COMP UK 101
SINGLE BOARD COMPUTER
* 8K HIGH SPEED BASIC
* FULLY EXPANDABLE

Also: HOME FREEZER ALARM
The Compukit UK101 has everything a one board 'superboard' should have.

- Uses ultra powerful 6502 microprocessor
- 50Hz Frame refresh for steady clear picture (U.S.A. products with 60Hz frame refresh always results in jittery displays)
- 96 chars by 16 lines — 1K memory mapped video system providing high speed access to screen display enabling animated games and graphics
- Comprehensive character set which includes full upper and lower case alphanumerics, Greek symbols for mathematical constants and numerous graphic characters enabling you to form almost any shape you desire anywhere on the screen
- 8K full Microsoft Basic in ROM compatible with PET, APPLE SORCERER hence taking the headache out of programming by using simple English statements. Much faster than currently available personal computers

- Professional 52 key keyboard in 3 colours — software polled meaning that all debouncing and key detecting done in software
- Video output and UHF Highgrade modulator (8Mz Bandwidth) which connects direct to the aerial socket of your T.V. Channel 36 UHF
- Fully stabilised 5V power supply including trans. former on board
- Standard KANSAS city tape interface providing high reliability program storage — use on any standard domestic tape or cassette recorder
- 4K user RAM expandable to 8K on board £49 extra.
- 40 line expansion interface socket on board for attachment of extender card containing 24K RAM and disk controller (Ohio Scientific compatible)
- 6502 machine code accessible through powerful 2K machine code monitor on board
- High quality thru plated P.C.B. with all I.C.'s mounted on sockets.

FULL CONSTRUCTION DETAILS
IN P.E. AUG 1979 EDITION

Delivery date June 1979 at the 1979 Microcomputer Show
Customer orders in strict rotation only.

A tape of 10 programs on cassette — educational games, etc. will be supplied free of charge with each kit.

Simple Soldering due to clear and concise instructions compiled by Dr. A.A. Berk, BSc. PhD

NO EXTRA NEEDED JUST HIT "RETURN" AND GO.

Build, understand, and program your own computer for only a small outlay.

ONLY £219 + VAT
Including RF Modulator & Power supply
Absolutely no extras.

Due to the new prices of TTL this price will be increased shortly. So order now to beat the price increases and the rush.

SPECIAL CHARACTERS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>Carriage Return — must be at the end of each line</td>
</tr>
<tr>
<td>LF</td>
<td>Line Feed</td>
</tr>
<tr>
<td>E1</td>
<td>Erases last character typed</td>
</tr>
<tr>
<td>E2</td>
<td>Erases line being typed, then provides carriage return, line feed</td>
</tr>
<tr>
<td>E3</td>
<td>Overrides Return</td>
</tr>
<tr>
<td>E4</td>
<td>Carriage Return must be at the end of each line</td>
</tr>
</tbody>
</table>

Separates statements on a line

CONTROLS: Execution or printing of a list is interrupted at the end of a line when "BREAK IN LINE XXXXX" is printed, indicating line number of next statement to be executed or printed.

CONTROLS: No outputs occur until return made to command mode if an input statement is encountered. Either another CONTROLS is typed, or an error occurs. Equivalent to PRINT

COMMANDS
CONT LIST STATEMENTS CLEAR DATA DEF DIM END FOR GOTO GOSUB IF GOTO IF THEN LET NEXT ON GOTO ON GOSUB POKE GOTO PRINT READ RESTORE RETURN STOP

EXPRESSIONS OPERATORS
- +, -, *, /, MOD, OR, AND, XOR
- R, G, B, and other variables
- The above can all be subscripted when used in an array. String variables use above names plus $, e.g. AS

Please make cheques and postal orders payable to COMP, or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number.

14 STATION ROAD, NEW BARNET, HERTS. TEL: 01-441 2922 (Sales) 01-449 6596
TELEX: 298755

(Part of the Compshop Ltd. Group)
CONSTRUCTIONAL PROJECTS

HOME FREEZER ALARM by P. E. Chaplin
Early warning of an expensive thaw 18

AF/RF SIGNAL GENERATOR by J. Gerrard
Simple test gear for field servicing 21

COMPUKIT UK 101—PART 1 by A. A. Berk, B.Sc.Ph.D.
Single board computer with resident BASIC 24

CLASS A HEADPHONE AMPLIFIER by Stephen Price
Quality headphone listening 62

CHIMESONIC by P. E. Copeland
Door chime with retunable melody modules 66

GENERAL FEATURES

MICROBUS by D.J.D.
A bi-monthly focus on micro's for the home constructor 42

SEMICONDUCTOR UPDATE by R. W. Coles
A look at some recently released devices—INS 8295, MK 4816, µA78MGU1C 45

INGENUITY UNLIMITED
Lightning Chess Timer—TTL Oscillator—D.C. Ringing for Intercoms—Shorted Turns Detector—Sound Operated Flash—Meter for Electrolytics 46

SOLDERS AND SOLDERING by P. Dinsdale
Industrial theory and practice plus advice for the amateur 50

NEWS AND COMMENT

EDITORIAL

SPACEMOON by Frank W. Hyde
Astronomy Satellite, UV Explorer, Shuttle, Second Fleetsatcom, Venus, Fall of Skylab 33

MARKET PLACE

New products 34
Spring Trade Shows 36

NEWBEAR 77-78 by P. Birnie
Review of a ready to use micrakit 38

NEWS BRIEFS

Flicker to Fluorescent—No Cause for Alarm—Countdown—Return of Steam—B.A.E.C. Hon. Sec. Move 53

PATENTS REVIEW

Torsional Metering—Doughnut Damping 54

INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 57

READOUT

A selection of readers' letters 58

BOOK REVIEWS

70

POINTS ARISING

Metermate—Autoranging Multimeter—Guitar Sound Multiprocessor—Constant Display Frequency Meter—Ultrasonic Remote Control—Sound Operated Switch 70

OUR SEPTEMBER ISSUE WILL BE ON SALE FRIDAY, 10 AUGUST 1979
(for details of contents see page 61)

© IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.
PROOPS

BROTHERS LIMITED

Special purchase of Shinohara's SEW Panel meters at fantastic low prices

MR RANGE – DC MOVING COIL TYPE

(Accuracy ± 2%)

- **DIMENSIONS**
 - 110 x 120 x 47 mm: Ref 85P £3.00
 - 78 x 86 x 41 mm: Ref 65P £2.50
 - 60 x 60 x 40 mm: Ref 52P £2.50
 - 50 x 50 x 34 mm: Ref 45P £1.50
 - 42 x 42 x 32 mm: Ref 38P £1.50

Prices inclusive of VAT. Add 25p per item carriage and packing.

References:

- 110 x 120 x 47 mm
 - 5mA
 - +1mA
 - +500pA
 - +100pA
 - 10mA

ED 107 EDUCATIONAL RANGE

Dimensions: 78 (H) x 90 (D) x 100 (W) mm

£3.50 each including VAT. Add 50p per item carriage and packing.

- 50μA
- ±1mA
- 5/50V DC
- 50V DC
- 100μA
- 10V DC
- 20V DC
- 30V DC

Barclaycard & Access Accepted – Order by phone or post.

Mail Orders to Proops Bros. Limited, Dept PE8

The Hyde Industrial Estate, Edgeware Road, London, NW9 6JS. Tel. 01-205 8006

Personal Shoppers: 52 Tottenham Court Road, London, W1P 0BA. 9-6 Mon-Sat.

Now, complete your system!

Citricon MM331 Mixer

The ultimate range of speakers

For more details contact our sales team on 01-717 6137 or visit our website: citricon.com

PROJECTORS

Special purchase of Shinohara's SEW Panel meters at fantastic low prices

Mullard Polyester capacitors

1uf 63v.w., 5p, 4 7uf 63v.w., 5p.

MINIATURE NON POLARISED CAPACITORS

1uf 63v.w., 5p, 4 7uf 63v.w., 5p.

4 watt 100K LINEAR WIRE WOUND POTENTIOMETERS.

30p each.

J. BIRKETT

Radio Component Suppliers

25 The Strait, Lincoln LN2 1JF. Tel: 20767

Practical Electronics August 1979
WATFORD ELECTRONICS

35 CARDIFF-Road, Watford, Herts., England
March 17th 1979

Dear Sirs,

F391663T was always supplied with 1N4148 (GE) diode.

Can you tell me if the same diode is available for

F391663T or can you supply any information as to how the device is used?

Yours faithfully,

[Signature]

POTENTIOMETERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10k</td>
<td>100</td>
<td>15p</td>
</tr>
<tr>
<td>20k</td>
<td>200</td>
<td>18p</td>
</tr>
<tr>
<td>50k</td>
<td>500</td>
<td>25p</td>
</tr>
<tr>
<td>100k</td>
<td>1000</td>
<td>30p</td>
</tr>
<tr>
<td>250k</td>
<td>2500</td>
<td>35p</td>
</tr>
</tbody>
</table>

RESISTORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1k</td>
<td>100</td>
<td>15p</td>
</tr>
<tr>
<td>2k</td>
<td>200</td>
<td>15p</td>
</tr>
<tr>
<td>5k</td>
<td>500</td>
<td>18p</td>
</tr>
<tr>
<td>10k</td>
<td>1000</td>
<td>20p</td>
</tr>
<tr>
<td>20k</td>
<td>2000</td>
<td>25p</td>
</tr>
<tr>
<td>50k</td>
<td>5000</td>
<td>30p</td>
</tr>
</tbody>
</table>

ELECTROLYTIC CAPACITORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1µF</td>
<td>10</td>
<td>15p</td>
</tr>
<tr>
<td>2µF</td>
<td>20</td>
<td>18p</td>
</tr>
<tr>
<td>5µF</td>
<td>50</td>
<td>20p</td>
</tr>
<tr>
<td>10µF</td>
<td>100</td>
<td>25p</td>
</tr>
<tr>
<td>22µF</td>
<td>220</td>
<td>30p</td>
</tr>
</tbody>
</table>

TRANSISTORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC108</td>
<td>15p</td>
</tr>
<tr>
<td>BC109</td>
<td>18p</td>
</tr>
<tr>
<td>BC110</td>
<td>20p</td>
</tr>
<tr>
<td>BC111</td>
<td>25p</td>
</tr>
</tbody>
</table>

COMPUTER HARDWARE

- **8085**
 - 16K ROM
 - 4K RAM
 - 2K EPROM
 - Price: 240p

COMPUTER HARDWARE (续)

- **8086**
 - 32K ROM
 - 8K RAM
 - 4K EPROM
 - Price: 400p

COMPUTER HARDWARE (续)

- **8088**
 - 64K ROM
 - 16K RAM
 - 8K EPROM
 - Price: 800p

COMPUTER HARDWARE (续)

- **8089**
 - 128K ROM
 - 32K RAM
 - 16K EPROM
 - Price: 1600p

COMPUTER HARDWARE (续)

- **8090**
 - 256K ROM
 - 64K RAM
 - 32K EPROM
 - Price: 3200p

COMPUTER HARDWARE (续)

- **8091**
 - 512K ROM
 - 128K RAM
 - 64K EPROM
 - Price: 6400p

COMPUTER HARDWARE (续)

- **8092**
 - 1M ROM
 - 256K RAM
 - 128K EPROM
 - Price: 12800p

COMPUTER HARDWARE (续)

- **8093**
 - 2M ROM
 - 512K RAM
 - 256K EPROM
 - Price: 25600p

COMPUTER HARDWARE (续)

- **8094**
 - 4M ROM
 - 1M RAM
 - 512K EPROM
 - Price: 51200p

COMPUTER HARDWARE (续)

- **8095**
 - 8M ROM
 - 2M RAM
 - 1M EPROM
 - Price: 102400p

COMPUTER HARDWARE (续)

- **8096**
 - 16M ROM
 - 4M RAM
 - 2M EPROM
 - Price: 204800p

COMPUTER HARDWARE (续)

- **8097**
 - 32M ROM
 - 8M RAM
 - 4M EPROM
 - Price: 409600p

COMPUTER HARDWARE (续)

- **8098**
 - 64M ROM
 - 16M RAM
 - 8M EPROM
 - Price: 819200p

COMPUTER HARDWARE (续)

- **8099**
 - 128M ROM
 - 32M RAM
 - 16M EPROM
 - Price: 1638400p

COMPUTER HARDWARE (续)

- **8100**
 - 256M ROM
 - 64M RAM
 - 32M EPROM
 - Price: 3276800p

COMPUTER HARDWARE (续)

- **8101**
 - 512M ROM
 - 128M RAM
 - 64M EPROM
 - Price: 6553600p

COMPUTER HARDWARE (续)

- **8102**
 - 1G ROM
 - 256M RAM
 - 128M EPROM
 - Price: 13107200p

COMPUTER HARDWARE (续)

- **8103**
 - 2G ROM
 - 512M RAM
 - 256M EPROM
 - Price: 26214400p

COMPUTER HARDWARE (续)

- **8104**
 - 4G ROM
 - 1G RAM
 - 512M EPROM
 - Price: 52428800p

COMPUTER HARDWARE (续)

- **8105**
 - 8G ROM
 - 2G RAM
 - 1G EPROM
 - Price: 104857600p

COMPUTER HARDWARE (续)

- **8106**
 - 16G ROM
 - 4G RAM
 - 2G EPROM
 - Price: 209715200p

COMPUTER HARDWARE (续)

- **8107**
 - 32G ROM
 - 8G RAM
 - 4G EPROM
 - Price: 419430400p

COMPUTER HARDWARE (续)

- **8108**
 - 64G ROM
 - 16G RAM
 - 8G EPROM
 - Price: 838860800p

COMPUTER HARDWARE (续)

- **8109**
 - 128G ROM
 - 32G RAM
 - 16G EPROM
 - Price: 1677721600p
CRIMSON ELEKTRIK

TOTAL AMPLIFICATION FROM

STEREO PRE-AMPLIFIER

- **CPR 1**

POWER AMPLIFIER

- **MC 1 - PRE-PRE-AMPLIFIER**

- **BO x 20mm. Supply to be ±15 volts.**

LEVELS.

- **Signal to noise ratio 86dB; slew-rate 3V/µS; T.H.D. 20Hz - 20kHz < .008% at any level.**

- **Overload margin is a superb 40dB, this together with the high slewing rate ensures clean top, even following this stage is the flat partitionstage to bring long, faster, etc. up to power amp, signal levels.**

T.H.D. 20Hz - 20kHz < .008%!

The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably in the disc stage. The following stage is the flat partition stage to bring long, faster, etc. up to power amp, signal levels.

Slew-rate 3V/µS; T.H.D. 20Hz - 20kHz < .008% at any level.

F.E.T. muting. No controls are fitted. There is no provision for tone controls. CPR 1 size is 120 x 80 x 25mm.

MC 1 - PRE-PRE-AMPLIFIER

- **Suitable for nearly all moving-coil cartridges. Send for details.**

X02: X03 - ACTIVE CROSSOVERS

- **£3.00 2 way, X03 - three way.**

Slope 24dB/Octave. Crossover points set to order within 10%

REG 1 - POWER SUPPLY

- **The regulation module, REG 1 provides 15-0-15v to power the CPR 1 and MC 1. It can be used with any of our power amp supplies or our small transformer TR 6. The power amp kit will accommodate it.**

POWER AMPLIFIERS

- **It would be pointless to list in so small a space the number of recording studios, educational and government establishments, etc. who have been using CRIMSON amps satisfactorily for quite some time. We have a reputation for the highest quality at the lowest prices. The power amp is government establishments, etc. who have been using CRIMSON amps satisfactorily for quite some time. We have a reputation for the highest quality at the lowest prices. The power amp is**

POWER AMPLIFIER MODULES

- **CE 1704 170W/4 ohms 45-0-45v**

CE 1004 100W/4 ohms 35-0-35v

CE 608 60W/8 ohms 35-0-35v

CE 604 60W/8 ohms 35-0-35v

CE 406 40W/8 ohms 35-0-35v

CE 206 20W/8 ohms 35-0-35v

TOTAL TOROIDAL POWER SUPPLIES

- **X02: £14.33 X03: £20.26**

X01: £14.33 X02: £20.26

X03: £20.26

X04: £31.40

HEAT SINKS

- **Light duty, 50mm, £2.25 One PMO PWB: £2.50**

One CE 1008, £3.00

One 1700, £3.00

Fan, 300mm, size 240 or 240

Fan mounted on two drilled 100mm

Heatsinks, 2 x 40W, 65°C max

THERMAL CUT-OFF, 70°C

- **£1.45**

TRON I - ACTIVE CROSSOVERS

- **£15.54**

REG 1 - POWER SUPPLY

- **£20.81**

CPR'S

- **£30.96**

TECHNICAL ADVICE

- **Please write for specific quote. Send large SAE or 3 international Reply coupons for detailed information, UK - please allow up to 21 days for delivery.**

Distributors: Badger Sound Services Ltd, Minic Teleprodukter, Box 12035, Liverpool.

- **CRIMSON ELEKTRIK**

- **1A STAFFORD STREET, LEICESTER LE1 6NLL**

- **Tel. (0533) 553508**

DIGITALLY SYNTHESIZED DOOR CHIME

- **£14.95**

Don't Let Your Environment Dehydrate You

- **£14.95**

CASSETTE MOTO-S

- **£29.16**

ULTRASONIC TRANSDUCERS

- **£24.38**

MINIATURE LEVEL/BATT. METERS

- **£22.68**

P/B SWITCH BANKS

- **£29.16**

MINIATURE THUMBWHEEL SLIDER POTS

- **£20.16**

SMD AND GAS DETECTOR

- **£18.54**

MICROCOMPUTER MANIAC?

- **£15.55**

MINIATURE REED SWITCHES

- **£18.33**

GAPRISES

- **£17.66**

MADE CIRCUIT KIT

- **£31.90**

DIODE Package

- **£15.25**

FULLY SHROUDED MINI MAINS TRANSFORMERS

- **£15.66**

POWER AMPLIFIER KIT

- **£14.33**

X02: £20.26

X03: £31.40

X04: £29.16

PRE-AMPS

- **These are available in two versions - one uses standard components, and the other (the SI uses MO resistors where necessary and tantalum capacitors).**

- **CPR1 £20.96 CPRS £22.98**

- **REG 1 £29.12**

- **P/B SWITCH BANKS**

- **£31.90**

- **MINIATURE THUMBWHEEL SLIDER POTS**

- **£37.24**

MINIATURE SUPPLY DEPT, P.E.

- **149A BROOKMILL RD, DORSET, LONDON, SE8**

ARE YOU A MICRO-COMPUTER MANIAC?

- **Then cut along the dotted line...**

Postcode...

SILENT MICROTECHNIK TOOLS

- **25 Brunswick Street, Liverpool. 051-227 2535**

Total Electronics August 1979

DIGITALLY SYNTHESIZED DOOR CHIME

- **£14.95**

Don't Let Your Environment Dehydrate You

- **£14.95**

CASSETTE MOTO-S

- **£29.16**

ULTRASONIC TRANSDUCERS

- **£24.38**

MINIATURE LEVEL/BATT. METERS

- **£22.68**

P/B SWITCH BANKS

- **£29.16**

MINIATURE THUMBWHEEL SLIDER POTS

- **£20.16**

SMD AND GAS DETECTOR

- **£18.54**

MICROCOMPUTER MANIAC?

- **£15.55**

MINIATURE REED SWITCHES

- **£18.33**

GAPRISES

- **£17.66**

MADE CIRCUIT KIT

- **£31.90**

DIODE Package

- **£15.25**

FULLY SHROUDED MINI MAINS TRANSFORMERS

- **£15.66**

POWER AMPLIFIER KIT

- **£14.33**

X02: £20.26

X03: £31.40

X04: £29.16

PRE-AMPS

- **These are available in two versions - one uses standard components, and the other (the SI uses MO resistors where necessary and tantalum capacitors).**

- **CPR1 £20.96 CPRS £22.98**

- **REG 1 £29.12**

- **P/B SWITCH BANKS**

- **£31.90**

- **MINIATURE THUMBWHEEL SLIDER POTS**

- **£37.24**

MINIATURE SUPPLY DEPT, P.E.

- **149A BROOKMILL RD, DORSET, LONDON, SE8**

ARE YOU A MICRO-COMPUTER MANIAC?

- **Then cut along the dotted line...**

Postcode...

SILENT MICROTECHNIK TOOLS

- **25 Brunswick Street, Liverpool. 051-227 2535**

Total Electronics August 1979
PRIME TTL & CMOS AT LOWEST PRICES

REAL-SATE OF-THE-ART

NEW LOW PRICES

Two new 10Hz to 600MHz frequency counters from Optoelectronics USA each & built-in Nixie & charging circuits.

MODEL OPTO 8000 1A
ONLY £275 (was £320)

- Precision 10ps rise time 0.1mV
- Full graphics with provision for back light & text with numeric output to BCD label or 4000 register
- Mini-Cavino style output
- Built-in Q & Q power supply
- Remote control & autoprinter

TELEPHONE ANSWERING BREAKTHROUGH

Let a new remote control answering computer free you from your next telephone call thanks to microprocessor technology.

Code-a-phone 1400 Wireless command
ONLY £225

BRAND NEW FROM EICO
MODEL 390
Function/Sweep Generator
£137.50

- Solid state sweep & function generator
- 240VAC or DC operation
- Very compact
- Ideal for individual use or small laboratories

ELENCO PRECISION
Digital multimeter 1200B
The most versatile DMM we have ever offered at lowest ever price!
ONLY £60

- 3½ digits ana scope display
- 2½ digits main display
- 0.05% basic accuracy
- Fully adjustable probes
- Internal/external sweep
- Direct reading input
- Built-in battery

ELENCO POWER SUPPLIES
Model XP 650 dual meter regulated variable 0-40V 0.3 Amp
£75
Model XP 950 regulated 12.5V & 5 Amp
- Converts your 24V/30V & mobile units to base station
- £55

MICROPROCESSORS
CPU's etc. £19.99
8502 10.00 6502 7.50
6560 5.00 65404 3.50
6805 7.50 21254/4C 3.50
6809 5.00 4000 4.00
Z80A 10.00 4050 4.50
intel 1022 4.00 4027 3.90

Texas Instruments Low Profile Sockets
Contact Price Contact Price
8Pin 08 22Pin 22
16Pin 12 24Pin 24
18Pin 14 28Pin 28
10Pin 13 40Pin 40
20Pin 20

FAIRCHILD RED LED LAMPS
- FND 847 Common Anode
- FND 848 Common Cathode

THE COLOSSEUM
FAIRCHILD SUPER JUMBO LED READOUT
A full 80 inch character. The biggest readout we have ever sold! Super efficient
YOUR CHOICE
FND 847 Common Anode
FND 850 Common Cathode
£15.00 each 100 off

ORDERING INFORMATION - equiment is available from our stock. We offer next day delivery on orders over £100 and 28P.P. Add 6% V.A.T on all orders.

MC CIRCUITS
Your single source for factory packs, components & industrial quality test gear at solid savings.

Unit 10
1st Floor East Block
36 Mount Pleasant
LONDON W1X 1AP
01-937 1188
Teka 8933804

Practical Electronics August 1979 5
CSC EXPERIMENTER BREADBOARDS
No soldering modular breadboards, simply plug components in and out of letter/number identified nickel-silver contact holes. Start small and simply snap lock boards together to build breadboards of any size.

CROFTON Electronics Limited
35 Grosvenor Road, Twickenham
Middlesex • Tel: 01-891 1923

Clec Kits –
Designer approved quality kits for Electronic Musical Instrument Construction.

JOANNA 72 & 85 PIANOS
Six and 7½ Octave Electronic Pianos with unique Touch Sensitive Action, as used in the P.E. JOANNA, which electronically simulates piano key inertia – a feature not available in any other design.

P.E. STRING ENSEMBLE
The only kit available to the proven A. J. Boothman Design for this versatile String Machine.

Clefs Products (Dept P.E.) 16, Mayfield Road, Bramhall, Cheshire SK7 1JU

TOPS THE PACK!

Components — Now over 1,000 types in stock!
Kits — See the new range of low-cost 'ELEKITS'.
Service — 1st Class same day dispatch.
Quality — All guaranteed products.
Prices — Many reductions!

S.A.E. for list of PE projects

I enclose 30p*, please send catalogue.

Name ________________________________
Address ________________________________

*Refundable with future orders over £5.00.

Practice Electronics • August 1979
Practical Belt Drive Chassis Turntable Unit Semi $29.90
For use with 4.15 as Viscount IV. But with 3000 output complete in every detail, same facilities ready to put into your own plinth lined with stereo ceramic cartridge.

Mullard
Audio Modules in Bargain Packs
Current Catalogue Price * $4.95
Per Pack

10 + 10 Amplifier Kit
An opportunity to buy a 10 watts per channel stereo amplifier kit which is suitable for use with ceramic turntables. The amplifier utilises proven Mullard modules and is available at a very competitive price. The amplifier comes complete with accessories and includes a Mullard UP1183 stereo preamplifier module, two LP1173 power amplifiers with integral feature, a power supply, terminal, socket, push pull mounting panel, a finished fascia panel, a cover, and 100 watts RMS per channel. A Mullard P200 belt drive turntable is available at a very competitive price. The amplifier kit is suitable for use with a ceramic cartridge, magnetic, ceramic and auxiliary inputs.

Bargains for Personal Shoppers Only
Altone UA4 Stereo System
Features 5 watt total output, full size BSR manual turntable with cueing and return, microphone input, tape input and output, and two 20 watt RMS power amplifiers. The amplifier comes complete with instructions and includes a Mullard cartridge. The amplifier utilises proven Mullard modules and is available at a very competitive price.

Finishing in a natural teak veneer with opening top. Easily modified to accommodate stereo equipment of your choice.

Price * $10.95
Size approximately 47" x 15½" x 15½".
ELF II featuring RCA COSMAC microprocessor/mini-computer

ONLY £79.95 + VAT

THE FASTEST WAY TO LEARN COMPUTER FUNDAMENTALS! Owning an ELF II is probably the fastest, easiest, most foolproof way to gain a working knowledge of computers that the world has ever known. First of all, you get your hands on your own computer, so you can spend all the time you want with it and use it for anything that turns you on. Secondly, our Short Course in Microprocessor and Computer Programming makes it impossible for you to fail. We teach you every instruction it can be given. Everything is explained in plain English. When you're finished, you'll know everything there is to know about using an ELF II. You'll be able to make ELF II do whatever you want it to do. It won't be deprived of predeveloped software. Thirdly, once you understand ELF II inside and out, you'll be ready to use its highly sophisticated add-on intelligently. And, as you expand your ELF II, you'll begin to appreciate just how advanced its technology really is.

New Available!

Text Editor, Assembler, Disassembler and a new Video Display Board!

THE TEXT EDITOR gives you word processing ability and the ability to edit assembly language programs while they are displayed on your video monitor. Lines and characters may be added, inserted, deleted or changed. A display editor allows you to type letters to view - entire line plus insert new lines and addresses from your mailing list! **ELF I/II ASSEMBLER** translates assembly language programs into hexadecimal machine code for ELF II use. The Assembler features machine-independent instructions rather than mnemonics so the instructions you program are easier to read - a big help in handling errors. **ELF I/II DISASSEMBLER** takes machine code programs and produces assembly language source listings. This helps you understand the programs you are working with and improves them when required. The new **ELF II VIDEO DISPLAY BOARD** lets you generate a sharp, professional 32 or 64 character by 16 line upper and lower case display on your TV screen. Heavily improved your expanded £79.95 ELF II.

In addition to I/O, monitor, memory, ASCII keyboard and BASIC, ELF II offers you exotic add-on features such as the ELF II Light Pen and the ELF II Colour Graphics and Music System. It’s no wonder ELF II’s are being used by schools and universities, factory training programs, trade schools and R&D Labs.

ELF II and all ELF II add-ons are also available — wired and tested. And, if all that wasn’t enough, the help that’s always available from our Service Department further guarantees your success!

SYSTEM DESIGN WITH MICROPROCESSORS

by D. Zissos

Price: £7.00

BASIC FOR HOME COMPUTERS A SELF-TEACHING GUIDE

by B. Albrecht

Price: £4.55

BEGINNER’S GUIDE TO HOME COMPUTERS

by M. Grossworth

Price: £3.20

MASTER OP-AMP APPLICATIONS HANDBOOK

by H. V. Fox

Price: £7.75

UNDERSTANDING DIGITAL ELECTRONICS

by Texas Instr.

Price: £3.90

PRACTICAL ELECTRONICS

by B. Woolfard

Price: £3.65

DIGITAL ELECTRONIC CIRCUITS & SYSTEMS

by N. M. Morris

Price: £4.30

ELECTRONIC FAULT DIAGNOSIS

by C. G. Loveday

Price: £3.20

SOLID STATE BASICS FOR THE RADIO AMATEUR

by Texas Instr.

Price: £4.00

MICROELECTRONICS

Price: £3.80

ALL PRICES INCLUDE POSTAGE

NEW FROM U.S.A.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET

LONDON W2 INP

Phone 01-733 4495

Closed Saturday 1 p.m.

Practical Electronics

August 1979
LOOK!
Here's how you master electronics.
.... the practical way.

1. Build an oscilloscope.
As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2. Read, draw and understand circuit diagrams.
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

3. Carry out over 40 experiments on basic circuits.
We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

This new style course will enable anyone to have a real understanding by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a self-employed electronics engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

Post now, without obligation, to:
BRITISH NATIONAL RADIO & ELECTRONICS SCHOOL
P.O. Box 156, Jersey, Channel Islands.

NAME ____________________________
ADDRESS ____________________________

Block caps please
77-68 KITS

<table>
<thead>
<tr>
<th>BEAR Bag No. 1</th>
<th>77-68 CPU KIt</th>
<th>£45.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAR Bag No. 2</td>
<td>77-68 LEDS & SWITCHES</td>
<td>£14.95</td>
</tr>
<tr>
<td>BEAR Bag No. 3</td>
<td>77-68 POWER SUPPLY</td>
<td>£19.95</td>
</tr>
<tr>
<td>BEAR Bag No. 4</td>
<td>BACK & BACKPLANE</td>
<td>£27.70</td>
</tr>
<tr>
<td>BEAR Bag No. 5</td>
<td>77-68 4K RAM Kit</td>
<td>£65.00</td>
</tr>
<tr>
<td>BEAR Bag No. 6</td>
<td>77-68 MON 1 Kt</td>
<td>£50.70</td>
</tr>
<tr>
<td>BEAR Bag No. 7</td>
<td>77-68 VRD Kit</td>
<td>£69.50</td>
</tr>
<tr>
<td>BEAR Bag No. 13</td>
<td>77-68 MON 2 Kit</td>
<td>£64.10</td>
</tr>
<tr>
<td>BEAR Bag No. 16</td>
<td>77-68 ROMA Kit</td>
<td>£29.90</td>
</tr>
<tr>
<td>BEAR Bag No. 17</td>
<td>77-68 PIO Kit</td>
<td>£45.00</td>
</tr>
<tr>
<td>BEAR Bag No. 23</td>
<td>77-68 32K DYNAMAR Kit</td>
<td>t.b.a.</td>
</tr>
<tr>
<td>77-68 MANUAL</td>
<td>£7.50</td>
<td></td>
</tr>
</tbody>
</table>

ACORN

The Acorn consists of two single Eurocards:

1. MPU card: 8502 microprocessor; 512 x 8 ACORN monitor; 1K x 8 RAM; 16 way I/O with 128 bytes of RAM: 1MHz Crystal, 5V regulator, sockets for 2K Eeprom and second RAM I/O chip.
2. Keyboard card: 25 click-keys (16 hex, 9 control); 9 digit, 7 segment display CUTS standard crystal controlled tape Interface circuitry.

HEAD OFFICE: 40 Bartholomew St., Newbury, Berks. 0635 30505

NORTHERN BRANCH: 2A Gatley Road, Cheadle, Cheshire.

| HEAD OFFICE | 061 491 2290 |

77-68 P.C.B.'s

<table>
<thead>
<tr>
<th>77-68</th>
<th>CPU P.C.B.</th>
<th>£10.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>77-68</td>
<td>4K RAM P.C.B.</td>
<td>£10.00</td>
</tr>
<tr>
<td>77-68</td>
<td>MON 1 P.C.B.</td>
<td>£10.00</td>
</tr>
<tr>
<td>77-68</td>
<td>MON 2 P.C.B.</td>
<td>£10.00</td>
</tr>
<tr>
<td>77-68</td>
<td>VDU P.C.B.</td>
<td>£10.00</td>
</tr>
<tr>
<td>77-68</td>
<td>PIO P.C.B.</td>
<td>£10.00</td>
</tr>
<tr>
<td>77-68</td>
<td>ROMA P.C.B.</td>
<td>£10.00</td>
</tr>
<tr>
<td>77-68</td>
<td>32K RAM P.C.B.</td>
<td>£10.00</td>
</tr>
<tr>
<td>77-68</td>
<td>Proto Board (low density)</td>
<td>£9.95</td>
</tr>
<tr>
<td>77-68</td>
<td>Proto Board (high density)</td>
<td>£12.00</td>
</tr>
<tr>
<td>77-68</td>
<td>Backplane</td>
<td>£4.80</td>
</tr>
</tbody>
</table>

SEND FOR OUR CATALOGUE

HEAD OFFICE: 40 Bartholomew St., Newbury, Berks. 0635 30505

NORTHERN BRANCH: 2A Gatley Road, Cheadle, Cheshire.

061 491 2290

AURA SOUNDS

THE WERSI SPECIALISTS

Announce the opening of their
NEW SHOWROOM
at Purley Oaks Centre
01-668 9733

for Do-It-Yourself Kits and Ready-Assembled
Organs, Accessories and Pianos

SEE the **WERSI KITS**

TALK to the **WERSI SPECIALISTS**

HEAR the **WERSI SOUNDS**

SEND £1 FOR OUR 104 PAGE FULL COLOUR CATALOGUE AND PRICE LIST TO:

AURA SOUNDS

14/15 Royal Oak Centre,
Brighton Rd.,
Purley, Surrey.

Also at 17 Upper Charter Arcade, Barnsley

<table>
<thead>
<tr>
<th>HEAD OFFICE</th>
<th>0635 30505</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTHERN BRANCH</td>
<td>061 491 2290</td>
</tr>
</tbody>
</table>

ASTRA-PAK

92 GODSTONE ROAD
WHYTELEAFE SURREY CR3 0EQ

All prices include V.A.T. All SAEs 25p

See the ASTRA-PAK

Visit the ASTRA-PAK

Hear the ASTRA SOUNDS

SEND £1 FOR OUR 104 PAGE FULL COLOUR CATALOGUE AND PRICE LIST TO:

ASTRA SOUNDS

14/15 Royal Oak Centre,
Brighton Rd.,
Purley, Surrey.

Also at 17 Upper Charter Arcade, Barnsley

<table>
<thead>
<tr>
<th>HEAD OFFICE</th>
<th>0635 30505</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTHERN BRANCH</td>
<td>061 491 2290</td>
</tr>
</tbody>
</table>

SEND FOR OUR CATALOGUE
NEW FROM TUAC
ULTRA QUALITY HIGH POWER
New D.C. Coupled Design
AMPLIFIERS

- Full wave control
- RCA 6A Triacs
- Full logic integrated circuitry
- Speed control for fixed rate
- Switched master control for sound
- Fully suppressed and fused
- 1000W per channel
- RCA 8A Triacs
- Full wave control

SEQUENCE CHASER
4 CHANNEL SOUND
Amber £24.50
Red, Green, Blue £18.50

STEREO DISCO MIXER
With touch sensitive switching and auto fade

INPUTS: Four channel stereo inputs available with any equalization. Two magnetic and two flat supplied as standard. High-quality drive carried on each channel. Volume, balance and bass controls for each pair of inputs. Sensitivity max. 3mV (68.6 A.C.耦合) flat 50mV at 1 kHz. Bass controls -18dB at 60 Hz. Treble controls -18dB at 1250 Hz.

SUPPLIES

POWER

SUPPLIES TO H.M. GOVT. DEPTS., MANUFACTURED AND ASSEMBLED IN G.T. BRITAIN FULLY TESTED AND GUARANTEED.

ADD SEQUENCE CHASING + DIMMING EFFECTS FOR TUAC 3 CHANNEL LIGHT MODULATOR

STOCKISTS - CALLERS ONLY

PRICES INCLUDE VAT. P & P FREE
.correct at 8.6.79
TO ORDER BY POST
Make cheques/P.O.'s payable to TUAC LTD. or quote Access/Bankcard No. and post to TUAC LTD. 161 Chalfont Road, London SW19 3AB. We accept phone numbers from Access/Bankcard Holders. Phone 01-672 9080.
COMPONENTS SETS include all necessary resistors, capacitors, semiconductors, potentiometers and transformers. Hardware such as cases, knobs, footswitch boards, etc. are not included but most of these may be bought separately. Details of PCBs and parts are shown in our lists.

CIRCUIT AND LAYOUT DIAGRAMS are supplied free with all PCBs unless "as published". PHOTOCOPIES of P.E. texts for most of the kits are available—prices on our lists.

KITS FOR SYNTHESIZERS, SOUND EFFECTS

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET.

WAVEFORM CONVERTER

Eighty modified from a circuit published in "Elettor", Converts a variable-tone waveform into four different waveforms: saw-wave, triangle, square and random, with an externally variable mark-space ratio.

Component set (inc. PCB) but excl. sw's/val's

VOLTAGE CONTROLLED FILTER (P.E. Dec. 74)

Part of the P.E. Minisonic now released as an independent kit for use with other synthesizers.

Component set (inc. PCB) (Order as Kit 51-17)

RING MODULATOR (P.E. Jan. 75)

Part of the P.E. Minisonic now released as an independent kit for use with other synthesizers.

Component set (inc. PCB) (Order as Kit 59-1)

NOISE GENERATOR (P.E. Jan. 75)

Part of the P.E. Minisonic now released as an independent kit for use with other synthesizers.

Component set (inc. PCB) (Order as Kit 60-1)

ENVELOPE SHAPER WITHOUT VCA (P.E. Oct. 75)

Provides full manual control over attack, decay, sustain and release functions, and is for use with an existing voltage-controlled amplifier.

Component set (inc. PCB)

ENVELOPE SHAPER WITH VCA (P.E. Apr. 76)

This unit has its own voltage-controlled amplifier and has full manual control over attack, decay, sustain and release functions.

Component set (inc. PCB)

TRANSENT GENERATOR (P.E. Apr. 77)

An envelope shaper, without VCA, having the usual attack, decay, sustain and release functions, and in addition it also provides means to control a tone generator. Details in our lists.

Component set (inc. PCB)

PHASING UNIT (P.E. Sept. 73)

A simple but effective manually controlled unit for introducing the "phasing" sound into live or recorded music.

Component set (inc. PCB)

PHASING CONTROL UNIT (P.E. Oct. 74)

For the Minisonic and similar units to automatically control the rate of phasing.

Component set (inc. PCB)

WAH-WAH UNIT (P.E. Apr. 76)

An envelope shaper, which reduces the attack of electronic instruments to a level adequate for use with less electronic instruments. Details in our lists.

Component set (inc. PCB)

AUTOWAH UNIT (P.E. Mar. 77)

Automatically produces wah-wah and swell-pedal sounds similar to the tone used in guitar effects. Component set and PCB, with pedal switch set.

Component set and PCB

VOICE OPERATED FADE IN (P.E. Dec. 73)

For automatically reducing volume during voice-over, particularly useful for Disco work or TV/home music shows.

Component set (inc. PCB)

EXPORT ORDERS ARE WELCOME but we advice you to check our list for postage rates. All orders must be in order, in Sterling by International Money Order or through an English Bank. Tins — P.E. Send a list — Europe send 250, other countries send 50.

PHONOSONICS • DEPT PE74 • 22 HIGH STREET • SIDCUP • KENT DA14 6EG

TEMS: C.W.O. MAIL ORDER OR COLLECTION BY APPOINTMENT (TEL 01-302 61841)

September 1979

Practical Electronics
AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of the P.E. projects built from our kits and PCBs. The cases were built by ourselves and we are not for sale, though a small list giving fuller details of PCBs, kits and other components.

OVERSEAS enquiries for kit, Europe—send 20p; other countries—send 50p.

KIMBER-ALLEN KEYBOARDS AND CONTACTS

Khimber-Alleen Keyboards are needed for many published circuits. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C, the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame.

3 Octave (37 notes) £25.50
4 Octave (49 notes) £32.25
5 Octave (61 notes) £39.75

Contact Assemblies (gold-plated wire) for use with the above KBDS (1 for each note):
Type GC: 4 pairs of contacts, each pair normally open £4.68
Type GB: 2 pairs of contacts, each pair normally open £2.89
Type GD: 2 pairs of contacts, each pair normally open £3.37
Type GE: 5 pairs of contacts, each pair normally open £5.79
Type APS: 3 pairs of contacts plus single-pole changover £6.79

Polaris Clefboards (use with most contacts, thus eliminating much interwiring) are available. Details in our lists.

NEW PCB SERVICE

PCBs for all new P.E. & E.E. Projects for which PCB lay-out has been published and for which full copy, right clearance is available.

LIMTED QUANTITIES ONLY FOR AN EXPERIMENTAL PERIOD.

LET US KNOW YOUR NEEDS AND WE WILL ADVISE YOU OF AVAILABILITY AND PRICES.

P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones. A LED monitor clearly displays all beat note adjustments ideal for tuning acoustic or electronic musical instruments.

Main component set (incl. PCB) £14.93
LED display set (incl. PCB) £4.28

SYNTHESIZER TUNING INDICATOR (P.E. July 77)

A simple 4-digit frequency comparator for use with synthesizers and other instruments, where the full versatility of the P.E. Tuning Fork is not required.

Component set £3.30
Printed circuit board £3.00

TAPE NOISE LIMITER

Very effective circuit for reducing the hiss found in most tape recordings. All kits include PCBs.

Standard tolerance set of components £2.96
Supersensitive tolerance set of components £3.78
Regulated power supply (will drive 2 sets) £4.69

DYNAMIC RANGE LIMITER (P.E. Apr. 77)

Automatically controls sound output within a preset level. Component set (incl. PCB) £15.31
Printed.circuit board £3.45

DISCOSTROBE (P.E. Nov. 76)

4-channel light-strobe controller giving a choice of sequential, random, or full strobe mode of operation.

Basic component set £18.19
Printed board £2.96

BIOLOGICAL AMPLIFIER (P.E. Jan./Feb. 73)

Multi-function circuits that, with the use of other external equipment, can serve as a detector, actinometer, cardiphone etc.

Pre-Amp Module Components set (incl. PCB) £3.95
Bioscope: Output Amplifier: Output Amplifier set with PCBs, for actinometer, cardiphone, frequency meter and visual feedback-looping systems. £16.59
Audio Amplifier Module Type PC7 £11.76

SOUND BENDER (P.E. May 74)

A multi-purpose sound controller, the functions of which include envelope shaper, tremolo, voice-operated fader, automatic fader and frequency doubler.

Details in text.

SOPHISTICATED POWER SUPPLIES

A wide range of highly stabilised low noise power supply kits is available—details in our lists.

PHONONOSICS

NEW PCB SERVICE

PCBS FOR ALL NEW P.E. & E.E. PROJECTS FOR WHICH PCB LAYOUTS HAVE BEEN PUBLISHED AND FOR WHICH FULL COPY, RIGHT CLEARANCE IS AVAILABLE.

LIMITED QUANTITIES ONLY FOR AN EXPERIMENTAL PERIOD.

LET US KNOW YOUR NEEDS AND WE WILL ADVISE YOU OF AVAILABILITY AND PRICES.

PRICES ARE CORRECT AT TIME OF PRESS. E. & O. E. DELIVERY SUBJECT TO AVAILABILITY.

FLADAR DUAL VOLTAGE TRANSFORMERS

PRIMARY 220-240V 50/60HZ ALTERNATIVE SECONDARY VOLTAGE AND CURRENT AVAILABLE BY SERIES OR PARALLEL CONNECTION

- **STANDARD RANGE**
 - **Type E**
 - Voltage: 240V 50/60Hz
 - Current (A): 15
 - Price: £30.00
 - **Type F**
 - Voltage: 240V 50/60Hz
 - Current (A): 20
 - Price: £40.00

- **TAP SECONDARY VOLTAGES AVAILABLE**
 - 12V DC (0.5A)
 - 24V DC (1A)
 - 110V AC (0.5A)
 - 220V AC (1A)

- **MULTI TAP RANGE**
 - Voltage: 240V 50/60Hz
 - Current (A): 15
 - Price: £30.00

- **CENTRE TAP SECONDARY**
 - Voltage: 240V 50/60Hz
 - Current (A): 10
 - Price: £25.00

CHANGER TRANSFORMER

- **Type A**
 - Voltage: 240V 50/60Hz
 - Current (A): 5
 - Price: £15.00

FLADAR ELECTRIC P.O. BOX 19 WESTCLIFF-ON-SEA ESSEX 0702-613314

PUBLISHED AND FOR USE WITH ANY KIT. NO POSTAL ORDERS. ALL PRICES INCLUDE VAT.

Are you thinking about a career in Electronics? If you have Maths, Physics and English Language O' levels then why not consider our Technician Engineer Certificate Course. This 2 year full time course gives you a qualification recognised by industry — the Full Technological Certificate — and also provides an entrance qualification for a degree course. Specialisations include Computer Engineering (including Microprocessors), Sound Studio Engineering and Radar and Microwaves.

Write to the Secretary, Department of Electronic and Communications Engineering, Polytechnic of North London, Holloway Road, London N7 8DB for details.

The Polytเทคนic of North London
Quality audio modules and accessories for

S450

STEREO

FITTER

Fitted with phase lock-loop

£26.14

+ 49p p&p

Frequency Range

66 - 100 MHz

Sensitivity

1.5 V

Bandwidth

250 kHz

Spurious Rejection

50 dB

Selectivity

±40 kHz

**Audio Output (20 kHz, 0 dB) 1100 mV

Stereo Separation 30 dB

Supply Requirements 10V to 30V (100 mA, max)

Overall Impedance

75 ohms

Dimensions

240mm x 110mm x 30mm

The 400 Tuner provides instant programme selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations, any of which may be altered as often as required; simply by changing the value of the preset components. Features include FET input stage, Var-Cap diode tuning, Switchable AFC LED Stereo indicator.

Stereo 30

COMPLETE AUDIO CHASSIS

£21.57

+ 66p p&p

Frequencies

25 Watts RMS

Supply

50 - 60 Hz

Load Impedance

610 ohms

Total Harmonic Distortion

Less than 1% (Typically 3%)

Frequency Response

20 Hz to 20 kHz (-35 dB)

Sensitivity

200 mV for full output

Max. Heat Sink Temperature

90°C

Dimensions

150mm x 64mm x 15mm

The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This, with only the addition of a transformer or overdrive will produce a high quality audio output suitable for use with a wide range of inputs i.e. high quality ceramic pick-up, stereo tuner, stereo tape deck etc. Simple to install, capable of producing really first class results, this unit is supplied with full instructions, blank front panel, knobs, main switch, fuse and fuse holder and universal mounting brackets.

AL60

25 Watts RMS

£7.92

+ 3}p p&p

This high quality audio amplifier module is for use in audio equipment and stereo amplifiers and provides output powers up to 25 RMS with distortion levels below 0.1%.

AL80

35 Watts RMS

£19.24

+ 66p p&p

This unit, designated AL20, is a power amplifier providing an output of up to 125W RMS, into a 4 ohm load.

AL250

125 Watts RMS

£4-26

+ 36p p&p

These low cost 10 watt modules offer the utmost in reliability and performance, whilst being compact in size.

SPM80

STABLE POWER SUPPLY

£4.95

+ 36p p&p

Designed to power two AL80s at 15 Watts per channel simultaneously. Circuit Techniques include full short circuit protection.

PA100

STEREO PRE-AMPLIFIER

£18.08

+ 44p p&p

A high quality stereo pre-amplifier and tone control unit, the PA100 provides a comprehensive solution to the front and rear requirements of stereo amplifiers or audio units. The six push button selector switch gives a choice of inputs together with two filters for high and low frequencies.

MPA30

MAGNETIC CARTRIDGE PRE-AMPLIFIER

£3.35

+ 4p p&p

Enjoy the quality of a high quality cartridge with your existing ceramic equipment using the MPA 30. The MPA 30 is a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only.

PA12

STEREO PRE-AMPLIFIER

£8.75

+ 35p p&p

The PA12 Stereo Pre-Amplifier is designed and recommended for use with the PA100 pre-amplifier. Together with the PA100, the PA12 will produce a complete pre-amplifier. The PA12 has an output of up to 125W RMS, into a 4 ohm load.

PS12 POWER SUPPLY MODULE

Power supply for AL20A-30A, PA12, 1450 inc.

Transformer T538.

Input A.C. Voltage 15-20V.

Output D.C. Voltage 22-30V approx. (Dependent upon input).

Output Current 800mA

Dimensions 60 x 43 x 22mm.

BP124 SIREN ALARM MODULE

American Police siren powered from a transformer. For use with AM/FM/FM Radio receiver. 4 or 8 speaker system.

Ideal for car burglar alarm, fire detector, break-in or other security purposes.

ONLY £3.78

+ 35p p&p

MA60 HI-FI AMPLIFIER KIT

British made, top quality amplifier, see yourself please. The MA60 kit comprises the following kits: 7 - AL60 amp kits, 1 - PA100 pre-amplifier, 1 - PA1200 power supply, 1 - T538A transformer, giving 15 watts RMS per channel. All modules are covered by the British Standard and carry a 1 year guarantee. The complete kit will cost £224.95 plus 62p p&p.

TC60 KIT

A beautifully designed genuine TEAK WOOD veneered cabinet to fit the MA60 kit. Available in two finishes: gloss black, high gloss white or high gloss black.

Price £360.00 plus 62p p&p.

TRANSFORMERS

T538 For use with 540 AL30A MPA30

T999 For use with Stereo 30

BP124 For use with AL60 SPM20

Order No. 2059

Price: £3.78 + 50p p&p.

BP30 For use with MA60

Order No. 21134

BP125 For use with AL250

Order No. 2836

CASES

TEAC 30, 32 or 23 or 8cm, designed notably for use with the MA60 kit. Audio Quality car audio system which is also available in home kits. Fitted with solid wood front and back. Order No. 139. £6.95 + 50p p&p.

TEAC 40, 42 or 29 or 8cm, for use with AL60/MA600 Audio Kit. Useful for the home constructor requiring amplifier sleeve - has no front or back panel. Order No. 140. £7.95 + 50p p&p.
AL120

- **Output Power**: 50 Watts R.M.S.
- **Supply**: 70 Volts
- **Load Impedance**: 8 - 16 ohms
- **Total Harmonic Distortion**: 15% (Typically 0.02%)
- **Frequency Response**: 20Hz to 20KHz
- **Sensitivity**: 200mV
- **Max. Heat Sink Temp.**: 45 deg. C
- **Dimensions**: 9 x 8 x 49 mm

AL120 is a fixed voltage stabiliser available with an output of either 45V, 55V, or 65V. Designed primarily for use in audio applications, the stabiliser which provides output currents up to 2.5A, operates direct from a matrix transformer requiring only the addition of 2 Electrolytic capacitors to complete the set-up.

SPIM120

- **Voltage Supply**: 120/240V
- **Output**: 55V, 65V
- **Output Current**: 1.5A
- **Dimensions**: 9 x 8 x 49 mm

SPIM120 is a fixed voltage stabiliser available with an output of either 45V, 55V, or 65V. Designed primarily for use in audio applications, the stabiliser which provides output currents up to 2.5A, operates direct from a matrix transformer requiring only the addition of 2 Electrolytic capacitors to complete the set-up.

GE100 Mk2

- **Channel Monitor**: STEREO PA200
- **Power Supply**: for GE100. o/n 1326 E3.80.
- **SMP120/65**
- **SMP120/55**
- **SMP120/45**
- **SPM120**

GE100 is introduced to fulfill the demand for a completely protected power amp., capable of driving high quality speaker systems at up to 50w. The stabiliser which provides output currents up to 2.5A, operates direct from a matrix transformer requiring only the addition of 2 Electrolytic capacitors to complete the set-up.

VPS30

- **Regulated Variable Stabilised Power Supply**: £22.50 + P & P 35p
- **AC Input Maximum**: 25A
- **Voltage Regulation**: 2-30v
- **Regulated Current**: 0-2A
- **Integrating Short Circuit Protection**

This new versatile regulated variable stabilised Power Supply with short circuit protection and current limiting, is a must for all electronics enthusiasts. It incorporates adjustable voltage from 2v - 30v, with a current limiting range of 0-2A. With this module there is no need to build a separate power supply for each of your projects, with the simple addition of a transformer Ici/d 20331. Supplied complete with transformer, mains base, & fuse link. The built in protector will automatically cut off the output at 5A or 30v. These modules are ideal for hi-fi, mains operations, computer peripherals, transistor testing, and low powered motor applications.

PA200

- **Stereo Pre-Amplifier**: £18.61 + P & P 40p
- **Frequency Response**: 20Hz to 20KHz 1dB
- **Total Harmonic Distortion**: Less than 1% (typically, 0.07%)
- **Sensitivity**: 1MPU + 15dB (95mV)
- **Signal to Noise Ratio**: Better than 96dB (All inputs)
- **Dimensions**: 300 x 50 x 330mm (less controls)

The PA200 is basically our popular PA100. Modifications have been made to make it compatible with the higher output AL120 and AL250 amplifiers.

BIB Hi-Fi Accessories

- **Headphones**: £1.18 (2 in a pair)
- **Microphones**: £0.84 (2 in a pair)
- **Audio Leads**: £0.78 (2 in a pair)
- **Crossovers**: £0.76 (2 in a pair)

STANDS

- **BOMM ARM** for use with the above stand. Heavy silver plated metal, it goes on top of the stand. £3.00.

WINDSHIELD COVERS

- **130 Medium pair**: £3.35.
- **130 Large pair**: £4.35.

DIYNAMICS

- **CASSETTE EDITING KIT**
- **HEAD POLISHER TOOLS**
- **BIB Groov-Stat static reducer**

HI-FI ACCESSORIES

- **Cassette Tape Editing Kit**
- **Precision Tape Cutters**
- **Tape Piercer**
- **Tape Splicer**
- **Precision Tape Cutters**
- **Cassette Tape Editing Kit**
- **Miniature Moving coil meter**
- **Batteries**: Plus bottle of special formula for static charge on records and other plastic surfaces.

The MK 14 is a complete microcomputer with a keyboard, a display, 8 x 512-byte pre-programmed PROMs, and a 256-byte RAM programmable through the keyboard.

As such the MK 14 can handle dozens of user-written programs through the hexadecimal keyboard.

Yet in kit form, the MK 14 costs only £39.95 (+£3.20 VAT, and p&p).

More memory - and peripherals!

Optional extras include:

1. Extra RAM - 256 bytes.
2. 16-line RAM I/O device (allowed for on the PCB) giving further 128 bytes of RAM.
3. Low-cost cassette interface module - which means you can use ordinary tape cassettes/recorder for storage of data and programs.
4. Revised monitor, to get the most from the cassette interface module. It consists of replacement PROMs, pre-programmed with sub-routines for the interface, offset calculations and single step, and single-operation data entry.
5. PROM programmer and blank PROMs to set up your own pre-programmed dedicated applications.

All are available now to owners of MK 14.

A valuable tool - and a training aid

As a computer, it handles operations of all types - from complex games to digital alarm clock functioning, from basic maths to a pulse delay chain. Programs are in the Manual, together with instructions for creating your own genuinely valuable programs. And, of course, it's a superb education and training aid - providing an ideal introduction to computer technology.

SPECIFICATIONS

- **Hexadecimal keyboard**: 8-digit, 7-segment LED display
- **8x512 PROM, containing monitor program and interface instructions**
- **256 bytes of RAM / 4 MHz crystal / 5 V regulator**
- **Single 8 V power supply**
- **Space available for extra 256-byte RAM and 16 port I/O**
- **Edge connector access to all data lines and I/O ports**

Free Manual

Every MK 14 kit includes a Manual which deals with procedures from soldering techniques to interfacing with complex external equipment. It includes 20 sample programs including math routines (square root, etc), digital alarm clock, single-step, music box, mastermind and moon landing games, self-replication, general purpose sequencing, etc.

Designed for fast, easy assembly

The MK 14 can be assembled by anyone with a fine-tip soldering iron and a few hours' spare time, using the illustrated step-by-step instructions provided.

How to get your MK 14

Getting your MK 14 kit is easy. Just fill in the coupon below, and post it to us today, with a cheque or PO made payable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantee. If for any reason, you're not completely satisfied with your MK 14, return it to us within 14 days for a full cash refund.

Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.

Telephone: Cambridge (0223) 311488

To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.

Please send me the following, plus details of other peripherals:

- MK 14 Standard Microcomputer Kit = £43.55 (inc 40p p&p.)
- Extra RAM = £3.88 (inc p&p.)
- RAM I/O device = £8.42 (inc p&p.)

I enclose cheque/money order/PO for £__________ (indicate total amount.)

Name

Address (please print)

注: Allow 21 days for delivery.

Science of Cambridge

Practical Electronics August 1979
easy to buy high power linear amplifiers as C.B. gear, these are now being used to boost outputs up to 50 or even 100 watts which, of course, compounds all the problems caused to other legal systems. Clearly we are fast approaching a situation which is far worse than we might have if C.B. were legalised and legislation drawn up and enforced to control the problems now being caused.

From recent raids on C.B. users and the confiscation of the equipment, the Home Office are obviously trying to track down and deal with offenders but can they realistically expect to achieve a C.B. free community? The Home Office recently commented to us that they are endeavouring to control illegal use especially where interference is being caused. They also made the point that the whole area of C.B. use is under review. Presumably our "new" Government will be looking at all the facts.

Of course, C.B. is legal in many continental countries and with the ever increasing flow of commercial and holiday traffic across the channel, not only is it impossible to keep out equipment but you can own it, even sell it, but you must not use it and, of course, you must not import it.

What does this really mean? Since you must not import C.B. equipment, any that is in the country has been smuggled in and can therefore be confiscated. If it can be proven that any individual has smuggled it in, a fine or worse could be the result and, of course, even if you purchased the gear second-hand it can still be confiscated even if you never use it. If you built it yourself you can keep it, but you must not use it.

What a ridiculous situation! Any further comments anyone—Home Office, Minister of Posts and Telecommunications, readers?

Mike Kenward
MANY people now own a deep freezer or fridge-freezer unit and anyone who has suffered a "thaw-out" will never want a repeat of that experience.

If the contents are insured, it is true that the insurance company will pay compensation for the loss, but if the freezer is full of home and local farm produce this cannot be replaced out of season, and considerable inconvenience is felt.

This is where the freezer alarm can help. Although it cannot prevent the possibility of such a catastrophe, it can give some warning of impending disaster!

Thaw-out of the freezer can be caused either by failure of the power supply, or by mechanical failure of the freezer itself. This unit is designed to cope with each of these events.

ELECTRICAL/MECHANICAL FAILURE
An essential feature of any freezer alarm should be the ability to detect mains failure and still continue to function.

Mains failure could be due to a power cut (in which case it is usually known) or a blown fuse at either the distribution board or in the freezer’s own plug. The power can even be accidentally switched off before going on holiday by an over-enthusiastic desire to have everything turned off!

Similarly, it must have the ability to detect a rise in temperature because of a fault in the freezer’s own mechanism.

When all is well, the alarm is silent and each I.E.D. remains illuminated, red for mains and green for temperature.

Failure of the mains supply causes the audible alarm to sound intermittently and the red I.E.D. to flash at a set rate. The power can even be accidentally switched off before going on holiday by an over-enthusiastic desire to have everything turned off!

Failure of the mains supply causes the audible alarm to sound intermittently and the red I.E.D. to flash at a set rate. The power can even be accidentally switched off before going on holiday by an over-enthusiastic desire to have everything turned off!

In the prototype, the frequency of oscillation was chosen to be about 1Hz.

TEMPERATURE DETECTION
The temperature detection circuit is a Wheatstone Bridge, one arm formed by R6, VR1 and R7, and the other by R8 and the thermistor TH1 (via JK1).

The operational amplifier (IC3) acts as a comparator across the bridge circuit. A polarity change of a few millivolts across the input of the 741 is sufficient to swing the output from a low to high state or vice versa.

As TH1 cools down, its resistance increases, thus swinging the voltage at pin 2 slightly positive relative to pin 3 for a particular setting of VR1. Further cooling down of TH1 maintains pin 2 positive with respect to pin 3. The output of IC3 will be low in this condition, allowing the NE555 timer (IC4) to sink current, thus I.E.D. D10 will be illuminated.

If the temperature rises above the pre-set level, the voltage at pin 2 will be negative with respect to pin 3 and

isolated from the 0V rail by D6 and the rectifier diodes. When this happens IC1 will be triggered and run in the astable mode, the mark to space ratio being governed by the values of R3, R4 and C2. The duration of high output t1 is given by:

\[t_1 = 0.693 \left(\frac{R3 + R4}{C2} \right) \text{ seconds.} \]

and the low output t2 by:

\[t_2 = 0.693 \left(\frac{R4}{C2} \right) \text{ seconds.} \]

The frequency of operation is given by:

\[f = \frac{1}{(t_1 + t_2)} \text{ Hz.} \]

In the prototype, the frequency of oscillation was chosen to be about 1Hz.

CIRCUIT DESCRIPTION
The complete circuit diagram of the alarm is shown in Fig. 1. When the unit is operated from the mains, the voltage at pin 4 of IC1 will be zero; the NE555 will sink current in this condition and I.E.D. D8 will be illuminated.

If the mains fails, the voltage at pin 4 will rise above the threshold value of 0.4V to about 2V via R2, as pin 4 is
the output of IC3 will be high, thus energising IC4, causing l.e.d. D10 to flash. In the prototype, the values of R12, R13 and C3 were chosen so that the frequency of operation was twice that of the mains failure circuit.

TEST CIRCUIT

The test circuit consists of another bridge circuit, one arm common with the temperature sensing circuit comprising R8 and TH1 and the other by R9 and R10. The values of R9 and R10 were chosen to allow for a thermistor at -22°C at its extreme tolerance limit of +20 per cent of its nominal value. When the test button (S1) is pressed, IC2 is energised and under normal conditions pin 2 will be positive with respect to pin 3. The output of the operational amplifier will be low and sink current, thereby illuminating l.e.d. D9. If, on the other hand, open circuit conditions have occurred, then pin 3 will be positive with respect to pin 2 and the output will be high and the l.e.d. will not be illuminated.

REMAINDER OF CIRCUIT

Diodes D7 and D11 isolate the outputs of IC1 and IC4 from each other. The voltage at the common ends of the diodes was found to be about 2V under normal conditions and this was sufficient to make the audible alarm hum. So TR1 was introduced to act as a switch and R15 and R16 prevent the transistor from switching on until the outputs of IC1 and/or IC4 goes high. D12 in effect isolates the battery from the rail, and prevents current drain into the battery.

The output voltage of the power supply unit is not too critical provided it is greater than the no load potential of the battery plus the voltage drop across D6. Therefore the unit was designed for 11V output. The value of C1 should be kept to about 220pF — otherwise a time delay in excess of 10 seconds will occur between mains failure and the flashing of the l.e.d. D8. This is important if the power supply is inadvertently turned off, and the unit is near the switch board.

COMPONENTS . . .

Resistors	R1	39
R2	62k	
R3, R4	48k (2 off)	
R5, R11, R14	470 (3 off)	
R6	30k	
R7, R8, R10,	24k (5 off)	
R12, R13	12k	
R9	22k	
R15	4k7	
All resistors ½W 0.25% except where stated		

| Capacitors | C1 | 220pF 16V |
| C2, C3 | 10pF 16V (2 off) |

Semiconductors	TH1	VA1066S rod thermistor
D1, D4, D6, D7,	IN4001 (8 off)	
D11, D12		
D5	BZ8811V Zener	
D8, D9, D10	TIL 209 l.e.d. (3 off)	
TR1	BC109	
IC1, IC4	NE555 (2 off)	
IC2, IC3	741 op amp (2 off)	

Miscellaneous	B21	Buzzer 12V 800Ω (Maplin)
T1	12V mains transformer	
S1	push button	
S2	S.p.s.t.	
S3	Mini slide switch	
FS1	100mA fuse and holder	
JK1	3-5 mm jack socket	
A battery switch was added so that the unit could be turned off during de-frosting.

CONSTRUCTION

The circuit was assembled on a piece of 0.1 in matrix Veroboard and a suggested layout is shown in Fig. 2. The board and mains transformer were mounted in a pressed aluminium box measuring 150 x 100 x 50mm deep. The circuit board was spaced off the floor of the box on plastic collars. They were made by cutting the barrel of a ball point pen into 6mm lengths.

The internal layout of the aluminium box and front panel were arranged to be suitable for sitting on top of an upright freezer. Constructors with chest freezers may wish to devise their own internal layouts, for example to make the unit suitable for wall-mounting. The layout was detailed so that no wires were attached to the lid of the box, thus making battery replacement simple.

Two wire links are required which are not shown on the Veroboard layout: BZ1 to S2 and S3 to +9V.

THERMISTOR PROBE ASSEMBLY

The thermistor was mounted on a small piece of Veroboard and thin wires were anchored and soldered to the board. The board and thermistor were then covered with Araldite.

Providing the wires are thin enough, they can pass between the freezer cabinet and door or lid without causing any problems. Connection to the unit was by a 3.5mm jack plug and socket.

When finished, it is advisable to measure the resistance of the probe to ensure that there are no short circuits, and to see that the resistance changes with temperature.

SETTING UP

The freezer should be maintained at a temperature of −18°C or less. The unit was designed to trigger at about −10°C, thus giving some margin before setting off the alarm. The higher the trigger temperature, the less warning time is available.

The ice box of the refrigerator was used for setting up the unit. The probe and a freezer thermometer were positioned in the ice box, and the thermostat of the refrigerator was gradually lowered until the thermometer read the desired temperature. VR1 is adjusted so that the unit is just triggered.

Finally, it is advisable to plug the alarm unit into the same socket as the freezer!

A Compendium of Electronic Erudition

... can be made using these new-look self binders for PRACTICAL ELECTRONICS to become your most valuable source of reference. With the Easi-Binder current copies can be inserted as they are received, without waiting for the completion of twelve issues.

They are attractively made with the title blocked in gold on the spine with the current (or last) volume number and year. For any previous volume numbers, please advise year and volume and a separate set of gold transfer figures will be supplied.

At £2.85 inc. VAT and postage (£3.45 overseas) they are obtainable from:

Post Sales Department, IPC Magazines Ltd.
Lavington House, 25 Lavington Street
London SE1 OPF

I enclose P.O./cheque value ... for ... binders at £2.85 each (£3.45 overseas) for Practical Electronics Vol. No's ...

Name
Address
Date
TROUBLE shooting radios or audio gear can be a time-consuming task, particularly without the aid of proper test gear. The same can be said of design work.

One of the most valuable instruments must be the signal generator. The unit described here is a versatile little thing with a square wave output over the a.f. frequencies which should prove useful for those jobs where portability and a wide frequency range are advantageous.

Whereas a.f. signal generators are two a penny, r.f. generators are generally not so common—and they are expensive to buy or make. This unit tries to bridge the gap in that it provides 1kHz to 25kHz on one control, and 25kHz to 3MHz on the other; all done with one chip and a few discrete components.

THE ZN459

The ZN459 is a wide band low noise amplifier. What’s a nice chip like that doing in a circuit like this, I hear you say. Well, with its high gain and wide frequency band, it oscillates at around 500kHz with no input. This natural ability to oscillate is the basis on which the signal generator is built. Varying degrees of both positive and negative feedback are applied to the input to produce controlled oscillations.

CIRCUIT DESCRIPTION

The complete circuit diagram for the signal generator is shown in Fig. 1. The ZN459 is operated at about 4V supplied by R1 and decoupled by C1. The output from IC1 drives TR1 via R2 and C2, and provides base bias. TR1 has a dual function; it provides buffering for the output, and introduces a phase shift in the output signal, which is taken from its collector.

The output is taken from across R3. L1 prevents any r.f. coupling through the battery.

J. Gerrard
frequency is reached governed by the value of C3 and associated circuitry. Turning the wiper of VR1 to C4 decreases the feedback applied by C3, and increases the feedback via TR1 and C4. Because the output of the i.c. is out of phase with the input at low frequencies, taking the signal from the collector of TR1 and applying that to the input provides positive feedback at low frequencies. C4 determines the low frequency limit. Referring back to Fig. 1, R5 is in series with C4 to keep the mark/space ratio of the oscillations fairly even at low frequencies. C5 and R6 apply more feedback from TR1 through VR2, thus reducing the frequency of oscillations still further.

The components are mounted on a piece of Veroboard 75mm x 30mm (Fig. 3). The potentiometers should be put on last of all. The type used on the prototype were Radiohm, and it was found necessary to enlarge the holes for the pots with a 1.2mm drill. Care should be taken when soldering to prevent accidental shorts, and excessive flux between tracks should be cleaned off. The author finds an old toothbrush and white spirit very effective.

Keep the component leads as short as possible to avoid stray r.f.

Fig. 2. Showing simplified feedback paths

If the Veroboard layout is changed, and the pots mounted off the board, there may be trouble with stray capacitance. The board, BNC output socket and switch should be mounted in an all metal box for screening. For the prototype a 40 x 100 x 70mm aluminium box was used, with the pots mounted on the lid. These were considered sufficient support for the board.

There is plenty of room for the 9V battery. In fact, if the unit were to be used for long periods, two batteries could be utilised, with a double pole on/off switch.

The board should be checked over for errors. Then, if all is in order, the signal generator should be connected up to an oscilloscope and frequency meter if available. Check that there is about 4V across pin 2 and 0V; the total current consumption should be about 3mA. The frequency controls are adjusted so that they work in series. For example, for a frequency of 25kHz or less, VR1 is turned to 25kHz, and VR2 to the required frequency. For over 25kHz, VR2 is turned to 25kHz and VR1 to the required frequency. The output voltage should be 2.5V peak-to-peak, measured at 1kHz. The unit should produce a good square wave up to 25kHz.

Calibration should ideally be done with a frequency meter, but if one is not available compare the signal generator frequency to that of a known one. Alternatively, for r.f. calibration a wire from the output thrown over a radio can be used.

The radio is tuned into the signal generator’s frequency, and the reading taken off the radio tuner.

When using the unit, loading should be kept to a minimum of 10kΩ, as the frequency does vary with load. It also varies with supply voltage, and this could be largely overcome by using a Zener regulated supply, at the cost of greater current consumption.

Table of Components

<table>
<thead>
<tr>
<th>Component Type</th>
<th>Value/Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>2k2</td>
</tr>
<tr>
<td>R2, R5, R6</td>
<td>100k (3 off)</td>
</tr>
<tr>
<td>R3</td>
<td>1k</td>
</tr>
<tr>
<td>R4</td>
<td>3k3</td>
</tr>
<tr>
<td>All 1W 5% carbon</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Value/Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>100μF 16V elect</td>
</tr>
<tr>
<td>C2, C4</td>
<td>100p</td>
</tr>
<tr>
<td>C3</td>
<td>47p</td>
</tr>
<tr>
<td>C5</td>
<td>2n2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th>Value/Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>ZN459</td>
</tr>
<tr>
<td>TR1</td>
<td>BC108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometers</th>
<th>Value/Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1, VR2</td>
<td>1M (2 off)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inductors</th>
<th>Value/Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>150μH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNC output socket, on/off switch, metal case, 9V battery, battery connector, holder for 8 pin i.c. (if required), Veroboard 0-1 in matrix, knobs (2)</td>
<td></td>
</tr>
</tbody>
</table>
Should an output voltage control be required, R3 could be replaced by a 1kΩ pot with the wiper going to the output socket.

Although the prototype oscillated up to 7.5MHz, it was only calibrated up to 3MHz, because of the cramping of frequency above this. With a little thought, a fine tuning control could be connected around VR1 to make these frequencies available.

The harmonics generated by the unit go well past 100MHz, making it suitable for f.m. radio and TV work.

When using the unit at r.f. frequencies, it should be earthed, and for direct coupling into a radio, for example, a small capacitor should be connected in the output.

Although this unit is by no means a precision generator, for its size and cost to build, it should prove to be a useful tool in the field or at the workbench.
COMPUKIT UK 101
SINGLE BOARD
COMPUTER

A.A. BERK B.Sc. Ph.D.

* 8K Microsoft, full feature, BASIC
* Fully expandable via on board sockets
* Up to 8K RAM on board
* Cassette interface (CUTS)
* VDU with its own dedicated RAM (1K)
* Full ASCII keyboard
* UHF modulator on board
* PSU on board - transformer included in kit
* Full machine code monitor and I/O utilities in ROM
* Upper/lower case - graphics and gaming characters
THE COMPUKIT UK-101 has been prepared to provide all sectors, from the amateur constructor/hobbyist to the engineer, programmer, teacher, business man and scientist, with the cheapest computer on the market which is programmable using an 8K BASIC package. In addition, it is fully expandable, capable of being programmed in machine code, and absolutely complete from mains input to TV Aerial feed output. It includes full typewriter-style keyboard, printer, and cassette-storage interface. The BASIC package employed is the industry standard Microsoft interpreter, and will run much of the available software for many other more expensive machines on the market with little modification. Floating-point calculations in this BASIC are extremely fast and versatile, making scientific calculation projects of the most complex kind perfectly feasible in one's own home. The areas of suitable use for the COMPUKIT stretch fully across the board.

The business man will find that the string handling facilities and excellent video display of the COMPUKIT make the machine perfectly fitted for everything from general accounts and planning calculations, to formatting of invoices and stationery to be printed out on hard copy when complete. The Statistician will find that the high speed of calculation with facilities such as random number generation and user-defined functions, enable analyses of data and simulation of models to be performed particularly easily. The results may then be displayed with the graphics available in almost any form from bar-charts to tree-diagrams!

The Engineer wishing to control equipment with a computer, will benefit from being able to write the necessary routines in BASIC (making the software easy to design) while being able to jump to fast and efficient machine-code routines for servicing external hardware. Perhaps most importantly; for the first time, anyone, technical or otherwise, can have an affordable easily programmable home-computer for domestic use—a much neglected area at the moment, but one which is about to take off.

Imagine being able to run a program to help your child (or yourself) revise for exams. Animated diagrams are possible, such as an internal combustion engine shown reciprocating, with mathematical equations to match. Picture an automobile program designed to accept daily input from you on petrol and oil use, along with mileage, etc. The machine could accumulate information, and at any time give you the average m.p.g., plot performance versus time or some other parameter, and remind you when to check the tyres and drive to the Garage for a service.

Based on the popular 6502 micro
Supports all Ohio Scientific expansions including floppy disc
Fast resident BASIC
Total of 19K addressable memory on p.c.b.
Memory mapped VDU. Line width selectable from 16 to 49 characters by 16 lines

IMPROVEMENT

This computer is based on the Ohio Scientific Superboard (reviewed PE June 79), which only displayed 23 characters per line on a normal TV, and produced the USA standard 60Hz frame frequency unsuited to UK TVs. These and other disadvantages have been rectified in the COMPUKIT UK-101. For example, the keyboard has been altered to show certain missing characters on the Superboard, and the BREAK key is less prone to accidental operation.

This month, the COMPUKIT hardware is briefly described in block diagrammatic form, along with some technical details of the 6502 Microprocessor. A section on the specifications of the BASIC package is included, for which the reader will require some previous knowledge of BASIC—a library book would be useful at this point for those just beginning in the world of programming.

A BASIC primer article is to be published in this magazine very soon and will help with an understanding of this very popular microcomputer language.

HARDWARE

Based around the 6502 MPU and a set of binary counters as clocks, the COMPUKIT has been designed and set out to be as flexible and easily modified as possible while making no compromises for those who will only use the machine as it stands.

The 6502 is a reasonably typical 8-bit microprocessor with a 16-bit address bus and 8-bit data bus (see Fig. 1) and the control lines are similar to the 6800. There are two interrupt lines: IRQ and NMI. When forced low, the latter will interrupt execution at the end of the current instruction cycle and branch to a routine whose address (vector) is stored in two bytes at the top of memory. IRQ is similar but may be rendered inoperative by setting (to "1") the MASK flag of the P-register. RES is a reset line whose vector is also stored at the top of memory.

There are five more control lines which have the following effects. R/W informs the system as to whether a READ or WRITE operation is being performed. SYNC is used to identify an Op-Code fetch cycle. RDY is used to halt the processor for DMA or slow memory, etc. S.O. is a line which may be used to set the Overflow bit in the P-Register. 01out and 02out are system clock lines.

Other pins on the MPU's 40-pin package are used for Data, Address and Power Supply (+5V).

The register set of the 6502 is smaller than that of the 6800 and Z80 as only one primary accumulator is included and there are no 16-bit data or index registers available to the user. This is partly made up for by an enhanced set of addressing modes which use pairs of memory locations to hold addresses. However, there are no 16-bit Load, Store or Compare instructions to manipulate these pairs directly and all such operations must be constructed from 8-bit arithmetic operations.

WARNING: Computing is highly addictive.
The Stack is implemented in Page One (the second 256 bytes of memory), as the Stack pointer is only of 8-bit length—a ninth bit exists but is permanently set to "1".

Page Zero (the first 256 bytes of memory) is very heavily used by the 6502 instruction set as its two Index registers are both 8-bits in length. However, as referred to above, indirect addressing exists whereby an instruction may take its effective address for execution from a pair of bytes stored anywhere in memory. Various Offset modes exist using the index registers. In this way, pairs of memory locations act as 16-bit registers; but, again, they are not able to be manipulated with 16-bit instructions. Try writing a program to clear a block of memory greater than 256 bytes in length and you'll see what I mean!

If you have worked on the Z80 or 6800 you will find certain aspects of the 6502 code most frustrating while others you will discover to be something of a breakthrough. Readers who are used to the SC/MP or 1802 instruction set others you will discover to be something of a breakthrough.

The speed of processing is similar to the Z80 and 6800 and all three exist in various speed options. One interesting point is the 6502's "rise to power" as probably the most widely used Micro on the market. APPLE, PET, and KIM all use the 6502 and there are several other 6502-based systems in the pipeline, all of which implies that the software backup for the 6502 is very wide and increasing in size.

SYSTEM DESCRIPTION

The Block Diagram, Fig. 2, shows the main parts of the COMPUKIT in a condensed form. The heart of the system is a set of binary clocks fed from an 8MHz crystal controlled clock generator. The clocks are not only used for the MPU but form the main control for the VDU, which is continually polling the VDU RAM for information to be displayed at exactly the right time on the screen. Those familiar with the PE VDU (P.E. Oct.-Dec., 1978) will note that the clocks perform most of the functions associated with the Thompson CSF Cathode Ray Tube Controller chip.

The most dominant block on the diagram, is in fact the VDU—a fairly typical memory mapped system run from the binary counters. The screen of information to be presented is stored in the VDU RAM in a binary-coded form (ASCII) for the 128 ASCII characters, and extended to include codes for the various graphic characters (128 in all) available on the COMPUKIT.
UK-101 COMPUTER

Fig. 2. Block diagram
The COMPUKIT UK-101 board. A transformer is supplied but does not mount on the p.c.b.

(Note that this is the prototype board)

The Bus lines are controlled and operated by the 6502 MPU which derives its instructions from the ROM and RAM blocks which take up between them 18K of memory. 2K of this is a Monitor (operating system) with BASIC support, keyboard handling, machine-code monitor, floppy-disc bootstrapping, etc. 8K is the BASIC interpreter and 8K is for the RAM block, of which around 4K bytes are used as a scratchpad by the various ROM-based programs.

Another important block is the Asynchronous Serial Communications section—including the cassette interface. This is driven by an ACIA (Asynchronous Communications Interface Adapter—the 6850 chip). The clocking comes, of course, from the binary counter chain and may be fed from higher up the chain to effect faster transfer speeds than the 300 BAUD for which the system is set up. In addition, there is provision, on board, for a RS232 interface run by the same software as the Cassette. This allows connection of the system to any standard serial device from teletypes to modems and extra VDUs.

The keyboard section is also shown connected to the Data Bus and Address decoding, and this is run by software scanning for speed and efficiency. The software scans the keyboard for a key-closure and identifies the character being accessed from ROM.

Finally, and of great importance, is an expansion socket (40-pin d.i.l.) for the Address, Data and Control lines to allow expansion to a separate Motherboard. This could easily be extended to the S100 Bus, but is plug-compatible with the Ohio Scientific OSI-48 Bus and Floppy-Disc interface. Anyone wishing to use the COMPUKIT for control purposes will find the expandability via this socket of great assistance.

The 5V Power Supply Unit (PSU) gives 3 amps.
COMPONENTS

Resistors

- R1-R12, R68, R80, R81: 4.7k (15 off)
- R33: 6k
- R34, R50: 15k (2 off)
- R37, R55, R63, R64: 10k (4 off)
- R35: 560
- R36, R61, R65: 470 (4 off)
- R51, R74: 270 (2 off)
- R52, R59, R72, R82: 1k (5 off)
- R53: 22k
- R56: 100k
- R60: 862
- R61, R65: 27k
- R58: 470 (4 off)
- R59: 100
- R62: 100
- R67: 27k

All 1/4W 5% carbon film

Capacitors

- C6: 150p ceramic
- C7, C12, C55: 1n mylar (3 off)
- C8: 100n mylar
- C9: 68p ceramic
- C10, C13: 10n mylar (2 off)
- C11: 1p mylar
- C48: 220n ceramic
- C57: 27p ceramic
- C58: 47p electrolytic
- C59: 3300p electrolytic
- C60: 100p ceramic
- C66: 10n disc ceramic (31 off) (These are all supply decoupling capacitors)
- remainder: 100n disc ceramic (31 off) (These are all supply decoupling capacitors)

Diodes

- D1-D10: 1N914 (10 off)
- D15: 1N4001
- D17, D18: Any 3A rectifier diode (2 off) (1N5401 will do)

Integrated Circuits

- IC1: Any 5V, 3A TO3 type regulator
- IC2, IC3: 74LS75 (2 off)
- IC4, IC5: 74LS125 (2 off)
- IC6, IC7: 8T28 (used only for expansion)

Miscellaneous

- d.i.l. sockets
 - 40-pin: 2 off
 - 24-pin: 7 off
 - 18-pin: 16 off
 - 16-pin: 21 off
 - 14-pin: 13 off
 - 8-pin: 1 off
- FS: 3 Amp fuse plus holder
- UHF modulator
- Double-sided plated-through p.c.b.
- Set of keyboard switches and key tops
- Regulator heat sink
- plus fixing screws
- Transformer—240V
- Transformer: 50Hz: 0-0-9V 3A
- Astec 8MHz crystal

Please note that component numbers do not run contiguously

CONSTRUCTORS’ NOTE

The Compukit UK-101 is being produced by Comp Components (see advertisers’ index), for £219 + VAT. This will include a full power supply on-board (including power transformer), and a UHF modulator. The graphic character set also includes such symbols as £ and ©.

The p.c.b. is of a professional standard with plated-through holes and silk-screened component legends, and a full set of i.c. sockets is included in the kit price as is—with 4K of user RAM (a further 4K may be purchased to upgrade the board to its full capacity).

The Compukit comes with full manual (written by the author), but the beginner would be advised to obtain a book on BASIC, and perhaps even on 6502 machine code programming, as the Compukit manual is not intended to be a primer on either subject.

The computer is available for demonstration at Comp Components.
SOFTWARE

The machine accepts its instructions in the programming language called BASIC as well as 6502 machine-code. It is the use of BASIC which will be paramount and its specifications are given below.

There are many versions of BASIC (Beginner’s All Purpose Instruction Code) for many different machines. There are Tiny BASICS, Integer BASICS, Double Precision BASICS, etc., etc. Minis and Main Frames usually offer a version of BASIC in Compiler form which includes all the Scientific and other functions plus the ability to manipulate matrices and Disc files. Few if any of these versions, however, allow direct manipulation of memory locations within the computer when programming or debugging. Access to machine-code routines is also a rather complex operation and use of the machine to control even such simple things as a bank of lights is usually impossible. It was not until the advent of the MPU-based computer with its feet firmly embedded in memory address decoding, machine-code programming and control applications that such interplay became common. BASIC has become the high-level language of the micro-computer, and interpreters rather than compilers are the normal implementation method. The interpreter’s ease of use made it the order of the day and Microsoft’s BASIC interpreter was born. This is a very powerful package and exists in many versions of which the COMPUKIT’s is one of the very fastest.

It is quite different from the 1K and 2K BASICS with their incredibly restricted instruction sets. The COMPUKIT’s version, as its name implies, occupies 8K (8192) bytes of the machine’s memory and is stored in Read Only Memory (ROM). This type of memory has two advantages:

1. The BASIC interpreter is not lost when the machine is switched off—indeed it is almost impossible to lose it short of crushing the chips in a vice.
2. The language is available instantly upon switch-on and does not need to be loaded from some external medium into the machine’s memory.

Other methods of offering BASIC include storage on disc. The COMPUKIT can be expanded (by a direct plug-in option) to run the Ohio Scientific’s Disc System which comes complete with a powerful disc BASIC, as well as 24K of extra memory to run it on.

Despite the fact that the resident BASIC (in ROM) is at the top end of the scale for speed and sophistication, this does not mean that it is difficult to program. On the contrary, BASIC’s use has blossomed for one paramount reason— it is sophisticated enough to satisfy the most technical user in industry, business and research while being remarkably easy even for total beginners to learn and use. The reader will recognise that most of the language is written in a kind of formalised logical English.

SUMMARY OF BASIC SPECIFICATIONS

There are three modes of use of BASIC on the COMPUKIT:

(a) Command mode
(b) Immediate-mode execution
(c) File-mode execution

The computer is said to be in the Command Mode whenever the message: OK

appears. This is usually after a system Reset following initial power-up, or at the end of a program. The “—” is a cursor which moves around the VDU screen and keeps the user updated as to his/her position. In this mode, the following commands are allowed:

Software has unexplored dimensions awaiting the adventurous, and sophisticated games are possible which can be as much fun to devise as to play.
This is a collection of scientific and other functions which includes calculation of the number of bytes left free for program storage, manipulations of address locations directly, and calls to machine code subroutines.

STRING FUNCTIONS

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASC (X$)</td>
<td>Converts character to ASCII code</td>
</tr>
<tr>
<td>CHR (I)</td>
<td>Returns the ASCII character</td>
</tr>
<tr>
<td>FRE (X)</td>
<td>Returns the function result</td>
</tr>
<tr>
<td>INT (X)</td>
<td>Returns an integer</td>
</tr>
<tr>
<td>LOG (X)</td>
<td>Returns the logarithm</td>
</tr>
<tr>
<td>PEEK (I)</td>
<td>Reads the value of the memory location</td>
</tr>
<tr>
<td>POKE (I, J)</td>
<td>Writes to memory</td>
</tr>
<tr>
<td>POS (I)</td>
<td>Returns the position of character</td>
</tr>
<tr>
<td>RND (X)</td>
<td>Returns a random number</td>
</tr>
<tr>
<td>SPD (I)</td>
<td>Returns the speed of the character</td>
</tr>
<tr>
<td>TAB (I)</td>
<td>Sets the tab stop</td>
</tr>
<tr>
<td>USR (K)</td>
<td>Calls the user-defined function</td>
</tr>
</tbody>
</table>

The variables I and J denote integers and X denotes any number. The photograph shows the positioning of the keys on the keyboard; while Fig. 3 shows the arrangement of the keyboard switches and interface logic.

VARIABLES, TYPES, ACCURACY

Numeric variable names may be any alphanumeric string starting with a letter and containing no special BASIC words. Only the first two characters define the variable. The number of variable names thus available is of the order of 900. String variables are similar but their names must end with a $. For example A1 is numeric and A1$ is a string. Numeric and string arrays are also allowed, and increase the already large number of variables available by a considerable factor. An accuracy of 64 digits is used for Scientific calculations, and numbers from 10^{-90} to 10^{+90} are allowed. The computer automatically shifts into exponent form (Scientific representation) as necessary. String variables are from 0 to 255 characters in length. Both string and numeric arrays of several dimensions are allowed.

ABBREVIATIONS AND SPECIAL CHARACTERS

The character ? may be used instead of the word PRINT, and LET and END are optional, as is the variable in a NEXT statement. The BASIC and colons may be used to separate statements and the variable in a NEXT statement under certain conditions. Spaces are irrelevant to the BASIC and colons may be used to separate statements on the same program line. The above features allow fast programming with improved use of memory space, in addition, errors in typing may be deleted by use of the DEL key.

This completes the general overview of the system, and next month the details are given in full. Some details of programming in BASIC will be given and will be selected to "tie in" with the introduction to BASIC to be published in P.E. in the near future. 6502 machine code is of a more specialised nature and the reader is well advised to buy a good primer on this subject along with a technical description of the 6502 if it is intended to use the machine at this level. Those with any expertise in machine-code programming on another machine will find that learning the 6502 code is quite simple however, and a 6502 data sheet will probably suffice.

KEYBOARD HARDWARE

The photograph shows the positioning of the keys on the keyboard; while Fig. 3 shows the arrangement of the keyboard switches and interface logic. The keyboard looks like a matrix of 8 rows and 8 columns to the computer; the Rows being one Write-Only memory location, and Columns being Read-Only. These two occupy the same memory location (DF00 in HEX) and the computer distinguishes between Rows and Columns by writing to or reading from DFO0.

The MPU’s R/W line is used to control WKB and RKB accordingly by some logic to be described next month. Essentially, the software is designed to send a “walking bit” to RO-R7. Thus, the RO line is set to a “1”, then back to “0”, followed by the same on the R1 line, and so on, up to R7 and back to RO again. The “1” scans along the Rows waiting for a key closure to transmit it to a Column (one of the C0 to C7 lines). If character A on the keyboard is pressed, the contact time must be long enough for the “1” to reach R1 (a very short time at worst). The A key then transmits it to C6, and the Computer receives and processes an A character. The fact that the walking 1 was being sent to R1 and immediately received along C6 makes the A key unique. RO is used to decode the control keys at the same time; thus, if RO and C1 followed immediately by R1 and C6 is decoded, the computer receives a SHIFT A character.

The encoding for the keyboard is thus stored in the Monitor ROM. When the computer has written to a Row, the Data Bus switches to Reading from the Columns. Normally, therefore, the Row information would thus be lost and the 1 would never reach any of the Columns. Hence the reason for the latches IC2 and IC3 which store the walking bit long enough to be read from the Columns as necessary. The diodes on IC2 and IC3’s O/Ps protect against multiple key closures shorting two or more O/Ps together. IC4 and IC5 are tri-state buffers which ensure that the keyboard information is presented to the Data Bus only when the computer is reading the Columns, otherwise the keyboard would present its information at a time when the Bus was being used elsewhere, thus causing an electrical conflict. Pull-up resistors are included on the inputs of IC4 and IC5, as C0-C7 are open circuit most of the time.

The keyboard decoding is thus dependent upon a particular program in the Operating System, and whenever that routine is inoperative, for instance while certain parts of a user’s program are under way, the keyboard is unusable. However, the INPUT statement in BASIC allows the operator to input data via the keyboard during a program. In addition, the address of the keyboard routine itself is available for use via the USR function within a BASIC program.

The only two keys not mentioned in the diagram are the two BREAK (or RESET) keys. These connect directly to the RESET line of the MPU and must both be pressed to reset. This prevents accidental breaking in most circumstances.
POWER SUPPLY UNIT

The power supply is very straightforward since the Compukit is a single supply device with distributed capacitive decoupling on the board. All but the transformer are mounted on the p.c.b. and a heat sink is provided for the 5V regulator. The photograph shows the extent to which supply noise decoupling is allowed for on the p.c.b. 100n capacitors appear at the most important places to prevent spikes and crosstalk being transmitted along the power lines.

The PSU also has a 3A fuse and a polarity compliance diode to give some protection against accidentally reversing the +5V and 0V lines by those using an external PSU for any reason.

The UHF Modulator used on the board is the 8 MHz Astec device which gives an excellent output when supplied with five volts. This device was chosen to ensure that the p.c.b. remained a single-supply system.

The UK-101 working happily with a floppy disk.

NEXT MONTH: Constructional details of this powerful computer are given, so learn computing the comprehensive way, using a high level language and working down to hex code programming. The UK-101 is capable of both!

Fig. 3. Above: Keyboard switching matrix
Below: Keyboard interface circuit
The third small astronomy satellite launched by NASA ended its task and life by burning up over the Pacific Ocean in April. During its lifetime it made important discoveries which are being studied at the Massachusetts Institute of Technology and the Smithsonian Astrophysical Observatory.

The satellite was launched in 1975 and placed in a 500km circular orbit. It was designed for a life of one year but in fact lasted three times that period. Data was continuously returned up to the time when atmospheric drag (accentuated by the rise in sun-spot activity) ended in the decay of the orbit to burn-up destruction of the satellite.

Several X-ray sources were discovered and also two quasars. The most interesting objects discovered were the X-ray ‘bursters’. These objects have the characteristic of giving short intense bursts of X-rays. Such is the intensity that in some cases bursts appear, at intervals of a few hours, at a level of 100,000 times the intensity of the Sun in a fraction of a second, and then fade away over a period very much greater. A theory offered in explanation of these events, and this is supported by other satellite observations, is that the bursts of energy derive from thermo-nuclear reactions. About 35 such ‘bursters’ are now known; more than half of them were discovered by the satellite.

The astronomy satellite also discovered an X-ray burster which emitted bursts several times a minute. The nearest of this type of object is about 15 light years distant.

INTERNATIONAL ULTRA-VIOLET EXPLORER

This spacecraft is an astronomical telescope in a geostationary orbit which has been used recently by the European Space Agency to look at a new supernova. The supernova was observed by an American amateur astronomer Gus E. Johnson of Swanton, Maryland. He has the distinction of being only the third person in history to have made a direct observational discovery of a nova in another galaxy. Gus Johnson was observing NGC 4321, number M100 in the Messier catalogue. Using his eight inch telescope he saw a 12th magnitude star southeast of the nucleus of the galaxy. It is not possible to see the nova with the naked eye. Its distance is about 100 million light years; what is being seen now happened 100 million years ago.

The European Space Agency, ESA, have observed rapid changes in the ejected material of the nova and modified spectral features similar to those found in earlier examples. Also there was shown the absorption of ultra-violet emission lines. These lines are similar also to that found in the interstellar gas in our own galaxy.

The satellite is controlled through the tracking station at Villafranca near Madrid. The US contribute the major share of the cost, other funding coming from the ESA and British Science Research Council. Access to the International Ultra-Violet Explorer is divided between NASA at the Goddard Spaceflight Centre in Maryland and the ESA’s station at Villafranca. This spacecraft was launched last year.

THE SHUTTLE—TOWARDS THE LAUNCH

The Orbiter named Enterprise was moved from the assembly pad to launch pad 39A at Cape Canaveral at the beginning of May. It consisted of the Enterprise assembled on the external tank and a pair of Solid Rocket Boosters, SRBs. It is proposed to use the Enterprise to prepare the way for Orbiter Columbia which will make the first flight. The gross lift-off weight of the shuttle is a little over 2,000 tonnes. The shuttle is fixed to the launch platform at four hard points at the base of each SRB.

The purpose of the launch pad trials with the Enterprise are to check procedures and mechanical clearances. One important part of the tests will be that of opening and closing the payload bay doors while the shuttle is in the vertical launch position. This appears to be a vital stage because in the procedure of the first launch the payload will be loaded at a late stage. It is expected that a number of launches will take place in this position. Though some tests are requested in this manner it is thought that it may be a procedure to save time between successive launches. It is probable that after the tests have been carried out Enterprise will be refurbished for a mission later.

The last date for the first launch was scheduled for September 1979 and the success of the tests will determine the exact date for the first mission, which is now thought to be for November. The completion for the work on Columbia will naturally be the determining factor. Columbia left the Rockwell plant in March but there remained a number of things to be done and some of the temporary work has led to certain delays. A very considerable number of man hours are required to bring matters to the right timetable, something of the order of 70,000.

The attitude control system used in orbit is erected below the cockpit windows and had to be removed in order that the propellant could be loaded. Columbia is fuelled by hypergolic propellants. These are mono-methyl hydrazine and nitrogen tetroxide. These are subject to ignition on contact.

Other work involved in preparation was the powering of the electrical system and connecting up the automatic test systems. There were no problems. The data processing and warning systems were also tested. The test instrumentation has a very extensive task, for this is to give vital information as to stresses, acoustic levels of vibration and temperatures. Installation of the fuel cells for electrical power has yet to be accomplished. An auxiliary power unit is an important item for installation since this is to be used for the operation of the control surfaces during ascent and descent. All this could mean that the final date for the first launch will be delayed until 1980.

Meanwhile the two astronauts John Young and Robert Crippen, the first pilots of the Space Shuttle Age, continue to prepare. Many programmes have already occupied their time in the simulator and the remaining programmes are now being studied and practised.

THE SECOND FLEET SATCOM

The United States Navy’s new fleet Satcom was launched from Cape Canaveral on May 4th 1979. This was one day later than expected because of certain last minute confirmation checks. Two days after launch the apogee ‘kick’ motor boosted the satellite from its transfer position to the geostational orbit.

The satellite will provide radio links between ground stations, ships, submarines and aircraft. It will be controlled by the USAF at its own centre at Sunnyvale, California. The USAF will use the facility for ground to air communications but the Navy has independent access.

The coverage is the eastern United States, the Atlantic Ocean, Europe and a part of Africa. The position of the satellite is at the geostationary longitude 23° West. Three more such satellites will be added at the rate of one a year. The average life of each one is of the order of five years.

VENUS

The first full disc view of Venus has been provided by the Pioneer Venus Orbiter. The direction of the clouds clearly indicate to east-west rotation of the planet, that is retrograde. It was taken from a distance of 65,000km from the planet.

THE FALL OF SKYLAB

By the time this is in print Skylab might be down. British and American satellite experts forecast Skylab’s re-entry at 1st, 2nd, 10th or 20th July. Of the 20 tonnes of fragments falling at 320km/h the largest pieces likely to pass through our atmosphere are: a lead film vault weighing 1,800kg, an aluminium airlock shroud of 2,250kg and six oxygen tanks at 1,215kg each. A total of about 500 pieces are expected to fall over an area 6,400km long by 160km wide, between latitudes 50° north and 50° south. Most of the pieces will vaporise.
Items mentioned are usually available from electronic equipment and component retailers advertising in this magazine. However, where a full address is given, enquiries and orders should then be made direct to the firm concerned. All quoted prices are those at the time of going to press.

by Alan Turpin

IC TEST CLIPS

This new Lektrokit i.c. test clip offers a simple and inexpensive means of assessing any i.c. pin or lead. Test probe attachment is made simple and the chance of damaging i.c. pins is avoided. The test clip simply clips over the i.c. bringing its individual lead connections out to a set of easily accessible contacts at the top of the clip.

8, 14 and 16 pin sizes are available. The 14 pin version costs £2.95p (pre-budget).

A contact "comb" separating individual contacts gives positive positioning and prevents accidental shorting of adjacent leads.

Lektrokit Limited, Sutton Industrial Park, London Road, Earley, Reading, Berks RG6 1AZ (0734 669116/7).

D.I.L. SWITCH BROCHURE

A new, six page, four colour brochure is available free from Erg Components. It contains full technical specifications and switching configuration diagrams for all types of Erg d.i.l. switches. Prices are given and there is no minimum order charge for items held in a maintained stock.

Erg Industrial Corporation Ltd., Luton Road, Dunstable, Bedfordshire, LU5 4LJ. (0582 62241).

LOW PROFILE KEYBOARD CONSOLES

A new range of keyboard enclosures has recently been introduced by BOSS Industrial Mouldings. They are available in three sizes, are all aluminium and have a textured black base which contrasts with either the semi-gloss sand or charcoal grey top panels. The top panels slope at approximately 20°.

Prices from £16.05 to £21.83, plus VAT and carriage.

BOSS Industrial Mouldings, Higgs Industrial Estate, 2 Herne Hill Road, London, SE24 0AU (01-737 2383).

CHEAP CHIPS

A special price is being offered by Chromasonic Electronics this month on ZN414 i.c.s. Two chips will cost £1.25 including VAT, p&p. If you check the normal price and include VAT, etc. we think you will find this is a saving of almost 50 per cent!

34 and David Shortland

BECKMAN DMM

A new 3½ digit l.e.d. multimeter has been introduced by Beckman Instruments. Measurements can be made on five d.c. voltage ranges from 200mV to 1,500V; five a.c. voltage ranges from 200mV to 1,000V and five a.c. and d.c. current ranges of 200µA to 2A which can be extended to 10A through a separate input. The six resistance ranges have f.s.d. values from 20Ω to 2MΩ.

The low power resistance ranges permit in-circuit resistance measurements to be made without turning on semiconductors, which would affect the measurements. For applications that require diodes and semiconductors to be tested, a separate semiconductor test function provides a 5mA test current, enough to check the operation of most semiconductor junctions, even circuits with as low as 200 ohms of equivalent parallel resistance.

An Insta-Ohms continuity test indicator allows continuity to be checked. When an in-range resistance is measured an ohms symbol is displayed in less than a millisecond.

The meter has an input impedance of 22MΩ. Accuracy is to within 0.1 per cent + 1 digit on all d.c. voltage ranges. Both a.c. voltage and current are average r.m.s. measurements.

The inputs are protected against overload conditions that may arise from measuring unknown signals or from operator error. Voltage ranges are protected from inputs in excess of 1,500V r.m.s. a.c. Resistance ranges are protected to 300V d.c. or r.m.s. a.c. The current inputs are protected with a 2A fuse, a replacement fuse being included inside the instrument's case. The 10A range is rated for 30A for 30 sec.

A 9V battery provides up to 2,000 hours of continuous instrument operation, giving up to two years typical use. During the final 200 hours of battery life a decimal point blinks on the display to warn the user to change the battery. Calibration, guaranteed for one year, requires only the simple adjustment of an internal trimming potentiometer.

Accessories include two carrying cases, a radio-frequency probe for voltage measurements up to frequencies of 200MHz, a current clamp for measurements up to 200A, and a de-luxe test-lead kit with test leads and ten screw-in probe tips.

The price of the 3020 is £115, plus VAT and p&p. For further details contact Beckman Instruments Ltd., Queensway, Glenrothes, Fife KY7 5PU (0592 753811).
MULTIRANGE CAPACITANCE METER

This simple-to-use instrument is now available on the UK market from Alcon Instruments. Known as the Varicapeter, it is a pocket-sized multirange capacitance meter with abilities extending from pF to thousands of µF. It is constructed in tough ABS plastic with simple range selection, full-view cover, and can cope with all types of capacitor. Component values up to 3µ are read in conjunction with a green illuminated indicator (overflow) which clearly shows when the value of the component under test is too high and it requires a higher range.

For values above 3µ a system of timing the interval between flashes of an I.e.d. provides direct indication of capacitance value. On two selected ranges, capacitance can be indicated as 1µ per second or 100µ per second, thus extending the range to several thousand µF.

Maximum sensitivity is 1pF x division, accuracy is 2-5 per cent. Power for all normal uses is supplied using internal batteries. The user may apply an external voltage.

The Varicapeter comes complete with instructions, leads, case and batteries. Price is £82-50 (pre-budget) and delivery is at this time 'off the shelf'.

Alcon Instruments, 19 Mulberry Walk, London, SW3 6DZ. (01-352 1897).

100W MOSFET

The PA100 from Ambit is a power amplifier module which uses Hitachi power MOSFETs and is suitable for audio applications at power levels up to 100W r.m.s.

The drive circuitry is greatly simplified with MOSFETs while bandwidth is up to 300kHz and the harmonic distortion less than 0-01 per cent in the audio range.

The use of MOSFETs increases the reliability of the amplifier because of their inherent freedom from thermal runaway and secondary breakdown as well as loads that are potentially hazardous for bipolar amplifiers (i.e. reactive loads).

The price of the PA100 is to be announced in the near future.

Ambit International, Gresham Road, Brentwood, Essex (0277 216029).

NANO TRAINER

The Nano M1000 capacitance meter is now available on the UK market from Alcon Instruments.

The meter is designed to be used with a wide range of capacitors and is suitable for educational purposes. It features a simple range selection and can measure capacitance from pF to thousands of µF.

The meter has a unique design that allows for easy reading of capacitance values. It includes a green illuminated indicator that changes color to indicate the range of the measured value. For values above 3µ, the meter uses a timing system to indicate capacitance values with accuracy of ±2.5%.

The price of the Nano is £250 and £450 depending on the model.

ACE 200

The Lektrokit have introduced an evaluation breadboard kit called the ACE 200. The unit has a universal matrix of 728 plug in tie points which include 136 separate tie points in lines of 3, and has two distribution buses each consisting of 24 tie points.

Measuring 11.5 x 14mm the unit is mounted on a baseboard which enables two power terminal connections to be fitted.

The cost of the ACE 200 is £11-48 plus VAT and p&p.

Lektrokit Ltd, Sutton Industrial Park, London Road, Earley, Reading RG6 1AZ. (0734 669116).

MICRO TRAINER

The Signetics Instructor 50 has been designed as a microprocessor training aid suitable for teaching CPU operation, programming and applications. The self contained unit can be interfaced with a conventional audio cassette recorder for program storage.

The Instructor 50 incorporates a single-line I.e.d. prompting display together with a 16-key hexadecimal keyboard for entering data values and a 12-key command keyboard for issuing instructions and selecting operating modes. The system uses a monitor known as USE (User System Executive) which eliminates the need for complicated start-up routines and allows a variety of operations to be carried out on programs and stored data.

The unit, which is based on the Signetics 2650 microprocessor, is equipped with an S-100 expansion interface which allows it to be used as a small computer limited only by the peripheral boards used. In addition, the program/data-entry and debug facilities of the basic Instructor 50 can be extended to any device connected to the interface.

The Instructor 50, which is supplied complete with a user's guide, introductory manual and leads for audio-cassette interfacing, is priced at £300 plus VAT.

SASCO, PO Box 2000, Crawley, Sussex RH10 2RO.

ONE MEGABIT BUBBLE FROM ROCKWELL

The latest addition to the AIM65 microcomputer system from Rockwell is a fully addressable add-on one megabit bubble memory system.

This external memory is interfaced to the AIM65 via a buffered expansion motherboard which has five connector slots that can accommodate any of the other types of Rockwell or Motorola Execor modules as well as those from other manufacturers.

The motherboard extends the 6502 bus. The bus lines (address, data and control) are buffered to provide drive capability. Address decode logic for mapping internal and external addresses in 4K byte increments is also provided. Sixteen switches enable the user to define whether each 4K byte portion of the 6502 address space of 65K bytes is internal or external to the AIM65. Thus under software control the megabit bubble memory module can provide 128K bytes of memory expansion.

The price of the motherboard is £136-50 plus VAT and p&p. Pricing of the various options allowed by the motherboard can also be obtained from Pelco (Electronics) Ltd., Enterprise House, 83-85 Western Road, Hove, Sussex, BN3 1UB. (0273 722155).
SPRING TRADE SHOWS

Every year the TV, Radio and Hi-fi manufacturers gather in London for the Spring Trade Shows. However instead of gathering under one roof, they spread themselves out over 26 hotels with anything from one to nine exhibitors at each. For those with the stamina it was a chance to see the very latest products before they reach the high street retailers, or blister in the attempt.

On the TV scene, Ferguson and Ultra were showing their new television ranges, featuring the latest TX9 single board chassis from Thorn featured in a News Brief last month. Philips were also launching a range of TVs with their new chassis the KT3 which is also used in the latest Pye range of colour sets. The KT3 chassis was especially developed for use with the smaller (14in to 20in) picture tubes.

Many of the larger manufacturers had sets suitable for both teletext and Prestel on view, and Hitachi had their "Instaview" TV on display which provides sound and picture one second after switch on by eliminating the need for preheating the tube.

One area of the market which seems to have really expanded is the small screen TVs. The Plustron CTV55D from Plustronics, a 5in. colour model priced at £299, with Plustronics, JVC, Hitachi and Toshiba all showing 4i to 6in colour sets. Many more were showing 4 to 5in monochrome sets with JVC and Sinclair taking screen size to what must be its realistic limit with their 2in sets. These miniature TVs vary considerably with many having radios and/or cassette recorders, some of which are stereo.

Crown's 5TV priced at £125 and supplied complete with rechargeable battery pack.

Crown launched their 5TV, a 5in set with a 3 band radio and a totally flat screen which is said to give a larger viewing area than conventional tube. Crown hope the 5TV will increase their share of the small screen market (currently claimed to be 48 per cent) but the competition will be intense.

The complete Amstrad system includes the pre amp, power amp and tuner, priced at £185.

Amstrad. The Amstrad system includes a P101 preamplifier, A101 power amplifier and T101 tuner which has a digital frequency display, i.e. signal strength indicator and centre zero tuning.

The Aiwa system is priced at around £500 excluding speakers (SCEII) and record deck.

The Aiwa micro system on show consisted of a pre amp (SAC22), power amp (SAP22), tuner (STR22) and cassette deck (STL22).

Hitachi's latest music centre, the SM4750 has microprocessor memory tuning which can store preset information of eight stations on each of the four wavebands. Long, medium, shortwave and VHF are available with auto tuning on VHF and medium. The 4750 has a direct drive turntable with a strobe, Dolby stereo cassette deck and built in clock timer.

The SM4750 has a retail price of £664.50 excluding speakers. British made SS45GB speakers are recommended for the 4750, priced at £109-50 a pair.

TV, Radio and Hi-fi were the main categories of the shows but other small and interesting products were on view. Here are...
Other hand held games from Adam Imports:

SOCCER. The computer defends the goal with its six defenders. You attack using the keys provided. Shoot for goal and score as many goals as you can in the time allotted.

Full timing for first and second halves, scoring for Team A and Team B. Change side indicators. You change sides when you have scored and when you have played for a set period of time without scoring.

The game can be played in amateur or professional status and operates off a heavy duty PP3 battery or equivalent (supplied), or an alternative Grandstand mains adaptor (extra). Game priced at around £20.

4-IN-1. Speedway: Red i.e.d.s travel along the display being controlled by the gas and brake pedals. Steering is done by the two steering keys. Play against the clock.

Blackjack/Pontoon: Play this card game to Las Vegas rules. The bank will automatically take your losses or add your winnings.

Brain Drain: The computer generates four hidden numbers. Guess the numbers in the least number of tries.

Calculator: A full 4-key memory calculator is incorporated with all major functions: dividing, multiplying, adding and subtracting.

Power source—5 x HP7 batteries or equivalent (not included). Grandstand mains adaptor (extra). Game priced at around £20.

The complete range of products in the Adam Collection comprises: Video Sports Centres, Video Entertainment Centres, Video Entertainment Computer, Hand-Held Electronic Games, Electronic Calculators, Quartz Watches, Clock and Portable Radios, Digital Clock, Clock Radio Cassette Recorder, Stereo Clock Radio, Mains Adaptors, Audio Whistle Switch.

To help you in your task, you have Starfighters, Super cruisers, Superfighters, Starcruisers and an extremely powerful Destroyer. Each of these spaceships has an armoury of missiles to blast your enemy's forces off the screen.

When one of your spacecraft is in danger and has no apparent means of escape—all is not lost, it can be warped into hyperspace and out of immediate danger. But beware, for that ship will re-materialise in almost any square on screen, wiping out any spaceship occupying that square—even your own Commander. When one of the Commanders has been destroyed—cosmic pandemonium breaks out on your TV screen. R.R.P. is £64.95.

Literature on other games from Waddingtons Videomaster Ltd., 36-44 Taberner Street, London EC2A 4DT.

BE YOUR OWN VIDEO CAMERAMAN/DIRECTOR

Do your own video thing with a portable video cassette recorder and zoom camera.

Video cameras from Ferguson can be powered from their Videostar portable cassette recorder as well as mains. The monochrome camera has a 1 to 1 zoom lens, automatic iris, and a built-in directional microphone in case you don't have a sound assistant. The colour camera has a 6 to 1 zoom. Likely prices, monochrome camera—£214; colour camera—£856; portable recorder—£856; mains adaptor—£20; tuner/timer—£214.

MULTI INTERFACE SCENARIO

What to do with a Cassette/Clock/Radio.

- Listen to the radio.
- Listen to cassettes.
- Note the time.
- Record speech onto cassette.
- Record from radio onto cassette.

UHF VROOM

If a second TV set is a portable it is likely that its integral aerial will not provide as good reception as an outdoor array. There may be sufficient signal strength from the outdoor aerial to feed both sets but parallel fed sets are almost certain to cause each other interference. So a properly designed splitter must be used. Then there is still the possibility that there is insufficient signal strength to feed both sets.

A solution to both problems is offered by a Second Set Amplifier by Labgear. It is expressly designed to operate two UHF TV sets from one aerial. The device is mains powered and provides a modest boost to the signal on each outlet. R.R.P. £7.30.

A leaflet on Labgear's—Signal Amps., Splitter/Combiner, and Log-periodic room aerial, is available from Labgear Ltd., Abbey Walk, Cambridge CB1 2RQ, England (0223 66521).
Would-be microprocessor system constructors are today faced with a bewildering variety of systems to choose from. These range from cheap systems which are relatively easy to build, but may be difficult or impossible to extend beyond the 'keys and lamps' stage, to the expensive systems aimed more at the professional market which require the purchase of many hundreds of pounds worth of equipment before any results can be seen.

When Tim Moore of Newbear Computing Store designed his 77-68, he was clearly aiming at a minimum cost system capable of expansion to a 'full house' system without the necessity for spending a large amount of money before results were seen. His claim in 1977 that 77-68 only cost £50 to get going was proven by many members of the Amateur Computer Club and even today the kit of parts for the basic system costs less than £50.

This review looks at the 77-68 CPU board, which utilises the Motorola 6800 processor, and goes on to examine in detail the VDU and monitor boards presently available. Brief mention will also be made of the boards currently under development—these include a dynamic RAM board and floppy disc controller. It is worth noting at this point that in common with all systems employing complex logic devices of the TTL and MOS families, 77-68 should be regarded as a project for the constructor with at least limited experience of assembling projects utilising these devices. The complete beginner would be well advised to make several of the simpler projects offered in Practical Electronics before tackling an ambitious project such as this—when later on the construction is referred to as 'simple', this should be taken strictly as a relative term.

THE SYSTEM

76-68 uses the Motorola 6800 8 bit microprocessor. This device is a firm favourite with both the amateur constructor and the professional user and although the device has in its basic form some 'nasties', these can be overcome by a bit of thoughtful programming (new software compatible versions of the 6800 such as the 6809 overcome these problems, but will not be considered here).

The basic CPU board is designed to operate as a 'stand-alone' unit interfacing with keys and lamps to allow simple programs to be written and executed without the necessity for a VDU or teletype. This same board, when plugged into the 77-68 bus, will operate as the CPU card for a system with RAM, ROM, I/O etc., in other words the constructor can start at the simplest and cheapest end of home computing and grow his system as time and money allows into a powerful computer capable, for instance, of running BASIC or performing complex computing tasks.

A block diagram of the CPU card is shown in Fig. 1 and those with knowledge of microprocessors will recognise the familiar blocks of circuitry needed around the 6800 to turn it into the heart of a computer system. For those who may be new to the subject—the blocks shown are essential to allow the microprocessor to communicate with the address and data busses and the keys and lamps are used to allow the user to input programs and read data bus contents.

![Fig. 1. Block diagram of CPU board](image)
The data input switches are buffered from the data bus by a tri-state buffer allowing the processor bus to be freed from the keys except when data is actually being entered from them.

The data display register latches the data bus information at the appropriate instant and displays this information on an array of i.e.d.s. As the 6800 is a dynamic device, this latch is necessary since data bus information only 'appears' for part of the microprocessor clock cycle and must be 'caught' by appropriately gated signals in an 8-bit latch. The 77-68 CPU board allows bus buffers to be fitted to the data bus and this should be considered essential if a system with other parts of the microprocessor clock cycle is to be used. The 77-68 CPU board allows bus buffers to be fitted to the data bus and this should be considered essential if a system with other 77-68 cards is being constructed. The address bus from the microprocessor has its lower order eight bits passed through an 8-bit latch. The 77-68 CPU board allows bus buffers to be fitted to the data bus and this should be considered essential if a system with other 77-68 cards is being constructed. The address bus from the microprocessor has its lower order eight bits passed through a 2:1 data selector to allow either a microprocessor generated or switched generated address to be output from the card.

These address switches, data switches and lamps are the users input/output path, allowing memory to be written with programs or data (256 bytes of RAM are provided as shown in Fig. 1), and when programs are being run or debugged, data from memory or the processor to be output onto the i.e.d. display.

The 77-68 CPU card also contains a TTL clock generator which is crystal controlled, allowing accurate software timing should this be required by the user—and finally control logic which interlocks the keys and lamps described above with three switches,halt, load and reset, which will be described later.

CARD CONSTRUCTION

Construction of the CPU is facilitated by the use of an 8in square printed circuit card with a 78 way, 0.1in gold plated edge connector etched along one edge. The instruction manual 'The construction of a simple microcomputer', which can be obtained separately from Newbear, contains full and detailed descriptions of the 77-68 system and the construction of the CPU.

The card assembled as part of this review was completed in a couple of evenings and worked first time when connected to a 'keys and lamps' interface.

The card being single sided for reasons of economy affected by using a single sided board is probably worth while since a double sided plated through hole board of this size would almost certainly add £15-£20 to the overall cost of the system, to an amateur constructor with 'free' time at his disposal this additional cost will in most cases be undesirable. The remainder of the construction simply involves 'plugging in' the i.c.s and the discrete components and carefully soldering them in place with the usual earthesoldering iron.

RUNNING A PROGRAM

Having completed the CPU card and made up a simple keys and lamps interface as described in the manual, a 5 volt 1 amp power supply must be used to power it, this being supplied by the constructor.

Having followed the Newbear instructions for testing what can be achieved with this basic CPU system? The manual briefly describes the 6800 instruction set in terms of its addressing modes and then gives a number of small programs which allow the user to immediately see and hear the processor at work. Several lamp flasher programs can be run which cause varying lamp patterns to flash on the data i.e.d.s. In addition, if a simple add-on amplifier interface is built then a tone generator program and even a program to play tunes can be run.

These programs, whilst showing in no uncertain terms that the CPU is operational also allow the user an opportunity to study the mode of operation of the 6800 software since clear notes are included in the manual of the changes which can be made to the software, for instance the lamp flasher programs, and the user can see for himself just what effect such changes have on program operation.

A couple of evenings spent loading programs from keys in pure binary form and reading back program and data in binary will convince most constructors of the transitory nature of any 'keys and lamps' system—in simple terms the possibility of error is so great in entering and retrieving data in binary form, that such a simple system can only be considered as suitable for educational purposes. This is not to say that relatively sophisticated programs cannot and have not been run using only keys and lamps, but that operation of such a system in conjunction with lengthy software is a painfully slow process.

VDU AND MONITOR BOARDS

Confronted with the above dilemma, one can either purchase a teletype or consider the construction of a VDU, and it is the latter approach which is greatly favoured by the reviewer. The inconvenience of a VDU in terms of the lack of hard copy, is countered by its silent operation and the convenience of a 'screen' when it comes to playing most computer games and displaying data as program output in many cases.
a VDU, if constructed round a domestic TV set, will almost without exception cost less to construct than a teletype would cost to buy.

Newbear have a 77-68 VDU board which offers a bus compatible interface between a keyboard and a video monitor or with the addition of one of the cheap readily available video modulators—a domestic TV set. The resulting VDU has a 24 line display with 40 characters per line, upper and lower characters being displayed in a 7 x 10 dot matrix. As is becoming virtually standard in 6800 base systems, the video memory (constructed from eight 2102 devices) is memory mapped as far as the CPU is concerned, giving a vector driven display. This means in simple terms that if a single character on the screen is to be modified then by generating the address of the character to be modified, and sending that to the VDU, that character can be modified on its own, rather than in a serial VDU system where to modify a single character, then the whole screen must be re-written.

The VDU board is the Newbear standard 8in square unit with a 78 way 0.1in pitch edge connector etched along one side. Rather than use one of the many CRT Controller (CRTC) chips now available, Newbear implement their VDU using LS-TTL and this allows the use of a good character generator with upper and lower case alpha characters and a variety of semi-graphics characters.

The use of this device, the Texas Instruments 74S262, turns any home-built VDU from the familiar upper case only device into a truly professional unit which is easy to read and offers scope for limited graphics. In addition to the devices necessary to generate the line and frame waveforms, and form characters, this board also contains 1K x 8 of static RAM—seven bits in each type being used to store a ASCII code for that character, the eighth bit being used to over video invert/normal on a character by character basis.

This facility allows highlighting of text and considerably extends the scope for graphics production. As with the 77-68 CPU board, and others in the 77-68 family, the VDU board is a high quality single sided fibre glass printed circuit board and as with the CPU board, more than half the construction time is taken up in linking points on the circuit using single cored insulating wire. The remainder of the time is taken up in soldering in place the thirty-four integrated circuits used in the system, and an experienced constructor should have no problems in completing the assembly in two or three evenings.

The VDU card has a video output which will direct drive any standard video monitor, or by means of one of the cheap modulators now available feed into the aerial socket of any TV receiver. The card provides an 8-bit port for a keyboard which of course must be provided by the constructor.

Any ASCII keyboard will be suitable provided that it has a positive going strobe in addition to the eight data lines—this strobe being used to cause a ‘Non Maskable Interrupt’ to the processor when a key is depressed. Newbear have thoughtfully provided a breadboard area on the VDU board which could be used to interface a non-standard keyboard to the VDU card if required.

It was during testing on this board that the only design fault was found in 77-68; one of the fixed resistors used to determine the range over which the line and frame pulse generator may be adjusted, was too large a value and only by changing this resistor could a stable locked display be obtained. This minor fault, whilst being easy to trace with an oscilloscope, could prove tricky for the constructor with only a multimeter to hand.

EXCELLENT DISPLAY

The complete VDU offers a really excellent professional quality display and the keyboard quality is obviously determined by whatever is connected to the
interface provided by Newbear. As has been said before, there are significant advantages in using a good (if expensive) character generator and these advantages clearly show up when even simple video graphics are displayed, let alone when text is being viewed. The video is absolutely rock steady (which is more than can be said of some commercial units) even although the 'timebase' of the VDU is centred round a 556 dual timer chip.

This is undoubtedly due to the digital circuitry used to generate all timing waveforms, rather than the inaccurate monostable approach adopted by some designers.

BUG 2 MONITOR
Completion of the CPU and VDU boards results in a processor capable of operating (via the keyboard and VDU) only when a monitor program is loaded into the system and set running. The best known 6800 monitor is of course the Motorola MIK BUG software familiar to most 6800 users. This software allows the user to communicate at machine-code level with the processor via a teletype or serial port VDU. Since 77-68 uses a parallel port VDU and keyboard, MIK-BUG would not be a suitable piece of software and thus Newbear supply their BUG 2 monitor listing along with the VDU hardware. This monitor must be toggled in using the keys and lamps of the basic control panel and when set running, allows VDU access to the system—fine while power is applied to the system, but the software is of course lost on power-down, resulting in a lengthy 'toggling in' procedure before each session. This could be overcome by Newbear providing BUG 2 in a ROM and the reviewer feels that this expense would be justified (perhaps as a plug-in option). The Newbear view is that due to the simplicity of BUG 2, most users will go on to develop their own monitor software and though this may well be true, for many this omission will be a great nuisance.

THE SYSTEM IN USE
With BUG 2 installed in the system, what can be achieved? The VDU will produce a 16 line by 32 character display and on depression of the reset button will display an ** on the screen. Five 'commands' allow memory locations to be examined and altered, MPU registers to be displayed, user programs to be run and also allow the running of a program to be continued following software interrupt. The software should prove adequate for most experimenters in their early work and will of course allow the user to develop a more advanced monitor should this be felt necessary.

Newbear users will almost certainly want to extend their system by adding RAM and an interface port of some sort and this is conveniently provided by the 77-68, MON1 board. Constructed as before on an 8in square single sided printed circuit board, this unit gives access to bulk storage media such as paper tape and cassette units and also provides 1K x 8 of RAM. The board also allows a 'bootstrap' ROM to be used to load a monitor from, for example, cassette tape, into the system. In practice this allows the user to develop his own monitor or monitors which he can save on tape for subsequent easy reloading into the system.

Serial communication is by means of the Motorola ACIA, the 6850, and provision is made for two such devices on this one board, in addition to a variable baud-rate generator (crystal controlled). Both V24 and current loop interfaces are provided, offering interfaces to most serial driven peripherals such as cassette recorder interfaces, teletype etc.

In practice the 77-68 MON1 board might be used in the following fashion. With the Newbear 'BOOT' ROM installed in its socket on the board, a previously punched monitor is boot-strapped into RAM from a paper tape reader. The monitor could contain 'CUTS' input-output software allowing access to recorded software via an ACIA port and a 'CUTS' interface, and with this software loaded into the system, it may be modified, run etc., using the VDU as a man/machine interface. Newbear provides a listing of 'DUMP', allowing the user to off-load software to, say, a paper tape punch for subsequent re-use. Clearly this board turns the 77-68 system into a very versatile and powerful processor capable of supporting a variety of hardware peripherals and of running relatively large programs.

Most constructors will aim for a basic system comprising the CPU, VDU and MON boards and when they have gained experience of machine code programming, look for a way of operating in BASIC or some other high level language. This will require the use of more memory than is offered by the basic system and Newbear offer a 4K byte static RAM card (which many would consider as part of the basic system in any case), a 32K byte dynamic RAM card and a 16K byte EPROM card using 2708s. This range of memory cards is bus-compatible with the other 77-68 of course and will shortly be joined by a floppy disc interface board, offering a good range of memory types to suit all tastes.

IMPRESSIONS
The 77-68 system has been thought out to allow low price 'start-up' costs while at the same time offering a wide range of bus-compatible boards which build into a comprehensive processor system. The quality of the hardware supplied is excellent. The only constructional problems encountered were very minor in nature—under-size p.c.b. drills for instance were encountered on a number of occasions. The documentation supplied is clearly written although it would be helpful if a description of the overall system existed which could be studied before boards were bought to allow each user to determine exactly which way his system was going to grow.

Purchasers of 77-68 VDU systems automatically become members of the '77-68 User Group' which circulates a quarterly Newsletter which allows users to share software and hardware information. In addition lists of members are circulated and the formation of local groups is encouraged—activities designed to assist newcomers, in particular to microprocessors, to get their first system 'up and running'.

To summarise the above points, Newbear have put together a thoroughly practical system suitable for amateur or professional for a first system.

Practical Electronics August 1979
EIGHT EIGHTS PROBLEM

This month's Micro-Bus begins with a challenge for all owners of the Science of Cambridge MK14 microprocessor system, and a chance to win a kit. A program for the MK14 is given in Fig. 1 and with this program running it is possible, by pressing the keys on the keyboard in a certain order, to get eight '8's lit up on the display. Only the correct sequence of key presses will give this result. Alternatively you may like to try to solve the problem from the program listing (Fig. 1). Either way, the problem is extremely tantalising until you discover the rule governing the operation of the keys.

The Eight Eights program occupies locations OF18 to OF47 in the MK14's memory. Enter it as usual, either from the listing or from the hexadecimal dump in Fig. 2, and then execute it at OF18. The display should then go blank except for one '8' in the rightmost digit position; you can then use any of the number keys O–F to try to solve the problem. Do not press ABORT or you will have to renumber keys O–F to try to solve the problem.

WIN A KIT

Readers sending in the shortest sequence of key presses that will light up eight '8's on the display can win one of the MK14 VDU interfaces that have been kindly donated as prizes by Science of Cambridge. The first three correct entries opened on the 31st August will each receive a kit, and entries should be posted to: Micro-Bus Problem, Practical Electronics, Westover House, West Quay Road, Poole, Dorset BH15 1JG. The next Micro-Bus will reveal the solution to this problem, and give a full explanation of how the program works.

MICRO DRIVES A TRAIN

The speed and direction of an electric motor can be controlled by a microprocessor, and by way of illustration a simple program is presented here which can vary the speed and direction of movement of an electric model train. As it stands, the train can be set to one of eight forward or reverse speeds, but the program could form the heart of a more complex system which incorporated the switching of signals and points, and the use of sensors to detect the train's position on the track.

The program was developed and run on an Acorn microprocessor system which makes an ideal controller for such applications. Control of the train is from the Acorn's keyboard; the keys 0–7 give forward motion, and 8–F give reverse. The number pressed determines the speed; 7 and F give maximum speed in forward and reverse respectively, and 0 or 8 stops the train.

OPERATION

The polarity of the power applied to the motor is controlled by a bridge circuit of power transistors; see Fig. 3. The transistors are not critical, and the ones shown, chosen for economy, will drive several amps. Two electric motor from two logic-level lines.

Fig. 2. Listing of the bytes to be entered to run the Eight Eights program

Fig. 3. Circuit which provides control of an electric motor from two logic-level lines.
gates in a 7405 package (a hex inverter with open-collector outputs) act as buffers between the bridge circuit and two lines from the Acorn's RAM I/O device, PAO and PA2. With both lines high, or both lines low, the voltage across the motor is zero. If one line is taken high the motor is connected between the power rails, and the polarity depends on which line is high.

Control of the motor's speed is achieved by pulsing the power to the motor rapidly on and off, and varying the ratio of on-time to off-time. This control is performed by software timing.

MOTOR CONTROL PROGRAM

The motor controller program, shown in Fig. 4, requires some understanding of how the Acorn's keyboard is connected. The keyboard uses six bits of port A in the RAM I/O chip at $0EOO. The lower three bits, PAO-PA2, are decoded to enable one of the eight keyboard columns. The next three bits, PA3-PA5, are inputs from the keyboard rows. Each key, when pressed, makes a connection to a row and a column; keys 0-7 correspond to PA5 low, and keys 8-F correspond to PA3 low. When no key is pressed all three rows are high.

MODEL TRAIN CONTROLLER

The MK14, which clarifies the operation of an electric motor

Fig. 4. Program for the 6502 micro which, with the circuit of Fig. 3, varies the speed and direction of rotation of an electric motor

Bits PAO and PA2 of the spare RAM I/O chip, which is addressed at $0900, are used to control the motor. When run, the program first configures bits PAO-PA2 of both RAM I/O chips as outputs. It then performs the SCAN routine eight times, for values in the X register of from 7 down to 0. The SCAN routine selects a keyboard column and checks for keypress in that column. If a key has been pressed it shifts down the row bits PA5 and PA3, one of which will be low, to coincide with the lines PA2 and PAO, and saves them at DIbN. It also updates SPEED with the current value of X.

The value of SPEED determines for how many of the seven time slots the motor is turned on, see Fig. 5. A delay, provided by the WAIT routine in the Acorn monitor, is inserted at the end of the SCAN loop. The program works without this, but the train motor acts as a loudspeaker coil and, due to the high frequency of the pulses applied to it, emits an audible whistle which is rather disturbing.

AN INSIGHT INTO MICROPROCESSORS

Many people seek to gain an introduction to microprocessors by building one of the excellent kits currently available; but running programs on a kit still leaves one fairly mystified about the internal operation of the micro. The problem is that the microprocessor executes many thousands of instructions every second, and a whole program can be executed in an instant.

The circuit to be described provides one solution. Designed for use with SC/MP microprocessors (the INS8060), it makes it possible to execute programs one cycle at a time, suspending execution between cycles so that the status of the micro can be examined. In addition to giving an insight into the operation of a micro that is not gained by simply running programs on it, the single-cycler also makes it a simple matter to fault-find microprocessor kits.

SINGLE-CYCLER DESIGN

The single-cycler was designed by Nick Toop, whose cassette interface appeared in the October 1978 Micro-Bus, and though intended for use with a Science of Cambridge MK14, it should work with any SC/MP-based system.

The circuit, shown in Fig. 6, uses two TTL integrated circuits and its operation is controlled by two push buttons, of which one should never change the contacts and can be a biased toggle-switch. The single-cycler is connected to the MK14 by five wires, and there is no need to make any changes to the MK14 itself. The connection points are as follows:

Fig. 5. Timing diagrams showing how the speed of the motor is varied by altering the point in each cycle at which power is applied

<table>
<thead>
<tr>
<th>SPEED</th>
<th>0</th>
<th>1</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Fig. 6. Circuit of the Single-Cycler which clarifies the operation of a SC/MP-based microprocessor system

<table>
<thead>
<tr>
<th>Wire</th>
<th>SC/MP pin no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5V</td>
<td>40</td>
</tr>
<tr>
<td>NWDS</td>
<td>1</td>
</tr>
<tr>
<td>NRDS</td>
<td>2</td>
</tr>
<tr>
<td>NHOLD</td>
<td>6</td>
</tr>
<tr>
<td>0V</td>
<td>20</td>
</tr>
</tbody>
</table>

There are more convenient points on the upper side of the MK14 where connection can be made, and the photograph of the prototype shows these.

Practical Electronics August 1979
OPERATION

Instructions executed by a microprocessor consist of a number of read and write cycles, during each of which the micro accesses the memory (or I/O devices). Every instruction must have at least one cycle—the *instruction fetch*—during which the micro reads the instruction op-code from memory. During this cycle the address of the instruction appears on the address bus, and the instruction itself appears on the data bus. Some SC/MP instructions have as many as four read/write cycles; for example, increment-and-load (ILL) has three read cycles (instruction fetch, operand fetch, and read data) and one write cycle (write incremented data). The number of read and write cycles for any particular instruction is fairly obvious from what it does, and a full list can be found on pages 30-31 of the MK14 manual (page 42 in the new manual).

The SC/MP micro signals a read cycle by taking NWDS low whenever either of these lines goes low; this halts the micro in the middle of the cycle, leaving the address and data for that cycle on the buses so their state can be interrogated. Pressing the CYCLE switch releases NWDS, and the micro runs until the next read/write cycle is reached. For continuous operation the CONT switch is held down, and the CYCLE switch is released once to start execution; releasing the CONT switch at any time will halt the micro in the next read/write cycle.

Note that the operation of this single-cylinder circuit is quite different from the operation of the single-step facility described in the MK14 manual. Whereas the single-step circuit just generates an interrupt so that control is transferred to the monitor program after each instruction is executed, the single-cylinder actually stops the micro between cycles.

A fault-finding table has been made to help locate faulty components, or incorrect PROMs. The following steps illustrate how to fault-find a non-functional MK14:

(a) Attach the Single-Cylinder circuit as described above, and press the RESET button on the MK14. This should cause pin 7 of the SC/MP, NRST, to go low.

(b) Release RESET and check that the clock, pin 38, is working. Verify that all the address lines are tri-stated (neither high or low). Data lines D4-D7 should also be tri-stated, but D0-D3 will be pulled high by the resistors R12-R15. NWDS and NRDS should also be tri-stated. Any departure from this indicates a fault, probably a short between two adjacent tracks on the printed-circuit board.

(c) Now press the CYCLE switch once. The SC/MP should then be outputting the address X'00'; in other words A11 to A1 should be low and A0 high. The cycle is a read cycle so NRDS should be low, and the data lines should be showing the data expected from the monitor.

(d) By repeatedly pressing CYCLE one can single-cycle through the monitor program, at each stage comparing the observed states of the address, data, and NWDS/NRDS lines with the results expected from the monitor listing. Table 1 shows the first five cycles for the old and revised MK14 monitors. Departures from this table will point to shorts, faulty components, or incorrect PROMs.

(e) To get into the keyboard and display routine, KYBD, continuous run for a while by holding down CONT, pressing CYCLE, and releasing CONT. One can then single-cycle through the KYBD routine to check the display circuitry. One display digit should be enabled at a time, and every 26 operations of the CYCLE switch should move to the next display digit.

IMPROVEMENTS

It is possible to incorporate this circuit into a more sophisticated device that will give a continuous display of the state of the address, data, and NWDS/NRDS lines, such as logic probe, oscilloscope, or voltmeter. The following steps illustrate how to fault-find a non-functional MK14:

Table 1. The results expected when single-cycling through the first few instructions of the old and revised MK14 monitors

<table>
<thead>
<tr>
<th>Address lines</th>
<th>Data lines</th>
<th>NWDS</th>
<th>NRDS</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>Instruction fetch</td>
</tr>
<tr>
<td>001</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>Instruction fetch</td>
</tr>
<tr>
<td>002</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>Instruction fetch</td>
</tr>
<tr>
<td>003</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>Instruction fetch</td>
</tr>
<tr>
<td>004</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>Instruction fetch</td>
</tr>
<tr>
<td>005</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>Instruction fetch</td>
</tr>
<tr>
<td>006</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>Instruction fetch</td>
</tr>
<tr>
<td>007</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>Instruction fetch</td>
</tr>
<tr>
<td>008</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>Instruction fetch</td>
</tr>
</tbody>
</table>

Avoid a break in the middle

Make sure you get every issue when you’re following projects in PRACTICAL ELECTRONICS

Use this order form for a year’s supply to be posted to you.

ANNUAL SUBSCRIPTION RATES (including postage and packing) inland and overseas £10.60.
NIBL ROM

Devotees of the SC/MP microprocessor (used in the MK 14 and Scrumpi micro kits) may already have heard of NIBL.

NIBL stands for National Industrial BASIC Language, and it started life as an adaptation of the original Tiny BASIC as described in the first issue of the now famous "Dr. Dobb's Journal of Computer Calisthenics & Orthodontia." This version of BASIC, like most other Tiny BASICs, has integer only arithmetic with an effective 16-bit precision, but it also sports a few features not found on the others, including a DO-UNTIL statement in addition to the usual FOR-NEXT.

The "Industrial" part of NIBL refers to the SC/MP manufacturer's conviction that many control programs used in industrial situations could be written in a high level language such as BASIC, rather than in the more usual machine code or assembly language form.

The advantages of this sort of approach are obvious. Programs to control a central heating system or a machine tool become more portable, since one BASIC is very much like another, and programs also become more understandable by almost anyone, and programs also become more portable, since one BASIC is very much like any other.

The disadvantages stem mainly from the fact that NIBL is an interpretive language which requires a large "Interpreter" program to be resident in the system as well as the user program itself.

Each of the concise NIBL statements has the effect of calling a large machine language subroutine in the Interpreter at run time, leading to inefficiencies and a drastic reduction in speed compared with an assembly language equivalent.

The resulting choice is simple. Either you stick to assembly language and get compact code which runs fast but takes a great deal of time to write and debug, or you use a language like NIBL which means your programs run slower but are much easier and quicker to write.

So much for using NIBL for control applications, but what about hobby use? Well, you can use NIBL anywhere you would use a standard Tiny BASIC, for games and other purposes, and it would certainly add a great deal to any existing machine code system.

The best news of all is that National have now put the NIBL interpreter into a single, cheap, 4K by 8 masked ROM which will go into a 24-pin socket. The new ROM is coded INS 8295 and is intended for use in an 8080 SC/MP system with at least 2K of RAM available.

Being a high level language, NIBL requires an alphanumeric communication channel, and the interpreter in the 8295 contains a software driver for a 110 baud ASCII terminal connected to the SC/MP SENSE B and FLAG 0 lines.

I should think that an SC/MP system equipped with NIBL is one of the cheapest ways possible into the world of the Home Computer, so why don't you try it, all you SC/MP fans?

BYTE RAM

One nifty way to get the 2K bytes of RAM you need for an SC/MP based system using NIBL could be to buy a single MK 4816.

The MK 4816 from Mostek is a wondrous new RAM chip which eats and spits out data, not in mere bits but in whole bytes.

Now for the bad news: The MK 4816 is dynamic (groans). Now the good news: The MK 4816 has on-chip refresh (Cheers). Yes folks, someone has finally done away with all that horrible address multiplexing circuitry and those nasty RAS and CAS strobes and refresh clocks by organising a 16K bit dynamic RAM into a sensible byte-wide format, and putting all the necessary support circuits right there on the chip.

To the outside world, the MK 4816 can appear just like a static RAM, but inside it's dynamic, so you get all the advantages of dynamic chips with none of the disadvantages.

One of the most striking advantages is the low power consumption of only 150mW when active, but that's not all, because there's also a low-power standby mode when the chip is deselected which reduces consumption to just 25mW (that's only 5mA from a 5V supply so you could power your RAM from batteries during a power loss if you needed to preserve valuable data.)

The MK 4816 comes in a 28 pin package where the lower 24 pins (3-26) conform to the standard 24 pin ROM/PROM format so that sockets can be used for either RAM or ROM as required by a particular system.

The MK 4816 is just becoming available, but in the future we can expect to see more chips following the lead it has set, including a 4K by 8 monster from Zilog!

QUADRUPED

Voltage regulator circuits are old hat these days, and not the stuff of which headlines are made. Development continues however, and there is now such a range of regulator chips to choose from that it is important to keep up to date so that you can make the right choice for any new application that needs a stable d.c. supply voltage.

Most of the glamour seems to lie with the fixed voltage types, and their ever increasing current capability, but coming along strongly are the three terminal adjustable types which are good for the hobbyist's spares box because they can be used for any power supply application which takes one's fancy.

They can be a bit pricey though, and Fairchild have tackled this problem with a whole new family of four-terminal adjustable regulators which come in low cost plastic TO202 packages.

There are 0.5A and 1.0A, positive and negative versions, and typical advice codes are µA78M01C for a 0.5A positive regulator and µA79M01C for a 1.0A negative regulator.
A selection of readers' original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to its merits.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

LIGHTNING CHESS TIMER

An interesting and lively variation of the ancient game of chess is lightning chess. The rules for this game are very similar to those of ordinary chess, the main difference being the short time allowed each player to make his move (usually five seconds).

A lightning chess timer should give a distinct buzz (or bleep if a speaker is used in place of a buzzer) at regular intervals. The duration of each bleep should be about a quarter of a second while the interval between bleeps must be variable, and range up to fifteen seconds.

The circuit employs two 555 timers, both operating in a free-running mode. IC1 acts as an audio oscillator, delivering a frequency of about three kilohertz to the speaker. IC2 switches IC1 on and off at predetermined intervals.

A reset facility is included whereby the timer may at any time be reset at the push of a button. This allows a slightly different version of lightning chess to be played. Every player presses the reset button after he has played his move, so that when the timer does beep it means that the player whose turn it was to move has overstepped his time limit and he loses the game.

Y. H. Diamant, Zaria, Nigeria.

The 7400 quad NAND gate is often used as an astable multivibrator but has poor starting characteristics, usually requiring a "spike" on the supply line at switch on to initiate oscillation. This simple circuit uses the two spare gates in the package plus one extra resistor to ensure the circuit has positive self-start characteristics.

R. D. Homerstone, Daventry, Northants.

TTL OSCILLATOR
D.C. RINGING FOR INTERCOMS

The circuit shown is suitable for operating a polarised telephone bell from an 18V d.c. power supply (on no account should P.O. systems be interfered with). A low impedance output of approximately 35V peak-to-peak is obtained without the use of transformers. The circuit is basically an astable multivibrator formed by R1, R2, C1, C2, TR3 and TR4. However, the normal collector load resistors have been replaced by an active load, namely TR1 and TR2. TR1 base is fed via R3 to the collector of TR4. Consequently TR1 is always on when TR3 is off and vice versa. At each side of the circuit there now arises a push-pull output. By utilizing both of these outputs and feeding them to the telephone bell, the output voltage is approximately double that of the supply voltage. R5 simply limits any excessive current surges from the power supply during transition of switching states when all transistors are partially on.

This circuit may be built on a small piece of tag strip, placed inside a telephone, and inserted into the two existing bell wires. The telephone may now be treated as having a d.c. operated bell and the basis for a home intercom using d.c. ringing. The relatively low voltage required for operating the telephone bell may be derived from the power supply feeding the speech circuits.

R. A. Sudron, Leeds.

SHORTED TURNS DETECTOR

The accompanying circuit shows a shorted turns detector of high sensitivity which may be built at low cost. The detector is based on a standard Colpitts oscillator.

Initially TR1 is biased into conduction by R1, R2 and VR2. As the oscillations build up rectification occurs at the base/emitter junction resulting in increased emitter current and therefore increased voltage across R4 if oscillations are damped by a shorted turn placed around L1. It follows that the voltage across R3 will now fall towards its quiescent value. This change of voltage is indicated by a 50µA meter, zero adjustment being performed by VR2.

VR1 is adjusted for full scale deflection with a shorted turn placed around L1. L1 is not critical, consisting of 175 turns of 30 s.w.g. enamelled copper wire close wound on a piece of 0.5m diameter ferrite rod.

R. D. Homerstone, Daventry, Northants.

SOUND OPERATED FLASH

This very simple circuit will fire a photographic flashgun of any polarity, because of the use of a triac rather than a thyristor.

The output from the crystal microphone is coupled by C1 to the comparator, IC1. Positive input bias is supplied by R1 which, due to the input bias voltage drop, determines the input sensitivity. With the values shown this is about 30mV peak, although it can vary considerably depending on the characteristics of the op-amp.

When a sound is made near the microphone, the output of IC1 swings between the supply rails at the frequency of the input. On the first negative going excursion, the triac switches on firing the flashgun. The triac will remain on until the flash is complete, at which time the circuit is ready to supply another flash trigger.

P. R. Williams, Stevenage, Herts.
METER FOR ELECTROLYTICS

CAPACITORS of values up to 10,000µF can be measured with this instrument, and 6 ranges are available as follows:

<table>
<thead>
<tr>
<th>Range</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0–30µF</td>
</tr>
<tr>
<td>2</td>
<td>0–100µF</td>
</tr>
<tr>
<td>3</td>
<td>0–300µF</td>
</tr>
<tr>
<td>4</td>
<td>0–1000µF</td>
</tr>
<tr>
<td>5</td>
<td>0–3000µF</td>
</tr>
<tr>
<td>6</td>
<td>0–10,000µF</td>
</tr>
</tbody>
</table>

The smallest value that can be measured accurately depends on the resolution of the meter used. No new meter scale need be made since the scale is linear and forward-reading, this simplifies construction.

There is one slight disadvantage with this instrument, this being that the capacitor under test may have over 10V across its terminals, and so low voltage capacitors may be damaged.

Before the capacitor under test is connected to circuit, the non-inverting input of IC1 is connected to the positive rail via a resistor. IC1 acts as a comparator, its inverting input being connected to a 9.1V Zener reference. The output of IC1 is lowered to zero, IC1 thus switches and TR1 and TR2 turn off. The i.e.d. extinguishes, and 9V is fed to the integrator. The negative-going ramp produced moves the needle of MEI, linearly with time, hence time is recorded on the meter.

Meanwhile the capacitor under test is charging up. When it reaches 9V, the comparator is switched and the integrator is stopped. The time for all this to happen is measured on MEI, and is approximately equal to the time constant of Cx and its series resistor, R12, R13 or R14.

Tolerances in the circuit, especially C1, are large, so the meter is calibrated using a capacitor of known value by varying VR1 and VR2. When the timing process has finished, D3 lights, showing that the capacitance can be read.

C1 is a low-leakage tantalum capacitor. In practice, however, its leakage is apparent since the meter needle does not remain at a steady value after the timing period. To counter this, current is fed into the capacitor when TR2 is turned off. This current is about 1µA. Since R3 is 200kΩ, then to counter the leakage the saturation voltage of TR2 needs to be 0.2V.

If needed, R7 can be adjusted to cancel the leakage exactly. The prototype needed a value of 10kΩ for R7.

R4 limits the current from IC2 when S2, a reset button, is depressed. The internal resistance of C1 is such that S2 needs to be closed for a few seconds to discharge it completely.

The power supply should be at least ±12V, and no more than ±15V. The prototype employed a power supply with two regulator I.C.s. S1, which shorts the meter to prevent damage when not in use, is ganged to switch the power supply.

D. P. Akerman, Coventry.
Of all the purpose-built power amplifier modules by I.L.P., the HY50 is understandably the most popular with those wanting to build or upgrade a hi-fi system, run a small high quality P.A. system, amplify a musical instrument (say for practice or small range use) or use it for lab work. Its useful 30 watts RMS output into 8 ohms, its rugged construction and freedom from heatsink worries make HY50 the ideal all-purpose quality power amp — and it is unconditionally guaranteed for five years. Tens of thousands are in use throughout the world.

...and a spec that means just what it says!
Encapsulated power amp with integral full-rated heatsink.
Input -500mV
Output 30 watts RMS/8Ω
Load Impedance -4 to 160Ω
Distortion - 0.04% from 100mW to 25 watts at 1KHz/8Ω
Supply Voltage - ±25V. Size 105 x 50 x 25mm
Inc. V.A.T. and postage in U.K.
£8.15

Nothing has been overlooked in the design and manufacture of I.L.P. Modular Units. Heavy duty heatsinks, encapsulated circuitry, no-compromise production standards and true professional finish ensure world leadership for I.L.P. Now we have up-graded output ratings and down-graded prices to bring I.L.P. within easier reach of all who want the best.

New production techniques enable us to reduce prices by an average of 20%, making I.L.P. a better buy than ever. Prices subject to amendments if VAT rate is changed.

Guaranteed 7 days despatch on all products
USE OUR FREE POST SERVICE for sending your orders, requests for information sheets etc. Simply address envelope.
NO STAMPS REQUIRED.

I.L.P. ELECTRONICS LTD.
FREEPOST 2
Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP
Phone (0227) 54778
Telex 965780

Practical Electronics August 1979
Soldering is probably one of the aspects of this hobby to which the amateur radio or home electronics enthusiast gives least consideration. Applying a hot iron to a soft silvery coloured metal, which then melts and flows to form a joint is such a straightforward process that beyond taking a few simple precautions, for example, avoiding dry joints, not too much concern needs to be expended. It is this reliability in the formation of mechanically and electrically sound joints that has assured that soldering is still an accepted joining technique used by the enthusiast and by the electronics industry. The efforts of soldering equipment manufacturers have made sure that for the user, soldering remains a straightforward technique, despite more obvious advances in other areas of electronics and the increasingly stringent demands being placed on the production of electronic assemblies.

DEFINITION

Before discussing solders and soldering methods in detail it might be helpful to outline some of the basics. Soldering (sometimes known as soft-soldering) has been defined as the joining together of two metals using a low melting temperature tin-containing alloy as the filler metal. The melting temperature of this filler metal (the solder alloy) is usually considerably lower than that of its constituent elements, or than the melting points of the metals being joined. In fact the term “soldering” generally refers to processes taking place below 450°C.

Solders act in the following three ways:

(a) Wetting the basis metal surfaces forming the joint.
(b) Flowing between these surfaces by capillary action so as to fill the space between them completely.
(c) Metallurgically bonding to the surfaces when solidified.

The surfaces to be joined should be perfectly clean in order to ensure that wetting, and subsequent metallurgical bonding can take place. Part of the job of the flux is to dissolve any oxide coating adhering to the basis metal. Wetting of the basis metal surfaces is of prime importance. The nature of the wetting action itself is quite complex and results from the mutual solubility of tin (the active constituent) in the liquid solder and in the substrate.

The primary requirement of soldered joints in electronics is to provide an electrically conductive path, but considerations of mechanical strength may also be relevant on occasions. Although the electrical conductivity of solder is only about 8 to 13% that of copper, the short conducting path through the solder in a joint does not normally have to be considered as adding significant electrical resistance to the circuit.

SOLDER ALLOYS AND FLUXES

One of the most obvious characteristics of solders is that they are low melting point alloys; most of the commercially important solder alloys being fully molten below 250°C. It is also accepted that in general the higher the tin content of the alloy the better are its wetting properties.

A great many of the solder alloys in common usage are binary mixtures of tin and lead. The tin-lead mixture is known as a simple eutectic system. The eutectic is the composition of the binary mixture at which the two component metals solidify as a whole when the liquid is cooled, forming a solid solution. This point occurs at the lowest attainable temperature. In the tin-lead system the eutectic point occurs at the composition 62% tin – 38% lead, at a temperature of 183°C. At other compositions, particularly in alloys containing around 80% lead, the mixture has a wide temperature range over which it is neither completely molten nor completely solid; this is known as the “pasty” range. All tin-lead alloys will be partially molten at 183°C but only the 62% tin – 38% lead alloy, the eutectic alloy is fully molten at this temperature. For example, the commercially available 30% tin – 70% lead alloy is only fully molten above 255°C. The most commonly used tin-lead solders employed in electronic applications are 60% tin – 40% lead and 63% tin – 37% lead, of which both alloys are close to the eutectic composition and melt over temperature spans of 5 and 2°C respectively.

Sometimes up to 5% of antimony or silver may be added to tin or tin-lead mixtures to produce solders with slightly different properties. Such alloys may be useful in certain applications but may also introduce a number of undesirable factors, such as higher cost or deterioration in mechanical or wetting properties. Because of this they are only used when absolutely necessary. Tin-zinc solders are used for soldering aluminium, and alloys containing cadmium or indium may be employed when low melting point solder is required.

As already stated, for normal service in electrical and electronic applications, binary tin-lead alloys containing between 60 and 65% tin are chiefly used since they solidify at low temperatures over a short temperature range and, since they contain a high proportion of tin, have excellent wetting power, permitting short soldering times. This last factor is particularly important in industry where high production rates are necessary for economic operations. Sometimes such solder alloys are saturated with copper additions (around 1.5% copper) to reduce the corrosive attack by the solder on unclad copper soldering-iron bits. Tin-lead solders containing 50% or more lead are used for such applications as sheet metal assembly, copper plumbing,
automobile radiator manufacture, and repairing and shaping car bodywork.

It may be necessary in some instances for joints to retain their strength at temperatures above 100°C, and here alloys of tin with 5% antimony or 3-5% silver can be used. In contrast, at very low temperatures a 90% lead - 10% tin alloy should be used where strength and toughness is important.

In the increasingly important commercial thick film hybrid circuits employing palladium-silver conductive tracks, a 62% tin - 38% lead - 2% silver alloy is frequently used to prevent the silver-containing layer on the circuit from dissolving in the solder alloy. A tin-lead-indium-zinc solder has been formulated to reduce the risk of embrittlement when soldering onto thick gold coatings, and a 70% cadmium - 30% tin alloy has been employed for systems where stray e.m.f.s due to thermo-electric effects must be kept to a minimum.

PHYSICAL TYPES OF SOLDER

Solder is manufactured in many different forms to meet the needs of particular applications. Perhaps the most familiar form for soldering with an electrically heated iron is that of solder wire, normally supplied in reels, in a range of diameters from about 0.7mm to over 5mm. These wires are manufactured by extrusion of the alloy followed by conventional cold drawing. Often there are one or more strands of rosin-based flux contained within the wire, introduced during the extrusion process. Normally the proportion of flux in the wire is around 3% by weight, and a number of flux cores are usually employed so that in event of a void in one of the cores there is sufficient flux available in other cores. The advantages of flux-cored solder wire include rapid flow of flux onto the joint when the wire is melted and quick melting of the wire on contact with the heated surface.

Solder paints, pastes and creams are made of finely divided solder particles suspended in a viscous flux together with a neutral carrying agent. Solder paints can be applied by brush or roller for tinning purposes. Pastes and creams, containing around 85% by weight of metallic solder, are applied by brush, syringe or spatula (in industry screen printers and automatic dispensers are also used) to the joint area to ensure exactly the right quantity of solder is employed. The viscous, tacky pastes readily stay in position and can act as temporary adhesives to hold components in place until the solder is melted.

In recent years the use of solder preforms has grown in the electrical and electronics industry and they are now available in a wide range of shapes and sizes, with or without flux cores. The types of preforms manufactured include washers, rings, discs, pellets and spheres as well as more elaborate shapes for more complex soldering jobs. Solder preforms are ideally suited to applications where a precisely controlled amount of solder needs to be applied to every joint, either by hand or automatic soldering.

Other forms of solder available include ingots, bars, sticks, sheet and foil strips, all of which are intended for different types of soldering jobs.

FLUXES

Soldering fluxes are liquid or solid materials which when heated are capable of promoting or accelerating the wetting of metals by solder. Any flux used in a given application should provide a liquid cover to exclude air from the joint up to the soldering temperature and dissolve away any oxide on the metal surface or on the solder. It should also be readily displaced from the basis metal by molten solder, and any residues should be easily removable following the soldering operation.

In electrical and electronics applications so-called "non-corrosive" fluxes are mainly used. It is possible to use pure, natural rosin dissolved in proportions of 20 to 50%w/v in a suitable organic solvent such as isopropanol. The active constituents in such a flux are abietic acid and its isomers, which become mildly active at soldering temperatures. However, it is usually necessary to improve the fluxing power by adding small quantities of organic halide activators. These activated rosin fluxes are formulated so as not to give rise to corrosive products after soldering.

In the case of more difficult to solder non-ferrous alloys, organic acid and organic halide fluxes are used, and for soldering steels and other alloys in general engineering, highly reactive and corrosive zinc chloride fluxes are necessary.

SOLDERING METHODS

Before undertaking soldering operations it is essential to assure that the surfaces to be soldered are perfectly clean. Some metals are more readily solderable than others; for example gold-, silver- and tin-coated parts normally display excellent solderability, copper and its alloys have quite good solderability, whilst aluminium can at best be regarded as difficult to solder. Whatever the substrate, it is necessary that the surfaces should be in a suitable condition for soldering. If soldering difficulties are encountered it may be that some sort of cleaning operation should be carried out before satisfactory joints can be obtained.

The surfaces should be free from all oil and grease. This consideration is of more importance for soldering in industry where quite elaborate degreasing procedures may be employed. Oxide films which form over a long period of time can be removed by using abrasive papers, although these should not be used for soft metals such as tin, as particles of abrasive may become embedded in the metal. Immersion in dilute acid may remove certain oxide and tarnish films.

MANUAL SOLDERING

Before applying solder to a joint it should be considered whether it is necessary to prevent heat flowing into areas that have already been soldered, or to heat-sensitive components. Heat shunts can take the form of specially designed tweezers, although the judicious use of a pair of pliers during hand soldering can also form an effective heat shunt.

In all irons the key component is the bit; it is essential that the bit surface is wetted or “tinned” by the solder in order to encourage the flow of solder onto the joint. The bit stores heat

Practical Electronics

August 1979
and conveys it to the work, stores and delivers a minimal amount of molten solder to encourage heat transfer (the bulk of solder should be applied simultaneously with the soldering iron), and the bit should also be capable of removing surplus solder from the joint. The size of the bit and the power rating of the iron are related to the amount of heat to be supplied during each soldering operation and to the intended rate of working. Copper is the material used most frequently for bit construction as it combines good melting properties with optimum heat capacity and thermal conductivity. To prevent erosion of copper bits by solder, copper saturated solders, or iron or nickel plated bits may be employed.

During the soldering operation the pre-heated iron is held against the proposed joint, and the solder, usually in the form of flux-cored wire, is applied to the work close to the bit, where it should melt immediately. If sufficient solder has been applied it should completely penetrate and fill the joint gap. The time required to keep the bit on the work will depend on the nature of the joint and the characteristics of the iron. Gentle movements of the bit during soldering can assist rapid penetration of solder into the joint spaces. It is important to keep the bit properly tinned.

There are other, more specialised forms of manual soldering, used in industry in certain applications. These include such methods as radio frequency induction soldering, ultrasonic soldering and hot gas soldering.

HIGH QUANTITY SOLDERING

In the industrial production of printed circuit boards it would be far too costly and time-consuming to make each individual joint manually using a soldering iron. It is necessary therefore to employ mass soldering methods in which large numbers of joints are made simultaneously by using the molten solder itself as the source of heat. The most common forms of mass soldering involve immersion in, or contact with, a molten solder bath. Another important advantage of mass soldering techniques is that they allow better control over all individual stages.

The simplest method of mass soldering is known as dip soldering. In this process the pre-fluxed assembly on which all the components have been mounted is lowered vertically into the solder bath sufficiently for the solder to spread and form all the joints, and not enough for the solder to flow over the top of the board. The temperature of the bath is maintained in the range 220 to 260°C for a 60% tin - 40% lead alloy. The solder surface is kept free of dross by a scraping mechanism which skims aside the oxides and flux residues immediately before soldering takes place.

Perhaps the most widely used technique of mass soldering is that of wave soldering which solves the problem of maintaining a clean, bright solder surface by having the solder in continuous motion. In this process the circuit board, mounted on a conveyor, moves horizontally across the crest of a continuously circulating, standing wave of molten solder. The wave is formed by pumping solder up through a narrow slot, where it overflows back into a sump. Various wave configurations are available. The path of travel towards the solder wave may be inclined upwards at an angle of about 15° to facilitate drainage of solder from the board after it has passed over the wave.

A wave soldering machine in use for large quantity production.

QUALITY CONTROL

The application of quality control techniques to the production of soldered joints in industry is extremely important since the failure of a joint may not only result in the job having to be reworked, but also a fault occurring during service may be potentially dangerous. Therefore, high reliability is demanded, particularly in applications such as aerospace, military equipment, telecommunications and computers.

For the amateur, if the few relatively simple precautions outlined in this article are taken, soldering defects should not occur. One of the most common defects, known as dewetting, happens when the surfaces to be soldered have not been properly prepared. In dewetting there is a pronounced retraction of the solder into globules, after initial wetting has taken place, leaving an extremely thin, matt film of solder on the surface which the globules rest. A common cause of dewetting is the presence of a thin, discontinuous layer of surface oxide, or embedded particles of abrasive. If this phenomenon occurs it is necessary to further clean the surface before good wetting can be achieved.

It is also important during soldering to use the right amount of flux (this is controlled if flux-cored wire is used), not to apply too much solder, or to overheat the joint.

CONCLUSION

To sum up, the advantages of soldering (where soldering is applicable) may be stated as follows:

(a) Relative ease and speed with which it can be carried out.
(b) Versatility and range of heating techniques.
(c) Low cost when compared to other joining methods.
(d) Low temperatures involved do not normally affect the properties of the basis metals.
(e) Soldered joints may usually be taken apart by reheating, thus facilitating easy repair of circuits.

Practical Electronics August 1979
FLICKER TO FLUORESCENT

London's South Kensington Science Museum now has a new lighting gallery showing artificial lighting from primitive oil lamps to the latest electric discharge lamps.

Scenes show visitors how people managed after dark throughout most history, and a variety of modern electric lights can be seen through filters for comparison of light source.

We are told that oil lamps have been mass produced for two thousand years, but until the 1780s they gave no more light than a candle. Argand's circular burner, patented in 1784, gave a much brighter light but suitable fuel was expensive until paraffin became readily available in the 1860s. The light of a gas flame was first used generally in the early 19th century, but the much brighter gas mantle dates only from the 1880s.

The exhibition includes a room lit by gas, and a pair of shop windows illustrate problems with the colour rendering properties of fluorescent lighting. (Too true! Have you ever discovered that those chocolate brown socks you bought are actually maroon when you get them out of the shop).

The museum is open from 10.00-18.00, Mon.-Sat, and 14.30-18.00, Sundays. Visit Gallery 41 on the second floor.

NO CAUSE FOR ALARM

In pursuit of its ubiquity the microprocessor is creeping into the twilight world of crime prevention. The Silent Security System now available from Asmap Environmental Products of Newport, Isle of Wight, is Z80 based, and can be hooked up to an intruder alarm to watch out for that thief about! It detects one, it doesn't reduce the burglar to jelly with a breathtaking siren, or ring a bell for the neighbours to ignore, it pans and phones the police. Well, it doesn't panic, but it does phone the police.

Up to sixty hours of stand-alone operation is possible in the event of a power failure, and should the telephone lines be engaged a second number may be dialled, or if faulty, alternative actuations may take place such as that siren, or perhaps cameras or loudspeakers.

Of course, the system can operate from fire or smoke detectors, and make the appropriate alert.

COUNTDOWN

B.A.E.C. Amateur Electronics Exhibition — July 21-28. Held at the centre of the Esplanade, Penarth, South Glamorgan. The exhibition is to display a large number of projects and electronic games made by members, and will be open every evening from 7 p.m. (except Sunday, July 22), and also on the afternoons of July 21, 22 and 28. Proceeds go to the Cancer Research Campaign.

Harrogate International Festival of Sound — August 18-19 (public), August 20-21 (trade) 1979. The Exhibition Centre + hotels. Details: Exhibition and Conference Services Ltd. Tel: 0423 62677.

Eltro Hobby '79 — October 3-7, Killesberg Exhibition Grounds, Stuttgart. Details: 01-236 0911.

Personal Computer World Show — November 1-3. West Centre Hotel, London. The computer versus computer Chess Championship will again take place, and this year the prize money has been increased to £1,500 (a considerable sum to give a computer we are told). Further details to be announced.

RETURN OF STEAM

The M-O Valve Company, in response to a demand for high quality audio valves, has reintroduced its Gold Lion range of output tubes. The valves are packed in a distinctive Gold Lion carton, each containing a test report, and the back-up literature includes full amplifier and pre-amp circuit information covering 30 to 200 watts.

B.A.E.C. HON. SEC. MOVE

The B.A.E.C. Hon. Sec. has moved from Bristol to Cheltenham, the full address being: J. G. Margetts, Hon. Sec., B.A.E.C., 3 Bishopstone Close, Golden Valley, Cheltenham, Glos.
TORSIONAL METERING

An interesting opto-mechanical approach to metering is being patented by Ferranti Ltd. of Lancashire in GB 2 001 431 A. The application is under the new laws and dates back to June 1977. The object is to provide an instant digital readout of the torsion in a shaft, but the idea could well be applicable to other mechanical situations where digital readout is required.

As shown, shaft 1 carries a series of discs, variously perforated with slits, holes and bars. At one end of the shaft a source 2 inputs light to the ends of a batch of optical fibre light guides 3. The light from the output ends of these guides can reach the input ends of further guides 4 only when the perforations of a first series of discs 5, 6, 7 are correctly aligned. This alignment gives the system a datum position. The light guides 4 output through perforations in disc 8 and the output light passes through perforations in disc 9 to disc 10 with perforations and inputs to a final set of light guides 11. The disc 9 has a carefully calculated pattern of perforations so that as it rotates the light arriving from the guides passes through different perforation patterns. Thus as the disc rotates a varying pattern of light reaches the inputs of the guides 11. The guides 11 output to a readout disc 12 with an arrangement of seven windows in a figure of eight configuration. In this way slight movement of the disc 9 can cause the transitional display of digits in the windows of the disc 12 to provide a readout which is representative of torsion in the shaft between the discs 9 and 6. The patent describes these and other refinements of the system in great detail, including one arrangement for rotating the datum position to provide a continuous display.

DOUGHNUT DAMPING

A good example of how the new patents law can benefit the public and inventors alike is to be had from comparison of BP 538 847, in the name of the Rank Organisation, and GB 2 002 200A, in the name of the Nissan Motor Company of Yokohama City, Japan.

The Rank patent was applied for in 1975 and is thus granted under the old law; the Nissan patent is still in the pending stage and has been published under the new law. There is interesting common ground between the two patents and this common ground could be damaging to Nissan’s chances of securing a granted patent.

Both patents concern methods of damping the rearward, antiphase radiation of sound from a loudspeaker. As the Rank patent explains, it is customary to mount a loudspeaker in a cabinet containing wool or plastic to damp the rear radiation. But the damping material results in high stiffness of the air cushion inside the cabinet and the cabinet walls tend to vibrate. Moreover there is a risk of overheating in the cabinet space due to heat dissipation by the loudspeaker voice coils.

Nissan make much the same point with particular reference to the problems encountered when mounting a loudspeaker in a motor car. Both teams of inventors propose a similar solution; an annulus of sound damping material clamped to the rear of the loudspeaker.

Nissan (see Fig. 1) show an acoustic absorber 1 of bitumen-containing urethane foam which takes the form of a ring like a large doughnut. This ring sits on the loudspeaker magnet 2 and overlies virtually the whole rear area of the conical diaphragm 3. Thus all sound radiating to the rear of the diaphragm 3 meets acoustic resistance. Nissan claim that in this way undesirable resonant peaks in the range 50 to 500Hz are suppressed to an acceptable level.

The earlier idea from Rank goes a stage further. As shown (in Fig. 2) there is again a doughnut shaped ring 1 which sits on the loudspeaker magnet 2 and backs onto the rear of the loudspeaker diaphragm. But additionally Rank provide a second damping element 3 which takes the form of an open cylinder of foam surrounding the loudspeaker unit. Together the damping elements 1 and 3 absorb and deflect the rearwardly directed sound from the diaphragm.
QUARTZ LCD 5 Function

- Hours, mins., secs., month, date.
- Fully adjustable bracelet.
- Back-light.

Genuine solar panel with battery back-up.
Only 7mm thick.

£6.65

Guaranteed same day despatch.

Very slim, only 6mm thick.

QUARTZ LCD 5 Function

- Hours, mins., secs., month, date.
- Fully adjustable bracelet.
- Back-light.

£6.65

Guaranteed same day despatch.

MULTI ALARM 6 Digits 10 Functions

- Hours, mins., secs., months, date, day.
- Basic alarm.
- Memory date alarm.
- Timer alarm with dual.
- Time and 10 country zones.
- Back-light.
- Stainess steel bracelet.

£18.65

 гарануed same day despatch.

SOLAR QUARTZ LCD Chronograph

- LCD, hours, mins., secs., day of week, month, date and day, 24 hour Alarm.
- 1/10th seconds, 1/10th minutes.
- Back-light.
- Stainless steel reate.

£22.65

Guaranteed same day despatch.

SEIKO Alarm Chrono

- LCD, hours, mins., secs., day of week.
- 24 hour chronograph, 1/10th seconds, and lap time.
- Back-light.
- Hardlex glass.
- List Price £130.00

METAC PRICE £105.00

SEIKO MEMORY BANK

- LCD, hours, mins., secs., month, day and date.
- 24 hour chronograph.
- Back-light.
- Fully adjustable bracelet.

£12.65

Guaranteed same day despatch.

SEIKO-STYLE Dual time-alarm Chronograph

- LCD.
- Hours, mins., secs., day of week.
- 24 hour chronograph.
- Back-light.
- Fully adjustable bracelet.

£29.65

outsanding features

Clock with battery back-up.

Back-light.

Fully adjustable bracelet.

ALARM CHRONO with 9 world time zones

- 6 digits, 5 flags.
- 6 basic functions.
- 6 further time zones.
- Stop-watch to 12 hours.
- Split and lap timing modes.
- Back-light.

£27.95

Guaranteed same day despatch.

HANIMEX Electronic LCD Alarm Clock

- Time set & alarm controls.
- Snooze & sleep controls.
- Wake to music or alarm.
- AM/FM indication.
- Battery operated.
- (12hr or 24hr format)
- Back-light.
- Batteries supplied free.

£17.95

Guaranteed same day despatch.

How to order

ON COMMAND, STOPWATCH displays up to 12 hours, 59 minutes, and 59.9 seconds.

ON COMMAND, STOPWATCH will free freeze to show intermediate time (while stopwatch continues to run). Can also switch and from timekeeping; and stopwatch modes without affecting either's operation.

ALARM can be set to anytime within 24 hour period. At the designated time, a pleasant, but effective buzzer sounds to remind or awaken you!

Guaranteed same day despatch.

ALARM can be set to anytime within a 24 hour period. At the designated time, a pleasant, but effective buzzer sounds to remind or awaken you!

Guaranteed same day despatch.
MICRO CHIMES
FROM THE INVENTORS
OF MICROPROCESSOR
MUSICAL CHIMES

New price for the original
CHROMA-CHIME KIT
24 tune model!

Due to the fantastic success of this product right across the World we are able to offer it at
only £9.95 + 75p p&p

Comes complete with:
* TMS1000 Micro
* Superb cabinet
* All Rs & Cs
* Switches & pots
* Fully detailed kit manual

TMS 1000N - A Microcomputer chip available separately if required. Full 24 tune spec device supplied with data sheet and fully guaranteed.

New low price only £4.95 inc. p&p
(Only present 24 tune repertoire currently available)

A COMPLETE KIT FOR THE
NEW MICRO CHIME

This easy to build kit includes:
* TMS1000 Custom MPU Chip
* Special purpose designed case
* Fully drilled and legended PCB
* All transistors, Resistors and Capacitors
* Smart fascia labels
* IC Socket and Loudspeaker
* Really Low Price!

only £8.95 + 55p p&p

Please send me:
CHROMATRONICS
RIVER WAY
HARLOW
ESSEX U.K.

TO CHROMATRONICS, RIVER WAY, HARLOW, ESSEX. UK

ADDRESS
NAME

I enclose cheque/PO value £
or debit my ACCESS/BARCLAYCARD account no.

Signature

CHROMATRONICS

56
Right Turn

It is far too early to assess with any assurance the effect of the change of government on the industrial climate. The private sector almost universally welcomed the return of the Conservatives with a working majority which guarantees four or five years in which policies thought favourable to private industry can be implemented. Less central direction, less bureaucracy, less taxation, are all welcome. But, of course, nothing can change overnight in any material way.

The instant change was in morale. A fresh start became possible. Or so it seemed. In fact top performers like GEC and Racal historically have prospered as much under socialist governments as any other. The general feeling, however, was that the shackles are now off, or soon will be, and there is a real chance of winning. At least a company that does well financially will, unless it is “failing the nation”. All will now get encouragement to do better.

A particular constraint in the electronics industry is the shortage of skilled manpower, particularly design engineers. The shortage was highlighted by Mr D. W. Morrell, President of the Electronic Engineering Association, in his recent address to members, as “one of our greatest problems of the moment”. You can see how right he is just by reading the job ads in the papers.

Why the shortage? Relatively low pay for high qualifications (often mentioned in this column) is one, though not the primary, reason. Prospects are dazzling compared with most industries. The work is challenging, often exciting. It is a clean industry in which to work and has one of the best industrial relations records. It seems a “natural” for any young people’s talent. And yet, not nearly enough come forward to take advantage of the opportunities offered.

An important factor is that engineering as a profession has been tarnished in recent years by adverse publicity eagerly taken up and propagated by socially conscious teachers in schools. Engineering is often represented as being somehow morally reprehensible — even dangerous. And yet, topics like atomic power are mentioned. And quite unjustifiably so because engineers as a body are also socially conscious and responsible and ordered to be so by their professional institutions.

Much damage has been done. One thing the new government might do is to attempt to change the attitude in the schools and colleges to one of encouragement to budding engineers. A little more stress on the benefits of science and technology and a little less knocking might do a lot of good.

Cable & Wireless

Cable & Wireless, perhaps the most consistently successful of all our nationalised industries this year celebrated its 50th anniversary. It came into public ownership following the merger of the competing submarine cable and beam wireless businesses. From 1929 to the present day these two primary methods of long distance communications, one very old, the other then quite new, have been regarded as complementary.

Today the company has diversified into many new communications fields, all electronic based, and implemented throughout the world. In fact it is far better known overseas than in the UK and some 80 per cent of the employees work outside the British Isles.

British Aerospace

The newest of our nationalised industries, British Aerospace, has just completed its first full year and with good results. Trading profit was £79 million on a turnover of £804 million and the company went into its second full year with a record order book of close on £3,000 million, with nearly 70 per cent ticketed for export.

British Aerospace is the channel through which many of our most important electronics exports flow, especially in avionics and missile guidance and control systems. The possible termination of substantial contracts from Iran are not expected to seriously affect the overall buoyant outlook.

Convergence

The recent announcement by Racal Microelectronics Systems Ltd that their private in-house service to the Racal Group is now open to all comers is another interesting example of an equipment company expanding into the supply of sophisticated components. It is the opposite of the semiconductor manufacturers moving into the equipment field, of which there have been a number of recent examples. Perhaps in a decade or so the demarcation line between component and equipment people will have entirely disappeared.

Although only one year old, Racal Microelectronics Systems already claims to have developed over 20 complex LSI circuits for inclusion in Racal advanced products. The new service offered to industry includes designing with Uncommitted Logic Arrays (ULA) as well as LSI and thick-film hybrids. Using a standard Racal ULA wafer, working samples of new circuits can be designed and manufactured in less than three months, in some cases as little as seven weeks.

Keith Thrower, managing director, is an old Racal hand. He joined the company as an engineer in 1960 and was responsible for much of the design of early Racal digital instruments and frequency synthesizers before becoming head of Racal’s Advanced Development Division some five years ago.

Musical Bargain

Semiconductor prices are keener than ever. Typical is the MPU chip used in the Chromatronics 24-tune electronic door chime which is based on the TI TMS1000. Now I note that you can buy this 28-pin package with all its built-in complexity for £4.95 (VAT included), even cheaper in quantity. Chromatronics believe that it will have many other applications, apart from door chimes, in the electronics toy and hobbyist markets.
Gertcha!

Sir—On seeing the cover of the May edition of "Practical Electronics", and on reading subsequent disclosures inside, we noted several anomalies on the instrument panel of the car illustrated.

The car was apparently travelling at sixty miles an hour (engine speed 4,000 r.p.m.) with the handbrake on. This we feel was a rather pointless gesture, as the engine was in imminent danger of seizure, due to the fact that there was no oil pressure. The battery also seemed to be under a heavy discharge for such a high engine speed. This was presumably due to the current being drawn by the instrumentation, or the heated rear window and headlamps.

Anyway, function of the car apart, we consider that the driver was running a great risk as he was wearing no seat belt. The risk was compounded by the fact that he was driving with no hands on the wheel while initiating a right turn with the hazard warning lights on AND THE BONNET UP!

Assuming the car survived the almighty crash which followed, we would like to suggest a few repairs which should be undertaken:

1. New fan belt or alternator.
2. Top up with brake fluid (or release the handbrake).
3. Top up with oil.
4. Replace clutch.

Alternatively, the car should be taken to the nearest scrap yard (after only 36.9 miles).

Logical software?

Sir—I would like to comment on the "symbols" used in diagrams—basically I'm in agreement with you regarding the decimal point. However, the use of OV2 in the text describing an amplifier input of 200Vm destroys the flow. Personally I've used boxes for resistors for 10 years when drawing (also transformer windings) as they are neater and quicker to draw.

Please let's have more Microbus. There seem to be many mags devoted to those who have £5000 to spend upon a self-contained toy computer, monthly offerings of games and the like. However, your recent venture into those words?—"Logical Software".

I have two projects which are nearing completion in that their requirements are known and the TTL/CMOS logic needed is reasonably understood. This normally leads to the next stage: buying the logic and making it work. The last stage is frequently omitted: pulling it apart and doing the job properly using the knowledge gained from the prototype.

Project 1—House alarm, giving various levels of entry/warning so the unit can be "on guard" most of the time.

Project 2—Heating control, giving various switching-on times and heat levels to optimise the fuel.

Both of these can be realised using "hard" logic—what I bought a micro for was to (eventually) design a universal micro-board which would cater for such projects by altering the software. Both require many inputs (door switches/temperature) and a few outputs (enter key code/hot water solenoid).

Your boffins could develop such a unit which would be of great use to engineers that want to use micros (rather than play with systems). There are countless projects which could be software-implemented so the interest could be renewed from time-to-time. However, may I give you a warning? Be careful not to have the whole thing written by a boffin. Your title is "Practical..." and you will realise there is a large golf between building a "KOIAK" worn by multivibrators or 555 type timers and realising the same end (together with "Col. Bogey") by writing software.

There is yet another project for a "PE Micro project p.c.b." receiving hex data from micro and controlling displays and displaying it on 7-segment readouts.

H. S. Lynes, Carshalton Beeches, Surrey.

Springs and Buckets

Sir—I was very interested to read your article on binaural stereo patents in March's PE. Of particular interest was mention of the Matsushita mechanical spring and the capacitative bucket brigade methods of introducing artificial reverberation, in headphone listening.

There is, as far as I am aware, no spring device on sale in the UK for hi-fi use, although systems for use with P.A. (disco's, etc.) are quite cheap (about £50). This compares with some bucket brigade equipment (for use with hi-fi) selling for £500 to £11,000.

Considering what is required of a reverberation system, I do not see why spring devices fail outside the scope of hi-fi as their ranges (100-10,000Hz) and distortion (1 per cent) compare with electronic systems.

I think Matsushita's spring transducer could be very successful and it may pay a British manufacturer to think of the mechanical system for other uses, say loudspeaker stereo, or surround sound experiments (dare I mention those words?).

J. W. Jones, Widnes, Cheshire.
SA1208 8 ohms 120W 95V £21.00 + VAT £1.68
SA608 8 ohms 60W 65V £15.50 + VAT £1.24
SA604 4 ohms 50V £14.50 + VAT £1.16

SAxon orchard + VAT £8.50

UK Police 12 months @ £60.54 or 24 months @ £34.66
£699
12 months @ £34.02 or 24 months @ £19.47
£389

SAxon orchard 100W 600W £49.50 + VAT £3.96
4 Mixed Inputs
100 Watts Output

SAxon orchard 100W 600W £49.50 + VAT £3.96
327 Whitehorse Road, Croydon, Surrey.

SAxon orchard 100W 600W £49.50 + VAT £3.96
327 Whitehorse Road, Croydon, Surrey.

SAxon orchard 100W 600W £49.50 + VAT £3.96
327 Whitehorse Road, Croydon, Surrey.

SAxon orchard 100W 600W £49.50 + VAT £3.96
327 Whitehorse Road, Croydon, Surrey.

SAxon orchard 100W 600W £49.50 + VAT £3.96
327 Whitehorse Road, Croydon, Surrey.

SAxon orchard 100W 600W £49.50 + VAT £3.96
327 Whitehorse Road, Croydon, Surrey.

SAxon orchard 100W 600W £49.50 + VAT £3.96
327 Whitehorse Road, Croydon, Surrey.

SAxon orchard 100W 600W £49.50 + VAT £3.96
327 Whitehorse Road, Croydon, Surrey.

SAxon orchard 100W 600W £49.50 + VAT £3.96
327 Whitehorse Road, Croydon, Surrey.
ICS have helped thousands of ambitious people to move up into higher paid more secure jobs in the field of electronics - now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students, "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:

Telecommunications Technicians
Radio, T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour T.V. Servicing
Electronic Engineering & Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering & Servicing
Electrical Engineering, Installations & Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE.

Post this coupon or phone today for free ICS careers guide.

Name
Address
Age

To ICS, Dept. K273, Intext House, London SW6 4LJ or telephone 01-422 9911 (all hours)

60
A high specification stereo mixer to suit sound processing equipment such as organ, synthesiser, microphones and electric guitars out to semi-professional tape recorder. Combines unbalanced signal sources for a well-balanced output.

Plus...

WAVEFORM GENERATOR

Provides sine, square and triangular wave outputs of up to 10V pk/pk over a 1Hz to 100kHz frequency range.

FREE ENTRY COMPETITION

OVER £300 WORTH OF BREADBOARDING

from LEKTROKIT

TO BE WON
THE stereo headphone amplifier described makes use of a straightforward design specifically intended to drive dynamic headphones with impedances as low as 50 ohms per channel. It includes its own mains power supply and will accept a low level stereo input direct from a radio tuner or tape deck. However, as the basic amplifier does not provide facilities such as source switching, disc equalisation, tone control and filtering it is best suited for use in conjunction with a separate preamplifier.

Numerous designs for solid state preamps have been published in recent years, but as an alternative, any ready built preamplifier unit or circuit module of commercial origin may be employed.

A trend in recent years has been the increasing popularity of stereo headphones as an alternative to loudspeakers. This is hardly surprising as headphones offer a number of important advantages: Firstly, they are very economical—a pair of headphones costing £30 might reasonably be expected to give the same quality of reproduction as a loudspeaker system which retails at over £100. Secondly, the nuisance factor of headphones is practically nil. It is common practice for hi-fi manufacturers to provide a headphone output socket on the front panel of their amplifiers and stereo receivers. This headphone feed is derived from the final transistors of the two class B output stages and will normally be routed via a simple resistive attenuator.

There are numerous advantages to be gained, however, in the formulation of an amplifier design specifically intended for headphone operation. Dynamic stereo headphones have impedances far higher than moving coil loudspeaker systems. A typical high quality loudspeaker will present an impedance of between 6 and 8 ohms to the amplifier. In contrast, dynamic headphones have impedances in the range 50 to 2,000 ohms depending on their exact design. It will be apparent, therefore, that far less power is required to drive these transducers satisfactorily. High output power not being a requirement, a return to true class A operation with solid state transformer-less circuitry becomes practicable.

CIRCUIT

Fig. 1 shows the amplifier circuit diagram. For the sake of simplicity, only one channel is given. Two such amplifiers are, of course, required for stereo operation.

The input signal is taken via R1 and C1 to VR1, which functions as a volume control. Separate potentiometers are employed allowing gain adjustment of the left and right channels independently. This configuration eliminates the need for a balance control (if satisfactory volume control is already provided on the preamplifier to be used in conjunction with this design, then VR1 can be made an internal, preset component).

The signal from VR1’s wiper is coupled to the base of TR1 through C2. TR1 forms a common emitter voltage amplifier which is shunt biased by R2. A small amount of negative feedback and stabilisation is provided by the emitter resistor, R5. C4 has no effect at audio frequencies but serves to suppress radio frequency interference. The first stage is decoupled from the supply lines by R6 and C3. The series combination of R3 and R4 provides a collector load for TR1.

The main function of the output stage is to obtain impedance transformation. TR2 and TR3 are therefore employed in the familiar Darlington pair configuration with R7 forming an emitter load for the final transistor. The output signal developed across R7 is taken via C5 to the headphone jack socket.
TR1 must be biased so that its collector voltage equals half the supply value within 0.5 volts (i.e. between 5.5 and 6.5 volts for a nominal 12 volt rail). If when the circuit is first powered-up this is found not to be so, then the value of R2 should be altered accordingly (reducing R2 will drop the collector voltage and vice-versa).

R3 has the purpose of raising the potential at TR2 base so as to overcome the combined base/emitter voltage drops of this transistor and TR3 (approximately 1.2 volts). In consequence, the potential at TR3 emitter will equal roughly half the supply value also.

POWER SUPPLY

Fig. 2 shows the power supply circuit for both channels. The mains input is taken via a double pole on/off switch and fuse to the primary windings of transformer T1. The secondary voltage is full wave rectified by D1 and D2. C6 serves to suppress switching transients, thus eliminating interference and the possibility of damage to other components.

C7 is the main reservoir, or smoothing, capacitor which removes most of the 100 hertz ripple. Transistors TR4 and TR5 form another Darlington pair. The base of TR4 is held at a constant voltage by the potential divider consisting of
R8 and R9. It is this resistive divider that determines the final output voltage of the supply. As all ripple is removed from this reference voltage by C8, the 12 volt output appearing at TR5’s collector is absolutely hum-free. A light emitting diode, D3, gives visual indication that the equipment is switched on. C9 decouples the power supply output.

The total current consumption of the stereo amplifier when operating from a 12 volt supply is approximately 260 milliamps (130 milliamps per channel) and the output transistors will dissipate 770 milliwatts each which necessitates the use of a small heat sink. The emitter resistor of TR3 also dissipates roughly 770 milliwatts and a 2 watt power rating has been specified for R7. The series regulator transistor TR5 operates with a potential difference of approximately 8.5 volts between its collector and emitter junctions. Therefore, assuming a supply current of 260 milliamps, this component will dissipate around 2 watts so it will also require a small heat sink.

The BD137s act as physical supports to this heat sink and it should be noted that the metal face of each transistor, which will come in direct contact with the aluminium, is live at collector potential. As the collectors of both devices are connected to the positive supply rail, this mutual shorting will not affect the amplifiers’ operation.

Short lengths of screened cable are soldered to the amplifier board where shown. These provide “flying lead” connections for input, output and volume controls. All resistors, except R2, are mounted horizontally. The leads of R7 should be cut to approximately 1 inch and then bent at right angles to the component body. Using long leads enables this resistor (which runs rather hot) to be mounted well above the Veroboard surface, thus ensuring adequate ventilation. The output coupling capacitors are mounted vertically.

COMPONENTS . . .

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R101</td>
<td>10k</td>
</tr>
<tr>
<td>R2, R102</td>
<td>1M5</td>
</tr>
<tr>
<td>R3, R103</td>
<td>330</td>
</tr>
<tr>
<td>R4, R104</td>
<td>2k2</td>
</tr>
<tr>
<td>R5, R105</td>
<td>47</td>
</tr>
<tr>
<td>R6, R106</td>
<td>47</td>
</tr>
<tr>
<td>R7, R107</td>
<td>47 2W</td>
</tr>
<tr>
<td>R8, R108</td>
<td>3k3</td>
</tr>
<tr>
<td>R9, R109</td>
<td>6k8</td>
</tr>
<tr>
<td>R10, R110</td>
<td>680</td>
</tr>
<tr>
<td>All</td>
<td>1W carbon, 5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometers</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1, VR101</td>
<td>47k log</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C101</td>
<td>10μ</td>
</tr>
<tr>
<td>C2, C102</td>
<td>10μ</td>
</tr>
<tr>
<td>C3, C103</td>
<td>220p</td>
</tr>
<tr>
<td>C4, C104</td>
<td>100μ ceramic</td>
</tr>
<tr>
<td>C5, C105</td>
<td>470μ elect. 12V</td>
</tr>
<tr>
<td>C6</td>
<td>100n</td>
</tr>
<tr>
<td>C7</td>
<td>2,200μ elect. 25V</td>
</tr>
<tr>
<td>C8</td>
<td>470μ elect. 25V</td>
</tr>
<tr>
<td>C9</td>
<td>1,000μ elect. 25V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1, TR101</td>
<td>BC108C (2 off)</td>
</tr>
<tr>
<td>TR2, TR102</td>
<td>BC108C (2 off)</td>
</tr>
<tr>
<td>TR3, TR103</td>
<td>BD137 (2 off)</td>
</tr>
<tr>
<td>TR4, TR104</td>
<td>BC108C</td>
</tr>
<tr>
<td>TR5</td>
<td>2N3055</td>
</tr>
<tr>
<td>D1</td>
<td>1N5401</td>
</tr>
<tr>
<td>D2</td>
<td>1N5401</td>
</tr>
<tr>
<td>D3</td>
<td>T1L208</td>
</tr>
</tbody>
</table>

Transformer

- T1 Pri. 240V: Sec. 15-0-15V 1A

Miscellaneous

- FS1 (2A) fuse plus chassis mounting holder, tag strip, Veroboard, miniature audio coax cable, phono sockets (chassis mounting), stereo jack socket (chassis mounting), clip-on heat sink, four rubber feet, knobs, aluminium box 10 x 4 ½ x 3 ½ inches.

The power supply circuit board (Fig. 4) measures approximately 3 ½ by 2 ½ inches and carries all components shown in Fig. 2 except D3, S1, T1 and FS1. TR5, the series regulator transistor, is mounted on its own aluminium heat sink. This heat sink, which measures 3 ½ by 2 ½ inches,
cannot be made self supporting and so the bottom \(\frac{1}{2} \) inch is bent at right angles to form a bracket. Two fixing holes then enable it to be bolted to the edge of the Veroboard. Mounting holes are also drilled for TR5. The case of this transistor forms its collector connection and a solder tag affixed to one of the mounting bolts provides a collector terminal. This heat sink, therefore, is also live.

The amplifier was enclosed in a standard aluminium box measuring 10 by 4\(\frac{1}{2} \) by 3 inches. The two circuit boards can be affixed to the bottom of the case using 4BA nuts and bolts. Spacers are employed here to ensure separation of the Veroboard underside from the metal base. An aluminium screen is provided where shown in order to isolate the amplifier and power supply sections.

Chassis mounting phono sockets provide input connections and automatically give an earthing contact to the amplifier case. A stereo jack socket forms the standard headphone outlet.

A 3 core mains lead enters the power supply section through a sleeved rubber grommet and is terminated at a tag strip. An earthing point is available on one of the end tags which will be bolted directly to the metal casing.

A small light emitting diode, is pushed through a \(\frac{1}{2} \) inch hole drilled into the casing. It can be held in place with a blob of Araldite.

Finally, four rubber feet are affixed to the base of the aluminium box with large self tapping screws. Ventilation holes were not drilled into the casing of the prototype as they reduce screening. But the underside of the casing lid has been painted matt black to assist transfer of heat from within the amplifier.

Fig. 4 Layout of p.s.u. board

News Briefs

JAPANESE PRODUCTION IN USA

A $4m investment by Hitachi to establish a facility for the production of colour television sets and home appliances at Compton, California, has resulted in the birth of “Hitachi Consumer Products of America Inc.” Initially with 120 employees, operations are expected to commence in January 1980, with partial operation starting this August.

YORKSHIRE COMPUTER CLUB

The South Yorkshire Personal Computing Group (SYPCG) has been formed for the d.i.y. microprocessor and computing enthusiast. Initially the group will meet on the second Wednesday of each month at Sheffield University, and membership for 1979 has been set at £3 (nominal charge only for those still at school).

Details: Tony Rycroft, SYPCG Secretary, 88 Spinneyfield, Moorgate, Rotherham, S. Yorks.

A FLUKE OCCURRENCE

A NEW service centre has been opened by Fluke, based near Manchester. The full address is: Fluke International Corp, Middle Floor, Mersey House, 220 Stockport Road, Stockport, Cheshire

FAST DELIVERY

A NEW service called “Datapost” now replaces the Securicor service previously in operation at RS Components. Orders received at London, Birmingham or Manchester before 3.30 p.m. will normally be delivered the next day (Mon–Fri), with Saturday delivery if requested. Datapost should be specified when ordering, whereupon a nominal charge of £1 plus standard rate VAT will be made irrespective of the number of parcels to be despatched.

FIGHT-IT-YOURSELF

The mechanical and electrical appliances which fill our homes, we all know can do anything. Freeze, fry, wash, dry, suck, blow, entertain, sew. What we don’t know is that these contrivances talk to each other after we go to bed. The subject of discussion at their meetings each month is, naturally, the most inconvenient time to break down. A decision to fail might depend upon the holiday plans of your regular plumber, or the approach of a Bank Holiday. Two or three contraptions might simply agree to break down simultaneously. And the decision to fail might depend upon the holiday plans of your regular viceman has left.

After the blows have been dealt you contact a service engineer, for whom you may await the non arrival of repeatedly. When he turns up, one of two things will happen. He shakes his head and tells you it would cost more to repair than buy a new one, or the machine offers up a fault for him to find, to which he responds, “Ah, I can see what’s wrong.” He fires it. Unfortunately this fault had nothing to do with the original trouble, and the machine ceases to operate again once the serviceman has left.

A new idea which may be the answer to the expense and uncertainty of picking telephone numbers from the Yellow Pages is MAC (Mutual Aid Centre), where £1 will buy you three hours in a kind of public workshop in which you can do-it-yourself! You might shudder, but skilled supervision and the right tools are part of the deal. The only additional expense is the prerequisite of being a member, costing £2 per annum (£1 for pensioners). The first MAC is in Longden Coleham, Shrewsbury, but it is hoped that they will eventually become as commonplace as public libraries. Open six days a week and nine hours a day, the first centre is expected to run training courses on the premises, in conjunction with Shrewsbury Technical College. The workshop has been launched by the Mutual Aid Centre, the London-based charity founded by Michael Young, originator of “Consumers’ Association” and “Which?” magazine.
THE Chimesonic is a nine note electronic door chime which can be powered by either battery or transformer and its design enables it to be easily installed or substituted for most existing door chimes or bells without rewiring. The Chimesonic unit enables a variety of melody modules to be plugged in so that the tunes can be varied to suit taste, occasion or season. These modules consist of a number of diodes and pre-sets which are simply adjusted to the particular note required. The same module can thus be "retuned" when a different melody is required or a selection of modules can be built-up and pre-tuned ready for use.

Installing the chime is quite straightforward since it will work from either a battery or transformer and can be operated from the simple type of push switch or the illuminated kind. The connections to the unit are marked on the p.c.b. and made using a standard 2A 6-way strip connector.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Chimesonic is shown in Fig. 1 and circuit diagram of the melody module in Fig. 2. If the unit is being used with a simple push switch, the power supply can either be a 9V battery (PP6) or alternatively a transformer supplying between 6 and 8V at ½A. If an illuminated bell push is being used a transformer supplying 8V at 1A is required. It is important to remove the fuse (FS1) for battery operation in order to conserve battery life.

The tempo generator produces a clock pulse, which determines the "beat" of the melody. If required this can be varied by altering the value of C3 and/or C4. The clock pulse drives IC3 which is a CMOS decade counter decoder. Each of the counter outputs go high in turn and drive their respective presets (VR1 to VR9) on the melody module to produce a series of notes.

The note generator is the familiar 555 timer with VR1 to VR9 each forming the variable element of the CR network when each counter output becomes active. The overall pitch of the melody is determined by C6 and although this could be varied, it will be found that a 100nF capacitor enables a good range of notes to be obtained simply by adjusting each of the presets on the melody module.

An output of sufficient drive for a number of speakers is provided by TR5 and TR6. With an 8 ohm load the output is approximately 2V square-wave and this is more than adequate for most applications. Should additional speakers be required these should be connected in series. The output loading is not critical (4 ohms min.) and a speaker or combination of speakers up to 80 ohms total impedance may be connected to still produce an adequate volume level. Remember to connect a link wire between terminals D and Ext Spk on TB1 if an extension speaker is not being used.

A staccato effect is made possible by joining the connections 3 and 17 on the melody module. This separates each note from the next and may be useful during tuning even if it is not used in the final melody.

If a 470nF capacitor is connected between pin 3 and 17 on the melody module an "echo" effect can be obtained.

The supply voltage is applied to the regulating circuit formed around TR3 and TR4. Diode D10 prevents possible damage due to the battery being incorrectly connected. When TR4 is conducting the Zener diode D15 will maintain the voltage at the emitter of TR3 at 5V.
For TR4 to conduct, the voltage at its base must be low (i.e. OV). This is achieved initially by the action of the push switch which when pressed connects the base of TR4 via R13 to the OV rail. This action enables TR3 to supply a regulated voltage of 5V to the circuit which is maintained by the operation of IC1, IC2 and TR2.

IC2 is a monostable which is arranged to trigger whenever the regulated voltage is applied. This is achieved by the capacitor C5 charging via R3. A rising voltage thus appears at the Schmitt input of monostable IC2 (pin 5). At a certain threshold voltage the input triggers the monostable and a pulse (Q pin 6, Q pin 1) of duration determined by C7 and R8 is produced.

The negative going pulse (pin 1) is applied to the “set” input of IC1 (pin 9) and the bistable is latched to give a “high” output (+5V) on pin 8. This “high” output drives the base of TR2 which is turned on maintaining the regulated supply to the circuit.

NOTE GENERATOR

Two gates of IC1 are used to form an astable multivibrator together with R1, R2, C3 and C4. Capacitors C3 and C4 may vary in value to those given in the components list to meet the tempo of the melody played. The astable is enabled when the input to pin 5 (IC1) goes “high” (+5V). This is achieved by using the Q output (pin 8 IC1) of the bistable connected via diodes to resistors which determine the frequency of the notes generated by IC4.

The “count” output 9 (pin 11) is inverted by TR1. The arrival of “count” 9 thus causes the voltage at the collector of TR1 to go “low”. Since this voltage is applied to the “reset” input (pin 13 IC1) of the bistable (E IC1) the bistable changes state causing the Q (high) output to go “low”. This action inhibits the astable multivibrator (E IC1) and switches TR2 off. The voltage at the emitter of TR3 falls to zero unless the illuminated push switch is used. In which case the circuit remains on but the output remains silent since the tempo generator is inhibited and the count remains at 9.

NOTE GENERATOR

The notes played by the Chimesonic are generated by IC4 and their frequency is determined by the value of the particular resistor being driven by the IC3 counter/decoder.

The overall pitch of the notes is determined by the values of VR1 to VR9 which are adjusted according to the melody required.

For melodies containing “rests” the particular preset and diode is not present at the “count” output (IC3) at which the “rest” occurs.
For melodies of less than nine notes certain resistors and their associated diodes are not included in the melody module circuit.

If it is necessary at some stage to retune notes then increasing the value of the presets concerned (VR1 to VR9) will lower the respective notes, and decreasing the resistor value will make the note higher.

For tuning purposes two small pins (Tune) are provided next to IC2 on the p.c.b. When these are linked together this inhibits the astable multivibrator and enables each note to be held whilst being tuned. To facilitate tuning solder a short wire to the pin marked with an asterisk on the p.c.b. layout.

OUTPUT STAGE

The output from the note generator (IC4 (pin 3)) is taken via R12 to the base of TR5. This transistor is used to provide enough voltage and current drive for the output transistor TR6. Both TR5 and TR6 are operated in the switching mode and thus the final output is square-wave.

Loudspeakers for Chimesonic should present an emitter load of approximately 8 ohms to TR6. Additional loudspeakers may be connected in series by replacing the wire link joining the terminals 'D' and 'ext spkr' with the leads from the extension loudspeaker(s). The impedance of the extension speaker is not critical and acceptable volume levels can be obtained with up to 80 ohm loading.

Alternatively the extension speaker output can be used to drive additional amplifiers for PA applications etc. For this application connect the unit into the high level input of the amplifier and take the screen of the connecting cable to the terminal labelled D, and the signal core to the 'ext spkr' terminal. A load resistor of 22 ohms may be substituted for the internal speaker if this sound source is not required.

CONSTRUCTION

The main p.c.b. of the Chimesonic is shown in Fig. 3 with the component overlay shown in Fig. 4. It is recommended that i.c. holders are used especially for IC3 since this is a CMOS device which should be placed in the circuit after the rest of the construction work is completed.

The melody module p.c.b. and overlay are shown in Fig. 5 and Fig. 6.

The use of Veropins or similar is recommended for the battery leads termination points, speaker connections and Tune contacts.

The p.c.b. has been designed to enable the constructor to have a choice in the melody module connection method. In the prototype a 20 way plug and socket was used. The socket should be mounted on the p.c.b. and the plug soldered onto the module board.

Alternatively the p.c.b. itself may be the 0-1 edge plug mating with an edge connector mounted on the module board. The first method is preferred since mating connection is positive via gold contacts.

If an illuminated bell push is to be used the 8V 1A transformer should be connected to terminals A and B with the bell push connected to terminals A and C. Terminals D and E should be linked together and the fuse (FS1) inserted in the p.c.b. fuse holder.

The lamp in the bell push together with R17 forms a circuit driven by the a.c. voltage applied to terminals A and B.

TUNING

An appropriate tuning procedure for the Chimesonic is shown in Table 1

1. Temporarily link together the two Tune pins next to IC2 on the p.c.b.
2. Press the push-button and keep it pressed.
3. The first note will be heard constantly and it can be varied in frequency by altering the value of the resistor connected to the '0' 'count' output.
4. Remove the wire and the next note should be heard. If it is not bringing the wire briefly in contact with the end of the resistor R8.
5. As soon as the note is heard link the two Tune pins again. The note for "count" output '1' (IC3) will now be held and the value of the resistor connected to "count" output '1' can be altered as necessary.
6. This procedure is continued and the link is removed and replaced for each count.
7. If any note is missed then the link must be removed and the sequence begun again.

TABLE 1

The "tempo" of the melody is determined by C4. A higher value capacitor will slow the tempo—a lower value will quicken it.
RADIO AMATEURS' EXAMINATION MANUAL
By G. L. Benbow, G3HB
R.S.G.B., 35 Doughty St., London WC1N 2AE
120 pages; paperback; 248 by 184mm; 8th edn; 1979
£1.85 (£2.16 from RSGB inc. p&p)

The standard work for all would-be licensed radio amateurs studying for the UK Radio Amateurs' Examination, which has also proved popular in other countries which have similar licensing examinations.

This edition has been completely revised in order to take account of the current changes in RAE format and syllabus. A valuable feature is the provision of two sample examination papers, each containing 95 multiple-choice questions, answers being given separately.

Chapter titles are: Becoming a radio amateur: Electrical theory and calculations; Semiconductors; Radio receivers; Transmitters; Power supplies; Propagation and antennas; Transmitter interference; Measurements; Licence conditions; Operating practices and procedures; Tackling the Radio Amateurs' Examination; plus four appendices.

THE BASIC COOKBOOK
By Ken Tracton
Published by Tab Books
136 pages. Price £3.60

Originally developed in the 1960s at Dartmouth College, by John Kemeny and Thomas Kurtz, the programming language BASIC has grown to become the primary home computer language today, and although rivals are appearing, anyone contemplating involvement in small business and home computing can ill afford to ignore it.

The book does not take you through the list of commands beginning with the simplest, but curiously goes through them alphabetically. This does however, allow quick reference to a particular command should you forget what it does, and examples with flow charts accompany each one. Basic is an easy language to learn, requiring no specialised knowledge, and the complexity of programs possible, built on simple instructions, is limited only by the logic and clarity of thought of the programmer. If you digest the contents of this book there should be nothing but "hands on" time between you and fairly complex programs.

There is one instruction not covered in the Basic Cookbook which you will find on a personal computer such as the Commodore PET, and that is GET, which enables the user to input single characters without hitting the Carriage Return key. This facility speeds up graphical games considerably, but unlike the INPUT instruction, requires a loop in the listing to operate successfully. The TRS-80 equivalent is INKEY.

This is a good clearly laid out book, which of course, is what the beginner needs!

M.A.

ILLUSTRATED DICTIONARY OF MICROCOMPUTER TERMINOLOGY
By Michael Hordeski
Published by Tab Books (available W. Foulsham, Slough)
322 pages. Price £5.75

Just when you think you've caught up on all the buzzwords and abbreviations used in microcomputer terminology, you read something like this:

Polly edifed 8K system with Line Queue Multiplexing for the low end ZIF users, complete with turbulation shift and dummy-zero interpreter.

In fact, the above might be nonsense, but a newcomer to the technology could be forgiven for reading it and going away convinced if a little confused. The only answer to this state of affairs is to get yourself a comprehensive microcomputer dictionary, and with 4,000 terms listed, this one is as good as I've seen yet, although I was surprised to find CUTS missing!

Annexed with this illustrated reference you can blast your way through OEMs (original equipment manufacturer), KSR teletypewriters (keyboard send/receive), PLAs (programmed logic arrays), and PIAs (peripheral interface adapters). In an instant, you would discover that not only magazines have editors, how machines shake hands with each other, and that the above, in italics—is a leg pull. Recommended.

M.A.

POINTS ARISING

METERMATE (July 1979)
The printer has reversed (left-to-right) the stripboard part of Fig. 8, so that the track cuts as shown are meaningless.

Any constructor requiring a correct copy of this can obtain one from the editorial offices at Poole.

AUTORANGING MULTIMETER (April 1979)
The Precision Monolithics Inc. REF-02 is not available from Bournes Ltd. (PMI agent) of Hounslow, to the amateur in one-off quantities, but may be obtained from Ace Maltronix Ltd., Tootal Street, Wakefield, West Yorkshire, WF1 5JR.

GUITAR SOUND MULTIPROCESSOR (Dec. 78)
In Fig. 3 R1 should be 10kΩ. In Fig. 14 R53 is 100kΩ not 100kΩ as in the components list.

CONSTANT DISPLAY FREQUENCY METER
(August 1978)
In Fig. 4, a wire should be shown connecting the mains earth tag at IC17 to the negative terminal of C4.

ULTRASONIC REMOTE CONTROL (June 1979)
Transistor TR1 which is adjacent to TR2 in Fig. 4 is incorrectly annotated, it should be TR3. In the same diagram C1 should be C7. C1 which can be mounted off the board should have its positive terminal connected to the cathode of diode D1 and its negative terminal to the anode of diode D4.

SOUND OPERATED SWITCH (May 1979)
Operation of the Sound Operated Switch is improved by wiring an OA47 diode with its anode to IC2 pins 6 and 7, and its cathode to the junction of IC1 pin 7 and IC2 pin 2. This is easily carried out on the top side (component side) of the board using the lead to R12 (10kΩ) and the wire link between IC1 and IC2. Alternatively, the diode may be wired to the underside (copper track) of the p.c.b. This modification ensures that C6 does not start to charge until the audio input falls below the threshold level. The diode holds down the voltage across C6 until the output voltage from the comparator, IC1(b), goes high.

The sensitivity of the device can be increased when using low impedance inputs by reducing the value of R1 to 1kΩ, or less.
Three Trumps from Acorn

Acorn Controller
Designed as an industrial controller module, it is based on the 6502 CPU with 2K Eprom, 125K ram and 32 I/O lines. In eurocard format it is provided with an onboard monitor (2 x 74S571) giving comprehensive development and debugging facilities. Also available in minimum configuration for low cost OEM applications.

The Acorn Microcomputer
The Acorn controller module mounted beneath a matching eurocard with hex keyboard, 6 digit seven segment display and CUPS tape interface requires only a single unstabilised power supply to form the powerful Acorn microcomputer.

Although designed for expandability the Acorn Microcomputer is a complete development system for the Acorn controller and together with the Acorn Users Manual provides the perfect introduction to hex programming; the carefully optimised monitor has the following functions:

- System Program
- Set of sub-routines for use in programming
- Powerful debugging facility displays all internal registers
- Tape load and store

Software available soon includes 4K Editor/Assembler/Disassembler, 4K Proprietary Fast Basic, Disc operating system with full file handling.

All Acorn modules are guaranteed and full after sales and technical advice services are available.

ACORN COMPUTERS LTD.
4A Market Hill, Cambridge, Cambs.

Order form
Send to: Acorn Computers Ltd. 4A Market Hill, Cambridge, Cambs.

- (qty) Acorn Microcomputer(s) in kit form at £65.00 plus £5.20 VAT
- (qty) Acorn Microcomputer(s) assembled and tested at £75.00 plus £6.00 VAT
- (qty) Acorn controller(s) (minimum configuration) at £35.00 plus £2.80 VAT
- (qty) Acorn Memory(s) assembled and tested at £95.00 plus £7.60 VAT

N.B. Price shown is for full 8K of ram, prices for smaller memory options and Eprom additions available on request.

Enclose a cheque for £............. made out to Acorn Computers Ltd.

Name
Address

Name
Address

Software available soon includes 4K Editor/Assembler/Disassembler, 4K Proprietary Fast Basic, Disc operating system with full file handling.

Although a standard strip of veroboard is all that is required for a full backplane, a racking system can be made available by Acorn Computers. The rack shown includes the VDU interface, two memory cards and dual floppy disc interface.
Digital accuracy. Analogue price!

The new Fluke 8022A DMM now offers the best of both worlds at only £89.

- CRISP LCD DISPLAY: Automatic polarity indication plus auto-zeroing. 'BT' Low battery indications when 20 hours remain.
- 6 RESISTANCE RANGES: 200Ω to 20MΩ in-circuit test of semiconductor junctions available on 3 ranges.
- 8 CURRENT RANGES: From 2mA to 2A AC or DC. 10A Current SHUNT available.
- 10 VOLTAGE RANGES: 200mV-1000V DC or 750V AC.

It's true! The 8022A brings you digital precision and ruggedness— at analogue prices, from the world leader in digital multimeters. Featuring the Fluke in-line pushbutton concept for easy single handed operation this pocket sized lightweight meter has a 0.25% DC accuracy, incorporates a custom designed CMOS chip for low power consumption and offers a full two year warranty.

For only £89.00 you can now hold the world of measurement in the palm of your hand.

No.1 in DMM's

Also available from ITT Instruments Services, Harlow, Essex.
Northern Ireland and Eire contact Euro Electronic Instruments, 32 Stewar Hill, Mayan, County Meath, Eire.
Hello everybody – we’re back again!

SEIKO 20% off!

LATEST MODELS – LOWER PRICES
Japanese versions – similar to UK models listed.
GG003 Chronograph (RRP £69.95) £55.50
GD007 Chronograph (£92.50) £74.00
FW007 Alarm/Chronograph (£115) £92.00
GC003 Programmable Alarm/Chrono (£130) £108.00
FX003 Memory Bank (£130) £104.00

LCD PROGRAMMABLES
with non-volatile Stores and Memories and almost infinite programmability (Using FA-1)
FX-501P
128 steps
11 memories
5 levels
100 Hours continuous operation plus "BT" low battery indication.
RRP £59.95
FX-502P
256 steps
22 memories
10 levels
RRP £79.95
£69.95
FA-1 Adaptor
RRP £24.95
£19.95

LATEST LCD SCIENTIFICS
Casio’s new FX-68 Mini Card
37 Scientific functions including trigs, logs, exponentials. Statistical – standard deviations. Polar to Rectangular, R–P and sex-agenital conversions. Pi cube, root, 6 levels of parenthesis, full memory, 500 hours continuous use battery life. A very convenient 3/16" x 21/8" x 35/8", Complete with wallet. RRP £24.95
£19.95
FX 80 Specification as above plus Engineering key, 4000 hour battery life from 2 x AA size batteries. 2 1/2" x 3" x 5/2".
RRP £21.95
FX-48 (£18.95) £14.95.
FX-58 (£29.95) £24.95.
FX-2500 (£22.95) £19.95.
FX-3100 (£28.95) £23.95.
FX-8000 (£35.95) £29.95.
CASIO calculating Alarm Clocks
CQ-81 (£18.95) £14.95.
CQ-82 (£29.95) £23.95.
CQ-83 (£35.95) £29.95.
AQ-2000 (£29.95) £24.95.
MELODY 80 (£29.95) £25.95.
MQ-1LE (£34.95) (£29.95) £20.95.
MQ-10 (£39.95) £35.95.

NEW CASIO CHRONOGRAPH
Puts most solar watches in the shade!

CASIO
95QS-31B
Lithium battery
IP100 sec
chrono
Dual time
RRP £29.95
Our price
£24.95

4 year Lithium battery outlasts most solar watches. Chronograph measures net, lap and 1st & 2nd place times from 1/100 second to 6 hours. Constant LC Display of hours, minutes, seconds, am/pm and day. (12 or 24 hour system). Automatic day, date, month & year calendar. Dual time facility (12 or 24 hour system). Stainless steel encased. Mineral glass face. Water resistant to a depth of 66 feet (2 at). Quality s/s bracelet with easily removable links.

EXCEPTIONAL VALUE
In our opinion this watch represents the finest value for money available today. At Christmas the 46CS-27B had a RRP of £89.95 and you would reasonably expect to pay at least this amount for a watch of this quality and specification.

CASIO
46CS-27B
46CS-29B
(Slight case variation)
Alarm
Chime
1/100 sec
chrono
RRP £49.95
£39.95

Constant LC Display of hours, minutes, seconds, am/pm and day (12 or 24 hour system). Automatic day/date, month and year calendar. 24 hour alarm. Optional hourly chime facility. Chronograph measures net, lap and 1st and 2nd place times from 1/100 second to 6 hours. Genuine stainless steel case (not "stainless" or "finish") only 7.8mm thick. Mineral glass face. Water resistant to 100 feet (3 at). Backlight. ±10 seconds/month accuracy. Easily removable links in high quality stainless steel bracelet.

UNBEATABLE QUALITY AND VALUE FOR MONEY FROM JAPAN – WHY SETTLE FOR LESS?

Most CASIO products in stock.
Send 25p for our illustrated mail order catalogue.

8022A Checklist

Whether you are buying your first multimeter or moving up to digital from analogue, check these features against your existing meter.

FULL 2 YEAR WARRANTY.

1 YEAR GUARANTEED

ACCUURACY FROM 18°C to

28°C.

DROP PROOF! Meets tough

Mil –Spec tests for shock &
vibration.

10 times better Accuracy

than most analogue meters.

Single handed operation.

USER PROTECTION!

Recessed input jacks and new

Fluke designed safe test leads.

PROTECTED THREE WAYS

against accidental over-
voltage, over-current and
transient to 6k V.

Easily accessible battery and
current fuse.

200 Hours continuous
operation plus "BT" low battery
volt indication.

Handy size. Fits easily into

pocket, brief-case or toolbox.

Large, readily available range

of accessories.

Worldwide parts and servicing

facilities.

Price £89.00 complete with
test probes.

A no compromise

Digital Multimeter at

an analogue price.

FLUKE

Practical Electronics August 1979
EUROSOLDERSUCKER

This 195mm long, all metal, high suction, desoldering tool with replaceable Teflon tip enables removal of molten solder from all sizes of pcb pads. Primed and released by thumb, it incorporates an anti-recoil system and built in safety guard. Only £6.80 inc. VAT & P.P.

The UNIQUE EUREABOARD

Logically laid out to accept both 0.3" and 0.6" pitch DIL packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to 85mm dia.

500 individual connections in the central breadboarding area, spaced to accept all sizes of PCB package without running out of connection points, plus 4 Integral Power Bus Strips around all edges for minimum inter-connection lengths.

All connection rows and columns are now numbered or lettered enabling exact location indexing.

Double-sided nickel silver contacts for long life (10K insertions) and low contact resistance (<10m. ohms).

Easily removable, non-slip rubber backing allows damaged contacts to be rapidly replaced.

No other breadboard has as many individual contacts, offers all these features and costs only £5.80 each or £11.00 for 2 - inclusive of VAT and P.P.

SPECIAL OFFER SEMICONDUCTORS:

1 EuroBreadBoard @ £5.80

12 EuroBreadBoard @ £11.00

1 EuroBreadBoard @ £15.50

1 EuroBreadBoard @ £23.00

DIGITAL VOLTMETER/THERMOMETER KIT

Based on the 7106 single IC 2.5 digit D.V.M., the Kit contains a PCB, resistors, capacitors, diodes, switch, LED's, capacitors, and others so that it can be modified to be a Digital Thermometer using a single transistor as the sensor. Requires a 2mA 9V supply (FP3 batteries)

ONLY £20.75

24HR CLOCK/APPLIANCE TIMER KIT

Switches any appliance up to 10kW on and off at preset times once a day. Kit contains: 3x Y-1230 Clocks/ Appliance Timer IC, 0.5W led display, mains supply, display drivers, switches, LEDs, triac, capacitors and full instructions. £16.60. White box 156 x 131 x 71 mm - desired £22.50

Send out and Post

David George Sales, r/o 74 Crayford High St., Crayford, Kent DA1 4EF

Please send me

1 EuroSolderSucker £6.80
1 EuroBreakBoard £5.80
1 EuroBreakBoards £11.00

All prices include VAT and P.P., but add 15% for overseas orders.

Please make cheque/P.O.'s payable to David George Sales

Practical Electronics August 1979
BAKER "BIG-SOUND" SPEAKERS Post 1 each 'Group 25' 'Group 35' 'Group 50/15' 12 inch £12 12 inch £14 15 inch £33 40 watt 8 & 16 ohm 15 and 18 inch £30 15 and 18 inch £32 75 watt 8 & 16 ohm 40 and 50 watt 8, 16 & 18 ohm £21

BAKER LOUDSPEAKER 12 INCH 60 WATT GROUP 50/12 4 OH 8 OR 16 OHM HIGH POWER FULL RANGE PROFESSIONAL QUALITY. REPAIRS 20-18000 CPS MASSIVE CERAMIC MAGNET WITH ALUMINIUM PRESENCE CENTRE DRIVE

4 CHANNEL TRANSISTOR MONOMIXER Add musical highlights and sound effects to recordings. Will mix microphone, records, tape and tuner with separate controls into single output. 9 volt battery operated.

Two-channel version £20.50 each

HEATING ELEMENTS WAFER THIN Size 10g by 10mm. Operating voltage 200/250V ac. 250W approx. Suitable for heating Pads, Food Warmers, Getaway Heaters, etc. Must be clamped between two sheets of metal or similar. ALL POST PAID - Discounts for quantity.

ONLY 40P EACH (FOUR FOR £1.00)

MINI MODULE BAFFLE KIT Post 75p. EMIL 16 x 8 & 10 x 70mm. 8 and 90mm. Bass 6l. Middle 5in Tweeter with 3-way Crossover & Ready Cut Baffle. Full assembly instructions supplied. Response 60 to 20 000 C.P.S. 12 watt RMS. £10.95 per kit. Two kits £20. Suitable Bookshelf Cabinet £6.50 each.

SINGLE RECORD PLAYER

NEW 85R SINGLE PLAYER £22.50. More recently designed single player. £20.00. Post 15p.

BASS DRUMMER ADJUSTER with plastic cartridge. £3.50. 6inch. Post 15p.

LOW VOLTAGE ELECTROLYTICS

1.2 f, 5 f, 10 f, 22 f, 33 f, 100 f, 330 f, 1000 f, 15 10 50, 800f. 12v 19w 25w 35w 40w 75w 80w 100w 150w E7; 250w 58; 400w £9; 500w £10.

LOW VOLTAGE ELECTROLYTICS

1.2 f, 5 f, 10 f, 22 f, 33 f, 100 f, 330 f, 1000 f, 15 10 50, 800f. 12v 19w 25w 35w 40w 75w 80w 100w 150w £7.95. 250w 58; 400w £9; 500w £10.

MANY OTHERS IN STOCK

TRANSISTOR AMPLIFIER KIT

Ideal for discos, groups, public address. Two channels with volume controls. Massive input and output volume controls. Suitable for all outdoors. £5.95 Post.

R.C.S. SOUND TO LINE DISPLAY MIX II

Complete kit of parts with R.C.S. printed circuit. Three 1000W channels. Will operate from 200mV input and supply. £5.95 Post.

STEREO TRANSISTOR AMPLIFIER KIT

Two channel stereo version £8.50 each. Type 6SN7GT or 6N5GT. £12.50 each. £21.00 for two kits.

3 CHANNEL TRANSISTOR AMPLIFIER KIT

Type 6SN7GT or 6N5GT. £12.50 each. £21.00 for two kits.

LOW VOLTAGE ELECTROLYTICS

1.2 f, 5 f, 10 f, 22 f, 33 f, 100 f, 330 f, 1000 f, 15 10 50, 800f. 12v 19w 25w 35w 40w 75w 80w 100w 150w £7.95. 250w 58; 400w £9; 500w £10.

LOW VOLTAGE ELECTROLYTICS

1.2 f, 5 f, 10 f, 22 f, 33 f, 100 f, 330 f, 1000 f, 15 10 50, 800f. 12v 19w 25w 35w 40w 75w 80w 100w 150w £7.95. 250w 58; 400w £9; 500w £10.

MANY OTHERS IN STOCK

TRANSISTOR AMPLIFIER KIT

Ideal for discos, groups, public address. Two channels with volume controls. Massive input and output volume controls. Suitable for all outdoors. £5.95 Post.

R.C.S. SOUND TO LINE DISPLAY MIX II

Complete kit of parts with R.C.S. printed circuit. Three 1000W channels. Will operate from 200mV input and supply. £5.95 Post.
The quickest fitting
clip on
capacitive discharge
electronique ignition in
KIT FORM

- Smoother running
- Instant all-weather starting
- Continual peak performance
- Longer coil/battery/plug life
- Improved acceleration/top speeds
- Optimum fuel consumption

Sparkrite X4 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and compact. It can be assembled in two or three hours and fitted in 1/2 man.

Because of the superior design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing it the bounce points open at High R.P.M. Contact breaker burn is eliminated by reducing the current to about 1/50th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breaker for recharging the system. Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR burn out and reduces the current to about 1/50th of the norm. Most capacitive discharge ignitions are not completely foolproof in this respect. The circuit incorporates a voltage regulated output for greatly improved cold starting. The circuit includes built in static timing light, systems function light, and security changeover switch. All kit fits vehicles with coil distributor ignition up to 8 cylinders.

The kit comprises everything needed

De pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, collimating optics and, accessories. Top quality 5 year guaranteed transformer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions to assemble kit nep, or pos. earth and fully illustrated installation instructions.

NOTE — Vehicles with current impulse tachometers (Smiths code on dash RV3) will require a tachometer pulse safety unit. Price E3.85 inc. VAT, post & packing UK only.

Electronics Design Associates, Dept. PE 10, 82 Bath Street, Wallall, W513 DEE. Phone: Walsall 614791
NEW from Cambridge Learning Enterprises

O - LEVEL ENGLISH LANGUAGE

More and more jobs require a C-grade PASS, and over 250,000 people fail to get this every year. Will one of them be in your family? This new course, written by experts in a style that's serious yet fun to read, shows you how to mark your own work and compare it with the work of other people in their exam year. Set your own pace, assess your results immediately with no postal delays: watch your speed and fuel consumption; you could be phoning people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

Digital Computer Logic and Electronics

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgan's Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and multiplexers.

Flow Charts & Algorithms

Help you present: safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.

The Algorithm Writer's Guide explains how to: define the questions, put them in the best order and onto the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

Understanding Digital Electronics

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could 'phone people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include:

- **Book 1** Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
- **Book 2** OR and AND functions; logic gates; NOT, exclusive-OR, NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgan's Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
- **Book 3** Half adders and full adders; subtractions; serial and parallel adders; processors and arithmetic logic units (ALU); multiplication and division systems.
- **Book 4** Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
- **Book 5** Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.
- **Book 6** Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; compilers; executive programs; operating systems and time sharing.

Four volumes Digital Computer Logic & Electronics at £6.50 inc VAT
Six volumes Design of Digital Systems at £10.50 inc & p & p
Three volumes O-Level English Language at £6.50 inc & p & p
The Algorithm Writer's Guide at £3.40 inc & p & p

If your order exceeds £14 deduct £2 from your payment. Price includes surface mail anywhere in the world; airmail extra.

GUARANTEE If you are not entirely satisfied your money will be refunded.

Please allow 21 days for delivery.

Cambridge Learning Enterprises, Unit 21, Rivermill Site,
FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR, England.

Please send me the following books:

- sets Digital Computer Logic & Electronics at £6.50, p & p
- sets Design of Digital Systems at £10.50, p & p
- O-Level English Language at £6.50, p & p
- The Algorithm Writer's guide at £3.40, p & p

Name
Address
*delete as appropriate.

I enclose a *cheque/PO payable to Cambridge Learning Enterprises for £

Please charge my *Access/Barclaycard/Visa/Eurocard/Mastercard/Interbank account number

Signature

Telephone orders from credit card holders accepted on 0890-67446 (Ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank, or quote credit card number.

PE21
MAIL ORDER SERVICE

All prices include V.A.T.

Post and Packing 25p per order

Mail Order Service

Order catalogue number 204

Post and Packing please add 25p (Overseas orders add 60p)

More information available on request. Send a medium sized SAE for your copy.

8 Digit L.C.D.

These liquid crystal displays are dynamic, scattering type LCDs and give white digits on a dark background. Display height is 0.33" with right hand decimal points.

Only £3.99 with data.

Order catalogue number 302

Factory Rejected Calculators

Production line rejected LCD calculators with lots of accessible goodies inside (chip, display, keyboard). Ideal for breaking for spares or bonus. Some could be repairable and we include a recipe at an antelope on repairing calculators.

£2.50 each.

Order catalogue number 310

SUPERBORD II (8K BASIC)

4K RAM - £229
8K RAM - £269

(modulator included)

FIBRE GLASS CASE £24.95

TRS 80 KEYBOARD

4K LEVEL II - £390* 16K - £490*

(modulator included)

POWER SUPPLY £9.90

PHILIPS VIDEO COMPUTER

G7000 - £139* VIDEOPACS

MOSTLY - £10.25*

COMPLETE RANGE OF GAMES INCLUDING A BEGINNERS COMPUTING COURSE

FIBREGLASS CASE £29.95

SOFTEP EPROM DEVELOPMENT BURNER SYSTEM

(kit) - £79.50*

*PRICES EXCLUDE VAT - FULL DETAILS ON REQUEST

VIDEOPAC PRODUCTS

56 Queens Road, Basingstoke, Hants. RG21 1ER
Tel. (0256) 56417, T. 858747

Digital Multimeter Chip

Build your own high quality digital voltmeter or panel meter with this MMS320 integrated circuit. Requires LCD display, 6, or 7 digit, battery or power supply.

£3.99 each (with data)

Order catalogue number 404

A full refund guarantee on all items.

Post and Packing please add 25p (Overseas orders add 60p)

For more information, fill in the enclosed order form.

Send a medium sized SAE for your copy.
TRANSFORMERS

| TRANSFORMER | 240 V 240 V or 120-240 V | Amps
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref</td>
<td>Price</td>
<td>P & P</td>
</tr>
<tr>
<td>127</td>
<td>2.40</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>2X</td>
<td>0.07</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRANSFORMERS END OF LINE OFFERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>220</td>
</tr>
<tr>
<td>221</td>
</tr>
</tbody>
</table>

50 VOLT RANGE

<table>
<thead>
<tr>
<th>Transform</th>
<th>Type Name</th>
<th>Price</th>
<th>P & P</th>
</tr>
</thead>
<tbody>
<tr>
<td>220-240V</td>
<td>2.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220-240V</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220-240V</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220-240V</td>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220-240V</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220-240V</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220-240V</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220-240V</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220-240V</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mains Isolators (Electricals)

<table>
<thead>
<tr>
<th>Type</th>
<th>240 V 240 V 220-240 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>267</td>
<td>4.00</td>
</tr>
<tr>
<td>268</td>
<td>4.00</td>
</tr>
<tr>
<td>269</td>
<td>4.00</td>
</tr>
<tr>
<td>270</td>
<td>4.00</td>
</tr>
<tr>
<td>271</td>
<td>4.00</td>
</tr>
<tr>
<td>272</td>
<td>4.00</td>
</tr>
<tr>
<td>273</td>
<td>4.00</td>
</tr>
<tr>
<td>274</td>
<td>4.00</td>
</tr>
<tr>
<td>275</td>
<td>4.00</td>
</tr>
<tr>
<td>276</td>
<td>4.00</td>
</tr>
<tr>
<td>277</td>
<td>4.00</td>
</tr>
<tr>
<td>278</td>
<td>4.00</td>
</tr>
<tr>
<td>279</td>
<td>4.00</td>
</tr>
<tr>
<td>280</td>
<td>4.00</td>
</tr>
<tr>
<td>281</td>
<td>4.00</td>
</tr>
<tr>
<td>282</td>
<td>4.00</td>
</tr>
<tr>
<td>283</td>
<td>4.00</td>
</tr>
<tr>
<td>284</td>
<td>4.00</td>
</tr>
<tr>
<td>285</td>
<td>4.00</td>
</tr>
<tr>
<td>286</td>
<td>4.00</td>
</tr>
<tr>
<td>287</td>
<td>4.00</td>
</tr>
<tr>
<td>288</td>
<td>4.00</td>
</tr>
<tr>
<td>289</td>
<td>4.00</td>
</tr>
<tr>
<td>290</td>
<td>4.00</td>
</tr>
<tr>
<td>291</td>
<td>4.00</td>
</tr>
<tr>
<td>292</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Price Includes VAT 5% P & P (Incl. VAT & P & P)

STORAGE CABINETS

- Metal Cabinets 12" wide x 53" deep, finished blue with transparent plastic drawers.
- Type H No. of Drawers Price (incl) Sm Med LG
- 1118 11 15 2 1 £9.85
- 1363 18 30 2 1 £12.75
- 1388 22 35 2 1 £13.50
- 2236 22 30 4 2 £16.85
- 2250 22 60 - £16.95
- Prices include VAT and Post, Cheques P.O. to:
 Millhill Supplies (Tools),
 35 Preston Crowmarsh, Benson, Oxon OX9 6SL.

Usage:

- Type 1838

LOW VOLTAGE POWER SUPPLIES

Low cost, compact, attractively styled, protected and fully guaranteed, the **EDU-ELEQUIP P.25 and P.30 SERIES** are the first choice for stabilised power supply units for industrial, educational and general purpose applications. Quality and reliability with a fast service at prices which solve your low budget problems.

Details and prices from:

EDU-ELEQUIP

28 BUCKWOOD AVENUE,

DUNSTABLE, BEDFORDSHIRE.

TRANSFORMERS

EX-STOCK

SAME DAY DESPATCH

+ VAT 8%
SMALL ADS

The prepay rate for classified advertisements is 20 pence per word [20 words or less], box number 60 extra. Semi-diagonal setting £6.60 per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Leads Bank Ltd.". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

When replying to Classified Advertisements please ensure:

(A) That you have clearly stated your requirements.

(B) That you have enclosed the right remittance.

(C) That your name and address is written in block capitals, and

(D) That your letter is correctly addressed to the advertiser.

This will assist in processing and dispatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

TIRED of your new mail order price list of electronic components now available on receipt of SAE. TIRKO ELECTRONICS, Grenfell Place, Maidbead, Berk.

BRAND NEW COMPONENTS BY RETURN

Electronic Capacitors 18V. 50V.

- 0.47, 0.22, 0.1, 10 nF. ± 10%
- 0.47, 0.22, 0.1, 0.1, 1uf. ± 5%
- 0.47, 0.22, 0.1, 1uf. ± 5%
- 0.47, 0.22, 0.1, 10uf. ± 5%
- 0.47, 0.22, 0.1, 33uf. ± 1%
- 0.47, 0.22, 0.1, 100uf. ± 2%
- 0.47, 0.22, 0.1, 10,000uf. ± 2%
- 0.47, 0.22, 0.1, 100,000uf. ± 5%
- 0.47, 0.22, 0.1, 1000,000uf. ± 5%
- 0.47, 0.22, 0.1, 10,000,000uf. ± 5%

- 0.47, 0.22, 0.1, 1uf. ± 1%
- 0.47, 0.22, 0.1, 10uf. ± 1%
- 0.47, 0.22, 0.1, 33uf. ± 2%
- 0.47, 0.22, 0.1, 100uf. ± 2%
- 0.47, 0.22, 0.1, 1000uf. ± 5%
- 0.47, 0.22, 0.1, 10000uf. ± 5%
- 0.47, 0.22, 0.1, 100000uf. ± 5%
- 0.47, 0.22, 0.1, 1000000uf. ± 5%
- 0.47, 0.22, 0.1, 10000000uf. ± 5%

- 0.47, 0.22, 0.1, 1uf. ± 5%
- 0.47, 0.22, 0.1, 10uf. ± 5%
- 0.47, 0.22, 0.1, 33uf. ± 10%
- 0.47, 0.22, 0.1, 100uf. ± 10%
- 0.47, 0.22, 0.1, 1000uf. ± 20%
- 0.47, 0.22, 0.1, 10000uf. ± 20%
- 0.47, 0.22, 0.1, 100000uf. ± 40%
- 0.47, 0.22, 0.1, 1000000uf. ± 40%

AERIALS

SMALL ADS

The prepay rate for classified advertisements is 20 pence per word [20 words or less], box number 60 extra. Semi-diagonal setting £6.60 per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Leads Bank Ltd.". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

AERIAL BOOSTERS

Improves weak VHF Radio and Television reception.

BILLS TELEVISION SERVICES

For next to the set fitting.

Price £5. SAE. for leaflets.

MAIL ORDER LTD.

Ramelborton, Burn, Lincs, BLO 9AG.

SERVICE SHEETS

BELLS TELEVISION SERVICES for Service Sheets on Radio, TV, etc £1.85 plus S.A.E. Colour TV Service Manuals on request.

SERVICE SHEETS

For Radio, Television, Tape Recorders, Stereos etc. With free Fault-finding guide, from 50p and S.A.E.

ELECTRONIC ORGAN

Two manuals, RCO pedals, solid oak assembled, working. £70.01-749 2799.

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now—write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Full details from:

BOOKS AND PUBLICATIONS

COMPLETE REPAIR information any requested T.V. £5 (with diagrams £6.50). Any requested service sheet for £1, plus SAE. SAE brings newsletter + extra: — service sheets from 50p, bargain offers. Ring Park Road, Romford EM7 OXU. (Tel: Romford 66841).

RECORD ACCESSORIES

STU Cartridges for MUSIC CENTRES, &c. FREE List No.29 for S.A.E. includes Leads, Mikes, Phones &c.

LADDERS

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and align-ments with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

FOR SALE

S.M.16 COMPUTER

extra ram, ram, revised monitor, fully assembled, working. £70. 01-749 2799.

PRACTICAL ELECTRONICS SINCE 1967, 01-737 2511

**NEW BAKE ISSUES OF "PRACTICAL ELECTRONICS" available til each Post Free. Open P.O. Cheque returned if lost in stock -_sent by World Trans., 190 Kings Road, Harrogate, N.Yorks. Tel: (0423) 30885.

UNFINISHED PROJECTS

Minisonic 2, all parts including Keyboard, P.C.B.'s, case, switches. Offers. Ring Park Street 72809.

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and align-ments with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS

Dept. K272 Intertext House, London SW8 4UJ

Tel 01-622 9911 (all hours)

State if under 18

EDUCATIONAL

WHETHER SEA-GOING OR SHORE-BASED, an exciting life awaits you as a Mariner Radio Officer. Full details from The Minisonic School of Electronics. Dept. K272 Intertext House, London SW8 4UJ

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now—write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Full details from:

I.C.S SCHOOL OF ELECTRONICS

Dept. K272 Intertext House, London SW8 4UJ

Tel 01-622 9911 (all hours)

State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and align-ments with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

I.C.S SCHOOL OF ELECTRONICS

Dept. K272 Intertext House, London SW8 4UJ

Tel 01-622 9911 (all hours)

State if under 18
What's an electronics enthusiast like you doing in an advertisement like this?

We reckon that if you’re a regular reader of this magazine, you might very well be the sort of man or woman who’d be interested in joining Marconi Avionics as an **Electrical Inspector**.

We say this with some confidence because if you’re used to building up your own equipment, you’re probably well used to finding your way round electronic circuits and wiring and that’s just the sort of background we’re looking for.

As an Electrical Inspector with us you’ll be involved in the inspection of printed circuit boards and assemblies against drawings on a wide range of equipment. Mind you, this equipment will be considerably more complex than any you’re likely to have worked on previously, for at Borehamwood we’re engaged on a variety of exciting and challenging projects relating to advanced electronic systems and hardware for such technically sophisticated aircraft as Nimrod and Tornado. But, provided you have a good basic background knowledge of electronic circuitry, we can soon train you to take your place in one of our inspection teams.

We offer a good salary, an attractive range of benefits and the opportunity to make your hobby pay off both financially and in terms of job satisfaction.

Write with details of your experience to Chris Hill at Marconi Avionics Limited, FREEPOST, Elstree Way, Borehamwood, Herts WD6 1BR. Telephone 01-953 2030 ext 3449 during office hours or 01-207 3455 anytime.
NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Transmitter-Receiver Kit, only £18.35 plus 25p P & P, "Brain-Free" em with a MINI-STROBE ELECTRO-LUMINESCENT Kit, pocket-sized "lightning Stunners", very special, for dance and parties. A mere £4.50 plus 25p P & P. Frequent only with a "Stun-Proof" DREAM LAR or pick up faint speech/audios with the BIG RED "snow-catcher" ready-made multi-function mode, £3 each plus 25p P & P. LETS MRRR? Send 25p for lists. Prices include VAT.

BOFFIN PROJECTS
4 Cunliffe Road, Stoneleigh, Ewell, Surrey (P. E.)

BURGLAR ALARM CONTROL PANELS Direct from the manufacturer, (Trade enquiries welcome) Type 'A'- Main battery/primary with adjustable timed entry/exit, push-button test £33.60 Type 'B'-Main/battery, manual, exit, push-button test £30. SAE for list. WEBB ELECTRONICS, 41 Worswick Street, Warrington. Tel: 54174.

TIME WRONG?

MSF 60kHz Time Receiver, data output, £13.70. Sequential year, month, day, time, minutes, seconds. Display £10.70. 60p case or pc.

V.L.C. EXPLORER, 10-1500M Receiver £10.70. B.I.C. GEN. 10M-100KHz, oscillograph £23.50. PROGRAM YOUR Own time, 19.30 onwards.

Each easy assembly kit includes all parts, print circuit, case, postage etc, money back assurance so SEND off now.

CAMBRIDGE KITS
45 (FV) Old School Lane, Milton, Cambridge.

CLEANING LABORATORY. Scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.U.S. sweep generators, test equipment, etc. Lower Fenchurch.

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME

FULL RANGE AVAILABLE SAE FOR PRICE LIST. £1.25 for Booklet "Nickel Cadmium Power" plus Catalogue, informative and interesting. Also P.C.B. circuitboards, kits, etc. 39c, plus 25p. Send SAE, FOB's also. See our listings at T.L.C., 32 Cranwell Street, Gillingham, Gillingham, Kent.

STOCK of downgraded capacity cells, type AA, Sub C, D and E cells of the rechargeable Sealed Nickel Cadmium type. Please write to Box No. 60.

GUITAR/PA/MUSIC AMPLIFIER

100 watt music amplifier/bass overdrive, 12 months guarantee. Unbeatable at £42, 60 watt £37, 20 watt £25, 10 watt £22. Also one channel, 30 watt £30, bass £25, 20 watt £20, 10 watt £15. Bass combo £35; 20 watt £25, 10 watt £15. Also 20 watt combo £30, 12 inch £25, 15 inch £35. Also 50 watt £55; 100 watt £75;

For full list and current stock price please send SAE. Pub's also produce your own music in small or large quantities for home or work. Prices include postage.

S.P. ELECTRONICS LTD.

WILLIAMSON AMPLIFICATION

62 Thorncroft Avenue, Dunford, Cheshire
Tel: 061-344 5007 or 061-308 2064

PRACTICAL ELECTRONICS P.C.B.'s

P.C.B. Printed Circuit Board. For any "boxed gyms", your own project or as a gift. Box 78 CWO please.

FISONS have a vacancy in the Statistics Section at Levinson Research Station near Ipswich for a Research Assistant to work on the application of mini computer (microprocessor) technology to scientific and industrial research projects. This work bridges the gap between electronics and chemical processes, automated laboratories and various agricultural systems.

FISONS have a vacancy in the Statistics Section at Levinson Research Station near Ipswich for a Research Assistant to work on the application of mini computer (microprocessor) technology to scientific and industrial research projects. This work bridges the gap between electronics and chemical processes, automated laboratories and various agricultural systems.

Ideally, applicants should have at least 'A' level Maths plus a keen practical interest in electronics and computing. Training in programming and other more advanced methods will be given. The section has PDP, PET, ROCKWELL, INTEL and ZILQG equipment. This is a rapidly developing field in which there are opportunities for advancement.

If this job appeals to you please write for an application form to:
Mike Sharp, Divisional Personnel Officer, Fisons Limited, Fertilizer Division, Levinson Research Station, Ipswich.

RESERVATION ASSISTANT

Microprocessors

Fisons have a vacancy in the Statistics Section at Levinson Research Station near Ipswich for a Research Assistant to work on the application of mini computer (microprocessor) technology to scientific and industrial research projects. This work bridges the gap between electronics and chemical processes, automated laboratories and various agricultural systems.

Fisons have a vacancy in the Statistics Section at Levinson Research Station near Ipswich for a Research Assistant to work on the application of mini computer (microprocessor) technology to scientific and industrial research projects. This work bridges the gap between electronics and chemical processes, automated laboratories and various agricultural systems.

Ideally, applicants should have at least 'A' level Maths plus a keen practical interest in electronics and computing. Training in programming and other more advanced methods will be given. The section has PDP11, PET, ROCKWELL, INTEL and ZILQG equipment. This is a rapidly developing field in which there are opportunities for advancement.

If this job appeals to you please write for an application form to:
Mike Sharp, Divisional Personnel Officer, Fisons Limited, Fertilizer Division, Levinson Research Station, Ipswich.

P.C. BOARDS

FOR INDUSTRY and THE AMATEUR

One off or production runs
- Assembly of P.C.Boards or kits
- Expert hand soldering
- Design service if required
- Artwork & Photography

SEAHORSE ELECTRONICS LTD.
Unit 2 Picow Farm Road
Service Industry Estate,
Runcorn, Cheshire.
(09285) 75950

P.C. BOARD FOR INDUSTRY and THE AMATEUR

One off or production runs
- Assembly of P.C.Boards or kits
- Expert hand soldering
- Design service if required
- Artwork & Photography

SEAHORSE ELECTRONICS LTD.
Unit 2 Picow Farm Road
Service Industry Estate,
Runcorn, Cheshire.
(09285) 75950

YOUR PE PROJECT that never worked, free estimate for diagnosis or repair. By Electronic Engineer, S.A.E. Miller, 53 Fairfield Ave, Reading, Berks.

MAKE YOUR OWN PRINTED CIRCUITS

Etch Resist Transfers - Starter pack (5 sheets, lines, pads, I.C. pads) £1.45. Large range of single sheets in stock at 30p per sheet.
Ferric Chloride - 1 lb bags 80p (P & P 50p)*
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. Full instructions supplied, 2 sheets (20 x 28cm) positive film £1.26.

For full list and current stock price please send SAE. Pub's also produce your own music in small or large quantities for home or work. Prices include postage.

Postage - On orders less than £10 please add 25p postage. DVD prices.

PUBLICATIONS
14 Duxford Road, Romford Heath, Silvertone, Essex CM11 1FU
NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

FOR YOUR GUIDANCE

VALUE ADDED TAX

In view of changes affecting V.A.T. at the time of going to press, readers should ensure that they have added the correct amount of V.A.T. before ordering.

Export orders are not subject to the addition of Value Added Tax.

BUILD A SYNTHESIZER!

NO SPECIAL SKILLS

SPECIAL EQUIPMENT

REQUIRED

Using Dewtron (Reg'd)

PROFESSIONAL MODULES

Over 20 different electronic modules to select what YOU want to build a synthesizer; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, well-tried range of Dewtron synthesizer and other effects modules.

Send 25p for Musical Miracles Catalogue NOW!

D.E.W. LTD.

254 RINGWOOD ROAD, FERNDOWN, DORSET BH22 9AR

ULTRASONIC TRANSDUCERS. £2.85 per pair + 25p P & P. Dataplus Developments, 81 Cholmesley Road, Reading. ULTRASONIC TRANSDUCERS. 02.85 per pair + 25p P & P.

ELECTRONICS, 41 Winwick Street, Warrington. hand held, range 500yds. Complete kit only 05.25. WEBB CONSTRUCT A VHF TRANSMITTER (not licensable in UK)

PRACTICAL ELECTRONICS

C.W.O. to All orders

MAY 79: Multimeter Set £5.85; Sound Switch £0.90.

MAR. 79: Headlight Warning p.c.b. £1.36.

FEB. 79: Guitar Sound PSU £1.19; Pulse Generator £1.35.

JAN. 79: Guitar Sound Clock £1.67.

DEC. 78: Guitar Sound Multiprocessor Main Board £2.49.

Added Tax. Export orders are not subject to the addition of Value Added Tax. In view of changes affecting V.A.T. at the time of going to press, readers should ensure that they have added the correct amount of VAT before ordering.

IÓNCO Ltd. 22 Cheapside, Wakefield, Yorkshire.

MICRO SWITCHES. 21p Stamps for fully illustrated technical literature.

Ramator, Resin Coated Epoxy Glass, flux varnished end drilled.

Drawing materials for p.c boards, selected range of quality components, Des Engineers, Modelmakers Services, CV37, 9NF 0789 -4879. Photography for Home Constructors, etc.

All immediately available.

Practical Electronics August 1979
Kontite remote control switch
—Simple to install even simpler to use

The Receiver: contains input and output cables which are connected to the appliance to be controlled.

The Transmitter: is light and cordless and housing the battery. Simply, point the transmitter at the receiver to turn on or off

Now available in the U.K. the 'Kontite' Remote Control unit switches electrical appliances and equipment on or off safely from distances of up to 35 feet. Televisions, radios, hi-fi equipment, lighting, model trains etc. electric fans, electric fires (up to 2kw) and many other appliances are within its scope, providing that they have a power supply of 240/250 AC single phase. 50/60 Hz and a maximum 10 amp rating and also that the relevant safety regulations are applied.

The unit is ideal for use in the home, office, factory and hospital. Particularly useful as an aid to the disabled and invalid—wherever an electrical appliance is difficult to reach in the normal manner.

The Kontite Remote Control Switch available now through Electrical Component Retailers.

L.C.D. DIGITAL WATCHES

ALARM MODEL
Constant 6 digit display shows Hours, Minutes, Seconds or Date. 24-hour alarm with on/off indication. Night Light. Matching adjustable stainless steel strap. £12.50 inclusive

SLIM 11 FUNCTION CHRONOGRAPH
Time, Date, 1/5 second stopwatch. £23.50 inclusive

ALARM CHRONO WITH DUAL TIME
All functions of alarm model with a second stopwatch and dual time. £29.95 inclusive

SOLAR ALARM CHRONO
As above but solar assisted. £27.50 inclusive

LADIES 5 FUNCTION
Hours, Minutes, Seconds, Month and Date. £9.50 inclusive

SPARKS DEVELOPMENTS, 53 North Street, Melbourne, Derbyshire DE7 1FZ.

PE PHASER UNIT
A superb six stage phaser that really gives your guitar lift off. Equally the best commercial models. Users test FET no harm. Glassfibre p.c.b. COMPLETE KIT OF ALL PARTS AS SPECIFIED £16.95

PACK 1. All semiconductor devices £8.00
PACK 2. Resistor, capacitors & preset pot £6.00
PACK 3. Footswitch, jacks, pot, knob, printed circuit & hardware £4.50
PACK 4. Descriptive box and leaflet £2.00

SEPARATE PARTS: TL062 80p*, BF245 50p, PCB £1.50, 8 pin sockets (not included in kit) 25p each.

PE SUSTAIN UNIT
Superb quality, low noise, low distortion sustain unit equal to the very best commercial models. Suits all guitars Glassfibre p.c.b. COMPLETE KIT OF ALL PARTS AS SPECIFIED £9.95

PACK 1. Resistors, capacitors & p.c.b. £1.75
PACK 2. All semiconductor devices £1.75
PACK 3. Footswitch, jacks, pot, knob, and battery clip £2.75
PACK 4. Descriptive box and leaflet £5.00

SEPARATE PARTS: XC5053R 50p*, RPY58A 75p*, Printed circuit board £1.50 each.

ORION AMPLIFIER
Complete set of semiconductors £9.75
High quality glass free pcb £3.50

PE TV SOUND SEPARATOR
Complete set of semiconductors £2.30
Quality glass free pcb £1.60

FERRANTI SEMICONDUCTORS
ZN416E £3.75 ZN436E £3.50 ZTX107 11p
ZN216E £4.12 ZN4159P £2.10 ZTX107 10p
ZN4134 £21.00 ZN1040E £2.60 ZTX121 12p
ZN423 £15.00 ZN1040E £7.50 ZTX213 11p
ZN429 £1.30 BF851 14p ZT216M 24p
ZN4244 £0.60 BF986 14p BC817 15p

TO CLEAR! P.C.B.'s for ZN416 D.V.M. £1.00 the pair while stocks last.

POSTAGE & PACKING 15p per order. Orders over £5.00 post free.

We can supply any ZN116 J.D.M. £21.00 the pair while stocks last. Add 1½% to all others.

MAIL ORDER ONLY CALLERS BY APPOINTMENT
DAVIAN ELECTRONICS
13 DEEPDALE AVENUE, ROYTON, OLDHAM OL2 6XD.

Kray & Co (Engineers) Ltd.
Acrefield House, 15 Exchange Street, Bolton, Lancashire.
Telephone: Bolton 21041 Telex: 63186

Practical Electronics August 1979
GUARANTEED LOW PRICES AND EXPRESS DELIVERY

INDEX TO ADVERTISERS

A & M Electronics
Ace Multimedia
Acorn Computers
Adam Hall (P.E. Supplies)
Altek Bros.
Ampli-Flex
Astra-Pak
Auric Sounds
A.U.S.
Barrie Electronics
Bi-Pak
Biffen-Pleaset
British National Redio & Electronics School
Cambridge Kits
Cambridge Learning
C.S.
Chromasonic
Chromatics
Cliff Products
Codelastics
Colour Print Express
Computer Components (Teleplay)
Creaser Radio
Crimson Electrics
Crofton Electronics
C.R. Supply Co.
Dainian Electronics
Delta Tech
D.E.W.
E.D.A.
Edo-Electronic
Electronic Mail Order
Electrolux
Entrapinnings
Eviator
Fidax
Firebird Supplies
Fluke International
George Sales, David
H.L. Audio
Heath Limited
Home Radio
I.C. Gen.
I.L.F. Electronics
Jayden Developments
JWB Radio

INDEX TO ADVERTISERS

A & M Electronics
Ace Multimedia
Acorn Computers
Adam Hall (P.E. Supplies)
Altek Bros.
Ampli-Flex
Astra-Pak
Auric Sounds
A.U.S.
Barrie Electronics
Bi-Pak
Biffen-Pleaset
British National Redio & Electronics School
Cambridge Kits
Cambridge Learning
C.S.
Chromasonic
Chromatics
Cliff Products
Codelastics
Colour Print Express
Computer Components (Teleplay)
Creaser Radio
Crimson Electrics
Crofton Electronics
C.R. Supply Co.
Dainian Electronics
Delta Tech
D.E.W.
E.D.A.
Edo-Electronic
Electronic Mail Order
Electrolux
Entrapinnings
Eviator
Fidax
Firebird Supplies
Fluke International
George Sales, David
H.L. Audio
Heath Limited
Home Radio
I.C. Gen.
I.L.F. Electronics
Jayden Developments
JWB Radio
Parts available for many popular electronic Projects.

Send SAE for details.

Low cost Video Display System for up/Down/Left/Right
TV Type writer applications
High Resolution Car Tachometer
4 Digit Counter/Display Module
Optically coupled Car Tachometer
Low cost Digital Voltmeter

Reprints for P.E. VDU 75p + SAE
Supply

VAT RATE: All items at 8% except where marked* where 12.5% applies.

Please send SAE for list.

May 1976

CALLEDERS WELCOME

TECHNOMATIC LTD
17 BURNLEY ROAD, LONDON NW10

12 minutes Dollis Hill tube station (ample street parking)
Tel: 01 452 1500
Telex 922800

Full range of 74 TTLs and 74LS, CMOS, etc. stocked.

Date books, Memories stocked. Send S.A.E. for details.
Why buy colour films?

When you get a Kodak colour film FREE for every one you send in for processing by the Practical Electronics Colour Print Service!

Send no money
But don't send any money until you see the colour of your prints. We're so confident in the reliability of the service and the quality of our prints, every one of which is checked by professionals at our laboratories.

Luxury colour prints
You'll be amazed at the crisp, sharp, high-definition sheen finish of the prints we supply... borderless to give you maximum picture area. And coming with the prints will be your FREE Kodak colour film, worth around £1, the same size as the one you sent us for processing.

Unbeatable value:
What about prices? Ours are certainly much less than those you would pay in most shops—quite apart from the free film you get every time we develop and print for you.
Our Colour Print Service charges you only 15p for each print, plus 85p towards developing, postage and packing. The minimum charge is 85p inc. VAT (that is, if no prints can be made). The offer is limited to the UK, Eire, CI and BFPO.

Reliability at less cost
Photography can cost you a lot less these days. If you know how to go about it. Like the hundreds of thousands of magazine readers who are delighted with this reliable Colour Print Service—and the replacement films that come FREE to every customer! So why don't you give it a try?
Here's what you do. Send us any make of colour print film inside the envelope enclosed in this issue. Or fill in the coupon below and send it with your film in a strong envelope to: The Practical Electronics Colour Print Service, Freepost, Teddington, Middlesex, TW11 8BR. No stamp is required.

More benefits to you
You benefit in two additional ways. Firstly, you enjoy a personal service with every care taken over each individual order. And secondly, you pay only for what you get—with no credit vouchers as with many other companies. An invoice comes with your prints so it's a straight business transaction.

Use this label if you haven't got an envelope, or pass it to a friend who might like to take advantage of our offer. It is used to send your prints and free film.
400 ASA 20p surcharge).
From: Practical Electronics Colour Print Service, Freepost, Teddington, Middlesex TW11 8BR
Mr./Ms.
Address.

Postcode.
Speakers from 1½ inch to 15 inch; megaphone, PA horns, crossovers etc. They're all in our catalogue. Send the coupon now!

Our catalogue describes a wide range of plugs and sockets, all at marvellous prices. See cat. pages 114 to 129 for details.

A genuine 150W per channel stereo disco to build yourself. Full specification in our catalogue.

Our catalogue even includes some popular car accessories at marvellous prices.

A very high quality 40W per channel stereo amplifier with a superb specification and lots of extras. Full construction details in our catalogue.

These are just some of the metal cases we stock. There are dozens of plastic ones to choose from as well. See pages 52 to 57 of our catalogue.

A hi-fi stereo tuner with medium and long wave, FM stereo and UHF TV sound! Full construction details in our catalogue.

A 10-channel stereo graphic equaliser with a specification at an unbeatable price when you build it yourself. Full specification in our catalogue.

Multimeters, analogue and digital, frequency counter, oscilloscopes, and lots, lots more at excellent prices. See cat. pages 106 and 183 to 188 for details.

A superb range of microphones and accessories at really low prices. Take a look in our catalogue—send the coupon now!