COMPUKIT UK101

EUROPE'S FASTEST SELLING ONE BOARD COMPUTER

- 6502 based system — best value for money on the market.
- Powerful 8K Basic — Fastest around
- Full Qwerty Keyboard
- 4K RAM Expandable to 8K on board.
- Power supply and RF Modulator on board.
- No Extras needed — Plug-in and go.
- Kansas City Tape Interface on board.
- Free Sampler Tape including powerful Dissassembler and Monitor with each Kit.
- If you want to learn about Micros, but didn't know which machine to buy then this is the machine for you.

Microprocessors
- 760A 8 bit CPU. This will run at 4 MHz but is selectable between 1/2/4 MHz. This CPU has now been generally accepted as the most powerful, 8 bit processor on the market.

Trs80 Level 2 16K
- Fully converted to UK T.V. Standard. Comes complete with easy to follow manuals.
- UK Power Supply.
- Cassette Leads.
- Sample tapes. Special box to enable you to plug in your own TV. Recommended for first time buyers. Just plug in and go.

New Reduced Prices

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8K</td>
<td>£449</td>
</tr>
<tr>
<td>16K</td>
<td>£569</td>
</tr>
<tr>
<td>32K</td>
<td>£649</td>
</tr>
<tr>
<td>RRP £795 for 32K</td>
<td></td>
</tr>
</tbody>
</table>

The PEDIGREE PETS
- Very popular for home & business use. 8K Microsoft Basic in ROM. 8K Per 32K in 16K, with new improved keyboard. Full software.
- With green screen.
- Extra cassette deck £55. Full range of software available.

Video 100
- 12" Black & White Low Cost Video Monitor
- RRP £79

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only £69 + VAT</td>
<td></td>
</tr>
</tbody>
</table>

- Ideal for home, personal and business computer systems.
- 12" diagonal video monitor.
- Composite video input.
- Compatible with many computer systems.
- Solid-state circuitry.
- Package includes video.
- Video bandwidth: 12 MHz.
- Input impedance: 75 Ohms.

[**COMP COMPUTER COMPONENTS**](#)

(see back of the Compukit Ltd. Group)

Simple Soldering due to clear and concise instructions compiled by D. A. Berk, BSc. PhD

BMHz Super Quality Modulators £4.90
- 6MHz Standard Modulators £2.90
- C12 Computer Grade Cassettes 10 for £4.00
- Super Multirail P.S. U. + 5 + 12V £28.50
- Nascom I with Nas-sys Kit Special Price £125.00
- Assembled Nascom I £140.00
- ETI Breakout Game — Chip and PCB £9.90
- S100 Expansion Motherboard for Nascom I £39.00
- Anadex Printer Paper — 2000 sheets £25.00
- Floppy Disks 5 1/4" Hard & Soft Secored £3.50
- Floppy Disk Library Case 5 1/4" £3.50
- Lexicon Language Translator £125.00
- Modules for Lexicon £29.00
- Eprom Boards £63.00
- 8K Static Ram Boards — S100 £110.00
- Grandstand Video Game £59.00
- Cartridges for Grandstand £11.99
- George Risk Ascii Keyboard £39.00
- Cartridges for Atari — Full Range in Stock £13.90
- Interface PET IEEE — Centronics Parallel Not decoded £49.00
- Decoded £77.00
- Interface to Centronics parallel for TRS80 £75.00
- Verocases for Nascom 1 & 2 etc. £22.50
- Keyboard Keys £9.90
- Electric Pencil for TRS80 £28.90

Please add VAT to all prices — Delivery at cost, will be advised at time of purchase. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order quoting

BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number.

CREDIT FACILITIES ARRANGED — send S.A.E. for application form.

14 Station Road, New Barnet, Hertfordshire, EN5 1QW
- Telex: 298755 TELCOM G
- Telephone: 01-441 2822 (Sales) 01-449 8586
- OPEN — 10 am - 7 pm — Monday to Saturday

COMP

(Part of the Compukit Ltd. Group)
CONSTRUCTIONAL PROJECTS

PE CONGRESS Part 2 by Graham Jackson 26
Pre-amp circuit description and construction
SPLIT PHASE TREMOLO by J. McCarthy 34
Special effect for musicians
INFRA-RED CONTROLLER by Malcolm Plant 42
Two channel remote control system
DYNAMIC SEMICONDUCTOR TESTER by Michael Tooley BA and David Whitfield BA, MSc 48
For testing diodes, bypolars and f.e.t.s
2 WIRE TRAIN CONTROLLER by J. Milne 66
Part 2—Final assemblies and setting up

GENERAL FEATURES

POWER SUPPLIES FOR M.P.U.ts Part 2 by A. Clements 22
A practical design
SUREFIRE ELECTRONIC IGNITION REVIEW 33
New ignitions for old
ANIMATED GRAPHICS by P. Houghton 40
Games programming for the UK101
INGENUITY UNLIMITED 58
Rhythm Generator for Minisonic—Car Battery Charge Indicator—
TTL Staircase Generator—Simple D.C. Power Controller—Current/Voltage
Regulator—Appointment Reminder—Four State Indicator—Car Courtesy
Light Timer
STRICTLY INSTRUMENTAL by K. Lenton-Smith 65

NEWS AND COMMENT

EDITORIAL 17
MARKET PLACE 18
INDUSTRY NOTEBOOK by Nexus 21
SPACEWATCH by Frank W. Hyde 25
NEWS BRIEFS 37, 41, 46
MICRO-PROMPT 38
HOW TO USE YOUR FREE STICKIES 47
PATENTS REVIEW 53
EDUKIT OFFER 63
COUNTDOWN 73
READOUT 74

OUR JUNE ISSUE WILL BE ON SALE FRIDAY, 9 MAY, 1980
(for details of contents see page 55)

© IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.
If you've got the ideas, we've got the hardware.

Hundres of uses in the home, shop, business or industry. Our range of ICs and components for Infra-Red remote control enable you to build controllers for applications ranging from sending to Hi-Fi stereo to garage door openers.

Up to 15 channels with three analogue outputs, low component counts and large tolerance of clock frequency eliminates the need for crystals or oscillators. The systems offer high noise immunity, reliability and low cost.

LO721 - Emitting Diode 36p
SFH205 Photodiode Detector 9p
SL490 IC Pulse Amplifier £1.40
SL491 Keyboard Encoded Controller/Transmitter £2.40
ML922 15 channel Receiver £2.40
ML928 18 channel Receiver £2.40

These ICs can also be used with ultra sonic or radio links. Add a line driver to each output and extend the range. For more details write us a ring.
Miniature 5V 3 amp PSU, compact fully regulated, +crowbar protection. £8.50 + P&P 70p

Super value PCB pack. Contents include IC’s res. caps etc., etc. Guaranteed to include TTL and CMOS. 6 Boards, Our choice. £2.50 + P&P 60p

49 key coded QWERTY keyboard, 8 bit output, delayed strobe, 5V rail, TTL output. Ex-equipl, untested. Supplied with edge conn. & connection diagram. £20.00 + P&P £1.60

The A.Y.5-8910 is a 40 pin SSI chip with three oscillators, three amplitude controls, programmable noise generator, three comparators, an envelope generator, and three D/A converters that are controlled by 8 BIT WORDS. No external pots or caps required. This chip hooked to an 8 bit microprocessor chip or Box (8080, 8085, 6800 etc.) can be software controlled to produce almost any sound it will play three note chords, noise bangs, whistles, sirens, gunshots, explosions, bleets, etc. and almost any sound. The AY3-8910 is a 40 pin LSI chip with three amplitude controls, programmable noise generator, three comparators, an envelope generator, and three D/A converters that are controlled by 8 BIT WORDS. No external pots or caps required. This chip hooked to an 8 bit microprocessor chip or Box (8080, 8085, 6800 etc.) can be software controlled to produce almost any sound it will play three note chords, noise bangs, whistles, sirens, gunshots, explosions, bleets, etc. and almost any sound. The AY3-8910 is a 40 pin LSI chip with three amplitude controls, programmable noise generator, three comparators, an envelope generator, and three D/A converters that are controlled by 8 BIT WORDS. No external pots or caps required. This chip hooked to an 8 bit microprocessor chip or Box (8080, 8085, 6800 etc.) can be software controlled to produce almost any sound it will play three note chords, noise bangs, whistles, sirens, gunshots, explosions, bleets, etc. and almost any sound.

SE 01 Sound Effects Kit NEW

The SE 01 is a complete kit that contains the parts to build a realistic programmable sound effects generator designed to fill the gap left by the new Texas Instruments 74HC595. A complete kit that contains the parts to build a realistic programmable sound effects generator designed to fill the gap left by the new Texas Instruments 74HC595.

- DUAL KIT ONLY £12.50
- P&P 50p + VAT

Oscillators

- Linears

VOLTAGE REGULATORS

UNIVERSAL SCR

Component Kit - £160

P.A.4 - SPEAKERS - CABINETS

Clef Products (Electronics) Limited

(C)opyright 1980 by Practical Electronics
The professional scopes you've always needed.

When it comes to oscilloscopes, you'll have to go a long way to equal the reliability and performance of Calscope.

Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition.

The Calscope Super 10, dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations.

The price £219 plus VAT.

The Super 6 is a portable 6MHz single beam model with easy to use controls and has a time base range of 1μs to 100ms/cm with 10mV sensitivity. Price £162 plus VAT.

Prices correct at time of going to press.

CALSCOPE DISTRIBUTED BY
Watford Electronics
33-35 Cardiff Road,
Watford, Herts.
Tel: 0923 40588

Audio Electronics,
301 Edgware Road, London W.2.
01-724 3664
Access and Barclay card facilities (Personal Shoppers)

Maplin Electronics Supplies Ltd.
P.O. Box 3
Rayleigh, Essex.
Tel: 0702 715 155
Mail Order

when you compare specification and price against the competition.

The Calscope Super 10, dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations.

The price £219 plus VAT.

The Super 6 is a portable 6MHz single beam model with easy to use controls and has a time base range of 1μs to 100ms/cm with 10mV sensitivity. Price £162 plus VAT.

Prices correct at time of going to press.

CALSCOPE DISTRIBUTED BY
Watford Electronics
33-35 Cardiff Road,
Watford, Herts.
Tel: 0923 40588

Audio Electronics,
301 Edgware Road, London W.2.
01-724 3664
Access and Barclay card facilities (Personal Shoppers)

Maplin Electronics Supplies Ltd.
P.O. Box 3
Rayleigh, Essex.
Tel: 0702 715 155
Mail Order

CHEAP SOLDERING IRONS AND ACCESSORIES

18WATT IRON FITTED WITH NO. 20 BIT
PANASONIC STYLE (10 WATT)
£4.43
261-
SPARE BITS
52-
STANDS
SOLDER: SAVBIT 20
61-
10
12-
LOWMELT IRON
70-
12-
LC DESOLDERING BIT £1.04
BIT SIZES:
NO.21(4.5mm)
7°
12°
52P
NO.20(3mm)
6°
12°
12 P
NO.19(1.5mm)
6°
12°
52P
NO.18(1mm)
6°
12°
52P

The Mighty Midgets

Available at your local Maplin store for only £7.95.

S & R BREWSTER LIMITED
86-88 UNION ST. PLYMOUTH PL1 3HG
Tel: 0752 65011 TRADE ENQUIRIES WELCOME

Please quote your number to ensure correct ordering.

The MIGHTY MIDGETS

S & R BREWSTER LIMITED

From your local Maplin Direct or Direct from Manufacturers

The Mighty Midgets

Available at your local Maplin store for only £7.95.

S & R BREWSTER LIMITED
86-88 UNION ST. PLYMOUTH PL1 3HG
Tel: 0752 65011 TRADE ENQUIRIES WELCOME

Please quote your number to ensure correct ordering.

The MIGHTY MIDGETS

S & R BREWSTER LIMITED

From your local Maplin Direct or Direct from Manufacturers

The Mighty Midgets

Available at your local Maplin store for only £7.95.

S & R BREWSTER LIMITED
86-88 UNION ST. PLYMOUTH PL1 3HG
Tel: 0752 65011 TRADE ENQUIRIES WELCOME

Please quote your number to ensure correct ordering.
The pack contains all the electronic components to build the radio, you supply only the wire and solder as featured in the Practical Electronics March issue.

The P.E. Traveller has a 6 watts output, negative ground and incorporates an integrated circuit output stage, a Mullard IF module LP1181 ceramic filter type, pre-aligned and assembled and a Bird pre-aligned push button tuning unit. The P.E. Traveller fits easily in or under dashboards. Complete with instructions.

CONSTRUCTORS PACK 7A
Suitable stainless steel fully retraceable locking aerial and speaker (approx. 6" x 4") is available as a kit complete.

£1.95 Per Pack, p & p £1.00.
Pack 7A may only be purchased at the same time as Pack 7.

NOTE: Constructor's pack 7A sold complete with radio kit
£15.20 including p&p.

CONSTRUCTORS PACK 7

£10.50 p&p £1.75

ALL THE PARTS TO BUILD THE PRACTICAL ELECTRONICS TRAVELLER CAR RADIO

* EASY TO BUILD *
* PUSH BUTTON TUNING *
* MODERN DESIGN *
* ALL NEW UNUSED COMPONENTS *
* 6 WATT OUTPUT READY *
* ETCHED & PRODUCED P.C.B. *
* INCORPORATES SUPPRESSION CIRCUITS *

£76.00 p&p £14.00

DISCO AMP
Brushed aluminium finish and rotary controls. See approx. 14" x 6" x 6 1/4".

Plus interdeck fader to perfect graduated change from record deck No. 1 to 2 or vice versa. Deluxe level control (PLS) sets your level next disc before fading in. 50 watt mono output power. Output 100 watts RMS 200 watts peak.

£7.95 p&p £1.95

EMI SPEAKER BARGAIN

Bargain pack complete with recorder kit

£25.50

Bargain pack complete with recorder kit

£25.50

SHURE M75 CARTRIDGE

Manual single stylus record deck with extra length

£27.50

PAP

BSR P200

咱own choice turntable

£9.75

PHILLIPS RECORD PLAYER DECK GC037

Hi-Fi record player deck, belt drive complete with GP401 magnetic cartridge—BRITISH STOCK

£27.50

PHILLIPS RECORD PLAYER DECK GC037

Hi-Fi record player deck, belt drive complete with GP401 magnetic cartridge—BRITISH STOCK

£27.50

BARGAIN OFFER

Anion pack-up amp manufactured in Japan.

£11.95

CONSTRUCTORS PACK 7A

£10.50 p&p £1.75
D.I.Y. KITS FOR SYNTHESISERS, SOUND EFFECTS

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

P.E. 128-NOTE SEQUENCER

Enables an advanced sequencer to automatically play programmed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and rhythmic pattern are externally variable.

Set of basic component kits, PCBs and layout charts

KIT 77-7 £92.89

P.E. 16-NOTE SEQUENCER

Sequences of up to 16 notes may be programmed by the use of external panel controls and fed into most voltage controlled synthesisers.

Set of basic component kits, PCBs and layout charts

KIT 86-5 £72.99

P.E. STRING ENSEMBLE

A multivoice polyphonic string instrument synthesizer. Set of basic component kits, PCBs & layout charts

KIT 77-1 £119.87

ELEKTOR ELECTRONIC PIANO

A touch-sensitive multiple-voicing piano using the latest integrated circuit techniques for the keying and envelope shaping, and virtually eliminates "beep-beep" noise inherent in previous electronic pianos.

5-octave set of basic components and PCBs (as published)

KIT 80-9 £138.41

Additional 3-octave extension and basic parts and PCBs (as published)

KIT 80-10 £54.82

Set of text photocopies

£8.11

P.E. MINISONIC MK2 SYNTHESIZER

A portable mains operated miniature sound synthesizer with serviceable circuits, although having slightly fewer facilities than the large Formant and Synthesizers the functions offered by this design give it great scope and versatility.

Set of basic component kits (excl. K 08 R's & tuning pots - see list for options available) and PCBs (incl. layout charts)

"Sound Design" booklet

KIT 38-25 £76.92

P.E. SYNTHESIZER

The well acclaimed and highly versatile large scale mains operated synthesizer. Other circuits in our lists may be used with it to good advantage.

Main Unit set of text photocopies

KIT 23-21 £101.43

Keyboard Unit basic component kits, PCBs & layout charts

KIT 23-32 £86.47

Main Unit set of text photocopies

£5.91

Keyboard Unit set of text photocopies

£2.30

ELEKTOR FORMANT SYNTHESIZER

A very sophisticated synthesizer for the advanced constructor who puts performance before price.

Set of basic component kits, PCBs (as published)

KIT 09-14 £247.60

Set of test photocopies

£7.83

10% DISCOUNT VOUCHER

(PE 83)

Add: 15% VAT

TERMS: Goods in current ads & lists over £50 goods value (e.g. P.B. & V.A.T.) Corrected, C.W.O., U.K. orders only. This voucher must accompany order. Valid until the closing date of P.E. Does not apply to credit card orders.

ADD: POST & HANDLING

U.K. orders: Kits add £2.30 each, other goods: Under £5 add 25p, under £20 add £0.50, over £20 add £1.00. Recommended Insurance against postal mishaps, add 50p for cover up to £50, £1 for £100 cover, etc. pro-rata. Must be added for credit card orders.

N.B. Exported goods, C.I.F., B.P.O., C.D. & other countries subject to higher export postage rates.

ADD 15% VAT

(add current rate of change).

Must be added to full total of kits, discounts post and handling on all U.K. orders. Does not apply to Exports, or photocopies.

ELEKTOR RESONANCE FILTER

A type synthesizer to produce a more realistic simulation of natural musical instruments.

Set of basic component kits & PCBs (as published)

Text photocopy

KIT 82-2 £16.90

57p

P.E. GUITAR OVERDRIVE

 Sophisticated versatile fuzz unit incl. variable controls affecting the fuzz quality whilst retaining attack and decay, and also providing filtering. Suitable for use with most electronic instruments.

Basic components, PCB & chart

KIT 58-3 £9.35

Text photocopy

58p

P.E. SMOOTH FUZZ

A slightly modified version of the simple P.E. unit.

Basic components, PCB & chart

KIT 54-1 £3.23

Text photocopy

55p

GUITAR FREQUENCY DOUBLER

A slightly modified and extended version of the P.E. unit.

Basic components, PCB & chart

KIT 74-1 £4.97

Text photocopy

58p

P.E. GUITAR SUSTAIN

Maintains the natural attack whilst extending note duration.

Basic components, PCB & chart

KIT 76-1 £6.64

Text photocopy

38p

P.E. WAH-WAH UNIT

Can be controlled manually or by integral automatic control.

Basic components, PCB & chart

KIT 81-1 £3.99

P.E. AUTO-WAH-AH UNIT

Automatically gives Wah or Swell sounds with each note played.

Basic components, PCB & chart

KIT 58-1 £4.43

Text photocopy

58p

ELEKTOR WAVEFORM CONVERTER

Converts saw-tooth waveform into sine-wave, mark-space sawtooth, regular triangle, or square-wave with variable mark-space.

Basic components, PCB, chart, and transformers. Hardware such as cases, sockets, knobs, keyboards, etc. are not included but most of these may be bought separately. Fuller details of kits and PCBs and parts are shown in our lists.

的基本组件套件包括所有必要的电路和变压器。硬件如机箱、插座、旋钮、键盘等不包括在内但大多数可以单独购买。详细信息参见我们的列表。
** AND OTHER PROJECTS**

PHOTOCOPIES in this advertisement show but 2 of our world of projects. We can show you any project built from our kits and PCBs. The cases were built by ourselves and are not for sale, but a small selection of other cases is available.

OVERSEAS enquirers for full list giving fuller details of PCBs, kits and other components. Please send 20p: other countries - send 50p.

KIMBER-ALLEN KEYBOARDS AND CONTACTS

KIMBER-ALLEN KEYBOARDS as required for many published projects. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C, the keys are plastic, spring-loaded, fitted with spacers, and mounted on a robust aluminium frame.

3 Octave (37 notes) £5.50 4 Octave (49 notes) £32.25 5 Octave (61 notes) £39.75

CONTACT ASSEMBLIES (gold-clad wire) - 1 required for each KBD note:
- Type GI - SPCO 25p ea. Type GA - 1 or of contacts, normally open 24p ea. Type GB - 2 or N/O 28p ea. Type GC - 3 or N/O 27p ea. Type GE - 4 or N/O 46p ea. Type GH - 5 or N/O 58p ea. Type 49P - 3 or N/O plus SPCO 87p ea.

PHOTOGRAPHS in the supplement this advertisement show two of our units containing some of the P.E. projects built from our kits and PCBs. The cases were built by ourselves and are not for sale, but a small selection of other cases is available.

PRICES are correct at time of press.

E. & O. E. DELIVERY SUBJECT TO AVAILABILITY.
0.1% DISTORTION
WIDE BANDWIDTH
PROTECTED O/P TRANSISTORS
FULL LOAD LINE PROTECTION
NO EXTERNAL COMPONENTS
ONLY FIVE PINS TO CONNECT

MULLADO CAPACITORS
Spherical polystyrene foil electrolytics are made as to offer: CBB2 Polymer foil electrolytics at £1 for 100 mixed, and Murrano tantalums at £1.50 for 100 mixed. Each pack of each only £3.
These consist of small cylindrical paper wound, ceramic insulated capacitors etc. As we have no time to sort them, they are tagged/price for the constructor.

Don't Let Your Environment Deteriorate Too?
Buy an Honeywell Humidity Controller.

MURRANO 250V 3.7uF
Contact lead for graminious corrosion resistant horns, nipples, etc. Solid mean length, humidity, altitude fraction of original cost 90p u. 3 for £2.

6 lb FE. CI. To mil. spec. C5.00
1 lb FE. CI. To mil. spec f125
plusresent. Spaced Price £4.05
We are the cheapest, 12 for £1.00 100 for £10

MICROFILM TRANSFORMERS
Top quality, split bobbin construction will give 40W-0.4W at 250Ma. 11"x11"x1", all sorts of uses. ONLY 10. 3 for £2.25
220V 60V, Radial, 11"x11"x1. 60p. 1 for £1.50
1,000 110V Radial, 1/2"x2" ONLY 70p. 1 for £1.50

20mm ARTI SURGE HOSES
20mm 30mm, 1.6 1.4 1.6, 2.4. 2.5 for £3.20. 3 for £1.22. of each type £7. 100 of each type £7. 100 of each type £8

MINIATURE MAINS TRANSFORMERS
Top quality transformers! Split bobbin construction will give 250mA at 6W to 250Ma. 11"x11"x1", all sorts of uses. ONLY 10. 3 for £2.25
220V 60W, Radial, 11"x11"x1. 60p. 1 for £1.50
1,000 110W Radial, 1/2"x2" ONLY 70p. 1 for £1.50

MINIATURE MAINS TRANSFORMERS
Top quality transformers! Split bobbin construction will give 250mA at 6W to 250Ma. 11"x11"x1", all sorts of uses. ONLY 10. 3 for £2.25
220V 60W, Radial, 11"x11"x1. 60p. 1 for £1.50
1,000 110W Radial, 1/2"x2" ONLY 70p. 1 for £1.50

20 Assorted Zener Diodes
1 watt and 100MW, £1.50
100 Mixed Diodes
Includes: Zener, power, bipolar germanium, silicon etc. At full spec. £4.99
0.2W LEDs with 2 piece clips.
And 4 for £5. Green and Yellow 4 for 80p

ULTRASONIC TRANSUDERS
Transistor and oscillator. 40Ma 11mm. £2-25 each.

MINIATURE REED SWITCHES
We are the cheapest! £2 for £3.00 100 for £4.20

GEC UNIT TRANSISTOR TV TUNERS
Every type with slow motion drive loads and serial numbers, £1.20 £2. for £3.50 (by GEC 2010 series etc.)

DE LUXE PEARL CLASS
PRINTED CIRCUIT ETCHING KITS
Includes 150 sq. in. copper clad 9/8, board 1.1 hence thickness, 1 inch width, 1 inch per square. A4 size, each 20p. Special Price £2.85
1 lb FE, CI. To mil. spec. £1.75
6 lb FE, CI. To mil. spec. £3.80
150 sq. in. Single sided board £2.80
150 sq. in. Double sided board £3.80

SIMPLY AHEAD - and staying there!
O.E.M. PLATE POWER AMPLIFIERS
MADE IN ENGLAND
I.L.P. offer for prompt delivery, a range of O.E.M. Plate Power Amplifiers in three useful output ratings. These units are typical of I.L.P. design and manufacture — encapsulated, rugged construction, just five pin connections, trouble-free mounting, no output capacitor or other external components to be added, and operation from split line power source. PRICES ARE KEENLY COMPETITIVE, QUALITY AND MANUFACTURE OF THE HIGHEST POSSIBLE STANDARDS. Modules can also be manufactured to customer's own design.

<table>
<thead>
<tr>
<th>UNIT</th>
<th>PRICE</th>
<th>FOR</th>
<th>100</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2500</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY 120P</td>
<td>£10.30</td>
<td>60W</td>
<td>£9.37</td>
<td>£8.51</td>
<td>£7.74</td>
<td>£7.04</td>
<td>£6.40</td>
<td></td>
</tr>
<tr>
<td>HY 200P</td>
<td>£13.18</td>
<td>120W</td>
<td>£11.98</td>
<td>£10.89</td>
<td>£9.90</td>
<td>£9.00</td>
<td>£8.18</td>
<td></td>
</tr>
<tr>
<td>HY 400P</td>
<td>£19.26</td>
<td>240W</td>
<td>£17.51</td>
<td>£15.92</td>
<td>£14.47</td>
<td>£13.16</td>
<td>£11.96</td>
<td></td>
</tr>
</tbody>
</table>

Sizes—
HY 120P and HY 200P
HY 400P
116 x 50 x 23mm
116 x 75 x 23mm

PE PHASER UNIT
P.P. APRIL 1979
COMPLETE KIT OF ALL PARTS AS SPECIFIED £16.95
Pack 1. All semiconductor devices £8.00
Pack 2. Resistors, capacitors & preset pot £3.75
Pack 3. Footswitch, jacks, pot, knob, printed circuit & hardware £4.25
Pack 4. Decal box and feet £2.00
Separate parts: TL082 80p, BF245B 50p, PCB £1.80, 8 pin sockets (not included in kit) £0.75 each.

PE SUSTAIN UNIT
P.P. OCT. 1979
Superb quality, low noise, low distortion sustain unit equal to the very best commercial models. Suits all guitars. Glassfibre p.c.b.
COMPLETE KIT OF ALL PARTS AS SPECIFIED £7.95
Pack 1. Resistors, capacitors & p.c.b. £1.75
Pack 2. All semiconductor devices £1.75
Pack 3. Footswitch, jacks, pot, knob and bell box £2.75
Pack 4. Decal box and feet £2.00
Separate parts: X3003R 80p, RPS69A 70p, Printed circuit board 99p, Footswitch £1.80 each.

ORION AMPLIFIER
Complete set of semiconductors £9.75
Quality glass fibre p.c.b., printed with component locations £3.80

PE TV SOUND SEPARATOR
Complete set of semiconductors £2.30
High quality glass fibre p.c.b. £1.80
Mural kit: SPECSOMA 50p, CDASDMC 90p.

PE FUZZ UNIT
This is the Fuzz unit you have been waiting for! Smooth, clean tone with low noise and low current drain. Uses glassfibre p.c.b. and latest FET op-amp.
COMPLETE KIT OF ALL PARTS AS SPECIFIED £7.95

POSTAGE & PACKING 15p per order. Orders over £5.00 post free.
All devices are top grade, brand new and to full manufacturers spec.
Send S.A.E. for our data sheet and price list of Ferranti semiconductors.

PRICES DO NOT INCLUDE VAT. Add 15% to all prices.

MAIL ORDER ONLY
CALLERS BY APPOINTMENT
MORE BIG VALUE FROM YOUR TANDY STORE

1000 OHMS/VOLTS AC/DC
8 RANGES
Handy multimeter for home and work shop. Easy-to-read two colour 5cm meter, pin jacks for all 8 ranges. Reads AC and DC volts, 0.15-15-30-100 DC current, 0-150 mA. Resistance 0-100,000 ohms. Accuracy ± 3% full scale on AC ranges, ± 4% on AC ranges. Complete battery. 22-027. REG. PRICE £6.95

DIGITAL IC LOGIC PROBE
Unique circuitry makes it a combined level detector, pulse detector and pulse stretcher. Hi-LED indicates logic "1". Lo-LED indicates logic "0". Pulse LED displays pulse transitions to 300 nanoseconds, blinks at 3 Hz for high frequency signals (up to 1.5 MHz). Input impedance: 300K ohms. With 36" power cables. 22-300. REG. PRICE £9.95

REALISTIC DX 300
General coverage receiver. Quartz synthesised tuning, digital frequency readout. 3-step RF Attenuator. 6-range preselector with LED indicators. SSb and CW demodulation. Speaker. Code oscillator. Batteries (not included) or 12V DC. 20-204. REG. PRICE £229.95

AC/DC CIRCUIT TESTER
Accuracy in 1-300 volts ranges. Safe in live/dead circuits. Needs two "M" batteries. 22-4034. REG. PRICE £1.99

DIGITAL IC LOGIC PROBE
Unique circuitry makes it a combined level detector, pulse detector and pulse stretcher. Hi-LED indicates logic "1". Lo-LED indicates logic "0". Pulse LED displays pulse transitions to 300 nanoseconds, blinks at 3 Hz for high frequency signals (up to 1.5 MHz). Input impedance: 300K ohms. With 36" power cables. 22-300. REG. PRICE £9.95

DIGITAL IC LOGIC PROBE
Unique circuitry makes it a combined level detector, pulse detector and pulse stretcher. Hi-LED indicates logic "1". Lo-LED indicates logic "0". Pulse LED displays pulse transitions to 300 nanoseconds, blinks at 3 Hz for high frequency signals (up to 1.5 MHz). Input impedance: 300K ohms. With 36" power cables. 22-300. REG. PRICE £9.95

AC/DC CIRCUIT TESTER
Accuracy in 1-300 volts ranges. Safe in live/dead circuits. Needs two "M" batteries. 22-4034. REG. PRICE £1.99

You save because we design, manufacture, sell and service. Tandy have over 7,000 stores and dealerships worldwide. Over 2,500 products are made specifically for or by Tandy at 16 factories around the world. The quality of our products has been achieved by over 60 years of continuous technological advancement.

TANDY DEALER
Most items also available at Tandy Dealers. Look for this sign in your area.

Access, Barclaycard and Trustcard welcome. Prices may vary at individual stores.
All these advantages...

- Instant all-weather starting
- Smoother running
- Continual peak performance
- Longer battery & plug life
- Improved fuel consumption
- Improved acceleration/top speed
- Extended energy storage

..in kit form

SPARKRITE X5 is a high performance, top quality inductive discharge electronic ignition system designed for the discerning DIY world. It has been tried, tested and proven to be utterly reliable. Assembly only takes 1 hour and installation is easy even due to the patented 'clip on easy fitting' design. The super technical design of the Sparkrite circuit eliminates problems at the contact breaker level. There is no need for a contact breaker hilt, n is eliminated by points bounce open at high RPM. The circuit which prevents the unit from firing is electronically by a pulse suppression circuit which eliminates problems of the contact breaker bounce which is eliminated. There is no misfire due to the patented 'clip on easy fitting' design. Reliable assembly only takes 1 hour. Discharge electronic ignition system designed for the electronics enthusiast.

SPARKRITE X5 is a high performance top quality inductive discharge electronic ignition system designed for the discerning DIY world. It has been tried, tested and proven to be utterly reliable. Assembly only takes 1 hour and installation is easy even due to the patented 'clip on easy fitting' design. The super technical design of the Sparkrite circuit eliminates problems at the contact breaker level. There is no need for a contact breaker hilt, n is eliminated by points bounce open at high RPM. The circuit which prevents the unit from firing is electronically by a pulse suppression circuit which eliminates problems of the contact breaker bounce which is eliminated. There is no misfire due to the patented 'clip on easy fitting' design. Reliable assembly only takes 1 hour. Discharge electronic ignition system designed for the electronics enthusiast.

Roger Clark the world famous rally driver says - Sparkrite electronic ignition systems

Fits all 12v negative-earth vehicles with coil/distributor ignition up to 8 cylinders.

THE KIT COMPRESE SEVERAL HINGEED NEED

The kit comprises all parts needed for a period of 2 years from date of purchase. Fully illustrated assembly and installation instructions are included.

Roger Clark the world famous rally driver says - Sparkrite electronic ignition systems are the best you can buy.

All these advantages...

- Instant all-weather starting
- Smoother running
- Continual peak performance
- Longer battery & plug life
- Improved fuel consumption
- Improved acceleration/top speed
- Extended energy storage

..in kit form

SPARKRITE X5 is a high performance, top quality inductive discharge electronic ignition system designed for the electronics enthusiast. D.I.Y world. It has been tried, tested and proven to be utterly reliable. Assembly only takes 1 hour and installation is easy even due to the patented 'clip on easy fitting' design. The super technical design of the Sparkrite circuit eliminates problems at the contact breaker level. There is no need for a contact breaker hilt, n is eliminated by points bounce open at high RPM. The circuit which prevents the unit from firing is electronically by a pulse suppression circuit which eliminates problems of the contact breaker bounce which is eliminated. There is no misfire due to the patented 'clip on easy fitting' design. Reliable assembly only takes 1 hour. Discharge electronic ignition system designed for the electronics enthusiast.

Electronic Design Associates, Dept. PE 8/80 82 Bath St., Walsall, WS1 3DE

Name
Address
Phone your order with Access or Barclaycard

X5KIT £16.95
ACCESS OR BARCLAY CARD No.

Quantity Reg'd

Send S.A.E. if brochure on request.
Conquer the chip.

Be it career, hobby or interest, like it or not the Silicon Chip will revolutionise every human activity over the next ten years. Knowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages. Learn the technology of the future today in your own home.

ELECTRONICS
Build your own oscilloscope.
Learn to draw and understand circuits.
Carry out over 40 experiments.

DIGITAL TECHNIQUES
From watches to sophisticated instrumentation, Digital Electronics adds scope to hobby or career.

COMPUTER TECHNOLOGY
Learn to operate and programme your own home computer.

FREE BROCHURES

No previous knowledge is necessary.
Just clip the coupon for a brochure.

TUTORCOURSE ELECTRONICS
Please rush me details of your ELECTRONICS COURSE.

Name

Address

Block Caps. Please

Post now, without obligation to:

British National Radio & Electronics School.
P.O.Box 156, Jersey, Channel Isles

PER 5
NEW INCREASED RANGE—ALL 1ST QUALITY

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Size</th>
<th>Colour</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>D101</td>
<td>1N4001</td>
<td>350mA</td>
<td>—</td>
<td>£0.125</td>
</tr>
<tr>
<td>D102</td>
<td>1N4148</td>
<td>350mA</td>
<td>—</td>
<td>£0.25</td>
</tr>
<tr>
<td>D103</td>
<td>1N4149</td>
<td>350mA</td>
<td>—</td>
<td>£0.25</td>
</tr>
</tbody>
</table>

NEW INCREASED RANGE FOR AUDIO LEADS

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>D101</td>
<td>OFC 20AWG</td>
<td>£0.125</td>
</tr>
<tr>
<td>D102</td>
<td>OFC 22AWG</td>
<td>£0.25</td>
</tr>
<tr>
<td>D103</td>
<td>OFC 24AWG</td>
<td>£0.35</td>
</tr>
</tbody>
</table>

NUTS AND BOLTS

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>M3 x 0.5</td>
<td>£0.125</td>
</tr>
<tr>
<td>A02</td>
<td>M4 x 0.7</td>
<td>£0.125</td>
</tr>
</tbody>
</table>

TERMS CASH WITH ORDER. CHEQUES / POSTAL ORDERS MADE PAYABLE TO BI-PAK AT ABOVE ADDRESS
PRactical Electronics

ALL EXPERIMENT BREADBOARDS have two bus-bars as an integral part of the board. If more than two buses are required, simply snap on more bus-bars with the aid of an EXP 40.

EXP 325 The ideal breadboard for 1 chip circuits. Accepts 8, 14, 16 and up to 22-pin IC's.

EXP 350 270 contact points with two 20-point bus-bars.

EXP 350 550 contacts with two 40-point bus-bars.

EXP 650 For Micro-processors. ONLY £2.14

EXP 48 More bus-bars. ONLY £2.65

EXP 600 As EXP 300 but accepts up to 30 pin DILs and DIPs. ONLY £7.25

All EXP 300 Breadboards mix and match with 600 series.

TERMS: CASH WITH ORDER. CHEQUES, P.O.'S: PAYABLE TO BI PAK AT ABOVE ADDRESS. ACCESS & BARCLAYCARD ACCEPTED.

GIRO ACCOUNT NO. 388 7006. ALL PRICES INCLUDE VAT. PLEASE ADD 50p PER ORDER TO COVER P&P.

SEND YOUR ORDERS TO: DEPT. PE5, PO BOX 6, WARE, HERTS. TEL: 0920-3182

EXPERIMENTER BREADBOARDS

FROM CASE

No soldering breadboards. Simply plug components in and out of letter number identified.

Nickel-plated contact holes. Snap tight and simply snap lockboards together to build a breadboard of any size.

All EXP Breadboards have two bus-bars as an integral part of the board. If more than two buses are required, simply snap on more bus-bars with the aid of an EXP 40.

TERMS: CASH WITH ORDER. CHEQUES, P.O.'S: PAYABLE TO BI PAK AT ABOVE ADDRESS. ACCESS & BARCLAYCARD ACCEPTED.

GIRO ACCOUNT NO. 388 7006. ALL PRICES INCLUDE VAT. PLEASE ADD 50p PER ORDER TO COVER P&P.

SEND YOUR ORDERS TO: DEPT. PE5, PO BOX 6, WARE, HERTS. TEL: 0920-3182

EXPERIMENTER BREADBOARDS

FROM CASE

No soldering breadboards. Simply plug components in and out of letter number identified.

Nickel-plated contact holes. Snap tight and simply snap lockboards together to build a breadboard of any size.

All EXP Breadboards have two bus-bars as an integral part of the board. If more than two buses are required, simply snap on more bus-bars with the aid of an EXP 40.

TERMS: CASH WITH ORDER. CHEQUES, P.O.'S: PAYABLE TO BI PAK AT ABOVE ADDRESS. ACCESS & BARCLAYCARD ACCEPTED.

GIRO ACCOUNT NO. 388 7006. ALL PRICES INCLUDE VAT. PLEASE ADD 50p PER ORDER TO COVER P&P.

SEND YOUR ORDERS TO: DEPT. PE5, PO BOX 6, WARE, HERTS. TEL: 0920-3182

EXPERIMENTER BREADBOARDS

FROM CASE

No soldering breadboards. Simply plug components in and out of letter number identified.

Nickel-plated contact holes. Snap tight and simply snap lockboards together to build a breadboard of any size.

All EXP Breadboards have two bus-bars as an integral part of the board. If more than two buses are required, simply snap on more bus-bars with the aid of an EXP 40.

TERMS: CASH WITH ORDER. CHEQUES, P.O.'S: PAYABLE TO BI PAK AT ABOVE ADDRESS. ACCESS & BARCLAYCARD ACCEPTED.

GIRO ACCOUNT NO. 388 7006. ALL PRICES INCLUDE VAT. PLEASE ADD 50p PER ORDER TO COVER P&P.

SEND YOUR ORDERS TO: DEPT. PE5, PO BOX 6, WARE, HERTS. TEL: 0920-3182

EXPERIMENTER BREADBOARDS

FROM CASE

No soldering breadboards. Simply plug components in and out of letter number identified.

Nickel-plated contact holes. Snap tight and simply snap lockboards together to build a breadboard of any size.

All EXP Breadboards have two bus-bars as an integral part of the board. If more than two buses are required, simply snap on more bus-bars with the aid of an EXP 40.

TERMS: CASH WITH ORDER. CHEQUES, P.O.'S: PAYABLE TO BI PAK AT ABOVE ADDRESS. ACCESS & BARCLAYCARD ACCEPTED.

GIRO ACCOUNT NO. 388 7006. ALL PRICES INCLUDE VAT. PLEASE ADD 50p PER ORDER TO COVER P&P.
instruments

MODEL 820
NEW PORTABLE £92.00
DIGITAL CAPACITANCE METER
Measures capacitance from 0.1pF to 1 Farad in 10 ranges · Resolves to 0.1pF on lowest range · 4 digit easy-to-read LED display · 0.5% accuracy · Uses either rechargeable or disposable batteries.

£117.30

MODEL 2810
3½-DIGIT DMM WITH .01
RESOLUTION
3½ digit easy to read LED display · 0.5%
DC accuracy typical · 100uV · .01
resolution · 10 ohm range and control
to zero lead resistance · Selectable
High/Low-power ohms on four ranges · Auto zeroing · Completely overload
protected on all 29 ranges · 100%
overrange reading to 2000 counts full
scale · Protected against RF inter-
ference · Completely portable

£90.85

MODEL 3010
NEW LOW DISTORTION FUNCTION
GENERATOR
Features: Generates sine, square and
triangle waveforms · Variable amplitude
and fixed TTL square-wave outputs · 0.1 Hz to 1 MHz in six ranges · Typical
sine wave distortion under 0.5% from
0.1 Hz to 100 kHz · Variable DC offset
for engineering applications · VCO
external input for sweep-frequency
tests.

£167.90

MODEL 510
PORTABLE TRANSISTOR TESTER
Features: Fast GO/NO-GO in-circuit
testing · Fast and thorough GOOD/
BAD out-of-circuit testing · Tests FET's
and SCR's in-circuit or out-of-circuit ·
Gives positive emitter-base-collector
identification in LO drive-positive base
identification in H1 drive · Light-
Emitting Diodes indicate NPN-OK
or PNP-OK · Pocket-size · Over
100 hours of testing from single
set of "AA" cells · Digital
stability-no adjustments;
nothing to go out of
calibration.

£69.00

MODEL 2830
NEW 3½ DIGIT LAB DMM
LED display · 0.5% accuracy · 1000 volts
DC · 750 volts AC · Seven OHMS
Ranges provide measurement from 0.01
OHM to 20 Meg OHMS · 10 amp
current range · AC Operation
Standard DC Power pack available.

£178.25

MODEL 1850
520 MHz
FREQUENCY COUNTER
Features: 5Hz to 520 MHz reading
guaranteed · Gate times from 10ns to
10 seconds · Period measurement
capability · 50 mV input sensitivity at
520MHz · 240 VAC, or 12 VDC · Well
protected input circuitry · Temperature
compensated crystal oscillator · LED
readout.

£331.20

MODEL 1405
NEW 5MHz SOLID STATE 3" SCOPE
5 MHz with high sensitivity · For production lines, schools,
field service work, hobbyists · CB modulation monitor ·
Ultra-compact and lightweight; goes anywhere! · Use the
1405 to release more expensive scopes from monitoring
applications · Vertical sensitivity of 10mV/division · high-
brightness CRT and smoked-glass
graticule · Can be externally synced ·
Direct deflection terminals for wave-
form display up to 150MHz · Z-axis
input for intensity
modulation · Just
6" x 7.5" x 12" deep!

£178.25

FOR DETAILS OF THE FULL RANGE OF ELECTRONIC TEST EQUIPMENT INCLUDING CAPACITANCE METERS DMM'S FREQUENCY COUNTERS SCOPES POWER SUPPLIES AND SEMI CONDUCTOR TESTERS CONTACT UK DISTRIBUTORS

RK PRECISION
RADIO SUPPLIES (COMPONENTS) LTD.
P.O. BOX 27-39 WHITBY STREET
HARTLEPOOL CLEVELAND.
TELEPHONE: 0429-75750/0429-68002

ALL PRICES SHOWN INCLUDE VAT AND POST AND PACKAGE
FREE

FOR the second time we are giving away a set of 120 Stickies with an issue. Back in October 1978 we presented a similar set of TTL Stickies, this time it’s the CMOS versions. By popular request we have been able to repeat this free gift, which we are sure all constructors will find useful. On the cover we have indicated that they are worth 60p; in fact, the sheet would cost you 80p. However, Concept Electronics also supply an instruction leaflet and a plastic wallet so, to be totally fair, we have reduced this figure. You will, however, find full instructions on using your Stickies on page 47—the only thing you don’t get from us is the plastic wallet. Page 47 also gives full details on ordering more!

SPECIAL

It has been our policy over the last couple of years to arrange a number of special offers for readers. Last month we carried the Videotone GB3 offer (speakers which will go well with the PE Congress), this month we have the Edukit offer. It is our policy to offer excellent products at prices that we believe cannot be bettered at the time.

The Edukit offer gives a saving of only just over £1, but on an item that is true value for money at its normal price, it is not possible to make a better offer—a saving of £1 is, after all, worth having! The problem we are constantly aware of is that on high technology products—particularly watches—the prices have fallen dramatically over the past few years and continue to do so. In the face of these reducing prices it is natural that some offers can be bettered over a period of time. At present, our offers always have been the best price for at least four months, and in most cases have never been bettered. We do not believe the Edukit offer will ever be bettered.

Readers must, however, realise that in this area of high technology it may always be prudent to wait for an indefinite period for prices to fall—it could be said that no one in their right mind would have bought a colour TV, a calculator or a watch yet! Perhaps some will take the view that it’s better to wait; we believe that on this type of product one must decide when the price paid gives a worthwhile return and then buy. The use of the equipment over a period will normally compensate for the higher price. A watch now, or no watch for four months and a small saving?

VALUE

Whilst on the subject of value for money we believe that PE gives just that, and it would appear that most of you do too. Because of this we are often asked by readers if the latest issue is on sale, as they have been unable to obtain copies. At the time of writing we have not experienced any publishing difficulties for some time. We would urge those readers that have been finding copies difficult to come by, to place a firm order with their newsagent. In the highly unlikely event that such an order fails to provide a regular delivery we believe that PE gives just the right balance of these reducing prices it is natural that some offers can be bettered over a period of time. At present, our offers have always been the best price for at least four months, and in most cases have never been bettered. We do not believe the Edukit offer will ever be bettered.

Readers must, however, realise that in this area of high technology it may always be prudent to wait for an indefinite period for prices to fall—it could be said that no one in their right mind would have bought a colour TV, a calculator or a watch yet! Perhaps some will take the view that it’s better to wait; we believe that on this type of product one must decide when the price paid gives a worthwhile return and then buy. The use of the equipment over a period will normally compensate for the higher price. A watch now, or no watch for four months and a small saving?

Mike Kenward

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics. All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 0FP, at 75p each including Inland/Overseas p&p.

Binders

Binders for PE are available from the same address as back numbers at £4-10 each to UK or overseas addresses, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for £10-60 per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.
IT'S A GAS

A new gas soldering iron has been introduced by Kam Circuits, which has some obvious advantages over the conventional electric soldering iron. Being cordless, it is ideally suited to outdoor work, or any situation where a power supply is not readily accessible. Also, there is no danger of electric current leakage.

The SW-M uses ordinary gas lighter fuel and operates by flameless combustion of the fuel. One complete fill can provide a maximum of four hours continuous use. The SW-M costs £17.06 + VAT and p&p, and is available direct from: Kam Circuits Ltd., Porte Marsh Road, Calne, Wilts. Tel. (0249 812585).

SUPERMASTER 20

The latest instrument to be introduced by Alcon is the Miselco SuperMaster 20, a 20kΩ/V a.c. and d.c.) unit with 1-5 per cent d.c. and 2 per cent a.c. accuracy figures.

This general-purpose instrument can cope with d.c. voltages from 100mV to 1000V and currents from 50µA to 3A; a.c. voltages from 10V to 1000V and currents from 1mA to 3A (f.s.d.). With resistance ranges from 200Ω f.s.d. up to 20MΩ f.s.d. in six ranges and power measurable from −10dB to +61dB, the SuperMaster 20 is capable of coping with most general measurement problems.

Range switching is effected using a simple slider switch to select d.c., a.c. or resistance ranges, whilst a single main ceramic rotary switch selects the actual range desired.

The most important advance which this instrument represents is the inclusion of an electronic cut-out module, itself replaceable, capable of providing movement protection both simply and reliably.

The cut-out is resettable by returning a small red button to the reset position. Operation of the cut-out occurs when the applied energy exceeds that which the meter range identifies by a factor, and the same action releases the reset button to indicate activation.

The cut-out is battery operated and amplifies the signal applied to the meter movement to actuate an electromechanical switch if necessary. It does not have to rely on mechanical acceleration of the movement needle to obtain switching, in fact the needle hardly moves even inserting current on an ohms range.

This cut-out can be tested in-situ simply by pressing a second (black) button marked ‘Test’ which promptly causes the cut-out to actuate, providing the 15V battery powering the cut-out is in good order.

The a.c. bandwidth is 20kHz and the instrument may be used as simple signal analysis system if the optional Universal Signal Injector (USI) capable of supplying a 1kHz-modulated, 500kHz, 20V peak output rich in harmonics and detectable up to 500MHz is used.

A further optional item is a 30kV probe extending the d.c voltage range up to 30kV for TV servicing and the like.

Power is by internal batteries for both resistance and the optional USI feature, and for the cut-out system. Meter protection diodes are also provided and the equipment is fused in the resistance and current ranges.

The SuperMaster 20 is supplied with leads, prods, and instructions, at a price of £65.95 incl. VAT. The USI version is available at £67.85 (VAT included) and the 30kV probe is £14.37 inclusive.

TAPE HEAD CLEAN-UP

A new formula Tape Head Cleaning Fluid has been developed by BIB Research Laboratories, and is now the latest addition to the BIB Audiophile Edition range of hi-fi accessories.

The new formula removes tape oxide deposits, dust and dirt from tape heads, capstans and pinch rollers of all types of tape recorders. Available in 56ml bottles, the fluid is non-toxic and non-flammable.

The rrp is £2.65 per bottle (including VAT), and the fluid should be on sale at all normal retail outlets.

BIB Hi-fi Accessories Ltd., Wood Lane End, Hemel Hempstead, Herts, HP2 4RQ.
ZEROSTAT Z-TRACK

The latest addition to a wide range of up-market hi-fi accessories from Zerostat is their Z-Track tonearm/cartridge damper, which is intended to reduce the ill effects of warped discs.

Most pick-up systems have a low frequency resonance which can be excited by the effects of warped discs or mechanical feedback. Large quantities of infra-bass energy are generated, which can harm loudspeaker bass units and result in poorer sound quality.

The Z-Track, which has an effective mass of only half a gram and fits virtually any tonearm/cartridge combination, relies on a minute silicone liquid damped piston which moves in a cylinder incorporated in the main body. The main body is in turn carried on a PTFE skid which is wide enough to ride the record surface without tracking. Hence the damping action of the fluid on the cylinder controls resonances.

As well as improving the sound quality of mildly warped records and enabling previously unplayable records to be played, there is an added advantage. The improved tonearm/cartridge stability enables one to use a lighter tracking weight, which again helps to improve sound quality. We have also found that the Z-Track gives noticeable improvements even with relatively cheap systems.

The Z-Track retails at £9.95, and is available from dealers or direct from: Zerostat Components Ltd., Edison Road, Industrial Estate, St Ives, Huntingdon, Cambs.

BOCON CASES

West Hyde Developments have recently added to their 'Bocon' range of high quality instrument cases. The latest additions are the Bocon 'Desk' and Bocon 'Commander' cases.

The 'Desk' series, which is available in four sizes, is moulded in black a.b.s. and uses a tongue and groove method of construction, with a one-piece anodised aluminium front panel. There is provision inside the case for chassis and p.c.b. mounting.

The 'Commander' comes in two sizes, the larger being designed to accommodate most proprietary keyboards, with a rear aperture large enough to accept a 19" rack frame 3U high. It is made from black foam plastic and has anodised aluminium panels. The smaller 'Commander' which is moulded in black a.b.s. is suitable for keyboards and smaller displays.

Prices range from £7-14 for the smallest 'Desk' case to £77-50 for the large 'Commander'. Further details are available from: West Hyde Developments Ltd., Unit 9, Park St. Industrial Estate, Aylesbury, Bucks HP20 IET. Tel: (0296) 20441.

EQUALISER

Bandridge Ltd of London have come up with a mid-priced stereo frequency equaliser, the FE5, which is aimed at both the top and the middle of the hi-fi market. It is expected to retail at under £80.

The FE5 has five slider frequency controls per channel, ranging from 60Hz to 10KHz, so that a very wide range of fine tonal adjustment is possible. When the FE5 was connected between the pre-amp and power-amp stages of a fairly low cost amplifier, the sound quality was much enhanced, and the range of tonal adjustment greatly improved. However, it must be pointed out that with most amplifiers it is not possible to get between these two stages; but when the FE5 was connected in the alternative manner-between the tape output and tape monitor input the results were almost as good, and the range of tonal adjustment was still much improved.

For further details and information on price and availability, contact: Bandridge Ltd., 1 York Road, London SW19. Tel: 01-543 3633.

BOXED IN

Here's an alternative to that ever increasing pile of tatty tobacco tins—the RAACO 30 AJF storage unit, which is available from Toolrange. This thirty drawer storage cabinet which can either be free standing or wall mounted is made from enamelled steel, with transparent plastic drawers. Its overall size is 555 x 307 x 146mm, and each unit comes complete with assorted drawer dividers and labels.

The price per unit is £19.25 + VAT and delivery, and it is available direct from: Toolrange Ltd, Upton Road, Reading, Berks.
76 College Road, Bromley, Kent BR1 1DL.
Two-way Streets

The Soviet military intervention in Afghanistan cannot be ignored in the context of the electronics industry. Its immediate result is that east-west detente has been dented if not yet dead. Hardening of political attitudes has led to a re-appraisal of defence capability in the West and, while any increase in armaments is regrettable, there is no denying that any increased defence expenditure is good news for the electronics industry.

Defence was the spur to the development of microminiature techniques and many of the later microelectronics devices which are now commonplace in civil applications. It is interesting to compare the attitude of armed services and the industrial and commercial world to the 'chip' and other recent developments. In the services there are no arguments about job loss or other so-called drawbacks resulting from technology advance, and this is for the elementary reason that for personal survival it is advisable to be on the winning side. In any conflict, other things being equal, the best equipped force in fire power and accuracy must win. The civilian equivalents are productivity and skills, and it is difficult to understand why such simple logic is ignored by so many otherwise sensible people engaged in the economic and commercial war for world markets which, after all, is with us now and always.

In military jargon electronics is a major constituent of a concept called a force multiplier. The one-shot kill with artillery or missile is clearly better and more economical than a three-shot kill. Periodic re-fits and up-dates of electronic equipment multiply the effectiveness of fighting platforms of ships, aircraft and armoured fighting vehicles. The hull of a frigate may be twenty years old, but with modern equipment it could be ten times more efficient in offence and defence than when first commissioned. Re-fits to take advantage of modern technology, though expensive in themselves, are economic in prolonging the life of the even more expensive platforms such as ships.

The whole of the military market in the West is beset by political and economic as well as technical problems. NATO, main bulwark in Europe against possible Warsaw Pact attack, suffers from a chronic lack of standardisation in weapons and systems. Those of the fifteen nations in NATO who have industrial capability prefer to make their own. Sheer costs in R & D have forced a number of European co-operative projects into being, the most spectacular at the moment being the Anglo/German/Italian Tornado swing-wing aircraft. Thus a number of two-way streets between nations have been established.

The dominant supplier, however, is still the United States, but despite a number of Memoranda of Understanding the transatlantic street is still one-way with a flood of material into Europe and only a trickle in the reverse direction. Some two years ago there were high hopes in the UK that there would be an adjustment of the balance. In electronics, UK firms could bid for the first time on equal terms for important contracts in the United States. The Sincgars-V frequency-hopping radio system was the occasion and Marconi and Plessey are involved with US partners. Since then there has been little action. Moreover, for political reasons, nothing is likely to happen during the run-up to the presidential election at the end of the year.

If we are just playing at soldiers this hardly matters. But if the military threat is real then standardisation and interoperability should now receive top priority. A more liberal policy on two-way streets would inevitably lead to some firms winning and some losing but even here the tussle might suffice.

The danger now, with protective attitudes to one's own defence industries, is that the politicians who may be responsible for involving us in a future conflict will also be guilty of ensuring that we lose it.

Musical Chairs

The international semiconductor industry which seemed to be settling down has recently had a spate of top management changes. David Marriott resigned from the GEC-Fairchild venture where he was managing director. Newly knighted Sir Robert Clayton, chairman of the same company, has replaced him and a number of other GEC companies because of possible conflict of interests as he is now with the National Enterprise Board. Dr. Melvyn Larkin, a top Motorola executive is now re-vamping Plessey's solid state interests.

Mick Adams who was general manager of Plessey Surface Acoustics and president of Fairchild Semiconductor was re-vamping Plessey's solid state interests. Mick Adams who was general manager of Plessey Surface Acoustics and president of Fairchild Semiconductor was re-vamping Plessey's solid state interests. David Marriott resigned from the GEC-Fairchild venture where he was managing director. Newly knighted Sir Robert Clayton, chairman of the same company, has replaced him and a number of other GEC companies because of possible conflict of interests as he is now with the National Enterprise Board. Dr. Melvyn Larkin, a top Motorola executive is now re-vamping Plessey's solid state interests. David Marriott resigned from the GEC-Fairchild venture where he was managing director. Newly knighted Sir Robert Clayton, chairman of the same company, has replaced him and a number of other GEC companies because of possible conflict of interests as he is now with the National Enterprise Board. Dr. Melvyn Larkin, a top Motorola executive is now re-vamping Plessey's solid state interests.

The international semiconductor industry which seemed to be settling down has recently had a spate of top management changes. David Marriott resigned from the GEC-Fairchild venture where he was managing director. Newly knighted Sir Robert Clayton, chairman of the same company, has replaced him and a number of other GEC companies because of possible conflict of interests as he is now with the National Enterprise Board. Dr. Melvyn Larkin, a top Motorola executive is now re-vamping Plessey's solid state interests.
POWER SUPPLY FOR A SMALL MICROPROCESSOR SYSTEM

A typical modular microprocessor system requires three power supply rails plus a common ground rail. These power rails furnish all the modules to which they are connected with power at three voltage levels: -12V, +12V and +5V. In the example considered here all regulation is carried out within the power supply module itself and not on the individual circuit modules of the microprocessor system. By not putting the regulators on the logic circuit boards, the reliability of the system is enhanced. If a regulator increases the temperature of a module by 10°C, the average failure rate of components in the vicinity of the regulator will double.

Before beginning to design a power supply it is necessary to calculate the maximum current demand of the system. As the power supply is intended for an open-ended project, it is difficult to calculate an exact value of the total current requirements. If we assume a maximum memory size of 32K, built with 450µs, 4K-bit static RAM chips, the current consumed by the memory will be approximately 3.5 amps. Allowing a further 3-5 amps for the CPU and VDU modules, the total current demand is approximately 6 amps.

The design of a power supply is often complicated by the lack of suitable components. For example, a digital system can be constructed from a wide range of commonly available building blocks, while the mains transformer used in a power supply must be selected from the often very limited range in a manufacturer's catalogue. Of course it is possible to order a transformer wound to a given specification, but this is not cost-effective unless several systems are being made.

A suitable component is a 9V, 5.5A transformer, with the secondary winding arranged as two separate 4.5V windings which must be connected in series. Unfortunately, this transformer has a secondary winding with a rating of only 5.5A, which in a bridge rectifier configuration amounts to a d.c. output of 0.62 x 5.5A = 3.41A. As this current is insufficient to supply the estimated needs of the microprocessor system, it is necessary to connect the secondary windings of two such transformers in parallel, to provide a d.c. output of approximately 6.8A. When connecting the secondary windings of two transformers in parallel, it is vital that the windings are connected in phase. If the two transformers are identical no problem should arise if the start of the primary winding of the first transformer is connected to the start of the primary winding of the second transformer, and the finish of the primary winding is treated similarly. The secondary windings must also be connected in the same way so that the output voltages across both secondaries are in phase.

TESTING THE WINDINGS

When constructing the power supply it is advisable to make a simple test before the secondary windings of the two transformers are finally connected in parallel. Solder the start of the two secondaries together and connect an a.c. voltmeter between the, as yet, unconnected terminals of the two secondaries.

Apply a.c. power to the primaries of the two transformers. If the transformers have been connected together correctly, the meter should have a very low reading—the difference between the nominally identical secondary voltages. If, however, the windings have been incorrectly connected, the voltmeter reads twice the r.m.s. voltage of one winding, and the connection between the secondaries must be reversed.

The peak voltage at the output of the transformer secondary is 9 x 1.41V = 12.7V. The silicon bridge rectifier selected for use in this power supply has an unusually low forward voltage drop of 1.25V, which leaves approximately 11.4V across the terminals of the smoothing capacitor. If we allow a maximum peak to peak ripple of 3V under full-load conditions, the minimum voltage across the smoothing capacitor is 8.4V.

The value of the smoothing capacitor is given by

\[C = \frac{i}{dv}{dt} = \frac{6.8}{300\mu F} = 22,000\mu F. \]

The maximum working voltage of the capacitor must be greater than the peak voltage across the transformer secondary plus a margin to allow for variations in the mains input. A suitable capacitor is a ‘computer grade capacitor’ with a value of 22,000µF, a voltage rating of 25V, and a maximum ripple current rating of 14A at 65°C. Note that the tolerance in the value of an electrolytic capacitor is usually in the range +80% to −20% of the nominal capacitance. The maximum ripple current through a capacitor is given by 222V/C, which in this case amounts to 222 x 3 x 0.022A = 14.6A. This value is slightly greater than the rated ripple current of the capacitor. The maximum ripple current rating of a capacitor is strongly temperature dependent, a 14A rating at 65°C corresponding to a 20A rating at 25°C. As long as the ambient temperature within the power supply module is kept below 40-50°C no problems should arise.

BRIDGE RECTIFIER

The only other critical component in the power supply is the bridge rectifier. The rectifier chosen is a 25A silicon bridge rectifier with a peak inverse voltage of 50V, and a forward voltage drop of 1.2V at a current of 12.5A. If
This rectifier is to be operated at its full rated current of 25A, it is necessary to mount the rectifier on a heat sink with a thermal resistance of 0.8°C per watt. When operating at an average load current of 7A, the rectifier can function comfortably at a case temperature of 100°C. Bolting the rectifier to the chassis of the power supply should provide sufficient thermal dissipation. The peak forward current rating of the rectifier is 300A, which is 44 times the average maximum load of the power supply, and provides an ample safety margin in this application.

CIRCUIT

The circuit diagram of the power supply is given in Fig. 10. A generous measure of transient prevention is applied to the mains supply. Six transient suppression devices are fitted as follows:

1. A zinc oxide voltage dependent resistor is connected across the mains input of the power supply.
2. A filter network between the mains input and the transformers provides 35db of attenuation to frequencies between 150kHz and 30MHz.
3. Small capacitors of 0.1µF are connected across the secondary windings of the transformers, and across the output terminals of the bridge rectifier.
4. A tranzorb is connected across the output terminals of the 8V power supply. The rating of this must be greater than the maximum voltage which normally occurs across the output. This is the maximum no-load voltage of 11-4 plus 10 per cent to allow for mains variations, i.e. 12.6V.

The tranzorb which has the closest stand-off voltage above this value is the MPTE15 which has a clamp voltage of 20.6V at a forward current of 10A.

In the power supply no additional protection in the form of current limiting or crowbar overvoltage protection is applied to the 8V supply. Any additional protection may be implemented by choosing monolithic 5V regulator, with suitable characteristics.

REGULATOR SELECTED

The regulator selected for this power supply is a Fairchild A78P05, a 5V 10A hybrid device in a standard TO-3 package. This regulator has the following characteristics:

(i) Internal thermal overload protection.
(ii) Internal short-circuit current limitation.
(iii) 70W power dissipation at a 25°C case temperature.

At a nominal 8.5V input the regulator dissipates (8.5-5.0) x 6.5 = 22.75W full-load. From the A78P05's data sheet it can be seen that the regulator can dissipate 30W at a case temperature of 100°C. If we assume ambient temperature of 25°C, the temperature differential between the regulator case and the ambient air is 75°C. The thermal resistance between the case and the air is therefore

\[\frac{75°C}{25W} = 3°C/W. \]

As the maximum value of case to ambient thermal resistance is at least 30°C/W, the regulator must be mounted on a heat sink with a thermal resistance of less than 3°C/W.

From Fig. 10 it can be seen that a 1µF solid tantalum capacitor is connected between the regulator's input and ground. A 0.1µF ceramic capacitor should be similarly connected between the regulator's output and ground to improve its transient response.

It must be admitted that although the monolithic regulator is widely employed in microprocessor power supplies, some authorities avoid them like the plague. The monolithic regulator normally has a tolerance of ±4%. To this tolerance must be added the effect of any voltage drop between the regulator's output terminal and the various i.e.'s Vcc terminals plus the droop in the regulator's output at full load (typically 50mV at 25°C and 250mV at 150°C for a 10A load). Clearly, unless the regulator is selected from a batch (expensive) problems may arise. Another disadvantage of this type of regulator is its lower reliability than that of regulators constructed from discrete components. A failure rate of 5% in monolithic regulators operating at high currents (but within their operating limits) has been reported.

The requirements of the +12V and -12V power supplies are very modest. Most microprocessor systems are designed to use, as far as possible, components requiring only a single +5V supply. An exception to this is the RS232C drivers in serial data links which require a +12V and a -12V supply at approximately 20 mA. To simplify the design of the +12V and -12V supplies, an encapsulated power supply is used. This power supply, a single component, is able to supply both the +12V and -12V rails with a current of up to 250 mA. The specified encapsulated power supply has internal protection against the effects of short circuits.
The NEW Marshall’s 79/80 catalogue is just full of components

... our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall’s.

These include Audio Amps, Connectors, Boxes, Cases, Bridge Rectifiers, Cables, Capacitors, Crystals, Diacs, Diodes, Displays, Heatsinks, I.Cs, Knobs, LEDs, Multimeters, Plugs, Sockets, Pots, Publications, Relays, Resistors, Soldering Equipment, Thyristors, Transistors, Transformers, Voltage Regulators, etc., etc.

Plus details of the NEW Marshall’s ‘budget’ Credit Card. We are the first UK component retailer to offer our customers our own credit card facility.

Plus — Twin postage paid order forms to facilitate speedy ordering.

Plus — Many new products and data.

Plus 100s of prices cut on our popular lines including I.Cs, Transistors, Resistors and many more.

If you need components you need the new Marshall’s Catalogue.

Available by post 65p post paid from Marshall’s, Kingsgate House, Kingsgate Place, London NW6 4TA. Also available from any branch to callers 50p.
THE SALYUT 6 RADIO TELESCOPE

Some details of this radio telescope were given in SPACEWATCH in a previous issue. More information has been released and it is now possible to understand how important to the Soviet Space programme this venture was. It is claimed (and rightly so) that the 10 metre diameter aerial was the largest attempted in space. The unsuccessful attempt to deploy it correctly took place at the end of the long period sojourn of cosmonauts Ryumin and Lyakhov aboard Salyut 6. A space walk was necessary to free the after-dock port for future visits of the Progress supply vehicles. It was during this attempt that the Salyut 6 began to oscillate. The aerial was freed on August 15th 1979.

Both Ryumin and Lyakhov underwent extensive training in the techniques of assembling and operating the telescope before they made their extended flight on Salyut 6. They began by practising on lightweight models moving on to more sophisticated equipment at a subsequent stage. The first stage was carried out over a water tank under simulated conditions of weightlessness. Other training involved the accurate pointing of the telescope, the use of the controls and the techniques necessary. They also visited the observatory in the Crimea. The final task was to become familiar with the actual packages of the full scale KR-10, which weighed about 200kg. The largest of the packages was the aerial itself which folded up to about one metre and weighed 100kg.

The two cosmonauts had already been operating on board Salyut-6 some months before Progress-7 arrived with the telescope. Also with the packages came a new film, a training film for the erection and operation of the telescope. This they studied very carefully before beginning operations. Then the packages were transferred to Salyut-6. The various modules were set up, the control panel, the wiring and recording systems and receivers. The actual operation of the assembly was two way; from the ground and via television cameras set on Progress-7 and viewed from Salyut-6. After the successful erection of the aerial, several days were spent calibrating the telescope. The operation of the telescope requires two people.

The completed telescope was operated in conjunction with the 22 metre installation at the space station in the Crimea. The joint operations were timed so that when the Salyut-6 was on the opposite side of the Earth the two aerial systems formed an interferometer with a base line of more than 8,000 miles. Part of the programme undertaken by the cosmonauts was the observation of the emission from Cassiopeia-A, Pulsars, in particular P/R0 239 and cosmic plasma. Part of the observing time was spent on radio-cartography, observing temperatures, humidity and weather conditions.

RENDEZVOUS WITH HALLEY’S COMET

As previously reported, the full mission funds were curtailed for this project. General scientific opinion was that only if the full programme to proceed from Halley on to Temple-2 was followed could the results truly justify the expenditure. NASA has now made a new plan and it is hoped that the Carter Administration will press for this, for it is all after a joint European and United States venture.

This mission was to gather information preparatory to a landing and return from a selected comet with material for analysis. Since such material is believed to be the oldest in the Solar system it would be, as one scientist put it, “more valuable than a ton of rocks from Mars”.

It is widely held among comet specialists that a mission to a comparatively young and active comet like Halley together with an old comet such as Temple-2 or Encke with access to the nucleus would be well justified, since a young comet like Halley has much local atmospheric activity which can be seen again this century, not in fact till late in the 21st century. Perhaps the situation is best summed up by Joseph Veverka of Cornell University. He said ‘Halley is important because it retains the spectacular activity of fresher comets and the only one we can look at is this century’. He went on, ‘the basic fact is that without a rendezvous with a nucleus we will not be able to interpret our Halley data correctly, simply because we do not now know anything about nuclei and would know very little after a fly-by. You will go zooming off at 57km a second having learned very little about the heart of a comet. In fact you will have learned so little about the nucleus that you could not interpret the data of the fly-by. This situation would be a disaster’.

The mission, which involved joint cooperation between the European Space Agency and NASA, is dependent to a considerable extent on participation in particular by Europe in the solar electric development. If the original mission is to be modified there could be the possibility that Europe would not have a part in the later mission. This must cause NASA some concern because it is a distinct possibility that Europe could mount a project of her own. The uprated launcher for the Ariane-3B would be used in this. Europe would be independent of the USA. It is the aspect which bothers the Americans, for in the modified budget conditions they could not guarantee Europe a part of the probe development.

The mission to Halley and other comets is on old ‘must’ for all interested in space. As early as 1973 positive schemes were being talked. With the present advent of the shuttle, the plan would be to launch two solar electric vehicles from a shuttle in about July 1985. The spacecraft would set course directly to Halley’s comet. Two spacecraft would reach the vicinity of the comet in November 1985, the distance then being about 75 million miles from Earth. In order to avoid the debris surrounding the comet a probe would be released to penetrate the coma and pass within 1,000 miles of the nucleus, while the spacecraft turned off toward the sunward side. The other spacecraft would launch its probe through the tail. One spacecraft would go on to rendezvous with comet Tempel-2 or one of the other suitable comets. On command the spacecraft could be brought within 30 miles of the nucleus and stay with it for perhaps a year. It would be possible to ‘see’ objects as small as a tennis ball. Actual contact would also be possible if it were considered useful.

Alternative schemes have been put forward by other companies. Goddard Space Flight Centre have a different approach to the comet missions, which does not involve such a tight fiscal programme and can be done much simpler, even as late as preparing in 1983. Robert W. Farquhar and William H. Wooden have already made a considerable study of the possibilities and they suggest a way. They consider that a boomerang trajectory would be not an economic proposition but would result in the gathering of data at considerably less cost than other methods. They suggest that a spacecraft should be launched into a trajectory that first intercepts Halley and then returns to the vicinity of the Earth a year after launch. This would make it possible to re-target the spacecraft to another comet after the Halley fly-by. By using a series of such manoeuvres the trajectory can be reshaped by successive Earth swing-by impulses.

One suggestion is a piggy-back launch of two spacecraft toward a post perihelion encounter with Halley’s comet in March 1986. One spacecraft would be directed to a close fly-by of the comet nucleus, while the other would be directed through the tail area. Following this event the Earth swing-by technique would be used to re-target one of the spacecraft to Comet Borrelly in January 1988 and the other to Comet Temple-2 in September 1988. The efficiency of this scheme is striking. In three years four comet encounters would take place.
A brief description of the pre-amp was given last month showing that a discrete transistor op-amp was to be employed for the phono and tone control stages. The following refers to one half of the pre-amp, the second channel is of course identical.

Phono Input

Firstly the phono stage (Fig. 8) is based around transistors TR1-5, the RIAA equalisation network consisting of C2 to C5, and R4, 6, 7. Capacitor C6 is switched in or out by S1, and when switched out the response falls below 100Hz so acting as a rumble filter. This facility is incorporated in the phono stage so that the low frequency rumble content of any input is not grossly amplified prior to filtering. The phono stage runs off +15V, this voltage being dropped from the nominal ±30V supply by R16 and R28 and decoupled by C7 and C14.

Phono connection is d.c. coupled to the input stage, no capacitor being required as the input offset voltage is very small. An active collector load in the form of a constant current source comprised of TR5 and D1, 2, is employed which gives very good linearity and low distortion compared with a resistive load. This also allows for high input overload margins at high frequency as available drive current for the feedback network, whose impedance falls with frequency, is independent of output voltage.

For example the impedance of the network at 20kHz is approximately 1500 ohms. If therefore a 1k load resistor was used, for a negative swing it would run out of drive capability at about 1000/(1500 + 1000)V or 0.4Vsupply, obviously not satisfactory, leading to asymmetric slew limiting. It would also give, on a 15V supply, a mean current of 15mA through the resistor with no signal or 30mA with a peak positive signal which would have to be supplied in addition to output and network drive current by TR4. However with a constant current source set at 10.7mA, 0.7mA of drive current is still available with a full negative swing of -15V at 20kHz.

In order to limit the standing current in the phono stage to approx 10mA it is followed by a buffer amp with a gain of two to give a possible output swing of about 56V peak under high input conditions giving a good margin of overload. The tuner and auxiliary inputs are also fed to this stage via an input switching matrix; the gain is set by R22 and 23. It can be seen that this stage is based on TR6 to TR8, and also has an active collector load for TR7. This uses simplified configuration as this circuit does not have to have a high open loop gain. It may also be switched as a scratch or low pass filter, and TR22 is used to negate the impedance of the feedback network so that this stage will have a 12dB/octave roll off. The 3dB point has been chosen as 8kHz. Without TR22 the response is as shown in Gordon King’s tests last month.

A similar but separate stage has been used for tape input buffering, differing in that it has unity voltage gain and no filter capability. This arrangement has the advantage that monitoring of the tape recorder’s own output is possible while recording with, if necessary, scratch filtering being active on the record input. Alternatively an additional tape socket switch may be fitted to allow dubbing, or monitoring of one input whilst recording a different signal on the other.

The tone control circuitry uses the same design philosophy as the disc input stage except that it runs on ±30V and has a collector load current of 5mA. The feedback network consists of the tone controls and supporting components in the Baxandall configuration. This stage may be bypassed by the tone defeat switch if desired.

Power Supply

The negative and positive rails (Fig. 9) are separately derived and regulated. A.C. from the transformer which has a 34-0-34V winding is rectified by D24 to 27, the OV centre tap being returned to ground. Smoothing is accomplished by TR19 and 21, for the negative rail and TR18 and 20, for the positive. The circuits are similar except that one is the mirror of the other. For the positive side TR20 acts as a constant current source for reference diode D18, a 30V Zener type. This is used to give a reference for the base of TR18 which is connected as an emitter follower. Bias current for diodes D20 and 21 is returned to ground via R61; this configuration therefore prevents ripple current being injected into the Zener diode which would impair regulation. Transistors TR18 and 19 should be mounted on a small aluminium heat sink.

Construction

It is recommended that the published layout is followed to avoid ground loops. It can be seen from Fig. 12 that all of the stages described above will mount on this one board in-
Fig. 8. Circuit diagram of one channel of the PE Congress pre-amplifier
including the function switches and bass and treble controls. The phono input sockets should be mounted on a separate p.c.b. (together with R14-114, R15-115, R29-129, R30-130, R57-157, R58-158 and C18-118) so that they can be isolated from the chassis; this is important to prevent ground loops.

When building the pre-amp board good solder joints are essential for proper operation. Remember, if they don't look aesthetic they are no good, see Fig. 10. Do not use too much solder, make sure the joint is covered, use an iron with a small bit and good heating capability and cored 22swg solder. Also ensure that wires are cropped well back. A good quality pair of small side cutters are an essential piece of equipment for this type of project.

It is recommended that all resistors are inserted first, not all at once, as it will be difficult to solder the leads. Do small sections at a time. Then use some of the cropped resistor wires to put in the wire links. Next insert the transistors and diodes. Transistors TR18 and 19 need a small heatsink un-

Fig. 9. Circuit of the main amp. and power supplies for the PE Congress

Fig. 10. Joints shown in a, b and c are badly soldered and not acceptable. The joint in d is correct. Trimming of component leads must be as shown in f and not like e
Fig. 11. Printed circuit board design for the pre-amplifier (copyright Wicca Electronic Systems Ltd.)
Fig. 12. Component layout and wiring of the pre-amplifier board.
COMPONENTS . . .

Unfortunately there were some omissions and inaccuracies in the components list published last month. The following list gives the additional values and corrected specifications:

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R7-107</td>
<td>10k</td>
</tr>
<tr>
<td>R11-111</td>
<td>10k</td>
</tr>
<tr>
<td>R18-118</td>
<td>10k</td>
</tr>
<tr>
<td>R57-157</td>
<td>10k</td>
</tr>
<tr>
<td>R58-158</td>
<td>100k</td>
</tr>
<tr>
<td>R65</td>
<td>100 1W</td>
</tr>
<tr>
<td>R66</td>
<td>10k</td>
</tr>
<tr>
<td>R68-168</td>
<td>10k</td>
</tr>
<tr>
<td>R69-169</td>
<td>47k</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-101</td>
<td>10µF 35V</td>
</tr>
<tr>
<td>C2-102</td>
<td>10µF 35V</td>
</tr>
<tr>
<td>C6-106</td>
<td>100µF 16V</td>
</tr>
<tr>
<td>C10-110</td>
<td>1nF</td>
</tr>
<tr>
<td>C11-111</td>
<td>470µF</td>
</tr>
<tr>
<td>C20-120</td>
<td>680µF</td>
</tr>
<tr>
<td>C21</td>
<td>1.5µF 35V</td>
</tr>
<tr>
<td>C28</td>
<td>1000µF mylar</td>
</tr>
<tr>
<td>C29</td>
<td>22µF 35V</td>
</tr>
<tr>
<td>C30</td>
<td>10µF 35V</td>
</tr>
<tr>
<td>C31</td>
<td>10µF 35V</td>
</tr>
<tr>
<td>C32</td>
<td>10µF 35V</td>
</tr>
<tr>
<td>C33</td>
<td>10µF 35V</td>
</tr>
<tr>
<td>C40</td>
<td>10µF 35V</td>
</tr>
<tr>
<td>C41-141</td>
<td>10µF 35V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR14-114</td>
<td>BC212B or C</td>
</tr>
<tr>
<td>D28</td>
<td>1N4148</td>
</tr>
</tbody>
</table>

Note: TR3, 103 and TR20 to 22 and 122 can be either B or C types, and D24-27 can be 4 x 1N4002.

derneath; they must be isolated by using mica washers as this heatsink is common to both devices. The heatsink should be fabricated from aluminium and sprayed matt black. This heatsink will run quite hot.

The capacitors can then be inserted. Make sure that the electrolytics are correctly polarised, many of them can be instantly damaged if powered up when they are wrongly connected. If this happens they must be replaced, not reinserted. Take great care not to strain the leads when fitting ceramic capacitors. The switch and tone controls may then be inserted and flying leads connected.

Screened lead must be used for all signal leads. The preamplifier may be used independently only requiring a volume and balance control and mains transformer to complete. In this design the 34-0-34V winding is incorporated on the main supply transformer, saving the need for a separate transformer. When powering up first check that there is +30V on the positive rail measured with respect to ground and –30V on the negative rail, and then that there is ±15V on the phono stage. Voltages to be ±5 per cent.

Many of the transistors run quite warm; this need give no cause for alarm. It is suggested that transistor orientation and type, diode orientation and capacitor polarities are all double checked before power is applied.

Next month. Main amp circuit description and construction.
Casio’s new SUPERCALC!

You always wanted a calculator that does everything except make tea —

HERE IT IS!

CASIO FC-8100

46 scientific functions, clock, calendar, alarm, countdown alarm, interval alarm timer, hourly chimes, 1/100 sec stopwatch.

ONE YEAR BATTERY LIFE approx. — used continuously. LC Display; 8 digit exponent plus 2 digit mantissa. 5 level parenthesis, full access memory. Trigs, logs, hyperbolics, standard deviations, co-ordinate conversions, arccos to decimal conversions, fractions, percentage, cube roots, sign change, register exchange, Π entry etc. CLOCK displays hours, minutes, seconds, am/pm and day. CALENDAR pre-programmed to 1999; day, date, month and year. 24 hour ALARM, hourly chimes, countdown ALARM TIMER. Interval (repeater) alarm timer or 1/100 second STOPWATCH measuring net, lap and first and second place times to 10 hours. 6 x 70 x 120 mm (4 x 2 x 4 inches). Leatherette wallet.

ONLY £24.95

STAR BUYS FROM CASIO

81QS-35B Alarm Chronograph

Stainless steel, Mineral glass. Water resistant.

1 YEAR BATTERY. 5 YEAR BATTERIES approx. — used continuously.

Hours, minutes, seconds, date; and day, date, month, year. 12 or 24 hour display; 24 hour alarm, hourly chimes. Stopwatch from 1/100 second to 7 hours; net, lap and 1st and 2nd place times.

(£34.95) £29.95

95QS-36B Chronograph

Similar to above but with dual time (12 or 24 hour) in lieu of alarm and chimes.

£19.95

83QS-41B Alarm Chronograph

Mineral glass. Water resistant.

1 YEAR BATTERY. 3 YEAR BATTERIES approx. — used continuously.

Hours, minutes, seconds, date; and day, date, month, year. 12 or 24 hour display; 24 hour alarm, hourly chimes. Stopwatch from 1/10 second to 12 hours; net, lap and 1st and 2nd place times. Nightlight.

(£34.95) £29.95

C-80 Calculator Watch

(No front touch pads)

Hours, minutes, seconds; am/pm, day. Day, date, month auto calendar pre-programmed to 2000. Professional 34 hour stopwatch; net, lap, 1st & 2nd place to 1/100 sec.

Dual time. 8 digit calculator, Nightlight, Water resistant. Glass: Black resin case/strap 44 X 35.8 X 10.2mm

ONLY £24.95

NEW LOWER PRICES!

P-BC Now only £9.95.

P-200 Now only £12.95.

111OQS-348 £14.95

Send 25p for our illustrated catalogue of Casio and Seiko products.

OUR RETAIL SHOP IS MOVING! PERSONAL CALLERS PLEASE TELEPHONE FIRST.

TEMPUS

Dept. PE, Beaumont Centre, 164-167 East Rd., Cambridge CB1 1DB.

Tel. 0223 313866

Sterling Silver £30 9ct. Gold £69

SEIKO Latest models Around 30% off!

SEIKO’S STAR BUY FOR 1980

TS2 Alarm Chronograph

Complete calendar display of hours, minutes, seconds, date, day, month, year. 24 hour alarm, hourly chimes. 8 digit calculator. Stopwatch from 1/100 sec to 2009. Professional 24 hour stopwatch; net, lap, 1st & 2nd place times.

ONLY £74.95

TS4 Calculator Alarm

800m WATER RESISTANT suitable for swimming, water skiing, etc. Time, date, calendar functions as TS2. Full top alarm (upper display) — interval (repeater) or stopwatch function. Lower display — total time. Audible button operation. 8 digit engraved, 8mm thick plus from buttons.

ONLY £99.95

TS1 Alarm Chronograph

100m WATER RESISTANT suitable for swimming, water skiing, etc. Time and calendar functions as TS2. Identical stopwatch functions but to 12 hours. Hourly chimes. WEEKLY programmable alarm, INTERVAL alarm timer up to 16 hours.

ONLY £74.95

TS5 World Time/Alarm

With two alarms. World time mode displays an atlas.

S/steel; £79.95. Gold plate; £99.95.

TS5 World Time/Alarm

With two alarms. World time mode displays an atlas.

S/steel; £79.95. Gold plate; £99.95.

H127 Analogue/Digital (Same as P.E. offer)

Independent analogue watch. Digital watch with calendar, stopwatch and counter functions.

ONLY £69.95

MELODY 81

£22.95

Clock, calendar, two musical alarms, countdown timer. Stopwatch from 1/100 sec to 12 hours; net, lap, 1st & 2nd place. Calculator with full memory, %, square roots. 5/16 x 44/2 + ".

MELODY 81

£24.95

CASIO LADIES WATCHES

L-10

With calendar, stopwatch, dual time.

L-20

Stopwatch; net, lap and 1st & 2nd place times to 10 hours.

L-70

24 hour alarm and hourly chimes.

8 digit calculator.

ONLY £12.95

87QL-18B

L-20

Plastic watch. Coloured resin band.

L-70

Chromed plated case. Strap.

87QL-18B

Stainless steel case/strap.

£14.95

£22.95

TEMPUS

Dept. PE, Beaumont Centre, 164-167 East Rd., Cambridge CB1 1DB.

Tel. 0223 313866

32

Practical Electronics

May 1980
Surefire Electronic Ignition

REVIEW

Most of the electronic ignition kits currently available are either inductive or capacitive discharge types. These systems have been designed to overcome the problems of inefficient sparking and the rapid deterioration of the ignition timing due to wear, normally associated with conventional systems.

In a conventional system when the contact breakers close the ignition coil stores energy which is released across the spark plugs as the contacts open. This rapid high voltage switching causes arcing, contact wear and a reduction in the amount of energy available to the plugs.

With an inductive electronic system the coil current is switched by the unit and only a small timing current flows across the contact breakers. The coil is used in the same way as a conventional system. This method greatly reduces contact breaker wear and ensures a good spark.

The capacitive discharge system differs from the inductive type by transforming the battery voltage to about 400V and storing this charge in a capacitor rather than the coil. When the contact breakers open the stored energy is released to the coil from the capacitor.

We recently had the opportunity to assess two units from the Suretron range; the ES200 (inductive) and the C300 (capacitive) systems. The ES200 is the kit version of the ES2000 ready built unit which along with the C300 received very favourable comments in a recent "Which" report.

CRITERIA

Probably the most important criteria for judging any kit is whether it is designed for the totally inexperienced builder. Identification of piece parts should be easy and present no ambiguity. Component quality should be excellent and assembly instructions and illustrations should be sufficient so that the builder need have no electronic preknowledge or requirement to refer to a circuit diagram, in order to produce a working piece of equipment.

Also essential is diagnostic back-up so that faults can be rectified if the unit is malfunctioning.

All of this adds up to step-by-step instruction pioneered by Heath and emulated here by Suretron Systems Ltd.

KIT PACKS

Having purchased a kit, be it the ES200 or C300, the first thing to do is to check that everything is there. This is facilitated since all the piece parts come in transparent plastic packs which need not be broken when tucking of contents against the listed contents in the assembly instructions. Besides being listed further identification is possible since a board assembly detail pin-points all of the components.

Assembly is the simple business of splitting the packs and popping in components according to the assembly detail and then soldering.

The iron required should be at least 25W and for those new to soldering instructional notes are included.

Assembly pin-points all of the components.

 IN CAR ASSEMBLY

When wiring to the outside world in an engine compartment siting of the unit determines lead lengths to coil and supply input. Fortunately optimum lead lengths were decided upon so that cutting, stripping and terminating could all be done on the table top without the onus of lifting the bonnet.

With everything completed it only remains to be fitted and set up. To site the unit for optimum performance a list of requirements are set out in the comprehensive fitting instructions.

Before any supply connections are made a number of rewiring checks are made and then in-circuit wiring can be completed. Again for those not electronically minded this is physically delineated for single and double coils and where electronic tachometers are included.

If everything has gone well it only remains to 'tweak' the surrounding electrics such as plug gap, timing resetting and then it's off for improved efficiency motoring. If there are problems then a comprehensive fault finding table is supplied.

Finally, if all else fails you can return your unit to Suretron for either fault diagnoses or repair. A standard charge of £5 will cover this, postage and insurance.

The ES200 unit is suitable for 12V negative earth vehicles only, whilst the C300 can be supplied for either positive or negative earth systems. Voltage or current impulse tachometers will also function with the ES200 unit. However, the C300 system will require a compensator for all current impulse tachometers and some of the voltage contact types. A complete list of checks and type of compensators required is supplied with the kit.

Another useful feature of both systems is an electronic/conventional/off switch to enable the car to be switched back to the conventional system in the event of a breakdown or for comparison tests, electronic tuning etc. The off position disables the ignition and acts as an anti-theft device.

PRICES

The ES200 kit is priced at £13.95 and the C300 is £17.95. If a compensator is required these are priced at £3.90 (All prices include VAT and p&p).

Suretron Systems (UK) Ltd., Piccadilly Place, London Road, Bath BA1 6PW.
THIS article describes a tremolo unit for insertion between a musical instrument and one or two amplifiers. The unit has two outputs, each of which is modulated in antiphase relative to the other, thereby enabling an effect similar to, although not as good as, that achieved by a rotary cabinet.

Three controls are provided; a depth control, a rate control, and an in/out switch. When the depth is at its minimum setting, or the switch is set 'out', the signal presented at the input, is in turn presented at the two outputs with equal amplitude. With the switch set 'in', as the depth is increased the two outputs are modulated in antiphase at a frequency controlled by the rate control, VR2. It is possible to omit the circuitry associated with one channel, to produce a simpler, cheaper single channel unit.

CIRCUIT
The circuit comprises an 8038 function generator chip, of which both the squarewave and sine wave are utilised, the former to drive an I.e.d. to give a visible indication of the operating frequency, the latter to provide the control signal to the modulators. The sine wave output, or rather a fraction which is determined by the setting of the depth potentiometer VR1, is fed to the drain of a field effect transistor, TR1, which is used as the in/out controller. When the switch is in the 'out' position, the gate of TR1 attains a voltage of around +3V relative to its source, so turning hard on, shunting the sine wave drive from the 8038. If the in/out switch is now set to 'in' position, the applied voltage at TR1 gate drops -5V relative to TR1 source, over a period of a few seconds, cutting off TR1, permitting a gently increasing amount of the sine wave drive to reach the next stage, TR2. TR2 is connected as a phase-splitter, generating two signals of equal amplitude, but of opposite phase, at its emitter and at its collector. These two signals are fed to a pair of 741 operational amplifiers, IC2 and IC3, which serve the dual purpose of providing the low impedance necessary to drive the modulator chips, and of providing the level shifting necessary to match the outputs from the transistor’s emitter and collector to the control nodes of the modulator chips. Each 741 is arranged to provide a gain of 2. The modulators are integrated circuits expressly designed for use in this application, and have the property of providing a gain that is proportional to the logarithm of the voltage presented at their control nodes. Such a response is necessary in audio applications to match the logarithmic response of the ear. The two modulators denoted as ICs 4 and 5, are MC3340s. The whole circuit with two modulators installed, takes a current of around 80mA at a supply voltage of 12V (Fig. 1).

POWER SUPPLY
To keep the power supply simple, a single rail 12V supply is used, which is split in the simplest possible way to give a dual supply of ±6V. Splitting is achieved using a pair of resistors to provide the centre point, and a pair of capacitors to provide a.c. bypass (Fig. 2).
Fig. 1. Circuit of tremolo. A foot switch can be used for S1

<table>
<thead>
<tr>
<th>COMPONENTS . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitors</td>
</tr>
<tr>
<td>C1 10µ electrolytic 25V</td>
</tr>
<tr>
<td>C2 15µF electrolytic 16V</td>
</tr>
<tr>
<td>C3 100n</td>
</tr>
<tr>
<td>C4, 5, 7 100µ electrolytic 25V</td>
</tr>
<tr>
<td>C6 470µ 50V</td>
</tr>
<tr>
<td>Resistors</td>
</tr>
<tr>
<td>R1, 2, 3 6k2 (3 off)</td>
</tr>
<tr>
<td>R4 15k</td>
</tr>
<tr>
<td>R5 22k</td>
</tr>
<tr>
<td>R6 47k</td>
</tr>
<tr>
<td>R7 220k</td>
</tr>
<tr>
<td>R8 10k</td>
</tr>
<tr>
<td>R9 150k</td>
</tr>
<tr>
<td>R10, 13, 16 3k9 (3 off)</td>
</tr>
<tr>
<td>R11, 12, 14, 15 270k (3 off)</td>
</tr>
<tr>
<td>R17 5k</td>
</tr>
<tr>
<td>R18 2k</td>
</tr>
<tr>
<td>R19, 20 220</td>
</tr>
<tr>
<td>Potentiometers</td>
</tr>
<tr>
<td>VR1, 2 10k linear potentiometers (2 off)</td>
</tr>
<tr>
<td>VR3, 4 10k presets (2 off)</td>
</tr>
<tr>
<td>Semiconductors</td>
</tr>
<tr>
<td>IC1 ICL 8038</td>
</tr>
<tr>
<td>IC2, 3 741 (2 off)</td>
</tr>
<tr>
<td>IC4, 5 MC 3340 (2 off)</td>
</tr>
<tr>
<td>IC6 723</td>
</tr>
<tr>
<td>TR1 2N3823</td>
</tr>
<tr>
<td>TR2 BC184/107/108/109 etc</td>
</tr>
<tr>
<td>D1 TIL 209 i.e.d.</td>
</tr>
<tr>
<td>D2–5 1N4001 (4 off)</td>
</tr>
<tr>
<td>Transformer</td>
</tr>
<tr>
<td>T1 12V at 250mA</td>
</tr>
<tr>
<td>Miscellaneous</td>
</tr>
<tr>
<td>Box 6½ in x 4½ in x 2½ in (RS 509-995)</td>
</tr>
</tbody>
</table>

Fig. 2. Power supply
Fig. 3. Small component layout

Oscillograms

Output at pin 2 of IC1

Collector/emitter outputs of TR3

Outputs of IC4/IC5 at 50% modulation

Outputs of IC4/IC5 fully modulated
The power supply itself comprises a 12V transformer, a diode bridge, and a capacitor for smoothing, generating an off load voltage of around 17V across C6. This is fed to a 723 stabiliser integrated circuit, whose control resistors have been chosen to provide a stabilised output voltage of around 12V. Note that, although the circuit of the tremolo requires a stabilised power supply, the actual value of the supplied voltage is not critical, so it is not necessary to adjust the 723s control resistors to attain an exact 12V supply. It should be noted that, although the 723 is running at less than half of its rated power dissipation, it does get quite warm, and free access of air is advised.

CONSTRUCTION
Construction is not particularly critical, although to minimise hum pickup the use of screened wire for signal paths is recommended, as is the use of an earthed metal box. Those who wish to use the device on stage will probably not need to be advised to use a very robust box!

SETTING UP
After construction has been completed, and the usual checks on wiring, etc., have been made, the unit will require some adjustment of the two presets VR3 and VR4. Initially, these two presets should be set to their mid-positions, and the unit powered up. The I.e.d. should be observed to be flashing at a frequency of between 0.2Hz and 5Hz, and it should be possible approximately to cover this range by adjustment of the rate control. At this point a signal source of around 1V peak-to-peak, preferably a static source, such as a signal generator, is required. Additionally, either an oscilloscope or a stereo amplifier is required. If it is necessary to use a stereo amplifier, a pair of headphones will render setting up a little easier. With the depth control at its minimum position, i.e., with the slider at the “earthy” end, adjust VR3 and VR4 until output signals of the same amplitude as that of the input signal, are observed. As the depth control is advanced, modulation of the output signals to a depth determined by the depth control should be observed. At maximum depth, it may be necessary slightly to readjust VR3 or VR4 until the period of signal cut-off is the same for both channels.

For those readers who have access to an oscilloscope and a signal generator, the following waveforms may be observed.

MODIFICATIONS
It is possible to remove several components to produce a single channel version, namely IC3, IC5 and their associated components: TR2s emitter resistor should be retained. If the gentle build up of tremulant provided by the circuitry around TR1 is not required, the in/out switch may be wired from VR1 slider to earth, and TR1, R6, R7, R8 and C2 omitted.

Programmable Character Generator
High resolution user defined graphics from 2K byte static RAM. These can be mixed with standard characters by relocating the Nascom Graphics ROM to this board. Compatible with Colour Board.

Colour Board
High or low resolution for PAL. SECAM. NTSC or RGB. High resolution uses 6K RAM giving 16 colours. Foreground and background colours are definable on a 96 x 48 matrix (4608 points). Low resolution reduces the matrix to 48 x 48 using 3K RAM.

Floppy Disc Controller
Capable of running up to four Siemens double density, double sided 5 1/4" mini floppy disc drivers, using the 1791 i.c. Real time loop transfer.

A buyer’s starting point would be the cabinet, incorporating PSU module (3A or 5A depending upon choice of boards), and up to four of the 8 x 8in. expansion boards.

System 80 appears to give an unprecedented degree of flexibility for the price, and would facilitate the continual growth of a system without recourse to unsightly add-ons. Such resilience removes the necessity of knowing in advance the direction in which expansion of a system might need to go. An expansion box is currently being designed to enable another five-board unit to be added to the system. These expansion boards are being released over a four month period, the last to appear being the Floppy Disc Controller.

Three sample configurations and their prices are: 32K system—£505, 96K system—£785, and a 48K system with twin 5 1/4" double density sided soft sectored floppy discs—around £1270, giving 1M byte of memory.

With some 15,000 Nascom Is sold, and 3000 Nascom 2s so far, NM’s three years experience in micro board design, culminating in System 80, should establish the company firmly among the leading European microcomputer manufacturers.

News Briefs

NASCOM LAUNCH SYSTEM 80

MOVING into the “packaged desk top microcomputer” market, which Nascom consider to be dominated by either highly priced or inflexible products, this entirely UK owned company announced to the press at the end of February, the launch of System 80. This being a systems application of their Nascom 2 single board microcomputer.

Flexibility is the key word, because inside the tough, if rather austere, glass-reinforced plastics case is a five card Nasbus motherboard, allowing virtually any configuration based on the following:

Nascom 2
Providing 280 CPU with 8K Microsoft BASIC, cassette interface, TV/video output, and QWERTY keyboard.

I/O Board
When fully populated houses 3 x MK3881 P10, 1 x MK3882 Counter/Timer, and 1 x 6402 UART.

Dynamic RAM Card
16K, 32K and 48K options, with full on-board chip support. Based on 4116 Dynamic RAM.

Capable of running up to four Siemens double density, double sided 5 1/4" mini floppy disc drivers, using the 1791 i.c. Real time loop transfer.

A buyer’s starting point would be the cabinet, incorporating PSU module (3A or 5A depending upon choice of boards), and up to four of the 8 x 8in. expansion boards.

System 80 appears to give an unprecedented degree of flexibility for the price, and would facilitate the continual growth of a system without recourse to unsightly add-ons. Such resilience removes the necessity of knowing in advance the direction in which expansion of a system might need to go. An expansion box is currently being designed to enable another five-board unit to be added to the system. These expansion boards are being released over a four month period, the last to appear being the Floppy Disc Controller.

Three sample configurations and their prices are: 32K system—£505, 96K system—£785, and a 48K system with twin 5 1/4" double density sided soft sectored floppy discs—around £1270, giving 1M byte of memory.

With some 15,000 Nascom Is sold, and 3000 Nascom 2s so far, NM’s three years experience in micro board design, culminating in System 80, should establish the company firmly among the leading European microcomputer manufacturers.
LIVE CURSOR AND LINE EDIT

One of the limitations of the 101 which sets it apart from the more expensive machines is its lack of an editor. For example, somewhere in a long PRINT statement you may discover you've missed out a semicolon. If you have already hit Return, the only way to correct the error is to retype it all.

Now there is a Screen Monitor and Line Editor, created by Roger Cuthbert, which makes an impressive addition to the UK 101's capabilities.

An example of its use is as follows. You wish to change the length of the time delay produced by the statement T=5.

105 FOR T=1 TO 5000 NEXT

from about five seconds to ten seconds. It is possible to change line 105.

The Editor program, the following rules would apply to change line 105.

- Type LIST 105
 - The line must be listed separately because it is a single line editor.

- Type CTRL E
 - Causes entry into Line Editor mode. A flashing cursor is then seen.

- Type CTRL K
 - To move the cursor up (if necessary).

- Type CTRL I
 - To move the cursor right until it is over the character to be deleted. In this case the 5.

- Type RUB OUT
 - The 5 disappears, and the rest of the line closes up to remove the space which would otherwise remain.

- Type 10
 - The 10 will insert itself into the line, with all the characters to the right automatically moving along to make room.

- Type RETURN
 - Whilst the cursor is still within the edited line to “digest” the correction.

The full set of Editor cursor controls are shown in Table 1. If you forget to LIST the line separately, you end up with several statements strung together.

<table>
<thead>
<tr>
<th>Table 1. Moving the cursor in Edit mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL K</td>
</tr>
<tr>
<td>CTRL J</td>
</tr>
<tr>
<td>CTRL I</td>
</tr>
<tr>
<td>CTRL H</td>
</tr>
</tbody>
</table>

It is easy to see how time saving this feature would be to someone developing sophisticated software on the 101.

In the system as we reviewed it, there were three re-entry points after a reset, which had to be accessed by pressing M for Monitor.

These were as follows:

- Cold Start BASIC $1FF6
- Warm Start BASIC $1FFA
- Extended Monitor $1FF4

When first loading the Editor from cassette, however, the 101 jumps straight to:

MEMORY SIZE and so is "user transparent" at that stage.

The foundation stone of the Editor is the Screen Monitor, which allows mobility of the cursor in all directions. Out of editing mode, cursor control is achieved during program execution by printing special character strings, followed by a semicolon. See Table 2.

- CTRL A
 - Causes entry into Line Editor mode. A flashing cursor is then seen.

- CTRL K
 - To move the cursor up (if necessary).

- CTRL I
 - To move the cursor right until it is over the character to be deleted. In this case the 5.

- Back Space
 - Deletes the character to the left of the cursor. In this case the 5.

- Move Right
 - Direct keyboard-(Edit mode only)
 - Program control-
 - PRINT CHR$ (12);
 - PRINT CHR$ (11);
 - PRINT CHR$ (8);

- Move Down
 - Direct keyboard-(Edit mode only)
 - Program control-
 - PRINT CHR$ (13);

- Range Left
 - Places cursor at beginning of line.
 - Program control-
 - PRINT CHR$ (13);

- Line feed
 - Direct keyboard-(Edit mode only)
 - Program control-
 - PRINT CHR$ (10);

Example: To Home Cursor, say, HS$.

HS$=CHR$(13) FOR J=1 to 15: HS$=HS$+CHR$(11) NEXT

From then on PRINT HS$.

This software is to be available on cassette from Comp Shop, and may also be incorporated in a revised Monitor ROM for the 101.
The ground base is represented by a L on the bottom of the 5th display digit. The U.F.O's are rapidly moving dashes which move across the top of the display. When the dash is above the base and a key is pressed simultaneously, the display around the base lights up to indicate a hit, and the right-hand most digit increases by one to show the number of hits. The explanation of the program is provided next to it.

KEYBOARD WITH CHARACTER

The following is a table of characters directly available from the 101 keyboard, submitted to Prompt by Richard Schofield of Horsham, Sussex.

<table>
<thead>
<tr>
<th>CHAR.L.H.SHIFT</th>
<th>CTRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>3</td>
</tr>
<tr>
<td>e</td>
<td>4</td>
</tr>
<tr>
<td>f</td>
<td>5</td>
</tr>
<tr>
<td>g</td>
<td>6</td>
</tr>
<tr>
<td>h</td>
<td>7</td>
</tr>
<tr>
<td>i</td>
<td>8</td>
</tr>
<tr>
<td>j</td>
<td>9</td>
</tr>
<tr>
<td>k</td>
<td>A</td>
</tr>
<tr>
<td>l</td>
<td>B</td>
</tr>
<tr>
<td>m</td>
<td>C</td>
</tr>
<tr>
<td>n</td>
<td>D</td>
</tr>
<tr>
<td>o</td>
<td>E</td>
</tr>
<tr>
<td>p</td>
<td>F</td>
</tr>
<tr>
<td>q</td>
<td>G</td>
</tr>
<tr>
<td>r</td>
<td>H</td>
</tr>
<tr>
<td>s</td>
<td>I</td>
</tr>
<tr>
<td>t</td>
<td>J</td>
</tr>
<tr>
<td>u</td>
<td>K</td>
</tr>
<tr>
<td>v</td>
<td>L</td>
</tr>
<tr>
<td>w</td>
<td>M</td>
</tr>
<tr>
<td>x</td>
<td>N</td>
</tr>
<tr>
<td>y</td>
<td>O</td>
</tr>
<tr>
<td>z</td>
<td>P</td>
</tr>
</tbody>
</table>

The program is:

```
101

GAMES GALORE

The 101 software gap closes. Here is a marathon contribution from Mr. A. Knight of Cleveland, who sent us eight games programs to look at, with permission to publish one of them; not that we could have found room to list them all anyway!

Nim

A computer version of the game where matchsticks must be removed from a pile, each player seeking to avoid removal of the final one. Although this is man versus machine, Compukit always grants its inferior human opponent the choice of how many rows of matches, and the maximum length of any row. The game is enhanced by good graphics, and a "Resign" key is thoughtfully designated to avoid the pointless continuation of a game already lost. Difficult to win without threatening to remove ROMs!

Noughts & Crosses

Standard game versus the computer, three levels of play. The highest level is classified as unbeatable, so I can only suggest playing this level late at night when the machine is tired. One can return to the lowest level of play to repair one's ego, since winning is easy. Level Two is ideal. The machine keeps a cumulative score board for series playing, and the information is well presented on the screen.

Mastermind

Based on original game. The computer tells you how many attempts it took you to crack its randomly selected code number. Each time you test a number, an asterisk appears for each correct digit, and a cross-cross symbol for any digit the code includes but in a different position.

La Passe-Temps

Beat the machine to four -in -a -row on any axis, but the 6 x 7 playing grid is subject to gravity, so that the machine's marker and yours have to be dropped from the top of each column, to fall as far down as they can. Difficult and addictive. The challenge, is not being made to look silly by a p.c.b. full of chips. The only consolation is that you can see the computer getting worked up when you make life difficult for it. A cumulative score is registered.

Armless Bandit

You are playing with "software money", and the bandit pays out for three or four of a kind in adjacent slots.

Periodical free spins allow a "hold" facility, but this is subject to a reaction test. The space bar sends the wheels tumbling round, and the pay out value of all symbols is constantly displayed, along with your dwindling cash balance. Good screen layout.

Hangman

Excellent graphics! Alphabet appears at bottom of screen so that letters can be selected by a mobile pointer. The clues, and target names, e.g. TV programme, book title, etc., can be altered quickly since they are listed as block data statements.

Don't get hung, there is a macabre animated ending! The only disappointment is that you don't find out what the name or title was if you fail. Presumably it is then saved for another game.

Stud Poker

Man versus machine in standard five card stud game, with £5,000 cash in hand at outset. Good screen format, but note, this program requires 8K RAM. The question is — would it pay out real money if you hooked up a good enough printer?

Blackjack

Play two hands against the dealer, which is the 101. You start with £100 and the winner is the first to reach £250. This program can be cut to run on a 4K machine by erasing the lines which contain the instructions on how to play.

These programs seem to be carefully thought out, and protected against most incorrect key presses which can cause an annoying jump to Command Code. We decided to publish the listing for Le Passe-Temps because it was reasonably short and great fun to play, but owing to lack of space, this will appear in the next Prompt. The programs would seem good value for money and details of how to obtain them can be found in the advertising pages of this issue.

ALLIED USERS' GROUP

The OSI UK User Group published their first quarterly newsletter in December last year and have kindly sent us a copy. This group can accommodate 101 users.

The OSI group's Newsletter One contained useful information on memory locations and BASIC routine entry points, much of which will be common to both C2 and 101 users. These two groups should have a lot to offer each other.

A year's membership of the OSI UK Group costs £5 and naturally includes the newsletter. Details are available from George Chkiantz at 15 Nayland Ave., Gresford, Wrexham, Clwyd.
ANIMATED GRAPHICS

MEMORY MAPPED VIDEO

The screen of the UK 101’s TV or VDU may be thought of as a block of memory resembling an array of adjoining boxes, about a thousand in all, each identified by a number:

The “boxes” are numbered consecutively as shown in Fig. 1, starting at number 53248 and finishing at number 54271. We can put any character in any of the boxes by using the POKE instruction. For example:

10 POKE 53985, 6
followed by RUN, should cause the graphic character number 6 to appear near the centre of the screen.

Fig. 1. Character slot grid produced by the 101’s memory mapped video RAM. The numbers indicate sample RAM addresses at which a character must be stored to occupy that position on the screen.

Now a word of caution: Not all the boxes that may be filled are visible on the TV screen. A little experiment with the POKE instruction may be necessary to prevent your graphics disappearing off the side of the screen! See Fig. 2.

MOVE IT

Now suppose we want to move the character we have just put on the screen, say, to the right. All we have to do is to use the POKE instruction again with the number of the box immediately to the right of location 53985. This will be:

POKE 53986, 6

but we have to empty the previous box to give the impression that the one character moved. This is done by putting a blank (graphic or ASCII character number 32) in the previous box.

The full program becomes:

10 LET X = 53985
20 POKE X, 6
30 FOR Z = 1 TO 100 STEP 0.1
40 NEXT Z
50 LET X = X + 1
60 GO TO 20

Notice that once the character has “disappeared” from the right-hand side of the screen, it re-appears some seconds later at the left-hand side but on the next line down. This feature can be very useful.

This idea can be extended to move a graphic in any direction. The following diagram shows how. Contained in each box is the number which must be added to the number of the previous box in order to effect a move.

As an example, if the number of the centre box is 53985, then executing:

10 LET X = 53985
20 POKE X, 6
30 POKE (X + 1), 6
40 POKE (X + 65), 6
50 POKE (X + 64), 6
60 POKE (X + 63), 6
70 POKE (X - 1), 6
80 POKE (X - 65), 6
90 POKE (X - 64), 6
100 LET X = X - 63, 6

should cause the pattern of Fig. 4 to appear.

Fig. 4. The effect of POKEing the same graphic symbol to a group of adjacent character slots, using the relative address relationship.

KEYBOARD CONTROL

When writing your own computer games, it is useful to be able to move characters about the screen by pressing nominated keys, each controlling a different direction of movement. The strategy for achieving this is to:

(a) Disable the keyboard so that keys accidentally pressed have no effect.
(b) Test for certain keys having been pressed.
(c) Upon detection of the correct key branch in the program to a subroutine that causes the graphic to move in the required direction.

As an example, suppose we wish to invent a game which required us to control the graphic for an aircraft on the TV screen.
We require sideways movement as well as up and down. The
nominated keys might be:
key “1” ... move left
key “2” ... move right
key “3” ... move up
key “4” ... move down
(a) We can disable the keyboard using the special instruction
POKE 530, 1
(b) The keyboard may be treated as memory location 57088.
The instruction POKE 57088, 127 selects the numerical row of keys on the keyboard. We can test if a particular key has been pressed, with the instruction PEEK (57088) =
If PEEK (57088) = 127 then key 1 has been pressed.
If PEEK (57088) = 191 then key 2 has been pressed.
If PEEK (57088) = 223 then key 3 has been pressed.
If PEEK (57088) = 239 then key 4 has been pressed.
Values for other keys are given in the Compukit manual.
(c) Suppose that key 1 has been pressed and detected. We must now branch to a program subroutine to move the graphic to the left. If we use graphic No. 239 (←) and its original box was X, then the subroutine might take the form:
100 LET X = X - 1 new box number
200 POKE (X + 1), 32 erase old box
300 POKE X, 239 graphic to new box.
I will now give an example of a simple game called “TARGET INTERCEPT” which I have constructed using the above techniques.

TARGET INTERCEPT
A target appears on the screen in a random position. A missile also appears, again in a random position. The missile may be steered left, right, up or down by keys 1, 2, 3 and 4 respectively. The missile must be steered to hit the target. The missile is given only limited fuel so that the shortest route should be chosen. Running out of fuel ends the game. A hit is registered with a message and an indication of the fuel left before impact.

10 FOR Z = 53250 TO 54270 clears screen.
20 POKE Z, 32
30 NEXT Z
40 LET T = 50 T = fuel allowance.
50 LET N = INT(1000*RND(1) + 53248) Random box for target.
60 POKE N, 6 target into box.
70 LET X = INT(1000*RND(1) + 53248) Random box for missile.
75 LET Y = 237
80 POKE X, Y
85 LET T = T - 1
87 IF T = 0 THEN 320
90 IF X = N THEN 340
100 POKE 530, 1
110 POKE 57088, 127
120 IF PEEK (57088) = 127 THEN 240
130 IF PEEK (57088) = 191 THEN 170
140 IF PEEK (57088) = 223 THEN 200
150 IF PEEK (57088) = 239 THEN 280
160 GO TO 100
170 LET X = X + 1 Move right.
180 POKE (X - 1), 32
190 GO TO 75
200 LET X = X - 64 Move left, change graphic to 236. ←
210 Y = 236
220 POKE (X + 64), 32
230 GO TO 80
240 LET X = X - 1 Move down, change graphic to 239. ↓
250 Y = 239
260 POKE (X - 64), 32
270 GO TO 80
280 LET X = X + 64
290 Y = 238
300 POKE (X + 1), 32
310 GO TO 80 Move up, change graphic to 236. ↑
320 PRINT “OUT OF FUEL ... TARGET NOT DESTROYED”
330 GO TO 350
340 PRINT “TARGET DESTROYED, WELL DONE”
345 PRINT “YOU HAD”; T; “GALLONS OF FUEL LEFT”
348 PRINT “FROM THE ORIGINAL 50 GALLONS”
350 END
Note: Some early 101s have slightly different video RAM mapping to that detailed here and elsewhere in prompt. We hope to clarify the differences in a future issue.

MORE ON ULAS
T HE feature on ULAs in the February issue provided only a superficial view of these versatile bipolar LSI chips. In scope, since their inception in 1972 by Ferranti, hundreds of designs have been completed covering a wide range of applications.

To supplement the information we published, Ferranti have available a technical handbook, price £1, which provides in depth information on device technology and product range. This can be obtained from Ferranti Electronics Limited, Fields New Road, Chadderton, Oldham, OL9 8NP.

GLC AND CB
T HE Greater London Council is considering asking Londoners if they would like to see the introduction of legalised Citizens’ Band Radio in this country.

The benefits to society that CB can offer have already been pronounced, but a well worn argument against, is that criminals would use it during bank robberies. Law abiding criminals are presumably at present precluded from robbing banks by the absence of legal CB! Sir Horace Cutler said: “There is growing pressure for the legalisation of CB radio and the GLC wants to study the implications for London”.

News Briefs

CLUB CHANGE

THE West Midlands Amateur Computer Club meet at 7.30 pm on the second and fourth Tuesday of each month, now at Elmfield School, Love Lane, Stourbridge, West Midlands.

Annual subscription is £3 for 1980 and visitors are allowed a free visit to see what it’s all about. With 60 members, there are 8 PETs, 12 Nascoms 1S, 5 Nascoms 2s, 3 TRS 80s, 4 Newbear 7768s, a Sharp MZ80, 2 Apples, plus 12 other assorted systems. What! No Commodore? Or are they merely “assorted systems”?

The Club Secretary is John Tracey, 100 Booth Close, Kingswinford, West Midlands.
OTHER than radio, two electronic methods are in common use for the remote control of electrical equipment in the home: one uses ultrasonics as the carrier of the control information and the second uses infra-red waves which, like radio but unlike ultrasonics, are electromagnetic in nature. Incidentally, if ultrasonic waves were capable of transmission over distances comparable with radio and light there would be an unacceptable delay in the propagation of the control signal for terrestrial application since sound travels at only 330 metres per second (approximately) compared with light which travels the same distance in about one microsecond!

The availability of low-cost ultrasonic transducers which are already tuned to selected frequencies, commonly 40kHz, makes ultrasonics a popular choice for a short-range control system. But since infra-red light-emitting diodes are also generally available, an opto-electronic control system offers two attractive features not met by ultrasonics: infra-red, like light, can be focused by lenses therefore improving the range over which control is possible and, secondly, the infra-red I.e.d. output can be easily modulated so that a precisely tuned control system is possible which is much less prone to false triggering than an ultrasonic system. Indeed, so popular have infra-red control systems become that purpose-designed i.c.s. now facilitate the design of sophisticated multi-channel control systems which are a feature of an increasing number of domestic TV receivers and hi-fi systems.

This design uses infra-red I.e.d.s and lenses in a "tuned" system providing two independent channels for switching on and off mains appliances rated at not more than 750W. Improvement in range largely depends upon the choice of I.e.d. and on the lenses, particularly in the hand-held transmitter unit which, of necessity, has to be small. The receiver is fitted with an adjustable lens head which facilitates alignment of the transmitter and receiver.

CIRCUIT DESCRIPTION

The transmitter circuit shown in Fig.1 is based on a 555 timer wired as an astable multivibrator giving a rectangular output waveform with a mark-space ratio of 15:1. The switches S1 and S2 select resistors R1 and R2, respectively, which cause the circuit to oscillate at 33kHz and 25kHz, respectively. These two switches are double-pole, push-to-make momentary action types so that the 9V power supply is operated simultaneously with the selection of the resistor. Note that, provided the two frequencies are stable, their precise values are not important since each channel is tuned individually in the receiver circuit. The infra-red I.e.d. is forward-biased for a brief period of about 2-5μs when the output of the 555 timer is near 0V. The average power dis-

A two channel remote control system capable of switching mains loads of up to 750W.
The amplified signal at pin 6 of the op amp, now very like a sine wave but at a frequency of either 25kHz or 33kHz, is passed on to both input pins (3) of the phase-lock loops, IC3 and IC4, via capacitor, C5.

The external components, VR1 and C11 of IC3, and VR2 and C12 of IC4, determine the capture frequency of the phase-lock loops, VR1 allowing tuning to 25kHz and VR2 to 33kHz. When capacitor C5 passes a signal of frequency 25kHz into IC3, the latter's output voltage at pin 8 drops sharply to zero. Likewise if IC4 received a signal of frequency 33kHz, the voltage at pin 8 of IC4 falls sharply. The fall in voltage switches off transistors TR2 or TR3 so that the voltage at points A or B sharply rises. Either of these fast rising voltages triggers the edge-triggered monostables in the dual package, IC5.

Components R17 and C15, and R18 and C16, provide a positive signal at pins 6 and 10 of about 0.5 seconds duration. IC5 has the task of providing a cleaner pulse with which to operate the dual flip-flop, IC6. Alternate pulses from the monostable set the flip-flop outputs, pins 2 and 14 first high and then low thereby controlling the relays, RLA and RLB, in the collector loads of transistors TR3 and TR5. Thus, mains loads can be switched on and off by means of the normally open relay contacts of RLA and RLB.

The mains power supply shown in Fig. 3 provides a stabilised 10V d.c. output. The secondaries of T1 should be wired in parallel. This supply is a conventional series voltage regulator using a 741 as an active control element to maintain output voltage at the selected Zener voltage, D7.
regardless of varying loading of the regulator. Note that the voltage to drive the relays is taken from the unregulated line to ensure that the higher voltage present on this line reliably operates the relays.

**OPTICS**

Attention must be paid to the optics of this optoelectronic control system as well as to the electronic aspects. Fig. 4 indicates the important features of the lens system required. Since the infra-red I.e.d. produces a wide angle beam, a convex lens of short focal length and large diameter is used. Similarly, the convex lens which focuses the energy onto the photodiode in the receiver unit should

**COMPONENTS . . .**

### Resistors

- R1: 47k
- R2: 68k
- R3, R9, R10, R11, R15: 4k7 (5 off)
- R4, R6, R7: 100k (3 off)
- R5: 2k2
- R8, R19, R20: 1m (3 off)
- R12, R16: 56k (2 off)
- R13, R14, R22, R23: 10k (4 off)
- R17, R18: 330k (2 off)
- R21: 1k5

All resistors ±10% carbon

### Potentiometers

- VR1, VR2: 10k 20 turn trimmer (2 off)

### Capacitors

- C1, C4: 470p polystyrene (2 off)
- C2: 1n polystyrene
- C3: 22µ 16V tant
- C5, C11, C12: 10n polyester (3 off)
- C6, C7: 20n polyester (2 off)
- C8, C9: 5n polystyrene (2 off)
- C10: 47µ 16V tant
- C13, C14: 100n polyester (2 off)
- C15, C16: 4µ7 16V tant (2 off)
- C17: 2200µ 25V elect
- C18: 470µ 25V elect

### Semiconductors

- D1: LD 231 or LD 242 infra-red I.e.d.
- D2: BPW41
- D3, D4, D5, D6: IN4001 (4 off)
- D7: 10V 400mW Zener
- TR1, TR2, TR3, TR5, TR7: BC109 (5 off)
- TR4, TR6, TR8: 2N3053 (3 off)
- IC1: 555
- IC2: 3130
- IC3, IC4: 567 (2 off)
- IC5: 4528
- IC6: 4027
- IC7: 741
- IC10: 1-6A in line bridge rectifier

### Lenses

- Two convex lenses each of focal length 3 to 5cm are required. The transmitter lens should be 20mm dia and the receiver at least 40mm dia.

### Miscellaneous

- T1: 15-0-15V 0-2A
- TO5 heatsink for TR8
- RLA, RLB: 1850 240V 3A relays
- S1, S2: d.p. push to make
- B1: PP3 battery
- Two switched 13A sockets
- Suitable cases
- Veroboard
have a short focal length for this will give it a wide angle of acceptance and make it more tolerant of deviations in the beam from the transmitter.

To facilitate focusing both the l.e.d. and the photodiode must be capable of slight adjustment along the lens axes. Remember that the focal length of a convex lens is slightly longer for infra-red than for visible light. The overall purpose of the optical system is to produce a parallel, or collimated, beam from the transmitter and for the receiver optics to focus this beam onto the photodiode.

ASSEMBLY

Three pieces of Veroboard are required for assembling the circuits and these are shown in Figs. 5, 6 and 7 for the transmitter, receiver and power supply, respectively. The usual precautions are required when using 0.1 matrix Veroboard, in particular, care should be taken to sever the tracks at the points indicated on the circuit layouts, make the use of holders for the i.c.s and carefully check the completed circuit to ensure that solder has not inadvertently joined together adjacent tracks.

The p.s.u. and the receiver board are fitted into the base of the receiver case as shown in the photograph, together with the aluminium panel for the two relays. Wires are required externally for connection to the mains and to the photodiode in the optical pick up head mounted on the case. The construction of the pick up head is also shown opposite. Note that adjustment is provided for the lens to be moved slightly towards or away from the photodiode to facilitate focusing.
The transmitter components; two switches and PP3 battery will fit into the case recommended provided the Veroboard is cut to the shape shown in Fig. 6. The infra-red l.e.d. fits into a wooden, hand-formed holder which projects from the end of the unit. The l.e.d. can be moved a small distance along the axis of the tube to help in setting up the system and a clamp is provided to tighten the l.e.d. in place after adjustment is made.

**TESTING**

The operation of the transmitter circuit can be checked out before the receiver has been completed if an oscilloscope is available. The oscilloscope should be connected between pin 3 and ground (IC2) and the waveform noted as switches S1 and S2 are pressed. Note for future reference which switch produces the higher frequency, i.e. 33kHz. If an oscilloscope is used to measure these frequencies it does not matter if the measured frequency is more or less than the nominal frequency by 1kHz. Also observe the mark-space ratio of the waveform is about 15:1 and check that the l.e.d. is wired correctly in the circuit, cathode to pin 3 of IC1.

Once you have very carefully checked all the wiring to the various components in the receiver unit, particular care is needed in checking the mains connections to the transformer and mains sockets, the receiver unit can be plugged into the mains whereupon the relays may be heard to energise depending upon the states of the outputs of the flip flops of IC6.

Two small holes should be drilled in the case in line with the trimmers VR1 and VR2 for the next stage of setting up. With the transmitter activated by pressing one of the "transmit" switches, and set at a distance of about a metre away from the receiver optics, one of the trimmers in the receiver is adjusted until one of the relays is heard to operate. A whole turn of the trimmer screw will bring the associated phase-lock loop into and out of its capture band.

Patience is needed in finding the position on the trimmer when the receiver circuit latches onto the transmitted signal frequency but the process is eased slightly if a high impedance voltmeter is connected between pin 8 and ground (OV) of IC2 or IC3; set at 10V d.c. the voltage will fall to zero when the receiver is responding to the transmitted infra-red signal.

Do not attempt to find the setting of the trimmer for maximum sensitivity at this stage but repeat the preliminary setting up procedure for the other channel of the control system by adjusting the other trimmer when the second switch in the transmitter is operated.

Once the two receiver relays are operating reliably when the transmitter is operated at a distance of a metre or so, the system may be tuned to maximum sensitivity for which you will need the help of a patient friend. You will find it much easier to operate the system if the transmitter switch is kept pressed and the transmitter beam is waved across the field in front of the receiver optics head. Practice will improve your performance here. With the friend operating the screwdriver or the transmitter, increase the separation of the two units by a metre or so at a time and make slight adjustments to each trimmer in turn until the receiver can be operated reliably at the maximum range of the system. Once this maximum has been reached the collimation of the optical system can be attended to. Very small adjustments to the separation of the photodiode and its convex lens and the l.e.d. and its lens ought to improve the range. The general idea being to place the l.e.d. and the photodiode at the principal focus of the respective lens for the infra-red light being used. In this way the transmitter produces a parallel beam of infra-red light and the receiver optics focuses this beam onto the photodiode at its principal focus. Of course, the whole of this alignment and tuning procedure can be made much more interesting if a lamp is plugged into the sockets on the receiver unit.

---

**News Briefs**

**FIRST ON THE AIR**

**THE first woman** in the world to broadcast on radio, Mrs. Winifred Collins, celebrated the 60th anniversary of her historic achievement as guest of honour of GEC-Marconi Electronics Ltd., last February.

The photograph shows Marconi engineer Mr. W. T. Ditcham, said to be the world's very first broadcaster, at the 6KW transmitter used in his original experiments.

*Photograph courtesy of GEC-Marconi Electronics.*
No doubt you will by now have found your free sheet of STICKIES. The ones you have are for the popular 4000 series of CMOS i.c.s plus a few blank 14 and 16 pin ones that can be filled in as required. Sheets of TTL (7400 series) are also available—details later.

FAULT FINDING

Having constructed a piece of equipment it helps with circuit checking and fault finding if each i.c. has its corresponding label attached. Each pin is then either labelled or its internal connection is shown in schematic form.

P.C.B. LAYOUT

STICKIES are also very useful for designing p.c.b.s. Simply stick them down on a sheet of paper and join the pins with pencil lines. They then provide immediate identification of each i.c. and its pins and form a reference for the i.c. size and pin positions.

PROTOTYPING

Many amateurs and professionals employ some type of plug in breadboard for phototyping. When using unfamiliar i.c.s STICKIES can provide an immediate pin reference, helping to speed up inter wiring and eliminate mistakes. Of course once the i.c. is labelled it can be used later and the STICKIES will always provide pin identification without recourse to charts or reference books.

STORAGE

STICKIES should be stored away from direct sunlight avoiding extremes of temperature and humidity. The adhesive used is a general purpose removable type which is suitable for use between –40 and +70 degrees C.

The data printed on STICKIES has been carefully checked and is believed to be entirely reliable; however, no responsibility can be assumed for inaccuracies.

ABBREVIATIONS

Some abbreviations have been used on STICKIES which may not be obvious to all readers. These are:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ast</td>
<td>Astable</td>
</tr>
<tr>
<td>B/D</td>
<td>Binary/Decade control</td>
</tr>
<tr>
<td>Bl</td>
<td>Blanking Input</td>
</tr>
<tr>
<td>C</td>
<td>Capacitor</td>
</tr>
<tr>
<td>CD</td>
<td>Clock Delay</td>
</tr>
<tr>
<td>CE</td>
<td>Clock Enable</td>
</tr>
<tr>
<td>CF</td>
<td>Cascade Feedback</td>
</tr>
<tr>
<td>CI</td>
<td>Carry In</td>
</tr>
<tr>
<td>Cl</td>
<td>Clock</td>
</tr>
<tr>
<td>CO</td>
<td>Carry Out</td>
</tr>
<tr>
<td>com</td>
<td>common</td>
</tr>
<tr>
<td>D</td>
<td>Data</td>
</tr>
<tr>
<td>DD</td>
<td>Data Disable</td>
</tr>
<tr>
<td>DEI</td>
<td>Display Enable In</td>
</tr>
<tr>
<td>DEO</td>
<td>Display Enable Out</td>
</tr>
<tr>
<td>DFI</td>
<td>Display Frequency In</td>
</tr>
<tr>
<td>DFO</td>
<td>Display Frequency Out</td>
</tr>
<tr>
<td>En</td>
<td>Enable</td>
</tr>
<tr>
<td>ER</td>
<td>External Reset</td>
</tr>
<tr>
<td>G</td>
<td>VSS</td>
</tr>
<tr>
<td>Inh</td>
<td>Inhibit</td>
</tr>
<tr>
<td>J</td>
<td>Jam</td>
</tr>
<tr>
<td>LD</td>
<td>Latch Disable</td>
</tr>
<tr>
<td>LE</td>
<td>Latch Enable</td>
</tr>
<tr>
<td>LT</td>
<td>Lamp Test</td>
</tr>
<tr>
<td>MR</td>
<td>Master Reset</td>
</tr>
<tr>
<td>OD</td>
<td>Output Disable</td>
</tr>
<tr>
<td>OE</td>
<td>Output Enable</td>
</tr>
<tr>
<td>OO</td>
<td>Oscillator Out</td>
</tr>
<tr>
<td>Psubscript</td>
<td>Parallel</td>
</tr>
<tr>
<td>PE</td>
<td>Preset Enable</td>
</tr>
<tr>
<td>PH</td>
<td>Phase</td>
</tr>
<tr>
<td>P/S</td>
<td>Parallel/Serial control</td>
</tr>
<tr>
<td>Phy</td>
<td>Polarity</td>
</tr>
<tr>
<td>R</td>
<td>Reset</td>
</tr>
<tr>
<td>RI</td>
<td>Recirculation In</td>
</tr>
<tr>
<td>RM</td>
<td>Recirculation Mode</td>
</tr>
<tr>
<td>Rtr</td>
<td>Retrigger</td>
</tr>
<tr>
<td>S</td>
<td>Serial</td>
</tr>
<tr>
<td>Ssubscript</td>
<td>True/Compliment Control</td>
</tr>
<tr>
<td>Str</td>
<td>Strobe</td>
</tr>
<tr>
<td>T/C</td>
<td>Trigger</td>
</tr>
<tr>
<td>Tr</td>
<td>Ungated C Segment Out</td>
</tr>
<tr>
<td>UCS</td>
<td>Up/Down Control</td>
</tr>
<tr>
<td>U/D</td>
<td>VDD</td>
</tr>
<tr>
<td>V</td>
<td>Sum</td>
</tr>
<tr>
<td>e</td>
<td>Resistor</td>
</tr>
</tbody>
</table>

Inverted functions are shown by a bar, thus, A. For outputs, this indicates active low. For inputs, it means that the circuit operates on the negative-going transition. Where an IC is used for a pair of identical functions, the division is shown by a broken line. Multiple inputs or outputs are always numbered 0 through n.

MORE!

We are sure you will find your 120 free ones very useful and will in due course need some more. Please don’t write to P.E., be thankful for the 60p’s worth we have given you and next time send your money to Concept Electronics, 8 Bayham Road, Sevenoaks, Kent. The cost, including an information sheet, plastic wallet, VAT and postage is 80p for a sheet of 120 (either 7400 or 4000 series—state which is required).

Alternatively, a 480 label pack is available for £2.80. Concept will also give discount for quantity orders, their phone number is 0293 514110.
A reliable means of checking some of the ever increasing variety of semiconductor devices is a valuable asset in any electronic constructor’s workshop. Not only does this help with fault finding but it also provides a means of checking surplus and unmarked devices so that they may be salvaged for future use. The circuit to be described provides a means of testing the vast majority of semiconductor diodes, bipolar and field-effect transistors both junction and insulated gate types. It will handle germanium and silicon devices and has facilities for both n.p.n. and p.n.p. transistors.

Measurements are made under actual working conditions. Diode current is measured under forward and reverse bias and this facility also provides a means of testing and identifying transistor junctions. Transistor testing is carried out under dynamic conditions with the transistor performing in oscillator circuits at audio and radio frequencies.

It is possible to obtain an estimate of the relative gain of the device under test and also to ascertain its suitability for high frequency, linear, or switching applications.

CIRCUIT DESCRIPTION

The basic arrangement of the transistor tester is shown in Fig. 1 with the complete circuit shown in Fig. 2. The transistor under test is operated in common emitter mode with stabilised base bias provided by silicon diodes D3 to D6. Four diodes are used in order to cope with the reversal of the supply polarity which occurs when changing from p.n.p. to n.p.n.

The frequency determining components are connected in the feedback path between collector and base. For audio frequency operation these consist of a “Twin-T” network which provides oscillation at a frequency of approximately 1.5kHz. For radio frequency operation the resistive collector load, R7, is replaced by an inductive load, L1, and feedback is via a quartz crystal. Oscillation occurs at the fundamental resonant frequency of the quartz crystal. This should be in the range 6MHz to 10MHz, but the exact frequency is immaterial. Surplus crystals of recent manufacture should prove to be quite satisfactory for this purpose, alternatively a new 10MHz crystal can be purchased ex-stock from several sources relatively cheaply.

The output of the oscillator is applied to a detector formed by D7, D8, and C10. The resulting direct current output is measured on the meter. Zener diode, D9, ensures that the l.e.d., D10, operates only when the supply is above 8V. Hence the l.e.d. also serves as a battery condition indicator. The battery should be replaced whenever the l.e.d. fails to illuminate after the instrument is switched ‘on’.

CONSTRUCTION

The circuit is built in two parts. The resistors, capacitors and other small components are mounted on a small printed circuit board which is located in the base of the plastic case. The layout of the p.c.b. is shown in Fig. 3 with the corresponding component layout shown in Fig. 4.

Care should be exercised to avoid excessive heat when soldering the crystal to the printed circuit board and constructors may, if desired, use an appropriate HC6/U socket. The switches, meter, and semiconductor connecting sockets are mounted on the detachable front panel. The semiconductor connecting sockets are soldered to the small printed circuit board which is located in a rectangular cut-out in the front panel. Before assembling the front panel components, it is recommended that the front panel be lettered using dry transfers and then given a coat of clear protective lacquer.

The front panel components may be wired to the p.c.b. by means of a length of multi-way ribbon cable. This should be kept as short as possible whilst still allowing easy removal of the front panel, thus permitting access to the p.c.b. The interconnecting leads have, for clarity, been labelled 1 to 17 whilst those leads to the semiconductor sockets are labelled...
C, B, E, G, S, G1, G2 and D. The layout and wiring diagrams of the front panel components is shown in Fig. 5. In order to simplify the task for those constructors who prefer to manufacture their own printed circuit boards, the main printed circuit and the semiconductor mounting board have been designed so that they may be etched as one board and then cut into two.

**INITIAL CHECKS AND USING THE SEMICONDUCTOR TESTER**

Carefully check the p.c.b. and wiring before connecting the supply. Connect a known silicon diode, such as a 1N4001, 1N4002 etc, to the diode test sockets. Make sure that the cathode, marked with a stripe, is connected to the socket marked ‘k’. Use the front panel switches to select ‘DIODE’, ‘REV’ and switch the tester ‘ON’. The I.e.d. should be illuminated and there should be no discernible reading on the meter. Now select ‘FWD’, a reading of between 400 and 500 should appear on the meter. If this is not the case re-check the wiring. When testing an unknown diode, if the ‘FWD’ and ‘REV’ readings are the same then the diode is short circuit. If no reading is obtained in either direction the diode is open circuit. The ‘REV’ setting may be used to check leakage current. It is also possible to select matched pairs of diodes by comparing the ‘FWD’ and ‘REV’ indications.

Zener diodes of less than 9V rating will produce a large reading in the ‘FWD’ direction (as for a normal silicon diode) and a smaller reading in the ‘REV’ position. The larger the reading in the ‘REV’ position the smaller the Zener voltage. A rough estimate of the Zener voltage is thus possible if reference can be made to known Zener diodes. Light emitting diodes can also be checked using the diode test sockets in the normal way. However, since the forward current supplied by the tester is low, they will not illuminate brightly.

Insert a known silicon n.p.n. general purpose transistor. An unused BC107, BC108 or BC109 is recommended for this purpose. The TO18 3-lead bipolar transistor socket should be used in this case. Take care to align the transistor correctly. The tab indicates the emitter connection on the recommended types. Select ‘TRANSISTOR’, ‘NPN’, and ‘AF’ using the front panel switches. Switch the instrument ‘ON’ and check that the I.e.d. is illuminated. An indication of between 200 and 400 should be produced on the meter.

**COMPONENTS . . .**

**Resistors**
- R1, R2, R11: 22k (3 off)
- R3: 470k
- R4: 1k5
- R5, R6, R9: 15k (3 off)
- R7: 3k3
- R8: 680
- R10: 2k2
- R12: 220
- All ± 5% carbon

**Capacitors**
- C1, C4: 47n polyester (2 off)
- C2: 100n polyester
- C3: 220n polyester
- C5, C6, C9, C10: 10n polyester (4 off)
- C7: 470n polycarbonate
- C8: 47µ 16V electrolytic

**Diodes**
- D1 to D6: OA202 (6 off)
- D7, D8: G91 (2 off)
- D9: BZY95C6V2
- D10: TIL209 I.e.d.

**Miscellaneous**
- Transistor sockets: TO5 (1 off), TO18 3-lead (2 off), TO18 4-lead (1 off)
- 1mm sockets (5 off)
- VR1 miniature horizontal skeleton pre-set 10k
- Meter 500µA Maplin type “2in PAN”
- Miniature toggle switch d.p.d.t. (3 off)
- Miniature toggle switch s.p.d.t. (2 off)
- L1 1mH miniature radio frequency choke
- X1 HC6/U quartz crystal in the range 6MHz to 10MHz
- Case. Vero part number 75-1798K
- Snap connector for PP3 type battery
- P.c.b.

**Constructor’s Note**

Components and p.c.b. are available from Howard Associates, 59 Oatlands Avenue, Weybridge, Surrey KT1 9SU.
Fig. 3. P.c.b. designs.

Fig. 4. Component layout of the p.c.b.

Fig. 5. Front panel wiring diagram.

Front panel layout.

Internal view of the Tester.
READING ON 'AF' TEST

<table>
<thead>
<tr>
<th>READING ON 'AF' TEST</th>
<th>None</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistor defective or very low gain</td>
<td>Low gain device for low frequency (eg: audio) use</td>
<td>High gain device for low frequency applications</td>
<td></td>
</tr>
<tr>
<td>Low gain switching transistor</td>
<td>Low gain device suitable for use over a wide frequency range</td>
<td>High gain device for audio use</td>
<td></td>
</tr>
<tr>
<td>High gain device</td>
<td>Transistor for linear high frequency applications</td>
<td>Transistor for r.f. use and high speed switching</td>
<td></td>
</tr>
<tr>
<td>High gain device suitable for use at audio and radio frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**TABLE 1** provides a simple rule-of-thumb method for identifying unmarked transistors but exceptions may well be found.

Now select 'RF' operation and again check that a reading is produced. This may be slightly larger than that produced in the 'AF' position and should be between 300 and 500 on the meter scale. If either reading is excessive, VR1 may be adjusted accordingly to produce a suitable reading of around 400 on the meter. Note that the reading on the meter gives only a relative indication. It does not indicate current or voltage gain directly. If one of the recommended types of transistor is used and fails to give an indication on one or both test positions the p.c.b. and wiring should be carefully re-checked.

Matched pairs of transistors can readily be selected by comparing readings in the 'AF' position. Where an unmarked transistor is to be tested it is recommended that the junctions first be identified using the diode test sockets. Transistor testing can then follow once the connections and polarity of the device have been established.

The f.e.t. testing facility can similarly be checked using a known device. A 40673 or similar type will be satisfactory and found to be representative of most dual-gate devices. A 2N3819 is recommended for use as a test specimen of junction gate types. Select the appropriate 4-lead or 3-lead sockets for dual gate and single gate types respectively. Use the 'NPN' setting for n-channel devices and the 'PNP' setting for p-channel devices. F.e.t.s designed specifically for high frequency applications, particularly junction types, may fail to give an indication in the 'AF' test position. This is because a voltage gain of 30 or more is required to produce oscillation in the 'AF' test position. If the f.e.t. has a low value of mutual conductance this value of voltage gain will not be achieved using the value of collector load provided in the test circuit.

Occasionally, when testing an unknown bipolar transistor, no indication is produced in one or other position of the 'AF'/RF' selector. This does not necessarily mean that the device is defective. It simply means that the transistor exhibits a very low value of current gain. Older germanium transistors often have current gains of less than 50 and will fail to produce an indication. Modern silicon types will nearly always produce an indication at one or both of the test frequencies. Switching transistors with relatively low values of current gain coupled with good frequency response may sometimes fail to produce an indicator in the 'AF' position and yet produce a large reading in the 'RF' position. This effect can be quite useful when trying to identify unmarked transistors as shown in Table 1.

---

**IT'S NOT TOO LATE!**

Last October we gave you a free I.C. removal tool, and we still have a limited number available for those of you who missed out last time.

All you need to do is send a postal order for thirty pence (made payable to IPC Magazines) and a stamped addressed envelope to:

Practical Electronics (I.C. Removal Tool), Westover House, West Quay Road, Poole, Dorset BH15 1JG.
(Please do not enclose any other correspondence.)
MASTER PACK FOR COMPUKIT UK101

30 Original, High Quality BASIC Programs on Cassette
Incredible value at ONLY £19.95 inclusive - less than 70p each!
with sophisticated GRAPHICS and full User Instructions

GAMES
LUNAR LANDER (1)
LUNAR LANDER (2)
BOMBER PILOT
WIPEOUT
ROULETTE
SUPER FRUIT MACHINE
CODEBREAKER
ADDICTIVE ADDITION
SADISTIC SUBTRACTION
MURDEROUS MULTIPLICATION

DIABOLICAL DIVISION
ROADRUNNER
A DAY AT THE RACES
TOGETHER
TWIX TWISTER

EDUCATIONAL
SPELLING TEST
MATH EXERCISER
MULTIPLICATION TABLES
DECIMAL/FRACTION
CONVERTER

PERSONAL
COMPUTING
BIORYTHMS
DIET CALCULATOR
WEIGHT CALCULATOR
CALENDAR & DAYS BETWEEN
DATES CALCULATOR
COMPOUND INTEREST
GAMES SCOREBOARD

ROUTINES
POWERFUL KEYBOARD
SCANNING ROUTINES
ALPHABETICAL SORT
BINARY/DECIMAL/HEX
CONVERTER
PRECISION RANDOM NUMBER
GENERATOR
ALPHANUMERIC TO ASCII
CODE CONVERTER

Order now! Available ONLY direct from Premier Publications
(Over 50,000 Programs sold to date)

Just send cheque/PO for £19.95, quoting product ref 101/C, to
Premier Publications
12 Kingscote Road Addiscombe Croydon Tel 01-656 6156
10-day money-back Guarantee of Satisfaction

FREE INSTANT CLEAR SCREEN ROUTINE - TAKES NO
USER RAM
FREE SIMPLE INSTRUCTIONS FOR
UPGRADING YOUR UK 101
TO SAVE AND LOAD AT 600 BAUD -
TWICE NORMAL SPEED!

Circuit prototyping

Now you can get a prototyping block from Vero for building and testing circuits. It is
designed to dovetail together to form a
continuous 2.54 pitch so you can put
any size of IC on it.
Vero block is supplied singly but if you
fit three together it gives a Eurocard size
area for your circuits.
When you've designed your circuit and it
comes to building the project don't forget
Veroboards are available in a range of sizes
and styles to suit every application.

VERO ELECTRONICS LTD RETAIL DEPT.
Industrial Estate, Chandler's Ford,
Hampshire SO5 3ZR
Tel: (04215) 62829

Practical Electronics May 1980
ELECTRIC BICYCLE

The British company Lucas, of Birmingham, has been granted a string of patents over recent years for electric bicycles. The basic idea is to provide a bicycle with batteries built into the frame which can be pre-charged overnight and topped up during downhill or with-the-wind travel by a small generator. During difficult travel, for instance up hill or against the wind, the batteries can be discharged through a motor to assist the cyclist. Most of the Lucas patents now issuing relate to detailed improvements on the basic system so it is likely that before long an electric bicycle will be offered for sale. Moreover at least one Japanese company (Matsushita) also has a similar cycle under advanced development.

It is widely believed that the delay in commercial launch stems only partly from the expense of suitable batteries, because it is feared that under current legislation such cycles might fall foul of a punitive road tax. Commercial launch may therefore coincide with the promised end to vehicle road tax.

Carries a series of permanent magnets 21. A generator stator 22 is secured on the front wheel frame fork and carries a series winding 26 which is connected to the bicycle battery by a full-wave rectifier. This connection is via a normally open charge switch which is incorporated in the handlebar brake control. When the switch is closed the rotating magnets generate AC in the winding 26 to charge the battery, while at the same time producing a braking effect due to increased magnetic drag.

The brake control has a two stage action as shown in Figure 2. In the first stage, only the charge switch is closed to slow the bike and top up the battery charge. In the second stage, a conventional caliper brake functions in well known manner to provide extra mechanical braking. The idea is of course for the cyclist to use only the first braking stage wherever possible and so conserve energy. The second stage brake is only used in an emergency, where magnetic braking is insufficient.

MORE ON MULTIPLEX

It seems hardly credible that there is anything new left to patent in the design of multiplex stereo radio decoders. But Philips of Eindhoven in new British patent application 2 021 361 (filed under the new laws and dating back to 17 May 1978) lays claim to novelty in a modified circuit. It is interesting to note that Philips cite the new modification as applicable to the Technics ST8080 receiver manufactured by Matsushita of Japan. Although Matsushita and Philips are known to have some joint development projects e.g. on transistor technology, the patent suggests the possibility of unsung cooperation in other areas such as hi fi receiver designs.

In a stereo receiver the pilot tone (at 19KHz) must be rejected or it will confuse the automatic gain control (and any Dolby circuitry). Moreover any unwanted components which originate from the multiplex stereo signal may influence the frequency of the phase locked oscillator used for decoding.

Figure 1 shows the modified circuit layout. FM discriminator 4 outputs a composite of the multiplex stereo signal and pilot tone components.

Decoder 5 includes pilot rejection filter 7, synchronous detector 22 and matrix 15 for separating the left and right channel signals L,R for amplification at 34, 35 and reproduction by loudspeakers 36, 37. Decoder 5 includes a phase-locked oscillator 10 which produces a 76KHz signal. This is halved and fed to one input of demultiplexer 14. The oscillator phase is locked by double-balanced phase detector circuit 8 which includes a differential amplifier 26, 27, 28. A first input of the differential amplifier is coupled directly to the stereo decoder and the second input is coupled to the output of pilot tone rejection filter 7. The composite signal including the 19KHz pilot tone is thus applied to one input of the differential amplifier and the composite signal without the 19KHz pilot is applied to the second input. The in-phase components of the composite signal which are common to both inputs cancel one another so that only the 19KHz signal component appears at the output. This output is therefore free from any signal components originating from the audio content of the composite signal. The phase locking of the oscillator 10 is thus rendered immune from disturbance by any such residual components.
CONTENTS

MOTORING
1. BATTERY VOLTAGE INDICATOR 2
2. REV COUNTER 7
3. AMMETER 10
4. ENGINE TEMPERATURE 13
5. DWELL METER 16
HAZARD WARNING AND CASCADING 18
HEADLIGHT WARNING by P. G. Wagstaff 21
AUTOMATIC CAR AERIAL by S. M. Bennett 24

HOUSEHOLD
DIGITAL TEMPERATURE CONTROLLER by D. Coults and P. McAllister 27
ULTRASONIC BURGLAR ALARM by G. Davies 32
HOME FREEZER ALARM by P. E. Chaplin 37

PHOTOGRAPHIC
PE DIAMATIC by J. R. Ames B.Sc., and W. L. Blyth B.Sc. 40
DIGITAL EXPOSURE TIMER by John Becker 55

MUSICAL EFFECTS
SMOOTH FUZZ by D. S. Gibbs and I. M. Shaw C. Eng., M.I.E.E. 62
PHASER by D. S. Gibbs and I. M. Shaw C. Eng., M.I.E.E. 65
GUITAR SOUND MULTIPROCESSOR by Dr. M. Sawicki and A. Kowalewski B.Sc. 69

RADIO CONTROL
R. C. FAILSAFE by Tony Jenkins 85

TEST GEAR
WAVEFORM GENERATOR by Michael Tooley B.A. and David Whitfield B.A., M.Sc. 88
PULSE GENERATOR by Michael Tooley B.A. and David Whitfield B.A., M.Sc. 93

Our new book PE Popular Projects is now on sale at newsagents and component stores; the contents of this book are shown above. The book costs £1.25 from retail outlets and is also available for £1-50, UK post paid or £1-80, overseas surface post paid, from Post Sales Department (PE Popular Projects), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 0PF.
Using a reflective opto switch, the r.p.m. of almost any revolving object can be displayed digitally. All that is required is the application of sticky tape to the shaft or wheel to be measured, to act as an optical marker.

Also: BENCH POWER SUPPLY UNIT
QUARTZ LCD
11 Function
Slim Chronograph

[Image of watch]

Price only
£9.95

HANIMEX Electronic LED
Alarm Clock

[Image of LED alarm clock]

Price only
£10.20

QUARTZ LCD
Ladies Day Watch

[Image of watch]

Price only
£7.95

QUARTZ LCD
5 Function

[Image of watch]

Price only
£6.95

METAC GUARANTEE
All METAC products carry 12 months guarantee and we also refund your money if not satisfied with our goods or service in the first 10 days.

METAC's well equipped service centre minimises service delays. Please note, we do not delay your order to clear cheques.

Telephone your order using Barclaycard/Access Number on on

03272 - 76545
01-723 4753

WHOLESALE MAIL ORDER
Send for our trade price list and order details. Sell our products to your friends and earn yourself £££'s

METAC ELECTRONICS & TIME CENTRES

WHOLESALE MAIL ORDER!

Send for our trade price list and order details. Sell our products to your friends and earn yourself £££'s

METAC ELECTRONICS & TIME CENTRES

WHOLESALE MAIL ORDER!
NEW 24 HOUR DESPATCH SERVICE

METAC have opened a new even faster Mail Order and Service Centre at DAVENTRY. Orders received before 3.30 p.m. will be despatched same day.

VISIT OUR ELECTRONIC TIME CENTRES AND SEE ONE OF THE MOST IMPRESSIVE QUARTZ WATCH RANGES IN BRITAIN

LONDON
327 EDGWARE ROAD, LONDON W.2
Telephone: 01-723 4753

DAVENTRY
67 HIGH STREET, DAVENTRY, NORTHANTS.
Tel: 03272 76545/77659
(Opens 1st February, 1980)

NORTHAMPTON
ST. GILES SQUARE, NORTHAMPTON

VISIT OUR ELECTRONIC TIME CENTRES AND SEE ONE OF THE MOST IMPRESSIVE QUARTZ WATCH RANGES IN BRITAIN

LONDON
327 EDGWARE ROAD, LONDON W.2
Telephone: 01-723 4753

DAVENTRY
67 HIGH STREET, DAVENTRY, NORTHANTS.
Tel: 03272 76545/77659
(Opens 1st February, 1980)

NORTHAMPTON
ST. GILES SQUARE, NORTHAMPTON

QUARTZ MELODY
Alarm Chronograph

INCREDIBLE WATCH
34 Functions

- Count-down Timer
- Dual time zone
- Time alarm
- 12/24 hour
- 2 year calendar
- Month calendar
- Day of week
- Date
- Weekday
- Alarm
- Stop watch
- Chronograph
- 1/100th second
- 1-2nd lap time
- 1st-2nd place
- Lap-time
- Split time
- Stopwatch
- Timer
- Alarm
- Count-up
- Count-down

Price only £19.95
Price includes POST & PACKING

M30 SAME DAY DEPACTH.

SEIKO CHRONOGRAPH

Hours, mins., secs., and day of the week. Month date and day of the week. Stopwatch display - Hours, mins., secs., up to 12 hours (mins., secs., 1/100 secs. up to 20 minutes), Lap timing. Continuous time measurement of two competitors. Stainless steel, mineral glass.

Price only £39.95
Including POST & PACKING

M33 SAME DAY DEPACTH.

SEIKO ALARM CHRONOGRAPH

With WEEKLY Alarm. Hours, mins., secs., month, date, day, am/pm. Weekly alarm - can be set for every day at designated time, e.g., 6:30 am on Monday, Wednesday, and Friday. Alarm set time displayed above time of day. Full stopwatch functions, lap time, split etc.

Price only £79.95
Including POST & PACKING

M10 SAME DAY DEPACTH.

SEIKO DIGI-ANA CHRONOGRAPH

Time and Calendar Function

Analog part display - Hours, mins., secs., date, and day. Digital part display - Hours, mins., secs., day, and calendar. Calendar month, date, day, stopwatch - Hours, mins., secs., 1/100 secs., Lap/STOP and stop marks. Counter function. Time and calendar setting function.

Price only £79.95
Including POST & PACKING

M62 SAME DAY DEPACTH.

POST COUPON TO: METAC (24 hour despatch centre), FREEPOST, 47a High Street, Daventry, Northants.

PLEASE COMPLETE BOTH COUPONS

FROM:

METAC ELECTRONICS & TIME CENTRE,
67 HIGH STREET, DAVENTRY, NORTHANTS.

Name ........................................
Address ....................................

Barclaycard/Access No. .........

POST, PACKING AND VAT INCLUDED IN PRICE. (£5.80)
**RHYTHM GENERATOR FOR MINISONIC**

In view of the cost of rhythm generator i.c.s, synthesiser buffs may be interested in this cheap alternative. Using only three logic i.c.s the circuit produces a sequence of four 'notes' in its basic form.

A low frequency square wave is fed into the clock input (Fig. 1) and the two flip-flops produce complementary outputs at one half and one quarter of the clock frequency. These, together with the clock pulses, are gated as shown to generate a sequence of four pulses A,B,C,D, which then repeat. The functioning of the logic can be readily understood by referring to Fig. 1b.

Each of the output pulses is attenuated to the desired voltage level and fed to the unity-gain inverter, IC4, thus giving the negative-going control voltages necessary for the Minisonic oscillators. The prototype was constructed using TTL but in view of the heavy current requirements and consequent unsettling effects on power supplies, it may be advantageous to replace the above chips with the corresponding CMOS equivalents. A suitable clock is shown in Fig. 2; it is a quite ordinary astable multivibrator (TR I and TR2), TR3 buffering the output, with the advantage that the mark and space lengths of the output waveform are individually controlled by VR1 and VR2. BC548s are plastic BC108s—about the cheapest transistor on the market.

The output voltage may also be used to control the centre frequency of the Minisonic filter which, when fed with white noise, will produce a wide range of interesting effects. With added envelope shaping of each output pulse, realistic drum sounds can be produced.

---

**Fig. 1(a). Logic circuit**

**Fig. 1(b). Timing diagram**

---

Fig. 3 shows the circuit used for triggering the Minisonic Envelope Shapers. The monostable on the input allows the envelope shaper to complete its excursion before the end of each control pulse from the rhythm generator, thus, in use, the monostable period plus the ES decay period should be less than the "mark" period of the clock waveform (see Fig. 4). TR1 in Fig. 3 then just acts as a switch controlled by the monostable output in order to supply the —9V trigger pulses required by the Minisonic Envelope Shaper. Other designs of envelope shaper using positive trigger pulses may be controlled directly from the monostable—both systems are at work in the author's synthesiser.

The versatility may be improved as follows: a multi-way switch can be added so that the reset pins of IC1 are connected to a given output, A,B,C,D. Thus the cycle length is selectable, either one-one-one-, one-two-one-two, one-two-three-one-two-three, or one-two-three-four-etc. A further multi-way switch can be added to change the order of A,B,C,D, so that, for example, a given sequence could be reversed. By suitably gating the clock together with the "gaps" in the output pulse-train, an extra...
set of four control voltages can be derived, providing an eight note sequence. In order to tune each note of a sequence, the "stepping" circuit of Fig. 5 may be used, temporarily substituted for the clock.

With the monostable and trigger circuit of Fig. 3 attached to ES/VCA1, and using ES/VCA2 in parallel, it is possible to simulate a full Attack-Decay-Sustain-Release envelope, even though the existing envelope shapes are just Attack-Sustain-Release (see Fig. 6). This greatly increases the versatility of the Minisonic as it makes it possible to produce sounds like pianos, harpsichords, trumpets, or any sound which requires a louder portion (or "thump") at the beginning of the envelope. The trick is to feed an oscillator into both VCAs in parallel and set the volume control of the first to give a higher output than the second, the volume control on the second then sets the sustain level. The monostable period should be kept short when simulating conventional instruments, as should the attack and decay times of ES1. The outputs of both VCAs can then be mixed into the filter to complete the sound treatment.

Indeed, if the voltage control envelopes of both shapers can be mixed into the envelope inverter and used to control the VCF, the effect can be quite startling, not least in the field of imitating brass instruments. The sustain time is as long as the key is depressed.

If a two-pole keyboard assembly has been used, providing -9V trigger voltages, the circuit of Fig. 7 can be used to change these to positive voltages to trigger the monostable. The divider chain R3 and R4 is necessary to prevent damage to the 741 from applying too high a voltage to its input. If however the HF Oscillator and Detector circuit has been used in the Minisonic, then the circuit of Fig. 7 is superfluous as the output of IC2 in the HF Detector can be used to trigger the monostable directly.

A. R. Bradford, 
Erdington, 
Birmingham.

**CAR BATTERY**

**CHARGE INDICATOR**

Although numerous circuits for this application have been published, this one is unique in that it provides separate indication of under, over and correct voltage without the use of transistors or i.c.s.

When the voltage is below 11.7 volts, the under voltage I.e.d. (D4) lights. When the voltage is between 11.7 and 14.2 volt, the correct voltage I.e.d. (D7) lights. When over 14.2 volt, the over voltage I.e.d. (D5) lights.

Only one I.e.d. is ever on at a time, and transitions are remarkably sharp.

Average current taken is 50-60 ma. All I.e.d.s must be the same colour, and the two diodes silicon.

A. Dames, 
Kings Heath, 
Birmingham.

---

Practical Electronics - May 1980

59
**TTL STAIRCASE GENERATOR**

The circuit consists of a zero voltage detector (TR1 and TR2), a unijunction transistor oscillator and a thyristor for controlling the power to the load from an unsmoothed d.c. power source.

If the supply voltage is above about 1V then TR1 will conduct hard and hence TR2 will be switched off. When the supply voltage falls below 0.7V TR1 will turn off and TR2 will conduct, discharging C1. Hence, at the start of each half cycle C1 will have been discharged through TR2. As the supply voltage starts to rise, TR2 will switch off and C1 will start to charge through R3 and VR1 until the voltage at the emitter of TR3 is sufficient to cause conduction, at which point a pulse will be applied to the gate of CSR1 causing it to conduct. By varying VR1, the point in the mains cycle at which this occurs can be varied from near the end of the half cycle to near the beginning, hence giving phase related triggering of the SCR.

**SIMPLE D.C. POWER CONTROLLER**

CSR1 is provided with a small heatsink when used at near maximum current. The circuit has been used successfully for controlling low voltage motors and lamps. By charging R1, VR1 and R4 the circuit can readily be adapted for working at different supply voltages.

The decade counter, 7490, may be substituted by a 4-bit binary counter 7493 and a full 16 steps made available with the addition of another diode and suitable resistor. The diodes are necessary to any outputs that go low upsetting the voltage of the divider.

B. Bell, Poole, Dorset.

J. M. Lucas, Allestree, Derby.
**CURRENT/VOLTAGE REGULATOR**

The circuit shown is for current/voltage control of a car dynamo. IC1 operates as the voltage regulator, comparing a fraction of the potential across the battery with a reference voltage generated by D1. The output of IC1 controls the current to the field coils of the dynamo via D2, D5, TR2 and TR3. IC2 limits the charging current to prevent overloading of the dynamo. The charging current is sensed by the potential drop across series resistor R8. When this reaches a limit set by VR2, IC2 comes out of negative saturation and reduces the field current by means of D3, D5, TR2 and TR3.

D4 acts as the cut-out, preventing reverse flow of battery current through the dynamo. R9 and TR1 switch on the supply to the regulator when the dynamo output rises above a few volts, thus preventing excessive drain on the car battery when the engine is stationary. The negative saturation output of IC1 and IC2 will be a few volts above the negative line; D5 prevents this voltage from turning on TR2. D6 suppresses any positive-going transients from the field coils which might damage TR3.

The circuit shown is suitable for positive earth vehicles.

---

**APPOINTMENT REMINDER**

This circuit can be added to a digital alarm clock in order to operate the alarm on only selected days of the week, as a reminder of an appointment, or, if used as an alarm clock, it can be silenced on Saturday or Sunday—or both! In addition, the day of the week is indicated by whichever i.e.d. is lit. As many clocks have a pulsating output on AM or PM indicators, a demodulator is included in the circuit.

The time constant CR should be longer than the pulse width, to obtain a steady output. If a non-fluctuating output is available on an AM indicator, the demodulator will not be essential (although it does debounce the set switch) and the diode and R and C can be omitted. If the high signal is on PM, the output from the demodulator must be inverted. The 4022 will then be clocked at midnight, either by the AM indicator coming on, or by the PM indicator going off. The days are set by pressing the set switch repeatedly until the correct day is indicated. Setting must be done when the AM/PM indicator is high.

On the days selected by closing the appropriate switches, a high is fed to the Alarm Enable input, and the alarm sounds at the time set.

If a high enable signal is not suitable for the clock used, then an inverter might be needed.

A. M. Tucker
Dorchester
Dorset
FOUR STATE INDICATOR

The circuit shown enables a two-colour I.E.D. to be converted into an indicator capable of showing four states, by four different colours. For those not familiar with a two-colour I.E.D., it consists of two I.E.D.s, one red and one green, built into a conventional 0.2in I.E.D. package, the two diodes being connected back to back. This device is not very common, but is available from the larger component suppliers.

The circuit consists of a variable mark-space oscillator based on a NE555 timer integrated circuit operating at about 300Hz. The timing capacitor C1 charges via the upper half of the preset in circuit, R3, and D2, and discharges through D3, R4, and the lower half of the preset, thus the four presets VR2-5 set the mark-space ratio.

Initially C1 is temporarily replaced by a 2.2µF capacitor, which slows down the oscillator. VR1 is then adjusted so that with one of the four timing presets in circuit, both the red and green I.E.D.s glow with equal brightness. R1 and R2 ensure that D1 is not damaged in this procedure. The correct C1 is then placed in circuit, and each of four timing presets adjusted so that the colours red, orange, yellow and green are obtained when the appropriate point A, B, C, or D is connected to X. The different colours are produced by switching the red and green I.E.D. on alternately in various ratios.

The switching necessary to select one of the colours by connecting A, B, C, or D to X can be performed by either using a four way switch, or a CMOS 4016 quad switch i.e. The circuit does not function very well with supply voltages of less than 7 volts, and if operation over 9 volts is required, R1, R2 and VR1 should be selected so that a maximum current of 20mA flows through D1 in either direction.

V. V. Shah, Wellingborough, Northants.

CAR COURTESY LIGHT TIMER

The diagram shows the circuit of a simple courtesy light timer which will hold the interior light on for approximately 15 seconds after the car doors have been closed. This allows ignition keys and seat belts to be easily found in the dark.

IC1a and IC1b form a monostable whose period is set by R4 and C2, and is triggered when the door switches S1, S2 are opened by closing the car doors. R2, R3 and C1 debounce the signal from the door switches so that the monostable does not trigger when the door is first opened.

Operation of the interior light before the monostable has been triggered is ensured by wiring IC1c and IC1d to perform an OR function on the signal from the door switches and the output of the monostable. IC1d drives the interior light LP1 via TR1 and TR2.

The circuit shown is for positive earth vehicles with IC1 being a 4011. For negative earth vehicles IC1 should be a 4010, C2 should be reversed and TR1 and TR2 should be replaced by their complements.

The period of the monostable is given approximately by 0.6 RC but will probably have to be adjusted by altering R4 or C2 because of the tolerance of C2 and the spread of transfer voltage for IC1.

The circuit can be made small enough to fit into the courtesy light housing. The quiescent current is a few microamps.

A. Chadwick
Stockport
Cheshire
Now there's no excuse for not learning about microcomputers, for this could be the ultimate microprocessor course. Study at home or school with the aid of the accompanying manual, and learn, hands on, how to make the "chip" do what you want it to do, working with your own personal machine.

You may hear Edukit called the "throw away" computer! Well, maybe the price is throw away, but Edukit is a training tool that can be put to good use in its retirement. Here are some vital statistics:

18* RCA COSMAC 1802µP
* 130 x 210mm glass fibre p.c.b.
* Twenty switch keypad—sixteen hexadecimal keys plus four control keys.
* Two 2111s (organised as 256 bytes of memory)
* Users Club for cross pollination of ideas and applications.

See last month's Practical Electronics for a full review of Edukit.
## TRITON

### COMPUTER SYSTEM

Designed for ease of construction and flexibility. Kits come complete and all components and software are available separately. UK designed and supported. Fully documented hardware and software and a totally flexible approach to system building. Powerful and easy to use system monitors - a range of languages available. Firmware is Eeprom based and upgrading from one level to the next is easy.

### DISK DRIVES & POWER SUPPLIES

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8400 51/2&quot; drive</td>
<td>£205.00</td>
</tr>
<tr>
<td>S400 8&quot; drive</td>
<td>£380.00</td>
</tr>
<tr>
<td>Power one quality power supplies</td>
<td></td>
</tr>
<tr>
<td>CP249 1/16&quot; PSU</td>
<td>£33.00</td>
</tr>
<tr>
<td>CP222 2 x 5 PSU</td>
<td>£90.00</td>
</tr>
<tr>
<td>CP201 8&quot; PSU</td>
<td>£76.00</td>
</tr>
<tr>
<td>CP202 2 x 8&quot; PSU</td>
<td>£76.00</td>
</tr>
</tbody>
</table>

### TRONIC SOFTWARE

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAM 32 software user group facilities available</td>
<td>SAE for details</td>
</tr>
<tr>
<td>IBM 20 disk system using CP/M or double density full CP/M software user group facilities available</td>
<td>SAE for details</td>
</tr>
</tbody>
</table>

### TOOLS

- **CP/M AVAILABLE NOW FOR TRITON**
- Disc operating system compatible with text editor, assembler, debugger, system utilities and complete file management. Makes Triton fully CP/M compatible and able to run CP/M based software.
- Triton will support up to four 5¼ or 8½" drives single or double density full CP/M software user group facilities available. SAE for details.

### CATALOGUE

**NEW A4 SIZED ONLY 40p & S.A.E.**

**VISIT OUR SHOWROOM SOON**

**9:30-5.30 Mon-Fri**

**1:30-3.30 closed lunch**

**9:30-5.00 Sat**

**Thursday half day 1:30**

**Tel: 01-402 8137 Telex: 444989**
Manufacturing concerns face many problems in this era of rising costs, industrial unrest and highly variable exchange rates. In addition, common sense dictates that they should only make what they can reasonably hope to sell: those in the electronic music field, whether manufacturing or providing components, are no exception. Expediency must therefore be one of the main considerations when deciding what to offer to the public. Perhaps the finished article is not quite what the makers had intended originally but, though understandable, compromises do not suit all prospective purchasers.

CASEWORK

The design of today's electric guitar is often ugly and decidedly gaudy, possibly to match the shrieks they are made to produce in public performance (groups have been known to destroy their guitars on stage!). In this instance, the ferocious and jagged shapes available are largely in keeping with their purpose as most purchasers probably aspire to group fame.

Organs, rather than the more functional synthesizer, are mostly destined for the home performer whose instrument will become part of the furniture—in every sense. I do not feel that the mass of multi-coloured controls, looking like something from a space-age comic, are necessary or desirable. Colour coded stop tabs (White for Flutes, Red for Reeds and Yellow for Strings) have been a standard for a long time and are totally sensible, but every addition gimmick seems to have yet another colour devoted to its control button. The end result might be better used as a CTV test transmission card than as furniture to grace a living room. No doubt this trend is a selling point, but I much prefer yesterdays console with its sober black and white controls.

R.U. CHIPS

Most of these perform well when producing Latin-American rhythms, but give them the apparently simple task of a Fox Trot, Quickstep or Waltz pattern and they are highly disappointing. I wonder whether musicians used to these devices are ever consulted at the design stage: more often than not, as the pulses are divided down into small increments—perhaps even demi-semiquavers—the designer tries to put too much into these simple patterns and the result is even more boring and repetitive-sounding than ever.

Rather than set down my objections by means of musical notation, I would suggest that the M252 and M253 chips are typical in this respect.

A simple Fox Trot pattern would be preferable, for example, as it is quite easy for a player to get off the downbeat accidentally and so make the 'twiddles' in the second bar sound worse than ever. The various instruments—damped Twin-T oscillators that can be built round a gate—are simple to build: what would be useful is an updated version of a programmable unit (P.E. published just such a circuit some years ago) that would allow the user to set it up exactly as required.

YEARS AHEAD?

Philips unveiled the TDA1008 in 1978, this divider-keyer being covered by your reporter in this column at the time. Up to that date, the AY-1-0212 had been the standard TOS for polyphonic instruments, but this device from Philips required an input frequency of some 4MHz to enable it to be used to the full. One of theAY-3 series of Top Octave Synthesizers became necessary instead but readers' letters have highlighted a problem here. General Instrument Microelectronics make the AY-1-0212, which is easy to obtain, but buying their AY-3-0214 (and 0215/0216) is next to impossible. Clearly Philips will not sell many sets of TDA1008s if the matching TOS is unavailable: perhaps this company could persuade is stockists to hold the AY-3 series on their shelves, or better still produce their own TOS to match the TDA1008. All this could resolve round the expediency problem mentioned previously.

LEFT BEHIND?

Many beginners' instruments feature one-finger chords which may be pulsed through a lower manual gate fed from a rhythm unit. Fortunately, this facility can be cancelled as one-finger chords impose serious musical restraints and teach you very little. I agree that for the raw beginner they help in getting him off the ground but, assuming he is keen to progress, he will soon find the limited number of chords inadequate. For example, the 120 bass accordion actually has 48 chords and 24 bass/courter-bass notes (the remaining buttons being duplicates) which is far in excess of the average organ or chord organ. Having to work out a chord in full demands more thought than finding a single button or key but the result will be superior and it doesn't take long to remember the more commonly used chords.

Without applying special attack/decay characteristics, the electronic keyboard will sound as long as a note is held. Playing a piano score is therefore inappropriate as the piano has its own characteristics. If Chord Symbols are printed on the score, the left hand (and pedal, if appropriate) parts can be assembled from these.

CHORD SYMBOLS

The brief details that follow may help in finding chords from scratch, but first it is necessary to be able to play a major scale in any key: the various key signatures can be found in most piano beginner's books. Take the key of C, for example: counting from the keynote (C), D is the second note, F the fourth and G the fifth. These are intervals which, for this purpose, we can call 2, 4 and 5 in this or any other major scale. To form any of the chords below, count the interval shown (flattening or sharpening by a semitone if b or # indicated).

Typical Chord Intervals

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Chord</th>
<th>Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Major</td>
<td>3 5 7</td>
</tr>
<tr>
<td>Cm</td>
<td>Minor</td>
<td>3b 5</td>
</tr>
<tr>
<td>C7</td>
<td>Dominant Seventh</td>
<td>3 5 7b</td>
</tr>
<tr>
<td>Cdim</td>
<td>Diminished</td>
<td>3b 5b 6</td>
</tr>
<tr>
<td>C+</td>
<td>Augmented</td>
<td>3 5 #</td>
</tr>
<tr>
<td>Cm7</td>
<td>Minor Seventh</td>
<td>3b 5 7b</td>
</tr>
<tr>
<td>Cm6</td>
<td>Minor Sixth</td>
<td>3b 5 6</td>
</tr>
<tr>
<td>Cmaj7</td>
<td>Major Seventh</td>
<td>3 5 7</td>
</tr>
</tbody>
</table>

The actual notes found can be rearranged in any order (by inversion) but it is best to try to fit these into a fairly small left hand compass—say from E below middle C to G above it. This will allow the left hand to remain in one area, the fingers making the changes: at 8' pitch using this small keyboard area prevents chords from sounding muddy or competing with the melody line. Needless to say, the harmony found from the Chord Symbols can be used to expand the right hand melody into block chords. Though these hints may seem out of place in P.E., I do know of the difficulties that both purchasers and constructors encounter with piano scores. You can have fun with a simple 'Buskers Book' showing only melody and Chord Symbols, expanding as explained above. For a pedal part, simply use the keynote (1) and perhaps alternate on the fifth.

WORTH IT

Yes—it takes a little concentration, but if the reader has bought an expensive instrument it will pay to exploit its capabilities to the full: specifically arranged music is not always available. Light music is often written in keys that suit transposing instruments (Eb and Bb wind instruments), so the number of chords involved in music of this type tends to be fairly limited.

The reader who has had the tenacity to design and build his own instrument should not stop at that point! Learning to play is simply an extension of the project. Or is it? I find it said that many constructors never learn to play the instrument that has taken so long to perfect.
THIS final part deals with construction of the oscillator and amplifier board, power supply and receiver. Testing and setting up is also covered.

CONSTRUCTION

The signal levels in the osc./amplifier circuit are high, and significant interference is unlikely between the channels. A suitable circuit board, and the component layout is shown in Fig. 13.

First fix into position the eleven links. These are all low current, so 26 s.w.g. p.v.c. covered is suitable.

Fix into place the 45 resistors, 13 preset potentiometers, and 34 capacitors, noting the polarity of C52.

The voltage regulator IC20 has a heat sink identical to that used for IC13 on the logic board and is fitted in a similar way.

Next fit the transistors, TR2, to TR9, noting that the f.e.t.s are not all fitted the same way round.

D.i.l. sockets are optional for IC14 to IC18, but should not be used for IC19. On this device, the three centre pins on each side form the heat path to the circuit board and should be soldered directly to it. Finally, fix into place the four diodes.

TESTING

Connect the board positive and negative terminals to a variable power supply. Slowly increase the voltage, checking the regulator output voltage to ensure it stabilises at about 12V, when the input voltage exceeds 14V. With the input voltage at 18V, the current supply should be about 35mA.

Check the 6V rail voltage, at C52 positive connection, and that pin 6 on IC14 to IC18 are at the same voltage. The output, pin 8 on IC19, should be at half supply voltage, that is about 9V.

For the next stage, attach temporary connections to the four logic circuit inputs, the 6V rail, and negative rail. Connect an a.c. millivoltmeter or similar instrument to IC18 output, pin 6. Check that all the frequency adjusting potentiometers are at mid travel. With the d.c. test supply on, connect all the inputs to the 6V rail and check that IC18 output voltage is low, that is, not exceeding about 20mV r.m.s. Disconnect each input in turn and connect it to the negative rail. This allows the output from one of the oscillators to be amplified by IC18. Adjust the appropriate oscillator amplitude control potentiometer (VR13 to VR16) so that IC18 output voltage is 1-5V when the oscillator voltage should be about 1-0V.

After adjusting the fourth oscillator voltage, check IC19 output, at pin 8, and adjust VR17 to give about 800mV. All the above a.c. voltages are r.m.s. values.

POWER SUPPLIES

The rail supply transformer T1 should have a generous rating. This is necessary because of the high instantaneous current, when all the locomotives are moving in the same direction. This effect is more noticeable when they are all being moved at low speed, and all the triacs are switching on for the same short period in the supply cycle. This causes an appreciable instantaneous drop in the rail voltage, resulting in unwanted speed variations. The 55VA transformer used in both of the prototype controllers appears adequate for a small layout, where it is not possible to run the four locomotives simultaneously. The transformer secondary voltage should not exceed 20V, or the rating of components in the receivers will be exceeded.

There is some latitude in the choice of the power supply transformer T2. The circuits require a maximum current of 300mA, at 16V to 20V, the absolute limits being 14V and 22V. The transformer secondary winding can be 12V or 14V, and rated for 500mA minimum.

I tried for a long time to get a reliable square wave representation of the supply voltage, using the rail supply transformer as the source. However, mainly because of locomotive motor noise, and a small but significant phase shift in the secondary voltage between the loaded, and unloaded states, this failed miserably. The use of a separate transformer overcame this problem. The transformer T3 has a load of about 20mA, and the secondary voltage can be from 18V to 24V, which should be rated for at least 30mA.

A choke L1, in series with the rail supply transformer, limits the loss of control signals. In the original version I used a redundant loudspeaker crossover choke, which worked quite well. To make a suitable choke, wind 120 turns of 24 s.w.g. enamelled copper wire on to a 2 in. length of ferrite rod, ½ in. or ¾ in. diameter. Wind in three layers over the centre inch of the rod, and secure firmly into place with adhesive p.v.c. tape. With independent control of the locomotives, collisions and derailments become very common until you
Fig. 13. Oscillator and amplifier p.c.b. and component layout. The lettered inputs are connected to the logic board.
become used to the controls. It is essential that the rail supply transformer is protected from the effects of these occurrences, but the use of a fuse could become quite expensive. Again, in the original version, I used an old 1A d.c. rail cutout, with a 0.47 resistor connected across the coil to up-rate it. In this version an R.S. 2A miniature circuit breaker is used. This is a thermally operated device, and is therefore insensitive to the current peaks that occur in normal use.

It is useful to have some indication that the rail supply is on, and that the circuit breaker has not tripped. This can most easily be provided by a lamp, connected to the rail supply terminals, and is therefore normally illuminated. I used an R.S. 6V subminiature indicator, with a series resistor to drop the voltage at the lamp to about 3V, as it does not need to be very bright.

The circuit diagram for the power supplies and interconnections is shown in Fig. 14.

CONSTRUCTION

The physical layout of the boards and power supplies, is not critical, except that the choke L1 should be kept clear of the metal work (Fig. 16).

The securing arrangement used for the boards involves a little metal work, but it allows any component on the boards to be changed easily. The dimensions for the metal fittings are shown in Fig. 17. If it is not intended to tap the holes, as shown in the end plates, thinner material can be used. The circuit boards are joined together, component side inward, at their ends, using the end brackets and end plates, as in Fig. 15. Bend the tabs on the end brackets at right angles and fit to the boards with the tabs on the component side. The boards can then be fitted to the end plates, with the logic board supply connections opposite the oscillator board.

Fig. 14. Power supply board and output connections
frequency adjusting potentiometers. To save having to drill extra holes in the front panel of the cabinet, for the speed control potentiometer anti-rotation pegs, a mounting plate is fitted inside the front panel, secured by the potentiometer screwed bushes. The potentiometers should be fitted so that when rotated to mid travel, the spindle flat faces downwards. The construction details for the mounting plate are also shown in Fig. 17.

Drill holes in the front and rear panels required for the components (see photographs), and fit into position temporarily. Place the transformers, circuit boards, and C60 into their required positions, and mark the base for the securing screw holes. Also mark the position for the chassis earthing tag screw, and for the rubber feet, if required. Remove all the components and drill the holes. This is now the best time to clean up the chassis, paint or lacquer it, and letter the front and rear panels.

Fix about five inches of flexible wire to each of the speed control potentiometer terminals, and fit to the front panel, together with the mounting plate. When they are in position, check that the spindle flats do face downwards at mid travel. Fix into position the transformers, C60, the rail supply terminals, fuse holders, indicator lamp, circuit breaker, main switch, and the circuit board support brackets. Fit the circuit
board assembly to the support brackets, using the bottom screws only. The logic board is the nearest to the front panel, and should have indicator lamp connections at the top. Lift the assembly so that the screws are at the top of the bracket slots, and secure. Remove the bottom screws securing the oscillator amplifier board end bracket to the end plates. Slacken the top screws and pivot the board 90° upwards, towards the rear of the chassis, and secure in position. Slacken the support bracket, end plate screws, and pivot the whole assembly about 30° towards the rear of the chassis. It should now be easy to work on the copper side of both boards.

Connect to the logic board the 12 leads from the speed control potentiometers. Connect the 4 leads between the two boards, using flexible wire. Connect the positive and negative supply leads to both boards, and to C60. Connect transformer T3 20V terminal to the logic board connection. Connect the oscillator amplifier board output to the rail side terminal of the circuit breaker. The hole for the mains supply lead should have a grommet fitted before running in the cable. Screw into place the chassis earthing tags and connectors. The hole for the mains supply earth lead to it.

Connect the mains supply neutral lead to C61 primary terminals, as shown in Fig. 16, and T13. Capacitor C61 is connected directly to the primary terminals of transformer T1. Run connections from the chassis earthing tag 1 to C60 negative terminal, transformer T3 secondary OV terminal, and T1 secondary OV terminal.

Connect the choke L1 directly between transformer T1 20V terminal and the input terminal on the circuit breaker. Connect R65 to the circuit breaker rail side terminal, and to one of the indicator lamp connections. The other lamp connection can be taken to transformer T1 OV terminal. The rail supply terminals are connected to the circuit breaker, and to transformer T1 OV terminal. The bridge rectifier is connected directly to transformer T2 secondary terminals, and the terminals on C60.

**TESTING**

Remove the fuse FS1, switch on, and check that the voltage at C60 is between 16V and 20V. Without an oscilloscope, this is the only useful check that can be carried out at this stage.

With an oscilloscope connected to the rail supply terminals, rotate all the speed control potentiometers to mid positions, and check for zero output. Rotate each of the potentiometers in turn, in both directions, and look for the required pulses of control frequency. Replace fuse FS1, and repeat, looking for the control pulses superimposed on the supply frequency waveform.

To make the final adjustments, the receiver units are required, so this will be covered later.

**RECEIVER**

The circuit diagram for the receiver is shown in Fig. 19. Connections from the wheel pick up are taken to a choke L1 and a potential divider, R1, R2, at the tuned amplifier input. L1 limits the loss of control signal, but allows supply frequency current to pass to the motor and to the amplifier power supply.

The input stage amplifier IC1 is tuned to its control frequency by a parallel tee circuit in the negative feedback loop. This resonant circuit exhibits a very high impedance at a specific frequency.

With the circuit connected in the feedback loop, as in Fig. 18, the feedback resistor R6 is effectively shorted out, except at frequencies approaching resonance. At resonance, the amplifier gain is at a maximum and controlled by the ratio of R6 to R3. This type of tuned amplifier was chosen because of its stability and the simple way the frequency is set. It will be noticed from the component list that the components used in the tuned circuit are not exact theoretical values, but the use of the nearest preferred value still gives adequate discrimination between the channels, as was shown in Fig. 3.

**RECTIFIED OUTPUT**

The output of the tuned amplifier stage is rectified by D5 and D6, reducing the voltage on C8. This voltage is then connected to the second stage, IC2, which is a high input impedance voltage level switch. The circuits work in a very noisy electrical environment, and to reduce the effect of interference the values of C7, C8, and R10 were chosen to
Fig. 18. Receiver circuit

Board A

Board B

Receiver assembly

Receiver easily fits a small truck or tender

Fig. 19. Receiver p.c.b.s and layouts
cause a delay of about 1.5ms between receiving the control signal and the output of IC2 triggering from the low to the high state.

The output of IC2 is connected to an I.e.d. in the optical isolator IC3, through C11 and R15. D7 protects the I.e.d. from excessive reverse voltage.

C13 is charged to 12V by the connection through R16, and D8, and D1 limits the voltage. The optical isolator I.e.d. will be illuminated briefly when the output of IC2 changes from the low to the high state. Its optically coupled Darlington transistor will then conduct and partially discharge C13 into the gate of the triac. The triac will switch on, and will continue to conduct until its load current falls below the minimum holding value. This normally occurs at zero voltage, or soon after, depending on motor speed and back e.m.f.

CONSTRUCTION

The major problem in this part of the circuit has been one of how to squeeze a quarter into a pint pot. The method described here produces a receiver block, 51mm + 23mm + 12mm, which can be hidden away in a tender or goods wagon, if not inside the locomotive itself.

Two circuit boards are used, fixed face to face, like a sandwich, with the components as the filling. The boards, and the arrangement of components is shown in Fig.19. It should be noted that in the positions for resistors R7, R8 and R9 the holes are slotted out to the edge of the board, with a small file, to allow these resistors to be changed relatively easily.

The choke L1 has been difficult. Its target inductance is 1 to 2mH; it should conduct the motor peak load current of over 1A without saturating; it should be relatively unaffected by metal close by, and it should be very small. The compromise solution has been to use a pot core with a very large air gap.

CHOKE ASSEMBLY

In the original unit the now obsolete FX1011 was used, but the current FX2236 has been used in the same way, with similar results. The outer rim of the cores is carefully broken away using small side cutters, a small piece at a time with similar results. The outer rim of the cores is carefully broken away using small side cutters, a small piece at a time with similar results. The two halves are then stuck together using 26s.w.g. p.v.c. covered wire, or similar. Also fit C1, C2, C7, C10, C11 and C13, fixing as close to the board as possible, and vertical to it. Locate and fix the triac CSR1, leaving a gap of about 1mm between the base of the case and the board.

On board A, fix into position the choke L1, either using adhesive or a screw through the board. It should be noted that there is no space between the top of the pot core and the components on board B for the head of a screw through the centre hole. Fix into position the link shown in Fig. 19, using 26s.w.g. p.v.c. covered wire, or similar. Also fit C1, C2, C7, C10, C11 and C13, fixing as close to the board as possible, and vertical to it. Locate and fix the triac CSR1, leaving a gap of about 1mm between the base of the case and the board.

On board B, fix the three links, following the paths shown in Fig. 19. Locate and fix R16, C8, C9, D1, D2, D3, D4, D7 and D8. On both boards, all the components have very short leads, so soldering should be carried out as quickly as possible to prevent damage. The diodes, in particular, should be checked with a test meter after soldering, to ensure they have survived.

MATING THE BOARDS

Fit the two boards together, face to face, checking that there is clearance between the capacitors, and adjusting their position slightly if necessary.

It should be possible to fit the boards over each other, with the tops of the mylar capacitors touching the other board. Also check that the top of C7 does not foul the links on board B.

Lay board A, copper side down, on a piece of expanded polystyrene, about one inch thick. Cut 9 pieces of single core insulated copper wire, about 30mm long, and strip the insulation off 10mm, at each end. Push these, one at a time through the holes marked in Fig. 19 for vertical links, and into the polystyrene. Shorten the leads to about 15mm on R1, R2, R3, R4, R5, R6, R10, R11, R12, R13, R14, R15, R17 and R18, and insert into the board. Repeat with C3, C4, C5 and C6, with the outer foil uppermost. Fit D5, D6 and D1, checking the polarity.

On IC1, IC2, and the optoisolator, carefully straighten the pins. Measure the distance across the pin shoulders, and if this exceeds 11mm, carefully file back. Fit IC1, IC2, and the optoisolator into position, noting the positions for pins 8 and 6 respectively.

All the holes in the board should now be filled, except those for R7, R8, R9 and the external connections. Before going any further, check that all the components are in their correct positions, as it is almost impossible to change them later.

The next stage is to drop board B, component side down, over all the loose ends protruding from board A. This operation requires time and patience for all the leads to end up in the right holes. When all is correct, push the boards tightly together, when the tops of the mylar capacitors should contact the opposite board. Adjust the positions of the vertical components so they are about mid way between the boards, solder, and clip off the surplus leads. Turn the boards over and repeat on the other side.

At this stage it is possible to carry out a quick check to see that all is well. Using a 30V d.c. test supply, connect the positive lead to board B chassis connection, and the negative to board A wheel pick up connection, when the current should be about 14mA. Reverse the connections and the current should now be about 7mA. The following volatages can also be checked, with respect to the negative rail, on the boards. C10 29V; C2 24V; IC1 pin 6 12V; IC2 pin 6 2V.

If all appears satisfactory, fit the required values of R7, R8, and R9 by soldering them into the end of the boards and soldering.

To check the amplifier response, if required, connect the test supply as before, either way round. Inject a test signal of about 10mV at R1, R2 junction, when IC1 output should peak at 1V at the tuned frequency and drop rapidly each
CONNECTIONS

On the locomotive motor, one brush is connected to the motor chassis, and the other connected either to a wheel pick up or to a separate wheeled unit. The latter connection should be broken, and a lead taken from the "live" brush to a motor connection, and the one from the pick up to the wheel pickup connection also on board A. The r.f. suppressor capacitor, connected to the live brush, should be left in position.

A lead should also be run from a good connection on the motor chassis, to the chassis connection on board B. All the connecting leads should be very flexible, particularly if they are to run between two wheeled units. If the receiver is housed in a separate truck, the coupling should be modified so that it cannot easily become disconnected and throw the load on to the leads.

FINAL ADJUSTMENTS

Before connecting the transmitter to the rails make sure that there are no r.f. suppressor capacitors on the rail circuit or in the connector. Connect the transmitter to the rails, place the first locomotive on the track, and switch on. Rotate the appropriate speed control potentiometer to a high speed position, and adjust the pair of frequency setting potentiometers (VR5 and VR9 etc) until the locomotive starts to move, keeping them in approximately similar positions. Reduce the speed setting and trim the potentiometers again. Bring the locomotive to a point on the track, close at hand, and reduce the speed setting until there is no movement, but a faint buzz is emitted from the motor, and then make the final adjustments. Repeat this operation with the other three locomotives.

The control signal level should be the minimum to give satisfactory control of all the locomotives. There will be slight variations in the gain in the receiver tuned amplifiers, because of component tolerances and stray capacitance, so the signal level should be just high enough to operate the one with the lowest gain. With all four locomotives on the track, set them to a just perceptible creep. Reduce the signal level, by adjusting VR17, until one locomotive stops, then increase it again, until the locomotive starts to move. This should give about the right signal level for control at all speeds, and check the locomotives in both directions.

Please note that in the Components List under "Receiver Board" R8 value resistors are the same as R7 also R9/D is 12k. In Fig. 10, R64 should be 2-7 ohms.

Tempcon July 1-3, Wembley Conference Centre. Exhibition devoted to temperature control & measurement. T
Transducer July 1-3, Wembley Conference Centre. T
Microsoftware (symposium) July 7-10 University of Sussex. S1
BAEC Amateur Electronics Exhibition July 12-19. The Explanade Shelter, Penarth, near Cardiff, S. Glam. B
Harrogate International Festival of Sound Aug. 16-19 (18 & 19 trade). The Exhibition Centre + hotels. X
Laboratory Sept. 9–11 Grosvenor Ho., Park Lane, London. E
Intron 80 Sept. 9–11. RDS, Dublin. V
Readout...
A selection from our Postbag

Readers requiring a reply to any letter must include a stamped addressed envelope.
Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

AY3 Availability

Sir,—Referring to the letter of B. D. Arnold in P.E. for March '80 I would like to assure him that General Instrument Microelectronics do still manufacture the AY-3-0214/15/16 top octave generators, and while Semiconductor Specialists (the G.I.M. franchised distributor) does not in general service the amateur market, a number of those companies who do, and advertise regularly in P.E., buy products from us. May I suggest that Mr. Arnold (and others interested) write to his favourite supplier and ask for a price and delivery. Demand does create supply!

Incidentally Mr. Arnold is not quite correct in calling the top octave generators the AY3 series since quite a number of G.I.M.'s devices are called AY-3-XXXX (from UART's to system since quite a number of G.I.M.'s devices are called AY-3-XXXX (from UART's to

Sir—I would be grateful if you would pass on to Mr. Ben J. Duncan my congratulations on his excellent feature PA Loudspeaker Systems in your March issue. The article answers many of the questions raised by the popular music fraternity.

However, may I point out that Mr. Duncan had been over generous in suggesting that a Vitavox 2205/522 multichannel horn a horizontal dispersion of 150° by 60° vertical. The manufacturers publish the nominal acoustic distribution as 20° per cell indicating 100° x 40° for the model in question.

H. Warren Consultant in Electro-Acoustics Luton

Regrettably I have made it appear as if a general statement about multichannel referred specifically to the Vitavox horn illustrated in the article. I must admit though that a horizontal dispersion of 150° is a little generous for most multichannel horns and a figure of 100/150° would be more representative. Incidentally, perplexed rock fans with magnifying glasses will be interested to know that the band on the last page of the article are "The Join". Another point is that the bullet horns shown on the 4Kw Muscle Music stack are in fact from HH rather than JBL.—Ben J. Duncan

Hard or Soft?

Sir,—My attention has been drawn to a letter in Readout, together with a reply from your contributor Nexus, concerning courses available to students wishing to study Microprocessor Systems. It is worth noting that the intending student does not necessarily have to make a decision at the outset whether to enter an electronics biased or a computing biased course. A few colleges, including this one, offer a course which allows students to study in parallel both the hardware and the software aspects of the subject, and, more important, to appreciate the interaction and the trade-offs between them. In our own Microelectronics and Computing course, students during the first year study foundation courses in both electronics and computing. At the end of the first year, they have the option of continuing with the combined scheme or, if they prefer, specialising in either hardware or systems.

Prof. G. Emery, Department of Computer Science, University College of Wales, Aberystwyth.
Buying one of our PROJECT PACKS will save you the frustration of tracking down those evasive components that hold up the completion of your project. Our packs include Printed Circuit Board, all the components listed in the article together with sockets and solder. Cases, knobs etc can be supplied as extra items if required. Ask for more information ... !

Make sure of your new Heathkit catalogue...write now.

Keep up to date with the world's finest electronic kits—with the new Heathkit catalogue. 48 product packed pages contain photographs and specifications of the widest possible range of kits. Everything from doorbells to digital clocks, multimeters to microcomputers.

Heathkit make it easy to build, easy on your pocket, and, as with 13 million Heathkit builders over 34 years, your success is guaranteed.

Make sure of your copy of the new Heathkit catalogue. Send the coupon today, plus 25p in stamps and beat the demand.

To: Heath Electronics (U.K.) Limited, Dept (PE5), Bristol Road, Gloucester, GL2 6EE.
Please send me a copy of the new Heathkit catalogue. I enclose 25p in stamps.

Name
Address

N.B. If you are already on the Heathkit mailing list you will automatically receive a copy of the Heathkit catalogue without having to use this coupon. When you receive your catalogue you will get details of this free offer.
Simply ahead...

I.L.P’s PROVEN RANGE OF HIGH

Chosen in more countries throughout the world than any other U.K. make

I.L.P. constructional modules are different. Whereas most others come with components neatly arranged on open P.C.B.s with little else, I.L.P. modules are encapsulated within totally adequate heatsinks and need no extra components to complete them. As a result, I.L.P. power amplifiers, pre-amp and matching power supply units are infinitely more rugged, impervious to working in extremes of temperature and can be easily positioned to requirement. No additional metal work is needed to take away heat, connections are minimal and utterly simple. Circuitry, workmanship and performance are of the highest standards, equal to the demands of loudspeakers, pick-ups, tuners, digital signals etc. even more exacting than those of today, making amplifier systems less than the best completely inadequate. Now study the tested and guaranteed specs. for I.L.P. That is why more people in more countries prefer these British designed and made modules.

Why toroidal?

Toroidally wound transformers are more compact than their conventionally laminated equivalents, being only half as high and heavy. Their circular profile ensures greater operating efficiency and as such are particularly valuable in heavy duty applications. We have our own production section for winding and making toroidal transformers enabling us to offer this much sought-after type at competitive prices. Four of the larger models in our range of power supply units are now supplied with this type.

PRODUCTS OF THE WORLD’S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

AVAILABLE ALSO FROM WATFORD ELECTRONICS, MARSHALLS AND CERTAIN OTHER SELECTED STOCKISTS
and staying there

PERFORMANCE MODULAR UNITS

HY5 PRE-AMPLIFIER

VALUES OF COMPONENTS FOR CONNECTING TO HY5
Volume - 10K J log.
Bass/Treble - 100K .n_ linear.
Balance - 5K J linear.

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack 50 x 40 x 15 mm, and provides multi-function equalisation for Magnetic/Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at 1KHz -0.01%. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.

£4.64 + 74p VAT

THE POWER AMPLIFIERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Output Power R.M.S.</th>
<th>Distortion Typical at 1KHz</th>
<th>Minimum Signal/Noise Ratio</th>
<th>Power Supply Voltage</th>
<th>Size in mm</th>
<th>Weight in gms</th>
<th>Price + VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY30</td>
<td>15 W into 8 Ω</td>
<td>0.02%</td>
<td>80dB</td>
<td>-20 -0 +20</td>
<td>105x50x25</td>
<td>155</td>
<td>£6.34 + 95p</td>
</tr>
<tr>
<td>HY50</td>
<td>30 W into 8 Ω</td>
<td>0.02%</td>
<td>90dB</td>
<td>-25 -0 +25</td>
<td>105x50x25</td>
<td>155</td>
<td>£7.24 + 109</td>
</tr>
<tr>
<td>HY120</td>
<td>60 W into 8 Ω</td>
<td>0.01%</td>
<td>100dB</td>
<td>-35 -0 +35</td>
<td>114x50x85</td>
<td>575</td>
<td>£15.20 + 228</td>
</tr>
<tr>
<td>HY200</td>
<td>120 W into 8 Ω</td>
<td>0.01%</td>
<td>100dB</td>
<td>-45 -0 +45</td>
<td>114x100x85</td>
<td>115Kg</td>
<td>£18.44 + 277</td>
</tr>
<tr>
<td>HY400</td>
<td>240 W into 4 Ω</td>
<td>0.01%</td>
<td>100dB</td>
<td>-45 -0 +45</td>
<td>114x100x85</td>
<td>115Kg</td>
<td>£27.68 + 415</td>
</tr>
</tbody>
</table>

Load impedance - all models 4 - 16Ω.
Input sensitivity - all models 500 mV
Input impedance - all models 100K J
Frequency response - all models 10Hz-45kHz -3dB

THE POWER SUPPLY UNITS (Laminated and Toroidal)

I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer, the other with toroidal transformer, having half the weight and height of conventional laminated types.

PSU 30 2 15V at 100ma to drive up to five HY5 pre-amps £4.50 + £0.68 VAT
PSU 36 for 1 or 2 HY30's £8.10 + £1.22 VAT
PSU 50 for 1 or 2 HY50's £8.10 + £1.22 VAT
PSU 60 (Toroidal) for one HY120 £9.75 + £1.46 VAT
PSU 70 with toroidal transformer for 1 or 2 HY120's £13.61 + £2.04 VAT
PSU 90 with toroidal transformer for 1 HY200 £13.61 + £2.04 VAT
PSU180 with toroidal transformer for 1 HY400 or 2 x HY200 £23.02 + £3.45 VAT

NO QUIBBLE 5 YEAR GUARANTEE
7 DAY DESPATCH ON ALL ORDERS
INTEGRAL HEATSINKS
BRITISH DESIGN AND MANUFACTURE
FREEPOST SERVICE
-see below

Please supply
Total purchase price £
I enclose Cheque □ Postal Orders □ International Money Order □
Please debit my Account/Barclaycard Account No.
NAME
ADDRESS
Signature

ILP ELECTRONICS LTD.
FREEPOST 1 Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP.
Telephone (0227) 54778 Telex 965780

NO QUIBBLE 5 YEAR GUARANTEE
7 DAY DESPATCH ON ALL ORDERS
INTEGRAL HEATSINKS
BRITISH DESIGN AND MANUFACTURE
FREEPOST SERVICE
-see below

Please supply
Total purchase price £
I enclose Cheque □ Postal Orders □ International Money Order □
Please debit my Account/Barclaycard Account No.
NAME
ADDRESS
Signature

Practical Electronics May 1980 77
TRANSFORMERS + VAT 15%

<table>
<thead>
<tr>
<th>12 OR 24 V OR 12-0-12 V</th>
<th>202-240 volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avos MKS</td>
<td>£65.00</td>
</tr>
<tr>
<td>Avos MHS</td>
<td>£65.00</td>
</tr>
<tr>
<td>Audio Transformers</td>
<td>Voltage for step up or step down</td>
</tr>
</tbody>
</table>

**CONTINUOUS RATINGS**

All voltages given are at full load

**50 VOLT RANGE**

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Price</th>
<th>P &amp; P</th>
<th>VAT</th>
<th>P &amp; P</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.88</td>
<td>0.17</td>
<td>0.09</td>
<td>0.16</td>
</tr>
<tr>
<td>25</td>
<td>2.03</td>
<td>0.61</td>
<td>0.33</td>
<td>0.44</td>
</tr>
<tr>
<td>40</td>
<td>4.17</td>
<td>1.26</td>
<td>0.66</td>
<td>1.78</td>
</tr>
<tr>
<td>60</td>
<td>6.31</td>
<td>1.86</td>
<td>0.93</td>
<td>2.79</td>
</tr>
<tr>
<td>80</td>
<td>8.45</td>
<td>2.46</td>
<td>1.23</td>
<td>3.69</td>
</tr>
</tbody>
</table>

**500 VOLT RANGE**

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Price</th>
<th>P &amp; P</th>
<th>VAT</th>
<th>P &amp; P</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.16</td>
<td>0.35</td>
<td>0.19</td>
<td>0.54</td>
</tr>
<tr>
<td>25</td>
<td>2.30</td>
<td>0.70</td>
<td>0.40</td>
<td>1.11</td>
</tr>
<tr>
<td>40</td>
<td>3.44</td>
<td>1.04</td>
<td>0.57</td>
<td>1.61</td>
</tr>
<tr>
<td>60</td>
<td>4.58</td>
<td>1.39</td>
<td>0.72</td>
<td>2.19</td>
</tr>
<tr>
<td>80</td>
<td>5.72</td>
<td>1.83</td>
<td>0.96</td>
<td>2.79</td>
</tr>
</tbody>
</table>

**5000 VOLT RANGE**

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Price</th>
<th>P &amp; P</th>
<th>VAT</th>
<th>P &amp; P</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5.86</td>
<td>0.84</td>
<td>0.46</td>
<td>1.30</td>
</tr>
<tr>
<td>25</td>
<td>11.72</td>
<td>2.14</td>
<td>1.14</td>
<td>3.28</td>
</tr>
<tr>
<td>40</td>
<td>17.58</td>
<td>3.06</td>
<td>1.63</td>
<td>4.68</td>
</tr>
<tr>
<td>60</td>
<td>23.44</td>
<td>4.98</td>
<td>2.65</td>
<td>6.56</td>
</tr>
<tr>
<td>80</td>
<td>29.30</td>
<td>6.90</td>
<td>3.53</td>
<td>8.44</td>
</tr>
</tbody>
</table>

**50000 VOLT RANGE**

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Price</th>
<th>P &amp; P</th>
<th>VAT</th>
<th>P &amp; P</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>53.16</td>
<td>9.98</td>
<td>5.34</td>
<td>14.32</td>
</tr>
<tr>
<td>25</td>
<td>106.32</td>
<td>19.96</td>
<td>10.68</td>
<td>30.64</td>
</tr>
<tr>
<td>40</td>
<td>159.48</td>
<td>29.94</td>
<td>15.78</td>
<td>44.72</td>
</tr>
<tr>
<td>60</td>
<td>212.64</td>
<td>39.92</td>
<td>21.44</td>
<td>59.84</td>
</tr>
<tr>
<td>80</td>
<td>265.80</td>
<td>49.90</td>
<td>27.12</td>
<td>74.96</td>
</tr>
</tbody>
</table>

**Mains Isolators (Screened)**

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Price</th>
<th>P &amp; P</th>
<th>VAT</th>
<th>P &amp; P</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.88</td>
<td>0.17</td>
<td>0.09</td>
<td>0.16</td>
</tr>
<tr>
<td>25</td>
<td>2.03</td>
<td>0.61</td>
<td>0.33</td>
<td>0.44</td>
</tr>
<tr>
<td>40</td>
<td>4.17</td>
<td>1.26</td>
<td>0.66</td>
<td>1.78</td>
</tr>
<tr>
<td>60</td>
<td>6.31</td>
<td>1.86</td>
<td>0.93</td>
<td>2.79</td>
</tr>
<tr>
<td>80</td>
<td>8.45</td>
<td>2.46</td>
<td>1.23</td>
<td>3.69</td>
</tr>
<tr>
<td>100</td>
<td>10.60</td>
<td>3.06</td>
<td>1.63</td>
<td>4.68</td>
</tr>
<tr>
<td>150</td>
<td>15.90</td>
<td>4.54</td>
<td>2.47</td>
<td>6.91</td>
</tr>
<tr>
<td>200</td>
<td>21.20</td>
<td>6.04</td>
<td>3.29</td>
<td>9.28</td>
</tr>
<tr>
<td>300</td>
<td>31.80</td>
<td>9.54</td>
<td>5.27</td>
<td>14.81</td>
</tr>
<tr>
<td>500</td>
<td>53.10</td>
<td>15.93</td>
<td>8.57</td>
<td>24.46</td>
</tr>
</tbody>
</table>

**Microphones for Tape Recorders**

- DM229R 50K with 35 and 04

**Astro Transformer**

- 15V Range
- 20 Turn Power Transformer

**New Microphones in stock**

- Astrolite Microphones
- Radio Microphones
- Telephone Microphones
- Broadcast Microphones

**Barrie Electronics Ltd.**

- Barclay Works, Rochdale
- Telephone: 01-488 3316/78

**Jones Electronic Supplies**

- 56A, Ashton Road, Oldham, Lancs.
- Telephone: 081-852 9879

**Stocks of Lektrotik Broadbands, Vero, CMOS, TLT, Resistors, Capacitors etc.**

**Leach Amplifiers & Speakers**

- Barric Kites 99p each
- BK1 8 Rotary switches (3 position)
- BK2 1000K 0-25000pf
- BK3 1000K 0-25000 pf
- BK4 2N5061 .8 amp 400V
- BK5 25 TDD transformers
- BK6 25 TDD transformers
- BK7 25 TDD transformers
- BK8 25 TDD transformers

**MAKE YOUR OWN KEYBOARDS**

- Make your own keyboards with re-chargeable top allowing lettering by individual. Only (1-10) 30p each. (11-20) 27p each. (20-100) 26p each. P&P 10p each.

**New Stock at 49g, Oldham Road, Rochdale, Lancs.**

- Tel: Rochdale 487975

**JONES ELECTRONIC SUPPLIES**

- 56A, Ashton Road, Oldham, Lancs.
- Telephone: 081-852 9879

**Quality Reel to Reel & Cassette Tape Heads**

- Some Popular Universal Cassette Tape Heads

- Jones Electronic Supplies

- Rochdale 487975

**The Monolith Electronics Co. Ltd.**

- 3, The Minories, London EC3N 1BJ
- Telephone: 01-488 3316/78

**The Monolith Dynamic Microphone**

- Model UD-103 Frequency response 50-15,000c/s
- Impedance Dual 50k and 600 ohms
- £8.02. 50p P. & P.

**Cardiod Dynamic Microphone**

- Model UD-103 Frequency response 50-15,000c/s
- Impedance Dual 50k and 600 ohms
- £8.02. 50p P. & P.

**All prices include V.A.T. Send 40p for new 1980 fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.**

M. DZIUBAS

158 Bradshawgate • Bolton • Lancs. BL2 1BA

May 1980
Full Spec Kit

TELETEXT DECODER

- STATE OF THE ART L.S.I. CIRCUITS
- DOUBLE HEIGHT CHARACTER SELECTABLE FOR LEGIBILITY
- CHARACTER ROUNDING - EFFECTIVELY DOUBLES DEFINITION
- ULTRASONIC REMOTE CONTROL
- HIGH QUALITY THROUGH PLATED P.C.B.
- ALL I.C. MOUNTED ON SOCKETS
- PREALIGNED UHF/IF MODULES
- NEEDS NO INTERNAL CONNECTION TO THE TELEVISION SET
- SIZE 430mm x 90mm x 220mm
- SUPPLY 240v 50Hz 35w
- NEW "TOUCH CONTROL KEYPAD" NEW

INCLUDES TUNER, P.S.U., DECODER, REMOTE KEYBOARD, P.A.L. ENCODER, U.H.F MODULATOR CASE WITH SCREENED AND PUNCHED FRONT PANEL.

— £189.90 inc VAT. P & P £3.00.

FULL TELETEXT MANUAL IF BOUGHT SEPARATELY — £2.50 P & P £0.50.

P.C.B’S AND L.S.I. I.C’S NOT SOLD SEPARATE FROM KITS

C/MOS PRICE INCREASE: PLEASE ADD 25% TO LAST MONTH’S PRICES AS ADVERTISED

- POWER MOSFET AMPLIFIER
- DOPPLER RADAR ALARM
- 1 AMP P.S.U.

Bring your Hi-Fi up to date. Available now is a 100 watt audio amplifier using POWER MOSFETS. The POWER MOSFET has several advantages over bipolar transistors. It has good frequency response, no collector storage delay, thermal stability, no secondary breakdown, and high input impedance. The MOSFET Amplifier has been designed to deliver a continuous power output of 100 watts at full output driving a 8 ohms from 5 Hz to 100 kHz, with no more than 0.01% total harmonic distortion, which is about a tenfold improvement on ordinary bipolar techniques. The high output impedance and thermal stability of the MOSFET reduces the size of the total circuit by about 50%. The kit does not include a case.

POWER MOSFET AMPLIFIER MODULE £27.50

Do your goodies need protecting? No need to run miles of wire, and hack window and door frames to pieces. Just build a Doppler Radar Alarm kit. It can be mains or battery operated (external battery required), and is triggered by any movement in its detection area. It incorporates an arming delay — to enable you to leave its detection field safely, and a trigger delay (0 to 45 seconds), so you can catch the thief red handed without a prior warning having been given. The unit provides a 12 volt output, normally high (low on alarm), to supply an external remote relay, which is not supplied. The unit has an integral alarm buzzer to give an indication when the unit is being armed, and when tripping is complete. The unit comes complete with a suitable case.

DOPPLER RADAR ALARM £39.50

Need a one amp power supply at five volts or twelve volts? Fed up with lash ups? Here is a basic ‘no frills’ 1 amp P.S.U. kit, based on the well known uA7800 series three terminal regulators. When assembled, all components, including the transformers are mounted on the printed circuit board. Use the module as a bench power supply, or as part of a piece of equipment.

1 AMP PSU - 5 VOLTS £6.00
1 AMP PSU - 12 VOLTS £7.50

Practical Electronics May 1980
Britain's first comp

A complete personal computer for a third of the price of a bare board.

Also available ready assembled for £99.95

The Sinclair ZX80.

Until now, building your own computer could easily cost around £300 - and still leave you with only a bare board for your trouble.

The Sinclair ZX80 changes all that. For just £79.95 you get everything you need to build a personal computer at home... PCB, with IC sockets for all ICs; case; leads for direct connection to your own cassette recorder and black and white or colour television; everything!

And yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers on the market at several times the price. The ZX80 is programmed in BASIC, and you could use it to do quite literally anything from playing chess to running a power station.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron.

Your ZX80 kit contains...

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs - all manufactured by selected world-leading suppliers.
- New rugged Sinclair keyboard, touch-sensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be saved and loaded on to any portable cassette recorder.)
- FREE course in BASIC programming and user manual.

Optional extras
- Mains adaptor of 600 mA at 9 V DC nominal unregulated (available separately - see coupon).
- Additional memory expansion boards allowing up to 16K bytes RAM. (Extra RAM chips also available - see coupon.)
- Universal TV modulator.

Two unique and valuable components of the Sinclair ZX80.

The Sinclair ZX80 is not just another personal computer. Quite apart from its exceptionally low price, the ZX80 has two uniquely advanced components: the Sinclair BASIC interpreter, and the Sinclair teach-yourself BASIC manual.

The unique Sinclair BASIC interpreter... offers remarkable programming advantages:

- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handling capability - takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The ZX80 also has string input-to request a line of text when necessary. Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up to 26.
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions, USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with 22 standard graphic symbols.
- All characters printable in reverse under program control.
- Lines of unlimited length.

... and the Sinclair teach-yourself BASIC manual.

If the features of the Sinclair interpreter listed alongside mean little to you - don't worry. They're all explained in the specially-written 128-page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming - from first principles to complex programs. (Available separately - purchase price refunded if you buy a ZX80 later.)

A hardware manual is also included with every kit or built machine.

Z80A microprocessor - new, faster version of the famous Z-80 microprocessor chip, widely recognised as the best ever made.

RAM chips.

Sockets for TV, cassette recorder, power supply.

SUPER ROM.

Clock.

UHF TV modulator.

Use a 600 mA at 9 V DC nominal unregulated mains adaptor. Available from Sinclair if desired (see coupon).

Practical Electronics May 1980
Fewer chips, compact design, volume production – more power per pound!

The ZX80 owes its remarkable low price to its remarkable design: the whole system is packed onto fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the ZX80’s 1K byte RAM is roughly equivalent to 4K bytes in a conventional computer – typically storing 100 lines of BASIC. (Key words occupy only a single byte.)

The display shows 32 characters by 24 lines. And Benchmark tests show that the ZX80 is faster than all other personal computers. No other personal computer offers this unique combination of high capability and low price.


The ZX80 kit costs a mere £79.95. Can’t wait to have a ZX80 up and running? No problem! It’s also available, ready assembled, for only £99.95. Whether you choose the kit or the ready-made, you can be sure of world-famous Sinclair technology – and years of satisfying use. (Science of Cambridge Ltd is one of the Sinclair companies owned and run by Clive Sinclair.) To order, complete the coupon, and post to Science of Cambridge for delivery within 28 days. Return as received within 14 days for full money refund if not completely satisfied.

Order Form

To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.

Remember: all prices shown include VAT, postage and packing. No hidden extras.

Please send me:

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Item price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sinclair ZX80 Personal Computer kit(s). Price includes ZX80 BASIC manual, excludes mains adaptor.</td>
<td>79.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ready-assembled Sinclair ZX80 Personal Computer(s). Price includes ZX80 BASIC manual, excludes mains adaptor.</td>
<td>99.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mains Adaptor(s) (600 mA at 9 V DC nominal unregulated)</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Memory Expansion Board(s) (each one takes up to 3K bytes)</td>
<td>12.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAM Memory chips – standard 1K bytes capacity.</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sinclair ZX80 Manual(s) (manual free with every ZX80 kit or ready-made computer).</td>
<td>5.00</td>
<td></td>
</tr>
</tbody>
</table>

NB. Your Sinclair ZX80 may qualify as a business expense.

I enclose a cheque/postal order payable to Science of Cambridge Ltd for £

Name: Mr/Mrs/Miss
Address

Please print

Science of Cambridge Ltd
6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Tel: 0223 311488.
ELECTROVALUE
SUPPLIERS OF COMPONENTS THAT COUNT

SIEMENS SEMI-CONDUCTOR CAPACITORS FERRITES

NASCOM MICRO COMPUTERS AND ANCILLARIES

VERO BOARDS CAGES & KITS

ISKRA RESISTORS

RADIOHM POTENTIOMETERS

SOLDER TOOLS BREADBOARDS

OF-TELE-COM SWITCHES CATALOGUE 10

OUR MINI-SELECTION POINTS THE WAY!

EXAMPLE ONE - SOLDERING IRONS

Our Mini-Selection points the way!

EXAMPLE TWO - PRINTED CIRCUIT MATERIALS

EXAMPLE THREE - SWITCHES

EXAMPLE FOUR - CAPACITORS BY SIEMENS

EXAMPLE FIVE - POTENTIOMETERS BY RADIOHM

EXAMPLE TWO - PRINTED CIRCUIT MATERIALS

RESISTORS SEMI CONDUCTOR

1NA. Phone (061) 432 5945.
35 Grosvenor Road, Twickenham, Middx. Tel: 01 991 1513

CROFTON ELECTRONICS

PROGRESSIVE RADIO
31, CHEAPSIDE, LIVERPOOL L3 2DY


RESISTORS"

MINIATURE MAINS TRANSFORMERS. All 24VAC PRIMARY. 8.0-8.0MA. 12-12 12.5mA, 76p. 15-25 12.5mA, 20p. Complete adjustable buzzer 8.5V. 8.5mA 27p.

HIGH IMPEDENCE HEADPHONES, mono 2.000 ohms imp. transducer type. adjustable band and padded ear cup. 5p each.

PACKET MULTIMETER, MODEL MG3. 2,000 ohms per volt. 1,000 volt AC/DC, 2 current origins of 1 amp. 15p each.

SOLDER Sucker. High suction/teflon nozzle. 4.65p.

MILITARY TRANSISTORS, 40N, RECONCER 15.00p.


SOLDER TOOLS. BREADBOARDS

MINIATURE MICROPHONE. Tie pin type. Omni. 1K ohms, 8 pin jack plug only 12.96p.

INTERCOM UNIT

MICROPHONE. Stick type. Omni. 600 ohms, on/off switch, standard jack plug only 12.96p.

EM507

LOW COST INTERCOM UNIT. Cross 400, 0.1W. 200mA. 75p.

PUBLIC ADDRESS SPEAKERS. Suitable for outdoor use. 8W 200W. 5 inch 200W, 8 inch 500W. 15p each.

ACCESS/Barclays card welcome

Prices include VAT and Post.

5/12 wide x 5/3 deep, finished blue with transparent plastic drawers.

Type H No. of Drawers Price (incl) Sm MedLarge

- 43p

- 25p

- 17p

$30

- 20p

- 15p

- 11p

- 8p

- 5p

- 3p

- 2p

- 1p

- 0.5p

- 0.25p

- 0.1p

- 0.05p

- 0.025p

- 0.01p

- 0.005p

- 0.0025p

- 0.001p

- 0.0005p

- 0.00025p

- 0.0001p

- 0.00005p

- 0.000025p

- 0.00001p

- 0.000005p

- 0.0000025p

- 0.000001p

- 0.0000005p

- 0.00000025p

- 0.0000001p

- 0.00000005p

- 0.000000025p

- 0.00000001p

- 0.000000005p

- 0.0000000025p

- 0.000000001p

- 0.0000000005p

- 0.00000000025p

- 0.0000000001p

- 0.00000000005p

- 0.000000000025p

- 0.00000000001p

- 0.000000000005p

- 0.0000000000025p

- 0.000000000001p

- 0.0000000000005p

- 0.00000000000025p

- 0.0000000000001p

- 0.00000000000005p

- 0.000000000000025p

- 0.00000000000001p

- 0.000000000000005p

- 0.0000000000000025p

- 0.000000000000001p

- 0.0000000000000005p

- 0.00000000000000025p

- 0.0000000000000001p

- 0.00000000000000005p

- 0.000000000000000025p

- 0.00000000000000001p

- 0.000000000000000005p

- 0.0000000000000000025p

- 0.000000000000000001p

- 0.0000000000000000005p

- 0.00000000000000000025p

- 0.0000000000000000001p

- 0.00000000000000000005p

- 0.000000000000000000025p

- 0.00000000000000000001p

- 0.000000000000000000005p

- 0.0000000000000000000025p

- 0.000000000000000000001p

- 0.0000000000000000000005p

- 0.00000000000000000000025p

- 0.0000000000000000000001p

- 0.00000000000000000000005p

- 0.000000000000000000000025p

- 0.00000000000000000000001p

- 0.000000000000000000000005p

- 0.0000000000000000000000025p

- 0.000000000000000000000001p
### ZETRON BRITAIN'S FINEST SELLING RANGE

#### GENTS 4 BUTTON CHRONO
A NEW STYLE chronograph with the added advantage of 4 buttons plus date flag. Hours, mins, secs, weekday, am/pm indication on constant display. Date flag indication with month and date. 1/100th sec chronograph, with a 12 hour capacity. Split and lap mode facilities. Back-light. Adjustable stainless steel strap. **Special £8.95**

#### GENTS FRONT BUTTON CHRONO ALARM
LATEST 1980 STYLE. Super slim and attractive. Basic working modes of (i) Chronograph (ii) 24 hr. alarm (iii) Dual time zone, hours, minutes, seconds. Weekday indication, with am/pm T2 and A1 flags month and date indication. Running horse style chrono to 1/10 sec. 60 sec activation time on the alarm system. 6 digits 5 flags. Backlight, adjustable stainless steel strap. **£15.50**

Also available in black resin case and strap. Only **£12.50**

#### GENTS MELODY ALARM CHRONO
BRAND NEW melody alarm chronograph which we believe will be the watch of 1980. Hours, mins, secs, weekday, am/pm and mode square flag indication. Chrono to 1/100th sec, with split and lap mode facilities. Dual timing facilities. The alarm system is unique in the fact that it plays the tune "Yellow Rose of Texas," for 20 seconds. The tune can be activated at any instance by the press of a button. Backlight, infinite adjustable built in stainless steel strap. Only **£17.75**

#### GENTS FRONT BUTTON ALARM
LATEST 1980 STYLE. Superb looking chrono on the market. Constant display of hours, mins, secs, with am/pm indication. Also month, date and weekday indication. 1/100th and 1/10th sec with split and lap mode facilities. Backlight, closely woven adjustable stainless steel strap. **Special £8.95**

#### LADIES SUGAR COATED
ANOTHER SUPERB LADIES WATCH, with that extremely popular sugar frosted finish. (Gold or silver). Links can easily be removed from the strap and the clasp has a spring mechanism built in to give a comfortable fitting. Constant display of hours and mins, with month, date, secs, auto-calendar, backlight. **£10.50**

#### LADIES COCKTAIL
ELEGANCE AND STYLE for the lady with a discerning taste. In gold or silver finish with matching adjustable bracelet. Constant display of hours and mins, with month, date, secs. Auto calendar, backlight. **£10.50**

#### GENTS MELODY CHIME ALARM CHRONO
LATEST TECHNOLOGY. Hours, mins, secs, date, weekday, month, with mode and chime indication. A musical alarm is built in and can be set to any time within 24 hours, playing the tune "Oh Suzanna". Two further alarm systems: (i) 24 hour alarm (ii) Countdown alarm (1 sec accuracy). The watch can be set to chime on every full hour. 1/100th sec chronograph, can be switched off, mineral glass. Backlight and inflatable adjustable stainless steel strap. Very special **£19.95**

#### ZETRON WHERE RELIABILITY, STYLE AND ELEGANCE REALLY COUNT

WE ARE ABLE YET AGAIN to offer you the above watches, plus the complete ZETRON range. All at unrivalled prices. Just look at the following points:

(i) 48 hour despatch guaranteed on both retail and trade orders.
(ii) Full instructions and 12 month manufacturers guarantee.
(iii) Our own free back up service.
(iv) 10 day full money refund if not completely satisfied.
(v) Free felt presentation case with each watch.

PHONE OR WRITE for free full comprehensive catalogue on the complete range of watches we offer. Large discounts available for bulk buyers. Trade lists on application. Agents wanted everywhere. P/P per item 85p which includes insurance. Cheques or PO's made payable to MITRAD and sent to (Dept PE), 58 Windmill Ave, Kettering, Northants, NN16 8PA. (0536) 522024.
**R.C.S. LOW VOLTAGE STABILISED HIGH VOLTAGE ELECTROLYTICS**

Available 6 or 7, 5 or 9 or 12V d.c. up to 100mA or less.

**AC. ELECTRIC MOTORS**

- Two Pole, 240V, 2 Amp, Spindle - 1.43 x Garrard Minichanger. Plays all size records.
- With CERAMIC STEREO CARTRIDGE Plays 12 in., 78, 10 in., 7 in., Spindle - 1.43 x Garrard Minichanger. Plays all size records.
- With CERAMIC STEREO CARTRIDGE Plays 12 in., 78, 10 in., 7 in., Spindle - 1.43 x Garrard Minichanger. Plays all size records.

**BATTERY CHARGER TRANSFORMERS**

- **20+20**
- Voltage - 15+15
- Amperage - 9+93A EACH
- Price - 1.50

**HEATER TRANSFORMER**

- **6,15 v,2mp**
- Voltage - 20-0-20V, 1amp
- Amperage - 20-0-20V, 1amp
- Price - 1.50

**TRANSFORMERS**

- **20+20**
- Voltage - 15+15
- Amperage - 9+93A EACH
- Price - 1.50

**AMPLIFIER**

- 50 WATT 2amp 0-5A
- Voltage - 20-0-20V, 2amp
- Price - 10.50

**R.C.S. SOUNO TO LIGHT DISPLAY MK 2**

- Complete kit of parts with R.C.S. printed circuit. Three channels, 60 volt d.c. output from 200MV up to 100 watts signal source. Suitable for home HiFi and Hifi and Disco Amps. Can be used for SP or RP. Each.

**DE LUXE BSR HI-FI AUTOCHANGER**

- Plays 12in., 10in. or 78 rpm. With motor and spindles backed by BSR, reliable with 12 different records. Size 13 1/2 x 11in. Available in black or ivory. Below mount boxed 241s.
- Price - £90

**BSR Single Play P207 cutting device, ceramic cartridge.**

- Gurnard Monochange. Plays all records.
- Price - £85

**R.C.S. F181, Snake arm, female Aluminium Turntable Surface Cleaning, Aluminium, Linear motor**

- Price - £24

**BSR, Disco Single Play**

- Price - £9.95/£16 pair

**FLADAR ELECTRIC**

- TRADE ENQUIRIES WELCOME

**FLADAR TRANSFORMERS**

- PRIMARY 0-240V 50Hz

SEND FOR OUR TRANSFORMER CATALOGUE PRICE £1.00 WHICH INCLUDES A 50p VOUCHER OFFER YOUR FIRST PURCHASE.

**R.C.S. LOUDSPEAKER BARGAINS**

- 3cm 6, 4 x 6, 5 cm 20 watts, £1.50 each
- 5cm 6 x 15, 20 watts, £2.50 each
- 8 cm 7, 12 watts, £5.00 each
- 8 cm 7, 12 watts, £5.00 each
- 8 cm 9, 12 watts, £5.00 each
- 9 cm 8, 15 watts, £5.00 each
- 10 cm 10, 20 watts, £5.00 each
- 12 cm 15, 30 watts, £5.00 each
- 15 cm 15, 50 watts, £5.00 each
- 18 cm 20, 70 watts, £5.00 each
- Price - £0.50

**GOODMANS 20 Watt Woofer**

- Size 12 x 12 in. Rubber cone surround £9.60
- Hi-Fi Bass unit. Price - £8.20

**GOODMANS TWIN AXIM 8 15 Watt**

- £10.20
- Price - £9.50

**FLADAR LOUDSPEAKER SPECIALS**

- **"PUSH"**
- Price - £5.95

**MALL PLASTIC INSTRUMENT FEET 12 for 25p**

Please add 20p for post and packing on UK orders under £2, unless otherwise stated. Overseas postage charged at cost.
Microcomputers are coming - ride the wave! Learn to program.

Millions of jobs are threatened but millions more will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation. Harder problems are provided with a series of hints so you never sit glasseyed with your mind a blank. You soon learn to tackle really tough tasks such as programs for graphs, cost estimates, compound interest and computer games.

COMPUTER PROGRAMMING IN BASIC £11.50

...Book 1 Computers and what they do well; READ, DATA, PRINT, powers, brackets, variable names; LET; errors; coding simple programs.
...Book 2 High and low level languages; flowcharting; functions; REM and documentation; INPUT, IF THEN, GO TO; limitations of computers; problem definition.
...Book 3 Compilers and interpreters; loops, FOR....NEXT, RESTORE; debugging; arrays; bubble sorting; TAB.
...Book 4 Advanced BASIC: subroutines; string variables; files; complex programming: examples; glossary.

THE BASIC HANDBOOK £11.50

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be run on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

FORTRAN COLORTED BOOK £5.40

"If you have to learn FORTRAN and no one actually wants to assimilate it for the good of the soul buy this book. Forget the others-this one is so good it will even help you understand the standard, dense, boring, unintelligible texts." New Scientist.

A.N.S. COBOL £4.40

The indispensable guide to the world's No. 1 business language. After 25 hours with this course, one beginner took a consulting job, documenting oil company programs and did invaluable work from the first day. Need we say more?

GUARANTEE - No risk to you

If you are not completely satisfied your money will be refunded on return of the books in good condition.

Cambridge Learning Enterprises, Unit 20, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR England.

Please send me:-

....Digital Computer Logic & Electronics @ £7.00
....Design of Digital Systems @ £11.50
....Algorithm Writer's Guide @ £3.75
....Computer Programming in BASIC @ £7.50
....BASIC Handbook @ £11.50
....Fortran Coloring Book @ £5.40
....A.N.S. Cobol @ £4.40
...Microcomputers are coming - ride the wave! Learn to program.

Please send me:-

....Digital Computer Logic & Electronics @ £7.00
....Design of Digital Systems @ £11.50
....Algorithm Writer's Guide @ £3.75
....Computer Programming in BASIC @ £7.50
....BASIC Handbook @ £11.50
....Fortran Coloring Book @ £5.40
....A.N.S. Cobol @ £4.40

All prices include worldwide surface mailing costs (airmail extra)

IF YOUR ORDER COMES TO OVER £18, DEDUCT £2

Cheques/POs payable to Cambridge Learning Enterprises or charge to Access/Barclaycard/Diners Club/etc

account number

Telephone orders from credit card holders accepted on 0480 674466

Overseas customers (inc Eire) use credit card, or bank draft in sterling drawn on a London bank, or International Money Order (add £1 handling charge)

Name

Address

Cambridge Learning Enterprises, Unit 20, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR England.
Savibit Handy Solder Dispenser

Contains 2.3 metres approx. of 0.122 mm Savibit. Savibit increases life of copper bits by 10 times. Size 5 78p

For soldering fine joints

Two more dispensers to simplify those smaller jobs. PC-115 provides 6.4 metres approx. of 0.71 mm solder for fine wires, small components and printed circuits. PC-115 82p. Or size 1A for kit wiring or radio and TV repairs. 2.1 metres approx. of 1.22 mm solder. Size 19A 83p

Size 19A 83p

New 1980 Radio

Amateur's Handbook

by A.R.R.L. Price: £8.00

World Radio T.V. Handbook 1980

Price: £9.50

Understanding Microprocessors by Texas Instruments Price: £4.25

Microprocessor Cookbook by N.F. Holdsworth Price: £4.85

How to Use Integrated Circuit Logic Elements by J.W. Streeter Price: £4.45

Design of Op Amp Circuits with Experiments by H. M. Berlin Price: £6.65

The Active Filter Handbook by F. P. Tesche Price: £5.50

280 Assembly Language Programming by L. A. Leventhal Price: £5.50

Design of Phase Locked Loop Circuits with Experiments by T. Duncan. Price: £2.90

Adventures with Microelectronics by T. Duncan Price: £2.30

All prices include postage

The Modern Book Co.

British's Largest Stockist of British and American Technical Books

19-21 Prairie Street

London W21NP

Phone 01-402 9767

Closed Saturday 1 p.m.

Cables Modern

Prices shown are recommended retail inc. VAT. From Electrical and Hardware Shops. In difficulty would contact with PC-1A-5. Prices and specifications subject to change without notice.

Wire Striper & Cutter

Easy adjustable for most sizes of flex and cable. Fitted with extra strong spring for snag-free opening. Easy grip handles and handle locking device. £5 92p inc. VAT.

Size AB10 £1.29

Coodespeaks Electronics

P.O. Box 23, 34 Seafield Road, Copnor, Portsmouth, Hants., PO3 5Bj.

8 Digit 0.1" LED display multiplied, common cathode, 99p each. Digital Alarm Clock Module £3.22. With data 5.50 each. 4 DIGIT CLOCK L.C.D. 0.7" digits, supplied with data, £8.99 each. MM5316 digital alarm clock chip, with data £2.29 each.

LED Wristwatch Display £5.25. 4 DIGIT 0.8" LED display £3.15. P. & P. £1.15.

LED Watch Display £3.49. P. & P. £1.15.

MM5310 4 DIGIT 0.8" LED display £3.22. P. & P. £1.15.

For radio, TV and similar work, increases copper-bit life tenfold. £3.22

Size AB10 £1.29

The Modern Book Co.

British's Largest Stockist of British and American Technical Books

19-21 Prairie Street

London W21NP

Phone 01-402 9767

Closed Saturday 1 p.m.

Cables Modern

Prices shown are recommended retail inc. VAT. From Electrical and Hardware Shops. In difficulty would contact with PC-1A-5. Prices and specifications subject to change without notice.

Wire Striper & Cutter

Easy adjustable for most sizes of flex and cable. Fitted with extra strong spring for snag-free opening. Easy grip handles and handle locking device. £5 92p inc. VAT.

Size AB10 £1.29

Coodespeaks Electronics

P.O. Box 23, 34 Seafield Road, Copnor, Portsmouth, Hants., PO3 5Bj.

8 Digit 0.1" LED display multiplied, common cathode, 99p each. Digital Alarm Clock Module £3.22. With data 5.50 each. 4 DIGIT CLOCK L.C.D. 0.7" digits, supplied with data, £8.99 each. MM5316 digital alarm clock chip, with data £2.29 each.

LED Wristwatch Display £5.25. 4 DIGIT 0.8" LED display £3.15. P. & P. £1.15.

LED Watch Display £3.49. P. & P. £1.15.

MM5310 4 DIGIT 0.8" LED display £3.22. P. & P. £1.15.
Practical Electronics

74366 2716 1702A0
ROMS 21L02 8728 74365 9.50 1.90 0.52 0.52 1.16 5.75 1.57
AY -1-6721/6 753 (8 pin
AY -5-1013 DARTS MC14411
Baud Rate
8255
8251
82284.13
741 (14 pin)
710 (70991
703 (8 pin)
6.93
5.00
0.45
0.45
0.45
0.72
0.45
0.36
0.87
0.40
0.35
5.04
5.57

phone fob your FREE copy. Our catalogue is still available

0.85
0.95
0.75
0.45
0.45
0.87
0.40
0.20
0.20
0.20
0.20
0.20
0.19
0.19

NOW AVAILABLE
Low cost computer in kit form

UK101
NO EXTRA NEEDED SIMPLY HIT ‘RETURN’ AND GO

As seen in P.E.
August to November ’79

Kit price
only £199+VAT

AVAILABLE SOON
COLOUR ADD-ON CARD
Enable you to choose your background, the grey background anywhere on the screen. Flash any character on the screen at will. Full documentation and parts in kit form. Phone for details

STOP PRESS
The latest edition of our ‘STOP PRESS’ is now available, and contains an up-to-date price list showing all the items that we stock. Just send an S.A.E. or phone for your copy. Our catalogue is still available

Case for UK 101 now available £17.50 plus VAT

6.93
5.57

LM1808N CA3600E

Also available ready assembled, tested and ready to go only £249 + VAT
Build, understand, and program your own computer for only a small outlay

-extras are EXCLUSIVE of VAT. Postage and packing 30p (computers charged at cost) CALLERS WELCOME. Hours 9.00am-5.00pm (enter through stationers).

TRADE and EXPORT inquiries welcome. Phone your orders through our ORDER RING line quoting your Access or Barclaycard number (Min. tel order £5).

74LS78 74LS28 74L500 74LS96 74LS76 74LS55 74LS49 74LS48 74LS40 74LS12 74LS03 74LS02 74LSO1 ZNA134J

SUPER BOARD II only £199+VAT

available

EXTRA 4K MEMORY
8 + 2114
ONLY
£32.00 + VAT

INCLUDED FREE
Sample tape with extended machine code moditor and disassembler

Price includes RF modulator and power supply ABSOLUTELY NO EXTRAS NEEDED

Also available ready assembled, tested and ready to go only £249 + VAT
Build, understand, and program your own computer for only a small outlay

available

STOP PRESS
The latest edition of our ‘STOP PRESS’ is now available, and contains an up-to-date price list showing all the items that we stock. Just send an S.A.E. or phone for your copy. Our catalogue is still available

Case for UK 101 now available £17.50 plus VAT

Enter the 80's with Saxon

Stereo Disco Systems
With Light Show & Display

Standard Centaur 100W
E309 inc. carr. & VAT
12 mth £24.80 or 24 mth £14.51

Super Centaur 200W
£386 inc. carr. & VAT
12 mth £29.32 or 24 mth £17.16

GXL 200W with PDF Bins (dual)
£498 inc. carr. & VAT
12 mth £40.17 or 24 mth £23.90

Custom Centaur 400/600W
with four PDF 100A Bins
£633 inc. carr. & VAT
12 mth £46.87 or 24 mth £39.13

Mini Disco 100W
£229 inc. carr. & VAT
12 mth £18.38 or 24 mth £10.58

Just Plug In
£309 inc. carr. & VAT
20% Deposit Credit Terms

£275 inc. carr. & VAT
10 way chaser

£110 inc. carr. & VAT
800W spot Bank

£30 FREE!
Vouchers with our new catalogue over 200 items of disco systems, lighting and accessories. Send £1.50 now.

Examples:
- Fuzz lights £26.50
- Projectors from £43.50
- Strobes £35-£220
- Rope lights £42.50
- Disco stands £23.50
- Echo chambers £75
- 100W speakers £27.50
- 100W twin horn bin £110
- 800W spot Bank £39.50

Mixers, mics, amplifiers, goosenecks, light units, bubble machines, mirror balls, helicopters, bins, consoles, and much more.

And if we haven't got it - we'll get it!

Full range of Pluto, D.J. Lightomation products in stock.
Send £1.50 now for your catalogue - worth £30.00!!!
Up-to-date Electronics Books from Prentice-Hall International

Walter H. Buchsbaum
Buchsbaum's Complete Handbook of Practical Electronic Reference Data
Second Edition
The second edition of this highly successful handbook has been thoroughly revised and updated to cover the latest aspects of electronics, including the growing areas of digital logic, microprocessors, computers and programming.
£12.95 hardback 654 pages 13-084624-4

David L. Heiserman
Handbook of Digital IC Applications
Digital electronics are presented from three distinct points of view in this comprehensive book: basic principles, available devices, and systems that implement the principles and devices.
£14.25 hardback 428 pages 13-372698-3

J. Victor Nahigan and William S. Hodges
Computer Games
For Businesses, Schools and Homes
Including programs, sample runs and cartoons, this challenging collection of computer games is written in 8K of memory BASIC programming language, and is designed for use on microcomputers as well as PDP 11 and PDP 12 computers.
£6.40 paperback 157 pages 87626-166-7

Sams Books
Jonathan A. Titus
TRS-80 Interfacing
Written for TRS-80 users who wish to extend TRS-80 capabilities to control external devices and transfer information between the computer and peripheral circuits of their own design, this book explains internally generated signals and how they can be used under BASIC language program control.
£5.80 paperback 192 pages 672-21633-7

Elizabeth and Joseph Nichols, Peter Rony
Z-80 Microprocessor Programming and Interfacing
Books 1 and 2
Book 1 covers assembly and machine language programming. Book 2 explains interfacing digital circuits with the Z-80 CPU, PIO and CTC chips.
Book 1 £7.10 paperback 302 pages 672-21609-4
Book 2 £8.40 paperback 496 pages 672-21610-8

Elmer C. Poe and James C. Goodwin II
The S-100 and Other Micro Buses
Illustrated with numerous photographs and printout drawings, this book first discusses bus basics and then examines in detail the mechanical data, pinpoint designs and bus signal definitions of 11 common bus systems.
£5.05 paperback 144 pages 672-21587-X

Prices are correct at the time of going to press but may be subject to change.

For further details of these titles and our wide range of electronics books please write to Jean Walsmele at: Prentice-Hall International, 66 Wood Lane End, Hemel Hempstead, Herts. HP2 4RG, England.
SMALL ADS

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box numbers extra. Semi-column setting £8.00 per single column centimetre (minimum 2.5 cm). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed ‘Lloyd’s Bank Ltd.’ Treasury notes should always be crossed “Lloyd’s Bank Ltd.”. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King’s Reach, Stamford St., London, SE1 9LS. (Telephone 01-251 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

AERIALS

AERIAL BOOSTERS

Improves weak VHF Radio and Television reception.

SIGNAL INJECTOR

A complete range of AF and RF frequencies up to the UHF Band. Price £5.00. S.A.E. for Leaflet.

ACCESSION ELECTRONIC MAILORDER LTD,
62 Bridge Street,
Rambsbotton, Bury, Lancs, BLO 9AG.

BOOKS AND PUBLICATIONS

ANY REQUESTED SERVICE SHEET £1 + Large S.A.E. Full repair data noted TV £2.50 (with circuits, layout etc). S.A.E brings newsletter, bargain offers, etc. AUSPEL, 76 Church St, Larkhall, Lanarks ML9 1HE.


SERVICE SHEETS

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc £1.80 plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel: (0423) 55885.

SERVICE SHEETS from 50p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

FOR SALE

TELEKRONIX TYPE 565 OSCILLOSCOPE with 1A2 Dual-Trace plug in and instruction manual. Good working order £175. FRIDEN MODEL 1 PLEXOWRITER Automatic type writer with 8 Charcoal paper tape reader and punch. Good working order £35. Tony Frost 01-874 9889 evenings.


NEW BACK ISSUES of ‘Practical Electronics’ available 80p each Post Free. Open P.O. Cheque returned if not in stock - BELL’S TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

LOGIC PROBES CMOS TTL £12.00. Excellent Quality. Telephone in first instance Swansea 52475.

16BM RAN T11419 £2500 sets only at £50/£6 of 8. One set 4K £55, 16BM £125. TEST EQUIPMENT - Unit containing two oscilloscopes, signal generators, amplifier, power supplies. Catalogue P.E. 16 Electronics Nov 64 to Dec 75. Offers - P. Short, 5 Hagart Road, Houston, Renfrewshire, PA7 4JH, Tel: 0501 613322.

COMPURT UK101, Cased, working, 7K Ram £320.00. Henrei Hemespread 3040. Details Accepted.

P.E. SYNTHESIZER Keyboard unit, working but needs setting up. Offers 092 52 4751.

RECORD ACCESSORIES

STUL Cartridges for MUSIC CENTRES, &c. FREE List No.29 for S.A.E. includes Leads, Mikes, Phonos &c. PELSTED ELECTRONICS (P.E.), Longley Lane, Galey, Checles, Ches. SKS 4EE.

MISCELLANEOUS

PRINTED CIRCUIT BOARDS. Glass Fibre Tinned & Drilled. From your own or Published Designs 35p per sq.in. Plus 30p post. R.D. Electronics, 12 Whiteoaks Road, Osibly, Leicester. 0333 716273.

SUPER KINSTECH INSTRUMENT CASES by BAZELLI manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a Low £4.45. Chassis packaging facilities at very competitive prices. 400 models to choose from. Suppliers only to Industry & Trade. BAZELLI (Depi. No. 23), St. Wilfords, Foundry Lane, Halton, Lancs. LAI 6LT.

ULTRASONIC TRANSUDERS £2.85 per pair + 25p P. & P. Desktop Developments, 81 Cholmeley Road, Reading, Berks.

PANELS, SCALES, CHASSIS AND FACIAS

Screenprinted to your special layout requirements, one-off or quantity production.
Ashman and Clough Ltd., Designers and Printers, 7 Chapel Lane, Bisworth, Northampton. (0604) 858274.

FREE 1980 AMTRON CATALOGUE with new range of kits and equipment cabinets. Send S.A.E. AMTRON UK LTD., 7 Hughesenden Drive, Hassings, Sussex TN34 3TG. Tel: Hastings 436094.

MAKE YOUR OWN PRINTED CIRCUITS

Etch Resist Transfers - Starter pack (5 sheets, foils, pads, i.c. pads) £1.00. Large range of single sheets in stock at 34p each. Master Positive Transparences from P.C. layouts in magazines by simple photographic process. Full instructions supplied. 2 sheets (20 x 25cm) negative paper and 2 sheets (12 x 12cm) positive film £1.30. S.A.E. lists and Information. P&P 30p/order.

P.K. ELECTRONICS

OAK LODE, TANSLEY, DERBYSHIRE

UK 101 SOFTWARE TAPE. Jet Fighter 101. Drive jet fighter around screen, blasting illusiveAlien. £3.00 inclusive. J. Walton, 7 Hallfield Road, Newton, Derbyshire.

GUITAR/PA/ MUSIC AMPLIFIERS

100 watt superb treble/bass, overdrive, 12 months guarantee. Unbeatable at £45: 65 watt £38; 40 watt £34: 200 watt £60: 100 watt twin channel sep. treble/bass per channel £56: 60 watt £46; 200 watt £75: 100 watt four channel sep. treble/bass per channel £79: 200 watt £95; 100 watt 4 channels. Great sound £10.00; bass fuzz £9.50; overdrive fuzz with treble and bass boost £14.95; 100 watt combo. Made in Italy £55. 200 watt £80: twin channel £79. £80 combo; £106; speakers 15in. 150 watt £60 £95 watt £95 £115. 120 watt £39: 60 watt £19; microphones |Shure Unidyne 8 £80.

Send cheque or P.O. to:

WILLIAMSON AMPLIFICATION

62 Thorncliffe Avenuye, Dukinfield, Cheshire.
Tel: 061-308 2064

RYDER ORGAN SYSTEM

The W.W. classical design for full-size keyboards, including couplers Expanded range of units now includes chorus, vibrato, combination stop-control. Data, prices, from:

HYVKON LTD. (P).
Woodside Croft, Ladybridge Lane, Bolton BL1 8EO.
DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) replacement at regular intervals. This kit provides the means. We supply eye glass, non-magnetic tweezers, watch screwdriver, case knife and screwback case opener, full instructions and battery identification chart. We then supply replacement batteries—you fit them. Begin now. Send £7.50 for complete kit and get into a fast growing business. Prompt, dispatch.

WATeR RRePLACemeNt Co.
11 Percy Avenue, Ashford, Midx. TW15 2PB.

UK 101 SOFTWARE Try our original programmes on cassette) GRAPHIC FAINT BRUSH—GRAPHIC PLOTTER etc. Working programmes that will give you ideas of your own. S.A.E. M & B SERVICES, 162 High Street, Marriott, Kmb.


Dr. Norman, Portbuild Ltd., 352 Peterbrook Road, Shirley, Solihull.

U.V. ESTROTE ERASER Ready built erasing cabinet suitable for up to 12 Eproms £25. inc. VAT & P.P. P. R. Lowndes, 352 Peterbrook Road, Shirley, Solihull.

TIME WRONG?

MSF CLOCK IS ALWAYS CORRECT—never gains or loses. Bass复活ologist. Suitable for domestic and second-hand, and GMT/BST and leap year, also second-in-a-month STOP CLOCK and carryout BSS output, receives radio time signal. 100MHz range ABSOLUTE TIME, £48.90.

160/26KHZ RECEIVER, as in MSF Clock, built-in antenna, serial data and audio outputs. £13.70.

DISJOIN D/GRMD Dig'd QAB RAYK With a Tunable Audio Noise Filter, between your receiver and speaker, BOSTIN 2 or any receiver, £20.

V.F.P. F.JXPLORER 10-150KHz. Receiver £10.70. 10KHz GEN. 10K-200MHz, logic and variable sine and square wave output, £8.90.

NO RADIO 31 G276 Omniray Kit, supplied with Modulated Wave Receiver, £10.90.

LONG WAVE DX Kit: Discover weird 100-600KHz, Converter to 1-4.1MHz, built-in antenna tuner, £10.90.

Each fun-to-build kit includes all parts, printed circuit, case, postcard envelope, money back guarantee so SEND NOW.

CAMBRIDGE KITS
45 (PE) Old School Lane, Milton, Cambridge.

ENAMELLED COPPER WIRE

SWG

18 24 30 34 40 42 44 46 48 60
1.6 1.3 1.0 0.8 0.6 0.5 0.4 0.3 0.2 0.16
4 lb 3 lb 2 lb 1 lb 1/2 lb 1/3 lb 1/4 lb 1/5 lb 1/6 lb 1/8 lb

FREE WIRE TABLES WITH EACH ORDER.

INDUSTRIAL SUPPLIES
102 Parrwood Road, Wighton, Manchester 20.

Prices include P&P in UK.

BURGAL ARM ALARM EQUIPMENT. Latest Discount Catalogue out now! Phone C.W.S. Alarm 01 574 62674.

FREE 12"x9" VERIBORD. With first 5 orders for our complete pack of components. Hundreds of components and exotic use devices plus PCB's thermists etc. This is really an offer not to be missed. Send P.O. or Cheque for £8.00 immediately to Barrow, Norman, Portbuild Ltd., 37 Amberwood Rise, New Malden, Surrey. Or send S.A.E. for List.

THE SCIENTIFIC WIRE COMPANY
PO Box 30, London E.4

ENAMELLED COPPER WIRE

SWG

1b 8oz 4oz 2oz

10 to 35 3.50 2.00 1.00 0.80
35 to 39 3.95 2.36 1.34 0.98
40 to 43 5.10 2.97 2.28 1.42
44 to 60 6.00 3.60 2.50 1.97
60 to 70 6.37 3.52 2.19 2.50
70 to 80 9.85 8.38 200

SILVER PLATED COPPER WIRE

14 to 22 5.30 3.03 1.85 1.20
24 to 30 6.50 3.75 2.20 1.40
Prices include P&P and VAT. Orders under £2 please add 20p. SAE for list. Dealer enquiries welcome.

Reg. office: 22 Coningsby Gardens.

NO LICENCE EXAMS NEEDED

To operate this miniatures, solid-state Transmitter-Receiver Kit. Only £18.95 plus 25p P. & P. "Brain- Freeze" FM with a MINI-STROBE Electronics Kit, pocket-sized "lightning flasher", various for discs and parties. A mere £4.75 plus 25p P. & P. Experiment with a psychedelic DREAM LAB, or pick up best flash/sound/numbers with the BIG EAR sound-catcher: ready-made multi-function modules, £5.45 each plus 5p P. & P. LOTS MORE! Send 30p for lists. Prices include VAT.

BOFFIN PROJECTS
4 Cuthill Road, Streetow, Ewell, Surrey (P.E.)

CLEARING LABORATORY: scopes, generators, P.S.U.'s, bridges, analysers, meters, recorders, etc. 0403-37236.

DOLLA SOFTWARE

UK 101 and ACORN programs

117, Blenheim Road, Dall, Kent.

MEMORY MART

UK 101 "Superboard" 4K RAM
Memory Expansion £32.00
2114 4K 4 £5.60
3708 UV prom £5.30
P.P. 10/11 £5.60
P.O.D. 60/12 £5.90

MEMORY MART
19 Weatherby Gardens, Hartley Wintney, Hants.

BURGLARS

Safeguard your home, shop etc. from burglars and vandals with the best D.I.Y., equipment available. Send S.A.E. for comprehensive price list, or £6, for one of our fully waterproof steel Brl/Boxes the professionals use.

Lawrence, 42-45 New broad St., London, E2CM 1YQ.

"Don't buy in Kuta, buy in kits.

PLEASE MENTION PRACTICAL ELECTRONICS When replying to Advertisements
What's an electronics enthusiast like you doing in an advertisement like this?

We reckon that if you’re a regular reader of this magazine, you might very well be the sort of man or woman who’d be interested in joining Marconi Avionics as an **Electrical Inspector**.

We say this with some confidence because if you’re used to building up your own equipment, you’re probably well used to finding your way round electronic circuits and wiring and that’s just the sort of background we’re looking for.

As an Electrical Inspector with us you’ll be involved in the inspection of printed circuit boards and assemblies against drawings on a wide range of equipment. Mind you, this equipment will be considerably more complex than any you’re likely to have worked on previously, for at Borehamwood we’re engaged on a variety of exciting and challenging projects relating to advanced electronic systems and hardware for such technically sophisticated aircraft as Nimrod and Tornado. But, provided you have a good basic background knowledge of electronic circuitry, we can soon train you to take your place in one of our inspection teams.

We offer a good salary, an attractive range of benefits and the opportunity to make your hobby pay off both financially and in terms of job satisfaction.

Assistance with local authority housing could in certain circumstances be made available.

Write with details of your experience to Chris Hill at Marconi Avionics Limited, FREEPOST, Elstree Way, Borehamwood, Herts WD6 1BR. Telephone 01-953 2030 ext 3449 during office hours or 01-207 3455 anytime. Please quote ref: MA 80/13.
EDUCATIONAL
MICROPROCESSORS FROM ZERO. Self study course. Cassettes (41 hra) plus 64p book. £24 or hire £3 p.w. (£2 post & ins). Also advanced courses, recorded seminars & microprocessors for hire or buy. EMPRISE - 25 Carlisle Close, Colchester, Essex. Tel. (0206) 41773.

TECHNICAL TRAINING
Get the training you need to move up into a higher paid job. Take the first step now—write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. U272 Internext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

CITY & GUILDS EXAMS
Study for success with ICS. An ICS homestudy course will ensure that you pass your C. & G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV & Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. U272 Internext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

COLOUR TV SERVICING
Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practise and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. U272 Internext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

18 MONTHS full-time Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
- MONO & COLOUR TELEVISION
- CLOSED CIRCUIT TELEVISION
- VIDEO CASSETTE RECORDING
- DIGITAL TECHNIQUES TELETEXT
- COMPUTER & MICROPROCESSORS

Shortened courses for applicants with suitable electronics background.

Next session starts April 21st.
(Also available 2 year course in Marine Electronics & Radar for employment as ships Radio Officer.)
Prospectus from:

LONDON ELECTRONICS COLLEGE
Dept. PEA5, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Electronics for .................................................................
insertions. I enclose Cheque/P.O. for £ .................................................................
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

NAME .................................................................
ADDRESS .................................................................

Send to: Classified Advertisement Manager
PRACTICAL ELECTRONICS
DMG, Classified Advertisements Dept., Room 2337,
King's Reach Tower, Stamford Street,
London SE1 9LS. Telephone 01-261 5846
Rate: 24p per word, minimum 12 words. Box No. 60p extra.

Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.
TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK
AVAILABLE AT:

CRIMSON ELEKTRIK
1A STAMFORD ST.,
LEICESTER LE1 6NL
TEL: 0533 553508

BADGER SOUND SERVICES
46 WOOD ST.,
LYTHAM ST. ANNES, LANCs
TEL: 0253 729247

DOWN HI FI AND VIDEO CENTRE
66 ABBEY ST.,
BANGOR, N. IRELAND
TEL: 0247 62920

A. MARSHALL (LONDON) LTD.
40 CRICKLEWOOD BDY
LONDON NW2 3ET
TEL: 01 4520161

AND
85 WEST REGENT ST.,
GLASGOW G2 2QD
TEL: 041 3324133

SCORPION ELECTRONICS
KAISERFRIEDRICHSTRASSE 35
1000 BERLIN 12
W. GERMANY

PLEASE SEND □ Product Information and Current Price List
□ Full Catalogue/Product Application Manual

(I Enclose SAE 9" x 4"
(I Enclose Cheque/PO for 50p)

Send this slip to: CRIMSON ELEKTRIK, 1A STAMFORD ST., LEICESTER LE1 6NL

BUILD A SYNTHESISER!
NO SPECIAL SKILLS SPECIAL EQUIPMENT REQUIRED

Using Dewtron (Reg'd)
PROFESSIONAL MODULES

Over 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, well-tried range of Dewtron synthesiser and other effects modules.
Send 25p for Musical Miracles Catalogue NOW!

D.E.W. LTD.
254 RINGWOOD ROAD, FERNDOWN, DORSET BH22 9AR

PLEASE MENTION PRACTICAL ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS

Top Priority for every constructor-
HOME RADIO CATALOGUE
- Over 2,000 items clearly listed.
- Profusely illustrated throughout.
- Over 100 A-4 size pages.
- Bargain list included free.
Send cheque or P.O. for £1.30
HOME RADIO Components LTD
Dept. PE, P.O. Box 92, 215 London Road,
Mitcham, Surrey. 01-648 8422

94 Practical Electronics May 1980
INDEX TO ADVERTISERS

Adam Hall ..... 91
Aitken Bros. ..... 4
Ashman & Clough Ltd. ..... 90
Barrie Electronics ..... 78
Bb Hi-Fi Accessories ..... 14, 15
Birkett J. ..... 84
Boffin Projects ..... 91
Brewer, S. & R. ..... 6
British National Radio & Electronics School ..... 13
Calsscope ..... 6
Cambridge Kits ..... 91
Cambridge Learning ..... 85
Chromasonic Electronics ..... 87
Clef Products ..... 5
Codespeed ..... 86
Computer Components (Teleplay) ..... Cover II
Crimson ..... 94
Crofton Electronics ..... 82
C.R. Supply Co. ..... 90
Delta Tech ..... 95
Davien Electronics ..... 10
Design Engineering ..... 94
Display Electronics ..... 5
DOLV Software ..... 91
Doram ..... 75
Dziubas M. ..... 78
E.D.A. ..... 12
Electronics Mail Order Ltd. ..... 90
Electrovalue ..... 82
Edifil Electronics ..... 91
Fladar ..... 91
G.M.T. ..... 91
Healthkit ..... 91
Hiykon Ltd. ..... 91
Home Radio ..... 91
I.C.S. Intertext ..... 91
I.L.P. Electronics ..... 91
Industrial Supplies ..... 91
Interface ..... 91
Jayen Developments ..... 91
Jones Electronic Supplies ..... 91
L & B Electronics ..... 91
LB of Hiltingdon ..... 91
London Electronics ..... 91
Lawrence ..... 91
Maplin Electronics ..... 91
Marconi Avionics ..... 91
Marshall A. ..... 91
Memory Mart ..... 91
Metac ..... 91
Micro Circuits ..... 91
Midland Trading ..... 91
Mighty Micro ..... 91
Millhill Supplies ..... 91
Modern Book Co. ..... 91
Monolith ..... 91
Phonosonics ..... 91
PKG Electronics ..... 91
Premier Publications ..... 84
Progressive Radio ..... 79
Proto Design ..... 75
Radio Component Specialists ..... 90
Radio Supplies Ltd. ..... 94
Radio & T.V. Components ..... 89, 93
Ramor Constructor Services ..... 91
Saflgan ..... 74
Saxen Entertainments ..... 88
Science of Cambridge ..... 78
Scientific Wire Co. ..... 78
Sentinel Supply ..... 12
Stevensons Electronic Components ..... 88
Swanley Electronics ..... 91
Tandy Corporation ..... 91
Temppus ..... 91
T.K. Electronics ..... 92
Technomatic ..... 92
Transam Components ..... 92
T.J.A.C. ..... 92
Vero Electronics ..... 5
Viers ..... 83
Watch Battery Replacement Co. ..... 3
Watch Centre Electronics ..... 82
West London Direct Supplies ..... 86
West Midland T.V. ..... 78
Wicca Electronics ..... 88
William Amplification ..... 89
Wilmslow Audio ..... 90
Wilkos 80 ..... 52
Wilkos 80 May 1980
RODENE UNISELECT TYPE 71 TIMER
0-60 sec. 230V a.c. operation. Incorporating a moulded plastic insulated metal-cased timer of great accuracy, a mechanical timer stop for process timing, stopwatches, welding, etc. Price £4.50 P. & P. 50% incl. VAT & P.S.

MINIATURE UNISECLECT
12 volt 11,4 watt. 3 bank (2 non-bridging)
1 hour timer £3.00 P. & P. incl. VAT & P.S.

MICRO SWITCHES
Sub Min. 16V Light weight moulded 3115m 506-10 (from £1.85 inc. VAT)

EQUIPMENT

Variable Voltage Transformers

<table>
<thead>
<tr>
<th>Transformer Type</th>
<th>Voltage Range</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT 230/240 VAC</td>
<td>50/60 OUTPUT 220-260 VAC</td>
<td>£14.50</td>
</tr>
<tr>
<td>200 watt</td>
<td>(1 amp)</td>
<td>£17.00</td>
</tr>
<tr>
<td>1 KVA (15 amp MAX)</td>
<td>£30.00</td>
<td></td>
</tr>
<tr>
<td>2 KVA (20 amp MAX)</td>
<td>£45.00</td>
<td></td>
</tr>
<tr>
<td>3 KVA (25 amp MAX)</td>
<td>£60.00</td>
<td></td>
</tr>
<tr>
<td>4 KVA (30 amp MAX)</td>
<td>£75.00</td>
<td></td>
</tr>
<tr>
<td>5 KVA (35 amp MAX)</td>
<td>£90.00</td>
<td></td>
</tr>
<tr>
<td>10 KVA</td>
<td>(50 amp MAX)</td>
<td>£180.00</td>
</tr>
<tr>
<td>15 KVA</td>
<td>(60 amp MAX)</td>
<td>£225.00</td>
</tr>
<tr>
<td>30 KVA (60 amp MAX)</td>
<td>£450.00</td>
<td></td>
</tr>
</tbody>
</table>

PROGRAMME TIMERS

L.T. Transformers

3Phases (max. 15 amps) | £106.43 |
| 10 KW (max. 30 amp) | £200.83 |

Hydro-Light Solder Kit MK IV

Ultra Violet Black Light Fluorescent Tubes

24V. D.C. 12Watt Suitable for e.g. Airbrush work (£5.50 inc. VAT & P.S.)

Relays

Gearing Motors

GEARED MOTORS
4 rpm SIGMA motors approx. 35lbs inch
7 rpm WYNNSALE motors approx. 30lbs inch
28 rpm WYNNSALE motors approx. 20lbs inch
7 rpm Crouzet motor approx. 25lbs inch

Above four motors are designed for 110V.
A.C. operated with auto transform. A.C. operation. £7.50 p. & p. Total incl. VAT £9.78 N.M.S.


56. rpm 240V. a.c. inc. VAT & P.S. £6.00 p. & p. £7.25 incl. VAT & P.S.

110v. 400 watt UV lamp only £14.00 P. & P. £17.00 incl. VAT & P.S.

SANGAMO WESTERN TIME SWITCH
Type 5251 220/20V a.c. 2 or 2 off every 24 hours. 0-30 min. 30 min. 20 min. 10 min. price £3.00, £4.00, £6.00, £8.00 inc. VAT & P.S.

250 V, 50 WATT, 250 V, 50 Hz, £14.50 inc. VAT & P.S.

MINIATURE 24-HOUR TIMESWITCH

Time Switch

39 rpm. 250V. A.C. 14.5kg. Price £14.50 + £2.00 P. & P. £16.50 incl. VAT & P.S.

4rpm SIGMA motors approx. 35lbs inch
7 rpm WYNNSALE motors approx. 30lbs inch
28 rpm WYNNSALE motors approx. 20lbs inch
7 rpm Crouzet motor approx. 25lbs inch

Above four motors are designed for 110V.
A.C. operated with auto transform. A.C. operation. £7.50 p. & p. Total incl. VAT £9.78 N.M.S.


56. rpm 240V. a.c. inc. VAT & P.S. £6.00 p. & p. £7.25 incl. VAT & P.S.

110v. 400 watt UV lamp only £14.00 P. & P. £17.00 incl. VAT & P.S.

SANGAMO WESTERN TIME SWITCH
Type 5251 220/20V a.c. 2 or 2 off every 24 hours. 0-30 min. 30 min. 20 min. 10 min. price £3.00, £4.00, £6.00, £8.00 inc. VAT & P.S.

250 V, 50 WATT, 250 V, 50 Hz, £14.50 inc. VAT & P.S.
STEP INTO A NEW WORLD WHEN YOU DISCOVER MAPLIN

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project.

Over 5,000 of the most useful components — from resistors to microprocessors — clearly described and illustrated.

Send the coupon for your copy and STEP UP TO MAPLIN SERVICE NOW

Post this coupon now for your copy of our 1979-80 catalogue price 70p.

Please send me a copy of your 280 page catalogue. I enclose 70p (plus 46p p&p).

If I am not completely satisfied I may return the catalogue to you and have my money refunded.

If you live outside the U.K. send £1.35 or ten International Reply Coupons. I enclose £1.16.

NAME ________________________________

ADDRESS _______________________________________

PE 580

ELECTRONIC SUPPLIES LTD

All mail to:
P.O. Box 3, Rayleigh, Essex SS6 8LR.
Telephone: Southend (0702) 554155.
Shop: 284 London Road, Westcliff-on-Sea, Essex. (Closed on Monday).
Telephone: Southend (0702) 554000.