiers. NT 410 is supplied with input and output clamps for 75 ohm or 50 ohm aerlal cables. It is therefore not necessary to solder -just cut and strip the aerial cable and attach to NT 410 . The aerial signal from the aerial amplitier to the recelver passes without complications and the current to the aerial ampllfier passes through the same cable. NT 410 describes how to use N 410 together with HF 395 and HF 385-2

E4. 50


MAIL ORDER DIVISION P.O. BOX 68, MIDDLESBROUGH, CLEVELAND, ENGLAND B1 5CQ

## SYNTHESISER AND SOUND EFFECT KITS

## PHONOSONICS

## MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS. KITS AND COMPONENTS TO A WORLD-WIDE

 MARKET.
## P.E. MINISONIC MK, 2 SYNTHESISER

A portable mains-operated Miniature Sound Synthesiser with Keyboard circuits Although having slightly tewer rachies than the large P.E Synthesiser the functions offered by this design give it great scope and versatility Consists of 2 log VCOs. VCF. 2 envelope shapers. 2 voltage controlled amps. keyboard hold and control circuits. HF output amp and mixer, power supply. hotse generator $\begin{array}{lr}\text { Set of basic component kits } & \text { from £54.25 } \\ \text { Set of printed circuit boards } & \text { £9.71 }\end{array}$
ELEKTOR "FORMANT" SYNTHESISER (Elektor Magazine 1977)
Details of component kits and PCBs are in our lists
GUITAR EFFECTS PEDAL (P.E July 75)
Modulates the attack, decay and filter characteristics of an audio signal not only from a gutar but from any audio source. producing 8 different switchable effects that can be further modified by manual controls Possibly the mos range Circuit does not duplicate effects from the Guitar Overdrive Unit Component set with special foot operated switches
Alernative component sel with panel mounting
switiches
Printed circ
SOUND BENDER (PE. May 74)
A multi-purpose sound controller, the functions of which nclude envelope shaper. tremolo. voice-operated fader
automatic fader and frequency-doubler
Component set for above functions (excl SWs) $\quad$ E7.84 Printed circult board
$\$ 1.81$
Optional extra-additional Audio Modulator, the use of which. in conjunction with the above component set. can produce jungle-drum rhythms
Component set (incl PCB)
£2.88
PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlled unit for introducing the phasing sound into live or recorded music
Component set (incl PCB)
PHASING CONTROL UNIT (P E Oct. 74)
For use with the above Phasing Unit to automatically Component sel (incl PCB)

WAH-WAH UNIT (P.E Apr 76)
The Wah-Wah effect produced by this unif can be controiled
Component set (incl PCB)
§3. 55
AUTOWAH UNIT (P.E. Mar 77)
Automatically produces Wah-pedal and Swell-pedal sounds each time a new note is played.
Component set. PCB, special foot switches
Component set and PCB. with panel switches $\begin{array}{r}{[7 \cdot 27} \\ {[4 \cdot 83}\end{array}$

## POST AND HANDLING

K orders-under $£ 15$ add $25 p$ plus VAT. over $£ 15$ add $50 p$ plus VAT Keyboards $£ 150$ plus VAT
Opional Insurance for compensation against loss or damage in post. add 35 p in addition to above post and handling
Eire, CI, BFPO, and other countries are subject to Export postage rates

COMPONENTS SETS include all necessary Cosistors capacitors meters and transiormers Hardware such as cases. sockets. knobs, etc are not included but most of these may be bought separately Fuller details of kits. PCBs and parts are shown in ou lists.

CIRCUIT AND LAYOUT DIAGRAMS are sLupplied tree with all PCBs designed by Phonosontcs

PHOTOCOPIES of the PE texts for most of the kits are available-prices in our IIsts

## P.E. JOANNA (P.E. May/Sept 75)

A five-octave electronic plano that has switchable alternative voicing of Honky-Tonk plano. ordinary plano. harpsichord, or a mixture of any of the three, together with pedal switching and sustain pedal switching. The sower amplifier typically delivers 24 watts into 8 ohms. The PCBs have been redesigned by ourselves making improved use of the space available
Main power supply, tone generator. 61 envelope shapers. oicing and pre-amp circuits
Set of basic component kits for above
Sel of printed circuit boards for above Power amplifier
Prinied circuit board for power amp

## RHYTHM GENERATOR (P E. Mar. Apr. 741

Programmable for 64.000 rhythm patterns from 8 ettects and short brushes. blocks and soft cymbal drums. Iong ariable time signatures and rhythmbal). and with fascinating and useful.
empo. Timing. Logic, 8 Effects circuits. PSU. Set of basic component kits for above
Set of printed circuit boards for above $〔 .36 \cdot 14$
$£ 7.03$


VOICE OPERATED FADER (P.E. Dec. 73 )
For automatically reducing music volume during
talk-over"-particularly useful for Disco work or for home-movie shows
Component set (incl. PCB)
§3.97

## VOLTAGE CONTROLLED FILTER (P.E. Oct. 74)

An independently designed VCF that can be used with the E Synthesiser
Printed circult board
SOUND-TO-LIGHT (P.E Aurora) (P.E. Apr.-Aug. 71)
Four channels each responding to a different sound trequency and controlling its own light. Can be used with Basic component set (excl thyenistors) Printed circuit board for above Power supply Power supply
PCB for power supply 515.92
E.3. 90
$55 \cdot 78$
$51 \cdot 79$

3-CHANNEL SOUND-TO-LIGHT (P.E Apr. 76)
A simple but effective sound-to-light controller capable of operating 3 lamps each of approximately 700 watts Includes power supply. thyristors. and by-pass switches
Component set (incl PCB)
$\mathbf{~} 11.95$

DISCOSTROBE (P.E. Nov. 76)
4.channel light-show controller giving a choice of sequential, random. or full strobe mode of operation. Basic component set
$518 \cdot 19$
$5.3 \cdot 45$
REVERBERATION UNIT (P.W. Nov./Dec. 72)
A high quality unit having microphone and line input pre-amps. and providing full control over reverberation
Component set (excl. spring unit)
Printed circuit board
gin spring unit
$〔 9.73$
$\mathrm{E1} .96$
$\$ 6.50$

## WIND AND RAIN UNIT

A manually controlled untt for producing the above-named
sounds
¢3. 72
GUITAR OVERDRIVE UNIT (P.E. Aug. 76)
Sophisticated. versatile Fuzz unit, including variable and switchable controls affecting the fuzz quality whilst Does not duplicate the effects from the Guitar Effects Pedal and can be used with it and with other electronic instruments.
Component set using dual slider pot
Component set using dual rotary pot
Printed cricult board
c6. 86
ع6.20
ع. 62

## FUZZ UNIT

Simple Fuzz unit based upon P.E Sound Design
Component set (Incl PCB)
c2.03
TREMOLO UNIT
Based upon P.E Sound Design circuit
Component set (incl PCB)
$\{3.64$
TREBLE BOOST UNIT (P.E Apr 76)
Gives a much shriller quality to audio signals fed through Component set (Inct PCB)

DYNAMIC RANGE LIMITER (P.E. Apr. 77)
Automatically controls sound output to within a preset level.

## ENVELOPE SHAPERS

Both of the kits below have manual control over their Attack. Decay. Sustain and Release functions. Kits include PCB (VCA means Voltage Controlled Amplifier
Envelope Shaper and VCA (P.E. Apr 76) Envelope shaper (without VCA) (P.E. Oct. 75)
Transient generator (P.E. Apr. 77)
56.68
$\$ 4.68$

Holo gencraior (P.E. Ap. TiP
LIST-Send Stamped Addressed Envelope with all UK. equests tor tree list giving fuller details of PCBs. kits. and ther components

## DON'T FORGET VAT!

Add $12 \%$ (or current rate if changed) 10 tull total ot goods. post and handling (Does not apply to export orders).

## P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones An LED monitor clearly displays all beat note adjustments ideal for tuning acoustic and electronic musical
Main component set (incl PCB)
Power supply set (incl PCB)
£15.59
P.E. SYNCHRONOME \{P.E. Mar. 76\}

An accented-beat electronic metronome. providing duple. triple and quadruple times with full control over the beat rate Can also be used as a sim
generator. Includes power supply Component set (incl. loudspeaker)
£11. 62,
$£ 2.04$
PEAK LEVEL INDICATOR (P.E. Mar. 76)
A twin-channel visual display unit for monitoring the peak level of audio signals Well suited for use when inter-coupling our many sound producing kits to help avoid signal over-loading
Component set (incl PC

BIOLOGICAL AMPLIFIER (P.E Jan. Feb. 73)
Multi-function circuits that. with the use of other external equipmant. can serve as lie-detector. alphaphone.
cardiophone etc

Pre-Amp Module Component set (incl PCB) Besic Output Circults-combined component frequency meter and visual feed-back lampdriver circuits
Audio Amplifler Module Type PC7
$86 \cdot 59$
$\$ 7 \cdot 35$

## TAPE NOISE LIMITER

Very effective clircuit for reducing the hiss found in most tape recordings. All kits include PCBs Standard tolerance set of components Regulated power supply (will drive 2 sets
$\$ 2.96$
53.76

SEMI CONDUCTOR TESTER (P.E. Oct. 73)
Essential test equipment for the enterprising home
constructor. White stocks last. potentiometers. makaswitches and PCB Panel meter ( $500 \mu \mathrm{~A}$ )

MICROPHONE PRE-AMP (PE Apr. 77)
Component set (incl PCB)
©3.78

Prices are correct at time of press. E. \& O.E. delivery subject to avallabillty

EXPORT ORDERS are welcome. though we advise that a current copy of our list should be obtained before ordering as it also shows Export postape rates All payments must International Money Order or through an English Bank To obtain list send 40p.

## The Finest

The "S.K.A." Plastic Keyboard was developed by Kimber Allen Ltd. in co-operation wlth a Swedish company and the manufacturers state that in their opinion it is the finest moulded plastic keyboard made and is not to be confused with cheaper keyboards avaliable

The keys are moulded in Acrylic plastic, a material chosen for its hard wearing properties and ideal feel to the touch. They are moulded in two parts, the key face, which has to be perfect in appearance and finish, and the action, which has to be strong and carry the mechanism. The strong section of aluminium extrusion upon which they are mounted is specially designed to take all the pressures of playing Springs, felts, and contact actuators are supplied ready-fitted

The contact assemblies are constructed of laminated bakelite, thus giving smooth slot walls and completely free movement of the gold-clad contact wires Types available as follows (Contact pairs normally open)

| GJ-SPCO | $24 p$ each | GH-5 pairs | 57p each |
| :--- | :--- | :--- | :--- |
| GB-2 pairs | $27 p$ each | $4 P S-S P C O$ and 3 pairs | $53 p$ each |
| GC-3 pairs | $36 p$ each | Pailadium Wire Bus Bars, 1 octave |  |
| GE-4 pairs | $45 p$ each | lengths 50 p each |  |

SEE OUR OTHER ADVERT FOR SYNTHESISER AND SOUND EFFECT KITS AND SEE OUR LISTS FOR OTHER COMPONENTS AND ACCESSORIES STOCKED SEND S A.E. FOR FULL LIST (OVERSEAS SEND 40p)

## PHONOSONICS

## DEPT. PE57, 22 HIGH STREET SIDCUP, KENT DA14 6EH

## KEYBOARDS

## |||||||||||||||||||Y|||ㄴ. and CONTACTS



VAT: Add $12 \frac{1}{2} \%$ to final total on all U.K orders
EXPORT ORDERS ARE WELCOME but please see our price list for Export Postage Rates. N.B. Eire, Channel isles and B.F.P.O. classify as export.
Mall Order and C.W.O. only-Sorry but no callera plasee
Prices are correct at time of Prass, E, \& E. Deilvery subject to aveilability


## THE <br> "Manta" <br> CAPACITIVE DISCHARGE ELECTRONIC IGNITION UNIT

THE NEW, HIGHER RELIABIIITY VERSION OF THE P.E. "SCORPIO' MK II" IS NOW AVAILABLE IN KIT FORM!! Our thousands of satisfied customers report

M
ore miles per gallon (customers reports give $10 \%-25 \%$ saving -letters available)
A
ncrease in overall performance-your 4 cylinder car feels like a 6 cylinder
 through much less use of choke.
$\mathrm{T}_{\mathrm{n}}$ price? A snip at only $£ 16 \cdot 50$, fully inclusive of all parts, instructions, postage/packing and V.A.T. (ready bult unit available- 19.85 fully inclusive)
All parts to high specification, first quality and brand new
Construct this invaluable accessory, following our easy step by step instructions (also available separately, price 30 p post paid). Send for our free interesting six page brochure-' Electronic lgnitionHow it Works" (S.A.E. Please) to

## ELECTRO SPARES

Dept. P.E., 187a Sheffield Road, Chesterfield, Derbyshire S41 7JQ. Telephone: Chesterfisld (0246) 36638

CHINAGLIA DINO-ELECTRICAL AND ELECTRONIC TEST EQUIPMENT MANUFACTURERS


One of a range of professional quality instruments now available to U.K. users

- SENSITIVITY $20,000 \Omega V O L T$ (D.C). $4,000 \Omega$ IVOLT (A.C) ROBUS5 DIODE PROTECTED PRECISION MOVEMENT 33 RANGES D.C YOLTS $0-100 \mathrm{mV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}$. $150 \mathrm{~V}, 500 \mathrm{~V}, 1,500 \mathrm{~V} . \quad \mathrm{D} . \mathrm{C}$ CURRENT O-50HA, SmA, $50 \mathrm{~mA}, 500 \mathrm{~mA}, 2.5 A$ A.C. VOLTS, $0-7 . S V$, 25 V . $75 \mathrm{~V}, 250 \mathrm{~V}, 750 \mathrm{~V}, 1.500 \mathrm{~V}$ A.C. CURRENT $0-25 \mathrm{~mA}, 250 \mathrm{~mA}$, $2.5 A .12 .5 A$ dB RANGES - 10 to +69 RESISTANCE RANGES $10 \mathrm{~K} \Omega, 10 M \Omega$ F.S.D. CAPACITANCE RANGES $100 \mu \mathrm{~F}$, IF F.S.D. AC-CURACY-RESISTANCE, D.C. VOLTAGE AND CURRENT $2.5^{\circ}$ A.C. VOLTAGE AND CURRENT $35^{\circ}$ OHMS RANGES POWERED BY INTERNAL BATTERIES COMPACT SIZE: I $50 \times 85$ 40mm 350gr - CLEARLY CALIBRATED DIAL WITH ANTI-PARALLAX MIRROR OUTOFESSIONAL QUALITY COMPONENTS EMP GULLY GUARANTEED FOR 12 MONTHS AFTER SALES SERVICE AND SPARES FACILITIES SUPPLIED WITH ADDITIONAL SHOCKPROOF PLASTICS CARRYING CASE, TWO HIGHLYINSULATED TEST LEADS AND INSTRUCTION BOOKLET SPECIAL 30 KV PROBE FOR D.C. MEASUREMENT AVAILABLE AS AN OPTIONAL EXTRA PRICE £35'10 (p \& p £1) PROBE £12'85 inc, of VAT

For detals of this and the many other exciting instruments in the Chinaglia ranget including mult-meters, component measuring, automotive and electronic instruments please write or telephone

## BEFORE YOU BUY AN AMPLIFIER MODULE-CHECK:

* Glass fibre P.C.B
* Integral output capacitor

Then compare with the Tamba range-excellent value-25, 50 and 100 W A.M.S

| TAM 1000 100W 4 ohms 65 V | ¢9.80 |
| :---: | :---: |
| TAM500 50W 4 ohms 45V | ¢7. 50 |
| TAM250 25 W 8 ohms 45V. | £4.75 |
| POWER SUPPLIES |  |
| For 1 or 2 TAM250/500 | £7-50 |
| For 1 or 2 TAM 1000 | £9,80 |
| (Carrjage 50p on supplies) |  |

- Suits loads 4-16 ohms
- $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
- Silicon circuitry throughout

Glass fibre P.C.B
High sensitivity ( 100 mV 10 k )

High grade components used through out: Texas, Mullard, R.C.A., Plessey, etc


- Low distortion ( $0 \cdot 1 \%$ )

Low profile ( 1 in high $3 \frac{1}{2}$ in $\times 3 \mathrm{in}$ ) - $75 \%$ efficient

Accepts most mixer/pre-amplifiers Four simple connections


ALL PURPOSE MIXER/PRE-AMP.
(with 60 mm slider volume)

- Suitable for multiple input systems - High and low impedance inputs - High sensitivity
- Built-in supply smoothing
- $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$

駺 -80 dB noise level

- Accepts a wide variety of inputs
[嘈 Wide range bass and treble controls Use up to 10 PRE-AMPS with 1 power

Printed circuit board assembly with treble and bass controls plus slider volume control
£6.50

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc)-C.O.D. (60p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at $8 \%$ to orders for 50 and 100 W units and at $12 \frac{1}{2} \%$ for 25 W units.

Hours, 9.30 a.m. -5 p.m Monday - Saturday Callers welcome Tel: (01) 6840098

## TAMBA ELECTRONICS

Bensham Manor Road Passage, Bensham Manor Road, Thornton Heath, Surrey.
 constructor is bound to need. With each catalogue they give a bargain list of unrepeatable offers.

Another thing-they have a wonderful credit scheme, simple to join, and it enables members to order by phone. Now, when I need components 1 just put through a trunk call (get it?) and they're sent off without delay. Why not join the club? You'll need a catalogue first. It has over 200 pages, lists over 5,000 items, with nearly 2,000 illustrations. The cost? A modest $£ 1$ plus 40 p for packing and postage.

Send the coupon today-now, before you forget!


[^1]| MEMORIES |  | LARGE RED LED <br> 12/99p | SHIPMENT MADE VIA AIR-POSTAGE PAID <br> 3 PAY FFROM RECEIPT OF ORDER |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  prog. UV ears. 24 pin | CENTRAL PROCESSING UNIT <br> 8008 <br> B080 A |
|  |  | 21022 ataic RAM 16 pin £-8 |  |
|  |  | KEVBOARD | $747 £ 1-25$ |
| FT REGISTERS |  |  | $\underbrace{2}$ |  |
|  |  |  | Univanat antasoono | $2708 \text { £20 }$ |
|  |  |  |  | $1 \times 8 \mathrm{~K}$ ERO |
|  |  |  | cousima cinuely |  |
|  |  |  |  | $\begin{array}{llllll}\text { ECMOTTKY } & & & \\ 74500 & .36 & 74400 & .52 & 74522 & .38 \\ 74502 & .45 & 74510 & .30 & 74512 & .52\end{array}$ |
| comer |  |  |  | (en | \%sen as |
|  |  |  |  | 10\% OFF WITH \& 15 ORDER |
|  |  | ${ }^{2513} \begin{aligned} & \text { ROM-character } \\ & \text { generator }\end{aligned}$ |  | (15\% OFF WITHE50 ORDER |
|  |  | ${ }_{8 \times 23} 2586$ bif PROM $\quad 2.50$ |  | Of orotr - Speciais incluefo |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | Nodd sop to cover stippin |  |  |
|  |  |  | INTERNATIONAL | TRONICS UNLIMITED |
|  |  |  |  |
|  |  | PHON | 8) 659-3171 |



1105 $\rightarrow$ THREE FUNCTION LED Metal case. stainless steel back and $s / \mathbf{s}$ adjustable bracelet At the touch of a button-Hours, minutes and seconds Push twice for day, date and month Automatic 28, 30, 31 day calendar adjustment This watch has the styling and finish of a watch costing twice or three times more. We are so impressed that we will return your money in full,

Caslo Co-1. Clock. Alarm. Stopwatch, calcutator E29.95. With a.c adaptar c32.05. Ibico quartz analogue (stepping motor) $\mathbf{5 3 4} 50$. Send 10p for our lllustrated Catalogue of over 50 watches. TV games etc. Prices include V.A.T. P. \& P. Credit cards. C.O.D. welcome or send cheque P.O. 10


## Bring 'scope'to your interest.


'There's only one way
to master electronics...
to see what is going
on and learn by doing.'

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.


1Build an oscilloscope.
As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the coulse's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.


2
Read, draw and understand circuit diagrams.
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computors and countless other electronic devices and their servicing procedures.


## 3 Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working $k$ nowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.


All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.


## TIME IS THE ESSENCE

0NE striking phenomenon of modern life is the individual's increasing subservience to time. Not just as periods to occupy some tasks, but as precise moments in the day when personal plans have to be synchronised in accordance with the inevitable programme of happenings we all become involved in some way or another each day.

As ancient clocks bear witness, in the leisurely past sometimes an hour hand alone was sufficient to mark the progress of the day. Now the pace of life has quickened so that a minute hand is often less than adequate and means for measuring the passage of seconds, even submultiples of seconds, have become of importance in many quite ordinary routine activities.

And what has been chiefly responsible for making all of us clock watchers, virtual slaves of time? The principal culprit, without a doubt, is electronics. The modern obsession with time could be reckoned to have begun with radio, for broadcasting introduced the time signal into homes big and small, in places near and far. So this standard measure of time entered our lives and, together with programme schedules, soon became a dominant influence in determining our daily affairs. Time insinuated its way further into our personal affairs when the transistor radio came along and made reception simple at all times in practically all places. We now live by the clock as no previous generation ever did.

From a scientific standpoint electronic developments have brought about a greater precision in the marking and recording of time, commonly to the thousandth or millionth part of a second. One of the biggest growth areas in electronics has been in timer i.c. devices, closely matched by the complementary technology of readout devices. These developments manifest themselves most dramatically on the consumer market in the form of the digital watch. Another very useful application of electronic timer devices is the digital stopwatch. The Pocket Stopwatch design featured in this issue has considerable advantages over its clockwork counterparts and should enjoy widespread popularity.

Electronic computers and the more recently introduced microprocessors will be influencing our lives more and more in various ways in the future. Computing systems are nothing if not time conscious. They are geared to a Lilliputian time scale of micro- or nano-seconds. Clock-not oscillator, it might be noted, has long been the accepted term for the time controlling device employed in the computing world.
So whichever way one looks at it, electronics seems to be inexorably tied up with the question of time/speed. The constant urge and aim of microelectronics designers and manufacturers is to increase the speed of their devices; to permit more functions to be carried out per millisecond. It's an everaccelerating pacemaker that is moulding our destinies, however subtle some of its effects may be. Shades of the Sorcerer's Apprentice! Would we ever be able to cry halt, supposing we wished to?
F.E.b.

## Editor

F. E. BENNETT

## Editorial

G. C. ARNOLD Assistant Editor D. BARRINGTON Production Editor G. GODBOLD Technical Editor M. ABBOTT

## Art Dept.

J. D. POUNTNEY Art Editor
D. J. GOODING
R. J. GOODMAN
K. A. WOODRUFF

## Advertisement Manager

D. W. B. TILLEARD

Phone: 01-634 4504
P. J. MEW

Phone: 01-634 4181
C. R. BROWN Classified Phone: 01-261 5762

Make-up and Copy Dept. Phone: 01-634 4372

Editorial \& Advertising Offices: Fleetway House, Farringdon St. London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4504

## Earth Leakage CIRCUII BREAKER By K. A. SMITH <br> 

EVery day more and more electrical equipment goes into service, much of it having metal parts exposed. Regulations demand that the equipment has satisfactory insulation and that the case of the equipment, or the body of, say, a drill should be earthed.

This sounds fine in theory but consider some possible faults. A drill has been in use for some time with all too typical ill-treatment. After much flexing and tension of the cable in use and in storage, the earth conductor finally breaks while the drill is being lowered down a ladder by its cable. Over the last few months a carbon build-up has occurred around the brush gear, and when the drill is switched on at the bottom of the ladder by a person standing on the damp ground, a leakage current of many milliamps passes. The current may have two effects, first a stra:ghtforward shock, and secondly a fall due to the muscular contractions and the jerking away of the drill. Either could be injurious, if not fatal.

Table 1: The effect of electric shock $(60 \mathrm{~Hz})$ on humans

| Current intensity (One second contact) | Effect |
| :---: | :---: |
| 1 mA | Threshold of perception |
| 5 mA | Accepted as maximum harmless current intensity |
| $10-20 \mathrm{~mA}$ | "Let go" current before sustained muscular contraction |
| 50 mA . | Pain, possible fainting, exhaustion mechanical injury. (Heart and respiratory functions continue) |
| 100-300mA | Ventricular fibrillation will start but respiratory centre remains intact |
| 6A | Sustained myocardial contraction followed by normal heart rhythm. Temporary respiratory paralysis. Burns if current density is high |

## EFFECTS OF SHOCK

Table 1 shown gives the figures determined by John M. R. Bruner and presented in "Hazards of Electrical Apparatus', Anesthesiology, Mar-Apr 1967. This table was reproduced in this form by Messrs HewlettPackard in Application Note AN718.
Normally the skin resistance lies between about 50 kilohms and 250 kilohms for people with a fairly dry skin, thus a 250 volt supply would normally give a shock from 1 mA to 5 mA , but this cannot be relied upon as area of contact and damage to the skin cause differences. Any more than a fleeting contact may produce damage destined to increase the current flow.

Having discussed some of the dangers, what now are the answers? Obviously nothing can be done about a shock between the live and neutral of a mains supply, but it is surprisingly difficult to get such a shock. Probably the only way would be to lean on the live terminations of a transformer or similar unit and get a shock confined to one hand.

## LEAKAGE

It is however very easy to handle equipment without an earth connection (e.g. portable lamps) and find a leakage current perceptible to the touch. This leakage may never increase to a dangerous level, but a frayed wire into a metal lampholder of the type used on some older optical apparatus could result in a direct connection. Standing on a wooden floor even such a direct connection may not be felt, but if at the same time another piece of apparatus is touched which may have a sound earth then a severe shock will result. Cases have been known of shock when two photographic lamps have been picked up together.

The answer is in part in an acquired discipline; i.e. touch one piece of apparatus at a time, with the other hand behind the back or in a convenient pocket, and wear insulated soles on shoes. (Rubber or nonporous p.v.c.) There comes a time, however, when certain actions cannot be avoided, and several pieces of mains driven equipment are used together. In this case the only safe way to operate the equipment is to have some means of detecting the fault currents running
to earth.

## FUSING

If a direct connection occurs then a fuse may be blown if the ratings are correctly chosen. Wiring can arc and cut itself through if the contact is gentle and the fuse an old type 15 amp wired pattern, thus the fusing of equipment should match the duty. Internal fuses will not help here since the faults are cable faults and will not be protected unless the plug or the circuit is fused to a low level.

Obviously faults which could be dangerous can happen inside a unit-when filter capacitors break down, a wire is trapped under a component and eventually plastic flow of the insulator allows contact, or switches arc across. It should be mandatory for suitable fuses to be fitted, but even in this respect difficulties arise, since some transformers have very large magnetising currents, and may require considerably heavier fuses than the normal full load rating would suggest. The use of delay fuses is one solution, lower flux densities in transformer designs another way to reduce inrush and lower the working temperature, but economics seem to be against the latter.

When the neutral line makes contact with earth there will be a slight current flow. It is possible to find several volts from neutral to earth due to the voltage drop in the neutral line when carrying current, a figure of two volts being quite common. It is unlikely that any effect would be noticed unless there happened to be neutral fuses in the system, and even then only if the earth line impedance is much lower than the acceptance figure of one ohm. With a good earth return, having a figure of, say, $0 \cdot 1$ ohm then 20 amps would be possible provided that a much greater current than this was being drawn via the neutral to support this earth return current.

Under normal circumstances an earth fault between neutral and earth is not dangerous. Certain areas of premises having gas mixtures or spray booths, etc. could be in danger if any apparatus having a neutral to earth fault touched an earthed cubicle, since there would be a slight spark, but in domestic situations there would be no danger.

## EARTH LEAKAGE DETECTOR

The earth leakage unit described is an answer to the problems, and was originally designed to meet the demand for safety in a colour processing darkroom. The stainless steel top of the processing bench in close proximity to the sensor and heater of the thyristor operated temperature control unit, an accessible enlarger. thyristor lamp controller, enlarger timer, process timer and clock all pointed to the need for an earth leakage unit

At this point the intention was to fit a commercial model, but the frustration of trying to buy such an article for private use made me determined to make one for myself. Voltage operated relays were offered but I did not relish the idea of holding a piece of equipment with the live supply attached, waiting for the voltage to rise high enough to operate the relay. Should a fault occur then the earth line to the plug is lifted in voltage until the relay trips, Fig. 1. Theoretically this is at a relatively low voltage, say about 30 volts, and someone holding the case of a portable tool and touching an earthed pipe should not even realise that a voltage has appeared. Ultimately the realisation will dawn that the supply has switched off. However, suppose that the earth wire has broken as in the example
of the man on the ladder, then the fault current will pass directly from the tool via the person holding it to earth, and the relay will still be waiting for a signal it will never get (at least not by that route).


Fig 1. A voltage-operaterl carth leakate trin system


Fig. 2. A current-balance earth leakage defector system


Fig. 3. Effect of teakage from the neutral to


Fig 4. Effect of leakage from inve to earth

An alternative method, which overcomes this problem, is the current balance trip system, illustrated in Fig. 2. The current to the load is carried in and out by a pair of conductors. Since a build up of current cannot occur, whatever arrives via one wire must leave by the other if the insulation is perfect. The sum output of the current transformers is zero.

Should a leak develop from either conductor to earth, as in Figs. 3 and 4, the currents in the two wires will not be equal, and the net output of the current transformers will not be zero.

The current transformers if tron cored and having about 2,000 turns could produce an e.m.f. of at least 10 mV under the conditions of Fig. 3, whilst if the leakage were from the live conductor, then the current would be 249 mA to earth as shown in Fig. 4 . With the same current transformers the output could be expected to produce about 2.5 V summation.

An output of, say, 100 mV which can be considered a safe figure, clear of noise and the residual a.c. left at null balance, would mean a minimum detectable neutral leakage resistance of about 100 ohms and a live conductor leakage resistance of about 25 kilohms, that is a 10 mA leakage from either neutral or the live lead. These figures are of course examples to indicate the order of current and voltage readings expected. Any transformer destined for such duty would have to be tested to assess its performance. The use of a low inertia core material such as Radiometal would improve the low current performance.

## PRACTICAL SYSTEM

In practice the system does not have two transformers. Both go and return cables are passed through one core to balance out the load current, and leakage currents as low as 2 mA can be detected with a load current of 5 amps passing using a modified valve-type loudspeaker transformer.

The advantage of this systen is that the monitor is capable of detecting leakage at all times and does not necessarily have to wait for catastrophic failure or a person touching a live case. In the quoted case of a broken earth wire on a drill then this would be the case, but had the earth wire broken by pulling or tripping over the cable of a hedge trimmer lying on the damp lawn prior to use then the earth leakage unit would sense this and trip the supply before the apparatus was touched. Any tendency for leakage to develop even though the earth wire is still intact will trip the earth leakage unit, the apparatus still being intrinsically safe. Any trip of an earth leakage unit should be investigated and not just reset.

## CIRCUIT OPERATION

The circuit of the unit is shown in Fig. 5. The output from current transformer Tl is fed to ICl , a standard 741 operational amplifier, which has back-to-back diodes D1, D2 across the in put to protect the amplifier from damage due to transients. The input circuit is returned to the centre point of resistors R6, R7 to give an artificial $0 V$ line, so that effectively the amplifier is supplied with +6 V and -6 V . The exact figures will depend upon the type of 12 volt transformer used and its regulation. Possibly a little more than the r.m.s. value should be found even at 100 mA drain when using a $220 \mu \mathrm{~F}$ smoothing capacitor.

## COMPONENTS . . .

```
Resistors
    R1, R3, R4 10k\Omega (3 off)
    R2, R6, R7, R9-R12 1k\Omega (7 off)
    R5 1.8M\Omega (see text)
    R8 4.7k\Omega
    R13 3.6k\Omega
    R14 22\Omega
    All 5% \frac{1}{2}W
Potentiometer
    VR1 10k\Omega min, horizontal preset
Capacitors
    C1 22uF 25V elect.
    C2 10\muF25V elect.
    C3 220\muF 25V elect.
Semiconductors
    IC1 741 (8-pin d.i.I.)
    TR1 BFY50 TR2 2N3055
    D1, D2, D4-D7 1N4003 (6 off)
    D3 High-brightness l.e.d.
Miscellaneous
    T1 See text
    T2 12V-0-12V 250mA secondary
    RLA 3-pole changeover, 110\Omega 12V coil
            (Electrovalue)
    FS1 5A 20mm with panel-mounting holder
    S1, S3 S.P. push to make, 250V (2 off)
    S2 D.P.D.T. slide switch (used as s.p.s.t.)
    PL1/SK1 Mains plug and socket, type as required
    Printed circuit board. Terminal pins. 8-pin d.i.!.
        socket.
    Mounting pillars. Case (see text)
```

The voltage gain of the amplifier as shown is 180 , but this is a starting point and the gain should be lowered to meet the level of sensitivity required. In the final prototype unit, a value of 680 kilohms was used as the feedback resistor R5, giving a gain of 68 . Provision should be made for easy changing of the feedback resistor, so that gain levels can be adjusted as the parameters of the circuit become known.

The output at pin 6 of the 741 is a sine wave varying in amplitude with the signal from the differential transformer. Since this signal depends upon the leakage, the output from the amplifier is in proportion to the leakage, though the relationship is not linear.

## TRIGGER CIRCUIT

The relay is driven by a standard form of Schmitt trigger circuit. A slightly unusual feature is the use of dissimilar transistors. Normally two small-signal transistors, or an i.c. followed by a power stage are used as the trigger. In this case the signals are large enough to use direct coupling of the trigger circuit to a relay coil requiring about 100 mA for operation.

At switch on, the normally closed relay contact RLA3 holds TR1 in a conducting state by returning its base via R11 to the positive supply. The TRIP indicator l.e.d. D3 is also fed from this contact via R8. While TR1 is in a conducting state the collector potential is low and no significant current flows to the base of TR2. The relay RLA is thus de-energised.


Fig. 5. Circuit diagram of the complete electronic earth leakage circuit breaker


This state can be reversed by operating the RESET button S3. The drive to TR1 base is diverted to earth, the collector voltage now rises and current flows via R12 and R13 to the base of TR2, with the result that the relay is energised. As the relay operates, contact RLA3 opens so that even when the reset button is released there is no drive to the base of TR1 and the relay remains in the energised state.

The rate at which this happens is accelerated by the change in voltage across R14, causing a rapid snap action. The same action in reverse causes a rapid decrease in energising current in the relay when the base of TR1 is taken to a critical positive level. The action should occur at about 2 V to switch on and 1.5 V to switch off, with the full supply voltage on the collector of TR2 in the de-energised condition, and under IV in the energised condition. The relay should snap on and off without hesitation as the limits of input backlash are reached.

When the circuit is operating correctly, the relay should appear to de-energise faster than it energises, which is contrary to normal operation. Should the voltage at TR2 collector during energisation of the relay exceed one volt, then the value of R13 can be reduced or a transistor with higher gain fitted.

## RESET

It should be noted that the RESET button takes priority over an incoming signal, but of course it should not be operated after a trip without investigating the fault.

If required, a large value capacitor with a high value leak resistor could be wired in series with the contacts of S3 to make the reset impulse-operated.
Having reset the trigger circuit and closed the main contacts RLAI and RLA2, the system is ready to operate on a leakage signal. The output from the amplifier is fed via C1 to D4 and charges capacitor C2 across the input to the trigger circuit. This provides damping and prevents erratic operation.
Assume the input to ICl is a positive-going half cycle, then the output will swing negative, Cl will discharge slightly from its quiescent mid-voltage state, and as the signal voltage reverses so the still basically negative-going output waveform will give a positive trigger to TR 1 . A negative-going input half-cycle will trigger almost immediately. In both cases the relay will release, and will be maintained in that condition by the closing of RLA3. The trip indicator D3 will show that a trip has occurred. D3 has no effect on the triggering potential, the voltage at pin $D$ on the circuit board only reaching a sufficiently high value to operate the indicator after RLA3 has closed.

## CONSTRUCTION

The prototype unit was housed in a home-made plywood case $258 \times 140 \times 108 \mathrm{~mm}$. The amplifier and trigger circuitry were built on matrix board. Figs. 6 and 7 show a p.c.b. developed from this. The transformers, relay and input terminal block were mounted on a 16


Fig. 6. Layout of components on the printed board
s.w.g. aluminium plate. Board and plate were stood off the $10 \mathrm{~s} . \mathrm{w} . g$. aluminium front panel on pillars, as shown in the photograph.

Some of the components used in the prototype differ in style from those shown in the components list and drawings, particularly VRI and ICl. Those in the prototype were simply to hand at the time.

## THE TRANSFORMER

The heart of the system is the differential transformer. As mentioned above, this can be made from an old valve-type loudspeaker transformer which has had the secondary winding removed. A transformer with a layered winding, and which has the primary winding terminated with p.v.c.-covered flexible cable should preferably be used. If the only type available brings out the fine primary winding wire for connections, then a sound mechanical attachment should be devised. As an alternative a mains filament transformer can be used, this having the advantage of a good primary connection.

Whichever type of transformer is used the secondary must be removed. In the case of the mains transformer judicious unwinding and cutting should remove the secondary winding without damage to the primary and without the need to open the core, which if varnished could prove almost impossible. The speaker type of transformer should be opened, the secondary (usually about 22 s.w.g.) removed and the core reassembled with the laminations interleaved instead of in the stacked form with paper gap normally employed.

Whilst the size of transformer is not critical, too small a unit may make winding of the current circuit difficult, and too large a unit will have a large core loss making the sensing of small currents impossible. A good practical size is the type rated in mains versions as 6 VA with about 12 VA taken as the upper limit.

With the secondary windings removed there will be a gap between the outer part of the primary and the core. Into this gap the current windings must be wound by taking two lengths of $32 / 0 \cdot 2 \mathrm{~mm}$ or $40 / 0 \cdot 0076$ in 250 V grade wire and feeding them into the slots. The windings should be five turns with the two conductors fed in together and kept flat and symmetrical (Fig. 8).


The prototype current sensing transformer


Fig. 7. Printed board track layout, shown full size

This bifilar winding serves to keep the leakage inductance to a minimum, and make a nearly zero null balance possible. The wires should be left long enough to reach the relay and the output socket.
The transformer used in the prototype unit had been wound previously for tests on a current limit circuit and had one winding of 1,500 turns of 38 s.w.g. wire. To achieve the desired 2 mA sensitivity, five turns were found necessary for the new winding, now to be called the primary. Since a gap had been allowed for in the original design there was plenty of room to fit the new primary, whereas in some designs of transformer, even with the old secondary removed some difficulty may be experienced.


Fig. 8. Adding the new primary winding to the current sensing transformer

The current limit set for the unit was five amps and was determined by the safe breaking current of the relay. Since only darkroom equipment and the occasional use of portable tools such as a drill or hedge trimmer were envisaged, this was adequate. More could be handled by increasing the relay rating or by a staged system involving a light duty trip controlling a heavy duty breaker.

Naturally all of the current of the protected items must pass through the bifilar windings, but this does not really pose such a problem as many transformers of the 10VA class are wound with current densities of $3,000 \mathrm{~A} / \mathrm{in}^{2}$ or more. In this case the heating effect of five double turns of cable on the outside of what is really quite a large heat sink is minimal.

Much more current could be carried by the cable specified if required, or for easier winding the cable size for this current could go down to $16 / 0 \cdot 2 \mathrm{~mm}$. Using the axiom that one test is worth a thousand opinions then the answer to the problem is simply to try it with a load, preferably a low voltage high current transformer supplying the test current, but even at mains voltage this does not pose a serious problem.

## RELAY

The relay used is a standard 3 -pole type having a nominal coil resistance of 110 ohms for operation from 12 V d.c. This should be a good quality component since it must break the full load of the unit, but the fault level of the supply need not be of any concern as the included five amp fuse will clear line to line faults without harm to the relay.

Layout of components on the front panel and chassis plate. Wiring between the two should be made into a cableform as shown, to allow access for construction and servicing


The release time of the relay is given as 20 ms , and the half-wave time is 10 ms . The total release time is of the order of 30 ms or $1 \frac{1}{2}$ cycles of 50 Hz mains. The current rating is six amps for a resistive load falling to two amps for an inductive load, but it is unlikely that a true inductive load would be switched as transformers would have a secondary load, and power tools have not a particularly large inductance.

## TRIP CURRENT SETTING

Although great emphasis has been placed upon the achievement of 2 mA trip current, this was partly an academic exercise and the final unit has a desensitise switch to lower the sensitivity. For all of the darkroom equipment, including the 1 kW kettle element used with the thyristor controlled water bath controller for the colour developer, the 2 mA setting is ideal, but for some power tools a less sensitive setting may be required. An American made drill which has die-cast


Interior view of the prototype unit, showing mechanical arrangement
bearings and a cable fitted directly into the handle without any sleeve or clamp, works perfectly on the 2 mA setting, whereas a British made drill requires above 10 mA setting, and a hedge trimmer made by an equally famous maker requires about 18 mA setting. Because of this resistor R 2 was fitted across the secondary of the differential transformer, and gave 18 mA trip current when switched in by S 2 . An alternative to this would have been to reduce the gain of the 741 by switching in a parallel resistor across the feedback resistor R5.

The only problem met with the unit was when switching off the colour matching fluorescent lamp. Sometimes the unit would trip on the 2 mA setting. This was cured by replacing the rocker type switch by an old tumbler type. Possibly some filtering of the lamp circuit should have been done, but the simple expedient was effective and has been accepted.

## CONCLUSIONS

In this article an attempt has been made to give some of the design thinking in order to illustrate how available material has been used. This is felt to be important to enable the constructor to appreciate the snags and overcome them, thus allowing "tailoring" of the finished article to meet requirements.

The finished unit is intended to be a portable device terminating a short extension lead. For this reason great care should be taken to ensure continuity of the earth lead to the unit, unless the double insulated technique is used with all plastics constructional materials.
In all cases the earth to the outlet socket should be sound as this will give the "early warning" protection against equipment which is gradually becoming leaky, as well as giving the same safeguard as is normally afforded should a fault develop in the unit. The test button should be used to check the operation each time that the unit is used, or if the unit is to be left switched on then a weekly test should be given.

# SIM ROIUUTID: UPDAIIE 

## LM3911

SAD-1024

## THERMOMETER CHIP

If you wanted to build an electronic thermometer, then until recently you would have had to choose either a thermocouple, a thermistor, or a semiconductor diode as your sensor. Now, thermocouples are expensive and require an expensive 'cold junction" reference and considerable amplification, while thermistors are fragile and have non-linear characteristics. Using a silicon diode as a sensor may seem attractive, but changing that 2 mV per degree C into a usable output may cause a few headaches, and will certainly require an op. amp. or two.

Enter the LM3911 and all your problems are over! The LM3911 is an integrated circuit temperature sensor and controller which comes in a choice of either a four lead TO5 can, a four lead TO46 can, or an eight pin epoxy Mini-dip package. For the money, you get a highly accurate temperature measurement sensor which handles a minus 25 degrees $C$ to a plus 85 degrees $C$ range, a stable voltage reference supply, and an operational amplifier.

Temperature measurement is achieved by comparing the emitter base voltages of two identical transistors operating at different current densities giving a scale factor of 10 mV per degree $C$. The output of the sensor section is connected to the non-inverting input of the internal op. amp. but the inverting input is brought out so that the gain can be programmed externally to give any required output scale factor.

An internal shunt regulator Zener diode provides a stable 6.8 V supply for the sensor and op. amp., and by appropriate choice of external series resistor, any voltage greater than this can be used for a supply.

Versatility and ease of use are the keynotes of the LM3911 design, making it suitable for use in a multitude of different applications. The internal op. amp. can be hooked up as a comparator so that its output is switched as the temperature passes a set point, giving, in effect, a thermostatic switch which is useful for onoff heating control applications.

The nominal operating current drain is 1 mA , although if used as a switch, the op. amp. output can sink 5 mA in comfort. Thermal coupling is neatly achieved in the case of the 8 -pin epoxy package by using the four unused pins on one side of the package as a thermal input. With the metal can versions the base of the can is the most sensitive region. In still air a thermal time constant of several minutes is achieved.

## BUCKET BRIGADE

If you are turned on by such audio effects as echo, chorus, reverberation and tremolo you can now throw away your tape loops, springlines and other bulky gadgets and replace them all with a tiddly 16 -pin DIL integrated circuit called, believe it or not, a bucket brigade delay line! (more commonly known as a Charge Coupled Device).

Actually "bucket brigade" is a very apt name for this i.c. since its operation is analogous to that of fire fighters passing buckets of water down a human chain from a water supply to the fire. Varying amounts of water may be put into each bucket, and assuming no spillage, the water output emerges from the end of the line in precisely the same discrete amounts as it entered it.

A bucket brigade delay line is a sort of shift register, but don't confuse it with the digital variety which can only handle "full", and "empty"

buckets, because the novelty of the bucket brigade is that it shifts analogue quantities.
To my knowledge, the SAD-1024 device made by Reticon and now available in this country, is the first example of a bucket brigade delay line to be produced at a low price with the audio market in mind, even though the principle has been used in other areas for a number of years.
The SAD-1024 is an n-channel MOS chip which uses gate capacitances to act as "buckets", and charge to act as "water". The device has two separate bucket brigade shift registers, each with 512 buckets, and these may be used in series or parallel to produce signal delays ranging from less than a millisecond to more than one second as determined by the clock frequency.
The output at the end of the delay line is a faithful reproduction of the input with a signal to noise ratio of 75 dB , and a bandwidth of 0 to 200 kHz . Insertion loss is quoted as 0 dB and to top it all off the chip consumes only 5 mW from a single 15 V power supply!
This device is certain to find very wide application in the audio "special effects" department and can also be used for speaker system equalisation in auditoria, and in such high technology areas as speech compression and voice scrambling.
The sole UK distributors for the SAD-1024 is Herbert Controls \& Instruments Ltd., Spring Road, Letchworth, Herts.


Fig. 1. The internal arrangement of the LM3911 and an application as a temperature controller


Four trace display for a double beam 'scope

THE twin trace doubler described in this article enables four traces to be obtained on a double beam oscilloscope, and thus the phase relationships of up to four signals can be directly displayed on the scope. The only active devices used in this useful piece of gear are a couple of inexpensive integrated circuits.
Two inputs of the unit have gain, controls and switched a.c./d.c. coupling. The input impedance at these inputs is about 40 kilohms. The other two inputs are a.c. coupled and have an input impedance of about 130 kilohms. When an a.c./d.c. switch is in the d.c. position, the relevant beam will respond to d.c. inputs whether the 'scope is a d.c. coupled type or not. The unit is suitable for use at both a.f. and r.f., and the -6 dB point on all inputs is in excess of 12 MHz .

## BASIC PRINCIPLES

Basically the unit consists of a couple of disabling gates controlled by a multivibrator, as shown in Fig. 1. Actually four gates are used in the unit, one for each input. These are used in pairs, one pair feeding each input of the 'scope. Both gate circuits are identical and fed from the same multivibrator. For the sake of clarity only one set is shown in Fig. 1.

When one output of the multivibrator is high the other is low. and thus when one gate is on the other one is off. Only one input signal is present at the oscilloscope input at any one time, and in fact the two input signals are presented to the scope alternately as the multivibrator chops from one state to the other.

A d.c. potential is applied to one input from a potentiometer, and this d.c. voltage has the effect of separating the two traces on the oscilloscope screen.

If the frequency of the timebase waveform is a factor of the multivibrator's operating frequency, or nearly so, the resulting display will be something like that shown in the first oscillogram. Here the chopping action of the circuit can be clearly seen (a).


Fig. 1. Block diagram showing the basic operation of the circuit

However, if the multivibrator is adjusted away from one of these frequencies, successive sweeps of the screen will far from properly overlap, and due to the eye's incapacity to perceive fast action, the display will appear as in the second oscillograph. Much the same result will be obtained if the frequency of the multivibrator is adjusted to below the frequency of the timebase. The spot of the c.r.t. will complete one or more sweeps of the screen on each trace. but again this will be happening too fast for the eye to see this action. The eye therefore sees both traces displayed on the screen simultaneously (b).
If a trace doubler for a single beam 'scope is required, it is merely necessary to omit the second set of gates and their associated circuitry.

## THE CIRCUIT

A couple of cmos integrated circuits form the basis of the circuit. one being used as a multivibrator and the other containing the four disabling gates. These i.c.s will operate from any supply voltage from 5 to 15 volts, and unlike conventional tri. i.c.s, they have a very low current consumption. The actual


Fig. 2. The astable configuration for IC1. Gates G3/G4 shap: the antiphase outputs of G1/G2
current drawn by the somplete circuit is only about 400 microamps from a 9 volt PP3 battery, and so running costs are minimal. The complete circuit diagram of the unit is shown in Fig. 3.

ICI is a 4001 AE quad two input Nor gate, but here each set of two inputs are paralleled and each gate is used as an inverter (Fig. 2). The output of gate G2 is direct coupled to the input of gate G1, and positive feedback is supplied between the output of gate G1 and the input of gate G2 by way of C1 and R2. VR1 varies the time constant of the feedback circuit and permits the frequency of oscillation to be varied from less than 100 Hz to above 2 kHz .

Doubler oscillographs showing (a) chopping action when timebase frequency is a factor of the astable; (b) the astable adjusted to display four traces
(a)

(b)


COMPONENTS . . .

| Resistors |  |
| :--- | :---: |
| R1 | $5 \cdot 6 \mathrm{k} \Omega$ |
| R2 | $18 \mathrm{k} \Omega$ |
| R3-R4 | $470 \mathrm{k} \Omega$ |
| All $\frac{1}{2} \mathrm{~W}$ | carbon |

Potentiometers VR1 100k $\Omega$
VR2/VR4 $47 \mathrm{k} \Omega$ lin carbon (2 off)
VR3/VR5 $500 \mathrm{k} \Omega$ lin carbon (2 off)
Capacitors

| C1 | $47 n \mathrm{~F}$ |
| :--- | :--- |
| C2 | $2.2 \mu \mathrm{~F}$ polyester |
| C3 | $0.47 \mu \mathrm{~F}$ |
| C4 | $2.2 \mu \mathrm{~F}$ polyester |
| C5 | $0.47 \mu \mathrm{~F}$ |
| C6 | $100 \mu \mathrm{~F}$ elect 10 V |

Semiconductors
IC1 CD4001AE
IC2 CD4016AE

## Switches

S1, S2, and S3 s.p.s.t. toggle (3 off)

## Miscellaneous

Verobox type 75-1410J or similar size case (205 $\times$ $140 \times 40 \mathrm{~mm}$ )
Materials for p.c.b.
Six 3.5 mm jack sockets (SK1-SK6)
Five small control knobs
PP3 battery and clips to suit
Two 14 pin i.c. sockets
Wire, solder, etc

The output waveform from gate G 2 is rather poor, so this is fed to two of IC2 control gates via gate G3, which is used to considerably reduce the risetime of the waveform. The output of gate G1 is fed to gate G4 in order to maintain the correct phase relationship (antiphase) between the two outputs. This signal then operates the other two control gates.

## CONTROL GATES

A 4016 AE i.c. contains the four control gates When the control voltage is high, these gates present a series resistance of only about 300 ohms, but with a low control voltage this rises to many megohms. In the "on" state the gates give a low level of distortion and they are perfectly suitable for linear applications.

The shift voltages are provided by VR3 and VR5. Resistors R3 and R4 are included as these two inputs would otherwise be short circuited to earth with VR3 and VR5 adjusted for zero shift. C3 and C5 provide d.c. blocking at these inputs.
VR2 and VR4 are the gain controls for the other two inputs. C2 and C4 provide d.c. blocking at these inputs, and S 2 and S 3 respectively can short circuit these in order to provide d.c. coupling.
Inputs 2 and 4 will handle signal amplitudes of up to several volis peak to peak without the waveform being clipped, the actual maximum level before clipping depending upon the setting of VR3 or VR5,


Disposition of components external to the p.c.b.
as appropriate. With VR2 and VR4 adjusted for maximum sensitivity, inputs 1 and 3 will handle up to about 2 volts peak to peak before clipping of the negative waveform commences. Higher amplitude signals can be accommodated by turning back the sensitivity controls.

It is advisable to keep the leads connecting the doubler to the 'scope as short as possible. There will then be a minimum of additional input capacitance when the doubler is in use. Of course, these leads must be screened.

If only a single trace doubler is required, R4. VR4, VR5, C4, C5, and S3 are omitted from the circuit.

A convenient feature of the circuit is that it has unity voltage gain at middle frequencies (VR2 and VR4 adjusted for maximum sensitivity) and any calibration devices fitted to the 'scope can be used in the normal fashion.

## CONSTRUCTION

A small p.c.b. measuring $89 \times 54 \mathrm{~mm}$ contains most of the small components, only C 2 and C 4 being absent. These are wired directly across the tags of S2 and S3 respectively. Full details of the p.c.b. are reproduced actual size in Fig. 4.

The board is produced in the normal way and is a relatively simple affair. The two mounting holes are drilled for 6BA clearance using a 3.2 mm twist drill. The i.c.s are each mounted in a 14 pin i.c. socket.

A Verobox having dimensions of $205 \times 240 \times$ 40 mm makes an attractive housing for the project, but any case of about this size could probably be used.
The p.c.b. is mounted in the centre of the bottom of the case using a couple of short 6 BA bolts with nuts. It is a good idea to use a 3 mm spacer over the mounting bolts, between the panel and the case,


Fig. 3. The complete circuit diagram


Fig. 4. Showing p.c.b. layout and component assembly details
as otherwise the board could be distorted and possibly even damaged as the mounting nuts are tightened. The panel is not finally mounted until it has been wired up to the rest of the unit.

## CHECKING AND USE

If the outputs of the unit are connected to an oscilloscope, it should be found that upon switching on, a squarewave is produced from each output.
Check that VR1 permits the frequency of these to be varied from about 100 Hz to 2 kHz , and that VR3 and VR 5 allow the amplitudes of the outputs to be varied from zero to a few volts peak to peak.

It is then simply a matter of connecting some inputs to the doubler to check that it is working properly in other respects. It is not possible to use the internal sync. of the 'scope as this would tend to synchronise the timebase to the chopping frequency of the doubler. rather than to one of the input signals. External sync. or triggered sweep must therefore be used.

VR1 is adjusted to the frequency that gives the clearest trace. With fairly low frequency input signals it will probably be best to adjust VR 1 for maximum chopping frequency. The traces will then be built up from a series of dots (a quite conventional method of trace doubling).


By D.B. JOHNSON - DAVIES

MICROPROCESSORS are being hailed as the new way of solving design problems in electronics, and the Motorola M6800 family is at present leading the market, both here and in Europe. This article reviews the new D2 development kit based on the $\mathbf{M 6 8 0 0}$, which may provide the answer for those who feel left behind by microprocessors and are looking for a practical way of finding out about them.
It might first be worth considering what requirements should be satisfied if a development kit is to be of any use in developing programs. In the author's opinion these are:

1) Hexadecimal keyboard entry. Entering data by a row of switches, one for each bit, is too slow and error prone though by far the cheapest method. Most kit manufacturers have chosen to provide an interface to a Teletype, assuming perhaps that their customers would already be in an environment where one was readily available; unfortunately even reconditioned Teletypes cost around $£ 500$ and this puts them outside the amateur's price range.
2) Some way of permanently storing programs. Floppy disc is the most attractive solution as it enables large amounts of data to be stored very rapidly, but they are very expensive. A PROM would provide a lower-cost solution; the program being developed would be loaded into it before switching off the power. A CMOS low power consumption RAM with a backup battery would be an alternative.

In the D2 kit the first problem is overcome, as in some other kits, by having data and addresses entered from a keyboard coded in hexadecimal, and displayed on standard seven-segment light-emitting diode displays. The keyboard supplied has a very positive feel about it and in fact this keyboard/display combination is in many ways preferable to a Teletype; the latter is noisy, consumes paper at a high rate, and is slower to respond.

The second requirement is satisfied in the D2 kit by the provision of a cassette interface circuit which enables one to store programs to and load programs from a standard tape recorder. The storage capacity is
high (a full 64 K words of memory would fit on one cassette) and the cost of building up a library of programs is obviously just the cost of additional cassettes.

## COMPONENTS OF THE KIT

The D2 kit consists of two doublesided printed-circuit boards linked by a large ribbon cable. The larger of the two--the main microcomputer board-houses the MPU ano all the parts directly associated with it: a thick-film crystal-controlled clock package (which replaces the TTL oscillator circuitry used in the earlier D1 kit); the ROM containing the "Jbug" monitor program which controls all the debugging facilities of the kit; the 128 -word RAM used for the stack and for the monitor's variables; the two user RaMs giving 256 words of memory in which to write programs; the PIA (peripheral interface adapter) with parallel outputs used to connect with the keyboard and display, and a second PIA for one's own use; an ACIA (asynchronous communications interface adapter) providing a serial output for the cassette interface circuitry; and lastly, some gates and buffers for address decoding.

There are also sockets provided for two more RAM chips bringing the total on-board capacity to $\frac{1}{2} K$ words of memory, and for two further ROMS or PROMS. A clear area in the top right-hand corner of the board, drilled with a matrix of holes, can be used for assembling small circuits to interface with the PIA.

The second board holds the keyboard, the six seven-segment displays, and all the circuitry to interface with the cassette recorder. In addition to the 16 hexadecimal keys there are eight function keys, and these control the diagnostic and debugging facilities of the kit without which programming would be a fairly hit and miss operation.

## FUNCTION KEYS

In common with most development kits, memory can be examined and altered. The " $M$ " and " $G$ " keys are used for this. For example, to examine location $002 E$ the sequence of keys $002 E M$ is entered and the displays will show the address and present contents: 002E Al for example. The new data is now entered if required; entering 73 for example will update that location and the displays will now read $002 E$ 73. The " $G$ " key will increment the address to the next location and display the contents there, and so on. Thus to enter a program from scratch takes only three keystrokes per instruction.
The "R" key puts the monitor program into "register examine" mode. Repeatedly pressing the "G" key now cycles through the registers one by one, displaying their contents in sequence. The " $G$ " key is also used to begin execution of one's own program at any location.



## MOTOROLA MEK6800 D2 KIT

A build-it-yourself microcomputer designed around the Motorola M6800 Family Kit contains CPU (MC6800), $256 \times 8$ RAM ( $2 \times$ MCM6810 AP), $2 \times P$ (A. (MC6820) $1 \times$ ACIA (MC6850), Hex-Keyboard, Hex-display, interface to audio cassette plus all additional components Easily expanded Single 5 v . supply needed

Personal Computing from

## Cramer

 ElectronicsCramer offer a complete range of micropiocessors for the home computer market

Products from AMD (8080) Zilog Z80), T I (9900). Motorola (6800)

## Single board computers

MEK6800 DI. Kit
$£ 103.27$
Keyboard and Displa
Keyboard and Display $\mathbf{E 4 1 . 0 0}$ Zilog. MCB
£ 395.00 TMS9900. Micro 99 Assembled

E400.00
Books
6800 Appl Manual $£ \mathbf{1 0 . 0 0}$ 6800 Sot ware $£ 5.00$ 9900 Soltware $\quad £ \mathbf{£ 6 . 0 0}$ ITL Data Book
$£ 5.50$

Cramer, 01-579 3001 16 Uxbridge Road, Ealing W5 2BP


For example, entering 0032G will start at 0032. Return to the monitor program is achieved by executing a sWI (software interrupt) instruction which stores all the registers on the stack in memory, and jumps to an address within the ROM. Alternatively pressing the " $E$ " key generates a non-maskable interrupt which will cause an exit from the user program.

On return to the monitor the program is in register-examine mode, so the values of the registers just before the interrupt can be discovered. The values displayed are not of course the actual contents of the registers at that moment-which would be difficult, not to say useless-but the values which were stored on the stack on exiting from one's program. The monitor returns control to one's own program by an RTI (return from interrupt) instruction which then reloads all the registers from the stack. The program counter, which was stacked on first, gets replaced last and so causes the program to jump back and continue execution at the instruction just after the swi as intended.
To change the contents of a register from the monitor program one just needs to use the memorychange function on the stack location corresponding to that register's previous contents. It is a pity that it is not possible to change registers directly while in register-examine mode.

## TRACING FACILITIES

So far the facilities described are shared by most development kits, such as the SC/MP kit with keyboard. However, in addition to these there are four functions which make this kit an efficient tool for developing even fairly large programs: as an example, it took the author a week of evenings to write and debug a "Bull and Cow" (better known these days as "Mastermind") playing program which needed the full $\frac{1}{2} \mathrm{~K}$ of memory. The single-step key " $N$ " makes it possible to step through the program executing one instruction at a time and then returning to the monitor so the registers can be examined and the effect of the instruction ascertained. With the help of this facility even the most reluctant of programs can be got working; it is immediately obvious, for example, if branch instructions go to the wrong location, as the address and contents are displayed after each step with the "N" key.

The sWI instruction, as already mentioned, is used in the kit to interrupt a program and give control to the monitor. Thus if one is encountered in one's program, execution effectively stops at that point and the contents of the registers just before that point are on the stack. The " $V$ " key enables up to five locations to be specified as breakpoints simply by
entering its address; 0025 V for example. Before going to the user's program the monitor will replace the instruction at 0025 by the code for swi. On return to the monitor it puts back the original instructions where they belonged.

## PUNCH AND LOAD

Finally the "P" and "L" keys control the cassette interface part of the kit, respectively recording onto or reading from a standard audio tape. The start and end addresses of the block of data to be recorded are entered in before pressing the " $P$ " key, and only this part of memory is then transferred. The start address and length are included in the format on the tape, so operating the "L" key when replaying the cassette puts the data back into the correct area of memory. It is therefore possible to punch out different parts of a program (subroutines, data, etc.) onto different tapes and then load them independently only when needed.

Unfortunately there is no facility for relocating programs in memory, and if one suddenly realises that one needs a three-word instruction where there was a two-word one, it is necessary to shuffle up all the subsequent instructions and correct all the branch instructions accordingly.

After spending some time trying to get a program working, one soon realises how useful the cassette interface is compared to the alternative of non-volatile memory (or leaving the supply switched on day and night). A wrong instruction often causes parts of the program itself to be overwritten, giving exceedingly puzzling results. It is therefore
good practice to dump the program being developed onto tape as a safety measure each time a substantial change is made to it. Thus if the program in memory gets corrupted, the most recent version can be reloaded from the cassette.

The recording format chosen by Motorola for the interface was the Kansas City Standard, decided on during a symposium in Kansas City, Missouri, in the USA, and this standard seems to be gaining wide acceptance; some computer firms are selling software in this format on cassette as an alternative to paper tape. The ones and zeros are coded as 8 cycles at $2,400 \mathrm{~Hz}$ and 4 cycles at $1,200 \mathrm{~Hz}$ respectively. Since the load circuit decodes frequencies above and below $1,800 \mathrm{~Hz}$ as ones and zeros, the circuit will tolerate speed variations of up to $\pm 25$ per cent.

Each word consists of a zero as start bit, eight data bits (LSB first) and two or more ones as stop bits, and this serial formatting is performed by the ACIA. The data rate is 30 words per second, and since there is a leader of about 40 seconds of ones at the start of the data, it takes a minute to punch or load the $\frac{1}{2} \mathrm{~K}$ memory used with this kit. The circuit has repeatedly loaded without error even though the recorder being used was the cheapest available. A program given at the end of this article was used to test the interface.

## CONSTRUCTION

The only constructional details given in the kit's manual were a page of rather daunting and perplexing warnings for handling MOS devices (e.g. "Cold chambers using $\mathrm{CO}_{2}$ for cooling should be equipped with


The assembled Motorola D2 kit. The cassette, recorder and PSU are extra items. An additional chip (D/A convertor) is included which the author used to interiace the D2 with an audio amplifier. The memory has been extended to 0.5 K by two extra memory packages


Fig. 1. Format of the first word of the instructions in the three main groups of operations available in the M6800 microprocessor: (a) Dual-operand instructions, (b) Single-operand instructions, (c) Branch instructions.
baffles .. ."). The only precaution taken by the author was to wear a cotton shirt, and no harm came to any of the devices. However, considering the high cost of replacing some of the chips (the MPU is about £22) it is worth being over-cautious.

When soldering parts into the board it is a good idea to solder in all the passive components first, leaving until last the integrated circuits. This way it is less likely that the delicate inputs will be left floating and prone to static charges. Sockets are supplied for the main integrated circuits, but it might be worth the extra expense to buy sockets for the smaller i.c.s too, as they would be tricky to unsolder from the double-sided boards.

The kit is very well designed and construction was straightforward. The most frustrating part was inserting the 40 -pin i.c.s into their sockets at the risk of breaking off a leg in the struggle. The best method is to rock them gently down, inserting the pins at one end of the socket first to reduce the force needed. The pins on the plastic packaged chips need to be pressed against a flat surface to bend them inwards to the correct spacing for the sockets.
Although the main board is terminated by a 43 plus 43 -way edgeconnector, the only connections needed for using the kit as it stands are the supply inputs, and these can be provided by wires to the tracks instead. The other connections are the data and address lines for use with external memory boards. A 5 V power supply is needed, and this
should be regulated and capable of giving about 1.5 A . Only one supply rail is required.

## FAULT FINDING

The kit should work immediately, and on switching on and pressing reset the "-" prompt should be displayed. However, the author's kit contained an elusive fault and so some general advice on troubleshooting in microprocessor circuits may be helpful. An oscilloscope is probably essential, but a multimeter is better than nothing.
The most common fault seems to be the bridging of adjacent tracks on the circuit boards. In the author's kit an almost invisible unetched copper bridge proved to be shorting an address and data line together causing incorrect locations to be addressed; the displays would just go blank on pressing reset. In retrospect it might have been worth while examining the boards carefully and testing for isolation between adjacent tracks with an ohmmeter before soldering in any of the parts.
With only the MPU in the board the memory area will be empty and the program counter should cycle repeatedly through all the addresses looking unsuccessfully for an instruction. As a result, all the address lines should be oscillating, $A_{0}$ with the highest frequency and each one with half the frequency of the one below it. The data lines will stay low, and R/W high (read cycle).
Putting the ROM in will now cause the MPU to write to the data lines, and these should have waveforms on them. If two data or address lines look the same, a short between them can be suspected. With the stack RAM and the PIA which interfaces with the keyboard/display both replaced in the main board the kit should function properly and display the prompt

If the keyboard/display board is suspected and the main board is working correctly one should see the multiplexing of the display lines as the PIA selects each of them in turn.

Finally it must be admitted that getting a microprocessor circuit working might prove to be a very time-consuming and frustrating task. Building a kit like the D2 minimises, but does not eliminate, the possibilities for error.

## WRITING PROGRAMS

Out of the 256 possible codes for instructions, 197 are assigned to legal machine codes and so at first sight it might look discouragingly as if it would be necessary to learn the op-codes for all of these in order to be able to write a program. This is untrue for two reasons. Firstly, the allocation of codes to the instructions is not random, but ordered due to the way the MPU decodes the instruction.

It is informative to look at how the opcodes for some of the instructions are made up.

The largest group of instructions can loosely be called "dual-operand" as each of them operates on a register (A or B) and a memory location; for example ADD A 6 will add the contents of location 0006 to the $A$ register. These codes all have the format shown in Fig. 1a. Thus once one remembers that $A D D$ has " $B$ " as the second hex digit one can work out the code for any of the eight addressing mode and register combinations: $A D D$ A 6 is 9 B 06 (direct addressing); $A D D \quad A \quad £ 6$ is 8 B 06 (immediate addressing) . . . etc.

The second largest group of instructions contains the singleoperand ones; these can operate either on a register or on a memory location, enabling one to manipulate memory locations directly while leaving the registers undisturbed. This aspect of the design of the M6800 greatly reduces the amount of loading and storing of variables needed in programs. The code format is shown in Fig. 1b.

## BRANCHES

The M6800 provides a wide range of branch instructions- 15 in all (see Fig. 1c). The branches are really add immediate to $P C$ instructions, whereas the jumps are load extended to PC instructions. The conditional branches depend on the states of certain of the condition codes, which are set or cleared by selected instructions. This makes for very concise programs; often there is no need to test explicitly the value of a memory location after an operation.
The second reason for not learning all the op-codes off by heart is that it is far easier and clearer to write programs in "assembler language" which uses mnemonics to stand for the instructions. The program is then "hand assembled" by looking up the code for each mnemonic and writing it down beside the statement. This is fairly rapid, and by choosing suitable names for variables and labels the program is selfdocumented and its operation is clear. The assembly listing of the "Jbug" monitor provided in the kit manual is a useful program to refer to, and it contains some useful subroutines which can be jumped to from one's own programs.

## EXAMPLE PROGRAMS

The following two programs were used to test the cassette interface and the memory. The first writes 01, 02, 03 . . . FF into successive locations after START-these are 0011 to 010F as the program stands.

| Location: | Contents: |
| :---: | :---: |
| 0000 | $4 F$ |
| 0001 | CE 0010 |

# SAXON ENTERTAINMENTS LTD 

A FULL RANGE OF MODULES \& READY-TO-USE EQUIPMENT TO PROFESSIONAL STANDARDS FOR THE PROFESSIONAL modules and individual units Sy

POWER AMPLIFIER MODULES 30-240 WATTS


| 30 | 60 Watts |  |  | tts |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 8 \text { ohms } \\ & \kappa 0 \cdot 50 \end{aligned}$ | SA604 60W rms 4 ohms £12.50 |  | $\begin{aligned} & 8 \text { ohm } \\ & \mathrm{E} 13 \cdot 5 \mathrm{C} \end{aligned}$ | 120W rms 4 ohme £14.50 |  |  | $\begin{aligned} & 240 \mathrm{~W} \text { rm } \\ & 4 \text { ohms } \\ & \mathrm{f} 25 \cdot 50 \end{aligned}$ |
| POWER SUPPLIES FOR THE ABOVE MODULES-READY WIRED \& FUSED ON GLASS FIBRE PCB |  |  |  |  |  |  |  |
| PM301 P <br> For $1 / 2$ F <br> SA308 S <br> $\mathrm{CS} \cdot 90$ E | PM601/4 PM601/8 <br> For $1 / 2$ For $1 / 2$ <br> SA604 SA608 <br> $£ 12 \cdot 50$ $£ 12.50$ |  | $\begin{aligned} & \text { PM1201/4 } \\ & \text { For } 1 \\ & \text { SA1204 } \\ & \mathbf{E 1 2} 50 \end{aligned}$ | PM1201/8 PM1202/4 PM1202/8 <br> For 1 For 2 For 2 <br> SA1208 SA1204 SA1208 <br> £12.50 £18.50 £19.50 |  |  | PM2404/1 For 1 -SA2404 E18.50 |

SYSTEM 7000 COMPLETE DISCO MIXERS (With Autofade) Mono or Stereo

##  

The cholce of the professional O.J

- Ready to plug in \& use
- Automatic Mic override - Two tone panel Let/隹放 mic \& tape Inputs Left/Right deck fader
The cholce of the professional D.J. A/Fade Depth, Tape, L/Deck, R/Deck volumes Bass, Treble, Master, Headphone volume, Selector \& On/Of.
Nono $18 \mathrm{v} \mathbf{£ 3 7 . 5 0 ~ M a l n s ~} £ \mathbf{£ 3} .50 \quad$ Stereo $18 \mathrm{v} £ 53.50$ Mains $\mathbf{5 9 . 5 0}$
IN MODULAR FORM- All you require is front pqnel (see below) knobs \& sockets etc. All electronics are assembled \&
Specification as for completemixer. All Potentiometers supplled \& fitted Low cost do it yours elf with step by step easy to follow instructions.
Mono $£ 19.50$ Stereo $£ 29.50$ Panel $£ \mathbf{~} \mathbf{~} \mathbf{5 0}$ Supplyunlt $£ 8.50$
SYSTEM 7000 LIGHTING CONTROL UNIT MKII (Four channel)
Has your light unit got?


E 4,000 W handling - Smart 2 tone panel - Advanced IC circuitry All your needs in Automatic audio level OURS HASI one superbly designed unit £42.50

## IN MODULAR FORM—THE OUADRAFECT

£29.50 As with the mixers the Mk II L.C. unit may be $\qquad$ uling
case \& knobs etc. There are 13 simple connections
1.240 w Audio BA RCA triacs $\quad 0 \cdot 5-20 \mathrm{~Hz}$ Sequence Fully suppressed
a panet,
(Panel £.2-50) purchased in module form with all controls, requirin

CUSTOM MIXER MODULES (Complete or In printed circuit form only) Make your own mixer, mono or stereo, up to 2 channels, with full monitoring facilltles, and provision for echosend/return eic.
cartridge etc.

- Un to 20 input modules per single mixing module - Feed most types of ampllfer-accepts all inputs - Professional low noise chrcuitry $20 \mathrm{~Hz}-30 \mathrm{kHz}$
- Infinitely adaptable-Extremely economical

COMPLETE MODULES with facla panel Knobs \& socknts, Monitor buttons, Ready wired \& tested Mono input $£ 8.50$ Mono mixing stage $£ 8.50$ Stereo Input $£ \mathbf{1 2 . 0 0}$ Stereo mixing stage $£ \mathbf{1 2 . 0 0}$


- 0.5W headphone circuit E Full range bass/ Nreble controls - Noise--80 dB

$$
\begin{array}{llr}
\text { Mono Input } & £ 5 \cdot 50 & \text { Mono mixing stage } £ 5 \cdot 50 \\
\text { Stereo Input } & £ 9.00 & \text { Stereo mixing stage } £ 9.00
\end{array}
$$

Power supply for up to 20 channel\$-PPM18-Es 50.

## SYSTEM 7000 SOUND-LITE (3-CHANNEL) <br> IN COMPLETE OR MODULAR FORM (Modular form illustrated) <br> Complete unit similar to Mk II unit above - Long established \& proven design <br> - RCA 8A Triacs-individual channel fue <br> 1-240 W input-master audio level plus Bass/Midde/Treble <br> COMPLETEUNIT-Fully MODULARFORM Facla aknobs etc. cased with rear terminations-just Needs oniy 11 simple connections <br> plug in 401 <br> $£ 24 \cdot 75$

£16.50 (Panel E2.50)

CENTAUR-THE 100W RMS STEREO DISCO
COMPLETE WITH SOUND.TO-LIGHT SEQUENCER \& LIGHTS
ONLY £225 ( + £4 50 carr) or Low interest terms Depotit C 27.86

- 100W RMS stereo output

Twin heavy duty loudspeak Four channel sound litesequencer complete
with display
Separate mic., music bass
Sturdy wynide cabin
all leads
Twin BSR decks with lift arm


NOW AVAILABLE
SUPER CENTAUR
200W Stereo output-other detalis as above $\mathbf{\Sigma 2 7 5}$ (carr. 4.50) or Deposit £31 06 12 months at £25.03 or 24 months at £14.20 Cut-price condenser mic \& headphones $£ 15 \cdot 00$ (only with complete discon)

SAXON MINI-DISCO 50W RMS $£ 139.50$ (carf. £2.50) C/W Heavy duty loudspeaker 100 W RMS $£ 159.50$

- 100w version has twin speakers
- Includes mic input \& headphone monitor

Twin BSil decks with Hftarm
Tremendous valua-Just plug in a 90
Wide range bass \& treble controls


Ut-price condenser mic \& headphones £15-00 (only with complete discos)
$10 \%$ DEPOSIT. LOW INTEREST CREDIT ON ORDERS OVER $£ 150$
SYSTEM 7000
MINOTAUR 100-All Purpose Wide Range Amplifier


STROBES \& PROJECTORS (We stock the full Pluto range) Send for details SUPERSTROBE $\mathcal{L 1 9 \cdot 7 5}$

- 2-3 Joules

ㄷ 80 W Tube for long lite
Compact $4^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$
PRO-STROBE $£ 32.50$

- 5-8 Joules - External trigger

Long tilfe tube timer
Long tircuit
mannanin
ACCESSORIES Condenser micn ECM77 600 ohm $£ 13 \cdot 50$
ECM 81 Dual impedance $£ 14.95$ Crown headphone at Heavy duty boomstand $\$ 14.50$

All prices subject to VAT (a) $8 \%$ except SA308;PM30t, mics. \& headphones ( $12 \frac{1}{2} \%$ ) Add prices subpect on packing on aliorders except where already shown Orderling: By Telephone - Access, Barclay Card or COD RIng (01) 68 By post -Send cheque or crosted P.O's or 60p for COD or send in your Access/Barclay card NUMBER ONLY MAIL ORDERS \& CALLERS TO: CROYDON
327-333 Whitchorse Road, Croydon Surrey CR0 $2 H S$
24 Hour Ansafone service (01) 6846385
PIEZO HORNS!
Up 10150 watts handing
No X-over required $£ 7 \cdot 50$ each

Exporters to 17 countries-enquirles welcomed
Ring Sue Abegg on (0t) 6846385 for U.K, trade enquiries

## LYNX ELECTRONICS (LONDON) LTD



| n ${ }^{0}$ |  <br>  <br>  <br>  <br>  |
| :---: | :---: |
|  |  <br>  |
|  |  <br>  |
|  |  <br>  |
|  |  |
|  |  <br>  |
|  |  |
|  | 8 <br>  |
|  | 둔 <br>  |
|  |  <br>  |



## CALL <br> AND BE TEMPTED

 PICK-A-PACK 50 PENCE A POUNDFROM OUR "PICK-A-PACK" AREA WEIGH UP YOUR OWN INDIVIDUAL COMPONENTS NO RESTRICTIONS ON WHAT YOU TAKE

## PICK-A-PIECE50 PENCE EACH

FROM OUR "PICK-A-PIECE AREA


By making two modifications it is possible to make the program verify that the correct data is stored at each location, and return at the first disparity. If all is well it will return with the X register containing 0110 (at least) showing that it reached the end of the block of data written to without an error.

| Location: | Contents: |
| :---: | :---: |
| 0000 | 4 F |
| 0001 | CE 0010 |
| 0004 | 08 |
| 0005 | 4 C |
| 0006 | Al 00 |
| 0008 | 27 FA |
| 000 A | 3 F |

Assembler statements:

| CHECK | CLR A |  |
| :--- | :--- | :--- |
|  | LDX | £START |
| LOOP | INX |  |
|  | INC A |  |
|  | CMP A | X |
|  | BEQ | LOOP |
|  | SWI |  |

## COST OF THE KIT

The Motorola D2 kit is currently available from Cramer Electronics for £ 175.87 plus 8 per cent VAT plus £1.20 p/p. Although this may seem expensive, its facilities make it
compare well with other kits available. The integrated circuits alone would cost over $£ 100$ to buy, and it is difficult to put a value to the two excellent printed circuit boards and the "Jbug" monitor ROM.
An evaluation system of this order of complexity can actually be recommended to anyone involved in designing with microprocessors even if they intend to progress to a much more extensive set-up with an operating system, assemblers and editors, as it provides a sort of intimacy with the workings of the MPU which forces one to think about and understand what is really going on.

NOTE: The Intersil microprocessor development and tutorial system Intercept Junior reviewed last month is available from Rapid Recall Ltd., 9 Betterton St., London W.C.2. Price £ 184.06 plus 8 per cent VAT. (Part No. 6950).


「N THE January issue we published an exacting competition in which readers were invited to assess microprocessor attributes as being important to the average Practical Electronics reader. Having carefully considered all entries the judges decided that the best received were two identical attempts submitted by Mr. Andrew Challinor of Stoke-on-Trent and Alastair Mackintosh of Brighton. Both had marked:

## Ist-D; 2nd-A; 3rd-F; 4th-G; 5th-E; 6th-C; 7th-H; 8th-B

These readers both win a SC/MP Introkit plus Keyboard Kit worth well over $£ 120$. But there were three 1st prizes and to find the 3 rd we had to stage a postal eliminating contest among a number of tying competitors who had submitted the next best attempt. When this second contest had been judged, the winner emerged as Mr. Stephen P. Kenny of London. SE5, who also receives an Introkit and Keyboard Kit.

Twenty-five runners-up, each received a single-chip 8 -bit microprocessor worth around $£ 12$ each.

## Results

## FIRST PRIZE WINNERS

Mr. A. Challinor<br>Mr. S. P. Kenny<br>Mr. A. Mackintosh

## 25 Runners-up

Mr. M. J. Bird, Southampton; Mr. N. R. Canham, Hatfield; Mr. D. Chambers, Blackpool; Mr. D. Coates, Oxford; Mr. B. Collins, Mansfield; Mr. T. J. Conroy, Glasgow; Mr. J. H. Cooke, Paisley; Mr. J. Duncan, Glasgow; Mr. J. C. Hamilton, Glasgow; Mr. P. K. Hewitt, Bristol; Mr. A. P. Holden, Braintree; Mr. M. Lord, Basildon; Mr. L. G. Marini, Hassocks; Mr. S. B. Morrison, Tynemouth; Mr. J. Pledge, Exeter; Mr. J. D. Riley, Cambridge; Mr. D. Rivlin, Gosnall, Staffs. Mr. S. J. Roberts, Sleaford; Mr. E. A. Roche, Wigston; Mr. L. Sakowicz, Manchester; Dr. P. J. Skolar, London N2; Mr. D. Trueman, Wallasey; Mr. J. E. Wheeler, Walsall; Mr. K. J. Whitr., Dymchurch; Mr. N. Williams, London SW6.

The competition was presented in association with $\mathbf{A}$. Marshall (London) Ltd. and National Semiconductor (UK) Ltd. who with Practical Electronics sponsored the highly successful microprocessor forum held at Berners Hotel, London on February 26th. Ist prize winners Andrew Challinor and Alastair Mackintosh were presented with their prizes at the forum but, because the eliminating contest had not then been resolved, it was not possible to make a similar presentation to Stephen Kenny.
A. Marshall (London) Ltd. and National Semiconductor (UK) Ltd. join with Practical Electronics in warmly congratulating all winners, and express thanks to all who participated in this competition.


MECHANICAL stopwatches capable of split timing are of the more expensive kind, but an electronic version can be built using simple wiring and construction techniques, and yet give even greater accuracy. The design described here gives the user both Taylor and split timing, in addition to the convenience of digital readout, all in a compact pocket-size case.

## FUNCTIONS

There are three modes of use with this device: (a) normal start-stop-reset, (b) Taylor, or sequential timing, and (c) split, or cumulative timing.

To time the individual laps of a competitor in a race, for example, the user would switch on, select TAybor mode, and press the start/s rop button (S5) at the start of the race. After one lap, pressing $\mathbf{S} 5$ again would lock the display to give the lap time; whilst "off display" the counter would have already begun timing the next lap. On completion of the second lap, pressing S5 once more would now lock the display to the new lap time. This process would repeat itself for every lap timed.

In split mode, the user can time the first lap in exactly the same way. So, when pressing $S 5$, the display would lock at the first lap time, but the counter (off display) would continue to count on from that number. Hence, when the competitor passed the post
the next time, pressing S5 would now lock the display at the total time from the very start-each lap timed being added to the last!

In either mode, pressing display unlock will clear the displayed number, allowing the readout to dynamically follow the counter.

## THE CIRCUIT

Intersil have made the job easy in terms of design and construction; they have done it all! Apart from a few discrete components, switches, and of course the display, everything is contained within the ICM7205 package.

Fig. I shows the basic block diagram of the i.c., and briefly, the high frequency oscillator signal is divided down, gated, counted and displayed via multiplex circuitry. Gating is controlled externally, and in the design shown in Fig. 2, this is done using the operating push-buttons.

Fig. 1. Block diagram showing the relevant functions of the ICM7205



## By M.W. HEADINGTON




Direct I.e.d. drive is one i.c. feature, and another is switch bounce protection circuitry on the START/STOP input, but the reset and display unlock inputs require no protection. A low hattery indicator circuit is incorporated, and is arranged here so that the extreme right-hand decimal point begins to glow when the supply voltage is low. Accuracy is not affected until about 15 minutes after the indicator has illuminated.

## ACKNOWLEDGEMENT

It should be mentioned at this stage that the basic circuit of the stopwatch is that recommended by Intersil.

## CONSTRUCTION

A fine tipped soldering iron should be used for the board assembly, as the p.c.b. copper pattern (Fig. 3) is rather delicate. Prolonged heating will lift the track away from the board. The $100 \Omega$ resistor and the links should be soldered in position first, the resistor being mounted flush on the board. Mount the displays with their orientation marks at the top of the board as in Fig. 4. The trimmer capacitor should be mounted next. Care is necessary to avoid blocking adjacent holes with solder.

Working on a sheet of earthed aluminium foil, place the p.c.b. and the i.c. (still on its conductive foam) on the foil. Occasionally touch the foil to ensure no static build-up takes place on yourself. Carefully remove the i.c. from the conductive foam, and insert it into the p.c.b. Check that the i.c. is correctly orientated, that is, with the displays upright, the notch on the ICM7205 should be on the left side of the p.c.b., see Fig. 4.

The crystal can now be inserted by bending the leads through 90 degrees, thus enabling its case to rest on top of the i.c.

Wire up the switches, charger socket, push-buttons and p.c.b. as shown in Fig. 5. The wire lengths are indicated, so that the whole loom can be completed prior to insertion into the Verobox.

## CASE

The plastics box can now be marked out and drilled as specified in Fig. 6. The slide switch holes, and display aperture will have to be drilled and then filed to shape. Care should be taken when working the plastic, as the heat generated may distort the holes. Finally glue a piece of display filter material over the inside of the aperture.

The three Ni -Cad cells can now be taped together and connected in series as in the loom of Fig. 5. Mount the charger socket and push-buttons on the case. It can be seen from the photographs that the relative positions of the loom components in Fig. 5 are correct for dropping directly into the box.

Check nothing can short out and locate the battery assembly in the base of the box, with the negative terminal at the top left-hand side. Place a 35 mm square of soft foam rubber not more than 10 mm thick, over the battery pack: carefully locate the push-button wires across the foam, and place the p.c.b. assembly over the top. The push-button wires now run under the p.c.b. around the lower end, and into their respective connections.

Four stand-off spacers made from 3 mm bore p.v.c. sleeving, each 17 mm long, can now be positioned between the p.c.b. and the Verobox mounting bushes. Four 6BA cheesehead screws are used to fasten the board. Since the mounting bushes are blind holes, the screws will automatically tighten the assembly, whilst slightly compressing the spacers.


Fig. 3. Printed circuit board (Full size)

Fig. 4. Component layout shown at twice full size. The crystal leads should not be bent closer than 2 mm from the can

COMPONENTS
Resistors
R1 $100 \Omega \frac{1}{8} \mathrm{~W}$


## Capacitors

C1 10-60pF Piher type CADsA1 (Doram)

Semiconductors
IC1 ICM7205 IPG Intersil
X1-X6 FND357 Fairchild

## Miscellaneous

| XL1 | 3.2768MHz in HC33/U package |
| :--- | :--- |
| S1-S2 | Eagle SS3271 slide switch, or similar |
| S3-S5 | Eagle SW5 pushbutton, or similar |

S3-S5 Eagle SW5 pushbutton, or similar
JK1 $\quad 3.5 \mathrm{~mm}$ jack socket
Printed circuit board, $3 \times \mathrm{Ni}$-Cad AA size cells, Verobox $100 \times 50 \times 40 \mathrm{~mm}$ (type 65-2516G), display filter, screws, and p.v.c. sleeving.

CONSTRUCTOR'S NOTE
In this compact design, it is important that suitable l.e.d. displays are used. The specified FND357 units are available from: Eurocom, Blenheim Road, High Wycombe, Bucks, HP12 3RS. They may also be obtained from Comway Electronics Ltd., of Bracknell, Berks.
The ICM7205 i.c. is available from Rapid Recall, 9 Betterton Street, Drury Lane, London WC2 9BS, for approximately $£ 12 \cdot 00+$ VAT, etc.

The crystal XL1 and also IC1 are available from Watford Electronics, 33-35 Cardifi Road, Watford, Herts.



The switches are mounted so that in the completed arrangement, the ON/OFF switch is to the right of the display. The wire between the two slide switches should be wrapped around the two top piltars in the box, and pushed neatly down. This should be done before one of the switches has been fitted. The remaining wires should also be wrapped around the lid pillars, which will keep them clear of the display when the lid is screwed down.

Please note that the p.c.b. layout detailed in this article has been improved over the original prototype featured in the incidental photographs, where the 100s? resistor was mounted on the underside of the component board.

Owing to the nature of the application of this device, operation will probably need to be instinctive, therefore there is little merit in labelling the switches, although this can be done with dry letter transfers if felt necessary.

## NI-CAD CELL CHARGER

The cells will need to be constant current charged, which for the recommended battery should be about 65 mA . A circuit is shown in Fig. 7 which would perform this function, and also behave as a power supply for normal use, provided the cells are still in circuit. The 3.5 mm jack socket (JK1) is used for this purpose, with the tip wired positive.

## ELECTRONIC CONTROL

At the expense of portability, this unit can be hooked up to a photo-electric, or some other type sensor, to give completely electronic timing. This would of course give greater timing accuracy and repeatability. but would require a suitable multiway connector for the control inputs.

Fig. 6. Details of holes to be cut in the box to accommodate switches, etc.


## MEMORIES

Seventeen years ago when ITT Semiconductors at Foots Cray, Kent, were just about getting going on a semiconductor programme, few of us imagined that Foots Cray would one day be the leading memory house in ITT world-wide. How could we? We used to call the company STC in those days and memories were magnetic core stores.
This points up the big problem of keeping abreast of events in electronics. Not only who is making what, but very often who owns whom? Anyway, ITT have plunged $£ 1.6$ million on production and test facilities at Foots Cray in a major bid to capture a big chunk of the 4 K RAM market with a 4027 emulator of the Mostek device.

The ITT strategy is based on a sales prediction that the 4027 is potentially the biggest seller. By next year ITT expect to be pumping 4027 s out of Foots Cray at a rate of about three million a year.

Samples went out to industry at the tail end of 1976 and have been well received. If all comes true for the crystal-gazers at Foots Cray, about 80 per cent of the output will go to computer manufacturers in the USA and mainland Europe.
There was a crash development programme in which it is said that Foots Cray used Computer-AidedDesign (CAD) through the transatlantic cable to a powerful processor in the United States.
The business stakes are high and well worth a gamble. ITT forecasters suggest a world market for 4K RAMs peaking at $£ 90$ million in the early 80 s .
But bubble memories are still a long way off according to data storage specialists BASF whose computer interests lie mainly in
magnetic discs and tape. Head of BASF's data processing sales organisation, Dieter Heuer, reckons that bubbles won't make much impact until the mid-80s.

## THE GAME'S THE THING

Those who are engaged in the sober professional side of electronics tend to scorn the gimmicks of electronics as almost beneath contempt. How wrong they are, at least from the business point of view. This came to me very forcibly when I heard that General Instrument Microelectronics had sold eight million chips for TV electronic games in a year. And next year could see the sale of up to 15 million electronic games. Quite a nice sideline while the market for new TV is still trying to recover.

The GIM 8500 chip provides facilities for half a dozen games and is probably the most successful dedicated chip for games ever produced. Details of the 8500 were described in the TV Sportcentre published last month.
But this is only a beginning. The microprocessor is due in the games business soon and will broaden the scope considerably, not only for more types of game from one piece of equipment but more complicated games, many of which will be not only fun to play but educational as well.
The big fear of the chip manufacturers is that the novelty of TV games will soon wear off. This could well be so, but the semiconductor fraternity are well skilled in business gamesmanship and will no doubt think up a few more ideas to keep us all spending our money.

## A TESTING PROBLEM

With millions, even billions, of i.c.s pouring out of the factories the test gear manufacturers are doing well. I refer to that branch of the test and measurement industry which makes Automatic Test Equipment (ATE).
Next November at Brighton we shall see the biggest collection of ATE ever assembled in one place and have the opportunity of attending the most comprehensive ever conference on the subject.

Like every other market sector, the nature of ATE business is changing. At one time the only people who bought semiconductor ATE were the semiconductor manufacturers. Today less than half the total sales go to the man ufacturers and far more is bought by semiconductor users. On the face of it this seems ridiculous because the user is only doing again what his supplier has already done once.
The user's problem is that if there is a bad apple in the barrel from his supplier and it gets assembled among
a cluster of other i.c.s on a printed circuit board, it's quite a problem to find out where the fault is and quite a job to get an i.c. out from the board without damage. And a complex board can cost a lot of money, not to mention the cost per hour in troubleshooting and repairs, and delay in production.

So better safe than sorry! Many companies are now doing 100 per cent checks on semiconductor devices at goods-inwards-it's cheaper that way. Not that devices are not tested well at the semiconductor plant-they are. But there can be transit and handling damage and it's not unknown for devices to be wrongly marked or for poorly marked devices to be stored in the wrong bins.

## QUEEN'S AWARDS

Quite a lot of people have been questioning whether the Queen's Awards to industry have outlived their usefulness. Perhaps it's churlish to say so in Jubilee Year, but more often these days it's not so much patriotic fervour that spurs a company into bigger exports as the sheer need to survive. And so far as technological innovations are concerned, electronics companies live on them and so it's almost routine that a few should emerge every year.
This year GEC-Marconi brought their grand total up to 18 in 11 years since the scheme was started. Marconi Instruments won two of the four that went to GEC-Marconi, one for a 40 per cent jump in exports, the other for the TF2370 spectrum analyser, a technological development that was tipped by me as a world-beater when it was first announced in 1974 and has been mentioned before in this column.

Marconi Space and Defence Systems won their technological achievement award for the "Blindfire" tracking radar for the Rapier missile system. This is not only a fine radar but it has enormously improved the export potential of the Rapier system; already one of Britain's biggest export earners. And Marconi Marine got theirs for exporting 70 per cent of annual sales.
But when it comes to exports nobody can touch Racal. A fraction of the size of GEC-Marconi, the Racal Group has scored eight Queen's Awards. Now RacalTacticon has scored again with 86 per cent of production exported and it is this vigorous sub-group of companies which has now won six of Racal Group's eight Awards.

Congratulations to all the Awardwinners this year and let's all hope that the losers will try that little bit harder. After all, it's a lot more fun to be successful as well as more profitable for everyone concerned.


A microprocessor is a sociable animal, destined by its makeup and its programmed inclinations to establish friendly relationships with hardware external to its own immediate and cosy environment of warm 5 volt power supplies and chatty RAMs and PROMs.

To follow its sociable inclinations the microprocessor requires communication channels through which it can establish a dialogue with an often hostile outside world inhabited by thirsty l.e.d.s, bouncy switches, impatient printers, punchy tape perforators and a host of other "wierdos" who all require careful handling if they are not to become offended.

Of course, hardly any of these cranky gadgets speak a word of binary. Some gabble away in ASCII, others need it spelled out for them in" terms of "motor on" or "lamp off", and still other uncouth layabouts require, of all things, a couple of hundred volts or a few amps before they'll play ball.
Now the microprocessor is a pretty smart cookie, and by and large it can handle all of these with ease as long as a thoughtful hardware designer provides some kind of interface circuitry so that the MPU chip doesn't have to get its delicate digits dirty.
The channels of communication are termed ports, and from the inside a port looks quite similar to a memory location, making communication kid's stuff as far as the MPU chip is concerned. On the outside can be hung all the switches, gates, transistors and thyristors apparently so necessary to all those peasants beyond the system boundary!
Without a complement of ports, a microprocessor is really nothing more than a fiendishly clever and expensive waste of time, and so this month we'll be looking at how these simple hard working appendages operate, and how the practical microprocessor fulfills its external obligations

Ports can be input only, output only, or bidirectional in nature, and they can be arranged to transfer data a bit at a time (serial) or a word at a time (parallel), to suit the requirements of the external hardware.

## SERIAL PORTS

Data transfers on a bit-by-bit basis are useful because only a single pair of wires is necessary to carry out the transfer, and this is important where sender and receiver are separated by sizeable distances. Of course speed of data transfer will be limited, but this isn't always important and in fact a whole family of computer peripherals, typified by the Teletype, do operate in this serial mode.

Teletypes and their derivatives operate asynchronously, a character at a time, and microprocessors can
be programmed to send or receive information in the Teletype code (usually ascil) via a serial port. Some MPU chips have a special serial output port actually on the chip, while with other systems to establish a serial port it is normal to simply use a small part of what is really a parallel port.

The fact that a parallel port can be considered as consisting of a collection of separate serial ports makes it unnecessary for us to consider serial ports in great detail since if parallel ports are available it will always be possible to write programs which treat the port as a serial interface.

For the special case of the asynchronous serial communications link mentioned above, we will see later that a special class of peripheral chip called variously Uarts and acias can be used to implement this more efficiently than the MPU alone can.

## PARALLEL PORTS

The mpu chip sends data to or reads data from a port via the same data bus that it uses for memory data transfers. This means that the parallel ports have the same word length or number of bits as the microprocessor itself, and in an eight-bit MPU system for example, the ports will be eight bits wide. The microprocessor can therefore change the logic state on eight output wires simultaneously by loading an eight-bit word from its accumulator to a selected output port, or it can load its accumulator with the logic state existing on eight input wires by reversing the procedure.

The number of input and output lines required in any particular application can range from just one of each, to perhaps hundreds of each in all sorts of combinations. This means that even 16 -bit MPU systems will often require more than one input or output port, and this in turn means that some method of selecting, or addressing, the appropriate port is required. Different MPU chips tackle the problem of $1 / O$ port selection in different ways, but there are two main methods.

## DEDICATED I/O INSTRUCTIONS

The instruction sets of some MPU chips contain special instructions which can be used to select a port and read data from it or write data to it. A good example of this simple $1 / \mathrm{O}$ format is provided by the Intel 8080 microprocessor which has two instructions called $I N$ and $O U T$ which are used to transfer data between the accumulator register and selected ports. These instructions are of the two-byte variety, the first byte specifying the operation and the second specifying which of the possible 256 input or 256 output ports is being addressed. The eight-bit port address is sent out on the address bus like a memory reference address, but the port address is made unique by its association with an INPUT READ or OUTPUT WRITE signal on the MPU control bus.

## MEMORY MAPPED I/O

An often used alternative to ports controlled by dedicated I/O instructions are memory mapped input/ output ports which share the same address range as program and data memory. With memory mapping no special $1 / \mathrm{O}$ instructions are required because input and output ports are treated as though they are memory locations which are written to and read from by means of the standard memory reference instructions provided in the instruction set.
Being able to use these standard memory reference instructions makes nemory mapped I/O more versatile and sometimes more efficient, but because the ports are indistinguishable from memory locations as far as the MPU is concerned, the useable memory area is reduced and program debugging can be more difficult.

Memory mapped I/O can really be used with any microprocessor, although some like the Motorola M6800 and the SC/MP rely on it exclusively. We feel that an MPU chip which has the special I/O instructions is a better bet, because it leaves you free to choose the right type of port addressing for your particular application.

## PORT HARDWARE

An output port consists, in its basic form, of a number of bistable latches with their inputs connected to the MPU data bus and their outputs available as


Fig. 5.1. A simple four-bit output port which can be built using standard TTL or CMOS components


Fig. 5.2. A simple four-bit input port
output wires. The latches are loaded in parallel by a common write strobe which is generated at the appropriate time by the MPU itself. Selection logic can consist of a few simple gates or alternatively. TTi decoders such as the 7442 can be used to provide address decoding for a number of separate ports. See Fig. 5.1.

Input ports are normally three-state devices because their outputs have to drive the multiplexed MPU data bus only during the correct time slot in the mpu control cycle.

Normally the outputs of several input ports are connected together along with memory outputs from ram and rom and so it is essential that only one of these possible drivers is allowed to control the bus at any given instant. All other potential bus drivers must be in their third, high impedance, stage while the selected device is sending its data to the MPU chip.

Three-state logic is now freely available in the standard TTL and CMOS families, and an input port need consist of little more than a collection of three-state buffers with their "output disable" pins controlled by the MPU "read strobe". Selection of a particular input port is achieved in the same way as for output ports. See Fig. 5.2.


Fig. 5.3. The Motorola MC6820 Peripheral Interface Adapter (PIA) for use with the M6800 MPU. Two Programmable eight-bit ports are provided and comprehensive control and interrupt facilities are available. The MC6820 provides the universal means of interfacing peripheral equipment to the MC6800 MPU through two eight-bit bidirectional peripheral data buses and four control lines. No external logic is required for interfacing to most peripheral devices. The functional configuration of the PIA is programmed by the MPU during system initialisation. Each of the peripheral data lines can be programmed to act as an input or output, and each of the four control/interrupt lines may be programmed for one of several control modes. This allows a high degree of flexibility in the over-all operation of the interface

## PROGRAMMABLE PERIPHERAL INTERFACE CHIPS

While it is fairly simple to put together your own input and output ports using TTL or CMOS components, this is not always the best solution since mpu manufacturers have designed some very versatile programmable input/output chips for use with their particular miroprocessors which can save you a lot of board space and add flexibility to your design.

The chips to which we refer are mos LSI devices containing several I/O ports which can be individually configured as inputs or outputs under program control.

Devices of this type allow the "Deferred Design" concept discussed in Part 1 to be extended into the $1 / 0$ area, because decisions regarding the number of input and output lines required for a particular job can be sidestepped at the hardware design level and not defined absolutely until the software design is undertaken. Examples are:

1. The Intel 8255 which consists of three eight-bit ports in a 40 -pin package. The three ports can be
programmed during system initialisation into one of three possible modes under the control of the 8080 program.
2. The Motorola MC 6820 which consists of two eight-bit ports in a 40 -pin package configureable as input or output ports under the control of the M6800 MPU to which it is connected. See Fig. 5.3.

## PROGRAM CONTROLLED I/O

The simplest way of controlling input/output transfers is to keep the whole business under the rigid control of a program, but this can raise problems when complex or high speed peripheral devices have to be dealt with.

In program control of. say, a keyboard array, the mpu must spend a great deal of its time examining the keyboard input ports to see if any keys have been pressed. The program must incorporate a "wait loop" through which the MPU cycles continuously until a key is pressed, and when it finds a key depression it must deal with it quickly to ensure that it does not miss any subsequent depressions. If the MPU does not have


Fig. 5.4. The 8216 four-bit Parallel Bi-Directional Bus Driver/Receiver. All inputs are low power TTL compatible. For driving MOS, the DO outputs provide $V_{O H}(3.65 \mathrm{~V})$, and for high capacitance terminated bus structures, the DB outputs provide a higher lol ( 50 mA ) capability. All outputs may be tri-stated. The 8216 is ideal as the data bus buffer/driver for the 8080 CPU. It may also be used with other MCS CPUs. By using a device such as this the fan-out of the bidirectional MPU data bus can be increased and bidirectional ports can be implemented
much else to do, this is not really a problem, but if it also has a printer, a tape cassette, and a lawn sprinkler to look after, it would not be able to cope adequately and recourse to a more sophisticated type of I/O control is necessary.

## INTERRUPT DRIVEN I/O

You may have noticed that most microprocessor chips have one or more interrupt inputs, and by making use of these it is possible to make our overworked MPU chip much more efficient in its dealings with the outside world, and well able to deal with a large number of peripheral devices all clamouring for attention.

The interrupt line, when asserted, causes the MPU chip to finish off the instruction it is currently engaged on and to jump to a special address called the "interrupt vector"" where our trusty programmer has located a special program called an "interrupt handler". In our keyboard example for instance, the "wait loop" is no longer necessary if the keyboard array produces a common output which means "key pressed", and this is connected to the MPU interrupt line. In between key presses the MPU chip can tend the rest of its flock without fear of missing anything. The interrupt handler program is written rather like a subroutine (see Part 2) and when it has done its job (in the keyboard case it would read the code representing the depressed key into memory, for example) a $B R A N C H B A C K$ is carried out to put the program counter back to where it was before it was interrupted.

## INTERRUPT EXPANSION

The basic single-line interrupt facility can be expanded to handle any number of separate interrupt inputs if required, and as you might expect, a great deal of hardware and software ingenuity is often employed to make the interrupt system as efficient as possible.

When there are a number of possible interrupt sources it is advantageous to allocate a priority status to each of them so that a definite "pecking-order" is established. With a priority-ranked interrupt scheme, interrupt service routines already running can themselves be interrupted by interrupt sources with a higher priority, although sources with a lower priority have to wait until the current service routine is completed.

This concept of interruptable interrupts is similar in many ways to the concept of nested subroutines discussed in Part 2, and the Mpu chip keeps track of its hectic input/output operations with the aid of the stack which is used to store program counter values for orderly returns to lower priority interrupt routines and eventually to the main program.

## DETERMINING PRIORITY

The criteria used to decide which devices should have the highest priority can be complicated, but a good rule of thumb is that the faster a device is, the higher the interrupt priority it should be allotted. Of course such signals as "power fail" must be right at the top of the priority tree, so that the MPU can make a rapid response to this potentially damaging event by saving valuable


Fig. 5.5. Keyboard interface using program-controlled input/output


Fig. 5.6. Keyboard interface using interrupts
data in non-volatile storage and carrying out other important housekeeping jobs in the few milliseconds it has left before it gets the chop!

Prioritisation can be established by software with the use of such aids as the "Skip-chain" (Part 3), where once interrupted, the MPU goes off to ask each of the possible devices in turn whether it was responsible for the interrupt, with the highest priority devices being asked first, a technique known as "polling". A more powerful alternative is to establish a priority interrupt structure with hardware, and there are a variety of possible circuit techniques available to do this, the fastest requiring a lot of circuitry external to the MPU chip with others using less but requiring a certain amount of software support

## SINGLE-CHIP SUB-SYSTEMS

Interrupts are a little scary at first, but the mpU manufacturers are doing their best to make the use of this powerful technique as simple as possible, and one way in which they have improved matters is by introducing complete interrupt hardware sub-systems on a single chip.

An example of this interrupt hardware is given in Fig. 5.7, which shows the Intel 8259 "Programmable Interrupt Controller" for use with the 8080 MPU . This device handles eight priority-ranked interrupt inputs and produces a single interrupt output to the Mpu along with an address vector to one of eight possible service routines. The 8259 can be cascaded to give extra interrupt levels, and the priority allocations can be changed while a program is rumning to provide a flexible response to the system environment.

## OTHER PERIPHERAL CHIPS

In addition to input/output ports and associated interrupt circuitry, there is now a wide selection of "special" peripheral chips which are designed to take some of the load off the mpu chip and the poor overworked programmer! These chips really represent a reversal of the trend away from hardware and towards software in the interests of making the larger systems more efficient and easier to program.

As an example, Lsi chips can now be obtained which perform all the "retireshing" required by the dynamic

## Glossary of Terms

ACIA-Asynchronous Communications Interface Adapter. A peripheral chip which can control the transmission and reception of data to and from a seriel asynchronous peripheral such as a Teletype or a vDU. The ACIA converts the raw mpu data into a required peripheral format and transmits it at the correct speed. On reception of a data word from a peripheral, the ACta latches it and tells the MPU of its availability via an interrupt or other control line. (Also see Uart).

ASCII-American Standard Code for Information Interchange. A binary type code for communications purposes. The code includes upper and lower case alphabets, numerals, punctuation, and special control characters.

BAUD RATE-Refers to the rate of data transmission in serial conmunication links. More particularly it describes the number of message elements transmitted each second. For comparison, Telex machines operate at 50 bauds whereas normal AsCII Teletypes (often used with microprocessor systems) operate at 110 bauds.

FSK-Frequency Shift Keying. A commonly used modulation technique for sending serial binary data over comınunication links (e.g. telephone lines). Binary I's and 0 's are represented by separate audio frequency tones to produce a sort of keyed f.m. signal which is compatible with any channel normally used for speech transmission. Also useful for recording binary data on standard audio tapes or cassettes.

INTERRUPT-A hardware based facility which allows the suspension of a current program while an alternative "Interrupt Handler" program is executed. At the end of the interrupt sequence the original processor status is restored and the previously executing program is allowed to continue
from the point at which it was interrupted. Interrupts are a powerful and widely used tool for the handling of peripheral input/output transfers.

INTERRUPT LINE-An asynchronous input to the microprocessor chip which when asserted causes the MPU to enter the interrupt state. Some microprocessor systems have a number of interrupt lines, and each of these is assigned a priority so that the one with the highest priority is serviced first.

INTERRUPT VECTOR-This is the address at which the start of an "Interrupt Handler" program will be found. Some microprocessors used fixed interrupt vectors set by the chip manufacturers, while more sophisticated systems with many possible interrupt sources allow the interrupting device to provide its own vector via an input port.

MODEM-MODulator/DEModulator. A widely used data communication terminal which allows a twoway (transmit/receive) serial data link to be established over standard telephone lines. These terminals use fsk modulation and demodulation techniques. A complete "Modem on a chip" is available as part of the Motorola M6800 microprocessor family.

SCRATCH PAD-A general name for a read/write random access memory which is used by an MPU chip as a "jotter" for immediate results or constants. The main requirement is for easy addressing and fast access, and many mpU chips have scratch pads, in the form of a register array, actually on the chip.

UART-Universal Asynchronous Receiver/Transmitter UART is an alternative (and more popular) name for the acia.

USART-Universal Synchronous/Asynchronous Receiver/transmitter. This is an improvement on the UART or ACIA in that it may be programmed to operate as a synchronous communication link, making it a truly universal microprocessor communication peripheral chip.


Fig. 5.7. The Intel 8259 Programmable Interrupt Controller. Note the eight prioritised interrupted inputs and the single resultant interrupt output which goes to the 8080 MPU chip. Setting up data and interrupt vector addresses pass to and fro on the eight-bit data bus


Fig. 5.8. The "innards"' of the Motorola MC6850 Asynchronous Communications Interface Adapter (ACIA). Note the eight-bit data bus for communication with the MC6800 microprocessor, and the single-line TX and RX data paths for communication with serial peripherals

RAM chips often used for data storage in microprocessor systems. Chips like these make the refreshing operation completely "tramsparent" to the programmer. Who would otherwise have to control it himself tia software.

Another valuable peripheral chip relieves the MPU of the tedious job of providing time delay functions, normally produced by making the npl: chip sit in a loop incrementing cascaded storage locations until some pre-programmed terminal count is reached. This wastefut exercise is analogous to the seeker in a game of hide and seek who has to coumt to a hundred before setting off.

If the sceker has a stop-watch which "buzzes" after a hundred seconds, he or she could perhaps be better occupied reading a hook during the waiting period, and similarly the microprocessor can be better occupied doing arithmetic or responding to interupts!
The delay time chip referred to contains a number of independent binary counters which can be incremented by the system clock and are preset and started under mpu control. When a terminal count is reached an interrupt is generated to inform the whe that the time period has expired.

## SERIAL INTERFACE

One other important class of peripheral chips is commonly used to provide communication channels to serial peripheral devices like Teletypes and unus. These chips have names such as Uari (Universal Asynchronous Receiver Transmitter), usari (Lniversal Synchronous Asynchronous Receiver Transmitter) and ACIA (Asynchronous Communications Interface Adapter) and are produced by most major microprocessor companies. See Fig. 5.8.

The chips relieve the mpu of a lot of the housekeeping and timing operations which are necessitated by the strict format and protocol demanded by serial peripherals, and emable the mpe to treat such serial I:O transfers as simple parallel word transfers to or from the UART, USAR T or acia chips themselses.

Apart from parallel-to-serial. and serial-to-parallel conversion, the chips add start and stop bits to the transmitted data. and can also provide and test a parity (error check) hit when this is desirable. The actual speed of transmission (or baud rate as it is usually called) can be programmed by use of an extermal clock oscillator over the range of d.e. to several thousand bits per second, so that a wide range of terminal equipment can be handled.

As if that wasn't enough, Motorola have introduced a complete "modem" on a chip (the M(6860L) so that the output of their arla can be converted into an rak (Frequency Shift Keying) signal for transmission over telephone lines!

## NOT ESSENTIAL

In the midst of this proliferation of special peripheral hardware it is important to remember that most of it is not essential and that it can be economically replaced with software in many small to medium sized systems. After all, replacing hardware with software is supposed to be the name of the game!

[^2]NEXT MONTH Play mastermind


Has the same pegboard format and rules of scoring as the popular commercial game and colour sequence guesses are repeatable. Two game options are available as a " 4 from 6 colour" and a harder " 4 from 10 colour"

## CIICK AUTO DIMMER



A "not too bright" idea, for when it gets dark. This circuit will automatically dim your digital clock display to a preset level that doesn't glare. Details are given to cope with most types of display

## C/R METER -W - H1

A low cost piece of test gear that provides accurate measurement of resistance and capacitance from $0-10 \mathrm{M} \Omega$ and $0-1 \mu \mathrm{~F}$, each in four ranges. Scaling is linear

## THE CHAMP IS COMING!

## practical

EMECTRONICS
AUGUST ISSUE ON SALE JULY 8, 1977


TUNNE INOCCAOR

By C. Yallop

THE infinitely variable tuning capability of the synthesiser oscillator, presents problems with accurate tuning for multi-tracking and live performance applications. However, since relative tuning of the keyboard is set with the span control, the problem can be overcome by providing a tone of fixed pitch at several octaves range. A visual indication of frequency difference from this reference will then allow rapid and easy tuning, which can be carried out silently. The circuit described provides these facilities, and with a three octave keyboard, allows tuning over the range 16.35 to $8,372 \mathrm{~Hz}$ directly.

## CIRCUIT DESCRIPTION

Fig. 2 shows the complete circuit. The reference note is generated by ICI connected as a stable relaxation oscillator, the frequency of which is set by VR1. Fig. I shows the basic oscillator format and the law governing the frequency of oscillation. Metal oxide resistors are used to promote stability.

In the off position, Sla disables the oscillator to eliminate audio and beat frequency break-through when not in use (for the benefit of those who build the device permanently into their synthesiser). The output of IC1 is a high amplitude square wave, and this is buffered by TR1 to be TTL compatible. A 4 -stage octave divider is formed by IC2, and the outputs are selected by S 2 , and fed to the reference input of the indicator circuit.

The indicator circuit is basically that used in the Tuning Fork of PE November 1975, but since a high level continuous signal is available from the v.c.o.s, only one stage of preamplification is necessary. A further modification at the sample input, is a switched low pass filter. This attenuates higher octave signals than those of the reference, so that indicator D4 only provides a beat indication when the sample and reference pitches approach unison.

## CONSTRUCTION

The unit is primarily intended to be built into the synthesiser, and operated from its supply. The circuit will operate from $\pm 9$ to $\pm 15$ volts, with R 5 and R15 selected to match the supply voltage used. The circuit can be assembled on 0 -lin strip-board. When using the layout shown in Fig. 3, C4 through to C7 are wired directly on switch S2b. The sample inpuis are taken from the v.c.o. outputs, before their level controls. The reference signal can be taken from S2a common, to an audio amplifier for audio tuning. The arrangement shown was used in the Minisonic Synthesiser.


Fig. 1. Basic oscillator, and equation governing the frequency of operation


Fig. 2. Circuit diagram of the synthesiser tuning reference. Beat frequencies are indicated by D4

## COMPONENTS . . .

| Resistors |  |
| :---: | :---: |
| R1 | 33k $\Omega$ 2\% m.o. |
| R2 | 10k $\Omega 2 \% \mathrm{~m} .0$. |
| R3 | $4.7 \mathrm{k} \Omega 2 \%$ m.o. |
| R4 | $10 \mathrm{k} \Omega$ |
| R5 | $220 \Omega$ (for $\pm 9$ volt rails) |
|  | $470 \Omega$ (for - 15 volt rails) |
| R6 | $2.2 \mathrm{k} \Omega$ |
| R7 | $120 \mathrm{k} \Omega$ |
| R8 | $120 \mathrm{k} \Omega$ |
| R9 | $1 \mathrm{k} \Omega$ |
| R10 | $1 \mathrm{k} \Omega$ |
| R11 | $10 \mathrm{k} \Omega$ |
| R12 | $3.3 \mathrm{k} \Omega$ |
| R13 | $12 \mathrm{k} \Omega$ |
| R14 | $10 \mathrm{k} \Omega$ |
| R15 | $220 \Omega$ (for $\pm 9$ volt rails) |
|  | $470 \Omega$ (for $\pm .15$ volt rails) |
| R16 | $100 \mathrm{k} \Omega$ |
| R17 | $100 \mathrm{k} \Omega$ |
| All 5 | $\frac{1}{4}$ W unless otherwise stated |

Potentiometers


Capacitors
C1 10 nF poly
C2 $4.7, \mu \mathrm{~F} 16$ volt
C3 0.0684 F ceramic
C4 $20 \mathrm{nF} 2 \%$ poly*
(can be 1010 nF )
C5 $10 \mathrm{nF} 2 \%$ poly*
C6 $\quad 4.7 n \mathrm{~F} 2 \%$ poly**
C7 $2 \cdot 2 \mathrm{nF} 2 \%$ poly*
C8 $10 \mathrm{nF} 2 \%$ poly*
C9 $220 \mathrm{pF} 2 \%$ poly*
C10 0.1uF ceramic
*Available from
Doram Electronics Ltd

Transistors
TR1 BC108
TR2 2N3823 f.e.t.
TR3 BC214

Diodes
D1 BZY88 4.7 volt Zener
D2 1 N914
D3 1 N914
D4 TIL209
Integrated Circuits

| IC1 | 741 C |
| :--- | :--- |
| IC2 | 7493 |
| IC3 | 741 C |
| IC4 | 741 C |

## Miscellaneous

S1, S2 2-pole 4-way rotary switch
S3 1 pole push-to-make


Fig. 3. Component layout and circuit board copper strip cutting details

## SETTING UP

Where a $C$ to $C$ keyboard is used, the reference oscillator is best tuned to C at $2,093 \mathrm{~Hz}$. The exact frequency can be chosen to suit the application. For example. where the synthesiser is used with a fixed pitch instrument, the reference can be tuned to this, using the external sample input.

The gain of the sampie input stage is set by VR2, so that with the v.c.o. input one octave above the refer-
ence, D4 does not quite light. Check this at all positions of S2. With the v.c.o. and reference approaching unison, a good beat indication should be given by D 4 .

To tune the v.c.o.s, their frequency is adjusted until D4 lights, and then further adjusted to give the slowest beat frequency indication obtainable. Audible tuning will facilitate initial coarse tuning.

## NEWS BRIEFS

## Viteo Diss '77

THE HRSI public UK demonstration of the Philips and MCA optical video dise system will be given at this year"s Video Disc`77 Conference. Until now, the system has only been seen bs invited audiences in Japan, USA and in Europe: Berlin and Cannes.

The Video Disc 77 Conference is to be held on November 8 and 9 in the Princess Anne Theatre at the British Academy of Film \& Television Arts in Piccadilly, London. This auditorium was chosen because of the ceiling suspended colour monitors. ideal for video presentation to large audiences.

## Teach-ill

Aハリ dat course with tutorials on the subject of "Logic, Interfaces and Microprocessors " ${ }^{\circ}$ is to be conducted by Prof. D. Zissos at the Southgate Technical College, London. N.It

Approsimately three days will be devoted to the design of logic circuits. design of procedures for instrument and mmicomputer interfaces. The last tho days will examine in depth microprocessors and their use in digital systems.

Details and reservations can be obtained from the organisers Interprojects Lid., 29 Church Street, Edmonton, London. N99DY

## Pilots Eyes

T
HE Special Components Department of Ferranti at Gem Mill are hoping to help American Army helicopter pilots to overcome visibility problems when in action.

They hate supplied several of their I in CRTs to Hughes Aircraft Co. for incorporation in experimental helmetmounted head-up displays. In the display, the tube is attached to the helmet and an image is projected through optics onto the pilot's visor. with focus at infinity. Thus, he sees the CRT image superimposed on whatever outside scene he is looking at.

 COMPLETE BUYERS GUIDE TO

TOP 400 SEMICONDUCTORS FROM THE LARGEST RANGE IN THE U.K

##  <br> scanctast Marshall's

A. MARSHALL (LONDON) LTD DEPT P.E NW2 3ET ONOON-Te 01-452 0161 Telex 21492 GLASGOW-85 West Regent Street G2 2OD Tel: 041-332 4133
BRISTOL-1 Straits Parade. Fishponds Rd BSt 62 LX
Tel: 0272654201 Tel. 0222654201

EXPRESS M.O. SERVICE BY RETURN POST-al orders received despatched same day on stock items $\left.\right|_{B F X B 4} ^{8 F \times 30}$ 2N697
2N698 2N706A
2 N708 2N709
2N718
2N718A 2N720A
2N914 2N929
2N930 2N1132
2N1613

## 2 N 1 2 N 2 2



2N221
2N222
2N2221
2N2222
2N2222A
2N2368
2N2369
2N2369A
2N2646
2N2647
2N2904
2N290:A
2N2904A
2N2905
2N2905A
2N2906
2N2906A
2N2907
2 N 2907 A
2N2907A
2N2924
2N3019
2N3053
2N3054
2N3055
$\begin{array}{ll}\text { 2N3391 } & 0 \\ \text { 2N3391A } & 0 \\ 2\end{array}$
2N3392
2N 3393
2N3393
2N 3439
$2 N 344 \mathrm{C}$
$2 N 344$
$2 N 344$

| 2N3442 |
| :--- |
| 2N 3638 |

2N3638A
$2 N 3641$
$2 N 3702$


| 45 | BC158 |
| :--- | :--- |



1. 20 BFX884

| 11 | BD 115 | 1.20 | BFX |
| :--- | :--- | :--- | :--- | :--- |
| 14 | BD116 | $1 \cdot 20$ | BFXB |
| 50 | BD131 | 0.51 | BFX |

0.40
0.40
0.41
INTEGRATED CIRCUITS

| 0.41 |  |  |  |
| :--- | :--- | :--- | :--- |
| 0.40 | CA 3020 | 1.78 | LM 1808 |
| 0.40 | CA 3020 A | 2.29 | LM 1828 |
| 1.25 | CA |  |  |

- 

TTL FROM NATIONAL, ITT, TEXAS, SIGNETICS, ETC

| 0.21 | 7412 | 0.21 | 7438 | 0.55 | 7460 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.21 | 7413 | 0.51 | 7440 | 0.21 | 7470 |
| 0.21 | 7414 | 1.80 | 7441 | 1.03 | 7472 |
| 0.21 | 7416 | 0.61 | 7442 | 0.78 | 7473 |
| 0.26 | 7417 | 0.61 | 7445 | 1.35 | 7474 |
| 0.26 | 7420 | 0.21 | 7446 | 1.23 | 7475 |
| 0.74 | 7423 | 0.39 | 7447 | 1.17 | 7476 |
| 0.74 | 7425 | 0.39 | 7448 | 1.17 | 7480 |
| 0.29 | 7427 | 0.39 | 7450 | 0.29 | 7481 |
| 0.29 | 7430 | 0.21 | 7451 | 0.21 | 7482 |
| 0.21 | 7432 | 0.39 | 7453 | 0.21 | 7483 |
| 0.29 | 7437 | 0.55 | 7454 | 0.21 | 7484 |

## B. BAMBER ELECTRONICS

Dgpt, PE, 5 STATION ROAD, LITTLEPORT, CAMBS., CB6 10E Telophone: ELY (0353) 860185 ( 2 lines) Tuasday to Saturday

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED
RED LED. (Min. typo) 5 for 70p.
VIOICON SCAN COILS (Trankietor typo. but no dsua) complete with vidicon base Ee-EO mech. Brand Now. FULL RANGE OF EERNARDS/BABANI ELECTRONICS BOOKS IN \$TOCK. SAE. FOR LIST.

NEW FOR THE VHF CONSTRUCTOR. A tuned circuite on formmera with alugs and wcreoning cans
Frequencies quoted ars approximeto, and range can be greatiy extended by using varying capacitors in parrallel. Type S (tin. squars, dumpy type)
Type SA 20 to 30 M Hz (when 33
Type SA 20 to 30 M itz. (when $33 \mathrm{pt} \mathrm{fitted} \mathrm{in} \mathrm{parallell)}$. Type S日 35 to 50 MHz (with link windingl)
Type SC 70 to 100 MHz (with Unk windling).
Type SO 135 to 175 MHz (with link winding
Type M M Min. Jin. tquare rypeni.).
Type MA 19 to 28 MHz (when 33pt fired in perallai). Type MC 26 to 35 MHz (when 33 pf fitted in peralle) Type MD 38 to 50 MHz (whon 33 pf fited in paniliel) Type ME 45 to 60 MHz ( When 33 pt fitted in peraliol)
Type MF 100 to 200 MHz (without alug) when 0 to 30 p
varimbis fitted in peralise.
All the sbove coils avaitats in pecke of five only (same typal at 50 p per prock of B .

PLASTIC PROJECT BOXES with screw on lide ilm Black ABS) with brats insorti.

(OTHER SIZES AVAILABLE SHORTLY)
MULLAMD BEA2 E5V STAEILISEM VALVES
(Arend Naw) 70 p each or 2 tor $£ 1.20$.
TO3 trangistor insulator sers. 10 for 50p. NUT SPINNER SETS - SPIRALUX Model 22 10 BA sizes. $0,1,2,3,4,5,6,8$, f4.20. Model 2230 Me
10 mm f4.50.
110V NEONS. SCREW-IN-TVPE, 4 for 50 p.
4 $\mathrm{H} \mathrm{Hz}_{2}$ XTAL PACKS 10 assorted $\times$ tals between 4 MHz and 5 MHz ), our selection only. f1 Pack. Miniature pliers. High quality "Crescent" made in USA. ©4. $35 \rightarrow$ VAT ( 35 p).


MAGNETIC DEVICE 8 PROGRAMMERS. CONtain 9 fully adlustable cams and 9 change over micro switches lrated approx. 1 A at 240 VACl . Needs slow-
motion motor to drive inot supplied). Ideal for disco lights, sequence switching. etc. ex equipment $\mathbf{~} 1.50$

GARRARD 9V DC MINIATURE MOTORS, Type $31 \mathrm{BM}, 3200$ APM poverned. size approx 1 tin. dia. $x$ itin. high, with
New. 60 esech or 2 for 4 .
SILICON MIGH VOLTAGE RECTIFIER STICKS BY 185 (naw) 35 kV 2.5 mA
(ex-equip) 12 kV 25 mA 45 p anc
VARIABLE STABILISED POWER SUPPIY mains inpuf, o-24V output, stabilised and current British manufacturer. Size approx. $7 \frac{1}{\frac{1}{2}} \times 2 \frac{1}{\frac{1}{2}} \times 4 \mathrm{in}$ complate with external $5 \mathrm{k} \Omega 3$-turn pot for voltage
control. Connection data supplied. f 7 .
14 DIL REED RELAYS, 5 to $12 V$ DC, 450 ohm coil. Designed to work directly from TTL Logic
Single Pole Change over. Contact ratings 28 V t 3W. f1.75 each.
SPECIAL OFFER
STARPHONE HIGH BAND RF PC BOARDS with converslon data tor making into a good 2 M Converter. (All that is needed: 1 xtal, 7 caps. 2 resistors, and 9V DC.) PCB contsins 2 Dual gate Hos ret RF stages ( 3 N 140 ). Diode ring mixer.
3 stage Osc/Multipliar. All on one PCB, approx. $6^{\prime \prime} x 1+"$, ext connections. $9 V$ DC supply. AGC Ican be left fixed bias, or RF gain controll Ant, input, IF output (works from a few MHz to over
30 MHz ). All Brand New fe. 50 each, while stocks last.
BS 20 (VHF Osc/Mult), 3 for 50 p .
BC108 (metal can) 4 for 50 p . 50 p .
8 FY 51 Transistors, 4 for 60 p .
BCY 72 Transistors, 4 for $50 \%$.
PNP audio type TO'S Transissors, 12 for 25p.
BF 152 (UHF amp/mixer),
2N3819 Fet. 3 for 60 p .
BC148 NPN SILICON. 4 for 50 p .
BCI58 PNP SILICON, 4 for 50p.
BAY 31 Signal Diodes, 10 for 35 p
BA121 Varicap Diodes, 4 for 50 p .
BA1 21 Varicap Diodes, 4 for 50p.
SMALL MAINS SUPPRESSORS (small Chokes
idesl for radio. Hi-Fi inputs, otc.), approx. $\frac{1}{2}$ in.

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED
PERSPEX TUNER PANELS (For FM Band 2 tuners) marked $88-108 \mathrm{MHz}$ and Channels $0-70$. clear numbers. rast blacked out, simart modem

## PLUGS AND SOCKETS

N-Type Plugs 50 ohm, 60p each, 3 for $\mathbf{£ 1 . 5 0}$.
reducers, 65 p or 5 for $\mathbf{E 3}$.
SO239 Sockets (PTFE), brand naw ( 4 -hole fixing
type), 50 p each or 5 for f 2.25 . type), 50 p each or 5 for f2.25.
SOLDER SUCKERS (Plunger Typal. Standard Model, ©4.50. Skirted Modal, E4.95. Spere

NELLER SOLDERINGIRONS
EXPERT. Euilt-in-spottight illuminates work. Pisto grip with fingertip trigger. High efficiency coppe soldering tip.
EXPERT SOLDER GUN 9100D 59.90 . XPERT SOLDEA GUN KIT (spere bits, case, atc. Spare Bits 35p pair. $\qquad$
NEW MARKSMAN RANGE OF SOLDERING IRONS. S I150 15 W 240 V E3. 80.
Sl 15015 W 240 V f 3.80
S 125025 W 240 V 3.80
1250 25W 240 V £3.80.
SI250K $25 \mathrm{~W} 240 \mathrm{~V}+$ bits etc., KIT £4. 90 .
SI250
SPECIAL 12 V version S125-12 25 W 12 V \& 3.80 .
BENCH 8 TA ND with spring and sponge for Marks
man Irons $\mathbf{~} \mathbf{2} .38$. Spare Bits MTS (for 15 W ) 50p, MT5 (for 25 W ) 45p MT10 (for $40 W 180 \mathrm{p}$.
ALLPATES

TCP2 TEMPE MATURE CONTROLLEDIRON. omperature controllod iron and PSUU $\mathbb{2 1 7 +}$ SPARETIPS
Type CC single flat, Type $K$ double flat fine tip Type $P$. very fine tip. fi eech - VAT (Bp).
MOST SPARES AVAILABLE.
MULTICORE SOLDER
Size 5 Savtit 18 s.w.g. in alloy dlapenser, 32 p + VAT (3p).


A LARGE RANGE OF CAPACITORS aVAIL
ABARGE RANGE OF CAPACITOAS AVAIL-
ABLE AT BARGAIN PRICES, SAE. FOR LIST.
MIXED COMPONENT PACKS, contsining resistors, capacitors, pots, atc. All new.
of items, $£ 2$ per pack, while stocks last.
ALU-SOL ALUMINIUM SOLDEA (mado ALL-SOL ALUMINIUM SOLDER (made by Mutti-
core). Solders aluminlum to itsell or COper corel. Solders alumintum to itself or copper,
brass, steel, nickel or tinplate. 16 g.w.g. with multicore flux, with instructions. Approx. I metre coil 40p pack. Large reel £2.75.
VARICAP TUNERS Mullard TYpe ELC1043/05 Brand New, E4.40 + $12 \frac{1}{2} \%$ VAT
BARCAIN PACK OF LOW VOLTAGE ELECTROLYTIC CAPACITORS. Up to 50 V working. Seatronic Manufacture. Approx. 100 . 1.50
per pack $+12 \frac{1}{2} \%$ VAT.
Mobile Converters, 24 V DC input 13.8 V at approx. 3.4 A DC output. fully stabilised. $\mathbf{C 3 . 5 0}$ esch
ifdeal for running 12 V car radlo from 24 V lorry battery).
We now stock Spiraiux Tools for the electrontc enthusiast. Screwdrivers. Nut Spanners, BA and metric sizes, pop nivet guns, etc. S. A. E. for list.
TWIN I.F. CANS, approx. $1 \mathrm{in} \times \frac{1}{\operatorname{tin} .} \times 1 \mathrm{in}$. high 1 around $3.5-5 M H z, 2$ sepsrate transformers in Dubilier Electroytics. $50 \mu \mathrm{~F}, 450 \mathrm{~V}, 2$ for 50 p .
 Plessey Elactrolytics. $1000 \mu \mathrm{~F}, 180 \mathrm{~V}$. 40 p esgn Bormet Elactrolvics, 5000 uF, $35 \mathrm{~V}, 50 \mathrm{p}$ each. Dubilier Electrovitics. 5000 uF 50 V , 0 p aach. Af7-5iactrolytcs. 6800uf. 25 y nign prede. scraw Plessey Elecyalutics $10.000 \mu \mathrm{~F}$ at $63 \mathrm{~V}, 75 \mathrm{~F}$ Bach OD. Screw torminals. $£ 1.50$ each. DC. Screw torminals. E1.50 each.
PLEASE ADD $12 \frac{1}{2} \%$ VAT TO ALL CAPACITORS TV PLUGS AND SOCKETS TV Plugs (metal type), 5 for 50 p . Plosee add $12 \$ \%$ VAT

Terms of Business: CASH WITH ORDER. MINIMUM ORDER E2. ALL PRICES NNCLUDE POST \& PACKING (UK ONLY/. SAE with ALL ENOUIRIES Please. PLEASE ADD YAT AS SHOWN. ALL GOODS IW STOCK DESPATCHED BY RETURN. CALLEAS WELCOWE BY APPOINTMENT ONLY.


## P.E. JOANNA <br> ELECTRONIC PIANO ALL PARTS CAN BE SUPPLIED

## Keyboard Keyswitch, P.C.B.s

 Mardware Semiconductors Resistors, Capacitors. Cabinets Complete kits or easy stagesSend S.A.E. for details

## Clef Products

31 Mountfield Road
Bramhall, Stockport, Cheshire SK7 1LY

## THE OREN DOQR TO RUALTY



## 4th ISSUE INCLUDES NEW METERS

as well as new switches and items from advanced optoelectronics to humble (but essential) washers. Many things listed are very difficult to obtain elsewhere. The company's own computer is programmed to expedite delivery and maintain customer satisfaction. Attractive discounts continue on many purchases; Access and Barclaycard orders are accepted SEMI-CONDUCTORS COMPONENTS ACCESSORIES, ETC. $\star$ FREE POSTAGE on all C.W.O. mail orders over $£ 2$ list value (excluding
VAT) in U.K. If under, add 15 p handling charge.

144 pages 40p post paid inc. refund voucher worth 40p

## UNDERWATER SAFETY

A modification of calculator technology to make underwater diving safer is proposed in BP 1461 277, by E. T. Skinner \& Co. Ltd. of Barnes, London.
As shown in Fig. 1, a pressure transducer has a diaphragm which is subjected to prevailing water pressure and backed by a stiff spring so that large pressure variations cause only a small linear movement of the diaphragm, e.g. 10-50 thousandths of an inch.
The small movement of the diaphragm causes relative movement between two crossed diffraction gratings of Moiré type. Such relative movement causes magnified movement of Moire fringes produced by illumination from the lamp.

These fringe movements are detected by photocells D1, D2, of which the output is fed to a counter. so that a pulse train from photocell D1 creates an increment on the counter and a train from D2 creates a decrement. The accumulated count is fed via the logic circuits to the register, which supplies display logic and I.e.d. readout information to indicate pressure or depth. All the logic components are integrated in one chip, which is fed also with signals from a timer oscillator.

Thus, under the control of the keyboard the diver may display either depth or time under water or the product of time and depth, the resulting figure being representative of the air consumed by the diver and the available safe time left at the sensed depth. By computing the product of time and depth to a chosen power,
a decompression product can be displayed, to advise the diver on a safe rate of ascent.

Integration should allow the unit to be worn as a wrist calculator, with an alarm function signalling divergence from the safe decompression product and consequent risk of "the bends".

## HEAT WARNING

## BP 1462461

In BP 1462 461, Robert Parker Research Inc., of California, USA, patents an electro-chemical device for warning users of equipment, such as irons, whether they are hot and can cause a burn. The object is to provide a heat danger indicator device which need not necessarily be in thermal contact with the appliance.

A thin transparent Mylar or similar plastics film is masked to denote appropriate warning symbols.

A thin coating of liquid crystal composition is then applied with a dark backing of ink or paint. A heating element, for instance of carbon impregnated paper, heater sheet film or foil, is applied to this backing, and the whole aggregation sealed in a protective casing. The heating element is connected in parallel with the power source for the appliance.

When the appliance is switched on the subsidiary element generates heat which warms the liquid crystal layer and causes it to change from its transparent to visible and coloured state. This transformation in turn makes the symbols masked in the Mylar film legible

By using strips of different liquid crystal composition with different transition temperatures, or spacing


BP 148127
the heating element asymmetrically so that a heat gradient is created over the crystal material, the device can provide a tell-tale readout of the transition between cold, warm, hot and very hot. This is representative of the temperature and condition of the remote appliance.

Details are given of suitable crystal compositions for a range of temperature differentials and ambient conditions.

## IN BRIEF

BP1 464 744-H. P. Vinet: Automatic Workshop Installation. A complicated electronics '"overseer'r system, intended to allow members of the public to service their own cars, TV, radio, etc. using specialised workshop facilities on a hire basis

Separate service areas are electronically unlocked by payment of a fee, and free access for a limited time is then given to hand and power tools. At the end of the service period, electronic sensing devices (e.g. magnets and reed switches) sound an alarm if any tool has not been returned to its proper place. Power tools are connected to the power supply via leads which sound an alarm if cut.
BP 1464 037-C. B. Richmond: Automatic Cross Feed Device. Voltage controlled amplifiers in adjacent sound channels are governed in up-anddown gain directions by exponential ramp voltage generators and inverters connected to the v.c.a. inputs. This provides automatic cross-pan between sound channels, with one channel coming up while the other goes down.
BP 1465 094-H. Peiker: Dynamic Loudspeaker for Speech Transmission. A heavy duty speech band transducer, e.g. loudspeaking telephone or speech address type, capable of long periods of use without breakdown.

Commonly such heavy duty use results in "open-circuit' voice coil connections due to I.f. excursions of the diaphragm. To cure this, the diaphragm is rear-loaded by a cavity which is vented to the atmosphere via apertures, selected in size and number, to tune the rear enclosure as a low pass filter to curtail unnecessary I.f. excursions.

# MARHET PLACE 

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

## TELETEXT DECODER

A Teletext decoder at less than half the cost of any comparable decoder currently available is announced by Videocraft. It is supplied as a kit comprising an assembled and tested Texas Tifax Teletext decoding module, power supply and interface module kit, and an assembled and tested cableconnected remote control. The interface module and installation instructions vary according to your TV receiver type.

The decoder output feeds directly into the receiver video circuitry, and in most cases the unit can be fitted inside the receiver cabinet. Facilities include seven colours, upper and lower case characters, graphics, time coded display. and newsfiash and subtitle inserted in the TV picture. The complete kit costs $£ 180$ plus $8 \%$ VAT.

Full details of this and other decoders are available from Videocraft, Assetts House, Elverton Street, London SW1P 2QR.


Videocraft Tifax Teletext kit


DIP Switches from Contraves

## AMPLIFIER MODULE

Intended for use in "personal" record players, tape recorders, stereo amplifiers and cassette/cartridge players Bi-Pak Semiconductors have just introduced the AL-30A low power audio amplifier module.

Capable of delivering $5-10 \mathrm{~W}$ r.m.s. into 8 to 16 ohm loads, the module has a sensitivity of 90 mV for full output and a claimed frequency response of 60 Hz to $25 \mathrm{kHz} \pm 2 \mathrm{~dB}$. The input impedance is $50 \mathrm{k} \Omega$ and the claimed total harmonic distortion is less than 0.5 per cent; typically 0.3 per cent.

The required power supply for the module is 22 to 30 V . The circuit for the module uses a complementary symmetry output stage and the specification of the output devices ensures good performance and reliability. The particular choice of the power transistors used determine the supply and output conditions. It is recommended that a heatsink should be used with this module.

The cost of the AL-30A is $£ 3.60$ and further particulars, including a suitable power supply and preamplifier module, can be obtained from Bi-Pak Semiconductors, The Maltings, 63A High Street, Ware, Herts.

For the bargain hunter Bi-Pak list several semiconductor and component pack offers in their new 127 page Components Catalogue. The catalogue also lists individual items ranging from CMOS integrated circuits to ordinary wire.

A separate price list is issued with each catalogue and is updated when necessary. The charge for the catalogue is 50 p plus 15 p pp .

## MULTI-POLE SWITCHES

Miniature on/off switches conforming to standard dual-in-line package dimensions have been introduced by Contraves Industrial Products.

The new d.i.p. switches are designed for use on printed circuit boards. Up to 10 single pole switches can be specified on a single module, and the switch contacts are rated at 100 mA at 50 V d.c.

The pole positions are numbered on the body of the switch to facilitate easy setting. Dust covers and locking mechanisms prevent accidental operation. The switches can be used with sockets or soldered directly to the printed circuit board.

A range of different configurations is available including switch toggles arranged vertically instead of horizontally, changeover contacts instead of standard single pole single throw contacts and low profile designs.

Further information on the complete range of switches available can be obtained from Contraves Industrial Products Ltd., Times House, Station Approach, Ruislip, Middlesex.


## CATALOGUES

At long last we have had the pleasure of receiving and looking at the new Maplin Electronic Supplies component catalogue.

With over 4,000 items and over 1,000 photographs and drawings it has been well worth the wait and must figure in our "musts" for readers-to-collect list.
Containing 216 pages it gives details for several "build-it-yourself" kits including a professional 4 to 16 channel audio mixer; organists/ guitarists 13 -note bass foot pedal; light show with a.v.c. and an electronic ignition system.

Also, there are 30 pages of i.c. information together with complete circuits.

The catalogue costs 50 p and prices are guaranteed for two-monthly periods. A bi-monthly newsletter/ price list is issued and customers can receive a years supply for 30p.

Copies of the Maplin Components Catalogue can be obtained from Maplin Electronic Supplies, P.O. Box 3, Rayleigh, Essex, SS6 8LR.

Another new components catalogue we have received is the 28 page Orchard Electronics components catalogue. The charge for this is 50 p but includes two vouchers value 25 p each, refundable with an order over $£ 3 \cdot 25$ or 25 p off 2 orders value $£ 1 \cdot 50$ p.

Copies are available from Orchard Electronics, Flint House, High Street, Wallingford, OX10 0DE.

## NOTE

A number of past PE projects have specified panel meters made by SEW (Shinohara) which were formerly sold by G. W. Smith and Laskys.

These instruments are now available from ITT Instrument Services, Edinburgh Way, Harlow, Essex CM20 2DF, who will accept small orders on a cash with order basis. There is no minimum order charge but 75 p is added to cover post and packing. A price list is available on request.

We have been informed that the Neosid A6 assemblies called up in the P.E. Orion articles are not available direct from Neosid Ltd.

However, orders for one-offs should be placed with Potters Market Ltd., of 35 Hydeway, Welwyn Garden City, Herts., who have agreed to handle small orders for Neosid Ltd.

## At Home Soldering?

You will be with the Litesold Conqueror 18w iron designed with your requirements in mind.

- Lightweight, superb handling
- Bits fit over element for efficiency
- Wide range of bits for wide variety of work
- Stainless steel enclosed heating element, fully earthed and flashtested for safety.
- Non-seize bit fitting
- Safety spring stand available to hold iron, spare bits and sponge.

Send Cheque/P. O. with order.
Conqueror Iron Onl Specify if suspension hook required.
Conqueror Iron c/w Spring
Conqueror Iron c/w Spring
Stand \& four spare copper
bits $\mathbf{~} 9.09$
Prices are inclusive of V.A.T
( $8 \%$ ) and p.p.

## LIGHT SOLDERING DEVELOPMENTS LTD

97/99 Gloucester Road, Croydon, Surrey. Tel: 01-689 0574 Telex: 8811945

|  |  |
| :---: | :---: |
| 164-166 HIGH ROAD, WOOD GREEN, N22 (also) 13 SOUTH MALL; EDMONTON, N; |  |
| MAIL ORDER DEPT. <br> ST. MICHAELS TERRACE, WOOD GREEN, LONDON N22 4SJ Phone: 888 -4474 |  |
|  | "C100" 100 WATT AMPLIFIER <br> All built and tested. mounted on a plain aluminium chasgis which reasures $18 \times 9 \frac{1}{2} \times 4$ in, anil which you call mount into a cabinet of your cholce. Four controlled inputs, master volunite, treble, Mindde and bass controls, S/C irotected ouput, 100 W clean into 8 obni $\mathrm{I} / \mathrm{B}$. Ideal for disco, music groups, PA, and ckils. <br> A bargain at 48 , +11 catr. $+8 \%$ vat. |
|  |  |
| Three Channel: Bass, Treble. Each channel |  |
|  |  |
|  |  |
|  |  |
| an amplifer, and connect thre 250 V up to 1000 W lamps to |  |
|  |  |
| mut, and youl produce a |  |
|  |  |
|  |  |
|  |  |
|  |  |
| doutre sealed 1 th poly packs. |  |
| Our Price 65 at $8 \%$ per 1 b . |  |
| BARGAIN PROJECT BOX <br> A plastic box with moulded cxtrasion rails for P'C or Chassis panels with metal iront plate intted with fou: screws (all supplieti). Size (internal) 81 min $50 \mathrm{p}+8 \%$. |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
| ETEECS PROTECTO | AUDIO LEADS + 121\% VAT |
|  | Good quality andio connecting lead at moderate prices: L1 $5 \cdot \mathrm{pin}$ DIN plug $180^{\circ}$ to 5 -pin DIN <br>  |
|  |  |
| that this is the most |  |
|  |  |
|  | DIN piug $180^{\circ}$ to open end, length approx. $1 \cdot 2 \mathrm{~m}$, 65p; 114 sapin DIN plag to 2 -pin DIN line |
|  | socket, length approx. 3ns, 60p; L16 22 -pin DIN plug to 2 -pin DIN line socket, length approx. |
| $\mathrm{rad}_{2}$ |  |
| rd | plug to 2 -pin DN line socket. 7 n . 75 p ; Lil $\overline{\mathrm{b}}$-pin DIN plag 180 to four phono |
| 通 | plugs, leneth approx. $1,2 \mathrm{~m}, ~ £ 1 \cdot 10 \mathrm{p}$ : L10 $\Longleftarrow$-pin DIV whe $180^{\circ}$ to four phono line sockets, length |
|  | DIN plug 180 to tour phono line sockets, lengtt approx. 1.2 m , £1 20 ; L21 stereo heudphone extension lead (curly type), length approx. 20 ft . £150; L2: guitar leal (curly type), length approx. 20 ft .. $£ 1 \cdot 60$. Various other combinations stocked. Prices on reguest. |
|  |  |
|  |  |
|  |  |
| ACCESS AND BARCLAYCARD ACCEPTED <br> U.K. CARRIAGE 50p UNLESS OTHERWISE STATED <br> are ercluding VAT. Please add to each item the vat rate indicated. |  |

CHINAGLIA DINO-ELECTRICAL AND ELECTRONIC TEST EQUIPMENT MANUFACTURERS

PRESENT THE

## DOLOMITI

$20 \mathrm{k} \Omega / \mathrm{V}$ a.c. and d.c
A NEW HIGH SENSITIVITY MULTIMETER WITH ALL THE FEATURES YOU WILL EVER NEED


39 ranges: d.c. 500 A .50 mV . 1.5 V . 5 V .15 V .50 V .150 V .500 V . 5 kV d.c. 1
 ก0 $05 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 50 \mathrm{k} \cap, 500 \mathrm{k} \Omega, 5 \mathrm{M} \cap .50 \mathrm{M} \Omega$. PF $50 \mathrm{kPF}, 500 \mathrm{kpF}$

Automatic overioad protection and high current range fusing
Scale mirror and tine pointer for accuracy of reading single knob main range switching and all panel controls. C.E. Class 1 movement with sprung |ewel
bearings. Extended 92 mm scale length for extra clarity Compact ABS case 125 $\times 131 \times 37 \mathrm{~mm}$. Weight 750 g with batteries. Supplied complete with carrying case, fused leads. handbook and full $12-\mathrm{month}$ guarantee. Optional 30 kV d.c probe avallable.
Meter $£ 45 \cdot 90 \mathrm{incl}$. VAT ( $£ 1$ P. \& P.)
30 kV Probe $£ 12.85 \mathrm{incl}$. VAT
For details of this and the many other exciting instruments in the Cminaglia range. ncluding multi-meters. component measuring automotive and electronic instruments please write or telephone

VALVE MAIL ORDER CO．
Climax House
Fallsbrook Road，London SWI 6 6ED SPECIAL EXPRESS MAIL ORDER SERVICE

|  | ${ }^{\text {¢ }}$ |  | ${ }^{\text {f }}$ p | Ip | $\chi_{\text {¢ }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AA119 | 0.20 | $\mathrm{BCH}^{1}$ | 0.22 | －MPsAjón 0.20 | －2TX 310.20 | 7403 | 20 |
| AAY30 | 0.13 | BCY7： | 0.17 | ＊MPSL010．32 | －ztxj50 0．16 | 7404 | 0.26 |
| AAY3： | $0 \cdot 15$ | BCZII | 1.50 | ＊MPsil．06 0.40 | $1 \times 9140007$ | 740． | 0.23 |
| AAZ13 | 0.25 | BD11．； | 0.60 | ＊MPSUES 0.45 | 1N9113 0.07 | 7406 | 0.55 |
| AAZ15 | 0.31 | BD］ 2 ！ | 1.50 | NKT401 2.00 | N－4001 0.06 | $740 \%$ | 0－55 |
| AAZ17 | 0.25 | BD123 | 1.50 | NKT403 1.73 | $1 N 400-20.07$ | 7408 | 0.28 |
| $\mathrm{AClO}_{7}^{7}$ | $0 \cdot 75$ | 13D124 | 1.00 | NKT404 1．73 | 1 N 4003 ll | 7409 | 0－28 |
| ACl\％ | 0.30 | B1131 | 0.51 |  | 1N4004 0.09 | 7410 | 0.20 |
| －10126 | 0.25 | B1 132 | 0.54 | 0．1．5 0.75 | $\begin{array}{ll}1 \times 4005 & 0.13\end{array}$ | 7412 | 0．28 |
| AC12\％ | 0.25 | ＊BD139 | 0.35 | OA7 0.55 | $1 \begin{array}{ll}12006 & 0.15\end{array}$ | 7413 | 0.45 |
| AC128 | 0.25 | ＊BD 136 | 0.36 | OAl0 0.55 | 1N400\％ 0.15 | 7416 | 0.40 |
| ACI41 | 0－20 | －BD137 | $0 \cdot 37$ | OA4－ 014 | 1 N4009 0.15 | 7417 | 0.40 |
| ACL41K | 0.30 | －BD13＊ | 0.40 | 0.7000 | 1N4148 0.07 | 7420 | 0.20 |
| AC142 | 0.20 | ＊3D139 | 0.43 | 0.77900 | INJ400 0.14 | 742： | 0.25 |
| AC142K | 0.25 | ＊BD140 | 0.47 | $\begin{array}{ll}0.481 & 0.30\end{array}$ | 1 N 24010.16 | 7423 | 0－35 |
| ACliz | 0.25 | BD 144 | 2.00 | O．485 0.30 | 154400.06 | 7425 | 0.35 |
| AC187 | 0.25 | 3D181 | $1 \cdot 38$ | OA90 0008 | 15920008 | 7427 | 0.35 |
| AC188 | 0.25 | BD18： | $1 \cdot 48$ | 0 A91 0.08 | 159210.08 | 742\％ | 0.50 |
| AcY 17 | 0.65 | BD237 | 0.80 | O．99 0.08 | 263011 | 7430 | 0.20 |
| ACY18 | 0.65 | BD238 | 0.85 | OA．200 0.10 | $12630 \% 3100$ | 7432 | 0.36 |
| ACY19 | 0.65 | BDX10 | 0.75 | 0A202 0.11 | 2 2（1306 1－10 | 7433 | $0 \cdot 37$ |
| ACY20 | 0.65 | BDX32 | 2.25 | 0．2210 0．75 | 2 N 40400.60 | 7437 | 0.42 |
| ACY21 | 0.65 | BDY20 | 1.42 | $0 \mathrm{~A} 211 \quad 0.75$ | $\because \mathrm{N} 6960$ | 7438 | $0 \cdot 37$ |
| ACY39 | 1.00 | BDY\％0 | 0.75 | OAZ 20000.65 | $2 \times 697018$ | 7440 | 0－22 |
| AD149 | 0.70 | BF115： | $0 \cdot 39$ | ${ }^{0.2} 2$ | N694 0.30 | $74414 N$ | 0－92 |
| AD161 | 0.75 | BF15： | $0 \cdot 25$ | OAZZ06 0 0．65 | UNTOG 0.80 <br> NTO6  | 7442 | 0.78 1.20 |
| AD162 | 0.75 | BF153 | 0.25 | $0.12 \mathrm{z} 07{ }^{0.65}$ | $\begin{array}{ll}2 N 706 & 0.12\end{array}$ | 7447AN | 1．20 |
| AF106 | 0.45 | BF104 | 0.25 | OC16 1.25 | entos 0.21 | 7400 | 0.20 |
| AF114 | 0.25 | BF109 | $0 \cdot 35$ |  | ${ }^{2} \mathrm{~N} 930 \mathrm{ll}$ | 74.1 | 0.20 |
| AF115 | 0.25 | BF160 | ${ }_{0.30}$ | OC2－${ }^{2}$ | $\cdots$ | 7483 | 0.20 |
| AF116 | 0.25 | BF16\％ | 0.39 | OC23 2.75 | 2N113\％ 0.28 | 7404 | 0.20 |
| AF117 | 0.25 | BE1；3 | $0 \cdot 39$ | OC゙24 $\quad 3.50$ | ${ }^{2} \mathrm{NL} 13023037$ | 7480 | 0.20 |
| AF139 | 0.40 | BF17\％ | 0.38 | OC2 0 －90 | ${ }^{2} \mathrm{~N} 13030.37$ | 7470 | 0.35 |
| AF186 | 1.50 | BF178 | 0.45 | $\begin{array}{ll}0<26 & 0.90\end{array}$ | ？N1304 0.45 | 748 | 0.36 |
| AF？39 | 0.45 | BF179 | 0.48 | OC－28 200 | ${ }^{2 N} 1305005$ | 7473 | 0.36 |
| AFZ11 | 2.75 | BF＇180 | 0.45 | O¢29 $2-00$ | ${ }^{2 N 1306} 050$ | 7474 | 0.40 |
| AFZ12 | 2.75 | BF181 | 0.45 | Oc3o 11.50 | $\begin{array}{ll}2 N 1307 & 0.50 \\ { }^{2} 1308 & 0.80\end{array}$ | 7475 | 0.58 0.48 |
| AsYe6 | 0.45 | BF18： | 0.45 | Oc3s $\quad 1.50$ | $\begin{array}{ll}\text { 2N1308 } & 0.80 \\ 2 \mathrm{~N} 1309 & 0.60\end{array}$ | 7476 7480 | 0.42 0.80 |
| ASY27 | 0.50 | BF183 | 0.45 | $\begin{array}{ll}0 \mathrm{CH1} & 0.50\end{array}$ | 2N1309 0.60 <br> -21613 0.33 <br> N101 1 | ${ }^{7480}$ | 0.80 0.85 |
| ASZ 15 | 1.25 | BF184 | 0.39 | OCP $\quad 0.50$ | $\begin{array}{ll}2 \times 1613 & 0.38 \\ 2 \text { N } 1671 & 1.50\end{array}$ | ${ }_{7}{ }^{7} 4883$ | 0.80 1.00 |
| ${ }^{\text {ASZ1 }}$ | 1.25 | BFIP： | 0.37 | OC43 10 | $\begin{array}{ll}\text { 2N1671 } & 1.50 \\ \text { ？N1893 } & 0.33\end{array}$ | 7483 7484 | 1.00 |
| ASZ17 | 1.25 | ＊BF＇194 | 0.12 | Oc． 4.10 .50 | $\begin{array}{ll}\text { 2N1893 } & 1.33 \\ -2147 \\ 1.40\end{array}$ | ${ }_{7489}$ | 1．40 |
| ASZ 0 | 0.75 | －13F190 | 0.11 | $\begin{array}{ll}064 & 0.50\end{array}$ | $\begin{array}{ll}2 \times 2144 & 1.40 \\ 20.214 & 1.85\end{array}$ | ${ }_{7490}$ | 0.52 |
| ASZ 21 | 1.50 | ＊Br 196 | 0.13 | OC71 0.45 |  | ${ }^{7} 4991 \mathrm{AN}$ | 0.52 0.85 |
| AU113 | 1.70 | ＊BF197 | 0.14 | OCT 0.45 | $\begin{array}{ll}2 \times 2218 & 0.33 \\ -\mathrm{N} 219 & 0.42\end{array}$ | ${ }^{7492}$ | 0.80 |
| AUY10 | 1.70 | B F＇200 | 0.32 | Octis 1.00 | $\begin{array}{ll}-\mathrm{N} 2219 & 0.42 \\ -\mathrm{X} 220 & 0.35\end{array}$ | 7492 7493 | 0.60 0.70 |
| BAl4 | 0.15 |  | $0 \cdot 20$ | OC74 0.50 | $\begin{array}{ll}2 N 2520 & 0.35 \\ \text { 2N220 } & 0.22\end{array}$ | 7494 | 0.80 |
| BAl48 | 0.15 | － BF 2 L 4 | 0.35 | OC\％ 0.60 |  | 7494 | 0.80 0.80 |
| BAlva | 0.10 | В F ¢25 | 0.37 | OC76 0.50 | $\begin{array}{ll}2 N 2292 & 0.25 \\ 2 \mathrm{~N} 2293 & 8.75\end{array}$ | － | 0.80 0.90 |
| BAIVJ | 0.12 | BF゙いう | 0.42 | 0c：－ 1.20 |  | 7497 | 0.67 3.67 |
| BA10ti | 0.13 | BF20： | 0.45 | Oc＇s1 1075 |  | $\stackrel{+100}{ }$ | 1.75 |
| BAW62 | 0.05 | －13F33ti | 0.50 | OC81\％ 1.00 | $\begin{array}{ll}-2 \mathrm{~L} 2484 \\ & 0.21\end{array}$ | ${ }_{7}+110{ }^{-1}$ | 0.45 |
| BAX13 | 0.07 | ＊BF337 | 0.53 | OC8： 0.7 | $2 N 2494$ 0.21 <br> N2646 0.50 | ${ }_{7+109}$ | 0.45 0.86 |
| BAX16 | 0.07 | －BF：33 | 0.55 | OC83 0.55 | N－2646 0.50 <br> N2904 0.35 | 74110 | 0.57 |
| $\mathrm{BCl}^{\text {a }}$ | 0.12 | 18Fs？ | 2.27 | OCs 0.80 | $\begin{array}{ll}\text { 2N2904 } & 0.35 \\ \text { 2N } 2905 & 0.35\end{array}$ | $\stackrel{1}{7+111}$ | 0.88 |
| BC10x | 0.12 | BFPs ${ }^{\text {B }}$ | 1.38 | Octer 1.50 |  | 74116 | 1.89 |
| BC109 | 0.13 | ＊BFStil | 0.25 | Oc123 1.55 | 2N290 0.25 <br> N290 0.21 | 74118 | 1.89 |
| ＊BC113 | 0.15 | ＊BFS98 | 0.25 | OC13 1 1．25 |  | 74119 | 2.80 |
| －BC114 | 0.18 | BFW 10 | 0.90 | OC140 1．95 | N－ 292000 | 7＋1：20 | $1 \cdot 10$ |
| ＊BClis | 0.19 | BFW11 | 0.90 | 9Ci41 2.25 | － 2 N 29200003 | $7+121$ | 0.45 |
| －bCll 6 | 0.19 | BFX84 | $0 \cdot 38$ | Oc17） 0.60 | 2N3053 0.25 | 7＋122 | 0.60 |
| －BCl17 | 0.22 | BFX | 0.41 | $\begin{array}{ll}\text { OCLI } & 0.80\end{array}$ | $\begin{array}{ll}\text { N } 3054 & 0.50\end{array}$ | $741 \times 3$ | 1.00 |
| －BCil8 | $0 \cdot 16$ | BFX84 | 0.35 | $00^{200} 100$ | －N305． 0.65 | 74125 | 0.80 |
| －BCi2j | 0.18 | BFX ${ }^{\text {B }}$ | 0.32 | Oce 01150 | $\begin{array}{ll}\text { 2N3440 } & 0.60\end{array}$ | 74126 | 0.80 |
| ${ }^{3} \mathrm{BCl} 26$ | 0.25 | BFYJo | 0.28 | OC20：2 1.25 | $\begin{array}{ll}1 \times 3441 & 0.80\end{array}$ | 7412 K | 0.80 |
| ＊BC135 | 0.15 | BFẎ1 | 0.26 | Oc：03 125 | 2N344：$\quad 1.20$ | 7413： | 0.80 |
| － $\mathrm{BCl}^{\text {cha }}$ | 0.19 | BFYJ： | 0.26 | $0 \times 24$ | 2N35®\％ 0.90 | 7＋136 | 0.68 |
| － $\mathrm{BCl}^{\text {c }}$－ | 0.16 | BFY64 | 0.30 | Oc20 1.75 | $\begin{array}{ll}2 \times 3014 & 1.20\end{array}$ | 74141 | 0.85 |
| ＊${ }^{\text {BCl }}$－${ }^{\text {a }}$ | 0.10 | Bry90 | 1.32 | OC：0 1 | － | 7＋14： | 3.00 |
| －BC148 | 0.10 | B8X19 | 0.34 | OC20 -25 | $\begin{array}{lll}\text {－} 2 \times 3703 & 0.15\end{array}$ | 74143 | 3.00 |
| ＊BC149 | 0.13 | BSX20 | $0 \cdot 34$ | OCP71 1.25 | ＊－N3704 0.15 | 74144 | 3.00 |
| ＊ $\mathrm{BClos}^{\text {a }}$ | 0－12 | B8X21 | $0 \cdot 32$ | ORP1：3 0.70 | － 2 N 37050.15 | 74145 | 1.00 |
| －BCiJ\％ | 0.11 | BT106 | 5 | －R2008B 2.25 | － $\mathrm{i} \times 3706014$ | 74147 | 2.45 |
| －BC159 | 0.13 | BTY79／ |  | ＊R2009 2.25 | － 2 N 37070.18 | 74148 | 2.00 |
| ＊${ }^{\text {BCL167 }}$ | 0.13 | $\stackrel{400 \mathrm{R}}{4}$ | 3.19 | ＊R201013 2.25 | $\cdots \mathrm{NaT} 08014$ | 74100 | 1.75 |
| ＊BC170 | 0.16 |  | 2.25 | T1C44 0.38 | － 2 N3709 0.15 | 74151 | 0.90 |
| － $\mathrm{BCl}^{\text {a }} 1$ | 0.14 | ＊BC206 | 2.25 | T1（cyefiv） 1.30 | － $2 \mathrm{~N} 3710 \quad 0.14$ | 74154 | 2.00 |
| ${ }^{*} \mathrm{BCl} \mathrm{B}^{2}$ | 0.13 | ＊ $\mathrm{Bl}^{\text {c }}$ 20\％ | 2.50 | T1L209 0.25 | － 2 N3711 0.15 | 7415 | 0.90 |
| － $\mathrm{BCl} \mathrm{B}^{3}$ | 0.15 | BY100 | 0.45 | －T1Prya 0.50 |  | 74106 | 0.80 |
| $\mathrm{BCl} \mathrm{F}^{\prime}$ | 0．19 | BY12\％ | 0．14 | －TIP30A 0.60 | 2N37で 1.70 | 74157 | $0 \cdot 90$ |
| BC178 | 0.18 | BY12\％ | 0.15 | T1P31A 0．62 | 2N37－3 ${ }^{2} 85$ | 74159 | 2.60 |
| $\mathrm{BCl}^{7} 9$ | 0.20 | BZX61 | 0.20 | T1P32． 0.75 | ${ }_{\text {－} 2 \text { 2N3819 }}{ }^{0.36}$ | 74170 | 2．60 |
| －BC182 | 0.11 | Series |  | T1P33A 1－00 | $\cdots{ }^{-2} 38820046$ | $7417 \times$ | 5.00 |
| －BC183 | 0.11 | BZY88 | 0.18 | T1P34A 1.20 | －－ 38823000 | 74173 | 1.75 |
| －BCl ${ }^{\text {B }} 84$ | 0.12 | Series |  | T1P41A 0.70 | 2N3866 1.00 | 74174 | 1.57 |
|  | 0.14 | CRS 10.5 | 0.45 | TIP42A 0.90 | $\begin{array}{ll} \\ -2 & \text { N } 3904\end{array} 0.21$ | ¢4175 | 1.00 |
| －BC213 | 0.14 | CRS $1 / 40$ | 0.60 | T1P99jJ 1.00 | ＊2N3905 0.22 | 7417 F | 1.10 |
| － $\mathrm{BCP}^{\text {d }} 14$ | 0.17 | CRS3／03 | 0.45 | Tlp30JJ 0.50 | －－N3006 0．22 | 7417x | 1.65 |
| －BC237 | 0.17 | CRS3／40 | 0.75 | －T1s43 0．35 | －2N4078 0.20 | 74179 | 1.65 |
| － $\mathrm{BC}^{238}$ | 0.12 | CRS3／60 | 0.90 | $\cdots{ }^{-28140} 00.25$ | －2N4059 0.15 | 74180 | 1.65 |
| BC 301 | 0.45 | GEX66 | 1.50 | －ZSizo 0．12 | －2N4060 $\begin{aligned} & \text { 0．20 }\end{aligned}$ | 74190 | 1.48 |
| 8C303 | 0.60 | GEXJ41 | 1.75 | －ZS1is 0．54 | －2N4061 0.17 | 74191 | 1.48 |
| －BC307 | 0.20 | （ ¢ $^{\text {3 }}$ M | 0.75 | －z8271 0－28 | －2N4062 0.18 | 74193 | 1．25 |
| ＊BC308 | 0.18 | G J J M | 0.75 | － $\mathrm{zS2} 2880.56$ | － | 74193 | 1.25 |
| －BC327 | 0.22 | GJ：M | 0.75 | －ZTX107 0.11 | － 2 N 4126 ll | －4194 | 1.25 |
| ＊BC328 | 0.18 | ciM0378． | 1.50 | ＊2TX108 0.10 | － 2 N 128680.20 | 74193 | $1 \cdot 10$ |
| －ВС¢337 | 0.19 | ＊K5100A | 0.40 | ＊ZTX109 0．12 | －2N4288 0.25 | 74196 | 1.20 |
| －BC338 | 0.18 | MJE340 | 0.58 | －2TX300 0．12 | －2N4289 0．25 | 7419 － | 1.00 |
| BCY30 | 1.00 | MJE370 | 0.85 | －2TX301 0．13 | －－\％j45 0.35 | 74198 | 2.25 |
| BCY31 | 1.00 | MJE371 | 0.81 | －ZTX $30 \pm 0.17$ | Notus 035 | 74194 | 2.25 |
| BCY32 | 1.00 | MJEJ20 | 0.85 | －ZTX303 0．17 | ＋2N．5459 0.35 | －76013N | 1.75 |
| BCY33 | 0.80 | MJEJ2l | 0.75 | －2TX304 0.19 | $3 \mathrm{~N} 125 \quad 1.75$ | Plugs in socket <br> －low profle <br> 8 pin DIL 0.15 <br> 14 pin D1L． <br> 0.15 <br> $1 h^{2}$ in DIL $0.17$ |  |
| BCY34 | 0.80 | MJE290̄ | 1.25 | ＊ZTX311 $0 \cdot 12$ | 3N141 0.85 |  |  |
| BCY 39 | 3.00 | MJE3005 | 0.75 | －2TX314 0.20 | INTEGRATED |  |  |
| BCY40 | 1.25 | －MPF102 | $0 \cdot 30$ | －ZTX 0000013 |  |  |  |
| BCY42 | 0.30 | ＊MPF103 | 0.30 | ＊ZTX＝01 0.14 | CIRCUITS |  |  |
| BCY43 | 0.32 | ＊MPF104 | 0．30 | ＊ZTX502 0.16 |  |  |  |
| BCY58 | 0.23 | ＊MPF＇105 | 0.30 | ＊ZTXJ03 0.17 | $7401 \quad 0.20$ |  |  |
| BCY70 | 0.18 | －M | $0-20$ | ＊ZTX． 0440 | $\begin{array}{ll}7402 & 0.20\end{array}$ |  |  |

[^3] Terms C．W．O．only＊Tel． $01-677$ 2424－7 Quatations for any types not listed．
Post and Packing 25p per order．
Y．A．T．to be added．Items marked $\overline{12} \% \%$
Prices correct
when going
to press．

## GREENWELD

 443 Millbrook Road Southampton SO1 ロHX Tel：［ロ703）フフ2501
## £1．50 BARGAIN PACKS

Pack
No．Contents
K101 16 BC107
K102 17 BC 108
K103 15 BC109
K104 35 IN4002
K105 30 IN4004
L106 25 iN4007
K107 50 IN4148
K108 12 AC127
K109 12 AC128
K110 11 AC176
K111 2 AD161／2
K112 20 BC 147
$\mathrm{K} 113 \quad 20 \mathrm{BC} 148$
K114 20 BC149
K 11520 BC 157
K116 20 BC 158
K117 20 BC 159
K118 20 BC348
K119 16 BCX 33
K120 12 BCY71
K121 4BD131
K122 4BD132
K123 16 BF 194
K124 16 BF 195
K125 16 BF 196
K126 14 BF197
K127 12 BFY51
K128 202 2N2926
K129 82 2N3053
K130 42 2N3055
K131 20400 mW Zener（state voltage required）
K132 148 －pin i．c．holders
K133 12 14－pin i．c．holders
K134 1016 －pin i．c．holders
K135 7741
K136 4555
K137 251 ohm 2 W resistors
K138 $251 \frac{1}{2}$ ohm 2 W resistors
K139 $301 \mu \mathrm{~F} 25 \mathrm{~V}$ capacitors

## Pack

No．Contents
K140 302 －2 2 F 25 V capacitors
K141 $304.7 \mu \mathrm{~F} 25 \mathrm{~V}$ capacitors
K142 $2810 \mu \mathrm{~F} 25 \mathrm{~V}$ capacitors
$\mathrm{K} 1432622 \mu \mathrm{~F} 25 \mathrm{~V}$ capacitors
K144 $2433 \mu \mathrm{~F} 25 \mathrm{~V}$ capacitors
K145 22 47 4 F 25 V capacitors
K146 $20100 \mu \mathrm{~F} 25 \mathrm{~V}$ capacitors
K147 18220 F 25 V capacitors
K148 $101000 \mu \mathrm{~F} 25 \mathrm{~V}$ capacitors
K149 24 1500 $\mu \mathrm{F} 18 \mathrm{~V}$ PC
K150 30 Red and black croc． clips
K151 $11 \frac{1}{\mathrm{i}}$ in mono jack plugs
K152 $8 \frac{\mathrm{in}}{\mathrm{in}}$ stereo jack plugs
K153 $\quad 152.5 \mathrm{~mm}$ jack plugs
K154 $\quad 153.5 \mathrm{~mm}$ jack plugs
K155 18 Red and black banana plugs
K156 18 coax．plug，plastic
K157 13 coax．plug，metal
K158 105 －pin DIN plug
K159 15 2－pin DIN plug
K $160 \quad 11$ in mono jack socket
K161 8 in stereo jack socket
K162 152.5 mm socket
K163 153.5 mm socket
K164 10 push－to－make switch
K165 8 push－to－break switch
K166 10 sub－min DPCO slide switch
K167 12 assorted colours，in－ sulating tape
K168 100 sq．in Vero off－cuts （ 0.1 in ）
K169 100 sq．in Vero off－cuts （0．15in）
K170 100 sq．in Vero off－cuts， mixed
K171 100 sq．in Vero off－cuts， plain（ $0 \cdot 1 \mathrm{in}$ ）

## ALL PACKS $£ 1 \cdot 50$ EACH （including VAT and postage）

Buy 10 packs－get 1 （your choice）FREE！All goods in stock－no walting，sent by return！All devices llsted are new，full spec．，and marked．Money back guarantee．The Greenweld Dragon is your Guardian of good value！

1977 Catalogue available very soon－much bigger and better than the 76 edition， $30 p+15 p$ post，includes discount



A selection of readers' original circuit ideas. It should be emphasised that these designs have not been proven by us They will at any rate stimulate further thought. Why not submit your idea? Any idea published will be awarded payment according to its merits
Articies submitted for publication should conform to the usual practices of this journal. e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere


Fig. 1

THis simple circuit (Fig. 1) was originally designed to control the 240 volt water pump in a solar panel heating system, where water in a heat absorbing rooftop panel is heated by the sun's radiation. The pump cycles the water through a heat exchanger (immersed in the household hot water tank), only when the panel temperature is at a preset level above the tank temperature.

Diodes D2 and D3 are the temperature sensors, which should be a matched pair, since their forward
conducting voltage is compared by the circuit. Considering VRI to be short-circuit, when the temperature of D2 (panel sensor) exceeds that of D3 (tank sensor), the voltage at pin 3 of ICl will be more positive than that of pin 2, therefore pin 6 will swing positive, turning the triac on via TR1, and hence energising the pump.

Potentiometer VRI allows the offset to be introduced whereby the temperature of the panel can be set $x$ degrees $C$ above that of the tank,
before switching takes place. The maximum temperature difference obtainable is 5 degrees $C$. If a linear pot is used. it can be calibrated linearly from 0 to 5 degrees $C$. The resistors R4 and R5 provide a small amount of positive feedback to give a hysteresis of about $\pm 0.5$ degrees $C$. which will prevent erratic operation.

No doubt other temperature comparison applications could be found for this circuit.
P. R. Williams, Stevenage, Herts

SEQUENTIAL TIMER


Fig. 1
|N this circuit (Fig. 1), the MC1455P is set to run in the astable mode of operation. The frequency is controlled by VR1 and Cl. The pulses from the astable are fed directly to a BCD decade counter. The output lines $A B C D$, give multiples of the input pulse period in the ratios: 1 , $\frac{1}{2}, \frac{1}{4}$, and $\frac{1}{8}$. Thus a two minute period, when passed through the counter, becomes: $2,4,8$, and 16 minutes, depending upon which output is
selected by the switches Sla, b, c, and d. When the selected output is raised to logic 1, the thyristor is triggered. This in turn causes the multivibrator to oscillate, creating an audible note via the output stage.
The audio output may be cancelled by disabling the counter output and briefly opening S4. The other reset buttons, S1 and S3, are operated when it is required to reset the counter or discharge Cl . These reset
buttons enable one to reproduce a preset series of time intervals as often as is required. The multivibrator may be replaced by an external load, such as a bell or relay.

The device could prove useful in many fields where sequential timing is required. For example, the $c$ output would give a "half-time" facility when timing games.
P. R. G. Reynolds, Benfleet, Essex.

## TOUCH SWITCH

THIs switch will change to the complement of its previous state ("on" or "off") each time the touch plate is touched.

When the plate is touched the Darlington triple TR1, TR2, TR3 turn on so that the input of Al goes higher than zero logic; this will occur at a frequency of 50 Hz , so therefore a
$100 \mu \mathrm{~F}$ capacitor is connected from ground to the input of Al to smooth the signal.

The signal is now transmitted to A3 via A2. So therefore, the output of A3 will change from a high level to a low level every time the touch plate is touched. Hence the signal is taken to the flip flop made up of A5 and A4
and the state of this transmitted to TR4 via A6.

Transistors TR1 to TR3 can be any low power silicon devices such as BC157; all the diodes are silicon types, such as 1 N4001
N. Nazo a-Ruiz.

Wimbledon, SW20.



## SPEAKERS

Baker Group 25, 3. 8 or 15 ohm Baker Group 35, 3. 8 or 15 ohm Baker Group 50/12 8 or 15 ohm Baker Group 50/15 8 or 15 ohm Baker Deluxe 124.8 or 15 ohm Baker Major 3, 8 or 15 ohm Baker Supert 8 or 15 ohm Baker Regent 12 in 8 or 15 ohm Baker Auditorium 12in 8 or 15 ohm Baker Auditorlum 15 in 8 or 15 ohm
Castle 8RSIDD 4 or 8 onm
Celestion G12M 8 or 15 ohm
Celestion G12H 8 or 15 ohm
Celestion G12/50 8 or 15 ohm
Celestion G12/50TC 8 or 15 ohm
Celestion G12/50 2236 s/cone
Celestion G12/50 2239 s/cone, alum. dome Celestion G15C 8 or 15 ohm
Celestion G18C 8 or 15 ohm
Celestion HF1300 8 or 15 ohm
Celestion HF2000 8 ohm
Celestion MH1000 8 or 15 ohm
Coles 4001 G
Coles 4001k
Decca London ribbon horn
Decca London CO/1000/8 crossover
Decca DK30 ribbon horn
Decca CO/1/8 crossover (DK30)
EMI $14 \times 9$ in bass 8 ohms, 14A770
EMI $8 \times 5 \mathrm{in}$. 10 W , d/cone, roll sur
EMI $6 \frac{1}{2}$ in d/cone, roll surr.. 8 ohm
MI $\sin$ roll surr. bass
EMI 5 in mid range
Elac 59RM 109 ( 15 ohm ). 59RM114 ( 8 ohm )
Elac $6 \frac{1}{2}$ in dicone, roll surf. 8 ohm
Elac 10 in 10RM239. 8 ohm
Eagle FR4
Eagle FR65
Eagle FR8
Eagle FR10
Eagle HT15
Eagle HT21
Eagle MHT 10
Eagle FF28 Multicell horn
Fane Pop 15. 16 ohm
Fane Pop 33T. 8 or 16 ohm
Fane Pop 50. 8 or 16 ohm
Fane Pop 55, 8 or 16 ohm Fane Pop 60,8 or 16 ohm Fane Pop 70.8 or 16 ohm Fane Pop 100.8 or 16 ohm Fane Crescendo 12,8 or 16 ohm Fane Crescendo 12BL. 8 or 16 ohm Fane Crescendo 15/100A. 8 or 16 ohm Fane Crescendo 15/125. 8 or 16 ohm

# WILMSLOW THE Firm for speakers! 

 AUDIOSPEAKERS
Fane Crescendo 18, 8 or 16 ohm
Fane 910 Mk 11 horn
Fane 920 Mk II horn
Fane HPXI crossover 200W
Fane $13 \mathrm{E} \times 8 \mathrm{in}, 15 \mathrm{~W}$ dual cone
Fane 801T 8 in d/c. roll surr.
Gauss 12in
Gauss 15 in
Gauss 18in
Goodmans Axent 100
Goodmans Audiom 2008 ohm
Goodmans Axiom 4028 or 15 ohm
Goodmans Twinaxiom 8. 8 or 15 ohm
Goodmans 8P 8 or 15 ohm
Goodmans 10P 8 or 15 ohm
Goodmans 12P 8 or 15 ohm
Goodmans 12PG 8 or 15 ohm Goodmans 12PD 8 or 15 ohm Goodmans 12AX 8 or 15 ohm Goodmans $15 \mathrm{~A} \times 8$ or 15 ohm
Goodmans 15P 8 or 15 ohm
Goodmans 18P 8 or 15 ohm
Goodmans Hifax 750P
Goodmans 5 in midrange 8 ohm
Jordan Watts Module, 4, 8 or 15 ohm
Kef T27
Kef T15
Ke1 B110
Ke1 B200
Ke1 8139
Kef DNB
Kef DN12
Kef DN13 SP1015 or SP1017
Lowther PM6
Lowther PM6 Mk 1
Lowther PM7
Peerless KO10DT 4 or 8 ohm
Peerless DT10HFC 8 ohm
Peerless KO40MRF 8 ohm
Peerless MT225HCF 8 ohm
Richard Allan HP8B
Richard Allan LPBB
Richard Allan DT20
Richard Allan CN8280
Richard Allan CN820
Richard Allan Super Disco 60W 12in
Richard Allan CG 15 15in bass
Richard Allan Super Disco 10 in 50 watt Richard Allan Super Disco 8 in 50 watt
Radford BD25
Radford MD9
Radford MD6
Radiord TD3
Radford Cross Over Network
Tannoy 10 In Monitor MPD
£75.95
E15. 7
$£ 15 \cdot 75$
845,95
845.95
$\mathbf{8} .50$
£2.50
$5 \cdot 50$
50
$\$ 9.50$
$115 \cdot 00$
$£ 139.00$
$£ 165.00$

## 88. 50

28.50
£14.95
£22.00
£10.60
£6.50
E. 6.95
E16.50
$\mathbf{6} .95$
$\mathbf{~} 16.50$
$£ 16.50$
$£ 17.75$
$£ 17.75$
$£ 18.75$
£18.75
84.00
849.00
£ 49.00
$\$ 24.00$
$\begin{array}{r} \\ 59.95 \\ \hline\end{array}$
£ 16.95
84.25
£16. 25
ᄃ8. 50
£10.75
£10.95
£11.95
$£ 11.95$
£24.95
82.95
82.75
$\mathbf{8 7} .25$

E7. 25
. 32.00
£35. 00
[48.00
c8. 25
59.50
810.50
5.75
53.75
12.50
58.50
56.25
$\mathbf{~} 16.95$
616.95

C3. 15
¢17.95
c28. 50
[13.25
©12.95
C26.95
[12.95
[17.95
C8. 25
C8. 25
16.95
78.75

## Tannoy 12 In Monitor HPD

c85.00 Tannoy 15 in Monitor HPD £99.00

## SPEAKER KITS

Baker Major Module 3. 8 or 15 ohm Fane Mode One Mk II 15W
Fane D40 Disco Kı
Goodmans DIN 204 or 8 ohm Goodmans Mezzo Twin Kit
Helme XLK 30
Helme XLK 35
Helme XLK 40
Kefkit 1
Kefkit III
Peerless 1060
Peerless 1070
Peerless 1120
Peerless 1120
Peerless 2060
Richard Allan Twin assembly
Richard Allan Triple 8
Aichard Allan Triple 12
Rtchard Allan Super Triple
Richard Allan RAB Kit Fichard Allan RAB2 Kit
Richard Allan RAB2L Kit
Wharfedale Denton 2XP kıt
Wharfedale Linton 3XP kit
Wharfedale Glendale 3XP kit
asch 518.00 each $£ 10.35$ each $£ 19.95$ each $£ 15.75$ pair $\mathbf{8 1 . 9 5}$ pair 851.95 pair $\mathbf{E 2 1 . 9 5}$ pair $£ 26.75$ $\begin{array}{ll}\text { pair } & \text { E38.50 } \\ \text { pair } & 559 \cdot 50\end{array}$ pach 856.00 (20.00 paur $\mathrm{E61.50}$ each 554.95 $\begin{array}{ll}\text { each } & 254.95 \\ \text { each } & 61.50\end{array}$ parr $£ 43.95$ parr $£ 58.50$ ach $£ 13.95$ each 820.75 each $£ 25.95$ oach $\mathbf{2 9 . 5 0}$
 $\begin{array}{ll}\text { pair } & 537.80 \\ \text { pair } & 559.40\end{array}$ pair 559.40 pair E65-70 pair $\mathbf{2 3 3 . 2 5}$ pair $£ 49.50$ HI-FI

## ON DEMONSTRATION

in our showrooms:
Akai, Armstrong. Bowers \& Wilkins. Castle. Celestion Chariwell, Dalestord, Dual. IMF RAM. J.R. Formula 4 Kef. Leak. Linn Sondek. Neal Ortofon. Pickering. Pioneer Radtord Richard Allan Rotel Sansul Stanton Tandberg Trio Videotone Wharledal Stanton. elc.-ask for our Hi-FI discount price list

THIS MONTH'S SPECIALS! (Carr [2.50)
Rotel RA312
£66.00
Sansul 331
109.00

Trio KR2600
109.00

Videotone Minimax II $\quad$ £46.95
Sansut SC2000. 2002
146.95
8145.00

Pioneer CTF2121
145.00
136.00

Rotel RX152.I E91.00
We stock the complete Radford range of amplifiers. preamplifiers. power amplitiers, tuners. etc., and also Radford Audio Laboratory equipment. Iow distortion oscillator. distortion measuring set. audio noise meter etc

## ALL PRICES INCLUDE VAI

 PRICES CORRECT AT $9,3,77$Send stamp for free 38 page booklet Choosing a Speaker
ALL UNITS GUARANTEED NEW AND PERFECT
Carriage and insurance Speakers up to $121 n 60 p$ 12ın £1 15in £ 75 18ın £2 50 Kıts $£ 1$ each ( $£ 2$ per parr). Tweeters and Crossovers 33p each

## WILMSLOW AUDIO <br> Dept PE

Loudspeakers, mail order and export: Swan Works, Bank Square, Wilmslow. Hi-Fi, Radio and TV: Swift of Wilmslow, 5 Swan Street, Wilmslow, Cheshire.
PA, Hi-Fi and Accessories: Wilmslow Audio, 10 Swan Street, Wilmslow Cheshire.
Telephone: Loudspeakers, mail order and export-Wilmslow 29599: Hi-Fi, Radio etc.-Wilmslow 26213
Access and Barclaycard arders accepted by phone


## THE METAC DIGITAL CLOCK

 $\star$ COMPLETE KIT *

- Pleasant green display $12 / 24$ Hour readout
- Sitent Synchronous Accuracy Fully electronic

Pulsating colon Push-button setting
Building time 1 hr Attractive acrylic case

- Easy to follow instructions Size $105 \times 57 \times 8 \mathrm{~cm}$
- Ready drilled PCB to accept components

KIT PRICE £9.60 + 76 p VAT
SAME DAY DESPATCH: ORDERS RECEIVED BEFORE 2.00 P.M. ARE POSTED ON THE SAME DAY

SEND YOUR ORDER TO

## DAVENTRY UXBRIDGE METAC ELECTRONIC AND TIME

 67 high street CENTRE 3 thenewarcade NORTHANTS HIGH STREET TEL. (032 72) 76545 UXBRIDGE Barclaycard or Access, simply quote name address and card number when ordering. Shops open 9-5 30 daily

## fault findingno fiddle <br> With the AVO TT 169 in-circuit transistor tester. $\mathrm{GO} / \mathrm{NO} \mathrm{Co}$ tests almost any transistor, diode or thyristor without de-soldering, without damage. Find out how it can save you time, save you money. <br> You'll find the price is no fiddle either Contact your local wholesaler, or us: <br>  <br> AVO LImited, Dover, Kent CT17 9en <br> Telephone: Dover (0304) 202620 <br> 1



## MGeFUITY wnullitid

 SIDE-LIGHT CONTROLLER

Fig. 1
Table 1
step ignition light logic gate outputs Relay switch switch G1a G1b G1c G1d

| 1 | off | off | 1 | 0 | 0 | 0 | off |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | off | on | 1 | 0 | 0 | 1 | on |
| 3 | on | on | 0 | 1 | 0 | 1 | on |
| 4 | off | on | 0 | 1 | 1 | 0 | off |
| 5 | off | off | 1 | 0 | 0 | 0 | off |

W1TH dark mornings and bad visibility, drivers are prone to forget to switch their side-lights off, on arrival at work, which can of course result in a discharged battery before returning to go home.

The novel little circuit in Fig. I is not an alarm: in fact it goes one better by cancelling the lights automatically! Whenever the side-lights are on at the time of turning off the ignition, they too will go off, otherwise everything else remains the same.

When the lights have been automatically turned off, the side-light switch will be left in the on position, and therefore, should it be desired to keep the side-lights on, they can be reset by turning the light switch to Off and then on again.

Table 1 shows the logic output of each gate and relay condition, step by step. The logic behaviour of the CD4001 quad Nor gate ( $\mathrm{J} \overline{\mathrm{A}} \cdot \mathrm{B}$ ) is given in the truth table 2. Gates Gla and GIb form a latch, and when S2 is switched off the relay is aluays de-energised. Transistors TRI and TR2 are in a Darlington pair configuration to produce high enough gain to drive the relay. Potentially destructive back e.m.f. from the relay coil is shunted by D1. The original wires to the light switch should go to the contacts of KLAI. Some vehicles already have relays to operate the lights: if so, the relay shown can be left out, and the original relay driven direct from TR2.
J. W. Willis,

Mickleover, Derby.

TV GAMES CHIP
AY-3-8500 $£ 11 \cdot 50$. Printed circuit and kil of extra parts 57.95. Add-on colour kıt POA Send SAE for free data

## NEW COMPONENTS SERVICE

Resistors 5\% carbon E12 $27 \cap$ to 10M $7 W$ 1p, iW $2 p$. Preset pote subminature 01 W E3 100 N to 4 M 7 , vertical $9 p_{\text {, horizontal }} 9 \mathrm{p}$. Potentiometere 0.25 W E3
$4 \mathrm{K7}$ to 2 M 2 log or lin, single 24p, dual 75 p . Polytyrene capactior Ei2 63 V 22 pF to $8,200 \mathrm{pF}$ 3ip. Ceramic capacitors vert 50 V E6 22pF to 47.000 pF 3 p . Mylar capacitors 100 V 0001.0002 .00054 p .001. $002,002544 \mathrm{p}$. Polyester capachtor 250 V E 6001 to 01 mF 5 tp , 015 . $022 \mathrm{mF} 7 \mathrm{p}, 047 \mathrm{mF} 11 \mathrm{p}$. Electrolytice $50 \mathrm{~V} 047.12 \mathrm{mF} 5 \mathrm{p}, 25 \mathrm{~V} 5,10 \mathrm{mF} 5 \mathrm{p} .16 \mathrm{~V} 22$. $47 \mathrm{mF} 6 \mathrm{p} .100 \mathrm{mF} 7 \mathrm{p}, 220 \mathrm{mF} 9 \mathrm{p}, 470 \mathrm{mF} 11 \mathrm{p}, 1.000 \mathrm{mF}$

MAINS TRANSFORMERS
$6.0-6 \mathrm{~V} \quad 100 \mathrm{~mA} 94 \mathrm{p} .9-0-9 \mathrm{~V} 75 \mathrm{~mA} 94 \mathrm{p} .18 \mathrm{~V} \quad 1 \mathrm{~A} £ 1.95$. 0 12/15 202430 V 1A E3. $65.12-0-12 \mathrm{~V} \quad 50 \mathrm{~mA} 94 \mathrm{P}$
 1A $£ 2 \cdot 69.30-0-30 \mathrm{~V}$ 1A E 3.39 .
PRINTED CIRCUIT KITS etc.*
Contains etching dish. 100 sq in of pc board. tlo terric chloride, etch resist pen, drill bit and laminate culter £3-65. 100 sa in pc board 75p. IIb FeCl 95p. Etch resist pen 75p.
S-DECS AND T-DECS*
S-DeC $£ 1.94$.
T-DeC $£ 3.61$.
H-DeCA 53.97
$\mu$-DeCA $\mathrm{K}^{2} .97$

| $\mu$-DeCB £6. 97 |
| :--- |
| IC |

with socke
SINCLAIR CALCULATORS, WATCHES AND POCKET TV*
Sinclair pocket TV £165. Cambridge Scientific 58.45. Cambridge Programmable ScI £13.95. Oxford Scientific $£ 10 \cdot 60$. Mains adaptors (State model) $£ 3 \cdot 20$.
BATTERY ELIMINATOR BARGAINS

## 3-WAY MODELS

With switched output and 4 way mult-jack connector Type $1 \quad 3,4+6 \mathrm{~V}$ at $100 \mathrm{~mA} \mathrm{cz} \cdot 30$. Type $2 \quad 6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ at 300 mA ©2. 90 .

## 100mA RADIO MODELS

With press-stud connectors 9 V \&3.45. 6 V \&3.45. $9 V+9 V £ 5 \cdot 45.6 V+6 V £ 5 \cdot 45.4 \frac{1}{2} V+4 \mathrm{~V} \sum 5 \cdot 45$.
CASSETTE MAINS UNIT
7iV with 5 pin din plug 150 mA £3. 65 .
FULLY STABILIZED MODEL $\mathbf{\&} \cdot \mathbf{4 5}$
Switched output of $3 / 67 \% / 9 \mathrm{~V} 400 \mathrm{~mA}$ stabilised
CAR CONVERTORS 12 V INPUT
Output 9 V 300 mA £1-80. Output $7 \% \mathrm{~V} 300 \mathrm{~mA}$ £1-80

## BATTERY ELIMINATOR KITS

Send SAE for free leallet on range
100 mA radio types with press-stud battery terminals


Cassette type $7 \frac{1}{2} \mathrm{~V}$ toomA with 5 pin din plug $\mathbf{~} 2 \cdot 10$. Translator stabilized 8 -way type for low hum

Heavy duty 13 -wny typea $4 \$ / 67 / 8 \% / 1113 / 14 / 17 /$ $2125,283442 \mathrm{~V}$ 1A model 54.95 . 2 A model $£ 7.95$. Car convertor kit input 12 V d c Output $6 / 7 \$ / 9 \mathrm{~V} \mathrm{~d} \mathrm{c}$. 1A transistor stabilized Et.95.
Stabilized Liblatar 1 to 30 V
SINCLAIR PRO.JECT 80 AUOIO MODULES PZ5 £4.95. Z40 55.75
BI-PAK AUDIO MODULES
S450 tuner $£ 21 \cdot 95$. AL60 §4.86. PA 100 § 14 .95. MK60 audio kit £36-45. Stereo 30 £17-95. SPM80 £3.75. BMT80 £4.25. Send SAE for free data

## SINCLAIR IC20

IC20 10W + 10W stereo integrated circuit amplifer $\mathrm{kit}^{\text {with }}$ free printed circuit and data $£ 4 \cdot 95$. PZ20 Power supply kit for above £3-65.
S A.E tor tree teation preamp kit gs . 95
Send S A.E for tree leaflet on the whole system
JC12 AND JC40 AMPLIFIERS
JC12 6W IC audio
amp with free data
and printed
Circuit $\$ 1 \cdot 95$.
Also new JC40 20 W
model with pcb
£3.95. Send SAE for tree leallet on both models and associated power supply and preamp kits

## FERRANTI ZN414

IC radio chip $£ 1.44$. Extra parts and pcb lor radıo
83-85. Case 1. Send S A E for tree data

## SWANLEY ELECTRONICS

Dept. PE, PO BOX 68, 32 Goldsel Rd., Swanley, Kent Mail order only. No callers. Send S.A.E. for free data on kits. Post 30p on orders under £4 50, otherwise free. Prices include VAT. Official orders welcome. Overseas customers deduct $7 \%$ on items marked * and $11 \%$ on others

# Join the Digital Revolution 

## Understand the latest developments in calculators,

computers, watches, telephones,
television, automotive instrumentation.
Each of the 6 volumes of this self-instruction course measures $11 \frac{z}{2}^{\prime \prime} \times 8 \frac{1}{4}$ " and contains 60 pages packed with information. diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra. to memories. counters and simple arithmetic circuits and on to a complete understanding of the design and operation of calculators and computers Design of Digital Systems


## £6. 20

plus 80 p packing and surface post anywhere in the world

Payments may be made in foreign currencies
Quantity discounts available on request

VAT zero rated

Also available-a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics
In 4 volumes

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

## £4-20

plus $80 p \mathrm{P}$ \& P .
Offer Order both courses for the bargain price $59 \cdot 70$, plus 80 p P \& P

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and applica. tion of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

## Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked
Cambridge Learning Enterprises (Dept. ENG).
Rivermill House, St Ives. Huntingdon, Cambs. PE17 4BR

- To Cambridge Learning Enterprises (Dept. ENG)
fREEPOST. Rivermill House, St. Ives, Huntingdon, Cambs, PE174BR
*Please send me. set(s) of Design of Digital Systems at $£ 7.00$ each. $p \& p$ included
*or set(s) of Digital Computer Logic and Electronics at $£ 500$ each. $p \& p$ included
*or combined set(s) at $£ 10.50$ each. $p \& p$ included
Name
Address
- delete as applicable

No need to use a stamp-iust print FREEPOST on the envelode. PE7

£9.95 + 8\% VAT
(Order code 997-005)
Avoid difficulty in starting your car on cold mornings with the Doram C.D. Ignition Unit. The complete kit incorporates features such as single switch reversion to the standard ignition system for servicing etc. and also an immobilisation facility. Improved performance and fuel consumption, along with reduced points erosion and longer plug life makes this unit a must for any 12 V neg. earth car.

O'seas orders-add 15\% for P+P. All items offered for sale subject to the Terms of Business set out in Doram Edition 3 catalogue. price 60 p The Doram Kit brochure is also available price $25 p$ Combined price only 70 p which also entitles you to $2 \times 25$ p vouchers, each one usable on any order placed to the value of $£ 500$ or more (ex. VAT)

DORAM ELECTRONICS LTD
PO BOXTR8. WELLINGTON RD IND EST LEEDS LS1 22 UF
An Electrocomponents Group Company


The C1 Camera is a completely new design offering a high specification CCTV camera suitable for both protessional and amateur use

The design offers high sensitivity with good signal to noise ratio by incorporating an F.E.T front end Wide range and stable automatic sensitivity control circuit allows camera to be operated in a wide range of lighting conditions. All controls are internal and once set remain stable over long time periods.

Small size and weight make this a most versatile camera for general usage. Special one off retail price including Vidicon (less lens) £140-59 inclusive. Kits also available

Send S.A.E. for information
CROFTON ELECTRONICS LTD
Dept. E, 35 Grosvenor Road, Twickenham, Middx. Tel. 01-891 1923
Secondhand cameras and monitors always available


[^4]

## PLEASE NOTE

When replying to Classified Advertisements
please ensure：
（A）That you have clearly stated your require－ ments．
（B）That you have enclosed the right remittance． block capitals，and
（D）That your letter is correctly addressed to This will assist
This will assist advertisers in processing and despatching orders with the minimum of delay．

## RECEIVERS AND COMPONENT8



TURN YOUR SURPLUS capacitors，transistors， etc．，into cash．Contact COLES－HARDING \＆
CO．， 103 South Jrink，Wisbech，cambs．Tel． 095 th8s．

Power Electrolytics．B00 $\mu$ F． 450 V （value not
stamped on can）．Single end connections with stamped on can．Single end connections with
serew terminals， 2 ！in dia． 4 ！in high including stuos．Minn order 4 for $\in 2$ inc．YAT．（Add 60 O $12-0-12 \mathrm{~V}, 50 \mathrm{~m} / \mathrm{a}, 28 \mathrm{mmW}, 20 \mathrm{mmH}, 26 \mathrm{mmD}$ 82 p ．Bridge Rectifiers． $2 \mathrm{~A} / 100 \mathrm{~V}$ ． $34 \mathrm{~mm} \times$ 34 mm 40 p ．Phono Leads．Phono plug to Phono plug，single screened grey cable，length 2 yds． 16p．Op．Amps．Motorola MC 1530 G 65p． （Items 2．＇3．；
20 p P．\＆
LINWAY ELECTRONICS， 843 Uxbridge Road，Hayes End，Mddx．UB4 8 HZ ．Tel． $01-5733677$ ．
End，Mddx．UB4 8 HZ ．Tel． $01-5733677$ ．
Offers of company surpluses always welcomed．

## SMALL ADS

The prepaid rate for classified advertisements is 15 pence per word（minimum 12 words），box number 40 p extra．Semi－display setting $£ 12.00$ per single column inch（ 2.5 cm ）．All cheques，postal orders etc．，to be made payable to Practical Electronics and crossed＂Lloyds Bank Ltd．＂Treasury notes should always be sent registered post．Advertisements， together with remittance，should be sent to the Classified Advertisement Manager，Practical Elec－ tronics，Room 2337，IPC Magazines Limited， King＇s Reach Tower，Stamford St．，London， SE1 9LS．（Telephone 01－261 5918）．

## CONOTIONS OF ACCEPTANCE

 OF CLASSFFEDADVERTISEMENTS1．Advortisements ere sccopted subject to the conditions appoariny on our current sdvartise ment rate card and on the oxpross underationd． ing that the Advertisor wartents that the advertisament does not contravene any Act of Patiament nor is it an infringement of the British Code of Advertising Practice．
2．The publishers reserve the right to refuse of withdraw eny advertisoment
3．Altheugh overy cars is taken，the Publishers thell not be lisble for clerical or printora errort ar thoir consequancos．

CARBON FILM RE8I8TOR8．5\％E12 Series， dW，$\frac{1}{2} W, \frac{1}{2} W$ ．Mixed to your choice， 100 for 90p．Microprocessors SC／MP \＆15，introkit £77， keyboard kit 274，MM6800 \＆27．P．\＆P．15p． Mail order only．CANDAR， 8 Almond Drive， （＇aversham I＇ark，Reading．

## TOUCH CONTROLLED LIGHTING KITS

These KITS replace conventional light switches and control 300 W of lighting，No mains re－ with easy to follow instructions．
NEW！TSD 300 K －TOUCHSWITCH and
DIMMER combined．ONE touch plate to
switch ight on or off．Brightness con
trolled by small knob．ONLY－ 5.95 ．
TS300K－TOUCHSWITCH．TWO touch plates
TSA 300 K －AUTOMATIC．One rouch plate． Light turns off after preset delay．ONLY－

| LD300K LIGHT DIMMER KIT $£ 2.45$ |
| :---: |
| SPECIAL OFFER |

3－5S5 TIMER ICs for ONLY EI．I 00 for 429.


COMPLETE COMPONENT SERVICE．Second to none，suppliers to D．O．E．，A．E．R．E．， I＇K．A．JA．A．，Government departments universities，schools and equipment manu facturers．All orders are despatched on day of receipt．Are you being served？Join the pro fossionals and get this best service at the right prices．Stock list free，send S．A．E．Big cata loguc 50 p（includes 2 vouchers worth 501 ） liscounts for the big spender，its all here！For the fastest friendly service－ORCHART
 Wiallingford，Oxon（0491－35529）．

| FULL SPEC．TTL（Prices include VAT）Special offers： $741325 p, 7492 / 339 p, 7410070 \mathrm{p}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7400 | 14 | 7450／3／4 | 15p | 74122 | 43p |
| 7401／2／3 | 14p | 7460 | 15p | 74123 | 59p |
| 7404／5 | 16p | 7472 | 22p | 74141 | 66p |
| 7406 | 36p | 7473／4／6 | 29p | 74145 | 72p |
| 7408 | 18p | 7475 | 46p | 74150 | E1．10 |
| 7410／20 | 14p | 7480 | 44p | 74153 | 65p |
| 7411／2 | 20p | 7483 | 73p | 74154 | ¢ 1.10 |
| 7414 | $67 p$ | 7484 | $97 p$ | 74155 | $69^{9}$ |
| 7417 | 30p | 7485 | 61.03 | 74157 | 68p |
| 7422 | 18p | 7486 | 29p | 74160 |  |
| 7425／7 | 28p | 7489 | ¢2．40 | 74164 | \＆ $1 \cdot 10$ |
| 7430／40 | 14p | 7490 | 43p | 74174 | 97p |
| 7432 | 28p | 7491 | 60p | 74175 | 85p |
| 7437 | 29p | 7495 | 60p | 74181 | ¢2．40 |
| 7441 | 66p | 7496 | 69p | 74190 | fl． 25 |
| 7442 | 59p | 74109 | 45p | 74193 | C108 |
| 7445／7／8 | 78p | 74121 | 31 p | 74195 | 38p |
|  Mullard OC28（ex equip．）20p，5／90p，50／£8． S．A．E．forfull lists．P．\＆P．（Ist class）20p．C．W．O． <br> J．C．JONES（PE25） <br> Mail order only |  |  |  |  |  |
|  |  |  |  |  |  |

Precision Polycarbonate Capacitors All High Stability extremely Low Leakage
40 A．C．RANGE

VaV D．C．RANGE | 440 A．C．RANGE | E3V D．C．RANG |
| :--- | :--- |
| Value Dimen－Price | Value $\mu \mathrm{F}+10 \%$ | （ $\mu \mathrm{F}$ ）sions（m－Price each $\quad$ Value $\mu \mathrm{F} \quad \pm 1 \% \quad \pm 2 \% ~ \pm 5 \%$ （F）sions $\underset{1}{(\mathrm{~mm}} \mathrm{D}$ ）each


 $0 \cdot 47, \quad 0.68,1 \cdot 0 \mu \mathrm{~F}$ at $25 / 35 \mathrm{~V}-10 \mathrm{p}^{*} ; 1 \mathrm{i} \cdot 5 \mu \mathrm{~F} / 35 \mathrm{~V}-11 \mathrm{p}^{*}$ $2 \cdot 2 \mu \mathrm{~F} / 3 \mathrm{j} \mathrm{V}-12 \mathrm{p}{ }^{*}$ ； $3 \cdot 3 \mu \mathrm{~F} / 35 \mathrm{~V}-13 \mathrm{p}^{*}$ ； $4.7 \mu \mathrm{~F} / 3 \mathrm{JV}-13 \mathrm{p}^{*}$ $6 \cdot 8 \mu \mathrm{~F} / 35 \mathrm{~V}-17 \mathrm{p}^{*} ; 10 \mu \mathrm{~F} 2 J \mathrm{~V}-17 \mathrm{p}^{*} ; 10 \mu \mathrm{~F} 35 \mathrm{~V}-21 \mathrm{p}^{*}$ $1 . \mu \mathrm{F} / 20 \mathrm{~F} ; \mathrm{c}^{20} \mu \mathrm{~F} / 15 \mathrm{~V} ; 33 \mu \mathrm{~F} / 10 \mathrm{~V}$ ； $47 \mu \mathrm{~F} / 6.3 \mathrm{~V}$ at $21 \mathrm{p} *$ R $1 \mathrm{~F} 3 \mathrm{~V}-17 \mathrm{p}^{*} ; 100 \mu \mathrm{~F} / 3 \mathrm{~V}-21 \mathrm{p}^{*}$ TRANSISTORS \＆I．C．＇

| ．${ }^{\text {cela }} 8$ | 28p | BC7\％ | 18p | TIP32A |
| :---: | :---: | :---: | :---: | :---: |
| ACI\％ | 35p | BL131／132 | 41p | TIP42A |
| A1149 | 68p | BF115 | $42 p$ | 2N：乌26G／O／Y1 |
| A FITH | 14p | BFl73 | 27 p | 2N3053 |
| －1F239 | 45p | BFI\％ | 42 p | 2N30．54 |
| BC107／8／9 | 12p | BF184 | 28p | 2N305． |
| BC＇14 | 15p | BF194／193 | 12 p | 2N3702／3／4＊ |
| B（1147／8／9 | 10p | BF196／197 | 15p | 2N3705／6／7／9＊ |
| BC153 | 16p | BF：00 | 38p |  |
| 18C157／8／9 | 12p | BF－6t2／263 | 40p | 2N3819 |
| B6177 | 18p | BF700／51／52 | 22p | MP［131 |
| 13C＇182／183 | 12p | BFX84／8， | 29p | NEJJう |
| BC184／219／3 | 13p | 3FXR6／87 | 31 p | 7418 pin DIL 3 |
| 136214 | 13p | BE101 | 41p | 2＊414 21 |
| 16＂238 | 17p |  | 15p | SN76013N0 |
| 3C2が， | 25p | Oc．4／0c45 | 40p |  |
| ］ 32688. | 12p | 003178 | 4óp | SN76023NO |
| 130）47 | 12p | TIP31．1 | 55 |  | POPULAR DIODES：B．14 j－18p；BA148－18p；BA1 －18p；［3A156－15p；BR100－18p；BA148－18p；BA1 —16p；OA47－11p；OA91－15p；OA90 \＆91－7p；IN914 －7p；10／66p；IN916－8p；10／77p；IS44－7p；10／80p 1N4148－6p； $10 / 55 \mathrm{p} ; \mathrm{IN} 4001-6 \mathrm{p} ; 002-6 \frac{1}{2} \mathrm{p} ; 003-7 \mathrm{p}$ 00． $7 \frac{1}{2} \mathrm{p} ; 00 \mathrm{O}-8 \mathrm{p} ; 006-\mathrm{Ep} ; 007-10 \mathrm{p} ;$ T1L209－25p． LOW PRICE ZENER DIODES -400 nL ：Tol，$\pm 3 \%$ at

 $0 \mathrm{~V} ; 2 \mathrm{~V} ; 24 \mathrm{~V} ; 2 \mathrm{~V} ; 30 \mathrm{~V} ; 23 \mathrm{~V}$（All at 10 p each， 10 to RESISTORS－High stabilht．low noise carbon film and $^{\circ}$ W at $40^{\circ} \mathrm{C}$ ，W at $70^{\circ} \mathrm{C}$ ．Elu series only－from 2,40 fos．2Mת．All at $2 \mathrm{p}^{*}$ cach， $150^{*}$ for 10 of any one value 95p＊for 100 of any one ralus．SPHCLAL PAVK： 10 o each value $4.2 \Omega$ \＆ $2 \cdot 2 \mathrm{M} \Omega$（ 730 resistors） $56-50^{*}$
SUBMINIATURE VERTICAI，PRESETS－0．1 W OHS
 $1.5 \mathrm{k} ; 22 \mathrm{k} ; 47 \mathrm{k} ; 100 \mathrm{k}: 320 \mathrm{k} ; 680 \mathrm{k} ; 1 \mathrm{N1} ; 23 \mathrm{~s} ; \overline{\mathrm{MM}}$ ．All a
7 p etech： 10 for $80 \mathrm{p} ; 100$ for 85.00 7p＊each： 10 for $80 \mathrm{p} ; 100$ for 85.00
CLEARE ADI DO；POST AND PACKING ON ALI ORDELRS．EXPORT－ADD COST OFSEA／AIRMAIL Add $8 \%$ VAT to all items except those marked with Send S．A．E．for additional
Whotesale price lists arailable to bona fis
MARCO TRADING（Dept．P．3）
The Old School，Edstaston，Wem，Shropshire （Proprs．Yinicost Trading Ltd．）

LED＇s．Mixed bags of 4 different sizes and 4 different colours． $50, £ 5 \cdot 25 ; 100, \mathbf{£ 9 \cdot 2 5}$ ，includ ing VAT and post and packings，C．W．O． MCITAEL WILLIAMS IELECTRONICS， 47 Vicarage Avenue，Cheadle Ifulme，Cheshire， SK8 7 JP ．

> P．C．Bs Paxolin 5 in $\times 5$ in， 6 for $\neq 1$ ． 2 in $\times 9$ in 70p． 17 in $\times 91 \mathrm{in}, \ldots 1$ ．Fibre glass $15 \operatorname{lin} \times 61 \mathrm{in}$ £ $1 \cdot 35$ ． $151 \mathrm{in} \times 13 \mathrm{in}, \mathbf{E 2} \cdot \mathbf{4 0}$ ．D．S． $7 \mathrm{in} \times 8 \mathrm{Bin}, 80 \mathrm{p}$ ． Bank of 10 Neons with $10 \times \mathrm{C} 407$ transistors En $12 V$ E $3 \cdot 10$ ．P．S．U．panel $2 \times 2 \mathrm{~N} 3702,2 \times$
on AC153，bridge rect．electrolytics，etc， 55 p Three assorted meters $£ 2 \cdot 10$ ． 7 ib assorted Over $£ 1$ pose paid；under add 20p；insurance add 10 p ．

> 2 Barnfleld Crescent，Eale，Cheshire，M88 18L

8PECIAL OFFER．74HOO 22p，7490A 30p T474A 28p， 75450 50p，MJE3055 50 p ．ITT 5 K 7474A 28p，75450 50p，MJE3055 50p．ITT 58
 $1200 \mathrm{~V} 2.5 \mathrm{~A} 35 \mathrm{p}, 135$ Fuse holder 11 in panel mnt 20p，TLL209＋clip 15p， $74120 \mathrm{p}, 1 \mathrm{~N} 414 \mathrm{~b}$ 3p，BC108C 10p．P．\＆ $1^{\prime}$＇ 10 p ．List 太A．A． L．B．ELECTRONICs， 43 Westacott，Hayes， Middx．C＇B4 8A1I（1）L：

## BRAND NEW COMPONENTS BY RETURN

 Eleotrolyt ic Capacitors 16V，25V， $50 \mathrm{~V}-0.47 .10$ ． $2 \cdot 2,4 \cdot 7$ and $10 \mathrm{~m}^{17} 5 \mathrm{p} ; 22,475 \mathrm{p},(50 \mathrm{~V}$ 6p）： 1007 p （50V 8p）； $2208 \mathrm{p}(50 \mathrm{~V} 10 \mathrm{p}) ; 47011 \mathrm{p}(50 \mathrm{~V} 16 \mathrm{p}$ ） 1.000 （ 16 V ） $15 \mathrm{p}, 1,000(25 \mathrm{~V}) 18 \mathrm{p}, 1.000$（50V） 22 p ． Sobminiature Bead Tantalum Electrolytics－0．1 $0.22,0.47,1 \cdot 0, \frac{1.2}{}$ at $35 \mathrm{~V}, 4,7 / 2.5 \mathrm{~V} 11 \mathrm{p}$ ； $10 / 25 \mathrm{~V}$ $18 \mathrm{p}, 22 / 16 \mathrm{~V}, 47 / 6 \mathrm{~V}$ and $100 / 3 \mathrm{~V} 15 \mathrm{p}$Mulard Min．Ceramic E12 Series 63V $2 \%-10_{\mathrm{p}} \mathrm{F}$ to $47 \mathrm{pF}-3 \mathrm{p} ; 56 \mathrm{pF}$ to 330 pF 4 p ．
Vortical Mounting Ceramic Plate 50V－E12 series Polyityrene E12 Series 63V Horizo00 pF 2 p ． $10-1.000 \mathrm{pF} 3 \mathrm{~B} ; 1,200-10,000 \mathrm{pF} 4 \mathrm{p}$ ．
Mullard Polyetter 250V Vertical Mounting E6 Series－0．01－0．1 4p；0．15，0．22 5p；0．33． 0.478 p ； $0.6811 \mathrm{p}: 1.013 \mathrm{p} ; 1.520 \mathrm{p} ; 2.222 \mathrm{p}$ ．
Mrlar（Polyestor）Film 100 V Vortical Mounting－ $0.001,0.002,0.0053 \mathrm{p} ; 0.01,0.024 \mathrm{p} ; 0.04,0.054 \frac{1}{5} \mathrm{p}$ ． Miniature Resintors Highatab E12 Series $5 \%$ Carbon Film $0.201 \Omega$ to $10 \mathrm{~B} \Omega$ ．$(10 \%$ over M ） to $2 \mathrm{M} 2 \Omega$ It p ．Metal Film＇ $1 \mathrm{~W} 27 \Omega$ to 10 Mn 20 1N41483p；iN4002 5p：1N4006 7p；1N40078p BC107／8／9，BC147／8／9，BF157／8／9，BF194， 1979 p ． Fuses 20 mm glass， 1 in glass，lin ceranic $2 \frac{1}{2} \mathrm{p}$ ． Poat 10p（free over $\varepsilon: 4$ ）．Prices inclusive of VAT THE C．R．SUPPLY CO
127 Chesterfield Road，Sheffield Ss ORN
VHF POCKET PORTABLE RADIO，tuning 108 to 138 MHI ，Very sensitive，easily adjusted to tune $144 \mathrm{MH} z$ band， 816.50 （inc．post and VAT）． ROMAK LTD．， 10 Hibel Road，Macclesfleld， Cheshire．


VALVEB－Radio，TV，industrial，transmitting． We dispatch to any part of the world by return of post，Air or Sea Mail．2，700 types in stock． 1930 to 1976 obsolete types a speciality．Jist 20p．Quotation S．A．E．Open to callers．Mon． to Sat． $9.30-5.00$ ，closed Wed．1．00．We pur－ chase all types of new and boxed valves．Cox RADIO（Sussex）Itd．，Dept．P．E．，The Parade， RabIO（Sussex）Itd．，Dept．P．E．，The Parade，
East Wittering，Sussex，Pozo \＆BN．West East Wittering，Sussex，PO20 8 I
Wittering 2023．（STD code 024366）．


RESISTOR8：AEL2 type carbon film high stab． $5 \%$（E12 range）．Fold in units of 10 ．$\frac{1}{4}$ Wh （ 4 E 7 to 2 M 2 ）， 8 p 〕er 10 ； $1 \mathrm{~W}(10 \mathrm{E}$ to 10 N ）， 9 p per 10．Also trausistors $13 C 108 / 9,75$ per 10. LEDs red，12p；green ant yellow，20p．Type TIL209／FlN117（0．2in：potentiometers（Plinlips／ Figen） $1 \mathrm{k}, 4 \mathrm{k}$ 个， $10 \mathrm{k}, 100 \mathrm{k}, 220 \mathrm{k}, 4 \mathrm{TOk}, 1 \mathrm{M}, 2 \mathrm{~N}$ ． Lin／Log at $21 \mathrm{peach}+$ VAT（high rate） $12 \frac{1}{2} \%$ phus 20 p postage．s．A． 2 ．for more details to ：（iv DLACTRON1ÖS，Dept．PE， 10 Kingsley I＇ath， Britwell Estate，Blough，lierkshire．We also have a trade and export dept．

MIXED LOTS COMPONENTS．Approx，quan． 50 tadstrips 28p； 100 ceramics 50 p ； 100 resistors， $\frac{1}{2}$ W 30p； 50 silv．micas 25p； 30 paper and poly （aps．60p； 20 eleetrolvtics 75p；25 W．W．res． 50p；2．germm．transistors 50p；1t．11． $\mathrm{r}^{*}$ ．pre－ amp，mains， $\mathrm{f9} 50$ ；r．H．F．diplexer $81-20$ ；
 66 Eims Road，Aldershot，G（＂11 1L1＇

## FOR 8ALE

LIGHTING CONTROL， 6 kW channels， 12 pre－ sets，master，changeover．Little used，$£ 90$ Pizath ns，Salewhed louse，Ribchester

PRACTICAL ELECTRONICS 1st issmo 1964－197t complete．Offers．WILLLS， 6 Ingle ly Gardens， Chigwell Row，lisex．

P．E．Scorpio Electronic ignibion semiconductors， rapacitors．cheap，New，Top－tirade components． S．A．b，for list to： 66 Ablerley Avenue，stour－ port，Worestershire

EX MUSIC CENTRE Tuner－Imp Chassis，for Your own dexigu A．M．－F．．M．A．l＇．．＇Stereo Radio． Slide rontrols with good bass and treble response．l’ush button selection for（iram， Tape，A．M．．F．M．，etc．，with indicator lanns． （omplete with knols and fascia panel．simple conncetions，mains and speakers（s uhm），few
 with order to：in An．，Market street，Shiperham，


BACK IS8UES of P．E．，P＇W．，E．T．1．， 1960 on wards．30p．S．A．E．stating regurements．（i．P． LUNDEGAARD，3：3 King Edwards Avome CHoucester

AMERICAN＂TAB＂Books half price．S．A．E． list． 68 Oundle Road，Thrapston，Northants．

FOR SALE：1950s Amorican Juke Box，Faulty wiring，worth a fortune in the hands of an clectronic genius－nerds a lot of time spent on it，£40．Tel．Hunsfold $こ 34$ ．

NEW I88UE8 of＂Practical Electrontes＂avail－ able from April 1974 edition up to date．Price 55 parli－BELI＇S TELEVISION SERVICES． 190 Kligs Road，Harrogate，N．Yorkshlre． Tel．（0423） 55885.

## WANTED

WANTED，NEW VALYES，TRANSISTORS， top prices，popular types－KENSLAGTON SUPlPLIES（13）， $367^{\circ}$ Kínsington Street， Bradford 8，Yorkshire．

WANTED PRACTICAL ELECTRONICS Octoßr and／or Decrenlier 1974．Tel．IBarknore（Eかヶex） －

OSCILLOSCOPE．Portable jgnition texter regd． l＇ref．12V．l＇owerd．Other Auto．Eiguipment considered．Tel．061－480 5．22（eveningst）．

TURN YOUR Surplus components into cash． Tel．0491－35529（Oxou）．

## ELECTRICAL

STYLI，CARTRIDGES AND AUDIO LEADS， etc．For the best at keenest prices send S．A．E． for free illustrated list to：FELSTEAD FLECTRONICS（PE），Longley Lane，Gatley， Cheadle，Cheshire，SK\＆4ELE．

## SERVIGE SHEETS

SERVICE SHEETS，Liadio，TV，etc．，50p and S．A．E．Cataloge 20p amd S．A．L：HAMMLTON RADHO，47 Bohemia Road，St．Leonards， sinsex．

BELL＇S TELEVISION SERVICES for seryice sheets on radio，＇TV，ete．， 75 p plus s．a． F ． folour＇L＇V service manuals on request，s．A．li＇ with enfuiries to B．＇L＇s．， 190 lings hoad，


SERYICE SHEETS，radio，＇TV，etc． 10,000 mondels．（atalogue 24p plas s．A．E．With orders－enquiries．TF：LAAY， 1,4 brook street， P＇reston，Pl： 1 ：III＇．

## EDUCATIONAL

## COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers． Covers principles，practice and align－ ment with numerous illustrations and diagrams．Other courses for radio and audio servicing．Full details from：
ICS SCHOOL OF ELECTRONICS Dept． $\mathbf{7 7 1 H}$ ，Intertext House，London SW8 4UJ
Tel．01－622 9911 （all hours）

## TELEVISION TRAINISG

12 MONTHS＇full－time course in Radio and TV for beginners （GCE－or equivalent－in Maths and English）．
26 WEEKS ，full－time course in Mono and Colour TV（basic electronics knowledge essential）．
13 WEEKS＇full－time course in Colour TV（Mono TV knowledge essential）．
These courses incorporate a high percentage of practical training．
Next session starts on September／2th．
Prospectus from London Elec－ tronics College，Dept．A7， 20 Penywern Road，London SW5 9SU．Telephone 01－373 8721

## TECHNICAL TRAINING

Get the training you need to move up into a higher paid job．Take the first step now－write or phone ICS for details of ICS specialist homestudy courses on Radio，TV，Audio Eng．and Servicing， Electronics，Computers；also self－ build radio kits．Full details from：
ICS SCHOOL OF ELECTRONICS
Dept． 771 H ，Intertext House，London SW8 4UJ
Tel． 01.6229911 （all hours）

## CITY GUILDS EXAMS

Study for success with ICS．An ICS homestudy course will ensure that you pass your C．\＆G．exams．Special courses for：Telecoms．Technicians， Electrical Installations，Radio．TV \＆ Electronics Technicians，Radio Amateurs．Full details from：
ICS SCHOOL OF ELECTRONICS
Dept． 771 H ，Intertext House，London SW8 4UJ
Tel．01－622 9911 （all hours）

## Intensive course on

## LOGIC, INTERFACES AND MICROPROCESSORS

4 to 8 July, 1977<br>at the Southgate Technical College, London NI4

A five day course with tutorials:
conducted by Prof. D. Zissos
The aim of the course is to enable designers and users of digital control and computer systems to work out and implement designs to their own requirements, and attain control over the behaviour of their systems. The course, with an independent assessment of the state of the art should be of value to people in a wide variety of Technical disciplines and experience.

Details and reservations from the organizers

## INTERPROJECTS LTD.

Technical Services
29 Church Street, Edmonton, London N9 9DY
Tel: 01-803 6896

## RADIO TECHNICIANS

Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over.
Standards required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radio and electronic test gear.
Duties cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.
Qualifications: Candidates must hold either the City and Guilds Telecommunications Part I (Intermediate) Certificate or equivalent HM Forces qualifications.
Salary scale from $£ 2,230$ at 19 to $£ 2,905$ at 25 (highest pay on entry) rising to $£ 3,385$ with opportunity for advancement to higher grades up to $£ 3,780$ with a few posts carrying still higher salaries. Pay supplement of $£ 313 \cdot 20$ per annum.
Annual leave allowance is 4 weeks rising to 6 weeks after 27 years service. Opportunities for service overseas.

Candidates must be UK residents,
Further particulars and application forms available from:
Recruitment Officer, Government Communications Headquarters
Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ
Tel.: Cheltenham (0242) 21491 (Ext. 2270)

## CAREER IN ELECTRONICS

Melico, a small progressive Company manufacturing photographic electronic instruments, has vacancies for the following:

1. Development engineers
2. Testers and assemblers

The Company is situated near Chalk Farm Station in N.W.I. Applicants should have an interest in and a knowledge of electronics. Good salary commensurate with age, ability and qualifications. Ring 01-5865144/5 for an appointment.
Melico, Unit 5, Spencer Court, 7 Chalcot Rd., London NWI 8LH

## VACANCY FOR SCHOOL LEAVER

## in ESSEX area

whose interests are in Electronics. Opportunity for apprenticeship with old established Company. All replies will be answered. APPLICANTS MUST GIVE DETAILS OF THEIR INTERESTS. Write to Box No. 69.

TECHNICAL AUTHORS. Progressive documentation company requires full time/part time persons able to write functional knglish trxt from notes and drawines on a variet of digital cquipment. Write to INTERPROJE('TS JTD., oy Chureh Street, Ldmonton, Lontion, N9 915.

## LADDERS

LADOER8, varnished, $25 \frac{1}{2} \mathrm{ft}$. extd., $£ 30.41$. Carr. 81 -80. Leaflet. Immed. despatch. THE LADDER CENTRE (PEE3), Halesfeld (1), Telford, Salop. Tel. 586644.

## FAULT

FERRETERS WANTED

If you have a good knowledge of basic electronics and can ferret our circuit faults down to component level, then we'd like to meet you. If you also have experience of working on operational amplifiers or integrated logic circuits, you'll be even more welcome here at Marconi-Elliott Avionic Systems in Rochester.

For it's here that we're looking for Electronic Test Technicians, men or women, to join teams working on calibration and fault finding on both analogue and digital solid state systems.
It's interesting work on highly advanced avionics equipment for flight control, navigation and surveillance systems on such aircraft as Nimrod, Harrier and Tornado.

So if you have the experience we're after, possibly gained as a TV Engineer or in the Forces as an Electronics Technician, you could be in line for a well paid career with the world leader in avionic systems, If necessary, we'll assist you with relocation expenses.

Write now with details of your experience and qualifications (we would expect you to have City and Guilds, ONC or equivalent), to: Mr. T. Jones, Marconi-Elliott Avionic Systems Limited, Marconi-Ellott Avionic Systems
Airport Works, Rochester, Kent. Tel.: Medway (0634) 44400 .


## MISCE LLANEOUS

DO-IT-YOURSELF LOUDSPEAKERS for hi-fl are our speciality. Full range of components and accessories including chassis speakers, cross-overs, sound absorbent, grille fabrics, etc., always available. We stock the fabulous value Ifelme speaker kits (complete with full and easy instructions), also Peerless and Wharfedale kits. Just about the lowest prices anywhere! Send 8tp stamp for bargain list to: AUDIOSCAN, Dept. PE-777, 4 Princes Square, Harrogate, North Yorkshire.


GLA8s FIBRE BREAD BOARDS（heavy type） size 6 in $\times 4$ in，takes 16 I．（＇．s，total $97^{\circ} 01 \mathrm{~mm}$ holes，roller tin finish．lrice incl．VAT $£ 1 \cdot 90$ + P．\＆P．30円．PHOTOTECHNIQUES（Rमf J W）， 11 （Md Witney Ruad，Eynshan，Oxford．

## Musical Miracles！

## by Dewtron ${ }^{(8)}$

Build your own synthesiser or musical effects using some of the huge range of DEWTRON modules．Or，build fuzz or waa－waa at budget prices using special kits．
Send 55p for Catalogue from
D．E．W．Ltd．， 254 Ringwood Road，Ferndown， Dorset BH22 9AR．

NOW AVAILABLE for D．I．Y．Burglar Alarm Systems．The Lawrence Electronics Solid State control Module， $\mathbf{£ 6} 50$ inc．Vat，$P$ ．\＆P．or S．A．E．for full details on security equipment available．LAWRENCE ELECTRONICS， 78 Manningham Lane，Bradford，Yorkshire．

## CABINET FITTINGS

Stage Loudspeakers and Amplifier Cabs Fretcloths，Coverings，Recess Handles，Strap Handles，Feet，Castors，Locks and Hinges， Corners，Trim，Speaker Bolts，etc．，etc．

ADAM HALL（P．E．SUPPLIES）
Unit Q，Starline Works，Grainger Road

REGHARGEABLE BATTERIES．＂ $1 A$＂pencel （HP＇）$£ 1 \cdot 26 ;$ Sub＂C＂ $81 \cdot 29$ ；＂C＂＂（HP1I） \＆2．38；＂1）＂（HP2）22－92；PP3 \＆4－98．Natching chargers $\mathbf{8 5} 91$ each except PP3 charger $£ 4 \cdot 99$. （＇harging holders for $2,3,4,5$ or 6 peucells 35 p ． ＂（＂＂and＂b）＂size holders，4－cell only 50 p ． Prices include VAT，Add 10\％post，packace and insurance orders under $\mathfrak{x} \geqslant 0,5 \%$ over $£ 20$ ． S．A．E．for full details plus 50 p for＂Nickel （＇admiun l＇ower＂booklet．Jail orders to SANDWEELL I＇SANTLTH．， 1 Denholm Road， Sutton Coldfield，West Midands．Tel．021－354 9764．Callers to T．I．C．， 32 C＇raven Ntreet， C＇haring Cross，London，W．C．Z．


MAKE YOUR OWN
PRINTED CIRCUITS
Prolessional Finish
RUB－ON TRANSFERS—STARTER PACK $\dot{1} 1 \cdot 30$ （ 5 sheets，lines，pads，I．C．pads），SPARE SHEETS 27p．FERRIC CHLORIDE－IIb bags 70p（P．\＆P． 30p）＊．LOW－COST I．C．MOUNTING－ 100 Soldercon sockets 65 p， 7 or 8 hole plastic supports 6p／pair．TRANSISTOR TESTER－Easy co use．Indicates gain．Idencifies NPN or PNP． Cannot damage transistor $£ 7$（ $P$ ．\＆$P, 30 p$ ）${ }^{*}$ ． S．A．E．lists and samples（ $P$ ．\＆P．isp／order except ${ }^{*}$ ）．
P．K．G．Electronics
Oak Lodge－Tansley Derbyshire DE4 SFE

## GLASS FIBRE P．C．B．＇s

From your own tape，film or ink master． PRACTICAL ELECT for quotation． PRACTICAL ELECTRONICS P．C．B．＇s in glass fibre，tinned and drilled． G8CZW）．Complete set of 4 boards $£ 4.85$ ． June 76 Transmitter 98 p ，Coder 94 p ． Interface 58p．August 76 Servodrive 74 p ， Servo Amp 58 p ，Relay Drive 68p．
Sept． 76 Tone Generator 71 p ．Tone Decoder 78 p．Cross－Hatch Generator E 2.85 ． Nov． 76 Hazard Warning Flasher 68p．
Dee． 76 Orion Tuner $62 \cdot 48$ ．Feb． 77 Decoder （I302－1）\｛1．32．April 77 Digical Volt Meter （GBCZW）Complete set of two boards （1 $30 \$-1$ ） $\mathbf{1} 1.68$ ．Send S．A．E．for information on current boards．C．W．O．please． uppler＇s components available PROTO DESIGN
4 Highcliffe Way，Wiskford，Essex SSII 8LA

| 100 Resistors 75p |  |
| :---: | :---: |
| 二W $5 \%$ c／FILM $2 \cdot 2 \Omega-2$ 2M（E12） <br> 10 each of any value |  |
| C60 CASSETTES 30p | All Cassettes in Plastic Case with Index and |
| C90 CASSETTES 45p | Screwed Assembly |
| All prices include VAT． | Add Postage 10p in $£ 1$ |
| Quantity Discounts | SALOP ELECTRONICS |
| 10 Units 5\％ | 23 WYLE COP． |
| 50 Units 7\％ | SHREWSBURY |
| 100 Units 10\％ | Tel． 53208 |

## suld the TREASURE TRACER MK III Metal Locator

 －Varicap lumin －Arita in in best celing matal locator kit Spited with Fasadey abield 4,000 alresay told －Prebult search coll sesembly －Five tramainior circult －Thoroughly protassional finiah You only noed aoldering
diver pliers and thios diver pliers and anios Send mlamped sddreseed envelope

## Post $\mathbf{~ 1}+\mathbf{~} 1 \cdot 18$ VAT <br> MINIKITS ELECTRONICS． 69 CLEVELAND ROAD LONDON E18 2AN（Mail Order Only）

8UPERB INSTRUMENT GASES by Bazelli manufactured from heavy－duty pve faced teel．Inndreds of meople and industrial users are choosing the cases they reuuire from our vast range．Competitive prices start at a low 82p．Examples：width，depth，height， $\sin . x$ $5 \mathrm{in} \times 3 \mathrm{in}, \mathbf{£ 1 . 7 0 ; 1 0 i n \times 6 i n \times 3 i n , ~} \mathbf{2} .42 ; 10 \mathrm{in} \times$ Sin $\times 3 \mathrm{in}, \quad £ 3.02: \quad 12 \mathrm{in} \times 10 \mathrm{in} \times 3 \mathrm{in}, \quad £ 3.96$ ； Sin $\times 4$ in $\times 4$ in， $51.98 ; 10 \mathrm{in} \times 6 \mathrm{in} \times 4 \mathrm{in}, 82.97$ ：
 $\sin \times 10 \mathrm{in} \times 6 \mathrm{in}, £ 3.96 ; 12 \mathrm{in} \times \sin \times \operatorname{in}, 84 \cdot 40$ ； $12 \mathrm{in} \times 12 \mathrm{in} \times$ in，$£ 4.84$ ．J＇us 85 p carriage and ＂＇VI＇I＇．Over 400 models to choose from． Prompt despatch．liree literature（stamp would be appreciated）：1BAZELIT，Hept．No．23，St． Whirid＇s，Foundry Lane，Halton，Lancaster LA2 6LT．

## NO LICENCE EXAMS NEEDED

To operate this miniature，solid－state TRANSMITTER RECEIVER kit．Only （8．25 plus 20p P．\＆P．
＇Brain－freeze＇＇em with a MINI－STROBE kit，pocket－sized＇lightning flashes＇，vari－ speed，for disco＇s and parties．A mere $£ 3 \cdot 80$ plus 20p P．\＆P．
Experiment with a psychedelic DREAM LAB，or pick up faint speech／sounds with the BIG EAR sound－catcher：ready－made multi－function modules，$£ 5$ plus 20 p P，\＆ P ． LOTS MORE！Send 20p for lists． （Prices include VAT）．
（Mail Order U．K，only）．
BOFFIN PROJECTS
4 Cunliffe Road
Stoneleigh，Ewell，Surrey（P．E．）

OUTSTANDING HI－FIFM TUNER，Comprises 7 transistor superhet design with varicap tuning， Alic．Latest silion circuitry，full coverag： fri－102M1fz．Supplies huilt innd tested with metal front panel and instruction sheet，only
 N6－8x Parclimore Road，Thornton Heath，


## A UNIQUE OPPORTUNITY

We can show you how to earn a lot of money working part or full time from home．We are the ONLY company in the U．K．offering this unique information．
A basic interest in electrical engineering is necessary．Government Departments are making use of our system，why don＇t you？ For complete return of post details send a large stamped addressed envelope to：

## MAGNUM

Dept．PE
Brinksway Trading Estate
Brinksway，stockport SK3 OBZ

GLEARING LABORATORY，scopes，recorders， testmeters，bridges，audio，R．F．generators， turntables，tapeheads，stabilised P．S．U．s，sweep generators，test equipment，etc．Lower Beed． ing 236.

> BURGLAR ALARMS SUPPLIES AND EQUIPMENT


S．A．E．FOR FREE CATALOGUE
LARGE SIZE PRESSURE MATS 28 in ． 15 in ．
£ $1 \cdot 20$
MAGNETIC SWITCHES
with magnets from 75p BELLS ．SIRENS ．ALARM－UNITS ．CABLE BELL COVERS WINDOW FOIL VIBRATION CONTACTS ULTRASONIC AND INFRA－RED DETECTORS－INTERTIA SWITCHES．

A．D．ELECTRONICS
217 Warbreck Moor，Aintree
Liverpool L90HU．Tel． 051.5253440

## MORSE CODE TUITION AIDS Cassette $3-1-12$ w．p．m．for amateur radio Cassette 5－12－24 w．p．m． <br> Morse by examination preparation． Morse by light system available．Morse Key and Buzzer Unit for sending practice． Prices：Cassettes（ineluding booklets） Morse Key and Buzzer E4，Prices include VAT，postage，ete．，overseas EI extra MHEL ELECTRONICS（PE） 12 Longshore Way．Mitton，Portsmouth

TREASURE SEEKER，sensitive $コ$－misrocircuit design，shielded，Julse／continuous．Plitus $£ 1 \cdot 20$ ， Kits frone si5．I．F．O．Newsletter，sighting Rucorder，Daily Pattern，Prediction Patterio， Microcircuit letectors，80p each chart．J．\＆K． PCBLICATLON゙s，Highlands，Needham Mar－ ket，Suffolk．


JUST RELEASED
Odik In－circuit Junction Tester

Tests all silicon transistors and diodes（inc power types）with－ out desoldering from the circuit
－Simple to use
－Go－No－go indication
－Overvolt protection
－Fulf instructions for use
－Robust．
－Comes ready for use with battery fitted
Direct from the manufacturers so only \＆5．50

## ODIK ELECTRONICS

100 Lower Ford Street，Coventry，Warwlcks．

AUDIO TEST OSCILLATOR
VERY LOW DISTORTION ( $0.02 \%$ ) £22 ${ }_{8}^{+}$Tax


Based on a Linsley Hood design it provides both SINE and SQUARE wave signals over range $10 \mathrm{~Hz}-100 \mathrm{kHz}$ in four steps. Output over I volt fully attenuated. Self powered with $9 \vee$ battery. In Kit form $\mathbb{£ 1 7}$.
S.A.E. for leaflets. Also available T.H.D. Analyser. MVMT. F.M. Sig. Gen. 0/60V IA. P.S.U.

## ORION F.M. TUNER

Kit of parts for this system. Price $£ 38$ + VAT (p.p. $£ 1-50$ ).
S.A.E. for details to:

TELERADIO ELECTRONICS
325 Fore Street, Edmonton N9 OPE Tel. $01-8073719$

## DATA WITHOUT DELAY

For all Semiconductors, Integrated Circuits, Opto devices, etc. Technical data, U.K. supplier and approx. cost, where possible, sent by return of post. Send $54 p$ per device and S.A.E. Money refunded if data not available.

TANGENT ELECTRONICS
136 Whitehall Rd., Norwich, Norfolk NR2 3EW

H.M. ELECTRONICS<br>275a Fulwood Road, Broomhill, Sheffield. S10 3BD<br>Give your propect that professional looking finish Build it in a BEC Dry transfer lettering now avalable<br>CABINETS

ORION cabinet still avalable punched or unpunched Send 15p (refundable) for leatlets

## PRINTED CIRCUITS and HARDWARE

Readily available supplies of Constructors' hardware, Aluminium sheet and sections. Printed circuit boards, top quality for individual or published designs.

Prompt service.
Send $15 p$ for catalogue.
RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratford on Avon
Warwicks.
Tel. 4879

| ARMATURE AND COIL WINDING ENAMELLED COPPER WIRE |  |  |
| :---: | :---: | :---: |
| Only top quality materials supplied. All orders despatched within 24 hours. |  |  |
| S.W.G. | Ho reel | $\frac{1}{1} 16$ reel |
| 10 to 19 | £2,95 | 61.60 |
| 20 to 29 | E3.15 | £1'80 |
| 30 to 34 | 63.45 | E1.90 |
| All prices inclusive of P. \& P. in U.K. COPPER SUPPLIES |  |  |
|  |  |  |
| $\begin{gathered} 102 \\ \text { Manches } \end{gathered}$ | d Road, Telep | On, 8753 |

ABS PLASTIC boxes with lids and potting boxes, 3 sizes of each, low cost. Ideal for projects. S.A.E. for price list and specifications. jects. S.A.E. for price list and specifications. Trade ©nquiries welcome. FARROGATE 25 Regent Parade, IIarrogate, Yorkshire.

> WIRE THREADING KIT
> WIRE DISTRIBUTION System intro-kit 55.95 inc. of VAT and P. \& P. (Mail order only) KIT CONSISTS: WIRE DISTRIBUTION PENCIL, W-D BOARD, W.D STRIPS, SPARE SPOOL OF WIRE, IC LEG DEFORMER, COMPREHENSIVE INSTRUCTIONS.
> Or for further details please send a S.A.E
> Trade and overseas enquiries welcome.
> ZARTRONIX ${ }^{115}$ Lion Lane, Haslemere,

BURGLAR ALARM COMPONENTS. White ohlong reed and maguet 70p (minimum 5). Flash circular and magnet 65p (minimum 5). 12У sirens-£4.99. Kicy pass switches $\mathbf{2 2} \mathbf{4 0}$. SA. sire for price list, dil prices inclusive. Colif Wiflicerfs, il benbrook Walk, liradford, W. Yorkshire 13D4 $0 \mathrm{Q} s$. Bradford 682674.

## BOOKS AND PUBLICATIONS

SIMPLIFIED TV REPAIRS. Full repair instruetions, individual British sets, $£ 4 \cdot 50$; request free circuit riagram. Stamp brings details unique TV Publications. Al'sLD'E, 66 Church Street, Jarkhall, Janarkshire.
HOW TO START A BUSINESS. By popular demand a fully illustrated manual has now been produced, showing, in casp, ster by step stages, how to rewind akMatirem ANi FIELD COILA as used in Vacuum Cleaners, Drills and Portable Tooks. Chapters on taking data, materials required, test instruments refuiret, rewind instructions, charts, ete. How to cost jobs and where to obtain work. No
 complete instructions hanual 84 phas 30 p
 Parswonf Road, Withington, Manchester 20. bept. P'EA.

## A MINIATURE POWER TOOL

 to speed your buildingSuper 30 Kit ( 30 Tools) (incl. drill without stand) £ 19.39 plus P. \& P. 85p


PIS Drill Stand
£5.13 plus P. \& P. 35p
-
PI Drill only
69.67 plus P. \& P. 35pFlexible Drive Shaft
E5.94 plus P. \& P. 25p
-
Transformer 240 V a.c. 12 V d.c. \&7.56 plus P. \& P. 70p

- 

Variable Speed Transformer \&9.50 plus P. \& P. 70p Replacement drills, stones, burrs, etc. 40 p each. Circular saw blades, set of 4 with arbor $\mathbf{£ 2 . 5 0}$. P. \& P. any quantity 20p.

All VAT inclusive

## PRECISION PETITE LTD. <br> 119a High Street, Teddington, Middlesex TW11 8HG Tel. 01-977 0878 (24-hour answering service)

$9^{\prime \prime} \times 4^{\prime \prime}$ S.A.E. please for leaflet and order form


Solve your communica. 4-Station Transistor Intercom system (1 master and 3 Sabs), in robust plastic cabinets for desk or wall mounting. Cal//alkisten from Master to subs and
Sobs to Master, Iucally suitable for Business, Surgery, Schools, ilospitals. Office and Home. Operates on one 9 v battery. Onjoff switch. Volume control. Complete with 3 connecting wires each feft and other accessories. P. \& P. 90 p.
MAINS INTERCOM NEW MODEL No batteries-no wires. Just plug in the mains for instant two-way, loud and clear communication On off switch and vo
per pair. $P$. \& 90 .
NEW' AMERICAN TYPE CRADLE TELEPHONE AMPLIFIER


Latest hanastorived Telophouse Amplifier with detached plug-in speaher. Placing the receiver on to the cradle aetivates on/off switch for immediate two-way conversation without holding the handset. Many people can listen at a time. Increase efficiency, in office, shop, workshop. Perfeet for "conference" calls: leaves the user's liands free to make notes,
consult files. No long waiting, saves time with consult files. No long waiting, saves time with model at $218.05+$ VAT $£ 1 \cdot 36$ P. \& P. 75p. 10-day -price refund guarantec.

WEST LONDON DIRECT SUPPLIES (PE7) 169 KENSIFGTON HIGH STREET, LONDON, W. 8

## Towers' International

Transistor Selector
by T. D. Towers Price $\mathbf{6 5} \mathbf{5 0}$
world radio tV handbook by J. M. Frost Price C5.50 THE RADIO AMATEUR'S HAND. BOOK 1977 by A.R.R.L. Price $66 \cdot 50$
THE MEMORY \& MICROPROCES. SOR DATA BOOK FOR DESIGN SOR DATA BOOK FOR DESIGN
ENGINEERS by Texas Price $\mathbb{3} 50$ UNDERSTANDING MICROPROCESSORS by Motorola Price $\$ 3.75$
THE OSCILLOSCOPE IN USE by I. R. Sinclair Price E2-85

ELECTRONIC CLOCKS \& WATCHES
by M, S. Robbins Price 55•10
OP-AMPCIRCUIT DESIGN \& APPLI-
CATIONS by J. Carr
Price $\mathbf{E 4 0 0}^{0}$
TTL COOKBOOK
by D. Lancaster
MICROELECTRONICS
by C. L. Hallmark
Price $\mathbf{6} 6.65$

- L. Hallmark

Price $\mathbf{6 3 \cdot 9 0}$
A ALL PRICES INClUDE POSTAGE $\star$

THE MODERN BOOK CO.
BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-2I PRAED STREET
LONDON W2 INP
Phone 01-723 4185
Closed Saturday I p.m.


A.B.C Electronics
A.D. Electronics

Adam Hall (P.E. Supplies)
Aitken Bros
Alben Engineering
Alcon Instruments Ltd
Astro Electronics
Avo Ltd.

| Bamber. B.. Electronics | 526 |
| :---: | :---: |
| Baron | 480 |
| Barrie Electronics | 480 |
| Bib Hi-Fi Accessories Ltd. | 476 |
| Bi-Pak | 478.479 |
| Bi-Pre-Pak | .475 |
| Birkett. J. | 476 |
| Boffin Projects | 541 |
| British National Radio \& Electron |  |
| School | 486 |
| Bull. J. (Electrical) Ltd. | 537 |
| Cambridge Learning Enterprises | 536 |
| Chiltmead Lid. | 506 |
| Clef Products | 526 |
| Copper Supplies | 542 |
| Cramar | 502 |
| Crescent Radio | 529 |
| Crımson Elektrik | 526 |
| Crofton Electronics | 536 |
| C.R. Supply Co. | 539 |
| D.E.W. Ltd. | 541 |
| Doram | 481. 536 |
| Dziubas. M. | 476 |

Doram
Dziubas. M.

474 541
.541 541
474 474
481 483. 5 542 .534 26 6 79 6

## 86

56 26

02

29
26

36

41
36
476

## INDEX TO ADVERTISERS



| Mınikits Electronics | 541 |
| :---: | :---: |
| Modern Book Co. | 543 |
| Odik Electronics | 541 |
| Osmabet | 506 |
| Phonosonics | 482, 483 |
| P.K.G. Electronics | 541 |
| Precision Petite Ltd. | 543 |
| Proto Design | 541 |
| Radio Component Specialists | cover ii |
| Ramar Constructor Services | 542 |
| R.S.T. Vaive Mail Order Co. | 530 |
| Salop Electronics | 541 |
| Saxon Entertainments | 505 |
| Scientific Wire Co. | 541 |
| Service Trading Co. | over iir |
| Sonic Hi-Fi | 543 |
| Stevenson, C. N. | 538 |
| Swanley Electronics | 535 |
| Tamba Electronics | 484 |
| Tangent Electronics | 542 |
| Technomark | 540 |
| Technomatic Lid. | 544 |
| Teleradio Electronics | 542 |
| Tempus | 485 |
| T.K. Electronics | 538 |
| Trampus Electronics Ltd. | 502 |
| T.U.A.C. | 477 |
| West London District Supplies | 543 |
| Wilmslow Audio | 533 |
| artronix | 542 |

RELAYG SIEMENS, PLESSEY, E
RELAYS. WIDE RANGE OFA.C. and D.C RELAYS AVAILABLE

FT3 NEON FLASH TUBE neon glow, discharge flash tube. Design
for ignituon timing, etc. $\& 1 \cdot 50$. P. \& $P$.
NI-CAD BATTERIES


MINIATURE UNISELECTOR
E2.50, p.p. 35p.

## RODENE UNISET

TYPE 7I TIMER
-60 see. 230 V a.c. operation. Incor
porating a lapsed time indicator and
porating a lapsed time indicator and
repeat factities. A precision motorised
mer ideal for process timing, photo


MICRO SWITCH

type 3115 m 906 t , 10 for $\mathbf{6 2} \mathbf{5 0}$ post paid
USA, 10 for $£ 4$, P. \& P. 50 p (min. order 10 )

## 24 VOLT DC SOLENOIDS

UNIT containing ! heavy duty solenoid approx. 25 tb putl I inch travel. Two approx. It pull
travel. 6 inch
approx. Aoz. pull $\frac{1}{2}$ inch travel.
One 24 volt d.c., heavy duty single make relay,
$\mathbf{6 3} \mathbf{0 0}$. Post EI . ABSOLUTE BARGAIN.

VORTEX BLOWER AND VACUUM UNIT

| unit. Powerful continuously <br> rated 115 V ac motor mounted <br> on alloy base with fixing facilities. <br> Dimensions: length $22 \mathrm{~cm} \times$ widch $25 \mathrm{~cm} \times$ height <br> 25 cm . These units are ex equipment but have had <br> minimum use Fully tested prior to despatch. Price <br> $612+6150$ P. \& P <br>  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |

INSULATION TESTERS NEW!
 $1,000 \mathrm{~V}, 1,000 \mathrm{M} \Omega, £ 46$. Post 80 p .

Dept. PEII, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560

VAT
ATCURRENT RATE MUST BE ADDED TO ALL ORDERS FOR THE TOTAL VALUE OF GOODS INCLUDING POSTAGE : UNLESS STATED
SERVICE
TRADING CO

VARIABLE VOLTACG? WSHORMEAS


L,T, TRANSFORMERS
$0-12 \mathrm{~V} / 24 \mathrm{~V}$ at 1 amp .62 .50 (P, \& P. 50 p )
$-15 \mathrm{Vt} 5 \mathrm{amp}+0-15 \mathrm{~V}$ at $1 \mathrm{amp}(30 \mathrm{~V} 1 \mathrm{amp}$ ), $\mathbf{6 2 . 5 0}$ 25-0-25V

$0-4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}$ at 12 amp , E13 (P. \& P P \& 1.50 ) 51.50 ) at 20 amp or $0-2.4 \mathrm{~V}$ at 10 amp , $\mathbf{6} 12.40$ ( $P$. \& $P$ $0-6 \mathrm{~V} / \mathrm{i} 2 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$ at 20 amp . $614(\mathrm{P}, \& \mathrm{P}, \leqslant 1-50)$. $0-6 \mathrm{~V} / 12 \mathrm{~V}$ at $20 \mathrm{amp}, \mathbf{6} 11 \cdot 85$

STROBEW STRORE NTROBE
HY-LIGHT STROBE KIT MK IV Latest type Xenon white light flash tube. Solid
state timing and triggering circuit. $230 / 240 \mathrm{~V}$ Designed for larger rooms, halls, etc. Speed adjustable $1-20$ f.p.s. ${ }^{\text {Light }}$ output greater
than many (so called 4 Joule) strobes $£ 18$. than many (so called 4 Joule) strobes $f 18$. Post 75 P Specially designed
for Hy-Light $£ \mathbf{2 5}$. P. \& P $£ 1$


WIDE RANGE OF DISCO LIGHTING EQUIPMENT



20 p . 4 for $\mathbf{~} 5-00$ post paid.

## GEARED MOTORS

 50 Hz 2.8A, single phase, split
capacitor motor. Immense capacitor motor. Continuously rated powalty enclos length 250 mm . Dia. 135 mm . 5pindle dia gearbox Length 145 mm . Ex-equipment tested $\mathbf{6 1 2}$. Post E8. Post 75 D.

CITENCO
FHP motor type C $7333 / 15220 / 240$ volts AC I 9RPM reversible motor, torque 14.5 kg gear ratio 144 -

BODINE TYPE N.C.I
(Type J) 71 r.p.m. corque 10 lb .1 Reversible
$\qquad$ isV A.C. Suppl condition. Inpltt voltage of motor $230 / 240 \mathrm{~V}$ A frice, elther type $£ 6.25$. Post 75 p or less trans (Type 3) 71 r.p.m. 41 lb. ins. $230 \mathrm{Va.c}$. Continuously

15 R.P.M.
Type SD48 80 lb , in. Input $100 / 200$ volt A.C. Length incl. gearbox 270 mm . Height 135 mm . Width 150 mm . drive shaft 16 mm . Weight 8.5 Kilos. BRAND Suitable transfor
$\mathbf{6 3} 85$. Post 50
A.E.G. WATER PUMP
 viscosity liquid. Dozens of
uses in industrial labs, etc. Note

## PROGRAMME TIMERS

## 230 V operation a.c. 15 or 20 r 6 cam model $\mathbf{E 5}$. Post 60 p.

$$
\begin{aligned}
& 6 \mathrm{cam} \text { model } \mathbf{6 5} \text {. Post } 60 \mathrm{p} \text {. } \\
& 12 \mathrm{cam} \text { model } \mathbf{~} 7.50 \text {. Post } 60 \mathrm{p}
\end{aligned}
$$

METERS NEW -90 mm Diameter

| Type: 65CSD.C.M/C 2.5, |
| :--- |
| E3. $100 \mathrm{amp} ~$ |
| 3.25 .20 p |


O-150 volt. A.C. MI E $\mathbf{3} \cdot 25$ and 300 volt $A . C . R / M / C$.
E3. P. \& P. $\mathbf{3 0 p}$.

## WHY PAY MORE?

## MULTI RANGE METER. $2.5-500$. D. Volts $2.5-500$

 2000 R/VD.C. and A.C.) D
## compace

21 ranges, dimensions $120 \times 80 \times 44 \mathrm{~mm}$ Weight 0.32 kg . SERVICE TRADIN


TIME SWITCH


## 25 WATT 10/25/50/100/150/250/500/1/6//5k ohm

 $\mathbf{£ 1} 90$. Post 20 D .$50 \mathrm{WATT} .00250 / 500 / 1 k$ ohm. $£ 2$ 40. Post 25 p. 50 WATT $100 / 250 / 500 / 1 \mathrm{k}$ ohm. £2.40. Post 25 p. 100 WATT 1/5/10/25/50/100/250/500/1k/1 5k/2.5it
$\mathbf{3 . 5 k / 5 k}$ ohm $\mathbf{~} 3.70$. Post 35 p . Black silver skirted knob

9 LITTLE NEWPORT STREET LONDON WC2H 7JJ

Phone 01-437 0576

[^5] matter whatsoever



[^0]:    (c) IPC Magazines Limited 1977. Copyright in all drawings, photographs and articies published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]:    HOME RADIO (Components) ITD Dept. PE 234-240 London Road Mitcham.CR4 3HD Phone 01-6488422

[^2]:    NEXT MONTH: Choosing a microprocessor. This is the concluding article of the present introductory series.

    A constructional project will be featured in a new series starting in September 1977.

[^3]:    Open daily to callers：Mon．－Fri． 9 a．m．-5 p．m． Valves，Tubes and Transistors＊Closed Saturday

[^4]:    Practical Electronics July 1977

[^5]:    Pubished approximately
    
    Subscriptions not available at home or overseas.
    Pracucal Electronics is sold subject to the following conditions, namely, that it shall not, whthout the wfitten consent of the Publishers first given. be lent, resold. hired out or otherwise
    

