\section*{PRACTVAL}

 APAIL 1980

 APAIL 1980
 810 Glitid
 Apriar
 른.

Simple Soldering due to clear and concise Dr. A.A. Berk, BSi PhD

EUROPE'S FASTEST SELLING ONE BOARD COMPUTER

* 6502 based system - best value for money on the market.
\star Powerful 8K Basic - Fastest around \star Full Owerty Keyboard $\star 4 \mathrm{~K}$ RAM Expandable to 8 K on board. \star Power supply and RF Modulator on board. \star No Extras needed - Plug-in and go. \star Kansas City Tape Interface on board. « Free Sampler Tape including powerful Dissassempler and Monitor with each Kit. » If you want to learn about Micros, but did'nt know which machine to buy then this is the machine for you.

```
KIT ONLY E199
NO EXTRAS NEEDED
```

AVAILABLE READY
ASSEMBLED \& TESTED
READY TO GO FOR $\mathbf{£ 2 4 9}+$

The Compukit UK101 comes in kit form with all the parts necessary to be up and working, supplied. No extras are needed. Ater plugging in just press the reset keys and the whole world of computing is at your fingertips. Should you wish to work in the machine code of the 6502 then just press the M key and the machine will be ready to execute your commands and programs. By pressing the C key the world of Basic is open to you.
This machine is ideal to the computing student or Maths studeri, ideal to teach your children arithmetic, and is also great fun to use.
Because of the enormous volume of users of this kit we are able to offer a new reduced price of $\mathbf{£ 1 9 9}+$ VAT

$\bigcirc \bigcirc 8 \mathrm{MHz}$ Super Quality Modulators	tors $\mathbf{E 4 . 9 0}$
6 MHz Standard Moduators	$£ 2.90$
C12 Computer Giade Cassettes 10	S 10 for $\mathbf{£ 4 . 0 0}$
Super Muitl-rall P S U. $+5-5+12 \mathrm{v}$ £29.50	
Nascom I with Nas -sys Special Price	
Kit $\}$ Limited quantites	($\begin{array}{r}\mathbf{1} 125.00 \\ \hline\end{array}$
Assembled)	£140.00
ETI Breakout Game - Chip and PCB	d PCB $\quad \mathbf{E 9 . 9 0}$
S100 Expansion Motherboard for	for
Nascom I	£39.00
Anadex Printer Paper - 2000 sheets	sheets $\quad \mathbf{£ 2 5 . 0 0}$
Floppy Disks 51/4" Hard \& Soft	
Sectored	£3.50
Floppy Disk Library Case $51 /{ }^{\prime \prime}$	¢3.50
Lexicon Language Translator	£125.00
Modules for Lexicon	$£ 29.00$
Eprom Boards	£63.00
8K Static Ram Boards - S100	¢ $\quad \mathbf{1 1 0 . 0 0}$
Grandstand Video Game	E59.00
Cartridges for Grandstand	¢11.99
George Risk Asclı Keyboard	£39.00
Cartridges for Atarı	
- Full Range in Stock	£13.90
Interface PET IEEE -- Centronics Parallel	
Not decoded	£49.00
Decoded	£77.00
Interface to Centronics paraliel for TRS80	$\text { lel for } \quad \mathbf{£ 7 5 , 0 0}$
Verocases for Nascom 1 \& 2 etc.	etc. $\quad \mathbf{E 2 2 . 5 0}$
Keyboard Cases	$\mathbf{¢ 9 . 9 0}$
- Electric Pencil for TRS80	£29.00

The input and output sides of the UAR
switchable between any of the options
switchable between any of the options OID the printel
PIO There is also a totally uncommited Parallei l'O (MK3887) giving 16, programmable, I/O lines. These are
addressable as 2×8 bit ports with complete handshake Documentation Full construction article is provided for those who buy a kit and an extensive software manual is pro vided for the montor and Basic
Basic The Nascom 2 contains a full 8 K Microsoft Basie in one ROM chip with additional features like DEEK, DOKE,
SET, RESET for simple programming
With tree $16 K$ RAM board

Verv popular for home \bar{G} business use 8 K Marosott Bdsir
ROM 8 K Pet 32 K \& 16 K with new mproved kevooard 32 K \& 16 K with new mprovi
All with greetr scieen Extra cassette deck E55 ful ange on software avararale

viden 100
$12^{\prime \prime}$ B LACK \& WHITE
LOW COST VIDEO MONITOR RRP $£ 79$ only $\mathbf{f 6 9}$

- Ideal for home, personal and business computer systems - $12^{\prime \prime}$ diagonal video monitor - Composite video input - Composite video input Compatible with many computer systems Solid-state circuitry for a stable \& sharp picture - video bandwidth - $12 \mathrm{MHz}+3 \mathrm{DB}$ - nput impedance -75 Ohms Resolution - 650 lines Minimum in Centrat 80% of CRT; 550 Lines Minimum beyond central
80%.

Please add VAT to all prices - Delivery at cost. will be advised at time of purchase. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number.
CREDIT FACILITIES ARRANGED - send S.A.E. for application form.
14 Station Road, New Barnet, Hertfordshire, EN5 1QW Telex: 298755 TELCOM G
Telephone: 01-441 2922 (Sales) 01-449 6596
OPEN - 10 am - 7 pm - Monday to Saturday
Close to New Barnet BR Station - Moorgate Line.

CONSTRUCTIONAL PROJECTS

CHIP CHECKER by L. V. Cooper 25
Versatile i.c. tester
PRESCALER by Michael Tooley B.A. and David Whitfield B.A., M.Sc. 34
V.H.F. accessory for the DFM
PE CONGRESS Part 1 by Graham Jackson 38
Hi-fi stereo amplifier
PE TRAVELLER 70
Part 2-Installation and Suppression
2 WIRE TRAIN CONTROLLER Part 1 by J. Milne 72
Allows independent control over four channels
GENERAL FEATURES
EDUKIT REVIEWED by Mike Abbott 22
A really low cost learning tool
SEMICONDUCTOR UPDATE by R. W. Coles 24
ZMOS F.E.T. AG1000 IU101
POWER SUPPLIES FOR M.P.U.s Part 1 by A. Clements 54
Design basics for adequate supplies
MICROBUS by D.J.D. 60
Programming problems-low cost SC/MP system—Hex keyboard/display
INGENUITY UNLIMITED 64
Model Railway Controller-Metal Detector-Low Noise Mic Pre-amp
NEWS AND COMMENT
EDITORIAL 17
MARKET PLACE 18
INDUSTRY NOTEBOOK by Nexus 33
MICRO-PROMPT 63
SPACEWATCH by Frank W. Hyde 66
SPEAKER OFFER 68
COUNTDOWN 71
PATENTS REVIEW 79
READOUT 80
BOOK REVIEWS 80
POINTS ARISING 80
SPECIAL SUPPLEMENT
VIDEO FOR EVERYONE by G. K. Gardner 44
State of the art and the futureOUR MAY ISSUE WILL BE ON SALE FRIDAY, 11 APRIL 1980
(for details of contents see page 37)

[^0]
WATFORD ELEGTRONIES
 33/35, CARDIFFROAD. WATFORD. HERTS. ENGLAND MAII ORDER CALLERS WELCOME Tel Watord 40588 .

TRANSISTORS

吅》>

-
AD
AF
AF

| POLYESTER'RADIAL LEAD CAPACITORS: 250V; | ULTRASONIC |
| :--- | :--- | :--- |
| 10n $15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n} 5 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}, 100 \mathrm{n}$ 7p; $150 \mathrm{n} 10 \mathrm{p} ; 220 \mathrm{n}$, | TRANSDUNCERS | ELECTROLYTIC CAPACITORS: (Values are in $\mu \mathrm{F}$).

500V: $1040 \mathrm{p} ; 47$ 68p; 250V: 10065 p ; 63 V .

$$
\begin{array}{r}
80 \\
80 \\
80 \\
80 \\
\hline
\end{array}
$$

LINEAR
LiN's
I's

77 710 723 74 74

 753 810 AY Are. Ar Ar and

${ }_{35}^{75}$

A

[^1]
\[

$$
\begin{array}{l|l}
78 & \text { LM } 311 H \\
36 & \text { LM318H } \\
50 & \text { LM } 324 A
\end{array}
$$
\]

NE564	4
NE565A	120
NE566	160
NE567V	170
NE570	375
NE571	420
RC4136D	
S556B	
SG3402	295
SN76003N	240
SN76013N	16
SN76013ND	13
SN76D18	148
SN76023N	
SN76023ND	
SN76033N	19
SN76115N	21
SN76131	110
SN76227N	95
SN76477	200
SN76660	120
SP8629	300
TAA621A	25
TAA661A	155
taA960	320
tad 100	159
TBA120S	70
TBA540	220
tBA5500	330
TBA641-A	
$\mathrm{BX1}$ or BX	250
TBA65;	190
tBa800	90
tbab 105	
tba820	
IPA9200	260
TBA9900	270
TCA965	120
TDA1004	290
TDA1008	310
TDA1022	575
TDA1024	105
TDA2020	320
TL061C	
TLO62CP	125
ILO64CN	159
TL071CP	45
TLO72CP	
TLO74CN	140
TLO81CP	
TLO82CP	
tLo83CP	95
TLO84CP	120
UAA170	150
UAA180	150
ZN414	
ZN424E	130
ZN425E	415
ZN1034	200
ZN1040E	685

Superboard II
At these prices why waste time and money on unauthorised kit copies? Just a little more in price than Sinclair for 8 whole lot more and fully expandable ! 610 Expansion Board 8k RAM ONLY $£ 149.95$ + VAT IP CD3P Minifloppy Disc, Cased, PSU, 2 copies Dos ONLY £289+VAT Set of $4 k$ RAM (Superboard users only) ONLY £24 + VAT Plastic Case, Beige ONLY £26+VAT Challenger IP-Metal Cased, Superboard, PSU modulator ONLY £188+VAT

SofTY
INTELLJGENT EPROM PROGRAMMER

Devalop,Copy, Burn, Verify 2708,\& with $\bmod 2516$ Softy is a versatile product and each application will be different by definition. When Softy is connected via a serial (RS 232) or parallel link with any small computer capable of supporting an assembler a simple and Capable Product Development System is performed. For product develop ments less than $2 k$ of firmware Softy may be the only development tool you need.

Connects Directly to TV.

Built
$\stackrel{\text { Or }}{ }$

ONLY $£ 120+$ VAT Built \& Tested $\mathbf{£ 1 0 0 + V A T}$ Kit £20+VAT Built - Power Supply

Super Print 80
PERFORMANC The ideal companion for PET, APPLE TSR80 Exidy, Superboard, Compukit, Ohio Challengers and most micro's
Rugged metal enclosure makes it ideal for home computing, small business systems, data logging etc.
*16 Baud Rates to 19,200 *96 Characters ASC I/
Standard *Auxiliary User Defined Character Set
"Accepts 81/2" max. paper - pressure feed 9112" max. paper - tractor feed *Self Test Switch Model 800 ONLY $£ 329$ + VAT Model 800st ONLY $£ 389$ + VAT

Atari VCS System

MOST POPULAR TOP RANGE MICRO-VIDEO GAME
Current cartridges. Air Sea Battle (27), Space War (17), Outlaw (16), Video Olympics (50). Breakout (12). Basket ball (2), Surround (14), Blackjack (7), Basic Maths (8), Code breaker (20). Hunt \& Score (8). Miniature Golf (2), Skydiver (5), Street Racer (27), Chess (8), Levels, Backgammon. Brain

Games. Bowling
Cartridges mostly- $£ 13+$ VAT Backgammon- $£ 30+$ VAT
Chess (8 levels) -£39 + VAT Superman-£20.80 + VAT Indy 500 (with controls) - $£ 30+$ VAT

Coming soon - BASIC Computing, Space Invaders, plus many more ! Buy a VCS, introduce a friend to buy one and get a Keyboard FREE - worth £19-limited Ingersol Offer.

ATARI VCS NOW ONLY $£ 113$ + VAT + your first Cartridge - $\mathbf{£ 6 . 9 0}+\mathrm{VAT}$ (worth $£ 13$)

[^2]
ELEGTROALUE

 GATALOGUE 10 HAD YOURS YET?Our computer has already selected thousands of our customers to whom our new catalogue has automatically been sent. If you would like a copy too, simply send us your name and address. It's

(You don't even have to pay return)

IT'S A GOODDEAL BETTER FROMELECTROVALUE

- We give discounts
on C.W.O. orders, except for a few items market Net or N in our price lists.
5\% on orders, list value £ 10 or more
10\% on orders list value £25 or more.
Not applicable on Access or Barclaycard purchase orders.
- We pay postage in U.K. on C.W.O. orders list value $£ 5$ or over. If under, add 30p handling charge.
- We stabilise prices. by keeping to our printed price lists which appear but three or four times a year.
- We guarantee all products brand new, clean and maker's spec. No seconds, no surplus.

OUR NEW CATALOGUE No 10

Full 128 pages. Thousands of items. Improved classification for easier selection. Valuable working information. Illustrations. Separate quick-ref price list.

EleGTROTALUELTD

HEAD OFFICE (Mail Orders)

28(B) St. Judes Road, Englefield Green, Egham, Surrey
TW20 OHB. Phone: 33603 (London prefix 87. STD 0784) Telex 264475.

NORTHERN BRANCH (Personal Shoppers Only) 680 Burnage Lane, Burnage, Manchester M19 1NA Phone: (061) 4324945.

Electronic Systems Ltd

P.E. ULTRASONIC CLEANER

All the designer approved parts, including fibre glass case, to complete this exciting project as featured in the January 1980 issue.

STK 463

Hybrid stereo power amp I.C delivers 30W R.M.S into 8 ohms from each channel, all contained in one package approximate size as outline to this item. From one of the worids leading manufacturers this new I.C. features only 0.5 mV outpit noise and THD of 07% and IMD of 1% at IW. Price includes P.C.B., data sheet and additional support components to complete. Just add pre-amp and power supply (not supplied) to build a high quality stereo amp
£15.80
IIImIIIII
-
PS463
Toroidal transformer, bridge rec and smoothing caps and instructions to make a suitable power supply for the STK $463 \mathbf{£ 1 3 . 8 0}$ p.p. $£ 2.00$

CPLM1

A versatule self contained sound to light unit compristing red, green and blue lamps in moulded cases that snap together to form columns on modulator. Extra snap together lamp cases to extend column or to construct extra lamp columns are available with lamps. Sockets on rear of unit enable up to 1000 watts of lamps to be connected to each channel. No need to connect to amplifier as modulator has a built in microphone, just connect to mains and its ready to go
£29.50
extra tamp holders with lamps $£ 4.50$ p.p. $£ 1.00$ each.

Send large S.A.E. for further details of all our products.
Terms C.W.O. Add $£ 1.00$ p.p. unless stated. Prices do not include VAT, add 15% to total order and carriage price Send order to

WICCA ELECTRONIC SYSTEMS LTD

Orchard Works, Wallington, Surrey

Phone: 01-669 6047

NEW
 $12+12$ AMPLIFIER KIT
 An opportunity to build your own 12 watts per channel stereo amplifier with up-to-the-minute features. To complete you just supply screw ceramic cartridge, microphone tape or tuner din input sockets for headghones By the press of a button it transiorms into a 24 watr speakers and disco amplifier with twin deck minxing The kit incorporates a wilt mono Lisco amplifier with twin deck inxing The kit incorporates a Muillard featured 4 slider level controls, rotary bass and treble contros. Also button switches. Silver finish fascia panel with treble controis and 6 push assemble teak simulate cabinet and ready made metal work For turt to assemble teak simulate cabinet and ready made metal work. For further information instruction Size $91 / 4^{\prime \prime} \times 83^{\prime \prime} \times 4^{\prime \prime}$

50 WATT MONO

DISCO AMP

f30.60

p\&p f 2.70
 50 watts rms. 100 watts peak output. Big features include two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches. Independent bass and treble controls and master volume.
(4 N

20×20 WATT STEREO AMPLIFIER Viscount IV unit in te ak simulate cabinet Silver finish rotary controls and pushbutt ons with matching tascia, red mains mdicator and stero jack socket Rear panel features fuse holder, DIN speaker and input sockets 20×20 wams RMMS 40×40 watts peak for use with 8 to 15 ohm speakers \rightarrow Size 14^{4} " $^{\prime \prime} \times 3^{\prime \prime} \times 10^{\prime \prime}$ approx. NE W feature-units now indudes' a built in four channel stereo sound facility

1
+1 LP1 $182 / 2$ Stereo pre amp out cerat power audic amp module OUR PRICE $\underset{p+p f 100}{\text { OUR PRICE }} \leq 4.15$
PACK $22 \times$ LP1173 10w RMS output power audio amp modules +1 LP1 184/2 Stereo pre amp for magnetic, ceraminc and auxiliany inputs. \qquad £7.65
ACCESSORIES Suitable mains power supply parts, consisting of Arins transtormer, bridge rectifier, smoothing capacitor and set of rotan volume and balance
$£ 3.00$
plas 11.50 p\&tap
Two Way Speaker Kit Comprising of two 8" $\times 5$ " approx 4 ohm avs and (wo $3 / 2$ 15 ohm mid-range tweeter with two cross-over capacitors. avallate also to purchasers

Per stereo pair
plus f1.55 $\&$ \& (4.95

323 EDGWARE ROAD, LONDON W2 21B HIGH STREET, ACTON W3 6NG ACTON: Mal Order only, No callers ALL PRICES INCLUDE VAT AT 15\% 1.2.00 mind atiect to chenge without notics. All enquires Stamped Addressed tnvelope. MOTE: Persons under 16 years not served without parent's authorisation.

30×30 WATT AMPLIFIER Wise IN KIT FORM

For the experienced constructor com plefe in every detail, same facilities as Viscount IV. but with 30×30 output

nit Shure M75 6 Magnetic Cartidg

£7.95
BSR ${ }^{\text {wamatat }}$
relurn and cueing lever. hected with auto ceramic cartrioge 2 speeds with $45 ; p \mathrm{~m}$ spindie adaptor ideally suted for hom

PHILLIPS RECORD PLAYER DECK GCO37 Hifi record player deck belt drive complete with GP401 magnetic carridge-LIMITED STOCK $\mathbf{~} \mathbf{2 7 . 5 0} 010$
UNBEATABLE OFFER AT UNBEATABLE OFFER AT $\mathbf{~} 27$
BUYER COLLECI ONLY.

BARGAIN OFFER

Ariston pick-up arm
Complete with headshell.
Complete with headsheil
Listed price over $\mathbf{5 0 . 0 0}$.

OUR £11.95 PRICE $\mathrm{P}+\mathrm{P} £ 2.50$

Parsomal Shoppers EDGWARE ROAD LONDON W2 Tel: 01-723 8432. 9.30am-5.30pm Closed all day Thursday ACTON: Mail Order only. Mo callers gooos oespatcher to manmamo amo m. helamo omtr

This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.

- Handsome purpose built ABS cabınet
- Easy to build and install
- Uses Texas instruments TMS1000 microcomputer
- Absolutely all parts supplied including l.C. socket
- Ready drilled and legended PCB included
- Comprehensive kit manual with full circuit details
- No previous microcomputer experience necessary
- All programming permanently retained is on chip ROM
- Can be built in about 3 hours!
- Runs off 2 PP3 type batteries.
- Fullv Guaranteed

* Saue pounds ou normal retail price by building yourself.

ALL CHROMATRONICS PRODUCTS SUPPLIED WITH MONEY BACK GUARANTEE PLEASE ALLOW 7-2I DAYS FOR DELIVERY
Please send me:
TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX. NAME \qquad
ADDRESS

I enclose cheque/PO value $\{$ or debit my ACCESS/BARCLAYCARD account no
\square
Signature

GHROMATRONIES

LIGHTING \& AMPLIFIER MODULES FROML\&B

01-6894138

YOU'VE ALL HEARD OF OUR SUPERB MODULES, AND IF YOU HAVEN'T. IT'S TIME YOU DID, SO READ ONI SHOWN HERE ARE A RANGE OF THE MOST RELIABLE SYSTEMS ON THE MARKET.

LB31000LD and 11000 LD DIMMERS. FULL POWER 3 \& SINGLE CHANNEL LIGHTING DIMMERS FOR USEIN CLUBS/PUBS/THEATRES/SCHOOLS, ETC. 1000 w per channel. Fully fused phase controlled.
Full input and individual Triac filters.
 $20 \times 7.8 \times 3.5$

POWER AMPS, 250, 150, 100 \& 25W RMS. RUGGED TOUGH DEALING
POWER AMP MODULES.

PREAMPS

LBPA3. Complete srereo disco preamp system. Comprising of L\&R deck mixers, mic mixer, deck and mic tone stages, mic auto fade over decks, PFL, output
drivers and its own regulators. LBPA2. Genersi purpose chan. mixer/tone stage. LBPA1, Stereo Hi-FiSystem

Four types of powerful supply units for our power amps. Consisting of a varnishimpregnated mains transformer and rectifier board (fuse protected).

LB250PS E24.50 LB150PS E18.00 LB100PS E14.70 LB25PS £11.20

LBPA1 $\mathbf{f 1 9 . 5 0}$ LBPA2 f17.20 LBPA3-M (magnetic deck inputs) $£ \mathbf{3 0} 70$ LBPA3-C (ceramic
LBPA3-M deck inputs) $£ \mathbf{3 0 . 7 0}$

You
YOU REQUIPE A BOARD THAT'S MIGHTY COMPETITIVE, RELIABLE MANUFACTURED FROM THE HIGHEST QUALITY COMPONENTS, OF HIGH CCT, DGM AND GUARANTEED. IN TWOLETTERS YOU REOUIREL E
All prices shown are inclusive of VAT (15\%)
P/packing FREE in the UK except power supplies ($£ 1.00$
Trade and Overseas inquiries welcome
For your Fire E catalogue send a 10 p stamp to:

The NEW Marshall's 79/80 calalogue is just full of components

and that's not all...

. . ournew catalogue is bigger and better than ever. Withinits 60 pages are details and prices of the complete range of components and accessories available from Marshall's.
These include Audio Amps Connectors, Boxes, Cases, Bridge Rectifiers Cables Capaciors Crystats. Diacs, Diodes. Dis plays Heatsinks liCs Knobs. LEDs, Multimeters, Plugs, Sockets. Pots, Publications Relays. Pesistors, Soldering Equipment: Thyristors, Transistors, Transformers, Voltage Regulators, etc., etc.
Plus details of the NEW Marshall's 'budget' Credit Card. We are the first UK component retailer to offer ourcustomers our own credit card facifity
Plus - Twin postage paid order forms to facilitate speedy ordering.
Plus - Many new products and data.
Plus 100 s of prices cut on our popular lines including I Cs. Transistors, Resistors and many more.
If you need components you need the new Marshall's Catalogue
Available by post 65 p post paid from Marshall's, Kingsgate House, Kingsgate Place, London NW6 4TA. Also avalifable from any branch to callers 50 p .

Retail Sales: London: 40 Cricklowood broadway, NW2 3ET. Tel: 0i-452 0161/2. Ase 325 Edgware Road, W2. Fel: 01-723.4242. Glasgowi 85 West Aegent Streat, G2 200. Tel: 041-332 4133. And Eristol: 108A Stokes Croft, Bristol. Tal: 0272 426801/2.
 Are pleased to announce a
new kit in the Wersi Do-it-
Yourself Organ range. Fantastic value at only $£ 220.00$ COMPLETE. Fill in the coupon now for advance details and send to:-

AURA SOUNDS 14-15 Royal Oak Centre, Brighton Road, Purley, Surrey. Tel: 01-668 9733 and at 17 Upper Charter Arcade, Barnsley, W. Yorks. Tel: Barnsley (0226) 5248

Name \qquad
Address.

Tomorrows tools for todays problems

CONTINENTAL SPECIALTIES CORPORATION/F.S.C. (UK) Lta., Dept 50 Shire Hill Industrial Estate, Unit 1 . Saffron Walden Essex. CB11 3AQ

The professional scopes you've always needed.
 When it comes to oscilloscopes, you'll have to go a long way to

 equal the reliability and performance of Calscope

Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition.

The Calscope Super 10 , dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations.

The price £ 219 plus VAT.
The Super. 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity. Price f 162 plus VAT.
Prices correct at time of gong to press

CALSCOPE DISTRIBUTED BY

Watford Electronics
33-35 Cardiff Road.
Watford, Herts.
Tel: 092340588
Audio Electronics, Maplin Electronics Supplies Ltd.
301 Edgware Road, London W.2. P.O. Box 3
Tel: 01-724 3564
Access and Barclay card facilities Tel: 0702715155
(Personal Shoppers)
CALSCOPE

microtan 65

6502 based microcomputer. IK RAM for user programme Superb IK monitor TANBUG. stack \& display memory. Expands into a system. VDU alphanumeric display on un-modified domestic TV. Optional chunky graphics. Excellent documentation.
MICROTAN 65 outperforms all other small microcomputers in terms of value for money and performance. It is much easier to use as a result of the video display, intelligent keyboard socket, and very powerful monitor. The system grows to become a very useful, complete microcomputer in sensibly priced and very well designed modules.
Quite simply the best microcomputer system.

Freepost
Birmingham B19 1BR
021-233-2400
(Invoices only)
P.O. Box 290,

8, Hampton Street, Birmingham, BLG 3JR

- vat inclusiverices
- VAT INCLUSIVE. PRICES
- ACCESS
- ADD 30p PGP
- VISA
- CASH
- 24 HR PHONE ANSWERING SERVICE
- FREEPOST ON ORDERS

- STATE OF THE ART L.S.I. CIRCUITS
- DOUBLE HEIGHT CHARACTER SELECTABLE FOR LEGIBILITY
- CHARACTER ROUNDING - EFFECTIVELY DOUBLES DEFINITION
- ULTRASONIC REMOTE CONTROL
- HIGH QUALITY THROUGH PLATED P.C.B.
- ALL I.C. MOUNTED ON SOCKETS
- PREALIGNED UHF/IF MODULES
- NEEDS NO INTERNAL CONNECTION TO THE TELEVISION SET
- SIZE $430 \mathrm{~mm} \times 90 \mathrm{~mm} \times 220 \mathrm{~mm}$
- SUPPLY 240v 50 Hz 35 w
- NEW *TOUCH CONTROL KEYPAD* NEW

INCLUDES TUNER, P.S.U., DECODER, REMOTE KEYBOARD, P.A.L. ENCODER, U.H.F MODULATOR CASE WITH SCREENED AND PUNCHED FRONT PANEL.

- £189.90 inc VAT. pध $\mathrm{P} £ 3.00$.

FULL TELETEXT MANUAL IF BOUGHT SEPARATELY - $£ 2.50$ p\& pe0.50.

C/MOS PRICE INCREASE: PLEASE ADD 25\% TO LAST MONTH'S PRICES AS ADVERTISED

D.I.Y. KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. 128-NOTE SEQUENCER

Enables a voltage controlled synthesiser to automatically play preprogrammed tunes of up to 32 pitches and 128 notes fong. Programs are keyboard initiated and note length and riythmic set of basic component kits,
Set of basic component kits, PCBs and layout charts
$\begin{array}{lrr}\text { Set of text photocopies } & \text { KiT76-7 } & \text { E34.58 } \\ & \text { E1.36 }\end{array}$

P.E. 16-NOTE SEQUENCER

Sequences of up to 16 notes may be programmed by the use of external panel controls and fed into most voltage controlled ynthesisers.
Set of basic component kits, PCBs and layout charts
$\begin{array}{llr}\text { Set text photocopies } & \text { KiT 86-5 } & \mathbf{E 2 7 . 9 9} \\ & & \mathbf{E 1 . 8 4}\end{array}$

P.E.STRING ENSEMBLE

A muttivoiced polyphonic string instrument synthesiser Set of basic component kits, PCBs \& layout charts

KIT77-8 $£ 92.89$
P.E. JOANNAPLUSORGAN VOICING

A modified version of the P.E. 5 -octave piano that reteins all the original facilities and inciudes switchable orgen voicing circuitry

Set of basic component kits. PCBs \& fayout charts
$\begin{array}{lrr} & \text { "Sound Design' booklet } & \text { KIT 71-7 } \\ & \text { £119.87 } \\ & \mathbf{£ 1 . 0 0}\end{array}$

ELEKTOR ELECTRONIC PIANO

A touch-sensitive muttiple-voicing piano using the latestintegrated circuit techniques for the keving and envelope shaping, and virtually eliminating "bee-hive" noise hitherto inherent in previous electronic pianos.

5-octeve set of basic components and PCBs (as published)
KIT 80-9 £136.41
Additionał 3-octave extension and basic parts and PCBs (as published) KIT 80-10 \quad E54.62
P.E. MINISONIC MK2 SYNTHESISER

A portable mains operated miniature sound synthesiser with keyboard circuits. Although having slightly fewer facilities than the large Formant and P.E. synthesisers the functions offered by this design give it great scope and versatility.
Set of basic component kits /excl KBD R's \& tuning pots-
see list for options available) and PCBs (incl layout charts
$\begin{array}{lll}\text { Sound Design" booklet } & \text { KIT 38-25 } & \text { £76.92 } \\ & & \mathbf{~ 1 . 0 0}\end{array}$

P.E. SYNTHESISER

The well acclaimed and highly versatile targe scale mains operated synthesiser. Other circuits in our lists may be used with it to good advantage.

Main Unit basic component kits, PCBs \& layout charts
KIT 23-31 £101.43
Keyboard Unit basic component kits, PCEs \& layout chars KIT 23-32 $\mathbf{f 6 0 . 4 7}$
Main Unitset of textphotocopies
15.91

Keyboard Unit set of text photocopies $\mathbf{\$ 2 . 3 0}$

ELEKTOR FORMANTSYNTHESISER

A very sophisticatged synthesiser for the advanced constructor who puts performance before price.
Set of basic component kits, PCBs (as published)
$\begin{array}{rrr} & \text { KIT 66-14 } & \mathbf{£ 2 4 7 . 6 0} \\ \text { Set of text photocopies } & £ 7.83\end{array}$

BASIC COMPONENTS SETS include all necessany esistors, capacitors. semiconductors, potentiometers and transformers. Hardware such as cases, sockets, these may be bought separately. Fulier details of kits PCBs and parts are shown in our lists.

LAYOUT DIAORAMS are supplied free with all PCBs unless "as published"

PHONOSONICS
MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

P.E. GUITAREFFECTSUNIT

Modulates the attack, decay and filter characteristics of a signal from most audio sources, producing 8 different switchable effects that can be further modified by manual controls.

Basic parts with foot switches, PCB \& layout char

Textphotocopy	KIT 42-3	£10.02
$28 p$		

ELEKTOR DIGITALREVERB UNIT

A very advanced unit using sophisticated i.c. techniques instead of mechanical spring lines. The basic delay range of 24 to 90 mS can be extended up to 450 mS using the extension unit. Further delays can be obtained using more extersions.
 KIT 78-4 C 48.85

ELEKTOR ANALOGUE REVERB

Using i.c.s instead of spring-lines the main unit has a maximum delay of up to 100 ms , and the additional set extends this up to 200 ms . May be used in either mono or stereo mode.

Main unit basic component set	KIT 83-1	$\mathbf{£ 2 9 . 4 9}$
Additional Delay basie components	KIT 83-2	$\mathbf{E 2 0 . 0 7}$
PCB (as pubbi.) to hold both kits	PCB9973	$\mathbf{£ 4 . 3 1}$
Text photocopy		$\mathbf{6 7 p}$

P.E. GUITAR MULTIPROCESSOR

An extremely versaties sound processing unit capable of producing. for example, flanging, vibrato, reverb, fuzz and tremolo as well as other fascinating sounds. May be used with most electronic instruments.

Set of basic component kits, PCBs \& layout charts
Set of text photocopies KIT 85-5 $£ 54.37$

P.E. PHASER

An automatically controlled 6-stage phasing unit with integral oscillator.
Basic components, PCB \& chart KIT 88-1 E10.14 $\begin{array}{llr}\text { 2-Notch extension, PCB \& chart } & \text { KIT B8-2 } & £ 6.36 \\ \text { Text photocopy }\end{array}$ Text photocopy 68p

EREKTOR PHASING \& VIBRATO

includes manual and automatic control over the rate of phasing \& vibrato, and has been slightly modified to also include a 2 -inpu mixer stage.
Set of basic compenents, PCB \& layout chart
$\begin{array}{lrr}\text { Textphotocopy } & \text { KIT 70-2 } & \text { E21.87 } \\ & & 67 \mathrm{p}\end{array}$

P.E. PHASINGUNIT

A simple but effective manually controlled phasing unit
Basic components. PCB \& chart KIT 25-1
Text photocopy $\quad 38 \mathrm{~F}$
PHASING CONTROLUNIT
For use with Phasing Kit 25 to automatically control rate of phasing Basic components, PCB \& chart KIT 36-1 E5.2 Textphotocopy

KIT 36-1

P.E. SWITCHEDTONETREBLE BOOST

Provides switched selection of 4 preset tonal responses.
Basic components, PCB \& chart KIT B9-1 £3.82 Textphotocopy 78

P.E. TREBLE BOOST UNIT

A simple treble boost unit with manual control depth.
Basic components, PCB \& chart KIT 53-1

ELEKTOR RESONANCE FILTER

Allows a synthesiser to produce a more realistic simulation of natural musical instruments.
Set of basic components \& PCB (as published)
Text photocopy

P.E. GUITAR OVERDRIVE

Sophisticated versatile fuzz unit incl. variable controls affecting the fuzz quality whilst retaining attack and decay, and also providing filtering. Usable with most electronic instruments,

Basic components, PCB \& chart KIT 56-3 e9.35 Text photocopy

P.E.SMOOTH FUZZ

Basic components, PCB \& chart KIT91-1 £5.01
Text photocopy
55p

TREMOLO UNIT

Aslightiy modified version of the simple P.E. unt. Basiccomponents. PCB \& chart KIT54-T £3.23

GUITAR FREQUENCY DOUBLER

A slightly modified and extended version of the P.E. unit Basic components, PCB \& chart KIT 74-1 $£ 4.97$ Text photocopy 39p

P.E. GUITAR SUSTAIN

Maintains the natural attack whilst extending note duration. Basic components, PCB \& chart KIT 75-1 $£ 5.68$ Textphotocopy 38p

P.E. WAH-WAH UNIT

Can be controlled manually or by integral automatic control Basic components, PCB \& Chart KIT 51-1 E3.99

P.E.AUTO-WAH UNIT

Automatically gives Wah or Swell sounds with each note played. Basic components, PCB \& chart KIT 58-1 E8.43

ELEKTOR WAVEFORM CONVERTER

Converts a saw-rooth waveform into sinewave, merk-space saw tooth, regular triangle, or square-wave with variable mark-space. Basic components, PCB \& chart, but excl.sw's KIT 67-1 £9.24

P.E.V.C.F.

A voltage controlled filter extracted from P. E. Minisonic project. Basic components, PCB \& chart KIT-65-1 E7.88

P.E. RING MODULATOR

Extracted from P.E. Minisonic project.
Basic components, PCB \& chart KIT 59-1 $\mathbf{~ 5 6 . 0 8}$

ELEKTOR RING MODULATOR

Compatible with the Formant \& most other synthesiser
Set of basic componeints \& PCB (as published)
Text photocopy
KIT 87-2 \quad ع6.40
38p

10\% DISCOUNT VOUCHER

 (PE 83)TERMS: Goods in current adverts \mathbf{z} lists over $£ 50$ goods value (excl $P \& P \&$ VAT). Correctly costed, C.W.O., U.K. orders only. until end of month on cover of P.E. Doess not apply to credit cerd orders.

ADD: POST \& HANDLINC

U.K. orders; Keyboards add £ 2.30 each. Other goods: Under $£ 5$ add 25 p , under $£ 20$ add 50 p , over $£ 20$ add 75 p . Recommended insurance against postal mishaps: add 50 p for cover up to $£ 50$, $£ 1$ for $£ 100$ covar, etc., pro-rata. Insurance must be added for credit card orders.
N.B. Eire, C.I., B.F.P.O. and other countries are subject to higher export postage rates.

ADD 15\%VAT

(or current rate if changed). Must be added to full totel of kits, discount post \& handling on all U.K. orders. Does not apply to Exports, or photocopies.

EXPORT ORDERS ARE WELCOME but to avoid delay we advise you to see our list for postage rates. All payments must be cash-with-order, in Sterling by International Money Order or through an English Bank. To obtain list - Europe send 25p, other countries send
Nose
Note that we do not offer a C.O.D. eervice and
that our terms are payment in adyence

AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of the PE projects built from our kits and PCBs. The cases were built by ourselves and are not for sale. though a small selection of other cases is available.
LIST-Send stamped addressed envelope with aH UK. requests for tree list giving fulfer details of PCBs, kits and
other components.

OVERSEAS enquiries for list Europe- \qquad

KIMBER-ALLEN

 KEYBOARDS AND CONTACTSKIMBER-ALLEN KEYBOARDS as required for many published projects. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C , the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame. 3 Octave ($\mathbf{3 7}$ notes) £25.50 4 Octave ($\mathbf{4 9}$ notes) $\quad \mathbf{~} 32.25 \quad 5$ Octave (61 notes) $\mathbf{~} \mathbf{3 9 . 7 5}$
CONTACT ASSEMELIES (gold-clad wire) - 1 required for each KBD note:
Type GJ-SPCO 25 $\frac{1}{2}$ p ea. Type GA - 1 pr of contacts, normally open 24p ea. Type GB - 2 pr N/O 281 $\frac{1}{2}$ p ea Type GC- 3 pr N/O $37 \frac{1}{2} p$ ea. Type GE - 4 pr N/O 4e $\frac{1}{2} p$ ea. Type GH - 5 pr N/O 581p ea. Type 4PS - 3 pr N/O plus SPCO 57p ea

P.E. NOISE GENERATOR

Extracted from the P.E. Minisonic.
Basic components, PCB \& chart
KIT 60-1 E4.00
WIND8 RAIN EFFECTSUNIT
A slightly modified version of the original P.E. unit.
Basic components, PCB \& chart
Text photocopy
KIT 28-1 E 4.68

P.E.ENVELOPE SHAPER

WITHOUTVCA

Provides full manual control over attack, decay, sustain and release functions, and is for use with an existing VCA.

Basic components, PCB \& chart
Text photocopy
KIT 44-1
85.24

P.E. ENVELOPE SHAPER

WITH VCA

Has an integral Voltage Controlled Amplifier, and has full manual control over the A.D.S.R. functions. Basic components, PCB \& chart

Text photocopy
KIT 50-1
£7.34

P.E.TRANSIENT

GENERATOR

An ADSR envelope shaper without VCA, and additionally providing Repeat-triggering enabling a synthesiser to be programmed for mandolin o banjo effects.

Basic components, PCB \& chart		
	KIT 63-2	$\mathbf{E 7 . 1 3}$
Textphotocopy		58 p

P.E.EXTERNAL-INPUT

SYNTHESISER-INTERFACE

Allows external inputs such as guitars, microphone etc., to be processed by synthesiser circuits.

Basic components, PCB \& chart
KIT81-1 $\mathbf{£ 3 . 2 3}$

P.E.TUNING FORK

Produces B4 switch-selected frequency-accurate tones with an LED monitor clearly displaying beatnote adjustments.

Set of basic components, incl. power supply. PCBs \& charts KIT 46-3 E23.32 Text photocopy

97p

P.E.TUNINGINDICATOR

A simple 4-octave frequency comparitor for use with synthesisers and other instruments where the full versatility of KIT 46 is not required.
$\begin{array}{lll}\text { Basic components, PC8 \& chart, but excl. sw. } \\ & \text { KIT 69-1 } & \mathbf{5 8 . 1 9} \\ \text { Text photocopy } & 58 \text { p }\end{array}$

P.E. DYNAMIC RANGE

LIMITER
Preset to automatically control sound output levels. Basic components, PCB \& chart

KIT 62-1 $\mathbf{f 5 . 0 3}$
P.E.CONSTANT DISPLAY

FREQUENCY COUNTER

A 5 -digit courter for 1 Hz to 55 kHz with 1 Hz sampling rate. Readout does not count visibly or flicker due to blanking.

Basic components, PCB \& chart
$\begin{array}{lrr} & \text { Text photocopy } & \text { KIT 79-2 } \\ & \mathbf{5 8 2} .28\end{array}$

P.E. 6-CHANNEL MIXER

A high specification stereo mixer with variable input impedances.

Basic components, (excl.sw's.) and set of
PCBs and charts.
Extra 2-channel set with 90-8
£51.35
Extra 2-channel ser with PCB
KIT90-9
Set of Text photocopies
f9.69

STEREO HEADPHONE

AMPLIFIER

Extracted from P.E. 6-channel mixer. Basic components. PCB \& chart

KIT 92-1
f 5.04

DIGITAL EXPOSURE

UNIT
Controls up to 750 watts in $\frac{1}{2}$ second steps up to
10 minutes, with built-in audio alarm.
Basic components, PCBs \& charts
Textphotocopy
£1.20

P.E.DISCOSTROBE

A 4-channel tight show controller giving a choice of sequential, random, or full strobe mode of operation, and with additional audio input.

Basic components, PCB \& chart
Text photocopy
78

RHYTHM GENERATORS

Several available, including programmable 16 beat 64000 pattem, 128 beat almost infinite pattem, and pre-programmed 15 pattern using either M252 or M253 rhythm chips. A selection of effects instrument circuits is also available.

P.EVOICEOPERATED

FADER

For automatically reducing music volume during takkover - particularly useful for disco work.
Bas
Basic components, PCB \& chart KIT 30-1
24.37

TAPE NOISE LIMITER

Very effective circuit for reducing the hiss found in most tape recordings.
Basic components, PCB \& chart
KIT 6-3
84.13

AMERICAN

barclaycard
vitas

PRICES ARE CORRECT AT TIME OF PRESS.
E. A. E. DELIVEHY SUPNECT TO AVAILABILITY.

PHONOSONICS

EHPar

SEMICONDUCTORS SEND YOUR ORDERS TO DEPT. PE4, PO BOX 6 , WARE, HERTS. VISIT OUR SHOP AT: 3 BALDOCK ST, WARE, HERTS TEL: 0920 3182. TELEX: 817861

FUSE HOLDERS AND FUSES

TRANSFORMERS

POTENTIOMETERS

888 Track spesification as duad gang pots VC3, but tracks mounted to tog
anti-log action 100 k ohms $\mathbf{E 0 . 8 6}$. SPECIAL VOLUME CONTROLS
A misiature 16 mmm rype replacement volume control, incorporating single pole
on-off switch. Resistance value 5 k ohms. Tolerance $20 \% 1 / 8$ watt rating.
$1889 \quad £ 0.31$ MINIATURE ROTARY VOLUME CONTROL
5 k ohms log law with on-off switch. 20 mm grooved spindle. Tag connections 1890 V0.62 VC9 WIRE WOUND POTS
A range of wire wound single gang pots with linear tracks of 1 watt rating.
fitted with 10 mm bush and supplied with shakeproof washer and nut ${ }^{1} \mathrm{C} 661$. 10 .
 894 20 onms $\quad 1897$
SWITCHED POT ILop Track
Spectication as VC2 but track
Spect Itication as VC2 bu
18794 k 7 ohms
1880 lok ohns
188122 k ohms
track having (fog) la
1883100 k 0 hms
1884220 k
882 47k ohms
1884220 k ohms
188541 k ohms
18661 Meg
Miniature type for transistor circuits. The wiper of the preset is provided with a slot for screw driver adjustment. The tags of the preset will fit printed wiring
boards with a pitch of 2.54 mim. All tracks are finear law. 1801100 ohm
1802220 oh 1801100 ohms
1802220 ohms
1803470 n ohms 803470 nomms

807 10k ohms
80822 k ohms 1804 kohms
18052 k 2 ohms
18064 k 7 ohms
PRE-SET POT
1810 100k ohms
1811220 hmms
1812470 ohms
Miniature type for transistor circuits Wiper
 r.pm. Collet chuck. Ideal for drilling printed circuits or model
making No. 1402 . TRANSFORMER 240v Primary $0-20 v \in 2 A$ Secondary. By removing 5 turns for each volt from the secondary winding, any
voltage up to 20 v it 2 A is obtainable. Ideal for the experimenter.

ANTEX MLX Soldering tron. Sturdy 25 watt iron complete with. $4 \frac{1}{2}$ metres of 2 -core cable. Works off a 12 volt battery. Ideal for
Car. Boat, Caravan. No. 1724 .
$\mathbf{£ 5 . 2 9}$ TANTALUM CAPACITORS

3137	1 MFO 35 V fo. 13	3142	4.4MFD		21
3138	22MFD 35V E0.13	3157	3.3MFD	25 V	E0.21
3139	47MFD 35V £0.13	3143	10 MFD	35 V	¢0.25
3140	1.0MFD 35V £0.13	3144	22 MFD	16 V	c0.25
3141	2.2MFD $35 \vee \mathbf{E 0 . 1 4}$	3145	47MFD		
		3156	33MFD	35 V	f0. 13

ELECTROLYTIC CAPACITORS

BIB HI-FI ACCESSORIES

CASES AND BOXES

AUDIO LEADS

$\begin{array}{ll}\text { No. Type } \\ 107 & \text { FM indoor Ribbon Aerial }\end{array}$

	FM	
	3.5 mm Jack plug to 3.5 mm Jack plug length 1.5 m	
	5 pin DIN plug to $3 \cdot \mathrm{~mm}$ Jack connected to pins 3 \& length 15 m	
	5 pin DiN plug to 35 mm Jack connected to pins $1 \& 4$ length 1.5 m	
	Car aerial extension screened insulaed lead. Fitted plug and sucket	
117	AC mains connecting lead for cassette recorders and radios 2 metres	
118	5 din DIN pho	
	$2+2$ pin DIN plugs to stereo Jack socket with attenuation network for stereo headphones. Length 0.2 m	
120	Car stereo connector. Variable geometry plug to fit most can cassertes. 8 -track cartridge and combination units. Supplied with inlined fuse power lead and instructions	
123	6.6 m Coiled Guitar Lead Mono Jack olug to Mono Jack plug Black	
124	3 pin DIN plug to 3 pin DIN plug. Length 1.5 m	
125	5 Din DiN plug to 5	
	5 pin DiN plug to Tinned open end. Length 1.5 m	t0.85
127	5 pin DIN plug to 4 Prono Plugs. All colour coded.	
128	5 pin DiN plug to 5 pin DIN socket. Length 1.5 m	
	5 pin DIN plug to 5 pin DN plug mirror image. Length 1.5 m	61.21
130	2 din DIN plug to 2 pin DIN inline socket Length 5 m	
	5 pin DIN plug to 3 pin DIN plug $1 \& 4$ and $3 \& 5$. Length 1.5 m	
132	2 pin DiN plug to 2 pin DiN sock	
	5 pin DIN plug to 2 Phono plugs. Connected pins 3 \& 5. Length 1.5 m	f0.88
134	5 pin DIN plug to 2 Phono sockets. Connected pins 3 \& 5. Length 23 cm	
135	5 pin DIN socket to 2 Phono plugs. Connected pins Length 23 cm	
	Coiled stereo headphone extension lead. Black. length 6m	c2.01
178	AC mains lead for calculators, etc	c0.62

SWITCHES

Deacription DPDT miniature slide
 DPDT miniature slide DPDT standard stide

Toggle switch SPST 12 amp 250 V ac
Toggle switch DPDT 1 amp 250 Vac Rotary on-off mains switch Push switch-Push to make
Push switch-Push to break

AOCKER SWITCH

 A range of rockerswitches SPST-moulded in high insulation material avatable in a
choice of colours ideal for small apparatus

Description
Miniature SPST toggle 2 amp 250 V ac
Minature SPST toggle 2 amp 250 a Miniature DPDT toggle 2 amp 250 V ac Miniature DPDT toggle centre off 2 amp
250 Vac
Push-button SPST 2 amp 250 V ac
Push-button SPST 2 amp 250 V ac
MIDGET WAFER SWITCHES
Colour
RED
BLACK REACK
BHITE BLUE YELLOW
LUMINOUS
No.
1973
1974
1975
1976
1977
1978
1979

Mo.
1980
1981
1982
1983
1984

Single bank wafer type-suitable for switching at 250 V ac 100 mA or 150 V dc non-reactive loads make before-breax contacts Deacription No. Price Description No. Price $\begin{array}{llllllll}1 \text { pole } & 12 \text { way } & 1965 & \text { £0.55 } & 3 \text { pole } & 4 \text { way } & 1967 & \text { £0. } 55 \\ 2 \text { pole } & 6 \text { way } & 1966 & \text { £0.55 } & 4 \text { pole } & 3 \text { way } & 1968 & \mathbf{E 0 . 5 5}\end{array}$ MICRO SWITCHES | Plastic button gives simple 1 pole change over action |
| :--- |
| Rating 10 amp 250 Vac |
| |
| 1970 |

THE TROUBLE with looking at the future in electronics is that advances take place so quickly that by the time the prophesies are made the ideas are often already at prototype stage or even in production. Our video supplement takes a look at the present state of the art and also mentions some new techniques. These techniques will undoubtedly lead to a new range of smaller, cheaper domestic recorders though, at the present time, it is difficult to see how LVR will ever achieve the quality of reproduction now available from helical scan recorders. Perhaps by the time these words are published the new machines will be in production.

The video market has now taken off in this country and the indications are that sales will quickly grow over the next few years. What we don't yet know is the influence the videodisc will have.

MONEY

How about electronic money? We warn you that SGS ATES have already made the first steps in that direction with the introduction of an electronic credit card. Designed for an Italian
telephone company-PO where are you?--the card is intended for use with pay phones but the implications are obvious.

In the future you may never need loose change, in fact we can forsee a time when the minting and printing of money will no longer be necessary. Instead of drawing out money from your bank you simply get a new card. You then use your card for purchasespossibly over the phone-or stick it in the till or ticket barrier on the bus, at the station, cinema, sports centre, etc.

Each time you use the card the relevant credits are used up. When all the credits are used the card reader withholds the goods or services. Where are the benefits? No money to be stolen or carted to the bank-no loose change to carry or acquire when necessary. For the vendor it also means payment in advance, reduced machine maintenance and no money left in machines to tempt thieves. It will be possible to develop tills to accept the cards, to put card readers in taxis, TV's, petrol pumps, amusements etc.

Once again this is a product that is now available; the type numbers are M274D1 for the d.i.l. ceramic evalua-
tion package and XCARD for the card. The chip is essentially an EPROM of 17 $\times 8$ bits with a claimed 100 year data retention.

Security is taken care of by writing in an 8 bit word during manufacture and then blowing an on-chip fuse. If any attempt is made to erase the card to regain its original credit value the security key is also erased rendering the card useless. A plastic tab, which has to be removed to use the card, prevents resale after initial use.

APRIL!

Although this is the April issue and certain devices described elsewhere in these pages are not all they seem at first glance, we assure you that the above information has nothing to do with the date and is based on an actual product.
What other advances are there? How about a hi-fi amp of excellent quality for about $£ 70$-see the $P E$ Congress; an MPU kit for less than £30-read the EDUKIT review, or even a 2 Wire Train Controller-we believe we are the first to publish a design for the hobbyist in the U.K.

Mike Kenward

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 75 p each including In land/Overseas p\&p.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.10$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

TEMP PROBE

The new $T-10$ temperature probe from Racal-Dana Instruments has been designed to turn a digital multimeter into an accurate digital thermometer.

The unit uses a constant current bridge circuit with a solid state sensor to give an output of 1 mV per degrees Centigrade. The basic accuracy of the $\mathrm{T}-10$ is to within 2 degrees from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ and to within $3{ }^{\circ} \mathrm{C}$ from $-50^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.

The sensor, which is housed in a high temperature plastic probe, is embedded into a low mass brass tip for improved response during measurement. The probe is attached to the main unit via a coiled lead and the compact, self-powered mains unit plugs directly into a multimeter.

The $T-10$ is priced at $£ 79.00$ excluding VAT and p\&p.

For further information contact RacalDana Instruments Ltd., Duke Street, Windsor, Berkshire SL4 ISB (07535 69811).

RECORD VALET

The improved Record Valet from BIB is ideal for removing dust and static from gramophone records. The handle is a reservoir for anti-static liquid which is fed to a velvet cleaning pad. Adjacent to the pad is a brush which removes the dust from the record and deposits it on the cleaning pad.

The Valet which should ideally be used before each record is played, to ensure both the record and the stylus are protected is priced at $£ 5.47$ including VAT. A 15 ml bottle of anti-static cleaning fluid is also included with each Valet.

BIB Hi-Fi Accessories Ltd., Kelsey House, Wood Lane End, Hemel Hempstead, Herts. HP2 4RQ.

HOME RADIO

Home Radio have informed us that they have now moved to new premises at 269A Haydons Road, Wimbledon, London SW19 8TY.

The mail order address is still PO Box 92, 215 London Road, Mitcham, Surrey (01-543 5659).

DMM

The Simwood MC523 battery powered DMM provides a full range of measurement functions, and uses CMOS LSI circuitry for accuracy, long-term operational stability and low power consumption.

Five measurement functions are available with 30 current, voltage and resistance ranges. These consist of five a.c. and five d.c. voltage ranges from 200 mV to 600 V , with basic d.c. accuracies from 0.25 per cent; five a.c. and five d.c. current ranges from $200 \mu \mathrm{~A}$ to 1 A ,

with accuracies from 0.8 per cent; and ten resistance ranges from 200 ohms to 20 megohms, with accuracies of 0.25 per cent on all but the 20 megohm range. The ohms ranges offer high- and low-power measurement capabilities, for checking both circuit resistance and active components.

The liquid crystal display automatically indicates the measurement parameter-a.c. or d.c. volts; a.c. or d.c. current; ohms; kilohms or megohms-as well as polarity.

Other features of the MC523 which is priced at $£ 75$ include a high input resistance, autozero and auto-overange, and overload indication. Battery life of 200 hours is claimed under normal conditions of usage. The instrument measures $95 \times 155 \times 45 \mathrm{~mm}$ and weighs 300 g .

Simwood Limited, Garretts Hall, Shalford Green, Essex (0371 820006).

WORDPROCESSOR PACKAGE

The latest WordPro II wordprocessor package from Commodore has been specifically designed for use with the 16 K and 32 K "big keyboard" versions of their PET Computer. WordPro II is unusual for as well as floppy disk-based software, the package also includes the necessary ROM hardware to accommodate the program functions.

The WordPro II package, which can be installed in the PET with a minimum of fuss, in conjunction with Commodore's 2040 dual drive floppy disk unit, gives the user a capability to process up to 303 pages of text.

Combine this with a printer and you have an extremely powerful computer-word processor system for under $£ 2,600$. For applications requiring a high quality print-out, the system configuration can include a daisy
wheel printer instead of the matrix printer, but as such, will still cost less than $£ 4,000$.

In operation, WordPro II follows conventional wordprocessor practise. Firstly the text is entered into the PET, using the keyboard and the VDU displays a working text area of 24 lines. As the text is processed, it can be moved either up or down the screen thereby bringing fresh text onto the VDU. A "status line" at the top of the screen ensures that the operator is always fully aware of the cursor position as line editing is carried out.

Other text handling features include: an option to carry out right hand justification, variable left and right hand margins and a variable page length facility.

Once the text editing is complete, then it can be converted into hard copy via the printer, controlled by a formatting routine. It is therefore possible to produce both multiple copies of a fixed content letter from one command and multiple copies of a variable content letter from one command with insertions, such as name, address etc., taken from a secondary file.

The Commodore WordPro II Wordprocessor package which costs $£ 75$ comes complete with ROM, diskette, documentation and demonstration files in a stiff-backed multi-ring binder.

Commodore Business Machines, 360 Euston Road, London NW1 (01-388 5702).

ANTI-STATIC SLEEVE

A new protective record sleeve which is claimed to offer distinct advantages over ordinary sleeves is being introduced by Zerostat Components Ltd.

The sleeve is made from polypropylene which is extremely smooth for scratch free record removal and replacement. This stable material which is electrostatically compatible to the record vinyl greatly reduces the attraction of static charges.

The Zerostat Discwasher 'VRP' is on sale through hi-fi retailers at approximately $£ 1.95$ for a pack of ten or may be ordered direct from Zerostat Components Lid., Edison Road, Industrial Estate, St. Ives, Huntingdon, Cambridgeshire PE 17 4LF.

NASCOM PRINTER

A compact, low price printer which accepts both punched and unpunched plain paper is available from Nascom Microcomputers Ltd.

Called the IMP, the printer is of the impact matrix type producing characters in a 7×7 dot matrix at a speed of 80 characters per second. It accepts either pinfeed paper under tractor feed, to a maximum width of $9 \frac{1}{2}$ in, or unpunched paper under pressure feed. The latter allows the use of A4, foolscap or quarto letterheads.

The IMP offers bidirectional printing and a 96 ASCII character set with the hash mark replaced with a $£$ sign. The ribbon used is a cartridge loaded, endless loop type with a fivemillion character life.

Input data may be in either seven or eight bit formats with either one or two stop bits. Parity may be odd, even or ignored. Should a data transmission error be detected, an ASCII 7F character will be printed and the operator informed by indicator. "Linefeed" signals may be automatically generated when the printer is in use with computer systems providing only "carriage return" signals. In conjunction with Nascom monitors NAS-SYS 1 and NASBUG T4 this facility may be used to generate double spaced output.

Input is designed for RS232 levels and may be at any standard baud rate between 110 and
9600. A TTL output is available at 16 times the selected baud rate for operating an external 6402 type UART. A "busy" signal will be output when only 10 characters need to be input to fill the 945 character buffer. The signal will be maintained until more buffer space is available.

Priced at $£ 325$ plus VAT, the Nascom IMP is available from Nascom Microcomputers and selected Nascom distributors.

Nascom Microcomputers Ltd, 92 Broad Street, Chesham, Bucks. (02405 75155.)

VERO CATALOGUE

Designed to a new format, the latest 52 page hobbyist catalogue from Vero Elec tronics contains a wide selection of products that are particularly interesting to the home constructor.

Several new products are illustrated including Verobloc; a new prototyping method of building and testing circuits; a S100 bus system; a rack mountable development kit for evaluation or microprocessor-based systems to the S 100 format and low profile d.i.p. sockets.

The catalogue is available for $40 p$ from Vero Electronics Limited, Industrial Estate, Chandlers Ford, Eastleigh, Hants. SO5 3ZR.

CO-AX CONNECTORS

From Greenpar Engineering comes a new range of u.h.f. co-axial connectors designed specifically with the hobbyist in mind.

The range consists of three basic designs-free plug, panel socket and straight adaptor. Various versions of the plug are available to suit different types of co-axial cable. All connectors have nickel plated brass bodies and silver plated centre contacts. Phenolic insulators in the plugs and sockets ensure high temperature stability.

The connectors come in packs of ten, and are available direct from: Greenpar Engineering Ltd., PO Box 15, Station Works, Harlow, Essex.

KEYBOARD

A solid state ASCII keyboard measuring just 8.2 mm thick has been introduced by Interface Components Ltd.

Known as the TASA Micro-Proximity Keyboard the touch-activated keyboard is claimed to be virtually indestructible.

The keyboard is a thin rectangular board with a totally flat surface. The microproximity touch sensors are protected by a shield of tough polycarbonate which can be kept clean by wiping with a damp sponge. Because it can be easily cleaned and disinfected, it is ideal for sterile environments. It also can be used in hostile environments where dust, temperature extremes, moisture, chemicals or radio frequency interference are a problem.

Measuring 158 mm deep by 382 mm wide by $18 \cdot 2 \mathrm{~mm}$ thick the keyboard has a full 128 position 8 bit ASCII output plus continuous strobe, parity select. Other features include:

Built-in electronic shift lock; two-key rollover to prevent accidental two-key operation (excluding "control" and "shift") electronic hysteresis for firm "feel"; signal activation time of 1 millisecond; Output via 12 -way edge connector; CMOS compatible with pullup resistor; parallel output: active pull-down, direct TTL compatible (one load) open collector type.

The TASA Keyboard costs $£ 49.50$ excluding VAT and is available from Interface Components Ltd., Oakfield Corner, Sycamore Road, Amersham, Bucks. (02403 5076.)

MORE BIGVALUE FROM MOURTANOYSTORE

REALISTIC DX 300

General coverage receiver. Quartz-synthesised tuning, digital frequency readout. 3-step RF Attenuator. 6 range preselector with LED indicators. SSb and CW demodulation. Speaker. Code oscillator. Batteries (not included) or 12V DC. 20-204.

REG. PRICE 8229,95

6-DIGIT FREQUENCY COUNTER

Counts frequencies from 100 Hz to over 45 MHz with 100 mS gate time. Accuracy is 3 ppm at $25^{\circ} \mathrm{Cor}$ less thien $\pm 30 \mathrm{Mkz}$ on 10 MHz! Overloadprotected 1 -meg input. Sensitivity, 30 mV up to 30 MHz . Req. 9 V battery. 22-351. REG PRICE

£79.95

DIGITAL IC LOGIC PROBE

 4-Unique circuitry makes it a combined level detector, pulse detector and pulse stretcher. Hi-LED indicates logic " 1 ". Lo-LED is logic " 0 '. Pulse LED displays puise transitions to 300 nanoseconds, blinks at 3 Hz for high frequency signals (up to 1.5 MHz). Input impedence: 300 K ohms. With $36^{\prime \prime}$ power cables. 22-300.

DYNAMIC TRANSISTOR
 CHECKER

Shows current gain and electrode open and short circuit. Tests low, medium or high power PNP or NPN types. Go/no-Go test from 5.50 mA on power types. 22-024.

REG PRICE
$£ 9.95$
mas anace $£ 19.95$

You save because we design. manufacture, sell and service. Tandy have over 7,000 stores and dealerships worldwide. Over 2,500 products are made
specifically for or by Tandy at 16 factories around the world. The quality of our products has been achieved by over 60 years of continuous technological advancement.

MULTITESTER

Dual FET imput for accuracy and minimum loading. 11.5 cm mirrored scale. DC volts, 0-1-3-10 30-100-300-1000. DC current 0-100 a. 0-3-30300 milliamp. Resistance 0-30-300-3k-30 1C-1 megaohm. 0-100-1k-101C-100K-3 megaohms. Req. 9 V battery. 22-209.

£29.95

SIGNAL INJECTOR

For RF, IF, AF circuits. Maximum accuracy. Easy pushbutton operation. Needs two "AA" batteries. 22-4033.

$$
\text { REG. PRICE } 5279
$$

AC/DC CIRCUIT

 TESTERAccuracy in 1-300 volts ranges. Safe in live/dead circuits. Needs two "AA" batteries. 22-4034.

REG PRICE 435,95

The largest electronics retailer in the world.
offers subject to ava lability. Instant credit available in most cases.
OVER 170 STORES AND DEALERSHIPS NATIONWIDE.

[^3]Prices may vary at individual stores.

VIDEOTONE

Videotone who have joined with us this month in our special speaker offer (see pages 68,69) have decided to open a direct selling showroom in South London and cease selling through retail outlets. Videotone believe they are the first major hi-fi company to enter the direct selling market which has proved so successful for other consumer products.

The aggressive change in marketing policy which has resulted in price reductions of up to 50 per cent also allows speakers to be brought on a 21 day home trial basis; money back guarantee on all products; an extra 10 per cent discount on any own brands which are out of stock when an order is placed and also any hifi club who registers with Videotone will be given an extra 10 per cent discount. .

Typical prices include Minimax II's at $£ 44.00$ including VAT and Coral MC81 moving coil cartridges at $£ 48.87$ including VAT.

A brochure and order form is available from Videotone Ltd., 98 Crofton Park Road, London SE4 (01-690 8511).

SECOND-HAND INSTRUMENTS

With rapid advances in electronic technology making the latest "state of the art" instrumentation almost obsolete within 24 months, it might be reasonable to assume that there was a booming market for the sale of unwanted and under-utilised equipment within the electronics industry.

But this is not the case, according to second-hand instrument dealers Carston Electronics are a subsidiary of Livingston Hire. Carston's business is to buy unwanted instruments and equipment from various sectors of the electronics industry, restore and recalibrate it to the manufacturer's original specification and then resell it. The result is that most of their equipment is between 1 to 8 years old in perfect working order, but only costs between $50-70$ per cent of its original price.

Several educational establishments have already taken advantage of the Carston service and have purchased items such as signal generators, power supplies and pulse generators. The value of the service is that it is now possible to buy high performance/high quality instrumentation at economical prices.

Further details and catalogues are available from: Carston Electronics Limited, Shirley House, 27 Camden Road, London NW 1 9NR (01-267 3262).

SCOPE FOR PORTABILITY

In addition to their range of handsome digital multimeters, Sinclair have now come up with a truly portable oscilloscope. While most standard oscilloscopes are supposed to be portable, Sinclair's SC 110 will actually fit into the, average briefcase or handbag, as it measures only $254 \times 147 \times 40 \mathrm{~mm}$ and weighs a mere $1 \frac{1}{2} \mathrm{lbs}$. To compliment its por-

tability, the SC110 has the added advantage of exceptionally low power consumption, enabling it to run for long periods on low cost disposable batteries. With a 10 MHz bandwidth and 10 mV sensitivity, Sinclair claim that its performance matches that of many standard bench models.

At $£ 139$, the SC 110 must be well within reach of most serious hobbyists. Further information from: Sinclair Electronics Ltd., London Road, St. Ives, Huntingdon, Cambs., PE 17 4HJ.

MINI MOUNTABLES, MEMORY MINDERS

A new range of p.c.b. mountable miniature switches has been launched by Hunter Electronic Components. Both single and double

pole switches are available, and they are particularly suited to p.c.b. mounting as the terminals are spaced to fit into the standard 0.1 grid pattern. Contacts and terminals are gold
plated, giving a contact resistance of less than 20 Mohm@ 100 mV 1 mA d.c. The price for a single pole double throw switch is about 50p.

Also available from Hunter is a new lowvoltage, 5 -volts, MOS Memory Protector series. These TransZorb transient voltage suppressots, designated the GMP- 5 Series, have a maximum surge rating of 215 amps for 50 microseconds and 70 amps for 1 millisecond. They feature a very low 6.9 volt maximum clamping level at 10 amps for an impulse waveform of 10×1000 microseconds. The series is characterized by its extremely fast response time (theoretically $1 \times 10-12$ seconds), and low series resistance (RON).

They are effective in providing protection for VMOS, HMOS, NMOS, and CMOS circuits from pulses generated by electromechanical switching, electromagnetic coupling, capacitive or inductive load switching, voltage reversals, and electrostatic discharge (ESD). TransZorbs effectively shunt unwanted transients while maintaining the circuit voltage level for continuous system operation.

For further information, contact: Hunter Electronic Components Ltd., 55 High Street, Burnham, Bucks. Telephone (06286) 65421.

CALCULATOR NOTES

What's the square root of "Yes we have no bananas"? Beethovens Fifth? Not quite-in fact I can guarantee it's a tune that you've never heard before. With the Casio ML-81 your calculations will certainly take on a new dimension, for as well as having three readyprogrammed pieces of music for the timer and two alarms, the calculator can be used to play

melodies within an eleven note range. Unfortunately, the lack of semi-tones severely limits the variety of tunes available, though in other areas the ML-81 is more versatile. In addition to the calculator and clock functions, the ML-81 incorporates a stopwatch and a calendar programmed until the year 2099.

Two silver oxide batteries give approximately 14 months continuous operation and to save battery life the duration of a note is limited to between one and two minutes.

Also emanating from the Casio stable is their MQ-6 Micro Card Watch, which measures a mere $67 \mathrm{~mm} \times 43 \mathrm{~mm}$, and is only 5 mm thick. Obviously intended as a modern equivalent to the pocket-watch, it comes complete with a leather pouch and chain. This

model also incorporates calendar, stopwatch and basic calculator functions, though surprisingly, it lacks an alarm. The MQ-6 is priced at $£ 19.95$ (Tempus discount price) and for another $£ 3$ or so you can buy the ML-81, and have the pleasure of being woken every morning by 'Fruhlingslied'.

Both the ML-81 and the MQ-6 are available from Tempus, (Dept. PE), Beaumont Centre, 164-167 East Road, Cambridge CB 1 1DB.

EDUKIT Reviewed MIKE ABBOTT

AT $£ 30$ the Edukit is a genuine "throw away" training tool, although the "waste bin" will really be the spares box, or dedication to some micro based project. At any rate no fortune is lost should you fail to get on with the microprocessor, and you are not plagued with the usual pre-purchase questions such as upwards expandability. The idea was conceived, and the machine designed by Dr. A. A. Berk. There is no keyboard monitor, cassette interface or I/O port, and two seven segment displays indicate memory contents only-you have to know the address you should be at! Yet it is precisely because of these points that the Edukit is excellently tailored to its vocation.

THE HARDWARE

The glass fibre p.c.b. is double sided; not plated-through, and measures $130 \times 210 \mathrm{~mm}$. There are no edge connector fingers, and only one i.c. socket is supplied, which is for the RCA COSMAC $1802 \mu \mathrm{P}$. This is a good choice of m.p.u., for it incorporates 40×16-bit registers, 32 of which are general purpose. With this much memory on the house and capable of simultaneous hi/lo order byte storage at any one address, the 1802 is eminently suitable for that intelligent burglar alarm, or musical doorbell project. Just the kind of thing, in fact, you might wish to do with your Edukit when you have "graduated".

A Memory Protect toggle switch is edge mounted on the p.c.b. with a tinned copper wire loop strapped over it to give stability. Two l.e.d.s indicate the processor's mode of operation, and a third l.e.d. can be linked to indicate the status of the m.p.u.'s Q flag. See Fig. 1 for the block diagram.

Fig. 1. Block diagram. An external power supply of 5 or $\mathbf{6 V}$ at up to 0.5 A is required

KEYPAD

E6305
There are twenty keys, sixteen of which are hexadecimal ($0-9, \mathrm{~A}-\mathrm{F}$), and four control keys which are used in conjunction with the two mode status l.e.d.s. These control keys are: "L" for load, "R" for run, "Am" for amend, and "In" for increment.

In order to minimise expense, the Edukit uses the cheapest of keypad switches; a very firm push being necessary with some keys. This was rather a nuisance in the case of the In key because it is the number of pushes by which you determine the memory location you are looking at.

However, these switches can be "popped" apart, cleaned, and reassembled if necessary. To be fair, our keypad underwent an excessive amount of "fiddling", which resulted in the switches being less reliable than evidenced by their past record. In addition, a switch debounce modification is now being incorporated in all machines being sold.

Legends for the keys are cut into strips from a printed card, and spot glued across each row of switches. See photographs.

OPERATION

Entering a program is simply a matter of turning off the Memory Protect switch, entering each op-code (or data) via the keyboard, and then pressing In to move on to the next location. Before entering or running a program it is necessary to reset the program pointer to the first memory location (00) again by means of the R key. Under memory protect, the In key can be used to inspect memory contents without altering it in any way. The contents of any individual memory location can be altered using the Am key. Using Edukit is simple. Because you find yourself eyeball to eyeball with the microprocessor itself, without a monitor throwing up a smoke screen, you soon learn, that cleared of these clouds of firmware "the chip" is essentially a simple programmable i.c.

A link connects the third l.e.d. to the Q flag, but if this link is replaced by an earphone or small speaker, sound effects can be produced quite easily, whilst still allowing the l.e.d. to work.

THE MANUAL

With a teaching aid such as this, the manual is all important, and it is always difficult for the knowledgeable author to predict what will confound the beginner, particularly in a jargonistic discipline. However, in the Edukit Manual every attempt has been made to accompany all references with an explanation.

The constructional notes in Chapter One overlook nothing. Even the l.e.d.s are described as "red translucent objects". Chapter Two swoops in on the various numbering systems; binary, hexadecimal and decimal etc., and Chapter Three starts you off with a simple program, showing how you can see and hear the machine operate.

To help in understanding how the machine functions, so called "Dry Run" tables describe the step by step operation. One group of instructions missed out, is the Long Branch instruction which involves high address locations. This omission is deliberate because only the low order address byte is used by Edukit on account of its limited memory (two 2111s plus the 1802 registers). The whole package is only meant to be an introduction and plenty of supplementary reading material is recommended.

Chapter Five moves on to matters of a hardware and control nature, describing a "switches and l.e.d.s" experimentation circuit. Some example applications include a temperature gauge and a security system; which is good because dedicated applications such as these seem to be comparatively neglected on the amateur micro scene.
The appendices include a short teach-in on soldering, and the COSMAC op-code table.

CONCLUSION

The two winning features of the Edukit must be: (a) its simplicity without pretence to being the first building block of an enormous system, and (b) its remarkable price tag, which means you can risk being wrong.

Some expansion/add-on plans are in the pipeline which will allow the Edukit to be put to good use in its retirement. The exact nature of the expansion plans were not crystallised at the time of writing, but it was expected that a small RAM or ROM memory board would be available which would plug into the 1802's socket, re-housing the 1802 on itself.

An Edukit Users' Club is also anticipated, so anyone who would like to participate in, or belong to it, should contact Modus Systems.

Edukit Manual, and keypad legend card. Although there is no I/O chip as such, the manual explains fully how to interface to the outside world. The 1802's four External Flag lines can be used to scan the status of up to 16 sensor switches, or simply accept BCD data. The method of transferring bytes to and from external devices using direct bus access is also covered. To clarify the capability of the machine, and to set the heading straight, it was really Mike Abbott who reviewed the Edukit, although in a few generations time . . . who knows?

Some prices are: Basic Edukit $£ 29.95$ plus VAT and 80 pence for post and packing. The 1802 manual can be purchased for $£ 3.99$ plus 50 pence p\&p, and a set of sockets for the remaining i.c.s at $£ 2.60$ plus VAT. Edukit is available from Modus Systems Ltd., 29a Eastcheap, Letchworth, Herts. SG6 3DA. There will be a special Edukit offer in PE next month for those that can wait!

ZMOS F.E.T. (X520, X530)

All the rage in U.K. discos later this year will be the new range of ZMOS f.e.t.s from the Welsh firm of Llyis Electronics. At last the unflagging research efforts of this energetic young company have come to fruition, and there will be no stopping them now. Working with only limited capital and outdated equipment, the back-room boys at Llyis have taken on the might of giants like Texas Instruments and Motorola, beating them at their own game with radical and innovative technology of the very highest standard. Llyis make their own silican because they have found imported material to contain too many impurities, and with the confidence encouraged by a bulging order book, they have now found it possible to take up their option on a section of Prestatyn beach, thus ensuring a ready supply of raw material for years to come.

The new ZMOS power transistor family is typical of Llyis products. Designed primarily for high current, high power applications in disco power amplifiers, the new ZMOS family manages to combine the best of bipolar, MOSFET and valve technology in one easy to use "HEX-NUT" package. The ZMOS X520 for example, is very sensitive to static charges and requires a high current drive source, and yet it has the highest "on" resistance in the industry and runs from a 200 V h.t. supply. All the ZMOS range feature industry-standard 6.3V a.c. heaters and unique "disco safety" circuits which render the amplifier harmless during transient musical passages which might otherwise lead to auditory damage. The 4 kW per channel (typical, using $4 \times$ X520S) or 8 kW per channel (typical using 4 $\times \times 530$ S) is higher than anything unleashed in discos before, and has forced Llyis to develop companion loudspeakers with leather cones. Every device carries a government health warning, but under extreme conditions the "disco safety" circuit will cause the output devices to selfdestruct before the 160 db pain threshold is exceeded.

The novel ZMOS "HEX-NUT" package features ports for standard microbore central heating pipes, and for evaluation purposes a domestic radiator and central heating pump system topped up with ice water before a session will be about ready to brew coffee two mind blowing hours later. For serious applications a thirty gallon header tank will be needed, and a full quadrophonic system can provide central
heating for an average street if used for just four hours per day.

Nice one boyos!

MINI-DIP GRAVITY CIRCUIT (AG 1000)

In these days of energy crisis and threats to our oil supplies, it is refreshing to find that the energy problem is not being ignored by the semiconductor manufacturers. The German firm of TRASKERT Gmbh has been experimenting with new forms of energy conversion using gallium arsenide photon emitters for several years now, and if the data sheets and samples we have just received are anything to go by, they are on the edge of a breakthrough in this fascinating area. Their AG 1000 antigravity circuit is integrated on to a small semiconductor chip, and yet when coupled to a low cost gravity anomalizer it can generate the power of 10^{9} space shuttle engines. Details of the chips operation are still secret at this stage, but we wired ours up on a small piece of Veroboard using the application notes in the data sheet and tried it out. Despite the "birds-nest" layout, we achieved warp factor 8 on our first run, but re-entry was a problem and the legs of our bench were badly, charred. Hobbyists are cautioned not to run the chip above 2 volts unless proper ablative heat shields are worn. (Note: Wicket keeper's pads are not sufficient.)

On our second try we fitted the circuit board in place of the engine in an old Ford Popular and wore skin diving air tanks. Since their AG 1000 takes only 2 ma at 9 volts we were able to do an orbit of Jupiter on a single PP3 battery before returning via the sling-shot effect. A fully charged car battery should get you to Alpha Centauri and back if you take enough sandwiches.

The AG 1000 is packaged in an 8 pin mini-dip, but at warp factor 1 this actually turns into a flatpack, so make sure your soldering is up to standard. The device is currently priced at $18 p$ in hundreds, but this is certain to fall as demand increases.

ROBOT MICRO (IU 101)

At last the millions invested by the British taxpayer in Inmos seems to be paying off. The first circuit to be unveiled by Doctor A. N. Droid at a recent press conference is a new microprocessor designed for applications in robotics. The design of this chip was carried out entirely in the U.K.
although pilot production will initially take place in the U.S.A. until the Inmos manufacturing facility over here is fully operational. The new device, coded IU 101, is unlike other microprocessors in that it can be programmed in a "learn" mode. Pins on the 64 pin package are allocated for serial audio inputs and outputs, and two 8 bit DMA channels are available for the connection of a pair of colour TV cameras. Motor outputs are driven by means of a multiplexed control bus which can handie up to 256 separate muscle servos. Internally the IU 101 CPU has a 64 bit wide pipe-lined architecture with no less than 18 subsidiary 8 bit processors for I/O handling and memory management. On-chip firmware in ROM provides a high level English language interpreter (French available late 1980) and various utility routines to handle basic motor functions and sensor interpretation. A fast NMOS cache memory ($64 \mathrm{~K} \times 64$ bit words) and a 20 Megaword long term backing store using bubble memory technology are also included on the chip. Although the chip is large by today's standards Dr. Droid stated that yields were high, and earlier testing problems were now being overcome. One of the most exciting innovations on the chip were the 2 nanosecond A to D converters which had been fabricated using Schottky technology, said Dr. Droid.

Applications for the IU 101 are expected to include basic household robots and the manufacture of Fiat cars. All the pilot production is being used in-house at inmos at the moment, ostensibly for brain transplants. Dr. Droid stated that a politician version (with limited memory and stripped down CPU) would be available in early 1981.

Warp testing the AG 1000

L.V.COOPER
T HIS device differs from most i.c. testers in as much that the logic states of all the i.c. pins can be seen at a glance. Not only are the high and low states displayed, but this checker differentiates between high, low, inadmissible, and open circuit states.

Although the tester does not check $a / /$ the different aspects of a logic i.c. it does allow go/no-go devices to be identified quickly and can, with practice, go a long way to identifying an unknown i.c.

The circuit design allows the use of cheap calculator type multiplexed displays.

ORERATMON
The operation of the device is basically simple and consists of a set of three comparators which are very rapidly switched around the pins of the i.c. under test, whilst at the same time enabling the appropriate display digit.

CD4016 quad analogue switches i.c.'s 1 to 4 are employed to switch the comparators onto each pin.

The switching sequence is controlled by a four to sixteen line decoder (IC5) which operates the switch controls and also enables the digit drivers (IC's $7,8 \& 9$).

The decoder is fed by a binary counter IC6 which is in turn clocked by a 500 Hz oscillator made up from two of the gates in IC12.

Interdigit blanking is necessary and is achieved by feeding clock pulses from the oscillator, after inversion by TR2, to the blanking input of the binary to seven segment decoder IC13. This ensures that all displays are off during the first half of the clock pulse.

COMFABATORS
IC10 (LM324) is a quad op-amp and three of the four amplifiers in the package are used as comparators to detect the logic state of the pin being sampled.
Logic "1" is detected by IC10c, the output of which goes high if a voltage greater than +2.4 volts is present at its input.
Logic " 0 " The outputs of all three comparators are arranged to be low when a voltage between 0 and +0.4 volts is present on the inputs.
Inadmissable levels (+0.4 volts to +2.4 volts) are detected by IC10a. The output is high when a voltage greater than +0.4 volts is present on its input.
Open circuit Any pin that is open circuit either by design or a fault condition is detected by IC1Ob.
A negative voltage is fed onto each test pin by means of $1 \mathrm{M} \Omega$ resistors 1-16, and clamped by germanium diodes D116 to approximately -0.2 volts. When an i.c. is plugged into the test socket this small negative voltage, when connected to a live pin, will be clamped to zero or overridden by the positive voltage present on that pin, provided of course that the supply is connected to the i.c. under test by means of the terminals provided.

IC10b detects the presence or absence of this negative voltage, and if present its output goes high, the output from the gating circuitry presents a binary code greater than nine to the decoder IC13 and it automatically blanks the display. Any other condition causes IC1Ob to produce a low output, leaving the display format to be decided by the other two comparators.

COMPONENTS

esistors	
R1-R16, R32	$1 \mathrm{M} \frac{1}{8} \mathrm{~W}(17 \mathrm{off})$
A17-R19, R21, R22, R33	$100 \mathrm{k} \frac{1}{8} \mathrm{~W}$ (6 aff)
R20, R23, R34, R54	10k ${ }^{\text {d }} \mathrm{W}(4 \mathrm{off})$
R56. 224	$22 \mathrm{k} \frac{1}{8} \mathrm{~W}(2 \mathrm{off})$
R57	$6 \mathrm{M} 8{ }^{1} \mathrm{~W}$ (1 off)
R25-R31	150 16 (7 off)
R51, R52, R55	$1 \mathrm{k}+\mathrm{W}$ (3 fff)
R35-R50	$2 \mathrm{k} 7 \frac{1}{4}$ W (16 off)
R53	$330 \frac{1}{4} \mathrm{~W}$ (1 off)
Potentiometers	
VR1, VR2, VR3	47 k min. preset
VR4 4	100 kmin . preset
Capacitors	
C1	10 n Disc Cer,
C 2	1μ Tant.
C3, C9	47.0μ elect. $15 \mathrm{VDCC}(2$ off)
C4, C5, C7, C10	100 n 30 V Disc Cer. 14 off)
C6, C8, C11	$100 \mu 16 \mathrm{~V}$ Tant (3 off)
C12	$22 \mu 16 \mathrm{~V}$ elect. (1 off)
Transistors	
TR1, TR2	BC107 (or similar) (2 off)
Diodes	
D1-D16, D29	OA90/91 Igen. purp. germanium) (17 off)
017-D23	IN914 (or similar) (7 off)
D24-D25	IN4001 (or similar) (2 off)
D26-027	6.8 V Zener 400 mW (2 off)
D28	0.2 in. l.e.d. (green) \& halde

Integrated Circuits

IC1-IC4
IC5
IC6
1C7-1C9
IC10
IC11, IC12
IC13
C14
lC15

4016 or 4066 (4 off)
4514
4516
75492 (3 off)
LM324
4011 (2 off)
4511
74121 optional
7805

Switches

S1-S16 3-way centre-off slide switch (16 off) (Progressive Radio)
S17 Single or double pole 250 V ac 1A toggle (1 off)
S18 Push-to-make switch (optional)

Miscellaneous

14 -pin d.i.I. i.c. sockets (11 off)
16 -pin d.i.I. i.c. sockets (3 off)
24 -pin d.i.l. i.c. sockets (1 off)
T1. mains transformer 6.3 V 1 A
Displays. Bowmar 8 or 9 digit, or NSA 1298 (2 off)
(Henrys Radio) These are common cathode
$1 \frac{1}{2}$ Metres 8 -way ribbon cable
Printed circuit board
2 -core , mains cable
Vero case 2523E
Terminal blocks Electrovalue type 7204 4-way (5 off)

DISPLAY FORMAT

The outputs from the comparators are gated by IC's 11 and 12, TR1 and D21, D22 and D23, to produce the following display characters:-

$$
\begin{aligned}
& \text { Logic " } 1 \text { "-displays " } 1 \text { " } \\
& \text { Logic " } 0 \text { "-displays " } 0 \text { " } \\
& \text { Inadmissable-displays " } 8 \text { " flashing at } 2 \mathrm{~Hz} \text {. } \\
& \text { Open circuit-displays blank }
\end{aligned}
$$

The fourth op-amp in the LM324 package is used as an astable oscillator running at 2 Hz . By feeding this into the gating arrangements it causes the " 8 " to flash at 2 Hz .

PULSE GENERATOR

A 74121 monostable (IC14) is provided on board to provide a clock pulse for checking counters. The O and $\overline{\mathrm{Q}}$ outputs are brought out to a terminal block near the test socket. The monostable is triggered by means of a push button switch, S18 mounted on the front panel. This part of the circuit may be omitted if not required.

POWER SUPPLY

The power supply consists of a 6.3 volt mains transformer feeding two rectifiers D24 and D25 which together with the reservior capacitors $C 7$ and $C 9$ provide positive and negative rails of approximately 9 volts each. A split supply is provided
from the op-amp package of $\pm 6 \cdot 8 \mathrm{~V}$, Zener stabilised by D26 and D27.

The output voltage of the op-amps is 1.5 volts less than the supply at maximum and a further 0.6 volts is dropped by the isolation diodes, D17, 18, 19, 22 and 23, which are in series with the op-amp outputs. The total voltage loss is therefore approximately 2 volts. In order to ensure that the 5 volt logic circuitry interprets a high output from the op-amps as logic " 1 " the supply rail for the amplifier package needs to be 2 volts above the 5 volt supply, hence the 6.8 volts.

The 5 volt logic supply and the supply for the i.c. under test is provided by a 7805 i.c. regulator from the raw 9 volt supply, IC15.

The use of a 7805 in this situation provides a double benefit because apart from providing good regulation, should one inadvertantly switch a test pin down to chassis whilst it is connected as a supply pin, the 7805 shuts down and restores power when the short is removed, suffering no ill effects and with no damage to the offending switch.

A power indicator l.e.d. is fitted (D28), mainly to help avoid an i.c. being inserted with power on, which could result in damage to the i.c. The indicator also reduces the risk of leaving the tester switched on when not in use, which could all too easily happen if all switches were set to the centre position and the test socket unoccupied, leaving a totally blank display.

Fig. 1. Block diagram of Chip Checker

E0295

E6300
Fig. 6. Digit drivers

The +5 volts rail and the ground rail are brought out to terminals on the front panel to power the i.c. under test, and for external use if required.

The +5 volts is connected to the i.c. under test by means of a wire link connected to the +5 V terminal and the appropriate supply pin on the test socket. The ground connection is made by switching the appropriate switch low.

TEST SOCKET

The test socket, apart from being wired to screw terminals, is also wired to a set of sixteen switches, S1-16, which allow any one pin to be set high, low or floating. In high position +5 volt is applied to the pins by $2 k 7$ pull up resistors (R35-50), which allow open collector devices to be tested, and prevent smoke being produced by the device under test if two inputs are short circuit.

CONSTRUCTION

The layout is in no way critical and should present no problems to anyone wishing to use a different form of construction.

If the printed circuit layout is used it may help to fit all the jumper wires first, using sleeving if required. This avoids missing and jumpers due to the position being obscured by other components.

Before fitting any i.c.s, check that the negative voltage on the cathodes of the clamp diodes D1-16 and D24 is -0.2 volts or less. Any voltage greater than -0.2 volts will cause the 4016 i.c.s to fail. The various supply rails should also be checked at this point.

When fitting the i.c.s, make sure the power is off, and check orientation very carefully.

Ribbon cable is strongly recommended for connections between the front panel and the main board; it makes for a much easier time during assembly and fault finding if necessary.

SETTING UP

(1) Set all front panel switches to the centre position.
(2) Set all four presets to mid position. Displays should now be active.
(3) Adjust VR2 until displays are just off.
(4) Switch off and connect a 1 K or 5 K potentiometer across the +5 volt supply with the wiper to any test pin terminal. Connect a meter between wiper and zero volts. Switch on.
(5) Adjust the pot. for a reading of +2.4 volts on the meter and adjust VR3 until display just reads " 1 ".
(6) Reset the pot. for a reading of +0.4 volts on the meter and adjust VR 1 until display just reads " 0 ".
(7) Rotate the pot. from one end to the other and check that the display reads " 0 " at one end, "flashing 8" around the centre and " 1 " at the other end. If this does not happen you have a fault.
(8) Disconnect pot. and meter and set all front panel switches to the low position one at a time, and check that the digit applicable to that switch reads " 0 ".
(9) With all switches set low adjust VR4 for minimum flicker on the displays.
(10) Set all front panel switches high and check the appropriate display reads " 1 ".

Returning all switches to centre should leave display totally blank.

USING THE CHIP CHECKER

When a TTL or DTL i.c. is plugged in and the power supply connected, if all switches are placed in the floating position, the open circuit pins if there are any, will be blank. The out-
put pins will display one or zero and of course so will the supply pins. The input pins will normally adopt an inadmissible level of approximately +1.4 volts. The input pins will be obvious due to the flashing 8 displays. The switches may be used to program the inputs whilst the outputs can be observed on the displays and correct or faulty operation ascertained.

Counters may be clocked using the push button and monostable arrangement and the outputs all monitored at once.

If an unknown i.c. is plugged in, the power supply pins may sometimes be found by leaving all switches in the floating position and applying +5 V only to each pin in turn and noting the number of ones present on the display. The supply pins produce the largest number of ones, thus the two pins that produce the same number as well as the larger number, may normally be assumed to be the supply pins. The polarity can then be determined with an ohmmeter.

If the supplies are then connected, the inputs will be visible by the presence of the inadmissible logic levels. The inputs can now be systematically programmed high or low, the outputs monitored and a truth table made up.

The ability of Chip Checker to detect an open circuit pin is useful when testing tri-state devices, a disabled tri-state output should behave as an open circuit and produce a blank display digit.

It should be noted that input pins can interact with one another if left floating and so all pins that need to be high should be switched high and not left floating. A short circuit between two inputs or adjacent pins will be obvious, when one is taken low by a switch the other will indicate low also even though it is switched high.

Chip Checker was primarily designed to test TTL i.c.s. EG 74L, 74S, 74LS, and of course standard 74 series. It will however handle DTL and CMOS i.c.s although the input pins of CMOS will produce blank displays due to the very high input impedance of these devices, and of course the logic levels are incorrect for CMOS. DTL i.c.s behave similar to 74 series.

Since the tester was first built it has been used for checking untested "fall out" devices and the monitor ROM's of an MK14, also buffers and gates from home computer systems after those inevitable accidents that occur during system expansion and modification.

The device has proved both reliable, and with a little practice, easy to use.

COMPONENTS AND SYSTEMS FROM TRANSAM COMPUTERS

${ }^{-}$CP/M
 - BASIC
 -PASCAL
 TRITON COMPUTER SYSTEM.

TRITON IS IMPRESSIVE!
PRACTICAL COMPUTING REVIEW DEC. 79.

\rightleftarrows

Designed for ease of construction and flexibility. Kits come complete and all components and software are available separately. UK designed and supported. Fully documented hardware and software and a totally flexible approach to system building. Powerful and easy to use system monitors - a range of languages available. Firmware is Eprom based and upgrading from one level to the next is easy.

- L5.2 with $1.5 k$ monitor $2.5 k$ basic $\mathbf{£ 2 9 4 . 0 0}$ L7.2 with $2 k$ mon $8 k$ extended basic $£ 409.00$ L8.2 4k ed/mon 20k res pascal
L9.2 CP/M disc based system -8k ram card kit (21141) - 8k eprom cards (EXCL 8-2708) - Motherboard expansion 8 slot - Trap-res assm/edit etc (8-2708) - Transam BD80 bi-dir printer - TVM 10 video monitor $9^{\prime \prime}$ - Eprom prog (2708) kit

SEND FOR OUR CATALOGUE FOR FULL DETALLS OF TRITON FEATURES

FULL RANGE OF MICRO SUPPORT CHIPS - IN STOCK										
S774LS00N	22	SN74LS54N	21	SN74LS138N 95	SN74LS195AN 85	SN74LS325N 2.55	SUPPORT		Rams	
SN74LS01N	22	SN74LS55N	21	SN74LS139N 95	SNT4LS196N 120	SN74LS326N 2.55	8212	2.20	2101	2.32
SN74LS02N	25	SN74LS63N	1.50	SN74LS145N 120	SN74LS197N 1.20	SN74LS327N 2.55	8216	2.80	2102 L .4	1.20
SN74LS03N	26	SN741S73N	35	SN74LS148N 1.75	SN74/S221N 125	SN74LS352N 1.35	8224	2.80	2111	2.32
SN74LSO4N	28	SN74LS74N	40	SN74LS151N 85	SN74LS240N 2.20	SN74LS353N 1.50	3853 (F8)	10.00	2112	2.46
SN74IS05N	26	SN74LS75N	46	SN74LS153N 60	SN74IS241N 1.90	SN74LS365N 65	8228	4.20	6810	4.00
SN74LSO8N	20	SN74LS76N	35	SN74LS154N 1.80	SN74LS242N 1.90	SN74LS366N 65	8T26A	1.75	8154	11.50
SN741S09N	22	SN74LS78N	35	SN74LS155N 125	SN74LS243N 195	SN74LS367N 65	8 T 28	1.90	2114L-450	5.50
SN74LSION	18	SN74LS83AN	1.15	SN74LS156N 125	SN74LS244N 2.10	SN74LS368N 65	6522	8.75	21141-250	7.60
SN74LS11N	25	SN74LS85N	1.10	SN74LS157N 60	SN74LS245N 3.60	SN74LS373N 1.75	8251	5.80	$74 C 920$	11.00
SN74LS12N	25	SN74LS86N	40	SN74LS158N 99	SN74LS247N 125	SN74LS374N 1.78	8253	11.00	74C921	11.00
SN74LS13N	55	SN74LS90N	65	SN74LS160N 1.15	SN74LS248N 1.95	SN74LS375N 72	8255	5.00	$74 C 929$	11.00
SN74LS14N	88	SN74LS91N	99	SN74LS161N 1.15	SN74LS249N 1.30	SN74LS377N 1.75	8257	11.00	4027	5.00
SN74LS15N	25	SN74LS92N	90	SN74LS162N 1.15	SN74IS251N 145	SN74LS378N 1.32	8259	12.50	4044	7.00
SNT 4 LS 20 N	20	SN74LS938N	65	SNT4LS163N 90	SN74LS253N 125	SN74LS379N 1.40	8155	12.50	4045	7.00
SN74LS21N	26	SN74LS95AN	120	SNT4LS164N 1.50	SN74LS257N 140	SN741 S381N 365	6402	5.00	4080	7.00
SN74LS22N	26	SN74LS96N	1.75	SN74LS165N 1.70	SN74LS258N 95	SN74LS386N 57	6821 P	4.50	2107	7.00
SH74LS26N	29	SN74LS107N	39	SN74LS166N 1.75	SN74LS259N 145	SN74LS390N 1.98	6850P	4.60	4118158 for	8) 8.00
SN74LS27N	35	SN74LS109N	39	SN74LS188N 1.35	SN74LS260N 39	SN74LS393N 1.50	6852P	5.50	4118	20.00
SN74LS28N	35	SN74LS112N	39	SN74LS169N 1.95	SN74LS261N 3.50	SN74LS395N 1.80	AY 5.2376	11.50	280P10	8.00
SN74LS30N	25	SN74LS113N	4	SN74LS170N 2.50	SN74LS266N 39	SN74LS396N 1.70	MC14411	12.00	280CTC	8.00
SN74LS32N	27	SN74LS114N	44	SN74LS173N 220	SN74LS273N 185	SN74LS398N 2.75	M57109	12.43	280ap 10	9.50
SN74LS33N	39	SN74LS122N	79	SN74LS174N 1.15	SN74LS279N 79	SN74LS399N 1.E0	M57160	10.00	z80ACIC	
SN741S37N	29	SN74LS123N	90	SN74LS175N 1.85	SN74LS280N 1.75	SN74LS424N 4.50	M57161	10.00	EPROMS	
SN74LS38N	29	SN74LS124N	1.50	SN74LS181N 2.75	SN74LS283N 1.80	SN74LS445N 1.25	TMS6011	5.00	1702	5.00
SN74LS4ON	25	SN74LS125N	65	SN74LS190N 1.75	SN74LS290N 180	SNT 74 SS4 7 N 1.25	81 LS95	1.80	5204	5.00
SN74LS42N	79	SN74LS126N	65	SN74LS191N 1.75	SN74LS293N 180	SN74LS490N 1.95	81 LS96	1.80	2708	8.00
SN74LS47N	95	SN74LS132N	75	SN74LS192N 145	SN74LS295AN 220	SN74LS668N 95	81 LS97	1.80	2516	25.0:0
SN74LS48N	95	SN74LS133N	39	SN74LS193N 1.75	SN74LS298N 220	SN74LS869N 95	81 LS98	1.80	2532	50.00
SN74LS49N	1.09	SN74LS136N	40	SN74LS194AN1.09	SN74LS324N 1.80	SN74LS670N 2.70				

DPS. 1 MAINFRAME - PASCAL SYSTEM
 Send 30p for our
ITHACA catalogue
WE STOCK THE FULL RANGE OF S 100 CARDS AND ACCESSORIES

ITHACA S100 BOARDS
PASCAL/Z build
your own Pascal Your own Pascal
Micra Development system. IEE-S 100 bus system using DPS1 main-frame. Supports K2, ASSEMBLE/Z and Complete system Complete sy
f2910.00

8k Static RAM board (450ns) $\begin{aligned} \mathbf{8 9 9 . 0 0}\end{aligned}$ 8k Static RAM board (450 ns) $\quad \mathbf{~} 99.00$
8 S Static RAM board (250 ns) $\mathrm{f117.00}$ $\begin{array}{ll}8 k \\ \text { Z80 cpu board }(2 \mathrm{MHz}) & \text { £105.00 } \\ 280 \mathrm{cpu} \text { board }(4 \mathrm{MHz}) & \mathbf{£ 1 2 3 . 0 0}\end{array}$ $2708 / 2716$ EPROM board $\quad \mathbf{~} 57.00$ Prototype board (bare board) $\quad £ 15.00$
Video display board ($64-16$, Disc controller board K2 disc operating system
ASSEMBLE/Z Macro Assm
 PASCAL/Z CP/M $\quad \mathrm{E235.00}$

VISIT OUR SHOWROOM

WE ALSO STOCK:- a comprehensive range of books and magazines, equipment, Weller soldering equipment, Ribbon Cables, tools, tapes, dikettes, connectors and OK Tool range.
Systems continuously on display in our showroom.

CRYSTALS

All prices
Exclude VAT \& P/P
VAT 15\% P. \& P. 40p on small orders. For larger items please Tel. Telephone credit card orders accepted subject to $£ 5 \mathrm{~min}_{\text {. }}$
RAPID MAIL ORDER SERVICE

	AVAILABLE NOW FOR TRITON system complete with text aditor, gger, syotem utilities and complate file akes Jriton fuily CP/M compatible and based software. Triton will support up to ives single or cilable. SAE for details. uuals (6) $£ 75.00$
DISK DRIVES \& POWER SUPPLIES 	

TCL PASCAL - CP/M COMPATIBLE
A standard Pascal compiler available on a resident (20k) Eprom based configuration* or available to run under *P.O.A. TCL Pascal Manual and specification $£ 6.50$.

S100 DISC CONTROLLER DOUBLE DENSITY
As used on Triton. Fully built
will drive $8 \times 8^{\prime \prime}$ or $8 \times 5 \frac{1}{4}{ }^{\prime \prime}$ drives. Single or double sensity. Works with all Shugart compatible drives. Uses the 1791 chip on board crystal - CPU independent
$£ 195{ }_{\text {VA }}^{\text {PIU }}$

MULTIWAY CONNECTORS

IMSULATIOM PIERCIMG			$\begin{array}{r} 4.60 \\ 4.74 \end{array}$		
20 way plug	2.30	36/72			
26 way plug	2.70	40/80	5.00		
34 way plug	3.30	43/86	5.60		
50 way plug	4.60	50/100	5.80		
20 way skt	3.40	GOLD 158 PITCH			
26 way skt	4.00	6/12	1.25	${ }^{4}$	
34 way skt	4.80 6.00	10/20	1.50		
30 way skt	6.00	12/24	2.00	Uu	
EOGE COMNPCB		15/30	2.20		
GOLD. $1^{\prime \prime} \mathrm{PITCH}$		18/36	2.30	Mande	
22/44	320	22/44	2.65		
25/50	3.60	28/56	3.30		
28/56	3.90	36/72	3.80		
30/60	4.15	43/86	4.60	64 way DIN male 64 way DIN fermale	$\begin{array}{r} 2.50 \\ 4.50 \end{array}$

Tel: 01-402 8137 Telex: 444898

'Finniston'

The Committee of Inquiry into the Engineering Profession started its work under the chairmanship of Sir Montague Finniston, F.R.S., in July 1977. Its 65,000 word Report, 'Engineering Our Future', was published in January this year by Sir Keith Joseph, Secretary of State for Industry, and the next step, a White Paper, is expected by about Easter. This. in turn, will be debated publicly over a further period of months.
'Finniston', as the Report will doubtless be called, is of immediate value only in calling the attention of the general public to the importance of engineering. Professional engineers, their learned societies and institutions, and their employers already know this.

All the old topics of the past 20 years are served up once again, spiced with some new catch-phrases such as the engineering dimension' and 'awareness brokers'. It was clearly difficult to find anything really new to say about the lowly status of engineers in society, salary levels, education, trade union and employer attitudes, codes of practice, registration of engineers, encouraging lady entrants to the profession and 'regeneration of UK manufacturing competitiveness through market-oriented engineering excellence in British products.'

The main interest of 'Finniston' is not in the diagnosis but in the cure which, in the view of the Committee, is the establishment of more bureacracy and spending more taxpayer's money, some $£ 60$ million, with a new Engineering Authority costing about f 10 million a year to run. The Authority will promote and strengthen the influence of engineering within the British economy, working in co-operation with the National Economic Development Council and acting as the qualification and registration body for all engineers.

Registration, except for consultant engineers, will be voluntary. Except that if you want a job with the Government or in the public sector of industry or in any company which supplies them, registration will be virtually mandatory because these organisations are to set the lead by recruiting only registered engineers. If found unfit to practice you will be struck off the register.
A new three-tier structure to take care of status is proposed. The elite would become Registered Engineering Diplomates, the great bulk of present degree engineers will become Registered Engineers and the army of technician grades Associate Engineers. Paid study leave should be a statutory right and, as at present, there will be 'ladders and bridges' for engineers to move upwards.

Effect

What effect 'Finniston' will have on civil, mechanical, aeronautical, mining or chemical engineers, or for naval architects and other categories of engineers $/$ am not qualified to judge. But so far as electronic engineers are concerned it is difficult to imagine that it will make the slightest difference.
In fact the broad proposals already exist. Engineers are already registered and existing institutions should only need strengthening, not dismantling. On the question of status, the present title of Chartered Engineer surely sounds more professional than the proposed Registered Engineer. This however is a small point but nothing is achieved by tinkering around with job titles and setting up new committees even though dignified by the title of Authority. In the end it is only job satisfaction and salary which have real influence in attracting people to any occupation, in determining performance and even status in society. Electronic engineers are generally enthusiasts who can't imagine doing anything else. In this they are fortunate as, indeed, in working in an expanding industry with consequent high morale.
It is all a question of attitudes of people towards work and achievement, and Sir Monty Finniston has admitted that he does not expect attitudes to change in less than a generation. My own belief is that the new drive towards a universal core curriculum in schools with compulsory mathematics, English and far greater emphasis on science subjects will do far more to encourage young people into engineering and in raising the status of engineers than any number of talking shops spending weary months compiling reports, however learned they may be.

Rewards

In the light of 'Finniston' a quick check of current job offers showed a remarkable spread of financial reward in electronics. Starting salary for a lecturer can still be as low as $£ 3,480$ and a degree standard information office: preparing abstracts starts at
$£ 3,700$. In the mid-range a development engineer can command $£ 5,335$, à test engineer $£ 6,830$, a MPU applications engineer $£ 7,000$ plus car. At the higher level a group leader on instrumentation, £12,000.

Overseas posts are looking less attractive than they once were for salary, but $£ 8,630$ tax free in Brunei looks reasonable, In West Germany $£ 8,000-10,000$ is offered for tidying up the grammar in English literature on data sheets and technical manuals for an instrument company, suggesting that the UK is not the best place to work in Europe if salary is the prime consideration.

The beauty of employment in electronics is the enormous spread of job interests. You can practice in almost any field. If you have a secondary interest in aircraft, you can get into avionics; if you are keen on human welfare, take up medical electronics; or if keen on chemistry, get into analytical instruments. The variety is almost unlimited, and with the present demand for electronic skills at all grades, nobody need stay in a job with an uncongenial environment.

Decca

As forecast last month in this column, Racal has now emerged into the open with a bid for Decca. I have frequently billed Racal as 'unstoppable' and this seems to be the case through good times and bad. Racal-Tacticom has landed a turnkey project worth $£ 40$ million for an undisclosed overseas customer. The contract, spread over three years, includes equipment and systems from all the Racal radio companies in the UK. Another order, worth $£ 4$ million, came from the British Ministry of Defence. This is for automatic antenna tuning units for Clansman military radios. The ATUs were designed as a private venture, illustrating Racal's consistent get-up-and-go philosophy.

Inmos

The 'British Disease' was once again exemplified by screams of protest on the proposed siting of the first Inmos manufacturing plant at Bristol, near the company's technology centre. The screams are entirely political from the development areas of the country which all see the siting of the four plants in other than strictly business terms. Inmos has a difficult enough task to succeed without being instructed to site plants in what the management views as unsuitable or otherwise inconvenient locations. One sympathises with those depressed regions which are naturally disappointed, but trying to block the building of the first factory is no solution if the national need for a large micro-circuit facility is really necessary.

Meanwhile the new GEC-Fairchild plant at Neston, Cheshire, is on schedule with the exterior completed and inside work proceeding at a fast pace. It is difficult not to draw comparisons and conclude that private enterprise gets better and quicker results than enterprises in the public sector.

FREQUENCY METER

Michael Tooley в.a. David Whitfield в.a. м.se.

CONSTRUCTORS who have built the Digital Frequency Meter featured in last month's issue may find the maximum operating frequency of the basic counter rather limited for many applications. The performance of the portable DFM may, however, be extended well up into the v.h.f. region by the addition of the self-contained prescaler described here.

The prescaler is a small self-contained unit which may be used with almost any digital frequency counter. It provides a fixed frequency division of $\div 100$ for signals in the range from 1 MHz to typically over 200 MHz , with corresponding outputs in the range 10 kHz to 2 MHz . The unit may be built for a total outlay of under $£ 10$, and the simple alignment procedure requires only a d.c. voltmeter.

CIRCUIT DESCRIPTION

The circuit for the prescaler is shown in Fig. 1. It essentially consists of two distinct sections: the input r.f. preamplifier, and the $\div 100$ frequency divider. The amplifier is used to provide a useful gain ($>10 \mathrm{~dB}$) over the operating range, thus extending the low frequency sine-wave performance down to 1 MHz (the prescaler i.c. requires a minimum signal slew rate of $50 \mathrm{~V} / \mu \mathrm{s}$ for reliable operation).

Fig. 1. Circuit diagram of the Prescaler

The maximum operating frequency is limited by the prescaler i.c.; the input stage still provides around 6 dB gain at 500 MHz .

The input r.f. pre-amplifier makes use of the high cut-off frequency ($\mathrm{f}_{\mathrm{T}} \simeq 2 \mathrm{GHz}$) and high gain characteristics of the BFY90 to provide a gain of more than 10 dB over the operating range. The transistor, TR1, operates in common emitter mode with the base bias adjusted by VR1. A relatively low value of collector load is used to ensure a reasonably flat gain/frequency characteristic.

The 8629 used in the second stage is a fixed ratio ECL $\div 100$ counter with a minimum guaranteed toggle frequency of 150 MHz (typically to over 200 MHz). The device is used here in single-ended mode and is capacitively coupled to the preceding stage. The output from the divider stages is converted to TTL signal levels.

CONSTRUCTION

It is important that all components used in the circuit are suitable for the frequencies involved. Leads should be kept short to minimise stray inductance, and signal connections

should be made by means of screened cables. Printed circuit construction is recommended and a suitable track design is shown in Fig. 2. The corresponding component layout is shown in Fig. 3. An ideal encapsulation for the p.c.b. is an inline module case. These modules feature male and female connectors at opposite ends of the fully screened circuit enclosure, allowing direct connection to the normal counter input socket without the need for an additional co-ax cable. The signal cable may then be connected to the female socket on the front of the module. A small connector (e.g.

Fig. 2. P.c.b. design

Fig. 3. Component layout
3.5 mm jack socket) should also be provided to supply power to the module; the prescaler requires approximately 6 V d.c. at approximately 50 mA . The supply should not be allowed to exceed 7.5 V , and it should be noted that performance is seriously degraded below approximately $5 \cdot 2 \mathrm{~V}$. A suitable power supply is a pack of four HP7-type dry cells.

COMPONENTS

```
Resistors
    R1 51
    R2 4k7
    R3 330
    R4 390
    R5 See text
All resistors }\frac{1}{4}\textrm{W}5% carbo
Potentiometers
    VR1 2k2 sub. min vertical preset
Capacitors
        C1
        C2,C3,C4
    C5
Semiconductors
    TR1
        D1,D2
        IC1
```


Miscellaneous

Ferrite anti-parasitic bead p.c.b.

In line circuit module (RS 456-201)

Constructor's Note

Components and p.c.b. are available from Howard Associates, 59 Oatiands Avenue, Weybridge, Surrey KT1 9SU, s.a.e. for details.

Alignment of the prescaler is simply a matter of setting the d.c. potential at the collector of TR1 to half of the supply voltage by varying the setting of VR1. The value of R5 is a compromise between open-circuit stability and overall circuit sensitivity. Under no-signal conditions the prescaler i.c. will tend to oscillate (at typically 160 MHz). This may or may not be desirable, depending on the application. To avoid this oscillation, which does not otherwise affect the circuit, a resistor may be connected between pin 6 of IC1 and ground. This will cause some loss of sensitivity. Typically a value of 2 k 2 will prevent oscillation, though larger values (up to 10 k)

EAgB
Fig. 4. Prescaler response curve
may be required. Thus, R5 is an optional component. The response of the prescaler circuit to sine-wave signals is shown in Fig. 4; the value of R5 was $2 k 2$.

ADDITIONAL FACILITIES

A number of modifications can be carried out to the DFM which extend the basic facilities provided to the user. Unlike the v.h.f. prescaler, these enhancements require slight modifications to the wiring layout of the basic instrument. For this reason it is suggested that these additions are made after the basic circuit has been built and tested.

VARIABLE SAMPLING INTERVAL

The basic counter features a fixed interval between samples for each range. The sampling interval may be increased by wiring additional resistance, conveniently in the form of a potentiometer, in series with the existing R6. Thus, doubling the value of series resistance (i.e. R6 + potentiometer) will increase the sampling interval by approximately 50 per cent. A potentiometer of 100 k or 220 k will provide a useful range of control. Fig. 5 shows the modified circuit details. In

Fig. 5. Modified sampling circuit
practical terms it is only necessary to open circuit R6 and connect one end of the potentiometer to the free end. The other end of the pot is then connected to +5 V at any convenient point.

STORED DISPLAY

In many situations a signal is only available for measurement for a limited period of time. It is then often desirable to save the measured value for later use le.g. measure the frequency of an oscillator one day and compare it against the value on the next day). This facility is easily provided by inhibiting the action of the re-sampling logic in the control logic section. The simplest way to disable the re-sampling logic is to open circuit the timing capacitor (C4/C5). The arrangement is shown in Fig. 6. The switch shown may be

Fig. 6. Circuit to disable the re-sampling logic
combined with the potentiometer used in the variable sampling interval control to provide an overall display sampling control.

MEASUREMENT OF WAVEFORM PERIOD

The signal gating circuitry can be modified to measure waveform period rather than frequency by interchanging the Clock and Signal connections (see DFM Fig. 4). This will then provide a readout of the waveform period with a resolution
equal to the periodic time of the selected clock, e.g. using a 1 kHz clock (periodic time $=1 \mathrm{~ms}$) will provide a readout in milli-seconds (ignoring the decimal point). The resolution corresponding to each of the four ranges on the basic counter is shown in the table below:

> Range 1 reads in units of seconds
> Range 2 reads in units of $100^{\prime} \mathrm{s}$ of ms
> Range 3 reads in units of $10^{\prime} \mathrm{s}$ of ms
> Range 4 reads in units of ms

In all cases the decimal point should be ignored.
The circuit details for the changeover switching are shown in Fig.7. The printed circuit board has been designed with two wire links (LNK1 and LNK2) to allow this modification

EA102]
Fig. 7. Changeover switching details
to be implemented with the minimum of disruption to the existing wiring. All that is required is a two-pole changeover toggle switch, though greater elaboration may be employed with S 1 being replaced with a multi-wafer type switch and additional l.e.d.s used to indicate the display units.

Enter the 80's with SAXON

STEREO DISCO SYSTEMS

WITH LIGHT SHOW \& DISPLAY
STANDARD CENTAUR 100W

£366 inc. cart. \& VAT
12 mthe © 29.32 or 24 mth e £17.16

£499 inc. carr. \& VAT Deposit $\mathbf{E} 89$

CUSTOM CENTAUR 400/600W with four PDF 100A sins

f833 inc. carr. \& VAT
$\mathbf{1 2}$ mth $\mathbb{£} 66.87$ or $\mathbf{2 4} \mathbf{m t h} \mathbf{£ 3 9 . 1 3}$ Deposit $\mathbf{£ 1 6 7}$
 f229 inc. carr. \& VAT

SAXON
ENTERTAINMENTS
333 WHITEHORSE ROAD
CROYDON
SURREY CRO 2HS
Tues-Sat 9am-5pm
ALL MAIL \& CREDIT ENQUIRIES TO
CROYDON TO ORDER
Send cheque/crossed POS or Telephone (01) 6846385
Access/Barclaycard. Telephone orders accepted
For Credit Sales \& Enquiries Ring
SUE ABEGG ON (01) 6848007

ALL MAIL \& CREDIT ENQUIRIES TO
end cheque/crossed POS or Telephone (01) 6846385
For Credit Sales \& Enquiries Ring SUE ABEGG ON (01) 6848007

All systems complete with loudspeakers, leads, \& 2 years warranty

[4] 148 Stickies

FRIER ELECTRONICE

SPLIT-PHASE TAEMOLO

A simple but effective substitute for a rotary cabinet. With this a function generator output is phase split and modulated by the input. Output amplitudes are variable through two channels.

Worth at least 111 SpECIILI OffFR ... EDUKIT

PRACTICAL

OUR MAY ISSUE WILL BE ON SALE FRIDAY, 11 APRIL 1980

GRAHAM JACKSON

N DECIDING to design a budget amplifier certain considerations immediately spring to mind. What is meant by "budget", apart from inexpensive for example. It seems that a budget amplifier suffers by virtue of its necessarily basic circuitry. Filters, are often not included, the phono stage is based around an integrated circuit, or a simple two transistor stage, which is either noisy or has poor overload or distortion characteristics, and the main amplifier is generally of modest standard with an output power in the range of 10 15 watts, both channels driven.

Over the months leading to the design featured here, many circuits were tried, and the result is a coming together of the various circuits that gave the best results, hence the name "Congress". It is felt that although the price puts it in the budget range, the performance that can be expected puts it on par with amplifiers costing a good deal more. The decisions behind each design stage are therefore detailed in the following article.

BLOCK DIAGRAM
Looking at the block diagram of Fig. 6, it can be seen that
a separate phono input stage is provided. This is so that there is no switching in the input and equalisation paths which would be necessary if this stage was made to amplify all of the inputs. This goes to the select switches where auxiliary and tuner inputs are provided. Any input not used is switched to ground to help prevent unwanted breakthrough.

A tape monitor function is also provided. The selected input then goes to a buffer amplifier, with a gain of two, which can also" be switched as a scratch filter. A rumble filter is incorporated in the disc input stage where it may be independently selected. The tone control section providing bass cut and lift and treble cut and lift, can be switched out of circuit if not required by the tone defeat function. This has the advantage that any noise generated by this stage is removed, and that both channels are then known to have a "flat" response. The main amplifier follows the volume and balance controls and the stereo-mono switch. The tape input has its own buffer amplifier so allowing monitoring via the tape decks own internal amplifier whilst recording the input signal.

SPECIFICATION...

We have noticed that in some published amplifier projects parts of the specification have been omitted and in some cases quoted figures are not theoretically obtainable. In order to obtain a totally unbiased specification for the PE Congress, which could be compared with reviews in the hi-fi press, we asked Gordon J. King to carry out a full laboratory test on the amplifier. Mr. King has written many books on hi-
fi and is employed by a number of hi-fi publications as an equipment reviewer, his book Audio Equipment Tests will aid readers requiring more information on the data.

The following figures, notes and diagrams are the results of Gordon King's tests on the final amplifier design which will be described in this short series of articles. The data is published in full without any alteration. We believe this is a unique step in the presentation of an amplifier design and one which will allow readers to feel confident in the specification given.

Editors Note The 2 dB rise in the R1AA equalisation curve (Fig. 5) at approximately 40 Hz has been corrected and the scratch filter response is now 12 dB per octave. The photographs are of the prototype which was modified before these tests were carried out.
$0 / p$ to clipping continuous sinewave per ch. both driven 8 ohms:
ditto 4 ohms:
per ch. one driven 8 ohms:
ditto 4 ohms:
$0 / \mathrm{p} 16 \mathrm{kHz}$ per ch. one driven 5 ohms: ditto Z_{L} :
$Z_{\mathrm{L}} / 5$ ohms headroom:
$\mathrm{O} / \mathrm{p} 1 \mathrm{kHz} 1 \mathrm{HF}$ bursts per ch. both driven
8 ohms:
42.3W(16.3dB)

50W (14dB)
Burst/steady state headroom
8 ohms:
$+1 \cdot 2 \mathrm{~dB}$
4 ohms:
$+1 \cdot 3 \mathrm{~dB}$
Recovery from 10 dB symmetrical 1 HF burst overload:
Distortion factor $500 \mathrm{mV} \mathrm{i} / \mathrm{p}$
auxiliary both ch. driven
$20 \mathrm{~Hz}^{*} 10 \mathrm{~dB} / \mathrm{OdB} \mathrm{o} / \mathrm{p}$:
$1 \mathrm{kHz} 10 \mathrm{~dB} / 0 \mathrm{~dB}$ o/p:
$20 \mathrm{kHz} 10 \mathrm{~dB} / 0 \mathrm{~dB}$ o/p

20 Hz	1 kHz	20 kHz
$30 \mathrm{~W}(14.8 \mathrm{~dB})$	$32.4 \mathrm{~W}(15.1 \mathrm{~dB})$	$32 \mathrm{~W}(15 \mathrm{~dB})$
$33 \mathrm{~W}(12 \cdot 2 \mathrm{~dB})$	37.2W (12.7dB)	$37 \mathrm{~W}(12.7 \mathrm{~dB})$
38.3W (15.8dB)	40:5W (16dB)	38.3W (15.8dB)
$45.5 \mathrm{~W}(13.6 \mathrm{~dB})$	$49 \mathrm{~W}(13.9 \mathrm{~dB})$	$49 \mathrm{~W}(14.1 \mathrm{~dB}$)
$\begin{gathered} 45 \mathrm{~W}(14.5 \mathrm{~dB}) \\ -\quad(15 \mathrm{~dB}) \end{gathered}$		
$\pm 0.5 \mathrm{~dB}$		
$42.3 \mathrm{~W}(16.3 \mathrm{~dB})$		
$50 \mathrm{~W}(14 \mathrm{~dB}$)		
+1.2dB		
$+1.3 \mathrm{~dB}$		
virtually instantan		
8 ohms	4 ohms	
0.083\%/0.086\%	0.1\%/0	
0.024\%/0.024\%	0.046\%	-.044\%
0.04\%/0.041\%	0.09\%/0	068\%

0.044% (Fig. 1) at $-10 \mathrm{~dB} \mathrm{o} / \mathrm{p}$
0.048% (Fig. 2) at $-10 \mathrm{~dB} \mathrm{o/p}$
$0.03 \% 1 \mathrm{kHz}$ product
$0.063 \% 1 \mathrm{kHz}$ product (Fig. 3)
Fig. 4
$3 \cdot 2 \mu \mathrm{~s}$
$\approx 5.5 \mathrm{~Hz}-109 \mathrm{kHz}$ (-3 dB points)
>5 (ref. $14.8 \mathrm{~dB} 1 \mathrm{kHz} \mathrm{o} / \mathrm{p} 8$ ohms)

66
Damping factor 8 ohms 40 Hz and OdB o/p:
Input sensitivity $1 \mathrm{kHz}, \mathrm{OdB} 4$ ohms**
high level i/ps:
PU:
Tape
PU overload threshold
20 Hz :
15.5 mV

1 kHz :
185 mV
$1,800 \mathrm{mV}$

SPECIFICATION...

Signal/noise ratios ref. OdB 4 ohms o/p*** high level i / ps ref. 500 mV : PU ref. 5 mV i/p:

Stereo separation OdB 4 ohms o/p**** auxiliary $1 \mathrm{kHz} / 10 \mathrm{kHz}$:
tuner ditto:
tape ditto: PU ditto:

Crosstalk 1 kHz from 500 mV i/p tuner 0 dB 4 ohms o/p to auxiliary:
to tape:
to PU:
$85 \cdot 7 \mathrm{~dB}$ (86 dB tone defeat on) 74 dB (74.6 dB tone defeat on)
$72 \mathrm{~dB} / 49 \mathrm{~dB}$ ref. $500 \mathrm{mV} \mathrm{i} / \mathrm{p}$ $72 \mathrm{~dB} / 49 \mathrm{~dB}$ ref. $500 \mathrm{mV} \mathrm{i} / \mathrm{p}$ $51 \mathrm{~dB} / 36 \mathrm{~dB}$ ref. 500 mV i/p 70 dB ref. $5 \mathrm{mV} \mathrm{i} / \mathrm{p} / 48 \mathrm{~dB}$ ref. $50 \mathrm{mV} \mathrm{i} / \mathrm{p}$

84 dB (noise floor of test) i/p open 84 dB (noise floor of test) i/p open 77 dB i/p open
0.66 mV

Residual hum and
DIN audio band:
0.115 mV
weighted:
Offset d.c. at o/p across 4 ohms
left ch.:
right ch.:
6.6 mV
0.5 mV

Deviation from RIAA PU i / p :
Tone control responses relative to "flat" and defeat:
Low and high filter responses:
Tape recording o/p:
Fig. 5 upper curve
Fig. 5 middle curves
Fig. 5 upper left/middle right
120 mV for $100 \mathrm{mV} \mathrm{i} / \mathrm{p}$ at aux.

* Includes mains ripple
** Measured in tone defeat mode
*** Signal/noise ratios and noise measured with CCIR/ARM weighting
**** Non-speaking channel input shorted for these measurements
Notes: Tests made after amplifier was conditioned for one hour at one-third rated output. The dB outputs refer to 2.828 V across the stated load (n.b.: 2.828 V into 8 ohms equals 1 W). Z_{L} refers to a reactive load simulating a difficult loudspeaker of 5 ohms modulus and 60 degrees phase angle at approximately 16 kHz

Laboratory facilities by Gordon J. King (Enterprises) Limited, Brixham, Devon.

Fig. 1. Distortion factor residual at $16 \mathbf{k H z}-10 \mathrm{~dB}$ output across 5 ohms resistive, corresponding to 0.044 per cent. Input auxiliary

Fig. 2. Distortion factor residual at $16 \mathrm{kHz}-10 \mathrm{~dB}$ output across Z_{L} (see notes at bottom of the lab chart for definition), corresponding to 0.048 per cent. Input auxiliary

Fig. 3. Two-tone $19+20 \mathrm{kHz}$ equal amplitude intermodulation distortion with the 1 kHz product as the parameter, corresponding to 0.063 per cent at 10 dB output across 4 ohms resistive. Input auxiliary

Fig. 4. Squarewave at $\mathbf{1 6 k H z}$ across Z_{L} at 0 dB output, input auxiliary

Fig. 5. Pen-chart graph of 50 dB range (1 dB per minor vertical division) and $10 \mathrm{~Hz}-40 \mathrm{kHz}$ sweep showing deviation from RIAA at pickup upper, tone control responses relative to "flat" and defeat middle, and low (rumble) and high (scratch) filter responses. Input auxiliary

pe congress

COMPONENTS . . .

Resistors	
R1 -101	10k
R2 - 102	47k
R3 -103	47k
R4 -104	220
R5 - 105	10k
R6-106	10k
R7 -107	180k
R8 - 108	82k
R9 -109	56
R10-110	56
R11-111	1k
R12-112	10k
R13-113	10k
R14-114	100k
R15-115	100k
R16	470
R17-117	100k
R18-118	27k
R19-119	27k
R20	10k
R21-121	180k
R22-122	10k
R23-123	10k
R24-124	120
R25-125	120
R26-126	180k
R27	10k
R28	470
R29-129	10k
R30-130	100k
R31	10k
R32	10k
R33-133	100k
R34-134	180k

R35-135	120
R36-136	120
R37-137	10k
R38-138.	15k
R39-139	33k
R40-140	10k
R41-141	3k3*
R42-142	180k
R43-143	47k
R44	10k
R45-145	10k
R46-146	47k
R47-147	120
R48-148	120
R49-149	1k
R50-150	33k
R51-151	330
R52-152	OR33 2W5 w.w
R53-153	33k
R54-154	100
R55	10k
R56-156	$4 \Omega 7$ 1W
R57	10
R58	10
R59	33
R60	120
R61	10k
R62	10k
R63	120
R64	33
R65 100	1W w.w.
R66-166	10k
R67-167	1 k
R68-168	10k
$\frac{1}{3} \mathrm{~W}$ carbon	im unless stated

C32	$4,700 \mu$ elect 40 V
C33	10μ elect 35 V
C34	10μ elect 35 V
C35	10μ elect 35 V
C36	10μ elect 35 V
C37	470μ elect 50 V
C38	470μ elect 50 V
C39-139	22 p polystyrene
Mylar unless otherwise stated	

Semiconductors

TR1 - 101	BC184C
TR2 -102	BC184C
TR3 -103	BC212C
TR4 -104	2N5400
TR5 -105	2N5550
TR6 -106	BC182B
TR7 -107	2N5400
TR8 -108	2N5550
TR9 -109	BC182B
TR10-110	2N5400
TR11-111	2N5550
TR12-112	BC184C
TR13-113	BC184C
TR14-114	2N5400
TR15-115	2N5400
TR16-116	2N5550
TR17-117	2N5550
TR18	BD535
TR19	BD536
TR20	BC212B
TR21	BC182B
TR22-122	BC182B
IC1	STK463 (Sanyo stereo power amplifier i.c.)
D1-D13	1N4148 (13 off)
D14-D17	1 N5402 (4 off)
D18, 19	BZY88 C30V
D20-D23	1N4148 (4 off)
D24-D27	WO2 1A bridge rectifier

Potentiometers

VR1-101
VR2-102
VR3-103
100k dual ganged lin. 100k dual ganged lin.

VR4-104
10 k dual ganged lin.
$22 k$ dual ganged log

Miscellaneous

SK1 to 4, SK101 to 104 phono sockets (4 pairs)
SK5-105 panel mounted 4 mm banana sockets (4 off)
S1 to S8, S101 to S108 preassembled switch bank with buttons
S9 single pole mains switch with built in neon
T1 125VA mains transformer $28-0-28 \mathrm{~V}$ plus $35-0-35 \mathrm{~V}$ (off load voltages)
FS 1500 mA antisurge fuse and panel mounting holder
FS2, FS3-102, 103 3A quick blow fuses and p.c. mounting holders (4 off)
Printed circuit boards, materials for chassis and case, fixings, wire, knobs, mains lead, grommet etc.

[^4]

PHONO INPUT STAGE

It was decided to use the operational amplifier configuration so that the entire amplifier runs on the split rail principle giving very good supply ripple rejection at the speaker and saving the expense of a regulated supply for the main amp. Various i.c.s were tried at the input stage but all were found to be far too noisy. It is surprising how much detail in the sound from disc can be masked by noise, and it is important to get the noise generated by the input stage down to as low a value as economically possible.

A discrete version of the op. amp has therefore been adopted. Referring to Fig. 7 which shows a simplified circuit of the one employed, TR1 and TR2 form the differential input. These two transistors (BC184Cs in the amplifier) have been designed to run on collector currents of $40 \mu \mathrm{~A}$ which is about optimum for noise generation in these devices. Transistors TR3 and TR4 form a high gain stage so as not to load TR1's collector too severely. The collector load for these transistors is a constant current source set at about 10 mA . A network giving equalisation for RIAA with an accuracy of $\pm 1 \mathrm{~dB}$ is then returned to the base of TR2.

The tone control circuitry is the standard Baxandell type and is built round two discrete differential amplifiers of the same type as the disc input stage. The amplifier has been designed so that this stage can be switched out if not required.

MAIN AMPLIFIER

The main amplifier posed a problem. It was decided that 35 watts one channel driven or 30 watts per channel both driven into 8 ohms was a minimum requirement with

Fig. 7. Simplified circuit of the op amp-phono input stage

40 watts being ideal to allow the handling of transients. Low distortion coupled with good bandwidth was also required and preferably the elimination of the normal a.c. load line protection which can cause problems when driving inductive or capacitive loads such as speakers with their associated crossover networks. Various circuits were tried with price in mind, but the output transistors either did not have suitable characteristics or were too expensive to keep the amplifier to a sensible overall price.

Attention was drawn to the new Sanyo device type STK463 which is a dual output stage. This fulfilled all of the requirements except that crossover distortion was apparent when tested. However, it was noticed that this distortion was symmetrical showing that the output stage was well designed. Also it was noticed that clipping at 20 kHz into 8Ω gave some tendency to instability and was not symmetrical. On close inspection of the recommended circuit it was noted that a bootstrap load was externally provided for the class A drive stage, formed from two resistors and a capacitor.

From the value of the resistors the nominal current had been set at 5 mA . As an experiment this was replaced by a 5 mA constant current source with impressive results. The crossover distortion was reduced to a very low level, even at 20 kHz , and the clipping became stable and symmetrical showing good recovery time. Having obtained these results this module has been adopted without reservation for its excellent performance.

In this design power outputs of 30 watts r.m.s. sine wave were given per channel, both channels driven or 38 watts r.m.s. sine into one channel (8 ohms). The module has been designed to fuse under short circuit conditions as it can withstand 2 seconds into a short circuit, long enough for a fuse to blow. This has the advantage cited previously of eliminating a.c. load line protection, but it is of course essential that fuses are replaced with the correct types. A complete circuit diagram will be shown next month.

It is interesting that this amplifier was used to replace one costing several hundred pounds, driving Yamaha NS1000 monitor loudspeakers and employing a Shure MkIV magnetic cartridge on a Thorens deck for the disc input, and that the opinion of people hearing the comparison, albeit not under controlled conditions, was that they could not tell the difference!
We would like to thank Quality Hi Fi, North Road, Poole, for supplying the AKAI deck shown in the front cover and heading photographs
NEXT MONTH: circuit and construction

SPECIAL SUPPLEMENT

VIDE FOR EVERYONEI G.K.GARDNER

0NE OF the major problems encountered with video recording techniques is that the developments have been extremely rapid, with the result that there is a profusion of conflicting information made available to the general public.

This article is intended to clarify the situation a little. One word of warning . . . Although video techniques have reached an important point in their development, it goes without saying that new ideas and developments are just around the corner.

That is not to say-don't go out and buy-the existing systems will be with us for many years. However, it must be recognised that progress in the advancement of the technology in electronics is so rapid that new ideas are inevitable. During the next decade video equipment of all kinds is all set to undergo an unprecedented boom, the like of which has never been seen before. It is an established fact that domestic video recording techniques are still very much in their infancy. Despite this fact it is conservatively estimated that about 100,000 VCRs were sold during last year, and sales for this year are predicted to be some 50 per cent higher.

APPLICATIONS

The basic application of the VCR is its ability to record TV programmes off air, and replay them through a conventional domestic TV receiver at the owner's leisure. The current technology enables the user to record a programme either when it is being viewed, or record an alternative channel at the same time. Additionally, with the aid of a preset timer, it is possible to record programmes without the presence of the viewer, so that they can be watched at a convenient time. This concept of "time shift" is an important feature of modern domestic video.
The addition of a suitable TV camera (either black and white or colour) offers the facility for the viewer to make his own
programme. At present the cost of a colour camera is disproportionately high, and this is probably the limiting factor in growth of this market.

The comparatively recent availability of portable systems (Portapack) running of rechargeable batteries means that it is now feasible to record "live events" such as the school sports, football matches, or even the local airshow. The advantages of this system over conventional cine is that the pictures and sound are instantly replayable through the domestic TV. The major drawback is the comparatively bulky nature of the camera and recorder compared to cine equipment, but is is only a matter of time before this problem is rectified.

HISTORY

In order to understand the development of domestic video techniques, it is necessary to take a brief look at developments in this field since 1948.

In the early days, it was demonstrated that the magnetic tape medium was capable of recording and playing back video information, albeit of a quality below broadcast standards. Between 1958 and 1968, many companies developed video recordirfg systems, which because of their lower complexity and smaller size became acceptable to both industry and education alike. The major breakthrough in recording techniques was that of the open reel helical scan system, and as a direct result of this system it was possible to further simplify and drastically reduce the price to an acceptable level.

One of the most significant advances made was the development by the BBC of an experimental recorder in 1952. This system was called VERA, but not surprisingly disappeared soon after its debut on "Panorama" in 1958. Toshiba in 1953 lay claim to the development of the helical scan system now com-
mon to all domestic recorders. This system was at that time not without problems, which were caused by inferior tape quality and frictional drag of the rotating head drum. In 1956 Ampex in the U.S.A. developed the Quadruplex system, and such was the enthusiasm shown for this in the U.S.A., some 80 units were sold within months of its debut. Consequently the VR-1000 as this was called, became the recognised broadcast standard in the U.S.A.

In 1961 Sony took the wraps off a completely transistorised recorder designated the SR-201. Unlike the VR-1000, it used the helical scan principle of Toshiba. 1962 heralded the arrival of the Telecan system from the Nottingham Valve Co. Unlike its competitors it used $\frac{1}{4}$ inch tape and a fixed head system. The fact that this recorder sold for $£ 61$ (the VR-1000 by comparison was $\$ 50,000$) may have something to do with the technical difficulties which killed off this machine by 1964. Not a serious competitor!

Philips then introduced the EL 3400 which broke the $£ 1,000$ price tag barrier. By achieving this low price new markets were opened up, mainly in the industrial sector. It is interesting to note that at this time Ampex were close to introducing a fixed head recorder (VR 303) but withdrew this in favour of a helical scanner (HVR) selling at only $£ 450$.

This American breakthrough was short lived, however, when Sony introduced a helical scanning recorder selling for only £200 (TVC 2000). Sony did not stop there, they also produced the world's first domestic VTR (a four head version of the CV 2000). Their rival Akai introduced the VX 1100, but this machine was never sold, and a helical scanning model was offered in its place.

In 1967 Sony offered the DVK 2400 portable recorder, which sold for a mere $£ 700$, and weighed in at a modest 91 b . By comparison, a year later Ampex offered a portable recorder based on Quadruplex, which sold for $£ 23,000$ and weighed 50 lb . Hardly a domestic machine.

Sony produced a $\frac{3}{4}$ inch cassette format which was aimed predominantly at the domestic market in 1969. This system was
called Umatic, and was to become so successful it was adopted as the world standard for industrial and educational use. Its relatively high price limited its domestic acceptance though. Philips introduced the 1500 series cassette based VCRs in 1972, and to all intents and purposes the 1500 was the first true domestic recorder.

The main reasons for this so called "domesticity" were the fact that it contained its own UHF tuner, timer, and modulator meaning it could be easily used with a domestic TV. The inclusion of a timer/time switch gave birth to the concept of "time shift recording". Unfortunately the ruggedness and reliability aspects of this recorder were to lose it the battle with the Umatic system for worldwide acceptance as a non-domestic recorder but despite this Philips claim to have sold over 200,000 of these machines.

Meanwhile in Japan, Sony had introduced the Betamax I system, and one year later in 1976 JVC introduced their own VHS system. With the threat of competition from these systems in Europe, Philips hurridly launched the 1700 series, The first machines arrived in the U.K. in the autumn of 1977. Philips designated this system VCR-LP and offered the user a two hours recording time. The following year, both Betamax and VHS systems were introduced by Sony and JVC respectively in Europe. Grundig foHlowed with the Super Video Recorder (SVR) which is a variant of VCR-LP. The ensuing battle has resulted in the fact that VHS has captured a large share of the market with VCR-LP running second, with Betamax a surprising third. SVR has found relatively little support so far.

It will be interesting to observe the effect on the market of the Philips Video 2000 system, which is potentially capable of regaining the lead for Philips. However, it may well be that the battle is already lost to VHS, and that 2000 series will become the white elephants of the 80 s . Time alone will tell.

DOMESTIC CASSETTE RECORDER

The essential feature of all domestic machines is the helical scan system, which together with the use of $\frac{1}{2}$ inch wide tape

Internal view of the new Grundig $\mathbf{2 X 4}$ (Video 2000 system)

allows the high packing density necessary for the storing of video signals. With the exception of SVR, VCR and VCR-LP, the tape is stored in a cassette (rather like an enlarged version of the well-known Philips audio cassette), see Fig. 1.

Ironically, the Philips VCR uses a stacked spool arrangement which is mechanically inferior to both the VHS and Betamax cassettes. Philips reluctant admission of this is clearly evident in that the tape format adopted for the new 2000 series is very similar to the VHS, but is unfortunately incompatible. One of the major advantages of using a cassette based system for domestic applications is that mechanical handling of the tape is greatly simplified, as the tedious (and delicate) process of threading the tape around the drum without damaging the heads is eliminated.

SYSTEMS AVAILABLE

Apart from the new Video 2000, there are four basic systems currently in use for domestic machines. The Philips 1500 VCR format is effectively obsolete, mainly because of its limited playing time. However, there are still a large number of these machines in every day use, and some specialist companies are offering to update these to VCR-LP.

For the sake of simplicity, and so that the reader can quickly
compare the systems, Table 1 shows technical details and differences between them.

WHY VHS?

There are several reasons why the VHS format has a high popularity, particularly in Europe. Some of these reasons are listed below:

1) Cheaper tape feed costs (typically $£ 3 \cdot 50 / \mathrm{hr}$.).
2) Aesthetic appearance of hardware (it has a professional appearance).
3) VHS is supported by far more brand names than its rivals, which gives the customer more confidence in this system (see Table 2).
4) Fast winding is achieved with the tape retracted into the cassette, rather than with the tape wrapped around the drum. This has the real advantage of minimising head wear.
5) Video input and output facilities mean easy interface with a Video camera, and enables two machines to be connected together, so that dubbing of recordings from one machine to the other can be achieved with optimum quality.
The picture quality is related to the writing speed, which by

TABLE 1. TAPE FORMATS

Format	Video Writing Speed (M/sec)	Linear Tape Speed (cm/sec)	Drum Rotational Speed (r.p.m.)	Drum Diameter (mm)	Maximum Recording Time (min)	$\begin{aligned} & \text { Lace Up } \\ & \text { Time (secs) } \end{aligned}$
VHS slant azithmuth						
2 head helical scan	4.83	$2 \cdot 34$	1500	105	180	3
Betamax slant azithmuth						
2 head helical scan	$6 \cdot 60$	1.873	1500	$62 \cdot 5$	195	3 (laced up in FF and REW modes)
SVR slant azithmuth						
2 head helical scan	$8 \cdot 21$	3.95	1500	105	240	
VCR slant azithmuth						
2 head helical scan	$8 \cdot 10$	14.29	1500	105	60 nominal 75	3 thread 3 lockup
VCR-LP slant azithmuth						
2 head helical scan	$8 \cdot 10$	6.56	1500	105	120 nominal $150(1702-180)$	3 thread 3 lockup
Video 2000 slant azithmuth 2 head helical scan	5.08	2.44	1500	65	$240+240$ (reversible cassette)	$5 \cdot 5$

reference to Table 1 would appear to indicate that SVR and VCR-LP in theory at least are capable of slightly better quality than the others. In actual practice, provided a well adjusted TV receiver is used, then it is hard to distinguish between the different systems. It goes without saying that the picture quality of all the machines can be improved if a small (12 inch to 18 inch) screen TV is used, rather than the more usual domestic giant. The differences in the systems are most probably more markedly shown with projection TV systems.

Table 2 shows the principle features, and highlights the differences between the different VCRs currently available on the UK market. No doubt the list will grow. Most extensive details can be found in the various manufacturers' handbooks, and the inclusion of this data in this table has been deliberately omitted for the sake of clarity.

PORTABLE RECORDERS

With the introduction of the video cassette for domestic VCRs it was only a matter of time before this system was adapted for use in a totally portable system. Existing semi-

The Toshiba Betamax recorder model V-5470B with freeze frame, frame advance and double speed facilities, plus visual cue and review in fast wind modes

professional and professional portable systems employ the Umatic format, which for reasons already stated, exclude its acceptance in the domestic market on the ground. It came as no surprise when JVC introduced the 4100 portable colour video system in June/July 1979.

This system incorporates the GC4100 twin tube camera, HR4100 VHS recorder, TU41 tuner/timer, and AAP41 power

Matsushita's prototype solid state colour camera built around a 210,000 element chip. Claimed to virtually eliminate blooming the camera gives resolution of $\mathbf{2 8 0}$ (hor) by 480 lines and will operate at 500 lux. Mass production techniques are now being investigated for this small, lightweight camera

TABLE 2. DOMESTIC VIDEO RECORDERS

Make/Model	Format	Timer	Resolution	Audio Dub	Input/ Output	Special Features	Other Remarks
JVC HR330EK Ferguson 3292 Akai Vs 9300 Mitsubishi HS 200 B Baird 8900 Nordmende	VHS	24hrs on only. Timer 1 sec	240 lines S/N 40dB max	Yes	RF: coax Video: uhf	Electronics - Mitsubishi	
JVC HR 3330 Ferguson 3VOO Akai VS 9500	VHS	8 day	250 lines S/N 40dB	Yes	as above	Search button	
JVC 3660EK	VHS	8 day on/off	as above	Yes	as above		Remote control, including variable speed playback. RF output test signal
Hitachi VT 3000	VHS	3 day on only	Probably similar to HR330EK	Yes	as above		
National Panasonic NV8600B NV8610B	VHS	24 hrs. on/off 7 days on/off	240 lines about 42 db s/n	Yes	as above	RF test signal, moisture sensor	NV 8610 has still frame, single frame advance
Sony SL8000	Betamax	3 days on only	270 lines S/N 42db	No	RF in/out standard coax	Still frame	Max. recording time 195 mins.
Toshiba V-5250	Betamax	3 days on only	270 lines S/N 42db	No		Remote pause	
V-5470B	Betamax	7 days allows 3 separate recordings	240 lines S/N 42db			Still frame, single frame advance, double speed, visual cue	
Sanyo VTC 9300	Betamax	3 days on only	270 lines S/N 42db	No	Video BNC		Timer 0-62 min. every day at same time
Grundig SVR 4004	SVR	on/off 10 days ahead	240 lines min. (300)	No	RF only Standard coax	Still frame transport logic. Remote control and self seek timer	max. recording time 240 mins.
Grundig SVR 4004 AV	SVR	as above	as above	Yes	RF and Video	as above	
Grundig 2×4	2000	10 days 4 separate recordings	approx 3 MHz	Yes during recording	AV (DIN)	Full function remote control	Reversible tape 2×4 hrs can remain laced on ft/rew for cueing
ITT Philips Philips 1700	SVR VCR VCR-LP	3 days on/off	$\begin{aligned} & 3 \cdot 5 \mathrm{MHz} \max \\ & \mathrm{~s} / \mathrm{n} 40 \mathrm{db} \end{aligned}$	No	RF only standard coax		as for SVR 4004 Max. recording time 60 mins. $(90 \mathrm{~m})$ Max. recording time 150 mins.
Philips 1702	VCR-LP	10 days on/off	as above	no	as above	3 hrs. tape duration. 4 digit tape counter	Max. recording time 180 mins.
Philips 2020	2000	Microprocessor controlled, allows 5 separate recordings up to 16 days forward	S / N 50 db	Yes, with add on unit	RF and Video in add-on unit	Infra red hand held remote control. 26 input channels. 4 digit LED tape counter	Max. recording time 2×4 hrs., on reversible cassette

supply. For simple portable recording all that is required is the camera and recorder. To convert the recorder to a machine having off air recording facilities, including pre-set recording, the other units are required.

One of the major problems with any portable piece of equipment is making the system small and light enough. The GC4 100 camera weighs 3.7 kg , and the recorder a mere 9.3 kg , including rechargeable battery pack. Not too bad when you think about it.

One additional problem encountered with this type of equipment is its ability to operate in a variety of positions without malfunctioning. JVC have evercome these problems in the 4100 using a quartz locked capstan servo, and a quick response head drum servo to maintain the stability of the mechanics at all times. Ruggedness is an essential quality for portable machines.

There are now several other VHS portables on the market,

Panasonic WV 3300E camera in action. This model has an electronic viewfinder and is priced at $\mathbf{£ 8 3 9 . 5 0}$

The Grundig FAC 1800 single tube colour camera incorporates on electronic viewfinder
the majority of which show similarity to the 4100 . Table 3 shows current models available in the U.K.

PORTABLE VIDEO CAMERAS

There are a number of colour video cameras, suitable for use with both portable and mains operated domestic VCR's. Where it is intended to use the camera with a portable recorder, then it is important to have the facility of having an electronic viewfinder, thus enabling the operator to actually see what is being recorded.

Another important aspect is the facility that a zoom lens can offer. Ideally a zoom lens with a $6: 1$ zoom ratio and having a wide angle (12.5 mm) is a must for creative work. It is also useful to have a macrofocussing facility, so that close up work can be accomplished. Ideally the provision for connecting a remote microphone enables a high signal to noise ratio for the sound to be maintained.

TABLE 3. PORTABLE VIDEO TAPE RECORDERS (COLOUR)

Make/Model No.	Tape System	Tape Speed (cm/sec)	Writing Speed (M/sec)	Power	Resolution	Recording Time	Weight (Kg)
JVC CR440E Hitachi SV340	Umatic Umatic	9.53	$8 \cdot 54$	13.5W	140 lines	20 min .	11.2
Sony V03800P	Umatic				240 lines		14.0
RCA HR1020	$\frac{3}{4}$ inch type A	not known		$12 \mathrm{~V} \text { at }$ $14 W$	not known	over 2 hrs .	$12 \cdot 2$
JVCHR4100 Ferguson 3V01 Akai VT530	VHS	$2 \cdot 339$	$4 \cdot 83$	$\begin{aligned} & 12 \mathrm{~V} \text { at } \\ & 10 \mathrm{~W} \end{aligned}$	240 lines at $40 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$	60 min . record. 180 min. playback	$9 \cdot 3$
National Panasonic NV8400	VHS	as above		$12 \mathrm{~V}, 3 \mathrm{AH}$	not known, but similar to above	as above	8.9
Grundig VCR601 Philips LDL1 100	VCR	14.29	$8 \cdot 10$	12V	$\begin{aligned} & 3 \mathrm{MHz}, 42 \mathrm{~dB} \\ & \mathrm{~S} / \mathrm{N} \end{aligned}$	60 min .	$10 \cdot 0$

Sony SL3000 Betamax as for standard Betamax system not known not known

Make/Model No.	Vidicon	Resolution	Lens	Power	Sensitivity	Weight $(\mathbf{K g})$	Remarks
JVC G71-P	single 25 mm	230 lines (hor) 300 lines (vert)	$\begin{aligned} & 6 \times \text { Zoom } \\ & (17-102 \mathrm{~mm}) \end{aligned}$	12V, 12W	down to 100 lux	$3 \cdot 6$	Macro lens facility
JVC G31-P	as above	as above	$25 \mathrm{~mm} \mathrm{f1.8}$	as above	as above	2.7	Optical viewer
JVC GC3300	$2 \times 17 \mathrm{~mm}$	400 lines	12.5-75	12 V ,	down to 250 lux	3.4	
JVC GC4100	vidicon	S/N 45dB	$\mathrm{mm} \mathrm{f1.8}$	13 W	down to 100 lux	3.7	used in $\text { HR4 } 100$
JVC G X 33 U			$3 \times \text { Zoom }$				
JVC G X66U	not known		$6 \times \text { Zoom }$	not known		1.5	
Hitachi-Denshi							
GP-7	single 25 mm	$250 \text { lines }$ (hor)	details not known	$\begin{aligned} & 12 \mathrm{~V} \\ & 11 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 100 \text { lux at } \\ & f 2 \end{aligned}$	$2 \cdot 2$	
GP-5	vidicon	$40 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$					
Hitachi Denshi							
FP 3030H	single 25 mm	270 lines (hor)		12V12W		3.0	
FP 3060H	vidicon single	S/N 43dB 270 lines					
FP 3060H	$\begin{aligned} & \text { single } \\ & 25 \mathrm{~mm} \end{aligned}$	270 lines (hor)		12V 15W			
FP 1020	saticon	S/N 46dB					
	three x 17 mm saticons	500 lines S/N 46dB		12V 22W		7.0	
Ikegami							
HL 77	$\begin{aligned} & \text { three } x \\ & 17 \mathrm{~mm} \\ & \text { PbO } \end{aligned}$	500 lines (hor) S/N 48dB				7.4	
CTC 2400	three x 17 mm saticon, newvicon, PbO , chalnicon, vidicon	550 lines (hor) S/N 46dB					
National Panasonic							
WV 3310 E	cosvicon		$25 \mathrm{~mm} \mathrm{f1}$.		$100 \text { lux }$	$\begin{aligned} & 2.5 \\ & 1.7 \end{aligned}$	
$\begin{aligned} & \text { Sony } \\ & \text { DXC-1610P } \end{aligned}$	single				optimum		
	25 mm MF trinicon				$1000 \text { lux }$	6.6	
Grundig FAC 1800	single 25 mm	$250 \text { lines }$	$6 \times \text { Zoom }$	$220-240 \mathrm{~V}$	100 lux	$2 \cdot 5$	

Table 4 lists a number of domestic and semi-professional colour video cameras that are available. Of particular interest is the Hitach-Denshi GP5, which unlike the JVC GC4 100 contains only one vidicon tube. The use of this single tri-electrode tube enables a high quality, small and low cost camera to be made available to the public.

It is claimed that this single vidicon is capable of producing pictures which are just as good as those produced by two and three tube cameras. One important point about the tube used in this model is that it is capable of functioning at very low light levels. The manufacturers also claim that this camera is capable of operating correctly between temperatures of -10 degrees C and +40 degrees \mathbf{C}.

The camera is extremely easy to use. The built-in automatic sensitivity control (ASC) circuits means that the camera at all times operates under optimum conditions. The only controls that require adjustment are the "Colour Temperature" and "Brightness". Because of the very low power consumption, the camera can operate off batteries for a maximum of one hour. Alternatively it can be operated from the mains using a suitable adaptor. The optional electronic viewfinder can easily be attached to the camera. Apart from the desirability of having this facility, it is also possible to observe the recording already made using this device. Further details of this camera are included in Table 4.

Sanyo VTC 9300 Betamax machine

Mitsubishi VHS recorder

FUTURE DEVELOPMENTS

The Philips 2000 video system has already been mentioned in this report, but with its introduction, a new generation of microprocessor controlled recorders must be just around the corner. If past events are anything to go by, it is almost a forgone conclusion that the Japanese rivals of Philips have their extensive research and development facilities working flat out to produce yet another type of machine. One can only hazard a guess and suppose that as the current generation of machines has almost certainly reached the technological limit, then the next will have to utilise digital rather than analogue recording techniques.

As far as camera improvements are concerned, we can look toward the introduction of solid state technology in place of the conventional vidicon. Although, like digital recording techniques, the introduction of CCD's in cameras could almost be prohibitive from a cost point of view, mass production will ultimately result in systems that will be physically smaller, more reliable, and cost less.

One development that certainly lends itself to miniaturisation is a system of recording originally developed by BASF for domestic machines called LVR (linear video recording). This has recently been used by Blaupunkt to produce a new miniature machine called Mini-Maz 1. This uses a tiny tape transport mechanism which is capable of being held in one hand. The distinct possibility of incorporating such a device inside a video camera would mean a camera system comparable in size to a standard Super 8 Cine camera. The sheer ease, convenience and low cost of such a system suggest a very interesting future for the Mini Maz, assuming this reaches large scale production.

Panasonic NV-8610 with freeze frame facility

Toshiba have also developed an LVR system, first shown in prototype form at the Chicago Consumer Electronics Show last June. Toshiba plan to launch their system in September, it will have a two hour recording capability and employ an endless loop cassette. The "target price" will be $£ 250$ and a three to four hour cassette is also being developed.

DISC

So far this article has concentrated solely on the recording and playback of video information. and no article that was seeking to state the future of video would be complete without at least a mention of the Videodisc. Although a playback only type system, it is bound to make a profound impact when it arrives. Introduction of at least one or possibly as many as three systems are due to be launched in the UK in June or July of this year. The main advantage of VLP (as Philips call it) is that it will be possible to offer full length feature films at a fraction of their cassette cost. A further advantage is that high quality slow motion and still facility is offered by this system.

One thing is certain about the future - whatever format wins the battle, and whatever disc system is accepted, the growth of this sector of the electronic market will be such that it is confidently predicted that there will be over one million VCRs in British homes in four years time.

The new front loading Grundig 2X4, Video 2000 recorder

Mévac
 ELECTRONICS \& TIME CENTRES

QUARTZ LCD

11 Function
Slim Chronograph

6 digit, 11 functions,
Hours, mins., secs., day,
date, day of week,
$1 / 100$ th, $1 / 10$ th, secs.,
10X secs., mins.
Split and lap modes.
Back-light, auto calendar
Price only £9.95
Only 8 mm thick.
Stainless steel bracelet
and back.
Adjustable bracelet. SOLAR GHRONOGRAPH
SAME DAY DESPATCH.
M3 Price includes POST \& PACKING

QUARTZ LCD

Ladies Day Watch
Hours, mins., secs., day date, back light, auto
calendar.

Fully adjustable bracelet. Only $25 \times 20 \mathrm{~mm}$ and 6 mm thick. Silver or Gold. M15 ${ }^{\text {Silver Gold. }} \quad$ E7.95 M15 SAME DAY DESPATCH, P.\&P. included

HANIMEX Electronic LED

Alarm Clock

Features and Specification:
Hour, minute display. Large LED display with p.m. and alarm on indicator. 24 Hours alarm with on/off control. Display flashing for power loss indication. Repeatable 9 -minute snooze. Display bright/dim modes control. Size: $5.15^{\prime \prime}$ $\times 3.93^{\prime \prime} \times 2.36^{\prime \prime}(131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm})$. Weight: $1.43 \mathrm{lbs}(0.65 \mathrm{~kg})$.

M13

Price only
£10.20

QUARTZ LCD
ALARM
with Snooze Alarm

6 functions plus Alarm. Conference signal.
5 minute snooze alarm,
Conference signal sounds 4 secs. before main alarm to give advance warning and an option to cancel. Snooze sounds 5 mins. after main alarm and is always preceeded by the conference signal.
SAME DAY DESPATCH.
Price only
£9.95
M4 Price includes POST \& PACKING

QUARTZ LCD

Ladies Cocktail Watch
Beautifully designed with a very thin bracelet.

Hours., mins., secs., day, date, backlight and autocalendar Bracelet fully adjustable to suit slim wrists. suit slim wrists.
State Gold or Silver finish. Only $25 \times 20 \times 6 \mathrm{~mm}$. M 18 SAME DAY DESPATCH.

QUARTZ LCD

 5 FunctionHours, mins., secs., month, date, auto calendar, back light, quality metal quality metal
bracelet. 6 mm thic

M1 SAME DAY DESPATCH. £6.95

Price only £14.95 P.\&P, included

QUARTZ LCD
ALARM CHRONOGRAPH
with 12/24 display

Hours, mins, secs, day of week. Month, date, day of week, alarm, hour, mins., a.m./p.m. 24 or 12 hour display mode. Alarm test. Chronograph, lap time, stop watch $1 / 10$ secs. M16

Price includes POST \& PACKING

METAC GUARANTEE

All METAC products carry 12 months guarantee and we also refund your money if not satisfied with our goods or service in the first 10 days.
METAC's well equipped service centre minimises service delays. Please note, we do not delay your order to clear cheques.
Telephone your order using
Barclaycard/Access
Number on on
03272 76545

or

01-723 4753
24 hour answering service
COUPON

WHOLESALE MAIL ORDER

Send for our trade price list and order details. Sell our products to your friends and earn yourself ££f's

NEW 24 HOUR DESPATCH SERVICE
METAC have opened a new even faster Mail Order and Service Centre at DAVENTRY. Orders received before 3.30 p.m. will be despatched same day

VISIT OUR ELECTRONIC TIME CENTRES AND SEE ONE OF THE MOST IMPRESSIVE QUARTZ WATCH

 RANGES IN BRITAINLONDON
327 EDGWARE ROAD, LONDON W. 2 DAVENTRY
67 HIGH STREET, DAVENTRY, NORTHANTS.

NORTHAMPTON
ST. GILES SQUARE, NORTHAMPTON
(Opens 1st February, 1980)

Tel: 03272 76545/77659

M25 same dar despatch.

SEIKO ALARM CHRONOGRAPH

Price only £39.95

Price only

CHRONO 81CS - 368
 Hours, mins, secs., dey, and atso day, month and and adso day, month and year perpetuel autometic yar perpetual automatic calender. 100 th sec. calenday. 100th soc. chronogreph to 7 hour chronograph to 7 hours. Net time and 2 Phe time ant Ner 2msend Place timess. User and 2nd optional $12 / 24 \mathrm{hr}$. display. optional $12 / 24 \mathrm{hr}$. display. 24 Alarm. User optional, 24 Alarm. User optionai, hourly chime. Backlight. minert

 hounfy glass, stainlessminer
steel. Water resistant steel. Water resistant 10
100 f . Battery life 100 f. Battery life
approx. 4 years.

CASIO CHRONO

 950S - 32BStainless steel case, water resistant to 66 feet. Hours, mins., secs., am/pm, year, month, date, day. Auto calendar. Pre-programmed until the year 2029. 12/24 hour. Stopwatch function. Range 7 hours, $1 / 100 \mathrm{sec}$. (Mode) Net time/lap-time/ 1 st-2nd place times. ist-2
Dual time funce times. Accuracy 15 secs. per Accurrcy Battery life approx.
month. 4 years.
M22 SAME DAY DESPATCH.
£23.95

Price includes POST \& PACKING

Price only

 £19.95Price only
M25 same day despatch.

With WEEKLY Alarm, Hours, mins., secs., month, date, day, am/pm. Weekly alarm - can be set for every day at designated time, e.g. 6.30 am on Monday, Wednesday and Friday. Alarm set time displayed above time of day. Full stopwatch functions, laptime, split etc.

SAME DAY

 DESPATCH. 1st and 2nd place times.Melody test function. M30 Same day despatch.

SEIKO

CHRONOGRAPH

Hours, mins., secs., and day of the week. Month date and day of the week. Stopwatch display Hours., mins., secs., up to 12 hours (mins., secs., $1 / 100$ secs. up to 20 minutes). Lap timing. Continuous time measurement of two competitors. Stainless steel, mineral glass.

	Price only
SAME DAY DESPATCH.	E39.95
M33	including POST $\&$ PACKING

QUARTZ MELODY Alarm Chronograph incredible watch 34 Functions

5 independent working modes, day of week in English, French or German. (Just select the one you like). Hours, mins., secs., day, date, countdown alarm, dual time zone, $1 / 100$ th sec., stopwatch. Lap/split time POST COUPON TO: METAC (24 hour despatch centre), FREEPOST, 47a High Street, Daventry, Northants.

M10 \qquad
£35.95
CASIO F-8C 3 year battery life
Hours, mins., secs., am/pm, date, day. Auto calendar set 28th February.
Accuracy 15 secs. per month.
Battery life approx. 3 years.

Price only
M36 Same day despatch. £10.95

SEIKO DIGI-ANA

 CHRONOGRAPHTIME AND CALENDAR FUNCTION

Analog part display Hour, mins., secs. Digital part display; Hour, mins., secs., date, day and colon. Calendar-month, date, day, stopwatch - Hour, mins., secs. $1 / 100$ secs. LAP/ STOP and stop marks. Counter-function. Time and calendar setting function.

Price only
£79.95

PLEASE COMPLETE BOTH COUPONS
\qquad
Please send me
FROM:
METAC ELECTRONICS \& TIME CENTRE, (PE),
I enclose P.O./Cheque value 67 HIGH STREET, DAVENTRY, NORTHANTS.

Barclaycard/Access No.
\qquad
Address \qquad
\square
 Address \qquad

Power Supplies M.P.U.s Alan Clements e.sc.ph.D. Part 1

$\mathrm{A}_{\mathrm{t}}^{\mathrm{N}}$N article devoted to power supplies for microprocessors may, at first sight. appear odd. After all, a power supply is often dismissed as nothing more than a black box with its input terminals connected to the public $240 \mathrm{~V}, 50 \mathrm{~Hz}$, electricity supply. However, this black box has the physical characteristics of volume, mass, power dissipation, regulation. reliability, and cost. In this article a brief description of the operation and characteristics of power supplies is given. The aim is to make the designer of a microprocessor system aware of the power supply, and in particular of the penalties which must be paid if it is inadequate.

All microprocessors require a source of current at a constant voltage to provide them with the power without which they cannot function. The vast majority of microprocessors, their MOS peripherals and bipolar support chips have a single 5 volt supply. Some devices, notably EPROMs and dynamic RAMs. require additional sources of current at $12 \mathrm{~V} .-12 \mathrm{~V}$ or -5 V . Fortunately, the trend is to design new i.c.s needing only a single 5 V supply.

It is often thought that the provision of a power supply for a microprocessor system is a trivial matter. This is not so. In the last few years the power consumed by active devices has fallen dramatically, from the watts dissipated by valves, to the milliwatts dissipated by discrete transistors, and now to the microwatts dissipated by active devices on silicon chips. However, as the power consumed per active devices has fallen, the total number of active devices per system has risen from tens to millions. Today, sophisticated multiple microprocessor systems can be found with power supply busses carrying 120 amps .

The primary function of a power supply is the production of an adequate current at a constant voltage. A secondary function of a power supply is the
protection of the circuit being supplied with power from mains borne transients, or from the failure of some part of the power supply itself. The total power required by a microprocessor system is often largely dependent on the size of the memory used in the system. A small system with only 1024 bytes of RAM has a power consumption mainly determined by the microprocessor and its associated control circuitry. A large system with 64 K bytes of static RAM tends to have a power consumption which is almost entirely dominated by the RAM. The actual power consumed by the memory of a microprocessor system is very much a function of the particular RAM chips which make up the memory.

In general, the power consumption per bit falls as the number of bits per chip increases. The power consumption of memory chips is also a function of the access time of the chip, the faster the chip the greater the power consumption (and the price). The relationship between power, access time and size of four memory components is given below, although it should be remembered that advances in technology are constantly improving these parameters.

TYPICAL CIRCUIT

A power supply consisting of several circuits connected together in tandem, is illustrated in Fig. 1. The mains filter is used to keep mains borne high frequency noise and transients out of the system. The transformer performs two functions: it converts the 250 V mains into a much lower voltage with very little loss of energy, and it provides a means of physically isolating the system from the mains. The rectifier and smoothing capacitor transform the alternating current from the transformer into a direct current at an approximately constant voltage. The regulator converts the approximately constant voltage into the precisely constant voltage required by the microprocessor system. The protection circuit plays a passive role, and isolates the microprocessor system in the event of a dangerous rise in the output voltage from the regulator. The protection circuit is often included in the regulator.

OPERATION

The operation of a power supply is now described and criteria for the selection of the components which make up the power supply are given.

TRANSFORMER, RECTIFIER AND SMOOTHING CIRCUIT

Three arrangements of transformer and rectifier are commonly used to provide a basic unsmoothed d.c. power supply. These are the half wave rectifier circuit, the full wave rectifier circuit with a centre-tapped transformer, and the full wave rectifier circuit with a bridge rectifier. The circuit diagrams of these three arrangements are given in Fig. 2 together with graphs of their respective outputs as functions of time. In practise the half wave rectifier circuit is almost never used (at least in microprocessor applications) because the rectifier conducts for only half a cycle, a very inefficient arrangement.

Furthermore, the half wave rectifier circuit puts a very heavy demand on the smoothing circuit, which must provide an output current to the load during the half cycle when the rectifier is not conducting.
amplifiers or radio transmitters, with power supplies in the region of 60 V in the former case and possibly 1000 V in the latter case, a microprocessor system has a power supply of 5 V . Clearly, if the voltage drop across a rectifier is approximately 1V, the power dissipated by the bridge rectifier is an appreciable fraction of the power consumed by the microprocessor system.

The pulses of current at the output of a full wave rectifier circuit must be smoothed or averaged to produce an approximately constant voltage. The process of smoothing may be thought of as that of integration or lowpass filtering.

SIMPLEST FILTER

A wide variety of smoothing or filtering circuits exist, but the simplest, and most common circuit uses a capacitor connected across the output of the rectifier circuit. Fig. 3 illustrates the effect of a

Fig. 3. The effect of a smoothing capacitor

The two full wave rectifier arrangements of Fig. 2 make use of both half cycles of the mains input so that the output of the rectifier consists of a series of pulses at a repetition rate twice that of the mains frequency.

Both the centre-tapped transformer circuit and bridge rectifier circuit are widely used in power supplies. An additional advantage of these circuits over the half wave rectifier circuit is that no net d.c. component of the output current flows through the transformer, magnetising the core and increasing the power loss. The bridge rectifier configuration is most widely used for two reasons:

1. Transformers are costly components and the bridge rectifier requires only one winding with two terminals which is cheaper to manufacture.
2. The bridge circuit requires a transformer with a lower voltampere rating than the corresponding centre-tapped transformer circuit, and therefore makes more efficient use of the transformer.
The chief disadvantage of the bridge rectifier configuration is the need for four rectifiers. It is not only the additional cost of a bridge rectifier that causes problems, but the power dissipated by it. Unlike hi-fi
smoothing capacitor (sometimes called a reservoir capacitor), and gives a graph of the voltage across the capacitor as a function of time.

Assuming that the power is first applied at a zero-crossing, the smoothing capacitor charges up during the first half
cycle. After the peak of the cycle. point B. the voltage across the capacitor is greater than that across the transformer secondary, resulting in the rectifier becoming reverse biased and therefore nonconducting. Between points B and C the capacitor discharges exponentially into the load. At point C the transformer secondary voltage. which is now rising in the next half cycle, reaches the falling voltage across the capacitor, and the rectifier once more becomes forward biased. Current now flows through the rectifier to charge the capacitor to the next peak at D. and the process repeats itself every half cycle.

CHOOSING THE CAPACITOR

In Fig. 3 it can be seen that the rectifiers conduct for only a part of each half cycle, and that the rectifier current consists of a series of pulses. The amplitude of these pulses plays an important role in the selection of the rectifier and smoothing capacitor. Clearly, the effect of increasing the value of the smoothing capacitor is to reduce the ripple voltage superimposed on the average d.c. output of the power supply-a good thing. However, as the capacitance increases the period of conduction of the rectifiers is reduced resulting in an increase in the amplitude of the current pulses through the rectifiers--a bad thing. The amplitude of these pulses must not exceed the maximum surge rating of the rectifiers. To avoid excessive rectifier currents it is usual to limit the amount of smoothing to a peak to peak ripple voltage of 10 to 30 per cent of the mean voltage across the capacitor.

The simplest way of obtaining a value

Fig. 2. Three rectifier circuits and their outputs
for the smoothing capacitor is to apply the formula $\mathrm{Q}=\mathrm{CV}$ to Fig. 4, a linearised version of Fig. 3.

Fig. 4. A linearised representation of the voltage V_{L} across the load of a bridge rectifier circuit with a smoothing capacitor

$$
\begin{array}{ll}
& \begin{array}{l}
\mathrm{Q}=\mathrm{CV} \\
\text { so that }
\end{array} \\
\text { i }=\mathrm{C} \frac{\mathrm{dv}}{\mathrm{dt}} \\
\text { or } & \mathrm{C}=\mathrm{i} / \frac{\mathrm{dv}}{\mathrm{dt}}
\end{array}
$$

The value of $\frac{d v}{d t}$ is given by the slope of BC in Fig. 4. For example, for a 50 Hz power supply with a peak to peak ripple $\left(\mathrm{V}_{\mathrm{R}}\right)$ of 5 V and a mean output $\left(V_{M}+\frac{V_{R}}{2}\right)$ of 20 , the slope of $B C$ is 5 volts in one hundredth of a second. If the mean load current is 5 amps , then C is given by

$$
\begin{aligned}
\mathrm{C} & =\mathrm{i} / \frac{\mathrm{dv}}{\mathrm{dt}}=5 \frac{1}{1 / 100}=\frac{5}{500} \\
& =\frac{1}{100} \mathrm{~F}=10,000 \mu \mathrm{~F}
\end{aligned}
$$

One of the most popular procedures for the design of a power supply with a reservoir capacitor connected directly to the output of the rectifier (i.e. capacitorinput filter), is based on the use of tables or graphs. Of particular interest is the relationship between the peak alternating voltage at the output of the transformer secondary and the output voltage across the smoothing capacitor, as a function of $\omega \mathrm{CR}_{\mathrm{L}}$. Fig. 5 shows such a set of curves for a full wave rectifier circuit, from which it can be seen that the output voltage is not greatly increased when $\omega \mathrm{CR}_{\mathrm{L}}$ is greater than about 10 . Other graphs presented by Schade include the relationship between the peak rectifier current and the value of the smoothing capacitor. For a full wave rectifier circuit with $\omega \mathrm{CR}_{\mathrm{L}}=10$, the peak rectifier current is approximately seven times the average rectifier current.

SELECTING THE TRANSFORMER

In many manufacturers' catalogues four parameters are used to characterise transformers: the primary r.m.s. voltage, the secondary r.m.s. voltage, the voltampere (VA) rating, and the regulation. The maximum voltage across the smoothing capacitor under no load conditions is given by:
$V_{C}=V_{S} \times 1.41$
where V_{S} is the r.m.s. secondary voltage of the transformer. From Fig. 5 it can be seen that this value of V_{C} can, in practise, be approached only when $\omega \mathrm{CR}_{\mathrm{L}}$ is greater than 100 and the effective series resistance is less than $\frac{1}{2}$ per cent of the load resistance.

The largest mean direct current which can be drawn by the load in a bridge rectifier current is given by:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{L}} & =\mathrm{I}_{\text {a.c. }} \times 0.62 \\
& =\frac{\mathrm{VA}}{\mathrm{~V}_{\mathrm{S}}} \times 0.62
\end{aligned}
$$

where VA is the volt-ampere rating of the secondary.

SELECTING THE RECTIFIER

The most popular form of rectifier is the relatively inexpensive silicon junction diode. Bridge rectifiers, containing four silicon diodes mounted in epoxy plastic, can readily be obtained and are widely found in full wave rectifier circuits. Rectifiers are usually characterised by four parameters: the peak inverse voltage, the average forward current, the maximum forward current, and the voltage drop across the rectifier when it is conducting.
voltage will be distributed equally across the diodes. Hence both diodes in series in a bridge rectifier should have p.i.v.'s three times the value of V_{S}, or p.i.v.'s $1 \frac{1}{2}$ times V_{S} only if voltage equalising resistors are connected in parallel with them.

The maximum current which flows through the rectifiers is governed by the value of the smoothing capacitor. In a bridge rectifier circuit the maximum rectifier current is approximately seven times the average forward current at $\omega \mathrm{CR}_{\mathrm{L}}=$ 10 , and twenty times the average forward current at
$\omega C R_{\mathrm{L}}=100\left(\frac{\mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{L}}}=0.02 \%\right)$.
When a rectifier is forward biased there is a voltage drop between its anode and cathode, consisting of the voltage drop across the rectifying junction plus a voltage drop due to the ohmic resistance of the rectifier. A typical voltage drop across a bridge rectifier, at 10 A , is 1.88 V . The forward voltage drop across silicon diodes is of little importance in high voltage power supplies, but in low voltage power supplies, producing the high currents required by large memories, the forward voltage drop is an appreciable fraction of the voltage across the

$\omega C R_{L}\left(C\right.$ in Farads. R_{L} in 0 hms$)=2 \pi f C R_{L}$
Fig. 5. The relationship between V_{p} and V_{L} in a bridge rectifier circuit with a capacitor-input filter

The maximum peak inverse voltage of a rectifier is the largest voltage that can safely be applied across the rectifier when it is reverse biased. In a half wave rectifier circuit the maximum voltage across the rectifier occurs at the peak of the half cycle when it is non-conducting. The total voltage across the rectifier is the transformer secondary voltage plus the voltage across the capacitor, i.e. $2 \times V_{C}=2 \times$ $1.41 \times \mathrm{V}_{\mathrm{S}}$, or nearly three times the r.m.s. rating of the transformer secondary. In a bridge rectifier circuit two diodes are connected in series so it might be thought that the p.i.v. rating of each diode need be only half that of the equivalent half wave rectifier circuit, i.e. $1.41 \times V_{\mathrm{S}}$. Unfortunately, when the diodes are reverse biased, their series resistance is indeterminate and there is no guarantee that the
smoothing capacitor. Conventional silicon junction diodes lower the rectification efficiency of the circuit and waste a large amount of power. Possible alternatives to silicon junction diodes are Schottky diodes with their lower forward voltage drop, or synchronous rectifiers using transistors which have a collectoremitter saturation voltage of approximately 0.3 V .

SELECTING THE CAPACITOR

The choice of an electrolytic capacitor in a filter circuit is determined by three parameters: the capacitance, the maximum applied voltage, and the maximum ripple current. The capacitance may be calculated as described earlier in this article, and the voltage rating of the capacitor must be greater than the peak
secondary voltage plus an amount large enough to allow for increases in the primary voltage due to line overloads. Capacitors also have a maximum surge voltage rating which is the maximum instantaneous voltage which may be applied across the capacitor. Unfortunately the surge voltage of an electrolytic capacitor is often not appreciably greater than the maximum working voltage.

The ripple rating of the smoothing capacitor is very important, but is sometimes neglected by inexperienced designers. As we have seen, the voltage across the smoothing capacitor is composed of a constant voltage plus a ripple component. The ripple voltage causes a current, the ripple current, to flow through the capacitor. If we assume that the ripple voltage is approximately sinusoidal, the ripple current is given by:

$$
\begin{aligned}
\mathbf{I}_{\text {ripple }} & =\frac{V_{r}}{2 \sqrt{2}} \times \frac{1}{X_{C}}=\frac{V_{r} 2 \pi f C}{2 \sqrt{2}} \\
& =222 V_{r} \cdot C
\end{aligned}
$$

In the above example, $\mathrm{V}_{\mathrm{r}}=5$ and $\mathrm{C}=$ 0.01 F , so that $\mathrm{I}_{\text {ripple }}=11 \cdot 1 \mathrm{~A}$. Failure to choose a capacitor with an adequate ripple current rating leads to high internal temperatures and a reduced capacitor life. Note that the maximum ripple current rating of a capacitor is temperature dependent.

THE REGULATOR

The smoothed voltage across the reservoir capacitor is far from the constant voltage required by most digital integrated circuits, i.e. $5 \mathrm{~V} \pm 5 \%$. In order to create a true constant voltage source an electronic regulator must be used. Electronic regulators can have very complex circuits, and several books have been written on the subject of their design. Fortunately, the designer of a small to medium size microprocessor system has been freed of the relatively complex task of designing his own regulator by the availability of monolithic regulators. Monolithic regulators are high performance integrated circuits which provide a constant voltage output from an unregulated input. Their advantage is twofold: they are very cheap; and they are easy to use, having only three terminals. Table 1 gives the parameters of four monolithic regulators, each of which has a 5 V output, and Fig. 6 shows how a regulator is used. Note that most monolithic regulators have internal protection circuitry which saves the regulator from the effects of short circuiting their output. Some regulators (e.g. 78 HO 5) also include protection against thermal overload-the device is shut down when the junction temperature rises above a predetermined limit.

Monolithic regulators suffer from two

Charactoristic	7805	$\underline{L 005}$	Lm309K	IM	78H05K
Output current	1 A	600 mA	1.2A	3 A	5 A
liput voltage range	7-25V	7.5.20V	7.35V.	7.5-20V	$8-25 \mathrm{~V}$
Load regulation	0.2\%	0.3\%	1\%	0.3\%	10 mV
Ripple rejection	70 dB	62 dB	70 dB	58 dB	60 dB
Outputresistance	30 mR	15 ml	$50 \mathrm{~m} \Omega$		2 mn
Line regulation	0.2\%	0.1\%	0.1\%	0.1\%	10inv
- Output noise voltage	. 0.04mV	0.07 mv	0.04 mV	0.04 my	0404 mV
Short Circuit current	7 750 ma	190 mA .		- -	74
Case	Plastio:	T03	T03	103	103

important disadvantages. They are sometimes prone to instability and may oscillate in the megahertz region, superimposing a high frequency waveform with an amplitude of several volts on the 5 V output. Such oscillations are normally prevented by connecting two capacitors between the regulator input and ground, and between the regulator output and ground, as shown in Fig. 6. These capacitors should be located as close as possible to the pins of the regulator. It may seem strange that a $0 \cdot 22 \mu \mathrm{~F}$ capacitor is used to bypass a smoothing capacitor of $10,000 \mu \mathrm{~F}$, but the reactance of an electrolytic capacitor rises rapidly above 10 kHz . The effect of this is to prevent the capacitor from bypassing high frequency noise.

A second limitation of the monolithic
simplify the design of the system and save money.
3. The regulators provide additional isolation between the various modules.
4. The failure of a single monolithic regulator will not damage more than one module.
The principal disadvantages of a multiregulator power supply are:

1. The power dissipation of the regulators is put on the modules where it is least wanted. On some large memory boards using the older 1 K chips, up to four one-amp regulators are required considerably increasing the waste heat generated by the board. When a single regulator is employed it is normally located in an enclosure,

regulator is its inability to pass really large currents (above 10 amps). This forces the designer to seek one of two alternatives, to design a regulator circuit with discrete high power transistors, or to distribute the unregulated power supply to each module in the microprocessor system and use on-board regulators to provide a local stabilised 5 V supply. It is difficult to choose between these alternatives because both have their advantages and disadvantages. The SS50 bus and the $S 100$ bus both have a power supply rail carrying an unstabilised (approximately 8 V) power supply plus on-board regulation on all memory, CPU, and peripheral cards.

The principal advantages of a multiregulator power supply are:

1. Simple, inexpensive, one-amp regulators may be used instead of a complex and, possibly expensive, high current regulator.
2. A very low impedance power supply bus need not be used to distribute the stabilised power between individual cards-this can greatly

Fig. 6. A stabilised power supply using a monolithic voltage regulator
away from the more delicate modules.
2. Although the use of several regulators reduces the total damage done if a regulator fails-the chance of a failure is increased because there are more regulators to fail.
3. Regulators with their associated bypass capacitors and heat sinks take up valuable space on the cards where they are located. Furthermore, they often limit the minimum spacing between adjacent cards.

POWER SUPPLY PROTECTION

An ideal power supply and the a.c. mains to which it is connected should have the following characteristics:

1. The mains supply is a perfectly sinusoidal voltage of constant amplitude and frequency.
2. The mains has always been connected to the power supply, and always will be connected to it. That is, the
power is never turned on or off, thus avoiding switching transients.
3. The components which make up the power supply are perfect: they never age (i.e. change their properties) or fail.
Unfortunately the above situation does not exist. Because the mains supply has a non-zero impedance (typically $0.4+$ 0.25 j ohms at 50 Hz), the waveform at the power supply transformer primary contains components due to the effects of other loads connected to the mains. Common sources of mains-borne interference are:
4. Switched inductive loads-motors, solenoids, relays etc.
5. Lightning strikes to. or near, the power distribution networks.
6. Alternating-current switching circuits-e.g. SCR phase control circuits.
7. Energising or de-energising transformer primaries.
It is not uncommon for transients of the order of 1000 V to be superimposed on the mains supply, although most transients have an amplitude of less than 200 V and a duration of tens of microseconds. Transients usually have the form of an exponentially damped sine wave with a very rapid rise time. Why are the designers of power supplies so concerned about transients? A transient can, occasionally, have enough energy to destroy components inside the power supply or within the microprocessor system itself. More commonly, a transient may be large enough to affect a logic level on the system bus, causing a logical one to be interpreted as a logical zero by some device (or vice versa). This can cause a program to crash-especially if an address is corrupted and a random jump executed.

TECHNIQUES USED

A common technique of removing some of the effects of mains borne interference involves the insertion of filter networks between the mains and the power supply. A typical commercially available filter has an attenuation of 35 dB between 150 kHz and 30 MHz , and its circuit diagram is given in Fig. 7

Another type of transient suppressor is the zinc oxide voltage dependent resistor (VDR) which has a highly non-linear voltage-current characteristic. The V/I curve of a typical zinc oxide VDR is given in Fig. 8. A power supply is protecred from mains borne transients by connecting the VDR across the mains terminals at the input to the power supply. When a transient appears across it, its resistance falls, causing a current to flow through. In this way a large fraction of the energy of the transient is dissipated within the body. A ten fold increase in the

Fig. 7. The circuit diagram of a mains fiter
current through it corresponds to an approximately 8% increase in the voltage across it.

LOAD PROTECTION

In addition to protecting the power supply from mains borne transients it is usual to provide protection against excessive load current and load voltages. To protect the power supply from excessive load currents, a current sensor must detect an overload condition and then take action to stop any further increase in output current. This is done in one of two ways, by holding the output current constant, or by fold-back current limiting, which reduces the current to a very low value until the cause of the overload is removed. As many microprocessor systems use monolithic regulators, the power supply designer must choose the regulator with the type of current limiting best suited to his application.

Fig. 8. Typical V/I characteristics of a zinc oxide VDR for use with a mains supply

It is advisable to add over-voltage protection to the output of a power supply. A widely used method of over voltage protection is the crowbar circuit. The crowbar circuit is so named because of its 'brute force and ignorance' technique of putting an almost dead-short across the power supply terminals in the event of an overload. The effect of the short circuit switches off the drive to the regulator either by means of a resetable electronic switch or by a simple fuse.

The circuit diagram of a crowbar circuit is given in Fig. 9. The silicon controlled rectifier (SCR) placed across the output terminals of the power supply, is normally in the non-conducting state. When a positive going pulse appears at its gate the SCR conducts and remains conducting until it is reset by turning off the power supply. The gate voltage required to turn on the SCR is provided by sampling the power supply output with a zener diode which is non-conducting until the reverse bias voltage across its anodecathode terminals reaches its zener point. The crowbar circuit does not always give complete protection of the circuit because the SCR takes about a microsecond to turn on, and there is a further delay of several microseconds in the zener diode trigger circuit. During this delay it is still possible for a large over-voltage transient to cause some damage to MOS and TTL devices.

TRANZORBS

The zinc oxide voltage dependent resistor is usually used to suppress high voltage transients at the mains input. General Semiconductor Industries produce a device called the Tranzorb, which is able to suppress transients on low voltage lines. A tranzorb is a silicon $p n$ avalanche device designed to suppress transients above a predetermined level, at which the $p n$ junction breaks down (reversibly) and conducts-in other words a tranzorb is a special type of Zener diode. Tranzorbs have relatively low breakdown voltages and are designed to protect the outputs of power supplies, or even the MOS and bipolar TTL circuits themselves. Normally they are simply connected across the output of a power supply.

Next Month: A power supply for a small microprocessor system is described with design calculations.

Fig. 9. A simple crowbar overvoltage protection circuit

		4020	$100 p$	4060	120p
		4022	100p	4066	$50 p$
		4023	20p	4068	20p
		4024	50p	4069	20p
4001	20p	4025	20p	4070	20p
4002	20p	4027	45p	4071	20p
4007	20p	4028	85p	4072	20p
4009	40p	4029	85p	4081	20p
4011	20p	4040	110p	4093	50p
4012	20p	4041	85p	4510	80p
4013	35p	4042	80p	4511	90p
4015	80p	4043	95p	4518	80p
4016	30p	4046	110p	4520	80p
4017	65p	4049	45p	4527	90p
4018	90p	4050	45p	4528	90p

STEVENEON Electronic Components

SPRING SPECIALS
Set of 4 AA (HP7) Rechargeable Cells . . 500p 450p
PP3 Rechargeable cell : 450 p 410p
Pack of 10 miniature slide switches . . . 150ן 120p
Pack of 10 push to make switches . . . 150p 120p
Pack of 10 push to break switches . . . 200p 150p
Murata Ultrasonic Transducers, per pair . 350p 300p
Resistor Development packs.

10 off, each value from 4.7 ohm to $1 \mathrm{M} 1 / 4 \mathrm{w}$ 570p 500 p
1/2w 750p 650p
Polyester Development packs.
5 off, each value from 0.01 to 3 u 2
620p 520p
Preset Potentiometer pack
5 off, each value 100 ohm to 1 M, 65 presets 395p 305p Ceramic Development pack
10 off, each value 22 pF to $0.1 \mathrm{uF}, 310$ caps. 595 p 525p LED pack, 10 off,
each type 0.2 Red, green, yellow 350p 300p
Pack of 10 CA3080 Transconductance amps. 700p 620p
Pack of 10 LM301AN Op. amp. 260p 230p
Pack of 10 LM380N 2W Audio Amp . . 750p 620p
LM380 +LM381 and data , . 235p 180p
Pack of 3 LM3909 LED flasher 185p 150p
Pack of 10 TL081 Jfet Op. amp. 450p 320p
MM57160 Stac. Timer + data 600p 550p
SN76477 Sound generator + data . . . 240p 200p
Pack of 2 ZN4 14 AM chips 160p 130p
SS-2 Breadboard $1095 p$ 990p
Expo Reliant Drill 665 p 570p
Expo Titan Drill 1030 p 920p
Drill stand for above1200p 1100p
Pack of 82708 Eprom 4720 p 4500p
Pack of 82114 Ram LP 300ns3125p 3000p
Pack of 84116.
4660p 4300p

SWITCHES

TOGGLE

Subminiature toggle. Rated at 2A.
SPST 52p. SPDT 62p. DPDT 69p.
Standard type. Rated at 1.5A.
SPST 34p. DPDT 48p.
SLIDE
Miniature DPDT Standard

DPDT
15 p each.
ROTARY
Available in 4 pole 3 way, 3 pole 4 way, 2 pole 6 way, 1 pole

12 wav

43p each
Key operated switch
$380 p$ each
Miniature push to make
15p each
Miniature push to break
200 each
Rockers rated at 10A. SPST 32 peach SPDT 42p each.
We now offer one of the widest ranges of components at the most competitive prices in the U.K. See catalogue for full details. We welcome callers at our shop in College Rd, Bromley, from Mon-Sat, 9am6 pm (8 pm on Weds and Fridays). Special offers always available. We also provide an express teiephone order service. Orders received before 5 pm are shipped same day. Contact our sales office now with your requirements. TEL: 01464 2951/5770.
Quantaty discounts on any mix TTL, CMOS, $74 L S$ and Linear circuits: $100+10 \%, 1000+15 \%$ Prices VAT inclusive. Please add 50 p for P \& P .
no charge for orders over E 15 Official orders no charge for urders over f 15 Official or
welcome. All prices valid to April 1980 .

BARCLAYCARD \& ACCESS WELCOME

Appearing every two months, Micro-Bus will present ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data books. The most original ideas will probably come from readers working on their own microcomputer systems, and payment will be made for any contribution featured here. This is also the place to air your views, in general, on this new technology, so let's be hearing from you!

THE main topic in this month's Micro-Bus is a design for an extremely simple SC/MP-based microprocessor system which, while using a minimum of components, makes it possible to run and debug programs. Also included are designs for a hex keyboard and a two-digit hex display which can be added to the system.

NINE PROBLEMS

But first, here are nine light-hearted problems each to do with some aspect of programming micros, and gathered from a variety of sources. Solutions to all the problems will be presented in the next MicroBus.
One. National Semiconductor has just developed a micro with four registers, labelled A, B, C and D, and an instruction set consisting of the following five instructions (where X and Y stand for any of the four registers. and L represents a label):

LD X, Y Load X with the value in Y
DEC X Subtract 1 from the value in X
JZ L Jump to L if result of previous DEC was zero
JNZ L Jump to L if result of previous DEC was non-zero
DIS X Display value of X
Write a progam for this rudimentary microprocessor. using as few instructions as possible, to display the highest prime factor of a number in the A register. For example, for 91 it should give the result 13, and for 19 the result 1 .

When you have reached a solution you are advised to translate it into BASIC, or the machine code of a more reasonable micro, and run it to check that it really does work.
Two. The following problem has no possible practical application, but it should nevertheless cause some head-scratching among SC/MP programmers:

On SC/MP the obvious way to load zero into the accumulator is by executing 'LDI O' (C4 OO). Without making any assumptions about the contents of any of the registers, can you find four other ways of clearing the accumulator in just two bytes?
Three. It is very easy, in BASIC, to print the larger of two numbers by using an 'IF' statement and a 'GOTO', but how can it be done in
a single statement, and without using 'IF'? In other words we want the equivalent of: PRINT MAX (A, B)
without, of course. using the functions MAX or MIN.
Four. For a certain application using a 6800 system the programmer needed to reverse the order of bits in a byte in less than 10 cycles. One attempt is shown in Fig. 1; this routine shifts bits from A to B via the carry bit, and in the process sets B to the reverse of A as required. Unfortunately the routine takes 99 cycles to execute, and at this point the programmer gave up!

Fig. 1. Program for the 6800 to reverse the order of bits in the accumulator; see problem 4.

In fact the problem can be solved, although the approach is somewhat unconventional, and the solution can be extended to more general applications.
Five. There are three things that you might want to do to the carry bit of a micro, namely set it. clear it, or complement it. The Z80 provides instructions to set it (SCF) and complement it (CCF), and clearing it is no problem: you must do SCF, CCF. On the other hand the SC/MP, 6502, and 6800 micros provide the clear carry and set carry instructions, and leave you to work out how to complement the carry. Without affecting the contents of the other registers, what is the shortest way to complement the carry bit on these three micros?
Six. A very pleasing feature of the high-level language Pascal is the 'CASE' statement, illustrated by the example in Fig. 2 (a) which prints one of three values, A, B or C .

```
'CASE' n 'OP'
    1: WRITE (A):
        2: WRITE(B);
        3: WRITE(C)
    'END'
    10 IF N = 1 THEN PRINT A
    20 IF N = 2 THEN PRINT B
30 IF N = 3 THEN PRINT C
```

Fig. 2. Two programs which print one of three values depending on the value of N, written in (a) Pascal, or (b) BASIC.
depending on whether N is equal to 1,2 or 3 respectively. To do the same in BASIC one might use three 'IF' statements, as shown in Fig. 2 (b). Can the same effect be achieved with a single BASIC statement, and if so, how?
Seven. The effect of the SC/MP instructions 'LDI O, CAI O' is to set the accumulator to X'FF if the carry bit is clear, and to X'OO if the carry bit is set. How, without making any assumptions about the contents of any of the registers. can the same be achieved in half the number of bytes?
Eight. The 6800 micro provides two types of instructions to shift the accumulator right; a logical shift right (LSR A) which shifts a zero into the top bit of the accumulator, and an arithmetic shift right (ASR A) which preserves the sign bit, for working with signed twoscomplement binary numbers. Unfortunately the 6502 micro only provides us with an LSR A instruction; what is the shortest way of implementing an ASR A using the existing 6502 instructions?
Nine. Finally, a problem for all 6800 owners who wish they had a 6809 . One of the great improvements of the 6809 over its predecessor is that its instruction set makes it easy to write relocatable programs. If you did not realise that it is difficult to write relocatable programs on the 6800 , try finding a set of instructions with the same effect as:

HERE LDX £HERE

but which will work correctly wherever they are loaded into memory.

LOW-COST SC/MP SYSTEM

The following SC/MP system can be built with a small number of readily available components, and it works without the need for a monitor ROM or EPROM of any kind. It was designed by Andrew Aitken who submitted the following details about its operation.
"The full circuit, shown in Fig. 3, includes a single-cycle facility comprising a flip-flop and a few gates. The system has 256 bytes of RAM, at addresses OOOO to OOFF, and the states of the address and data lines are shown on 18 I.e.d.s. The whole circuit needs a 5 volt supply of about $\frac{1}{2} \mathrm{amp}$, and two or three $0 \cdot l \mu \mathrm{~F}$ capacitors should be added across the power rails at various points for decoupling.

PROGRAMMING

"Programs and data are entered into the memory as follows: With S 1 set to 'PROGRAM' and S4 set to 'SINGLE CYCLE' press 'RESET'. The MPU will then be halted while it is fetching the first word from memory, and NRDS will be low thus enabling the data buffer. Whatever is now set on the data switches will be present on the data bus, and will be read by the MPU. Set the data switches to C4 (the op-code for the Load Immediate instruction) and switch the 'CYCLE' switch S2 up and then down. The instruction is then executed, and the MPU will again set NRDS low, waiting for the data which forms the second byte of the instruction. This is likewise entered at the data switches, and the
programs in any sequence, and to change the contents of any location at will. When the program has been entered set S1 to 'RUN', leave S4 on 'SINGLE CYCLE', 'RESET', and cycle through the program by toggling S 2 . If everything seems fine 'RESET', set S4 to 'CONTINUOUS', toggle $\$ 2$ once, and the program will run. A particularly pleasing aspect of the system is the ability to stop a program in mid run, by setting $S 4$ back to 'SINGLE CYCLE', change an instruction, and then allow the program to continue so as to see the effect of the change immediately.
" $S 1$ is a double-pole switch to ensure that when the system is in 'RUN' mode the data switches are disconnected from the data bus. Alternatively the data buffer EN line could be
corresponding to that key is presented to the inputs of the CMOS inverters by a diode matrix. The outputs of these inverters are connected to the inputs of both of the 4 -bit latches. The CMOS inverters were used as buffers because the key switches could only tolerate small currents. If more robust switches are available it would be possible to connect the outputs of the diode matrix directly to the latch inputs; in this case the 12 k resistors should be changed to 1 k and the data should be taken from the Q outputs of the latches.
"A key-press is detected by a diode gate which charges up a $4.7 \mu \mathrm{~F}$ capacitor. This causes the output of the second Schmitt trigger to go high, which clocks the flip-flop

Fig. 3. Complete circuit of the simple SC/MP microprocessor system.

MPU will load this data into the accumulator.
"Now enter C9 (Store relative to pointer register P 1) followed by the required memory address. Pointer Pl was set to zero on reset, so on the next cycle the MPU will store the contents of the accumulator, the required data, at this address. When the MPU writes to memory NWDS goes low which will enable the RAM.

For example, to enter 8 F at location 0002 the full sequence is:
RESET, C4, CYCLE. 8F, CYCLE, C9, CYCLE, 02, CYCLE.
"The sequence is repeated to enter data at a different address and although the sequence looks quite long, in practice programs can be loaded into RAM fairly easily. The beauty of the system is that it is possible to enter
connected to an inverted address line so that the data switches could be read from a program.

HEX KEYBOARD

"Although data for the SC/MP system can be entered by means of eight toggle switches at the input of the data buffer, a far more convenient method is to use the hex keyboard circuit shown in Fig. 4. The keyboard is based on a circuit in the September 1978 PE and would be useful in any application requiring hex data entry.

CIRCUIT OPERATION

"The keyboard circuit buffers two hex keypresses to give an 8 -bit value at the output. When a key is pressed the binary code
and triggers the monostable. The flip-flop steers the pulse from the monostable to enable the appropriate latch, and this latches the key's value.
"When the key is released the $4.7 \mu \mathrm{~F}$ capacitor will discharge through the 1 k resistor, and the output of the second Schmitt trigger will return low. The capacitor thus serves to debounce the keys both when they are pressed and when they are released. The next key-press will load data into the other latch, and the pulse from the monostable will be available on the strobe line to signal that a full 8 -bit word is ready at the outputs of the latches. When loading a program this strobe line is not required, but it can be tied to SC/MP's Sense-B input so that programs can detect when data has been entered.

Fig. 4. Hex keyboard circuit which can be added to the SC/MP system to make data entry easier.

TWO-DIGIT HEX DISPLAY

"A two-digit hex display of the output from the keyboard is another useful addition to the system. The circuit of Fig. 5 achieves this with few parts, and without the need for an expensive decoder chip. The l.e.d. display is a small common-cathode multiplexed type.
"The four NAND gates form an oscillator that drives the cathodes of the displays in turn. One output of the oscillator is also taken to the select input of a 74157 quad two-input data selector which routes the appropriate 4 bit nibble from the data bus to the decoding circuitry. The 74154 decoder pulls one of its 16 outputs low depending on the code at its inputs. Each output is connected to certain segments of the displays by diodes; when the out put is pulled low these segments are turned off
to produce the required hex character on the display. Turning segments off is simpler than turning segments on, and results in a considerable saving in the number of diodes required. The 2 k 7 pull-up resistors may be reduced to 1 k 5 if the display is not considered bright enough.
"The oscillator thus switches the segment codes for each nibble to each display digit in turn, at high speed, giving a two-digit hex display of the data bus."

I/O PORT TESTER

The Acorn 6502 -based computer provides two 8 -bit I/O ports, and when these are being interfaced to external circuitry it often becomes difficult to keep track of the logic levels on the 16 lines. In such cases the routine
of Fig. 6 should prove useful; it gives a continuous display of the states of the ports, in binary, as two rows of 8 dashes on the l.e.d. displays. The top row corresponds to the 8 bits of port A and the bottom row corresponds to the 8 bits of port B. The leftmost dash in each row is bit 7 , and the rightmost dash is bit O. A particular dash is illuminated if the appropriate input line is high, and blank if the line is low.

The routine can also be incorporated into programs which control the I/O ports, thus providing a continuous visual indication of what they are doing. In this case modify the last instruction of the routine to an RTS instruction, and insert a call to the routine in the most frequently executed section of your program.

DISPLY $=$ \$FEO						DISPEAY ROUTINE
0000				. $=\$ 0200$		
0200		1 F	TEST	LDA	£ \$1F	SINGLE SWEEP OF
0202	85	OE		STA	REPEAT	DISPLAY.
0204	A2	07		LDX	E7	
0206	BD	0809	LOOP	LDA	BBIT, X	BIT $7=$ STATE
0209	OA			ASL	A	INTO CARRY
O20A	7D	0009		ADC	ABIT, X	
O20D	95	10		STA	DISP, X	PUT IN BUFFER
O20F	CA			DEX		
0210	DO	F4		BNE	LOOP	
0212	20	OC FE		JSR	DISPLAY	SWEEP DISPLAY
0215				BPL	TEST	I.E. ALWAYS
				, END		

Fig. 6. Program for a $\mathbf{6 5 0 2}$ displays the states of an Acorn's I/O lines.

EG301
Fig. 7. Diagram to solve the card-trick problem.

CARD TRICK SOLUTION

In the last Micro-Bus you were asked to deduce which card in a series of thirteen cards had been removed. and replaced at a different position. The problem could be solved by entering the sequence of cards into one of the card-trick programs. Alternatively consider the sequence separated into two ascending series as indicated by the lines in Fig. 7. The nine is then clearly anomalous, and so this was the chosen card.

The hardware and software exchange point for PE computer projects

Yes, we know! This is supposed to be a bimonthly column; it appeared last month, yet here it is again! Well, the Prompt file is full of goodies, some of which we know are anxiously awaited, so we slipped this one in whilst no one was looking.

SAVE IT

Having stated in our first Prompt that the 101 has no cassette file handling firmware, we are now knee-deep in letters explaining various ways of saving raw data on tape. Below is a program which should provide the seed for some rewarding experimentation in cassette file keeping. It is an optimised combination of all the ideas sent in, some crude, some not so crude. plus our own refinements, and allows a named data file to be recorded. The data can be numbers or strings of text, since the technique utilises the SAVE and LOAD commands under program control. This program will take five words from you and record them as "FILE A"

```
save on tape
```

```
    5 FOR A = 1 to 5 :INPUT
```

 5 FOR A = 1 to 5 :INPUT
 "WORD": W\$(A) : NEXT
 "WORD": W\$(A) : NEXT
 10 PRINT "TURN TAPE TO
10 PRINT "TURN TAPE TO
RECORD, \& WAIT" : FOR A = 1
RECORD, \& WAIT" : FOR A = 1
TO 8000 : NEXT
TO 8000 : NEXT
20 PRINT : PRINT "HIT ANY KEY"
20 PRINT : PRINT "HIT ANY KEY"
25 POKE 11, O : POKE 12, 253 : $\mathrm{X}=$
25 POKE 11, O : POKE 12, 253 : $\mathrm{X}=$
USR (X)
USR (X)
30 SAVE : PRINT "FILE A"
30 SAVE : PRINT "FILE A"
40 FOR A $=1$ TO $5:$ PRINT W\$(A) :
40 FOR A $=1$ TO $5:$ PRINT W\$(A) :
NEXT
NEXT
50 POKE 517, O
50 POKE 517, O
60 END

```
60 END
```

Run the SAVE program. rewind the data tape, and then run the LOAD Program (RUN 120). All data will thus be cleared from memory, and recovery of the words will rely entirely on the tape file.
load from tape

```
120 PRINT "TURN TAPE TO
    REPLAY, AND HIT ANY" :
    PRINT "KEY IMMEDIATELY"
125 POKE 11,O:POKE 12, 253: X=
    USR (X)
130 LOAD
140 INPUT TS
150 IF RIGHT$ (T$, 6) = "FILE A"
    THEN 170
160 GOTO 140
170 FOR A = 1 TO 5 : INPUT W$(A) :
    NEXT
180 POKE 515,0 : PRINT : PRINT :
    PRINT
190 PRINT RIGHTS (T$, 6) : PRINT :
    FOR A = 1 TO 5 :PRINT W$(A) :
    NEXT
```

Advantage is taken of the fact that any PRINT statement after a SAVE command will write to the cassette interface, and any INPUT statement after a LOAD command will take data from the cassette.

To revert to normal operation in each case, it is necessary to POKE the relevant SAVE/LOAD flag off again with a zero (lines 50 and 180).

A delay is included (dead FOR-NEXT loop) to wait for the tape leader to clear and the recorder to settle down etc.,

Lines 150 and 190 use RIGHT\$ to look at only these six characters: "FILE A", which may find themselves tacked on the end of some noise characters-all of which will think they are T\$.

101 LOCATIONS

Here are some useful UK 101 scratchpad memory locations which have been discovered by P. Goodwin of Southampton.

hex	dec	
0200	512	Cursor position along line
0206	518	VDU operating speed
0213	531	Character returned by keyboard input routine
$\begin{aligned} & 0130 \\ & 01 \mathrm{CO} \end{aligned}$	$\begin{aligned} & 304 \\ & 448 \end{aligned}$	NM 1 Vector IRQ Vector $\left\{\begin{array}{l}\text { these are } \\ \text { in the } \\ \text { middle of } \\ \text { the stack }\end{array}\right.$
0203	515	LOAD Flag POKE 515, 0 turns Load off
0205	517	SAVE flag POKE 517, 0 turns Save off
0218	536	Input Vector
021A	538	Output Vector
000F	15	Terminal Width
0300		Program End pointer (POKE this at your peril)

HEAT POLLUTION

We received a letter from Mr. J. Briggs of Malton, N. Yorks. describing a problem with his 101 concerning video stability. The machine worked fine with the family television, but when used with a portable (PYE Model 191) the picture broke up as if incorrectly tuned, after about 10 minutes. Heat from the 5 V regulator seemed to be affecting the modulator capsule, and anyone experiencing the same difficulty should note that the problem was cured by mounting the regulator and heatsink separately from the p.c.b.

The $3300 \mu \mathrm{~F}$ reservoir capacitor has on some 101 boards suffered from excessive heat too. We have been told this can produce video and keyboard problems.

Next month's Prompt will include a table of handy and unexpected characters available direct from the 101 keyboard, and a review of some software which enables line editing and programmable cursor movement in all directions. We shall also publish that promised CHAMP program.

A selection of readers' original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.
Why not submit your idea? Any idea published will be awarded payment according to its merits.
Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.
Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

MODEL RAILWAY CONTROLLER

THE circuit shown is a pulsed power speed controller which includes simulated inertia and brake effects. It can also be used as a conventional pulsed power controller or as one in which both inertial acceleration and braking effects are controlled by the same potentiometer. I personally find this latter mode very satisfactory.

The controller will supply 1 A at 12 V and since the full output voltage is supplied to the motor during even the shortest pulses, the best possible control is achieved at slow speeds.

The half wave rectified output from the bridge rectifier is squared up by TR1 and integrated by R4 and C2 to produce an approximate saw-tooth waveform at the non-inverting input of the op-amp IC1.

The potentiometer VR1 and its associated presets VR2 and VR3 provides a reference voltage which can be varied over the range of the saw-tooth waveform. When this reference voltage at the inverting input is higher than the saw-tooth, the output of the op-amp goes low, switching on TR2 and TR3.

If all the components R5, R6, VR4, D5, C3 are omitted, the controller will be a conventional one with a very linear output.

If only R5 and C3 are included, the output will rise and fall exponentially giving exceptionally smooth starting and stopping and calling for some skill from the operator when shunting! The value of R5 may be adjusted for individual preference.

With all the above mentioned components, VR1 acts as the regulator and VR4
the brake. D6 acts as a current limiter and visual warning in the event of a short circuit.

To set up the preset potentiometers, connect a small loudspeaker in series with a 1 kilohm resistor across the output terminals. Turn VR1 to maximum and adjust VR2 until the 50 cycle note from the loudspeaker just disappears. Turn VR 1 to minimum and likewise adjust VR3. Repeat this procedure once or twice until the note just disappears at both maximum and minimum ends. The controller is now ready for use.
J. O. Linton. Harrogate.

METAL DETECTOR

T
THE operating principle of this unusual metal detector relies on the fact that the high frequency field generated by the search coil. LI, produces eddy currents in any nearby metallic object. The energy used to produce these eddy currents is taken from the oscillator, formed around TR2. This is a Colpitts oscillator running at 140 kHz : just inside the legal limit for metal detectors. This drain of energy, which finally produces heat in the metal. results in a reduction in the amplitude of the oscillations.

The signal at the collector of TR2 is rectified by D2: the peak value being stored in C5. Any change in the d.c. voltage will be amplified by TR3. A positive-going voltage at the collector of TR3, resulting from metal detection. will cause the output of the comparator, IC1 to switch positive, since the inverting input is for a time held
more negative than the non-inverting input by C8. The audio oscillator, IC2, which was previously inhibited by D3, now oscillates at 400 Hz , driving the earpiece.

Stability of the circuit is ensured by the shunt regulator around TR1. The comparator. IC1. uses a rather unusual method of offset control, VR 1 , to enable a fairly large adjustment range. This is to null out any noise, interference and instability which could arise in this very sensitive circuit.

Since the circuit detects changes in voltage rather than absolute values, it needs no re-adjustment once VRI has been initially set. Furthermore, the operator has no variable controls to manipulate. making the unit very simple to operate. This is also true of the detection signal, which is of the tone/no tone type. An operator would need no skill in
detecting a 10 p piece at a depth of 6 inches, or larger objects up to 3 feet deep.

When the unit is switched on, it needs 60 seconds to stabilise. Once a metallic object is brought into the field, the detection signal remains for about 2 seconds, after which the circuit re-adjusts to the new value of oscillator amplitude.

L 1 is a rectangular coil 3 in by 6 in wound with 55 turns of 5 A flexible wire. A PP3 battery would give about 20 hours of continuous operation.
P. R. Williams,

Stevenage, Herts.

LOW NOISE MIC PRE-AMP

THE circuit shown was designed to fulfil the need for a very high quality microphone amplifier such as is essential for serious tape recording and in studios.
The signal to noise ratio is 78 dB for an output of IV r.m.s. and a source impedance of between 600 ohms and 50 kilohms. This very high signal to noise ratio is achieved by operating TRI at a collector current of just $25 \mu \mathrm{~A}$, and a $\mathrm{V}_{\text {ce }}$ of 2 V .

The frequency response is $25 \mathrm{~Hz}-24 \mathrm{kHz}$ $(-3 \mathrm{~dB})$, the upper limit being due to C 3 , which ensures high frequency stability. The amplifier is very stable due to the use of multiple feedback paths. R5 completes a d.c. feedback path, and also provides the correct bias for TR1. R4 and C2 complete an a.c. feedback path, providing negative feedback to the emitter of TRI to control the overall gain. Negative feedback also reduces distortion and lowers the output impedance to just 800 ohms. The input impedance is 200 kilohms.

The purpose of R 7 is to decrease the voltage/gain of TR2 such that TR1 has to work at a high gain, aiding the signal to noise ratio. The overall voltage gain is 35 dB . but this can be altered by changing
the value of R4. Inputs of up to 100 mV can be accepted without undue distortion.
F. R. Williams,

Stevenage,
Herts.

FRANK W. HYDE

international ultraviolet EXPLORER (IUE)

In January last the IUE satellite completed two years of outstanding operation as an orbiting astronomical observatory. The satellite was originally designed for a useful life of three years. Now it is reasonably certain to exceed that period. It is fortunate that this is so, for the demand for time is beyond the capability as originally supposed. Already there is request for more than double the present time available.

The mission is a joint venture by the Science Research Council, the eleven member countries of the European Space Agency and the National Aeronautics and Space Administration of America. All three participants have agreed to continue the operation of the satellite so long as justified by the scientific return of data.

The Science Research Council provided the ultraviolet sensitive television cameras and image processing software. The European Space Agency provided the solar arrays and the ground station which is situated near Madrid. The National Aeronautics Space Administration supplied and launched the spacecraft and also operates the ground station in America at Maryland. More than 500 scientists from 20 different countries are in the process of studying 12,000 ultraviolet spectra of planets, stars, the interstellar medium and the galaxies. The strongest characteristics of light emission of the common atoms and ions lie in the region of the ultraviolet wavelengths of 115 nanometres to 320 nanometres. A vast amount of information can be obtained about the composition and physical state of astronomical objects.

IUE has pioneered a new method of operating a space telescope. When astronomers visit a ground station they are able to operate and direct the telescope as if it were at a ground based observatory. The satellite telescope is small compared with the
equivalent ground based instrument for this work, but because the satellite telescope is outside atmosphere the efficiency is much greater. There are no cloud problems, no background light haze and much less turbulence to consider. Long exposures, which are essential to this work, can be carried out with great precision. An example of this was found when exposures of 14 hours were made and used to study the spectra of distant quasars of the order of magnitude 17. New information has thus been made available about these somewhat enigmatic objects.
Some of the discoveries are worth noting specifically. For example the stellar winds, which are caused by the radiation of matter from stars, have been found to exist around some of the very hot stars, something not previously known in connection with particular objects. New results show that the shockwave from an old supernova interacts with the interstellar material. Gas forming a high temperature halo around the galaxy with which the Solar System is associated (popularly called nowadays the Milky Way Galaxy) has been assessed and it is surmised that other galaxies may exhibit the same phenomenon. Observations have also been made of other galaxies. distant and active and other bodies such as quasars which emit vast amounts of energy. Studies were made of Xray binary stars which are thought to be a normal star orbiting an object which could be a white dwarf, a neutron star or even a black hole.

The flexibility of the operating facilities of IUE has made it possible to allow for the unexpected, such as a new comet or the advent of a supernova, when the discovery could be foilowed by continuous observation.

These activities have already been widely discussed at some of the Conferences round the world. Perhaps the most succinct remark at a meeting of the International Astronomical Union Conference in Montreal. sums up the situation-"It is the first time that a whole day of the General Assembly has been devoted to the results of an 18 inch telescope only 18 months after its inception."

LASER COMMUNICATION SYSTEM (LASERCOM)

A Lasercom package carried on a space platform test satellite contains a transmitter as well as a low data rate receiver. The transmitter has been added to allow real-time telemetry data as the satellite passes over the White Sands missile range and gathering information on the performance of laser transmissions down through the atmosphere. The main aim of the tests is to evaluate the expected potential of space applications for high speed data transmission, increased transmission security and the ability to resist jamming.

The transmitter will be operated at a data rate of $800 \mathrm{bits} / \mathrm{sec}$. This will enable the research team at the ground station to ensure that the transmissions are accurately pointed at the satellite. The satellite is to be placed in a 400 naut $/ \mathrm{mile}$ orbit so that the ground station will have about 10 minutes of contact with the lasercom equipment aboard the spacecraft at each orbital pass.

The experimental module contains a multiple access receiver which is capable of acquir-
ing several messages simultaneously. This receiver has a field of view of 4 degrees. In order to assess the spread of the laser beam over long distances and the effects of atmospheric variations, the transmissions will be at varying rates. That is, there will be data rates of 100 bits $/ \mathrm{sec}$. to $20 \mathrm{kilobits} / \mathrm{sec}$. Ground testing of the high rates has already been undertaken since 1978. The test set-up was made with the receiver and transmitter at one point and a 24 in. diameter reflector set up about a kilometre away. Already flight testing at $30,000 \mathrm{ft}$. has shown significant results at $100 \mathrm{bits} / \mathrm{sec}$.

NEW THEORY FOR THE SOLAR SYSTEM

It was to be expected that someone would want to set up another model for the Solar System. This time, needless to say, the computer is being used to provide evidence. It is certain that the Velikovsky myths will be put forward as having prior claims to the authorship of the new suggestions.

The details so far available are based on the fact that the computer has offered a conclusion that large planets were stable at an earlier date in the evolution of the Solar System. It is natural that there would be an immediate assumption from some quarters that Jupiter is the planet in question. The reason? Because Jupiter is the largest planet in the Solar System. The reason could be that Velikovsky claimed that around 1500 BC a comet erupted from Jupiter and formed the planet Venus. Aside from the timing, the lack of understanding of basic facts by Velikovsky has set many fantasies and claims among the gullible. It is often the bizarre that attracts a very large number of people to these ideas and they cannot be persuaded that most of the statements have no basic credibility.

Some years ago the writer and a few more astronomers speculated that in one hypothesis it could be said that the original body, or bodies, assuming a binary system, could by some process which caused imbalance result in the separation of a large portion of the original matter which by the momentum changes left the remnants (very small mass) which became the planets. leaving the larger mass to become the centre of mass with the remnant balancing the system. Space does not permit more than this brief note.

Coming back to the new report it is quite conceivable that there was a transition period where large bodies formed and became stable. The size is not easily suggested for such bodies, nor is the suggestion from the team at the Ames Spaceflight Centre and California University that stability necessarily means a rocky core in the centre of such bodies. While it is true that there is no absolutely concrete data about the present physical conditions deep inside planets, yet a model which postulates a solid interior of rock would raise more problems than can be answered at the moment. Indeed the tremendous increase in our knowledge of the planets that has resulted from the latest pictures and other data from Jupiter and Saturn will change many preconceived ideas. These, however, will not and do not support a composition of double evolution. Nor is it the case that such details of ageing which are generally accepted at the present time give any support to such an idea.

Maintain the lead with Acorn 6809

. . . the 6809 designed from the start with the programmer in mind readily supports high level languages and built as it is on the experience of the 6800 is likely to become the standard 8 -bit microprocessor for the foreseeable future.

Acorn is offering their two most powerful modules as the basis for a 6809 development system requiring the addition of keyboard, power supply and monitor. For existing owners of Acorn Systems, the $6809 \mathrm{CP} \cup$ card is a direct plug-in replacement for the 6502 CPU and can be used with all the supporting cards presently consisting of 8 K memory, tape interface, VDU interface, Floppy disc drive, Analogue to digital/digital to analogue and Universal interface.

For newcomers to Acorn the two card system can readily be linked to terminals printers, etc., the operating system firmware is designed for modularity and has disc bootstrap.

- 1 K RAM
- Direct printer drive
- ASCII keyboard input
- Fully buffered address and data bus
- 2K operating system with

Printer routine
VDU routine
Cassette load and save
Disc bootstrap
Trace
All usual debug facilities

All Acorn modules are covered by a moneyback guarantee and a fast reparr/advice service, kits are supplied with full assembly instructions and operating details including where necessary sample programs.

Complir
Acorn Computer,
4a Market Hill, Cambridge CB2 3NJ

Bind it

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold approximately 12 issues and is attractively bound and blocked with the PRACTICAL ELECTRONICS logo: Gold Letraset supplied for self blocking of volume numbers and years.

Price f4.10 including postage, packing and VAT. Why not place your order now and send the completed coupon below with remittance to: IPC Magazines Ltd., Post Sales Dept., Lavington House, 25 Lavington Street, London SE 1 OPF.

A new book for the home electronics constructor

Microprocessors for Hobbyists

Ray Coles

* An introduction to microprocessors based on two popular series in Practical Electronics
* Covers the architecture of microprocessor chips and systems, programming memory and input-output components
* Describes home computers together with a comparison of different models and the appropriate software
* Includes a comprehensive glossary of terms to explain the 'buzz-words' of the microprocessor scene

Butterworths has companies in Australia, Canada, New Zealand, South Africa and the USA, where local prices apply.

INCLUDING V.A.T and CARRIAGE

We believe this is an exceptional loudspeaker and that we are offering it at an exceptional price-we urge you to compare it with any advertised price or any other "offer"! The phrase "Value for money" is used in the Practical $\mathrm{Hi}-\mathrm{Fi}$ and Audio review quoted below-that phrase was based on a normal retail price of approximately $£ 80$ (yes eighty) -need we say more?

The GB3 is a two-way bookshelf loudspeaker of very compact dimensions which is based on the extremely successful Minimax. However, all the design and development work for the GB3 has been completed by Videotone engineers in the U.K.
As in the Minimax, the bass unit utilised is a high performance, 5 inch unit which incorporates a lightweight, rigid paper cone with rubber roll surround and a one inch double wound voice coil. These combined with the high density magnet give the unit a very long throw with good linerity and this results in a powerful, clean bass and very good power handling.
The tweeter used is a brand new one inch dome developed specially for the GB3. This unit has a smooth frequency response which extends beyond 20 kHz and the use of it in the GB3 gives the speaker a good polar response, enabling the listener to listen off axis from the speaker without undue loss of extreme high frequency sound.
The crossover that combines the woofer and tweeter together is also of a new design, incorporating mylar capacitors and top quality air cored inductors to ensure a well intergrated and smooth response throughout the crossover region. The drive units and crossover are confained in a very high quality cabinet. This is constructed from reinforced plywood (which is better than chipboard for the absorption of unwanted rear-radiated sound) and filled with a measured quantity of acoustic wadding to further absorb cabinet resonances. The cabinet is covered, both back and sides, in a high quality wood veneer of either polished teak or walnut.
The use of more sophisticated and expensive components and drive units in the GB3 have resulted in a sound quality that is superior to the highly regarded Minimax in almost every way.

Typical Specification:

Type:
impedance:
Two way, sealed box (infinite baffle) enclosure
8 Ohms nominal
Recommended amplifiers: Those delivering between 15 and 40 watts (r.m.s. into 8 Ohms)

Frequency response:
Efficiency:
$0-20,000 \mathrm{~Hz}(80-20,000 \mathrm{~Hz} \pm 4 \mathrm{~dB})$
3 watts (r.m.s. into 8 Ohms) gives 88 dB S.P.L. at 1 metre
12 d 8 per octave network, utilising high quality
Size
components, and crossing over at 3.4 kHz 260 mm ($10 \frac{1}{4} \mathrm{in}$) high, $150 \mathrm{~mm}\left(5 \frac{7}{\mathrm{Z}} \mathrm{in}\right.$) wide, $220 \mathrm{~mm}\left(8 \frac{1}{4} \mathrm{in}\right)$ deep

To: Videotone Ltd., 98 Crofton Park Road, London S.E.4. Tel. 01-690 8511

Please send me

GB3 loudspeakers at $£ 41$ per pair
I enclose P.O./Cheque No..................... Value..........
Name

Address
\qquad
\qquad
Please allow 28 days for delivery OFFER CLOSES FRIDAY MAY 2nd 1980

Name
Address

From: Videotone Ltd. 98 Crofton Park Road, London S.E.4. Tel. 01-690 8511

Extracts from review by Bill Anderton in the October Issue of Practical Hifi and Audio.
When under test, the GB3s were compared with a monitor loudspeaker system costing four times as much and this should be borne in mind when evaluating comments.
Initial impression: excellent.
Mid range and high frequencies very good and clear. No over emphasis of record surface noise. Excellent overall-no immediately obvious distortion.
Percussion: stereo image solid and well defined. Top end good-cymbals clean, accurate sound, not tinny. Realistically high listening levels obtainable despite relative inefficiency. Mid-range very good. Electric guitar has bite and depth to its sound quality. Orchestral with solo violin: solo violin reproduced accurately-no unnecessary harshness. Upper mid-range excellent. Overall an excellent high-quality performance, very impressive.
Orchestral with piano: top end well controlled and impressions, realistic reproduction Rock and jazz: brass excellent accurate sound, reproducing reedy, raspy timbre accurately. Very impressive and will reproduce high sound levels without introducing any noticeable distortion.
Organ: considering the size of these loudspeakers, bass performance is excellent. Midrange and high frequencies accurate.
Choral: excellent stereo separation between sound images, male voice speech. Tonal
quality can sound thin but overall performance excellent
White noise: very smooth-no obvious level difference between drive units and no obvious suck-outs or peaks. Low frequencies missing but otherwise accurate. Drums: cymbals clear and accurate.
Electric bass and bass drum: remarkable performace for such a low priced speaker.
Guitar 12 string: excellent reproduction of transients.
Piano: same comments as for 12 -string guitar.
Bass acoustic: very good. Transient response accurate.
Cello: excelient. No loudspeaker resonances evoked by this instrument. Violin: very good.
Bass flute: very accurate reproduction. Breath tones clear without over-emphasis. Alto flute: same comment as for bass flute.
Oboe: characteristic timbre accurately reproduced. Performs well in this frequency range.
English horn: excellent, accurate reproduction of the tonal quality of this instrument. "Comparison with Minimax 2: smoother upper mid-range and high frequency reproduction. Slightly less efficient but general tonal clarity has been improved-not quite so lively as the Minimax but overall the sound quality has been improved by quite a major degree." "Distortion measurement results were excellent." "Value for money is certainly the phrase I would use to describe the diminutive G83s. They are styled simply and attractively and have a performance quality that surpasses all expectations from a loudspeaker of this nature. Full marks to Videotone and the GB3.'

InSTALIATION
 If a dashboard cut-out for a ratio is provlded theo tifa: volume tuning cohtrol knob znd the escutcheon shayldibe removed. Tha two remaining distance puts can then bejto Iusted to the correct gap betweon, the sof and the: of eutcheon
 With all the coanecrions made to the setif shoutd be fit

Afiter the Traveller bas been assembled and oligned a plece of carctboard should be filted over the track of the picb. Io Improva the insulatlon If a mutimetor is available theck that a shorl does not exist between the two feed through capacitors and the chassis, The current consumptatief the selis yery low whatia slanal and should not ex capart amp at fult volume:

Whder na circumstances shauld the cores of the tuner of the it it it module be'adlusted as the unit is pre-aligned and tumed tor opilinum resulis.

\&ETIINETHE PUSH BUTGTONS

The pusth butions can be set by tuning the receiver to the Tifedith wave and pulling out ibe Mist button, next to the volume controll: which should nove approxinately 6mm from its static position. The station tequired should then be selected using the manual 4 uning knob and when the set is accurately tured in the push button strould be pressed firnly bant.

AEMIAL

A. Suitable aprit for the Traveller should havesa total capacity (aenjal gid lead) of 70 -80pf. If a figh capacity aunidls used there will be proflems in adjusting the deflal ithiner Ensure that there is a good satthbetween the aerial ent twe car body.
3. Vitheill the connections made to the set but before the Usdidcheonts fited the aerial riminer should be adjested. It
 Whybbafd, There should be a point where the volume peaks Will ardardropeither site. The twa squate trims can then hogitied to the fiscutchoon along with the printed tuning 42 412
ted into the dashbcard tram behind and the knolgs and its: cutcheon refitted After the get has been fited chock ifit there is sufficient clearánce tor the push battense ter ghergio correctly.

If there is no apenure the sot can the thomited eitheraf: the parcel shelf or undert the dashboard. The set shouff not be fited near the heater outlet as frequency shitt due torexftreme temporture may occur.

Two 2BA tapped fixing holes arc provided eifrer side. of the casing and these can be used to moint the sectirity
 formed. Fig. 1) and fited to the "cariand then the radig, screwed into position.

IWTENFERENCE SUPPRESSION

Atter the set has been installed if should be cheakedfigi any interference. To ensure that the interference is Hojfrón any outside source the following checks shayld te certity out awoy from any bulling, power ines, etc.

Tune the fadio to the mecium wave away from aity station

and with the volume turned up only a background hiss should be audible. If there are any crackles re-check the aerial and earthing points for loose or dirty connections. If an electric clock is fitted this can be suppressed with a $1 \mu \mathrm{~F}$ capacitor between its 12 V supply and earth. With the ignition turned on the electric fuel pump (if fitted) may cause a whine or tick in which case another $1 \mu \mathrm{~F}$ capacitor should be across its supply to earth.

With the engine running there might be a trace of interference. If however there is a whine which increases with engine revs this will be the generator. A $1 \mu \mathrm{~F}$ capacitor should be connected across the live output terminal to earth. Do not connect it to the field terminal. Alternators should be suppressed using $2 \mu \mathrm{~F}$ capacitors connected across the output lead and the nearest earth.

If the interference is a crackle which varies with engine revs then the ignition coil should be suppressed with a $1 \mu \mathrm{~F}$ capacitor connected across the switch terminal (SW,+) and earth. Please note that if your car has electronic ignition then you must check with the manufacturer's instructions otherwise the system may be damaged.

In most cases the procedure outlined above should give

Mounidiun

Computermarket Mar. 11-13. Manchester. U1
Computermarket Mar 18-20. Glasgow. U1
Keyboards And Switches (mini) Mar. 18-20. National Microprocessor and Electronics Centre, London. L1
Computermarket Mar. 25-27. London. U1
Electro-Optics/Laser International March 25-27. Metropole Convention Centre, Brighton. TI
Viewdata Mar. 26-28. Wembley Conference Centre, London. O
Computer-Aided Design (conference \& exhibition) Mar. 31-April 2. Metropole, Brighton. Details: CAD 80/0483-31261
Small ATE April 1-3. National Microprocessor and Electronics Centre, London. L1
Applying Microprocessors April 8-10. National Microprocessors and Electronics Centre, London.
Seminex April 14-18. Dept. Physics, Imperial College, London. H1
Communications 80 April 14-18. National Exhibition Centre. I
Calibration April 15-17. National Microprocessor and Electronics Centre, London. L1
Peripherals 80 April 16-17. London. L
Welsh Amateur Mobile Rally April 20. Memorial Hall. C
Electronic Test \& Measuring Information April 22-24. Wythenshaw Forum, Manchester. T
International Conference On The Electronic Office April 22-25. London Penta Hotel. Organised principally by the Institute of Electronics \& Radio Engineers. 99 Gower St., London WC1E 6AZ
North Midlands Mobile Rally April 27. Drayton Manor Park, Tamworth, Staffs. Details: Norman Gutteridge, 68 Max Rd., Quinton, Birmingham
All-Electronics Show April 29-May 1. Grosvenor House, London. E The Mersey Micro Show April 30-May 2. Adelphi Hotel, Liverpool. O Compec Europe May 6-8. Centre International Rogier, Brussels. L
International Word Processing (Exhibition and Conference) May 20-23, Wembley Conference Centre. O
East Suffolk Wireless Revival May 25. Grounds of Ipswich Area Civil Service Sports Association, Straight Rd., Bucklesham. There should be a good variety of happenings to interest both radio addicts and non ad dicts, including, it is hoped, a demonstration of a PO television detector van. VI
Satellite Communications (Conference) June 18-19. London Press Centre. 0
Great British Electronics Bazaar June 20-22. Alexandra Palace. E

Fig. 1. Mounting bracket details (2 off)
interference-free suppression. Should the interference continue, however, then check that the bonnet top is firmly closed and that it makes a good electrical connection to the body of the car. Also check the outer screen of the aerial lead is well earthed at the base of the aerial and the aerial plug makes a good contact in the socket.

Intel Fair June 24. Wembley Conference Centre. London. U
Tempeon July 1-3. Wembley Conference Centre. Exhibition devoted to temperature control \& measurement. T
Transducer July 1-3. Wembley Conference Centre. T
Microsoftware (symposium) July 7-10 University of Sussex. S1
The 1980 Microcomputer Show July 10-12. Royal Lancaster Hotel, London. 0
BAEC Amateur Electronics Exhibition July 12-19. The Esplanade Shelter, Penarth, near Cardiff, S. Glam. B
Computer Graphics (exhibition \& conference) Aug. 12-14. Metropole, Birmingham. 0
Harrogate International Festival of Sound Aug. 16-19 (18 \& 19 trade). The Exhibition Centre + hotels. \mathbf{X}
Avionics (symposium) Sept. University of Surrey. SI
BEX (Business Equipment Exhibition) Oct. 1-2. The Guildhall, Plymouth. K
BEX Oct. 15-16. Assembly Rooms, Edinburgh. K
BEX Nov. 5-6. Sophia Gardens, Cardiff. K
Semiconductor International 80 November 25-27. Metropole Conven tion Centre. T1.

B British Amateur Electronics Club, 26 Forrest Road, Penarth, S. Glamorgan.

C Barry College of F.E. Radio Society, College of Further Education, Colcot Rd., Barry, S. Glam. CF6 8YJ
E Evan Steadman, 34-36 High St., Saffron Walden, Essex. $\downarrow 0799$ 22612
I Industrial Trade Fairs. © 021-705 6707
K Douglas Temple Studios, 1046 Old Christchurch Rd., Bournemouth, Dorset BH1 ILR. 02020533
L Iliffe Promotions. /6 01-261 8437/8
o Online Conferences. / 089539262
T Trident International Exhibition. $\int 08224671$
U Brian Crank Associates, 58 London Rd., Southborough, Kent. f 0892-3181238414
X Exhibition \& Conference Services, Claremont Ho., Victoria Ave., Harrogate, Yorks. © 0423-62677
H1 Seminex Ltd. 80892 39664/5
L1 P. Smith, London World Trade Centre, Europe House, London EI 9AA. 6 01-488 2400
S1 Society of Electronic \& Radio Technicians, 57-61 Newington Causeway, London SE1 6BL. f 01-403 2351
TI Kiver Communications U.K., Millbank House, 171/185 Ewell Road, Surbiton, Surrey KT6 6AX.
U1 Couchmead Ltd. $\int 01-4374187$
V1 Jack Tootill, G4IFF, 76 Fircroft Rd.. Ipswich, Suffolk IP1 6PX. Send s.a.e. (9×5 ins.) for details.

4

THIS article describes the principles, and construction, of a control system for model locomotives, which allows independent operation anywhere on an interconnected rail layout.

The construction of a four channel controller is described, but it should be possible to expand the system to at least ten channels, including point and signal control.

PRINCIPLES OF OPERATION

The rails are supplied with 20 V a.c. from a transformer. Regulation of the current flow through each of the motors, is carried out in a unit attached to the motors. How this occurs can be explained more easily, if the following simple examples are considered first.

A d.c. motor will run with an a.c. supply, of suitable voltage, if it is half wave rectified, with a diode, as in Fig. 1 (a).

If the motor speed is required to be variable, the diode can be replaced with a thyristor, as in Fig. 1 (b). By adjusting the triggering point of the thyristor, in the supply cycle, the motor speed can be altered from zero, to maximum.

To allow the motor to run in either direction, a second thyristor can be fitted in parallel with the first, but inverted, as in Fig. 1 (c).

Only one of the thyristors is triggered at any time, and the speed control is similar to the previous example.

The two thyristors can be replaced by a single triac, as in Fig. 1(d), which simplifies the triggering arrangement, but controls the motor current in exactly the same way.

Fig. 1 Variants on motor speed control from an a.c. input (a) half wave rectified (b) phase controlled (c) phase control with back-to-back thyristors (d) triac equivalent

The characteristics of a triac, are very similar to that of the thyristor. Once triggered, it will continue to conduct, regardless of its gate current, until the load current falls below the minimum holding current, when it will switch off. When the

device is in an a.c. circuit, this will occur at the end of each half cycle, at or near zero voltage. The main difference between the triac and the thyristor is that it will conduct in either direction, and that it can also be triggered by a gate current in either direction.

A triac is fitted in each of the units attached to the locomotive motors, and is the main working component in the system. The rest of the circuits are there only to ensure that the triacs are turned on at the right time.

Fig. 2 shows a block diagram for the system. For each of' the channels, a logic circuit working at supply frequenc, gives an output varied by the position of a potentiometer, which is then used to operate a switch in the output of an oscillator. The outputs of all channels are then combined by a summing amplifier, before being passed to the output stage, and so to the rails. In the receiver unit, at each locomotive, a tuned amplifier sorts out its own control signal from the others, and the supply frequency. On detecting the control frequency, a trigger amplifier causes a pulse of current to flow in the triac gate circuit, so turning it on.

Fig. 2 Block diagram of system

DESIGN CONSIDERATIONS

The choice of control frequencies, was a matter of some compromise. It is convenient, and simple, to use chokes to contain the control signals within the rail system. The chokes must have a low impedance at supply frequency, or they will restrict the motor load current. For an impedance of less than one ohm an inductance of 1 mH to 2 mH appeared suitable.

It also appeared desirable to keep the control frequencies as low as practical, and well clear of the radio frequency range. This then has the advantage that the wide range of audio frequency components can be used.

A 2 mH choke has an impedance of over 100Ω at 10 kHz , and by using a low output impedance amplifier to supply the control signals, at least ten circuits with their chokes, can load the amplifier without causing a significant drop in signal level. 10 kHz appears to be the lowest usable frequency, and was used in my initial experiments.

The control oscillators should give a reasonably pure sine wave output, to prevent interference with channels at higher frequencies, through the generation of harmonics, and be free of significant temperature drift, to prevent interference with adjacent channels.

Fig. 3 Response curves for tuned amplifiers
The tuned amplifier stage in the locomotive receivers should also be drift free, as well as having a reasonable Q value, and be physically small. The Q value also has to be considered when deciding the spacing of the frequencies. Fig. 3 shows the response curves for the prototype RC tuned amplifiers, which confirmed that a spacing of less than about 20%, was impracticable for this type of amplifier.

Small d.c. motors generate wide band electrical noise, and in quantities out of proportion with their size. Precautions have to be taken to prevent, not only the effects this can cause on the reliable operation of the locomotives, but also to prevent the possibility of causing annoyance to others through radio frequency interference.

These are some of the factors taken into consideration during the development of this controller, and will be referred to in the description of the individual parts of the circuits, together with the other signific ant features.

PERFORMANCE

In use, the system is very similar to the pulsed d.c. systems, and has the same advantages and disadvantages. Starting with the good points, the low speed control is very good, and a reliable creep speed down to about one inch per minute is possible. Even at low speed settings, the motor torque is high, and the wheels tend to slip on heavy loads, rather than stall the motor. Because the full supply voltage is on the rails, all the time, the locomotives are more tolerant of oil and dirt on the track.

There are two disadvantages, caused by the discontinuous flow of current through the motors. The first is that because of the high a.c. component, the motor eddy current loss is increased, causing the motor to run hotter. I have not had any difficulty through this cause, but some manufacturers issue a warning not to run their locomotives for prolonged periods on half wave current, and the same must apply here. The second is that the torque produced by the motor is also discontinuous, and with wear on the reduction gearing, can cause an unrealistic rattle. This is not so offensive if the model is of a diesel, but one of the "high mileage" steam locomotives used for testing the system required quite a bit of attention to make it acceptable.

The other point that must be made at this stage is that most commercial model controllers are "instrinsically safe", and can withstand a short circuit for indefinite periods, and limit the short circuit current to a safe value. In this design, of necessity, the rail supply transformer is connected almost
directly on to the rails, so the potential fault current is high. A fast and reliable circuit breaker must be fitted in the transformer secondary circuit, and the primary circuit fused.

CONTROL TRANSMITTER

This unit houses all the electronics to produce the control signals, the rail supply transformer, and the power supplies. The electronic components are accommodated on two circuit boards: the logic board and the oscillator amplifier board.

The signals produced, and the effect on the motor voltage, is illustrated for one channel, in Fig. 4. The logic circuit produces a negative pulse, of variable width, starting at some point during one half cycle of the supply voltage, but always ending at the end of that half cycle. The logic circuit output is used to operate an f.e.t. switch in the oscillator output, allowing the signal to pass on to the rails. The signal is then detected by the locomotive receiver, and the triac switched on. The control signal is transmitted throughout the triac conducting period, even though only a few milliseconds at the start of the period should be necessary to trigger the triac. However, poor rail contact, etc, could cause a short signal to be missed, so on the principle of "better late than never", the longer signal pulse is used.

Fig. 4 Signal processing from logic circuit to motor

LOGIC CIRCUITS

As referred to previously, the function of these circuits is to produce an output suitable to switch on and off the control signals. The required output from one channel is shown in Fig. 5 with various locomotive speed settings.

The circuit diagram for this part of the circuit, is shown in Fig. 6. This has been drawn, showing only one channel for simplicity, but is marked with the component numbers for all the channels.

A 20 V a.c. input is connected through R18 and C14 to D1, to give a near square wave representation of the supply voltage. C14 gives a few degrees of phase advance to compensate for delays later in the circuit. TR1 amplifies the leading and trailing edges of the square wave, and gives a TTL compatible output. From here the circuit divides, first into two, then into four parallel paths, so again for simplicity, only the channel with the lowest component reference numbers is used in the following explanation.

IC1 NOR gate (c), and IC3 gate (c) are both connected as inverters. IC5 and IC9 are monostables, used to provide the variable length pulses. With the connections used, pin 6 voltage is normally low, but will go high when pin 5 is switched from the low to high states. Pin 6 will then remain high for a period $t=C t R t \log _{e} 2$ seconds where: Ct is the value of the timing capacitor, connected between pins 10 and 11 and $R t$ is the sum of the internal and the external resistors connected between pin 9 and the positive supply.

Fig. 5 Logic Board control output signals
IC1 (c) output connects to IC9 input, and IC3 (c) to IC5. Referring to Fig. 7, it will be seen that the timing period of IC9 starts at the beginning of the supply positive half cycle, and IC5 for the negative half cycle. IC5 and IC9 share the same variable timing resistor VR1, so when this is set at mid travel, and with a suitable value of timing capacitor, the timed period can be equal to a half cycle period, that is 10 ms . This is shown in Fig. 7 (d) and (e). IC9 output, and IC3 output, shown in Fig. 7 (c), connect to the inputs of gate IC1 (b), and similarly, the outputs of IC5 and IC1 (c), Fig. 7 (b), to IC1 (a). By inspection, it can be seen that the output of both gates, IC1 (a) and (b), will be low at all times and that the output of IC1 (d) will remain high.

If VR1 is moved from the mid position, so that the timing period of IC9 increases, Fig. 7 (f), and IC5 decreases, Fig. 7 (g), IC1 (b) output will be low continuously, but IC1 (a) output, Fig. $7(\mathrm{~h})$, will be high from the end of the timing: period, to the end of that half cycle. One input of IC1 (d) is' low continuously, so the output will be the inverse of the other output. It should also be noted that if VR1 is movedfurther in the same direction, IC5 timing period will bel reduced again, and the start of IC1 (a) output pulse will. move to a new position earlier in the half cycle.

If VR1 is now moved in the opposite direction, so that IC9 is near to the minimum, Fig. 7 (i), and IC5 near to maximum, Fig. 7 (j), by analogy with the previous example, the output of IC1 (b) will be high from the end of the timing period to the end of the positive half cycle, Fig. 7 (k), and will again be inverted by IC1 (d).

Effectively, the timing period derived from IC9 controls the locomotive speed in one direction, and that from IC5 in the opposite direction. Fixed value resistors are fitted in series, and in parallel with VR1. The series resistors prevent the timing period becoming too short, when maximum speed is selected, as this can result in erratic triggering of the triac, caused by low instantaneous supply voltage and high motor back e.m.f. The paraliel, or shunt resistors, R9 and R13, compensate for the variations in the actual values of VR1, and the timing capacitors, C18 and C22.

CONSTRUCTION

The circuit layout is not critical, and all the usual precautions when using TTL devices should be taken. A suitable circuit board, and the component layout is shown in Figs. 8 and 9. Extra decoupling capacitors have been used in the supply to the devices, because of high electrical noise in the circuits near to the board.

It is desirable that the components that effect the timing periods are subject to some selection. Readily available capacitors have a tolerance of 10%, and potentiometers
 $\pm 30 \%$ from the calculated time. This variation is acceptable for the minimum time period, but when the maximum exceeds the supply periodic time the logic of the circuit breaks down and an erratic output is produced. To prevent this occurring, the maximum timing period should be between 17 and 18 ms , to allow for changes in potentiometer slider contact resistance. If the facilities are available, measure the values of the timing capacitors, C18 to C22, and the track resistance of the potentiometers VR1 to VR4. Each potentiometer should be grouped with a pair of similar valued capacitors, such that a high value potentiometer is assigned to a low value pair of capacitors, and vice versa. Multiply the value of the capacitors, in $\mu \mathrm{F}$, to the value of the potentiometer track resistance in kilohms, and if the resultant exceeds 23, shunting resistors will be required, and fitted in the positions marked for R9 to R16. For resultants less than 23, the resistors are not required, and their positions left unused. The required values of shunting resistors can be calculated from:

$$
\mathrm{Rs}=\frac{18(\mathrm{Rv}+1.5)-1.4 \mathrm{Ct}(\mathrm{Rv}+1.5)}{0 \cdot 7 \mathrm{Ct}(\mathrm{Rv}+3.5)-18} \text { kilohms }
$$

Where Ct is the measured value of the timing capacitor in $\mu \mathrm{F}$ and $R v$ is the measured track resistance of the potentiometer in kilohms. When it is impracticable to measure the capacitors, they could be assumed to be of reasonable value, and just the potentiometer track resistance measured. For values over $23 \mathrm{k} \Omega$, the previous equation can be simplified, and the appropriate value of shunting resistor found from:

$$
\mathrm{Rs}=\frac{23.7(\mathrm{Rv}+1.5)}{\mathrm{Rv}-22.2} \text { kilohms }
$$

If it is impracticable to do any of this, a $100 \mathrm{k} \Omega$ resistor could be fitted which will compensate for all but the extreme values.

I used one of my own heat sinks for the 5 V regulator, and Fig. 11 shows how it can be made; however, a commercial component could be fitted. Referring to the board layout, shown in Fig. 9, fix into position the thirteen links in the positive rail, drawn as a double line on the component side diagram. 22 s.w.g. p.v.c. covered single core copper, or similar wire, should be used for this. Then fix the twenty two signal links, using 26 s.w.g. single core p.v.c. covered, or similar. The use of d.i.l. sockets is recommended, and these should be fitted next, followed by the resistors and the
capacitors. Fit the 5 V regulator (IC13) and its heat sink into position, using a small quantity of silicon grease on the contact surface. Finally, fix into place TR1 and D1.

TESTING

Before fitting the i.c.s into their sockets, connect a variable voltage power supply to the positive and negative

Fig. 7 Oscillograms for i.c. outputs

Fig. 8 Logic Board p.c.b.
supply points on the board. Slowly increase the voltage from zero, checking the output of the 5 V regulator to ensure it stabilises between 4.8 V and 5.2 V when the supply voltage exceeds 8 V . If this is satisfactory, reduce the voltage to zero, fit the i.c.s into their sockets, and repeat. The current supply to the board should be approximately 180 mA .

To carry out any further checks' an oscilloscope is necessary. Temporarily connect the speed control potentiometers VR1 to VR4 to their selected channels, the d.c. test supply, and a 20 V a.c. supply. Connect the

Fig. 9 Component layout
oscilloscope to each of the board output terminals, in turn, and observe the change in output as the potentiometers are rotated. This should be similar to that shown in Fig. 5, with negative pulses occurring only in one half cycle period, at any time. If the output becomes erratic when the potentiometer approaches the end of travel, the maximum time period of the monostables should be checked, and probably a lower value shunt resistor fitted. With the potentiometer at mid position, there should either be no output, or very short pulses, at the end of both positive and negative half cycles. If these are shorter than about 0.5 ms , because of the time delay in the locomotive receivers, they can be ignored. Longer pulses should be corrected by increasing the timing periods.

OSCILLATOR AND AMPLIFIER CIRCUIT

This part of the circuit contains the control oscillators, the f.e.t. switches, and the amplifiers. The circuit diagram is shown in Fig. 10, and for simplicity has been drawn showing one channel, but is marked with the component numbers for

LOGIC BOARD

Resistors	
R1 to R8	$1.5 \mathrm{k} \Omega$
R9 to R16	$100 \mathrm{k} \Omega$ see text
R17	470
R18	4 k 7
R19	1 k
iW carbon film	
Potentiometers	
VR1 to VR4	22k
Capacitors	
C1	330n polyester or mylar
C2 to C13	100 n ceramic disc 20 v
C14	1.0μ polyester
C15	10 n mylar
C16	1. On mylar or ceramic
C17	1. On mylar or ceramic
C18 to C25	1. O μ polyester

COMPONENTS

AMPLIFIER/OSCILLATOR BOARD

Resistors	Potentiometers R20		
R21	12 k	VR5 to VR12	4 k 7
R22	10 k	VR13 to VR16	470
R23	8 k 2	VR17	10 k

miniature preset, vertical mounting
Capacitors
C26 to C33 in polystyrene C34 to C41 10 n mylar or polyester C42 to C45 in mylar or ceramic C46 to C49 $\quad 10 \mathrm{n}$ mylar or polyester C50, C51
C52
C53
C54 C55 680n mylar or polyester C56 100n mylar or polyester C57 1μ polyester 250 V C58 330n mylar or polyester C59 100n mylar or ceramic disc

Semiconductors

IC1 to IC4	7402
IC5 to IC12	74121
IC13	5 V regulator, TO126 case, TDA 1405,
TR1	or similar
D1	BC 108, or similar
	$5 V 6400 \mathrm{~mW}$ Zener diode

RECEIVER BOARDS
Resistors

R1	47 k
R2	1 k
R3	10 k
R4	10 k
R5	10 k
R6	1 M

	A	B	C	D
R7	$47 k$	$39 k$	$33 k$	$27 k$
R9	$22 k$	$18 k$	$15 k$	1
R10	$100 k$			
R11	$3 k 9$			
R12	$10 k$			
R13	$12 k$			
R14	$1 k$			
R15	$10 k$			
R16	$2 k 2$			
R17	47			
R18	$1 k$			
All $\frac{1}{4} W$	5% carbon film			

Capacitors

C1	2 n 2	mylar
C2	10μ	35 V tantalum
C3	$10 p$	polystyrene
C4	330 p	polystyrene 5%
C5	330 p	polystyrene 5%
C6	$680 p$	polystyrene 5%
C7	$1 n$	mylar
C8	$10 n$	mylar
C9	1μ	35 V tantalum
C10	10,	35 V tantalum
C11	$10 n$	mylar
C12	$10 n$	mylar
C13	1μ	35 V tantalum

741
LM380
12 V Regulator, TDA1412, T0126 case 2N3819
BC108A or similar
2N3819
1 N914 general purpose silicon diode

POWER SUPPLY

Transformers

T1	20 V .55 VA minimum
T2	12 V to 14 V .500 mA minimum
T 3	18 V to 24 V .30 mA minimum

Choke
L1 1 mH to $2 \mathrm{mH} \quad \frac{3}{8} \mathrm{in}$. or $\frac{1}{2} \mathrm{in}$. dia. 2 in . length ferrite rod. 24 s.w.g. enamelled copper wire

Resistor

R65 To suit indicator lamp

Capacitors

C60 $\quad 1500 \mu \quad 25 \mathrm{~V}$ electrolytic
C61 47 n 300 V a.c. rating

Miscellaneous

REC 1 A 100 V S1 Double pole, single throw. ? 40 V a.c. 1A Panel mounting fuse holders, and fuses. FS 1-1A FS2-100mA FS3-50mA indicator lamp unit miniature circuit breaker 2 (P.S. 338-333), knobs 4 off, cabinet feet, cabinet.

Semiconductors

D1 to D8 General purpose silicon diode, 1 N914, 1N4148, etc.
D9 12 V 400 mW Zener diode, BZY88, etc.
IC1 7488 pind.i.l.
IC2 7418 pin di.I.
103
Darlington optoisolator RS 307-963.
897
TAG302/400

Choke

L1 14 mm pot core Mullard, FX2236.
34 s.w.g. enamelled copper wire

all channels. In the following explanation, only the channel with the lowest component reference numbers is referred to.

IC14 is connected as an oscillator, and TR6 with TR10 form a switch in its output, controlled by the logic circuit. The outputs from the four oscillators are combined at the input of IC18, which adds or mixes them. IC19 is the output stage amplifier, which delivers the combined signal on to the rails.

The requirements for the oscillator used in this circuit are that it should give a sinusoidal output and have a low temperature drift. Several types were tested, but the Wien bridge gave the best results, and is used, but it is less simple than some of the alternatives. The basic circuit for the oscillator is shown in Fig. 11, and the frequency of oscillation is given by:

$$
\mathrm{fo}=\frac{1}{2 \pi R C} \mathrm{~Hz}
$$

Where R and C are the values of the resistor and capacitor in the two arms of the bridge.

The disadvantages of this circuit are that the impedance of the two arms of the bridge should be kept in balance, that is adjusted together, and that for a stable output the amplifier gain has to be exactly three.

The first appears to cause little difficulty, as long as the two potentiometers used for frequency adjustment are seen to be in similar positions.

For the second point, referring again to Fig. 12, the voltage gain for the amplifier in this configuration, will be given by:

$$
A v=\frac{R 1+R 2}{R 2}
$$

When $A v=3, R 1=2 R 2$.
Unfortunately, the use of fixed value resistors is not accurate enough, so some form of automatic gain control must be used. R2 is replaced by an f.e.t. and its gate voltage is derived, through a diode, from the peak negative swing of the oscillator output. If the oscillator output increases, the f.e.t. gate voltage is driven more negative, increasing its effective drain to source resistance, so reducing the amplifier gain. R1 has been replaced by a fixed and a variable resistor, to allow for variations in f.e.t. characteristics.

Fig. 11 Heat sink constructional details for the 5V regulator.
Fig. 12 (Right) Basic oscillator circuit

Referring to Fig. 10, the oscillator output is connected by C38 to the switching stage. The input from the logic circuit connects to the base of TR6, and its collector is connected to the gate of TR10. When the logic input is high, TR6 is driven on, so that the gate of TR10 is negative of its drain and source voltage. TR 10 will then present a high impedance in the signal path, between C38, and C46. When the logic input is low, TR6 is turned off, TR10 gate increases to the same voltage as that of its source and drain, so its impedance falls, typically to about 250.

The control signals from the four channels are combined in the summing amplifier, IC18, which has a voltage gain of about 1.5 .

The combined signal is then passed to the output stage, by way of C53 and VR17. The output amplifier, IC19, is a standard audio amplifier, to give a low impedance signal drive on to the rails. It has an internally connected negative feedback circuit and a voltage gain of 50 . This gain is too high in this application, and R61 R62 R63 C54 and C55 form an additional feedback loop, to reduce the gain to less than 2. R64 and C56 reduce the possibility of r.f. instability.

IC20 is a 12 V regulator and supplies the oscillators and the summing amplifier. The output amplifier is supplied directly from the unregulated supply.
Next Month: More construction and setting up procedure

MOUNTING CAR SPEAKERS

Although the idea claimed by two Swedish inventors Per Persson and Leo Koppelomaki, in recent British old law patent No 1555409 , is hardly a world shattering invention, it could stimulate a useful train of thought for electronic hobbyists. As the inventors so rightly comment, it is always awkward to fit a stereo pair of loudspeakers in a motor car. If mounted on the rear window shelf they will play too loud for the back seat passengers and if mounted in the side doors they will beam their sound too low for ideal listening. The ideal position, argue the Swedes is the roof.

FIG. 1

FIG. 2

But how to effect easy fitting? The proposed answer is a cross beam moulded to follow the contours of the car roof, or of sufficiently flexible material to follow it. In the drawings the cross beam 2 has a box chamber 6 at each end in which a loudspeaker 4 is mounted to beam sound out through grille 8 . The cross beam can be either open at the top and of U cross section, or closed at the top to provide a sealed acoustic cavity. In either case acoustic damping materiai is ideally loaded into the beam interior.

To fit the beam it is held loosely against the car roof and moved backwards and forwards until an ideal position is found for stereo imaging and sound balance between front and rear passengers. The beam is then secured to the roof by drilling holes at 10 , and bolting at 9, 12.

Copies of Patents can be obtained from : the Patent Office Sales, St. Mary Cray, Orpington, Kent Price 95p each

AID FOR THE DUMB

Atari Inc. of California has patented (BP 1550 996), issued under the old laws) a hand-held communications aid for the dumb. This can be used either for direct face-to-face "conversation" or over the telephone.

Figure 1 shows how the device resembles a calculator with an l.e.d. to l.c.d. display at one end of an alpha-numeric keypad, so that the device is handled like a torch. Words typed into the keypad move across the display to spell out a message for the benefit of anyone looking at it. An alert tone at the start of the message draws attention to the display.

Figure 2 shows the basic circuit layout. Alpha-numeric keypad (with 20 dual function keys) is timed by oscillator 23. The column and row information is encoded at 24, processed at 27 and stored in accumulating register 28. This register drives ROM 29 and display 14. Blanking logic 32 extinguishes the display after a few seconds unless shunted by switch 34.

In many respects therefore the circuit resembles that used in some modern calculators. However the idea of interfacing with a telephone line appears more novel.

FIG. 2

Figure 3 shows an interface for converting the digitally encoded keypad output into a pulse-width modulated format for transmission over normal telephone lines. A parallel-to-serial converter and synchronisation bit inserter 41 drives a pulse width modulation and gating unit 42 with an audio output 43 which couples acoustically with a telephone handset. Simultaneously, frequency divider 46 (driven by oscillator 23) provides an audio frequency and clocks a pulse width counter 47 which receives the audio output 48 from the telephone. Detector 49 senses the envelope width which is decoded at 51 to drive display 14 through logic 27.

Figure 4 shows an alternative interface, based on frequency shift keying. With either interface circuit an alpha numeric message keyed into the local unit reads out on the remote display and a message keyed into the remote pad reads out on the local display, thereby enabling pairs of dumb people to communicate by telephone. The idea behind the invention could perhaps stimulate electronic hobbyists to experiment with the modification of existing equipment to interface with a telephone line by acoustic coupling of the type permitted by the British Post Office.

Readout... A selection from our Postbag

Readers requiring a reply to any letter must include a stamped addressed envelope. Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

Iron Controller

Sir-With regard to the article in your February edition of Practical Electronics relating to 'Soldering Iron Controller', we regret to inform you that we find this article somewhat detrimental to soldering equipment manufacturers generally and Adcola Products Limited in particular. The two illustrations on pages 30 and 32 bear an almost exact resemblance to a soldering station manufactured by Adcola Products Limited. This soldering station, known as the Unit 101, incorporates the features which the writer indicated controlled soldering equipment does not have, and in fact the Unit 101 has many other features that reduce the problems which modern soldering has created with regard to voltage and temperature sensitive components.

We should like to draw your attention to the fact that the method of controlling our Unit 101 is by proportional control using a zero-crossing i / c. We would also argue against the sensing device suggested, namely a diode. This diode is to be positioned against the tube of the tool where the heat does not exceed $150^{\circ} \mathrm{C}$. The diode would therefore have the major part of its surface exposed to free air and only line contact with the soldering iron
tube. But more important is the heat limitation of $150^{\circ} \mathrm{C}$; to obtain this, the diode will have to be positioned at a reasonable distance from the bit face. This will, in our opinion, cause a considerable time lag from drop in bit/tip temperature until the soldering iron tube reflects this temperature drop and so the control circuit can increase the power supply to the heating element. Adcola Products Limited uses a thermocouple positioned in the end of the tube, immediately behind the bit/tip face.

By use of an illustration which is so comparable to our Unit 101, your readers may feel that your researchers have based their findings of circuits on a Unit 101. Obviously this is not the case.
R. T. Lamb,

Managing Director, Adcola Products Limited.

The resemblance between our illustrations and the Adcola 101 was completely unintentional and we would not like readers to gain a wrongful impression of any Adcola product as a result. We have a high regard for most soldering products available in this country and appreciate the extensive design and development work that is behind them. As you have pointed out, the comments in the article were not based on the Adcola 101 unit.-Ed.

Club Meetings

Sir-As you know, the British Amateur Electronics Club is the only national amateur electronics club in this country, and we have an obligation to offer all the help we can to our members, particularly beginners. We have a special Beginners' Section and also a very large library of technical books and magazines which are available to members free of charge (apart from postage), and many of your advertisers are allowing B.A.E.C. members special prices for their products.

However, there is one very important way in which we could help our members, and that is to provide meetings in various parts of the country, so that B.A.E.C. members can go to them and benefit by being able to meet and work with other electronics enthusiasts. We have held meetings at Penarth, S. Glam, since we started in 1966, but whilst several of our members have tried to start meetings in other parts of the country, the main snag has been obtaining a suitable room at a reasonable charge.

I am writing to ask if you would be kind enough to ask in your popular magazine, Practical Electronics, for your readers who belong to local Electronics Groups to let me know if they would be willing for B.A.E.C. members who live nearby to go to their meetings. Naturally, our members would be prepared to pay an affiliation fee, and I would be happy to send further information to any of your readers who may be kind enough to contact me regarding this matter.

If suitable arrangements can be made this would benefit both the local Groups and the B.A.E.C., and I would be grateful for any help you are able to give to help amateur electronics.

Cyril Bogod, B.A.E.C., 26 Forrest Road, Penarth, S. Glamorgan.

PERSONAL COMPUTING by Jim Huffman Published by Reston Publishing Co. Inc. Available from Prentice/Hall International 262 pages, $180 \times 240 \mathrm{~mm}$. Price $\mathbf{£ 7 . 7 5}$

Athorough and concise survey of the 6800 microprocessor family, which is pleasantly presented and easy to read. The book takes you through a brief history of computing, which serves the purpose of defining the all important differences between mainframe and home computing. Assuming you have a fundamental knowledge of electronics, the book steers you to an understanding of the hardware involved, I/O, peripheral interfacing principles and memory. Even in the absence of a knowledge of electronics in depth, it should be possible to follow the logic in Chapter 7 Putting It All Together With Programming, although it is assumed you have the use of a machine at this stage.

To correct the situation if you have no computer, Chapter 6 gives details for the construction of a small system called the PC-68, which comprises the common hexadecimal keypad and four seven-segment display format.

The appendices include a list of American personal computer manufacturers, numbering systems, an ASCII conversion table, and 78 pages of specification sheets for the 6800 family, including the MCM6830L7 MIKBUG/MINIBUG ROM data sheet giving the MIKBUG REV. 9 listing.

The most outstanding feature of this book is undoubtedly the chapter on building your own system with its "talk-through" of the design stages, and argument for the choice of the 6802 micro'. Good value for money by today's standards.
M.A.

POIITS RBIISIIT

4 CHANNEL DIGITAL MEMORY (March 1980)

There should be a link between pin 1 (IC12) and pin 13 (IC15). It has been suggested that a 10 n capacitor be connected from pin 3 to ground and experimental values of from $10-100 \mathrm{n}$ be connected from pin 11 to ground. These capacitor additions apply to IC16.

Not least of its attractions is the price of a PET - from $£ 550$ for a self contained unit, to under $£ 2,500$ for the complete system including Floppy Disk Unit and high-speed Printer. Ask your nearest Commodore dealer below for details about Commodore hardware, software and training courses.
OurDealer' Network

LONDON
Capital Computer Systems,
W1. 6375551
ACE (by Top TV Ltd), SW1. 7301795 Micro Computer Centre
SW14.8766609 SW14.8766609 Logic Box Ltd, SW1. 2221122 Sumlock Bondain Ltd, EC1. 2500505 Da Vinci Computers Ltd, L\&JComputers, NW9. 2047525 Adda Computers, W1. 4081611 CSS Business Eq
E8.2549293
Advanced Management, EC2. 6389319
Mety clean Ltd, SW1. 8282511
Mety clean Ltd, SW1.
Southgate. 8825104
T.L.C. World Trading Ltd, w C2. 8393894

HONE COUNTIES
Orchard Electronics Ltd,
OXON, 049135529
D. L. Chittenden Ltd, CHESHAM, 4441 J. R. Ward Computers Ltd, MILTON KEYNES, 562850
Dataview Ltd, COLCHESTER, 78811 Dataview Ltd, COLCHES TER,
South East Computers Ltd, South East Computers
HASTINGS, 426844
Symtec Systems Litd,
Symtec Systems Lid,
SOUTHAMPTON, 38868 Alphascan Ltd, BANBURY, 75606 Super-vision, SOUTHAMPTON, 774023 Millhouse Designs Ltd, Miltonse (042) 050374 Micro Factilities Ltd, MIDDX, 9794546 DDM, BRENTWOOD, 230480 Stuart R. Dean Ltd, SOUTHEND. 62707 Alpha Business Systems. HERTFORD, 57423 HSV Microcomputers, EASINGSTOKE, 62444 HSV Microcomputers, SOUTHAMPTON, 22131 RUF Computers (UK). Wego Computers Led Wego Computers Led,
CATERHAM, 49235
T. \& V. Johnson, CAMBERLE Y, 62506 T. \& V. Johnson, OXFORD, 721461 Petalect Electronic Services Ltd, WOKING, 23637/21776
Business Electronics SOUTHAMPTON, 738248 Amplicon Micro Systems Ltd. BRIGHTON, 562163 Bromwall Data Services Ltd, HATFIELD, 60980/64840 MMS Computer Systems. BEDFORD. 40601
sher-Woods, LUTON, 416202 Sumlock Bondain, NORWICH, 26259 CSE (Computers), READING, 61492 xOODSTOCK 811976
MIDLANDS \&
STH. HUMBERSIDE
Taylor Wilson Systems Ltd,
Taylor Wilson Syst
KNOWLE. 6192
Betos (Systems) Ltd.
NOTTINGHAM 48106
Holbrook Business Systems,
DERBY, 368088
Lowe Electronics Limited,
MATLOCK, 2817
Davidson-Richards Ltd.
DERBY, $366803 / 4$
Arden Data Processing
LEICESTER, 22255
Tekdata Lid, STORE-ON-TRENT, 813631 C.SIRNINGHAM, 3606264

Business \& Leisure Microcomputers, KENILWORTH. 512127
Caddis Computer Systems Ltd,
HINCKLEY, 613544
Allen Computers, GRIMSBY, 40568 CPS (Data Systems) Ltd. BIRMINGHAM, 7073866 Camden Electronics,
BIRMINGHAM, 7738240 Cliffstock (Computer Systems) Ltd,
WOLVERHAMPTON, 24221
YORKSHIRE \&
NTH. HUMBERSIDE
Microprocessor Services.
Microprocessor Servi
HULL, 048223146
Microware Computers, HULL, 562107 Computer Workshop. LEEDS, 788466 Hallam Computer Systems Ltd, SHEFFIELD, 663125
Ack royd Typewriters Ltd,
BRADFORD, 31835
Datron Micro Centre,
SHEFFIELD. 585490
Yorkshire Electronics Service Ltd,
MORLEY, 522181
Sheffield Computer Centre,
SHEFFIELD. 53519
SHEFFIELD, 53519
NORTHEAST
Dyson instruments, DURHAM,66937
Currie \& Maughan,
GATESHEAD, 174540
Wards Office Supplies,
GATESHEAD, 605915

Tripont Associated Systems,
Newcastle Computer Services,
NEWCASTLE UPON TYNE,
(0632)615325

SOUTH WALES \&
WEST COUNTRY
Computer and Design,
BROADSTONE, O202 697341
A.C. Systems, EXETER 71718
A. C. Systems, EXETER, 71718

Computer Supplies (Swansea)
SWANSEA, 290047
Sigma Systems Led, CARDIFF, 21515
Sigma Systems Lid, CARDIFr, 21515
Devon Computers. PAIGNTON, 526303
Bristol Computer Centre,
BRISTOL. 23430
J.A. D. Integrated Services,

PLYMOUTH, 62616
Sumlock Tabdown Ltd, BRISTOL, 26685
Radan Computational Ltd,
BATH, 318483
T. \& V. Johnson Ltd, BRISTOL, 422061

NORTH WEST \&
NORTH WALES
B. \& B. Computers Ltd, BOLTON, 26644

Megapalm Ltd, CARNFORTH, 3801
Tharstern Ltd, BURNLEY, 38481
Fylde Business Machines Ltd,
PRESTON 731901
Preston Computer
Preston Computer Centre,
PRL Miarosystems
RPL Microsystems, DOUGLAS, 4247/8

LIVERPOOL
Microdigital, LIVERPOOL, 2272535
Rockliff Brothers Ltd,
MANCHESTER
Cytek (UK) Ltd,
Cytek (UK) Ltd,
MANCHESTER. 8327604 Executive Reprographic Ltd MANCHESTER. 2281637
DEANSGATE, (0618) 8344233
Computer Work shop.
MANCHESTER, 8322269
Professional Computer Services Ltd,
OLDHAM, 061-6244065
D. Kipping Ltd, SALFORD. 8346367 Catlands Computers Ltd, 0625527166

SCOTLAND

Microcentre, EDINBURGH, 2252022 Thistle Computer s, KIRKWALL, 3140 McAllister Business Equipment. EDINBURGH, 3362402

IRELAND

Softech Ltd. DUBLIN, 784739 Medical and Scientific,
LISBURN, 77533
*'This is a list of dealers participating in associated advertising and not a fall list.

Simply ahead.. ILP'S NEW GENERATION OF HIGH

With I.L.P. performance standards and quality already so well established, any advances in I.L.P. design are bound to be of outstanding importance

- and this is exactly what we have achieved in our new generation of modular units. I.L.P. professional design principles remain - the completely adequate heatsinks, protected sealed circuitry,
rugged construction and excellent performance.

These have stood the test of time far longer than normall; expected from ordinary commercial modules. So we have concentrated on improvements whereby our products will meet even more stringent demands
such, for example, as those revealed by vastly improved pick-ups, tuners loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system. I.L.P. modules are for laboratory and other specialised applications too.

and staying there PERFORMANCE MODULAR UNITS

HY5 PRE-AMPLIFIER

VALUES OF COMPONENTS FOR CONNECTING TO HY5 Volume - $10 \mathrm{~K} \Omega$ log.
Bass/Treble $-100 \mathrm{~K} \Omega$ linear. Balance $-5 \mathrm{~K} \Omega$ linear.

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$, and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone contral circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.

THE POWER AMPLIFIERS

I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer, the other with toroidal transformer, having half the weight and height of conventional laminated types.

Model	Output Power R.M.S.	Dis- tortion Typical at 1KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	15 W into 8Ω	0.02%	80 dB	$-20-0-+20$	$105 \times 50 \times 25$	155	$£ 6.34$ $+95 p$
HY50	30 W into 8Ω	0.02%	90 dB	$-25-0+25$	$105 \times 50 \times 25$	155	$£ 7.24$ $+£ 1.09$
HY120	60 W into 8Ω	0.01%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$£ 15.20$ $+£ 2.28$
HY200	120 W into 8Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 50 \times 85$	575	$£ 18.44$
$+£ 2.77$							

Load impedance - all models 4-16 Ω
Input sensitivity - all models 500 mV
input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

PSU $30 \pm 15 \mathrm{~V}$ at 100 ma to drive up to five HY5 pre-amps $£ 4.50+£ 0.68$ VAT PSU 36 for 1 or $2 \mathrm{HY} 30^{\prime} \mathrm{s} \quad £ 8.10+£ 1.22$ VAT PSU 50 for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT

PSU 70

2 HY120's
$£ 13.61+£ 2.04$ VAT
PSU 90 with toroidal transformer for
1 HY200 $£ 13.61$ + £2.04 VAT
with toroidal transformer for
1 HY400 or $2 \times$ HY200
$£ 23.02+£ 3.45$ VAT

NO QUIBBLE

5 YEAR GUARANTEE
7. DAY DESPATCH ON

ALL ORDERS
integral
HEATSINKS
BRITISH DESIGN AND MANUFACTURE
FREEPOST SERVICE
-see bjelow

- ALL U.K. ORDERS DESPATCHED POST PAID HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.

FREEPOST2 Graham Boll House, Roper Close
Canterbury, Kent CT2 7EP.
Telephone (0227) $54778 \quad$ Telax 965780

Please supply
I Total purchase price $£$.
I enclose Cheque \square Postal Orders \square International Money Order \square Please debit my Account/Barclaycard Account No.

NAME
ADDRESS .
U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

4 CHANNEL TRANSISTOR MIXERS Add musical highlights and sound effects to recor-

 dings. Will mix Microphone, records, tape and tuner with separate controls into single output. 9 volt battery operated with switch for four channel mono or two channel stereo working.88.00

MINI MODULE BAFFLE KIT Post $f 1$.
 over \& Ready Cut Baffle. Full assembly instructions supplied. Response 60 to 20000 c.p.s. 12 watt RMS 8 ohms $£ 10.95$ per kit. Two kits $£ 20$. Suitable Bookshelf Cabinet $\mathbf{£ 9 . 5 0}$ each. Post $£ 1.60$.

SINGLE RECORD PLAYER Fitted with auto stop. stereo cartridge. Baseplate. Size 11
$\times 8 \frac{1}{2}$ in. Turntable Size Tin. diameter a.c. mains 240 V 3 speeds plays all size records. $\mathbf{E 9 . 9 5}$ NEW BSR SINGLE PLAYER $\mathbf{2} 24.50$ Model P182 3-speeds flared aluminium turntable. SR De lux B.S.R. De-Luxe Autochanger with stered $\mathbf{E 2 0 , 0 0}$
cartidge, plays all size records. Post $£ 1.60$.

TOEAL FOR DISCOS, GROUPS, PUBLICADDRESS Two inputs with volume controls. Master treble bass and
volume controis. Suitable for all loudspeakers. £65. Post $£ 1.60$
R.C.S. SOUND TO LIGHT DISPLAY MK II Complete kit of parts with R C.S. printed cricuit Three lomid channels W:II operate from 200 mV signat
source. CABINET extra 4 . KIT $=\mathbf{f 1 8 . 0 0}$
R.C.S. 10 WATT AMPLIFER KIT This kit is suitable for record players tape play back. guitars,
systems. Two versions are available. The mono kit uses 13 semiconductors. The stereo kit uses 22 semiconductors. Both kits have printed front panel and volume, bass and treble controls. Spec. 10 W output into
ohms 7 W into 150 hms . Response $20 \mathrm{c} . \mathrm{s}$ to $30 \mathrm{Kc} . \mathrm{s}$. ohms 7 W into 150 hms . Response $20 \mathrm{c} . \mathrm{s}$ to 30 Kc .s.
Size $9 \frac{1}{2} \times 3 \times 2 \mathrm{in}$ A/C mains operated.
 Easy to build Full instructions supplied LOW VOLTAGE ELECTROLYTICS $1,2,4,5.8,16,25,30,50,100.200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p} .500 \mathrm{mF}$ 30p. 1000 mF 12 V 17p; 25V 35p 50 V 62 p . $3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V}$ 60p; 25 V .2 mp . 2500 m 4700 mf 63 V £1.20; $25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p}$. 5600 mf 76 V $\mathbf{£ 1 . 7 5}, 1200 \mathrm{mf} 76 \mathrm{~V} 80 \mathrm{p}$.

HIGH VOLTAGE ELECTROLYTICS
$\begin{array}{ccc}8 / 350 \mathrm{~V} 22 \mathrm{p} & 8,8 / 450 \mathrm{~V} 50 \mathrm{p} & 50.50 / 300 \mathrm{~V} 50 \mathrm{p} \\ 16 / 350 \mathrm{~V} 30 \mathrm{p} & 8+16 / 450 \mathrm{~V} 50 \mathrm{p} & 32+32 / 450 \mathrm{~V} 75 \mathrm{p}\end{array}$ $32 / 500 \mathrm{~V} 75 \mathrm{p} \quad 16+16 / 450 \mathrm{~V} 50 \mathrm{p} \quad 32+32 / 450 \mathrm{~V} 75 \mathrm{p}$ $\begin{array}{llll}50 / 500 \mathrm{~V} \text { £ } 1.20 & 32+32350 \vee & 50 \mathrm{p} & 100+100 / 275 \mathrm{~V} \\ \mathbf{5 0 5} & 150+200 / 275 \mathrm{~V} & 70 \mathrm{p}\end{array}$ MANY OTHERS IN STOCK

WOOD PLINTH CUT FOR B.S.R. \mathbf{C}
Size: $16 \times 143 \times 3$ Itin. Teak Veneered
MET
Size: $16 \times 14 \frac{3}{3} \times 3 \frac{1}{2}$ in. Teak Veneered
METAL PLINTH CUT FOR B.S.R.
OR GARRARD
OR GARRARD
Size: $16 \times 14 \times 3$ in. £4. Silver or Black finish, Post £1. TINTED PLASTIC COVERSALL POST $£ 1.60$
Sizes: $14 \frac{1}{2} \times 12 \frac{1}{2} \times 3$ in. $£ 3.50 .16 \times 14 \times 3 \frac{1}{2} \mathrm{in} . ~$
 $18 \times 13 \frac{1}{4} \times 3 \mathrm{in} . \mathrm{f8} .18 \times 12 \frac{1}{2} \times 3 \mathrm{in}, \mathbf{8 6}$.
$18 \times 13 \frac{3}{4} \times 3 \frac{1}{2} \mathrm{in}$. with stand up hinges $\mathrm{£7}$.
 POWER PACK KITS
All parts and instructions with Zener diode printed circuit, Alt parts and
rectifiers and double wound mains transformer input 200
240 V a.c. Output voltages available 6 or 7.5 or 9 or 12 V 240 V a.c. Output voltages avalable 6 or 7.5
d.c. up to 100 mA or less. Size $3 \times 2 \frac{1}{2} \times 1 \frac{i}{2} \mathrm{in}$. d.c. up to 100 mA or less. Size

Great new CroftonTreble

£35.50

The unbeatable 10" Aztec, complete and ready to go.
£85.00

THE SOUGHT AFTER

* OHIO SUPEREOARD II *
(All prices ex VAT and P\&P)
Fully constructed at $£ 188.00$

CROFTON ELECTRONICS

Crofton Electronics Limited, 35 Grosvenor Road Twickenham,Middlesex. Tel: 018911923

LOW POWER SCHOTTKY TTL-EX STOCK					
Devica	Price	Devico	Price	Device	Price
74LS00	(13p	744585	36	7415174 7415175	${ }_{6}^{650}$
74 LS02	12 p	74 LS90	40p	74LS190	100p
74 LS03	13 p	741593	70 p	74LS191	100p
741504	14p	741595	85	$74{ }^{\text {7 }}$	100 p
741505	25p	7415107	40	7415193	100 p
$7{ }^{74 L 508}$	${ }^{30 \mathrm{p}}$	7415109	60% 500	$74{ }^{\text {7 }}$	10
74 LS 10	16p	7415113	50 p	7415244	2200
741511	23p	7415114	50 p	74.5245	290 p
74LS12	35p	7415123	${ }_{30}{ }^{\text {p }}$	$74{ }^{74 L S 248}$	${ }^{1000}$
74 LS14	40p	745126	30 p	7415249	
74LS20	17p	7415132	50 p	74.15251	16
74.51	21 p	7415136	45	7415273	1650
741526	${ }^{300}$	745138	75	7415279	100p
74L528	30p	74 LS151	${ }_{\text {45p }}$	7445290	90 p
741530	15	74LS153	65 p	74LS293	100p
741532	${ }^{17 p}$	7415155	90 p	74 S298	93p
741537	20p	74LS156	900	74 SS352	110 p
74LS38	${ }^{30}$	74LS157	$70 p$	7451535	1109
74.540	57p	7415158	700	$7{ }^{7415366}$	${ }_{60 \mathrm{p}}$
741549	52p	74 ¢5161	100p	74 LS388	55
741574	33p	74LS162	1000	7415374	160 p
74LS75	32p	7415163 7415164	1300	7415386 745670	
LOW PROFILE DIL SOCKETS BY TEXAS				$\begin{aligned} & 24 \text { Pin................ } \\ & 28 \text { Pin.......... } \\ & \text { 40 Pin.......... } \end{aligned}$	$\begin{gathered} 16 \mathrm{p} \\ \begin{array}{c} 19 \\ 30 p \end{array} \end{gathered}$
VERO PRODUCTS Vero Wiring Pen (inc. 1 spool wire).........248p $2+$ Spare Spools Spot face Cutter............ Veroblock 8 readboards 283p			veroboard pcba		
TERMS Please add 35p for P\&P plus 15\% VAT to all orders. Export orders no VAT but postage at cost Prompt delivery on all orders. Cheques, POs, Money Orders to be made payable to:-					
BDMAAME E E EGABNA日					
64 Newlyn Drive, Sale, Cheshire. M33 3LE Tel. 061-962 2606					

"You can count on Casio"

IT HAD TO HAPPEN! Casio, world leaders in high quality calculators and watches, combine their talents to bring you the incredible

C-80 CALCULATOR WATCH
 (With finger touch keyboard)

 calendar pre-programmed to the year 2009.- 8 digit calculator, $6+2$ digits on double display.
- Professional 24 hour stopwatch function; measuring net, lap and 1st and 2nd place times to $1 / 100$ second on double display.
- Dual time facility (24 hour clock). Nightlight.
- Mineral glass face. Water resistant. Black resin case and strap. Dimensions $44.9 \times 35.8 \times 10.2 \mathrm{~mm}$.
- 12 months battery life from two silver oxide ucc 391.

Only $£ 24.95$

STAR BUYS FROM CASIO

81QS-35B Alarm Chronograph
Stainless steel. Mineral
glass. Water resistant.
5 YEAR BATTERY.
Hours, minutes, seconds, day; And day, date, month and year. 12 or 24 hour display.
24 hour alarm, hourly chimes. Stopwatch from $1 / 100$ second to 7 hours; net, lap and 1 st and 2nd place times.
(£34.95) $£ 29.95$

NEW CALCULATOR FOR 1980

MELODY 81

(£24.95) £22.95 Clock, calendar, two musical alarms. countdown timer. Stopwatch from $1 / 10$ sec to 12 hours: net lap. Ist \& 2nd place. Calculator with full memory, \%, square roots. $5 / 16 \times 4 \frac{1}{2} \times 2 \frac{1}{9}$ ".
1 year batteries.
MELODY 71 (£24.95) £22.95 As above but only one alarm. $3 / 16 \times 3 \frac{3}{9} \times 2 \frac{1}{4}{ }^{\text {n }}$.

MQ-12 As ML-71 but Fithout musi calendar display. calendar display
$3 / 16 \times 3 \frac{3}{8} \times 2 \frac{3}{n^{\prime \prime}}$. $£ 19.95$

MQ-6 Micro Card The Big Digit Midget! Pocket watch with full auto calendar, $1 / 10 \mathrm{sec}$ stopwatch; 8 digit calculator with 8 digit calculator with
$\%$ and GT memory. Stylish fob chain, case
Stylish fob chain, case
$3 / 16 \times 1 \frac{1}{4} \times 25^{n}$. £19.95

111QS-34B
Superbly finished chrome plated case. Mineral glass.
Water resistant.
Comprehensive display, hours, minutes, seconds, am/pm, day and date. Nightlight.
Stainless steel bracelet.
ONLY £14.95
F-8C Black resin cased £10.95
Send $\mathbf{2 5 p}$ for our illustrated catalogue of Casio and Seiko products.
OUR RETAIL SHOP IS MOVING! PERSONAL CALLERS PLEASE TELEPHONE FIRST
FX-81 Scientific
$\boldsymbol{£ 1 2 . 9 5}$ (illustrated)
As FX-80 but without standard deviations and R-P. P-R conversions.
FX-80 (not illustrated)
37 scientific functions, $6+2$ digit display. Pi, cube root, 6 levels (). 4000 hours battery life from two AA size. $\frac{3}{4} \times 3 \times 5 \frac{17}{4}$.
£15.95
HR-10 Mini Printer. Only $1+3 \times 3 \times 6{ }^{2}$ " Most office functions plus full calendar printout from 1901 to 2099. 3 way powering.

ONLY £29.95

- Hours, minutes, seconds, day, am/pm; And day, date, month, auto
(RRP £29.95)

The "in" pendant for 1980 Winner of the
1980 GIFT AWARD
(Fashion and personal accessories)
Features a genuine metal oxide silicon chip 24 pin dual in line integrated circuit, set in a 9ct gold or a sterling silver clasp. Approx. $1 \frac{1}{2} \times \frac{1}{2} \times 3 / 16^{\prime \prime} .11 \mathrm{gms}$ Supplied with leather thong.
Sterling Silver $£ \mathbf{3 0}$ 9ct. Gold $£ 69$

SEIKO ${ }^{\text {Latest models }}$
 Around 30\% off?

SEIKO'S STAR BUY FOR 1980
TS2 Alarm Chronograph
Comprehensive display of
hours, minutes, seconds
24 day, date and month.
24 hour alarm and hourly chimes. Stopwatch from $1 / 100 \mathrm{sec}$ to 20 minutes then seconds to 20 hours. Upper display - lap times Lower display - total time. Audible button operation. S/steel encased, 8 mm thick plus front buttons.
only $£ 47.50$

TS 1 Alarm Chronograph
 WITH COUNTDOWN ALARM Hours. minutes, seconds. Alpha day and date on upper display; And day, date, month. Alarm and hourly chimes. Countdown alarm (upper display) Stopwatch from $1 / 100$ sec to 12 hours; net, lap and Ist and 2 nd place times. only $£ 57.50$
TS7 Alarm Chronograph
100m WATER RESISTANT
Suitable for swimming.
water skiing, etc. Time and
calendar functions as TS2.
Identical stopwatch functions
but to 12 hours. Hourly chimes.
WEEKLY programmable
larm. INTERVAL alarm timer up to 16 hours.
ONLY $£ 74.95$

TS4 Calculator Alarm
Hours, minutes, seconds, day; And day, date. month, $\mathrm{am} / \mathrm{pm}$. Alarm (2 tones), hourly chimes. 8 digit calculator with constants, delta \%. Water resistant. 2 year battery with hatch. Approx 9 mm thick +0.5 mm for keys.
s/Steel $£ 79.95$
Gold plated $£ 99.95$

Price includes V AT, P\&P. Send your cheque, P.O.
or phone sour ACCESS or BARCLAYCARD number to:-

TDMPUS
Dept. PE, Reaumont Centre, 164.167 East Rd., Cambridge CB I IDB. Tel. 0223312866

SOUTH EAST ENGLAND'S ELECTRONICS CENTRE

Interested in Electronics? Then why not pay us a visit and see our vast range of Test Equipment, Oscilloscopes, PSUs, Computer Equipment, Government Surplus, VDUs, ICs, Transistors, Relays, Motors, Bulbs, Cable Transformers, PCBs, Resistors, Amplifiers, etc., etc.
$\star \star \star$ THIS MONTHS SPECIALS $\star \star \star$

Miniature 5V 3 amp PSU, compact fully regulated, + crowbar protection.
$\mathbf{£ 8 . 5 0 ~ + ~ P \& P ~ 7 0 p ~}$

Super value PCB pack. Contents include I.C's res. caps etc., etc. Guaranteed to include TTL and CMOS! 6 Boards, Our choice.
$£ 2.50+\mathrm{P} \& \mathrm{P}$ 60p

Wire wrap patch panels inc. 1016 pin and 5414 pin gold plated DIL WW sockets +64 TTL and DTL I.C's dim. 6" $\times 7^{\prime \prime}$
$\mathbf{£ 8 . 9 5 + P \& P 8 5 p}$
49 key coded QWERTY keyboard, 8 bit output, delayed strobe, 5 V rail, TTL output. Ex-equip. untested. Supplied with edge conn. \& connection diagram. $\mathbf{£ 2 0 . 0 0}+\mathrm{P} \& \mathrm{P} £ 1.60$
 £1.00.0.125" RED LEDS 12 for $£ 1.00$. 2N3055H (RCA) 4 for $£ 2.25$. 1S44/1 N4 14850 for $£ 1.00$. Stock list 50p. Where P\&P not shown please add 40p per order. Prices include VAT.
\star ELECTRONIC EQUIPMENT ANO COMPONENTS PURCHASED FDR CASH \star DPEN 9.30 TO 5.30 MONDAY TO SATURDAY \quad RETAIL ANO TRADE \star NO PARKING RESTRICTIONS
\star ACCESS \& BARCLAYCARD

64-66 MELFORT ROAD THORNTON HEATH SURREY. 01-689 7702

ELROMASOMNE Pectranics 56 FORTIS GREEN ROAD MUSWELL HILL LONDON N10 3HN TELEPHONE 01-883 3705 01-883 2289

your soundest comnection in the world of components

Demonstration At Our Shop (enter through stationers)

NOW AVAILABLE
Low cost computer in kit form UK101

NO EXTRAS NEEDED SIMPLY HIT
'RETURN' AND GO

As seen in
P.E.
August to November '79

Kit price
only $£ 199+$ VAT

EXTRA 4K MEMORY
$8+2114$
ONLY
£35.00 + VAT

INCLUDED FREE

Sample tape with extended machine code moditor and disassembler

Price includes RF modulator and power supply
ABSOLUTELY NO EXTRAS NEEDED

Also availabel ready assembled, tested and ready to go only $£ 249$ + VAT

Build, understand, and program your own computer for only a small outlay

AVAILABLE SOON
 COLOUR ADD-ON CARD

Enable you to choose your foreground, the background colour anywhere on the screen. Flash any character on the screen at will. Full documentation and parts in kit form. Phone for details

STOP PRESS

The latest edition of our 'STOP PRESS' is now available, and contains an up-to-date price list showing all the items that we stock. Just send an S.A.E. or phone for your FREE copy. OUr catalogue is still available and if you're one of the few who haven't got a copy, order your FREE copy today.

Britain's first comp

A complete personal computer for a third of the price of a bare board.

Also available ready assembled for $£ 9995$

The Sinclair ZX80.

Until now, building your own computer could easily cost around $£ 300$ - and still leave you with only a bare board for your trouble.
The Sinclair ZX80 changes all that. For just £79.95 you get everything you need to build a personal computer at home... PCB, with IC sockets for all ICs; case; leads for direct connection to your own cassette recorder and television; everything!
And yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers on the market at several times the price. The ZX80 is programmed in BASIC, and you could use it to do quite literally anything from playing chess to running a power station.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. Once assembled, it immediately proves what a good job you've done. Connect it to your TV set... link it to an appropriate power source *.. and you're ready to go.

Your ZX80 kit contains...

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs - all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to any portable cassette recorder to store programs) and domestic TV (to act as VDU)
- FREE course in BASIC programming and user manual.

Optional extras

- Mains adaptor of 600 mA at 9 V DC nominal unregulated (available separately - see coupon).
- Additional memory expansion board plugs in to take up to 3 K bytes extra RAM chips. (Chips also available see coupon.)
*Use a 600 mA at. 9 V DC nominal unregulated mains adaptor. Available from Sinclair if desired (see coupon).

Two uniqueand valuable components of the Sinclair $\mathbf{~ X 8 0}$.

The Sinclair ZX 80 is not just another personal computer. Quite apart from its exceptionally low price, the ZX80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teach-yourself BASIC manual.

The unique Sinclair BASIC interpreter...

 offers remarkable programming advantages:- Unique 'one-touch' key word entry: the XX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handling capability - takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The 7X80 also has string inputto request a line of text when necessary. Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up 26.
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions, USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with 22 standard graphic symbols.
- All characters printable in reverse under program control.
- Lines of unlimited length.

... and the Sinclair teach-yourself

BASIC manual.

If the features of the Sinclair interpreter listed alongside mean little to you-don't worry. They're all explained in the specially-written 96-page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC pro-gramming-from first principles to complex programs. (Available separately-purchase price refunded if you buy a ZX80 later.)

Fewerchips,
 compact design, volume production more power per pound!

The ZX80 owes its remarkable low price to its remarkable design: the whole system is packed onto fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the ZX80's 1 K byte RAM is roughly equivalent to 4 K bytes in a conventional computer, because the ZX 80 's brilliant design packs the RAM so much more tightly. (Key words, for instance, occupy just a single byte.)
To all that, add volume production - and you've that rare thing: a price breakthrough that really is a breakthrough.
The Sinclair ZX80. Kit: $£ \mathbf{7 9 . 9 5}$. Assembled: $£ 99.95$. Complete!
The ZX80 kit costs a mere $£ 79.95$. Can't wait to have a ZX80 up and running? No problem! It's also available, ready assembled, for only £,99.95.
Whether you choose the kit or the readymade, you can be sure of world-famous Sinclair technology - and years of satisfying use. (Science of Cambridge Ltd is one of the Sinclair companies owned and run by Clive Sinclair.)
To order, complete the coupon, and post to Science of Cambridge for delivery within 28 days. Return as received within 14 days for full money refund if not completely satisfied.

Science of Cambridge Ltd
6 Kings Parade, Cambridge, Cambs., CB2 ISN Tel: 0223311488.

Order Form

To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN. Remember: all prices shown include VAT, postage and packing. No hidden extras.
Please send me:

Quantity	Item	Item price E	Total E
	Sinclair ZX80 Personal Computer kit(s). Price includes ZX80 BASIC manual, excludes mains adaptor.	79.95	
	Ready-assembled Sinclair ZX80 Personal Computer(s). Price includes ZX80 BASIC manual, excludes mains adaptor.	99.95	
	Mains Adaptor(s) (600 mA at 9 V DC nominal unregulated).	8.95	
	Memory Expansion Board(s) (takes up to 3K bytes).	12.00	
	RAM Memory chips - standard 1K bytes capacity.	16.00	
	Sinclair ZX80 Manual(s) (manual free with every ZX80 kit or ready-made computer).	5.00	
NB. Your Sinclair ZX80 may qualify as a business expense.		TOTAL	
I enclose a cheque/postal order payable to Science of Cambridge Ltd for $£$ Please print Name: $\mathrm{Mr} / \mathrm{Mrs} /$ Miss			
Address			
			PE/4

J. BIRKETT

(Partners: J. H. Birkett. J. L. Birkett)
Radio Component Suppliers
25 The Strait, Lincoln. LN2 1JF

QUAD COMPARATOR LM 333 with data 50 p .
 500mA with connections 80p.
TTL I.C's $7400,74 \mathrm{LOO}, 7410,7430,7453$ All at 10p each, 6 for 50 p.
SUB-NINIATURE SINGLE POLE CHANGE OVER TOGGLE SWITCHES - BOp.
20 PHOTO TRANSI8TOR8 AND DARLINGTONS untested assorted for E1.
MIDGET 6 to 12 volt RELAY\$ S.P.C. 5 amp Contacts at eOp.
10 WATT STUD MOUNTHNE ZENERS $18 \mathrm{v}, 22 \mathrm{v}, 33 \mathrm{v}, 68 \mathrm{v}, 100 \mathrm{volt}$ All at 38 p each.
SPECIAL PAPER CAPACTOORS 1Ouf 37OV.A.C. E1.50, 135 uf 290V.A.C. \&8.
MULLARD POLYESTER CAPACITORS . 1 uf $160 \mathrm{v} . \mathrm{w}^{\prime}$, at 20 p doz.
OP-AMPs MC 14390 at 40p each. 3 for E 1.
BRIDGES 100 PIV 1 amp 20p, 200 PIV 4 amp - 60p, 50 PIV 20 amp e 11.30.

UNIJUNCTION TRANS18TORS 2N 4871 - 22p, 2N 6029 - 25p, MEU 21 - 22p, MU 4894 \& 22p, 6GE4JDEE28 \& 22p, TIS 43 Type e 22p.
12 WAY PLASTIC BARAIER 8 TRIPS 5 amp e 30p, 4 for $\mathbf{E 1}$
NKT 274 NEWMARKET PNP TRAN8I8TORS - 10p, 6 for 50p.
MINIATURE 12 WAY CERAMIC TAG SThIP \& $15 p$.
MINIATURE 12 WAY CEAAMICTAG STHIP e ISp. $82.5,100,121,150,270,330,332,360,365,470,562,619,620,680,681,700,750$, $820,909,910,1 \mathrm{~K}, 2.15 \mathrm{~K}, 2.2 \mathrm{~K}, 3.01 \mathrm{~K}, 3.9 \mathrm{~K}, 5.1 \mathrm{~K}, 6.2 \mathrm{~K}, 10 \mathrm{~K}, 18 \mathrm{~K}, 75 \mathrm{~K} .150 \mathrm{~K}, 200 \mathrm{~K}, 392 \mathrm{~K}$, $597 \mathrm{~K}, 600 \mathrm{~K} .1 .21 \mathrm{M}$ all at ep each.
WIRE WOUND POTENTIOMETERS 2 watt, $2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 4$ watt, 100K. All at 30 p bach.
MOS PRE-AMPLIFRER I.C. TAA 320 with data 35p.
50 OC 71 TRANSIgTOR8 untested for 78p.
10 ABSORTED PUSH BUTTOM BANK
10 A8sORTED PUSH BUTTON BANK8 less knobs for $\mathbf{£ 1 . 3 0}$.
STUD MOUNTING DIODES 100 PIV 10 amp 1
STUD MOUNTING DIODES 100 PIV 10 amp © 15p, 100 PIV 20 amp e 25p.
TANTALUM BEAD CAPACITOR8 $6.8 \mathrm{Bf} 35 \mathrm{v} w$.
O.9 OHM FIXED RESISTOR 100 WATT on Ceramic Former 7 .

PLASTIC POWER NPN TRANSISTOR 80 20790 W e Esp each, BD 1874 amp e 28p, 8D 175 e 25p.
IRON CORED L.F. CHOKE 2 M.H. 4 amp for LT. Smoothing © 50p (P\&P 20p).
MANNS TRANSFORMERS 240 volt input. Type 1.24 volt tapped 14 voit lamp e E1. 30 ($\mathrm{P} \& \mathrm{P}$ 25p). Type 2. $30-0-30$ Volt 500 mA - $\mathrm{E1.30}$ (P \& P 25p). Type 3.45 volt 6 amp e $\mathbf{E 4 . 5 0}$ (P\&P 95p), Type 4. 20 volt 1 amp twice, 10 volt 1 amp twice $\mathbf{~} 4.50$ (P\& P95p), Type 5. 45 volt $2 \mathrm{amp}, 45$ volt 500 mA e 83.50 (P\&P 85p). Type 6. 16 volt 2 amp e $\mathcal{E 1 . 6 0}$ (P\&P 25p), Type 8. 30 voit 1.75 amp e E1.60 (P\&P 25p).

Please add 20p for post and packing, unless otherwise stated, on
U.K. orders under £2. Overseas pastage charged at cost.

It's faster and more thorough than classroom learning: you pace yourself and answer questions on each new aspect as you go. This gives rare satisfaction - you know that you are really learning and without mindless drudgery. With a good self-instruction course you become your own best teacher.

Understand Digital Electronics

In the years ahead digital electronics will play an increasing part in your life. Calculators and digital watches mushroomed in the 1970's -soon we will have digital car instrumentation, cash cards, TV messages from friends and electronic mail.
After completing these books you will have broadened your career prospects and increased you knowledge of the fast-changing world around you.

DIGITAL COMPUTER LOGIC AND ELECTRONICS £7.50
 This course is designed as an introduction to digital electronics and is written at a pace that suits the raw beginner. No mathematical knowledge is assumed other than the use of simple arithmetic and decimals and no electronic knowledge is expected at all. The course moves painstakingly through all the basic concepts of digital electronics in a simple and concise fashion: questions and answers on every page make sure that the points are understood.

Everyone can learn from it housewives, scientists. Its four A4 volumes consist of: Book 1 Binary, octal and decimal number systems; conversion between number systems; conversion of fractions; octal-decimal conversion tables.
Book 2 AND, OR gates; inverters; NOR and NAND gates; truth tables; introduction to Boolean algebra.
Book 3 Positive ECL; De Morgans Laws; designing logic circuits using NOR gates; dual-input gates.
Book 4 Introduction to pulse driven circuits; R-S and J-K filip flops; binary counters; shift registers; half-adders.
DESIGN OF DIGITAL SYSTEMS £11.50
This course takes the reader to real proficiency. Written in a similar question and answer style to Digital Computer Logic and Electronics, this course moves at a much faster pace and goes into the subject in greater depth. Ideally suited for scientists or engineers wanting to know more about digital electronics, its six A4 volumes lead step by step through number systems and Boolean algebra to memories, counters and arithmetic circuits and finally to an understanding of calculator and computer design.

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND, NOR and exclusiveNOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; karnaugh mapping; three state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip tlops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs)
Book 5 Structure of calculators; keyboard encoding; decoding display data, register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control programme structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Flow Charts and Algorithms

are the essential logical procedures used in all computer programming and mastering them is the key to success here as well as being a priceless tool in all administrative areas -presenting safety regulations, government legislation, office procedures etc.
THE ALGORITHM WRITER'S GUIDE £3.75
explains how to define questions, put them in the best order and draw the flow chart, with numerous examples.

Microcomputers are coming ride the wave! Learn to program.

Millions of jobs are threatened but millions more will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation. Harder problems are provided with a series of hints so you
 never sit glassy-eyed with your mind a blank. You soon learn to tackle really tough tasks such as programs for graphs, cost estimates, compound interest and computer games.
COMPUTER PROGRAMMING IN BASIC
£7.50
Book1 Computers and what they do well; READ, DATA, PRINT, powers, brackets, variable names; LET; errors; coding simple programs.
Book 2 High and low level languages; flowcharting; functions; REM and documentation; INPUT, IF....THEN, GO TO; limitations of computers, problem definition.
Book 3 Compilers and interpreters; loops, FOR...NEXT, RESTORE; debugging; arrays; bubble sorting; TAB.
Book 4 Advanced BASIC; subroutines; string variables; files; complex programming; examples; glossary.

THE BASIC HANDBOOK £11.50

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

FORTRAN COLORING BOOK $£ 5.40$

"If you have to learn Fortran (and no one actually wants to assimilate it for the good of the soul) buy this book. Forget the others-this one is so good it will even help you understand the standard, dense, boring, unintellible texts." New Scientist.

A.N.S. COBOL $£ 4.40$

The indispensable guide to the world's' No. 1 business language. After 25 hours with this course, one beginner took a consulting job, documenting oil company programs and did invaluable work from the first day. Need we say more?

GUARANTEE - No risk to you
If you are not completely satisfied your money will be refunded on return of the books in good condition.
Cambridge Learning Enterprises, Unit 29, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR England.

Please send me:
....Digital Computer Logic \& Electronics @ $£ 7.00$
....Design of Digital Systems @ £11.50
....Algorithm Writer's Guide @ £3.75
....Computer Programming in BASIC @ $£ 7.50$
....BASIC Handbook@ £11.50
....Fortran Coloring Book @ $\mathbf{£ 5 . 4 0}$
...A.N.S. Cobol @ $£ 4.40$
All prices include worldwide surface mailing costs (airmail extra) IF YOUR ORDER C.OMES TO OVER f18, DEDUCT £2
Cheques/PO's payable to Cambridge Learning Enterprises or charge to Access/Barclaycard/Diners Club/etc
account no
Telephone orders from credit card holders accepted on 0480-67446.
Overseas customers (inc Eire) use credit card, or bank draft in sterling drawn on a London bank, or International Money Order (add f 1 handling charge.)
Name
Address

Cambridge Learning Enterprises, Unit 29, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR England.

MINIATURE MAINS TRANSFORMERS Top quality. Split bobbin construction will give $4.5 \mathrm{~V}-0-4.5 \mathrm{~V}$ at 250 MA . $1 \frac{3}{4}{ }^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime}$, all sorts of uses. ONLY 90p. 3 for $\mathbf{£ 2 . 2 0}$. BD131's 4 for $\mathbf{f 1 . 0 0}$	
Den't Lat Your Emirionmant Denytrate You! Buy our Honeyawell Humithity Controller. Membrane actuated. very sensitive. t^{n} sheft. 250V. 3.75 A Contacts. Ideal for preeshouses. centrolly haated homes, officess atc. Build your own humidifiers of alarms. Fraction of original cost 90 pes .3 for $£ 2$.	20mm ANTI SURGE fUSES $630 \mathrm{~mA}, 800 \mathrm{~mA}, 1 \mathrm{~A}, 1 \cdot 24 \mathrm{~A}, 1.6 \mathrm{~A}, 2 \mathrm{C}, \mathrm{c} \cdot \mathrm{JA}, 315 \mathrm{~A}, 12$ of one type f 1.12 of mech type E . 100 of amm type $\mathbf{5 7} .100$ of ench type $£ 49$.
	transistor packs 100. Full spec. new and marked. Inctudes BC148. BC184L, ME0412. BF274. BC154 atc, atc. $\mathbf{4 4 . 5 5}$ 200 as abve and includes AC128. 2N3055. BFY50. BD 131. 8F200 लc. $\mathbf{8 9 . 9 5}$ Buy bulk and save money, thass packe see worth at heast doubie.
20 ASSDATED ZENER DIODES \qquad i watt and $400 \mathrm{MW}. \mathbf{1 . 5 0}$ Inclu 100 MIXEO O100ES All full spec. $\mathbf{£ 4 . 9 5}$	
ULTRASONIC TRAMSDUCERS Transmitter and recatver. 40 kHz 14 mm.diam $\mathbf{f 4 . 2 5}$ pair.	P/B Switch banks Then ceart a frumel Wese madi for vaious muic contris. Includes independent end interdeppondeont bacthing typus mutit pole do etc Can be modified Can't be noposuad. 3 Bente for fI
6×6 POLE REED RELAYS ON BOARD 12 V ideal for burglar alarms, flodel rai ways atc: $\mathbf{E 2 . 4 5}$	
miniature reed switches We are the cheapest! 12 for $£ 1.00100$ for $£ 4.20$	BULK BARGAINS, STOCK UP FOR SUMMER 300 mixed $\frac{1}{4} \frac{1}{\frac{1}{2}}$ watt resistors $\mathbf{5 1 . 5 0}$
G.E.C. UHF TRAMSISTOR TV TUNERS Rotary tyje with slow motion driva. Ieads and atrial socket. £1.50 3 for E3.50 "For G.EC " 2010 " series etc."	300 mixed capacitors, modern, most types $\mathbf{£ 3 . 7 5}$ 100 mixed caramic and plate caps $\mathbf{£ 1 2 0}$ 400 mixed film resistors $\mathbf{f 2 . 8 5}$
make cheap battery eliminators Fully shrouded mini mains transformers. 240 V in $6.0-6 \mathrm{~V}$ at 100 MA out Complete with mains lead and plug. ex new equip. 90 p	25 pots and prowts $\mathbf{I 1 . 5 0}$ 25 prasats. skaliton etc. $\mathbf{5 1 . 2 0}$ 20 VDRs and thermistors f 1.20 100 Hi-wattage resistors wirnwound atc. $\mathbf{£ 2 . 2 0}$ 100 Alectrolytics. nice values $\mathbf{£ 2} 20$
de tuxe fibre glass PRINTED CIRCJIT ETCHIMG KITS Includes 150 sq ins . copper clad F/G. baard. 1 lb ferric chiveride. I dalo etch resist pen Abrasive cleames. Etch tray plus instructions. Speciel Price $\mathrm{E4} .95$ 1 lb FE. CI. To mil. spoc. $\mathbf{1 1 . 2 5}$ 5 由 FE. CI. To mil. spec. $\mathbf{5 5 . 0 0}$ 150 sn. in. Singho cidod board $\mathbf{2 2 . 0 0}$ 150 sq in. Deetho sided board $£ 3.00$	300 printed circuit resistors $\mathbf{f 1}$ 300 printed circuit components $\mathbf{f 1} .50$
	100X MIMLATURE THUMBWHEEL SLIDER POTS Very anaat, can be banked side by side. Wheal for v. cap twing. praphic equalisers etc. 10 for f1
	miniature level/batt. meters $200 \mu \mathrm{~A}$ F.SO as fined to many cossette rocorders 60
40P P \& P P on all indows itram. Chagus of P.O. with order to: SENTINEL SUPPLY, DEPT. P.E. 149A BROOKMILL RD., DEPTFORD, LONDON, SE8	

JONES ELECTRONIC SUPPLIES
 588 , ASHTON ROAD, OLDHAM, LANCS. OL8 3HW.
 Tel: 061-652 9879. Telex: 668250.
 O61-652 9879. Telex: 6682 ALL PRICES INCLUDE VAT
 Shop open Mon., Thurs., Frid. 9 am- 7.30 pm .

Stockists of Lektrokit Breadboard, Vero, CMOS. TTL, Resistors, Capacitors etc. Barrel Kits 99p Leech Amplifiers \& Speakers.
BK1 8 Rotary switches (3position)
BK2 $20500 \mathrm{~K} \Omega$ presets
?
$\begin{array}{ll}\text { BK3 } & 5 \text { push to make switches } \\ \text { BK4 } & 4 \text { to } 2206 \text { amp power transistors }\end{array}$
BK5 25 TTL devices
ces
2N5061 .8 amp 400 V
p\&p 25p
BK6 5 thyristers 2N5061.8 amp 400V
p\&p 20p
p\& 20p
BK7 50 assorted diodes, inc. zenners
p\&p 20p
BK8 50 assorted NPN/PNP transistors
p\&p $20 p$
p\& $20 p$

MAKE YOUR OWN KEYBOARDS

ML3 individual keyboard switch with re-cappable top allowing lettering by individual. Only (1-10) 30p each. (11-20) 27p each. (20-100) 25p each.P\&P 30p per 10.
Ni-cad batteries to military spec., high discharge re-charge capabilities in parallel. AA $1-25$ p\&p 20p each
C $2-90$ p\&p 20p each
$\begin{array}{ll}\text { C } & \text { 2-90 p\&p 20p each } \\ \text { D } & 3-50 \text { p\&p 20p each }\end{array}$

${ }_{1}^{1}$ Post now, without obligation to:
British National Radio i\& Electronics School.
No previous knowledge is necessary.

- Just clip the coupon for a brochure

The New Toolrange Catalogue is still the only comprehensive single source of electronic tools and production aids.
The product range has almost doubled since last year and now over 2,000 tools, toolkits and service aids are illustrated in full colour.
Products from over 100 top manufacturers are available from stock.
Over 60,000 catalogues are now in circulation. If you don't have one simply write, telephone or telex Toolrange for your free copy. Telephone: Reading (0734) 22245 Telex: 847917

DISPLAY LIGHTING KITS	
	LED
INTEGRATED CIR	
	DISPLAYS
	B47
	TRIACS
	0.I.L.I.C. SOCKE

STARCHASER 4000 THE NEW FOUR CHANNEL LIGHTING CONTROLLER

4 channels 750W each O over 1000 different sequ ence patterns and effects $\bigcirc 3$ alternative sound triggers A.G.C. Simulated strobing O zero reference triac

firing \bigcirc superb TUAC quality and reliability
 $\Sigma 119.00$ inc.VAT

4 CHANNEL SOUND TO LIGHT SEQUENCE CHASER - 4LSM1 $£ 22.95$
ront panel, size 61/2"x41/2". £7.75.

* RCA 8A Triacs * 1000W per channel * Switched master control for sound operation from $1 / 2 \mathrm{~W}$ to 125W * Speed control for fixed rate sequence from 8 per minute to 50 per second * Full logic integrated circuitry with optical isolation for amplifier protection.

3 CHANNEL AUTO SOUND TO LIGHT - AFL 6
£17.50

* RCA 8 Amp Triacs

 500W per channel * 2 channels flip flop, 1 channel sound to light * Fully automatic via built in mic * No connection to amplifier necessary.
SODDBESE

NOW AVAILABLE - THE FANTASTIC NEW TUAC STEREO AND MONO MIXERS. Send for details.

SEND FREE 28 PAGE CATALOGUE, PLEASE
ENCLOSE A STAMP.

TUAC MAIN DISTRIBUTORS (Callers Only)

Birmingham, George Matthews, 85/87 Hurst Street,
(Tel: 622 1941).
London, Garland Bros., Deptford Broadway, (Tel: 01-692 4412) London, Session Music, 163 Mitcham Road, Tooting,
(Tel: 01-672 3413) Mon-Sat 10am to 5.30pm. Closed Wed.
Luton, Luton Disco Centre, 88 Wellington Street, (Tel. 411733). Manchester, A1 Music, 88 Oxford Street, (Tel: 2360340). Middlestorough, Saicoglen, 43 Borough Road, (Tel: 242851) Watford, Component Centre, 7 Langley Road, (Tel: 45335)

NEW 1980 RADIO
 AMATEUR'S HANDBOOK by A.R.R.L Price: $£ 8.00$
 WORLD RADIO T.V. HANDBOOK 1980 Price: $\mathbf{f 9 . 5 0}$
 UNDERSTANDING MICROPROCESSORS

by Texas Instruments
Price: $£ 4.25$
MICROPROCESSOR COOKBOOK
by M. F. Hordeski
Price: $£ 4.85$
HOW TO USE INTEGRATED CIRCUIT LOGIC ELEMENTS
by J.W. Streater
Price: $£ 4.45$
DESIGN OF OP AMP CIRCUITS WITH
EXPERIMENTS
by H. M. Berlin
Price: $\mathbf{£ 5 . 6 5}$
THE ACTIVE FILTER HANDBOOK
by F.P. Tedeschi
Price: $\mathbf{£ 5 . 5 0}$

Z80 ASSEMBLY LANGUAGE

PROGRAMMING
Price: $\mathbf{£ 5 . 5 0}$
DESIGN OF PHASE LOCKED LOOP
CIRCUITS WITH EXPERIMENTS by H. M. Berlin

Price: $\mathbf{£ 6 . 3 5}$
ADVENTURES WITH MICROELECTRONICS by T. Duncan

Price: $£ 2.30$

* ALL PRICES InCLUDE POSTAGE

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-21 PRAED STREET LONDON W21NP

Phone 01-402 9176
Closed Saturday 1 p.m.

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisments where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, PRACTICAL ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc, received as a result of answering such advertisements. Classified advertisements are excluded.

Codespesed Hectronics

P.O. BOX 23, 34 SEAFIELD ROAD, COPNOR, PORTSMOUTH, HANTS. PO3 5BJ
8 DIGIT 0.1" LED DISPLAY multiplexed. common cathode. 99p each. DIGITAL ALARM CLOCK MODULE with $0.7^{\prime \prime}$ display. With date $£ 5.99$ each. 4 DIGIT CLOCK L.C.D. $0.5^{\prime \prime}$ digits, supplied with data, $\mathbf{4} 4.99$ each. MM5316 digital alarm clock chip, with data $\mathbf{\varepsilon 2 . 2 9}$ each. REJECT CALCULATORS Untested, but good value for spares. $\mathbf{£ 2 . 5 0}$ each. LED WRISTWATCH I.C. Mostek MK5030, with datu 95p each LED WRISTWATCH DISPLAY Type DISSOR 0.1 digits. With dala 95p each. SUPEA SAVEA Purchase an MKKO3O and a aishol for only 1.50 he pai. No n. a legless flatpack stye package and require some
 keyboards, 2 d 90 , calc. chip). 4 DIGI 0.3 LED Cathode, win dara es.75 each. DIGITAL MULTI METER CHIP MME3. meter. WOCKETS JACK SOCKETS : 23p each, stereo 25p each. SLIDE POT KNOBS please state colour required. 11p each ROTAR lim Blantrol diam. Black win 10 LED DISPLAYS U nested mavial $01^{\prime \prime}$ digits common cathode 95p, 6 DIGIT mi" LED DISPLAY multip cored comm. 99 p 555 TIMER IC with data and anplications 30klt 23p POLARIZING FILM max $19^{\prime \prime}$ wide any booke, 23 p 2 p par sq ich Any size cut SUIDER SWITCHES 2 pole, BUTTON SWITCHES sping loaded (momentary with ON SWITA 14p CAICULATOR CHIP Norec 42044 function and contant with date 80 2102 MEMORIES DYOMic memeries for 21020's With dat 95p ach WRISTWATCH 1 C.D. micas Win
new catalogue (No. 7) now available. SEND MEDIUM S.A.E. FOR YOUR FREE COPY.

POST \& PACKING PLEASEADD 35p
IOVERSEAS ORDERS ADD S0p)
V.A.T. GDD 15% TOTHE TOTALOF

Ful SATISFACTION GUARANTEE on aill itame.

AITKEN BROS

35, High Bridge, Newcastle upon Tyne
Tel: 063226729

EXP300

550 contacts with two 50 -point BUS bars. Size $152 \times 53 \mathrm{~mm}$. $\mathbf{~ 6} .96$.
PROTO-BOARD 6 KIT 630 contacts, four 5 way binding posts
accepts up to 614 pin DIPs fio. PB6 Kit accepts up to 614 pin DIPs. f10.98.

CSC LOGICPROBES

EP-2 ECONOMY PROBE

Min. pulse width 300 nanoseconds, 300 KR input impedance, tests circuits up to $1-5 \mathrm{MHz}$. Detecting pulse
trains or single-shot event in TTL DTL. HTL and CMOS circuits. $\mathbf{f 2 0} \mathbf{9 6}$.
cuits. $\mathbf{E 2 0} \mathbf{9 6}$.
Memory Probe
LP-1 Memory Probe \quad High Speed Nermory Probe
£35.65 CSC catalogue available. Plemes send S.A.E,
CALSCOPE SUPER 6 E186.30
A portable single beam 6MHz bandwidth oscilloscope with easy to use controls. High gain to $10 \mathrm{mv} / \mathrm{cm}$ and wide time base range from $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$. Full specification to request. Please send S.A.E. Professional scopes you can afford. CALSCOPE SUPER 10 e251.85 A dual trace 10 MHz instrument of the very highes performance and quality. It has an accuracy of 3% which is achieved by the use of built-in stabilised power supplies which keep the trace rock sfeady over a wide range of mains fluctuations. Full specification on request. Please send S.A.E TE20D TECH R.F. SIGNAL

GENERATOR

Accurately covers 120 KCS to 500 MCS in 6 bands. Directly calibrated. Variable RF attenuator 240 VAC. Size $140 \times 215 \times 170 \mathrm{~mm}$.
Price $\mathbf{5 5 2} \mathbf{5 0}$ ($\mathbf{5 5 0 . 5 8}$ to callers).
TE22D TECH AUDIO GENERATOR
Sine \& square wave audio generator. Sine wave range -20 cps to 20 K cps in four bands.
Square wave range 20 cps to 15 K cps in four bands 240 V
A.C. Size $140 \times 215 \times 170 \mathrm{~mm}$. Pries $\mathbf{5 6 3 . 3 1}$ ($\mathbf{E} 61.31$ to coll

TMK 500 MULTIMETER 30,000 o.p.v. AC volts $2 \cdot 5,10,25,100,250,500,1000$. DC volts. volts $2.5,10,25,100,250,500,1000$. DC volts $0.25,1,2 \cdot 5,10,25,100,250,1000$. DC current $50 \mu \mathrm{a}, ~ 5 \mathrm{MA}, 50 \mathrm{MA}, 12 \mathrm{amp}$. Resistance O-6K 60K, 6 MEG, 60 MEG . Decibels. -20 to +56 db Buzzer continuity test size, $160 \times 110 \times 55 \mathrm{MM}$ PRICE £25:95.

CSC EXPERIMENTOR BREADBOARDS
No soldering modular breadboards, simply plug components in and out of letter/number identified nickel-silver contact holes. Start small and simply snap lock boards together to build breadboerds of any size.

SINCLAIR DM350
 £83.95 £114.95
 상 DM450

DM350 $3 \frac{1}{2}$ digit display DM450 $4 \frac{1}{2}$ digit display. Both provide six functions in 34 ranges. D.C. voltage $10 \mu \mathrm{~V}$ to $1200 \mathrm{~V}(100 \mu \mathrm{~V}$ on DM350) A.C. voltage $100 \mu \mathrm{~V}$ to 750 V . D.C. curren 1nA to 10A. A.C. current inA to 10A resistance 10 mn to 20 Mn ($100 \mathrm{~m} \Omega$ opn DM350). Accessories for DM350 \& 450 as for DM235 below. Full spec. on request. Please send S.A.E.
Sinclair PFM200 frequency meter
Size $157 \times 76 \times 32 \mathrm{~mm}$.
Range 20 Hz to 200 MHz
PDM35 below. $\mathbf{~} 57.95$.

SINCLAR PDM35

DIGITAL POCKET MULTIMETER
DC volts (4 ranges) 1 mV to 1000 V AC volts 1 V to 500 V DC current $\{6$ ranges) 1 nA to 200 MA . Resistance (5 ranges) in to 20 MEGQ. PRICE $\mathbf{£ 3 9 . 9 5}$ AC Adaptor $\mathbf{£ 4 . 2 5}$ de luxe padded carrying case f1.95 MN 1604 Battery f1. 28 .
Size $157 \times 76 \times 32 \mathrm{~mm}$

SINCLAR DM235

BENCH-PORTABLE DIGITAL
MULTIMETER.
DC volts (4 ranges) 1 mV to 1000 V AC volts (4 ranges) 1 MV to 750 V AC \& DC current $1 \mu \mathrm{a}$ to 1000MA Resistance (5 ranges) 1Ω to 20 MEG Ω. PRICE $\mathbf{f 6 0}$-98. Carrying case £8.95. AC adaptor/charger. £4-25. Rechargeable Battery Pack. E8.95.
Size $255 \times 148 \times 40 \mathrm{~mm}$.

PANELMETERS

DIMS $60 \mathrm{MM} \times 45 \mathrm{MM} .50 \mu \mathrm{amp}, 100 \mu \mathrm{amp} 1 \mathrm{MA}$, $5 \mathrm{MA}, 10 \mathrm{MA}, 50 \mathrm{MA}, 100 \mathrm{MA}, 500 \mathrm{MA} .1$ amp, 2 50-0-50~a, 100-0-100 на, 500-0-500 1 a. PRICE £5.95.

DESOLDERING TOOL
SUCTION PUMP.
£6-45
Education Establishment Orders Accepted. PHONE OR SEND YOUR ACCESS OR ALL PRICES INCLUDE POSTAGE AND VAT

SANSEI LOGIC PROBES 3300A

TESTS TTL AND CMOS
POWER SUPPLY 5-18V DC
HI (RED) LO (GREEN) LED'S
INPUT FREQUENCY DC to 300 KHz
INPUT IMPEDANCE 1 MEGOHM SUPPLIED COMPLETE WITH 16p \& 1p IC CLIP
CONNECTOR, PROBE CAP \& VINYL WALLET
GUARANTEED FOR 12 MONTHS £15.85 INCL. P\&P and V.A.T.

Send Cheque/P.O. to:
TABRIGHT LTD,
Bevan Road, Brockmoor, Brierley Hill,
West Midlands, DY5 3TP Tel: 038474433

110 IC timer projects for the home constructor

Jules H. Gilder

* Covers in detail the basic operation of the 555 timer IC that will enable you to design your own circuits using this device
* Divided into three sections describing the basic modes of operation as a monostable device, astable device and logic element
*. Descriptions of applications include timer-based instruments, automotive applications, alarm and control circuits, and power supply and converter applications

1980
126 pages
$£ 3.95$

\mathbb{N} ewnes Technical Books
 Borough Green, Sevenoaks, Kent TN15 8PH

[^5]

SMALL ADS

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 8.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

SERVICE SHEETS

RECEIVERS AND COMPONENTS

T \& J ELECTRONIC COMPONENTS - Quality Components sensible prices. Same day service. Send a stamped addressed envelope for full list. 98 Burrow Road, Chigwell, Essex 1G74HB.
SURPLUS Stocks of Electronic Components at less than wholesale prices. SAE brings free lists. Bardwell Ltd., 212 Studley Lane, Dronfield-Woodhouse, Sheffield,S185YP.

 $14^{\prime \prime} \times 6^{\prime \prime} £ 1.60 .13 \frac{1}{2}^{\prime \prime} \times 11 \frac{1}{2}^{\prime \prime}$ E2.50. D.S. $10 \frac{1}{2}^{\prime \prime} \times 7^{\prime \prime} £ 1.35$. $8^{\prime \prime} \times \mathbf{7}^{\prime \prime}$ E1.15. Thres Assorted M.C. Meters $\mathbf{E 2 . 5 0 . 3 0 0}$ small componients, trans. diodes $£ 1.60 .7$ lbs assorted componen
$\mathbf{£ 3 . 7 5}$. List 15 prefundable. Post 20 p. Insurance add $15 p$.

J.W.B. RADIO

2 Barnfield Crescom, Sale, Cheshire M33 1NL
100 ASSORTED Components 115 p. 100 assorted resistors 75p. 100 assorted capacitors 150 p . 50 reed switches 200p. 10 mains neons 50p. 20 Micro Switches 150p. Add 25p P\&P. DURRANTS, 9 St. Mary's Street, Shrewsbury, Salop.
TURM YOUR SURPLUS Capacitors, transistors, etc., into cash. Contact COLES-HARDING CO., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settlement.
COMPONENTS AT SILLY PRICES. 1000 mixed resistors $\mathbf{£ 3 . 6 0}$. SAE Lists. W.V.E.3, Craigo Farm, Tintern, Gwent.

10 LEDS. Mixed colours/sizes £1.15. Lists 15p. Sole Electronics, (P.E.) 37 Stanley Street, Ormskirk, Lancs. L39 2DH.
TUNBRIDGE WELLS COMPONENTS, Batlards, 108 Camden Road, Tunbridge Wells. Phone 31803. No Lists. Enquiries S.A.E.

RECORD ACCESSORIES

STYU Cartridges for MUSIC CENTRES, \&c. FREE List No. 29 for S.A.E. includes Leads, Mikes, Phones \&c. FELSTEAD ELECTRONICS, (PE), Longley Lane, Gatley, Cheadle, Ches. SK 8 4EE.
any reauested service sheet $\mathbf{\varepsilon 1}$ + Large S.A.E. Full repair data any named TV $\mathbf{5 5 . 5 0}$ (with circuits, layouts etc. f7). SAE brings newsletter, bargain offers, etc. AUSPEL, 76 Church St, Larkhall, Lanarks ML9 IHE.

AERIALS

AERIALBOOSTERS

Improves weak VHF Radio and Television reception.
B45-UHF TV, BlI-VHF Radio. B 1 A-2 metres For next to the set fitting. Price $\mathbf{f 6}$.

SIGNALINJECTOR
A complete range of AF and RF frequencies up to the UHF Band. Price $\mathbf{~ 5} \mathbf{5} \mathbf{0 0}$.
S.A.E. for Leaflets. ACCESS

ELECTRONIC MAILORDER LTD, 62 Bridge Street,
Ramsbotton, Bury, Lancs, BL0 9AG.

WANTED

REQUIRED: Circuit Diagram and/or Manual for Erskine Laboratories Oscilloscope Type 13. (Ref: 1OS/825). Reply Box No. 82.

Wanted p.E. Rondo Facias and Pre-Amp switch. Carlisle 38772. After 6.45.

EDUCATIONAL

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS Dept. 1272 Intertext House, London SW8 4UJ Tel. 01-622 9911 (all hours) State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. T272 Intertext House, London SW8 4UJ Tel. 01-6229911 (all hours) State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept T272 Intertext House, London SW8 4UJ Tel. 01-6229911 (all hours) State if under 18

MISCELLANEOUS

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4				
ENAMELLED COPPER WIRE				
SWG	11 b	802	402	
10 to 29	3.10	1.86	1.10	0.80
30 to 34	3.50	2.00	1.15	0.80
35 to 39	3.95	2.36	1.34	0.98
40 to 43	5.10	2.97	2.28	1.42
44 to 46	6.00	3.60	2.50	1.91
47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 22	5.30	3.03	1.85	0
24 to 30	6.50	3.75		
Prices include P\&P and VAT. Orders under £2 please add 20p. SAE for list. Dealer enquiries welcome.				
Reg. office: 22 Coningsby Gardens.				

MISCELLANEOUS

PANELS, SCALES, CHASSIS AND FACIAS

Screenprinted to your special layout requirements, one-offs or quantity production.

Ashmań and Clough Ltd.,
Designars and Printors,
7 Chapel Lane, BHaworth,

Northampton. (0604) 858274.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply eyeglass, non-magnetic tweezers, watch screwdriver, case knife and screwback case opener, full instructions and battery identification chart. We then supply replacement batteries-you fit them. Begin now. Send $\mathbf{£ 7 . 5 0}$ for complete kit and get into a fast growing business. Prompt despatch.
WATCH BATTERY REPLACEMENT CO. Ashford, Middx. TW15 2PB.

UITRASONIC TRANSDUCERS. $£ 2.85$ per pair +25 p P. \& P. Dataplus Developments, 81 Cholmeley Road, Reading, Berks.

> GUITAR/PA
> music amplifiers
200 watt E60; 100 watt twin channel sep. treble/bass par
$\begin{aligned} & \text { channel E88; } 60 \text { watt } £ 48 ; 200 \text { watt } 872 ; 100 \text { watt four } \\ & \text { channel seo. treble/tass per channel } \mathbf{2 7 5} ; 200 \text { watt } £ 92\end{aligned}$
$\begin{aligned} & \text { channel sep. treble/bass per channel E75; } 200 \text { watt E92; } \\ & \text { slaves } 100 \text { watt t32; } 200 \text { watt E50; fuzz boxes, grea }\end{aligned}$
sound $£ 10.00$; bass fuzz $£ 10.90$; overdriver fuzz with, treble
and bass boosters E 18.00 ; 100 watt combo superb sound
overdrive, sturdy construction, castors, unbeatable $\mathbf{E 9 2}$
$\begin{aligned} & \text { watt E35; } 12 \mathrm{in} .100 \text { W } \\ & \text { Shure Unidyne B E28. }\end{aligned}$
WILLIAMSON AMPLIFICATION
62 Thorncliffe Avenue, Dukinfield. Cheshire. Tel: 061-308 2064

PAIFIED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer - now reatly improved and very much faster. Aerosol cans with full instructions $\mathbf{2 . 2 5}$. Developer 35p. Ferric Chloride S5p. Clear Acetate sheet for master 14p. Copper-clad Fibreglass Board approx. 1mm thick 21.70 sq. ft. Post/packing Castle Drive, Penzance, Cornwall.

GAMES FOR COMPUKIT

At last - 3 exciting programs to run on your UK 101 -COMPUKIT.
Attack - Four in A Row - Magic Drawing Board Cassette containing all three programs only e6.

R. A. LILLEY

41 Cunningham Ave., Guildford GU12PE
CLEARING LABORATORY. Scopes, recorders, testmeters, bridges, audio, R.F. generators, turntables, tapeheads, stabilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state TransmitterReceiver Kit. Only £10.95 plus 25p P. \& P. 'BrainFreeze' 'em with a MINI-STROBE Electronics Kit, pocket-sized 'lightning flashes', vari-speed, for discos and parties. A mere $\mathbf{8} 4.75$ plus 25 p P. \& P . Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound catcher: ready-made multi-function modules, $\mathbf{£ 5 . 4 5}$ each plus 25p P. \& P.
LOTS MORE! Send 30p for lists. Prices include VAT.

BOFFIN PROJECTS
 4 Cunliffe Road, Stoneleigh Ewell, Surrey (P.E.)

NICKEL CADMIUM BATTERIES

 SUB C E1-38, HPII
PP3 charger 55.40 .
All the above nickel cadmium batteries are brand new and are guaranteed full spec. devices. All cells are supplied compete with solder tags (except PP3). Brand new full spec.
RECHARGEABLE SEALED LEAD ACID maintenance free batteries suitable for burglar alarms etc. 1.2 amp hr . 6 V £4.07. 2.6 amp hr .6 V £5.23.
Quantity prices available on request. Data and charging cir-
cuits free on request with orders over f 10 otherwise 30 cuits tree on request with orders over f10 otherwise 30 p
post and handling (specify battery type). Please add 10% P\&P in orders under $110-5 \%$ over f 10 . VAT at the current rate should be added to total order. Cheques, Postal Orders Mail order to:-
SOLID STATE SECURITY DEPT (PE) 10 Bractshaw Lane, Parbold, Wigan, Lances. Tol: 025754726.

PRACTICALELECTRONICS P.C.B.'s
Professional quality glassfibre, Frys roller tinned and drilled.
Nov. 79 Diamatic EC10 \&2.28 28
Dec. 79 Ultrasonic burglar alarm EP200 EG 126. Set of 2 pcb's £2.06
Feb 80 Cost a call EP2 16 E1,38
Feb 80 Electrostat EG257 E173.
$\begin{array}{ll}\text { Feb } 80 & \text { Electrostat EG257 E1.73. } \\ \text { Mar } 80 & \text { Audio isolator EG2868Gp. }\end{array}$
Frequency meter EG290 \&3.43.
For full list and current pcb's please seind SAE. Pcb's also produced to customers own masters. Trade enquiries Postege - Please add 30p postage and packing to complete order.

MK14 CORNER. Interface Board, includes flag driven mains relays, LED Indicators for all Serial I/O, A/D and single step chips, and prototype area; PCB and circuit $\mathbf{8 3 . 9 5}$. Replace calculator display with $\frac{1_{2}^{\prime \prime}}{}{ }^{\prime \prime}$ FND 500^{\prime}; PCB, filter, instructions $£ 1.95$. Ready Built replacement Keyboard $£ 11$. Useful notes on MK 14 75p; programming sheets; PAD 95 p. Rayner, 'Kismet' High St., Colnbrook, Bucks.

SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range Competitive prices start at a Low $\mathbf{£ 1 . 0 5}$. Chassis punching faciltues at very compettive prices, 400 models to choose from. Suppliers only to Industry \& The Trade. BAZELLI (Dept. No. 23), St. Wilfrids, Foundry Lane, Halton, Lan caster, LA1 6LT.

MAKE YOUR OWN PRINTED CIRCUITS
Etch Resist Transfers - Starter pack (5 sheets,
lines, pads, I.C. pads) $£ 1.60$. Large range of single sheets in stock at 34p per sheet.
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. Full instructions supplied. 2 sheets ($20 \times 25 \mathrm{~cm}$) negative paper and 2 sheets $(18 \times 24 \mathrm{~cm})$ positive film $£ 1.30$.
S.A.E. lists and information. P\&P 30p/order
P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE
USED I.LP. Modules, BI-Pak AL60 Case Details S.A.E. Noble, 50 Crofthill Road, Slough, Berks.

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME FULL RANGE AVAILABLE. SAE FOR LISTS. E1. 25 for Booklet Nickel Cadmium Power' plus Catalogue. Write or call: Sandwell Plant Ltd., 2 Union Dive, BOLDMERE,
SUTTON COLDFIELD, WEST MIDLANDS, O21-354 9764 , SUTTON CQLDFIELD, WEST MIDLANDS, O21-354 9764 ,
or see them at TLC, 32 Craven Street, Charing Cross,
London WC2.

TIME?

ALWAYS CORRECT, MSF CLOCK never gains or loses, 8 digits show DATE, HOURS, MINUTES and SECONDS, auto GMT/BST and leap year, also second-in-a-month TOP CLOCK and paralel BCD out for alarm etc eceives Rugby TIME. £48.80.
60KHz Rugby Recelver, as in MSF Clock, 1000 Km range audio and serial data outputs, $£ 13.70$.
8IG. GEN., $10 \mathrm{~Hz}-200 \mathrm{KHz}$, logic and variable sine and square wave outputs, harmonics for if, if, £10.80.

Each fun-to-build kit includes all parts, printed circuit, case, postage etc, money back assurance so SEND offNOW.

CAMBRIDGE KITS

45 (FD) Old School Lane, Mitton, Cambridga.
PRINTED CIRCUIT PROBLEMS? We can solve them. We specialise in P.C.B. artwork, design and manufacture at competitive rates. Small quantity or one-offs welcome. P.C.B.'s supplied built-up or bare, tested or untested. Electromechanical design on control work for motors, mechanical handling, traffic control, security systems, hybrid one-offs, etc., to completed control panel stage if required. Electronic circuit designs utilising digital and/or analogue disciplines with microprocessor applications. Efficient turn round - fixed price quotations. Just send circuit details. Contact Aardvark Electronics, Byron House, 140 Front Street, Arnold, Nottingham. Tel. Nottm. (0602) 269606.

$\sqrt{?}$
RYDER ORGAN SYSTEM
The W.W. classical design for fullsize keyboards, including couplers. Expanded range of units now includes chorus, vibrato, combination stop-control.
Data, p.c. boards, from:
HIYKON LTD. (P),
Woodside Croft, Ladybridge Lane.
Bolton BL1 5ED.
PARALLEL-TRACKING PICKUP ARM. Simple optoelectronic design as featured in "Wireless World" Jan. 1980. Build your own from ready-machined parts. S.A.E. for full details to: J. Biles, 120 Castle Lane, Solihull, West Midlands.
NEAT ITIDY!

THE LEARN -CW!! way. Beginners tuition aid for Morse Code listening. Instructions and exercises on 4 cassette tapes. Computer generated audio tones, 6.5 to 16.5 w.p.m. $£ 7.50$ inc p\&p. (UK). Extra single practice tapes 14.5 w.p.m. (C60) at $£ 2.50$ inc. p\&p (UK). D. M. Rogers, 106/108 Shakespeare Street, Southport, Merseyside.

SEEN MY CAT? 5000 Odds and ends. Mechanical. Electrical. Cat. free. Whiston Dept. PRE. New Mills, Stockport.

MEMORY MART 'UK 101' 'Superboard' 4K RAM Memory Expansion 2114 1k $\times 4$ each 2708 UV prom each	$\begin{array}{r} \mathbf{£ 3 5 . 0 0} \\ \mathbf{£ 4 . 5 0} \\ \mathbf{4 6 . 5 0} \end{array}$
$\begin{gathered} P \& P 20 p \\ \text { C.O.D. } 60 p \text { extra. } \end{gathered}$ MEMORY MART 19 Weatherby Gardens, Hartley Wintney, Hants.	

UK 101 SOFTWARE. Try our original programmes (on cassette) GRAPHIC PAINT BRUSH - GRAPHIC PLOTTER etc. Working programmes that will give you ideas of your own. S.A.E. M \& B SERVICES, 182a High Street, Margate; Kent.

APPOINTMENTS

PADDINGTON COLLEGE

Paddington Green, London W2 1NB

TECHNICIAN STAFF

in the

ENGINEERING TECHNOLOGY

DEPARTMENT:

(1) CHIEF ELECTRONICS TECHNICIAN grade 7 to be responsible to the Departmental Superintendent for the organisation and servicing of the radio/TV and electronics laboratories. Candidates must have HNC or HND or Advanced City and Guilds or equivalent, with at least ten years' experience (including training period). Salary scale $£ 4941$ to $£ 5550$, plus London Weighting $\mathfrak{c} 780$.
(2) TECHNICIAN grade 6 to be responsible for the satisfactory running of the ELECTRONIC/MICROELECTRONIC laboratory. Some experience of microprocessors and use of computer terminals highly desirable. Candidates must have HNC or HND or Advanced City and Guilds or equivalent, with at least nine years' experience (inctuding training period). Salary scale $£ 4242$ to $£ 5067$ plus $£ 780$ London Weighting.

Further details and application forms from the Secretary to the Department (ref: E/MDA).

Electronics Field-Technicians Company Car

Linotype-Paul field technicians install, commission and service real time high technology systems for the printing/publishing industry. Ourtechnicians can think logically, work alone and provide a timely, accurate service. Because they meet customers, often at high level, they also have to be diplomatic, tactful and friendly.
We want to build our team with men and women who are qualified to ONC level and have several years experience on electronics equipments which we will complement with progressive product training.
We provide a competitive salary and generous expenses and benefits. As there is considerable travel, sometimes involving overnight stays, a company car is provided which is available for private use. In time there may be the opportunity to work abroad for short periods.
We are continually expanding our markets and products and career prospects could not be better.
Ifyou are interested contact: Personnel Department, Linotype-Paul Limited, Kingsbury Road, Kingsbury, London NW9. (01-205-0123)

Linotype-Paul

ASSISTANT FILM RECORDISTS AND TRAINEES

Would you like to specialise in sound with the BBC TV's Film Department? There are vacancies in West London.

Abstract

ASSISTANT FILM RECORDISTS work initially in sound transfer and dubbing areas operating sound recording and reproduction equipment for a wide range of programmes. There are prospects of progressing to mobile Film Recording work in due course. If you have professional experience in this field, the starting salary would be $£ 4,185$ p.a., perhaps higher if exceptionally qualified, rising to £5,605 p.a. An additional allowance is paid for shift work (not nights). Normal hearing essential. EXCELLENT TRAINING is given if you have ambitions to do this type of work but lack

experience. You will need good ' O ' level standard of education or equivalent, including Physics and Maths and a basic knowledge of electronics. You should be able to demonstrate a practical interest in sound and recording. Trainces will start at a salary of $£ 3,800$ p.a. at the end of August 1980, and should qualify for promotion to Assistant Film Recordists about a year later.
Salary review date April. Conditions of Service excellent. Contact us immediately for application form (quote ref. 2053/PE and enclose s.a.e.): BBC Appointments, London W1A 1AA. Tel: 01-580 4468 Ext: 4619.

COLOUR VDUs

 from $\mathbf{£ 4 0}$ +vatWhy dismantle your family's T.V. for a computer, CEEFAX or T.V. game? We can supply you with a HUGE range of working Ex-Rental C.T.V.'s suitable for adaption as V.D.U.'s.

Prices from $\mathbf{£ 4 0 . 0 0}+$ VAT.
Most makes (inc. Japanese) can be seen working in our warehouse.
Working B/W T.V.'s also available from $\mathbf{£ 1 0 . 0 0}+$ VAT.
Deliveries arranged.
Write or phone for Details and Catalogue.
W.M.T.V. Dept. P.E., Faraday Buildings, 92, High Street, Kings Heath, Birmingham 14. Tel. 021-444 6464

[^6]
BUILD A SYNTHESISER!

Using Dewtron (Reg'd) PROFESSIONAL MODULES

Over 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, well tried range of Dewtron synthesiser and other effects modules.

Send 25p for Musical Miracles Catalogue NOW!

D.E.W. LTD.

254 RINGWOOD ROAD, FERNDOWN, DORSET BH229AR

CALLLRS AND MAIL ORDER: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505

Microcomputing I.C.'s
MC6800
\& 7.15
MC6802 $\mathcal{L} 8.50$
MC6821 £ 4.63
MC6850
MC6810AI
M(.6840

MC8602P
M(:14536I
MC.3459

C80 CPU 2.5 MHz
Z80 Pl0 2.5MHz
280 (:TC 2.5MHz
C80A CPU 4 MHz
Z80A P104MHz
780A (:TC: 4MHz
SC./MP 11
(INS 8060N)
INS $8154 N$
8080A

- . . 19.90

6522 \& 7.90
6532
6551
7.8001

AMD 9511 : arithmetic package

ACORN
SIOO
at NEWBEAR
isu(HC BOARI) . . L26.25 8 K SIATIC RAM BOARD ${ }^{\circ}$ E18.7.5 DISK NOIERFACE BOARI) 226.25
V.D.L. BOARD E18.75 $2708 / 9716$ EPROM BOARD 118.75 PROTOTYPIN(; BOARD . $£ 18.75$
KAN゙;FOF MOTIERBOARDS
Sloo CONNECTORS . . 23.95
Memories

+116 (16K 1)YNAMIC)	£ 6.99
2102.1*	£ 0.85
21021.1 *	± 0.99
2112	± 2.25
2114	£ 6.99
2708	± 6.99
MC6803I. 7 (MIKRUG)	± 13.65
2716 (INTEL)	± 21.50

4116 (16K INYNAMIC) $£ \quad 6.99$
2102.1* • . . £ 0.85
1021.1 • - $\quad 0.95$
$2114 . \quad . \quad . \quad . \quad . \quad £ \quad 6.99$
208

2716 (INTEL) $£ 21.50$
± 142.50
£1 36.50

6502 B. ASEI MICRO KIT
± 65.00
8K RAM KIT
$£ 95.00$
MANS ADAPTOR
£ 5.00
V.D.L. KIT
£88.00

SPECTRONICS

UV Eprom-Erasing Lamp
PE! 4 Erases up to 6 chips. Takes approx. 19 mins.
£ 56.00
PE14T* Erases up to 6 chips. Takes approx. 19 mins. ${ }^{\circ}$.
PE24T* Erases up to 9 chips. Takes approx
15 mins. £111.22
PR125* Erases up to 6 chips. Takes approx. 7 mins. £237.84 PR320T* Erases up to 36 chips. Takes approx.

7 mins. £384.09
PCl1000* Erases up to 72 chips. Takes approx. 7 mins.
£842.83.
UV Lprom-Erasing Cabinet
PC2000* Erases up to 144 chips. Takes approx. 7 mins.
. 1227.69

* Includes a 60 min . Timer.

TERMS: Credit Sales (minimum $£ 10.00$) Barclaycard and Access Welcome. Please add 15% VAT.

30

 Wilmslow

 Wilmslow Audio

THE firm for speakers!

SEND 30p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

> AUDAX © AUDIOMASTER • BAKER BOWERS \& WILKINS © CASTLE O CELESTION CHARTWELL © COLES - DALESFORD DECCA - EMI EAGLE ELAC - FANE GAUSS - GOODMANS •I.M.F. ISOPHON JR - JORDON WATTS O KEF - LEAK - LOWTHER McKENZIE - MONITOR AUDIO © PEERLESS RADFORD © RAM - RICHARD ALLAN - SEAS SHACKMAN STAG TANGENT TANNOY VIDEOTONE WHARFEDALE YAMAHA

WILMSLOW AUDIO (Dept. P.E.)
 SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

[^7]
PLEASE MENTION PRACTICAL ELECTRONICS WHEN REPYIING TO ADVERTISEMENTS

LB ELECTRONICS
 PROCESSOR ICS (ALL FULL SPEC.)

 £4.50, 7805 £1, 7812 f1.
DIL SK TS LOW PROFILE: 8 way 12p, 14 way, 15p, 18 way 20p, 16 way 17p, 20 way 23 p, 22 way $28 p, 28$ way 45 p, 24 way $35 p$, DIL 16 WAY HEADER SPECIAL OFFER ONLY 45p.
74116 SPECIAL OFFER 75p, 741254 for $£ 1,74198$ 75p, 74194 50p, 74181 80p.
MM5240 character generator + data $\mathbf{£ 3 . 5 0}$.
4 digit EX calculator display 4 for $£ 1+$ data.
P.E.T. edge connector (memory expansion) $£ 1.40$.

74LS, C.MOSS, sub miniature toggles, 74TTL, and computer equipment is stocked, i.e. V.D.U. printers etc. vast range of power supplies for callers.
L.B. ELECTRONICS, 11, HERCIES ROAD, HILLINGDON,

MIDDLESEX. UXBRIDGE 55399
(Just off A40)
OPEN: Monday, Thursday, Friday and Saturday 9.30-6.00.

Barrie Electronics Ltd

3. THE MINORIES, LONDON EC3N 1BJ

TELEPHONE: 01-488 3316/7/8

${ }^{\text {No}}$	T	P1ICE
210	The Conplet Car Aatio Mamul	S00
	Firss Book of Diode Characteristics Equivalents ond Substiute	
	Electionic ircuits for Moet	\%
	Audo nms	
${ }^{218}$		5
	Solif State Novelitr Proiect	50
	Buith Your Own Solid State Mi-fi and Audio Actessoriss	
	28 Tested TTansistof Proie	25
	Solit State Stort Wwe Recervers for Eeginners	
	50 Proiects Using IC Ca3 ${ }^{\text {a }}$ (${ }^{\text {a }}$	5p
	50 cmas ic Propects	
	A Practical intraduction to Diqit	
	How to Build Acrancee Short Waue Receives	20
	Eeg. nness Suide to buider	㖪
	Eissisman mean torite	*
${ }_{8 P 2}$		-60p
	Engineers sad M Mactinisist Referenere Tabies	50\%
	Radio and flectroait Colour Codes	${ }^{25}$
	Pratical Transistor Novetry Circuid	409
	Secord Bot of Transisto Equivalents and Substitures	10
	79 Eleetronic Novely C Circuit	良
	Firss Baok of Prateicical Electranic Projects	
	52 Proiects Using 17741	
	Radio Antena Hanatook for Long Distance Reception nond Transmis	
	Giari Chan or hadio Eectionic semizonductore and lo	sp
${ }_{\text {BPa30 }}$		858
	Practicaid Electical Re Wiring end Ropairs	\%
	How to Buill Your Owe Metal and Tressure Lo	
	Electronic Calcelator Users Hendtool	5
	Pratical Repair and Renovation of Colour TVs	
	Handiook of IC Autio Preamplifer ard Power Amplifiec Constur	
	50 Projects Using Relays, SCRs and Tilacs	
	Fin and Games with your feectronic Catuibat	
	50.	25p
	Dipitall L Equivelents and Prin Connections	
	Uneas IC Equivisams fend Pin Coneecions	5
	So mimie Le.	
8P44	How	
	Projects in Dpro-liec	
	Radio Ciluwits Using	
${ }^{\text {PP4 }}$	Motie Discotheque Handoo	
	Elestronic Projects	
	Popular flectronic	$5{ }^{5}$
	ICLM3900 Prieets	5
	Elear onic Music anc Cratative Tape Recrarding	
${ }_{\text {Bra }}$		
${ }^{8 P 54}$	Your Electionic foleul	
	Radio Stations Gu	
	ic Secur	$5 p$
8P57	How to Buid Y You Own Solit S Sate Oscillsccope	\%
	50 Cilcuilis Using 7400 S	
	Secand Bood of CMOS IC Projects	
${ }_{\text {8P60 }}$	Practiral Construction of Pre:Amps. Tone Controls. Filters 8 Atit	
	Mners Guide to ivital Peenrigues	\%
	nts of tectronics - Bool	
4	Elemensts of teetronis - Book 3	
	le IC Proiects	1.5p
	Eeginners Gurde to Mirctoplocessos sand Computing	1.75
7	Counce Otwer and Sumeral Disply Projects	5p
		spp
	Electronct bimes	
1	Eleatronic Household Proiectis	
	Renote Controip Prijets	1.75
	Pap 20p. 2 ERO vat	

INDEX TO ADVERTISERS

Acorn Computers
Aitken Bros.
Ashman Bros.
Aura Sounds

BBC TV
Barrie Electronics
BIET
Bi-Pak ..
Birkett, J.
Boffin Projects
British National Radio \& Electronics School
Butterworths
Calscope
Cambridge Kits
Cambridge Learning
Chromasonic Electronics
Chromatronics
Clef Products
Codespeed
Commodore
Computer Components (Teleplay)
Continental Spec.
Crofton Electronics
C.R. Supply Co.

Delta Tech
Design Engineering
Display Electronics
Ecoscope Instruments Ltd.
E.D.A.

Electronics Mail Order Ltd.
Electrovalue

67
Ferranti 96
9
8 G.M.T.

10
90, 103
$\begin{array}{r}97 \\ \hline\end{array}$
14, 15
90
99
93
97

10

99

91
87

6 95

98 Progressive Radio
Proto Design
Newbear
Paddington College

7 Radio Component Specialists
99 Radio \& T.V. Components
Ramar Constructor Services $\quad \cdots \quad \cdots \quad 100$
1 Roden Products 99
Romane Electronics

Safgan... 86
Sandwell Plant Ltd. 99
Saxon Entertainments 36
Service Trading $\quad . . \quad$... Cover III
Science of Cambridge 88, 89
Scientific Wire Co.
Sentinel Supply
... ... 92
Sonic Sound Audio
Stevensons Electronic Components $\quad \cdots \quad 59$
Swanley Electronics 97

Tabright 96
Tandy Corporation 20
Tangerine
Tempus
T.K. Electronics 94

Technical and General Publications ... 98
Technomatic 104
Tooirange
Transam Components
94
$\begin{array}{llllll}\text { T.U.A.C. } & \ldots & \ldots & \ldots & \ldots & 32 \\ & \ldots & \ldots & 95\end{array}$
102

7	Radio Component Specialists	84
99	Radio \& T.V. Components	5
	Ramar Constructor Services	100
11	Roden Products	99
	Romane Electronics	84
99		
99		
96	Safgan	86
O	Sandwell Plant Ltd.	99
86,98	Saxon Entertainments	36
\ldots... 82, 83	Service Trading	Cover III
... 82, \ldots	Science of Cambridge	88,89
92	Scientific Wire Co.	98
8	Sentinel Supply	92
92	Solid State Security	99
98	Sonic Sound Audio	92
98	Stevensons Electronic Components	59
6	Swanley Electronics	97
99		
100	Tabright	96
102	Tandy Corporation	20
	Tangerine	10
16, Cover IV	Tempus ...	85
8	T.K. Electronics	94
52100	Technical and General Publications	98
$\ldots 52,53$	Technomatic	104
-	Tooirange	94
96	Transam Components	32
95	T.U.A.C. ...	95
102		
	Watch Battery Replacement Co.	99
100	Watford Electronics	2,3
. 12,13	West London Direct Supplies	101
99	Wicca Electronics	4
101	Williamson Amplification	99
99	Wilmslow Audio	102

FT3 NEON FLASH TUBE
High intensity multi turn high voltage, neon glow
discharge flash tube Design for ignition timig
f1 discharge flash tube Design for ignition timing etc
$\mathbf{f 1 . 5 0}$. P P. $25 p$ ($\mathbf{£ 2} .01$ inc. VAT) 3 for $\mathbf{£ 3}$. P. \& RODENE UNISET TYPE 71 TIMER 0.60 sec. 230 V a.c. operation Incorporating a lapsed time
indicator and repeat facilities A precision motorised turner ideal tor process tuming. photography. welding. mixing. etc. Price Es.

WHY PAY MORE?
 133 by 93 by 46 mm including test leads. Price METERS (New) - 90 mm DIAMETER A.c. Amp., Type $62 \mathrm{~T} 2 . \mathrm{O}-1 \mathrm{~A}$
A.C. Volt. $\mathrm{O}-150 \mathrm{~V} 0-300 \mathrm{~V}$ D.c Amp., Type 65C5 0-2

 HEAVY DUTY SOLENOID. mf by Magnetic Devices. 240 V A.C. Intermittent operation, Approx 20 lb pull at
+25 in. Ex-equio Tested Price $\mathbf{~} 4.75$ - 75p P. \& P. (f6.33 inc. VAT \& P.)
 A.C. SOLENOID pye ether type $176 / 2$
240 AC. Approx 11 b .

AG/GT 24V. D.C. 70 ohm Coil Solenoid. Push or Pull Adjustable travel to $\mathbf{3 / 1 6}$ in Fitted with mounting brackets and spark sup-
pressor. Size: $100 \times 65 \times 25 \mathrm{~mm}$ Price: 3 for $\mathbf{£ 2 . 4 0}+\mathbf{3 0 p}$ P. 84 P. (min 3 off) ($\mathbf{£ 3 . 1 1}$ inc. VAT \& P)

MINIATURE UNISELECTOR
1 homing) $\mathbf{£ 3 . 0 0}$.

REED SWITCHES. Size $28 \mathrm{~mm} \times 4 \mathrm{~mm}$ dia. Price: 10 for f1.00

+ p. \& p 2Op. (total incl. VAT £1.38). 100 for $\& 8.00 \% \mathrm{p} . \& \mathrm{p}$ +p. \& p 2 op. (total incl.
30p. (total incl VAT $\mathbf{f 9 . 5 5) .}$

MICRO SWITCHES

Sub. Min. Honevweil Lever m/s type 31
for $\mathbf{f 3 . 5 0}$ post paid ($\mathbf{E 4 . 3 7} \mathrm{incl}$. VAT).
tor $\mathbf{3} 3.50$ post pa
These $V 3$ types
Burtontype (Pye) 10 for $£ \mathbf{3 . 0 0}$ ($\mathbf{£ 3 . 8 0}$ incl. VAT)
Short Lever
Shor Lever type 16 amp. rating (Grouzet) $£ 4.00$
($\mathbf{f} 495$ incl VAT)
Roller Type (Bonnella) 10 for $\mathbf{£ 3 . 5 0}$. ($\mathbf{£ 4 . 3 7}$ incl VAI). N.M.S
D.P. C/O lever m / s witch mfg . by Cherry Co. USA Precious metal low resistance c
$\mathbf{E 2 . 9 3}$ (min 10).

MERCURY SWITCH

 Size $27 \mathrm{~mm} \times 5 \mathrm{~mm} .10$ for $\mathbf{£ 5 . 0 0}$ (inc VAT E6.12) min quantity 10 . 30p P. \& P Heavy duty type. size $38 \times 16 \times 10 \mathrm{~mm}$, minimum quantity 10$\mathbf{£ 7 . 5 0}$ post paid ($\mathbf{~} 8.63$ inc VAT \& P. MINIATURE 2-CAM PROGRAMMER
switches (4 amp). Can be used on 240 V . A.C with either 025
mfd 250 V Condensor or 5.6 K wirewound Resistor 7 watt (supplied) Price $\mathbf{£ 2 . 5 0}+50$ p p. \& p. ($\mathbf{\Sigma 3} .45$ incl. VAT \& P.
A.E.G. CONTACTOR

Type LS6/L11 Coil 240 V 50 Rs Contacts - 3 make: 600 V .
20amp. 1 break $600 \mathrm{~V} \cdot 20$ amp. Price: $\mathbf{5 5 \cdot 5 0}+50 \mathrm{p}$ P \& P

ARROW-HART MAINS CONTRACTOR, Cat No. 130 A 30 Coil 250 V . or 500 V . A.C. Contacts. 3 make 50 amp up
to 660 V . A.C. 20 h . p. at 440 V . 3 phase 50 Hz . Price $\mathrm{E} 7.75+\mathrm{p}$ \& p. $£ 1.00$ (incl. VAT, totat. £10.08). N.M.S.

SMITH BLOWER

Type FFB. 1706. Small, quiet, smooth running 240 V , A C operation Output aperture $45 \times 40 \mathrm{~cm}$. Overall size $135 \times 165 \mathrm{~cm}$ Flange mountin
\& VAT N.M.S
Other types available. S. A. E. for details
24 volt. D.C. BLOWER UNIT
Precision 24 volt. D. C. 0.8 amp Blower that works well on 12 V 0.4 amp D.C. Producing 30 cu.ft min at normal air pressure.
$\mathbf{£ 4 . 5 0}$ P. \& P. 75 (inc. VAT f6.04) NM.S

INSULATION TESTERS NEW! Test to I E E Spec Rugged metal construction sulutch Size L Bin W 4 in H 6in weight 81 b , 500V 500 cluteh 500 megohms, £49.Post 80 p e57.27 Cl
 ($\mathbf{f 6 4} 417$ inc. VAT \& P. SAE for leaflet
Yet another outstanding offer.
IMFD 600V Dubilier 230 V a.c. FAN ASSEMBLY

All Mail Orders Callers Ample Parking Space Showroom open Mon-Fri.

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/240V a.c. 50/60 OUTPUT0-260V

200 watt 11 amp inc.a.c. voltmeter	$£ 14.50$
$0.5 \mathrm{KVA}\left(2 \frac{1}{2} \mathrm{amp}(\mathrm{MAX})\right.$	$£ 17.00$
$1 \mathrm{KVA}(5 \mathrm{amp} \mathrm{MAX})$	
$2 \mathrm{KVA}(10 \mathrm{amp} \mathrm{MAX}$	
$3 \mathrm{KVA}(15 \mathrm{amp} \mathrm{MAX}$	$\mathbf{£ 2 2 . 5 0}$
5	$\mathbf{~} 37.00$

3-PHASE VARIABLE VOLTAGE

 TRANSFORMERS$\begin{array}{ll}\text { 3KVA (max. } 15 \mathrm{amp} .) & \mathbf{£ 1 0 6 . 4 3} \\ \text { 6KVA (max. } 30 \mathrm{amp} .) & \mathbf{£ 1 5 9 . 3 7}\end{array}$
£106.43
All plus Carriage LT TRANSFORMERS
$13-0-13 V$ at 1 amp $£ 250 \mathrm{P} . \& P 50 \mathrm{p}$ ($\mathbf{E 3 . 4 5}$ inc. VAT) $\mathrm{O}-4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}$ at $12 \mathrm{amp} \mathrm{f} 1850 \mathrm{P} . \& \mathrm{P} . \mathrm{E} 1.90(£ 23.46 \mathrm{inc}$.
$\mathrm{VAT} \& \mathrm{P}$ $V A T \& P)$
$0-6 V / 12 \mathrm{~V}$ at $20 \mathrm{amp} £ 14.70 \mathrm{P}$ \& $P(1.50(£ 18.63$ inc. VAT) $)$

 $0.6 V / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20$
($\mathbf{E 2 3} \mathbf{2 3}$ inc VAT \& P
$(£ 23.58 \mathrm{inc}$ VAT \& P)
$0-10 \mathrm{~V} / 1 \mathrm{~N} / 18 \mathrm{~V}$ at $10 \mathrm{amp} £ 10.50 \mathrm{P} . \& \mathrm{P}$. $£ 1-50(£ 13 . \mathbf{8 0} \mathrm{inc}$. VAT Gther types in stock; phone for enquiries or send sae for leaflet

HY-LIGHT STROBE KIT MK IV Latest type Xenon white "ight flash tube. Solid state Designed for larger rooms. halls ete. Speed adjustable
120 f.p.s. Light output greater than many iso called 4 Joule) strobes Hy-Light Strobe Kit Mk IV. Post $£ 1.50$ (£22.00 $\mathbf{f} \mathbf{£ 1} 50$ P \& P inc. total £27.03). Specially designed case and reflector for Hy-Light £9.00. Post £ 1.50 ($\mathbf{f 1 2 . 0 8}$ inc. VAT \& P.).
 Suitable case $£ 11.00$ ($£ 14.30 \mathrm{incl}$. VAT \& P. \& P.).

ULTRA VIOLET BLACK LIGHT FLUORESCENT TUBES
$\mathbf{4 f t} .40$ Watt $\mathbf{£ 8 . 7 0}$ inc VAT $\mathbf{£ 1 0 . 0 0}$ (callers only)
$\mathbf{2 f t} \mathbf{2 0}$ watt $\mathbf{£ 6 . 2 0}$. Post 75 . $\mathbf{~} \mathbf{£ 7 . 9 9}$ inc. VAT - P.)
(For use in stan bi-pin fittings).
12in. 8 watt $£ 2.80$. Post $35 p$. ($£ 3.62$ inc VAT $+P$)
$9 i n . ~$
6 watt $£ 2.25$. Post 35 p . ($£ 2.99 \mathrm{inc}$. VAT $+P$).
6 in .4 watt $£ 2.25$. Post 350 . $£ 2.99$ inc. VAT $+P$.
Complete ballast unit, for either $6^{\prime \prime} .9^{\prime \prime}$ or $12^{\prime \prime}$ tube 230 V AC op
$\mathbf{£ 3 . 5 0}$. Post 45 p . ($\mathbf{£ 4 . 5 4 \text { inc VAT } + \text { P). Also available for } 1 2 \mathrm { V }}$
DC op £3.50. Post 45p. ($\mathbf{4 4 - 5 4}$
400 watt UV lamp and ballast complete $£ 38.00$. Post $£ 3.50$
$(\mathbf{~} 47.73$ incl. VAT + P) 400 watt $(\mathbf{f 4 7 . 7 3}$ incl. VAT + P). 400 watt UV lamp only $\mathbf{£ 1 4 . 0 0}$. Post
$\mathbf{f} 1.50$. ($\mathbf{£ 1 7 . 8 3}$ incl. VAT $+P$).

WIDE RANGE OF DISCO LIGHTING EQUIPMENT S.A.E. (foolscap) for detalis
PROGRAMME TIMERS
240V A.C. operation. 12 individually adjustable cams. $\mathbf{£ 7 . 5 0}$
$\mathbf{7 5 p}$ P. 8 P . $\mathbf{~} \mathbf{£ 9 . 4 9} \mathbf{~ i n c . ~ V A T) ~ R ~ T ~}$

Superior Quality Precision Made NEW POWER RHEOSTATS

New ceramic construction, embedded winding heavy duty brush assembly, continu-

ously rated.
25 WATI
 50 WATT 250Ω £2 90 . Post 25 p ($\mathbf{E 3} \mathbf{3} \mathbf{6 2}$ in 100 WATT 1590 . Post 25 p (E3 62 inc VAT \& P I. $3.5 \mathrm{k} \Omega$ f5:90 o. \& o 35 p (f7.19 inc. VAT).
Black, Silver, Skirted knob caicrated
 kno kalibrated in Nos $1.9 \quad 1 \frac{1}{2}$ in
RELAYS Uther rypes available -- phone for details NM.S. 230/240V A.C. Relays: Arrow $2 \mathrm{c} / \mathrm{o} 15 \mathrm{amp} \mathbf{f 1 . 5 0}$ ($\mathbf{f 1} \mathbf{1 . 9 6}$ inc.
VAT $\&$ P). VAT \& P).
TEC ODen

KMKI Relay. 230V. A.C. $1 \mathrm{c} / \mathrm{o}$. open type 10 amp contact, mf
 $\mathbf{£ 3 . 7 5}$ postpaid ($\mathbf{£ 4 . 3 2}$ incl. VAT)
D.C. Relays: Open type $9 / 12 \mathrm{~V} 3$ c/o 7 amp $\mathbf{£ 1 . 0 0}$ ($\mathbf{£ 1 . 3 8} \mathbf{~ i n c .}$
VAT \& PI. Sealed 12 V 1 c/o 7 amp octał base. $\mathbf{£ 1 . 0 0} \mathbf{f 1 . 3 8}$ inc. VAT \& P). Sealed $12 V 2$ dio 7 amp octal base $£ 1.25$ £1.67 inc VAT \& P). Sealed 12 V 3 c/o 7 amp 11 -pin. $£ 1.35$ ($\mathbf{£ 1 . 7 8 \mathrm { inc }}$
VAT \& P). 24 V . Sealed 3 c/ 7 amp 11 -pin $£ 1.35$ ($\mathbf{f 1 . 7 8 \mathrm { inc } .}$

Hellermann Deutsch. Hermetically seated sub-min. Relay. 12-
24 V D C $2 \mathrm{c} / \mathrm{o} .850$ ohm coil. 0.2 pitch. PC mounting. L. 20 mm
 W. 10 mm . H. 12 mm . Fraction
($\mathbf{~} 14.38 \mathrm{incl}$ VAT) N.M.S

Diamond \mathbf{H} heavy duty A.C. relay $230 / 240 \mathrm{~V}$ a.c. two C / O
contacts 25 amps res at 250 d.c. $£ 2.50$ p\&p 50 p . (f 3.45 inc

GEARED MOTORS

$4 \frac{1}{2} \mathrm{rpm}$ SIGMA motors approx 351 bs inch $7 \frac{1}{2} \mathrm{rpm}$ KLAXON motors approx 251 b inch
28 rpm WYNSCALE motors approx. 201 l inch 71 rpm WYNSCALE motor approx 10 lb inch Above four motors are designed for 110 V . AC operation. £7.75 p \& p. 75 p . Total incl. VAT £9.78. N.M.S.
19 rpm FHP $220 / 240 \mathrm{~V}$. a.c. reversible,
torque 14.5 kg . Gear ratio $144-1$ Brand new including capacitors. mt. CITENCO Price: $\mathbf{£ 1 4 2 5}$
 30 rpm. 230240 V a c 50 m ir mf PARVALUX . 100 . 56 rpm .240 V , ace 50 llb . in 50 Hz
0.7 amp . Shati iength 35 mm . Dia 16 mm . W1. 6 kg 600 g . m . FRACMO.
Price: $\mathbf{£ 1 5 . 0 0}+\mathrm{f1} 150 \mathrm{P}$ \& P (玉18.98
 100 rpm lloV. ac. 115 lb in., $5 \mathrm{OHz}_{2} 2.8$ Immense power.
Totally enclosed. In-line gearbox Length Totally enclosed. In-line gearbox Length
250 mm . Dia 135 mm Spindle dia. 15.5 mm . length 145 mm . Tested Frice: $£ 12.00+£ 1.50 \mathrm{P}$ \& P operation. Price $\mathbf{\Sigma 8 . 0 0}+\mathbf{7 5 p}$. P. \& F ($\mathbf{(1 0 . 0 6}$ inc VAT)

200 rpm. 35 lbs in. 115 V .50 Hz .

 12V. D.C. type SD2. Shunt $\frac{1}{3 i} p h$ contunuously rated 4000 rpm
Mt PARVALUX. Price. $\mathbf{£ 1 0} \mathbf{6 0}+75 \%$. \& \& P . $\mathbf{£ 1 2 \cdot 3 5 \text { inclus }}$ $1 \mathrm{rpm} 230 / 240 \mathrm{~V}$. a.c. Synchronous geared Motor, mf. HAYDON.
 CROUZET:
VATI. N.MS.
$1,400 \mathrm{rpm} 115 \mathrm{~V}$ a.c. Motor, HP $\frac{1}{3}$ continuously rated. Fitted with
anti-vibration crade mounting. Wi FRACMO. Supplied com plete with Transformer for $230 / 240 \mathrm{~V}$, a.c operation Price

ROTARY CARBON VANE VACUUM \& COMPRESSOR.
Direct coupled to $1 / 3$ h.p. $110 / 115$ V. A.C. Motor 4.2 amp 1380
rpm. Motor manuf. by A E.I Pump by Williams. Max. Vac. $25^{\prime \prime}$ rpm. Motor manuf. by A E.L Pump by Williams. Max. Vac. $25^{\prime \prime}$
H.G. Max. pressure cont. 10 p.s.i. Int. 15 p.s.i. Max. airflow 3 Suitable transformer for 240 V . op. $\mathbf{£ 1 0 . 0 0}$ P. \& P. $£ 2.00$ ©13.80 inci. VAT). N.M.S.

COMPRESSOR

 precision buik USA Horizontally opposed twin head diaphragm typeproducing 20 lbs. approx. P.SI per head 35 plus CFM. Output virtually
pulse free Powered by 110 V AC pulse free Powered by 110 V A.C.
motor size $30 \times 23 \times 15 \mathrm{~cm}$. Weight 7 milos. Price $£ 24+£ 2 \mathrm{p}$. \& p. Itota ${ }^{\text {incl VAT E29.90). }}$

inc. VAT) VERY EXCEPTIONAL OFFER

REDUCTION DRIVE GEAR BOX

Ratio $72: 1$. Input spindle $\frac{1}{4} \times \frac{1}{2}$ in. Output spindle $\frac{3}{8} \times 3$ in. long. Overall size approx: $120 \times 98 \times 68 \mathrm{~mm}$. All metal construction. Ex-equip. tested. Price: $£ 2.00$ + $50 p$ lincl VAT $£ 2.88$

A.C. Wkg. TUBULAR CAPACITORS.

SANGAMO WESTON TIME SWITCH

†ype S251 200250 V af 2 on, 2 off every 24 hours 20
amps contacts with override switch dia. 4×3 price $\mathbf{~} 8.00 \mathrm{P}$ \& P
50 p inc. VAT £9.78. Also available with Solar dial. R. \& T
MINIATURE 24-HOUR TIMESWITCH

Personal callers onlv Open Saturdays
9 Little Newport Street, London WC2H 7JJ
ACCOUNT CUSTOMERS MIN. ORDER $£ 10.00$

STEP INTO A NEW WORLD WHEN YOU DISCOVER

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project. Over 5,000 of the most useful components- from resistors to microprocessors - clearly described and illustrated.

Send the coupon for your copy

 and STEP UP TO MAPLIN SERVICE NOW
[^0]: © IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles publistied in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]:

[^2]: BUY IN CONFIDENCE In the pyent that w

[^3]: Access, Barclaycard and
 Trustcard weicome.

[^4]: All components, including p.c.b.s are available from Wicca Electronics Systems Ltd., Orchard Works, Church Lane, Wallington, Surrey.
 Components for second channel shown with designations plus 100.

[^5]: *If you are not familiar with previous books in this series for the home constructor, write to the publishers for a free colour brochure of all their hobbyist books

[^6]: PROGRESSIVE RADTO 31, CHEAPSIDE, LIVERPOOL L2 2DY
 SEMICONDUCTONS. Texas R1038 TO3 pawer trans. 50p. TBA800 50p. 7418 pin 22p. NE555 24p. TAG4443 SCR 45p. 72314 PIN REGS. 35 p. AD $161 / 2$ MATCHED PAIRS 70 p. $2 N 5062$ SCR 18p. 1 N4OO5 10 for 35 p. BD 238 28p. BD438 28p. MPU131 PU.T.'s $40 \mathrm{~V}, 200 \mathrm{~mA}, 375 \mathrm{M} / \mathrm{N} 15 \mathrm{p}$ each. 2 N 3773 £1.75. Infra Red $0.2^{\prime \prime}$ LEDs 30 p . MIMATURE MAIMS THAMSGORMEIAE. ALL $240 V A C$ PRIMARY. 6-0-6 $100 \mathrm{~mA}, 9-0-975 \mathrm{~mA}, 12-0-1250 \mathrm{~mA}$ an 75 p each. 12 V 200 mA 75 p . 6 V 500 mA f1. 10 p . $0-6 \mathrm{~V}-0-6 \mathrm{~V} 280 \mathrm{~mA} \mathrm{E1.30p}$.
 LíCUA
 MINIATURE SOLID STATE BUZZER. $33 \times 17 \times 15 \mathrm{~mm}$. output at 3 feet 70 db , only 15 mA drain. operating range
 LOUD \#UEZER. 6-12 volts 63p. GPO type adjustable buzzer $6-12$ volts 27 p.
 POCEKET MULTMMETER. MPDDEL WHEF 2,000 ohms per volt, 1,000 volts AC/DC, 100 mA DC current. 2 resistance ranges to 1 meg. $\mathbf{e 5 . 5 0 p}$
 sOLDEE BUCKER. High suction'tefion nozzle, E4. 85 p
 UクATA TMANABDUCERS. 40 KHz ., REC/SENDER E3. 20 pair.
 motons. 3 V model type 22 p . 12 V model 5 pole 38 p . Replacement 12 VDC 8 track,
 cassette motors 70 . Low rev. mains motor 240 VAC motor with geartox $2 \frac{1}{2} \mathrm{RPM} 7 \mathrm{~F}_{\mathrm{p}}$. AMPH ENOL CONX COWMECTONS. Plugs 47p, Sockets 42p, Eibows 80p, Reducers 13p. BNC olugs, crimp 38 HIGH IMPEDENCE HEADPHONES, mono 2000 ohms imp transducer type, adjustable band and padded ea piece E2.75.
 NTERCO OFFEN ETEREO HEADPHONES. 8 ohms, adjustable, standard stereo olug only E2.95p.
 WIERCOM UNITE (can be used as baby alarm) supplied with approx. 00^{\prime} cable, call bution, 2 way EE .25 pair, 3

 $180 \mathrm{KHz}_{2}$, E29.80p.
 MIWHATUAE TIE. PIN MICROPHONE. Ommi, 1 K imp., uses deat aid battery (suppliod) E4.95p. LOW COAT COMDEMBER MIKE. Stick type, Ommi, 600 ohms, on/ff switch, standard jack piug only $\mathbf{8 2 . 8 s p}$. EMME07
 CONDEMER swith only 87.51 p . DYMAMIC \$TICK MIKE. CARDIOD, dual imp., 600 ohms or $20 \mathrm{~K}, 70-15 \mathrm{KHz}$., attractive black metal case only 87.7
 WUELIC ADDEE
 24.29p, 6" 15 watts 8 ohms adjustable bracket et 2t.

 GIIMPING TOOL, for standard terminals also 6 gauge stripper and wire cutter, insulated handles only $\mathbf{£ 2 . 3 0}$. Cash with order please, official orders welcome from schools etc. please add $30 p$ post and packing. VAT inclusive
 SAE for fatest illustrated stack fist.

[^7]: Discount MI-FI, etc. at 5 Swan Street
 Tel.: Wilmsiow 529599 for Speakers
 Tel.: Wilmslow 526213 for $\mathrm{Hi}-\mathrm{Fi}$

