PRACTICAL

"Europes Largest Discount Personal Computer Stores"

Please add VAT to all prices - including delivery. Please make cheques and postal orders payable to COMPSHOP LTD., phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number.

MAIL ORDER AND SHOP:

14 Station Road, New Barnet, Hertfordshire, EN5 10W (Close to New Barnet BR Station - Moorgate Line) Telephone: 01-441 2922 (Sales) 01-449 6596 Telex: 298755 TELCOM G

NEW WEST END SHOWROOM:

311 Edgware Road, London W2. Telephone: 01-262 0387 OPEN - 10am - 7pm - Monday to Saturday
㯃 IRELAND: 80 Marlborough Street, Dublin 1. Telephone: Dubtin 749933

- COMPSHOP USA, 1348 East Edinger, Santa Ana, California, Zip Code 92705
(1)

WE ARE NOW STOCKING THE APPLE II EUROPLUS AT REDUCED PRICES
$\left.\begin{array}{l}16 K \mathbf{f 5 9 9} \\ 32 K \mathrm{f} \mathbf{6 4 9} \\ 48 K \mathrm{f} 659\end{array}\right\}$
Getting Started APPLE 11 is faster, smaller, and more because of built-in features like

- BASIC - The Language that Makes Programming Fun Finely-Detailed Displays. Sound Capability that Brings Programs to Life. - Hand Controls for Games and Other Human-Input Applications. © Internal Memory Capacity of formance in a Small Package. - Eight Accessory Expansion Slots to let the System Grow With Your Needs. You don t need to be an expert to enjoy APPLE II. It is a display and start using computer. Just connect it to a video first day. You'll find that its tutorial manuals help you make it

The PEDIGREE PETS

THE ATARI VIDEO COMPUTER

CONSTRUCTIONAL PROJECTS

PE MASTER RHYTHM Part 2 by A. J. Boothman BSc. 22
Instrumentation board and final setting up
PE STARSPINNER Part 1 30
A matrixing lighting system with 64 different effects LINEAR OHMMETER by D. H. E. King 36
A six range instrument with l.e.d. display
44
44
INTERFACING COMPUKIT Part 1 by D. E. Graham
Introduction, leading to full construction of a universal interface board
PE MICROTUNE Part 2 by Martin Kent 50
Use this when you tweak-keep your car at its peak
DISCO DESK Part 5 by Ben J. Duncan 60
Final wiring and testing
GENERAL FEATURES
SOLAR POWER SATELLITES by Dr.J. P. Stark 38
Will solar power solve our energy problems?
SEMICONDUCTOR UPDATE by R. W. Coles 49
TMOS UTN2886B TMS5100 TMS6100
UK101 GRAPH PLOT by Toby Walsh 66
Ideal mathematics teaching aid, in BASIC
68
68
MICROPROMPT
MICROPROMPT 70
INGENUITY UNLIMITED
INGENUITY UNLIMITED
Model Train Controller-Timer for Cine Camera-Torpedo Gam
NEWS AND COMMENT
EDITORIAL 17 17
MARKET PLACE 18
New Products
INDUSTRY NOTEBOOK by Nexus 21
Moral of the Metro 28
SPECIAL OFFER: IN CAR ENTERTAINMENT 34
Quality products at unbelievable prices
READOUT 42
SPACEWATCH by Frank W. Hyde 59
Pluto-The Rings of Saturn-The Soviet Cosmonauts 69
PATENTS REVIEWPE Joanna gets a Patent

OUR FEBRUARY ISSUE WILL BE ON SALE FRIDAY, 9 JANUARY 1981

(for details of contents see page 29)

[^0]

It＇s work－bench size for keeping alongside your favourite journal for instant reference to stock and technical data．

With more to choose from than ever－all the items you have learned to depend on being obtainable from Electrovalue PLUS MANY NEW ONES to bring Catalogue＇81 bang up to date．The V．A．T．inclusive price list that goes with it will hold for at least 4 months before the next one is issued．
Yes－you will enjoy dealing with Electrovalue－prices are keen－service is tops．

Write，phone or call if you haven＇t yet got Catalogue＇ 81 －and you will receive yours by return．（We pay postage）．
AND YOU GET BONUS DISCOUNTS AND FREE U．K．POSTAGE TOO，WHEN YOU BUY FROM ELECTROVALUE．
ELECTROVALUE LTD．，（Dept． 128 St．Judes Rd，Englefield Green，Egham， Surrey TW20 OHB．Telephone：（STD 0784）（London 87） 33603 Telex： 264475

mullard capacitors Special purchase of factory clearance capacitors enables us to offer：C280 Polyesters（Liquarice Alisorts）at $\mathbf{£ 2}$ for 100 mixed．And Miniature Electrolytice at $\mathbf{E 2}$ for 100 mixed．Pack of each only $\mathbf{5 3}$ ．	miNIATURE MAIMS TRANSFORMERS Top quality．Split bobbin construction will give $4.5 \mathrm{~V}-0-4.5 \mathrm{~V}$ at 250 MA． $1 \frac{31^{\prime \prime}}{} \times 1 \frac{1}{2} \times 1 \frac{1}{2}^{\prime \prime}$ ，all sorts of uses．ONLY 90p． 3 for $£ 2.20$. 2200 H 40V Radial． $1^{\prime \prime \prime} \times 2^{\prime \prime} 60 \mathrm{p} .3$ for $£ 1.50$ ．
imperfects etc．As we have no time to sort them they are magniticent value for the constructor．	B010178 Watt T0． 3 Power Transistors．50p as． 3 for f 1. 4AFI Attornetor Diodes．Ideal for making Battury Chergers etc 4 make 50 amp bridge．-Ve or + Ve case． 2 of © $\mathbf{〔} 2.00$ ．
Don＇t Lut Your Environment Dahydrata You！ 8uy our Honeyourell Humidity Controller． Membrane actuated，very sensitive．$t^{\prime \prime}$ shaft．250V 3.75 A Contacts．Ideal for greenhouses，centrally hoatod homes． offices etc．Build your ow．：humidifiers or alarms．Fraction of original cost 90 p ta． 3 for $\mathbf{£ 2}$ ．	TRANSISTOR PACKS 100．Full spec．new and marked Includes BC148．BC183L， MED412．BF274．BC154 etc．otc．f4．s5 200 ts above and includes AC 128 ．2N3055．BFY50． BO131．BF200 exc fs． 85 Buy bulk and save money．these packs are worth at least double．
$\begin{aligned} & 20 \text { ASSORTED ZENER DIODES } \\ & 1 \text { watt and } 400 \mathrm{MW} \text { £1.50 } \end{aligned}$	
100 MiXEO DIODES Inclutes Zener，power．bridge，germanium，silicon etc All full spec． f 4.95	P／B Switch bamks These cost a fortume Were made tor varrous music centres． Includes indapendent and interdapendent latching types multi pole coloetc．Can be modified Canit be moned 3 Beats for f1
S．P．C． $\begin{gathered}\text { SUBMINIATURE SLIDE SWITCHES } \\ 12 \text { for f1．}\end{gathered}$	Knobs for \mathbf{P} / \mathbf{B} Switches．Fit $3 \frac{1}{2} \mathrm{~mm}$ sq shaft 10 for $\mathbf{f 1}$ ． Chrome or Spur Aluminium Finish
miniature push to make switches	
AC128＇s Marked but untested．High percentage O．K． 25 for \mathbf{f}	bulk bargains，stock up for winter 300 mixed $\frac{1}{4} \& \frac{1}{2}$ watt resistors $\mathbf{£ 1 . 9 5}$ 150 mixed $1 \& 2$ watt resistors $\mathbf{f 1 . 5 0}$ 300 mixed capacitors，madern，most types $\mathbf{5 3 . 9 5}$ 100 mixed ceramic and plate caps $£ 1.20$ ：00 mixed polystyrene caps $£ 2.20$ 25 pots and presets f 1.50 25 prosns，skeleton atc． $\mathbf{£ 1 . 2 0}$ 20 VORs and thermistors $\mathbf{f 1 . 2 0}$ 100 Hi wattage resistors wirewound at $\mathbf{£ 2 . 7 5}$ 100 electrolytics，nice values $\mathbf{E 2 . 2 0}$ 300 printed circuit resistors $\mathbf{£ 1 . 4 5}$ 300 printed citcuit companents $\mathbf{f 1 . 9 5}$
MINIATURE REED SWITCHES We are the cheapest！ 12 for $\mathbf{f 1 . 0 0} 100$ for $\mathbf{f 4 . 2 0}$	
SUBMINIATURE REED SWITCHES 10 for f 1.00 .100 for $\mathrm{f6} .00$ ．	
G．E．C．UHF TRANSISTOR N TUNERS Rotary type with slow motion drive，leads and aerial socket． $\mathbf{£ 1 . 5 0} 3$ for $\mathbf{£} \mathbf{3 . 5 0}$＂for GEC．＂ 2010 ＂series etc．＂	
PRINTED CIRCUIT ETCHING KITS Includes 150 sq ．ins．copper elat F / G ．board． 1 ib ferric chloride 1 dalo etch resist pen．Abrasive cleaner．Etch tray plas instructions．Speciel Prica $\mathbf{f 4 . 9 5}$ 1 W FE．C1．To mil．spec． $\mathbf{f 1 . 2 5}$ 5 H FE．C1．To mil．spec． $\mathbf{5} 5.00$ 150 sq ．in．Single sided board $\mathbf{£ 2 . 0 0}$ 150 sq．in．Double sided board $\mathbf{£ 3 . 0 0}$	100K MINIATURE THUMBWHEEL SLIDER POTS Very neat．can be banked side by side．Ideal for v．cap tuning，graphic equalisers etc． 10 for f1
	miniature level／batt．Meters $200 \mu \mathrm{~h}$ F．S．D．as fitted to any cassette recorders 70p
50 p \＆ P on all ahove items．Cheque or P .0 ．with order to： INEL SUPPLY，DEPT．P．E ROOKMILL RD．，DEPTFORD，LONDON，SE8	

ロM－2

DIGITAL MULTIMETER

－DC Volts AC Volts． DC Current Resistance．
－ $31 / 2$ digit LCD
－Auto Low Battery indication
－Auto Polarity \＆Zero
－ 1% accuracy（DC volts）
－Designed around Intersil 7106 IC
－Total cost around $£ 30$（incl．case）

FG－1a

FUNCTION GENERATOR
－ 30 mV to 10 V pk－pk
－ 1 Hz to 100 kHz
－DC coupled
－Sine，Square \＆Triangle
－Separate TTL output
＊Designed around Intersil 8038 IC
－Total cost around $£ \mathbf{f 0}$（incl．case） Provided in a JAYkit is a Printed Circuit Board，a punched and lettered Front Pane Circuit Diagram and Instruction Sheet and a comprehensive and up to date Compons
showing suppliers and current prices．Difficult to obtain pieces of hardware are supa

\int

CLEF PRODUCTS (ELECTRONICS) LIMITED
 (Dept. PE) 16, Mayfield Road, Bramhall, Cheshire SK7 1JU.

 061-439 3297| phare | E PHASER UNIT P.E.APRLL 1979
 superb six stage phaser that really gives your guitar lift off. Equais the |
| :---: | :---: |
| | PLETE KIT OF ALL PARTS AS SPECIFIED............ $£ 16$ |
| | |
| OESIGNER | Separate parts: TLO62 80p, BF2458 50p, PCB $\mathbf{£ 1 . 5 0} 8$ pin sockets (not included iri kit) 21p each. |
| | PE SUSTAIN UNITP.E. E, ccr.
 177
 Superb quality, low noise, low distortion sustain unit equal to the ver est commercial models. Suits all guitars. Glassfibre p.c.b. |
| Hngentin | RTS AS SPECIFIED............. $£ 8.5$ |
| | |
| | Separate parts: XC5053R 50p, RPY58A 75p, Printed circuit board 95p, Footswitch $\mathbf{£ 1 . 8 0 \text { each. }}$ |
| | Complete set of semiconductors \qquad Quality glass fibre p.c.b., printed with component locations $\mathbf{£ 3 . 5 0}$ |
| PE TV SOUND SEPARATOR | |
| P.E. SMOOTH FUZZ UNIT
 (P.E.September 1979)
 This is the Fuzz unit you have been waiting for! Smooth, clean tone with low noise and low current drain. Uses glassfibre p.c.b. and latest FET op-amp. COMPLETE KIT OF ALL PARTS AS SPECIFIED....... $\mathbf{£ 8 . 5 0}$ | |
| POSTAGE \& PACKING 25 p per order. Orders over $£ 10.00$ post free.
 All devices are top grade, brand new and to full manufacturers spec.
 PRICES DO NOT INCLUDE VAT. Add 15\% to all prices.
 mail order only
 CALLERS BY APPONTMENT
 DAVIAN ELECTRONICS 13 DEEPDALE AVENUE, ROYTON, OLDHAM OL2 6XD. | |

Practical Electronics January 1981

SWW N LEY ELECTRONICS

 Mail order only. Please add $35 p$ postage. Prices include VAT unless stated. Lists 27 p postfree. Overseas customers deduct 13%. Official credit orders welcome.

DISCO LIGHTING KITS!!!

First class constructional projects. c'w glass itere P.C.B.s \& full instructions. No extra components needed to make a top rate working un:

LK	3 channel sound to-light.	LK2	F channel 3 kW .
£9.90	w/channel Iv - 100 w in	£17.90	zero voltage firing
LK3	2 kW slider dimmer		4 channel 4 kW
£5.50	suitable for clubs/pubs.	¢16.50	adto - forward/r

Suitable case for LK $1.2 \cdot 4$ £ 3.50 LR $1.2+23.50$ circuit, comprehensiv instructions \& full parts guarantee

Carriage on above 70 p
£1.50. ed pigmy lamps

UNREPEATABLE HI-FI BARGAIN 3 WAY LOUDSPEAKER KIT C/W BAFFLE (pre-cut) Comprises:

- $6 \frac{1}{2}$ linen surround bass unt
$\star .5^{\prime \prime}$ mid-range unit
$\star 3^{\prime \prime}$ tweeter
$\star 3$ way crossover, fixing screws \& baffle $\star 20$ watts handling capability Full instructions provided
Must be heard to be believed $\mathbf{f 1 0 . 5 0}$ or 2 kits for $£ 20$. Carr. $£ 1$ perkit.
SAXON ENTERTAINMENTS
327-333 Whitehorse Rd., Croydon, Surrey CR0 2HS.
(01) 6848007

Order by'phone - Access/Barclaycard C.O.D.

CHBOMASOMIC Electronics

48 JUNCTION ROAD, ARCHWAY, LONDON N19 5RD

 TELEPHONE 01-883 3705 01-883 2289YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPONENTS AND COMPUTERS

CASES \longrightarrow UK101 P.P.I.
Available for U.K. 101, Superboard Nascom, Appx. DIM. $17^{\prime \prime} \times 15^{\prime \prime}$ $435 \times 384 \mathrm{~mm}$

PRICE £24.50
Post + Packing £ 1.50

Built \& tested. Interfaces TX80 printer direct, can be programmed to operate relays, motors, various other peripherals. "Centronics compatable". Plugs into IC socket. LED binary display. Fully documented.
£29.95
PRINTERS

EPSON TX-80

 £349Dot-matrix printer with Pet graphics interface: Centronics parallel and serial options: PET \& Apple compatible.

NEW SHOP \& SHOWROOM NOW OPEN

TELEPHONE 01-263 9493 01-263 9495

Sound generator and combined parallel in out port kit containing P.C.B., AY-3-8910, 6520 PIA, fully documented and demo tape. £29.95	
AY-3-8910	£8.50
UK101 SOFTWARE	
Space Invaders	f p $\mathbf{6 . 5 0}$
Real Time Clock	5.00
Chequers	3.00
Othello	4.00
Game Pack 1	5.00
Game Pack II	5.00
Game Pack III	5.00
Screen Monitor	4.00
Assembler Editor	14.90
$10 \times$ C12 Blank Tapes	4.00

CPU'S	
Z80 2.5 Meg	$\mathbf{7 . 9 5}$
Z80A 4 Meg	$\mathbf{9 . 9 5}$
6502	$\mathbf{6 . 9 5}$
6800	$\mathbf{6 . 5 0}$
8080	$\mathbf{4 . 7 5}$
9900	$\mathbf{2 5 . 9 5}$

SUPPORTCHIPS	
Z80 CTC	$\mathbf{5 . 9 5}$
Z80A CTC	$\mathbf{6 . 9 5}$
Z80 PIO	$\mathbf{5 . 9 5}$
Z80A PIO	$\mathbf{6 . 9 5}$
6520	$\mathbf{3 . 9 5}$
6522	$\mathbf{6 . 8 5}$
6532	$\mathbf{8 . 5 0}$
6821	$\mathbf{4 . 2 5}$
6850	$\mathbf{3 . 6 0}$
6852	$\mathbf{4 . 3 5}$
8212	$\mathbf{1 . 9 5}$
8216	$\mathbf{1 . 9 5}$
8224	$\mathbf{2 . 7 5}$
8228	$\mathbf{3 . 7 5}$
8251	$\mathbf{4 . 9 5}$
8253	$\mathbf{9 . 7 5}$
8255	$\mathbf{4 3 . 1 6}$
TMS9901	$\mathbf{1 1 . 1 8}$
TMS9902	$\mathbf{4 . 2 1}$
TMS9904 (74LS362)	$\mathbf{1 . 7 5}$
DM8123	.90
MC1488	.90
MC1489	

AY-5-1013	3.95	- BAU	
AY-3-1015	4.75		
MM5303	4.75	MC14411	8.75
TMS6011	3.55	MM5307	8.75
SEND S.A.E. FOR COMPLETE PRICE LIST OR PHONE 01-883 3705			

Crofton Electronics Limited 35 Grosvenor Road, Twickenham, Middx. Tel:01 8911513

\section*{NICKEL CADMIUM BATTERIES
 | | $\begin{aligned} & A A(H P 7) \\ & 0.5 A H r \end{aligned}$ | $\begin{aligned} & \text { SUB ' } \mathrm{C}^{\prime} \\ & 1.2 \mathrm{AHr} \end{aligned}$ | $\begin{aligned} & \mathrm{C}^{\prime}(\mathrm{HP} 11) \\ & 1.65 \mathrm{AHr} \end{aligned}$ | $\begin{aligned} & \text { 'C'(HP11) } \\ & 2.0 A H r \end{aligned}$ | $\begin{aligned} & \text { 'D' (HP2) } \\ & \text { 4.0AHr } \end{aligned}$ | $\begin{aligned} & \text { PP3 } \\ & 0.1 \mathrm{AHr} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-24 | f0.85 | ¢1.38 | £1.69 | ¢2.25 | £2.97 | £3.79 |
| 25-49 | £0.82 | ¢1. 28 | £1.58 | £2.10 | £2.77 | |
| 50-99 | £0.80 | £1.24 | £1.52 | £2.02 | £2.67 | |
| 100 up | ¢0.70 | £1.15 | £1.41 | £1.87 | £2.47 | |

All ceils are brand new full spec devices from reputable minfrs. All Nickel Cadmium cells (except PP3/ are supplied complete with solder tags and are 'VENTED' devices suitable for fast charge. CHARGERS - single or dual O / P to charge PP3. AA or SUB ' C ' cells in 12-14 hrs (chargers will charge ' C ' and ' D ' cells but with longer charging time. Units supplied complete in plug top case with flying leads. Number of celts (10 max) in series and type must be specified for each required O / P when ordering

$$
\text { SINGLE O/P CHARGER } £ 5.04
$$

DUAL O/P CHARGER £5.72
TRANSFORMERS - as used in chargers, 2×12 volt 0.25 amp secondarys 240 v primary, tag connections $£ 1.57$ each.

Data and charging circuits free with orders over f 10 otherwise 30 p post. P\&P 10% if order less than $\mathrm{f} 10.5 \%$ if
order over f 10 . Prices DO NOT order over E 10 . Prices DO NOT
INCLUOE VAT and this should be added to the total order.

Cheques, P.O.s Mail Order to:--

SOLID STATE SECURITY,
Dept. (PE), Bradshaw Lane,
Parbold, Wigan, Lancs.
Telephone 02576-3018.

PROGRESSIVE RADIO 31, CHEAPSIDE, LIVERPOOL L2 2DY

 tangular hed LED's 12p each. CA 3020 I.C.'s 40 p oach. BY223 20p.
MINIATURE MAINS RAANSFORMERS. ALL $24 O V A C$ PRIMARY. $6-0-6$ 100mA. 9 .
PULSE TRANSFORMERS: $1: 1$ (GPO tvoel 30 p . $1: 1$ pius 1 min. P. C. mouñing 80p.
MINIATURE SOLID STATE BUZZER. $33 \times 17 \times 15 \mathrm{~mm}$, output at 3 teet 70 db , only 15 mA drain, operating voltage

 POCKET MULTIMETER. MODEL NH55 2,000 ohms per voit. 9,000 volts AC/OC 100 mA DC current SOLDER SUCKER. High suction/teflon nozze, E4.65p
TRANSDUCERS. $40 K \mathrm{~Hz}$ REC/SENOER $£ 3.50$ pair.
MRANSDUCERS, 40 Hz. 22 SENOER $E 3.50$ pain

AMPHENOL COAX CONNECTORS. Plugs 47p, Sockets 42p, Elbows 90p, Reducers 13p. Back to back sockets
65p, Back to back plugs 65p.
HIGH IMPEDENCE HEADPHONES, mono 2,000 ohms imp. transducer type. adjustable band and padded earpiece $£ 2.75$.
SPECIAL
in
SPECIAL OFFER STEREO HEADPHONES. 8 ohms, adjustable, standard stereo plug only $\mathbf{£ 2 . 9 5 p}$ INTERCOM UNITS (can be used as baby alarm) supplied with approx. 60° cable call button, 2 was $\mathbf{f 5} .25$ pair, 3
way $\mathbf{~} 7.25$. WIRELESS INTERCOM, 2 units both operate on 240 VAC and mains connected. AM frequency 180KHz. E29.95p.
MINATURE TIE. PIN MICROPHONE. Omni, 1 K imp., uses deat aid battery isupplied) f4.95p. LOW COST
CONDENSER MIKE. Stick type. Omni, 600 ohms, on/oft switch, standard jack plug only $\mathbf{f 2 . 9 5 p}$. EM607

 Special clearance offer of tools. (1) Side Cutters, (2) Long nosed Pliers, (3) Heavy duty pliers insulated handles, all CRIMPING TOOL, for standard terminals also 6 gauge stripper and wire cutter, insulated handles only $£ 2.30$. Cash with order please, oftcial orders wetcome trom schools etc., please add 3OD post and packing RAT inchusive,
SAE for latest ilhustrated stock list.

INTRODUCING

Computer User Aids

(incorporating The UK101 User Group)

As UK 101 USER GROUP members are already aware because of the massive increase in membership and requests for technical assistance and information I have, together with a friend, formed the above company. Our aims will be to give service to our members in the form of newsletters and other information and where possible, helping them with any hard or software bugs they may have.
We will also be evaluating other useful items but are determined that no manufacturer will be recommended in our newsletter unless we are completely satisfied with the product.

New membership will be welcomed from both UK 101 and Superboard users, the fee being $£ 4+$ VAT per 6 months.

SOUND BOARD

1) Based on Gls AY-3-8910, 3 oscillators, noise generator, envelope, etc.
2) All decoding on board. No loss of user RAM. Uses only 2 locations.
3) Only low power TTL used for increased speed. All sockets provided.
4) Tinned and drilled glassfibre PCB. All cables suppled +40 Pin plug.
5) Full instructions on construction and use. FREE cassette of routines.
6) On board TBA820M amp and even a speaker.

Write for details-

PROGRAMS

We have an ever increasing stock of programs available for the 101 etc. The range includes both games and system software.
E.G. 3D MAZE - Wander at will in 3 dimensions around a computer constructed maze. For those who are lost in the labyrinth of corridors there is a HELP command that draws a conventional map of your maze.
AUTO CHECKSUM LOADER - This program allows you to add your own checksum loader to a machine code program, as per the extended monitor and others. File names are provided so that you can keep a track of your own M/C programs.
TEXT EDITOR - A simple word processor. Allows pages of text to be typed and altered. Lines or words may be delted changed or inserted. Letters can be SAVED on tape for future editing and a file name search facility is also provided.

Write for details of these and our many other programs-
MAIL ORDER ONLY
I would like to thank the many members who have sent letters wishing me success with this venture.

Adrian Waters

9 MOSS LANE, ROMFORD, ESSEX. Telephone: 64954 (STD 0708)

the countdown has vequn! hat nawnuminn win

 Tell us what you
very first issue of

BRING YOU THE NEW
TESTER 20
20k Ω / V a.c. \& d.c.
THE
PROFESSIONAL SOLUTION TO
GENERAL MEASUREMENT PROBLEMS
£43.06
inc. VAT and complete with carrying case leads and instructions.

isformation is needed quickly and simply
Accuracy: d.c. ranges 2 "i, ac. $\& \Omega 3 \%$
40 ranges: d.c. V $100 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 10.0 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. d.c. $1.50 \mu \mathrm{~A}$ $100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mathrm{~mA} .3 .0 \mathrm{~mA} .100 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1.0 \mathrm{~A} .10 \mathrm{~A}$. ac. $10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$ $\Omega 0-5.0 \mathrm{k} \Omega .50 \mathrm{k} \Omega .500 \mathrm{k} \Omega, 5.0 \mathrm{M} \Omega \mathrm{mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$ (d) trom 10 to -61 in 5 ranges

Master Flectronics the new Practical way.

Conquer the 'Chip' - Easy-Fast-Exciting !

AND MASTER ALL THE NEW TECHNIQUES IN MODERN ELECTRONICS.

- Build an Oscilloscope.

Carry out over 40 full experiments including work on Digital Electronic Circuits.

8
Recognition of Electronic Components. Understand and draw Circuit Diagrams.
Experience with handling Solid State Circuits and "Chips".

- Testing and Servicing of Radio, T..V., Hi-Fi and all types of modern computerised equipment.

P.E. MINISONIC MK2 SYNTHESISER

A porable mains operated minaure sound synther with keyboard circuits. Although having slightly fewer facilities than the large Formant and P.E. synthesisers the functions offered bv this design give it great scope and versatility
Setistanc see list for options availablel and PCBs (incl. layout char!s. \quad KIT 38-25 $\mathbf{£ 8 0 . 1 4}$
"Sound Design" booklet

P.E. 128-NOTE SEQUENCER

Enables a voltage controlled synthesiser to automaticaliy piay preprogrammed tunes of up to 32 pitches and 128 notes iong Programs are keyboard initiated and note length and rhythmic ally variable.
Set of basic comps. PCBs and charts KIT76.7 $\mathbf{£ 3 5 . 5 6}$
Setoftext photocopies $£ 1.36$

P.E. 16-NOTESEQUENCER

Sequences of up to 16 notes may be programmed by the use of external panel controls and fed into most voltage coritrolled ynthesisers
Set of basic comps. PCBs and charts

P.E.STRINGENSEMBLE

Set of basic comps. PCBs \& charts

ELEKTOR PHASING \& VIBRATO

Includes manual and automatic contro: over the rate of phasing \& vibrato, and has been slightly modified to a!so nciude a 2 -input mixer stage
Set of basic comps. PCB \& char
Textphotocopy
KIT $7 \mathrm{C}-2$

ELEKTORFORMANTSYNTHESISER
A very sophisticatged synthesiser for the adyanced consiructor
who puts performance before price.
Set of basic comps. PCBs las publ.
Set of text photocopies
67.83

ELEKTOR DIGITAL REVERBUNIT

very advanced unit using sophisticated i.c. techniques instead of mechanical spring lines. The basic delay range of $24: 090 \mathrm{mS}$ can be extended up to 450 mS using the ext
Main unit basic comps and PCB (as publ.
Extension unit basic comps and PCB (as publ)
KiT 78.3
$£ 49.95$
Textphotocopy

ELEKTOR SEWAR

For use with Elektor Analague Reverb to give greater flexibility:
the reverb effects.
Basic comps. PCB (as puthl.) KIT 101-1 $\mathbf{£ 1 8 . 1 9}$ Text photocopy

ELEKTORRING MODULATOR
Compatible with the Formant \& mostother synthesisers
Set of basic comps \& PCB (as publ.)
Text photocopy
KiT 87-2

BASIC COMPONENTS SETS include all necessary resistors, capacitors semficonductors, potentiometers and transformers. Hardware such as cases, sockets, knobs, keyboards, etc. are not included but most of hese may be bought separately. Fuller details of kits PCBs and parts are shown in our lists.

AYOUT DIAGRAMS are supplied free with all PCBs unless 'as published'

ELEKTOR CHOROSYNTH

A $2 \frac{1}{2}$-octave Chorus synthesiser with an amazing variety of sounds ranging from violin to cello and flute to clarinet amongst ructors can readily extend the ocave coverage
Basic comps, PCBs and charts but excl. sw's KIT 100-8 $£ 44.39$
\qquad

ELEKTOR ANALOGUE REVERB

Using i.c.s instead of spring-lines the main unit has a maximum
delay of up to 100 mS , and the additional set extends this up to 200 mS . May be used in either mono or stereo mode. Main unit basic component set KIT 83-4 $£ 29.23$ Additional Delay basic components \quad KIT83-2 $\quad \mathbf{£ 2 0 . 0 7}$ Text photocopy

ELEKTOR FUNNY TALKER

Incorporates a ring modulator, chopper \& frequency modulator to produce fascinating sounds when used with speech \& music signals.

KIT 99-1 $\mathbf{£ 9 . 6 0}$ Text photocopy

ELEKTOR FREQUENCY DOUBLER

For use with guitars \& other electronic instruments to produce an output one octave higher than the input. Inputs and outputs may be mixed to give greater depth
$\begin{array}{lll}\text { Basic comps. PCB (as publ.) KIT 98-1 } & \text { £5.48 }\end{array}$

P.E. SPLIT-PHASE TREMOLO

A simple but effective substitute for a rotary cabinet. The output of an internal generator is phase-split and modulated by an input signal from an electronic guitar or other instrument. Outpu amplitudes, depth \& rate are variable. May be fed to one or two amplifiers.

Basic comps. PCB \& chart KIT 102-3 $£ 17.68$ Text photocopy

65p

P.E. MINISONIC WAVEFORM

 CONVERTERA simple converter that modifies the Minisonic sawtooth waveform to produce triangle and sine outputs. Ideaily one Basic comps PCB \& chart KIT 96-1 $£ \mathbf{~} \mathbf{3 . 9 8}$

P.E. GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing, for example, flanging, vibrato, reverb, fuzz and tremolo as well as other fascinating sounds. May be used with most electronic
Set of basic comps, PCBs \& charts (excl. SWs)
Set of textphotocopie
$\begin{array}{lr}\text { KIT } 85-5 & \mathbf{£ 4 9 . 2 3} \\ & \mathbf{£ 2 . 5 2}\end{array}$

P.E.PHASER

An automatically controlled 6 -stage phasing unit with integral ciliato
Basic components. PCB \& chart KIT88-1 $\mathbf{£ 1 0 . 9 1}$ 2-Notch extension. PCB \& chart KiT88-2 \quad £6.36 Text photocopy

ELEKTOR ELECTRONIC PIANO

A touch-sensitive multiple-voicing piano using the latest integrated circuit techniques for the keying and envelope shaping, and virtually eliminating "bee-hive" noise hitherto inherent in previous ectronic pianos.
5-octave set of basic comps and PCBs (as publ.)
Additional 3-octave extension and basic parts and $\begin{array}{lll}\text { PCBs (as published) } & \text { KIT 80-10 } & \mathbf{f 5 8 . 3 2} \\ \text { Set of text photocopies } & & \mathbf{f 1 . 8 1}\end{array}$

P.E. GUITAR EFFECTS UNIT

Modulates the attack, decay and filter characteristics of a signal from most audio sources, producing 8 different switchable effects that can be further modified by manual controls.
Basic comps, PCB \& chart

KIT 42-3	$\mathbf{£ 1 0 . 6 0}$
	280

P.E. GUITAROVERDRIVE

Sophisticated versatile fuzz unit incl. variable controls affecting the fuzz quality whilst retaining attack and decay, and also providing filtering. Usable with most electronic instruments. Basic components, PCB \& chart KIT 56-3 £11.22 Text photocopy
P.E.SMOOTH FUZZ

Basic components. PCB \& chart KIT91-1 $\mathbf{~ 6 6 . 5 2}$ Text photocopy

TREMOLOUNIT

A slightly modified version of the simple P.E. unit
Basic components. PCB \& chart KiT 54-1 £3.74

GUITAR FREQUENCY DOUBLER

$\begin{array}{ll}\text { A slightly modified and extended version of the P.E. unit. } \\ \text { Basic components. PCB \& chart } & \text { KiT 74-1 }\end{array}$ Basic components. PCB \& chart Kit
Text photocopy

P.E. GUITAR SUSTAIN

Maintains the natural attack whilst extending note duration Basic components. PCB \& chart K!T75-1 $\quad \mathbf{f 6 . 9 9}$ Text photocooy

P.E.AUTO-WAH UNIT

Automatically gives Wah or Swell sounds with each note played. Basic components. PCB \& chart KIT58-1 £10.11 Text photocopy

ELEKTOR WAVEFORM CONVERTER

Converts a saw-tooth waveform into sinewave, mark-space saw tooth regular triangle or square-wave with variable mark-space. Basic comps, PCB \& chart, but excl. sw's KIT67-1 £9.2

P.E.SWITCHEDTONE TREBLE BOOST

rovides switched selection of 4 preset tonal responses.		
Basic components, PC8 \& chart	KIT89-1	$\mathbf{£ 4 . 3 4}$
Text photocopy		$\mathbf{7 8 p}$

NEW MORE INFORMATIVE
 LIST NOW AVAILABLE

ADD: POST \& HANDLING

U.K. orders: Keyboards add $£ 2.70$ each. Other goods: Under $£ 5$ add 50 p. under $£ 20$ add 75 p . over $£ 20$ add $£ 1$. Recommended insurance against postal mishaps: add 50 p for cover up to $£ 50$, $£ 1$ for $£ 100$ cover, etc., pro-rata. Insurance must be added for credit card orders NB Eire, C.I. B.FPO, and
higher export postage rates

ADD 15\% VAT (or current rate if changed). Must be added to full total of kits, discount post \& handling on all U.K. orders. Does no apply to Exports. o photocopies.

EXPORT ORDERS ARE WELCOME but to avoid delay we advise you to see our list for postage rates. Ali payments must be cash-with-order, in Sterling by inter-
national Money Order or through an English Bank. To national Money Order or through an English Bank. To btain list - Europe send $35 p$, other countries send ${ }^{75 p}$ Note th that our terms are payment in advance

AND OTHER PROJECTS

motographs in this advertisement $5-\infty$ of our units containing some of －E E projects built from our kits and Ces the cases were built by ourselves ane or sale．though a smal
$45 T$－Send slamped addressed －re－cde win all UK requests for tre
 $=-$ components
\therefore ErSEAS enquiries for list Europe erc 35 p other countries－send 75 p ．

KIMBER－ALLEN

 KEYBOARDS AND CONTACTSCIMBER－ALLEN KEYBOARDS as required for many published projects．The manufacturers $\equiv-$－n at these are the finest moulded plastic keyboards available．All octaves are C to C ，the $\therefore=\equiv \equiv \equiv$ plastic，spring－foaded，fitted with actuators，and mounted on a robust aluminium frame． Ostave（ 37 notes） $\mathbf{£ 2 5 . 5 0} \quad 4$ Octave（ 49 notes） $\mathbf{£ 3 2 . 2 5} \quad 5$ Octave（ 61 notes）$\quad £ 39.75$ CONTACT ASSEMBLIES（gold－clad wire）－ 1 required for each KBD note Type G \downarrow－SPCO 33p ea．Type GB－2 pr N／O 37 $\frac{1}{2}$ p ea

P．E．V．C．F

1 ،．age controlled filter extracted from P．E「お゙に project．
Exs：＝omps．PCB \＆chart KIT 65－1 $\mathbf{~} 8.45$

P．E．RING MODULATOR

F－zeo trom P，E．Minisonic project． EEs：comps．PCB \＆chart KIT 59－1 £6．35

WIND \＆RAIN EFFECTS UNIT

1 s．c．modified version of the original P．E．unit． Ease comps，PCB \＆chart KIT 28－1 44.8
－arenotocopy

P．E．CONSTANTDISPLAY

 FREQUENCY COUNTERA 4－digit counter for 1 Hz to 99 kHz with 1 Hz or flicker due to blanking．

Basic components．PCB \＆chant
Text photocopy
KIT 79－4
£31．61

P．E．6－CHANNELMIXER

A high spectication stereo

input impedances．
Basic components，（excl．sw＇s．）and set of
PCBs and charts．
Extra 2－channel set with PCB
Extra 2－channel set with $P C B$ KIT 90

STEREO HEADPHONE
AMPLIFIER
Extracted from P．E．6－channel mixer
Basic components，PCB \＆chart

DIGITAL EXPOSURE
UNIT
Controis up to 750 watts in $\frac{1}{2}$ second steps up to
10 minutes，with built－in audio alarm．
Basic components，PCBs \＆charts
KIT 93－3 $\quad \mathbf{£ 2 3 . 4 5}$
－ －－esiser to be programmed for mandolin or

－ar：pnotocopy
Textphotocopy

P．E．EXTERNAL－INPUT SYNTHESISER－INTERFACE
nces external inputs such as gutars．microp
FI：：seprocessed by synthesiser circuits．

P．E．TUNING FORK

－oses 84 switch－selected frequency－accurate पren th an LED monitor clearly displaying beat

S $3 C$ jstments． $=$ ESs \＆charts KIT46－3 $\mathbf{f 2 3 . 3}$ －＝x：anotocopy

P．E．TUNINGINDICATOR

15－こ．e 4 －octave frequency comparitor for use － 5 ．n： 4 ，三es＝components，PCB \＆chart，but excl．sw． －ミロ：＝notocopy

P．E．DYNAMIC RANGE

LIMITER

＂－ E．ze comps．PCB \＆chart KIT 62－1 $\mathbf{£ 5 . 3 1}$

P．E．DISCOSTROBE

A 4 －channel light show controlier giving a choice of sequential，random，or full strobe mode of operation．

Basic components，PCB \＆char
Text photocopy
$\mathbf{f 1 9 . 3 7}$
$78 p$

RHYTHM GENERATORS

Several available，including programmable 16 beat 64000 pattern，and pre－programmed 15 pattern using either M252 or M253 rhythm chips．A selection of effects instru－ ment circuits is also available
P．E VOICE OPERATED

FADER

For automatically reducing music volume during talkover－particularly useful for discos． Basic components，PCB \＆char
$£ 4.37$
P．E．DYNAMIC NOISE

LIMITER

Very effective stereocircuit for reducing the hiss founa in most tape recordings．
Basic components，PCB \＆chart
Text photocopy
$\mathbf{£ 8 . 0 7}$
$75 p$

AMERICAN

EXPRESS

PHONOSONICS

Make sure of your Heathkit catalogue．．． write now

Keep up to date with the world＇s finest electronic kits－with the Heathkit catalogue． 48 product packed pages contain photographs and specifications of the widest possible range of kits．Everything from doorbells to digital clocks，multimeters to microcomputers．

Heathkit make it easy to build，easy on your pocket，and as with 13 million Heathkit builders over 34 years，your success is guaranteed．

Make sure of your copy of the Heathkit catalogue．Send the coupon today，plus 25 p in stamps and beat the demand．

To：Feath Electronics（U．K．）Limited．$\overline{\text { Dept }}$（ PEI ）．
Bristol Road，Gloucester，GL 2 6EE．
Please send me a copy of the Heathkit catalogue． 1 enclose 25 p in stamps．
Yame＿
Address

Why the Sinclair ZX80 is Britain's best-selling

Built: £9995

Including VAT, post and packing, free course in computing, free mains adaptor. Kit: £79.95
Including VAT, post and packing, free course in computing.

This is the ZX 80 . A really powerful, full-facility computer, matching or surpassing other personal computers at several times the price. 'Personal Computer World' gave it 5 stars for 'excellent value'. Benchmark tests say it's faster than all previous personal computers

Programmed in BASIC-the world's most popular language - the $Z X 80$ is suitable for beginners and experts alike. And response from enthusiasts has been tremendousover 20,000 ZX80s have been sold so far!

Powerful ROM and BASIC interpreter

The 4K BASIC ROM offers remarkable programming advantages:

* Unique 'one-touch' key word
entry: the ZX80 eliminates a great deal of tiresome
typing. Key words
(RUN, PRINT, LIST, etc.) have their own single-key entry
* Unique syntax check.

A cursor identifies errors immediately.

* Excellent string-handling capabilitytakes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison)
* Up to 26 single dimension arrays
* FOR/NEXT loops nested up to 26.
* Variable names of any length.
* BASIC language also handles full Boolean arithmetic, condition expressions, etc.
* Randomise function, useful for games and secret codes, as well as more serious applications
* Timer under program control
* PEEK and POKE enable entry of machine code instructions.
* High-resolution graphics
* Lines of unlimited length.

Unique RAM

The ZX80's 1K-BYTE RAM is the equivalent of up to 4 K BYTES in a conventional computer-typically storing 100 lines of BASIC

No other personal computer offers this unique combination of high capability and low price.

The ZX80 as a family learning aid. Children of 10 years and upwards are quick to understand the principles of computing-and enjoy their personal computer.

The Sinclair teach-yourself

BASIC manual

If the specifications of the Sinclair ZX80 mean little to you-don't worry. They're all explained in the specially-written 128-page book (free with every $Z \times 80$). The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming-from first principles to complex programs.

Kit or built -it's up to you

In kit form, the 2×80 is pleasantly easy to assemble, using a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 V DC nominal unregulated. If not, see the coupon.

Both kit and built versions come complete with all necessary leads to connect to your TV (colour or black and white) and cassette recorder. Plug in and you're ready to go. (Built versions come with mains adaptor.)

Massive add-on memory. Only £49.95.

The new 16 K -BYTE RAM pack is a complete module designed to provide you -and your Sinclair ZX80-with massive add-on memory You can use it for those really long and complex programs-or as a personal database. (Yet it can cost as little as half the price of competitive add-on memory for other computers.)

For example, you could write an interactive or 'conversational' program to show people what your ZX80 can do. With 16K-BYTES of RAM, they could be talking to your computer for hours!

Or you can store a mass of data-perhaps in a fairly simple program-such as a name and address list., or a telephone directory

And by linking a number of separate programs together into one giant, but modular, program, you can achieve the same effect as loading several programs at once.

We're also confident that it won't be long
before you can buy cassette-based software using the full 16K-BYTE RAM. So keep an eye on the personal computer magazines-and brush up your chess perhaps!

The RAM pack simply plugs into the existing expansion port on the rear of the ZX80. No wires, no soldering. It's a matter of seconds and you don't need another power supply. You can only add one RAM pack to your ZX80-but with 16K-BYTES who could want more!

How to order

Demand for the ZX 80 exceeds all other personal computers put together! So use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your ZX80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your $Z X 80$ as received within 14 days for a full refund. We want you to be satisfied beyond all doubt - and we have no doubt that you will be.

To: Science of Cambridge, FREEPOST 7, Cambridge CB2 1YY.
Remember: all prices shown include VAT. postage and packing. No hidden extras. Please send me

Qty	Item	Code	Item price £	Total £
	Sinclair ZX80 Personal Computerkit(s). Price includes ZX80 BASIC manual, excludes mains adaptor.	02	79.95	
	Ready-assembled Sinclair ZX80 Personal Computer(s) Price includes $Z \times 80$ BASIC manual and mains adaptor.	01	99.95	
	Mains Adaptor(s) (600 mA at 9V DC nominal unregulated).	03	8.95	
	16K-BYTE RAM pack(s)	18	49.95	
	Sinclair ZX80 Manual(s). (Manual free with every ZX80 kit or ready-made computer)	06	5.00	

NB. Your Sinclair $Z \times 80$ may qualify as a business expense.
TOTAL: £
Ienclose a cheque/postal order payable to Science of Cambridge Ltd for $£$
Please print
Name: $\mathrm{Mr} / \mathrm{Mrs} /$ Miss
Address

FREEPOST - no stamp needed.
Science of Cambridge Ltd.
$=<$ ngs Parade, Cambridge, Cambs., CB2 1SN Te 223311488.

PRACTICAL ELECTRONICS PROJECT 125 WATT POWER AMP KIT

SPECIFICATIONS	
Max. Output power	125 watt RMS
Operating voltage (DC)	50-80 Max.
Loads	4-16 ohms
Frequency response Measured at 100 watts $25 \mathrm{~Hz}-20 \mathrm{kHz}$	
Sensitivity for 100 watts	400 mV @ 47K
Typical T.H.D.@ 00 watts 4 ohms load	0.1 \%
Dimensions 205×90	$190 \times 36 \mathrm{~mm}$
The P.E. power amp kit is a module for applications-disco units, guitar ampl address systems and even high power	h power s, public mestic systems.
The unit is protected against short circ and is sate in an open circuit condition. margin exists by use of generously rate	ing of the load large satety components, the

output stage uses four 115 watt transistors normally only two would be used, result, a high powered rugged unit. the PC Board is backprinted, etched and ready to drill for ease of construction, and the aluminium chassis is preformed and ready to use. supplied with all parts
and circuit diagrams.
f9.50 , 59.50 ACCESSORIES f1.00 lus 20p p\&p
 f 975 p \&

AS FEATURED IN PRACTICAL ELECTRONICS OCTOBER ISSUE

DIY STEREO BARGAIN PACKS FEATURING FAMOUS BUILT MULLARD PREAMP MODULES

MULLARD STEREO
PREAMP MODULES AND TWO 12 WATT POWER AMP KITS.

In easy to build form C.B.s backprinted, etched and drilled ready to use.

BUILD A 12 WATTS PER CHANNEL STEREO AMPLIFIER
ACCESSORIES AND L.S. KIT EXTRA (not available separately)

DIY ACCESSORIES Mains transforme smoothing capacitor rectifier $4 \times$ slide ontrols, for base treble and volum

ACCESSORIES: Available only at time of purchase of Bargain Packs

12 + 12 WATT AMPLIFIER KIT NOTE: for use with 4 to 8 ohms speakers.

With up-to-the-minute features. To complete you just supply screws, connecting wire and solder. Features include din input sockets for ceramic cartridge, microphone, tape or tuner. Outputs--tape, speakers and headphones. By the press of a
button it transtorms into a 24 watt mono disco amplifier with button it transtorms into a 24 watt mono disco amplifier with twin
deck mixing. The kit incorporates a Mullard LP1 183 pre-amp deck mixing. The kit incorporates a Mullard LP 1183 pre-amp module, pius 2 power ampinitier assembly kits and mains power
supply. Also featured 4 slider level controls, rotary bass and treble supply. Aiso featured 4 slider evel controls, rotary bass and trebie mathing knobs Easy to assemble teak simulate cabinet and ready made metal work. For further information instructions are available price 50 p . Free with kit avalable price 50 , free with NOTE: NOTE.
for use with 4 to 8 ohms speakers.

plus 62.55 p \&

BSR chassis record deck with manual set down

 and return, complete with stereo ceramic cartridge $\mathbf{f 8 . 5 0}$ plus $\mathbf{f} 2.75 \mathrm{p} \mathrm{\&}$ p whpurchased with amplifier. Available separately $\mathbf{£ 1 0 . 5 0}$ plus $\mathrm{f} 2.75 \mathrm{p} \mathrm{\& p}$. $8^{\prime \prime}$ SPEAKER KIT. 2 Phillips 8" approx. speakers. $\mathbf{£ 4 . 7 5}$ per stereo pair plus $f 1.50$ p\&p when purchased with amplifier. Avalable separately $\mathbf{£} 6.75$ plus $£ 1.50 \mathrm{p} 8 \mathrm{p}$. STERED MAGNETIC PRE-AMP CONVERSION KIT all components including P.C.B. to convert your ceramic input on the $12+12$ amp to magnetic. $£ 2.00$ when purchased with kit feature above. $\mathbf{£ 4 . 0 0}$ separately inc $\mathrm{p} \& \mathrm{p}$.

14

BSR Manual single play

 record deck with auto return and cueing lever. Fitted with stereo ceramic cartridge 2 speets with 45 rpm spindle adaptor ideally suitedf12.25

f12.25

OUR PRICE

PHILLIPS RECORD PLAYER

DECK GCO37

Hi Fi record player deck, 2 speed, damped cueing, auto shet-off, belt drive with floating sub chassis to minimise acoustic feedback. Complate with GP401 stereo magnetic cartridge-LIMITED STOCK UNBEATABLE OFFER AT CAR RADIO KIT $£ 10.50$ (Constructors pack 7)
plus $\mathrm{E} 1.75 \mathrm{p} \& \mathrm{p}$
 - 6 watt output *Ready etched \& punched P.C.B.

* Incorporates suppression circuits *Now with tape input socket

All the electronic components to build the radia, you supply only the wire and solder as featured in the Practical Electronics March issue. Features: Pre-set tuning with five push button options. black illuminated tuning scale, with matching rotary control knobs, one, combining on/off volume and tone-control, the other for manual tuning. each set on wood simulated fascia.
The P.E. Traveller has a 6 watts output, neg ground and incorporates an integrated circuit output stage, a Mullard IF module LP 1181 ceramic filter type, pre-aligned and assembled and a Bird pre-aligned push button tuning unit. The radio fits easily in or under dashboards
Complete with instruction

> CONSTRUCTORS PACK 7A
> Suitable stainless steel fully retractable locking aerial and speaker (approx. $6^{\prime \prime} \times 4^{\prime \prime}$) is 95 per pack. available as a kit complete $\mathbf{1 1 . 9 5}$ p\&p $£ 1.00$ Pack 7A may only be purchased at the same time as Pack NOTE: Constructor's pack 7A sold complete with radio kit $\mathbf{f 1 5 . 2 0}$ FEATURED PROJECT IN PRACTICAL ELECTRONICS.

30 + 30 WATT STEREO AMPLIFIER BUILT AND TESTED

Viscount IV unit in teak simulate cabinet silver finished rotary controis and pushbuttons with matching fascia, red mains indicator and stereo jack socket. Functions switch for mic magnetic and crystal pickups, tape and auxiliary. Rear panel features fuse holder. DIN speaker and input socket $30+30$ watts. RMS $60+60$ watts peak for use with 4108 ohm speakers. Size $14^{3 / 4} /^{\prime \prime} \times 10^{\prime \prime}$ approx
ready to play $£ \mathbf{3 2 . 9 0}$ plus
f3. $30 \mathrm{p} \& \mathrm{p}$

323 EDGWARE ROAD, LONDON W2
21B HIGH STREET. ACTON W3 6NG ACTON: Mail Order only. No callers ALLPRICES INCLUDE VAT AT 15\% All items subject to availability. Price correct at 29.10 .80 and subject to change without notice. For further information send for instructions
NOTE: $\quad 20 p$ plus stamped addressed envelope.
Persons under 16 years not served without parent's authorisation

ARISTON PICK UP

Ariston pick-up arm manufactured in Japan. 59195 Complete with headshell OUR PRICE

100 WATT

 MONO DISCO AMPLIFIER
Brushed aluminium fascia and rotary controls

Size approx $14^{\prime \prime} \times 4^{\prime \prime} \times 10^{1} 4$. Five vertical slide controls, master volume, tape leverl, mic level, deck level, PLUS INTER DECK FADER for perfect graduated change from record deck No. 1 to No. 2, or vice versa. Pre fade leve controls (PRL) lets YOU hear next disc before
ading it in. VU meter monitors output level. fading it in. VU meter monitors output leve
Output 100 watts RMS 200 watts peak.

50 WATT MONO DISCO AMPLIFIER

Size appox $133 / 8^{\prime \prime} \times 51 / 4^{\prime \prime} \times 634^{\prime \prime} .50$ watts rms. 100 watts peak
output. Big features include two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral push-puil switches. Undependent bass Independent bass and treble controls

Personal Shoppers EDGWABE ROAD LONDON W2 Tel: 01-7238432. 9.30am-5.30pm. Closed all day Thursday ACTON: Maill Order only. No callers goood despatched to mainland and mi ifelamo omty

REALISM

WE ARE now, I believe, beginning to come to terms with the real world again. The myths are exploding and reality is breaking through.

So said Mr. John Nott, Secretary of State for Trade to the North West Branch of the Engineering Employers Federation in Bolton recently. A significant statement and one that we are sure is true in more ways than one! What worries us is that when its all over and the unemployment figures start to fall again will the inbred attitudes of industrialists and employees have changed significantly enough to have a real affect on our future? We live in a fast moving world and we must move with it, the electronics industry is good at doing this but we must introduce others to the advantages of robots and computers.

Take another quote if you will: "Today our profession is critically important to an effort that greatly concerns our nation-maintaining healthy technology through innovation. More people than ever understand that raising our standard of living to match our expectations largely depends on our ability to successfully advance our technologies.
"A growing concern is that we as a nation are losing our technological leadership and our traditional productivity advantage to others.
"Our greatest single devotion must be to professionalism that in large measure requires technological currentness. On a wider scale, we need to renew ourselves in pursuing excellence in a world of change.

Mr. John Nott again, talking to the electronics engineer? No, wrong man and, believe it or not, the wrong country. That statement was made by William C. Hittinger, Executive Vice PreSident, Research and Engineering for RCA.

Let us look more closely at this positive attitude which is perhaps what we in the UK lack. One thing that gives some insight into the feelings of America is the "growing concern that we as a nation are losing our technological leadership and our traditional productivity advantage to others." Few countries in the world would think in this way if they held the position of America in the electronics industry and for an RCA man to make the statement is even more significant.

There is also the realisation that "raising our standard of living to match
our expectations largely depends on our ability to successfully advance our technologies". We believe this to be something of an understatement but one which everyone should consider.

AMERICA AMERICA!

We are not all lovers of the American way of life or of Americans in general-they have a lot to answer for in respect of our nightly TV entertainment-but we cannot afford to ignore them and we should be prepared to copy the good. We see no reason why the UK cannot capitalize on the "reality that is breaking through", and start the tide that was the brain drain, flowing in the other direction, but it must come from us all, from a new approach, a new realism and a new need in everyone.

According to Mr. John Nott the signs are there and he went on to echo Mr . Hittinger's feelings by saying.
"We cannot enjoy a better life unless we provide the wherewithal by producing more goods and services more efficiently . . . The time has come again to look ahead.'
The time has come for electronics!
Mike Kenward

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR
Jasper Scott PRODUCTION EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY

ADVERTISEMENT MANAGER
SECRETARY
AD. SALES EXEC
CLASSIFIED MANAGER
D. W. B. Tilleard

Christine Pocknell
Alfred Tonge
Colin Brown 01-261 5762

Editorial Offices:
Practical Electronics:
Westover House.
West Quay Rosd, Poole.
Dorset BH15 1JG
Phone: Editorial Poole 71191
We regret that longthy technical enquifios cannot be answered over the telephone lsee below).

Advertising Offices:
Practical Electronics Advertisements: King's Reach Tower, King's Reach, Stamford Street, SE1 9LS Telex: 915748 MAGDIV-G
Make Up/Copy Dept: 01-261 6601

Technical Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in Practical Electronics.
All letters requiring a reply should be accompanied by a stamped, self addressed envelope and each letter should relate to one published project only.
Components are usuaily available from advertisers; where we anticipate supply difficulties a source will be suggested.

Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 95p each including Inland/Overseas p\& p.

Binders

Binders for PE are available from the same address as back numbers at $£ 4.30$ each to UK or overseas addresses, including
postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 11.80$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

PROTECTED MULTIMETERS

Following their introduction of the quality Tester range of multimeters with modular construction and "Do-it-Yourself" repair facilities, Alcon Instruments Ltd have now introduced the SUPER 20 and SUPER 50 Testers from the same Miselco stable. These new instruments now include cut-out protection and semiconductor test facilities all provided in a package small enough to be called "pocket-sized" without exaggeration.

As their names imply, the two are similar in almost all aspects but have basic different movements offering sensitivities of $20 \mathrm{k} \Omega / \mathrm{V}$ and $50 \mathrm{k} \Omega / \mathrm{V}$ a.c. and d.c. respectively. Each instrument has 39 ranges covering from $100 \mathrm{mV}(150 \mathrm{mV}$ for the $\mathrm{S} / 50)$ to $1 \mathrm{kV} \mathrm{d.c}$. from 10 V to 1 kV a.c. Current ranges extend from $100 \mu \mathrm{~A}$ to 10 A (3 A for the $\mathrm{S} / 50$) d.c., and 3 mA to 10 A (3 A for the $\mathrm{S} / 50$) a.c. There resistance ranges, are five, covering from $5 \mathrm{k} \Omega$

to $5 \mathrm{M} \Omega$ f.s.d. An optional high voltage probe extends the upper limit of the d.c. ranges to 30 kV for TV and the like.

Accuracy figures are 2 per cent of f.s.d. for d.c., 3 per cent for a.c. and 1 per cent of centre scale for resistance. These values, coupled with the figures noted make the Super 20 an ideal general-purpose multimeter and the Super 50 well suited to specialist electronic measurement for which it was designed.

Both instruments are provided with fuse protection, a novel neon discharge system and a new electronic high-speed cut-out system. This latter serves to disconnect the instrument from external circuits should an overload voltage appear at the movement. The module is itself detachable from the circuit board, in line with the Tester practice, simply inserted on five pins. The cut-out operates when the applied energy exceeds that which the meter range indentifies by a factor sufficient to prevent movement damage. This action releases the reset button to indicate activation.

The system is resettable manually by depression of a button and can be tested simply by pressing a "Test" black button to indicate battery and circuit state.

A simple semiconductor test facility is also provided capable of effecting basic function tests on most discrete devices swiftly and easily. In addition both instruments may optionally include a Universal Signal Injector capable of generating a signal rich in harmonics and detectable to 500 MHz for radio and TV test purposes.

Prices for the two meters (complete with case, leads and instructions) are $£ 56.81$ and $£ 59.00$ including VAT. Alcon Instruments Ltd., 19 Mulberry Walk, London SW3 6DZ (01-352 1897).

JINGLE ALL THE WAY

Just in time for Christmas, the latest wrist job from Casio, their M12 melody alarm watch, has 12 memorised tunes (including Jingle Bells) as alarm signals.

In alarm mode, the M12 plays at the preset time each day a distinctive tune, changing according to the day of the week. With appropriate settings it plays "Happy Birthday", "Wedding Bells", or an alternative melody on suitable dates, and "Jingle Bells" as the Christmas Day alarm. For its twelfth trick, the M12 can sound hourly "Big Ben" chimes.

A digital display shows time in hours, minutes and seconds plus am/pm (or 24 hour clock), with month, date and day available at the press of a button.

Also within the l.c.d. display is a five-line musical stave, on which "notes" appear as a melody is played. The M12 also has a countdown alarm/stopwatch function.

With resin case and strap, the Casio M12 is powered by a BR-2016 lithium battery with expected life of at least two years, and has a recommended retail price of $£ 26.95$.

Identical functions and characteristics are available in the superior packaging of stainless steel case and bracelet. This model is coded M1200, at RRP $£ 34.95$.

Casio Electronics Co. Ltd., 28 Scrutton Street, London EC2A 4TY.

SYSTEMA WEDGE

Systema Electronics have recently introduced a new style scientific calculator which should retail at around $£ 13$. Aimed directly at the volume end of the scientific calculator market, the Systema LC 34P offers comprehensive scientific operations including 3 level parentheses plus statistical functions.

The wedge shaped design of the Systema iC $: 4 \mathrm{P}$ gives a perfect viewing angle on the s:ujents desk or engineers bench. The large lized crystal display has an 8 digit capacity (or - digit mantissa and 2 digit exponent) plus iperational symbols. Keyboard layout is clear ind ancluttered with all dual functions colour anded.

This stylish scientific operates for about a : ear on 2 AA size penlight batteries which are easily available world wide. Supplied complete -ith soft carry pouch, the Systema LC 34P -easures $144 \mathrm{~mm}(\mathrm{~L}) \times 75 \mathrm{~mm}(\mathrm{~W}) \times 18 \mathrm{~mm}$ -aximum (H) and should now be available From most good retailers.

INTEGRATED CARTRIDGEHEADSHELL

Shure Electronics has announced the exحansion of its line of M97 Era IV Series Car ridges with the M97HE-AH, a precision in:egrated cartridge-headshell with a universal our-pin bayonet headshell connector for insant installation in many leading turntables.
Shure claim that the integrated design of the $197 \mathrm{HE}-\mathrm{AH}$ offers several advantages over separate cartridge and headshells, including easier installation, elimination of spurious resonances from insecure mountings, and a total weight reduction of $4-6$ grams when compared to many other cartridge and separate headshell combinations.

As an added feature, the M97HE-AH is provided with a special pickup arm/cartridge alignment system which includes an overhang gauge and a non-operable alignment stylus. This allows precise overhang adjustment for minimum lateral tracking error without risk of damage to the actual playback stylus.

The M97HE-AH includes a nude-mounted hyperelliptical stylus, a viscous damped Dŷnamic Stabilizer, telescoped stylus, shank and the innovative Side-Guard-which protects against stylus damage frequently caused by sliding a cartridge across the surface of the record or by hitting the edge of the record. As a result, the M97HE-AH offers maximum stylus and record protection, as well as improved trackability in the critical mid and high frequencies at a tracking force of $\frac{\div}{4}$ to $1 \frac{1}{2}$ grams.

The recommended retail price for the $\mathbf{1 9 7 H E}$-AH is $£ 51.80$ plus VAT.

Shure Electronics Ltd., Eccleston road, Maidstone, Kent ME15 6AU (0622 59881)

MINITV

The latest TV from Hitachi is the K 2300 model which is a $4 \frac{1}{2} \mathrm{in}$. monochrome set with a digital clock. The unit works from a.c. mains, car battery, internal batteries or an optional battery pack.

The set works on either v.h.f. or u.h.f. frequency bands switched over at the touch of a button. Tuning has been simplified by using a vertical line on the screen which indicates the channel being received and is cancelled by a button once tuned in correctly.

The quartz digital clock can be set to switch the TV on or off at any pre-determined time which is ideal when you want to watch a programme in bed as there is no worry about falling asleep whilst watching and the set remaining on. The K 2300 is fitted with an earphone socket for private listening and a recording jack for audio recordings onto a tape recorder.

The K2300 is finished in a silver and black cabinet and is provided with a carrying handle which can also be used as a stand for the set.

The price of the K 2300 is $£ 115$ including VAT.

SPEECH RECOGNITION SYSTEM

A speech input device for most popular microprocessors has been announced by William Stuart Systems Ltd.

Marketed under the name "Big Ears", the system consists of a microphone, preamplifier, analogue frequency filters and digital interface, complete with software.

Words are stored as voice patterns which the system learns from repetition by the user Analysis is then by correlation over a statistical frequency plane which plots com binations of formants and harmonics throughout the speech waveform.

The unit has been designed to connect directly to the UK 101/Superboard family of computers, or to any other via a spare user input port. The analysis programs are supplied in Basic language, with small real-time input routines written in 6502 or Z 80 machine code.

Typical uses for the system include data enquiry, robot control, computer games etc.,
"Big Ears" is supplied fully assembled in a cabinet, and costs $£ 45$ plus VAT, including postage and packing. Please state which computer the unit is to be used with.

William Stuart Systems are at Dower House, Herongate, Brentwood, Essex, CM13 3SD. (0277 810244).

SCALED DOWN VIDEO

JVC are launching a new portable video system, the HR2200E. It incorporates highly advanced video technology in an ultra lightweight and compact form. Size and weight have been dramatically reduced while retaining full VHS compatibility.

The HR2200E weighs just 5.2 kg and is constructed from R.R.P. - a new material which is both extremely light and strong. The chassis is moulded into a single unit and JVC have reduced the number of components by 50 per cent compared with their previous video recorders. A newly-developed high precision brushless quartz locked direct drive motor drives the head drum and transports the tape steadily while being carried.

The HR2200E is equipped with some superb facilities - a built-in microprocessor provides full logic control and solenoid operated pushbuttons mean that feather light touch is all that is required to change modes. For further convenience, the HR2200E comes complete with a remote control unit.

Other advanced features include variable speed playback, Edit Start Control, which automatically aligns separately recorded
segments, avoiding distortion and a Shuttle Search facility - for the first time ever on a portable machine - which allows programmes to be reviewed in both forward and reverse directions at 10 times normal speed. A 3way power supply gives the HR2200E added flexibility - it can be powered by household a.c. mains, car battery or by its own NickelCadmium rechargeable battery pack which has over twice the life of lead acid batteries.

The HR2200E is complimented by the TU22E - a multi purpose unit which functions as a tuner/timer (with a 10 day preset capacity), a.c. power adapter and a battery charger. Together the HR2200E and the TU22E form a complete unit with no need for a separate a.c. power adapter or battery recharger. The TU22E can recharge the Nickel-Cadmium battery in just 90 minutes this remarkable time-saving capability plus the long life of the Ni -Cad battery are yet two more important features that place the new JVC portable video system way above any other previous system. The AA P22E AC power adapter can also be used as a battery charger, and to supply power to the recorder if a tuner/timer is not being used.

Unique in concept-the home computer that grows as you do! Whe Acorn Atom ,
 plus VATand pधp. computer kit

The ATOM-a definitive personal computer. Simple-to-build, simple-to-operate. But a really powerful full-facility computer. And designed on an expandable basis. You can buy a superb expanded package now - tailored to your needs. Or, you can $\sqrt{\text { buy just the standard Atom kit, and, as you grow in }}$ confidence and knowledge, add more chips. No need to replace your equipment. No need to worry that your investment will be overtaken by new technology. As you need more power, more facilities, you can add them!
 provided by the s
hard copy facllty rterface with other ACORN cards is simplicity itself. Any one ACOR\ card may be fitted internally.
So you can see there are a vast number of modular options and additions avalable. excanding with your ability and your budget. The ATOM hardware includes:

- Memory from $2 \kappa: 0: 2 \times$ RAM on board (up to 35 K in case)
 Display allows high rese $\div 0-256 \times 192$) graphics and red, green and blue cutc. t - Cassette interface-CUTS 300 baud
 - Channel 36 UHF Moc.atc Ou:put Bus output includes internal connections for Acorm E.rocard.
The ATOM software includes:
- 32-bit arithmetic $(=2.000 .000 .0000$ - High speed execution - 43 standard/extended BASIC com mands Variable length strings (up to 256 characters; -Str n g manipulation functions - 2732 -bit integer variables 27 acdranal arrays random number function PUT and GET byte WAIT command for timing ©DO-UNTLL construction Logical operators (AND, OR, EX.OR) LINK to machine-code routines PLOT DRAW anc MOVE.

ACORN
 COMD 4a Market Hill, CAMBRIDGE CB2 3NJ

The standard ATOM kit includes:

- Full sized QWERTY keyboard Rugged polystyrene case - Fibreglass PCB 2 K RAM 8 K ROM 23 integrated circuits - Full assembly instructions including tests for fault-finding. (Once built, connect it to any domestic TV and power source)
- Power requirement: 8 V at 800 M A . ATOM power unit available. See coupon. PLUS FREE MANUAL written in two sections-teach yourself BASIC and machine code for those with no knowledge of computers, and a reference section giving a complete description of the ATOM's facilities. All sections are fully illustrated with example programs.

The ATOM concept

Adding chips into sockets on the PCB allows you to progress in affordable steps to large-scale expansion. You can see from the specifications that the RAM can be increased to 12 K allowing high resolution (256×192) graphics. Two further ROM chips, e.g. maths functions, can be added directly to the board giving a 16K capacity. In addition to $5 \mathrm{I} / \mathrm{O}$ lines partly used by the cassette interface, an optional VIA device can provide varied I/O and timer functions and via a buffer device allow direct printer drive. An optional module provides red, green and blue signals for colour. An in-board connector strip takes the ATOM communications loop interface. Any number of ATOMs may be linked to each other - or to a master system with mass storage/

Your ACORN ATOM may qualify as a business expense. To order complete the coupon below and post to Acorn Computer for delivery within 28 days. Return as received within 14 days for full money refund if not completely satisfied. All components are guaranteed with full service/repair facility available.

To: Acorn Computer Ltd., 4a Market Hill, CAMBRIDGE CB2 3NJ
I enclose cheque/postal order for $£$
Please debit my Access/Barclaycard No.
Signature
Name (Please print)
Address

Telephone No.
Registered No: 1403810. VAT No: 215400220
Registered No: 1403810 VAT No: 215400220

Moral of the Metro

The almost universal chorus of praise which greeted the introduction of the BL Austin Mini Metro gave it a flying start in the market place. And, almost overnight, the public image of BL was transformed from a sick joke to a go-ahead organisation well able to compete in the cut-throat world of mass-production popular cars

The explanation is simple. This was BL's first all-electronic car. Not the car itself but the dedicated application of electronic aids and techniques in research, development, testing and, above all, in production.

The Metro story is a superb practical example of the need for change and of its unhappy consequences. The highly automated production line is essential for achieving productivity and consistent quality. The product is better and cheaper. But automation reduces manpower and de-skills the work of those still retained on the production line. One BL worker on the Metro automated assembly track confessed to being even more bored than he was on the old manual track. Now, he complained, all he did all day long was to press buttons, a task which a child of ten could perform just as ably. He had become nothing more than a robot-minder.

Overall, however, there is just as much skill needed to produce the Metro as any other similar car. All that has happened is that the skill had been transferred away from the production line and into electronic hardware and software. Efficient, tireless, electronically programmed and controlled robots work round the clock. The line trouble-shooter is armed with a digital multimeter instead of a set of spanners. The semi-skilled assembler is down-graded to button-pushing, albeit with no loss of pay.

There is little choice in the matter. It may still be possible to almost hand-build a Rolls Royce limousine selling at $£ 50,000$ to an elite market. But for a mass market it is automate or die. It seems there is no escap-
ing the social consequences of automation apart from re-training, and we all know how hard it is to teach an old dog new tricks.

There is nothing new in all this. It has been happening steadily over the past 20 years. The Metro story is just the latest positive example of the increasing need to adapt to the reality of a fast-changing world.

Low Profile

The nationalised industries and services are deservedly unpopular. They are a burden to the taxpayer with their insatiable appetite for subsidies and create antagonism by their reluctance to improve performance.

The one really notable exception is Cable \&Wireless Ltd, a consistent profit-maker, which few people even realise is 100 per cent owned by the British Government.

The company's policy is to keep a low profile on ownership, not through any feeling of embarrassment but out of political consideration. For Cable \&Wireless operates world-wide with one of its principal activities being the planning, management and operation of overseas national communications services on a concessionary basis. The company has some 50 branch offices starting alphabetically with Abu Dhabi and Antigua and ending with Tonga, Tortola, Turks Island and Vanuato (New Hebrides).

The British Government, again for international political reasons, observes a hands-off policy with the company on its operations and only an arm's-length control on finances. To all intents and purposes C\&W operates autonomously and with local loyalty to the countries it serves.

Of course C\&W has the supreme advantage of being in a high-growth industry. But it is a tempting thought that the facts of operating almost entirely overseas in widely dispersed locations and with considerable freedom of action in technical and commercial decision-making has also contributed to success.

Stock Market

Present economic policies have thrown up many surprises and have amply demonstrated that so-called experts in economics are either duffers or that economic forecasting itself is anything but an exact science. About the only thing all the experts have been correct on is the easily predictable rise in unemployment, a continuation of the trend since 1974 under both Labour and Conservative policies.

The biggest surprise, considering universal groans on the high international value of the pound sterling, is the healthy overseas trade surplus. From a prediction of $£ 2.75$ billion in the red it now seems probable that the balance of trade over a 12 -month period will at least be in the black, if not handsomely so.

Another surprise is the remarkable buoyancy of the stock exchange indices, indicating that despite all the gloomy talk there is considerable confidence in the future of British business and industry.

Punters in electronics shares buying and
selling at the right times should have done remarkably well. On the day it was announced that Britain had its highest ever recorded monthly balance of trade surplus 1 checked out some electronics share prices in terms of low and high price for 1980.

Here are some examples with low and high price in New Pence in brackets. Bulgin (22/38); Gray Electronics (30/76); Dubilier ($31 \frac{1}{2} / 74$); Electrocomponents (410/716); Electronic Machine (21/62); Farnell (218/378); Ferranti (254/490); GEC $(325 / 538) ;$ Plessey (106/266); Racal (172/342); Rediffusion (65/104); STC (230/467); Thorn/EMI (262/378); Unitech (207/348).

With shrewd timing it was possible to more than double your money in a single deal. Arguably some of the shares are overpriced at their 'highs' but this merely reinforces the view that apart from oil and gold, well-managed electronics companies, with a long-term assured future, are the best bet in shares.

Writing of bets reminds me that at the recent Bookmakers Show 80 in London over a third of the exhibitors were showing electronic cash registers and calculators tailored to the bookies special needs in calculating and paying out complicated multiple bets like doubles and trebles and yankees. The bookies say they will be paying over $£ 14$ million to the Horserace Betting Levy Board this year, reflecting a 30 per cent increase in betting turnover, but whether in spite of or because of the recession is not clear.

UK Ahead

The struggle for international recognition of competing Viewdata services has resulted in a modest league table. The three contestants are France's Teltel, Canada's Telidon and Britain's Prestel. The scores in overseas sales at the time of going to press were France nil, Canada one and UK five.

Canada's only goal is Venezeula while the UK has already netted West Germany, Netherlands, Switzerland, Hong Kong and Austria.

Orders

Order books remain healthy. The TV fourth channel network generated a $£ 5$ million contract for microwave relay links for GEC and, still in the broadcasting field, Marconi booked a two million dollar US sale of VTRs. Racal-Decca has won a $£ 4$ million follow-on order for electronic warfare equipment for the Royal Danish Navy and MEL booked a $£ 4$ million contract for microwave landing systems for the Royal Navy. The first marine satellite earth terminal is to be constructed at Goonhilly under a $£ 2.75$ million contract with Marconi. UKADGE, a consortium of Marconi, Plessey and Hughes, has won the $£ 100$ million up-date contract for the UK Air Defence System which will be funded largely by NATO.

Meantime, exports are racing ahead with the aerospace industry with its large electronics content enjoying an all-time record year.

PE

Master Phythin

 The betmonethe Shore brum angenin Shof Sounds the dertrea by conbinea use of the basicigenerators ast teguicd Stre 5 gu ara Yightom-Toms touble up to give Conga Drum and tow Bongo respectively and the degree of resmance con be set as a compronise or biased fowards either type of instrument:

BRリMs

The complete instrumentation circuitry is shown in Fig. 7. Four of the Drum circuits utilise the quad NAND gate IC10, whilst the fifth uses an inverter section of IC11. Taking the Bass Drum circuit as an example it consists of an oscillator based on IC10c, having a twin-T network with frequency determining components R45-47 and C9-11, damped out of oscillation by R48 in series with VR4. When the Bass Drum is required to sound a positive pulse appears at the input to R41, is shortened by C8, and appears across R45 to excite the circuit into oscillation at approximately 65 Hz . The oscillation decays at a rate dependant on the position of VR4, and the signal level passed to the preamplifier is controlled by VR5.

EXTRA RESONANCE

As VR4, 6, 8, 10 and 12 are turned clockwise the length of the decay time increases and at some point uncontrolled oscillation will occur. The extra resonance obtained can be put to good use, particularly in the case of VR6 and VR8 where advancing the controls improves the Latin American instrumentation. VR12 has to be set in a compromise position balancing High Bongo against the Snare Drum sound.

CYMBALS

Transistors TR1 and TR2 gate a noise signal to produce the Cymbal sounds. The Short Cymbal envelope is generated through C38 with a decay length determined by C39 and R93/94 whilst the Long Cymbal envelope consists of the full control pulse width followed by a decay determined by C41 and R97/98. A tuned circuit, consisting of L1 and C48, filters the noise into a narrow band of frequencies to give a metallic effect.
918. 143

 Wg Mncrased fox fecuency naise:

MYBRD CLRCMIE

The Snare Drum efiect is produced by trigening the High Bongo and Short Brush simutancously through diedes D53 and D54, whilst the IIm Shot further incorporates the Claves through D49.

PREAMPLTFIER/ACCENT

The preamplifier consists of a mixer, IC13a, followed by a voltage controlled output stage IC13b, the gain of which is increased above unity by the ratio of R116 to the resistance seen across VR14. The Accent is produced by switching the resistance across pins 4 and 5 of IC 11 1b to a low state which places R122 across a portion of VR14 determined by its position, and consequently increases the feedback ratio and gain of !C13b. To carry out the switching operation the Accent control pulse is fed to the gate (pin 3) of IC11b through the envelope components R120, C58 and R121. Normally the f.e.t. which comprises IC11b is in a high impedance state and switches to low on receipt of the positive Accent pulse.

High frequency attenuation of the signal from IC13b is possible using the "Tone" control VR3. This allows compensation to be introduced for the frequency response of following amplifiers and in particular the avoidance of very high frequency distortion effects some times present. The Master Rhythm output level is controlled by VR2 which is combinec with the supply switch S9.

INSTRUMENT BOARD ASSEMBLY

The track layout and component overlay details for the Instrument p.c.b. are given in Figs. 8 and 9. Whilst this boarc is less complicated than the Control Board careful assembly and inspection is again recommended. The suggestec assembly order is pins, resistors, diodes, wire links, i.c. sockets, preset potentiometers, capacitors, transistors, anc finally the Inductor.

When the Instrument board is complete, preset potentiometers VR4, 6, 8, 10 and 12 should be set fully anticlockwise, giving minimum length of sustain whilst VR5, 7 $9,11,13,14$ and 15 should be set to mid positions.

COMPONENTS . . .

Fig. 8. Instrumentation p.c.b.

Fig. 9. P.c.b. overlay

RHYTHM PATTERN EXAMPLES

1 WALTZ (A)

3 BALLAD (A)

5

7 CHA-CHA (A)
Acc.
s.c. $x X X X X X X X X X X X X X X X$

(B)

TANGO (B)

SAMBA (B)

x

(B)

2 QUICKSTEP (A)

4 DISCO (A)

6 BOSSA-NOVA (A)

RHUMBA (B)

10 FAST BEAT

(B)

11 SWING I

(A)

(B)

Fig. 10. Some suggested rhythm patterns

INTERWIRING

Twelve colour coded leads should first be soldered to the pins on the component side of the Control p.c.b. All leads should lie on the board such that they will exit at the side adjacent to the potentiometers. The use of 10/0.1 insulated wire is recommended for a neat finish, but care must be taken not to cut into the conductors when pairing back the insulation. The full interwiring details are given in Fig. 11, which shows a separation of approximately 3 in . to allow for folding the Control board over the Instrument board and for the battery box to be positioned to the left of the Instrument board. Wiring can be completed with the boards in this position-i.e. Control board track and Instrument board components facing the constructor. Screened cable is required for the "Tone" and "Level" control connections.

MECHANICAL CONSTRUCTION

From various photographs given in the series it can be seen how the two p.c.b.s are mounted into the box with the Instrument board fixed to the base, and the Control board to the front panel.

The height of the three position slider switches above the Control p.c.b. is the determining factor for mounting the front panel, and this is matched using $\frac{1}{4} \mathrm{in}$. spacers with 6BA full nuts and screws at each of the mounting holes to give the correct distance. These may be tightened to the panel to allow the board to be removed without loosening the screws from the front, and the p.c.b. finally retained with a second set of nuts. It is important that the nut in the top centre position be of insulated type to avoid shorting to the p.c.b. track.

FINAL ASSEMBLY AND TEST

After completion of the interwiring and mechanics a few checks can be made before inserting any integrated circuits. The battery box polarity should always be observed carefully and on first connection C6 will charge to the full battery potential. With the power switch off the current drawn from the battery will slowly drop from around $20 \mu \mathrm{~A}$ after initial charge to approximately $3 \mu \mathrm{~A}$. This effect is due to the forming of the capacitor during its early active life. The unit can then be turned to the on condition resulting in an increase in current to around 1 mA . The current checks mentioned are

12 SWING II

(A)

(B)

Key: Acc. ACCENT
S.C. SHORT CYMBAL
L.C. LONG CYMBAL
S.Br. SHORT BRUSH

L.Br. LONG BRUSH H.T. HIGH TOM-TOM L.T. LOW TOM-TOM B.D. BASS DRUM

not essential but could help in detecting track shorts, accompanied by a considerable increase in supply current, which could be difficult to detect after insertion of the i.c.s. Voltage checks could also be made on the i.c. sockets, corresponding with the supply pins, and on the "Rhythm Select", "Sequence" and "Section" controls. By tracing through the circuitry many more tests could be devised but experience has shown that very careful physical inspection of the trackside of p.c.b.s, comparing against the track layouts in the series to detect shorts and particularly looking for unsoldered connections, is the secret to successful results.

When satisfied that all soldering is correct, disconnect the battery and discharge C6. The i.c.s should then be inserted into the sockets ensuring that orientation is carefully observed and taking normal CMOS precautions.

SETTING UP ADJUSTMENTS

Adjustments required are very few and it is suggested that the rhythm patterns given in Fig. 10 are first loaded into the Master Rhythm. Using the rhythms as a reference, the relative levels of all instruments may be adjusted using VR5, $7,9,11,13,14$ and 15 , and the envelope characteristics of the Drums can be adjusted using VR4, 6, 8, 10 and 12.

INTERWIRING DETAILS

CONTROL P.C.B.-TRACK (REAR) SIDE
INSTRUMENT P.C.B.-COMPONENT SIDE
Fig. 11. Interwiring details

Enables a log of total usage time to be produced for equipment where regular servicing or replacement parts are required.

ELमP5ED HOUR meter

SLRUE LICHT DIMIMER

This flexible unit which follows a triac controlled master dimmer without any electrical connections onables extensions to present dimmers or light reinforcements. DSTIUIOSTOPE OFFER

PRACTICAL

THIS project describes a sophisticated lighting control unit known in discotheque circles as a 'zoning' or 'matrixing' unit. It is used with a display of up to 100 lamps which are normally arrayed in a star formation, comprising 10 bars each of ten lamps. The unit will produce a wide variety of sequential effects either in a circular motion (starspin) or in a radial motion (starburst). Either mode may be selected manually or the unit may be set to 'auto matrix' when the effect will change periodically from starspin to starburst and back again. The light display may also be set up as a rectangular formation with ten parallel rows of ten lamps. The matrix effect will then switch between horizontal and vertical scanning.

A total of 62 dynamic effects and 2 static effects are available and a sound to light facility is provided which will advance the sequential effects according to the beat of the music. Since the clock can be advanced a large number of steps in a very short time, certain sequences will appear to be reversed by the beat of the music. Along with the program selection which is controlled by six buttons, there is an automatic advance facility. This runs through the 32 basic programs in rotation, running each one four times. Some of them such as the 'fill and empty' routines described below occupy a program completely. Others, such as 'bar' effects are repeated four times in each run and are therefore repeated more times in the 'automatic' mode.

The unit described, and the printed circuit layout are for a total power handling of 6 kilowatts. This corresponds to four starburst displays made from 15 W pigmy lamps, or one display using 60 W spotlamps. It should be noted, however, that the basic design could be used for loads up to 2 kW per channel if the power supply output devices, and printed circuit board were all uprated. Remember however that many of the programs are far more complicated than those on proprietary chaser units and allowances should be made for all lamps being on at once. If used in a mobile system with a standard 13A plugtop, the maximum load will be 3 kW . This corresponds to two 15 W pigmy lamp displays.

CIRCUIT DESCRIPTION

Although it provides a very impressive display the principle of the matrix unit is quite simple. A normal chaser has one side of
all the lamps commoned and the other side of the lamps are connected to the switched 'live' outputs. With the matrix/zoner unit both sides of the supply are able to be switched. There are (for a ten channel unit) twenty outputs instead of ten plus one common. The outputs are connected to circular and radial common lines in the case of the starburst display and to vertical and horizontal common lines where the display is rectangular (Fig. 1.1). Selection of a particular mode switches all the triacs which are connected to the live or neutral permanently 'on' whilst the other ten triacs are operated from the sequential circuitry.

The heart of the unit is a 2708 EPROM (IC6), preprogrammed with 31 sequences of 20 bytes plus a further 20 bytes which provide a static display. The section of the memory required is selected in the manual mode by a combination of 5 buttons ($\mathbf{S} 2$ to $\mathbf{S 6}$) which, via an OR gate for each button places a ' 1 ' directly on the address inputs A5 to A9. If the 'automatic' mode is selected, then the supply to these five buttons is removed and replaced with a zero potential, whilst a pair of 7493 (IC9) 4 bit counters connected in cascade are enabled. The two 7493's (IC9 and 10) address A5 to A9 via the other inputs of the two input OR gates (IC7 and 8). Outputs Q2 and Q3 from the first 7493 (IC9) and outputs Q0, Q1, and Q2 from the second 7493 are used, so that the automatic program advance takes place every 4 cycles of the main clock section. A sixth button is provided (S7) which inverts the signal to the last five channels (i.e. channels 6 to 10). This enables the unit to effectively double the number of programs available. It is also necessary to obtain certain effects. When selecting the automatic mode, the choice must be made whether or not to select button 6 manually and thus determine one of two groups of automatic programs.

A full list and description of the complete set of programs is given in Fig. 1.2 whilst Fig. 1.3 gives details of some of the more complicated routines available.

Note that some use button 6 and some do not. Because the 2708 is 8 bits wide and the unit was required to operate on ten channels, the sequential details are handled by five bits only. The other three bits are used to enable subsequent circuitry to direct the information as required. Outputs 1 to 5 of the EPROM contain actual information for the lamps. Output 8 enables channels 1 to 5 to receive information, output 7 enables channels 6 to 10

Fig. 1.1. Connection diagrams for starburst and rectangular displays.

X

Fig. 1.2. Complete program set.

MEMORY OUTPUTS		MEMORY OUTPUTS	
	$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$		1 2 3 4 5 6 7 8
0	$\left.\left\lvert\, \begin{array}{llllllll}1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}\right.\right]$	0	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1\end{array}$
5	$\left.\left\lvert\, \begin{array}{llllllll}0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1\end{array}\right.\right]$	5	$\left\lvert\, \begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1\end{array}\right.$
10	$\left\lvert\, \begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1\end{array}\right.$	10	$\|$1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1
15	$\begin{array}{llllllll}1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1\end{array}$	15	$\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1\end{array}$
SLOW FILL		BAR-USE BUTTON 6	

Fig. 1.3. Listing of memory outputs.

Fig. 1.4. Memory circuit and counter section.

COMPONENTS . . .

Resistors

R1	220 1w
R2, R3, R8, R11	470 (4 off)
R4, R27-R57	270 (32 off)
R5, R14, R21, R26,	
R118, R119	1 k (6 off)
R6, R9, R25, R122	4k7 (4 off)
87. R10	22k (2 off)
R12, R17	100 k (2 off)
R13, R18	1 M (2 off)
R15, H 19	10k (2 off)
R16	330k
R20	220k
R22, R24	2k2 (2 off)
R23	22k
R58-R77	180 (20 off)
R78-R97	22 (20 off)
R98-R1117	100 (20 off)
R120, P 121	82 (2 off)

All resistors $\frac{1 W}{W} 5$ carbon except where otherwise stated.

Potentiometers

VR1, VR2
470k lin. preset (2 off)

Capacitors

C1, C2, C7, c8
c3
C4, C5, C6, C12
C9. C10. C17
c11
C13, C18
c14
$330 \mu 16 \mathrm{~V}$ elect (4 off)
$1000 \mu 10 \mathrm{~V}$ elect
100n (4 off)
$47 \mu 16 \mathrm{~V}$ elect (3 off)
47n
$2 \mu 2$ 10V tant (2 off)
470 n ceramic

C15, C16, 19

 C20-C39
Semiconductors

D1
D2
D3. D27-D36
D4-D6, D7-D26

REC1-REC4
TR1-TR3, TR 7, TR8 TR9
TR4
TR4

TR5

TR6
CSR1-CSR20
IC1
IC2
IC3, IC4, IC9, IC10
IC5, IC 13, IC14, IC15,

IC16

IC6
IC7, IC8
IC11. IC12
IC17-IC36
IC37

Miscellaneous

Push button switches d.p.c.o. 6 mm spacing (11 off)
Jack socket (p.c.b. type) mono (2 off)
Mains transformer
Fuseholders 20 mm p.c.b. type (21 off)
FS 1 -FS 1020 mm 3A fuse (10 off
FS11 10 mm 1 A fuse
L1-L20 3A choke (20 off)

Constructor's Note
A complete kit of parts or individual components can be obtained from Feltglow Ltd., 105B London Hoad, Bexhili, East Sussex (0424 221686).

Fig. 1.5. Output signals from the EPROM.
to receive information and output 6 also enables channels 6 to 10 but in reverse order. Only the first 20 bytes of each group of 32 are utilised and the main clock resets after each count of 20.

CLOCK AND AUDIO TRIGGER

The memory circuit and the counter section is shown in Fig. 1.4. This consists of a programmable uni-junction transistor (TR5) which oscillates at between 0.5 Hz and 5 Hz . All four outputs of IC3 are used to address the EPROM at A0 to A3 whilst the Q0 output of IC4 addresses A4. The Q0 output of IC4 and the Q1 output of IC3 are fed to a 2 input NAND gate (IC5) and then inverted and fed back to the master reset pins on the two counters. This reset pulse is also used to clock IC3 in the automatic program section described above. A feed is also taken to the automatic matrix/zone selection.

If the automatic program button is depressed, all the selection buttons 1 to 5 receive zero volts in either position. The master reset terminals of the auto section counter (IC9 and 10) are switched to 0 V and the counter is then free to operate. It is triggered from the reset pulse of the main counter and therefore clocks once every full cycle of the program playing at that time. When set to automatic this will initially be the basic chase having address 00000 , i.e. no buttons depressed, since the automatic counter has been 'waiting' in the reset mode. When the program has run through four times a ' 1 ' will appear at the Q2 terminal of IC9, addressing the memory via the OR gate. Each of the main addresses will be selected in this way, running through a total of 32 separate programs. Button 6 may be left in or out giving a grand total of 64 separate programs, although the automatic program mode is intended for use with button 6 not operated, since it applies to only a few of the catalogued effects. The clock is also triggered by the output of the audio section. There are two audio inputs, covering a signal range of 200 mV up to 50 volts input. Both are high impedance. These inputs feed a 741 op -amp which is used as a compressor in conjunction with a 2 N 3819 f.e.t. The output of the 741 is rectified
and used to bias the f.e.t. As the output of the 741 increases, the bias on the f.e.t. becomes increasingly negative and the f.e.t. tends to have less effect in shunting the feedback path comprising 330 k and 10 k . The 470 n capacitor (C14) ensures that this shunt effect takes place with a.c. only thus making the circuit stable as far as d.c. conditions are concerned. The output of the 741 is also fed to a 'booster' stage which provides heavy bass emphasis. The output is rectified and then fed, via the sound to light switch, to the clock oscillator.

SIGNAL ROUTING

The routing of the EPROM output signals is shown in Fig. 1.5. Only five outputs of the memory contain information to operate the lamps. These five outputs are fed to:
(a) Five (2 input) NAND gates (IC/13 and 14). The other inputs of these five gates are commoned together and taken to output 8 . When both inputs of a gate receive a ' 1 ' the output of the gate becomes ' 0 ' thus operating the two optoisolators and channel indicator l.e.d.
(b) Five exclusive OR gates (IC/11 and 12). The other inputs of these two input gates are commoned and taken to button 6 which when operated will place a ' 1 ' on the commoned inputs. The exclusive OR gates will then invert any signal arriving at the other inputs. The output of each gate is fed to two 2 input NAND gates (IC/14, 15, and 16). The spare inputs of each pair are commoned up to their counterparts on the other four channels providing two commoned lines which then connect to outputs 6 and 7 on the EPROM. The outputs of the NAND gates are wired to the opto-isolators in pairs, using blocking diodes, the second set of 5 being wired in reverse order.

NEXT MONTH: Output stage, power supply, phase control, construction and testing.

PE has taken a pride in bringing readers some excellent offers over the months. Offers arranged to enable the purchase of technical products at exceptional prices. Back in April we arranged a special offer on Videotone speakers. That offer was so successful that Videotone have again come up with exceptional prices, this time on in-car-
entertainment products, just for PE readers.
We believe these products represent incredible value for money, and that this is one of the best offers we have ever been able to arrange. The equipment and speakers on offer, shown and described here, are all covered by a full one year guarantee and money back facility if you are not satisfied.

$A M 540-1605 \mathrm{kHz}, 20 \mu \mathrm{~V}$ sensitivity (at $20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$), 455 kHz i.f. $F M 88-108 \mathrm{MHz}, 5 \mu \mathrm{~V}$ sensitivity (at $30 \mathrm{db} \mathrm{S} / \mathrm{N}$), 10.7 MHz i.f., antenna impedance 75Ω unbalanced, l.e.d. stereo beacon, AM/FM/FM multiplex switch.
TAPE PLAYER Autoreversing, 4 track 2 channel stereo, wow and flutter $<0.3 \%$ (WRMS), signal to noise $>-40 \mathrm{~dB}$, crosstalk $>-40 \mathrm{~dB}$, l.e.d. indication of tape direction, manual tape reverse button, fast forward and rewind.
GENERAL Output 7W per channel, frequency response 80 Hz 10 kHz , output impedance $4-8 \Omega$, supply voltage $12 \mathrm{~V}(11-16 \mathrm{~V}$ d.c.) negative earth only, tone, balance, volume and tuning controls, range switch, scale illumination, size $180 \times 44 \times 148 \mathrm{~mm}$ deep, weight 1.9 kg , supplied with fixings for in-dash mounting, in line fuse holder and fuse and instructions for mounting, wiring and operating the unit.

Autostop, 4 track 2 channel stereo, wow and flutter $<0.25 \%$ (AC200), $<0.3 \%$ (AC100) WRMS, frequency response 50 Hz 12 kHz , signal to noise $<-45 \mathrm{~dB}$, fast forward time $<180 \mathrm{sec}$. for C60 cassette, output impedance $4-8 \Omega$, supply voltage 12 V (1116 V d.c.) negative earth only, size $110 \times 50 \times 170 \mathrm{~mm}$ deep (AC100), $110 \times 55 \times 170 \mathrm{~mm}$ deep (AC200), loudness +7 dB (AC200 only), supplied with fixing brackets, connecting plug, wire, in line fuse holder and fuse and instructions for mounting, wiring and operating, including circuit diagram.

To: Videotone Ltd. (PE Offer), 98 Crofton Park Road, Crofton Park, London SE4. Tel: 01-690 8511/2.

A constant current generator in its simplest form is shown in Fig. 3. The base voltage is defined by the Zener diode, the baseemitter volt-drop is fairly constant for a silicon device at 0.6 V , so a given value for the emitter current (Re) is set and constant, providing that the volt-drop across the load does not exceed a sensible value. For Fig. 3 values, $\mathrm{Vb}=2 \mathrm{~V}, \mathrm{Ve}=1.4 \mathrm{~V}$ and if the emitter current is required to be 10 mA then $\mathrm{Re}=1.4 \mathrm{~V} / 10 \mathrm{~mA}=$

Fig. 3. A basic constant current generator circuit.
140』. There are a number of assumptions made here and in the absence of standard 140Ω resistors it would be preferable to have a constant but pre-set base voltage available. By using a resistor larger or smaller than the value as calculated the constant current will be proportionally decreased or increased (but do not forget the transistor ratings Ic max and Pc max).

LINEAR OHMMETER
 D.H.E.KING

THIS ohmmeter has been designed around the LM 3914 display driver i.c. and has six ranges with a 10 l.e.d. display.
A basic ohmmeter consists of a 1.5 V cell, a zero-setting resistor and a milliammeter as shown in Fig. 1. As R_{x} is varied so the current varies but not in proportion this means that the scale calibration is non-linear. However if a constant current is

E6, 6 2

Fig. 1. Basic series-type ohmmeter circuit.
fed through R as in Fig. 2 then the voltage developed across it would be directly proportional to the value of resistance and a voltmeter across R can be scaled in ohms instead of volts. The LM3914 i.c. has a voltmeter function with an l.e.d. readout and has the characteristic of only demanding a 50 nA input current. The i.c. can via pin 9 give "dot" or "bar" readings; a moving dot has been chosen for this application.

Fig. 2. The constant current generator enables the voltmeter to be scaled in ohms.

CIRCUIT DESCRIPTION

The LM3914 has a stabilised voltage of about 1.25 V available at pin 7 and a part of this voltage applied to pin 6 (with pin 4 connected to zero) defines the full-scale voltage sensitivity. In the circuit diagram (Fig. 4) two full-scale values are selected by means of S $1 \mathrm{~b}, 0.3 \mathrm{~V}$ and 0.9 V . The constant 1.25 V is also applied to TR1 base and thus R2 defines the collector current of TR1 as Ic $=(1 \cdot 25-0.6) / 47=14 \mathrm{~mA}$ approx. This is maintained constant despite any drop in battery voltage and the constant volt-drop across D15 provides a constant voltage drive to TR2

E0465
Fig. 4. Complate circuit diagram of the Ohmmeter.
base as well as giving an "on" indication. When the voltage drops to 3 V the brilliance of D15 reduces considerably and informs that battery replacement is necessary. TR2 is the second constant current generator, having currents of $30,3,0.3 \mathrm{~mA}$ selected by R2, R3, R4; with these standard values fitted, a presetting of TR 2 base voltage is available by use of VR 1 since the p.d. across D15 is not accurately known, being between about 1.6 V and 2.5 V depending upon the size, manufacturer and colour of the l.e.d. Using a basic 68Ω for R 2 it is assumed that TR2 base voltage is set to about 2.6 V below the positive rail, i.e. $\mathrm{IC} 2=(2 \cdot 6-0 \cdot 6) / 68=30 \mathrm{~mA}$.

With 30 mA flowing through 1 to 10 ohm resistor a p.d. is developed and indicated on the 0 to 0.3 V scale in ten equal 1Ω steps. By changing the range of the voltmeter circuit to 0.9 V (short-circuiting R6 via Slb) the same 30 mA through 0 to 30Ω is indicated in ten steps of 3Ω each. If "Rx" in Fig. 4 were opencircuit then D1 and D2 allow the current to flow and drive D14 indicating a full- or over-scale. If inductors are tested and op posite polarity back-e.m.f.s generated, D3 takes over from D1-2 in the other direction and limits any reverse voltage to 0.6 V .

RANGE VARIATIONS

Variations to the circuit design are quite simple; six ranges are not essential, S1 may be omitted and a single emitter resistor fit ted for TR2. Six ranges in a $1: 10$ ratio might be considered, allowing for measurements from 1Ω up to $1 \mathrm{M} \Omega$; attention should then be paid to the values of resistors since the high range constant current of $0.3 \mu \mathrm{~A}$ is getting near to circuit leakage values! A "low" range of 0 to 1Ω would need a battery to supply the constant 300 mA (HP7s are quite suitable for this) but TR2 would need to be uprated to a BD132, the collector power dissipation of TR2 would be some 1.5 W . It is not really feasible to consider a 9 V battery supply since the anodes of D5

COMPONENTS

to D14 are ideally fed from no greater than 5 V and a more complex voltage regulator would be needed. The brightness of the l.e.d.s may be varied by means of R7, at present about 20 mA flows through a selected l.e.d.; a value of $1 \mathrm{k} \Omega$ reduces the current to about 10 mA while a value of 390Ω increases the current to nearer 30 mA . (In fact R7 has a similar function for IC1 as has R3 for TR1 or R4 for TR2 in defining the value of the constant current for the illuminated l.e.d.s.)

The p.c.b. design for the ohmmeter is shown in Fig. 5 with the component layout shown in Fig. 6. The switch S 2 can be replaced by an on-off slider or toggle type rather than with a spring-loaded type. The suggested layout and panel markings

Fig. 5. Design for the Ohmmeter p.c.b.

Fig. 6. Component layout and wiring.
allow for the unit to be held and switched on by the left hand whilst using the probes with the right hand, all l.e.d.s and markings being visible at the same time.

SETTING UP

Only one range of the instrument need to be calibrated using either a milliammeter or an accurate resistor. Set S1 as shown in Fig. 4 and vary VR1 to pass $30 \pm 1 \mathrm{~mA}$ via a milliammeter connected across the test terminals. Or, connect a known 5Ω resistance (two 10Ω in parallel) across the test terminals and adjust VR1 to be in mid position between just lighting D9 and D11, i.e. indicating "centrally" on D10. The resulting settings will hold true for all other ranges to within the accuracy of the instrument, i.e. $\pm \frac{1}{2}$ a step, dependent upon the range.

Using the $30 / 300 / 3000$ ranges the known 0.9 V full-scale sensitivity allows for identification of diodes: a full or over-scale indication results for reverse-polarity tests (i.e. high resistance) while a 0.6 V forward volt-drop indicates a silicon device and about 0.1 to 0.2 V clearly suggests a germanium device. The battery voltage should be above 4 V ; the LM3914 will operate with down to 3 V but the 4 V limit is due to the minimum requirements of 0.9 V across " Rx " plus 2 V across R 4 to R 5 plus 1 V needed for TR2 Vce operation.

Systems Engineer, British Aerospace Dynamics Group, Bristol.

THE "Energy Debate" is now, after the growing publicity of recent years, a subject of which we are all aware. The crux of the energy problem is that the earth's resource of fossil fuels is being depleted at an ever increasing rate as a result of existing international energy policies. The appreciation of this problem has led to an evaluation of hitherto unexplored energy routes, many utilising the inexhaustible (as far as concerns us on this planet) supply of energy from the sun.

One such route, which has been under active consideration principally in the U.S., is via the solar power satellite (SPS). This system collects solar radiant energy. $36,000 \mathrm{~km}$ above the surface of the earth (in a geostationary orbit (GEO)), converts this energy to a form suitable for transmission to a ground receiving site where it is coupled into an existing electrical grid network.

Below, the energy situation particular to the UK is outlined. This information is presented so that the usefulness to the UK, of alternative methods of electricity generation, may be identified. The SPS system itself is subsequently described. Finally, the usefulness and applicability to UK of such a system is defined.

UK ENERGY CONSUMPTION

Figures provided by the department of energy for primary energy consumption in the UK for last year (1979) indicate that
an equivalent of 354 million tons of coal (mice) were used. Of this. approximately 23 per cent was consumed in the generation of electricity. Table 1 indicates the detailed breakdown. It should be noted that 1 mtce is equivalent to the energy derived from 0.6 million tons of oil or would be consumed in the generation of 20 $\times 10^{9} \mathrm{~kW}$ hours of electricity; it is also equivalent to 1 billion (10^{9}) therms.

Table 1. Primary UK Energy Consumption (1979)

Petroleum	$34 \cdot 8 \%$
Gas	$27 \cdot 4 \%$
Electricity	$22 \cdot 6 \%$
Solid Fuel	$15 \cdot 2 \%$
Total	354 mtce

SPS generates electrical power only and thus has the potential for altering our present fuel dependance in this area.

Table 2 indicates the fuel usage for electrical energy generation. It is evident that we are heavily dependant upon coal and oil, with only 1.5 per cent of our electrical power generated from any non-depletable source; in the UK this is hydro-electricity. Considering the information of Table 2 with that of Table 1, one can derive information relating to our dependance on different

Table 2. Power Station Fuelling

Coal	72.9%
Oil	14.9%
Nuclear	10.2%
Hydro	1.5%
Gas	0.5%
	$280 \times 10^{9} \mathrm{~kW} \mathrm{hr}$.

fuels for our overall energy requirements. This is shown in Table 3. This indicates that our dependance on fossil fuels is in excess of 95 per cent of our total energy requirement. One method of reducing this dependance is to alter the ways in which we generate electricity. Adoption of such a policy would have the potential of reducing our fossil fuel dependance by 20 per cent. This is obviously a significant reduction, however, on its own, it does not solve the energy crisis. This fact must be remembered for any energy system which, fundamentally, only generates electrical energy.

Table 3. UK Energy Dependance

Petroleum	39.3%
Coal	36.4%
Gas	19.7%
Nuclear	3.5%
Hydro	0.5%
Other	0.6%

This energy crisis is derived from the world's usage of fuels which are not being replaced. In order to establish the time scale for exhaustion of these fuels it is essential to gain some knowledge of present estimated fuel reserves, present rate of usage and projections for future usage.
The only one of these figures which is known to any accuracy is the present rate of usage. Future projections are highly dependant upon overall world growth rates and the extent to which the third world participates in industrial expansion. Estimates for the fuel reserves, both for the world and the UK, are given in Table 4. The reserves are shown in terms of their energy equivalent relative to coal.

Table 4. Depletable Fuel Reserves Estimates

Fuel	World $($ mtce $)$	UK (mtce) $)$
Solid fuel	10^{6}	5×10^{4}
Oil	3×10^{5}	6×10^{3}
Gas	2×10^{5}	2×10^{3}
Oil Shales	4×10^{5}	$8.3 \times 10^{2}-3.3 \times 10^{3}$
Uranium	4 Mteu	4×10^{4}
		(Assuming breeders)

This table shows that the UK has considerable resources of coal. These deposits represent 5 per cent of the estimated world reserve. In Britain this is the only significant energy reserve. The world figure indicated for uranium is given in terms of tons of uranium, and is the estimate for economic recovery of Uranium Oxide. The economic extraction cost is estimated to be $£ 25 / \mathrm{lb}$, which is just over twice the present market price. Highly speculative estimates based on geological interferences suggest about three times this level, but the cost of recovery could make such reserves unattainable.
The reserve of uranium indicated for the UK, $4 \times 10^{4} \mathrm{mtce}$, is the amount of energy which could be derived from the stock-pile of suitable material held in establishments such as Windscale, if fast breeder reactors are commissioned. It must be emphasised that breeders do not produce a limitless supply of energy, they
do, however, use fuel some 50 to 100 times more efficiently than the present generation of thermal reactors such as the Pressure Water, Magnox and Advance Gas Cooled reactors.

DEPLETION RATES

Consideration of energy growth rates in isolation from socioeconomic and socio-political factors can not, with any great accuracy, indicate when our depletable fuel reserves will be exhausted. There is most certainly a relationship between gross national product and energy demand, however, the difficulty of economic forecasting alone is evidenced by the plethora of contradictory projections provided by various independent bodies. Thus, whilst acknowledging the limitations of such an analysis, Table 5 provides details for world depletion of fossil fuels for varying energy growth rates. It should be noted that for the years 78/79 the UK total energy demand increased by 4.2 per cent, however, the usage of coal and gas each increased by 7 per cent. It is clear that as certain fuels become exhausted more rapidly than others, the strain on the remaining fuels will become more severe.

Considering the total world fossil fuel usage at present, and if one assumes a 4 per cent per annum growth rate in usage, then all fossil fuel reserves will be exhausted in less than 50 years. This is clearly very worrying.

Table 5. Timescales for Depletion Fossil Fuels

Growth (Annual)	Current Total Reserves (years)	Solid Fuel (years)	Oil (years)	Gas (years)
0%	139	379	82	155
2%	67	108	49	72
4%	48	71	37	51

The depletion rate of fuel used in nuclear reactors is more difficult to identify, due to the varying technologies employed for electrical power generation by this means. If reactors of the fast breeder type are never employed on a commercial scale, then the reasonably assured reserve of 4 million tons, assuming a growth rate in demand of only 2 per cent, will be exhausted in less than 30 years according to figures published by the Energy Technology Support Unit (ETSU). In fact the average increase in the usage of nuclear fuel over the last five years was twice this in the UK.

If one considers the world growth rate then the situation is considerably more perplexing; for the period 76/77 a growth rate of nearly 18 per cent occurred. One way to reduce the demand for uranium is to introduce breeder reactors. These reactors can effectively utilise the most abundant isotopes of uranium, namely U238, rather than only U235 used in the present generation of nuclear reactors. However, breeder reactors rely, in the first instance, upon plutonium generated by thermal reactors before they can become independent of the U235 supply. Work published by ETSU indicates that even if fast reactors are introduced on a large scale by the year 2010, requiring orders for them to be placed by the year 2000, then the economically accessible Uranium will already have been exhausted. However, the total requirement for uranium over the next 100 years should be kept below 8 million tons, which although not being economic to extract, probably does exist.
In summary, there will be (unless world demand for energy falls dramatically) serious shortfalls in energy availability by the turn of the century. Fig. 1 indicates how this gap will continue to grow in the future.
This shortfall is entirely resultant from our almost total dependance on fossil fuels. Fossil fuels are no more than stored

Fig. 1. The growing energy gap assuming a low (2\%) growth in energy demand.
solar energy, the process of accumulation, however, takes millions of years. However, the solar radiant energy incident upon our planetary atmosphere is occurring at a continuous rate in excess of $10^{14} \mathrm{~kW}$. At this rate the accumulated solar input to the planet in just four days exceeds the energy content of the fossil fuel reserves. The planetary energy balance (Fig. 2) indicates how this input is used by the planet.

One of the most notable features of this balance is that 30 per cent of the energy is reflected by the atmosphere, and thus positioning of energy collection systems above the atmosphere shows an immediate advantage. Two other benefits are also derived from space operation, namely, independence of weather conditions and, assuming a suitable orbit such as geostationary orbit, a much higher potential duty cycle with the energy collection system being in sunlight for more than 99% of the year. Clearly, there are associated disadvantages of space operation, the most significant being the complexity of the space operations required, and also the expense of material transportation to space which must be taken into the overall cost of the energy system.

SPS SYSTEM

An outline of the present SPS system concept is shown in Fig. 3. This system has been derived in the US from two parallel studies over the last three years funded by NASA and the US Department of Energy to the tune of $£ 10$ million. These studies were performed principally by Rockwell International and Boeing Aerospace.

The main elements of the satellite system are the photovoltaic solar cells and the microwave antenna system. Both of these are mounted on a carbon fibre composite structure. The total mass

Fig. 2. The planetary energy balance.

of the system lies between 30 and 50 million Kg . Clearly, a system on this scale cannot be launched in a single unit as conventional satellites are at present, indeed the implementation of SPS requires the development of a new fleet of fully re-usable space transport vehicles for the movement of both cargo and personnel to GEO for the fabrication in space of the satellite. The development of these vehicles is essential if energy derived in this way is to be competitively priced relative to other, albeit depletable, energy sources.

At present, launch costs for material are around $£ 800 / \mathrm{kg}$; with the advent of shuttle, cost should drop to $£ 200 / \mathrm{kg}$. The SPS transportation system should reduce this cost to less than $£ 25 / \mathrm{kg}$. To achieve these costs SPS requires four types of vehicle, each for a specialised task. Two of these (Fig. 4) are required for launch activities from earth to a low earth orbit (around 500 km) staging base (Fig. 5). One is for cargo, with a payload of 424 tonnes (Saturn V, used in the manned lunar Appollo missions, had a payload capability of one-quarter of this); the other, an uprated version of shuttle, has the ability to carry 75 passengers.

The other two vehicles are used for orbital transfer to GEO. The cargo vehicle is electrically powered and carries some 4,000 tonnes. taking 180 days for the round trip. Clearly, passenger transfer must be in a much shorter period than this and thus a chemically propelled vehicle is proposed, taking less than a day for a one way trip; 160 passengers may be transferred in a single flight.

Cursory examination of these vehicles seems to suggest that great strides in technology advancement will be required to realise these vehicles. However, one must remember that the original versions of shuttle were to be fully reusable (an essential for the SPS launch vehicles). The only reason for shuttle not now being fully reusable was the limited funding available for the shuttle development programme. In addition, large sums have been invested by NASA into electric propulsion. Thus much of the fundamental development work that would be required for the cargo orbital transfer vehicle, has already been performed. Clearly, the amount of work still to be performed in advancement of vehicle technology must not be underestimated, indeed the cost of development is estimated to be 40 per cent of the overall SPS cost.

THE SATELLITE

Returning to the satellite itself, this consists of some 10,000 million individual solar cells. The voltage generated across each cell is less than half a volt, clearly much too low to be of practical use for power raising, and therefore the cells must be connected in so-called "strings" of cells in a series/parallel arrangement. This arrangement is the standard method used on solar arrays for satellites, however, the string length is totally different. For satellites such as UK VI, launched last year, the voltage required dictated a string length of approximately a quarter of a meter, however, for SPS the string length is in excess of 5 km ! These strings, generating some 2000 amps at 40 kV , feed into the main 8 m wide aluminium conductors running the length of the satellite. These conductors run to the end of the satellite where the microwave antenna is situated.

The antenna is mounted on the solar array structure by means of a rotary joint. This joint accommodates the diurnal variation in position, relative to the satellite, of the sun and earth, and thus the joint rotates once in 24 hours.

The antenna is 1 km in diameter and consists of 100 thousand radiating waveguide elements. R.F. power is generated from the d.c. supplied by the solar array, by the use of klystrons. The relative phasing of these klystrons is controlled so that the beam may be focused on the ground receiving site. The signal for this phase control is generated at the receiving site; removal of this

Fig. 3. The present U.S. Solar Power Satellite Concept

Fig. 4. Vehicles required for SPS launch activities: (a) The heavy lift launch vehicle; (b) The personnel launch vehicle; (c) The present shuttle system (for scale).

signal automatically defocuses the beam to a safe microwave radiation level over a large area. The frequency for the r.f. power link $(2.45 \mathrm{GHz})$ was chosen so that there would be minimal dependance upon atmospheric conditions, and also to minimize interference effects on the already crowded radio bands. The peak microwave power density is $23 \mathrm{~mW} / \mathrm{cm}^{2}$ so that ionospheric heating effects should not be significant.

GROUND SITE

The ground site consists of approximately 10^{10} dipoles with associated diode rectifiers together with a power distribution system feeding to a fairly conventional power grid interface. The power input to the grid network would be 5 GW -or nearly four times the designed output from the Dungeness B AGR still under construction. So that this power might be received in the UK, the antenna required would be an ellipse some 20 km in a North-South direction and 10 km in an East-West direction.

The size of the sites increases with distance from the equator due to projection effects of the beam onto the earth. Clearly, the availability of sites of this size on the UK land mass is virtually non-existent and thus, in the past, off-shore siting has been proposed. More recently, study with the UK has shown the feasibility of splitting the microwave beam into several components. This has the advantage of smaller individual receiving sites thus making their placement on land, or possibly in river estuaries, feasible, with also the possibility of delivering power to where the power is actually required and thus reducing transmission costs.
The overall end-to-end efficiency chain for SPS does not, at first sight, appear impressive. In order to obtain the input of 5 GW to the grid, the satellite system intercepts a total of 71 GW , an overall efficient of 7 per cent. The best thermal efficiencies for conversion of fossil fuels to electricity are some five times this value. However, if one considers the energy payback ratio, namely the ratio between the total electrical energy delivered over the lifetime of a power plant to the primary, non-renewable energy required to construct and operate the power plant, then SPS comes to the fore.

Table 6 shows the energy ratio comparison between coal fired power plants, nuclear power plants and SPS, each taking into account operational energy requirements. The figures shown in the table were derived in the early part of the US SPS study. The range shown for SPS is as a result of the uncertainties associated with the methods used for component manufacture. More recent estimates show SPS to be in a more favourable position still, with energy ratios approaching the value of 20 . The important point to realise from the table is that both the fossil fuel power station and the nuclear fission power station generate less electrical energy during their lifetime than the energy required to construct and operate them.

Table 6. Energy Ratios

Power plant type	Energy Ratio
Coal fired	0.31
Nuclear (Light Water)	0.24
SPS	$0.5-9.0$

COST

The cost estimates available for SPS for the first operational system, together with all the research development and test programmes, are close to $£ 43$ billion. This investment, required over a twenty year period in order to have an operational system by the turn of the century, would be less per year than the combined UK fission programme and the U.S. breeder programme. Subsequent systems, built at the rate of two per year, would cost around $£ 1,250 / \mathrm{kW}$, comparable to the AGR costs (including fuel) of $£ 1,135 / \mathrm{kW}$.

It is no longer possible to develop an energy system and combat the environmental problems subsequent to power generation. Within the US programme, considerable effort has been expended in evaluation of environmental issues. At the recent review of the SPS activities in the US (April 1980), 44 of the papers presented considered various environmental aspects. This represented a quarter of the overall presentation and covered topics such as potential microwave health hazard, ionospheric and atmospheric disturbance due to both microwave radiation and transportation activities, and the effects of possible interference on other r.f. users. Clearly, SPS will not go ahead without a fundamental understanding and solution of potential environmental problem areas. As yet no environmental hazards, nor system "show stoppers" have been identified.

So, how could SPS fit into a UK energy policy? As outlined above the principal problem for the UK is the relatively large areas of land (or sea) required for suitable ground site location. By a combination of both multiple beams and off-shore sites it appears feasible for the UK to receive SPS generated power. Another area which must be considered is how much SPS power could be used in the UK. This is driven by the combination of how many ground sites can be found and how many satellites can be suitably located in GEO.
Assuming suitable off-shore sites can be found (clearly UK expertise in off-shore oil platforms is useful here), then one only has to consider what space is available in GEO. An analysis along these lines indicates that a reasonably conservative estimate of some 30 GW could be obtained. The total installed electrical power generation in the UK is nominally 67 GW , however, the average power supplied during 1979 was only 32GW.

Clearly, SPS has considerable potential ability to offset the coming UK electrical energy crisis in the next century. It must be emphasised, however, that the solution to the electrical energy problem, proposed here to be aided by SPS, and by others using nuclear breeder reactors, does not solve the energy problem as a whole. Less then a quarter of our primary energy usage is electrical; we must still solve the problem associated with the remaining three quarters.

Readout...

The SIS and Velikovsky

Sir-I have followed the controversy in your columns regarding the ideas of Immanuel Velikovsky with interest as this Society has been investigating his work for some years in the columns of its Review where papers, both pro and con, have appeared by astronomers, physicists, archaeologists and other scholars.

I note that you have decided to terminate the correspondence on the topic and would agree that your letters column does not really have the space to deal with these complex matters in any detail, but I also note that Mr. Hyde is to be given space to reply to the letters and in the light of his strong views on the matter he is quite likely to raise new aspects of the controversy. In view of this, and in fairness to your readers who may be interested, perhaps you would consider adding some sort of editorial note to Mr. Hyde's comments drawing attention to the existence of the SIS as a forum for the Velikovsky debate? I would be happy to give further information on any aspect of the debate on catastrophism to any of your readers who contacts me at the following address.

Brian Moore A.L.A.
Society for Interdisciplinary Studies, Central Libary,
Clarence Road,
Hartlepool,
Cleveland.

THE COMPUKIT UK 101 is one of the few personal computers with 8 K BASIC and full keyboard that does not have an input/output port for interfacing external devices. In this series we propose a remedy for this in the shape of an Address Decoding and Port Module which plugs directly into the Compukit's expansion socket. It is also Superboard II compatible.

The Module has been designed with flexibility in mind, and as well as housing an MC6821 Parallel Interface Adaptor (PIA), which gives two 8-bit input/output ports, the board also provides 7 uncommitted address-decoded read, and 14 decoded write lines, each of which may be used with interfaces of the reader's choice, and a pair of specially decoded lines that will directly interface an AY-3-8910 or 8912 PSG. In addition there is on-board address decoding for a further 6 blocks of 16 memory locations; again these are completely uncommitted, and each could be used to enable devices with up to 16 independent registers, such as the 6522 Versatile Interface Adaptor, details of which will be given later in the series. The board also houses an independent 5 volt regulated power supply which may be used to run a limited number of external circuits.

During the series the principles of interfacing the Compukit using various devices will be developed, and circuits will be given for a range of interfaces that may be plugged directly into the Decoding Module. Amongst these will be featured interfaces for joysticks, l.d.r. light sensors, 7segment l.e.d. displays, audio generators, power controllers, and D / A and A / D converters. Software support for each will also be discussed.

The first part of the series is devoted to the Decoding Module itself.

DECODING PRINCIPLES

The 16 address lines of the Compukit can be confugured in 2^{16} or 65,536 different ways, or in other words it can address 65,536 different memory locations. To pick out just one of these, gating circuitry must be used. The circuit in Fig. 1.1, employing a single 16 -input AND gate, would give a high output if, and only if, each of the address lines was simultaneously high. The Compukit's address lines are active-high, so that the circuit could be used to provide a Chip Select signal when the address FFFF hex (or 65,536) was put on the address bus by the Compukit's CPU. Different addresses could be decoded by simply placing inverters between chosen address lines and the gate inputs. Putting an inverter in lines A0 and A4, for example, would decode for the address FFEE hex $(65,519$ decimal). In Table 1.1 we give a listing of a hex to decimal/decimal to hex converter that may prove useful for calculating addresses on the Compukit.

The ENABLE line of Fig. 1.1 could be used to trigger a data latch (such as the 7475) to latch data appearing instantaneously on the CPU's data bus for use by some external device. In practice, in order to ensure that the ENABLE pulse comes at exactly the right instant, it is desirable to make it conditional on Compukit's $\emptyset 2$ clock line going high. Fig. 1.2 shows a circuit using a 17 -input AND gate that would decode for the address EF18 hex (61028 decimal). This is a

Fig. 1.1. Above. 16 input AND gate

quite arbitrary address, and clearly any of the Compukit's 65,536 addresses could be decoded in this way; although of course since 17 -input AND gates are not readily available, one would be forced to use a combination of gates to achieve the same effect in a practical circuit.

There are two further factors which must be considered in decoding for an interface, both of which relate to the R/W (Read/Write) signal. The circuit of Fig. 1.2 will give an output at any time that the address 61208 appears on the address bus. Thus, executing POKE 61208, X or $Y=$ PEEK (61208), would both cause an output from the decoding circuit. But in most applications it is useful to distinguish between read and write operations. If, for example, we are using the signal to trigger a set of latches to give a data output, we will only want this to occur in response to a POKE command, whereas if it were used to turn on a tristate buffer for the input of data to the CPU, we would want this to occur exclusively in response to a PEEK statement.

```
90 REM HEX-DEC-HEX CONVERTER
```

90 REM HEX-DEC-HEX CONVERTER
9 5 REM PE UK101 INTERFACING PROG NO 1
9 5 REM PE UK101 INTERFACING PROG NO 1
100 FORA=1TO16:PRINT:NEXT
100 FORA=1TO16:PRINT:NEXT
110 PRINT,"HEX-DEC-HEX CONVERTER"
110 PRINT,"HEX-DEC-HEX CONVERTER"
115 PRINT:PRINT:PRINT:PRINT
115 PRINT:PRINT:PRINT:PRINT
120 PRINT" IS DATA HEX OR DECIMAL ?"
120 PRINT" IS DATA HEX OR DECIMAL ?"
125 INPUT" ENTER H OR D";YS
125 INPUT" ENTER H OR D";YS
130 IFY$="D"THENGOSUB550:GOTO165
130 IFY$="D"THENGOSUB550:GOTO165
140 TFY$="H"THENGOSUB550:GOTO350
140 TFY$="H"THENGOSUB550:GOTO350
150 PRINT:PRINT" NOT RECOGNISED: ENTER AGAIN"
150 PRINT:PRINT" NOT RECOGNISED: ENTER AGAIN"
160 GOTO120
160 GOTO120
162 REM
162 REM
163 REM DEC TO HEX ROUTINE
163 REM DEC TO HEX ROUTINE
164 REM
164 REM
165 PRINT:PRINT:PRINT
165 PRINT:PRINT:PRINT
166 INPUT" DECIMAL DATA PLEASE";N
166 INPUT" DECIMAL DATA PLEASE";N
168 IFN=0THEN350
168 IFN=0THEN350
170 A=INT (N/4096)
170 A=INT (N/4096)
180 Al=A*4096
180 Al=A*4096
190 B=INT((N-A1)/256)
190 B=INT((N-A1)/256)
200 Bl=B*256
200 Bl=B*256
210 C=INT((N-Al-Bl)/16)
210 C=INT((N-Al-Bl)/16)
220 Cl=C*16
220 Cl=C*16
230 D=N-Al-Bl-Cl
230 D=N-Al-Bl-Cl
240 X$="0123456789ABCDEF"
240 X$="0123456789ABCDEF"
250 PRINT,"HEX EQUIVALENT= ";
250 PRINT,"HEX EQUIVALENT= ";
260 PRINTMID$(X$,A+1,1);
260 PRINTMID$(X$,A+1,1);
270 PRINTMID$(X$,B+1,1);
270 PRINTMID$(X$,B+1,1);
280 PRINTMID$(X$,C+1,1);
280 PRINTMID$(X$,C+1,1);
290 PRINTMID$(XS,D+1,1)
290 PRINTMID$(XS,D+1,1)
300 GOTO165
300 GOTO165
350 REM
350 REM
360 REM HEX TO DEC ROUTINE
360 REM HEX TO DEC ROUTINE
370 REM
370 REM
390 PRINT:PRINT:PRINT
390 PRINT:PRINT:PRINT
400 INPUT" HEX DATA PLEASE";H\$
400 INPUT" HEX DATA PLEASE";H\$
402 IFH$="0"THEN165
402 IFH$="0"THEN165
403 IFLEN(H$)<>4THENPRINT:PRINT" 4 DIGIT FORMAT ONLY":GOTO400
403 IFLEN(H$)<>4THENPRINT:PRINT" 4 DIGIT FORMAT ONLY":GOTO400
4 0 5 ~ N = 0
4 0 5 ~ N = 0
410 X$="0123456789ABCDEF"
410 X$="0123456789ABCDEF"
420 FORJ=1TO4
420 FORJ=1TO4
430 FORI=1TO16
430 FORI=1TO16
440 IFMID$(H$,J,1)=MID$(X$,I,1)THEN460
440 IFMID$(H$,J,1)=MID$(X$,I,1)THEN460
4 5 0 ~ N E X T I ~
4 5 0 ~ N E X T I ~
455 PRINT:PRINT" CHARACTER NOT IDENTIFIED - RE DO"
455 PRINT:PRINT" CHARACTER NOT IDENTIFIED - RE DO"
456 GOTO390
456 GOTO390
460 N=N+(I-1)*16T(4-J)
460 N=N+(I-1)*16T(4-J)
470 NEXTJ
470 NEXTJ
480 PRINT,"DECIMAL EQUIVALENT= ";N
480 PRINT,"DECIMAL EQUIVALENT= ";N
4 9 0 GOTO390
4 9 0 GOTO390
500 END
500 END
50 PRINT:PRINT:PRINT" NOTE THAT ENTERING A ZERO WHEN"
50 PRINT:PRINT:PRINT" NOTE THAT ENTERING A ZERO WHEN"
560 PRINT" DATA IS REQUESTED REVERSES FUNCTION"'
560 PRINT" DATA IS REQUESTED REVERSES FUNCTION"'
570 RETURN

```
570 RETURN
```

Table 1.1 Hex/Dec. and \mathbf{D} / \mathbf{H} converter program

Table 1.2. Compukit's Memory Map showing gaps

Address	
$0000-02$ FF	Scratchpad RAM for operating system
O300	Start of Basic Workspace
1FFF	End of On-board RAM
9FFF	End of Possible Ram expansion
A000-BFFF	Basic Interpreter
D000-D3FF	Video RAM
DFOD	Polled keyboard
FO00, F001	ACIA serial port
F800-FFFF	Monitor ROM

Differentiation between the two can be achieved by using the R/W line at Compukit's expansion socket. This goes high during a Read Cycle, and low during a Write Cycle. The configuration in Fig. 1.3 would derive two separate Chip Select lines from the output of the circuit in Fig. 1.2, one for a Read to the address 61,208 , and one for a Write. As may be seen, even though the two resulting decoded lines share the same address in the Compukit's memory map, they could be used for entirely different purposes. The Write might be used to trigger latches driving a D/A converter, while the Read might
trigger tristate buffers to feed the CPU with the counting registers of an external clock, for example.

Finally, in our decoding circuitry we must include a means of controlling the DD or Data Direction line of the Compukit. This determines the direction in which data is allowed to pass through the two 8T28 data buffers on the Compukit's main board. Note, incidentally, that while these two i.c.s are essential in any use of the data bus at the expansion socket, they are not provided in the basic UK101 kit, and must be purchased separately. With the DD line high, data can pass from the CPU to the expansion socket, but not in the reverse direction. When it is low, on the other hand, the converse is true. With no external signal on this line, it is kept high by Compukit's on-board resistor network R9 R74. If we did not service the DD pin at the expansion socket, we could successfully write data to external devices with the circuit of Figs: 1.2 and 1.3, but even though the R line of Fig. 1.3 would go high when a $\operatorname{PEEK}(61208)$ was executed, no data from the tristate buffers, or whatever else was enabled, would actually get to the CPU data bus. This could be remedied by connecting point X in Fig. 1.3 directly to the DD pin of the expansion socket. This would bring DD low only when a Read instruction was carried out at the given address, and the associated interfaces could then be both written to, and read from, in a satisfactory manner.

THE DECODING MODULE

The Decoding Module requires a 128 byte address block, a requirement easily met within the Compukit's memory map. This is reproduced in table 1.2, and it may be seen that the Compukit possesses unused blocks at COOO-CFFF, D400-DEFF, DFO1-EFFF and F100-F7FF hex. For reasons of simplicity we have chosen to locate the module between EF80 and EFFF hex (61,312-61,439 decimal). This falls immediately below the serial port at FOOO hex. An address map of the major 8 blocks of the module is given in Table 1.3.

Table 1.3. Address Map of Module

Base Address of (Hex)	Block (Dec)	Block Number	Function
EF80	61312	BLO	Base address for 8 decoded lines
EF90	61328	BL1	Base address for PIA block
EFAO	61344	BL2	Free Block
EFBO	61360	BL3	Free Block
EFCO	61376	BL4	Free Block
EFDO	61392	BL5	Free Block
EFEO	61408	BL6	Free Block
EFFO	61424	BL7	Free Block

The board uses a combination of edge connectors and d.i.l. sockets for external connections, and the pin-outs of these are given in Tables 1.4-1.8. Edge connector SK1 carries the 40 leads from the Compukit's expansion socket, and the wiring between these should be kept as short as
possible. The 40-pin socket SK2 allows for further expansion of the Compukit, and has the same pin-out as Compukit's own expansion socket. The two 16-pin d.i.l. sockets SK3 and SK4 carry ports A and B of the PIA, respectively, together with associated control and power supply lines.

The decoded lines produced by the Decoding Module are taken out through the 24 -pin d.i.l. socket SK5, carrying six Write and two Read lines, and the 2×25 pin edge connector SK6 which carries the remainder. Both SK5 and 6 also

Table 1.4. Connections to edge connector SK1.

UPPER ROW			LOWER ROW	
SK 1 pin	Function	Connection to compukit exp. soc.	Function	Connection to compukit expansion
1	A2	12	GND	40
2	A1	13	GND	39
3	AO	14	GND	38
4	A3	15	GND	37
5	A4	16	n / c	-
6	A5	17	n / c	-
7	A6	18	R/W	32
8	1RO	1	02	31
9	$\overline{\mathrm{NM} 1}$	2	A15	27
10	DD	3	A14	26
11	DO	4	A13	25
12	D1	5	A12	24
13	D2	6	A11	23
14	D3	7	A10	22
15	Spare	11	A9	21
16	A8	20	GND	30
17	A7	19	GND	29
18	n / c	-	GND	28
19	n/c	-	D7	33
20	GND	8	D6	34
21	GND	9	D5	35
22	GND	10	D4	36

Table 1.6. SK3 and 4 of PIA.
$\left.\begin{array}{llrl}1 & \text { GND } & 16 & \text { ADO } \\ 2 & \text { CA1 } & 15 & \text { AD1 } \\ 3 & \text { CA2 } & 14 & \text { AD2 } \\ 4 \\ 5 \\ 6\end{array}\right\}$

SK4-PORT B of PIA is identical
carry Vcc and the data bus, and in addition SK 6 carries address lines AO-A3, $\$ 2, \overline{N M}, \overline{T R O}$ and $\overline{R E S E T}$ to allow full use of the six 16 -byte blocks.

Next month we will deal with the circuit operation of the Decode Module, showing the printed circuit board layout and component overlay. We shall also cover the operation of the PIA, and the construction and testing of the Decoding Module; and will look at the inputting of data to the COMPUKIT, both via the PIA, and sets of tristate buffers.

Table 1.7. Connections to SK5.

GND	1	24	W10
GND	2	23	D6
GND	3	22	D4
D7	4	21	D1
D5	5	20	D3
DO	6	19	W12
D2	7	18	W14
W11	8	17	GND
W13	9	16	GND
W15	10	15	GND
Vcc	11	14	R5
Vcc	12	13	R4

Table 1.8. Connections to SK6 edge connector.

upper	lower
(Component side)	
Vgg	RESET
02	W7
$\overline{\text { 1RO }}$	W8
BC1	R7
BD1R	RO
W1	R1
WO	R/W
W2	GND
W3	GND
W4	D7
W7	D6
W9	D5
A3	D4
A2	DO
A1	D1
AO	D2
GND	D3
GND	Vcc
GND	Vcc
BL4	GND
BL3	GND
R3	GND
R2	BL6
BL7	BL5
NM 1	BL2

Table 1.9. Address within Block 1.* Note that all but the three lines with an asterisk are uncommitted, and may be used with interfaces of the reader's choice, but that, as may be seen, a number of others have been earmarked for projects within the series.

Address	Write		Read
61327	W15	To SK5	-
61326	W14	for 4 digit	-
61325	W13	7 -segment	-
61324	W12	display	-
61323	W11	ToSK5	-
61322	W10	To SK5	
61321	W9	To SK6	-
61320	W8	D/A converter	- ${ }^{\text {P/ }}$ converter
61319	W7	A/D converter	R7 A/D converter
61318	W6*	Audio (data)	R6* Audio (data)
61317	W5*	Audio (address)	R5 to SK5
61316	W4		R4
61315	W3		R3
61314	W2	To SK6	R2
61313	W1	inverted	R1 inverted To SK6
61312	WO	inverted	RO inverted)

Table 1.10. Selection of Base Address of Decoding Module. "' 0 ' indicates inverter in use.

State of A11-Address hex Comments
13*
A13 A12 A11 of 128 byte
block
\(\left.\begin{array}{llll}1 \& 1 \& 1 \& FF80-FFFF

1 \& 1 \& 0 \& FE80-FEFF\end{array}\right\}\)| These two aiready |
| :--- |
| used by monitor. |

2 Herne Hill Rd, London SE24 OAU, England
Telephone 01-737 2383 Telex 919693
Cables \& Telegrams: LITZEN LONDON SE24
Please send me MPUroBreadBoard(s) at the special, limited period, introductory offer price of $£ 15.00$.
This price includes VAT \& PP, is applicable from Sept 11980 but please add 15% for Overseas Orders, make cheques/P.O. payable to BOSS Industrial Mouldings Ltd and allow 10 days for order processing and cheque clearance etc.
I enclose a cheque/P.O. to the value of $£$.
Name
Company
Address

First the EuroBreadBoard Now the EuroSolderBoard

Design on a EuroBreadBoard - Instal on a EuroSolderBoard

First the EuroBreadBoard

Will accept $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL IC's, Capacitors, Resistors, LED's, Transistors and components with up to .85 mm dia leads.
500 individual connections PLUS 4 integral Power Bus Strips along all edges for minimum inter-connection lengths.
All rows and columns numbered or lettered for exact location indexing (ideal for educational projects)
Long life, low resistance $(<10 \mathrm{~m}$ ohms) nickel silver contacts
$£ 6.20$ each or $£ 11.70$ for 2
Now the EuroSolderBoard
New 100 mm square, 1.6 mm thick printed circuit board with pretinned tracks identically laid out, numbered and lettered to EuroBreadBoard pattern.
Four 2.5 mm dia fixing holes.
$£ 2.00$ for set of three ESB's

And don't forget the EuroSolderSucker

Ideal for tidying up messy solder joints or freeing multi-pin IC's, this 195 mm long, all metal, high suction desoldering tool has replaceable Teflon tip and enables removal of molten solder from all sizes of pcb pads and track. Primed and released by thumb, it costs only E 7.25 including VAT \& PP Snip out and post to David George Sales,
Unit 7. Higgs Industrial Estate, 2 Herne Hill Road, London SE24 OAU David George Sales,
Unit 7, Higgs Ind. Est., 2 Herne Hill Rd., London SE24 0AU.
Please send me:-

	1 EuroBreadBoard	$@ £ 6.20$	\bigcirc	
or $\quad 2$ EuroBreadBoards	$@ £ 11.70$	\bigcirc	Please	
or	3 EuroSolderBoards	$@ £ 2.00$	\bigcirc	Tick
or	1 EuroSolderSucker	$@ £ 7.25$	\bigcirc	

All prices are applicable from Jan. 1st 1981 and include VAT and PP but add 15% for overseas orders.
Name
Company
Address.

Tel. No
Please make cheques/P.O. payable to David George Sales
and allow 10 days for cheque clearance and order processing

TIME FOR TMOS

The trouble with conventional power transistors is that they have a low current gain at high collector currents, and therefore you have to supply lots of base current via a driver stage. Internally connected Darlington devices help to reduce the problem by giving a three terminal device with a much higher gain, but frequency response and switching times leave a lot ot be desired. Although gradual improvements are being made all the time, the fundamental problems of the bipolar power transistor are not going to disappear overnight, and attention is now being focussed on the alternative, MOS, power transistor technologies

MOS devices offer very high input impedances and can switch large currents in a fraction of the time taken by their bipolar counterparts, and they are more stable at higher temperatures and easier to parallel into the bargain. They do have a special problem all of their own-they have higher on resistances than equivalent bipolar types-but this is often an acceptable price to pay for the other goodies. One confusing aspect of the power MOSFET scene is the proliferation of "new" technologies, each with subtly different characteristics. A glance through manufacturer's catalogues reveals that although VMOS is the most common variety, DMOS, HEXMOS, and other unnamed variations are also available.

The traditional bipolar power transistor manufacturers are not standing idly by in the face of all this competition, because although relatively few power applications are using MOS devices at the present time mainly because of higher cost, the chances are that up to half the bipolar market will fall to the MOSFET before long. Motorola for example, while still strongly backing their bipolar line, have conceded that MOS devices have an important future role to play by introducing a new series of MOS devices of their own. Because Motorola have entered the MOS power field as a "me too" venture, they have been able to choose very carefully between competing MOSFET technologies, and the result is a new name-TMOS.

TMOS is a variation on the vertical DMOS process, but no doubt Motorola have added some special tricks of their own. Initial TMOS transistors are n channel enhancement mode silicon gate devices, although p channel devices will follow. Six devices are now available with voltage ratings of up to 500 V at 4 A and current
ratings of up to 12 A at 100 V . The dice used resemble integrated circuits in that each chip consists of thousands of interconnected source regions, paralleled to minimise "on" resistance while preventing the formation of "hot spots"

The new family are available in T03 or TO220 packages with power ratings of 75 W at $25^{\circ} \mathrm{C}$. They are coded from MTM 560 onwards.

QUANTITY DISCOUNT?

If you need a lot of SCRs to hook your pet micro' up to lamps, solenoids or relays, you could use a row of TO5 devices with their associated gate resistors. You may even get a quantity discount on your SCR purchase!

A much neater way to handle the problem would be to plug in one or more UTN 2886Bs from Sprague. These new devices consist of an array of SCR devices on a single monolithic substrate, packaged in a 16 pin DIL package. The package actually houses eight SCR devices, but four of these are connected as two pairs for higher current applications, making six effective SCRs available at the pin outs. The anodes of all eight devices are connected together and to pins $4,5,12$ and 13 which also act as heat sink tabs. Each SCR (or SCR pair) has individual cathode and gate pins, and a resistive potential divider is provided internally for each gate. The current rating of each device is 800 mA continuous with a 2A peak capability for the switch on surge. At higher temperatures the rating for each device during simultaneous operation reduces to 250 mA , but if you need higher currents you can use the pairs, or even parallel several devices externally.

You may have noticed that full capability SCRs do not normally crop up inside integrated circuits. This is because the SCR power circuits need very different diffusions to those used for ordinary transistors. Sprague have side stepped this problem by making an integrated array consisting only of SCR devices and resistors.

I don't know how much the UTN 2886B costs, but \mid bet it's less than the price of eight TO5 SCRs and a dozen resistors, even with the quantity discount!

SPEAK AND SELL

As we all know, microprocessors are a great gift to mankind, destined to find a place in every corner of our day to day lives as our willing helpers and obedient ser-
vants. Unfortunately, other, less enlightened sections of the community who do not share our vision of the silicon future, seem to be resisting this benign revolution! These people, unable to use a simple ASCII keyboard, or understand simple direct VDU messages such as "WHAT?" and "ERROR 04 IN 340" are attempting to impede the great march forward by refusing, without proper justification, to buy appliances which use them.

Well, the bountiful micro' can accommodate even these deviants, and micro manufacturers eager to sell their chips by the shovelful, have the answer ready. In future, microprocessor systems will be able to talk to their masters in ordinary English-even Devonshire!
If you have seen the Texas Instruments' Speak and Spell learning aid for children, you will already be aware of the power of microprocessor speech output. (Don't look too closely at earlier models which encouraged kiddiwinks to spell "grey" as "gray", and other howlers-the new Oxford English version is now available). Behind this Texas toy is an ordinary four bit micro' and a speech synthesis chip set using a patented Texas technique called Pitch Excited Linear Predictive Coding. Until recently Texas have kept these chips, and their technology, all to themselves, but now to aid the revolution they have released the devices for use by other manufacturers, and have also produced complete circuit boards, using the chips, which can be plugged into a microprocessor system to give it the power of speech.

All you need to get your micro' talking is a TMS 5100 PELPC synthesiser, a TMS 6100 ROM to store the vocabulary of 150 words or more, and a few TTL interface circuits. Codes for twelve synthesis parameters are stored in the ROM and supplied in sequence to the synthesiser which employs a linear equation model of the human vocal tract and a prediction system to reduce the amount of data storage required. An on-chip 8 bit digital-to-analogue converter is used to change the computed digital speech samples into a synthetic speech signal ready for amplification and subsequent speaker drive.

The two devices use the well tried and low cost PMOS technology and come in 28 pin plastic packages. A standardvocabulary version of the ROM is available, but it is up to the micro' to string these words together to make useful sentences such as "WHAT?" or "ERROR 04 IN 340 !"

${ }^{\text {re }}$ MICROTUNE .. ENGINE TUNE-UP UNIT

 Part Two

 Part Two}

CONSTRUCTION

THE MICRO TUNE has been designed to be easily assembled, but it will be as well to employ the following procedure:

Circuitry is accommodated on three printed circuit boards which plug together, and assembly should commence with the small display board. There are a large number of solder pads on the top surface of the double-sided boards, which should all be soldered as assembly proceeds to ensure circuit continuity.

The a/d convertor circuitry is accommodated on the display board to form a self-contained 200 mV f.s.d. voltmeter with liquid crystal display. A double sided board is used and the upper and lower printed circuit track layouts are shown in Figs. 2.1 and 2.2, with the component layout shown in Fig. 2.3.

The display board is plugged at right-angles into the main board which contains the signal conditioning circuitry and function switches. Upper and lower p.c. track layouts are shown in Figs. 2.6 and 2.7 with the component layout in Fig. 2.8.

The range board is mounted above the main board on four pillars, and contains all the range setting resistors and switches. A 10-way ribbon cable connects the range board to the main board via plugs and sockets. The range board is single sided and the track layout and component layout are shown in Figs. 2.4 and 2.5 respectively.

DISPLAY BOARD

Two 10 -way p.c.b. mounting plugs with long pins are inserted from the front of the board and ultimately used to plug the display board at right angles to the edge of the main board. When soldering the plugs in place, care should be taken not to allow solder onto the pin surfaces. The two strips of 20 -way soldercon pins used for mounting the L.C.D should be fitted into the insulating nylon nests, and after soldering in place, the connecting bars may be broken away from each strip by gradual bending.

Two through-board pins are used on this board and should now be soldered in place. The six fixed resistors and one variable resistor should now be soldered into place, followed by IC1, IC3 and the seven capacitors.

When soldering is complete, carefully check for correct component positioning and ensure there are no short circuits. The liquid crystal display should be carefully removed from its packaging, and gently inserted into the soldercon sockets. Note that two white dots identify the left-hand side of the display. The display pins are very fragile and it will be found easiest if one row of pins is located first, but not pushed fully in. The second row should then be located in the sockets, and after checking the location of all pins, the display may be pushed fully in. Check that the display underside is not touching any components. If this is the case, the display should be gently raised. The display board should now be complete and ready for testing.

Fig. 2.1. Above. Display Board p.c.b. (copper side, actual size)
Fig. 2.2. Above Right. Display Board p.c.b. (component side)
Fig. 2.3. Right. Component layout of Display Board Fig. 2.4. Below. Range Board p.c.b.

RANGE BOARD

The range board is a single-sided p.c.b. which contains the range setting resistors and switches.

There are six wire links which should be located first, followed by the bank of five range switches. The switches should be pushed fully down onto the p.c.b. to ensure alignment with the front panel cut-outs. The six voltage attenuator resistors R13-R18 should now be positioned, followed by R36-R38 and R49.

The 10 -way vertical plug, P2, should be positioned at the rear of the board, together with the two battery positive leads. The board should now be soldered and checked carefully

MAIN BOARD

The double-sided main board carries the function switches and the signal conditioning circuitry for d.c. measurement, resistance, dwell and r.p.m. measurement, and ancillary display driving.

There are twenty-one through-board pins to be soldered in place, followed by the switch bank and fuse hoiders. Note that the switch bank should be pushed fully down onto the p.c.b.

The 10 -way plug (P2) should be mounted at the rear of the board, and the 15 -way right-angled socket (P1) at the front of the board to the far right of the row of mounting holes.

Devices IC4-IC7 should be positioned, followed by TR1TR2 and D1-D11. There are twenty-five fixed resistors, three variable resistors, three VDRs, one thermistor and ten capacitors which should be positioned, followed by the two battery negative leads.

After soldering all the upper and lower joints, the board should be carefully checked.

TESTING

Before securing the boards into the case they should be tested, and the calibration controls checked for ease of setting up.

The six insulated wire links LA-LF should be connected between range board and main board. Secure the three input terminals to the front panel and connect the three heavy duty input leads from the terminals to the range board. Connect the 10 -way ribbon cable assembly between Range Board and Main Board, insert 2A fuse and locate the Display Board into the socket on the Main Board.

Set the switches to Volts, 20V, d.c., and then connect PP7 battery BT1 to the battery leads. Current consumption should be typically 2 mA and the display should read 0.00 . The voltage measured between Input LO and battery positive should be $2.8 \mathrm{~V} \pm 0.4 \mathrm{~V}$.

Calibration may be carried out using reference sources, or by comparison with a known instrument. Alternatively, a calibration service is offered by Lascar Electronics Ltd.

All measurements made by the Micro Tune are dependant upon the setting of VR1 DC CAL which adjusts the sensitivity of the main analogue-to-digital converter. Calibration d.c. should be carried out with a 10 V reference source, and the instrument switched to the 20 V range. Adjust DC CAL to make the display read $10 \cdot 00$, reverse the input leads and check that the display reads -10.00 ± 2 digits. Reverse the leads again and check that the display reads 10.0 when switched to the 200 V range, and then 010 when switched to the 1 KV range. Switch to the 200 mV range where the reading should be 1 -- indicating overrange input. Connect a 100 mV reference source and check the reading on the 200 mV range.

Fig. 2.6. Main Board p.c.b. (copper side, actual size)

The ratiometric method of resistance measurement does not require any calibration as it relies upon the basic DC calibration and the stable reference resistors R13-R18. With the Micro Tune switched to Ohms, DC, 20k Ω, and the input leads open circuit, the reading should be 1 -.- indicating overrange. Short-circuit the input and the reading should be $0 \cdot 00$. Connect a 10 k standard resistor, and the reading should be 10.00 , then check the reading on the 200 k and 20 M ranges. Connect a 100Ω standard resistor and check the reading on the 200Ω range; on this range there will be an offset of three or four digits due to switch and lead resistance when the input is short-circuited.

The a.c. voltage ranges should be calibrated by switching to Volts, $20 \mathrm{~V}, \mathrm{AC}$, applying a 10 V r.m.s. sinewave reference and adjusting VR2 AC CAL accordingly.
To check the Current range, switch to Amps, DC, 20A, and apply a constant current source of typically 1 A or 500 mA between terminals 20 A and Input LO. Note that no protection is provided on the Current range, and the sense resistor value is $10 \mathrm{~m} \Omega$. The "plated" resistor, R24, is provided with a series of adjustment holes to allow the value of sense resistance to be trimmed to allow for tolerances in copper and roller-tinning thicknesses which may alter its
value. With the constant current source connected, the position of link LC may be varied along R24 until the display is correct.

To test the engine functions of r.p.m. and Dwell, a'second battery is required, connected to the BT2 leads. The battery is only used when S8 Engine Function is selected, together with a range switch. A pulse generator with an output of at least 5 V should preferably be used for calibrating both functions.

For calibration of r.p.m., switch to Engine, DC, RPM, 4 CYL . Referring to the formula derived earlier:

$$
\text { RPM }=\frac{\text { pulses } / \mathrm{min} \times 2}{\text { number of cylinders }}
$$

To simplify the calibration it would be convenient, of course, if a 50 Hz frequency source could be used in the absence of a pulse generator unit. For a frequency of 50 Hz , or 3,000 pulses $/ \mathrm{min}$, the corresponding r.p.m. for a four cylinder engine is 1500 r.p.m. Using a mains transformer with a low voltage secondary, typically 6 V r.m.s., and half-wave rectification by a single diode, followed by waveform shaping with a transistor Schmitt trigger, a suitable 50 Hz calibration source may be obtained. With the 50 Hz frequency

source connected to the Micro Tune, adjust VR3 RPM CAL until the display reads 1.50 . The display reads in r.p.m. \times 1000, corresponding therefore to 1500 r.p.m. Select the 6 CYL range and the reading should be approximately 1.00 , the 8 CYL range should read approximately 0.75 .

To test the Dwell function, a pulse generator with variable mark/space ratio output is preferable but a 50 Hz square wave source is a useable substitute. On a four cylinder engine there are four lobes on the contact breaker cam resulting in a maximum points closure angle, or dwell angle, of 90deg. Switch to Engine, DC, Dwell, 4 CYL and with a 50 Hz square wave input to the instrument adjust VR4 DWELL CAL to provide a display of 45.0 since the markspace ratio will be $50: 50$. When the input leads are opencircuit the display should be approximately $90 \cdot 0$.

Reading on the 8 CYL range should be half those on 4 CYL range, and 6 CYL range readings should be two-thirds of those on 4 CYL range.

FINAL ASSEMBLY

When the p.c. boards have been tested, the front panel should be inserted into the slot in the lower half of the case. After removing the protective plastic film from the I.c.d. the main board should be secured to the case by two M3 selftapping screws at the rear of the board. The range board is
spaced above the main board by four fibre pillars and secured by four M3 $\times 45$ screws with washers placed under their heads. Each of the battery retaining springs is secured to moulded pillars on the lower half of the case by two M3 self-tapping screws. Position the two batteries and insert the rear panel into the slot in the lower half of the case. In order to fit the batteries, it may be necessary to cut two notches each in the p.c.b. to accept the rims of the PP7s. Attach the sides and handle assembly to the case, noting that the side of the display board engages in a slot in the right-hand side piece.

Whilst the calibration controls are still accessible, it may be advisable to check their settings, then place the case lid over the assembly. Four screws pass through plastic feet and secure the case halves together.

The position of the handle may be altered by pulling its two sides outwards simultaneously while altering the angle of the case.

USING THE MICRO-TUNE

When assembly of the instrument is complete, it will be found to be extremely versatile and suitable for use both in the lab. and when servicing cars. A guide to some applications of the Micro Tune follow:

Fig. 2.8. Main Board p.c.b. (component side).
(a) Voltage Measurement

The instrument will measure from $100 \mu \mathrm{~V}$ to 1 kV but care should be taken not to connect it across a vehicle HT circuit, which may be 20 kV .

BATTERY CHECKING

To check the condition of a vehicle battery, make sure, by using a hydrometer, that each cell is fully charged. Disconnect the HT lead from the centre of the distributor cap and ground it to a suitable earth. Switch the Micro Tune to Volts, DC, 20V, and connect it across the battery. Turn on the car headlights, heated rear window, and blower, then turn the starter for approximately 30 seconds. The cranking speed should remain constant and the battery voltage should remain higher than 9.5 V if the battery is in good condition.

The instrument may also be used to test the generator or alternator output and the open-circuit voltage through the regulator.

(B) Current Measurement

A single current range of 20A is provided, with resolution of 10 mA . Due to the low sense resistor value of $10 \mathrm{~m} \Omega$, no protection is included and care should be exercised when undertaking current measurements. Do not attempt to
measure the starter motor current as this may exceed 60A. The 20A and input LO terminals should be used, with the instrument switched to Amps, 20A.

(C) Resistance Measurement

Although protection is included on the resistance ranges, measurements should not be taken on live circuits. Continuity of cable looms may be accurately checked on the 200Ω range where resolution is $100 \mathrm{~m} \Omega$.

COIL RESISTANCE CHECKS

Disconnect all leads from the ignition coil. Switch the Micro-Tune to Ohms, DC, 200 Ω and connect the input leads to the two primary terminals on top of the coil (normally marked SW and CB, or + and -). The reading for a 12 V coil should be approximately $4 \cdot 0 \Omega$. If the coil has a ballast resistor fitted, the reading should be approximately 1.0Ω.

To measure the secondary circuit resistance, connect one lead to the centre HT terminal and the other to the LT terminal marked CB or - . A short in the secondary winding will result in a reading below $2 \mathrm{k} \Omega$, whereas a reading above $40 \mathrm{k} \Omega$ will indicate an open-circuit secondary winding or a bad connection at the coil terminals.

POINTS RESISTANCE CHECKS

Tachometer and dwell measurements are dependant upon correct operation of the contact breaker, and it is advisable to check this first

Switch the Micro Tune to Volts, DC, 20V and remove the distributor cap. Switch on the ignition, and crank the engine until the contact breaker opens. The reading should be approximately 12 V and if this is not the case, check the connections and the points insulation.

When a satisfactory reading has been obtained with the contact breaker open, crank the engine until the c.b. is closed. If the c.b. is perfect the reading should be OV. A reading of up to 4 V is acceptable, but a higher reading suggests that the points require attention.

(D) Tachometer Measurements

The measurement of r.p.m. is very useful when tuning a car engine and the Micro Tune is easily connected across the ignition coil LT, and the vehicle chassis, with the instrument switched to Engine DC, RPM and cylinders as required.

Correct polarity should be observed. For negative earth vehicles Input LO should be connected to chassis, and Input HI connected to the coil LT trigger point. The leads should be reversed when the instrument is used on positive earth vehicles.

As with all engine tuning procedures, tests should be carried out with the engine at normal operating temperature.

DIRTY AIR CLEANER CHECK

Remove the air cleaner and ensure that the choke is open. Start the engine and adjust the carburettor to idle the engine at approximately 800 rpm . Replace the air cleaner.

If the r.p.m. changes, clean and/or fit a new filter.
If the r.p.m. remains constant, the air cleaner is efficient and working properly.

CARBURETTOR IDLE AND MIXTURE ADJUSTMENT

Set the engine to idle at the speed recommended by the manufacturer by adjustment of the throttle stop.
Adjust the mixture screw on the carburettor, until the highest steady reading is obtained on the tachometer.

Reset the engine to the speed recommended by the manufacturer. If difficulty is experienced when obtaining a second reading the manifold and carburettor should be checked for air leaks.

During the points closed, or dwell period, a magnetic field is produced around the ignition coil as the primary current builds up. If the magnetic field does not reach sufficient magnitude, due to the dwell period being too short, its collapse when the points open may not produce sufficient voltage across the secondary winding to cause a spark at the plugs.

AIR/FUEL RATIO MIXTURE

Remove the air cleaner. Set the engine to idle at approximately 800 r.p.m. Ensure that the choke is open.

Slide a flat plate slowly over the mouth of the carburettor to partially choke off the air supply.

Note the r.p.m. reading and any changes. If the r.p.m. increases as the mouth is blocked, a lean mixture is indicated. A rich mixture is indicated if the r.p.m. reading decreases.
If there is little or no change in r.p.m. reading until the mouth is almost completely blocked (typically three-quarters covered) an acceptable mixture is indicated.

(E) Dwell Measurements

For dwell measurements, the Micro Tune should be connected as for tachometer use but switched to Dwell instead of r.p.m. Start the engine and allow it to idle at a smooth speed. When the correct points are fitted and correctly adjusted, the dwell reading should correspond with that quoted in the workshop manual. On all engines the dwell angle should be constant at speeds up to approximately 1500 r.p.m., which is the point at which the advance and retard unit comes into operation.

As a guide to typical dwell angles, a note of those quoted for some four-cylinder engines is given below:
Lucas distributor $\quad 60^{\circ} \mathrm{BLMC}$
AC Delco distributor 37° Ford
Autolite distributor 40° Vauxhall
If the dwell reading fluctuates, increase the engine speed slightly until a steady reading is obtained. If the dwell reading is too high, the contact breaker gap is too close and requires adjustment. If the reading is too low, the c.b. gap is too wide and should be reduced.

Slowly increase the engine speed to approximately 1000 r.p.m. and then return it to idle speed while observing the dwell reading, which should remain approximately constant, the maximum permissible variation is typically 2-3 deg.

Quickly increase the engine speed to approximately 1500 r.p.m. and then return it to idle speed whilst observing the dwell reading, which should fluctuate by only 2-3 deg.

DWELL ADJUSTMENT

Remove the distributor cap and the rotor arm, then loosen the contact breaker fixing screws so that the points are not loose, but may be adjusted with a screwdriver in the adjusting slot.

Switch on the ignition and move the c.b. with the screwdriver in the adjusting slot, until the dwell is correct while the starter motor turns over the engine.

Tighten the screws and replace the rotor arm and distributor cap. The points are now adjusted and for complete tuning it is advisable to time the engine using a stroboscope.
It may be considered preferable by some owners to remove the spark-plugs before turning over the engine, to reduce the load on the starter

When the dwell reading is correct, the contact breaker gap should also be correct. If it is not possible to get the two right at the same time, check that the correct type of c.b. is fitted. Also check that there is no wear on the heel of the pivot, and that the spring tension is not too weak.

If the contacts are in good condition, then suspect wear on the distributor shaft bearing, advance/retard plate, or damage to the cam.

To check distributor wear, disconnect the vacuum unit and note the dwell angle at idle speed. Increase engine speed to 3000 r.p.m. and observe the dwell reading, a variation of more than 3 deg. indicates distributor bearing wear.

In these days of spiralling petrol prices it is advisable to ensure that one's car engine is correctly tuned and operating efficiently. The Micro Tune enables the car owner to tune the engine regularly while avoiding ever-increasing servicing costs.

[^1]

 WITH CASIO'S NEW LOW-COST PROGRAMMABLE

FX-3500P 35 -step programmable scientific with an abundance of built-in functions, including Linear Regression.

Provisional Price under $\mathbf{£ 3 0 . 0 0}$ CHRISTMAS POST Our return of post service means that orders received
reach you in time for Christmas. Subject to availability.

JOIN THE KEYBOARD REVOLUTION!

With the amazing new CASIOTONE 201
 A remarkable new concept in electronic keyboard instruments using a totaliy new tecchnology. Pitch.
timbre and harmonics of 29 instruments have been measured, digitalised and stored in electronic chip timbre and
memory tormermithics reproduction
4-sound memory function allows switching between any 4 pre-selected instruments. This polyphonic instrument can play full chords of up 108 notes on its 29 white and 20 black keys spanning
4 octaves. Viorato and tone switches. Foot oviume
 inches. Weight 155bs. Black

LCD ANALOGUE/DIGITAL Alarm Chronograph with countdown Analogue. Independent hours and minutes with
synchronous digital seconds. Dual time ability. Digital. Hours. minutes. seconds. day and date. Stopwatch. $1 / 100$ second to 12 hours. Net, lap and
lst and nd place. Start sion and 10 minute signals. 1st and 2nd place. Start stop and 10 minute signaa
Alarm. For 30 seconds with carousel display. Alarm. For 30 seconds with carousel desplay.
Countdown Alarm. Normal and net times to with amazing Slar Burst' fasting display. Tone Time signal. Half hourly and hourly chimes. Tone
conorol Lithium batery Light. Water Resist case.
\& -stssed $\mathbf{£ 2 9 . 9 5}$ $\begin{array}{ccc}\text { AA81 } & \text { AA82 } \\ \text { Analogue } & \text { Digital } & \text { AA81G Gold Plated }\end{array} \quad \mathbf{£ 4 9 . 9 5}$

$\mathfrak{£ 2 4 . 9 5}$
For around 40 functions.

100 METRE WATER

 RESISTANTAlarm Chronographs with countdown.
Amazing 5 year lithium batery life. Hours. minutes.
seconds. ami/pm. dav. date and month. 12 or 24 hour. seconds. am/pm. day date and month il or 24 hour Time is always visibic regardiess or. display. mode.
Stopwatch. 100 second to 1 hour. Net. lap. Ist and 2nd. Starl/ stop signal. 10 minute signal. Alarm. Sounds for 30 seconds. Countdown Alarm. Normal and net times to 12 Hours. Stara//stop and 10 minute signals.
Time signal. Half houly
 illustrated) s/s case/resin strap f 25.95 .
$£ 29.95$ £39.95

£19.95 £32.50

For around 30 functions
A250. As above but with standard water resistant case, $£ 24.95$.
$\mathbf{S 2 2 0}$. As above but with dual time in lieu of alarms and chimes $£ 25.00$.
ONLY £245 (r.r.p. £285)

CASIOTONE M-10
Four instruments on the movel
Polyphonic plaving of piano, organ, violin and flute. 19 white and 13 black keys span $2 \frac{1}{2}$ octaves. Vibrato 19 white and 13 black keys span $2 \frac{1}{2}$ octaves.
switch $2 \times 16 \frac{1}{2} \times 5 \frac{3}{k}$ inches. Weight 3.5 lb . Integral
speaker. O/p jack. Mains/battery.

ONLY £69 (r.г.p. £79)

THE SPACE INVADERS ARE BACK!

12 PRE-PROGRAMMED MELODIES

OTHER CASIO WATCHES. Remember we will BEAT lower prices by 5% *
8 digit basic watches. F 7 C © $8.95 .111 \mathrm{QS}-34 \mathrm{~B}$ £ 14.95 .

$79 \mathrm{QS}-39 \mathrm{~B}$ Calendar $£ 29.95$. 79 CS 51 B Calendar $£ 39.95$
LADIES MODELS with stopwatch or dual time.
LADIES MODELS with stopwatch or dual ime.
87QGL-13B Gold plated $£ 2.95 .87 \mathrm{QL}-13 \mathrm{~B}$ chrome $£ 16.95$.
Other ladies models from $£ 10.95$ to $£ 34.95$. Details on request.
Providing the adviser has stocks and we still make a smail profit. ${ }^{}$ Providing your company order, cheque, PCO. or
phone your ACCESS or BARCLAYphone your Antor to:

DUO DISPLAY Analogue/digital watches from $£ 57.50$.

At last the speculations are over and the 'mystery' of Pluto appears to have been resolved. There have been many attempts to arrive at a satisfactory solution since Flammarion first suggested in 1879 that there was a planet beyond Neptune. Those others who also predicted, arrived at figures for size and density which varied from half the size of the Earth to twice the size of the Earth and periods from 250 years to a 1000 years.

The first direct measurement of the planet was made by Kuiper using the 82 inch reflector at Macdonald Observatory in Texas. The diameter was quoted as being 6400 miles and the mass about 80% of that of the Earth. However when Kuiper and Humason made an attempt to observe with the 200 inch Palomar telescope, a new figure for the diameter was given as 3200 miles, smaller than Mars. This was in 1950. Earlier in 1936 R. A. Lyttelton had suggested that Pluto could have been one of Neptune's moons that had escaped. This was feasible for the hold that Neptune has on Nereid is very tenuous. Nereid is the smaller of Neptune's moons. In 1956 Kuiper supported Lyttleton's hypothesis that the planet may have been an escape from Neptune.

In 1978 June 22nd J. W. Christy, at US Navy Observatory at Flagstaff Arizona, when making measurements with the 1.55 m telescope noted that Pluto appeared to be elongated. Examination of plates taken in 1965, 1970 and 1971 also showed this but had been ignored because there were defects in the plates. By 1978 a fortnight after Christy made his announcement, Graham using the 401 cm telescope at Cerro Tololo observatory, showed that the planet was not elongated but that there was in fact a large satellite associated with Pluto. It was provisionally called Charon. It was not however fully confirmed until April 1980 by Alistair Walker at
the South African Observatory. Pluto was due to pass in front of a star but not closely enough to occult it. However Walker observed that the star disappeared for 50 seconds. The conclusion was that it could have been occulted by Charon, the Pluto satellite.

The next episode of this intriguing astronomical serial came later in 1980. In a joint project using the 3.6 m telescope at Mauna Kea, Hawaii, the cooperatively owned instrument of Canada-France-Hawaii, D. Baneau and R. Foy, have used the special technique of Speckle Interferometry. This a technique which has been in successful operation for some time now where light levels are very low indeed. So low are they that so many hours of exposure would be required that definition by blurring alone would make them of little value. Enough is already known about the electronic enhancement of images from satellite and spacecraft observations especially those from the Pioneer and Voyager missions

The speckle interferometry uses very short exposures in succession. The result of combining these gives a composite picture which when translated enables the separation of close celestial objects like double stars. The results of using this technique on Pluto has revealed that the satellite is in fact so large that the two bodies must surely be properly designated a double planet. The figures are that the smaller body is at a distance of 19000 km from the primary body, that Pluto itself is 4000 km in diameter and the smaller body, or, Charon as it must now be called, 2000 km in diameter. The density of both planets is calculated to be $0.4 \mathrm{~g} / \mathrm{cm}^{2}$. This suggests that the period is about 6.9 days the figure which was given for the rotational period of Pluto itself by Walker and Hardie in 1955. Pluto then is only 500 km greater in diameter than the Earth's Moon and Charon a little larger than Saturn's moon Iapetus or the moon Titania of Uranus. So one more correction to the dimensions of the Solar System.

New features are apparent in the rings of Saturn as disclosed by the Voyager 1 images. The latest images were taken when the vehicle was at a distance of $51.5 \times 10^{6} \mathrm{~km}$ from the planet. There appear, in pictures taken a few hours apart, spoke like features. These appear on the inner edge of a ring and retain their identity for a long period in spite of the fact that the inner edge of the ring is rotating much faster than the outer edge. Because these features extend over a considerable distance it is of very considerable interest to know the mechanism. It is likely that the features are not in fact solid bodies but could rather be areas where there is less material. Why? is the question to be asked here.

It must of course be taken into account that the resolution available at this distance is about 200 to 300 km . When the next stepped up observation conditions which began on October 24th 1980 with the highest resolution images on the 2 nd of November are analysed it may be possible to offer more details.

The last course manoeuvre was made on 6th October but there could be the need for a
trajectory check and modify on November 6th a few days after this article is being written. The Voyager flyby is expected to provide significant data about the planet. The rings have appeared smooth but when the spacecraft comes to 124000 km details of their structure may be apparent as well as details about the cloud cover of the planet. It is known so far that Saturn's rotation period is 10 hr . 39 min . The Voyager imaging system has a greater resolution facility than the previous spacecraft Pioneer 11 when it made its close encounter. Two television cameras using 200 mm and 15000 mm focal length lenses will be able to discriminate to 5 km on the planet itself and down to 1 km op the rings. It is hoped that after passing inside the rings the effect of the rings on the radio transmissions may help to decide the size of the particles, if such there be, as conjectured, like ice covered rocks. Voyager will have passed within about 4000 km of the cloud cover of Titan some eighteen hours before the actual Saturn encounter on November 12th. The extent of Titan's atmosphere will be measured by radio waves as they propagate through the atmosphere. The surface of Titan is unlikely to be seen through the clouds.

In the far Encounter-1 phase of observation, which began on October 24th, it was no longer possible for the whole disc of the planet to be accommodated in one frame. To overcome this four frames at a time were taken. The near encounter phase of the observations began on November the 13th and will end on December 15 th. There will be a film sequence of this part of the mission. Signals at the time of closest encounter, November 11th with Titan will arrive at 11 pm PST. Eighteen minutes later the spacecraft will dip below the ring plane and make its closest approach to Saturn 18 hours after the Titan encounter and then will make an ascending ring crossing on the outbound trajectory and out of the Solar System.

Popov and Ryumin were out walking within 24 hours of their return to earth. They were undergoing observation at the launch site after 185 days in space. They were debriefed and offered some comment about the effects and their reaction to the set regime for their health. Ryumin thought that the 185 day mission was better than the 175 day mission and efficiency was higher. He felt this was partly due to better preflight briefing and better organised station work routine on board the spacecraft.

Both cosmonauts were of the opinion that rest days from exercise were of positive help in maintaining their stability. Boredom was a thing to be avoided. Another point was the need to have a widely varying range of tasks to avoid routine regime.

Following Frank Hyde's reply last month to the letters on the Velikovsky debate, we have received a letter from the Society for Interdisciplinary Studies suggesting that any reader who wishes to continue the debate should write to them. See Readout for details.

Part 5 ben ouncan

${ }^{1}$N this final part end wiring, a suitable power supply and the setting up of the desk will be described.

CABLE LOOM

Making a neat cable loom is a skilled job; one must have a 'feel' for the flow of wires and also be able to see how the loom will take shape. It is often necessary to reroute occasional wires until the loom 'flows'. Because there is no a.c. in the vicinity, unscreened wires are permissible for the following connections:-

1) Crossfader to monitor and source selector switches.
2) Line level wires leading from the routing switches to the send return sockets.
3) Tone control wires.

The latter requires qualification. The relatively long wires leading to the tone controls can precipitate instability unless they are neatly routed. Although intuition suggests that screened wire would be a good way of minimising interaction between these wires, it should be remembered that the screen is also a capacitance to earth, and the phase shifts resulting from such capacitance may cause instability. The applicability of screened wires to the tone control connections can only be determined empirically; in the prototype screened wires gave the best performance for the microphone tone controls, whilst unscreened wires were used for the music tone controls. Regardless of whether these wires are screened, they must be carefully routed to be as short as possible and mutually spaced apart.
The 12 V subsystem and audio looms should be kept apart wherever possible, to avoid the induction of switch clicks, etc. Twin screened wires are used for the stereo connections. Crosstalk should be negligible here because cable lengths are relatively short and source impedances are generally low. All screens should be tied to the OV rail at one end only. Connecting screens to the chassis may be expedient in some cases, but susceptibility to RFI could be increased. Therefore, if there isn't a convenient OV point where the screen is to be terminated, it should be connected to OV via $7 / 0.2$ wire. Bearing in mind the proximity of the disc input wires, single screened wire is also used to connect the turntable motors to the mains supply. It is most important that the cable used here is capable of withstanding mains voltages; medium and heavy duty types will generally be suitable. Note especially that separate cables are used for the live and neutral connections and that the screen is earthed in both cases.

Although the OV and chassis earths will be eventually joined at some point in the audio system, there is a significant impedance between the two points at r.f. Decoupling is therefore essential if RFI is not to be troublesome. This is achieved by connecting ceramic or polystyrene capacitors with values between 100 p and 100 n between OV and chassis earth. Convenient points are from pins 11 and 21 on all volume controls to a solder tag sandwiched between the adjacent slider body and spacer. The input sockets should also be decoupled, likewise the PSU and OV busbars and the disc input termination under the turntable (Fig. 17). Note that the disc input cables are quasi-balanced in that the screen does not carry a signal.
If possible, low noise cable (utilising a conductive plastic screen) should be used to connect the disc inputs and microphone transformer secondary to their respective cards to prevent microphony.

CROSSFADER

With reference to Fig. 18, the quad crossfader specified consists of two dual crossfaders ganged together, each with \log and antilog tracks. This provides audio taper in both directions, but as the slider traverses the centre area, the audio level is relatively low. This type of action is suitable for discotheque performances which incorporate a predominance of rock and heavy metal material, where records are treated as individual entities. Discotheque operators who concentrate on soul and disco-funk, however, may wish to mix two music sources and 'double beat' as they crossfade. This can be achieved on the desk by skilful manipulation of the crossfader and music volume control, but it is also possible to alter the law of the crossfader such that the audio level remains substantially constant during crossfading. In this case, a 25 k linear quad pot should be used. A semi audio taper is then provided by connecting resistors from the slider to the top and the bottom of the pot on each track. Experimentation will be required to determine a suitable value for these resistors, but their value will be of the same order of magnitude as the potentiometer. A more conventional method of achieving double-beating is to use separate level controls for each turntable and/or line source. Minor modifications to the circuitry are involved here and details will be given later.
In Fig. 14, note that the normally closed (n / c) relay contacts are used to switch the lamps and turntables. This ensures that a failure in the 12 V subsystem does not bring the

CABLE DESIGNATIONS

music to a standstill. The snubbers C1/R2-C8/R9 should be wired as close to their respective switches as possible; their purpose is to suppress switching clicks, particularly when the turntable motors (an inductive load) are energised. It may be necessary to wire additional snubbers directly across these motors in extreme circumstances. These may be of the same value as C5/R6 on Fig. 14. If turntable 'clicks' persist, find out whether the noise is due to inadequate suppression of the mains supply to the motors, the appropriate relay or switch; then try rerouting the mains wires leading to the turntables with a view to keeping them as far from the disc input cables as possible. If the clicks cannot be eliminated or satisfactorily attenuated, then zero-voltage switching could be used to turn the turntables on and off. Usually, however, good suppression and diligent cable routing will ensure that clicks do not intrude.

With reference to Fig. 15, note that the 12 V subsystem input wires are doubled up between the input socket and barrier strip no. 3. These double cables extend to the power supply, which may be 10^{\prime} away in terms of cable length. In this way, excessive voltage drop is avoided.

TURNTABLE LAMPS

The turntable lamps used in this design were chosen after lengthy experimentation. Localised, high intensity lighting is essential to enable the operator to pick out record tracks regardless of how tightly they are packed and how poor the ambient lighting conditions are. Even more important is the need to be able to see the position of the stylus in relation to the end of the track. All the broadcast cartridges specified for this desk are designed with good stylus visibility in mind, but even so, lamp positioning is critical.

Other

Autofader

Le.d.s and meters

12 V subsystem llamps and relays)

Audio screened

Single ,-for montor screened $7 / 0 \cdot 2$

Single pair with foil screen le.g. Belden 7/0.2)

Heavy duty single pair Low noise two pair screened plastic screen (e.g. Filotex)

Lighting power requirements are proportional to the inverse square of the lamp-stylus distance but the minimum working distance is around 8 in . otherwise the lamp may foul and scratch discs when they are removed from the turntable. In practice, a 15 watt mains pygmy lamp meets the criteria and has the great advantage that an additional 30 watts of power supply capacity is not required, as in the case of 12 volt lamps which are frequently used for these applications. Such a lamp can be readily shielded to prevent glare by coating one side with heat-resistant paint. The absence of a shield or shade is most useful, in that should a record be accidentally brought in contact with the lamp, little damage will result, since unlike a shade, the lamp's surface is smooth and rounded. Although goosenecks bearing mains (BC) lampholders are not readily available, standard discotheque gooseneck lamps can be readily modified by cutting off the end and soldering or gluing on a BC lampholder. Such a lampholder should preferably be brass for robustness. If the lampholder is glued to the gooseneck, it must be earthed separately. Wires leading down the latter should be smeared with a lubricant such as silicone grease; this limits abrasion of the insulation caused by regular flexing of the gooseneck.

Prototype p.s.u. front panel

COMPONENTS

12V SUBSYSTEM, OUTPUT ROUTING AND MONITOR SWITCHING

Potentiometer
VR1a/b-1k dual log slide pot
(Maplin type HBOOA)
\section*{Capacitors}
C1-4 - 100 n mylar
C5-8 - 100 n , 1000 V polypropylene or mixed dielectric (Mullard 330 series)

Miscellaneous

S1, 3, 5, 6, 7, 8 Push button illuminated switches made up from RS. $339-358,339-415$ (Switch and shield)
S2 Same as above, but requires an extra switch element 339-033 and extension screws 339-049
Coloured lenses are required for the above and come in packs of three: Green-339-370, Blue 339-386, Red 339-392, Orange 339-409 Three way four pole miniature rotary switch
54 Three way three pole miniature rotary switch
SKT1-2 5 pin female XLR socket LP1-9

LP10-11

RLA1-4

D1-4 T5. 5 wedge lamps, 12 V 100 mA (RS type 586-649) These are normally available with the VU meter and should be rated at 12 volts Enclosed single pole relay with 12 V . 185 ohm coil and 3A © 250 volt AC switching capacity (RS 348-908) 1N4004

Resistors

R1 100 k
R2, 3, 4, 5-47R
R6. 7, 8, 9-100R
(All $\frac{1}{2}$ watt, 5% unless otherwise stated.)

General Hardware

2 handles-RS type 509-917
$40.1 \mathrm{in} . \times 24$ way gold-plated edge connectors IRS type 466-545)
1×1 SEP Horizontal rail SR.RL 169 (ITT E-PAK 46) (to be cut into $8 \times 55 \mathrm{~mm}$ lengths)
or $8 \times 55 \mathrm{~mm}$ lengths of $10 \times 12 \mathrm{~mm}$ aluminium bar
$4 \times$ foam rubber spacing pads' to suit card areas, $\frac{1}{2}$ in. thick
$20 \times 12 \mathrm{~mm}$ CSK Pozidrive screws $20 \times$ mount slide pots $20 \times \frac{3}{4}$ in. brass spacers M4 or 4BA $10 \times$ Slider Bezels (RS type 543-406) $1 \times$ relay mounting plate le.g. RS type 349-119 if RS continental series relays are used)
7×5 amp barrier strips (RS 423-497)
14×5 amp barrier blades (RS 423-504)
1×20 way Cannon chassis plug IRS type 466-040)
1×20 way Cannon cable socket (RS type 466-084
$1 \times$ Cable shell to suit socket IRS type 466-129
Solder tags, rubber sleeving, single and balanced (twin) screened cable, $7 / 0 \cdot 2,16 / 0.2$ and $32 / 0.2$ wire. 14 swg or 2.5 mm square solid copper wire.

Turntables-
Cartridges-
Turntable Lamps-

See text
Stanton 500AL, 500E or 680EL (Wilmex Ltd.) or Shure SC35
Maplin type WF22Y (See text) (Wilmex Ltd. Compton House, 35 High Street, New Malden, Surrey KT3 4DE)

THE POWER SUPPLY

The discotheque desk is connected via an umbilical cord to a remote power supply, which can be rack mounted with other equipment. In this manner, design compromises are avoided to a great extent.

With reference to Fig. 16, the mains supply is applied to an IEC connector which has an integral RFI filter. S1 is a heavy duty switch capable of handling the large surge currents which occur at switch on. S2 is an optional lockswitch which is intended to prevent unauthorised operation of the equipment. This switch is not suited to handling the current surge which occurs at switch on, therefore it is always wise to turn S 1 off before turning S 2 on. The unit is then turned on by means of S1 in the normal fashion. Fuses $2-7$ have been selected to protect individual power supplies. If the stated fuse values or their close equivalents are used, then there will be discrimination between FS1 and the remaining fuses. Thus if FS3 blows, all other circuits will continue to function. Neons LP1-7 indicate fuse failures. The transient suppressor (VDR) and the snubber (C1, R1) ensure that high voltage transients appearing on the mains supply are rendered harmless.

REGULATOR PROTECTION

IC1-7 are protected against short circuits and shutdown if the supply current or device dissipation becomes excessive. The regulators are mounted on large heatsinks to ensure a low operating temperature; this in turn ensures longevity. RLA1-2 and the Zeners provide overvoltage protection by disconnecting the supply rails.

47V SUPPLY

The 47V supply is Zener regulated and can supply some 5 mA which will suit the majority of capacitor microphones. In some circumstances, C14 may require uprating, depending on the degree of ripple rejection in the head amplifier. Some capacitor microphones operate only on lower .supply voltages, e.g. 9V. In this case, T3, R6, R7 and D10 must be changed and advice should be sought from the microphone manufacturer on current and ripple rejection requirements. If dynamic microphones are to be used exclusively, then this supply can, of course, be omitted, along with FS7 and LP6.

The monitor l.e.d.s indicate any supply failures which do not cause fuse failure, for instance, operation of RLA 1 or regulator shut-down in the event of a short circuit. S3 controls the earthing arrangements. In any audio system using more than one mains powered unit, the mains earth must be connected at only one point, otherwise a hum loop will be formed. (This does not apply to units connected by audio transformers, e.g. those using balanced lines.) For safety however, all exposed metalwork must be earthed.

An elegant solution is to separate chassis (safety) and OV (signal) earths. The chassis earth is always connected directly to the mains earth whilst the OV connections also go to this point, but via a small resistor, which provides 'groundlift'. The value of this resistor is selected so as to limit the magnitude of the current flowing in the earth loop(s), hence minimising hum. A suitable value is $47 R$ ($R 2$ in Fig. 16), but a higher value may be necessary if the groundlift resistors in other items of equipment can appear in parallel. It is a good
idea to connect the OV rail on one item of equipment directly to the mains earth, and S3 provides this option on the power supply. If possible, all equipment to be used in conjunction with the desk should be modified so as to incorporate a groundlift resistor between chassis and OV. In this way, the dangerous practice of removing earth wires from mains plugs in a desperate attempt to banish an annoying buzz is made redundant.

CONSTRUCTIONAL DETAILS

C5, 6 and 11 must be close wired to their respective regulators; they are most conveniently mounted on a tagstrip. Tubular capacitors are specified because standard p.c.b. types are readily broken when they are wired in this fashion. The resistors associated with each l.e.d. together with the components associated with the 47 V supply are mounted on a p.c.b. IC1 and 2 are readily mounted directly onto a heatsink, but IC3 has a TO3 style package and must be mounted on a bracket. This in turn is bolted to the heatsink. The bracket should be aluminium and could be either a slab bent at right angles or better, a short section of $35 \times$ 35 mm angle of reasonable thickness, so as to minimise the thermal resistance between the device and the main heatsink. All surfaces should be smeared with heatsink compound for the same reason.

All three regulators must be insulated from their respective heatsinks with mica washers; be sure to deburr the mounting holes and to clean and sand the area thoroughly so that the mica is not punctured or subsequently weakened by sharp projections.

Before testing the completed unit, remove all the fuses; then replace one fuse at a time and test each supply individually. Check especially that each voltage appears at the appropriate pins on the output socket.

POWERING-UP THE DESK

Disconnect all d.c. supply connections at barrier strip No. 7 and connect up the power supply via the umbilical cord. Remove the fuses again and turn on, then power up each supply individually, as before, and Check that all voltages appear at the appropriate points on barrier strips 3 and 7. Then turn off the power supply, replace the barrier strip connections. Plug in all the cards and turn on the power supply. Check the monitor l.e.d.s in case of short circuits on the supply rails. Connect an amplifier to the mono ouptut socket and test all the functions.

The completed desk should be soak tested for a couple of days if possible so that faulty components are weeded out before the equipment passes into service, where failures are inexcusable.

Before taking it on the road, strap down the cards to the front panel and tension them towards the edge connector by means of two rubber bands. However firmly they may fit, it is possible that they will shake loose in transit unless made captive in this manner.

DISCS, TURNTABLES AND CARTRIDGES

Apart from being easy to operate, versatile, reliable and robust, the desk is capable of providing sound quality equal to up-market Hi-Fi systems. In order to make use of this, a high power sound system which need not be run into clipping at discotheque sound pressure levels is essential. Next, good loudspeakers, then good discs, then good acoustics, turntables, equalisation, and a host of other requirements. But the first three items on the list are certainly the most crucial. The quality of disc pressings warrants particular attention. Using the prototype desk in conjunction with high
quality power amplifiers, a horn-loaded speaker stack and a good record pressing provides sound that is to all intents and purposes indistinguishable from a live performance under appropriate conditions. To make the most of this system then, it's essential to seek out well pressed discs. It is said that some 60% of recoids are faulty or poorly pressed and you may need to return a record several times before you receive a good pressing. A few records are poorly recorded; in particular, out of balance tonal quality can result from incorrect compensation for high SPL and lengthy all-night mixdown sessions. Alternative mixes may be sought, or an equalised tape recording of the disc may need to be made. 12 in discs are invariably well pressed and very lifelike. Surprisingly 'Once a good pressing-always a good pressing'a well pressed disc will retain its sparkle for a long time. With all this in mind, the disc remains far superior to most taped material unless you have access to master tapes; a well pressed disc has an ability to 'jump out of the speaker' with alarming realism. A good record pressing can also be played at higher levels than a tape without inducing nausea; presumably because distortion is either lower or more amenable to the ear.

CHOICE

Whether used live for discotheques and broadcasting, or for recording, the cartridges must withstand slip and back cueing. In mobile applications they must also withstand severe shocks. It is not unknown for cartridges to fall out of arms in transit. Under no circumstances should ordinary magnetic cartridges intended for domestic hi-fi systems be used; the frequent necessity for high tracking weights >3 grams) and back cueing in particular will rapidly degrade the performance of such a cartridge, or even worse, cause sudden failure. Readily available cartridges which are designed to withstand the rough handling inherent in broadcast and discotheque applications are manufactured by Stanton and Shure. The Stanton 500 series cartridges have found great favour on the American discotheque scene and are also widely used by the IBA in this country. The Shure SC35 on the other hand is favoured by the BBC. The choice of cartridge mainly boils down to what sort of colouration you like, the Stanton 500AL for instance having a response peak around 25 Hz which gives it a characteristic sound. Turntables may be budget domestic types with integrated arms such as the Garrard SP25 used in the prototype. Ideally, these should have idler wheel drive for rapid starting but belt driven turntables can prove satisfactory in practice and also exhibit lower rumble. The desk deserves the best turntable you can afford however, and if possible, a professional broadcast model should be sought, such as classic models from Technics, Gates or Russco. Arms should be chosen for robustness over any other consideration.

Record bounce causes headaches for many operators. Short of hiring a concrete mixer and laying your own floor, there is a simple way around the problem provided you are willing to flex your muscles-the desk should be mounted on the heaviest possible stand. The prototype resides on a stand weighing some 100 kg (inclusive) and floor vibrations with a peak-to-peak amplitude of around $\frac{1}{2}$ in are necessary before record bounce occurs. Breeze blocks, paving slabs or tractor weights can be borrowed and tied to the stand under such severe conditions. It is also useful to place the stand in a corner, where it will receive most support, and to keep the audience back. Under these conditions, a tracking weight of $4 \frac{1}{2}$ grams will usually be quite adequate, as opposed to 7 or 8 grams which may be required without a heavyweight stand.

COMPONENTS

POWER SUPPLY

Resistor

R1,	1000.5 W
R2	470.5 W
R3	680 W
R4	470 W
R5	4701 W
R6	2 k 2 W
R7	1 k 5 W
R8	245 V transient suppressor (RS 238-457)
R9	4701 W

Capacitors

Semiconductors

1 C 1.	$7815-1.2 \mathrm{~A}$ plastic regulator:-
$\mathrm{IC2}$	$7915-1.2 \mathrm{~A}$ plastic regulator
$\mathrm{IC3}$	

Miscellaneous

1N5355B $118 \mathrm{~V}, 5 \mathrm{~W})$
BZX-61C-47V (47V,13W)
Red panel le.d.s (RS 576-327)
Yellow panelle.d. (RS 576-355)
6 A Bridge $(100 \mathrm{~V}$ yRm 180 A (FSM)
10 A Bridge ($100 \mathrm{~V}_{\text {VARM }} 180$ AIFSM)
1 N5401
2 A Bridge $\left(200 \mathrm{~V}_{\text {vRrN }}\right)$

IEC socket with integral rff fitter, $2 A$ type
20 way Cannon chassis socket-4 (RS 466-084)
20 Way Cannon cable plug and shall (RS 466-040)
(RS 466-129)
S.p.s.t toggle 15A
D.p.s.t. toggle 3A

5 A 20 mm quickblow
600 mA 20 mm quickblow
200 mA 20 mm antisurge 100 mA 20 mm quickblow

$$
\text { (Fuseholders all } 20 \mathrm{~mm} \text { flush bayonet release types) }
$$

LP1-LP7
RLA-RLB

Panelneons
$12 \mathrm{~V}, 110 \mathrm{ohm}$, coil, 10 A dp.c.o
(RS 348-756) Relay sockets
(RS 401-706)
$15-0-15 \mathrm{~V}, 1.6 \mathrm{~A}$
15V. 4A
$40 \mathrm{~V}, 150 \mathrm{~mA}$
$1.5^{\circ} \mathrm{C}$ Watt (2 off)

Fig. 16. Power supply

Fig. 17. Cartridge wiring to one turntable. Note that the OV connection DLA is not connected to the cable screen or turntable chassis at any point. The screen is connected to chassis earth at the barrier strip only

THIS program produces a graph of a function (expressible in the form $y=f(x)$ using standard BASIC notation) for a range of x values. It is self-scaling once it has been given the range of x, finding the lowest and highest y values. It also draws the lines $\mathrm{x}=0$, and $\mathrm{y}=0$, when they fall within the x or y values.

METHOD

On the UK 101, reasonable resolution can be obtained using the graphics characters. The screen is 46 by 16 chars, but the graphics include 8 horizontal bars.

These bars can increase the resolution to 46 by 128 allowing a reasonable curve to be drawn.

The first problem encountered was how to change the function of x every time the program is run. The simplest answer is this:

```
100 PRINT " Please type : "
110 PRINT " 5000 Y=f(X) "
120 PRINT " GOTO 1234 "
1 3 0 ~ S T O P
1234 program
```

This is not ideal. The best answer is to make the program alter itself. Microsoft BASIC is memory efficient for the reason that the commands are abbreviated by the use of tokens.

What does a Basic line look like in memory? Consider this line:
$10 Y=X$
If the relevant section of memory is examined, the line is stored as follows:

$$
\begin{array}{llllllll}
14 & 3 & 10 & 0 & 89 & 171 & 88 & 0
\end{array}
$$

The "14 3" in the first and second byte means the next BASIC line is stored at memory location $14+3 \star 256(=782$ decimal). The " $10 \quad 0$ " in the next two bytes indicates that this is BASIC line number $10+0 \star 256$ ($=10$ decimal). 89 is the ASCII code for Y , and 88 for X . So somehow 171 means " $=$ ", and 0 means the end of the line.

So far:

A full list of tokens is given in Table 2 only those underlined are useful for the function of x.

TABLE 2: Tokens. Those underlined are used

128	END	151	PRINT	174	INT.
129	FOR	152	CONT	175	ABS
130	NEXT	153	LIST	176	USR
131	DATA	154	CLEAR	177	FRE
132	INPUT	155	NEW	178	POS
133	DIM	156	TAB(179	SQR
134	READ	157	TO	180	RND
135	LET	158	FN	181	LOG
136	GOTO	159	SPC(182	EXP
137	RUN	160	THEN	183	COS
138	IF	161	NOT	184	SIN
139	RESTORE	162	STEP	185	TAN
140	GOSUB	163	+	186	ATN
141	RETURN	164	-	187	PEEK
142	REM	165	\star	188	LEN
143	STOP	166	$\dot{+}$	189	STR\$
144	ON		K	190	VAL
145	NULL	168	AND	191	ASC
146	WAIT	169	OR	192	CHR\$
147	LOAD	170	三	193	LEFTS
148	SAVE	171	$>$	194	RIGHT\$
149	DEF	172	<		MIDS
150	POKE	173	SGN		$\begin{aligned} & \text { o } 211 \text { BASIC } \\ & \text { or codes } \end{aligned}$

Thus if we input the function of x, we can find the suitable line in memory and poke into it the function. The line which we look for is line 5000 :

$$
5000 \text { \# \# \# \# \#\#\#\#\#\#etc. }
$$

The \# symbols are looked for in memory. When they are found the function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is poked in (the function must be in standard BASIC notation). The most convenient way to end a line is to make it a multi-line statement, so the colon and REM are both POKED in at the end of the line. We now have the function of our graph in the form:

```
5000 y=f(x): REM # # # # # etc. 5010 RETURN
```

Values of the range of x are then inputed, and the highest and lowest values of y are found for scaling purposes. The graph can then be plotted using the graphic characters.

SOFTWARE IDEAL FOR MATHEMATICS DEMONSTRATION.

Left: Graph of $y=1 / x^{2}$. Note that the function must be keyed into the computer as if a BASIC statement in itself.

Right: A more complex, cyclic function. The Graph Plotter is selfscaling.

Some suggested graphs

1) $Y=A B S(X)$ for $x=-1$ to
2) $Y=-1 \star A B S(X)$ for $X=-1$ to 1
3) $Y=\operatorname{SIN}(X) \uparrow 2+\operatorname{SIN}(2 \star X)$ for $X=0$ to $2 \star \operatorname{Pi}$
4) $\mathrm{Y}=1 \div(\mathrm{X} \uparrow 2)$ for $\mathrm{x}=1$ to 3

OK
LIST

20	REM $* * * *$	GRAPH PLOT	****
30	REM $* * * *$	=========\%	****
	REM ****		***
50	REM ****	by T.Walsh	***
60	REM $* * * *$	for a 8 K	***
70	REM ****	Compukit U	1**
100 FORA=1T016:PRINT:NEXT			
110	0 PRINT"	GRAPH PLOT'	
120	0 PRINT"	by T.Wal	
	0 PRINT"		

140 PRINT:PRINT
150 INPUT" Type graph in form $Y=f(X)$ "; A
160 IFLEN (A\$) >37THEN 150
170 FORA $=2800 \mathrm{TO} 3100$
$180 \operatorname{IFPEEK}(\mathrm{~A})=35 \operatorname{ANDPEEK}(\mathrm{~A}+1)=35 \mathrm{THEN} 210$
190 NEXT
200 PRINT" Program error":STOP
$210 \mathrm{Q}=\mathrm{LEN}(\mathrm{A})$):LP=A
$220 \mathrm{~A}=\mathrm{RIGHT}(\mathrm{A} \$, \mathrm{Q}-2)$
$230 \mathrm{~W}=0$
240 POKELP, $89:$ POKELP+1,171
$250 \mathrm{FOPA}=1 \mathrm{TOLEN}$ (AS)
$260 \mathrm{~W}=\mathrm{W}+1$
$270 \mathrm{D}=\mathrm{MID} \$(\mathrm{~A}, \mathrm{~A}, \mathrm{I}$
280 IFASC (D\$)>47ANDASC(D\$)<58THEN500
290 IFD\$="X"ORDS="("THEN500
300 IFD =")"THEN500
310 IFDS=" "ORD\$="."THEN500
320 IFD $\$="+$ "THEN $2=163:$ GOTO510
330 IFD $=$ "-"THENZ=164:GOTO510
340 1FD\$="*"THENZ=165:GOTO510
350 IFDS $=" /$ 'THENZ $=166:$ GOTO510
360 IFD $=" \uparrow " T H E N Z=167:$ GOTO 10
$370 \mathrm{D}=\mathrm{MID} \$(\mathrm{~A} \$, \mathrm{~A}, 3)$
380 IFDS="SGN"THENZ=173:GOTO520
390 IFDS="INT"THENZ=174:G0T0520
400 IFDS="ABS"THENZ=175:GOTO520
410 IFD $=$ "SOR."THENZ $=179$:GOTO520
420 IFD $\$=$ "RND"THENZ $=180:$ GOT0520
430 IFDS="LOG"THENZ=181:GOTO520
$440 \mathrm{IFDS}=$ "EXP"THENZ=182:G0TO520
450 IFDS $=$ "COS"THENZ=183:GOT0520
460 IFDS="SIN"THENZ=184:GOTO520
470 IFD $=$ ="TAN"THENZ $=185$:GOTO520
480 IFD\$="ATN"THENZ=186:GOTO520
490 PRINT"Error in function":GOTO880
500 POKELP+W+1, ASC(DS):GOTO530
510 POKELP $+\mathrm{W}+1, \mathrm{Z}:$ GOTO 530
520 POKELP $+W+1, Z: A=A+2$
530 NEXT: POKELP+W+2,58
540 POK.ELP $+W+3,142$
$550 \mathrm{~F} \$=" \mathrm{Y}=$ " +AS
560 PRINT:PRINT" Enter the range of x (low"
570 INPUT" then high)";LO, HI:PRINT:PRINT
580 IFLO>HITHEN560
590 X=LO: GOSUB5000
$600 \mathrm{YH}=\mathrm{Y}: \mathrm{YL}=\mathrm{Y}$
610 FORX=LOTOHISTEP (HI-LO) /46
620 GOSUB5000
630 I $\mathrm{FY}>$ YHTHENYH $=\mathrm{Y}$
640 IFY<YLTHENYL $=Y$
650 NEXT
660 FORA=1TO16:PRINT:NEXT
670 FORA $=1$ TO15
680 POKF $53261+64 *(A-1), 143$
690 NEXT
700 FORA=54222T054285
710 POKEA,135:NEXT
$720 \mathrm{~S}=(\mathrm{HI}-\mathrm{LO}) / 46$
730 IFHI>OANDLO<OTHEN2000
740 I FYH $>$ OANDYL <0 THEN 3000
750 FORB $=1$ TO46: $\mathrm{X}=(\mathrm{B}-1) * \mathrm{~S}+\mathrm{LO}: G O S U B 5000$
$760 \mathrm{D}=((\mathrm{Y}-\mathrm{YL}) /(\mathrm{YH}-\mathrm{YL})) \star 14+1$
$770 \mathrm{X}=\mathrm{B}: \mathrm{Y}=\mathrm{D}+1:$ GOSUB1000:NEXT
$780 \mathrm{~A}=\mathrm{F}$ S
790 FORA $=1$ TOLEN (AS)
$800 \operatorname{POKE} 53279+\mathrm{A}-\operatorname{LEN}(\mathrm{A} \$) / 2, \operatorname{ASC}(\operatorname{MID} \$(\mathrm{~A} \$, \mathrm{~A}, 1))$
810 NEXT
$820 \mathrm{~A}=54221: \mathrm{AS}=\mathrm{STR}(\mathrm{LO}): \mathrm{GOSUR} 6000$
$830 \mathrm{AS}=$ STR $(\mathrm{YH}): A=53259: G O S U B 6000$
$840 \mathrm{~A} \$=\mathrm{STR}(\mathrm{YL}): \mathrm{A}=54155:$ COSUB6000
$850 \mathrm{AS}=\mathrm{STR}(\mathrm{HI}): A=54264-\operatorname{LEN}(\mathrm{AS}):$ GOSUB6000
860 POKE530,1:POKE57088,0
$870 \operatorname{IFPEEK}(57088)=254$ THEN860
880 POKE530,0:FORA $=1$ T0 $39:$ POKELP $+A-1,35:$ NEXT
890 RUN
$1000 \mathrm{Z}=54285: \mathrm{Sl}=\mathrm{INT}((\mathrm{Y}-\operatorname{INT}(\mathrm{Y})) \star 7+.5)$
1010 POKER-INT (Y)*64+X,128+SI:RETURN
$2000 \mathrm{~A}=53262+15 * 64+(\mathrm{ABS}(\mathrm{LO}) * 46 /(\mathrm{HI}-\mathrm{LO}))$
2010 POKEA,48
2020 FORB=0TO15
2030 POKEA- $(\mathrm{B}+1) * 64,143$
2040 NEXT:GOTO740
$3000 \mathrm{~A}=54220$
$3010 \mathrm{~A}=\mathrm{A}-\mathrm{INT}(\mathrm{ABS}(\mathrm{YL}) * 15 /(\mathrm{YH}-\mathrm{YL})+.5) * 64$
3020 POKEA,48
$3030 \mathrm{~A}=\mathrm{A}+2$
3040 FORB=0TO45
$3050 \operatorname{IFPEEK}(\mathrm{~A}+\mathrm{B})=143$ THENPOKEA+B, $208:$ GOT03070
3060 POKEA+B, 128
3070 NEXT:GOTO750
 5010 RETURN
6000 FORB $=1$ TOLEN (AS)
6010 POKEA+B, ASC (MID \$ (AS,B,1))
6020 NEXT:RETURN
OK

LINES

$\left.\begin{array}{ll}100 \text { to } 160 & \begin{array}{l}\text { Inputs function } \\ 170 \text { to } 540\end{array} \\ 550 \text { to } 650 & \begin{array}{c}\text { Finds line } 5000 \text { in memory and pokes the } \\ \text { function of } x \text { in }\end{array} \\ \text { Inputs the low and high values of } x \text { and from } \\ \text { these calculates the maximum and mini- } \\ \text { mum y values }\end{array}\right]$

IMPORTANT VARIABLES

HI	highest value of X
LO	lowest value of X
LP	position of line 5000 in memory
YH	highest value of Y
YL	lowest value of Y

NOTES

1) line 5000 should be retyped if the program is stopped halfway through
2) the function of X must be in standard Basic notation. Any error will mean that you will have to retype line 5000 , and re-run the program
3) all angles are in radians.
4) do not try to plot infinity [eg tan of a half of pi]

The hardware and software exchange point for PE computer projects

LISTLESS SOFTWARE

A method for protecting your BASIC from being LISTed by a spy has been sent in by Mr. Mistry of Bradford.

Add line zero to your program; which might be: O REM-some program-for example.

Then POKE 769, 0 in Command Mode.
Any alteration to the listing, after this, will crash the system.

For return to normal, POKE 769, 7

PIECES OF EIGHT

Sir - I have decoded the memory block 2000-3FFF on my UK101 in the following way, while I use the decoding for I/O and an EPROM programmer, they could be used for other things:

IC23 (74LS138) seems to decode the whole 64 K into 8 K blocks most of which are not used. The unused pins can just be bent out and used to decode the 8 K blocks, ie. pin 14 decodes 2000-3FFF

13 decodes 4000-5FFF
12 decodes 6000-7FFF
11 decodes 8000-9FFF
remembering that $1 \mathrm{~K} E P R O M$, for example, would appear more than once in the $8 K$ block selected.

To decode 2000 to $3 F F$ into $8 \times 1 \mathrm{~K}$ blocks / soldered another 74LS138 onto IC22.
PIN 4 connects to Pin $14(Y 1)$ of IC23
7 (Y7) decodes 2000-23FF
9(Y6) decodes 2400-27FF
$10(\mathrm{Y} 5)$ decodes 2800-2BFF
11 (Y4) decodes 2COO-2FFF
$12(Y 3)$ decodes $3000-33 F F$
13 (Y2) decodes 3400-37FF
14 (Y1) decodes 3800-3BFF
15 (YO) decodes 3COO-3FFF
I have transferred the Compukit Screen Edit tape to EPROM which runs at 2000-23FF, but does anyone know how to transfer the extended monitor?

> J. Walton, Newton, Derbyshire.

It should be emphasised that material presented in Prompt has not necessarily been proven by us. Neither can compatability with all generations of the computer equipment to which it relates be guaranteed.

Software and hardware designs submitted should be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

MADE FOR EACH OTHER

Sir-The Transam Triton microcomputer's on board memory ends at address 1 FFF. This makes interfacing to Dr, Berk's EPROM programmer extremely simple, provided that it is the only off board memory in use. AO to A10 from the EPROM board are connected to the corresponding address lines from the Tritom expansion socket and the board enable is connected to the Triton A13, which only goes high for addresses over 1FFF Hex. 110 goes high every time an address containing $X 4 X X$ is accessed $(X=$ don't care), but the board is not enabled until A13 is active, therefore A10 only becomes effective when we reach 2400 , which is just what we want and locates the EPROM block directly following the RAM block. This allows both RAM and EPROM to be accessed under program control, and the Triton's monitor will accurately locate the end of the new RAM with its memory check procedure, which is needed for the correct operation of the basic interpreter.

Obviously 113 and A10 will also become active for addresses further up the map, but if the EPROM board is the only off board memory expansion, then higher addresses should never be accessed except under error conditions, in which case the RAM might be interfered with, but then, that would probably happen anyway under error conditions. Any other memory expansion would no doubt use the Triton motherboard which changes the problem completely.

Triton Socket	EPROM Board
MEMW	R / W
Ground	O volts
Five volts not avail-	
able from socket-	
wire to regulator	Pin 6, IC10 (enable)
A13	$A O$
AO	-
-	$\overline{A 10}$
$A 10$	-
$D O$	$\overline{D 7}$
-	$D 7$

One change must be made to the board, due to the fact that we are using a positive going address line rather than a zero going decode line for the $\overline{E N A B L E}$. We therefore leave out the gate 1 CBA which merely inverts the ENABLE, and connect the Triton's A13 to pin 6 of IC10. this is easily done as the track on the top of the EPROM board nearest the l.e.d. is the track which connects the two. Cut the track or simply leave out the through board pin nearest the l.e.d., and connect the A13 signal to this track. Both pins 1 and 2 of 1C8 should then be connected via link $L 10$ to +5 volts as it is
bad practice to leave t.t.l. inputs floating.
The redundant gate (IC8A) can be put to use to give a very useful added facility.

As we are allowing the computer to select between the RAM and the EPROM by the use of the address line $A 10$ rather than using a switch and doing it manually, we are getting the best use of the extra memory available. However, we are unable to try routines in RAM before burning them into EPROM as the computer sees them as two separate blocks of memory and internal calls or jumps will not work in both blocks (not with 8080 direct addressing). This can be overcome by using the redundant gate to invert A10 and selecting either the inverted $A 10$ or the non-inverted A10 with a single pole changeover switch (Fig. 1). This effectively swaps the positions of the RAM and EPROM as far as the computer is concerned. Therefore a program can be developed and debugged in RAM at addresses between 2400 (Hex) and 27FF (Hex) which is normally the EPROM's address, then it can be burnt in and run in EPROM after the switch is returned to normal. All this without losing the advantage of simultaneous use of both blocks of memory.

Fig. 1. Address inversion switch
Note that this is not suitable where a decode line has been used for interfacing, as the gate IC8A is already in use.

Iolo Davidson,
Hawling,
Gloucestershire

PREMIER SOFTWARE FOR UK 101

Two software cassettes are available from Premier Publications of 12 Kingscote Road, Addiscombe, Surrey.

The first is called "Strategy Games Pack", and is Superboard compatible. It contains three well presented and compulsive games: Nine-In-A-Line, Square Solitaire, and Executive Jigsaw. The start of the tape loads in some utility machine code software to support these games.

The second tape is called "Utilities Pack" and comprises a range of subroutines which can be called up by the user's own main program, after which, any unused utility routines are removed.

A subroutine is included for screen location identification via a grid system. Another routine provides a precision random number generator with more linear distribution. There is also a "read data" routine which overcomes the need for a FOR-NEXT loop to find a particular datum. When GOSUB 30 is called, the piece of data is returned as Z8.

There is a kind of direct telewriting subroutine, a routine for driving the cursor around the screen, and much more useful software.

Premier publications: $\wp 01-6566156$.

A selection of readers original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate They will at any rate
stimulate further thought. Why not submit your idea? Any idea published will be awarded payment according to its merits.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.
Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere.

T

THE circuit shown is that of a model train controller. The mains input is transformed to 17 V a.c. and fully rectified by D1-D4. Speed is controlled by a unijunction time delay circuit, and varied using VR1. The pulses developed across R3 are used to fire the thyristor. The specified thyristor should be used; this was purchased from Maplin. The over-current protection formed by R5, 6 and TR2, is a standard overload device. The given resistor values cause it to cut out at a mean current of about $1.6-1.7 \mathrm{~A}$. Capacitor C 2 and Diode D6 are included for quiet smooth running of motors. L.e.d., D5 was incorporated as an on/off indicator; a neon may also be placed across the supply. A suitable transformer is the 2A multitapped type also available from Maplin. All metal work should be earthed and the thyristor mounted on a small heat sink.
> R. Hayes, Brough, N. Humberside.

TIMER FOR CINE-CAMERA

THIS circuit will act as a self-timer for a cine-camera with electromagnetic trigger. Two 555 monostables in cascade will give a delay time of $0-25$ seconds to allow the cameraman to get into the action area. After this period the output of IC1 will go low, and trigger IC2. IC2 output is now high, and the relay energised closing RLA1 contacts. The timing components used for IC2, will give a time period of between 8 and 35 seconds. Capacitor C3 provides a negative going pulse with switch on. This ensures that both the monostables go immediately to their off-condition, that is pins 3 are low.

Odd Björkli, Muruvik,
Norway

TORPEDO GAME

THIS game is designed so that a target moves across a l.e.d. display. The object of the game is to send a torpedo along a 'Torpedo display' perpendicular row of l.e.d.s to intercept the target at D12.

The target moves from the left to the right, at an adjustable speed, which is controlled by VRI. The target length is also adjustable by S3, a single pole three way switch (or a single pole centre off):

Position 1 of the switch gives a target length of 1 .
Position 2 of the switch gives a target length of 2.
Position 3 of the switch gives a target length of 3 .
The torpedo is triggered off by push-tobreak switch S2. When it has travelled down its row of l.e.d.s, it loads the shift register (IC3) with a new code ready for the next fire instruction. Because of this, a torpedo cannot be fired while one is already in motion. If the torpedo, by the operator's skill, hits the target at the cross point of D12, everything stops with it still lit. To cancel this hold situation there is a clear switch (S 1), which is a push-to-make switch.
Like the target, the torpedo also has a speed or rate control, and is preset by VR2.
Both l.e.d. sets only have one current limiting resistor each, as shown. This is because all the l.e.d.s are never on together at one time. This allows all the anodes to be wired together in each display set.

The process of making the target travel along the row is done by shifting data along two 8 bit shift registers ($\mathrm{IC} 1 / 2$) wired in series. When the clear switch is pressed data is entered into the shift registers by the parallel inputs $\mathrm{A}-\mathrm{H}$ as shown. (Note: IC5-7408.)

When the clock inputs to the registers are enabled, the code stored shifts along the data lines. The rate at which the data is shifted along is determined by the SN7414 (IC4) oscillator frequency. The shift sequence is shown in the table.

The game requires a current of 200 mA at 5 V .
M. Crisp,

Semmington,
Wilts.

Fig. 2

THIS circuit was devised to protect TTL when running them in soak test situations from a variable stabilised power supply, and there is a possibility that someone might alter the output voltagepossibly causing a lot of damage.

The idea is very simple, and the unit is inserted in the power lines. R1 and VR1 apply a potential to the base of TR1 such that with a nominal 5 V supply, the transistor is just biased off. Should this voltage increase, TR1 switches on, opening the relay contacts, switching off the output supply, and lighting the indicator D1
J. Piper,

Liskeard,
Cornwall.

TTL PROTECTION

[EA213]

6V REGULATED

EA214

THIS simple circuit was built to supply a regulated 6 V to circuitry requiring around 50 mA , from a 9 V battery. It has better regulation than a simple Zener, and the quiescent current (about 5 mA) is not so dependent upon battery voltage. It's principle advantages are a variable output voltage, set by the values of R7 and R8. A pre-set could be used if precise adjustment is required and the ability to operate with a very small regulated-to-unregulated
voltage differential. For the current stated it will operate down to a battery voltage of about 6.5 V , for lower currents it is even less.
The circuit action is as follows: TR 1 and associated components feed a constant current to the Zener, D1. The Zener voltage is fed to one side of a comparator consisting of TR2 and TR 3 , current fed by TR4. The other side of the comparator is fed by the potential divider R7 and R8

THIS circuit was developed to indicate at a glance which fuse in my disco had blown without having to check each fuse in turn. It is useful in many applications such as on a distribution board. It can be modified to operate at lower or higher voltages or if a switch replaces the fuse one can tell if a unit is just switched off or unplugged as well e.g. a television.
With the fuse intact the neon bulb lights up with R2 dropping the mains voltage to the firing voltage of the neon. When the fuse is blown C1 charges via R1 until it reaches the neon firing voltage and then discharges through it, thus making it flash until the fuse is replaced or the appliance is unplugged.

from the regulated voltage, so at balance the voltage across R 8 must equal the Zener voltage. The comparator controls TR5, the series regulator, to achieve this. C 3 is the output decoupler, C2 prevents h.f. instability.
A. J. Flind,

Taunton,
Somerset.
K. A. Rochfort,
East Carleton,
Norwich.

Enter the 80's with SAXON

STEREO DISCO SYSTEMS

WITH LIGHT SHOW \& DISPLAY

Standard centaur 100W
 £299 incl. VAT
 $\mathbf{1 2} \mathbf{m t h}$ a $\mathbf{£} \mathbf{2 4}$ or 24 mth iz $\mathbf{f 1 4}$
 SUPER CENTAUR 200W

$£ 399 \mathrm{incl}$. VAT
$12 \mathrm{mth}=\mathbf{£ 3 2 . 0 3}$ or $24 \mathrm{mth}=\mathbf{£ 1 8 . 7 5}$
GXL 200W with PDF BINS
$\mathbf{£ 4 8 9}$ incl. VAT Deposit $\mathbf{£ 9}$
CUSTOM CENTAUR 400/600W
with four PDF 100A Bins
$\mathbf{£ 8 9 9}$ incl. VAT
12 mth $\mathbf{£ 7 2 . 1 9}$ or 24 mth a $\mathbf{£ 4 2 . 2 5}$ Deposit $£ \mathbf{1 6 7}$
12 mth o $\mathbf{£ 7 2 . 1 9}$ or $\mathbf{2 4} \mathrm{mth}$ a $\mathbf{£ 4 2 . 2 5}$
MINI DISCO 100 W
£249 inc. carr. \& VAT MONO mth a $£ 11.70$

JUST PLUG IN

AND GO!! *Top Quality ${ }^{*} 4$ channel Dep. $\mathbf{f 5 0}$

Ap100 E67.50 ER £119

SAXON ENTERTAINMENTS	ALL MAIL \& CREDIT ENQUIRIES TO CROYDON TO ORDER
333 WHITEHORSE ROAD	Send cheque/crossed POS or Telephone (01) 684
GROYDON	Access/Barclaycard. Telephone orders accepted
Rrey cro	For Creaft Sales \& Enquities Ring
Tues-Sat 9am-5pm	SUE ABEGG ON (01) 684 8007/0098

* Headphone monitor/cu * Full mixing/crosstap

All systems complete with loudspeakers, leads, \& 2 years warranty

£30 FREE!

Vouchers with our new catalogue over 200 items of disco systems, lighting and accessories. Send $\mathbf{£ 1 . 0 0}$ now.

EXAMPLES:

EXAMPLES:	
Fuzz lights	$\mathbf{£ 2 6 . 7 5}$
Projectors from	$\mathbf{£ 5 5 . 5 0}$
Strobes	$\mathbf{£ 3 5 - \mathbf { £ 2 2 0 }}$
Rope lights 8 mt	$\mathbf{£ 5 9}$
Disco stands	$\mathbf{£ 2 9 . 7 5}$
Echo chambers	from $\mathbf{£ 7 7 . 5 0}$
100W speaker	$\mathbf{£ 2 9 . 5 0}$
10 way chaser	$\mathbf{£ 1 9 9}$
100W twin horn	$\mathbf{£ 1 2 5}$
800W spot bank	$\mathbf{£ 5 5}$

Mixers, mics, amplifiers, goosenecks, light units, bubble machines, mirror balls, helicopters, bins, consoles, and much more.

AND IF WE HAVEN'T GOT IT - WE'LL GET IT!

Full range of Pluto, D.J. Lightomation products in stock
Send $\mathbf{f 1} 1$ now for your catalogue - worth $\mathbf{f} \mathbf{3 0}$!!!

PARNDON ELECTRONICS LTD.

Dept. No. 2144 Paddock Mead. Harlow: Essex. CM18 7RR. Tel: 027932700

RESISTORS: $1 / 4$ Watt Carbon Film E24 range $\pm 5^{\prime}, n$ tolerance. High quality resistors made under strictly controlled conditions by automatic machines. Bandoliered nd colour coded £1.00 per hundred mixed. (Min 10 per value) $\mathbf{E 8 . 5 0}$ per thousand mixed. (Min 50 per value) Special stock pack. 60 values. 10 off each $\mathbf{£ 5 . 5 0}$

DIODES: IN4148 3p each. Min order quantity - 15 items $£ 1.60$ per hundred

DIL SWITCHES: Gold plated contact in fully sealed base solve those
 ETS: High quality, low profile sockets 8 pin-10p. 14 pin-13p. 16 pin- 15p. 18 pin- 19p. 20 pin. 25p. 22 pin- 29p. 24 pin-35p. 28 pin-39p. 40 pin- 57p.

ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN. ORDER - U.K. C1 00. OVERSEAS 55 CASH WITH ORDER PLEASE

Model 146
ALSO
Model AO113. Sine/Square. 1 volt into 600 . Dist $.02 \%$ £31.60 (Kit version $£ \mathbf{2 6 . 5 0}$) p.p. $£ 1$

TELERADIO ELECTRONICS
325 Fore Street, Edmonton, London N9 OPE
S.A.E. for leaflets . . . Closed all day Thursdays ... 01-807 3719

$4 \frac{1}{4}$ in $\times 3 \frac{1}{4}$ in METER. $30 \mu \mathrm{~A}, 50 \mu \mathrm{~A}$ 	2 in $\times 2$ in meters $500 \mu \mathrm{~A}, \mathbf{£ 4 . 1 4}$ 17p P.\& P. $60 \times 45 \mathrm{~mm}$ meters $50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $500 \mu \mathrm{~A}$ and 1 mA VU meter, $\mathbf{£ 4 . 0 0}$. 26p P. \& P. 6 V BUZZERS. 50 mm diameter 30mm high, 52p. 15p. P. \& P.
	MULTI- METER
MICROPHONES FOR TAPE RECORDERS DM228R 200 ohm with 3.5 and 2.5 mm Jack Plugs $\mathbf{£ 1 . 7 0}$ DM229R 50K with 3.5 and 2.5 mm Jack Plugs DM18D 200 ohm with 5 and 3 pin Din Plugs £1.99 Postage on above microphones 17p	$7 \mathrm{~N} \quad 360 \mathrm{TR}$ 20,000 ohm/volt
	RESISTANCE RANGES
	X1, $\times 10, \times 1 \mathrm{~K}$,
	P.8P. 75
	TRANSFORMERS Primary 240V
CARDIOID DYNAMIC MICROPHONE Model UD- 130 Frequency response $50-15,000 \mathrm{c} / \mathrm{s}$. Impedance Dual 50K and 600 ohms. £8.02. 50p P. \& P.	6-0-6V $\quad 100 \mathrm{~mA} \quad$ ¢0.75
	9-0-9V $\quad 75 \mathrm{~mA} \quad$ ¢0.75
	$12-0-12 \mathrm{~V}$ $120 \mathrm{~mA} \quad \mathbf{5 0 . 8 5}$
	12-0-12V 100 mA ¢ 1.05
	Post on above transformers 45p. $\begin{array}{lll} 9-0-9 \mathrm{~V} & 1 \mathrm{~A} & \Sigma 1.80 \end{array}$
	12-0-12V 1A
	15-0-15V 1A E2.51
	30-0-30V $1 \mathrm{~A} \quad \mathrm{~V} \cdot 10$
	6.3V $\quad 1 \frac{1}{2} \mathrm{~A} \quad \mathrm{E1.80}$
	6-0-6V $\quad 1 \frac{1}{2} \mathrm{~A} \quad$ £2-20

PL258 Plug 33p; Socket 33p; PL259/SO239 Angled Connector 70p; 1 watt dummy lead 95p; 2m Rubber Neck Aerial with PL259 Plug $£ \mathbf{£ 3 0}$.

POST ON ABOVE ITEMS 14 p .
All above prices include V.A.T. Send 40 p for new 1980 fully illustrated catalogue, S.A.E. with all enquiries. Special prices for quantity quoted on request.

M. DZIUBAS

J. BIRKETT

(Partners: J. H. Birkett. J. L. Birkett)
Radio Component Suppliers
25 The Strait, Lincoln. LN2 1 JF

SINCLAIR NI-CAD BATTERY CHARGER E3.30.

SUB-MINIATURE MULLARD DISC CERAMICS 1000pf 63v.w. 25p do
MULLARD TYPE 808 FILM TRIMMERS 4pf, 8pf, 20pf. 60pf All 15 p each
 SPECIAL VISCONAL CAPACITORS $0.05 \mathrm{uf} 1 \mathrm{Kv} \oplus 25 \mathrm{p}$, 0.0005 uf 25 KV © 40p, 0.05 uf 10 Kv a 50p, 0.0005 f 75Kv e 75 p .
ELECTROLYTICS $16+16 \mathrm{uf} 450 \mathrm{v} . \mathrm{w}$. a 25p, $50+50 \mathrm{uf} 450 \mathrm{v} . \mathrm{w}$ a 40 p .
AIR SPACED MINIATURE VARIABLES $250+250 \mathrm{pf}(500 \mathrm{pf})$ © 85D
50. BC 107-8-9 METAL TRANSISTORS Assorted untested 9 60p.

VERNITRON FM4 10.7 MHz FILTERS ${ }^{\text {© }}$ 50p, 3 for $\mathrm{f1}$.
SUB-MINIATURE AIR SPACED TRIMMERS 10pp ${ }^{20 p}$ each.

3 GANG VARIABLES $10+10+10$ pf $* 75$ p.
2N918 VHF TRANSISTOR 25 D , STRIPLINE BF 362 © 25p
ERIE RED CAP MINIATURE DISC. O1 uf 100V.w. isp each.
10.7MHZ CRYS ALAL $38 \times 38 \mathrm{pf} 960 \mathrm{p}, 38 \times 38 \mathrm{pf}$ Wide Spaced a 65 p .

H.P. HOT CARRIER DIODES $5082-2800 a 40 \mathrm{p}$ each.

X BAND MULTIPLIER DIODES \& 6 for $\mathbf{\text { E1 }}$.
$\mathbf{3} / 16^{\prime \prime}$ COIL X FORMERS with core 6 for $\mathbf{2 5 p}$

50. OC 71 TRANSISTORS untested 75 p .

80 METRE CRYSTALS $10 \times$ Type 3642.5 KHz , 3750 KHz . Both 40p each.
$144 \mathrm{MHz} 10 \times$ CRYSTALS 8010 KHz 8050KHz Both 400 each.
B7G GLASS CRYSTALS $327.56 \mathrm{KHz}, 327.86 \mathrm{KHz}, 10.025 \mathrm{MHz}$. Dual Type 20.1875 MHz

50p. 2N4123 © 15p.
UHF POWER MODULE 50 mW Input 2.5 Watt Out $420-480 \mathrm{MHz} 13$ Volt 50 Ohm Type BGY 22 C with data $₫ \mathbf{£ 1 2 . 5 0}$.
VERY USEFUL HF-VHF POWER TRANSISTORS 587 BLY 27 MHz to 70 MHz SSB
FM 40 Watt 24 Volt with data e $\mathbf{E 3}$
BLY55 175 MHz 4 Watt 12 Volt with data $\mathbf{£ 2 . 5 0}$
BLY97 24 Volt 175 MHz 4 Watt with data $\mathbf{f 3}$.
BFR64 470 MHz 13 Volt 3 Watt with data $\mathbf{E x}$.
VHF POWER TRANSISTORS Unmarked good $2 N 3866$ - 3 for 75p.
2GHz STRIPLINE NPN TRANSISTORS E1 each.
5GHz LOW NOISE STRIPLINE With data Sheets a E3.
PIN DIODES FOR TRANSMIT-RECE
data
SOOMTR REEL OF COIL FORMERS with core Dia. 4 mm 9 mm Long if 7p. 6 for 35p. MIKE INSERTS TYPE YAB548 ${ }^{\text {40 }}$ 40p each.
HIGH POWER VHF TRANSISTOR 45 Watt 175 MHz 28 Volt FM or SSB 5 watt Drive
Postage 30 . Orders over $£ 3$ post paid. 570 BLY with data e e8.20.

Rapid Electronics

	\square Guaranteed same day Despatch
Quality Product	Vast Stocks
Free Catalogue	Competitive Prices

Pack		
A10	10	
A 72	103.5 mm jack plugs	80p
A 73	103.5 mm jack socke	
A 74	10 Std. jack plugs	
75	10 Std. jack socket	
84	105 pin 180 DIN pl	120p
885	105 pin 180 socke	100p
C20	10 Min . slide switch	130p
C30	10 Push to make s	130
C31	10 Push to break	170p
10	Pair Ultrasonics	350p
C32	Submin. SPST togg	
3	Submin. DPDT togg	80p
5	20 Texas 8 pin sock	170p
51	20 Texas 14 pin sock	200
C52	20 Texas 16 pin sock	
E10	Resistor kit. 10 ea valu	
	$4.7 \Omega 1 \mathrm{M} .650$ resistors	
	1010 u 25 V radial el	50p
E37	10100 u 25 V radia	75p
4	10 lu 35 V tantalum	100p
	100.1 C 280 polyeste	

Pack		
F11	10 BC 108 trans.	
F26	10 2N3704 trans.	
F27	10 2N3819 trans.	190p
H11	20 1N4002 diodes	$75 p$
H50	200A91 diodes	0p
H60	100 1N4148 diodes	0p
H70	5 C 106 D thyristors	200p
J10	200.2 in . red LEDs	170p
J15	500.2 in . red LEDs	400p
J20	1000.2 in . red LEDs	750p
J30	200.2 in . green LEDs	280
J50	200.2 in. yellow LEDs	280p
J80	4 FND500 CC displays	350p
K5	5741 op amps.	
K40	1 LM324 op amp.	P
K20	5 CA3140 op amps.	225p
K85	5 NE555 timers	110p
L8	54011 CMOS	130p
L9	4013 CMOS	40p
L11	4017 CMOS	75p
L19	4049 CMOS	45p
M20	Dalo pen	

- For quality components at competitive prices by return of post Rapid Electronics must be your first choice!
All prices include VAT. Please add 50 p postage and packing. Send SAE for our complete catalogue.

The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.

City and Guilds Cartificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:

Telecommunications Technicians
Radio, T.V. Electronics Technicians
Radio Amateurs
Electrical Installation Work

Diploma Courses

Colour T.V. Servicing
CCTV Engineering
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE.

Toroidal

TRANSFORMIERS

IN A RANGE: OF
75
TYPES

We use advanced winding technology to make our toroidal transformers. They have only half the weight and height of their laminated equivalents and are appreciably more efficient. Our toroidals cost virtually the same as the older types which they are rapidly replacing. Induced hum is reduced by a factor of ten. Supplied with rigid mounting kit with centre boll, steel and neoprene washers

CHOICE OF 3 PRIMARY INPUTS
1.L.P. Toroidal Transformers are available in choice of $110 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}$. coded as follows: (Secondaries can be connected in series or paralle!)
For 110 V Primary insert 0 in place of " X " in type number
For 220V Primary (Europe) insert 1 in place of " X " in type number
For 240 V Primary (U.K.) insert 2 in place of " X " in type number.
Example - 120VA 240V $15+15 \mathrm{~V} .4 A=42013$.

* CUSTOMER DESIGN ENQUIRIES INVITED
- QUANTITY PRICE LIST AVAILABLE.

FREEPOST facility.(U.K. only).
Simply address envelope to FREEPOST to address below. NO STAMP REQUIRED.
TO ORDER Enclose cheque/Postal Order/Money Order payable to ILL.P Electronics Litd or quote your ACCESS or BARCLAYCARD Also available from ELECTROVALUE and MARSHALLS.

TRANSFORMERS

- A division of I.L.P. ELECTRONICS LTD
freepost T2 graham bell house roper close
CANTERBURY CT2 7EP
Phone (0227) 54778 Technical (0227) 64723 Telex 965780

AITKEN BROS

35, High Bridge, Newcastle upon Tyne
Tel: 063226729

EXP300

550 contacts with two 50 -point BU bRars. Size $152 \times 53 \mathrm{~mm}$. $\mathbf{£ 6 . 9 5}$. PROTO-BOARD 6 KIT accepts up to 614 pin DiPs. $£ 10.98$

CSC LOGIC PROBES

LP-2 ECONOMY PROBE
Min. pulse width 300 nanoseconds, $300 \mathrm{~K} \Omega$ input impedance, tests circuits up to 1.5 MHz . Detecting pulse trains or single-shot event in TTL, DTL, HTL, and CMOS circuits. £20-95.
$\begin{array}{lll}\text { LP-1 } & \text { Memory Probe } & \mathbf{£ 3 5 . 6 5} \\ \text { LP-3 } & \text { High Speed Memory Probe } & \mathbf{£ 5 6 . 7 5}\end{array}$ LP-3 High Speed Memory Probe

CALSCOPE SUPER $6 \quad \mathbf{~} 186.30$
A portable single beam 6 MHz bandwidth oscilloscope with easy to use controls. High gain to $10 \mathrm{mv} / \mathrm{cm}$ and wide time quest. Please send S.A.E. Professionat scopes you can afford

CALSCOPE SUPER 10 f251.85

A dual trace 10 MHz instrument of the very highest performance and quality. It has an accuracy of 3% which is achieved by the use of built-in stabilised power supplies which keep the trace rock steady over a wide range of mains fluctuations. Full specification on request. Please send S.A.E.

SINCLAIR LOW POWER PORTABLE OSCILLOSCOPE SC110 £159.85
The SC1 10 has a 10 MHz bandwidth and sensitivity down to 10 mV per division. Full trigger facilities are provided, including bright line, auto with TV line and frame positions. Please send for full spec. and illustrated brochure.

TMK 500 MULTIMETER 30,000 o.p.v. AC volts $2 \cdot 5,10,25,100,250,500,1000$. DC volts. $0.25,1,2.5,10,25,100,250,1000$. DC current
 Buzzer continuity test size, $160 \times 110 \times 55 \mathrm{MM}$. Batteries, leads, and carrying case included. PRICE £22.95.

SINCLAIR OM350

£83.95
SINCLAIR DM450 f114.95

DM350 $3 \frac{1}{2}$ digit display DM450 $4 \frac{1}{2}$ digit display. Both provide six functions in 34 ranges. D.C. voltage $10 \mu \mathrm{~V}$ to $1200 \mathrm{~V}(100 \mu \mathrm{~V}$ on DM350) A.C. voltage $100 \mu \mathrm{~V}$ to 750 V . 10 ma to 20 MA to 10A. A.C. current 1nA to 10A resistance DM350 \& 450 as for DM235 below. Full spec. on request. lease send S.A.E.
Sinclair PFM200 frequency meter
Size $157 \times 76 \times 32 \mathrm{~mm}$. PDM35 below. $\mathbf{£ 5 7 . 9 5}$.

SINCLAIR PDM35

DIGITAL POCKET MULTIMETER
DC volts (4 ranges) 1 mV to 1000 AC vols iV to 500 V DC current (6 ranges) 1nA to 200MA. Resistance (5 ranges) 1Ω to 20 MEGR. PRICE E39.95 AC Adaptor E4.25 de luxe padded carry ing case $\mathbf{f 1 . 9 5} \mathbf{M N} 1604$ Battery $£ 1$-28. Size $157 \times 76 \times 32 \mathrm{~mm}$

SINCLAIR DM235
BENCH-PORTABLE DIGITAL
MULTIMETER.
DC voits (4 ranges) 1 mV to 1000 V AC voits $(4$ ranges, 1 MV to $750 \mathrm{~V} \mathrm{AC} \& \mathrm{DC}$ current $1 \mu \mathrm{a}$ to OOOMA Resistance (5 ranges) 1Ω to $20 \mathrm{MEG} \Omega$. PRICE £60.98. Carrying case £8.95. AC adapPharger. $£ 4 \cdot 25$. Rechargeable Battery Pack.
£8.95.
Size $255 \times 148 \times 40 \mathrm{~mm}$.

PANEL METERS
DIMS $60 \mathrm{MM} \times 45 \mathrm{MM} .50 \mu$ amp, 100μ amp 1 MA .

 £5.95.

DESOLDERING TOOL

SUCTION PUMP

Education Establishment Orders Accepted. PHONE OR SEND YOUR ACCESS OR BARCLAYCARD NUMBER
ALI PRICES INCLUDE POSTAGE AND VAT

Now comes our new SUPERSPARK transistorised Inductive Discharge Ignition unit to pep up engine performance and save you money and trouble. It does so much good to your car and you can buy the A-B-C easy to build kit for under $£ 10$! The SUPERSPARK eliminates points wear (money saving!) Saves need for frequent tuning (time saving!) Does not affect tachometers or radio (trouble saving!) Starting is much easier in cold weather (battery saving!) Keeps engine at peak performance (petrol saving!) - and all so easy to fit.

IN KIT FORM OR READY BUILT

12V. NEG. EARTH

- In oil and damp proof enclosed fibre glass case.
- Improved mounting brackets.
- Four colour-coded wires.
- Instant return to normal ignition switch
- IDEAL ALSO FOR MOTOR BIKES.
postage and V.A.T. paid U.K

KIT with all parts and instructions
£9.95 READY BUILT
and tested
postage and V.A.T. paid
in U.K.
TODAY'S UNBEATABLE VALUE
We have made and hold many thousands of electronic discharge units for internal combustion engines. The SUPERSPARK I.D.I. unit has been designed and priced to enable more motorists than ever to enjoy the great advantages of electronic ignition whatever their cars. STIRLING SUPERSPARK UNITS ARE FULLY GUARANTEED.

Pay by Access or Barclaycard-Just give your number
BI-PRE-PAK LTD ${ }^{20} 5$
 To BI-PRE-PAK LTD, 222 West Rd., Westcliff-on-Sea 5SO 9DF 1 Please send Superspark I.D.I. Kit(s) Built \square for which enclose $£$ My Access/Barclaycard No. is
Name Address

Trc

printed circuit board types
0.6vo-6v

REF	AMPS	PRICE	P/P					
TTP					TTP 446	0.5×2	1.79	50
:---:	:---:	:---:	:---:					
TTP 447	0.75×2	2.14	60		TTP 447	0.75×2	2.14	60
:---	:---	:---	:---					
TTP 449	1.0×2	2.36	70		TP 449	7.0×2	2.36	
:---	:---	:---	:---					
TTP 450	2.08×2	2.99	85		TTP 451	4.18×2	4.57	120
:---	:---	:---	:---		TYP 452	8.33 .2	5.68	120
:---	:---	:---	:---					

0.9×0.9

REF	AMPS	PRICE	P/P					
TTP					RTP 460	0.30×2	1.79	50
:---	:---	:---	:---					
TP 4.					TTP 461	$0.50: 2$	2.14	60
:---	:---	:---	:---					

 \begin{tabular}{|l|l|l|l|}
\hline TTP 464 \& $1.38 * 2$ \& 2.99 \& 85

\hline

\hline TTP 465 \& 2.77 .2 \& 4.57 \& 120

\hline

\hline TTP 466 \& 5.55×2 \& 5.68 \& 120

\hline
\end{tabular}

v-12v Ov-12

REF	AMPS	PRICE						
P/P				TTP 467	0.25×2	1.79	50	
:---	:---	:---	:---					
TP	468	0.302	2.14		T TP 468	0.36×2	2.14	60
:---	:---	:---	:---					
$T T P ~ 470$	0.50 .2	2.36	70		$T P P 470$	0.50×2	2.36	70
:---	:---	:---	:---					
$T T P 4.041$	1.04×2	2.99	85		TTP 471	1.04×2	2.99	85
:---	:---	:---	:---					
TTP 472	2.08×2	4.57	120		TTP 472	2.08×2	4.57	120
:---	:---	:---	:---					
$T P ~ 473$	4.16×2	5.68	120					

$0.15 \vee 0-15 \mathrm{~V}$

| REF | AMPS | PRICE | P/P |
| :--- | :--- | :--- | :--- | | TREF | AMPS | 1.70 | |
| :--- | :--- | :--- | :--- |
| TTP 474 | 0.20 .2 | 1.79 | 50 |

 \begin{tabular}{|l|l|l|l|}
\hline TTP 478 \& 0.83×2 \& 2.99 \& 85

\hline TPP 479 \& 1.86 .2 \& 4.57 \& 120

\hline

\hline TTP 480 \& $3 \cdot 33 \cdot 2$ \& 5.68 \& 120

\hline
\end{tabular}

$0.24 \times 0.24 \mathrm{~V}$
REF AMPS PRICE P/P PIP
:---
:---
:---
:---
:---
TP 501
:---

TITAN TRANSFORMERS AND COMPONENTS CENTRAL HALL CHAMBERS GRIMSBY SOUTH HUMBERSIDE PAYMENT C.W.O. CHEQUES POSTAL ORDERS ALL PRICES INCLUDE 15% V.AT

TRANSFORMERS

$\begin{array}{llll}0 & 100 & 1200 & 120\end{array}$
$\frac{\text { Leeselesedeceleced Leeseled }}{100000000000 \text { (00000000000) }}$
0 VO

PRIMARY O. 120 OR 240V 50Hz PECONDARY SERIES OR PARAL | InPuT 120 | 220 | 240 | |
| :--- | :--- | :--- | :--- |
| 120 | \square | | . | P.C.B.OR CHASSIS MOUNTING

 CHASSIS MOUNTING TYPES

REF	AMPS	PRICE	P/P
TTC 446	0.5×2	1.85	50
TTC447	$0.75 \cdot 2$	2.20	60
TTC 449	$1 \cdot 0.2$	2.45	70
TTC 450	2.0882	3.10	85
TTC 451	4.18.2	4.70	120
TTF 452	8.33*2	5.85	120
Ov-12vov-12v			
REF	AMPS	PRICE	P/P
TTC 467	0.25-2	1.85	50
TTC 468	$0 \cdot 38 \times 2$	2.20	60
TTC 470	$0.50 \cdot 2$	2.45	70
TTC 471	1.04-2	3.10	85
TTC 472	2.08*2	4.70	120

Ov-9v ov-9V

REF	AMPS	PRICE	P/P
TTC 460	0.30×2	1.85	50
TTC 461	0.50×2	2.20	60
TTC 463	0.60×2	2.45	70
TTC 464	$1.38 \cdot 2$	3.10	85
TTC 465	2.77 .2	4.70	120
TTF 466	$5.55 \cdot 2$	5.85	120

Ov-15vov-15v

REF	AMPSS	PRICE	P/P

REF	AMPS	PRICE						
PTC $/$ P				TTC 474	0.20×2	1.85	50	
:---	:---	:---	:---					
TTC 475	$0.30 * 2$	2.20	60		TTC 475	0.30 .2	2.20	60
:---	:---	:---	:---					
TTC 477	0.40 .2	2.45	70		TTC 478	0.83 .2	3.10	85
:---	:---	:---	:---					
TTC 479	1.66 .2	4.70	120					

Ov. 24vov. 24v

REF	AMPS	PRICE						
P/P								
TC				TTC 495	0.13 .2	1.85	50	
:---:	:---:	:---:	:---:		TTC 495	0.13×2	1.85	50
:---	:---	:---	:---					
TTC 496	0.19×2	2.20	60		TTC 498	0.25×2	2.20	60
:---	:---	:---	:---					
TTC 499	0.52×2	3.40	70					
TIC	$\mathbf{8 5}$				TTC 500	1.04×2	4.70	120
:---	:---	:---	:---					
TTF	1202	585			TIF 501	$2.08=2$	5.85	120
:---	:---	:---	:---					

MAINS ADAPTORS

 3PIN 13AMP PLUG IN ADAPTORS. MADE IN U.K.
REF OUTPUT|PRICE P/P

PCB TYPES INCLUOES
PNJS
4 NJTS SCREWS WASH
\qquad

VA

12	SK 12	45	
25	SK 25	48	
50	SK	50	52

| 50 | SK 50 | 52 |
| :---: | :---: | :---: | :---: |
| 100 | SK 100 | 56 |

VA = VOLTS $\cdot \operatorname{AMPS} P / P$ PII

TT100	$6-7.5-9 \mathrm{~V}$	3.85	40
TT101	6.7 .5		

COMPONENTS | TYPE | OTY PRICE | P/P $/ P$ | |
| :---: | :---: | :---: | :---: |
| RIDGE IA 50V | 5 | 95 | |
| IN | | | | in 4001

REGULATED				A7OUF 16V	5

CT4000 CLOCK／APPLIANCE TIMER KIT

The CT4000 has been designed to preset the state（on or off）of four
outputs at four times per day for up to 7 days in advance，enabling the unit to control tape recorders，appliances，central heating，lights， etc．The times are set on a $0.1^{\prime \prime}$ high red LED display by means of á keyboard and the output states are displayed on four LEDs．Each output can switch up to 20 mA at 9 V ．For mains loads use our Solid State Relay Kit（MK2）．The kit includes a PCB，keyswitches，I．C．． 4
digit LED display，transformer，plus all other components and a digite prinsplay，ransormer，plus all other components and a
scren prited and drilled box which can also accommodate up to 4 screen printed and dring
Solid State Relay Kits．
£25．25
Size： $10 \times 12 \times 4.5 \mathrm{~cm}$

D．V．M．THERMOMETER KIT DISCO LIGHTING KITS

LM386 250 mW low voltage Amp
LM 1830 Fluid Level Detector
LM2907 f-v Converter (8 in)
LM2917 f-v Converter (14 pin)
LM3909 LED Flasher/Oscillator
LM3911 Thermometer
LM3914 Dot/Bar Driver
MM74C91114 digit display controller
MM74C9157 segment-BCD converter
S5668 Touchdimmer
S9263 Touchswitch 16 -way
SN76477 Complex Sound Generato
TBA800 5W Audio Amp.
TBAB10AS 7 W Audio Amp
TDA 1024 Zero Voltage Switch
TDA2020 20W Voltage Swi
All iCs supplied with data sheets.
Data Sheets only. $10 p$ each device.

All iCs supplied with data sheets．
Data Sheets only． 10 p each device．

24 HOUR CLOCK／APPLIANCE

TIMER KIT
Switches any appliance up to
 times once per day．Kit con LED display，mains supply display divers，switches
LEDs．triac．PCBs $\&$ full in structions．
CT1000K Basic
CT1000K K Basic Kit
$\mathbf{C 1 4 . 9 0}$
with white box $(56 / 131 \times 71$
Ready Built

MATNS INTEROOM気正 （1）

NO batteries NO WIRES ONLY
$£ 37.99$ PER PAIR PERT $\mathbf{f 5}$ The modern way of instant 2－way communications． Just plug into power socket．Ready to use．Crystal
clear communications from room to room．Range $\frac{1}{2}$－mile on the same mains phase．On／oft switch． Volume control，with＇buzzer＇call and light indicator． Useful as inter－office intercom，between office and
warehouse，in surgery and in homes．P．\＆P．f1．85 warehouse，in surgery and in homes．P．\＆P．£1．85 Also F．M． 2 channel＂touch＂model $\mathbf{£ 4 9 \cdot 9 5}+\mathrm{VAT}$ NEW AMERICAN TYPE CRADLE
TELBPHONE AMPLIFIER for＇Spaceman＇toy．Gives 5 audiodisual programs．
Requires 8 ohm speaker（not supplied）． 85 Cat．No SIMULATED LASER CANON for spaceman toy SIMULATED LASER CANON for spaceman toy
LED on moulded 6^{\prime} lead with mini jack plug．Fits socket On Sound Effects Module．Only 20p each． GIANT LED DISPLAY Common cathode，non－
multiplexed super 4 digit LED clock display．Lots of multiplexed super 4 digit LED clock display．Lots of
other uses too．Only $£ 3.95$ each．Cat．No． 204 ． DIGITAL MULTIMETER CHIP Builds into high ac－ curacy dvm or panel meter．Requires additional cir－
cuitry．with data and circuit．MM5330 only $£ 3.55$ ． POLARIZING FILTER MATERIAL $0.006^{\prime \prime}$ thick plastic film．Any size cut－even 1 sq ．inch．Max．width 19＂，any length．Only 3p per sq．inch．Cat．No． 701.
DIGITAL ALARM CLOCK CHIP MM5316 alarm clock chip．With data $\mathbf{£ 2 . 3 5}$ ．Cat．No． 203 ．
LED DISPLAYS Red common anode． $0.3^{\prime \prime}$ digits with crisp，bright segments． 14 pin DIL package．Supe value at 52p．Cat．No． $\mathbf{M I N I} 8$ DIGIT LED DISPLAY 8 digit． 7 segmen with $0.1^{\prime \prime}$ high digits．99p each Cat No 312 ． with KEY KEYBZARDS Calculator keybards，ex
20 Kellent key action． 20 keys per board． 2 keyboards fo cellent key action． 20 keys per board． 2 keyboards for

Untested Items
FLUORESCENT CALCULATORS Manufacturers rejects．Most repairable with＇repairing calculator＇info． with tulf memory．
$\mathbf{£ 2 . 5 0}$ ．Cat．No． 107.
SATISFACTION GUARANTEED ON ALL ITEMS OR
POST AND PACKING PLEASE ADD 40p
IOVERSEAS ORDERS ADD £1
LOTS MORE GOODIES IN OUR CATALOGUE SEND MEDIUM SIZED SAE FOR YOUR FREE COP V．A．T． $\begin{gathered}\text { PLEASE ADD 15\％OF } \\ \text { COSGLUDING YOUR THE } \\ \text { PACKING）}\end{gathered}$
（18）

+ VAT $£ 2.85$ $+\mathbf{P} \boldsymbol{A} \mathbf{P} \mathbf{£ 1 . 2 5}$
+ Latest transistorised Telephone Amplifier，with detached plug－in speaker．Placing the receiver on to the cradle activates a switch for immediate two－way
conversation without holding the handset．Many people can listen at a time．Increase efficiency in office，shop，workshop．Perfect for＂conference＂ calls：leaves the user＇s hands free to make notes，
consult files．No tong waiting，saves time with long－ distance calis．On／off switch，volume control，con versation re
$\mathbf{P} \& \mathbf{P} £ 1.25$.

DOOR ENTRY SYSTEM

No house／business／surgery should be without a
DOOR ENTRY SYSTEM in this day and age．The modern way to answer the door in safety to un－ wanted callers．Talk to the caller and admit him only if satisfied by pressing a remote control bution
which will open the door electronically．A boon for the invalid，the aged，and busy housewife．Supplied complete d．i．y．kit with one internal Telephone， outside Speaker panel，electric door lock release（for Yale type surface latch lock）；mains power unit， cable（8－way）fo 50 and wiring diagram．Price

10－day price refund guarantee on all itenis
WEST LONDON DIRECT SUPPLIES（PE 1）
169 KENSINGTON HIGH STREET
LONDON，W8

F．BROWN \＆CO．

Kits available
KS 100 F．M．Receiver $\mathbf{£ 5 . 3 1}$ KS 200 F．M．Transmitter $£ 7.36$ ．
KS $2403 \times 1000 \mathrm{~W}$ Sound to Light Unit $£ 13.63$ ．

Also in stock a wide range of Components，Breadboards， Loudspeakers，Soldering Irons etc． Stockists for Vero，S．C．S． Ice Meters，Expo Drills，Eagle， Bulgin，Weller，Babani Books．

Prices include VAT，25p P\＆P per kit
＇SPECIAL OFFER＂
250 V Mullard Caps， 10 EA .001
01， 1 uf．70p incl．P\＆P．

F．Brown \＆Co．，
 Dept．M．O．／P．E．，
 45 George IV Bridge， Edinburgh EH1 1EJ．

Wilmslow Audio

THE firm for speakers!

 SEND 50p FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.
AUDAX - AUDIOMASTER • BAKER BOWER \& WILKINS - CASTLE - CELESTION - CHARTWELL - COLES - DALESFORD DECCA - EAGLE - ELAC - EMI - FANE GAUSS - GOODMANS - HARBETH ISOPHON - I.M.F. JORDAN - JORDAN WATTS - KEF - LOWTHER - McKENZIE MISSION - MONITOR AUDIO - MOTOROLA - PEERLESS - RADFORD - RAM - ROGERS RICHARD ALLAN - SEAS - SHACKMAN - STAG - TANNOY - VIDEOTONE - WHARFEDALE -

WILMSLOW AUDIO (Dept. P.E.)

35/39 ChURCH STREET, WILMSLOW, CHESHIRE

Tel: 0625529599
FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS ETC.
Tel: 0625526213
(SWIFT OF WILMSLOW) FOR HI-FI \& COMPLETE SPEAKERS

P.E. STAR SPINNER

A FULL KIT OF PARTS AND ALSO INDIVIDUAL ITEMS ARE AVAILABLE AS FOLLOWS FROM FELTGLOW LTD, 105B LONDON ROAD, BEXHILL, E. SUSSEX

DESIGNER APPROVED PARTS FOR THIS EXCITILG PROJECT

P.C.B. Drilled \& Tinned

MM2708 Ready Programmed
Mains Transformer
Set 20 TRIACS
Set 20 Darlington Opto's
Complete set of I.C.'s (other than above) \& Holders
Set of Resistors, Caps, etc.
Set of Fuse Holders/Fuses/
Switches/LEDs
Complete Set of M
Complete Set of Metal
Printed Front Panel
Printed Chassis
Lid \& Heatsinks \& Grommets
Chrome Front Screws \& Internal Fixings
Set of DIN Rail Terminals \& Rail
If Purchased Separately

$£ 6.45$

£11.85
£11.75
$£ 11.75$
$£ 28.50$
$£ 19.40$
$\mathfrak{£ 9 . 8 0}$
$£ 4.80$
$£ 10.65$
sing:
-SAVING 16

SAVING $£ 16.60$ OVER INDIVIDUAL PRICES.
COMPLETE KIT INCLUDES FULL $\mathbf{8 8 . 6 0}$ CONSTRUCTIONAL DETAILS

SPECIAL

 OFFERFULL KIT PRICE OF f109.95
AVING f16.60 DETALS

PRICES INCLUDE VAT - ADD POST \& PACKING 60p ON INDIVIDUAL ITEMS - COMPLETE KIT P\&P FREE

Send Cheque or Crossed P.O.'s or Write/Phone your Card No.

FELTGLOW LTD.
105B LONDON ROAD. BEXHILL, E. SUSSEX. (0424) 221686. wave! Learn to program.
Millions of jobs are threatened but millions will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency, with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program,
 debugging, and clear documentation
BOOK 1 Computers and what they do weli; READ, DATA, PRINT, powers, brackets, variable names; LET; errors; coding simple programs. BOOK 2 High and low level languages, flowcharting; functions; REM and documentation; INPUT, IF.... THEN, GO TO; limitations of computers, problem definition. BOOK 3 Compilers and interpreters; loops, FOR...NEXT, RESTORE; debugging; arrays; bubble sorting; TAB BOOK 4 Advanced BASIC; subroutines; strings; files; complex programming; examples; glossary.
Also THE BASIC HANDBOOK (BHB) $£ 11.50$ An encyclopaedic guide to the major BASIC dialects. A must if you use other peoples' programs
and: ALGORITHM WRITER'S GUIDE (AWG) £4.00 Communicate by flow chart! Learn to use Yes/No questions for: procedures, system design, safety, legislation etc.

Understand Digital Electronics

Written for the student or enthusiast, this course is packed with information, diagrams, and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters, and simple arithmetic circuits; and finally to an understanding of the design and opera-

tion of calculators and computers
BOOK 1 Decimal Octal, hexadecimal, and binary number systems and conversion between number systems; negative numbers; complementary systems. BOOK 2 OR and AND functions; multiple-input gates; truth tables; De Morgan's Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic. BOOK 3 Haff, full, serial, and paraliel
adders; subtraction; processors and ALU's; multiplication and division BOOK 4 flip flops: adders; subtraction; processors and ALU's; multiplication and division. BOOK 4 flip flops;
shift registers; asynchronous, synchronous, ring, Johnson, and exclusive-OR feedback counters; ROMS and RAMS. BOOK 5 Structure of calculators; keyboard encoding; decoding display-danistion character representation; program storage; address modes; in put/output systems; program interrupts; interrupt priorities; programming, assemblers; computers; executive programs; operating systems.
DIGITAL COMPUTER LOGIC \& ELECTRONICS. (DCL) £7.50 A course covering the material in italics above, but at a slower pace. (4 vols)
GUARANTEE - No risk to you. If you are not completely satisfied your money will be refunded without question, on return of the books in good condition. CAMBRIDGE LEARNING ENTERPRISES, RIVERMILL SITE, FREEPOST, ST, IVES.

HUNTINGDON

FOUR WAYS TO PAY

1) A U.K. cheque or a U.K. postal order (Not Eire or overseas
2) A bank draft, in sterling on a London bank (available at any major bank
3) Please charge my Access/M.Cn Barclay/TrustC/Visa \square Am. Exp. \square Diners \square 4) Or phone us with these credit card details - 048067446 (ansaphone) 24 hour service.

Card No Signed
THESE PRICES COVER THE COST OF SURFACE MAIL WORLDWIDE. AIRMAIL:
Eur, N.Af, Mid.E. add $1 / 3$ to price of books: Jpn, Aus, N.Z, Pcfc add $2 / 3$: elsewhere add $1 / 2$

Name.
Address.

Cambridge Learning Limited, Unit 28, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR England

When replying to Classified Advertisements please ensure.
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

BOURNEMOUTH/BOSCOMBE. Electronic components specialists for 3 years. Forresters (National Radio Supplies) Late Holdenhurst Rd. Now at 36. Ashley Rd., Boscombe. Tel. 302204. Closed Weds.
CLEARANCE PARCELS: Transistors, Resistors, Boards, Hardware, 10 lbs only $\mathbf{£ 5 . 8 0 !} 1,000$ Resistors $\mathbf{£ 4 . 2 5}, 500$ Capacitors £3.75. BC 108, BC171, BC204, BC230, 2N5061, CV7497 Transistors 10 70p, 100 £5.80. 2N3055, 10 for £3.50. S.A.E. Lists: W.V.E. (2), 15 High Street, Lydney, Gloucestershire.

YOUR OWN P.C.B's \& FRONT PANELS
EASILY MADE, NO COMPLICATED PROCESSES Full details S.A.E.
Drafting packs: pcb $\mathbf{f 1 . 8 0}$; panel $\mathbf{£ 2 . 2 5}$. Processing packs: pcb $\left(3^{\prime \prime} \times 4^{\prime \prime}\right) £ 3.72$, panel $\left(5^{\prime \prime} \times 6^{\prime \prime}\right) £ 3.48$. Drills, etchant, $\left.4^{\prime \prime}\right) £ 3.72$, panel ($5^{\prime \prime} \times 6^{\prime \prime} £ \mathbf{£ 3 . 4 8}$. Drills,
pcb board and all materials available.
WE ALSO SUPPLY R.S. QUALITY COMPONENTS LYNWOOD ELECTRONICS

20, Stourcliffe Avenue, Bournemouth, BH6 3PT.

SMALL ADS

The prepaid rate for classified advertisements is 28 pence per word (minimum 12 words), box number $60 p$ extra. Semi-display setting $£ 9.50$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

TURN YOUR SURPLUS Capacitors, transistors, etc., into cash Contact COLES-HARDING CO.. 103 South Brink, Wisbech. Cambs. 0945-4188. Immediate settlement.

DO YOU WANT TO MAKE YOUR OWN P.C. BOARD?

We will supply $1 / 16$ th E.G. board with 1 oz . copper from stock. C. Bull wis
P.C. Board - Single sided per sq. ft. $£ 2.00$. Double sided per sq.
ft. $£ 2.50$. Dry fim laminated with negative resist. - Single sided per sq. ft . $\mathbf{~ 4 . 7 5}$. Double sided per sq. ft. £5.50. Etching crystals
 box $10^{\prime \prime} \times 6^{\prime \prime}{ }^{\mathbf{~} 45.00}$. P.C.B. etching etc.' trays. $\mathbf{f 1 . 5 0}{ }^{\circ}$ Postage 30 p per item under $£ 20$, overseas at cost. VAT export
nil. other add 15% to total order. nil. other add 15% to total order.
DON'T DELAY, SEND TODAY to
PANELECTRONICS LTD., Eastern Way, Bury St.
Tel. 4348.

BALLARD'S OF TUNBRIDGE WELLS have moved to 54 , Grosvenor Road, no lists. S.A.E. all enquiries phone Tunbridge Weils 31803

8 PAGE LIST FREE - thousands of different items, all at cut price. Send SAE to PC Electronics. Thornhill, Romsey Road, Whiteparish, Salisbury

SERVICE SHEETS

SERVICE SHEETS from $\mathbf{5 0 p}$ and S.A.E. Catalogue $\mathbf{2 5 p}$ and SERVICE SHEETS from 50 p and S.A.E. Catalogue $25 p$ and
S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, S.A.E.
Sussex.

G.T. TECHN. INFO. SERVICE

76 Church St. Larkhall, Lanarks ML9 1HE
Any single service sheet $£ 1+$ large SAE 1,000 s of sheets/manuals always in stock. Sole suppliers of all T.V. Repair Systems
Giant Diagram Manual for Washing Machines Single tubs/twin tubs/auto - only $\mathbf{£ 1 3 . 5 0}$
Repair Data any named T.V. $\mathbf{£ 5 . 5 0}$ (with circuits, etc. £7.00). SAE for newsletter, bargain offers etc. Phone 0698883334 after 4pm.

BELL'S TELEVISION SERVICES for Service Sheets on Radio, Tv, etc $\mathbf{f t . 0 0}$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire, Tel: (0423) 55885.

BOOKS AND PUBLICATIONS

ANy SINGLE SERVICE SHEET £1/L.S.A.E. Thousands different repair/service manuals/sheets in stock. Repair data your named T.V. £6, (with circuits £8). S.A.E. Newsletter, pricelists, quotations. AUS (PE), 76 Churches, Larkhall, Lanarkshire. (0698 883334).

SOFTWARE

THE ZX80 MAGIC BOOK £4.75
For machines with 1-3K RAM. New edition 3 contains 20 plus
programs including one which allows you to make music with programs including one which allows you to make music with
your ZX 80 and games such as Moon Lander. Hammurabi, your lX 80 , and games such as Mon Lander, Hammurabi,
Othello. Hexpawn and Animals. Also sections on How it Works. Ploting. Using USR, Converting other BASICs, and Hardware Notes including circuits for static and dynamic memory extensions and $1 / \mathrm{O}$.

TIMEDATA LTD.,
 57, Swallowdale, Basildon, Essex.

COMPUKIT 4K Alien Invaders Cassette $£ 2.00$. Steven Hall, 14 Christchurch Lane. Lichfield, Staffs.

INVASION. Exciting M/C game for UK 101 with free pools predictor. Both use under 4 K . Send $£ 2.50$ for tape to Mr. A. Pettitt, 2, Caburn View, Firle, Lewes, Sussex

ZX80 GAMES-MAZE (1 \& 11), Battleships, Pontoon, Slot Machine, Maths Quiz, Guess The Number, all on one cassette. Send $£ 6.50$ to P. Bramwell, 87 Anderson Crescent. Great barr, Birmingham B43 7ST.

EPROM SINGLE/TRIPLE Rail Fast Programming Service. 2516 (2716). 2532, 2758, 2508; 2708, 2716, 2704. £2/1K, earasing $60 \mathrm{p} /$ memory, $P \& P$ 40p. Petron Electronics, 1 Courtlands Road. Newton Abbot, Devon TQ12 2JA (Dept. $\mathrm{PE})$,

COMPUKIT SOFTWARE, word processor, calendar diary, editor mailing list, line renumber, 10000 Baud cassette routine etc. S.A.E. for details N.V. Davies, 11 Holloway Haverfordwest, Dyfed.

EDUCATIONAL

TELEVISION COMPUTER \& RADAR SYSTEMS SERVICING

TWO YEAR full-time Modular Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
- MONO TV \& CCTV
- COLOUR TV \& VCR
- DIGITALTECHNIQUES
- COMPUTERS \&

MICROPROCESSORS

- RADAR

Each of the above Modules are 12 weeks in duration. Individual Modules can be arranged for applicants with suitable electronics background.
Tuition fees (UK \& Overseas) $£ 400$ per Module. ? Computer Module $£ 500$.
Next session starts January 5 th.
(Also available $2 \frac{1}{2}$ year course in Marine Electronics \& Radar.)
Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: PEAA, 20 Penywern Road, London SW5 9SU. Tel: 01-373 8721.

CAREERS in Marine Electronics. Courses commencing September and January. Further details, the Nautical College, Fleetwood FY7 8JZ. Tel. 0391779123.

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
 Dept. 272C Intertext House, London SW8 4UJ
 Tel. 01-622 9911 (all hours)

State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers: also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
 Dept. 272C Intertext House, London SW8 4U3 Tel. 01-622 9911 (all hours)
 State if under 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. 272C Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

FOR SALE

MAGS. P.E. 130 off $65-75$, PW 110 off $66-75$, P.T.V. 162 off $50-64$. R \& TV Service Sheets 670 off 9 volumes R \& TV Servicing. Offers. Tel. Brentwood 212230 (Essex).
P.E. NOVEMBER 1964 (Issue 1) - October 1970. Offers Phone 084320789 after 5 p.m.

UK101 COMPUTER: 8 K memory cased, Manuals and Cassettes. £200. Tel. 0767-317317.

EXCHANGE. ARP Odyssey in mint condition for E.T.I 4600. Phone Byfleet 44531 .

COMPONENTS. semi-conductors, resistors, capacitors, mixed components. SS2 breadboard MK 14 VDU ICs basic electronics (5 books) in plastic case $£ 60$ (cost $£ 110$). 061 3365110.

NEW BACK ISSUES of 'Practical Electronics' available 90p each Post Free. Cheque or uncrossed p/o returned if not in stock - BELL'S TELEVISION SERVICES, 190 Kings Road, Harrogate. N. Yorks. Tel: (0423) 55885.

PE/PW/REC 1964-75 50p. SAE for refund if sold. C. Redwood, 45A. Lulworth Avenue, Poole, Dorset.
P.E. STRING ENSEMBLE, completely built and working, clef components used. $£ 210$ o.n.o. Mr Hinchley, 415, Whaddon Way, Bletchley, Milton Keynes, Bucks MK3 7NR.

MISCELLANEOUS

LEARN ELECTRONICS FAST. New, unique, brilliantly simple. Selected by BBC TV. No soldering. 30-kwikbuild electronics projects and know-how. Identify components, read circuit diagrams, break the colour code and hook up circuits that really work. Kit complete with simple-to-follow instructions, circuit plans, components and Tutronik connection system in compact storage wallet. Only $£ 12.95$ plus 75 p p p ($\mathrm{f} 2.75 \mathrm{p} \& \mathrm{p}$ elsewhere). Available only from Dept PE, Technocentre Ltd., 140 Norton Rd, Stockton-on Tees, TS20 2BG.

> MAKE YOUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack (5 sheets, lines, pads. I.C. pads) $\mathbf{£ 2 . 0 0}$. Large range of single sheets in stock at 43p per sheet.
> Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. Full instructions supplied. 2 sheets $(20 \times 25 \mathrm{~cm})$ negative paper and 2 sheets ($18 \times 24 \mathrm{~cm}$) positive
film $£ 1.80$. Drafting film $(30 \times 21 \mathrm{~cm}) \mathbf{2 2 p}$ per shee
> 17p stamp for lists and information. P\&P 30p/order P.K.G. ELECTRONICS

> OAK LODGE, TANSLEY, DERBYSHIRE

EXACT TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, self setting at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, also parallel BCD output, receives Rugby atomic time signals, built-in antenna, $£ 54.80$

VER, as in MSF Clock, serial data output. $£ 15.70$.
Each fun-to-build kit includes all parts, printed circuit, case, instructions, postage etc, money back assurance so

CAMBRIDGE KITS

45 (FN) Old School Lane, Milton, Cambridge

SWEDISH ELECTRONIC FIRM interested in English products want contact with manufacturer or others interested in export to Sweden. H.B. Electronic Products, Box 509, S $19^{-} 00 \mathrm{Bro}$, Sweden.

OUT NOW!! The 1981 Greenweld Component Catalogue. 60 p Discount Vouchers, Reply Paid Envelope. Free Bargain List \& Data Sheet. Only 75p. Greenweld, 443C, Millbrook Road, Southampton, SO1 0HX.

CABINET FITTINGS

Stage Loudspeakers and Amplifier Cabs Fretcloths, Coverings, Strap \& Recess Handles, Feet, Castors, Jacks \& Sockets, Cannons, Bulgin 8 ways, Reverb Trays locks \& Hinges, Corners, Trim, Speaker Bolts etc.

> ADAM HALL (P.E. SUPPLIES)
> Unit 3, Cariton Court, Grainger Road Southend-on-Sea, Essex.

SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a Low $\mathbf{1 1 . 0 5}$. Chassis punching faciitues at very competitive prices, 400 models to choose from. Suppliers only to Industry \& The Trade. BAZELLI (Dept. No. 23). St. Wilfrids, Foundry Lane, Halton, Lan caster. LA16LT.

SEEN MY CAT? 5000 odds and ends. Mechanical, electrical. Cat free. Whiston Dept. PRE, New Mills, Stockport.
AMAZING ELECTRONIC PLANS. Lasers - burning, cutting. rifle. lighs shows. Ultrasonic Force Fields - weoponry, satellite. TV'. giant tesla. split the atom; lots more. Catalogue - E p. Plan Centre. St John Street, Bridgnorth, Shropshire.

BURGLAR ALARM equipment flush contacts $£ 1.05$. Surface Contacts $£ 1.12$. Standard Pad $£ 1.96$. Stair Pad $£ 1.50$. 106 dB 12 v Siren $£ 10.50$. $6^{\prime \prime} 12 \mathrm{~V}$ Bell $£ 10.50$. PVC coated steel bell box $£ 8.004$ core cable $100 \mathrm{~m} £ 9.25$. All prices fully inclusive. Sigma Security Systems, 13 St Johns Street. Oulton. Leeds LS26 8JT.

RYDER ORGAN SYSTEM

The WW classical design for full-size keyboards, including
 couplers. Expanded range of p.c. boards \& data available includes chorus, vibrato, combination stop control.
Reverberation. A new compact solid-state unit gives smooth natural sound. Demo cassette, on loan, deposit $£ 1.50$, refund $£ 1.00$. (Prices UK only).
HIYKON LTD. (P), Woodside Croft, Ladybridge Lane, Bolton BL1 5ED.

ENAMELLED COPPER WIRE

SWG	1 lb	$\frac{1}{2}$ lb	$\frac{1}{4} 1 \mathrm{tb}$
10-19	2.95	1.70	0.85
20-29	3.05	1.75	0.95
30-34	3.45	1.90	1.00
35-39	3.75	2.10	1.15
40-43	4.95	2.75	2.15
44-46	5.90	3.50	2.40

INDUSTRIAL SUPPLIES

102 Parrswood Road, Withington, Manchester 20.
Prices include P\&P in UK

PSYCHOTRONIC GENERATORS, gravity leaser, electrokinesis, electrophotography, skinvision. SAE $4+9^{\prime \prime}$ Paralab, Downton. Wilts.

UITRASONIC TRANSOUCERS. $£ 2.85$ per pair +25 p P\&P. Dataplus Developments, 81 Cholmeley Road, Reading, Berks.

DIGITAL WATCH BATTERY REPLACEMENT KIT

These watches all require battery (power ceil) replacement at regular intervals. This kit provides the means. Wegnetic eyeglass, non-magnetic case knife and screwback case opener, also one doz. assort push pieces, full instructions and battery identification chart. We then supply replacement batteries-vou fit them. Begin now. Send $\mathbf{£ 9 . 0 0}$ for complete kit and get into a fast growing business. Prompt despatch

BOLSTERINSTRUMENT CO.

(PE20)
11 Percy Avenue, Ashford, Middx. TW15 2PB.
CLEARING LABORATORY: scopes, generators, P.S.U.'s, bridges. analysers. meters. recorders. etc. 0403-76236.

PLEASE MENTION

PRACTICAL ELECTRONICS
WHEN REPLYING TO

BIG EARS

£99 SYNTHESISER DIY. Professional results easy build. SAE Dewtron. 254 Ringwood Road. Ferndown. Dorset. BH22 9AR.
dIGITAL WAJCH BATTERIES. Any sort $75 p$ each + p.p. Send S.A.E. or $15 p$ with number or old battery to Disclec. Y. $5 t$ Fullbridge Road. Werrington. Peterborough PE4 6SB.

PRACTICAL ELECTRONICS P.C.B.'s

Jun. 80 Mastertune EP343 $£ 3.80$ (Not plated through)

Jul. 80 Tape Slide Synch EG353 $£ 1.28$
Sept. 80 DISCO deck EP365 $£ 3.26$
Sound Gen. EC14 $£ \mathbf{2 . 5 3}$
$\begin{array}{ll}\text { Oct. } 80 & \text { Disco deck AE2O2 } £ \mathbf{~ 3 . 1 1} \\ \text { Cine frame Counter EG408 98p }\end{array}$
Nov. 80 Disco desk EA208 $\mathbf{£ 2 . 9 7 \text { , EA2 } 1 8 \mathbf { £ 2 . 8 5 } \text { tinned }}$
Dec 80 connectors
Dec. 80 Set of 3 pcb's for Microtune, solder resist
coated. DESIGNER APPROVED $£ 11.50$
For full list and current pab's please send SAF Pcb's alsa produced to customers own masters. Trade enquiries welcomed. Pease write for quate. Euo pease.
Postage. - Please add 30 p postage and packing to complete order. Europe 65 p .
PROTO DESIGN
14 Downham Road, Ramsden Heath
Eillericay, Essex CM11 1PU Tericay, Essex CM11

PRINTED CIRCUIT BOARDS. Glass Fibre tinned and Drilled Prototypes to batch runs. Quick turn-round, competitive prices. Send S.A.E. for quotations. R.D. Electronics, 12, Whiteoaks Road. Oadby. Leicester. 0533716273

TEMPERATURE GAUGES. $0-120^{\circ} \mathrm{C}$ black dial, chrome bezel. Remote sensor on $38^{\prime \prime}$ capilliary, snap fitting in 55 mm hole. $£ 1.85$ (incl. P\&P) L.E.M. Services, 239 Rugby Road. Leamington Spa. Warwickshire. 0926-20622.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4				
ENAMELLED COPPER WIRE				
SWG	1 lb	$80 z$	$40 z$	202
8 to 29	2.76	1.50	0.80	0.60
30 to 34	3.20	1.80	0.90	0.70
39	3.40	2.00	1.10	0.80
40 to 43	4.75	2.60	2.00	1.42
47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 30	6.50	3.75	2.20	1.40
TINNED COPPER WIRE				
14 to 30	3.85	2.36	1.34	0.90
Prices include P\&P, VAT and wire Data. SAE for list. Dealer enquiries welcome. Reg office 22 Coningsby Gardens.				

RUSSIAN AC/DC MULTIMETERS, famous type U4324, guaranteed, fibreboard storage case. $£ 17$ (multiples $£ 16.50$). Fantastic specification for price. Doska Chess Supplies. 29. Farnham Way, Poulton-le-Fylde, Lancs.

The amazing Videograph, as featured recently in Electronics Today International, links your Hi . Fi with any Colour TV to produce a Fantasia of hypnotic visual effects. The system displays stereo music as britiantly coloured waverorms against an ever changing background. For the technically minded, a square-wave signal generator is builtin, permitting advanced demonstrations of transient response diY Kit only $£ 33.95$

Case \& Controls $£ 15.95$ or READY BUILT $£ 69.95$

WiLLIAN STLAART Dower House, Billericay Herongate. Brent Essex CM1335D
phore: Brentwood 102 include VAT
and postage

UNCOMPLETED SYNTHESISER. Boards, pots, switches knobs, PSU's, info. etc. Sophisticated machine. Phon Gavin McCutcheon on East Kilbride 32459 for details.
burglar alarm eduipment. Latest Discount Catalogue out now! Phone C.W.A.S. Alarm 0274682674

ZX80 SINCLAIR built with manual and PSU $£ 65$ o.n.o Adams. 'Norwood'. Meirion Strect. Trecynon. Aberdare Mid-Glam.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

INDEX TO ADVERTISERS

```
Acorn Computers
Acorn Comp
Alcon
Audio Electronics
Barrie Electronics
Bi-Pak
Birkett J.
*olster Instruments Co
British National Radio & Electronics Schoo
Brown F.
C.U.A.
Cambridge Kits
Cambridge Kits
Chromasonic Electronic
Clef Products
Computer Components (Teleplay)
Continental Spec.
C.R.Supply Co.
Davian
Doram
ziubas, M
Easicomp Ltd
Feltglow
Global Electronics
G.T. Technical Information Service
Hall, Adam
Heathkit
Home Radio
I.C.S. Intertext
Industrial Supplies
Jayen Developments
& B Electronics
London Electronics College
Lynwood Electronics
Maclin-Zand
Maplin Electronics
Marshall A
Micro Circuits
Pan Electronics
Parndon
Phonosonics
PKG Electronics 
Proto Design
Radio Component Specialists
Radio & T.V. Components
Riscomp Ltd
Safgan
Saxon Entertainment
Scientific Wire Co ..
Sentinel Supply
Solid State Security
Stevenson
Swanley Electronics
Tempus
T.K. Electronics
Teleradio ..
itan Transformers & Components
Time Data Litd
Watford Electronics
West London Direct Supplies
Williamson Amplification
William-Stuart Systems (Video Music)
Wilmslow Audio
Ambit
    . }7
Cambridge Learning
Dziubas,M
```


VIDEOTEX

- the new television telephone information services by R. Woolfe
ELECTRONIC TEST EQUIPMENT
ELECTRONIC IE
CONSTRUCTION
by F. G. Rayer price: $\mathbf{f 2 . 0 0}$
ELECTRONIC MUSIC SYNTHESIZERS
by D. T. Horn price: $\mathbf{£ 4 . 0 0}$
POWER SUPPLY PROJECTS
by R. A. Penfold price: $£ 2.00$
99 PRACTICAL ELECTRONIC
projects
by H . Friedman price: $\mathbf{£ 3 . 6 0}$
1001 THINGS TO DO WITH YOUR
PERSONAL COMPUTER
by M. Sawusch
price: $\mathbf{£ 5 . 7 5}$
LC CIRCUITS
by R. P. Turner
price: $\mathbf{£ 4 . 1 5}$
DESIGN OF TRANSISTOR CIRCUITS WITH EXPERIMENTS
by Dr. K. A. Pullen, Jr. price: $\mathbf{£ 9 . 4 0}$
THE MASTER IC COOKBOOK
by C. L. Hallmark
price: $\mathbf{£ 7 . 0 0}$
RADIO \& T.V.SERVICING
1979/80 MODELS
by R. N. Wainwrigh
price: $\mathbf{£ 1 5 . 6 0}$
*ALL PRICES INCLUDE POSTAGE *
THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of British and American Technical Books

19-21 PRAED STREET LONDON W2 1 NP Phone 01-4029176 Closed Saturday 1 p.m

PLEASE

MENTION
PRACTICAL ELECTRONICS

WHEN
REPLYING TO
ADVERTISEMENTS

THIS Christmas
treat yourself to a HOME RADIO CATALOGUE

- About 2,000 items clearly listed. - Profusely illustrated throughout. - Large A-4 size pages
- Bargain list, order form and 2 coupons each worth $25 p$ if used as
directed, all supplied free. directed, all supplied free.
Price $£ 1$, plus 50 p for post, packing and insurance.
Send cheque or P.O. for $£ 1.50$
HOME RADIO Components LTD Dept. PE, P.O. Box 92, 215 London Road. Mitcham, Surrey. 01-5435659

 with thousands of photographs and illustrations and page after page of invaluable data. We stockjust about every useful component you can think of. In fact, well over 5000 different lines, many of them hard to get from anywhere else. Hundreds and hundreds of fascinating new lines, more data, more pictures and a new layout to help you find things more quickly.

กาำผำ니ำ

[^2]
[^0]: (c) IPC Magazines Limited 1981. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: CONSTRUCTORS NOTE:
 Lascar Electronics offer a calibration service ($£ 7.50$ inc. VAT) and a combined trouble-shooting and calibration service ($£ 10.00$ inc. VAT) for the Micro Tune.
 A complete Kit of all parts for the PE Micro Tune is available from Lascar Electronics Ltd., Unit 1, Thomasin Road, Burnt Mills, Basildon, Essex SS 13 1LH (price $£ 69.80$ inc. VAT)

[^2]: Maplin Electronic Supplies Ltd.
 All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR.
 Telephone: Southend (0702) 554155 . Sales (0702) 552911.
 Shops:
 159-161 King Street, Hammersmith, London W6. Telephone: $101 / 7480926$. 284 London Road, Westcliff-on-Sea, Essex. Telephone: Southend 10702) 554000. Both shops closed Mondays.

