## PRACDEAL





## Get moving with these new developments in UK Robotics

## - advanced electrohydraulic designs for education, industry and now available to the home constructor.



Up to the nano-second hard. firm and software developments embodied in a complete system. 12 Mega Hertz 16 bit CPU: 64 K upwardly compatible DRAM: separate 16 K video DRAM and 24 K TI Power Basic with overwrite. Supports up to four Disc drives of mixed type with 16 serial I/O ports. Programmable Baud rate and comprehensive $E$ Bus interface designed 10 support real world applications
Very high resolution graphics gives 3D simulation in 16 colours on 36 prioritised planes of user definable characters Software FORTH coming includes this trendy language along with NOS C/PM.
Hardware components available separately with details in Nov. Dec, and Jan issues of ETI. Software features include: Real time clock. full renumber command buffered I/O to tree machine whilst

Top of the range is the Genesis P102 which has dual speed control. continuous servo operation and double acting cylinders for increased torque on the wrist and arm potation joints The microprocessor based contiol system has addifional memory position interrogation via the RS232C interface increasing the versatility of computef control and inputs are provided for machine tool interlacing


Example prices and specifications

Genesis $\$ 101$
Base: $19.5^{\prime \prime} \times 11^{\prime \prime} \times 75^{\prime}$ Lifting capacity: 1500 gm Arm lift: $6.6^{\prime \prime}$
Weight: 29 Kg
4 axis model in kit form 5 axis model in tirm

Genesis P101
Gase: $19.5^{\prime \prime}$
Lithing capacity: 2000 gm
Arm lengths between axies: 14.0
Weight: 34 Kg
6 axis model in kit form
Complete Systems as shown in Photograph on right
Genesis S101
4 axis system in kit form $\mathbf{£ 6 8 1 . 5 0}$ 5 axis system in kit form $£ 737.50$ 5 axis system Ready Built $\mathbf{C 1 4 5 0}$

Genesis P101
6 axis system in kit form $\mathbf{f} 945.00$
6 axis system Ready Built $£ 1650$ All prices exclusive of VAT

GENESIS P102 PROCESSOR BOX, HAND HELD CONTROLLER AND CORTEX COMPUTER
£ 145.00
f48.50
$£ 2.50$ £3.00 MICROGRASP, INTERFACE BOARD AND $2 \times 81$
printing. call to machine code routines, hexadecimal support and usertriendly textual error trapping messages.

If computers interest you then the Cortex will expand your understanding infinitely more than off the shelf machines. Use it in business. education. research or just play with the incredible graphics capability. At Powertran we are using these machines in conventional roles in product control and R \& D. We shall coordinate the Cortex user group and distribute software for the TMS 9995 CPU Complete 16 bit 64 K computer kit $£ 295.00$ 8. VAT Complete 16 bit 64 K computer ready bull $£ 395.00+$ VAT


With puces staring below £1.000 the Genesis range of general purpose robots provide a lirst tate introduction to robotics for boin education and industry Each has a sell-cuntaned hydraulic power source which enables loads of several pounds to be smoothly handled The syslem operaled trom a single phase 240 or 120 V AC supply or a 12 V DC supply The machine can be supplied with up to 6 axes each of which is Iully independent but capable of simultaneous operation Postion conlrol is achieved by means of a closed-loop leedback system based around a dedicated microprocessor Movement sequences can system based around a dedicated microprocessor Movement sequences can be entered stored and replayed by use ol a hand held controller alternatively the
systems can also be inierlac ed to an external computer via a standard RS232C systems can also be inlerlaced to an external computer via a standard RS232C


GENESIS S101 AND GENESIS P101 WITH PROCESSOR BOXES AND HAND-HELD CONTROLLERS


WORLD LEADERS IN ELECTRONIC KIT DESIGN AND SUPPLY
(CYBERNETIC DIVISION)
PORTWAY INDUSTRIAL ESTATE ANDOVER HANTS SP10 3WN Phone Enquiries (0264) 64455
PRACTICAL
ELECTRONICS
VOLUME 19 No. 4 ..... APRIL 1983
CONSTRUCTIONAL PROJECTS
BATTERY TESTER by Chris Lare ..... 22
Provides I.e.d. 'state' indication for $1.5,3,4.5,6,9$ and 12 V batteries DIGIT TALKER by $A$. Wiggin ..... 28
LPC speech system
WIPER DELAY by M. Tooley BA and D. Whitfield MA MSc ..... 36
Car rear screen wiper variable speed control
SWITCHED CAPACITOR PHASER by R. A. Penfold ..... 40
Phaser sound effects based upon the twin filter MF10 CN chip
ULTIMUM Part 6 by William Edwards ..... 56
Phoneme speech card
I.F. FILTER/AMPLIFIER by R. F. Millington ..... 63Improved filter design for the PE Ranger
GENERAL FEATURES
INTO THE REAL WORLD Part 3 by M. Tooley and D. Whitfield ..... 48
Setting up and using the $A$ to $D$ and $D$ to $A$ converters
SEMICONDUCTOR UPDATE by R. W. Coles ..... 55
Swansong
INGENUITY UNLIMITED ..... 60
Constant current voltage source—Lighting effects unit—Versatile controller MICROPROMPT ..... 65
Hardware and software ideas for PE computer projects
NEWS AND COMMENT
EDITORIAL ..... 17
NEWS AND MARKET PLACE ..... 18
including Countdown
BAZAAR ..... 25, 33, 64
Free readers' advertisements
INDUSTRY NOTEBOOK by Nexus ..... 27
News and views on the electronics industry
PATENTS REVIEW ..... 34
Back to Tesla and speaker improvements
SPECIAL OFFER - CASSETTES ..... 43
SPACEWATCH by Frank W. Hyde ..... 44
Extra-terrestrial activities chronicled ..... 47
SPECIAL SUPPLEMENTMICRO-FILE by R. W. Colesbetween pages 38 and 39Filesheet 66809

[^0]


## CTu 80



## Modular Amplifiers the third generation

Due to continous improvements in components and design ILP now launch the largest and most advanced generation of modules ever
n keeping with ILP's tradition of entirely self-contained modules featuring, integral heatsinks, no external components and only 5 connections required, the range has been optimized for efficiency, flexibility, reliability, easy usage, outstanding performance, value for money.
With over 10 years experience in audio amplifier technology ILP are recognised as world leaders.



Moss pre amp modules can be diven by the PSU diving the min powel amp A separiste PSU 30 is availabe ourely tor pre amp modulax it requited lor C5. 47 linc. VAFt, Pramp and mising modules in 18 diflerent ve wations. Mounting Base ien
Far ease of constiruction we recommend the 86 tol modules MY6-MY 13 f 105 (inc VATI and the 866 tor modutes $\mathrm{MV66-MY78} \mathrm{E} 1,29$ line. VATI.

| $\begin{aligned} & \text { Moted } \\ & \text { Number } \end{aligned}$ | for Une Winh | $\begin{gathered} \text { Vee ine. } \\ \text { VAT } \end{gathered}$ | $\begin{aligned} & \text { Moded } \\ & \text { Mumber } \end{aligned}$ | For Uno With | Pree we: VAT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Psu jx | 101204830 | [11.93 | PSU 52x | 2. HY124 | 117.07 |
| PSUS 41x |  | 513.83 | PSU 53x | 2: muS 128 | 117.86 |
| DSU42x | 1- Div128 | (15.90 | PSU 54 x | 1: HV248 | [17.96 |
| PSU 43x | 1- MOS $\operatorname{Mas}$ | f 16.70 | PSU 55 x | $1=$ MUS248 | [19.52 |
| PSU51x |  | ¢17.07 | PSU $71 \times$ | 2 n HY244 | ¢ 21.75 |


| Moder | For Une With | Five ine. VAT |
| :---: | :---: | :---: |
| PSU 17x | 2: Mr2ay | 122.5. |
| Psti 73x | 1: hYess | 122, 2.4 |
| PSU 74x | $1 \times \mathrm{nr368}$ | 12.3,20 |
| PSU $15 \times$ | 2 - MOS248, 1 - MOS368 | (2.4.20 |


Protection: Abse to cope with complex loads withoul the need tor very soecid
Siew rate $200 / \mu 2$. Rise time lus. $S / \mathbb{N}$ tonio 10000
Frquency response $\{-308115 \mathrm{~Hz}-100 \mathrm{kMz}$, inpui sens.ifi itv. 500 mV im
'NEW to ILP' In Car Entertainments
C15
Consulu playenter Amplifier is increase the ou lpul of vour enistrng car fadio
Very easy 10 us
Robusi construction. $£ 9.14$ (inc. VAT)
Mounts ony where in ce.
notrate swikh on.
Outpul nowet maximum 22 w peat imio 4 n

input Sens itivily and impedance liselectabie) 700 mV ims unto $15 \mathrm{k} \Omega 3 \mathrm{~V}$ ims into $\mathrm{a} \Omega$
(re 95 : 18 a 50 mm , We.ght 256 gm .
C1515
Stereo version of C 15
17.19 linc. VAT

Size $95 \times 40 \times 80$. Weight 410 gmm.

## WITHALOT OF

## MELP riom

OELECTRONIES LTO

## PROFESSIONAL HI-FI THAT EVERY ENTHUSIAST CAN HANDLE... <br> Unicase <br> 

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

## Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ( $<0.01 \%$ ), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hifi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incor porating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page

## Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

| UNICASES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HIFI Separates |  |  |  |  | Price inc. VAT |
| UC1 | Preamp |  |  |  | ¢29.95 |
| LP1X | $30+30 \mathrm{~W} / 4-8 \Omega$ | Bupolar | Stereo | HiF, | ¢54.95 |
| UP2X | $60 \mathrm{~W} / 4 \Omega$ | Bipolar | Mono | HiF, | £54.95 |
| UP3X | $60 \mathrm{~W} / \mathrm{B} \Omega$ | Bipolar | Monis | HiF: | £54.95 |
| UP4X | $120 \mathrm{~W} / 4 \Omega$ | B polar | Mono | HiFi | £74.95 |
| UP5X | $120 \mathrm{~W} / 8 \Omega$ | Bipolar | Mono | HiFI | ¢78.95 |
| UP6X | 60W/4-8 | MOS | Mono | Hif | £64.95 |
| UP7X | $120 \mathrm{~W} / 4-8 \Omega$ | MOS | Mono | HiF: | £84.95 |
| Power Slaves |  |  |  |  |  |
| USix | $60 W / 4 \Omega$ | Bipolar | Power | Slave | ¢59.95 |
| US2x | 120w/A $\Omega$ | Brpolar | Power | Slave | £79.95 |
| US3x | 60W/4-8 | MOS | Power | Slave | £69.96 |
| US4X | 120W/4-8 | MOS | Power | Slave | £89.95 |

[^1]

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper. quoting the name and date of this journal. By sending your order to our address as shown at the boltom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay pos tage for ou. Cheques and money orders must be crossed and made payable to I.L.P Electronics Ltd. if sending cash, it must be by registered post. To pay C.O.D. please add £ 1 to TOTAL value of order

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF

$\qquad$
Please send me the following

- I enclose Cheque $\square \quad$ Postal Orders $\square \quad$ Int. Money Order $\square$
- Please debit my Access/Barclaycard No.
| Name
Address $\longrightarrow$
Signature



## CLEF electronic MUSIC



## ELECTRONIC

 PIANOSSPECIALISTS SINCE 1972 Cer Pianos adoge the most advanced
Corm of Touen Senstive action which simulates piano ksy incritia using a

719 OCTAVE DOMESTIC MODEL COMPONENT KIT £266 COMPLETE KIT £442 manufactuato fg9s

 | including the 88 . note frul. size version. |
| :--- |
| Fow | Four inerrmixable Vocice Controls may

be uscd to oblain a wide variation of
 corpourate in the Design and intern ETrects are pravided in the form of Tremas
Phase Flangerr
ant Apancer amplifer interates inlo the

## SIX OCTAVE

 DOMESTIC MODEL COMPONENT KIT £234 complete kit f398 man 6620 Keyp switch hardware. and all electronic components and may be purchased four stages at no exira cost.Complece Kits further contain Cabincts wiring harness. Pedals and in the case of and Speaker.
The Six Oct me six oclave Slage Piano has the detigned for use with an External

SIX OCTAVE STAGE MODEL
COMPONENT KIT £234
MANUFACTURED 5580

## MICROSYNTH Design - Aman Batatod Published in P.E

THE COMPACT MUSIC SYNTHESIZER


KIT * SWITCH ROUTING * 2 OSCILLATORS f129.00 * THUMBWHEEL * 2 SUB-OCTAVES

## STRING

 ensemble(As Published in conjunction A very popular Keyboard Synthesizer Kit. for Group or Home use. with a four octave compass and split Keyboard

## facility, COMPONENT KIT

f197.50
Since 1972 Clef Products have consistently produced leading designs in the field of Electronic Musical Instruments. many of which have paramount importance. new lechniques have been evolved and the fatest musically valid technology has been incotporated into projects Which have been successfully completed by constructors over a wide range of technical capability. Back up TELEPHONE advice is PRICES INCLUDE VAT, UK CARRIAGE INSURANCE ICARRIAGE EXTRA ON MFD PIANOS), Pleate wend S.A.E. for
 Ausiralia please contact Ja YCAR in Sydney
Please allow 7 days for normal despatch. Visit our Showroom

> CLEF PRODUCTSIELECTRONICS) LIMITED (Dopt P,E. 4AA Bramhall Lana South, Bramhall, Stockport, Cheshire SK7 1AH 061-439-3297

MASTER RHYTHM ALSO REQUIRED

A revolution in the fleid of Computer Music Generation!
A MUSICIANS INSTRUMENT FOR:
SOLOISTS - SINGERS - RECORDING - PRACTICE
LIVE PERFORMANCE -COMPOSITION
The BAND-BOX provides an Electronic Backing Trio consisting of Drums, Bass, and a Chord instrument (one of 16
Waveform/Envelope combinations), with the capacity to store over 3.000 User Hrogrammatie Chord Changes on more than 120 different Chords. Using advanced Microprocessor technology.
Playback of 50100 Scores can be executed in any Kcy and at chosen Tempo. Complete Music Pad is electronically Indexed and stored on
secondary baitery back-up. Facility exists for composition of Intro, Repeat Chorus, and Coda sections including Multiple Score SeRuences. Sockems are provided for Volume Pedial and Footswich plus
queparate and mixed instrument Outputs. Total size $19^{\circ \prime} \times 11^{\prime \prime} \times 4 t^{\prime \prime \prime}$ THE Programmable DRUM MACHINE
1HE Programmable
 The Clef Master Rhythm is capable of storing 24 selectable rhythmic Eight Instrumentation modified, and entered by the Operator on to rol expands the number of instruments available to twelve. grouped Amerlican Bonpos and Claves. with Drumsucks. Brushes. or Latin American Bongos and Claves.
Sequence operation allows two rhythm sections to be coupled with
the second (B) section appearing at four. eight or sixteen Bar repetition. All drums can be adjusted for level and resonance on internal. controls to suit individual taste, thus producing good musical sounds
in a battery driven unit $8 t^{\prime \prime} \times 5^{\prime \prime} \times 2 f^{\prime \prime}$.

HOME LIGHTING KITS


home control centre This New Hemote Control Kit enables you to control up 1016 different applifinces anywhere in the house from the comfort of your armchair. The transmitter injects coded pulses into the mains wiring which are
received by receiver modules connected to received by receiver modules connected to
the same mains supply and used to switch on the same mains supply and used to switch on the apollance addressed. Recelvers are
addressed by means of a ic-way keyboard, followed by an on or off command. Since pushing buttons can become rather boring, the transmitter also includes a computer interface so you can programme your favourite micro to switch lights, heating, electric blanket, make your coffee in the morning, etc.. without rewiring your house. JUST
THINK OF THE POSSIBILITIES The KIT THINK OF THE POSSIBILITIES. The KIT includes all PCBs and components for one transmitter and two rece
box for the transmitter. Order as XK112. $£ 42.00$ Additional Recievers XK111 $£ 10.00$

ELECTRONIC LOCK KIT XK 101 This KIT contalns a purpose designed lock IC 10-way keyboard, PCBs and all components to construct a Digital Lock, requiring a 4 -key sequence to open and providing over 5000 different combinations. The open sequence may be easily changed by means of a prewired plug. Size: $7 \times 6 \times 3 \mathrm{cms}$. Supply: 5 V to 15 V d.c. at 40 uA . Ouput: 750 mA max. Hundreds of uses for doors and garages, car anti-theft device, electronic equipment, etc.
Will drive most relays direct. Full instructions supplied.

ONLY £10.50
Electric lock mechanism for use with latch locks and above kit $£ 13.50$
it's packed with details $0^{-}$all our KITS plus large rarge of SEMICONDUCTORS including CMOS, LS TTL, linear, microprocessors and memories; full range cf LEDs, capacitors, resistors, hardware, relays, switches etc. We also stock VERO and Antex products as well as books from Texas Instruments, Babani and Elekoror. ORDERING IG EVEL AT VERY COMPETITIVE PRICES. ORDERING IS EVEN EASIER - JUST RING THE NUMBER YOU CANT FORGET FOR PRICES YOU CAN'T RESIST. Answering 5-6-7 8-9-10
and give us your Access or Barclaycard No. or write enclosing service evngs checue or postal order. Off cial orders accepted from schools, etc. \& weekends

## MINI KITS

 MK1 TEMPERATURECONTHOLIERTHEE CONTHOLLEATHERMMOSTAT Sses LM3911 IC to sense tompere.
qure (890.
max.) and triac to swlith heater. 1KW E4.00 MIK2 Solidid State Reloy


 MK3 BAR/DOT DISPLAY Displays on analogua voltege or a
linear 10 element LED display as a bar of single dot. Ideal for thermo.
meters. Ievel indichors atic. May meters, level indicptors, etc. May 2 e
stacked to obtain 20 to 100 eloment slisplays. Requires 5 -20V supply MKA PAOPORTONNAL
TEMPERATURE CONTROLLER Based on the SLA41 reero voltape
switch, this kin may be wired to a "bist fire may bower controllar,
anabuling the to
 $0.5^{\circ} \mathrm{C}$. Man toad 3 KW
MK5 MAINS
NKER
MK5 MAINS TMER
Besed on the
 tor a preset time from 20 mins, to 35 hre Losear or shorter peaiods $\pi$ oy
be realised by minor compontint

- 3-NOTE DOOR CHIME $\sigma 己$ Based on the SABOG00 IC the kit is supplied wish all board, a pre drilled tox 195 . $71 \% 35 \mathrm{~mm}$ ) and full instructions. Requires only a PP3 9 V battery and zushswitch to complete AN IDEAL PROJECT
BEGINNERS. Order as XK 102

XK113 MW RADIO KIT
Based on ZN414 IC, bit includes PCB, wound ae rial and Crystal earpiece and all components to make a ser sitive

miniature radio. Size: $5.5=2.7 \times 2 \mathrm{cms}$ Requires PP 3 | miniature radio. Size 5.5 |
| :--- |
| $9 V$ battery. IDEAL FOA BEGINNERS. |

## COMPONENT PACKS

## PACK 1650 Resistars

PACK $2 \begin{aligned} & \text { value } 40 \times 1.00 \\ & 40\end{aligned}$
PACK 360 Polveste Capacitors 0.01 to $1 \mu \mathrm{~F} / 250 \mathrm{~V}$ PACK 45 年 Sub-mine value 5.55 PACK 445 Sub-miniature Pre PACK 5 30 Low Prolile IC So
10 of each 240 10 of each $£ 2.40$
PACK 625 Red LEDs ( 5 mm dit
PACK 625 Red LEDS ( 5 mm dial 19125

## THE D D - A OA "OPEN-SESAME"

## MICROCOMPUTER

uses FORTH which execu:es about 10 times faster and requires less program memcry than a comparable pregram usinc basic. Features 8K ROM, 3K RAM, built in speakar, 40 key Leyboard and a $32 \times 24$ line-flicker free display on TV. Comes sup plied complete with leads, mains adaptor, a comprchensive easy-to-follow manual on Forth programming + FREE cassette containing 5 samole programs.

ONLY £75.00
\$2.00 carriage + VATY
WHY NOT COME IN AND SEE IT FOR YOURSELF!

DVM/ULTRA SENSITIVE THERMOMETER KIT

##  <br> version of the ICL706 chipl and a $31 / 2$ digit liguio crystal <br> [5098 Glispory. This kit will form the

basis of a digital mutimeter
lonly a few additional resistors and swiches

 reading to $0.1^{10} \mathrm{C}$. The basic kit has.
sensitiviry of 200 mv tor a full scalte reacing.



Price $£ 15.50$
DISCO LIGHTING KITS

 60p D $\mathbf{3} 3000 \mathrm{~K}$
, ol 3000 K
iver with one momentare red trans. mitter/receiver with one momentary inormally open) relay contact and two latched transistor
output. Designed primarily for controlling output. Designed primarily for controlling
motorised garage doors and two auxillary outputs for drive garage lights at a range of up to 40 f . The unit also has numerous applications in the home for switching lights. FV, closing
curtains. etc. Ideal for aged or disableg curtains.
persons.
The Kit comprises a mains powered receiver, a tour button transmitter, complete with predrilled box, requiring a 9 V battery and one
opto-isolated solid state switch kit for inter-opto-isolated solid state switch kit for inter-
facing the recelvar to mains appliances As facing the receiver to mains applances A
with all our kits, full instructions are supplied. ONLY £23.75

> LCD 3½ DIGIT MULTIMETER 16 rar ges including DC voltag? $(200$ mv. 1000 vl and ance $(0.22 \mathrm{M})+$ NPN \& PNP transistor gain and diode check. Inout impedance 10 M . Size $155 \times$ $88 \times 31 \mathrm{~mm}$. Requires PP 39 V battery. $£ 29.00$

THE MULTI-PURPOSE TIMER HAS ARRIVED Now you can run your contral heating, lighting, hi-fi system and lots
more with just one programmable timer. Ai your selection it is designed to control four malns outpurs independently. switching on and off at pre-set times over a 7 day cycle, e.g. to contiol ycur central
heating (including different switching times for weekends) heating lincluding dilferent switching times ior weekends). Lust
connect it to your system programme and set it and forget it-the clock will do the rest.
features include
0.5- LED 12 hour display

Day of week, am/pm and output slatus indicators 4 zero voltage swiched ma
$50 / 6 \mathrm{~Hz}$ mains operation.
Battery backup seves stored programmes and continues lime keeping during power failures. ( (Battery not supplied). ta programme time sets.
Powerful "Everyday" function ensbling ou:pui
Useful "sleep " function-lurns on outpur for
Direct switch control enabling output to be turned
immedataty or ather a specified time interval.
Programme verification at the touch of a button.
(Kit includes all components, PCB, assembly and programming instructions). ORDER AS CT5000

$$
\begin{aligned}
& \text { For a detailed booklet on } \\
& \text { remote control }- \text { send us } 30 \text { ALL } \\
& \text { and S.A.E. }\left(6^{\prime \prime} \times 9^{\prime \prime}\right) \text { today. ERICES } \\
& \text { EXCLUDEV }
\end{aligned}
$$

## FAST SERVICE-TOP OUALITY- LOW LOW PRICES

No circuit is complete without a call to
ELECTRONICS ${ }^{\text {PE }}$
11 Boston Road

```
REMOTE CONTROL KITS
MKE SIMPLE INFRA RED TRANSMITER
MKT INFRA RED RECEIVER
Single channel. range approx. 20t. Mal
MKI CODED INFRA RED IRANSMITIER MKIO 16. WAY KEYBOARD
For use with MK8
recmiver (MKK12) kit
MKII 10-Channel + 3 Analogue ofp IR Recsiver
ons and lamp brithiness MKI2 It-CMANNEL IR RECEIVER
For use with MK8 kit with 16 on'off jutputs, which with further interface circuiry. such as relays
or tiacs. will switeh up to 16 iterns \(\%\) equipment on or off remotely Latched ot moment puts - please specify when ordering. Includes its own mains supply
MKi3 11-WAYKEYBOARD Fof use vith MK8, MK18 and MK11 kits. MK76 Mains Powered IR Tranamitte alams, automatic door open
MK17 12 V d. a R RECEIVER
For use with MK6 or MK16. Reflay cutput with DP 3 Amp change over contacts, may be used as MK18 HIGH POWER IR TRANSMITER
Sinilar to MK8 but with range of approx. 60f. E6.20
Ancillary Kits: MK2 Solid Stble Reay
Op:o-isolated with zero voltage swichlin
MKK 15 DUAL LATCHED SOLDD STA-E RELA
Comprises \(2 \times\) solid state retavs and lateh for use with momentary
version of the MK12. 2 output iriacs required (not supplled). E4.50
```


## 24 HOUR CLOCK/APPLIANCE TIMER KIT

| on and oth at present times once ser | CT1000K Basic Kit | E14.90 |
| :---: | :---: | :---: |
| day. Kit contains: AY-5-1230 IC. | CT1000K with white box ( $56 / 131 \times 71 \mathrm{~mm}$ ) | f17.40 |
| $05^{\circ}$ LED display mains supply, | (Ready Built) | 122.50 |

## splay drivers, switches, LED



Add 55p postage \& packing $+15 \%$ VAT Add $£ 2.50$ (Europe), 66.00 (elsewhere) for p\&p. Send S.A.E. for further STOCK DETAILS.
OPEN


## Sinclair ZX Spectr

## 16K or 48K RAM... full-size movingkey keyboard.... colour and sound.... high-resolution graphics...

 From only £125!First, there was the world-beating Sinclair ZX80. The first personal computer for under $£ 100$.

Then, the ZX81. With up to 16 K RAM available, and the ZXPrinter. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the $\mathrm{ZX81}$ remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

## Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the $\mathrm{ZX81}$. But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, toge ther with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM

Yet the price of the Spectrum 16 K is an amazing $£ 125$ ! Even the popular 48 K version costs only $£ 175$ !

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around $£ 60$.

## Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers world wide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of $Z \times$ Spectrum professional-level computing.

There's no need to stop there. The ZXPrinter - available now - is fully compatible with the $Z \times$ Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 / network interface board.


## Key features of the Sinclair ZX Spectrum

- Full colour-8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound-BEEP command with variable pitch and duration.
- Massive RAM-16K or 48K.
- Full-size moving-key keyboard - all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution-256 dots horizontally $\times 192$ vertically, each individually addressable for true highresolution graphics
- ASCII character set - with upper- and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.


## um



## ZX Spectrum software on cassettes-available now

The Spectrum software library is growing every day. Subjects include games, education, and business/ household management. Flight Simulation...Chess ... Planetoids History ...Inventions ...VU-CALC ...VU-3D

Club Record Controller . .there is something for everyone. And they all make full use of the Spectrum's colour. sound, and graphics capabilities. You'll receive a detailed catalogue with your Spectrum

## ZX Expansion Module

This module incorporates the three functions of Microdrive controller, local area network, and RS232 interface Connect it to your Spectrum and you can control up to eight Microdrives. communicate with other computers, and drive a wide range of printers.

The potential is enormous, and the module will be available in the early part of 1983 for around $£ 30$.


[^2]
## The ZX Printeravailable now

Designed exclusively for use with the Sinclair $Z X$ range of computers, the printer offers ZX Spectrum owners the full ASCII character set-including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your ZX Spectrum. A roll of paper ( 65 ft long and 4 in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.


## The ZX Microdrivecoming soon

The new Microdrives, designed especially for the ZX Spectrum, are set to change the face of personal computing by providing mass on-line storage.

Each Microdrive can hold up to 100K bytes using a single interchangeable storage medium.

The transfer rate is 16 K bytes per second, with an average access time of 3.5 seconds. And you'll be able to connect up to 8 Microdrives to your Spectrum via the ZX Expansion Module.

A remarkable breakthrough at a remarkable price. The Microdrives will be available in the early part of 1983 for around £50.


## How to order your ZX Spectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard. EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

| To: Sinclair Research, FREEPOST, Camberley, Sunrey, GUI5 3BR. |  |  |  | Order |
| :---: | :---: | :---: | :---: | :---: |
| Qty | Item | Code | $\underset{£}{ } \text { Item Price }$ | Total £ |
|  | Sinclair ZX Spectrum-16K RAM version | 100 | 125.00 |  |
|  | Sinclair ZX Spectrum-48K RAM version | 101 | 175.00 |  |
|  | Sinclair ZX Printer | 27 | 59.95 |  |
|  | Printer paper (pack of 5 rolls) | 16 | 11.95 |  |
|  | Postage and packing: orders under £100 | 28 | 2.95 |  |
|  | orders over £100 | 29 | 4.95 |  |
|  |  |  | Total £ |  |
| Please tick if you require a VAT receipt $\square$ |  |  |  |  |
| *I enclose a cheque/postal order payable to Sinclair Research Ltd for $£$ |  |  |  |  |
| *Please charge to my Access/Barclaycard/Trustcard account no. |  |  |  |  |
| *Please delete/complete as applicable |  |  |  |  |
| Signature |  |  |  |  |
| PLEASE PRINT |  |  |  |  |
| Name: Mr/Mrs/Miss |  |  |  |  |
| Address |  |  |  |  |
| $\llcorner\perp \mid 11$ |  |  |  |  |
|  |  |  |  |  |
| FREEPOST-no stamp needed. Prices apply to UK only. Export prices on application. |  |  |  |  |

## SUPER KITS!

SETS INCL. PCBS, ELECTRONIC PARTS, INSTRUCTIONS. MOST ALSO INCL. KNOBS, SKTS, WIRE, SOLDER, BOX. BATTERIES NOT INCL. BUT MOST WILL RUN FROM 9V TO 15 V DC SUPPLIES ALSO SEE BELOW.
AUTOWAH: Guitar-triggered wah wah
BASS BOOST: Increases valume of lower octaves
CALL SIGN: Programmable 8 note musical call sign
CHORUS GENERATOR: Makes a solo voice or instrument sound
like more
COMPARATOR: LED level indicator for 2 channels
COMPRESSOR: Limits \& levels maximum signal strength
FREQUENCY OOUBLER: Raises guitar frequency by I octave
FREQUENCY-GENERATOR: Multiple waveform test osc, variable. 5 Hz
to 470 KHz
FUNKY-WOBULO: Novelity voice madulator for funny effects
FLANGER: Fascinating delayed-feed-back effects plus phasing
FUZZ: Smooth distorion whilst keeping natural attack \& decay
FUZZ: Smooth distorifon whilst keeping natural attack \& decay
GUITAR EFFECTS: Multiple variation of level \& filier modulation
GUITAR OVERDRIVE: Fuzz plus variable filter quality
gUITAR SUSTAIN: Extends effective note duration
HARMONOLA: 3-Cctave organ with variable voicing attack,
sustain vibrato
4 -Octave version
HUM CUT: Tunabie filter for reducing low frequency noise
JABBERVOX: Voice disguiser with clever use of reverb \& tremolo
MAD-ROJ Variable sirens, incl police, galaxy machine-guns etc
METRONOME: With audible \& visual beat \& down-beat marking
MICROPHONE PRE-AMP; with swithable bass \& treble response
MINISONIC (PE) MK2: 3-octave very versatie music synthesiser
MIXERS: Several - details in catalogue (see below)
NOISE LIMITER: reduces tape \& system hiss
PHASER: with automatic \& manual rate \& depth controls
POWER SUPPLIES ( 300 mA ): 9v
or preset 1210 Lsv
REVERB: Analogue unit with variable delay \& depth controls
RHYTHM GENERATOR: 15 switchable thythms controlling 10
instruments
RING MOOULATOR: for intermodulating 2 separate sine frequencies
ROGER 2-GONG: 2 gongs sounded at end of transmision
ROGER BLEEP: Single bleep sounded at end of Irensmission
SCRAMBLER: Codes \& decodes transmissions authorised channels
SEQUENCERS: 128-note keyboard controlled (keyboard incl)
16-note (up to 64 -bit pattern) panel controlled
SPEH PROESSOR To
SPEECH PROCESSOR: for clearer transmission \& better level control SET I10-LS
STORM EFFECTS: Autormatic \& manual wind, rain \& surl generator
SYNTHESISER INTERFACE: allows instrument to trigger synth function
TREMOLO: Deep tremolo with depth \& rate controls
TREBLE BOOST: Increases volume of upper octaves
TONE CONTROL: bass \& treble cut, gain \& range ( 6 controls)
VIBRATO: variable rate \& depth plus additional phasing
VIBRATO: variable rate \& depth plus addrional phasing
VODALEK: Robot type voice modulator with depth \& rate controls
VOICE FILTER: Tunable for selected trea bandwidth \& yain
VOICE-OP-FADER: lor reduction of music level during talk-over
VOICE-OP-SWITCH: with variable sensitivity \& delay, IA 2 PCO relay
WAH-WAH: with auto-trigger, manual \& oscillator control
WHEEBY-JEEBY: 2 intercoupled ascullators produce varible sitens
WIND \& RAIN: manual control of these two effects
WOBBLE-WAH: Oscillator controlled wah-wah for fascinating effects
SET 138-B
¢8.87
$\mathbf{8 1 4} 23$
SET 121-Ls
SET162
SET162
SET 129.LS
£31.59
SET I33-LS
SET 98
SET 128
SET 149
SET 153
SET 153
SET 91
SET 42
SET 56
SET 75
£14.23
8.87

£162.15 SET 124-F SET 141 SET 146
TERIES NOT INCL. BUT MOST WILL RUN FROM 9V TO 15V DC
SUPPLIES ALSO SEE BELOW

KIMBER ALLEN KEYBOARDS (surely the best?)
3-Cct E32.43, 4-0c1 £40.68, 5-0ct £48. 52
( $3-0 \mathrm{ct} \mathrm{fz3} 27,4.0 \mathrm{ct} \mathrm{c73} .45,5-0 \mathrm{ct} \mathrm{f37.62}$

## PHONOSONICS

PHONOSONICS MAI DRDER. DEPT PE3/4; 22 HIGH STREET, SIDCUP, KENT DA 14 GEH, 01-302 6184

Please use full address. Payment CWD, CHO. PO, ACCESS, BARCLAY, or pre-arranged collection Prices incl. UK P\&P \& 15\% VAT. E\&OE. Despatch usually 7 days on most tems. Details of parts in above kits are stated in our comprahensive catalogue. Send SAE ( $9 \times 4$ or bigger) for Catalöque lif you live overseas please send $£ 1.00$ or equin), MORE KITS ARE IN CATAL OGUE.

## TRANSFORMERS EX-stock



Auta's Step Up/Down
AVO \& MEGGERS New Range:2000 Hancheld DMM 34 LCD 1000 V 24
ACIDC 20 mm Res. Di-
ode test cont buzzer ode te
fused
671. $671.40+p A p+$ VAT $15 \%$
2001.1000 $20011000 \mathrm{I}_{10 \mathrm{AACI}}^{+V A T}$ DC 20 ma res alety
fuses $687.40+V A T$. fuses $687.40+$ VAT.
2002 Vehcle Tesung
DC to 20 A DC to 20A, 1.500 A
with probe 200 V DC 3.456 .8 .910 pped secs) $3.4 .5 .6 .8 .9,10.11 .15,14.20$. 24.3 V or $12 \mathrm{~V}-0.12 \mathrm{~V}$ or 15 V

 Ref 30 V ISV Price pap有 Ref
 20 240. for step up or down. 230 . 240. for step up or down.
Ref. (Watts) Price P\&P
113. $\begin{array}{lr}1.60 & 11 \\ 50 & 6\end{array}$

$\begin{array}{ll}62.39 & C 1.20 \\ 64.85 & 61.40\end{array}$ $66.48 \quad<1.60$ | 613.70 |
| :--- |
| 6228 | 622.70

62.17

|  | + |
| :---: | :---: |
| Pg. | $15 \%$ |
| VAT |  | T $699+$

 cii.97

 | 224 |
| :---: |
| 0. |
| 3.00 |

 112
79
3
20
21
5
11

9 | 92 |
| :---: |
| $\mathbf{5 0 V}$ |
| $\operatorname{Pr} 120$ |
| 17.20 |
| 25 |

> $17,20,240 \mathrm{~V} 5,7,8,10,1 \%$
$17,20,13$ or $20 \mathrm{~V}-0.20 \mathrm{~V}$
$25-0-025 \mathrm{~V}$. 20 V
Ref. 25 V .
 $\begin{array}{cccc}25 V & 50 V \\ 102 & 0.5 & 1 \\ 103 & 1 & 2\end{array}$ $\qquad$
 71 LCD
73 LCD
MMS 107
118
119 $\because 8$
$\qquad$
 13 amp Mou
$9.12 \mathrm{~V}, \mathrm{DC}$
$.5 \%$.

 | 6131.50 |
| :--- |
| 658.50 |
| 681.90 |
| 671.61 .5 |
| $\$$ |
| 78 mm |
| 67.37 |
| 67.37 |
| 67.37 |
| 67.3 |
| le | 6

8
8

INVERTER 60 V
Amp 60

240V
ORS

VA
60
250



$\qquad$ Barrie Electronics Ltd.
3, THE MiNORIES, LONDON EC3N IBj WEAS ENQ
WELCOME PLEASE ADO VAT $15 \%$ AFTER P+P AND ALL COODS


## HIGH RESOLUTION - AND LOW COST !

## Either cased or open frames to OEM's. The specification is right, the price is even better.

## Phone or write to our Sales Manager, Richard Cox, for immediate action.

## CROFTON ELECTRONICS LTD

35, Grosvenor Road, Twickenham, Middx, TW1 4AD Telephone: 01.891 1923/1513 Telex: 295093 CROFTN G


## BHPAK BARGANS

## ST2I SCREW DRIVER SET

oprecision screwdrivers in ingeed plastic

## S31 NUT DRIVER SET

5 precision nul ditivers in hingeed Dlasicic case Wirn urning ton
Sires -3 3 S 4.5 and 5 mm c1.75 STa TOOL SET

## 5 Drecision instruments in hinged plaslic case

 Crossoonl (Phillips' screwariversH 0 ano H t Hexkey wrenches H 0 ano $\mathrm{H} T$ Hex key wrenche
15 ano? 5 mm \& 1.75
STST WRENCH SET
5 precision wercheses in hinged plasict case
 BUY ALL FOUR SETS ち121 :Tbl and get HEX KEV SEI FREE HEX KEV SET ON RING Sizes 152253
4555 and $6 m m$ Made of ha venea steel $\mathrm{HX} / 1 \subset 1.25$
'IRRESISTABLE RESISTOR BARGAINS"

 5100 Preformed wisy wath Carbon
 5x14 150 \% wat Ressstors 22 onm $\begin{array}{lll}\mathrm{SK} 15 & \left.100 \quad \begin{array}{l}\text { 2m2 Míed } \\ \text { I and } 2 \text { mall Resstors } 22\end{array}\right)\end{array}$ Paks SX12.15 contunm 2m2 Mreed 11 ol assonted values trom 22 ohms to 2 ? mea Save Dounds on these ressisto palls and have d full angie to - Ouver youllies propepton

GUARANTEED TO SAVE YOU SX27A 60 Assorted Poney Type 5500 Sories SPO
SX2aA 50 Assorted Sive SX2AA 50 Assorted Siver Mica Caps $5.56 \mathrm{pF}-150 \mathrm{pF}$
SX29A 50 Assoried Silver Mica Caps

$$
\begin{aligned}
& \text { SX29A } 50 \text { Assoned Silver Mica Caps } \\
& 180 \mathrm{pF} 47700 \mathrm{p} \\
& \text { SX30A 50 High Voltage Disc Ceramics 750V min }
\end{aligned}
$$ 180pF 4700pF up to 8 KV . Assorted useful 1750 Vmin SX31A 50 Wirewound 9 wan larg) Resistors. AUTO Sted values 1 ohm-12K Automatic spiral ratchet. Complete with screwdriver blades, 5 \& 65 mm . 1 screwedriv cross point NO. 18 three drills $-2,2.8$ and

3.65 mm -A MUST FOR ALL HOBSY-BUILOERS \& CONSTRUCTORS. Order No. ASO/1 $\ddagger 3.50$ each

## - The Third and

SIREN ALARM MODULE Amarican Police rype screamer powered from any 12 volt supply into 4 or 8 ohm speaker. Ideal for car burglar alarm
freezer breakdown and other security treezer
purposes. 5 watt. 12 v max
£3.85 Order
BP 124


## Fourth Hand. . .


never got wat
bul have never gol untid now horizontally on Heavy Base Crocoonle clios altached lo rod ends Six ball 8 sockel jomis give infinute vatiation ano positions inrough $360^{\circ}$ also available altached to Rod a $2^{1 / 2}$, dra magnifier giving 25 x magniticalion Heloung and unil avalable wilh or without magnine NO T402 wilh mag

## BI-PAK SOLDER

 DESOLDER KITWilcomprises trderno sxa
I High Oually y 40 wath General Pur pose
Lighiweigit Soloering Hon 240 mains $3 / 16^{-1} 1^{7} 7 \mathrm{mml}$ Dit 1 Ouahiy Desoldering pump High Suction automatic elecion Knull
Casing and lellon nozte 15 merres dispensel 2 vas $1183 \mathrm{~m} /$ Resin Corea Solder on Caro Heal Shunl tool iweezer Iyper
Tolal Retall Value over $\mathbf{E} 12.00$ Tolal Retal Value ovel $\mathbb{1 2 . 0 0}$
OUR SPECIAL KIT PRICE $£ 8.95$

## BARGAINS

## SIM1 20n large ?" REOLED

514220 small 123 Real LEO's
514310 Rectaneular Green LED 30 assorted Rener Divoes
250 mw . wam mixec voltages ${ }^{250 \mathrm{mw}}{ }^{23 \mathrm{ll} \text { cosed } \mathrm{Nem}} \mathrm{m}$
514) \& Blach instrumen

Knobs-wingee with pointer the Slandard sciew. fit size 29 a 20 mm
"cApABLE CAPACITOR PAKS:

| Patma | (ni | Dexinotion | Price |
| :---: | :---: | :---: | :---: |
| 5116 | 250 | Copaciors Mined Iypes | 11 |
| 5117 | 200 | Ceramic Capacitors Mniature Mined | d |
| 5118 | 100 | Mined Ceramies 1pl 36pt | ¢1 |
| 5119 | 100 | Mirea Ceramics 6 appl 0.5 mf | 11 |
| \$420 | 100 | Assorted Polvester/Poirshiene Capacitors | e |
| $5 \times 21$ | 60 | Mineo C 280 ype capactiors metal loil | 1 |
| 5422 | 100 | Electromplics, all sarts | 1 |
| 5123 | 50 | Oualiot Electiontics | 11 |

5149 20 Assorted Silider Knobs
Blach/Chrome. elc

## suso

witens and Filament Lampe Low and colours - some oanel mountint

Withoul magnitier ORDER NO T400 £4.75

BI-PAK PCB ETCHANT AND DRILL KIT
I Expo Mini Orill 10.000 RPM
collels 81 k 1 mm Iwist pul collets 81 x Imm Twist
1 Sheet PCB Transters 1 Eich Resist Pe 1 1/2IO pach FERRIC CHLOR
3 sheels Coopes clad oord sneets Fider cla dodro Full ins
Doards rions tor making your own PC Relan Value nuer \& 15.00 OUR BI. PAK SPECIAL KII PRICE $\mathbf{¢} \mathbf{0 . 7 5}$ OUR BI. PAK S
OROERNO S

## TECASBOTY

The Electronic Components and Semiconduclor Bargain of the Yeat A host of Eleclionic components including potentiometers - cotary and slidee. pesets - horizontal and vertical Resistors ol mixed values 220 mms 10 $2 \mathrm{ML}-1 / 8102$ Wan A comprehensive range of capacitors including electrolyic and polvester rypes plus disc ceramics elcetera Audio plugs ano sockets of various types plus swiches, fuses, healsinks, wire. nuls bolls. gromets. cable clips and tyes. knobs and PC Board Then add to that 100 Semiconductor to include transistors, diodes. SCA's opio's all ol which are current everyday usable devices In aH a Fantastic Parcel No fuboish all idennitiabte
over \& 2500 Our Fighl Againsl intlation Plice over (2500 Our Fighl Againsl Intlation

- Beat the Budgel
with Depression

Down wilh
JUST $£ 6.50$


2


## REGULATED

variable
Stabilsed
POWER SUPPLY

## aríable from 2.30 volls and 0.2 Amps. Kit includes

 0.50 y $2^{\prime \prime}$ Panel Meter, $t-0.2$ amp 2" Panel Mest $0.50 \times 2$ " Panel Meter, $t-0.2$ amp 2" Panel Meter isebound polentiometer, Wring Diactam included. Order No. VPS30 KIT 120. MINIATURE FM TRANSMITTER Freq: $95-106 \mathrm{MHz}$. Range: 1 mile Size: $45 \times 20 \mathrm{~mm}$. Add: 9 v batt ONLYE5.50 Not licenced in UK. Ideal for: 007-M/5-FB/-CIAKGB eic.

## MORE BARGAINS!

SX51 60 metres PYC covered Hool-uD wre single and stranded. Mixed 5158

25 Assonted TLL Gates SIS9 10 Assorted flip Fi

Suso 20 Assorted Shide
SI62 Potentiometers
SXI9 10 Reed Switches - glass type
3 Micro Switcher - with iever

Use men credit card Rimg us on ware 3182 wom and
 Class Mer
aemember rou mosl ata val al $13^{\circ}$ : to pour ader
lout posbere ade 75 per low ace


## TELEVISION ENGINEERS <br> POCKET BOOK 7th ed <br> by M. Burrell <br> Price: $£ 8.50$

PRINCIPLES OF TRANSISTOR CIRCUITS by S.W. Amos Price: $\mathbf{£ 7 . 5 0}$ THE CATHODE-RAY OSCILLOSCOPE \& ITS USE SERVICING HOME VIDEO CASSETTE RECORDERS by M. Hobbs

Price: $\mathbf{E 1 2 . 0 0}$
ELECTRONIC PROJECTS IN PHOTOGRAPHY
by R. A. Penfold
Price: E3.50
DESIGN OF ACTIVE FILTERS WITH EXPERIMENTS GET MORE FROM YOUR PERSONAL COMPUTER by I. Hickman Price: E6.50
LEARNING TO USE THE VIC-20 COMPUTER
TH R. Geere FROM IT by I. Sinctair

BASIC PROGRAMMING
Price: $\mathbf{5} 6.50$
by B. J. Holmes

## THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

## 19-21 PRAED STREET LONDON W2 1NP

Phone 014029176 Closed Saturday 1 p.m
Please allow 14 days for reply or delivery.

\author{

ADO A NEW DIMENSION <br> * to your personal computer * WITH: <br> \section*{INTELGRAPH} <br> - The NEW INTELIGENT GRAPHICS CARD compatible with ANY computer that has a parallel or serial port <br> - With the on board processor in command stunning displays can be achieved via a simple <br> - 33 COMMANDS at your finger tips. Draw Plot Arc (circle, elipse) Scrolling windows Cursor control Character magnification to name only a few. <br> - $512 \times 256 \mathrm{HI}-$ RES GRAPHICS <br> - $85 \times 25$ TEXT freely mixed with graphics. <br> - Composite Video output (RF option on low <br> * graphic mode). 19200 Baud <br> * PARALLEL OPTION TTL operation. <br> * MAXIMUM of 2 memory locations required to control 16 K of video RAM. <br> - SINGLE 5 Volt supply (RS232 requires 12 Volts) <br> Send A3 SAE for comprehensive details <br> |  | \& p |
| :--- | ---: |
| Manual (refunded on order) | 5.00 |
| PCB, Manual, 8K Eprom | $\mathbf{5 5 . 0 0}$ |
| 8 K assembled \& tested | $\mathbf{1 3 0 . 0 0}$ |
| 16 K assembled \& tested | $\mathbf{1 5 0 . 0 0}$ |
| Serial Opion | $\mathbf{1 7 . 5 0}$ |
| Parallel Option | $\mathbf{4 . 0 0}$ |
| Wide Bandwidth Modulator | $\mathbf{6 . 0 0}$ |
| Postage \& Packing | $\mathbf{2 . 5 0}$ |

}

## COMPUTER AIDS

33 Bearsden Cr., Hinckley, Leics LE10 0S0 Tel: (0455) 634255
Technical enquiries after 5 pm



# NEw！T．V．SOUND TUNER 

In the cut－throat world of consumer electronics，one of the questions designers apparently ponder over we save money by chopp． we save money by chop ing this out in the first casualties seems of the the sound quality．Small speak and no tone controls are commen
 and all this is really quite sad，as the and all this is really quite sad，as the $\quad \mathbf{£ 2 2 . 9 5 + £ 2 . 0 0 \mathrm { p } \text { ep } : ~}$保 epraduction．
This TV SOUND TUNER offers full UHF coverage with 5 pre selected tuning controls，It can also be used in conjunction with your video recorder．Dimensions： $11 \%{ }^{\prime \prime} \times 81 /{ }^{\prime \prime} \times 3 \%$ E．T．I．kit version of above without chassis，case and hardware．$£ 12.95$ plus $£ 1.50 \mathrm{p} \& \mathrm{p}$

\section*{PRACTICAL ELECTRONICS STEREO CASSETTE RECORDER KIT | completit |
| :---: |
| with |} ONLY £31．00 plus $£ 2.75 \mathrm{p} \& \mathrm{p}$ ． －NOISE REDUCTION SYSTEM．－AUTO STOP．－TAPE COUNTER．．SWITCHABLE E．O．－INDEPENDENT LEVEL CONTROLS －TWIN V．U．METER．－WOW \＆FLUTTER $0.1 \%$ ．RECORD／PLAYBACK I．C．WITH ELECTRONIC SWITCHING．FULE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TYPES：



## PERSONAL LS AMPLIFIER KIT <br> Amplifier for your personal

 stereo cassette player－as featured in January issue of Everyday Electronics．Turn your personal stereo into a mains powered home unit． Parts：Stereo power amp PC8 with all components， $\mathrm{E} 3.50+75 p \mathrm{p} \mathrm{p}$ Power supply unit $£ 1.95+£ 1.50$ p\＆p．Pair of eliptical speakers，

$\mathbf{£ 1 . 5 0}$ the pair $+\mathbf{£ 1}$ p\＆p．Input \＆output sockets and plugs， $\mathbf{£ 1 . 5 0 \text { ．Recommended case（for the }}$ powef supply and amp only），$£ 2.95+80$ p p\＆p．P\＆P inclusive price of $£ 1.75$ for any two or more

## 125W HIGH POWER AMP MODULES

The power amp kit is a module for high power applications－disco units，guitar amplif． ers，public address systems and even high power domestic systems．The unit is protected agalnst short circuiting of the load and is safe margin exists by use of generously rated com ponents，result，a high powered rugged unit． The PC board is back printed，etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use．Supplied with all parts，circuit diagrams and instructions．
ACCESSOAIES：Suitable mains power supply
 Suitable LS coupling electrolvtic． $\mathbf{C 1}+25 p$ p\＆p．

## BSR RECORD DECK



SPECIAL OFFERI Replacement Stereo cass－ tte rape heads－$£ 1.80$ each．Mono：$£ 1.50$ sach．Erase： $\mathbf{£ 0 . 7 0 \text { esch．Adid 50p p\＆p to order }}$

218 HIGH STREET，ACTON，W3 6NG．
Note：Goods despatctied to U．K，postal addresses only $30 / 10 / 82$ sublect to awallability．Pefices conrect a Pleose allow 7 working days from recelpt of order for despatch．ATVC Limited reserve the right to up－ date their products without notice．All anquirien rend
 Max．output power（RMS）： 125 W．Operating voltage（DC）：50－80 max．Loads：4－16 ohm． $25 \mathrm{~Hz}=20 \mathrm{KHz}$ ．Sensitivity for $100 \mathrm{w}: 400 \mathrm{mV}$ $@ 47 \mathrm{~K}$ ．Trpical T．H．D．＠ 50 watts， 4 ohms： $0.1 \%$ ．Dimensions： $205 \times 90$ and $190 \times 36 \mathrm{~mm}$ ．

| KIT | BUILT |
| :---: | ---: |
| $\mathbf{f 1 0 . 5 0}$ | £14．25 | ＋£1．15p\＆p＋£1．15p\＆p．

## SPEAKER BARGAINS

## 2 WAY 10 WATT

 SPEAKER KIT$8^{\prime \prime}$ bass $/ \mathrm{mid}$ range and $3 \%^{\prime \prime}$
iweeter．Complete with screws， wire，crossover components and cabinet．All wood pre－ FInish－chipboard covered wood simulate．size $14 / 3{ }^{\prime \prime} x$ 8\％＂$\times 4^{\prime \prime}$ ，PAIR for ONLY
£ 12.50 plus $£ 1.75$ p\＆p．
ALL CALLERS TO： 323 EDGWARE ROAD LONDON W2．Teleplione：01－723 8432 Now open 6 deys a week 9 － 6 ．Prices include VAT．回四回

Gateway toa Commission in the Technical Corps of the Army．
Since 1953 Welbeck，Britain＇s first Sixth Form College，has played a crucial role in providing Officers for the Technical Corps of the Army and now produces a large proportion of the Army＇s technical graduates．

It is not a military unit but a boarding school with very high academic standards offering＇$A$＇level courses in science and technology，with some Arts subjects；great emphasis is placed on games，leader－ ship training and preparation for Sandhurst through the Combined Cadet Force to which every boy must belong．

To an intelligent，energetic and fit young man with the ambition and genuine motivation to be an Army Officer Welbeck offers a first class prospect with an opportunity，at a later stage，for a degree course in engineering or related science at the Army＇s expense．

The maintenance contributions are reasonable． Entry is highly competitive and applicants should be expecting to obtain good passes at GCE＇O＇level （or equivalent）in Mathematics，Physics，English and at least two other subjects preferably including Chemistry．

Normal entry is in the September or January following＇ O ＇levels and the closing date for the next available entry in January 1984 is 1st May 1983．The age limits on entry are from 16 to $171 / 2$ years．

Further details about the College and the pros－ pectus may be obtained from the Headmaster，Dept． G 17，Welbeck College，Worksop，Notts S80 3LN．

## Army Officer

$A^{\prime \prime}$LL readers please note that this is our April issue. We have had some interesting correspondence in past years following publication of our April issue and one or two "not quite true" pieces. If you see what we mean? There are two such pieces in this issue. They are both obvious once you have read them properly, if not before! However, it appears that we may have to consider not publishing any further items of an April 1 nature, since it is becoming more and more difficult to discriminate between fact and fiction.

There are two true news stories in this months' News \& Market Place that could be "not quite true". The ones we are referring to are 'Shades of 1984' and 'Walk Around 3D.' Both are true but, in their own way, both are significant steps forward and therefore one could be excused for doubting them. While some of our editorial team were busily at work writing nonsense (something they do particularly well!) it occurred to those slaving over the truth that since some items of the latter commodity are rather way-out, their work could be undermined by the first group! The moral is believe everything we say unless its code name is April 1, we tell you its rubbish or we have made a mistake! (Please don't ring up
for Lliys Electronics phone number).

## THEREALTHING

Having spoken about "news" it is worth looking at where things may go in the next year or so. Obviously the computer will eventually have a considerable impact on the hobby electronics area. By this we do not mean that computing will take over from soldering and testing-it may for some, but that is a change of hobby. What we are getting at is the computer automation of i.c. design, which will change what is generally available.

The cost of a custom i.c. is rapidly falling due mainly to automated design and the ability to manufacture combination circuits with analogue and digital circuitry on one chip. Charles E. Sporck. President of National Semiconductor Corp., recently said in a Electronic Design International article "Now thanks to design automation, we can provide a half dozen circuits with the investment it once took to produce just one. All this will give us the freedom to look at more dedicated circuit applications"

This could affect our hobby in two ways: First, it could mean more complex and sophisticated equipment could be easily constructed from one chip plus some controls, readouts,
transducers etc.
Second, it could mean a demise in our hobby if such chips are not available on the open market. This is bound to happen to some extent-as it does now-but we do not believe we will have to give up and go away in the foreseeable future! Perhaps PE will have to arrange for supply of special chips to our designs in years to come. who knows?

Of course with things changing as fast as they are we could become Practical Bioelectronics at some stage in the not too distant future. Last month we announced in News \& Market Place that Mississippi University were close to the birth of a molecular diode using a molecule that can exist in two states. This obviously means that implant electronics, not far from that described in this months' Semiconductor Update, is nearing reality. As we said, we may not be able to publish any more April 1 pieces!

P.S. Don't forget from next month PE will be even better value with more editorial pages in every issue - see page $6 / 6$ of Micro-file for details of contents.

## EDITOR Mike Kenward

Gordon Godbold ASSISTANT EDITOR
David Shortland ASSISTANT EDITOR/PRODUCTION
Mike Abbott TECHNICAL EDITOR Brian Butler TECHNICAL SUB EDITOR

## Jack Pountney ART EDITOR

Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Jenny Tremaine SECRETARY

ADVERTISEMENT MANAGER SECRETARY AD. SALES EXEC. CLASSIFIED SUPERVISOR AD. MAKE-UP/COPY
D. W. B. Tilleard

Christine Pocknell Alfred Tonge 01-2616819
Barbara Blake 01-2615897
Brian Lamb 01-2616601

Technical and Editorial queries and leffers (see note below tol):
Practical Electronics Editorial,
Westover House,
West Quay Road. Poole,
Dorset BH15 IJG
Phone: Editorial Poole 671191
We regret that lengthy technical enquiries cannot be answered over the telephone
Queries and letters concerning advertisements to: Practical Electronics Advertisements, King's Reach Tower. King's Reach, Stamford Street, SE1 gLS Telex: 915748 MAGOIV-G

## Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

## Back Numbers

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at $£ 1$ each including In land/Overseas p\&p. Please state month and year of issue required.

[^3]to UK or overseas addresses, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

## Subscriptions

Copies of PE are available by post، inland or overseas, for $£ 13.00$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH 16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.

# Shades of 1984 


#### Abstract

The video age works both ways. Be warned! The Pacman and Invader watching society is in turn being watched. Not just by those television cameras which oversee the busy commuterways, but by less obvious ones. Tomorrow's world will bring the thinking camera into commonplace existence. Today's world has seen to it.


The Home Office's Research and Development Branch has, after five years work, succeeded in bringing to fruition a remote vehicle number plate reading camera. This TV camera is undergoing operational trials, now, in London. The Home office requests that its whereabouts is not revealed.

Because the tireless policeman does not exist, it is impossible to note the registration number of every passing vehicle to see if it has been stolen; but now, this portentious camera system surely heralds the demise of organised car theft. Terrorists too, may find themselves inexplicably netted. From its secret vantage point, the number plate reader checks out each passing number via a landline to the Police National Computer.

In fact, the camera itself is conventional, save sensitivity in the infra-red region for night viewing. Its focus setting is guaranteed by using a sensor buried in the road,
which triggers the "snap shot". Presumably it's because rear number plates tend to stay cleaner than front ones that the camera views receding traffic. The clever bit is that the signal from the camera is somehow electronically processed to extract the registration number, and sound the alarm if something is amiss. It is our guess that some sort of block scan takes place to seek out recognisable alphanumeric characters, and then convert them to their ASCII (or other) codes for transmission.

According to Crime Prevention News, overall accuracy on the experimental system is about 50 per cent in all conditions, rising to 70 per cent with new cars. Quick visual, and other checks are said to keep false alarms to a minimum. Computer errors in the electricity bill are irritating enough, so let's hope so.

Despite a projected production cost of $£ 60,000$ a number of police forces are keenly interested in the trials.

## MICROCONTROLLER VIDEO

SAT Electronics have developed a video RAM card for use with the PE Microcontroller which is the first of a series of expansion boards.

The video card is a full memory mapped display interface for use with a VDU or TV. The memory of the interface is accessed in exactly the same way as the existing RAM within the Microcontroller and as such, can be used as extra memory if required, on full battery back-up.

The size of the memory is 2 K and it is arranged as a $32 \times 16$ on screen matrix. There are 128 characters available and these are ideally suited to control or text handling operations because of the inclusion of a graphics set. In addition, these characters are available in a flashing mode.

The card itself has a 43 way edge connector and can either be plugged directly onto the expansion socket or fitted via a Mother card assembly.

Complete documentation is provided together with the card, expansion socket and all the necessary wires and components.

The price of the video RAM card is £49.68 including VAT and p\&p.

In addition to the video RAM card other
cards which will be available soon include a Mother board assembly, multi-channel AtoD and DtoA convertors, real time, day, date card, counter timer, full ASC11 keyboard controller, RAM cards (various sizes) and a sound generator card. For further details contact SAT Electronics 235 Cross Street, Sale, Cheshire 1061905 1040).


## INNOVATION WORKSHOP

Ever had an idea for an electronic device, but lacked the funds to try it out? Ever wondered how many other seeds of ingenuity remain ungerminated elsewhere? Residents of the North East need not allow their potential contributions to science remain on ice. Newcastle's Microelectronics Applications Research Institute (MARI) is prepared to help them thaw out their frozen dreams at its Microelectronics Innovation Workshop. Based at MARI's own premises, the workshop is a bid to attract local inventors and entrepreneurs with new applications for microelectronics, and, hopefully, to spark off fresh companies. The scheme is funded by Tyne and Wear County Council and the DoE under the Urban Programme.

Individuals using the workshop receive supervision and assistance during the early stages of their development work. They are able to experiment and test their ideas using equipment and facilities which would otherwise be beyond their means; and they may also attract customers and backers.

The workshop was opened in December last year, and many projects are already growing within it which include an assembly system for technical dentistry, and a reading aid for the blind.

The Innovation Workshop appears to be a very good idea, and it would not be a bad thing if they were to spring up elsewhere.

## MARKING BLIUES

For those of us who have trouble marking out front panels and cutting out same without damage, there is now an easier and far less hazardous alternative. Namely-'Sticky Templates'. These self-adhesive clear film templates are simply stuck onto the panel in the required position. Each one has horizontal and vertical centre lines which makes lining up multi-connector arrays easy. When the area is worked the film also protects the panel. From Futronics Technology (UK) Lid., 15 North Avenue, London, W13 8AP (01-991 0070).


# marygy plance <br> ZX SPECTRUM ADD-ONS 

\section*{The Amazing

## The Amazing Mr.CUBOT

Some say that Rubik's Cube is now passé, but not Cubot. Cubot is a portable robot weighing about 70 pounds, that can solve Rubik's Cube and, like a ventriloquist's dummy, retire to a standard size suitcase. Cubot may not be humanoid, but it can nevertheless clasp a randomised Cube in its gripper, view it knowlingly, and then proceed to unscramble it.

Enginners of the Battelle Memorial Institute designed and built Cubot as a fun, off hours effort. Battelle spokesman, Dr. Michael Lind said that this robot is intended to demonstrate the Institute's unique capabilities in the integration of differing technologies. Cubot combines electro-optics, microprocessing, and mechanics, and was created by a volunteer force of twenty scientists and engineers of the Pacific Northwest Laboratories, Engineering Physics department.

Cubot has an eye that is sensitive to the Cube's six colours, and which is used to recognise patterns as it surveys the Cube's six faces. Information is absorbed by the robot's first microcomputer. Here, an algorithm generates the series of instructions for a second microcomputer which controls the minipulator. With a clunk and a whirr Cubot can unscramble the Cube in less than four minutes. Not as fast as some human beings, true, but Cubot's designers are confident that they can hone their prodigy's performance down to two minutes.

Rubik's Cube has a staggering number of combinations $\left(4.3 \times 10^{19}\right)$. To put its ability to beguile firmly into perspective, it has been calculated that if a person had started generating legitimate combinations at a rate of one a second, upon the creation of the universe, by today only one per cent of all possible combinations would be completed.

Cubot is not the first robot to solve this intricate puzzle, but as far as is known, it is the first robot to physically unscramble the cube without human intervention.


Two new 'add on' accessories for the $\mathbf{Z X}$ Spectrum are the DCP Interspec and the DCP Speech pack. These products are direct descendants of the successful ZX81 peripherals produced by DCP Microdevelopments (David C. Palmer). Interspec provides many electrical interfaces including an 8 channel $A$ to $D$ converter for joysticks or temperature sensing, 4 relay outputs for high current control. 4 switch inputs buffered for direct connection to contacts and an 8 bit $1 / 0$ port for the users own digital design applications. Featured on the rear of the unit is the DCP BUS; an expansion system using a 15 way connector direc-
tly controlling up to 4 more accessories, this is expandable to $\mathbf{2 5 5}$ more devices with the addition of a few discrete compongnts. Second is the Speech Pack: this is the Spectrum version of its $\mathbf{Z} \times 81$ namesake, it features a built in speaker. expandable vocabulary, volume control and $2 X$ connector for other accessories. This pack is controlled by simple OUT commands followed by the number of the selected word. Interspec costs £39. 95 and the Speech Pack £49.95 inc VAT and p\&p. Available from, DCP Microdevelopments Ltd, 2 Station Close. Lingwood, Norwich NR13 4AX. (0603) 7124821.


## Silicon News Corner

Bulletins covering new semiconductor devices arrive at PE almost daily, and it is possible only to describe them briefly. Details of how to obtain further information are included, however.
Motorola: A T0220 packaged 15A thyristor, one of a series designed for high speed invertors and switching. The MCR2150/A has a maximum turn-off time guaranteed at $4 \mu \mathrm{~s}$ !

A TMOS SCR, the MCR 1000 offers the input impedance of a power MOSFET with the latching action of a thyristor. It is rated at $600 \mathrm{~V}, 15 \mathrm{~A}$, with turn on and off times of 200 ns and $6 \mu \mathrm{~s}$ respectively. Ask for engineering bulletin EBIO3 from Motorola Semiconductor products Dvn., York House, Empire Way, Wembley, Middlesex.
National Semiconductor: The DP8409-2 multimode DRAM Controller/Driver is a onechip approach to dynamic memory design. It is capable of driving up to 88 DRAMs !

National's new Nitride Plus passivation technique goes into their LP165/LP365 series simultaneously programmable quad comparator. This highly flexible device dissipates only $10 \mu \mathrm{~W} /$ comparator, and its outputs are compatible with DTL, TTL, CMOS and MOS. National Semiconductor, 301 Harpur Centre, Home Lane, Bedford.
Burr-Brown: Low noise, instrumentation grade op. amps, OPA 27 and OPA 37 with gains of $1.8 \mathrm{kV} / \mathrm{mV}(125 \mathrm{~dB})$, and c.m.r. ratio of 126 dB . Power consumption is 3 mA . They
diller only in frequency compensation. BurrBrown, Cassiobury House, Station Rd., Watford, Herts.
RCA: A 741 pin compatible op. amp, the CA 3420 series combines PMOS and bipolar technology to tolerate supplies down to 2 V , and common mode input voltages down to 0.45 V below negative rail. RCA , Lincoln Way, Windmill Rd., Sunbury-on-Thames, Middlesex.
Altek: A 2 K byte CMOS RAM of ultra low power data retention. The M5M5118P will standby at $10 \mu \mathrm{~A}$ with the supply reduced from 5 V to 3 V . Access time is less than 200 ns .

A new d.i.l. active delay line, the Lexor 84300 series is TTL compatible. Delay is from 25 to 500 ns , with tapped outputs, and fan-out is 10 TTL loads per tap. Altek Microcomputers, 22 Market Place, Wokingham, Berks. intersil: A low power A/D converter featuring $3 \frac{1}{2}$ digits, auto-zero, auto-polarity, differential input, single differential reference, and direct drive to l.c.d. or l.e.d. The big step forward in the 1CL 7136 is overrange recovery, faster conversion speed ( 3 per sec.), yet with only $100 \mu \mathrm{~A}$ power consumption ( 2000 hr . battery life). Input noise can be reduced below predecessors by use of a larger auto-zero capacitor without side effects. This is a pin-for-pin upgrade from the ICL 7216 without circuit changes. Intersil Datel (UK) Ltd., Belgrave House, Basing View, Basingstoke, Hants.

# SHARP'S 

The PC-1251 from Sharp Electronics is a wallet size computer featuring extended BASIC, 24 K bytes of ROM and 4.2 K bytes of RAM including 3.7 K bytes of user area.

Frequently used commands, statements or mathematical functions can be user defined using any of the 18 reservable keys.

Battery backup protects the contents of the memory in the RAM when the power is off. With this feature, you can turn off the unit in the middle of a program, or load several programs and, without the need for rewriting or reloading, have full use of them later.

The display is a 24 -digit $5 \times 7$ dot matrix the brightness of which can be varied. Other features include auto power-off to prevent battery drain and a 10 digit calculation feature.

Also available for use with the PC-1251 is the CE-125 which is an integrated printer and microcassette recorder. The PC-1251 has been designed to fit into the CE-125.

The 24-digit thermal printer can type at approximately 0.8 lines/second.

A wide range of sofiware is also available

## PC-1251

for use with the PC-1251 including the already proven software of the PC-1211.

The complete system including the printer/cassette module has overall dimensions of $205 \times 149 \times 23 \mathrm{~mm}$ and weighs just 1.2 lbs . The price of the PC-1251 is $£ 79.95$ and the CE125 is priced at 299.95 (prices include VAT and p\&p). With each unit Microl will be giving a way a free $£ 10.00$ software voucher.

Microl, Dept PE, 38 Burleigh St. Cambridge (0223312453).


## Walk Around 3-D

The prospect of a three-dimensional chess game shimmering at the centre of a computerised 3-D display has more appeal than imminence. Yet developments are taking place, and these utilise contraptions ranging from contorting mirrors to whirling corkscrews. Supprisingly, holography is not a front runner in the race for the '3DU'. Whilst the technical problems associated with the production of three-dimensional graphics may not be as simple as $X Y Z$, a recent development has made possible a true volumetric image within a glass cylinder.

The system uses an upright helix revolving at 30 times a second, acting as a target for a computer controlled, low power helium neon laser. By modulating and deflecting the beam under microelectronic control, it is possible to generate flecks and lines of light on the rotor. Rapid rotation of the helix target makes it virtually invisible, thus creating the illusion of light lines in space. The shape of the rotor is such that sooner or later, any point within the display volume will have a solid surface passing through it, upon which the laser beam may be struck. The computer takes care of the crucial timing.

The experimental system, developed by an IBM scientist and a team at Heidelburg University in West Germany, is only capable of delineating framework outlines. Because of its 360 deg. viewing angle, a feature which in itself has illuded engineers
until now, it is not practical to suppress out of view contours. This is because the observer's viewpoint is not always known, and means that solids can be represented, but not viewed as opaque. A full colour, real time, interactive display is claimed to be feasible, which can be as compact as five centimetres, or as large as five metres in diameter.

Among the suggested applications is an air traffic control display set above a map of the area.


## Briefly...

Two new miniature loudspeakers now available from Mullard, are claimed to be the thinnest ever offered. Both are only 5 mm in depth. the smallest liype ADO1980) has a 34 mm (diameter) cone whilst the slightly larger (type ADO 1985) has a 38 mm cone.

Even though only button-sized, the loudspeakers can handle 0.3 W r.m.s. and have a 400 to 3000 Hz frequency range. Each is offered with impedances of $8 \Omega$, $15 \Omega$ or $25 \Omega$.

Construction is rugged, both mechanically and environmentally. The frame is a tough plastic pressing. The cone is also plastic. A high permeability samarium cobalt magnet enables high efficiency to be achieved within an ultra-slim format.

Digital television signals to the recently approved CCIR Standard have for the first time been successfully transmitted by optical fibre link between two television studio centres. The experimentai transmission, which took place in December 1982, used equipment developed and built by BBC Research Department at Kingswood Warren.

The optical fibre cable contains eight graded-index multimode fibres, and was installed by British Telecom in the existing ducts between the BBC studios at Lime Grove and Television Centre, a path length of about 800 metres. The signals were carried on a single fibre, the basic bit rate of $216 \mathrm{Mbit} / \mathrm{s}$ being increased to $270 \mathrm{MBit} / \mathrm{s}$ by channel coding. A direct modulated 820 nm laser transmitter was used, the power launched into the fibre being $600 \mu \mathrm{~W}$.

As the television signal was carried in separate component form, pictures of originai RGB quality were obtained at the receiving terminal. This avoidance of intermediate PAL coding will allow remote down-stream processing, e.g. colour separation overlay and special effects, to be done with a precision which has hitherto only been achieved at the source itself.

Mitsubishi Electric Corporation Plan to manufacture VTRs in it's UK Factory for sales in the European market.

The initial production of 5,000 unlts per month will be made at the Haddington Works of Mitsubishi UK which currently produces colour TVs.

The company envisages a full scale production of 10,000 units per month with parts for the VTRs being supplied from Japan at first but it is hoped that as many parts as possible will be supplied from the EC market.

## ORIC1

Late in January Oric Products International officially launched the Oric 1 microcomputer from their $H \bar{Q}$ at Coworth House. Ascot. This mansion set in landscaped woodland seems an unlikely nest from which to fledge such a futuristic bird. Oric 1 presently available with a 16 K or 48 K memory is their answer to Sinclairs apparent monopoly of the home and small business users market, and at $£ 99.95$ and $£ 169$ respectively they are very competitive. Although Oric 1 has been available for some months now on a mail order basis the company

plan to phase out this method in favour of the high street retailer. Indeed orders already received have outstripped their predicted sales figures five times over, first year sales are now expected to reach a quarter of a million units. An important feature of this 57 key machine is its ergonomic similarity to the typewriter keyboard, offering such luxuries as tactile feedback and auto repeat keys. The two inch loudspeaker has an impressive range covering six octaves, and can be programmed to synthesise various musical instruments. Other technical details include- $28 \times 40$ character high resolution graphics and Teletext/Viewdata compatability. With an extended BASIC this machine uses the 6502A microprocessor chip, and comes with a comprehensive manual and a FORTH cassette.

## AND FINALLY...

Until recently, a family of biproducts of the petrochemical industry, called Tetraprils were quite useless. Now, thanks to the research work of Botch Laboratories of Drudgely, the lowest density member of this family of synthetic proteins has a future in the electronics and electrical industry.

Scientists at Botch have discovered that extruded fibres of Tetrapril 1 display a phenomenon called electrostriction. The electrostrictive effect is the physical distortion of a material whilst conducting electricity, and is usually only a fraction of a per cent variation in overall volume. Yet, while looking and feeling much the same as a piece of common elastic band, a Tetrapril fibre will contract by up to 250 per cent when conducting small currents.

Conversion from electrical power dissipation to mechanical force is 85 per cent efficient, so that a lightweight electromechanical actuator can be constructed which develops amazing leverage from one watt of power consumption. It is only necessary to anchor a fibre to the mechanism chassis at one end, attach its other end to a lever, and pass current through it, and you have an actuator. The fibre can either work against a spring, or in antiphase against another fibre. To prove the point, Botch has built a radio controlled aircraft using Tetrapril fibres throughout, as its servo's.

How did Botch discover such a peculiar characteristic in a material which for years has been thought of, literally as rubbish? Research Director, Tom Foolery said that the name of the biproduct itself provides the clue!!!

# Hounididunl. ... 

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Mike Abbott.

## Brighton Electronics March. T

BEX Leeds Mar. 16-17. Dragonara Hotel. K
INSPEX Mar. 21-25. National Exhibition Cntr. Birmingham International. Z1
Sensors \& Systems Mar. 22-24. The Forum, Wythenshawe. T
Compec Wales Mar. 22-24. Cardiff University. Z1
ETM (Electronic Test/Measurement) Mar. 22-24. The Forum, Wythenshawe, Manchester. T
Laboratory Manchester Mar. 23-24. New Century Hall, Corporation St. E
American Holography Mar.-June inc. Light Fantastic Gallery. Covent Garden, London. A8
London Computer Fair April 14-16. Central Hall, Westminster. B5
All Electronics Show April 19-21. Barbican Cntr., London. E
Fibre Optics April 19-21. Porter Tun Rooms, The Brewery (!), Chiswell St., London EC1. E
International Materials Handling April 19-26. Earls Court. I
International Packaging Exhibltion April 25-29. NEC B/ham. I
HEVAC (Heating, Ventilation \& Air Cond.) Apr. 26-28. Barbican. II Scottlsh Personal Computer World Show April 16-18. MacRobert Pavilion, Ingliston, Edinburgh M
Midland Computer Fair April 28-30. Bingley Hall, B/ham. Z1

Biotech May 4-6. Wembley. 0
Micro City May 10-12, Bristol Exhibition Complex. F3
The Business Computer Show May 10-12. Wembley. O
Cable (Conf. \& Ex.) May 10-12. Wembley Conf. Centr., London. O
Defence Components Expo May 10-12. Metropole, Brighton. I
Welsh Amateur Radio, TV \& Electronics Rally May 22. Barry Memorial Hall, S. Glam. C
Computers In The City (cont. \& ex.) May 24-26. Barbican. O
Business Telecom May 24-26. Barbican. 0
Internatlonal Word Processing May 24-27. Wembley Conf. Cntr. Z
East Suffork Wireless Revival May 29. Ipswich Civil Service Sportsground. V1
Russian Holography June-Sept. Inc. Light Fantastic Gallery. A8
Semlab June. Olympia. I
IBM Productivity (conf. \& small ex.) June 14-16. Tara Hotel, London. 0
The Computer Fair June 16-19. Earls Court Z1
Compec North June $21-23$. Belle Vue, Manchester. $Z 1$
Transducer/Tempcon June 28-30. Wembley Conf. Cntr. T
Leeds Electronics Show July 5-7. University. E

A8
B5
C
E
F3
1
K
M
0
T
Z
Z
$\mathbf{Z} 1$

Holographic Exhibitions \& 01-826 6423
Robin Bradbeer, North London Poly
Reg. Rowles © Cardiff 565656
Evan Steadman \& 079922612
Tomorrow's World Exhibitions, Bristol
Industrial Trade Faiss \& 0217056707
Douglas Temple Studios \& 020220533
Montbuild Exhibitions © 01-486 1951
Online \& 092742821 ।
Trident \& 08224671
BETA Exhibitions fa 01-405 6233
IPC Exhibitions 01-6438040

## Chris LARE

N recent years the dry battery has become much less used due to the ready availability of mains derived supplies, and, more recently the increased price competitiveness of Nickel Cadmium rechargeable cells. Even so much portable equipment still relies on batteries which bring with them the need for replacement at regular intervals, and more importantly the problem of when to do this. In theory it is very easy to test a battery by measuring its output voltage but this can be very misleading since a battery can often give an almost new voltage reading if no current is drawn from it as happens with a standard voltmeter. Some form of dummy load is obviously required and by the time that this and the meter have been organised it is often simpler to ignore the problem until the batteries go totally flat, probably leaking as they do so.

This article describes a fairly simple and cheap battery tester which loads the battery to 15 milliamps and indicates the output voltage state on three light emitting diodes. The circuit was designed for use with standard 1.5 volts/cell batteries and accordingly will test for the following voltages: $1.5,3,4.5,6,9$ and 12 . There is no reason why other voltages cannot be chosen, and the unit may be converted to test NiCads by simply altering a few resistors. The tester has no on/off switch and switches itself on when a voltage greater than 700 millivolts is applied to the test terminals. The current drain when not in use is well below a microamp and so will not discharge the PP3 battery specified any faster than the normal storage charge loss. Obviously this implies that an absolutely flat battery will not switch the tester on and this may be taken as a very positive indication of the state of the battery under test.

The circuit can be split into three very distinct sections which are the power switch, the dummy load and the voltage detector/display. Each section will be considered separately. Fig. 1 shows the complete circuit diagram.

## POWER SWITCH

The purpose of the power switch is to turn off the supply to the main circuit when the unit is not testing a battery. As soon as a battery with a terminal voltage greater than 700

millivolts is applied to the probe TR1 switches on and thus TR2 also switches hard on allowing the battery current to flow into the rest of the circuit. C1 and C2 provides the main supply decoupling. When TR1 turns off R2 and R3 pull the emitter and base of TR2 very close together so that TR2 is firmly held in a non conducting case with very minute current flow into the main circuit. The measured consumption was considerably less than a microamp. Diode D1 was included to help prevent possible damage if the test battery is connected back to front because although the baseemitter junction of the transistor T $\bar{R} 1$ will work in this way damage might occur if a 6 volt or larger battery is wrongly connected.

A self test button was included which simply connects the internal battery supply to the test probe input. The voltage selector should be set to 9 volts for any useful conclusions to be drawn from this.

## DUMMY LOAD

This type of test equipment usually uses a bank of high wattage resistors to act as the dummy load with the resistor values chosen such that the desired current is drawn for each applied voltage. The main disadvantages of this method are that the resistors are quite bulky and furthermore, should the source voltage fall the current drawn will also fall. In order to avoid these problems a constant current sinking circuit was employed, which will draw 15 milliamps from the source irrespective of the source voltage and so no load switching is required.

A purpose designed integrated circuit, the LM334Z, was used to drive the dummy load sink circuit. In its natural form the LM3342 can only pass a maximum of 10 milliamps and so an external pass transistor (TR3) was used to increase the current handling to the desired 15 milliamps. The LM334Z works by sensing the voltage across R5 which it attempts to maintain at 67.7 millivolts (at $25^{\circ} \mathrm{C}$ ). As the voltage rises across R5 the LM3342 passes less current and thus the base current into TR3 falls, reducing the overall current flow and hence the voltage across R5. In the same way as the voltage across R5 falls so the current flow through TR3 is increased. Since this configuration is essentially a very high gain feedback system C4 and R4 were included to prevent oscillation starting by slightly damping the feedback control. If a full 12 volt battery is tested, TR3 will dissipate 180 milliwatts and so a small heatsink is recommended.

The LM3342 is heat sensitive and as the temperature increases so does any given current flow in exact proportion. The exact figure for this rise is $0.33 \%$ per ${ }^{\circ} \mathrm{C}$ and implies that if the temperature rises by $10 \%$ the load circuit will draw about 0.5 milliamps more but this is of no real consequence in this application.

## THE VOLTAGE DETECTOR/DISPLAY

It was decided that a three state output of "good", 'poor' and 'flat' would be sufficient. Three l.e.d.s were used, two driven directly from the outputs of a voltage comparator, the other from a couple of transistors to make it light when neither of


Fig. 1. Circuit of Tester
the other two are on. The basic circuit uses a dual low power open collector comparator in the form of an LM393 which is a cut down version of the well known LM339.

In the design of a circuit such as this where various input voltages are to be compared against a known reference value the reference may be varied and compared with a fixed reference. The latter approach offers far less problems and was adopted here, where two fixed reference voltages of 1.37 and 1.1 volts were chosen to correspond to a 1.5 volt cell somewhat discharged and totally useless. These voltages were derived from a $5 \cdot 6$ volt Zener diode chosen as being the most stable value available. R17 allows some 6 milliamps to flow through the Zener, the voltage thus generated being decoupled by C6. R18, 19 and 20 form a simple divider chain to produce the required voltages which are fed directly to the two comparatnrs. The probe voltage is passed to $\mathbf{S} 2$ which selects the required potential divider to drop the desired test voltage down to 1.5 volts. These dividers are not perfectly accurate but are quite good enough for this application. This method has the advantage that the tolerance allowed on each type of battery increases as the battery voltage increases which is ideal. Table 1 shows the intended threshold levels for each battery. Obviously the 1.5 volt test input is a simple direct connection. The voltage from the common point of the divider is fed to the comparators via R16, which together with D2 gives protection against wrongly connected batteries. C5 simply decreases the impedance seen by the comparators and helps prevent oscillation at the threshold points.

Consider the case where the battery is fully charged up to its rated voltage which is set on the selector switch. The voltage at pin 6 of the comparator will be 1.5 volts which is higher than the 1.37 reference and so the output of that comparator will be driven low which will turn on the green l.e.d. Similarly if the battery under test is nearly flat the voltage on pin 3 of the comparator will be lower than the reference on pin 2 and since the inputs to the comparators are swapped this condition will drive the comparator output low light the red l.e.d. The extra series resistor R21 simply evens up the brightness of the red l.e.d. in comparison with the other two. Both the green and red I.e.d. use the same current limit resistor R22.

When the battery is in the state termed 'poor' the voltage
applied to the comparators will be between 1.1 and 1.37 volts and so neither the green or the red l.e.d. will light and so no voltage will be dropped across R22. This means that TR4 will turn off so that its collector voltage will fall by virtue of R24 with the effect that TR5 switches on lighting the yellow l.e.d. It can thus be seen that one of the l.e.d.s will be on the whole time the tester is switched on.

As stated before the prototype was powered from a PP3. When the unit is in use the current drain of 16 milliamps is larger than that recommended for the PP3 but the actual on time should be so small as to not make this a cause for concern.

## CONSTRUCTION

The prototype was housed in a plastic box $120 \times 40 \times$ 65 mm . The test probe connections were brought out to two 4 mm terminals allowing standard meter prods to be used since the wide variety of available batteries renders the mechanical design of a universal test clip very difficult. The rotary switch was mounted directly onto the printed circuit board and was used to hold the board into the box. It is therefore suggested that the circuit board design shown is used rather than Veroboard (Fig. 5).

Assemble the circuit board first but do not fit the BC461 (TR3) at this stage. When fitting the switch cut off the normal connection loops on the terminals and offer the switch up to the p.c.b. Solder in only two of the pins and check that it is mounted level with the board before soldering the rest of the pins. Solder in the l.e.d.s so that they stand' some 11 mm away from the board. It is as well to test the board fully before final assembly.

Mark the lid of the box as shown (Fig. 2). The easiest way of marking the voltages on is to mark the centre of the switch and then lightly draw a 27 mm diameter circle around

```
Table 1: Calculated threshold levels (Volts) \(\begin{array}{lllllll}\text { Battery Voltage } & 1.5 & 3.0 & 4.5 & 6.0 & 9.0 & 12\end{array}\) \(\begin{array}{llllllll}\text { Flat Threshold } & 1.1 & 2.2 & 3.32 & 4.44 & 6.62 & 8.8\end{array}\) \(\begin{array}{lllllllll}\text { Poor Threshold } & 1.37 & 2.74 & 4.14 & 5.5 & 8.25 & 10.96\end{array}\)
```

In actual practice these values will not be attained due to resistor tolerances. Obviously 1\% resistors may be used but but this was not considered essential.


Fig. 2. Details of panel drilling and legending
this point in pencil. Draw arcs on the circle with a pair of compasses set to 6.5 mm to correspond to each switch position and mark each intersection with the compass point. Rub out the pencil lines, drill and mark up the lid with Letraset.

Mark up a battery clip out of light gauge aluminium as detailed in Fig. 3, bending it on the dotted lines to form a $U$.

Adjust the stop position of the rotary switch to the sixth position and assemble the board onto the box lid. A large washer will probably be required to space the shaft slightly. Fit the sockets into the box, together with the test switch and wire to the board. Briefly test the unit again before fitting the lid onto the box.

Fig. 3. Battery clip



Fig. 4. Printed circuit layout

## Components

| Resistors |  |
| :---: | :---: |
| R1, 23 | 100k |
| R2, 3, 6, 15, 16, 20, 24, 25 | 10k |
| R4 | 390 |
| R5 | 4R7 |
| R7 | 18k |
| R8, 14 | 2k2 |
| R9 | 27k |
| R10, 12 | 3k3 |
| R11 | 47k |
| R13 | 68k |
| R17 | 560 |
| R18 | 39k |
| R19 | 2k7 |
| R21 | 100 |
| R22, 26 | 820 |
| All 1 watt 5\% |  |

## Capacitors

C1
C2,
C3

C3
C4

## Semiconductor

| D1.2 | 1N4148 |
| :--- | :--- |
| D3 | 5.6 volt 400 mW Zener |
| D4 | Green l.e.d. |
| D5 | Red l.e.d. |
| D6 | Yellow l.e.d. |
| TR1 | ZTX650 |
| TR2,4,5 | ZTX550 |
| TR3 | BC461 |
| IC1 | LM334Z |
| IC2 | LM393 |

## Miscellaneous

Plastic box $120 \times 40 \times 65$, press to make switch, 12 pole single way switch (Lorlin type) p.c.b., small TO5 heatsink clip, PP3 battery, battery clips, red and black 4 mm sockets, terminal pins, connecting wire, aluminium for battery clip, suitable knob, test prods.


661075
Fig. 5. Component overlay


Internal layout

## TESTING

Apply a 9 volt supply to the board via a battery and measure the current consumption which should be close to zero. Remove the ammeter and press the self test switch. The circuit supply should rise quickly to 9 volts and one of the l.e.d.s should light. If it does not appear to work measure the current consumption which should be less than 20
milliamps with the test switch pressed; a greater current than this will indicate the presence of a short circuit. Wire a 220 ohm pot between battery positive and negative with the wiper connected to the probe input. The voltage selector switch should be set to 1.5 volts. Monitor the wiper voltage which should be initially zero. Slowly increase this voltage and check that the red l.e.d. comes on at 700 millivolts, changes to yellow at 1.1 volts and finally changes to the green l.e.d. at 1.37 volts and above. If this test does not work as intended the voltage reference chain is the most likely source of trouble. Set the switch to 3 volts and slowly increase the voltage again checking the changeover points are close to those in the table.

Now solder in the BC461, having first fitted on the heatsink. Connect an ammeter across the test switch and check that the current flow is around 15 milliamps indicating the correct operation of the dummy load. Finally set the voltage selector to 9 volts and press the test switch whereupon the green l.e.d. should light.

## IN USE

It is important to remember that this unit is set up for 1.5 volt cells, and when used on other types of battery, particularly NiCads, erroneous results will be noticed. For NiCad batteries the tester may be modified by slightly altering the resistors in the divider chain, making the 'poor' range much narrower and reducing the base voltage used to 1.2 volts instead of 1.5 volts. Obviously other battery voltages can be tested by simply working out the resistor values in the potential divider e.g. a 15 volt battery would require dividing by 10 to 1.5 volts and so a 100 kilohm divider resistor should be used.

## BATAKR

ATARI games system, plus eleven cartidges, including: adventure, invaders, soccer, chess Worth over $£ 300$, only $£ 180$. Mr. M. Ward, 9 St. Andrews Ave., Crewe, Cheshire CW2 6JJ
An
Andrews Ave., Crewe, Cheshire CW2 6JJ.
VIC 20, cassette deck, 4 K RAM Pack (VCR) Joystick plus many cassettes, manuals, E165. A. Minert, 195 Thornhill Rd., Surblton, Surrey KT6 7TG. Tel: 01-3972567.
WANTED Manual or circuits for Nagard OS321 dual beam scope; will pay for copying or originals. A. C. Walkland, 11 Ivy Rd., St. Denys, Southampton
PROGRAMMING Introductory course wanted for free weekend. Details to R. Peace, 24 Mowbray Road, Northallerton.
HEATH kit GR78 receiver, £40. Heath kit scope 10-102, £50. Pye Cambridge R/T, £25. Carr. extra. Edwards, 2 Beach Rd., Burton Bradstock Bridport, Dorset DT6 RRF. Tel: 0308897625. BBC Microcomputer Model 'B'. $£ 100+$ worth of software and two books. Cost new $£ 525$. Accept £325. Mr. M. Clark, Jardinet, Oakland Park, Falmouth, Cornwall.
TANDY Quick Printer 2, recently overhauled by Tandy, +3 rolls of paper, $£ 75$, including postage. Tandy, + 3 rolls of paper, $£ 75$, including postage,
Ian Benton, The Pharmacy, Bardney, Lincoln LN3 Ian Benton, The Pharmacy, Bardney, Li
5SS. Phone: Bardney (0526) 398208.
UK101 8 K RAM, sound board, all cased with manual. Bargain price of $£ 130$, o.n.o. the lot. Mr. I. Rhule, 59 Stanbury Rd., Peckham, London SE15. Tel: 01-639 8433.
UK101 Enhanced 8K cased plus software. $1 / 2 \mathrm{MHz}, 300,600,4000$, Baud. Tape handler, ROM. £ 150 o.n.o. D. Lund, 25 Hillcrest Ave., Longridge, Nr. Preston, Lancs. Tel: (077 478) 4517.

BINATONE 5 -star 40 channel mobile 27 MHz CB transceiver. 4 watts. New. Japan made. £50.00. K. Y. Chang, 041332 7695, after 7 p.m. K. Y. Chang, 701 -up Ashley St., Glasgow G3 6HW.
FOR Compukit-RAM/EPROM board $+4 K$ RAM, £30; toolkit, £5; BASIC 5, £10; Motherboard, f5. Mr. N. Odell, 31 Humphrey Rd., Greenhill, Sheffield S8 7SE. Tel: (0742) 745027. PRINTER and keyboard on pedestal (Terminet) $80 \mathrm{col} U / \mathrm{L}$ case 30 CPS RS232. Ex. condition, 80 col U/L case 30 CPS RS232. Ex
£100. Tel: (evenings) 0744883918.
£100. Tel: (evenings) 0744883918
ZX Spectrum 16 K, £ 75 , new. L.C.D.
ZX Spectrum $16 \mathrm{~K}, \mathrm{E} 75$, new. L.C.D. Multimeter, £28; clearing out equipment and projects, s.a.e. No callers. D. Martin, 6 Downland Gardens, Tattenham Comer, Epsom, Surrey.
TELEQUIPMENT Oscilloscope type D43 B/Beam, has anyone any workshop or service information, circuit etc. for sale? John Mitchell, 8 Rutland St., Gorton, Manchester M1880H. Tel: Rutland St., Gor
061-231 6522.
ADVANCE type H1 a.f. signal generator ADVANCE type H1 s.f. signal generator
$15 \mathrm{~Hz}-50 \mathrm{kHz}$ Sine/square perfect $£ 35$ o.n.o.
 Newnes Radio/TV service manuals 1949-1961
E20 o.n.o. E. G. Jones, 16 Riverway, Nailsea, E20 o.n.o. E. G. Jones, 16 Riverwa
Avon BS 19 1HZ. Tel: 0272853747.
ACORN Atom 12 K RAM 12 K ROM all leads p.s.u. and manual included hardly used £140. Dave Houghton, 2 Western Villas, Church Road, Kennington, Ashford, Kent TN24 90G. Tel: 0233 23077.

ACORN Alom 12 K RAM, 12 K ROM $+>£ 50$ worth software and p.s.u. $£ 150$ (can deliver anywherel. Tel: 0616812875.
ATARI games computer CX2600 with five cartridges including space invaders and Basic programming with keyboards $£ 100 . \mathrm{Mr}$. L. Allen, 14 Frampton Close, Bournville, Birmingham B30 10 T.
KEYBOARD with oscillator and dividers, filters and rhythm board for organ £15. Tel: 01-644 3474 evenings. Mr. J. Pettifer, 261 Gander Green Lane, Sutton, Surrey.

HAVE two AVO 8 want Rockwell Aim 65 or consider other 6502 based Micro working broten. Mr. N. Campbell. Tel: Marshalls Cross 820093 St. Helens.
MICROLINE 82 printer has anyone any information on this printer for sale or loan? Please phone. Mike Cole, 24 Murray Close, Andover, Hants SP10 2HL. Tel: 02643983.
ORGAN Grosvenor Spinet, two manuals, pedals, mythm unit, playable, needs slight attention E150. Buyer collects. Tel: Ashford (Middlesex) 58878
FOR SALE Transtec 1200 Video monitor, IA $£ 140$. Ideal for use with microcomputer. Mr. P. Carroll, Killagoola, Moycullen, Co. Galway, Eire. Tel: 09185191
WINDSOR model 30A oscilloscope circuit wanted. J. D. Weager, 'Glan-y-Mynydd' Pentrepiod, Abertillery, Gwent NP3 2DT. Tel: 0495 214843.

SOLARTRON dual beam oscilloscope type CD $1400 \quad 15 \mathrm{MHz}$ spare plug-in modules full working order £70. G. R. Bird, 56, Albatross Gdns, S. Croydon, Surrey. Tel: 01-651 5104.
LEAK Garrard Wharfedale Hi-Fi Throughline tuner. Varlslope 111 pre-amp. Power amplifier, Margoline player. Speakers. Data. Working. Offers G. D. Patterson, 5 Oakwood Road, Henleaze, Bristol BS9 4NP. Tel: Bristol 624769. C.P.U. board E.C.M. 6809 Links fitted i.c. holders some components SIL $£ 13$. Other components s.a.e. list. G. A. Noble, 50 Crofthill Road, Slough, Berks SL2 1HF
VIC $20,5 \mathrm{~K}$, cassette, literature, software and portable colour TV (Hitachi). All new $£ 330$ o.n.o. F. Gareeboo, Hulme Hall, Oxford Place, Victoria Park, Manchester M14 5RR.
KEYBOARD for electric organ, 49 notes with contacts £20. Maplin DMO2 £5. Both unused. Tel:0416325408.
FD200 SME Fluid Damper, unopened $£ 10$. Pair monitor audio Lintz sound cable ( 7.5 m ), unopened $£ 10$. Tel: 07605402
 <br> \section*{\title{
Micronta <br> \section*{\title{
Micronta Clamp Meter Clamp Meter £2995 £2995 - Overload Protected - Overload Protected <br> <br> <br> - Pointer Lock Switch <br> <br> <br> - Pointer Lock Switch <br> <br> } <br> <br> }

This clamp-on AC ammeter is designed to measure AC current without disconnecting or breaking the line being checked, making it safer to use. The large range selector knob is conveniently positioned for one-hand operation. The meter incorporates a pointer lock switch holding the pointer in position (for reading later) when the meter cannot be seen while measuring. $A C$ current: 0-6-15-60-150-300 amperes, Accuracy $\pm 3 \%$. Size: $73 / 8 \times 2^{13 / 16} \times 13 / 16^{\prime \prime}$ With carry strap.
22-160
$£ 29.95$

8



## Inscrutable

China has nearly one quarter of the world's population and is the largest single market as yet untapped by Western technology. The inscrutable oriental of legend is becoming less so but only very gradually, almost reluctantly. The door to large scale international trade is only slowly opening but with it could come a much better appreciation of what China is about.

Apart from the enormous population, other statistics on China are monumental. Her total borderline if we include the coastline extends to 22,000 miles of which her border with the Soviet Union accounts for 4,300 miles. China's main preoccupation in recent years has been fear of Soviet intentions, reciprocated by the Soviets. Earlier friendly relations evaporated in 1966 when Chairman Mao instigated the Cultural Revolution to maintain the purity of the communist ideal which not only rejected the ideology of capitalism but also Soviet communism which, in Mao's view. had become 'revisionist'.

The distrust between the two communist giants resulted in another staggering statistic, the largest standing army in the world with 4.75 million under arms. The land force consists of 169 divisions in 35 armies. Eleven armoured divisions have 10,000 tanks. At sea there are 32 destroyers and frigates, 102 submarines and about 1,000 smaller naval craft. The air arm has 5,000 combat aircraft. And China's nuclear arsenal now includes 5,000 mile range ICBMs with 3-megaton warheads.

The trouble is that, formidable as the Chinese strength appears to be on paper, most of the equipment is as much as 20 years out of date having depended on Soviet technology initially and, later on, copies made in China. Similarly, industrial production suffered during the period of ideological re-education. The present leadership group appears intent on modernisation in the armed forces and in industry,
even though it involves the capitalist countries.

The Chinese trade delegation visiting Britain and Europe in 1980 in search of modern arms were fascinated by developments like the Harrier aircraft but were horrified at the cost. But they could perhaps afford some of the sophisticated electronics to transform existing weapons platforms into efficient defence equipment.

The first fruits of turning to Britain (at least so far reported) are the re-fitting of two Luda class destroyers. themselves derived from the Soviet Kotlin class. They are being re-equipped with Sea Dart missiles, radar, fire control systems and new operations rooms under a $£ 100$ million contract. As China has nine of this class of destroyer there should be the possibility of follow-on orders

Last January, Industry Minister Patrick Jenkin was in Peking attempting to sell British nuclear technology which could result in power station orders worth several hundred million. On a smaller scale Solartron's trade with China in measuring and analysis equipment topped $£ 1$ million last year.

There remains the riddle of Hong Kong and the New Territories which are due to be returned to China by treaty in 1997. The prospect of an earlier date caused consternation in Hong Kong last year but confidence was restored by rumours that while Hong Kong would certainly return to China it would have a special status. Indeed it should when tiny Hong Kong exports more goods than the whole of China and would therefore seem invaluable if onfly as a profitable interface with the outside world.

The Chinese trade door may be inching open but also in the queue outside are the other European nations, the United States and Japan, all competing. Lurking in the background is the possibility of the inscrutable Chinese mending fences with the Soviet Union in which case the West may have been wasting its time.

## Looking West

As well as looking East, British maufacturers are also looking West, particularly to the United States. Plessey, following a £34 million purchase of Stromberg-Carlson last year, started the New Year with joint ventures with Scientific Atlanta on cable-TV and Rockwell International on military radio. These new associations give Plessey a foot-hold in the US market for telephone exchanges, a technology foot-hold in the UK for cable-TV and a US marketing foothold in the USA for selling the US Army the single channel radio access equipment used in the Ptarmigan radio system developed for the British army.

Racal is also taking on board US technology for future Pay-TV and Cellular Radio projects besides having flourishing wholly-owned subsidiaries in the United States. I note with some amusement that when 10 members of the Italian Parliament recently visited the United States on a trade mission to examine the best electronic manufacturing facilities, high on the list was Racal-Milgo, wholly British owned.

This company, incidentally, rated top in price/performance ratio, top in technology and in the first three on service organisation and trade literature by the 1982 Brand Preference Survey. Overall it won the honour of being 'the one most preferred to do business with'.

Another Racal company in the US is Racal-Dana Instruments. They have just invested in a new 100,000 sq.ft headquarters in East Irvine Industrial Park, near Los Angeles.

Some companies are looking the other way. Philips, for example, is reported to be one of the firms tendering to set up a colour-TV factory in the Soviet Union. They are in competition with Japanese companies. It seems strange that the Russians are so patchy in performace. After all these years they still appear to be incapable of performing routine mass-production tasks like making motor cars without assistance from outside. And what happened to the Hungarian and Polish electronic industries? Surely they could provide the goods?

## Inmos

The months and years slip away as do the millions in Inmos, the British semiconductor outfit. Taxpayer investment is already approaching $£ 100$ million if, indeed, the figure hasn't already been exceeded. And the 4,000 jobs promised will probably never be achieved. I have always been sceptical on politically motivated investment. If a product is worthwhile then private capital will automatically be attracted to it. I still wish Inmos well but I wish they could have done a lot better. The grant of a further $£ 15$ million may yet save the company but it now looks to be an awful long time before the total investment gets repaid.

## Telecoms

In contrast we have the recently privatised Cable \& Wireless. Lucky those who bought in at the offered price of 168 p in October 1981. Those who held on have doubled their money with further growth in prospect. Booming profits have not only benefited shareholders. Swan Hunter Shipbuilders and their workforce on the Tyne have won an $£ 18$ million order for a new $C$ \& W cable ship. It will provide work for 800 men over a period of 18 months.

And how about British Telecom itself! Best ever profits leading to a freeze in prices for a further few months. Of course we can argue that the call charges were too high in the first place. Never mindl the prospect of competing in a real instead of captive market has done the trick. BT is really trying harder and will, I believe do better.

## Fly Smiths

Next time you fly in a Boeing remember you are also flying Smiths Industries. Their electronic auto-throttle system is on all 727 s and 737 s together with a host of other flight deck instruments. The Smiths auto throttle ( 100 more sets have just been ordered) saves fuel on all regimes of flight from take-off to landing.
 stead of measuring the absolute value at each step, simply record whether or not the signal is increasing or decreasing. This can be done with just one bit, thus reducing the memory required to 8000 bits per second, without significantly reducing the quality of the speech output.

A more radical approach to the problem is to use a microprocessor to act in the same way as a human voice. This means that the action of each part of the vocal tract has to be analysed and turned into an algorithm which can be programmed into the microprocessor. Such an algorithm is shown in Fig. 1.1. It consists of the lungs which provide the basic energy, the vocal cords, the mouth and the nasal cavities. Sound generated by the vocal cords is modulated by the mouth, the movements of the jaws, the tongue and the lips. The whole combination can be considered as a time variant filter, whereby the nasal cavity acts as a fixed frequency resonator. Another useful feature of the human voice is that the muscles cannot react faster than 20 to 25 milliseconds. Hence speech can be split up into 20 millisecond envelopes. This characteristic can be used to great advantage when trying to condense the amount of memory.

Sounds are produced by the vocal system in three ways. Voiced sounds are generated by tensing the vocal cords which forces them to vibrate as air is expelled from the lungs. An example of a voiced sound is 'ee' in the word 'speech'. Secondly, fricative sounds are generated by air from the lungs rushing past a constriction such as the teeth or lips. The sound 's' at the beginning of the word 'speech' is a fricative. Finally, plosive sounds are generated by a total obstruction of the mouth cavity by either the tongue or the lips. Air pressure is built up and then suddenly released. The word 'pop' begins and ends with a plosive.

## COMPUTER ALGORITHM

These elements of a human voice can be built into a computer by using this algorithm. Fig. 1.2 shows a system which comprises a random signal source and a periodic signal source. The former is used to generate the fricative and plosive sounds and the latter the voiced sounds. Either one of these can be selected to drive the time variant filter which simulates the action of the lips, the tongue and the jaw movements. The algorithm assumes that there is complete independence between the source and the filter and that only one of the sources is being used at any given time. In all, 13 parameters are needed to drive the algorithm, but due to the reaction time of the muscles, they only need to be updated 50 times a second. Hence, if a 10 -bit analogue-to-


Fig. 1.1. Elements of the human vocal tract

digital converter is used, only 6000 bits are needed to synthesise one second of speech.

Further economies can be achieved by quantitising some of the algorithm parameters such as pitch and amplitude into a set number of values. The periods of silence which occur between syllables need not be recorded, only their duration. In many cases, syllables and phrases repeat and therefore they can be referred to by the computer time and time again. By using all these techniques it is possible to reduce the data needed for the successful synthesis of speech to as low as 1,100 bits per second.

Linear Predictive Coding (LPC), as it is known, is the most efficient means of synthesising the human voice using digital techniques. A maximum of 49 bits are needed to update the 13 parameters of the algorithm every 20 milliseconds. They can be split up as follows

1) Energy (amplitude) 4 bits
2) Repeat 1 bit
3) Pitch (frequency) 5 bits
4) The ten reflection coefficients

| K1 and K2 | 5 bits |
| :--- | :--- |
| K3-K7 | 4 bits |
| K8-K10 | 3 bits |

Fig. 1.3 shows how the word "HELP" is synthesised using the LPC algorithm

| MEL | E | $R$ | P | K1 | K2 | K3 | K4 | K5 | K6 | K7 | K8 | K9 | K10 | FRAME TYPE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0000 |  |  |  |  |  |  |  |  |  |  |  |  | SILENCE |
|  | ( 0100 | 0 | 00000 | 10011 | 01110 | 1001 | 0111 |  |  |  |  |  |  | UV |
|  | 0111 | 1 | 00000 |  |  |  |  |  |  |  |  |  |  | UV-REPEAT |
|  | 1101 | 0 | 10010 | 10000 | 10100 | 1000 | 0110 | 0111 | 1000 | 1010 | 100 | 101 | 010 | V |
|  | 1101 | 1 | 10011 |  |  |  |  |  |  |  |  |  |  | V-REPEAT |
|  | 1110 | 1 | 10011 |  |  |  |  |  |  |  |  |  |  | $\checkmark$-REPEAT |
|  | 1101 | 0 | 10100 | 01101 | 01111 | 1010 | 1010 | 1001 | 0111 | 1000 | 100 | 101 | 101 | V |
|  | 1101 | 0 | 10100 | 01110 | 01011 | 1000 | 1100 | 1101 | 1000 | 0100 | 100 | 011 | 101 | V |
|  | 1101 | 0 | 10011 | 10001 | 01010 | 0110 | 1001 | 1111 | 1011 | 0101 | 010 | 000 | 110 | V |
|  | 1011 | 1 | 11010 |  |  |  |  |  |  |  |  |  |  | $V$-REPEAT |
|  | 1010 | 0 | 10010 | 01101 | 00111 | 1000 | 1100 | - 1111 | 0111 | 0010 | 001 | 010 | 110 | $V$ |
|  | 1001 | 1 | 10001 |  |  |  |  |  |  |  |  |  |  | $V$-REPEAT |
|  | 1001 | 1 | 01110 |  |  |  |  |  |  |  |  |  |  | $\checkmark$-REPEAT |
|  | ( 1000 | 1 | 01101 |  |  |  |  |  |  |  |  |  |  | $\checkmark$-REPEAT |
| $P$ | 0010 | 0 | 01110 | 00101 | 00101 | 1701 | 1001 | 1110 | 0101 | 0111 | 001 | 011 | 011 | $V$ |
|  | 0000 |  |  |  |  |  |  |  |  |  |  |  |  | SILENCE |
|  | 0000 |  |  |  |  |  |  |  |  |  |  |  |  | SILENCE |
|  | 0000 |  |  |  |  |  |  |  |  |  |  |  |  | SILENCE |
|  | 0111 | 0 | 00000 | 10100 | 01011 | 1011 | 1000 |  |  |  |  |  |  | UV |
|  | 0111 | 0 | 00000 | 10001 | 01011 | 1011 | 0110 |  |  |  |  |  |  | UV |
|  | 0101 | 1 | 00000 |  |  |  |  |  |  |  |  |  |  | UV-REPEAT |
|  | 0011 | 0 | 00000 | 10011 | 00111 | 1010 | 0110 |  |  |  |  |  |  | UV |
|  | 0010 | 0 | 00000 | 10010 | 00101 | 1011 | 0101 |  |  |  |  |  |  | UV |
|  | ( 0000 |  |  |  |  |  |  |  |  |  |  |  |  | SILENCE |
|  | 1111 |  |  |  |  |  |  |  |  |  |  |  |  | STOP CODE |
|  | V-VOICED |  |  |  |  |  |  |  |  |  |  |  |  |  |

V-VOICED
UV-UNVOICED

Fig. 1.3. L.P.C. for the word "HELP"

| INSTRUCTION name | $\begin{aligned} & \text { CTL PINS } \\ & 8621 \end{aligned}$ | TOGGLES OF PDC |
| :---: | :---: | :---: |
| Reset | 0000 | 1 |
| Load address | 0010 | 2 |
| Fead st branch | 1100 | 1 |
| Test lailk | 1110 | 3 |
| Read but | 1000 | 1 |
| Speok | 1010 | 1 |
| Outpul | 0100 | 3 |

Fig. 1.4. Instruction set for the TMS5100

As there are a considerable number of applications for machines with a voice, several companies have developed microprocessor systems to run nothing but the LPC algorithm. Amongst these companies is Texas Instruments, which has developed a dedicated microprocessor, based on their TMS 1100 device. The TMS 5100 Voice Synthesis Processor generates human speech by digitally processing data stored in a non-volatile 128 K bit ROM. It has its own Digital-to-Analogue converter and audio push-pull amplifier. The amount of external programming needed to drive the processor has been reduced to a minimum. The seven instructions shown in Fig. 1.4 are loaded into the device on 4 control lines and 1 clock line.


Fig. 1.6. Alternative amplifier circuit

## CIRCUIT DESCRIPTION

The circuit shown in Fig. 1.5 can either be driven by a microcomputer or by manual switches. If the latter is used, care must be taken to debounce the PDC switch. Processor timing is provided by a RC network connected to pin 7 of the TMS 5100. When adjusted it will produce a frequency of 640 kHz . This is divided down to give the CPU clock of 320 kHz and the ROM clock of 160 kHz . Three power rails are needed to run the system. The processor uses a 0 to 9 volt rail, whereas an intermediate voltage of 4.5 volts is needed for the audio output stage. The TMS 5100 loads an address to the VM 61001 by means of the M1 control output and the ADD bus. As the PDC is brought high during the address portion of a load address sequence, the TMS 5100 brings M1 high and gates the CTL bus to the ADD bus. When the PDC is brought low, M1 goes low and the TMS 5100 stores the nibble in its address register. Data is transferred from the ROM to the TMS 5100 in a serial form
over the ADD 8 line. Toggling MO instructs the ROM to transfer the next bit. As the PDC is brought high during the Read instruction, the TMS 5100 toggles MO and accepts the new bit into its four bit buffer over the ADD 8 line. The first MO after a load address sequence changes the direction of the bi-directional ADD 8 line from transmit to receive.

The audio stage of the TMS 5100 shown in Fig. 1.5 has been optimised for high production runs. An alternative circuit is shown in Fig. 1.6. This circuit significantly improves the quality of the output and consists of a differential amplifier and integrator followed by a low pass filter. The gain of the circuit is controlled by VR2, which in turn drives a non-inverting amplifier and push-pull output stage.

## PROGRAMMING

There are two ways in which the system can be operated. Direct Addressing: The start address of the speech data held in the ROM (Fig. 1.7) is toggled into the TMS 5100 via the

## LPC VOCABULARY DATA IN VM61001 (MALE SPEAKER NO. 6)

| WORO | LOOK-UP | START | WORD | LOOK.UP | START | WORO | LOOK-UP | START | WORO | LOOK-UP | START |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PHRASE | TABLE | ADOR | PHRASE | table | ADOR | PHRASE | TABLE | ADDR | PHRASE | TABLE | ADOR |
| ZERO | 0002 | O19A | GOLF | 0068 | OEC6 | UNIT | OOCE | IF42 | FLOW | 0134 | 2FC6 |
| ONE | 0004 | $01 F 7$ | HENRY | 006A | OEFF | SWITCH | 0000 | 1F94 | FREQUENCY | 0136 | 2FFA |
| TWO | 0006 | 0248 | INDIA | 006C | OF49 | START | 0002 | 1 FE2 | FROM | 0138 | 3065 |
| THREE | 0008 | 0282 | JULIET | O06E | 0 O96 | STOP | 0004 | 2021 | ABOUT | 013A | 30BE |
| FOUR | 000A | $02 \mathrm{C5}$ | KILO | 0070 | 100C | TIMER | 0006 | 205B | GAGE | 013 C | 30FC |
| FIVE | 000C | 0313 | LIMA | 0072 | 1063 | Valve | 0008 | 2041 | GATE | 013E | 316A |
| SIX | O00E | 0360 | MIKE | 0074 | 108F | LINE | 000A | 2133 | GET | 0140 | $31 \mathrm{A5}$ |
| SEVEN | 0010 | 0390 | NOVEMBER | 0076 | 1001 | MACHINE | 000C | 2180 | G0 | 0142 | 31 E0 |
| EIGHT | 0012 | 03F3 | OSCAR | 0078 | 1138 | UP | OOOE | 2236 | GREEN | 0144 | 3233 |
| NINE | 0014 | 0422 | PAPA | 007A | 1190 | OOWN | OOEO | 226 A | HIGH | 0146 | 3270 |
| TEN | 0016 | 046B | Quebec | 007C | 1105 | OFF | OOE2 | 22.4 | HOLD | 0148 | 32CC |
| ELEVEN | 0018 | 049E | ROMEO | 007E | 1216 | ON | OOE4 | 2308 | INCH | 014 A | 3330 |
| TWELVE | 001A | 0504 | SIERRA | 0080 | 1260 | IS | 00E6 | 2362 | INSPECTOR | 014C | 3375 |
| THIR- | 001C | 0556 | TANGO | 0082 | $12 \mathrm{C4}$ | NUMBER | 00E8 | $239 E$ | INTRUDER | 014E | 33DF |
| FIF | 001 E | 057E | UNIFORM | 0084 | 131B | TIME | OOEA | 240E | LEFT | 0150 | 3440 |
| -TEEN | 0020 | 05A8 | VICTOR | 0086 | 1377 | CONTROL | O0EC | 2458 | LOW | 0152 | 3460 |
| TWENTY | 0022 | 0504 | WHISKEY | 0088 | 13 C 3 | ALERT | OOEE | 24BC | MANUAL | 0154 | 34 Cl |
| HUNORED | 0024 | 0619 | X-RAY | 008A | 13FB | DUT | 00FO | 2523 | MEASURE | 0156 | 3534 |
| THOUSAND | 0026 | 0692 | YANKEE | 008C | 1453 | AUTOMATIC | 00F2 | 255E | MILL | 0158 | 3596 |
| A | 0028 | 070F | ZULU | 008E | 14 A 2 | ELECTAICIAN | 00F4 | 25C0 | MOTOR | 015 A | 3500 |
| B | 002A | 0740 | AND | 0090 | $14 \mathrm{E6}$ | ADJUST | 00F6 | 2632 | MOVE | 015C | 3635 |
| C | 002C | 0788 | THE | 0092 | 1550 | POINT | 00F8 | 2692 | NORTH | 015 E | $36 A B$ |
| 0 | 002E | 07CB | AMPS | 0094 | 1588 | WAIT | OOFA | 2604 | OF | 0160 | 36F9 |
| E | 0030 | 0815 | HERTZ | 0096 | 15C8 | AT | 00FC | 2704 | OPEN | 0162 | 3730 |
| F | 0032 | 083F | FARAD | 0098 | 1618 | BETWEEN | OOFE | 272F | OVER | 0164 | 3799 |
| G | 0034 | 0783 | WATTS | 009A | 1686 | BREAK | 0100 | 2792 | PASS | 0166 | 3705 |
| H | 0036 | 08A2 | MEGA | 009C | 1606 | SMOKE | 0102 | 27CE | PASSEO | 0168 | 3815 |
| 1 | 0038 | 08DC | MICRO | 009 E | 1733 | REO | 0104 | 2820 | PERCENT | 016 A | 3855 |
| $J$ | 003A | 0911 | MILLI | OOAO | $17 \mathrm{A6}$ | MINUTES | 0106 | 2857 | PLUS | 016C | 38A4 |
| K | 003C | 095C | METER | 00A2 | 17DE | HOURS | 0108 | 2881 | POSITION | 016 E | . 3808 |
| L | 003E | 099F | PICO | 0044 | 1829 | ABORT | 010A | 2906 | PRESS | 0170 | 395 F |
| M | 0040 | 09EA | OHMS | 00A6 | 185F | ALL | 010C | 2960 | PROBE | 0172 | 39 CO |
| N | 0042 | 0 A28 | CAUTION | 00A8 | 1882 | BUTTON | 010E | 29A3 | PULL | 0174 | 3 A1A |
| 0 | 0044 | 0A5F | OANGER | OOAA | 1902 | CALIBRATE | 0110 | 2953 | PUSH | 0176 | 3 A49 |
| P | 0046 | 0487 | FIRE | 00AC | 1970 | CALL | 0112 | 2A50 | RANGE | 0178 | 3A7E |
| 0 | 0048 | OABO | AREA | OOAE | 19CB | CANCEL | 0114 | 2 AAI | READY | 017A | 3AEC |
| R | 004A | OAEB | LIGHT | 0080 | 1 A28 | CLOCK | 0116 | 2808 | REPEAT | 017C | 382 F |
| S | 004C | 0814 | PRESSURE | 0082 | 1 A79 | CRANE | 0118 | $2 \mathrm{B38}$ | RIGHT | 017 E | 3880 |
| T | 004E | 0B3B | POWER | 0084 | IACA | CYCLE | 011 A | $2 \mathrm{BA2}$ | SAFE | 0180 | $3 \mathrm{BD2}$ |
| U | 0050 | 088A | CIRCUIT | 0086 | 1810 | DAYS | 011 C | 2 COO | SET | 0182 | 3COD |
| V | 0052 | 0887 | CHECK | 0088 | 185A | OEVICE | 011 E | 2C5A | SHUT | 0184 | $3 \mathrm{C3D}$ |
| W | 0054 | OBE9 | CHANGE | 00BA | 1B8F | DIRECTION | 0120 | 2CBF | SLOW | 0186 | $3 \mathrm{C7D}$ |
| $X$ | 0056 | 0 O30 | COMPLETE | OOBC | 1BEO | OISplay | 0122 | 2030 | SOUTH | 0188 | $3 \mathrm{CC5}$ |
| $Y$ | 0058 | OC56 | CONNECT | OOBE | $1 \mathrm{C49}$ | DOOR | 0124 | 208A. | SPEED | 018A | 300 C |
| $z$ | 005A | $0 \mathrm{C98}$ | DEGREES | 00CO | $1 \mathrm{C9B}$ | EAST | 0126 | 2088 | TEST | 018 C | 3091 |
| ALPHA | 005C | OCFO | MINUS | 00C2 | 1 CFB | ENTER | 0128 | 2051 | 100L | 018E | 30E6 |
| BRAVO | 005E | 0040 | REPAIR | $00 \mathrm{C4}$ | 1062 | EQUAL | 012A | 2E3A | TURN | 0190 | 3E1F |
| CHARLIE | 0060 | 0085 | SECONOS | 00C6 | 1009 | EXIT | 012C | 2E90 | UNDER | 0192 | 3E5A |
| DELTA | 0062 | 0008 | SERVICE | $00 \mathrm{C8}$ | 1 E44 | FAIL | 012E | 2ECF | VDLTS | 0194 | 3EAO |
| ECHO | 0064 | 0 016 | NOT | 00CA | 1E8A | FEET | 0130 | 2F23 | WEST | 0196 | 3EFE |
| FOXTROT | 0066 | OE5 1 | TEMPERATURE | OOCC | IECA | FAST | 0132 | 2F60 | YELLOW | 0198 | 3F42 |

Fig. 1.7. Vocabulary for the VSB
control lines. As 18 bits are needed to address one location in a memory of this size, and there are only 4 control lines, then 5 nibbles of 4 bits are used. Each nibble is preceded by a load instruction. After all 5 nibbles have been loaded a 'Read Bit' instruction is toggled into the processor. This instruction reverses the bi-directional memory bus and when a 'Speak' instruction is toggled in, data is transferred from the ROM to the TMS 5100. This data is then processed and fed to the audio output via the 10 bit digital to analogue converter.

Indirect Addressing: The second method is to use an indirect 'Read and Branch' instruction. Fig. 1.8 shows the flow chart for this instruction. At the bottom of the ROM there is a look-up table which holds all the start addresses of all the words held in the memory. If the 'Read and Branch' instruction is used the address of the look-up table which holds the



## COMPONENTS

Resistors
R1-4, R17, R18, R19, R22. R6, R7. R8, R9, R10, R11 R13, R14
R23 R20, R32. R34, R35, R36. R37. R38 R21, R27 R26
R28. R29, R30
All resistors $\frac{1}{4} \mathrm{~W} 5 \%$ unless atherwise state
Potentiometers VR1, VR2

50k (2 off)
some typical speech scenarios
burglar alarms
RED ALERT. INTRUDER AREA ONE.
video games
RANGE: TWO THOUSAND FEET
DIRECTION: THIRTY-NINE DEGREES EAST.
ALPHA BRAVO TO (use TWO) WHISKEY FOXTROT.
POSITION SAFE.
MOVE FAST

## personnel security

STOP. DOOR IS AUTOMATIC
INSERT PASS.
PRESS ENTER BUTTON ON RIGHT
WAIT TEN SECONDS. CHECK NOT
COMPLETE
CAUTION.
FAIL. PASS NUMBERIS NOTOK.
CALL MANUAL INSPECTOR
CANCEL PASS. ABORT CYCLE.
safety
GET SERVICE UNIT.
DANGER: TEN THOUSAND VOLTS.
LINE VALVE PRESSURE HIGH.
GET ELECTRICIAN.
REPEAT TEST ON TIMER SWITCH

Capacitors

| C5, C3, C1 1 | 100 n (3 off) |
| :--- | :--- |
| C1 | 68 p |
| C4, C7, C6, C10 | $1 n(4$ off) |
| C9, C8 | $10 n(2$ off $)$ |

Integrated Circuits

| IC1 | TMS 5100 |
| :--- | :--- |
| IC2 | VM 61001 |
| IC3 | 4011 |
| IC4 | 324 |

Transistors
TR1.TR3-TR8 2N3904 (7 off)
TR2
2N3906

## Miscellaneous

8 ohm loudspeaker
10-way printed circuit connector

## Constructor's Note

The TMS 5100 is available from the Warwick Design Group at $£ 14$, the VM61001 at $£ 16$, the printed circuit board $£ 5$. A full kit of components is available for $£ 37$ from the Warwick Design Group, 12 St . George's Road, Leamington Spa CV31 3AY.
starting address of the required word is first toggled into the TMS 5100 via the CTL lines. A 'Read and Branch' instruction is then executed, and on receiving a 'Speak' instruction, the audio output is activated.

## CONCLUSIONS

The voice synthesis board described above can be used as a basic building block in many different applications. It
can be interfaced directly to a microcomputer or used to enhance an existing instrument such as a digital voltmeter. frequency meter, digital clock, or CB radio read out.

NEXT MONTH: A method for interfacing the voice synthesis board with a 3 digit, 7 segment display will be described


Fig. 1.9. Printed circuit board


# Baraha 

WANTED Buy or borrow, handbook manual for Ferrograph series Four, also require bulk tape eraser, Robert Du Pontet, 55 Staplegrove Road, Taunton. Tel: (0823) 72909
WANTED Circuit or manual for miniature oscilloscope type CT52. Buy or borrow. W. D. Goodwin, 1 Long Meadow, Natland, Kendal, Cumbria LA9 7 Qz.
ACORN Atom fully expanded TV monitor, cassette recorder, p.s.u., tool kit, ROM, 36 software tapes inclusive, $£ 220 \cdot 00$. Mr. R. W. Hearn, 10 Speedwell Close, Pakefield, Lowestoft. Suffolk NR33 7DU. Tel: Lowestoft 66026.
MAPLIN matinee organ for sale, complete and working. £370. Tel: 01-578 5448 (Greenford). D. J. Comber, 66 Chinnor Cres., Greenford, Middx. UB6 9NX
UK101 $32 \times 4812 \mathrm{~K}$ BASIC 16 K RAM Motherhood, EPROMS + Programmer sound $\frac{1}{4} \mathrm{MHz} \mathrm{3/600B}$ software, E 280 o.n.o. N. Brooks, 103 Drake Rd., Harrow. Middlesex HA2 9DZ. Tel: 01-8689524
WANTED, to buy or borrow, handbook for telequipment oscilloscope type D56. G. V. B. Russell. North Yeo, Instow, Bideford, Devon EX39 4JJ. Tel: (0271) 860570
ZX81 32K with "Fuller" keyboard, p.s.u. and case. 3-D maze game. Three books, Sinclair manual, £100. M. Bond. 2 The Grange, Eastbourne Road, South Godstone, Surrey RH9 8JQ. Tel: 034-285 3168.
CASIO FX702-P pocket computer with printer, cassette interface and 5 rolls of paper. £115 o.n.o. S. J. Riddle, 51 Marshalswick Lane, St. Albans, Herts. AL1 4UT. Tel: (0727) 53946.

WANTED Cosser type 230 cathode ray tube. A. F. E. Riley, 1 Boulton Sq. West Bromwich, Staffs.
LOGIC cards: 6 FND800 displays and CD4511, £3.00. PSU $+5 /-12$ with power-on reset, f6.00, p.p. extra. Norman Simons, 187 Ladbroke Gr., London W10. Tel: 01-9696150.
MARSHALL 100 watt amp transistorised, lead good condition. £100 o.n.o. Mr. A. C. Clews, 5 Hedgerow Dr., Kingswinford, West Midlands DY6 7SA. Tel: 271404 (0384).
PHILIPS 1700 V.C.R. with tapes, faulty head, £80. Buyer collects, Cash please. J. Gray, 9 New Road, Hextable, Swanley, Kent 日R8 7LS. Tel: Swanley 64486.
WANTED circuit diagram of $2 \times 80$. Will pay photostating, postage etc. Robert Forsyth, 45 Cyclamen Road, Swanley, Kent BR8 8HH. Tel: Swanley 64394 after 6 pm .
UK101 8 K , Cegmon, new Basics 1,3,4,16/32×48 screen, cased, PE extension boards (No i.c.'s) E80 o.n.o. Somerton 72663 evenings.
6 VOLUMES Radio TV servicing 1968 to 1974 mint condition $£ 14.50$ carriage extra, weight 18lbs. D. Clark, 2 Eriskay Avenue, Hamilton, Strathclyde, Scotland. Tel: Hamilton 421757.
UK101 plus 610bd. 32K RAM $2 \times$ Mini Disk drives, SEK 65D 3.3 DOS, Link 65 Cegmon b/w monitor £450 o.n.o. Stuart Higgins, 138 Lower Farnham Road, Aldershot, Hants. Tel: Ald 28796.

UK101 8K-32L cased Cegmon resident Basics 1,2,3,4,5, T/KIT II, Codekit + cassettes Assembler, Forth, Exmon, games £200. p/exch? Tel: 0252 546739, Farnborough, Hants.
WANTED Reasonably priced synthesised shortwave receiver, also spool type VRT. Write first 16 Rosalind House, Stanway Si., London N 1 6RR.
$2 \times 5$ Octave keyboard $2 \times 5$ Octave PC/B key swirch assamblies, $2 \times$ foot controls $S / L$ reverb unit unused, £80.F. L. Mebhurst, 168 Maesglas Cres., Newport, Gwent NPT 3DA.
TWO $\pm 15 \mathrm{~V}$ power supplies complete, uncased, $£ 10$ ea. Four RC4 $195 \pm 15 \mathrm{~V}$ regulators, $£ 3$ ea. Paul Blackburn, 33 St. Annes Rd., New Marske, Redcar, Cleveland. Tel: Redcar 485127.
MONO DX TV for sale, pro. conversion, isolated chassis, all bands, video/audio in/out, E25 o.n.o Mr. A. Bouskill, 129 Lyminster Rd., Sheffield, S. Yorks S6 1HY. Tel: 0742311191.
WANTED Good quality Gould oscilloscope, double beam, 10 MHz min . or similar. Must have good triggering. Anthony Collins, 34 Lock Assynt, East Kilbride, Glasgow G7H 20W.
SOLDERING iron, Weller TCP $24 \mathrm{~V} / 48 \mathrm{~W}$ ineeds transformer to use), plus bench stand. Unused present, £15 including postage. Tel: Oxford (0865) 779855.

WANTED circuit diagram of ZX80. Will pay photostating, postage etc. Robert Forsyth, 45 Cyclamen Road, Swanley, Kent. BR8 8HH. Tel: Swanley 64394 after 6 pm .
UK101 8K, Cegmon, new Basics, $1,3,4,16 / 32 \times 48$ screen, cased, PE extension boards (No i.c.'s) £80 o.n.o. Somerton 72663. 6 VOLUMES Radio TV servicing 1968 to 1974 mint condition $£ 14.50$ carriage extra, weight 181 bs . D. Clark, 2 Eriskay Avenue, Hamilton, Strathclyde, Scotland. Tel: Hamilton 421757 UK101 plus 610bd. 32K Ram $2 \times$ Mini Disk drives, SEK 65D3.3 DOS, Link 65 Cegmon b/w monitor £450 o.n.o. Stuart Higgins, 138 Lower Farnham Road, Aldershot, Hants. Tel: Ald 28796.

UK101 8K-32L cased Cegmon resident 8asics 1,2,3,4,5, T/KIT II, Codekit + cassettes Assembler, Forth, Exmon, Games £200, p/exch? Tel: 0252 546739. Farnborough, Hants.


Copies of Patents can be obtained from: the Patents Office Sales, St. Mary Cray, Orpington, Kent. Price £1.60 each.

## BACK TO TESLA

Something old for a change. There's been a lot of interest recently in the life and work of Nikola Tesla, largely due to the publicaion of a new biography. Tesla's American patent, number 645576 of March 1900, is well worth a read, even today. You can read it on micro film at the Science Reference Library, attached to the British Patent Office, in Chancery Lane, or you can buy a photo copy made from micro film for around $£ 1$.

Tesla's patent, entitled 'System of transmission of electrical energy' was filed in 1897. At first sight it may look like a reinvention of Marconi's first ideas for radio. But Tesla wasn't talking about the transmission of low-powered message signals, he was proposing the transmission of electric power in bulk over long distrances, without wires. 'I contemplate employing my invention on an industrial scale', he wrote 'for lighting distant cities or districts from places where power is obtrainable'. Was he a hundred years ahead of his time, or a fool?

In the drawing the transmitter is a transformer with a primary C and a econdeary $\mathbf{A}$. The secondary is wound from thin wire and connected to a steel cable B suspended high in the air by baton D. In-


IMYENTOA

termittent power is input from source G, for instance a capacitor.

The receiver is of similar construction, with lamps $L$ as the load. Tesla built a small scale model and claimed that he could transmit power from one unit to the other in a vacuum environment with a potential of around 4 million volts. 'It was easy under these conditions', he wrote in the patent, 'to transmit with fair economy considerable amounts of energy He claimed that by cranking the voltage up to about 50 million volts, with a secondary 50 miles in length, and suspended aerials 35,000 feet above sea level, it would be possible to transmit 'many thousands of horse power - many hundreds and even thousands of miles'. The system, he said, could also be used to transmit messages. Another idea was to manufacture materials like nitric acid and fertilisers, from gases occurring naturally in the upper atmosphere.

Tesla was at pains in the patent not to claim the apparatus, just the method of transmitting electrical energy through the upper air strata. Reports, perhaps not as crazy as they at first sound, suggest that the Russians may have recently been putting Tesla's patent theories to the test using modern technology.

## SPEAKER IMPROVEMENTS

Celestion, the Ipswich loudspeaker manufacturers, have received considerable critical acclaim for their SL6 unit. The commany have been cagey about giving technical details on fine points of constructon, but their patent applications are now being published.

European patent application 0065882 covers the HF tweeter dome which is an important factor in the sound of the SL6. Conventionally radiating domes have been made out of impregnated cloth, plastics or metals like alum inium or titanium. The snag has been poor heat dissipation. When the speaker is playing loud music, especially pop with synthesizers in the orchestration, there is a considerable amount of high frequency energy to be reproduced. The drive coil heats up and may burn out. Cooling fluids have been used as a heat sink. Now Celestion have killed two birds with one stone by making the dome radiator serve as its own heat sink.

The patent lists a wide range of possibilities, but essentially the dome is for-
med from one or two layers of a metal which is a good heat conductor. Although silver and gold are usable, they are too expensive, so copper is chosen in practice. The dome is less than 1 mm thick, and formed by metal deposition, for instance in a vacuum or by RF sputtering. If acoustic damping is needed, the dome can be formed from two layers of metal separated by


FIG. 1.

a filler layer of plastics or rubber. It can also be protected by a very thin coating of nonmetallic material.

Celestion has also filed a European patent application, number 0065883, on a different way of securing a ring radiator to. its clamps, so that the unit doesn't fall apart when driven at high power. Fig. 1 shows the conventional way of securing a diaphragm 10 between ring clamps 12. The drive coil 16 is wound on tubular former 14 and secured to the apex of the diaphragm at butt joint 18, by glue. Because the area of adhesive contact is so small, the joint is liable to fail under load.

To overcome this Celestion makes the diaphragm in two halves, one half also serving as the former for the drive coil. Fig. 2 shows one half of the diaphragm 22 with an angled tongue 22C at the end. The other half of the diaphragm 24 has a large flange 24 C which serves as the former for coil 28. The two halves of the diaphragm are glued together at the tongue 22 C , so there is a much larger area of adhesive contact and less likelihood of failure under load.

## MIDWICH COMPUTER COMPANY LIMITED

FAST EX-STOCK DELIVERY OF MICROCOMPUTER COMPONENTS AT UNBEATABLE PRICES


# Michael Tooley B.A. David Whitfield M.A.M.Sc. 

WINDSCREEN wipers have featured on modern motor vehicles since their earliest days. At first, drivers considered themselves lucky to have even a single electricallydriven wiper blade, usually running at a fixed speed, and requiring manual parking when no longer required. With the passage of time, improvements in the form of twin-bladed wipers, switched speeds, self parking and intermittent wash/wipe facilities have been introduced. Although considered by some to have detracted from the 'character' of the earlier cars, these changes have undoubtedly been of significant benefit to the motorist at large. Typically now even the basic models feature two-speed self-parking twin front wipers, usually with intermittent wash/wipe facilities, as standard equipment.

The advent of the popular hatchback style has seen the introduction of tailgate wash/wipe on many cars. The normal arrangement is to provide a single-bladed, slower-running wiper running at a fixed speed with self-parking, and in many respects this is often adequate. There are situations, however, in typically English periods of wet weather when the rain, although continuous, is not really heavy enough for the rate of wipe provided. This can lead to the driver continuously switching the wiper on and off, which is both distracting and tiresome. The alternative is a wiper which tends to 'drag' across the rear screen surface, resulting in a screen which is more smeared than wiped; the noise in itself is often as distracting as the reduced visibility is hazardous.

The unit to be described will provide a variable speed control for a rear screen wiper to help overcome some of the problems described above. It uses a small number of low cost components, and can be fitted with the minimum of rearrangement to the existing vehicle wiring. When installed, the unit can be used to select any rate of wipe between once every minute and the maximum of the rate fitted as standard. The existing wiper controls are retained, allowing drivers unused to the additional facilities to drive as normal.


Fig. 1. Conventional tailgate wash/wipe circuit

## CONSIDERATIONS

A typical tailgate wash/wipe circuit is shown in Fig. 1 with the controls set in the 'wipe' position. The +12 V lead labelled ' $a$ ' is permanently connected to the wiper motor, and provides power for self parking when the driver moves the control from 'wipe' to 'off'. The motor housing itself contains another switch which disconnects the winding from lead ' $a$ ' when it reaches the parked position. Lead ' $b$ ' is connected to ground in the 'off' position to help prevent the motor overshooting the parking position (thereby starting another wipe cycle) by collapsing the motor field when 'a' becomes disconnected. In the 'wipe' position, 'b' ensures that the motor continues turning through the parking position, thereby producing continuous operation of the wipers. Internally within the motor, 'a' and ' $b$ ' are both connected via a diode and a rotating switch arrangement to one end of the motor winding, while the other end is permanently grounded.

One consideration in producing a wiper delay unit is that, although intended to be used when the normal wiper control is set to 'off', it should not interfere with the wiper if used when the control is set to 'wipe'. The basic principles of the unit to be described are shown in Fig. 2. The delay unit, when switched on, produces a continuous stream of pulses to drive switch S 1. The duration of each pulse is chosen to be long enough to 'kick' the wiper out of its parked position, but not so long as to exceed one complete wipe cycle (which on a small hatchback is typically just under two seconds). Varying the interval between these pulses then gives the method of varying the rate of wiping. The unit described allows variation from one wipe every minute, up to the maximum rate supplied of approximately 30 to 40 wipes per minute. As can be seen from the schematic in Fig. 2, if both the delay unit and the normal wiper controls are both switched 'on', the wiper will operate continuously at the standard fixed speed without difficulty.



## CIRCUIT

The wiper delay unit is designed around a general purpose circuit board which may be readily adapted for use with a wide variety of wiper configurations. The circuit diagram for this basic module is shown in Fig. 3. The basic timing element is the ubiquitous 555 monolithic timer, IC1, which is used here in a conventional astable configuration. The output low period from pin 3 of IC1 is set by R2 and C1, according to the equation $\mathrm{T}_{\mathrm{L}}=0.7 \mathrm{R} 2 \mathrm{C} 1$, while the output high period for fixed values of R2 and C1 is set by R1 and VR1, according to $T_{H}=0.7(R 1+V R 1+R 2) C 1$; both equations give times in milliseconds for resistances in kilohms and capacitances in microfarads. The component values shown in Fig. 3 will produce a fixed low output period of 0.7 seconds, while the output high period will vary from approximately 1.3 seconds (minimum VR1), up to around 70 seconds (maximum VR1). This produces a useful range of pulse-to-pulse intervals, but without the need for any unusual component values.

The series switching device is a Darlington power transistor, TR1, which is operated in common emitter mode. The load is connected in its collector with a fuse, FS1, included for protection, and an l.e.d. gives an indication of the output state. In this configuration, the load is switched on when the output of IC1 is low. With the transistor specified mounted on a suitable heatsink, loads of up to 5 amps may be controlled. This would allow the older type of wiper without selfparking facilities to be controlled directly; simply adjust the value of R2 to give an output low period which is equal to the time taken for the wiper to complete one wipe cycle. In simple applications the load is connected between terminals 5 and 6 of the delay unit, and FS1 and D2 are chosen to have ratings appropriate to the load concerned. There is, however, no simple, cheap and robust method of using semiconductor switching when the load is a self parking wiper, and so the load on TR1 will be the relay coil for the switch S 1 which is shown in Fig. 2. In this case, the ratings of D2 and FS1 may be significantly reduced; 1 amp will allow a useful number of relays all to be connected to the same output without overload.

The general purpose circuit described above may be used for a wide range of applications simply by changing the timing components to give the required on/off periods. Alternative values may be calculated from the equations given.

## CONSTRUCTION

The basic delay unit described above and shown in Fig. 3 is built on a small single-sided p.c.b., the foil layout of which

## COMPONENTS

| Resistors |  |
| :--- | :--- |
| R1 | 8.2 k |
| H2 | 10 k |
| R3, R5 | $1 \mathrm{k}(2$ uff $)$ |
| R4 | 470 |
| VR1 | 1 M variable potentiometer with switch |

Capacitors

| C1 | $100 \mu 16 \mathrm{~V}$ elect. |
| :--- | :--- |
| C 2 | 100 n ceramic |

Semiconductors
IC1 555
TR1 TIP126
D1 0.2 inl le.d
D2 See text
D3 1N4001
Miscellaneous
Terminal pins ( 6 off)
12 volt changeover relay (see text) Printed circuit board
Tap-in connectors ( 4 or 5 off - see text) P.c.b. fuse holders (2 off) plus fuse (see text) Insulating hardware for TR 1 (optional)
Socket for IC 1 (optional)
is shown adjacent. The corresponding component layout (on the top side of the p.c.b.) is shown adjacent. For low power loads such as relay coils, and other loads up to approximately 1 amp, the use of a heatsink for TR1 is not essential, but will render the unit more robust. Above 1 amp, the use of a heatsink is recommended; one rated at around $10^{\circ} \mathrm{C} / \mathrm{W}$ is suitable and will fit on the p.c.b. shown. The metai tab of the TIP126 is connected to the collector and hence in some applications it may be desirable to insulate the tab from the heatsink using a standard mounting kit.

Care should be taken to ensure the correct orientation of the polarised components but otherwise no special handling procedures are required. The use of a d.i.I. socket for IC1 is optional, and connections to the p.c.b. are made using terminal pins which are a push-fit and then soldered to the copper track. The component layout for the unit is in no way critical, and constructors may prefer to use a small piece of Veroboard in place of the p.c.b. shown.

The track layout for the p.c.b. allows either a preset resistor or a fixed resistor to be fitted in the place shown for VR1. This allows the provision of a single preset wiper speed in applications where this will suffice, or where there is insufficient space to mount a variable control on the dashboard. In the majority of applications, however, it is expected that neither a fixed resistor nor a preset will be mounted on the p.c.b., and instead a potentiometer will be wired between pins 2 and 3 and mounted on the dashboard; the unit on/off switch is most conveniently combined with VR1. In situations where the delay unit will be mounted away from easy access, it may be useful to fit a 5 amp fuse in the p.c.b. holder, and then use a standard in-line automotive fuseholder with a more appropriate fuse to protect against overloads and faults. In general, FS 1 (or the in-line fuse) and D2 should be chosen to have a rating approximately twice that of the continuous rated load current. In relay-driving siruations, a 1 amp fuse and 1 N 4001 diode or similar are suitable components

## TESTING

When the p.c.b. assembly is complete, it should be carefully checked for dry joints and solder bridges between adjacent tracks. The board may then be mounted in a small plastic or diecast box if required, prior to some pre-installation tests. A 12 volt supply, preferably with an electronic over-current trip or at least with a 1 amp line supply fuse, should be connected between pins 1 and 4. A short wire link should temporarily be fitted between pins 2 and 3 . Turning on the supply should cause the l.e.d. to begin to flash every 2 seconds, with a mark: space ratio of approximately $1: 2$. The supply current should vary between approximately 5 mA (I.e.d. off) and 50 mA (I.e.d. on). As a final check, the voltage between pins 5 and 6 should fluctuate between just below the supply voltage and 0 volts, following the indication of the l.e.d. on/off, respectively. Removal of the shorting link between pins 2 and 3, and substitution with a resistor should cause the l.e.d. to remain extinguished for a period which is progressively longer as the resistance is increased.

## INSTALLATION

The installation of the delay unit, relay and switch/optional speed control follows the wiring diagram shown in Fig. 5. If only a fixed speed is to be used in conjunction with a p.c.b. mounted component for VR1, then the two wires marked with asterisks in the drawing are simply omitted. The first step is to identify the two wires from the normal wiper controls which are marked ' $a$ ' and ' $b$ '. This is best done with the aid of the wiring diagram for the car, but may easily be done with the wiring to the dashboard switch exposed. In case of doubt, wire 'a' will carry +12 volts whenever the ignition circuit is switched on, whereas wire ' $b$ ' will carry +12 volts only when the ignition is on and the wiper controls are on.

When leads ' $a$ ' and ' $b$ ' have been identified, switch off the ignition and use four tap-in connectors (coded 1 to 4 in the diagram) to complete the circuit. It will be necessary to cut wire ' $b$ ' as shown between connectors 2 and 3 , and in many cases a fifth connector may be used to connect p.c.b. pin 4 to ground via one of the leads on the normal wiper switch.

Fig.4. Foil pattern for p.c.b. and board layout (right)



Fig. 5. Details of unit installation
The relay shown may be mounted either in the same box as the p.c.b. or secured anywhere convenient. This relay may be almost any changeover relay fitted with a 12 volt coil; car accessory shops usually stock these for headlight changeover and similar purposes.

## CHECK OUT

When installation is complete, ensure that the delay unit is switched off, and turn the ignition back on. Check that the normal tailgate wiper control still functions correctly. If the wiper runs continuously regardless of the control setting, it is likely that the connections to the relay switch contacts have been confused, and these should be checked. When all is satisfactory, the normal wiper control should be returned to 'off', and the delay unit switched on. Turning VR 1 fully clockwise should produce a wiping speed very close to the normal speed. If the control appears to work the other way round, simply move the lead from p.c.b. pin 3 to the unused pin of VR 1 .

The final check should be to set the unit to the slowest wipe rate (VR 1 fully anti-clockwise), and then turn on the normal wiper control. The result should be to restore the normal wipe rate.

The unit is now ready for use on the road in the next wet period; an opportunity to use it in anger will not normally be long delayed!

## MODULES FOR SECURITY \& MEASUREMENT



## Wersi - the Range of Organs You Build Yourself!



With the aid of revolutionary electronics, easy-to-follow instructions and our superb iechnical back-up service . . . anyone can build a WERSI organ from a kit - and save half the recommended retail price. Want to know more? Just fillin the coupon and we'll send you FREE details of the superb WERSI range - you'll get the facts - inside and out!

PLEASE SEND ME FURTHER DETAILS OF THE WERSI RANGE
UK \& Northern Ireland only
NAME
ADDRESS
WERSI ORGANS \& PIANOS LTD
14-15 Royal Oak Centre, Brighton Road, Purley, Surrey. Tel: 01-668 9733

Send to WERSI ORGANS \& PIANOS LTD.
14-15 Royal Oak Centre, Brighton Road, Puriey, Surroy

# Switched Capacitor PIISER <br> R.A.PENFOLD 

THE popular phasing musical effect is produced using a filter which has one or more notches of deep attenuation that are automatically swept up and down over the audio frequency range. The two normal methods of obtaining this effect are to use either a delay-line or phase shift networks to generate an output which is out-of-phase with the input at certain frequencies, and then by simply mixing the input and output signals the required notches of high attenuation are produced by a simple cancelling process.

This phaser unit uses a simple alternative which is made possible by the advent of practical switched capacitor filters, and the unit is built around the two filters of this type in the MF10CN device. Each half of the MF1OCN actually has two filter sections plus some additional circuitry so that two state-variable filters are produced using a single MF10CN, and depending on the mode of operation selected these each provide notch, bandpass, and lowpass outputs, or highpass, bandpass, and lowpass outputs.


Fig. 1. Block diagram showing one section of the MF10CN

Fig. 1 shows in block diagram form one section of the MF10CN, and this also shows the mode of operation employed in this project. The MF10CN has a 20 pin d.i.l. plastic package, and the diagram shows the pin numbering for onehalf plus the equivalent pin numbers for the other half, in brackets. Pin 15 is common to both halves of the device. R1 and R2 are used to set the closed loop voltage gain and input impedance of the input operational amplifier at suitable figures, and R3 introduces negative feedback from the bandpass output which produces the required notch response at the output of the operational amplifier. The Q of the filter is determined by the value given to R3.

## BLOCK DIAGRAM

Fig. 2 shows the block diagram for the entire unit. As its name implies, a switched capacitor filter consists of electronic switches which connect the input signal to (and disconnect it from) the filter capacitors, and the switching rate
is determined by a clock signal. This type of filter is very useful since the operating frequency of the filter is directly related to the clock frequency, and for the MF10CN the operating frequency can be either one-hundredth or onefiftieth of the clock frequency. By making the clock frequency adjustable, the operating frequency of the filter can be controlled, and by using a voltage controlled oscillator (V.C.O.) to provide the clock signal the operating frequency of the filter can be automatically swept up and down using a low frequency oscillator to provide the control signal.


E6IO10
Fig. 2. Block diagram of entire unit

In this design the two filters of the MF10CN are connected in series and are obviously used as notch filters. A simple lowpass filter is used at the input to eliminate any r.f. signals which might otherwise be fed into the input due to stray pick-up, and which could heterodynes with the clock signal or its harmonics. The clock signal only breaks through to the output at a low level (about 10 mV r.m.s.) and is not likely to cause any problems, but another low pass filter is used at the output to further attenuate the clock signal.

The clock signal is generated by a simple V.C.O. Which is controlled by a low frequency oscillator having a roughly triangular output waveform. Obviously the two filters must provide notches at different frequencies, and the two simple ways of achieving this are to either use separate clock oscillators with a common sweep oscillator or to feed the output of the V.C.O to a divider circuit to produce a second, lower frequency clock signal. In practice, the second method seems to be the cheaper and more satisfactory solution, and is the one adopted in the final circuit. A divide by four circuit puts the two notches a couple of octaves apart, and in practice this spacing seems to be about optimum.

## THECIRCUIT

The circuit of the filters is shown in Fig 3, and Fig 4 shows the circuit diagram of the sweep oscillator, V.C.O., and divider stages of the unit.

C2 gives d.c. blocking at the input and R3 plus C3 form a simple r.f. filter. R4 and R5 set the input impedance and voltage gain of the first notch filter at 33 k and unity respec-
tively, and $R 6$ gives the filter a fairly low $Q$ value. Making R6 higher in value gives a higher $Q$ value, but the notch produced then tends to be so narrow that the phasing effect becomes barely noticeable with most signal sources. A lower value for R6 gives reduced Q and broader notches which give a more extreme effect, and if desired constuctors can experiment with the value of this resistor in order to obtain the effect that they consider to be most suitable. The output of the first notch filter is direct coupled to the input of the second filter, and this second stage is identical to the first. R10 and C4 form the output lowpass filter and C5 gives d.c. blocking at the output. S1 enables the circuit to be bypassed when the phasing effect is not required.

The MF10CN has a number of terminals which must be connected to the appropriate voltages in order to obtain correct operation of the filters. Pins 13 and 14 are negative supply terminals for the digital and analogue circuits of the device respectively, and pins 8 and 7 are the equivalent positive supply terminals. These two sets of supply terminals can be decoupled separately, or simply wired together as in this case. Pin 6 controls the switch in each half of the device (see Fig. 3), and in the filter mode used here it must be taken to the positive supply voltage. Pin 9 is the level shift input, and for single supply operation this is connected to the


Fig. 3. Circuit diagram of the filters


E6017
Fig. 4. Circuit diagram of the sweep oscillator, V.C.O, and divider stages
negative supply rail. The device is then compatible with TTL and CMOS clock signals.

A number of pins are biased to half the supply potential, including pin 15 which connects to the non-inverting inputs of the operational amplifiers in the device. Pins 5 and 16 are unused inputs of the MF1OCN and must be biased to half the supply voltage in order to give proper operation of the circuit. Pin 12 is the 50/100 clock input and is tied to half the supply potential to give a filter operating frequency which is one-hundredth of the clock frequency (as in this circuit), or high to give an operating frequency which is onefiftieth of the clock frequency. Having the clock at one hundred times the filter frequency is advantageous in this application since it enables the lower frequency notch to be swept down to around 200 Hz without the clock coming down into the audio frequency range and producing audible breakthrough. A minimum notch frequency of only about 400 Hz is possible with the clock at fifty times the filter's operating frequency.

## CLOCK AND SWEEP OSCS.

The sweep oscillator uses IC4 in a well-known configuration, and R16 is given a comparatively low value so that the circuit has a high enough voltage swing across C9 to give an adequate sweep range from the V.C.O. The non-linear triangular waveform across C 9 is at a very high impedance,
but loading on this by the input of the CMOS V.C.O. is negligible.

The V.C.O. uses the 4046BE CMOS device which is actually a low power phase locked loop, but this makes an excellent V.C.O. if the phase comparators are just ignored. The only two discrete components required are C8 and R11 which set the operating frequency range of the oscillator.

The divide-by-four circuit is a CMOS 4013BE dual D type flip-flop which has each section connected as a straightforward divide-by-two circuit, and they are connected in series to give divide-by-four operation.


Phaser Unit

The MF10CN is designed for use with either dual 5 volt supplies or a single 10 volt supply, but it will operate satisfactorily down to a supply voltage of $\pm 4$ volts or 8 volts, and can therefore be used with a 9 volt battery supply. The average current consumption of the circuit is approximately 8 mA .

\section*{COMPONENTS <br> | Resistors |  |
| :--- | :--- |
| R1,R2 |  |
| R3 | $5 k 6$ |
| R4,R5,R7.R8 | $1 k 8$ |
| R6,R9 | $33 k(4$ off $)$ |
| R10 | $22 k(2$ off $)$ |
| R11 | 470 |
| R12 | $15 k$ |
| R13,R14 | $2 k 2$ |
| R15 | $56 k(2$ off $)$ |
| R16 | $27 k$ |
| R | $4 k 7$ |}

All resistors $\frac{1}{4} \mathrm{~W} 5 \%$ carbon

## Potentiometer

VR1 470k logarithmic carbon

## Capacitors

C1
C2
C3
C4
C5
C6
C7
C8,C10
C9

## Semiconductors

IC1
IC2
IC3
IC4
$4 \mu 763 \mathrm{~V}$ axial elect
$2 \mu 263 V$ axial elect
220 p ceramic
10n polyester
$10 \mu 25 \mathrm{~V}$ radial elect
$100 \mu 10 \mathrm{~V}$ axial elect
100n polyester
33p ceramic plate $2 \%$ ( 2 off)
$10 \mu 16 \mathrm{~V}$ tantalum

Miscellaneous
SK 1/S2
Standard 6.35 mm jack with d.p.d.t. contacts
SK2
Standard 6.35 mm jack socket
S1
d.p.d.t. heavy duty push button switch
B1
9 volt PP3 battery and connector
$150 \times 80 \times 50 \mathrm{~mm}$ diecast aluminium box (M.E.S. type DCM5005 or similar). Printed circuit board. Control knob. Veropins, i.c. sockets, wire, etc.

## CONSTRUCTION

S1 is a heavy-duty push-button switch which is fitted centrally on the top panel of the case so that it can be operated by foot. It is necessary to use a strong case since it will have to withstand a fair amount of pressure each time S1 is operated, and a diecast aluminium box measuring 150 by 80 by 50 mm is ideal. The two sockets and VR1 are mounted on one of the 150 by 50 mm sides of the case.


Fig 5 shows the wiring of the potentiometer, sockets and foot switch; the corresponding designations being shown in Fig 7 with the component layout. Fig 6 shows the p.c.b. design. There is ample space within the unit to house the PP3 battery which should be securely positioned. All four integrated circuits are CMOS types and the usual MOS handling precautions should be observed when dealing with these. SK 1 has d.p.d.t. contacts, but these are only used here as a single set of make contacts which automatically switch the unit on when a jack plug is inserted into SK 1. However, on/off switch S2 can be a separate switch if preferred. VR1 controls the phasing speed, and this is a logarithmic potentiometer used in reverse (i.e. clockwise rotation gives a decrease in phasing rate). This control covers a wide frequency range of about 0.1 Hz to 10 Hz , and this method gives easier control of the phasing speed than that obtained using a linear potentiometer, especially at the high frequency end of the range. Note that IC3 has the opposite orientation to the other three integrated circuits, and that this device could easily be damaged if the unit is switched on with it connected the wrong way round.

If the specified case is used the printed circuit board will


Final assembly showing P.C.B. in position


Fig. 6. P.c.b. design


Fig. 7. Component layout and wiring
slot into place in the guide rails at the rear of the case. There is ample space for mounting holes to be drilled in the board if a different case is used.

Provided the unit is used with an input level of a few hun-
dred millivolts r.m.s. or more it will provide a good signal to noise ratio of 60 dB or better. The maximum input level the unit can handle without clipping and producing severe distortion is more than adequate at about 2 volts r.m.s.

## PE SPECIAL CASSETTES OFFER

## CHROME C60 \& C90

CRO2 C60 CASSETTES
90p each (minimum of 5): 80p each (minimum of 25)

## CRO2 C90 CASSETTES

115 p each (minimum of 5): 105p each (minimum of 25)

## FERRIC C90 AUDIO c90Lh cassettes

56p each (minimum of 5); 53p each (minimum of 25).

## PRICES INCLUDE VAT AND POSTAGE.

These Eutopean-made tapes are excellent value and we are pleased to offer them to readers. They are covered by a money back guarantee (return within 21 days for refund). Not only are the tapes of high quality but the cassettes are of screw together construction and the case labels have space for notes on the recordings.
Send valid coupon to:
Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4.



## Our Sister Publication

EVERYDAY ELECTRONICS
features the following projects in the April issue:

## PROJECTS

TEST GEAR 83 - Unit 2: FUNCTION GENERATOR SINCLAIR SPECTRUM BLEEP AMPLIFIER FLANGER EFFECTS BOX CAR RADIO POWER BOOSTER

## NEW SERIES

ELECTRONICS ANDTHE ELECTRON - 1

## ALSO

CIRCUIT EXCHANGE
A forum for readers ideas

## APRILISSUE

ON SALE MARCH 18
Place an order with your newsagent now!

## Space Watch...

## THE EXTRA-TERRESTRIAL PROBLEM

In this issue of Spacewatch we will deal with the question of extra-terrestrial intelligence. It must be made clear that this does not mean that it is proposed to deal with UFO sightings, or the value of reports which come into various centres at a rate in excess of one hundred a week. To avoid confusion it is necessary to clarify the origins of the phrases 'Flying Saucer' and 'Unidentified Flying Object'. The term 'Flying Saucers' probably originated from a 'recorded' sighting early in the last century in southern United States, when a farmer described an object as, "It looked like a cup saucer". After that reports were frequent which led to speculation on "Flying Saucers". Because so many of such reports were the result of faulty observation or imagination, it was decided to rename all sightings and call them-"Unidentified Flying Objects." By that time many more frequent reports were coming in and unfortunately the new name made the situation worse because instead of making the claims for seeing flying saucers, the reports were of UFO's, which became synonymous with "Flying Saucers" throughout the media. The meeting which made this brave attempt to regularise matters in 1947 led to an enormous increase in sightings.

It is often mistakenly stated that, if a large number of people "see" something and describe it similarly then it means that such an event must be true and accepted. This is still the case, even now, when there is so much evidence of the extreme lack of reliability in these observations. How then to deal with the subject of the possibility of extra-terrestrial intelligence. The first step is to decide the place from which the experiment is to be carried out. This must, if dictated by the Einstein view of the cosmos, be from the Solar System. At the present state of knowledge in matters of communication the electromagnetic spectrum determines the limits. Such an attempt began in 1974 from the $1,000 \mathrm{ft}$. diameter radio telescope at Arecibo, Puerto Rico. The signals were directed to a globular cluster of about a million suns, known to astronomers as Messier 13. It will take about 24 thousand years for the coded signal to reach that vicinity and the time at least, for a return signal to be received back on Earth will also be 24 thousand years. This serves to emphasise the limitations of the system of communication. Within the solar system itself
there are time delays in communications that are necessary, even for the short distance to the moon, and from the Voyager spacecraft still longer delays, increasing as time goes by.

The original project for the search was known as Ozmar and was organised by Frank Drake, then at Greenbank, West Virginia. It operated between 1959 and 1960-a coded signal was sent out in the direction of Epsilon Eridani and Tau Ceti and this was continued for only a few weeks. Of course there was not much success and the co-operation was lukewarm. In any case a few weeks was not likely to afford much data since, ideally at least 100 thousand or so stars would need to be studied. Later the construction of a 600 foot dish was begun and this project failed but a number of other attempts were made and because there was little enthusiasm, not many people had much interest in the matter. There is a project in Canada, and the Russians have a station which has now been turned into a full scale search with the RATAN-600 telescope. Half the observing time is spent on extraterrestrial work with this telescope. Now that a much wider view of the matter is taken, and with the development of improved receiving techniques together with spaceborne telescopes, much more can be done. In spite of all this it is difficult, under present thinking, to lay down a definite programme which could offer positive proof within a lifetime.

Another project which has been partly carried out for reaching deep into space, is an American venture. This when completed will consist of a "Mills Cross" so named after the originator B. Y. Mills from Australia. This is in the form of a number of lines of parabolic dishes set up in the form of a cross, each arm being 12.5 miles in extent. This will behave as though it is in fact a 25 mile diameter dish.

It would be even better if one telescope was on the Moon and the other on Earth, and better still if there was one also on Mars. However all this makes certain suppositions which might be set out as;
-The manner of thinking must be the same as the Earth's inhabitants
-They must be at the same stage of development as the Earth is. In the case of the Messier 13 cluster this would mean that the inhabitants of a planet would have existed 24 thousand years before our time unless they have at the time of the arrival of the signal from Earth, a system of communication which could cover all future developments and still conform to the present theories used on Earth. This is an unknown. That being the case then any project has to make certain assumptions. In the projects so far suggested or attempted it has been assumed that any other beings would be humanoid like ourselves and have the same physiology. This had to be, though there were those who suggested that no matter what the form, the physics of the universe must be readable in terms of mathematics. This latter assumption is not justified on the present state of knowledge. There is not enough space in one issue to deal with this at length but suffice to say for the moment that ány alternative view has to depart from mathematical concepts based on the work of Einstein. This is a matter which still exercised the great man's mind until his death.

So far although the Universe as a whole has
been mentioned as a source for the possible signals from extra-terrestrials, it is perhaps wise to look at the problem from the point of view of the Solar system and our own Galaxy. Consider then that in our Galaxy which has spiral arms and rotates. The extent of Galaxy is about 100,000 light years in diameter and at its thickest part is about 20,000 light years. The Solar system is situated at a point some 32,000 light years from the gaactic centre. Since the Solar system rotates with the galaxy it takes something around 225 million light years for the Solar system to complete this journey. The total number of stars is enormous and they are in various states of birth, growth and death. Among the many millions of stars suppose there are one million which with a developed technology would use the electromagnetic spectrum as a means of communication. Let the distribution be random and the average distance between them be of the order of 300 light years. With communication techniques available to the denizens of the Earth the shortest time for a signal to be sent and an answer received is 600 years. If it is assumed that during the period that attempts have been made to transmit coded signals, deliberately made that is, somewhere the signal is received and returned. In order that that signal may be received the same technique must remain in operation on Earth as that used for the original transmission. This raises many serious problems.
It will be necessary to install a receiver which will continuously operate from some specially built station timed to come into operation in 600 years time from transmission of the original signal. The technology will need to be the same as that of the original transmission. This requires that the site shall not, for that period be disturbed by effects no matter what the cause, terrestrial, extra-terrestrial or internal earth changes. The power supplies must be able to have survived and in working order no matter what may have happened in the vicinity of the site. Records and operational instructions must be known and available. This would be extremely costly and subject to the frailties of the inhabitants of the Earth. So many sources of change are not only from the natural development but from political and religious cults. Indeed it is long enough beyond a single span of a lifetime even with the inevitable increase of that life span to double the norm in the foreseeable future. This is the real point; it is unlikely that funds to execute and maintain such a project would be forthcoming. Is there another solution?

One that springs to mind is the possibility of a beacon in the form of a long time scale satellite with a life to be determined. Since the present techniques available make this an ordinary matter it leaves the problem at the point of the technology of the receiving unit. Power is continuously available with back-up. The question left is continuous operation, this also is within forseeable control. The ground station however remains or at least an apparatus is preserved to be brought into use unless of course the population is moved to a permanent abode on a space station which encloses the Earth.
Frank W. Hyde

## SERVICE TRADING CO

WHY PAY MORE?
MULTI RANGE METER. TYpe MF $15 A$ aic. d.c.
volse $10-50,250,500,1000$ Ma $0-5$. 10 . O-100. Sensitivity 2000 V. 24 range. diameter
133 by 93 by 46 mm Including test leads. Price METERS (New) - 90 mm DIAMETER A.C. Amp., O-1A 0-5A. 10A A.C. Vott. Alil iypes $£ 3.60$

## heavy outy solenaid

$\qquad$



240 V AC SOLENOID. Aprox: 101 b pull. $10 \%$ raling. Size
$80-33.26 \mathrm{~mm}$ Price $£ 1.95-P$ \& $P$. 540 ( $£ 2.79$ incl. VAT \& 12 V D.C. SOLENOID. Price: $\mathbf{£ 1 . 6 5 + \text { P. \& P. } 4 0 \text { p. (E2. } 3 6 \text { incl } \text { N.M. }}$ Westool series d6 Model A3 24 V . D.C. Price $\mathbb{C 1} .65$ +50p WESTOOL SERIES D4 Model A. 24 V D.C. Price $£ 1.10+30 \mathrm{p}$ AG/GT 24V. O.C. 70 ohm Coil Solenoild. Push or Pull. Adjustable suppressor. Size. $100<65$. 25 mm . Price: 3 for $\mathbf{E 3 . 1 5} \mathrm{P} . \& \mathrm{P}$

MINIATURE SOLENOID FLUID VALVE steel body with variable fiow ydiuster tis B.S.T.
Size: $58 \times 27 \times 25 \mathrm{~mm}$. Weight: 130 gr


230 V A.C. SOLENOID OPERATED FLUID VALVE


| SOLID STATE EHT UNIT <br> Input 230 V ac. Fuldy isolated output 10 mm spark. Approx 15 Kv . Built in 10 sec. Timer. Easiy modified for 20 sec .30 sec. to a continuous operation <br> Designed tor boilet ignition. Dozens of uses in the field of physics and electronics. eg. supplying neon or argon tubes <br> Size: Length 155 mm , width 85 mm , height 50 mm . Weight 530 grammes. Price $55.00=75$ pence post \& packing Total inc. VAT $\mathbf{8 . 6 1}$. |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

A.E.G. CONTACTOR


## AMF CONTACTOR

17.190

ARROW-HART MAINS CONTACTOR
Car. No. 13OA30. Coil 250 V or 5 CoV. AC Contacts 3 make 50

SMITH BLOWER
Yper ffre. B706. Small. quiel. smooth funning. 240 V, A.C


MICRO SWITCHES
Sub. Min. Honeywell Lever m/s type 3115 m 906 f .
10 for $£ 3.50$ post paid ( $£ 4.03$ incl VAT). These V 3
types. 8 entron type 10 tot $£ 3.00$ ( $£ 3.45$ incl. VAT).

Long Lover 10 ampCo. 10 for $\mathbf{~} 4.50$ ( $\mathbf{5} 5.18$ incl. VA) E3. 50 ( $(\mathbb{E} 4.03 \mathrm{incl}$ ) VAT)
D.P. CiOO lever $\mathrm{m} / \mathrm{s}$ witch míg by Cherry Co. USA. Precious m.M.tal An) (min. order 10). N.M.
A.C. Wkg. TUBULAR CAPACITORS


## Vet another outstanding offer.

IMFD 600V Dubilier
E4.50
NM.

## VARIABLE VOLTAGE TAAYSFORMERS

INPUT 230/240V a.c. 50/60 OUTPUT 0-260V


## 3-PHASE VARIABLE VOLTAGE

 TRANSFORMERS

## LT TRANSFORMERS

## SNIPS OF THE MONTH

Nacional R. Relay 12V. D.C. high speed 1 c/o. 1 amp contacts (ncl. VAT).
Omron Type M. 24 V. A.C. 4 c/o. h.d. Price; 80p post paid (92p incl. VAT), Base 20 p post paid ( 23 p incl. VATt).
$220 / 240 \mathrm{~V}$. Primary; secondary 24 V \& 4 A . LT. Transformer, fully


## INDUSTRIAL STROBE KIT

Suitable or both Industrial and Educationat purposes. Kit 70 flass per second. Light output approx. O.5 opules
Price sess cae, $\mathrm{E27.00}+£ 2.00 \mathrm{P}$. \& . Itotal incl. VAT C33.36.
Supar $\mathbf{H y}$-Light Strobe suitable disco, theatrical use tc. (approx. 8 Iouless). Price $\mathbf{f} 40$
Suitable cases for either type $\mathbf{£ 1 1 . 0 0 ~ P . ~ \& ~ P . ~} £ 2.00$
( 114.95 incl. VAT). Super Hy Light Strobe Kit, derails o
XENON FLASHGUN TUBES
Range available from stock. S.A.E. for details. ULTRA VIOLET BLACK LIGHT FLUORESCENT TUBES



 E5.50 P. \& P. 55 (f6.96 incl. VATT) Also available for $12 \mathrm{~V} D$ BLACK LIGHT BULBS


$$
1.5 \mathrm{k} \Omega . \mathbf{1 3 . 1 0} \mathrm{P} \text { \& } \mathrm{P} .30 \mathrm{p} \text {. ( } \mathbf{~} 3.91 \text { incl. }
$$

SO WATr 250 Q € 5.50 P. P. 50 p ( $\mathbf{E} 6.90$ incl. VAT).
100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{k} \Omega / 1.5 \mathrm{k} \Omega / 2.5 \mathrm{k} \Omega$


## RELAYS Wide runge of $A C$ and $O C$ relays availabie from stock. Phone write in your enquiries.

230/240V A.C. 3 e/o. 11 pin base. Sealed 5 amp contacts
 postpald ( $\mathbf{E} 4.32$ incl VAT)
24 V A.C. Sealed 3 c/o. 10 a. 11 -pin. $£ 1.50+25$ p P. \& P. (E2.01 incl. VAT).
24V D.C. Sealed $3 \mathrm{c} / \mathrm{o} .7 \mathrm{a} .11$-pin. $\mathbf{£ 1 . 3 5}+30$ p P. \& P. (E1.90 $28 V$ O.C. $2 \mathrm{c} / \mathrm{o} .7$ amp contacts. Sealed. octal base. f1.30 P. 81
P 300 (fi. 84 incl. VAT).

VERY SPECIAL OFFER O-12V DC. 2 make contacts. NEW. 3 for $£ 1.75=25 \mathrm{p}$ P. \& P. (E2.30 inc.
 \& P. 30 p ( $\mathbb{E} 1.90$ incl. VAT). 24 V . Sealed 3 colo 7 amp 11 -pin

7 inpm Motor approx. 30 lb . in. $110 \mathrm{VAC}$. f10.20 [ [1.50 P. \& P. ftotal inct VAT E13.45).

71 rpm WYNSCALE motor approx. 101 b inc
A C. supplied with auto rransformer 240 V .
$30 \mathrm{rgm} .230 / 240 \mathrm{~V}$. a.c. 501 b in. mf. PAR VALUX.
Price $£ 17.05 \mathrm{P}$ \& P. E2.00 ( $\mathbf{~} 19.05$ incl. VAT). N.
42 R.P.M. 110 A.C. 50 hz 1001 b incl. reversible will operate on 230 AC . Speed remains at 42 R.P.M. but torque reduces by $50 \%$, TRANSFORMER $240 V$ A.C. operations E15.07 38.3 rpm GEAAED MOTOR, torque capacitor. Price: $£ 11.55$
lotal incl VAT £ 15.38 ). A.E.C. GEARED MOTOR. 152 rpm 200 lb . In. 230 V A.C.
GD Hz. Ratio 9.2 to 1. Non reverse. Incl. capacitors. Fraction
of maker's price: E41.25 + Carr. $\$$ VAT.
N.M.S.

200 pmm 35 bs . in. 115 V .50 kH.
Price. £18.15P. \& P. E2.00 (E23. 18 incl. VAT). N.M.S.
230/240V A.C. SYNCHRONOUS GEARED MOTORS
1 rpm, $2 \mathrm{rpm}, 6 \mathrm{rpm}, 12 \mathrm{rpm} .6$ revs. per day. 12 revs. per day 120 rpm GEARED MOTOR. $1 / 10 \mathrm{hp}$ approx. 15 lb in. 230 V spindle 8 mm dia 30 mm long. Complete with capacitor and $\mathbf{E} 9.90$ inc. total $\mathbf{£ 1 2 . 5 3}$
Brand new CASSETTE TYPE MOTORS

230V a.c. FAN ASSEMBLY
powerful continuously rated a.c. motor complete with
blace $6 \frac{1}{f}$ in. Price $£ 4.60$ P. 8. P. 75 p ( $\mathbf{8 6 . 0 4}$ incl. VAT).
24V. D.C. GEARED MOTOR
mfo. by either Parvalux or Carter. Easily removed from chato containlng $9 \times 24 \mathrm{~V}$. D.C. Solenoids. microswitches. friction cluch. preclsion gearing etc. Etc. Ex-equipment London
Transport Ticket Printer, Price: E8.00 P. 8 P. $£ 2.00$ (E11.50 incl

SUB-MINIATURE PRECISION BUILT GEARED MOTOR


THOMAS SINGLE DIAPHRAGM COMPRESSOR Maw. 20 psi 11 C.F.M. approx. 100 volts A.C. Price $£ 16+£ 2$
p 85 . Total $\mathbf{£ 2 0 . 7 0}$ inc. VAT or Total $£ 26.45$ to include

## BLOWER/VACUUM PUMP

## Motor. 220/250V or $380 / 440 \mathrm{~V}$. $1,425 \mathrm{rpm}$. I h.p. cont. Direc

 pump. 0.9 cfm 8 hg . Price: $\mathbf{\$ 2} .00+\mathbb{C} .00$ p\&p (rotal incl. VA £29.90
## VEEDER-ROOT PRE-SET COUNTER

 True MG1636. 3 fig. countdown any number from 999 to 001$230 V$ A.C. 2 Wheel setting. Changeover Microswitch to inform
 85mm. Ht. 65 mm .
(Toral incl. VAT ©5.46)
SANGAMO WESTON TIME SWITCH Type $\$ 251200 / 250 \mathrm{~V}$. a.c. 2 onl 2 off every 24 houls. 20 amp
contacts with overide swith dia. $4 \times 3$ price $£ 9.50 \mathrm{P}$. \& P Sozar dial. R. \&
hours, day omitting device. Price: $£ 11.00{ }^{24}$ $\mathrm{E}^{1} 100$ p. 8 p. ( 113.80 incl. VAT). 36 -hours N sprin ressrue. Less perspex cover. Price: $£ 13.00$
£ 1.00 p . B p. ( $\mathbf{~} 16.10$ incl. VAT).

## VENNER TIME SWITCH

 EAD Time switch $200 / 250 \mathrm{~V}$ a.c. 30 amp contac2 orv2 off every 24 hrs at any manually pre-5e time. 36 hour Spring Reserve and day omiting


## A.E.G. TIME SWITCH

80 amp . 2 -on/off Spring Reserve Timeswitch Price $£ \mathbf{1 5} .50$ P. \& P. $£ 1.50$ (£19.55 inc. VAT

SERVICE TRADING CO
57 BRIDGMAN ROAD, CHISWICK, LONDON W4 5BB 01-995 1560
N.M.S. New Manufactureas Surplus
R. \& T. Recononitioned and Tested.

9 Little Nowport Street,
London WC2H 7JJ
ACCOUNT CUSTOMERS MIN. ORDER $£ 10.00$
Phone 01-437 0576

## MASYMHR HTHGYRONIOS NOW! The PRACHTCAT way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.
All the training can be carried out in the comfort of your own home and a your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course

You will do the following

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read draw and understand circuit diagram
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment



## NewJob?NewCareer?NewHobby?GetintoElectronics Now!



Pease send your brochure without any obligation to 1 am interested in
NAME
ADDRESS


POST NOW TO

```
                                    \squareCOURSF IN ELECTRONICS
```

British National Radio\&eFlectronics School Reading,Berks.RGl 1BR

## CAN WE SELLYOU SOME

FRESH AIR?

## ZEPHION



Or J.B.Smith writes:- "Did you know that the air you breathe is made up of billions of tiny molecules. many of which may be either positively or negatively charged ? . The negatively charged molecules called ions) are particularty interesting.
For example. they attach ehemselves to dirt, smoke and pollen particles in the air making them heavier so that they fall to the ground, leaving behind purer air for you to breathe The ZEPHION negative ion generator produces millions of these negatively charged molecules every second. flooding your home or office with invigorating mountain-fresh air.
Many users of these ion generators claim greatly increased alertness. loss of lethargy (particularly in stuffy. smoky offices) and relief from hay fever. asthma and many breathing problems.

## BUILD IT YOURSELF!

$$
\begin{aligned}
& \text { Dataplus Developments } \\
& \text { 81, Cholmeley road } \\
& \text { Reading, Berks. } \\
& \text { RG1 3LY TEL: }
\end{aligned}
$$

NAME:

## ADDRESS

CPLRASE SENiD :-ZEPHION KITS e c21.50p
(Kils include all parts)ahhion air toners built and tested. e £29.80;

Money immediately refunded if items returned in good condition. Prices include VAT \& postage; allow 14 days for delivery. oataplus pe


CIRCUIT MAKER

Revolution in circuit board maker kits from leading manufacturer

The Electrolube CM100 Circuit Maker provides everything necessary to produce positive photographic film masters from same-size published circuit layouts and to make either single or double-sided boards from these or other positive film masters.

Features

- Economic and simple to use.
- No expensive equipment required e.g. darkroom, cameras etc.
- Photographic experience not needed
- Simple etching process.
- Universal exposure and assembly frame custom-designed professional quality
- Ergonomically designed storage pack which inctudes free-standing shelf for chemicals.
Step-by-step instruction manual, workbench and trouble-shooting charts provided
- Special clearing process ensures excellent clear positive film masters
- Photoresist available in non-aerosol form to eliminate 'spotting' when applied to the board

Mercia Electronics, Coronet House, Upper Well St., Coventry CV1 4AF

Send for full illustrated brochure and price details, post to:

Name.
Address

Signature


Coronet House Upper Well Streel Coventry CV1 4AF Tel: (0203) 58541

## PE MICROCONTROLLER: DATA SHEET 3

## DISPLAY MODULE

THE display module in the Microcontroller is a multiplexed 9-digit Futaba gas discharge unit, type 9-LT-03. In the original application two such units, each mounted on separate p.c.b.s, were connected in parallel to each controller board. On the display p.c.b. digit number 8 , the apostrophe and comma are supplied unconnected. In the Microcontroller pins 7 and 22 have been connected together to form the display field separator characters, and hence digits 3 and 8 will always have the same indication.

In order to illuminate any particular display segment it is necessary to set the appropriate digit select line ( $\mathrm{PB} \emptyset$ to $\mathrm{PB7}$ on IC12) to a logic ' 1 ', and then set the corresponding segment select line (PAØ to PA7 on IC12) to a logic ' 1 '. Any number of segments/digits may be selected at a particular instant, but all selected segments in all selected digits will be illuminated simultaneousiy, so the display driver in DISBUG scans each digit in turn. In addition, the period for which a digit is selected must be chosen to avoid visible flicker, but not be so fast as to render the overall display unreadable. The DISBUG monitor routines which provide these facilities will now be described.


123656789101120 158178192021232475287282930


## DISPLAY SCAN ROUTINE

The Microcontroller's display is scanned by a subroutine called DISPLAY. This routine includes a delay to cause each digit to be illuminated for approximately 2 milliseconds, before moving on to the next digit. DISPLAY assumes that the display PIA has been correctly set up by the DISBUG initialisation routine (which is executed automatically at power-upl, and it uses a maximum of six bytes of stack space. The scan routine is called by 'JSR DISPLAY', which is coded as BD F8 14. There are no entry or exit parameters passed in the CPU registers, and all registers except SP are corrupted by the routine.

The display is actually scanned once each time DISPLAY is called, with digits 1 to 7 , and 9 illuminated in turn. The character displayed at each digit position is determined by reading the DISBUG RAM locations 03 F8 to 03FF; the locations are used to drive the display PIA as shown in Table 1. Each bit position corresponds to one of the segments ' $a$ ' to ' $g$ ' or the decimal point, and so a wide range of characters may be displayed, e.g. a code of EC would display ' H ', and a code of E8 would display ' $h$ '. The display table locations may be written to directly (e.g. CLR to location 03FA will blank digits $3 / 8$ ), or the routines describe below
may be used to insert display codes for numeric values into the display table.

In order to produce a stable display, user programs should ensure that DISPLAY is called regularly within the infinite loop of the control program, otherwise the display will flicker or be erratic. The way in which DISBUG uses this routine is shown in Part 3 of the Microcontroller series.


Table \%. DISBUG display table format

## CONVERSION ROUTINES

The information provided above is sufficient to allow any character which can be represented by the available segments to be displayed. The process is simply a matter of inserting the appropriate code into the display table, and then calling DISPLAY. A very common requirement is to display a numerical value which may be held in a register or memory/PIA location. This task may be greatly simplified by the use of two routines provided within DISBUG.

The first routine is DIGIT and is called via 'JSR DIGIT', which is coded as BD F8 DO. The routine converts the number in the least significant four bits of $r A$ into the appropriate display code, and then inserts this code into the display table at the address contained in the index register. Thus, for example, if DIGIT is called with $r A=4 B$, and $I n=03 F 8$, then the routine will insert the value ' $F 8$ ' (the display code for ' $B$ ') in location $03 F 8$ (the display table entry for digit 1). DIGIT uses one byte of stack space, and preserves all register values except the index register, whose contents are incremented by one.

The second routine is TWODIG and is called via 'JSR TWODIG', which is coded as BD F8 F7. This routine converts the number in rA into two display codes, and inserts the code representing the LS 4 bits of $r A$ in the location indicated by the entry value of In , and then inserts the code for the MS 4 bits of rA in the next location. In the example above, a call to TWODIG rather than DIGIT would result in a code of 'F8' in location 03F8 and a code of ' CC ' (for ' 4 ') in 03F9. TWODIG uses three bytes of stack space, and preserves all register values except the index register, whose contents are incremented by two.
M. Tooley BA and D. Whitfield MA MSC.

F
FOR applications such as the voltage control of oscillators, attenuators etc, the digital to analogue converter will be able to directly drive an externally connected load. The minimum recommended value of load resistance is, however, 1 kohm for the normal output ( $V_{\text {out }}$ ) and 100 ohm for the complementary output ( $\left.\overline{\nabla_{\text {out }}}\right)$. Note that, since the complementary output exhibits a lower output impedance than the normal output, in some applications its use is to be preferred. In such cases it will, of course, be necessary to use the 1 's complement of the data word. This can be quite easily obtained using the appropriate op. code within the machine language program.

When the digital to analogue converter is used to drive very low impedance loads (such as d.c. motors) an additional power amplifier stage will be required. A typical circuit for an "add-on" power amplifier module is shown in Fig.1. This uses a single monolithic integrated circuit which is, incidentally, capable of providing a power of up to 21 W in a nominal 40 hm load when operating from plus and minus


Fig. 1. Circuit diagram of the power amplifier module


18 V supply rails. In this particular application, the device is configured for unity gain (non-inverting) and the recommended maximum value of output current is 1A. The TDA2030 features internal short circuit protection, thermal shut-down, and safe operating area protection. The output current is internally limited to 3.5 A , however, it is recommended that some form of current limiting (at around 1.5A, or less) be included in both the positive and negative supply rails. A power supply capable of meeting the requirements of both


Fig. 2. P.c.b. layout for the power amplifier module


Fig. 3. Component layout for the power amplifier module

## COMPONENTS ...

POWER AMPLIFIER MODULE

| Resistors <br> R1, R2 | $1 \mathrm{k}(2$ off) |
| :--- | :--- |
| Capacltors |  |
| C1, C2 | $100 \mu 16 \mathrm{~V}$ p.c. electrolytic (2 off) |
| C3 | 100 n polyester |

Semiconductors

| D1, D2 | 1N4001 (2 off) |
| :--- | :--- |
| IC1 | TDA2030 |

Miscellaneous
PCB terminal pins (5 required) heatsink
Constructor's Note
Components and PCB are avallable from Howard
Associates, 59 Oatlands Avenue, Weybridge,
Surrey KT13 9SU (s.a.e. for details).

| STEP | SWITCH SETTINGS | DESIRED OUTPUT VOLTAGE (V $\mathrm{V}_{\text {out }}$ ) | Adjustment |
| :---: | :---: | :---: | :---: |
| 1 | $\begin{aligned} & \text { S1-S8 open } \\ & \text { S9 open } \end{aligned}$ | OV | VR1 |
| 2 | S1-S8 closed S9 open | $\mathrm{V}_{\text {fs }}-\mathrm{V}_{\text {ISB }}$ | VR3 (and VR2 if necessary) |
| 3 | $\begin{aligned} & \text { S1 closed } \\ & \text { S2-S8 open } \\ & \text { S9 open } \end{aligned}$ | $\frac{1}{2} \mathrm{~V}_{\text {FS }}$ | none should be necessary |
| 4 | $\begin{aligned} & \text { S1 closed } \\ & \text { S2-S8 open } \\ & \text { S9 open } \end{aligned}$ | $\begin{aligned} & \text { Check that } V_{\text {out }}= \\ & -\frac{1}{2} V_{\text {FS }} \end{aligned}$ | none should be necessary |
| 5 | S 1 closed S2-S8 open S9 open then closed | $\frac{1}{2} \mathrm{~V}_{\mathrm{FS}}$ | none should be necessary |
| 6 | S1-S8 open or closed <br> S9 closed | $\frac{1}{2} \mathrm{~V}_{\mathrm{FS}}$ | none should be necessary |

TABLE 3 Adjustments and tests required for unipolar operation

| STEP | SWITCH <br> SETTINGS | DESIRED OUTPUT VOLTAGE ( $V_{\text {our }}$ ) | ADJUSTMENT |
| :---: | :---: | :---: | :---: |
| 1 | $\begin{aligned} & \text { S1 closed } \\ & \text { S2-S8 open } \\ & \text { S9 open } \end{aligned}$ | OV | VR1 |
| 2 | S1-S8 open S9 open | + $\mathbf{V F S}^{\text {f }}$ | VR2 |
| 3 | S1-S8 open S9 open | $+\mathbf{V F S}^{-V_{\text {LSE }}}$ | VR3 |
| 4 | S1 closed S2-S8 open S9 open | OV | none should be necessary |
| 5 | S1 and S2 closed S3-S8 open S9 open | $\frac{1}{2} V_{\text {FS }}$ | none should be necessary |
| 6 | S1 open S2 closed S3-S8 open S9 open | $-\frac{1}{2} \mathrm{~V}_{\mathrm{FS}}$ | none should be necessary |
| 7 | S1 and S2 closed S3-S8 open S9 open | Check that $\mathrm{V}_{\text {out }}=$ $\frac{1}{2} V_{F S}$ | none should be necessary |
| 8 | S1 and S2 closed S3-S8 open S9 open then closed | $\frac{1}{2} \mathbf{V} \mathbf{F S}$ | none should be necessary |
| 9 | S1-S8 open then closed S9 closed | $\begin{aligned} & \frac{1}{2} V_{F s} \\ & \text { (i.e. no change) } \end{aligned}$ | none should be necessary |

TABLE 4 Adjustments and tests required for bipolar operation


Fig. 4. Typical power supply circuit for use with the D to A converter and associated power amplifier modules
the digital to analogue converter together with one, or more, power amplifier modules is shown in Fig. 4.

The p.c.b. layout for the power amplifier module is shown in Fig. 2 together with the corresponding component overlay which is given in Fig. 3. Assembly is extremely straightforward and, since no adjustment is required, detailed constructional and testing information is unnecessary.

## USING THE D TO A CONVERTER

The digital to analogue converter, together with any associated power amplifier modules, can be used in a variety of particular configurations depending upon the requirements and constraints of the particular system. Fig. 5 shows


Fig. 5. Conventionalisingle ended output configuration
a conventional 'single ended' arrangement. A bridge arrangement using two power amplifiers, driven from the complementary outputs of the digital to analogue converter, is shown in Fig. 6. This configuration effectively doubles the output voltage swing developed across the load. Fig. 7 shows how several power amplifier modules can be connected to a single digital to analogue converter. Note that, to reduce the loading on the converter where more than one power amplifier is employed, the values of R1 and R2 within the power amplifier module should be correspondingly increased. A value of 10 kohm for both R1 and R2 will be adequate for the parallel connection of up to ten power amplifier modules. If desired, loads may be driven in a complementary fashion, as shown in Fig. 8. Finally, several digital to analogue converters may be operated simultaneously from the same data bus. This arrangement makes use of the


Fig. 6. Bridge output arrangement which doubles the effective voltage swing across the load
latching facility of the ZN428, the ENABLE inputs being driven from the address bus such that each digital to analogue converter can be individually addressed (Fig. 9).


Fig. 7. Method of driving several output loads using a single $D$ to $A$ converter


Fig. 8. Complementary driving of loads

## ANALOGUE TO DIGITAL CONVERSION

The purpose of an analogue to digital converter is that of generating a digital code which approximates to the actual input voltage level at the instant of sampling. One commonly used method of analogue to digital conversion involves the use of a clock and counter in conjunction with a digital to analogue converter. The clock and counter generate a binary sequence such that the output of the digital to analogue converter is sequenced from zero to full scale. The output voltage from the counter is compared with the input signal voltage using a comparator and the count is stopped when


Fig. 9. Technique for driving multiple $D$ to $A$ converters
the digital to analogue converter output is just greater than the signal input voltage. The state of the digital lines thus provides a digital code which is an approximation of the analogue input. The disadvantage of this technique is primarily attributable to the relatively low speed of conversion. In a worst possible case it would be necessary for the counter to produce a full sequence before arriving at the full scale input value. In an 8-bit converter, for example, this worst case condition would necessitate 255 clock cycles. With a 1 MHz clock this yields a maximum conversion time of a quarter of a millisecond!

A much better method of analogue to digital conversion involves the use of a technique known as successive approximation. This involves a series of comparisons between the a nalogue input signal and the output of a digital to analogue converter in which each bit is set in turn, commencing with the most significant bit, MSB. A decision, based upon whether the analogue input is greater or less than the output of the digital to analogue converter, is then made as to whether or not the bit should be retained. The output thus becomes successively closer to the input value; hence the name! The maximum conversion time for such a converter is generally $(n+1)$ clock cycles, where $n$ is the number of bits employed. An 8 -bit successive approximation analogue to digital converter would, for example, require a maximum of 9 clock cycles for conversion; more than twenty times faster than a counter type arrangement! Simplified block diagrams showing the two methods of conversion are given in Figs. 10 and 11.

## THE ZN427 ATO D CONVERTER

The ZN427 is a versatile monolithic 8-bit successive approximation analogue to digital converter which incorporates tristate output buffers to permit direct connection to a microprocessor data bus. The device offers a guaranteed maximum conversion time of $15 \mu \mathrm{~s}$ (clock frequency $=$ 600 kHz ) and, like its digital to analogue counterpart the


Fig. 10. Simplified block schematic of a counter type $A$ to D converter


Fig. 11. Simplified block schematic of a successive approximation type $\mathbf{A}$ to $\mathbf{D}$ converter

ZN428, it also incorporates an accurate voltage reference. The data outputs are fully TTL compatible and the i.c. requires supplies of +5 V and -3 to -30 V . This latter voltage rail is merely required to establish a constant 'tail' current within the internal voltage comparator.

The internal architecture of the ZN427 is shown in Fig. 12. The principal internal elements of the ZN427 are; a high speed comparator, a successive approximation register, a switch array, an R-2R resistor network, an output buffer array, and a 2.5 V precision voltage reference. When a low-to-enable start conversion (SC) pulse arrives, the most significant bit is set to a 1 and all the other bits are set to 0 regardless of their previous state. The analogue output from the R-2R ladder network will then be exactly half the reference input, $\mathrm{V}_{\text {REF }}$. The input voltage, $\mathrm{V}_{\text {IN }}$, is then compared with this value and a decision made on the next falling clock edge. The MSB will be set to 0 if $0.5 \mathrm{~V}_{\text {REF }}>\mathrm{V}_{\text {IN }}$ or kept at 1 if $0.5 \mathrm{~V}_{\text {REF }} \leqslant \mathrm{V}_{\text {IN }}$. The second most significant bit is also set to 1 on the same falling edge and, on the subsequent falling clock edge, a similar decision is made concerning the second most significant bit. The process continues until all eight bits have been examined such that, on the ninth consecutive falling clock edge after receipt of the start conversion (SC) pulse, an end of conversion (EC) signal is generated which indicates that the digital output from the converter is a valid representation of $\mathrm{V}_{\text {IN }}$. The digital output data remains latched until the next SC pulse arrives. An output enable ( $E N$ ) is provided so that data may be read from


Fig. 12. Internal architecture of the ZN427 successive approximation $A$ to $D$ converter
the converter into the system data bus by means of the tristate output buffer array. A typical timing diagram for the digital word 01010110 is shown in Fig. 13.


Fig. 13. Timing diagram for the ZN427 A to $D$ converter

The decision as to whether the output of the $D$ to $A$ section is greater, or less than, $\mathrm{V}_{\text {IN }}$ is made by means of a high speed comparator, the simplified equivalent circuit of which is shown in Fig. 14. This is essentially a differential 'long-


Fig. 14. Simplified equivalent circuit of the high speed comparator section of the ZN427 A to D converter
tailed' pair which is designed to operate with a total emitter ('tail') current of $65 \mu \mathrm{~A}$. The 'tail' current must be derived from an external negative voltage rail in the range -3 to -30 V and the constant current characteristic may be produced simply by inserting an appropriately high value of series resistor. Various values of negative supply voltage and required series resistance are shown in Table 1.

| NEGATIVE SUPPLY | TAILRESISTANCE |
| :---: | :---: |
| VOLTAGE | $\left(R_{T}\right)$ |
| $(-V)$ | $47 k$ |
| $-3 V$ | $82 k$ |
| -5 | $150 k$ |
| -10 | $180 k$ |
| -12 | $220 k$ |
| -15 | $330 k$ |
| -20 | $390 k$ |
| -25 | $470 k$ |

Table 1 Recommended values of tail resistance and negative supply voltage

The outline circuit diagram of a practical analogue to digital converter is shown in Fig. 15. Whilst it is possible to use a separate low frequency clock within the analogue to digital converter, it is usually expedient to make use of the system clock of the host microcontroller or microcomputer. Such a clock is, nowadays, unlikely to operate at a frequency of much less than 1 MHz and therefore it will be necessary to


Fig. 15. Outline circuit diagram of a practical $A$ to $D$ converter
incorporate one, or more, stages of frequency division between the system clock and the clock input of the ZN427. In the case of the PE Microcontroller, which has a system clock at 894.75 kHz , a single divide-by-two stage is all that is required. In the arrangement of Fig. 15 this frequency division is accomplished by means of a positive edge triggered J-K bistable, IC1. Other division ratios may be easily calculated from the relationship; $N=f_{s d} / f_{c}$ where $f_{s c}$ is the system clock frequency and $f_{c}$ is the ZN427 clock frequency (maximum 600 kHz ). The +5 V and -15 V rails may be derived from the power supply circuit of the Digital to Analogue Converter board described in Part 2 of the series (PE March 1983). To avoid duplication, full constructional details have not been given and readers are therefore recommended to refer to the previous part of this series and to Part 7 of the series on 'Interfacing Compukit' (PE July 1981).

## USING THE A TO D CONVERTER

Provided that appropriate signal conditioning can be applied, the analogue to digital converter is suitable for use with virtually any type of analogue transducer. The normal full-scale input voltage for the circuit of Fig. 15 is +10 V however larger or smaller input voltages may be catered for by means of appropriate modification of the input potential divider. Where the transducer produces a very low level of


The A to D converter
output, additional amplification may be necessary and this may be provided by means of one or more operational amplifiers. In general, the full-scale input voltage is given by; $V_{F S}=G \times V_{I N}$ where $G$ is the attenuation of the input network. The resolution of the converter is $V_{F S} / 256$. Without any input attenuation ( $G=1$ ) the value of $V_{F S}$ will be the same as $V_{\text {REF }}$ and, since the internal reference is 2.56 V , the resolution will be $10 \mathrm{mV} /$ bit. The $\mathrm{R}-2 \mathrm{R}$ ladder network exhibits an impedance of 4 kohm thus, to provide an accurate match (minimising offset problems within the comparator), the input attenuator/amplifier should ideally exhibit an output impedance of approximately 4 kohm.

## NEXT MONTH

Next month's instalment will deal with opto-isolators and opto coupled thyristor and triac devices suitable for d.c. and a.c. power control applications.


## Do you know anybody who can build a Digital Pulser for only £18.00?



## The answer is yes - its YOU!


G.S.C. (UK) LIMITED DEPT. 5X UNIT 1. SHIRE HILL INDUSTAIAL ESTATE SAFFROON WALDEN ESSEX CB113AO SAFFRON WALDEN, ESSEX CB113AQ Telephone: Saf
Telex: 817477


Easy to follow Instruction Manual with every Kit instrument for stimulus/response testing. It automatically delivers just the right signal for whichever logic family you're using - and it's equally suited to single pulses or pulse trains at a frequency of 100 per second. The fully featured DPK-1 kit includes all components, leads, circuit board and case - and is supplied complete with detailed assembly instructions

Get rid of your digital hang-ups; send off for a DPK-1 straight away.


Unit 1, Shire Hill Industrial Estate. Saffron Walden, Essex CB11 3AO

| DIGITAL PULSER <br> KIT DPK•1 |  | For FREE <br> catalogue <br> tick box |
| :--- | :---: | :---: | :---: |

Name $\qquad$ Address

[^4]PF M200A 200 MHZ hand held pockel 8 digit 81,1048 dipit teO bench 2 ranges 100 MHZ E77.00 861089 dighl LEO bench 2 ranges 600 MHZ 800089 dipil LLD 3 ranges it
TFO40e 8 dight LCO 40 MHZ TF200 8 oipit LCO 200 mHz

- Optional carry case 6684

Prescalers - Entended range of most coumi TPG00600 M HZ

ELECTRONIC IMSULATION TESTER VF $501500 \mathrm{~V} /-100 \mathrm{~m}$ with carry case

## £63.00



## DIGITAL THERMOMETER

TH301 LCO -50"C io-750 with
thermocouple
E68.43


LOGIC PROBES
LP10 10 MHZ

AUDIO ELECTRONICS simes
301 eogwabe road. lono
ALSD AT MENAYS RADID.
COL/ 405 EOGWABE ROAD, LONOON W
ICS
TEL: 01-7243554

FEER CUNLACLIE
SEND LARGE
SAE (UK SEND LARGE
SAE (UK 20D)

FuNCTION: All sine/square/iriangle/TTL. etc
TG100 $1 \mathrm{HZ}=100 \mathrm{KHZ}$
KGO
TG1020.2 HZ ? MHZ
597.75

TG105 Various lacilities $5 \mathrm{HZ}-5 \mathrm{MHZ}$ 186.00 LAG27 10 HZ to 1 MHZ / Square £78.00 AG202A 20 HZ to 200 KHZ $\mathbf{5} 59.95$
$\mathbf{8} 71.00$
\$G 402100 KHZ 1030 MHz AUDIO - RF - FUNCTION - PULSE OSCILLOSCOPES


Full specilication any model on request. Saf by post. HM Series HAME G: SC' THAMOAR: CS' Serles Thio: '3'Series CROTECH SIMgLE TRACE
303015 MHZ 5 mV . 95 mm tube pius component lester $\mathrm{C} / \mathrm{P} £ 3.00$ Posilree HM103 I5 MHZ 2my. $6 \times 7$ display plus
 Hicads $E 12.50$
DUAL TRACE (UK C/P EA.00)
HM203/4 Dual 20 MHZ plus component
CS 15664 Oual 20 MHZ. All lachities MM204 Oual 20 MHZ plus compenent lester sweep delay.


| STOCKISTS FOR TAIO: HAMEG: CAOTECH: |
| :--- |
| SAFGAM SCOPES MOST MOOELS IN STOCK. |

## HIGH VOLTAGE METER

## DIGITAL CAPACITANCE <br> 0.1 pi io 2000 ndd LCO 8 ranges

TRANSISTOR TESTER

| gracect |
| :---: |
| ICI |

/UK C/P 65pl


## TERRIFIC VALUE!!!

stock must 90.10 kilo parcet of unused parts stock must 90 . 10 kilo parcet of unused parts,
Minimum 1,000 items inclucles panel meters. timers, thermal trips, relavs, switches, motors drlils, taps and dies, tools, thermostats, colls, condensers, resistors, etc. etc. Individually
would cost you a fortune
YOURS FOR ONLY E 11.50 plus $\mathbf{E 3 . 0 0}$ post IONISER KIT
Refresh your home, office, shos, work room,
etc. with a negative ION generalor. Makes yo


CAR STARTER/CHARGER KIT This kit has no doubt saved many motorists staft car off mains or bring your battery up to
full charge in a couple of hasurs. The kit comprises: 250 w mains transformer, two 10 amp bridge rectilers, slarticharge switch and ful inslructions. You can assemble this in an
evening, box it up or leave it on dshell in the
garege, whichever suits you best.
Psice: ONLY E12.50
3 - 30V VARIABLE VOLTAGE POWER SUPPLY UNIT
With 1 amp DC output, for use on the bench Automatic short circuit and overload protect panel. Complete kil $£ 13.80$.
Z $\times 81$ OWNERS
Make vourself a full
size keyboardl Koy
switches complete
with plain caps. 6 for


COMPUTER PRINTER FOR ONLY £4.95
Japanese made Epson 310 - has a self star sing,
bxishless drive motor Complere with ics - uses plain paper. Brand new wit

Cash, P.O. or cheque with order. Orders
under $£ 10.00$ add 60 F . Access \& B/card under $£ 10.00$. add 60 n . Access $\& \mathrm{~B} /$ card

REVERSIBLE MOTOR WITH CONTROL GEAR
Macle by the tamous Framco Company this is a very robust motor, size approximately $7 \%^{\prime \prime}$ long, $3 \mathrm{~K}^{\prime \prime}$ dia, $3 / 8^{\prime \prime \prime}$ shaft. Tremendous powerful motor, almost impossible to stop ideal for operating stage curtains, sliding doors, ventilators, etc. even garage dioors motor complete with control gear as

- I Framce motor with gear box. - I manual reversing and onloff switch. i ipush to sta switch. - ik ion wavio transformer, connections. $£ 19.50$ plus postage $£ 2.50$. SPIT MOTORS


Powertul mains operated induction morors with gear box attached. The final shaft is a alternative coupling methods - final ene is approx. $5 \mathrm{revs} / \mathrm{min}$. PRICE $£ 5.50$. Simila motors with final speeds of 80, 100. 160 \& 200 r.p.m. same price.
8 POWERFUL BATTERY
MOTORS (all different)
Suitable for models, meccanos, drills,
remote control plones, boats, etc. $£ 2.95$.
12 VOLT MOTOR BY SMITHS Made for use in cars, these are series wound and they become more powertul as load increases. Size $3 y^{\prime \prime}$ lang by $3^{\prime \prime}$ dia. These have a goodlength of soindie - price EXTRA POWERFUL 12 VOLT MOTOR
Made to work hat tery lawnowner, this probably de vetops up to $1 / \mathrm{h}$.p., so it could be used to power a go-kart or 10 drive a
compressor, etc. etc. $£ 6.90+£ 1.50$ pos (This is easily feversible with our reversibi

## J.BUML(Electrical)LTA. <br> (Dept PE), 34-36 AMERICA LANE, HAYWARDS HEATH, SUSSEX RH16 $30 U$.



# SEMICONDUCTOR 

## SWANSONG

This. dear readers, is the very last "Semiconductor Update" column to appear in Practical Electronics, following an unbroken run since 1975. (Semiconductor Circuits will replace it next month -Ed.)

While pondering on a suitable content for this exodus edition, 1 at first considered a nostalgic look back at some of the more exotic devices that have appeared here over the years. But nostalgia is hardly the stuff of which this column is made, and so I took a bold step forward instead, by persuading two of the most avant-garde research groups in the country to lift the veil on the electronic future as they see it-with astounding results!

Any doubts you may have harboured concerning the viability of British industry in the 1990s and beyond are about to be dispelled, so step with me now into the brave. new, electronic world which awaits us all

## IN-BODY ENTERTAINMENT

Down in Poole, Dorset, of all places, ! tracked down Frank N. Stone, boyish head of the new bio-electronic empire. Sceletronic Calcipart. Most of the work down there is still secret, but Frank was kind enough to show me around their BIOCHIP diffusion facility which is producing a wide range of semiconductor dice for direct implantation in living tissue.

Although electronic implants have been produced before, as heart pace-makers for example, the work at Sceletronic is very different because the integrated circuits are not packaged but are placed directly into a suitable body cavity with the necessary neural connections being achieved with the aid of laser bonding.

Devices of all sorts can be implanted in this way to correct natural deficiences or to provide an enhancement of natural abilities. but the project which sparked my imagination the most was described by Frank as 'In-Body Entertainment'

Sceletronic are working feverishly on a set of four CMOS BIO-CHIPS which together will make the "Walk-man" concept of personal entertainment about as obsolete as a stone axe. Integrated onto four thumbnail sized silicon dies will be a complete entertainment system which does not require the lucky recipient to wear headphones or to have a wristwatch TV screen, because the whole thing will be totally internal!

One of the devices, a video processor and display coded EB2, is slipped behind each eyeball to provide back-projection
video facilities capable of displaying both off-air and recorded programs. A second chip, the BB1, acts as an exchangeable storage device of 100 gigabyte capacity which is used to hold a user selectable mix of stimulating audio visual entertainment. This chip has to be more easily accessible and so will be fitted into the trendy owner's navel, or any other orifice of their choice.

Adding yet another dimension to this scintillating ensemble is the LH3 audio processor which is capable of delivering a quadrophonic neural stimulus equivalent to 110 dB 's acoustic. In addition to this direct neural audio, which works best at high frequencies, there will also be an optional "cranial woofer" which provides direct internal audio stimulation. Users opting for this extra facility will have to wear the black anodised ear extenders for cooling purposes says Frank

To complete the set there will be the HC16 microprocessor based controller chip which will transmit tone, volume, and hue adjustment via existing neural pathways. Inputs will be received directly from analogue-to-digital chemo-receptors integrated onto the surface of the chip. Various other control options will be available, including a panic suppression mode triggered by adrenalin levels which causes all external auditory and visual reception to be suspended in favour of a resiful program of soft music and seascapes.

Installation may pose problems, but a survey by Sceletronic revealed that most existing 17 year old hi-fi salesmen can be retrained in the simple technique of laser surgery in a matter of hours.

While I was in the Sceletronic lab I was introduced to Igor who had already been fitted up with a breadboard version. Igor's scars were healing nicely, and apart from a tendency to go cross eyed occasionally. there seemed to be no serious side affects. Unfortunately I was unable to question Igor in depth because he had just been fitted with a new BBI containing material of Danish origin which appeared to be causing some technical difficulties.

This new technology will revolutionise the lives of all joggers, roller skaters and lecture goers!

## SEE YOU LATER PROPAGATOR

A couple of years ago I revealed to you the amazing progress being made by Lliys Electronics over in South Wales. I know that if any firm could provide a stimulating
glimpse into the future it had to be them. so off I went with my notebook and recorder.

The last time I was there Lliys were into hyper-power transistor technology, but things have moved on since then, and I found the research department, headed by the Polish émigré Zarcy Pudsti, hard at work on a revolutionary new microprocessor device.
Apparently Lliys have made a breakthrough in speeding up the operation of digital logic circuits and have got their latest device running at an amazing 2 giga hertz clock rate. Propagation delays in the gates have been cut down to just a few pico-seconds with the aid of a new and secret doping material developed and patented by Lliys.

While I was there they started to test the latest version of this incredible device, the TFT 3000, and the results were impressive to say the least. Apparently one of the chemists had added too much of the dopant to the silicon melt, and during the tests it became apparent that the gate delays had become negative, i.e. pulses were leaving the output of gates before an input signal was received!

While Zarcy and I pondered about the implications of this new effect, we saw the 64 pin leadless chip carrier containing the TFT 3000 begin to metamorphose. Within ten minutes we were left with ten 40 pin dual in line packages, within half an hour these were replaced by one hundred 16 pin di.p.s. then four hundred circuit boards containing large numbers of transistors. Just in time. Jim the lab assistant shouted a warning and we escaped with only minor scorch marks and bruises as the whole of Lliys labs was transferred into a glowing mass of EF86 valves.

After the EF86s, the Babbage style analytical engines and the Chinese abacus wielders were tame by comparison, and Zarcy and I retired to the nearby computer room to carry out an analysis of what could be expected next. Zarcy calculated that the TFT 3000 would reappear in about 3 weeks following a reversal of entropy at the genesis of the known universe, and perhaps he is right.

Personally, f hoofed it, after a quick 999 call to the local fire brigade, but everyone at Lliys seemed to think it was a great success. They still plan to market the TFT 3000 after some readjustment of the dopant levels, but if you are interested you had better place your order early, before stocks disappear.
TReaders requiring more information on these items should note the cover date of this issue-Ed)

## Ulimum Complitr <br> Interface <br> WILLIAM EDWARDS WATFORD ELECTRONICS

WE CONTINUE our series of cards for the ULTIMUM motherboard with a peripheral card capable of producing speech. It uses a low cost, custom integrated circuit which provides most of the functions needed to produce an almost unlimit sd vocabulary using the phoneme method of speech production.

## SYNTHESISING SPEECH

There are many different techniques available for generating speech using a computer. Ultimately, they all require some method of regenerating the basic elements of speech by modelling the human vocal tract. The heavy handed approach is to sample analogue speech waveforms and convert them to a digital form which may be subsequently regenerated through an analogue-to-digital converter. The number of samples is necessarily high labout 5,000 samples. $\mathrm{sec}^{-1}$ ) and this means that a large amount of


Fig. 6.1. Block diagram of Speech unit
memory is required; a few words would exhaust the memory of most home computers.

There are two, more practical solutions. Firstly, some form of data compression can be used in conjunction with digital circuitry to restore the original signal. This circuitry usually takes the form of a complex digital filter. National Semiconductor, and Texas Instruments have both evolved methods of encoding phrases in such a compressed form, the best known being a system called Linear Predictive Coding. This is the technique employed in the commercial, speaking toys and teaching aids. The drawback is that the encoding process requires complicated equipment and lies beyond the scope of amateurs, so that one is limited to pre-defined vocabularies supplied in ROM form. Against this, the quality of speech is quite good (albeit with a heavy American drawl in nearly all cases). The second method relies on the fact that speech can be broken into a limited number of basic components. There are several such subdivisions, the smallest of which is called the allophone, or more commonly (but incorrectly) the phoneme. Early phoneme generators used analogue circuitry to reconstruct an electronic equivalent of the vocal cords and the rest of the vocal tract, using operational amplifiers as oscillators, filters and noise generators. Digital versions of these analogue predecessors make full integration much simpler, because the discrete components are largely eliminated.

## THE SP-0256 SPEECH CHIP

Over the last year or so several new all digital speech chips have been introduced. The SP-0256 (General Instruments) has been chosen for this design because it combines low cost with simplicity. Allophones are encrypted in a $2 \mathrm{k} \times$ 8 ROM. On selecting an allophone by supplying a count and a strobe pulse, the appropriate area of ROM is accessed and the data is passed to the vocal tract model which then regenerates an allophone. The $2 k \times 8$ ROM stores code for all the allophones as well as periods of silence which are very important in the reconstruction of realistic speech. There are no words or phrases. These have to be put together by the host computer as a string of allophones. This is not difficult, and imposes only a light load on the computer. It is quite possible to produce a reasonable vocabulary without resorting to machine code. The store required for each word is only a handful of bytes.

## THE BOARD

Fig. 6.1 is a black diagram of the Speech system. There are three basic elements, the speech generator, amplification
and the interface to the ULTIMUM motherboard. Fig. 6.2 gives the complete circuit diagram.

The speech board occupies only one memory location (the location to which the allophone code is to be sent (see later). The decoding uses four four-bit magnitude comparators (ICs $1-4$ ) which compare all 16 address lines against a value set on the links 0-15. The magnitude comparators are gated with the Read and Write signals from the motherboard to provide a valid access signal to the speech chip. When the selected location is written to, the byte written is sent to the speech chip. When the same location is read, the two status bits (BUSY and LOAD REQUEST) are put onto the bus (D7 and D6 respectively). Reading these bits allows the programmer to establish
whether the speech chip is ready to accept another command or still busy issuing the last allophone. As speech is comparatively slow by computer standards, it is quite acceptable to poll these status lines periodically, rather than resort to the more complicated interrupt lines, although this is also possible, as all that is needed is to connect the load request line from the speech chip to the interrupt request line on the edge connector.

The speech chip provides a pulse width modulated signal which has to be converted to an analogue waveform suitable for amplification. This can be done with a simple diode/CR network, but we have chosen the more complete four stage filter (IC9), which imparts a much better 'shape' to the audio signal.


Finally, an amplifier $4(10)$ is included to drive a small speaker. Alternatively, a 'pick-off' point is available for external amplification, or for mixing with the Sound Card (see next month's article).

## ASSEMBLING THE BOARD

Refer to the overlay (Fig. 6.3) for details of component placement. This board has many discrete components (mainly used in the filter).

We suggest that these are inserted after you have placed the i.c sockets. The crystal (XTAL1) which provides the timing for the speech chip, should be inserted with care. Avoid bending the leads at the base, as strain can fracture the internal connections. The SP-0256 is the most expensive component on the board, so before inserting it, check for shorts by powering the board up, and check that 5 volts appears on pins 7 and 23 of IC5 (the SP-0256 socket).

The d.i.l. switches ( $0-15$ ) should be set up as follows:

1) Find an unused location in memory.
2) Write down the binary value of that location (eg. 0113 hex is 0000000100010011 in binary.
3) Set the switches according to this binary pattern ie. if bit 0 (the least significant bit) is 0 then close switch (shown in the overlay, Fig. 6.3, and on the board itself).
4) Repeat 3 for each switch.

## TESTING THE BOARD

The board should be tested with the other cards removed from the ULTIMUM just in case there is a short circuit. Do not insert the board with the power on. The SP-0256 is automatically reset as power is applied. Run the BASIC program listed in Table 6.1, noting that you must set the PEEK and POKE location (LOC1 in the listing) to that set up on the speech board. If nothing happens, check the switches are correct and that the speaker is connected.

## MAKING SPEECH

Table 6.1 lists all the allophones and the code which has to be fed to the SP-0256. The basic sequence required to feed allophone codes is as follows:

1) When load request is low, issue of any of the listed allophone codes by writing to the location set up on the decoding switches is possible

## 10 LET LOC1 $=$ (speech focation) <br> 20 RESTORE <br> 30 READ D <br> 40 IF D $\Rightarrow>64$ THEN 80 <br> 50 IF (PEEK(LOC1) AND 128) <>0 THEN 50; ready to load? <br> 60 POKE LOC1,D <br> 70 GOTO 30 <br> 80 GOTO 20; repeat indefinitely $56,1,23,3,17,4,48,15,11,4,13,31,4,29,29,39,19,4$ <br> 100 DATA $40,50,4,40,6,35,4,55,55,12,12,41,55,4,55,55$, 7,39,15,11,4 <br> 110 DATA 20,2,17,4,56,6,12,4,13,7,1 1,64 <br> 120 END

Table 6.1. BASIC test program for Speech board
2) While the allophone is being "spoken" the busy line will go low to indicate that the word is being issued. As can be seen, this allows for very simple programming.

There is no one-to-one correspondence between allophones and the written word, so we have to convert each word into its component parts before we can pursuade the speech chip to reproduce it. Of course, the best way of doing this is to write a "speech assembler" program which will break down the word and prepare the code for you, and we have no doubt that some readers will try this, as this kind of program has lots of applications, including speaking documents. The starting point must be to manually assemble your code by breaking up each word, and select the appropriate allophones yourself. To make this a little easier, Table 6.3 includes sample words which illustrate the type of sound associated with each allophone. Once the allophone list has been prepared, all that is required is to send single bytes to the SP-0256 in sequence. We have written a simple BASIC program to send a test phrase:
$A$ bird in the hand is worth two in the bush.
Table 6.2. For sample program use these data
80 STOP ; preserve sanity
90 DATA 20,2,63,52,0,21,2,12,11,2,18,19,2,27,26,11, 0,21,3
100 DATA $12,43,2,46,52,29,2,13,31,2,12,11,2$
110 DATA 18,19,2,63,30,37,64

| Hex <br> 00 | Dec. 0 |  | 10 ms | Hex <br> 16 | Dec. <br> 22 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 |  | Delay | 10 ms |  |  | uwl | to | 2 B | 43 | zz | 200 |
| 01 | 1 | Delay | 30 ms | 17 |  | ao | aught | 2 C | 44 | ng | anchor |
| 02 | 2 | Delay | 50 ms | 18 | 24 | a | hot | 2D | 45 | 11 | lake |
| 03 | 3 | Delay | 100 ms | 19 | 25 | yy2 | yolk | 2E | 46 | ww | wool |
| 04 | 4 | Delay | 200 ms | 1 A | 26 | ae | hat | 2F | 47 | xr | repair |
| 05 | 5 | oy | boy | 1 B | 27 | hhl | he | 30 | 48 | wh | when |
| 06 | 6 | i | sky | 1 C | 28 | bbl | rib | 31 | 49 | yyl | yes |
| 07 | 7 | eh | end | 1D | 29 | th | thin | 32 | 50 | ch | church |
| 08 | 8 | kk 3 | comb | 1E | 30 | uh | book | 33 | 51 | erl | letter |
| 09 | 9 | pp | pal | 1 F | 31 | uw2 | food | 34 | 52 | er 2 | bird |
| 0A | 10 | jh | dodge | 20 | 32 | aw | out | 35 | 53 | ow | sew |
| OB | 11 | nnl | thin | 21 | 33 | dd2 | do | 36 | 54 | dh2 | they |
| OC | 12 | ih | sit | 22 | 34 | gg3 | wig | 37 | 55 | ss | vest |
| OD | 13 | tt2 | two | 23 | 35 | vv | vest | 38 | 56 | nn 2 | no |
| OE | 14 | rrl | rural | 24 | 36 | ggl | guest | 39 | 57 | hh2 | hoe |
| OF | 15 | ax | succeed | 25 | 37 | sh | ship | 3A | 58 | or | store |
| 10 | 16 | mm | milk | 26 | 38 | zh | azure | 3B | 59 | ar | alarm |
| 11 | 17 | ttl | part | 27 | 39 | rr2 | brain | 3 C | 60 | yr | clear |
| 12 | 18 | dhl | they | 28 | 40 | ff | food | 3D | 61 | gg2 | got |
| 13 | 19 | iy | see | 29 | 41 | kk2 | sky | 3E | 62 | el | saddle |
| 14 | 20 | ey | beige | 2A | 42 | kk 1 | can't | 3F | 63 | bb2 | business |
| 15 | 21 | dd 1 | could |  |  |  |  | SP | 256 | 2 all | nes |



Fig. 6.3. Component layout

The program is given in Table 6.2b. The PEEK and POKE locations will depend on where the speech board is located in memory, and need to be adjusted accordingly.
NEXT MONTH: The Sound board.

| COMPONENTS | - * |
| :---: | :---: |
| Resistors |  |
| R1, R2, R13 | 3k3 (3 off) |
| R3, R8 | 100k (2 off) |
| R4, R5 | 2 k 7 (2 off) |
| R6, R7, R1, R11, R14, R15,R18,R19 | 4 k 3 (8 off) |
| R9 | 3k9 |
| R12,R16, R20 | 10k (3 off) |
| R17 | 9k1 |
| R21 | 16k |
| R22 | 33k |
| R23 | 10 |
| All resistors $\downarrow$ W 5\% |  |
| Potentiometers |  |
| VR1 | 10k Min. Vert. preset |
| Capacitors |  |
| C1 | $1 \mu / 16 \mathrm{~V}$ elect. |
| C2, C5, C15, C16, |  |
| C19-27 | 100n cer. (12 off) |
| C3, C 4 | 20 pcer ( (2 off) |
| C6-14 | 10 ncer ( (9 off) |
| C14, C17 | $4 \mu 7 / 16 \mathrm{~V}$ elect. (2 off) |
| C28 | $10 \mu / 10 \mathrm{~V}$ tant. |

## Semiconductors

| IC1-4 | 74 LS85 (4 off) |
| :--- | :--- |
| IC5 | SPO256AL2 |
| IC6 | 74 LS367A |
| IC7 | 74 LS 13 |
| IC8 | 74 LS32 |
| IC9 | LM324 |
| IC10 | LM386 |
| IC1 1, IC12 | $4 \mathrm{k} 7 \times 8$ d.i.l. resistor |

## Miscellaneous

8 pin d.i.l. socket
14 pin di.l. socket (3 off)
16 pin d.i.l. socket (7 off)
28 pin d.i.l. socket
8-way SPST d.l.I. switch (2 off)
3.12 MHz crystal XLI

Speaker 8 ohm, 2 in. LS 1
$2 \times 32$ way rt . angled Euro plug (DIN41612A+C)
P.c.b. terminal block

1 metre twin standard cable
WE08 SPK p.c.b.

## Constructor's Note

All kits for the Ultimum system are available from Watford Electronics (see advertisers' index). Send SAE for price lists of boards now available.

# Ingenuity Unlimited 

A selection of readers' original circuit ideas. Why not submit your idea? Any idea published will be awarded payment according to its merits.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not in the text.

[E61012]

FOR any purpose needing a constantcurrent supply, such as charging Ni Cad cells, this unit provides a remarkably stable current-even shorting the output causes no detectable change in current. The circuit shows switching of three ranges by means of a three pole four way switch, and the fourth position changes the circuit 10 an equally stable constant voltage supply, a desirable addition to the versatility of the unit only needing two more resistors.

Operation is as follows-the Zener diode provides a reference voltage, part of which is tapped off by VRI to the noninverting terminal of the op amp. The output current from the emitter of the transistor is returned to $O \mathrm{~V}$ via the resistors R2-4, and the consequent positive voltage at the top end of these is fed to the inverting terminal. The potential of the op
amp output provides the bias for the base of the transistor; if the output current tends (6) increase, the potential changes, thus reducing the current supplied to the output, so that a stable state is set up. The actual amount of current is governed by the proportion of the Zener voltage supplied to the i.c., so VR 1 forms a panel control which can be calibrated.

The characteristics of the circuit overall are not quite linear, so a separate dial calibration is needed for each of the resistors $\mathrm{R} 2-4$. Their values can be found experimentally for any required current range. The quickest way is to put a meter across the output, and substitute a wire wound variable for the resistor. Rotating VRI will give the range limits for any given value of the variable, which can be measured, and a suitable fixed resistor chosen.

The ranges of the prototype are given for the values in the drawing, but the current can if necessary be increased to any desired amount, provided only that the transistor used can take it if properly heatsinked. For currents over about 250 ma , obviously a power transistor is required, but up to that figure a BFY50 on a good heat sink should cope.

The fourth switch position for constant output vgltage connects the output return directly to 0 V , and puts a resistance across the output. Half of the voltage appearing across this is applied to the i.c., and controls the transistor as before. Positions 1, 2 and 3 of S 1 provide the constant current ranges of 1-4 ma, 5-20 ma and 20-85 ma. Position 4 has the consiant voltage range of $4-18 \mathrm{~V}$.
S. A. R. Guest, Grampound, Truro.


MANY circuits exist to provide exciting effects using coloured lighting, examples such as Sound-to-Light units and Chasers springing immediately to mind; but few exist that may be deployed successfully in a household environment for extended periods of time providing an interesting but slower and more relaxing type of display. Presented here is such a unit which may be used protractedly without excessive fatigue. It may also be of interest to many readers since it contains a voltage controlled dimmer which operates without resort to the more usual and unpredictable arrangement using a light dependant resistor.

The circuit aims to provide the following effect. At switch-on, all three bulbs illuminate. After a time, a regular cycle is set up during which the red bulb slowly increases in brightness until it reaches a maximum when the green bulb begins to light. After this too has reached its maximum level, the red bulb dims. When fully extinguished, the blue bulb begins to switch on whereupon the green bulb is extinguished, to be followed by the lighting of the red bulb and dimming of the blue bulb. The cycle then repeats.

The result of all this is that the colour of the light emitted by the unit cycles approximately every 25 seconds through the entire colour spectrum, beginning at red and changing through yellow-green-bluemagenta and then back to red.

The circuit may be broken down into three sections, these being the ramp generator and power supply, voltage controlled dimmers and logic elements. The ramp generator generates slowly rising and sharply falling waveforms which are synchronised with the mains so that the falling edge of the ramp occurs at mains zerocrossing (see Fig. 1). It operates as follows: unsmoothed d.c. from the transformer is fed via potential divider VR1 and resistor R2 to the base of TR1, so that when the mains voltage is not close to zero, TR1 is switched on. This removes the base current from TR2, cutting it off and preventing it from discharging the capacitor C 2 . The voltage across $\mathbf{C} 2$ therefore represents the type of ramp previously described, and although the rising edge is in fact exponential rather than linear, the approximation is satisfactory in this case.

This ramp is sent to the 'sync' input of the mains control circuits and is compared with the voltage across the capacitors (C101 to C301) by the CA3140 comparators, the output of which drive the triac opto-isolators. The higher the voltage across the tantalum capacitors, the more time must elapse before the sync voltage exceeds this voltage, so that the optoisolator's l.e.d. is energised, and the later in the cycle the main triac is fired. Proportional control of the power delivered to the load is therefore obtained, the power beging inversely proportional to the voltage across the capacitor. Three mains control units were constructed, one each for the red, green and blue lamps.
The rest of the circuit consists of the logic required slowly to charge and discharge C101 to C301 in the appropriate manner. A one-of-ten output decade counter (IC2) is connected to an oscillator. If the 555 used is not of the recently available CMOS type (often numbered 7555) then it is strongly recommended that a $22 \mu \mathrm{~F} / 10 \mathrm{~V}$ electrolytic decoupling capacitor be connected directly across the supply pins of the NE555, otherwise the rest of the circuit may suffer from transients introduced on the supply lines when the chip changes its output state. The period of the oscillator is variable between about a second and approximately 15 seconds or more. During setting up, care should be taken never to set VR2 to its minimum value. The 4017 is connected so that it cycles between only six of the ten outputs (Q0-Q5), since when Q6 goes high, the device is immediately reset. A reset pulse is also applied at switch on via

C4 and R7 to ensure that normal opera tion commences as soon as possible. Should problems arise during setting up, it should be remembered that the output increasing the light level is the one connected to the transistor discharging C101. Diodes D101, D102 and D103 through to D301, D302 and D303 are necessary to stop the associated capacitor discharging as soon as the corresponding output on the 4017 gaes low.
Setting up is accomplished as follows. The presets determining the increase and decrease time (VR101-VR302) should be turned down to their minimum setting. The bulbs should now switch almost instantly between being on and off, rather than fading. VR1 should be adjusted so that the bulbs are as bright as possible while the unlit bulbs remain fully extinguished. VR2 may then be set up to give the required oscillator period (remembering that the full cycle will take six times longer), observing the previously stated precaution. The fade timing presets must now be set up. Wait until the appropriate part of the cycle, then select an 'increase time' preset (i.e. one that discharges C101, C201 or C301) and increase its value. After several cycles have past, the preset should be adjusted so that the bulb just lights fully in the time that the increase input is high. This procedure should then be repeated for all the increase potentiometers. Similarly, the 'decrease' pots should be adjusted so that the associated bulb just extinguishes during the time that the 4017 output is true. This setting up procedure is lengthy and time consuming, but time spent here pays dividends in enhancing the effect.


Fig. 2. A mains control circuit

The bulbs used may be any type of 240 V mains bulbs although special care should be exercised in the choice of the blue lamp, since many spotlamp bulbs labelled 'blue' produce a blue/green shade. If spotlamps are employed, then use ones that cast a fairly diffuse pool of light rather than producing three separate spots which would spoil the effect. The prototype currently in operation uses 100 W coloured reflector bulbs similar to, but slightly larger than, those used in sound-to-light units, etc. There is of course no reason why larger loads should not be driven providing that the following points are taken into consideration:

1. Make sure that the mains choke is rated for the maximum r.m.s. bulb

Fig. 3. Showing the relationship between the mains voltage $\mathbf{V}_{\mathrm{m}}$ and the sync signal $\mathrm{V}_{\mathrm{n}}$
current plus a suitable safety margin (say 10\%).
2. The triac should be rated at about 6 to 8 times the bulb r.m.s. current to allow for the switch-on surges in cold filaments.
It is also probably a good idea to add a fuse on the live side of the bulbs in addition to the single 3A link to protect in the event of any short circuits. All the components are fairly easy to obtain with the exception of the triac opto-isolator which may be obtained from Maplin Electronic Supplies.
N. J. Bailey,

Yatton, Bristol.


## VERSATILE CONTROLLER

THE uses of this controller have turned out to be virtually legion-originally developed as a precision temperature control for a colour developer water bath to within $0.25^{\circ} \mathrm{C}$, it can be used to control beer fermentation, greenhouse and propagator temperature, to turn lights on or off at dusk or when the sun shines, to turn on or off a water pump at some predetermined level, to provide a rain or frost warning-and so on. The only change to suit any particular purpose is in the sensor arrangements, and since these can be included in a DIN plug housing, the unit input is deliberately made universal by means of a DIN socket.

The basic circuit is quite simple, using an input resistance bridge composed of the chain R1-4 and VRI for two arms, and the sensor socket between both $\mathrm{A}-\mathrm{B}$ and $\mathrm{B}-\mathrm{C}$ for the other two. Pin 2 of the i.c. can have the voltage on it altered by rotating VRI, thus setting the operating point, and the line to pin 3 carries a voltage varying with the momentary condition of the sensor. When pins 2 and 3 are at the same voltage, there is ideally no output on pin 6. If pin 3 is positive to pin 2 by even the slighest amount, pin 6 goes into positive saturation-and vice versa. If pin 6 is positive, TRI turns on and closes the relay. Since the inputs are in bridge formation, the actual value of the supply voltage makes no difference to the operation.

Two features in the diagram may need explanation. The resistor chain R1-4 is broken into sections at three switched sockets, so that VRI can be plugged in at three different voltage points, giving three overlapping ranges and a much more open scale than if a single potentiometer of say 47 k were used across the supply instead. The other odd looking feature is the wiring of the indicator l.e.ds. Obviously the easiest way is to use a set of changeover contacts on the relay, but in the prototype the miniature relay used had only one set of contacts, of mains size, so another method had to be devised. The red l.e.d. for "off" DI is lit by current sunk by pin 6 when negative, but to avoid damage to the i.c. make R5 as high as will permit an indication. The green l.e.d. D2 is lit by current passing through the relay coil
when on. Before connecting D2 choose R8 to allow the relay to just close, and then choose R 7 to provide a parallel path which will light D2 and allow the relay to close.

Various sensors may be used; for temperature control a Siemens Kl64 bead thermistor with a nominal resistance of 22 k is ideal. If used in air, all it needs for protection is two or three coats of oil based paint (not cellulose) on it and the wires and joints-probe insulation is vital, and must not be open to moisture. Response will be almost instantaneous. Rx, the balancing resistor, should be about the same resistance as the sensor, whatever kind is used, at the normai state, so 22 k is used for the thermistor mentioned. It is mounted inside the DIN plug housing. The sensor lead should be carefully screened to avoid interference, and the screen returned to OV.

For use in water (or beer!) etc., mount the bead in a little piece of the very thin brass $\frac{1}{4}$ in tubing available at model shops, one end closed by a bit of sheet soldered on; fill the closed end for about $\frac{1}{6}$ in with heat sink grease, wrap the bead assembly in a bit of polythene sheet (it must be perfectly insulated from the brass) and push it down into the grease. Seal the cable exit securely with wax or pitch, topped with polyurethane glue to make all tight. If the fluid being monitored will corrode brass or
be contaminated by it, a little glass tube will have to be used, which will slow the response but not impair the accuracy.

For light sensing purposes, a CdS l.d.r. is used, with the same proviso about Rx .

For water level detection, a pair of wires about an inch apart and carefully insulated from one another are set to dip into it at the required level. For rain or moisture, a little bit of copper track board is used face up, the tracks connected alternately to the leads. One drop of water bridging them is sufficient to activate the controller. Note that in these cases, the sensor is normally open circuit, so that a high resistance, typically 220 k , must be connected both from $A$ to $B$ and from $B$ to $C$, so as to preserve the d.c. balance of the bridge. To operate with these leakage sensors, the position of VRI with the probe dry should be such that the relay just does not close. First class insulation is more than ever necessary in these cases.

The rule in working out any operation is always the same-a reduction in the resistance between $B$ and $C$ will turn the controller off, and conversely a reduction of resistance between A and $\overline{\mathrm{B}}$ will turn it on, and if the reverse of this is needed (as for instance if a rise in temperature is to turn something on) change over the A and $C$ leads at the plug, together with $R x$.
S. A. R. Guest, Grampound, Truro


# I.F.FIITER/AMPLIFIER for pe RANGER-R.F. MIIINGTON 

ONE of the major problems encountered with the PE Ranger CB transceiver (Sept-Dec 1981) was adjacent channel interference. The circuit described here attempts to overcome this problem by increasing the IF selectivity at comparatively low cost.

The CFM2455D IF filter supplied with the Ranger kit is excellent compared to its cost (around 75p), but as its response curve shows its rejection of adjacent channel transmissions is not good. The Ranger board was studied to see how a better filter could be fitted. Consideration was given to the cost of such a modification and it was decided to mount a piggy-back board in a similar manner to the transmitters' output filter board. The circuit uses a small piece of 'Veroboard' which has the same hole spacings as FL100. (0.1").
To overcome the cost of a highly selective ceramic ladder or crystal filters, the circuit in Fig. 1 uses an idea from a model radio control receiver* which cascades the filter


Fig. 1. Circuit diagram of the I.F. Filter/Amp
FL100 with a low cost ceramic ladder filter type CFU455H or LFB6. This arrangement gives an IF curve which has very steep sides, as compared to the sloping sides of the curve given by FL100 only. The extra insertion loss proved to be too much though, reducing the Ranger to a 'locals only' receiver. Selectivity, the object of the exercise, was much improved.

The following IF amp was then evolved to return the gain of the now reduced $I F$ signal to its original level. 6.2 V is available at the centre pin of the FL100 position (marked B) and $-V e$ return is made by soldering the unused tracks of the 'Veroboard' to the can of L106/L107, which also gives the board mechanical stability.

R1 is the CFM2455D output impedance matching resistor. The output impedance of this filter is stated as being 2 kohm, but as the input impedance of TR1 is about 1 kohm, R1 was made 1 kohm .
A BC109, although classed as an audio transistor was used for TR1 and this seemed to work well. R4 and C1 provide decoupling for the supply and the output is taken from the collector of TR1 via C2, which then feeds straight to pin 5 of IC100. (Marked C). The input is from L107, marked A .

R2 is given as 750 kohm . Preferred values for the E12 range are 680 k and 820 k , and either should do if the stated value is not available. There is room for experimentation here, but remember that too much gain will overload the limiting amp in IC100, thereby clipping the wanted signal and causing distortion.

It has been recommended that the oscillator voltage stabiliser diode D100 be reduced to 2.7 V to reduce the amount of RF produced. With this filter/amp it was found that the oscillator was now too weak, so the original 5.6 V Zener was used. The 100 ohm across L105 and the 47 kohm from pin 1, IC100 to ground were left in circuit.

## CONSTRUCTION

Carefully remove FL100 from the Ranger circuit board, being sure not to overheat the leads or the track on the board, which will lift and tear away. Once removed, use FL100 in position F2 on the filter/amp board.

The components should be laid out on the Veroboard as shown in Fig 2. Don't forget to cut the track in the appropriate places.

Mount all the components before soldering. The three leads for A, B, and C can be made from cut off component leads, and are best left long until the board is soldered to the can of L106/L107.

When the filter/amp board is completed, carefully insert the three leads, A, B, and C (Fig. 1) into the holes left by FL100, and marked A, E, and C in Fig. 2. Note where the link at H9 touches the top of the L106/L107 can, then put the board aside and tin that position on the can, using a fair amount of solder. It is then an easy matter to solder the H9

## COMPONENTS . .

Resistors
R1 $\quad 1 \mathrm{k}$
R2 $\quad 750 \mathrm{k}$
R3 $\quad 2 \mathrm{k} 2$
R4 $\quad 1 \mathrm{k} 5$
All resistors $\frac{1}{4} \mathrm{~W} 5 \%$ carbon film
Capacitors
C1 100nF disc ceramic
C2 10nF disc ceramic

## Transistor

BC 109
Filters
F1 CFU455H or LFB6
F2 CFM2455D
Miscellaneous
Veroboard.


Fig. 2. Veroboard layout for the I.F. Filter/Amp
link to the can. (Note that this link is soldered to the track side of the board, bridging the unused tracks. Solder leads $A, B$, and $C$ to their respective pads on the Ranger circuit board.

Do not try to fit the filter/amp board flush with the Ranger board as the amplified signal from the limiting amp in IC100 can be picked up by C2 and fed back in, causing instability. With a gap of about $\frac{1}{4}^{\prime \prime}$ no feedback problems were experienced on the prototype.

## SETTING UP

The core position of L106/L107 may need to be slightly retuned to match the new filter, as with L102/L103. Coil cores should not have to be altered more than $\frac{1}{4}$ of a turn, and with a correctly tuned receiver it is worth while making a mark on the can for that setting before any retuning is done. It is also worthwhile to study the receiver alignment procedure as given in the original article.

## CONCLUSION

For an outlay of somewhere around $£ 2 \cdot 50$ p the filter makes a worthwhile improvement, putting all but the very close adjacent channel transmissions way down in the white noise, and it would seem that the majority of complaints of 'bleeding over' is more than likely due to poor IF filtering.

Other more expensive filters could also be used using the same mounting principle of a piggy-back board into the holes left by FL 100, and in most cases would have the same insertion loss as FL100, so an additional amplifier would not be needed, but this combination of filters seems to be a very effective and low cost alternative.

## ACKNOWLEDGEMENTS

*Radio Control Models and Electronics. May 1979. FM Digital Radio Control system by Terry Platt.

## FREE! READERS' ADVERTISEMENT SERVICE



RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

WANTED manuals and circuit diagrams for Radford (valved) audio equipment: AMP. STA 12, Control unit type DSM. E. R. Amesbury, 276 Parrswood Road, Didsbury, Manchester 20. Tel: 0614453698
MAPLIN DMO2T MK III Top octave organ generator with tremulant controls. Brand new in original packing E8.50. Ashford (Middlesex) 58878.

REQUIRED PE June 1977. Phone Evenings 850 1637. C. E. V. Doughty, 25 Eltham Park Gardens, London SE9
TEKTRONIX 585551536 Oscilloscopes. Good working order £ 100 with manuals. 01-360 4499. M. Applebaum, 36 Houndsden Road, Winchmore !till, London N2 1
CREED 75 Teleprinter with interface + control software for Atom. Leads + paper roll included. £40. Call Change 041332 7695. K. Y. Chang, 70 1-Up Ashley Street, Glasgow G3 6HW.
ZX81 p.s.u. printer and manual 9 months old £80 o.n.o. J. Rutherford, 3 Ingleborough Park Close, Ingleton via Carnforth, Lancs LA6 3AL.

COMMODORE Computer 4032, big screen 32 K Command-O ROM six months old E 630 . Wymeswold 880789 (Notts). P. Mustoe, 'Tynelea', Wymeswold Rd, Wysall, Notts

PRACTICAL ELECTRONICS 1964 to 1982 Practical Television 1957 to 1977. Everyday Electronics 1971 to 1982 offers. Tel: 01-274 5495.

UK101 $32 \times 4812 \mathrm{~K}$ BASIC 16 K RAM motherboard EPROMS + programmer sound $1 / 2 \mathrm{MHz}$ $3 / 600 \mathrm{~B}+$ software $£ 280$ o.n.o. N. Brooks, Eddington 12/6, Essex University. Colchester. Tel: 0206862286 . Ext. Eddington 12.
WERSI Electronic Bass kit. All components. Manuals, foot pedals, all brand new. £45. Tel: 0344 51674. Mr. A. J. Packham, 6 Cotterelt Close, Priestwood, 8racknell, Berks RG1 2 2HL.
OSCILLOSCOPE Heathkit $10-18 \mathrm{u}$ with manual $£ 50$. Sharp 8 track cartridge record-play deck RT 811 E E20. W. Edwards, 2 Beach Road, Burton Bradstock, Bridport, Dorset DT6 4RF. Tel: 0308897625.

WAYNE Kerr LCR Bridge $£ 20$, frequency meter £10. Nascom one extras $£ 100$ S100 system very cheap. Hugh Bridge, 175 Crofton Road, Orpington, Kent BR6 8JB. Tel: 068957055.

12-0-12V 1 amp p.s.u. £9. Leak Varislope preamp and TL2 25 amp , offers. Eve. or w/e only. N. Savill, 31 Jubilee Avenue, Ascot, Berks. Tel: Winkfield Row 884832.

UK101 8K cased fan cooled. MON 2 and Wemon selectable $+8 K$ RAM board and sound generator board complete £160. J. Courtney, 22 8 ray Road, Maidenhead, Berks SL6 IUE. Phone: Maidenhead 35343.

TEAK case for pre-amp and main amp all metal work front panel knobs £10. Carriage paid. C. A. Noble, 50 Crofthill Road, Slough, Berks SL2 1 HF .

TANDBERG $3541 \times 4$-rack stereo reel. SOS, echo, mint (genuinely unused). Test tape. £65 o.n.o. Tel: (07605) 402. A. Pearson, 52 Stocks Green, Castleacre, Norfolk.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature
Date..
Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no. COUPON VALID FOR POSTING BEFORE 8 APRIL 1983
(One month later for overseas readers.)
SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER
HOUSE, WEST QUAY ROAD, POOLE, DORSET BH 15 1JG.


The hardware and software exchange point for PE computer projects

## Table 1. Software

1 F 8 E is the interrupt service routine.

| 1F8C | 58 | CLI |  | This is the startup routine which simply enables |
| :---: | :---: | :---: | :---: | :---: |
| 1F8D | 60 | RTS |  | interrupts |
| 1F8E | 8DFAIF | STA | \$1FFA | Save Accumulator |
| 1F91 | 8EFBIF | STX | \$1FFB | Save X register |
| 1F94 | 68 | PLA |  | Pull Processor Status Word off stack |
| 1F95 | 8DFCIF | STA | \$1FFC | Save PSW |
| 1F98 | 68 | PLA |  | Pull PC low byte off stack |
| 1F99 | 8DFD1F | STA | \$IFFD | Save it |
| 1F9C | 68 | PLA |  | Pull PC high byte off stack |
| 1F9D | 8DFEIF | STA | SIFFE | Save it |
| IFAO | A 200 | LDX | \#\$00 | Clear screen pointer |
| 1FA2 | A928 | LDA | \#\$28 | Load Left Bracket character |
| IFA4 | 9D30D0 | STA | \$D030,X | Draw on screen |
| 1FA7 | E8 | 1NX |  | Increment screen pointer |
| 1FA8 | ADFE1F | LDA | \$1FFE | Get PC high byte |
| IFAB | 20DCIF | JSR | \$1FDC | Draw on screen |
| IFAE | ADFDIF | LDA | \$1FFD | Get PC low byte |
| \|FB1 | 20DC1F | JSR | \$1FDC | Draw on screen |
| 1FB4 | A929 | LDA | \#\$29 | Load Right Bracket character |
| 1FB6 | 9D30D0 | STA | \$D030,X | Draw on screen |
| 1FB9 | ADFE1F | LDA | \$1FFE | Push PC high byte back onto stack |
| 1FBC | 48 | PHA |  |  |
| IFBD | ADFDIF | LDA | \$1FFD | Push PC low byte back onto stack |
| 1FC0 | 48 | PHA |  |  |
| 1 FCl | ADFCIF | LDA | \$1FFC | Push PSW back onto stack |
| 1FC4 | 48 | PHA |  |  |
| 1FC5 | 98 | TYA |  | Save Y register on stack-it will be used by |
| 1FC6 | 48 | PHA |  | delay count |
| 1 FC7 | AEFFIF | LDX | \$1FFF | Load delay count into X register |
| 1FCA | ACFFIF | LDY | \$1FFF | and Y register |
| 1FCD | 88 | DEY |  | Decrement Y |
| IFCE | DOFD | BNE | \$1FCD | If not zero loop back |
| IFD0 | CA | DEX |  | Decrement X |
| 1FDI | DOFA | BNE | \$1FCD | If not zero branch back |
| 1FD3 | 68 | PLA |  | End of delay-pull Y reg data off stack |
| 1FD4 | A8 | TAY |  | Restore Y register |
| IFD5 | AEFB1F | LDX | \$1FFB | Restore X register |
| 1FD8 | ADFAIF | LDA | \$IFFA | Restore Accumulator |
| 1FDB | 40 | RTI |  | Return i.e. execute next instruction |
| 1FDC | 48 | PHA |  | Save the byte on stack |
| 1FDD | 4A | LSR | A | Move the top 4 bits |
| 1FDE | 4A | LSR | A | into the lower 4 |
| 1FDF | 4A | LSR | A |  |
| 1FE0 | 4A | LSR | A |  |
| 1FEI | 20E91F | JSR | \$1FE9 | Convert lower 4 bits to Ascii \& output |
| 1FE4 | 68 | PLA |  | Get next 4 bits |
| 1FE5 | 20E91F | JSR | \$1FE9 | Convert to Ascii \& output |
| 1FE8 | 60 | RTS |  | Return |
| 1FE9 | 290F | AND | H\$0F | Mask off top 4 bits |
| 1FEB | 18 | CLC |  | Prepare for addition |
| 1FEC | D8 | CLD |  |  |
| 1FED | 6930 | ADC | \#\$30 | Add Ascii "zero" |
| 1FEF | C93A | CMP | \#\$3A | If result more than 9 correct to |
| 1FF1 | 3002 | BMI | \$1FF5 | Ascii for A-F |
| 1FF3 | 6906 | ADC | \#\$06 |  |
| 1FF5 | 9D30D0 | STA | D030,X | Display on screen |
| 1FF8 | E8 | INX |  | Increment pointer to screen |
| 1FF9 | 60 | RTS |  | Return |
| 1FFA |  |  |  | Save accumulator |
| IFFB |  |  |  | Save X register |

IFFC
IFFD
IFFE
1FFF
This is the startup routine which simply enables
interrupts
$\begin{array}{llll}\text { 1F8D } & 60 & \text { RTS } & \\ \text { 1F8E } & \text { 8DFA1F } & \text { STA } & \text { \$1FFA } \\ \text { IF91 } & \text { 8EFB1F } & \text { STX } & \text { \$1FFB }\end{array}$
1F94 68 PLA
1F98 $68 \quad$ PLA
$\begin{array}{lll}\text { 1F99 } & \text { 8DFD1F } & \text { STA } \\ \text { 1F9C } & 68 & \text { PLA }\end{array}$
1F9D
IFA
IFA
IFA7 E8 INX
IFA8
IFA
1FB
IFB
1FB6
IFB
PHA
IFC0 48 PHA
IFCl ADFCIFLDA
F4 48 PHA
IFC5 98 TYA
1FC7 AEFFIF LDX
$\begin{array}{ll}\text { IFCA } & \text { ACFFIF LDY } \\ \text { IFCD } & 88\end{array}$
$\begin{array}{lll}\text { IFCE } & \text { DOFD } & \text { BNE } \\ \text { IFDO } & \text { CA } & \text { DEX }\end{array}$
IFD
IFD3 68 PLA
IFD5 AEFBIF LDX \$IFFB
$\begin{array}{lll}\text { 1FD8 } & \text { ADFA1F LDA } \\ \text { IFDB } & 40 & \text { RTI }\end{array}$
IFD
1FDD
1FD
AA LSR A
IFE1 20E91F JSR A
68

IFE9
1FEB
1FE
IFE
IFF3 6906 ADC $\# \$ 06$
1FF5 9D30D0 STA D030,X
Increment pointer to screen

Save accumulator
Save X register
Save Processor Status Word
Save PC low byte
Save PC high byte
Delay count

Fig. 1. Circuit diagram. R11 must first be disconnected from IRQ. Fins 8, 9 of IC18 are currently unused.

## MACHINE CODE TRACE

Machine code in RAM can be traced by setting a sequence of breakpoints using the 6502 BRK instruction. If the software is in ROM, however, software interrupts are not possible and another means has to be found. Some processors have a "T-bit" in the status word which when set causes an interrupt after every instruction. This is ideal, but unfortunately not available on the 6502. The nearest solution to the problem is to supply the hardware interrupt input (IRQ) of the processor with a logic level shortly after the start of every instruction. This will cause a branch to an interrupt service routine where the current PC can be displayed on the VDU, allowing the operation of the Monitor and BASIC ROMs to be viewed.

The required signal is most closely provided by the SYNC output from the 6502 chip itself. This output indicates when the processor is carrying out an "instruction fetch" and as such becomes active shortly after an instruction has started. In practice, the SYNC signal must be inverted before feeding it to the IRQ input. This can be done using the circuit in Fig. 1 incorporating one of the spare inverters on the board.

The interrupt pushes the PC high byte, PC low byte and Processor Status Word onto the stack and disables interrupts. The routine given here pulls those bytes off the stack and displays the PC on the top RH line of the screen. This constantly updates and is "transparent" to the operation of BASIC or machine code.

After giving a memory size of 8075 bytes, the routine should be keyed-in using the machine-code monitor and then linked to the IRQ vector by POKE 549,76: POKE 550,142: POKE 551,31.

Once in memory, it can be SAVED to tape using the routine given in the UK101 manual. The trace speed can be changed by POKEs to $8191 / /=$ fast $127=$ mid $0=$ slow).

Interrupts are then enabled by including POKE 11.140: POKE 12.31: $X=$ USR(X) to call the startup routine at $\$ 1$ F8C. Startup should be done from within a program and not in immediate mode, as this is not guaranteed to be successful. The toggle switch in the circuit diagram can be used to turn off the trace at any convenient time.

Two points about the routine-firstly the readout is bracketed to distinguish it from normal screen contents, and secondly it has been placed on the top screen line so that Line-Feeds do not destrov the screen.

Using this facility it is quite interesting to watch the amount of computing required by the various BAS/C operations.


## TRANSFORMER DESIGNER

This program was sent in by Peter Whittaker of Kliprivier, South Africa. When running, it will take the user through a series of steps leading to the design of a low power ransformer. The program takes care of all the calculations.

REM PETE WHITTAKER
3 REM DECEMBER 1981
4 REM AL MONITORS
5 REM
6 REM ADVERT
7 cosubl28
8 IFXI-1000RY1-100THENGOTO17
9 Readxl, Yl
10 POKEXI,Y1
11 DATAS $3547,150,53548,150,53549,150,53550,150,53551,150$
12 data $53580,156,53583,153,53612,156,53615,153,53644,156,53647,153$
13 DATA53675,151,53676,151,53677,151,53678,151,53679,151
14 DATA $53708,156,53740,156,53772,156,53804,156$
15 DATA53805,69,53806,84, 53807,69,100,100
16 COTO8
17 PRINT" TRANSFORMER DESIGNER."
18 FORX=0T0700STEP. 1 :NEXT
19 CLEAR:GOSUB128
20 PRINT"TRANSFORMER DESIGNER":PRINT"will design all powet
21 PRINT"and audio transformers":PRINT"including stepup units":PRINT
22 PRINT"Full prompting allows":PRINT"multiple tap options":PRINT
23 PRINT"The user may call on":PRINT"program assumptions to"
24 PRINT"permit safe design on":PRINT"used cores":PRINT
25 PRINT" HIT ESC KEY
26 IFPEEK (57100)-222THEN28
27 COTO26
28 GOSUB128
29 PRINT"*PRIMARY*": PRINT
30 PRINT"One to three primary":PRINT"taps at any voltages"
31 PRINT"of your choice may be":PRINT"selected"؛PRINT
32 INPUT"HOW MANY TAPS ":T1:PRINT
33 IFT 1<1ORT 1>3THENPRINT" (1 to 3 PLEASE)":PRINT:GOT032
34 FORA=1TOTI:ONAGOTO35, 36,37
35 INPUT"TAP 1 VOLTAGE ";V1:COTO38
36 INPUT"TAP 2 VOLTAGE ";V2:GOTO38
37 INPUT"TAP 3 VOLTAGE ";V3:GOTO38
38 NEXTA: PRINT
39 PRINT"Frequency range nay be": PRINT"between 20 hz to $20 \mathrm{khz"}$
40 PRINT" For wide range audio":PRINT"the mid frequency musr"
41 PRINT"be input": PRINT
42 INPUT"DESIGN FREQUENCY"; FI:PRINT
43 IFFI<200RF>20000THENPRINT"OUT OF RANGE": GOTO42
44 PRINT"DO YOU WISH TO":INPUT"CORRECT INPUT";B\$
45 IFLEFT $(8 \$, 1)=$ "Y"THEN32
46 GOSUB128 :PRINT"*SECONDARIES*":PRINT
47 PRINT"Two secondaries may be": PRINT"selected."
48 PRLNT"Secondary one allows $a^{\prime \prime}$ :PRINT"choice of one to three"
49 PRINT"taps to ensure design": PRINT"of center or multitap" 50 PRINT"devices": PRINT
51 PRINT"The second winding 1a":PRINT"single ended"
52 PRINT"Total current must not":PRINT"exceed 30 amps ":PRINT
53 PRINT"Windings may be series":PRINT"connnected":PRINT
54 PRINT"*SECONDARY 1*":INPUT"'HOW MANY TAPS";T2
55 IPT2<1ORT2>3THENPRINT"(1 to 3 PLEASE)":PRINT:COTO54
56 COSUB128:PRINT"*SECONDARY 1*": PRINT
57 FORB=1TOT2: ONBGOTO58,59,60
58 INPUT"VOLTS TAP 1";V4:COTO61
59 INPUT"VOLTS TAP $2^{11}$;V5:G0TO61
60 INPUT"VOLTS TAP $3^{\prime \prime}$;V6:G0T061
61 NEXTB:PRINT

62 PRINT"INPUT CURRENT ": INPUT"IN AIPS SEC. 1 "; II:PRTNT
63 PRINT"DO YOU WANT A SECOND": INPUT"'SECOMDARY WINDING'; CS: PRINT
64 IFLEFTS (CS, 1) <>"Y"THEN67
65 INPUT"VOLTAGE SEC. $2^{\prime \prime}$;V7:PRINT
66 PRINT"INPUT CURRENT": INPUT"LN AMPS SEC. $2^{\prime \prime} ; 12: P R I N T$
67 PRINT"DO YOU WISH TO": INPUT"CORRECT INPUT";DS
68 IPLEFTS(DS,1)="Y"THEN54 :PRINT
69 COSUB128:PRINT"*CORE*" ${ }^{\prime \prime}$ :PRINT

71 PRINT"volt/ampere rating of":PRINT"the transformer": PRINT
72 PRINT"In turn it affects the ": PRINT"number of turns/volt":PRINT
73 PRINT"the crossectional area":PRINT"is that of the core"
74 PRINT"center leg":PRINT"ie the area of the coil"
75 PRINT"hole opening": PRINT
76 PRINT "Magnetic properties of": PRINT"the core must be input"
77 PRINT"in innes/cm sq.If not": PRINT"known input $0^{\prime \prime}$ ":PRINT
78 INPUT"LINES/cm 8q"; L
79 IFL=0THENLETL= 10000
80 V8=V4:IFV5>V4THENLETV8=V5
81 IFV6>V4THENLETV8=V6
$82 \mathrm{VA}=(\mathrm{V} 8 * I 1)+(V 7 * I 2)$
$83 \mathrm{D}=(6.5416 * \operatorname{SQR}(V A)) /(5.58 * .92): X \$=\operatorname{STR} \$(D)$
84 COSUB128:PRINT"TOTAL VA ";VA:PRINT
85 PRINT"MINIMUM CORE"
86 PRINT"AREA REQUIRED";LEFT\$(X\$,6);"cm sq":PRINT
87 PRINT"WHAT SIZE CORE": PRINT"DO YOU WANT TO "
88 INPUT"USE cm sq please"; E: PRINT
89 IFE< (.94*D) THENPRINT"T00 SMALL": C0T087
90 REM T/VOLT
$91 \mathrm{~F}=100000000 /(4.44 * F 1 * L * E)$
92 X§-STR \$(F)
93 GOSUB128 :PRINT"*PRIMARY*":PRINT
94 PRINT"TURNS PER VOLT";LEFT\$(X $\$, 6):$ PRINT
95 PRINT"NOTE:- all turns are":PRINT"\&iven as total turns"
96 PRIUT"from common": PRINT
97 FORX=1TOT1: ONXCOTO $98,99,100$
98 PRINTINT(F*V1);"TURNS T0": PRINTV1;" VOLT TAP":PRINT:GOT0101
99 PRINTINT(F*V2);"TURNS TO":PRINTV2;" VOLT TAP":PRINT:G0T0101
100 PRINTINT(F*V3);"TURNS TO":PRINTV3;" VOLT TAP":PRINT:GOTO101
101 NEXT
102 XS-STRS(VA/V1)
103 PRINT"PRIMARY AMPS";LEFTS(XS,5):PRINT
$104 \mathrm{G}=\operatorname{SQR}((\mathrm{VA} / \mathrm{V} 1) * 1.08 /(1.55 * .7854)): \mathrm{X} \$=\operatorname{STR} \$(\mathrm{G})$
105 PRINT"WIRE DIAMETER IS": PRINTLEFT\$(X\$,6);"mm":PRINT
106 PRINT" HIT ESC KEY':PRINT" To CONTINUE"
107 IF PEEK (57100) $=222$ THEN 109
108 COTO107
109 GOSUB128
110 PRINT"*SECONDARY 1*":PRINT
111 FORC=1 TOT2:ONCGOTO112,113,114
112 PRINTINT (F\&V4);"TURNS TO":PRINTV4;" VOLT TAP":PRINT:GOTO115
113 PRINTINT (F*V5);"TURNS TO":PRINTV5;" VOLT TAP":PRINT:COTO115
114 PRINTINT(F*V6);"TURNS TO":PRINTV6;" VOLT TAP":PRINT:GOT0115
15 HEXTC
$116 \mathrm{H}=\mathrm{SQR}(\mathrm{I} 1 * 1.06 /(1.55 * .7854)): \mathrm{X}=\mathrm{STR} \$(\mathrm{H})$
117 PRINT"WIRE DIAMETER IS":PRINTLEFTS(X\$,6);" mm":PRINT
118 IFV7 $=0$ THEN 123
119 PRINT"*SECONDARY 2*": PRINT
120 PRINT"TOTAL TURNS FOR"":PRINT"SECONDARY $2^{\text {" }}$; INT (F*V7): PRINT
$121 \mathrm{I}=\operatorname{SQR}$ (I2*1.06/(1.55*.7854)): X\$=STR§(I)
122 PRINT"WIRE DIAMETER IS":PRIHTLEFT\$(X\$,6);" mm":PRINT
123 INPUT"RERUN PROGRAM";ES:PRINT
124 IFLEFT $(E \$, 1)=$ "Y"THEN1 9
125 PRINT"BYE THEN"
126 END
128 FORX=0TO28: PRINT : NEXT: RETURN
OK

## 2716 PROGRAMMER

The circuit of the 2716 (5V) EPROM Programmer makes a simple stand-alone unit which is economical to build. It does not need a microprocessor for its working. In order to input an 8-bit (one byte) data, it employs the popular keyboard circuit published in P.E. Sept. '78. That circuit has become popular, because it directly gives a one byte data-word with two key pressings. Normal keyboard encoder i.c.s (such as the latest 74C922) can give only a 4-bit word, and one needs a micro to rotate the bits left four times to assemble an 8-bit word into the Accumulator of the microprocessor. As a proof of its popularity, it appeared, though somewhat modified, again in P.E. April '80, page 62. So, many P.E. readers will have the keyboard already constructed.

This keyboard, together with a few TTL i.c.s and some l.e.d.s can make a useful

EPROM Programmer. The complete circuit is given in Fig. 1. There is a 10 pole 2 way slide switch connecting the keyboard output to the EPROM data lines. (This switch could be a cassette recorder spare part.) While reading the EPROM lafter programming), the switch is kept in the open position and then $\overline{C S}$ pin goes low. The eight data l.e.d.s use two 7400 gates to drive them. In the program mode, the switch is closed, thus connecting to the keyboard outputs, and then $\overline{\mathrm{CS}}$ goes high, as required for programming. The address lines are grouped into AO-A7 and A8-A10.

The A8 to $A 10$ are selected high or low using three 2 way slide switches, which are wired to +5 V and ground, so that one can choose a 0 or 1 for these address bits. These bits select the page on the EPROM to be programmed or read. The lines AO-A7 are fed from the outputs of the two

7493 4-bit counter i.c.s, which count the address. Incrementing the address is by the toggle switch 'Addr. Incr.' which gives one pulse at a time, so that one location after another of EPROM can be successively programmed. The 11 address lines are indicated by the 11 l.e.d.s at all times. The programming pulse of 50 ms is given by the puiser switch which initiates the 74121 monostable to give the 50 ms pulse to the PGM pin 18 of the 2716 . The 25 V supply needed for programming is also selected by a separate $25 \mathrm{~V}-10-5 \mathrm{~V}$ changeover switch. This separate switch is safer than incorporating it within the 10 way slide switch.

Programming is done by sequencing the address by the Addr. Incr. switch after initially resetting the Address lines to 00 by the push to open switch 'Zero Addr.'. Data is entered on the keyboard and after checking up by looking at the l.e.d.s, the pulser
switch is pressed once and released. That byte would be programmed into the EPROM. The procedure can be repeated for the next address location and so on

For reading/verifying, the slide switch is opened from the keyboard side and the address is selected by the 'Addr. Inc.' pulser so that the data l.e.d.s indicate the data already in the 2716 at that address.

## EXMON DISASSEMBLER

The UK101 Extended Monitor contains an excellent disassembler, but it will only list a given number of lines at one time, depending on the contents of location $\$ 0990$. It would be more convenient when a printed listing is desired, to be able to specify the start and end addresses of the program. This may be achieved by using the short program given here, which occupies locations \$07DF to \$07FF.

There are two spare letters available within Exmon, namely $J$ and $U$. One of these may be used to call the routine, and the relevant locations (i.e. for J:\$0974, 5) should be loaded with \# \$DF and \#\$07. It is then simply a matter of typing J (start), (end +1) to use.

> L. J. Dolman,
> Norwich.

## PROGRAM LISTING

| 07DF | 20110B | JSR | \$0B11 |
| :--- | :--- | :--- | :--- |
| 07E2 | 85D5 | STA | \$D5 |
| 07E4 | A5DB | LDA | \$DB |
| 07E6 | $85 D 6$ | STA | \$D6 |
| 07E8 | 20260B | JSR | \$0B26 |
| 07EB | A901 | LDA | \#\$01 |
| 07ED | $85 D 8$ | STA | SD8 |
| 07EF | A900 | LDA | \#\$00 |
| 07F1 | $209 E 09$ | JSR | \$099E |
| 07F4 | 38 | SEC |  |
| 07F5 | A5D5 | LDA | \$D5 |
| 07F7 | E5DE | SBC | \$DE |
| 07F9 | A5D6 | LDA | \$D6 |
| 07FB | E5DF | SBC | \$DF |
| 07FD | 90F0 | BCC | \$07EF |
| 07FF | 60 | RTS |  |
| 0 |  |  |  |
| PUT | \#\$DF | IN | \$0974 |
| PUT | \# \$07 | IN | \$0975 |
| TO USE ENTER JXXXX, YYYY |  |  |  |

## BASIC TIDY-UP

Sir-After getting to grips with a UK101 computer I discovered two very annoying features about it. The first was the "Out Of Memory" error on the first immediate instruction after a warm start (caused by a stack error) and the second was the fact that the OK message was output to cassette when saving BASIC programs, thus causing a "Syntax" error on LOADing.

```
FOKE 1.34 : FOKE 2,2
HOKE 4,38 ; POKE 5,2
FON T=546 TO 589
KEAD A : FOKE T.A
NEXT
\mathrm{ DRA 162, 252, 154, 76, 116, 162, 159, 13, 32, 105, 255}
DATA 169, 10. 32, 105, 255, 162, 8, 199, 61, 2, 32, 45
DLTA 191, 202, 208, 247. 36, 10, 13, 46, 89, (88, 65, 69, 82
```



I include a short BASIC program to load some machine code which will cure both these faults. An added bonus is that the OK message can be changed to anything one wants; I have made it output READY instead but anyone with machine code experience will be able to change this. The machine code resides at 0222 up to 0245 inclusive. The BASIC can be destroved after the program is run. After a cold start the two vectors have to be reset for the new routine so one must type in the two lines of POKE (lines 10, 20) in immediate mode.
N.J. Young,

Bristol.

## CEGMON ERROR MESSAGES

Sir-Since there does not seem to be much information about the UK101/Superboard in the mainline journals I would like to see Micro Prompt monthly.

Although the latest microcomputers have high resolution graphics, many of them do not have an auto-repeat keyboard, a hardware monitor and standard chips, like the UK101.

Here is a quick tip on how to obtain standard error messages with Cegmon.

```
50000 For X=576 TO 580: READ A :
    POKE X,A : NEXT: POKE
    538,64 : POKE 539,2
50010 DATA 41,127,76,155,255
                            M. P. Winter
                            South Glamorgan.
```


## PLEASE

Micro Prompt has been devised to provide an exchange point for ideas which apply to any P.E. computer project-it does not have to be related to the UK101l Any project which is either computerised (uses a microprocessor), or which is intended to be a computer peripheral, may be discussed here. Submitted material may be hints, suggestions, hardware modifications or software, although soltware should not be lengthy.
lt should be emphasised that material presented in Micro Prompt has not necessarily been proved by us. Neither can compatibility with all generations of the computer equipment to which it relates be guaranteed.

## TORODAS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to l.L.P., PRICE.


Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DA YS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.


| IY¢ | $\underset{\text { Noc }}{\text { SEAIS }}$ | $\underset{\text { Selis }}{\text { SEOMOARy }}$ | $\begin{array}{\|c\|c\|} \hline \text { ams } \\ \text { current } \end{array}$ | paice |
| :---: | :---: | :---: | :---: | :---: |
| 225 Va | 62012 | $12 \cdot 12$ | $9^{318}$ |  |
| $110=45 \mathrm{~mm}$ | 62013 | 15.15 | 750 |  |
| 22 kg | ${ }^{68014}$ | ${ }^{18} \cdot 18$ | 625 |  |
| $\begin{gathered} \text { Reguation } \\ \text { 1\% } \end{gathered}$ | 62015 6.016 | 22.22 85.25 | $\begin{aligned} & 511 \\ & 4.50 \end{aligned}$ | f9.20 |
|  | $\begin{aligned} & 60016 \\ & 6.017 \end{aligned}$ | $25 \cdot 25$ $30 \cdot 30$ | $4.50$ | 25.20 |
|  | ${ }_{6}^{6} 010$ | 35.35 | 3.21 | - watrom |
|  | 62026 | 40.40 | 2.81 |  |
|  | 6.025 | 45.15 | 250 | Tolatice ${ }^{\text {a }}$ |
|  | 62033 | 50.50 110 | 2.25 2.04 |  |
|  | 68028 <br> 68029 | 270 | ${ }_{1}^{2.00}$ |  |
|  | 6x030 | 240 | 093 |  |
| 300 Va | $7 \times 013$ | $15 * 15$ | 1000 |  |
| 110 m 5 mm | 7x014 | 18.18 | \% ${ }^{8} 13$ |  |
| ${ }_{\text {che }}^{2.5 \mathrm{Kg}}$ | 7x015 | $22 \cdot 27$ $25 \cdot 25$ | 6.82 6.00 | f10.17 |
| $\begin{aligned} & \text { Requialion } \\ & 6 \% \end{aligned}$ | $7 \times 016$ 7.017 | $25 \cdot 23$ $10 \cdot 30$ | 6.00 5.00 | 10.17 |
|  | $7 \times 016$ | 35.35 | 428 | -0,060 |
|  | 70026 | 40.40 | 3.75 | - watica) |
|  | 7*025 | 45.45 | 3.33 | rotam 51400 |
|  | 70033 | $30 \cdot 50$ 110 | 3.00 272 |  |
|  | 7,028 $7 \times 029$ | 1220 | + 272 |  |
|  | 70030 | 240 | 125 |  |
| 500 va | ${ }^{82006}$ | $25 \cdot 25$ | 1000 |  |
| 140.60 mm | R $\quad 017$ | $30 \cdot 30$ | 833 714 |  |
| $4^{60}$ | ${ }^{8} 018$ | $35 \cdot 35$ | 114 | $\pm 13.53$ |
| Requiation |  | $40+40$ 45.15 | 6.25 5.55 5 | -pytas |
|  |  | 15.15 50.50 | 555 500 | - water is |
|  | ${ }^{40} 002$ | 55.55 | 454 |  |
|  | 8.028 | 110 220 | 4.54 327 |  |
|  |  | 220 280 | $\begin{aligned} & 2 \\ & 208 \end{aligned}$ |  |
| 625 VA | 94017 | $30 \cdot 30$ | 1041 |  |
| $140 \mathrm{~F} / 5 \mathrm{~mm}$ | 9 9 018 | $35 \cdot 35$ | 8.92 |  |
| nequallion | 9 9026 | 40.40 <br> 0.45 | 781 | 10.13 |
|  | 97025 | 45.45 | 694 |  |
|  | $9 \mathrm{MnO3}$ |  |  |  |
|  | 90042 97028 | ${ }^{55 \cdot 35} 110$ | 3.588 56 |  |
|  | $9 \times 129$ | 220 | 284 |  |
|  | 9 m 030 | 240 | 2.60 |  |

IMPORTANT: Regulation - All voitages quoted are FULL LOAD. Pieaze add repuiatien ligure to secondary yollage to obtain off laad vollape.
The benelits of ILP toroidal transtormers
ILP toroidal transtormers are only hall the weight and height of their laminated equivalents, and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows For 110 V primary insert " 0 " in place of " $X$ " in type number.
For 220 V primary (Europe) insen " 1 " in place of " $X$ " in type number.
For 240 V primary (UK) insert " 2 " In place of " X " In type number.
How to order Freepost:
Use this coupon, or a separate sheet of paper, to order these products, or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid. Access and Barclaycard welcome. All UK orders sent within 7 days of receipt of order for single and small quantity orders.
Also available at Electrovalue, Maplln and Technomatic.
ILP Electronics, Graham Bell Mouse, Roper Close, Canterbury, Kent, CT2 7EP

Please send
Total purchase price
I enclose Cheque $\square$ Postal Orders $\square$ Int. Money Order
Debit my Access/Barclaycard No.
Name
Address

Signalure
Post to: ILP Electronics Lid. Freepost, 2 Graham Bell House. Roper Close Canterbury CT2 7EP. Kent. England
Telephone Sales (0227) 54778: Technical (0227) 64723: Telex 965780
(a division of
1LP Electronics Lia)
TRANSFORMERS

## MAIL ORDER ADVERTISING

## British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

## Mail Order Protection Scheme

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, PRACTICAL ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet clais from readers made in accordance with the above procedure a soon as possible after the Advertiser has been declared bankrupt or insolvent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example payment made in response to catalogues etc, received as a result of answering such advertisements. Classified advertisements are excluded.

## STORAGE CABINETS



Steel cabinets
12 wide $\times 57^{\prime \prime}$ deep $\times 22^{\prime \prime}$ high finished blue with clear plastic drawers.
Available units:-
Type Drawers

| Type | Drawers |
| :---: | :---: |
| 2260 | ... $60 \times$ A |
| 2248 | $48 \times 8$ |
| $22 \hat{1}$ | 24 |

$\qquad$ Drawers
$16 \times \mathrm{D}$
$8 \times \mathrm{E}$
2236
$30 \times \mathrm{A}, 4 \times \mathrm{D}, 2 \times \mathrm{E}$
ONLY eac
£19.90
MILLHILL SUPPLIES Access/Barclaycard 66 THE STREET, CROWMARSH, WALLINGFORD welcome or OXON. OX 10 BES. Tel. 049138653 Delivery within 7 days.

## PARNDON ELECTRONICS LTD.

## Dept. No. 2144 Paddock Mead. Harlow. Essex. CM18 7RR. Tel: 027932700

## RESISTORS: $1 / 4$ Watt Carbon Film E24 range $\pm 5 \%$ tolerance. High quality resistors

made under strictly controlled condinions by automatic machlines. Bandollered
and colour coded
£1.00 per hundred mixed. (Min 10 per value)
$\mathbf{£ 8 . 5 0}$ per thousand mixed. (Min 50 per value)
Special stock pack 60 values. 10 off each $\mathbf{5 5} 50$
DIODES: IN4 148 3p each. Min order quantliy - 15 uems
E1.60 per hundred
DIL SOCKETS: High quailry, low profile sockets.
8 pin-10p. 14 pin-11p. 16 pin-12p. 18 pin-19p. 20 pin-21p.
22 pin-23p. 24 pin-25p. 28 pin-27p. 40 pin-42p.

## CAPACITORS, REGULATORS, SWITCHES, <br> IC. TRANSISTORS, DIODES, ETC. ETC.

Full List Available - Send SAE
ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS
MIN ORDER - U.K. $£ 1$ OO. OVERSEAS 55 CASH WITH ORDER PLEASE


UK prices are shown first. The bracketed prices are export prices which Include insure air-mail postage to all the countries of Europ including Norway. Sweden, Finland and Denriark. For overseas customers outsid Europe an extra 25 postage per lem is charged. $2 \times 81$ 43.43 (252). $2 \times$ Primter 652.13 ( (61) $Z X$ spectrum 16 K \& 15 ( $\mathbf{6 1 6 0 )}$ ZX Spectrum 48K $\mathbf{( 2 0 2}$ ( $\mathbf{C 2 1 0 )}$ Z Microdrive $n / a(n / a)$ ZX RS232 $n / a$ ( $n / a$ ). 5 printer rolks 10.43 ( 166 ) Ram packs- 16 K


DRAGON 32 6IT3

## COMMODORE COMPUTERS

Commodore 6A 6299. Vic 20 (130. Kit to alow the use of ann ordinary mono cassett reconder with the Vic 20 and the Commodor 64 46. Commodore cassette recorder for these computers (36.50. Super expander high resolution cartridge 427.95 . We stock most axcessories.

BBC MICROCOMPUTERS
A Model C260. B Model 1347

## GENIE COMPUTERS

New colour Genve E173.50. cassette recorder 2.25. I6K ram ard 633. Light pen (15 Accessories for Gerie \& and Gene 2:- EG3014 32K 4.189. Disc drives single 4199, dual 6369 Double density convertor 672. High resolution graphics C82. Printer interface $\mathbf{4 3 6}$.

UKIOI AND SUPERBOARD
$32 \times 48$ display expansion kits UKIO1 49 , Series I Supertoard $\{14$. 32 K memory expansion board $\mathbf{6 0}$. Cegmon 622.50 . Word processor prog $\mathbf{6} 10$. Centronics intertace kit $\mathbb{C} 10$. Cased disc drives with DOS single C275, double 6415. Stand alone foppy dlsc controller ces.

ORIC-I 48K COMPUTER C147.78


Low cost darsy wheels- Smith-Corona TP 6418, Brother HRI $\mathbf{5 2 0}$. Olvetti Praxk 30 Bytewriter - the latest morale, a combined dalky wheel priner and elecuric typewtiker for only 4418. Epson MX80FT3 C324. Epson MX100/3 ©425. Ok Mkroline 80 E199. Oki Microline 82A C333. Oki Microline 83A 6446. Okf Microline 84 C656. Oki Microline 92 6429. Okj Microline 93 6586.

SV POWER KITS
Fully stabilized 5 V computer and TTL power kits. ISA $67.83,3 \mathrm{~A}$ 6 $12.17,6 \mathrm{~A} 620.87$

SHARP COMPUTERS
We can supply Epson MX80 and MX100 printers to run dlrect from the MZ80K (i/o box not needed) for 039 plus printer price. We also specialize in interfacing primters to the MZ8OK MZ80A and MZ80B bort with and without the i/o box.

SWANLEY ELECTRONICS
Dept. PE, 32 Goldsel Rd
Swanley, Kent BR8 8EZ
Tel. Swanley (0322) 6485
pleose allow 7 dons for delivery.

Postage 21 on sinclair products (UK). $\mathbf{2 . 5 0}$ on acher computers, 44.50 on primters and 50 p on other orders Pleose odd VAT to all prices. Officia credit and overseas orders welcome

## Technicians in Communications

GCHO We are the Government Communications Headquarters, based at Cheltenham. Our interest is $R \& D$ in all types of modern radio communications HF to satellite - and their security.
THE JOB All aspects of technician support to an unparalleled range of communications equipment, much of it at the forefront of current technology. LOCATION Sites at Cheltenham in the very attractive Cotswolds and elsewhere in the UK; opportunities for service abroad.
PAY Competitive rates, reviewed regularly. Relevant experience may count towards increased starting pay. Promotion prospects.
TRAINING We encourage you to acquire new skills and experience.
QUALIFICATIONS You should have a TEC Certificate in Telecommunications, or acceptable equivalent, plus at least 2 years experience
TRAINEE RADIO TECHNICIANS Persons suitably qualified and under 22 but with no practical experience may apply for our training scheme.
HOW TO APPLY For full details on this and information on our special scheme for those lacking practical experience, write now to
Recruitment Office
GCHO Oakley Priors Road, Cheltenham GCHO, Oakley, Priors Road, Cheltenham
Glos. GL52 5AJ
or ring
024221491
ext 2269
(1530)


# FREE CAREER 

 BOOKLET
## Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering - now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success.
Personal Tuition and 80 Years of Success
The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstanding performance in the technical field. You study at the time and pace that suits you best and in your own home.
You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

TICK THE FREE BOOKLET YOU WANT AND POST TODAY



RECEIVERS AND COMPONENTS

TURN YOUR SURPLUS capacitors, transistors, etc. into cash Contact COLES HARDING \& CO. 103 SOUTH BRINK WISBECH, CAMBS. TEL: 0945584188 . Immediate settlement.

## FANTASTIC ELECTRONIC BARGAINS

VERSATILE BENCH POWER SUPPLY UNITS Contains high quality transtomer made to exacting specificaContains high quality ranstomer made to exacting specificaputputs 3 amps $0 . \mathrm{C}$ Input $110 / 250$ a $50 \mathrm{c} / \mathrm{s}$. Bridge Rectificaoutputs 3 amps. O.C. Input $110 / 250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$. Bridge Rectificasire $7^{-} \times 5 i^{*} \times 4 h^{\prime \prime}$, easily modified to give $20 \mathrm{~N}, 40 \mathrm{v}$, or 60 N outputs. Makes an ideal variable power supply. Normaliy cost autputs. MEOMO. OUR PRICE AS NEW with clrcuits E8.50. Carr. E3. 2 units for 20 carr , free.
CORDLESS INOUCTIVE LOOP HEADPHONES. Self powered. input via loop or extemal mm BNC socket Contains transistor-
ised high gain amplifier. Operates from internal batteries. Noise excluding muffs. Switch on when placed on head Special offer while stocks last E6 D.D. G. 2 pairs for 512 post free. hms impedance. A bargain at 050 p.p. 512 pars for 97 posi ohms
free.
RIDICULOUS RESISTOR SALE. Brand new il watt carbon film esistors $5 \%$ tol. High quality resistors made to exacing specifications by automatic machines. E12 Range IRO to 10 M in lots of 1000 ( 25 per value). Only $\$ 8$ per 1000 . Lots of 5000 for c35. I RO to 10M. 1000 PCB type resistors E2.50. Buik purchase enables us to offer 1000 mixed pre-formed carbon film resistors. $5 \%$ tol for PCB mounting. Huge range of preterred values, $£ 2.50$ per 1000.4000 for $£ 8$. Postage $15 p$ in $f 1$ GENUINE AFV TANK HEADSETS AND MIKE E3. 50 per pair P. $\mathrm{f1} .2$ pairs $£ 7$ post tree. All headphones fitted with Ex. ministry plug. Standard jack plugs avanable $25 p$ each 2 for 40 p. Headphone extension sockets available at $25 p$ each. 2 for $40 p$. Impedance of first iwo items 600 ohms . All headphones in good condition.

## SCOOP PUACHASE

PYE POCKET PHONE RECEIVERS Type PFI normal frea 450 mHz . Supplied in used condition less battery. $\mathbf{£ 4 . 5 0 \text { each }}$ Carriage £1. 2 pairs $£ 9.00$ post free. 4 pairs $£ 16.00$ post free. THE GDVI. SURPLUS WIAELESS EQUIPMENT HANDBOOK. Gives detailed information and circuit diagrams for British and American Government Surplus Receivers. Transmitters and Test Equipment etc. Also suggested modification detals and improvements for surplus equipment. Incorporated is a Surplus/Commercial cross referenced vaive and transistors guide. No VAT on books. No VAT on books
New release of MODEAN DYNAMIC MOVING COIL MICROPHONES. 200 ohms impedance. Switch incorporated MOst with lead and OIN plug. Used but nice condition. 3 designs of case housing. Price one mike our choice 2 Dlus 50p D.P GENUIME EX-GOVT COILAPSIBLE AE
GENUNE EX-GOVT COLLAPSIBLE AERIALS. A fully adjustable highty efficient whip aerial in 5 sections. Length is metres. losed $300 \mathrm{~m} / \mathrm{m}$. Copper plated sections. As used on Ex Gov Hanpacks. Brand
HAVE YOU SEEN THE GREEN CAI. $1000 x$ of new compo HAVE YOU SEEN THE GREEN CAT, $1000 \times$ of new Compo50p and receive catalogue and FREE AECORD SPEED INDICATOR.
Try a JUMBO PACK. Contains transistors, resistors, caps, pots switches radio and electronic devices. OVER $£ 50$ worth pots, swiches. radio and electronik 58 . f 11.00 Carriage and packing $\mathbf{~} 50$.

Please add $15 \%$ VAT to all orders including carriage and P.P.

## anyer Elvaininis Dowees

Dept PE1, 12/14 Harper Street, Leeds LS2 7EA. Leeds 452045 New retail premises at above address lopposite Coralsl. Callers welcome 9 to 5 Mon to Sat. Sunday 10 to I by appointment. GOVT. SURPLUS ITEMS ALWAYS IN STOCK.

## SMALL ADS

The prepaid rate for classified advertisements is 34 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 11.20$ per single column centimetre (minimum 2.5 cms ). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Lid". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

## NOTICETO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

## SPECIAL OFFER FOR LIMITED PERIOD

PE's OUTSTANDINGLY SUCCESSFUL
Capacitive Discharge
MINIATURE SCORPIO CAR IGNITION UNIT

## $\underset{\substack{\text { fult } \\ \text { palce } \\ £ 16.75}}{\text { Now }} \mathrm{f} 13.50$ !!

For full kit of all parts including wound transformer, new PCB, drilled case, p\&p, VAT No other Kit offers such high performance and excellence of design at this price!!
Latest specification has higher output and new improved PCB. Compare these features Aluminium die-cast case, neat \& compact, semi-military spec, full power push-pul inverter, bounce suppression, reverse-polarity $100 \%$ protection. in-line fuse.

## ** POSITIVE OR NEGATIVE EARTH **

We also supply fully builh and tested units:
12V Scorpio; neg earth £24.75, pos earth $\mathbf{£ 2 7 . 5 0}$. 6 V Scorpio; neg earth $\mathbf{2 8} \mathbf{2 8 0}$. pos earth $£ 31.25$. Neta-Spark 12 V neg earth inductive discharge $£ 14.75$.

All prices include p\& $p$. VAT \& fitting instructions.

## DEPT. PE, MICROSTATE LIMITED, <br> 5 Northfield Close, Fernhill Heath, Worcester. SAE for price list \& specifications.

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

## BUMPER BOX OF BITS

WOWI!! We've got so many components in stock. we can't possibly list them alll! - So buy a box, in it you'll find resistors, capachors, displays, switches, panels with transistors, diodes, ICs etc, coils, pots. and so on. All modern parts - guaranteed at least 1000 items, minimum weight 101 bs. ONLY $£ 8.50$ inc.

## ELECTRONICS WORLD

1c Dews Road, Salisbury, Wilts. SP2 7SN (Prop: Westbrough Lid.)

ELECTRONIC COMPONENTS, Merseyside. MYCA Electronics 2 Victoria Place, Seacombe Ferry, Wallasey, L44 6NR. Mail order, send 50 p for price list refundable off first order. 05: 638-8647.


T \& J ELECTRONIC COMPONENTS - Quality components competidive prices. Illustrated catalogue 45p. 98 Burrow Road. Chigwell, Essex.

TRIACS TIC 2260 88P EACH, Triacs TIC 246D $£ 1.20$ each all inciusive prices. Thyronics Control Systems, 8 Sandling Road, Maidstone, Kent. Maidstone 675354.

BOURNEMOUTH/BOSCOMBE.
Electronic
components specialists for 33 years. Forresters (National Radio Supplies), Late Holdenhurst Road. Now at 36, Ashley Road. Buscombe Tel 302204. Closed Weds.

## AERIALS

AERIAL BOOSTEAS Trebles incoming signal, Price $£ 7.00$. SAE leaflets. ELECTRONIC MAIL ORDER LTD., Rams bottom. Lancashire BLO 9AG.

## COURSES

digital logic course. Unique Home Study. Pay by lesson. S.A.E. for details. Freeman Enterprises, 19 Graysmeade, Sible Hedingham. Essex CO9 3PA.

CONQUER THE CHIP ... Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronic School, Dept C2, Reading. Berks RGI 1BR.

## BOOKS AND PUBLICATIONS

ANY PUBLISHED, full-size service sheet by return $\mathcal{C}+$ L.s.a.e CTV/Music Centres £3. Repair data with all circuits, layouts
 queries. TIS (PE), 76 Churches, Larkhall, Lanarkshire.

## Selling or Buying

A Classified Advertisement could solve your problem at very little cost.

Ring Linda on 01-261 5846

## WANTED

WANTED KLYSTRON K3077, 9410 mega-cycles. State quantity. Langton, 46 b Overstrand Mansions. Prince of Wales Drive, London SWII.

## FOR SALE

PRACTICAL ELECTRONICS P.C.B.'s 1.5 mm fibreglass, drilled and solder resist coated. SAVE MONEY - Boards PRINTED ONLY ready for own etching and drilling send S.A.E. for price liss. LECTROPRINT, I.7 Showell Road, Bushbury, Wolverhampton. West Midlands. Tel. 0902721805.

RESISTORS IRO-10MO (less 7M5) E24 range. 168 valves $0.25 \mathrm{~W} 5 \%$ TOL. Boxed sets 10 per value $\{20.25$ per value £40 inc. P\&P. CWO. G. Halletr, 20 Bull Lane, Maiden Newion, Dorchester, Dorset DT2 0BQ.

PC Laminate. S. $5.50 p$ sq foot, D. S. 75 p sq foot. 30 p P P P per sheet. Offeuts mixed $\mathbf{5 1 . 5 0}$ kik plus $\mathbf{E 1 . 5 0}$ P\&P CWO:G Cooper, 32 Garthfield Crescent, Westerhope. Newcastle-Upon-Tyne. NE5 2LY.

GOVERNMENI SURPLUS Components de Equipment. Send SAE for list. AFR ELECTRONICS, School Lane. Moulton. Northampton.

## SERVICE SHEETS

BELL'S TELEVISION SERVICES for service sheets on Radio, TV, etc. $£ 1.25$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 Kings Road. Harrogate. N. Yorkshire. Tel. (0423) 55885.

## miscellaneous

## MAKE YOUR OWN PRINTED CIRCUITS

Etch Reaist Tranafers - Starter pack (5 sheets. lines, pads, I.C. pads) $\mathbf{2} .50$. Large range of single sheets in stock at 50p per sheet.
Master Positive Transparencies from P.C. Iayouts in magazines by simple photographic process. 2 sheets inegative paper, 2 sheets positive film (A4) $\mathbf{Z 2} 25$. IPhoto-rosist apray ( 200 ml ) $\mathbf{E 3 . 9 0}$ ( $p+p$ 65p). Drefting Fim (AA) $25 p$. Preclsion Grids (A4) 65p.
22 p stamp for lists and information. P\&P 50p per order plus extra where indicated.

OAK LOOGE,G. ELECTRONICS

CONVERT TV into large screen oscilloscope. Easy build unit plugs into TV aerial sucket (all external). Circuit \& plans £3.20. J. Bobker, 29 Chadderton Drive. Unsworth, Bury, Lancs.

PARAPHYSICAL JOURNAL (Russian Translations): Psychotronic Generators, Kirlianography, Gravity Lasers. Telekinesis. Details SAE $4 \times 9^{\prime}$ : PARALAB, Downton, Wilts.

CLEARING LABORATORY: sCopes, generators. P.S.U's, bridges. analysers, meters, recorders, eic. 0403-76236.


8URGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our catalogue or call at our large showhooms opposite Odsal Stadium.
ULTHASONIC TRANSDUCERS, miniature, $40 \mathrm{KHz} . £ 2.85$ per pair +25 p P\&P. Dataplus Developments, 81 Cholmeley Road. Reading, Berks.

ONLER . Feel alert, invigorated and healthier with the amazing ZEPHION negative ion generator. Kit:- E21.50. Built:$\$ 29.80$ or SAE brings leaflets. Dataplus Developments, 81 Cholmeley Road, Reading, Berks RGI 3LY. 073467027.



## CABNET FITTINGS

F-etcloths, Coverings. Handles, Castors,
Flight Case Locks \& Parts, Jacks, XLRs,
Bulgins, Reverb Trays. P \& N mic Stands,
ASS Glassfibre Horns,
CELESTION POWER

$S$ $\qquad$
HNL Send
30p cheque/
P.O. for illustrated
catalogue: Adam Hall (PE Supplies),
Unit G, Cariton Court, Grainger Road, Southend-on-Sea.

## SOFTWARE

SPECTRUM SOFTWARE SALE. Venture ( 7 Games in 1) plus 3 long compulsive games, all on one cassette for $£ 6$. Bobker. 29 Chadderton Drive. Unsworth. Bury. Lancs.

## EDUCATIONAL

CARERRS IN MARINE ELECTRONICS. Courses commencing September and January. Further details, The Nautical College. Fleetwood FY7 8JZ. Tel: 0391779123.

## ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for.
insertions. I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank PLC, and made payable to Practical Electronics)

|  |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

NAME
ADDRESS $\qquad$

Send to: Classified Advertisement Department
PRACTICAL ELECTRONICS
Classified Advertisement Dept., Room 2612 King's Reach Tower, Stamford Street, London SE1 OIS

Telephone 01-2615846 Rate:
34p per word, minimum 12 words. Box No. 60p extra.

Company registered in England. Aegistered No. 53626. Registered Otfice: King's Reach Tower. Stamford Street, London SE 1 9LS

## POWER DIMMER MODULES

A range of electronic modular dimmers designed to suit your custom channel and facility requirement

- Considerable saving over commercial equipment All the commercial facilities and more - Compatible special effects - PreseUremote/ master - Easily installed and wired
SPC - SImple but effective 1000 W controller
£15.70
SPU - Used in conjunction with RS units for
Remote desks in 1000 and 2000 W versions
MC - Master dimmer for SPC/RS units....
me..... 11.90

SUP/REF - Supply/signals for up to 50 modules
. 89.40
Discounts on above only forder $£ 100$ to $£ 19925 \%$ ²00 10 £ $29930 \% ~ £ 300+35 \%$ EFFECTS ACCESSORIES
MXSL - Four channel sound to light
f33.20
MXLS - Four Channel Sequencer...
f21.40
MXLC-S Four channel sound chaser
f24.00
MXECF - DIP/DIPLESS Crossfade

| ¢33.20$\mathbf{£ 2 1 . 4 0}$ |  |  |
| :---: | :---: | :---: |
| ¢24.00¢28.70 |  |  |
|  |  |  |
| STEREO DISCO | Main supply | 87.20 |
| MIXER/PREAMP | PFL supply | £1.00 |
| LBPA3 M - Magne | ic $\mathrm{C}-\mathrm{Cer}$ |  |

CHASER $£ 35.70$
LB31000SLC
£22.70
A high performance sound to light providing bass, mid and treble separation. employing active filters. Automatic switching to chase in the absence of a music signal $1000 \mathrm{~W} / \mathrm{ch}$ an

3 CHANNEL SOUND/LIGHT LB31000SL

SLC without chase. Controls: bass/mid/treble/master sen sitivity.

## TATEDEO <br> Servicing - video - construction - developments <br> The only magazine in Britain that gives the enthusiast and professional engineer alike a comprehensive up-to-dt te coverage of TV and Video technology. <br> IN THE APRIL ISSUE <br> FREQUENCY COUNTER-TIMER <br> More and more equipment using digital electronics

## GET A COPY TODAY 90p

-VCRs, TV games, etc-is entering the home. This calls for extra, more specialised servicing equipment. A frequency counter-timer is particularly helpful when dealing with digital circuits. This one has more "eatures and is better value than most commercially available units, is easy to build and truly portable since it is battery operated. Measures frequencies $<1 \mathrm{~Hz}->1.5 \mathrm{GHz}$ with 8 digits of resolution. Basic power consumption $<10 \mathrm{~mA}$. Wiring kep: to a minimum by use of a triplexed LCD display. $£ 36.70$
Magnetic or ceramic deck All the requirements of stereo disco preamp on one board, left and right deck mixers/tone controls/misc. mixer/tones/mic. auto fade over decks/and P.F.L. The unit can be used with virtu. ally any power amp.

AND MORE!

- 4 CHAN S/L AUTO CHASER - 4 CHAN MULTI SOUND CHASER - 4 CHAN SEQUENCER
- 4 CHAN SOUND CHASER - FASCIA PANELS Don't forget our 3 -way active cross-
overs $(300 \mathrm{~Hz} 2 \mathrm{KHz}$ points) still $£ 17.90$
(supply $£ 7.20$ ). Don't forget our 3-way active cross-
overs ( $300 \mathrm{~Hz} \mathbf{H z} \mathbf{K H z}$ points) still $£ 17.90$
(supply $£ 7.20$ ).

L\&B ELECTRONICS, 34 OAKWOOD AVE, MTCHAM, SURREY CR2 1AQ




Write or phone for illustrated test instrument catalogue and price list
Black Star Ltd.
9A, Crown Street St. Ives, Huntingdon

Tel: (0480) 62440 Telex 32339


OUR GREAT NEW ILLUSTRATED CATALOGUE IS PACKED WITH INFORMATION ON SUPERB QUALITY, PROFESSIONAL BURGLAR ALARM EQUIPMENT

## AT UNBEATABLE PRICES!

SEND SAE OR PHONE NOW FOR YOUR COPY


MAIN
DISTRIBUTOR n

"The legendary "MINIMAX" - the small speaker producing "'Large speaker" sounds Peak handling 100 watts.
ONLY £74.95 A PAIR!!!

## NEW IMPROVED



VIDEOTONE - For full range of loudspeakers, in-car, C.B., Video, audio \& video cassettes, etc. Write for full details. - CORAL Moving Coil Cartridge - The MC88E is a high output cartridge - so you do not need to use a head amp. EXCEPTIONAL VALUE AT ONLY £29.95

Seoum Hi-Fi represents EXCELLENT QUALITY AT A REALISTIC PRICE!
The range offers a choice of amplifiers, tuner/amplifier, tuner, and the excellent SC4200 stereo cas. sette recorder THI



## OVERSEAS ORDERS

Overseas readers are reminded that unless otherwise stated, postage and packing charges published in advertisements apply to the United Kingdom only.
Readers wishing to import goods from the United Kingdom are advised to first obtain from the advertiser(s) concerned an exact quotation of the cost of supplying their requirements carriage paid home.

## TALK TOTHE WHOLE


and discover a new one for yourself If you're experienced If you're experienced
or even a beginner
our skilled
preparation will enable you to obtain a G.P.O. Licence.

Free brochure with out obligation from: British National Madio \& Electronics School. Readiny,
Rerks. RG1 1B

## EEEGTROALIUE

Understandably Britain's most popular and relied-upon suppliers of SEMI-CONDUCTORS I.C. COMPONENTS COMPUTING EQUIPMENT TOOLS, BOXES, CONNECTORS and much, much more
THE LATEST PRICE LIST TELLS ALL
Large S.A.E. brings your FREE copy by return GOOD PRICES - GOOO SERVICE -DISCOUNTS
Send for yours now to
ELECTROVALUE LTD.



Computing Stiop

## INDEX TO ADVERTISERS

A. D. Electronics ..... 72
Army Recruitment ..... 16
Audio Electronics ..... 54
Aura Sounds (Wersi) ..... 39
Barrie Electronics ..... 10
Bi-Pak ..... 12 \& 13
Blackstar Limited ..... 72
British Nation
46,73
46,73
School
School ..... 54
Centurion Alarm Co. ..... 71
Clef Products ..... 6
Computer Aids ..... 14
Cricklewood Electronics ..... 14 \& 15
Crofton ..... 10
C. R. Supply Co ..... 70
Dataplus Developments ..... 46
Electronics World ..... 70
Electrovalue ..... 73
Elinca Products ..... 71
Enfield Electronics ..... 72
G.C.H.Q. Recruitments ..... 69
Grenson (EMOS) ..... 54
G.S.C. ..... 53
Hall, Adam ..... 71
ICS-Intertext ..... 69
ILP Electronics ..... 4 \& 5 ..... 5, 68
L \& B Electronics ..... 72
Maplin Electronics ..... Cover IV
Mercia ..... 46
Microstate ..... 70
Midwich ..... 35
Millhill Supplies ..... 68
Modern Book Co. ..... 14
Myers Electronics ..... 70
Parndon Electronics ..... 68
Phonosonics ..... 10
Powertran ..... Cover II
P.K.G. Electronics ..... 71
Proto Design ..... 71
Radio \& T.V. Components ..... 16
Riscomp Ltd ..... 39
Scientific Wire Co. ..... 71
Service Trading ..... 45
Sinclair Research ..... 8 \& 9
Sparkrite ..... 11
Swanley ..... 69
Tandy ..... 26
Technomatic Ltd ..... 74 \& Cover III
T. K. Electronics ..... 7
Videotone ..... 6,73
Watford Electronics ..... 2 \& 3


OFFICIAL $=3 \boldsymbol{B}$ DEALER
BBC Model B $£ 399$ including VAT. (Carr. £8)
Model A to B upgrade kit $£ 49.50$ Installation charge $£ 15$
Individual upgrades and all mating connectors available. BBC DISC DRIVES
Disc Interface Kit $£ 95$
BBC Single Drive 100K £235. BBC Dual Drive $£ 799$ BBC COMPATIBLE DRIVES

| Single 100 K | $£ 190$ | 200 K | $£ 255$ | 400 K | $£ 345$ |
| ---: | :--- | :--- | :--- | :--- | :--- |
| Dual 200 K | $£ 360$ | 400 K | $£ 480$ | 800 K | $£ 610$ |

Cable for Single Drive $£ 8$. Dual Drive $£ 12$.
(Carr. Single Drive $£ 6$, Dual Drive f8)
Diskettes: 40 track SS $£ 15,80$ track SS $£ 24.80$ track DS $£ 32$.
(Price for 10 carr. £2)
VIEW 16 K WORD PROCESSOR ROM $£ 52$ teletext recelver f $195.65+\ddagger 2 \mathrm{p} \& \mathrm{p}$ PRESTEL RECEIVER $£ 90.00+£ 2 \mathrm{p} \& \mathrm{p}$ 2ND PROCESSOR + 64 K RAM $£ 195$ p\&p
Please phone to confirm delivery details.


## PRINTERS

## NECPC8023 BE

80 col 100 cps dot matrix printer. Bi-directional. Logic seeking. 2 K buffer,
Forward and Reverse line feed. Hi Res \& Block Graphics, Proportional Spacing, International and Greek character sets, Auto underline, Friction/tractor selectable. $£ 300+£ 8$ cart.

## SPSON MX80 F/T3 and EPSON MX 100 F/h3

$\mathrm{M} \times 8080 \mathrm{cps} 80 \mathrm{cols}$. MX100 100 cps 136 cols. Logic seeking, Bi-directional, bit image printing, $9 \times 9$ matrix, Auto Underline. MX80 F/T3 £320. MX100 F/T3 £430 (E8 carr./printer).

## SEIKOSHAKAP100A

80 col .30 cps dot matrix printer. High Res Graphics - Std \& double with
characters. $£ 190+£ 6$ carr

## OLIVETTI SPARK-JET PRINTER

50 Lmes/min or 83 cps , 1 K buffer, full graphics. 96ASCII Characters, $7 \times 7$ dot matrix
$£ 365+£ 8$ carr
As recommended by ACORN.
ACORN ATOMS ALSO AVAILABLE IN STOCK. SEND FOR OUR BBC/ATOM LIST.


#   

 THIE MAPLUN TALK-BACKNow your computer can talk!

* Allophone (extended phoneme) system gives unlimited vocabulary.
$\star$ Can be used with unexpanded VIC20 or ZX81 does not require large areas of memory.
* In VIC20 version, speech output is direct to TV speaker with no additional amplification needed. औ Allows speech to be easily included in programs.
Complete kit only £24.95.
Order As LK00A (VIC20 Talk-Back). LK01B (ZX81 Talk-Back).
Full construction details in Maplin Projects Book 6. Price 70p. Order As XA06G (Maplin Mag Vol. 2 No. 6).

KEYBOARD WITH ELECTRONICS
FOR ZX81


- Full size, full travel keyboard that's simple to add to your ZX81 (no soldering in ZX81).
* Complete with electronics to make "Shift Lock "Function" and "Graphics 2" single key selections
* Powered (with adaptor supplied) from ZX81's own standard power supply.
Full details in Project Book 3 (XAO3D) Price 60p Complete kit (excl. case) 1919.95 . Order As LW72P Case f 4.95 Order As XG17T.
Ready built-in case $£ 29.95$. Order As XG22Y


## OTHER KITS FOR ZX81

3-Channel Sounds Generator (Details in Book 5) Order As LW96E. Price $£ 10.95$
ZX81 Sound On Your TV Set (Details in Book 6). Order As LKO2C Price $£ 19.95$
ZX81 1/O Port gives two bi-directional 8-bit ports (Details in Book 4)
Order As LW76H. Price $\mathbf{5 9 . 2 5}$
ZX81 Extendiboard will accept 16K RAM and 3 other plug-in modules.

PCB: Order As GB08J. Price $£ 2.32$
Edge Connectors ( 4 needed)
Order As RK350. Price $\mathbf{£ 2} \mathbf{3 9}$

## HOME SECURITY SYSTEM

Six independent channels - 2 or 4 wire operation. External horn. High degree of protection and long term reliability Full details in Projects Book 2
(XA02C) Price 60p

## MATINEE ORGAN

Easy-to-build, superb specification. Comparable with organs selling for up to $£ 1000$. Fuli construction details in our book (XH55K). Price $£ 2.50$ Complete kits available Electronics (XY91Y) £299 Cabinet (XY938) $199.50^{\circ}$ Democassette (XX43W) 1.99

## 25W STEREO MOSFET A MPLIFIER



* Over $26 \mathrm{~W} /$ channel into $8 \Omega$ at 1 kHz both channels driven * Frequency response 20 Hz to $40 \mathrm{kHz} \pm 1 \mathrm{~dB}$
*Low distortion, low noise and high reliability power MOSFET output stage
* Exiremely easy to build. Almost everything fits on main pcb, cutting interwiring to just 7 wires (plus torordal transformer and mains lead terminations)
* Complete kit contains everything you need including pre-drilled and printed chassis and wooden cabinet Full details in Projects Book 3. Price 60p (XA03D). Complete kit only $£ 49.95$ incl. VAT and carriage (LW71N)


## BUY IT WITH MAPCARD

Send now for an application form - then buy it with MAPCARD MAPCARD gives you real spending power up to 24 times your monthly payments. instantly.


## MAPLINS FANTASTIC PROJECTS

Full details in our project books. Issues 1 to $5: 60$ peach. Issue 6: 70p
In Book 1 (XA018) 120 W rms MOSFET Combo Amplifier Universal Timer with 18 program times and 4 outputs - Temperature Gauge - Six Vero Projects.
In Book 2 (XA02C) Home Security Systern Train Controller for 14 trains on one circuit - Stopwatch with multiple modes Miles-per-Gallon Meter.
In Book 3 (XA03D) ZX81 Keyboard with electronics ti Stereo 25W MOSFET Amplifier Doppler Radar Intruder Detector - Remote Control for Train Controller
In Book 4 (XA04E) Telephone Exchange for 16 exten sions Frequency Counter 10 Hz to 600 MHz Ultrasonic Intruder Detector I/O Port for ZX81 - Car Burglar Alarm - Remote Control for 25W Stereo Amp
In Book 5 (XA05F) Modem to European standard 0 100W 240V AC Inverter Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System - Model Train Projects - Timer for External Sounder:
In Book 6 (XA06G) ${ }^{\text {© }}$ Speech Synthesiser for ZX81 \& VIC20 - Module to Bridge two of our MOSFET Amps to make a 350W Amp - ZX81 Sound on your TV - Damp Meter* Scratch Filter

## MA PLINS NBW 1883 CATALOGUE

Over 390 pages packed with data and pictures and all completely revised and including over 1000 new items. On sale in all branches of WHSMITH Price $\mathbf{f 1 . 2 5}$

## 



MAPLIN ELECTRONIC SUPPLIES LTD
P.O. Box 3, Rapleigh. Essex SS6 8LR

Telephone: Sales (0702) 552911 General (0702) 554155 Shops at: Note: Shops closed Mondays 159 King St., Hammersmith, London W6. Telephone: 01-748 0926 284 London Rd., Westclift-on-Sea, Essex. Telephòne: (0702) 554000 Lynton Square, Perry Barr, Birmingham. Telephone: (021) 3567292


[^0]:    (C) IPC Magazines Limited 1983. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable - precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Ppices quoted are those current as we go to press.

[^1]:    P'ease note $X$ in part mumber denotes mains voltaqe. Please insert ' $O$ ' in place of $\mathrm{X}^{\prime}$ 'or $110 \mathrm{~V}, 1$ ' in place of X fop 220 V (Europe), and ' 2 ' in place of X for 240 V U.K.I All units except UCI ncornorate our own toroidal tpans1ormers.

[^2]:    Sinclair Research Ltd, Stanhope Road, Camberley, Surrey GU15 3PS.
    Tel: Camberley (0276) 685311.

[^3]:    Binders
    Binders for PE are available from the same address as back numbers at $£ 4.60$ each

[^4]:    I enclose $\mathrm{PO} /$ Cheque for K $\qquad$ or debit my
    Barclaycard/Access/American Express. No. $\qquad$ exp date $\qquad$

