Also...

SPACE EVADERS • COMPLETE INDEX • VOL.17
CHOOSE ATOM POWER
At work or play—everything you need in a personal computer

The Atom is a machine to be used. Every day, day after day. It's a full function machine—check the specification against others. It's rugged, easy to operate built to last and features a full-size typewriter keyboard.

Just look at some of the features!
- More hardware support than any other microcomputer
- Superfast BASIC—can be updated to BBC BASIC if required
- High resolution and comprehensive graphics ideal for games programmers and players
- Integral printer connection
- Software available for games, education, maths, graphics, business, word processing, etc.
- Other languages: Pascal, FORTH, LISP
- I/O port for control of external devices
- Built-in loudspeaker
- Cassette interface
- Full service/repair facility
- Users club

Optional Extras
- Network facility with Econet
- PAL UHF colour encoder
- Add-on cards include 32K memory, analogue to digital, viewdata VDU, disk controller, daisywheel printer, plus many, many more!
- Power supply

FREE MANUAL
The Atom's highly acclaimed manual comes free with every Atom and leaves nothing out. In just a while you'll be completely at ease with your new machine! Within hours you'll be writing your own programs.

YOU AND YOUR CHILDREN
More and more schools are buying Atoms. More and more children will learn on an Atom. You can give them that extra familiarity with an Atom in the home.

Computer stores are stocking Atoms—there's a list below, but if you have any problems getting hold of one just fill in the coupon and we'll rush one to you within 28 days. If the machine isn't all you expected, or all we've told you, just return it within 14 days for a full refund.

MOM, Aberdeen 22363; Broadway Elect, Bedford 213639; Owl Computers, Bishops Stortford 52682; Elite Services, Bradford 491371; Games, Brighton 698424; Electronic Information Systems, Bristol 774564; Cambridge Comp Store, Cambridge 65334; Cardif Micros, Cardif 37007; Bellard Elect, Chester 380123; Empire, Colchester 865926; Silicon Centre, Edinburgh 322527; Essex Computing, Glasgow 204 1511; Control Universal, Harlow 31604; Unisys Eel, Huyton, Castle Elect, Huyton 437875; Curry's Micro Systems, High Wycombe, Customised Electronics, Leeds 722332; D.A. Computers, Leinster 708402; Microdigital, Liverpool 236 6770; Battery Elect, London 488 3316; Eurocal London 729 5551; Ricevuto London 959 7119; Sinclair Equip. Int (Eпор) London 235 9649; Off Records, SW1 674 2053; Technomatic, NW3 3380; NSC Comp Shops, Manchester 832 2205; Customised Electronics, Middlesbrough 247727; Compishop, New Barnet 441 2922; H.C.C.S., Newcastle 821924; Newcastle Comp Services, Newcastle 815325; Avalon Comp Centre, Norwich 296 523; Leasline Viewdata, Nottingham 396976; H.D.S. Electrical Portsmouth 814728; Computers For All, Roford 751906; Intelligent Artifacts, Royston, Arlingon 689; Computer Facilities Scarchmore, Darlow Micro Centre Sheffield 856490; Superior Systems, Sheffield 77924; O-FIT Systems, Swindon 65385; 3D Computers, St Albans 813493; Atom Micro Comp, Tonbridge, Paddock Wood 3861; Northern Comp, Warrington 601683; Compass Design Wigan Standish 426252.
CONSTRUCTIONAL PROJECTS

SPACE EVADERS by Tom Gaskell B.A. .. 22
Galactic battle between aliens and humans

PE CAR COMPUTER Part 1 by P. MacFarlane 30
Modes of operation, boards and construction

PE ROBOTS Part 2 by Richard Becker and Tim Orr 42
The interface board

PE BANDBOX Part 2 by Alan Boothman B.Sc 52
Principles and construction of the peripheral system

PE RANGER Part 4 by Michael Tooley B.A. and David Whitfield M.A., M.Sc 60
Alignment and fault finding

GENERAL FEATURES

DIGITAL DESIGN TECHNIQUES Part 5 by Tom Gaskell B.A. 38
Advanced sequential circuits

SEMICONDUCTOR UPDATE by R. W. Coles 48
LM1894 ICL 7663 2800

MICROPROMPT ... 66
Hardware and software exchange point for PE computer projects

NEWS AND COMMENT

EDITORIAL .. 17

NEWS & MARKET PLACE .. 18
Including Countdown and Points Arising

INDUSTRY NOTEBOOK by Nexus ... 21
What's going on behind the scenes

SPECIAL OFFER—HI-FI ... 29
A passport to listening pleasure

SPACEWATCH by Frank W. Hyde .. 51
News of the second shuttle mission

SPECIAL OFFER—DIGITAL MULTIMETER 59
A six function meter kit with I.c.d. for under £20!

INDEX FOR VOLUME 17 ... 68

OUR JANUARY ISSUE WILL BE ON SALE FRIDAY, 11 DECEMBER 1981
(for details of contents see page 37)
VAT
Export orders no VAT. Applicable to U.K. Customers only. Unless stated otherwise, all prices are exclusive of VAT. Please add 15% to the total cost inc. P & P.

TRADE AND EXPORT INQUIRY WELCOME. P & P ADD 50p TO ALL ORDERS DESPATCHED BY RETURN OF POST.

TERMS OF BUSINESS:

TRADE ORDER DISCOUNTS AVAILABLE ON Q.A.T.
EPSON MX Series PRINTERS

- MX107 Tractor Feed, 9x9 matrix, 80 column Speed 80 CPS bi-directional Centronics Interface, Baud rate 110-19200 (RS232)
- MX80FT Has Friction & Tractor Feed plus all the MX80FT's features
- MX80FT2 Has high resolution Graphics option plus all the MX80FT's features
- MX100 132 Column plus all the facilities of MX80FT. Value £785

TRANSFORMERS (Mains Price, 220-240V)
- 5VA 6V 5A 60V £27.00
- 2VA 6V 5A 60V £12.00
- 1.25VA 6V 5A 60V £7.00
- 0.7VA 6V 5A 60V £2.50
- 0.5VA 6V 5A 60V £1.00
- 0.25VA 6V 5A 60V £0.75
- 0.1VA 6V 5A 60V 0.60V £0.20
- 0.05VA 6V 5A 60V 0.30V £0.10

SOLDERNIC PLUGS
- 24 way 60p each 18 way 50p each 22 way 45p each 28 way 45p each
- 30 way 40p each 36 way 35p each 42 way 35p each 48 way 35p each

WATFORD'S BOOKSHOP CORNER

- Commodore's PET Basic. Microcomputer. Connects directly to any colour TV set. Sound reproduc-
- **VIC 20 Microcomputer**
 - At last it is here, the long awaited VIC 20 Microcomputer. Connects directly to any colour TV set. Supplied through by TV Speaker (Milk) and has the new Pet type Graphics. Standard size & shape with the memory expandable to 32k.
 - Price: Only £165
 - Cassette Deck in full 6 programme Cassette £195

SPEAKERS
- 40 60 80 100 140 200 300 & 400 Watt

OPTO ENDS
- 2.0 x 1.75 x .20
- 1.5 x 1.5 x .20
- 1.0 x 1.0 x .10

DIODES
- 1N 5408 79p
- 1N 4107 27p
- 1N 5817 22p

CAPACITORS
- 22pF 25pF £1.00 each
- 33pF 47pF 68pF £2.00 each
- 100pF 150pF £3.00 each

TRANSFORMERS
- 40VA 110V 5A 110V £1.10
- 25VA 12V 150mA £0.45
- 25VA 12V 250mA £0.85
- 15VA 24V 750mA £1.95
- 5VA 6V 150mA £0.45
- 5VA 6V 400mA £0.60

PYLONS
- 40W 220V £1.50
- 25W 220V £0.75
- 15W 220V £0.50

OPTO END RESISTORS
- 330pF £0.20 each 10nF £0.30 each 100nF £0.60 each

UNIONS
- 4p 6p 8p 10p £0.15 each 12p 14p 16p £0.18 each

COMPUTER CORNER

- **ETI/WATFORD'S MICRO EXPANSION SYSTEM**
 - This versatile economical Expansion System as published in ETI provides a Cheap but reliable Expansion possibility for most of the popular Micro-Computers. Send SAE for details.

- **VIC 20 MICROCOMPUTER** (see above SPECIAL OFFER section).

- **EPSOM MX SERIES PRINTER**; see top right

- **SEIKOSHA GP80A** - Unhammer Printer, gives new metallic clarity to your printing. New resolution graphics B Tractor feed. Parallel interface standard. £195

- **SOFTWARE** - as reviewed in PE September 1981.

- **SOFTY -2** As reviewed in PE September 1981.

- **EPSON MX SERIES PRINTER**; see top right

COMPUTER CORNER

- **SOLDERED CONNS**
 - 100 any size £10 500 any size £325

VOLTAGE REGULATORS

- 1A T85 140p 12V 1.2A £1.40 2A T150 300p 12V £2.30

- T120 240p 12V 1.2A £1.40 2A T150 300p 12V £2.30

- T120 240p 12V 1.2A £1.40 2A T150 300p 12V £2.30

- T120 240p 12V 1.2A £1.40 2A T150 300p 12V £2.30

SLIDE 250V

- T120 240p 12V 1.2A £1.40 2A T150 300p 12V £2.30

- T120 240p 12V 1.2A £1.40 2A T150 300p 12V £2.30

- T120 240p 12V 1.2A £1.40 2A T150 300p 12V £2.30

- T120 240p 12V 1.2A £1.40 2A T150 300p 12V £2.30

SLIDE 250V

- T120 240p 12V 1.2A £1.40 2A T150 300p 12V £2.30

- T120 240p 12V 1.2A £1.40 2A T150 300p 12V £2.30

- T120 240p 12V 1.2A £1.40 2A T150 300p 12V £2.30

- T120 240p 12V 1.2A £1.40 2A T150 300p 12V £2.30

SWITCHES

- TOGGLE 2A 250V £5.00 5A 250V £10.00

TRANSPORT

- £25

- £25

- £25

- £25

- £25

- £25

- £25

- £25

- £25

- £25
HOW TO SUCCEED IN THE ELECTRONICS BUSINESS.

INVEST 60p AND MAKE £2.40 net profit

Buy Ambit’s new concise component catalogue and get £1 worth of 60p vouchers. Use them for a £1 discount per £1 spent. But even without this, you will still find WR&E offers the low prices, fast service and technical support facility second to none.

Here are some examples from the current issue:

I.C. SOCKETS
A range of high quality, low cost, low profile DIL sockets ideally suited for both the OEM and hobbyist. All types feature double sided phosphor bronze contacts, tin plated for low contact resistance.

VOLTS
8 x 0.3” 12p 22 x 0.3” 20p
14 x 0.3” 12p 22 x 0.4” 20p
16 x 0.3” 13p 24 x 0.6” 22p
18 x 0.3” 16p 28 x 0.8” 25p
20 x 0.4” 19p 40 x 0.6” 38p

XTALS
1MHz 3.00
2MHz 2.50

Prices shown exclude VAT. Postage 50p per order UK. ACCESS BARCLAYCARD may be used with written or telephone orders - official MA details on application, and a special prize for those who read our ads carefully - a free 4 or 8 MHz crystal filter with every CPU IC you buy just clip out the paragraph and attach it to your order. E&OE.

HOW TO ORDER
Ambit International, 200 North Service Road, Brentwood, Essex, CM14 4SG.

HOW TO PHONE
TELEPHONE STD 0277 230909
TELEX 995194 AMBIT G
POSTCODE CM14 4SG
CROTECH OSCILLOSCOPES
Range of Portable Scopes mains and battery operated. Plus special features (UK c/p £1.30)
3200 Single trace 15 MHZ. S/mv. 0.5 micro sec. Plus built in 8-pin 16-pin Tube (supplied). £166.75
3300 Single Trace 15 MHZ. 100 MHz. £245.50
3400 Battery mains dual trace 15 MHZ. 100 MHz, £255.00
3500 Single trace 15 MHZ. £166.75
3600 Battery mains dual trace 15 MHZ. £255.00
(Option Prices all models see below)

THANDAR - SINCLAIR
Reliable low cost portable instruments, bench models all 2.5 or 1 x 5 Scanners. Generators mains operated (supplied). UK c/p Hand models 65p (bench £1.35)
DIGITAL MULTIMETERS 9 digit LCD
TM23 Hand held. DC 2A. £1.35
TM24 Hand held. DC 2A. £1.35
TM53 10A AC/DC. £1.35
TM54 Bench 1A AC/DC. £1.35
Typical 0.1%
FREQUENCY COUNTERS (s/digit)
PM404A Hand held LED. £2.35
PM405A Hand held LED. 1/10 MHz. £2.35
PM406A 1/100 MHZ. £2.35
TF430 Bench LCD. 10 MHz. £2.35
TF160 Bench LCD. 200 MHz. £2.35

LONDON'S TEST EQUIPMENT CENTRES
Audioworld
Retail • MailOrder • Industrial • Educational • Export
OPEN SIX DAYS A WEEK • CALL IN AND SEE FOR YOURSELF

SAFAGAN PORTABLE OSCILLOSCOPES
Range of low cost Dual Trace Scopes mains operated. Made in UK to exacting standards. Available in $ 15 MHZ or $ 20 MHZ. All feature
S/mv sensitivity: 0.5 micro sec. £4.5 to 8 display (UK c/p £2.50)
3015 Dual 15 MHZ. £19.50
3045 Dual 15 MHZ. £19.50
3045 Dual 20 MHZ. £19.50
3040 Dual 10 MHZ. £19.50
3020 Dual 10 MHZ. £19.50

LOGIC PROBES/MONITORS/PULSERS circuit
POWER SINKS (UK c/p £6p)
LP2 DTL/CMOS 10 MHz, Puls. Memory £26.85
LP2 DTL/CMOS 1.5 MHz. Puls. Memory £39.50
LMP2 DTL/CMOS 50 MHz, Puls. Memory £54.50
LM1 Logic monitor for 8 to 16 pin IC's £39.50
BF1 Digital counter. Single or 10 pips £39.50
LP0706 50 MHz. 100 MHz. Logic Probe, with case £19.50

Also a large range of other Logic probes. Please enquire.

FREE CATALOGUE!
Send large SAE to
Audioworld
100 Eglinton Avenue East
Toronto, Ontario
Canada M4P 1A9

OPEN SIX DAYS A WEEK • CALL IN AND SEE FOR YOURSELF
Order by Post with CHEQUES/ACCESS/VI/SAA or Telephone your order

Retail Electricians • December 1982

Audioworld
301 EDGWARE ROAD, LONDON, W2. 1BN, ENGLAND, TELEPHONE 01-724 3564
ALSO AT HENRY'S RADIO, 404/406 EDGWARE ROAD, LONDON W2

OPEN SIX DAYS A WEEK • CALL IN AND SEE FOR YOURSELF
EXCITING OFFERS!

DIGITAL VOLTMETER MODULE

- Fully built & tested
- Positive and negative voltages with an FSD of 999mV which is easily extended.
- Requires only single supply 7 - 12V.
- High overall accuracy 0.1% + 1 digit.
- Large bright 0.43" (11mm) LED displays.
- Supplied with full data and applications information.

Using this fully built and calibrated module as a basis now means that you can easily build a wide range of accurate equipment such as multimeters, thermometers, battery indicators, etc. etc. at a fraction of the cost of ready-made equipment. Full details are supplied with each module showing how to easily extend the voltage range and measure current, resistance and temperature. Fully guaranteed, the unit has been supplied to electricity authorities, Government departments, universities, the P.O. and many companies.

Temperature Measurement

£2.15 +VAT

An easily constructed kit using an I.C. probe providing a linear output of 10mV/°C over the temperature range from -10°C to +100°C. The unit is ideal for use in conjunction with the above DVM module providing an accurate digital thermometer suitable for a wide range of applications.

Power Supply

£4.95 +VAT

This fully built mains power supply provides two stabilised isolated outputs of 9V providing current levels of up to 250mA each. The unit is ideally suited for powering the DVM and the Temperature measurement module.

ULTRASONIC ALARM MODULE

- Fully built & tested
- Range adjustable from 5° - 25°
- A really effective fully built module which contains both ultrasonic transmitter and receiver, together with the necessary circuitry for providing the appropriate delays and false alarm suppression. Using this module with a suitable 12V power supply and relay unit such as that shown, a really effective though inexpensive intruder alarm may be constructed. The module, which is supplied with a comprehensive data sheet, is easily mounted in a wide range of enclosures. A ready drilled case, together with all the necessary hardware, is available below.

Power Supply & Relay Unit

£3.95 +VAT

Incorporating a stabilised 12V supply and a s.p.c.o. relay with 3A contacts, this unit is designed to operate in conjunction with the above ultrasonic unit. Fully built and tested, its compact size makes it ideal for constructing the smallest of units.

Hardware Kit £3.95 +VAT

A suitable ready drilled case together with the various mounting pillars, nuts and bolts, and including a mains switch and 2mm sockets designed to house the ultrasonic alarm module, together with its associated power supply. This hardware kit provides an ideal solution for assembling the economical alarm system. Size 150mm x 120mm x 45mm

In addition to the above a wide range of competitively priced electronic components is stocked. Please telephone your specific requirements.

- V.A.T. must be added on all items.
- Shop hours 9 - 5.30 (Weds. 9 - 1)
- ex-stock delivery on all items. Units on demonstration, pallets welcome.
- Post and packing charge 50p per order.
- S.A.E. with all enquiries please.

Kit yourself out with our new catalogue.

It's full of all sorts of exciting possibilities, including a digital barometer. So, if you don't trust the weather forecast, make your own. And get it right.

Like all Heathkits, it contains everything you need, right down to the right kind of solder. Unbeatable comprehensive assembly manual. Diagrams. Highest quality parts. Everything to make a first class professional job. One you'll be proud of. One that will give you far more satisfaction than a ready-made mass-produced shop-bought product can possibly offer.

Because you made it yourself.

To: Heath Electronics (UK) Limited, Dept (PE12), Bristol Road, Gloucester GL2 6EE. Please send me a copy of your new catalogue. I enclose 28p in stamps.

Name

Address

NB: If you are already on the Heathkit mailing list you will automatically receive a copy of the latest Heathkit catalogue without having to use this coupon.

You build on our experience

To: RISCOP Limited, Dept. PE3, 21 Duke Street, Princes Risborough, Bucks.

Tel: Princes Risborough (084 44) 6326

RISCOP LIMITED

V.A.T. must be added on all items.

Practical Electronics December 1981
Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: “Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.”

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:

- Telecommunications Technicians
- Radio, T.V. Electronics Technicians
- Radio Amateurs
- Electrical Installation Work

Diploma Courses

- Colour T.V. Servicing
- CCTV Engineering
- Electronic Engineering & Maintenance
- Computer Engineering and Programming
- Radio, T.V. and Audio, Engineering & Servicing
- Electrical Engineering, Installations & Contracting

Other Career Courses

A wide range of other technical and professional courses are available including GCE.

POST this coupon or 'phone today for free Electronics careers guide.

Name _________ Age _________ Address _________

To ICS, Dept 273P, Interest House, London SW8 4UJ or telephone 01-622 9911 (all hours)

There are DODGEMS about!

Dodge is just one of the brand new games packs from Acorn, the manufacturers of your Atom. Trust the manufacturer to get the very best out of his product. Realistic sound effects, great graphics and colour too!

GAMES PACK 1

- Astrooids Shoot them before they crash into you. Lists ten best scores. Program 4K, graphics 6K.
- Sub Hunt Command a destroyer tracking a submarine, find its position and destroy it. Program 1K, graphics 5K, needs floating-point.
- Breakout Score points knocking bricks from wall. Ball has two changes of angle and speed. Program 3K, graphics 1-2K. COLOUR

GAMES PACK 2

- Dogfight Two-player game; each player controls a plane and tries to shoot down his opponent without crashing. Program 4K, graphics 6K.
- Mastermind Guess the computer code before the computer guesses yours. Program 3K, graphics 1/2K.
- Zombie Land on Zombie island; try to lure all the zombies into the swamp. In desperation jump into hyper-space! Program 3K, graphics 1/2K. COLOUR

GAMES PACK 4

- Star Trek Classic computer game; rid the universe of Klingons. Short and long-range scans, galactic map, phasers, photon torpedoes, shields etc. Program 5K, graphics 6K.
- Four Row Take turns in placing marbles on the board, the first to get a line of four wins. Program 5K, graphics 6K, COLOUR.
- Space Attack Repel the invasions of earth and avoid being hit by the gunner ships. Becomes progressively harder with each invasion. Program 3K, graphics 6K.

GAMES PACK 7

- Green Things An alien life-form has invaded your space-craft; discover a way of destroying it with the weapons available on the ship. Program 5K, graphics 2K, COLOUR.
- Ballistics Take turns in firing shells at the other player, taking into account the wind and shape of the hill. Program 3K, graphics 6K, needs floating-point.
- Snake Grow yourself a snake by eating bricks from wall. Ball has two changes of angle and speed. Program 3K, graphics 1-2K. COLOUR

GET THE BEST—FORGET THE REST

All Acornsoft games are designed and produced by the manufacturers of the Atom. Trust the manufacturer to get the very best out of his product. Realistic sound effects, great graphics and colour too!

ORDER TODAY!

Just send a cheque or money order. Only £11.50 per pack including VAT and post and packing. State which packs you want.

Or ring 0223 316039 or 01-830 1614 quoting your Access or Barclaycard number. Allow 14 days for delivery. If you think you can wait for more details just write to Acornsoft Limited, 4a Market Hill, Cambridge.
128-NOTE SEQUENCER

Enables a voltage controlled synthesiser, such as the P.E. Minisonic to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long. Programs are initiated from the 4-octave keyboard and note length and rhythmic pattern are externally variable.

Kit plus Keyboard & Contacts = SET-76 £14.09

16-NOTE SEQUENCER

Sequences of up to 16 notes long may be pre-programmed by the panel controls and fed into most voltage controlled synths. The notes and rhythms may be changed whilst playing making it more versatile than the name would suggest. KIT ORDER CODE = SET-66 £90.95

3-CHANNEL STEREO MIXER

Full level control on left and right of each channel, and with master output control and headphone monitor.

Kit order code = SET-107 £19.42

3-MICROPHONE STEREO MIXER

Enables stereo live recordings to be made without the 'hole in the middle' effect. Independent control of each microphone.

Kit order code = SET-108 £12.54

6-CHANNEL MIXER

A high specification stereo mixer with variable input impedances. Specifications given in our lists. The kit includes some SW's - see lists for selection. The extension gives two extra channels.

Main kit code = SET-90 £39.87
Extension kit = ADN-90 £11.74

ANALOGUE REVERBERATION

Using IC's instead of spring filters the main unit has a maximum delay of up to 100MS and the additional set extends this up to 200MS. May be used in either mono or stereo mode.

Main kit order code = SET-83 £42.95
Extension kit = EXT-83 £13.95

AUDIO EFFECTS UNIT

A variable viren generator that can produce British & American Police Sirens, Star Trek Red Alert, Heart Beat Monitor sounds, etc.

Kit order code = SET-105 £73.60

AUTOWAH UNIT

Automatically gives wah or swell sounds with each guitar note played.

Kit order code = SET-58 £16.68

10% DISCOUNT VOUCHER

Valid until end of month on cover of this magazine. Applies to U.K. C.W.O. orders over £25.00 value. Not valid with credit card, export or instore orders. This voucher and correct payment must accompany order. (Voucher Code PE10)

BASIC COMPONENT SETS

Include specially selected & tested transistors, capacitors, resistors, semiconductors and potentiometers. Most kits include their own power supplies or self operate from 2x9V batteries. They also contain basic hardware such as knobs, sockets, switches, a nominal value 1K resistor network, and a photocopy of the original published text, and unless otherwise stated an aluminium box. Most parts may be bought separately. For full kit and component details see our current lists. Kits originate from projects published in Practical Electronics, Everyday Electronics or Elektor.

PHASER

An extremely versatile sound processing unit capable of producing, for example, flanging, vibrato, reverb, fuzz and tremolo amongst other fascinating sounds. May be used with most electronic instruments.

Main kit code = SET-108 £12.50
Extension kit = SET-95 £74.03

GUITAR OVERDRIVE

Sophisticated versatile fuzz unit. Ideal variable controls affecting the fuzz quality whilst retaining the attack and decay, and also providing biasing

Kit order code = SET-56 £15.75

GUITAR EFFECTS UNIT

Modulates the attack, decay and filter characteristics of a signal from most audio sources, producing 8 different switchable sounds that can be further modified by manual controls.

Kit order code = SET-42 £16.76

GUITAR FREQUENCY DOUBLER

Produces an output one octave higher than the input. Inputs and outputs may be mixed to give greater depth.

Kit order code = SET-98 £10.62

GUITAR MULTIPROCESSOR

An extremely versatile sound processing unit capable of producing, for example, flanging, vibrato, reverb, fuzz and tremolo amongst other fascinating sounds. May be used with most electronic instruments.

Kit order code = SET-108 £12.50
Extension kit = SET-95 £74.03

RING MODULATOR

As the name implies!

Kit order code = SET-90 £8.95

SEWARI

For use with the analogue reverb to give greater flexibility to the reverb effects.

Kit order code = SET-101 £30.32

SIGNAL TRACER & GENERATOR

Allows audio signals to be injected into circuits under test, thus aiding in the tracing of fault signals, and also provides level controls. Includes frequency & level controls.

Kit order code = SET-109 £16.26

SIMPLE WAVEFORM CONVERTER

Provides a simple waveform to produce triangle and saw outputs.

Kit order code = SET-96 £8.35

SPEECH PROCESSOR

Improves the intelligibility of noisy or fluctuating speech signals, and ideal for input into F.A. or C.B. radio systems.

Kit order code = SET-110 £10.58

SPLIT-PHASE TREMOLO

The output of the internal generator is phase-split and modulated by an input signal. Output amplitudes, depth and rate are panel controlled. The effect is similar to a rotary cabinet.

Kit order code = SET-92 £28.57

SWITCHED TONE TREBLE BOOST

Provides switched selection of 4 preset tonal responses.

Order code = SET-97 £11.28

TERMS: C.W.O. MAIL ORDER OR COLLECTION

BY APPOINTMENT (TEL 01-302 6184)

December 1981

Practical Electronics
AND OTHER PROJECTS

PRICES INCLUDE - U.K. post & handling, and VAT at 15% where applicable. Overseas customers should obtain our current list for export postage rates. Note that, in accordance with B.S.P.O. addresses classified as export deliveries.

LIST

For free list giving full details of PCBs, kits and other components. Overseas requests for free list - Eurosend 50p; other countries send £1.00.

KIMBER-ALLEN KEYBOARDS AND CONTACTS

Claimed by the manufacturers to be the finest moulded plastic keyboards available. All octaves are C-C, the keys are plastic, slope-fronted, sprung loaded, fitted with actuators and mounted on a robust aluminium frame.

3-octave £32.43, 4-octave £40.20, 5-octave £48.53

CLAD-CONTACTS (GJ) - GB 3-octave £14.85, 4-octave £19.40, 5-octave £24.30

GB 3-octave £16.76, 4-octave £21.93, 5-octave £27.45

SYNTHESISER INTERFACE

All electronic inputs such as guitars, microphones etc., to be processed by synthesisers circuits.

Kit order code - SET-81 £8.40

TRANSIENT GENERATOR

An ADSR envelope shaper without VCA, and additionally providing sweep triggering enabling a synthesiser to be programmed for mandolin or banjo effects etc.

Kit order code - SET-103 £15.65

TREMOLO UNIT

Suitable for use with most electric guitars, organs and other similar instruments. Includes speed, depth & by-pass controls.

Kit order code - SET-116 £11.91

TUNING FORK

Provides 84 switch-selectable frequency-accurate tones with LED monitor displaying beat- laptop adjustments.

Kit order code - SET-46 £38.09

TUNING INDICATOR

A simple active frequency comparator for use with synthesisers where the full versatility of Kit 46 is not needed.

Kit order code - SET-69 £14.83

VOICE OPERATED FADER

For automatically reducing music volume during disco talk-over.

Kit order code - SET-30 £8.93

VOICE SCRAMBLER

Enables a 'garbled' version of a spoken message to be recorded or transmitted. Decoding of message is achieved using the same unit or an identical second model.

Requires a 12V PSU at about 30mA.

Kit order code - SET-10 £20.37

WAVEFORM CONVERTER

Converts saw-tooth waveform into sine-wave, mark-space sawtooth, regular triangle, or squarewave with variable mark-space. Ideally one should be used with each synthesiser oscillator.

Kit order code - SET-87 £20.34

WAVEFORM GENERATOR

Provides sine, square and triangular wave outputs variable between 1Hz & 100kHz up to 10V P.P.

Kit order code - SET-112 £21.58

WIND & RAIN EFFECTS

As the name says! (TXT728)

Kit order code - SET-28 £10.55

PHONOSONICS

MINIMUM ORDER VALUE FOR CREDIT CARDS £5.00

PRICES ARE CORRECT AT TIME OF PRESS. E. & O. E. DELIVERY SUBJECT TO AVAILABILITY.

ALCON

CONTINUE THEIR SPECIAL OFFER

mini 20

20kΩ/V d.c. 6-6kΩ/V a.c.

multimeter

only £19.50

INCLUSIVE OF POST PACKAGE—V.A.T.

The Mini 20 is an ideal instrument for the constructor.

This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly £10 on the normal retail price.

The 26 ranges cover all likely requirements. Operation is straight-forward, just turn the selection switch to the required range.

RANGES:

SET-V -100mV, 1V, 10V, 30V, 100V, 300V, 1000V.

a.c.V - 10V, 30V, 100V, 300V, 1000V.

d.c.: 50uA, 1mA, 10mA, 100mA, 1A, 3A.

Accuracy: 2% d.c. & resistance, 3% a.c.

Dimensions: 105 × 130 × 40mm

Movement protected by internal diode and fuse.

The instrument is supplied complete with case, leads and instructions.

For details of this and the many other exciting instruments in the Alcon range, including multimeters, component measuring and electronic instruments please write or telephone:

ALCON Instruments Ltd.

19 MULBERRY WALK—LONDON SW5 EDZ. TEL: 01-352 9867 - TELEX: 018867
THE PE RANGER
27FM CB PORTABLE

The RANGER CB rig has been designed to fit the new legal Home Office specification, and starts off as a "hand held unit" complete with aerial, mic., and rechargeable batteries.

LEGALISATION ★ SPECIAL OFFER £49.95 (KIT) (INC. VAT + £2.95 P.P.)

This offer price includes rechargeable batteries, mic., aerial, mains lead and 2 channels.

Extra channels £2.25 each + 50p P.P. + VAT

Extra aerials £3.95 each + 80p P.P. + VAT (Postage free with kit)

Tunable Whip aerial magnetic or permanent car mount (auto set which)

Permanent £13.95 — P.P. £1.00

Magnetic £15.95 — P.P. £2.00

The unit plugs into the mains, 12V car outlet, or runs on built-in rechargeable batteries (built-in charger). Up to 5 miles range in town to keep in touch with family and friends.

SPEC.

R.F. Power Output 1/4-1 Watt
AF (internal speaker) 1/2 Watt
Modulation: FM; freq. 27.6MHz-28MHz
(CB Band) (excellent speech quality)

No. of channels (max): 6

Fully protected against bad aerial connection.

Coming Soon...

Base/Mobile Add-On
Unit to give 4 Watts and 40 Channels

(SAE FOR FURTHER DETAILS)

PHONE YOUR ACCESS/BARCLAYCARD ORDER FOR FAST SERVICE

BARCLAY CARD ORDER

| Autumn Products Ltd. | Park Drive, Baldock, SG7 6EW. Telephone, Baldock (0462) 849484 |

TRANSFORMERS (+ VAT 15%)

<table>
<thead>
<tr>
<th>30 VOLT RANGE (Split Sec)</th>
<th>50 VOLT RANGE (Split Sec)</th>
<th>90 VOLT RANGE (Split Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0A 1.5V 1.00P</td>
<td>0A 20V 1.00P</td>
<td>0A 120V 1.00P</td>
</tr>
<tr>
<td>4A 10V 1.00P</td>
<td>4A 100V 1.00P</td>
<td>4A 600V 1.00P</td>
</tr>
<tr>
<td>10A 18V 1.00P</td>
<td>10A 500V 1.00P</td>
<td>10A 3000V 1.00P</td>
</tr>
<tr>
<td>0A 30V 1.00P</td>
<td>0A 300V 1.00P</td>
<td>0A 15000V 1.00P</td>
</tr>
<tr>
<td>0A 15V 1.00P</td>
<td>0A 150V 1.00P</td>
<td>0A 7500V 1.00P</td>
</tr>
<tr>
<td>0A 8V 1.00P</td>
<td>0A 80V 1.00P</td>
<td>0A 4000V 1.00P</td>
</tr>
<tr>
<td>0A 4V 1.00P</td>
<td>0A 40V 1.00P</td>
<td>0A 2000V 1.00P</td>
</tr>
<tr>
<td>0A 2V 1.00P</td>
<td>0A 20V 1.00P</td>
<td>0A 1000V 1.00P</td>
</tr>
</tbody>
</table>

UK Postages. Overseas extra.

Voltage stated are on full load Continuous Ratings.

OTHER PRODUCTS

AVO TEST METER

8MXS Latest Model	£166.40
711 Electronics b	£45.40
73 TV Service	£36.40
60V MSV VS	£50.40
JM22 312KJG input Z	£67.10
DA12 I.C.D. Digital	£171.70
DA22 I.C.D. Digital	£37.00
Battery MEGER B7/400	£40.40

Ref: MEGER hand over.

P&P £3.12 — VAT 15%

EDUCATIONAL METERS SM. Coin

0.1-0.4 0.3V. Freestanding large scale panel meters with base, three 30mm terminals for plug connections £4.50 P&P £5.00 VAT. Base £3.40 Flash £7.90.

ANTENX

18W CH240/CC240 42.5K 5.4 5.8 £P + VAT.

6V—24V £25.00-£35.00 P&P 50p + VAT.

METAL OXIDE RESISTORS £1 per 100 (Electronic)

<table>
<thead>
<tr>
<th>10%</th>
<th>1%</th>
<th>±0.1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>47D</td>
<td>47G</td>
<td>47B</td>
</tr>
<tr>
<td>47G</td>
<td>47E</td>
<td>47D</td>
</tr>
<tr>
<td>47G</td>
<td>47F</td>
<td>47C</td>
</tr>
<tr>
<td>47G</td>
<td>47G</td>
<td>47G</td>
</tr>
<tr>
<td>47G</td>
<td>47G</td>
<td>47G</td>
</tr>
</tbody>
</table>

BATTERY ELIMINATORS

Plug into 13A socket 3, 6, 7, 9, 12V DC.. £3.00-£4.00/MA output.

BARCLAYCARD

£4.00 P&P + VAT.

Barrie Electronics Ltd.

3. THE MINORITIES, LONDON EC3N 1BJ
TELEPHONE: 01-486 3316/78

Practical Electronics December 1981
Practical Electronics December 1981

BI-PAK AUDIO

THE PROFESSIONAL APPROACH

HIGH QUALITY MODULES FOR STEREO

MONO AND OTHER AUDIO EQUIPMENT

AUDIO AMPLIFIERS

- 5 - 10 watts (MOS) AL20 3 watt Audio Amp Module 22.99 inc VAT
- 15 - 25 watts (MOS) AL60 5 watt Audio Amp Module 112 incl VAT

£4.16.

POWER SUPPLIES

- PS25 The Supply board 2 x AL25 + 2 x AL30 + 2 x AL60 + PPM9/10. £10.50 + VAT. SP Mona 3k Supply board 2 x AL25 + 2 x AL30 and associated wiring for £45 incl VAT.
- AL20 Power Module 15 watts incl VAT. £4.75. AL30 Power Module 18 watts incl VAT. £5.15.
- AL60 Power Module 60 watts incl VAT. £8.07.

£13.14.

STEREO FM TUNER

£19.60.

BI-PAK's COMPLETELY NEW CATALOGUE

Completely re-written. Full details of all the components we use are included, along with wiring and output capacitors. The catalogue is divided into sections by type. Each section includes a description of the component, its application, and a list of all the parts used in its construction. The catalogue is designed to help you select the right component for your design, and to provide a comprehensive reference for future use.

£20.00.

REGULATED VARIABLE STABLE POWER SUPPLY

- 50 - 100 volts 10 watts £15.80.
- 100 - 200 volts 2 watts £12.50.

£19.00.

SIREN ALARM MODULE

American Siren type speaker powered from A.C. or D.C. 4 or 6 volt systems. Ideal for car alarms, lorries, fire services, U.L. 120 volt systems, etc.

£39.95.

BI-KITS

- 5 Watts per channel Stereo Amplifier Kit consisting of 2 x AL60 amplifiers + 1 x PA20 pre-amplifier + 1 x 500 watt power supply + 1 x 700 watt transformer + necessary wiring diagram.
- 15 Watts per channel Stereo Amplifier Kit consisting of 2 x AL25 amplifiers + 1 x PA25 pre-amplifier + 1 x 225 watt power supply + 1 x 225 watt transformer + necessary wiring diagram.

£10.95.

BI-PAK AUDIO

BI-PAK Audio Modules are designed for those who value quality and value for money. Our range of audio amplifiers, power supplies, and other components includes: 1 - The TPA5190, a high-quality audio amplifier with a wide range of applications; 2 - The TPA3040, a versatile power supply with a high output; and 3 - The TPA100, a low-cost, reliable power supply. Whether you are building a stereo or mono system, BI-PAK has the components you need to complete your project.
CLEF ELECTRONIC MUSIC

ELECTRONIC PIANOS

Specialists since 1972. Offering all forms of Touch Sensitive action which simulate piano Keys, using a patented electronic technique.

STRING ENSEMBLE

(Also illustrated in conjunction with "Practical Electronics")

- A very popular Keyboard Synthesizer Ka for Group or Home use, with a four octave compass and split Keyboard facility.
- The instrument is fully polyphonic and has 2 rich Multi-String Voices plus Warwick and Brass Effects for Individual or Mixed use.
- Variotic Attack and Susan Controls give a rich orchestral mix with added concert effect produced by our unique split Keyboard unit. This is coupled with additional 2-3 Octave Chorus Unit. The Component kit includes:
 - Key board, Keyboard, Key switch, and all electronic components plus interlocking wiring and Volume Pedal.
 - It is a copy of the P.E. project, and can be supplied for £3.00, inc. الفرنسي.

COMPONENT KIT 0217

MINIATURE MAINS TRANSFORMERS

- EMF for 100. These consist of factory made magnetic cores. Each £1.20.

MINIATURE REED SWITCHES

- 100 Miniature Reed Switches.
- £2.30

MINIATURE S.P.C.O. SLIDE SWITCH

- £1.50

MINIATURE NO. 2 PCB BATTERY CONNECTOR

- £1.00

SPEAKERS

- £4.50

VIBRATOR DANGERS

- £1.50

DIODES

- £1.95

RESISTORS

- £1.20

BUFFERS

- £1.50

PIR SWITCH BUMPS

- £1.20

FREE

- £1.50

Arrangement pipes

- £1.00

PRINTED CIRCUIT CONNECTION DATA

- £1.50

REMOTE KEYBOARDS

- £1.50

MINIATURE ELECTROLYTIC CAPACITORS

- £1.25

WAVESHAPERS

- £1.75

PROGRAMMABLE DRUM MACHINE

-(As Published in conjunction with "Practical Electronics")

- £3.00

THE ELECTRONIC BAND-BOX

COMPLETE KIT £289

COMPLETE KIT £399

PACKAGES

- £1.00

PRICES INCLUDE VAT, UK CARRIAGE & INSURANCE

- £1.00

DISTRIBUTED BY

- £1.00

FIVE OCTAVE £30.00

- £1.00

PARTS

- £1.00

SERIES/SECTIONS

- £1.00

EXPERIMENTERS

- £1.00

COMPONENTS

- £1.00

COMPLETE KIT £395

MAND. £215.00

The Clef Master Rhythm is capable of playing a wide variety of rhythmic patterns created by the performer. It is equipped with a built-in memory which contains a large number of instrument specific algorithms. The unit can store up to 100 different patterns, each consisting of up to 32 bars of data. It features a built-in sequencer and also supports external MIDI connections.

THE PROGRAMMABLE DRUM MACHINE

- £3.00

PRICES INCLUDE VAT, UK CARRIAGE & INSURANCE

- £1.00

DISTRIBUTED BY

- £1.00

FIVE OCTAVE £30.00

- £1.00

PARTS

- £1.00

SERIES/SECTIONS

- £1.00

EXPERIMENTERS

- £1.00

COMPONENTS

- £1.00

COMPLETE KIT £395

MAND. £215.00

The Clef Master Rhythm is capable of playing a wide variety of rhythmic patterns created by the performer. It is equipped with a built-in memory which contains a large number of instrument specific algorithms. The unit can store up to 100 different patterns, each consisting of up to 32 bars of data. It features a built-in sequencer and also supports external MIDI connections.

THE PROGRAMMABLE DRUM MACHINE

- £3.00

PRICES INCLUDE VAT, UK CARRIAGE & INSURANCE

- £1.00

DISTRIBUTED BY

- £1.00

FIVE OCTAVE £30.00

- £1.00

PARTS

- £1.00

SERIES/SECTIONS

- £1.00

EXPERIMENTERS

- £1.00

COMPONENTS

- £1.00

COMPLETE KIT £395

MAND. £215.00

The Clef Master Rhythm is capable of playing a wide variety of rhythmic patterns created by the performer. It is equipped with a built-in memory which contains a large number of instrument specific algorithms. The unit can store up to 100 different patterns, each consisting of up to 32 bars of data. It features a built-in sequencer and also supports external MIDI connections.

THE PROGRAMMABLE DRUM MACHINE

- £3.00

PRICES INCLUDE VAT, UK CARRIAGE & INSURANCE

- £1.00

DISTRIBUTED BY

- £1.00

FIVE OCTAVE £30.00

- £1.00

PARTS

- £1.00

SERIES/SECTIONS

- £1.00

EXPERIMENTERS

- £1.00

COMPONENTS

- £1.00

COMPLETE KIT £395

MAND. £215.00

The Clef Master Rhythm is capable of playing a wide variety of rhythmic patterns created by the performer. It is equipped with a built-in memory which contains a large number of instrument specific algorithms. The unit can store up to 100 different patterns, each consisting of up to 32 bars of data. It features a built-in sequencer and also supports external MIDI connections.

THE PROGRAMMABLE DRUM MACHINE

- £3.00

PRICES INCLUDE VAT, UK CARRIAGE & INSURANCE

- £1.00

DISTRIBUTED BY

- £1.00

FIVE OCTAVE £30.00

- £1.00

PARTS

- £1.00

SERIES/SECTIONS

- £1.00

EXPERIMENTERS

- £1.00

COMPONENTS

- £1.00

COMPLETE KIT £395

MAND. £215.00

The Clef Master Rhythm is capable of playing a wide variety of rhythmic patterns created by the performer. It is equipped with a built-in memory which contains a large number of instrument specific algorithms. The unit can store up to 100 different patterns, each consisting of up to 32 bars of data. It features a built-in sequencer and also supports external MIDI connections.
This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self-employed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following:
- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., Hi-Fi and microprocessor/computer equipment.

FREE! Please send your brochure without any obligation to

NAME

ADDRESS

I am interested in:

- COURSE IN ELECTRONICS as described above
- RADIO AMATEUR LICENCE
- MICROPROCESSORS
- LOGIC COURSE
- OTHER SUBJECTS

POST NOW TO

British National Radio & Electronics School
Reading, Berks. RG1 1BR.
Sinclair ZX81 Personal Comp
the heart of a system
that grows with you.

1980 saw a genuine breakthrough – the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just £69.95 the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand – over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16-times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day.

Lower price: higher capability
With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same microprocessor, but incorporates a new, more powerful 8K BASIC ROM – the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements – the facility to load and save named programs on cassette, for example, and to drive the new ZX Printer.

Kit: £49.95

Higher specification, lower price – how's it done?
Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21. The ZX81 reduces the 21 to 4!

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!

New, improved specification

- Z80A micro-processor – new faster version of the famous Z80 chip, widely recognised as the best ever made.
- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animated-display facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function – useful for games as well as serious applications.
- Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip – unique, custom-built chip replacing 18 ZX80 chips.

Built: £69.95

Kit or built – it's up to you!
You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) – a few hours work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor – 600 mA at 9 V DC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.
16K-byte RAM pack for massive add-on memory.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16!

Use it for long and complex programs or as a personal database. With the RAM pack, you can also run some of the more sophisticated ZX Software – the Business & Household management systems for example.

Available now - the ZX Printer for only £49.95

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumeric and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further instructions.

At last you can have a hard copy of your program listings – particularly useful when writing or editing programs. And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your computer – using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long x 4 in wide) is supplied, along with full instructions.

How to order your ZX81

BY PHONE – Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day.

BY FREEPOST – use the no-stamp-needed coupon below. You can pay by cheque, postal order, Access, Barclaycard or Trustcard. EITHER WAY – please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt – and we have no doubt that you will be.

Order code \(\text{Ram} \) for 16K-byte RAM pack.
STEREO AMPLIFIER KIT

- Featuring latest SGS/SATES TDA 2060 10 watt output IC's with built-in circuit protection.
- Mullard Stereo Preamp Module.
- Attractive black vinyl finish cabinet, 9 3/4"x 6"x 2" (approx.)
- 10+10 Stereo converts to a 20 watt Disco amplifier.
- To complete you just supply connecting wire and solder.
- Features include din input sockets for ceramic cartridge, microphone, tape or tuner. Outputs - tape, speakers and headphones.
- By means of a button it transforms into a 20 watt mono disc amplifier with twin deck mixing. The kit incorporates a high fidelity mono power amp assembly kit and mains power supply. Also features 4 slider level controls, rotary bass and treble controls and 6 push button switches. Silver finish fascia with matching knobs and contrasting cabinet. Instructions available, price 50p. Supplied: inside kit.

SPECIFICATIONS:
- Suitable for 4 to 8 ohm speakers.
- Frequency response 40Hz - 20KHz.
- Input sensitivity P.U. 150mV. Aux. 200mV.
- Tone controls Bass 1.13dB @ 60Hz Treble 1.21dB @ 10KHz
- Distortion 0.1% typically @ 8 watts.
- Mains supply 220 - 250 volts 50Hz.

STEREOELECTRONICS PRE-A MP-C ONSISTENCY KIT

Includes FREE Magnetic cartridge with diamond stylus. All components, including p.c.b, to convert your ceramic input on the 10+10 to magnetic. Only available with 10+10 amp. £2.00 includes p&p.

8" SPEAKER KIT: Two 8" twin cone domestic speakers. £10.50 plus £1.15 p&p, when purchased with amplifier. Available separately £6.75 plus £1.70 p&p.

PRACTICAL ELECTRONICS CAR RADIO KIT SERIES II

- Easy to build.
- 5 push button tuning • Modern design
- 6 watt output • Ready stiched and punched P.C.R. • Incorporates suspension circuits.
- All the electronic components to build the radio, you supply only the ears and the solder, featured in Practical Electronics March issue. Features preset tuning with 5 push button options, black illuminated tuning scale. The P.E. Traveller has a 6 watt output met. ground and incorporates an integrated circuit output stage, a Mullard IF Module LP1181 ceramic filter type pre-aligned and assembled, and a Bird pre- aligned push button tuning unit. £10.50 plus £2.00 p&p.
- Suitable stainless steel fully retractable aerial (locking) and speaker grille £1.15.
- Available as a kit complete. £1.95 (rack). Plus £1.15 p&p.

PHILIPS BELT DRIVE RECORD PLAYER

DECK GC037 (Size: 15 1/2"x 12" approx.)
- Hi-Fi record player deck, 2 speed, damped cueing, auto shut-off, belt drive with floating sub chassis to minimise acoustic feedback.
- Complete with
- £32.90

BUILT AND TESTED.

MONO MIXER AMPLIFIERS

50 WATT
- Six individually mixed inputs for two pick-ups (car, or Mag). Two moving coil microphones and two auxiliarily for tape, tuner, organs, etc. Eight slider controls - six for level and two for master bass and treble. Four extra treble controls for mic and aux inputs. Size: 13"x 5"x 4". 33 app. Power output 50 watts R.M.S. (continuous) for use with 4 to 8 ohm speakers. Attractive black vinyl case with matching fascia and knobs. Ready to use. £39.95 plus £3.70 p&p.

100 WATT
- Brushed Aluminium fascia and rotary controls.
- Size: approx. 14"x 4"x 10".
- Five vertical slider controls, master volume, tape level, mic level, deck level, PLUS INTERDECK FADE for perfect gradated change from record deck no. 1 to no. 2, or vice versa. Pre-fade level controls (PFL) lets YOU hear the next disc before fading in.
- £76.00

CALLERS ONLY

323 Edgware Rd, London W2. Tel: 01-723 8432
Open 9.30am - 5.30pm. Closed all day Thursday. Persons under 16 not served without parents authorisation.

ALL PRICES INCLUDE VAT AT 15%

MAIL ORDER ONLY

21B HIGH STREET, ACTON, W3 6NG.
Note: Goods despatched to UK-postal addresses only.
For further information send for instructions 25p plus stamped addressed envelope.

PRACTICAL ELECTRONICS - STEREO TUNER KIT

This easy to build 3 band stereo AM/FM tuner kit is designed in conjunction with Practical Electronics (July issue). For ease of construction and alignment it incorporates three Mullard modules and an I.C. 1F System.

FEATURES: VHF, MW, LW Bands, interstation muting and AFC. 500 Hz. 250 Hz. 450 Hz. VHF Tuning meter. Two back printed PCB's. Ready made chassis and scale. Aerial: AM - ferrite rod, FM - 75 or 300 ohms. Stabilised power supply with 'C' core mains transformer. All components supplied are to P.E. strict specification. Front scale size 10"x 7" approx. Complete with diagrams and instructions.

SPECIAL OFFER!

STEREO TUNER KIT PLUS:

- Matching set of 4 slider controls complete with knobs for bass, treble and volumes (usually £10.75 + 50p p&p).
- Matching power supply kit with transformer (usually £3.00 + 0.75 p&p).

£21.95 plus £3.80 p&p

ONLY £17.95 plus £2.50 p&p.

HIGH POWER AMPLIFIER MODULES

READY BUILT OR IN KIT FORM

KIT

BUILT

125 WATT MODEL

£10.50

£14.25

200 WATT MODEL

£14.95

£18.95

SPECIFICATIONS:

- Max. output power (RMS)
- Operating voltage (DCI)
- Loads
- Frequency response measured @ 100 watts
- Sensitivity for 100 watts
- Typical T.H.D.
- Power factor

- 125W Model
- 200W Model

- 50 - 80 max.
- 25Hz - 20KHz
- 400mV @ 47K
- 1.0%
- 0.1%
- 0.1%
- Dimensions (both models) 205 x 90 and 190 x 25mm.

The power amp kit is a module for high power applications - disco units, guitar amplifiers, public address systems and even high power domestic systems. The unit is protected against short circuiting of the load and is safe in an open circuit condition. A large safety margin exists by use of generously rated components, result, a high powered rugged unit. The PC Board is back printed, etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions. ACCESSORIES:

Suitable LS coupling electrolytic for 125W model £1.00

Suitable LS coupling electrolytic for 200W model £1.25

Suitable mains power supply unit for 125W model £7.50

Suitable Twin transformer power supply for 200W model £13.95

30+30 WATT STEREO AMPLIFIER

Voicent IV unit in teak simulate cabinet, silver finished rotary controls and pushbutton switches with matching fascia, mains indicator and stereo jack socket. Functions switch for mic, magnetic and crystal pickups, tape and auxiliary. Rear panel features fuse holder, DIN speaker and input socket. Terminations - 30+30 watts RMS, 80+60 watts peak for use with 4 to 8 ohm speakers. Size 14 3/4"x 10" approx. £32.90

BUILT AND TESTED.

CALLERS ONLY

323 Edgware Rd, London W2. Tel: 01-723 8432
Open 9.30am - 5.30pm. Closed all day Thursday. Persons under 16 not served without parents authorisation.

MAIL ORDER ONLY

21B HIGH STREET, ACTON, W3 6NG.
Note: Goods despatched to UK-postal addresses only.
For further information send for instructions 25p plus stamped addressed envelope.

December 1981

Practical Electronics
THE CB INDUSTRY
By the time this is published the UK will have its very own CB band. It is, of course, quite impossible for us to foresee just how things will turn out and just how useful the band will be. What is perhaps significant at this time is the lack of British made rigs. Although manufacturers are expecting to sell many tens of thousands of rigs each, before Christmas, almost without exception all the 27 MHz rigs will be imported. The exception is of course our own PE Ranger 27FM designed for PE by Mike Tooley and David Whitfield and for which Autumn Products (Modus Systems) are the appointed kit supplier; Autumn are now also manufacturing PE Rangers.

There are a number of obvious reasons why British manufacturers are unable to build competitively priced rigs in the UK but one restriction, that is not so well known outside the industry, is that import duty has to be paid on components but is not levied on complete equipment. However, it is very pleasing to note that at least two UK manufacturers are proposing to make rigs for the 934 MHz band. This shows that UK companies can be competitive on products where the market is smaller and where the retail unit cost is higher, giving more flexibility on profit margins.

Some of the bigger companies are claiming that they will totally dominate the UK CB market but we doubt that this will happen within the first year, if ever. There are many manufacturers investing large amounts and none of them will be prepared to back out quickly.

QUALITY
What we must also wait and see is the technical quality of the products. Because it was first, and a kit, the PE Ranger has attracted much attention on its ability to meet the Home Office specification and of course our designers have been fully aware of this; hence the additional information in the article this month. What we will soon know is just how much attention manufacturers have paid to ensuring all their rigs meet the Home Office performance specification.

We also await with interest the fate of those who continue to use illegal a.m. or a.m./f.m. CB rigs; it is rumoured that the radio regulatory department are planning to clamp down heavily on illegal use. This would seem sensible as they have been avoiding the protests on interference by advising injured parties that everything will change when the legal system is introduced; it certainly won't unless they prevent the continued use of a.m. equipment.

NEWS
No doubt many readers will be looking for their first rig, be it for 27 or 934 MHz; with this in mind we are putting together a four page guide to available legal rigs, which will be published as a pull-out next month. Once again this does not mean PE will be going over to CB, but the new rigs are news and we hope the pull-out will interest most readers.

As we mentioned in News and Market Place last month, the PE Ranger was shown on TV and the PE Bandbox has also attracted media interest, being put through its paces for many radio programmes by the designer Alan Boothman.

Mike Kenward
BBC: 'far from disappointed'

Following our headline in the October issue of News and Market Place concerning the BBC disappointment over the response to their Electronics and Microelectronics School Radio Course we were very pleased to hear from Mr Arthur Vialls, the producer of School Broadcasting Radio.

Mr Vialls tells us that since our headline the response has been overwhelming with the teachers' notes (supplied on the basis of one set per applicant) now in their third reprint and to date 2500 copies have been dispatched. This means that the penetration into the secondary school market has been between 30 and 40 per cent.

Orders for the kits which accompany the programmes are now coming in at the rate of 60 a day and with the film strips also having to be reprinted it would appear that many schools have taken up the challenge.

Full details of how to obtain the kits and film strips are included in the teachers' notes which are available from Electronics and Microelectronics BBC School Radio, 1 Portland Place, London W1A 1AA on receipt of a s.a.e. with a 20p stamp.

ULTIMATE TIMER...

The CT5000 from TK Electronics is a timer kit which has 18 programmable time sets and 4 independent 2A mains outputs with zero voltage switching.

The 12hr 0-5in display will give day of the week, a.m./p.m. and output status indication. A battery back-up facility saves stored programmes and continues time keeping during power failures.

The unit is programmed by a 20 function keypad which includes programme verification button.

The timer kit is priced at £45.00 plus VAT and is available from TK Electronics, 11 Boston Road, London W7 3SJ (01-579 9794).

SOLAR CAMERA

The Ricoh camera company have recently announced the XR-S Solar powered camera which utilises two solar panels containing 20 solar cells mounted on each side of the pentaprism housing. These solar cells extend the life of a 31V silver oxide battery developed by Ricoh, for an estimated five years.

When first shown at Photokina '80, it was questioned as to whether it would need to be exposed to sunlight to charge the camera's battery, however, it can be effectively charged under white light as well as sunlight and if the light level is too low for the solar cells to operate the battery will work for up to four hours when fully charged.

CHEAP TWEET!

Any reader who is planning to build a pair of speaker units or update old speakers will be interested to learn that RT-VC are offering Goodmans soft-dome tweeters (shown below) at a very competitive price. The tweeters can be used in systems handling up to 40 watts and are priced at £3.50 each plus £1.75 p&p, or £5.95 per pair plus £2.40 p&p. Filter components are included in the prices. RT-VC, 21b High Street, Acton, London W3 6NG.

POINTS ARISING...

INGENUITY UNLIMITED (Nov. '81)

In the circuit diagram of the 0-99s photographic timer, the centre tap of the mains transformer is shown connected to the positive supply rail. It should be connected to the negative.

HOROLOGICUM (Oct. '81)

There is an error in Table 1, the MMS309 pin-outs. The pin-out functions of 15-28 should be reversed. I.e. Pin 15—Positive Supply and Pin 28—Display Enable.

Also, on page 22, column 2, 4th line from bottom should read: 1MHz instead of 1-03MHz.

MICROPROMPT (July '81)

Line 60 in Noel Caffrey's "HECDEC" program should read: S9 = MID9 (A9, I, 1) etc.
Briefly...

Bernard Babani, publishers of technical books on most subjects in the field of electronics inform us that their 1982 catalogue is now available. The 32 page catalogue lists books for both beginners and those with a wide knowledge of the subject. It is available free to readers who send a large s.a.e. to: Bernard Babani (Publishing) Ltd., The Grampians, Shepherds Bush Road, London W6 7NF. (01-603 2581).

The business of A. Marshall (London) Ltd. at 40 Cricklewood Broadway, London NW2 has now changed hands and will be trading in the future as Cricklewood Electronics Ltd. Customers are invited to phone 01-452 0161 for details of stock and prices as a catalogue has yet to be printed. A. Marshall continue to trade from Kingsgate House and Edgware Road.

The latest 64 page Bi-Pak catalogue is now available from Bi-Pak Semiconductors, The Maltings, 63A High Street, Ware, Herts., on receipt of £1.00 including p&p.

MODULAR LIGHTING SYSTEM

L&B Electronic have introduced a versatile range of modular power dimmers for use in portable and fixed lighting rigs. Four types of module are available to suit particular systems, with facilities to preset channels, on multi core lines, master dim, "kill" and provide logic compatibility with other lighting units. A single supply/reference board can supply up to 50 various units making it feasible to construct a lighting board with just the required number of channels, saving considerable cost over complete manufactured systems. Prices range from around £7 to £20, with substantial discounts on quantity orders.

A product sheet with prices is available on request. L&B Electronic, 45 Wortley Road, West Croydon, Surrey. Tel: 01-689 4138.

PCB SERVICE AIDS

New from Tele-Production Tools are six aids specially designed for use on printed circuit boards. The set comprises three double ended tools which includes a stainless steel brush for removing resin and oxidation etc. from p.c.b.s, a fork for forming component leads and wire wrapping, a knife for cutting tracks and a scraper for cleaning leads. Also included is a hook for removing components after de-soldering and a reamer for opening p.c.b. holes.

The tools which are fully insulated are housed in a plastic case and cost £3.74 including VAT and p&p.

Tele-Production Tools Ltd., Stirton House, Electric Avenue, Westcliff-on-Sea, Essex. (0702 39219).

MODULAR LIGHTING SYSTEM

L&B Electronic have introduced a versatile range of modular power dimmers for use in portable and fixed lighting rigs. Four types of module are available to suit particular systems, with facilities to preset channels, on multi core lines, master dim, "kill" and provide logic compatibility with other lighting units. A single supply/reference board can supply up to 50 various units making it feasible to construct a lighting board with just the required number of channels, saving considerable cost over complete manufactured systems. Prices range from around £7 to £20, with substantial discounts on quantity orders.

A product sheet with prices is available on request. L&B Electronic, 45 Wortley Road, West Croydon, Surrey. Tel: 01-689 4138.

Countdown...

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below.

IFSEC (Fire & Sec.) Nov. 17-19. RDS Dublin. V
Compec Nov. 17-20. Olympia London. Z
BEX Plymouth Nov. 18-19. Holiday Inn. K
Intron Nov. 24-26. RDS Dublin. V
Continuous events at Nat. Micro & Elect. Centre. L1

1982

OEM Assemblies Feb. 2-4. Royal Hort. Halls London. T
BEX Bristol Feb. 3-4. K
Microsystems Feb. 24-26. West Centre Hotel London. Z
Seminex Mar. 29-Apr. 2. Imperial College London. H1

B6 Andry Montgomery Ltd. 01-486 1951
E Evan Steadman, Saffron Walden 0799 22612
H1 Seminex Ltd., Tunbridge Wells 0892 39664
K Douglas Temple, Bournemouth 0202 20533
L1 World Trade Centre 01-488 2400
T Trident, Tavistock 0822 4671
V SDL 022 763871
Z1 IPC Exhibitions, Sutton 01-643 8040

Practical Electronics December 1981
What would you give an Engineer interested in learning about microprocessors?

Our microprocessor course...

gives you this fully assembled microprocessor development system. It is just one component in our new, practical, home-study course for engineers.

The course focuses on product design to give you a thorough grounding in the use of microprocessors by taking you step-by-step from customer specification to final production design. Without assuming any detailed knowledge of electronics or computing on your part, the course shows you how to approach system design, hardware and software development, prototype evaluation and final production.

As well as working through five specially prepared books, and familiarising yourself with a file of manufacturers' data sheets and brochures, you will carry out experiments designed to give you valuable practical experience with your microcomputer.

Complete with user manual and experiment books, it interfaces with your own TV set and cassette recorder. You also get a prototype development board with such peripherals as a small DC motor, temperature sensor, optodetector and loudspeaker - which you learn to drive with the microcomputer.

Send the coupon for further details - no stamp needed. Or phone 0908 79058 (24 hour answer service)

The Open University, FREEPOST, P.O. Box 188, Sherwood House, Milton Keynes, MK3 6HH

The course is completely self-contained, and not linked to any broadcasts, correspondence tuition, seminars or residential courses. You work at home in your own time and at your own pace to complete the course. At £395 the course offers you the perfect opportunity to gain practical microprocessor experience.

The Open University, FREEPOST, P.O. Box 188, Sherwood House, Milton Keynes, MK3 6HH

Name
Address
Post code

The Open University, FREEPOST, P.O. Box 188, Sherwood House, Milton Keynes, MK3 6HH

Please send me your brochure

The Open University, FREEPOST, P.O. Box 188, Sherwood House, Milton Keynes, MK3 6HH

Name
Address
Post code

20 Practical Electronics December 1981
Pioneers

Viewed in the context of the general economic climate, electronics has enjoyed a remarkable year. But 1981 also saw the passing of two pioneers who in different ways furthered the growth of the industry.

P. A. G. H. Voigt did as much as any one man could to popularise the concept of high-fidelity sound reproduction in the 1930s. The Voigt corner horn loudspeaker system was an outstanding achievement and was not only uncanny in its sound realism but had remarkable acoustic efficiency. So much so that at a Radiolympia exhibition of the period, when each exhibitor was allowed 100 milliwatts of audio power from a central amplifier, the sound volume from Paul Voigt's exhibit was so markedly louder than enough to deafen the listener.

Of course the Voigt corner horn would hardly do in today's small box-like rooms. It was designed in and for a more spacious age. The corner itself was a massive unit, a 60bell barrel he was introduced to a tiny company, which man could to popularise the concept of high-fidelity sound reproduction in the 1930s. The Voigt corner horn loudspeaker system was an outstanding achievement and was not only uncanny in its sound realism but had remarkable acoustic efficiency. So much so that at a Radiolympia exhibition of the period, when each exhibitor was allowed 100 milliwatts of audio power from a central amplifier, the sound volume from Paul Voigt's exhibit was so markedly louder than enough to deafen the listener.

Nothing more clearly showed up the chaotic structural state of British trade unionism than the establishment of Marconi's new factory at Neston. Looking at industries like printing and automobile manufacture in which a multiplicity of separate, often competing, unions are involved, with consequent demarcation disputes and frequent walk-outs, it seems sensible to have all workers in a plant in a common union.

In the case of Neston, which manufactures torpedoes calling for a variety of engineering disciplines, the workers could not agree that any single existing union could adequately represent the totality of the workforce.

So, by popular vote, there will be no union at all. Instead a works council of workers and management will be set up. This simple, almost obvious solution, has been described as a new shop-floor industrial revolution. Or is it plain common sense opting for concord rather than discord? This happened to one of Marconi's divisions, where a central union was established, subject to price negotiations, the contract for the heavyweight torpedo for the Royal Navy said to be worth £500 million.

Mercifully, the electronics industry has always escaped the worst excesses of industrial relations. Of course it has every advantage. Continued growth generates none of the bitterness of workers in stagnating or declining industries. A forced redundancy in electronics is not automatic relegation to the 'scrap heap'. Unlike static industries, new factory stationed at the base of the corner horn. He also developed a moving coil pick-up, probably the first ever, which gave us, even with those old 78r.p.m. discs, a glimpse of future fidelity yet to come.

Paul Voigt emigrated to Canada in 1950 where he died earlier this year at the age of 80. He started his career in audio in 1922 and retired in 1970.

Dr Trevor Lloyd Wadley, a South African scientist and inventor, died in Natal at the early age of 81. It was he who came to England in the early 1950s canvassing a new idea for a very stable communications receiver. He visited all the major companies and was told it was too complicated to manufacture. Scraping the bottom of the barrel he was introduced to a tiny company, almost a back-street concern, who not only showed interest but bought the licence to manufacture. The company was Racal Engineering and the end result was the world-beating RA 17 communications receiver incorporating the principle of the Wadley-Loop drift-canceling circuit.

The rest is history. The RA 17 was the breakthrough for the company which we now know as the Racal Electronics Group. But Dr Wadley did more than help put Racal on the ladder to success. He also invented the Tellurometer, a radio-based distance measuring system for survey work. Unlike the Wadley-Loop which has now been superseded by frequency synthesis, the Tellurometer is still in production and has earned a great deal of money over the years for Plessey, the British licensee.

Wadley and Voigt both left their mark in the history of electronics. Their passing, one in South Africa, the other in Canada, reminds us that electronics as an applied science knows no boundaries and grows inexorably through cross-fertilisation of brilliant minds.

Neston

Nothing more clearly showed up the chaotic structural state of British trade unionism than the establishment of Marconi's new factory at Neston. Looking at industries like printing and automobile manufacture in which a multiplicity of separate, often competing, unions are involved, with consequent demarcation disputes and frequent walk-outs, it seems sensible to have all workers in a plant in a common union.

In the case of Neston, which manufactures torpedoes calling for a variety of engineering disciplines, the workers could not agree that any single existing union could adequately represent the totality of the workforce.

So, by popular vote, there will be no union at all. Instead a works council of workers and management will be set up. This simple, almost obvious solution, has been described as a new shop-floor industrial revolution. Or is it plain common sense opting for concord rather than discord? This happened to one of Marconi's divisions, where a central union was established, subject to price negotiations, the contract for the heavyweight torpedo for the Royal Navy said to be worth £500 million.

Mercifully, the electronics industry has always escaped the worst excesses of industrial relations. Of course it has every advantage. Continued growth generates none of the bitterness of workers in stagnating or declining industries. A forced redundancy in electronics is not automatic relegation to the 'scrap heap'. Unlike static industries such as ship building or mining it is not geographically limited and mobility is accepted as natural by the ambitious either through promotion within a company or change of employer.

In short, there is none of the rigidity of the older industries. And there are almost daily start-ups by small entrepreneurial teams, fired by enthusiasm and who constantly refresh the industry while, at the same time, the pace of technological advance maintains interest and presents ever-new challenges. The industrial climate of electronics enjoying rude health encourages constructive co-operation towards further success and this contagious enthusiasm appears to work at all levels.

Expansion

1982 already looks a bumper year for expansion. Plessey, whose first quarter results suggest £100 million pretax profit in the year ahead, are to build a new Telecommunications Engineering Centre on their site at Edge Lane, Liverpool. As the production floor is high, it will accommodate 700 engineering personnel and will cost £2.5 million. The production plant is also to receive investment in redesign and new equipment to fit it to changing technology. All this confirms Plessey commitment to Merseyside. As a quid pro quo the workforce of some 4,000 is being asked to accept what Plessey describes as 'major changes in working practices and productivity'.

Then there's Mitel who, before their 100,000sq. ft plant at Caledicot, South Wales, was completed, had already decided to triple the size and could be employing 2,000 people by the end of next year. Mitel will be making ICs and thick film microcircuits as well as assembling PABX microprocessor controlled telephone exchanges. Several of these, being offered to UK standards, is being sold by British Telecom under the name Regent.

Systme, making microcomputers on a site on the outskirts of Leeds, has a planned £46 million investment which initially should create some 450 jobs with further phases over three years taking the total up to a possible 1,000.

These investments top up Motorola's £50m, NEC's £40 million and H-P's £12 million mentioned in this column last month. Not a bad score in just two months and reflecting confidence in the future.

Exports, too, remain lively. Marconi Marine, in a depressed shipping market, are to provide all the communications equipment for eight deep sea cargo vessels for Pakistan being built at the Gdansk yards in Poland. And Thorn Consumer Electronics has won a £2 million order for Ferguson TX colour TV kits for assembly in Greece. Cable & Wireless has also been active in Greece, winning a £4 million contract for communications equipment.

The defence market continues buoyant both at home and overseas. Thus we note an order for £2.5 million worth of electronic warfare equipment from the Argentine Navy for Racal-Decca Defence Systems, while sister company Racal-Decca Marine Radar has contracted for £5 million worth of radar to the Swedish Navy. And Racal-Decca Survey has a £5 million order from the Israeli Defence Forces for electronic positioning systems for mine-hunting operations.

In aviation, companies such as Plessey, Ferranti and Smiths should have a good share in the big British Aerospace/McDonnell Douglas deal for the Anglo-US AV-8B advanced Harrier jump-jet which in total could top £1 billion over five years. Good news, too, from British Aerospace's first year of de-nationalisation achieving record turnover and profits.
The problem with many small self-contained electronic games is that they are too easily beaten, or their interest and entertainment value seems to diminish rather rapidly after an initial enthusiasm! Computer based games gain in sophistication, but are often too large, complex or expensive to be a realistic proposition. However, in between these two extremes comes SPACE EVADERS! Simple enough to be built with standard CMOS logic devices in a small portable case, but difficult and frustrating enough when played to keep you occupied for hours.

As in the case of many other 'Space games', EVADERS is a battle between alien and human, the latter using missiles to defend himself against the former. The alien flies along from left to right, over and over again, dipping downwards towards the missile base on each pass. The missile is launched initially from a position very close to the alien's path. After launching, the missile moves slowly upwards with a 'bleep' noise. If it hits the alien, there is an explosion sound effect, and the missile jumps back one position, i.e. one step further away from the alien. 'Hitting' is achieved by having the missile arrive in the way of the alien's flight path just as the alien gets there. If the missile misses, it returns to its previous starting position. Gradually, as more and more hits are scored on the alien, the missile moves further away from the alien's path until a successful hit from the most distant missile base wins the game; the alien stops dead and a dull drone can be heard. The number of missiles fired is counted and displayed on a numerical readout in order that scores can be readily compared.

DIFFICULTIES!

On every fourth pass of the alien over the missile base it drops a bomb (which makes a 'dull bleep' sound) on the missile. This terminates any missile attack that is currently under way, and moves the missile one position back towards the alien flight path, i.e. away from that final winning position! The alien and missile speeds are independently adjustable; the missile normally travels fairly slowly, so the game becomes more difficult the further its starting position is from the alien. As if that wasn't enough, the really nasty part of the game, and the reason why it's a space EVADER, is that the alien doesn't fly at a constant rate, but at random! There is a subtle amount of speeding up and slowing down (even stopping dead sometimes) from the normal set speed. Hence the 'frustration' aspect of the game, because just as a missile is right on course for him, he can jump past it, or even stop in his tracks, and it misses again!
Fig. 2. Complete circuit diagram
Two 7-segment I.e.d. displays show the score, with the alien and missiles being indicated by discrete I.e.d.s.; mostly red, but with the centre alien and top missile I.e.d.s being green. (These are the ones that must be lit together at the same time to score a hit.) The design principles for this project have or will be covered in our Digital Design Techniques series, so for greater detail on the design of the circuitry refer to these articles. However, we can look now at the design of the circuit in fairly general terms, with the assistance of the block diagram shown in Fig. 1 and the circuit diagram shown in Fig. 2.

CIRCUIT DESCRIPTION

The circuitry can be divided up into three different areas: the control circuit, the scoring circuit, and the sound effects circuit. Let's start by considering the control circuit, as this comprises the main part of the project.

The alien's path is indicated by a row of I.e.d.s, D5 to D13, which are lit sequentially by IC3, a decade counter which is connected to reset itself at the end of each sequence. Hence, the I.e.d.s give the impression of a continuously moving light. The common cathodes of the I.e.d.s are taken to 0 volts via TR3, which is turned on and off by the clock input signal to IC3. Each I.e.d. is turned on for a short period, then off again, and then a short time elapses before the next I.e.d. lights, giving the impression of the alien 'jumping along'.

TR1, TR2 and IC1 form a random noise generator, fully described in this month's Digital Design Techniques. The random noise signal feeds the 'D' input of D-type flip-flop IC2a, which is clocked by the very low frequency oscillator formed by IC13c and IC13d. At every positive-clock transition the logic state of the random noise signal is fed to the Q output, and depending on its state the Q output may, or may not, change state. Because the Q output clocks IC3, this gives the pseudo-randomness to the alien I.e.d. movement. Some control of the alien's speed can be given by VR1 (setting the oscillator frequency), since this determines the rate at which the random noise is sampled.

The illumination of the missile I.e.d.s is considerably more complicated than that of the alien's! Basically, they are controlled by IC6, an up/down presettable binary counter, which has its binary outputs decoded into decimal by IC7, and then uses the inverter drivers of IC9 and IC10 to sink current from, and illuminate, the I.e.d.s. IC6 is clocked by IC8 a 7555 CMOS timer connected as a very low frequency oscillator, with frequency controlled by VR2. At each clock pulse of IC8, the counter IC6 (which is hard wired to always count DOWN) counts down by one, and hence illuminates the I.e.d.s in the sequence, one at a time. Note that the highest count corresponds to D25, i.e. the lowest I.e.d. in the missile chain. So, as the counter counts down, the missile appears to move upwards towards the alien I.e.d.s. TR4 gates the I.e.d.s on and off in a similar way to TR3 and the alien I.e.d.s. This not only gives the impression of jumping of the I.e.d., but also (more importantly) makes it much more difficult to hit the alien!

The alien is 'hit' when output pin 10 of IC3 (the alien's green I.e.d.) is at logic 1 at the same time as D18 is lit (the missile's green I.e.d.). This condition is detected by IC14c, the output of which is then enabled by IC12b from IC8; this ensures that the alien can only be hit when the missile I.e.d. is actually illuminated. The output of IC12b is inverted, then passes through IC14b and is inverted again by IC10d (we'll look at the action of IC14b pin 6 later), which provides the clock to IC5, another presettable up/down counter. IC5 is used to determine the starting position for the missile which, of course, advances by one for every alien hit, but decreases by one for every bomb dropped. For the moment let's assume that the up/down control pin 10 is at logic 1 (i.e. count up) and hence as soon as an alien is hit, IC5 counts up by one. The outputs of IC5 feed into the preset inputs of IC6, and the IC6 outputs are forced to this preset condition when the missile 'run' is completed; IC7 pin 3 (the last decoded output of IC6) goes to logic 1, which feeds via IC12c to the pulse deriving network of C7, D14 and R25, then via IC14d to the pulse stretching network of D17, C14 and R30, and then to the preset enable pin 1 of IC6. So, when the missile has finished moving towards the alien, it moves to a position determined by IC5. For every alien hit the IC5 count increases by one, so each time the missile hits the alien it jumps back one position before starting its next run.

A missile is fired at the alien by pressing S2, a simple push-to-make switch, contact de-bounced by R26 and C9. This logic signal passes to the pulse deriving network of R24, D15 and C8 via IC11b, and then to the cross-coupled latch (or ' bistable') formed by IC11c and IC11d. This causes IC11c pin 10 to go to logic 1, forcing IC8 pin 4 (the reset pin) to go high, which enables IC8 and allows the missile to start 'moving'. As mentioned above, at the end of the missile's run IC7 pin 3 goes to logic 1 which then passes via IC12c to the pulse deriving network of C7, D14 and R25. This causes the latch to be set into the opposite state, i.e. IC11 pin 10 goes to logic 0, which resets IC8 and stops the missile from moving forwards towards the alien.

THE BOMB

At every fourth pass of the alien over the missile base it drops the bomb. IC5 pin 0 is the output which is at logic 1 when the alien is in its central position, so this is passed through IC4b and IC4a, both connected as divide-by-two circuits. Hence, pin 1 of IC4a goes to logic 1 for every four output pulses from IC3 pin 10. C5, D3 and R20 form a pulse deriving network to illuminate the bomb I.e.d., D4, via IC10e and R21. C4, R19 and D2 form a similar network with a much shorter time period, the pulse from which passes to IC12c and IC13b. Via IC12c it stops the missile and presets IC6 in exactly the same way as IC7 pin 3 going to logic 1 does. Via IC13b it passes to IC14b, IC10d and then to the clock of IC5 in the same way as a 'hit signal' does. Also, it causes the up/down control to IC5 (pin 10) to go to logic 0 via the pulse stretching network of D16, C10 and R27. Since the pulse derived by C4, R19 and D2 is much shorter in duration than the pulse stretched period of D16, C10 and R27, the up/down control is still at logic 0 (count down) when the clock input goes back to logic 1, so IC5 counts DOWN by one, moving the missile one position nearer the alien because of the preset enable pulse applied to IC6. Note that these timing delays have to be introduced between the up/down control and the clock to avoid hazards being
COMPONENTS . . .

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R44</td>
<td>270k</td>
<td>(2 off)</td>
</tr>
<tr>
<td>R2</td>
<td>2k7</td>
<td></td>
</tr>
<tr>
<td>R3, R5, R20, R22, R26, R48</td>
<td>1M0</td>
<td>(6 off)</td>
</tr>
<tr>
<td>R4</td>
<td>3k3</td>
<td></td>
</tr>
<tr>
<td>R6, R7, R8, R40</td>
<td>33k</td>
<td>(4 off)</td>
</tr>
<tr>
<td>R9, R19, R29, R35, R42, R47</td>
<td>10k</td>
<td>(6 off)</td>
</tr>
<tr>
<td>R10, R11, R12, R13, R15, R16, R17, R18, R32, R33, R34, R35, R36, R37, R38</td>
<td>1k0</td>
<td>(15 off)</td>
</tr>
<tr>
<td>R14, R21, R31</td>
<td>680</td>
<td>(3 off)</td>
</tr>
<tr>
<td>R23, R25, R28, R41, R45</td>
<td>100k</td>
<td>(5 off)</td>
</tr>
<tr>
<td>R42, R27, R30</td>
<td>150k</td>
<td>(3 off)</td>
</tr>
<tr>
<td>R43</td>
<td>47k</td>
<td></td>
</tr>
<tr>
<td>R46</td>
<td>680k</td>
<td></td>
</tr>
<tr>
<td>R49, R50, R61, R52, R53, R54, R55, R56, R57, R58, R59, R60, R61, R62</td>
<td>1k8</td>
<td>(14 off)</td>
</tr>
<tr>
<td>All resistors</td>
<td>1/4 watt</td>
<td>5% carbon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometers</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1</td>
<td>1M0 lin</td>
<td></td>
</tr>
<tr>
<td>VR2</td>
<td>100k lin</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C4, C10, C14, C15</td>
<td>10n polyester</td>
<td>(5 off)</td>
</tr>
<tr>
<td>C2, C5, C6, C8, C9, C20, C21, C22</td>
<td>100n polyester</td>
<td>(8 off)</td>
</tr>
<tr>
<td>C3, C13</td>
<td>10µ 25V electrolytic</td>
<td>(2 off)</td>
</tr>
<tr>
<td>C7</td>
<td>3n3 ceramic</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>100n 30V disc ceramic</td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>680µ 16V electrolytic</td>
<td></td>
</tr>
<tr>
<td>C16</td>
<td>2µ2 35V tantalum bead</td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td>1n ceramic</td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>2µ2 25V electrolytic</td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>1µ 35V tantalum bead</td>
<td></td>
</tr>
<tr>
<td>C23</td>
<td>330n polyester</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>1N4002</td>
<td></td>
</tr>
<tr>
<td>D2, D3, D14, D15, D16, D17, D26, D27, D28, D29</td>
<td>1N4148</td>
<td>(10 off)</td>
</tr>
<tr>
<td>D4</td>
<td>yellow l.e.d. (0-125m)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IC5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D19, D25</td>
<td>red l.e.d. (0-125m)</td>
<td>(15 off)</td>
</tr>
<tr>
<td>D10, D11, D12, D13, D19, D20, D21, D22, D23, D24, D25</td>
<td>green l.e.d. (0-125m)</td>
<td>(2 off)</td>
</tr>
<tr>
<td>D9, D18</td>
<td>common cathode red l.e.d.</td>
<td>7-segment display (2 off)</td>
</tr>
<tr>
<td>Displays X1, X2</td>
<td>Maplin type 4 (FR38R)</td>
<td>BC109</td>
</tr>
<tr>
<td></td>
<td>BC184L (2 off)</td>
<td>BC214L</td>
</tr>
<tr>
<td></td>
<td>741 (8 pin)</td>
<td>IC1</td>
</tr>
<tr>
<td></td>
<td>4013 CMOS dual D-type flip-flop (2 off)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4017 CMOS decade counter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4029 CMOS presettable binary up/down counter (2 off)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4026 CMOS BCD to decimal decoder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICM 7555 CMOS timer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4049 CMOS HEX inverter/buffer (2 off)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4011 CMOS quad NAND gate (4 off)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4001 CMOS quad NOR gate (2 off)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4518 CMOS dual BCD counter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4511 CMOS 7-segment latch/decoder/driver (2 off)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4093 CMOS quad Schmitt NAND gate</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCORING</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

created; this was covered extensively in this month’s Digital Design Techniques article.

If the missile is already at the nearest starting position it can get to the alien (D19 is lit) then we don’t want to move it at all when a bomb is dropped. IC12d detects this condition, which corresponds to a binary count of 0011. The output of IC12d is inverted, and then disables IC13b, preventing any counting down of IC5.

WINNING AND Resetting

When you’ve finally moved the missile to its bottom l.e.d. position, D25, and then subsequently hit the alien from this position, the game is won. The output of IC5 becomes binary number 1010, which is detected by IC11a. The output of IC11a disables the “FIRE” switch S2 via IC11b and stops the alien by disabling the oscillator formed by IC13d and IC13c.

Power-on reset is provided by C13, R29 and IC12a. Manual reset, via S3, can also be applied in the same way. The reset pulse out of IC12a pin 3 is inverted by IC10a and used to reset the two flip-flops of IC4, and to preset enable IC5, the preset inputs of which are connected to give a binary count of 0011; this corresponds to the missile l.e.d. D19 being lit, and is the starting condition for the game. The reset pulse also passes through IC14d and the pulse stretching network, then to the preset enable pin of IC6, and hence the whole system is set up to start a new game.

SCORING

The scoring circuit comprises the two 7-segment displays, IC15, IC16, IC17, IC18c and IC18d. IC15 is a dual BCD counter, with asynchronous cascading between the two halves being arranged by detecting the 1001 output of the first counter (i.e. the number 9) with IC16c, then when this count changes to 1010, pin 10 of IC16c goes back to logic 1, so via the pulse deriving network of IC17, D25 and R43 and inverter IC18d, this is used to clock the second counter which is arranged to trigger a negative edge. IC16 and IC17 are 7-segment latch/decoder/drivers, although in this application the latching facility is not used. The BCD inputs are
Fig. 5. P.c.b. design

Fig. 6. Component layout
converted to 7-segment output codes (on pins 9 to 15) which drive the displays via current limiting resistors. The two counters are reset by the control circuit's reset pulse, and the first counter is clocked by the output of the latch formed by IC11c and IC11d. (Because of the latching action this point is completely bounce free; the output of IC1b pin 4 would not be as bounce free, and could give false counting, so was not used even though it might seem to be a more likely point to take the scoring from.)

SOUND EFFECTS

The raucous noises generated by this game can all be blamed on the TOKO sounder used! This is a cheap piezo loudspeaker which can be driven directly from a CMOS gate (it has a very high impedance) yet gives relatively high sound levels. The alien hit explosion sound is generated by gating on the noise output of IC1 by the 'hit signal' pulse stretched by D29, R48 and C23. (IC20a is included to prevent any problems caused by feeding the 'hit signal' directly into the pulse stretching network.)

Every movement of the missile is indicated by deriving a short pulse from the output of IC8 using the network of C21, D28 and R46 (and via IC19c), and using this to gate on and off a medium frequency audio oscillator formed by IC19a, R47 and C22. This gives out a short 'squeak' for each missile movement. The circuit is disabled, though, whenever the bomb is dropped or an overall win occurs, to allow these other sounds to take precedence, via IC19c pin 9.

The bomb and overall win sounds are both the same low frequency audio tone generated by IC19b, with R45 and C20. The oscillator is gated on and off via a pulse stretcher circuit formed by D27, C19 and R44. In the case of a bomb dropping only a short tone is heard, but in the case of an overall win the tone is continuous until the game is reset or switched off. IC18a and IC20c serve merely to combine the various effects and feed them to the sounder.

Finally, D1 provides protection against incorrect connection of the batteries, and C11, C12 and C18 decouple the power supplies to help stop transients from affecting circuit operation. Note that a high battery voltage is needed for the unit (12 volts) in order that a satisfactory noise voltage can be obtained from the reverse biasing of the TR1 junction. Although a 9 volt battery could be used, it would require special selection of TR1 to find a transistor with a particularly high noise voltage. If preferred, a simple mains power supply could be added, either squeezed directly into the unit or as a separate 'battery eliminator'. Part 2 of the Digital Design Techniques series (September '81) showed a suitable circuit; any voltage from 12 to 15 volts will work very well indeed. Whatever power supply is being used, make sure that it never exceeds 15 volts under any circumstances, or change C12 to a 25 volt type and make sure that the supply never exceeds 18 volts.

CONSTRUCTION

The components should be soldered to the p.c.b.s as shown in Figs. 4 and 6. Leave the integrated circuits until last, don't touch their pins with your hands, and use an earthed soldering iron. The i.e.d.s and displays sit well up off the p.c.b. surface, not flat down, and should be adjusted in height off the board to suit the spacers and fixings used. They should be visible through a 'window' in the case, and the i.e.d.s will fit directly through holes in the front panel. The piezo sounder should be fixed to its p.c.b. using short wire links fixed through its mounting holes. (Flying leads connect it to the other p.c.b.)

The two p.c.b.s should be wired together using ribbon cable, jumper strip, or just discrete wire links as preferred. Join point A to A, B to B etc. The battery holder connectors, potentiometers, and switches can also be wired up at this point using adequate lengths of flexible stranded wire. (A spare pin on the power switch S1 can be used to anchor this joint between the two battery holder connector wires.) The case should be drilled to take the switches, pots, mounting pillars for the p.c.b., the i.e.d.s and a rectangular cutout should be made to allow viewing of the 'score' displays. This cutout should have a piece of red tinted plastic or perspex glued behind it to improve visibility and contrast of the 7-segment displays. Note that the i.e.d. holes must be ACCURATELY drilled to match the positioning of the i.e.d.s on the p.c.b.; it is easy to damage the i.e.d.s by too much bending of their legs, so be careful!

Lettering and symbols should then be applied to the case. The p.c.b.s, joined together and with pillars fitted, should be offered up to the case, screwed in, and the switches and pots added. The battery holders should be fixed to a suitable position in the case using 'sticky fixers'.

The SPACE EVADERS game is now finished. If it seems that the noise source is not operational (no logic level changes at IC2a pin 5) try changing TR1, or lowering the voltage of R4 to 1k0, and make sure that the supply voltage is as high as it is supposed to be. If no i.e.d.s come on at all, it is possible that they've all been inserted into the p.c.b. the wrong way round, so check this before proceeding. To test the action of the game, it is usually best to set the alien speed to minimum, and the missile speed to the maximum.

There are many potential changes, modifications, and variations possible on the basic theme of this game. Naturally the more complex it becomes, the more likely is that a dedicated microprocessor would prove easier to use than discrete logic. However, at the level shown it is fairly easy and economical to build, and the alien seems to be sufficiently difficult to beat that even die-hard enthusiasts of 'that other' alien space game find it an absorbing deviation!
The DP2010 is a development of the DP200 Multimeter (featured in PE May 1981) aimed at giving reasonable specification at remarkable value for money. The instrument is available ready-assembled and calibrated, or in kit form for home assembly. All parts (except PP3 battery and test leads) are supplied including clear assembly and calibration details. The DP2010 features 6 functions and 21 measurement ranges, with a high contrast 12.5mm l.c.d. readout for extended battery life.

SPECIFICATION

FUNCTIONS: Volts (d.c.) 1mV–500V, 4 ranges; accuracy 1% ± 1 digit. Current (d.c.) 1µA–1000mA, 4 ranges; accuracy 1% ± 1 digit (5% ± 1 digit @ 1000mA). Volts (a.c.) 1mV–500V, 4 ranges; accuracy 2% ± 5 digit. Current (a.c.) 1µA–1000mA, 4 ranges; accuracy 2% ± 5 digit (7% ± 5 digit @ 1000mA). Resistance 1R–2000k, 4 ranges; accuracy 1% ± 1 digit. Diode Test 2V range; accuracy 1% ± 1 digit. DISPLAY: 12-5 l.c.d. INPUT IMPEDANCE: 10MΩ. BATTERY TYPE: PP3, 2mA typical consumption.

POLARITY INDICATION: Automatic. LOW BATTERY INDICATION: Automatic. OVER RANGE INDICATION “1” at most significant digit with other digits suppressed. INPUT TERMINALS: Standard 4mm.

IMPORTANT NOTE: This is a genuine Special Offer, and it is essential that all orders are accompanied by a coupon (or a copy) appearing on this page. This offer ends strictly on 1.2.1982 (UK orders) and 1.3.1982 (Overseas). The Special Offer prices including VAT & p&p give big savings on the normal 1-off Lascar prices.

For overseas orders £2.00 (Europe) or £5.00 (all other areas) must be added to cover Air Mail Delivery.

To: Lascar Electronics Ltd., Unit 1, Thomasin Rd., Burnt Mills, Basildon, Essex SS13 1LH.
Tel. 0268 727383

Please send me DP2010(s) @ £23.95 each
 DP2010 Kit(s) @ £19.95 each

I enclose P.O./Cheque/Access No Value

Make cheques payable Lascar Electronics Ltd.

Name

Address

Please allow 21 days for delivery

OFFER CLOSES 1st FEBRUARY 1982

From: Lascar Electronics Ltd., Unit 1, Thomasin Rd.,
Burnt Mills, Basildon, Essex SS13 1LH.
Tel. 0268 727383
THIS computer (shown actual size below) is able to provide the following digital information in either imperial or metric units.

Current or average speed and m.p.g., distance travelled, remaining distance possible on fuel left, average speed needed for remaining distance to meet an arrival time, acceleration and deceleration times between any two preset speeds, fuel used during acceleration, average m.p.g. during acceleration, distance covered including standard distance times and fuel used and provides instant and average fuel costs.

MODES OF OPERATION

There are three basic modes of operation:

Indicating mode. This is used to display such things as current or average speed, or distance travelled.

Remainder mode. The unit can perform simple calculations such as remaining distance, remaining distance possible on the amount of fuel left, average speed required for the remainder of a journey in order to arrive in the time allowed, and so on.

Start-stop or programmed mode. This is used for acceleration timing and the like.

There is also provision to drive a combination lock ignition cut out which will be described later.

INDICATING MODE

To cause the unit to display one of the functions listed above the buttons 1 to 5, simply press that button. 'Time' is 'elapsed time' not time of day, the latter would require the unit to be on power even with the car engine off. This will read out in hours and minutes up to 19 hours 59 minutes and in decimal hours for longer times. The other functions read over three ranges depending on the value. 'Fuel Use' is either miles per gallon or litres per 100 kilometres.

Pressing 'Average/Low' causes the unit to read average rather than instantaneous values if the function selected is 'Speed' or 'Fuel Use', and to read 1000 times the value if the function is 'Fuel' or 'Distance'. When the function selected is 'Time', the unit reads in minutes and seconds or seconds and tenths. The main use for the low operation is for reading the low values obtained during start-stop operation. To indicate low or average, a colon shows by the 'function' digit.

'Reset' sets the time, fuel and distance stores to zero and introduces the averages.

'Hold' causes the total and instantaneous stores to be held at their current values and an 'H' to show in the function digit. It is still possible to change functions using keys 1 to 6 so the conditions at the moment the 'Hold' button was pressed can be examined. 'Run' cancels 'Hold' and returns to normal operation.

REMAINDER MODE

The 'Remaining' key can be used to calculate values based on previously entered information as follows.

'Remaining' followed by 'Time', 'Fuel' or 'Distance' causes the value digits to read the entered quantity minus the measured quantity. If a further key 1 to 3 is pressed, the digits show the value of the first function based on the remaining second and the ratio of the two. For example, pressing 'Remaining', 'Fuel', 'Distance' gives the amount of fuel required for the remaining distance assuming the same average fuel use. Remaining', 'Distance', 'Fuel' is the distance possible with the remaining fuel and so on. The function digit always shows the units of the value digits. There are nine such remaining calculations possible.

'Remaining', 'Speed' calculates remaining distance divided by remaining time, which is the average speed now required to complete the distance in the time allowed. Similarly with remaining fuel use.

To revert to normal use, press 'End' followed by the function now required, or the function twice. The unit will perform the equivalent of pressing the 'End' button eight seconds after the last button was pressed, unless in the hold condition.

The quantities required for a journey are entered into the unit by pressing 'Enter', followed by the key for the function to be entered (1 to 3), followed by the number, followed by 'End'. Thus to enter 25.5 miles, press 'Enter', 'Distance', 2, 5, 5, 'End'. The 'End' is needed to indicate that a subsequent key is not a number, but see previously about automatic 'End'.

![Image of car computer display and buttons]

1. Time
2. Fuel
3. Distance
4. Speed
5. Fuel Use
6. Average
7. Low
8. Reset
9. Hold
0. Run
Remaining
Enter
End
Numbers entered this way are not affected by 'Reset' or changes in the totalising stores, so if the same journey is to be done, the numbers need not be re-entered. To examine a number press 'Enter', followed by the key for the quantity to be examined. The previously entered number will now appear in the result digits and can be modified as before using the number digits, or left the same by pressing 'End'.

START-STOP MODE

The unit can be programmed to reset its stores when the display reads a certain number and to go to the hold condition at another number. Either number can be zero in which case the unit will not reset until the display reads just above zero or will not hold until the display becomes zero.

To enter the number the unit is required to reset at, press 'Enter', 'Start' (same as 'Reset'), followed by the number, followed by 'End'. Similarly the stop number can be entered using 'Stop' ('Hold'). 'Enter', 'Stop' sets a start-stop request flag in the unit, but the start-stop mode does not become active until 'Run' is pressed, indicated by a 'P' in the function digit. During start-stop operation the sample rate for instantaneous values is increased up to eight times per second.

Suppose it is required to test the acceleration of the car from 0 to 50 miles per hour, the sequence is as follows. Press 'Enter', 'Start', 0, 'End', 'Enter', 'Stop', 5, 0, 'End'. The unit is then set to read 'Speed', the car driven to where the test is to be carried out, stopped (for long enough for the display to go to zero), then 'Run' pressed. As soon as the car starts moving the total stores will be reset to zero, and when the speed exceeds 50 miles per hour, the unit will go to the hold condition. Press 'Time', 'Low' to see the acceleration time, 'Fuel', 'Low' the amount of fuel used and so on. 'Speed'

shows the speed at which the unit stopped, which will be just over 50. 'Speed', 'Average' the average speed, and so on.

This is a very good way to tune a car as the best compromise between performance and economy can be found quite quickly. The setting for ignition timing that gives the best performance also gives best economy, and up to a point the richer the mixture the better the performance at the expense of economy and vice-versa.

It is possible to start and stop on any function, thus a standing ½ mile test can be done starting at zero and stopping at 25, reading 'Distance' (or stopping at 250 reading 'Distance' and 'Low'). Make sure though that 'Reset' is pressed before 'Run' when stationary. If starting and stopping on a time, this time must be expressed in decimal hours.

Pressing 'Reset' when in the start-stop mode will start the unit without waiting for the start condition. Similarly the unit can be stopped early by pressing 'Hold'. Going to the hold condition, manually or automatically, clears the start-stop mode. To repeat a test using the same figures press 'Enter', 'Stop', 'End', 'Run'.

The start number can be greater than the stop number, used, for example, for braking tests. The display must be reading more than the start number when the 'Run' button is pressed, and obviously the wheels must not skid.

It is interesting to repeat the distance tests accelerating both fiercely and gently, work out the difference in time taken and the difference in cost of fuel used, to obtain cost/time and compare that with how much you feel your time is worth to you.

'F.Cal' and 'D.Cal' are used for calibrating the unit for metric or imperial use.

Fig. 1. Circuit diagram of main board
MAINTAIN BOARD

The circuit for this is based around a 8035L microprocessor with a 2716 program store (Fig. 1). A 74LS373, IC3 is used to latch low order program store addresses for the ROM which on the 8035L are multiplexed with the data bus. B0 to B3 are also kept under the control of the WR signal in IC4, a 4035. This has exclusive OR outputs for driving the I.C.D. direct.

The digit outputs for the display are in BCD form on lines ABCD, multiplexed under the control of strobes S1 to S4. The strobes also drive the keyboard, organised as a 3 x 4 matrix, the sense lines being L1 to L3. Pull up resistors on the strobes are necessary because the 8035L port lines have a high impedance (50k) pull up on both inputs and outputs. Without the resistors there would be insufficient current to drive the keyboard lines.

The 8035L has an internal 64 x 8 data RAM which is used for holding the various quantities which must not be lost when the ignition is switched off. Vdd line drives only this RAM and is connected directly to the 5 volt regulator, IC6. This regulator is powered from the car battery directly. The main microcomputer comprises IC1, IC2 and IC3, and could be used to drive other display/keyboards arrangements, and with a different power supply/input arrangement.

POWER SUPPLY AND INPUT

Pin 26 of IC1 must be supplied with 5 ± 0.5 volts continuously to retain the information in the RAM, at a current of about 10 mA. When power is being applied or removed, pin 4 of IC1 (RESET) should be low and preferably when power is about to be removed pin 6 (INT) should be high. This puts the processor in a known state, and ensures that power will not fail half way through an addition for example.

The flow pulses are applied to pin 1 and the distance pulses to pin 39, IC1. A 4.433619MHz crystal is needed as in Fig. 1 for the timebase for the correct timing.

KEYBOARD/DISPLAY

The keyboard is matrix driven between strobe lines S1 to S4 and keyboard input lines L1 to L3. Note that the strobe lines are only capable of sourcing about 100μA without pull up resistors.

In order to get correct letter outputs on the function digits a code 'B' type decoder is needed for lines ABCD. There is a small amount of interdigit blanking on the strobe lines which will prevent ghosting when multiplex driving I.C.D. or fluorescent displays, but which may not be sufficient when driving gas discharge displays. Strobe S1 is high when lines ABCD have information for the least significant digit, through to strobe S4, high for the function digit.

Other output information is present on lines B0 to B7 when pin 10 of IC1 (WR) is low, as follows.
These are active low. The start-stop direction flag is low if the start number is greater than the stop number.

Bits B5 and B6 operate as follows.

- **B5 = 1, B6 = 1**: Not programmed mode.
- **B5 = 0, B6 = 1**: Start-stop request—'Enter', 'Stop' pressed, but not 'Run' yet.
- **B5 = 0, B6 = 0**: Start-stop active—'Run' pressed from start-stop request.
- **B5 = 1, B6 = 0**: Started—unit has performed reset, display value is between start number and stop number.

FLOW SENSOR

The unit requires approximately 20,000 pulses per litre of fuel. The flow range in a motor car can be from 1 to 50 litres per hour, and it is difficult to make a flow sensor to handle this range. There are problems too with pulsations in the flow.

The recommended sensor has been designed specifically for this application and should be accurate to within 2 per cent. It uses a small helical turbine running in precision bearings, which is rotated by the flow, the rotation being sensed optically. It is mounted together with its pulse reducing valve in the fuel line between the fuel pump and the carburettor. **This sensor cannot be used with fuel injection or diesel engines.**

DISTANCE SENSOR

The unit needs one pulse every 200mm or so, a sensor giving one pulse per revolution of the prop shaft could be used, or one giving 4 pulses per revolution of a half shaft. The recommended sensor fits into the speedometer cable giving 6 pulses per revolution. This is because of the difficulty of making a universal fitting for a drive shaft sensor, and one fitting on the end of a speedometer cable could necessitate a tight bend in the cable.

There are at least six different end formats for speedometer cables as well, but I have only come across two different inner cable sizes so far, both of which the sensor will accommodate. To fit it requires that the outer cable be cut at some point. A slotted disc inside the sensor rotates with the inner cable, the rotation being sensed optically.

HOUSING

In order to keep the outside dimensions of the unit as small as possible and to give a professional appearance to the finished unit, a custom box has been designed.

CONSTRUCTION

The p.c. board layout for the display and keyboard is shown in Fig. 3. Fig. 4 shows the component layout, the display is mounted above IC7, in the soldercon connectors.

Fit the three wire links first, then the switches, making sure that they are close against the board. Now fit IC7 as in Fig. 4, again pressed close to the board, and without a socket. Cut the bottom row of legs of this i.c. close to the board. Fit and solder the capacitor C16 and the soldercon sockets for the display. Break off the backing strip from the sockets. A small piece of white paper about 25mm/1in square stuck to the middle of IC7 will improve the appearance of the display when back lit. Press the display into
the sockets so that the front of it is 11mm from the front of the board. Fit and solder the connecting wires on the copper side of the board. These can be 40mm/1 1/2in lengths of 10/0.1 wire, or a 40mm length of 18 way 0.1 pitch ribbon cable.

Figs. 5 and 6 show the printed circuit layouts for the main board. Fit a through pin in all top side pads and solder both sides. The position of the components is shown in Fig. 7; it is recommended that IC1 and IC2 be mounted in sockets. Solder in the sockets, but do not fit IC1 or IC2 yet.

L1 to L3 consists of five turns each of 0.25mm kynar wire wound around the ferrite core as shown in Fig. 8. The core is held onto the board using a cable tie.

Fit IC6 and its heatsink (Fig. 9) last, an M3 x 8mm bolt holding them to the board, with the nut and washer on the component side. Fit the crystal (as far as the wires will permit) lying over IC1.

Join the two boards together, again soldering the connecting wires to the copper side of the board. The wires connect without crossing over. Fit the seven wires for the power and sensors, thread through the sleeving, and if the unit is to be mounted above the car dashboard, i.e. with the sloping face part of the box at the top, thread the cable through the big hole in the board. Fit a cable tie approximately 75mm/3in from the board.

The two bulbs are fitted through the holes in the display p.c.b., from the component side, making sure that the metal parts of them are not touching the metal bar passing through IC7, and held in place with adhesive (e.g. 'Superglue'). Connect these to the main board with a twisted pair of wires kept away from the main components.

Testing

Apply power between the -ve and +ve wires (black and red on board), 9 to 15 volts, and check that there is 5 volts ± 25 between 0 volts (heatsink) and pin 26 of IC1 socket. Now connect IGN (yellow) to the +ve supply and check that there is 5 volts between 0 volts and pin 40 IC1 socket. Remove the power, wait a minute or so for the capacitors to discharge and plug in IC1 and IC2.

Apply power between -ve and +ve/IGN again, press the ‘End’ button (bottom right) on the keyboard, the ‘Run’ button, then some of the buttons 1 to 5 on the keyboard top row and check that the function (leftmost) digit of the display shows the key number 1 to 5.

Main Assembly

Refer to Fig. 10 for the positioning of the various components that make up the box front. Remove the backing paper from the switch label and fit it to the box front, making sure that the holes line up and that it is the right way up. Use the two plastic sprues from the box mouldings through button 6 and 7 holes to align the label, and once pressed down do not attempt to move it. Fit the name label similarly.

The transparent window is fitted to the inside of the box front using polystyrene cement or 'Superglue'. Do not get adhesive on the visible part of the window, it does not come off! Fit the switch button assembly over its studs and melt the studs down to hold it in place.

Thread the cable from the main p.c.b. through the hole in the back of the box cover and pull through, sliding the p.c.b. along the appropriate set of runners. These will grip the board fairly tightly. Press the board home, making sure that the board engages the slots at the back of the box cover, and that the capacitor C9 is not pulled from the board by the edge of the box.

Locate the holes in the display p.c.b. over the long studs in the box front, and tucking the connecting wires under the box cover. Press the display side lugs inwards to fit into the cover and press the front into the cover so that the lugs snap home.

Components

<table>
<thead>
<tr>
<th>Resistors</th>
<th>Capacitors</th>
<th>Semiconductors</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1-R4</td>
<td>3k (4 off)</td>
<td>D1 1N4001</td>
<td>L1-L3 3 x 5 turns on T68-40 core, XL1 4-433619MHz crystal, S1 to S12 AKS switch (12 off), X1 47–D9–F03KG display, LP1–LP2 14V 0.7V LQES bulbs (2 off), 40 pin DIL socket, 24 pin DIL socket, soldercon pins (40 off), heatsink, p.c.b.s: through pins (34 off), wire, cables etc., plastic box kit, speed sensor, flow sensor and valve, connector block, cable ties, various 'plumbing' parts as required. A complete kit of parts is available from Pinac Systems Ltd., 20 Bloomfield Road, Birmingham B13 9BB. Price £89.50 which includes VAT plus postage and packing.</td>
</tr>
<tr>
<td>R5-R7</td>
<td>3k (3 off)</td>
<td>D2 1N914</td>
<td></td>
</tr>
<tr>
<td>R8-R12</td>
<td>1k (2 off)</td>
<td>TR1 BC182</td>
<td></td>
</tr>
<tr>
<td>R9, R10, R14</td>
<td>47k (3 off)</td>
<td>TR2 8051</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IC1 805L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IC2 2716</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next Month: Fitting the flow and speed sensors. Installation, calibration and a description of the program controlling the computer.
Fig. 5. Topside of p.c.b.

Fig. 6. Underside of p.c.b.

Fig. 7. Component overlay
We at Videotone are very confident that the Seoum range offers excellent value, as equipment of such high specification would normally be in a much higher price bracket. This is basically what you might expect us to say about our products, but don’t just take our word for it, read on.

The name of Videotone certainly needs no introduction, as their popular range of loudspeakers, and especially the remarkable Showstopper in the shape of the Minimax 2, well and truly secured them an established position in the hi-fi scene a good many years back. Since then a lot has happened and today they offer a very wide range of products among which are the brand names of Coral and Seoum. Coral is now a widely known, and respected name but Seoum, the relative newcomer to the Videotone fold, has yet to fully make its mark, but if the value-for-money quality apparent in these three products is anything to go by it won’t be long before it’s an established brand name too.

Normally, any equipment submitted for review is used thoroughly for a reasonable period, but in the case of the Seoum SA-4120 amplifier, ST-4120 tuner and SC-4200 cassette deck, it has been in constant daily use in excess of four months and therefore well and truly exposed to the glaring light of day.

I’ve used it, my wife uses it almost all day long, my Friend borrowed the amplifier for a disco one night, the children inadvertently abused it, and it’s driven all manner of different speakers, but never for a second has the system gone wrong or given anything but pleasure.

The SA-4160 amplifier produces sixty watts per channel into eight-ohm speakers, both channels driven, and boasts a generous range of facilities. There are switchable outputs for two pairs of speakers, inputs for two cassette or tape decks, microphone input, switching for tone defeat, 20dB muting, loudness, mono/stereo, subsonic filter and the usual bass, treble, balance, volume and selector controls. Also, there’s the surprising addition of a built-in head amplifier for moving-coil cartridges, peak level led power meters and a green led which lights up when the unit is switched on but which changes to red in event of a fault condition at the output stage such as short circuit or the use of loudspeakers of exceptionally low impedance.

It’s certainly a very comprehensive amplifier and omits nothing worthwhile that I can think of at the same time as it includes a lot I hadn’t even thought about. And the price... just £69 including VAT!

Matching in style is the ST-4120 three-waveband tuner (vhf/fm, long and medium wave) and this again, proved very good as Gordon King also found in his Audiolab report last September. Reception on the two am bands is quite adequate using the unit’s ferite-rod aerial but stereo transmissions on the vhf/fm band were judged as being especially good and decidedly better than that I’ve had from so-called up-market tuners with a much higher price tag.

The SA-4160 amplifier produces sixty watts per channel into eight-ohm speakers, both channels driven, and boasts a generous range of facilities. There are switchable outputs for two pairs of speakers, inputs for two cassette or tape decks, microphone input, switching for tone defeat, 20dB muting, loudness, mono/stereo, subsonic filter and the usual bass, treble, balance, volume and selector controls. Also, there’s the surprising addition of a built-in head amplifier for moving-coil cartridges, peak level led power meters and a green led which lights up when the unit is switched on but which changes to red in event of a fault condition at the output stage such as short circuit or the use of loudspeakers of exceptionally low impedance.

It’s certainly a very comprehensive amplifier and omits nothing worthwhile that I can think of at the same time as it includes a lot I hadn’t even thought about. And the price... just £69 including VAT!

Matching in style is the ST-4120 three-waveband tuner (vhf/fm, long and medium wave) and this again, proved very good as Gordon King also found in his Audiolab report last September. Reception on the two am bands is quite adequate using the unit’s ferite-rod aerial but stereo transmissions on the vhf/fm band were judged as being especially good and decidedly better than that I’ve had from so-called up-market tuners with a much higher price tag.

The system reviewed consisted of: the SA4160, 60 watt stereo amplifier, ST4120 stereo tuner, and the SC4200 stereo cassette recorder.

Firstly, the deck is metal-tape compatible. Secondly, it incorporates peak reading led level meters, green up to 0dB and red thereafter. Thirdly, it utilises one-touch logic controls instead of the mechanical type commonly found on most lower priced decks and fourthly, the output is variable as opposed to being at a fixed nominal level.

A wide variety of quality cassettes all worked well with the deck but BASF’s latest chrome formulation, Chrome II, proved particularly noteworthy.

There is never enough space to write all one wants to about a system, and especially so if such has generated genuine enthusiasm as this one has so easily done, but suffice it to say that in all respects, I just cannot fault it. Highly recommended.

Geoff Giles

The system reviewed consisted of: the SA4160, 60 watt stereo amplifier, ST4120 stereo tuner, and the SC4200 stereo cassette recorder.
With video recorders now in widespread use many people have the most expensive item required to produce home video tapes; this black and white camera provides the outstanding unit at a realistic price. Since it can be supplied with power via the coax link it is also well suited to remote monitoring/security applications.

It will connect directly to any standard UHF TV set or video recorder.

INDECISION ELIMINATOR

We would like to tell you that our Indecision Eliminator is used by many heads of Government—we would like to tell you that but we can't—yet! We think this executive toy will catch on though, so why not build one?

Plus... 4 Page Pull-out WHAT CB? Guide to Legal Rigs

With CB now legal we thought it would be a good idea to let you know just what rigs are available so we have collected details and photos of every legal rig we can find, for both 27MHz and 934MHz, and put them all in this pull-out guide.

PE RANGER 27FM CB BASE STATION Part 1
Digital Design Techniques...

Tom Gaskell B.A.(HONS)ELEC.ENG.

Part 5 Advanced Sequential Circuits

LAST month we looked at the principles of flip-flops, dividing, counting and sequencing. This month we shall take the principles further and look at more complex devices and more sophisticated circuitry.

SHIFT REGISTERS

A 'register' is the term used for a collection of flip-flops, often with associated gates, which can be used to store and 'move around' combinations of logic 0's and logic 1's. They are used extensively in calculators, computers and microprocessors where each piece of binary information (logic 0 or logic 1) is known as a 'BIT' (which stands for Binary Digit). Hence, a piece of circuitry consisting of 8 flip-flops, and capable of giving eight logic outputs, might be called an 8 bit register.

The most basic form of register is known as a 'shift register'; it has a clock input, a data input and a data output, with logic 0's and 1's being 'shifted' through the flip-flops of the register, one position per clock pulse, from the input to the output pin. A basic 4 bit shift register based on D-type flip-flops is shown in Fig. 5.1. Whatever the logic state of the input prior to each clock pulse, the 'contents' of the register will be at that state 4 clock pulses later. By changing the logic state of the input to each clock pulse, the 'contents' of the register can be adjusted at will. Note that the flip-flops must be edge triggered, otherwise input changes would be transferred directly to the output whenever the clock was at logic 1.

Fig. 5.1 represents a 'Serial In-Serial Out' device; 'data' is represented by a series of logic changes at the input, one per clock pulse and emerges as a series of logic changes at the output 4 clock cycles later. This format of register is abbreviated to SISO. It may be more convenient to us, however, to 'fill up' the register as required with 1's and 0's, then to look at the points Q_{n+1}, Q_{n+2}, Q_{n+3}, and Q_{n+4} simultaneously. These give us a parallel set of data, because although the 1's and 0's were loaded into the register one at a time, they can be fed out of the register simultaneously. This is now a Serial In-Parallel Out register, or a SISO.

Taking the concept even further, it is possible to use the 'set' inputs of the flip-flops to 'preset' a certain number of 1's and 0's into the register simultaneously; applying clock pulses would then shift the 1's and 0's out of the register output pin one by one. It doesn't require a lot of imagination to see that this is a PISO: Parallel In-Serial Out. The parallel outputs Q_{n+1}, Q_{n+2}, Q_{n+3} and Q_{n+4} can also be used in this instance, of course, in which case the device acts as a 4 bit or 'Quad' latch. For consistency we can refer to this as a PISO register: Parallel In-Parallel Out.

Other far more complex registers are available which are often used in calculator and computer circuitry. For example, the First In-Last Out register, in which the first bit coming out of the register is the last bit that went in and vice-versa. The more usual type of course is a FIFO: first in, first out. Many shift registers are of considerable length (i.e. many bits); up to 1024 is typical of the larger types. (These, for obvious reasons, are only available in SISO form.)

More generally available types such as the CMOS 4006 have several stages of shift register in them, mostly SISO but with several parallel 'tappings'. Mention should also be made of the CMOS 4035. This is a 4 bit serial or parallel in, serial or parallel out device of great versatility and low cost, and can perform many complex functions. One of its most notable features is that the first stage is a JK flip-flop, with the K input inverted. Hence, all the input functions of a JK flip-flop can be utilised, or the J and K inputs can be connected together and it will behave as a normal D-type device.

COMPLEX COUNTERS

Last month we looked at basic counters, both decade and binary. There are, of course, much more advanced types of counter, with many extra facilities and functions. Many have decoding logic provided to count in special codes; often these are used to count and directly drive numerical displays such as the '7-segment' i.e.d. displays used in the Disco Hat project last month, or 'liquid crystal' displays. (We'll look at the 7-segment code next month.) Others have built-in latches, oscillators (less the capacitors and resistors) or even two independent counters in the same i.c. package. The 4018 is a presettable divide-by-N counter, and is in essence a cross between a shift register and a counter. It is a five stage counter, with counting stages that can be preset by parallel logic inputs, often known as 'JAM' inputs. The first counter stage has a 'data' input, which can be fed from any...
of the outputs, via combinational gates if necessary, to set the values of 'N'. By this means, the output counts up to 'N', then starts again from zero as a continuous process, with no 'glitches' or transients that might be produced when using a simple self-resetting circuit.

Finally, probably the most useful counter in the CMOS range is the 4029; a presettable 4 stage up/down counter. Presetting occurs in parallel, in a similar way to the 4018 mentioned above, and from this preset value the 4029 can count upwards or downwards, and in one of two possible codes, binary or BCD (binary coded decimal), which we shall be looking at later in the series. Two of these counters are used in the project this month, so a greater understanding of the workings of this i.c. will be possible now. There are, of course, even more complex counters than these; a frequency counter instrument, for example, is often based on a single i.c. for the majority of its functions, but these are far more specialised in use and are usually fairly expensive when compared with the normal 4000 series of CMOS i.c.'s and most TTL series.

SYNCHRONOUS/ASYNCHRONOUS OPERATION

The term 'synchronous' means that changes in a device or circuit occur at the same time as the clock pulse. Asynchronous is the opposite of this; changes in the circuit can occur at any time, not necessarily related to the state of the clock. In the case of the 4029 up/down counter, for example, the preset 'JAM' inputs can be fed into the counter asynchronously, it doesn't matter what state the clock is in — the moment that the 'preset enable' pin is taken to logic 1, the counter outputs immediately change to these new preset states.

![Fig. 5.2. Cascaded divide by two circuit](image)

To see how this affects the design and the use of counters, let us look at the basic binary counter, as discussed last month. In Fig. 5.2, when the clock input goes to logic 1 it causes flip-flop 1 to change state. The change of state of this flip-flop then clocks flip-flop 2. Due to propagation delays, there is a finite time interval between the counter clock input changing, and the clock input of flip-flop 2 changing. When the state of the whole counter is such that the 'D' output state changes, this change takes place a considerable time after the counter clock input edge occurs: flip-flop 1 changes, which causes flip-flop 2 to change, which in turn causes flip-flop 3 to change, finally causing flip-flop 4 to change. These changes seem to 'ripple' through the counter and since output 'D' changes some time after 'A' changes and hence is not synchronous with the clock, this counter is known as a ripple or asynchronous counter. Although the delay is very short (normally less than 1μs) it does result in invalid information being present at the counter output for a short while, which potentially could be latched into registers or other devices and result in serious mis-operation of the system. We'll look in greater depth at this type of error a little later on.

To avoid this ripple effect it is necessary to change the state of all flip-flops simultaneously rather than in sequence. Fig. 5.3 shows a simple synchronous counter. You will remember that if the J and K inputs of a flip-flop are both held at logic 0, no change in the output state occurs when the clock goes to logic 1. If J and K are both at logic 1, the outputs reverse state when the clock goes to logic 1. Hence, flip-flop 1 always reverses state; it is a simple divide-by-two circuit. Assuming that the other outputs start from an initial zero condition, then if the state of output A is 1 before a clock pulse occurs, flip-flop 2 will change state as soon as the clock pulse occurs, in turn changing output B. When both A and B are 1 before a clock pulse, i.e. binary count 0011, then as soon as the clock pulse occurs, flip-flop 3 changes state, so output C goes to logic 1; but, A and B also both change state (they go back to logic 0) so the count becomes 0100, and so on.

The extra complexity and greater cost of synchronous counters is not always needed although both asynchronous and synchronous devices are readily available in both CMOS and TTL families. Practically the only operational disadvantage of synchronous circuits is that they tend to be less tolerant of slowly changing or noisy clock inputs. In a ripple counter all flip-flop clocks are derived successively from the previous flip-flop, and this relatively slow propagation of changes ensures that the correct logic changes all occur in the correct order, whereas in the synchronous counter a very slow or noisy clock edge may cause some flip-flops in the device to be clocked before others, (due to manufacturing tolerances in the CMOS threshold points) and this could lead to incorrect operation. Hence, it is important to ensure fast clean clock edges when driving synchronous circuitry.

CASCADING COUNTERS

The use of synchronous or asynchronous circuit designs should also be considered when cascading counters. 'Cascading' is the term used to describe the joining together of two or more counters to make a much larger counter in total. This can sometimes be as simple as taking the last output of one counter and feeding it into the clock input of another counter, but is considerably complicated when up/down counters are involved. Often, these i.c.'s have 'carry out' and 'carry in' pins, to permit easy cascading.

![Fig. 5.3. Synchronous binary counter](image)
HAZARDS

Due to manufacturing variations and tolerances and to physical limits on the speed of propagation of electric signals, various delays and timing differences are always present in logic circuitry. Outputs of gates change a finite time after the input has changed; counter or latch outputs do not all change simultaneously, etc. We can classify the effects and types of errors in circuit operation due to these timing differences. A 'hazard' is an incorrect or invalid state of a logic output and a 'race' is the time difference between the changes of various outputs within the circuitry; hence, some races cause hazards.

Transient Hazards' are caused by, and occur for the duration of, the delay between the input of a circuit changing and its output changing. The error in the circuit operation is only present during this propagation delay period, and hence it is a short duration, or transient effect. However, if this transient hazard results in a permanent error in the following circuitry's state (a flip-flop is reset, for example, when it should not have been) then the error is termed a 'Static Hazard'. Timing differences between supposedly simultaneously changing outputs of a circuit are known as 'races'; the output changes of a ripple counter are a good example of a race, because, as already discussed, output changes do not occur simultaneously, but in succession. If a race gives rise to a permanent error (i.e. a static hazard) in the state of the following circuitry, then it is known as a 'Critical Race'. Any other types of hazard all fall under the overall category heading of 'Race Hazards'.

There are forms of mathematics which can be used to describe and manipulate the design of sequential circuits, using similar (but more complex) types of 'maps' to those used in Boolean Algebra' as discussed in Part 1 of this series. Unfortunately, they are very complicated indeed and far too involved for us to look at even briefly. These mathematical techniques have procedures for removing all the above mentioned hazards or at worse reducing them to transient effects only, but to avoid going deeply into the mathematics we shall have to be content with a rather more intuitive, common sense approach to the problem.

TYPICAL PROBLEMS

Hazard are typically caused by trying to have too many sequential circuit elements fed from the same single logic change. A frequently seen design error is to have the same control used to reset a flip-flop (or counter) as is used to latch the output of that flip-flop (or counter); in this case, correct operation of the circuit is obviously dependent on the latch being operated before the device is reset, not the other way round. Similar problems can be encountered with up/down counters; see Fig. 5.4. If the up/down control is at logic 1 when the clock input goes to 1, the device counts up; if the up/down is at logic 0 when the clock input goes to 1, it counts down. If the same pulse is used for both the up/down control and the clock, then depending on which delays in the i.c. are greater, the counter could count down as shown in Fig. 5.4a or up as in Fig. 5.4b. In practice it is usually found that the circuit will sometimes count up and sometimes down. The effects are unpredictable. Note also that these delays (and hence the timing errors) can be both internal to the i.c. and external to it in the control logic and other surrounding circuitry.

Another often seen design error is to have the input to a flip-flop or other sequential i.c., dependent on the output of the same i.c., often via an indirect path of combinational gates. In some instances this is allowable; self re-setting of counters, for example, and divide-by-two circuits as discussed last month. However, it is frequently the cause of race hazards, and should be avoided in most cases. Finally, be aware that some counters, shift registers, etc., give out short transients on their outputs when in the process of being reset. Although these are only transient hazards, they could become static if the following circuitry is not carefully designed to allow for this effect. This is not usually a problem, as most devices do not exhibit this fault, but it is worth bearing in mind. TTL seems worse than CMOS in this respect.

THE ELIMINATION OF HAZARDS

Generally speaking, the best way to design out hazards is to ensure that only one change in a logic signal path happens at a time, or, if several supposedly simultaneous and related changes occur, to arrange that the following circuitry is not dependent on receiving all its inputs at exactly the same time. Often, extra gates or sequential devices have to be added to isolate or avoid potential hazard situations.

There are several techniques employed to 'space apart events', or critical logic changes, in time. Fixed time delays can be added to the relevant parts of the circuitry using monostable timer i.c.s or simple resistor/capacitor networks as already discussed in this series. The time delays necessary are usually very short indeed, so small values of capacitor and large values of resistor can be used (usually a few hundred picofarads and a few hundred kilohms) which places negligible loading on the outputs of CMOS logic, causing no 'glitch' or transient problems. In fairly simple circuits, sufficient time delay can be added by passing the offending logic signal through a few spare gates in series, acting as inverters or buffers as required. The propagation delay of most CMOS gates is between 20 and 100 ns and this is often sufficient to compensate for a slight timing error elsewhere. The addition of gates in the signal path is the technique usually employed within i.c.s to correct for time delay errors and races, and remove potential hazards. In fact, the only way in which some flip-flops, counters, and shift registers can actually work at all is by utilising propagation delays. In the basic binary counter shown in Fig. 5.2, the circuit action is based on there being a finite propagation delay between each flip-flop's D input state being clocked in, and that flip-flop's Q and Q0 outputs changing. If this delay did not occur, the Q0 output could never be used to feed back to the D input; the device would just sit in an indeterminate state. The synchronous counter, Fig. 5.3, is similarly dependent on propagation delays for its correct operation.
It may be possible to avoid hazards by using both edges of a pulse, instead of just one edge, often necessitating the inversion of the edge of the incorrect polarity. Hence, one event may be caused to occur by the 0 to 1 transition, and the other event by the 1 to 0 transition, spacing them apart by the width of the clock pulse, in a similar way to the two pulses derived in the "PE Pulser" described earlier in the series. Beware, though, that it is often bad practice to use edges for implementing several functions simultaneously, because (as mentioned in the case of synchronous counters) different logic inputs can trigger at different points on the waveform edge. In these instances it is wise to keep the edge as fast and 'clean' (i.e. noise free) as possible.

If a number of events must be made to happen in a fixed sequence, it may be necessary to add some form of sequencer to control them. For example, a shift register or decimal counter could be used, with each parallel output connected to the relevant circuit to be controlled. Finally, one should remember that most transient hazards are only a few nanoseconds long, which is often too short to trigger logic probes.

RANDOM PULSE GENERATION

We've been concerned until now with the removal of noise, transients, and other spurious effects from our logic circuitry. There are, however, situations which actually require this type of logic change: random number generators! These are often used in statistical work, for testing purposes, or more usually in games and gambling machines.

In its simplest form, the generator can be a very fast running oscillator (10 or 100kHz typically) gated on and off by a pushbutton switch, and feeding a counter, as shown in Fig. 5.5. The frequency should be selected such that many complete counter cycles occur in 0.1 seconds. By this means, there is no way in which the person pressing the button can pre-judge the value of the counter output. However, if a second oscillator is being used to gate the first on and off, patterns of output numbers will be seen to occur after a time. A 'pseudo-random' number sequence can be generated by feeding the counter from a clocked shift register with various combinations of gates taking parallel outputs of the register and feeding them back, suitably combined, into the serial input. This technique will still cause repeats of patterns, although it can take many thousands of counts before any repetitions are obvious. Finally, a 'pure' noise source can be used, such as the amplified noise generated by the reverse biasing of a transistor junction.

Our project this month is Space Evaders on page 22.

NEXT MONTH

Next month we cover Numerical Systems — the various codes and arithmetic used in digital electronics, and the driving of numerical displays.

NEW DISTRIBUTORS WANTED

ELECTROWARE*

Available from all leading electronic distributors.

PRB-1 Digital Logic Probe

Compatible with DTL, TTL, CMOS, MOS and Microprocessors using a 4 to 15V power supply. Thresholds automatically programmed. Automatic resetting memory. No adjustment required. Visual indication of logic levels, using LED’s to show high, low, bad level or open circuit logic and pulses. Highly sophisticated, pocket portable probe (protective tip cap and removable coil cord). Eliminates need for heavy test equipment. A definite savings in time and money for Engineer and Technician.

New Distributors Wanted

- Cobbies Ltd., London. 01-699-2282
- Microdigital Ltd., Liverpool. 051-227-2535
- Electronics CG Ltd., Manchester. 061-788-0656
- Spectron Electronics (Manchester) Ltd., Salford. 061-834-4583

PLS-1 LOGIC PULSER

The PLS-1 logic pulser will superimpose a dynamic pulse train (20 pps) or a single pulse onto the circuit node under test. There is no need to unsolder pins or cut printed-circuit traces even when these nodes are being clamped by digital outputs. PLS-1 is a multi-mode, high current pulse generator packaged in a hand-held shirt pocket portable instrument. It can source or sink sufficient current to force saturated output transistors in digital circuits into the opposite logic state. Signal injection is by means of a pushbutton switch near the probe tip. When the button is depressed, a single high-going or low-going pulse of 2µs wide is delivered to the circuit node under test. Pulse polarity is automatic; high nodes are pulsed low and low nodes are pulsed high. Holding the button down delivers a series of pulses of 29 pps to the circuit under test.

For Our NEW FREE Catalogue

Send 30p to cover P&P.
ALTHOUGH the Genesis series of hydraulically powered robots can be controlled by a simple bank of push-button switches energising solenoid operated valves, it is necessary to use an electronic control system with feedback to take full advantage of the power and the versatility of these machines. Feedback of positional information is a feature included in these machines, which, although essential for reliable repeatability, is absent in the majority of all other low cost machines, severely restricting their use as emulators of the mainstream industrial robots. The block diagram of the microprocessor based control system is shown in Fig. 2.1.

MICROPROCESSOR UNIT
The heart of the system is the microprocessor unit which performs the task of overseeing the complete system and issuing control signals in response to arm positional data, programmed-in commands, commands from the control box or information from an external computer. With its CMOS memory it stores the positions of the arm and by using servo techniques will instruct the robot to repeat the sequence of tasks programmed in. Each of the arm and joint positions is defined by an 8 bit word giving a resolution of 1 part in 256 (0.4%). Data is transferred to and from the interface board by 8 bits in parallel whilst data is received from the control box serially, permitting the use of a simple infra-red link to be used for controlling the Genesis M101 mobile machine. In the interests of standardisation, interfacing with an external computer is via an RS232C serial interface with a range of baud rates between 300 and 9600. Although this facility is included, an external computer is by no means necessary as the system's own processor and operating system provides all the functions normally required.

Fig. 2.1. The robot's general control system in block diagram form
COMPONENTS

INTERFACE BOARD

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R2</td>
<td>47</td>
</tr>
<tr>
<td>R3 - R12</td>
<td>1k</td>
</tr>
<tr>
<td>R5 - R21</td>
<td>10k</td>
</tr>
<tr>
<td>R13</td>
<td>15k</td>
</tr>
<tr>
<td>R14</td>
<td>10k</td>
</tr>
<tr>
<td>R15, R18</td>
<td>220</td>
</tr>
<tr>
<td>R16, R17</td>
<td>2Ω2</td>
</tr>
<tr>
<td>R19, R20</td>
<td>1k2</td>
</tr>
<tr>
<td>R22</td>
<td>10</td>
</tr>
<tr>
<td>R23, R24</td>
<td>4k7</td>
</tr>
<tr>
<td>R25</td>
<td>4Ω7</td>
</tr>
<tr>
<td>R26</td>
<td>330</td>
</tr>
<tr>
<td>R27, R28</td>
<td>1Ω5 2 Watt</td>
</tr>
<tr>
<td>R29</td>
<td>18k</td>
</tr>
<tr>
<td>R30 - A-E</td>
<td>47k</td>
</tr>
<tr>
<td>R31 - A-E</td>
<td>1k1%</td>
</tr>
<tr>
<td>R32 - A-E</td>
<td>15k%</td>
</tr>
<tr>
<td>R33 - A-E</td>
<td>1k%</td>
</tr>
<tr>
<td>R34 - A-E</td>
<td>68k</td>
</tr>
<tr>
<td>R35 - A-E</td>
<td>47k</td>
</tr>
<tr>
<td>R36 - A-E</td>
<td>24k</td>
</tr>
<tr>
<td>R37 - A-E</td>
<td>10k</td>
</tr>
<tr>
<td>R38 - R42</td>
<td>100k</td>
</tr>
<tr>
<td>R43 - A-E</td>
<td>100k</td>
</tr>
<tr>
<td>R44 - A-E</td>
<td>390k</td>
</tr>
<tr>
<td>R45</td>
<td>150k</td>
</tr>
<tr>
<td>R46</td>
<td>22k</td>
</tr>
<tr>
<td>R47</td>
<td>22k</td>
</tr>
<tr>
<td>R48</td>
<td>22k</td>
</tr>
</tbody>
</table>

All resistors 1/2W unless otherwise stated.

Integrated Circuits

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>74LS123</td>
</tr>
<tr>
<td>IC2</td>
<td>74LS132</td>
</tr>
<tr>
<td>IC3</td>
<td>74LS00</td>
</tr>
<tr>
<td>IC4</td>
<td>74LS175</td>
</tr>
<tr>
<td>IC5, IC7 a-e</td>
<td>LM324N</td>
</tr>
<tr>
<td>IC6</td>
<td>LM383</td>
</tr>
<tr>
<td>IC8</td>
<td>IC7660 CP2</td>
</tr>
<tr>
<td>IC9, IC10</td>
<td>7805 (1Amp TO220)</td>
</tr>
<tr>
<td>IC11-14</td>
<td>ULN2003 (4 off)</td>
</tr>
<tr>
<td>IC15-19</td>
<td>74LS373 (5 off)</td>
</tr>
<tr>
<td>IC20</td>
<td>ADC0804</td>
</tr>
<tr>
<td>IC21</td>
<td>4051 B</td>
</tr>
</tbody>
</table>

Miscellaneous

Printed circuit board RIFb
- S1 SPST switch
- Link-through 0.84mm dia. (approx. 200 off)
- TB1 4-way screw terminal
- PL2, PL6, PL8, PL10 5-way Molex p.c. pins (3 off)
- SIP1, SIP2 SIP 1k networks (4 off)
- 16-pin i.c. sockets (5 off)
- 20-pin i.c. sockets (6 off)
- 6-pin i.c. sockets (2 off)
- 20mm p.c. mounting fuse holder

Constructor's Note

Complete kit of parts for this project can be obtained from Powertran Cybernetics, Portway Industrial Estate, Andover, Hants SP10 3WN. F. Andover (0264) 64455.

Prices are as follows . . .

- **Genesis M101 4 axis model (excluding wheel base)** £295.00
- **Genesis M101 5 axis model (excluding wheel base)** £345.00
- **Genesis M101 wheel base** £79.00
- **Genesis P101 4 axis model** £430.00
- **Genesis P101 6 axis model** £545.00
- **Genesis S101 4 axis model** £335.00
- **Genesis S101 5 axis model** £405.00
- **Position detector coil set for M101, S101 4 axis models** £15.00
- **Position detector coil set for M101, S101 5 axis models** £19.00
- **Position detector coil set for P101 4 axis model** £15.00
- **Position detector coil set for P101 6 axis model** £24.00
- **Position detector board for M101, S101 4, 5 axis models** £6.50
- **Position detector board for P101 4, 6 axis models** £7.50
- **Motor drive board for M101 wheel base** £115.00

All prices subject to 15% V.A.T.

Constructors box for S101, P101 (microprocessor board, interface board, display board and mounting bracket) £135.00

Processor box for S101, P101 (microprocessor board, interface board, display board, power supply, interface cables, conduit, cabinet) £175.00

Parts for RS232C interface (fits on microprocessor board) £14.50

Hand held controller box for M101 (includes infra red transmitter and rechargeable battery) £47.00

Hand held controller box for S101 £33.00

Hand held controller box for P101 £33.50

All prices subject to 15% V.A.T.
Fig. 2.2. Interface Board circuit diagram
Fig. 2.4. Position detector system. The response time of this system is 25ms to settle to 1 LSB for a 100Hz tone burst input.

INTERFACE BOARD
This board produces the power supply rails for all the electronic units; it also generates a precision reference sine-wave for the position detector units. It detects the position feedback data and converts it to a d.c. voltage which is then multiplexed into an ADC. This then delivers its data to the microprocessor. All data into and out of the microprocessor is held in latches on this board. The solenoid valves are driven by Darlington power drivers which are themselves driven by the latched data. This board together with the microprocessor board fits on the rotating platform of the M101, but for the bench mounting S101 and P101 there is a separate cabinet which encloses the pair of them.

CIRCUIT OPERATION
Refer to interface board (Figs. 2.2 & 2.3). The power supply is relatively simple. Most of the electronics runs from +5V which is obtained from two regulators IC13 and IC14. The positive unregulated rail is used to power op. amps. and some other devices, and is nominally +10 to +12V. A negative rail is needed to power the op. amps. and so a d.c. to d.c. converter is used (IC12). This delivers −7 to −9V at about 40mA. This is quite a low current and so it is necessary to use low power op. amps. (LM324 quad devices).

Latches IC19 to IC23 latch data into and out of the microprocessor section. Latches IC19 and IC20 send data to the Darlington drivers which drive the solenoid valves (Fig. 2.6). The solenoids need 600mA of current drive and so two drivers are paralleled to provide enough drive. Because of the high current, I.C. sockets are not used for these drivers. The ULN2003 also has internal protection diodes to prevent damage from back-e.m.f.s from the solenoids. The latches can be turned on and off (tri-state outputs) so that the solenoid drivers can be manually tested, i.e. tested without the microprocessor.

The position detectors use a magnetic coupling principle (Fig. 2.5) which avoids any electrical contacts on moving parts. Two coils are wound on a tube that fits on the outside of the non-ferrous hydraulic cylinder. A sine wave is fed to the drive coil and it is detected on the pickup coil. The size of the pickup signal depends on the magnetic coupling between the coils, which is dependent upon the position of the steel actuator rod (see graph). The pickup signal is attenuated by about 30dB relative to the drive signal and changes by about 6dB at the operating frequency of 100Hz. Fast response in the system is ensured by the carefully designed detector electronics which has a very short settling time.

The reference oscillator is a state variable filter with positive feedback (IC5). A low distortion sine wave (total harmonic distortion of about 1%) is fed into a power amplifier (IC6), which is used to drive the position detector coils. The position detector electronics consist of a precision full-wave rectifier, a notch filter and a lowpass filter, see Fig. 2.4. Half-wave rectification can be seen at the junction of D2/R3. Full-wave rectification occurs by mixing this signal with the original. The smoothed full wave rectified signal has a strong 200Hz component and theoretically no 100Hz component. The 200Hz component is attenuated by the notch filter and it is then further filtered by a 50Hz lowpass filter. The last stage of the detector is a variable gain stage with a variable d.c. offset. The output voltage should be 0V with the actuator extended, and +2.5V with it retracted. There are 5 detector circuits on the interface board, although only 4 are used on the M101 and S101 robots, i.e. one for each movement except the gripper where there is little advantage in knowing how open its fingers are. The five detector output voltages are multiplexed (IC25) into the micro-processor controlled ADC (Analog to Digital Converter), IC24. Conversion time is about 20 microseconds. IC1, 2, 3, 4 are used to detect the incoming data from the manual control unit which will be discussed in a future part.

NEXT MONTH: Display and Motor boards, plus mobile wheel base.
NOISES OFF

The trouble with noise reduction systems like Dolby is that audio signals have to be encoded before transmission or recording for the technique to work. The principle employed relies on the preemphasis of high frequency sounds before recording, and the de-emphasis of those portions of the audio spectrum during replay. Troublesome noise sources introduced during the recording and replay phase such as tape "hiss" are not boosted during preemphasis but are attenuated during de-emphasis with the result that the high frequency noise "floor" is dropped by up to 10dB for the Dolby B system. All this is fine if signals are properly encoded by means of preemphasis before reproduction, but it cannot help at all in the case of unencoded signals such as most radio broadcasts, records, and old tape recordings.

A new technique called Dynamic Noise Reduction (DNR), while probably not replacing Dolby where it can be most effectively employed, in cassette systems for example, offers the major advantage of being completely independent of any sort of preemphasis or encoding and therefore usable with any kind of audio source—even old 78 records! This technique relies on the phenomenon of auditory masking exploited by the use of signal controlled bandwidth reduction in the replay or receiving equipment only.

Taking advantage of the fact that aggregate noise output is proportional to the bandwidth of the system, DNR acts to reduce bandwidth or frequency response when only low audio signal levels are present, while increasing it to the maximum possible during louder passages. While the signal level is high, then no noise reduction takes place in the DNR circuitry, but the human ear can happily take care of these situations unaided thanks to the auditory masking of the lower level high frequency noise components during loud passages.

Electronically, the audio signal is fed through a low-pass filter with a variable cut-off frequency which is "tuned" dynamically by the incoming signal level. To ensure a well balanced response, it is necessary to pass the incoming signal through a high-pass filter with a 6dB per octave slope and a -3dB point at about 6kHz before using this to generate the filter control signal. This ensures that a loud low frequency signal opens up the bandwidth less than a loud high frequency signal.

National Semiconductor have produced one chip that does the whole job, coded LM1894. It contains two variable low-pass filter sections (for stereo applications), a summing amplifier to combine the two input signal channels, and a detector and voltage to current converter to drive the filters. All you need in addition to the LM1894 and its 14 pin plastic package are a few resistors and capacitors, and maybe a 19kHz filter coil if the circuit must handle stereo broadcast signals.

(At the time of going to press, the LM1894 is not available, as National are considering the introduction of a licensing system, similar to that presently being operated by Dolby.—Ed.)

CMOS REGS

Those Internal whiz-kids who showed us that CMOS wasn’t just a logic technology have done it again. Their latest CMOS chip is going to be very useful in very many applications, in fact now that I have seen the spec, I can’t help wondering how we managed to get by without it all these years!

On offer are their ICL7663 and 7664 voltage regulators, but these regulators are unique in: a) being made in CMOS, and b) being designed to be capable of handling and regulating currents of up to 50mA—maximum! The new chips are ideal for battery powered instruments that need stable supply rails, and they can handle supply currents from only 1 microamp to a respectable 40 milliamps over a voltage range adjustable from 1.6 to 16 volts with an input-output voltage differential of only 50millivolts.

You can even use these babies as switches to save even more precious juice during your system’s idle moments, a simple logic command is all you need to use them as an on/off switch, just like on those fancy I.C.D calculators which turn themselves off when you ignore them for long enough.

The ICL7663 handles positive voltages and the 7664 negative voltages, and in their 8 pin mini-dip packages they will only set you back a pound or two, a bargain if ever I saw one!

CORPORAL ZILOG?

You may remember me mentioning the “Captain Zilog” comic strip character and his heroic deeds among the index registers of the Z8000 sixteen bit microprocessor. Well the 16 bit race is now old hat, and Zilog seem to have retired their hero on full pay. Not that he was a complete success, because it now seems that the Intel 8086 and the Motorola 68000 are selling rather better than the Z8000, probably because Intel were first and Motorola have (arguably) the better chip.

Another possible reason for the lacklustre sales performance of the Z8000, despite the tremendous success of the eight bit 8086, could be the lack of an "in between" processor to bridge the gap from eight to full sixteen bit performance. Intel have their 8088 which is really an 8086 inside working with a multiplexed eight bit bus outside to keep system costs low, and Motorola have the 6809 which is rather like a souped up 6800 with a lot of internal sixteen bit operations which the earlier 6800 lacked.

Now Zilog are not an outfit to let the grass grow under their feet, and to meet the challenge they are about to introduce a new device which could prove more popular than either the 8088 or the 6809 since it will build directly on their acknowledged success with the Z8000. The new chip is known as the 8080 (surprise surprise!) and it will offer complete code compatibility with the Z800 so that system upgrade will be possible without rewriting software, something which neither of the competitors can claim. Despite its ability to run 8080 programs, the Z80 is a true 16 bit machine internally with a very advanced performance which will allow even old Z80 stuff to run three to five times faster, with even better results available when new programs are written to take full advantage of the 16 bit architecture and new opcodes.

The Z800 will also be available in two basic versions. The first of these uses a non-multiplexed eight bit bus compatible with existing Z80 systems which offers a very simple performance increase to established Z80 users. When users are ready for yet more power, they can switch to the second version which has an 8088 type multiplexed bus to make better use of its sixteen bit architecture. After that gentle rise in capability, Z800 users are expected to find the switch to full Z8000 sixteen bit designs a painless procedure!

All this is interesting of course, but all I am waiting for is the new comic—featuring Corporal Zilog no doubt!

WESTERN SUPPLIER

In last October’s Semiconductor Update, one of the featured devices was the WD55 from Western Digital. I mentioned that it was available in this country from Jee Distribution of Hayes, Middlesex. Now I am informed that Jee do not stock the WD55, but it is available from Pronto Electronic Systems of Ilford, who are distributors for Western Digital.
Step-by-step fully illustrated assembly and fitting instructions are included together with circuit descriptions. Highest quality components are used throughout.

SX1000 Electronic Ignition
- Inductive Discharge
- Extended coil energy storage circuit
- Contact breaker driven
- Three position changeover switch
- Over 65 components to assemble
- Patented clip-to-coil fitting
- Fits all 12v neg. earth vehicles

SX2000 Electronic Ignition
- The brandleading system on the market today
- Unique Reactive Discharge
- Combined Inductive and Capacitive Discharge
- Contact breaker driven
- Three position changeover switch
- Over 130 components to assemble
- Patented clip-to-coil fitting
- Fits all 12v neg. earth vehicles

MAGIDICE Electronic Dice
- Not an auto item but great fun for the family
- Total random selection
- Triggered by waving of hand over dice
- Bleeps and flashes during a 4 second tumble sequence
- Throw displayed for 10 seconds
- Auto display of last throw 1 second in 5
- Muting and Off switch on base
- Hours of continuous use from PP7 battery
- Over 100 components to assemble
- Supplied in superb presentation gift box

TX2002 Electronic Ignition
- The ultimate system
- Switchable contactless
- Three position switch with Auxiliary back-up inductive circuit
- Reactive Discharge. Combined capacitive and inductive
- Extended coil energy storage circuit
- Magnetic contactless distributor trigger head
- Distributor triggerhead adaptors included
- Can also be triggered by existing contact breakers
- Over 150 components to assemble

VOYAGER Car Drive Computer
- A most sophisticated accessory
- Utilises a single chip mask programmed microprocessor incorporating a unique programme designed by EDA Sparkrite Ltd
- 12 functions centred on Fuel, Speed, Distance and Time
- Visual and Audible alarms warning of Excess Speed, Frost/Ice, Lights-left-on
- Facility to operate LOG and TRIP functions independently or synchronously
- Large 10mm high 400ft-L fluorescent display with auto intensity
- Unique speed and fuel transducers giving a programmed accuracy of + or - 1%
- Large LOG & TRIP memories. 2,000 miles. 180 gallons. 100 hours
- Full Imperial and Metric calibrations
- 300 components to assemble
- A real challenge for the electronics enthusiast!

AT-80 Electronic Car Security System
- Armes doors, boot, bonnet and has security loop to protect fog/spot lamps, radio/tape, CB equipment
- Programmable personal code entry system
- Armied and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered to the inside of the screen
- Fits all 12v neg. earth vehicles
- Over 250 components to assemble

EDA SPARKRITE LIMITED 82 Bath Street, Walsall, West Midlands, WS1 3DE England. Tel. (0922) 614791

<table>
<thead>
<tr>
<th>SELF ASSEMBLY KIT</th>
<th>READY BUILT UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$12.75</td>
<td>$27.95</td>
</tr>
<tr>
<td>$19.95</td>
<td>$43.75</td>
</tr>
<tr>
<td>$29.95</td>
<td>$62.95</td>
</tr>
<tr>
<td>$24.95</td>
<td>$49.75</td>
</tr>
<tr>
<td>$49.95</td>
<td>$84.75</td>
</tr>
<tr>
<td>$12.95</td>
<td>$19.95</td>
</tr>
</tbody>
</table>

NAME
ADDRESS

I ENCLOSE CHEQUE(S)/POSTAL ORDERS FOR

KIND REF.

CHEQUE NO.

24 hr. Answerphone
PHONE YOUR ORDER WITH ACCESS/BARCLAYCARD
SEND ONLY SAE IF BROCHURE IS REQUIRED

PRICES INC. VAT. POSTAGE & PACKING

BRANDLEADING BRITISH ELECTRONICS

CUT OUT THE COUPON NOW!
Scientific and technical professionals favour the HP 85, they are being joined by increasing numbers of business professionals.

Find out why the HP 85 is the professional microcomputer at your nearest Laskys store or write to our Mail Order department for more details.

Laskys is the largest specialist Hi-Fi chain in Europe, in July 1980 they acquired Microdigital – an independent, specialist microcomputer store based in Liverpool. Since then specialist microcomputer departments have been set up within selected Laskys stores under the Microdigital name, these have now been renamed Microcomputers at Laskys.

The Professional Microcomputer Retailer with 10 Outlets Nationwide & Mail Order

BIRMINGHAM
19/21 Corporation Street, Birmingham, B2 6LP. Tel: 021-632 6303.
Manager: Peter Stallard. 300 yards from Bullring Centre.

BRISTOL
16/20 Penn Street, Bristol, BS1 3AN. Tel: 0272 20421.
Opening 16th October.
Between Holiday Inn and C & A.

CHESTER
The Forum, Northgate Street, Chester, CH1 2BZ. Tel: 0244 317667.
Manager: Jeremy Ashcroft. Next to the Town Hall.

EDINBURGH
4 St. James Centre, Edinburgh, EH1 3SR. Tel: 031-556 2914.
Manager: Calin Draper. East end of Princes Street, St. James Centre.

KINGSTON (Opening early 1982)
38/40 Eden Street, Kingston, KT1 1EP. Tel: 01-546 1271.
Opposite Main Post Office.

LIVERPOOL
33 Dale Street, Liverpool, L2 2HF. Tel: 051-236 2828.
Manager: Mark Butler. Between the Town Hall and Magistrates Courts.

MANCHESTER
12/14 St. Mary's Gate, Market Street, Manchester, M1 1PX. Tel: 061-832 6087.
Manager: Lesly Jacobs. Corner of Deansgate.

NOTTINGHAM (Opening early 1982)
1/4 Smithy Row, Nottingham, NG1 2DU. Tel: 0602 415150.
Manager: Alister Hawkes.
Within Market Square, Exchange Buildings, Nottingham.

SHEFFIELD
58 Leopold Street, Sheffield, S1 2GZ. Tel: 0742 750971.
Manager: Justin Rawles. Top of the Moor, opposite Town Hall.

LONDON
42 Tottenham Court Road, London W1 9RD. Tel: 01-636 0845.

Mail Order
Microdigital Limited, FREEPOST (No stamp required), Liverpool L2 2AB
After the first inspections and examination of the spacecraft Columbia there was widespread excitement, and relief that the mission had achieved its object. Naturally there was the enthusiasm required, and speculation that there would be an immediate turnaround programme for a second mission. However, after the first inspections and examination of various items of a physical nature, some of the data concerning the aerodynamics, coupled with the new programme for the second and perhaps vital trial, more time has been needed before orders to proceed were forthcoming. By the time you read this, history will have determined the way in which the programme will proceed after the second mission.

The sophistication of the electronics involved in space programmes is extensive and much of the practice is well known to those familiar with the art. Perhaps in some ways many people have become somewhat blasé about the whole business. Yet those engaged directly or indirectly with the space programme are still very conscious of the implications for the future. The public generally have come to regard even Columbia as a secondary matter to pop stars and football. While many of those close to the matter do regard such an attitude as heresy, the fact is that the very attitude is in a way complimentary. The Mach 5 and Mach 2.8 manoeuvres will be flown automatically because they were found to be stable in practice. However the initial bank manoeuvre will be initiated somewhere about Mach 24 to 25 with manual control and reach up to 80° bank at an altitude of 260,000 ft. In this area more precise control can be maintained manually than could be achieved by automatic control. It was in fact at this point on Mission 1 that a roll oscillation that exceeded the expected sideslip occurred. The importance of the simulator in the whole scheme of vehicle control is exemplified in the remarks made by the first of the Shuttle crews. Both Young and Crippen have already made reference to the fact by such remarks which indicated that actual experience of re-entry was helped enormously by the time spent with the simulator. It is here perhaps that tribute should be paid to such men as Major Steven R. Nagel of the USAF who specialises in shuttle re-entry issues. During re-entry the incoming data is mainly from dynamic pressure and velocity. Dynamic pressure is most active above velocities of Mach 22 at an altitude of about 238,000 ft. Below this the velocity is the more useful parameter from which to initiate the next manoeuvres. Great use is made of 'cue' cards in much the same way as aerobatic teams operate. With the Shuttle these relate for example to the dynamic pressure or the velocity at which to initiate action and a minimum level of control system propellant below which any manoeuvre would not be continued. There will be a time at re-entry when communications after the radio black-out period will be kept to a minimum. This is to allow the astronauts maximum concentration at about Mach 10.

THE NEW INDUSTRIALISATION

The success of the first Shuttle mission and the soon to be realised hopes of the second, is already accelerating the vanguard of new things and the rapid development of those begun. Robotics has an important part to play here. The success of the USSR in their unmanned automatic missions to embryo space stations gives new impetus to the extension of man's peaceful pursuits in recovering the fruits of the Earth and its environs. The reduction of certain activities required in any task has been established for more than a century. Now though the mechanical precision is still very much required, it is the control which needs the most attention. There is an opinion among a large group who consider that all things should be done by remote operation. The argument usually is that this reduces mortality. Some reason quite well and plausibly. There is good reason to suspect fear is a motivation for some of this. Perhaps it will be possible to be free from this naive approach when the forecasting aids such as simulatores, which can give real time information leaving practically nothing to chance, are used. Though in some instances continuing communication in real time becomes difficult when extensive journeys from the Earth are undertaken, nevertheless this has been shown with the Voyagers to be surmountable.

In the specific instance Marshall Space Flight Center in Alabama have tasks which are being examined by the Massachusetts Institute of Technology under a one year contract to investigate systems of robotics for working in outer space. When work is required to be done in geostationary orbits or others at high altitudes protection for astronauts would have to be extravehicular. This is due to the high level of radiation and also the conditions of magnetic fields holding charged particles inimical to the biological machine — man. The robotic units would of course be intended to do the dirty work. It is to be hoped that some film fame have finally disappeared when these matters are discussed and a great deal of engineering skill will not be squandered in making man in his own image. Indeed one robotic unit with the writer is associated puts all three of the parameters (seeing, feeling and hearing) into one box manipulator. It is perhaps pertinent to point out here that there is always a revival of the 'making machines think' approach. It is on some occasions perhaps worth while asking why people approach the subject from the wrong end, that is thinking of emulating the human mind and trying to apply that to a particular task. If one encounters a space unit not of the kind for which the 'robot' was designed, it would be useless.

This leads to another important point: standardisation. It will be necessary for the builders of new satellites to adopt some common agreement as to configuration. This does not necessarily mean overall but rather the standard units could be those which have a finite lifetime and could have a configuration which was standard including fixing with a human signal to which it could call the repair unit. This would apply to much of the operating equipment including the replacement of manoeuvring propellants etc.

Whatever may be the progress in this area the final and human way will be to take a look and see! Nothing in the foreseeable future will take the adventure from the human temperament.
This month the principles and construction of the peripheral system which operates in conjunction with the Microcontroller will be described.

The Band-Box provides a full trio backing of musicians in a single unit and may be programmed by the vocal or instrumental soloist to give automatic accompaniment for some 50 to 100 tunes dependent on the complexity of each score.

THE MICROCONTROLLER

Fig. 3 shows the track layout and component overlay for the p.c.b. and it is advisable to closely inspect this before proceeding, particularly ensuring that bridges are not present between any of the tracks.

The first operation is to insert the track linking pins from the front of the board. Track pins are easily pushed into the holes and broken off from the stick, using a metal implement e.g. screwdriver, the pins can be pushed home with the thumb and then soldered on top of the board. Note that some of the pins are positioned underneath i.c. sockets so that it is essential they are inserted first.

All i.c.s should be mounted in sockets which can be soldered to the board in the same operation as the resistors. In order to avoid confusion later it should be noted that all i.c. sockets have some indication to fix the position of pin 1 and this should be followed at this stage to ensure that orientation of the i.c.s is not confused at a later date. IC1 has pin 1 to the bottom of the board, IC2 to the right, IC3-7 to the left. Memories IC8-11 have pin 1 to the top, IC12-15 to the bottom, monitor IC16 is to the top whilst the spare EPROM position is to the bottom. At this stage the larger components should be soldered to the board. Some difficulty may be experienced in soldering with a 1mm bit on the larger components and a 5/32" bit may be necessary.

A further inspection of all tracks and connections should be made after assembly of the board including meter checks on adjacent tracks to detect shorts, and then the i.c.s can be inserted into the sockets. IC9, 10, 11, 13, 14, and 15 should be omitted until the complete Band-Box has been tested since they are unnecessary until the first five pages of the score store have been used and there is no point in risking damage to them unnecessarily. When any i.c.s are inserted care should be taken to ensure that all pins correctly enter the socket and do not bend under the integrated circuit.

Apart from checking for track shorts and missing solder connections this is the third most common cause of malfunction in high density i.c. based systems.

SYSTEM BOARD

The majority of the electronic hardware, apart from the Microcontroller, is mounted on a single p.c.b. which will be referred to as the system board. A second board contains the displays and a number of key switches. The circuitry is best understood if it is split into four parts, music generation, input controls, display and keypads, and the power supply.

MUSIC GENERATION

Before describing the music generation circuitry the method used to generate the audio tones is illustrated in Fig. 4. A set of waveforms is stored in the monitor memory in a similar manner to that shown in Fig. 4(a). In the illustration a complete cycle is divided into sixteen parts and values between 0 and 15 given to approximate the amplitude of the waveform in a stepped manner. In the Band-Box the chord instrument waveforms are split into 64 segments and the bass into 128 segments, both using amplitude values between 0 and 63; however, for diagrammatic simplicity sixteen segments are used in the illustration without change to the principles involved.

In order to produce a sound from the sequence of stored values it is necessary to convert each number into an analog voltage which is achieved using a digital to analog converter (DAC), and provided that an interval of time is allowed to lapse between the moment at which each value is converted by the DAC a stepped waveform will appear at the DAC output. Consequently a method of changing the fundamental frequency of the waveform is apparent by changing the interval of time between samples which if reduced will result in an increase in frequency.

This assumes that each and every stored value requires to be read at varying time intervals, but it is also possible to use a fixed time interval and either skip some values to increase frequency or read some values more than once to reduce frequency. The Band-Box uses this second principle and has a set of increment figures stored in the monitor which accurately correspond to the required amount of movement through the memory, after each fixed time interval, which will produce the required range of fundamental frequencies.
Fig. 3. Track layout and component overlay for the double-side Microcontroller
The effect of different increments is shown in Figs. 4(b-d). Whereas in Fig. 4(a) the X-axis simply represents the memory positions in which the sixteen numbers are stored (0-15), Figs. 4(b-d) are shown in real time at intervals of 0.2 ms, which roughly corresponds to that used in the Band-Box. The microprocessor is programmed to accumulate one relevant increment per time interval so that for an increment of 0.67, it will count 0, 0.67, 1.33, 2.0 etc., and it looks at the value stored in the memory position given by dropping the following fraction - i.e. position 0, 0, 1, 2 etc. As shown in Fig. 4(b), 24 time intervals are required to complete a cycle using an increment of 0.67, such that the overall period with an 0.2 ms interval is 4.8 ms, giving a frequency of 208.33 Hz. An increment of 1.0 is shown in Fig. 4(c) and since it causes longer jumps through the memory the higher frequency of 312.5 Hz results. Fig. 4(d) shows an octave increase in frequency to 416.67 Hz due to the corresponding doubling of the increment to 1.33.

Very accurate tuning can be realized using this technique, a factor which has considerable importance in the Band-Box application where the four note combinations used for the chord instrument, which must have high relative accuracy, are produced by programming the microprocessor to separately accumulate increments corresponding to each of the four notes and then add the four waveforms internally to give a composite waveform at the output of the DAC. It will be noticed that the example waveforms shown in Fig. 4 are not of simple sine, square, or triangular variety, but are in fact computed from elements of the fundamental plus overtones at factors of 2, 2.75, 3, 4 and 5-4, a freedom in waveform construction not easily available by conventional synthesizer techniques.

MUSIC FROM THE MEMORY

In Part 1 the score store was described in that it contains numbers corresponding to the next action required of the Band-Box. Most instructions give the chord required plus its duration, and when detected by the micro it converts half the number to represent a particular type of chord the notes of which are tabulated in the monitor. To cope with the adjustable playback key and movements in chord group which will have occurred during composition, the micro transposes the chord (frequency) of the chord and then checks the monitor for the increments corresponding to each chord note plus the increments corresponding to four bass notes one of which will be playing at a particular time. The increments are translated into waveforms as described above and thus is music produced.

MUSIC GENERATION CIRCUITS

The complete circuitry for music generation is shown in Fig. 5. The bass waveform first appears at the output of IC22d and is produced by DAC IC20. At intervals of 0.2 ms a binary number between 0 and 63 is taken from the data bus into the latches which comprise Output Port 1. The moment at which the number is placed in the latches is determined by the 0.5-µs positive chip select pulse CS1 produced by the decoding circuits which operate on the address and write signals generated by the micro. The number remains on the outputs of the port after the chip select pulse is over, and is converted by IC20 to a corresponding analog voltage level.

BASS ENVELOPES

It will be noted that 0 to 63 uses the bottom six lines of the data bus (D0-D5) leaving D6 and D7 spare. D6 is normally at logic zero except when a pulse is required to switch off the Master Rhythm in the auto-stop mode which occurs after a ‘Fine’ instruction is found in the score store. D7 is used to provide a positive pulse to trigger the two bass envelope circuits, one of which is selected by S1b at any particular moment. The micro is programmed to count clock pulses received from the Master Rhythm and convert them into musical beats. Depending on the bass figure selected on the appropriate control a bass envelope trigger pulse will appear on pin 19 of IC18, be shaped by the following resistor/capacitor networks, buffered by IC22c, and presented at the DAC control pin 14. The output at pin 4 is modulated from zero by the envelope input at pin 14 and is buffered by IC22d.
Fig. 5. Music generation circuitry
LOW PASS FILTERS
The waveform at the output of IC22d contains 0.2ms steps, as shown earlier, corresponding to a frequency of 5kHz. IC23c and IC24b comprise a four pole low pass filter with a 24dB per octave roll off and cut off frequency of 700Hz to remove the steps from the bass waveform.

CHORD INSTRUMENT WAVEFORM
Four notes are summed inside the micro to produce the chord instrument waveform which first appears at the output of IC22a. The operation is similar to the bass generator except that all eight data lines are used to give numbers between 0 and 252 (4x63) at the latched outputs of Output Port 2. The filter comprising IC23b, 23a and 23d is of five pole type with a cut off of 1.6kHz and roll off of 30dB per octave. The higher quality filter is necessary since the fundamental and harmonic frequency range of the chord instrument more nearly approach the theoretical limit of the sampling frequency which is placed on sample waveform generation techniques.

CHORD INSTRUMENT ENVELOPES
Master Rhythm inputs are shown entering pins 5, 6 and 7 of IC25 which generates the envelope trigger at its output pin 10. When pin 6 is held at zero by an off condition in the Master Rhythm, pin 10 is also held at zero. When the Master Rhythm is playing the "Start" signal rises to +5 volts, and for each positive clock pulse on pin 5 of IC25 the output takes up the state of pin 7 at that moment, latching the state until the next clock pulse occurs. Pin 7 is connected to the Master Rhythm control line which previously operated the long cymbal circuit and now becomes the programmable rhythmic pattern for the chord instrument. Due to the latching action of IC25 a continuous program of play pulses from the Master Rhythm will result in an uninterrupted high output at pin 10 which can give a sustained organ type output for example. However, the envelope trigger will drop when a programmed rest appears at pin 7 giving a large number of possible rhythmic permutations which may be stored in the Master Rhythm.

Four chord instrument envelope shapers are present on the board. In position one a percussive attack is followed by a damper action when pin 10 of IC25 drops to zero, whilst in position two the damper circuit is omitted. Positions three and four give sustained envelopes with different rates of attack and decay.

MIXER AND PREAMPS
IC24c amplifies the output from the Master Rhythm before entering the mixer IC24d together with the bass and chord instruments. A volume pedal fits between IC24d and IC24a which is the final preamplifier giving a mixed signal in phase with the individual instrument outputs.

Fig. 6. Input control circuits for Band-box
INPUT CONTROLS
The input controls cover the multi-position rotary switches and the full circuitry is given in Fig. 6. As shown last month a four position switch can be represented by numbers 0, 1, 2, 3. Referring to S6 in Fig. 6, resistors R89 and R90 hold the two inputs to IC26 at +5 volts when the switch is in position 1. IC26 is an inverter used as an input port so that when it receives an 0.5µs chip select pulse from the decoding circuits it puts the complement of the binary number seen at its inputs onto the data bus. Thus in positions 1, 2, 3 and 4 the binary numbers 00, 01, 10 and 11 are put onto bits D1 and D0 of the data bus respectively.

Considering S4 it will place similar binary numbers onto bits D3 and D2, which in decimal terms are equivalent to 0, 4, 8 and 12. The remaining switches on Input Port 1 act in a similar manner on data lines D4-D7 equivalent to higher decimal numbers and it can be seen that a single number between 0 and 255 can represent the sum of a unique combination of positions for all switches on the Port.

The chip select pins 1 and 19 on IC26 are normally at +5 volts but the micro is programmed by the monitor to pulse them to ground for 0.51.1s every 0.2ms to pass the number corresponding to the switches onto the data bus. The Band-Box program in the monitor determines what procedures to carry out based on the switch position combination.

INPUT PORT 2
This port passes the information relating to the playback key onto the data bus in the same manner as above and it will be noticed that data lines D4 and D5 are not used. D6 and D7 enable the micro to look at the Master Rhythm. Pin 12 rises to +5 volts when the Master Rhythm is running which after inversion sends a zero to the Microcontroller. The Master Rhythm clock pulse is being checked every 0-2ms by the input port and the micro is programmed to detect each rising edge through D7 and use this for the purpose of timing chord duration and bass trigger.

CHIP SELECT PULSES
A total of seven ports are involved in the Band-Box system, three are inputs to and four are outputs from the Microcontroller and each is selected at the appropriate moment by a chip select pulse generated by IC28-30. A combination of A0, A1, A2 and P decides which port is required using the decoder IC28, and the 0.5µs period of selection is determined by R or W gated with the negative outputs of IC28. OR gates in IC29 and NOR gates in IC30 ensure that input ports receive negative chip select pulses and output ports receive positive chip select pulses.

DISPLAY AND KEYING
A common circuit handles both the eight segment i.e.d. displays and the two sets of input keyswitches. This part of the system is inoperative whilst music is being generated but is used for playback score selection and composition. The system is multiplexed which means that the eight displays are each scanned in turn for approximately 1ms and the micro puts the information required for a particular display into the output port latches of IC31 for the period concerned. The monitor contains a set of codes which are converted to messages on the displays (Fig. 7).

The Output Port 4 comprising IC32 has three input lines to produce a sequence of eight numbers 0 to 7 which are decoded from their binary form by IC33, the outputs of which fall to zero as selected. The display segments which require to be lit at a particular moment receive a positive
COMPONENTS...

SYSTEM BOARD/DISPLAY BOARD

Resistors

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R17</td>
<td>47k</td>
<td>R58</td>
</tr>
<tr>
<td>R18</td>
<td>1k</td>
<td>R60</td>
</tr>
<tr>
<td>R19</td>
<td>12k</td>
<td>R61</td>
</tr>
<tr>
<td>R20-21</td>
<td>47k</td>
<td>R62</td>
</tr>
<tr>
<td>R22</td>
<td>3M9</td>
<td>R63</td>
</tr>
<tr>
<td>R23</td>
<td>47k</td>
<td>R64</td>
</tr>
<tr>
<td>R24</td>
<td>22k</td>
<td>R65</td>
</tr>
<tr>
<td>R25</td>
<td>10M</td>
<td>R66</td>
</tr>
<tr>
<td>R26</td>
<td>560k</td>
<td>R67</td>
</tr>
<tr>
<td>R27</td>
<td>1k</td>
<td>R68</td>
</tr>
<tr>
<td>R28-29</td>
<td>1k</td>
<td>R69-70</td>
</tr>
<tr>
<td>R30</td>
<td>22k</td>
<td>R71</td>
</tr>
<tr>
<td>R31-32</td>
<td>100k*</td>
<td>R72</td>
</tr>
<tr>
<td>R33</td>
<td>390k*</td>
<td>R73</td>
</tr>
<tr>
<td>R34</td>
<td>56k*</td>
<td>R74-75</td>
</tr>
<tr>
<td>R35-36</td>
<td>100k*</td>
<td>R76</td>
</tr>
<tr>
<td>R37</td>
<td>390k*</td>
<td>R77</td>
</tr>
<tr>
<td>R38</td>
<td>470k*</td>
<td>R78-79</td>
</tr>
<tr>
<td>R39</td>
<td>47k</td>
<td>R80</td>
</tr>
<tr>
<td>R40-43</td>
<td>100k</td>
<td>R81</td>
</tr>
<tr>
<td>R44</td>
<td>220k</td>
<td>R82</td>
</tr>
<tr>
<td>R45</td>
<td>22k</td>
<td>R83</td>
</tr>
<tr>
<td>R46-47</td>
<td>10k</td>
<td>R84</td>
</tr>
<tr>
<td>R48-50</td>
<td>150k</td>
<td>R85</td>
</tr>
<tr>
<td>R51</td>
<td>18k</td>
<td>R86</td>
</tr>
<tr>
<td>R52</td>
<td>5k</td>
<td>R87-88</td>
</tr>
<tr>
<td>R53</td>
<td>330k</td>
<td>R89-103</td>
</tr>
<tr>
<td>R54</td>
<td>47k</td>
<td>R104</td>
</tr>
<tr>
<td>R55</td>
<td>1M7</td>
<td>R105</td>
</tr>
<tr>
<td>R56</td>
<td>47k</td>
<td>R106-107</td>
</tr>
<tr>
<td>R57</td>
<td>10k</td>
<td>R108</td>
</tr>
<tr>
<td>R58</td>
<td>680k</td>
<td></td>
</tr>
</tbody>
</table>

Capacitors

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Value</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>C19</td>
<td>4μF7</td>
<td>35V</td>
</tr>
<tr>
<td>C20</td>
<td>0-47μ</td>
<td></td>
</tr>
<tr>
<td>C21</td>
<td>10n</td>
<td>ceramic</td>
</tr>
<tr>
<td>C22</td>
<td>0-22μ</td>
<td>polyester</td>
</tr>
<tr>
<td>C23-26</td>
<td>2n2</td>
<td>±2%</td>
</tr>
<tr>
<td>C27-29</td>
<td>0-1μ</td>
<td>polyester</td>
</tr>
<tr>
<td>C30</td>
<td>10n</td>
<td>ceramic</td>
</tr>
<tr>
<td>C31</td>
<td>4μF7</td>
<td>35V</td>
</tr>
<tr>
<td>C32</td>
<td>1μ0</td>
<td>63V</td>
</tr>
<tr>
<td>C33</td>
<td>0-47μ</td>
<td></td>
</tr>
<tr>
<td>C34</td>
<td>68n</td>
<td>polyester</td>
</tr>
<tr>
<td>C35-38</td>
<td>1n0</td>
<td>±2%</td>
</tr>
<tr>
<td>C39-40</td>
<td>0-1p</td>
<td>polyester</td>
</tr>
<tr>
<td>C41</td>
<td>1n0</td>
<td>±2%</td>
</tr>
<tr>
<td>C42</td>
<td>47p</td>
<td>ceramic</td>
</tr>
<tr>
<td>C43</td>
<td>27p</td>
<td>ceramic</td>
</tr>
<tr>
<td>C44</td>
<td>4K7μ</td>
<td>16V</td>
</tr>
<tr>
<td>C45</td>
<td>47μ</td>
<td>16V</td>
</tr>
<tr>
<td>C46-49</td>
<td>47n</td>
<td>ceramic</td>
</tr>
</tbody>
</table>

Semiconductors

<table>
<thead>
<tr>
<th>Semiconductor</th>
<th>Value</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>D5-33</td>
<td>1N4148</td>
<td></td>
</tr>
<tr>
<td>D34</td>
<td>i.e.d.</td>
<td></td>
</tr>
<tr>
<td>D35-42</td>
<td>1N4002</td>
<td></td>
</tr>
<tr>
<td>D43</td>
<td>i.e.d.</td>
<td></td>
</tr>
<tr>
<td>D44-45</td>
<td>7V5</td>
<td>Zener 400mW</td>
</tr>
<tr>
<td>TR1</td>
<td>ZTX108</td>
<td></td>
</tr>
<tr>
<td>IC18-19</td>
<td>74C373</td>
<td></td>
</tr>
<tr>
<td>IC20-21</td>
<td>NE5008</td>
<td></td>
</tr>
<tr>
<td>IC22-24</td>
<td>LM348</td>
<td></td>
</tr>
<tr>
<td>IC25</td>
<td>4042</td>
<td></td>
</tr>
<tr>
<td>IC26</td>
<td>74LS240</td>
<td></td>
</tr>
<tr>
<td>IC27</td>
<td>80C98</td>
<td></td>
</tr>
<tr>
<td>IC28</td>
<td>74LS138</td>
<td></td>
</tr>
<tr>
<td>IC29</td>
<td>74LS132</td>
<td></td>
</tr>
<tr>
<td>IC30</td>
<td>74LS02</td>
<td></td>
</tr>
<tr>
<td>IC31</td>
<td>74C373</td>
<td></td>
</tr>
<tr>
<td>IC32</td>
<td>74LS75</td>
<td></td>
</tr>
<tr>
<td>IC33</td>
<td>7445</td>
<td></td>
</tr>
<tr>
<td>IC34</td>
<td>74LS365</td>
<td></td>
</tr>
<tr>
<td>IC35</td>
<td>LM340-5</td>
<td></td>
</tr>
</tbody>
</table>

All resistors 0.25W 5% carbon film except * which are 2%

data from IC31 and the current in the segments is self-limited by the voltage drop across this integrated circuit. IC34 decodes keying activity in parallel with the display operation in that data lines D0, D1 and D2 are connected to the latched outputs of IC32 which indicate which display and key column (0-7) is currently being accessed, and depression of a key in this column will pull the voltage down on either pin 14, 10 or 12 depending on which key group is being used (0-7), (8-F.), or (Int. Page, En, >, or <). Keys 0-9 appear twice in parallel to give operator convenience. The key group selected is transmitted on data lines D3, 4 and 5 to the micro which is programmed to note when a key is pressed and take the necessary action.

Data line D3 on IC32 is controlled by the micro to give a negative pulse on each beat to flash the I.e.d.

POWER SUPPLIES

A mains transformer is mounted in the base of the Band-Box and the remainder of the circuitry as shown in Fig. 8 is integrated into the system board. An unregulated supply of approximately +12 volts feeds the microcontroller and Zener diodes are used to obtain ±7V5 for the audio circuits. The remainder of the system operates on +5 volts from the regulator IC35.

Next Month: Construction of the system and display boards together with details of assembly and memory map.

Fig. 8. Power supply
MC 88E CARTRIDGE
£19.50
MINIMAX 2 SPEAKERS
£59.95 pr
SEUM SR3220 RECEIVER £69.95

Once again we are pleased to be able to offer Videotone equipment at incredible prices—just compare these special "PE prices" with anyone else's! Remember they include VAT and postage.

CORAL MC88E HIGH OUTPUT MOVING COIL CARTRIDGE
The high voltage output (2.5mV) does away with the need for a head amplifier or step-up transformer. Flat frequency response over the range 20Hz to 40kHz. Look what HiFi Answers said—and they quoted the cost as £29.95!

"The Coral MC88E sets out to be a good cheap moving coil which doesn't need an ancillary step-up device, and achieves it. Just what we've been waiting for."

MINIMAX 2 SPEAKERS
The new improved version of this renowned best seller. It needs no introduction—again look what HiFi Answers said of the Minimax:

"Their modest appearance and price disguise their startling abilities. Never have we heard such a small speaker sound so big!"

SEUM SR3220 STEREO TUNER AMP
This unit incorporates a three band tuner and a 20 watt (r.m.s.) per channel amplifier. With features like speaker switching for two sets of speakers, f.m. tuning i.e.d's, mute, subsonic filter, loudness, etc., it's another Videotone winner. There's a matching range of other items, too (see the Videotone advertisement). Geoff Giles, of Practical HiFi, had this to say about the Seoum range:

"There is never enough space to write all one wants to about a system and especially so if such has generated genuine enthusiasm as this one has so easily done, but suffice to say that in all respects, I just cannot fault it. Highly recommended."

Offer limited to U.K. and B.F.P.O. only.

To: Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4. Tel. 01-690 8511/2
Please send me the following items:

<table>
<thead>
<tr>
<th>Price each</th>
<th>No.</th>
<th>Description</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>£19.50</td>
<td></td>
<td>MC88E</td>
<td></td>
</tr>
<tr>
<td>£59.95</td>
<td>pr.</td>
<td>Minimax 2</td>
<td></td>
</tr>
<tr>
<td>£59.95</td>
<td></td>
<td>SR3220</td>
<td></td>
</tr>
</tbody>
</table>

I enclose P.O./Cheque No. Value.
Make cheques payable to Videotone Ltd.
Name
Address

Please allow 28 days for delivery
OFFER CLOSES FRIDAY 18th DECEMBER 1981

From: Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4. Tel. 01-690 8511/2
CONSTRUCTORS who own or have access to more sophisticated test gear may wish to carry out additional tests on the Ranger in order to confirm that it is operating in accordance with the design specification. The most useful items of equipment are summarised in the list below. It is not, however, expected that all of these items will be to hand and the actual measurements carried out by individual constructors will obviously be limited by the available test gear. For this reason the measurements will not be described in detail and only a brief outline of each will be given.

(i) A digital frequency meter which can provide a direct readout to 30MHz with a resolution of 1kHz or better. Alternatively a low frequency DFM and pre-scaler can be employed. See Fig. 4.1.

(ii) An r.f. power meter with an internal load of 50Ω. Alternatively a combined power/SWR meter may be used together with a separate 50Ω load; the 50Ω load/indicator is quite suitable. See Fig. 4.2.

(iii) A stable and accurately calibrated r.f. signal generator with a 50Ω attenuated output. The generator should preferably also have an FM facility rather than the more usual AM. See Fig. 4.3.

(iv) An accurate and sensitive absorption wavemeter covering a frequency range of at least 27MHz to 150MHz. Alternatively an r.f. field strength meter covering the same range may be used.

Connect the Power and SWR Meter as shown above. Operate the PTT. Measure the SWR (follow the instructions supplied with the meter) and check that it is less than 1.25:1. Then measure the r.f. power. Note that, with most combined power and SWR meters, the power meter is a voltage sensing device and it is only accurate for a low value of SWR (ie: less than 1.25:1). If necessary make slight adjustments to VC1 and VC2 for maximum power output.

(iii) A stable and accurately calibrated r.f. signal generator with a 50Ω attenuated output. The generator should preferably also have an FM facility rather than the more usual AM. See Fig. 4.3.
Fault finding flowchart

83MHz, 111MHz, and 138MHz. With a very sensitive instrument (and particularly in the case of a field strength meter when used in place of the wavemeter) it may be possible to detect the presence of harmonics; however, their relative level should be very much less than that of the 27MHz output.

(v) An FM deviation meter suitable for use at 27MHz. (An a.f. generator will also be needed for deviation measurements).
(vi) An r.f. spectrum analyser covering the range 9MHz to 1GHz.

The last two items are unlikely to be found in any other than the better equipped r.f. laboratories but they are included for the sake of completeness. Where such devices are available it is highly probable that constructors will already have the expertise required to use them and therefore instructions for carrying out measurements with these instruments are not given.

Fault finding

By now most constructors will have completed the wiring and assembly of the Ranger and this would appear to be an appropriate moment to introduce the topic of fault finding. As with any piece of complex electronic equipment, a logical approach to fault tracing is required. The basic tools required for fault finding are a d.c. multi-range meter, an a.f./r.f. signal generator, and an oscilloscope. The last two items are useful but fortunately they are not always required. Indeed, it is generally possible to find even the most complex fault using no more than a basic multimeter and a lot of patience!

The first step is to ascertain the general area of the fault, i.e.: transmitter, receiver, power supply, control circuitry. Then sub-divide the area you have identified into its constituent parts; oscillator, multiplier, driver and power amplifier, for example. Comparison of the test voltages with the actual circuit voltages can usually throw some immediate light on the subject and, having satisfied yourself that the d.c. supplies are correct the next step is to follow the signal through from stage to stage. When fault tracing on the transmitter it is important to note that most of the stages are operated under class C conditions and the d.c. voltages will vary widely with the level of r.f. Fortunately comparison between driven and non-driven conditions can be very easily made by simply switching the channel selector to a spare channel. This will provide an immediate indication as to whether, or not, r.f. is present in the stage concerned.

In the receiver section things are not quite so simple and it is unlikely that constructors will be able to glean a great deal of information from test voltages in, for example, the i.f. amplifier stage—unless they are lucky enough to have the internal circuit of IC100! This is where a signal generator can be useful. A 455kHz signal can be injected directly into IC100 (pin 3) and this will help decide whether the fault is in the front-end or i.f. stages of the receiver. Similarly an a.f. signal, at say 1kHz, can be injected across the volume control and this will provide some indication of whether the fault is in the i.f. or audio stage. To help with the initial stages of fault tracing, a flow chart has been provided in order to determine the area of any possible fault condition, see Fig. 4.4.

Voltage table

Test voltages were measured under the following conditions:

(i) 240V a.c. mains supply connected via SK201
(ii) 50Ω load/output indicator connected (see Alignment section).
(iii) VR2 adjusted for 500mW output (see Alignment section).

Test voltages were measured using a 2kΩ/volt multi-range meter.

<table>
<thead>
<tr>
<th>TEST POINT</th>
<th>TRANSMIT</th>
<th>RECEIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2.1</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>1.1</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>9.0</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>6.0</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
<td>5.7</td>
</tr>
<tr>
<td>g</td>
<td>0</td>
<td>14.5</td>
</tr>
<tr>
<td>h</td>
<td>11.5</td>
<td>0</td>
</tr>
<tr>
<td>i</td>
<td>5.7</td>
<td>0</td>
</tr>
<tr>
<td>j</td>
<td>5.7</td>
<td>0</td>
</tr>
<tr>
<td>k</td>
<td>9.3</td>
<td>0</td>
</tr>
<tr>
<td>load output</td>
<td>1.2</td>
<td>0</td>
</tr>
<tr>
<td>"ext d.c."</td>
<td></td>
<td>12.3</td>
</tr>
<tr>
<td>socket SK203</td>
<td>15.5</td>
<td></td>
</tr>
</tbody>
</table>

RF VOLTAGE TABLE

<table>
<thead>
<tr>
<th>Transmit</th>
<th>SK200</th>
<th>.5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1 emitter</td>
<td>1.9V</td>
<td></td>
</tr>
<tr>
<td>TR1 collector</td>
<td>2.0V</td>
<td></td>
</tr>
<tr>
<td>TR2 collector</td>
<td>5.0V</td>
<td></td>
</tr>
<tr>
<td>TR3 collector</td>
<td>9.0V</td>
<td></td>
</tr>
<tr>
<td>TR4 collector</td>
<td>19.5V</td>
<td></td>
</tr>
</tbody>
</table>

| Receive | TR102 drain | 1.0V |

All voltages measured using external a.c. supply and 50Ω load/output indicator. Voltages are r.m.s. readings using a valve voltmeter and diode probe.

AERIALS

The aerial system used with any transceiver is a crucial factor in determining its overall performance both on transmit and on receive. The best possible aerial system should always be employed and money spent on improving aerials and feeders is always well invested.

Users should not expect too much from the Ranger when it is operated as a hand-held unit in conjunction with its matching helical aerial. This is due not only to the relatively low output power but also to the inefficiency of a miniature aerial system operating with a very inadequate earth plane. The result is a working range which is very much less than that which could be obtained with, say, a well sited full-size base station aerial system. A further point worth noting when using the helical aerial is that a significant amount of the r.f. energy radiated will be absorbed by the body of the user! For best results the transceiver should be held with the helical aerial in the vertical plane as high as possible and well away from the user. If a car roof, filing cabinet, water tank, or similar metal structure is available this can be used most effectively as a means of improving the efficiency of the aerial system. Simply place the transceiver upright as near as possible to the centre of its improvised ground plane and operate as far away from the transceiver as the microphone lead will allow.

The type of aerial used in any particular base station situation will depend on several factors, the most significant of which are the available space and, when dealing with omni-directional vertically polarised aerials, the maximum height attainable. Whenever possible the Ranger should be used with a properly designed base station aerial rather than depend on its helical aerial which will certainly give disappointing results when used indoors. The most obvious choice of aerial will probably be a derivative of the vertical monopole. This is a very simple aerial consisting of a single radiating element and a ground plane to provide a reflected image of the monopole. The aerial performs in a manner similar to that of a free-space dipole and has basically similar radiation patterns modified, somewhat, by the effect of the imperfect ground plane. The major problem is that, with a discontinuous ground plane, an appreciable amount of radiation is directed upwards away from the surface of the earth and not concentrated in the most useful direction which is, of course, at right angles to the element. Typical radiation patterns for perfect and imperfect ground plane monopole aerials are shown in Figs. 4.5a and b and it is clear from these that the quality of the ground plane has a major effect on the performance of the aerial system. For this, and other reasons, there has been a move to free-space aerials, such as the vertical dipole, "J-antenna", and "Slim-Jim". All of these aerials operate without the need for a ground plane but they are generally a little more difficult to construct and adjust. Whatever type of aerial is selected most proprietary CB aerials will work well with the Ranger provided, of course, that the manufacturer's assembly and installation instructions are carefully followed.

FEEDERS AND SWR

Coaxial feeders having a nominal impedance of 50Ω should be used for connecting the Ranger to an aerial system (do not use 75Ω TV aerial downlead). Ideally the feeder used should be a "low-loss" type. However, where only a short length of feeder is used (say less than 20') the power lost in "standard" cables will be quite insignificant. The power lost depends on two factors; the type and quality of tt cable used and its length. A 25' length of UR-43, for example, will have a loss of approximately 0.5dB, doubling the length to 50' increases the loss to 1dB. In the first case approximately 10 per cent of the power is wasted in the cable.
and 90 per cent arrives at the aerial (assuming, of course, that it is perfectly matched). In the second case approximately 20 per cent is lost in the cable and 80 per cent reaches the aerial. In practical terms this would make very little difference to the radiated signal. In general the feeder loss should not be allowed to exceed about 2dB since, at this point, only 63 per cent of the power appears at the aerial. The relationship between feeder loss and per cent power arriving at a perfectly matched aerial is shown in the table. The characteristics of some commonly available coaxial cables are given in the table. Note that inferior cables of unknown origin and sometimes described as "UR-43 type" etc., should always be avoided as their performance is generally not as good as the cable which they purport to be!

A great deal of nonsense is often heard (and read!) concerning the topic of SWR (standing wave ratio). Far too many existing CB operators place too much emphasis on obtaining the lowest possible SWR from their aerial systems. Much of this effort is wasted since, in practical terms, an SWR of less than 2:1 is quite adequate and only represents an additional power loss of 0.2dB when present in, for example, a cable offering a matched loss of 1dB (ie the total loss due to both feeder loss and SWR loss will only be 1.2dB). Furthermore a low SWR is not conclusive proof that an aerial is working efficiently. In fact a very low value of SWR can easily be obtained by using grossly inefficient aerial connected at the end of a very long length of lossy feeder!

In general, an SWR of 2:1 is nothing at all to worry about, 1:5:1 is good, and better than 1:3:1 is excellent. High values of SWR, say greater than 2:1 do not necessarily imply that an aerial system is poor. The solution is to add an aerial matching device in order to tune out the reactance associated with a non-resonant aerial and mismatched feeder. Aerial matching or tuning units are readily available as standard CB accessories however there is little point in purchasing one unless your SWR is greater than 2:1.

One final point worth mentioning is that, unlike some other CB transceivers, the power amplifier stage on the Ranger will tolerate excessively high values of SWR indefinitely. This means that, in the unfortunate event of your aerial dropping-off or the feeder becoming short circuited, the Ranger will just sit and take it.

MODIFICATIONS
As a result of detailed tests and measurements made on a number of PE Ranger transceivers the following information has become available:

1. It is sometimes possible to set up the transmitter such that the level of spurious radiation is above the permitted level at particular frequencies. In order to substantially reduce the possibility of these harmonics being generated, the following changes to the original circuit must be made.
 a) Replace R6 (100 ohms) by a 10µH inductor; the type used for L6 is suitable.
 b) Add a 100pF disc ceramic capacitor between the primary winding terminals of L4. This is most conveniently soldered directly to the coil on the underside of the p.c.b.
 c) Replace C13 by a shorting link.
 d) Add a 15pF disc ceramic capacitor in parallel with L6, soldered on the underside of the p.c.b.
 e) Reduce the value of R10 from 27Ω to 10Ω.
2. An improved filter response will be obtained from the original low pass filter design if the mutual coupling between the input and output coils is reduced by the addition of a thin plate screen between these coils. The screen should be earthed, and may even be extended to enclose the whole filter unit. A recommended alternative filter design, with improved stopband attenuation but slightly higher insertion loss (1-2dB max), is shown in Fig. 4.6a and b. This may be fabricated on the original filter p.c.b. with only slight changes (2 holes and 2 trackbreaks).

![Fig. 4.6a. Modified filter design](image1)

![Fig. 4.6b. Modified board design](image2)

3. If more output power is required from the transmitter, 2N2219 transistors may be used for TR3 and TR4. (You will have to make slight re-adjustments to L4/5 and L7/8 to compensate for the change.) The 2N2219 has a larger value of current gain and this will usually increase the output to 1W or so. Note that this modification will reduce the battery life (normally 2-3 hours of continuous operation).
4. If instability in the audio amplifier is observed this can easily be cured by the addition of a 1nF ceramic capacitor wired under the p.c.b. between pins 1 and 2 of IC101. To check whether instability is present move the loudspeaker connecting wires and listen to the noise produced by the loudspeaker. If there is a change in the noise produced as and when you move the connections or when they are touched this usually indicates high frequency instability in the audio stage and the signal produced may interact with the i.f./r.f. amplifier stages.

5. To improve front-end selectivity, image rejection, and simplify alignment the values of C121 and C122 should be changed to 22pF. It will then be harder to mis-align the r.f. tuned circuits.

6. For final alignment of the two r.f. tuned circuits, L100/101 and L102/103, it is recommended that all-plastic or all-nylon trimming tools are used. Tools fitted with phosphor bronze blades will de-tune the inductors whilst an adjustment is made. This is quite important if you want to get the "last ounce" of performance from your Ranger!

7. When aligning the receiver of the Ranger without the aid of test equipment it is important to note that, at present and until the new system comes into operation, signals likely to be heard will be AM and SSB and these will usually be off-frequency. These signals will sound very distorted and will certainly not be readable—they will at least give an indication that the receiver is functioning. Final adjustment of the r.f. tuned circuits should therefore be left until a proper FM signal is available.

8. There have been a number of cases where spurious output has been generated as a result of feedback by direct radiation of r.f. energy from the co-ax link (between the p.c.b. and the aerial socket) to the transmitter chain. It is essential that the front panel should exhibit a low impedance r.f. path to the earth plane on the p.c.b. A series tuned circuit is recommended for inclusion between the co-ax cable and the aerial socket, mounted immediately behind the aerial socket.

![Fig. 4.7. Series tuned circuit](image)

9. It is important that early issue p.c.b.s from Modus Systems are checked to ensure that the solder resist has been removed from around the slider pin of VR2 prior to soldering. Failure to do this will limit the maximum available output power to less than 5mW.

10. Should a 'chattering' squelch (i.e. where the squelch appears to open and close erratically in the absence of any discernible signal) be encountered, it is recommended that C102 be increased to 4-7pF, or even 10pF.

11. When tuning up the receiver, it is recommended that a matched 50Ω impedance be maintained. The receiver front end may show some sign of instability if not correctly terminated.

12. It is recommended that the exposed terminals of SK201 be protected with insulated sleeving.

13. A good earth bond between the front panel and the p.c.b. ground plane is essential. In some cases it has been found necessary to use a short length of braid to connect the body of SK204 to the earth tag on SK200. A short length of braid should also be fitted from the earth tag of SK200 to the can of L104.

14. Should the squelch appear to be non-operational, it is well worth checking the polarity and marking of D102 with an ohm meter; there have been cases where the polarity of the diodes has been incorrectly marked on the body of the diode.

15. Low profile d.i.l. sockets (N.B. no other type) have been found suitable for use with all of the i.c.s in the Ranger.

16. When mounting the NiCad batteries (B200 and B201) on the p.c.b., it is advisable to ensure that they are firmly seated; track damage may occur (especially in transit) if the tags are not pushed fully through the board. Similar considerations apply to the mains transformer, T200.

17. Apparent instability and lack of sensitivity in the receiver can be attributed to relatively high values of local oscillator injections in some sets. This can be cured by wiring a resistor of between 33Ω and 1800Ω under the p.c.b. directly to the pins of L105. The value should not be so low as to stop the oscillator functioning and 100Ω makes a good starting point.

A further improvement may also be gained by wiring a 47kΩ resistor under the p.c.b. between pin 1 of IC100 and 0V. This increases the range of the local oscillator input swing.

After including the above mods (filter, series trap, R6, R10, C13, 2 extra capacitors) the alignment of the transmitter continues from step 17 as follows: using the load output indicator, adjust in the following sequence and repeat until maximum output is achieved: core in the series trap, cores in the filter, VC2, LB, VC1, L4, and L2.

TEST RESULTS

The following test results have been produced from a kit-built sample of the PE Ranger 27FM, which has been carefully aligned using techniques outlined in the series of articles. The set in question incorporated all of the suggested modifications in this part of the series, and was run from a mains supply.

RECEIVER SPURIOUS EMISSIONS

The maximum amplitude of emission from the receiver was measured as -48dBm into 50Ω; this is a power level of 15-8mW.

RECEIVER SENSITIVITY

The measured usable sensitivity of the receiver on Channel 9 using 1kHz tone modulation and ±2.5kHz deviation was 0-43μV. The measured sensitivity at 10dB signal-to-noise ratio was 0-80μV. All measurements made in a constant 50Ω environment.
TRANSMITTER SPECTRUM ANALYSIS

The detailed transmitter spectrum is shown for a Ranger transmitter which is fitted with the improved filter, the series trap in the co-ax link between p.c.b. and SK200, and has R6 and R10 replaced as described earlier.

The Home Office specification calls for the levels of spurious emissions to be as follows:

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Emission Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 80MHz</td>
<td>below 250nW</td>
</tr>
<tr>
<td>80 to 85MHz</td>
<td>below 50nW</td>
</tr>
<tr>
<td>85 to 87.5MHz</td>
<td>below 250nW</td>
</tr>
<tr>
<td>87.5 to 104MHz</td>
<td>below 50nW</td>
</tr>
<tr>
<td>104 to 108MHz</td>
<td>below 250nW</td>
</tr>
<tr>
<td>108 to 118MHz</td>
<td>below 50nW</td>
</tr>
<tr>
<td>118 to 136MHz</td>
<td>below 250nW</td>
</tr>
<tr>
<td>136 to 174MHz</td>
<td>below 250nW</td>
</tr>
<tr>
<td>174 to 230MHz</td>
<td>below 50nW</td>
</tr>
<tr>
<td>230 to 470MHz</td>
<td>below 250nW</td>
</tr>
<tr>
<td>470 to 862MHz</td>
<td>below 50nW</td>
</tr>
<tr>
<td>862MHz upwards</td>
<td>below 250nW</td>
</tr>
</tbody>
</table>

The traces below show the importance of correct alignment. The first trace (A) is without a filter, and the second (B) is with the transmitter above.

The results for a spectrum analysis of the Ranger receiver are shown below (C). The Home Office specification calls for a maximum allowable level of emission from the receiver of below 20nW (-47dBm) at any frequency. The Ranger receiver meets this specification. The tested sample is shown without modifications; the performance above 30MHz is improved when the series tuned circuit is added.

A detailed examination of the local oscillator spectrum is shown (level = -63.6dBm or 0.5nW) in trace (D).

PLEASE NOTE

Will constructors please note that CB licences are now available from any Post Office for an annual fee of £10.00.

NEXT MONTH

The base mobile adaptor has been developed to complement the basic ranger transceiver, whilst retaining all of the original features.
M/C TO BASIC CONVERTER

Sir—I expect that all UK101 owners know how to put a decimal mIc program into BASIC simply by using the READ, DATA and POKE commands in BASIC. But do you convert a HEX mIc program into the above BASIC thus not needing checksum loaders etc.?

One slow way is to PEEK all the mIc program when in BASIC and enter the bytes into a program of DATA statements by hand, not much fun for a 200 byte program! Alternatively, you could write a program that would write its own BASIC lines into the memory, like Tony Walsh's "Graph Plot" (PE January 1981).

A far simpler way to achieve this would be to make use of the fact that everything above BASIC thus not needing checksum techniques with tips like this one and wider

The program starts at line 49999 so as not to overlap any program already in the computer. To start it just type "Run 50000".

Description:

Line 49999: prevents any other program running accidentally into it.

MULTIPLE USER CALLS

Sir—If you wish to link more than one machine code routine to UK101 Basic, the restriction of a single 'USR' function can be a drawback. By POKING into locations 11 and 12 you can of course change the USR address but this leads to lengthy BASIC lines which don't make for easy reading. For example, it's difficult to see that POKE 11227:POKE 12168: X=USR(Y) is calling the routine at 43235 decimal. When the USR call is made from BASIC as above, the value of Y is placed into the floating accumulator at $AC to $B. It seems logical therefore to try to use this route to allow multiple USR calls with the address of the routine as the argument. The technique is to vector USR calls to a machine code patch containing the following:

```
JSR $8B408  Convert floating accumulator contents to integer at $11, $12
JMP ($11) Branch to routine whose address is in $11, $12
```

Including the following lines of BASIC in a program will set this patch up at $2228 and link subsequent USR calls to it.

For I=565 TO 570 : READ X : POKE I, X : NEXT

DATA 32, 8, 180, 108, 17, 0 : POKE 11, 53 : POKE 12, 2

The patch used here is compatible with the original monitor, and the new monitor as well as CEGON.

The calling routine mentioned above now reduces to:

```
X=USR(43235)
```

This saves memory, is more readable and the omission of the two POKEs also speeds up the calling procedure considerably. Enterpriseing EPROM programmers could fit the patch into the New Monitor or CEGON by stealing some of the ROM used for message storage.

P. Beckett, Blackpool.

QUICK TIP

A short routine to print superscripts as required in A^2 etc.

Example:

```
140 AC=32
150 ? "ACCELERATION="; AC ;"FT/SEC"
POKE 54127+POS(I),50?
```

How about an article on programming techniques with tips like this one and wider aspects as such as how the interpreter works. For example, it is faster to put DATA statements early in the programme, or after the READ statement?

S. Jeans, Cardiff.
FULL RENUMBER
Sir—Here is a full-function BASIC Renum-
er program for the UK101 in reply to
Mr. I. Pawson of Leicester (PE November 1980).

This program renumbers, with the same
steps as the original, lines and statements
GOTO, SUB, THEN, ON/GOTO and ONI
program.

The renumbering is successful in
GOTO'S, THEN'S etc., even with new num-
program.

Suppose you have a program with lines
one or two spaces in GOTO'S, THEN'S etc.,
writing BASIC programs it is better to leave
reminds you to REWRITE line n. So, when
significant digits of the new number and
more digits), the program enters the most
ones. If there is no space to enter the full
number (in the case of a number having
more digits), the program enters the most
significant digits of the new number and
recommends you to REWRITE line n. So, when
writing BASIC programs it is better to leave
one or two spaces in GOTO'S, THEN'S etc.,
before or after the number.

After renumbering, the lines remain at
the same memory locations as before.
Suppose you have a program with lines
100, 110, 120, 130.

CASE 1 Renumber from 100 to 110
starting at 80; The new sequence
of lines will be 80, 90, 120, 130.

CASE 2 Renumber from 120 to 130
starting at 400; The new sequence
of lines will be 100, 110, 130.

CASE 3 Renumber from 100 to 120
starting at 400; The new sequence
of lines will be 100, 110, 130. The new program
will not work. You must SAVE line
a spare cassette and LOAD back
COMPUKIT. The new sequence
will become 100, 130, 400, 410.

CASE 4 Renumber from 120 to 140
starting at 440; The new sequence
of lines will be 100, 110, 130, 140.

CASE 5 Renumber from 100 to 140
starting at 440; The new sequence
of lines will be 100, 110, 130, 140.

CASE 6 Renumber from 120 to 140
starting at 440; The new sequence
of lines will be 100, 110, 130, 140.

CASE 7 Renumber from 100 to 140
starting at 440; The new sequence
of lines will be 100, 110, 130, 140.

CASE 8 Renumber from 120 to 140
starting at 440; The new sequence
of lines will be 100, 110, 130, 140.

CASE 9 Renumber from 100 to 140
starting at 440; The new sequence
of lines will be 100, 110, 130, 140.

CASE 10 Renumber from 120 to 140
starting at 440; The new sequence
of lines will be 100, 110, 130, 140.

CASE 11 Renumber from 100 to 140
starting at 440; The new sequence
of lines will be 100, 110, 130, 140.

CASE 12 Renumber from 120 to 140
starting at 440; The new sequence
of lines will be 100, 110, 130, 140.
INDEX

JANUARY 1981 TO DECEMBER 1981

VOLUME 17

CONSTRUCTIONAL PROJECTS

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm, Ultrasonic Intruder</td>
<td>April 52</td>
</tr>
<tr>
<td>Analogue Frequency Meter by Andy Flind</td>
<td>Sept. 32</td>
</tr>
<tr>
<td>Bandbox, PE</td>
<td>Nov. 32, Dec. 52</td>
</tr>
<tr>
<td>Binaural, Headphones</td>
<td>Oct. 36</td>
</tr>
<tr>
<td>Capacitance Meter by Martin Kent</td>
<td>July 34</td>
</tr>
<tr>
<td>Car Computer, PE by P. MacFarlane</td>
<td>Dec. 30</td>
</tr>
<tr>
<td>Chimer, Minute</td>
<td>Aug. 52</td>
</tr>
<tr>
<td>Clock, Horologicum Star</td>
<td>Oct. 22</td>
</tr>
<tr>
<td>Compukit, Interfacing Jan. 44, Feb. 54, March 52, April 56, May 60, June 68, July 62</td>
<td></td>
</tr>
<tr>
<td>Computer, Car</td>
<td>Dec. 30</td>
</tr>
<tr>
<td>Continuity Tester by Martin Kent</td>
<td>June 64</td>
</tr>
<tr>
<td>Controller, Train</td>
<td>Aug. 32</td>
</tr>
<tr>
<td>Converter, 27/28MHz</td>
<td>March 30</td>
</tr>
<tr>
<td>Counter Timer, Digital</td>
<td>Feb. 32, March 66</td>
</tr>
<tr>
<td>Courtesy Light Delay by Philip Dakin</td>
<td>May 54</td>
</tr>
<tr>
<td>Curve Tracer, Semiconductor</td>
<td>June 50</td>
</tr>
<tr>
<td>Desk, Disco</td>
<td>Jan. 60</td>
</tr>
<tr>
<td>Digital Counter Timer by Dr. Mark Sawiuki and Alex Kowalewski B.Sc.</td>
<td>Feb. 32, March 66</td>
</tr>
<tr>
<td>Digital Lock by Bart Trepak</td>
<td>May 22</td>
</tr>
<tr>
<td>Digital Multimeter by Martin Kent</td>
<td>May 44</td>
</tr>
<tr>
<td>Digital Thermometer by Martin Kent</td>
<td>May 36</td>
</tr>
<tr>
<td>Dimmer, Slave Light</td>
<td>Feb. 26</td>
</tr>
<tr>
<td>Disco Desk by Ben-J. Duncan</td>
<td>Jan. 60</td>
</tr>
<tr>
<td>Disco Hat by Tom Gaskell B.A.</td>
<td>Nov. 43</td>
</tr>
<tr>
<td>Drill PSU by Chris Lare</td>
<td>April 44</td>
</tr>
<tr>
<td>Drum Synthesiser by P. Bailey</td>
<td>Sept. 50</td>
</tr>
<tr>
<td>Echo Simulator by S. J. Musgrave</td>
<td>Aug. 38</td>
</tr>
<tr>
<td>Elapsed Hour Meter by Chris Lare</td>
<td>Feb. 18</td>
</tr>
<tr>
<td>EPROM Programmer by J. Dyson</td>
<td>Aug. 60</td>
</tr>
<tr>
<td>Evaders, Space</td>
<td>Dec. 22</td>
</tr>
<tr>
<td>Frequency Meter, Analogue</td>
<td>Sept. 32</td>
</tr>
<tr>
<td>Hat, Disco</td>
<td>Nov. 43</td>
</tr>
<tr>
<td>Headphones with a Difference by A. B. Bradshaw</td>
<td>Oct. 36</td>
</tr>
<tr>
<td>Horologicum Star Clock by J. S. B. Dick</td>
<td>Oct. 22</td>
</tr>
<tr>
<td>Inductive Discharge Car Ignition System by K. Wevill</td>
<td>Oct. 40</td>
</tr>
<tr>
<td>Interfacing Compukit by D. E. Graham</td>
<td>Jan. 44, Feb. 54, March 52, April 56, May 60, June 68, July 62</td>
</tr>
<tr>
<td>Intruder Alarm, Ultrasonic</td>
<td>April 52</td>
</tr>
<tr>
<td>Keyboard, Remote</td>
<td>Sept. 24</td>
</tr>
<tr>
<td>Light Delay, Courtesy</td>
<td>May 54</td>
</tr>
<tr>
<td>Light Dimmer, Slave</td>
<td>Feb. 26</td>
</tr>
<tr>
<td>Light Meter by Martin Kent</td>
<td>July 46</td>
</tr>
<tr>
<td>Linear Ohmmeter by D. H. E. King</td>
<td>July 36</td>
</tr>
<tr>
<td>Lock, Digital</td>
<td>May 22</td>
</tr>
<tr>
<td>Magnum Modifications, PE</td>
<td>Feb. 52</td>
</tr>
<tr>
<td>Meter, Analogue Frequency</td>
<td>Sept. 32</td>
</tr>
<tr>
<td>Meter, Capacitance</td>
<td>July 34</td>
</tr>
<tr>
<td>Meter, Elapsed Hour</td>
<td>Feb. 18</td>
</tr>
<tr>
<td>Meter, Light</td>
<td>July 46</td>
</tr>
<tr>
<td>Meter, Noise</td>
<td>July 50</td>
</tr>
<tr>
<td>Meter, pH</td>
<td>June 40</td>
</tr>
<tr>
<td>Microphone Mixer by R. A. Penfold</td>
<td>March 46</td>
</tr>
<tr>
<td>MicroMeter, PE</td>
<td>Jan. 50</td>
</tr>
<tr>
<td>Minute Chimer by James S. B. Dick</td>
<td>Aug. 52</td>
</tr>
<tr>
<td>Mixer, Microphone</td>
<td>March 46</td>
</tr>
<tr>
<td>Monitor Change, UK101</td>
<td>Nov. 58</td>
</tr>
<tr>
<td>Multimeter, Digital</td>
<td>May 44</td>
</tr>
<tr>
<td>Noise Meter by Martin Kent</td>
<td>July 50</td>
</tr>
<tr>
<td>Ohmmeter, Linear</td>
<td>Jan. 36</td>
</tr>
<tr>
<td>PE Bandbox by Alan Boothman B.Sc.</td>
<td>Nov. 32, Dec. 52</td>
</tr>
<tr>
<td>PE Digisounder by Brian Currie</td>
<td>April 30, May 48</td>
</tr>
<tr>
<td>PE Magnum Modifications by Andy Flind</td>
<td>Feb. 52</td>
</tr>
<tr>
<td>PE Master Rhythm by A. J. Boothman B.Sc.</td>
<td>Jan. 22</td>
</tr>
<tr>
<td>PE Microtune by Martin Kent</td>
<td>Jan. 30</td>
</tr>
<tr>
<td>PE Minitune by Martin Kent</td>
<td>June 34</td>
</tr>
<tr>
<td>PE Pulser by Tom Gaskell B.A.</td>
<td>Oct. 62</td>
</tr>
<tr>
<td>PE Quasar</td>
<td>July 26</td>
</tr>
<tr>
<td>PE Robots by Richard Becker</td>
<td>Nov. 24, Dec. 42</td>
</tr>
<tr>
<td>PE Starspinner</td>
<td>Jan. 30, Feb. 42</td>
</tr>
<tr>
<td>Period Power Tester by Chris Lare</td>
<td>March 38</td>
</tr>
<tr>
<td>pH Meter by Martin Kent</td>
<td>June 40</td>
</tr>
<tr>
<td>Processor, Speech</td>
<td>April 38</td>
</tr>
<tr>
<td>Programmer, EPROM</td>
<td>Aug. 60</td>
</tr>
<tr>
<td>PSU, Drill</td>
<td>April 44</td>
</tr>
<tr>
<td>Pulser, PE</td>
<td>Oct. 62</td>
</tr>
<tr>
<td>Quasar, PE</td>
<td>July 26</td>
</tr>
<tr>
<td>Ranger 27FM, PE</td>
<td>Sept. 40, Oct. 50, Nov. 48, Dec. 60</td>
</tr>
<tr>
<td>Remote Keyboard by J. Lewis</td>
<td>Sept. 24</td>
</tr>
<tr>
<td>Rhythm, PE Master</td>
<td>Jan. 22</td>
</tr>
<tr>
<td>Robots, PE</td>
<td>Nov. 24, Dec. 42</td>
</tr>
<tr>
<td>Semiconductor Curve Tracer by D. Mandelzweig</td>
<td>June 50</td>
</tr>
<tr>
<td>Simulator, Echo</td>
<td>Aug. 38</td>
</tr>
<tr>
<td>Slave Light Dimmer by Gilbert Davies</td>
<td>Feb. 26</td>
</tr>
</tbody>
</table>

Practical Electronics
December 1981
GENERAL FEATURES

Audio Lines by Ben Duncan
March 22

Cegmon Reviewed by Mike Abbott
March 26

Communication by Fibre Optics by Gary Gardner
July 38

Consumer Electronics Show
April 22

Digital Design Techniques by Tom Gaskell B.A.
Aug. 42, Sept. 60, Oct. 58, Nov. 40, Dec. 38

INGENUITY UNLIMITED
Jan. 70, Feb. 64, March 62, April 66, May 66, Aug. 66, Oct. 58, Nov. 62

Accented Beat Metronome by P. C. French
Nov. 62

Bargraph Thermometer by R. Eley
April 67

Binary to BCD Converter by Kunal Sen
March 65

Boat Horn by Leif Ljung
May 66

Capacitive Touch Switch by F. T. Dart
Feb. 64

Conversation Aid by R. A. Maidment
Aug. 67

'Day to Remember' Clock by C. T. Chantler
April 66

Delayed Output Protected Mono by C. Embleton
May 68

Disco Light Sequencer by J. Rennie
May 68

Envelope Differentiator by M. Russ
April 68

Fuse Failure Indicator by K. A. Rochfort
Jan. 72

Graph Display Unit by B. Darnton
March 63

L.F. Analogue Monitor by C. J. Collins
April 67

Live Circuit Tester by B. J. Lowery
May 67

Model Train Controller by R. Hayes
Jan. 70

Motor Controller by O. Albrecht
Aug. 66

Pip Generator by J. D. Richie
March 62

Push Button Pulse Generator by T. P. Hopkins
May 67

Storm Distance Estimator by R. Jonasar
March 63

Synth Processor by M. Russ
April 68

Telephone Timer by C. Dakin
Aug. 67

Thump Eliminator by A. A. Jeffree
May 67

Timer for Cine Camera by Odd Bjorkli
Jan. 70

Torpedo Game by M. Crisp
Jan. 71

Traffic Lights by R. J. Jones
March 64

TTL Protection by J. Piper
Jan. 72

TVC for Synths by M. Russ
April 68

0.99S Photographic Timer by G. Crawford
Nov. 63

3 Channel Sound-to-Light by K. Badcock
Nov. 63

6V Regulator Supply by A. J. Flind
Jan. 72

Introduction to Robotics by Professor W. Heginbotham
O.B.E., D.Sc.
Oct. 30

MICROBUS by D. J. D.
Feb. 48, April 50, June 76

Micro Prompt
Jan. 68, March 69, May 57, July 54, Sept. 74, Dec. 66

Oscilloscopes—How They Work by Ian Hickman
April 26, May 39, June 45

Positive Impedance Converters by A. B. Bradshaw
June 58

SEMICONDUCTOR UPDATE by R. W. Coles

Motorola TMOS, Spague UTN 2886B
Texas TMS 100, TMS6100
Jan. 49

AMD 2960, Hewlett Packard HLM3 31XX, HLMX 36XX
Feb. 41

Silicon General SG1547, TRW LSI Products
TDC 1023J, National Semiconductor IN58073
Mar. 36

Intersil ICM 7242, SGS-Ates L 208, 1 & 2, Mostek 4118, 4901 & 4802
Apr. 49

Texas TMS 9909, Siemens SAB 0600, Analog Devices AD636
May 26

Cybernetic Micro Systems CY800, National Semiconductor LM330
Intel: APX 432, AEG Telefunken U4108
Jul. 42

National Semiconductor MM 5439, Ferranti
ZN470, MLD4101
Aug. 37

Motorola MC13002, Sharp G1-105XX, IR-2001
Sep. 59

TRW Optron OPL100, Western Digital WD55, National Semiconductor
Oct. 35

Intersil ICL8073, Analog Devices AD7 58
Zilog Z8132
Nov. 23

National Semiconductor LM1894, Intersil
ICL 7663, Zilog Z800S
Dec. 48

Solar Power Satellites by Dr. J. P. Stark
Jan. 38

Speech Recognition System by Anthony Young
Sep. 36

Tandy TRS80 by Dr. A. A. Berk
Feb. 28

The Electronic Car by Walter Musty
Sept. 36

UK101 Colour Board Review by Mike Abbott
Aug. 30

UK101 Graph Plot by Toby Walsh
Jan. 66

Wemon Review by Dr. A. A. Berk
June 26

Wire Wrapping by John Lewis
June 24

600 Baud Cassette Interface by P. Martin
May 56
NEWS AND COMMENT

A New Generation of Softys Sept. 73
BOOK REVIEWS .. Jan. 28
CB Proposals .. July 24
COUNTDOWN .. July 24
INDUSTRY NOTEBOOK by Nexus Jan. 21, Feb. 24, March 21, April 21, May 21, June 23, July 23, Aug. 23, Sept. 23, Oct. 21, Nov. 21, Dec. 21
MARKET PLACE .. Jan. 18, Feb. 16, March 18, April 18, May 18, June 18, July 18, Aug. 18, Sept. 18, Oct. 18, Nov. 18, Dec. 18
NEWS BRIEFS ... March 24, 45, 61, May 25
PATENTS REVIEW .. Jan. 28, Oct. 18, Nov. 18, Dec. 18
PE Inventors Competition Results March 43
POINTS ARISING ... Feb. 30, March 61, April 42, May 25, June 20, July 20, Sept. 21

SPECIAL SUPPLEMENTS AND OFFERS

Circuits Supplements July (between pages 42 & 43)
Extra Case Coupon ... June 28, July 57, Aug. 35, Sept. 27
Hi-Fi Offer ... Dec. 29
Multimeter Offer .. Dec. 59
Special Offer—Digital Panel Meter May 51, June 57, July 45
Special Offer—Graphic Equaliser Sept. 49
Special Offer—GSC Experimentor Kit Oct. 73, Nov. 46
Special Offer—in Car Entertainment Jan. 34, Oct. 49
Special Offer—Teleequipment S61 Oscilloscope ... Feb. 25, March 37
Special Offer—Vero Wire Wrap Kit Nov. 57
Using your free i.c. removal tool Oct. 20

TWO SIDES TO YOUR SUCCESS FROM VERO

The Low Cost Eurocard Size Microboard

- Fully Compatible with indirect connectors and Card Frames to the latest international specifications.
- Accepts any Integrated circuit package—allows high packing density.
- Screen Printed with 'island' pattern for ease of use—ideal for solder and wire wrap applications.

PLEASE SUPPLY QTY	**ORDERCODE**	**DESCRIPTION**	**SIZE**	**PRICE**
200-22271B | MICROBOARD | 160 x 100mm | £3.47 each (including VAT & carriage)
200-22270E | MICROBOARD | 160 x 233mm | £5.47 each (including VAT & carriage)

PE/1281

Name:
Address:
Postal Code:
My Access/Barclay No. is:
Signed:

Vero Electronics Limited, Retail Dept., Industrial Estate, Chandler's Ford, Hampshire SO5 3ZR. Tel (04215) 62829

Practical Electronics December 1981
Now the time can tell you!...

New from Silicon Speech Systems (a Powertran subsidiary) - the first ever easy-to-build kit that will give a whole new meaning to the 'talking clock'! Electronics and quartz technology combine to enable you to construct a talking timepiece that is interesting to build - fun to have!

Full instructions make this a kit with equal appeal to the beginner or experienced constructor.

Special Xmas Offer only £24.50!
includes VAT and Post & Pkg

- Accurate to a minute a year
- Adjustable voice pitch
- Grained stainless-steel case
- Pocket size - approx. 5 in. x 3 in. x 1 in.
- Useful in the home or office
- As heard on BBC radio

Silicon Speech Systems
(A Powertran Subsidiary)

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS., SP10 3WN

TELEPHONE ORDERING FOR ACCESS/BARCLAY CARD CUSTOMERS IS NOW AVAILABLE.
JUST PHONE YOUR ORDER AND GIVE YOUR CARD NO.
RING ANDOVER (0264) 64455.

SAFGAN DT-400 SERIES
BRITISH MAKE DUAL TRACE 'SCOPES

NEW 20MHz
LOW COST
RELIEABLE
WITH 18 MONTHS GUARANTEE

PROBE
(X1-REF-X10)
£10.50

DT-410
£169
*EXC VAT

DT-415
£175

DT-420
£188

MAIH Analogue Multimeter
Normal Price: £33.35
Special Discount Price: £27.60
(incl. leads, carriage, VAT, postal/packing)

Analog multimeter pivoted movement and easily read mirror scale
Input impedance 20k ohms D.C.
DCV 9 ranges up to 1000V
ACV 9 ranges up to 500V
DCA 9 ranges up to 5A
ACA 9 ranges up to 5A
Resistance 9 ranges up to 10M
Capacitance can also be measured from 2-200,000µF

SAFGAN ELECTRONICS, 24, Guildford Road, Woking, Surrey.

Carriage: England & Wales £6.50 + VAT, Scotland £9.50 + VAT.

London: D. Eccles, Croydon Road, Beckenham - Tel. 01-665 6070
Sheffield: A. W. Eagleson, 149, High Street, Higham - Tel. 01-427 2827
Norwich: E. J. Martin, 13, St. Helen's Road, Norwich - Tel. 01603 62590
Newcastle: R. Gellatly, South Shields Road, Wallsend - Tel. 0191 271 7593
Northwich: G. M. Davenport, 10a, Southgate, Northwich - Tel. 01606 684686
Chester: J. A. Cross, 83, King Street, Chester - Tel. 01244 601196
Birmingham: D. W. Moore, 6, Priory Street, Birmingham - Tel. 0121 627 3216

Barclay Card - Visa - Access - American Express - Diners Club

SAFGAN DT-400 SERIES
BRITISH MAKE DUAL TRACE 'SCOPES

NEW 20MHz
LOW COST
RELIEABLE
WITH 18 MONTHS GUARANTEE

PROBE
(X1-REF-X10)
£10.50

DT-410
£169
*EXC VAT

DT-415
£175

DT-420
£188

MAIH Analogue Multimeter
Normal Price: £33.35
Special Discount Price: £27.60
(incl. leads, carriage, VAT, postal/packing)

Analog multimeter pivoted movement and easily read mirror scale
Input impedance 20K ohms D.C.
DCV 9 ranges up to 1000V
ACV 9 ranges up to 500V
DCA 9 ranges up to 5A
ACA 9 ranges up to 5A
Resistance 9 ranges up to 10M
Capacitance can also be measured from 2-200,000µF

SAFGAN ELECTRONICS, 24, Guildford Road, Woking, Surrey.

Carriage: England & Wales £6.50 + VAT, Scotland £9.50 + VAT.

London: D. Eccles, Croydon Road, Beckenham - Tel. 01-665 6070
Sheffield: A. W. Eagleson, 149, High Street, Higham - Tel. 01-427 2827
Norwich: E. J. Martin, 13, St. Helen's Road, Norwich - Tel. 01603 62590
Newcastle: R. Gellatly, South Shields Road, Wallsend - Tel. 0191 271 7593
Northwich: G. M. Davenport, 10a, Southgate, Northwich - Tel. 01606 684686
Chester: J. A. Cross, 83, King Street, Chester - Tel. 0121 627 3216

Barclay Card - Visa - Access - American Express - Diners Club

Firm Name: Practical Electronics
Address: December 1981

SAFGAN DT-400 SERIES
BRITISH MAKE DUAL TRACE 'SCOPES

NEW 20MHz
LOW COST
RELIEABLE
WITH 18 MONTHS GUARANTEE

MAIH Analogue Multimeter
Normal Price: £33.35
Special Discount Price: £27.60
(incl. leads, carriage, VAT, postal/packing)

Analog multimeter pivoted movement and easily read mirror scale
Input impedance 20K ohms D.C.
DCV 9 ranges up to 1000V
ACV 9 ranges up to 500V
DCA 9 ranges up to 5A
ACA 9 ranges up to 5A
Resistance 9 ranges up to 10M
Capacitance can also be measured from 2-200,000µF

SAFGAN ELECTRONICS, 24, Guildford Road, Woking, Surrey.

Carriage: England & Wales £6.50 + VAT, Scotland £9.50 + VAT.

London: D. Eccles, Croydon Road, Beckenham - Tel. 01-665 6070
Sheffield: A. W. Eagleson, 149, High Street, Higham - Tel. 01-427 2827
Norwich: E. J. Martin, 13, St. Helen's Road, Norwich - Tel. 01603 62590
Newcastle: R. Gellatly, South Shields Road, Wallsend - Tel. 0191 271 7593
Northwich: G. M. Davenport, 10a, Southgate, Northwich - Tel. 01606 684686
Chester: J. A. Cross, 83, King Street, Chester - Tel. 0121 627 3216

Barclay Card - Visa - Access - American Express - Diners Club

Firm Name: Practical Electronics
Address: December 1981

SAFGAN DT-400 SERIES
BRITISH MAKE DUAL TRACE 'SCOPES

NEW 20MHz
LOW COST
RELIEABLE
WITH 18 MONTHS GUARANTEE

MAIH Analogue Multimeter
Normal Price: £33.35
Special Discount Price: £27.60
(incl. leads, carriage, VAT, postal/packing)

Analog multimeter pivoted movement and easily read mirror scale
Input impedance 20K ohms D.C.
DCV 9 ranges up to 1000V
ACV 9 ranges up to 500V
DCA 9 ranges up to 5A
ACA 9 ranges up to 5A
Resistance 9 ranges up to 10M
Capacitance can also be measured from 2-200,000µF

SAFGAN ELECTRONICS, 24, Guildford Road, Woking, Surrey.

Carriage: England & Wales £6.50 + VAT, Scotland £9.50 + VAT.

London: D. Eccles, Croydon Road, Beckenham - Tel. 01-665 6070
Sheffield: A. W. Eagleson, 149, High Street, Higham - Tel. 01-427 2827
Norwich: E. J. Martin, 13, St. Helen's Road, Norwich - Tel. 01603 62590
Newcastle: R. Gellatly, South Shields Road, Wallsend - Tel. 0191 271 7593
Northwich: G. M. Davenport, 10a, Southgate, Northwich - Tel. 01606 684686
Chester: J. A. Cross, 83, King Street, Chester - Tel. 0121 627 3216

Barclay Card - Visa - Access - American Express - Diners Club

Firm Name: Practical Electronics
Address: December 1981

SAFGAN DT-400 SERIES
BRITISH MAKE DUAL TRACE 'SCOPES

NEW 20MHz
LOW COST
RELIEABLE
WITH 18 MONTHS GUARANTEE

MAIH Analogue Multimeter
Normal Price: £33.35
Special Discount Price: £27.60
(incl. leads, carriage, VAT, postal/packing)

Analog multimeter pivoted movement and easily read mirror scale
Input impedance 20K ohms D.C.
DCV 9 ranges up to 1000V
ACV 9 ranges up to 500V
DCA 9 ranges up to 5A
ACA 9 ranges up to 5A
Resistance 9 ranges up to 10M
Capacitance can also be measured from 2-200,000µF

SAFGAN ELECTRONICS, 24, Guildford Road, Woking, Surrey.

Carriage: England & Wales £6.50 + VAT, Scotland £9.50 + VAT.

London: D. Eccles, Croydon Road, Beckenham - Tel. 01-665 6070
Sheffield: A. W. Eagleson, 149, High Street, Higham - Tel. 01-427 2827
Norwich: E. J. Martin, 13, St. Helen's Road, Norwich - Tel. 01603 62590
Newcastle: R. Gellatly, South Shields Road, Wallsend - Tel. 0191 271 7593
Northwich: G. M. Davenport, 10a, Southgate, Northwich - Tel. 01606 684686
Chester: J. A. Cross, 83, King Street, Chester - Tel. 0121 627 3216

Barclay Card - Visa - Access - American Express - Diners Club

Firm Name: Practical Electronics
Address: December 1981
SMALL ADS

The pre-paid rate for classified advertisements is 32 pence per word (minimum 12 words), box number 60p extra. Semi-display setting £10.70 per single column centimetre (minimum 2.5 cm³). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5848).

RECEIVERS AND COMPONENTS

100 SMALL COMPONENTS, transistors, diodes £1.60. 7 lbs Assorted Components £3.95. 10 lbs £5.25. PCBs 11" x 8" 60p. 1 lb weight minimum. Fibreglass 1.1" x 10" £1.80. Fourty 74 series ICs on panel £1.60. 500 2N3052 £1.25. 2N3053 £1.20. 2N3054 £1.20. 2N3055 £1.00. 2N3056 £0.80. 2N2224 £0.80. 2N2224 £0.80.

NEW TOP GRADE COMPONENTS AT

NP2555 SILICON POWER TRANSISTORS BY IPS

2N3052 22p 2N3772 90p
2N3053 40p 2N3773 120p
2N3054 40p 2N3774 120p
2N3055 40p 2N3775 120p
2N3056 40p 2N3776 120p

GENERAL PURPOSE ELECTROLYTIC CAPACITORS

BALLARD'S OF TUNBRIDGE WELLS have moved to 54, Grosvenor Road, no lists. S.A.E. all enquires please address Tunbridge Wells 21803.

TRADE enquirers welcome. VAT included - please add 5% on postage & packing - orders dispatched by return - CWO is:

SELENOX

25/50/100W, Hamas, Wembley, Middlesex HX 7 8BG.

01-904 5996

EDUCATIONAL

CAREERS IN MARINE ELECTRONICS. Courses commencing September and January. Further details, The Nautical College, Fleetwood FY7 8JZ. Tel. 03917 79123.

CITY & GUARDS EXAMS

Study for success with ICS. An ICS home-study course will ensure that you pass your C & G. exams. Special courses for: Telecoms, Technicians, Electrical Installations, Radio, TV & Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS

Dept. 272Z Internet House, London W4 4UJ

Tel. 01-422 9911 (all hours)

State if order 18

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now by writing or phone ICS for details of ICS specialist home-study courses on Radio, TV, Audio Eng. and Servicing, Electronics. Computers: also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS

Dept. 272Z Internet House, London W4 4UJ

Tel. 01-422 9911 (all hours)

State if order 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new home-study course approved by leading manufacturer. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS

Dept. 272Z Internet House, London W4 4UJ

Tel. 01-422 9911 (all hours)

State if order 18

BOOKS AND PUBLICATIONS

OUT OF PRINT Book Service, 17, Fairfield Grove (E), Cardiff. Send SAE for details.

SERVICE SHEETS

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc £1.80 plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire. Tel. (06253) 55885.

SERVICE SHEETS £1 each plus S.A.E. Individual T.V. repair data £5.40 (with circuits £7.50). Free electronics newsletter, prietaries unique publications. Aus. 76 Churches Street, Larkhall, Larkhall, Lanarkshire ML9 1HE.

WANTED

EDUCATIONAL

CAREERS IN MARINE ELECTRONICS. Courses commencing September and January. Further details, The Nautical College, Fleetwood FY7 8JZ. Tel. 03917 79123.

CITY & GUARDS EXAMS

Study for success with ICS. An ICS home-study course will ensure that you pass your C & G. exams. Special courses for: Telecoms, Technicians, Electrical Installations, Radio, TV & Electronics Technicians, Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS

Dept. 272Z Internet House, London W4 4UJ

Tel. 01-422 9911 (all hours)

State if order 18

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now by writing or phone ICS for details of ICS specialist home-study courses on Radio, TV, Audio Eng. and Servicing, Electronics. Computers: also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS

Dept. 272Z Internet House, London W4 4UJ

Tel. 01-422 9911 (all hours)

State if order 18

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new home-study course approved by leading manufacturer. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS

Dept. 272Z Internet House, London W4 4UJ

Tel. 01-422 9911 (all hours)

State if order 18

BOOKS AND PUBLICATIONS

OUT OF PRINT Book Service, 17, Fairfield Grove (E), Cardiff. Send SAE for details.

SERVICE SHEETS

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc £1.80 plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, N. Yorkshire. Tel. (06253) 55885.

SERVICE SHEETS £1 each plus S.A.E. Individual T.V. repair data £5.40 (with circuits £7.50). Free electronics newsletter, prietaries unique publications. Aus. 76 Churches Street, Larkhall, Larkhall, Lanarkshire ML9 1HE.

WANTED

SOFTWARE

CIRCLAR ZX E1 (16K RAM) quality software. G.C.E. "O" LEVEL MATHS. 3 programs on one cassette, ranging from simple graphics, maths, electronic and gaming symbols for only £8.50 (+ 50p P&P) Programming service available. J. O. Limon, 110 Dudley Road, Harrogate, HG1 2HB.

BUILD THE MICRO 88 SYNTHESIZER

for under £60! Built-and-tested circuit board, battery operated, simple connection, no electronics knowledge required. MICRO 88 -- a real synthesizer for half the price! SAF. for price, F. TYLEY, 2 BEAUFORD ORCHARD, NORTON, TAUNTON, SOM.

YOUR UK101 BASIC PROGRAM in Eeprom. Switch on and run! Using 5V 2716. Uses normal RAM for variable storage -- without overwriting any program in RAM. Simple store changes between CALL and ROM programs (extension of variable possible) ! For text writer/program or dedicated machine applications. SAFE for details. J. I. Dyson, 22 A Hyde Road, Mottram, Hyde, Cheshire.

UK101 and SUPERBOARD. Original program listings, mostly add-ons, a few games. Includes HEX dump patch for assembler use, high speed binary/dumper/loader, list basic variables, remember and search, etc etc. £2.50 including P&P or ask for full list and sample program: Dr. Mike Wicks, 1 Old Craft, Kingston, Bishopswood, Oxford.

ZX81 SOFTWARE ZXAS Assembler (5s) £3.95: ZXDB Disassembler/debugging program (4s) £4.95: Program pack I (63k programs) £3.50, II Breakout £4.50 prices includes Inc. Bug. 98-100, The Albany, Old Hall Street, Liverpool.

HARDWARE

These kits are complete in every way. Fully scheduled high quality PCB, all components, switches etc, plus performance tested assembly for easy interconnection to J1, or your own equipment. MICROCHIPS, now you can add on all those extra circuits. Eight kits, yes EIGHT, fully buffered only £19.95 each (post free)!

HI-SPEED CASSETTE INTERFACE. At last, a system that allows a ZX81 to operate with the BUSINESS 4000 board. A remarkable cassette plus software for the ideal filing handling system. At last! A complete system. For use in EPROM, only £8.00.

VIBROSC'OPE. Switch selectable 16x48 or 48x96 displays without bushing your computer. (£19.95)

UNIVERSAL EPROMS. Ready to plug-in to suit just £2.50.

UK EPROM BOARD (£16.95), a 2k Extended Monitor is essential for £20.00 area, coming soon. TOOLKIT in EPROM and BASIC V.

RENUMBER, DELETE, TRACE, and OLD. Only £10 machine code on tape, giving 14 new commands including Cl (all monitors), and C2 (CEGMON only). 2K of fast logic gate, and are available for 16x48 and 32x48 displays only. £23.

STUART SYSTEMS. The WV classical design for full-size keyboards, including couplers. Expanded range of p.c.b. boards & data available includes chorus, vibrato, combination stop and sustain.

PROGRAMMER’S TOOLKIT, for UK101, OSI Superboard and C1 (all monitors), and C2 (CEGMON only). 2K of fastest access on tape, giving new commands including RENUMBER, DELETE, TRACE, and OLD. Only £10 inclusive, or SAFE for more details. State computer and memory size. S. A. Smith, 3K Woodvale Avenue, London SE52 2AE.

ADDN ATOM Invaders (12s) £8, Backgammon (7s) £7, Labyrinth (12s) £6.95, Star Trek (12s) £5.00, Lunar Landing (12s) £4.50. All software supplied cassette remote. Prices inclusive. Bugbyte. 98-100, The Albany, Old Hall Street, Liverpool.

Superboard/UK101 Low Cost Add-Ons ALL PRICES INCLUDE VAT & POST

RK RAM = 1K ROM on board.

£49.95 A.Knight (Dept PE), 28 Simonside Walk, Newcastle upon Tyne, NE2 5LH.

£8.00 EPROMS

£44.50 Enhanced Video Display. True 48x32 Display Full kit and instructions £15.95. Kic £48.32 CEYM42. £49.95 Kic £48.32 NEWMON £32.00.

£11.95 Software for all Superboard/UK101 screen formats. Chess 1.9 £4.95, Backgammon £2.00, Donkey £2.00.

MISCELLANEOUS – CONTD.

BURGLAR ALARM EQUIPMENT. Latest Discount Catalogue out now! Phone C.W.A.S. Alarm 0274 682674.

BIG EARS

SPEECH INPUT FOR YOUR COMPUTER

BIG EARS opens the door to direct man-machine communication. The system comprises analogue frequency separation filters, preamps and signal conversion, together with a high-quality microphone and extensive software.

Words, in any language, are stored as "voice prints" by simply repeating them a few times in "learn" mode. Using keyword selection techniques, large vocabularies can be constructed.

Use BIG EARS as a front end for any application - data entry, robot control, starwars - the possibilities are unlimited...

BUILT, TESTED & GUARANTEED ONLY

PLEASE STATE COMPUTER MAKE, SUPPLIERS NATION.
Practical Electronics

THE VERY LATEST SC110 LOW POWER,
FULLY PORTABLE OSCILLOSCOPE.
The new Thandar SC110 represents a break-through in oscilloscope development. The SC110 is LESS THAN TWO INCHES thick and weighs under two pounds, yet retains the standard features and controls of a bench oscilloscope.

Full Sized Performance
* 10 MHz bandwidth.
* Full trigger facilities are provided including TV frame, or TV filtering.
* Runs on 4 to 10V DC via disposable batteries, re-chargeable cells, or AC adaptor.

THANDAR TM354 HAND HELD LCD DIGITAL MULTIMETER
Full trigger facilities are provided including TV frame, or TV filtering.

Power Supply

B. K. ELECTRONICS, Dept. 'PE',
37 Whitehouse Meadows, Eastwood,
Leigh-on-Sea, Essex SS9 5TY.
Tel: (0702) 627572.

THE VERY LATEST SC110 LOW POWER,
FULLY PORTABLE OSCILLOSCOPE.

1980 GOLD MEDAL winner of the B.R.N.O. EXHIBITION, the largest Trade Fair held in Eastern Europe.

THE VERY LATEST SC110 LOW POWER,
FULLY PORTABLE OSCILLOSCOPE.

1980 GOLD MEDAL winner of the B.R.N.O. EXHIBITION, the largest Trade Fair held in Eastern Europe.

THE VERY LATEST SC110 LOW POWER,
FULLY PORTABLE OSCILLOSCOPE.

1980 GOLD MEDAL winner of the B.R.N.O. EXHIBITION, the largest Trade Fair held in Eastern Europe.

THE VERY LATEST SC110 LOW POWER,
FULLY PORTABLE OSCILLOSCOPE.

1980 GOLD MEDAL winner of the B.R.N.O. EXHIBITION, the largest Trade Fair held in Eastern Europe.

THE VERY LATEST SC110 LOW POWER,
FULLY PORTABLE OSCILLOSCOPE.

1980 GOLD MEDAL winner of the B.R.N.O. EXHIBITION, the largest Trade Fair held in Eastern Europe.

THE VERY LATEST SC110 LOW POWER,
MICROTAN 65

MICROTAN 65 is the most advanced, powerful expandable microcomputer available. It has been designed to meet the needs of the professional, the hobbyist and the enthusiast.

MICROTAN 65 CONTENTS

High quality plastic case, with pressure plate circuit board, solder resist and silk screened component identification. 6522 microprocessor, 1k memory, 100 usc interface, 32 parallel output lines, 2 serial input/output ports. The powerful expandable microcomputer, Microtan 65 is the most advanced.

MICROTAN 65 OPTIONS

- £10.00 VAT (£12.50, total £13.50)
- £20.00 VAT (£25.00, total £25.00)
- £22.00 VAT (£27.50, total £27.75)
- £20.00 VAT (£25.00, total £25.25)
- £21.00 VAT (£26.25, total £26.45)
- £25.00 VAT (£31.25, total £31.50)
- £29.00 VAT (£36.25, total £36.50)
- £32.00 VAT (£39.25, total £39.50)
- £35.00 VAT (£42.50, total £42.75)
- £38.00 VAT (£46.25, total £46.50)

MICRON

MICRON COMPUTER

FULLY BUILT, TESTED, AND HOUSED

SYSTEM RACK: MICRON £550.00 INCL.

£395.00 + VAT (14%)

5602 based microcomputer with 16k x 16 static RAM. Powerful expandable microcomputer, with built in CRT interface. Data bus buffering. Memory mapped controls. 71 key ASCII keyboard. Includes numeric keypad. Neat power supply. Also includes the first 'MICRO TAN SOFT BASIC' available in the U.K. All the usual BASIC commands.

FULL MATERIALS: MICRON, TAN, BASIC, XBUG £50.00 INC.

TANRAY

AVAILABLE NOW: TANRAY 40K bytes on tape priced at £95.00. Single board of bulk memory offering 7k Static RAM (2114) and 32k Dynamic RAM (4116). Onboard refresh is totally transparent to CPU operation and is unaffected by normal DMA. TANRAY fully expands the available address space of the 6522 microcomputer. MICROTAN, TANRAY and TANRAM together provide 16k RAM, 48K RAM and 16/11 I/O. That is a lot of memory and a lot of I/O! Built and tested TANRAY ASSEMBLED.

40K RAM CARD with 16K Dynamic RAM £76.00 VAT

CONTENTS: High quality plastic housed printed circuit board, solder resist and silk screened component identification. Full compliment of I/O sockets for maximum expansion. 64 pin DIN edge connector on 2114 (Data bus buffering). TANRAY users manual.

EXTRA RAM £25.00 INC.

1k Static (2114) £25.00 £16k Dynamic (4116) £50.00 each

MEMORY EXPANSION SYSTEM WITH OUR TANRAY.

DISCOUNTS: 10% for 4, 15% for £8, 20% for £400. APPROVED CRIPS.

2112 1k 2114 RAM £35.00

2114 4k 2114 RAM £21.00

4116 16k 16k Dynamic memory £35.00

MICRONTEN: (PROFESSIONAL) RECONSIDERED AND NEW - FROM £35.00 TO £129.95

CENTRONICS PRINTERS

IDEAL FOR TANRAY PRINTERS.

SHIMOSHA £199.00 + VAT

Model 130 £350.00 + VAT

Model 737 £395.00 + VAT

NEW MICROTANTEL POST OFFICE APPROVAL - PRESTEL - VIEWDATA

FULL COLOUR SYSTEM IN STORE.

PRESTEL CAN BE INTERFACED WITH PET, APPLE, etc.

£170.00 + VAT

Post Office Premises will gladly accept your application.

ADD-ON KEYBOARD

A compact 12 button keyboard suited for use with above keyboard to extend its functionalities plus four extra keys.

£73.00 + VAT (84.60, total £84.80)

TANEX £43.00

MINIMUM CONTENTS

- Microtan 65
- £30.00 VAT (36.00, total £36.30)
- £20.00 VAT (24.00, total £24.20)
- £20.00 VAT (24.00, total £24.20)

TANEX SYSTEMS

LONDON & HOME COUNTIES STOCKISTS

FOR MORE DETAILS PLEASE CALL:

404 EDGWARE RD. LONDON, W2 1ED TEL: 01-402 6822

TANGERINE LTD

11/12 PADDINGTON GREEN, LONDON W2 TEL: 01-723 5095

TANGERINE COMPUTER SYSTEMS

ALL PRE-PAID ORDERS POST FREE

HENRY'S COMPUTER KIT DIVISION

TRANSPORT DETAILS

RATES & DEMONSTRATIONS

11/12 PADDINGTON GREEN, LONDON W2 TEL: 01-723 5095

TANGERINE • TANGERINE • TANGERINE • TANGERINE • TANGERINE • TANGERINE

Stockist Enquiries on headed notepaper to:

COMPUTER KIT LTD, (Principal Distributors in U.K.)

49 WOODGATE ROAD, GREENWICH LONDON, SE10 9JL

Elect: 01-723 5095

TRANSPORT FUELS

622828 Ref. 1400 TRANSPORTS

Send for free brochure to:

TANGERINE • TANGERINE • TANGERINE • TANGERINE • TANGERINE • TANGERINE

All orders pre-packed and official advertising here to be forwarded DIRECTLY to:

COMPUTER DEPT., 11/12 PADDINGTON GREEN, LONDON W2

TANRAY

FULLY BUILT, TESTED, AND HOUSED

SYSTEM RACK: MICRON £550.00 INCL.

£395.00 + VAT (14%)

5602 based microcomputer with 16k x 16 static RAM. Powerful expandable microcomputer, with built in CRT interface. Data bus buffering. Memory mapped controls. 71 key ASCII keyboard. Includes numeric keypad. Neat power supply. Also includes the first 'MICRO TAN SOFT BASIC' available in the U.K. All the usual BASIC commands.

FULL MATERIALS: MICRON, TAN, BASIC, XBUG £50.00 INC.

TANRAY

AVAILABLE NOW: TANRAY 40K bytes on tape priced at £95.00. Single board of bulk memory offering 7k Static RAM (2114) and 32k Dynamic RAM (4116). Onboard refresh is totally transparent to CPU operation and is unaffected by normal DMA. TANRAY fully expands the available address space of the 6522 microcomputer. MICROTAN, TANRAY and TANRAM together provide 16k RAM, 48K RAM and 16/11 I/O. That is a lot of memory and a lot of I/O! Built and tested TANRAY ASSEMBLED.

40K RAM CARD with 16K Dynamic RAM £76.00 VAT

CONTENTS: High quality plastic housed printed circuit board, solder resist and silk screened component identification. Full compliment of I/O sockets for maximum expansion. 64 pin DIN edge connector on 2114 (Data bus buffering). TANRAY users manual.

EXTRA RAM £25.00 INC.

1k Static (2114) £25.00 £16k Dynamic (4116) £50.00 each

MEMORY EXPANSION SYSTEM WITH OUR TANRAY.

DISCOUNTS: 10% for 4, 15% for £8, 20% for £400. APPROVED CRIPS.

2112 1k 2114 RAM £35.00

2114 4k 2114 RAM £21.00

4116 16k 16k Dynamic memory £35.00

MICRONTEN: (PROFESSIONAL) RECONSIDERED AND NEW - FROM £35.00 TO £129.95

CENTRONICS PRINTERS

IDEAL FOR TANRAY PRINTERS.

SHIMOSHA £199.00 + VAT

Model 130 £350.00 + VAT

Model 737 £395.00 + VAT

NEW MICROTANTEL POST OFFICE APPROVAL - PRESTEL - VIEWDATA

FULL COLOUR SYSTEM IN STORE.

PRESTEL CAN BE INTERFACED WITH PET, APPLE, etc.

£170.00 + VAT

Post Office Premises will gladly accept your application.

ADD-ON KEYBOARD

A compact 12 button keyboard suited for use with above keyboard to extend its functionalities plus four extra keys.

£73.00 + VAT (84.60, total £84.80)

TANGERINE • TANGERINE • TANGERINE • TANGERINE • TANGERINE • TANGERINE

Stockist Enquiries on headed notepaper to:

COMPUTER KIT LTD, (Principal Distributors in U.K.)

49 WOODGATE ROAD, GREENWICH LONDON, SE10 9JL

Elect: 01-723 5095

TRANSPORT FUELS

622828 Ref. 1400 TRANSPORTS

Send for free brochure to:

TANGERINE • TANGERINE • TANGERINE • TANGERINE • TANGERINE • TANGERINE

All orders pre-packed and official advertising here to be forwarded DIRECTLY to:

COMPUTER DEPT., 11/12 PADDINGTON GREEN, LONDON W2

TANRAY

FULLY BUILT, TESTED, AND HOUSED

SYSTEM RACK: MICRON £550.00 INCL.

£395.00 + VAT (14%)

5602 based microcomputer with 16k x 16 static RAM. Powerful expandable microcomputer, with built in CRT interface. Data bus buffering. Memory mapped controls. 71 key ASCII keyboard. Includes numeric keypad. Neat power supply. Also includes the first 'MICRO TAN SOFT BASIC' available in the U.K. All the usual BASIC commands.

FULL MATERIALS: MICRON, TAN, BASIC, XBUG £50.00 INC.
YOUR CAN'T BEAT ILP BIPOLAR POWER AMPS FOR POWER AND PRICE

Get maximum power at minimum price, yet still with hi-fi specifications and a wide choice of outputs. ILP Bipolar power amps. now with or without heatsinks are unrivalled value for domestic hi-fi — but for disco, guitar amplifiers and PA, choose the new range of heavy duty power amps, again with or without heatsinks, with protection against permanent short circuit, added safety for the disco or group user. Connection in all cases is simple — just 5 pins.

For every item lin a year no nibble guarantee and includes full connection data. So send your order FREEPOST today!

LOAD IMPEDANCE, all models, 4 ohm — infinity; input impedance, all models 100K ohm. Input sensitivity, all models, 50 V/mV, Frequency response, all models 15Hz-50kHz-3db.

BIPOLAR Standard, with heatsinks

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Output Power</th>
<th>No. of Drawers</th>
<th>Size mm</th>
<th>Weight/g</th>
<th>Price inc VAT</th>
<th>Price excl VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY 100P</td>
<td>600W/4 -8Ω</td>
<td>0.01% < 0.006%</td>
<td>120 x 78 x 50</td>
<td>425</td>
<td>£21.39</td>
<td>£18.46</td>
</tr>
<tr>
<td>HY 200P</td>
<td>1200W/4 -8Ω</td>
<td>0.01% < 0.006%</td>
<td>120 x 26 x 40</td>
<td>620</td>
<td>£31.49</td>
<td>£27.39</td>
</tr>
<tr>
<td>HY 400P</td>
<td>2400W/4 -8Ω</td>
<td>0.01% < 0.006%</td>
<td>120 x 78 x 100</td>
<td>1025</td>
<td>£60.61</td>
<td>£52.83</td>
</tr>
</tbody>
</table>

BIPOLAR Standard, without heatsinks

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Output Power</th>
<th>No. of Drawers</th>
<th>Size mm</th>
<th>Weight/g</th>
<th>Price inc VAT</th>
<th>Price excl VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY 100P</td>
<td>600W/4 -8Ω</td>
<td>0.01% < 0.006%</td>
<td>120 x 78 x 40</td>
<td>375</td>
<td>£17.45</td>
<td>£15.00</td>
</tr>
<tr>
<td>HY 200P</td>
<td>1200W/4 -8Ω</td>
<td>0.01% < 0.006%</td>
<td>120 x 26 x 30</td>
<td>265</td>
<td>£9.45</td>
<td>£8.09</td>
</tr>
<tr>
<td>HY 400P</td>
<td>2400W/4 -8Ω</td>
<td>0.01% < 0.006%</td>
<td>120 x 78 x 90</td>
<td>1025</td>
<td>£31.83</td>
<td>£27.21</td>
</tr>
</tbody>
</table>

ILP Electronics Ltd., Freeport 2, Graham Bell House, Royston, Oldham OL2 6XD.

Our Catalogue still costs £1.50 inc. postage.
FOOTAGE

for top quality components, innovative kits, FAST SERVICE AND LOW, LOW PRICES

Not just another clock

but a PROGRAMMABLE TIMER KIT which can run your central heating, burglar alarm, lighting, tappered/corderadio and lots more. Designed to control four mains outputs independently, switching these on and off on selected days and times in a seven day cycle.

Features include:
- 0.5°C LED 12 hr. display.
- Day of week, am/pm and output status indicators.
- Manual/remote switching options
- Battery backup for mains power failure
- Display blanking during power failure
- 50/60Hz mains operation
- Programmable timer set to 24am/f.f.p plug for connecting to your presence system, and television lead. Fully tested.

ONLY £5.00 + VAT

DVM/THERMOMETER KIT

Based on the C1720s low power version of the C1720(1) chip. This kit will form the basis of a digital multimeter locally it may be a user switched function selector and switches are required – circuits supplied, or a sensitive digital thermometer (-50°C to +150°C) reading to 0.1°C. The kit has a sensitivity of 200V, a full scale reading, automatic polarity indication, and no low power requirement – a 2 year typical battery life from a standard 9V PP3 when used 8 hours a day, 7 days a week.

£16.90 + VAT

THE KEY TO YOUR SECURITY

If you have problems with people tampering with your car, electrical equipment or even your own (not the remote controlled) central heating, this kit is for you!

Our ELECTRONIC LOCK KIT includes a 10-way keyboard and a special IC which provides a 750mA output to drive a solenoid or relay (not supplied), when four keys are depressed in the correct sequence. This gives over 10,000 combinations of the sequence is generated and may be easily changed by means of a small plug and socket. A "SAVE" function is also available enabling the code to be stored in battery back-up. This kit is not the same. Contact us for further details.

£14.60 + VAT

24 HOUR CLOCK/APPLIANCE TIMER KIT

Switches any appliance up to 400V Plastic Case (Texas) 190p
4A TIC226D
8A TIC227D
12A TIC228D
15A TIC229D
25A TIC230D
85p
1.25p
1.75p
2.25p
3.50p

Prices do not include VAT. Add 50p P&P + 15% VAT to total.

 Overseas customers add £1.50 (Europe) £4 (elsewhere) for P&P.

ACCESSED and BARCLAYCARD welcome.

Send s.a.e. for price list and with all enquiries.

Shop open from 9a.m. to 5p.m. (Mon. Fri.), 9a.m. to 1 p.m. (Sat.).

PE 11 BOSTON ROAD, LONDON, W7 3SJ.

Tel: 01-579 9794/2842

88 - Practical Electronics December 1981
MICROCOMPUTER COMPONENTS
LOWEST PRICES - FASTEST DELIVERY

<table>
<thead>
<tr>
<th>Device</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP6662</td>
<td>5.01</td>
</tr>
<tr>
<td>EP6862</td>
<td>4.07</td>
</tr>
<tr>
<td>EP6962</td>
<td>3.90</td>
</tr>
<tr>
<td>EP7062</td>
<td>3.81</td>
</tr>
<tr>
<td>EP7162</td>
<td>3.75</td>
</tr>
<tr>
<td>EP7262</td>
<td>3.55</td>
</tr>
<tr>
<td>SYM1002</td>
<td>4.95</td>
</tr>
<tr>
<td>SYM1012</td>
<td>4.50</td>
</tr>
<tr>
<td>SYM2002</td>
<td>4.95</td>
</tr>
<tr>
<td>SYM2012</td>
<td>4.50</td>
</tr>
<tr>
<td>SYM2022</td>
<td>4.00</td>
</tr>
<tr>
<td>SYM2032</td>
<td>3.55</td>
</tr>
<tr>
<td>SYM2042</td>
<td>3.20</td>
</tr>
<tr>
<td>SYM2052</td>
<td>2.80</td>
</tr>
<tr>
<td>SYM2062</td>
<td>2.40</td>
</tr>
<tr>
<td>SYM2072</td>
<td>2.00</td>
</tr>
<tr>
<td>SYM2082</td>
<td>1.60</td>
</tr>
<tr>
<td>SYM2092</td>
<td>1.20</td>
</tr>
</tbody>
</table>

MEMORIES

<table>
<thead>
<tr>
<th>Device</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYM1000</td>
<td>5.50</td>
</tr>
<tr>
<td>SYM1001</td>
<td>5.15</td>
</tr>
<tr>
<td>SYM1002</td>
<td>4.80</td>
</tr>
<tr>
<td>SYM1003</td>
<td>4.45</td>
</tr>
<tr>
<td>SYM1004</td>
<td>4.10</td>
</tr>
<tr>
<td>SYM1005</td>
<td>3.75</td>
</tr>
<tr>
<td>SYM1006</td>
<td>3.40</td>
</tr>
<tr>
<td>SYM1007</td>
<td>3.05</td>
</tr>
<tr>
<td>SYM1008</td>
<td>2.70</td>
</tr>
<tr>
<td>SYM1009</td>
<td>2.35</td>
</tr>
<tr>
<td>SYM1010</td>
<td>2.00</td>
</tr>
<tr>
<td>SYM1011</td>
<td>1.65</td>
</tr>
<tr>
<td>SYM1012</td>
<td>1.30</td>
</tr>
<tr>
<td>SYM1013</td>
<td>0.95</td>
</tr>
<tr>
<td>SYM1014</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Z80A S10-2

<table>
<thead>
<tr>
<th>Device</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z80A</td>
<td>3.90</td>
</tr>
<tr>
<td>Z80A</td>
<td>3.65</td>
</tr>
<tr>
<td>Z80A</td>
<td>3.40</td>
</tr>
<tr>
<td>Z80A</td>
<td>3.15</td>
</tr>
<tr>
<td>Z80A</td>
<td>2.90</td>
</tr>
<tr>
<td>Z80A</td>
<td>2.65</td>
</tr>
<tr>
<td>Z80A</td>
<td>2.40</td>
</tr>
<tr>
<td>Z80A</td>
<td>2.15</td>
</tr>
<tr>
<td>Z80A</td>
<td>1.90</td>
</tr>
<tr>
<td>Z80A</td>
<td>1.65</td>
</tr>
<tr>
<td>Z80A</td>
<td>1.40</td>
</tr>
<tr>
<td>Z80A</td>
<td>1.15</td>
</tr>
<tr>
<td>Z80A</td>
<td>0.90</td>
</tr>
<tr>
<td>Z80A</td>
<td>0.65</td>
</tr>
<tr>
<td>Z80A</td>
<td>0.40</td>
</tr>
<tr>
<td>Z80A</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Z80 DMA

<table>
<thead>
<tr>
<th>Device</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z80A</td>
<td>3.90</td>
</tr>
<tr>
<td>Z80A</td>
<td>3.65</td>
</tr>
<tr>
<td>Z80A</td>
<td>3.40</td>
</tr>
<tr>
<td>Z80A</td>
<td>3.15</td>
</tr>
<tr>
<td>Z80A</td>
<td>2.90</td>
</tr>
<tr>
<td>Z80A</td>
<td>2.65</td>
</tr>
<tr>
<td>Z80A</td>
<td>2.40</td>
</tr>
<tr>
<td>Z80A</td>
<td>2.15</td>
</tr>
<tr>
<td>Z80A</td>
<td>1.90</td>
</tr>
<tr>
<td>Z80A</td>
<td>1.65</td>
</tr>
<tr>
<td>Z80A</td>
<td>1.40</td>
</tr>
<tr>
<td>Z80A</td>
<td>1.15</td>
</tr>
<tr>
<td>Z80A</td>
<td>0.90</td>
</tr>
<tr>
<td>Z80A</td>
<td>0.65</td>
</tr>
<tr>
<td>Z80A</td>
<td>0.40</td>
</tr>
<tr>
<td>Z80A</td>
<td>0.15</td>
</tr>
</tbody>
</table>

R0 -3-2513U

<table>
<thead>
<tr>
<th>Device</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0 -3-2513U</td>
<td>1.50</td>
</tr>
<tr>
<td>R0 -3-2513L</td>
<td>1.20</td>
</tr>
</tbody>
</table>

R0 -3-2513L

<table>
<thead>
<tr>
<th>Device</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0 -3-2513L</td>
<td>1.50</td>
</tr>
<tr>
<td>R0 -3-2513U</td>
<td>1.20</td>
</tr>
</tbody>
</table>

AY -5-1013

<table>
<thead>
<tr>
<th>Device</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AY -5-1013</td>
<td>0.55</td>
</tr>
<tr>
<td>AY -5-1013</td>
<td>0.50</td>
</tr>
</tbody>
</table>

ZN433CJ-10

<table>
<thead>
<tr>
<th>Device</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZN433CJ-10</td>
<td>0.55</td>
</tr>
<tr>
<td>ZN433CJ-10</td>
<td>0.50</td>
</tr>
</tbody>
</table>

1.50

<table>
<thead>
<tr>
<th>Device</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.50</td>
<td>1.50</td>
</tr>
</tbody>
</table>

CHRISTMAS SPECIAL OFFER

10% DISCOUNT ON ANY ORDER IF ACCOMPANYED BY THIS ADVERTISEMENT

WHY AN ILP MOSFET POWER AMP?

Because ILP MOSFET power amp's give you ultra-fh performance without costing big money. Performance you thought you couldn't afford at a price you know you can.

All ILP modules are compatible with each other — you'll find many more in other ads in this magazine. Choose ILP MOSFET power amp's when you need the fastest possible slow rate, low distortion at high frequencies, or better thermal stability. MOSFET power amp's work with complex loads without difficulty and with crossover distortion. Connection is simple — with 5 pins. With other ILP modules you can create almost any audio system, whatever your age or experience.

ILP MOSFET power amp's are now available with integral heatsink (no extra heatsink required), or ready for mounting on your own heatsink or chassis. Full dissipation data on data sheet available on request. Each carries a 3 year no-quibble guarantee and comes with full connection data.

Send your order FREEPOST today on the coupon at the foot of this ad.

WHYAN ILP

Low impedance, at models 4 ohm — infinity
High impedance, at models 1000 ohm
Input sensitivity, at models, 500 mV
Frequency response, all models, 15Hz-50k Hz

MOSFET Ultra-Fh, with heatsinks

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Number of Pins</th>
<th>Output Power Fh</th>
<th>Supply Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP-510</td>
<td>5</td>
<td>60w/4-85</td>
<td>+5-15v</td>
</tr>
<tr>
<td>ILP-520</td>
<td>7</td>
<td>60w/4-80</td>
<td>+5-15v</td>
</tr>
<tr>
<td>ILP-530</td>
<td>9</td>
<td>60w/4-75</td>
<td>+5-15v</td>
</tr>
<tr>
<td>ILP-540</td>
<td>12</td>
<td>60w/4-65</td>
<td>+5-15v</td>
</tr>
</tbody>
</table>

MOSFET Ultra-Fh without heatsinks

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Transformer Type</th>
<th>Output Power Fh</th>
<th>Supply Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP-510</td>
<td>5</td>
<td>60w/4-85</td>
<td>+5-15v</td>
</tr>
<tr>
<td>ILP-520</td>
<td>7</td>
<td>60w/4-80</td>
<td>+5-15v</td>
</tr>
<tr>
<td>ILP-530</td>
<td>9</td>
<td>60w/4-75</td>
<td>+5-15v</td>
</tr>
<tr>
<td>ILP-540</td>
<td>12</td>
<td>60w/4-65</td>
<td>+5-15v</td>
</tr>
</tbody>
</table>

Protection

Able to cope with complex loads, without the need for very special protection circuitry (switches will suffice).

Ultra.Filters

Gating: 1,000Vrms. Input sensitivity: 500mV. Input impedance: 10K. Damping factor: (85-120)攸2

How to order Freepost:

Use this coupon, or a separate sheet of paper. To order these products or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheque and postal orders must be accompanied by payables to C.O.D. must be in full order value. Access and Barclaycard welcome.

All UK orders sent post free within 7 days of receipt. of order.

ILP Electronics Ltd., "Fremont", Albermarle Road, Upper Clap, Canterbury CT2 1EP, Kent.

Please send me the following ILP modules:

Total purchase price

Enclose Cheque

Full Instructions. Declined

Postal Orders

Int. Money Order

Please deduct my Access/Barclaycard No.

Name

Address

Signature

Baker loudspeakers

An advanced solid state general purpose mono amplifier suitable for Public Address, recording, Disco, Hi-Fi, etc.

Price: £20.00

DESCRIPTION:

A stereo amplifier with an output of 3 watts per channel into 8 ohms. Designed to be used as an extension to any Hi-Fi radio or loud speakers. Full details and instructions supplied £15.00 plus P & P.

POWER PACK KIT

A stereo amplifier chassis with an output of 3 watts per channel into 8 ohms. Designed to be used as an extension to any Hi-Fi radio or loud speakers. Full details and instructions supplied £15.00 plus P & P.

STEREO MAGNETIC PRE-AMP

Sens. 3mV in 100k ohms. 15 or 30v a.c. earth. £10.00.

P*OLY PLANAR* WAFER TYPE, WIDE ELECTRO- Dynamic Speake

Size 112 x 112 x 1". *Poly Planar* WAFER 4 ohms. £39.00.

PAY VHF TUNER HEAD

Covering 108-174 MHz. £15.00. Output approx. 1.6 volts in excess of 40 watts music output. All instructions and parts list enclosed. £3.50 plus P & P.

MULLARD PL1155 RF/FM MODULE

£1.50 plus P & P. Full specifications and instructions supplied.

INTRODUCING MICROPROCESSORS

by I. R. Sinclair

Price: £5.00

PRACTICAL SOLID STATE

2nd ed. by J. E. O. Ingleby

Price: £6.20

UNDERSTANDING MICROPROCESSORS

by D. L. Cannon

Price: £4.50

RHEINBERGS SCIENCES

Polarizing Material

Price: £4.35

MICROSCOPIC TOOLS

Price: £9.50

MICROSCOPE SCANNER

Price: £3.50

SOLAR ENERGY

Price: £3.50

OEM

Price: £3.50

MAGNETIC WAVE MEASUREMENT APPARATUS

Price: £3.50

ECONOMIC SPACE MEASUREMENT APPARATUS

Price: £3.50

RHEINBERGS SURPLUS LTD.

price: £3.50

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST of Electronic Books

19-21 PRAED STREET

LONDON W2 1NP

Phone 01-402 9716

Closed Saturday 1 p.m.
LOTS OF NEW ILP ENCAPSULATED
PRE-AMPS-
COMPATIBLE WITH
ALL ILP MODULES

Suddenly, instead of two ILP encapsulated pre-amps, there are eight — everything from the simple mono pre-amp (HY8) through mono mono-pre-amps (HY12 and HY16) to a dual stamp pre-amp (HY71). Plus a new guitar pre-amp (HY73).

Each gives the very best reproduction from your equipment that your money can buy, and all are protected against short circuit and wrong polarity.

All ILP modules are compatible with each other — combine them to create almost any audio system. Every item carries a 5 year no quibble guarantee and includes full connection data.

So send your order today — the Freepost coupon needs no stamp.

ILP Electronics Ltd., Freepost 2, Graham Bell House, Roper Close, Centerbury CT2 7EP, Kent.

PRE-AMPS

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Module Type</th>
<th>What it does</th>
<th>Current required</th>
<th>Price inc. VAT</th>
<th>Price ex. VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY 6</td>
<td>Mono pre-amp</td>
<td>Provides inputs for mc/mag, cartridge/mic, radio, survey, or with bass/mid/bass/ treble controls.</td>
<td>10 mA</td>
<td>£7.41</td>
<td>£6.44</td>
</tr>
<tr>
<td>HY 8</td>
<td>Stereo pre-amp</td>
<td>Two inputs for mc/mag, cartridge/mic, radio, survey, or with bass/mid/bass/ treble controls.</td>
<td>10 mA</td>
<td>£7.71</td>
<td>£6.70</td>
</tr>
<tr>
<td>HY 9</td>
<td>Mono pre-amp</td>
<td>Mixes two signals into one, with bass/mid/bass/ treble controls.</td>
<td>10 mA</td>
<td>£7.31</td>
<td>£6.32</td>
</tr>
<tr>
<td>HY 66</td>
<td>Stereo pre-amp</td>
<td>Two inputs for mc/mag, cartridge/mic, radio, survey, or with bass/mid/bass/ treble controls.</td>
<td>10 mA</td>
<td>£14.02</td>
<td>£12.91</td>
</tr>
<tr>
<td>HY 69</td>
<td>Mono pre-amp</td>
<td>Provides two signals for mc/mag, cartridge/mic, radio, survey, or with bass/mid/bass/ treble controls.</td>
<td>10 mA</td>
<td>£12.03</td>
<td>£10.95</td>
</tr>
<tr>
<td>HY 73</td>
<td>Guitar pre-amp</td>
<td>Provides for two guitars (bass and mid) or mic, with separate bass/mid/bass/ treble controls.</td>
<td>10 mA</td>
<td>£14.03</td>
<td>£12.94</td>
</tr>
<tr>
<td>HY 75</td>
<td>Stereo pre-amp</td>
<td>Two inputs, mixing two signals into one, with bass/mid/bass/ treble controls.</td>
<td>10 mA</td>
<td>£12.02</td>
<td>£10.95</td>
</tr>
</tbody>
</table>

For easy mounting we recommend 16 mounting board for modules HY6-HY17 (12"x12"x1/8"). All UK orders sent post free within 7 days of receipt of order.

How to order Freepost:
Use this coupon, or a separate sheet of paper, to order these, or any other products from ILP Electronics.

No stamp is needed if you address to Freepost, and no stamp is required if you order through the Freepost coupon. All UK orders sent post free within 7 days of receipt of order.

Please send me the following ILP modules:

Total purchase price ____________________________

Please send by my Access/Barclaycard.

Please send by my Postal Order.

Name ____________________________

Address ____________________________

Signature ____________________________

Port Rd, ILP Electronics Ltd., Freepost 2, Graham Bell House, Roper Close, Centerbury CT2 7EP, Kent.

Telephone (0323) 44788, (0323) 44727

Tel: 01022 716478, Telex 965780.

Please make cheques and postal orders payable to ILP Electronics Ltd.

£0.90 incl. VAT (58p ex. VAT) per stamp.

How to order Freepost:

Use this coupon, or a separate sheet of paper, to order these, or any other products from ILP Electronics.

No stamp is needed if you address to Freepost, and no stamp is required if you order through the Freepost coupon. All UK orders sent post free within 7 days of receipt of order.

Please send me the following ILP modules:

Total purchase price ____________________________

Please send by my Access/Barclaycard.

Please send by my Postal Order.

Name ____________________________

Address ____________________________

Signature ____________________________

Port Rd, ILP Electronics Ltd., Freepost 2, Graham Bell House, Roper Close, Centerbury CT2 7EP, Kent.

Telephone (0323) 44788, (0323) 44727

Tel: 01022 716478, Telex 965780.
YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPUTERS

PET

4016 16K RAM
4032 32K RAM
4040 Dual Drive Disk
4022 80 column tracks feed.
3023 80 column friction feed.
C2N Cassette Unit.

For the business man we stock the
8000 range inc. 8032 and 8050 with
daisy wheel printers coming soon.

32K SYSTEMS AVAILABLE
FROM £1,499.00

VIDEO GENIE

£279 EG3003

Utilises Z80, 12K level III
Basic, Integral Cassette Deck,
UHF DIP, 16K RAM, all TRS80
features. Simply plugs into
monitor or UHF TV. With V.U.
Meter.

NOW WITH LOWER CASE AS STANDARD

NEW VIDEO GENIE II NOW AVAILABLE

PARALLEL PRINTER INTERFACE INC. CABLE £33.00
CHROMASONICS PROGRAMMABLE SOUND KIT £24.80
SOUND KIT (FITTING EXTRA) £7.00
LOWER CASE KIT (FITTING EXTRA) £27.50
COLOUR KIT (FITTING EXTRA) £34.95
EXPANSION BOX KIT WITH/OUT RS232 £218/£185
16K/32K RAM CARD £94/£129

APPLE II PLUS

48K Machines £595.00
Disk Drive with Controller £349.00
Disk Drive without Controller £289.00
Colour Card £69.00
Graphics Tablet £429.00
Silentype Printer £199.00
Typical Business Starter System. Apple
48K, 2 Discs, Monitor and Printer only, £1,785.

PRINTERS

Interfaces and Cables for
APPLE II, PET, TRS80,
RS 232, UK101, SHARP
SUPERBOARD All Available
EPSON MX80 £359
Dot-matrix printer with Pet graphics
interface. Centronics parallel and
serial. Pet and Apple compatible.
True bidirectional, 80 cps.

EPSON MX80 FT/1 £399
Dual single sheet friction and tractor,
9 wire head, true descenders.

MONITORS

MON 10" (illust) B&W £82.00
9" Green Monitor £84.00
Hitachi professional monitors £99.95
9" Black & White £149.00

TANTEL

PRESTEL BY TANTEL
COMMUNICATION AT YOUR FINGER TIPS FOR
BUSINESS & HOME. UP TO DATE INFO
180,000 pages of information on Travel, News, Investment,
Holidays, Hotels Etc., Etc.
ONLY £159
TANTEL IS POST OFFICE APPROVED. SEND FOR DETAILS.
DEMONSTRATION AVAILABLE AT OUR SHOWROOM.

All items carry a 1 year Guarantee

Please add VAT 15% to all prices. Postage on computers, monitors, printers and cassette decks charged at cost.
for all other items, P&P 30p. Place your order using your Access or Barclaycard (Min. tel order £5). Export enquiries
welcome. Official orders welcome.
THE BODY OF ANY SYSTEM

Let's face it — you can't produce as crisp an image on a domestic T.V. as you can on a Crofton monitor.

TYPICALLY

9" Crofton Monitors
P4 White £64.97
P31 Green £79.62
These Monitor Shugart prices are dependant upon Sterling/Dollar conversion rates.

SHUGART FLOPPY DISK DRIVES
No case, No Power Supply
SA 400 5"" S.S.S.O. £149.05
SA 450 8"" D.S.S.O. £283.31
SA 800 8"" S.S.S.O. £340.52

FLOPPY DISKS - BOXES OF TEN
Single sided 36/40 Track £26.45
Double sided 36/40 Track 5"" £37.95
Single sided 72 Track £41.40
Double sided 72 Track 5"" £47.75
Single sided 8"" £40.25

IKEGAMI 12"" MONITORS
P31 Green £171.50
P4 White £184.97

2/3" FULLY INTERLACED C.C.T.V. CAMERAS
£149.00

ALL THE ABOVE PRICES INCLUDE V.A.T. AND

2/3" FULLY INTERLACED C.C.T.V. CAMERAS
£149.00

ELECTROVALUE LTD. Dept. PE12, 28 St Judas Rd. Englefield Green, Eghern, Surrey TWIG 81113.

CROFTON ELECTRONICS LTD
36 Greenford Road, Twickenham, Middlesex TW1 4AD
01-891 1923/1513

DIGITAL TEST EQUIPMENT

2015A 3½ digit LCD (Bench) DMM £108.75 (N)
2035A 3½ digit LCD (Hand) DMM £95.45 (N)
8110A 8 digit 100MHz DFM £95.45 (N)
8610A 8 digit 600MHz DFM £114.85 (N)
5020A 1-200kHz Function Generator £98.90 (N)

RANGE OF ACCESSORIES ALSO AVAILABLE

ELECTROVALUE LTD. Dept. PB05, 31 St. Jades Rd, Eghernfield Green, Eghern, Surrey TW20 1DB.

ELECTROVALUE LTD. Dept. PB05, 31 St. Jades Rd, Eghernfield Green, Eghern, Surrey TW20 1DB.

CATALOGUE

Send 70p for your copy now - 64 pages (A4). More than 6000 stock items from nuts and bolts to complete computer systems. With it we include a Reclaim Voucher value 70p for spending towards orders value £10 or more.

FROM CATALOGUE 82, PAGE 19

SABTRONICS
DIGITAL TEST EQUIPMENT

2015A 3½ digit LCD (Bench) DMM £108.75 (N)
2035A 3½ digit LCD (Hand) DMM £95.45 (N)
8110A 8 digit 100MHz DFM £95.45 (N)
8610A 8 digit 600MHz DFM £114.85 (N)
5020A 1-200kHz Function Generator £98.90 (N)

RANGE OF ACCESSORIES ALSO AVAILABLE

ELECTROVALUE LTD. Dept. PB05, 31 St. Jades Rd, Eghernfield Green, Eghern, Surrey TW20 1DB.

ELECTROVALUE LTD. Dept. PB05, 31 St. Jades Rd, Eghernfield Green, Eghern, Surrey TW20 1DB.

CATALOGUE

Send 70p for your copy now - 64 pages (A4). More than 6000 stock items from nuts and bolts to complete computer systems. With it we include a Reclaim Voucher value 70p for spending towards orders value £10 or more.

FROM CATALOGUE 82, PAGE 19

SABTRONICS
DIGITAL TEST EQUIPMENT

2015A 3½ digit LCD (Bench) DMM £108.75 (N)
2035A 3½ digit LCD (Hand) DMM £95.45 (N)
8110A 8 digit 100MHz DFM £95.45 (N)
8610A 8 digit 600MHz DFM £114.85 (N)
5020A 1-200kHz Function Generator £98.90 (N)

RANGE OF ACCESSORIES ALSO AVAILABLE

ELECTROVALUE LTD. Dept. PB05, 31 St. Jades Rd, Eghernfield Green, Eghern, Surrey TW20 1DB.

ELECTROVALUE LTD. Dept. PB05, 31 St. Jades Rd, Eghernfield Green, Eghern, Surrey TW20 1DB.

CATALOGUE

Send 70p for your copy now - 64 pages (A4). More than 6000 stock items from nuts and bolts to complete computer systems. With it we include a Reclaim Voucher value 70p for spending towards orders value £10 or more.

FROM CATALOGUE 82, PAGE 19

SABTRONICS
DIGITAL TEST EQUIPMENT

2015A 3½ digit LCD (Bench) DMM £108.75 (N)
2035A 3½ digit LCD (Hand) DMM £95.45 (N)
8110A 8 digit 100MHz DFM £95.45 (N)
8610A 8 digit 600MHz DFM £114.85 (N)
5020A 1-200kHz Function Generator £98.90 (N)

RANGE OF ACCESSORIES ALSO AVAILABLE

ELECTROVALUE LTD. Dept. PB05, 31 St. Jades Rd, Eghernfield Green, Eghern, Surrey TW20 1DB.

ELECTROVALUE LTD. Dept. PB05, 31 St. Jades Rd, Eghernfield Green, Eghern, Surrey TW20 1DB.

CATALOGUE

Send 70p for your copy now - 64 pages (A4). More than 6000 stock items from nuts and bolts to complete computer systems. With it we include a Reclaim Voucher value 70p for spending towards orders value £10 or more.

FROM CATALOGUE 82, PAGE 19

SABTRONICS
DIGITAL TEST EQUIPMENT

2015A 3½ digit LCD (Bench) DMM £108.75 (N)
2035A 3½ digit LCD (Hand) DMM £95.45 (N)
8110A 8 digit 100MHz DFM £95.45 (N)
8610A 8 digit 600MHz DFM £114.85 (N)
5020A 1-200kHz Function Generator £98.90 (N)

RANGE OF ACCESSORIES ALSO AVAILABLE

ELECTROVALUE LTD. Dept. PB05, 31 St. Jades Rd, Eghernfield Green, Eghern, Surrey TW20 1DB.

ELECTROVALUE LTD. Dept. PB05, 31 St. Jades Rd, Eghernfield Green, Eghern, Surrey TW20 1DB.

CATALOGUE

Send 70p for your copy now - 64 pages (A4). More than 6000 stock items from nuts and bolts to complete computer systems. With it we include a Reclaim Voucher value 70p for spending towards orders value £10 or more.

FROM CATALOGUE 82, PAGE 19

SABTRONICS
DIGITAL TEST EQUIPMENT

2015A 3½ digit LCD (Bench) DMM £108.75 (N)
2035A 3½ digit LCD (Hand) DMM £95.45 (N)
8110A 8 digit 100MHz DFM £95.45 (N)
8610A 8 digit 600MHz DFM £114.85 (N)
5020A 1-200kHz Function Generator £98.90 (N)

RANGE OF ACCESSORIES ALSO AVAILABLE

ELECTROVALUE LTD. Dept. PB05, 31 St. Jades Rd, Eghernfield Green, Eghern, Surrey TW20 1DB.

ELECTROVALUE LTD. Dept. PB05, 31 St. Jades Rd, Eghernfield Green, Eghern, Surrey TW20 1DB.

CATALOGUE

Send 70p for your copy now - 64 pages (A4). More than 6000 stock items from nuts and bolts to complete computer systems. With it we include a Reclaim Voucher value 70p for spending towards orders value £10 or more.

FROM CATALOGUE 82, PAGE 19

SABTRONICS
DIGITAL TEST EQUIPMENT

2015A 3½ digit LCD (Bench) DMM £108.75 (N)
2035A 3½ digit LCD (Hand) DMM £95.45 (N)
8110A 8 digit 100MHz DFM £95.45 (N)
8610A 8 digit 600MHz DFM £114.85 (N)
5020A 1-200kHz Function Generator £98.90 (N)

RANGE OF ACCESSORIES ALSO AVAILABLE

ELECTROVALUE LTD. Dept. PB05, 31 St. Jades Rd, Eghernfield Green, Eghern, Surrey TW20 1DB.
C.U.A—NEW SHOP
14 CARLTON ROAD, ROMFORD, ESSEX — ROMFORD 64954

PRINTERS:

MASSIVE SAVINGS ON:

★ UK101 GRAPHICS BOARD — Just £49.00 Built.
★ Sound Board for 101 — Just £27.00 Built.
★ Programmers Aid Eprom — £16.00
★ Eproms/Rams/Chips/Software.
★ DISC system for your UK101.
★ Expansion M/Board — £11.73.
Prices include VAT

HOW TO FIND US:

COMPUTER USER AIDS

GREAT DEALS AT REALLY COMPETITIVE PRICES

IONISER KIT (MAINS OPERATED)
This negative ion generator gives you the power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it
puts out a pleasant breeze. A pure flow of ions pours out like water from
a fountain, filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing.

A suitable case including front panel, neon switch, etc.

HOURS:
Mon. to Fri. 9-5 pm. Sat. 9-4.30 pm. Price includes post & VAT.

T. POWELL,
Advance Works, P.E.,
44 Wallace Road,
London N1 IPQ.
Tel. 01-226 1489.

COMPONENTS AT REALISTIC PRICES
A RANDOM SELECTION FROM OUR LARGE RANGE. LISTS ENCLOSED WITH FIRST ORDER.

ELECTROLYTICS. (6.3v to 350v STOCKED.)
RADIAL. 120, 330, 470, 680, 1000, 1500, 3300, 10000, 220000 µF.
AXIAL. 4.7, 10, 22, 33, 100, 1500, 3300, 10000 µF.

POLYESTER CAPACITORS (RADIAL) 1000 µF 10000 µF.

MINIATURE 100V CERAMIC DISCS. 3.3 5.6 22p 68p 100p 220p.

MINIATURE POLYPROPYLENE. (12mm x 6,500mm Rad.) 18p 56p 100p 150p.

SILICON DIODES. 1N4001; 1N4002; 1N4003; 1N4004.

TANTALUM BEAD CAPACITORS. 0.1 0.22 0.47 0.68 1.0 2.2 4.7 10 22 47 100 470 1000 2200 µF.

MISCELLANEOUS. 3.5mm CHASSIS SKT. (SKELETON)...8p 3.5 MOULDED PLASTIC SKT. (CLIFF TYPE)...10p ANTI PARASIT. FERR. BEADS. 25 for...25p 12 WAY D-Q SKT. STRIP/IC HOLD. 1 Pit...Bp. 1uf/220v MAINS FILTER. 40p 12 BULBS & NEONS...40p 68A NYLON SCREWS 40 for 25p. 100K MULTITURN TRIMMER. .20p STAN. HOR. PRESET (EGAN) 100K & 1M5...9p ea. 20mm IN LINE FUSE HOLDERS...9p. ETC. ETC.

IONISER KIT

(84)

Practical Electronics December 1981
The first portable scope with a component tester.

Oscilloscope Specifications:
- **Y Deflection**
 - Bandwidth: DC - 10 MHz (-3dB)
 - Overshoot: Less than 1%
 - Sensitivity: 5 mV - 20 V/cm
 - Input Imp: 1 MΩ / 125pf
 - Timebase: 0.2s - 0.2 μs/cm
- **X Deflection**
 - Timebase: 2Hz - 1 MHz
 - Auto + level control
 - Bandwidth: 2Hz - 1 MHz

General Information
- **Component Tester**
- **Calibrator**
- **Power Supplies**
- **A.C. Input**
 - 110, 127, 220, 237, V.A.C., 50 - 60 Hz
- **Weight**
 - 8 lb. 14 lbs.
- **Size**
 - 4.97″ H x 8.38″ W x 10.718″ D

For further information on HAMEG’s full range of top performance oscilloscopes, contact:

HAMEG LTD.
74-78 Collingdon Street, Luton, Beds. LU1 1RX
Tel: (0582) 413174

UK LIST

EX VAT

£138

£5 18

£4 50

£9 32

£8 10

£12 58

£11 94

£15 00

£13 04

£15 37

£13 33

£18 31

£16 39

£18 63

£16 60

£20 64

£18 77

£16 74

£18 63

£16 60

£21 54

£21 16

£24 68

£24 68

£24 68

£21 46

£21 46

£20 57

£20 57

£20 57

£20 57

Power Supply Units

<table>
<thead>
<tr>
<th>Model No.</th>
<th>For use with</th>
<th>Price incl. VAT (£)</th>
<th>Price ex. VAT (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSU 30</td>
<td>50/60</td>
<td>£5 18</td>
<td>£4 50</td>
</tr>
<tr>
<td>PSU 50</td>
<td>60/20</td>
<td>£5 32</td>
<td>£4 50</td>
</tr>
<tr>
<td>PSU 55</td>
<td>60/20</td>
<td>£5 32</td>
<td>£4 50</td>
</tr>
<tr>
<td>PSU 70</td>
<td>60/20</td>
<td>£5 32</td>
<td>£4 50</td>
</tr>
<tr>
<td>PSU 80</td>
<td>60/20</td>
<td>£5 32</td>
<td>£4 50</td>
</tr>
<tr>
<td>PSU 100</td>
<td>60/20</td>
<td>£5 32</td>
<td>£4 50</td>
</tr>
<tr>
<td>PSU 150</td>
<td>60/20</td>
<td>£5 32</td>
<td>£4 50</td>
</tr>
<tr>
<td>PSU 200</td>
<td>60/20</td>
<td>£5 32</td>
<td>£4 50</td>
</tr>
<tr>
<td>PSU 300</td>
<td>60/20</td>
<td>£5 32</td>
<td>£4 50</td>
</tr>
<tr>
<td>PSU 400</td>
<td>60/20</td>
<td>£5 32</td>
<td>£4 50</td>
</tr>
<tr>
<td>PSU 500</td>
<td>60/20</td>
<td>£5 32</td>
<td>£4 50</td>
</tr>
<tr>
<td>PSU 600</td>
<td>60/20</td>
<td>£5 32</td>
<td>£4 50</td>
</tr>
<tr>
<td>PSU 700</td>
<td>60/20</td>
<td>£5 32</td>
<td>£4 50</td>
</tr>
<tr>
<td>PSU 800</td>
<td>60/20</td>
<td>£5 32</td>
<td>£4 50</td>
</tr>
<tr>
<td>PSU 900</td>
<td>60/20</td>
<td>£5 32</td>
<td>£4 50</td>
</tr>
</tbody>
</table>

All models incorporate ILP toroidal transformers except PSU 30 and PSU 50 which include our own laminated transformers.

How to order Freepost:
Use this coupon, or a separate sheet of paper, to order these modules, or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Ltd. Cash must be registered. C.O.D. — add 1/ to total order value. Access and Barclaycard welcome. All UK orders sent post free within 7 days of receipt of order.

Please send me the following ILP modules.

Name

Address

Signature

Telephone: (0227) 341778 Technical (0227) 347222 Telex 195570.

ILP POWER SUPPLIES - MOST WITH ILP TOROIDAL TRANSFORMERS

Space saving, efficient ILP power supplies are designed to give you flexibility in planning audio assemblies. None of the eleven models have toroidal transformers manufactured in our own factory. So we keep the quality up, and the price down.

ILP power supplies are compatible with all other ILP modules — combine them to produce almost any audio system. All carry the ILP 5 year no quibble guarantee and induce full connection data.

Practical Electronics December 1981
The catalog is divided into various sections, each with a different focus. Here are some excerpts and categories to give you an idea of the content:

- **Connector Systems**: Lists various types of connectors and their specifications.
- **Books (no VAT)**: Includes titles related to electronics and programming.
- **UK101: Interfacing CompuKit Decoding Module Kit**: Details the kit's specifications and cost.
- **ACORN ATOM**: Describes the ATOM and its capabilities.
- **Radio/Tapes Bargains**: Offers deals on radio and tape equipment.
- **Aerial Amplifiers**: Provides information on aerial amplifiers and their benefits.

Each section contains detailed descriptions and specifications, making it a comprehensive resource for electronic enthusiasts and professionals.
FT3 NEON FLASH TUBE

High intensity multi ton high voltage, neon glow show for displays, signs etc.

- 100 watts, 240 V A.C.
- 0.5 V A (1 amp max)
- 1 KV A (max 2 amp)
- 5 KV A (max 5 amp)

METERS

- 50 - 250 mV, 0.1%.
- 0 - 1000 mV, 0.2%
- 0 - 10 V, 0.05%
- 0 - 100 V, 0.01%
- 0 - 1 kV, 0.01%
- 0 - 10 kV, 0.05%
- 0 - 100 kV, 0.1%

FREQUENCY METER

- 10 - 10000 Hz, 0.05%
- 10000 - 1 MHz, 0.1%
- 1 MHz - 10 MHz, 0.5%
- 10 MHz - 100 MHz, 1%

INSULATION TESTERS

- Suitable for insulation testing of high voltage equipment up to 1000 V A.C.
- 500 V, 1000 V, 2500 V, 5000 V.
- 500 microamps, 5000 microamps.
- 10% of scale plus 0.5%.

IMPD 600 DUBLIN

- End connectors, 10 for 120 volts, £1.50 + P. & P. £3 (EC 2.
- 600 volts, £7.50 + P. & P. £1.50 (EC 23.80 incl. VAT).
Much more than just kits
quite simply the best way
to make music . . .

Powertran have been designing and manufacturing high-quality electronic kits for more than a decade. Thousands have been purchased and assembled by constructors throughout the UK and world-wide. Many of our regular clients have built the entire range several times! A Powertran kit makes an excellent gift for the electronics enthusiast; and it is a gift that, when constructed, may be given again.

Our reputation rests on these unshakeable foundations - we use the most imaginative and ingenious designers; we use high grade components subjected to rigid quality control; our kits are complete, even screws and wire are included; we take care with packing and despatch; our instructions are clear and always fully comprehensive . . . and if that weren't enough we back it up with our money-back guarantee. Powertran care and your skill gives you that something special.

Among the most popular of our kits are the fabulous 'Transcendent' range of synthesizers. Designed by the expert in the field, Tim Orr, and featured in Electronics Today International - those kits represent the zenith in both constructional ingenuity and musical performance. Thanks to our fully illustrated, carefully diagrammed 30 pages plus of constructional notes the 'Transcendent' range is comfortably within the capability of most enthusiasts. A great many 'first time builders' have completed them without difficulty and are justifiably pleased with the results.

TRANSCENDENT POLYSYNTH - brilliant design work and high technology components give the home constructor a machine of such versatility and range, equalled only by factory-made units costing thousands of pounds. Despite the advanced electronics the kit is mechanically simple with minimal wiring and ribbon cable connectors. Solid teak cabinet, fully finished metalwork - a 100% complete kit to give totally professional result.
- Single Voice
- Four Voice
- Team the Polysynth with the new matching 4 voice expander.

COMPLETE KIT £275 (+ VAT)

TRANSCENDENT DPX - a versatile 5 octave keyboard. The two audio outputs can be used simultaneously to give harpsichord and piano/honky-tonk or reel and strings/brass both fully polyphonic. To add more excitement there is a chorus/ensemble unit with strong or mild effect switching. The DPX is an advanced design... yet care, and our superb construction manual, make it a kit for every enthusiast.

COMPLETE KIT £295 (+ VAT)

TRANSCENDENT 2000 - a 3 octave keyboard yet with all the design ingenuity and thorough engineering that makes a superb and versatile machine. Quality teak cabinet and quality components throughout - complete down to the 13 amp plug. Buy it - build it - then plug-in and play it! A truly professional sound.

COMPLETE KIT £159 (+ VAT)

1024 COMPOSER - one of our latest designs. TheComposer controls the synth. with a sequence of up to 1024 notes or equal selection of shorter sequences. Mains powered and with trickle-charged battery to preserve programmes after switch-off.

COMPLETE KIT £85 (+ VAT)

write or phone for NEW 40 page '81/82 catalogue - FREE!
For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.

For personal service visit one of our stores.

Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads.

There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon.