PRACTICAL

Simple Soldering due to clear and concise
instructions compiled by Dr. A.A. Berk, BSc. PhD

EUROPE'S FASTEST SELLING ONE BOARD COMPUTER

* 6502 based system - best value for money on the market. \star Powerful 8K Basic - Fastest around * Full Owerty Keyboard * 4K RAM Expandable to 8 K .on board. \star Power supply and RF Modulator on board. * No Extras needed - Plug-in and go. * Kansas City Tape Interface on board. * Free Sampler Tape including powerful Dissassempler and Monílor with each Kit. * If you want to learn about Micros, but did'nt know which machine to buy then this is the machine for you.
Build, Understand and Program your own Computer for only a small outlay

KIT ONLY £199 + VAT
NO EXTRAS NEEDED

AVAILABLE READY
ASSEMBLED \& TESTED
READY TO GO FOR E249 +v

Specially designed case for Compukit in orange/black.

The Compukit UK101 comes in kit form with all the parts necessary to be up and working, supplied. No extras are needed. Ater plugging in just press the reset keys and the whole world of computing is at your fingertips. Should you wish to work in the machine code of the 6502 then just press the M key and the machine will be ready to execute your commands and programs. By pressing the C key the world of Basic is open to you.
This machine is ideal to the computing student or Maths student, ideal to teach vour children arithmetic, and is also great fun to use.
Because of the enormous volume of users of this kit we are able to offer a new reduced price of $\mathrm{E} 199+$ VAT

- 8 MHz Super Quality Modulators	tors 54.90
6 MHz Standard Modulators	¢2.90
C12 Computer Grade Cassettes 10	10 for $\mathbf{£ 4 . 0 0}$
Super Multi-rail P. S U $+5-5+12 \mathrm{~V}$ ¢ $£ 29.50$	
Nascom I with Nas-Sys Spec	Special Price
Kit \quad Limited quantities	S $\quad \mathbf{5 1 2 5 . 0 0}$
Assembled	¢140.00
ETI Breakout Game - Chip and PCB	d PCB $\quad \mathbf{E 9 . 9 0}$
S100 Expansion Motherboard for Nascom I	for $\quad \mathbf{¢} 39.00$
Anadex Printer Paper - 2000 sheets	sheets $£ 25.00$
Floppy Disks 51/4" Hard \& Soft	
Sectored	E3.50
Floppy Disk Library Case 51/4"	E3.50
Lexicon Language Translator	£125.00
Modules for Lexicon	¢29.00
Eprom Boards	£63.00
8K Static Ram Boards - S100	E110.00
Grandstand Video Game	£59.00
Cartridges for Grandstand	£11.99
George Risk Ascii Keyboard	E39.00
Cartridges for Atari	
- Full Range in Stock	£13.90
Interface PET IEEE - Centronics Parallel	
Not decoded	£49.00
Decoded	¢77.00
Interface to Centronics parallei for TRS80	for $£ 75.00$
Verocases for Nascom 1 \& 2 etc.	etc. $£ \mathbf{¢ 2 2 . 5 0}$
Keyboard Cases	$£ 9.90$
Electric Pencil for TRS80	¢29.00

Microprocessors Z80A. 8 bit CPU. This will run at 4 MHz but is selectable between $1 / 2 / 4 \mathrm{MHz}$. This CPU has now been generally accepted as the most powerful, 8 bit processor on the market.

INTERFACE

Keybourd New expanded 57 key Licon solid state keyboard especially built for Nascom. Uses standard Nascom, monitor controlled, decoding.
T.V. The Iv peak to peak video signal can drive a monitor directly and is also fed to the on-board modulator to drive the domestic $T . V$
I.O. On-board UART (Int.6402) which provides serial handling for the on-board cassette interlace of the R $5232 / 20 \mathrm{~mA}$ teletype interface
The cassette intertace is Kansas City standard at either 300 or 1200 baud. This is a link option on the NASCOM-2. The RS232 and 20 mA loop connector will interface directly The RS232 and 20mA loo
into any standard teletype
The input and output sides of the UART are independently switchable between any of the options
i.e. It is possible to house imput on the cassette and output on the printer
P1O There is also a totally uncommitted Parallel 1/O (MK3881) giving 16, programmable, //O lines. These are addressable as 2×8 bit ports with complete handshake controls.
Documentation Full construction article is provided for those who buy a kit and an extensive software manual is provided for the monitor and Basic.
Basic The Nascom 2 contains a full 8 K Microsoft Basic in one ROM chip with additional features like DEEK, DOKE SET, RESET for simple programming.
With tree 16 K RAM board. - Only £295 + Vat TRS80 Expand your TRS80 by
322 $\mathbf{3 n}^{2 t}$ EXPANSION 32 K Memory on board. 3 INTERFACE Centronics parallel port
 Disk controller card. Real time clock Requires Leve II Basic. Interface for 2 cassette decks complete with power supply

Fully converted to UK T.V. Standard. Comes complete with easy to follow manuals. UK Power Supply - Cassette Leads Sample tapes. Special box 10 enable you to plug into your and go. Full Range of Software Available

Very popular for home $\&$ business use 8 K Microsoft Basic in ROM. 8 K Pel 32 K \& 16 K with new improved keyboard. All with green screen.
Extra cassette deck $\mathbf{f 5 5}$ Full range of soltware available. -

viden 100

$12^{\prime \prime}$ BLACK \& WHITE LOW COST VIDEO MONITOR RRP $£ 79$ only $\mathbf{f 6 9}$

- Ideal for home, personal and business computer systems - $12^{\prime \prime}$ diagonal video monitor - Composite video input - Composite video input - Compatible with many computer systems e Solid-state circuitry for a stable \& sharp
picture $\&$ Video bandwidth. $12 \mathrm{MHz}+308$. picture - Video bandwidth - $12 \mathrm{MHz}+3 \mathrm{OB} \bullet$ Input im. pedance 75 Ohms - Resolution- 650 lines Minimum In Central 80% of CRT; 550 Lines Minimum beyond central 80%.

"Europes Largest Discount
Personal Computer Store"

CONSTRUCTIONAL PROJECTS

PE CONGRESS Part 2 by Graham Jackson 26
Pre-amp circuit description and construction
SPLIT PHASE TREMOLO by J. McCarthy 34
Special effect for musicians
INFRA-RED CONTROLLER by Ma/colm Plant 42
Two channel remote control system
DYNAMIC SEMICONDUCTOR TESTER by Michael Tooley BA and David Whitfield BA, MSc 48
For testing diodes, bypolars and f.e.t.s
2 WIRE TRAIN CONTROLLER by J. Milne66
Part 2-Final assemblies and setting up
GENERAL FEATURES
POWER SUPPLIES FOR M.P.U.s Part 2 by A. Clements 22
A practical design
SUREFIRE ELECTRONIC IGNITION REVIEW 33
New ignitions for old
ANIMATED GRAPHICS by P. Houghton 40
Games programming for the UK101
INGENUITY UNLIMITED 58
Rhythm Generator for Minisonic-Car Battery Charge Indicator-
TL Staircase Generator-Simple D.C. Power Controller-Current/Voltage
Regulator-Appointment Reminder-Four State Indicator-Car Courtesy
Light Timer
STRICTLY INSTRUMENTAL by K. Lenton-Smith 65
NEWS AND COMMENT
EDITORIAL 17
MARKET PLACE 18
INDUSTRY NOTEBOOK by Nexus 21
SPACEWATCH by Frank W. Hyde 25
NEWS BRIEFS 37, 41, 46
MICRO-PROMPT 38
HOW TO USE YOUR FREE STICKIES 47
PATENTS REVIEW 53
EDUKIT OFFER 63
COUNTDOWN 73
READOUT 74

OUR JUNE ISSUE WILL BE ON SALE FRIDAY, 9 MAY, 1980

(for details of contents see page 55)

[^0]WATFOR ELIETRONICS
33/35, CARDIFF ROAD, WATFORD. HERTS. ENGLAND
MAIL ORDER. CALLERS WELCOME. TEl. Walford 40588/9 ALL DEVICES BRAND MEW. FULL SPEC. AND FULLY CUARANTEED ORDERS CASH/CHEOUE/P.O. OR BANKERS DAAFT WITH ORDER. GOVERNMENE AND
EOUCATIONAL INSTITUTIONS OFFICIAL ORDERS ACCEPTED. TELEPMONE OHOERS BY ACCESS NOW ACCEPTEO (Minimum ordor E 10.00 pieaso). TRADE AND EXPORT IIGUIRY WELCOME. P A P ADO
E10.00. OVERSEAS OROERS POSTAGE AT COST.
VAT
Wo otock many total cost.
Open

POLYESTER CAPACITORS: (Axial Laod Type)
 1000V; 10 n . $15 \mathrm{n} 20 \mathrm{p} ; 22 \mathrm{n} 22 \mathrm{p} ; 47 \mathrm{n} 26 \mathrm{p} ; 100 \mathrm{n} 38 \mathrm{p} ; 470 \mathrm{n}$ 53p; $1 \mu \mathrm{~F}$ 175p.

POLYESTER RADIAL LEAD CAPACITORE: 250V; $10 \mathrm{n}, 15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n} 5 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}, 88 \mathrm{n}, 100 \mathrm{n} 7 \mathrm{p} ; 150 \mathrm{n} 10 \mathrm{p} ; 220 \mathrm{n}$, 330n 13p; 470n 17p; 680n 19p; 1 $\mu 22 p ; 1 \mu 5$ 30p; $2 \mu 2$ 34p.				$\begin{aligned} & \text { UL } \\ & \text { TR } \\ & 40 \end{aligned}$	
ELECTROLYTIC CAPACIT ORS: (Values are in μ F). 500V: $1040 \mathrm{p} ; 47$ 68p; 250V: 100 65p; 63V: 0.47, 1.0. 1.5, 2.2.2.5.3.3, 4.7, 6.8. 8p; $10,15,2210 p ; 32,47,5012 p ; 63,100,27 p ; 50 V: 50,100,22025 p ; 47032 p ;$ 1000 35p; 1500 40p; $220046 \mathrm{p} ; 3300$ 77p; 4700 85p; $16 \mathrm{~V} ; 10,40,477 \mathrm{p} ; 100,125$ 8p; $220,33014 p ; 47020 p ; 1000,150030 p ; 220036 p$. TAG-END TYPE: 4B0V: $100 \mu \mathrm{~F}$ 180p; 70V: 4700 166p; 64V: $2500110 \mathrm{p} ; 3300160 \mathrm{p}$; 50V: 2200 98p; 3300 138p; 40V; 16,000 399p; 4700 130p; $400082 \mathrm{p} ; 3300$ 98p; 2500. 2200 90p; $2000+2000$ 120p; 30V: $470090 \mathrm{p} ; 25 \mathrm{~V}: 15,000$ 195p; 6400 120p; 4700 100p; 3300 85p; 2200 60p.					
TANTALUW EEAD CAPACITOAS $35 V: 0.1 \mu \mathrm{~F}, 0.22$ 0.33 0.47 0.68 1.0 $35 \mathrm{~V}: 0.1 \mu \mathrm{~F} .4 \cdot 2,6 \cdot 8.25 \mathrm{~V}: 1 \cdot 5,10.20 \mathrm{~V}$:$2.2 \mathrm{~F}, 3 \cdot 3,4.7,6 \cdot 8.2$ 1.5ν, 10V: 10 uf 13p each. 10v: $15 \mu, 22$ 25p; 47, 100, 50p; 220 70p; 10V: $15 \mu, 22,3320 \mathrm{p} ; 100$ 35p; 8V: $47 \mu, 68,100$ 25p; 3V: 10020 p.		POTENTIOMETERS (AB or EGEN) Carton Track, 0.25 W Log 80.5 W Linear values. 500 A , 1 K \& 2 K (LIN ONLY) Single $5 \mathrm{KO}-2 \mathrm{MO}$ single gong $5 \mathrm{KO}-2 \mathrm{MQ}$ single gang D / P switeh $5 \mathrm{KD}-2 \mathrm{MD}$ dual gang etereo			29p 29p 89p
MYUAR FILM CAPACITORS100V:0.001,0.002.0.005.0.01 $\mu \mathrm{F}$0.6 p$0.015 .002 .00 .03 .0 .04,0.05 .0056 \mu \mathrm{~F}$$0.1 \mu \mathrm{~F} .8 \mathrm{p}, 0.210 \mathrm{p} . \quad 50 \mathrm{~V}: 0.47 \mu \mathrm{~F} \quad 12 \mathrm{p}$		SLIDER POTENTIOMETERS 0.25 W log and linear values 60 mm track $5 \mathrm{~K} \Omega 500 \mathrm{~K} \Omega$ Single gang 10Kの $500 \mathrm{~K} \Omega$ Dual gang Self-Stick graduated Alum. Bezels			
CERAMIC CAPACITORS SOV Range: 0.5 pF to 10 nF $15 n \mathrm{~F}, 22 \mathrm{nF}, 33 \mathrm{nF}, 47 \mathrm{nF} 5 \mathrm{p} \quad 100 \mathrm{nF} 7 \mathrm{p}$					
		PAESET POTENTIOMETEAS $0.1 \mathrm{~W} 50 \mathrm{O}-2.2 \mathrm{M}$ Minl. Vert. \& Hork. 0.25 W 100 $0-3.3 \mathrm{M} \Omega$ Horiz. larger 0.25W 250@-4.7MO Vert. Precision Cermet IW 1000-100K			
POLYSTYRENE CAPACITORS: 10 pF to $1 \mathrm{nF}, 6 \mathrm{p} . \quad 1.5 \mathrm{nF}$ to 47 nF 10 p .					p_{p}
SILVER MICA (pF)	TRIMMERS miniature		RESIST ORS-Erie make 5% carbon Miniature High Stability, Low Nolse RANGE $\sqrt{\text { al. }} 1.99$ 100.		
	2.5pF:3-10pF: 28p				
47, $50,68,75,82,8$					
			0.25W $2 \mathrm{OL}-4$	77 E24 12p	
	COMPRESSION				
$250,270,4300,330$. $360,390,470,6008$	3-40pF: 10-80pF 25-200 pF			-1M	
		33p			
$1000,1200,1800$. $2000,220028$.	$100-500 \mathrm{pF}$	45p	100 - prica spoplio not mixad veluen	Rotimors of	type

WATFORD ELECTRONICS

 Continued from opposite side)

2-Meter Radio Telephone

Freq. Stab: 0.0005%
Deviation: +5 KHz (max.) Var reactance
system.
Off-set Freq: $\pm 600 \mathrm{KHz}$ for repeater
Tone burst freq: 1750 Hz
Comm. System: Simplex \& semiduplex Dim: $185 \times 285 \times 75 \mathrm{~mm}$.
Receiver has monolithic ceramic filter \& variable squelch control.
Circuit: Oouble Superheterodyne Inter. Freq: 1 st 10.7 MHz , 2 nd 455 KHz

Chanl: $800(5 \mathrm{KHz}$ step)
Sensitivity: 8etter than -6 db for 20 db
Ant. Imp: 500 unbalanced
Power Source: 13.6 V OC (11.5 10 16V) 6A, -ve ground.
Transmitter: PPL conntrolled.
Automatic Voltage Reg.
RF Output: 25 High, 5 W Low
Freq. Stab: 0.0005\%
A. F. Output Power: More than 2W

Oynamic microphone has curly
lead.
Price: only $\mathbf{£ 2 1 0}$. (f1 P\& P).

Superboard II

At these prices why waste time and money on unauthorised kit copies? Just a little more in price than Sinclair for a whole lot more and fully expandable 610 Expansion Board 8k RAM ONLY £159.95 + VAT IP CD3P Minifloppy Disc, Cased, PSU, 2 copies Dos ONLY £289+VAT Set of 4k RAM (Superboard users only) ONLY $£ 30+$ VAT $\left\{\begin{array}{c}\text { E159.95 } \\ \text { PLU Vat } \\ \end{array}\right.$ Plastic Case, Beige ONLY $£ 26+V A T$ Challenger IP-Metal Cased, Superboard, PSU modulator

INTELLIGENT EPROM PROGRAMMER Connects Directly to TV
Develop,Copy,Burn, Verify 2708,\& with mod 2516 Softy is a versatile product and each application wIII be different by definition. When Softy is connected via a serial (RS 232) or parallel link with any small computer capable of supporting an assembler a simple and Capable Product Development System is performed. For product developments less than $2 k$ of firmware Softy may be the only development tool
you need.

ONLY $£ 120+$ VAT Built \& Tested $\mathbf{£ 1 0 0 + V A T}$ Kit
$\mathrm{E} 20+$ VAT Built - Power Supply

Built
Kit Form PERFORMANCE IMPACT PRINTER

Atari UCS System

MOST POPULAR TOP RANGE MICRO-VIDEO GAME
Current cartridges. Air Sea Battle (27). Space War (177), ball (2). Surround (14), Blacklack (7), Basic Maths (8), Codebreaker (20). Hunt \& Score (8), Miniature Golf (2), Skydiver (5), Sereet Racer (27). Chess (8), Levels, Back camman. Brain

Cartridges mostly- $£ 13+$ VAT Backgammon- $£ 30+V A T$
Chess (8 levels) - $£ 39+$ VAT Superman- $£ 20.80+V A T$
Indy 500 (with controls) - $£ 30+$ VAT
Coming soon - BASIC Computing, Space Invaders, plus many more!
Buy a VCS, introduce a friend to buy one and get a Keyboard FREE worth £19 - limited Ingersol Offer. ATARI VCS NOW ONLY E113 + VAT + your first Cartridge - $£ 6.90$ + VAT (worth $£ 13$)

Please add VAT at 15%. Carrige extra, will advise at ume of order Official orders
welcome. Product details on recuuest Trade and export enquiries welcome
33 CARDIFF ROAD, WATFORD, HERTFORDSHIRE
Tel: (0923) 38923 Telex 858747 . Open 9 am to 5.30 pm Mon - Sat.
Close to Watford Foorball Ground. Nearest Station B.R. Watford.
BUY IN CONFIDENCE. In the event that we are unable to deliver Your goods within 7 days, we do not bank your remitrance untll such rume we have the goods :

AITKEN BROS

35, High Bridge, Newcastle upon Tyne

 Tel: 063226729

EXP300
550 contacts with two 50 -point 8 US bers. Size $152 \times 53 \mathrm{~mm}$. $\mathbf{E 6} .95$.
PROTO-BOARD 6 KIT
630 contacts, four 5 way binding posts, accepts up to 614 pin DIPs. E10.98.

CSC LOGIC PROBES

PB6 Kir

LP-2 ECONOMY PROBE

Min. pulse width 300 nanoseconds, 300 KO input impedance, tests circuits up to 1.5 MHz . Detecting pulse
trains or single-shot event in TTL. DTL. HTL, and CMOS clrcuits. $\mathbf{5} 20.95$.

LP-1

Memory Probe
High Speed Memory Probe $£ 35.65$
$\mathbf{E 5 6 . 7 5}$
CSC catalogue available. Pleasesend S.A.E.

CALSCOPE SUPER $6 \mathbf{~} 186.30$

A portable single beam 6 MHz bandwidth oscilloscope with easy to use controls. High gain to $10 \mathrm{mv} / \mathrm{cm}$ and wide time base range from $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$. Full specification to re-

CALSCOPE SUPER 10 £251.85

A dual trace 10 MHz instrument of the very highest performance and quality. It has an accuracy of 3% which is achieved by the use of built-In ssabilised power supplies which keep the trace rock steady over a wide range of mains fluctuations. Full specification on request. Please send S.A.E.

SINCLAIR LOW POWER PORTABLE

OSCILLOSCOPE SC110

£159.85
The SC1 10 has a 10 MHz bandwidth and sensitivity down to 10 mV per division. Full trigger facilities are provided, including bright line, auto with TV line and frame positions. Please send for full spec. and illustrated brochure.

TMK 500 MULTIMETER 30,000 o.p.v. AC volts $2.5,10,25,100,250,500,1000$. DC volis. $0.25,1,2 \cdot 5,10,25,100,250,1000 . D C$ current $50 \mu \mathrm{a} .5 \mathrm{MA}, 50 \mathrm{MA}, 12 \mathrm{amp}$. Resistance $0-6 \mathrm{~K}$, 60K, $6 \mathrm{MEG}, 60 \mathrm{MEG}$. Decibels. -20 to +56 db . Buzzer continuity test size. $160 \times 110 \times 55 \mathrm{MM}$. Batteries \& leads Included.
PRICE E25.95.

CSC ÉXPERIMENTOR BREADBOARDS
No soldering modular breadboards, simply plug components in and out of lerter/number identified nickel-silver contact holes. Start small and simply snep lock boards together to bulld breadboards of any size.

SINCLAIR DM350
 £83.95 $£ 114.95$
 SINCLAIR DM450

Size $255 \times 148 \times 40 \mathrm{~mm}$
DM350 $3 \frac{1}{2}$ digit display OM450 $4 \frac{1}{2}$ digit display. Both provide six functions in 34 ranges. D.C. voltage $10 \mu \mathrm{~N}$ to $1200 \mathrm{~V}(100 \mu \mathrm{~V}$ on DM350) A.C. voltage $100 \mu \mathrm{~V}$ to 750 V . D.C. current inA to 10A. A.C. current inA to 10 A resistance
10 mQ to 20 MO (100mR opn OM350). Accessories for Omh to 20 ma iroomn opn DM3J.). Accessories for M350 \& 450 as for DM235 below. Full spec. on request
Sinclair PEM.
Sinclair PFM200 frequency meter
Size $157 \times 76 \times 32 \mathrm{~mm}$.

Range 20 Hz to 200 MHz . Accessories and illustration as for
POM 35 .

SINCLAIR PDM35

DIGITAL POCKET MULTIMETER
DC volts (4 ranges) 1 mV to 1000V AC vo 500 V DC current (6 ranges) 1 nA to 200 MA . Resistance (5 ranges) 1Ω to 20 MEG Ω. PRICE £39.95 AC Adaptor £4.25 de luxe padded carry ing case £1.95 MN 1604 Battery £1.28.
Size $157 \times 76 \times 32 \mathrm{~mm}$.
SINCLAIR DM235
BENCH-PORTABLE DIGITAL

MULTIMETER.

$O C$ volts (4 ranges) 1 mV to 1000 V AC volts (4 ranges) 1 MV to 750 V AC \& DC current 1 背 to 000 MA Resistance (5 ranges) 1Ω to 20 MEG 0. PRICE £60.98. Carrying case £8.95. AC adaptor/charger. $£ 4 \cdot 25$. Rech argeable Battery Pack. f8.95.
Size $255 \times 148 \times 40 \mathrm{~mm}$

PANEL METERS

DIMS $60 \mathrm{MM} \times 45 \mathrm{MM} .50 \mu \mathrm{amp}$. $100 \mu \mathrm{amp} 1 \mathrm{MA}$. $5 \mathrm{MA}, 10 \mathrm{MA}, 50 \mathrm{MA}$. $100 \mathrm{MA}, 500 \mathrm{MA}, 1 \mathrm{amp}, 2$ mp, $25 \mathrm{~V} \mathrm{dc}, 30 \mathrm{~V} \mathrm{dc}, 50 \mathrm{~V} \mathrm{AC}, 300 \mathrm{Vac}$. S ". "VU" 50-0-50на, 100-0-100~а, 500-0-500~а. PRICE £5.95.

DESOLDERING TOOL
f6.45
SUCTION PUMP
Education Establishment Orders Accepted.
PHONE OR SEND YOUR ACCESS OR
BARCLAYCARD NUMBER
ALL. PRICES INCLUDE POSTAGE AND VAT

SOUTH EAST ENGLAND'S ELECTRONICS CENTRE

Interested in Electronics? Then why not pay us a visit and see our vast range of Test Equipment, Oscilloscopes, PSUs, Computer Equipment, Government Surplus, VDUs, ICs, Transistors, Relays, Motors, Bulbs, Cable Transformers, PCBs, Resistors, Amplifiers, etc., etc.

$\star \star$ THIS MONTHS SPECIALS $\star \star \star$

Miniature 5 V 3 amp PSU, compact fully regulated, + crowbar protection.
$\mathbf{£ 8 . 5 0}+\mathbf{P \& P} 70 p$
Super value PCB pack. Contents include I.C's res. caps etc., etc. Guaranteed to include TTL and CMOSI 6 Boards, Our choice.
$£ 2.50+P \& P 60 p$

Wire wrap patch panels inc. 1016 pin and 5414 pin gold plated DIL WW sockets + 64 TLL and DTL I.C's dim. $6^{\prime \prime} \times 7^{\prime \prime}$.
$\mathbf{£ 8 . 9 5}+\mathrm{P} \& \mathrm{P}$ 85p
49 key coded QWERTY keyboard, 8 bit output, delayed strobe, 5 V rail, TTL output. Ex-equip. untested. Supplied with edge conn. \& connection diagram.
$£ 20.00+P \& P £ 1.60$
NE555 10 for $£ 2.40 .74110$ for $£ 1.80$. 1 N4004 18 for £1.00. 0.125" RED LEDS 12 for $£ 1.00$. 2 N 3055 H (RCA) 4 for $\mathbf{£ 2 . 2 5}$. $1 \mathrm{~S} 44 / 1 \mathrm{~N} 414850$ for $\mathbf{£ 1 . 0 0}$. Stock list 50p. Where P\&P not shown please add 40p per order.
Prices include VAT.

- ELECTRONIC EQUIPMENT AND COMPONENTS PURCHASED FOR CASH \star OPEN 9.30 TO 5.30 MONDAY TO SATURDAY \quad RETAIL AND TRAOE \star NO PARKING RESTRICTIONS - ACCESS \& BARCLAYCARO

64-66 MELFORT ROAD
THORNTON HEATH
SURREY. 01-689 7702

$6-C E$	TS- 6
	ELECTRONIC ROTOR
(1)	
(enter	All Keyboards are easily cut to provide your required length a
	eunomg senvice We are speclalists in Electronic Plano - see lists.
	visits Are welcome by appointment, otherwise Mail Order Only
COMPONENT KIT - E164	EXPORT tact JAYCAR (Sydney).
P.A.'s - SPEAKERS - CABINETS Units can be supplied to add Dornestic Component Kits. including Dorne Stage Cabinets and portable iubular legs.	clear inatra Bbove Kits
CLEF PRODUCTS (ELECTRONICS) LIMITED (Dept. PE) 16, Mayfield Road, Bramhall, Cheshire SK7 1JU. 061-4393297	

The professional scopes you've always needed.
 When it comes to oscilloscopes, you'll have to go a long way to

 equal the reliability and performance of Calscope.

Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition

The Calscope Super 10, dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations.

The price $£ 219$ plus VAT.
The Super 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity. Price $£ 162$ plus VAT. Prices correct at time of going to press.

CALSCOPE DISTRIBUTED BY

Watford Electronics

33-35 Cardiff Road.
Watford, Merts.
Tel: 092340588

Audio Electronics,
301 Edgware Road, London W. 2.
Tel: 01-724 3564
Access and Barclay card facilities (Personal Shoppers)

Maplin Electronics Supplies Ltd P.O. Box 3

Rayleigh. Essex
Tel: 0702715155
Mail Order

OHIO SCIENTIFIC SUPERBOARD 2 50 Hz model for UK tv sets. Full keyboard and casserte interiace. Uses your ty as a vdu. 8 K
basic. 4 K ram. Fully assembled $\mathrm{E} 188+i 5 \%$ vat, post free.
 * board these items are at the reduced * price shown first. Also sold separately at t * the bracketed prices. Add 15% vat. Modulator and power supply kit $£ 4.95$,
 - (f14.74).

SiNCtiARPRODUCTS
PFM200 f51.95 Case £ 4.03, connector kit £11.27. Microvision TV £ 91.44 . mains adaptor $\mathbf{£ 6 . 8 8}$. POM35〔34.23, mains adaptor $£ 4.03$, case $£ 2.07$. DM350 E76.70, DM450 £102.17, DM235 £55.55. Accessories for all 3 models:rechargeable \mathbf{t} (charger 4.03 , case $£ 8.90$. Enterprise prog calculator f 19.95 . Now SC1 1010 MHz oscilloscope £144.95.
COMPUTER GAMES
Chess champion 6 £ 49.95 , Chess challenger $7 £ 84$. Checker challenger 2 £ 46 . Star chess
$£ 62$. Grandstand video entertainment com* puter $£ 79.95$. Videocarts $£ 12.60$. Philips G7000 Videopak home computer E 149. Videopaks f12.95. Atari Videocomputer £ 147. Cartridges £14.85 (except chess TVGAMES
Tank battles kjt ©8.34. AY-3-8500 chip fank batiles
$£ 3.00$, kit $£ 4.26$. Stunt cycle AY-3-8760 chip $£ 13.71$, kit $£ 4.95$. 10 game paddle 2 AY-3-8600 chip $£ 10.25$, kit $£ 7.03$. Racing car chip AY-3-8603 £13.63. Modified shoot kit $£ 9.05$.
kit
.
MAINS TRANSFORMERS
$6-0-6 \mathrm{~V} 100 \mathrm{ma} 76 \mathrm{p}$. $1 \frac{1}{2} \mathrm{a}$ f2.60. 9.0 .9 V 75 ma 76 p , 1a $£ 2.22,2 \mathrm{a} £ 3.94$. $12-0-12 \mathrm{~K}$ 100 ma 92 p , 1 a £ 2.80 , $15-0-15 \mathrm{~V}$ 1a £ 3.15 . JC12 AND JC20 AMPLIFIERS integrated circuit audio amplifier chips with
data and printed clrcults. JC12 6 Watts £2.08. JC20 10 Watts £3. 14
CONTINENTAL SPECIALITIES
PRODUCTS
EXP 300 £6.61. EXP350 £3.62. EXP 326 £1.84. EXP 650 £4.14. EXP48 £2.64. LP2 PRINT
PRINTED CIRCUIT MATERIALS
PC etching kits:- economy $£ 2.42$, standard etch resist pens:- economy 50 p , dalo 84 p . drill bits $1 / 32^{\prime \prime}$ or 1 mm 00p. etching dish 92 p . laminate cutter $£ 1.20$.
BI-PAK AUDIO MOLDULES
AL30A £4.08. PA12 £8.38. PS $12 £ 1.58$. $\begin{array}{llll}\text { T538 £2.70. S450 £25.06. AL60 £5.06. } \\ \text { PA } 100 \\ \text { £ } 17.33 . & \text { SPM } 80 ~ £ 4.74 . ~ 8 M T 80 ~\end{array}$ E6.06. Stereo 30 £21.57. AL80 £7.71.

S-DECSANDT-DECS
S-Dec £3.79. T-Dec £4.59, u-DecA £4.69 u-Dec8 E7.16. 16 dil adaptor £2.31.
3-way types with INATORS
3-way types with switched output and 4 -way
multi-jack:- $3 / 4 \frac{1}{2} / 6 \mathrm{~V} 100 \mathrm{ma} £ 2.67,6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ $300 \mathrm{ma} £ 2.84,100 \mathrm{ma}$ radio types with press stud connectors $9 \mathrm{~V} \notin 3.57$. 6 V £ 3.57 , $4 \frac{1}{\mathrm{~V}}$ £4.77. $9+9 \mathrm{~V}$ cassette recorder mains unit $7.79,6+6 \mathrm{~V} £ 4.79,4 \frac{1}{2}+4 \frac{\mathrm{~V}}{}$ 4.79. cassette recorder mains uni1
100 ma with 5 pin din plug E 3.57 . fully stabilized type $3 / 6 / 7 \frac{1}{2} / 9 \mathrm{~V} 400 \mathrm{ma}$.5.97. car convertors 12 V dc input, output 9 V 300 ma £ 1.19 , output $71 \mathrm{~V} 300 \mathrm{ma} \in 1.19$, outpu $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 V 800 \mathrm{ma} £ 2.66$.
 $4 \frac{1}{2}+4 \frac{1}{V} \mathrm{f} 1.92,6+6 \mathrm{~V} \mathrm{£} 1.92,9+9 \mathrm{~V} £ 1,92$ cassetre type $7 \frac{1}{3} \mathrm{~V}$ 100ma with din plug f 1.49 . heavy duty 13 -way types $4 \frac{1}{2}$
$8 / 7 / 8 \frac{1}{2} / 11 / 13 / 14 / 17 / 21 / 25 / 28 / 34 / 42 \mathrm{~V}$ £5.36, 2 A £8.40. car convertor input 12 Vac output $6 / 7 \frac{1}{2} / 9 \vee$ iA stabilized $£ 1.35$.
STABILIZED POWER KITS
The first price if for kit without iransformer, the bracketed price includes transformer. $5 \mathrm{~V} 4 \mathrm{~A} £ 3.95$ (f 10.32). 8-way types $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 v \quad 100 \mathrm{ma} \mathrm{f} 1.74$

 COMPONENTS
1N4 148 O.9p. 1N4002 2.9p. 1 N4004 3.4p. 72314 dil 33p. NE555 8 dil 24p. 74118 p oc 183, bc 213 , bc547, bc549 4.9p. bc 182 bc184, bc212, bc214, bc548 5.5p. tip31c
tip32c 36 p tip41c 40 p . bd 132 27p. plastic tip 32 c 36 p . tip 41 c 40 p . bd 13227 p . plastic
equiv bcy 724.5 p . fuses $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ cartridge 15, 25, 5, 1, 2, 3. 5 Amp quickblow 1p. anti-surge 3.6p. resistors 5% IW E12 Tor to $10 \mathrm{M} 1 \mathrm{p}, 0.8 \mathrm{p}$ for $50+$ of one value. polyester capacitors $250 \mathrm{v} .015, .068,1 \mathrm{mf}$ $1.5 \mathrm{p}, .01 \mathrm{mf} \quad 3.0 \mathrm{p}, \quad .022, .033 \mathrm{mf} 3.3 \mathrm{p}$ polystyrene capacitors E12 63v 10 to 1000 pf 3 p , $1 \mathrm{n2}$ to 10 n 4 p . ceramic capacitors 50 V E6 22 pf to 47 n 2 p . elecrolytic capacitors $50 \mathrm{v} .5,1,2 \mathrm{mi} 5 \mathrm{p}, 25 \mathrm{v} 5$, $10 \mathrm{mf} 5 \mathrm{p}, 16 \mathrm{v} 22,33 \mathrm{mf} 5 \mathrm{p}, 47,68 \mathrm{mf} 3.5 \mathrm{p}$ zeners 400 mW E E24 $2 \mathrm{v7}$ to 33 v 7 p . preset pots subminiature 0.1 W horiz or vert 100 to $4 \mathrm{M} 7 \mathrm{7p}$. potentiometers tW 4 K 7 to 2 M 2 log or lin single 27 p , duai 71 p . ${ }^{\prime \prime}$ red LEDS 9.7 p .
ic sockets 8 dil 8.7 p , 14 dil 10.10 , 16 dit ic 12 .
SWANLEY ELECTRONICS Dept. PE
32 Gotdsel Rd., Swanley, Kent BRE BEZ.
Mail order only. Please add 30p postage.
Prices include Vat unless stated. Lists $\mathbf{2 4} \mathrm{p}$
post frec. Overseas customers deduct 13%. Official credit orders welcome.

The MIEHTY MTGETS ROIIS and accessories

LIMITED

86-88 UNION ST. PLYMOUTH PLI 3HG

Tel: 075265011 trade enouries welcome

and

Trvo

$30+30$ WATT STEREO AMPLIFIER
 pumbut ons wim mucting lascia ied me ins mateator and stero iech sociasp. Functions smoth lar mic magnatic and cyyted pictups. 1ape wier and suxiliay. Poer panel teatues fuse hodder. DiW ape atar and inpul socket $30+30$ wothi

Per
.
 illus. our pact 57.15

ACCESSORIES Sultabie minis power supply perta consisting of mains transtormer, bridge nectifier, emoortung capacitor and set of rotery storso controls for trable, bass.

E3.11

bass and two 34. 15 ohm mid range twanter with mocross-over cepacitors $\begin{aligned} & \text { Per stereo pair } \\ & \text { plus p\&ap } \mathrm{fi} .70\end{aligned} 54,15$

323 EDGWARE ROAD, LONDON W2 21 B HIGH STREET. ACTON W3 6NG ACTON; Mail Ordar only. No callers ALL PNICESINCLUDE VATAT is \% 22.250 nil thea to chempe withour notict All enpuires Stamped Adrressed Envolepe.

BSR P200
Band orive chassis tumetobie $\mathbf{1 5} 50$

Shure M75 6 Magnetic Cantridge
(6) $3 S R$ Monet singe otion
totum and cueing lever. lined mith siec eo
cramec cantinge 2 seerds mith 45 rpm
descouse $P 9$ perp
PHILLIPS RECORD PLAYER DECK GCO37

UNBEATABLE OFFERAT
BUYER COLECT OMIY

BARGAIN OFFER

Ariston pick-up arm
manufactured in Japen.
Complete with headshell. Listed price over $\$ 30.00$.

OUR ET. 15
PRICE p\&p\&2.50

D.I.Y. KITS FOR SYNTHESISERS, SOUND EFFECTS

P.E. 128-NOTE SEQUENCER

Enables a voltage controlled synthesiser to automatically play pre programmed tunes of up to 32 pitches and 128 notes long Programs are keyboard initated and note length and thythmic pattern are externally variable
Set of basic component kits, PCBs and layout charts
Set of text photocopies
KIT76-7 £34.58

P.E.16-NOTE SEQUENCER

Sequences of up to 16 notes may be programmed by the use of external panel controls and fed into most voltage controlled synthesisers.
Set of basic component kits. PCBs and layout charts
$\begin{array}{lrr}\text { Set text photocopies } & \text { KIT B6-6 } & \text { £27.99 } \\ & & \text { £1.84 }\end{array}$

P.E.STRINGENSEMBLE

A multivoiced polyphonic string instrument synthesiser
Set of basic component kits. PCBs \& layout chart
KIT 77-8 $\mathbf{~} 92.89$
P.E.JOANNA PLUS ORGAN VOICING

A modified version of the P.E. 5-octave piano that retains all the original facilities and includes switchable organ volcing circuitry.

Set of basic component kits, PCBs \& lavout chars
"Sound Design" bookle?
KIT 71-7 $£ 119.8$

ELEKTOR ELECTRONIC PIANO

A touch-sensitive multiple-voicing piano using the latest integrated circuit techniques for the keving and envelope shaping, and virtually eliminating bee-hive noise hitheno inherent in previou electronic pianos.

5-actave set of basic components and PCBs (as published) KIT 80-9 £136.41
Addifional 3 -octave extension and basic parts and
PC8s (as published)
KIT 80-10 $£ 54.62$
P.E. MINISONIC MK2 SYNTHESISER

A portable mains operated miniature sound aynthesiser with keyboard circuits. Although having slightly fewer facitities than the large Formant and P.E. synthesisers the functions offered by this design give it great scope and versatility.

Set of basic component kits (excl. KBDR's \& tuning pots -
see list for options available) and PCBs (incl. layout charts)
KIT 38-25 \quad €76.92
Sound Design" bookle E1.00

P.E.SYNTHESISER

The well acclaimed and highly versatile large scale mains operated synthesiser. Other circuits in our lists may be used with it to good advantage.

Main Unit basic component kits. PCBs \& layout chans
KIT 23-31 غ̇101.43
Keyboard Unit basic component kits, PCBs \& layout charts
Main Unit set of text photocopies KIT 23-32 8 E0.47

Keyboard Unit set of text photocopies	$£ 5.91$
2.30	

ELEKTOR FORMANTSYNTHESISER

A very sophlsticatged synthesiser for the advanced constructor who puts performance before price

Set of basic component kits, PCBs (as published)
Ket of text photocopies KIT 66-14 £247.60 £7.83

BASIC CDMPONENTS SETS include all necessary resisiors, capacitors, semiconductors, potentiometer and transformers. Hardware such as cases, sockets, knobs, keyboards. etc. are not included but most of these may be bought separately. Fuller details of kits PCBs and parts are shown in our lists.

LAYOUT DIAGAAMS are supplied free with all PCBs uniess "as published"

P.E.GUITAREFFECTSUNIT

Modulates the attack. decay and filter characteriatics of a signal from most audio sources, producing 8 different switchable effects that can be further modified by manual controls.

Basic parts with foot switches, PCB \& layout char
KIT 42-3 £10.02

ELEKTOR DIGITAL REVERBUNIT

A very advanced unit using sophisticated i.c. techniques Instead of mechanical spring tines. The basic delay range of 24 to 90 mS can be extended up to 450 mS using the extension unit. Further delays can be obtained using more extensions.
Main unit basic component kit and PCB (as published) KIT 78-3 \quad f53.
Extension unit basic component kit and PCB (as published)
KIT 78-4 f48.85

Text photocopy

ELEKTORANALOGUE REVERB

Using i.c.s instead of spring-lines the main unit has a maximum delay of up to 100 ms , and the additional set extends this up to 200 mS . May be used in either monoor stereo mode.

Main unit basic component set KITB3-1 \quad £29.49
Additional Delay basic components KIT B3-2 $£ 20.07$ PCB (as publ.) to hold both kits PC89973 £4.31 Text photocopy

P.E. GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing. for example, flanging, vibrato, reven, fuzz and tremolo as well as other fascinating sounds. May be used with most electronic instruments.

Set of basic component kits, PCB \& layout charts
$\begin{array}{lll}\text { Set of text photocoples } & \text { KIT BS-6 } & \text { £54.37 }\end{array}$

P.E. PHASER

An automatically controlled 6 -stage phasing unit with integral oscillator.

Basic components, PCB \& chart KIT B8-1 E10.14 2-Notch extension, PCB \& chart KIT B8-2 £6.38 Text photocopy

ELEKTORPHASING \& VIBRATO

Includes manual and automatic control over the rate of phasing at vibrato, and has been slightly modified to also include a 2 -input mixerstage.

Set of basic components, PCB \& layout chart Text photocopy
$\begin{array}{rr}\text { KIT } 70-2 & \varepsilon 21.67 \\ & 67 \mathrm{p}\end{array}$

P.E. PHASING UNIT

A simple but effective manually controlled phasing unit. Besic components, PCB \& char Text photocopy
3.52
$28 p$

PHASING CONTROLUNIT
For use with Phasing Kit 25 to automatically control rate of phasing. 8 asic components, PCB \& chart KIT 36-1 £5.21 Text photocopy

P.E. SWITCHED TONETREBLE BOOST

Provides switched selection of 4 preset tonal responses. Basic components, PCB \& chan KIT 89-1 Text photocopy

P.E.TREBLE BOOST UNIT

A simplétreble boost unit with manual control depth. Basic components, PCB \& chart KIT 53-1 £2.76

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE - MARKET

ELEKTOR RESONANCE FILTER

Allows a synthesiser to produce a more reallstic simulation of natural musical instruments.
Set of basic components \& PCB (as published
$\begin{array}{lll} & \text { K1T B2-2 } & \text { E19.90 }\end{array}$

P.E. GUITAROVERDRIVE

Sophisticated ver satile fuzz unit incl, varibble controls affecting the fuzz quality whist retaining attack and decay, and also providing filtering. Usable with most glectronic instruments.

Basic components, PCB \& chart KIT 56-3 E9.35
Text photocopy
P.E.SMOOTH FUZZ

Basic components, PCB \& chant
Text photocopy
KIT 91-1 f5.01

TREMOLO UNIT

A slightly modified version of the simple P.E. unit.
Basic components, PCB \& chart
KIT 54-1
£3.23

GUITAR FREQUENCY DOUBLER
A slightly modified and extended version of the P.E. unit. Basic components. PCB \& chart KIT 74-1 Ea.97 Text photocopy

P.E. GUITAR SUSTAIN

Maintains the natural attack whilst extending note duration.
Basic components, PCB \& chart KIT 76-1 £5.8
Text photocopy
P.E.WAH-WAHUNIT

Can be controlled manually or by integral automatic control.
Basic components, PCB \& chart KIT 51-1 £3.99

P.E.AUTO-WAH UNIT

Automatically glvet Wah or Swell sounds with each note played.
Basic components. PCB \& cher

ELEKTOR WAVEFORM CONVERTER

Converts a saw-tooth waveform into sinewave, mark-space saw tooth. regular triangle, or square-wave with variable mark-space Basic components. PCE \& char.
but excl. sw's
KIT 67-1 $£ 9.24$
P.E.V.C.F.

A vottage controlled filter extracted from P.E. Minisonic project.
Basic components. PCB \& chert KIT-65-1 \&7.8

P.E. RING MODULATOR

Extracted from P.E. Minisonic project.
Basic components. PCE \& chart
KIT 59-1 E 8.0 F

ELEKTORRINGMODULATOR

Compatible with the Formant \& most other synthesisers.
Set of basic components \& PCB (es publishod)
$\begin{array}{lrr} & \text { KIT B7-2 } & \text { £6.40 } \\ \text { Text photocopy } & 380\end{array}$

10% DISCOUNT VOUCHER (PE 83)

TERMS: Goods in current adverts \& lists over E 50 goods value (excl P\&P \& VAT). Correctly costed, C.W.O., U.K. orders only. This voucher must accompany order, Valid until end of month on cover
apply to credit card orders.

ADD: POST BANDLING

U.K. orders: Keyboards add $\mathbf{£ 2 . 3 0}$ each. Other goods: Under £ 5 add 25 p , under $\mathbf{£ 2 0}$ add 50 p , over $\mathbf{£ 2 0}$ add 75 p Recommended insurance against postal mishaps: add 50 p for cover up to $£ 50, \mathrm{f} 1$ for $£ 100$ cover, etc., pro-rata. Insurance must be added for credit card orders.
N.B. Eire, C.I., B.F.P.O. and other countries are subject to higher export postage rates.

ADD 15\% VAT

(or current rate if changed) Must be added to full total of kits, discount post \& handiling kits, discount post \& handing on all U.K. orders. Does not apply to Exports, or
photocopies. photocopies.

EXPORT ORDERS ARE WELCOME but to avoid
delay we advise you to see our list for postage rates. All payments must be cash-with-order, in Sterling by Internatlonal Money Order or through an English Bank. To
obtain list - Europe send 25p; other countries send
Note that we do not offer a C.O.D. service and

AND OTHER PROJECTS

PHOTOGAAPHS in this advertisement hew Wo grour units contauning some of CB. The cas buit from our hirselves and are not for sale. though a small selection of other cases is available.
LIST-Send stamped addressed envelope with all U.K. requests for free list givigulit other components.

OVERSEAS Enqulries for list Eurode send 20p: other countries - send 50p.

KIMBER-ALLEN KEYBOARDS AND CONTACTS

KIMBER-ALLEN KEYBOARDS as required for many published projacts. The manufacturers claim that these are the finest moulded plastic keybotrds avallable. All octaves are \mathbf{C} to C . the keys are plastic, spring-loaded, fitted with actuators, and mounted on a robust aluminium frame.

CONTACT ASSEMBLIES (gold-clad wire) - 1 requlred for each KBO note:
Type G \downarrow - SPCO $25 \frac{1}{2} p$ ea. Type GA -1 pr of contacts, normally open $24 p$ ea. Type GB -2 pr N/O 28 $\frac{1}{2} \mathrm{p}$ ea. Type GC-3 pr N/O $37 \ddagger \mathrm{pea}$. Type GE -4 pr N/O 46łp ea. Type GH - 5 pr N/O 58 tp ea. Type 4PS - 3 pr N/O plus SPCO 57p ea.

P.E. NOISE GENERATOR

Extracted from the P.E. Minisonic
Basic components. PCB \& chart

KIT 60-1 E4.00

WIND \& RAIN EFFECTS UNIT
A slightly modified version of the original P.E. unit. Basic components, PCB \& char Text photocopy

KIT 28-1

P.E.ENVELOPE SHAPER WITHOUT VCA

Provides full manual control over attack, decay, sustain and release functions, and is for use with an existing VCA.

Basic components, PCB \& chart
Text photocopy

P.E.ENVELOPE SHAPER WITH VCA

Has an integral Voltage Controlied Amplifier, and has full manual control over the A.D.S.R. functions. Basic components. PCB \& chart

Textphotocopy

$\begin{array}{rr}\text { KIT 50-1 } & \text { £7.34 } \\ & 58 \mathrm{p}\end{array}$

P.E.TRANSIENT
 GENERATOR

An AOSR envelope shaper without VCA, and additionally providing Repeat-triggering enabling a synthesiser to be programmed for mandolin or banjo effects.
Basic components, PCB \& chart
Text photocopy

P.E.EXTERNAL-INPUT

 SYNTHESISER-INTERFACEAllows external inputs such as gultars, microphone tc.. to be processed by synthesiser circuits.
Basic components, PC\& \& chart
KITB1-1 E3.23

P.E.TUNING FORK

Produces 84 switch-selscted frequency-accurate tones with an LEO monitor clearly displaying beat note adjustments.

Set of basic components, incl. power supply, PCBs \& charts

P.E.TUNINGINDICATOR

A simple 4 -octave frequency comparitor for use with synthesisers and other Instrume
full versatility of KIT 46 is not required
Basic components, PCB \& chart, but excl. sw.
Textphotocopy
KIT 69-1 $\begin{array}{r}\text { C8.19 } \\ \\ \\ 58 p\end{array}$

P.E.DYNAMICRANGE
 LIMITER

Preset to automatically control sound output levels. Basic components, PCB \& chan

KIT 62-1

P.E.CONSTANT DISPLAY FREQUENCYCOUNTER

A 5 -digit counter for 1 Hz to 55 kHz with 1 Hz sampling rate. Readout does not count visibly or flicker due to blanking
Basic components, PCB \& chart
$\begin{array}{lll}\text { Text photocopy } & \text { KIT 79-2 } & \text { E32.28 }\end{array}$

P.E.6-CHANNELMIXER

A high specification stereo muxer with variable input impedances.

Basic components, (excl.sw's) and set of PCBs and charts.

KIT 90-B EB1.35 Extra 2 -channel set with PCB Set of Text photocopies

STEREO HEADPHONE

AMPLIFIER

Extracted from P.E. 6-channel mixer.
Basic components. PCB \& chart
KIT 92-1 $\quad \mathbf{5} .04$

DIGITALEXPOSURE

UNIT
Controls up to 750 watts in $\frac{1}{2}$ second steps up to 10 minutes, with built-in audto alarm. Basic components. PCBs \& charts
KIT $93-3 \quad £ 22.40$
Text photocopy
c1. 20

P.E.DISCOSTROBE

A 4 -channel light show controller giving a choice of sequential, random, or full strobe mode of operation, and with additional audto in put.

Basic components, PCB \& char
Textphotocopy
23.79
$78 p$

RHYTHMI GENERATORS

Several avallable, including programmable 16 beat 64000 pattern, 128 beat almost infinite pattern, and pre-programmed 15 pattern using 252 or M253 hythm chips. A selectio of effects instrument circuits is also available.

P.E VOICE OPERATED

FADER

For automatically reducing music volume duning talkover - particularty usetut for disco work.

Basic components, PCB \& chart

$$
\begin{aligned}
& \text { B \& chart } \\
& \text { KIT 30- }
\end{aligned}
$$

c4.37

TAPE NOISE LIMITER

Very effective clrcuit for reducing the hiss found in most tape recordings.
Basic components, PCE \& chan
KIT 6-3
£4.13

AMEPICAN
EXPRESS

camciaycare

PHONOSONICS

$£ 135$.00 SAFGAN ST-45
SINGLE TRACE OSCILLOSCOPE INSTRUMENT GUARANTEED FOR TWELVE MONTHS

- $10 \mathrm{mv} / \mathrm{div}$ - 5 MHz - BRITISH

 - CHOICE OF FRONT PANEL
ST-45 SPECIFICATION

VERTICAL SYSTEM

Sensitivity $10 \mathrm{mv} / \mathrm{div} 5 \mathrm{v} / \mathrm{div}$ in 9 cal . steps Bandwidth (3dB)
DC Coupled DC 5 MHz
AC Coupled $5 \mathrm{~Hz}_{\mathrm{F}}-5 \mathrm{MHz}$
Risetime $70 \mu \mathrm{sec}$
Input impedence $1 \mathrm{M} \Omega+22 \mathrm{PF}$ approx. for all
ranges) 50 D for $10 \mathrm{mv} /$ div $50 \mathrm{mv} / \mathrm{div}$
nout coupling AC CNO DC
Input volts: 400
Accuracy $+5 \%$
HORIZONTAL SYSTEM
Time base speeds
$50 \mathrm{~ms} /$ div $1 / \mathrm{sec} / \mathrm{div}$ in 15 cal . steps with $\times 5$ Multiplier to $250 \mathrm{msec} / \mathrm{div}$ and $X 5$ Expansion to $200 \mathrm{nsec} / \mathrm{div}$
External-X sensitlvity 1 w/div
External - X Bandwidth $500 \mathrm{KHz}_{2}$
Accuracy $\pm 5 \%$

ACCESSORIES

Passive Probe switched (X1. REF. x 10)
100 MHz bandwidth f 11.50 + VAT
ORDERS TO: SAFGAN ELECTRONICS LTD
56 Bishops Wood, St. Johns, Woking
Surrey GU21 3QB or Tel: Woking 66836.
Please send me..................ST-45-S...................ST-45-G......................Probe............Adaptor
I enclose PO/Cheque ... $+15 \%$ VAT + © 3.00 p\& p)

Address.
-Ex VAT UK

ロM-2

DIGITAL
multimeter

- OC Volts. AC Volts.
. 1 mV to 1000 V 1 V to 500 V DC Current 0.1 mA to 0.2 A Resistance. $1 n^{*}$ to $20 \mathrm{~m} \Omega$
- 31/2 digit LCD
- Auto Low Battery indication
- Auto Polarity \& Zero
- 1\% accuracy (DC volts)
- Designed around Intersil 7106 IC
- Total cost around £30 (Incl, case)

FG-1a

FUNCTION GENERATOR

- 30 mV to 10 V pk-pk
- 1 Hz to 100 kHz
- DC coupled
- Sine, Square \& Triangle
- Separate TTL output
- Designed around Intersil 8038 IC
- Total cost around $\mathbf{E 2 5}$ (incl, case)

Provided in a JAYkit is Printed Circuit Board, a punched and lettered Front Panel overlay, a Circuit Diagram and Instruction Sheet and a comprehensive and up to date Component List showing suppliers and current prices. Difflcult to obtaln pieces of hardware are supplied with the

kit
 Jayen Developmenis, 21 Gladeside, Bar Hill, Cambridge CB3 8DY

- To: JAYEN D ivelopments

21 Glades".Je, Bar Hill
Cambridge.CB3 8DY
Tel: (0954i) 80285
Name

Address
Please send:
\square DM-2 @ $£ 5.45$
(incl. VAT and P\&P
Money to be refunded if the kit
is returned within 10 days.

SIWPIV AHEAD-and staying there! O.E.M.PLATE POWEB AMPLIFIERS

MADE IN ENGLAND

I.L.P. offer for prompt delivery, a range of O.E.M. Plate Power Amplifiers in three useful output ratings. These units are typical of I.L.P. design and manufacture - encapsulated circuitry rugged construction, just five pin connections, trouble-free mounting, no output capacitor or other external components to be added, and operation from split line power source. PRICES ARE KEENLY COMPETITIVE, QUALITY AND MANUFACTURE OF THE HIGHEST POSSIBLE STANDARDS. Modules can also be manufactured to customer's own design.

UNIT PFICE FOR	100 +	250 +	500 +	1000 +	2500 +	5000 +
HY 120P 6OW rms 8Ω	$£ 10.30$	$£ 9.37$	$£ 8.51$	$£ 7.74$	$£ 7.04$	$£ 6.40$
HY 200P $120 W$ rms 8Ω	$£ 13.18$	$£ 11.98$	$£ 10.89$	$£ 9.90$	$£ 9.00$	$£ 8.18$
HY 400P $240 W$ rms 4Ω	$£ 19.26$	$£ 17.51$	$£ 15.92$	$£ 14.47$	$£ 13.16$	$£ 11.96$

0.1\% DISTORTION WIDE BANDWIDTH PROTECTED O/P TRANSISTORS FULL LOAD LINE PROTECTION NO EXTERNAL COMPONENTS ONLY FIVE PINS TO CONNECT

HY 120 P and HY 200P
HY 400P
$116 \times 50 \times 23 \mathrm{~mm}$ $116 \times 75 \times 23 \mathrm{~mm}$

A divisior, of I.L.P. ELECTRONICS LTO., GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY, KENT, CT2 7EP (0227) 54778 : Telex 965780

mullaro capacitohs Special purchase of faciory clearance capactors enubles us to offer: C210 Polymern (Kiquorima Allsors) at C2 for 100 mred And Mimatars Elocrefroce at $\$ 1.50$ for 100 mxx d Paek of weh only $\mathbf{I T}$.	MIMIATURE MAIMS YRAMSFORMEAS Top quality. Split bobbin conattuction will give $4.5 \mathrm{~V}-0-4.5 \mathrm{~V}$ at 250 MA 1$\}^{\prime \prime} \times 1 \frac{1}{2}^{\prime} \times 1 \frac{1}{2}$ ", all sorts of unes. OMLY 90 p 3 for 220. 2200 Hf 40 V . Redial $1^{\prime \prime} \times 2^{\prime \prime} 80 \mathrm{p} .3$ for I 1.50. 1.000 H 100 V Radial $11^{\prime \prime} \times 2^{\prime \prime}$ DNLY 70 p . 3 for $[1-50$.
Imperiects atc. As we have no fime to sort them they are magnlicent value for the consiructor.	20 mm AMTI SURGE FUSES 630 mA .800 mA 1A 1.24A. 1.6A. 2A. 2.5A. 3.15A 12 of of ench ryper 44.
 Buy our Honeymall Musivity Centruler. Membrane acturted. very zensitim. fy shah. 250V, 3.15 A Comects. Idaed for grienhovies. contrelly heated homes. Sticess ate. Build your ow.in hum rifitiers or alerme. Fraction of original cost 90p es. 3 tor $\mathrm{E2}$.	TRAMSISTOR PACKS 100. Full spoc. now and murked. Includen BC148, BC184L. MED412, BF274. BC154 me. me. E4.05 200 as abom ond incluten AC128. 2M3055. BFY50. B0131. BF200 me. $\mathbf{C t} . \mathrm{O}_{5} 5$ Ouy bulk ond savi money. twese aceks ane wath at hast doubin.
20 ASSDATED ZEMER DIODES I watt and 400 MW . $\{1.50$	P/L SWITCH EAMKS Thate covt if fortimel Were made ter varicus music cantres Includes independent and intorteponemen istching types multi
100 MIXED DIOOES Includes: Zenet. dower. bridgo germanium. shican me. A.f full space $\mathbf{5 4 . 8 5}$ 0.2^{2} LEDS with 2 giece dipe	
Rod 4 for 50p. Groen and Yollow 4 for 80p.	K nobs for $P / 8$ Switches fit $3 \$ \mathrm{~mm} \mathrm{sq}$ shaft. 10 for fI . Chrome or Spun Aluminium Finish
ULTRASOMIC TRAMSDUCEAS Transmitter and receiver $\mathbf{4 0}$ thtz 14 mm dia. $\mathbf{f 3} .25$ pair.	
	BULK BARGAIMS. STOCK UP FDR SUMMER 300 mixed \ddagger \& $\frac{1}{2}$ watt resistors $\$ 1$. 5
MINIATURE REED SWITC	150 muxd 1 \& 2 watt rasictors $\mathbb{1} .50$ 300 mixed capacitorn. madern, most typess 23.75
Wa are the cheapesif 12 lor $\mathbf{\$ 1 . 0 0} 100$ for $\mathbf{\$ 4 . 2 0}$	100 mixed cerame snd blate cast $\$ 1.20$ 400 muxd film resistions Ez.35 100 mixed potystyrane caps $\mathbf{£ 2 . 2 0}$ 25 pols and proters $\$ 150$ 25 presits, stalion etc. $\$ 1.20$ 20 V0hs and thermurtina f1.20 100 Hi wottepe resisters wirwound etc. $\mathbf{C 2 . 2 0}$ 100 ebetrolgics nice values $\mathbf{2 2 . 2 0}$ 300 aninted elravit fesimtort EI 300 phnted astuit components if Bd
GEE. UMF TRANSISTOR TV TUMERS Rotery type with alow motion dive lasdi and evrial wocket [C 1503 tor $\mathbf{〔} \mathbf{3} .50$ "for G.E.C. " $2010^{\text {" }}$ series elc."	
dE LuxE Fibre glass PRIMTED CIRCUT ETCMING MTTE	
Includes 150 so ins. copper clad F/G. bourd 1 ib tornc chiorite. I dalo ath masist pon. Abrasive cleonow. Etch timy Nus instuctions Epeciel Price 14.55 1BFE.C1. To mil apec. $\$ 1.25$ 	100K MIMIATUAE TMUMBWHEEL SLIDES POTS Very neat, con be banked side by sube ldeal for v. cap tuning, praphic aualisees ote 10 tor $\boldsymbol{t I}$
	MIWIATURE LEVEL/BATT. METERS 200μ a F.S.D. as fitted to many cassatte recordens 80 .

SENTINEL SUPPLY, DEPT. P.E. 149A BROOKMILL RD., DEPTFORD, LONDON, SEB

MORE BIGVALUE FROM YOURTANDYSTORE

TRANSISTORIZED SIGNAL
TRACER
Spot circuit troubies and check RF, IF and audio signals from aerial to speaker on all audio equipment. With 9 V battery, instructions. $22-010$.

Rec arace $£ 9.95$

REALISTIC DX 300

General coverage receiver. Quartz-synthesised tuning, digital frequency readout. 3 -step RF Attenuator. 6 range preselector with LED indicators. SSb and CW demodulation. Speaker. Code oscillator. Batteries (not included) or 12V DC. 20-204

на max 229.95

You save because we design, manufacture, sell and service. Tandy have over 7,000 stores and dealerships world wide. Over 2,500 products are made
seataply mannemin mainaw products has been achieved by over 60 years of continuous technological advancement.

KNOWN AS RADIO SHACK IN THE U S.A MAKERS OF THE WORLD'S BIGGEST SELLING MICROCOMPUTER TRS 80

DIGITAL IC LOGIC PROBE

Unique circuitry makes it a combined level detector. pulse detector and pulse stretcher. Hi-LED indicates logic " 1 ". Lo-LED is logic " 0 ". Pulse LED displays pulse transitions to 300 nanoseconds, blinks at 3 Hz for high frequency signals (up to 1.5 MHz). Input impedence: 300 K ohms. With $36^{\prime \prime}$ power cables 22-300

MULTITESTER

Dual FET imput for
accuracy and minimum loading. 11.5 cm mirrored scale. DC volts, 0-1-3-10 30-100-300-1000. DC current 0-100 a. 0-3-30300 milliamp. Resistance 0-30-300-3k-301C-1 megaohm. 0-100-1k-101C-100K-3
megrohms. Req. 9 V battery 22-209.

${ }^{2}$
 £29.95

SIGNAL INJECTOR
For RF, IF, AF circuits. Maximum accuracy. Easy pushbutton operation. Needs two "AA" tantteries. 22-4033

$£ 2.79$

ACIDC CIRCUIT TESTER

Accuracy in 1-300 volts ranges. Safe in live/dead circuits. Needs two "AA" batteries. 22-4034.

racare £1.99

VARIABLE POWER SUPPLY

Power project boards. IC's, other low-voltage DC equipment. Load regulation: less than 450 mV at 1 amp at 24 V DC. Ripple: less then 25 mV . Maximum output current: 1.25 amps . Switchable colour-coded meter reads $0-25 \mathrm{~V}$. DC and $0-1.25 \mathrm{amps}$. Three-way bind ing posts take wires, banana plugs or dual banana plugs with 0.75 " centres. For $220 / 240 \mathrm{~V}$ AC. 22.9123

SPARKRITE X5 is a high performaixe (op) (fuality inclictive)
 DIY world it has lxe日l tried. tested and provern toixe utterly relable Assembly only takets 12 hiours anclunstallatum
everiless due to the patented 'clip oni easy fitimat The superb technical ressctin of the: Sparkritecircuit edmunates problems of tiu. contact breaker There is not misfur flise ios contact breakei boumce which uselmumateri electroncally loy a pulst 'suppre:ssicsu circuit which preve.ints the annt firmeg of the

Contact breaker tuat 1 is edmumatuct by

 corcuit whach allesws the com al lex

 bunt instatu: timugheght systemis finctum
 Will werk ail reve currtas
Fits all 12 v negative-earth vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISH SF VI RYI HINGNEEDED

base and heat sulk conl nuxutumg clups anul accessorus All kıt componemis are cutarantered for a per i:xi of 2 yetars fromchate of purchase Fully illust aterd asseminly aud installatım ustructions are included

Roger Clark the world famous rally driver says "Sparkrite electronic ignition systems are the best you can buy.

Somhrite ELECTRONIC IGNITION
 Electronics Design Associates, Dopt. PE1179, 82 Bath St., Waleall, wS1 3DE

Electronics Design Associates, Dept. PE 5/80 82 Bath Street, Walsall, WS1 3DE. Phone : (0922) 614791

I encose cheque PO's tor E Cheque No Send SAE il brochure onty iequireo

LIGHTING \& AMPLIFIER MODULES FROM L \& B

01-689 4138

YOU'VE ALL HEARD OF OUR SUPERB MODULES, AND IF YOU HAVEN'T, IT'S TIME YOU DID, SO READ ONI SHOWN HERE ARE A RANGE OF THE MOST RELIABLE SYSTEMS ON THE MARKET.

LB31000SLC
£29.90

LB31000SL SOUND TOLIGHT. A SUPERB PERFORMING SYSTEM AT ANINCREDIBLYLOWPRICE. 3 channels. 1000 w each. Fully fused Very high input impedance. Operates from t to 300 w sound input:
Third order filters. Zero voltage fired. Master Nol/Base/Mid/Treble controls.

LB31000SLC SOUND TO LIGHT/CHASER. THE MOST ADVANCED SOUND TO LIGHT MODULE AVAILABLE, WITH AUTOMATIC SWITCHING TO CHASE UPON ABSENCE OF A MUSIC INPUT.

3 Channels, 1000 w each. Fully fused Very high Input impedance. Electronic filters. 5 HZ to 70 KHz band width. Operates from $\frac{1}{8}$ to 300 w sound input. Triac zero voltage triggering. Master Vol/Bass/Mid/Treble/Chase speed controls.

LB81000LC CHASER A FULLY DIGITAL 8 CHANNEL CHASEA. ALLOWING VARIATION OF CHASE SPEEDAND CHASE RETURN DELAY.

£26.50

L881000LC
$19 \times 9.5 \times 3 \mathrm{~cm}$.

LB41000LS SEOUENCER
LOGICRANDOM SEQUENCER, WITH TWO SPEED CONTROLS OFFERINGAWIDE RANGE OF EFFECTS.
4 channels, 1000w each. CMOS circultry
Zero voltage fired.
LB31000LD

LB31000LD And 1 OOOLD DIMMERS
FULPOWER 3 E SINGLE CHANNEL CLUBS/PUBS/THEATRES/SCHOOLS. ETC. 1000 w per chennel. Fully fused phase controlled. Full input and Individual Triac filters.
 $20 \times 7.8 \times 3.5$

POWERAMPS, 250, $150,100 \& 25 W$ RMS.
RUGGEDTOUGH DEALING
POWER AMP MODULES.
Full spec evailable in our catalogue.

PREAMPS

LBPA3. Complete stereo disco preamp system. Comprts ing of L\&R deck mbxers; mic mixer, deck and mic tone stages, mic auto fade over decks, PFL, outpul drivers and its own regulators LBPA2. General purpose 4 chan. mixer/tone stage. LBPA1. Stereo Hi-FiSystem

Four types of powerfut supply unis for impreena amos. Consistransformer and rectifier boardfluse protected.

LBRLD1

Relay delayed spataker LB250PS £24.50 connecting device. LB150PS £18.00 placed berween LB100PS E14.70 Amp \& Spk. LB25PS £11.20 £5.70

LBPA1 19.50 LBPA2 f 17.20

 LBPA3-M (magnetic deck inputs) $£ 30.70$ LBPA3-C (ceramicL8PA3-M LBPA3-C (ceramic
deck inputs) $£ 30.70$

ELECTRONICS

Build your own oscilloscope.

Learn to draw and understand circuits.

Carry out over 40 experiments.
 TECHNOLOGY
Learn to operate and programme your own home computer.

DIGITAL TECHNIQUES

From watches to sophisticated instrumentation,
Digital Electronics adds scope to hobby or career.

No previous knowledge is necessary. - Just clip the coupon for a brochure

PER 5

Send your orders to:-
 DEPT. PE5, PO BOX 6, WARE, HERTS. Tel: 0920-3182 Visit our NEW shop: 3 BALDOCK ST., WARE, HERTS. Telex: 817861

EXPERIMENTOR BREADBOARDS
 fROM
 No soldering breadboards. Simply plug components in and out of letter number identified.
 Nickel-silver contact holes. Start small and simply snap lock boards together to build a breadboard of any size. All EXP Breadboards have two bus-bars as an integra part of the board. If you need more than two buses, simply snap on 4 more bus-bars with the aid of an EXP 4B.

EXP 325 The ideal breadboard for 1 chip circuits Accepts 8, 14, 16 and up to 22 -pin IC's. ONLY £1.84

EXP 350270 contact points with two 20-point busbars. 20-point bus-
ONLY 23.62 91 mm (3.6")
EXP 300550 contacts with two 40 -point bus bars.

EXP 650 For Micro-processors
EXP 4B More bus-bars.
EXP 600 As EXP 300 but accepts 24 over. series.

ANTEX IRONS		
1943	15 watt quality soldering iron wi bit	38
1947	Replacement element for 1943	
1944	Iron coated bit $3 / 32^{\prime \prime}$ for 1943	0.53
1945	Iron coated bit $1 / 8^{\prime \prime}$ for 1943	
1946	Iron coated bit $3 / 16^{\prime \prime}$ for 1943	
1948	18 watt iron with iron coated bit	
1952	Replacement element for 1948	2.18
1949	Iron coated bit 3/32* for 1948	0.53
1950	Iron coated bit $1 / 8^{\prime \prime}$ for 1948	0.53
1951	Iron coated bit $3 / 16^{\prime \prime}$ for 1948	c0.53
1931	X25 25 watt iron, ceramic shaft and another shaft of stainless steel to ensure strength	
1935	Replacement element for 1931	
1932	Iron coated bit $1 / 8^{\prime \prime}$ for 1931	¢0.57
1933	Iron coated bit $2 / 16^{\prime \prime}$ for 1931	¢0.57
1934	Iron coated bit 3/32" for 1931	¢0.57
1953	SK 1 soldering Kit - contains 15 watt soldering iron with $3 / 16^{\prime \prime}$ bit plus two spare bits, a reet of solder, heat-sink and a booklet 'How Solder	
1939	ST3 iron stand made from high grade bakelite chrom plated steel spring, sult all models Includes accommodation for six bits and two	
1724	Model MLX as $\times 25$ iron but 12 volts	¢5.29

CASES AND BOXES

VERO plastic case box. These boxes conclet of sop and mounting PC boarde/chessis platos, the two sections ore hold sogether by four scrows which enter through the baee and are conconled by plastic feet.

Length	Width	Height
140 mm	40 mm	205 mm
140 mm	75 mm	205 mm
140 mm	110 mm	205 mm

$\mathbf{f 4 . 3 5}$
$\mathbf{E 4 . 8 5}$ INSTRUMENT CASES in two enctions vinyl covered top
 ALUMINIUM BOXES mede from bripht alh, folded
construction each box complote with het? lnch deep Md and screwe.

AUDIO MODULES

AMPLIFIERS

 $\begin{array}{ll}\text { AL20 } & 3 \text { watt Audio Amplifier Module 22-32v supply }\end{array}$ $\begin{array}{lll}\text { AL60 } & \left.\begin{array}{c}\text { supply } \\ 15-25 \\ \text { ALBatt Audio Amplifier Module 30-50 }\end{array}\right) \\ \text { AL80 }\end{array}$ | ALB2 | 35 watt Audlo Amplifier Module $40-60 \mathrm{v}$ supply |
| :--- | :--- |
| AL | |
| AL250 | 50 watt Audio Amplifier Module $50-70 \mathrm{v}$ supply |
| Cl | |
| 17.38 | |

STEREOPRE-AMPLIFIERS ly $\mathbb{\varepsilon 6 . 8 1}$

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{ll}
PA12 \& Su \\
PA 100 \& Su \\
\& M \\
PA200 \& Su \\
\& \\
\& M
\end{tabular} \& \begin{tabular}{l}
Supply voliage 22-32v Input sensitivity 300 mv suit:AL10/AL20/AL30 \\
Supply valtage 24-36v inputs:- Tape. Tuner, Mog PU.,Suit:AL60/AL80 \\
Supply voltage 35-70v inputs:-Tape. Tuner. \\
Mag PU. Suit:AL80/AL120/AL250
\end{tabular} \& \[
\begin{array}{r}
\mathbf{£ 9 . 6 3} \\
\mathbf{£ 2 0 . 3 0} \\
\mathbf{£ 2 0 . 9 8} \\
\hline
\end{array}
\] \\
\hline \multicolumn{3}{|c|}{MONOPRE-AMPLIFIERS} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
MM100 Supply voltage 40-65v inputs: Mag. P.U.، Tape Microphone Max. output 500 mv \\
MM100G Supply voltage \(40-65\) v inputs: 2 Guitars. \\
Microphones Max, output 500 mv
\end{tabular}} \& \[
\begin{aligned}
\& \mathrm{C} 14.29 \\
\& \mathbf{£ 1 4 . 2 9}
\end{aligned}
\] \\
\hline \multicolumn{3}{|c|}{POVERSUPPLIES} \\
\hline \multicolumn{2}{|l|}{} \& 61.90
c5.57
c7.34
c7.34
c7.34
¢4.37 \\
\hline \multicolumn{3}{|c|}{MISCELLANEOUS} \\
\hline \begin{tabular}{l}
MPA30 \\
5.450 \\
STEREO30 \\
8P124 \\
GE100MKII \\
VPS30
\end{tabular} \& \begin{tabular}{l}
Stereo Magnetic Carridge Pie-Amplifierinput 3.5 mv Output 100 mv Stereo FM Tuner Supply Voltage 20-30vVaricap tuned \\
30 Complete 7 watt per Channel Stereo Amplifier Board-Includes amps, preamp, power supply, front panel, knobs etc - requires 2050 Transformer 5 watt 12 v max. - Siren Alarm Module \\
MKII IO channel mono-graphic equaliser complete with sliders and knobs Variable regulated stabilised power supply
\(2-30 v 0-2\) mps 2-30v 0-2 amps
\end{tabular} \& 63.76
\(\mathbf{6 2 9 . 3 9}\)

$\mathbf{6 2 4 . 2 5}$
$£ 4.43$
$\mathbf{6 2 6 . 4 5}$
$\mathbf{6 8 . 7 4}$

\hline \multicolumn{3}{|c|}{TRANSFORMERS}

\hline | 2034 | 1.7 a |
| :--- | :--- |
| 2035 | 2 amp |
| 2036 | 750 m |
| 2040 | 1.5 am |
| 2041 | SPM |
| 204 amp | |
| 2050 | SPM |
| 1725 | 150 mp |
| | | \& | 7 amp 35v suit SPM80 |
| :--- |
| amp $55 v$ |
| $50 \mathrm{~mA} 17 v$ suit PS 12 |
| . 5 amp $0-45 v$-55v suit SPM1 20/45. |
| SPM120/55v |
| 2 amp 0-55v-65v suit SPM 120/55. |
| PM120/65v |
| amp $0-20$ vuit Stereo 30 |
| 50mA 15-0.15v suit SG30 | \&

\hline \multicolumn{3}{|c|}{ACCESSORIES}

\hline | 139 | Tr |
| :--- | :--- |
| 140 | T |
| FP100 | Fr |
| QP 100 | B |
| GE 100FP | Fr |
| 2240 | K |
| | |
| | so |
| | |
| | | \& Teak Cabinet sult Stereo $30,320 \times 235 \times 81 \mathrm{~mm}$ Teak Cabinet suit STA $15425 \times 290 \times 95 \mathrm{~mm}$ Front Panel for PA100 \& PA200 Back Panel for PA 100 \& PA200 Front Panel for one GE100MKII Kit of parts including Teak Cabinet, chassis sockers. knobs to build 15 watt stereo amplifier \& $¢ 9.72$

88.97
82.07
81.84
82.05

\hline
\end{tabular}

SPECIAL OFFERS

MINIDRILL 12v hand held battery-operated minl drill. 7.500 r.p.m. Collet chuck. Ideal for drilling printed circuits or model
making. No. 1402 . TRANSFORMER 240v Primary $0-20 \mathrm{v}$ - 2A Secondary. By removing 5 turns for each volt from the secondary winding, any voltage up to 20 v - 2 A is obtainable. Ideal for the expermenter.
No. 2842 .
ANTEX MLX Soldering Iron. Sturdy 25 watt iron complete whth:
$4 \frac{1}{1}$ metres of 2 -core cable. Works off a 12 volt battery. Ideal for
Car, Boat. Caravan. No. 1724 .
Es.29

METAL FOIL CAPACITOR PAKS

16204 - Containing 50 metal foil capacitor like Mullard C280 series - Mixed values ranging from O1 uf -2.2 uf . Complete with
identification TRIACS

SILICON RECTIFIERS

200 mA	
1592050 V	${ }^{20} 0.07$
IS921 100V	${ }^{2} 0.08$
IS922 150 V	c0. c0. 10
is924 300V	c0.11
1 Amp	
IN4001 50 V	$\underline{60.05}$
IN4002 100V	c0.05
IN4003 200V	¢0.07
IN4004 400V	c0.08
IN4005 600 V	¢0.09
IN4006 800 V	c0.10
IN4007 1000V	¢0.11
1.5 Amp	
1501550 V 15020100 V	${ }^{2} 0.11$
IS021 200 V	E0.12
IS023 400V	co. 14
IS025 600V	$\mathrm{c}^{0} .16$
15027800 V	${ }^{2} 0.18$
IS029 1000V	c0.28
60 Amp	
1570/50 50 V	20.86
1570/100 100V	c0.96
IS70/200 200V	¢1.38

3 Amp
 10 Amp
 C0.16
E0.17 80.18
80.18
80.19
$c 0.2$

$c 0.2$ | $c 0.21$ |
| :--- |
| $c 0.2$ |
| $c 0.2$ |
| $c 0$. |
| $c 0$. |
| $c 0$. |
| $c 0.6$ |
| $c 0$. |
| | ${ }_{1530 / 50} 10 \mathrm{AV}$ IS30/50 50V

IS30/100 100 V
IS30/200 200V
IS30/400 400V
IS30/600 600V
$1530 / 800800 \mathrm{~V}$ 80.44
60.79
51.05 IS30/8008 1000 V
IS30/100
IS30/1200 1200 V

v

IS70/400 400 V
IS70/600 600 V
$1570 / 800800 \mathrm{~V}$ 62.01
62.50
63.85

THYRISTORS

600 ma Volts No. 10 THY600/10 20 THY600/20 30 THY600/30 50 THY600/50 100 THY600/10 200 THY600/200 400 THY600/400	TO 18 Case	7 amp	TO 48 Case
		Volts No.	Price
	c0.17	50 THY7A50	c0.55
	C0.18	100 THY7A 100	c0.59
	c0. 23	200 THY7A/200	c0. 66
	c0. 25	400 THY7A 400	80.71
	C0.29	600 THY7A/600	C0.90
	O $\quad 20.44$	800 THY7A 800	¢1.06
	CO.E1		
		10 emp	TO48 Case
	TO 66 Case	Volts No. 50 THY1OA 50	Price
1 amp Volts No. 50 THY 1 A/50 100 THYIA 100 200 THY1A/200 400 THY 1 A/400 600 THY $14 / 600$ 800 THYIA/800			80.59
	Priceco. 30	100 THY10N100200 THY 10 A200	- $\quad 10.66$
			¢0.71
	c0.32	400 THY10A/400	[0.81
	c0.37	600 THY 10 A/600	[1.14
	c0.44	800 THY 10 A 800	0 El - 0
	C0.52		TO 48 Cese
	20.67	18 amp	
		Volts No.	Price
		50 THY16A50	c0.62
3 ampVolts NoV	TO 66 Case	100 THY16A 100	- $\quad 2.67$
		200 THY18AN200	¢0.71
Volts No 50 THY 3 /50	Price e0.32 R	400 THY16A 400	- 50.89
	$\mathbf{8 0 . 3 2}$ $\mathbf{6 0 . 3 5}$	600 THY1 6A/600	0 c1.04
200 THY3A200400 THY 3 /400	¢0. 38	800 THY16A/800	T0 $94 C$ ces
	¢0.48	30 mmp	
800 THY3A8800	C0.58		TO 94 Csase
	¢0.75	V01ts THY 30 C 50	Prica
		100 THY304/100	0 ¢1.64
	TO 66 Case	200 THY30A 200	0 E1:87
5 amp Volts No.		400 THY304/400600 THY $304 / 600$	¢2.06
Volts No. 50 THY5A50	Price		0 ¢4.03
100 THY5A100	c0.52	No. BT101/500R	Price
200 THY5A/200	$\underline{8} 0.58$		80.92
400 THY5A/400	C0.66	BT102/500R	¢0.92
600 THY5A 600	¢0.79	BTi06	81.44
800 THY5A8800	¢0.93	BT107	¢1.07
		8 CT 108	E1.13
		2N3228	¢0.81
5 amp T	TO 220 Case	2N3525	¢0.89
Volts No.	Price	BTX30/50L	¢0.38
400 THY5A/400P	P 80.86	BTX30/400L	¢0.53
600 THY5A/600P	P $\quad 10.79$	C106/4	80.69
800 THY5A/800P	P $£ 0.93$	BT116	¢1.73

ZENER DIODES

$400 \mathrm{mw}(82 y 88)$ DO07. Glass encapsulated range of voltages
available. 1.3v, 2.2v, 2.7v. 3.3v, 3.9v, 4.3v, 4.7v, 5.1v, 5.6v,

$1 \mathrm{w}-1.5 \mathrm{w}$ Plastic and metal encapsulated. Range of voltages
available. $1.3 \mathrm{v}, 2.2 \mathrm{v}, 2.7 \mathrm{v}, 3.3 \mathrm{v}, 3.9 \mathrm{v}, 4.3 \mathrm{v}, 4 \mathrm{vv} 5.1 \mathrm{v}, 5.5 \mathrm{v}$,
 10w Metal stud type 5010 case. Range of voltages avaliable.
$1.3 \mathrm{v} .2 \cdot 2 \mathrm{v}, 2.7 \mathrm{v} .3 \mathrm{v}, 3.9 \mathrm{v}, 4.3 \mathrm{v}, 4.7 \mathrm{v}, 5.1 \mathrm{v} 5.6 \mathrm{v}, 6.2 \mathrm{v}, ~ 6.8 \mathrm{v}$. $7.5 \mathrm{v}, 8.2 \mathrm{v}, 39 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 47 \mathrm{vv}, 13 \mathrm{v}, 15 \mathrm{v}, 16 \mathrm{v}, 7 \mathrm{v}, 2 \mathrm{vv}, 22 \mathrm{v}$,
$24 \mathrm{v}, 27 \mathrm{v}, 3 \mathrm{v}, 33 \mathrm{v}, 43 \mathrm{v}, 47 \mathrm{v}, 51 \mathrm{v}, 6 \mathrm{vv}, 72 \mathrm{v}, 75 \mathrm{v}, 82 \mathrm{v}, 9 \mathrm{vv}$
100 v,

BRIDGE RECTIFIERS

TERMS: CASH WITH ORDER. CHEQUES, P.O.'S PAYABLE TO BI PAK AT ABOVE ADDRESS ACCESS \& BARCLAYCARD ACCEPTED.
GIRO ACCOUNT NO. 388 7006. ALL PRICES INCLUDE VAT. PLEASE ADD 50p PER ORDER TO
COVER P.\&P.

FREE

FOR the second time we are giving away a set of 120 Stickies with an issue. Back in October 1978 we presented a similar set of TTL Stickies, this time it's the CMOS versions. By popular request we have been able to repeat this free gift, which we are sure all constructors will find useful. On the cover we have indicated that they are worth 60 p ; in fact, the sheet would cost you 80p. However, Concept Electronics also supply an instruction leaflet and a plastic wallet so, to be totally fair, we have reduced this figure. You will, however, find full instructions on using your Stickies on page 47the only thing you don't get from us is the plastic wallet. Page 47 also gives full details on ordering more!

SPECIAL

It has been our policy over the last couple of years to arrange a number of special offers for readers. Last month we carried the Videotone GB3 offer (speakers which will go well with the PE Congress), this month we have the Edukit offer. It is our policy to offer excellent products at prices that we
believe cannot be bettered at the time.
The Edukit offer gives a saving of only just over $£ 1$, but on an item that is true value for money at its normal price, it is not possible to make a better offer-a saving of $£ 1$ is, after all, worth having! The problem we are constantly aware of is that on high technology products-particularly watches--the prices have fallen dramatically over the past few years and continue to do so. In the face of these reducing prices it is natural that some offers can be bettered over a period of time. At present, our offers have always been the best price for at least four months, and in most cases have never been bettered. We do not believe the Edukit offer will ever be bettered.

Readers must, however, realise that in this area of high technology it may always be prudent to wait for an indefinite period for prices to fall-it could be said that no one in their right mind would have bought a colour TV, a calculator or a watch yet! Perhaps some will take the view that it's better to wait; we believe that on this type of product one must decide when the price paid gives a worthwhile return and then buy. The use of the equip-
ment over a period will normally compensate for the higher price. A watch now, or no watch for four months and a small saving?

VALUE

Whilst on the subject of value for money we believe that PE gives just that, and it would appear that most of you do too. Because of this we are often asked by readers if the latest issue is on sale, as they have been unable to obtain copies. At the time of writing we have not experienced any publishing difficulties for some time. We would urge those readers that have been finding copies difficult to come by, to place a firm order with their newsagent. In the highly unlikely event that such an order fails to provide a regular copy please contact us directly.

A subscription service is also available and will be particularly interesting to foreign readers-full details are given below.

Mike Kenward

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR
Jasper Scott PRODUCTION EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY

Editorial Offices:

Practical Electronics.
Westover House.
West Quay Road, Poole,
Dorset BH 15 1JG
Phone: Editarial Poole 71191
We regret that lengthy technical enquilies cannot be answered over the telephone (see below).

Advertising Offices:
Practical Electronics Advertisements, King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G
Make Up/Copy Dept.: 01-261 6601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.

All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.

Components are usually available from advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 75 p each including in land/Overseas $p \& p$.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.10$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

IT'S A GAS

A new gas soldering iron has been introduced by Kam Circuits, which has some obvious advantages over the conventional electric soldering iron. Being cordless, it is ideally suited to outdoor work, or any situation where a power supply is not readily accessible. Also, there is no danger of electric current leakage.

The SW-M uses ordinary gas lighter fuel and operates by flameless combustion of the fuel. One complete fill can provide a maximum of four hours continuous use. There is a wattage range of $20-60 \mathrm{~W}$. and a different wattage can be obtained simply by changing tips.

The SW-M costs $£ 17.06+$ VAT and p\&p. and is available direct from: Kam Clrcuits Ltd., Porte Marsh Road, Calne, Wilts. Tel. (0249812585).

SUPERMASTER 20

The latest instrument to be introduced by Alcon is the Miselco SuperMaster 20, a $20 \mathrm{k} \Omega / \mathrm{V}$ a.c. and d.c.) unit with 1.5 per cent d.c. and 2 per cent a.c. accuracy figures.

This general-purpose instrument can cope with d.c. voltages from 100 mV to 1000 V and currents from $50 \mu \mathrm{~A}$ to 3 A ; a.c. voltages from 10 V to 1000 V and currents from 1 mA to 3 A (f.s.d.). With resistance ranges from 200Ω f.s.d. up to $20 \mathrm{M} \Omega$ f.s.d. in six ranges and power measurable from -10 dB to +61 dB , the SuperMaster 20 is capable of coping with most general measurement problems.

Range switching is effected using a simple slider switch to select d.c., a.c. or resistance ranges, whilst a single main ceramic rotary switch selects the actual range desired.

The most important advance which this instrument represents is the inclusion of an electronic cut-out module, itself replacable, capable of provding movement protection both simply and reliably.

The cut-out is resettable by returning a small red button to the reset position. Operation of the cut-out occurs when the applied energy exceeds that which the meter range identifies by a factor, and the same action releases the reset button to indicate activation.

The cut-out is battery operated and amplifies the signal applied to the meter movement to actuate an electromechanical switch if necessary. It does not have to rely on mechanical acceleration of the movement needle to obtain switching; in fact the needle hardly moves even inserting current on an ohms range.

This cut-out can be tested in-situ simply by pressing a second (black) button marked 'Test' which promptly causes the cut-out to actuate,
providing the 15 V battery powering the cutout is in good order.

The a.c. bandwidth is 20 kHz and the instrument may be used as simple signal analysis system if the optional Universal Signal Injector (USI) capable of supplying a 1 kHz modulated, $500 \mathrm{kHz}, 20 \mathrm{~V}$ peak output rich in harmonics and detectable up to 500 MHz is used.

A further optional item is a 30 kV probe extending the d.c voltage range up to 30 kV for TV servicing and the like.

Power is by internal batteries for both resistance and the optional USI feature, and for the cut-out system. Meter protection diodes are also provided and the equipment is fused in the resistance and current ranges.

The SuperMaster 20 is supplied with leads. prods, and instructions, at a price of $£ 65.95$ incl. VAT. The USI version is available at $\mathbf{£ 6 7 . 8 5}$ (VAT included) and the 30 kV probe is $£ 14.37$ inclusive.

Alcon Instruments Limited, 19 Mulberry Walk, London SW3 (352 1897).

TAPE HEAD CLEAN-UP

A new formula Tape Head Cleaning Fluid has been developed by BiB Research Laboratories, and is now the latest addition to the BIB Audiophile Edition range of hi-fi accessories.

The new huid sarely remuves tape oxide deposits, dust and dirt from tape heads, capstans and pinch rollers of all types of tape recorders. Available in 56 ml bottles, the fluid is non-toxic and non-flammable.

The rrp is $£ 2.65$ per bottle (including VAT), and the fluid should be on sale at all normal retail outlets.

BIB Hi-fi Accessories Ltd., Wood Lane End, Hemel Hempstead, Herts, HP2 4RQ.

ZEROSTAT Z-TRACK

The latest addition to a wide range of upmarket hi-fi accessories from Zerostat is their Z-Track tonearm/cartridge damper, which is intended to reduce the ill effects of warped discs.

Most pick-up systems have a low frequency resonance which can be excited by the effects of warped discs or mechanical feedback. Large quantities of infra-bass energy are generated, which can harm loudspeaker bass units and result in poorer sound quality.

The Z-Track. which has an effective mass of only half a gram and fits virtually any tonearm/cartridge combination, relies on a minute silicone liquid damped piston which moves in a cylinder incorporated in the main body. The main body is in turn carried on a PTFE skid which is wide enough to ride the record surface without tracking. Hence the damping action of the fluid on the cylinder controls resonances.
As well as improving the sound quality of mildly warped records and enabling previously unplayable records to be played. there is an added advantage. The improved tonearm/cartridge stability enables one to use
a lighter tracking weight, which again helps to improve sound quality. We have also found that the Z-Track gives noticeable improvements even with relatively cheap systems.
The Z-Track retails at £9.95, and is available from dealers or direct from: Zerostat Components Ltd., Edison Road, Industrial Estate, St Ives, Huntingdon, Cambs.

BOCON CASES

West Hyde Developments have recently added to their 'Bocon' range of high quality instrument cases. The latest additions are the Bocon 'Desk' and Bocon 'Commander' cases.

The 'Desk' series, which is available in four sizes, is moulded in black a.b.s. and uses a tongue and groove method of construction. with a one-piece anodised aluminium front pancl. There is provision inside the case for chassis and p.c.b. mounting.

The 'Commander' comes in two sizes. the larger being designed to accommodate most proprietary keyboards, with a rear aperture large enough to accept a $19^{\prime \prime}$ rack frame 3 U high. It is made from black foam plastic and has anodised aluminium panels. The smaller 'Commander' which is moulded in black a.b.s. is suitable for keypads and smaller displays.

Prices range from $£ 7.14$ for the smallest 'Desk' case to $£ 77.50$ for the large "Commander. Further details are available from: West Hyde Developments Ltd., Unit 9, Park St. Industrial Estate, Aylesbury, Bucks HP 20 IET. Tel (0296) 20441.

4 $\frac{1}{2}$ DIGIT DMM

Gould Instruments Division has introduced a new $4 \frac{1}{2}$-digit multimeter. the DMM 12, which features a liquid-crystal display. a measurement accuracy of 0.05 per cent and a built-in electronic technique for making true root-mean-square (r.m.s.) measurements on a.c. signals. Using components specifically selected for high stability and low-noise performance, the DMM12 has 27 measurement ranges for a.c. and d.c. voltage, current and resistance, and is also available with optional

probes for radio-frequency and high voltage measurements.

Maximum reading is 19999, and maximum resolutions on current. voltage and resistance measurements are $10 \mu \mathrm{~V} .10 \mathrm{nA}$ and $100 \mathrm{~m} \Omega$, respectively.
The l.c.d. incorporates separate positive or negative polarity indication plus a decimal point. Over-range and 'battery low' are also indicated using the display.
The true r.m.s. sensing a.c./d.c. convertor used in the DMM12 can accept waveforms with a crest factor (peak/r.m.s. ratio) of up to 4:I at full scale, and a combined a.c./d.c. facility is available to measure a.c. waveforms with a d.c. content. The true r.m.s. value measures the energy content of an a.c. waveform. and hence makes the DMM12 ideally suited to power-system measurements.

Standard models are mains/line powered but option BP12 gives portability with rechargeable cells.

For further information contact: Gould Instruments Division, Roebuck Road, Hainault, Essex.

EQUALISER

Bandridge Ltd of London have come up with a mid-priced stereo frequency equaliser, the FE5, which is aimed at both the top and the middle of the hi-fi market. It is expected to retail at under $£ 80$.

The FE5 has five slider frequency controls per channel, ranging from 60 Hz to 10 KHz , so that a very wide range of fine tonal adjustment is possible. When the FE5 was connected between the pre-amp and power-amp stages of a fairly low cost amplifier, the sound quality was much enhanced, and the range of tonal adjustment greatly improved. However. it must be pointed out that with most amplifiers it is not possible to get between these two stages; but when the FE5 was connected in the alternative manner-between the tape output and tape monitor input the results were almost as good, and the range of tonal adjustment was still much improved.

For further details and information on price and availability, contact: Bandridge Lid., I York Road, London SWI9. Tel: 0I-543 3633.

BOXED IN

Here's an alternative to that ever increasing pile of tatty tobacco tins-the RAACO 30 AJF storage unit, which is available from Toolrange. This thirty drawer storage cabinet which can either be free standing or wall mounted is made from enamelled steel, with

transparent plastic drawers. Its overall size is $555 \times 307 \times 146 \mathrm{~mm}$, and each unit comes complete with assorted drawer dividers and labels.
The price per unit is $£ 19.25+$ VAT and delivery, and it is available direct from: Toolrange Lid, Upton Road, Reading, Berks.

OPTO			
LED's	0.12 in.	0.2in	each
Red	Til 209	TIL220	100
Green	T1L211	TIL221	${ }_{15}^{150}$
Clios		${ }_{30}$	
DiSPLAYS			
DL704	0.3 in cc		1300
OLT07	0.3 in CA		1300
FNO500	0.5 in CC		1000
SKTS			
Low profile by Texas			
${ }^{80} \mathrm{pin} 10 \mathrm{p}$	18 pin	16p	$\bigcirc 22 \mathrm{p}$
$\begin{array}{ll}14 \mathrm{pln} & 12 \mathrm{p} \\ 16 \mathrm{pin} & 13 \mathrm{p}\end{array}$	${ }_{22}^{20 \text { pin }}$	180 20	${ }^{\text {n }}$ 260
3 lead T018 Soldercon pin	$\begin{aligned} & \text { To5 sk. } \\ & 100 \end{aligned}$	$\begin{gathered} 120 \\ 0 \\ \text { for } 60 \end{gathered}$	

PCBS

VEROBOARD

$\begin{array}{lll}\text { Size in. } & 0.1 \mathrm{in} . & 0.15 \mathrm{in} . \\ 25 \times 1 & \text { Vero } \\ \text { V } 6 \mathrm{p} & - & \text { Cutter } 110 \mathrm{p} .\end{array}$ $\begin{array}{lll}2.5 \times 3.75 & 520 & - \\ 250\end{array}$ $\begin{array}{llll}2.5 \times 5 & 60 \mathrm{p} & 550 & \text { Pin insertion } \\ 3.75 \times 5 & 70 \mathrm{p} & 700 & \text { toot } 150\end{array}$ $3.75 \times 17 \quad 250 \rho 210 p$
SS pins/100 45p 45p
Fibreglass board: $80 p$ each

RESISTORS

 Carbon film resistors. High Stabillow noise 5\%
E12 series. 4.7 ohms to 10 M . Any mix: $\begin{array}{llll} & \text { each } & 100+ & 1000+ \\ 0.25 \mathrm{~W} & 1 \mathrm{p} & 0.9 \mathrm{p} & 0.85 \mathrm{p} \\ 0.5 \mathrm{~W} & 2 \mathrm{p} & 1.5 \mathrm{p} & 1.3 \mathrm{p}\end{array}$ Special development packs conslsting of special develoment packs consisting of
10 of each value from 4.7 ohms to 1 Meg . ME METAL FILM RESISTORS
very high stability, low noise rated at YW 1\%. Available from 51
E24 series. Any mix:
E24 series. Any mix

| each | $100+\quad 1000+$ |
| :--- | :--- | :--- |
| $4 p$ | |

0.25w 4 w
POTENTIOMETERS

Preset vertical or horizontal 100 ohms
$\lim _{\text {Rotary }} 5 \times-2 \mathrm{M} 2$ Log or Lin single . ${ }^{6}$ Rotary $5 \mathrm{~K}-2 \mathrm{M} 2$ Log or Lin double 90 Slide 60 mm travel $5 \mathrm{k} \cdot 500 \mathrm{k}$ Log or Lin, single
Suitable knobs for above with coloured caps in red, blue, green, grey, yellow and black. Rotary
type 120 each.

MISC.
 Murata Ultrasonic Transducers 350p pair 64 mm 8 ohm speakers $\quad 100 \mathrm{p}$ each 64 mm 64 ohmspeakers SRB 17 W soldering iron 430 peach Reel of 22 swg solder (39.6 m) 320p each Desoldering tool 5100 each Titan Electric drill set 170p each Minaiture 606 and 909

SWITCHES

TOGGLE SPST 36p DPDT 50ρ $\begin{array}{lll}\text { Standard } & \text { SPST 36p } & \text { DPOT 50p } \\ \text { Miniature } & \text { SPDT 75p } & \text { DPDT 85p } \\ \text { Subminiature } & \text { SPST 58p } & \text { DPDT 78p }\end{array}$ SLIDE
 Standard
 DPDT 17p

ROCKER (10A rating
SPST 34p each
ROTARY
1P12W, 2P6W, 4P3W or 3P4W 51p each PUSH
Non locking - push to make 16p each - push to break 22p each

Locking	SPST	75p each
	-DPDT	$100 p$ each

REGULATORS

M309K 1400 M317T 2200 M323K 4800

$100 \mathrm{~mA}+v e$	$1 A+v e$	$1 A-v e$
$78 \mathrm{LO5} 30 p$	7805	$70 p$
7905	$85 p$	
$78 \mathrm{~L} 1230 p$	7812	70 p
78 L 1530 p	7815	70 p

TRANSSTOR				TIP32C TIP2955 TIP3055 ZTX107	60
AC127	220	BC548	11p		12
AC128	220	8CY71	16p	$2 T \times 108$	
AC176	220	8 CY 72	150	2T $\times 300$	14
AD161	40p	8D131	40p	2TX500	15
AD162	40p	132	40p	2N3053	25
8C107	12p	8 D 139	33p	2N3054	
8C108	10p	8D140	33p	2N3055	
BC108C	12p	BFY50		2	
8C109	120	BFY52	23p	2N3706	
BC109C	120	MJ2955	100p	2N3819	
BC147	90	MPSA06	16p	2N3904	
8C148	9p	MPSA56	16p	2N3905	
8C177	16p	T1P29C	60p	2N3906	
8C178	16p	TIP30C	48 p	2N5459	
BC182L	10p	TIP31C	50p	2N5777	
BC184	100	diooes			
BC184L	100	1N914	4p	1N4006	7p
BC212	10p	1 N4148	3 p	1 N5401	14p
BC212L	10p	1N4002	5p	BZY88s	8p
BC214L	$10 p$	1N4148	£1.50	100.	

CAPACITORS

High quatity foil type 63 V . 22 pf to 100 pf . 7 p each 1500pf to 0.01uF
TANTALUM BEAD
$0.1,0.15,0.22,0.33,0.47,0.68$
4.7, 6.8,10uF@25V
$22 @ 16 \mathrm{~V}, 47 @ 6 \mathrm{~V}, 100 @ 3 \mathrm{~V}$ $22 @ 16$
MYLAR
$0.001,0.01,0.022,0.033,0.047$ 0.068, 0.1 POLVESTER
Mullard C280 ser
$0.01,0.015,0.022,0.033,0.047,0.068,0.1 .6 p$ ea. $0.15,0.22$
0.33 .0 .47
0.68
1.0 JF ;

Plate type 50 V . Available in E12 series from
22 pF to 1000 pF and E6 series from 1500 pF to
0.047 uF

MINIATURE TRIMMERS
Ministure film type, in $1.4 \mathrm{pF}-5 \mathrm{pF}, 2 \mathrm{pF}-22 \mathrm{pF}$.
$2 \mathrm{pF}-22 \mathrm{pF}, 2 \mathrm{pF}-10 \mathrm{pF}, 5.5 \mathrm{pF}-65 \mathrm{pF} .22 \mathrm{p}$ each RADIAL LEAD ELECTROLYTICS

63 V	0.47	1.0	2.2	4.7	10	69 each
			22	33	47	8 p each
	100					16 p each.
			220			20p each
25 V	10	22	33	47		69 each
	100					$8 p$ each
		220				12p each
				470		180 each
	1000					28p each
Specially developed packs intended for development work.						
4.7 ohm to 1 Megohm (650 total) . 530p each						
1/2W CF resistor, 10 each value E12 series						
4.70	m to	Meg	$m 16$	tot		850p each
KW MF 1\% resistor. 10 each value E24						
series 51 ohms to 330 K (930) . . . 2950p each Preset potentlometers 5 each value						
from 100 ohms to 1 Megohm (65). 390p each						
Potyester capacitors 5 each value						
0.01 to 2.2uF (70) . . . 690p each						
Ceramic plate capacitors 10 each value						
22pF	to 0.0	uF 1		-		5750 each

din plugs and sockets
$10 p$ each
$18 p$ each
$22 p$ each

4p each
50 each

6p ea.

ea.
74 L
74 L
7
$\begin{array}{lll}74 \text { LS21 } & \text { 22p } & 7 \\ 74 \text { LS27 } & \text { 28p } & 7 \\ 74 \text { LS30 } & 22 p & 7 \\ 74 \text { LS32 } & 30 p & 74\end{array}$

		4023	20p	4054	120p	4502	120p
		4024	500	4060	1200	4507	60p
		4025	20p	4063	120p	4508	3300
		4026	160p	4066	600	4510	80p
		4027	45p	4068	20p	4511	900
4000	20p	4028	85p	4069	20p	4512	800
4001	20p	4029	85p	4070	20p	4516	80p
4002	20p	4031	220p	4071	20p	4518	80p
4006	90 p	4033	150p	4072	200	4520	$80 p$
4007	$20 p$	4036	3500	4073	20p	4527	90p
4008	95p	4039	300 p	4075	20p	4528	900
4011	$30 p$	4040	$110 p$	4076	900	4529	150p
4012	20p	4041	85p	4077	20p	4531	150p
4013	$35 p$	4042	80p	4078	20p	4532	130p
4014	80 p	4043	95p	4081	20p	4538	160p
4015	80p	4046	1100	4082	20p	4543	110 p
4016	$30 p$	4048	60p	4086	$75 p$	4566	1700
4017	65p	4049	45p	4093	60p	4558	120p
4018	90p	4050	45p	4095	110p	4559	420p
4020	100p	4051	70p	4098	120\%	4581	$330 p$
4022	100p	4053	80 p	4501	20p	4585	110p
		74 LS47	80 p	74 LS 126	45p	74LS175	90\%
		74LS48	$90 p$	74LS 132	80p	74LS190	$90 p$
74.500	16p	74LS54	220	74 LS136	50p	74LS191	$90 p$
74LS01	22p	74LS73	35p	74LS138	75p	74LS192	900
74LS02	16p	74LS74	35p	74LS139	75p	74LS193	90p
74 LS03	22p	74LS75	$40 p$	74LS151	600	74LS195	900
74LSO4	16p	74LS76	40p	74LS155	65p	74LS196	90p
74LS08	22p	74LS78	45p	74LS156	800	74 LS197	85p
74 LS10	220	74LS83	$68 p$	74LS157	700	74LS221	$100 p$
74LS13	$38 p$	74 LS85	$85 p$	74 LS 158	650	74LS251	70p
74 LS14	65p	74LS86	$40 p$	74LS160	75p	74LS266	35p
74 LS20	22p	74 LS90	400	74LS161	680	74LS290	$80 p$
74LS21	22p	74LS93	55p	74LS162	800	74LS365	55p
74LS27	$28 p$	74LS95	65p	74LS163	$80 p$	74LS366	$55 p$
74LS30	220	74LS 107	45p	74 LS 164	$80 p$	74 LS367	55p
74LS32	30p	74LS114	40ρ	74LS165	$80 \circ$	74LS368	55p
74LS37	400	74 LS 123	80p	74 LS 173	135p	74 LS386	50p
74 LS42	600	74LS125	450	74LS174	95p	74LS670	200p
		7442	$40 p$	7493	30p	74157	40p
		7445	50p	7496	38p	74164	550
7400	12p	7447	$50 p$	74121	29p	74165	55p
7402	$12 p$	7448	45p	74123	40p	74174	55p
7404	14p	7473	23p	74125	38p	74177	500
7408	16p	7474	23p	74126	$36 p$	74190	50 p
7410	$14 p$	7475	26p	74132	46p	74191	50p
7413	24p	7476	25p	74141	48p	74192	50p
7414	39p	7485	$55 p$	74145	480	74193	50 p
7420	14p	7486	180	74148	90p	74194	50p
7427	22p	7490	30p	74150	55p	74196	50,
7432	$18 p$	7492	30ρ	74154	68p	74197	50 p

STEMENSON Electronic Components

HNEAR	LM10 LM301	400p	LM3909	72p	TBA800	800
	LM308	700	LM3915	280 p	TDA1008	3500
709 40p	LM318	$85 p$	LM3911	$120 p$	TOA1022	630p
741 18p	LM324	52p	LM13600	160p	TOA1024	120p
747 500	LM339	55p	MC1496	80p	TDA2020	360p
1748 350	LM348	1000	LM1458	40p	TL071	75p
7106 8500	LM377	170p	LM1830	180p	TL072	135p
AY-1.0212 660p	LM378	230p	MC3340P	135p	TL074	200p
CA3046 70p	LM3795	410 p	MC3360P	135p	TL081	$45 p$
CA3080 750	LM380	80p	MM57160	650p	TL082	85p
CA3130 90p	LM381	1400	NE531	110 p	TL084	125p
CA3140 500	LM382	1200	NE555	23p	TL170	600
FX209 8200	LM383	$200 p$	NE556	$60 p$	XR2206	3900
ICM7555 100p	LM386	90p	NE566	1200	XR2207	4500
ICM7556 POA	LM387	1200	NE567	120\%	2N414	80p
LF347 135p	LM389	100p	NE570	420 p	2N419	POA
LF351 45p	LM391	1700	NE571	4600	2N424	150p
LF353 850	LM1310	1400	NE5537	POA	2N425E	4200
LF355 92p	LM2917	280p	RC4136	1000	ZN460	360p
LF356 950	LM2924	160p	SAD1024	13100	2N1034	2300
LF357 920	LM3900	60 p	SN76477	230p		
MICRO	2112	220p	CPU's		SUPPORT	
	2114 LP	420p	6800	6500	6810	350p
	4116	620 p	8080A	610p	6821	6000
	2708	680p	280	1090p	6850	550p
21 O02 120p	2716	1980p			AY5-1013	370

We now offer one of the widest range of components at the most competitive prices in the U.K. See catalogue for full detaits. We welcome callers at our Fridays). Special offers always available. We also provide an express telephone order service. Telephone orders recieved before 5pm are shipped same day TELEPHONE ORDERS: 01464 2951/5770.
Details of our entire range of components are con rained in our new 1980/81 catalogue containing over 100 illustrated pages. Price 50 p includes postage (850 p voucher). Prices VAT inclusive.
\square BARCLAYCARD \& ACCESS WELCOME
Please add 50p carriage on orders under £15. Official orders welcome. Mail orders to: STEVENSON (Dept PE)

Two-way Streets

The Soviet military intervention in Afghanistan cannot be ignored in the context of the electronics industry. Its immediate result is that east-west detente has been dented if not yet dead. Hardening of political attitudes has led to a re-appraisal of defence capability in the West and, while any increase in armaments is regrettable, there is no denying that any increased defence expenditure is good news for the electronics industry.

Defence was the spur to the development of microminiature techniques and many of the later microelectronics devices which are now commonplace in civil applications. It is interesting to compare the attitude of armed services and the industrial and commercial world to the 'chip' and other recent developments. In the services there are no arguments about job loss or other so-called drawbacks resulting from technology advance, and this is for the elementary reason that for personal survival it is advisable to be on the winning side. In any conflict, other things being equal, the best equipped force in fire power and accuracy must win. The civilian equivalents are productivity and skills, and it is difficult to understand why such simple logic is ignored by so many otherwise sensible people engaged in the economic and commercial war for world markets which, after all, is with us now and always.

In military jargon electronics is a major constituent of a concept called a force multiplier. The one-shot kill with artillery or missile is clearly better and more economical than a three-shot kill. Periodic re-fits and up-dates of electronic equipment multiply the effectiveness of fighting platforms of ships, aircraft and armoured fighting vehicles. The hull of a frigate may be twenty years old, but with modern equipment it could be ten times more
efficient in offence and defence than when first commissioned. Re-fits to take advantage of modern technology, though expensive in themselves, are economic in prolonging the life of the even more expensive platforms such as ships.

The whole of the military market in the West is beset by political and economic as well as technical problems. NATO, main bulwark in Europe against possible Warsaw Pact attack, suffers from a chronic lack of standardisation in weapons and systems. Those of the fifteen nations in NATO who have industrial capability prefer to make their own. Sheer costs in R \& D have forced a number of European co-operative projects into being, the most spectacular at the moment being the Anglo/German/Italian Tornado swing-wing aircraft. Thus a number of two-way streets between nations have been established.

The dominant supplier, however, is still the United States, but despite a number of Memoranda of Understanding the transatlantic street is still very much one-way with a flood of material into Europe and only a trickle in the reverse direction. Some two years ago there were high hopes in the UK that there would be an adjustment of the balance. In electronics, UK firms could bid for the first time on equal terms for important contracts in the United States. The Sincgars-V frequency-hopping radio system was the occasion and Marconi and Plessey are involved with US partners. Since then there has been little action. Moreover, for political reasons, nothing is likely to happen during the run-up to the presidential election at the end of this year.

If we are just playing at soldiers this hardly matters. But if the military threat is real then standardisation and interoperability should now receive top priority. A more liberal policy on two-way streets would inevitably lead to some firms winning and some losing but we should all gain in the end. The danger now, with protective attitudes to one's own defence industries, is that the politicians who may be responsible for involving us in a future conflict will also be guilty of ensuring that we lose it.

Musical Chairs

The international semiconductor industry which seemed to be settling down has recently had a spate of top management changes. David Marriott resigned from the GEC-Fairchild venture where he was managing director. Newly knighted Sir Robert Clayton, chairman of the same company resigned from this and a number of other GEC companies because of possible conflict of interests as he is now with the National Enterprise Board. Dr. Melvyn Larkin, a top Motorola executive is now re-vamping Plessey's solid state interests.

Mick Adams who was general manager of Plessey Semiconductors has switched to Signal Technology Ltd. a joint venture of Plessey and Anderson Laboratories specialising in surface acoustic wave (SAW) devices. Wilf Corrigan has resigned his presidency of Fairchild in the USA and C. Lester Hogan, one of the old-time 'greats' in the business, has re-emerged as
an adviser to Fairchild where he was president from 1968 to the mid-70s.

Dr. Steve Forte, head of marketing and sales, has left General Instrument Microelectronics and is now heading up the European operation of American Microsystems. Forte is being replaced at GIM by two people, surely the best endorsement that Forte was earning his corn. The mobility of executives in the world of solid state always results in more than usual cross-fertilisation of ideas and marketing strategies. It also often signals that new companies are being formed by those who have pulled out but have not yet announced their intentions.

An example, though in a different field, is Dennis Taylor who resigned from managing directorship of Hewlett-Packard in the UK later to emerge as chairman and managing director of the re-vamped Sinclair Electronics and in February last as chairman of a new company, Measurand, in the transducer business.

Fibre Optics

Optical communications links are having a further boost with two new projects. First is the innovative application of an experimental fibre optic submarine cable in the 600-fathom deep Loch Fyne in Scotland. Both STC and the British Post Office see the idea as potentially feasible for submarine cables in the 1990s. Second is the studies now being undertaken in France for the first European fibre optic 'wired' city with Biarritz as the experimental location, chosen because of its particular problems with TV reception. The results of the study contract are expected to be ready for presentation to the French PTT by next June.

Bright news, also, for all potential fibre optics users. The UK company Pilkington has developed a new method of making the fibre which is expected to slash present production costs by 20-30 per cent. The technique is secret but has been reported as 'brilliantly simple' and allows lengths of up to 10 km to be drawn.

Carve-up

Some call it rationalisation, some a carve-up. But whatever the label the new decade of the 80 s is off to a flying start with both EMI and Decca now having changed hands, with Thorn and Racal in command but still leaving GEC as the giant. Racal's Ernie Harrison has been plugging the idea of a major rationalisation of Britain's electronics industry since the mid70 s . Now his dreams are coming true but only at a heavy price, having been pushed to almost double his opening bid for Decca by the intervention of GEC.

Harrison's cherished ambition to lead Racal as the second force in electronics, however, has not deflected him from hedging his bets by expansion in the United States. Absorbing Decca will have stretched Racal's resources for the time being but it is doubtful whether the appetite for acquisition will be satisfied for long. Once Decca is digested the old hunger will return.

Power Supplies M.P.U.s
 Alan Clements e.sc.ph.o.

IN this final part of a p.s.u. design for a processor system is presented.

POWER SUPPLY FOR A SMALL MICROPROCESSOR SYSTEM

A typical modular microprocessor system requires three power supply rails plus a common ground rail. These power rails furnish all the modules to which they are connected with power at three voltage levels: $-12 \mathrm{~V},+12 \mathrm{~V}$ and +5 V . In the example considered here all regulation is carried out within the power supply module itself and not on the individual circuit modules of the microprocessor system. By not putting the regulators on the logic circuit boards, the reliability of the system is enhanced. If a regulator increases the temperature of a module by $10^{\circ} \mathrm{C}$, the average failure rate of components in the vicinity of the regulator will double.

Before beginning to design a power supply it is necessary to calculate the maximum current demand of the system. As the power supply is intended for an open-ended project, it is difficult to calculate an exact value of the total current requirements. If we assume a maximum memory size of 32 K , built with $450 \mu \mathrm{~s}, 4 \mathrm{~K}$-bit static RAM chips, the current consumed by the memory will be approximately 3.5 amps. Allowing a further 3.5 amps for the CPU and VDU modules, the total current demand is approximately 6 amps .

The design of a power supply is often complicated by the lack of suitable components. For example, a digital system can be constructed from a wide range of commonly available building blocks, while the mains transformer used in a power supply must be selected from the often very limited range in a manufacturer's catalogue. Of course it is possible to order a transformer wound to a given specification, but this is not cost-effective unless several systems are being made.

A suitable component is a $9 \mathrm{~V}, 5.5 \mathrm{~A}$ transformer, with the secondary winding arranged as two separate 4.5 V windings which must be connected in series. Unfortunately, this transformer has a secondary winding with a rating of only $5 \cdot 5 \mathrm{~A}$, which in a bridge rectifier configuration amounts to a d.c. output of $0.62 \times 5.5 \mathrm{~A}$ $=3.41 \mathrm{~A}$. As this current is insufficient to supply the estimated needs of the microprocessor system, it is necessary to connect the secondary windings of two such transformers in parallel, to provide a d.c. output of approximately $6 \cdot 8 \mathrm{~A}$. When connecting the secondary windings of two transformers in parallel, it is vital that the windings are connected in phase. If the two transformers are identical no problem should arise if the start of the primary winding of the first transformer is connected to the start of the primary winding of the second transformer, and the finish of the primary winding is treated similarly. The secondary windings must also be connected in the same way so that the output voltages across both secondaries are in phase.

TESTING THE WINDINGS

When constructing the power supply it is advisable to make a simple test before the secondary windings of the two transformers are finally connected in paraliel. Solder the start of the two secondaries together and connect an a.c. voltmeter between the, as yet, unconnected terminals of the two secondaries.

Apply a.c. power to the primaries of the two transformers. If the transformers have been connected together correctly, the meter should have a very low reading-the difference between the nominally identical secondary voltages. If, however, the windings have been incorrectly connected, the voltmeter reads twice the r.m.s. voltage of one winding, and the connection between the secondaries must be reversed.

The peak voltage at the output of the transformer secondary is $9 \times 1.41 \mathrm{~V}=$ 12.7 V . The silicon bridge rectifier selected for use in this power supply has an unusually low forward voltage drop of 1.25 V , which leaves approximately 11.4 V across the terminals of the smoothing capacitor. If we allow a maximum peak to peak ripple of 3 V under full-load conditions, the minimum voltage across the smoothing capacitor is 8.4 V .

The value of the smoothing capacitor is given by

$$
\mathrm{C}=\mathrm{i} / \frac{\mathrm{dv}}{\mathrm{dt}}=6 \cdot 8 / 300 \mu \mathrm{~F}=22,000 \mu \mathrm{~F}
$$

The maximum working voltage of the capacitor must be greater than the peak voltage across the transformer secondary plus a margin to allow for variations in the mains input. A suitable capacitor is a 'computer grade capacitor' with a value of $22,000 \mu \mathrm{~F}$, a voltage rating of 25 V , and a maximum ripple current rating of 14 A at $65^{\circ} \mathrm{C}$. Note that the tolerance in the value of an electrolytic capacitor is usually in the range $+80 \%$ to -20% of the nominal capacitance. The maximum ripple current through a capacitor is given by $222 \mathrm{~V}_{\mathrm{r}} \mathrm{C}$, which in this case amounts to $222 \times 3 \times 0.022 \mathrm{~A}=14.6 \mathrm{~A}$. This value is slightly greater than the rated ripple current of the capacitor. The maximum ripple current rating of a capacitor is strongly temperature dependent, a 14 A rating at $65^{\circ} \mathrm{C}$ corresponding to a 20 A rating at $25^{\circ} \mathrm{C}$. As long as the ambient temperature within the power supply module is kept below $40-50^{\circ} \mathrm{C}$ no problems should arise.

BRIDGE RECTIFIER

The only other critical component in the power supply is the bridge rectifier. The rectifier chosen is a 25 A silicon bridge rectifier with a peak inverse voltage of 50 V , and a forward voltage drop of 1.2 V at a current of 12.5 A . If

Fig. 10. Circuit diagram of the power supply. The numbers in parenthesis are R.S. stock numbers
this rectifier is to be operated at its full rated current of 25 A , it is necessary to mount the rectifier on a heat sink with a thermal resistance of $0.8^{\circ} \mathrm{C}$ per watt. When operating at an average load current of 7 A , the rectifier can function comfortably at a case temperature of $100^{\circ} \mathrm{C}$. Bolting the rectifier to the chassis of the power supply should provide sufficient thermal dissipation. The peak forward current rating of the rectifier is 300A, which is 44 times the average maximum load of the power supply, and provides an ample safety margin in this application.

CIRCUIT

The circuit diagram of the power supply is given in Fig. 10. A generous measure of transient prevention is applied to the main 8 V supply. Six transient suppression devices are fitted as follows:

1. A zinc oxide voltage dependent resistor is connected across the mains input of the power supply.
2. A filter network between the mains input and the transformers provides 35 db of attenuation to frequencies between 150 kHz and 30 MHz .
3. Small capacitors of $0.1 \mu \mathrm{~F}$ are connected across the secondary windings of the transformers, and across the output terminals of the bridge rectifier.
4. A tranzorb is connected across the output terminals of the 8 V power supply. The rating of this must be greater than the maximum voltage which normally occurs across the output. This is the maximum noload voltage of 11.4 plus 10 per cent to allow for mains variations, i.e. $12 \cdot 6 \mathrm{~V}$.

The tranzorb which has the
closest stand-off voltage above this value is the MPTE 15 which has a clamp voltage of 20.6 V at a forward current of 10A.
In the power supply no additional protection in the form of current limiting or crowbar overvoltage protection is applied to the 8 V supply. Any additional protection may be implemented by choosing monolithic 5 V regulator, with suitable characteristics.

REGULATOR SELECTED

The regulator selected for this power supply is a Fairchild A78P05, a 5 V 10A hybrid device in a standard TO-3 package. This regulator has the following characteristics;
(i) Internal thermal overload protection.
(ii) Internal short-circuit current limitation.
(iii) 70 W power dissipation at a $25^{\circ} \mathrm{C}$ case temperature.
At a nominal 8.5 V input the regulator dissipates $(8.5-5.0) \times 6.5=22.75 \mathrm{~W}$ fullload. From the A78P05's data sheet it can be seen that the regulator can dissipate 30 W at a case temperature of $100^{\circ} \mathrm{C}$. If we assume ambient temperature of $25^{\circ} \mathrm{C}$, the temperature differential between the regulator case and the ambient air is $75^{\circ} \mathrm{C}$. The thermal resistance between the case and the air is therefore

$$
\frac{75^{\circ}}{25 \mathrm{~W}}=3^{\circ} \mathrm{C} / \mathrm{W}
$$

As the maximum value of case to ambient thermal resistance is at least $30^{\circ} \mathrm{C} / \mathrm{W}$, the regulator must be mounted on a heat sink with a thermal resistance of less than $3^{\circ} \mathrm{C} / \mathrm{W}$.

From Fig. 10 it can be seen that a $1 \mu \mathrm{~F}$
solid tantalum capacitor is connected between the regulator's input and ground. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be similarly connected between the regulator's output and ground to improve its transient response.

It must be admitted that although the monolithic regulator is widely employed in microprocessor power supplies, some authorities avoid them like the plague. The monolithic regulator normally has a tolerance of $\pm 4 \%$. To this tolerance must be added the effect of any voltage drop between the regulator's output terminal and the various i.c.'s V_{cc} terminals plus the droop in the regulator's output at full load (typically 50 mV at $25^{\circ} \mathrm{C}$ and 250 mV at $150^{\circ} \mathrm{C}$ for a 10 A load). Clearly, unless the regulator is selected from a batch (expensive) problems may arise. Another disadvantage of this type of regulator is its lower reliability than that of regulators constructed from discrete components. A failure rate of 5% in monolithic regulators operating at high currents (but within their operating limits) has been reported.

The requirements of the +12 V and -12 V power supplies are very modest. Most microprocessor systems are designed to use, as far as possible, components requiring only a single +5 V supply. An exception to this is the RS232C drivers in serial data links which require a +12 V and $\mathrm{a}-12 \mathrm{~V}$ supply at approximately 20 mA . To simplify the design of the +12 V and -12 V supplies, an encapsulated power supply is used. This power supply, a single component, is able to supply both the +12 V and -12 V rails with a current of up to 250 mA . The specified encapsulated power supply has internal protection against the effects of short circuits.

3 CHANNEL AUTO, SOUNDTO LIGHT-AFL 6
*RCA 8 Amp Triacs * 500W per channel * 2 channeis flip flop, 1 , channel sound to light * Fully automatic via built in mic - No connection to amplifier necessary.
 Weight 1.2 kg

* 4 channel 1000W each 4 basic sequence pattern selections
3 types of flip-plop selections *Speed \& level control sliders * Automatic operation or via audio input * Full wave control with logic integrated circuitry * Fully suppressed and fused * Superb TUAC quality and reliability

THE SALYUT 6 RADIO TELESCOPE

Some details of this radio telescope were given in SPACEWATCH in a previous issue. More information has been released and it is now possible to understand how important to the Soviet Space programme this venture was. It is claimed (and rightly so) that the 10 metre diameter aerial was the largest attempted in space. The unsuccessful attempt to deploy it correctly took place at the end of the long period sojourn of cosmonauts Ryumin and Lyakhov aboard Salyut-6. A space walk was necessary to free the after-dock port for future visits of the Progress supply vehicles. It was during this attempt that the Salyut- 6 began to oscillate. The aerial was freed on August 15 th 1979.

Both Ryumin and Lyakhov underwent extensive training in the techniques of assembling and operating the telescope before they made their extended flight on Salyut-6. They began by practising on lightweight models moving on to more sophisticated equipment at a subsequent stage. The first stage was carried out over a water tank under simulated condjtions of weightlessness. Other training involved the accurate pointing of the telescope, the use of the controls and the techniques necessary. They also visited the observatory in the Crimea. The final task was to become familiar with the actual packages of the full scale KR-10, which weighed about 200 kg . The largest of the packages was the aerial itself which folded up to about one metre and weighed 100 kg .

The two cosmonauts had already been operating on board Salyut-6 some months before Progress-7 arrived with the telescope. Also with the packages came a new film, a training film for the erection and operation of the telescope. This they studied very carefully before beginning operations. Then the packages were transferred to Salyut-6. The
various modules were set up, the control panel, the wiring and recording systems and receivers. The actual operation of the assembly was two way; from the ground and via television cameras set on Progress- 7 and viewed from Salyut-6. After the successful erection of the aerial, several days were spent calibrating the telescope. The operation of the telescope requires two people.

The completed telescope was operated in conjunction with the 22 metre installation at the space station in the Crimea. The joint operations were timed so that when the Saiyut-6 was on the opposite side of the Earth the two aerial systems formed an interferometer with a base line of more than 8,000 miles. Part of the programme undertaken by the cosmonauts was the observation of the emission from Cassiopeia-A, Pulsars, in particular P/RO 239 and cosmic plasma. Part of the observing time was spent on radiocartography, observing temperatures, humidity and weather conditions.

RENDEZVOUS WITH HALLEY'S COMET

As previously reported, the full mission funds were curtailed for this project. General scientific opinion was that only if the full programme to procede from Halley on to Temple-2 was followed could the results truly justify the expenditure. NASA has now made a new plan and it is hoped that the Carter Administration will press for this, for it is after all a joint European and United States venture.

This mission was to gather information preparatory to a landing and return from a selected comet with material for analysis. Since such material is believed to be the oldest in the Solar system it would be, as one scientist put it, "more valuable than a ton of rocks from Mars'.

It is widely held among comet specialists that a mission to a comparatively young and active comet like Halley together with an old comet such as Temple-2 or Encke with access to the nucleus would be well justified, since a young comet like Halley has much local atmospheric activity which cannot be seen again this century, not in fact till late in the 2 Ist century. Perhaps the situation is best summed up by Joseph Veverka of Cornell University. He said 'Halley is important because it retains the spectacular activity of fresher comets and the only one we can look at is this century'. He went on, 'the basic fact is that without a rendezvous with a nucleus we will not be able to interpret our Halley data correctly, simply because we do not now know anything about nuclei and would know very little after a fly-by. You will go zooming off at 57 km a second having learned very little about the heart of a comet. In fact you will have learned so little about the nucleus that you could not interpret the data of the fly-by. This situation would be a disaster'.

The mission, which involved joint cooperation between the European Space Agency and NASA, is dependent to a considerable extent on participation in particular by Europe in the solar electric development. If the original mission is to be modified there could be the possibility that Europe would not have a part
in the later mission. This must cause NASA some concern because it is a distinct possibility that Europe could mount a project of her own. The uprated launcher for the Ariane could accomplish this. Europe would be independent of the USA. It is this aspect which bothers the Americans, for in the modified budget conditions they could not guarantee Europe a part of the probe development if the solar electric propulsion is dropped for one reason or another.

The mission to Halley and other comets is on old 'must' for all interested in space. As early as 1973 positive schemes were ready. With the present advent of the shuttle, the plan would be to launch two solar electric vehicles from a shuttle in about July 1985. The spacecraft would set course directly to Halley's comet. Two spacecraft would reach the vicinity of the comet in November 1985, the distance then being about 75 million miles from Earth. In order to avoid the debris surrounding the comet a probe would be released to penetrate the coma and pass within 1,000 miles of the nucleus, while the spacecraft turned off toward the sunward side. The other spacecraft would launch its probe through the tail. One spacecraft would go on to rendezvous with comet Temple or one of the other suitable comets. On command the spacecraft could be brought within 30 miles of the nucleus and stay with it for perhaps a year. It would be possible to 'see' objects as small as a tennis ball. Actual contact would also be possible if it were considered useful. Most important of all, it will bring to light the mystery of the comet. Is it solidly packed ice and particles; is it a loose conglomeration; or packed so tight that it glows under solar radiation and gives up some in a vast cloud of glowing dust to produce a tail?

Alternative schemes have been put forward by other companies. Goddard Space Flight Centre have a different approach to the comet missions, which does not involve such a tight fiscal programme and can be done much simpler, even as late as preparing in 1983. Robert W. Farquhar and William H. Wooden have already made' a considerable study of the possibilities and they suggest a way. They consider that a boomerang trajectory would be not only an economic proposition but would result in the gathering of data at considerably less cost than other methods. They suggest that a spacecraft should be launched into a trajectory that first intercepts Halley and then returns to the vicinity of the Earth a year after launch. This would make it possible to retarget the spacecraft to another comet after the Halley fly-by. By using a series of such manoeuvres the trajectory can be reshaped by successive Earth swing-by impulses.

One suggestion is a piggyback launch of two spacecraft toward a post peri-helion encounter with Halley's comet in March 1986. One spacecraft would be directed to a close fly-by of the comet nucleus, while the other would be directed through the tail area. Following this event the Earth swing-by technique would be used to retarget one of the spacecraft to Comet Borrelly in January 1988 and the other to Comet Temple-2 in September 1988. The efficiency of this scheme is striking. In three years four comet encounters would take place.

3,0.4STEPED AMPLIFIER
 PART 2 GRAHAM JACKSON

ABRIEF description of the pre-amp was given last month showing that a discrete transistor op-amp was to be employed for the phono and tone control stages. The following refers to one half of the pre-amp, the second channel is of course identical.

PHONOINPUT

Firstly the phono stage (Fig. 8) is based around transistors TR1-5, the RIAA equalisation network consisting of C2 to C5, and R4, 6, 7. Capactor C6 is switched in or out by S1, and when switched out the response falls below 100 Hz so acting as a rumble filter. This facility is incorporated in the phono stage so that the low frequency rumble content of any input is not grossly amplified prior to filtering. The phono stage runs off $\pm 15 \mathrm{~V}$, this voltage being dropped from the nominal $\pm 30 \mathrm{~V}$ supply by R16 and R28 and decoupled by C7 and C14.

Phono connection is d.c. coupled to the input stage, no capacitor being required as the input offset voltage is very small. An active collector load in the form of a constant current source comprised of TR5 and D1, 2, is employed which gives very good linearity and low distortion compared with a resistive load. This also allows for high input overload margins at high frequency as available drive current for the feedback network, whose impedance falls with frequency, is independent of output voltage.

For example the impedance of the network at 20 kHz is approximately 1500 ohms. If therefore a 1 k load resistor was used, for a negative swing it would run out of drive capability at about $1000 /\{1500+1000 \mathrm{VV}$ or 0.4 V supply, obviously not satisfactory, leading to asymetric slew limiting. It would also give, on a 15 V supply, a mean current of 15 mA through the resistor with no signal or 30 mA with a peak positive signal which would have to be supplied in addition to output and network drive current by TR4. However with a constant current source set at $10.7 \mathrm{~mA}, 0.7 \mathrm{~mA}$ of drive current is still available with a full negative swing of -15 V at 20 kHz .

In order to limit the standing current in the phono stage to approx 10 mA it is followed by a buffer amp with a gain of two to give a possible output swing of about 56 V peak to peak under high input conditions giving a good margin of overload. The tuner and auxiliary inputs are also fed to this stage via an input switching matrix; the gain is set by R22 and 23. It can be seen that this stage is based on TR6 to

TR8, and also has an active collector load for TR7. This uses simplified configuration as this circuit does not have to have a high open loop gain. It may also be switched as a scratch or low pass filter, and TR22 is used to negate the impedance of the feedback network so that this stage will have a $12 \mathrm{~dB} /$ octave roll off. The 3dB point has been chosen as 8 kHz . Without TR22 the response is as shown in Gordon King's tests last month.

A similar but separate stage has been used for tape input buffering, differing in that it has unity voltage gain and no filter capability. This arrangement has the advantage that monitoring of the tape recorder's own output is possible while recording with, if necessary, scratch filtering being active on the record input. Alternatively an additional tape socket switch may be fitted to allow dubbing, or monitoring of one input whilst recording a different signal on the other.

The tone control circuitry uses the same design philosophy as the disc input stage except that it runs on $\pm 30 \mathrm{~V}$ and has a collector load current of 5 mA . The feedback network consists of the tone controls and supporting components in the Baxandall configuration. This stage may be bypassed by the tone defeat switch if desired.

POWER SUPPLY

The negative and positive rails (Fig. 9) are separately derived and regulated. A.C. from the transformer which has a $34-0-34 \mathrm{~V}$ winding is rectified by D24 to 27 , the 0 V centre tap being returned to ground. Smoothing is accomplished by TR19 and 21, for the negative rail and TR18 and 20, for the positive. The circuits are similar except that one is the mirror of the other. For the positive side TR20 acts as a constant current source for reference diode D18, a 30V Zener type. This is used to give a reference for the base of TR18 which is connected as an emitter follower. Bias current for diodes D20 and 21 is returned to ground via R61; this configuration therefore prevents ripple current being injected into the Zener diode which would impair regulátion. Transistors TR18 and 19 should be mounted on a small aluminium heat sink.

CONSTRUCTION

It is recommended that the published layout is followed to avoid ground loops. It can be seen from Fig. 12 that all of the stages described above will mount on this one board in-

Fig. 9. Circuit of the main amp. and power supplies for the PE Congress
cluding the function switches and bass and treble controls. The phono input sockets should be mounted on a separate p.c.b. (together with R14-114, R15-115, R29-129, R30130, R57-157, R58-158 and C18-118) so that they can be isolated from the chassis; this is important to prevent ground loops.

When building the pre-amp board good solder joints are essential for proper operation. Remember, if they don't look aesthetic they are no good, see Fig. 10. Do not use too much solder, make sure the joint is covered, use an iron with a small bit and good heating capability and cored 22 swg solder. Also ensure that wires are cropped well back. A good quality pair of small side cutters are an essential piece of equipment for this type of project.

It is recommended that all resistors are inserted first, not all at once, as it will be difficult to solder the leads. Do small sections at a time. Then use some of the cropped resistor wires to put in the wire links. Next insert the transistors and diodes. Transistors TR18 and 19 need a small heatsink un-

Fig. 10. Joints shown in \mathbf{a}, b and c are badly soldered and not acceptable. The joint in d is correct. Trimming of component leads must be as shown in f and not like e

Fig. 11. Printed circuit board design for the pre-amplifier (copyright Wicca Electronic Systems Ltd.)

COMPONENTS . . .

Unfortunately there were some omissions and inaccuracies in the components list published last month. The following list gives the additional values and corrected specifications:

Resistors

R7-107	1'20k
R11-111	10 k
R18-118	18 k
R57-157	10 k
R58-158	100 k
R65	1001 w
R66	10 k
R68-168	$10 k$
R69-169	47 k

Semiconductors
TR14-114
D28
BC212B or C
1N4148
Note: TR3, 103 and TR20 to 22 and 122 can be either
B or C types, and D24-27 can be 4×1 N4002.

Capacitors

C1-101
C2-102
C6-106
C10-110
C11-111
C20-120
C21
C26
C28
C39-139
C40
C41-141

5 p 6 ceramic
10μ elect 35 V
100μ elect 16 V
1 n ceramic
470p ceramic 680p ceramic 10μ elect 35 V 100n mylar 100n mylar 22p ceramic
10μ elect 35 V
10μ elect 35 V

Note: all electrolytics except C9 are radial, C29 to C32 mav be replaced by two $10,000 \mu$ elect 40 V types.

Miscellaneous

SK1 to 5 , SK 101 to 105 phono sockets (5 pairs)
SK6-106 phono sockets (4 off).
T1 125VA mains transformer 28-0-28V plus $34-0-34 \mathrm{~V}$ (off load voltages).
Components supplied by Wicca will be as shown above. We apologise for these inaccuracies. Also please note Wicca's new address: 24 Hillcrest Parade, The Mount, Coulsdon, Surrey.
derneath; they must be isolated by using mica washers as this heatsink is common to both devices. The heatsink should be fabricated from aluminium and sprayed matt black. This heatsink will run quite hot.

The capacitors can then be inserted. Make sure that the electrolytics are correctly polarised, many of them can be instantly damaged if powered up when they are wrongly connected. If this happens they must be replaced, not reinserted. Take great care not to strain the leads when fitting ceramic capacitors. The switch and tone controls may then be inserted and flying leads connected.

Screened lead must be used for all signal leads. The preamplifier may be used independently only requiring a volume
and balance control and mains transformer to complete. In this design the $34-0-34 \mathrm{~V}$ winding is incorporated on the main supply transformer, saving the need for a separate transformer. When powering up first check that there is +30 V on the positive rail measured with respect to ground and -30 V on the negative rail, and then that there is $\pm 15 \mathrm{~V}$ on the phono stage. Voltages to be ± 5 per cent.

Many of the transistors run quite warm; this need give no cause for alarm. It is suggested that transistor orientation and type, diode orientation and capacitor polarities are all double checked before power is applied.
Next month. Main amp circuit description and construction.

Casio＇s new SUPERCALC！

You always wanted a calculator that does everything except make tea－

HERE IT IS！

ロロロロロロ்
ロロロロロロ ロロロロロ்

－ロ

CASIO FC－8100

46 scientific functions，clock，calendar，alarm， countdown alarm，interval alarm timer，hourly chimes， $1 / 100$ sec stopwatch．
ONE YEAR BATTERY LIFE approx．－used continuously． LC Display； 8 digit exponent plus 2 digit mantissa． 5 level parenthesis，full access memory．Trigs，logs，hyperbolics， standard deviations，co－ordinate conversions，sexagesimal to decimal conversions，fractions，percentage，cube roots，sign change，register exchange，Pi entry etc．CLOCK displays hours， minutes，seconds，am／pm and day．CALENDAR pre－ programmed to 1999；day，date，month and year． 24 hour ALARM，hourly chimes，countdown ALARM TIMER． Interval（repeater）alarm timer or $1 / 100$ second STOPWATCH measuring net，lap and first and second place times to 10 hours． $6.6 \times 70 \times 129 \mathrm{~mm}$（ $\frac{1}{4} \times 2 \frac{3}{4} \times 5 t$ inches）．Leatherette wallet． RRP $£ 27.95$

STAR BUYS FROM CASIO

810S－35B Alarm Chronograph Stainless steel．Mineral glass．Water resistant． 5 YEAR BATTERY． Hours．minutes．seconds，day； And day，date，month and year． 12 or 24 hour display． 24 hour alarm，hourly chimes． Siopwatch from I／ion second to 7 hours；net，lap and
and 2 nd place times． （£34．95）$£ 29.95$
95QS－36B Chronograph
Similar to above but with dual time（ 12 or 24 hour）in liee of slarm and chimes
$£ 19.95$

83QS－41B Alarm Chronograph S／s encased

Mineral glass． Water resistant． 3 Year battery Hours，minutes，seconds，date． am／pm；or hours．minutes 24 hour al arm，hourly chi Stopwateh from $1 / 10$ second to 12 hours；net，lap and 1st and 2nd place．Nightlight． ONLY £24．95

C－80 Calculator Watch

（Finger touch keyboard）
Hours，minutes，seconds．
am／pm，day．Day，date，month auto calender pre－programmed to 2009．Professional 24 hour stopwateh；net，lap． 1 st \＆ 2 nd place to $1 / 100 \mathrm{sec}$ ．
Dual time． 8 digit calculator， Nightlight．Water reslatint． Glass．Black resin case／strap． $44.9 \times 35.8 \times 10.2 \mathrm{~mm}$ ．
ONLY $£ 24.95$

NEW LOWER PRICES
F－8C Now only $£ 9.95$ ．
F－200 Now only $£ 12.95$
$111 \mathrm{QS}-34 \mathrm{~B}$ £14．95

Mini SUPERCALC

FX－7100

1 YEAR BATTERIES 39 scientific functions． As FX－ 8100 but 8 digits； Without hyperbolies，fractions and calendar．
Only I countoown alarm timer （repeater）or stopwatch function Has alarm and chimes． $3 / 16 \times 2 \frac{1}{2} \times 34^{\prime \prime}$ ． Leatherette wallet． RRP $£ 27.95$
$£ 24.95$

MELODY 81
（£24．95）$£ 22.95$
Clock，calendar，two musical alarms，countdown timer．Stopwatch from $1 / 10$ sec to 12 hours； net，lap．1st \＆2nd place． Calculator with full memory，\％，square roots． $5 / 16 \times 4 \frac{1}{2} \times 2 \frac{1}{4}$＂．
1 year batteries．
ML．71 £22．95．MQ－12 £19．95，MQ－6 £19．95，AQ－2200 £19．95． AQ． 1500 E15．95．
Seientifics
FX－81 $£ 12.95$ ．FX－100 $£ 15.95$ ，FX－ $330 £ 15.95$.
FX－81 £ 2.95 ．FX－ $100 £ 15.95$ ，FX－ $330 £ 15.95$.
FX－ $310 £ 17.95$ ．FX－ $510 £ 19.95$ ．FX－ $2600 £ 19.95$. FX－3200 £21．95．FX－501P £54．95．FX－502P £74．95． FA＝1 \＆19．95．Plus M．P．ES．

CASIO LADIES WATCHES

L－10

L－20

87QL－18B

With calendar，stopwatch，dual time．

L－10 Disco watch．Coloured resin $^{£ 12.95}$	
L－20 Chrome plated case．Strap．	$£ 14.95$
$\mathbf{8 7 Q L - 1 8 B}$	Stainless steel case／b：acelet
$£ 22.95$	

L－20 chrome plated case．Strap．
$£ 14.95$
87QL－18B Stainless steel case／b：acelet
£22．95

Send 25 p for our illustrated catalogue of Casio and Seiko products． OUR RETAIL SHOP IS MOVINGI PERSONAL CALLERS PLEASE TELEPHONE FIRST

Identify with THE MIGHTY CHIP

The＂in＂pendant for 1980 Winner of the

1980 GIFT AWARD
（Fashion and personal accessories）
Features a genuine metal oxide silicon EPROM，（ultraviolet） Erasable Programmable Read Only Memory chip，set in a 9et gold or a sterling silver clasp． Approx． $1 \frac{1}{4} \times \frac{1}{4} \times 3 / 16^{\prime \prime} .11 \mathrm{gms}$. Supplied with leather thong．
Sterling Silver £30 9ct．Gold $£ 69$

SEIKO

Latest models
Around 30\％ofl？

SEIKO＇S STAR BUY FOR 1980

TS2 Alarm Chronograph

Comprehensive display of
hours，minutes，seconds．
24 hour alarm and hourly
24 hour alarm and hourly
clinaes．Stopwanch rom then seconds to 20 hours． Hen seconds to 20 hours． Loper display－lap umes Lower display－total dime． S／steel encased 8 mm thick plus front butions．
only $£ 47.50$

TS1 Alarm Chronograph
WITH COUNTDOWN ALARM
Hours，minutes，seconds，
Alpha day and date on upper
display；And day，date，month．
Alarm and hourly chimes．
Countdown alarm（upper display）． Stopwatch from $1 / 100 \mathrm{sec}$ to 12 hours；net，lap and Ist and 2nd place imes． ONLY $£ 57.50$

TS7 Alarm Chronograph

100 m WATER RESISTANT

Suitable for swimming．
water skiing，etc．Time and
1dentical stopwateh function
identical stopwatch functions but to 12 hours．Hourly chi amm NTERVAL aable alarin．NJER VAL ala
only $£ 74.95$
TS4 Calculator Alarm
 Hours，minutes，seconds． day；And day，date，month m / pm ．Alarm（ 2 tones）， hourly chimes， 8 digit calculato resistant 2 year battery with ch Approx 9 mm thick hach． 2 prox 9 mm thick

S／Steel $£ 79.95$
Gold plated $£ 99.95$
TS5 World Time／Alarm With two alarms．World Time mode displays an atas． S／s £79．95．Gold pl．£99．95

H127 Analogue／Digital（Same as P．E．offer） Independent analogue watch．Digital watch with calendar， stopwatch and counter functions．
RRP £95
only $£ 69.95$

Price includes VAT．P\＆P．Send your cheque，P．O． or phone your ACCESS or BARCL，AYCARD number to：－

TIEMIPUS
Dept．PE．Beaumont Centre，164－167 East Rd．， Cambridge CBI IDB．Tcl． 0223312866

MOST of the electronic ignition kits currently available are either inductive or capacitive discharge types. These systems have been designed to overcome the problems of inefficient sparking and the rapid deterioration of the ignition timing due to wear, normally associated with conventional systems.

In a conventional system when the contact breakers close the ignition coil stores energy which is released across the spark plugs as the contacts open. This rapid high voltage switching causes arcing, contact wear and a reduction in the amount of energy available to the plugs.
With an inductive electronic system the coil current is switched by the unit and only a small timing current flows across the contact breakers. The coil is used in the same way as a conventional system. This method greatly reduces contact breaker wear and ensures a good spark.

The capacitive discharge system differs from the inductive type by transforming the battery voltage to about 400 V and storing this charge in a capacitor rather than the coil. When the contact breakers open the stored energy is released to the coil from the capacitor.

We recently had the opportunity to assess two units from the Suretron range; the ES200 (inductive) and the C300 (capacitive) systems. The ES200 is the kit version of the ES2000 ready built unit which along with the C300 received very favourable comments in a recent "Which" report.

CRITERIA

Probably the most important criteria for judging any kit is whether it is designed for the totally inexperienced builder. Identification of piece parts should be easy and present no ambiguity. Component quality should be excellent and assembly instructions and illustrations should be sufficient so that the builder need have no electronic preknowledge, or requirement to refer to a circuit diagram, in order to produce a working piece of equipment.

Also essential is diagnostic back-up so that faults can be rectified if the unit is malfunctioning.

All of this adds up to step-by-step instruction pioneered by Heath and emulated here by Suretron Systems Ltd.

KIT PACKS

Having purchased a kit, be it the ES200 or C300, the first thing to do is to check that everything is there. This is facilitated since all the piece parts come in transparent plastic packs which need not be broken when ticking of contents against the listed contents in the assembly instructions. Besides being listed further identification is possible since a board assembly detail pin-points all of the components.
Assembly is the simple business of splitting the packs and popping in components according to the assembly detail and then soldering.

The iron required should be at least 25 W and for those new to soldering instructional notes are included.

A first time builder invariably overlooks the correct placement of polarised components such as electrolytic capacitors and semiconductors. The instructions make very clear with illustrations which way round they should be inserted into the printed circuit board.
The C300 kit is a conventional CD system with an output thyristor switching the coil. Being heatsink mounted it is too easy in the assembly to get a short circuit unless care is taken. This problem area is got round with a graphic exploded detail which is simplicity itself to follow.

IN CAR ASSEMBLY

When wiring to the outside world in an engine compartment siting of the unit determines lead lengths to coil and supply input. Fortunately optimum lead lengths were decided upon so that cutting, stripping and terminating could all be done on the table top without the onus of lifting the-bonnet.

With everything completed it only remains to be fitted and set up. To site the unit for optimum performance a list of requirements are set out in the comprehensive fitting instructions.

Before any supply connections are made a number of prewiring checks are made and then in-circuit wiring can be completed. Again for those not electronically minded this is physically delineated for single and double coils and where electronic tachometers are included.

If everything has gone well it only remains to 'tweak' the surrounding electrics such as plug gap, timing resetting and then it's off for improved efficiency motoring. If there are problems then a comprehensive fault finding table is supplied.

Finally, if all else fails you can return your unit to Suretron for either fault diagnoses or repair. A standard charge of $£ 5$ will cover this, postage and insurance.
The ES200 unit is suitable for 12 V negative earth vehicles only, whilst the C300 can be supplied for either positive or negative earth systems. Voltage or current impulse tachometers will also function with the ES200 unit. However, the C300 system will require a compensator for all current impulse tachometers and some of the voltage contact types. A complete list of checks and type of compensators required is supplied with the kit.

Another useful feature of both systems is an electronic/conventional/off switch to enable the car to be switched back to the conventional system in the event of a breakdown or for comparison tests, electronic tuning etc. The off position disables the ignition and acts as an anti-theft device.

PRICES

The ES200 kit is priced at $£ 13.95$ and the C300 is $£ 17.95$. If a compensator is required these are priced at $\mathbf{£ 3 . 9 0}$ (All prices include VAT and p\&p).

Suretron Systems (UK) Ltd., Piccadilly Place, London Road, Bath BAI 6PW.

THIS article describes a tremolo unit for insertion between a musical instrument and one or two amplifiers. The unit has two outputs, each of which is modulated in antiphase relative to the other, the eby enabling an effect similar to, although not as good as, that achieved by a rotary cabinet.

Three controls are provided; a depth control, a rate control, and an in/out switch. When the depth is at its minimum setting, or the switch is set 'out', the signal presented at the input, is in turn presented at the two outputs with equal amplitude. With the switch set 'in', as the depth is increased the two outputs are modulated in antiphase at a frequency controlled by the rate control, VR2. It is possible to omit the circuitry associated with one channel, to produce a simpler, cheaper single channel unit.

CIRCUIT

The circuit comprises an 8038 function generator chip, of which both the squarewave and sinewave are utilised, the former to drive an l.e.d. to give a visible indication of the operating frequency, the latter to provide the control signal to the modulators. The sinewave output, or rather a fraction which is determined by the setting of the depth potentiometer VR1, is fed to the drain of a field effect transistor, TR1, which is used as the in/out controller. When the switch is in the 'out' position, the gate of TR1 attains a voltage of around +3 V relative to its source, so turning hard on, shunting the sinęwave drive from the 8038. If the in/out
switch is now set to 'in' position, the applied voltage at TR 1 gate drops -5 V relative to TR 1 source, over a period of a few seconds, cutting off TR 1 , permitting a gently increasing amount of the sinewave drive to reach the next stage, TR2. TR2 is connected as a phase-splitter, generating two signals of equal amplitude, but of opposite phase, at its emitter and at its collector. These two signals are fed to a pair of 741 operational amplifiers, IC2 and IC3, which serve the dual purpose of providing the low impedance necessary to drive the modulator chips, and of providing the level shifting necessary to match the outputs from the transistor's emitter and collector to the control nodes of the modulator chips. Each 741 is arranged to provide a gain of 2 . The modulators are integrated circuits expressly designed for use in this application, and have the property of providing a gain that is proportional to the logarithm of the voltage presented at their control nodes. Such a response is necessary in audio applications to match the logarithraic response of the ear. The two modulat ors denoted as ICs 4 and 5, are MC3340s.

The whole circuit with two modulators installed, taks a current of around 80 mA at a supply voltage of 12 V (Fig. 1).

POWER SUPPLY

To keep the power supply simple, a single rail 12 V supply is used, which is split in the simplest possible way to give a dual supply of $\pm 6 \mathrm{~V}$. Splitting is achieved using a pair of resistors to provide the centre point, and a pair of capacitors to provide a.c. bypass (Fig. 2).

Fig. 1. Circuit of tremolo. A foot switch can be used for S 1

COMPONENTS . . .

Capacitors
C1
C2
C3
C4, 5,7
C6

Resistors

R1,2.3	6 k 2 (3 off)
R4	15 k
R5	22 k
$R 6$	47 k
$R 7$	220 k
R8	10 k
R9	150 k
R10, 13, 16	3 k 9 (3 off)
R11, 12, 14, 15	270 k (3 off)
R17	5 k 6
R18	2 k 2
R19, 20	220
All resistors $\frac{1}{4} \mathrm{~W} 5 \%$	

Potentiometers

$\begin{array}{ll}\text { VR1. } 2 & \text { 10k linear potentiometers (2 off) } \\ \text { VR3.4 } & 10 \mathrm{k} \text { presets (2 off) }\end{array}$

Semiconductors

IC1	ICL 8038
IC 2,3	$741(2$ off $)$
IC4,5	MC $3340(2$ off $)$
IC6	723
TR1	2 N 3823
TR2	BC $184 / 107 / 108 / 109$ etc
D1	TIL $2091 . \mathrm{e.d}$.
D2-5	1N4001 (4 off)
Transformer	
T1	12 V at 250 mA

Miscellaneous
Box $6 \frac{3}{4}$ in $\times 4 \frac{3}{4}$ in $\times 2 \frac{1}{4}$ in (RS 509-995)

Fig. 2. Power supply

Fig. 3. Small component layout

Oscillograms

Output at pin 2 of IC1

Outputs of IC4/IC5 at 50% modulation

Collector/emitter outputs of TR3

Outputs of IC4/IC5 fully modulated

The power supply itself comprises a 12 V transformer, a diode bridge, and a capacitor for smoothing, generating an off load voltage of around 17 V across C6. This is fed to a 723 stabiliser integrated circuit, whose control resistors have been chosen to provide a stabilised output voltage of around 12 V . Note that, although the circuit of the tremolo requires a stabilised power supply, the actual value of the supplied voltage is not critical, so it is not necessary to adjust the 723 s control resistors to attain an exact 12 V supply. It should be noted that, although the 723 is running at less than half of its rated power dissipation, it does get quite warm, and free access of air is advised.

CONSTRUCTION

Construction is not particularly critical, although to minimise hum pickup the use of screened wire for signal paths is recommended, as is the use of an earthed metal box. Those who wish to use the device on stage will probably not need to be advised to use a very robust box!

SETTING UP

After construction has been completed, and the usual checks on wiring, etc., have been made, the unit will require some adjustment of the two presets VR3 and VR4. Initially, these two presets should be set to their mid-positions, and the unit powered up. The l.e.d. should be observed to be flashing at a frequency of between 0.2 Hz and 5 Hz , and it should be'possible approximately to cover this range by adjustment of the rate control. At this point a signal source of around 1 V peak-to-peak, preferably a static source, such as a signal generator, is required. Additionally, either an oscilloscope or a stereo amplifier is required. If it is necessary to use a stereo amplifier, a pair of headphones will render setting up a little easier. With the depth control at its minimum position, i.e., with the slider at the "earthy" end, adjust VR3 and VR4 until output signals of the same amplitude as that of the input signal, are observed. As the depth

control is advanced, modulation of the output signals to a depth determined by the depth control should be observed. At maximum depth, it may be necessary slightly to readjust VR3 or VR4 until the period of signal cut-off is the same for both channels.

For those readers who have access to an oscilloscope and a signal generator, the following waveforms may be observed.

MODIFICATIONS

It is possible to remove several components to produce a single channel version, namely IC3, IC5 and their associated components: TR2s emitter resistor should be retained. If the gentle build up of tremulant provided by the circuitry around TR1 is not required, the in/out switch may be wired from VR 1 slider to earth, and TR1, R6, R7, R8 and C2 omitted.

Programmable Character Generator

High resolution user defined graphics from 2 K byte static RAM. These can be mixed with standard characters by relocating the Nascom Graphics ROM to this board. Compatible with Colour Board.

Colour Board

High or low resolution for PAL. SECAM. NTSC or RGB. High resolution uses 6 K RAM giving 16 colours. Foreground and background colours are definable on a 96×48 matrix (4608 points). Low resolution reduces the matrix to 48×48 using 3 K RAM.

Floppy Disc Controller

Capable of running up to four Siemens double density. double sided $5 \frac{1}{1}$ in. mini floppy disc drivers, using the 1791 i.c. Real time loop transfer.

A buyer's starting point would be the cabinet. incorporating PSU module (3 A or 5 A depending upon choice of boards), and up to four of the $8 \times 8 \mathrm{in}$. expansion boards.
System 80 appears to give an unprecedented degree of flexibility for the price. and would facilitate the continual growth of a system without recourse to unsightly add-ons. Such resilience removes the necessity of knowing in advance the direction in which expansion of a system might need to go. An expansion box is currently being designed to enable another five-board unit to be added to the system.
These expansion boards are being released over a four month period. the last to appear being the Floppy Disc Controller.
Three sample configurations and their prices are: 32 K system$£ 505.96 \mathrm{~K}$ system- $£ 785$. and a 48 K system with twin $5 \frac{1}{4}$ in. double density/sided soft sectored floppy discs-around $£ 1270$. giving $\frac{1}{2} \mathrm{M}$ byte of memory.
With some 15.000 Nascom Is sold, and 3000 Nascom 2 s so far, NM's three years experience in micro board design, culminating in System 80, should establish the company firmly among the leading European microcomputer manufacturers.

The hardware and software exchange point for PE computer projects

LIVE CURSOR AND LINE EDIT

One of the limitations of the 101 which sets it apart from the more expensive machines is its lack of an editor. For example, somewhere in a long PRINT statement you may discover you've missed out a semicolon. If you have already hit Return, the only way to correct the line is to retype it all.

Now there is a Screen Monitor and Line Editor, created by Roger Cuthbert, which makes an impressive addition to the UK 101's capabilities.

An example of its use is as follows. You wish to change the length of the time delay produced by the statement

105 FOR T $=1$ TO 5000 : NEXT
from about five seconds to ten seconds. It is necessary to change the 5 to a 10 . Having previously loaded the machine code Line Editor program, the following rules would apply to change line 105.
type

LIST 105

The line must be listed separately because this is a single line editor.
type CTRL E
Causes entry into Line Editor mode. A flashing cursor is then seen.
type CTRL K
to move the cursor up (if necessary).
type CTRLI
to move the cursor right until it is over the character to be deleted. In this case the 5 .
type RUB OUT
The 5 disappears, and the rest of the line closes up to remove the space which would otherwise remain.
type 10
The 10 will insert itself into the line, with all the characters to the right automatically moving along to make room.
type RETURN
whilst the cursor is still within the edited line to "digest" the correction.

The full set of Editor cursor controls are shown in Table 1. If you forget to LIST the line separately, you end up with several statements strung together!

Table 1. Moving the cursor in Edit mode

CTRL K up one line
CTRL J down one line
CTRL I right one character space
CTRL H back space one character
It is easy to see how time saving this feature would be to someone developing sophisticated software on the 101.

In the system as we reviewed $i t$, there were three re-entry points after a reset, which had to be accessed by pressing M for Monitor.

These were as follows:
Cold Start BASIC

Warm Start BASIC

Extended Monitor

\$1FEE \$1FFA \$1FF4

When first loading the Editor from cassette, however, the 101 jumps straight to: MEMORY SIZE? and so is "user transparent" at that stage.

The foundation stone of the Editor is the Screen Monitor, which allows mobility of the cursor in all directions. Out of editing mode, cursor control is achieved during program execution by printing special character strings, followed by a semicolon. See Table 2.
Table 2. Using the screen Monitor. With the exception of Rub Out, cursor movemente do not overwrite existing characters. The semicolons used in the PRINT statements prevent automatic line feed.

Clear Screen	```Direct keyboard-CTRL L Program control- PRINT CHR$ (12);```
Rub Out	Now works anywhere on screen, and is not stoplimited to single line
Back Space	Direct keyboard-Back spaces without deletion (Edit mode only) Program controlPRINT CHR (8);
Move Right	Direct keyboard-(Edit mode only) Program controlPRINT CHR \$ (9); The PRINT implementation will work in command mode
Move up	```Direct keyboard-(Edit mode only) Program control- PRINT CHR\$ (11);```
Range Left	Places cursor at begining of line. Program controlPRINT CHR \$ (13);
Line feed	```Direct keyboard-(Edit mode only) Program control- PRINT CHR$ (10);```

Example: To Home Cursor, say, H\$.
$\mathrm{H} \$=\mathbf{C H R} \(13) :FOR $\mathrm{J}=1$ to $15: \mathrm{HS}=\mathrm{H} \$+$ CHR\$(11): NEXT
From then on PRINT H\$
This software is to be available on cassette from Comp Shop, and may also be incorporated in a revised Monitor ROM for the 101.

DESTROY-CHAMP

This is the second CHAMP program submitted by Peter Davies of Birmingham. The user controls a ground base and must destroy UFOs flying overhead.

	Destr			
Address	Deta	Mnemolc		
200	42	תN2		
9	05	05		
2	∞	NOP		
3	42	JTN 2	-	interrupt vector
4	$\begin{aligned} & 48 \\ & 20 \end{aligned}$	H\% ${ }^{4}$	-	start addreas for
6	∞	${ }_{0}$		-tart daddresa
$?$	22	TM ${ }^{2}$		
8	∞	∞		Clears ram
9	23 00	$55^{515}{ }^{3}$		register 0
${ }_{\text {a }}$	D0	LTM ${ }_{\text {L }}$		
c	73	1523		
D	09	09		
Σ	22	TM ${ }^{2}$		
F	8	08		Stores ground
210	23	SRC 3		base in RAM
2	${ }_{80}$	${ }_{\text {LTM M }}{ }^{\text {L }}$		
3	63	INC 3		
4	23	SRC 3		
5	D3	LDM 3		
6	0	WRM		
8	21	SRC ${ }_{\text {L }}$		Move dash acrous
9	${ }_{\text {D2 }}$	LDM ${ }_{\text {L }}$		screen
1	69	INC 1		
8	69	INC 1		
c	OB	SB 7		
D	22	FM 2		
E	OE	Ot		Writes digits
${ }_{2}$	23	SRC 3		for number of bits
220	11	LD 9		
,	10	WRM		
2	63	INC 3		
3	23	SRC 3		
	${ }^{40}$	LD 0		
5	${ }^{0}$	WRM		
6	O	SBO		
7	23	PIM ${ }^{\text {a }}$		
8	EE	EE		Speed of dasb
229	52	JMS 2		
	40	40		
${ }^{\text {B }}$	41	LD1 7		Teat for start of
C	14	52		
$\begin{aligned} & D \\ & E \end{aligned}$	31	31.		
F	42	SIN 2		
230	07	07		
1	2Σ	FIM ${ }^{\text {a }}$		
$?$	33	33		
3	84	xCH 4		
4	8 E	ADD E		Randomly deteraines
5	${ }^{84}$	XCH 4		when dash starts
7	A ${ }^{\text {B }}$	LD 4		
8	7 E	XCH 152 E		
9	3 C	3 C		
	42	JUN 2		
B	2 L	2 E]		
c	$5{ }^{\circ}$	JMS 2		
D	40	40		
E	42	Jus 2		
F	38	3\%		
240	OC	ETN		
1	So	JMS 0		
$?$	81	B1		Display Subroutine
3	7 A	$152{ }^{\text {A }}$		
4 5	40	40 152		-
5	78 40	152 40		
7	co	${ }^{\text {BBL }}$		
8	22	FIM है,		Interrupt Subroutir
9	08	08		
A	23	SRC 31		
${ }^{\text {B }}$	89	RDM		
c	F6	PAR I		
D	Ft	RaR		
${ }_{5}^{\text {E }}$	12	JC		Test for hit
F 250	58	58		
250 1	$? 3$	SRC LDM L		
2	D0	WRM		Stores 1 eight
3	63	INC 3		for mise
254	23	SRC 3		
5	or	LDM 5		
6	50	WRM		
7	02	838		
,	22	FIM ${ }^{2}$		
9	${ }^{26}$	O6 ${ }_{\text {FIME }}$		
${ }_{8}$	10	10		Storec 3 eights
	23	SxC 3		for hit
D	Dr	LDM F		
E	no	WRM		
F	63	INC 3		
260 1	7	${ }_{55} 158$		
$\frac{1}{2}$	OB	SB2		

Address	Date	Memoic	5:0
3	64	INC ${ }^{4}$	
4	D7	LTM ?	
6	B0	$\times \mathrm{CH} 0$	
6	${ }^{4} 4$	104	Incraments number
$?$	B1 30	XCH FIN 0	of hits
-	30	FIN 0	
9	${ }^{\circ} \mathrm{A}$	SBO	
B	02	B8S	
${ }^{\text {B }}$			
C			
D			
E			
F			
270	7ε	7	
,	-c		
2	36		
3	${ }^{\text {9E }}$		Data for
4	cc		number 1 - F
5	FA	,	
?	P8		

The ground base is represented by a $L^{-}+\quad$ on the bottom of the 5 th display digit. The U.F.O's are rapidly moving dashes which move across the top of the display. When the dash is above the base and a key is pressed simultaneously, the display around the base lights up to indicate a hit, and the right-hand most digit increases by one to show the number of hits. The explanation of the program is provided next to it.

KEYBOARD WITH CHARACTER

The following is a table of characters directly available from the 101 keyboard, submitted to Prompt by Richard Schofield of Horsham, Sussex.

CHAR.	L.H.SHIFT	CTRL
a	Q	
b	R	
c	S	
d	T	
e	U	
f	V	
g	W	
h	\mathbf{X}	
i	Y	
j	\mathbf{Z}	
k		
1		,
m		-
n		-
0		1
p		0
q		1
r		2
s		3
t		4
u		5
v		6
w		7
x		8
y		9
2		:
$\{$;
䡒		N
		L
\because		Q
\cdots		W
		R
I.		T
\sim		Y
\cdots		\mathbf{U}

GAMES GALORE

The 101 software gap closes. Here is a marathon contribution from Mr. A. Knight of Cleveland, who sent us eight games programs to look at, with permission to publish one of them; not that we could have found room to list them all anyway!

Nim

A computer version of the game where matchsticks must be removed from a pile, each player seeking to avoid removal of the final one. Although this is man versus machine, Compukit always grants its inferior human opponent the choice of how many rows of matches, and the maximum lengh of any row. The game is enhanced by good graphics, and a "Resign" key is thoughtfully designated to avoid the pointless continuation of a game already lost. Difficult to win without threatening to remove ROMs!

Noughts \& Crosses

Standard game versus the computer, three levels of play. The highest level is classified as unbeatable, so I can only suggest playing this level late at night when the machine is tired. One can return to the lowest level of play to repair one's ego, since winning is easy. Level Two is ideal. The machine keeps a cumulative score board for series playing, and the information is well presented on the screen.

Mastermind

Based on original game. The computer tells you how many attempts it took you to crack its randomly selected code number. Each time you test a number, an asterisk appears for each correct digit, and a criss-cross symbol for any digit the code includes but in a different position.

La Passe-Temps

Beat the machine to four-in-a-row on any axis, but the 6×7 playing grid is subject to gravity, so that the machine's marker and yours have to be dropped from the top of each column, to fall as far down as they can.

Difficult and addictive. The challenge, is not being made to look silly by a p.c.b. full of chips. The only consolation is that you can see the computer getting worked up when you make life difficult for it. A cumulative score is registered.

Armless Bandit

You are playing with "software money", and the bandit pays out for three or four of a kind in adjacent slots.

Periodical free spins allow a "hold" facility, but this is subject to a reaction test. The space bar sends the wheels tumbling round, and the pay out value of all symbols is constantly displayed, along with your dwindling cash balance. Good screen layout.

Hangman

Excellent graphics! Alphabet appears at bottom of screen so that letters can be selected by a mobile pointer. The clues, and target names, e.g. TV programme, book title, etc., can be altered quickly since they are listed as block data statements.
Don't get hung, there is a macabre animated ending! The only disappointment is that you don't find out what the name or title was if you fail. Presumably it is then saved for another game.

Stud Poker

Man versus machine in standard five card stud game, with $£ 5,000$ cash in hand at outset. Good screen format, but note, this program requires 8 K RAM. The question is-would it pay out real money if you hooked up a good enough printer?

Blackjack

Play two hands against the dealer, which is the 101. You start with $£ 100$ and the winner is the first to reach $£ 250$. This program can be cut to run on a 4 K machine by erasing the lines which contain the instructions on how to play.

These programs seem to be carefully thought out, and protected against most incorrect key presses which can cause an annoying jump to Command Code. We decided to publish the listing for Le Passe-Temps because it was reasonably short and great fun to play, but owing to lack of space, this will appear in the next Prompt. The programs would seem good value for money and details of how to obtain them can be found in the advertising pages of this issue.

ALLIED USERS' GROUP

The OSI UK User Group published their first quarterly newsletter in December last year and have kindly sent us a copy. This group can accommodate 101 users.

The OSI group's Newsletter One contained useful information on memory locations and BASIC routine entry points, much of which will be common to both C2 and 101 users. These two groups should have a lot to offer each other.

A year's membership of the OSI UK Group costs $£ 5$ and naturally includes the newsletter. Details are available from George Chkiantz and Richard Elen, 12 Bennerley Road, London SW 11 6DS.

GAMES FOR CHAMP

Three programs have been written for CHAMP by T. Smales, who is willing to part with copies of their listings upon receipt of a large s.a.e., plus, if possible, any exchange programs fellow CHAMP users may care to include.

The programs are: Shoot Game, Reaction Timer, and Moon Landing. Write to Mr. Smales at 15 Nayland Ave., Gresford, Wrexham, Clwyd.

ANIMATED GRAPHICS

MEMORY MAPPED VIDEO

T.HE screen of the UK 101's TV or VDU may be thought of as a block or memory resembling an array of adjoining boxes, about a thousand in all, each identified by a number:

The "boxes" are numbered consecutively as shown in Fig. 1, starting at number 53248 and finishing at number 54271. We can put any character in any of the boxes by using the POKE instruction. For example:

10 POKE 53985, 6
followed by RUN, should cause the graphic character number 6 \square to appear near the centre of the screen.

Fig. 1. Character slot grid produced by the 101's memory mapped video RAM. The numbers indicate sample RAM addresses at which a character must be stored to occupy that position on the screen.

Fig. 2. In reality the character grid's so called "Terminal Width", when at maximum setting, will be too wide for the average TV screen. Therefore a range of RAM addresses will be surplus, having no visible effect.

Now a word of caution: Not all the boxes that may be filled are visible on the TV screen. A little experiment with the POKE instruction may be necessary to prevent your graphics disappearing off the side of the screen! See Fig. 2.

MOVE IT

Now suppose we want to move the character we have just put on the screen, say, to the right. All we have to do is to use the POKE instruction again with the number of the box immediately to the right of location 53985. This will be:

POKE 53986, 6

but we have to empty the previous box to give the impression that the one character moved. This is done by putting a blank (graphic or ASCII character number 32) in the previous box. The full program becomes:

10 POKE 53985, 6
 20 POKE 53986, 6
 30 POKE 53985, 32

put character in box 53985 put character in next box erase previous box

Now, the problem is that if we run this as it stands, the program is executed so rapidly that we don't notice the character transfer itself. Let us slow things down with a time delay instruction:

10 POKE 53985, 6

20 FOR Z $=1$ TO 100 STEP ©. 1
30 NEXT Z
40 POKE 53986, 6
50 POKE 53985, 32

MOVE IT MORE

We can extend the basic idea to make the character move along a line to the right by incorporating a loop in the previous program:

10 LET X = 53985
20 POKE X, 6
30 FOR $Z=1$ TO 100 STEP ©. 1$\}$ 40 NEXT Z
50 POKE X, 32
60 LET X $=\mathbf{X}+1$

70 GO TO 20

Choose "box" at which to start.
Put character in box time delay
erase box
pick next box to right loop back to line 20

Notice that once the character has "disappeared" from the right-hand side of the screen, it re-appears some seconds later at the left-hand side but on the next line down. This feature can be very useful.

This idea can be extended to move a graphic in any direction. The following diagram shows how. Contained in each box is the number which must be added to the number of the previous box in order to effect a move.

-65	-64	-63
-1	HERE	+1
+63	+64	+65

Fig. 3. In relation to any one character slot on the screen, the adjoining boxes will have these relative addresses.

As an example, if the number of the centre box is 53985 , then executing:

$$
\begin{aligned}
& 10 \text { LET X }=53985 \\
& 2 \emptyset \text { POKE } X, 6 \\
& 36 \text { POKE }(X+1), 6 \\
& 40 \text { POKE }(X+65), 6 \\
& 5 \emptyset \text { POKE }(X+64), 6 \\
& 60 \text { POKE }(X+63), 6 \\
& 76 \text { POKE }(X-1), 6 \\
& 8 \emptyset \text { POKE }(X-65), 6 \\
& 9 \emptyset \text { POKE }(X-64), 6 \\
& 100 \text { POKE }(X-63), 6 \\
& \text { should cause the pattern } \\
& \text { of Fig. } 4 \text { to appear. }
\end{aligned}
$$

Fig. 4. The effect of POKEing the same graphic symbol to a group of adjacent character slots, using the relative address relationship.

KEYBOARD CONTROL

When writing your own computer games, it is useful to be able to move characters about the screen by pressing nominated keys, each controlling a different direction of movement. The strategy for achieving this is to:
(a) Disable the keyboard so that keys accidentally pressed have no effect.
(b) Test for certain keys having been pressed.
(c) Upon detection of the correct key branch in the program to a subroutine that causes the graphic to move in the required direction.
As an example, suppose we wish to invent a game which required us to control the graphic for an aircraft on the TV screen.

We require sideways movement as well as up and down. The nominated keys might be:
key " 1 ". . . . move left
key " 2 ". . . move right
key " 3 ". . . move up
key " 4 ". . move down
(a) We can disable the keyboard using the special instruction POKE 530, 1
(b) The keyboard may be treated as memory location 57088. The instruction POKE 57088, 127 selects the numerical row of keys on the keyboard. We can test if a particular key has been pressed, with the instruction PEEK (57088) = If PEEK $(57088)=127$ then key 1 has been pressed. If PEEK $(57088)=191$ then key 2 has been pressed. If PEEK $(57088)=223$ then key 3 has been pressed. If PEEK $(57088)=239$ then key 4 has been pressed. Values for other keys are given in the Compukit manual.
(c) Suppose that key 1 has been pressed and detected. We must now branch to a program subroutine to move the graphic to the left. If we use graphic No. $239(\notin)$ and its original box was X, then the subroutine might take the form:
106 LET $X=X-1$
new box number
200 POKE (X + 1), 32 erase old box
306 POKE X, 239 graphic to new box.
I will now give an example of a simple game called "TARGET INTERCEPT" which I have constructed using the above techniques.

TARGET INTERCEPT

A target appears on the screen in a random position. A missile also appears, again in a random position. The missile may be steered left, right, up or down by keys 1,2,3 and 4 respectively. The missile must be steered to hit the target. The missile is given only limited fuel so that the shortest route should be chosen. Running out of fuel ends the game. A hit is registered with a message and an indication of the fuel left before impact.

10 FOR Z $=53250$ TO 54270
20 POKE Z, 32 clears screen.
36 NEXT Z
40 LET T $=50 \quad \mathrm{~T}=$ fuel allowance.
50 LET $\mathbf{N}=\operatorname{INT}\left(1000^{*}\right.$ RND $\left.(1)+53248\right)$ Random box for target.
60 POKE N, 6
Target into box. \square
76 LET X $=$ INT(1060*RND(1) + 53248) Random box for missile.

75 LET Y $=237$
80 POKE X, Y
85 LET T = T -1
87 IF T $=0$ THEN $32 \emptyset$
96 IF $\mathbf{X}=\mathbf{N}$ THEN 340
106 POKE 530, 1
110 POKE 57988, 127

120 IF PEEK (57088) $=127$ THEN 24% 130 IF PEEK $(57088)=191$ THEN 170 140 IF PEEK (57088) = 223 THEN 200 15 IF PEEK $(57088)=239$ THEN 280 160 GO TO 100

176 LET $\mathrm{X}=\mathrm{X}+1$
180 POKE (X -1), 32
190 GO TO 75
20 LET $\mathrm{X}=\mathrm{X}-64$
$210 \mathrm{Y}=236$
220 POKE (X + 64), 32
23 GO TO 80
24 LET $X=X-1$
$25 \mathrm{Y}=239$
260 POKE (X + 1), 32
270 GO TO 8ø
28 LET $\mathrm{X}=\mathrm{X}+64$
290 $\mathrm{Y}=238$
306 POKE (X - 64), 32
310 GO TO 80

Missile graphic. 4
Missile to random box.
Fuel burning.
If fuel used then 320.

Check for hit.
Disable keyboard:
Select number keys.

Test for which key has been pressed.

Move right.

Move up, change
graphic to 236. 4

Move left, change graphic to $239 .+$

32 PRINT "OUT OF FUEL . . . TARGET NOT DESTROYED"
 330 GO TO 356
 340 PRINT "TARGET DESTROYED, WELL DONE"
 345 PRINT "YOU HAD"; T; "GALLONS OF FUEL LEFT" 348 PRINT "FROM THE ORIGINAL 5 GALLONS" 350 END

Note: Some early 101s have slightly different video RAM mapping to that detailed here and elsewhere in prompt. We hope to clarify the differences in a future issue.

CLUB CHANGE

THE West Midlands Amateur Computer Club meet at 7.30 pm on the second and fourth Tuesday of each month, now at Elmfield School, Love Lane, Stourbridge. West Midlands.

Annual subscription is $£ 3$ for 1980 and visitors are allowed a free visit to see what it's all about. With 60 members, there are 8 PETs, 12 Nascom 1s, 5 Nascom 2s, 3 TRS 80s, 4 Newbear 7768s, a Sharp MZ80, 2 Apples, plus 12 other assorted systems. What! No Compukits! Or are they merely "assorted systems"?

The Club Secretary is John Tracey, 100 Booth Close, Kingswinford, West Midlands.

MORE ON ULAs

THE feature on ULAs in the February issue provided only a superficial view of these versatile bipolar LSI chips. In scope, since their inception in 1972 by Ferranti, hundreds of designs have been completed covering a wide range of applications.
To supplement the information we published, Ferranti have available a technical handbook, price $£ 1$, which provides in depth information on device technology and product range. This can be obtained from Ferranti Electronics Limited. Fields New Road, Chadderton, Oldham, OL9 8NP.

GLC AND CB

THE Greater London Council is considering asking Londoners if they would like to see the introduction of legalised Citizens' Band Radio in this country.

The benefits to society that CB can offer have already been propounded, but a well worn argument against, is that criminals would use it during bank robberies. Law abiding criminals are presumably at present precluded from robbing banks by the absence of legal CB! Sir Horace Cutler said: "There is growing pressure for the legalisation of CB radio and the GLC wants to study the implications for London".

Infra-Red CONTROLLTR Malcolm Plant

0THER than radio, two electronic methods are in common use for the remote control of electrical equipment in the home: one uses ultrasonics as the carrier of the control information and the second uses infra-red waves which, like radio but unlike ultrasonics, are electromagnetic in nature. Incidentally, if ultrasonic waves were capable of transmission over distances comparable with radio and light there would be an unacceptable delay in the propagation of the control signal for terrestrial application since sound travels at only 330 metres per second (approximately) compared with light which travels the same distance in about one microsecond!

The availability of low-cost ultrasonic transducers which are already tuned to selected frequencies, commonly 40 kHz , makes ultrasonics a popular choice for a short-range control system. But since infra-red light-emitting diodes are also generally available, an opto-electronic control system offers two attractive features not met by ultrasonics: infra-red, like light, can be focused by lenses therefore improving the range over which control is possible and, secondly, the infra-red l.e.d. output can be easily modulated so that a precisely tuned control system is possible which is much less prone to
false triggering than an ultrasonic system. Indeed, so popular have infra-red control systems become that purposedesigned i.c.s. now facilitate the design of sophisticated multi-channel control systems which are a feature of an increasing number of domestic TV receivers and hi-fi systems.

This design uses infra-red l.e.d.s and lenses in a "tuned" system providing two independent channels for switching on and off mains appliances rated at not more than 750 W . Improvement in range largely depends upon the choice of l.e.d. and on the lenses, particularly in the hand-held transmitter unit which, of necessity, has to be small. The receiver is fitted with an adjustable lens head which facilitates alignment of the transmitter and receiver.

CIRCUIT DESCRIPTION

The transmitter circuit shown in Fig. 1 is based on a 555 timer wired as an astable multivibrator giving a rectangular output waveform with a mark-space ratio of $15: 1$. The switches S1 and S2 select resistors R1 and R2, respectively, which cause the circuit to oscillate at 33 kHz and 25 kHz , respectively. These two switches are double-pole, push-tomake momentary action types so that the 9 V power supply is operated simultaneously with the selection of the resistor.

Note that, provided the two frequencies are stable, their precise values are not important since each channel is tuned individually in the receiver circuit. The infra-red l.e.d. is forward-biased for a brief period of about $2.5 \mu \mathrm{~s}$ when the output of the 555 timer is near OV. The average power dis-

A two channel remote control system capable of switching mains loads of up to 750 W .

EG68

The amplified signal at pin 6 of the op amp, now very like a sine wave but at a frequency of either 25 kHz or 33 kHz , is passed on to both input pins (3) of the phase-lock loops, IC3 and IC4, via capacitor, C5.

The external components, VR1 and C11 of IC3, and VR2 and C12 of IC4, determine the capture frequency of the phase-lock loops, VR1 allowing tuning to 25 kHz and VR2 to 33 kHz . When capacitor C5 passes a signal of frequency 25 kHz into IC3, the latter's output voltage at pin 8 drops sharply to zero. Likewise if IC4 received a signal of frequency 33 kHz , the voltage at pin 8 of IC4 falls sharply. The fall in voltage switches off transistors TR2 or TR3 so that the voltage at points A or B sharply rises. Either of these fast rising voltages triggers the edge-triggered monostables in the dual package, IC5.

Components R17 and C15, and R18 and C16, providé a positive signal at pins 6 and 10 of about 0.5 seconds duration. IC5 has the task of providing a cleaner pulse with which to operate the dual flip-flop. IC6. Alternate pulses from the

Fig. 2. Circuit diagram of the Receiver Unit

E04

sipation in the diode is therefore small and it does not require a resistor in series with it.

The receiver circuit of Fig. 2 uses one op amp, IC2, two phase-lock loops, IC3 and IC4, a dual monostable, IC5, and a dual JK flip-flop, IC6, with the object of switching on and off a mains relay when the photodiode, D2, is exposed briefly to the infra-red beam from the transmitter. The op amp is connected as a conventional non-inverting capacitorcoupled amplifier whose gain is set by the ratio of resistor values, R5: R8.
monostable set the flip-flop outputs, pins 2 and 14 first high and then low thereby controlling the relays, RLA and RLB, in the collector loads of transistors TR3 and TR5. Thus, mains loads can be switched on and off by means of the normally open relay contacts of RLA and RLB.

The mains power supply shown in Fig. 3 provides a stabilised 10 V d.c. output. The secondaries of T 1 should be wired in parallel. This supply is a conventional series voltage regulator using a 741 as an active control element to maintain output voltage at the selected Zener voltage, D7,

Fig. 3. Power supply circuit diagram
regardless of varying loading of the regulator. Note that the voltage to drive the relays is taken from the unregulated line to ensure that the higher voltage present on this line reliably operates the relays.

OPTICS

Attention must be paid to the optics of this optoelectronic control system as well as to the electronic aspects. Fig. 4 indicates the important features of the lens system required. Since the infra-red l.e.d. produces a wide angle beam, a convex lens of short focal length and large diameter is used. Similarly, the convex lens which focuses the energy onto the photodiode in the receiver unit should

COMPONENTS

Resistors

R1	47 k
R2	68 k
R3, R9, R10, R11, R15	4 k 7 (5 off)
R4, R6, R7	100 k (3 off)
R5	2 k 2
R8, R19, R20	$1 \mathrm{M}(3$ off)
R12, R16	56 k (2 off
R13, R14, R22, R23	$10 k(4$ off)
R17, R18	330 k (2 off)
R21	1 k 5

All resistors $\frac{1}{6}$ W 10% carbon

Potentiometers

VR1, VR2
10k 20 turn trimmer (2 off)
Capacitors

C1, C4	470 p polystyrene (2 off)
C2	1n polystyrene
C3	$22 \mu 16 \mathrm{~V}$ tant
C5, C11. C12	10 n polyester (3 off)
C6, C7	20 n polysester (2 off)
C8, C9	5 n polystyrene (2 off)
C10	$47 \mu 16 \mathrm{~V}$ tant
C13, C14	100 n polyester (2 off)
C15, C16	$4 \mu 716 \mathrm{~V}$ tant (2 off)
C17	$2200 \mu 25 \mathrm{~V}$ elect
C18	$470 \mu 25 \mathrm{~V}$ elect

E6308

E6 308
Fig. 4. Construction and mounting details for the optical lenses and infra-red devices (D1.D2).

Semiconductors

D1
D2
D3, D4, D5, D6
D7
TR1, TR2, TR3, TR5, TR7
TR4, TR6, TR8
IC1
IC2
IC3, IC4
ic5
IC6
IC7
BRI

LD 231 or LD 242 infra-red l.e.d.

BPW49
IN4001 (4 off)
10 V 400 mW Zener
BC109 (5 off)
2N3053 (3 off)
555
3130
567 (2 off)
4528
4027
741
1.6 A in line bridge rectifier

Lenses

Two convex lenses each of focal length 3 to 5 cm are required. The transmitter lens should be 20 mm dia and the receiver at least 40 mm dia.

Miscellaneous

T1
TO5 heatsink for TR8
RLA, RLB
S1, S2
B1
Two switched 13A sockets
Suitable cases
Veroboard

[EAODIA
Fig. 5. Veroboard layout for the Transmitter

Internal view of the Transmitter
have a short focal length for this will give it a wide angle of acceptance and make it more tolerant of deviations in the beam from the transmitter.

To facilitate focusing both the l.e.d. and the photodiode must be capable of slight adjustment along the lens axes. Remember that the focal length of a convex lens is slightly longer for infra-red than for visible light. The overall purpose of the optical system is to produce a parallel, or collimated, beam from the transmitter and for the receiver optics to focus this beam onto the photodiode.

Fig. 7. Veroboard layout for the power supply

ASSEMBLY

Three pieces of Veroboard are required for assembling the circuits and these are shown in Figs. 5, 6 and 7 for the transmitter, receiver and power supply, respectively. The usual precautions are required when using 0.1 matrix Veroboard, in particular, care should be taken to sever the tracks at the points indicated on the circuit layouts, make the use of holders for the i.c.s and carefully check the completed circuit to ensure that solder has not inadvertantly joined together adjacent tracks.

The p.s.u. and the receiver board are fitted into the base of the receiver case as shown in the photograph, together with the aluminium panel for the two relays. Wires are required externally for connection to the mains and to the photodiocle in the optical pick up head mounted on the case. The construction of the pick up head is also shown opposite. Note that adjustment is provided for the lens to be moved slightly towards or away from the photodiode to facilitate focusing.

[EAD日
Fig. 6. Veroboard layout for the Receiver

The transmitter components; two switches and PP3 battery will fit into the case recommended provided the Veroboard is cut to the shape shown in Fig. 6. The infra-red l.e.d. fits into a wooden, hand-formed holder which projects from the end of the unit. The l.e.d. can be moved a small distance along the axis of the tube to help in setting up the system and a clamp is provided to tighten the l.e.d. in place after adjustment is made.

TESTING

The operation of the transmitter circuit can be checked out before the receiver has been completed if an oscilloscope is available. The oscilloscope should be connected between pin 3 and ground (IC2) and the waveform noted as switches S1 and S2 are pressed. Note for future reference which switch produces the higher frequency, i.e. 33 kHz . If a scope is used to measure these frequencies it does not matter if the measured frequency is more or less than the nominal frequency by 1 kHz . Also observe the mark-space

Internal view of the Controller
ratio of the waveform is about 15:1 and check that the l.e.d. is wired correctly in the circuit, cathode to pin 3 of IC1.

Once you have very carefully checked all the wiring to the various components in the receiver unit, particular care is needed in checking the mains connections to the transformer and mains sockets, the receiver unit can be plugged into the mains whereupon the relays may be heard to energise depending upon the states of the outputs of the flip flops of IC6.

Two small holes should be drilled in the case in line with the trimmers VR1 and VR2 for the next stage of setting up. With the transmitter activated by pressing one of the "transmit" switches, and set at a distance of about a metre away from the receiver optics, one of the trimmers in the receiver is adjusted until one of the relays is heard to operate. A whole turn of the trimmer screw will bring the associated phase-lock loop into and out of its capture band.

Internal view of the pick up head

Patience is needed in finding the position on the trimmer when the receiver circuit latches onto the transmitted signal frequency but the process is eased slightly if a high impedance voltmeter is connected between pin 8 and ground $(\mathrm{OV}$) of IC2 or IC3; set at 10 V d.c. the voltage will fall to zero when the receiver is responding to the transmitted infra-red signal.

Do not attempt to find the setting of the trimmer for maximum sensitivity at this stage but repeat the preliminary setting up procedure for the other channel of the control system by adjusting the other trimmer when the second switch in the transmitter is operated.

Once the two receiver relays are operating reliably when the transmitter is operated at a distance of a metre or so, the system may be tuned to maximum sensitivity for which you will need the help of a patient friend. You will find it much easier to operate the system if the transmitter switch is kept pressed and the transmitter beam is waved across the field in front of the receiver optics head. Practice will improve your performance here. With the friend operating the screwdriver or the transmitter, increase the separation of the two units by a metre or so at a time and make slight adjustments to each trimmer in turn until the receiver can be operated reliably at the maximum range of the system. Once this maximum has been reached the collimation of the optical system can be attended to. Very small adjustments to the separation of the photodiode and its convex lens and the l.e.d. and its lens ought to improve the range. The general idea being to place the l.e.d. and the photodiode at the principal focus of the respective lens for the infra-red light being used. In this way the transmitter produces a parallel beam of infra-red light and the receiver optics focuses this beam onto the photodiode at its principal focus. Of course, the whole of this alignment and tuning procedure can be made much more interesting if a lamp is plugged into the sockets on the receiver unit.

FIRST ON THE AIR

THE first woman in the world to broadcast on radio, Mrs. Winifred Collins, celebrated the 60th anniversary of her historic achievement as guest of honour of GEC-Marconi Electronics Ltd., last February.

The photograph shows Marconi engineer Mr. W. T. Ditcham, said to be the world's very first broadcaster, at the 6 KW transmitter used in his original experiments.

Photograph courtesy of GEC-Marconi Electronics.

NO doubt you will by now have found your free sheet of STICKIES. The ones you have are for the popular 4000 series of CMOS i.c.s plus a few blank 14 and 16 pin ones that can be filled in as required. Sheets of TL (7400 series) are also available - details later

FAULT FINDING

Having constructed a piece of equipment it helps with circuit checking and fault finding if each i.c. has its corresponding label attached. Each pin is then either labelled or its internal connection is shown in schematic form.

P.C.B. LAYOUT

STICKIES are also very useful for designing p.c.b.s. Simply stick them down on a sheet of paper and join the pins with pencil lines. They then provide immediate identification of each i.c. and its pins and form a reference for the i.c. size and pin positions.

PROTOTYPING

Many amateurs and professionals employ some type of plug in breadboard for phototyping. When using unfamiliar i.c.s STICKIES can provide an immediate pin reference, helping to speed up interwiring and eliminate mistakes. Of course once the i.c. is labelled it can be used later and the STICKIES will always provide pin identification without recourse to čharts or reference books.

STORAGE

STICKIES should be stored away from direct sunlight avoiding extremes of temperature and humidity. The adhesive used is a general purpose removable type which is suitable for use between -40 and +70 degrees C.

The data printed on STICKIES has been carefully checked and is believed to be entirely reliable; however, no responsibility can be assumed for inaccuracies.

ABBREVIATIONS
Some abbreviations have been used on STICKIES which may not be obvious to all readers. These are:

Ast
B/D
BI
C
CD
CE
CF
Cl
CIk
CO
com
D
DD
DEI
DEO
DFI
DFO
En
ER
G
Inh

Astable
Binary/Decade control
Blanking Input
Capacitor
Clock Delay
Clock Enable
Cascade Feedback
Carry In
Clock
Carry Out
common
Data
Data Disable
Display Enable In
Display Enable Out
Display Frequency In
Display Frequency Out
Enable
External Reset
VSS
Inhibit
Jam
Latch Disable
Latch Enable Lamp Test
Master Reset
Output Disable
Output Enable
Oscillator Out Parallel
Preset Enable
Phase

P/S	Parallel/Serial control
Pty	Polarity
R	Reset
RI	Recirculation In
RM	Recirculation Mode
Rtr	Retrigger
S	Set
Ssubscript	Serial
Str	Strobe
T/C	True/Complement
	Control
Tr	Trigger
UCS	Ungated C Segment Out
U/D	Up/Down Control
V	VDD
ε	Sum
Ω	Resistor

Inverted functions are shown by a bar, thus, \bar{A}. For outputs, this indicates active low. For inputs, it means that the circuit operates on the negative-going transition. Where an IC is used for a pair of identical functions, the division is shown by a broken line. Multiple inputs or outputs are always numbered 0 through n .

MORE!

We are sure you will find your 120 free ones very useful and will in due course need some more. Please don't write to P.E., be thankful for the 60p's worth we have given you and next time send your money to Concept Electronics, 8 Bayham Road, Sevenoaks, Kent. The cost, including an information sheet, plastic wallet, VAT and postage is 80 p for a sheet of 120 (either 7400 or 4000 series-state which is required).
Alternatively, a 480 label pack is available for $£ 2 \cdot 80$. Concept will also give discount for quantity orders, their 'phone number is 0293514110.

Areliable means of checking some of the ever increasing variety of semiconductor devices is a valuable asset in any electronic constructor's workshop. Not only does this help with fault finding but it also provides a means of checking surplus and unmarked devices so that they may be salvaged for future use. The circuit to be described provides a means of testing the vast majority of semiconductor diodes, bipolar and field-effect transistors both junction and insulated gate types. It will handle germanium and silicon devices and has facilities for both n.p.n. and p.n.p. transistors.

Measurements are made under actual working conditions. Diode current is measured under forward and reverse bias and this facility also provides a means of testing and identifying transistor junctions. Transistor testing is carried out under dynamic conditions with the transistor performing in oscillator circuits at audio and radio frequencies.

It is possible to obtain an estimate of the relative gain of the device under test and also to ascertain its suitability for high frequency, linear, or switching applications.

CIRCUIT DESCRIPTION

The basic arrangement of the transistor tester is shown in Fig. 1 with the complete circuit shown in Fig. 2. The transistor under test is operated in common emitter mode with stabilised base bias provided by silicon diodes D3 to D6. Four diodes are used in order to cope with the reversal of the supply polarity which occurs when changing from p.n.p. to n.p.n.

E0306
Fig. 1. Basic arrangement of the Tester.

The frequency determining components are connected in the feedback path between collector and base. For audio frequency operation these consist of a "Twin-T" network which provides oscillation at a frequency of approximately 1.5 kHz . For radio frequency operation the resistive collector load, R7, is replaced by an inductive load, L1, and feedback is via a quartz crystal. Oscillation occurs at the fundamental resonant frequency of the quartz crystal. This should be in the range 6 MHz , to 10 MHz , but the exact frequency is immaterial. Surplus crystals of recent manufacture should prove to be quite satisfactory for this purpose, alternatively a new 10 MHz crystal can be purchased ex-stock from several sources relatively cheaply.

The output of the oscillator is applied to a detector formed by D7, D8, and C10. The resulting direct current output is measured on the meter. Zener diode, D9, ensures that the l.e.d., D10, operates only when the supply is above 8 V . Hence the l.e.d. also serves as a battery condition indicator. The battery should be replaced whenever the l.e.d. fails to illuminate after the instrument is switched 'on'.

CONSTRUCTION

The circuit is built in two parts. The resistors, capacitors and other small components are mounted on a small printed circuit board which is located in the base of the plastic case. The layout of the p.c.b. is shown in Fig. 3 with the corresponding component layout shown in Fig. 4.

Care should be exercised to avoid excessive heat when soldering the crystal to the printed circuit board and constructors may, if desired, use an appropriate HC6/U socket. The switches, meter, and semiconductor connecting sockets are mounted on the detachable front panel. The semiconductor connecting sockets are soldered to the small printed circuit board which is located in a rectangular cut-out in the front panel. Before assembling the front panel components, it is recommended that the front panel be lettered using dry transfers and then given a coat of clear protective lacquer.

The front panel components may be wired to the p.c.b. by means of a length of multi-way ribbon cable. This should be kept as short as possible whilst still allowing easy removal of the front panel, thus permitting access to the p.c.b. The interconnecting leads have, for clarity, been labelled 1 to 17 whilst those leads to the semiconductor sockets are labelled

Fig. 2. Circuit diagram of the Tester.

C, B, E, G, S, G1, G2 and D. The layout and wiring diagrams of the front panel components is shown in Fig. 5. In order to simplify the task for those constructors who prefer to manufacture their own printed circuit boards, the main printed circuit and the semiconductor mounting board have been designed so that they may be etched as one board and then cut into two.

INITIAL CHECKS AND USING THE SEMICONDUCTOR TESTER

Carefully check the p.c.b. and wiring before connecting the supply. Connect a known silicon diode, such as a 1 N4001. 1 N4002 etc, to the diode test sockets. Make sure that the cathode, marked with a stripe, is connected to the socket marked ' k '. Use the front panel switches to select 'DIODE', 'REV' and switch the tester 'ON'. The I.e.d. should be illuminated and there should be no discernible reading on the meter. Now select 'FWD', a reading of between 400 and 500 should appear on the meter. If this is not the case recheck the wiring. When testing an unknown diode, if the 'FWD' and 'REV' readings are the same then the diode is short circuit. If no reading is obtained in either direction the diode is open circuit. The 'REV' setting may be used to check leakage current. It is also possible to select matched pairs of diodes by comparing the 'FWD' and 'REV' indications.

Zener diodes of less than 9 V rating will produce a large reading in the 'FWD' direction (as for a normal silicon diode) and a smaller reading in the 'REV' position. The larger the reading in the 'REV' position the smaller the Zener voltage. A rough estimate of the Zener voltage is thus possible if reference can be made to known Zener diodes. Light emitting diodes can also be checked using the diode test sockets in the normal way. However, since the forward current supplied by the tester is low, they will not illuminate brightly.

Insert a known silicon n.p.n. general purpose transistor. An unused BC107, BC108 or BC109 is recommended for this purpose. The TO18 3-lead bipolar transistor socket should be used in this case. Take care to align the transistor correctly. The tab indicates the emitter connection on the recommended types. Select 'TRANSISTOR', 'NPN', and 'AF' using the front panel switches. Switch the instrument 'ON' and check that the l.e.d. is illuminated. An indication of between 200 and 400 should be produced on the meter.

COMPONENTS . . .

\section*{Resistors
 | R1, R2, R11 | $22 \mathrm{k} \mathrm{(3} \mathrm{off)}$ |
| :--- | :--- |
| R3 | 470 k |
| R4 | 1 k 5 |
| R5, R6, R9 | 15 k (3 off) |
| R7 | 3 k 3 |
| R8 | 680 |
| R10 | 2 k 2 |
| R12 | 220 |
| All $\frac{1}{4} W 5 \%$ carbon | |}

Capacitors

C1. C4
47 n polyester (2 off)
100 n polyester 220 n polyester
10 n polyester (4 off) 470 n polycarbonate $47 \mu 16 \mathrm{~V}$ electrolytic

Diodes

D1 to D6	OA202 (6 off)
D7.08	OA91 (2 off)
D9	BZY85C6V2
D10	TIL209 l.e.d.

Miscellaneous

Transistor sockets: TO5 (1 off), TO18 3 lead (2 off), TO18 4 lead (1 off)
1 mm sockets (5 off)
VA1 miniature horizontal skeleton pre-set 10k
Meter 500μ A Maplin type " 2 in PAN"
Miniature toggle switch d.p.d.t. (3 off)
Miniature toggle switch s.p.d.t. (2 off)
L 1 imH miniature radio frequency choke
$\mathrm{X} 1 \mathrm{HC} / \mathrm{U}$ quartz crystal in the range 6 MHz to 10 MHz (see text)
Case. Vero part number $75-1798 \mathrm{~K}$
Snap connector for PP3 type battery
P.c.b.

Constructor's Note
Components and p.c.b. are available from Howard Associates, 59 Oatlands Avenue, Weybridge, Surrey KT1 9SU.

Fig. 3. P.c.b. designs.

Front panel layout.

Fig. 4. Component layout of the p.c.b.

50310
Fig. 5. Front panel wiring diagram.

		READING ON 'AF' TEST		
		None	Low	High
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	Trensistor defective or very low gain	Low gain device for low frequency leg: audio) use	High gain device for low frequency applications
	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	Low gain switching transistor	Low gain device suitable for use over a wide frequency range	High gain device for audio use
	$\frac{5}{9}$	Transistor for linear high frequency applications	Transistor for r.f. use and high speed switching	High gain device suitable for use at audio and radio frequency

TABLE 1 provides a simple rule-of-thumb method for identifying unmarked transistors but exceptions may well be found.

Now select 'RF' operation and again check that a reading is produced. This may be slightly larger than that produced in the 'AF' position and should be between 300 and 500 on the meter scale. If either reading is excessive, VR1 may be adjusted accordingly to produce a suitable reading of around 400 on the meter. Note that the reading on the meter gives only a relative indication. It does not indicate current or voltage gain directly. If one of the recommended types of transistor is used and fails to give an indication on one or both test positions the p.c.b. and wiring should be carefully re-checked.

Matched pairs of transistors can readily be selected by comparing readings in the 'AF' position. Where an unmarked transistor is to be tested it is recommended that the junc-
tions first be identified using the diode test sockets. Transistor testing can then follow once the connections and polarity of the device have been established.

The f.e.t. testing facility can similarly be chiecked using a known device. A 40673 or similar type will be satisfactory and found to be representative of most dual-gate devices. A 2 N3819 is recommended for use as a test specimen of junction gate types Select the appropriate 4 -lead or 3-lead sockets for dual gate and single gate types respectively. Use the 'NPN' setting for n-channel devices and the 'PNP' setting for p-channel devices. F.e.t.s designed specifically for high frequency applications, particularly junction types, may fail to give an indication in the 'AF' test position. This is because a voltage gain of 30 or more is required to produce oscillation in the 'AF' test position. If the f.e.t. has a low value of mutual conductance this value of voltage gain will not be achieved using the value of collector load provided in the test circuit.

Occasionally, when testing an unknown bipolar transistor, no indication is produced in one or other position of the 'AF'/'RF' selector. This does not necessarily mean that the device is defective. It simply means that the transistor exhibits a very low value of current gain. Older germanium transistors often have current gains of less than 50 and will fail to produce an indication. Modern silicon types will nearly always produce an indication at one or both of the test frequencies. Switching transistors with relatively low values of current gain coupled with good frequency response may sometimes fail to produce an indication in the 'AF' position and yet produce a large reading in the 'RF' position. This effect can be quite useful when trying to identify unmarked transistors as shown in Table 1.

Last October we gave you a free I.C. removal tool, and we still have a limited number available for those of you who missed out last time.

All you need to do is send a postal order for thirty pence (made payable to IPC Magazines) and a stamped addressed envelope to:

Practical Electronics (I.C. Removal Tool), Westover House, West Quay Road, Poole, Dorset BH15 1JG.
(Please do not enclose any other correspondence.)

3.3 INSTANT CIEAR SCREEN Th ROUTINE - TAKES NO USER RAM $3 \cdot 3$ SIMPLE INSTRUCTIONS FOR UPGRADING YOUR UK 101 TO SAVE AND LOAD AT 600 BAUD TWICE NORMAL SPEED!

Available ONLY direct from Premier Publications (Over 50,000 Programs sold to date)
Just send cheque/PO for $£ 19.95$, quoting product ref 101/C, to

Premier Publications

12 Kingscote Road Addiscombe Croydon Tel 01-656 6156 10-day money-back Guarantee of Satisfaction

ELECTRIC BICYCLE

The British company Lucas, of Birmingham, has been granted a string of patents over recent years for electric bicycles. The basic idea is to provide a bicycle with batteries built into the frame which can be pre-charged overnight and topped up during downhill or with-the-wind travel by a small generator. During difficult travel, for instance up hill or against the wind, the batteries can be discharged through a motor to assist the cyclist. Most of the Lucas patents now issuing relate to detailed improvements on the basic system so it is likely that before long an electric bicycle will be offered for sale. Moreover at least one Japanese company (Matsushita) also has a similar cycle under advanced development.

It is widely believed that the delay in commercial launch stems only partly from the expense of suitable batteries, because it is feared that under current legislation such cycles might fall foul of a punitive road tax. Commercial launch may therefore coincide with the promised end to vehicle road tax.

The latest Lucas patent (BP 1554161. issued under the old laws) proposes a novel approach to combined braking and power generation. As shown in Figure 1 the bicycle wheel rim is of conventional shape but
carries a series of permanent magnets 21. A generator stator 22 is secured on the front wheel frame fork and carries a series winding 26 which is connected to the bicycle battery by a full-wave rectifier. This connection is via a normally open charge switch which is incorporated in the handlebar brake control. When the switch is closed the rotating magnets generate $A C$ in the winding 26 to charge the battery, while at the same time producing a braking effect due to increased magnetic drag.

The brake control has a two stage action as shown in Figure 2. In the first stage, only the charge switch is closed to slow the bike and top up the battery charge. In the second stage, a conventional caliper brake functions in well known manner to provide extra mechanical braking. The idea is of course for the cyclist to use only the first braking stage wherever possible and so conserve energy. The second stage brake is only used in an emergency, where magnetic braking is insufficient.

MORE ON MULTIPLEX

It seems hardly credible that there is anything rtew left to patent in the design of multiplex stereo radio decoders. But Philips of Eindhoven in new British patent application 2021361 (filed under the new laws and dating back to 17 May 1978) lays claim to novelty in a modified circuit. It is interesting to note that Philips cite the new modification as applicable to the Technics ST8080 receiver manufactured by Matsushita of Japan. Although Matsushita and Philips are known to have some joint development projects e.g. on transistor technology, the patent suggests the possibility of unsung cooperation in other areas such as hi fi receiver designs.

In a stereo recelver the pllot tone lat 19 KHz) must be rejected or it will confuse the automatic gain control (and any Dolby
circuitry). Moreover any unwanted components which originate from the multiplex stereo signal may influence the frequency of the phase locked oscillator used for decoding.

Figure 1 shows the modified circuit layout. FM discriminator 4 outputs a composite of the multiplex stereo signal and pilot tone components.

Fig. 1
Decoder 5 includes pilot rejection filter 7 , synchronous detector 22 and matrix 15 for separating the left and right channel signals L,R for amplification at 34,35 and reproduction by loudspeakers 36,37. Decoder 5 includes a phase-locked oscillator 10 which produces a 76 KHz signal. This is halved and fed to one input of demultiplexer 14. The oscillator phase is locked by double-balanced phase detector circuit 8 which includes a differential amplifier $26,27,28$. A first input of the differential amplifier is coupled directly to the stereo decoder and the second input is coupled to the output of pilot tone rejection filter 7. The composite signal including the 19 KHz pilot tone is thus applied to one input of the differential amplifier and the composite signal without the 19 KHz pilot is applied to the second input. The in-phase components of the composite signal which are common to both inputs cancel one another so that only the 19 KHz signal component appears at the output. This output is therefore free from any signal components originating from the audio content of the composite signal. The phase locking of the oscillator 10 is thus rendered immune from disturbance by any such residual components.
MOTORING
SOLID STATE CAR INSTRUMENTS by Michael Tooley B.A. and David Whitfield B.A., M.Sc.

1. BATTERY VOLTAGE INDICATOR
2. REV COUNTER2
3. AMMETER 7
4. ENGINE TEMPERATURE 10
5. DWELL METER 13
HAZARD WARNING AND CASCADING16
HEADLIGHT WARNING by P. G. Wagstalf 21
AUTOMATIC CAR AERIAL by S. M. Bennett 24
HOUSEHOLD
DIGITAL TEMPERATURE CONTROLLER by D. Coults and P. McAllister 27
ULTRASONIC BURGLAR ALARM by G. Davies 32
HOME FREEZER ALARM by P. E. Chaplin 37
PHOTOGRAPHIC
PE DIAMATIC by J. R. Ames B.Sc., and W. L. Blyth B.Sc. 40
DIGITAL EXPOSURE TIMER by John Becker 55
MUSICAL EFFECTS
SMOOTH FUZZ by D. S. Gibbs and I. M. Shaw C. Eng. M.I.E.E. 62
PHASER by D. S. Gibbs and I. M. Shaw C. Eng. M.I.E.E. 65
GUITAR SOUND MULTIPROCESSOR by Dr. M. Sawicki and A. Kowalewski B. Sc. 69
RADIO CONTROL
R. C. FAILSAFE by Tony Jenkins 85
TEST GEARWAVEFORM GENERATOR by Michael Tooley B.A. and David Whitfield B.A., M.Sc.88
PULSE GENERATOR by Michael Tooley B.A. and David Whitlield B.A., M.Sc. 93

PRACTICAL
 A PRACTICAL

With electronics playing such an important role in every aspect of modern living PE have pleasure in presenting the pick of some of its most popular projects in this 96 -page book. Two of these projects are completely new, the remainder are as originally publis hed in PE save for the incorporation of certain desginer approved amendments or corrections.

Our new book PE Popular Projects is now on sale at newsagents and component stores; the contents of this book are shown above. The book costs $£ 1.25$ from retail outlets and is also available for $£ 1.50$, UK post paid or $£ 1.80$, overseas surface post paid, from Post Sales Department (PE Popular Projects), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.

Ner woill

GREENHOUSE TEMPERATURE CONTROLLER

DIEGTAL TACHOMETER

Using a reflective opto switch, the r.p.m. of almost any revolving object can be displayed digitally. All that is required is the application of sticky tape to the shaft or wheel to be measured, to act as an optical marker.

Also: BENCH POWER SUPPIY UNIT

PRACTICAL

OUR JUNE ISSUE WILL BE ON SALE FRIDAY, 9 MAY, 1980

Metar
 ELECTRONICS \& TIME CENTRES

QUARTZ LCD
11 Function
Slim Chronograph

6 digit, 11 functions, Hours, mins., secs., day date, day of week,
$1 / 100$ th, $1 / 10$ th, secs.
10X secs., mins.
Split and lap modes.
Back-light, auto calendar.
Only 8 mm thick.

Stainless steel bracelet and back.
Adjustable bracelet.
\qquad Also availabie. SOLAR CHRONOGRAPH M9 M9 .
SAME DAY DESPATCH.
M3 Price includes POST \& PACKING

QUARTZ LCD

Ladies Day Watch
Hours, mins., secs., dav.
date, back light, auto
calendar

Fully adjustable bracelet
Only $25 \times 20 \mathrm{~mm}$ and 6 mm thick.

Silver or Gold.
Price only £7.95
M15 SAME DAY DESPATCH. P.\&P. included

HANIMEX Electronic LED

 Alarm ClockFeatures and Specification:
Hour, minute display. Large LED display with p.m. and alarm on indicator. 24 Hours alarm with on/off control. Display flashing for power loss indication. Repeatable 9 -minute snooze. Display bright/dim modes control. Size: $5.15^{\prime \prime}$ $\times 3.93^{\prime \prime} \times 2.36^{\prime \prime}(131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm})$. Weight: $1.43 \mathrm{lbs}(0.65 \mathrm{~kg})$.

M13

Price only Mains operated.
E10.20

QUARTZ LCD

ALARM
with Snooze Alarm

6 functions plus Alarm Conference signal.
5 minute snooze alarm,
Conference signal sounds 4 secs. before main alarm to give advance warning and an option to cancel Snooze sounds 5 mins. after main alarm and is always preceeded by the conference signal.

Price only
M4 Price includes POST \& PACKING

QUARTZ LCD

Ladies Cocktail Watch
Beautifully designed with a very thin bracelet.

Hours., mins., secs., day, date backlight and autocalendar. Bracelet fully adjustable to suit slim wrists. State Gold or Silver finish. Only $25 \times 20 \times 6 \mathrm{~mm}$. M18 SAME DAY DESPATCH.

QUARTZ LCD

5 Function
Hours, mins., secs., month, date, auto calendar, back light, quality metal

M1 SAME DAY DESPATCH. E6.95

QUARTZ LCD ALARM CHRONOGRAPH with 12/24 display

Hours, mins, secs, day of week. Month, date, day of week, alarm. hour, mins, a.m./p.m. 24 or 12 hour display mode. Alarm test.
Chronograph, lap
time, stop watch $1 / 10$
Price only £13.95
Also available: SOLAR ALARM CHRONO M7 \qquad
Price $\mathbf{£ 1 7 . 9 5}$

M16 Price includes POST \& PACKING

METAC GUARANTEE

All METAC products carry 12 months guarantee and we also refund your money if not satisfied with our goods or service in the first 10 days.
METAC's well equipped service centre minimises service delays. Please note, we do not delay your order to clear cheques.

Telephone your order using
Barclaycard/Access
Number on on

03272 . 76545

 01-723 475324 hour answering service OR COMPLETE THE
P.\&P. included

WHOLESALE MAIL ORDER

Send for our trade price list and order details. Sell our products to your friends and earn yourself
£££'s

NEW 24 HOUR DESPATCH SERVICE

METAC have opened a new even faster Mail Order and Service Centre at DAVENTRY. Orders received before $3.30 \mathrm{p} . \mathrm{m}$. will be
despatched same day.

VISIT OUR ELECTRONIC TIME CENTRES

 AND SEE ONE OF THE MOST IMPRESSIVE QUARTZ WATCH RANGES IN BRITAIN| LONDON | DAVENTRY | NORTHAMPTON |
| :---: | :---: | :---: |
| 327 EDGWARE ROAD, | 67 HIGH STREET, | ST. GILES SQUARE, |
| LONDON W. 2 | DAVENTRY, NORTHANTS. | NORTHAMPTON |
| Telephone: $01-7234753$ | Tel: $0327276545 / 77659$ | (Opens 1st February, 1980) |

QUARTZ MELODY

Alarm Chronograph
incredible watch 34 Functions

5 independent working modes, day of week in English, French or German. (Just select the one you like). Hours, mins., secs., day, date, countdown alarm, dual time zone, $1 / 100$ th sec., stopwatch. Lap/split time, 1st and 2nd place times. Melody test function.
M30 SAME DAY DESPATCH.

Price only
£19.95
Price includes POST \& PACKING

SEIKO
CHRONOGRAPH

Hours, mins., secs., and day of the week. Month date and day of the week. Stopwatch display Hours., mins., secs., up to 12 hours (mins., secs. $1 / 100$ secs. up to 20 minutes). Lap timing. Continuous time measurement of two competitors. Stainiess steel, mineral glass.

Price only E39.95
SAME DAY DESPATCH. including POST \& PACKING

CASIO CHRONO

950S - 32B
Stainless steel case, water resistant to 66 feet. Hours, mins., secs., am/pm, year, month, date, day. Auto calendar. Pre-programmed until the year 2029. 12/24 hour. Stopwatch function. hour. Stopwatch function.
Range 7 hours, $1 / 100 \mathrm{sec}$. Range 7 hours, $1 / 100 \mathrm{sec}$.
(Mode) Net time/lap-time/ (Mode) Net time/lap-t
Ist - 2nd place times. Ist - 2nd place times.
Dual time function. Accuracy 15 secs. per month. Battery life approx. 4 years.
M22 SAME DAY DESPATCH.

Price only E23.95

CASIO ALARM

CHRONO

81CS - 368
Hours, minns, sech., day.
and aliso der, month and and alco dov., month and
 chronogruph zo 7 hours Nef time/hac/time/13t optional $12 / 24 \mathrm{hr}$, displiav.
24 Alerm 24 Alerm. User oprional,
hourly Chime. Becktight:. hourly chime. Becklighe
mineral gimss, stainiess troel. Woter resistent to 100 ht . Bartery life M25

SEIKO ALARM

 CHRONOGRAPHWith WE EKLY Alarm, Hours, mins., secs. month, date, day, am/pm. Weekly alarm - can be set for every day at designated time, e.g. 6.30 am on Monday. Wednesday and Friday. Alarm set time displayed above time of day. Full stopwatch functions, laptime, split etc.

CASIO F-200

Sports Chrono

 Attractive Mans watch in black resin with mineral glass. Hours, mins., secs., am/pm. Month, date, alpha-numeric day. Auto calendar set 28 th Feb. Calendar set 28 th Feb. Stopwatch working range 1 hour, units $1 / 100 \mathrm{sec}$ Mode, Net Time/lap/ time/1st - 2nd place times. Accuracy approx. 15 secs. per month. Battery 12 months. M24 SAME DAY DESPATCH. £15.95

CASIO F-8C 3 year battery life

Hours, mins., secs., am/pm, date, day Auto calendar set 28th February.
Accuracy 15 secs. per month.

Battery life approx. 3 vears.
 M36 SAME DAY DESPATCH. $£ 10.95$

SEIKO DIGI-ANA CHRONOGRAPH

TIME AND CALENDAR FUNCTION
Analog part display Hour, mins., secs. Digital part display: Hour, mins., secs., date, day and colon. Calendar-month, date, day, stopwatch - Hour, mins., secs. 1/100 secs. LAP/ STOP and stop marks. Counter-function. Time and calendar setting function.

Price only
same day despatch.
£79.95
M62 \qquad including POST \& PACKING

POST COUPON TO: METAC (24 hour despatch centre), FREEPOST, 47a High Street, Daventry, Northants.
PLEASE COMPLETE BOTH COUPONS

FROM:
METAC ELECTRONICS \& TIME CENTRE, 67 HIGH STREET, DAVENTRY, NORTHANTS.
I enclose P.O./Cheque value
Barclaycard/Access No.
Name
Name
Address
Address \qquad
\square
\qquad

A selection of readers' original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Why not submit your idea? Any idea published will be awarded payment according to lts merits.
Articles submitted for publication should conform to the usual practices of this journal. e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersignied, and that it has not been accepted for publication elsewhere.

RHYTHM GENERATOR FOR MINISONIC

N view of the cost of rhythm generator i.c.s, synthesiser buffs may be interested in this cheap alternative. Using only three logic i.c.s the circuit produces a sequence of four 'notes' in its basic form.

A low frequency square wave is fed into the clock input (Fig. 1) and the two flipflops produce complementary outputs at one half and one quarter of the clock frequency. These, together with the clock pulses, are gated as shown to generate a sequence of four pulses A.B,C,D, which then repeat. The functioning of the logic can be readily understood by referring to Fig. 1b.

Each of the output pulses is attenuated to the desired voltage level and fed to the unity-gain inverter, IC4, thus giving the negative-going control voltages necessary for the Minisunic oscillators. The prototype was constructed using TTL but in view of the heavy current requirements and consequent unsettling effects on power supplies, it may be advantageous to replace the above chips with the corresponding CMOS equivalents. A suitable clock is shown in Fig. 2; it is a quite ordinary astable multivibrator (TR I and TR2), TR3 buffering the output. with the advantage that the mark and space lengths of the output waveform are individually controlled by VR1 and VR2. BC548s are plastic BC108s-about the cheapest transistor on the market.

The output voltage may also be used to control the centre frequency of the Minisonic filter which. when fed with white noise, will produce a wide range of interesting effects. With added envelope shaping of each output pulse, realistic drum sounds can be produced.

Fig. 1 (b). Timing diagram
directly from the monostable-both systems are at work in the author's synthesiser.

The versatility may be improved as follows: a multi-way switch can be added so that the reset pins of ICI are connected to a given output, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$. Thus the cycle length is selectable, either one-one-one-, one-two-one-two, one-two-three-one-twothree. or one-two-three-four-etc. A further multi-way switch can be added to change the order of A, B, C, D, so that, for example, a given sequence could be reversed. By suitably gating the clock together with the "gaps" in the output pulse-train, an extra

Fig. 2 Clock

Fig. 7

Fig. 6

Fig. 4

With the monostable and trigger circuit of Fig 3 attached to ES/VCA 1 , and using ES/VCA2 in parallel, it is possible to
simulate a full Attack-Decay-SustainES/VCA2 in parallel, it is possible to
simulate a full Attack-Decay-SustainRelease envelope, even though the existing envelope shapes are just Attack-Sustain-
Release (see Fig. 6). This greatly increases envelope shapes are just Attack-Sustain-
Release (see Fig. 6). This greatly increases the versatility of the Minisonic as it makes it possible to produce sounds like pianos,
harpsichords, trumpets, or any sound it possible to produce sounds like pianos,
harpsichords. trumpets, or any sound which requires a louder portion (or "thump") at the beginning of the envelope. The trick is to feed an oscillator into both
VCAs in parallel and set the volume conThe trick is to feed an oscillator into both
VCAs in parallel and set the volume control of the first to give a higher output than the second; the volume control on the second then sets the sustain level. The
(Fig. 5
set of four control voltages can be derived, providing an eight note sequence. In order to tune each note of a sequence, the "stepping" circuit of Fig. 5 may be used, temporarily substituted for the clock.
monostable period should be kept short when simulating conventional instruments, as should the attack and decay times of ESI. The outputs of both VCAs can then be mixed into the filter to complete the sound treatment.
Indeed, if the voltage control envelopes of both shapers can be mixed into the envelope inverter and used to control the VCF, the effect can be quite startling, not least in the field of imitating brass instruments. The sustain time is as long as the key is depressed.
If a two-pole keyboard assembly has been used, providing -9 V trigger voltages.
the circuit of Fig. 7 can be used to change these to positive voltages to trigger the monostable. The divider chain R3 and R4 is necessary to prevent damage to the 741 from applying too high a voltage to its input. If however the HF Oscillator and Detector circuit has been used in the Minisonic, then the circuit of Fig. 7 is superfluous as the output of IC2 in the HF Detector can be used to trigger the monostable directly.

A. R. Bradford,
Erdington,
Birmingham.

ALTHOUGH numerous circuits for this application have been published, this one is unique in that it provides separate indication of under, over and correct voltage without the use of transistors of i.c.s.

When the voltage is below 11.7 volts, the under voltage l.e.d. (D4) lights. When the voltage is between 11.7 and 14.2 volt, the correct voltage I.e.d. (D7) lights. When over 14.2 volt, the over voltage l.e.d. (D5) lights.

Only one l.e.d. is ever on at a time, and transitions are remarkably sharp.

Average current taken is $50-60 \mathrm{ma}$. All l.e.d.s must be the same colour, and the two diodes silicon.
A. Dames,
Kings Heath,
Birmingham.

CAR BATTERY

CHARGE

INDICATOR

TTL STAIRCASE GENERATOR

Fig. 1

This staircase generator is built around a TTL 7490 i.c. (Fig. 1). The frequency is controlled by a standard u.j.t. oscillator followed by a switching transistor to ensure clean pulses aré applied to the counter. The frequency is wide up to 100 kHz . The binary coded decimal output from the decade counter is used to pass current through resistors $4 \mathrm{R}, 2 \mathrm{R}$, and R forming the upper arm of a voltage divider. The resistors are in the ratio $4: 2: 1$ to give linear increments but may be altered to
provide interesting cyclic effects especially if passed through the oscillator shown below (Fig. 2).

Possible values for these are:
$4 R=22 k+18 k$.
$2 R=10 k+10 k$
$\mathrm{R}=10 \mathrm{k}$
As the lower limb has a fixed value, the output voltage is proportional to the current through these resistors. The number of steps is dependent on the BCD output from the i.c. gives eight steps.

The decade counter, 7490 , may be substituted by a 4 -bit binary counter 7493 and a full 16 steps made available with the addition of another diode and suitable resistor. The diodes are necessary to any outputs that go low upsetting the voltage of the divider.
B. Bell,

Poole,
Dorset.

SIMPLE D.C. POWER CONTROLLER

T- he circuit consists of a zero voltage detector (TR1 and TR2), a unijunction transistor oscillator and a thyristor for controlling the power to the load from an unsmoothed d.c. power source.

If the supply voltage is above about IV then TRI will conduct hard and hence TR2 will be switched off. When the supply voltage falls below 0.7 V TRI will turn of and TR2 will conduct, discharging C1. Hence. at the start of each half cycle Cl will have been discharged through TR2. As the supply voltage starts to rise, TR2 will switch off and C1 will start to charge through R3 and VRI until the voltage at the emitter of TR3 is sufficient to cause conduction, at which point a pulse will be applied to the gate of CSRI causing it to conduct. By varying VR1, the point in the mains cycle at which this occurs can be varied from near the end of the half cycle to near the beginning, hence giving phase related triggering of the SCR.

CSR! is provided with a small heatsink when used at near maximum current. The circuit has been used successfully for controlling low voltage motors and lamps. By charging RI, VR1 and R4 the circuit can
readily be adapted for working at different supply voltages.
J. M. Lucas, Allestree, Derby.

CURRENT/VOLTAGE REGULATOR

THE circuit shown is for current/voltage control of a car dynamo.
IC1 operates as the voltage regulator, comparing a fraction of the potential across the battery with a reference voltage generated by D1. The output of ICI controls the current to the field coils of the dynamo via D2, D5, TR2 and TR 3 .
IC2 limits the charging current to prevent overloading of the dynamo. The charging current is sensed by the potential drop across series resistor R8. When this reaches a limit set by VR2, IC2 comes out of negative saturation and reduces the field current by means of D3, D5, TR2 and TR3.

D4 acts as the cut-out, preventing reverse flow of battery current through the dynamo. R9 and TR1 switch on the supply to the regulator when the dynamo output rises above a few volts, thus preventing excessive drain on the car battery when the engine is stationary. The negative saturation output of IC1 and IC2 will be a few volts above the negative line; D5 prevents this voltage from turning on TR2. D6 suppresses any positive-going transients from the field coils which might damage TR3. The circuit shown is suitable for positive earth vehicles.

In the prototype, R8 was wound from 0.7 m of $18 \mathrm{~s} . w . g$. enamelled copper wire. This was for a maximum dynamo output of 22 amps , and should be adjusted as necessary for other dynamo current ratings. TR3 and D4 should be mounted on a substantial heat sink. The circuit can be housed in an old regulator casing, the terminals being wired to the circuit as
shown. It should be remembered that the negative line carries the full dynamo output and so should be fairly substantial.

VR1 should be adjusted to give an output of 14.2 volts and VR2 adjusted to give the required maximum current.
A. J. Chadwick

Stockport
Cheshire

than the pulse width, to obtain a steady output. If a non-fluctuating output is available on an AM indicator, the demodulator will not be essential (although it does debounce the set switch) and the diode and R and C can be omitted. If the high signal is on PM, the output from the demodulator must be inverted. The 4022 will then be clocked at midnight, either by the AM indicator coming on, or the PM indicator going off. The days are set by pressing the set switch repeatedly until the

correct day is indicated. Setting must be done when the $\mathrm{AM} / \mathrm{PM}$ indicator is high.

On the days selected by closing the appropriate switches, a high is fed to the Alarm Enable input, and the alarm sounds at the time set.

If a high enable signal is not suitable for the clock used, then an inverter might be needed.
A. M. Tucker

Dorchester
Dorset

FOUR STATE

THE circuit shown enables a twocolour l.e.d. to be converted into an indicator capable of showing four states, by four different colours. For those not familiar with a two colour l.e.d., it consists of two l.e.d.s, one red and one green, built into a conventional $0 \cdot 2$ in l.e.d. package, the two diodes being connected back to back. This device is not very common, but is available from the larger component suppliers.

The circuit consists of a variable markspace oscillator based on a NE555 timer integrated circuit operating at about 300 Hz . The timing capacitor CI charges via the upper half of the preset in circuit, R3, and D2, and discharges through D3, R4, and the lower half of the preset, thus the four presets VR2-5 set the mark-space ratio.

Initially Cl is temporarily replaced by a $2 \cdot 2 \mu \mathrm{~F}$ capacitor, which slows down the oscillator. VRI is then adjusted so that

with one of the four timing presets in circuit, both the red and green I.e.d.s glow with equal brightness. R1 and R2 ensure. that D1 is not damaged in this procedure. The correct C1 is then placed in circuit, and each of four timing presets adjusted so that the colours red, orange, yellow and green are obtained when the appropriate point A, B, C, or D is connected to X . The different colours are produced by switching the red and green l.e.d. on alternately in various ratios.

The switching necessary to select one of the colours by connecting A. B. C. or D to X can be performed by either using a four way switch, or a CMOS 4016 quad switch i.c. The circuit does not function very well with supply voltages of less than 7 volts, and if operation over 9 volts is required, R1, R2 and VR1 should be selected so that a maximum current of 20 mA flows through DI in either direction.
V. V.Shah,

Wellingborough,
Northants.

CAR COURTESY LIGHT TIMER

THE diagram shows the circuit of a simple courtesy light timer which will hold the interior light on for approximately 15 seconds after the car doors have been closed. This allows ignition keys and seat belts to be easily found in the dark.
ICla and ICIb form a monostable whose period is set by R4 and C2, and is triggered when the door switches S1, S2 are opened by closing the car doors. R2, R3 and C1 debounce the signal from the door switches so that the monostable does not trigger when the door is first opened.

Operation of the interior light before the monostable has been triggered is ensured by wiring ICIC and IC1d to perform an OR function on the signal from the door switches and the output of the monostable. IC1d drives the interior light LP1 via TR1 and TR2.

The circuit shown is for positive earth vehicles with ICI being a 4011. For negative earth vehicles ICl should be a $4001, C 2$ should be reversed and TR1 and TR2 should be replaced by their complements.

The period of the monostable is given approximately by 0.6 RC but will probably have to be adjusted by altering R4 or C2 because of the tolerance of C2 and the spread of transfer voltage for ICI.

The circuit can be made small enough to fit into the courtesy light housing. The quiescent current is a few microamps.
A. Chadwick

Stockport
Cheshire

Now there's no excuse for not learning about microcomputers, for this could be the ultimate microprocessor course. Study at home or school with the aid of the accompanying manual, and learn, hands on, how to make the "chip" do what you want it to do, working with your own personal machine.

You may hear Edukit called the "throw away" computer! Well, maybe the price is throw away, but Edukit is a training tool that can be put to good use in its retirement. Here are some vital statistics:

18* RCA COSMAC $1802 \mu \mathrm{P}$

* $130 \times 210 \mathrm{~mm}$ glass fibre p.c.b.
* Twenty switch keypad-sixteen hexadecimal keys plus four control keys.
* Two 2111s (organised as 256 bytes of memory)
* Users Club for cross pollination of ideas and applications.

See last month's Practical Electronics for a full review of Edukit.

To: Modus Systems Ltd., 29a East Cheap, Letchworth, Herts. SG6 3DA

Edukits at $£ 34.10$ each
I enclose P.O./Cheque No Value.......

Name
Address .

Please allow 28 days for delivery OFFER CLOSES FRIDAY MAY 30th 1980 Name
\qquad

From: Modus Systems Ltd., 29a East Cheap. Letchworth, Herts. SG6 3DA. Tel: 0462674468

TRANDAM

COMPONENTS AND SYSTEMS FROM TRANSAM COMPUTERS

-CP/M - BASIC -PASCAL

TRITON IS IMPRESSIVE!
PRACTICAL COMPUTING REVIEW DEC. 79.

TRITON

COMPUTER

SYSTEM.

Designed for ease of construction and flexibility. Kits come complete and all components and software are available separately. UK designed and supported. Fully documented hardware and software and a totally flexible approach to system building. Powerful and easy to use system monitors - a range of languages available. Firmware is Eprom based and upgrading from one level to the next is easy.

L5.2 with $1.5 k$ monitor $2.5 k$ basic $£ 294.00$ - L7.2 with $2 k$ mon $8 k$ extended basic $£ 409.00$ - L8.2 $4 \mathrm{k} \mathrm{ed} / \mathrm{mon} 20 \mathrm{k}$ res pascal 409.00
$\varepsilon 611.00$ L9.2 CP/M disc based system - 8k ram card kit (21141) - 8k eprom cards (EXCL 8-2708) - Motherboard expansion 8 slot - Trap-res assm/edit etc (8-2708) - Transam BD80 bi-dir printer TVM 10 video monitor 9^{*} - Eprom prog (2708) kit

SEND FOR OUR CATALOGUE FOR FULL
DETAILS OF TRITON FEATURES

FULL RANGE OF MICRO SUPPORT CAIPS - INSTOCK										
SN741500	22	SN74S54N	21	SN74LS138M	SN74LS195AN 85	SN7	SUPP		Rums	
SN74LS01N	22	SN74LS55N	21	SN74LSI39N	SN7ALST96N 120	SN74LS326N 2.5	8212	220	2101	2.32
SN74LS02N	21	SN174LS63N	1.50	SN74LS145N 120	SN74LS197N 120	SN74LS327N 256	8216	2.0	21024	1.20
SN74LS03N	2	SN74S73N	35	SN74LS148N 1.76	SN74LS22W 125	SN74LS352N 1.\%	8224	2.10	2111	2.32
SN74LS04N	20	SN74 514 N	40	SN74LS151N	SN74LS240N 220	SN74LS353N 150	38531 IF	10.00	2112	2.45
SN74LSO5N	2	SN74LS75N	4	SN74LS153N 80	SN74LS241N 1 100	SW74LS365N ${ }^{\text {d }}$	8228	4.2	6810	4.00
SH74LS08N	20	SN74LS76N	35	SN74LS154N 1 \% 0	SN74LS242N 100	SN74LS386N I6	8126A	1.76	8154	1150
SN74LSO9N	22	SN74LS78N	35	SN74LS155N 125	SN74LS243N 106	SN74LS367N	8128	1.90	21141-450	6.50
SN74LS10N	18	SN74LSB3AN	1.15	SN74LS156N 125	SN741S244N 210	SN74LS368N is	6522	1.76	2114.250	1.60
SNTALSIIN	23	SN741S85N	1.10	SN74S157\% 0	SN74LS245N 300	SN74LS373N 1.75	8251	5.00	74 C920	11.00
SN74LS12N	26	SN74LS86N	40	SN74LS158N	SNA7LS247N 126	SN741 S374N 1.70	8253	11.00	74C921	11.00
SNT4LS13N	55	SN74ISSON	${ }^{6}$	SN74LST60N 1.15	SN74LS248N 108	SN74LS375N 72	8255	6.00	74C929	1100
SN74LS14N	0	SN74LS91N	n	SN741S181N 1.16	SN74IS249N 130	SN741 S377N 1.75	8257	1100	4027	6.00
SN74LS15N	26	SN74LS92N	0	SN74LS162N 1.18	SN7MS251N 146	SN74LS378N 1.3	8259	12.60	4044	7.00
SN74LS20N	20	SN74LS938N	${ }^{6}$	SN74LS163N 0	SN74LS253N 126	SM74iS379N 1.00	8155	12.60	4045	7.00
SN74LS21N	2	SN74LS95AN	120	SN74IS164N 150	SN741 S257N 120	SN74LS381N 105	6402	5.00	4080	100
SN74LS22	21	SN74LS96N	1.75	SN741S165N 1.70	SN74LS258N 0	SN74LS386N 67	68219	4.60	2107	1.60
SN74LS26*	2	SN74LS107N	31	SN741S188N 1.76	SN741S259N 146	SN74LS390N 100	6850 P	4.60	411615	1800
SN74LS27N	36	SN74LS109N	3	SN74LS168N 185	SN74LS260N 30	SN74LS393N 150	8852P	5.50	4118	2000
SN741S28N	36	SNT4LS112N	3	SN74LS169N 186	SN741S281N 3.50	SN74LS395N 1/0	AY. 5.2376	11.60	280P10	1.00
SN74LS30N	26	SN745113*	4	SN74LS170N 2.50	SN74LS286N 30	SN74LS396N 1.70	MC14411	12.00	z80CTC	1.00
SN741S32N	27	SN741S114N	4	SN741S173N 220	SN74 S273N 185	SN74LS398N 276	M57109	12.43	280AP10	1.50
SN74LS33N	3	SN74LS122N	7	SN741S174N 1.16	SN74LS279N 7	SN74LS399N 1.00	M57160	10.00	280aCIC	1.60
SN741S37N	21	SN74LS123N	90	SN74LS175N 106	SN74LS280N 1.75	SN74LS424N 4.50	M57161	10.00	EPhoms	
SN74LS38N	2	SN74LS124N	150	SN74LS181N 276	SN74LS283N 1 100	SN74LS445N 126	TMS8011	5.00	1702	500
SN744S40N	26	SN74LS125N	8	SN74LSI90N 176	SN741S290N 180	SN74LS44TN 125	811595	1.80	5204	6.00
SN74S42N	78	SN74ST126N	${ }^{5}$	SN74LS191N 1.76	SN744S293N 1 即	SN74LS490N 195	811596	1.60	2708	100
SN74S47N	96	SN74LS132N	76	SN74LS192N 145	SN74LS295AN 220	SN74LS668N $\%$	811597	180	2518	2600
SN74LS48N	16	SN74LSI33N	31	SN74 S193N 175	SN74LS298N 270	SN74LS669N 86	81 LS98	1.60	2532	50.00
SN74LSA 9N	100	SN74LS 138 N	40	SN74LS1944\%18	SN74LS324N 1	SN74LSETON 27				

DPS. 1 MAINFRAME - PASCAL SYSTEM

S100 to IEEE spec
 Sond 30 Por our
ITHACA catologue.

S100 BOARDS 8k Statlc RAM board (450ns) 899.00 280 cpu board (2 MHz) $\begin{array}{ll}280 \mathrm{cpu} \text { board }(2 \mathrm{MHz}) & \mathrm{E} 105.00 \\ 280 \mathrm{cpu} \text { board }(4 \mathrm{MHz}) & \mathrm{E} 123.00 \\ 2708 / 2716 \mathrm{EPROM} \text { board } & \mathrm{f} 57.00\end{array}$ 2708/27 16 EPAOM board Prototype board (bare board)
Video display board ($64-16$ Video display board (64-16,
$128 \mathrm{U} / \mathrm{LAscu}$) K2 disc operating system ASSEMBLE/Z Macro Assm PASCALZ compiler
PASCAL/Z CP/M
16k Static AAM

VISIT OUR SHOWROOM

WE ALSO STOCK:- a comprehensive range of books and magazines,
VERO products including S100 and VERO products including S $\$ 100$ and Eurocard and Ware Wrap
equlpment, Weller soldering equipment. Albbon Cables, tools, tapes, dikettes, connectors and OK Tool range. Systens continuously on disolay in our showroom.

Caystals

Chystals		4 MHz	2.10	f8 338501	4.50	
100k	3.00	4.43 M	100	8080 A	1.33	
200k	3.70	5 MHz	2.70	6809	24.00	
1 MHz	3.00	6 MHz	2.70	280	1.00	
1008k	3.50	7 MHz	2.70	2804	15.00	
1843k	3.00	7.168 M	2.60	8085A	12.85	
2 MHz	150	8 MHz	2.70	6502	1.00	
2457k	305	10 MHz	2.70	SCMP11	10.00	
3276k	2.70	10.7M	2.70	8802	13.86	

ALL PRICES

Exclude VAT \& P/P
VAT 15\% P. \& P. 40p on small orders. For larger items ploase Tel. Toleenhone credit acrat orders

CP/M avallable now for TRITON

lition with coxt oditor menagement Moyer, syatem fully CP/M competible file able to run CP/M besed software. Triton will support up to four $5 t$ or 8° drives single or double denalty full CP/m sotware user group facilitios available. SAE for details. CP/M Diek + menueis (6) $\mathbf{2 7 5 . 0 0}$

DISK DRIVES \& POWER SUPPLIES

SA400 $5 j^{\prime \prime}$ drive
SA800 8° drive
£205.00
$f 380.00$
Power one quality power supplies

c 33.00
CP205 $1 \times 8^{\text {F PSU }}$
660.00
$\mathbf{5} 56.00$

CP206 $2 \times 8^{\prime \prime}$ PSU
56.00
$\mathbf{8 7 6 . 0 0}$

TCL PASCAL - CP/M COMPATIBLE A standard Pascal compiler available on a resident (20k) Eprom based conflguration or available to run under CP/M on $8^{\prime \prime}$ disc plus documentation. CP/M version £90.00.
-P.O.A. TCL Pascal Manual and specification $£ 6.50$.

DIL PLUG SOCKETS \& SWITCHES

W/WM	KT3	011 3kT3		dil plugs		dil Switcuis	
8015	0.20	8 OLL	4.14	1401 L	0.60	4012	120
140il	0.36	140IL	0.15	1601 L	0.65	7014	1.75
18012	0.42	16 OL	0.17	scot	$5 \times$	8014	1.40
18011	0.60	180 LL	0.24	140 IL	1.30	16 w 21F*	485
2401L	0.52	20 Cl	027	160 L	1.60	24w 21 F *	6.20
280IL	0.74	24012	0.30	24010	2.00		
4001L	0.85	28011	$\begin{aligned} & 0.36 \\ & 0.60 \end{aligned}$	2FROIMSERTIOW FOnC			

S100 DISC CONTROLLER
DOUBLE DENSITY
As used on Triton. Fully buik
will drive 8×8^{n} or $8 \times 5 \ddagger^{\prime \prime}$ drives
with all Shugar senver. Works
with all Shugart compatibles. Uses the 1791 chip
drive
on board crystal - CPU independent

MULTIWAY CONNECTORS

CATALOGUE

Tel: 01-402 8137 Telex: 444898

by K. Lenton-Smith

Manufacturing concerns face many problems in this era of rising costs, industrial unrest and highly variable exchange rates. In addition, common sense dictates that they should only make what they can reasonably hope to sell: those in the electronic music field, whether manufacturing or providing components, are no exception. Expediency must therefore be one of the main considerations when deciding what to offer to the public. Perhaps the finished article is not quite what the makers had intended originally but, though understandable, compromises do not suit all prospective purchasers.

CASEWORK

The design of today's electric guitar is often ugly and decidedly gaudy, possibly to match the shrieks they are made to produce in public performance (groups have been known to destroy their guitars on stagell. In this instance, the ferocious and jagged shapes available are largely in keeping with their purpose as most purchasers probably aspire to group fame.

Organs, rather than the more functional synthesiser, are mostly destined for the home performer whose instrument will become part of the furniture-in every sense. I do not feel that the mass of multicoloured controls, looking like something from a space-age comic, are necessary or desirable. Colour coded stop tabs (White for Flutes, Red for Reeds and Yellow for Strings) have been a standard for a long time and are totally sensible, but every additional gimmick seems to have yet another colour devoted to its control button. The end result might be better used as a CTV test transmission card than as furniture to grace a living room. No doubt this trend is a selling point, but I much prefer yesterdays console with its sober black and white controls.

R.U.CHIPS

Most of these perform well when producing Latin-American rhythms, but give them the apparently simple task of a Fox Trot, Quickstep or Waltz pattern and they are highly disappointing. I wonder whether musicians used to these devices are ever consulted at the design stage: more often than not, as the pulses are divided down into small incrementsperhaps even demi-semiquavers-the designer tries to put too much into these simple patterns and the result is even more boring and repetitive-sounding than ever.

Rather than set down my objections by means of musical notation, I would suggest that the M252 and M253 chips are typical in this respect.
A simple Fox Trot pattern would be preferable, for example, as it is quite easy for a player to get off the downbeat accidentally and so make the 'twiddles' in the second bar sound worse than ever. The various instruments-damped Twin-T oscillators that can be built round a gate-are simple to build: what would be useful is an updated version of a programmable unit (P.E. published just such a circuit some years agol that would allow the user to set it up exactly as required.

YEARS AHEAD?

Philips unveiled the TDA1008 in 1978, this divider-keyer being covered by your reporter in this column at the time. Up to that date, the AY-1-0212 had been the standard TOS for polyphonic instruments, but this device from Philips required an input frequency of some 4 MHz to enable it to be used to the full. One of the AY-3 series of Top Octave Synthesisers became necessary instead but readers' letters have highlighted a problem here. General Instrument Microelectronics make the AY-10212, which is easy to obtain, but buying their AY-3-0214 (and 0215/0216) is next to impossible. Clearly Philips will not sell many sets of TDA1008s if the matching TOS is unavailable; perhaps this company could persuade is stockists to hold the AY-3 series on their shelves, or better still produce their own TOS to match the TDA1008. All this could revolve round the expediency problem mentioned previously.

LEFT BEHIND?

Many beginners' instruments feature one-finger chords which may be pulsed through a lower manual gate fed from a rhythm unit. Fortunately, this facility can be cancelled as one-finger chords impose serious musical restraints and teach you very little. I agree that for the raw beginner they help in getting him off the ground but, assuming he is keen to progress, he will soon find the limited number of chords inadequate. For example, the 120 bass accordeon actually has 48 chords and 24 bass/counter-bass notes (the remaining buttons being duplicates) which is far in excess of the average organ or chord organ. Having to work out a chord in full demands more thought than finding a single button or key but the result will be superior and it
doesn't take long to remember the more commonly used chords.

Without applying special attack/decay characteristics, the electronic keyboard will sound as long as a note is held. Playing a piano score is therefore inappropriate as the piano has its own characteristics. If Chord Symbols are printed on the score, the left hand (and pedal, if appropriate) parts can be assembled from these.

CHORD SYMBOLS

The brief details that follow may help in finding chords from scratch, but first it is necessary to be able to play a major scale in any key: the various key signatures can be found in most piano beginner's books. Take the key of C, for example: counting from the keynote (C), D is the second note, F the fourth and G the fifth. These are intervals which, for this purpose, we can call 2,4 and 5 in this or any other major scale. To form any of the chords below, count the interval shown (flattening or sharpening by a semitone if b or \# indicated)

Typical Chord Intervals				
C	Major	1	3	5
Cm	Minor	1	3b	5
C7	Dominant Seventh	1	3	5
Cdim	Diminished	1	3b	5b
C+	Augmened	1	3	5\%
Cm 7	Minor Seventh	1	3b	5
Cm6	Minor Sixth	1	3b	5
Cmaj7	Major Seventh	1	3	5

The actual notes found can be rearranged in any order (by inversion) but it is best to try to fit these into a fairly small left hand compass-say from E below middle C to G above it. This will allow the left hand to remain in one area, the fingers making the changes: at 8^{\prime} pitch using this small keyboard area prevents chords from sounding muddy or competing with the melody line. Needless to say, the harmony found from the Chord Symbols can be used to expand the right hand melody into block chords. Though these hints may seem out of place in P.E., I do know of the difficulties that both purchasers and constructors encounter with piano scores. You can have fun with a simple 'Buskers Book' showing only melody and Chord Symbols, expanding as explained above. For a pedal part, simply use the keynote (1) and perhaps alternate on the fifth.

WORTH IT

Yes-it takes a little concentration, but if the reader has bought an expensive instrument it will pay to exploit its capabilities to the full: specifically arranged music is not always available. Light music is often written in keys that suit transposing instruments (Bb and Eb wind instruments), so the number of chords involved in music of this type tends to be fairly limited.

The reader who has had the tenacity to design and build his own instrument should not stop at that point ! Learning to play is simply an extension of the project. Or is it? ! find it sad that many constructors never learn to play the instrument that has taken so long to perfect.

2 5015 Mole

THIS final part deals with construction of the oscillator and amplifier board, power supply and receiver. Testing and setting up is also covered.

CONSTRUCTION

The signal levels in the osc./amplifier circuit are high, and significant interference is unlikely between the channels. A suitable circuit board, and the component layout is shown in Fig. 13.

First fix into position the eleven links. These are all low current, so 26 s.w.g. p.v.c. covered is suitable.

Fix into place the 45 resistors, 13 preset potentiometers, and 34 capacitors, noting the polarity of C52.

The voltage regulator IC2O has a heat sink identical to that used for IC13 on the logic board and is fitted in a similar way.

Next fit the transistors, TR2, to TR9, noting that the f.e.t.s are not all fitted the same way round.
D.i.l. sockets are optional for IC14 to IC18, but should not be used for IC19. On this device, the three centre pins on each side form the heat path to the circuit board and should be soldered directly to it. Finally, fix into place the four diodes.

TESTING

Connect the board positive and negative terminals to a variable power supply. Slowly increase the voltage, checking the regulator output voltage to ensure it stabilises at about 12 V , when the input voltage exceeds 14 V . With the input voltage at 18 V , the current supply should be about 35 mA .

Check the 6 V rail voltage, at C 52 positive connection, and that pin 6 on IC14 to IC18 are at the same voltage. The output, pin 8 on IC19, should be at half supply voltage, that is about 9 V .

For the next stage, attach temporary connections to the four logic circuit inputs, the 6 V rail, and negative rail. Connect an a.c. millivoltmeter or similar instrument to IC18 output, pin 6. Check that all the frequency adjusting potentiometers are at mid travel. With the d.c. test supply on, connect all the inputs to the 6 V rail and check that IC18 output voltage is low, that is, not exceeding about 20 mV r.m.s. Disconnect each input in turn and connect it to the negative rail. This allows the output from one of the oscillators to be amplified by IC18. Adjust the appropriate oscillator amplitude control potentiometer (VR13 to VR16) so that IC18 output voltage is 1.5 V when the oscillator voltage should be about 1.OV.

After adjusting the fourth oscillator voltage, check IC19 output, at pin 8 , and adjust VR 17 to give about 800 mV . All the above a.c. voltages are r.m.s. values.

POWER SUPPLIES

The rail supply transformer T1 should have a generous rating. This is necessary because of the high instantaneous current, when all the locomotives are moving in the same direction. This effect is more noticeable when they are all being moved at low speed, and all the triacs are switching on for the same short period in the supply cycle. This causes an appreciable instantaneous drop in the rail voltage, resulting in unwanted speed variations. The 55VA transformer used in both of the prototype controllers appears adequate for a small layout, where it is not possible to run the four locomotives simultaneously. The transformer secondary voltage should not exceed 20 V , or the rating of components in the receivers will be exceeded.

There is some latitude in the choice of the power supply transformer T2. The circuits require a maximum current of 300 mA , at 16 V to 20 V , the absolute limits being 14 V and 22 V . The transformer secondary winding can be 12 V or 14 V , and rated for 500 mA minimum.

I tried for a long time to get a reliable square wave representation of the supply voltage, using the rail supply transformer as the source. However, mainly because of locomotive motor noise, and a small but significant phaseshift in the secondary voltage between the loaded, and unloaded states, this failed miserably. The use of a separate transformer overcame this problem. The transformer T3 has a load of about 20 mA , and the secondary voltage can be from 18 V to 24 V , which should be rated for at least 30 mA .

A choke L1, in series with the rail supply transformer, limits the loss of control signals. In the original version I used a redundant loudspeaker crossover choke, which worked quite well. To make a suitable choke, wind 120 turns of 24 s.w.g. enamelled copper wire on to a 2 in . length of ferrite rod, $\frac{3}{8} \mathrm{in}$. or $\frac{1}{2} \mathrm{in}$. diameter. Wind in three layers over the centre inch of the rod, and secure firmly into place with adhesive p.v.c. tape. With independent control of the locomotives, collisions and derailments become very common until you

[F327]

Fig. 13. Oscillator and amplifier p.c.b. and component layout. The lettered inputs are connected to the logic board

become used to the controls. It is essential that the rail supply transformer is protected from the effects of these occurrences, but the use of a fuse could become quite expensive. Again, in the original version, I used an old 1 A d.c. rail cutout, with a 0.47 resistor connected across the coil to uprate it. In this version an R.S. 2A miniature circuit breaker is used. This is a thermally operated device, and is therefore insensitive to the current peaks that occur in normal use.

It is useful to have some indication that the rail supply is on, and that the circuit breaker has not tripped. This can most easily be provided by a lamp, connected to the rail supply terminals, and is therefore normally illuminated. I used an R.S. 6 V subminiature indicator, with a series resistor to drop

Oscillator and amplifier board

Logic board
the voltage at the lamp to about 3 V , as it does not need to be very bright.

The circuit diagram for the power supplies and interconnections is shown in Fig. 14.

CONSTRUCTION

The physical layout of the boards and power supplies, is not critical, except that the choke L1 should be kept clear of the metal work (Fig. 16).

The securing arrangement used for the boards incolves a little inetal work, but it allows any component on the boards to be changed easily. The dimensions for the metal fittings are shown in Fig. 17. If it is not intended to tap the holes, as shown in the end plates, thinner material can be used. The circuit boards are joined together, component side inward, at their ends, using the end brackets and end plates, as in Fig. 15. Bend the tabs on the end brackets at right angles and fit to the boards with the tabs on the component side. The boards can then be fitted to the end plates, with the logic board supply connections opposite the oscillator board

Fig. 14. Power supply board and output connections

Fig. 16. Internal layout of controller

frequency adjusting potentiometers. To save having to drill extra holes in the front panel of the cabinet, for the speed control potentiometer anti-rotation pegs, a mounting plate is fitted inside the front panel, secured by the potentiometer screwed bushes. The potentiometers should be fitted so that when rotated to mid travel, the spindle flat faces downwards. The construction details for the mounting plate are also shown in Fig. 17.

Drill holes in the front and rear panels required for the components (see photographs), and fit into position temporarily. Place the transformers, circuit boards, and C60 into their required positions, and mark the base for the securing
screw holes. Also mark the position for the chassis earthing tag screw, and for the rubber feet, if required. Remove all the components and drill the holes. This is now the best time to clean up the chassis, paint or lacquer it, and letter the front and rear panels.

Fix about five inches of flexible wire to each of the speed control potentiometer terminals, and fit to the front panel, together with the mounting plate. When they are in position, check that the spindle flats do face downwards at mid travel. Fix into position the transformers, C60, the rail supply, terminals, fuse holders, indicator lamp, circuit breaker, main switch, and the circuit board support brackets. Fit the circuit

Fig. 17. Bending, cutting and drilling details for brackets and plates.
board assembly to the support brackets, using the bottom screws only. The logic board is the nearest to the front panel, and should have its supply connections at the top. Lift the assembly so that the screws are at the top of the bracket slots, and secure. Remove the bottom screws securing the oscillator amplifier board end bracket to the end plates. Slacken the top screws and pivot the board 90° upwards, towards the rear of the chassis; and secure in position. Slacken the support bracket, end plate screws, and pivot the whole assembly about 30° towards the rear of the chassis. It should now be easy to work on the copper side of both boards.

Coninect to the logic board the 12 leads from the speed control potentiometers. Connect the 4 leads between the two boards, using flexible wire. Connect the positive and negative supply leads to both boards, and to C60. Connect transformer T3 20 V terminal to the logic board connection. Connect the oscillator amplifier board output to the rail side terminal of the circuit breaker. The hole for the mains supply lead should have a grommet fitted before running in the cable. Screw into place the chassis earthing tags and connect the mains supply earth lead to it.

Connect the supply line and neutral leads to the terminals on the main switch S1. From the other side of switch S 1, the neutral is connected to one side of each of the transformer primaries, and the line, to the three fuse holders. Connect the output side of the fuse holders to the transformer primary terminals, as shown in Fig. 16, and T13. Capacitor C61 is connected directly to the primary terminals of transformer T1. Run connections from the chassis earthing tag E to C60 negative terminal, transformer T3 secondary OV terminal, and T1 secondary OV terminal.

Connect the choke L1 directly between transformer T1 20 V terminal and the input terminal on the circiit breaker. Connect R65 to the circuit breaker rail side terminal, and to one of the indicator lamp connections. The other lamp connection can be taken to transformer T1 OV terminal. The rail supply terminals are connected to the circuit breaker, and to transformer T1 OV terminal. The bridge rectifier is connected directly to transformer T2 secondary terminals, and the terminals on C60.

TESTING

Remove the fuse FS1, switch on, and check that the
voltage at C 60 is between 16 V and 20 V . Without an oscilloscope, this is the only useful check that can be carried out at this stage.

With an oscilloscope connected to the rail supply terminals, rotate all the speed control potentiometers to their mid positions, and check for zero output. Rotate each of the potentiometers in turn, in both directions, and look for the required pulses of control frequency. Replace fuse FS 1, and repeat, looking for the control pulses superimposed on the supply frequency waveform.

To make the final adjustments, the receiver units are required, so this will be coyered later.

RECEIVER

The circuit diagram for the receiver is shown in Fig. 19. Connections from the wheel pick up are taken to a choke L1 and a potential divider, R1, R2, at the tuned amplifier input. L1 limits the loss of control signal, but allows supply frequency current to pass to the motor and to the amplifier power supply.

The input stage amplifier IC1 is tuned to its control frequency by a parallel tee circuit in the negative feedback loop.

This resonant circuit exhibits a very high impedance at a specific frequency.

With the circuit connected in the feedback loop, as in Fig. 18, the feedback resistor R6 is effectively shorted out, except at frequencies approaching resonance. At resonance, the amplifier gain is at a maximum and controlled by the ratio of R6 to R3. This type of tuned amplifier was chosen because of its stability and the simple way the frequency is set. It will be noticed from the component list that the components used in the tuned circuit are not exact theoretical values, but the use of the nearest preferred value still gives adequate discrimination between the channels, as was shown in Fig. 3.

RECTIFIED OUTPUT

The output of the tuned amplifier stage is rectified by D5 and D6, reducing the voltage on C 8 . This voltage is then connected to the second stage, IC2, which is a high input impedance voltage level switch. The circuits work in a very noisy electrical environment, and to reduce the effect of interference the values of C7, C8, and R10 were chosen to

Fig. 18. Receiver circuit

cause a delay of about 1.5 ms between receiving the control signal and the output of IC2 triggering from the low to the high state.

The output of IC2 is connected to an I.e.d. in the optical isolator IC3, through C11 and R15. D7 protects the l.e.d. from excessive reverse voltage.

C13 is charged to 12 V by the connection through R16, and D8, and D1 limits the voltage. The optical isolator l.e.d. will be illuminated briefly when the output of IC2 changes from the low to the high state. Its optically coupled Darlington transistor will then conduct and partially discharge C13 into the gate of the triac. The triac will switch on, and will continue to conduct until its load current falls below the minimum holding value. This normally occurs at zero voltage, or soon after, depending on motor speed and back e.m.f.

CONSTRUCTION

The major problem in this part of the circuit has been one of how to squeeze a quart into a pint pot. The method described here produces a receiver block, $51 \mathrm{~mm}+23 \mathrm{~mm}+$ 12 mm , which can be hidden away in a tender or goods wagon, if not inside the locomotive itself.

Two circuit boards are used, fixed face to face, like a sandwich, with the components as the filling. The boards, and the arrangement of components is shown in Fig.19. It should be noted that in the positions for resistors R7, R8 and R9 the holes are slotted out to the edge of the board, with a small file, to allow these resistors to be changed relatively easily.

The choke L 1 has been difficult. Its target inductance is 1 to 2 mH ; it should conduct the motor peak load current of over 1 A without saturating; it should be relatively unaffected by metal close by, and it should be very small. The compromise solution has been to use a pot core with a very large air gap.

CHOKE ASSEMBLY

In the original unit the now obsolete FX1011 was used, but the current FX2236 has been used in the same way. with similar results. The outer rim of the cores is carefully broken away using small side cutters, a small piece at a time as they are very brittle, and any rough edges cleaned up with a piece of abrasive paper. The two halves are then stuck together and held with a screw until set. A piece of 6BA screwed pillar can be filed to fit the centre hole of the pot core, and cut to the length of the hole in the pair, that is, about 9 mm . This is then Araldited into position at the same time as the two halves are joined. After the adhesive has set, wind 120 turns of $34 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire directly on to the ferrite and secure in place with a strip of adhesive p.v.c. tape.

On board A, fix into position the choke L1, either using adhesive or a screw through the board. It should be noted that there is no space between the top of the pot core and the components on board B for the head of a screw through the centre hole. Fix into position the link shown in Fig. 19, using 26 s.w.g. p.v.c. covered wire, or similar. Also fit C1, C2, C7, C10, C11 and C13, fixing as close to the board as possible, and vertical to it. Locate and fix the triac CSR1, leaving a gap of about 1 mm between the base of the case and the board.

On board B, fix the three links, following the paths shown in Fig. 19. Locate and fix R16, C8, C9, D1, D2, D3, D4, D7 and D8. On both boards, all the components have very short leads, so soldering should be carried out as quickly as possible to prevent damage. The diodes, in particular, should be
checked with a test meter after soldering, to ensure they have survived.

MATING THE BOARDS

Fit the two boards together, face to face, checking that there is clearance between the capacitors, and adjusting their position slightly if necessary.

It should be possible to fit the boards over each other, with the tops of the mylar capacitors touching the other board. Also check that the top of C7 does not foul the links on board B.

Lay board A, copper side down, on a piece of expanded polystyrene, about one inch thick. Cut 9 pieces of single core insulated copper wire, about 30 mm long, and strip the insulation off 10 mm , at each end. Push these, one at a time through the holes marked in Fig. 19 for vertical links, and into the polystyrene. Shorten the leads to about 15 mm on R1, R2, R3, R4, R5, R6, R10, R11, R12, R13, R14, R15, R17 and R18, and insert into the board. Repeat with C3, C4, C5 and C6, with the outer foil uppermost. Fit D5, D6 and D1, checking the polarity.

On IC1, IC2, and the optoisolator, carefully straighten the pins. Measure the distance across the pin shoulders, and if this exceeds 11 mm , carefully file back. Fit IC1, IC2, and the optoisolator into position, noting the positions for pins 8 and 6 respectively.

All the holes in the board should now be filled, except those for R7, R8, R9 and the external connections. Before going any further, check that all the components are in their correct positions, as it is almost impossible to change them later.

The next stage is to drop board B, component side down, over all the loose ends protruding from board A. This operation requires time and patience for all the leads to end up in the right holes. When all is correct, push the boards tightly together, when the tops of the mylar capacitors should contact the opposite board. Adjust the positions of the vertical components so they are about mid way between the boards, solder, and clip off the surplus leads. Turn the boards over and repeat on the other side.

At this stage it is possible to carry out a quick check to see that all is well. Using a 30 V d.c. test supply, connect the positive lead to board B chassis connection, and the negative to board A wheel pick up connection, when the current should be about 14 mA . Reverse the connections and the current should now be about 7 mA . The following voltages can also be checked, with respect to the negative rail, on the boards. C10 29V; C2 24V; IC1 pin 612 V ; IC2 pin 62 V .

If all appears satisfactory, fit the required values of R7, R8, and R9 by slotting them into the end of the boards and soldering.

To check the amplifier response, if required, connect the test supply as before, either way round. Inject a test signal of about 10 mV at R1, R2 junction, when IC1 output should peak at 1 V at the tuned frequency and drop rapidly each

Rear panel showing fuses and rail terminals
side. Also check the d.c. voltage at IC2 output, which should switch to the high state when the test signal exceeds about 12 mV at the tuned frequency, and fall back to the low state when the injected signal is reduced to about 3 mV . All the a.c. voltages referred to are r.m.s. values.

CONNECTIONS

On the locomotive motor, one brush is connected to the motor chassis, and the other connected either to a wheel pick up or to a separate wheeled unit. The latter connection should be broken, and a lead taken from the "live" brush, to board A motor connection, and the one from the pick up to the wheel pickup connection also on board A. The r.f. suppressor capacitor, connected to the live brush, should be left in position.

A lead should also be run from a good connection on the motor chassis, to the chassis connection on board B. All the connecting leads should be very flexible, particularly if they are to run between two wheeled units. If the receiver is housed in a separate truck, the coupling should be modified so that it cannot easily become disconnected and throw the load on to the leads.

FINAL ADJUSTMENTS

Before connecting the transmitter to the rails make sure that there are no r.f. suppressor capacitors on the rail circuit
or in the connector. Connect the transmitter to the rails, place the first locomotive on the track, and switch on. Rotate the appropriate speed control potentiometer to a high speed position, and adjust the pair of frequency setting potentiometers (VR5 and VR9 etc) until the locomotive starts to move, keeping them in approximately similar positions. Reduce the speed setting and trim the potentiometers again. Bring the locomotive to a point on the track, close at hand, and reduce the speed setting until there is no movement, but a faint buzz is emitted from the motor, and then make the final adjustments. Repeat this operation with the other three locomotives.

The control signal level should be the minimum to give satisfactory control of all the locomotives. There will be slight variations in the gain in the receiver tuned amplifiers, because of component tolerances and stray capacitance, so the signal level should be just high enough to operate the one with the lowest gain. With all four locomotives on the track, set them to a just perceptible creep. Reduce the signal level, by adjusting VR17, until one locomotive stops, then increase it again, until the locomotive starts to move. This should give about the right signal level for control at all speeds, and check the locomotives in both directions.

Please note that in the Components List under "Receiver Board" R8 value resistors are the same as R7 also R9/D is $12 k$. In Fig. 10, R64 should be 2.7 ohms.

The Energy Show June 24-26. National Exhibition Centre, (NEC), Birmingham. ZI
Tempeon July 1-3. Wembley Conference Centre. Exhibition devoted to temperature control \& measurement. T
Transducer July 1-3. Wembley Conference Centre. T
Microsoftware (symposium) July 7-10 University of Sussex. SI
The 1980 Microcomputer Show July 10-12. Royal Lancaster Hotel, London. 0
BAEC Amateur Electronics Exhibition July 12-19. The Esplanade Shelter, Penarth, near Cardiff, S. Glam. B
Computer Graphics (exhibition \& conference) Aug. 12-14. Metropole, Birmingham. 0
Harrogate International Festival of Sound Aug. 16-19 (18 \& 19 trade). The Exhibition Centre + hotels. X
Edtech Aug. 19-21. Holland Park School, London. CI
Laboratory Sept. 9-11 Grosvenor Ho., Park Lane, London. E
Intron 80 Sept. 9-11. RDS, Dublin. V

B British Amateur Electronics Club, 26 Forrest Road, Penarth, S. Glamorgan.

C Barry College of F.E. Radio Society, College of Further Education. Colcot Rd., Barry, S. Glam. CF6 8YJ
E Evan Steadman. \& 079922612
1 Industrial Trade Fairs. © 021-705 6707
L Iliffe Promotions. / 01-261 8437/8
O Online Conferences. $\& 089539262$
T Trident International Exhibitions. $\% 08224671$
U Brian Crank Associates, 58 London Rd., Southborough, Kent. § 0892-31812 38414
v SDL Exhibitions, 68 Fitzwilliam Square, Dublin.
X Exhibition \& Conference Services. Claremont Ho., Victoria Ave., Harrogate, Yorks. f 0423-62677
C1 Stereoscopic Television Ltd., 41/43 Charlbert St., St. John's Wood, London NW8 6JN. © 01-722 4139
H1 Seminex Ltd. 60892 39664/5
L1 P. Smith, London World Trade Centre, Europe House, London E1 9AA. 8.01-488 2400
SI Society of Electronic \& Radio Technicians, 57-61 Newington Causeway, London SEI 6BL. 6 01-403 2351
X1 Victor Green Publications Ltd., 106 Hampstead Rd., London, NW1 2LS. © 01-388 7661
ZI IPC Exhibitions Ltd., 40 Bowling Green Lane, London ECIR ONE. \& 01-837 3636.

Readout... A selection from our Postbag

figure of $100 / 150^{\circ}$ would be more representative. Incidentally, perplexed rock fans with magnifying glasses will be interested to know that the band on the last page of the article are "The Jain". Another point is that the bullet horns shown on the 4 kW Muscle Music stack are in fact from HH rather than JBL. Ben. J. Duncan

Readers requiring a reply to any letter must include a stamped addressed envelope.
Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

AY3 Availability

Sir,-Referring to the letter of B. D. Arnold in P.E. for March '80 I would like to assure him that General Instrument Microelectronics do still manufacture the AY-30214/15/16 top octave generators, and while Semiconductor Specialists (the G.I.M. franchised distributor) does not in general service the amateur market, a number of those companies that do, and advertise regularly in P.E., buy products from us. May I suggest that Mr. Arnold (and others interested) write to his favourite supplier and ask for a price and delivery. Demand does create supply!

Incidentally Mr. Arnold is not quite correct in calling the top octave generators the AY3 series since quite a number of G.I.M's devices are called AY-3-XXXX (from UART's to cooker times) and the " 3 " only indicates the type of IC construction.

Paul Partridge Product Marketing Manager Semiconductor Specialists (U.K.) Ltd.

Congratulations

Sir-I would be grateful if you would pass on to Mr. Ben J. Duncan my congratulations on his excellent feature PA Loudspeaker Systems in your March issue. The article answers many of the questions raised by the popular music fraternity.

However, may I point out that Mr. Duncan had been over generous in suggesting that a Vitavox 220S/522 multicellular horn has a horizontal dispersion of 150° by 60° vertical. The manufacturers publish the nominal acoustic distribution as 20° per cell indicating $100^{\circ} \times 40^{\circ}$ for the model in question.
H. Warren

Consultant in Electro-Acoustics
Luton
Regrettably I have made it appear as if a general statement about multicells referred specifically to the Vitavox horn illustrated in the article. I must admit though that a horizontal dispersion of 150° is a little generous for most multicellular horns and a

Hard or Soft?

Sir,-My attention has been drawn to a letter in Readout, together with a reply from your contributor Nexus, concerning courses available to students wishing to study Microprocessor Systems. It is worth noting that the intending student does not necessarily have to make a decision at the outset whether to enter an electronics biased or a computing biased course. A few colleges, including this one, offer a course which allows students to study in parallel both the hardware and the software aspects of the subject, and, more important, to appreciate the interaction and the trade-offs between them. In our own Microelectronics and Computing course, students during the first year study foundation courses in both electronics and computing. At the end of the first year, they have the option of continuing with the combined scheme or, if they prefer, specialising in either hardware or systems.

Prof. G. Emery,
Department of Computer Science, University College of Wales,

Aberystwyth.
0

Make sure

 of your new Heathkit catalogue... write nowsKeep up to
date with the world's finest
electronic kits-with the new Heathkit catalogue.
48 product packed pages contain
photographs and specifications of the widest possible range of kits. Everything from doorbells to digital clocks, multimeters to microcomputers.

Heathkit make it easy to build, easy on your pocket, and, as with 13 million Heathkit builders over 34 years, your success is guaranteed.

Make sure of your copy of the new Heathkit catalogue. Send the coupon today, plus 25p in stamps and beat the demand.

To: Heath Electronics (U.K.) Limited, Dept (PES),
Bristol Road, Gloucester, GL2 6EE.
Please send me a copy of the new Heathkit catalogue. I enclose 25 p in stamps.

Name
Address

Simply ahead.. I.L.P's PROVEN RANGE OF HIGH

I.L.P. constructional modules are different. Whereas most others come with components neatly arranged on open P.C.Bs with little else, I.L.P. modules are encapsulated within totally adequate heatsinks and need no extra components to complete them. As a result, I.L.P. power amplifiers, pre-amp and matching power supply units are infinitely more rugged, impervious to working in extremes of temperature and can be easily positioned to requirement. No additional metal work is needed to take away heat, connections are minimal and utterly simple. Circuitry, workmanship and performance are of the highest standards, equal to the demands of loudspeakers, pick-ups, tuners, digital signals etc. even more exacting than those of today, making amplifier systems less than the best completely inadequate. Now study the tested and guaranteed specs. for I.L.P. That is why more people in more countries prefer these British designed and made modules.

Why toroidal?

Toroidally wound transformers are more compact than their conventionally laminated equivalents, being only half as high and heavy. Their circular profile ensures greateroperating efficiency and as such are particularly valuable in heavy duty applications. We have our own production section for winding and making toroidal transformers enabling us to offer this much sought-after type at competitive prices. Four of the larger models in our range of power supply units are now supplied with this type.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there

PERFORMANCE MODULAR UNITS

HY5 PRE-AMPLIFIER

 With easy to
 use connector

VALUES OF COMPONENTS FOR CONNECTING TO HY5
Volume - $10 \mathrm{~K} \Omega \log$.
Bass/Treble $-100 \mathrm{~K} \Omega$ linear. Balance $-5 \mathrm{~K} \Omega$ linear
The HY5 pre-amp is comparible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$. and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions
$\mathbf{£ 4 . 6 4 + 7 4 p}$ VAT

THE POWER AMPLIFIERS

Modal	Output Power R.M.S.	Dis. tortion TYpical at 1KHz	Minimum Signal Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	15 W into 8Ω	0.02%	80 dB	$-20-0-+20$	$105 \times 50 \times 25$	155	$£ 6.34$ +950
HY50	30 W into 8Ω	0.02%	90 dB	$-25-0-+25$	$105 \times 50 \times 25$	155	$£ 7.24$ $+£ 109$
HY120	60 W into 8Ω	0.01%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$£ 15.20$ $+£ 2.28$
HY200	$120 \mathrm{~W} \Omega$ into 8 Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 50 \times 85$	575	$£ 18.44$ $+£ 2.77$
HY400	240 W into 4Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 100 \times 85$	1.15 Kg	$£ 27.68$ $+£ 415$

Load impedance - all models 4 - 16Ω
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

NO QUIBBLE
 5 YEAR GUARANTEE
 7. DAY DESPATCH ON
 ALL ORDERS
 INTEGRAL
 HEATSINKS
 BRITISH DESIGN AND
 MANUFACTURE
 FREEPOST SERVICE -see helow

I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer, the other with toroidal transformer, having half the weight and height of conventional laminated types.

PSU $30 \pm 15 \mathrm{~V}$ at 100 ma to drive up to
PSU 36 for 1 or 2 HY30's $£ 8.10+£ 1.22$ VAT
PSU 50 for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT
PSU 60 (Toroidal) for one HY120 £9.75 + £1.46VAT
PSU 70 with toroidal transtormer for 1 or 2 HY120's $\quad £ 13.61+£ 2.04$ VAT
PSU 90 with toroidal transformer for
1 HY200 £13.61 + £2.04 VAT
PSU180 with toroidal transformer for
1 HY400 or $2 \times$ HY200
$£ 23.02+£ 3.45$ VAT

- ALL U.K. ORDERS DESPATCHED POST PAID

HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.

FREEPOST 1 Graham Bell House, Roper Close,
Canterbury, Kent CT2 7EP.
Telephone (0227) 54778
Tilex 965780

```
Please supply
```

Total purchase price $£$
I enclose Cheque \square Postal Orders \square International Money Order \square Please debit my Account/Barclaycard Account No.

NAME
ADDRESS.

Signature.

$4 \frac{1}{i n} \times 34 \mathrm{in}$ METER. $30 \mu \mathrm{~A}, 50 \mu \mathrm{~A}$ or 100μ A, £5.10. 50 p P. \& P

MICROPHONES FOR
TAPE RECORDERS DM228R 200 ohm with 3.5 and 2.5 mm Jack Plugs $£ 1.70$ DM229R $50 K$ with $3 \cdot 5$ and 2.5 mm Jack Plugs DM18D 200 ohm with 5 and 3 pin Din Plugs £2.25 22.25 Postage on above microphones 17p

CARDIOID DYNAMIC MICROPHONE

Model UD-130 Frequency response $50-15,000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50 K and 600 ohms. £8.02. 50p P. \& P.

2 in $x 2$ in meters $500 \mu A, \mathbb{£ 4 . 1 4}$ 17p P.\& P
$60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $500 \mu \mathrm{~A}$ and 1 mA VU meter, £4.00. 26p P. \& P.
6 V BUZZERS. 50 mm diameter 30 mm high, $52 \mathrm{p} .15 \mathrm{p} . \mathrm{P} . \&$ P.

TRANSFORMERS Primary - 240 V		
6-0-6V	100 mA	c0.75
$9-0-9 \mathrm{~V}$	75 mA	c0.75
12-0-12V	50 mA	c0. 85
12-0-12V	100 mA	£1.05
Post on above transformers 45p.		
$9-0-9 \mathrm{~V}$	1 A	[1-80
12-0-12V	1 A	ع2.15
15-0-15V	1A	E2.51
$30-0-30 \mathrm{~V}$	1A	c3. 10
6.3V	$1 \frac{1}{1}$ A	£1.80
6-0-6V	$1+1$	E2.20
Post on above transformers 75 p .		

All above prices include V.A.T. Send $40 p$ for new 1980 fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.

M. DZIUBAS

158 Bradshawgate • Bolton • Lancs. BL2 1BA

JONES ELECTRONIC SUPPLIES
 588 , ASHTON ROAD, OLDHAM, LANCS. OL8 3HW.
 Tel: 061-652 9879. Telex: 668250.
 ALL PRICES INCLUDE VAT
 Shop open Mon., Thurs., Frid, 9 am- 7.30 pm. Weds, \& Sat. 9 am- 6.00 pm
 Stockists of Lektrokit Breadboard, Vero, CMOS, TTL. Resistors, Capacitors etc Barrel Kits 99p each. Leech Amplifiers \& Speakers.
 BKI 8 Rotary switches (3 position)
 BK2 $20500 K \Omega$ presets
 p\&p 20p
 $\begin{array}{ll}\text { BK3 } & 5 \text { push tö make switches } \\ \text { BK4 } & 4 \text { to } 2206 \text { amp power transistors }\end{array}$
 BK5 25 TTL devices
 $\begin{array}{ll}\text { BK6 } & 5 \text { thyristers } 2 \mathrm{~N} 5061.8 \mathrm{amp} 400 \mathrm{~V} \\ \text { BK7 } & 50 \text { assorted }\end{array}$
 p\&p $25 p$ p\& $20 p$
 BK7 50 assorted diodes, inc. zenners p\&p 20p
 BK8 50 assorted NPN/PNP transistors

MAKE YOUR OWN KEYBOARDS

ML3 individual keyboard switch with re-cappable top allowing lettering by individual. Only (1-10) 30p each. (11-20) 27p each, (20-100) 2\%p each. P \& P $30 p$ per 10.

AA $1-25$ p 10 military spec., high dlscharge re-charge capabilities in parallel. NEW SHOP AT 495, OLDHAM ROAD, ROCHDALE, LANCS. Tal: Rochdale 49757

eepost
Birmingham B19 1BR 021-233-2400
(Invoices on/y) P.O. Box 290,

- FREEPOST ON ORDERS
- VAT INCLUSIVE PRICES
- ADD 30p P\&P
- ACCESS

VISA

- CASH

8, Hampton Street,
Birmingham, BLG 3JR

Full Spec Kit TELETEXT DECODER

- MT BEETRONIES

 TLLETEXY OREO- STATE OF THE ART L.S.I. CIRCUITS
- DOUBLE HEIGHT CHARACTER SELECTABLE FOR LEGIBILITY
- CHARACTER ROUNDING - EFFECTIVELY DOUBLES DEFINITION
- ULTRASONIC REMOTE CONTROL
- HIGH QUALITY THROUGH PLATED P.C.B.
- ALL I.C. MOUNTED ON SOCKETS
- PREALIGNED UHF/IF MODULES
- NEEDS NO INTERNAL CONNECTION TO THE TELEVISION SET
- SIZE $430 \mathrm{~mm} \times 90 \mathrm{~mm} \times 220 \mathrm{~mm}$
- SUPPLY 240 v 50 Hz 35 w
- NEW *TOUCH CONTROL KEYPAD* NEW
includes tuner, P.S.U., DECODER, REMOTE KEYBOARD, P.A.L. ENCODER, U.H.F MODULATOR CASE WITH SCREENED AND PUNCHED FRONT PANEL.
- £189.90 inc VAT. P \& $P £ 3.00$.

FULL TELETEXT MANUAL IF BOUGHT SEPARATELY - $£ 2.50$ p \& $\mathrm{P} \mathbf{£ 0 . 5 0}$

C/MOS PRICE INCREASE: PLEASE ADD 25\% TO LAST MONTH'S PRICES AS ADVERTISED

Britain's first com

A complete personal computer for a third of the price of a bare board.

Also available ready assembled for $£ 9995$

The Sinclair ZX80.

Until now, building your own computer could easily cost around $£ 300$ - and still leave you with only a bare board for your trouble.

The Sinclair ZX80 changes all that. For just £79.95 you get everything you need to build a personal computer at home...PCB, with IC sockets for all ICs; case; leads for direct connection to your own cassette recorder and black and white or colour television; everything! And yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers on the market at several times the price. The ZX80 is programmed in BASIC, and you could use it to do quite literally anything from playing chess to running a power station.

The ZX80 is pleasantly straightorward to assemble, using a fine-tipped soldering iron. Once assembled, it immediately proves what a good job you've done. Connect it to your TV set... link it to an appropriate power source *. and you're ready to go.

Your 2×80 kit contains...

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs - all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be SAVEd and LOADed on to any portable cassette recorder.)
- FREE course in BASIC programming and user manual.

Optional extras

- Mains adaptor of 600 mA at 9 V DC nominal unregulated (available separately - see coupon).
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra RAM chips also a vailable -see coupon.)

[^1]
Two unique and valuable components of the Sinclair $\mathbf{Z X 8 0}$.

The Sinclair ZX80 is not just another personal computer. Quite apart from its exceptionally low price, the ZX80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teach-yourself BASIC manual.
The unique Sinclair BASIC interpreter... offers remarkable programming advantages:

- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them
- Excellent string-handling capability - takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The 7.X80 also has string inputto request a line of text when necessary. Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up 26.
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions, USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with

22 standard graphic symbols.

- All characters printable in reverse under program control.
- Lines of unlimited length.

....and the Sinclair teach-yourself

BASIC manual.

If the features of the Sinclair interpreter listed alongside mean little to you-don't worry. They're all explained in the specially-written 128-page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC pro-gramming-from first principles to complex programs. (Available separately -purchase price refunded if you buy a ZX80 later.) A hardware manual is also included with every kit or

 than all other personal computers.

No other personal computer offers this unique combination of high capability and low price.
The Sinclair $\mathbf{Z X 8 0}$. Kit: $£ 79.95$. Assembled: $£ 99.95$. Complete!

The ZX80 kit costs a mere £ 79.95 . Can't wait to have a ZX80 up and running? No problem! It's also available, ready assembled, for only 199.95 .

Whether you choose the kit or the readymade, you can be sure of world-famous Sinclair technology - and years of satisfying use. (Science of Cambridge Ltd is one of the Sinclair companies owned and run by Clive Sinclair.)

To order, complete the coupon, and post to Science of Cambridge for delivery within 28 days. Return as received within 14 days for full money refund if not completely satisfied.

Science of Cambridge Ltd

Order Form

To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN. Remember: all prices shown include VAT, postage and packing. No hidden extras.
Please send me:

Quantity	Item	Item price	Total
	Sinclair ZX80 Personal Computer kit(s). Price includes ZX80 BASIC manual, excludes mains adaptor.	79.95	
	Ready-assembled Sinclair ZX80 Personal Computer(s). Price includes ZX80 BASIC manual, excludes mains adaptor.	99.95	
	Mains Adaptor(s) (600 mA at 9 V DC nominal unregulated).	8.95	
	Memory Expansion Board(s) (each one takes up to 3K bytes)	12.00	
	RAM Memory chips - standard 1K bytes capacity.	16.00	
Sinclair ZX80 Manual(s)(manual free with every ZX80 kit or ready-made computer).	5.00	TOTAL	£
NB. Your Sinclair ZX80 may qualify as a business expense.			
Please print Name: Mr/Mrs/Miss			

[^2]Address

EXAMPLE ONE - SOLDERING IRONS

Aryz 50 Isotip Antex C	$\begin{aligned} & \mathrm{E} 12.08 \text { net } \\ & \mathrm{E} 5.90 \text { net } \\ & \mathrm{E} 4.83 \text { net } \end{aligned}$	Antex $\times 25$ Desotder tool SA3A 500 grn reel solder	$\begin{aligned} & \mathrm{c4.83} \mathrm{not} \\ & \mathrm{c7} .48 \mathrm{not} \\ & \mathrm{cs.61} \text { net } \end{aligned}$

EXAMPLE TWO - PRINTED CIRCUIT MATERIALS

PC8's $300 \times 150 \mathrm{~mm}$ SA8P S/S f1. 38 F/Glass S/S E1.96 Poshtive resist 75 cc Ferric Chioride $500 g$	$\begin{array}{r} \mathrm{D} / \mathrm{S} \mathrm{c1.73} \\ \mathrm{D} / \mathrm{S} 8.13 \\ \mathrm{f1.67} \\ \mathrm{f} 3.45 \end{array}$	Etch Resist Pen Breadboarda Bimboard 12 £9.23 Eurobreadboard T-DeC	$\begin{array}{r} £ 1.14 \\ \\ \mathbf{f 8 . 5 8} \text { net } \\ £ 5.18 \end{array}$
AMPLE THREE - SWITCHES			
Chrome toggle Std. SPDT $85 p$ Min. SPDT 66p	$\begin{aligned} & \text { DPDT 89p } \\ & \text { DPDT } 92 p \end{aligned}$	13 A time switch adeptors Smiths TS100 Wavechange, Lorlin, $1 P$ 3P4W. 4P3W	14.43 net W. 2 PGW, 46 ench

EXAMPLE FOUR - CAPACITORS BY SIEMENS

 $.33,21 \mathrm{p}, 47 \mu 27 \mathrm{p}, 68 \mu 34 \mathrm{p}, 10 \mathrm{~mm}$ PCM $1 \mu 37 \mathrm{p}$.
1/40 24p, 1/100 15p, 2.2/25 24p, 2.2/63 15p, 4.7/16 24p, 4.7/40 16p, $10 / 25$
 Also full supporting ranges of other ceramic, plastic and electrolytic caps.
EXAMPLE FIVE - POTENTIOMETERS BY RADIOHM

ngle gang lin or log	$34 p$ 93	Trwin types stereo matched) Slider knoos	
Mono slider lin or log	${ }_{83}$	Presels lin, horiz, or vert	10 p
Twin slider lin or log	1360		

EXAMPLE SIX - RESISTORS

AND AS FOR SEMI CONOUCTORS ...

1 Ng 14	6 p	40673	-	MU481	11.70	T1P41A	${ }^{69}$
1 N	9 p	${ }^{\text {A }}$	$36 p$	M ${ }^{4}$	c1.88	T1P4	
1 N 5402	5		,				
2N1599	1.01	AD149	${ }^{21.01}$	MJE3	$\underline{16.00}$	${ }_{\text {T1P }}$	69
2N2369A	24 p	AD161					
2 N 305	硡		52 p	MPSA	40^{4}	T1S	
2 N 3702 -	119	Af127	3p	0447	14p	W02	$36 p$
2 N 4443	¢1.78	AL102	c1.84	OA90	\%	$2 \mathrm{~T} \times 107.9$	14
2 N 4444	c2.28	8A379	29p	OA91			
2 N 4991	98%	88103	43p	OA202	$10 p$	627	$16 p$
2 N 5457 -9	${ }^{45}$	88104	70	0 OC 2	${ }^{1} 1$	This	
40361	c2.23	88105 C10601	37 p 62 p	${ }_{128000}^{0 C 36}$	c1. 18 $\mathrm{C1} .20$		
4036		E1110	92 p	T1P31A	52p		
40636	¢1. 69	210	97	T1P32A	82p		
INFORMATION - To show everything we supply would take about seven pages of closely packed type in this journal - the range is enormous including not only opto devices and very advanced sophisticated hems, but all the everyday things you need as well down to nuts and washersi it's all in catalogue 10 - oun 120 page catalogue faee for the ASKING.							
PRICES AND V.A.T. \rightarrow All prices quoted here include V.A.T. for U.K. orders. Overseas buyers deduct 13\% when ordering.							
POSTAGE - For orders up to $£ 5.75$ value (U.K.) please add 40 p for p / p. If over, orders sent post free in U.K. Overseas orders sent at cost (Min. 40pl.							
DISCOUNTS - 5% allowed on non-net items if order value exceeds $\mathbf{f 1 1 . 5 0 . 1 0 \%}$ if order value exceeds £29. Quantity discount prices on most components.							
ELECTROVALUE LTD. Dopt. 28 st. Judes hand, Engititheld Green, Eghem, Surrey TW20 OMB. Phome Egham 33603 Tolex 264475.							
Northern Branch (Parsonal Shoppers only) 680 Burnage Läne, Burnage, Monchester M19 1NA. Phone (061) 4324945.							

MONITORS MONITORS MONITORS

Uncased from $3^{\prime \prime}$ to $12^{\prime \prime}$ Cased from 5" to 20"

Semi professional or professional available from stock.

Monitor PCB's including Transformers and Tubes also in stock.

Phone or write for details.

CROFTON ELECTRONICS

Crofton Electronics Limited 35 Grosvenor Road, Twickenham, Middx. Tel:01 8911513

PROKRESSTVE RADIO 31, CMEAPBIDE, LIVEMFOOLLİ2DY
EEMICOMDUCTORS. Yexas R1038 TO3 powe trans. SOp. TBABOO 500. 7418 gin 22p. NE555 24p. TAG4443
 MIMIATURE MAIMA TRANBFORMERE. ALL 24 OVAC PRIMARY, $0-0-6100 \mathrm{~mA}, 9-0.975 \mathrm{~mA}, 12-0-1250 \mathrm{~mA}$

MLLE TMAMEFORMERE. I:1 (GPO Typol 30 p . $1: 1$ plus 1 min . P. C. Mounting 80 p .
MIMATUAE SOLID STATE 日UZZER. $33 \times 17 \times 15 \mathrm{~mm}$, output at 3 toet 7 Odb, oniv 15 mA drain, operating ange
LOUD EUZZER. E-12 vols A3¢. GPO MPa adiustable ouzzer © 12 volts 27 p.
POCKET MULTIMETEA. MODEL NHSE 2.000 ohm Der voft. 1.000 volts AC/DC. 100 mA DC curriont. 2 sOLOER BUCKER. Heg E5.50
SOLOER BUCKER. High suctiontriflon nozzio, E4.85p

casselte motors 70 p. Low rev. mains motor 240 VAC motor with

 piece E2.75.

 180kHz, Eza.95p.

 mual case only 87.7%.

Cash with order please, officies orders welcome from schools and wire Cutter, insulated handles only E2.30.
SAE for fatest dhustratad stock list.

STORAGE CABINETS

Type 1838

Metal Cabinets $12^{\prime \prime}$ wide $\times 5 \frac{3{ }^{\prime \prime}}{}{ }^{\prime \prime}$ deep, finished blue with transparent plastic drawers.

Type H No. of Drawers Price (ins) Sm MedLge

1118	11	15	2	1	$\mathbf{£ 1 0 . 7 5}$
1633	16	30	2	1	$\mathbf{£ 1 3 . 7 5}$
1838	18	35	2	1	$\mathbf{£ 1 5 . 7 5}$
2236	22	30	4	2	$\mathbf{£ 1 7 . 8 5}$
2260	22	60	-	-	$\mathbf{£ 1 7 . 9 5}$

Access/Barclaycard welcome
Prices include VAT and Post. Cheque/P.O. to Millhill Supplies (Tools).
35 Preston Crowmarsh, Benson,
Oxon OX9 6SL.

ZETRON

GENTS 4 BUTTON CHRONO

A NEW STYLE chronograph with the added advantage of 4 buttons plus date flag. Hours, mins, secs, weekday, am/pm indication on constant display. Date flag indication with month and date.

1/100th sec chrono, with a 12 hour capacity.
Split and lap mode facilities.
Back-light. Adjustable stainless steel strap.
Spccial $\mathbf{£ 8 . 9 5}$

GENTS FRONT BUTTON ALARM

LATEST 1980 STYLE. Constant display of hours. mins, secs, am/pm, weekday and alarm indication.
Two further display modes are available.
7 digits, 12 function. Programmed to the year 2009, 24 hour alarm operating for 30 seconds.
Backlight and a closely woven adjustable stainless steel strap finish the watch off with a really superb look.
Only 8 mm thick

£13.25

LADIES SUGAR COATED

another SUPERB LADIES WATCH, with that finish. (Gold or silver).
Links can easily be removed from the strap and the clasp has a spring mechanism built in tn give a comfortable fitting.
Constant display of hours and mins, with month, date. secs, auto-calendar, backlight.
£10.50

GENTS FRONT BUTTON CHRONO ALARM
LATEST 1980 STYLE. Super slim and attractive. Basic working modes of (i) Chronograph (ii) 24 hr . alarm (iii) Dual time zone, hours, minutes, seconds. Weekday indication, with $\mathrm{am} / \mathrm{pm}$ T2 and A1 flags month and date indication.
Running horse style chrono to $1 / 10$ sec.
60 sec activation time on the alarm system. 6 digits 5 flags. Backlight, adjustable stainless steel strap.
f15.50
Also available in black resined case and strap.
Only $£ 12.50$

GENTS MEMORY

CALENDAR ALARM CHRONO
LATEST TECHNOLOGY. Hours, mins, secs, weekday and snooze alarm indication.
Two further optional display modes are available.
The calendar and month can be increased or decreased to give the appropriate month of the year.
$1 / 100 \mathrm{hh}$ sec chronograph, with split and lap mode facilities. 12 hour capacity.
24 hour alarm with a 10 minute snooze. Backlight. ad justable stainless steel strap.
Outstanding value $\mathbf{f 1 9 . 9 5}$

GENTS

CHRONOGRAPH

PROBABLY THE BEST looking chrono on the market.

Constant display of hours, mins, secs, with am/pm indication.

Also month, date and weekday indication.
$1 / 100$ th and $1 / 10$ th sec with split and lap mode facilities, backlight, closely woven adjustable stainless steel strap.
Special $£ 8.95$

GENTS MELODY

 ALARM CHRONOBRAND NEW melody alarm chrono which we believe will be the watch \wp ! 1980 .
Hours, mins, secs, weekday, am/pm and mode square flag indication.

Chrono to $1 / 10$ th sec , with split and lap mode facilities.
Dual timing facilities.
The alarm system is unique in the fact that it plays the tune "Yellow Rose of Texas", for 20 seconds.
The tune can be activated at any intance by the press of a button.

Backlight, infinite adjustable built in stainless steel strap.
Only $\mathbf{f 1 7 . 7 5}$

LADIES COCKTAIL

ELEGANCE AND STYLE for the lady with a discerning taste. In gold or silver finish with matching adjustable bracelet. Constant display of hours and mins, with month, date, secs.

Auto calendar, backlight.

£10.50

GENTS MELODY CHIME ALARM CHRONO

LATEST TECHNOLOGY Hours, mins, secs, date, weekday, month, with mode and chime indication.
A musical alarm is built in and can be set to any time within 24 hours, playing the tune "Oh Suzanna"
Two further alarm systems: (i) 24 hour alarm (ii) Count down alarm (1 sec accuracy).
The watch can be set to chime on every full hour. $1 / 100 \mathrm{~h}$ sec chrono, can be switched off, mineral glass.
Backlight and infinite adjustable stainless steel strap.
Very special $£ \mathbf{1 9 . 9 5}$

ZETRON
 WHERE RELIABILITY, STYLE AND ELEGANCE REALLY COUNT

WE ARE ABLE YET AGAIN to offer you the above watches, plus the complete ZETRON range. All at unrivalled prices. Just look at the following points.
(i) 48 hour despatch guaranteed on both retail and trade orders.
(ii) Full instructions and 12 month manufacturers guarantee.
(iii) Our own free back up service.
(iv) 10 day full money refund if not completlely satisfied.
(v) Free felt presentation case with each watch.

PHONE OR WRITE for free full comprehensive catalogue on the complete range of watches we offer. Large discounts available for bulk buyers. Trade lists on application. Agents wanted everywhere. P/P per item 85p which includes insurance.
Cheques or PO's made payable to MITRAD and sent to (Dept PE), 58 Windmill Ave, Kettering, Northants, NN16 8PA.
(0536) 522024.

U．K．RETURN OF POST MAIL－ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE

R．C．S．LOW VOLTAGESTABILISED

Pos 4 sp $£ 2.95$ All parts and instructions with Zener diode printed circuih，rectifers and
double wound mains transformer input $200-240$ a．c．Output voltages available 6 or 7 ．Sor 9 or 12 V d．c．up to 100 mA or les． THE＂INSTANT＂BULK TAPE ERASER A．C．mains 200／249V． A．C．mann Leafiel ．
£7．50 ${ }_{50 \mathrm{p}}^{\text {Post }}$
head demagnetiser probe \＆s．00

BLANK ALUMINIUM CHASSIS， 18 s．w．g． 2 tin．sIdes． 6×4 in． 99 p ； Sin．$£ 1.20 ; 16 \times 10$ in．$£ 2.20 ; 12 \times 8$ in．$£ 1.70$ ．
ALUMINIUMPANELS， 18 s．w． $8 \times \sin .24 \mathrm{p}: 8 \times 6$ in． $38 \mathrm{p}: 10 \times$ 7 in． $54 \mathrm{p} ; 12 \times 5 \mathrm{in} .44 \mathrm{p} ; 12 \times 8 \mathrm{in} .70 \mathrm{p} ; 16 \times 6 \mathrm{in}$ ． $90 \mathrm{p} ; 14 \times 9 \mathrm{in} .94 \mathrm{p} ; 12$ 12 in $1: 16 \times 10 \mathrm{n} .81 .16$.
ALUMINIUM ANGLE BRACKET $6 \times 12 \times$ in． 20 p．

HIGH VOLTAGEELECTROLYIICS
$8 / 800 \mathrm{~V}$ £1－20．50／300V \＆1－20． $50+50 / 500 \mathrm{~V}$ f1－80．
$32 / 500 \mathrm{~V} 75 \mathrm{p}$ ．

BAKER
 50 WATT AMPLIFIER

 f65Post C_{2}

Superior quality ideal for Halls／PA systems．Disco＇s and Groups．Two inputs with Mixer Volume Controls．Master Bass．Treble and Gain Controls． 50 watts R MS．Three loudspeaker outlets $4,8,16$ ohms．AC 240 V （ 120 V available）．Blue wording on black cabinet．
BAKER 150 Watt AMPLIFIER 4 Inputs £85 buidd kit Controls up to 480 watts AC mains． Printed circuit and components \qquad Post 35p $\mathbf{~} \mathbf{3 . 2 5}$ STEREO PRE．AMP KIT．All parts to build this pre－amp． 3 inputs for high medium or low gain per channel，with volume control and P．C． Board．Can be ganged to make multioway stereo mixers．$\quad \mathbf{2 . 9 5}$

R．C．S．SOUNO TD LIGHT OISPLAY MK 2

Complete kit of parts with R．C．S．printed circuit．Three channels．Up to 1,000 watts each．Will operate from 200 My to
100 watts signal source．Suitable for home $\mathrm{Hi} \cdot \mathrm{Fi}$
$\AA 18$ and all Disco Amplifiers．Cabinet extra $£ 4 \cdot 50$ ． and all Disco Amplifiers．Cabinet extra $£ 4.50$ ．
200 Watt Rear Reflecting White Light Post 45p Lights．Edison Screw 75p each or 6 for $£ 4$ ．or 12 for $£ 7.50$ MAINS TRANSFORMERS Primary 240V A．C．ALL POST $99 p$
 $330-0.330 \mathrm{~V} 200 \mathrm{~mA} .6 .3 \mathrm{~V} 3 \mathrm{~A}+6.3 \mathrm{~V} 2 \mathrm{~A}+6.3 \mathrm{~V} 2 \mathrm{~A} . ~$
510.00
$300-0.300 \mathrm{~V} 120 \mathrm{~mA} .2 \times 6.3 \mathrm{~V} 2 \mathrm{AC}$. ． 5 V 2 A $220 \mathrm{~V} 45 \mathrm{~mA} .6-3$

Tapped outputs available
2 amp 3．4．5．6．8．9． 10.12

30V

\qquad $1 \operatorname{amp} 6.8,10,12,16,18,20,24,30,36,40,48,60 .$.
$2 \operatorname{amp} 6.8 .10 .12,16.18 .20 .24,30,36,40,48,60$
$1 \operatorname{amp} 6.8,10,12,16,18,20,24,30,36,40,48,60$ 86.00
.59 .50 612.50
-12.50 amp 6．8． $10,12,16,18,20,24,30,36$,
$\$ \operatorname{amp} 6.8,10,12,16.18,20,24,30,36$ $12 \mathrm{~V}, 100 \mathrm{~mA}$ ．．．．．．．．．．．． $\mathrm{\Sigma 1} 1.30,30,36,40,48,60 \ldots \mathrm{~V}, \ldots \mathrm{mp}$ 10.10 V 2 amp．．．．．．．．．．．．．．．．．$£ 3.75$ 30V． 5 a mp and $17 v$－ 0.17

 AUTOTRANSFORMERS 115 V to 230 V or 230 V to $115 \mathrm{~V} 150 \mathrm{~W} . ~$
2500
$250 \mathrm{~W} . . .88 .00$ CHARGER TRANSFORMERS 6 and 12V 3 amp．．．．．．．．．．．．．．．．．．．．．．．．．． 4 amp．．．．．．．．

BAKER LOUDSPEAKERS＂SPECIALPRICES＂

Post $£ 1.50$ each					
Model	Ohms	Size in．	Power Wates	Type	Our Price
Major	4，8，16	12	30	H1．F1	¢12
Delure Mk 11	8， 16	12	15	Hi．Fi	ع14
Superb	8， 16	12	30	Hi．FI	822
Auditorium	8,16	12	45	Hi－Fi	820
Auditorium	8， 16	15	60	Hl－Fi	430
Group 35	4，8， 16	12	40	PA	812
Group 45	4，8， 16	12	45	PA	215
Group 50	8， 16	12	60	PA	620
Group 50	4，8， 16	15	75	PA	230
Group 15	8． 16	12	75	PA	E14
Group 100	8.16	12	100	PA	8.29
Group 100	8.16	15	100	PA	835
Disco 100	8． 16	12	100	Disco	829
Dlseo 100	8． 16	15	100	Disco	435

R．C．S．LDUDSPEAKER BARGAINS

 E2．60． 10 ing E3． $12 \mathrm{in}$. ． 4 ．
 16 ohm． $6 \times 4 \mathrm{in} . £ 1.50 .7$
$12 \mathrm{in} . £ 4.10 \times 6 \mathrm{in} . £ 3.50$ ．
E．M．I． $13 \frac{1}{2} \times 8 \mathrm{in}$ ．SPEAKER SALEI With weeter，And cross
10 W ．State 3 or 8 ohm ．
Illustrated．
15 W model with tweeter
8 ohms only．
GODDMANS 20 Watt Woofer
Rue $12 \times 10 i n$ ． 4 ohms．
Hi－Fi Bass uni．
GOODMANS TWIN AXIOM 8－15 Wat
fg 9.95
Post E 1
f 10.9
Post C

fg .9
Post
Watt
8in． 8 ohm Hi－Fi Twin Cone
110.50

R．C．S．MINI MOOULE HI－FI KIT $15 \times 8 \frac{1}{4}$ in．3－way Loudspeaker System．EMI 5 in．Bass 5in．， Middle 3in．Tweeter with 3－way Crossover and Ready Cut Baffle． Full assembly instructions supplied．
Response $=60$ to 20000 cps
12 watt RMS． 8 ohm．
$£ 10.95$ per kit．Two kits $£ 20$ ．
Postage f1 par kit．

FLADAR ${ }^{\text {TTRANSFORMEESS }}$
 PRIMARY $0-240 \mathrm{~V} 50 \mathrm{~Hz}$

SEND FOR OUR TRANSFORMER CATALOGUE PRICE $£ 1.00$ WHICH INCLUDES A 50p VOUCHER OFF YOUR FIRST PURCHASE．

Type	Voltage	Current	\＆	p／p	Type	Votrage	Current	£	p／p
O6FE06	6＋6	0.5 A EACH	1.99	60p	06FE60	15－0－15	0．4A	5	60p
12 FEE6	${ }_{6+6}^{6+6}$	1． 1 EACH	2．66	75 p	O8FE40	9－0－9			${ }_{60 p}$
20FE6	¢ $\mathbf{6 + 6}$ $6+6$	1.64 EACH 3 EACH	3.36 4.02	75p	O8FE60	cos $\begin{gathered}15-0-15 \\ 90-0\end{gathered}$	$0.5 A$ $1.5 A$	2.35 2.60	${ }^{60 p}$
60FE06	6 +6	4A EACH	5.03	125 p	12 FE		1A	2.60	75
					$12 \mathrm{FE6}$	15－0．15	0．8A	2.60	${ }^{76 p}$
O6FE09	${ }_{\text {¢ }}^{+9} \mathbf{9 + 9}$	0．3A EA 0.54		${ }_{60} 60$	20 FE 60	12－0．12	1．6A	3.30 3.30	${ }_{75 p}^{75}$
	$9+9$	0.7 EACH	2.66	750	20FE70	$150-15$	$1.2 A$	3．30	${ }_{75 p}$
	$9+9$	1 A EACH		75p	$20 F E 80$	20－0－20	${ }_{1}{ }^{1} A$	3.30	75p
$\begin{aligned} & 50 \mathrm{FEO9} \\ & \text { 6OFEO9 } \end{aligned}$	$9+9$	2．5A EACH	4.02	900	20FE100	30－0－30	0．6A	3.30	75p
	$9+9$	3A EACH	5.03	125p	50FE	9－0	5A	4.00	$90 p$
O6FE1	$12+12$	0.2 EACH	1.99	600	50FE80	20－20	2 C	4.00	90 p
O8FEE	$12+12$	0．3A EACH	2．40	${ }^{60}{ }^{\text {p }}$	SOFE110	30－0－30	1．4A	4.00 5.00	${ }^{900}$
50FE 12 60FE12	边 $12+12$	O．8A EACH	3.36 4.02	${ }^{750}$	60FE70 60 F E80	｜ $\begin{aligned} & 15-0-15 \\ & 20-0-20\end{aligned}$	${ }_{3}^{4 A}$	5.00 5.00	$125 p$ $125 p$
	$12+12$	2．5A EACH	5.03	1250	60FE100	28－0－28	2．2A	5.00	$125 p$
80FE 12	$12+12$	3A EACH	6.20	125p	60FE 110	30－0	3 A	5.00	125
O6FE15 12 FEI5 20 FE15 60FEI5 80FE 15	$15+15$	0．2A EACH	1.99	60 p	80FEE40	12－0－12	${ }_{5}$ 6A	6.15	12
	15＋15	O．25A EACH 0.4 AAACH	2．40	${ }^{60}{ }^{\text {75 }}$	$80 F E 50$ $80 F E 60$	$15-0.15$ $20-0.20$	${ }_{4}{ }^{4}$		
	15＋15	O． 0 A EACH	2.66 3.36	75 p	880	28－0－28	2．5A	6.15	
	$15+15$	1． 5 A EACH	4.02	90 p	80FE70	24－0－24	${ }^{3 A}$ A	6.15	125 p
	15＋1	${ }_{3} 2 \mathrm{EAEACH}$	5.03	125 p	80FE90	30－0－30	2．3A	6.1	125p
O6FE20	$20+20$	－．15A EACH	1.99	80p	90FE80	28－0－28	3 A	6.30	
OLFE2012FE2020FE20	$20+20$	0．25A EACH	2.66	5	90FE90	30－0－30	3A	6.30	${ }^{150}$
	20＋20	0．5A EACH	3.36	75 p	100FE50	15－0－15		6．60	150 p
20FE20	$20+20$ $20+20$	1．2AEACH		90p	100FE26	26－0－26	3．5A		150p
$\begin{aligned} & \text { 6OFE20 } \\ & \text { BOFEE20 } \end{aligned}$	边 $\begin{aligned} & 20+20 \\ & 20+20\end{aligned}$	1．5A EACH	5．03	125p	100 FE28 100 FE 30	28－0－28	${ }_{3} 3$ 3	6．60 6.6	${ }^{150 p}$
					100FE36	36－0－36	3 3A	6.60	1500
BATTERY CHARGER TRA									
48 FEE 12	－6－12	${ }^{4 A}$	5.00	125 p	150 FE		6A		
66FE12	－	${ }_{6}^{5 A}$	5.80 6.15	1250	150	25－0－20	$4{ }_{4}{ }^{\text {a }}$	20	160p
90 FE 12	0－6－12	8A	7.40	1500	150		4 4	2	－
					250	${ }^{42} 20$	${ }^{3 A}$		160 p
O6FE40	9－0－9	0．5A	1.95	60 p	250	30－0－	7 A		研
06FE50	12－0－12	0．5A	1.95	60 p	250FE42	42－0－42	5A	9.02	200p
FLADAR ELECTRIC P．O．BOX 19									
WESTCLIFF－ON－SEA ESSEX．0702－613314			TRADE ENOUIRIESWELCOME			C．W．O．Cheques， Postal Orders			
			All Pri	Pres inclu	e 15	V．A．T．			

J．BIRKETT
 （Partners：J．H．Birkett．J．L．Birkett） Radio Component Suppliers 25 The Strait，Lincoln．LN2 1JF

HFC FREQUENCY COUNTER 8 Digh Display yp to 600 MHz e E123．S．A．E．for Leaflet．
SMALL ELECTROLYTIC CAPACITORS Wire Ended 5000uf $15 \mathrm{v} . \mathrm{w}$ ． $20 \mathrm{p}, \mathrm{I}$ ． $100 \mathrm{uf} 25 \mathrm{v} . \mathrm{w}$ ． 10p，1000uf 10v．w．， 3 for 20p．
200 RESISTORS $\frac{1}{4}, \frac{1}{2}$ WATT Assorted values for $75 p$ ．
OUAL GATE MOS FET LIKE 40673 at 33 p， 4 for $£ 1.10$
THYRISTORS（S．C．R＇s） 10 Amp Type 100 PIV $28 p, 400$ PIV 55p， 800 PIV $65 p, 5$ Amp Type． 700 PIV $50 \mathrm{p}, 200$ PIV 300 mA TIC 47 － 18 p ．
H．P．HOT CARRIER DIODES $5082-2800$－ $40 p$ each．
12 VOLT RELAYS 10 Amp 3 Pole C．O．Contacts．80p each．
CLEAR VIEW METERS Brand New $3^{n} \times 4 \frac{1^{\prime \prime}}{} 25$ Voli O．C． 50 mA .2 Amp， 300 Volt O．C． $500 \mathrm{~mA}, 100 \mathrm{~mA}, 1 \mathrm{~mA}$ ．S Meter．All at $£ 2.95$ each．（P\＆P 20 p ）．
OP－TO ISOLATOAS 1 L－ 74 with data 50 p each．
CLOSE TOLERANCE CAPACITORS 1288pf．1670pf，5979pf．19669pf．All $1 \% 125 \mathrm{v.w}$ ．，at 5p each．． 1 uf 2% ． 11 uf 2% at $8 p$ ， 1 uf 1\％at $12 p$ ．
MINIATUAE 12 WAY CERAMIC TAG STRIPS $\mathbf{1 5 p}$
TTLI．C＇s House Coded 7400， $7410,74 \mathrm{~L} 00,7453,7430$ ．All at 6 for 50 p．
ELECTRET MICROPHONE INSERT with Fet Pre－Amp e 81.85 ．
300 TO 75 OHM BALUM TRANSFORMERS at $20 p$ each．
SUB－MINIATURE TOGGLE SWITCH Single Pole C．O．－ 50 p．
SPECIAL 5 NPN DARLINGTON PAIRS in 14 PIN OIL HFE 5000,10 Volt， 500 mA with connections－ 50 p ．
ON－OFF TOGGLE SWITCHES With Long Paddte Dolly a 35p．
TANTALUM BEAO CAPACITORS $6.8 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$ ．at 12 for 75 p ．
SMALL GLASS 1 POLE MAKE REED RELAY with Megnet 15p pair．
S．A．W．TV FRLTERS umested at 3 for $\mathbf{3 8 p}$ ．
MULLARD ELECTROLYTICS $10.000 \mathrm{ut} 100 \mathrm{v} . \mathrm{w}$ ．E 2 each
10 WATT ZENERS 4．7，6．8，7．5，8．2，12，15，18，20，24，27．30．33，36，39．43，47．51． 62 ， $68,75,82,91,100,120,130,150,180,200$ Vort，some marked．some unmarked．All at 50 p each． 5 WATT TYPES 3．6．4．3．5．6，6，6．2，7．5．8．2，9，10，11．13．14．15，16，17，18．19．20， 22. $24,27,28,30,33,36,39,40,47,51,56,60,62,68,87$ Volt，manked，unmarked．All at 30 p each． 1 WATT ZENERS 3．6，5．6．6．8．7．5．8．2，8．7，10，11，13，15．16，20．22．27，30，36，56． 62. $91,110,120,130,150,160,180$ Volt，marked，unmarked at 15 p ．
500 mW ZENERS 2．5，2．7．2．8，3，3．3．3．9，4．3．4．7．5．1．5．6，6．2．6．8，7．5．8．2．8．7， 10,11
13，15．16，17，18，19，20，22，24，25，28，30，33，39． 47 Vols．All ap 10p each．
400 mW ZENERS $4.3,6.8,7.5,8.2,9.1 .9 .7,10,11,13,15,16,18,20,22,27,36,39,47$. $62,68,75,82$ Volt．All at $7 p$ each．
50．BC 107－8－9 TRANSISTORS assorted，untested 60p．
20 PHOTO TRANSISTORS，DARLINGTONS assorted，untested $£ 1$.
MAINS TRANSFORMERS 240 Voit Input．Type 1． 24 Volt Tapped at 14 Vole 1 Ampe $\varepsilon 1.30$（ $\mathrm{P} \& \mathrm{P}$ 25p），Type 2．30－0－30 Volt $500 \mathrm{~mA} \in \mathrm{E} 1.30$（ P \＆P 25p）．Type 6.16 Volt 2 Amp ． £1．60（P\＆P 25p）．Type 8． 30 Vole 1.76 Amp $£ 1.60$（P\＆P 25p）．Type 9.13 Volt 1 Ampe £1，80（P\＆P 25p）．
SMALL PLASTIC INSTRUMENT FEET 12 for 25p．
Please add 20p for post and packing on U．K．orders under £2．unless otherwise stated．Overseas postage charged at cost．

CAMBRIDCE LeARNING ENTERPRISES Instruction Courses

It's faster and more thorough than classroom learning: you pace yourself and answer questions on each new aspect as you go. This gives rare satisfaction - you know that you are really learning and without mindless drudgery. With a good self-instruction course you become your own best teacher.

Understand Digital Electronics

In the years ahead digital electronics will play an increasing part in your life. Calculators and digital watches mushroomed in the 1970's -soon we will have digital car instrumentation, cash cards. TV messages from friends and electronic mail.
After completing these books you will have broadened your career prospects and increased you knowledge of the fast-changing world around you.

DIGITAL COMPUTER LOGIC AND ELECTRONICS $£ 7.50$
 This course is designed as an introduction to digital electronics and is written at a pace that suits the raw beginner. No mathematical knowledge is assumed other than the use of simple arithmetic and decimals and no electronic knowledge is expected at all. The course moves painstakingly through all the basic concepts of digital electronics in a simple and concise fashion: questions and answers on every page make sure that the points are understood.

 Everyone can learn from it - students, engineers, hobbyists, housewives, scientists. Its four A4 volumes consist of:Book 1 Binary, octal and decimal number systems; conversion between number systems; conversion of fractions; octal-decimal conversion tables.
Book 2 AND. OR gates; inverters; NOR and NANO gates; truth tables; introduction to Book 2 AND,
Boolean algebra.
Boolean algebra. ECL ; De Morgans Laws; designing logic circuits using NOR gates; dual-input Book
gates.
gates. 4 introduction to pulse driven circuits; R-S and J-K flip flops; binary counters; shift Book
registers: half-adders.
DESIGN OF DIGITAL SYSTEMS £11.50
This course takes the reader to real proficiency. Written in a similar question and answer style to Digital Computer Logic and Electronics, this course moves at a much faster pace and goes into the subject in greater depth. Ideally suited for scientists or engineers wanting to know more about digital electronics, its six A4 volumes lead step by step through number systems and Boolean algebra to memories, counters and arithmetic circuits and finally to an understanding of calculator and computer design.
Book 1 Octal, hexadecimal and binary number systerns; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND funcrions; logic gates; NOT, exclusive-OR. NAND, NOR and exclusiveNOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; karnaugh mapping; three state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication'and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive - OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control programme structure.
Book 6 Central processing unit (CPUI; memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Flow Charts and Algorithms

are the essential logical procedures used in all computer programming and mastering them is the key to success here as well as being a priceless tool in all administrative areas - presenting safety regulations, government legislation, office procedures etc.

THE ALGORITHM WRITER’S GUIDE $£ 3.75$

explains how to define questions, put them in the best order and draw the flow chart, with numerous examples.

Microcomputers are coming - ride the wave! Learn to program.
Millions of jobs are threatened but millions more will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging. clear documentation. Harder problems are
 provided with a series of hints so you never sit glassy-eyed with your mind a blank. You soon learn to tackle really tough tasks such as programs for graphs, cost estimates, compound interest and computer games.

COMPUTER PROGRAMMING IN BASIC

 £7.50Book1 Computers and what they do well; READ, DATA, PRINT, powers, brackets, variable names; LET; errors; coding simple programs.
Book 2 High and low level languages; flowchanting; functions; REM and documentation; INPUT, IF....THEN, GO TO: limitations of computers, problem definition.
Book 3 Compilers and interpreters; loops, FOR....NEXT, RESTORE: debugging; arrays; bubble sorting: TAB.
Book 4 Advanced BASIC; subroutines; string variables; files; complex programming: examples; glossary.

THE BASIC HANDBOOK £11.50

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

FORTRAN COLORING BOOK $£ 5.40$

"If you have to learn Fortran (and no one actually wants to assimilate it for the good of the soull buy this book. Forget the others-this one is so good it will even help you understand the standard, dense, boring, unintellible texts." New Scientist.
A.N.S. COBOL $£ 4.40$

The indispensable guide to the world's' No. 1 business language. After 25 hours with this course, one beginner took a consulting job, documenting oil company programs and did invaluable work from the first day. Need we say more?

GUARANTEE - No risk to you
If you are not completely satisfied your money will be refunded on return of the books in good condition.
Cambridge Learning Enterprises, Unit 20, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR England.

Please send me:
Digital Computer Logic \& Electronics @ £7.00
Design of Digltal Systems @ $£ 11.50$
Algorithm Writer's Guide @ $£ 3.75$
Computer Programming in BASIC @ $\mathbf{E 7 . 5 0}$
BASIC Handbook @ £11.50
Fortran Coloring Book @ $£ 5.40$
A.N.S. Cobol @ £4.40

All prices include worldwide surface mailing costs (airmail extra)
IF YOUR ORDER COMES TO OVER £18. DEDUCT $£ 2$
Cheques/PO's payable to Cambridge Learning Enterprises or charge to Access/Barclaycard/Diners Club/etc account no
Telephone orders from credit card holders accepted on 0480-67446. Overseas customers (inc Eire) use credit card, or bank draft in sterling drawn on a London bank, or International Money Order ladd fi handling charge.)
Name
Address

Cambridge Learning Enterprises, Unit 20 , Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs PE 17 4BR England.

SAVBIT
handy solder dispenser

Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times.
Size 5 78p
For soldering fine joints
Two more dispensers to simplify those smaller jobs. PC115 provides 6.4 metres approx. of 0.71 mm solder for
fine wires, small components and printed circuits. PC115 92p
Or size 19A for kit wiring or radio and TV repairs.
2.1 metres approx. of 1.22 mm solder. Size 19A 83p

Handysize Reels \& Dispensers OF THE WORLD'S FINESTCORED SOLDER TO DO A PROFESSIONAL JOB ATHOME

Ersin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.

handy size reels of SAVBIT, 40/60, 60/40 \& ALU-SOL solder These latest Multicore solder reels are ideal for the toolbox. Popular specifications over all general and electrical applications, plus a major dvance in soldering aluminium. Ask for a free copy of 'Hints on oldering' containing clear instructions to make every job easy.					
Ref.	Alloy	Diam. mm.	Length metres approx	Use	Price
${ }_{3} \mathrm{Size}$	$\begin{gathered} 40 / 60 \\ \text { Tin'Lead } \end{gathered}$	1.6	10.0	For economical general purpose repairs and	
Size_{4}	ALU.SOL	1.6	8.5	electrical joints. For aluminium repairs. Also solders aluminium to copper, brass etc	£3.22
Size 10	$\begin{gathered} \text { 60/40 } \\ \text { Tin/Lead } \end{gathered}$	0.7	39.6	For fine wires, small components and printed circuits.	$£ 3.22$
Size	SAVBIT	1.2	13.7	For radio, TV and similar work. Increases copper-bit life tenfold.	£3.22

WIRE STRIPPER \& CUTTER

Easily adjustable for most sizes of flex and cable. Fitted with extra strong spring for automatic opening. Easy grip handles and handle locking device. Ref 9
£2.48 inc. VAT.
MULTICORE WICK
for solder removal and desoldering: absorbs solde instantly from
tags, printed circuits etc. Only needs 40-50 Watts soldering fron. Quick and easy to use. Non-corrosive.

Size AB10 $£ 1.29$

Sole UK Sales Concessionaires:
Bib Hi-Fi Accessories Limited,
Kelsey House, Wood Lane End. Hemel Hempstead. Herts. HP2 4RO.

Prices shown are recommended retail inc. VAT. From Electrical and Hardware Shops. In difficulty send direct, plus 40p P\&P Prices and specifications subject to change without notice.

NO

BATTERIES NO WIRES ONLY \&36.99 PER PAIR

The modern way of lostant 2 -way communications. Just plug Into power acoket. Ready to use. Crystal clear communications from roonito room. Range t-mile on the asme majns phase
Onjor switeh. Volume control, with buzzer' call nud light indicator. Uselul as inter-office intercon, between office and warehouse, in surgery and in bomes, P. \& P. \&1.50.

4-STATION

£31.95
INTERCOM

+ VAT £4.80
Solve your communication problems with this 4-Station Transistor Intercom system (I master and 3 Subs) in robust from Master to Subs to Master. Ideally suitable for Businesy, Surgery, Schools, Hospltals and Office Operates on one 9V
battery, Onfoff switch. Volume control. Complete with 3 conbattery, Onjoff switch. Volume control. Complete with 3 con-
necting wires each 66 ft . A battery and other nccessories.

£18.95
+ VAT $£ 2.85$
+ P \& P $£ 1.15$
Latest truhsistorised Telephone Amplifer with detached plug. In speaker. Placing the receiver on to the cradle activates a
switch for fommediate two-way conversation without holding the hnadeet. Many peopie can listen at a time. Iucrease efficledcy in office, shop, workshop. Perfect for "conference"
calls: leaves the user" havds free to make sotes, consuit fles. No long wating, saves time with long-distance calls. On/ofit switch, volume control, conversation recording model at £20.95 + VAT $=\mathbf{£ 3} \cdot \mathbf{1 5}$. P. \& P. $\mathbf{£ 1 \cdot 1 5 p}$.

DOOR ENTRY SYSTEM

No house/business/surgery should be without a DOOR ENTRY BYSTEM in this day and age. The moderb way to answer the door in safety to unwanted callers. Talk to the caller button which will opes the door electronically. A boom for the invalid, the aged and busy housewife. Supplied complete d.i.y. Kit with one internal Telephone, outside Speaker paze mains power unit, cable (8 -way) so fit and wiring diagram.
 Telephover $£ 59 \cdot 85+$ VAT $89 \cdot 00+$ P. \& P. $£ 1 \cdot 95$.

10-day price refund guarandee on all isems.
WEST LONDON DIRECT SUPPLIES (PE 5)
169 KENSINGTON HIGH STREET, LONDON, W8

```
NEW 1980 RADIO
AMATEUR'S HANDBOOK
by A.R.R.L. Price: £8.00
WORLD RADIO T.V. HANDBOOK 1980
                                    Price: £9.50
UNDERSTANDING MICROPROCESSORS
by Texas Instruments
                                    Price: £4.25
MICROPROCESSOR COOKBOOK
by M. F. Hordesk
                            Price: &4.85
    HOWTO USE INTEGAATED CIRCUIT LOGIC
    ELEMENTS
    by J.W.Streater Price: £4.45
    DESIGN OF OP AMP CIRCUITS WITH
    EXPERIMENTS
    byH.M. Berlin
    THE ACTIVE FILTER HANDBOOK
    by F.P.Tedeschi Price: £5.50
    Z80 ASSEMBLY LANGUAGE
    PROGRAMMING
    by L.A.Leventhal
                            Price: £5.50
DESIGN OF PHASE LOCKED LOOP
CIRCUITS WITH EXPERIMENTS
by H.M. Berlin
Price: £6.35
ADVENTURES WITH MICROELECTRONICS
byT. Duncan Price: £2.30
    * All prices include postage *
    THE MODERN
    BOOK CO.
    BRITAIN'S LARGEST STOCKIST
    of British and American Technical Books
        19-21 PRAED STREET
        LONDON W21NP
            Phone 01-402 }917
    Closed Saturday 1 p.m.
```


Codespeed Electronics

P.O. BOX 23, 34 SEAFIELD ROAD, COPNOR, PORTSMOUTH, HANTS., PO3 5BJ
8 DIGIT 0.1" LED DISPLAY muttiplexed, common cathode. 99p each. DIGITAL ALARM CLOCK MODULE with 0.7" display. With data $\mathbf{2 5 . 9 9}$ each. 4 DIGIT CLOCK L.C.D. $0.5^{\prime \prime}$ digits, supplied with data, E4.99 each. MM5316 digital alarm clock chip, with data E2.29 each. REJECT CALCULATORS Untested, but good value for spares. E2.50 each. LED WRISTWATCH I.C. Mostek MK 5030 , with data 95p each. LED WRISTWATCH DISPLAY type DIS501. $0.1^{\prime \prime}$ digits. With data 95p each. SUPER SAVER Purchase an MK5030 and a DIS501 for only $\mathbf{E 1 . 5 0}$ the pair. NOTE the MK5030 and DIS501 are housed in a 'legless flatpack' style package and require some fairly fine soldering. 20 KEY KEYBOARDS calculator kevboards. 2 for $99 p$ Inot for use with NORTEC4204 calc. chipl. 4 DIGIT 0.8^{7} LED DISPLAY common cathode. with data $£ 3.75$ each. DIGITAL MULTIMETER CHIP MM5330 I.C. to build a $4 \frac{1}{2}$ digit multiMeter. With data 53.49 each. SUPER QUALITY JACK SOCKETS $\dot{t}^{\prime \prime}(6.35 \mathrm{~mm})$ jack sockets, mono 23p each. stereo 25p each. SLIDE POT KNOBS please state colour required. 11p each. ROTARY VOLUME CONTROL KNOBS nice style, 18 mm dlam. Black with coloured cap. Please state colour required. 18 p each. 10 LED DISPLAYS Untested material. 0. . $^{\prime \prime}$ digits, common cathode, 95p. 6 DIGIT 0.1. LED DISPLAY multiplexed, common cathode. 99p. 555 TIMER I.c. With data and applications booklet. 23p. POLARIZING FILM max. 19" wide any length. Oniy $2 p$ per sq. inch. Any size cut. SLIDER SWITCHES 2 pole, change over. 15p each. PUSH BUTTON SWITCHES spring loaded (momentary) with one n.o. confact 14p each. CALCULATOR CHIP Nortec 4204,4 function and constant. With data $80 p$ p. 2102 MENORIES Dynamic memories for your micro's. With data 95p each. Wristwatch L.C.D supplied with polarizers aind data sheet, 99p each.
NEW CATALOGUE (No. 7) NOW AVAILABLE. SEND MEDIUM S.A.E. FOR YOUR FREE COPY. POST \& PACKING PLEASE ADD $35 p$ (OVERSEAS ORDERS ADO SOP)
V.A.T. GOD 15\% TOTHETOTALOF
.A. GOD GODANDPEP.

Enter the 80's with SAXON

STEREO DISCO SYSTEMS

WITH LIGHT SHOW \& DISPLAY

£309 inc. carr. \& VAT 12 mth - £24.80 or 24 mth er 14.51	Deposit $\mathbf{E 6 2}$

SUPER CENTAUR 200W

§366 inc. carr. \& VAT
12 mth - E 29.32 or 24 mth - f 17.16
GXL 200 W with PDF BINS
C499 inc. carr. \& VAT
12 mth - £ 40.17 or 24 mth e $£ 23.50$
Deposit £99
CUSTOM CENTAUR
$400 / 600 \mathrm{~W}$
with tour POF 100 A Bins
c833 inc. carr. \& VAT
12 mth . £66.87 or 24 mth - $£ 39.13$

MINIDISCO 100 N

12 minc. carr. \& VAT

JUST PLUG IN
AND GO!!

- Headphone monitor/cue light - Full mixing/crosstape - Tape a mic inputs - Top Qualitr - 4 channel soundlight

All systems complete with loudspeakers, leads, 82 years warranty catalogue over 200 items of disco systems, lighting and

EXAMPLES:

Fuzz lights
Projectors from Strobes
Rope lights 25^{\prime} Disco stands Echo chambers 100W speakers £26.50
£43.50
£35-£220
$£ 42.50$
$£ 23.50$
£75
$£ 27.50$ $\begin{array}{lr}10 \text { way chaser } & £ 275 \\ \text { 100W twin horn bin } & \mathbf{£ 1 1 0}\end{array}$ $\begin{array}{lr}10 \text { way chaser } & £ 275 \\ \text { 100W twin horn bin } & \mathbf{£ 1 1 0}\end{array}$ 800W spot bank $£ 39.50$

Mixers, mics, amplifiers, goosenecks, light units, bubble machines, mirror balls, helicopters, bins, consoles, and much more.

AND IF WE HAVENT GOT IT - WE'LL GET IT!

Full range of Pluto, D.J. Lightomation products in stock
Send $\mathbf{£ 1 . 5 0}$ now for your catalogue - worth £30!!!

P.E. ULTRASONIC CLEANER

Obtain a commercial type unit for about half price by building this exciting project which was featured in the January 1980 issue. All the designer approved parts including moulded fibre glass case and stainless steel tank.
$£ 89.13$

P.E. CONGRESS STEREO AMPLIFIER

An outstanding stereo amplifier for the home constructor, featured in thls issue. Capable of delivering a full 30 watts R.M.S. per channel into 80 the "P.E. Congress" has been designed to combine an impressive speclfication with reasonable construction cost and so represents excellent value for money. Send S.A.E. for detailed price list of designer approved parts.

CPLM1 SOUND TO LIGHT UNIT

A versatile self contained unit comprising red, green and blue lamps in moulded cases that snap together to form columns on modulator. Extra snap together lamp cases with lamps to extend column or construct additional columns are available. Sockets on rear of. unlt enable up to 1000 watts of lamps to be connected to each channel. No amplifier connections - modulator has a built in microphone, just connect to mains and its ready to go. Modulator with red; green and blue lamps (as illustrated) extra lamp holders with lamps $£ 6.43$ each.
£36.80

SANYO
 STK 463

Hybrid stereo power amp I.C. delivers 30W R.M.S. into 8 ohms from each channel, all contained in one package approximate size as outline to this item. From one of the worlds leading manufacturers this new I.C. features only 0.5 mV output noise and THD of 07% and IMD of $\cdot 1 \%$ at 1 W . Price includes P.C.B., data sheet and additional support components to complete. Just add pre-amp and power supply (not supplied) to build a high quality stereo amp.
£19.32

TERMS C.W.O. All prices include P\&P and V.A.T. at 15%.
WICCA ELECTRONIC SYSTEMS LTD.
24 Hillcrest Parade, The Mount, Coulsdon, Surrey MAIL ORDER

LB ELECTRONICS

PROCESSOR ICS (ALL FULL SPEC.)

1702A £2.50, 2708 £6.25, 2716 single rail $£ 28.50$, LM323K 5 volts 3 amps £4.50, 7805 £1, 7812 £1, 214 £4.50.
DIL SKTS LOW PROFILE: 8 way $12 p, 14$ way, $15 p, 18$ way $20 p, 16$ way 17p, 20 way 23 p, 22 way 28p, 28 way 45 p, 24 way 35p, DIL 16 WAY HEADER SPECIAL OFFER ONLY 45p.
74116 SPECIAL OFFER 75p, 741254 for $£ 1,74198$ 75p, 74194 50p, 74181 80p, TIL 209 RED 10p, $\cdot 2^{\prime \prime}$ RED 12p.
MM5240 character generator + data $\mathbf{£ 3 . 5 0}$.
4 digit EX calculator display 4 for $£ 1+$ data.
P.E.T. edge connector (memory expansion) $£ 1.40$.

74LS, C.MOSS, sub miniature toggles, 74TTL, and computer equipment is stocked, i.e. V.D.U. printers etc. vast range of power supplies for callers. ALL ITEMS P/P 30p.
L.B. ELECTRONICS, 11, HERCIES ROAD, HILLINGDON,

MIDDLESEX.
UXBRIDGE 55399
(Just off A 40)
OPEN: Monday, Thursday, Friday and Saturday 9.30-6.00.
barclaycard
FSH
W. nture tron

COLOUR VDUs

 FROM $\leq 40+$ VATWhy dismantle your family's T.V. for a computer, CEEFAX or T.V. game? We can supply you with a HUGE range of working Ex-Rental C.T.V.'s suitable for adaption as V.D.U.'s.

Prices from $£ 40.00$ +VAT.
Most makes (inc. Japanese) can be seen working in our warehouse. Working B/W T.V.'s also available from $\mathbf{£ 1 0 . 0 0 + V A T}$.

Deliverles arranged.
Write or phone for Details and Catalogue.
W.M.T.V. Dept. P.E., Faraday Buildings, 92, High Street,

Kings Heath, Birmingham 14.
Tel. 021-444 6464

Up-to-date Electronics Books from Prentice-Hall International

Walter H. Buchsbaum

Buchsbaum's Complete Handbook of Practical Electronic Reference Data Second Edition

The second edition of this highly successful handbook has been thoroughly revised and updated to cover the latest aspects of electronics, including the growing areas of digital logic, microprocessors, computers and programming.
£12.95 hardback 654 pages 13-084624-4

David L. Heiserman

Handbook of Digital IC Applications
Digital electronics are presented from three distinct points of view in this comprehensive book: basic principles, available devices, and systems that implement the principles and devices.
£14.25 hardback 428 pages 13-372698-3
J. Victor Nahigan and William S. Hodges

Computer Games

For Businesses, Schools and Homes
Including programs, sample runs and cartoons, this challenging collection of computer games is written in 8 K of memory BASIC programming language, and is designed for use on microcomputers as well as PDP 11 and PDP 12 computers.
£8.40 paperback 157 pages 87626-166-7

Sams Books

Jonathan A. Titus

TRS-80 Interfacing

Written for TRS-80 users who wish to extend TRS-80 capabilities to control external devices and transfer information between the computer and peripheral circuits of their own design, this book explains internally generated signals and how they can be used under BASIC language program control.
£5.80 paperback 192 pages 672-21633-7

Elizabeth and Joseph Nichols, Peter Rony
 Z-80 Microprocess or Programming. and Interfacing

Books 1 and 2

Book 1 covers assembly and machine language programming. Book 2 explains interfacing digital circuits with the Z-80 CPU, PIO and CTC chips.
Book 1 £7.10 paperback 302 pages 672-21609-4
Book 2 £8.40 paperback 496 pages 672-21610-8

Elmer C. Poe and James C. Goodwin II

The S-100 and Other Micro Buses
Illustrated with numerous photographs and printout drawings, this book first discusses bus basics and then examines in detail the mechanical data, pinpoint designs and bus signal definitions of 11 common bus systems.
£5.05 paperback 144 pages 672-21587-X
Prices are correct at the time of going to press but may be subject to change.

For further details of these tilles and our wide range of electronics books please write to Jean Walmsley at: Prentice-Hall International, 66 Wood Láne End, Hemel Hempstead, Herts. HP2 4RG, England.

When replying to Classified Advertisements

 please ensure:(A) That you have clearly stated your require ments.
(B) That you have enclosed the right remistance
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assise advertisers in processing and despatching orders with the minimum of delay

RECEIVERS AND COMPONENTS

TURN YOUR SUAPLUS Capacitors, transistors, etc., into cash. Contact COLES-HARDING CO., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settlement.

COMPONENTS AṪ SILLY PRICES. 1000 mixed resistors $£ 3.60$. SAE Lists. W.V.E.3, Craigo Farm, Tintern, Gwent.

TUNBRIDGE WELLS COMPONENTS, Ballards, 108 Camden Road, Tunbridge Wells. Phone 31803. No Lists. Enquiries S.A.E.

10 LEDS. Mixed colours/sizes 11.15. Lists 15 p. Sole Electronics, (P.E.) 37 Stanley Street, Ormskirk, Lancs L39 2DH.
BOURNEMOUTH/POOLE. Electronic Components for the Hobbyist, and FRIENDLY Service. Why not pay us a visit. H \& H Telectrics Lid., 353 Ashiey Rd, Parkstone. 742643.

100 ASSORTEO Components 115 p. 100 assorted resistors 75 p. 100 assorted capacitors 150 p. 50 reed switches 200 p. 10 mains neons 50 p. 20 Micro Switches 150 p. Add 25 p P\&P. DURRANTS, 9 St. Mary's Street, Shrewsbury Salop.
T J J ELEGTRONICS COMPONENTS - Quality Components Sensible Prices. Same day Service. Send 30 p in stamps for our full lists. 98 Burrow Road, Chigwell, Essex. IG7 4HB.

SMALL ADS

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 8.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

AERIALS

AERIAL BOOSTERS

Improves weak VHF Radio and Television reception
B45-UHF TV, BII-VHF Radio. B11A-2 metres For next to the set fitting. Price $£ 6$.

SIGNALINJECTOR

A complete range of AF and RF frequencies up to the UHF Band. Price £5.00.

S.A.E. for Leaflets.

ACCESS

ELECTRONIC MAILORDER LTD,
 62 Bridge Street.
 Ramsbotton, Bury, Lancs, BLO 9AG.

BOOKS AND PUBLICATIONS

any hequesteo service sheet el + Large S.A.E. Full repair data any named TV $\mathbf{E S} .50$ (with circuits, layouts etc.〔7). SAE brings newsletter, bargain offers, etc. AUSPEL 76 Church St, Larkhall, Lanarks ML9 1HE.
homanian electronography. Tobiscopes, electrokineses, biogravity, hallucinophotography, dermoptics, psychotronic generators. Kirlianography. SAE $4^{\prime \prime} \times 9^{\prime \prime}$ Paralab, Downton, Wilts.

SERVICE SHEETS

BELIS TELEVISION SENVICES for Service Shcets on Radio, Tv, etc $£ 1.00$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel:(0423) 55885.
service sheets from 50 p and S.A.E. Catalogue 25 p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

FOR SALE

TEKTRONIX TYPE 545 OSCILLOSCOPE with 1A2 Dual-Trace plug in and instruction manual. Good Working order £175. FRIDEN MODEL 1 FLEXOWRITER Automatic typewriter with 8 Channel paper tape reader and punch. Good working order $\mathbf{C 3 5}$. Tony Frost 01-874 9889 evenings.

TELERUIPMENT D67A $\mathbf{5 4 5 0}$ and DM64 storage $£ 500$. Both as new. Telephone Epping 73309. Nearest Offer Accepted.

MEW BACK ISSUES of "Practical Electronics" available 80p each Post Free. Open P.O./Cheque returned if not in stock BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

LOGIC PROBES CMOS TIL E12.00. Excellent Quality. Telephone in first instance Swansea 52475.

16K RAM T14116-25 (250 nS) 5 sets only at $£ 50 /$ set of 8 . One set 4 K dyaamic $£ 15$. TEST EQUIPMENT - Unit containing two oscilloscopes, signal generators, amplifier, power supplies. Collect only - £150. Practical Electronics Nov 64 to Dec 75. Offers - P. Short, 5 Hagart Road, Houston, Ren frewshire, PA6 7JH. Tel. 0505613322.
COMPUKIT UK101, Cased, working, 7K Ram $£ 320$ ono. Hemel Hempstead 3040. Evenings.
P.E. SYNTHESIZER Keyboard unit, working but needs seting up. Offers 092524751.

RECORD ACCESSORIES

STYLI Cartridges for MUSIC CENTRES, \&c. FREE List No. 29 for S.A.E. includes Leads, Mikes, Phones \&c. FELSTEAD ELECTRONICS, (PE), Longley Lane, Gatey, Cheadle, Ches. SK 84 EE.

MISCELLANEOUS

PRINTED CIRCUIT BOARDS. Glass Fibre Tinned \& Drilled. From your own or Published Designs 12p per sq.ins. Plus 30p post. R.D. Electronics, 12 Whiteoaks Road, Oadby, Leicester. 0533716273.
SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. Faced stee.. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a Low $\mathbf{\$ 1 . 0 5}$. Chassis punching faciutues at very competitive prices, 400 models to choose from. Suppliers only to Industry \& The Trade. BAZELLI (Dept. No. 23), St. Wilfrids, Foundry Lane, Halton, Lancaster, LAI 6LT.
ULTRASONIC TRANSDUCERS. $\mathbf{£ 2 . 8 5}$ per pair +25 p P. \& P. Dataplus Developments, 81 Cholmeley Road, Reading, Berks.

PANELS, SCALES, CHASSIS AND FACIAS

Screenprinted to your special layout requirements, one-offs or quantity production.

> Ashman and Clough Ltd.,
> Designers and Printers,
> 7 Chapel Lane, Blisworth,
> Northampton. (0604) 858274 .

FREE 1980 AMTRON CATALOGUE with new range of kits and equipment cabinets. Send S.A.E. AMTRON UK LTD., 7 Hughenden Road, Hastings, Sussex TN34 3TG. Tel. Hastings 436004.

MAKE YOUR OWN PRINTED CIRCUITS

Etch Resist Transfers - Starter pack (5 sheets, llnes, pads, I.C. pads) $£ 1.60$. Large range of single sheets in stock at 34p per sheet.
Master Positive Transparencles from P.C. layouts in magazines by simple photographlc process. Fuil Instructions supplied. 2 sheets ($20 \times 25 \mathrm{~cm}$) negative paper and 2 sheets $(18 \times 24 \mathrm{~cm})$ positive film Ev.30.
S.A.E. lists and information. P\&P 30p/order
P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE
UK 101 SOFTWARE TAPE. Jet Fighter 101. Drive jet fighter round screen, blasting illusive Alien. $£ 3.00$ inclusive. J. Walton, 7 Hallfield Road, Newton, Derbyshire.

GUITAR/PA
 MUSIC AMPLIFIERS

100 watt superb treble/bass, overdrive. 12 month guarantee. Unbeatable at fes; 60 watt t3s; 40 watt E34; 200 watt \&60; 100 watt twin channel sep. treble/bass per
channel $\mathrm{EE} 5 ; 60$ watt \& 200 watt $272 ; 100$ watt four channel se0. treble/bass per channel 275; 200 watt 292 ; slaves 100 watt E32; 200 watt EBO; fuzz boxes, great sound E10.00; bass fuzz E10.90; overdriver fuzz with treble and bass boosters E18.00; 100 watt combo superb sound overdrive, sturdy construction, castors, unbeatable $£ 92$
twin channel $\mathrm{E100;}$ bass combo $\mathrm{E105}$; speakers 15 in. 100 watt £35; 121 h . 100 watt $223 ; 60$ watt E16; mlcrophone Shure Unidyne B E28.

Send cheque or P.O. to:
WILLIAMSON AMPLIFICATION
62 Thorncliffe Avenue, Dukinfield, Cheshire.
Tel: 061-308 2064

RYDER ORGAN SYSTEM

The W.W. classical design for fullsize keyboards, including couplers.
Expanded range of units now includes chorus, vibrato, combination stop-control.
Data, p.c. boards, from:
HIYKON LTD. (P).
Woodside Croft. Ladybridge Lane.
Bolton BLI 5ED.

CABINET FITTINGS

Stage Loudspeakers and Amplifier Cabs Froerclorth, Coverings, Strap \& Recess Hondles, Foot, Castors Jocks 8 Sockets, Cannons, Bulgin 8 worys, Revert Troys, Locks \& Hinges, Corners, Trim, Speaker Bolts etc.

Send $2 \times 9 p$ Stamps for samples and illustrated catalogue

ADAM HALL (P.E. SUPPLIES)
Unit 3, Carlton Court, Grainger Road Southend-on-Sea, Essex.
SIMPLY THE BEST! NO-NONSENSE INDUCTIVE DISCHARGE Electronic Ignition: timing light; contactbounce suppression; 12v negative earth. High quality, performance, reliability. Only $£ 17.25$ (inc P\&VAT) built, tested: MICROSTATE, 5 Northfield Close, Fernhill Heath, Worcester.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power cell) roplacement at regular intervals. This kit provides the means. We supply eyeglass, non-magnetic weezers, watch screwdriver case knife and screwback case opener, full instructions and battery identification chart. We hen supply replacemen batteries Send 5750 form. Begin now. Send et.50 for complete business. Prompt despatch.

WATCH BATTERY REPLACEMENT CO (PE12)
11 Percy Avenue, Ashford, Middx. TW15 2PB

UK 101 SOFTWARE. Try our original programmes (on cassette) GRAPHIC PAINT BRUSH - GRAPHIC PLOTTER etc. Working programmes that will give you ideas of your own. S.A.E. M \& B SERVICES, 182a High Street, Margate, Kent.
SEEN MY CAT? 5000 Odds and ends. Mechanical. Electrical. Cat. free. Whiston Dept. PRE. New Mills, Stockport.

ENAMELLED COPPER WIRE

SWG	1 lb	$1 . l b$	1.1 lb
$10-19$	2.95	1.70	0.85
$20-29$	3.05	1.75	0.95
$30-34$	3.45	1.90	1.00
$35-40$	3.75	2.10	1.15
$41-43$	4.95	2.75	2.15
$44-46$	5.90	3.50	2.40

INDUSTRIAL SUPPLIES 102 Parrswood Road, Withington, Manchester 20.
Prices include P\&P in UK
burglar alarm equipment. Latest Discount Catalogue out now! Phone C.W.A.S. Alarm 0274682674.

FREE $12^{\prime \prime} \times 6^{\prime \prime}$ VEROBOARD. With first 50 orders for our compilation pack of components. Hundreds of common and exotic use devices plus PCB's thermistors etc. This really is an offer not to be missed. Send P.O. or Cheque for $£ 8.20$ immediately to: R. E. Norman, Portbuild Lid., 57 Amberwood Rise, New Malden, Surrey. Or send S. A.E. for List.

U.V. EPROM ERASER Ready built erasing cabinet suitable for up to 12 Eproms $\mathbf{£ 3 5}$. inc. V.A.T. \& P/P. P. R. Lowndes, 352 Peterbrook Road, Shirley, Solihull.

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, also second-in-a-month STOP signals. 1000 Km range. ABSOLUTE TIME, £48.80. 6OKM2 RUGBY RECEIVER, as in MSF Clock, built-in antenna, serial data and audio outputs, £13.70.
LOSING DX? ORM? Dig out RARE DX with Audlo Notch Filter, between your receiver and tunable Audlo Notch Filter, between your receiver and speaker
BOOST your DXORM ratio, 40 A B notch $\mathrm{E8} 90$. V.L.F.? EXPLORE $10-150 \mathrm{KHz}$, Receiver $£ 10.70$. Sig. GEN., 10Hz-200K Hz Logic and variable sine and No Rquare wave oufputs, harmonics for if, rf, E10.80. receiver, get ALL the NoWS for E11 40. Medum Wav LONG WAVE DX? Discover exciting $100-600 \mathrm{KHz}$ Converter
E10.90.
Esch fun-to-build kit includes all parts, printed circuit, case, postage etc, monay back assurance so SEND oHf NOW.

CAMBRIDGE KITS
45 (PE) Old School Lane, Milton, Cambridge.
electronic ignition. Manufacturers surplus P.C.Brds, tested $£ 2.75$ each. Phone (01) 6436111 After 6 pm.

MK14 CORNER. Interface Board, includes flag driven mains relays, LED Indicators for all Serial I/O, A/D and single step chips, and prototype area; PCB and circuit $£ 3.95$. Replace calculator display with $\frac{1}{2}$ " FND 500°; PCB, filter, instructions £1.95. Ready Built replacement Keyboard £1 L. Useful notes on MK 14 75p; programming sheets; PAD 95p. Rayner, "Kismet’ High St., Colnbrook, Bucks.
UK 101 SOFTWARE ON TAPE From the guy who wrote "Le Passe-Temps" (see P.E. May) GAMES PROGRAMS @ £1.50: Noughts and Crosses, Blackjack, King Albert Skilful Card (Patience), Dambusters, Codebreaker (as Mastermind), Battleships, Le Passe-Temps, Hangman, Lunar Lander, Armless Bandit, Nim, Solitaire, Life, Hexapawn, Awari, Roulette, Craps. FOR THE YOUNGSTERS: Number games, Snap etc., RockScissorsPaper etc., Word Games. (Any three for f4. Additional programs $\mathbf{£ 1}$ each). $8 \mathbf{K}$ programs @ $\mathbf{£ 2 . 5 0}$: Steeplechase, Stockmarket, Stud Poker. OTHER PROGRAMS UK $101 £ 1$ each). Programming in basic $£ 6$. Probability theory tutor $£ 2.50$. Maths puzzles $£ 2.50$. Also available for the superboard (please state) S.A.E. for latest additions to Mr. A. K nighe, 28, Simonside Walk, Ormesby, Middlesborough, Cleveland. Tel. M ${ }{ }^{\circ}$ Bro. 321266. (POST + VAT INCL. PRICES).

PRINTED CIRCUIT PROBLEMS? We can solve them. We specialise in P.C.B. artwork, design and manufacture at competitive rates. Small quantity or one-offs welcome. P.C.B.'s supplied built-up or bare, tested or untested. Electromechanical design on control work for motors, mechanical handling, traffic control, security systems, hybrid one-offs, etc., to completed control panel stage if required. Electronic circuit designs utilising digital and/or analogue disciplines with microprocessor applications. Efficient turn round - fixed price quotations. Just send cir cuit details. Contact Aardvark Electronics, Byron House, 140 Front Street, Arnold, Nottingham. Tel. Nottm. (0602) 269606.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4

ENAMELLEDCOPPER WIRE

SWG	lib	802	4 oz	2 oz
10to29	3.10	1.86	1.10	0.80
30 to 34	3.50	2.00	1.15	0.80
35 to 39	3.95	2.36	1.34	0.98
40 to 43	5.10	2.97	2.28	1.42
44 to 46	6.00	3.60	2.50	1.91
47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69

SILVER PLATED COPPER WIRE

$\begin{array}{lllll}14 \text { to } 22 & 5.30 & 3.03 & 1.85 & 1.20\end{array}$ $\begin{array}{lllll}24 \text { to } 30 & 6.50 & 3.75 & 2.20 & 1.40\end{array}$ Prices include P\&P and VAT. Orders under f2 please add 20p. SAE for list. Dealer enquiries welcome.

Reg. office: 22 Coningsby Gardens.

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state TransmitterReceiver Kit. Only 110.95 plus 25 p P. \& P. 'Brain Freeze' 'em with a MINI-STROBE Electronics Kit, pocket-sized 'lightning fiashes', vari-speed. for discos and parties. A mere $\mathbf{E} 4.75$ plus 25 P P. \&i P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound catcher: ready-made multi-function modules, $£ 5.45$ each plus 25 p P. \& P.
LOTS MORE! Send 30p for lists. Prices include VAT.

BOFFIN PROJECTS

4 Cunliffe Road, Stoneleigh Ewell, Surrey (P.E.)

CLEARING LABORATORY: scopes, generators, P.S.U.'s, bridges, a naly sers, meters, recorders, etc. 0403-76236.

DOLA SOFTWARE

UK 101 and ACORN programs
Subroutine library in Basic and Machine code for UK
101, Graphics and original games. Programs for Morse Code, Music and Teletype interface for Acorn.

General hardware interfacing. S.A.E. for list.
117, Blenheim Road, Deal, Kent.

MEMORY MART

'UK 101 "Superboard"' 4 K RAM
\qquad
$21141 \mathrm{kx} \times$
e32.00
2708 UV prom
each $£ 4.00$
each $£ 5.50$
P\&P200
MEMORY MART
19 Weatherby Gardens,
Hartley Wintney, Hants.

BURGLARS

Safeguard your home, shop etc. from burglars and vandals with the best D.I.Y. equipment avaiable. Send S.A.E. for comprehensive price
list, or \mathbf{x}, for one of our fully weatherproofed steel Beil/Boxes the professionals use. Lawrence, 42/45, Now Broad St., London, EC2M 10 QY.

> "Don't buy In Kits, buy in bits"

PLEASE MENTION PRACTICAL ELECTRONICS When replying to Advertisements

What's an electronics enthusiast like you doing in an advertisement like this?

We reckon that if you're a regular reader of this magazine, you might very well be the sort of man or woman who'd be interested in joining Marconi Avionics as an Electrical Inspector.

We say this with some confidence because if you're used to building up your own equipment, you're probably well used to finding your way round electronic circuits and wiring and that's just the sort of background we're looking for.
As an Electrical Inspector with us you'll be involved in the inspection of printed circuit boards and assemblies against drawings on a wide range of equipment. Mind you, this equipment will be considerably more complex than any you're likely to have worked on previously, for at Borehamwood we're engaged on a variety of exciting and challenging projects relating to advanced electronic
systems and hardware for such technically sophisticated aircraft as Nimrod and Tornado. But, provided you have a good basic background knowledge of electronic circuitry, we can soon train you to take your place in one of our inspection teams.
We offer a good salary, an attractive range of benefits and the opportunity to make your hobby pay off both financially and in terms of job satisfaction.

Assistance with local authority housing could in certain circumstances be made available.
Write with details of your experience to Chris Hill at Marconi Avionics Limited, FREEPOST, Elstree Way, Borehamwood, Herts WD61BR. Telephone 01-953 2030 ext 3449 during office hours or 01-207 3455 anytime. Please quote ref: MA 80/13.

EDUCATIONAL

microprocessors from zero. Self study course. Cassettes ($4 \frac{1}{2}$ hrs) plus 64 p book. $£ 24$ or hire $£ 3$ p.w. ($£ 2$ post \& ins). Also advanced courses, recorded seminars \& microprocessors for hire or buy. EMPRISE - 25 Carlisle Close, Colchester, Essex. Tel. (0206) 41713.

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. U272 Intertext House, London SW8 4UJ
Tel. 01-622991| (all hours)
State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. U272 Intertext House, London SW8 4UJ Tel. 01-6229911 (all hours)

State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. U272 Intertext House, London SW8 4UJ Tel. $01-6229911$ (ail hours)

State if under 18

TELEVISION \& VIDEO SYSTEMS SERVICING

18 MONTHS full-time Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
- MONO \& COLOUR TELEVISION
- CLOSED CIRCUIT TELEVISION
- VIDEO CASSETTE RECORDING
- DIGITAL TECHNIQUES TELETEXT
- computer \& MICROPROCESSORS
Shortened courses for applicants with suitable alectronics background.

Next session starts April 21 st.
(Also available $2 \frac{1}{2}$ year course in Marine Electronics \& Radar for employment as ships Radio Officer.)
Prospectus from:

LONDON ELECTRONICS

 COLLEGEDept. PEA5, 20 Penywern Road, Lond on SW5 9SU. Tel. 01-373 8721.

MAIL ORDER PROTECTION SCHEME

The Publishers of 'Practical Electronics' are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation of bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.
In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with 'Practical Electronics' within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence. For the purpose of this scheme, mail order advertising is defined as:-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail order advertising are excluded.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

NAME
Send to: Classified Advertisement Manager
PRACTICAL ELECTRONICS
ADDRESS
GMG, Classified Advertisements Dept., Room 2337, King's Reach Tower, Stamford Street, London SE1 9LS. Telephone 01-2615846 Rate:
24p per word, minimum 12 words. Box No. 60p extra.
Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

AVAILABLEAT:

CRIMSON ELEKTRIK lA STAMFORDST., LEICESTER LE1 6NL TEL:0533553508
A. MARSHALL(LONDON)LTD. 40 CRICKLEWOOD BDY LONDON NW2 3ET
TEL:014520161

BADGER SOUND SER VICES 46 WOOD ST.,
LYTHAM ST. ANNES, LANCS
TEL:0253 729247

AND
85 WESTREGENT ST., GLASGOW G2 2QD
TEL:0413324133

DOWN HI FI AND VIDEO CENTRE 66 ABBEY ST., BANGOR,N.IRELAND
TEL:024762920

SCORPION ELECTRONICS
KAISERFRIEDRICHSTRASSE 35
1000BERLIN 12
W. GERMANY

PLEASE SEND \square Product Information and Current Price List
(I Enclose SAE $\quad 9^{\prime \prime} \times 4^{\prime \prime}$)
(I Enclose Cheque/PO for 50p)

Send this slip to: CRIMSON ELEKTRIK, 1A STAMFORD ST., LEICESTER LE1 6NL

BUILD A SYNTHESISER!

Using Devitrol (Reg'd) PROFESSIONAL MODULES

Over 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, welltried range of Dewtron synthesiser and other effects modules.

Send 25p for Musical Miracles Catalogue NOW!
 D.E.W. LTD.

254 RINGWOOD ROAD, FERNDOWN, DORSET BH229AR

PLEASE MENTION PRACTICAL ELECTRONICS WHEN REPLYING TO ADVERTISEMENTS

- Wilmslow Audio

THE firm for speakers!

SEND 50p FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

AUDAX - AUDIOMASTER - BAKER BOWER \& WILKINS - CASTLE - CELESTION - CHARTWELL - COLES - DALESFORD DECCA - EAGLE - ELAC - EMI - FANE GAUSS - GOODMANS - HARBETH ISOPHON - I.M.F. - JORDAN - JORDAN WATTS - KEF - LOWTHER - McKENZIE MISSION - MONITOR AUDIO - MOTOROLA - PEERLESS - RADFORD - RAM - ROGERS © RICHARD ALLAN - SEAS © SHACKMAN © STAG - TANNOY - VIDEOTONE - WHARFEDALE -

WILMSLOW AUDIO (Dept. P.E.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Tel: 0625529599
FOR MAIL ORDER \& EXPORT OF DRIVE UṄITS, KITS ETC.
Tel: 0625526213
(SWIFT OF WILMSLOW) FOR HI-FI \& COMPLETE SPEAKERS

SEND FOR TRADE PRICE LIST

INDEXTO ADVERTISERS

Premier Publications 52
Prentice Hall 89
Progressive Radio 82
Proto Design84
Radio Component Specialists 84
Radio Supplies Ltd. 16
Padio \& T.V. Components 91
Safgan 88Saxon Entertainments
Service Trading Cover III
Science of Cambridge 80, 81
Scientific Wire Co. 91
Sentinel Supply 11
20
Swanley Electronics 6
Tandy Corporation 11
Tempus 32
T.K. Electronics 4
Technomatic 96Transam Components
TUA.C. 24
Vero Electronics 52
Watch Battery Replacement Co. 91
West London Direct Supplies 86
West Midland T.V. 88
Wicca Electronics 88
Williamson Amplification 90

FT3 NEON FLASH TUBE
Figh NEON FLASH tigh intensily multi -urn high voltage, neon glow
dischage flash tube Design for ignition timit. $\mathrm{E} 1.50 . \mathrm{P} . \& \mathrm{P} .25 \mathrm{p}(\mathrm{Ex} 2.01$ inc. VAT) 3 for $£ 3$. P. \&
$\mathrm{P} .50 \mathrm{D}(£ 4.03$ inc. VAT P) RODENE UNISET TYPE 71 TIMER

WHY PAY MORE?

MULTI RANGE METER TYDo MF15A a.c. d.c.
volts 10.50 . $250.500 .1000 . \mathrm{Ma} 0-5.0-10$. 100 Sensitivity 2000 V 24 range. diametel
133 by 93 by 46 mm including test leads. Price \&7.00 plus 50 P P. \& P $\mathbb{P} 8.63$ inc.VAT \& P.I METERS (New) - 90 mm DIAMETER A.C. Amp. Trpo $62 \mathrm{~T} 2,0-1 \mathrm{~A}$
A.c. Vot. $0150 \mathrm{~V} .0-300 \mathrm{~V}$.

All types 83.50 es. + P \& P. 50 ($\mathbf{f 4} 4.60$ incl. VAT) except 0-50A
 MEAVY DUTV SOLENOID mf, bY Ment operation. Approx. 20 it. pull at
tent 1.25 it. $E x$-equip. Tested. Price: $£ 4.75$ +75 p . P. \& P. PE 6.33 hnc . VAT \& P.)
\rightarrow C SOLE NOID

AG/GT 24V. O.C. 70 ohm Coil Solenoid. Push or Pull. Adjustable traval to $3 / 16 \mathrm{~h}$. Firred with mounting brackets and spark sup-
pressor. Size: $100 \times 65 \times 25 \mathrm{~mm}$. Price: 3 for $£ 2.40+30 \mathrm{p}$. P. \& pressor. Size
P ($\min 3$ off.) ($(\mathrm{f} 3.11$ inc. VAT \& P.)
MINIATURE UNISELECTOR
12 volt. 11 .way.
1 homing) $£ 3.00$.
P. \& P. 35p (E3.85 inc. VAT \& P.I. N.M.S.

REED SWITCHES. Size 28 mmx 4 mm dila. Price: 10 for E1.00 +p. \&
30 p. (total incl. VAT $£ 9.55$).

MICRO SWITCHES

Sub. Min. Moneywell Lever m/s fype
tor $\mathbf{E} 3.55$ post paid ($\mathbf{4} 4.37$ Incl. VAT).
These $V 3$ rypes.
Button types. Pye) 10 for $\mathbf{E 3} .00$ (E3. 80 incl. VAII
Stor
Shor Lover type 16 amp. rating (Grouzet) $£ 4.00$

O.P. C/O lever m/switch mfg. by Cherry Co. USA. Precious metal
low ersistance contacts. 10 for $£ 2.25 \mathrm{P}$. P . 30 p . Total inc. VAT E2.93 (min. 10).

MERCURY SWITCH

Size $27 \mathrm{~mm} \times 5 \mathrm{~mm}$. 10 for $\mathbf{£ 5 . 0 0}$
(ine VATEE.12) min quantity $10.30 \mathrm{p} P . \&$
Heary duty type size $38 \times 16 \times 10 \mathrm{~mm}$, minimum quantity 10 .
f7. 50 post paid $i 88-83$ inc E7. 50 post paid ($£ 8-63$ inc. VAT $\&$ P.).

MINIATURE 2-CAM PROGRAMMER

wouzet 19 Dm .115 V . A.C. Motor operating 2 Roller Micro
 (supplied) Price $\mathbf{£ 2 . 5 0}+50$ p. p. \& p. (

A.E.G. CONTACTOR

ARROW-HART MAINS CONTRACTOR, CaL No
 \& p. $£ 1.00$ (incl. VAT, total: E10.06). N.M.S.

SMITH BLOWER

Type FFB. 1706. Small, quiet. smooth running, 240 V . A.C. Operation. Output aperture $45 \times 40 \mathrm{~cm}$. Overall size $135 \times 165 \mathrm{~cm}$.
Flange mounting. Price: $£ 4.25$. P.\&P. 75 p. Total: $\mathbf{~} 5.75 \mathrm{inc}$. P. \& VAT. N.M.S.

24 volt. D.C. BLOWER UNIT Precision 24 volt. O.C. 0.8 amp Blower that works well on 12 V
0.4 amp D.C. Producing $30 \mathrm{cu} . \mathrm{th}$ min at normal air pressure. O.4 amp o.c. Producing 30 cu.th. min at normal air pressure.

INSULATION TESTERS NEW!

Test to 1 E E Spec Rugged metal construction
suitabie for bench or field work constant soeed suitabie for bench or field work constant 8000 d
ciutch $\operatorname{Size} L \operatorname{Lin} W 4 \mathrm{in} \mathrm{H}$ bin weight 810.500 V , 500 megohms, £49.Post 80 ($£ 57.27$ inc. VAT \& P.). 1.000 V 1.000 M , 555 Post 80 p (E64. 17 inc. VAT \& P. SAE for leaflet.
Yot another outstanding offer.
IMFD 600V Dubilier wire ended capacitors : N.M.S 10 tor $£ 1.50 \mathrm{D} \& \mathrm{D}$ 50p. (E 2.30 inc VAT $+D \& \mathrm{pl}$ IMin 10 230 V a.c. FAN ASSEMBLY

All Mail Orders

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/240V e.c. 50/60 OUTPUT 0-260V

 6 KVA (max. 30 amp. $)$

LT TRANSFORMERS

$130-13 \mathrm{Vat} 1 \mathrm{amp}$ E2.50 P. \& P. 50 D (E3. 45 inc. VAT) $0.4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}$ at 12 amp £ $18.50 \mathrm{P} . \&$ P. E1 90 ($\mathbf{E 2 3 . 4 8} \mathrm{inc}$
 (12 V at 20 amp or 0.24 V at $10 \mathrm{amp} £ 1200$ P. \& P P: $£ 1.50$
(15.5 inc. VAT \& P.
 $0-6 V / 2 V / 17 V / 8 V / 20$
(23.58 ine. VAT \& PI
$0-10 \mathrm{~V} / 1 \mathrm{~N} / 18 \mathrm{~V}$ at 10 amp \& 10.50 P. \&P. $£ 1.50$ ($£ 13.80 \mathrm{inc}$. VAT) Orher types in stock: phone for enquiries or send sae for leatiet.
HY-LIGHT STROBE KIT MK IV
Larest yyoe xenon whise light Hash tube. Sold state
oesigned for targer rooms. halis. elc. Speed adiustable
$\begin{aligned} & 1-20 \text { f.p.s. Light output greater than many iso called } 4 \\ & \text { Joule) strobes. Hy-Light Strobe Kit Mk IV. Post } £ 1.50\end{aligned}$
($£ 22.00+£ 1.50$ P \& P inc. total $£ 27.03$). Specially
E 1.50 (e1 2.08 inc. VAT \& P P
(incl. total $£ 399.68$.

XENON FLASHGUN TUBES
 Range avallable trom stock

ULTRA VIOLET BLACK LIGHT FLUORESCENT TUBES
4 f . 40 Wett E8. 70 inc. VAT E10.00 (callers only.).
2 f . 20 watt E 6.20 . Post $75 \mathrm{p} .(\mathrm{E7.99}$ inc. VAT + P.)

9in. 6 watt $£ 2.25$. Poss 35 p . ($£ 2.99$ inc. VAT $+P$ P.
6 in. 4 watt $£ 2.25$. Post 35 . $£ 2.99$ inc. VAT $+P$.
 23.50. Post 45. (24.54 inc VAT $+{ }^{+}$P). Also available for 12 V 400 watt UV lamp and ballast complete $\mathbf{£ 3 8 . 0 0}$. Post $£ 3.50$ ($£ 47.73$ incl. VAT + P). 400 watt UV lamp only $\mathbf{E 1 4 . 0 0}$. Post f1.50. ($£ 17.83$ incl. VAT + P).
WIDE RANGE OF DISCO LIGHTING
EQUIPMENT S.A.E. (foolscap) for details.
PROGRAMME TIMERS

 100 WATT 1/5/10/25/50/100/250/500/1kNi1.5k@/2.5k

Wher troes available - phone for details. N.M.S. 230/240V A.C. Releyi: Afrow 2 d/o. 15 amp f 1.50 If 1.96 inc . T.E.C. ope
(1.50 inc . VAT \& P).
KMKI Rolay, $230 V$. A.C. 1 co. open type 10 amp contact, mf. Ey $\mathbf{7 5}$ postpaid ($\mathbf{~} 4.32$ incl. VAT).
D.C. Rolaye: Open tyoe $9 / 12 \mathrm{~V} 3 \mathrm{c} / \mathrm{o} 7 \mathrm{amp} \mathrm{E1} .00$ (E1.38 inc.

 VAT \& P). 24 V . Sealed $3 \mathrm{col} 7 \mathrm{amp} 11 \cdot \mathrm{pin} \mathrm{f1.35} \mathrm{(E1.78}$
VAT \& P). (amps $=$ contact ratingl. P\& P on any Relay 20 p .
Hellormann Deutech. Hermetically sealed sub-min. Retay. 12 W. 10 mm . H. 12 mm . Fraction of maker's price: $\mathbf{£ 1} \mathbf{2} .50$ postpaid ($\mathbf{E} 14.38$ incl. VAT). N.M.S.
Diemond \mathbf{H} neavy dury A.C. reley $230 / 240 \mathrm{~V}$ a.c. two C / O

GEARED MOTORS
4trpm SIGMA motors approx, 351 bs inch
7 trom KLAXON motors apporox. 251 b inch 7 from KLAXON motors approx. 25Ib inch 28rpm WVNSCALE motors approx. 201 binch
71 Iom WYNSCALE motor approx. 1016 inch 71 rpm WYNSCALE motor approx. 101 binch
Above four motors are designed for 110 V . Above four motors are designed for
A.C. supplied with auto transformer 240 V A.C. operation. $£ 7.75$ p. \& p. 75 p. Total incl 19 FPm $\begin{array}{llll}19 \text { rpm FHP } & 220 / 240 \mathrm{~V} \text {. a.c. reversible, } \\ \text { torque } & 14.5 \mathrm{~kg} \text {. Gear ratio } 144-1 . \text { Brand }\end{array}$

 inclus. VAT). N.M.S.
 56 rpm .240 V . a.c. 501 ib in. 50 Hz 0.7 amp. Shaft length 35 mm . Dia. Price: $\mathbf{E 1 5 . 0 0}+$ F1.50 P. \& P. (E18.98 inclus. VATI. N.M.S.
100 rpm. 110 V a.c. 115 lb in 50 Mzz 2.8 amp. single ph phen
Immense power.
Totally enclosed. In-line gearbox. Length
 (E15.53 inclus. VAT. R. \& Suitable 1ransiormer ror 230/240V
200 rpm .35 lbs in 115 V .50 Hz.
Price: $£ 16.00+£ 1.50$ P. \& P ($£ 20.13$ inclus. VAT). N.M.S Suitable Transformer for $230 / 240 \mathrm{~V}$ a.c C
Price: $\mathbf{~} 8.00+£ 1.00 \mathrm{P}$ \& P . $\mathbf{(E 1 0 . 3 5}$ inclus. VAT). N.M.S. 12 V . D.C. Type SO2. Shunt $\frac{1}{2}$ ph continuously rated 4000 rpm.
MA. PARVALUX. Price: $£ 10.06+75 \mathrm{p}$. P. \& P ($£ 12.35$ inclus. VATI NMAS
1 rpm 230/240V a.c. Synchronous pearred Moror mit HA YDON
 VATI. N.M.S.
$1,400 \mathrm{pm} 115 \mathrm{~V}$. a.c. Motor. HP continuously rated. Fitted with
mantivibration cradie mountino. dete with Tracie mouning 10 FA .

ROTARY CARBON VANE VACUUM 8 COMPRESSOR.
Direct coupled to $1 / 3 \mathrm{~h} . \mathrm{p} .110 / 115 \mathrm{~V}$. A.C. Motor 4.2 amp . 1380 rpm. Motor manut. by A.E.I. Pump by Williams. Max Vac. $25^{\prime \prime}$
H.G. Max. pressure cont. 10 p.s.i. Int. 15 p.s. M . Max. airflow ${ }^{2}$.

Suitable transformer for 240 V . op. $\mathbf{£ 1 0 . 0 0 ~ P . ~ \& ~ P . ~ £ 2 . 0 0 ~}$ COMPRESSOR
COMPRESSOR
Precislon builh USA Horizontally
opposed twin head diaphragm opposed twin head diaphragm type
producing 201bs. approx. P.S.I.
per pread. 3.5 plus C.F.M. Output virtually
pulse free. Powered by 110 V A.C.
motor size $30 \times 23 \times 15 \mathrm{~cm}$. Weight 7
kilos. Price $\mathrm{E24}+$ \&2 D. \& p. . total
Suint EAT 29.90).
Suitable transformer for 240 V op. $\mathbf{£ 8 . 0 0 \mathrm { P } \text { \& } \mathrm { P } \text { . E1.50 N.M.S }}$

VERY EXCEPTIONAL OFFER

REDUCTION DRIVE GEAR BOX.

Ratio $72: 1$. Input spindle $\frac{1}{4} \times \frac{1}{2}$ in. Output spindle $\frac{3}{8} \times 3$ in . Iong. Overall size approx: $120 \times 98 \times 68 \mathrm{~mm}$. All metal construction. Ex-equip. tested. Price: $\mathbf{£ 2 . 0 0}$ 50p. (inct VAT E2.88)
A.C. Wkg. TUBULAR CAPACITORS.

fraction of maker				
1.5 mid .440 V . A. C.	60 p	7.5 mfd .	200V. A.C.	E1.00
2 mfd . 250 V . A.C.	60p	10 mfd .	250V. A. C.	E1.00
2 mid .450 V . A.C.	75p	10 mfd .	400 V . A.C.	£1.75
2.2 mfd . 440 V . A.C.	75p	14 mfd .	400 V . A.C.	E3.00
$3 \mathrm{mfd} .440 V . A . C$.	c1.00	15 mfd .	250 V	
4.1 mfd. 440 V . A.C.	£1.00	(Block)		E1.50
$5 \mathrm{mid} .400 \mathrm{~V} . \mathrm{A.C}$.	£1.25	19 mfd .	280 V . A.C.	¢2.00
5.3 mfd. 160V. A.C.	60p	20 mfd .	$250 V$. A. C.	E2.25
5.4 mfd 280V. A.C.	75p	50 mfd .	370 V .	¢5.00
mfd. 280V. A.C.	f1.00		,	
	25		50	

Time Switch
30 amp Trpe ERO Time switch 200/250V a.c. 30 amp contact 2 on $/ 2$ off every 24 hrs, at any
manually pre-set time. 36 hour Spring Reserve and day omitting device. Built to highest Electricity
P. \& P. 75 pard
($\mathbf{E} 11$-22)
specification
R. \& T.
SANGAMO WESTON TIME SWITCH
Type $\$ 251200 / 250 \mathrm{~V}$. a.c. 2 on/2 oft every 24 hours. 20
amps contacts with override switch dia. 4×3 price ta. 00 P \& P 50 p Inc. VAT E9.78. Also available with Solar dial. R. \& T.
MINIATURE 24-HOUR TIMESWITCH

Callers

Ample Parking Space Showroom open Mon-Fri

57 BRIDGMAN ROAD CHISWICK LONDON W4 588019951560
ACCOUNT CUSTOMERS MIN. ORDER $£ 10.00$

Personal callers only Open Seturdays 9 Little Newport Street. London WC2H 7JJ Phone 01-437 0576

STEP INTO A NEW WORLD WHEN YOU DISCOVER

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project.

Over 5,000 of the most useful components - from resistors to

 microprocessors - clearly described and illustrated.

[^0]: - IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: *Use a 600 mA at 9 V DC nominal unregulated mains adaptor. Available from Sinclair if desired (see coupon)

[^2]: 6 Kings Parade, Cambridge, Cambs., CB2 ISN

