PRACTICAL

AUGUST $19>7$

Cax yau beat it?

Also inside...

RETURN OF POST MAIL ORDER SERVICE

ELAC 10 inch
Ribbed cone Latge ceramic magnet．$\quad \mathbf{0} 0-16,000 \mathrm{c} / \mathrm{s}$ Bass 15 ohm impectance．$£ 4.50$

MAINS TRANSFORMERS

ALA．POST Op each
$£ 2-85$

 $200-0-300120 \mathrm{~mA}$
$\begin{array}{r}\text { £1．75p } \\ \hline 95 p\end{array}$
 GENERAL PI RPOSF LOW YOLAAGE Tapped out \qquad
1A $6.8,10,12,1 \cup 1,18,20,24,30,364,40,48,60 £ 5.30$
 $3 A, 6,8,10,12,16,18,30,24,30,346,40,48,100 \mathrm{e} 11.00$ $5 A, 6,8,10,12,16,18,20,24,30,36,40,48,60 £ 14 \cdot 50$
 01 EA tapped 100° or $304^{\circ} £ 2.95^{\circ} 20 \mathrm{~V}_{3} \mathrm{~A}$ £2 $40 \mathrm{~V} 2 \mathrm{~A} £ 2.85 \quad 30 \mathrm{~V}$－ $1+34 \mathrm{~V} .2 \mathrm{Act} . £ 3.45$ ．
 $60 \mathrm{~V}, 40 \mathrm{~V}, 2010120-0.20 \mathrm{~S}, 1.183 .50$.
 CHARGER TRANSFORNERS InpHt nootose for 6 or 12 S $18 A £ 2.75 ; 4.1 £ 4 \cdot 60$ ．

R．C．S．STABILISED POWER PACK KIT All partsincluding printed circuit and inst ructionsto 2V．Un to 100 ． 2ov．Up to 100 mA out put．

R．C．S．STEREO FM TUNER

This completely cased mains powered $\mathrm{H}_{1-\mathrm{Fs}} \mathbf{5 2 7 . 5 0}$ nade using the latest circuitrs．Bargain．Post 4onp Kuba stereo Tuner／Amplifer Chassig．Brand new $\mathbf{8 3}$ ．50

BARGAIN 3W AMPLIFIER． 4 Transistor Push－Pull Ready built with volume，treble and $\mathbf{6 3 . 9 5}$
bass controls． 18 volt battery operated

WAFER MEATING ELEMENTS	
Size 10 皆 $>8 \frac{1}{4} \cdot \frac{1}{4}$ in．Operating voltage 200／250V a．c． 250 W spprox．Suitable for Meating Padg，Food Warmers，Conrector Heaters，etc．Must be clamped between two shects of metal or aabestos．	
ONLY 40	EACH（FOUR FOR ¢J．50）
LL POST P	D－Diseounts for quas

E．M．I． $13 \frac{1}{2} \times 8 \mathrm{in}$ SPEAKER SALE！ $\underset{\substack{\text { With tweeter．} \\ \text { crososorer．} \\ \text { 10w．} \\ \text { And }}}{\text { \＆6．50 }}$ State 3 or 8 ohn tate or 8 ohn Post 4op

I5W model
 68．50

20W model
E9．50
E9．50

RADIO COMPONENT

AJOR 12
E15 $0-14,500 \mathrm{c} / \mathrm{s}$ ． 12 ja double conc，wooter and tweeter cone ceramic masnet basembly having a flux density 14,000 gauss and a total flux of 145,000 Maxwells．Bass resonance $40 \mathrm{c} / \mathrm{s}$ ．Rated 25 W NOTE：+ or 8 ol $1 f$ ohms fulust be stated

Sodule kit．30－17，000 c／ With tweeter，crossover，baft
and instructions． $\mathbf{~} 19$
is illustrated．

BAKER I50 WATT ALL PURPOSE TRANSISTOR MIXER AMPLIFIER
Ideal for（ifoups，lisico．P＇A anu stasical Instruments． tinputs speech and misic an way
mixing．Out
sepanate trebte atd has controls

NEW＇DISCO 100 WATT＇
ALL TRANSISTOR AMPLIFIER CHASEIS $£ 52$
inputs．\rightarrow outpats cepratiat Carl． nud bass controls．deal disco ur slave amplitier chassis． BLACK CAlRYYNOCABINET AVAILABLE

R．C．S． 100 WATT VALVE AMPLIFIER CHASSIS

rofesoional model Four apputs．Treble，Basi，Master olume Controls．Ideal disco，P．A．or groups． $\mathbf{8 5}$ 3 or 8 or I 5 ohm． 100 y line to order．
plus 22.50 earr

LOW VOLTAGE ELECTROLYTICS
LO， $5,8,16,-6,30,50,100,200 \mathrm{~m}$ 10 10 p
500 mF 12 C 15p；25V 20p；50V 30p．
100 mF 12 V 17p；25V 35p；50v 47p；1001 70p
1000 mF l2V 17p；25V 35p；50V 47p；1001 70p
$500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} \mathbf{2 5 v}$ 47p； 50 V 65 p ．
解
；12y 42p：95：75p；35〉 85p
RCS STEREO PRE－AMP KIT
Complete kit includes all component－，volume control
and P．C．boarti．High，mediumand low inpute per channel

BSR HI－FI AUTOCHANGER
 Plays $12 \mathrm{in}, 10 \mathrm{in}$ or 7 in rece Auto or Manual．A high quality unit backed by BSR reliability with 12 months＇ glarantee．A．c．200／250V Bize $13 \frac{1}{2} \times 11 \frac{1}{2}$ in
 Above motor board 3lin Below motor board $2 \frac{1}{2}$ in

 With STEREOSingle Player version $£ 13 \% 50$ ．All Post $75 p$
DE．LI XE AUTOCHANGER Balanced Arm $£ 17.50$ $\{11.95$ G．IRRARD MINICILANGER Size $12 \times 8 \mathrm{jn}$ E8． 65 $\begin{array}{ll}\text { GSR PI28 with Magnetic Cartridge } & \text { S24．50 }\end{array}$ PORTABLE PLAYER CABINET $£ 4 \cdot 50$
 fittings．Motor board cut for Garrard or BSR deck

R．C．S．DISCO DECK SINGLE RECORD PLAYER
Fitted with auto stop，stereolcompat．cartridge Baseplate．Size $11 \mathrm{in} \times 8 \mathrm{in}$ ．Turntable．Size 7 in 3 speeds plays all size records． Two for $£ 13$

HEAVY METAL PLINTHS With P．V．C．Cover．Cut out for most
B．S．R．Gr Garrard decks．
Silver gres finish．

Post $£ 1 \cdot 30$
 Extrs Large Modet．Teak tinish．For transcription decks Size $20 \times 17 . \times 9 \mathrm{in}$, uncut board．Callers only 21850
 ${ }^{1} \mathrm{D}^{+} \rightarrow \mathbf{1 6 t i n} 14 \mathrm{in} 4 \mathrm{in}, \mathbf{2 4}$ ．

BAKER HI－FI SPEAKERS HIGH QUALITY－BRITISH MADE SUPERB

12in 25 watts

 it high quality loudspeaker． resonance ensures cone resonance ensures eeperreproduction of the leepest bass．Fitted with a special copper drive and concentric treeter cone resulting in full range reproduction Tith remarlable efficiency in tbe Bass Resonance
Bass Resonance
Flux Density
16，500
givemss I－seful response $20-17,000 \mathrm{c} / \mathrm{s}$ 8 or 16 ohms models．

$\Varangle 22$ 20．t．

AUDITORIUM

I2in 35 watts
A full range reproducer io high power．Electric Guitars， public address，multi－speaker Ideal for $\mathrm{Hi}-\mathrm{Fi}$ and Disco－ theques．
Bass Resonance $35 \mathrm{c} / \mathrm{s}$ Flux Density 15,000 gausa Useful response $25-16,000 \mathrm{c} / \mathrm{s}$
（2）Post
15 in model 45 watts 626 ．Post $£ 1.60$
BLANE ALUMINIUM CHASSIS， 18 a．w．g． $2 \frac{1}{\mathrm{in}}$ sides
 $16 \mathrm{in} \times 10 \mathrm{in}, £ 1 \cdot 70.12 \mathrm{in} \times 8 \mathrm{in}, £ 1 \cdot 35$ ，
ALUMINIDMPANELS， $18 \mathrm{~s}, \mathrm{w}, \mathrm{k} .6 \mathrm{in} 4 \mathrm{in}, 15 \mathrm{p} ; 8 \mathrm{in}$－ 6 in, $25 \mathrm{p} ; 10 \mathrm{in}, 7 \mathrm{in}, 30 \mathrm{p} ; 12 \mathrm{in} \times 5 \mathrm{in}, 30 \mathrm{p} ; 12 \mathrm{in} \times 8 \mathrm{in}, 40 \mathrm{p}$ $16 \mathrm{in} .6 \mathrm{in}, 45 \mathrm{p}$ ； $14 \mathrm{in} 9 \mathrm{in}, 50 \mathrm{p}$ ： $12 \mathrm{in} \times 12 \mathrm{in}, 55 \mathrm{p}$
10in，75p．
ALUMINIUM ANGLE BRACKET， 6 in $\times 3$ in \times in， $15 p$.
ALUMINIUM BOXES，MANY SIZES IN STOCK．

CONSTRUCTIONAL PROJECTS

P.E. MASTERMIND-1 by P.F. Turney
A choice of two electronic versions of the popular code-breaking game 562
C/R METER by R. A. Penfold
A simple-to-calibrate, wide-range capacitance/resistance meter 580
CLOCK AUTO DIMMER by E. B. Eves
A general-purpose display dimmer circuit 586
PELICAN CROSSING by D. Edwards
An educational road-safety working model 590
GENERAL FEATURES
SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices 568
MICROPROCESSORS EXPLAINED-6 by R. W. Coles
Choosing a microprocessor-a "buyer's guide" 570
INGENUITY UNLIMITED
Guitar Frequency Doubler-Random Light Display-Warning System—Guitar Tuning Reference-Light-Control System-Simple Logic Probe-Low Cost VCA 598
NEWS AND COMMENT
EDITORIAL-A Game With Associations 561
READOUT
A selection of readers' letters 566, 585
BOOK REVIEWS
Selected new books we have received 567
SCRUMPI KIT REVIEWED by D. B. Johnson-Davies
A report on this SC/MP-based kit from Bywood 577
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 584
NEWS BRIEFS
Microprocessor Symposium-Build-Your-Own Computer Conference 588
MARKET PLACE
Interesting new products 589
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office 596
SPACEWATCH by Frank W. Hyde
Geos-X-ray Satellite-Voyager 597
BACK NUMBERS SERVICE—a special announcement 585

Our September issue will be on sale Friday, 12 August, 1977
(for details of contents see page 569)

[^0]

-

SUPER TOUCH-SENSITIVE PIANO

We have shown our special brand of skill and expertise in designing this piano featuring:-
Wide range of touch-sensitive response ESU design. Free from breakthrough noise
Choice of keyboard C-C or F-F Transpose control.
Two models are available. Model TS50 is a touchsensitive piano only. Model TS53 has extra effects of Honky-tonk. Harpsichord with fast and slow tremolo. KIT SECTION PRICE LIST
ESU5 + 5 Keyer Units $£ 11.95$ each, 5 required.
ESU5 + 6 Keyer Unit £13.95, 1 required
Power Supply 59 . 50
Keyboard and Switches $£ 29.00$
Toneforming, Headphone and Voltage Regulator £14.50
Loud and Soft Pedal 17.95
Master Tone Generator $£ 15 \cdot 00$
Tremolo Unit £3.75
Cabinet switches, etc. £32-50
Please add VAT at $12 \frac{1}{2} \%$
Can you afford $£ 750$ for an electronic piano? If the answer is NO why not visit our showroom and try our electronic pianos, discuss the technicalities in detail without obligation.
WE GUARANTEE TO SAVE YOU MONEY. IT IS SIMPLE ONCE YOU KNOW HOW
ELVINS ELECTRONIC MUSICAL INSTRUMENTS,
Showroom: 12 Brett Road, Hackney, London E8 1JP. Tel. 01-986 8455.
Component shop: 40a Dalston Lane, Dalston Junction.
E8 2AZ. Tel. 01-249 5624
Parts for organ builders
4-Octave C-C keyboard
£26.00
5-Octave C-C keyboard
5-Octave F-F keyboard
5-Octave F-F piano keyboard
13 note pedal board
25 note pedal board
stop switches
Tone Generator Units
GD500/5 with 73 outputs
GD500/6 with 85 outputs
GD500/7 with 96 outputs
Diode Gate Sustain and Distribution Units
4-Octave with 3 pitches
4-Octave with 4 pitches
5-Octave with 3 pitches
5-Octave with 5 pitches
5-Octave with 6 pitches
4-Octave with 9 pitches
5-Octave with 9 pitches
Toneforming Units
3 pitches with 10 voices
4 pitches with 10 voices
4 pitches with 15 voices
5 pitches with 10 voices
6 pitches with 19 voices
9 pitches with 10 voices
Rotating Speaker Units
Bass unit
Mid Range
Hi-Fi Horn Other useful components in stock for organ work. Send S.A.E. for lists.

ELECTRONIC MUSICAL
INSTRUMENTS
12 Brett Road, Hackney, London. E8 1JP. 01-986 8455

VALVE BARGAINS

Any 5-64p, 10-6|-20, 50-65-00. Your choice from the list below.
ECC82, EF80, EFI83, EFI84, EH90, PCF80, PCF802, PCL82. PCL84, PCL85, PCL86, PCL805, PL504, PY81/800, PY88, 30PL14. 6F28. PFL200.

Colour Yafvesipl508, PL509. PL519, PY500/A., All tested. 35p eich. \qquad
Aerial Splitters-2 way, 75 OHMS, Inside Type, $\mathrm{EI} \cdot 50$

AERIAL BOOSTERS

Aerial boosters can produce remarkable improvements on the picture and sound, in fringe or difficult areas. BIl-For TH stereo and standard VHF/FM radio.
B12-For the older VHF tele-vision-Please state channel numbers.
345-For Mono or colour this covers the complete UHF Television band.
All boosters are complete with battery with Co-ax plugs and sockets. Next to the set fitting

250,000 Capacitor Clearance Sale

ALL MULLARD C280 AND C28I RANGE OF POLYESTER FILM CAPACITORS 250 AND 400 VOLTS WORKING. VERY GOOD MIXED SELECTION OF VALUES FROM 01μ TO $1.5 \mu \mathrm{f}$.
PRICE $100-\mathrm{\epsilon} 1 \cdot 50,500-67 \cdot 00,1000-€ 12 \cdot 00$

ALL PRICES INCLUDE VAT. P\&P 30p PER ORDER. PLEASE SEND UNCROSSED P.O. OR CHEQUES FOR RETURNING IF WE ARE OUT OF STOCK OF CAPACITOR BARGAIN PACKS EXPORTS WELCOME AT COST

ELECTRONIC MAILORDER LTD.
 62 BRIDGE STREET, RAMSBOTTOM, BURY, LANCS. Telephone: RAMS (070 682) 3036

S
 FREE CATALOGUE BY RETURN

Our easy to use FREE CATALOGUE
1
gives circuit diagrams and contains full information on our
 PCB Sets Display PCBs CMOS Other ICs Displays Memories Databooks Hardware

T
E

FOR FAST SERVICE

 withBY RETURN DELIVERY
PHONE OXFORD 086549791

OR WRITE TO
SINTEL
P.O. BOX 75B OXFORD

Bring 'scope'to your interest. 'There's only one way to master electronics... to see what is going on and learn by doing.'
 This new style course will enable anyone to

 have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1 Build an oscllloscope.
As the first stage of your training, oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read,draw and understand circult diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computors and countless other electronic devices and the ir servicing procedures.

3 Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all ty pes of electronic eouipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

MINI CONSOLES Ideal for small desk control panels and consoles. Moulded in orange, blue, black and grey ABS. incorporates slots for holding- 1.5 mm thick pcb's Aluminium panel sits recessed into front of console and held by screws running into integral brass bushes. MC $161 \times 96 \times 58 \mathrm{~mm} \quad £ 1.53(1.9) \quad £ 1.50 \quad(10+1$ MC $215 \times 130 \times 75 \mathrm{~mm} \quad$ £2.20 (1.9) \quad £2.17 ($10+1$ Add 25 p per f 1 order value for Post \& Packing	Stop wasting time soldering The NEW MW BREAOBOARO accepts Transistors, LED's, Diodes, Resistors, Capacitors and all DIL packages with 6 to 40 pins	SC BOXES (square corners) Easily drilled or bunched, orange, blue, black and grey ABS. Incorporate slots for holding 1.5 mm thick pcb's. Aluminium panel sits recessed into front of the box and held by screws running into integral brass bushes. Add 25 p per £ 1 order value for Post \& Packing
ECONOMY QUALITY LEO's 50 for only $£ 5-100$ for only $£ 9$ Mixed bags, all sizes, various colours	Includes slot-in Component Support Bracket and has over 400 individual sockets, plus Vcc and Ground Bus Strips Price f 9.72 (includes VAT \& P.P.)	240 VOLTS MINI HANO DRILLS
FULL SPECIFICATION LED's Red (specify size) 75p per pack Green, Yellow, Orange (specify size) £ 1.20 per pack (Each pack contains 5 LED's, Mounting Clips and Data)	TYPE MP NEON INOICATOR Supplied with resistor for 240 Volts operation 150 mm leads, held in 6.4 mm hole by nut Red, Amber, Clear, Opà 20 p each	etc as well as model making. Supplied with 3 collets that accept tools and drills with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ and $1 / 8^{\prime \prime}$ dia shanks. E9.72 (includes VAT \& P.P.) Accessory toois... 5 Burrs, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 1 / 8$ th Drills, 3/32" Collet Price E 1.75 (Includes VAT \& P.P.)
TYPE A NEDN INOICATORS	SEVEN SEGMENT OISPLAYS Economy Quality Common Arode - 0.3" - Left Decimal Red, Yellow and Green @ 45p each Full Specification Common Anode - 0.3" - Left Decimal Red @ 98p each Green and Yellow @ $\mathbf{E 1 . 3 5}$ each (Data supplied with Full Spec. displays only)	RC BOXES (round corners) Easlly drilled or punched. orange, blue, black and grey ABS. Incorporate sidets for holding 1.5 mm thick peb's. Close fitting flanged lids held by screws running into integral brass bushes.
12 VOLTS MINI HANO DRILL Ideal for drilling pcb, chassis etc as well as model making. Supplied with 2 collets that accept tools and drills with $3 / 32^{\prime \prime}$ and $050^{\prime \prime}$ dia. shanks. E7,56 (Includes VAT \& P.P.)	Quantity quotations on request P.P. Note Unless included in price add 25p Post \& Packing for orders totalling under $£ 10$. All prices include VAT and are valid in UK only for 2 months from journal issue date Mithael Williams Electranits 47 Vicarage Av. Cheadle Hulme, Cheshire SK8 7JP	RC $100 \times 50 \times 25 \mathrm{~mm}$ $51 \mathrm{p}(1.9)$ $49 \mathrm{p}(10+)$ RC $112 \times 62 \times 31 \mathrm{~mm}$ $59 p(1-9)$ $52 \mathrm{p}(10+)$ RC $120 \times 65 \times 40 \mathrm{~mm}$ $68 p(1.9)$ $62 \mathrm{p}(10+)$ RC $150 \times 80 \times 50 \mathrm{~mm}$ $77 \mathrm{p}(1.9)$ $74 \mathrm{p}(10+)$ RC $190 \times 110 \times 60 \mathrm{~mm}$ $\mathrm{£1.33(1-9)}$ $£ 1.30(10+)$ Polystyrene version in grev only with no slots, no integral brass bushes RC(P) $112 \times 61 \times 31 \mathrm{~mm}$ $35 \mathrm{p}(1-9)$ $32 \mathrm{p}(10+)$ Add 25 p per $\mathrm{f1}$ order value for Post \& Packing

SAXON ENTERTANMENTS LTD

A FULL RANGE OF MODULES \& READY-TO-USE EQUIPMENT TO PROFESSIONAL STANDARDS FOR THE PROFESSIONAL moouls ano movivoual units SYSTEM 7000

COMPLETE \& READY-FOR.USE EQUIPMENT

POWER AMPLIFIER MODULES 30-240 WATTS

- Fully tested \& guaranteed.
- Distortion typically 0.2%

10 Transistors, 4 Diodes. Response $30 \mathrm{HZ}-30 \mathrm{KHZ}$ Fully short \& open circult proof
Sensitlvity suits most mixers. Sensitivity suits moss mixers. Built-in surga suppression \& compensation Top-grade components th

30 Watts rms	60 Watts rms		120 Watts rms		240W rms
S A 308	SA604	SA608	SA1204	SA1208	SA2404
$30 \mathrm{Wrms} /$	60 W rms/	$60 \mathrm{~W} \mathrm{mms} /$	120W rms/	120W mms/	240W rms/
8 ohms	4 ohms	8 ohms	4 ohms	8 ohms	4 ohms
ef. 50	E12.50	E.13.50	E14.50	£21-00	\$25.50

POWER SUPPLIES FOR THE ABOVE MODULES-READY WIRED \& FUSED ON GLASS FIBRE PCB

PM301	PM601/4	PM601/8	PM1201/4	PM1201/8	PM1202/4	PM1202/8	PM2404/1
For $1 / 2$	For 1/2	For 1/2	For 1	For 1	For 2	For 2	For 1
SA308	SA604	SA608	SA1204	SA1208	SA1204	SA1208	.SA2404
ce. 90	E.12.50	E.12.50	E. 12.50	E.12.50	E. 18.50	£19.50	E19.50

SYSTEM 7000 COMPLETE DISCO MIXERS (With Autofade) Mono or Stereo

- Ready to plug In \& use Automatic MIC override Two tone panel Twin deck \& mic \& tape Inputs Left/Right deck fader
The choice of the protessional D.J. $\quad 20 \mathrm{Mz}-20 \mathrm{kHz}$ Noise -77 dB Controls: Mic volume, Bass, Treble, A/Fade Depth, Tape, L/Deck, R/Deck volumes Bass, Treble, Master, Headphone volume, Selector \& On/Off.

IN MODULAR FORM— All you require Is front panel (see below) knobs \& sockets etc. All electronics are assembled \& \& socke
tested.
Specification as for complete mixer All Potentlometers supplied \& flted Low cost do it yours elf with step by step easy to follow instructions.
Mono $£ 19.50$ Stereo $£ 29.50$ Panel $£ \mathbf{E} \cdot \mathbf{5 0} \quad$ Supplyunlt $£ 8.50$

SYSTEM 7000 LIGHTING CONTROL UNIT MK II (Four channel)

Has your light unit got?

4,000 W hand ling	Integral dlmmers
Sequence facility	Automatic audio level
Smart 2 tone panel	OURS HAS!

ONLY one superbly designed unit
IN MODULAR FORM-THE QUADRAFECT £42.50 $\mathbf{5 2 9 . 5 0}$ As with the mixers the Mk II L.C. unit may be (Panel 52 -50) purchesed in module form with all controls, requiring only a panel, case \& knobs etc. There are 13 simple connections
1.240w Audlo BA RCA triacs - $-5 \cdot 20 \mathrm{~Hz}$ Sequence - Fully suppressed

CUSTOM MIXER MODULES (Complete or In printed circuit form only) Make your own mixer, mono or stereo, up to 2 channels, with full monitoring facilltles, and provision for echosend/return etc.
inputs for low and high 2 mic, ceramic \& magnetic
cartridge etc.
Feed most types of amper single mixing module Professlonal low noise circuitry $20 \mathrm{~Hz}-30 \mathrm{kHz}$ infinitely adaptable-Extremely economical
COMPLETE MODULES with facla panel,
 Knobs \& socknts, Monitor buttons, Ready wired \& tested Knobs \& sockots, Monitor buttons, Ready wired \& teste
Mono Input $£ 8.50 \quad$ Mono mixing stage $£ 8.50$ - circuit

Stereo Input $£ 12.00$ Stereo mixing stage $£ 12.00$
PRINTED CIRCUIT MODULES With controls fitted, reauires only $\begin{array}{lll}\text { Mono Input } & £ 5.50 & \text { Mono mixing stage } £ 5 \cdot 50 \\ \text { Stereo Input } & £ 9.00 & \text { Stereo mixing stage } \\ £ 9.00\end{array}$
Power supply for up to 20 channels-PPMi8-E8 50 .
SYSTEM 7000 SOUND-LITE (3-CHANNEL) IN COMPLETE OR MODULAR FORM
(Modular form Illustrated)
Complete unit similar to Mk II unit above
Kong established \& proven design
3Channels-100W per channel

- $1-240 \mathrm{~W}$ Input-master audio level fuses

COMPLETE UNIT-Fully MODULAR FORM Facla \& knobs etc, cased with rear ferminallons-Just
£24-75
Needs oniy 11 simple connections
⑯.50 (Panal E2.50)

CENTAUR-THE 100W RMS STEREO DISCO COMPLETE WITH SOUND-TO-LIGHT SEQUENCER \& LIGHTS
ONLY £225 (+ £4-50 carr) or Low intereat terms Deposit £27. 86

- 100 W RMS stereo output
- Twin heavy dutyloudspeak

Four channel sound titesequencer complete with display

- Separate mic., music bass \& treble conirols
C Sturdy vynide cabinets with all leads - Twin BSR decks with lift arm

NOW AVAILABLE

SUPER CENTAUR

200W Stereo output-other details as above $£ 275$ (carr. 4 50)
or Deposit $£ 31 \cdot \mathbf{0 6} 12$ months at $£ 25 \cdot 03$ or 24 months at $£ 14 \cdot 20$
Cut-price condenser mic \& headphones $£ 15 \cdot 00$ (only with complete discos)
SAXON MINI-DISCO 50W RMS $£ 139.50$

- C/W Heavy duty loudspeaker 100 W RMS $\Sigma 159$
- 100W version has twin speakers
- Includes mic input \& headphone monltor
- Circuit
- Tremendous valus.-Just plug in \& go

Cut-price condenser mic \& headphones $£ 15 \cdot 00$ (only with complete discos)
10% DEPOSIT. LOW INTEREST CREDIT ON ORDERS OVER $£ 150$
SYSTEM 7000
MINOTAUR 100-All Purpose Wide Range Amplifier

SAXON 150 HEAVY DUTY AMPLIFIER £59.00
STROBES \& PROJECTORS (We stock the full Pluto range) Send for details
SUPERSTROBE $£ 19.75$

- 2-3 Joules
- 80W Tube for long lite

Compact $4^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$
PRO-STROBE $\mathbf{£ 3 2 - 5 0}$

- 5-8 Joules
- External trigger
- Long Llife tube timer
elreuit

150 WATT LIQUID
WHEEL
PROJECTOR

- Accepts all accessorlee - C/w with wheel \& motor plate
- Sturdy steel construction

Remarkable value-
Sold elsewhere at
$\mathbf{\Sigma 3 9} 50$. Our price
is only: $\quad \mathrm{E} 33 \cdot 00$
ACCESSORIES Condenser mlen ECM 77600 ohm $£ 13.50$
ECM 81 Dual Impedance $\{14.95$ Crown headphonet $\mathbf{E f} 75$ Heavy dity boomstand $\mathbf{5 1 4 . 5 0}$

All prices subject to VAT (a3) 8% except SA308/PM301, mics. \& headphones (121%) Add 50p post \& packing on all orders except where already shown
Ordering: By Telephone -Access, Barclay Card or POD RIng (01) 684 6385/009s By post -Send cheque or crossed P. O's or 80p for COD MAIL ORDERS \& CALLERS TO: CROYDON
327-333 Whitehorse Road, Croydon Surrey CR0 2HS
24 Hour Ansafone service (01) 6846385
PIEZO HORNS!
Jp to 150 watts handling
No X-over required $£ 7.50$ each

Exporters to 17 countries-enquitles welcomed
Ring Sue Abegg on (01) 6846385 for U.K, trade enquiries

SEMICONDUCTORS-COMPONENTS

ORDERING
PLEASE WORD YOUR ORDERS EXACTLY AS PRINTED
NOT FORGETTING TO INCLUDE OUR PART NUMBER

VAT

ADD 12% TO PRICES MARKED * ADD 8% TO OTHERS excepting those marked \dagger these are zero RATED
POSTAGE AND PACKING
Add 25 p for postage and packing unless otherwise shown. Add extra for airmail. Min order $£ 1$

SUPER UNTESTED PAKS

Pak			Order	
No.	Oty			Price
450	100	Germ. gold bonded OA47 diode	16130	50.60
USt	150	Germ. OA70/81 diode	16131	20.60
452	100	Siticon diodes 200 mA OA200	16132	c0.60
453	150	Diodes 75mA ${ }^{\text {ind }} 148$	16133	¢0.60
$\cup 54$	50	Sil rect top hat 750 mA	16134	50.60
455	20	Sil rect stud type 3 amp	16135	50.60
U55	50	400 mW zeners D07 case	16136	50.60
457	30	NPN trans BC107/8 plastic	16137	- $50 \cdot 60$
458	30	PNP trans EC177/178 plastic	16138	- $50 \cdot 60$
U59	25	NPN TO39 2N697/2N1711 silicon	16139	50.60
$\cup 60$	25	PNP TO59 2N 2905 silicon	16140	50.60
$\cup 61$	30	NPN TO18 2N706 sticon	16141	[0. 60
U62	25	NPN BFY50/51	16142	¢0.60
U63	30	NPN plastic 2N3906 silicon	16143	* 50.60
$\cup 64$	30	PNP plastic 2N3905 silicon	16144	* 20.60
U65	30	Germ. 0071 PNP	16145	cu. 60
466	15	Flastic power 2N3055 NPN	16146	\$1.20
U67	10	TO3 metal 2 N 3055 NPN	16147	51.20
468	20	Unzjunction trans TIS 43	16148	10.60
$\cup 69$	10	1 amp SCA TO39	16149	51.20
U70	8	3 amp SCR TO66 case	16150	¢1. 20

COMPONENT PAKS

Pak

No

C2 150

Resistor mixed value

(count by weight)
Capacitors mixed value approx Capacitors mixed va
(count by welght)
Precision resistors. Mixed
values
w resist
vaiues
pieces assorted ferrite roder
Tuning gangs. MW/IW VHF colours single strand
Reed switches
Micro switches
Assorted pots
Assorted pots
Metal jack sockets $3 \times 3.5 \mathrm{~mm}$ $2 \times$ standard s witch types types mixed values Electrolytics trans. type Pak assorted hardwareMains slide switches ass Mains slide switches ass
Assorted tag strips and panels
Assorted control knobs Rotary wave change sw panels

Order
No

```
16165
```

16166

16167

16168
16168
16169
16170
16170
16171
16672
16173
16172
16173
16174

16175

16176
16178
16179
16180
16180
16181
Aelays 6-24V operating
Pak, copper
200 sq,in
15 Assorted fuses 100 mA A-5 amp
Metres PVC sleeving assorted size and colour

60 t wall res

$\begin{array}{lll}24 & 25 \\ 30\end{array}$

S

Price
r0. 80

\section*{Conta Unre Pak.

}Con
Unw
Pak
No
Pak.
No.
CERAMIC
aferred

16785
16988
16186
16187
KS

MCT ${ }^{24}$

3 of ea
3 of eac
33 pF

82 pF . ${ }^{2}$. 47 pF . 68 pF and

MC2 24 miniature ceramic capacitors. 3 of each 150 pF . 330 pF and 390 pF
MC3 24 minlature ceramic capacitots.

680 pF . 820 pF . $1,000 \mathrm{pF}, 50 \mathrm{p}$ 2.200 pF and 3.300 pF
$\begin{array}{ccc}\text { MC4 } & 21 \begin{array}{c}\text { miniature ceramic capacitors. } \\ 3 \text { ot each value }-4.700 \mathrm{pF} .6 .800 \mathrm{pF} .\end{array} & 16163\end{array} \quad$ "so. 60 $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}$

Hid Newnes

LATEST TITLE in The Master Series

Master Creative Tape Recording

by JOHN GARDNER
In this book the theory of recording and reproduction is covered, as well as the choice of your machine and microphone, improvising a studio, and setting up of equipment. Guidance is given on the general organisation of recording sessions, and on the problems of recording drama, features and music, and of tape editing.
CONTENTS: Recording and reproduction. Choosing a suitable machine. Choice and use of microphones. Mixers, monitoring and instalation. Improvising a studio. Organisation and method. Drama and features. Music. Editing. Appendix. Index
May 1977
140 pages
£2.50

Other titles in the Master series: Master In-Car Entertainment - Capel. Master Electronics in Music-Towers. Master $\mathrm{Hi}-\mathrm{Fi}$ Installation - King. Master Stereo Casset te Recording - Sinclair.

LATEST TITLE in The Beginner's Guide Series

Beginner's Guide to Audio

by IAN R. SINCLAIR

Covers the working principles of devices ranging from the microphone to the louspeaker and examples of the electronic circuits which are used. Starting with the behaviour of sound waves the text continues with chapters on microphones, pickups, preamplifiers and amplifiers and loudspeakers.
CONTENTS : Sound and recording. Replay and Reception. Voltage amplifiers. Equalisation, filtering and tone controls. Output stages, Loudspeakers. Recording and reproduction systems. Index
April 1977
192 pages
£2.75
Other Beginner's Guides in Electronics : Beginner's Guide to Electronics -Squires \& Deason. Beginner's Guide to Radio - King. Beginner's Guide to Transistors - Reddihough \& Sinclair.

TECHNICAL TRAINING
 IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success; knowledge that will enable you to take advantage of the many opportunities open to trained people. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.
City \& Guilds Certificates
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET.
量
To: International Correspondence
Schools

AMPLIFIER MODULES
(7)TL30 D.C. COUPLED $5 \times 5 \times 1 \mathrm{iin}$. - 30 watt R.M.S. continuous sine wave output 11 TL60 $5 \times 5 \times 3$ in - 20 R.C.A. A. 110 watt 15 amp transistors
11) 1100 . 10 . 11. 100 watt R.M.S. continuous sine wave output £12.50
$£ 16.75$
$£ 18.75$

 SUPPLIERS TO H.M. GOVT. DEPTS. MANUFACTURED AND ASSEMBLED IN GT. BRITAIN FULLY TESTED AND GUARANTEED

MONO DISCO MIXER FRONT PANEL FOR

LIGHTING EFFECT MODULES

$\& 6.50$

\&5.50

- For SiLMB $_{\text {combined with 3SOM1 }}$ ALL PRICES INCLUDE V.A.T.
ALL PRICES INCLUDE V.A.T
POSTAGE AND PACKING
Send large stamed addressed envelop
Send large stamped addressed envelope with all
enquiries for fully illustrated 20 page catalogue.

 (3) ADD SEQUENCE CHASING AND (3) ADD SEQUENCE CHASIO YOUR 103 CHANNEL LIGHT MODULATOR SEQUENCE CHASER-4LSMI 8

(o) WITH AUTO FADE

4 CHANNEL SOUND TO LIGHT

 - 1000w per channel
Each channel fuliy suppressed and fused - 2 R.C.A. 150 watt 15 amp transistors 1) TP125 - 125 watt R.M.S. continuous sine wave output
4 R.C.A. 150 watt 15 amp output transistors
£ $2 \mathbf{2 5}$

Transistor Devices Limited
Suite E, Georgian House, Trinity Street, Dorchester

C-MOS, SSS,TTL, NSC Paice in							
TYPE	PGICE (P)	TYPE	PRICE (p)	TYPE	PRICE (f)	TIPE	Price (p)
4000	20	7400	15	7472	29	74147	248
4001	20	7401	17	7473	33	74148	157.
4002	20	7402	17	7474	34	74150	140
4006	114	7403	17	7475	44	74151	70
4007	20	7404	22	7476	34	74153	83
4008	99	7405	22	7480	49	74154	148
4009	62	7406	41	7481	98	74155	88
4010	62	7407	41	7482	77	74156	88
4011	20	7408	23	7483	86	74157	87
4012	20	7409	25	7484	93	74158	154
4013	51	7410	17	7485	117	74159	198
4014	107	7411	26	7484	33	74160	108
4015	114	7412	26	7489	306	74161	108
4016	51	7413	35	7490	39	74162	108
4017	114	7414	88	7491	73	74163	108
4019	62	7416	32	7492	50	74164	107
4020	132	7417	36	7493	39	74165	135
4021	114	7420	17	7494	87	74166	123
4022	113	7421	39	7495	68	74167	306
4023	20	7422	25	7496	81	74170	225
4024	104	7423	33	7497	306	74173	144
4025	20	7425	30	74100	105	74174	113
4027	60	7427	36	74104	54	74175	83
4028	95	7430	17	74105	54	74176	113
4029	123	7432	31	74107	33	74177	113
4030	48	7437	34	74109	87	74180	107
4041	84	7438	34	74110	50	74181	292
4042	93	7440	17	74111	72	74182	80
4043	89	7441	77	74116	198	74185	130
4044	89	7442	68	74118	81	74186	896
4046	140	7443	117	74120	127	74190	140
4049	53	7444	117	74121	29	74191	144
4050	53	7445	98	74122	48	74192	117
4060	140	7446	98	74123	66	74193	117
4069	23	7447	81	74125	63	74194	117
4071	23	7448	81	74126	69	74195	87
4072	23	7450	18	74128	81	74196	117
4510	123	7451	18	74132	69	74197	117
4511	137	7453	18	74136	73	74198	193
4516	123	7454	18	74141	77	74199	193
4518	123	7460	18	74142	270		
4520	123	7470	29	74145	81		

LEDS \& DISPLAYS

TYPE	DESCRIPTION		PRICE	TYPE	COLOUR	SIzE	PRIC
1787	. $5^{\text {"C. }}$ A. 0	9	130	209A	Red	I-1	20
1788	. $5^{\prime \prime}$ C.C. 0	9	130	229R	Red	T-1丕	21
1780	. $4^{\prime \prime} \mathrm{C} . \mathrm{C} .0$	9		229G	Grn	T-13	30
	Double		275	229 Y	Ylw	T-134	40
1790	. 4 "C. A. 0	9		233R	Red	T-1	22
	Double		275	233G	Grn	T-1	32
				233Y	Y1w	T-1	42

I-C INSERTION TOOLS
C-MOS 14/l6pin 3.50 24pin to
40pin0.6"8. 70 Bipolar14/16pin2.50 24 40pin6.70
$0.6^{\prime \prime}$

MICROS \& MEMORIES	MCS 6502	16.28	$12 A$	24.65
KIM 1 - microcomputer	03	13.70	$13 A$	20.45
With keyboard, LED	04	13.70	$14 A$	20.45
display	05	13.70	$15 A$	20.45
FUL MANUALS WITH UNIT	06	13.70	20	7.21
TTY, AUDIO TAPE INTER	12	16.28	22	9.25
FACES	13	13.70	$30-004$	18.14
E185	14	13.70	$30-005$	
MANUALS ONLY £10.50.set	15	13.70	or 6553	11.85
	O2A	24.65	32	13.95
	$03 A$	20.45		
	$04 A$	20.45	6102	2.70
DPM	O5A	20.45	6111	2.70

DPM

DPM - 999 with 0.3
100 mV FSD $100 \mathrm{MNL} / \mathrm{P}$
DIFF $/ /$
MISCELIANEOUS BARGAINS! "Bnly while stochs last"
E304 Silconix FET
MJE 2955 80
BC 173C - 10 for 100
741 DIL
1710
2N5295
LM309K

UM 4 COLOUR-BOOSTER - M4 VHF BOOSTER - FM2 VHF RADIO BOOSTER Thess units produce remarkable improvements in colour and picture quality in tringe or difificuli aras with significańal raduction in noise (snow),
High gain - very low noise. Fitted fly lead - installed in seconds. Highest qualily components WHITE PLASTIC CASE $31 / 2 \times 31 / 4 \times 1 / 2$ FELI BASE
CHANNELS Group A. Fed Cade 21.33 FOR UHF: Group B. YELLDW Code 39.51 Group C-D, Green Code $\quad 52 \cdot 68$ Whea ordering M 4 unit plaase specity band and channe
 Nominal gata 16.18 dB both bands

EEAMS: ADÓ 8\% (or curreat rate) VAT to total. Jull orders under 110 add postage and packing 25p. rdars gyer-egs (for compenents onity)- 10% discount. Mailorder only but trade anquirias weicomed. fobads not avilabie for despatch in 7 days, cash automatically relunded. Detivery by post in U.K. so allow time for delivery even an same day despatch. Exporl charged at cost. Please quole journal.

LEKTROPAKS

17 turnham green terrace, chiswick, london w. 4 Tel. 01-994 2784

* LARGE RANGE OF COMPONENTS NOW STOCKED. SEND LARGE S.A.E. FOR FREE LISTS
* AUGUST OF́FER-25\% OFF ALL SEMICONDUCTOR SALES FOR PERSONAL CALLERS BRINGING THIS ADVERT.
\star WALK-ROUND SELF-SERVICE SHOP NOW OPEN MON-SAT 9.30-5.30.
* MANY SURPLUS COMPONENT BARGAINS FOR PERSONAL CALLERS.
\star RESISTORS, CAPACITORS, TRANSISTORS, DIODES, TRIACS, DIACS, IC's, POTS, ALI BOXES, VERO, COPPER CLAD BOARD, CABLE, AUDIO CONNECTORS, SPEAKERS, MICROPHONES, P.A. TRANSFORMERS, KNOBS, ETC; ETC.

3 INTRODUCING THE NEW CROFTON C1 CCTV CAMERA

The C1 Camera is a completely new design offering a high specification CCTV camera suitable for both professional and amateur use.

The design offers high sensitivity with good signal to noise ratio by incorporating an F.E.T. front end. Wide range and stable automatic sensitivity control circuit allows camera to be operated in a wide range of lighting conditions. All controls are internal and once set remain stable over long time periods.

Small size and weight make this a most versatile camera for general usage. Special one off retail price including Vidicon (less lens) $£ 140.59$ inclusive. Kits also available

Send S.A.E for information.

CROFTON ELECTRONICS LTD

Dept. E, 35 Grosvenor Road, Twickenham, Middx. Tel. 01.891 1923
Secondhand cameras and monitors always available

SPECIAL OFFER NOW

When you are sunning yourself on the beach give a thought to us poor electronic kit manufacturers who, because you do not wish to sit indoors making electronic equipment are not operating at full capacity
Well, to encourage you to invest NOW in a Sparkrite ignition

we are offering
 22-5 O OFF Kits or Units and - 1 OFF Switches. SENDCOUPON NOW whth orcer

d

This coupon entitles you to £2.50 off every Sparkrite MK2 kit or unit and $£ 1.00$ off every switch ordered before 31st Auquasi 1977

Electronics Design Associates, Dept. PE8
82 Bath Street, Walsall, WS 1 3DE. Phone: (0922) 33652
Name
Address.

SYNTHESISER AND SOUND EFFECT KITS

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS. KITS AND COMPONENTS TO A WORLD-WIDE MARKET.

COMPONENTS SETS include all necessary esistors. capacitors, semiconductors, potentio-
meters and fransformers. Hardware such as meters and transformers. Hardware such as
cases, sockets. knobs, etc. are not included but most of these may be bought separately. Fuller details of kits. PCBs and parts are shown in our lists.

CIBCUIT AND LAYOUT DIAGRAMS are supplied free with all PCBs designed by Phonosonics.
PHOTOCOPIES of the PE. texts for most of the kits are avaitable-prices in our lists.
P.E. SYNTHESISER (P.E. Feb. 73 to Feb. 74

The well acclamed and highly versatile large-scale mains-operated Sound Synthesiser complete with with the Synthesiser to circuits in our lists may be used Minisonic. Phasing Unit. Wind and Rain. Rhythm Generator. Sound Bender. Voltage Controlied Filter. Guitar Effects Pedal and Overdrive. Fuzz. Tremolo and Wah-Wah units.
The Maln Synthesiser: PSU. 2 linear VCOs. 2 ramp generators. 2 input amps. sample hold. noise cenerator reverb amp. ring modulator, peak level circuit, envelope shaper, voltage controlled amp Full details in lists. 883.03 Set of basic component kits
The Synthesiser Keyboard Circuite (can be used without The Synthesiser Keyboard Circuits (can be used without the Main Synthesiser to make an independent musica modulation amps. mixer. 2 envelope shapers and additional PSU Fulf detals in our lists.
Set of basic component kits
Set of printed circuit boards
£ $48 \cdot 18$

P.E. MINISONIC Mk. 2 SYNTHESISER

A portable mains-operated Miniature Sound Synthesiser. with keyboard circuits. Although having sightly fewer offered by this design give it great scope and versatulity Consists of 2 log VCOs. VCF. 2 envelope shapers، 2 voltage controlled amps, keyboard hold and control circuits. HF oscillator and detector. ring modulator, noise generator. output amp and mixer, power supply.
$\begin{array}{lr}\text { Set of basic component kits } & \text { from E84.25 } \\ \text { Sel of printed circuit boards } & \text { Es.71 }\end{array}$
Elektor
ELEKTOR "FORMANT" SYNTHESISER (Elektor
Magazine 1977)
Details of component kits and PCBs are in our lists
GUITAR EFFECTS PEDAL (P.E. July 75)
Modulates the attack. decay and filter characteristics of an audio signal not only from a guitar but from any audio source, producing 8 different switchable effects that can be further modified by manual controls. Possibly the most interesting of all the low-priced sound effects units in ou Overdrive Unit. Componen
Alternative component set with panel mounting switches
Printed circuit board
SOUND BENDER (P.E. May 74)
A multi-purpose sound controller, the functions of which include envelope shaper. tremolo. voice-operated fader utomatic fader and frequency-doubler
Component set for above functions (excl. SWs) £7.84
Optional extra-additional Audio Modulator, the $£ 1.8$ which. in conjunction with the above component set, can produce jungle-drum rhythms
Component set (incl PCB)

PHASING UNIT (P.E. Sept. 73)
A simple but effective manually controlled unit for introducing the phasing sound into live or recorded Com

PHASING CONTROL UNIT (P.E. Oct. 74)
For use with the above Phasing Unit to automatically control the rate of phasing,
Component set (incl PCB)
©4.48
WAH-WAH UNIT (P.E. Apr. 76)
The wah-wah effect produced by this unit can be controlled manually or by the integral avtomatic controller
Compon
Component set (incl. PCB)
E3. 55

AUTOWAH UNIT (P.E. Mar. 77)

Automatically produces Wah-pedal and Swell-pedal
sounds each time a new note is played
Component set and PCB. with panet switches $\quad \mathbf{~} 4.27$

POST AND HANDLING

U.K. orders-under $£ 15$ add 25 p plus VAT. over $£ 15$ add 50 p plus VAT Keyboards $£ 1.50$ plus VAT
Optional Insurance for compensation against loss or damage in post. add 35p in addition to above post and handing.
Eire. C.I. B.F P.O.. and other counlries are subject to Export postage rates

P.E. JOANNA (P.E. May/Sept. 75)

A five-octave electronic piano that has switchable alternative voicing of Honky-Tonk piano. ordinary piano, harpsichord, or a mixture of any of the three. together with
facilities including fast and slow tremolo. loud and soft facilities including fast and slow tremolo. loud and soft pedal switching, and sustain pedal switching. The power
amplifier typically delivers 24 watts into 8 ohms. The PCBs amplifier typically delivers 24 walts into have been redesigned by ourselves making improved use have been redesigned
of the space available.
Main power supply,
voicing and pre-amp circuits
Set of basic component kits for above
Set of printed circuit boards for above
Power amplifier
Printed circuit board for power amp

RHYTHM GENERATOR (P.E. Mar./Adr. 74)
Programmable for 64.000 rhythm patterns from 8 effects circuits (high and low bongos, bass and snare drums. Iong and short brushes, blocks and soft cymbal). and with variable time signatures and rhythm rates. Really fascinating and useful.

Set of basic component kits for above
Set of printed circuit boards for above
535.14
87.03

SEE OUR OTHER ADVERT FOR KEYBOARDS, AND OUR LISTS FOR OTHER COMPONENTS AND ACCESSORIES STOCKED-ALSO SOME NEW KITSI

REVERBERATION UNIT (P.W. Nov., Dec. 72)

A high quality unit having microphone and line input pre-amps. and providing full control over reverberation level
Component set (excl. spring unit).
59.73
$£ 1.96$
86.50

Printed circuit b
gin spring unit (excl.
board
81.96
65.50
85.70
gin spring unit
Panel meter ($50 \mu \mathrm{~A}$) (optional)

WIND AND RAIN UNIT

A manually controlled unit for producing the above-named sounds.
ent set (incl. PCB)
$\mathrm{C3} \cdot 72$
GUITAR OVERDRIVE UNIT (P.E. Aug. 76)
Sophisticated. versatite Fuzz unit, including variable and switchable controls affecting the fuzz quality whilst retaining the attack and decay, and also providing filtering. and can be used with it and with other electronic and can be used with it and with other electronic nstruments.
58. 88
$56 \cdot 20$

Component set using dual slider pot
Component set using dual rotary pot Printed circuit board$66 \cdot 20$
$61 \cdot 62$

FUZZ UNIT

Simple Fuzz unit based upon P.E. 'Sound Design
circuit.
Compo
Component set (incl. PCB)
2. 2.03

TREMOLO UNIT

Based upon P.E. Sound Design" circuit
Sound Des
(incl. PCB)
53.64

TREBLE BOOST UNIT (P.E. Apr. 76)
Gives a much shriller quality to audio signals fod through
it. The depth of boost is manually adjustable.
Component set (incl. PCB)
© 2.40
DYNAMIC RANGE LIMITER (F.E. Apr. 77)
Automatically controls sound output to within a preset
level.
Component set (incl. PCB)
ع4. 58

ENVELOPE SHAPERS

Both of the kits below have manual control over their Attack. Decay, Sustain and Release functions. Kits include PCB (VGA means Voltage Controlled Amplifier)

Envelope Shaper and VCA (P.E. Apr. 76)
$\begin{array}{ll}\text { Translent generator (P.E. Apr. 77) } & \text { 24.06 } \\ & 86.34\end{array}$
LIST-Send Stamped Addressed Envelope with all U.K requests for free list giving fuller detals of PCBs. kits. and ther components.
OVERSEAS enquiries for list send $40 p$

DON'T FORGET VAT!

Add $121^{\circ} \%$ (or current rate if changed) to full total or ooods. post and handling. (Does not apply to export orders).

VOICE OPERATED FADER (P.E. Dec. 73)

For automatically reducing music volume during talk-over"-particularly useful for Disco work or for Component set (inct. PCB)
VOLTAGE CONTROLLED FILTER (P.E. Oct. 74)
An independently designed VCF that can be used with the C.E Synthesiser.
$\begin{array}{ll}\text { Component set } & \text { e. } 80 \\ \text { Printed circuit board } & \text { 51.30 }\end{array}$
SOUND-TO-LIGHT (P.E. Aurora) (P.E. Apr.-Aug. 71)
Four channels each responding to a different sound trequency and controlling its own light Can be used with most audio systems and lamp intensities. Basic component set (excl. thyri
Printed circuit board for above
Power supply
PCB for power supply
3-CHANNEL SOUND-TO-LIGHT (P.E. Apr. 76)
A simple but effective sound-to-light controller capable of operating 3 lamps each of approximately 700 watts. includes power supply. thyristors, and by-pass switches. Component set (incl. PCB) $\quad 11.95$

DISCOSTROBE (P.E. Nov. 76)
4-channel light-show controller giving a choice of sequential, random. or full strobe mode of operation. Basic component set
Printed circuit board
518.19
P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones. An LED monitor clearly displays all beat note adjustments Ideal for tuning acoustic and electronic musical instruments alike.
Power supply set (incl PCB)
815.59
P.E. SYNCHRONOME (P.E. Mar. 76)

An accented-beat electronic metronome, providing duple. triple and quadruple times with full control over the bea oenerator. Inctudes power supply. Component set (inct. loudspeaker Printed circuit board

C 2.04
PEAK LEVEL INDICATOR (P.E. Mar. 76) A twin-channel visual display unit for monitoring the peak
level of audio signals. Well suited for use when inter-coupling our many sound producing kits to help avoid signal over-loading.
Component set (incl.

BIOLOGICAL AMPLIFIER (P E. Jan./Feb. 73)
Multi-function circuits that, with the use of other external equipment. can serve as lie-detector. alphaphone. cardiophone etc.

Pre-Amp Module Component set (incl. PCB) $\mathbf{~ 4} \cdot 2$ Baslc Outpul Circulto-combined component set With PCBs. for alphaphone. cardiophone. driver circuits
driver circuits
Audlo Amplifler Modute Type PC7
56.59
87.35

TAPE NOISE LIMITER

Very effective circuit for reducing the hiss found in mos: tape recordings. All kits include PCBs

Standard tolerance set of components
$\mathbf{2 2} .96$
Superior tolerance set of components ع3. 76
84.69

SEMI CONDUCTOR TESTER (P.E. Oct. 73)
Essential test equipment for the enterprising home
constructor. While stocks last. $\begin{array}{ll}\text { potentiometers, makaswitches and PCB } & \text { E9.83 } \\ \text { panel meter }(500 \mathrm{uA}) & \mathbf{8 5 . 7 0}\end{array}$ Panel meter (500 mA)

MICROPHONE PRE-AMP (PE Apr. 77)
Component set (incl. PCB)
Prices are correct at time of press. E. \& O.E. dellvery subject to avallability.

EXPORT ORDERS are welcome, though we advise that a current copy of our list should be obtained before ordering as it also shows Export postage rates. All payments must International Money Order or through an English Bank. To obtain list send 40 p .

The Finest
 !
 -

The "S.K.A." Plastic Keyboard was developed by Kimber Allen Lid. in co-operation with a Swedish company and the manufacturers state that in their with cheaper keyboards available

The keys are moulded in Acrylic plastic. a material chosen for its hard wearing properties and ideal teel to the touch. They are moulded in two parts, the key face, which has to be perfect in appearance and finish, and the action, which has to be strong and carry the mechanism. The strong section of aluminium extruston upon which they are mounted is specially designed to take all the pressures of playing. Springs, felts, and contact actuators are supplied ready-fitted.

The contact assemblies are constructed of laminated bakelite, thus giving smooth slot walls and completely free movement of the gold-clad contact wires Types available as follows (Contact pairs normally open)

G-SPCO	24 p each	GH-5 pairs	$57 p$ each
GB-2 pairs	$27 p$ each	$4 P S-S P C O$ and 3 pairs	$53 p$ each
GC-3 pairs	$36 p$ each	Palladium Wire Bus Bars. 1 octave	
GE-4 pairs	$45 p$ each	lengths 50 p each	

SEE OUR OTHER ADVERT FOR SYNTHESISER AND SOUND EFFECT KITS AND SEE OUR LISTS FOR OTHER COMPONENTS AND ACCESSORIES STOCKED SEND S. A.E FOR FULL LIST (OVERSEAS SEND 40p)

and CONTACTS

U.K. Post and Handling:

Keyboards: $\mathbf{1 1} .50$ each
Contacts: orders under $£ 15$: 25 p orders over £15:50p

37 Note C-C Keyboard §25.50
49 Note C-C Keyboard〔32-25
61 Note C-C Keyboard §39. 75

PHONOSONICS

DEPT. PE57, 22 HIGH STREET SIDCUP, KENT DA14 6EH

VAT: Add $12 \frac{1}{2} \%$ to final total on all U.K. orders
EXPORT ORDERS ARE WELCOME but please see our price list for Export Postage Rates. N.B. Eire. Channel isles and B.F.P.O classify as export

Mall Order and C.W.O. only-Sorry but no callers please
Prices are correct at tume of Press. E. \& O.E. Oetivery subject to availabilly

Phone 01-723 4185
Closed Saturday ID.m.

OSMABET LTD

\qquad

LOW VOLTAGE TRANSFORMERS $6.3 V 1,5 A ~ E 2 ; 3 A ~$ $3 A$ $3 A$ CT

LT TRANBFOAMEAS TAPPED EEC, Prim. $200 / 240 \mathrm{~V}$ 0-10-12-14-16-18V 2A E4; 4A 55.25; 0-12-15-20-24-30V
 MIDGET RECTIFHR TAANBFOAMEAE
For FW recs. $200 / 240 \mathrm{~V}$ a.c. $6-0-0 \mathrm{~V} 1.5 \mathrm{~A}$ or $9-0-9 \mathrm{~V}$ 1 A c2.25 ench, $12-0-12 \mathrm{~V}$ 1A or $20-0-20 \mathrm{~V} 0.75 \mathrm{~A}$, or
$9-0-9 \mathrm{~V} 0.3 \mathrm{~A}$, or $12-0-12 \mathrm{~V} 0.25 \mathrm{~A}$, or $20-0-20 \mathrm{~V} 0.15 \mathrm{~A}$ $9-0.9 \mathrm{~V} 0.3 \mathrm{~A}$, or $12-0-12 \mathrm{~V}$ 0.25A, or $20-0-20 \mathrm{~V}$ o. 15A
or $6 \mathrm{~V} 0.5 \mathrm{~A}+6 \mathrm{~V} 0.5 \mathrm{~A}$. or $9 \mathrm{~V} 0 \cdot 35 \mathrm{~A}+9 \mathrm{~V} 0.35 \mathrm{~A} .0$
$12 \mathrm{~V} 0.25 \mathrm{~A}+12 \mathrm{~V} 0.25 \mathrm{~A}$ or 20 V . $15 \mathrm{~A}+20 \mathrm{~V} 0.15 \mathrm{~A}$ at at $\mathbf{2 2 . 6 5}$ each. 23V $0.5 A \mathrm{B5p}$. 8V 0.5 A 75 p . TRANSFORMERS 200/240V A.c.
$250-0-250 \mathrm{~V} 60 \mathrm{~mA} .6 \cdot 3 \mathrm{~V} 1 \mathrm{~A} .35 \mathrm{p}$.
250 V 100 mA .6 .3 V 2 A Ef 50.
23 V 0.5 A 75 p
$23 \vee 0.5 A 75 p$
AUTO TAANSFORMEAS
LOUDSPEAKERB

mach: $8 \times \sin 4.8$ or 25Ω. E2 each. $7 \times \sin 3.8,15$ or
'INSTANT'' BULK CASSETTE/TAPE ERASER
instant erasure of cassettes and tape spools. demaginstant arasure of cassettes and tape $3 p 00$
netises tape heads, $200 \% 240 \mathrm{~V}$ a.C. I .50.
EDGWISE LEVEL METEA. FSD 2001 H
Stze $19 \times 18 \times 20 \mathrm{~mm}$. 800 ก 95 p 日ach.
PAPER TURULAR CONDENSERS
2.2mF $400 \mathrm{~V}, 4.7 \mathrm{mF} 160 \mathrm{~V}$, 20p each (100 for 510).

POWER SUPPLY MODULE, DUAL OUTPUT
New. ex Brlish manulacture, a.c input 240 V smoothed oulputs. $20 \mathrm{~V}, 5 \mathrm{~A}$ plus stabilteed 15 V 150 mA . plus 12 V 0.5A e.c. ourput complete whith
diagram E .5 F .50 .

CABLES-CABLES-CABLES

MICROPHONE TWIN H/DUTY, BRAIDED SCREEN Professional cable for stage studio, outdoor, PVC covered, 20p per metre.
MULTI WAV GCREENED, PVC COVERED
36-way, 51; 25-way 75p; 14-way 50p: 6-way 25p; MINI 3 -CORE CABLE, $19 / 0.10 \mathrm{~mm}$
ideal for speakers. intercoms. eic. s. 50 per 100 TWIN FIG ${ }^{-1}$ CABLE
Polarised, $100 \mathrm{~m} / \mathrm{c} 3 ;$ screened storeo. $15 \mathrm{~m} / \mathrm{c} 1$. ALL TYPES DOMESTIC AND COMMERCIAL CABLE MULTI CAEENED AND UNBCREENED CARLE
B.A.E CNOUIRIES, LISTB. WAlL ORDER ONLY 46 Kenllworth Road, Edgware, Middx HA8 8 YG Tel. 01-958 9314

B. BAMBER ELECTRONICS

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

AED LED: (Min type) 5 for 70 p.

VIDICON SCAN COILS (Transistor type, but no dota) complete with vidicon bate f 8.50 esch. Brand

FULL RANGE OF BERNARDS/BABANI ELEC TAONICS BOOKS IN STOCK. SAE FOR LIST.
NEW FOR TME YHF CONSTRUCTOR. A range o tuned circuits on formers with alugs and screening
cans. Frequancles quoted are approximate, and range cans. Frequancles quoted are approximate, and range
can be graaty axtended by using varying capacitora in can be greatty extended by using varying capacitora in

araliel.

Type S (tin. square dumpy type).
Type $S A 20$ to 30 MHz (wrien 33pf fited in perailef). Type SB 35 to 50 MHz (with link windingl. Type SC 70 to 100 MHz lwith link winding). Type SD 135 to 175 MHz (with link winding).
Type M (Min. fin. square typeal)
 Type MC 25 to 35 MHz when 33 pf fitted in peralleil). Type MO 38 to 50 MHz (when 33 pt fitted in paralial). Type MO 38 to 50 MHz (when 33 pi fitted in parallel).
Type ME 45 to 60 MHz (when 33 of fitted in paraliel). Typo ME 45 to 60 MHz (when 33pf fitted in priabliel).
Type MF 100 to 200 MHz (witnout) slug when 0 to 30 pf varrable fitted in coarallel.
All the above coiis available in pecks of fiva only yam trpe) at BOp per pack of 5 .
PLASTIC PROJECT BOXES with screw on lids (lon
Black ABS) with brass inserts.
Type NB2 $3 \frac{1}{4} \mathrm{in}=2 \frac{3}{3} \mathrm{in}$. $\times 1 \frac{1}{\mathrm{in}} \mathrm{in}$. 50 p eanch.
UULARO A5A2 SEV \$TABIUsEAVALVEs (Brand Niew) 70p eech of 2 for $£ 1.20$.
TO3 transiztor insulator ants. 10 for 80p.
NUT SPANNER SETS - SPIRALUX Model 2210 BA sizes, 0, 1. 2. 3. 4. 5. 6, 8. . 54.20. Model 2230 Metric sizes. 4, 4.5, 5, 5.5.6.7. B, 9 10 mm . \&4.50

110V NEONS, SCREW-IN-TVPE, 4 for 50p.
MHz XTAL PACKS 110 asaorted xuls betwe
4 MHz and 5 MHz . our zelection only, E1 Pack miniATURE Pliers. High quality "Crascont made in USA. E4.3B * VAT (35p). SIDE CUTTERS. High quality, E3.70 + VAT 30p.

MAGNETIC DEVICES PROGRAMMERE. Con
tain 9 fuly adjustable cams and 9 change over micro tain 9 fuly adjustable cams and 9 change over microswitches (rated approx (A) at 240 VAC . Neods show-
motion motor to drive (not supplied). Ideal for dieco
tighte tights, sequence switching. otc. ex equipment E1-50
GARRARD 9V OC MIMIATURE MOTORB, TYDE
 $1 \frac{1}{6} \mathrm{in} . \mathrm{high}$.
of 2 for EI .
SILICON HIGH VOLTAGE RECTIFIE BTICKE BY185 (rew) 35 kV 2.5 mA f1 sach, BY140 (ox
equip) 12 kV 2.5 mA 48 E ach.

QUARTZ-XTAL CONTROLLED CLOCKB, 9 to 12 V DC at approx. 3 mA required. Dial siza approx. $\mathbf{2}^{\prime \prime}$. depth of unit approx. $\mathbf{2}^{2 \prime}$. Not in casast. unit only. smar modern appesrance, bleck face with white
attering, 12 hr . with second hand, tnd red hour and lattering. 12 hr ., wizh second hand, and red hour and
minute hands (Costa over C 40 to produce) $\mathrm{E10}$ azach while tocks last, tested before despetch.

14 DIL REED RELAYs, 5 to $12 \mathrm{VDC}$.450 ohm col Designed to work directhy from TLL Logic. Single Pole 28V ta 3W. $\mathrm{c1} .7$ asch.

SPECIAL OFFER.

STARPHONE HIGH BAND MF PC EOAMDS, with convertion does for making into, 1 good 2 M

 Ow/Multiplier. All on one PCB approx. wizo " $6^{3} \times 1 \frac{1}{4}$ ", ext. connections. $9 V \mathrm{DC}$ eupply. AGC (can be lotifixed
bias, or AF gatin control) Ant. input. If output (worke bias, or AF gain control! Ant. input. IF outpurt workd
from a lew MHz to over 30 MHz). All Brend New. Somry, sold Out.
BS×20 (VHF Onc/Mult). 3 for 50p. C108 (metal cant, 4 for 50 p PF5 1 Trenilatort. 4 for 60 p - 80 p BCY72 Transistors. 4 for 80 p. PNP audio type TO5 Transition. 12 for 28 p . SF 152 (UHF amp/mixer), 3 for EOp. N3819 Fol, 3 for 60 p. $8 C 148$ NPN SILICON. 4 for 50 p .
GC158 PNP SILCON. 4 for 50 p . BAY31 Signal Dicios. 10 for 35°.

Terms of Business: cash with drder. minimum order f2. all paices anclude post a packing (uk onty) sat with all evouries please. PLEASE ADD VAT AS SHOWN. ALL GOODS IN STOCK DESPAICHED BY RETURN CALLERS WELCOME BY APPOINTMENT ONLY.

BARGAIN PARCELS SAVE POUNDS

Huge quantities of electronic components must be cleared as space required. 1000 's of oppacitors, resistors, transistors, etc. Ex equipment panels etc. covered with valuable components. No time to sort, so must sell by weight. $7 \mathrm{tb}, £ 3 \cdot 95$; $14 \mathrm{lb}, ~ £ 6 \cdot 60 ; 28 \mathrm{lb}, £ 10 \cdot 90 ; 56 \mathrm{lb}, £ 15 \cdot 75 ; 112 \mathrm{lb}$, £21.501nc. P-p

Bargaln Racks

300 mixed resistors $\frac{1}{2}$ and \mathbf{W}, £1 1 lb ferric chloride, $£ 1 ; 100$ mixed diodes IN4148 etc., $11 ; 12$ ZTX212 general purpose PNP, $£ 1 ; 100$ mixed diodes including zeners and power types, $£ 3 ; 5$ lo ferric chloride, $84 ; 100$ new and marked signal transistors including ZTX212, BC448, BF194 etc., E3; 1 dalo pen, etch resist, 90p; 200 new and marked transistors including AC128, 2N3055, ZTX212, BFY50, BDB131, $£ 6 ; 40$ OA91/95 type glass diodes, $£ 1 ; 4$ atum (hiture boxes $128 \times 44-38 \mathrm{~mm}$ ideal for signal injectors etc., \&1. Add $30 p$ P. \& P. on all above items. Over $£ 10$ P. \& P. free.

DeLuxe Fibre Glass Board P.C. Kits
Includes 150 square inches copper clad board, 1 lb ferric chloride, 1 dalo pen, abrasive cleaner, 2 mini drill bits, etch tray and instructions. Only $\mathbf{5} 5.30$ inc. P \& P

Send Cheque or P.O. with order to Sentinel Supply, 20a Waddon Road, Croydon, Surrey.

fault finding no fiddle

With the AVO TT 169 in-circuit transistor tester. Go/No Go tests almost any transistor, diode or thyristor without de-soldering, without damage. Find out how it can save you time, save you money.
You'll find the price is no fiddle either. Contact your local wholesaler, or us:

THE OREN DOOA TO RUAMTY

 THE COVERIS BLACK IS BLACK
WHITE

4th ISSUE INCLUDES NEW METERS

as well as new switches and items from advanced optoelectronics to humble (but essential) washers. Many things listed are very difficult to obtain elsewhere. The company's own computer is programmed to expedite delivery and maintain customer satisfaction. Attractive discounts continue on many purchases;
Access and Barclaycard orders are accepted
SEMI-CONDUCTORS COMPONENTS ACCESSORIES, ETC

* FREE POSTAGE on all C.W.O. mail orders over $£ 2$ list value (excluding \star FREE POSTAGE on all C.W.0. mail orders

Catalogue
ELEGTROVALUE LTD

Stirling Sound

POWER AMPLIFIERS
at stated o/p powers $\pm 1 d B$
SS. 103 3W r.m.s. Short-circuit protected One I.C.
SS.103-3 Stereo version using two I.C.s SS. 105 5W r.m.s. into 3 ohms, using 12 V SS. 110 10W r.m.s. 4 ohms using 24 V SS. 12020 W r.m.s. 4 ohms, using 34 V
SS. 140 40W r.m.s. into 4 ohms using 45 volts
TONE CONTROLS/PRE-AMPS
SS. 100 Active toned control. stereo $\pm 15 \mathrm{~dB}$ on both bass and on treble
SS. 101 Pre-amp, ceramic Stereo with passive tone control details
SS. 102 Stereo pre-amp for magnetic PUs. R.I.A.A. corrected

UNIT ONE Combined stereo pre-amp active tone control. $\pm 15 \mathrm{~dB}$ treble and bass with vol./balance/treble/bass controls
UNIT TWO as above but for mag. input. R.I.A.A. corrected
F.M. TUNERS

SS. 201 Front end tuner, slow geared drive, two gang. A.F.C. facility. Tunes $88-108 \mathrm{MHz}$.
SS. 202 I.F. amp. Metering and A.F.C facilities
S8.203 Phase Lock Loop Stereo Decoder. A LED may be fitted

SS.203-1 COIL-TYPE STEREO DECODERS With I.C. for neg. earth (SS. 203-1) Transistor for pos. earth (SS.203-2)

POWER SUPPLY UNITS

All except SS. 312 and SS. 300 are fitted with low volt ($13-15 \mathrm{~V}$) take off points for pre-amps, tuners etc.

SS. 312	12V/1A	E5.35
SS. 318	$18 \mathrm{~V} / 1 \mathrm{~A}$	85.54
SS. 324	24V/1A	57.27
SS. 334	34V/2A	C8. 31
SS. 345	$45 \mathrm{~V} / 2 \mathrm{~A}$	¢9.98
SS. 350	$50 \mathrm{~V} / 2 \mathrm{~A}$	£10.38
SS. 370	$70 \mathrm{~V} / 2 \mathrm{~A}$	£14.63

SS.310/50 Stabilised power supply, variable output, 10 V to $50 \mathrm{~V} / 2 \mathrm{~A}$. Built-in protection against shorting
Ss. 300 Stabilising unit 10-50V adjustable for adding to unstabilised supplies. Built-in protection against shorting

A GOOD START FOR MOTORISTS

with a STIRLING SOUND "SUPER SPARK" Mk. 5 Electronic Ignition Unit. Over 14,000 have been sold by us. Adjustable for + or - earth; simple rev. limiting control; on-off immobilising switch; switch for instant revert to car's own ignition; neon; indicator; in strong enclosed metal box with leads $6 \frac{1}{4} \times 4 \times 4 t$ ins. Without doubt the best value in its class
KIT $£ 10 \cdot 50$
beady bult £ 12.75
Special terms for quantity buyersU.K. and overseas trade enquiries invited.
-
22. 33
$\mathbf{8} .33$
$\mathbf{5} .49$ £. 3.49
£ 4.05
14. 99

AND NO EXTRA FOR V
At Stirling Sound we design and make our

SAVES YOU £2•25!

WHEN ORDERING

AND REMEMBER, YOU
PAY THE PRICE YOU READ AND NO MORE!

A 70 VOLT SPECIAL POWER SUPPLY UNIT

A

100 WATT
R.M.S. POWER AMPLIFIER

HEATSINK
All prices shown include VAT and post and packing charges so as to make ordering easy. When you buy in person from our shop, cost of P. \& P. is deducted.

FOR ONLY £24.20!

AND NO EXTRA FOR V.A.T. AND P \& P

famous Q.V. (Quality/Value) Modules ourselves in our own factory. With almost 20 years of continuous selling direct to the public we know how to give value second to none. Was there ever better value than this? Look at this 100 watt R.M.S. amplifier with full size heatsink (SS.1100H) and 70 volt/2A power unit with special low volt take off point ($13-15$ volts) for pre-amp, etc. The assembly makes an ideal basis for a disco or high quality P.A. system or domestic hi-fi system where low conversion factor loudspeakers are used.
Bought separately, SS. 1100 costs £10.43, large heat sink £1-39, SS. 370 £14-63. Total- $£ 26.45$.
Ordered together the cost is $£ 24 \cdot 20$.

- power output 100 watts R.M.S. into 4 ohms
- FREQUENCY RANGE

10 Hz to $50 \mathrm{kHz} \pm 1 \mathrm{~dB}$

- SENSITIVITY

500 mV for full output

- DISTORTION 0.01% at half power
- S/N RATIO

Better than 75dB

- POWER REQUIREMENTS 70 volts (i.e. SS.370)
- SIZE (SS.1100) $5 \times 3 \frac{1}{2} \times 1 \frac{1}{4}$ in without full size heatsink
- Built-in protection against shorting

Stirling Sound

37 Vanguard Way

Shoeburyness, Essex
Telephone
Shoeburyness (03708) 5543
SHOP (open all day Saturdays)
220-224 West Road,
Westcliff-on-Sea, Essex SS0 9DF

New edition with hundreds of new Doram quality construction kits $\dot{+}$ capacitors + resistors + semiconductors + wires and cables + transformers + plugs and sockets + hardware + indicators + switches +
radio equipment + tools and test equipment + audio equipment + books, all at competitive prices.

Depend on

DR1Am

Extra copies of catalogue available (send 20 p to cover post and packing) from Doram Electronics Ltd, PO Box TR8, Wellington Road Estate, Wellington Bridge, Leeds LS 12 2UF. Telephone: 34222 (STD code 0532).

Don't miss next month's PE-the Doram catalogue's FREE!

Britain's best-selling 64-page electronic kit and component catalogue from Doram

A GAME WITH ASSOCIATIONS

AN electronic version of the popular game Mastermind was inevitable. The basis of the game is code-breaking. Cryptography, the writing of secret or concealed messages, has been practised from the earliest civilisations onwards, and the art or science of cryptanalysis (code-breaking) is of equal antiquity. The unravelling of the puzzle, the decoding of the secret message or sign, has always been an irresistible challenge. In its highest form of development as conducted by governments and their agencies, it becomes a matter of vital importance for national security and the most brilliant mathematicians, renowned chess exponents, and other intellectual giants are brought into the battle of wits where logic in its purest form provides the chief weapons.
The electronic connection with code-breaking is very definite and real. From official revelations made in recent years concerning British intelligence activities during the 1939-1945 war, we now know that valve circuits were pressed into service to perform the formidable number of computing operations necessary in the attempt to break down enemy messages. From this original application of electronic switching circuits in the field of cryptanalysis, it would appear that Britain has just claim to fathering the electronic computer: for this embryo computing machine (known as "Colossus") hastily designed and built during the last war, antedated by a few years the American ENIAC which is generally recognised as the world's first electronic digital computer.
In any event code-breaking, under the supreme exigencies of war, certainly laid the seeds for future electronic developments. Thus for those who like to delve into such matters our latest electronic game brings to mind interesting historic associations: with the ageless human pursuit of code-breaking, and also with the (by comparison) very young roots of electronic technology.
The Practical Electronics Mastermind-Super Mastermind is really a better title, since our design can be modified to extend to a four-from-ten colour game-uses tTL. techniques. At this moment this is the cheapest way to achieve an electronic simulation of the game. The number of i.c.s involved is quite large, around 50 devices. Yet such are the economics of TTL packages that the total cost is likely to be less than $£ 15$. This fact alone should provide a convincing answer to those who may ask why not use a microprocessor?
Without doubt microprocessors are a natural for a game such as Mastermind. Programmes have been written for playing this game and other games on microprocessor based minicomputers and evaluation systems. But no one is likely to devote an equipment costing $£ 150$ and upwards solely to this particular amusement. Dedicated microprocessor versions of the game will come along in due course, that is certain, but the price of these devices needs to fall considerably before they can offer a viable alternative to the TTL based version.
What is true of Mastermind in this respect must be equally true of other applications in general. So even as we enter the microprocessor era it will be wise to recognise those real advantages still offered by the logic approach based on standard inexpensive i.c.s.
F.E.B.

Editor
F. E. BENNETT

Editorial

G. C. ARNOLD Assistant Editor D. BARRINGTON Production Editor G. GODBOLD Technical Editor M. ABBOTT

Art Dept

J. D. POUNTNEY Art Editor
D. J. GOODING
R. J. GOODMAN
K. A. WOODRUFF

Advertisement Manager

D. W. B. TILLEARD

Phone: 01-634 4504
P. J. MEW

Phone: 01-634 4181
C. R. BROWN Classified

Phone: 01-261 5762
Make-up and Copy Dept.
Phone: 01-634 4372
Editorial \& Advertising Offices:
Fleetway House, Farringdon St.
London EC4A 4AD
Phone: Editorial 01-634 4452
Advertisements 01-634 4504
Telex: 915748 MAGDIV-G

Can you beat it?

IHs series of articles will serve to present an electronic version of the very popular game using coloured pugs and secret codes; Mastermind. Unlike the vast majority of electronic games, however, Electronic Mastermind may be played by a single player with the machine acting as an opponent. Gone therefore is the frustration of having an expensive item of electronic gear lying aróund with nobody to be your human opponent just when you want to play. Of course, there is abselutely no reason why a group of willing competitors should not take turns to play a game with the machine. Indeed, it is the contrasting techniques of play adopted by different players which can produce considerable additional excitement.

BULK COMPONENTS LIST

Additional components for " 4 from 10 colour" facility

7400 N (1 off). 7407 (1 off). 7454 (1 off). Four pole, two way, change-over switch. Double pole change-over switches (4 off). Small Veroboard.

Fig. 1.1. Layout of the basic "four from six'" colour game

The basic game offers a choice of four colours chosen from six, but a series of simple modifications are to be described for a switchable "four from ten colour" alternative. Since this facility is not included in the prototype, the mainline of the text is to concentrate on the basic "four from six colour" game.

As an item of electronic hardware the equipment is quite complex, utilising some 49 TTL integrated circuits. We are including an overall list of components in this issue, so that the prospective constructor may judge for himself the likely cost and complexity of the project before embarking on any actual construction.

With careful shopping the total cost of TIL for the game is approximately $f 13$, including an additional three i.c.s for the "four from ten" colour game.

In this article, we shall describe the use and general principles of the machine, together with the physical features and the power supply. The construction of a well regulated power unit early on in the project will facilitate the comprehensive checking of the circuitry to be described in forthcoming issues.

PRESENTATION

The layout of the basic game is shown in Fig. 1.1. To commence play, the "Call" button S7 is pressed, setting up internally a random choice of colours and simultaneously clearing the logical circuits. The
player then makes an initial choice of any four coloured pegs and places these in the first row of peg holes (1). These colours must then be sequentially entered into the machine, in a left to right order, using the appropriate push-buttons Sl-6. After the fourth colour has been entered the machine returns information in clue positions (2) and (3), indicating the comparative correctness of the entered colours with the internal ones. The,player then records these clues by entering the appropriate number of black and white key pegs into the first row of key peg holes (4).
Using this information, the player deduces a further combination of four colours, placing the appropriate coloured pegs in the second row of peg holes, and then proceeding to enter the colours using the push-buttons as before. The clues are this time recorded in the second row of key peg holes; and so on until the internal code is deduced.
A maximum of eight opportunities are provided to do this, although a good player may average between four and five deductions.

THE CLUES

Two pieces of information are given for each deduction. Firstly, in clue position (2) a numerical indication of the coloured pegs which are correct for both colour and position is given (for convenience, we shall call
this the " P " result). Secondly, an indication of the number of pegs correct for colour but incorrect for position is presented in clue position (3) (called the " 1 " result). Thus, as an example, the game terminates when the score is four in position (2) and zero in position (3).
Two further examples illustrating the scoring principles are shown below, the second demonstrates the convention adopted when dealing with repeated colours. Scoring is identical to that in the commercial game.
(i) Internal unknown code Red Green Blue Yellow Green Red Blue White Score: 1 ("P"), 2 ("I")
(ii) Internal unknown code Deduction of player Red Red Red Black Red Black Black Red Score: 1 ("P"), 2 ("I")
Conventionally, black key pegs are used to record the " P " results and white key pegs to record the " I " results.

PRINCIPLES OF OPERATION

In the schematic diagram of Fig. 1.2, a random number generator (RNG) is used to produce the secret code. This simply comprises four modulo ("length") six counters, with the colours represented by four, three bit, binary codes. At the start of play, the depression of the "Call" button randomly programmes these counters, so that they then contain the codes to be deduced.

As the player sequentially enters the four colours forming a deduction, the codes generated by the RNG are called up for comparison with each of these entries as they appear. Note the necessity for each entry to be compared with all four internal codes, so that a total of 16 comparisons are made for each deduction entered.
The machine does not await the entry of all four colours of a particular deduction before computing the

Fig. 1.2. Block schematic diagram of game
score, but instead computes this as each colour is entered. Thus the score is updated as further colours are entered, with the final result being available for display following the entry of the fourth colour of the deduction. Mastermind thus has a serial mode of operation.

As each colour is entered the results of the comparisons then performed are operated on in accordance with the scoring rules of the game discussed earlier. This function is performed by the scoring logic, the operation of which is the most complex section of the machine to understand.

The entry section of the logic debounces the contacts of the coloured push-buttons, and also transforms the debounced signal so obtained into binary machine code.

Fig. 1.3. Showing peg box and switch panel assembly. No switch drilling details are given as this will depend on game options

Finally, the control, or, as it is sometimes called, the "Orchestrating Logic" serves to conduct the electronics and achieve the correct temporal balance in the machine's hierarchy of logical operations.

PHYSICAL FEATURES

The majority of the logical circuitry is wired up on a single sheet of Veroboard, and you may, quite rightly, consider this to be a somewhat unusual format for a construction involving so many i.c.s. Admittedly, it is unusual and requires slightly more care regarding the routing of power supply lines and the provision of adequate decoupling for the circuits than for, say, a p.c. board system. There are, however, several advantages; for example, with only a single board there are obviously no interboard connections of noise sensitive logic signals. It is also cheaper.

CONSTRUCTION OF THE CASING

In the prototype the casing was made from softwood, with dimensions as shown in Fig. 1.4. The power supply unit is not housed within this, and the 5 V supply lines enter via a two pin socket. It is advisable that you obtain such a socket prior to making the cut-out to accommodate it, so that the hole can then be made precisely to the dimensions of your particular socket.

When cutting the joints, work to the internal dimensions of the box, taking care to orientate the joints correctly. The wood should then be finished with a fine sandpaper before fixing the pieces together with wood adhesive.

The bottom of the casing is formed from light hardboard, suitably perforated to facilitate ventilation. The removable back of an old valve wireless set would be ideal for this purpose! This is fastened using four small wood screws passed through four rubber cabinet feet.

The top surface is in three parts: (a) the peg board, (b) the switch panel, and (c) the peg box. The peg board has dimensions as shown in Fig. I.4. This board is supported by four Perspex batons (or batons of a similar material) screwed to the woodwork.

The aluminium switch panel for the switches is detailed in Fig. 1.3, also showing the peg box. In the prototype, the latter is constructed using transparent Perspex. If the

CUTTING LIST

Casing
Total length of softwood $1,448 \times 44.5 \times 9.5 \mathrm{~mm}$.
Perspex peg board $311 \times 209.5 \times 3 \mathrm{~mm}$ (opaque). Aluminium switch panel. $63.5 \times 209.5 \times 1.5 \mathrm{~m}$. Perspex peg box top $63.5 \times 209.5 \times 3 \mathrm{~mm}$ (transparent). 3 mm perforated base hardboard $438 \times$ 209.5

Fig. 1.4. Casing assembly details with cutting list

POWER SUPPLY UNIT

Integrated Circuit
IC1 LM309K 5V Regulator
Capacitors
C1 $10,000 \mu \mathrm{~F} 20 \mathrm{~V}$ elect.
C2 $100 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
Bridge Rectifier
D1-D4 2A or 4A 500 V
full wave type

Transformer
T1 $10 \mathrm{~V}, 2 \mathrm{~A}$ secondary- 240 V primary with screen
Miscellaneous
LP1 mains neon, FS1-1.25A fuse and holder, two pole mains switch, tinned heat sink, chassis etc.

"four from ten colour" alternative is required, the switch panel must be re-organised to accommodate ten colour push-buttons.

All upper and lower surfaces must be easily removable, and for this reason six small fasteners formed from solder tags are used to secure the top peg board and the lid of the peg box. Those on the lid are loosely screwed to enable easy turning by hand when the lid is to be removed.

The cabinet is finally completed with a coat of paint, both inside and out.

POWER SUPPLY

The power supply is built on a separate chassis with the connections to the game made using a two cored cable. This cable must have a current rating of at
least 5 A in order to avoid any significant voltage drop along it. It is also for this reason that its length must not exceed 2 metres.

A current of approximately $1 \cdot 1 \mathrm{~A}$ at 5 V is required for the game and this is obtained from a regulator chip of the LM309K variety, as shown in the circuit diagram above.

This regulator must be mounted on a heat sink and the secondary voltage of the mains transformer should not exceed 10 V in order that heat generation by the regulator be kept to a minimum.

No assembly details are given for this as construction is straightforward.

NEXT MONTH: Entry section of logic is described together with master clock and random colour generator.

diadidut
 A SELECTION FROM OUR POSTBAG

Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the telephone.

ADJUSTABLE VICE

THere are on the market, miniature vices which can be set to grip at any angle. Obviously this is very useful when working on p.c.b.s, as the components are inserted from one side, and the board is then rotated to allow soldering.

I have designed a similar device (Fig. 1) which only cost me about three pounds to make. A hand vice (from any good tool shop), has one of
its limbs drilled and tapped to \ddagger inch BSW; a local garage might do this at negligible cost if you do not have the tools, but a photographer should find it worthwhile to purchase them as $\frac{1}{4}$ BSW is the standard tripod thread. The vice can now be mounted on a ball and socket head. which is available at most photographic dealers. The tripod head is finally mounted on a substantial piece of timber, which in turn can be clamped to the work bench. The rotating ball and socket allows movement in any direction.
R. M. Henderson, Newcastle upon Tyne.

Fig. 1

50 CMOS IC PROJECTS
By R. A. Penfold
Published by Bernards (Publishers) Ltd.
102 pages, $108 \times 180 \mathrm{~mm}$. Price $\mathbf{£ 0 . 9 5}$

AFTER an introduction covering the more important characteristics of cmos devices, the chapters march soberly but thoroughly through monostable, bistable and astable multivibrators, amplifiers, oscillators, and Schmitt triggers. finalising with "Special Devices" featuring i.c.s of a range considered by the author to be less useful to the typical constructor.

A good introduction to cmos at a practical level, but watch out for confusing mistakes such as page 32, where a BCl 79 is shown as a $n p n$ transistor.
M.A.

HAM RADIO

By Kenneth Ullyett Published by David and Charles 163 pages, $216 \times 136 \mathrm{~mm}$. Price $£ 4.50$

|NTENDED as an introduction to amateur radio for the layman, or to give the experienced amateur a useful and up to date resume of his hobby. this book claims to be the first to cover the subject without the use of mathematics, circuits, block diagrams or formulae.

Subjects covered include the various communication modes, getting a transmitting licence, learning the Morse code, antennas (aerials), and equipment.

Unfortunately, the book is marred throughout by numerous inaccuracies, which will be as misleading for the newcomer as they are annoying for the experienced.
G.C.A.

ROOMS FOR RECREATION

By Euan Barty

Published by the Design Council
69 pages, $197 \times 208 \mathrm{~mm}$. Price $\mathbf{£ 1 . 9 5}$

ONe of a series of Design Centre publications, this book deals with a total of sixteen hobbies, among which electronics is conspicuous by its absence!

However, it contains a wealth of general information which will be of use to the electronics enthusiast. Subjects covered include workshop planning, furniture and fittings. lighting, heating, ventilation, wall and floor finishes, noise and safety.

BEGINNER'S GUIDE TO AUDIO

ByI.R. Sinclair
 Published by Newnes Technical Books 184 pages, $119 \times 186 \mathrm{~mm}$. Price $£ 2.75$

THis book brushes on most aspects of audio, starting with the nature of sound, how it is picked up, amplified. recorded and reproduced, and gives a quick splash of room acoustics.

Being only a guide it is non mathematical where possible, and almost vague in places, but goes into detail you can get your teeth into when dealing with the "neat" electronics such as tone controls and output stages.

This would not be a bad starting point for the complete novice because of the book's broad base, although a little supplementary study might be required on the circuit theory chapters.

Up to date methods are not neglected, and descriptions of current dumping. quad. pseudo quad, and electrostatic techniques are given.
M.A.

A CATALOG OF OPERATIONAL TRANSFER FUNCTIONS

By Don Watts

Published by Garland Publishing, Inc. 545 Madison Avenue, New York, N.Y. 10022 224 pages, $150 \times 222 \mathrm{~mm}$. Price $\$ 26$
This book is a complete single-source catalogue of electronic operational transfer functions giving s-plane pole and zero locations, gain and phase Bode plots, sketches of impulse and stop functions, responses (where applicable to linear circuits), actual circuit or block diagrams with reference designators, and pertinent design equations for each function. Sections are included on: Linear, amplitude, and frequency independent; non-linear amplitude dependent; linear single pole; tinear single zero; linear double zero; linear one pole/one zero; linear one pole/two zero: linear two pole; linear one zero/two pole: linear two pole/two zero; and multiple order functions. This format makes possible the selection of one of several possible solutions to the same function, which is the design engineer's job, and at the same time allows additional realisations to be added to the appropriate section if and when they become available.

An introductory chapter explains how the book may be used by practising engineers, scientists, and students. As an aid to the uninitiated, each modern function is preceded (at the section start) by the classical R-L.-C filter function before the introduction of realisations using only resistors and capacitors with integrated circuit operational amplifiers. Thus, the student can quickly learn the features of modern audio filter design, the latest outgrowth of analogue computer technology.

FUNDAMENTAL ELECTRICAL TECHNOLOGY By Marvin H. Klayton
 Published by Addison-Wesley Publishing Co. 710 pages, $242 \times 160 \mathrm{~mm}$. Price $\mathbf{£ 1 3 . 6 0}$

THIS is another book of American origin which provides a basic course in electrical engineering. Whilst it does not avowedly fulfil any set syllabus the content should adequately encompass the first two years of any UK electrical engineering course

The chapters cover basic electrical concepts, simple circuits, network solving, magnets and electromagnetism, a.c. circuits, polyphase circuits, transformers, resonance, special application networks, electrical signals and measurements and instruments.
The units and symbols are SI and there is a copious appendix so that one does not need to go outside the book for reference in studying.

Each chapter is backed with problems with solutions which makes it a good choice for self study, more so as it has an excellent 11 page index.

The review copy sent was in hard back.

ELECTRONICS AND THE PHOTOGRAPHER
 By T. D. Towers
 Published by Focal Press
 316 pages, $216 \times \mathbf{1 3 7 m m}$. Price $\mathbf{5 6 . 5 0}$

AVERY comprehensive book, covering just about the entire field of applications of electronics (and, to some extent, simple electrics) to photography.

Subjects covered include: Batteries, Mains Power Supplies, Light Measurement, Exposure Meters, Semi- and Fully-automatic Cameras, Electronic Shutters, Electronic Focusing, Artificial Lighting-embracing Mains-driven Lighting, Expendable Flash Bulbs, and Electronic Flash, Remote Control, Electronic Timers, Print Exposure Control, Electronics in the Darkroom, Photographing TV and Oscilloscope Screens, Adding Sound to Photographs. Other chapters cover electronic fundamentals, and the history and future of electronics in photography.

Basically, this is a "how-it-works", rather than a "how-to-do-it" book. There are some circuits for the electronics enthusiast to play with in the later chapters, but these are very definitely not suitable for the novice.
G.C.A

SETHENDUUTIOR UPDAIE

SWITCHER

Standard series voltage regulators are a real blessing but one thing they cannot claim to be is efficient because they must, by their very design dissipate a substantial amount of power, especially if the input/ output voltage differential is large.

It has long been recognised that a more efficient regulator design can be produced by employing the "switching" technique which relies not on controlling the effective resistance of a series regulator but on varying the pulse width or frequency of a "chop-ped-up' version of the input voltage which is then converted into an equivalent smoothed d.c. output with the aid of a simple LC filter. A switching regulator is efficient because the series pass transistor is always turned hard-on or hard-off and these of course are both low dissipation states. In the past, switching regulators have only been used where their high efficiency is particularly advantageous (generating 5 V from a 28 V battery supply for example) because they tended to be rather expensive to put together using discrete components.

Thanks to Texas instruments, the switching regulator can come in out of the cold and be used wherever its special characteristics are required, without worries about cost now that the TL 497 is available. This new device brings together in a tiddly fourteen pin d.i.l. all the active components required to build a variety of switching regulator circuits with 60 per cent or greater efficiencies, adjustable output voltages, and current limiting.

The TL 497 contains a 500 mA switching transistor, a control oscillator, current limiter, sense amplifier, 1.2 V reference and a commutating diode, and will operate over a range of frequencies from 10 kHz to above 50 kHz .

When you switch to "switchers" you don't only gain efficiency either. After being chopped up by the switching transistor the output is essentially an a.c. signal and so can
be used to provide voltage step-up or inversion with the aid of the inductor section of the l.c. filter.

BUBBLE MEMORY

Microprocessors and also larger computers usually require two different kinds of read/write memory for efficient operation. First and foremost of course, they need a RAM array which can be accessed very rapidly (less than 1 microsecond) and which is used for the storage of programs and data required for immediate use.

This kind of memory, while being. the most versatile, is relatively expensive to provide and can be physically bulky. This creates a need tor a second kind of memory which can store very large quantities of data in a cheaper and more compact form such as magnetic tape or discs. When this kind of storage is available data can be transferred back and forth between it and the RAM so that the processor itself "sees" only high speed random access storage which apparently has a limitless capacity for data.

Due to their inherently sequential operation magnetic tape and disc systems have average access times considerably in excess of those exhibited by semiconductor RAM, but their cheapness and non-volatility still make them very attractive whenever bulk storage is required. Ever conscious of this requirement for cheap sequential access memory systems the semiconductor giants have long dreamed of producing a solid state equivalent which would remove the dependence on unreliable mechanical tape and disc drives, and on the face of it, Texas Instruments appear to be close to making these dreams come true with the TBM 0101 device.

The TBM 0101 is a "Bubble Memory" device which packs no fewer than 92 kilobits of data into a fourteen pin d.i.I. module which consumes less than 700 mW in continuous operation while providing an average access time of about 4 ms .
"Bubble" technology is unusual in that it marries the economy of magnetic storage with the high density of semiconductor fabrication techniques by building on to a semiconductor chip a sort of magnetic track along which tiny individual magnetic domains (only $5: / \mathrm{m}$ in diameter) are constrained to propagate.
Control functions such as "transfer", "replicate" and "annihilate" are implemented by providing current pulses through appropriate control elements on the chip which cause local alterations in the magnetic field. To detect the presence or absence of "bubbles" as the domains are called, two magneto-resistive elements are provided which can drive an external "sense" amplifier to produce TTL compatible data.

The TBM 0101 is a first step into this intriguing new technology, and no doubt further development will reduce the amount of external drive circuitry currently required. Who knows, perhaps one day we will see all solid state audio "tape recorders' using devices like these!

BEEFY CMOS

The trouble with CMOS is that it can seem a bit puny when you want to use it to talk to the outside world where all the relays, lamps, and l.e.d.s live. If you have ever become a bit peeved about having to parallel umpteen CMOS gates together to get the sink current you needed you'll be pleased to hear about the CD 40107 BE from RCA which while being a fully paid up CMOS member can sink (wait for it!) no less than one hundred and twenty milliamps!

The CD 40107 BE contains two independent two-input NAND buffers with open drain n-channel output transistors, which means, of course, that it only sinks current and doesn't source it like standard CMOS. The bulging biceps of this new device are squeezed into an 8 pin Mini-d.i.p. package which has, I'm told, a built in hairy chest! design and develop hardware and processor based software for a Comprising three , Programmer and UV ment System, Prall component cost Eraser, the overall compoprocessor is around £200. Th 4040, and features used is the Intel 40t-based hexainclude calculatord and display, decimal keyboard aS RAM store, battery-powered crable input output and a

Also in this issue...

Using a 1 MHz crystal as the frequency standard, this instrument can count at up to 25 MHz , giving an accurate readout on a 5 -digit display. The four mode settings include TIME in milliseconds and COUNT PULSES.

H.1.1. I E B M11 1 1 BEIG! ! I I

A simple unit which allows a conventional d.c.-coupled oscilloscope to be used to display the state of eight logic channels.

BIGGER PAGES!

Starting next month the page size of PE is going up, giving more room for the growing technologies without neglecting simpler projects.

PRACTICAL

Microprocessors do not just represent a new "ball game" for electronics enthusiasts, they make up a whole new "Olympiad", so full of new "events" that we need not blame ourselves for wondering, "Which shall we enter first?"

At one end of the arena we can expect to find simple dedicated applications which employ a small handful of chips in a low cost answer to an existing problem. At the other end we can already see the exciting prospect of truly useful home digital computers with language compilers, cassette storage, VDU displays and several kilobytes of RAM memory. This latter use of microprocessors will have the interesting effect of bringing new entrants into our hobby from the ranks of the "software-people" in rather the same way that our ranks are swelled by ever increasing numbers of "music lovers"!

If you are still sitting in the stands, wishing that you were down on the track, and wondering how on earth to get started, this concluding part of "Microprocessors Explained" is for you. The idea is to help you decide just what part of the arena you want to enter, and having sorted that out, to help you decide just what to spend your hard earned cash on. Oh-and if you are interested in gold medals, microprocessors may not be for you, all we can offer is a great deal of "toil, tears and sweat'", and a lot of fun!

WHAT do yot want to do with microprocessors? If they are a new and bewildering subject to you (and if you haven't had any association with digital computers in general, they probably are) you may answer that question by pointing out that you find the concept exciting but that you really don't feel ready to take a positive move towards any specific microprocessor-system until you have had time to learn a lot more about the subject.

If this is your reaction don't just say, "One of these days I'll get a book from the library." There has been enough meat in this series to get you out of the novice class and on to the nursery slopes, so dig out those back numbers and be advised that when you feel au fait with input/output ports, stacks, accumulators and hex code, you will be ready to put the L plates up and start the exciting business of building and/or operating a microprocessor system of your own!

Of course you could end up hating the sight of a hexadecimal keyboard, or even having ceremonial software-bonfires on your front lawn, so obviously you don't want to fork out a lot of money on your first cautious contact with this alien world. Fortunately, the microprocessor manufacturers are aware of your problems (well, some are!) and it should be possible to find a system to suit your neecis and your pocket, with the aid of Table 6.1. This "Consumer Guide" attempts to set down the salient features of the Evaluation Kits and Tutorial Systems now available.

LOW COST INTRODUCTORY SYSTEMS

What manufacturers do to produce these low cost introductory systems is to put together on a p.c.b. a basic self-contained microprocessor system with clock facilities, a modicum of ram, and a rom full of "System

Monitor" programs. In general, no cabinets, power supplies or input/output terminals are provided, and all these are necessary to a greater or lesser degree. The System Monitor programs usually expect to speak to an AsCII coded, 10 character-a-second terminal, such as a Teletype ASR33, although in some cases a simple hex keyboard/display may be used, or may even be provided as part of the deal.

The idea is that the user can cook up small programs and enter these into his system's ram memory via an input device, and then run them and debug them using system-monitor commands. If you are asking "What kind of programs" then the answer must be "very simple ones" because (a) there won't be a lot of program space in the ram and (b) the input/output arrangements will be a limiting factor.

To start with, these basic systems act as tutorial systems, allowing the user to become familiar with the operation of a particular MPU chip and to develop his programming skills. As confidence is gained they take on the usefulness of development systems, where sections of a program can be checked out before they are transferred to a "homebrew" hardware system.

EXPANSION

Very often the basic system can be expanded by adding extra memory and interface facilities, though in most cases the method of expansion is left very much to the user, and a good knowledge of system operation is required before this can be attempted.

HARDWARE ORIENTATED

All this fussing about "evaluation" and "tutorials" may turn some of you off. You probably cut your teeth on a 7400 gate, back in the frontier days of logic. Since then you have dabbled with those cissy cmos gates and rode roughshod through board after board of "Manufacturers' TTL fall-outs", blazing a trail littered with pseudo-random lawn sprinklers, psychedelic door bells, and a host of other less well-known achievements. Now along come these microprocessors. They look as though they have some potential, particularly since you have just calculated that to build your latest U.F.O. detector you will need $428 \cdot 25$ tit packages which according to rule-of-thumb estimates will have the interesting effect of dimming the lights for miles around when switched on. Maybe, just maybe, it would be worth running your eye over a microprocessor workshop manual (it's only logic after all), putting a new point on your soldering iron, and sending off for a few Jiffy-bags full of MPU chips.

Exaggeration? Well, maybe a little, but you know the sort of hardware-orientated fanatics we are talking about, and with a maverick spirit like theirs they will get to grips with microprocessors in the end, never fear, even without our help! If anyone reading this identifies with them, and is casting his flinty gaze in the direction of microprocessors ("A man's gotta do ... etc.") we would point out that their interest is very close to our hearts; we too like to think of microprocessors doing something practical.

All we urge is that the hardware enthusiasts recognise that using these devices does require an investment in acquiring some new skills, and so a good place to start is with Table 6.1 so that a minimal system (let's call it a development system!) can be selected to start them on their way. (No doubt before they even get their system unpacked these guys will be thinking about expanding

TABLE 6.2: HOME COMPUTERS				
System	Manufacturer	MPU Chip	Description -	Available peripherals
8800	Altair	8080	The ALTAIR 8800 is a ready built cabinet mounted computer system which uses a versatile bus structure for easy plug-in expansion up to 16 boards. System monitor, resident assembler and BASIC interpreter are all available on paper tape or cassette.	TTY, VDU, Line printer. Floppy disc drive.
MP68	Computer Workshop	M6800	The MP68 is a cabinet mounted computer system which is available either as a kit or ready built. The basic system arrives with 2 K of RAM but this is expandable to 24 K by plugging in extra boards. Software available includes an assembler/editor, two versions of BASIC and a floating point math package.	VDU, Printer, Audio cassette interface, Graphics system.
PET	CBM	6500	The PET is a futuristically styled self contained home computer which includes a VDU, an ASCII keyboard, a cassette deck and 4K of RAM. Software is based on a powerful BASIC interpreter in ROM and memory expansion is possible up to 32 K . Plans are afoot to sell pre-recorded programs covering accounting and educational applications. (PET will be available in the Autumn.)	(Future) Printer, Modem. Floppy disc drive.

						TABLE	6．3 MPU C	HIPS					
Chip	Manfs．	Technology	Word length	On chip clock	Interrupt lines	Basic address－ ing range	Subroutine nesting levels	No．of instructions	Power supplies		6u！fed，ןeכ！foedd，		Chip
4004	Intel National	PMOS	4 bits	No	None	4K	Three	46	$+5 \mathrm{~V}-10 \mathrm{~V}$	大	大 $大$	\star	4004
4040	Intel	PMOS	＂	No	One	8K	Seven	60	$+5 \mathrm{~V}-10 \mathrm{~V}$	\star＊	＊大 大	＊	4040
2650	Signetics	NMOS	8 bits	No	One	32K	Eight	75	＋5V	大	大 $大$ 大	＊	2650
6500 （Family）	MOS Technology	NMOS	，	Yes	Two	65K	Unlimited	56	$+5 \mathrm{~V}$	大	大	＊	6500 （Family）
8080	Intel，Texas AMD National	NMOS	＂	No	One	65K	Unlimited	74	$5 V+12 V-5 V$	大	\star	$x+x$	8080
CDP1802	RCA	CMOS	＂		One	65K	Unlimited	91	$+3 V$ to +12 V	＊＊	大	＊＊	CDP1802
$F 8$	Fairchild Mostek	NMOS	＂	Yes	System depen－ dent	65K	System dependent	62	$+5 V+12 V$	大	大 $\boldsymbol{*}$ 大	＊	$F 8$
LP8000	General Instrument	PMOS	＇	No	None	16K	Unlimited	48	$+5 \mathrm{~V}-10 \mathrm{~V}$	\star	大	＊	LP8000
M6800	Motorola AMI	NMOS	＂	No	Two	65 K	Unlimited	72	$+5 V$	＊＊	大 $大$ 大	t＊	M6800
SC／MP	National	PMOS	＂	Yes	One	4K	Zero （software expand－ able	46	$+5 \mathrm{~V}-7 \mathrm{~V}$	大		$t>$	SC／MP
280	Zilog Mostek	NMOS	＂	No	Two	65K	Unlimited	158	$+5 \mathrm{~V}$	大		$t \boldsymbol{*}$	Z80
IM6100	Intersil Harris	CMOS	12 bits	Yes	Two	4K	Unlimited	Microcoded	+5 V to +10 V	＊＊	\star	$\boldsymbol{*} \boldsymbol{*}$	IM6100
CP1600	General Instrument	NMOS	16 bits	No	One	65K	Unlimited	87	$+5 V+12 V-3 V$	＊	\star	＊＊＊	CP1600
F100L	Ferranti	CDI	＂	No	One	32K	Unlimited	29 （BASIC）	$+5 V$	\star	\star	大 $大$＊	F100L
PACE	National	NMOS	＂	No	One	65K	Unlimited	45	$+5 \mathrm{~V}+8 \mathrm{~V}-12 \mathrm{~V}$	＊	＊	＊＊	PACE
TMS9900	Texas	NMOS	－	No	One	65K	Unlimited	69	$+5 V+12 \mathrm{~V}-5 \mathrm{~V}$	\star	＊	$t \rightarrow t$	TMS9900

[^1]what they have bought; extra memory, twin carburettors, U.F.O. field sensor peripherals, etc.!)

SOFTWARE ORIENTATED

The next category of potential MPU user may not even read this magazine at all, or if they do, it's on microfiche which they absorb at 2.4 pages per second. These people wear hair shirts, and no shoes, and spend all their time thinking about normed vector spaces, transcendental equations and black holes. Normally they don't have to touch soldering irons, the required I.B.M. computers and graphics displays being pressed into their eager hands by a grateful public who feel they are getting good value for money.

These potential entrants into the microprocessor arena have their eyes fixed on the misty horizon (they have never grasped the concept of hard cash!)

Don't get us wrong, we need these fundamental research workers. They want Fortran compilers, floppy discs, 32-bit arithmetic and a vDu terminal. And after someone has got up a collection, they will show us all the way ahead.

If any of these boffin types are reading this, they can get help from the tables because although a minievaluation card may not interest them, the "Home Computer" market is starting to take off, particularly in the States and there are a few systems available on the UK market already, as shown in Table 6.2.

HARD FACTS

We have painted a lurid picture of some potential "microprocessor-people" to emphasise the differences between these extremes, but of course in between lie all the shades of grey and we have no doubr that you won't fall immediately into one of our extreme categories. It is a fair bet however, that your main interest in microprocessors can be summed up in one of three basic ways:
(a) You want to learn all about these revolutionary devices.
(b) You want to do "practical" things like control your model train layout, your car ignition system, or your central heating.
(c) You want to build a "Home Computer" with extensive software and bulk storage facilities to crunch numbers and act as an intellectual challenge.
Our tables have been drawn up accordingly, with star ratings for each of these possible uses.

CHOOSING A CHIP

You may have been surprised by the fact that we have put the choice of "system" before the choice of MPU "chip". Certainly the professionals would look hard at the choice of chips to start with, and worry about development systems and so on, later. In our case, however, the availability of an off-the-shelf get-you-started system, or even just a design tor one, is an important prerequisite to choosing a chip to do a job.

As an example, the Zilog Z80 is an extremely attractive eight-bit MPU chip with lots of Rolls-Royce features, but if you want to use it you will have to start from scratch because there is no low cost "basic system" to help you. In our book this rules it out for the present.

By way of contrast, the Intel 4040 is not the latest and the greatest microprocessor chip on the market,
but starting next month in these pages there will be a project covering the construction and use of a low cost development system based on this chip and this makes it a very attractive choice for amateur projects.

Even though the availability of hardware and software support (in our price range!) has a powerful influence on the MPU chip we eventually choose, there is bound to be a need for an objective chip comparison, and we have provided this in Table 6.3 which covers the more prominent MPU chips currently available. This comparison does not include the faster bipolar microprocessors because in our opinion they are out of our market and rather specialised in their application at present.

CHOOSING A PERIPHERAL

The choice of an input/output device for use with general purpose microprocessor systems is a very difficult one for home constructors. Many "basic systems" cards expect to talk to a Teletype ASR33 terminal or similar, as mentioned earlier, and with prices starting at about $£ 500$ this is clearly out of the question for most of us.

Some manufacturers have recognised this problem and have come up with ingenious solutions. Simplest of all is a rewrite of system software to allow it to control a simple hexadecimal keyboard and sevensegment display via a few input/output ports. Hexadecimal peripherals of this sort can be made from small calculators and are consequently of low cost, but the problem is that unless you modify the system software yourself (not an easy job if you are a beginner) these devices are not compatible with most "ASCII-speak" systems.

A compromise between the Teletype and the hex keyboard, which overcomes the software compatibility problem of the latter, is possible if a system is built which "imitates" a Teletype in some way. You can patch up simple imitations with the help of a UART chip and some leDs and switches; however G.R. Electronics actually make a Teletype imitation which lives in a calculator case and does most things that a Teletype does at a fraction of the price! Needless to say, at the heart of this neat innovation is a microprocessor which has been programmed to believe it's a terminal!

VIDEO DISPLAY UNIT

One very attractive way to talk to your microprocessor is via a VDU (Video Display Unit) which uses a TV screen as an output medium and is usually twinned with a full AsCII keyboard for input. vDus can be made fully compatible with existing system software and need not be as expensive as they sound if you can use an existing TV and can buy a ready-made, surplus ASCII keyboard.

If you are interested in the "Home Computer" side of microprocessors then a vDU is a natural choice, but if you want to build dedicated systems then a simple hex keyboard will be sufficient if your chosen system will drive it.

THE END OF THE BEGINNING

That brings us to the end of this introductory series. Next month sees the start of an exciting microprocessor constructional project which will enable those readers who have developed all the symptoms of the micro-processor-bug to indulge themselves further!

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. Electronics Ltd.

Crossland House, Nackington, Canterbury Kent CT4 7AD
Tel (0227) 63218

Please supply

Total Purchase price
I Enclose: Cheque \square
Postal Orders \square
Money Order \square
Please debit my Access account \square Barclaycard account
Account number
Name and Address

TV GAMES CHIP
AY-3-8500 £11.50. Printed circuit and kit of exiraparts Rifle kit E4-95. Send S.A.E. for free data.

NEW COMPONENTS SERVICE

Resletors 5\% carbon E12 2.7n to 10M iW 1p, iW $3 p$
Preset pets subminiature 0.1 W E3 100 N to 4 MMT vertical 9p, horizontal 9p. Potentlometers 0.25W E3 $4 \mathrm{K7}$ to 2 M 2 log or lin, single 24 p , dual 75 p . Polytyrene capacitors E12 63V 22pF to 8,200pF 3yp Ceremic capechore vert. 50 V E6 22pF to 47,000 pF 3p Myler capacitors $100 \mathrm{~V} 0.001,0.002,0.0054 p, 0.01$ 0.02 .0 .025
0.1 mF
$54 \mathrm{p}, \mathrm{O} .15, ~ P o l y e s t e r ~ c a p a c i t o r s ~$
0.22 mF
$7 \mathrm{p}, 0.47 \mathrm{mF}$
11 p E6 0.01 . Electro
 18p. Zener diodes 400 mW E24 3 V 3 to 33 V etp.

MAINS TRANSFORMERS

 E2.55. 9-0-9V 1A C2.19. 12-0-12V 1A E2.49. 15-0-15V 1A E2.69. 30-0-30V 1A §3.39.

PRINTED CIRCUIT KITS eic.*

Contains etching dish, 100 sq in of pc board, 1 b ferric chloride, etch resist pen, drill bil and laminate Etch resist pen 75 pq . in pc board 75p. 11b FeCl 95p
Etch resist pen rip.

S-DECS AND T-DECS* SDeC E1.94. T-DeC £3-61. H-DeCA E3-97. $\mu-$ DeCB E6.g7. iC carriers with sockets: 16 dil £ 9.91 . 10TOS £1.79.		
SINCLAIR CALCULATORS, WATCHES AND POCKET TV*		
Sinclair pocket TV 5185. Cambridge Sclentific 58 - 45. Cam, programmable £13-95. Oxford Sclentific $£ 10.60$. Malns adeptors (State model) E3-20.		
BA		
3-WAY MODELS With switched output and 4 -way multi-jack connector. Type 1. $3 / 4 \frac{1}{2} / 6 \mathrm{~V}$ at $100 \mathrm{~mA} 52 \cdot 30$. Type 2 $6.7 \frac{1}{2} 9 \mathrm{~V}$ at 300 mA ᄃ2 90.		
100 mA RADIO MODELS With press-stud connectors. 9 V £3-45. 6V 53.45. $9 V+9 V 55.45 .6 V+6 V 55.45 .44 V+45 V 55.45$.		
CASSETTE MAINS U		
7 V whth 5 pin din plug. 150 mA E3.6		
FULLY STAB		
Switched output of $3.6 / 7 \downarrow / 9 \mathrm{~V} 400 \mathrm{~mA}$ stabil		
CAR CONVERTORS 12V INPUT Output 9 V 300 mA \& 1 - 80 . Output $7+\mathrm{V}$ 300mA 51 - 80 .		
BATTERY ELIMINATOR KITS Send S.A.E. for free leaflet on range. 100mA redio types with press-stud battery terminals. $6 V+6 V E 2 \cdot 50 \cdot 9 V+9 V E 2 \cdot 50$ Cassette type $7 \frac{7}{5} V 100 \mathrm{~mA}$ with 5 pin din plug $\{2 \cdot 10$. Translator stablized s-way type tor low hum $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 2 / 15 / 18 \mathrm{~V}$. 100 mA E3. 20.1 A 56.50 . Heavy duty 13-way types $4 \frac{1}{2} / 6,7 / 8 \frac{1}{2} / 11 / 13 / 14 / 17 /$ $21 / 25 / 2834 / 42 \mathrm{~V}$. 1A model £4.95. 2A model 87.95. Car convertor kit input 12 V a.c. Output $6.7 \frac{1}{2} / 9 \mathrm{~V}$ d.c. 1A transistor stabilized £1.95. Stablized Laboratory power kit Switched 1 to 30 V in 0.1 V steps. 1A £12.45. 2A £14.95.		
SINCLAIR PROJECT 80 AUDIO MODULES P25 54.95. 240 £5. 75.		
BI-PAK AUDIO MODULES		
S450 tuner E20-95. AL60 £4.60. PA100 514.95. MK60 audlo kit £31.95. Stereo 30 §15.50. SPM80 £3.65. BMTBO E3-32. Send S.A.E for free data		
SINCLAIR IC2O IC20 10W + 10W stereo integrated circuit amplifier kit with free printed circuit and data $\mathbf{5 6 - 9 5}$. PZ20 Power supply kit for above $\mathrm{C3}-85$. VP20 Volume, tone-control and preamp kit cs-95. Send S.A.E. for free leafiet on the whole system.		
JC12 AND JC40 AMPLIFIERS JC12 6W IC audio amp with free data and printed circuit E1-95. Also new JC40 20W model with pCb £3.95. Send S.A.E. for free leaflet on both models and associated power supply and preampkits.		
FERRANTI ZN414 iC radio chip $\mathbf{8 1 \cdot 4 4}$. Extra par1s and pcb for radio 53-85. Case £1. Send S.A.E. for free data.		
SWANLEY ELECTRONICS Dept. PE, PO 80X 68, 32 Goldsel Rd, Swanley, Kent Mail order only. No callers. Send S.A.E. for free data on kits. Post 30 p on orders under £4.50, otherwise free. Prices include VAT Official orders welcome. Overseas customers deduct 7% on items marked * and 11% on others.		

SWANLEY ELECTRONICS

Dept. PE, PO $80 \times 68,32$ Goldsel Rd., Swanley, Ken
Mail order only. No callers. Send S.A.E. for £4.50, otherwise free. Prices include VAT mers deduct 7% on items marked * and 11% on others

SCRIUMPI KIT REVIEWED
 By D.B.JOHNSON-DAVIES

WITH all the articles on microprocessors that have been appearing recently there must be a number of readers who feel that they will never really understand micros until they have actually used and programmed one, and who are therefore wondering how they can get their hands on a system as cheaply as possible. Bywood's "Scrumpi" kit may be the answer as it provides a self-contained development system using the minimum of parts, and at $£ 55.56$ costs less than most other solutions.

DESIGN CENTRE

It is designed around National Semiconductor's SC/MP, an 8-bit low cost micro which has a simplified instruction set and architecture in aid of economy. Its lack of sophistication means that most programs require more steps to achieve the same as a micro with a greater variety of instructions, registers, and addressing modes. On the other hand the chip provides a good selection of control inputs and outputs eliminating the need for $1 / 0$ devices in simple applications: three outputs, flags $F O$ -1 , and -2 , are controlled by bits in the status register and two inputs, SENSE-A and $-B$, set bits in the
status register. In addition, SENSE-A can optionally cause an interrupt. Serial $/ / 0$ can be performed via the SIN and SOUT pins using the extension register.

In "Scrumpi" the states of the twelve address lines and the eight data lines are displayed in binary form on l.e.d.s driven by CMOS buffers. The data lines can be taken to ground by eight programming switches. The memory consists of two 256×4 bit memory chips, providing 256 words of read/write memory. Two four-bit latches act as an eightbit 1/O port in which each set of four can be wired as either inputs or outputs. They are enabled by the highest address line, All, so that all addresses in the range X'800 to X'FFF (where the X ' signifies hexadecimal notation) are mapped on to the one I/O port.

FUNCTIONS

The various functions of the kit are controlled by a flip/flop, a 555 timer and some NAND gates, and are selected by a further eight toggle switches. These are: RESET, SLOW. STEP, RUN/HALT, PROTECT, SENSE-A, SENSE-B, and LOAD. The circuit of the. kit is shown in simplified form in Fig. 1.

All the components are mounted on the single-sided fibreglass printedcircuit board; twenty wire links are needed to complete the connections. A double-sided board would add little to the cost and it is difficult to see why one was not used. Apart from this inconvenience construction was straightforward. All the parts were supplied and sockets were provided for all the i.c.s. The switches are soldered to the board by their terminals, but the whole board could be mounted behind a suitably drilled panel to make a more robust unit. The circuit needs a power supply of +5 V and -7 V and these can be derived from a single 12 V supply with a 5 V Zener diode.

HOW IT WORKS

"Scrumpi" gets away without the need for any monitor program in rom by making cunning use of the control signals provided by the MPU. The memory is programmed by a primitive form of DMA (direct memory access) by automatically stopping the MPU during each instruction cycle. All the instructions consist of at least one read cyclethe "instruction fetch" which gets the op-code from memory. For example, $S R$ (shift right) has only one cycle. For the two-word instructions there is a second read cycle to fetch the displacement or data; for example, LDI (load immediate) has a second read cycle to get the data from the next location. Store instructions obviously have an additional write cycle, and the two longest instructions ILD (increment and load) and DLD (decrement and load) consist of three read cycles and one write cycle.

The MPU is stopped by taking the NHOLD input low during the input or output cycle, and this extends the cycle indefinitely until NHOLD is

Fig. 1. Simplified circuit diagram of "Scrumpi". The eight function switches control the various modes of operation of the kit
returned high. In "Scrumpi" the NHOLD input is controlled by a D-type flip/flop, which is reset by the pulse on the NADS (address strobe) output occurring at the start of each input/output cycle; see Fig. 2. This puts NHOLD low extending the cycle until the flip/flop is clocked by a pulse from the output of the 555 timer; the MPU is then released to run until the next NADS pulse at the start of the next cycle.

In a read cycle the MPU is stopped with NRDS (read strobe) low which is used to enable the memory in write mode, causing the data in memory at the location addressed by the MPU to be put on to the data bus. In a write cycle the MPU is stopped with NWDS (write strobe) low which enables the memory to read data put on to the data bus by the MPU.
"Scrumpi" is programmed by stepping or running the MPU to the required address, putting the eight data switches to the required eightbit binary value, and then operating the LOAD switch. This switch puts the memory chips into read mode and so loads the value on the data bus into the memory location. Programming
can only be done during a read cycle since in a write cycle the MPU is putting data on to the data bus too.

ENTERING A PROGRAM

To make this operation clear consider how one would enter the following program which uses the instruction ILD (increment and load) to increment the contents of location X'032 using program-counter-relative addressing. The program follows:

Address:	Data:	
001	A8	ILD
002	30	disp.
003	next	instruction
\cdot	\vdots	\vdots
032	04	data

First all memory locations are set to X'00 by running the MPU while loading with the data switches set to 0 . Operating RESET now starts the MPU at address X'001 (Fig. 2 (a)). The required value, $X^{\prime} A 8$, is set on the data switches (as 10101000) and LOAD operated to store this to memory. The STEP switch will now
cause the 555 timer to deliver a pulse, releasing the MPU from hold state to execute the instruction. Since the ILD instruction is four cycles long (see Fig. 2) a further three operations of the STEP switch are needed to complete execution of it.

The second cycle fetches the displacement ($X^{\prime} 30$); see Fig. 2 (b). This added to the program counter gives the effective address of the data: X'032. The third cycle fetches the data from this location. Finally the fourth cycle writes the incremented value back to the same location (Fig. 2 (d)).

- The kit could thus be said to provide a hardware trace facility by making use of the SC/MP's control signals; "Scrumpi" makes an asset out of economy and provides a graphic demonstration of how each instruction behaves in action.

BREAKPOINTS

"Scrumpi" also provides a hardware breakpoint facility. The code $X^{\prime} 00$ is interpreted by the MPU as a HALT instruction; in fact execution of it will pulse the H -flag which is put out on line D7 when NADS is

Fig. 2. Timing diagram showing how the control input NHOLD is used to stop the MPU after each of the read/write cycles of the four-cycle instruction ILD (increment and load). The shading indicates that the outputs concerned are in high-impedance state

Iow. With the run/Halt switch in the correct position D7 is taken to the flip/flop, gated by NADS. A HALT instruction placed anywhere in a program will then act as a breakpoint; executing it will rest the flip/ flop and put the MPU into hold state.

It should be obvious from the foregoing description that programming is a tedious business; the data switches must be set for each instruction to be entered and although the conversion from hexadecimal to binary becomes automatic after a time, the process is error-prone and slow which discourages attempts at large programs; added to which is the knowledge that the program will evaporate on switching off the power.

JUMP TO SUBROUTINE

A fair amount of ingenuity is needed to get some programs into memory, especially if they contain conditional jumps, as the only access to a location is by executing instructions which lead to it. It might therefore be prudent to leave the first seven locations free so they can be loaded with the following "jump to subroutine'":

Address: Data:
\(\left.\begin{array}{lll}001 \& C4 \& LDI

002 \& 01 \& X'01^{\prime}

003 \& 37 \& XPAH P3

004 \& C 4 \& LDI

005 \& 23 \& X^{\prime} 23

006 \& 33 \& XPAL P3

007 \& 3 F \& XPPC P3\end{array}\right)\)| |
| :--- |
| load |
| P3 |
| with |
| $X^{\prime} 0123$ |

Execution of this will cause a jump to X'0124. Any location can be reached by loading the correct address in $X^{\prime} 002$ and $X^{\prime} 005$.

KIT DESIGN

One worrying aspect in the design of this kit is the way programming Is achieved by using the data switches to ground the data lines linking the MPU and memory. Suppose that $X^{\prime} F F$ is to be altered to $X^{\prime} 00$ at a certain location. In this case all eight outputs from the memory devices are, until the LOAD switch is operated, driving into a short-circuit. The "on" resistance of the outputs is about 30 ohms so dissipation under these conditions could reach 3
watts; the maximum recommended dissipation is 1 watt. This is one reason for the instruction to load the memory with $X^{\prime} 00$ before programming.
Operation of the LOAD switch was also somewhat erratic; it is surprising that the spare flip/flop was not used to eliminate contact-bounce. Mr. Miller-Kirkpatrick of Bywood is currently involved in designing a new version of the kit which may overcome these problems.

CONCLUSION

Aspiring computer programmers who want to forget about the hardware the moment "Scrumpi" is working would be well advised not to spend their money on this kit; it is just not a practical proposition to write more than the simplest of programs on the system. To quote from the manual: 'You will very soon realise that "Scrumpi" is very limited as it stands because it does no more than light up l.e.ds." The constructor who is more interested in hardware than software, however, could use "Scrumpi" to form the base from which to build a more extensive microprocessor system.

Fulfils the need for an accurate means of measuring

 capacitance and resistance over wide ranges

0NE of the most frustrating problems that the electronics enthusiast can encounter is to be faced with a capacitor of unknown value or a capacitor that is suspected of being faulty, without having available the appropriate test gear to perform the required measurement. Although a capacitance meter is likely to be required less often than the more important items of test gear, it can prove to be very useful and much used in the long term.

Problems can also arise when one wishes to make accurate resistance measurements, as many multimeters have only a couple of resistance ranges, and a logarithmic resistance scale that reads from right to left. Apart from being inconvenient to read, the accuracy on the resistance ranges of most multimeters is less than that obtained on the other ranges.

The device that forms the subject of this article has been designed to fill the need for a convenient and accurate way of measuring capacitance and resistance at low cost. Furthermore, it requires no external components for calibration, and the calibration process merely consists of adjusting four preset resistors (one for each range) for f.s.d. of the panel meter.

RANGES

The circuit does not merely consist of separate resistance and capacitance measuring circuits with the same meter being used to indicate the measured value, but achieves maximum economy by using the same basic circuit for both types of test.

Eight ranges are covered, four of resistance and four of capacitance. These are as follows:

Range	Resistance	Capacitance
1	$0-10 \mathrm{M} \Omega$	$0-1 \mathrm{nF}$
2	$0-1 \mathrm{M} \Omega$	$0-10 \mathrm{nF}$
3	$0-100 \mathrm{k} \Omega$	$0-100 \mathrm{nF}$
4	$0-10 \mathrm{k} \Omega$	$0-1 \mu \mathrm{~F}$

These ranges permit the measurement of resistance between a few hundred ohms and 10 megohms, and capacitance between a few tens of picofarads and one

COMPONENTS

Resistors

Resistors		
R1	$10 \mathrm{k} \Omega$	R9
R2	$120 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$
R3	680Ω	R10
R4	$5.6 \mathrm{k} \Omega$	R11
R5	$100 \mathrm{k} \Omega$	
R Ω	$4.7 \mathrm{k} \Omega$	VR12
R	$4.7 \mathrm{k} \Omega$ preset	
R	560Ω	VR13
V	$4.7 \mathrm{k} \Omega$ preset	
	VR14	$4.7 \mathrm{k} \Omega$ preset
	VR15	$4.7 \mathrm{k} \Omega$ preset

R8 $10 \mathrm{M} \Omega$ (see text)
All metal oxide 1 or 2% except presets

Capacitors

C1	$100 \mu \mathrm{~F}$ 10V elect.
C 2	220 nF type C280
C 3	470 nF type C280
C4	$1 \mu \mathrm{~F}$
C5	100 nF
C6	10 nF
C7	1 nF

Semiconductors
$\begin{array}{ll}\text { IC1 } & \text { NE555V } \\ \text { IC2 } & \text { NE555V } \\ \text { TR1 } & \text { BC109 }\end{array}$

Switches

> S1 D.p.d.t. toggle switch S2 D.p.d.t. toggle switch (used as s.p.d.t.) S3 4-way 3-pole standard wafer rotary switch S4 Push-to-make release-to-break push button switch

Meter

ME1 1 mA f.s.d. moving coil panel meter

Miscellaneous

Case about $205 \times 140 \times 75 \mathrm{~mm}$ (Verobox type 75-1411D or similar). 3.5 mm jack plug and socket, two crocodile clips or probe clips, materials to produce the p.c.b. PP7 battery and clips to suit, control knob, hardware.
microfarad. It thus covers by far the majority of values the amateur is likely to need to measure.

All ranges have a forward reading linear scale.

OPERATION

The circuit is based on two NE555V timer i.c.s. Fig, 1 shows the complete circuit diagram of the unit.

IC1 is used in the astable mode, and C2 is continually being charged via R2 and discharged through R3. As R3 has a much lower value than R2, the discharge time is considerably shorter than the charge time.

The output of IC1 is developed across R4, and the voltage at pin 3 of IC1 is high while C2 is charging, and low while it is discharging. A series of very brief negative pulses are thus produced by IC1 and fed via C3 to the input of IC2. The astable operates at the fairly low frequency of about 50 Hz .

The meter circuit is not fed direct from the output of IC2, as the peak output voltage of this varies with fluctuations in the supply voltage. It is important in the interest of accuracy that the average output voltage across the meter is dependent upon the monostable pulse length, so R5, R6, R7, and TR1 are used to form a shunt regulation circuit, and they clip the output pulses at approximately +4 V . TR1 is used as an amplified diode, and this gives a much higher degree of stabilisation than using a low voltage Zener diode.

Varying the supply voltage from a little over 9 V to 7.5 V (the approximate range covered by a 9 V battery during its useful lifetime) was found to have a slight but insignificant effect upon the accuracy of the unit.

CAPACITANCE MEASUREMENT

In the capacitance measuring role, $S 1$ connects a reference resistor into circuit and connects the test

IC2 is used in the monostable mode. Here the device produces a positive output pulse at pin 3 after a negative trigger pulse has been received at pin 2. The length of the pulse is determined by the values given to the timing resistor and capacitor. When the circuit is in the capacitance measuring mode the timing capacitor is the capacitor under test, and the timing resistor is an internal component of the device. When used to measure resistance the opposite is true.

OUTPUT STABILISATION

There is a linear relationship between the length of the output pulse and the values of the timing components. The output of the meter circuit is fed to a meter which responds to the average output voltage of the monostable.
prods between the negative supply rail and pins 6-7 of IC2. There are actually four reference resistors (R8 to R11) giving four capacitance ranges, S 3 being used to switch in the resistor for the desired range.

With S3 in the position shown, R11 is switched into circuit and the unit has a range of $0-1$ microfarad. With a 1 microfarad capacitor connected across the test terminals each output pulse from the monostable ends shortly before the next pulse from the astable is received. This gives the astable and monostable output waveforms shown in Figs. 2(a) and 2(b) respectively. The meter circuit sensitivity is adjusted using VR12 to give f.s.d. of the meter with a 1 microfarad capacitor in circuit.

If a lower value capacitor, say $0 \cdot 5$ microfarad is now connected, the length of monostable output pulses will
be halved. This gives the output waveform shown in Fig. 2(c). The meter reads the average output voltage which will obviously be half its previous level.

It will be apparent from this that the meter reading is linearly proportional to the value of the test capacitance. Each time S3a is moved a position to the right the reference resistance is raised by a factor of ten times, and so only one tenth of the capacitance is required across the test terminals to provide f.s.d. of the meter. The unit thus obtains its four capacitance ranges of $0-1 \mathrm{nF}, 10 \mathrm{nF}, 100 \mathrm{nF}$, and $1 \mu \mathrm{~F}$.

RESISTANCE RANGES

When used in the resistance mode the circuit operates in the same basic manner, except it is now the timing resistor that is the test component and the timing capacitor that is an internal part of the unit. S1 switches the reference resistors out of circuit and the reference capacitors into circuit, and switches one test prod from the negative to the positive supply.

As we have already seen, with a microfarad timing capacitor in circuit a timing resistance of 10 kilohm produces f.s.d. of the meter. Lowering the resistance across the test terminals reduces the monostable pulse length proportionately, and gives a lower reading on the meter. Again there is a linear relationship between the value of the test component and the meter reading, and of course the scale is forward reading. The same basic circuit can thus be used for the measurement of both resistance and capacitance. Four switched reference capacitors (C 4 to C 7) provide four resistance ranges.

The power is not supplied to the circuit until S4 is depressed. A normal on/off switch is not used as when S1 is in the "Resistance" position and no resistor is connected across the test prods, the meter would be deflected beyond f.s.d. if the power was connected. This problem is solved by using a pushbutton for the on/off switch, as this is not closed until the component under test has been connected to the test prods.

BATTERY CHECK

Current consumption is about 10 milliamps, but as power is only drawn while a reading is being taken, an ordinary 9 V radio type battery (PP7, etc.) can be used to power the unit and will have virtually its shelf life.

When the battery voltage does drop due to ageing, misleading results could be obtained and there is the danger of the battery leaking and damaging the unit. A

battery check circuit has therefore been included. This uses S2 and R1, and with S2 in the "Check" position the meter is connected across the supply rails via R 1 . The meter then has a f.s.d. sensitivity of about 10 V , and can be used to check that the loaded supply voltage is satisfactory.

CONSTRUCTION

Many of the components are mounted on a printed circuit board that measures $86 \times 56 \mathrm{~mm}$. Details of this are shown in Fig. 3.

There is quite a large amount of point to point wiring to the components on the front panel. When this has been completed the p.c.b. is mounted on the base of the cabinet behind S1, S2 and S3 using three 6BA or M3 bolts, and spacers to hold it a little way clear of the bottom of the case.

Fig. 2. (a) Output from the astable circuit, brief negative pulses to trigger the monostable (b) the waveform across the meter at f.s.d. (c) the waveform across the meter at half f.s.d. (d) the waveform across the meter at ${ }_{1}^{1}$, th f.s.d.

Fig. 3. Printed board track pattern shown full size

Fig. 4. Board assembly and complete interwiring details for unit

ADJUSTMENT AND USE

A set of test leads are required, and these consist of a couple of 100 mm lengths of insulated wire each terminated in a 3.5 mm jack plug at one end and a crocodile clip at the other.

At the outsetVR12-VR15 are all adjusted to insert maximum resistance into circuit (fully clockwise). Temporarily connect the centre tags of S3a and S3b together. Mechanically zero the meter, turn the unit on, and set S3 to position 1. The meter should give a large positive indication and then VR15 is adjusted to give precisely f.s.d. of the meter. Then switch S 3 to the other three switch positions, and use the appropriate preset resistor to produce f.s.d. of the meter in each switch position.

COMPONENTS

This method of calibration uses the internal timing components as the calibration standards. It is therefore important that these components have close tolerances as it is the precision of their values that largely determines the accuracy of the finished unit.

The resistors should have tolerances of 1 or 2 per cent, and the capacitors tolerances of between 1 and 5 per cent, according to availability. The smaller the tolerance of these components the better.

R8 can be a 5 per cent type as this is the closest tolerance in which this value would seem to be available. Alternatively it can be made up from several 1 or 2 per cent types connected in series to provide the required value of 10 megohms.

HIGH FLYING

At the end of his year of office as President of the Electronic Engineering Association. Peter Bates needs no excuses for pointing out how well the industry had performed in 1976 against a background of world recession, high interest rates, inflation and all other problems which affect us.

As I recorded month by month in this column last year the various successes in order intake, in deliveries. in exports, I remained optimistic while fellow commentators on other industries were almost universally full of gloom.

My optimism was apparently iustified. The 1976 figures now available show that the capital goods sector of the electronics industry increased its total output of $£ 1,400$ million, a gain of 28 per cent, and of the total 42 per cent was directly exported. There was a positive trade balance in Britain's favour of £206 million. an improvement of nearly 40 per cent over 1975.

If we exclude computers, where our imports are traditionally greater than our exports, the trade balance looks even better. This does not mean, however, that our own computer industry is in the doldrums. Total sales in 1976 were $£ 565$ million, a gain of 26 per cent, and 55 per cent went for export.

Well, these are iust the bare bones of a mass of statistics which confirm the trend towards even greater achievement. But the difficulties remain immense, not least being the handicap of a weak government which, while paying lip service to the need for incentives to greater efforts does precious little to provide them.

The successor as President to the EEA is Ronald Newham, an old hand at EMI (he has 40 years' service) and Director responsible for engineering and marketing at EMI Electronics. Amona the pressing problems he is now facing is forging a new relationship with the Society of British Aerospace ComDanies (SBAC) now that the maior airframe manufacturers, including the guided missile sectors which have strong direct electronic interests, have been nationalised.

Even today few people fully realise that one person out of every three of the working population is employed in the public sector. Think about it. Seven million Deople. The whole of the manufacturing sector of British industry, the wealth producing sector, only employs $7 \frac{1}{2}$ million.

HAND-OUT?

As forecast in this column in our February issue, the Post Office had £100 million surplus and, under pressure, has agreed to return $£ 7$ per line to each telephone subscriber. My figures were exactly right but I was wrong in suggesting that the Post Office would not pay out. But they have done so grudgingly, with ill grace, and are clearly determined to claw it all back in an as yet unspecified manner.

But the Post Office still wins. £100 million invested at a modest 10 per cent over six manths still yields $£ 5$ million in interest, a handsome sum which, as it rightly belongs to the public, might well be used to buy 20 badly needed EMI Scanners for the Health Service.

Not content with piling up the profits in telecommunications, I note the postal side has been doing nicely with Jubilee stamps. The collectors' presentation pack of four stamps (face value $42 \frac{1}{2} p$) with 16 page booklet costs $£ 1 \cdot 20$. Without the booklet they are $52 \frac{1}{2} \mathrm{p}$, only 10 p more than buying them loose. And none will be used to post a letter. There's maximising profits for you.

THREAT FROM THE EAST?

With a thousand square kilometres of land and a population barely more than half of Greater London, Hong Kong now has 700 electronics factories, 70,000 workers in the business and a total output of over $£ 500$ million a year, nearly all in consumer electronics. Add to this Japan with its population of twice that of the UK and
equaliy frantic activity in consumer electronics and it's enough to send a shiver down the spine. Not to mention increasing production in places like Korea, Taiwan and Singapore.

Not content with domestic production, leading Japanese companies are busy setting up plants in other areas, including the UK where, at the time of writing, Hitachi is trying to follow the example of Sony and Matsushita. Naturally enough, British manufacturers of domestic TV are regarding the Japanese invasion with distaste but the government view is that if such companies are coming to Europe they may as well come to Britain with their investment and their iobs, especially if they establish themselves in areas of high unemployment.

The Hitachi affair is interesting because that company has recently helped establish a TV picture tube manufacturing plant in Finland and hope to source tubes from there for their proposed TV assembly plant in the UK. But the British would be happier if they used the Mullard 20AX tube made in Durham. Unfortunately the Hitachi tube is of their own design and to switch to 20AX would mean a re-design of the TV set. The bargaining is still going on.

INSTRUMENTS IMPROVE

Instrument manufacturers are doing a lot better than of late according to a survey by ICC Business Ratios. Covering 60 leading companies, the survey shows a 50 per cent growth over the past three years, export sales at 32 per cent of the total and an improvement on return on capital.

HIGH TECHNOLOGY

Few people outside the industry appreciate the level of complexity of high technology products. When the Americans decided to buy the European designed Roland allweather short range air defence missile system they found they had to translate into English 90,000 engineering documents and, almost as confusing, the 25,000 drawings were in metric measure whereas the Americans, so forward in many areas, still work in inches.

The initial phase of US production, through to prototypes and some test firings, is costing 265 million dollars. But if the Americans wanted to develop such a system themselves the cost would have been a billion dollars according to the Brigadier General who is managing the project for US Army Missile Command.

Rimaliont A SELECTION FROM OUR POSTBAG

Readers requiring a reply to any letter must include a stamped addressed envelope. We regret that we cannot answer any technical queries on the telephone.

A Hot Point

Sir-With reference to the letter from Mr Aylen Baker and Mr Wilkinson (June 1977), I wish to make a few points concerning solar heating systems as applied to domestic hot water systems.

Firstly, referring to Mr AylenBaker's point on polystyrene insulation, the temperature of solar heating systems rarely exceeds $60^{\circ} \mathrm{C}$, due to the high heat losses at these high temperatures, and the fact that with the systems used in this country, the quantity of water in the system is too much to be heated over $60^{\circ} \mathrm{C}$ in one day, even if no heat was extracted from the system to heat domestic water, etc. In fact, it is undesirable to raise the temperature too high, because weighed against the extra heat gain are the heavy losses. Thus polystyrene insulation for collectors is a cheap and effective way of cutting down heat losses.

The most efficient way of running a system is to have a fairly high flow rate through the collectors. This way the temperature rise across the collector is kept low and so are the heat losses from it. I would therefore recommend the pump to be switched on for long periods continuously, instead of short bursts as Mr AylenBaker suggests. This would lead to
water lying in the collector, and being heated to ridiculously high temperatures, leading to heavy heat losses.

On the other subject of angle of incidence, I confirm Mr Williams figures of $35-40^{\circ}$ as being the optimum for collection to be maximum all year round.
M. K. Berry,
Ramsgate.

Bad Move?

Sir-I note with some disappointment that Practical Electronics is "following the crowd" in changing to a larger format.
In my opinion, to change the size at all is a bad move, but to make the change part way through a volume is ridiculous beyond words, and shows little consideration for your readers, especially those who have kept bound copies over the years.

What argument can be used in favour of enlarging the page size escapes me. The magazine is presently of a convenient size, and the argument of using International paper sizes (e.g. A4) does not hold water, since the present page-size is so very close to the I.S.O. size B5 (see British Standard 3176). I can only suppose that someone "on high" has decided that "bigger" equals "better", and has issued his
"fiat" accordingly. We poor down-to-earth readers are (as usual) not consulted, and just have to "lump it".
R. C. Fuller,

Middlesex.
It has for long been our intention to increase the page size of PE. We believe this to be in the interest of readers and likely to be generally welcomed.

This change involves the use of larger rolls of paper by our printers. Unfortunately, reordering of bulk paper supplies does not coincide with the beginning of the year (or volume), but has to be made in the autumn.-Editor.

Cross-hutch Generator

Sir,-Constructors building the "Cross-hatch Generator", Practical Electronics, September 1976, may be interested in a modification to the generator which facilitates colour television receiver purity adjustment. The modification may also quite easily be incorporated into an existing unit, as it requires only minimal disturbance to the circuitry.

For colour television purity adjustments, an all white raster is required. This may be achieved simply by the addition of one single-pole, singlethrow switch, wired between VDD $(+9 \mathrm{~V})$ and pin 8 of IC6a (see Fig. 2 on page 710). With the switch open, the unit generates the cross-hatch pattern as before. When the switch is closed, the passage of video pulses through nor gate IC6a is inhibited. Pin 10 of IC6a is therefore held at zero volts, which is the required logic level to set the video component of the waveform at IC6d output to logic 1. Blanking pulses through IC6d remain unaltered. The resultant waveform generates an all white raster.
A. A. Birch,

Penrith, Cumbria.

We are pleased to announce that the Back Number Service has now been reinstated. This takes effect with the issue dated June 1977.

This and subsequent issues of Practical Electronics will be available at the inclusive price of $65 p$ per copy. (This includes Inland/Overseas postage and packing).
Orders should be addressed to :
Post Sales Department,
I.P.C. Magazines Ltd.,

Lavington House,
25 Lavington Street,
London SE1 OPF.
Cheques and Postal Orders should be made payable to I.P.C. Magazines Limited.

A limited supply of earlier back issues is also available. Requests, with appropriate remittance, should be sent to the above address.

In the event of non-availability, remittances will be refunded.

By E. B. EVES

Some integrated circuits for the construction of digital clocks are fitted with the facility to dim the display in the dark. The circuit in Fig. 1 allows this facility to be added to most other clocks, or indeed any circuits using l.e.d. displays. With some modification it can also be used to provide two brightness levels in filament lamps, as for instance in driving lights for usé in fog.

THE CIRCUIT

The circuit uses a light dependent resistor as the detector, connected in series with a fixed resistor. The voltage across the l.d.r. depends upon the current through it, which in turn depends upon the level of incident light.

The voltage is applied to the inverting input of IC1, while the non-inverting input is connected to the slider of Trimpot VR1.

The operational amplifier works as a saturation switch which controls the base of TR1. At normal daytime light levels the output of the amplifier is low, and TR1 is held off. The voltage at point X, therefore, is the sum of the two Zener voltages, and the output
from the circuit is approximately 0.6 V below this. As the light level falls, the voltage at the inverting input of the amplifier falls and eventually "crosses over" the voltage of the non-inverting input. The amplifier switches, and saturates TR1, shorting out D1. The voltage at point X is now approximately $0.6 \mathrm{~V}+\mathrm{D} 2$ voltage. Simultaneously the voltage at the output will be 0.6 V less than this ($\mathrm{V}_{\mathrm{BE}} \mathrm{TR} 2$), or D 2 voltage.
In order to prevent too high a current through the diodes, R4 should be large, and drop a large proportion of the supply volts, so that in both states the current in the diodes is within the correct operating range. For this reason the supply voltage needs to be high compared with the required display supply, even in daylight conditions. In the clock to which the prototype was fitted, the CT7001 clock chip was used, which requires a supply of 17 V . After some experimentation it was found that supply levels of 10.9 volts and 2.7 volts to the l.e.d.s via suitable dropping resistances gave acceptable day and night brightness levels, hence 5.5 volts and 13.7 volts were dropped across R4 in the two states. The maximum current rating for continuous

Fig. 1. Basic voltage control circuit

COMPONENTS
 - -

Resis	tors
R1	ORP12 (light dependent resistor)
R2	$6.8 \mathrm{k} \Omega$
R3	$4.7 \mathrm{k} \Omega$
R4	*
R5	$4.7 \mathrm{k} \Omega$
	Watt 10\% carbon

Potentiometer
VR1 $20 \mathrm{k} \Omega 20$ turn Trimpot

Capacitors
C1 $10 \mu \mathrm{~F} 16 \mathrm{~V}$ elect.

Semiconductors			
IC1	$\mu A 741$		
TR1	BC108, BC548 etc.		
TR2	BFX85		
D1-D2	BZY88*		

Miscellaneous

Veroboard, 8 pin d.i.l. integrated circuit holder, connecting wire.

* see text

Fig. 2. Component layout on 0.1in Veroboard

Fig. 3. Photocell location at display window

Fig. 4. (a) Common anode drive arrangement, such as DL707, etc. The existing display cathode resistors set the segment current. (b) Common cathode drive arrangement, such as DL704, DL33, etc. Here Rs sets the segment current
operation of the diodes used was 50 mA . A resistor of $1 \cdot 2 \mathrm{k} \Omega \mathrm{kept}$ the current within this limit, allowing a current of 5 mA in the "daylight" state, which was sufficient to operate the diode satisfactorily, and approximately 15 mA in the "dark" state.
The large difference in supply volts, especially when it is remembered that the l.e.d. typically drops $2 \cdot 1$ volts is due to the great change in sensitivity of the eye. The actual relative levels are a matter of personal preference, but care must be taken to stay within the current limits of the type of l.e.d. display used.

CONSTRUCTION

The layout of the circuit will depend on whether it is constructed as a separate unit as shown in Fig. 2, or it may be incorporated as part of the clock control boards. If a suitable voltage is available from the clock supply this may be done, if not, a higher tapping on the transformer, and a simple rectifier and smoothing circuit must be used.

The l.d.r. must be mounted to receive light falling on the display, but not light from the display. If a filter is used, setting the display back from it improves visibility in daylight, and leaves room for the l.d.r. to be mounted as shown in Fig. 3.

Potentiometer VR1 should be positioned so that it can be adjusted through a hole in the back or the bottom of the box. It was found preferable to use a $20-$ turn Trimpot, as this gave greater ease of adjustment than a normal skeleton preset. The connections to common anode and common cathode l.e.d.s are shown in Figs. 4a and 4b.

TESTING AND SETTING UP

When the circuit has been assembled, before connecting to the display, a $10 \mathrm{k} \Omega$ resistor should be placed across the output, and the voltage across this measured in full daylight. The display "window" should then be covered. After a short delay caused by Cl (which prevents transient light flashes or shadows switching the circuit), the voltage should fall. If it fails to switch, VR1 is probably set too low and should be adjusted until switching occurs at the required light level.

In order to assess the voltages required to give satisfactory outputs, D1 and D2 may initially be replaced with a variable resistor, connecting the centre tap to TR1 collector.

The setting up described above may be carried out in this way, then the l.e.d. displays connected and the clock started. The variable resistor can now be adjusted to give the required brightness initially in the dark, and then in daylight. It should be remembered to allow the eye to adapt for several minutes to the dark before deciding finally on the output level.

The voltage at point X can now either be measured or calculated for both states, and the correct values of Zener diodes put in place of the resistors. It is not advisable to use resistors permanently, because it was found that fluctuations in the current drawn by the display caused noticeable variation in intensity at night.

This circuit has been used successfully on a l.e.d. display digital clock. For other types of display this circuit may be suitable, although some modification of the output may be required, and certainly some experimentation to find the right voltage levels.

This circuit could be used to control the filament current in a phosphor diode display, and with a suitable output transistor it could also be used with incandescent lamps.

Microprocessor Symposium

R^{E}EADERS involved in the application of microprocessors will be interested to learn of a forthcoming residential symposium organised by the Society of Electronic and Radio Technicians. Entitled "Microprocessor Systems and Software", it will be held at the University of Kent at Canterbury frons September 26-29.

This symposium comes just twelve months after the very successful "Microprocessors at Work". In the intervening period many more working systems have been built and much practical experience gained.

This year's symposium is intended to take delegates from basic principles through surveys of current devices, development systems, system testing and software documentation. Further sessions will describe actual working applications, including greenhouse monitoring, control of heating and ventilating systems. medical applications and graphics terminals.

Further details can be obtained from the Symposium Secretary (MPU), S.E.R.T., 8-10 Charing Cross Road, London WC2H OHP, telephone 01-240 1152.

Build Your Own Computer

THIS one-day conference, the first of its kind in the UK, attracted some 400 delegates on a sunny Saturday in May. In fact, it proved so popular that people were being turned away at the door!

Following an introductory teach-in on digital circuitry and microprocessors. a fascinating address by Manfred Peschke, publisher of the American small computer systems magazine Byte, gave a picture of personal computing developments in the USA. Applications including colour displays, synthesised speech and music, and speech analysis were described. and finally some results from a sample readers' survey conducted by Byte were given.

These revealed that some 35 per cent of readers owned an operating home computer system, while 74 per cent had qualifications at least equivalent to a Bachelor's degree. The median salary of the sample was $\$ 20,000$, and most of them expected to spend about $\$ 2,000$ per annum on their hobby! It would be interesting to see results of a similar survey in the UK.

Others speakers described the various items of hardware and software of interest to the personal computing enthusiast, with special reference to input/output devices. Several users recounted their experiences in building and using small computers in various fields, including video synthesis and education. The final speaker indulged in a little crystal gazing on the future of the computer in the home, from appliance control to complete home information systems.

Twelve firms had stands in an associated exhibition, displaying a wide range of hardware and literature. Orte of these. Computer Workshop, announced at the conference a new, complete four-terninal, multi-user computer system running time-sharing BASIC (a simple high-level language) and priced at under $£ 3,000$ including a printer. Previously, a system offering such facilities would probably have cost over ten times this amount.
Online Conferences Ltd.. who organised the conference, plan to run a similar event next year. They can be contacted at Cleveland Road. Uxbridge UB8 2DD.

MRRHE PLALE

Items mentioned in this feature are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

TOUCH CONTROL KITS

Touch activated switching can now be employed by the hobbyist or evaluated by product designers with a new kit offered by AMI Microsystems.
Designated the TCK 100, the kit includes the first microcircuit available off-the-shelf for operation of touch activated (capacitance) control panels. Up to 16 touch switches can be operated with a single integrated circuit which can be interfaced, using the AMI kit, with virtually any electrically operated product or apparatus.
Included in the kit is a prewired control panel, an AMI S9263 integrated circuit and an instruction package. With the addition of a few readily available standard components such as l.e.d.s, a transformer, etc. the unit will conveniently demonstrate the many advantages of AMI's touch control switching, which has already been used in similar form in electronic cookers introduced in the United States by Frigidaire.

As well as offering greater reliability than conventional electromechanical switches, touch control switching panels are mechanically safe, since there are no protruding knobs, electrically safe because of the insulator layer separating the circuitry from the touch surface, and more easily cleaned, a feature of particular significance in the design of domestic appliances.

This form of switching can be used in computer control, television equipment, domestic appliances, power tools, games, industrial equipment, keyboards of all types, and many other consumer and industrial products.

Full technical details and further information on the AMI TCK100 Touch Control Kit can be obtained from AMI Microsystems Ltd., 108A Commercial Road, Swindon, Wilts.

PROGRAMMABLE CALCULATORS

Claiming a major technological advance in handheld programmable calculators featuring pre-written solid state software libraries Texas Instruments have just announced their TI-58 and 59 models.

Both can use interchangeable prerecorded program libraries which range in content from applied statistics and surveying to aviation and marine navigation.

The module programs can be addressed repeatedly from the keyboard or be inserted as subroutines in other programs developed by the user. Module contents cannot be altered although users of the TI-59 can record up to 960 steps of any new program on two magnetic cards. (A module and an inserted card can be seen in the photograph.)

So that users can put their machines to work more quickly and obtain maximum benefits of programming, Tl has developed new instructional material in a "personal programming" book form to replace the traditional owner's manual. This learning guide comes with either calculator.

In step-by-step fashion, users can learn simple programming techniques in the book's first chapter. Then they can move on through a self-paced course in programming. A comprehensive selection of examples from a number of disciplines permit users to apply programming power to a particular personal, professional, or occupational interest.

Included with each calculator is a master library module and manual

Texas Tl-59 Calculator

covering 25 pre-written programs in engineering, mathematics, statistics and finance.

Backed by a one-year warranty the TI-58 will sell for $£ 99.95$ and the 59 for $£ 24.9$-95.

Lower priced at $£ 49.95$ is the TI-57 which should have special appeal for users wanting to learn programming fundamentals, like the 58 and 59 it has features to make it easy for users to edit or correct errors in programs. These include single-step and backstep keys to review programs and insert and delete keys so instructions can be added or removed at any time.

Besides its programming features the calculator has the normal facility for higher mathematical problem solutions.

The TI-57 comes with a charger, carrying case, owner's manual and program record forms. The same warranty as before applies.

PRINTED CIRCUIT KIT

Amongst the many new items in the latest edition of Verospeed components catalogue is a complete copper etching kit that is claimed to be both clean and safe to use.

The Seno-GS system comes in a special pack and the chemicals/ powders are kept in sealed bags. One of the bags is used to "seal-in" the prepared board during the etching process. This is accomplished by using two slide-on clamps. Designed for quick production of prototype printed circuits from copper-clad blanks, the kit will remove the copper from up to 10 Eurocard-size boards.

Also contained in the kit is an etch resist pen, transfers and a copper cleaning block. Finally, a special neutraliser is included which ensures environmentally safe disposal once the kit is exhausted.

Further details and price of the Etching Kit are contained in the Verospeed Catalogue available from Verospeed Service, Unit 10, Barton Park Industrial Estate, Eastleigh, Hants, SO5 5RR.

Do not toy with the idea of road safety for children. Build this educational working model; for it's definitely no toy, but indeed could be a life-saver!

Practical demonstration is one of the most effective methods of teaching. Another, is learning by your mistakes; but there are occasions when the price of a mistake is too high! In these situations the written word gives way to the instructional model, where research has shown that practical demonstration of techniques and procedures eases assimilation of information, which might otherwise be highly indigestible.
It was this philosophy which resulted in the design of a small scale working model of a Pelican Crossing, primarily intended as a teaching aid for children and old people, but found in practice to capture the attention of other age groups from all walks of life.

The model had particular novelty value for children, who took delight in its operation, whilst being blissfully unaware that they were learning at the same time. Questioned afterwards, the children showed that they had grasped the essentials of using a Pelican Crossing, and their parents expressed greater peace of mind as a result.
The beneficial value of taking on a constructional project such as this for a local school or old people's home is considerable, but even at home in the lounge, the model makes an interesting conversation piece, and by its constant reminder to children, could one day save their lives.
giving fast switching edges suitable for driving TTL logic, even with a long time constant. The output pulses are fed to input a of IC2 (decade counter). The вСD output of IC2 is then fed to the input of the 74145 (IC3), which is a $B C D$ to decimal decoder/driver. Pushing S1 therefore, will cause IC3 to count through, operating RLA to RLE in turn. These relays are used for the various switching operations on the pelican crossing.

Steering diodes D7 to D18 ensure that only the correct lights operate. As well as triggering IC1, S1 also resets the decade counter IC2 to zero. The bleep is generated by IC5 modulated by IC4, the latter being a slow running multivibrator. The output from IC5 drives the loudspeaker via C8. Another slow running multivibrator is formed by IC6, which operates relay RLF. This in turn operates the flashing amber and green-man lights.

Various outputs of the 74145 have been strapped together to enable the timing cycle ratios of the lights necessary for realism. For instance, when S1 is pressed, the wait sign is illuminated, but the 74145 is allowed to count two pulses before the traffic lights change to amber.

A smooth 6.3 volt supply powers IC4, IC5 and IC6. This prevents buzzing in the loudspeaker, and relay "chatter" due to ripple. The other i.c.s are fed from a 5 volt stabilised supply, provided by IC7 and its associated components. The power supply circuits are shown in Fig. 2.

THE CIRCUIT

The circuit is shown in Fig. 1, and when push button

Fig. 1. Pelican
circuit diagram

Fig. 2. Power supply unit. Two $6 \cdot 3 \mathrm{~V}$ lines are generated, one with additional smoothing (R5 and C14)

COMPONENTS
Resistors

R1	$2.7 \mathrm{k} \Omega$	R4	100Ω
R2	$1 \mathrm{k} \Omega$	R5	470Ω
R3	$1.8 \mathrm{k} \Omega$		

All resistors $\frac{1}{4}$ W 5\% unless otherwise stated
Potentiometers
VR1 $100 \mathrm{k} \Omega$
VR2 $100 \mathrm{k} \Omega$
VR3 $2 \cdot 2 \mathrm{k} \Omega$
VR4 $47 \mathrm{k} \Omega$
VR5 $47 \mathrm{k} \Omega$
VR6 10k Ω
VR7 $47 \mathrm{k} \Omega$
VR8 $100 \mathrm{k} \Omega$
All min horizontal skeleton presets

Capacitors

C 1	$47 \mu \mathrm{~F}$ tantalum bead type
C 2	$330 \mu \mathrm{~F}$ elect
C3	$0.1 \mu \mathrm{~F}$ paper
C 4	$22 \mu \mathrm{~F}$ tantalum bead type
C5	$0.01 \mu \mathrm{~F}$ paper
C6	$0.1 \mu \mathrm{~F}$ paper
C7	$0.01 \mu \mathrm{~F}$ paper
C8	$4.7 \mu \mathrm{~F}$ tantalum bead type
C9	$22 \mu \mathrm{~F}$ tantalum bead type
C10	$0.01 \mu \mathrm{~F}$ paper
C11	$10,000 \mathrm{~F}$ elect
C12	$0.22 \mu \mathrm{~F}$ paper
C13	$0.47 \mu \mathrm{~F}$ paper
C14	$470 \mu \mathrm{~F}$ elect
C15	$1,000 \mu \mathrm{~F}$ elect

Semiconductors

D1-D6	1N4001 1A 50 V (6 off)
D7-D18	1N5401 3A 100V (12 off)
D19-D22	REC 76 2A 200V (1 off)
D23-D24	1N5401 (2 off)
TR1	BC108
TR2	BC108
IC1	74121
IC2	7490
IC3	74145
IC4-6	NE555 (3 off)
IC7	LM309K 5V regulator

Miscellaneous
6 off reed relays (6-9 volt, 700Ω coil)
2 off SPDT push-buttons
Mains on/off switch
2 off 14 pin d.i.l. i.c. socket
3 off 8 pin d.i.l. socket
1 off 16 pin d.i.l. socket
Strip-board 91 by 204 mm (0.1 inch matrix)
Strip-board 95.5 by 50 mm (0.1 inch),
for power supply.
Miniature loudspeaker 35Ω
Mains transformer 6.3V 5A
Fuse (1 amp) and holder
Instrument type mains plug and socket
Mains neon lamp
Aluminium front plate
32 way edge connector
Up to 17 bulbs (6 volt 0.04 amp)
Tinplate for traffic lights
Coloured gel for lenses
Aluminium tubing
Con-Tact or Fablon

Fig. 3. Board layout.' Diode leads should be sleeved, and links shown beneath the relays should be made on the conductor side. Veropins may be used instead of a 32 way connector, and are used where several wires terminate at one hole

	RED	AMBER	FLASHING	green	RED	Green	$\begin{aligned} & \text { FLASHNG } \\ & \operatorname{GREEN} \end{aligned}$	walt	bleeper
$\begin{gathered} \text { SEQUENCEE } \\ \text { NUMBER } \end{gathered}$	\bigcirc	0		0	\hat{q}	so		WAIT	6
1				0	\％				
2	$]$			\bigcirc	GH_{3}			WAIT	
3				0	GH^{3}			WAIT	
4		0			枵			WAIT	
5		0			枵边			WAIT	
6	0					ns			\cdots
7	\bigcirc					B			σ
8									
9									
1				0	\％				

Fig．4．Sequence of events at Pelican Crossings

CONTROLS

（1）Adjustment of the transistor multivibrator pulse rate is made by VR1．
（2）The period of IC1 is controlled by VR2．Presets VR1 and VR2 need to be adjusted together to produce a full sequence of events．
（3）Adjustment of the bleep rate is set by VR3 and VR4．
（4）The actual bleep pitch is governed by VR5 and VR6．
（5）The amber light and green－man flashing rate can be set by VR7 and VR8．

The dormant state of the Pelican Crossing is when the pedestrian lights are at red，and the traffic lights are at green（see Fig．4）．When the push to cross button is pressed，the crossing system goes through five steps，starting with the WAIT signal illuminating， and finishing with the crossing back at the dormant state．The period of IC1 should be set by VR2，for the overall time taken by the crossing to complete its cycle of events．Then the multivibrator rate should be adjusted by VRI to provide enough pulses during that period to drive the crossing system through the com－ plete number of operations．

Fig．5．Power supply board layout．Nylon nuts and bolts should be used for mounting

Fig. 7. Complete wiring arrangement

Fig. 8. Real life dimensions of traffic and pedestrian lights, and control box (drawings not to scale)

CONSTRUCTION

The main circuit is built on stripboard, the layout of which is illustrated in Fig. 3. A 32 way edge connector links this board to the rest of the circuit, including the separate power supply board of Fig. 5. The general layout of the whole unit is shown in Fig. 6.

The mains input socket, on/off switch, mains neon and fuse, are all mounted on a small aluminium front panel. Also, the transformer and Cl are mounted separately, connected by a wiring loom (Fig. 7).

Various full size dimensions of the traffic and pedestrian lights and control box are shown in Fig. 8. The dimensions are in millimetres and must be scaled down, dependent upon the required size of the model. The control box which would have contained the PUSH To cross button for maximum realism, was found to be too small on the prototype, and so a separate box on a larger scale was mounted on the side of the model. To alleviate detailed drawing and lettering on this larger control box, a photograph of the real thing was reduced to postcard size and mounted on the box facia.

The traffic light heads were built from thin tinplate suitably bent to shape, solder being used to fix the pieces together. Aluminium tubing was used to fabricate the traffic light columns. The lenses were constructed by placing red, amber or green gelatine over the light bulbs. In the case of the red-man and green-man. black Con-Tact was placed over the gelatine, and then cut out with a sharp knife, to give the outline of a man. The road itself is black Con-Tact, and the white lines are pieces of white Con-Tact.

The push buttons may have to be wired using screened cable due to the length of the looms, and the fact that TTL circuitry is susceptible to noise pick-up. It may also help to put suppressor capacitors across the push button contacts.

The loudspeaker is mounted on the side of the case, with small holes to allow for sound propagation.
The circuit does not show the push button on the other side of the road. However, the additional button is simply wired in parallel with S1. Likewise, all bulbs are not illustrated, and the extra repeater bulbs are wired parallel to the ones shown.

The prototype circuit board featured in the photograph differs from the diagrams, where the layouts were rearranged to accommodate point to point wiring on the component side

PRTENTE RETUETMO.

COIN DETECTVE

An improved coin-operated timer capable of detecting fraud and suitable for a wide variety of uses, including parking meters and other pay-by-the-hour facilities, is claimed by Veritronics in BP 1464371.

The signal generator shown in the block diagram, Fig. 1, generates a 100 kHz waveform, which is applied to one plate of a capacitor, C1, through which an inserted coin passes. The current amplifier, connected to the other plate of the capacitor, amplifies the square wave of current induced to flow by the resultant voltage waveform, and the rectifier produces a proportional d.c. signal.

The rectifier output is fed to the "upper limit" and "lower limit" detectors. If both give a satisfactory output when the coin drops through the capacitor, an AND gate is activated to transmit a signal to a 10 ms delay which gives an output only if the capacitance remains with in the required limits for the 10 ms as the coin falls. This prevents the apparatus being operated by unauthorised large objects.

The delay output is fed to the monostable, which when triggered gives a delay of 100 ms . During this delay the circuitry is primed by causing diodes D1, D2 to conduct and at the same time a fixed voltage is applied to D1. At the end of the 100 ms delay, S1 stays on for 30 ms , to allow a controlled charge to flow into the timing capacitor C2 via diode D1. Thus for each genuine coin detected the timing capacitor voltage is raised by a fixed amount.

Meanwhile, a low frequency oscillator drives the 30 microsecond switch S3, which removes a controlled amount of charge from capacitor C2 every 1.5 seconds. When not being charged or discharged the capacitor is presented with the high reverse impedance of diodes D1, D2.

The meter ME1 is connected to a peak voltage sampler for capacitor C2 and indicates time paid which has not been used up. The zero level detector detects the end of time and switches off the equipment (such as games and appliances).

If the device is tampered with, the 60 ms delay operates, to indicate that a coin or other object has been in the chute for too long; a 60 second switch S2 then operates, to discharge the timing capacitor C2.

The obvious advantage of the invention is that it is purely electrical, and contains no mechanical or moving parts, except for the coin itself.

FEEDBACK KILLER

In BP 1458 663, A.R.D. Anstalt, of Liechtenstein, proposes an apparently novel idea for killing acoustic feedback between the microphone and loudspeaker of a two-way communications system. The object is to reduce feedback risk, without recourse to voice-operated switching, even where the microphone and loudspeaker lie closely adjacent at each station.

The diagram Fig. 1 shows the circuit adopted at a station F, with a single loudspeaker and two microphones. The outputs from the two microphones are applied to an additive circuit A and a subtractive circuit S, each circuit being generally a transformer or amplifier.

The additive and subtractive outputs are passed through phase and amplitude adjustment circuitry P and summed in amplifier 2. This feeds the output line to remote stations and the loudspeaker LS1 of home station F_{1} via hybrid H and home amplifier 1. Automatic gain control (a.g.c.) is also incorporated in the circuit.

When a speaker talks directly into the two microphones this "wanted" sound produces effectively equal outputs from each. But each microphone output also inevitably contains a component due to "unwanted" sound emanating from the adjacent loudspeaker LS1. However, because LS1 is laterally offset with respect to the microphones by what is inevitably a different distance from each, the unwanted sound compqnents in the microphone outputs will differ in phase from each other and from the wanted component.

BP 1458663

It is interesting to note that the American pop group, "The Grateful Dead", have experimented with a similar system to kill feedback from their stage PA system.

SPECIAL SATELLITE

As part of the special research programme of the International Magnetospheric Study (IMS), two major satellite missions may be regarded as the heart of this project. Scheduled to run for the period 1976-1979, IMS is set to make a detailed study of the various mechanisms that have appeared as a result of the substantial data now available.

There are a number of important reasons for using the magnetosphere as a sort of laboratory. It provides an opportunity to study in a small scale the activities in the universe. A very large proportion of the matter in the universe consists of plasma interacting with a magnetic field. The process by which magnetic field energy is transferred to ionised particles becomes a matter of major significance.

Since this process occurs in the magnetosphere it is possible to study, on a small scale, the behaviour of matter in the universe. There are vital rewards from this for not only can it help to solve some of the meteorological problems (particularly the prediction of the weather) but also provide clues toward a better knowledge of the pulsar and nuclear fusion.

THE TRAGEDY OF GEOS

The special satellite GEOS was designed to carry scientific equipment into a stationary orbit. This is the first satellite to be devoted to such a mission and it carried the hopes of many scientific groups. Unfortunately the launch was a partial failure. The full details of the failure are not yet known but the
consequence is that GEOS will not reach its planned stationary position of $36,000 \mathrm{~km}$ above the equator. An emergency decision at the time of the rocket motor failure put the GEOS into a highly elliptical orbit with a 12 hour period. This means two things: the first, only half the useful time each day will be available and the second that the satellite will pass through certain levels of the radiation belt which may so damage the basic electronics that its life may be limited to six months. The net result is that only a few per cent of the target hopes will be reached.

This is a salutary warning that in such important missions there should be a back-up system. The cost of the launcher is small when compared to the total cost. The tragedy is that all the costs of the launch have to be borne by ESA. Though some useful data will result it is a high cost, for more than 100 million dollars have been spent so far on GEOS.

THE PLANNED MISSION

The satellite would have been stationary at $36,000 \mathrm{~km}$ above the equator. This position covers the region of the magnetosphere where disturbances take place due to dynamic processes. GEOS was to have been so positioned that the field lines joining the auroral zones would be observed both from the satellite and the ground stations. Thus the passage of particles back and forth along the field lines could be studied in great detail.

The satellite would have been in permanent view from a tracking station at Darmstadt in West Germany. One of the special problems with satellite experiments is the modification of local environments by the satellite. On some missions the spacecraft itself masks special phenomena. One of these is spacecraft charging and this can reach levels of 10 kV . To this end GEOS has been given an all metallic skin so that there is equipotential distribution. There are eight booms on which are mounted sensitive detectors. The booms carry these detectors some 20 metres away from the body of the satellite. It is an ambitious attempt to isolate the effects not only of the satellite itself but also the equipment within it. This very long boom system is unique and it is hoped that the sensitivity will remain unimpaired. One of these sensors is a detector set to react to a variation of the magnetic field as low as a thousand millionth of the Earth's field.

The experiments involve a number of very sensitive parameters. This is necessary for a proper understanding
of the interactions of a waveparticle nature. Four of the experiments will measure particle flux and the variations with direction and energy, over a wide range of thermal levels. There are also three experiments which will measure the effect of electromagnetic waves. A frequency of a range from zero to 77 kHz will be used for the electric fields and a frequency of zero to 20 kHz for the magnetic fields. Some of the experiments will be in duplicate to safeguard data.

The combined venture of NASA and the European Space Agency, which is the other major half of IMS, involves three satellites with a code name of International Sun Earth Explorer.

CHANGE OF NAME

The Mariner spacecraft designated for the second flypast of Jupiter and the other outer planets have a new name. They are now to be called Voyager / and 2. They will start their journey with at least one new addition to the mission. It will be an opportunity to check at close quarters the new discovery of possible rings round Uranus. These rings would appear to contain lumps of dense material, probably rocks of the order of 100 km in diameter. This is something very exciting and susceptible to direct observation. The discovery was made a few weeks ago when an occulted star was found to have been eclipsed a number of times. This was witnessed by three independent teams of observers. It is possible that this confirmation may be available in about 1986.

It is interesting that Herschel who discovered Uranus did in fact note that there appeared to be a flattening of the poles. He wrote that there appeared to be double opposite points which might be rings! He gave this information to the Royal Society in 1796 and the details appear in the Philosophical Transactions of 1798. Later he decided that there were no rings. All this points to something peculiar about an already somewhat strange planet. However, considering the amount of observations over the 180 years that have elapsed since then it is surprising that no other references appear in the literature. It is of course possible that there is another explanation which may involve refractive layers round the planet. The correlation of three distinct and separated observing teams make a prima facie case for the solid or nearily solid occulting medium. Though it must also be said that for the occulted star to have appeared precisely in position on each side of the planet calls for very close observations.

A selection of readers' original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to its merits.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

GUITAR frequency DOUBLER

The circuit of Fig. 1 gives an output frequency which is twice that of the input. This is done quite simply by full-wave rectification. In rectifying the input signal, however, a good deal of distortion is produced at the output.

However, there are very few guitarists who do not thrive on distortion in some form and anyway the introduction of harmonics makes for a more interesting sound.

In Fig. I IC2 takes the negative half oif the input sinewave via D1 and inverts it to produce a positive output. The positive sinewave input via D2 is not inverted so that the end product is effectively frequency doubling.

ICl is required to produce an amplified version of the guitar output,
as normally this would not be sufficient to cause conduction in the diodes.

The preset VRI should be adjusted to provide 4 V r.m.s. at point A with either a guitar or audio generator, set at around 50 mV , connected to the input. This set-up should give around 180 mV at pin 6 of 1 C 2 which in turn is reduced by the potential divider R6 and VR2 to give a maximum output of about 80 mV .

If desired it is possible to get rid of a lot of the upper harmonics which contribute to the distortion by strapping a $0.022 \mu \mathrm{~F}$ capacitor across VR2.
P. G. Ludgate, High Wycombe, Bucks.

Fig. 1

RANDOM LIGHT DISPLAY

Pulses from one half of the 7413 in Fig. 1 (dual Schmitt irigger used as oscillators), are fed to the clock pin of IC2 (sk flip-flop) via S4. The flip-flop is wired with the J and K inputs at logic 1, thus each clock pulse causes the outputs Q and Q to swop states. The clock frequency is controlled by the value of VRI and associated capacitor. Values of $200 \mu \mathrm{~F}$ and $6,000 \mathrm{pF}$ were chosen to give slow and fast clocking frequencies, selectable by S3. The flip-flop outputs are used to drive lamps, via

TR1 and TR2. Releasing the pushbutton leaves one lamp or the other alight, providing a simple heads or tails circuit.

An added refinement to this circuit has been incorporated to widen the scope of its use. Here, the other half of the 7413, also connected as an oscillator, produces clock pulses which are fed to the SD and CD inputs of the flip-flop. These latter pulses take precedence over the pulses at the clock pin, consequently the output depends upon the pulses to the direct inputs together with the clock input. When the direct inputs are at logic 1 , a complement output is
obtained. Setting the direct inputs to logic 0 results in Q and Q being in the same state (logic 1). Thus by controlling the frequency of both oscillators, one may obtain an interesting variety of lighting effects from the lamps. The switches S1 and S2 may be closed, if it is desired to operate the circuit in some kind of permanent display. The number of lamps may be doubled by using the other half of the flip-flop, as it shares a common clock pulse with the first half.

$$
\begin{aligned}
& \text { P. R. G. Reynolds, } \\
& \text { Benfleet, } \\
& \text { Essex. }
\end{aligned}
$$

The circuit shown in Fig. 1, when wired up to the direction indicator system of a car or motor-cycle, will give an audible warning "bleep" whenever the indicators are activated. Unijunction TRI, together with R1 and C1, forms an audio oscillator whose output is amplified by TR2 and applied to a low impedance miniature loudspeaker or earpiece. Diodes D] and D2 maintain isolation between right- and left-hand indicator circuits. The unit is specially suited for motor-cycles, where the indicator units are not self-cancelling and visual indications are not sufficient reminder. 7. Najam,
Bedford.

WARNING SYSTEM

gUITAR TUNING REFERENCE

THE heart of the circuit in Fig. 1 is the popular 555 timer, which is utilised in the astable mode of operation to produce a reference note for tuning guitars.
The frequency produced is determined by the formula:

$\mathrm{f}=\frac{1 \cdot 44}{(\mathrm{VR} 1+2 \mathrm{VR} 2) \mathrm{C} 1}$
Or $\mathrm{Cl}=\frac{1.44}{(\mathrm{VRI}+2 \mathrm{VR2} 2) \mathrm{f}}$

where $\mathrm{f}=164.81 \mathrm{~Hz}$ for bottom E , and 659.78 Hz for top E .

Top E may be a better choice, as the harmonics would be out of the ear's range.

Taking the nominal value $30 \mathrm{k} \Omega$ for VR1 and VR2 to roughly give a centre setting, the value for Cl would be $24 \cdot 2 \mathrm{nF}$ for top E , and 97 nF for bottom E, using the above formula.

The unit is fairly stable, and will operate from a supply voltage ranging from 4 to 15 volts. With the timing controlled by VR1 and VR2, the unit can be calibrated using an oscilloscope or frequency counter looking across the terminals of LS1.

Fig. 1

W. P. Bond,

 Cheltenham.0N adding the phasing unit (PE Sept 1973) to my PE Synthesiser, it was decided that the circuit should be voltage controlled to be in keeping with the rest of the synthesiser.

The circuit in Fig. 1a was developed for this purpose, and uses a bulb to control light sensitive resistors, which replace the dual-gang potentiometer of the phasing circuit.

With VR1 in its mid position, a negative going ramp (Fig. 1b) applied to the voltage control input. would cause the outputs of IC1 and

Fig. 1

IC2 to swing negative, causing TR2 to switch on, and light the bulb in accordance with the magnitude of the input voltage.
If, however, the wiper of the bias control VR 1 is set negative, the output of IC1 now sits positive (Fig. Ic). this switching TR2 off. and TR 1 on, causing the bulb to remain alight, and gradually dim on each ramp, returning suddenly to bright again.

The circuit has proved to be very versatile, in that with the adiustment of just one control (VRI)
it is capable of accepting both positive and negative control signals. and is able to reverse their growth if required.

A further use found for the circuit was to operate a waa-waa unit. and some interesting results can be obtained when used in conjunction with either a sample and hold, or an envelope shaper.
M. Whyte,

Merseyside.

sacatatas

Marshall's
A. MARSHALL (LONDON) LTD. DEPT. P.E.
LONDON $-40-42$ Cricklewood Broadway NW2 $3 E T$ GLASGOW-85 West Regent Street G2 20 D Tel: 041-332 4133
BRISTOL-1 Straits Parade Fishponds Rd BS16 2LX
CATALOGUE

COMPLETE BUYERS' GUIDE TO
ELECTRONICS COMPONENTS
PRICE 35p POST PAID, 25p FOR CALLERS Tel: 01-4520161. Telex: 21492

TOP 400 SEMICONDUCTORS FROM THE LARGEST RANGE IN THE U.K EXPRESS M.O. SERVICE BY RETURN POST-al orders received despatched same day on stock items $\left.\right|_{B F X 84} ^{B F X 30}$ \begin{tabular}{ll|l|l|}
2N696 \& 0.35 \& 2N3703

2N697 \& 0.30 \& $2 N 370$

2N696 \& 0.35 \& $2 N 3703$

2N697 \& 0.30 \& $2 N 3704$

2N698 \& 0.62 \& 2N3705
\end{tabular}

 \begin{tabular}{ll|l|}
\& $2 N 76 A$ \& 0.12

$2 N 3708$

$2 N 709$ \& 0.21 \& $2 N 3709$

\hline

2N709 \& 0.50 \& $2 N 3710$

2N718 \& 0.27 \& $2 N 3711$

2N718 \& 0.27 \& $2 N 3711$

$2 N 718 A$ \& 0.30 \& $2 N 3712$
\end{tabular}

\qquad | 2NT20A | 0.80 | 2N3713 |
| :--- | :--- | :--- |
| 2N914 | 0.35 | 2N3714 |
| 2N916 | 0.30 | 2N371 | | 2N914 | 0.35 | 2 N3714 |
| :--- | :--- | :--- |
| 2N916 | 0.30 | $2 N 3715$ |
| $2 N$ | | | | 2N916 | 0.30 | 2N3715 |
| :--- | :--- | :--- |
| 2N918 | 0.38 | 2N3716 |
| 2N929 | 0.25 | 2N371 | 2N918

2N929
2N930

| 2N2218 | 0.60 | $2 N 3794$ |
| :--- | :--- | :--- | :--- |
| 2N2218A | 0.37 | $2 N 3819$ |
| 2N | | |

$\begin{array}{llll}\text { 2N2218A } & 0.37 & \text { 2N3820 } \\ \text { 2N2219 } & 0.30 & \text { 2N } 2323 \\ \text { 2N2219A } & 0.32 & \text { 2N3 }\end{array}$
$\begin{array}{llll}\text { 2N2219A } & 0.30 & 2 N 3823 \\ 2 N 22923\end{array}$

2N 2220	0.35	$2 N 3906$
2N2221	0.22	2 N 4036

2N $22221 A$	0.22	2N4036
2N2222	0.25	2N 4037

$\begin{array}{llll}\text { 2N2222 } & 0.25 & \text { 2N4058 } & 0.2 \\ \text { 2N2222A } & 0.25 & \text { 2N4059 } & 0.20 \\ \text { 2N2328 } & 0.25 & \text { 2N }\end{array}$

2N2368	0.25	2N4060	0.20
2N2369	0.25	2N4061	0.17
2N2369A	0	29	2N4062
2N2644	0.75	2N4U2	0.17

2N2369A	0	29
2N4062		
2N2646	0.75	2N4126
2N2647	1.40	2N4201

2N2647
2N2904

2N2905A	0.37	2N4921	0
2N	2N 4922	0.	
2N2906	0.28	$2 N 4923$	0.70

2N2906	0.28	$2 N 4923$	0.70
2N2906A	0.25	$2 N 5190$	0.21

2N 2906A	0.25	2N5190	0
2N2907	0.21	2N5191	0
2N2007A	0.22	2N5	0.75

$\begin{array}{lllll}\text { 2N2924 } & 0.15 & 2 N 5192 & \text { 2N5195 } & 0.90 \\ \text { 2N2925 } & 0.17 & \text { 2N5245 } & 0.35 \\ \text { 2N3019 } & 0.55 & 2 N 525 & 0.40\end{array}$

2N2925	0.17	$2 N 5245$	0.35
2N3019	0.55	$2 N 5294$	0.4
2N3053	0.30	$2 N 5295$	0.40

2N3392
2N3393
$2 N 3394$
$2 N 3439$
$2 N 3439$
$2 N 3441$
$2 N$

2N3441
2N3442

2N3638
2N 3638 A
2N3638A
2N3639
2N3641
2N
2N3702

0.15	$2 N 6126$	0
.15	40361	0
.15	40362	0
.16	4035	

.15	40361	0
15	40362	0
16	40363	
.18	40406	0

16	40363	1
18	40406	0
16	40407	0
18	40408	0

| | $B C 158$ |
| :--- | :--- | | BC159 |
| :--- | :--- |

\qquad

BD11	1.29	BFX85
B0116	1.20	BFXR7
BD131	0.54	BFX85

TTL FROM NATIONAL, ITT, TEXAS, SIGNETICS, ETC.
7400

$\begin{aligned} & 0.40 \\ & 0.40 \\ & 0.41 \end{aligned}$	INTEGRATED CIRCUITS					
0.40	CA3020	1.761	LM1808	1.92	TAA550	0.60
0.40	CA3020A	$2 \cdot 29$	LM1828	1.75	TAAS60	1. 60
1.25	CA3028B	1.01	LM3301N	0.85	TAA570	$2 \cdot 30$
0.34	CA3028A	$1 \cdot 29$	LM3302N	1.40	TAA611B	1.85
0.38	CA3030	$1 \cdot 24$	LM3401	0.70	TAA621	$2 \cdot 15$
0.36	CA3030A	$1 \cdot 89$	LM3900	0.75	TAA661a	1.32
0.34 1.37	CA3045	140	LM3905	1.60	TAA661B	1.32
517	CA3046	0.89	LM3909	0.68	TAA700	3.91
50	CA3048	2.23	MC1035	1.75	TAA930A	1.00
31	CA3049	1.65	MC1303	1.47	TAA930B	1.05
0.32	GA9057	7.62	MC1304	1.85	TAD100	95
2.20	CA3053	0.60	MC1305	1.85	TBA120	0.65
0.20	CA3080A	1.88	MC1310	1.91	TBA500	2 -21
0.15	CA3086	0.51	MC1312	1.98	TBA5000	2.30
0.20	CA3088	1.59	MC1327	1.54	TBA510	2.21
0.10	CA3089	252	MC1330	0.92	TBA5100	$2 \cdot 30$
0.10	CA3090	3.80	MC1350	0.75	TBAS20	2.21
1.35	CA3330	0.94	MC1351	1.20	T8A5200	$2 \cdot 30$
1.55	LM301A	0.65	MC1352	0.97	TBA530	1.98
1.35	LM301N	0.44	MC1357	1.45	TBA5300	2.07
1.45	LM304	2.45	MC1458	0.91	TBA540	$2 \cdot 21$
1.25	LM307N	0.65	NE555	0.53	TBA5400	$2 \cdot 30$
0.58	LM308C	1.82	NES56	1.05	TBA550	$3 \cdot 13$
0.58	LM308N	1-17	NE565	1.30	TBA5500	$3 \cdot 22$
0.60	LM309K	2.10	NE566	1.65	TBA5600	$3 \cdot 22$
0.45	LM317K	3.00	NE567	1.80	TBA570	1.29
0.65	LM318N	2.25	SAS560	2.50	TBA5700	$1 \cdot 38$
1.40	LM323K	6.40	SAS570	2. 50	TBA641B	2.50
0.85	LM3399N	1.75	S042P	2. 50	TBA651	1.80
0.35	LM348N	1.91	76001 N	1.57	TBA700	1.52
0.40	LM360N	2.75	76003 N	2.55	TBA7000	1.61
0.45	LM370N	3.00	76008k	2.50	TBA7200	2. 30
0.30	LM371N	2. 25	76013 N	1.70	TBA750	1.98
0.23	LM372N	$2 \cdot 15$	76013N0	1.57	TBAT500	2.07
0.24	LM373N	2.25	76018K	2.50	TBA800	1.20
0.35	LM374N	$2 \cdot 25$	76023 N	1.70	T8AB10	1.16
0.24	LM377N	1.75	76023ND	1.57	T8A820	1.03
0.24	LM378N	$2 \cdot 25$	76033 N	2.55	T8A920	1.79
0.50	LM379S	3.95	76110 N	1.46	TBA9200	2.99
0.56	LM380-8	0.90	76115 N	1.87	TBA940	1.62
0.55	LM380N	0.98	76116 N	2.06	TCAT60C	1.85
0.60	LM381A	2.45	76131 N	1.30	TCA1608	1.61
0.45	LM381N	$1 \cdot 60$	${ }^{76226 N}$	1.94	TCA270	$2 \cdot 25$
0.60	LM382N	1.25	76227 N	1.51	TCA280a	1.30
0.49	LM384N	1.45	76228 N	1.75	ICAz90a	$3 \cdot 13$
0.65	LM386N	0.80	76530 N	0.91	TCA420A	1.84
0.50	LM387N	1.05	76532 N	1.50	TCA730	$3 \cdot 22$
0.66	LM388N	1.00	76533 N	1.30	TCA740	2.76
0.50	LM389N	1.00	76544 N	1.44	TCA750	$2 \cdot 30$
0.75	LM702C	0.75	76545 N	2.09	TCA760	1.38
0.80	LM709C	0.65	76546 N	1.44	TCA800	$3 \cdot 13$
1.10	LM709N	0.45	76.550 N	0.41	JAA170	2.00
0.90	LM710C	0.60	76552 N	0.65	JAA180	2-00
1.20	-M710N	0.60	76570 N	2.08		
2.50	LM723C	0.85	76620 N	1.10		
3.35	LM723N	0.75	76650 N	$1 \cdot 10$	SOCKE	
0.70	LM741C	0.65	76660 N	0.60	8 PIN	0.15
0.85	LM741N	0.50	76666 N	0.92	14 PIN	0. 16
0.80	LM741-8	0.40	Tha310A	1.50	${ }_{16}$ PIN	0.18
0.95	LM747N	0.90	TAA320A	1.15	22 PIN	0. 30
0.65	LM748-8	0.50	taA350a	2.48	24 PIN	0.35
0.55	LM748N	0.50	TAA521	1.00	${ }^{28}$ PIN	0.45
0.30	LM 1800	1.76	TAA522	1.90	40 PIN	0.55

 DISPLAYS ? Segment
\qquad

SEE MARSHALL'S FOR CMOS

CLOCK MODULES
 transform
modules
MAl
Modules 12 hr 5 in display
MA1002F
MA 1002 H 24 hr 5 in display

MA1010G 24 hr \& An display

CAR CLOCK MODULE

MICROPROCESSOR SUPPORT

michophocesson sup			
BUFFERS		${ }_{21012 \mathrm{~L}}$	
DM81LS95	1.45	$2102-2 \mathrm{~N}$	2.10
DM81LS966	1.45		(00
DM81LS98	1.45	74C9220	12.57
Universal		Roms	
OS8835	1.99 1.99	PRoms	
74.5173	2.93	745287	
7445174 7415175	+1.41	MM5204	-32.30
OMB131	2.76	177280 2780	10.80 35.00
DM8223	1.38		

ㄴan MICROPROCESSOR SYSTEMS + SUPPORT
 SC/MP INTROKIT

SIMPLE LOGIG PROBE

T
THE circuit of Fig. I is a simple logic probe which can detect low, high and floating logic levels and also single short pulses and pulse trains. When the probe is connected to logic 0 then TR1 is turned off and the light emitting diode Dl does not glow. When the probe is at logic 1, TRI is turned hard on and Dl glows brightly. However, when the probe, or logic signal, is floating then a small current flowing out of the monostable input A2 turns TR1 on slightly, causing DI to glow dimly.

The second light emitting diode, D2, is on only when the monostable is triggered, which occurs on every 1 to 0 transition of the input signal. For a single pulse there is only one such edge and so D2 flashes once. For
a pulse train at the input, the monostable is constantly being retriggered and so D2 glows brightly. Note that the brighter the glow from D2, the higher the frequency of the input signal.

The logic probe has a loading effect of slightly more than one standard input. The unused inputs to ICI may be left unconnected. None of the component values is critical, but the value of RI must be adjusted so that D1 glows dimly when the input is floating, also Cl must be sufficiently large that a single pulse produces a visible flash.

S: G. Bailey,
Guildford.

Fig. 1

LOW COST V.C.A.

Fig. 1

THE voltage controlled amplifier shown in Fig. 1 is comparatively much cheaper than MFC6040 but has a performance nearly equal to it. It is certainly far superior to the f.e.t. and diode v.c.a.s sometimes used but has only slightly greater complexity.

TR1 and TR2 form a differential pair with the current through them determined by the current source TR3. This current is controlled by the
voltage applied to the base in the usual exponential manner. The signal is applied to TRI base and extracted from TR2 collector. VR1 sets the voltage attenuation ratio of the circuit and is, in effect, the control input.
M. Bryant,

Calmore, Hants.

CALL AND BE

 TEMPTEDPICK-A-PACK— 50 PENCE A POUND
FROM OUR "PICK-A-PACK AREA WEIGH UP YOUR OWN INDIVIDUAL COMPONENTS NO RESTRICTIONS ON WHAT YOU TAKE

PICK-A-METER£1 EACH
A LARGE SELECTION OF BRAND NEW AND EX-EQ. METERS.

PICK-A-PIECE50 PENCE EACH
FROM OUR "PICK-A.PIECE" AREA

тне "Manta"
CAPACITIVE DISCHARGE ELECTRONIC IGNITION UNIT

THE NEW, HIGHER RELIABILITY VERSION OF THE p.E. "SCORPIO MK W" IS NOW AVAILABLE IN KIT FORM!! OU thousands of satisfied customers report

M ore miles per gallon (customers reports give $10 \%-25 \%$ saving -letters available)

A
increase in overall performance-your 4 cylinder car feels like a 6 cylinder
N
more cold morning splutters-saves you even more petrol through much less use of choke
Th prices A snip at only £16.50, fully inclusive of all parts. instructions, postage/packing and V.A.T. (ready built unit available- $£ 19.85$ fully inclusive)
A॥ parts to high specification, first quality and brand new
Construct this invaluable accessory, following our easy step by step instructions (also available separately, price 30 p post paid). Send for our free interesting six page brochure-"Electronic IgnitionHow it Works" (S.A.E. Please) to
ELECTRO SPARES
Dept. P.E., 187a Sheffield Road, Chesterfield, Derbyshire S41 7JQ. Telephone: Chesterfield (0246) 36638

TRANSFORMERS

PLEASE ADD VAT AFTER P. \& P
Prices correct at 9th May 1977
Electrosil Resistor Stockists Audio Accessories SEMICONDUCTOR STOCKISTS SAVE POSTAG

Callers welcome (Mon.-Fri.) or send $15 p$ stamp for lists.

BEFORE YOU BUY AN AMPLIFIER MODULE-CHECK:

 DOES IT HAVE\star 30A power transistors
\star 3A drivers (100W unit)

* 2-year guarantee
* Integral output capacitor

Then compare with the Tamba range-excellent value-25, 50 and 100 W R.M.S
TAM 1000 100W 4 ohms 65 V
TAM 50050 W 4 ohms 45 V TAM500 50W 4 ohms 45 V TAM250 25W 8 ohms 45 V

POWER SUPPLIES
For 1 or 2 TAM250/500
For 1 or 2 TAM1000
(Carriage 50p on supplies)

- Suits loads 4-16 ohms
- $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
- Silicon circuitry throughout
- Glass fibre P.C.B
- High sensitivity (100 mV 10 k)

High grade components used throughout: Texas, Mullard, R.C.A., Plessey, etc

- Low distortion (0.1\%)
- Low profile (1 in high $3 \frac{1}{2}$ in $\times 3$ in)
- 75% efficient
- Accepts most mixer/pre-amplifiers
- Four simple connections

ALL PURPOSE MIXER/PRE-AMP.
(with 60 mm slider volume)

> Suitable for multiple input systems High and low impedance inputs High sensitivity
> Built-in supply smoothing
> $20-20,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
> -80 dB noise level
> Accepts a wide variety of inputs Wide range bass and treble controls Use up to 10 PREAMPS with 1 power

Printed circuit board assembly with treble and bass controls plus slider volume control
£6.50

You may order as follows: C.W.O. (crossed cheques, P.O.s, M.O.s etc)-C.O.D. (60p extra). We accept Access and Barclaycard-send or telephone your number-do not send your card. Add VAT at 8% to orders for 50 and 100 W units and at $12 \frac{1}{2} \%$ for 25 W units.

Hours, 9.30 a.m. -5 p.m. Monday - Saturday. Callers welcome. Tel: (01) 6840098

TAMBA ELECTRONICS

Bensham Manor Road Passage, Bensham Manor Road; Thornton Heath, Surrey.

THIS is the Catalogue you need

to solve your component buying
MoME AADIO

- The finest components catalogue yet, published.
- Over 200 A-4-size pages
- About 5,000 items clearly listed and indexed.
- Nearly 2,000 illustrations
- Bargain List sent free
- At $£ 1 \cdot 40$, incl. p. \& p., the catalogue is a bargain.

Send the coupon below now.

POST THIS COUPON

SPECIAL OFFER FOR READERS

$\varepsilon 18 \cdot 50$ inc VAT $+\varepsilon 1.45$ p. \& p. \& i.
$\square \mathrm{AM} / \mathrm{FM}$ Radio Alarm Clock (AC 220-240V only)

- 24-Hour Clock
- High quality white abs case
- Push-button mode selection
- Sleep delay control

Illuminated clock and radio scale

- Alarm with buzzer and/or music
- All chrome control knobs
- Complies with BS415, (1972) safety requirements
- Each unit fully inspected before despatch
- Guaranteed for one year

Please send cheque or postal order to D. \& D. Power Supply Co Lid, 79 Lowfield Street, Dartford, Kent.
Please allow 10-14 days for delivery Callers welcome Monday-Friday 9-5, Saturday 9-1

DeC-IT and BLOB-IT

S-DeC No simpler way of learning circuit construction. S-DeC No quicker way of getting a circuit working. S-DeC Simply plug components in, no soldering. S-DeC Try, test, prove circuit working.

5D Blob-Board Transfer your working circuit, component by component, to the 5D Blob-Board. 5D Blob-Board No cutting or drilling of contact rails. LOW, LOW price.

S-DeC-IT And Blob-IT Low price numbered contacts, quick circuit try-outs, test components before soldering, large working area, assess competative circuit layouts, test parts of circuits. Reusable
S. DeC + control panel +9 Project instruction book + Free 5 Blob -Board $£ 2.25+£ 0.40$ Post and V.A.T

50 Blob-Boards, Pack of 3 , with complete instructions, Pack of $3 £ 0.56 \mathrm{p}+£ 0.15$ p Post and V.A.T.

How to support a SC/MP!
 NEW SC/MP USERS START HERE

We make getting into microprocessors as painless as possible. with our range of SC/MP kits we can offer a start at virtually any level of experience or avaltable finance SCRUMPI is our own SC/MP starter kit. It contains one SC/MP chip. Iwo MM2112 RAM chips. two 74C173 four-bit VO latches and a handful of other ICs, switches and LED lamps. The switches allow you to enter a program inio the RAM and then execute that program, several operating modes allow for ease of testing. SCRUMPI can be extended to address up to 64 K bytes and can be interfaced to ROM. PROM. RAM. EAROM or many types of lo devices. SCRUMP, can also be used to Peplace a SC/MP in anothet circe restors, caps. etc. KIT PRICE $£ 55.56$ INTROKIT AND KBOKIT Eurocard PCB with SC/MP chip. 256 bytes of RAM and 512 bytes of PROM containing KITBUG program, requires a TTY device as V/O. If you do no! have access to TTY then the NS KBDKIT allows you to replace the KITBUG PROM with another supplied add a few other components (suppiled) and you have a portable microprocessor ${ }_{\text {INTROKIT }} \mathrm{£66}$. 33 KBCKIT $£ 66.50$ SCI SC/MP Control Card. Eurocard PCB with provision for 256 bytes of RAM and 1 K bytes of be supplied with of device address Pecoms. PROMs can be supplied with any of our sotiware programs listed below

SCI PCB - decoding chips £13.89* SCI PCB + SCiMP + RAM + one PROM £60.19* LCDs. Natonals Low Cost Development Kit for SC MP. Uses a hex keyboard and digital display or a TTY device 10 communicate with a 2 K monitor program it ROM, The CPU application card plugs into one of the sockets on the main mother its full 64 K byte capacity. RUN STEP/HALT modes allow for simple debugging

EXISTING USERS START HERE

VDU SYSTEM. Two Eurocards which allow tor interface to a modified TV set (video not UAF) and ASC keyboard. The TV display is in the form of 16 lines each of 64 characters (or 16×32 or 8×32 can be used). each character position can display any of 645×7 characters in black on white, black on grey, whte on gresp or white on black. any character set can also be flashed. Any keyboard giving parallet ASCll plus negative strobe output can be used.
CASSETE INTERFACE. Eurocard PCE with interface to audio casselte fegorder in format specitieq oy Nathen be used to switch a readeripunch or cassette recorder. Requires CASSETTY or CASSIO software (or
cas
CASTERFACE $£ 16.67$ similar as published by NS) TTY INTERFACE. Convert your paralle l/O device to be TTY compatible and thus talk to your NTR 4K PROM CARD. Eurocard PCB with sockets for up to eigh! MM5204 or MM5214 devices with address decoding 4K PROM CARO Euroch
or each device. Supplied with 2. 4. 6, of 8 blank of programmed PROMs
$4 K$ PROM CARD with 2 PROMS $£ 64.82^{\circ} \quad$ 4K PROM CARD with 4 PROMs $£ 120^{\circ} 38^{\circ}$ 4K PROM CARD
with 6 PROMs $£ 160.67^{\circ}$ 4K PROM CARD with 8 PROMs $£ 208.34^{\circ}$
These cards are all compatibie with each other and with ETI SYSTEM 68
SOFTWARE in MM5204 PROMs Our range of software PROMS is small at present but new programs will become available every monit
VDUBUG. Uses a VDU and ASCll keyboard to give Memory Dump. Memory Change and Execufe facilities CASSIO. Adds National s cassette intertace to VDUBUG.
ace as executable sub-routines BLANK. MM52040 erased to logic O

All above PROMs at $532 \cdot 30$ each NIBL (SCIMP BASIC). Available as 8 PROM sel for VDU or TTY. atc. We have power supplies. cases, floppy discs, printers atc Send S SAE for our microprocessor catalogue (P S we still sell clock chips and kut.)

IMATITPIS

A SEMICONDUCTOR POWER HOUSE (Tradé \& Expor Welcomel. TRAMPUS ELECTRONICS LTD 58-60 GROVE GOAD, WINDSOR, BERKS. SLA 1HS pm. Fapl service. Same day despatch on ex stock product. Quality devices. all full spec. Same Trampus low prices. Barclay Card and Adcess by post or telephone $£ 5$ minimum. VAT add 8% to prices marked. Add $12 \frac{1}{\%} \%$ VAT to all other prices. post and packing eop U.K. Send C.WO except Gov. depts etc. (send S.A.E.

SUPERSOUND 13 HI-FI MONO AMPLIFIER
 omponents throughout, Silicon transistors rus power out-put Full wave rectifica tion. Output approx. ohms. Frequento ohms. Frequency
cesponse
$12 \mathrm{~Hz}_{3} 30 \mathrm{KHz}$ amplitier Fully integrated
Treble cut contiols. Suitable for $\mathbf{8} 1 \mathrm{i}$, Bass boost and mput or ceramic or crystal catride ohen speakers. Input for ceramic or erystal cartridge, Sensitivity
approx, forn for full output. Supplied ready built and testerl. with knobs, escutciecn panel. mput and output
pluge. Overali size 3^{*} himh \times in wide 7.

HARVERSONIC MODEL P.A. TWO ZERO

lividual 3 inntrolled inpu
stage prommp. Input 5 , each input hay it separat oto tik. suitable for use with mic. nr gritar. ete. Inpu 3 100 ms into 1 meg suitable for gram. tuner, or tape
etc. Full mixing facilitics with full range bass aut treble controls, All inputs plug into standard jack socket on front panel. Output socket on tear of chassis for an 8 obm
or 16 ohm speaker. Output in excess of 20 watt R. M.s. Very attractively finished pumpose fuilt cabinet thate aluminium front escutchcon. For ilc unining operition

stercoamplifier sterco amplifer
chassia, with an output of $3-4$. watts per chan-
nel into 8 ohm nel inte 8 ohm
speakers. Using the latcst ogy integrated circuit anmplifiers with built in short terin thermal overload protection. All components inclading controls, 2 pin din speaker sockets and 5 pin din lape rec.play socket arc mounted on the printed circuit panel, size approx. $96 \times 2 \times \times$ max, lepth. Supplied aluminium tway escutcheon to allow the ampliticr to be mounted horizontally or vertically), at only $\boldsymbol{\& \theta} 00$ plus 50 p P. \& P. Mains trandormer with an output of 17 V a/c at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at $£ 1 \cdot 50$ plus 40 p P. \& P
if required. Full connection details supplied.
BRAND NEW MULII-RATIO MAINS TRANSFORMERS, biving 13 alternatives. Primary: 0-210-240v. Secondary combmations $0-\overline{0}-10-1500-2 \overline{0}-30-3 \mathrm{a}-40-60 \mathrm{v}$ 2 amps full wave. Size 3 in. tong $\times 3$!in wide $\times 3$ in

MAINS TRANSFORMER. For power supplie
Pri. 200/240v. Sec. 9-0-9 at 501 mA . $£ 1 \cdot 50$. P. \& P. 50 p , Pri. 200/240v. Sec. $12-0-12$ at 1 amp. \&1.65. P. \& P. 50 p .
Pri. 200/240v. Sec. $10-0-10$ at 2 amp. \&2.35. P. \& P. 950 . Pri. 200/240v. Sec. $23 v$ vi at 1.5 amp, $6 v$ at 6 amp, Sy. at
$\frac{50 \mathrm{~mA} . ~ 22 \cdot 00+65 \mathrm{p} \text { P. \& } \mathrm{l} \text { : }}{\text { ALL PURPOSE POWER SUPPLY UNIT 200/240 } . ~ A . C ~}$ ALL PUR. Four switched fully smoothed D.C. outputg giving 6 v . 2nd 7 s v and 9 r and i2v at 1 amp on load. Fitted insilated output terminals and pilotlampindicator. Hammer finish metal case overalize \quad Redy built and \quad Price 6.75 . P. \& P. 95p.
tested.
tested. Price \&6.75. P. \& P. 95p.
STEREO-DECODER SIZE 2"
Ready built. Prearigned and tosted
Sens. $20-560 \mathrm{mV}$ for $9-16 \mathrm{~V}$ neg
Sens. $20 \cdot 560 \mathrm{mV}$ for 9.16 V neg.
earth operation. Can be fitted to earth operation. Can be fitted to
almost any FMF VHF radio or tuner Stereo beacon light can be fitted if
required. Full details and instructions (inclusive of hints and tips) supplied. as 82 plus 20 p P. F
Stereo beacon light if required 40 p

QUALITY RECORD PLAYER AMPLIFIER ME. II A top quality record player amplifer eminloying heavy
duty double wound mains thanaformer. ECC83. EL\&4, and rectifier Separate bass. Treble and Volume controls. Complete with output transformer matched for 3 otam speaker. Size 7 in wide $\times 3$ in dieep $\times 6$ hin high. Heady built and tested PRICE $A 7 \% 0$. transformer and speaker. PRICE 88.00 p p ith output Opansformer and speaker. PRIC Friday. 9.30-5 Saturday Closed Wednesday
Prices and specifications correc
at time of press. Subject
alteration without notice

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER

$200 / 240 \mathrm{M}$ Mains operated solid state $\mathrm{A} / \mathrm{M} / \mathrm{M}$ stereo Tuner. covering AN. AM. $540-1605 \mathrm{KHz}$. YHF/FM AFC and AGC on AM and VM. Stereo beacon Lanm are adjustable by pre-set comtrol. Max of poltage 600 m/M RMS into 20 k . Simulated teak finish cabinet. Will

approx.
p. P .

SPECIAL OFFERS

 $7.6 \mathrm{~V}+$ earth. Frand new pre•aligned. Full specification and connection details supplied $£ 2 \cdot 25+$

PRECISION MADE
Push Button Switch bask. \& Buttons gwing $10 \mathrm{~S} / \mathrm{H} \mathrm{C} / \mathrm{O}$

HI-FI LOUDSPEAKER SYSTEM MkII

 Beautifully made simulated teak finish enclosure now Whth most attractire siatted font size 163° high X Ceramic Magnet $13^{*} \times 8^{\circ}$ bass unit, IJ. F. tweeter unit and crossover. AVAILABLE, IN NOMINAL 4 ohm, 8 obm or 16 ohm impedance (8 tate π hich) Hanilling power 10 watts R.M.SOur Price $£ 12 \cdot 80$ each. Carr. $£ 2.20$ each. Cabinet Available Separately $8 \% \cdot 60$ each. Carr, cl. 80 . Also available in 8 ohms with EMI $13^{\prime \prime} \times 8^{\prime \prime}$ bass
spenker with parasitic tweeter $£ 11 \cdot 10$ each. Carr

LOUDSPEAKER BARGAINS
 $8 \times \sin 3$ ohm with bigh thux magnet $£ 3-00$ P. \& I 60 F Tweeter. A pprox,
$£ 2 \cdot 00+30^{\prime \prime}$. Avalable 3 or 8 or 15 ohtns,$~$ SPECIAL OFFER. marnet 8 ohm 10 watt speaker chassis. Specisily suitable for Hi Fl. $£ 3.95$ + inp P. \& R.
2* PLASTIC CONE HF TWEETER + ohth, $\mathbf{£ 3 . 5 0 \text { per }}$

coit Macnet size $3^{\prime \prime}$ dia.
VYNAIR \& REXINE SPEAKERS \& CABINET FABRICS app. ji in. wide. Our price £1.50 yd. length. I'. \& P. 50 p
per yd. (min. 1 yd.). S.A.E. ior samples.
"POLY PLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Size $11_{6}^{2} \times 1416 \times 1{ }^{16}$ deep. Weaght $190 z$, Powel handling 20 r.m.s. (40W reak). Impedance 8 ohm only. Tesponse $40 \mathrm{Hz-20kliz}$. Can lie mounted on ceilings, walls details. Unly $£ 8.40$ each. P. \& P minp for one, ± 1.10 for t mo Now also available it either が round vetsion or $\psi^{\prime \prime}$

SONOTONE 9TAHC COMPATIBLESTEREOCARTRTQGE T/O stgilus Biamond Stereo I.P and Sapphire TS.
ONLY $£ 2.36$ T \& 10 . Dianonl T/o stylus for Stereo LP. E2.86. P. \& l', 18p.
LATEST CRYSTAL T/O STEREO/COMPATIBLE CARTRIDGE TOT FI'/LI'/SLereo is. £180. I' \& 1 LATEST T/O MONO COMPATIBLE CARTRIDGE playing EP/LP/78 monn of stereo records on mono
equiprnent. Only \&1.58

[^2]HARVERSONIC SUPER SOUND 10 STEREO AMPLIFIER KIT

A really first-class Hi-F! Stereo Auplifier Kit. Uses 1 transistors including Silicon Transistors in the first fiv stages on each chanhel resulting in oven lower noise level with improven sensitivity Mitegratelf pite-ant, with
Bass. Treble and two Volume cuntrols. Suitilue for usc with Ceramic or Crystal cartridges Very simple to modify to suit magnefic cattridge instructions inefuded design, all patts supplied including irilled metal work high quality ready drilled prizted cirenit board with component identification clcarly marked, smart bruslied anodised aluminium front panel with mateling knobs, wirc. solder, nuts, holts-no extras to buy. Sitmpte step um step instructions enable any constructor to bujnic a output: 14 watte rims per riet sjeenilications: Powe quency response $\pm 3 \mathrm{dil} 122-30,000 \mathrm{Iz}$ Sensitivity: bette than 80 mv into 1 Ma . Full power bandridth ? $\mathbf{3 d 1}$ $12-15,000$ 11z. Bast, looost approx. to 121213 . Treble
 main amp. 0 orer requirements 3.0 ant
Fully detailed 7 yage construction manual and part ist frec with list or send 20p phis larges..5 p p (Magnetic input components 33_{p} extra)
 Special offer-only $\in 23.75$ if all 3 units ordered at one time plus $£ 1-25 \mathrm{P}, \& \mathbf{P}$.

Alsoavailable ready built and tested $\mathbf{2 3 1} 25$, P. \& P. © 1.50.

3-valve audio
AMPLIFIER BAB4 MK II Designed for Hj-Fir reproduc. tion of records. A.C. Mains
operation Ready built on operation Ready built on
plated heavy bauge metal
 Hinh. Incorporates ECC83. EL84, FZZ8 valves. Heary duty, double wound mains
transformerand out put trans. former matchenl for 3 ohm pealer. Separate colume control and now withimproved wille range tone contros givin. cut Negative feedback line. Jutput 4 watts. Front
panel can be detaelied and leads evtendell for remote momiting of cont.ols, (Vondplete with knohs, yalves, etc. wired and tested for only $£ 8 \cdot 20$. 1°. \& P . $£ 1.40$.
HSL "FOUR" AMPLIFIER KIT. Similar in appearance advanced eircuitry. Complete set of parts, ete. $£ 7 \cdot 60$. - P. P $1 \cdot 40$

10/14 WATT HI-FI A stylishly finished mionaural amplifes
with an out put of with an oitput
14
watts from EL84s in pusla-pull Super reproduction speech, with negligiblehum. Separate inputs for mike and and announcements

to follow each other
Fully shrouded section wound output trangformer to match $3-15 \Omega$ speaker and dindepenilent volume controls.

 ONLY e12.00. P. P . 21.4 . Also available ready bult
a

SPEEIAL LHES DTFEEMLE SUR BET TO Limitcd-nmiter of Fritis)/ Wanufacturer's Surplus proessional 100 watt RMA slave antplifiers, Special age h.ED dis or 240 V
AVAILABLE TO PERSONAL CALLERS ONLY-PLEASE PHONE TO CONFIRM AVAILABILITY.

OUR PRICES INCLUDE VAT AT
CURRENT RATES

HARVERSON SURPLUS CO. LTD.
(Dept. P.E.) 170 HIGH ST., MERTON, LONDON, S.W. 19 Tel. : 01-540 3985
(Please write clearly)
PLEASE NOTE: P. \& P, CHARGES QUOTED APPLY TO U.K. ONLY. P. \& P. ON OVERSEAS ORDERS
CHARGED EXTRA

GREENWNELD

443 Millbrook Aoad Southampton Sロ1 ロHX Tel：（ロ703）772501

buY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

SAVE ON TIME－No delays in waiting for parts to come or shops to open！ SAVE ON MONEY－Bulk buying means lowest prices－just compare with others！
HAVE THE RIGHT PART－No guess－ work or substitution necessary！
ALL PACKS CONTAIN FULL SPEC．BRAND NEW， MARKED DEVICES－SENT BY RETURN OF POST VAT INCLUSIVE PRICES，JUST ADD 25 p post TO ALL ORDERS
K001 50 V ceramic plate capacitors， 5% ． 10 of each value 22 pF to 1000 pF ．Total $210, £ 3 \cdot 35$

K002 Extended range， 22 pF to $0 \cdot 1 \mu \mathrm{~F}$ ． 330 values £4．90

K003 Polyester capacitors， 10 each of these values
$0.01,0.015,0.022,0.033,0.047,0.068,0.1,0.15,0.22$ ，
$0.33,0.47 \mu \mathrm{~F} .110$ altogether fok $£ 4.75$
K004 Mylar capacitors，min 100 V type． 10 each all values from 1000 pF to $10,000 \mathrm{pF}$ ．Total 130 fot 24 －45

K005 Polystyrene capacitors， 10 each value from 10pF to $10,000 \mathrm{pF}$ ，E12 series $5 \% 160 \mathrm{~V}$ ．Total 370 for £12． 30

K006 Tantalum bead capacitors． 10 each of the following： $0.1,0.15,0.22,0.33,0.47,0.68,1,2.2,3.3$ ， $4 \cdot 7,6 \cdot 8$ ．all 35 V ，10／25 15／16 22／16 33／10 47／6 100／3．Total 170 tants for $£ 14 \cdot 20$

K007 Electrolytic capacitors 25 V working，small physical size． 10 each of these popular values：1，2－2 $4 \cdot 7,10,22,47,100 \mu \mathrm{~F}$ ．Total 70 for $£ 3 \cdot 50$

K008 Extended range，as above，also including 220 470 and $1000 \mu \mathrm{~F}$ ．Total 100 for $£ 5 \cdot 90$

K021 Miniature carbon film 5\％resistors，CR25 or similar． 10 of each value from 10 to 1 M ，E12 series Total 610 resistors， $\mathbf{£ 6} \cdot 00$

K022 Extended range，total 850 resistors from 1R to 10M £8． 30
K041 Zener diodes， $400 \mathrm{~mW} 5 \%$ ．BZY88 etc． 10 of each value from 27 V to 36 V ．E24 series．Total 280 for £15－30

K042 As above but 5 of each value $\mathbf{£ 8} \mathbf{- 7 0}$
1977 Catalogue 30 p if ordered with other goods，otherwise 45p inc postage

THE GREENWELD DRAGON IS

CRESCENT RADIO LTD． 166．166 HIGH ROAD，WOOD GREEN．N22 888.306 （also 13 SOUTH MALL，EDMONTON．N．9 803 －1685

Mat onen

Phone：888－4474

3 KILOWATTS PSYCHEDELIC LIGHT CONTROL UNIT LIGHT CONTROL UNIT widde． Treble．Each clownel has its
 connect the input of this unit to the loudspeaker terminals of an amplifier，and connect three 250 V up to 1000 W hamps to the output terminals of the unit，and you produce a fasci－ nating sound－light
618.50

FERRIC CHLORIDE
FERRIC CHLORIDE
Anhydrous ferric chloride Aouble sealed i it poly packs． Our Price 65p＋P1P＋VAT at 8% per 1 lh
BARGAIN PROJECT BOX
A plastic box with moulded ex－ trusion rails for I＇C or Chassis panels with metal front plate fitted with fou：screws（all supplied）．Size（internal） 81 mm 551 mar ． 28 mm ．Our Price $50 \mathrm{p}+8 \%$
EFFECTS PROJECTOR＂150＂ No disco should be without our new effects project or，we believe that this is the most versatile machine for projecting coloured mages to supplement \quad music．Spee．：Volts－ $20 / 240$ ．
 150 W ，Standard Lens－ 60 intu ． A aturdy metal construction and takes a range of lenses and acces－
\qquad complete with 6 in wheel and ready ouse，A bargain at $£ 27+$ VAT

ACCESS AND BARCLAYCARD ACCOPPTED
U．K．CARRIAGE 50 p UNLESS OTHERWISE STATED
VAT－All prices are exclading VAT．Please add to each item the VAT rate indicated．

P．E．JOANNA ELECTRONIC PIANO
 ALL PARTS CAN BE SUPPLIED
 Keyboard．Keyswitch，P．C．B．s Hardware Semiconductors Resistors，Capacitors，Cabinets Complete kits or easy stages Send S．A．E for details
 Clef Products
 31 Mountfield Road Bramhall，Stockport，Cheshire SK7 1LY

IT＇S EASY WHEN YOU KNOW：

To avold missing your copy of PRACTICAL ELECTRONICS－simply complet this order form and hand it to your newsagent OMDER FORM

To．
（name of newsagent

Address

Please reserve／deliver gvery month one copy of PRACTICAL ELECTRONICS untit further notice
My Name
Address All buitt and tested．mounted on a plain aluminium chassis which measures $18 \times 9 \frac{1}{2} \times 4 \mathrm{in}$ ，and which oul nan thount into a cabinet of your choice． Four controlled inputs，master volume，treble， 100W clean into 8 ohm L／B．Ideal for disco， music groups，PA．and clubs．
A bargainat $£ 48+$ el carr．$+8 \%$ VAT

PP1 POWER SUPPLY UNIT $\left\{\begin{array}{l} \text { Switched } 3,4 \frac{1}{2}, \quad \begin{array}{l} 7 \frac{1}{2}, 9 \text { and } 12 \mathrm{~V} \text { at } 500 \mathrm{~mA} \\ \text { With on oft switch and } \\ \text { pilot light. } \end{array} \\ \begin{array}{l} \text { Size: } 130 \times 50 \times 75 \mathrm{~mm} . \\ \text { Only } £ 5.50+8 \% \text { VAT. } \end{array} \end{array}\right.$
AUDIO LEADS＋12：VAT Good quathy audio connecting leads at moderate prices：L1 5 －piti DIN plug 180° to $5-\mathrm{pin}$ DIN plug 180° ，length approx． $1 \cdot 2 \mathrm{~m}, 90 \mathrm{p}$ ；L12 5－pin DIN ulag 180° to open end，length approx． $1 \cdot 2 \mathrm{~m}$ 65 p；L1t 2－pin DIN plug to $2 \cdot \operatorname{pin}$ DIN line socket，length approx．3un．60p；L16 2－pin DIN plug to 2 －pin DIN line socket，length approx． 7ill， 75 p ；L11 5 －pin DIN mlug 180° to four phono flugs，length approx． $1.2 \mathrm{~m}, \mathrm{fl} 10 \mathrm{p}$ ；L10 5－pin DIN plug 180° to four phono line sockets，length approx． $1 \cdot 2 \mathrm{~m}, ~ £ 1.20$ ；L21 stereo headphone extension leal（curly type），length approx． 20 ft ． £1．50；L22 guitar lead（curly type）．length approx． 20 ft ．， $\mathbf{£ 1} \mathbf{6 0}$ ．Various other combinations stocked．Prices on request

RCLAYCARD ACCEPTED －
\qquad

CHINAGLIA DINO-ELECTRICAL AND ELECTRONIC TEST EQUIPMENT MANUFACTURERS

PRESENT THE

DOLOMITI

$20 \mathrm{k} \Omega / \mathrm{V}$ a.c. and d.c
A NEW HIGH SENSITIVITY MULTIMETER WITH ALL THE FEATURES YOU WILL EVER NEED

Accuracy: DC ranges, $\pm 20^{\circ}$ 。 AC $\& \Omega$ ranges $\pm 25 \%$
39 ranges: d c V. 0.150 mV . $500 \mathrm{mV} 15 \mathrm{~V} .5 \mathrm{~V} .15 \mathrm{~V} .50 \mathrm{~V}, 150 \mathrm{~V} .500 \mathrm{~V}$. 15 kV del
 $\cap 005 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega .5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$. pF $50 \mathrm{kpF}, 500 \mathrm{kpF}$
Automatic overioad protection and high current range fuaing.
Scale mirror and fine pointer for accuracy of reading Single knob main range switching and all panel controis CEI Class 1 movement with sprung ewe $\times 131 \times 37 \mathrm{~mm}$ Werght 750 g with batteries Supplied complete with ABS case 125 fused leads handbook and full 12 -month guarantee Optional 30 kV d c probe available
Meter £45.90 incl. VAT ($£ 1 \mathrm{P} . \& \mathrm{P}$)
30 kV Probe $£ 12.85$ incl. VAT
For detayls of this and the many other exciting instruments in the Chinagha range inciuding mult-meters, component measuring. automotive and electronic instruments please write or telephone

Instruments Ltd.
19 MULBERRY WALK. LONDON SW3 6DZ TEL: 01-352 1897

Join the Digital Revolution

Understand the latest developments in calculators,

 computers, watches, telephones, television, automotlve instrumentation. .Each of the 6 volumes of this self-instruction course measures $11 \frac{3^{\prime \prime}}{} \times 8 \frac{1_{4}}{}{ }^{\prime \prime}$ and contains 60 pages packed with information diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers
Design of Digital Systems.

£6. 20
plus 80p packing and surface post anywhere in the world

Payments may be made in foreign currencies.

Quantity discounts available on request.

VAT zero rated

Also avallable-a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics
In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers
£4-20
plus 80p P. \& P
Offer Order both courses for the bargain price $£ 9 \cdot 70$, plus 80 p P. \& P

Designer

Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of
Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked
Cambridge Learning Enterprises (Dept. ENG).
Rivermill House, St. Ives. Huntingdon, Cambs. PE17 4BR
To Cambridge Learning Enterprises (Dept. ENG) $-\infty-\infty$
1 FREEPOST, Rivermill House, St. Ives, Huntingdon, Cambs. PE174BR *Please send me... set(s) of Design of Digital Systems at £7.00 each. p \& p included
*or....set(s) of Digital Computer Logic and Electronics at $£ 5 \cdot 00$ each. p \& p included
*or .combined set(s) at $£ 1050$ each. $p \& p$ included
Name
Address

* delete as applicabie

No need to use a stamp-just print FREEPOST on the envelope. PE8

Wilmslow Audio

THE firm for speakers!

SEND IOp STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST.

```
            ACT - AUDAX \bullet BAKER
BOWERS & WILKINS - CASTLE - CELESTION
    CHARTWELL - COLES - DALESFORD
DECCA - EMI - EAGLE - ELAC - FANE
    GAUSS - GOODMANS - HELME - I.M.F.
        ISOPHON - JR - JORDON WATTS
    KEF - LEAK - LOWTHER - McKENZIE
MONITOR AUDIO - PEERLESS - RADFORD
        RAM - RICHARD ALLAN - SEAS
TANNOY - VIDEOTONE - WHARFEDALE
```


WILMSLOW AUDIO (Dept. P.E. 8)

swan works, bank square, wilmslow, CHESHIRE SK9 IHF
Discount Hi-Fi, etc. at 5 Swan Street and 10 Swan Street Tel. : Wilmslow 29599 for Speakers Tel. : Wilmslow 26213 for Hi-Fi

GOLDRING $\begin{gathered}\text { GOLDRING G103 } \\ \text { Belt Drive Turntable }\end{gathered}$

Famous name turntable slashed to near half price. Complete with plinth, cover and leads. Accepts any standard cartridge inot included)

FULL 12 MONTH GUARANTEE
OUR PRICE $£ 29.95$
$4(+p / p \& \ln s\{2.25)$
SAVE
OVER $£ 24$

Build your own GOLDRING CK2

Belt Drive Turntable
Beautifully engineered unit from
the famous Goldring company. comes complete with instructions and all necessary parts. Ready to incorporate into your design plinth and cover. The pleasure of assemoling your own deck.
 (Plinth, cover and cartridge not includedx
Usually sold for $£ 54.95$ with plinth and cover.

Call in or send cheque, P.O, M.O, Access,
Barclaycard, Diners Club or American Express Number.

Speed up your precision work with

MINATURE POWEREOUIPMENT

SUPER 30 KIT- $\quad 30$ tools incl drill without stand $£ 19.39 \mathrm{pp} £ 1$
PIS DRILL STAND $£ 5.13 \mathrm{pp} 38 \mathrm{p}$ PI DRILL £9.67 pp 38p
FLEXIBLE DRIVE SHAFT
£5. 94 pp 34 p
TRANSFORMER continuous $\mathrm{ac} / 12 v \mathrm{dc} £ 7.56 \mathrm{pp} 81 p$
VARIABLE SPEED TRANSFORMER £9.50 pp 81p
Replacement drills, stones, burrs, etc. 40 p each. Circular saw blades set of 4 with arbor $£ 2.50$. P. \& P. any quantity 25 p . $9 \mathrm{in} \times 4 \mathrm{in}$ S.A.E. please for leaflet and order form.
All VAT inclusive

Drill can be heid in the hand.

30p
MODEL MOTORS, $1.5-6 \mathrm{~V}$ d.c. 25 p ?
BRITISH-MADE STEREO AMPLIFIERS, 15 watts pern channel, seif powered, with separate side control preamp. these have production faults, with circuit. $\$ 15.0085 \rho P+P$
DECEA SPEAKER CABINETS, front mounting sin Cut-out teak, $£ 7.50$ pair $24-20$ P-P
TRANSFORMERS, all 240 V a.c. input $6-0-6 \mathrm{~V} 100 \mathrm{~mA}$ 75 p . $920.9 \mathrm{~V} 75 \mathrm{~mA} 75 \mathrm{p}, 12-0-12 \mathrm{~V} 50 \mathrm{~mA} 75 \mathrm{p}$. 12 V 500 mA -95p.
G.P.O. BOARD with 64 BC107 type transistore, 2 reed and one mercury relays, diodes etc. $2.0055 p$ P + P.

Please add 25 p P + P-tor items where postage is not shown. VAT inc in all prices Order Address
Progressive Radio
31 Cheapside, Liverpool 2 051-236 0982

BUY FROM THE SPECIALISTS

EATON AUDIO

P.O. Box 3 (6 Jutland Rise) St. NEOTS, CAMBS. PE19 3JE

TERMS MAIL ORDER ONLY. CWO MINIMUM ORDER EI VAT Please add 12% to value of order inc. P \& P unless able to Eatan Audio Orders S pay. of P \& P. Otherwise please add 10 p in the I 1 P . Otherwise please add 10 p in the F 1

TEAR OUT FOR YOUR HEATHKIT ICATALOGUE.
 Schiphberger

To: Heath (Ghucester) I imited,
Dept.PE- 87 .
Gloucester: Cl .26 EE .
Name
Addres
Please send me a
Heathkit catalosue.
I enclose an $11 p$ stamp
for positage.
Pistarde

G8CZW Digital Frequency Meter

PLEASE NOTE

When replyin
please ensure:
(A) That you
(A) That yo
menes.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in
(D) That your letter is
(D) That your letter is correctly addressed to

This will assist ad
despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

Power Electrolytics, $800 \mu \mathrm{~F}$, 450 V (value not stamped on can). Single end connections with screw terminals, $2 \frac{1}{2}$ in da. $60 p$ P, \& P.). Sub-Min Mains Transformers. $12-0.12 \mathrm{~V}, 50 \mathrm{~m} / \mathrm{a} .28 \mathrm{mmW}, 20 \mathrm{mmH}, 26 \mathrm{mmD}$ 82p. Bridge Rectifiers, $2 \mathrm{~A} / 100 \mathrm{~V}, 34 \mathrm{~mm} \times$ 34 mm 40 p . Op. Amps, Motorola MC 1530 G 65p. Power Transistor, 2N 3235. Min. 4 for 4. Transistor, 2 N 2401 . Min. 8 for 61 . Thyristor, C10681, 4A/200V. Mi
Dual Transistor, 2 N 2643 sop Dual Transistor, $2 N 2643$ 50p.
(Items 2-8, prices include VAT, add 20 LINWAY ELECTRONICS bridge Road, Hayes End,
Offers of company surpluses always welcomed.

SMALL ADS

The prepaid rate for classified advertisements is 15 pence per word (minimum 12 words), box number 40 p extra. Semi-display setting $£ 12.00$ per single column inch $(2.5 \mathrm{~cm})$. All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyd Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electtronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 GLS. (Telephone 01-261 5846)

PC. 8 s Pax olin 5 in $\times 5 \mathrm{in}, 6$ for Gl. $12 \mathrm{in} \times 9 \mathrm{in}$ 70 p . 17 in $\times 9 \mathrm{in}, 61$. Fibre glass $151 \mathrm{in} \times 6$ in, Bank of 10 Noons with 10 a. C 407 transistors E1. Five figure Resettable Counter $18 / 22 \mathrm{~V}$ works on 12 V £3.10. 20 assorted 74 series IC on panel (s) $£ 1 \cdot 35$. Three assorted meters $£ 2 \cdot 10$.
7 Ib assorted components $£ 2.95$. List 15 p . 7 Ib assorted components $\mathbf{6 2 9 5}$. List 15 p .
Refund on purchase. Over f post paid; under add 20 p; insurance add 10 p .
J. W. B, RADIO

2 Barnfield Crescent, Sale, Cheshire, M33 1NL
VALVE8- Radio, TV, industrial, transmitting. We dispatch to any part of the world by return of post, Air or Sea Mail. 2,700 types in stock 1930 to 1976 obsolete types a speciality. List 20p. Quotation S.A.E. Open to callers. Mon to Sat. $9.30-5.00$, closed Wed. 1.00. We pur chase all types of new and boxed valves. COX chase all types of new and boxed valves. Con
 Wittering 2023 . (ST'1) cole 024366).
BRAND NEW COMPONENTS BY RETURN
Electrolytic Capacitors $10 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}-0.47,1 \cdot 0$
$2.2,4.7$ and $10 \mathrm{mF} 5 \mathrm{p}, 22,475 \frac{1 p}{}$ (00 V op); 1007 p
$1,000(16 \mathrm{j}) 15 \mathrm{p}, 1,000(25 \mathrm{~V}) 18 \mathrm{p}, 1,000(50 \mathrm{~V}) 22 \mathrm{p}$.
Subminiature Bead Tantalum Electrolytics-0.1
3 ubminiaturt Bead Tantalum Electrolytics-0.
$18 \mathrm{p} .20 / 16 \mathrm{~V}, 47 / G \mathrm{~V}$ and $100 / 3 \mathrm{Y} 15 \mathrm{D}$.
Millard Min. Ceramic E12 Series 63V $2 \%-100_{1} F$ to
$47 \mathrm{pF}-3 \mathrm{p} ; 56 \mathrm{pF}$ to $330 \mathrm{pF}^{4 \mathrm{p}}$
Vertical Mounting Ceramic Plate 50V-R12 series
$22-1,000 \mathrm{p} F$ and E6 series 1,500-47,000pF op.
Polystyrene E12 Series 63V Horizontal Mounting-
$10-1.000 \mathrm{pF} 3 \mathrm{p}$; $1,200-10,000 \mathrm{pF} 4 \mathrm{p}$.
Millard Polyester 250V Vertical Mounting E6
Mylar (Polvestor) Film 100 V Vertic
$\begin{aligned} & \text { Mylar (Polyester) Film 100V Vertical Mounting- } \\ & 0.001,0.002,0.0053 \mathrm{p} ; ~ \\ & 0.01,0.024 \mathrm{p} ; \mathbf{0 . 0 4 , 0 . 0 5} 44 \mathrm{p} \text {. }\end{aligned}$
Miniature Resistors Highstab Ecg Series 55
Carbon Film $0.25 \mathrm{~W} 1 \Omega$ to $103 \mathrm{~S} \Omega$. ($10^{\circ} \mathrm{O}$, over 1 M
op. Metal Film $0-125 \mathrm{~W}, 0-25 \mathrm{~W}$ and 0 ".oW 10Ω
to $2 \mathrm{~N} 2 \Omega 11 \mathrm{p}$. Metallinin $1 \mathrm{~W} 27 \Omega$ to 10 Mn 2 p .
$\begin{aligned} & \text { BC107/8/9, BC } 47 / 8 / 9 \text {, JF157/8/9, 13F194, } 197 \text { g } \\ & \text { Fuses 20mm glass, 1 in glass, } 1 \text { in ceramic } 2 \text { Jp. }\end{aligned}$
$\begin{aligned} & \text { Fuses } 20 \mathrm{~mm} \text { glass, } 1 \text { in glass, } 1 \text { in ceramic \& op. } \\ & \text { Post } 10 \mathrm{p} \text { (free over } \mathrm{E} 4 \text {). Prices inclusive of } \mathrm{V} \text {. }\end{aligned}$
THE CuR. SUPPLY CO.
127 Chesterfield Road, Sheffield Ss ORN

TURN YOUR SURPLUS capacitors, transistors, etc., into casli. Contact COLES-IIARDING \& CO., 103 South Brink, Wisbech, Camps. Tel 0945 418s. Immediate settlement.

RE8ISTOR8, capacitors, semiconductors, i.r.s potentiometers, I)IN sockets, plugs, cabinets hardware, s.A. W. price list. R. B, EIAEC TRONICS, $2 t$ Spring
Matdeulicad. Tel. 39798.

Precision Polycarbonate Capacitors All High Stability-extromely Low
AC. RANGE 440 V AcC. RANGE Value Dimen- Price ($\mu \mathrm{F}$) $\underset{\mathrm{L}}{\mathrm{L}}$ (ion: $(\mathrm{m}$

CONDTIONS OF ACCEPTANCE OF CLASSIFED ADVERTISEMENTS

1. Auvorisamant art accepted subj) act to tin astitions appearing on on current diventemont rate cord and on the express wndertions. in that the Advertiser warrants that the rtisemant does not contravene By Act Parliament net is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withertew envy advertisement.
3. Although every cart is taken, the Publisher shall net be liable fer clerical or printers errors or their consequences.

TANTALUM BEAD CAPACITORS: 1 $0 \cdot 47,0 \cdot 68,1 \cdot 0 \mu \mathrm{~F}^{2}$ at $25 / 35-10 \mathrm{p}^{*} ; 1 \cdot 5 \mu \mathrm{H} / 35 \mathrm{~V}^{2}, 11 \mathrm{p}^{4}$

 POPULAR DIODES: B.145-18p; BA 148-18p; BA155 -18p; 1RA1J6-15p; BR 100-28p; BY 126-15p; BY 127 - $7 \mathrm{p} ; 10 / 66 \mathrm{p} ; 15916-8 \mathrm{p} ; 10 / 77 \mathrm{p} ; 1 \mathrm{~S} 44-7 \mathrm{p} ; 10 / 60 \mathrm{p}$. -7p; $10 / 66 \mathrm{p} ; 15916-8 \mathrm{p} ; 10 / 77 \mathrm{p} ; 1 \mathrm{~S} 4-6 \mathrm{p} ; 10 / 60 \mathrm{p}$. 004-715p; $005-8 \mathrm{p} ; 006-9 \mathrm{p} ; 007-10 \mathrm{p}$; T1L209-25p. LOW PRICE ZENER DIODES-400mW, Tob. $+5 \%$ at
 $20 \mathrm{Y} ; 22 \mathrm{~V} ; 24 \mathrm{~V} ; 27 \mathrm{~V} ; 30 \mathrm{~V} ; 33 \mathrm{~V}^{\prime}$ (All at 10 p each, 10 tot $95 \mathrm{p}, 50$ for $£ 4.50,100$ for $£ 8-00$ (valses may be mixed). RESISTORS-High stability, low noise carbon film J°, $\frac{1}{W}$ at $40^{\circ} \mathrm{C}$, W^{2} at $70^{\circ} \mathrm{C}$. E12 series only-from $2 \cdot 2 \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$. All at $2 \mathrm{p}^{*}$ each, $15 \mathrm{p}^{*}$ for 10 of any one value,

SUBMINIATURE VERTICAI PRESETS -0.1 W only SUBMINIATURE VERTICAL, PRESETS-0.16
$50 ; 100 ; 220 ; 470 ; 680$ olin; $1 \mathrm{k} ; 2 \mathrm{k} 2 ; 4 \mathrm{k} 7 ; 6 \mathrm{k} 8 ; 10 \mathrm{k} ;$ J $5 \mathrm{k} ; 22 \mathrm{k} ; 47 \mathrm{k} ; 100 \mathrm{k} ; 320 \mathrm{k} ; 680 \mathrm{k} ; 1 \mathrm{M} ; 2 \mathrm{MJ} ; 6 \mathrm{M}$. All ai $7 p^{*}$ each: 10 for $80 \mathrm{p} ; 100$ for 25.00
7'LEASE ADD : DJ POST AND PACKING ON ALI ORDERS. EXPOPT-ADD COST OF SEA/AIRMAIL. Add 8% VAT to all items except those marked with

Which are $12 \lambda \%$
Send S.A.E. for adjlional
Wholesale price lists available to bona fade companies
MARCO TRADING (Dept. P.3)
Fie Old School, Edstaston, W em, Shropshire
Tel: Whixall $464 / 465$ (SilO 094872)
(Props. Minicost Tracing Lt il.)

 - HK1 + Data $50 p_{1}, 5545 p, 741720 p, 210 \%$
 £3-25, JA 1' earpiece 20p, I3('1]6A 10p, NP 3: 21 $15 p$, TIL 209 - clip 15p, Rs.' fuse holder panel ANT 1 tin 20p, RK. 100 K log midget volume control 20p, LA2306-AT pot cores (wound) 20p,
 TRONI('S, ${ }^{43}$ Westacott, Hayes Midi

74 9

COMPLETE COMPONENT sERVICE. Second to none, suppliers to D.O.E., A.E.R.E., universities, sethovernme equipncartments, facturers. All orders are despatehed on day of receipt. Are you being served? Join the professionals and get this best service at the right prices. Stock list free, send S.A.E. Jig cataprices. Stock list free, send S.A.E. ligig cata-
logne 50 p (includes 2 , buchers worth 50 p). Discounts for the big spender, its all here! For the fastest fricndly service-ols(lfani) BLECTROXIC's, Flint Honse, High street, Wallingford, Oxón ($0491-35529$).

VHF POCKET PORTABLE RADIO, tuning 108 to 138 MHz . Very sensitive, easily adjusted to tune 144 MII z band, 816.50 (inc. post and VAT). ROMAK LTD., 10 Hibel Road, Macclesfleld, Cheshire.

TOUCH CONTROLLED LIGHTING KITS

These KITS replace conventional light switches and control 300 W of lighting. No mains rewiring required. Insulated Touch Plates. All
with easy to follow instructions.
NEW! TSD 300 K -TOUCHSWITCH and
DIMMER combined. ONE touch plate to switch light on or off. Brightness controlled by small knob. ONLY - $\mathbf{4 . 9 5}$. TS300K-TOUCHSWITCH. TWO touch plates ON and OFF. ONLY- \&3.67. TSA300K- AUTOMATIC. Ore touch plate. Light turns off after preset delay. ONLY-

LED's. Mixed bags of 4 ditferent simes and 4 tifferent colours. $50, \mathbf{£ 5} \cdot \mathbf{2 5} ; 100, \mathbf{\varepsilon 9} \cdot \mathbf{2 5}$, inclating VAT and post and packing, (.W. ${ }^{\circ}$. MICILAEL WILLJAMS ELEUTIRUNI(W, 47 Vicarage Avenme, Cheadle Ifulme, (Cheshire, Vicarage
SK8 $7 \mathrm{~J} P$.

ELECTRONIC DEVICES and semiconductors ('omponents for this month's projects. S.A.l': Components for this montbs projects. S.A. 4.
Lists. NikM, Jow 65 , Seaside, Fitstbourne, sussex. Telephone 32921.

BURGLAR ALARM Reeds 4 wirc, with magnets plastic thush 75p surface 75p. I'ressure mats 4 wire 20in $\because 30$ in $81 \cdot 80$. Bell covers plastic coated stoml 86. Bells 6in $1 \because V^{\circ}$ under-
 P \& P. Send for full price list, or CWU to:
 liverpool Road south, jurscough, Lames, J. $407 \mathrm{IK} \mathrm{E} . \mathrm{T} \mathrm{Cl}, 0704893804$.

BOOKS AND PUBLICATIONS

8IMPLIFIED TV REPAIRS. Full repair instructions, individual British sets, $84 \cdot 50$; request free circuit diagram. Stamp brings details unique TV Publications. AESEPE, 76 (1hurdı street, Larkhali, Lamarkshire.

YOU CAN'T HELP BUT MAKE MONEY if Yot follow the planmed and detailed information on how to start vour own business rewinding armatures, set out in the nesy mamual which is profusely ilustrated and leands goun throuth pasily umerstood stages of fanit diagnosis, taking data, test procedures, laying down new windiugs, where to obtain work, how to cost jobs, ete. No previons rectrical knowledge reduired. "omplete instruction mammal $£ 4$,
 PDIES, Dept. Plis, 102 I arrswood Roat, Withington, Manchester 20 .

FOR 8ALE

P.E. SOUND 8YNTHESISER KIT-mmostly (m-
 $553=$.

```
P. E. SPORTCENTRE
\(£ 2\) P. C. BOARDS \(£ 2\)
post free
SPARKS DEVELOPMENTS
53 North Street, Melbourne, Derby
```

NEW ISSUES of "Jractical Jilectronics" available from April $197 \pm$ edition up to date.
Price 65 p rach post free. BELSH TELE:-
 Harrogate, S. Yorkshire. Tel. (0423) 55mas).

Avon and Somerset Constabulary
 Sale of Facsimile Equipment

The above Force have 23 Mufax D900 AM/BH Receivers, and 23 D901 Transmitters for disposal. The equipment is in working order and would be sold as a complete scheme or as single units. They are available for inspection at Police Headquarters, Bristol, at any time by prior appointment. Tenders for this equipment should be sent to:

The Communications Department Police Headquarters
Avon and Somerset Constabulary
P.O. Box 188
bRISTOL
Closing date: 13th August 1977

ELECTRICAL

STYLI, CARTRIDGES AND AUDIO LEADS, etc. Fior the best at keenest priecs send S.A.E. for free illustrated list to: FliSNTEAD ELECTRONJA (DE), Longley Lane, Gatley, C'hendle, c'leshire, SK's 4 EE E.

WANTED

TURN YOUR Surplus components futo cash. Tel. 0491-35529 (0xon).
WANTED, NEW VALVES, TRANSISTORS, top prices, popular types-KENSINGTOX SUPPLIES (B), 367° Kensington Street, Bradford 8, Yorkshire.

WANTED 25.00 paid frir June 1976 edition of PRACTICAL ELEC'TRONICS. Tel. 0.480 72×75.

EDUCATIONAL

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also selfbuild radio kits. Full details from:
ICS SCHOOL OF ELECTRONICS
Dept. 771J, Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:
ICS SCHOOL OF ELECTRONICS
Dept. 7713, Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)

SITUATIONS VACANT

RADIO TECHNICIANS

Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over.
Standards required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radio and electronic test gear.
Duties cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.
Qualifications: Candidates must hold either the City and Guilds Telecommunications Part I (Intermediate) Certificate or equivalent HM Forces qualifications.
Salary scale from $£ 2,230$ at 19 to $£ 2,905$ at 25 (highest pay on entry) rising to $£ 3,385$ with opportunity for advancement to higher grades up to $£ 3,780$ with a few posts carrying still higher salaries. Pay supplement of $£ 313 \cdot 20$ per annum.
Annual leave allowance is 4 weeks rising to 6 weeks after 27 years service. Opportunities for service overseas.

Candidates must be UK residents.
Further particulars and application forms available from:
Recruitment Officer, Government Communications Headquarters
Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ Tel.: Cheltenham (0242) 21491 (Ext. 2270)

MISGELLANEOUS

MAKE YOUR OWN PRINTED CIRCUITS RUB-ON_IRANSFERS - starter pack . (5 shreets, lines, pads, T.C. pads) $£ 1 \cdot 30$, sparésheets 27p. FERRIC CHLORIDE-1lb bags 70p (P. \& P. 30p). SOLDEREON-SOEKEFS-100-65p-(quamity rates). PLASTIC SUP. PORTS-7 or 8 hole 6p/pair.
S.A.E, lists, sample. P. \& P. 15p/order. P.K.G. ELECTRONICS

Oak Lodge, Tansley, Derbyshire

DATA WITHOUT DELAY

For all Semiconductors, Integrated Circuits, Opto devices, etc. Technical data, U.K. supplier and approx. cost, where possible, sent by return of post. Send 54p per device and S.A.E. Money refunded if data not available.

TANGENT ELECTRONICS
136 Whitehall Rd., Norwich, Norfolk NR2 3EW

CABINET FITTINGS FOR

Stage Loudspeakers and Amplifier Cabs Fretcloths, Coverings, Recess Handles, Strap Handles, Feet, Castors, Locks and Hinges, Corners, Trim, Speaker Bolts, ete, etc.
Send $2 \times 8 \frac{1}{p}$ Stamps for samples and list. ADAM HALL (P.E. SUPPLIES)
Unit Q, Starline Works, Grainger Road Southend-on-Sea, Essex.

DO－IT－YOURSELF LOUDSPEAKERS for hi－fl are our speciality．Full range of components and accessories including chassis speakers， ross－overs，sound absorbent，grille fabrics， etc．，always available．We stock the fabulous vahe Helme speaker kits（complete with futl and easy instructions），also Peerless and Wharfedale kits．Just about the lowest prices anywhere！Send 8tp stamp for bargain list to：AUDIOSCAN，Dept．PE－デラ7， 4 Princes Square，Irarrogate，Nortli Yorkshire．

PRINTED CIRCUITS and HARDWARE

Readily available supplies of Con－ structors＇hardware，Aluminium sheet and sections．Printed circuit boards，top quality for individual or published designs．
Prompt service．
Send 15p for catalogue．
RAMAR CONSTRUCTOR SERVICES
Masons Road，Stratford on Avon Warwicks．

Tel． 4879

OUT8TANDING HI－FI FM TUNER．Comprises 7 transistor superhet design with varicap tuning， AFC．Latest silicon circuitry，full coverage 88－102MIIz，Supplies built and tested with metal front panel and instruction sheet，only $29.95+30 \mathrm{p}$ P．\＆P．GREGGELECTRONICS， $86-88$ Parchmore Road，Thornton Heath， Surrey．

NOW AVAILABLE for D．I．Y．Burglar Alarm Systems．The Lawrence Electronles Solid State Control Module，$£ 6.50$ Inc，VAT，P．\＆P．or B．A．E．for full details on security equipment avallable．LAWRENCE ELECTRONICS， 78 Manningham Lane，Bradford，Yorkshire．

> WIRE THREADING KIT WIRE DISTRIPOTION SYSTEM INTRO-KIT S6.60 inc. of VAT and P. \& P. (Mail order only) KIT CONSISTS: WIRE DISRIBUTION PENCIL, W-D BOARD W-D STRIPS, SPARE SPOOL' OF WIRE, IC LEG DEFORMER, COMPREHENSIVE INSTRUCTIONS. Or for further derails please send a S.A.E. . Trade and overseas enquiries welcome. ZARTRONIX IS Lion Lane, Haslemere, Surrey GU27 IJL

8UPERB INSTRUMENT CASES by Bazelli， manufactured from heavy－duty pye faced steel．Hundreds of people and industrial users are choosing the cases they require from our vast range．Competitive prices start at a low 82p．Examples：width，depth，height，8in．\times $\sin \times 3 \mathrm{in}, \mathbf{\varepsilon 1 . 7 0 ; 1 0 \mathrm { in } \times 6 \mathrm { in } \times 3 \mathrm { in } , ~ £ 2 . 4 2 ; 1 0 \mathrm { in } \times}$ $\sin \times 3 \mathrm{in}, \quad 83.02 ; \quad 12 \mathrm{in} \times 10 \mathrm{in} \times 3 \mathrm{in}, \quad \mathrm{E} 3.98$ ； $8 \mathrm{in} \times 4 \mathrm{in} \times 4 \mathrm{in}, \mathrm{E} 1.98 ; 10 \mathrm{in} \times 6 \mathrm{in} \times 4 \mathrm{in}, \mathrm{f} 2.97$ ； 12 in $\times 8$ in $\times 4$ in，$£ 3.96 ; 7$ in \times in $\times 5 \operatorname{in}, 82.91$ ； $\sin \times 10 \mathrm{in} \times 6 \mathrm{in}, £ 3.96 ; 12 \mathrm{in} \times \sin \times 7 \mathrm{in}, £ 4 \cdot 40$ ； $12 \mathrm{in} \times 12 \mathrm{in} \times 7 \mathrm{in}, 84.84$ ， $\mathbf{1}^{\prime}$ lus 85 p carriage and
 Prompt despatch，Free literature（stamp would be appreciated）：BAZELLI，Dept．No．23，St． Wilfrid＇s，Foundry Lane，Halton，Lancaster LA2 6LT．

ELECTROMAGNETIG COUNTERS．Four digit mechanical 48 V d．c． 85 p inc． 36 Pymms Close， Great Barford，Bedford．

RECHARGEABLE BATTERIEs．＂AA＂pencell （1117）$£ 1 \cdot 26$ ；Sul）＂ 0 ＂＇$£ 1 \cdot 29$ ；＂C＂＇（IIP11） 22．38；＂1）＂（HP：2） $22 \cdot 92$ ；IP3 \＆4．98．Matchine chargers $£ 5 \cdot 91$ each except PP3 charger $£ 4 \cdot 99$ ． （harging holders for 2，3，4，5 or 6 pencells 35 p ＂C＂and＂1）＂size holders， 4 －cell only 50p． Prices include $V A T$ ．Add 10% post，package and insurance orders under $£ 20$ ， 50 over $£ 20$ ． E．A．E．for full details phas 75p for＂Niekel fadminu Power＂hooklet．．Mal orders to ＂admin Power＂hooklet．．Mail orders to
SANDUELE PLANT LTW．， 201 Monmoutl Drive，Sutton Coldfield，West Midlands．Tel． $021-3549764$ ．Callers to T．L．C． 32 Cravern street，Charing Cruss，London，w＇e．

Musical Miracles ！
 by Dewtron ${ }^{\text {（B）}}$
 Build your own synthesiser or musical effects using some of the buge range of DEWTRON modules．Or，build fuzz or wa－waa at bulget prices using special kits．
 Send 25p for Catalogue from：
 D．E．W．Ltd．， 254 Ringwood Road，Ferndown， Dorset BH22 9AR．

BURGLAR ALARM equipment．safes．Trad supplies．Free list s．a．d．As＇RRO－ALARMS， 25 stockton Road，sunterland，Tyue and Wear．Tel． 78825.

BURGLAR ALARMS SUPPLIES AND EQUIPMENT

S．A．E．FOR FREE CATALOGUE
LARGE SIZE PRESSURE MATS MAGNETIC SWITCHES with magnets from 75p BELLS SIRENS ALARM－UNITS CABLE BELL COVERS ．WINDOW FOIL VIBRATION CONTACTS ULTRASONIC AND INFRA－RED DETECTORS－INTERTIA SWITCHES，
A．D．ELECTRONICS
217 Warbreck Moor，Aintree
Liverpool L9 OHU．Tel．051． 5253440

PRACTICAL ELECTRONICS P，C．B，＇S in glass fibre tinned and drifled．
Radio Control June to Aug．76．Ser of $8 \mathbf{6 5} 80$. Cross Hatch Generator Sept，76，E2．85．Digital Volr Mecer（G8CZW）April 77．Set of $2 \mathbf{E} 2.55$ ， Burglar Alarm May 77，$£ 1$＇68．Sports Cencre June 77，including p．c．b．for the power supply，$£ 2 \cdot 46$ Send S．A．E．for complete list and current boards． C．W．O．please，
PROTO DESIGN， 4 Highcliffe Way，Wickford， Essex SSII 8LA

CLEARING LABORATORY，scopes，recorders testmeters，bridges，audio，R．F．generators turutables，tapeheads，stabilised 1＇．S．U．s，sweep generators，test equipment，ete．Lower Beed－ ing 236.

H．M．ELECTRONICS

275a Fulwood Road．Broomhill，Sheffield S10 3BD
Give your project that protessional looking finish．Build it in a BEC Dry transfer lettering now available
CABINETS
ORION cabinet stilt avalable punched or unpunched Send 15p（refundable）for leaflets

NO LICENCE EXAMS NEEDED

To operate this miniature，solid－state TRANSMITTER RECEIVER kit．Only $\mathbf{4 . 2 5}$ plus 20p P．\＆P．
＇Brain－frecze＇＇ern with a MINI．STROBE kit，pocket－sized＇lightning flashes＇，vari－ speed，for disco＇s and parties．A mere $\$ 3$＇80 plus 20p P．\＆P．
Experiment with a psychedelic DREAM LAB，or pick up faint speech／sounds with the BIG EAR sound－catcher：ready－made multi－function modules． $\mathbf{5 5}$ plus 20p P．\＆P． LOTS MORE！Send 20p for lists．
（Prices include VAT）．
（Mail Order U．K，only）
BOFFIN PROJECTS
4 Cunliffe Road
Stoneleigh，Ewell，Surrey（P．E．）

8ALVAGED TTL IGs from 7p．Grood quality． S．A．E．for lists and samples．IBEUERE，it Heald Close，Shawclough，Rochdale，Iancs．

SERVICE SHEETS

8ERVIGE 8HEET8 for radio，television，tape recorders，stereo，etc．With free fault－fluding guide，from 50 p and S．A．E．Catalogue 25p and S．A．E．HAMILTON RADlO， 47 l bohemia Road，St．Leonards，Sussex．

BELL＇S TELEVISION SERVICES for service slheets on radio，TV，etc．，75p plus S．A．E． Colour TV service mamals on request．S．A．E with enquiries to B．＇T．S．． 190 Kings Road， Harrogate，N．Yorkshire．TVel． 042355885.

SERVICE SHEETS，radio，TV，etc． 10,000 models．Catalogue $24 p$ plus S．A．E．with orders－enquiries．TELRAY， 154 Brook Street， I＇reston，PR1 7HP＇．

LADDERS

LADDER8，varnished， $25 \frac{1}{1 \mathrm{ft} \text { ，extd．，} \mathbf{8 0} \mathbf{4 1} .}$ Carr．1．00．Leaflet．Inned．despatch．THE LADDER CENTRE（PEE3），Malesfleld（1）， Telford，Salop．Tel． 586644.

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are cor－ rect at the time of closing for press，readers are advised to check with the advertiser both prices and availability of goods before ordering from non－current issues of the magazine．

TTLs b	Y TE			C-mOS ICs	OP AMPS		AC125 AC126;	$\begin{aligned} & \text { 20p } \\ & \text { 20p } \end{aligned}$	BF 196/7 BF200	$\begin{aligned} & \text { 18p } \\ & \text { 40p } \end{aligned}$	$\begin{array}{ll} \text { TIP35C } & 290 p \\ \text { TIP36A } & 207 p \end{array}$	$\begin{array}{ll} \text { 2N3708/9 14p } \\ 2 N 3773 & 320 p \end{array}$	VOLTAGE (Plastic)	$\begin{aligned} & \text { REGULATO } \\ & \text { xed } \end{aligned}$				
7400 740 HOO	${ }^{16 p}$			$\begin{array}{ll} 4000 & \text { 21p } \\ 4001 & \text { 21p } \end{array}$	$\begin{aligned} & 1458 \\ & 301 \mathrm{~A} \end{aligned}$	$75 p$ $40 p$	$\mathrm{ACl} 2 \mathrm{~B}$	20p	$B F 244 / B$	40p	TIP36C stop	$\begin{array}{ll} 23 \mathrm{~N} 3773 \\ \text { 2N } 3819 & 27 \mathrm{p} \end{array}$	$1 \mathrm{Amp}+v e$					
74 HOO 74 LSOO	${ }_{32 p} 30$	7495 7496	75p 90 p	$4001 \quad 210$	3130 3140	104 p	AC141/2	20p	BF256	60 p	70p	2N3620 50p		30 p 5V	-900 200p			
74500	48 p	7497	340 p	4006 120p	3140	${ }^{2015}$	AC176	20p	BF 257/日	36 p	P41C 40	2N3623 54p	12 V 7812	$130 \mathrm{p} \quad 12 \mathrm{~V}$	7812			
7401	$1{ }^{19}$	74100	118 p	4007 22p	324 339	${ }_{2}^{2259}$	AC187/8	20p	BF259	48p	TIP42A 78p	2N3866 \%5p	15V 7815	130 p	915 200			
7402	1 mp	74104	60 p	4009 87p	339 3900	${ }_{76 \mathrm{p}}$	AC187K	25 p	BF337	36p	TIP42C 00p	2N3904/5 22p	$\begin{array}{ll}18 V & 7818 \\ 24 V & 7824\end{array}$		$\begin{array}{r} 918 \\ 7924 \end{array}$			
7403	18	74105	609	$4011 \quad 210$	${ }_{531}$	140 p	AC188k		BF337	36 p	TIP42C 94p		LM300K (TO	5V 1A, 150p;	M323K (TO			
7404	$24 p$	74107	380	$\begin{array}{ll}4012 & \text { 21p } \\ 4013 & 55 p\end{array}$	709	40 p	AC188K	25p	BFA39/40	34p	TIP2955 74p	2N3905 22p	5V 3A, roopi	BA6258 (TO5) 12	V0.5A 1290;			
74404 7405	40p	74109 74110	$98 p$ $58 p$	4013 55p	741	25 p	AD149	65p	BFA41	34p	40p	2N4058 20p	7605 (TO3).	50p: 1468 Dual	proset $\pm 15 \mathrm{~V}$			
7406	$45 p$	74111	80 p	4015 90p	747	70p	AD161/2	48	BFA79/80	34p	1593 30p	N4060 13p	16 pin DIL.	90p: LM327N D	dal Polarity			
7407	45p	74116	220 p	4016 54p	748	40p	AF114/5	22p	81	34 p	2TX108 12p	2N4123/4 22p	+5V. -12 V ¢	OmA 14 pin dil				
7408 7409	${ }_{27 p}^{25 p}$	74118	${ }^{900}$	4017 $\begin{aligned} & \text { 110p } \\ & 4018 \\ & \text { 120p }\end{aligned}$	Linear ICs		AF116/7	22p	BFR88	40p	21×300 16p	2N4125/6 22p	${ }_{4} 317$ is 2 V	37 V To220	340 p			
7410	18 p	74121	${ }_{3} 32$	4019 54p	$\mathrm{A}^{\text {Y-1-0212 }}$	650p	AF124	300	BFX29/30	34 p	ZTX500 20p	2N4401/3 34p						
76410	30p	74122	535	4020 120p	CA3028A	112p	AF12	300	BFX84, 85	30 p	2N697 25p	2N4427 97p	OPTO DE	CES				
7411	$23 p$	84123	${ }^{730}$	4022 120p	CA3046	85p	AF139	43p	BF $\times 8617 / 8$	30p	1698 40p	4871 80p	$2 \mathrm{CN5777}$	TIL209 Red TIL211 Gr	\cdots 14p			
7412 7413	24 p	74125 74126	700	$\begin{array}{ll}4023 \\ 4024 & \text { 15p }\end{array}$	CA3048	$275 p$ $75 p$	AF239	48	BFY50	24p	2N706.8 22p	2N5296 65p	OCP71	TIL 22 intr	red 7\%			
7414	86	74128	90 p	$4025 \quad 21 p$	CA 3065	216p	BC107/B	10p	BFY51	22p	2N918 43p	2N5457/8 40p	$3015 \mathrm{~F} \quad 1750$	0.21 n . Red	LED			
7416	35p	74132	78	${ }_{4027}^{4026}$ 220p	${ }_{\text {CA }}^{\text {CA3000 E }}$	$97 p$ 850 250	BC100: ${ }^{\text {B }}$	10p	BFY52	24 p	19p	2N5459 40p	$\begin{array}{ll} \text { OL } 704 & 140 \\ \text { DL } 707 & 140 \end{array}$	$0.21 n$. $0.21 n$.	en LED 24%			
7417 7420	40p	74136 74141	${ }_{80}{ }_{50}$	4027 18 4028 $152 p$	CA3089E	256 p 500 p	BC109/C	11p	ERY39	45p	2N1131/2 25p	N5485 45p	DL707 DL747 250	Mounting	clipy $2 p$			
7421	43p	74142	300p	4029 120p	ICL8030C	400p	BC147/8	9 p	BSx19/20	20p	2N1304/5 75p	2N6027 80p						
7422	27p	74145	90\%	4030 59p	LM318N	250p	9/	10p	Bu 105	175p	2N1306/7 75p	2N6107 rop	SCR-THYR	TORS	Low			
7423	36 p	74147	2750 1730	4040 4042	LM380N	${ }^{115 p}$	BC157	11p	BU108 3	315p	22p	2N6247 200p	1A 50V TOS	80p	Profle			
7427 7423	33 p	74150	1590	4043 100p	LM389N	1750	BC158/9	120	MJ4 1	200p	N1719 22p	2N6254 140p	YA 100 V TOS	$\begin{aligned} & 659 \\ & 750 \end{aligned}$	DIL SKTS			
7430	18 p	74151	$77 p$	4046 150p	M252	350	C169C	6	MJ491 2	235p	32p	2N6290 70p	3 l 400V Stud	${ }^{85 p}$	by Texas			
7432 7437	$3 \mathrm{3p}$	74153 74154	929090	4047 110p	MC1310P MC1351P	${ }_{104}^{200 p}$	BC172/B	12p	MJ2955	130p	2N2160 120p	3N128 97p	16a 400V Plastic	185	8 pin 12			
7438	$37 p$	74155	97 p	4050 54p	MC 1495L	490 p	177/8	$20 p$	MJE340	rop	2N2219 22p	3N140 105p	16A 800 V Plestic BT 1061 A 700 V	${ }_{140 p}$	14 pin 13p			
7440	15 p	74156	97p	4055 120p	MC 1496L	$115 p$	BC179	20p	MJE2955	130p	2N2222 22p		C108D 4A 400 V	Plastic lep	16 pin 140			
7441	${ }^{85}$	74157	960	$4055 \quad 140 \mathrm{p}$	MC3340P	${ }^{180}{ }^{180}$	BC182/3	2p	MJE3055	97p	2N2369 15p	RIAC	MCR 1010.5 A	V TO92 30p	18 pin 32p			
7442 744	75p 130 p	74158 74159	160 p 220 p	$\begin{array}{ll}4056 & 145 p \\ 4060 & 120 p\end{array}$	MC3360P MFG 4000 B	140 p 90 p	BC184	14p	MPF102/3	40p	2N2484 32p		2 N 352554.400 V	TO66 130p	24 pin 54p			
7444	130p	74160	120p	4009 40p	NE540L	${ }^{175 p}$	BC187	32p	MPF104/5	40	48 p	Plastic		Prastic 7092009 10	28 pin 60p			
7445	104p	74161	120p	4071	NE555	40 p	BC212	14 p	MPS	37p	N2904/A 22p	Amp Volts	2N5084 0.8A 200	V TC92 45p	$40 \mathrm{pin} \quad 75 \mathrm{p}$			
7446 7447	$101 p$ $90 p$	74162 74163	${ }_{1}^{120 p}$	${ }_{4072}^{4081}$ 29p	NE556 NE561	${ }_{420}{ }^{40}$	BC21	12p	MPSA12	61p	2N2905/A 22p	$3400 \quad 35 p$						
7448	90 p	74164	130 p	4082	NE562	425p	BC	6p	MPSA	37p	2N2906/A 24 p	6400 107p		BA 100V resp	1N914 1N4001			
7450	20 p	74165	1500	$4093{ }^{4510} 0$	NE555	2000	BC461	36 p	MPSU06	74p	2N2926RE 9p	65001300	RECTI-		1N+4002 Ep			
7451 7453	$20 p$	74166 74167	136 p 340 p	4510 4511	NE566 NE567	${ }_{200 p}^{200 p}$	BC478	32 p	MPSUU56	98p	2N2926OYG ${ }^{\text {2 }}$	10.400 150p	FIERS	DIODES	$1 N 4004$ $1 N 4007$			
7454	$20 p$	74170	2500	4516 140p	2567	400 p	BCY7	20p	OC23	79p	11p	$\begin{array}{llll}10 & 500 & 170 p\end{array}$		$8 Y 100$ BY126 35 $12 p$	1N4148			
7460	20p	74173	1400	4518 4588 140 p 130 p	SG3402N	275p	BCY71	24p	${ }_{\text {OC35/36 }}$	79p	2N3053 22p	$15 \quad 400 \quad 2000$		$\begin{array}{ll}\text { BY128 } \\ \text { BY127 } & \text { 12p } \\ \text { 12p }\end{array}$	1N5401 15p			
7470 7472	32p	74174 74175	1300 920	$\begin{array}{ll}4528 & 130 p \\ 4553\end{array}$	SN72710N SN72733N	54 p 150 p	BD131	85p	${ }_{\text {OC31 }}$	25p	2N3054 6 65p	$15500 \mathrm{z20p}$	ta goov 350	OA47 ¢p	1N5404 24p			
7473	38 p	74176	1300		SN76003N	2750	B0132	$60^{\text {p }}$		225p	2N3055 85p	40430 130p	2 A 50 V 350	OAA 1 15p	ZENERS			
7474	37 p	74177	130p	MEMORY	SN78006	275p	B0135		А2008	${ }^{225 p}$	2N3055 ${ }^{\text {2N3442 }}$ 151p	40669 130p	2 A 100V 400	OAB5 1 15p	400 mW 110			
7475	48 p	74180	118p	1702A 1000p	SN76013N	175p	B0135	54 p	010B	22	2N3442 151p	+0605 130p		$\begin{array}{ll}\text { OAM9 } & 7 p \\ \text { OAP1 } & \\ \text { Op }\end{array}$	iw			
7476	${ }^{37}$ p	74181	324 p	$2102.2{ }^{2160}$	SN76018	275p	80136	55p	T1P29A	Op	23	DIAC	4 A 100 V 500	OA95 \%				
7480 7481	94p	74182 74185	${ }_{1440}$	$\begin{array}{ll}2104 \\ 2107 & 11060 \\ 1106 p\end{array}$	SN76023N	175p	BD139	56 p	TIP29C	62p	2N3704/5 14p	DIAC	4 A 400 V Ste	OA200 \%p	OTHER			
7482	49p	74186	965p	2112 496p	SN760660	${ }^{2750}$	8D140	80p	TIP30A	${ }^{0} 0$	2N3706/7 14p	BR100 32p	6A 50V sep	OA202 10p	251 125p			
7483	$95 p$	74190	155p	2513 (150p	taAg21A	275p	BDY56	235p	30 C	729	VAT INCLUSIVE PRICES		Add 20p P. \& P.					
7484	1039	74191	${ }^{180 p}$	745262 1800p	TAA661B	150p	BF115	24p	TIP31A	$56 p$								
7485 7486	${ }^{130 p}$	74192 74193	130p 130p	UART	TBA120 TBAEA18	300 p	BF 167	25p	TIP31C	${ }^{68} \mathrm{p}$	MAIL ORDER ONLY		Govt., Colleges orders accepted					
7489	340 p	74194	${ }^{130} \mathrm{p}$	A $\ 5$-1013 000p	T8A651	275p	8F173	$27 p$	TIP32A	63p	TECHNOMATIC LIMITED							
7490 7491	43p	74195 74196	${ }_{130} 9$ p		TBA800 tBAB10	1000	BF178	40p	T1P32C	${ }^{89}$								
7492	55p	74197	130 p	TV GAMES	tbagzo	1000	BF180	40p	TIP33A	97p								
7493	$43 p$	74198	214p	$\begin{aligned} & A Y \cdot 3-8500 \\ & 57.75 \end{aligned}$	tDAz020	400p	BF184	30 p	TIP34A	124p	54 Sandhurst Road, L		ondon NWg	Tel. 01-204 4333 Telex: 922800				
7494	96 p	74199	214p		ZN414	140 p	BF94/5	12p	TIP35A	243p								

E. D. A.	555
Electronic Mail Order	546
Electrospares	603
Electrovalue	558
Elvins Electrical Musical Instruments	546
Flairline Supplies	557
Government Communications Headquarters	613
Greenweld Electronics	608
Harversons	607
Heathkit Ltd.	611
H. M. Electronics	615
Home Radio	604
1. L. P. Electronics	575
International Electronics Unlimited	548
Intertext ICS	613
Island Devices	612
Jones, J. C.	612
J. W. B, Radio	612
Lektropacks	554
Linway Electronics	612
Lion House	605
Lynx Electronics	576
Maplin Electronic Supplies	IV
Marco Trading	612
Marshall, A., \& Sons	601
Metac	606
Minikits Electronics	614
Modern Book Co.	557

RELAYS. WIDE RANGE OF A.C. and D.C RELAYS AVAILABL

FT3 NEON FLASH TUBE
High intensity multi turn, high voltage,
neon glow, discharge flash tube. Design 25p. 3 for $£ 3-00$. P. \& P. 50 p

NI-CAD BATTERIES

MICRO SWITCH

V.4.T. I 10 fore $\mathbf{E 2} \mathbf{5 0}$. 50 for $£ 10$. Post paid. Sub min Honeywell roller m/s
type $3115 \mathrm{~m} 906 \mathrm{t}, 10$ for $£ 2.50$ post USA

24 VOLT DC SOLENOIDS

UNIT containing I heavy duty solenoid approx. 251b pull I nch eravel. Two x approx. Itb pull $\frac{1}{2}$ inch
travel. 6 approx. Aoz. pull $\frac{1}{2}$ inch travel. One
24 vole . 1 heavy duty single

VORTEX BLOWER AND VACUUM UNIT
 on alloy base with fixing fouted
with fixing facities. 25 cm . These units are ex equipment but have had minimum use. Fully tested prior to dispat have had $612+61.50$ P. \& P

INSULATION TESTERS Test to i.E.E. Spec. Rugged metal construction, suitable for bench or field work, constant speed clutch Size L. $8 \mathrm{in}, \mathrm{W} .4 \mathrm{in}, \mathrm{H} .6 \mathrm{in}$, weight 61 b. $500 \mathrm{~V}, 500$ megohms, 540 . Post 80 p $1,000 \mathrm{~V}, 1,000 \mathrm{M} \Omega, \mathbf{4 6}$. Post 80 p .	

Dept. PEII, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 0l-995 1560

VARTABLE VOLTAGE TRANSFORMERS

L.T. TRANSFORMERS

$0-12 V / 24 \mathrm{~V}$ at amp, $\mathbf{2 2 . 5 0}$ (P. \& P. 50p) $0-15 \mathrm{~V}$ at $\mathrm{I} \mathrm{amp}+0-15 \mathrm{~V}$ at $1 \mathrm{amp}(30 \mathrm{~V}$ I amp), $62 \cdot 50$ $25-0-25 \mathrm{~V}$ at $2 \frac{1}{2}$ amp. $\subset 4.50$ (P. \& P. 75 p). $0-12 \mathrm{~V} / 24 \mathrm{~V} 10 \mathrm{amp}, ~ \& 12 \cdot 35$ (P . \& P.EF 50) $0-4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}$ at 12 amp , 13 (P.\&P $\mathrm{f} / \mathrm{I} 50$). $0-12 \mathrm{~V}$ at 20 amp or $0-24 \mathrm{~V}$ at $10 \mathrm{amp}, \mathbf{f 1 2 . 4 0 (\mathrm { P } , ~ \& ~ \mathrm { P }}$ $0-6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$ at $20 \mathrm{amp}, £ 14(\mathrm{P}, \& \mathrm{P} . £ 1 \cdot 50)$. O

STROBE! STROBE! STROBE!

HY-LIGHT STROBE KIT MK IV Latest type Xenon white light flash tube. Solid state timing and triggering circuit. $230 / 240 \mathrm{~V}$ a.c. operation Designed for larger rooms, halls, etc. Speed adjustable 1.20 f.p.s. Light output greater than many so called 4 Joule) strobes $\ell 18$. for Hy.Light $£ 8.25$. P. \& P. E

WIDE RANGE OF DISCO LIGHTING EQUIPMENT

BIG INCH

AT CURRENT RATE MUST BE ADDED TO ALL ORDERS FOR THE TOTAL VALUE OF GOODS INCLUDING POSTAGE UNLESS OTHERWISE STATED.
with resistor for 230 val
Op. 4 for 45.00 post

VAT

GEARED MOTORS 100 r.p.m. 115 lb . in. 110 V SOHz . $2 \cdot 8 \mathrm{~A}$, single phase, split
capacitor motor. Immense power. Continuously rated. Length 250 mm . Dia. 135 mm . Spindle dia 15.5 mm Length 145 mm . Ex-equipment cested $£ 12$. Pose E1.50. Suitable transformer $230 / 240 \mathrm{~V}$ operation
48. Post 75 p.

CITENCO

FHP motor cype C $7333 / 15220 / 240$ voles AC I9RPM reversible motor, torque 14.5 kg gear ratio 144 -

BODINE TYPE N.C.I. (Type J) 71 ripom-torque 10 lb . i
 offered in as new' condition. Input voltage of motor 115 V A.C. Supplied complete with transformer for $\mathbf{2 3 0 / 2 4 0 V}$ A.C. input. $\mathbf{P r i c e , ~ c i t h e r ~ t y p e ~ E 6 . 2 5 . ~ P o s t ~} 75$ p or less trans former $\mathbf{£ 3} 75$. Post 65 p. (Type 3) 71 r.p.m. 41 lb ins. 230 V a.c. Continuously
rated. Reversible. $\mathbf{6 6 . 5 0 \text { . Post } 7 5 \text { . }}$

15 R.P.M.
Type 5D48 80 lb . in. Input $100 / 200$ volt A.C. Length inct. gearbox 270 mm . Height 135 mm . Width 150 NEW. Price $f 10$. Carr. Weight 8.5 Kilos. BRAND $\mathbf{3} \cdot \mathbf{8 5}$. Post 50 p
A.E.G. WATER PUMP 200/240V AC. motor. 2.850
r.p.m. 480 W aporox
 uses in industrial labsens etc. Note this 1500 . Post 75 p .

PROGRAMME TIMERS
230 V operationa.c. 15 or 20 r
 Also avalable for 50 V ost 60 p

METERS NEW — 90 mm Diameter Type: 65CSD.C.M/C 2,5.10, 20, 50 amp £3. 100 amp $£ 3 \cdot 25$. 20 p
Type: 62T2 A.C. M/1 1, 10, 50 amp. E3 Post 20 p $0-150$ volt. A.C. M/I $\mathbf{3} \cdot \mathbf{2 5}$ and 300 volt A.C. R/M,C

WHY PAY MORE?

 MULTI RANGE METER. A.C, volts$2.5-500$. D.C. volts $2 \cdot 5-500$ (Sensitivity 2000 R/VD.C. and A.C.) D.C. eurrent compact moving coil instrument wit 21 ranges, dimensions $120 \times 80 \times 44 \mathrm{~mm}$
Weight 0.32 kg . SERVICE TRADING
 Post 50p. (Total price incl. VAT and Post 66.48)

TIME SWITCH

SERVICE
TRADING CO

\qquad

[^0]: © IPC Magazines Limited 1977. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whote or part are expressiy forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS io ensure that the advice and data given to readers are reliable. We cannot, however, guaraniee ix, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Where subroutine nesting is stated as＇unlimited＇it is of course limited by the available RAM in a given system

[^2]: SEND SAE WITH ALL ENQUIRIES.
 FOR PERSONAL CALLERS ONLY WE FOR PERSONAL CALLERS ONLY: WE
 CAN NOW OFFER A FULL REPAIR SAN NOW OFFER A FULL REPAIR SERVICE ON ALL HI-FIEQUIPMENT,

