PRACTICAL

- Computer Soft Error Correction Board

GUTIAR ACTIVE TDNE CONTROLS SATELIITE TV SYSIEM Entime

\qquad

SAVE ON THE PRIC OF YOUR COLOUR PRINTS: with the Practical Electronics Colour Print Service

While prices go up elsewhere, Practical Electronics makes a bargain offer in its Colour Print Service. Now you can have as many films printed as you like, including Giant Superprints, at only 12 p a print. There is no developing charge and just 25p towards postage and packing. At this new price, the magazine Colour Print Service, already used by hundreds of thousands of readers, is as fast and efficient as ever. Here's all you have to do to enjoy its advantages.

Send any make of colour print film, including disc film, inside the envelope enclosed with this issue. Or fill in the coupon below and send with your colour print film in a strong envelope to:

Practical Electroniss Colour

 Print Service, FREEPOST, READING RGI IBR. No stamp is required.SEND NO MONEY
We are so confident in the reliability of our service and the quality of our prints (each one date-stamped with the month and year of developing) that you don't pay until you've seen them.

LUXURY COLOUR PRINTS

You will be amazed at the beautiful colours and sheen finish of these prints. They have elegant rounded comers and are borderless to give you maximum picture area. And with the Giant Superprints, you get 30 per cent more picture area than the standard enprints at no extra cost!
Offer excludes Black \& White, tIansparency, suh-miniature, C22 \& Agfa CNS film Superprints can only be produced from Kodacolour II, C41 cassette, cartridge and disc film not half frame. Prices corred at time of going to prexs.

UNBEATABLE VALUE

All you pay for the Colour Print Service is 12 p for each good print received plus 25 p towards postage and packing. The most you would pay us for processing and printing a 24 -exposure film for example is $£ 3.13$. Compare that with the price you would pay in the shops

FREE ALBUM PAGES

With each film we process, you receive an album page voucher. Collect and return three vouchers, and you receive a set of FREE album pages to fit into our specially designed album for any size of print up to 4 in . by 6 in .

HOW YOU RENEFIT

You benefit in three ways. Firstly, you pay nothing for the actual processing-only for prints and postage and packing. Secondly, you enjoy a personal service with every care taken over each individual order. And thirdly, you pay only for what you get - with no credit vouchers as with many other companies. An invoice comes with your prints, so $i t$ is a straight business transaction.
48 HOURS IN-LAB SERVICE
Your films will be processed within 48 hours* of receipt, but please allow for postal delays.

The price of this offer is limited to the U.K.
${ }^{*}$ C4I Process cassette and cartridge film only.

Use

this lalut if
you have no envelope, or pans it to a friend. It is usedt to pack your prints.

To: Practical Electronics Colour Print Service FREEPOST. Reading RG1 1BR

- Please print my film Superprint size \square Standard Enprint size \square

If film is leing ordered \bullet Please send me of $110 / 24 \square$ of $126 / 24 \square$ of $35 / 24 \square$ of disc/15

FILMS AT REDUCED PRICES Always keep your camera actionready. Order replacement films at our specially reduce prices: $110 / 24,126 / 24$ or $35 / 24$ at $£ 1.2$) a roll. or three for $£ 3$; disc/15, £1.30 each (no quantity discount).

If you have any queries,

contact our Customer Service on Reading (0734) 597332.

- Tick box(es) as required.

Fronl: Practical Electronics Colour Print Service FREEPOST. READING RGI IBR

Mr /Mis
Address
\qquad
__ Postcode

PRACTICAL ELECTRONICS

VOLUME 19

No. 9
SEPTEMBER 1983
CONSTRUCTIONAL PROJECTS
555/741 TESTER by Stephen Ibbs 22
Function tester for two well known devices
SOFT ERROR DETECTION AND CORRECTION BOARD by A. Trebar 32
A more reliable memory system for your computer
GUITAR ACTIVE TONE CONTROL by A. Scragg 39
Provides crisper sound and larger tonal range GROUND COMMUNICATION SYSTEM by R. A. Penfold 42
A battery operated transceiver for subterranean communications LOGIC ANALYSER Part 2 by D. Mandelzweig 52
Construction details
GENERAL FEATURES
VERNON TRENT AT LARGE 24
SEMICONDUCTOR CIRCUITS by Tom Gaskell BA (Hons) 26
Light spot driver (UAA170)
GETTING TO GRIPS WITH MAC by Pat Hawker 46
UK TV satellite system explained
INGENUITY UNLIMITED 62Proportional a.c. control without RFI-General purpose timer-Over voltage protection-Pseudo telephone ringer-Automatic ni-cad charger-Sound chaser-Slide projectordimmer-Intruder alarm with camera unit-Shop bell delay
MICRO-BUS by DJD 70
A bi-monthly focus on micro's for the home constructor
NEWS AND COMMENT
EDITORIAL 15
NEWS AND MARKET PLACE 16
Including countdown
BAZAAR-USED COMPUTER AND EOUIPMENT BARGAINS 28, 60
Free readers' advertisements
INDUSTRY NOTEBOOK by Nexus 31
News and views on the electronics industry
SPACEWATCH by Frank W. Hyde 61
Extra-terrestrial activities chronicled OVERSEAS SUBSCRIPTION AGENTS 66
PATENTS REVIEW 69Power-cut reserve-Sound switch-Wide screen TV
SPECIAL SUPPLEMENTMICRO-FILE by R. W. Colesbetween pages 38 and 39Filesheet 10 Z8000

OUR OCTOBER ISSUE WILL BE ON SALE FRIDAY, SEPTEMBER 2nd, 1983

(for details of contents see page 10/6 of Micro-file)

[^0]WAIFORD EEEGTRONITS

33, CARDIFF ROAD, WATFORD, HERTS WD1 8ED, ENGLAND

ALI OEVICES BRAND NEW FULL SPEC ANO FULYY GUARANTEED. SEND CASH, P.O.': OR CHEQUE WITH OROER GOVEANMEN ANO EDUCATIONAL INSTITUTONS OFFICLAL OROERS ACCEPTEO

VAT
Enport orders no VAT. U.K. customers please add 15\% VAT to zotal coss incl. pgep.
We stock thousands more hems. It pays to visit us. We are situated' behind Watford ootball Ground. Open Monday to Saturday, 9.00 am to 6.00 pm . Ample FREE Car parking

\qquad ELECTROLYTIC CAPACITORS (Values UF) 500 V . $10 \mu \mathrm{~F} 52 \mathrm{p}$ 9p;
17p; 22024p; $40 \mathrm{vp}: 6815 \mathrm{p} ; 229 \mathrm{p} ; 3312 \mathrm{p} ; 330,47032 \mathrm{p} ; 100048 \mathrm{p} ; 2$ 92p: 16V: 25,408
2200 36p: 4700 79p.

TRANSISTORS

AC

JIP3AC	88	2N1613	30	2SC1061
TIP35A	110	2N16718	160	2SC1096
TIP35C	128	2N2160	295	2SC1162
TIP36A	130	2N2219A/2	20 A	$2 \mathrm{SC1172}$
TIP36C	140	21A/22A	25	$2 \mathrm{SC1173}$
tipala	50	2N2369A	18	2 SC 1306
TIP418	52	2N2646	45	$2 \mathrm{SC1} 1307$
TIP42A	55	2N2846	80	2SC1449
TIP428	58	2N2904A/	05A	$2 \mathrm{SC1679}$
TIP120	70	06a 07a	26	2SC1678
TIP121	73	2N2926G	10	2SC. 1923
TIP141	105	2N3053	26	2SC1945
TIP142	105	2N3054	58	2SC. 1953
TIP147	120	2N3055	48	2SC1957
TIP2955	60	2N3442	140	2SC1969
TIP3055	60	2N3614	199	2SC2028
TIS43	32	2N3615	199	2SC2029
TIS44	45	2N3702/3	10	2SC2078
TIS88A	50	2N3704/5	10	2SC2091
TIS90	30	2N3706/7	10	2SC2166
T1S91/93	32	2N3708/9	10	2SC2314
VK1010	80	2N3710	10	2SC2465
VNIOKM	55	2N3771	179	2SC2547
VN4GAF	78	2N37\%2	195	2SD234
VN66AF	80	2N3773	210	2SK45
VN88AF	94	2N3819	22	2SK288
VN89AF	96	2N3820	38	2S.183
2TX107/8	11	2N3822/3	45	2S/185
2TX 109	12	2N3866	90	3N128
ZTX212	28	2N3903/4	15	3N140
ZTX300	13	2N3906/5	15	40097
ZTX 301/2	18	2N4069	45	40100
ZTX303	25	2N4427	80	40101
2TX304	17	2N4859	78	40250
ZTX320/26	30	2N4871	55	40251
ZTX451	23	2N5135/6	20	40311
ZTX500/1	14	2N5172	18	40313
2TX502/3	18	2N5179	45	40315
ZTX504	25	2N5180	45	40316
2TX531	25	2N5191	75	40317/20
ZTX550	25	2N5194	80	40360
2N696	30	2N5305	24	40361/62
2N697	23	2N5457	30	40405/7
2N698	40	2N5458/9	30	40408
2N699	48	2N5485	36	40411
2N706A	19	2N5777	45	40412
2N708	19	2N6027	32	40467
2N914/5	32	2N6109	60	40468
2N918	35	2N6290	70	40594
2N930	20	2SA636	250	40595
2N1131/2	24	2SA671	250	40603
2N1303/4/5		2SA715	60	40673
2N1307/8	65	2SC495/6	70	40871/2

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronics-now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and II am expecting a further increase when my course is completed'

CITY AND GUILDS CERTIFICATES

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Basic Electronic Engineering (C\&G/ICS) Radio Amateurs
CERTIFICATE COURSES
TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Electrical Engineering*
Electrical Contracting \& Installation

- Quality for IET Associate Membership

CACC

Approved by CACC

POST OR PHONE TODAY FOR FREE BOOKLET

[^1]Subject of Interest
\qquad

Address
01.6229911 (All Hours)

Remember our low-cost mobile robot? ZERHER TILERD.TURTLE

- Compact and rugged mobile robot, $5 \frac{1}{2} \times 5 \times 2^{\prime \prime}$ with two DC motor drive.
- Can be driven direct from the BBC micro and, using the special interfaces available, from ZX81 and Spectrum (can be adapted for use with other micros)
- Touch sensors register collisions so the robot can take avoiding action.
- Specially-written software includes learning program. Currently available for $\mathrm{ZX} 81 / \mathrm{Spec}-$ trum and BBC (others to follow).
- Computer-controlled, retractable pen lets ZEAKER trace its path. Logo software now available for Spectrum.
- LEDs and two-tone horn under computer control.
- 2 meter umbilical cable linking the robot to its control station/power supply. Requires 4×1.2 volt Nicad C-cells (not included in price).
- Available as a kit or assembled, at prices unmatched by any other turtle! Includes umbilical cable, control station and manual. (All software, and interfaces for $\mathbf{Z X 8 1 / S p e c t r u m}$ extra).

CDLIE ROBCTICS Ca. Ltd.

BEAUFORT RD., OFF RICHMOND RD., EAST TWICKENHAM TW1 2PH

ORIC AND SINCLAIR COMPUTERS

Oric I 48K computer $\mathrm{Cl47}$ (4158). Oric I $16 \mathrm{~K} \mathrm{n/a} \mathrm{(} \mathrm{n} / \mathrm{a}$). Sinclar Spectrum 48K (113 (c133). spectrum 16 K Les.91 (C107). 32 (lssue 2 upg 610 (128) Spectrum (lssue 2 only) 626.09 (128) Fuller master unt for the Spectrum including speech synuhesizer, sound syncesizer 2mpurer and loysick ports 47.76 (256) 2X microdrive n/a (n/a). 2x rsis2 (n/a). Keyooards with space bars (41) ZX princer 044.74 (50) 5 priser roll printer 610.43 (416) 2×81 (43.43 printer rolls 16 K (2m packs 624 O4 (E28) New luxur 16 K ram packs 22.04 (k23). New luxury spectum computers 48 K with full sized mal space bar enclosed in a larger plastic case which also houses the power supply and the computer pcb 6138.20 ((174).

COMMODORE COMPUTERS

Commodore 64 E299 ($\mathbf{6 0 9 \text {). Special ofler }}$ package: Vic $20+$ cassette recorder + basic course +4 games (121 (1149). Convertor to allow the use of most ordinary mono cassette dore 64 buits 68 (89) kit 66 (67) Commo dore cassette recorder $\mathbf{3 6} 50$ ($\mathbf{4 4}$). We stock most accessories.

OTHER COMPUTERS
Colour Genie 4168 (L178). BBC Model B 4424 (4440). Texas T199/4A 4138 (16 16). Acari 8002347 (6380). Atari 400 $16 K$ with basic $\mathbb{C 1 7 3}$ (1213).

PRINTERS

New Epson RX80 279 (1309). The Epson MX80FT/3 has been replaced by the aimost identical CTICP5 251 (2271) and the very 5 simiar (408) Eps M 100 ' (425 (4850 6378 (4408). Epson M×100/3 4425 (4465).
New Sar Dpsls 15° (386) Seikosha GP100A 199 (419) Ot (C386). Seikosha GP100A 199 (219). Ok Microline 860 (400) Oki Microline 84 (730 OkI C360 (4400). Oki Microline 84 6730. Okl Microline 92 c470. The Silver Reed. the lates electric typewriter for only $\mathbf{~} 385(\mathbf{S} 25)$. Juki 6100 proportional daisy wheel printer $\mathbf{6} 364$ (404) MCP 40 colour printer C 139 ((159). Suar STX 80 thermal printer C139 (C159) We can supply Interfaces to run all the above from Sharp Computers.

SWANLEY ELECTRONICS

Dept PE, 32 Goldsel Rd., Swanley, Kent BRS $8 E Z$. England

Pleose ollow 7 doys for delivery.
UK prices ore shown first UK customers must odd postage (EI on Sincloir producs, $\mathbf{C 3 . 5 0}$ on other computers and disc drives and 64.50 on other printers) and the 15% VAT. The brackered prices are Europeon expart prices and include insured airmall postoge to all the countries of Europe Including Norway, Sweden, Fimiand. Denmark, Span and lealy. No VAT should be added to export prices We are the leading computer export specialist Official UK credil orders welcome from gavernment loboratories ond educationol estoblishments

NAME \qquad ADDRESS

I ENCLOSE CHEQUEISi/POSTAL ORDERS FOR
§
ChEQUE NO
PHONEYOUROROERWITH EA NA SEND ONLY SAE IF BROCHUAE IS REQUIRED

OUR GREAT NEW ILLUSTRATED CATALOGUE IS PACKED WITH INFORMATION ON SUPERB QUALITY, PROFESSIONAL BURGLAR ALARM EQUIPMENT

$-$
 AT UNBEATABLE PRICES!

SEND SAE OR PhONE NOW fOR YOUR COPY A.D. electronics DEPT. PE
217 WARBECK MOOR

TMEFCHECK BUACLIAR 金 MAIN

ALARM D-IV SYSTEM Hirchew pistributor
IAINTREE LIVERPOOL
L.9 0HU/051523 8440

Modem Kit Only £39.95

* CCITT standard
- 300 baud full duplex
* Direct connection:- greatly reduces data loss associated with acoustic couplers
- Powered from phone lines therefore no power supply required
* Opto coupled data in and data out for intrinsically safe operation
Build it yourself for $\mathbf{£ 3 9 . 9 5}$ including VAT and postage (note case not included).

Racom Ltd, Dept. C,
81 Cholmeley Road, Reading, Berks RG1 3LY
Tel: 073467027

BHPAK BARCAINS

	NNECTORS PLATED Order No.	Price Ea
Plugs 9 way	1747	c0.80
15 way	1748	£1.10
25 way	1749	¢1.60
Sockets 9 way	1750	\$1.10
15 way	1751	81.60
25 way	1752	¢2.10
Covers 9 way	1753	¢1.40
15 way	1754	¢1.40

EDGE CONNECTORS GOLD
 Spectrum 26 war

25 way mulltcoloured

2228		
D.IL	SOCKETS	
D.IL. PCB	$\begin{aligned} & \text { LOW PROFILE } \\ & \text { Order No. } \end{aligned}$	Price Ea
8 pin	1601	08
14 pin	160	10
16 pin	1600	11
18 pin	1604	16
20 pin	1605	18
22 pin	1606	22
24 pin	1607	24
28 pin	1608	27
40 pin	1608	30

VOLTAGE REC
MA TO. 92 Case

1 AMP TO- 220 Case

POS +	Order No.	Price Ea
512V	MVR7805	40
15 V	MVR77812	40
18V	MVP7819	40
18 V	MVR7818	40
V	MVR7824	40
NEG	Order No.	Price Ea
5 V	MVR7905	. 50
12 V	MVP7912	. 50
15 V	MVA7915	50
${ }_{24} 4$	MVR7904	50

ANTEX SOLOERING RRONS

Soldering lrons

Model 25 Order No. Price Ea
C230 17 Watt
MLX
SKI Ki
1525
25
1931
1927
1948
1925
1
REPLACEMENT BITS \&
FOR MODEL ELEMENT

Size	Drder No.	Price Ea
$\left.{ }^{\text {c/ }} 13 \mathrm{~mm}\right)$	1532	80.65
$3 / 16^{\prime \prime}(4.7 \mathrm{~mm})$	1933	£0.65
$3 / 32^{\prime \prime}(23 \mathrm{~mm})$	1934	50.65
Element	1985	$£ 2.10$
FOR MODEL C230		
Size	Order No.	Price Ea
$3 / 32^{\prime \prime}(23 \mathrm{~mm})$	1944	£0.65
\% (3mm)	1945	¢0.65
$3 / 16^{\prime \prime}(4.7 \mathrm{~mm})$	1946	¢0.65
3/64" (1mm)	1924	¢0.65
Element	1969	¢2.10
FOR MODEL C250		
$3732^{\prime \prime}(23 \mathrm{~mm})$	1949	¢0.65
$5 / 32^{\prime \prime}(4 \mathrm{~mm})$	1950	C0.65
$3 / 16^{\prime \prime}(4.7 \mathrm{~mm})$	1951	¢0.65
$3 / 64^{\prime \prime}(1 \mathrm{~mm})$	1970	¢0.65
Element	1952	¢1.80

 FOR MODEL SK1 Order as Model CXZ3O ANTEX ST4 IRON STAND
For all ANTEX SOIDERING IRONS
Order
1939
1930

AEG-TELEFUNKEN 7 SEGMENT LED DISPLAYS

10 mm .4 inch 10 -pin D.IL R/H decimal point
Com Anode REO
Com Anode GREEN
Com Anode YELLOW
Com Anode YELLOW
Com Cathode RED
Com Cathode RED
Com Cathode GREEN
Com Cathode GREEN
Com
13 mm .51 inch 10 p
R / H decimal polnt
Com Anode RED Com Anode GREEN Com Anode YELLOW Com Cathode GREEN Com Cathode YELLOW

20 mm . B inch 18 p

 L/H decimal pointCom Anode REO
Com Cathode RED

号

Ordef No. Price Ea
$\mathbf{1 5 9 7}$
$\mathbf{1 5} .85$

LİNEAR DISPLAY (BARGRAPH)

 Ten LED elements housed in 20 pin package toform a compact linear bar display. Can be end form á compact linear bar display. Can be end
stacked to create bargraphs of various lengths. $\begin{array}{lcr} & \text { Order No } & \text { Price Ea } \\ \text { RED } & 1558 & \mathbf{E 2 . 5 0} \\ \text { GREEN } & 1559 & \mathbf{C 2 . 5 0} \\ \text { YELLDW } & 1560 & \mathbf{E 2 . 5 0}\end{array}$

AEG - TELEFUNKEN SHAPED LEDS

IF $=20 \mathrm{~mA}$ RED 1.6 V
GREEN 2.7 V

3 mm RANGE

BULGIN PLUGS BOCKETS
P780 3 poles outlet skt mates with P770. 6 A Z $20 V A C$
P770 3 pole connector mates with P780. 6 A EOV.AC
P782 2 pole outlet ski mates with P772 8. PG2. 64250 VAC
P772 2 pole connector mates with
P782 $6 A$ SOV AC
P78. 6A ZOV AC
P597 connector-mates with
P597 connector-mates
P590. 10A 250V-AC
PS57 conrector mates with
P580 \& P579. 6A 250V AC
P580 inlet skt mates with
P587 \& P589. 6A 250V AC
SA2097 3 jole connector mates
with SAZcs6. 5 GV $\mathrm{AC} / \mathrm{DC} 5 \mathrm{~A}$ with SAZces. 5A 6V.AC/OC
110VAC 5A 250V AC 1A 500 V AC
P636 6 pole connector mates with P635. 3 A up to50V
P635 6 pole inlet skt mates with
P636. 3 A up to 50 V
P552 8 poie outlet skt mates with
P551. 6 A 250 VAC

P551 8 pole connecto
P55

BNC plug to BNC plug 2 metres 75 Order No. Price.Ea ohms Coax. Betamax to Betamax
BNC plug to UHF plug 2 meires 75
ohms Coas. Betamax to VHS
UHF plug to UHF plug 2 metres 75 ohms Coar VHS to VHS
UHF Coaxial plug to UHF Coaxial
Cable.
plug. 2 metres 75 ohms low los
plug 2 metres 75 ohms low loss
cable

SWITCHCRAFT OD PLUGS \& SOCKETS

LIGHT EMITTING

TIL209 RED

TIL213 YRELOW
Standard LED body dia. $2^{\text {n }}$
FLVI17 RED
FLV 310 GREEN
FLV310 GREEN
FLVA10 YELIOW
OTHER LED'S
RL209 clear $125=$
illuminating RED AVIII clear $\frac{2}{2}$ illuminating RED
COX21 flashing LEO RED COX21 Hashing LED RED
COX95 dual LED RED/GREEN CQX95 dual LED RED/GREE
COY98 Infra Red LED 2% OPTO ISOLATORS

1174 Single

 iL074 OoubleILO74 Quad

```
-
```

Order No.	Price Ea
1561	20
1568	23
1575	23
562	20
1569	23
1576	23
1563	20
1570	23
157	23
1564	. 20
1571	23
1578	23
1565	23
1572	23
1579	. 23
1566	20
1573	23
1580	. 23
1567	20
1574	23
1581	23

 Presented with ablity Electronic Components, Semiconduc-
who repule Qurs and other Accessones All at realistic prices. There are
tol no wasted par Accessories AlL at realistic prices. There are

Catalogues pages of us eless information so often inciuded in Catalogues published nowadays Just solld tacts i.e price description and individual features of what we have avait
abie. But remember, BI-PAK's policy has always been to sell quality components al competitive prices and THAT WE Suality 00

We hold vast stocks in stock for fast immediate delivery, all items in our

BI-PAK COMPONENT \& SEMICONOUCTOA BARGAIN BOX

10 AMP Isolated Metal Case			
VRRM	Order No. Price Ea		
50 N	$8 R 10 / 50$	1.40	
100 V	$8 R 10 / 100$	1.50	
200 V	$8 R 10200$	1.60	
400 V	$8 R 10 / 400$	1.90	

25 AMP Isolated Metal Case VRRM Order No. Price Ea VRRM Order No Price Ea
50 V $\begin{array}{ll}50 \mathrm{~V} & 8 R 25 / 50 \\ 100 \mathrm{~V} & \mathrm{BR} 51 / 00\end{array}$
$200 \mathrm{~V} \quad$ BR25/100
$400 \mathrm{~V} \quad 8 \mathrm{R} 5 / 200$

BI-PAK COMPONENT \& SEMICONDUCTOA BARGAIN BOX
$\begin{array}{cr}\text { Order No. } & \text { Price Ea } \\ 1501 & .09 \\ 1500 & .12 \\ 1500 & .12\end{array}$ This collection of Components \& Semiconductors for the hobbyist is probably the most value
packed selection ever offered, it consisis of Resistors; carbon \& wirewound of various values. Capacitors; All types sorts \& sizes including electrolytics. Potentiometers; single, dual, slider \&
preset Switches. Fuses. Heatsinks. Wire. P.C. Board. Plugs. Sockets eric. PIUS a sdlection of preset. Switches, Fuses. Heatsinks. Wire. P.C. Board. Plugs, Sockets eic. PLUS a sélection of Semiconductors for everyday use in popular Mobby Projects, these include: SCR's. Oiodes, Rectimers, enas a Bridges well
So help yourself to a preat surprise and order a Box today for just $\mathbf{~} 6.50$ ONLY at BI.PAK So help yourself to a great surprise and order a Box today for fust $\mathbf{~} 6.50$ ONLY at BI-PAK.
You can call us on $0920.3182 / 3442$ and order it with youf Barclaycard or Access Card - 24 h . Answerghone Service NOW. Order No: V.P. 85 .

6 AMP Plastic Encapsulated		
VRRM	Drder No.	Price Ea
50 V	BR6/50	.75
100 V	$8 R 6 / 100$	80
200 V	$8 R 6 / 200$.88
400 V	BR6/400	.95

GE RECTS
WO SERIES

1 AMP	Plastic Enca	psulated
VRAM	Order No.	Price Ea
50 N	8R1/50	19
100 V	8R1/100	. 21
200 V	BR1/200	23
400 V	8R1/400	25

2 AMP Plastic Encapsulated $\begin{array}{ll}\text { VRRM Order No. Price } \\ 50 \mathrm{~V} & \mathrm{BRO} 50\end{array}$

50 V	$8 \mathrm{R} 2 / 50$
100 V	$8 \mathrm{R} 2 / 100$

8R2 200
BR2/400 BR2/800

BY550 SERIES		
5A, Plastic Encapsulated Diodes		
VRRM	Order No. Price Ea	
50 V	$8 Y 550-50$	
100 V	$8 Y 550-100$	
200 V	$8 Y 550.200$	
400 V	$8 Y 550-400$	
600 V	BY50-600	
800 V	$8 Y 550.800$	

10 AMP Isoluted Metal Case

SUPERKITS! NOW WITH NEW CHOICE OF CASES

BOXES SUPPLIED WITH STANDARD UNITS ARE PLAIN ALUMINIUM WITH A LUPPED LID. THE 'bl' UNITS have aluminium boxes with steel top covered in stylish black STELVIITE LAMINATE. UNITS MARKED WTH *** DO NOT INCLUDE BOXES (FURTHER OETAILS IN LIST).

SETS INCL PCBs. ELECTRONIC PARTS, INSTRUCTIONS. MOST ALSO INCL KNOBS, SKTS, WIRE, SOLDER. BATTERIES NOT INCL. BUT MOST WIL RUN FAOM 9V TO 15 V DC SUPPLIES. FOR fuller details see catalogue (SEe below).

AUTOWAH: Guntar-triggered wah-wah BASS BOOST: Increases volume of lower octaves CALL SIGN: Programmable 8-note musical call sign CHORUS UNIT: A solo voice or instr. sounds like more! COMPARATOR: LED level indicator for 2 channels COMPRESSOR: Limits \& levels maximum signal strength ECHO UNIT: With double tracking
FREQUENCY DOUBLER: Raises guitar trequency by 1 octave frequency-Generator: Multiple waveform test osc FUNKY-WOBULO: Novelty voice modulator for funny effects FLANGER: Fascinating delwed-feed-back effects pilus phasing FUZZ: Smooth distorion whilst keeping natural attack \& decay GUTTAR EFFECTS: Mutiple variation of level \& fiter modulation gUITAR OVEŔDRIVE: fuz plus variable fiter quality GUITAR SUSTAIN: Ertends effective note duration harmonola: Versatile 3 octave organ*
HUM CUT: Tunable filter for reducing low frequency noise JABBERVOX: Voice disguissr with reverb \& tremelo MADROJ: Variable sirens, incl. police, galaxy machine-guns etc METRONOME: With audible $\&$ is visual beat $\&$ down-beat marking MICROPHONE PRE-AMP: with switchable hass \& treble response
MINISONIC (PE) MKZ: 3-octave very versatile music synthe siser ${ }^{\circ}$
MIXERS: Several - details in catalogue (see below) NOISE LIMITER: reduces tape \& system hiss PHASER: with automatic \& manual rate \& depth controls REVERB: Analogue unit with variable delay \& depth controls RHYTHM GENERATOR: 15 switchable nythms (NEW UNIT) RING MODULATOR: for intermodulating 2 separate sine freqs. ROBO BOX: Versatile Robot type voice modifier ROGER 2-GONG: 2 gongs sounded at end of transmission ROGER BLEEP: Single bleep sounded' at end of transmission SCRAMBLER: Codes \& decodes transmissions authorised chans SEQUENCERS: 128 -note keyboard controlled (keyboard incl. $)$
16 note (up to 64 -bit pattem) panel controlled
SPEECH PROCESSOR: for clearer transmission
STORM EFFECTS: Automatic \& manual wind, riin \& surf SWEEP GENERATOR: Audio test unit
SYNTHESISER INTERFACE: allows instrument to trigger synth TREMOLO: Deep tremolo with depth \& rate controls TREBLE BDOST: Increases volume of upper octaves TONE CONTROL: bass \& treble cut, gain \& range (6 controls) VIBRATO: variable rate \& depth plus additional phasing vOCODAVOX: Modular Vocoder
VODALE:

controls

VOICE FILTER: funabie for selected trea bandwidth \& gain VOICE-OPFAOER: for reduction of music level during talli-over VOICE-OP-SWTICH: with variable sensitivity \& delay WAM-WAH: with auto-trigger, manual \& oscillator control WHEEBY-JEEBY: 2 intercoupled oscillators produce variable sirens
WINO \& RAIN: manual control of these two effects WOBBLE.WAH: Oscillator controlled wah-wah

KIMBER ALLEN KEYBOAROS (surely the best?): KEYBDARD CONTACTS GJ (SPCO):
KEYBOARD CONTACTS GB (DPST):

\section*{STO BLK} UNT UNT $\begin{array}{lll}\text { SET } 58 & \text { f14.01 } & \mathbf{f 1 6 . 4 1}\end{array}$ SET 138-B $59.40 \quad \mathrm{E} 11.80$ $\begin{array}{lll}\text { SET } 121 & £ 14.23 & £ 16.23\end{array}$ $\begin{array}{lll}\text { SET } 162 & 631.59 & \mathbf{5 3 4 . 4 9}\end{array}$ $\begin{array}{llll}\text { SET } 129 & £ 16.73 & £ 18.73\end{array}$ | SET 133 | £16.73 | £18.73 |
| :--- | :--- | :--- |
| £12.37 | $£ 14.71$ | | SET 168 SET 98 SET 128 SET 149 SET 153

$$
\text { SET } 91
$$

SET 42 SET 56 SET 75 SET 125-T SEI 141 SET 150 SET 146 SET 143

$$
\text { SET } 144
$$

SET 38

SET 145	¢10.59	¢12.99
SET 164	\$21.20	524.10
SET 122	¢20.39	522.19
SET 170	538.27	[41.17
SET 87	513.62	¢15.42
SET 165	[21.89	[24.79
SET 126-L'S	¢12.55	¢14.55
SET 127-4S	£10.07	\{12.47
SET 117	21.81	$[23.61$
SET 76	£110.99	¢114.59
SET B_{6}	f53.15	C5695
SET 110	£12.10	¢14.50
SET 154	$£ 16.72$	¢19.62
SET 169	£16.42	[18.22
SET B1	[9.59	¢11.99
SET 136	¢10.71	¢13.11
SET 138-T	¢9.24	¢11.64
SET 139	£13.82	¢16.72
SET 137	[23.99	¢26.79
SET 152	¢68.96	$¢ 72.76$
SET 155	¢12.75	¢14.75
SET 142	£10.21	¢12.61
SET 30	¢10.02	£12.42
SET 123-LS	£13.80	$¢ 15.80$
SET 140	¢17.31	$¢ 20.21$
SET 151	¢13.78	¢15.58
SET 28	¢11.39	£13.79
SET 161	113.40	¢15.40

3-0ct f32.43. 4-0ct £40.6e, 5-0ct £48.52 $3.0 \mathrm{ct} £ 20.29,4.0 \mathrm{ct}$ £26.50, $5-0 \mathrm{ct} \mathrm{E} 2.71$ 3-Oct 27327 . 4.0 ct E30.45, 5.0ct 137.62

PHONOSONICS 01-302 6184

Please use full address Payment CWO, CHQ PO, Access, Barclay, or prearranged colliection. Prices incl UK P\&P \& 15% VAT. E\&OE. Despatch usually $10-14$ days on most items. for comprehensive catalogue send SA.E. fif you five overseas send $£ 1.00$ or equiv.1. MORE KITS ARE IN catalogue.

IT'S A BET TER BUY THAN MOST AT LESS THAN £4 PER MHZ.

THE PRICE IS AS CRISP AS THE IMAGE. ORDER TODAY - WE'LL SHIP RIGHT AWAY. All major Credit Cards accepted.
Phone for details of cased and open frame monitors.
CROFTON ELECTRONICS LTD.
35 GROSVENOR ROAD, TWICKENHAM, MIODX 01.891 1923/1513Telex 295093

PARNDON ELECTRONICS LTD.

Dept PE2 44 Paddock Mead. Harlow. Essex. CM18 7RR. Tet 027932700
RESISTORS: \& Watt Carton Film E24 range $\pm 5 \%$ tokrance. High quality resisturs made under strictly controlled conditons by automatic machines. Bandoliered and colour coded
$\mathbf{£ 1 . 0 0}$ per hundred mixed (Min 10 per value) $\mathbf{8} 8.50$ per thousand mbeed (Min 50 per value)

VOLUME DISCOUNTS
Special stock pack 60 values. $\mathbf{1 0}$ of each $\mathbf{£ 5 . 5 0}$
AVAILABLE
7106-CMOS $3 \frac{1}{2}$ Digit AD Convertor £6.50 LCD Drive \& Backplane Drive AND-0.5" 3녈 Digit LCD Display
$\mathbf{£ 3 . 5 0}$ includes colon \pm
SPECIAL OFFER - BUY BOTH FOR $£ 8.95$
Full List Avallable - Send SAE
ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS
MIN ORDER - UK £1.00 OVERSEAS £ 5 CASH WITH ORDER PLEASE Same Day Despatch

BECOME A RADIO AMATEUR
 Train now for the Radio Amateur Licence

 examination. No previous knowledge needed, only a few hours per week of home study for 3 to 6 months. Post coupon now for details or tel. 073451515 (24 hr service)British National Radio \& Electronics School Reading, Barks. RG1 1BR Γ - - FREE brochure without obligation from:-

British National Radio \&c Electronics School READING, BERKS. RG1 1 BR
| Name.

Address

1 PE/9/B46

HOME LIGHTING KITS

ELECTRONIC LOCK KIT XK10 This KIT contains a purpose designed lock IC, to construct a Digital Lock, requiring a 4 -key sequence to open and providing over 5000 seguente combinations The open sequence different conb hape open sequence mor be cor $7 \times 5 \times 3 \mathrm{cms}$ Supply 5 V to Wired plug. Size: $7 \times 6 \times 3$ cms. Supply: SV io Hundreds of uses for doors and garages, car anti-thett device, electronic equipment, et Will drlve most relays direct. Full instructions supplied. ONLY £10.50
Electric lock mechanlsm for use with lateh
locks and above whe £13.50

"OPEN-SESAME"

contiact ano two atchey tronsistor outputs

numerous apolis otions in the home tor swithing
lonht TV. Closing curtaing. OCC Idesl tor sged or

Applitacter
ivppley

ONLY £23.75

XK113 MW RADIO KIT
 Based on ZN414 IC, rin includes PCB, wound aerial and crystal earpiece and all components to make a sensitive miniature radio. Size: $5.5 \times$ FOR BEGINNERS. $\mathbf{5 5} .00$

d 3-NOTE DOOR CHIME \& Based on the SABO600 IC the kit is supplied with all components, including loudspeake printed circuit board, a pre-drilled box (95) printed circuit board, opre-driled box (95 Only a PP3 $9 V$ battery and push. Swirch 10 NERS Order os KK 102 $\mathbf{f 5} 00$

\qquad

FREE GREEN cataloous ve

NO"1 Send S.A.E, 6" . $9 "$ TODA YII
It's packed with detants of all our KITS plus large tange of SEMICONDUCTORS including CMOS. LS TTL. lunear, microprocessors and memories; full range of LEDs, capacitors, resistors, hardware, relays, switches etc, We also stock VERO and Antex products as well as books from Texas Instruments, Babani and Elektor ORDERING IS EVEN EASIER - JUST RING THE NUMBER YOU CAN'T FORGET FOR PRICES YOU CAN'T RESIST.

Answering and give us your Access or Barclaycard No. or write enclosing Service evngs
cheque or postal order. Official orders accepted from schools, etc. \& weekend's and give us your Access or Barclaycard No. or write enclosing Service evngs
cheque or postal order. Official orders accepted from schools, etc. \& weekend's

COMPONENTS a wide range in stock including:

DISCO LIGHTING KITS OL rover
 and trequency of didection change being varieble by means of poten. (hmming contiol $\quad 14.60$

Dt2t000k

Alower cost version of the ebove testuring Airoctional chennel sequence with speed witched only at mains zero crossing points -duce racio intererence to minimum Oplionst opro input O Lal $£ 8.00$ Allowing avdio ("beat pesponte
OL 30000

LCD 31⁄2 DIGIT MULTIMETER 6 rengas including DC voitrge ($200 \mathrm{mv}-1000$ v) and AC voltage. OC current $(200 \mathrm{~mA}-10 \mathrm{~A})$
ond cosistance 10.2 M$)+$ NPN \& PNP transisto

HOME CONTROL CENTRE

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Order as XK112 £42.00
Additional Receivers XK111 E10.00

DVM/ULTRA SENSITIVE THERMOMETER KIT

and a $31 / 2$ digin liguta crvipal

 display. This kit will form thepasis of a digitel multimated
Inty a tew adolitional resimiors and switenes digital thermomemer $\left(-50^{\circ} \mathrm{C} \quad 10+150^{\circ} \mathrm{C}\right)$

 typical bation life from istandard gy
when used θ nours o day, 7 dars a week Price $£ 15.50$

Add $65 p$ postage \& packing + 15%
rotal Overseas Customers: Add © 2.50 (Europe), © 6.00 felsewhe
Send S.A.E. for further STOCK OETAILS. Goods by return subject to availability.

FIST SERVICE•TOP QUALITY•LOW LOW PRICES

No circuit is complete without a call to -
ELECTRONICS ${ }^{\text {pe }}$
11 Boston Road London W7 3SJ

\section*{KITS \& PCB's | FORPRE |
| :---: |
| $\substack{\text { FROJETI }}$ |}

Full Kits including PCB's, Hardware and Cases (unless listed separatelyl, I.C. Sockets, Veropins, Wire, Nuts \& Bolts all included. Reprints 45p extra.

Program Conditioner June 83 Automobile Test Set May 80 \qquad . 16.98
Mains watchdog May 83
Personal Stereo Amplifier May 80
less case and transformer)
Switched Capacitance Phaser April 82

Battery Tester April 83
Niper Deley April 83 (Less Relay)
Car Audio Booster (Stereo) Jan 83
(less case)..
Diecast Case extra
Frost/Overheating Waming Jan $\& 3$
$\int 12.55$ 17.44 £18. 38 .54 .75
f .20

PCB's
 Top quality printed Circuit Boards made from
 Soil Moisture Meter Aug. $83 \quad-\quad[1.34$

 Transistor checker Aug. $83 \quad 1 \quad$ C2.32 ${ }_{4}^{2}$ Digitit LCD Up Counter July 88 (2)
 4 Digit LCD Down Counter July 83 13)..... 57.68 Program Conditioner June $83 \ldots \ldots \ldots \ldots11 .89$ Automobile Test Set June B3 -..................47
 Personal Stereo Amp May 83 … \quad E4. \quad. \quad. Battery Tester April 83 195
 Switched Capacitor Phaser Aprii $83-\quad 5226$

MORE KITS AND

 COMPONENTS IN OUR LISTS FREE PRICE LIST Price list included with orders or send sae (9×4) CONTAINS LOTS MORE KTS PCBS \& COMPONENTSDigital Frequency Meter73
Car Accessory P.S.U. March B3 $\mathbf{5 1 . 5 3}$ Car Radio Booster Feb. 83 1.74 Digital Tacho Jan. 83 (3).... car Audio booster Jan. 83 Yochord Dec. 82 (3) Mudio Debug Probe Sept. 82 Combo Amp (Main) Aug. 82 Combo Amp (Preamp) Aug. Audio Test Set July 82.
Instrument Tuner July 82 (2).
Versatie Car Alarm July 82
Burglar Deterrem July 82
Function Generq. Meter May 82 (3)

ELECTRONICS

CATALOGUE

Illustrations, product descriptions, circuits afl included. Up-lo-date price list enclosed. All products are stock lines for fast delivery. Send 80 p in stamps or add $80 p$ to order. Free to Schools/Colleges requested on official letterhead. Normal despatch by return of post.

MAGENTA ELECTRONICS LTD

Magenta Electronics Lid

PC13, 135 Hunter St
Burton on Trent,
Staffs. DE14 2ST
MAIL ORDER ON
0283 65435. Mon-Fri 9-5
Access/Barclaycard (Visa) by phone
Add 45p P\&P to all orders
Prices include VAT
SAE all enquiries
Vricial orders weicome
RISHSEAS. Payment must be in sterilng RISH REPUBLIC and BFPO, UK PRICES.
ELSEWHERE. Write for Ouot
ELSEWHERE: Write for Quote

PE CAR COMPUTER

that we have yet come across
Prectical Mouters
roving your driving technique
improving the tuning of your car.

- Performance - dynamic checks on timing to improve performance
nd economy
* Security - protect your car by disabling the ignition. Enter a persona
lised combination to restart.
- Attractive, easy to fit easy to operate - comes complete with all parts needed. Full instructions provided.
* imperial or metric read outs.

PE car computer
Easy-to-assemble kit of parts
$\mathbf{f 8 8 . 5 0}$
$\mathbf{f} 78.50$
Ignition cut-out
$\mathbf{~} \mathbf{8} 7.75$
All prices include VAT. Allow f1 post \& package. Goods by retum.
Send S.A.E. for list of separately available parts.
PIMAC SYSTEMS LTD
20 Bloomfield Road, Moseley, Birmingham B13 9BY.
Tel: 021-449 0384

BUY NOW WHILE STOCKS LAST!

These very high quality British made two pin European adaptors are ideal for driving Radios, cassette recorders, shaver socket

REF	D.C. Voltage	Current	$1+$	$10+$	$100+$
EOB	4.5 V	$200 \mathrm{~m} / \mathrm{a}$	50 p	45 p	32 p
EM3	6 V	$200 \mathrm{~m} / \mathrm{a}$	$\mathrm{E1.00}$	80 p	55 p
EO9	6 V	$400 \mathrm{~m} / \mathrm{a}$	$\mathrm{E1.50} \mathbf{£ 1 . 2 5}$	85 p	

Send now for our latest caialogue, 35p plus 30p $P+P$ verents includes Spacked with complete range of com paid envelope. Please add 15% VAT to the above prices. MARCO TRADING, DEPT. PE9,
THE MALTINGS, HIGH STREET. WEM. SHROPSHIRE, SY4 SEN,
orders desparched by rehurn of mail.

YOURCAREER..YOUR FUTURE.YOUR OWN BUSINESS..YOUR HOBBY THISISTHEAGE-OFELECTRONCS! the world's fastest growth industry...

There is a world wide demand for designers/engineers and for men to service and maintain all the electronic equipment on the market today - industrial - commercial and domestic. No unemployment in this walk of life! Also - the most exciting of all hobbies - especially if you know the basic essentials of the subject. . .
A few hours a week for less than a year - and the knowledge will be yours. . .
We have had over 40 years of exparience in training men and women successfully in this subject.

Our new s"yle course will enable anyone to have a real understanding of electronics by a modern, practical and visual me hod. No previous and visual me hod. No previous
knowledge is equired, no maths, and an absolute minumum of theory.

You learn by the practical way in easy steps, mestering aill the essentials of your hobbe or to start, or further, a career in electonics or as a self-
employed ser-tcing engineer.
All the training can be carried out in the comfort cf your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advize or help during your work. A Certificate is given at the end of everv course.

You will do the following:

- Build a modarn oscilloscope
- Recognise and handle current ejectronic components
- Read, draw and understand circuir diaggrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment lsing the oscilloscope
- Build and use digital electronic cirsuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in indust V and commerce today. Servicing of radio, T.V., Hi.Fi, VCR and microprocessor/computer equipment.

Compact 31/2-Digit 16-Range Multimeter

Ideal For The Electronics Hobbyist

- Fused and Overload Protected
- 10 Megohm Input

Digital accuracy at a practical price! DC volts: 2-20-200-2000V (max. 1000V), AC volts: 2-20-200-2000 (max. 500V), accurate from 45 Hz to 10 kHz . DC Current: $2-20-200 \mathrm{~mA}-2 \mathrm{~A}$.
Resistance: 2-20-200-2000k Ohms. 53/16 $\times 31 / 4 \times 17 / 16$ ". Includes spare fuse, test leads. Requires 2 "AA" batteries 22-189

Micronta ${ }^{\text {TM }}$ 50K Ohms/V Multitester

Convenient single-knob function switch. DC Current: 0 to 10 amps Resistance: R×1, R×10, R×100, R×1k, R×10k. AC/DC V: 0 to 1000. Requires batteries. 22-204

Dynamic Transistor Checker

Indicates relative current gain. "opens", "shorts". Sockel plus hook clip leads for in-circuit tests. Output jacks for external meter or scope. $23 / 4 \times 43 / 8 \times 3 / 18^{\prime \prime}$. Requires " $A A^{\prime \prime}$ battery. 22-025

27 Ranges - 30,000 Ohms/Volt Multimeter

${ }^{\text {ᄃ2 }}{ }^{25}$

Ideal For Workshop And Field Testing

- Colour-Coded 4" Mirrored Scale
- Single-Knob Function Switch
- Polarity Reverse Switch

Features output jack and DC polarity reverse switch. DC Volts: 0 to 1000, 8 ranges. AC Volts: 0 to 1000, 5 ranges. DC Current: $0-10 \mathrm{amps}, 5$ ranges. Resistance $\mathrm{R} \times 1, \mathrm{R} \times 10, \mathrm{R} \times 1000$,
$R \times 10,000$ (10 ohms centre scale). dB: -10 to $+62,5$ ranges. Requires one "AA", one $9 v$ battery. $61 / 4 \times 41 / 2 \times 13 / 4$ "
22-203

[^2]
TOO GOOD

YOU have never had it so good, a comment that is almost guaranteed to put backs up even before any clarification. However, this was felt recently when we needed to order some items. Perhaps it would be more accurate to say things are not good in other areas and this makes us thankful for the distributors and retailers in the electronics industry.

What was it we were ordering? Not a special gear wheel for a sewing machine made in Outer Mongolia but simply some control knobs for a current Thorn/EMI domestic appliance. Similar to the sort we fit every week to our projects, but of course the spindle size just had to be different and we wanted the knobs to match existing ones. Therefore it was no good ordering from one of oup advertisers. Had we been able to the knobs would have cost about £1 each, we could have ordered with a credit card over the phone, or even by computer via a modem, and the order would probably have arrived after a few days. Not a bad service considering that many retailers stock more than 5000 items, most of which are worth less than about $£ 2$. Postage would have been about 50p maximum.

LUCK

Just contrast this with the Thorn/EMI story: First we asked about replacement parts in the local appliance showroom - a large independent retail chain - a very helpful assistant informed us that it would be best and quickest to contact the manufacturer direct. The assistant supplied an address but did not have a phone number. He wished us luck; we later found out why! Back at the office a call to directory enquiries resulted in two phone numbers, for different factories, and a local Thorn/EMI department number. Now the story begins:

Dial the first number, a lady quickly answers, we inform her we want to order some replacement knobs. "You have to go to your local 'electric' to order them"
'But we were told to phone you direct, it would be quicker.'
"Everyone knows we don't deal direct anymore" she says, ending the conversation.

We decide to try the other number - no reply. We try the local department instead. They are helpful and tell us to phone the second number, for a price and how to order, but since it is after 4.00 on Friday they will be closed.

Monday morning, we dial the num-
ber, engaged, try again - engaged, try later - engaged, try again... Anyway, Tuesday we get through, we even get to the right department (after being cut off once). "Yes Sir we can supply. The price is $£ 3 \cdot 28$, how many do you want?'
"Only one set of four."
"No Sir, that is f 3.28 each - plus VAT of course,"
"Why are they so expensive? They are only simple knobs!"
"Don't know Sir, but the price is correct. Just send us a cheque."

Still amazed at the price we ring off and send the cheque, with a letter asking why they are so expensive. Ten days, $£ 15.08$ (we could buy five $Z 80$ microprocessors for that!), four phone calls and a letter later the knobs ar-rive-they are not gold plated! The following printed note is attached:
it should be remembered that recent inflation has upset the relationship between parts prices and the original cost of appliances'.

EDITOR Mike Kenward

Gordon Godbold ASSISTANT EDITOR
David Shortland ASSISTANT
EDITOR/PRODUCTION
Mike Abbott
TECHNICAL EDITOR
Brian Butler TECHNICAL SUB EDITOR

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Jenny Tremaine SECRETARY

ADVERTISEMENT MANAGER

D. W. B. Tilleard

SECRETARY Christine Pocknell
01-261 6676

AD. SALES EXEC. Alfred Tonge 01-2616819
CLASSIFIED SUPERVISOR Barbara Blake 01-2615897
AD. MAKE-UP/COPY Brian Lamb 01-261 6601

Technical and Editorial queries and letters
(see note below) to:
Practical Electronics Editorial.
Westover House,
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 671191
We regret that lengthy technical
enquiries cannot be answered over the telephone

Queries and letters concerning
advertisements fo:
Practical Electronics Advertisements,
King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS
Telex: 915748 MAGDIV-G

[^3]
Back Numbers

Copies of most of our recent issues are available from: Post Saies Department (Practical Electronics), IPC Magazines Lid., Lavington House, 25 Lavingion Street, London SE1 OPF, at $£ 1$ each including Inland/Overseas $p \& p$. Please state month and year of issue required.

Binders

Binders for PE are available from the same address as back numbers at $£ 5.50$ each to UK or overseas addresses, including
postage and packing, and VÁT where appropriate. State year and volume required.

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 13.00$ per 12 issues, from. Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Cheques, postal orders and international money orders should be made payable to IPC Magazines Limited. Payment can also be made using any credit card and orders placed via Teledata TeIz 01-200 0200. unless otherwise specified. Prices correct at time of going to press.

JET START-UP

The JET (Joint European Torus) experiment which was the subject of a feature in the June issue of PE was operated for the first time at Culham in Oxfordshire during the weekend of 25/26 June 1983, having been completed on time and within a few per cent of the cost estimates made in 1975 (taking inflation into account). This marks the culmination of a fiveyear construction programme, costing $\mathbf{£ 1 7 5} \mathbf{m i l l i o n}$ at current prices, which has been carried through by an international team drawn from the 11 European countries participating in the Project.

JET is the largest and most ambitious tokamak in the world and has been constructed mainly with funds from the European Communities, as part of the EURATOM Fusion Programme. Completion of the construction enables the start of a 7 year programme of experiments to determine the feasibility of using nuclear fusion to provide a long term energy source. Several further steps beyond JET will be required to reach a commercial nuclear fusion power station in the next century.

The conditions obtained during the startup operation of JET were very modest compared to the ultimate performance expected. A current of 60 thousand amperes was passed through a low density hydrogen gas for a period of one tenth of a second, converting the gas to a plasma. In the envisaged JET experimental programme this current will be progressively increased to around 5 million amperes. In later years massive additional heating equipment (25MW) will be added to the machine with the aim of raising the hydrogen plasma to a temperature around 50 million degrees for periods of about 10 seconds. If this is successful then towards the end of the project deuterium and tritium gas instead of hydrogen will be introduced into the machine to produce fusion reactions, when it is hoped that the self-heating effect will further raise the temperature to the required 100 million degrees centigrade, hotter than the centre of the sun, releasing
bursts of high energy neutrons. In a future fusion reactor these neutrons will be the source of heat for producing electricity. Of the various fusion experiments in the world only JET and the American TFTR tokamaks have been designed to operate with deuterium and tritium plasmas. Neither JET nor TFTR have, however, been designed to utilize the energy from these neutrons.

The successful completion of the JET device is a major step forward in the development of nuclear fusion as a new source of energy for Europe. If the outcome of the experiments on JET is positive then it will still be necessary to build another machine to study and solve the engineering and tech nological aspects of fusion before a demonstration reactor can be built. It will therefore be well into the next century, ie 2020 - 2030, before a commercial nuclear fusion power station could be built.

CASE HARDENED

Crofton Electronics have just launched a replica of the case for the BBC Micro in sheet steel. Although the case is heavier than the original it is strong enough to support disk drives and a monitor.

Fitting the case is quite straightforward and only requires a few simple hand tools. The keyboard surround, back label and input/output labels are merely taken off the original case and refitted to the new one by means of double sided Sellotape.

Crofton also intend to produce an alternative top cover with an integral floppy disk housing with a platform large enough to support a $14^{\prime \prime}$ colour monitor.

The retail price of the standard case is $\mathbf{£ 3 9} \mathbf{5 0}$ inclusive. Crofton Electronics Ltd., 35 Grosvenor Road, Twickenham, Middlesex TW1 4AD (01-891 1923).

BATIERY MONTIOR

A new device has been developed by S\&W Battery Charging Systems Limited to prevent premature battery failure and to reduce the costs of battery maintenance. This unit may be simply inserted between the charger and the battery.

No larger than a matchbox, the unit is designed to constant/y monitor battery voltage without interrupting the system. Once the cells are fully charged, the controller will pass onlv sufficient current to maintain the battery in a fully charged condition without overcharge.

The controller which can easily be fitted into existing charging systems can be adjusted externally to give a variety of voltages, thereby making one unit suitable for a wide range of lead acid or nickel cadmium batteries.

The unit is priced at E19.95 including VAT and p\&p. S\&W Battery Charging Systems Ltd., Nailsea Trading Estate, Southfield Road, Nailsea, Bristol 10272 855161)

Software library

A program library is being formed to keep up the supply of software for OSI/UK101 computers.

Programs will be available, several to a tape, for a small charge to cover professional duplication, post and packing.

The library is looking for anyone who can
donate programs (a major ex-dealer has generously offered to donate his entire program range already) or help in any other way.

Tape 1, to get things moving, is available now for $£ 2.50$. Contents include games, novelties and BASIC Remember and tape file programs, all of which run under CE GMON, preferably with an enhanced screen. All cheques to the 'OSI/UK Program Library' please, to the address below.

For further details see the OSI/UK User Group Newsletter or contact Mr F. J. Leonhardt, 2, Birchmead Avenue, Pinner, Middlesex HA5 2BG (01-866 7010) weekends.

PAN 2001

The Pantec Pan 2001 is a high quality multimeter which is available by mail order from Electronic \& Computer Workshop Ltd., priced at $\mathbf{£ 9 9 . 0 0}$ plus £1.00 p\&p and VAT.
The unit will measure d.c.-a.c. voltages from $100 \mu \mathrm{~V}$ to 1000 V in 5 ranges; d.c.-a.c. current from $1 \mu \mathrm{~A}$ to 10A in 6 ranges; resistances from 0.1 ohms to 20 Mohms in 6 ranges and capacitance from 1 pF to $20 \mu \mathrm{~F}$ in 5 ranges. An optional temperature measuring facility gives a $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ measuring range.

Specifications include a $3 \frac{1}{2}$ digit 19 mm l.c.d., automatic polarity, overload indication and battery test, a 10 Hz to 30 Hz frequency range, with protection on all ranges up to 250 V a.c./d.c. Power consumption is low with battery life in excess of $\mathbf{2 0 0}$ hours' continuous operation.
Electronic \& Computer Workshop Ltd., 171 Broomfield Road, Chelmsford, Essex (0245 62149).

P.c.b.Services

Unless it is otherwise stated in the components list p.c.b.s for projects in PE can be obtained from the following suppliers:
Proto Design, 14 Downham Road, Ramsden Heath, Billericay, Essex CN11 1 PU (0268 710722)
Bradíey Printed Circuits, 9 Harcourt Terrace, Headington, Oxford (0865 60741) Megenta Electronics Ltd., 135 Hunter St., Burton-on-Trent, Staffs DE14 2ST (0283 65435)
Payne Electroprint Ltd., Marcus Road, Dunkeswell, Honiton, Devon EX14 ORA (040 489 646)
Stanfield, 96 Woodend, Handsworth Wood, Birmingham (021 357 7621)

TOOL RANGE

A range of seven precision instrument pliers have been added to the Draper selection of high quality hand tools for the electronics market.
The tools are intended to give lifelong trouble free service under everyday working conditions and are all manufactured in induction hardened chrome vanadium steel with blue PVC coated handles.

The range includes both short, straight and bent needle nose pliers. Flat nose pliers and plain, thin jaw and angle head cutting pliers. All are ideal for miniature electronic assembly. model making and precision
engineering applications.
They are priced between $£ 5.26$ and £6.85 each (plus VAT). Draper Tools Ltd., Hursley Road, Chandler's Ford, Eastleigh, Hants. SO5 5YF (04215 66355).

4hDICITTDMM

Keithley Instruments have announced a $4 \frac{1}{2}$ digit DMM with a current measuring capability to 20A. The unit, model 179A, has a large l.e.d. display with a full scale of 20,000 counts ($4 \frac{1}{2}$ digits). It can measure a.c./d.c. voltages from $10 \mu \mathrm{~V}$ to 1000 V full scale, resistance from 0.1 ohms per digit to $20 \mathrm{M} \Omega$ and a.c. and d.c. current from $10 \mu \mathrm{~A}$ up to 20A. The a.c. conversion technique is TRMS which provides accurate readings of complex waveforms over the frequency range of 45 Hz to 20 kHz .

Hi-Lo ohms is fitted as standard for easy in circuit resistance measurements.

The 179A which is priced at £229.00 excluding VAT and p\&p can be connected as a talker to a controller using the model 1793 IEEE interface. A BCD interface and rechargeable battery pack is also available. Keithley Instruments Limited, 1 Boulton Road, Reading, Berkshire RG2 ONL (0734) 861287.

Silicon News Corner

Bulletins announcing new semiconductor devices arrive at PE daily, so it is possible only to describe them briefly. Details of how to obtain further information are included, however.
Motorola The H11AA1 and H1lAA2 are two new dual l.e.d. opto-couplers with back-to-back (a.c. mode) IR l.e.d.s. Isolation is to 7500 V and they are directly interchangeable with GE H11AA1/2.

- The LM137 series regulators are 3-terminal, adjustable negative voltage units with internal current limiting, thermal shut-down and safe area compensation. They are virtually blowout proof, remaining so even if the adjustment terminal goes o/c.
A 7-bit high speed parallel ADC employing ECL process. Comprises 128 parallel latched comparators across a high quality input reference network. Overrange output allows paralleling of the ADCs. These 15 MHz devices are called MC10315L and MC10317L. Input from -2 V to +2 V .
- MOS power transistor range with breakdown voltages up to 900 V . Eight types, each 3A Id: MTM3N55 to MTM2N90 (TO3), and MTP3N55 to MTP2N90 (TO220). Motorola Ltd., York House, Empire Way, Wembley, Middlesex.

Marconi Unique rugged glass-wall diode with 2500 GHz cut-off frequency, called the DC1346. Has low capacitance and resistance. Marconi Electronic Devices Ltd., Doddington Road, Lincoln LN6 OLF
Mitsubishi A mass produced 64 K Mask ROM capable of high speed reading (250 ns access). Consumes 40 mA (10 mA standby), is TTL compatible, organised as 8192×8 bits, and is called the M5M2364P. Mitsubishi Electric Corp.
RCA 10A Versawatt SCR added to sensitive-gate family. The S 4060 has $\mu \mathrm{A}$ gate sensitivity with working voltages up to 800 V , and current surges up to $120 A$. Thermal resistance is only $2^{\circ} \mathrm{C} / \mathrm{W}$. Comes in plastic TD-220AB package. RCA, Lincoln Way, Windmill Road, Sunbury-on-Thames, Middlesex.
Hitachi DMA controller called HD68450 is first of a new family of intelligent 68000 support chips. Transfer rates of 2 megawords/Sec possible. Four channels/chip, each with 16 MByte memory addressing. Can mix 8 and 16 bit operation, and can monitor system and then automatically adjust data rates to maximum efficiency. Hitachi Electronic Components (UK) Ltd., Hitec House, 221 Station Road, Harrow, Middlesex.

FUNCTION GENERATOR

The TG101 is mains operated 0.02 Hz to 200 kHz function generator with selectable waveforms of sine, square, triangle and d.c. from a variable amplitude 600Ω output. A TTL output is also provided.

Frequency is selected by a five position range switch and a calibrated vernier or can be controlled by the sweep input which enables the generator frequency to be adjusted or modulated by an external control voltage. Both vernier and sweep input can give >1000 : 1 frequency change within the selected range. Typical external sweep range is $10,000: 1$.

A single vernier plus two position switched attenuator control the level of the 600Ω variable output over a $>80 \mathrm{~dB}$ range up to a maximum of 10 V peak to peak. D.C. offset is switch selectable and the vernier provides adjustment of up to $\pm 5 \mathrm{~V}$.

The TG101, which is priced at $£ 99$ plus VAT, is housed in a ABS case measuring $255 \times 150 \times 50 \mathrm{~mm}$ and weighs 1200 gms . It will operate from a $50 / 60 \mathrm{~Hz}$ supply of 100-120V a.c. or 200-240V a.c.

Thandor Electronics Limited, London Road, St lves, Huntingdon. Cambs PE17 4HJ (0480 64646).

Robot Race

Teenagers in 21 schools are tuning up their computers for Britain's first "race of the robots.'

At stake is more than $£ 2,000$ prize money offered by BP Oil in their Buildarobot Competition in which schools have been challenged to design and build their own classroom robots

Although the full details of the microchip marvels are remaining strictly under wraps until the competition finals in October, one school has already revealed that its robot could be used for finding lost golf-balls, while another could be adapted to serve afternoon tea.

The competition itself, run as part of the oil company's "Challenge to Youth" series. has actually set less daunting tasks. Teams have been given two options - to design a robot which will retrieve and return a cube. or to make a robot to carry out a specific task of their choosing.

The winners will be decided at the Royal Electrical and Mechanical Engineers' Arborfield Garrison on 23 and 24 October.

Boys at Shrewsbury School are using an immensely powerful microchip, and parts salvaged from a 20 -year-old mainframe computer to build their self-contained robot in the "free choice" section. In the competition, its job will be to search out a route and then locate an object.
"We've tried it out in the school courtyard, and found that it could be programmed to bring me a gin and tonic without knocking over any ornaments, or else serve me with afternoon tea in my garden," said the school's head of computing, Mr Roscoe.

Table Tennis Challenge

The technical successes and popularity of the "Micromouse" competition has enthused Dr. John Billingsley, of the department of Electrical \& Electronic Engineering, Portsmouth Polytechnic, to throw down the gauntlet to the robotics fraternity. This time, build robots that can play table tennis (modified ping-pong, really), and do it in readiness for 1986. Perhaps computerised mice can extricate themselves from a fiendish maze too easily, but the contending robots of ping-pong will need sophisticated vision systems if they are to avoid the humiliation of a comical defeat.

A number of rules have been decided upon: No mainframe link-ups. No laser vision systems, in deference to the ocular health of the spectators. The bat size is not to exceed a diameter of 12.5 cm , but it neédn't look like a conventional bat. The projecting force could come from a spring-
loaded mechanism within the bat, as opposed to a swing of the robot arm.

Doctor Billingsley points out that the fastest net-skimming return from a low ball takes just under 0.5 seconds from bat to bounce, and has a vertical velocity on bouncing of just over two metres per second"Within the performance of the servo's of any self-respecting high-speed plotter!" A lob may allow more time for the opposing robot to respond, but will impart double the vertical ball velocity. The table is especially designed to accommodate a ball-serving mechanism, along with physical barriers to the robot competitors themselves, who must perform within specified boundaries. The scoring system will probably be based on the lengths of rallies, or number of returned shots. For more information, interested parties should contact Dr. Billingsley at Portsmouth Poly', Anglesea Road, PO1 3DJ.

Meanwhile, both the Royal Latin School, in Brookfields, Bucks, and the Rednock Comprehensive School in Dursley. Gloucestershire, are building robots for the cube-retrieval section of the competition.

Five boys at the Royal Latin School are using two miniature radar transmitters to home their robot in on the cube, guided by a special program they have written for the school's BBC computer.

Two Rednock schoolboys are using stereo ultrasonics for the miniature "guidance system" which will steer their robot close to the cube before arms fitted with sensors shoot out and grab it.

To prevent the competition from taking on too much of a "hi-tech" atmosphere, the organisers are planning an "It's a Knockout" interlude in which the schools will take on teams from REME, the judging panel, and BP in sports ranging from snooker to swimming.

More than 200 schools originally entered the competition, and the 21 who have reached the finals have each been given £ 100 to complete their robots. BP's "Challenge to Youth" series also includes competitions for young people to design and build their own cars, motorcycles and hovercraft, as well as providing grass-roots coaching in sports such as rugby and squash.

COMPPAIIBELE.E.IS

Stotron are now able to supply a range of standard and flat plane viewing l.e.d. lamps at competitive prices. Miniature and standard sized I.e.d. indicators are available, with red, green or yellow diffused lenses. These are all compatible with TTL, CMOS and MOS circuits.

Round I.e.d. lamps with a flat plane viewing surface are also available with the above three colour options, and triangular, rectangular and square lamps are available with orange lenses.

One rectangular series with a lighted area of $\mathbf{0 . 2 2 0 ^ { \prime \prime }} \times \mathbf{0 . 1 2 5 ^ { \prime \prime }}$ is stackable in X or Y direction and is supplied complete with mounting grommet.

Stotron Ltd, 72 Blackheath Road, Greenwich, London SE10 8DA (01-691 2031).

Briefly...

BICC, the British cable manufacturer and Corning Canada, an optical fibre company. have formed a partnership to produce fibre optic cables. The two companies have set up a new firm called Optical Fibres and have built the World's first purpose-built factory for the production of optical fibres in Deeside, North Wales

The latest technology has come to the aid of the visually handicapped writer, in the shape of a device called the Microbrailler MB2400. This 1 Mbyte braille word processor is manufactured by Erleybridge Communications, and is interfaced to that company's speech terminal.

To assist the partially sighted, Wormald International Sensory Aids has produced an information handling system called the Viewscan Text System (VTS) that can receive information from public data bases. Viewscan comprises a display screen capable of presenting extra bright characters of up to three inches in height, and is linked to a miniature hand-held camera for reading the printed text.

Blind, and partially sighted DP
professionals, of which there are about 200 in Britain, are able to keep abreast of developments by way of courses documented in braille. The British Computer Association of the Blind organises two courses each year (courses which maintain very high standards) through the RNIBthis latter organisation being responsible for placement.

The chemical giant /CI is investing $£ 10$ million over the next three years in the creation of an electronics group dedicated to technological advances, rather than the exploitation of existing markets. /CI's new venture will orbit around its 400,000 unmarketed chemicals; chemicals which might have applications in resists, display dyes and data storage, to an estimated value of E100 million by the end of the decade.

Scientists at the Texas Agricultural and Mechanical University have brought nearer the day when vehicles can be economically run on hydrogen extracted from water. Using electrolysis to separate water into its constituent components, hydrogen and oxygen, was previously only possible at an efficiency between one and five percent, but the new technique has
passed the 12 per cent mark. This breakthrough is considered very exciting because hydrogen, being a light element, is potentially suitable as an aírcraft fuel. The exhaust created upon combustion is water, so hydrogen also has ecological advantages.

Clive Sinclair is sinking $\mathbf{f} 2$ million into a Cambridge based research establishment, to be called MetaLab. This will be a thinktank and spawning ground for high risk ideas. MetaLab is intended to regurgitate actual commercial launches in fields ranging from battery technology to robotics.

Graduates of French polytechnics can now circumvent conscription into national service for 12 months, by providing a term of computer training to the country's unemployed youngsters. 12,000 graduates have alrsady given computer education to youths in this novel scheme which President Francois Mitterrand hopes will help to close socialist France's technology shortfall. It remains to be seen whether, or not, mere two-month cresh courses will burgeon a Gallic workforce of competent computer technologists.

Hounidoun

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Mike Abbott.

Acorn Exhibition Aug. 25-28. Cunard Int. Hotel, Hammersmith, Lon don. J3
BARTAG Rally (radio teleprinter) Aug. 29. Sandown Park, Esher, Surrey. E2
Light Aviation Show Sept. 1-3. Cranfield Institute, Bedfordshire. Z1
Electro West Sept. 6-8. Bristol Exhibition Centre. Q
CAST (Cable And Satellite Television) Sept. 11-14. NEC. F5
Weldex Sept. 12-16. NEC B/ham. I
Testmex Sept. 13-15. Grosvenor House, Park Lane, London. E
Home Entertainment Spectacular Sept. 17-25. Olympia. 12
Peterborough R \& ES Mobile Rally Sept. 18. Wirrina Stadium, Bishops
Rd., Peterborough. L2
Personal Computer World Show Sept. 28-Oct. 2. London. M
Laboratory London Oct. 12-15. Barbican Centre. E
Drives/Motors/Controls Oct. 12-14. Leeds University. E
Analyticon (ex. \& coni.) Oct. 12-14. Barbican Cntr., London. L4
Computer Graphics Oct. 18-20. Wembley. O
PARC (computers in architecture, conf.) Oct. 18-20. Wembley. 0
International Business Show Oct. 18-26. NEC. T
Business Efficiency Exhibition Oct. 22-26. Earls Court, London. Z

Electronics Hobbies Fair Oct. 27-30. Alex Pavilion, London. 21
Electronic Displays Nov. 1-3. Kensington Ex. Centre, London. D4 Brainwave (computing/video) Nov. 4-6. NEC Birmingham. G2
Home Tech Nov. 11-13. Ex. Cntr., Bristol. F3
Test (and Environmental Test). Nov. 15-17. Wembley Conf. Cntr. T Compec Nov. 15-18. Olympia, London. Z 1
Intron Nov. 22-24. RDS Hall, Dublin. V
Northern Computer Fair Nov. 24-26. Belle Vue, Manchester. Z1
Automatic Testing/Test/Rnstruments. Dec. 13-15. Metropole, Brighton. D4
BEX Bournemouth 84 (Business Equipment). Feb. 8-9. Pavilion. K

D4

E
E2
F3
F5
G2
1
12
$J 3$
K
L2
L4
M
0
Q

Z

Network $\mathcal{F} 028025226$
Evan Steadman 6079922612
BARTG 89 Linden Gdns., Enfield, Middx
Tomorrow's World 0272292156
Cable \& Satellite 01-4874937
Clapp \& Poliak \& 01-747 3131
Industrial Trade Fairs \% 0217056707
Alan Taylor \& 01-486 1951
Computer Marketplace \& 01-930 1612
Douglas Temple 020220533
D. T. Wilson, 4 Conway Ave., Peterborough

Scientific Inst. Manufacturers' Assn. 01-437 0678
Montbuild 6 01-4861951
Online \& 0927428211
Exhibitions for Industry $\ell^{\circ} 088334371$
Trident \& 0822 4671
SDL Exhibitions Dublin 763871
BETA Exhibitions 01-405 6233
IPC Exhibitions \& 01-643 8040

GET 80
 powni

Moduto Number	Output Powes Wetts anm	$\begin{gathered} \text { Lowd } \\ \Omega \end{gathered}$	DISTOMTHOM		Vomply Tv	$\begin{aligned} & \text { 84se } \\ & m 60 \end{aligned}$	$w T$	Prise ine. VAT
			T.H.O. Ty ar 1KHz					
[1. ${ }^{117}$	14	4.14	19,015\%	<0.006\%	± 14	$76 \times 68 \times 40$	240	¢8.40
-1/ (ta)	8	1.4	1.015\%	<0.006\%	125	$76 \times 68 ; 40$	240	59.55
C.Cumet	34, 34	A. ${ }^{\text {c }}$	0, 0115	<0.006\%	125	120 = 78 = 40	420	¢ 18.69
1.01, ${ }^{\text {a }}$	6×1	a	6, 313%	<0,006\%	± 26	$120 \times 78 \times 40$	\$10	¢20.75
- .1.4	(6)	H	0.101%	<0.006\%	± 35	120) $\times 78 \times 40$	410	120.75
1.1.14	1.41	1	0.01%	<11006\%	± 35	120×78 x 50	520	¢25.47
1...94	120)	H	0.01\%.	<0.006\%	250	120) = 78 = 50	520	[25.47
w. 4, 4	(8 :	4	0.01\%	<0.006\%	145	120^78\% 700	1030	138.41
	Ins)	\%	0.014	<0.006\%	260	120 = 78 = 100	1030	โ38.41

input limpedance 100 K 12 . Damping lactor: $100 \mathrm{H} \gg 400$.
PRE.AMP SYSTEMS

Mortale Ahembim	Mosulo	Functions	$\begin{aligned} & \text { Curvom } \\ & \text { Requined } \end{aligned}$	Price inc. VAT
11+6	Mun nor amb	Me:Mag. Car in idge/Tuner/Tapet Aus - Vol/Bashitresue	10 ma	E. 70
1uvitit	Stmen pre umb	Mre/Mas. Carturige/ I unem/T apel Au. . Voi/Bass/T Tebre/Bulance	Numa	[14.3)
Hy\% ${ }^{\text {a }}$	tinhas pre mpo	Twal Guifut (Bass Lead) and Mic. sepseate Volurne Bass Treble - Mos	20 ma	[15.36
1678	Simen pre amp	As HY66 lass tone controls	20 ma	(18.20)

Most preamp madules can be driven by the PSU driving the main power amp.
55.47 linc, VATL. Preamp and miximg modules on 18 dill le rent veredions.
5.47 finc. VATI. Pie dmp and mixiag modules on 18 dillerent ver artion.

Mounting Boseds
Fol evse of consifuction we recommend the $\mathbf{B 6 ~ I o r ~ m o d u l e s ~ M Y 6 - - M Y ~} 13 \mathrm{C} 1.05$
linc. VATI and the B66 lor moduler HY66-HY78 E1. 29 (inc. VAT). POWER SUPPLY UNITS Uncorporaling Dut own torocidat transformers)

Madel	For Une With	$\begin{aligned} & \text { Priee mat. } \\ & \text { vat } \end{aligned}$	Mumber	For Usa With	Pice me. vat
PSU $21 \times$	100 2 HY30	$£ 11.93$	PSU 52x	2n HY124	$[17.07$
PSU41x	Iut 2 HY60. 1 ~ HY6060. 1 ¢ HY12A	¢13.83	PSU 53x	$2=\operatorname{mos} 128$	[17.88
PSU 4ix	':HY128	¢ 15.90	PSU 54 x	1 \% HY248	[17.86
PSU 43x	1: MOS128	£16.70	PSU 55x	$1=\operatorname{mos} 248$	¢19.52
PSUbix	2. HY128. 1 a HV2A4	$[17.07$	PSU 71x	$2=14 Y 244$	¢21. 75

$\begin{aligned} & \text { Model } \\ & \text { Number } \end{aligned}$	For Use Wirh	Pries inc. VAT
PSU 72x	2m $\mathrm{HV}^{\text {2 }}$ 48	[22.5:
PSU 73x	1, HY364	222.501
PSU 74x	1 x nY 368	124.20
PSU 75x	$2 \times \operatorname{MOS} 248.1 \times$ MOS 368	174.20

[^4]
'NEW to ILP' In C_{ar} Eniertainments

cis

ver Bcoster Ampliliee tri increase the output of your existing car adio
ot cassel Ie plave
Robust construction
$£ 9.14$ (inc. VAT)
Mounts anywhere in ca
Automate switen on.
Oulpul power maximum 22w pe at into 4Ω
Frequency response $\{-3 \mathrm{~dB}$) 15 Hz to 30 KHz, T.M.D. 0.1% at 10 W 1 K Hz
S/N ratuo IDIN AUOHOI 8OdB. Load Impedance 3Ω
Sires 95 y 48 is 50 mm . Weight 256 gms .

Siereo version ol C15

£17.19 (inc. VAT)

Siereo version of C15.
Size 95 a 40 n 80 . Weight 410 grvs

WTHH ALOT OF

 MELP riom Qne:
PROFISSIINAL IIIFIT THAT EVERY ENTHUSIIAST

 CAN HANDIL...
Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, $(<0.01 \%)$, stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front pènel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

UNICASES					
HIFI Separates					Price inc. VAT
UCI	Prearma				[29.95
LPIX	30 +30W/4-8	Bipolar	Stereo	Hifi	C54.95
UP2X	$60 \mathrm{~N} / 4 \Omega$	Bipotar	Mono	Hifi	¢54.95
UP3X	$60 \mathrm{~N} / 8 \Omega$	Bipolar	Mons	HiFl	¢54.95
UPAX	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	¢74.9'5
UP5 \times	$120 \mathrm{~W} / \mathrm{8} \Omega$	Broolar	Mono	HiFi	¢74.95
UP6X	60N/4-8	MOS	Mono	HiF:	E64.95
UP7X	120W/4-8	MOS	Mono	HiF_{1}	184.95
Power Slaves					
USIX	60W/4 Ω	Bipolar	Power	Slave	E59.95
US2 x	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	¢79.95
US3X	60W/4-8	MOS	Power	Slave	[69.96
US4X	120W/4-8	MOS	Power	Slave	[89.95

[^5]
5

 IIstrin

AMONGST the most common i.c.s used by hobbyists must be the humble 555 and 741. Many books have been written on how to use these versatile devices, but what if they go wrong? There is no easy way of telling if an i.c. has ceased to function by looking at it unless it quite literally does go up in smoke, so the author decided to build a very simple little tester. This unit gives a functional check to each device and whilst it doesn't claim to check many of the parameters, it should help to sort out the good from the bâd. It uses the case given free by PE some time ago and which is available from the editorial offices at Poole (50p inclusive). It is very cheap to build, and even easier to use. Two wire-wrap sockets stand proud of the p.c.b. and project through the top panel of the case to enable suspect devices to be inserted quickly:

HOW IT WORKS

The circuit diagram for the Tester is shown in Fig. 1. The test 555 is connected as an astable multivibrator whose frequency is determined by R1, C1 and R2, and with the component values stated it should oscillate at approximately 1 Hz . The output (pin 3) drives D1, current limited by R5, and is also connected via S2a to one of the inputs of the test 741. The other input is connected via S2b to the potential divider formed by R3 and R4, biasing the pin at approximately half supply voltage. The effect of S2 is to alter the 741 from being an inverter to a buffer and vice-versa. The

Fig. 1. Circuit diagram
output of the 741 drives D2, current limited by R6 which will flash either in phase, with the 741 as a buffer, or out of phase, with the 741 as an inverter.

CONSTRUCTION

This can be either on Veroboard or a p.c.b., a suggested design for a p.c.b. is given in Fig. 2 with the component layout shown in Fig. 3. Mount the components, including the wire-wrap sockets which are soldered with a space of 10 mm above the p.c.b. Cut a piece of black plastic to fit behind the case aperture, and mount the two switches and l.e.d.s in the panel before gluing it into position. Care must be taken to choose miniature toggle switches, otherwise they might foul the p.c.b. Two holes need to be cut in the top panel to allow the sockets to project through. Mount the p.c.b. using self-tapping screws, connect the battery and after the usual search for solder joins across tracks, track breaks etc, insert two working devices and check that the

COMPONENTS

Resistors
R1, R3, R4
R2
10k (3 off)
68k
R5, R6 470 (2 off)
All resistors $\frac{1}{4}$ W 5\% carbon
Capacitors
$\mathrm{C} 1 \quad 10 \mu 16 \mathrm{~V}$ tant.
Diodes
D1, D2
min red l.e.d. (2 off)
Switches
S1
S.p.s.t. toggle switch
D.p.d.t. toggle switch

Miscellaneous
P.c.b.

2 wire-wrap 8 -pin di.i.l. sockets
Case
Battery connector

Fig. 2. P.c.b. design

Internal view
unit functions properly. It is likely that l.e.d. D2 will glow slightly. This is normal and can be ignored, it also serves to show that the unit has been left on.

E61210
Fig. 3. Component layout

In use, two working devices are kept in the sockets, and then replaced with a suspect device for testing as and when necessary. There is no reason why other op-amps ... e.g. CA3140, cannot be tested in the same way, providing the pin-out is the same.

EVERYDAY
 ELECTRONCS
 and computer PROJECTS

* STYLUS ORGAN *

A full two octave stylus keyboard and switchable vibrato oscillator give this miniarure organ a rich and interesting sound.

- DISTRESS BEACON *

Man Overboardl Provides a central point of reference for helmsman and swimmer to effect a speedy rascue.

A hand-held version specially for fell walkers and climbers is also descalbed.

* A-to-D CONVERTER for RM3802 COMPUTER

A muitiplexed 8-channal 8-bis analogue-to-digital systam railored aspeclally for use with the 3802 Computer User Porta Can be easily adaptad for usa with other Personal Computers.

Essentlal equipment for New Short Series-Computer-Aided Experiments for the Physics Lab.
plus

* VOLTAGE DUALISER * CIPCUITEXCHANGE-Readers' cícult ideas 1983 Schools Electranic Design Award Competition Results and Report. SEPTEMBER ISSUE ON SALE FRIDAY, AUGUST 19
Place a regular order with your NEWSAGENT--Now/

vernanal Mpen Caige!
 V.T.'s views and opinions are entirely his own and not necessarily those of PE

reckon it was Cleopatra who started this women's lib lark. The trouble was that she botched it up and, consumed with remorse, stuffed an asp down her cleavage. And that was the end of her.

Another front runner was Queen Boadicea who felt a natural feminine indignation about the tyranny of Roman rule. So she fixed blades to the wheels of her chariot and simply mowed down any cohorts she came across. Nothing very feminine about that.

Coming to modern times there's Germaine Greer who is said to have burnt her bra as a demonstration of her beliefs. In so doing she not only lost a lot of support, but did little to further what could have been a well-founded cause.

Tina Knight, whom I met recently over avocado, steak and kidney and a selection of cheeses, is, to my mind, though she scorns the suggestion, a women's libber of a sort. But as far as I know she has never provided personal accommodation for a snake, there are no blades on the wheels of her BMW and I am prepared to believe that not so much as a shoulder strap has ever been ignited.

Tina is the managing director of Global Specialties Corporation (UK) L.td., a British based autonomous offshoot of a company in the United States. As PE readers will know, Global enjoys a firm reputation with hobbyists and a growing popularity with industrial companies in the field of solderless breadboards and low-cost instrumentation.
"I am not a liberationist," says Tina, "bu a fervent believer in equal opportunities. Yet-and this may sound like a paradox-1 maintain that a woman still has the right to all those little courtesies and spoilings, like having the door opened for her, having a man stand up when she comes into the room and so on.
"Really, it boils down to a matter of good manners. And a woman's manners should be just as good as a man's. I've tried to bring the quality of good manners into my business, along with the old fashioned contention that the customer is always right. Apart from politeness, it's good common sense. A man buys a $£ 3$ breadboard and feels he's been treated as a customer should, may well turn out to be a major client. Even if he doesn't he still merits consideration and good service."

How did a young and attractive person like Tina get mixed up with the masculinedominated, tough world of electronics?
"I started work in a bank," she told me. "Mum thought that was nice and respectable I was supposed to be a junior shorthandtypist, but all I seemed to do was pick up paper clips. So I told the bank they'd have to try and get along without me. And I joined the ill-fated John Bloom empire. It was a pity about him, for he had a fine product, but not enough business flair. And when the crash came I took a job as secretary to the boss of a
cash-and-carry greetings cards operation. At his invitation, and expense, I did a management course and picked up many a wrinkle."

At the age of 19 Tina shoved another iron in the fire by becoming the manageress of an employment and accommodation bureau. It was there she met her husband, Mick, who was pad-hunting.
"It was what romantic novelists call a whirlwind romance and like a lot of euphoric newly-weds I saw the future as one of roses round the door, coffee mornings, marching round Sainsbury's and, who knows, the patter of little feet in the fullness of time. But fate had other plans up her sleeve. Mick works on a newspaper and one day a strike blew up. It promised to be a protracted one. So 1 found a job with a shipping company first and then moved on to a firm of investment brokers
'This brought me into close contact with a management consultancy. They asked me whether l'd like to take on the task of setting up an office in London for a Greek shipowner. This meant finding accommodation, arranging the decoration and furnishing and recruiting staff, I revelled in it. In fact I achieved something of a coup in getting offices in the Stock Exchange building, hitherto reserved exclusively for stockbrokers. The thing positively snowballed, for in no time at all I was doing the same for Arabs."

The real turning point in her career came when she was asked to take over the UK operation for Global. They were so impressed with her capabilities that they gave her a free hand to locate their UK activity wherever she wanted. She chose Saffron Walden in rural Essex. Tina calls it England's mini silicon valley, with firms like ITT and Pye-Unicam at Harlow and Cambridge respectively. Global then did something that was clearly written in the cards. They asked Tina to boss the outfit for them.

Now, from her Saffron Walden HQ she covers the whole world except the Americas. Some 60 per cent of her business is in exports. She travels extensively in Europe and this year is off to Australia and South Africa.

At Saffron Walden she has a modest staff of only 18 people- 13 of them women. Right now she's looking for her 19th. He has to be a versatile Man Friday, able to handle the exhibition side, take on some of the travelling and turn his hand to servicing. Any takers?

We sat and talked in the chintzy living room of her 13th (or most of it) century cottage a mile or two from her office. "Actually, I'm a reluctant career woman at heart," she said. "What I like most is to sit here in the evening in front of a log fire (you could stage a CND rally in the space it takes up) listening to music or watching the box. Or perhaps reading-the English classics like Trollope, Austen, Delderfield. Russian classics, $\mathbf{1 0 0}$. Or maybe doing a bit of needle point."

Friends: "We've lots of close friends, though we don't get the time to do as much entertaining as we'd like. Some of my dearest pals live with me. There are the two Persians (they were lolling on the settee as though they owned the place) and then there's Jemima. She's a wild duck who dropped in one day in the garden and has been coming back at intervals ever since. She must like the cuisine. A while back she got herself pregnant and now all her little ones come back with her. Talk about getting the bird."

Marketing: "Some Americans are the finest marketing men in the world. They really get out there and sell with energy, enthusiasm and dedication. Far too many business men spend far 100 much of their time at meetings; gassing, investigating and drawing up four-year plans and suchlike. Where do they find the time to put what they've decided upon into effect? Of course you've got to have statistical information if you want to operate effectively and profitably. But don't get into a state where you can't see the endproduct wood for the organisational trees."

Complaints: "An absolute essential is to deal with a customer's complaint fairly, swiftly and cheerfully. As I said over the avocado, the man who's spending his money, with you is entitled to consideration and service. In any case, by complaining he could be doing you a favour in bringing to light some weakness in your working methods. I know that, as a customer, l've never been reluctant to complain. If a steak's tough or a soup cold, it's my duty to let the chap at the selling end know, if only in the interests of other customers."

These extracts from a long and highlyentertaining conversation, which tend, I fear, to sound like clips from the thoughts of Chairman Knight, are not only intended to illustrate the philosophy which guides a successful company, but also to show the kind of attitude that has enabled a woman to make it in a man's world.

You might pose the question: Where does this clever, quick-witted lady go next? I'd stick my neck out and say that the world is her Whitstable native. After all, how did Margaret Thatcher start? Weighing up sugar in her dad's grocery shop. You can't have à humbler beginning than that!

But even if she moves not a whit away from Global and the tranquil atmosphere of Rab Butler country, she has already made her point. That is, the hand that applies the eyeshadow is also pretty nifty at making a fairly high-technology business pay and prosper. And getting one in the eye of any man who thinks that Tina Knight and her gender are properly restricted to wielding a Hoover and making the odd, exciting excursion into sessions of pickled walnut bottling at the local Women's Institute.

One thing we haven't talked about is energy. When it was given out Tina was there at the front of the queue with a large sack. The evening before we met she'd been lashed to her desk, working out some complicated business deal, until 10.30. But as I left her and her husband at the cottage, she apologised for not coming personally to the station to see me off because she'd booked a game of squash

How do you beat a woman like that?

Uorthmore than iust alonk in

1982 saw the first Electronic Hobbies Fair and immediately established itself as the foremost consumer electronics exhibition - the biggest attendance and the largest number of exhibitors.
The 1983 Fair will be bigger and even more exciting - offering visitors everything from resistors, I C's to home computers, transmitting and receiving units, and peripheral equipment, video games, musical instruments, radio control models. .. . In fact, whatever your particular electronic hobby you'll find this show will have something to excite you

radio controiled models and demonstrations by local and national organisations. Again British Rail will be offering cheap-rate rail fares from all major stations in the country direct to the Alexandra Palace - a special bus uill be waiting to ferry you direct to the show. Your ticket also includes admission to the Exhibition Alternatively, for those wishing to travel independently ticket prices at the door are $£ 2.00$ for Adults, $£ 1.00$ for children. Party rates are available on request (minimum 20 people).

For more information contact the Exhibition Manager, Electronic Hobbies Fair, Reed Exhibitions, Surrey House, \checkmark I Throwley Way, Sutton, Surrey SM1 4QQ.

Tel: 01-6438040 \longrightarrow Throwley Way, Sutton,
including radio and TV transmission; Robotics,

Sponsored by Practical Electronics, Everyday Electronics and Practical Wireless

SEMICONDUCTOR CIR c

LIGHT SPOT DRIVER (UAA 170)

THERE are a number of ways of displaying quantitative information electronically, from the simple analogue meter up to sophisticated alphanumeric readouts. Each of these techniques has its own specific advantages and disadvantages which affect suitability for any given application. As a rule, moving bars, pointers, or lights are most suitable for displaying information that varies for much of the time; they are good at in dicating trends. 'Digital' displays such as alphanumeric readouts tend to be better for displaying fixed or static values, since they become difficult to comprehend when the measured parameter changes too rapidly.

For simple or non-critical measurements, a moving spot of light is often the ideal display system. Although it has a resolution which is limited by the finite number of lights used, trends can be shown very easily, and the circuitry can be made simple and inexpensive. The LM 3914 and LM 3915 i.c.s are very popular devices which can illuminate up to ten l.e.d.s, either as a spot (one lit) or as a bar (ten up to lit) in response to an analogue input signal. In many applications, however, ten l.e.d.s is not enough, yet cascading two devices to produce twenty l.e.d.s is far more than required, and is a considerable 'overkill'.

A recently introduced, but less frequently seen i.c. is the Siemens UAA 170. This is a Light Spot Driver with some unusual features which make it a better choice in some applications; namely, the capability of driving up to sixteen i.e.d.s from a sixteen pin package, and the ability to adjust the type of transition of illumination from one l.e.d to the next between 'smooth' and 'abrupt'.

L.E.D. DRIVING

Fig. 1 shows the pinout and specifications of the UAA 170, and Fig. 5 an applications circuit; for the moment, let us concentrate on the l.e.d. driving side of Fig. 5 only.

It can be seen that the l.e.d.s are driven as a matrix; they are arranged in four groups of four to reduce the total number of i.c. pins needed to connect to them from sixteen to
eight. The lowest analogue input voltage illuminates l.e.d. DI, and the highest illuminates D16. Because of the matrixing used to drive the l.e.d.s, a little care has to be taken when connecting up the display. Those used in each group of four should have the same characteristics, i.e. DI to D4 should all be the same type, D5 to D8 should all be the same (not necessarily the same as D1 to D4, though), etc. Hence, if the display was to be part green and part red, the colour change should be done between one group of four and the next, not within a group. Within each group the forward voltage drop of the l.e.d.s $\left(\mathrm{V}_{\mathrm{f}}\right)$ should match within 0.5 V . (Most l.e.d.s will easily achieve this.)

The type of circuit arrangement used to drive these l.e.d.s is the determining factor in

Fig. 1. UAA 170 pin-out with specification

Characteristic	Notes	Minimum	Typically	Maximum	Units
Supply voltage	All specs measured at +12 V supply	11*		18	V
Quiescent current	No l.e.d.s driven, no load on pin 14	2	4	10	mA
Temp. range		-25		85	${ }^{\circ} \mathrm{C}$
Input voltage ($\mathrm{V}_{\text {in }}$)		0		6.0	V
$V_{\text {ref }}$ min		0		4.6	V
$V_{\text {raf }}$ max		1.4		6.0	V
Stabilised $\mathrm{V}_{\text {ref }}$	$\left\{\begin{array}{l} 300 \mu A \text { load } \\ 5 \mathrm{~mA} \text { load } \end{array}\right.$	4.5	$5 \cdot 0$	6.0	v
Current from stab. $\mathrm{V}_{\text {ref }}$				5.0	mA
Voltage difference	$\left(V_{\text {ref }}\right.$ max $-V_{\text {ref }}$ min $)$	1.4		6.0	\checkmark
L.e.d. current		0		50	mA
Permissible variation of V_{F} of l.e.d.s				0.5	V
Input currents	Pins 11, 12 and 13	2			$\mu \mathrm{A}$

Fig. 2. 'Smooth' or overlapping I.e.d. Illumination

Fig. 3. 'Abrupt' or mon-overlapping l.e.d. illumination
requirement, as it makes the display very positive and unambiguous. However, if the adjacent l.e.d.s are made to 'crossfade' (one fading down as the other fades up in brightness), the light spot seems to move more smoothly, resembling a purely analogue meter, or one with a much higher resolution. This makes it ideal for displaying rapidly changing information. In the UAA 170 we have the facility for choosing just how smooth or abrupt we want the display to be; see Figs. 2 and 3.
The analogue input voltage to the i.c. $\left(V_{i n}\right)$ should vary between two voltage reference inputs, $\mathrm{V}_{\text {ref }}$ minimum and $\mathrm{V}_{\text {ref }}$ maximum. Often, $\mathrm{V}_{\text {ref }} \min$ will be set to 0 V , but both are variable over the range indicated in the specifications (Fig. 1) to allow flexibility in operation. Input voltages below $\mathrm{V}_{\text {ref }}$ min cause D1 to be illuminated all the time, and voltages above $V_{\text {ref }}$ max cause D16 to be lit all the time. (Note that $V_{\text {ref }} \min , V_{\text {ref }} \max$, and $V_{\text {in }}$ should not exceed 6 V .)

The difference between $\mathrm{V}_{\text {tef }} \min$ and $\mathrm{V}_{\text {ref }}$ max determines the type of action of the display; 1.4 V represents 'smooth' changes, with
the l.e.d.s fading into each other, i.e. overlapping, and 4 V represents 'abrupt' changes, with the l.e.d.s turning on and off rapidly, and with no overlap. This effect changes proportionally for voltages between 1.4 and 4 V . Since the difference between $V_{\text {ref }} \min$ and $V_{\text {ref }} \max$ represents the range of input voltages which are accepted, the design of any input circuitry will have to take into account the type of l.e.d. display changes required. For convenience, a stabilised voltage reference of nominally 5 V is provided on pin 14, and this can be used directly, or via a potential divider, to provide the $\mathrm{V}_{\text {ref }}$ max voltage.

DISPLAY BRIGHTNESS

The brightness of the display can be adjusted in rather a complex way by using pins 15 and 16; see Figs. 4 and 5. R11, between the stabilised voltage reference and pin 16, determines the l.e.d. drive current. The variation of current with R11 value is determined by another resistor, R10, from pin 15 to 0 V . As can be seen from Fig. 4, for a low value of

R10, the current can range from 0 to 20 mA . For high values of R10 the range is 20 mA to 40 mA or thereabouts.

With the values shown in Fig. 5, the l.e.d. current is approximately 9 mA . The reason

Fig. 4. Effects of resistance variation on l.e.d. current

561210

for this rather unusual design of brightness adjusting circuitry is to allow a phototransistor to be used to automatically adjust l.e.d. brightness to suit ambient conditions. R11 is replaced by an npn phototransistor in series with a 10 k resistor: (Collector to pin 14, base open circuit, emitter to 10 k resistor, 10 k resistor to pin 16.) Another resistor, typically 18 k , is connected between the emitter and collector of the phototransistor, and R10 is made a suitable value, chosen from the graph in Fig. 4.

APPLICATIONS CIRCUIT

Fig. 5 shows a simple moisture meter for determining the water content of soil or similar substances. IC2 is a 741 (or similar) op-amp connected as a square wave oscillator with a frequency of approximately 2.8 kHz . This is a.c. coupled via C2 to one half of the probe. The other half is again a.c. coupled via C5 to the virtual earth input of IC3, a 741 (or similar) op-amp connected as an inverting amplifier. The a.c. coupling is used to prevent electrolysis of the probe metal. The resistance of the material beiween the two halves of the probe, which is dependent on the moisture content, tends to act as the input resistor for IC3. The output of IC3 is therefore a square wave of amplitude determined by the resistance across the probe. R5, R6, and C6 ensure that IC3 is biased up to half the voltage of the supply rail. IC3 is then a.c. coupled via C7 to the network of D17, C8 and R9. This network acts as a simple means of rectifying and smoothing the signal, so that the voltage at pin 11 of Cl is a d.c. signal of an amplitude dependent on the magnitude of signal

Fig. 6. The assembled moisture meter
at the output of IC3. The a.c. coupling of C7, and ground referencing of R8, ensure that this d.c. signal varies between 0 V , and +6 V maximum. IC1, of course, is connected as a Light Spot Driver, as already described.

VR1 adjusts the gain of IC3, and therefore determines the sensitivity of the system. $\mathrm{V}_{\text {ref }}$ \min of IC 1 is set at 0 V , and $\mathrm{V}_{\text {ref }}$ max is set by VR2. Thus, the type of l.e.d. change, and the 'range' of the display can be adjusted by VR2. C3 and C4 provide supply decoupling for the +12 to +15 V supply. This need not be regulated.
The probe can easily be made from a pair of stiff copper or brass wires set approximately 25 mm apart. (Old ballpoint pen cases
can be used to mount the wires in.) When used in soil, these should be pushed in by 25 mm or so. VR1 and VR2 can then be set accordingly, to suit the particular requirements in question.

The UAA 170 is also available with a logarithmic, father than a linear, characteristic, and is known as a UAA 170L However, Siemens do not suggest that it is used for new designs, so it has a somewhat limited market lifetime. For your next project using a light spot type of display, the UAA 170 offers an interesting and novel alternative to the more popular proprietary i.c.s, yet is very cheap and readily available.

The UAA 170 is available from Watford Electronics, and many other suppliers.

PREMIER "BASIC 5" excellent addition for Superboard UK101 with Cegmon. \$9000, new, perfect. Only £10. Cost £20. S. C. Robins, 6 Cleghorn Street, Dundee.
SINCLAIR ZX 16 K RAM pack unused $£ 18$. K. A. Jones, 7 Harlech Rise, Chilwell, Nottingham NG9 5PD. Tel: 0602223056.
COSSOR double beam oscillograph, model 1035 MKIII operating manual. Offers. Mr. J Halsall, 47 Smalley St., Castleton, Rochdale. Lancs OL11 3EB. Tel: Rochdale 33511
WANTED spark generator for gas cooker suit p.c. 1650 or circuit diagram for the generato $1 \frac{1}{2} \mathrm{~V}$ input. Mr. Lea, 21 Ernald Gardens, Stone, Staffs ST 15 OAE. Tel: Stone 816336.
DITTON 161 and Denton speakers, Sony TC377 recorder 4-channel adaptor, No. 7 AVO (broken) swap-sell w.h.y. Mel Saunders, 7 Drumcliff Road, Thurnby Lodge, Leicester LE5 2LH.
PE issues Sept. 77 to April 83 one of each, of fers separately or bulk. S.a.e. for your reply. Mr B. Cordes, 12 Avondale Gardens, North Seaton Estate, Ashington, Northumberland
TWO b / w monitors. $£ 40$ either. One mono valve amp, suitable mad scientist £5. You collect. J Dykes, 2 Aire Place, Winsford, Cheshire. Tel: 0606551303.

SPECTRUM $16 \mathrm{~K}, 2$ books, 3 cassettes $£ 100$ ZX81 with 16 K RAM pack 'Maplin' keyboard (uncased), will sell keyboard separate $\mathrm{f} 65 \mathrm{c} / \mathrm{p}$. G. Willams, 85 Salthouse Rd, Barrow-in Furness, Cumbria LA13 9TN. Phone: 0229 29152 before 7p.m.
MULLARD 'Technical Communications' Jour-
nal, No. 13 to 140, most in easibinder. Offers. Collect or pay postage. Tel: Oxford (0865) 779855.

INTERFACE Commodore PET-Centronics disk. Also Datastream International printer. Serial interface. Phone Ray, Bursledon, Hants 4350.

WANTED manual and/or service information. Circuit diagram for Bird 'Futurist' organ. M. M. Browne, Cremer Hse, London Rd, St. Leonards on Sea, Easi Sussex TN37 6PE. Tel: Hastings 439344.

ZX81 kit untouched E29. DMM kit (DP 2010) partly completed £ 15 . With full instructions. Unwanted gifts. Q. Khusro, House SS, Freemens Common Houses, 167 Welford Road, Leicester LE2 6BF
VIDEO Genie E63003 + ICL 7500 green monitor + parallel printer interface EG 3016 + progs, books. £299 o.n.o. Mikko Butt, 27 Park Road, Bushey, Herts. Tel: 01-950 3158
WANTED data and service sheets for Russian scope type C.15. D. Beecher, 73 Gurnards Ave., Fishermead, Milton Keynes, Bucks. Tel: 0908 662903.

WANTED instruction book for Rigonda "Symphony" stereo radiogram. Mr. T. J. Stewart, 27 Westrock Drive, Belfast BT12 7LD. Northern Ireland.
SEIKOSHA GP80 printer with 500 sheets of paper £ 140 o.n.o. Pair of 85 watt speakers $£ 55$ o.n.o. T. P. Smith, Sunny Bank, Castle Street, Bletchingley. Tel: Godstone (0883) 843981.
WANTED old bar code reader; any type for teaching application. Tel: 0790 52506. P. Woodgate, Mavis Enderby, Nr. Spilsby, Lincs. PE July 1980 to June 1983. PW March 1980 to June 1983 v.g.c. Best offer secures. Mr, S. Jenkins, 305 Havant Road, Farlington, Portsmouth PO8 100.

ACORN Atom, $12+12 \mathrm{~K}$, power supply, software, manual, books:-"Atomic Magic", etc. £100. Buyer collects. K. Martin, 1 Rutland Terrace, Sutton-on-Hull, North Humberside. Tel: (0482) 701013.

SHARP PC1500 with CE150 printer and CE155 8K memory complete with charger and manuals £300. J. C. Rawlings, 10A Drayton Gardens, West Drayton, Middlesex. Tel: West Drayion 40241.
PET Commodore 2001/16 mother board in order £130, add Key+Mon and you have the heart of a business system. Mr. G. Nicklin, 16 Auckland Drive, Halfway, Sheffield S 19 5TP. Tel: 0742483587
CASIO VL-1 synth 10 rhythms 5 preset voices plus programmable sound mode $\mathbf{\text { E } 2 5}$ o.n.o. Tel: 061-881 3651 (Michael).
WANTED Data sheets for the 6845 CRT controller and AY-3-8190 sound generator. Dean Flower, 5 The Green, Littleham, Exmouth, Devon. Tel: Exmouth 70615 (after 6.00pm)
WANTED Sinclair Cambridge programmable, Oxford calculators, wrist calculator, micro f.m. radio, micromatic radio, working or broken. Mr. D. A. Portlock, 21 Anson Road, Locking, Weston-super-Mare, Avon.
FREE resistor colour code charts and some transistors. Just send s.a.e. Martin, 29 St. Johns Close, Leatherhead, Surrey.
PE/CLEF Joanna, $5 \frac{1}{2}$ octave electronic piano, complete with power amp and speaker in attractive wooden cabinet $£ 150$ o.n.o. A. Vinnell, 10 Linton Meadow, Linton-on-Ouse, York YO6 2AL. Tel: Linton-on-Ouse 412.
MICROPROFESSOR - 1A, CTC, mainslead with plug, BASIC, v.g.c. manual, well used $£ 50$ post paid. Jeff Davies, The Waverley, 79 Rhosmaen Street, Llandeilo, Dyfed SA19 6HD. Tel: (0558) 822509 after 5 pm, weekdays.

BUILD YOUR OWN

 cor fey 16 bit, 64 RAMcolour computer

With this powerful machine (featured in Electronics Today

Standard features -

- High speed 24 K byte extended basic interpreter
- Powerful TMS9995 16 bit microcprocessor
- 48 bit floating point gives 11 digit accuracy
- High resolution (256×192) colour graphics
- Screen memory does not use up user memory space
- 16 colours available on the screen together in graphic mode
- Fast line drawing and point plotting basic commands
- High speed colour shape manipulation from basic
- Full textual error messages
- String and Array slze limited only by memory size
- Real time clock included in basic
- Interval timing with 10 mS resolution via TIC function
- Named load and save of basic or machine code programs
- Auto-run available for any program
- Powerful machine code monitor
- Assembler and Disassembler included as standard
- Auto line numbering facility
- Full renumber command
- Simple but powerful line editor
- Buffered i/o allows you to continue executing the program while still printing
- Flexible CALL statement allows linkage to machine code routines with up to 12 parameters
- Basic programs may contain spaces between key words to make programs readable without using more memory
- Over 34K bytes available for basic programs
- Extended basic includes IF-THEN-ELSE
- Supports up to 16 output devices: Screen and cassette intertaces included as standard
- Supports bit manipulation of variables from basic
- Error trapping to a basic routine included
- Basic supports Hexadecimal numbers
- Separate 16K video RAM for graphics

International as a constructional project) you have access to highly advanced systems and sottware developed specially by MPE Ltd for the CORTEX. For business, education, R \& D - or simply increasing your knowledge and understanding of computers - it beats comparably priced off-the-shelf machines hands down!
STATEMENTS PRINT

All prices + VAT
Carriage paid
Optional extras

RS232C interface kit
Floppy disc intertace
Pair of $51 / 2^{\prime \prime}$ disc drives and hardware kit
£9.20 Ready built
£65.50 CORTEX B - Basic machine

+ RS232C
CORTEX C - as above + disc drives $\mathbf{8 8 9 5 . 0 0}$

Full assembly instructions and 216 page user's manual.

POWERTRAN cybernetics

Portway Industrial Estate, Andover SP10 3NM. Tel: 026464455

TORODALS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.
*Gold service available. 21 days manufacture for urgent deliveries.
*Orders despatched within 7 days of receipt for single or small quantity orders.
*5 year no quibble guarantee.

The benefits of tL. P toroldal transformers

ILP torordal transtorner's are only half the weight and height of their lamnated equivalents and are available with 110 V . 220 V or 240 V primaries coded as follows.
IMPORTANT: Regulation - All vollages quoted are FULL LOAD. Please add regulation ligure to secondary voltage to oblain oh load voltage
For 110 V primary insert " 0 " in place of. " X " in lype number For 220 V primary (Europe) insert ' 1 " in place of " x " in type number. For 240 V primary (UK) insert " 2 " in place of " X " in type number.
Also available at Electrovalue, Maplin, Technomatic and Barrie Electronics,

For mail order please make your crossed cheques or postal orders payable to ILP Electronics Ltd. Barclaycard/Access welcome. Trade orders standard terms.

LOW COST RGOFFGEIONAL TEGT INSTRUMENTE

Telecom

Privatisation is once again on the agenda now the Conservatives are back in power. The biggest sell-off, if it ever happens, will be British Telecom. The new rival trunk network, Mercury, is already in place but with restricted service. The appearance of Mecury and the threat of privatisation has already worked miracles in BT under the leadership of Sir George Jefferson. The organisation is much more efficient than before both through new technology and vigorous marketing of services. There is possibility, indeed, probability, of further improvement but the Telecommunications Bill, lost in the General Election, has been revived in the new Parliament. This time it will be introduced by the new minister, Cecil Parkinson, and despite the huge government majority it is likely to have a turbulent passage.

Naturally, the Post Office Engineering Union will fight tooth and nail and threaten confrontation. But some user groups, formerly bitter critics of BT , are none too happy. Their change of heart may have come about from seeing that BT is pulling itself together or it may be cold feet at the prospect of the unknown. Either way the Bill will not have universal support. Getting it through the House may be easy. Implementing the Bill may prove much more difficult and may take a long, long while in a step-by-step procedure. That's why it may never happen in total though it is bound to happen in part. Selling 51 per cent of shares in BT worth up to $£ 4$ billion is still quite a problem.

Finding the Slot

Small companies can best succeed by finding a slot in the general market as yet undiscovered by big firms or considered too small in volume to warrant serious attention. I notice, for example, that at the International Audio and Video Fair to be held in Berlin in September, a German company has spotted the rising popularity of collecting early 78 r.p.m. gramophone records. Modern stylii for use with microgroove recordings are unsuitable so the firm of Dreher and Kauf, who normally have supplied only diamond needles in the past, have added to their range "oldfashioned" needles to fill the need.

On show, too, though you need a microscope to see it adequately, is a Philips chip containing all the stages of a UHF radio receiver. The export slot is to Japan who have taken the chip in large quantities, proving once again that the Japanese market is not impenetrable.

Buying /n

The fast way to get into electronics is by acquisition, popular with outsiders wishing to broaden their business into fast-growth areas. An example is Lex Service in motors who import Volvo cars to the UK. Some 18 months ago the company acquired Hawke Electronics and now they have increased their stake in electronics by buying Jermyn Holdings, thus gaining control of the Jermyn Group. Both Hawke and Jermyn are component distributors. The purchase price
for Jermyn was a little over f 15 million. For that they get all the Jermyn activities in the UK, France and Germany. Senior directors remain in place with three-year service contracts.

Before bringing the deal to a conclusion Lex studied all the market statistics and concluded that semiconductor sales in the UK would grow at an average of 19.5 per cent per year over the next five years but those sold through distributors would grow at 24.5 per cent per year. At present distributors are estimated to sell 30 per cent of all semiconductors in the UK. In the USA the figure is 40 per cent, so there appears to be room for further growth in market share for Jermyn and others within the total increased volume.

Pirátes

A big problem with innovative products is the "pirating" of designs. There is, of course, protection by patent but litigation can be lengthy and expensive. Such difficulties are often overcome by offering licences involving royalties to be paid to the patent holder.

In the ordinary way the public is unaffected by inter-company squabbles on possible infringement but I note with more than ordinary interest the public warning issued by Racal-Decca Navigator Ltd on unauthorised receivers now being offered for sale

Decca Navigatop "chains" which give navigational position to mariners are privately owned and thus not a public service. Recently, technical changes to the transmissions have been made to improve the service and Racal-Decca say that although their receivers and others manufactured with approval by RacalDecca are unaffected, "pirate" receivers can give false readings. Naturally, official "Notices to Mariners" have been issued by the UK Hydrographer of the Navy to warn navigators of the possibility of error because safety-at-sea is of fundamental importance.

The unlicensed receivers, apparently of foreign manufacture, continue to be offered for sale. It seems to me that cheating is bad enough in itself but when safety-at-sea could be involved it is despicable conduct.

Hoppers

Frequency-hopping tactical radios which are resistant to message interception and jamming had a high profile a couple of years ago. There was then an ominous silence during, presumably, a lengthy evaluation period by signals staffs. Now the orders are starting to filter through. Of course some armies keep quiet about new equipment but Marconi have announced orders for their Scimitar range from Portugal, Sweden and Finland with other countries still evaluating.

But rival Racal, who were the first to introduce frequency-hopping, have one order on which they have been allowed to publicly put a price-tag-a hefty $£ \mathbf{£ 2}$ million contract with the Sultanate of Oman. Racal also claim 13 countries are already using their Jaguar-V frequency hoppers.

SMALL business and personal computers often have the same configuration, they use the same microprocessors with the same performances, and yet the small business computers are often far more expensive when compared with personal computers; why such a difference? The answer is reliability, the small business computers are built for professional use and are designed to be as reliable as possible. The hardware is much more sophisticated and incorporates additional circuits for diagnostics which enables fault location, which in turn makes repair easier and faster. Every minute the system is not operable means a loss of money to the system user and should be kept at a minimum. On the other hand personal computers are intended for educational purposes and entertainment. With some additional hardware we can enhance the reliability of a personal computer to a degree that it can be used to do more
sophisticated tasks where a long term error free operation is a must.

One of the most error prone parts of a computer is the computer memory. Usually it is built with high density integrated circuits such as 16 K and 64 K RAMs, which can be affected by two types of errors: 'Hard' errors and 'Soft' errors.

Hard errors are caused by permanent damage of a memory chip or a part of it. They are mostly a stuck-to-zero or a stuck-to-one type of error. The erroneous location in memory cannot be overwritten with new data. They can easily be detected by a software memory checking program by writing some pattern to the memory and then reading it back. The same operation should be performed again with a complement pattern. Such a routine can be used as part of a power-up self test program.

Soft errors cannot be located so easily. There are several causes for soft errors: alpha radiation from packaging material, the noise can push the chip beyond limits of its normal operation, which can result in a loss of charge on storage capacitors. It is possible to observe from Table 1 that the soft errors appear more often than hard ones. The error rates of memory devices are given by manufacturers and are evaluated in an ideal testing environment. In real applications memory devices are exposed to interference and temperature variations, and this is why the error rate of a memory system is generally higher than evaluation from reliability data.

The most efficient method of coping with soft errors is the error detection and correction technique (Error Checking and Correction-ECC). The method of ECC was first described by R. W. Hamming more than 30 years ago in the article Error detecting and error correcting codes published in the Bell System Technical Journal, and after all these years this method is still used by most computer manufacturers for storage protection.

Error rate	16 K	64 K
Soft $\% / 1000 \mathrm{~h}$	0.1	0.45
Hard $\% / 1000 \mathrm{~h}$	0.02	0.02

Table 1. Error rates of memory devices

CODE USAGE

Let's now take a look at how the Hamming code works. When the data is written into the memory, the control bits are generated and stored in a special part of the memory. The number of control bits needed depends on the number of bits in data word and on the number of errors we want to correct. The number of control bits required for single error detection and correction can be derived from the equation $2^{n} \geqslant k+n+1$ where k designates the number of data bits and n the number of control bits.

Data words with 8 bits require 4 control bits which will together represent a memory word.

$$
\frac{\overbrace{D_{0} D_{1} D_{2} D_{3} D_{4} D_{5} D_{6} D_{7} C_{1} C_{2} C_{3} C_{4}}^{\text {Memory word }}}{\text { Control word }}
$$

The control word is generated as an exclusive OR (EXOR) combination of data bits as shown in Table 2.

	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}
C_{1}	1	1	1	0	1	1	1	0
C_{2}	1	1	0	1	1	0	0	1
C_{3}	1	0	1	1	0	1	0	1
C_{4}	0	1	1	1	0	0	1	0

Table 2. Control word generation
Table 3 shows the system of equations which gives us control bits.

$C_{1}=D_{0}$	$\forall D_{1}$	$\forall D_{2}$		$\forall D_{4}$	$\forall D_{5}$	$\forall D_{6}$	
$C_{2}=D_{0}$	$\forall D_{1}$		$\forall D_{3}$	$\forall D_{4}$			$\forall D_{7}$
$C_{3}=D_{0}$		$\forall D_{2}$	$\forall D_{3}$		$\forall D_{5}$		$\forall D_{7}$
$C_{4}=$	D_{1}	$\forall D_{2}$	$\forall D_{3}$			$\forall D_{6}$	

Table 3. Control bit equations ($\mathrm{V}=$ for all values 0 f)
When reading memory words from memory we must calculate the syndrome bits. This can be done in the following fashion: First we calculate control bits C_{n}^{\prime} of data part of the memory word. A syndrome is an EXOR combination of control word and control bits calculated from the data part of
a memory word. The relationship between syndrome bits $\left(S_{1}, S_{2}, S_{3}\right.$ and $\left.S_{4}\right)$ and memory bits is shown in Table 4.

	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	C_{1}	C_{2}	C_{3}	C_{4}
$\mathrm{~S}_{1}$	1	1	1	0	1	1	1	0	1	0	0	0
$\mathrm{~S}_{2}$	1	1	0	1	1	0	0	1	0	1	0	0
$\mathrm{~S}_{3}$	1	0	1	1	0	1	0	1	0	0	1	0
$\mathrm{~S}_{4}$	0	1	1	1	0	0	1	0	0	0	0	1

Table 4. Syndrome/memory bit relationship
Since the D part of Table 4 corresponds to Table 2 the S_{n} bits can be calculated from the equations in Table 5.

$S_{4}=C_{1} \forall C_{1}^{\prime}$
$\mathrm{S}_{2}=\mathrm{C}_{2} \forall \mathrm{C}_{2}^{\prime}$
$\mathrm{S}_{3}=\mathrm{C}_{3} \forall \mathrm{C}_{3}^{\prime}$
$\mathrm{S}_{4}=\mathrm{C}_{4} \forall \mathrm{C}_{3}^{\prime}$

Table 5. Syndrome bit equations

In the case that all syndrome bits are zero, we assume that there was no error in memory word. If the syndrome word is a non-zero combination there was an error. From the combination of ones and zeros in a syndrome word we can find out which bit is affected. From now on the correction of error is simple. All we have to do is to invert the bit in error and the data is correct again. If the combination of ones and zeros does not correspond to any column in Table 4 we have detected a multiple error. Such errors cannot be corrected, but we can suppress the execution of this instruction by the computer.

For example if we have the following data to be written into the memory:

$$
\begin{aligned}
& \mathrm{D}_{0} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{D}_{3} \mathrm{D}_{4} \mathrm{D}_{5} \mathrm{D}_{6} \mathrm{D}_{7} \\
& 1
\end{aligned}
$$

The control bits calculated from the equation in Table 3 will be:

$$
C_{1}=1, C_{2}=1, C_{3}=0, C_{4}=0
$$

The memory word will be:

$$
\begin{aligned}
& \mathrm{D}_{0} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{D}_{3} \mathrm{D}_{4} \mathrm{D}_{5} \mathrm{D}_{6} \mathrm{D}_{7} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \\
& 1110
\end{aligned}
$$

Let's assume that the error has affected one of the bits in the memory word. When reading from memory the memory word was:

$$
\begin{aligned}
& \mathrm{D}_{0} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{D}_{3} \mathrm{D}_{4} \mathrm{D}_{5} \mathrm{D}_{6} \mathrm{D}_{7} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4} \\
& 11100011
\end{aligned}
$$

The syndrome bits calculated from the equations in Table 5 are: $S_{1}=1, S_{2}=1, S_{3}=0, \& S_{4}=0$. From Table 4 we see that this syndrome corresponds to D_{4}. By inverting it we have correct data bits.

MULTIPLEERRORS

Now it should be noted that some multiple errors can give us the same syndromes as single bit errors. This means that such errors will pass undetected, but fortunately it is not likely that two or more errors will occur simultaneously in the same memary word.

The method described above can give us the position of a single error in any bit of a memory word. Since only data bits are received by the processor, we do not correct the control part of the memory word in the case of an error.

A processor delivers 8-bit data to the memory unit and receives 8 -bit data from the memory. All other functions are carried out automatically without the knowledge of the processor, so the ECC circuit can be regarded as transparent to the processor and thus applicable to different kinds of processors that are using an 8-bit data word system.

Fig. 1. Block diagram of a memory system with ECC capability

ECC IMPLEMENTATION

There are many single chip i.c.s presently available designed for detection and correction of a single bit in memory systems. These are very fast circuits that can detect and correct errors with propagation delay from 25 to 45 ns . The major drawback for using these circuits in microprocessor based systems is their price which is prohibitively high for small quantities. Basically they are intended to be used in mini and medium size computers. The ECC circuit to be used with 8 -bit data can be built with as few as 6 MSI chips.

Fig. 1 represents a block diagram of a memory system with ECC capability, five blocks are used for error detection and correction:

ECC ENCODER 1
ECC ENCODER 2

INPUT/OUTPUT ECC COMPARE ERROR LOCATION DECODER

CORRECTOR
generates control bits from data to be stored in memory.
generates control bits from data read from the memory.
generates syndrome bits according to the equations in Table 5.
generates an error pointer from syndrome bits. The error pointer contains a single 1 at the place where the error occurred.
is a controlled inverter that inverts the erroneous data bit from the error pointer and thus corrects it.

The upper part of Fig. 1 represents a diagnostic circuit that points to the faulty memory chip in case of a hard error. The error position is decoded in ERROR LOCATION DECODER 2 and latched in ERROR REGISTER. L.e.d.s D1, D2, D3 and D4 show the chip in error.

Fig. 2 represents a detailed schematic diagram of the ECC circuit together with memory (IC1 to IC12). Data bits $D_{\text {oin }}$ to $\mathrm{D}_{\text {7in }}$ enter memory chips (IC1 to IC8) and IC13 simultaneously. IC13 is a bipolar 256×4 PROM which serves as ECC ENCODER 1. For every combination of input data there is a distinct combination of control bits programmed in IC9. Its contents are shown in Table 6. Control bits are stored in IC9 and IC12. When data bits are read from the memory, a new set of control bits is generated in IC17 (ECC ENCODER 2) and is equal to IC13. Syndrome bits are

COMPONENTS

Resistors

R1
6k8, $\frac{1}{4}$ W, 5\% carbon

Capacitors

C1, C2, C3, C4, C5, C6, 2 n2ceramic (12 off)
C7, C8, C9, C10, C11.
C12, C13
C14
$10 \mu / 35 \mathrm{~V}$ tant. bead (2 off)
$220 \mu / 63 \mathrm{~V}$ elect

Semiconductors

D1, D2, D3, D4
D5
IC1, IC2, IC3, IC4
IC5, IC6, IC7, IC8,
IC9, IC10, IC11, IC12
IC13, IC17
IC14, IC15, IC18
IC16, IC19
IC20
Miscellaneous
S1
Terminal pins
l.c. sockets

Printed circuit board
*See Fig. 4.

Constructor's Note

All components including Soldercon pins are available from Watford Electronics, 35 Cardiff Road, Watford, Herts. (0923 40588.$)$
calculated in IC18 and are EXOR combinations of stored control bits plus control bits generated from memory word that was read from the memory.

In case of error there will be a non-zero combination of syndrome bits. Syndrome will be 0,0,0,0 if there is no error. Error location decoders are IC16 and IC19. These are 32×8 PROMS, both with the same contents. In the case of IC16 pin 14 is grounded. This means that only the lower part of the truth-table is selected $\left(A_{4}=0\right)$. This part of PROM is programmed so that it gives us an error vector for syndromes tabulated in Table 7. The error vector is applied to

Fig. 2. Circuit diagram of the ECC circuit with memory array

IC14 and IC15 which are EXOR gates that serve as a controlled inverter. The data bit on position where error vector is 1 is inverted and thus corrected. The upper part of IC19 $\operatorname{PROM}\left(A_{4}=1\right)$ contains memory chip location that corresponds to syndrome bits tabulated in Table 4.

The decoded position is stored in IC20. This is the ERROR REGISTER. L.e.d.s D_{1}, D_{2}, D_{3} and D_{4} show the memory chip in error. D_{5} is the indicator of multiple error. Error register IC20 is cleared at switch-on via R1 and C1 but can also be cleared by pressing pushbutton S1. Diagnostic data is written into the error register when memory word is valid. Otherwise we can get ambiguous information. When a multiple error is detected the signal at IC20 pin 10 (ME = high)
can be used to stop the processor.
The p.c.b. was developed so that different kinds of memory i.c.s can be used: $4116,4516,4164$ and their equivalents. The pinouts are shown in Fig. 3. The signal information needed to interface the ECC memory to the microcomputer is given in Table 8.

The ECC circuit will enhance the reliability of the microcomputer; however there are disadvantages to the scheme: The access time of memory will be longer for the propagation delay through the ECC circuit; that is why the higher speed memories are recommended. Another disadvantage is the high price of memory array, since four additional memory chips are needed.

 device is used then pin B should be inserted and pin A omitted. This will connect pin 9 to $+5 \mathrm{~V}(\mathrm{Vcc}$) and pin 8 to +12 V via terminal 22. The capacitors C1 to C12 are shown connected for 4164 and 4516 devices. If .4116 's are used then C1 to C12 should be connected in the dotted position

00	O	6	9	F	A	C	3	5	C	A	5	3	6	0	F	9
10	7	1	E	8	D	B	4	2	B	D	2	4	1	7	8	E
20	B	D	2	4	1	7	8	E	7	1	E	8	D	B	4	2
30	C	A	5	3	6	0	F	9	0	6	9	F	A	C	3	5
40	D	B	4	2	7	1	E	8	1	7	8	E	B	D	2	4
50	A	C	3	5	0	6	9	F	6	0	F	9	C	A	5	3
60	6	0	F	9	C	A	5	3	A	C	3	5	0	6	9	F
70	1	7	8	E	B	D	2	4	D	B	4	2	7	1	E	8
80	E	8	7	1	4	2	D	B	2	4	B	D	8	E	1	7
90	9	F	0	6	3	5	A	C	5	3	C	A	F	9	6	0
AO	5	3	C	A	F	9	6	0	9	F	0	6	3	5	A	C
BO	2	4	B	D	8	E	1	7	E	8	7	1	4	2	D	B
CO	3	5	A	C	9	F	0	6	F	9	6	0	5	3	C	A
DO	4	2	D	B	E	8	7	1	8	E	1	7	2	4	B	D
EO	8	E	1	7	2	4	B	D	4	2	D	B	E	8	7	1
FO	F	9	6	0	5	3	C	A	3	5	A	C	9	F	0	6

Table 6. The contents of ECC ENCODER 1 and 2 PROM

ADDR	DATA	ADDR	DATA
00	00	10	10
01	00	11	OC
O2	00	12	$0 A$
03	04	13	03
04	00	14	$0 B$
05	08	15	04
06	01	16	01
07	80	17	08
08	00	18	09
O9	02	19	02
OA	00	$1 A$	10
OB	20	$1 B$	06
OC	00	$1 C$	10
OD	40	$1 D$	07
OE	10	$1 E$	05
OF	00	$1 F$	10

Table 7. Correcting and diagnostic PROM contents

CONSTRUCTION

The assembly of the p.c.b. is quite straightforward and the following points should be considered. The ECC circuit is on a double-sided p.c.b. the design of which is shown in Figs. 3

PIN	SIGNAL	PIN	SIGNAL
1	GND	21	A_{1}
2	D, in		, $V_{\text {od }}(4116)$
3	$\mathrm{D}_{6} \mathrm{in}$	22	$\left\{V_{c c}(4164,4516)\right.$
4	D_{5} in	23	\{ $V_{\text {cc }}(4116) /$
5	D_{4} in	23	($A_{9}(4164)$
6	D_{3} in	24	N.C.
7	D_{0} in	25	N.C.
8	D, in	26	D_{0} out
9	D_{2} in	27	D_{4} out
10	$\mathrm{V}_{\text {SS }}(+5 \mathrm{~V})$	28	D_{2} out
11	$\left\{\begin{array}{l}\mathrm{V}_{\text {B }}(4116) / \\ \text { RFSH }\end{array}\right.$	29	D_{6} out
1	$\underline{\text { RFSH }}(4164,4516)$	30	D, out
12	$\overline{\text { CAS }}$	31	D_{3} out
13	WRITE	32	D_{5} out
14	${ }^{A_{6}}$	33	D, out
15	RAS	34	INT
16	A_{3}	35	VALID MEM ADR
17	A_{0}	36	$+5 \mathrm{~V}$
18	A_{4}	37	GND
19 20	A_{2} A_{5}		
20	A_{5}		

Table. 8. Memory/micro interface information
and 5 with the component layout shown in Fig. 4. In order to make the connections from the track-side to the componentside the i.c. sockets were soldered on both sides of the p.c.b; Soldercon i.c. pins were used. In all other positions tinned copper links or the component leads themselves were used to make the through connections.

On the prototype the l.e.d.s were mounted on a piece of plastic and fixed to the p.c.b. along with the pushbutton switch; the constructor may wish to mount these components in a position more suited to their own equipment. Whether or not pins A and B are inserted will depend upon the type of memory i.c.s used. The use of the pins is explained in Fig. 4. When the p.c.b. has been soldered and checked the i.c.s can be inserted.

PE SPECIAL CASSETTES OFFER

Over the last couple of years PE offers arranged with Videotone have proved highly successful and we have now been able to arrange special prices (only available to PE readers) on these high quality tapes. The offer is a result of Videotone's direct selling policy; send in a current special PE coupon for prompt delivery.

We believe these tapes are excellent value and we are pleased to offer them to readers. They are covered by a money back guarantee (return within 21 days for refund). Not only are the tapes of high quality but the cassettes are of screw together construction and the case labels have space for notes on the recordings.

[^6]run any CP/M80 software under it directly, because of course CP/M 8000 needs to run programs written in 28000 code not 8080 code! As far as I have been able to discover, software to run under CP/M 8000 is pretty thin on the ground.

Things may improve in the future, since Commodore are planning to introduce a 16 bit personal computer based on the Z8000, but for the moment at least, you are on your own!

INTERFACING

To continue time honoured $\mathbf{Z 8 0}$ traditions, the Zilog designers have put their stamp on the $\mathbf{Z 8 0 0 0}$ by scrambling up all the pin locations on the package so that they do not appear in boring, logical, groups. Let's face it, who needs the regular D0, D1, D2, D3, D4, D5, D6, D7, D8 etc. of the 68000 when you can have the exciting AD12, AD11, AD10, AD9, AD0, AD8, SN6, SN5, AD7 of the Z8000!

Also traditional is the need for a fast, high-drive, clock generator. Most clock designs I have seen published require a couple of Shottky T.T.L. packages and a handful of discrete transistors and resistors even to operate at 4 MHz . This seems to be an area neglected by Zilog and long overdue for a special clock-chip like the 8284 in the 8086 family.

Unlike the other 16 bit manufacturers Zilog have defined a specific bus interface standard for the Z8000, called the Z-BUS. The Z-BUS conforms generally with the pin-outs of the $\mathbf{Z 8 0 0 1}$ processor, but can also be used as a board-to-board bus to support more than one CPU. The bus is asynchronous and supports five types of bus transaction as follows:

Memory access. I/O transfer. Interrupt. Bus request. Resource request.

Address and data information are multiplexed together on pins ADO to AD15, and so an external address latch is needed in most systems. An address strobe $\overline{A S}$, and a data strobe $\overline{\mathrm{DS}}$, are provided to control demultiplexing.

An additional seven non-multiplexed address bits are output by the 28001 as the "segment number" to expand the address range to 8 M bytes, and a Byte Word control line is provided to indicate whether the current memory reference applies to a word or to a byte operand. Despite the use of a 16 bit data bus, memory data is byte addressable because Ao is available to select the upper or lower byte in a word and can be combined with the B / \bar{W} line to perform a similar function to the UDS and LDS strobes on the 68000 . I/O transactions are indicated by the appropriate status code on STO to ST3 and use only the 16 bit address information on ADO to AD15.

Three types of interrupt are provided, Non-Maskable (NMI), Non Vectored (NVI) and Vectored (VI). The only "funny" here is the NVI which is just an additional, simple, interrupt input for low priority applications which do not require the high status of the NMI or the complex vectoring of the VI .

The vectoring scheme used with the VI input should bring tears of nostalgia to the eyes of $Z 80$ fans since it uses the same daisy chain prioritisation scheme. The interrupt outputs of all peripheral chips are wire-ORed together and to the INT input of the $\mathbf{Z 8 0 0 0}$. All peripheral devices are daisy chained together with the IEO (1nterrupt Enable Output) of the highest priority device connected to the IEI (Interrupt Enable In) of the next highest and so on down the chain. If any peripheral has a pending interrupt it will be serviced only if no higher priority devices require service and the IEO of the next highest priority device is therefore a 1 . When this condition is satisfied the peripheral in question pulls its INT output low and the processor responds by performing an interrupt acknowledge cycle which causes the selected device to place its unique interrupt vector number on data lines ADO to AD7

During the acknowledge cycle the 28001 stores its current status on the stack and reloads the four CPU status registers with the VI status block fetched from the Program Status Area of memory. You may remember from the register section that each exception class has its own four word status block, but since there can be more than one source of Vectored Interrupts, the four word block is extended to include a 256 entry vector table of new program counter values. The Interrupt Vector number from the interrupting device is used to select the appropriate entry from this table and the CPU recommences instruction execution at the start of the appropriate interrupt service routine.

This powerful interrupt scheme, while very similar to the $\mathbf{Z 8 0}$ arrangement, is not exactly the same (naughty old Zilog!) but fortunately it is still possible to connect $\mathbf{Z 8 0}$ peripherals to a $\mathbf{Z 8 0 0 0}$ processor with the aid of some TLL translation logic.

One possible disadvantage of the $\mathbf{Z 8 0}$ and $\mathbf{Z 8 0 0 0}$ interrupt scheme is that the priority status of all peripherals is fixed by the chip interconnections and cannot be changed. The Intel 8259 Programmable Interrupt Controller chip on the other hand, provides not only a fixed priority mode but also a rotating priority mode which can be used to ensure that a number of users of equal status get a fair crack of the whip.

Zilog have been generous in providing peripheral chips for the 28000 family, although some of this apparent generosity is not quite what it appears! Since the $\mathbf{Z 8 0}$ family already had the most powerful 8 bit peripherals going, in some cases Zilog were able to simply modify their earlier designs slightly and give them a new number. By this means the 280 CIO became the 28036 CIO , with just a few pins changed to aid $Z 8000$ interfacing 1 Needless to say, Zilog do not exactly shout about this feature.

To be fair to Zilog, this approach is perfectly sensible and gives them a big advantage over Motorola who have only a primitive 8 bit family to draw on and who are still struggling to get their 16 bit peripheral family together. It also allowed Zilog to concentrate effort on the relatively few new 16 bit peripherals like the $\mathbf{Z 8 0 1 0}$ Memory Manager and to get these to market sooner

The Zilog Z8010 Membry Management Unit (MMU) adds a new dimension to the memory addressing capability of the 28001 by translating the physical address space of that processor into a logically segmented space which can be dynamically reconfigured under program control. In the basic 28001 the 8 M byte address space is divided up into 128 segments each 64 K bytes long. The MMU divides the physical memory up into continuous 256 byte blocks to form 64 variable sized segments from 256 to 64 K bytes positioned anywhere in the 16 M byte address space, so that the logical addresses manipulated by the programmer can be flexibly transformed into the physical addresses required by the memory. The MMU therefore decouples the programmer from the memory and permits the relocation of available memory from one segment to another under system software control to suit the immediate needs of the system.

The technique of memory management has limited relevance to the small single user system, but is a very powerful technique, developed originally for large computers, to permit the optimum allocation of memory resources among competing tasks or users.

Since the segments recognised by the $\mathbf{Z 8 0 1 0}$ have assignable attributes, memory protection schemes can be easily arranged in system software. Any request to access a segment illegally then causes a TRAP exception to the Z8001, and possible causes could be: writing to a read-only segment, a user trying to access a system (privileged) segment, or a detected segment overflow conditon.

Another useful and original member of the $Z 8000$ peripheral family is the 28038 FIO First-In-First-Out (FIFO) buffer unit. This 40 pin device contains a 128 byte FIFO RAM which can be used to synchronise $1 / O$ or interprocessor transfers by accepting data from one device and holding it until it can be accepted by a destination device. Empty, Full, and Wait/Request control lines are available to manage $\mathbf{Z 8 0 3 8}$ transfers.

APPLICATIONS

The $Z 8001$ processor is powerful, wall supported by hardware, but unfortunately not yet as popular as the 8086 or the 68000 . Perhaps this last fact will change when Commodore bring out their expected 28000 based 16 bit personal computer, but meanwhile the application software base is very limited.

My personal feeling is that the $Z 8000$ family is not the best choice if you have a data processing application in mind, but it might be a suitabale candidate for a 16 bit control application thanks to its high speed, low cost, and powerful interrupt and peripheral structure.

For most small applications the simpler $\mathbf{Z 8 0 0 2}$ with its 64 K byte address range will probably be sufficient, but $\mathbf{Z 8 0}$ users should beware the non-compatibility of the $\mathbf{Z 8 0 0 0}$ family with existing Z80 software. My advice would be to wait a little longer for the forthcoming Z800 family which offers compatible 16 bit power 1

all in your

The excellent VIC 20 from Commodore is unfortunately supplied with a very limited memory. We show how to build a motherboard and various plug-in RAM and ROM cards, thus expanding the memory and allowIng the simultaneous use of such facilities as

Introduction to Digital Electronics
 O\&ALEVEL
 Part One

This series has been written and designed by two very experienced authors to complement the digleat section of both the O and A level electronic courses.
It will also be an ideal Introductory point for any electronic hobbyists or nowcomers who have an interest in electronics and wish to obtain a firm foundation on which to build their knowledge. All that is required for the course is an elementary understanding of basic eloctricity (a familiarity with voltage, current and resistant), together with an understanding of basic wiring.

VICMON and SUPER EXPANDER.

Electronics in

 PhotographyThis feature article takes a look at photographic techniques from their birth some 150 years ago to the present day and beyond. Particular emphasis is paid to the role played by electronic technology in this infinitely interesting field.

It is a fact that most people do not know how to relax. This instrument simplifies the task as it provides continuous feedback of one's physical and mental state so that controlled relaxation can be achieved.

UNTIL quite recently moş tone controls on an electric guitar consisted of a pot and capacitor configured as a low pass filter, with a 6 dB per octave slope. This arrangement, although simple and reliable, does not give a large tonal range, tending to be dull and uninteresting with the treble thus removed. Increasingly, however, guitars and basses, particularly those of oriental origin, are being equipped with active tone controls giving separate treble and bass adjustment. This gives much better and variable sounds and has the additional advantage of buffering the guitar output, enabling a long cable to be used to the amplifier/mixing desk without noise pickup and the reactive loading reducing the treble response. This results in a crisper, punchier sound.

For those not wishing (or able) to invest in a new guitar simply for the benefit of active circuitry, this design is small enough to be built into the guitar body, or as a separate unit, into a small instrument case.

CIRCUIT DESCRIPTION

The active tone controls circuit provides volume treble and bass controls with a switch giving extra treble boost, which is very useful for solos. For best performance the guitar pickup needs to see a high impedance, this is provided by a bootstrapped input amplifier, which also has a volume control incorporating a loudness circuit, which boosts the treble at low volume settings to give the impression of constant tone balance throughout the volume range--without this the sound becomes flat and uninteresting at low levels. This is due to the characteristics of the human ear which is less sensitive to the high frequencies of quieter sounds.

The input amplifier is followed by the tone control circuitry - which is of the active treble and bass type. This circuitry has a nominal voltage gain of one with 20 dB of boost and cut at 40 Hz and 10 kHz . The output of the tone control circuit provides the low impedance drive to the amplifier cable. The circuit is automatically turned on when the output jack is plugged in and there is also a facility for charging a NiCad battery, if fitted, by using a stereo plug in the same socket. Fig. 1 shows the plug connections required for normal and charging use.

HOW IT WORKS

The circuit of the active tone controls is shown in Fig. 2 and can be considered as three functional blocks hased on the three i.c.s. They are:

1. A high input impedance amplifier incorporating the loudness, volume control and the treble boost circuitry. 2. A conventional Baxendall type active tone control circuit also providing the output.
2. A negative supply voltage generator.

The most unusual feature of the circuitry is the third functional block-the negative supply generator. The obvious question is why is it necessary at all as single supply op amp circuits could easily be used. There are two main reasons why. Firstly, the op amp used for the input amplifier is the Signetics NE 5534A (chosen for its excellent low noise audio performance) which requires a minimum supply voltage of $\pm 3 \mathrm{~V}$. Using a PP3 battery of nominally 9 V output. the battery life would be relatively short if used to power the circuit directly as its voltage soon decays from its nominal value, also the output from the guitar pickup has a very large dynamic range with large transients as the strings are played, so to avoid distortion due to op amp clipping as large a supply voltage as possible should be used. Another advantage of using positive and negative power supplies is that the signal path is referred to OV avoiding the large switch on thump as coupling capacitors charge up. The supply currents are effectively separated from the signal path, reducing earth loop noise.

The negative supply generator uses an NE555 timer i.c. in its astable mode producing a square wave output at about 30 kHz . This is outside the audio bandwidth to avoid any breakthrough to the output being heard.

The astable period is set by $R 7, R 8$, and $C 7$ being the time for C7 to charge up to $\frac{2}{3} V_{c c}$ through $R 7$ and $R 8$ and discharge to $\frac{1}{3} V_{c c}$ through R8. The frequency of oscillation is given by:

$$
f=\frac{1}{0.693(R 7 \times 2 R 8) C 7}
$$

The output of the astable is a.c. coupled and clamped by C9 and D1 respectively. This is rectified and smoothed by D2, C10 and C13 resulting in a negative supply of 6 V . The voltage loss is due to the two diode 0.6 V drops and the fact that the 555 output swing is not to its supply voltage; however, with this supply an output signal of 3 V peak is

[66126]
Fig. 1. Jack plug connections
available, which is quite sufficient!
While on the subject of power supplies, the battery is connected to the circuit by inserting the mono jack plug of the guitar lead into the stereo (three pole) output jack socket; this connects the outer two poles together, completing the circuit. Additionally, diode D3 links the output to the supply line; in normal operation this is reversed biased and therefore high impedance; however, if a rechargeable battery is used a sterec jack plug can be used to charge the battery in situ. The charger positive is connected to the inner pole, negative to the centre pole. In this mode the active tone control circuit is not connected. The charger used should be of the constant current type- 10 mA in the case of a PP3-type battery. This is very convenient if the circuit is installed in the guitar. As the supply current is about 10 mA it makes good sense to use a rechargeable battery, especially if the guitar is used often, as a dry cell will only last about ten hours continuous rúnning.

SPECIFICATIONS

Signal-to-noise ratio	$64 \mathrm{~dB}($ referred to $5 \mathrm{mV} \mathrm{i} / \mathrm{p})$
Voltage gain	$\times 48(33 \mathrm{~dB})$
Maximum signal output	3 V peak
Supply current	10 mA
Bass control	$\pm 20 \mathrm{~dB}$ at 40 Hz
Treble control	$\pm 20 \mathrm{~dB}$ at 10 kHz

(1 |pl x48 (33dB) 10 mA $\pm 20 \mathrm{~dB}$ at 40 Hz
$\pm 20 \mathrm{~dB}$ at 10 kHz

Fig. 2. Circuit of active tone controls

The next functional block is the amplifier. VR1 is a simple volume control, R1, C1 and C3 give the loudness effectbeing shorted out when the control is at full volume. C2 a.c. couples the input to stop the op amp bias current causing noisy pot operation. The amplifier itself is a bootstrapped non-inverting type. The purpose of the bootstrapping is to give a very high input impedance to the signal while providing a low impedance at d.c. so that the op amp bias current does not result in a large offset voltage. The circuit works as follows-initially with the treble boost switch open.

At d.c. capacitor C 4 is an open circuit, giving the equivalent circuit shown in Fig. 3(a). It can be seen that the amplifier has unity gain and the input impedance at both op amp inputs is approximately the same ($R 3$ and $R 2+R 4$). They are arranged like this to balance out the bias current generated offset as far as possible so that in the worst case only a few millivolts of offset appears at the output.

At audio frequencies C4 is large enough to appear to be a short circuit. The equivalent circuit becomes that of Fig. 3(b). The gain and input impedance of this circuit are given by the following equations:

(a) 00
56120. Fig. 3. Input amplifier equivalent circuits

Where A is the open-loop voltage gain of the op amp.
From the above equations it can be seen that the input impedance is very large and VR1 therefore defines the input impedance of the circuit as a whole. With the specified values the input impedance is 470 k and the gain is $\times 48$, but can be adjusted as required by altering R2 and R3.

When the treble boost switch is closed the feedback is reduced at high frequencies, giving a brighter, louder sound. R5 is used to stop thump when the switch is closed due to C6 charging up, through its own leakage resistance.

C5 a.c. couples the output of this stage to a Baxendall type active tone control circuit giving 20 dB cut and boost at 40 Hz and 10 kHz .

CONSTRUCTIONALDETAILS

Tantalum electrolytic capacitors are specified for their good electrical performance and small size. If the pots used are p.c. mounting types, they can mount directly on to the board; if not, Harwin pins can be used on the board and the pots connected to these. The treble boost switch, input and output are connected to these. The treble boost switch, input and output are connected via flying leads, as is the battery.

The prototype was built into the body of the guitar but could equally well be built into a small instrument case using a mono jack socket for the input.

Fig. 4. Board and component layout

Ground
 Commnmicalion System
 R.A.PENFOLD

THE idea of using the ground as a medium for communication is by no means a new one, and dates back as far as World War 1 at least. The basic arrangement for a communications system of this type is shown in Fig. 1.

An ordinary audio power amplifier driven by a microphone is all that is needed at the transmitting end of the system, plus two earthing rods which are placed in the ground some distance apart. The earth usually provides a fairly low resistance path between the two rods, but this resistance is actually made up from an infinite number of paths through the earth from one rod to the other. Most of the current flow between the rods takes a more or less direct route from one rod to the other, but some of the signal takes a much longer route and can therefore be detected some way away from the transmitting earthing rods. However, the longer the route taken by the signal, the greater the resistance it has to overcome, and the weaker the signal that is available due to the lower current flow. All that is needed to pick up the signal is annther set of earthing rods feeding a pair of headphones or an amplifier and loudspeaker, but the inefficiency of this system gives only a fairly limited operating range.

Systems of this type generally only operate up to an absolute maximum range of about two miles, and often the maximum attainable range will be very much less than this. This still gives an adequate range for some purposes, and ground communications is certainly an interesting subject for the experimenter. A novel feature of ground communications is that it can be used for subterranean communications, unlike normal radio communications.

BLOCK DIAGRAM

Fig. 2 shows in block diagram form the simple ground communications system featured in this article. The transmitter consists of a microphone feeding a preamplifier stage, which in turn drives a power amplifier. A gain control is used in conjunction with an I.e.d. level indicator to ensure that the power amplifier is fully driven but not seriously overloaded.

The power amplifier is a bridge type, and this is necessary as a reasonably large output voltage swing is needed in order to give usable results. The amplifier uses a bridge amplifier integrated circuit which is normally used as a power booster for a car radio, giving an output power of about 18 to 20 watts r.m.s. into a 4 ohm impedance loudspeaker. In this case the output power is very much lower than this, and is likely to be in the region of 1 watt r.m.s. since the impedance across the earthing rods is

Fig. 1. Ground communication besic system
typically between 50 and 100 ohms. This relatively low output power gives the unit a reaspnably low current consumption so that battery operation is possible.

The receiver uses a high gain preamplifier follawed by a 200 Hz highpass filter and a small audio power amplifier. The latter drives a miniature loudspeaker, or medium/high impedance headphones can be used if preferred. The purpose of the highpass filter is to combat mains hum which always seems to be present, and can be very strong if the system is used very near to houses or other places where mains powered equipment is used (and earthed). The filtering is only partially successful as there are quite strong harmonics on the 50 Hz mains signal. With these harmonics spaced at 50 Hz throughout the audio band, it is not really feasible to filter them out completely. A high slope 200 Hz highpass filter gives a worthwhile reduction without affecting the intelligibility of the received signal. It does not seem to be possible to use a balanced input and a phasing technique to reduce mains hum.

Fig. 2. The system in block diagram

It may seem wasteful to use separate circuits for the transmitter and the receiver when both are basically just high gain audio power amplifiers. However, circuits using a single amplifier with the loudspeaker used as a microphone in the transmit mode all provided mediocre results both in terms of audio quality and range, and a two amplifier circuit was therefore adopted for the final unit.

TRANSMITTER CIRCUIT

Fig. 3 shows the circuit diagram of the transmitter. The power amplifier uses an HA1388 bridge amplifier which will give over 20 volts peak to peak at the output using a nominal 12 volt supply. C9 and C10 are bootstrapping capacitors which help to maximise the output voltage swing from the two power amplifier. C11 and C12 are needed to aid stability while D2 and its associated components are used to give an indication of the output signal level. D2 will be forward biased on one set of half cycles, but only if the
peak output voltage exceeds about 7 volts, since about 5.1 volts is needed to force D1 into conduction, while approximately 1.9 volts further is needed to overcome the threshold potential of D2. Thus about 14 volts or so peak to peak is needed at the output before D2 will light up, and the amplifier will be fully driven or nearly so provided D2 lights up when someone speaks into the microphone.

The voltage gain provided by IC1 is quite high and only about 10 millivolts r.m.s. is needed at the input (pin 3) in order to provide maximum output. This is still not sufficient to enable the circuit to be driven from a normal microphone, and TR 1 is therelore used as a common emitter preamplifier stage which boosts the gain of the circuit by a factor of about one hundred. This enables the unit to be used with inexpensive low impedance (200 or 600 ohm) dynamic microphones. C13 rolls-off the high frequency response of the preamplifier which helps to prevent instability and also gives an improvement in the signal to noise ratio of the circuit.

Fig. 3. The transmitter circult. In use the current consumption can be in excess of 100 mA so the battery should be a PP9 or six to eight HP7s. Ideally Ni-Cad cells are to be preferred

Fig. 4. The receiver circuit

Fig. 5. Transmit/Receive switching

RECEIVER CIRCUIT

The receiver circuit uses a preamplifier which is similar to that employed in the transmitter, as will be apparent from the circujt diagram of 'Fig. 4.

From the output of the preamplifier the signal is passed via volume control VR1 to the highpass filter. This is a conventional active 24 dB per octave type which uses TR2 as the unity voltage gain buffer stage and has a cutoff frequency of approximately 200 Hz . Low frequencies do not significantly contribute to the intelligibility of a voice signal, and the filtering does not have any detrimental effect on the signal. There is little output from the transmitter below 200 Hz anyway.

The power amplifier is a TBA820M (IC1) which gives an output power of about 150 milliwatts into a high impedance loudspeaker, and this gives a perfectly adequate volume level for this application. R11 is a feedback resistor which sets the closed loop voltage gain of IC1 at approximately 130 times. This gives the circuit an input sensitivity of about 2 millivolts r.m.s. for maximum output, and this is about the highest practical sensitivity.

For two way communications it is obviously necessary to have both a transmitter and a receiver plus transmit/receive switching at each end of the system. Suitable switching is shown in Fig. 5.

TRANSMITTER BOARD

Resistors	TRANSMITTER BOARD		
		Semiconductors	
R1	1 k	IC1	HA1388
R2	2M2	TR1	BC109C
R3	8k2	D1	BZY88C5V1
R4	390	D2	TIL209 etc.
R5	470		
All resisto	W 5\%		

CONSTRUCTION

The system can be built as separate transmitter and receiver units for one way communications, or as transceiver units for two way communications, but it will be assumed here that the system is constructed as two transceivers. The transmitter and receiver circuits are assembled on separate printed circuit boards which are shown in Fig. 6 and Fig. 7 respectively. Both boards are quite straight forward to construct, and the only unusual component used is the HA 1388 (IC1 in the transmitter). This has a single line of twelve pins, but pin 1 is indicated in the standard fashion by a small dot or indentation on the body of the component. The HA1388 has a heat-tab which can be bolted to a heatsink, but in this application the output power is not likely to be sufficient to merit the fitting of even a small heatsink. This integrated circuit has comprehensive protection circuits incidentally. including a thermal shutdown circuit.

A metal instrument case measuring about $200 \times 125 \times$ 75 mm will comfortably accommodate all the components including the batteries. The general layout of the unit can be seen from the photograph but is not especially critical. Miniature loudspeakers do not usually have provision for screw fixing and it will almost certainly be necessary to glue LS1 in position behind a grille made by drilling a matrix of small holes. The connections to the earthing rods can be made by way of a couple of 4 mm sockets fitted on the rear panel of the case, plus a couple of leads fitted with 4 mm plugs.

Once all the components have been installed in the case the point to point wiring can be added. The wiring to S 1 is illustrated in Fig. 8.

Capacitors

C1
C2, 3
C4
C5, 9, 10
$100 \mu 16 \mathrm{~V}$ radial electrolytic $1 \mu 63 \mathrm{~V}$ axial electrolytic (2 off) $1 \mu 63 \mathrm{~V}$ radial electrolytic $47 \mu 10 \mathrm{~V}$ radial electrolytic (3 off)
C6
C7. 8 $100 \mu 10 \mathrm{~V}$ radial electrolytic
$\quad 100 \mu 10 \mathrm{~V}$ axial electrolytic (2 off)
C11,12 $\quad 100 \mathrm{n}$ polyester
C13 10 nmylar
C14 470 p 16 V radial electrolytic
Miscellaneous
$\begin{array}{ll}\text { SK1 } & 3.5 \mathrm{~mm} \text { jack socket } \\ \text { VR1 } & 22 \mathrm{k} \mathrm{log} \text {. carbon }\end{array}$
Printed circuit board, low impedance dynamic microphone, control knob, Veropins, wire, etc.

Getting GPIPS with

socket of an existing receiver. Alternatively an output at the ! 5 of the main receiver could feed into the IF amplifier section. Output at video frequency is particularly attractive in that it eliminates distortion and spurious signals which are inherent in low-cost modulators and multiple-conversion receivers.

In practice a single DBS transmitter should be receivable in about $98-99 \%$ of homes. The limited electric power available at the satellite has an important effect on the form of transmission. For terrestrial TV the vision signal is transmitted as an amplitude-modulated vestigial sideband signal (VSB). In Europe the complete 625 -line television signal, including the frequencymodulated mono audio channel, fits into an 8 MHz channel (Fig. 3). All these systems use frequency interleaving in order to encode the luminance (black and white) picture information with the chrominance (colour) information, the method differs in the PAL and SECAM systems. The third main colour-encoding system NISC, is not used in Europe but is used in a number of countries having 525 -line systems. In all these three colourencoding systems a subcarrier is used to carry the chroma information. For 625 -line PAL the colour subcarrier is at the precise frequency 4.4336 MHz .

Fig. 3. The frequency bands occupied by the colour picture components and sound signals from an ideal transmitter

Fig. 4a. The noise spectra associated with AM signals
The use of a colour subcarrier means that the chroma information is converted upwards in frequency, in other words chroma is transmitted between roughly 3 to 5.7 MHz frequencies shared with luminance information of fine detail patterns. The result of this sharing can clearly be seen on domestic receivers in the form of cross-colour effects, the spurious colours seen on striped clothing, patterned suits, shirts and ties, etc. This is because to the receiver the luminance "pattern" looks like chroma information and is amplified in the chroma circuits. Conversely problems can arise from chroma information being mistaken for luminance. This problem is inherent in all conventional colour-encoding systems although it tended often to pass unnoticed in the first decade of colour when the sensitivity and resolution of studio cameras etc tended to be insufficient to exploit the full potential of the system.

TRIANGULAR NOISE SPECTRUM

However when a subcarrier colour-encoding system is used with a frequency-modulated vision signal there is a further problem that does not arise with amplitude-modulation. This is the so-called triangular noise spectrum. With an FM signal the noise rises with frequency, there is thus a higher noise content with chroma information transmitted at around 4.4 MHz than when it is transmitted at its "baseband" frequency. For this reason a 625 -line PAL picture transmitted over satellite circuits tends to suffer noise or "graininess" noticeable in the more highly saturated large colour areas shown in Figs. 4a and 4b.

EG1800

Fig. 4b. The noise spectra associated with FM signals

MULTIPLE SOUND CHANNELS

There is a further important difference envisaged between conventional terrestrial TV transmissions and DBS-the carrying of multiple sound channels. In the first place there is the wish to transmit high-quality stereo with sufficiently low cross-talk to permit these channels to be used for such purposes as simultaneous multilingual broadcasts or the carrying of totally independent "radio" programmes and also, if required, data transmissions such as an extended-capacity Teletext service, optional subtitling for the hard-of-hearing etc. With modern technology it is logical to use a digital system capable of extremely high quality. In terrestrial networks a problem with digital transmission is vulnerability to multipath "echoes" but digital, via satellite appears to be virtually free of such problems. For the first time broadcast audio can be planned to standards significantly better than existing VHF/FM stereo.

The UK, acting on the recommendations of the Advisory Panel on Technical Transmission Standards for Direct Broadcasting by Satellite (chaired by Sir Antony Part), has adopted a transmission system that takes into account not only the technical factors outlined above but also the advantages to industry and to viewers in making extensive use of LSI technology. The system C-MAC was developed and proposed

CHANNEL NO.	ASSIGNED FREQUENCY (MHz)	CHANNEL NO.	ASSIGNED FREQUENCY (MHz)
1	11727.48	21	12111.08
2	11746.66	22	12130.26
3	11765.84	23	12149.44
4	11785.02	24	12168.62
5	11804.20	25	12187.80
6	11823.38	26	12206.98
7	11842.56	27	12226.16
8	11861.74	28	12245.34
9	11880.92	29	12264.52
10	11900.10	30	12283.70
11	11919.28	31	12302.88
12	11938.46	32	12322.06
13	11957.64	33	12341.24
14	11976.82	34	12360.42
15	11996.00	35	12379.60
16	12015.18	36	12398.78
17	12034.36	37	12417.96
18	12053.54	38	12437.14
19	12072.72	39	12456.32
20	12091.90	40	12475.50

Table 1. Assigned frequencies for the 12 GHz Satellite broadcasting band (Europe). Note: UK channels are 4, 8, 12, 16 and 20 . Orbit position- $31^{\circ} \mathrm{W}$. Polarisation-right-hand circular in now current convention viewed with signals approaching receiving aerial
by the IBA but is now the official UK standard, to be used for example on the first BBC channels on UNISAT. C-MAC has also been proposed as a European standard for DBS. 625 -line PAL with VSB vision transmission will, of course, continue to be used over the terrestrial networks.

TIME-COMPRESSION MULTIPLEXING

The C-MAC system is based on a single FM transmission channel with no sound carriers, colour carriers or subcarriers. It is designed to meet the European satellite transmission parameters which specify the use of 27 MHz wide channels with the carriers only 19 MHz apart but with adjacent channel interference limited to agreed figures; 40 channels have been assigned, the frequencies of which are listed in Table 1. The basic parameters of C-MAC are listed in Table 2.

Satellite channel bandwidth: 27 MHz . Triangular energy dispersal waveform added to video signal.
Luminance (Y): Uncompressed, up to $5 \cdot 6 \mathrm{MHz}$
Compression ratio 3:2
Compressed, up to 8.4 MHz
Chrominance Uncompressed, up to 1.6 MHz
$(\mathrm{U}, \mathrm{V}): \quad$ Compression ratio 3:1
Compressed, up to 4.8 MHz Each chroma signal, U or V, is transmitted on alternate lines.
Sound/data: Digital synchronization: 8-bit burst at start of each line period Digital rate: $20.25 \mathrm{Mbit} / \mathrm{s}$ Basic audio sampling frequency 32 kHz , 14-bit words (linear), 10-bit words (companded) During normal picture transmission 186 bits per line, representing TV frame capacity of $2906.25 \mathrm{kbit} / \mathrm{s}$. In each 8 millisec period (125 TV lines) exactly 256 samples of each sound channel are transmitted. Data frames similarly based on 8 millisecond periods.
Line period $(64 \mu \mathrm{~s})$: Each line is made up of: sync burst and digital sound (194 bits); then transition to main clamp (zero level) 15 samples; chrominance (U or V), 335 samples; grey-to-black transition and black-level clamp (14 samples); luminance, 710 samples; transition into data (4 samples). Sampling clock frequency 20.25 MHz .
Line frequency $\frac{2}{3} \times \frac{1}{864} \times 20250 \mathrm{kHz}$.
Table 2. C-MAC basic parameters, 625 -line, 50 Hz interlaced

Instead of frequency-interleaving the system uses timemultiplexing to permit the luminance and chrominance information to be transmitted sequentially rather than simultaneously. To enable this to be done within the framework of a standard 625 -line format, both luminance and chroma signals are timecompressed on transmission and subsequently time-stretched at the receiver. Time-compression and time-expansion of signals is the fundamental principle of digital standards converters, digital time-base correctors and some other applications of digital technology in television. Basically one can clock a signal into an electronic memory at one rate and take it out again at a different rate. Since in a MAC system this is done within each 64μ s line period the amount of electronic memory required is relatively small (Fig. 5).

Decoders can use a charge coupled device (c.c.d.) which is a memory device capable of storing a signal in analogue form, or alternatively the process can be carried out, as in a modern standards converter, in digital form using conventional digital memory devices. In the early development of the MAC system it

Fig. 5. Basic C-MAC Signal line format
was usually suggested that a c.c.d. analogue memory system should be used; however it has become evident that at least in the initial stages, the alternative and equally satisfactory digital system, using conventional digital memory, will prove the more economical process despite the requirement for simple A to D and \mathbf{D} to A converters.
In practice, for mass production, the basic MAC video decoder is likely to take the form of two special-purpose large-scale-integrated (lis.i.) devices, less than will be required for decoding the multiplexed digital audio channels; this factor is why it can be fairly claimed that C-MAC indoor units can be produced at virtually the same cost as a PAL plus multiplexed sound unit. Multiplexed sound of course does add fairly significantly to the cost of indoor units compared with the conventional single mono-channel sound system used for terrestrial television broadcasting. In practice the digital sound decoder needs roughly the same order of complexity as a Teletext decoder.
To sum up the MAC video system: The colour and luminance signals remain separate throughout the transmission system and are sent sequentially as Component signals by means of time compression in a time-Multiplexed form, with the FM transmission conveying the signals in Analogue form. Hence the name Multiplexed Analogue Component (MAC). In the decoder the time-stretching can be done using either analogue or digital techniques, with the digital approach being favoured currently on economic grounds.

IBA's mobile experimental satellite up-link terminal, first demonstrated at Wembley in 1978 and since used on a North Sea oil rig and in Austria, the Azores and Spain. This unit provided a vital test-rig for MAC sending up signals to the OTS satellite

AUDIO TRANSMISSION

The audio signals are transmitted in digital form, as bursts of data at $20.25 \mathrm{Mbit} / \mathrm{s}$ in the line-blanking interval at the start of each line-period. The C in C-MAC refers to the general form of the multiplexed sound system. It stems from the investigation by members of the European Broadcasting Union of a number of possible ways of transmitting digital sound with or without subcarriers etc, designated as A, B or C-type sound. There are also further variations within these categories. The C system proposed and accepted by the UK is a complex but flexible system in which the multiplexing is defined by a regularly transmitted "structure map". This permits the exact mix of sound/data channels to be changed at will. Further when no video signal is present (for example outside TV broadcasting hours) the $20.25 \mathrm{Mbit} / \mathrm{s}$ data signal can be run continuously, providing either a large number of very high quality sound-only services or an enormous data capacity for Teletext.

The digital burst normally consists of a run-in, a sync word and 174 bits of data. It should be appreciated that the circuitry required to demultiplex this data stream is complex but fortunately can be largely implemented in integrated form. To explain the flexible data structure in detail however would require an article in itself.

[66162]

$$
\begin{aligned}
& \begin{array}{ll}
b=194 \text { bits } & \text { - synchronization, sound/data } \\
b=4 \text { samples } & \text { - transition from end of data; }
\end{array} \\
& \text { c= } 18 \text { samples } \\
& d=355 \text { samples } \\
& \begin{array}{l}
=355 \text { samplos } \\
=4 \text { samples }
\end{array} \\
& \begin{array}{l}
i=4 \text { samplies } \\
i=10 \text { samples }
\end{array} \\
& \begin{array}{l}
=10 \text { samples } \\
g=710 \text { atmples }
\end{array} \\
& h=4 \text { samples }
\end{aligned}
$$

Fig. 6. Detailed C-MAC Video waveform (lines 23 to 310 and 335 to 622) for normal picture transmission (not to scale)

DATA STRUCTURE

Each TV line consists of a 9μ s digital burst, then 17.5μ s of colour information and finally $35 \mu \mathrm{~s}$ of luminance information. A detailed illustration of the C-MAC video waveform is given in Fig. 6. Although the vision signal is analogue in form, it is convenient to think of it as being "sampled" at the same digital rate of 20.25 MHz . This rate represents 1296 samples for each $64-$ microsecond line veriod of which 1114 sampling periods are used for the luminance and chrominance signals. The remaining 182 sampling periods correspond to the line blanking interval and represent the 182 bits of the $20 \cdot 25 \mathrm{Mbit} / \mathrm{s}$ digital signal (174 carrying the audio/data information). Both sound and video signals can be encrypted for subscription channels more readily than conventional composite-coded transmissions. It is easy to rearrange the luminance and chrominance information to "scramble" the pictures, and the digital sound can readily be made unintelligible to a standard decoder.

It should be appreciated that time-compression or "shrinking" of a signal represents an overall increase in video
bandwidth since each video component is actually transmitted in less time at a higher frequency. However the additional bandwidth remains within that available in a satellite channel, and the slight degradation in signal/noise ratio in no way compares with the additional chroma noise that would result from the use of a 4.43 MHz subcarrier on an FM transmission. Because MAC reduces significantly the problem of noise in the highly coloured areas the overall effect is to provide the user with a picture that remains acceptable at lower signal inputs to the 12 GHz front-end. This means in effect that the viewer can use a smaller dish aerial, or alternatively has more in hand to counter gradual deterioration of the dish reflector or aerial pointing errors. Since a smaller dish is less directional as well as offering less wind resistance, the installation of a DBS aerial for MAC is usefully less critical than for conventional colourencoded signals.

DIGITAL FILTERING

While C-MAC remains a 625 -line system, the separation of colour and brightness information greatly facilitates the addition of digital signal-processing within the receiver. For this reason techniques that would provide additional luminance information within a MAC transmission by means of what is called "threedimensional" digital filtering have been investigated by the IBA. This processing takes advantage of the series of gaps in the spectrum which carry only high-frequency diagonal information. If these HF diagonals are excluded the gaps become available to carry additional information. This extended-definition option would be useful for providing high-fidelity pictures, with a subjective resolution of roughly 1000 lines they would be suitable for use with future large-screen, high-resolution picture-display systems. Such a system requires several fields of digital memory within the receiver and is not at present economic for domestic sets. This can usefully be combined with the prospect of the
flicker-free pictures that can be provided by displaying 625 -line 50 Hz pictures at 100 Hz and sequentially, rather than in interlaced form.
Digital processing in receivers has already been demonstrated by receiver manufacturers but a major advantage with the MAC system is that the requirement for motion-detection in order to suppress digital processing in areas of fast motion are greatly eased by component (YUV) rather than composite signals.

VIDEO INTERFACE

To obtain the full advantages of MAC the interface between the "indoor unit" and the television receiver proper needs to be at video frequency, i.e. YUV signals (Fig. 7). The fitting of a

Fig. 7. Basic MAC satellite converter
suitable socket to receivers also offers very significant advantages-indeed such sockets have been mandatory in France since 1980. With a video socket, the need for the UHF modulators currently used in VCR machines, video games, Teletext adaptors, home computer etc. is eliminated, resulting in greatly improved displays when these units are in operation. The trend towards YUV interfacing can also be seen in the growth of "unit video". This does not mean that the current sets cannot be used with MAC but it does mean that the signal fed to an aerial socket has to be in composite-coded form and this reintroduces the problems of cross effects that MAC can eliminate.

Mridwict

8
choice for microcomputer components

BBC COMPUTERS
Model B

Model 8	34695
Model B + Disc Interface (Carriage 6.50 by Securicor) NB: Credit cards not accepted in pay	441.95
BBC MICRO DISC DRIVES BBC 31 Single 100k Orive Expendable to $2 \times 100 \mathrm{k}$	
BBC 32 Dual look Drives	335
BBC 33 look Upgrade for BBC 3	140.0
BBC 34 Oual 400k	545
BBC 35 Utimies Dise	
Isupphed only with BBC 31,	
All Disc	
Manual. Ustutiles Disc. and Comecting	
BEC MICRO UPGRADE KITS	
BBCA2B Complere A to 8 Upgrade	44.3
BBC 116 K Memory	
BBC 2 Printer/User IVO Kil	
BBC 3 Disc Interfac	
BBC 4 Analogue Input Kit	
BBC 5 Serial I/ 8 R RG Kit	
BBC6BuS	

NEC 8023 P
NEC 8023 Prinier ICarriage 10.00) 320.00
BBC CONNECTORS
BBC 21 Printer Cable and Amphenoul Plu
nol assembled
$8 B C 22$ User Pon Conilector and Cable 3
$B B C 23$ Cassene Lead
$B B C 247$ Pin DIN Plug

Rom			
			52.00
DATA SHEETS are available on items marked D.			
or	0.75	05	250
D2	1.00	06	3.00
	125	07	400
	2.00		

AST month, the operation of the basic analyser was - described in detail. This month we will describe the construction of the basic unit, and some initial tests that can be done. Interwiring has been kept to a minimum (in fact, besides the power supply, there is no interwiring for the basic unit) by the use of the front panel p.c.b., but due to the complexity of the project, it is suggested that only reasonably experienced constructors attempt to build the unit. It is also strongly recommended that the construction method described is followed closely. Failure to do so could result in an analyser that is difficult to complete!

MAIN PCB

Refer to Fig. 2.3: Start construction of this p.c.b. with the soldercon i.c. socket strips (or wire-wrap sockets, although the former method is preferred). Cut the strips into 7, 8, 10 or 12 pin lengths as necessary. Place a strip at a time in the board, starting from the middle of the board (IC27 for example) working outwards. Solder, on the front side, only those pins of a strip which have a track coming to its pad on the front side of the board. When soldering the pin, be very careful that no solder flows between the contacts. If this should happen, the single pin can be replaced at a later stage, once the rest of the strip has been soldered under the board. (The top of the pins can be broken off and the soldered pin removed and replaced.) Before soldering in the pins for IC19 and IC18, solder in SK6. SK6 is cut to length from a piece of double-sided, wire-wrap, p.c.b. edge connector. Allow the connector to stand proud of the p.c.b. and solder the pins to the pads on the top of the board. As no tracks to SK4 and SK5 are on the front side of the p.c.b., proper 16 -pin i.c. sockets can be used for these sockets. Once all the strips are in place, turn the board over and solder all the pins on the back of the board. Do not break off the tops of the pins until later, when the i.c.'s are to be inserted, to avoid the pins becoming misaligned.

Next solder in SK8 in a similar fashion to SK6, followed by the resistors and then the capacitors. Be sure to get the polarity of the capacitors correct. Solder in Vero pins for the screened wire that will go to SK7, as well as for the wire that will go to S 20 wiper. Put in the links A, B, C and $\pm 12 \mathrm{~V}$ using thin insulated wire. IC40 and IC41 can be soldered in. Now, lying the board on a flat surface, component side up, use the discarded leads of the resistors and capacitors cut in half, to fill the remaining holes in the p.c:b.

Solder the leads on the top side, turn the board over and solder the leads on the underside. Finally, trim the leads on the front side, leaving neat through-hole connections. Solder lengths of hook-up wire to the p.c.b. for later connection to the PSU $+5 \mathrm{~V}, 0 \mathrm{~V},+15 \mathrm{~V}$ and -15 V . Now very carefully check that all socket pins, component leads, Vero pins, through-hole connections and wires have been soldered on the front side of the p.c.b. where necessary-i.e. where tracks lead to pads on the front side. Carefully break off the tops of the socket strips, and using an ohmmeter, check that

Plan view, showing PSU location
Sandwich construction of the Analyser

Coloured - EEasyHooks' ${ }^{\text {are }}$ used for the data probes

Fig. 2.1. Main p.c.b. component-side track layout (actual size)

Fig. 2.2. Main p.c.b. track layout

Fig. 2.3. Main p.c.b component layout
there is no short across the +5 V and $O \mathrm{~V}$ leads. Do a final inspection of both sides of the p.c.b., looking for track shorts and solder splashes. When satisfied, plug in all the i.c.'s, ensuring that the pins make positive connections with the sockets. Plug in the RAM (IC16) last of all. Finally screw a small heatsink to IC40 and IC4 1. If a single heatsink is used, IC40 must be insulated from the heatsink.

FRONT PANEL PCB

This is the most difficult of the p.c.b.'s to construct, but if the following steps are followed carefully, there should be no trouble. First, drill the front panel to the dimensions given in Fig. 2.4, and fit the red perspex display filter. Do not letter the panel yet. Now cut 25 mm lengths of stiff bare copper wire and solder the pieces to each contact of the switches which have a pad on the p.c.b. See Fig. 2.5 for an example of S4. When this has been completed, put all the switches in their positions (see Fig. 2.11) on the p.c.b., but do not solder the wires-just bend them slightly at the back of the p.c.b., so that they cannot fall out. Plug $X 1$ and $X 6$ into a wirewrap socket each and position them on the p.c.b., also without soldering. Now align the loose switches with the holes in the front panel, fit the panel, and then tighten the switches in position, making sure they are straight and all fixed to the same depth. Gently ease the p.c.b. as close as possible to the switches-on the prototype, this was virtually as far as the original solder tags of S5, S14 and S19. Make sure the p.c.b. is parallel (in both directions) to the panel, and then solder all the switch leads on the rear of the p.c.b. Adjust displays $X 1$ and $X 6$ so that they lie flush with the perspex filter and solder the sockets on the rear of the p.c.b. Loosen the switches and remove the front panel. Solder the switch leads to the front of the p.c.b. where necessary. Fit the soldercon strips and, as with the main p.c.b., solder those pins where necessary on the front side of the p.c.b., one strip at a time. When finished solder the pins on the rear of the p.c.b. and fit and solder the resistors and capacitors. The other display sockets can be soldered to the board, ensuring that they are level with the two previously soldered in place. SK3 can be a proper 14 pin i.c. socket, as no tracks have to be soldered on the front of the p.c.b. to this socket.

Fit and solder TR 1 and then in the same manner as for the main p.c.b., make the through-hole connections, leaving the holes for D1-3 and SK1 and SK2 open. Cut a length of p.c.b. edge connector, 2 slots bigger than required, for SK2. Remove the two extra contacts from one side of the connector. Solder the connector to the rear side of the p.c.b., with the open slots on the right of the p.c.b., looking from the rear. Fill the second slot from the end with some stiff plastic to act as a key for the main p.c.b.

Fig. 2.5. Example of wiring to switch 54

In the prototype, SK 1 was not mounted on the p.c.b. For this socket, a piece of single-sided edge connector (18 fingers long) was used, and was wired using 25 mm lengths of wire-wrap wire to the p.c.b. Note that only 17 fingers are actually used. The connector was mounted using mounting ears bought with the connector and stand-off pillars, as shown in Fig. 2.6. At this stage however, only wire the connector to the p.c.b.-the connector need only be screwed to the front panel when finally completing the unit. Mount D1-3 on the panel and refit the p.c.b. It need only be held by two or three switch nuts. The I.e.d. leads will most likely be too short, so push some discarded resistor leads through the p.c.b., solder them to the l.e.d. leads (this can be done with the p.c.b. mounted behind the panell) and then solder the extended leads to the p.c.b. This completes the front panel p.c.b. Leave the assembly as is for the preliminary tests.

POWER SUPPLY

Cut the key hole in the main p.c.b. and mate the p.c.b. with the front panel p.c.b. Place the assembly in the case and mark holes for mounting the main p.c.b. on stand-off pillars. In the prototype, small pieces of aluminium were bent and used. However, final mounting is left to the constructor, as it will be largely dependent on the case used. This applies to the layout of the power supply as well. The

Fig. 2.4. Front panel drilling details

photos show clearly how the prototype was arranged. Two separate transformers were used and were screwed to the case. The heatsink for IC42 was mounted on one side to the transformer and on the other to a small aluminium bracket. The capacitor C33 is mounted to the case and C31 and C32 are soldered directly to the regulator. BR1 was mounted on the side of the transformer, as can be seen. BR2, C34 and C35 were soldered to a piece of Vero board and mounted with a bracket to T2's mounting pillar. For test purposes, connect the mains via FS1 on the rear panel, direct to the transformer(s). Connect the $+15 \mathrm{~V},-15 \mathrm{~V}$ and OV leads from the main p.c.b. to the power supply (use long leads for the meantime to aid testing) but do not connect the +5 V lead just yet.

PROBE

A photograph of the prototype probe shows the basic construction. A piece of Eurocard size Vero board with goldplated edge connector fingers was cut to size. As no keying is used, cut the board slightly larger than the width of SK 1's opening. Then file the board to just fit the socket. This will ensure repeatable alignment when inserting the probe. 14way ribtoon cable was soldered to the Vero board and on the other side, coloured Easy-hooks were used. The wiring for the probe is shown in Fig. 2.7.

Fig. 2.8. Ribbon cable connections for options

PRELIMINARY TESTS

Switch on the power supply and check that IC42 has +5 V on its output and that the outputs of IC40 and IC41 are at -12 V and +12 V respectively. If an oscilloscope is available, check that there is no oscillation on any of the power rails. If all is correct, switch off the power supply and solder the +5 V lead to IC42. Connect the main p.c.b. to the front panel assembly, plug in the probe and switch on. The Address displays should have a random number between 0 and 1023 displayed. If the ARM and/or the TRIG l.e.d. is on, use S 16 to reset the unit. The l.e.d.s should extinguish. Using S17 it should be possible to get the Address to increment or decrement. The Data display will remain blank. Select MANUAL trigger on S19 and PRE trigger on S5. Using S 16 ARM the analyser and the ARM I.e.d. should light. Now press S15, the Address should show 1023 and TRIG l.e.d. should light. Pressing RESET (S 16) should cause the l.e.d.s to extinguish. Repeat the procedure with CENTRE and POST selected. For CENTRE, 511 should be displayed and for POST 0 will be displayed and in this case, the TRIG and ARM I.e.d.s should extinguish. Monitor pin 2 of IC15 with an oscilloscope, while scanning up and down the memory with S17. Random highs and lows should be seen. Now connect a t.t.I. compatible clock to the clock input. If possible use a frequency of 100 Hz . Select SYNCH CLOCK, PRE trigger, WORD trigger, WORD select switch $S 6$ ($D(1)$ to ' O ' and the other data switches as well as the clock qualifier switches to "don't care". ARM the analyser, then switch D \emptyset to "don't care". When this is done, the TRIG I.e.d. should light, the display should change to 1023 and then approximately 10 secs later (if a 100 Hz clock has been used) the l.e.d.s should extinguish. If pin 2 of IC15 is now monitored, the output should always be high, regardless of the Address position. Repeat the above, but connect the $\mathrm{D} \emptyset$ probe to OV and start with the D \varnothing switch switched to " 1 ".

When the analyser has completed the store process, check pin 2 of IC15 once again and this time the output should be low for any Address position. If all has gone well, then it can be assumed that the basic unit is virtually operational. If not, use the circuit description to follow through the circuit, checking levels at each gate output in turn, until the fault is found.

FRONT

Fig. 2.9 (top). Front panel p.c.b. layout (component side, actual size)

पन्ताज

EC95

Fig. 2.10 (above). Front panel p.c.b. layout (track side, actual size)

Fig. 2.11. Front panel p.c.b. component layout

Initial calculations proved that a p.c.b. edge connector would conduct adequate current to supply the front panel p.c.b. However, the subsequent requirement of two 2716 EPROMS increased current consumption. To avoid a voltage drop due to track resistance a wire is connected between the +5 V regulator and the front panel p.c.b. (close to the EPROMs). The OV line could be similarly duplicated.

COMPLETING THE BASIC UNIT

If the basic unit works as described, one can confidently complete the construction. Should problems arise, it is a simple matter to disassemble the unit because of the modularity of the design. Construction is completed as follows:

Remove the main p.c.b. from the front panel p.c.b., then
remove the p.c.b. from the panel. Mark the panel with Letraset, or if possible use the new photographic method using special sensitised sheets of aluminium. This method, although a little expensive, makes for a very neat finish. Mount the ON/OFF switch and S20 as well as SK101, SK102, SK 103 and SK7. Refit the front panel p.c.b., using all the switch nuts. Fit the main p.c.b. to the case, as well as the front panel assembly. For the time being, leave the power supply leads longer than necessary and do not connect the ON/OFF switch up yet. Finally a 60 mm length of ribbon cable can be prepared for one of the display options. Use 16 -core ribbon cable and 16 -pin headers. The headers should be fitted as shown in Fig. 2.8. (If both options are to be installed, make up two.)
NEXT MONTH: The Display Options.

FREE! READERS' ADVERTISEMENT SERVICE

AKAI 4000DS Tape Deck £60 o.n.o. Mattel Intellivision video games console with six cartridges £125 o.n.o. R. M. Potts, 1 St. Annes Crescent, Clenchwarton, King's Lynn, Norfolk. Tel: Kings Lynn 3171.
KORG MS 10 Synthesiser as now, with guarantee £200, 16K ZX81 keyboard, I/O port, inverse video $£ 100$. J. Wilson, 36 Sunningdale Avenue, Lowestoft, Suffolk, Tel: (0502) 64729.
WANTED any polyphonic synthesiser, 3-6 octaves. Any offers? Mr. A. Goffart. Spindles, Lewannick, Launceston, Cornwall PL15 70D. Tel: Coads Green 317.
TECHNICAL info. required for Olivetll TC800 floppy disk unit. Will pay for info. Mr. M. P. Morrow, 19 Rockhampton St., Gorton. Manchester 18. Tel: 0612313523.
CROMEMCO Bytesaver II S .100 board 8 Kbyte EPROM memory and programmer fully populated including 8×2708 s £30. Tel: 0734 475180, Valentine Kassessinoff, 372 Peppard Road, Caversham, Reading, Berks RG4 8 UZ.
EXIDV Sorcerer Computer. P.W.O. 56K, $2 \times$ 315 K disk drives, $\mathrm{M} \times 80 \mathrm{ft}$ printer, monitor, lots programs. $£ 7750$ new-sell $£ 2500$ o.n.o. Mr. Hausser, 27 Fore Street, Bugle, nr St. Austell, Cornwall PL26 8PA. Tel: 0726850129.
VINTAGE Wireless sets and spares urgently wanted. Must be pre-war equipment. Mr. S. Busbridge, 29 Clarence Drive. East Preston, Littlehampton, Sussex. Tel: Rustington (090-62) 5615.

WANTED, Sinclair t.v. 2 inch or 1 inch screen, must be in good condition. Phone Southampton 787960. John Marks, 92 Shirley, Towers, Church Street, Shirley, Southampton.

BBC numeric keypad send s.a.e. for deiails. P.T. Squire, 16 Priory Park, Bradford on Avon, Wilts BA15 1QU.
ZX81 + 16 K with sounder + ZONIX prog. Sound generator + manual/books/tapes all nearly new £89. Peter Cunningham, 11 Berwyn Ave, Penyffordd, nr Chester, Clwyd. Tel: Caergwrle 760172.

Avo valve (to collect) tester plus sundry electronic p.c.b.'s $£ 10$. P. Reynolds, 32 Common Approach, Benfleet, Essex SS7 3LA.
UK101 $32 \times 4816 \mathrm{~K}$ RAM 12 K BASIC motherboard EPROMS + programmer, Sound $1 / 2 \mathrm{MHz}$ $3 / 600 \mathrm{~B}+$ much software £170 o.n.o. N. 8rooks, 103 Drake Rd., Harrow, Middx. HA2 9DZ. Tel: 01-8689524.
PRINTER golfball type, 10 inch paper, serial I/O RS232 £75. Also PET interface to Centronic and disk. Both in good working order. R. Pearce, 8 Hollyoak Road, Coxford, Southampton. Tel: (0703) 788278.

ACORN Atom full RAM. 3 introduction tapes, leads p.s.u. manual and circuit Acorn built £120 o.n.o. J. Brooks, 26 Duncan Way, Loughborough, Leics. LE 11 OQN.
SONY open-reel VTR-offers. Maplin 2800 Synth, incomplete $£ 100$. Transcendent 2000 with carrying case £200. N. Dodsworth, 7 Neville House, George St., Corby, Northants. Tel: 0536200105.
WANTED for UK 101, new BASIC ROMS 1,3 \& 4. Frost, 133 Dorset Ave, South Wigston, Leicester. Tel: 0533782852.
PE Micro Controller + data $£ 35$ carriage paid. D. Slater, 25 New Market St., Colne, Lancashire BB8 9BU.

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in óur classified columnsi. Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear lor be returned) if these rules are broken.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature

Date

Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no. COUPON VALID FOR POSTING BEFORE 2 SEPTEMBER 1983. (One month later for overseas readers.)

SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH15 1JG.

For readers who don'i want to damage the issue send a photostat or a copy of the coupon (filted in of course) with a cut-out valid date corner
measure of new thinking is coming together at present--perhaps this is a sign. Perhaps the days when the populace took for granted what 'great men' said are over. Age offers the betefit of experience but that which is new or innpvative belongs to all ages.

SPACE FACTORIES

From the very beginning of the space era it has always been the plan to manufacture goods in space if possible. It has a simple answer to get away from Gravity. It is a little difficult to understand why it should be the cause of complaints. Now it is to be expected that better processes will be forthcoming from Earth based plants. It sounds very much like sour grapes on somebody's part. But then of course a band wagon is a band wagon. Perhaps it will be possible that people will get medication that is so badly needed. If the pilot attempts at electrophoresis were successful then the answer is 'go on'. If a better process is discovered let the people have the benefit.

PIONEER 10

As this issue of Spacewatch is being written there are still a few hours to the time when Pioneer 10 will be the first man-made object to pass out of the Solar System. The spacecraft has far exceeded its design parameters. NASA hope to go on with tracking procedures until the 1990s. It survived the Jupiter hazards with striking success and taught us much. It takes some 4.5 hours for signals from the spacecraft to reach the Earth and now difficulties are arising. Navigation is a problem that is being dealt with at the present time.
At the great distance that exists between the spacecraft and the Sun preparations are now being made for an alternative system. NASA has been instructing the vehicle to make certain Moon Maps for itself. The Sun would by now only be a pin point. This then is the nature of this distant piece of equipment of man's devising which can now be taught from afar how to care for itself and its mater. It is rather a slow process though, for it takes a working day of some 9 hours for each session.

A PIECE OF JUPITER

A small part of Oxfordshire has almost become a part of the planet Jupiter. At a cost of some $£ 200,000$ there will be an attempt to simulate the conditions that would be encountered by a visitor to that planet. This is the sample cell. It consists of a metal tube, double walled, some ten metres long. The imitation planet is like a gigantic thermos flask. It is expected to commence operations in October. At that time it will be fed with samples of gases to simulate atmospheric conditions virtually anywhere in the Solar System. When liquid nitrogen is passed through it, the double walled tube cools down the gases to as low as $170^{\circ} \mathrm{C}$. The pressure in the tube can be varied between one millionth of an atmosphere to five times the Earth's atmospheric pressure at sea level. There is a spectrometer which records the spectral signatures of the gases within the tube.
A library of spectra would be available for researchers and they would save much time by
simply comparing spectrometer readings from a spacecraft with known readings gained on Earth. This will enable the NASA team to ensure that they gain full benefit from the results of the Galileo probe due to be launched in 1988. The Rutherford and Appleton Research Establishment will once again make contributions to the space age.

UNREST ABOUT SATELLITE SPACE

Considerable concern is being expressed by many nations because of the amount of now useless hardware circulating in space. Complaints about this from those ready to take part in the Space Age have become very noticeable. A meeting is now being arranged for some thirty nations. The Third World is particularly annoyed with the present state of affairs. They are putting their case very strongly and saying that the developed countries already have more than their fair share.

Space above $30,000 \mathrm{~km}$ contains the valuable geostationary orbits that are vital for communications such as television and telephone. Everybody naturally wants a part of it. The real trouble now is congestion-the frequency band allocated for this purpose is the 4 GHz band; this means restraints. Not least of these is the fact that vast areas need to be covered in many cases and this would mean overlapping, and since some would call for areas as large as Western Europe the problem is very forbidding. It would mean that those countries wishing to cover large areas would dominate distribution.

Since this space has in many cases already been allocated the bands are full. The outcome is a very difficult problem under the circumstances since in the hands of some elements World chaos could be caused. Since the frequency bands allocated to television are in the $12 \cdot 2-12 \cdot 7 \mathrm{GHz}$ band and since also some 32 bands are allocated it means a separation of 20° for each band. The threat of 'overspill' is the real danger since each channel may need 200 watts. The Tower of Babel?

VENERA

The Soviet Space Agency has launched two Verera space-craft for the exploration of Venus and other tasks. Accurate information is a little confusing with regard to these missions. It is certain that they are much more limited than the projects by NASA. According to American sources these two spacecraft were launched on the 5th of June 1983 and the second on June 16th 1983. They are expected to begin their mission of imaging the surface of the planet or taking detailed radar altimeter data around October, probably in the early part of the month. The United States vehicle cannot be launched until 1986 .

Ingenuity

A selection of readers' original circuit ideas.
Why not submit your idea? Any idea published will be paid for at £ 40 per magazine page.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered. or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not in the text.

PROPORTIONAL A.C. CONTROL WITHOUT RFI

THE Versatile IC 555 timer is used here as a simple zero-crossing-detector of an a.c. mains supply, for proportional control of a.c. power. IC 1 is connected as a monostable multivibrator as shown in Fig. 4, and is triggered at the crossing of every half cycle of the a.c. waveform. Two types of triggering control circuits are given in Figs. 1 \& 2.
In Fig. I, R1 and D1 form a potential divider across the a.c. mains supply and produce an approximate square wave output, which is in perfect phase relation with the input a.c. This is 180° phase shifted by the transistor stage TRI and is added up by diodes D2 and D3 to generate negative

[66127]
Fig. 2

pulses at each zero-crossing. This is fed to the trigger point IC I, pin 2 (Fig. 4). Alternatively the non-ideal square wave output from the potential divider itself can be used to trigger IC1, as shown in Fig. 2. This is possible because it is found that when the input at the trigger point (pin 2) either exceeds $1 / 3 \mathrm{Vcc}$ or falls below -0.6 V , the output at pin 3 goes high. Using this property IC I is set and re-set every time these parameters occur and pulses are generated at the output pin 3 , in proportion. However, the output pulses can be

Fig. 1

Fig. 3

widened by properly choosing the monostable time period. In both cases, the monostable time period is set by RI and Cl to about Ims to ensure firing of the triac.

Switching IC 1 , pin 4 (reset point) either to Vcc or ground, the triac makes simple On-Off control of power without RFI generation. For continuous control of power IC2, which is connected as a variable duty-ratio astable multivibrator, can drive pin 4 of IC1. The On-Off ratio is variable from about 1% to 99%. When the output of IC2 goes high, the triac is fired at every zero-crossing of a.c. supply as shown in Fig. 3. The output a.c. power is variable in discrete steps of half cycles, over the full range.
D. Venkatasubbiah,

New Delhi.

GENERAL
 PURPOSE
 TIMER

THE circuit shown in Fig. I is a general purpose timer, which has a variety of uses. It is adjustable up to about three minutes and at the end of the timed sequence gives a visible*output in the form of a colour change of the two-colour l.e.d.

The circuit operation is as follows:
When the push button is depressed C ! is momentarily short-circuited, which leaves IC1 (pin 2) at 9 volts. This voltage slowly reduces towards zero, as the capacitor is charged up. The charging rate is dependent upon the value sel by the variable resistor (VR1). When the voltage is reduced to less than the voltage at ICl (pin 3) (half supply voltage), the output of ICI switches from zero to 9 volts, which in turn causes a change in the output states of IC2 and IC3. This reverses the direction of the current between these two outputs and so changes the colour displayed by the 1.e.d.

This protatype was based on a 9 volt supply though the time constant should remain the same irrespective of the supply voltage.
A. Marshall,

Old Basford, Nottingham.

OVER VOLTAGE PROTECTION

THE above circuit was developed for an existing variable $3-20 \mathrm{~V} \quad 0-20 \mathrm{~A}$ stabilised power supply, based on a 741 design. It should work with any similar power supply with little or no modification.
Obviously with a power supply of such a large current rating, an over voltage circuit was considered essential.
The protection circuit is designed to operate at about IV above the output
voltage of the p.s.u. i.e. if the p.s.u. was set to 10 V then it would trip at about 11 V and so on.
ICI is used as a comparator and compares, via R3 and R4, the reference voltage for IC2 with its feedback voltage from the output. Normally, when the regulator stage is working correctly these two voltages are the same, regardiess of what the p.s.u is set at. If however a fault occurs causing the output to go above the set voltage, ICI senses the change between the reference and feedback voltages and turns TR1 on. This energises the relay which self latches via the normally open
contacts and disconnects the mains supply from the regulator circuit.
Preset R 5 determines the point at which the circuit operates above the output voltage of the p.s.u., and should be adjusted to between $\frac{1}{2} \mathrm{~V}$ and IV across R4.
If the output voltage of the p.s.u. is turned down quickly with a fairly large capacitive load, the circuit will trip. This however can be reset by SI 'push to break' which unlatches the relay, the contacts of which must be capable of carrying 20A.
N. Wilson,

King's Lynn,
Norfolk.

PSEUDO

TELEPHONE

RINGER

AUTOMATIC NI-CAD CHARGER

THE circuit shown permits mass-plate ni-cad cells to be left unattended while charging at their maximum rate (one tenth capacity), automatically giving an indication and switching off the current when charging is complete, thus preventing dannage to the cells. Battery voltages from 1.2 V to 12 V with charging rates of 6 mA to 1A can be accommodated simply by selecting the appropriate component values.

The charging current is generated by IC2 which is a 5 V regulator connected as a constant current source, the output of which is set by R 8 . IC1 is an 8211 voltage detector chip. At switch-on C2 holds pin 3

THIS circuit was used in our school play in order to simulate a telephone ringing sound using a standard telephone (WDI).

IC1 provides a square wave with a frequency pulse of around 0.6 sec which is
fed to the decade counter (IC2). Two pulses are selected by the gates of IC3, which through IC4 switch the relay and sound the bell.

J.K. Yeoman,
 Haywards Heath.

of IC1 low, producing a 0 V condition on pin 4 which operates TR1 and hence D6 and RLA. RLA! connects the constant current-output to the battery to be charged.

As the battery charges the voltage at ' A ' increases until eventually pin 3 of ICI reaches 1.15 V , at this point pin 4 goes from OV to open circuit, TRI switches off and TR2 operates causing RLA to release, D6 to extinguish and D8 to light. This disconnects the charging current to the battery and holds pin 3 of ICI high, hence to reset it is necessary to switch the power off and then on again.
To initially set the circuit up calculate the required value of R8 and assemble the components, omitting VR1 and RI with a strap between points A and B. Connect up the battery to be used in conjunction with the charger and switch on. When satisfied that it is fully charged measure the voltage at A , from this determine the values of

VR1 and R1 to be used and connect them in circuit. VRI is selected to provide a degree of fine adjustment because as the cells approach their fully charged state the increase in voltage is small.

With the battery connected and charged adjust VRI until D6 just extinguishes. When satisfied that it is properly set up the strap between A and B can be removed and the circuit function rechecked.

$$
\begin{aligned}
& \left(I_{\mathrm{c}}\right)=\frac{\text { Capacity of battery to be charged }}{10} \\
& \mathrm{R} 8=\frac{5}{\left(I_{c}\right)-\left(5 \times 10^{-3}\right)} \Omega \\
& \mathrm{R} 1+\mathrm{R} 2=((\text { voltage at } \mathrm{A}) \times(10.43 \times \\
& \left.\left.10^{4}\right)\right)-\left(12 \times 10^{4}\right) . \\
& \text { See text for }(\text { voltage at } \mathrm{A}) .
\end{aligned}
$$

G. Francis,

Filton,
Bristol.

NUMEROUS circuits for disco light displays have been published but there still remains a gap in the market. On one hand there are sound to light displays, but these generally give an ambiguous flickering light display. Alternatively there are chasers which, while not flickering, are not related to the music and so do not stimulate dancing.

This circuit is for a sequencer where the light change frequency is determined by the tempo and volume of the music which is more interesting than the more usual types of display.

TRI and ICI are used to amplify the input signal to the correct level which is then rectified by D2 to give an envelope of what appears across C6. The voltage of the gate determines the source-drain impedance of the f.et., TR2, which is one of the frequency determining components of IC2. The oscillator output is fed to IC3. The four outputs of this are each fed to a driver circuit (Fig. 2) which drives the bulbs.
A. Garraway,

Ashford,
Kent.

THIS circuit combines reasonable simplicity with good control of the lamp from zero to maximum brightness.

CSR1 is a low current triac (RS 262-028) which acts as a zero crossing detector, R2 being too great to allow it to turn on permanently. The pulses so obtained are used to discharge C2 via TR1 every half cycle. C2 is charged by R3 and VR2. When the voltage across C2 exceeds about 8 V , the Zener conducts switching on the main triac CSR 2 via TR2.

Lamp intensity is controlled by VR2. When this is set to zero the lamp will be at maximum brightness. With VR2 set to maximum resistance, VR 1 can be adjusted so that the lamp goes out.

When installing the unit into your projector remember that CSR2 must have an adequate heat sink. RI and R4 should be 0.5 W resistors.
J. O. Linton,
Harrogate.

SLIDE PROJECTOR DIMMER

66996

INTRUDER

ALARM WITH

CAMERA UNIT

Adesirable feature for intruder alarms is to identify the intruder when the location is unoccupied.

This is easily achieved by incorporating a camera unit with an auto-wind facility, the shutter release being triggered at the moment of intrusion.

The circuit is light to dark activated. By enclosing the photo cell in a 20 mm dia by 50 mm long tube, high directional sen-

sitivity can be achieved, coupled with high immunity to false alarms.
TR1 and TR3 form a monostable network, while TR2 acts as a relay driver, drawing virtually no current in the quiescent state.
The relay (RLA) is used to switch on a
siren (WD1) as well as energise a solenoid activated striker attached to the shutter release.

> S. N. Rumala,
> Minna,
> Nigeria.

SHOP BELL DELAY

MANY small shops have a switch and bell system connected to their door. The owner has provided this so that he is informed of the arrival of a customer in the shop when he is elsewhere. However, during busy periods, the noise of the bell repeatedly sounding can be unpleasant.

This simple circuit reduces the number of times the bell will ring by preventing a second sounding shortly after the first. It will operate directly from a 12 V or 8 V bell transformer supply, since diode D1 performs rectification. Alternatively, it may
be run from a battery-in which case it will give very long battery life as it draws only $\frac{1}{2} \mathrm{~mA}$, even when the bell is ringing.

Operation is as follows-when the bell

has not been rung for a time, Cl is fully charged through R2, and once charged no more current is taken from the supply. When the door operated switch S1 is closed, C2 is charged through the gate of the SCR. This current turns on the SCR, which in turn connects the bell across Cl which discharges through the bell giving a ring of about one second. D2 protects the SCR by damping spikes produced by the bell. Since the time constant $\mathrm{C} 1 / \mathrm{R} 2$ is many seconds, the bell cannot immediately be rung again.

The type of SCR used is not critical and the CSR1A400 or a similar TOS device will work well.

D. J. Greaves, Cambridge.

OVERSEAS AGENTS

> Subscriptions to PE are available direct from us - see notice on page 50 - however, there are also a number of overseas agents around the world who can accept your subscription order. These agents are listed below for your information and assistance.

BELGIUM

Agence et Messageries
De La Press SA
1 Rue de la Petite-lle
B-1070 Brussels
Industrial \& Business Pubs. 200 Avenue de Messidor BTE 4
1180 Brussels
Office International De Librarie S.P.R.L

30 Avenue Marnix
1050 Brussels 5
Scientific \& Technical Book Centre
Rue de Neutchatel 12
1060 Brussels
W. H. Smith \& Son (Belgium) S.A.N.V

Boulevard A Max Lean 71-79
B-1000 Brussels

DENMARK

Arnold Busck Boghandel Kjobmagergade 49 Copenhagen K DK 1150
Dansk Centralagentur DCA
/Inc Tidskrift Service/
Slusholmen 6-8
DK-2450 Copenhagen SV
Dansk Bladdistribution
v/Mogens Schroder
Rosenberggade 54
P.O. Box 2125

OK-1015 Copenhagen K

DBK Subscription Service Siljangade 6
DK-2300 Copenhagen 5
Jul Gjallerups Boghandel Solvgade 87
DK-1307 Copenhagen K
N J Haaseg Bogimport A/S
Loevstraede 8
1132 Copenhagen K
Munksgaard Int.
Book \& Pubs Lid.
35 Norre Sogade
DK-1370 Copenhagen K

Ahodos International

Subscription Agency
Strandgade 36
Copenhagen DK-1401

SCIENTIA
International Sub Agency Aps Loevstraede 4A
DK-1 152 Copenhagen K

FINLAND

Akateeminen Kirjakauppa Oy
P.O. Box 128

S F 00101 Helsinki 10
Lehtimarket Oy
P.O. Box 16

SF-003 11
Helsinki 51
Lehtitoimisto Kankainen
P 119
SF-28101 Pori 10
Suomalainen Kiriakauppa Oy
C/o Rautakirja Oy
Subscription Department
P.O. Box 2

01641 Vantaa 64

FRANCE
BEDI
8 Place de la Republique
75011 Paris
S. Brentano

Subscription Department
37 Avenue de L'Opera
75002 Paris
Dawson-France SA
B P 40
F-91121 Palaisseau
Europeriodiques SA
31 Avenue de Versallies
78170 La Celle St. Cloud
France Publications
108 Rue Reaumur
Paris 75002
Lavoisier Abonnements Technique et Documentation
11 Rue Lavoisior
F-75384 Cedex 08
Mons. R. Martin
8 oite Postale 22
92420 Vaucresson
Office International de
Documentation et Librairie
48 Rue Gay-Lussac
75240 Paris Cedex 05
W. H. Smlth \& Son SA

24B Rue de Rivoli
75001 Paris
Altn: Miss M. Nolot
Subscription Department

W. GERMANY

Ex Libris Buchhandelsges
Ferdinand-Dirichs-Weg 28
6 Frankfurt-AM-Main
Philip Korter \& Co.
Mode-Presse-Vertileb
P.O. Box 1536

D-6800 Mannheim 1
Kunst \& Wissen-Erich Bieber
Postfach 46
Wilhelmstrasse 4
7000 Stuttgart 1
W. E. Saarbach GmbH

Postfach 101610
Follerstrasse 2
5 Cologne 1
H. G. Schaderbrodt

St. Andre Strasse 26 A
6105 Ober-Aamstadt
Buchhdig Konrad Wittwer
Koenigstr 30
Postfach 147
7 Stuttgart

D.D.R.

Buchexport Volkseigener
Aussenhandelesbetrieb Der

D.D.R.

701 Leipzig Postfach 160
Lenfinstrasse 16

ITALY

Anglo American Book Co. SRL
Via Della Vite 57
00187 Roma
Bozzi F. Illi S.A.S
Piazza Della Meridiana 2
16124 Genova
Centre Edizioni Techniche Internazionall SRL
Via Pordonone 17
20132 Milan
Attn: Mr. A. Vais
Goerlich \& Co.
Via San Sentatore 6/2
Casella Postale 1712
Milan 20100
Ulricho Hoepli
Casa Editrice Libraria
Via U Hoepli 5
20121 Milan
Interscientia
Via Mazze 28
10149
Nuova Stampamerica Subs
Agency SAS
Via P Micca 3
10121 Torino
Sperling \& Kupfer
Piazza San Babila 1
20122 Milan
Lib. Internazionale Di Stefano Via C Roccatagliata Ceccardi
16121 Genova
NETHERLANDS
Bookimpex B.V.
Veenkade 26/27
The Hague 2513 EG
D \& N-Faxon B.V.
Subscription Service
P.O. Box 1971000 AD Amsterdam
International Journàls Group
P.O. Box 2192

1000 CD Amsterdam
For the attention of: Ms. W Boenker
Kniphorsts Boekhandel
Postbus 67
6700 VB Wageningen
De Muiderkring NV
Nijverheidswerf 17-21
1400 AA Bussum
Martinus Nijhofts Boekhandel
P.O. Box 269

250 AX The Hague
Swets Subscription Service
P.O. Box 830

2160 SZ Lisse

NORWAY
AS Narvesens
Litteraturjenste
Box 6125 Eiterstad
Oslo 6
Tidsskriften Sentralen Tanum A/S
P.O. Box 1177 Sentrum

Oslo 1

SPAIN

Commercial Atheneum S.A.
Apartado De Correos 1148 de
Barcelona
E-Barcelona
Diaz De Santos
Wholesale Subscription Agency
Lagasca 95
Madrid 6
Distribuidora Internacional-
Dinter
Apartado 9156
Duque de Sesto 38
Madrid 9
Libreria Mundi-Prensa
Apariado 1223
Castello 37
Madrid 1

sWEDEN

Esselte Tidskrifts Centralen
Subscription Agency
P.O. Box 62

Gamla Brogatan 26
S-101 20 Stockholm
Attn: Mr. D. Schuttz-Subs Manager
Lundgrens Bokhande
Sodergatan 3
S-21134 Matmo
SCI-TECH Publications AB
Box 73
12221 Enskede 1
Utlandsk Facklilteratur
Tage Nilsson
Tranaskvarnsgatan 6 C
S-57300 Tranas
Wennergren Williams AB
Fack
S-104 25 Stockholm 30
SWITZERLAND
J. de Croze International

Establishment
81 Avenue Louis Casai
P.O. Box 44-1216

Geneva
Hans Huber Booksellers
Langgasstrasse 76
CH 3000 Bern 9
Naville and CIE
5-7 Rue Levrier
Case Postale 887
CH 1211 Geneva 1
Kurt Staheli \& Co.
Bahnhofstrasse 70
CH-8021 Zurich
U.S.S.R.

Mezhdundarodnaja Kniga
G-200
Moscow

AUSTRALIA

Collins Booksellers Pty Ltd
115 Elizabeth Street
Melbourne
Victoria 3000
Attn: Subscription Dept. 2nd

Floor

Engineering Publications (Aust)
P.O. Box 319

Spit Junction
N.S.W. 2088

Globe Subscription Agency Pty Lid
P.O. Box 471

Double Bay
N.S.W. 2028

Gordon \& Gotch Limited
P.O. Box 29

Burwood 3125
Vietoria

John Hinton Pty Lid
P.O. Box 311

Chatswood
N.S.W. 2067

International Subscription
Agencies Pty Ltd
P.O. Box 709

Toowong Qid 4066
McGills Authorised
Newsagency Pty Lid
187-193 Elizabeth Sireet
Melbourne
Victoria 3000
Robinson Manton Pty Ltd
190 Bourke Street
Melboume
Victoria 3000
Standard Book Suppliers Piy Ltd
Subs Department
136 Rundle Sireet
Adelaide 5000
Tait Book Shop
415 Bourke Sireet
Melboume C1
Mrs. Camille Sandham
The Technical Book \& Magazine Co
289-299 Swanston Streef
GPO Box 2192 T
Melbourne
Victerla 3000
Thoroughbred \& Classic
Agencies
321 Warrigal Road
Chellenham
Victoria 3192
University Co-operative
Bookshop
76-84 Bay 5 t
Broadway
N.S.W. 2007

ARGENTINA
Carlos A. Traboulsi (Bookstore)
Casilia de Correo 4574
1000 Buenos Aires
BRAZIL
P.Td. Ltda

Subscription Agents
Caixa Postale 1703
01000 Sao Paulo SP

CHINA

China National Pubs Import
CDR
P.O. Box 88

Peking

INDIA

Allied Publishers Ltd
Post Box 155
13/14 Asaf Ali Road
New Delhi 110002
Allied Publishers Subscripion

Acency

15 J.N. Meredia Marg.
Ballard Estate
Bombay 400038
Allied Publishers Subscription
Agency
750 Mount Road
Madras 600002
Ceniral News Agency
23/90 Connaught Clicus
Naw Delhi 110001
Creative Books \& Periodicals
Pmi Ltd
7 Nanabhal Lane
Bombay 400-023
Higginbothams Private Lid
165 Anna Salai
(Post Box 311)
Miadras 600002
Global Publishers Service Pte Ltd
Block A31 3rd Floor
Shai Ram Industrial Estate
GD Ambekar Road, POB No
7121
Eombay 400031

International Book House Pte
Lid
Indian Mercantile Mansion Exin
Madame Cama Road
Bombay 400039
L. B. Publishers \& Distributors
(Private) Lid
90-91 Mahatma Gandhi Road Bangalore 560001
Macmillan India Limited
Subscription Department
21 Patullo Road
Madras 600002
Tamil Nadu
Mahajan Brothers
Super Market-Basement
Ashram Road
Ahmedabad-9 (GS)
Sirand Book Siall
Dhannur
Sir PM Road
Bombay 1
Subscribers Subscription
Services India
21 Raghunath Dadali Street
2nd Floor
Bombay 400001
Universal Subscription Agency
Pvi Lid
117/H-1/294-8 Morlel Town
Pandu Nagar
Kanpur 208005

ISRAEL

Makhen Agencies Lill
44 Derekh Petah Tilkva
Rooms 410-412
P.O. 8ox 36125

Tel Aviv
ABC Bookstore
71 Allenby Road
P.O. Box 1283

Tel Aviv
Sifriat Poalim Limited
Supply Department
73 Allenby Street
Post Box 526
Tel Aulv

JAPAN

Asahiya Shoten Ltd
Foreign Books Depi
Central POB 398
Osaka 530-91
Hokuto Trading Co. Ltd
4-5 Aizumi-Cho
Shiniyuku-Ku
Tokyo 160
Kinokuniya Company Lid
Attn: Teruzo Kubota
General Manager, Journal Dept
Odakyu West-Shinjuku Bldg
47-1, 1 Chome, Hatsudai
Shibuya-Ku
Tokyo 151
Japan Pub Trading Co. Ltd
P.O. Box 5030

Tokyo International
Tokyo 100-31
Kaigai Publications Lid
P.O. Box 5020

Tokyo Internationat
100-31 Tokyo
Kitao Publications Trading Co Ltd
New Asaki Bldg
3-18 Nakanoshima 2-chome
Kita-ku C PO Box 936
Osaka 530-91
Kokusai Shobo Ltul
5 Ogawamachi 3-chome
Kanda
Chiyoda-ku
Tokyo 101
Koyo Shoji Co. Lid
Nitto Bldg
4-10 Nihonbashi Hongoku-Cho
Chuo-Ku
Tokyo 103

Maruzen Co. Lid
P.O. Box 5050

Tokyo International
100.31

Oriental Book Service Co. Lid
C/o Roppongi Building
11-4 Roppongi 4-chome
Minato-Ku
Tokyo 106
O.T.O. Research Corporation

Takeuchi Bldg.
1-34-12 Takatanobaba
Shinjuku-Ku
Tokyo 160
Pacific Book Inc
Morikawa Buliding
7-41 Idabashl 1-Chome
Chiyoda-Ku
Tokyo 102
Sanyo Shuppan Boekl Co. Inc
Chief Foreign Dept
P.O. Box 5037

Tokyo International 100-31
Shimada \& Co. Inc
9-29 Minami-Aovama 5-Chome
Minatu-Ku
Tokyo 107

Computer Hobbyists... S5(0)for your program!

PEis interested in buying software written by hobbyists for popular microcomputers. If you have a game, biorhythm, mortgage, bank, filing, calendar or other general purpose program you have written yourself we would like to see it-even if you are new to software writing.

We will offer $\mathbf{f 5 0}$ for each accepted program, so send it in, you have nothing to lose.

Program tapes carrying your name and address and, if possible, a listing should be sent to Practical Electronics Software, IPC Magazines Ltd., Westover House, West Quay Road, Poole, Dorset. Each program should be accompanied by the following signed declaration:

The enclosed program entitled is my own work and has not been offered to any other company. The program is for a . machine (state type of computer it will run on). It requiresK of memory.

If you are under 16 years please get your parent or guardian to countersign the declaration.
All tapes will be returned.

SUMMER SALE! DIGITAL MULTIMETER KITS

These $3 \frac{1}{2}$ digit handheld DMM's are fully complete with all components (except PP3 battery) and test leads. We are using up all stocks of the DP2010K prior to launch of a new range of meters in the Autumn. The Kits will be sold on a 'first come first served' basis, and are fully guaranteed. A troubleshooting and calibration service will be maintained. This is a onceonly opportunity to make a DMM at an incredibly low price. Supplied with a comprehensive description of operation and full constructional data.

TYPICAL SPECIFICATION					
Function	PSD	Accuracy	Function	FSD	Accuracy
Volts (d.c.)	$\begin{gathered} 2 \mathrm{~V} \\ 20 \mathrm{~V} \\ 200 \mathrm{~V} \\ 500 \mathrm{~V} \end{gathered}$	$\begin{gathered} 1.5 \% \\ \pm 1 \mathrm{digit} \end{gathered}$	Current (a.c.)	$\begin{array}{r} 2 \mathrm{~mA} \\ 20 \mathrm{~mA} \\ 200 \mathrm{~mA} \\ 2000 \mathrm{~mA} \end{array}$	$\begin{gathered} 2 \% \pm 5 \text { digit } \\ 2 \% \pm 5 \text { digit } \\ 4 \% \pm 5 \text { digit } \\ 12 \% \pm 5 \text { digit } \end{gathered}$
Current (d.c.)	2 mA 20 mA 200 mA 2000 mA	$\begin{array}{r} 1 \% \pm 1 \text { digit } \\ 1 \% \pm 1 \text { digit } \\ 3 \% \pm 1 \text { digit } \\ 10 \% \pm 1 \text { digit } \end{array}$	Resistance	$\begin{array}{r} 2 k \\ 20 k \\ 200 k \\ 2000 k \end{array}$	$1 \% \pm 1$ digit $1 \% \pm 1$ digit $1 \% \pm 1$ digit $1 \% \pm 1$ digit
Volts (a.c.)	$\begin{array}{r} 2 \mathrm{~V} \\ 20 \mathrm{~V} \\ 200 \mathrm{~V} \\ 500 \mathrm{~V} \end{array}$	$\begin{gathered} 2 \% \\ \pm 5 \text { digit } \end{gathered}$	Diode Test	2 V	$1 \% \pm 1$ digit

[^7][^8]
Copies of Patents can be obtained from: the Patents Office Sales, St. Mary Cray, Orpington, Kent. Price $\mathbf{£ 1 . 6 0 \text { each. }}$

POWER-CUT RESERVE

Precise Power Corporation of Florida has filed a European patent application 0069568 on a clever system for saving computer data during a power-cut. According to the inventor it can also insulate computer users from related problems, like unstable mains frequency and voltage.

Fig. 1 shows a patented solution. Threephase mains comes in at 20 to drive synchronous motor 12 which is in direct mechanical connection with generator 14. This produces a replica of the mains voltage which is fed out on line 22 to the computer load 24. The motor 12 also drives a second

generator 30 , which outputs a high frequency supply, e.g. ten times the mains frequency, on line 38. This high frequency current drives a motor 50 which carries a heavy flywheel 60 running in a vacuum or other low windage-loss atmosphere. The wheel takes around half an hour to run up to full speed, but when it is running it stores around 5 kW hours of energy.

Under normal mains supply conditions, the computer takes its power from the mains via the ganged motor 12 and generator 14. If the mains supply fails or falls the flywheel keeps running, with its speed falling only slightly over a period of minutes. The second generator 30 now functions as a drive motor for the mains generator 14. So the computer receives a constant power supply. When power is restored, the flywheel works up to full speed again, which takes between 15 and 30 minutes.

SOUND SENSITIVE SWITCH

James Taylor of Oregon has filed a European patent application 0067502 on a sound sensitive light swltch. The idea is to replace an existing wall switch with a sensor that turns the lights on when it hears a noise. It then leaves them on while the noise continues, and switches them off after a period of silence. This way you can turn the lights on in a dark room simply by tapping the wall or making a noise. People who leave the lights on when they leave a room will no longer waste electricity because the lights will switch off automatically. There is an over-ride for people who like to make a noise in the dark
or sit silently with the lights on.
In the circuit (Fig. 1) a microphone feeds a signal on line 22 to fixed gain amplifier 24 which is connected to variable gain amplifier 26. Sensitivity is controlled by variable resistor 27. Transistor 30 is normally biased on, but when the signal from amplifier 26 exceeds a threshold it is shut off. A re-set signal on line 8 triggers oscillator and counter chip 33 to produce a timed control signal on line 12 for triacs 44 , 64. Photo resistor 32 biases transistor 30 when the switch is in a well-lit area, so that sensitivity to noise is less in daylight. On/off over-ride is provided by circuit 14. Variable resistor 54 controls triac 44 so that the unit can also be used as a conventional dimmer.

QUART INTO PINT POT

The BBC, in British patent 2105548 , suggests a simple approach to modifying the aspect ratio of a TV picture, to give wide screen images, without using up more transmission bandwidth. The traditional $4: 3$ ratio is of course now out of date, because most films are shot in a wider screen format. For projection television there is much to be said for widening the ratio. But this normally requires a complete re-think on the technology, as for instance pursued by Sony with its 1125 line, high definition, 5:3 wide screen TV system.

The BBC believes that the existing 625 line, PAL system can be easily modified to give a wider aspect ratio. Conventionally each picture line is transmitted in 64 microseconds, but only 52 microseconds are used for picture display. The remaining 12 microseconds, known as the horizontal
blanking interval, are used to carry a synchronizing pulse for the horizontal sync circuits, a black level clamp pulse and a colour burst to synchronize the PAL decoder.

The blanking interval is also used to let the scanning spot glide back to the start of the next line. But in future solid state displays, such as I.c.d. or l.e.d. screens, won't need fly back time. Also, according to the BBC, the colour synchronizing information can be drastically shortened in time, or eliminated altogether, and the receiver locked by the sound carrier. This leaves up to 60 microseconds of each 64 microsecond line available for picture display. which in turn can give a wide screen aspect ratio with no increase in video bandwidth. Although the system would be impractical for broadcast transmission, because it would require receiver modifications, it could be used over existing channels for closed circuit TV of wide screen format.

MTCRO-EUS Compiled bs Dut

Abstract

Appearing every two months, Micro-Bus presents ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data. The most original ideas often come from readers working on their own systems; payment will be made for any contribution featured.

THIS month's Micro-Bus features an EPROM extension board for the ZX 81 or ZX80, a BASIC program to solve simultaneous equations, and the solutions to the BASIC problems featured in the last Micro-Bus.

EPROM EXTENSION BOARD

The circuit shown in Fig. I was submitted by 1. P. Bryant, and will add up to 8 K of EPROM or RAM to a ZX80 or ZX81. The extra memory appears in the memory space directly above the 8 K monitor ROM, and the circuit uses 2716 or 2516 EPROMs as these are available at a reasonable price.

The circuit is interfaced to the ZX 81 bus by means of the edge connector. For ZX 80 users there is no ROM chip select signal on the connector, but this can be created by connecting IC6 pin 6 to the spare edge connector, and then cutting the track between IC12 pin II and IC6 pin 6 and connecting a 680 ohm resistor across the break. The edge connector will now be identical to the ZX 81 's.

The circuit does not need to include any write protection because the 1 k resistors in the ZX80/81's data bus provide this.
different frequencies, and then solving three simultaneous equations to find R, C, and L . The BASIC program of Fig. 2 was submitted by A. Schoultz of South Africa, and can be used to solve such equations. The program was developed on a ZX 81 , but can fairly easily be modified to run on any BASICspeaking microcomputer.

The number of equations which can be solved is dependent only on the amount of available memory. On a ZX81 with a 16 K RAM pack the program has no trouble solving ten equations with ten unknowns, and takes about 22 seconds. As an example, to solve the three equations:
$a+2 b+3 c=42$
$7 a+b-8 c=36$
$3 a-2 b+2 c=54$
one enters the coefficients in order:
$1,2,3,42,7,1,-8,36,3,-2,2,54$
The program should then produce the correct answer:
$a=14, b=2, c=8$.

PROGRAM OPERATION

The program, lines 10 to 150 , first inputs the number of equations and sets up three

Fig. 1. Circuit adds 8 K of EPROMs to a $\mathbf{Z \times 8 0}$ or $\mathbf{Z \times 8 1}$

SIMULTANEOUS EQUATIONS

Simultaneous equations crop up in many different branches of electronics. For example, one can determine the resistive, capacitive, and inductive components of a passive component by measuring its impedance at three
arrays. Array A holds the coefficients of the variables, and array B holds the constants. The solution is returned in array \mathbf{X}. Lines 1000 to 1036 solve the equations, and lines 1037 to 1048 print out the solution.

To alter the program for other machines,

```
S REM *** SImUlTaneOUS Equations ***
    O PRINT "NO. OF gQUATIONS =";
    15 Q=37
    20 INPUT N
    30 PRINT N
    40 DIHA(N,N)
    50 DIM B(N)
    6 0 \text { DIM X(N)}
    70 LET C=INT(30/(N+1))
    80 FOR I-1 TO N
    90 FOR J=1 TO N
100 [NPUT A(I,J)
110 PRINT ATTI*2,J*C-C;A(I,J);" ";CHR$(J*Q)
120 NEXT J
130 INPUT &(I)
130 INPUT &(I)
150 NEXT I
1000 FAST
1000 FAST I=1 TO N-1
1001 FOR I=
1002 LET R=1
1003 LET M=A(I,I)
1005 IF A(J,I)S=M THEN GOTO 1008
1005 lF A(J,L)
1006 LET R=J (i)
1007 LET M=
1009 NEXT M=0 THEA PRINT "SOLUTION ABORTED."
1010 IF R=I THEN GOTO 1019
l011 FON K=1 TO N
1012 LET S*A(I,K)
1013 LET A(I,K)=A(R,K)
1014 LET A(R,K)=S
1015 NEXT K
1015 NEXT K
1016 LET S=B(I)
1017 LET B(I)=B(
1018 LET B(R)=S
1019 FOR J=1+1 TO N
1020 LET M=A(J,I)/A(I, I)
1021 FOR K=1 TO N
1022 LET A(J,K)=A(J,K)-m*A(t,K)
1023 NEXT K
1024 LET B(J)=B(J)-M*B(I)
1024 LET B(J)
1025 NEXT J
1026 NEXT &
1028 LET X(N)=B(N)/A(N,N)
1028 LET X(N)=B(N)/A(N,N)
1029 FOR T=N-
1031 FOR J=1+1 TO N
1032 LET S=S+X(J)#A(1,J)
1033 NEXT J
1034 LET X(L)=(B(L)-S)/A(I, L)
1035 NEXT 1
1036 PRINT
1037 SLOW
1038 FOR I=1 TO N
1039 LET J=(N+1\cdot1)*
1040 [F JS=20 THEN GOTO 1046
1041 SCROLL
1042 SCROLL
1043 PRINT AT 20,0;CHRS (I +Q);" - "; x(1)
1044. NEXT I
1045. STOP
1046 PRINT AT J,0;CHKS (I*Q);" = "; X(t)
1047 NEXT !
1048 STOP
```

Fig. 2. Program for the 2×81 will solve simultaneous equations
those features peculiar to the $\mathrm{ZX81}$ will have to be altered. The value of Q on line 15 is chosen so that $\mathrm{CHR} \$(\mathrm{Q}+1)$ will give the letter A , for the printing of the equation variables; other machines that use ASCII will need $Q=64$. The PRINT AT Y, X statement in lines $110,140,1043$, and 1046 can be replaced by
a $T A B(X, Y)$ function, but note that the order of row and column is the other way round. Finally, the commands FAST, SLOW, and SCROLL can be removed.

PUZZLE SOLUTIONS

Here we present the solutions to the six problems featured in the last Micro-Bus. Each problem centred around a program written in BBC BASIC, and readers were invited to send in solutions.

NUMBER TRICK

In the first problem you were asked to explain how a "number trick" worked. The appearance of the trick was as follows: a spectator was shown 60 random numbers, and asked to remember one; they were then shown a selection of numbers, and asked to say whether their number was present. After 6 such selections the program was (usually) able to name the number they were thinking of.

The trick works on the principle that six yes/no (binary) pieces of information will serve to distinguish between up to 64 different things (since $2 \uparrow 6=64$). For the sake of screen layout the trick used only 60 different numbers, and random numbers are substituted for the numbers 1 to 60 simply to disguise the trick. These random numbers are stored in an array numbered 1 to 60 and the following explanation refers to them as $\mathbf{A}(1)$ to $\mathbf{A (6 0)}$.

Each selection shows only those numbers that have a ' 1 ' in a particular position in their binary representation. This is achieved in the program by the expression:
IF (N DIV $2 \uparrow(6-M)$) MOD 2 THEN PRINT A(N);
which only prints the N th number if N has a ' I ' in position M. For example, if M is 6 the expression is effectively:
IF N MOD 2 THEN PRINT A(N); and the numbers $\mathrm{A}(1), \mathrm{A}(3), \mathrm{A}(5)$. . etc will be printed. The selection procedure is repeated for values of M from 1 to 6 . The spectator's six yes/no replies are then assembled into a binary number which directly gives the position N of the chosen random number.

As a postscript to the trick you were asked whether the trick might ever fail. The answer is yes! If, by chance, a random number appears more than once in the initial set of 60 numbers the spectator's replies will cause an incorrect identification; in fact, the computer will reply with the number whose position N is the logical OR of the positions of the spectator's numbers. This unlikely event could easily be avoided by ensuring that the 60 random numbers were all different.

MYSTERIOUS SEQUENCE

The next problem was to explain why the sequence of numbers:
$2,5,10,17,26,37,50,65,82$
was printed out by a program which performed some manipulations on an array of 100 numbers. The operation of the program can be made slighty more obvious if it is modified, as shown in Fig. 3, so that the arrays start from 0 rather than 1 ; the sequence printed out is then: $1,4,9,16,25,36,49,64,81,100$
which may be familiar as the squares of the numbers 1 to 10 . These result for the following reason: we start off with an array $A(0)$ to $A(100)$ whose elements are all zero, or 'false".

10 DIM A(100)
20 FOR $N=1$ TO 100
30 FOR $J=0$ TO 100 STEP N

SO NEXT 3: NEXT N
60 REM
70 fOR $N=0$ TO 100
80 IF $A(N)$ THEN PRINT N:
90 NEXT N
Flg. 3. The Mysterious Sequence problem is revealed by this BASIC program which prints out a series of squares

Then, for each value of N from 1 to 100 every Nth element is inverted. For example, $\mathrm{A}(6)$ will be inverted for $N=1,2,3$, and 6 , and since it has been inverted four times it will end up with the value 'false'. It is clear that each element of the array is inverted once for each of its divisors, so only numbers with an odd number of divisors will end up 'true'. Now, only perfect squares have an odd number of different divisors, since all other numbers can be expressed only as the product of two different numbers, so the numbers printed out by the program in Fig. 3 will be all the squares. The program given in the original problem adds one to these numbers by starting the array from I rather than 0 .

NUMBER TRAILS

The next puzzle program took a starting number, and found the sum of the squares of the digits of that number. This process was repeated until a stable result, such as ' 1 ', was obtained, which was printed out. The examples 7 and 19 were given, each of which gives 1 as an eventual result. In the latter case we obtain the trail:
$19 \rightarrow 82 \rightarrow 68 \rightarrow 100 \rightarrow 1$
If you tried the program with other starting numbers you were probably frustrated to find that the program 'hung up'; we can see why if we take the starting value ' 4 ':
$4 \rightarrow 16 \rightarrow 37 \rightarrow 58 \rightarrow 89 \rightarrow 145 \rightarrow 42 \rightarrow$ $20 \rightarrow 4$
and so the sequence repeats for ever, never reaching a stable value. However, if we add a test for this loop to the terminating condition by altering line 60 to:
60 UNTIL $S=T$ OR T=4
we find that every number up to 99 either ends on 1 , or reaches 4 indicating that it is in this loop. It is fairly easy to see that all starting values above 99 will soon lead to a value below 99, so every starting number, however large, will eventually lead to one of these two possibilities.

If the rule is to cube each digit before adding, the picture is somewhat more complicated, and we leave this for exploration by the reader; suffice it to say that the system contains five stable end numbers (one of which is 371), and two loops.

DECIMAL TO HEX

The decimal-to-hex program used the unusual recursive definition of a function FNHEX shown in Fig. 4 to convert a number

```
TO OEF FNMEX(OEC)
```

80 IF DECくIG JHEN =MIDS(DIGITSS, DEC + 1, 1
90 - FNHEX(DEC DIV 16) \& FNHEX(DEC MOD 16)
Fig. 4. Recursive function converts decimal number DEC to a hexadecimal string

DEC into a string representation of its hex equivalent. The definition, in plain English, is as follows: "To convert a number into hexadecimal: if it is less than 16 then the result is the corresponding hex digit extracted from the string DIGIT\$; otherwise the answer is a string formed by the hex equivalent of the number divided by 16 , followed by the hex equivalent of the number mod 16.

The problem was to explain why the hex equivalents of the decimal numbers in the series 1111,11111,111111,1111111... all end in the digit ' 7 '. Looking at this series, it is obvious that each term differs from the previous one by a multiple of 10000 ; for example, 1111111 - 111111 is 1000000 , obviously a multiple of 10000 . Now, this number 10000 is itself a multiple of 16 , so in hex it is a number which ends in zero. Thus adding multiples of 10000 to 1111 does not effect the last digit of the hexadecimal form of the result. The same is obviously true for series consisting of any repeated digit.

Incidentally, the problem of generating a series of N ' 1 's is made especially simple by using the EVAL and STRING functions with the expression:
$40 \mathrm{~J}=\mathrm{EVAL}(S T R I N G \mathbb{(N , " 1 ")})$
The same method can be used for investigating the behaviour of other series.

RECURSIVE FUNCTION

The last of the puzzle programs printed out the first ten values of a mystery function. For

```
2 MOLE O: DIM A(250)
5 FOH N=0 TO 250
7 DRAW N*4,FNH(N)%7: NEXT: END
10 OEF FNH{N`
20 IF N<2 THEN A(N)=1: -1
30-4(E)=A(N-A(N-1))+A(N-A(N-2)):=A(N)
```

Fig. 5. Program plots the behaviour of a non-lecursive version of the FNH function
fairly large values of the function it takes a long time to calculate values, but we can rewrite it non-recursively to calculate the first 250 values and plot them; see Fig. 5.

TWICE FUNCTION

As a postscript, readers were asked to construct a function FNTWICE which would

FNTWICE(AS,N) = EVAL

Fig. 6. TWICE function in BBC BASIC evaluates any given function twice
take any function, and perform its operation twice in succession. The solution is shown in Fig. 6, and makes use of the versatile EVAL function provided in BBC BASIC which evaluates an expression passed to it.

The function works as follows. Suppose we call it to evaluate:
FNTWICE("SQR",256)
The function will construct the string:
"SQR(SQR(256))"
and pass it to EVAL to be evaluated, giving the result 4 .

BEST SOLUTIONS

The next Micro-Bus will give the names of the readers ${ }^{4}$ who sent in the best solutions to these problems.

When replying to Classified Advartisements please ensure
(A) That your have clearly stated your requirements
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

300 SMALL COMPONENTS, including transistors, diodes $£ 2.20$. 7 llb assorted components $£ 6.00$. Fifty 74 series I.C.s on panel $£ 2.20$ post paid. List 25 p refundable. J.W.B. RADIO, 2 Barnfield Crescent. Sale, Cheshite. M33 INL

JULY PCBS. Solder resist coated. Down counter - 52.44, up counter- $\mathbf{£ 4 . 7 0}$. Down counter/controller- $\mathbf{〔 4 . 0 5}$. Complete set - $£ 10.00$. All prices include P\&P. Tel: (0865) 60741 for August prices/trade enquiries. - Bradley Printed Circuits (G.D. Cowan), 9 Harcourt Terrace. Headington, Oxford OX3 7QF.

ELECTRONIC COMPONENTS MERSEYSIOE. MYCA Electronics, 2 Victoria Place, Seacombe Ferty Square, Wallasey, Mersey. side L44 6NR. Tel: 051-638 8647. Open Mon - Sat, 10 am 5.30 pm .

RESISTOR PACKS

FOR ALL PROJECTS

I watt carbon film resistors $5 \% 1$ ohm to 10 M E24 series. Packs of 10 each value 11650 resistors) $£ 12.50$. Your choice of quantities/ values 100 for $£ 1.00$. VAT and Post Free. GORDON HALLET
20 Bull Lane, Maiden Newton,
Dorchester, Dorset DT2 0BG

SMALL ADS
The prepaid rate for classified advertisements is 34 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 11.20$ per single column centimetre (minimum 2.5 cms). All cheques, postar orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Tetephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

BOURNEMOUTH/BOSCOMBE Electronic components specialists for 33 years. Forresters (National Rindio Supplies) Late Holdenhurst Road. Now at 36. Ashley Road, Boscombe TeL 302204. Closed Weds.

TURN YOUR SURPIUS capacitors. transistors, etc. into cash. Contact COLES HARDING \& CO 103 SOUTH BRINK. WISBECH. CAMBS. TEL: $0945 \mathbf{5 8 4 1 8 8}$. Immediate serdement.

> NDW OPEN IN NEWCASTLE
> For the best in Electronic Components. Test Equipment and Accessories. MARLBOROUGH
> ELECTRONK. COMPONENTS
> 15 Waterloo Street. Newcastle NE1 4OE Tel. 618377
> Open Sam-6pm Mon-Sat. Easy Parking Stockists of:
> Transistors. Resistors, Capacitors, I.C. Diodes,
> Electronic Books, Etc.

PROBLEMS GETTING COMPONENTS? Try Commercial Pro ducts. We have access to all the latest devices and hardware Ruig: 029330174.

Ex-Govt Urnscaiver type u 40 complete station in used condition f17. Telephonists headset 8 mic (sound powered) new in box amps. have tube burn marks 11.0. Alcrat mouned Jom comera contains precision mirrow, lens, small 24 V motor etc. $£ 10.00$. 24 Nicad battery contains $20 \times 2.4 \mathrm{~A}$. CCIV cameras sold ior spares czo. 2aV ni-cad bantery conta. Bery battery contains 9×225 MAN 114 .
 MH2 each. ExGur packs miscellaneous electronic equ.p C25. All goods are surplus ex-minstry
A. C. ELECTRONICS Tel. 0532496048 atter 6.30 pm

AERIALS

AERIAL BOOSTERS
 Next to the set fitting

B45H/G-UHF TV. gain about 20dbs, Tunable ever the complate UHF TV band PRiCE EB 70
BII-VHF/FM RAOLO, gain about 14dbs, when on the off position connects the aerial direct to the radio. $£ 7.70$. All Boosters we make work off a PP3/006p/6F22 type battery or $8 v$ to $18 v D C$. P\&P 30p PER ORDER.
ELECTRONIC MAILORDER LTO, 62 Bridge St, Ramsbottom Lanc: BLO 9AG. Tel (070682) 3036
Access Nisa Cards Welcome
SAE Leaflets

SOFTWARE

CONVERT 2×81 to EPROM programmer with ZP4000 unit. S.A.E. details, ENTERPRISE TECHNOLOGY LTD, P.O Box 140, Wigan WN3 6LF, Lanes.

BOOKS AND PUBLICATIONS

COMPLETE FULLSIZE SETS any published service sheets, $£ 2+$ LSAE except CTVs/Music Centres from $£ 3+$ LSAE. Manuals from 1930 to latest. Ouotations, free 50p magazinc, price lists unique technical publications for LSAE. Repair data/cires almost any named TVNCR $£ 8.50$ by retum. TIS PE, 76 almost any named TVNCR $£ 8.50$ by retum. TiS PE, 76
Church Street, Larkhall, Lanarks. ML9 1HE. Phone (0698Church S
883334).

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enciose Cheque/P.O. for \mathbb{E}
(Cheques and Postal Orders should be crossed Lloyds Bank Lid and made payable to Practical Electronics)

Send to: Classified Department,
PRACTICAL ELECTRONICS
Classified Advertisement Dept. Room 2612.
King's Reach Tower, Stamford Street,
NAME
ADDRESS
London SE1 9LS. Telephone 01-2615846
Rate:
34p per word, minimum 12 words. Box No. 60p extra.

[^9]
SERVICE SHEETS

BELLS TELEVISION SERVICES for service sheets on radio, TV etc. $£ 1.25$ plus SAE. Service Manuals on Colour TV and Video Recorders, prices on request. SAE with enquiries to B.T.S. 190 Kings Road. Harrogate, N. Yorkshire. Tel. (O423) 55885 .

FOR SALE

michotrainer, New Power Supply. Extra 2532, PPI. drivers etc. desk $-10 p$ vero case, $£ 70.00$. I. Standish, 123 Draperfield, Eaves Green, Chorley, Lancs. Tel. 63741.

Stock df Various companies in liquidation for sale/tender. Large quantity various electronic components, resistors. capacitors. etc. Quantity various electronic equipment, oscilloscope. DBX unit, VHF/receivers. etc. Phone Ongar 362987.

COURSES

CONQuER THE CHIP... Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School. Dept. C2. Reading, Berks. RG1 1BR.

EDUCATIONAL

CAREERS IN MARINE ELECTRONICS. Courses commencing September and January. Further details, The Nautical College. Fleetwood FY7 8JZ. Tel: 0391779123.

BUSINESS OPPORTUNITIES

REOUNDANTT ELECTRONICS HOBBISTT - An opportunity for you to participate in a new venture selling components, test equipment, kits, etc., to the hobbist and incustry. The operation is already well established and needs somebody to manage in - with particular emphasis on the retail side. If you have spare capital, there is also a chance to purchase some equity in the company.

Telephone: Stuart Taylor - 032725521

MISCELLANEOUS

ELECTRONIC ORGAN KEYBOARDS and other parts being cleared out as special offer. - Elvins Electronic Musical Instruments 40A Dalston Lane. London E8. Tel: 01.9868455.

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our Catalogue or call at our large showrooms opposite Odsal Stadium

SUPERB INSTRUMENT CASES by Bazelli. manufactured from PVC faced steel. Vast range. Compectitive prices start at a low 1.50. Punching facilities at very competitive prices. - Bazelli (Dept 23). St Wilfreds. Foundry Lane. Halton. Lancaster LAZ 6 LT .

IONRER. Feel alert, invigorated and healthier with the amazing ZEPHION negative ion gencrator. Kit: $£ 21.50 \mathrm{p}$. Built: C29.80p or S.a.e. brings leaflets. Dataplus Deveiopments, 81 Cholmeley Roas. Reading. Berks. RG1 3LY. Tel. 073 67027.

CIEARING LABORATORY: scopes. generators, P.S.U's. bridges, analysers, meters. recorders. elc. 0403-76236.

[^10]

RADIO COMPONENT SPECIALISTS

DepI 3, 337. WHITEHORSE ROAD, CROYIOON SURREY. L.K. Tel: 01-684 1665 and 50p Winimum. Galler: Wekome: Clowed Wied. slay). derpur 25

OPERATIONAL AMPLIFIER EXPERIMENTAL MANUAL

by G. B. Clayton
Price: $\mathbf{£ 3 . 5 0}$

DIGITAL ELECTRONIC CIRCUTTS \& SYSTEMS by N. M. Morris Price: $£ 5.50$ ELECTRONIC MUSIC CIRCUITS by B. Klein Price: $\mathbf{E 1 5 . 0 0}$
THE CATHODE-RAY OSCILLOSCOPE \& ITS USE by G. N. Patchett Price: $£ 5.50$ VIDEOTAPE RECORDING
by J. F. Robinson Price: $\mathbf{£ 1 4 . 5 0}$
DOMESTIC VIDEOCASSETTE RECORDERS A SERVICING GUIDE by S. Beeching Price: £15.00 MICRO COOKBOOK VOL I: FUNDAMENTALS by D. Lancaster Price: $\mathbf{f 1}$
AN INTRODUCTION TO MICROCOMPUTERS VOL I: BASIC CONCEPTS by A. Osborne

Price: $\mathbf{E 1 0 . 5 0}$
WORLD RADIO T.V. HANDBOOK by J. Frost

Price: $\mathbf{£ 1 2 . 0 0}$
1983 THE RADIO AMATEUR'S H/B by A.R.R.L.

Price: $\mathbf{E 1 0 . 0 0}$

* All PRices include postage *

THE MODERN BOOK CO.

BRITAIN S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET LONDON W2 1 NP

Phone 01-402 9176 Closed Saturday 1 p.m. Please atlow 14 days for reply or delivery.

INDEX TO ADVERTISERS

Technomatic Ltd $01-4521500$

CONNECTOR SYSTEMS

I.D. CONNECTORS (Speedblock Type)				D-CONNECTORS 9 way 15 way 25 way 37 way MALE					DIL HEADER PLUGS RS 232 Connectors				$\begin{aligned} & \text { RABBON } \\ & \text { CABLE (Grey) } \end{aligned}$						
No. of Header Recer Edge				Solder		105p							14 way	500					
ways	Plug	tacle	Conn.	Anglad	50p	210p				trom S	Stock		16 way	0					
						FEMAL					des io		${ }^{2} \mathrm{C}$ way	p					
	145p	125p	195 p	Solder	105p	p 160 p	200 p	335 p					24	120 p					
	175p	150p	240p	Anglad	165 p	- 215p	290	44		4 pin 40	Op 12		4 w	160 p					
	200p	${ }^{160}$	320p	Hood						16 pin 50	D 14		40 way	180 p					
	220p	190p	340p	36 wa	Cont	tronix $\mathrm{T}_{\mathbf{y}}$	Conn.	55.5		24 pin 100	P 20		5	200 p					
	235p	200p	390			EEE Type	onn.			10 pin 200	P 22		a way	2800					
						$\begin{gathered} \text { EURO } \\ \text { CONNECTORS } \\ \text { (Indiract Edgo Conn.) } \end{gathered}$					EDGE CONNECTORS								
								0.1"	$0.15{ }^{\prime \prime}$										
24^{n} Single end Male $24^{\prime \prime}$ Single end Female 24* Female Fernale $24^{\prime \prime}$ Male Male 24 " Fernale Male											2×18			140p					
						OIN ST			lug	Skt	2×2		1900	240p					
						416172	woy		60 p	${ }^{165 p}$			1750						
						416173	way		70 p	1700	2×2		${ }^{225}$	20 p					
			$24^{\prime \prime}$ Female-Male			415122	$\times 32$ wav			215p			190p						
DIL SWITCHES											Angied	2×32 w		275	32	1×43		2600	
								415123	$\times 32$ way			300 p			39				
4 way	70p					wey	90 p	Angled	$\times 32$		35p								
wav				10 way						525			coop						

	1.24	25-99		1-24	25-99
2114L-450	80p	75p	2732	350p	335p
4164-2	450p	430p	6116-150	375p	350p
$2716(+5 \mathrm{~V})$	250p	225p	6522	310p	300p
2532	350p	335p			

OFFICIAL BBC DEALER
BBC Model B $£ 399$ including VAT. (Carr. £8)
Model A to B upgráde kit $£ 49.50$. Installation charge $£ 15$ Individual upgrades and all mating connectors availeble. BBC FLOPPY DISC DRIVES
Disc Interface Kit $£ 95$
Installation £20
Single Drive $5 \frac{1{ }^{\prime \prime}}{\prime \prime} 100 \mathrm{~K} £ 230 \quad$ Dual Drive $5 \frac{1}{4}{ }^{\prime} 800 \mathrm{~K} £ 699$
BBC COMPATIBLE 51" DISC DRIVES
These drives are supplied in BBC matching colour case.
Single: $100 \mathrm{~K} £ 150$ 200K £215* 400K £265*
Single with PSU: 100K £185 200K £260* 400K £330 Dual with PSU: 200K £355 400K £475* 800K £595

* These drives are provided with a switch between 40 and 80 tracks. Cable for Single Drive £8. Dual Drive $£ 12$. (Carr. Single Drive £6, Dual Drive £8)
Disc Manual \& Formatting Diskette
Diskettes: 40 track SS $£ 15,80$ track SS $£ 24.80$ track DS $£ 32$. (Price for 10 carr. 2)
VIEW 16K WORD PROCESSOR ROM £52 TELETEXT RECEIVER $£ 195.65+£ 2 \mathrm{p} \& \mathrm{p}$ TORCH Z80 DISC PACK $£ 780.00+£ 2 \mathrm{p} \&$
WORDWISE 8K ROM £39 + £2 p\&p
BUSINESS, EDUCATION AND FUN SOFT WARE IN STOCK
Please phone to confirm delivery details.
BOOKS (No VAT EI p\&p)
BASIC PROGRAMMING ON BBC
LET YOUR BBC TEACH YOU TO PROGRAM
BBC MICRO REVEALED
$E 5.95$

BBC MICRO AN EXPERT GUIDE
BBC COMPUTERS PLAY
assy long program on bBc

PRINTERS

NEC PC 8023 BIE

80 col 100 CDS dot matrix printer. Bi-directional. Logic seeking, 2K buffer.
Forward and Reverse line feed. Hi Res \& Block Graphics, Proportional Spacing, International and Greek character sets, Auto underline, Friction/tractor selectable,
£345 + 58 cart

RXX80 100CPS 80 col Tractor Feed. FX80 160CPS 80 col F \& T Feed. Logic seehing,
Bi-directional, Bit Image Printing, 9×9 Matrix, Auto Underline. RX80 £298. FX80 $£ 389$ MX100 F/T3 £425

Carr. E8/Unit
SEIKOSIA CP100A 82504
80 col .30 cps dot matrix printer. High Res Graphics - Sid \& double with characters. $£ 180+$ £6 carr
GP250A $5235+\mathbf{E 8}$ carr.

MAME AMI THE CUCHIT connections with a MAPLN MODEM KIT

Exchange programs with friends, leave or read messages from the various Billboard services, talk to computer bureaux, or place orders and check stock levels on Maplin's Cashtel service. A Maplin Modem will bring a whole new world to your computer and vastly increase its potential.
Now you can exchange data with any other computer using a 300 baud European standard (CCITT) modem and because the Maplin Modem uses this standard, you could talk to any one of tens of thousands of existing users.
Some computers need an interface and we have kits for the ZX81 VIC20/Commodore 64, Dragon and shortly Spectrum and Atari, whilst the BBC needs only a short program which is listed in Projects Book 8.
A Maplin Modem will add a new dimension to your hobby
Order As LW99H (Modem Kit) excluding case. Price $£ 39.95$
YK62S (Modem Case). Price 59.95.
Full construction details in Projects Book 5.

NEW MAPLIN STORE OPENS IN MANCHESTER

Our new Manchester store offering the full range of Maplin's electronic components, computers and software will be opening 16th August, 1983. Part of the new store will be a self-service area where you can browse around and choose the parts you want. Counter service will be available as well. Upstairs you will find our computer demonstration area with displays of hundreds and hundreds of different software packages for Atari, BBC. Commodore 64, Dragon, Sord M5. Spectrum and VIC2O.
You will find us at 8 , Oxford Road opposite the BBC, between Piccadilly and the University complex. We're just a few steps from

Manchester's Oxford Road station and about five minutes walk from the city centre. There is excellent parking on meters in the adjacent sideroads and we're about five minutes drive straight in from junction 10 on the M63 at the start of the M56
Call in and see us soon!

Great Projects From E\&MM

Our new book "Best of E\&MM Projects Vol. 1" brings together 21 fascinating and novel projects from E\&MM's first year

Projects include Harmony Generator, Guitar Tuner, Hexadrum: Syntom, Auto Swell, Partylite, Car Aerial Booster, MOS-FET Amp and other musical, hi-fi and car projects
Order As XH61R. Price $£ 1$

病 1983 CATALOGUE

Over 390 pages packed with data and pictures and all completely revised and including over 1000 nepw items. On sale in all branches
of W.H. Smith. Price $£ 1.25$. Or send $£ 1.50$ (including $p \&$ p) to our mail-order address.

Maplin's Fantastic Projects

Full details in our project books. Price 70p each.
In Book 9 (XA01B) 120W rms MOSFET Combo-Amplifier - Universal Timer with 18 program times and 4 outputs Temperature Gauge - Six Vero Projects.

In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuii - Stopwatch with multiple modes - Miles-per-Gallon Meter

In Book 3 (XA03D) ZX81 Keyboard with electronics Stereo 25W MOSFET Ampli fier - Doppler Radar Intruder Detector - Remote Control for Train Controller.

In Book 4 (XA04E) Tele phone Exchange for 16 extensions - Frequency Counter 10 Hz to 600 MHz - Ultrasonic Intruder Detector - I/O Port for ZX81 - Car Burglar Alarm -

Remote Control for 25 W Stereo Amp
In Book 5 (XA05F) Modem to European standard - 100 W 240V AC Inverter - Sounds Generator for ZX81 - Central Heating Controller Panic Button for Home Security System Model Train Projects - Timer for External Sounder.
In Book 6 (XA06G) Speech Synthesiser for ZX81 \& VIC20 Module to Bridge two of our MOSFET amps to make a 350W Amp - ZX81 Sound on your TV - Scratch Filter Damp Meter Four Simple Projects.
In Book 7 (XA07H) Modem (RS232) Interface for ZX81/ VIC20 - Digital Enlarger Timer/ Controller *Ders Audio Processor - Sweep Oscillator CMOS Crystal Calibrator.
In Book 8* (XA08J) Modem (RS232) Interface for Dragon VIC Extendiboard Synchime \bullet Electronic Lock - Minilab Power Supply - Logic Probe - Doorbell for the Deaf
*Projects for Book 8 were in an advanced state at the time of writing, but contents may change prior to publication (due 13th August 1983).

LEARN ROBOTICS

with Hero 1: the new robot who sees, hears, speaks and detects movement!
 This remarkable microprocessor-controlled robot is the perfect robotics training system for industry, home and schools. Hero 1 can see, hear, speak, detect moving and stationary objects and determine their distance, pick up small objects, move in any direction and can learn from your instructions.
 Hero 1 is a superbly documented Heathkit kit.

Order As HK20W (Robot Kit) Price $£ 1,599.95$.

[^0]: (c) IPC Magazines Limited 1983. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it. and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Please send me vour FREE School of Electronics Prospectus

[^2]: OVER 340 STORES AND DEALERSHIPS NATIONWIDE
 Check your phone book for the Findy Store or Dealer nearest you \qquad Known as Radio Shack In the USA prices may vary at dealers Offers subject to availability

[^3]: Letters and Queries
 We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

 Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

[^4]:

[^5]: P:ease note X in part mumber denotes mains voltage. Please insert O ' in place of x for 110 V . ' $\%$ place of x for 220 V (Europet, and 2 in place of x for 240 V IU.K.) All units exced UCl incorpo'ase our own torotdal vansformers.

[^6]: \lceil - Please send me - - CRO2 C60 Audio cassettes at …...p each (90p for 5 to 24 ,] 80 p for 25 or more: including VAT and postage).

 ## CHROME C60 \& C90

 ## CR02 C60 CASSETTES

 90p each (minimum of 5): 80p each (minimum of 25)
 CR02 C90 CASSETTES
 115p each (minimum of 5): 105p each (minimum of 25)

 ## FERRIC C90 AUDIO

 ## C90LH CASSETTES

 56p each (minimum of 5); 53p each
 (minimum of 25).

 Send valid coupon to:
 Videotone Lid., 98 Crofton Park Road, Crofton Park, London SE4.

[^7]: LASCAR ELECTRONICS LIMITED
 Module House, Whiteparish, Salisbury, Wilts. Tel. 07948-567

[^8]: LASCAR ELECTRONICS LIMITED
 Module House, Whiteparish, Salisbury, Wilts. Tel. 07948-567

 PLEASE SEND ME I enclose cheque/P.O./Access no.
 Amount
 NAME
 ADDRESS
 1
 $!$
 $!$
 $!$
 Export Orders please add $\mathbf{E 5}$ for airmail despatch

[^9]: Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Sireet, London SE1 9LS

[^10]: MAKE YOUR OWN PRINTED CIRCUITS Etch Resist Transfers - Starter pack 15 sheets, lines pads. I. C. pads) e2.50. Large range of single sheets In stock at 50 p per sheet.
 Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. 2 sheets negative paper, 2 sheets positive film (AA) $£ 2.25$. Photo-resist spray (200 ml) $£ 3.90$ ($p+p 65 \mathrm{p}$). Dratting Film (A4) 25p. Precision Grids (A4) 65 p 20p stamp for ifsts and information. P\&P 50p per orde plus extra where indicated. P.K.G. ELECTRONICS OAK LODGE, TANSLEY, DERBYSHIRE.

