PRACTICAL
I: H

ROEDTICS MICFOS ELECTRONICE•INTEAFACINE

 Spacewatch with Dr. Patrick Moore
Cominodore 64 RS232C Interface
Field Measurements using a Cassette
Recorder

What better way of ensuring your pleasure than to actually see your prints before you pay-and then to be charged only for the successful pictures within the price ranges quoted. That is the deal you get from our colour print service providing the best all-round value for money available.

Over the past ten years, hundreds of thousands of magazine readers have been delighted with our postal service. They have sent their films in to us again and again. So why not give it a whirl yourself? QUALITY
Every print is checked at every stage of processing to ensure accurate colour reproduction.

RELIABILITY

Processing and printing take up to 48 hours. Allowing for postal or peak-period delays, you should normally expect your prints after seven to ten days.
LARGER PRINTS
Our Superprints give you 30 per cent more picture area at no extra charge. EASY CREDIT
You pay only for your successful shots within the price ranges quoted - and then only after you have seen the prints.

COMPARE PRICES

If you are invoiced for $£ 2.70$, plus 30 p postage and packing per filn, that could be for as many as 24 successful prints.

See your prints before you pay

See our price range: No. of Superprints or standard prints 0-6

Price (inc.
15\% VAT
7-12
£1.20
13-18
$£ 1.70$
19-24
£2.20
25-30
$£ 2.70$
31-36
L. 20

LUXURY COLOUR PRINTS

You will be amazed at the beautiful colours and sheen finish of your prints. They have elegant rounded corners and are borderless to give you maximum picture area. Choose either standard prints or the larger Superprints by ticking the appropriate box on the enclosed envelope or on the coupon below.
Superprints Print size (approx.)

35 mm	110	126	Disc
$4^{\prime \prime} \times 53 / 4^{\prime \prime}$	$4^{\prime \prime} \times 518^{\prime \prime}$	$4^{\prime \prime} \times 4^{\prime \prime}$	$4^{\prime \prime} \times 518^{\prime \prime}$

Standard prints Print size (approx.) $31 / 2^{\prime \prime} \times 5^{\prime \prime} 31 / 2^{\prime \prime} \times 41 / 2^{\prime \prime} 31 / 2^{\prime \prime} \times 31 / 2^{\prime \prime} \mathrm{N} / \mathrm{A}$ NO MONEY - NO STAMP
Just send any good make of colour print filn, including dise film, inside the Freepost envelope enclosed with this
issue. Or fill in the coupon below and send with your colour print film in a strong envelope to: Practical Electronics Colour Print Service, FREEPOST, Reading, RG1 IBR.

PERSONALISED SERVICE

Our valued readers know we care for their prints. If you have any queries about this highly-personalised service. contact Cusiomer Service, Kenavon Drive Reading. RG1 3HT, or ring Reading (0734) 597332.

YOU BENEFIT IN FOUR WAYS

1. Processing is free-you pay only for successful prints (plus p \& p).
2. You enjoy a highly personalised service with every care taken over each individual print.
3. You are not hampered with credit vouchers.
4. You get more prints for your money. so it is worth your while always having your camera action-ready. Compare the shop prices.

FILMS AT REDUCED PRICES

Order replacement films 35/24, $110 / 24$ or $126 / 24$ at a special price of $£ 1.20$ a roll,
or three for $£ 3$.
Offer excludes Black \& White, transparency. sub-miniature. C22 \& Agfa CNS film. Superprints can be produced only from Kodacolour II, C41 cassette, cartridge and disc film, not half frame. Prices are correct at the tinle of going to press and are for UK readers only. Standard terms of business are available on request.

To: Practical Electronics Colour Print
Service, FREEPOST, Reading, RG1 1BR

- Print my enclosed film
(Please tick box)
Superprint size \square
Standard size
of $35 / 24$
of $110 / 24$
of $126 / 24$ at $£ 1.20$
or three for $£ 3$.

From: Practical Electronics Colour Print Service, FREEPOST, Reading, RG1 1BR.

Name

Address
CONSTRUCTIONAL PROJECTS
COMMODORE 64 RS232C INTERFACE by R. A. Penfold 12
Two-way serial data communications link
MASTERMIND TIMER by J. D. Parkinson B.Sc. 18
Mastermind your quiz games with this useful two minute timer FIELD MEASUREMENTS by T. P. Manning 22
Data logging using a cassette recorderDIGITAL DICE by P. Leah30
Uses two independent seven-segment displaysSIMPLE LOGIC ANALYSER Part 2 by Chris Atkins50
Debugging tool for micro's
LOW WATER LEVEL ALARM 58
Detects car windscreen wash fluid level
ALARM SYSTEM Part 2 by G. E. Lumley 60Flexible burglar alarm system
GENERALFEATURES
MICRO-BUS 26
Our focus on micro's for the home constructor RADIO ASTRONOMY by Frank W. Hyde 35
Fifty-three years of progress
INGENUITY UNLIMITED 44
Readers' circuit ideas 54
VERNON TRENT AT LARGE
57
Fluid detector (LM 1830N)
NEWS AND COMMENT
EDITORIAL 7
NEWS AND MARKET PLACE 8
Including Countdown and Points Arising
INDUSTRY NOTEBOOK by Nexus 29
News and views on the electronics industry
SPECIAL OFFER-SYSTEMA PORTABLE CHESS COMPUTER 33
SPACEWATCH by Dr. Patrick Moore O.B.E. 40
Frank Hyde; Quasars: Could We Be Wrong?: The Sky This Month
BAZAAR 41, 65
Free readers' advertisements
LEADING EDGE by Barry Fox 43
Latest developments from the Patent Office
STRICTLY INSTRUMENTAL by K. Lenton-Smith 68Early valve organsBOOK REVIEWS67News of latest releases
OUR SEPTEMBER ISSUE WILL BE ON SALE FRIDAY, AUGUST 3rd, 1984(for details of contents see page 34)

[^0]

VAT Export orders no VAT. U.K. customers please add 15% VAT to total cost inct. pitp. POLYESTERRADIAL LEAD CAPACITOAS: 250V; $10 \mathrm{n}, 20 \mathrm{n}, 15 \mathrm{n}$,

9p; $1010 \mathrm{p} ; 152212 \mathrm{p} ; 3315 \mathrm{p} ; 47$ 12p; 68 16p; 100 19p; $22026 \mathrm{p} ; 100070 \mathrm{p} ; 220099 \mathrm{p} ; \quad$ 50V: 68 20p; 100 17p: 220 24p: 4OV: 68 15p; 22 9p; 33 12p; 330, 470 32p; $100048 p ; 2200$ 90p; 25v: 4 7. 10, 22, 47 8p; 100 11p; 150 12p; 220 15p; 330 22p; 470 25p; 680, 1000 34p; 1500 42p; 2200 50p; 3300 76p; 4700 92p: 16V: 2540 8p; 47. 68, 100 9p; 125 12p; 220 13p; 330 16p; 47020 p; 680 34p: 1000 27p; 1500 31p; 2200 36p; 4700 79p.				
TAG-END TYPE: 64V: 4700 245p; 3300 198p; 2200 139p; 50V: 3300 154p; 2200 110p; 40V: 4700 160p; 25 V : 4700 98p; 10,000 320p; 15.000 345p.		POTENTIOMETERS: Carbon Tra 0.25 W Log \& Linear Values		
		50011. 1K \& 2K (UN ONLY) Single $5 \mathrm{~K} 11-2 \mathrm{MI}$ l single gang 5K11.2MII single gang DVP switch 5K11-2M12 dual gang stereo		
TANTALUM BEAD CAPACITORS: 35v: $01 \mu 02203315 p$ 047.068, $10,1516 p 22.3 .318 p 47$. $6822 p 1028 p$ 16V:22.33.16p 47.68. 10 18p 15 36p 22 36p 33. 47 50p 100 95p 220 100p 10V: 15. 22 26p 33.47 50p $10075 p$.				
		$25 \mathrm{~W} \log$ and linear values 60 mm Irack K〔-500k! Single gang 80p		
$2,33,47,68,82,10,12,18$,$22,27,33,39,47,50,56,68,75$, 82, 85, 100. 120, 150, 180 15p. 220, 250, 270, 330, 360, 390, $470,600,800$ \& 820 pF 21 p $\begin{array}{ll}1000,1200,1800 & 30 \mathrm{p} \text { each } \\ 3300,4700 & 60 \mathrm{peach}\end{array}$	StEMENS mulitlayer miniature capacitors 250V: $1 \mathrm{nF}, 1 \mathrm{n} 5,2 \mathrm{n} 2,3 \mathrm{n} 3,4 \mathrm{n} 7$. 6n8, $8 \mathrm{n} 2,10 \mathrm{n}, 15 \mathrm{n}, 22 \mathrm{n} 7 \mathrm{p}: 18 \mathrm{n}$. 27n. 33n, 47n 8p; 39n, $56 \mathrm{n}, 58 \mathrm{n}$ 9p. 100 nF 11p. 100 V . 100 n , $120 \mathrm{n}, 10 \mathrm{p} ; 150 \mathrm{n}$ 11 p ; 220 n 13p; 330n 18p; 470 n 23p;680n30p; 1μ F34p;2 250 p.			
		RESET POTENTIOMETERS IW 50 s! 22 M Mini Ven. \& Horiz. 25W 2201MM7 Vert. \& Horiz.		
		ESISTORS Hi-stab, Miniature, 5\% arbon.		
		RA	1.99	
Range 1pF 106800 pF 4 p ; 10 nF . $15 \mathrm{n} .33 \mathrm{n}, 47 \mathrm{nF} 5 \mathrm{p} ; 100 \mathrm{nF} / 30 \mathrm{~V} 7$				

 \qquad

New from Newnes

SERVICING DIGITAL CIRCUITS IN TV RECEIVERS
 R Fisher

Specifically for colour television engineers, this book is an in-depth guide to digital circuits used in current TV receivers. The early chapters deal with digital techniques and their specific applications like teletext and videotex, their respective decoders being described in detail. Remote control systems, digital tuning and other digital circuits are also covered. A glossary of terms is included which will be useful to both engineers and students.
Soltcover 288 pages $E 13.95$

BEGINNER'S GUIDE TO COLOUR

TELEVISION
Third Edition
Gordon J King - revised E Trundle
Colour TV has been greatly developed since it was first introduced in the UK in 1967. This new edition has been re-written to include, as well as the basic introduction to the subject, an up to the minute account of such innovations as satellite and cable, flat panel receivers, 3-D displays and "digitization" of TV signals.
Softcover 192 pages £4.50

Also of interest

BEGINNER'S GUIDE TO TELEVISION Sixth Edition
Gordon J King - revised E Trundle
An introduction, with the minimum of mathematics, to the techniques and equipment used in television broadcasting, recording and reception.
Softcover 240 pages £4.50
BEGINNER'S GUIDE TO RADIO
Ninth Edition
Gordon J King
An introduction to radio principles and practice ideal for radio and telecommunications technicians and students. Gordon King has updated the text to take account of recent technological changes.
Softcover 272 pages
£4.50

SUPERKITS! FOR BETTER MUSIC \& EFFECTS

Sets include PCBS, Electronic Parts, Instructions, Boxes, Wire, Solder. Batteries not included, but most will run from 9V to 15V DC supplies. Fuller details in list
CHORUS UNT: A solo voice or instrument sounds like morel ..KT162 $\quad \mathbf{E 3 1 . 4 0}$ COMPRESSOR: Limits \& levels maximum signal strengthKT133 \quad E10.86 COMPUTER RHYTHM GEN: 9 drums for digital controlKIT 185 COMPUTER-SYNTH INTERFACE: Sequencing \& composing aid KIT184 DRUM SIRENS: Triggered variable siren effectsKT199 ECHO UNT: With double tracking E 30.64 CRE UNHCY Win double kack ... 168 FREQUENCY DOUBLER: Raises guitar frequency by 1 octave ...KIT98
FREQUENCY CHANGER \& WAVEFORM MODIFIER. TunableKT172 FREQUENCY CHANGER \& WAVEFORM MODIFIER - TunableKTI 172
FLANGER: Fascinating effects plus phasingKIT 153 FUZZ: Smooth distortion whilst keeping natural attack \& decay KIT91 GUITAR EFFECTS: Multiple variation of level $\&$ fitter modulation KTT42 GUITAR OVERDRIVE: Fuzz plus variable filter qualityKIT56 GUITAR SUSTAIN: Extends effective note durationKT75
GUITAR TO SYNTH INTERFACE: With voltage \& trig outputs ...KT173 GUTAA TO SYNTH INTERFACE: With voltage \& trig outputs ...KT173 HAND CLAPPER: Triggered \& auto claps, variable toneKT197 METRONOME: With audio \& visual beat \& down beatKT143 MULTIPROCESSOR: Fing, Rvb, Faze, Fuz, Wah, Trem, VibKTT 189 MICROPHONE PRE-AMP: with base \& treble switchingKTT144 NOISE UIMITER: reduces tape \& system hiss
\& rate controls KIT145
PHASER: with automatic \& manual depth \& rate controlsKIT164 REVERB: Mono/stereo, variable depth \& delays . RHYTHM GENERATOR: 15 switchable thythms
RING MODULATOR: with integral oscillator control RING MODULATOR: with integral oscillator controlTT170 ROBOVOX: versatile robot type voice modifierKT165 ROGER 2-GONG: 2 gongs sounded at end of transmissionKT126 SPEECH PROCESSOR: for clearer transmissionIT1 10 STORM EFFECTS: Automatic \& manual, wind, rain, surfKT154 TOM-TOM SYNTH: Triggered variable tone drum effectsKT190 TREMOLO; deep tremelo with depth \& rate controlKIT136 VOCODAVOX: modular vocoder

KIT152
VOICE-OP-SWITCH: with variable sensitivity \& delay 123 WAH-WAH: with auto-trigger, manual \& oscillator control
.KT1 140 $£ 17.44$ $£ 19.93$ $£ 44.30$ f 9.80 € 34.46 €22.74 $£ 10.57$ $\mathbf{8} 15.40$ $£ 19.73$ £10.04 £32.87 922.69 £13.81 $£ 57.14$ 69.21 69.97 £18.40 £25.54
635.64
f 15.76
$£ 21.03$
f 11.38
89.68
$\mathbf{8} 5.86$
£15.05
£9.71
$£ 64.31$
f 13.41

MANY OTHER GREAT KITS IN CATALOGUE such as Autowah, bess boost, call sign, comparator, frequency generator, Funky-wobulol, hamonola, hum-cut, mixers, sequencers, synthesiser interface, treble boost, tone control, vibrato, voice fiter, voice operated fader, Wheeby-jeebyl, wobble-wah. Plus digital syntesiser, junds
synthesiser, envelope shapers, D-A converter, multiwaveform VC0, Keyboards, contacts, etc. - Send SA.E. for comprehensive catalogue (overseas send f1).

YES - WE ALSO HAVE A KIT MAINTENANCE \& REPAIR SERVICEI
Add £1 P\&P \& 15\% VAT to all orders. (Overseas post details stated in cat). Payment CWO, Chq, PO, Access, Barclay, or pre-arranged collection. Despatch usually 10-14 days. Details Correct at press, E\&OE.
PHONOSONICS, DEPT. PE48, 8 Finucane Drive, Orpington, Kent, BR5 4ED Tel: Orpington (STD 0689) 37821. Mon-Fri 10-7. Callers by appolmtment.

MASHMR HTFCYRONLCS
 NOW!
 The PRACIHCAL way!

You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state
 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of Radio, T.V. Hi-Fi and microprocessor/computer equipment
NewJob?NewCareer?NewHobby? Getinto Electronics Now!

BHPK BAREA/NS
 HIGH OUALTTY MODULES FOh STEREO,

MONO \& OTHER AUDIO EQUIPMENT Audio Amplifiers

O/No. Supply Vtg. Price
$5 \mathrm{~V} \quad 18.50$
Mono Pre-Amplifiers - Operating Vig. $40-65 \mathrm{~V}$ MM 100
MM 100 Suitable for Disco Mixer
Ming Sur Magnotic Cartridge Pre:Amplifie
Monographic Equallser
Monographic Equaltser OUR PAICE ONLY $£ 20.00$
Full Specifications and Data
 vailable on request. Please send self-addressed envelope.

100 MKI

PRECISION MORSE KEYS

Well designed beginners key. Fully adlustable.
Dims: Base $82 \mathrm{~mm} \times 45 \mathrm{~mm}$, O/No. VP 122 . 1.85 ANTENNA SWITCH 2 and 3 WAY
 to two antennae or one antenna to
two transceivers. Dims: $86 \times 55 \times$ 32 mm (Body)
O/No. VP 113
As above but 3 -way.
$£ 4.50$
£4.75
HIGH PASS FILTER/SUPRESSOR
CB/TV. High pass filter. Reduces
unwanted signals picked up by ant unwanted signals picked up by an O/No. VP 115

LOW PASS FILTER
Designed to reduce harm the VHS and TV band.
V.S.W.R.: Less than 1.210
insertion low-pass FILTER Impedance: 50 ohms.
Dims: 80×55
O/No. VP 116
$£ 2.75$ AXC

ANTENNA COUPLER

Transceiver/car radio anter-
na coupler. With co-axial
cables. One co-axlal terand the other in P1259 plug Dims: $67 \times 46 \times 30 \mathrm{~mm}$
O/No. VP $117 \quad £ 2.00$

TAPE RECORDER SWITCH

Unit to control motor of tape recorder 1.8 m cord and
2.5 mm plug attached On/Off switch. Dims: $55 \times 20 \times$ 20 mm

DC-DC POWER SUPPLY

DC to DC adaptor. Plugs into car cigar lighter aperture
Outpu1 3. 4.5, 6, 7.5. 9 . $12 \mathrm{~V} @ 800 \mathrm{~mA}$. Has universal output spider plug, also 9 V battery snap and polarity reversing faciliny
£2.45

SPEAKER PROTECTOR

to the permissible max, by
automatically introducing a resistor In series with speak.
 uced the unit resets itself. Electron
voltage-sensing relay clrcuit, Spring terminals. Cut-off level adjustable from $10 \mathrm{~W}-120 \mathrm{~W}$. Full instructions included. Dims. $85 \times 74 \times 25 \mathrm{~mm}$.
O/No. VP 118
$£ 9.95$

\qquad

5p

Value packs

 Ressors Mrea of保 Tpoe

\qquad
$[100$
1100

TRANSISTOR CLEARANCE

al N.N.NP Incon \& Germ. making Simple Transistor Tester. Super Value. Order No. VP60

BLPAK

SOLDER

DESOLDER KT
Kit comprises: 0/No. VP 80 1 High Qualiry 25 Watt General Parpose Lightweight Soldering Iro 240V mains incl. $3 / 16^{*}(4.7 \mathrm{~mm})$ bit 1 Ouality Desoldering Pump High Suction with automatic ejection Kiurled ant-corrosive casing and Teflon nozzle 1.5 metres of De-Solds ing braild on plastic dispenser.
2 vas (1.83m) Resin Cored Solder on Card
THeat Shunt too tweezer Type
Total Retail Total Retai Value over $£ 1200$ OUR SPECIAL KIT PRICE £9.95

BLPAK PCB ETCHANT AND DRIL KT
Complete PCB Kit comprises I Expo Minf Drill 10.000 APM $12 \mathrm{Vac} . \mathrm{c}$ incl 3 collets \& 3 Twis1 Bits
I Sheet PCB Transters $210 \mathrm{~mm} \times$ 150 mm
Etch Resist Pen
ith pack FRRIC CHLORIOE crystals
3 sheets copped clad board 2 sheets Figreglass copper clad board ioFull instructions for making your Retail Value over $£ 15.00$ OUR BIPAK SPECIAL KTT PAICE E9.95 ORDER NO. VP 87

TECASBOTY the electronic components ano

 SEMICONDUCTOR BAAOF THE YEAR!
This collection of Components and Semiconductors for the hobbyist is probably the most value-packed selection ever offered. consists of Resistors, carbon and wirewound of various values. Capacitors. All types, sorts and sizes including electrolitics. Potentiometers - single, dual, stider and preset. Switches, Fuses, Heatsinks, Wire, P.C.B. Board, Plugs, Sockets etc., PLUS a selection of Semiconductors for everyday use in popular Hobby Proiects. These include: SCR's, Diodes. Rectifiers, Trlacs \& Bridges as well as a first class mix of Transistors and IC 's in all we estimate tie value of this in current retail catalogues to be over f 251 So help yourself to a geat supise ad order Box TODAY to yourself to a great surprise and order a Box TODAY for
hurry! You can call us on 0920-3182/3442 and order just $\mathbf{E 6 . 5 0}$ with your Barclaycard or Access Card - 24 hr

Answerphone Service NOW. Order No. VP 85.

OUR GREAT NEW 1984 CATALOGUE

Presented with a Professional Approach and Appeal to All who
require Quadiry Electronic Components. Semiconductors and other Accessories All at realistic prices There are no wasted pages of
useless information so often included in Catalogues published useless information so othen included in Catalogues published
nowaddys. Just solid facts i.e. price descrition and individual nowadars. Just solid facts i.e. price, description and individual teatures of what we have availabie Qut remember. 81.PAK's
policy has atways been to seil oualiny components at policy has atways been to sell quality
compertine prices and THAT WE STIL DO.
We hold vast stocks "in steck" tor tast immediate delivery. at items in our Catalogue are avalable ex stock The Catalogue designed for use with our 24 hours "ansaphone service
and the Visa/Access credit cards, which we accept over the telephone.
To receive your NEW 1984 BIPAK Caratogue, send
75 p PLUS 25 p p p 10

TOP QUALITY KITS AT LOW-BUDGET

 PRICES

MPA 200

100w Mixer/Amplifier A rugged mixer amp designed for adaptability, stability and easy assembly. The MPA 200 has four inputs (sensitivities can be easily changed), 3 separate tone controls and a master volume control. Steel cabinet to suit 19 " rack systems.
Complete kit
£79.50 + VAT

SP2 200 2-Channel 100 watt Amplifier

An ingeniously designed power amp. The SP2 200 can deliver over 100 wrms into 8 ohms on each channel. Separate volume control and a sensitivity of 0.775 mV (0 dBm) make this unit suitable for virtually all pre amps or mixers Construction is very simple, with minimal wiring and the steel cabinet is suitable for 19^{*} rack mounting.
Complete kit
$\mathbf{8 9 9 . 5 0}+$ VAT

Chromatheque 5000
5 Channel
Lighting Effects System
Versatility is the key aspect of the Chromatheque. Musical input can perform switching or modulation of the light output. 5 banks of lamps of up to 500 w each can be controlled in either analogue or ditigal mode. Variable light level controls provide scope for "mood" lighting. The kit's single-board concept makes for straightforward assembly.
Complete kit $\mathbf{5 7 9 . 5 0}+$ VAT

Digital Delay Line

Digital quality at an Analogue price! With this unit you can have Phasing, Flanging, ADT Chorus, Echo and Vibrato at the touch of a button. In a steel cabinet suitable for 19 " rack mounting.
Complete kit (400 ms delay)
$\mathbf{£ 1 7 9 . 0 0 ~ + ~ V A T ~}$
Parts for Extra 400 ms delay
(up to 3 can be added)
f 19.50 + VAT

Cortex II

16-bit 16-colour Computer
The new slimline Cortex offers constructors the speed and power of 16 -bit computing for the same price as an 8 -bit games machine. The standard kit has TV, cassette and RS232C interfaces - others are available as optional extras. Add disc drives, printer and monitor for a fully-fledged business system
Complete kit
Optional extras
$\mathbf{\Sigma 2 9 9 . 0 0}+$ VAT
Phone for illustrated brochure

This professional quality, single board 3 -octave synth is transposable 2 octaves up or down giving an effective 7 octave range. There is portemento, pitch bending, VCD with shape and pitch modulation, VCF with high and low pass outputs and separate dynamic sweep control; noise generator and an ADSR envelope generator.
Complete kit
$\mathbf{£ 1 5 0 . 0 0 ~ + ~ V A T ~}$

At a price that makes even a IV look expensive, Hebo provides an exciting introduction to computer control. Independent drive of the two weels, flashing "eves", twotone hom and a retractable pen are directed by your microcomputer while four collision detectors relay information about the robot's environment.
Complete kit Universal computer interface board kit $\mathbf{£ 1 1 . 0 0 + V A T}$

Genesis P101

Hydraulic Robot Arm
With its own dedicated microprocessor or under the control of an external computer, the Genesis P101 simulates the operation of industrial robots at a mere fraction of their cost. With this robot, practical robotics experience is available without tying up valuable capital.
*-axis robot system kit
$\mathbf{£ 1 0 5 0 . 0 0 ~ + ~ V A T ~}$
6 access robot kit
2750 + VAT

MicroGrasp Electric Robot Arm A real programmable robot arm at an affordable price. Five motors - four with servo control - are mounted directly on the axes they drive (no fiddly strings and pulleys!). The robot can be controlled by any microcomputer with an expansion bus.
Robot kit with power supply $\mathbf{£ 2 1 5 . 0 0}+$ VAT Universal computer interface board kit $\mathbf{5 7 . 0 0}+$ VAT

All kits are complete down to the last nut and bolt and are supplied with an easy-to-follow assembly handbook.
Write or phone for our latest catalogue, stating which products particularly interest you.

Powertran Cybernetics Ltd,
Portway Industrial Estate, Andover, Hants SP10 3PE
Access/Visa cardholders may order by telephone to avoid delays.
026464455
Prices apply to UK only, are exclusive of VAT and are correct at time of going to press. Overseas customers - please contact our Export Depariment for the name and address of your local dealer, Allow 21 days for delivery.
Offers subject to availability.

PDWHITRMN вlaneitisic

Genesis P102 Hydraulic Robot Arm

A sophisticated robot system with microprocessor control, two speed, double acting hydraulic operation and the option of external computer control.
The P102 offers "hands-on" experience for robotics training, at a fraction of the cost of an industrial robot.
-6-axis robot system kit
£1476.00 + VAT

- System includes Robot, Processor Box and Teach Pendant

TRIBUTE

REGULAR readers will have seen our obituary to Frank Hyde in the June issue and may be surprised by the appearance of an article by Frank in this issue. Radio Astronomy was Frank's love and the article was written for us some time ago. We are pleased to publish it as a tribute to him. Frank was an excellent contributor and friend to PE and we hope he would have approved of Dr, Patrick Moore as our new Spacewatch contributor.

Patrick Moore knew Frank, as you will see from his first Spacewatch, and expressed his sadness at the reason for his being asked to take over. We are also sad about this, but pleased to welcome Patrick to our pages. Hopefully, this month will see the start of another long and rewarding relationship.

AREAS

Alert readers will aiso have noticed the introduction of some extra wording to our front cover titie. The words

Robotics, Micros, Électronics, Interfacing spell out, in no uncertain terms, what PE is all about and it is our intention-as always-to be the best "practical" magazine for the hobbyist in these areas.

Next month sees the start of our second major series on robotics with publication of three new robot designs. PE has shown the way with serious practical robots and we plan to extend our lead. No other magazine has yet come near to providing its readers with similar high quality designs: designs which are now used extensively in education, light industry, research and by hobbyists: designs which cover the whole range from a turtle through small motor driven arm up to a semiindustrial hydraulic unit-five designs in all, with three more coming now and others planned for the future.

We will not leave out the beginner and it is our intention to publish a series aimed at the novice to robotics in our sister publication Everyday Electronics-watch out for that in the near future.

LEADING

Of course we realise that robotics and computing are not close to everyone's heart so we will continue to provide plenty of useful and sensible designs of a general nature-designs that are well thought out, well expressed and illustrated and that provide readers with value for money. Just to prove that we keep ahead, from this month our regular Patents Review has been changed in approach so that it now looks at where the patents are taking us and how they may influence future products. This page, written by Barry Fox-a recognised leading journalist in the field-has been renamed The Leading Edge so that its title reflects the new approach. We hope you like it.

Editor Mike Kenward
Secretary Pauline Mitchell
Assistant Editors
Dave Barrington (Production)
David Shortland (Technical)
Technical Editor
Mike Abbott
Projects Editor David Brunskill

Technical Sub-Editors
Richard Barron
Brian Butler
Art Editor Jack Pountney
Assistant Art Editor Keith Woodruff
Senior Tech. Illustrator
John Pickering
Tech. Illustrator
Isabelle Greenaway

Advertisement Manager David Tilleard 01-261 6676
Secretary Christine Pocknell 01-261 6676
Advertisement Sales Executives
Alfred Tonge 01-261 6819
Richard Willett 01-261 6865
Classified Supervisor Barbara Blake 01-261 5897
Ad. Make-up/Copy Brian Lamb 01-261 6601

Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers and Binders

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at £1 each including Inland/Overseas p\&p. Please state month and year of issue required.

Binders for PE are available from the same address as back numbers at $£ 5.50$ each to UK or overseas addresses, including postage, packing and VAT where appropriate. State year and volume required.

Technical and editorlal queries and letters (see note below) to:
Practical Electronics Editorial, Westover House,
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 671191
We regret that lengthy technical
enquiries cannot be answered over the telephone

Queries and letters concerning
advertisements to:
Practical Electronics Advertisements,
King's Reach Tower,
Stamford Street, London SE1 9LS
Telex: 915748 MAGDIV-G

Sulscriptions

Copies of Practical Electronics are available by post, inland for $£ 13$, overseas for $£ 14$ per 12 issues, from: Practical Electronics, Subscription Department, IPC Magazines Ltd., Room 2816, King's Reach Tower, Stamford Street, London SE1 9LS. Cheques, postal orders and international money orders should be made payable to IPC Magazines Limited. Payment for subscriptions can also be made using any credit card and orders placed via Teledata. Tel. 01-200 0200. through normal retail outlets, unless otherwise specified. Prices correct at time of going to press.

LGGHTNNG PEERFORMANCE

Over ten years ago, as a spin-off from a nuclear fusion modelling experiment, this ball of 'harnessed lightning' was just a brainchild of a theoretical physicist who predicted that a plasma could be limited to a tight beam even when shot across a relatively short gap so long as the control parameters were just right.

To prove the theory a model was made and ten years of refinement later the 'Starsculpture' emerged as a 'living lightning' art form. The effect you see is created by the emission of high frequency radio waves, pulsing at around 21 kHz ; these signals are broadcast from the small hemisphere in the centre of the 12 inch diameter glass sphere. The generation circuitry is of course microprocessor controlled, the program searches for the one in a million condition where a high temperature plasma (chain of super-heated ion molecules) is triggered in the special rarified gas atmosphere. The plasma lasts for only a fraction of a second and is continuously restimulated by the microprocessor circuitry as it senses the exact triggering characteristics; in this way the continuous lightning effect is achieved.

The radio waves pulsing through these rare gases 'knock' electrons loose from their atoms, the result being an ionised gas which emits light when an electron is dislodged, and again when an electron is recaptured by another gas atom.

The Starsculpture is designed to be touched by one or more people, when the human body touches the sphere the free electrons floating inside are drawn to the natural 'ground'. This flow of electrons creates 'tunnels' in the rare gases through which the plasma then flows, and so it appears that the plasma is attracted to your hand when in fact the plasma flows through the tunnels created by your touch.

As if this visual extravaganza wasn't

enough, the manufacturers have incorporated three slide control switches that enable the 'operator' to vary the shape, colour and pulse rate of the plasma, creating a truly infinite number of effects.

The Starsculpture took more than $£ \frac{1}{2} m$ to develop and each one is hand tuned by a plasma physicist which perhaps goes some of the way to justifying the $£ 2,500$ price tag. Harrods of Knightsbridge (who else) recently featured this item in their Technology at Play exhibition.

However interested parties should contact Markplan Ltd., Old Colony House, South King St., Manchester, M2 6DO. (061-832 2765).
 Leisuretronics logo in forthcoming issues of $P E$, we will bring you up to date information of this exciting new exhibition to be held at the Royal Horticultural Hali in London from November 8th-11th 1984. The interests of all home hobbyists will be catered for from radio-controlled models to electronic music making, ham radio to $\mathrm{Hi}-\mathrm{Fi}$; robotics to photography; synthesisers to satellites; games and kits to disco and light show equipment. Hand tools and components
will also be available along with many special and unusual exhibits demonstrating the most up-to-date developments in all areas of leisure electronics.

The organisers, Trident International Exhibitions, have many years experience in the exhibition industry and their efforts are expected to draw a large audience of enthusiasts with wide ranging interests. The venue is within walking distance of Victoria coach/ train termini, and of course within tube and bus reach of all other London rall termini. Trident will be promoting the event through coach companies as well as British Rail. Practical Electronics along with our fellow publications-Everyday Electronics, Practical Wireless, Software Index and others will be sponsoring this new and multi-interest electronics event.

SHUTTLE SPACE COMPETITION

An exciting and quite unique competition is now open to all secondary school students and apprentices in the UK.

The challenge is to recognise the potential that space offers their future, and to create an experiment that takes into consideration the special environmental conditions in space, in particular vacuum and weightless̃ness.

The winning entry will have a reserved spot in the payload bay of the space shuttle due to be launched in early 1986. The simpler the project the better its chances as it must be small and simple enough to be housed in a self-contained cylinder no larger than 502 mm diameter, 359 mm long with an all up weight restriction of 27.2 kg (60 lb). The competilion is being run by ITN (Independent Television News), one of Europe's leading space consultants SSI (Space Services International) and NASA (National Aeronautics and Space Administration).

NASA's technological expertise is undoubted and it would be easy for the entrant, in this prestigious company, to get 'too technical'. Don't forget that (as far as we know) the most basic of Earthbound natural phenomena have never been asked to perform in space. For instance, what happens to tomato pips or to bees or spiders? These were some of the experiments devised by students in the USA; simplicity is the key.

The ITN-SSI competition will be judged by a panel of experts in the space sciences. Finalists will be asked to construct the winning package from their own resources. Full details and conditions can be obtained by sending a large stamped addressed envelope 10: Experiment in Space, ITN, PO Box $4 B Y$, London WIA 4BY.

RECON. DMM

If you did not manage to find yourself a suitable instrument from the Multimeter Buyer's Guide in the May issue of PE, then this Beckman model just might fit the bill.

The 3020R is a hand-held DMM la Beckman 3020 reconditioned by Beckman) with a d.c. accuracy of 0.1 per cent. D.c. voltage range 200 mV to 1500 V , a.c. voltage range 200 mV to 1000 V . current a.c./d.c. $200 \mu \mathrm{~A}$ to 2 A , resistance 0 to 20MS. The 3020R has a battery life of 2000 hours and would normally cost in excess of f143 (if new), the cost of the reconditioned model is E86.25 inc VAT and p\&p. From, Intertec, PO Box 33, Dunstable, Bads, LU6 2QP. (0582873377).

Money Back

From now until the end of October Superswitch is making purchasers a moneyback offer on all its products as part of a summer promotion. This will be $£ 1$ if one item is bought, $£ 3$ on two.

The offer will be generally available wherever Superswitch products are sold, including electrical, DIY, hardware and lighting shops, and leading department stores. The products include dimmers, programmable lightswitches, low voltage outdoor lighting sets, immersion heater timers, smoke alarms and plug-in timeswitches.

All the purchaser has to do is send off a product carton top together with a special sticker which will be on each carton. Superswitch will refund $£ 1$ (or $£ 3$ if two purchases are submitted at once) direct to the purchaser.

Further information from Superswitch Electric Appliances Limited, 7 Station Trading Estate, Camberley, Surrey, GU17 9AH. Telephone: Camberley (0276) 34556.

Rechargeable torch

The X-CELL rechargeable torch from Nitech is gaining a substantial foothold in the market place according to its manufacturers. The torch incorporates the X-CELL rechargeable power unit which is a patented British invention, it is capable of casting a half-mile beam.

Controlled tests have shown the X-CELL to have a beam strength of 50,000 candlepower at twenty feet using a standard PR 13 bulb. A revolutionary bulb will be available shortly that will double the power to 100,000 candlepower, with the three hours of full light duration time unchanged. The torch is injection moulded from highimpact materials making it suitable for the toughest working conditions; it is resistant to chemicals, oils and water and floats beam up.

A full charge takes 12 hrs and it is possible to recharge the torch some 3,000 times at an estimated cost of 0.1 pence a time. Several charging voltages can be used from the mains to a low voltage source such as that of a car or boat. These

are 110 V to 280 V a.c. and 8 V to 28 V a.c./d.c. The X-CELL weighs in at less than 1.000 grams and is supplied with a plug-in charging lead. A motorist's model is also available with a hazard warning light, this model the 'Carmate' costs around two pounds more than the standard unit which retails at around E28. For further details or local stockist information contact, Nitech Ltd, Maze House, Maze Hill, St. Leonards on Sea. Sussex (0424435116).

PANASONCS TINY RADO

It is anticipated thāt Panasonic will launch in the UK sometime in 1985 the World's smallest a.m./f.m. stereo personal radio-the RF-07.

The super-slim receiver measures 91 mm high, 55 mm wide and 3.9 mm deep (approximately the size of a credit card). A rechargeable NiCad battery is the inclusive power source and will give up to five hours playing time under normal use, it can be recharged in about the same time. According to Panasonic they have optimised radio: circuit miniaturlaation Into Radio Highdensity Circuits (RHC's); there are four RHC's in the design.

Many now components have been developed for use in the RF-07 including a variable capacitor, volume control, tantalum capacitor chips and an ultra-thin a.m. antenna. All these components were deaigned to be less than 2.8 mm thick.

Accessories include a recharger unit, stereo headphones and a carrying case. It may be a while before we actually see this slim set in the High St. but when we do it is likely to cost in the region of $£ 110$.

OPERATOR PROTECTION
 Increasingly we hear of industrial working

 practices that damage the health of the operator, 'asbestosis' being a prime example. Goodness only knows what untold damage has been done to our bodies and those of our labouring forefathers over the past couple of hundred years?As the acid rain continues to pour down, and the beaches around Sellafield remain contaminated, it seems that operator protection from 'hazardous environments' is still in its infancy, indeed as is so often the case, changes are only made after the damaging event.

Encouraging to see then the development of a mobile work platform for use in hostile or hazardous environments. The vehicle has been developed by researchers at the Battelle Memorial Institute's Ohio laboratories. Nicknamed 'Rocomp' (Radio or Computer Operated Mobile Platform) the tracked vehicle can, under computer control, follow a prescribed program developed for a particular application or be radio-controlled by an operator in a safe remote area. According to its inventors it is the result of combining mechanical engineering skills with 'smart' controls and sensors. A TV camera can be added for working in blind areas.

Rocomp is a tracked vehicle that can pass over obstacles, ascend and descend 45 degree slopes, and easily manoeuvre up and down stairs. It can carry weights of up to 250 pounds over almost any firm surface. In a nuclear environment the platform would be equipped to detect radiation levels, collect air and smear samples, perform simple mechanical tasks and function as a mobile tool caddy. In these inhospitable conditions fewer personnel would be required to enter the area and those that had to enter would face a lesser exposure time, similarly the unit could be used in areas from which personnel are completely restricted.

Photo-voltaic relay

A new concept In solld-state switching devices, the photo-voltaic relay (PVR), was previewed by International Rectlfier at the 1984 All-Electronics/ECIF Show.
The new type of relay, which incorporates a photo-voltaic isolator array in conjunction with a new power integrated circuit known as a BOSFET Ifor 'bidirectional output switch fieldeffect transistor'), could offer an idea solid-state replacement for electromechanical reed relays. Like reed devices, it can handle both a.c. and d.c. signals end other waveforms, but its reliablity is several orders of magnitude better then electromechanical devices.
Relays using the PVR technique are expected to be commercially available In early 1985

ATARR-400 KEYBOARD

A new sllicon rubber, stick-down keyboard for the Atari 400 computer has been developed by Filesixty, the London-based computer hardware company that has successfully marketed a similar product for the Sinclair 2X-81.

The keyboard, which is virtually Indestrucable, can be applied to the machine in seconds. It gives the operator a calculator-type feel. thereby overcoming the Atari 400's major drawback-its flat key pad.
The keyboard will make any operator func tons more enjoyable, quicker and more
satisfying.
The keyboard which has been designed to coordinate with the look of the machine, is moisture and dust proof and will not discolour. It has been tested to up to $3 \frac{1}{2}$ million impressions. It costs $£ 19.95$ and is avallable inttally direct from Fllestxty and later from selected retailers. The product will be marketed through the home computer and computer games spectalist press.

Further information is available direct from Filesixty, 25 Chippenham Mews, London W9. Telephone: 01-289 3059 (office hours).

ALLWOONDUP
 New Tools

Clairtronic has introduced a new economy range of low voltage isolating transformers with wound-in flying leads. These cable connections provide additional safety by eliminating mains voltage terminals on the transformer and ensure that international safety standards for creepage and clearance distances are easily maintained. The integral cables also provide lower circuit installation costs.

This range of chassis mounting transformers comprise four sizes 2, 4, 10 and 18 VA each with a choice of four centre tapped voltage outputs $6-0-6,9-0-9,12-0-12$ and 15 -$0-15 \mathrm{~V}$. Primary voltages are 220 and 240 V . All sizes are constructed on double section bobbins to provide 4 kV insulation between primary and secondary.

Prices range from $£ 1.59$ to $£ 3.42$ including VAT and p\&p. Further information from, Clairtronic Ltd., Churchfield Road, Chalfont St Peter, Bucks (0753 887227).

A new range of pliers and cutters from OK Industries is available with sets of finger rings enabling the tools to be kept to hand for operations requiring both finger and tool work-twisting wires with the fingers and then cutting the wire ends, for instance. Finger rings with 19 and 23 mm diameters are supplied to clip onto the tools' handles so that users can tailor a suitable grip. Another timesaver for gripping difficult-tohold small components in place during assembly is the K-40 lockable tweezerplier, it can grip objects up to 7 mm thick leaving hands free for other tasks. Made of a tough glass-filled propylane, these tweezers are non-magnetic and resistant to most acids and can also be machine washed or even boiled for perfect cleansing. Details from, OK Industries UK Lid., Dutton Lane, Eastleigh, Hants. SO5 4AA (0703) 619841).

Briefly...

The UK Patents Information Network points out that oil rig workers in the Shetland Isles are among those now beginning to feel the benefits of research done nearly a decade ago. The workers' homes are kept warm by 'painton' electrical heating. The houses have heated panels which incorporate graphite and are coated with electrically conductive paint. This paint can act as a heating element when applied to non-conductive materials such as brick and plasterboard etc and connected by electrodes to a low voltage power supply. Methods are described in patents such as UK 1296855.

According to the Alfred Marks research unit, a recent study of secretarial, clerical and word processing staff, showed that among the factors that influence people to leave their jobs, inept management ranks top. Of the 387 respondents, 288 were critical of their bosses' management abilities. The most frequent complaint was the lack of interest they showed in their subordinates' careers.

Amstrad the consumer electronics PLC has moved its administration offices from Garman Road, Tottenham.

The move has been brought about by continued company growth and a need for larger premises in anticipation of the company's CPC 464 home computer sales. The new address will be, Brentwood House, 169 Kings Road, Brentwood, Essex CM14 4EF. (0277 228888).

Houndidnur ...

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Mike Abbott.
Light Fantastic Open 7 days a week at the Gallery of Holography, 48 South Row, The Market, Covent Gdn., London. A8
Cable July 10-12. Wembley Conf. Cntr., London. O
Education, Training \& Development July 10-12. NEC. B2
BAEC Amateur Electronics July 14-28 (not Mon's, Tues' or Thurs'). The Shelter, The Esplanade, Penarth, S. Glam. B9
Electron \& BBC User July 19-21. Alexandra Palace, London. L
Concerned Technology (for disabled) Aug. 2-4. Eldon Square Rec. Cntr. Newcastle. Y3
IBM System User Show Sept. 3-5. Olympia 2. Q2
Concerned Technology (for disabled) Sept. 3-7, Meadowbank Sports Cntr. Edinburgh. Y3
Laboratory Sept. 4-6, Barbican, London, E

Amplifiers \& Speakers (meeting) Sept. 8. Electronic Organ Constructors Society. Y4
Testmex Sept. 11-13, Grosvenor Ho., Pk. Lane, London. E
Personal Computer World Show Sept. 19-23, Olympia 2, London. M
Building \& Home Improvement Sept. 25-30. Earls Court, London.. M Computer Graphics Oct. 9-11. Wembley Conf. Cntr., London. O Sonware Expo Oct. 16-18. Wembley Conf. Cntr., London. 0 Drives, Motors \& Controls Oct. 24-26, Harrogate Exhibition Cntr. E Leisuretronics Nov. 8-11, Royal Horticultural Hall, London. T P.c.b. Manufacture \& UV Box Construction (meeting) Nov. 17. Electronic Organ Constructors Society. Y4

A8

B2
B9
E
L
\mathbf{L}
\mathbf{M}
M Montbuild (01-486 1951
O Online \int 01-8684466
Q2 EMAP $01-8373699$
T Trident \& 08224671
Y3 Expoman 01-788 7755
Y4 Percy Vickery \& 0202423863

commodore 64 RS232C INTERFACE R.A.PENFOLD

THE Commodore 64 home computer has a number of quite advanced features for a machine in its price bracket, and one of these is the user port. Apart from acting as an 8 bit input/output port for user add-ons, it can, with the aid of some built-in software, operate as an RS232C serial interface. This is obviously an extremely useful feature as it enables the unit to operate with equipment such as high quality printers, modems, etc., but there is a drawback in that the inputs and outputs are all normal 5 volt logic types, whereas the RS232C system uses nominal -12 volt and +12 volt signal levels. Also, an inverter is needed at some inputs and outputs to provide correct operation of the port. Presumably the necessary interfacing for RS232C operation has been omitted to enable the port to be used for other purposes as well.

Fortunately it is quite simple to add a level shifting circuit to the port so that proper RS232C operation can be obtained, and basically all that is needed is a power supply circuit and two inexpensive integrated circuits to provide the level shifting. As there is a 9 volt a.c. output on the user port which can be used to generate the required plus and minus 12 volt supplies the interface simply plugs between the port and the RS232C equipment, with no other connections being needed.
The driving software of the port can provide operation at any of the popular baud rates and with any normal word format.

LINE DRIVERS/RECEIVERS

The level shifting in this design is provided by line driver and receiver integrated circuits which have been designed specifically for use in this application. The devices in question are the MC1488 (or SN75188) quad line driver and the MC1489 (or SN75189) quad line receiver. Pinout details of both devices are shown in Fig. 1.

Fig. 1. Pinout details for the MC1488 and MC1489 devices

Fig. 2 shows the general arrangement used in each section of the MC1488 line driver. Transistor TRa is used as a sort of common base input stage, and it is normally switched on by the bias current that flows through Ra, Dc, Dd, and Rb, and the consequent voltage developed across Rb. A high input is therefore provided to the buffer stage at the output, but as the latter provides an inverting action its output goes low. If a low input signal is supplied to either input for both inputs) of the device, the current flowing through Ra is diverted away from Dc and Dd, and instead flows to ground through $\mathrm{Da} / \mathrm{Db}$. TRa is then cut off, its collector goes low, and the output from the buffer goes high.

Fig. 2. The arrangement used in the MC1488 line drivers

COMPUTING PROJECT

Some of the output signals from the user port of the Commodore 64 are of the wrong polarity, but the line drivers provide the required signal inversion in addition to the level shifting. Where no signal inversion is required an inverter added ahead of the line driver is used to counteract the inversion through the driver.

In most applications, including the present one, only one of the inputs to each driver is needed. Either the inputs can be wired in parallel or one of them can simply be ignored. Note that one of the drivers has only a single input. The 300 ohm resistor at the output is used to provide current limiting, which is a requirement of the RS232C standard.

The circuit diagram of Fig. 3 is for each of the line receivers in the MC1489 device. This is little more than three straightforward transistor inverters connected in series. This gives an overall inversion through the device, and an inverter must be used at the output of the device where a non-inverting interface is required. Ra and Da are used to clip the input signal at about -0.65 volts when it is negative in polarity, and this is done to protect TRa against an excessive reverse bias voltage and possible damage. Ra also provides current limiting when the input signal is positive in polarity and TRa is forward biased.

Resistor Rf is used to introduce a substantial amount of hysteresis which helps to avoid spurious operation due to stray pick-up of noise. A capacitor from the "Response Control" input to ground can be used to limit the high frequency response of the circuit, and again, this can help to prevent corrupted data due to noise pick-up, but in most cases this facility is not used.

THE CIRCUIT

Refer to Fig. 4 for the full circuit diagram of the interface.
The 9 volt a.c. output from the user port is capacitively coupled by C1 and C3 to two rectifier and smoothing circuits which produce the positive and negative supply rails. The unloaded supply voltages are approximately plus and minus 12 volts, but both reduce by about 2 volts or so when loaded. This gives an ample voltage swing from the line drivers (IC2) since RS232C standard requires minimum signal levels of only plus and minus 3 volts. There is a significant amount of ripple on both supplies, but this is perfectly acceptable in this application.

IC1 is the MC1489 line receiver, and this needs only a single +5 volt supply. A suitable supply is available from the user port, and this is used to power IC1.

Fig. 3. The MC1489 line receiver

There are a number of inputs and outputs available at the user port when it is used in its RS232C role, although some of these are unlikely to be needed in practice. The two principal ones are signal input and output, which are, of course, the ones that are used to carry data into and out of the machine. The others are mostly handshake lines which are used, where necessary, to regulate the flow of data into or out of the computer. For example, if the Commodore 64 is used to drive a printer, it is unlikely that the printer will be able to keep up with the flow of data from the computer. The printer's RS232C port should have a DTR (data terminal ready) or RTS (request to send) handshake line which would

Fig. 4. The circuit of the RS232C interface
be connected to the CTS (clear to send) or DSR (data set ready) handshake input of the Commodore 64's RS232C interface. The handshake line is then used by the printer to indicate when it is not able to process data, and a software loop in the computer halts the outflow of data during these periods.

The Commodore 64 provides RTS and DTR outputs so that it can operate with handshaking when it is receiving data, although in most cases it will be able to keep up with the sending rate and handshaking will then be unnecessary.

The DCD (data carrier detect) is an input which enables the sending device to indicate to the Commodore 64 that the communication link has been established, but this is only utilised in automatic systems, and is unlikely to be needed.

When using the Commodore with a number of pieces of RS232C equipment it was always necessary to have the input and output data signals inverted. With the handshake lines things seem to be less universal, and it is usually necessary to experiment a little to find the method of connection that gives correct operation. TR1 and TR2 are used in simple inverter circuits which give non-inverted CTS and DTR lines, and this is likely to be the most useful arrangement in practice. However, if necessary it would not be difficult to reconfigure the circuit slightly.

CONSTRUCTION

Details of the printed circuit board and component layout for the interface are shown in Figs. 5 and 6.

While the board is quite straightforward and simple to construct, it is important to take great care not to make any mistakes. In particular, ensure that the electrolytics and rectifiers are connected with the correct polarity, and do not accidentally swop over the two integrated circuits!

The connection to the user port of the Commodore 64 is made via a piece of 14 way ribbon cable, one end of which connects to the printed circuit board. It is easier to make these connections by way of Veropins, but this increases the

COMPONENTS . . .

Resistors

R1,R6	$1 \mathrm{k}(2$ off $)$
R2,R4	$2 k 7$ (2 off)
R3,R5	$4 k 7$ (2 off)

All resistors $0.25 \mathrm{~W} 5 \%$ carbon
Capacitors

C1,C3	$100 \mu 25 \mathrm{~V}$ axial electrolytic (2 off)
C2,C4	$220 \mu 16 \mathrm{~V}$ axial electrolytic (2 off)
C5	100 n disc ceramic

Semiconductors

IC1
IC2
TR1, TR2
D1,D2,D3,D4

MC1489 or SN75189
MC1488 or SN75 188
BC239 (2 off)
1N4001 (4 off)

Miscellaneous

Case about $119 \times 99 \times 44 \mathrm{~mm}$
Printed circuit board
5 way DIN socket (see text)
2×12 way 0.156 inch edge connector
14 way ribbon cable
6BA fixings, Veropins, wire, etc.
risk of accidental short circuits unless sleeving is used over the connections, and it is probably better just to make the connections direct to the board. A 2×12 way edge connector is fitted to the other end of the cable, and this must be a

Fig. 5. Printed circuit board layout

C.

Fig. 6. Component layout

Fig. 7. The connections to the 2×12-way edge connector
0.156 inch type (not the more common 0.1 inch variety). Fig. 7 shows the connections to the edge connector (which is viewed looking onto the pins at the rear of the connector). There are two slots in the Commodore 64's printed circuit board which can take polarising keys in the edge connector, but a suitable connector might be difficult to obtain. It would probably be possible to add these keys to an ordinary edge connector, or, alternatively, the top and bottom of the connector could be clearly marked as such.

The prototype is housed in a plastic box having approximate inside dimensions of 115 by 95 by 37 mm . The RS232C lines are taken to a 5 way DIN socket, with the DCD, RTS, and DSR lines being left unused, but obviously any desired connector having a sufficient number of ways for the lines in use could be utilised. The lid and main part of the case are filed away to produce an exit slot for the ribbon cable. The board is mounted inside the box using M3 or 6BA fixings.

IN USE

In some applications it will merely be necessary to connect the ground and signal in/out terminals of the interface to the other item of RS232C equipment. If (say) a printer is driven from the interface it will be necessary to use handshaking, with the DTR output of the printer being connected to the CTS input of the interface perhaps. However, it may be necessary to experiment a little to find which handshake input/output combination gives the desired effect. Taking the CTS line high enables the output from the port. If the DSR line is used this is taken low to enable the output, but this can only function if the CTS line is taken high, or if TR1 and R1 to R3 are omitted from the board.

If data is fed into the port from (say) another computer it may be necessary to connect either the DTR or RTS line to the CTS or DSR line of the other computer, even though handshaking will normally be unnecessary in this type of application. This is simply because many serial interfaces cannot output data unless the appropriate handshake line is activated. For example, the CTS line on the BBC model B computer must be taken high to enable the outflow of data. The RTS output of this interface is normally low and the DTR output is normally high.

In order to use the interface a file must be opened, and the baud rate/word format must be specified. The baud rate is simply the rate at which data is sent, and 300 baud for instance, transmits data at 300 bits per second. The data is transmitted together with additional bits; and one of these is the start bit. There is always just one start bit at the beginning of each byte. One or two stop bits are added at the end of each byte. Some systems use parity checking, and this

The RS232C Interface mounted in its case, showing connections to the DIN socket (right), and the ribbon cable (left)
is where either an odd or an even number of bits are transmitted, with the parity bit being added where necessary to ensure that a suitable number of bits are sent. In order to send ASCII codes only 7 bits are required, and this is all that some systems send, but others use 8 data bits. This gives a large number of possible baud rate and word format combinations, but the Commodore 64 can handle all of the common ones.

A file is opened using the command:

```
OPEN X,2,0,CHR$(Y) + CHR$(Z)
```

Here X is the file number (which is used in subsequent commands relating to the RS232C channel), and can be any number in the range 1 to 255 . A number greater than 127 is used if a linefeed must follow every carriage return. The figure 2 following the file number is the device number of the RS232C port incidentally.

COMPUTING PROJECT

The number used for Y sets the number of data bits, the number of stop bits, and the baud rate. The table given below shows the numbers that are used to select the desired word format and baud rate:

8 data bits	0
7 data bits	32
50 baud	1
75 baud	2
150 baud	5
300 baud	6
600 baud	7
1200 baud	8
2400 baud	10
1 stop bit	0
2 stop bits	128

For example, 7 data bits, 1200 baud, and 2 stop bits would require Y to have a value of $168(32+8+128)$.

Odd, even, or no parity is selected by setting Z at the appropriate value, as follows:

No parity	0
Odd parity	32
Even parity	96

If handshaking is to be used 1 should be added to the value of Z.

To list a program through the RS232C interface the command:

CMDX : LIST
is used. Here X is the file number, and is the same as the file number used in the OPEN command which opened the RS232C channel. Data can also be sent using PRINT\#X, 'data".
When a program is listed and handshaking is utilised it may be found that the final part of the listing is not flushed from the Commodore 64's RS232C buffer. One or two PRINT\# commands should flush the buffer and complete the listing.

Data can be fetched from the RS232C port using GET\#X,A\$

In both these examples X is again the file number used in the OPEN command which set-up the RS232C channel.

A final point to bear in mind is that the 255 bytes below RAMTOP are used as the RS232C buffer when the RS232C channel is opened, and any data stored there will obviously be lost.

Further information on using the Commodore 64's RS232C interface can be found in the "Commodore 64 Programmer's Reference Guide" which is published by Commodore.

Tand Micronta Testers For Your Workshop ...

21 Range - 30,000 Ohms/Volt Multitester

31/2-Digit, 16-Range Compact Multimeter

 - Fused and Overload Protected
 - Diode Check Function For Testing Semiconductors

- Measures $53 / 16 \times 31 / 4$ $\times 1 / 15^{\prime \prime}$

Single-IC design assures extremely low battery drain and high accuracy. Single-knob range switch, full auto-polarity operation. Low-battery and over-range indicators. DC Volts: $2-20-200-2000 \mathrm{~V}$ (max. 1000 V). AC Volts: $2-20-200-2000 \mathrm{~V} \mathrm{~mA}$ 2A. Resistance: 2-20-200-2000 kohms. Includes spare fuse, test leads. Requires 9v battery. 22-189

Features include fuse and surge-absorber protection, bananatype probe jacks and $4^{\prime \prime} 3$-colour mirrored meter with automatic shunt protection (when folded shut). DC Volts: 0 to 1200. AC Volts: 0 to 1200. DC Current: $0-60 \mu \mathrm{~A} .3-30-300 \mathrm{~mA}$. Resistance: 0-2-20-200K-2 megohms (centre scale 24). dB: -20 to +63 dB . Requires "AA" battery, 22-211

> Take A Look At Visit your local store or dealer and see these and many more Tandy, Today! products. We service what we sell - over 2,800 exclusive lines!

ter (IC2) wired as a divider. This gives a square wave with a 12 second period at the output on pin 1. This combination was chosen as oscillators running at higher frequencies are usually easier to keep stable than those running at lower frequencies. Even so, this type of Schmitt oscillator must have a well regulated supply, such as that provided by the 78LO5 used in this design. The output of IC2 is passed through another NAND gate wired as an inverter to correct the phase of the clock for the shift register IC3 and IC4. It is these two integrated circuits and their interlinking that forms the heart of the Mastermind Timer. To understand their operation it may help to refer to the timing diagram (Fig. 2) and the i.c. pinout diagram (Fig. 3).

When the timer is switched on, the register will take up a random state and start clocking. After a time (maximum of 2 minutes), pin 12 of IC4 wilpgo high and force the reset line high. This clears both stages of IC3 and the first stage of IC4 and consequently extinguishes all the lamps. It also holds the divider (IC2) in the non-operating mode.

On pressing the start button (S1) the second stage of IC4 clears and the RESET line goes low. IC2 starts counting. After 12 seconds, the clock causes the first shift in the registers IC3 and IC4. The first output (pin 5) of IC3 goes high, having clocked the input (pin 7) which is tied to +5 V .

After a further 12 seconds another shift occurs and the second output (pin 4) also goes high.

After 96 seconds, all the outputs of IC3 are high. The final output of IC3 acts as the input of IC4 (pin 7) and so after another 12 seconds (108 seconds total) the first output of IC4 goes high (pin 5). During the 12 seconds a lamp is flashed at 3 second intervals by using the 3 second period output of IC2 (pin 14) gated with period "9" (IC1b and IC1c).

At 120 seconds the second output of IC4 (pin 4) goes high, causing the buzzer to operate. This output also acts as the input to the second stage of IC4 (pin 15) which is being

MASTERMIND TIMER... J. D.Parkinson .s.a.

ALOCAL cub scout pack had been asked to host a competition which was to be based on the BBC programme Mastermind. The cub scouts were to be asked a series of questions and had to answer as many as possible in two minutes. To keep the young audience interested, it was decided that time keeping should be more spectacular than that which can be achieved by a clock or stopwatch. It was then that I was approached and asked to design an alternative timekeeping system. On pressing the start button, nine lamps are illuminated in sequence after every twelve seconds. During the final twelve second period, an additional lamp is flashed on and off to warn the contestant that his time is nearly finished. At the end of the 120 seconds a buzzer sounds for 6 seconds and then all the lamps extinguish ready for the next contestant.

CIRCUIT DESCRIPTION

The circuit diagram of the timer is shown in Fig. 1. An oscillator is formed by a CMOS 4093 Schmitt NAND gate (IC1a) and is followed by a CMOS 404012 bit binary coun-

Mastermind your quiz games with the useful two minute timer

Fig. 1. Circuit diagram of the Mastermind Timer
clocked at 3 second intervals (pin 1). Six seconds was thought to be sufficient time for the buzzer operation so the second output of the second stage of IC4 (pin 12) is used to stop the buzzer by causing a reset. The timer is now automatically back in the "Ready" state. A "Hold" pushbutton (S2) can be used to introduce pauses in the timing if required. This may, however, affect the timing slightly as C1 will continue to charge.

Fig. 3. Pin connections and logic schematic of the 4015

Fig. 2. Timing diagram of lamp sequence

LAMPS AND LAMP DRIVERS

To economise on the transformer and rectifier, and to keep the cost of the power as low as possible, the bulbs were of the T1 $\frac{1}{2}$ LES type as these have a current demand of less than 10 mA . They were still bright enough however to be seen in a reasonably large room. Similarly, the buzzer was chosen carefully for current demand versus audibility but a bell could easily be substituted. If this were done, it would be essential to use the ULN2003 to drive a relay to switch a separate power supply to drive the bell. Failure to do this could cause excessive. interference in the CMOS circuits.

Fig. 4. Layout of timer board. Both boards alre shown below, mounted in the case

COMPONENTS . . .

Resistors	
R1	33 k
R2,R3	$10 \mathrm{k}(2$ off $)$
R4	3 k 3
VR1	20k pre-set
All t W 5% Carbon	

Capacitors	
C1	47n polyester
C2,C4	220 n polyester (2 off)
C3	1000μ axial elect.
C5	470 n polyester

Semiconductors

IC1	CMOS 4093
IC2	CMOS 4040
IC3,IC4	CMOS 4015 (2 off)
IC5,IC6	ULN2003N (2 off)
IC7	78LO5

Miscellaneous	
T1	240 V (prim) $12 \mathrm{~V}(\mathrm{sec}) 12 \mathrm{VA}$
REC1	1 A 200 V p.i.v.
FS 1	1 A
LP 1 to 10	14 V LES T1 $\frac{1}{2}(10$ off $)$
Veroboard	$60 \times 40 \mathrm{~mm}$ and
	$120 \times 90 \mathrm{~mm}$
Fuse holder	P.c.b. mounting
Lampholders	as required
Case	ABS plastic las required)
Lamp mounting	aluminium angle
S 1.52	N/o momentary
wire and cable	as required
WD 1	Buzzer (as required)

CONSTRUCTION

In the prototype shown in the photographs, the power supply (excluding transformer) was assembled on a $60 \times$ 40 mm Veroboard and the timer circuit on a $120 \times 90 \mathrm{~mm}$ Veroboard. These two boards plus the transformer were mounted in a large ABS plastic box with the switches and the buzzer fitted in the lid.

Fig. 4 shows the layout used for the timer board and the link wires between tracks. The other interconnecting wires are loomed together down the sides of the board to produce as neat an appearance as possible given the relatively large number of connections.

The power supply board is shown in Fig. 5 with its boardmounting fuse holder. This board is quite simple and few problems should be encountered with its assembly. However, it is important to ensure the cabling is sound and
adequate, especially if it is to be used by young and inexperienced people. Earthing and fusing arrangements should also be strictly adhered to.

The lamps should be mounted in a display panel with enough cable to ensure it can be seen. If possible multicore cable should be used to connect the box to the lamps but failing that instrument wire will suffice if fastened down securely. In the prototype, I had a desk mounted display consisting of an angle of aluminium ($50 \times 50 \mathrm{~mm}$) which was 600 mm long drilled at 50 mm intervals to take the lamps as shown in the photograph. Aluminium will oxidise very quickly after being handled producing the dull white colour normally associated with this metal. However, to prevent this the metal can be cleaned with a brillo pad (to take out the scratches and finger marks) and then, after rinsing and drying, by spraying with p.c.b. lacquer. The lamp which flashes should ideally be a different colour from the other nine to make it stand out clearly.

Fig. 5. Layout of power supply board

TESTING

The only test equipment required is a high impedance voltmeter.

1) Turn on the supply and check that the +15 V and the +5 V are on the correct pins. Also check the OV pins are wired correctly.
2) Turn off and insert the integrated circuits.
3) Turn on; some lamps will be on and some off, but eventually all should extinguish. If this does not occur then the system is not clocking. Check that the output of IC2 (pin 1) is giving an output of approximately 6 seconds on and 6 seconds off. If it is, then follow the clock across through IC1d, IC3 and IC4. Check that pin 7 of IC3 is wired to +5 V . If there is no outpul from IC2, check the input (pin 10): If IC1a is oscillating then a voltmeter will average the square wave and read approximately $2 \cdot 5 \mathrm{~V}$. If the reading is either +5 V or OV then check the components around IC1a.
4) If all is working, adjust VR1 to give the right frequency by timing the two minutes between pressing "START" and the buzzer sounding.

Field Measurements using a Cassette Recorder T.P.Manning

DESPITE the ease with which data may be digitised and stored the real requirement of a lot of environmental experiments is a graph of change against time. Chart recorders are expensive items and schools and research establishments tend not to have an abundance of them, particularly d.c. powered models for use in the field. What is required is to provide as many students as possible with the means of collecting and examining their own data as cheaply as possible. I therefore adopted the policy some three years ago of advocating the collection of data on cassette tapes and obtaining the curves from the chart recorder in laboratory conditions. The advantages are many fold. The student only has to be provided with an ordinary, standard cassette recorder, the batteries and cassettes for which are obtainable almost anywhere; plus a simple converter. An expensive chart recorder is not used in "messy" environments and problems of lack of paper pens clogged etc. can no longer hamper the collection of field data and hence the ruination of a field trip. The system has been successfully used to record wave height, water and air temperatures and wind speed. The application decided upon for description, since it was slightly more specialised, is for attachment to a kite to measure air temperatures up to 300 metres, over a scale of $-5^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.

TECHNIQUE

The basis of the device is the 9400 CT, a 14 pin di.i.l chip which as a voltage-to-frequency circuit provides $0-10 \mathrm{kHz}$. for a d.c. input of $0-10$ volts and can be used in the reverse manner, as a frequency-to-voltage circuit. Thus the transducer's range must be converted for an output of 0-10 volts, and the chip accomplishes the rest. Obviously in the described application weight is a prime consideration. A kite payload of 1 lb was specified. The cassette recorder used is one of the miniature dictaphone types using MC60 cassettes. The machine and batteries weighs 8ozs. leaving ample allowance for the p.c.b. and PP3 batteries. The internal microphone is disconnected and the output from the V -to-F fed via the level divider and capacitor as shown. (The amplitude of the pulses coming from the V-to-F chip is 5 volts, and this level is reduced to approximately 200 mV .) Although the tape recorder used has switched speeds of either 1.2 or $2.4 \mathrm{~cm} / \mathrm{sec}$ (1 or 2 hours recording time) the faster speed setting was far superior. To read back the data the signal is taken from the earpiece output and fed through a pulse shaping circuit. (The chip requires a bipolar signal input of greater than $\pm 200 \mathrm{mV}$. but less than ± 2.5 volts). The output will be $0-4 \mathrm{~V}$ for $0-10 \mathrm{kHz}$ input. Thus scaling is arranged to individual requirements.

Fig. 1. Voltage-to-Frequency converter in the guise of temperature sensor. This circuit produces temperature related frequencies in a range suitable for domestic cassette recorders

Fig. 3. Level correcting circuit to adapt the cassette recorder output to the F-to-V circuit input

Fig. 4. The 9400CT configured as a Frequency-toVoltage converter

Fig. 5. Potentiometer is used to match F-to-V converter's output to a chart recorder

Fig. 6. Suitable PSU

REALTIME DATA LOGGING

Fig. 7 (below). Temperature-to-Frequency circuit p.c.b. layout (actual size)

Fig. 8 (foot of page). Temperature-to-Frequency board component layout

COMPONENTS . . .

RECORD UNIT

Resistors

R1,2	4 k 7
R3,4	1 k 8
R5,6,12,15,16	10 k
R7,8,11	100 k
R9,10	1 k
R13	470 k
R14	1 M
R17	Platinum detector $-385 \mathrm{ohm} /{ }^{\circ} \mathrm{C}$
	1000 ohm $/ 0^{\circ} \mathrm{C}($ RS $158-244)$

All resisters \mathfrak{j} W 5\%
Potentiometers

VR1	200 preset
VR2,VR3	10 k preset (2 off)
VR4	22 k preset
VR5	50 k preset

Capacitors

C1,3	$220 n$
C2,4	$470 n$ (2 off)
C5	150 p
C6	600 p

Integrated circuits

IC1,2	741 N
IC3	9400 CT
IC4	$78 \mathrm{LO5}$
IC5	79 L05

E 21566

Fig. 9. Frequency-to-Voltage printed circuit layout (actual size)

Fig. 10. Frequency-to-Voltage board component layout

In the instrument described the requirement was a range of $-5^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$. The tape recorder has a response of 315 to 4000 Hz . Therefore the system was bridged to give 500 Hz for $-5^{\circ} \mathrm{C}$ and 4000 for $30^{\circ} \mathrm{C}$. This frequency fed to the playback unit produces a range of 0 to 1.6 V so a series resistor is used to adjust the scale to 0 to $1 V$ to be fed to the chart recorder.

CONCLUSION

This method is flexible, economic and simple. The transducer must be bridged and amplified to appear in the scale 0 to 10 V ensuring that its range is within the frequency range of the recorder and its output range set as previously described. Cheap domestic recorders have proved adequate.

COMPONENTS . . .

PLAYBACK UNIT \& PSU

Resistors

Potentiometers
VR1
50k

Capacitors

C1,2	1000μ (2 off)
C3.5	220 n (2 off)
C4,6	$47 \mathrm{n}(2$ off)
C7	47 p
C8	1000 p

Semiconductors

IC1	@400CT
IC2	78 LO5
IC3	79 L05
REC1.2	W005 (2 off)
Miscellaneous	

Miscellaneous

As required neons, switches, plastic boxes, diodes, tape recorders, battery connectors.
T1
0-6, 0-6 mains transformer

MICRO-BUS
 and MICROPROMPT

Appearing every month, Micro-Bus now presents ideas, applications and programs for the most popular microcomputers and all micro-related projects so far published in PE. Ideas must be original, and payment will be made for any contribution featured.

ZX80

Sir-The aim of this program is to convert a number in any base to its equivalent in any other base. Any number (or letter, $A=11$. $B=12, C=13$ etcl, subject to the one proviso that the decimal number produced in line 220 does not exceed the machine's limit of 32,767, otherwise error code 6 will be displaved.

Unfortunately the final number produced cannot be used in further calculation due to the method used for displaying it, although in the unexpanded 2×80, there would probably not be enough memory remaining for any further calculation.

This program has been particularly useful for converting binary, decimal and hex into each other's bases.

Lines 160 to 260 convert the number in base (N) to its equivalent in decimal and lines 270 to 400 convert and display the number into its base (M) equivalent.

This program could be run on the 2×81. provided that the following points are taken into account:

Lines 160 to 190 could be replaced by LENA\$.

Line 340 should read LET $D=I N T(Z / Y)$.
The character set should be checked that $0=28$ and that 9 is followed directly by A, if
these are not the same, suitable modifications should be made to lines 200 and 360 .

Graham Lattin
South Norwood, London.

Note: " denotes "to the power of" (shifted'H')

10 PRINT"BASE(N) TO BASE(M) CONVERTER"
20 PRINT
30 PRINT "INPUT BASE OF NUMBER YOU HAVE"
40 INPUT N
50 PRINT
60 PRINT "INPUT BASE TO WHICH YOU WISH TO CONVERT"
70 INPUT M
80 PRINT
90 PRINT "INPUT NUMBER TO BE CONVERTED, IF BASE $>10, A=11$, B=12 ETC."
100 INPUTB\$
110 PRINT
120 LET AS $=$ BS
130 LET C $\$=B \$$
140 LET $X=0$
150 LET $Z=\emptyset$

```
LET A \(\$=T L S(A S)\)
LET \(\mathbf{X}=\mathbf{X}+1\)
IF A \(\$=\) " "THEN GOTO 200
GOTO 160
LET \(\mathrm{A}=\mathrm{CODE}(\mathrm{B} \$)-28\)
LET \(\mathrm{Y}=\mathrm{A}{ }^{*}\left(\mathrm{~N}^{* *}(\mathrm{X}-\mathrm{I})\right)\)
LET \(Z=Z+Y\)
LET \(\mathrm{X}=\mathrm{X}-1\)
LET \(\mathbf{B S}=\) TLS \((B \$)\)
IF \(X=\emptyset\) THEN GOTO 270
GOTO 200
LET \(\mathrm{X}=\emptyset\)
LET \(\mathrm{Y}=\mathrm{M}^{* *} \mathrm{X}\)
IF \(\mathrm{Z}<\mathrm{Y}\) THEN GOTO 320
LET \(\mathrm{X}=\mathrm{X}+1\)
GOTO 280
LET \(\mathrm{X}=\mathrm{X}-1\)
LET \(\mathrm{Y}=\mathrm{M}\) * * X
LET \(\mathrm{D}=\mathrm{Z} / \mathrm{Y}\)
LET \(\mathrm{Z}=\mathrm{Z}-(\mathrm{Y}\) * D\()\)
LET D\$=CHR\$(D+28)
PRINTDS:
IF \(\mathrm{X}=0\) THEN GOTO 400
GOTO 320
PRINT " IS THE BASE (";M;")
EQUIVALENT OF ";CS;" IN BASE
(";N;")"
410 INPUTXS
CLS
GOTO 10
60 LET AS=TLS(AS)
170 LET \(\mathbf{X}=\mathbf{X}+1\)
180 IF A\$=" "THEN GOTO 200
190 GOTO 160
200 LET \(\mathrm{A}=\mathrm{CODE}(\mathrm{B} \$)-28\)
210 LET \(\mathrm{Y}=\mathrm{A}^{*}\left(\mathrm{~N}^{* *}(\mathrm{X}-1)\right)\)
LET \(Z=Z+Y\)
230 LET X=X-1
240 LET BS=TLS(BS)
250 IF X=0 THEN GOTO 270
260 GOTO 200
270 LET \(\mathrm{X}=\emptyset\)
280 LET \(\mathrm{Y}=\mathrm{M}^{* *} \mathrm{X}\)
290 IF Z \(<\) Y THEN GOTO 320
300 LET X=X+1
310 GOTO 280
320 LET \(\mathrm{X}=\mathrm{X}-1\)
330 LET \(\mathrm{Y}=\mathrm{M}\) * * X
340 LET D=Z/Y
350 LET \(\mathrm{Z}=\mathrm{Z}\) - ( Y * D )
360 LET D \(\$=\) CHR \(\$(\mathrm{D}+28)\)
370 PRINT DS
380 IF X=0 THEN GOTO 400
390 GOTO 320
400 PRINT"IS THE BASE (";M;")
(";N;")"
410 INPUT XS
420 CLS
GOTO 10
```


MICROCONTROLLER

Sir-In response to your request for program material for PE computer projects, other than the UK101. I present below a program for the Microcontroller. This is part of a much longer program used for timed control of central heating and other processes.

In the original program "ky" was a subroutine located above 0100 and the table
only left on page 1. The program reproduced here will run as it stands, but may be modified to be used as a subroutine simply by replacing out: with $\$ 39$ and ФO5E, $005 F$ with $\$ 39 . \$ 01$, It can be seen that "setApia" is only accessed once and the rest of the program is continuously polled, facility being provided to get out and make modifications through the "cancel" key.

Thus you can override timed outputs
with the keyboard one at a time without clearing or upsetting existing output states.

To test the program a l.e.d. display as described in PE Oct ' 82 was used. Each l.e.d. being lit by one numeric key press and extinguished by first pressing "\#" and while it is held down pressing the appropriate numeric key.
C. Gardiner Brighton.

KEYBOARD

tit 1 Keyboard subroutine for 6800 microcontroller Adds old pia output status to a new status selected from the hex numeric keys, $0-\mathrm{F}$. (Only $0-7$ here)

F82C
F82C

War and Peace

After last year's Labour Party and Trade Union conferences it became clear that at grass root level there had been a change in attitudes. This year we are beginning to see how the change is working out in practice.
The row over the banning of unions in the security-sensitive corridors of GCHO had a unifying effect. Here was a cause in which everybody could join. A great principle seemed to be at stake. The protest was prolonged and noisy. In the event it was a lost cause with GCHO employees surrendering their membership for immediate financial advantage.
When it came to the strike in the coalfields we had an entirely different situation. The cause was just but from the start there was a split on the wisdom of striking. By ingenious re-interpretation of the unlon rule book what was initially a walk-out in one pit was projected into a declaration of a total strike without recourse to the traditional ballot.
Mass plcketing of working pits failed to intimidate the non-strikers. Verbal and digital obscenities and physical violence were not enough to force submission. Despite the provocation coal was still being mined. It was now civil war in the historically fraternal National Union of Mineworkers.

Worse was to come. Steelworkers were sympathetic but unwilling to co-operate too closely when it became obvious that their own jobs were in jeopardy. Lorry drivers, ordered by their own union not to cross picket lines, openly defied their union bosses.
Working class solidarity seemed to have dissolved. The cause is not difficult to see. Union members are no longer working class in the sense of fifty years ago. Today they have graduated to progressive property ownership, to driving a decent car, to annual holidays abroad, all not lightly to be cast aside.

I mention these disputes only to highlight the enlightened attitude towards sweetheart agreements which I mentioned
a couple of months ago. The engineering unions are now moving towards the position adopted by the electricians wherein no-strike clauses are seen, in the long run, to be beneficial all round. Peaceful negotiation and the creation of wealth is more sensible than a destructive war and is now seen as a preferred option. The very idea seemed so outrageous to the old guard in the trade union movement that it has never been debated. But it could be the hottest topic at the autumn conferences.

The Economy

Optimism has been bursting out all over following first quarter results and forecasts for the future. Both CBI and Institute of Directors surveys of business opinion revealed high levels of confidence. In our own industry a major indication is the level of component sales. The Association of Franchised Distributors of Electronic Components (AFDEC) sees 1984 as a bumper year, so much so that there will be a shortfall in some component categories and principally i.c.s.

The manufacturers are responding with gusto. Texas Instruments is only one of many stepping up output. Tl is spending f10 million to more than double output of linear i.c.s at their Plymouth plant with the prospect of another 400 people employed by next April. A group of companies from California is setting up a new company, Integrated Power Semiconductors, at Livingston, Scotland. Funding of £15 miltion guarantees an immedlate start on plant construction and IPS will eventually employ about 500 people.

On the R \& D front the Alvey programme is at last getting off the ground with a £3.6 million award for a prototype project. Defence electronics is moving smartly ahead with major contracts. Plessey"s Ptarmigan secure tactical communications system has won a second phase contract worth $£ 200$ million of which $£ 34$ million goes to STC as a principal subcontractor

Marconi Space and Defence Systems (MSDS) has scooped a $£ 100$ million contract as prime contractor for a new airborne electronics counter-measure system. Called Zeus it is initally to be carried by RAF Harrier close support aircraft. Partner in the deal is Northtrop Corporation of Chicago who will supply the jamming transmitters but MSDS has total responsibility for design and engineering.

Zeus is a good example of AngloAmerican co-operation and justified if only because the American-built version of the Harrier, the AV8B, has commonality with the British-built GR5 Harrier of the RAF. Northrop is undertaking joint marketing of Zeus in the USA and other countries so the £ 100 million order could just be the beginning. Meantime that alone will keep 500 people busy at MSDS plus those employed at over a hundred outside suppliers.

Critics of defence spending often overlook two important factors. First is the ultra-high technology content which keeps our designers on the frontier of developments and second is the high value added.

Very roughly if a military aircraft and its electronics cost, say, £ 10 million, the cost of raw materials would be under $£ 1$ million with the difference made up entirely in design and manufacturing skills. Very few countrles have this measure of engineering capability whereas any country can press out kitchen utensils and similar everyday products which have low added value.

Salaries

Studying the situations vacant columns it is clear that the demand for qualified electronic engineers remains insatiable. According to a recent membership survey by the IEE 98.9 percent were in employment. Salaries in the 35-39 age group (i.e. at typical career midpoint) have risen from an average of $£ 3,280$ in 1973 to $£ 14,470$ in 1984. A young Associate should command over $£ 6,000$ on his/her first appointment while senior Members and Fellows can achieve $£ 28,000$ late in their careers and £30,000 and over in senior management.

It is a tragedy that so few young people are motivated towards getting the admittedly high qualifications needed for professional entry. For this the schoolteachers must bear some blame. When we learn that half of all emplovers who recruit school leavers are dissatisfied with educational attainment there must surely be cause for concern.

The brighter students of course will have moved on to further education but even here we could do with more in science and engineering and fewer in arts. It is to be hoped that the increase in computer studies in schools will fire the imagination in favour of alectronics. It is also true that many successful engineers have had no formal tralning but have succeeded through enthusiasm and love of the subject. Nevertheless, other things being equal, the certificated engineer will always influence a potential employer to the disadvantage of a competitor less qualified.

Footlights and Whisky

Two unlikely topics for Industry Notebook but not unconnected. Footlights first. I was not surprised to hear that Evan Steadman, owner and organiser of the "All Electronics Show" and other trade and technical exhibitions, has branched out into popular entertainment as a backer of the musical 'Peg' in London's theatreland. Evan has always been a showman and It was always on the cards that he would succumb to the heady scent of greasepaint and the dazzle of footlights. We wish him success with his investment.

Less predictable was GEC's purchase of 10 million shares in Distillers. It seemed hardly likely that Lord Weinstock was planning a takeover and, in fact, his $£ 45$ million imvestment made over a lengthy period amounted to only some 3 percent of Distillers capital. GEC is still sticking to what it knows best. But with a cash mountain in the region of $£ 1.5$ billion Lord Weinstock has decided to invest in other companies and as a bonus is willing to give management advice.

THE digital dice described in this article has several novel design features not usually available with electronic dice: a) Single push-button operation for each 'throw' of the dice which provides two independent readouts for games such as backgammon and monopoly.
b) Seven segment displays for an easily readable display format.
c) No power on/off switch. The dice display remains active for over five minutes after the push-button has been depressed.
d) A l.c.d. for clear readout in all lighting conditions.
e) Minimal power requirements. Hence the dice is totally portable using a PP3 battery as a power source.

PRINCIPLE

Most designs of electronic dice use six independent l.e.d.s to display the numbers one to six rather than using a more readable seven segment display. Looking at the extensive range of i.c.s cuirrently available, particularly counters and display decoder drivers, it seems surprising that dice using seven segment displays are not more common. However, consideration of the counting modes of i.c. counters shows only a binary range of 0 to 15 or a binary coded decimal range of 0 to 9 is available. A range of 1 to 6 can only be achieved by a complex gating arrangement using standard counters and a variety of NAND and NOR gates.

This particular design of digital dice overcomes these problems by using only a four bit down counter which interfaces directly to a binary coded decimal to seven segment display driver. The basic 'secret' of the design is simply to use a presettable binary down counter which presets to six and then counts down to 0 . On reaching 0 the borrow output pulse is used immediately to preset the counter to 6 again. Fig. 1 shows the block diagram of the digital dice.

The oscillator operates at a frequency of approximately 3 kHz which is divided by two, series connected, divide-bysix counters. Hence a final frequency of around 65 kHz is available to drive the l.c.d. directly and hence ensure correct operation of the display. As this low frequency drive must be continuous for the time the display is active, the oscillators and counters must be permanently enabled when the display is active.

When the push-button is depressed, which is equivalent to a 'throw' of the dice, the display drivers are disabled, which blanks off the display for the period the push-button is depressed. At the same time the clock input to the two divide-by-six counters is disabled and the binary output from
the counters at that instant is stored in the display decoder drivers. When the button is released the new 'throw' of the dice is displayed.
As the oscillator and counters are free running most of the time there is no possibility of cheating by pushing the button for a known period of time, or by pushing the button at defined intervals. That is, unless you can depress the switch to an accuracy of less than one thousandth of a second.

The push-button is also used to charge a large capacitor directly from the PP3 battery. This capacitor drives a transistor which connects power to the digital dice circuit. The capacitor takes approximately five minutes to discharge and switch off the transistor which consequently removes power from the digital dice circuit. As only CMOS i.c.s are used and the I.c.d. power requirement is negligible, the total power consumption is only around 2 mA . Hence a PP3 battery is quite adequate to power the dice, making it totally portable.

CIRCUIT DESCRIPTION

The circuit diagram of the digital dice is shown in Fig. 2. The two NOR gates IC1a and IC1b form a 3 kHz oscillator using negative feedback with the capacitor C 6 and resistor R4 controlling the frequency of oscillation. Although the

GAMES PROJECT

(E6iin)
Fig. 1. Block diagram of the Digital Dice
exact frequency is not critical resistor R3 is included to give stability to the output of the oscillator which is buffered by IC1c before being connected to the clock input of the first divide-by-six counter (IC2).

The borrow output from this counter, as mentioned earlier, is connected to its preset load input (pins 13 and 11) to ensure the counter presets to six immediately it reaches 0 . Capacitor C5 is included to ensure that the borrow output is of sufficient duration to load the counter correctly. The binary coded decimal output from IC2 is connected directly to $B C D$ seven-segment decoder driver IC4.

The divide-by-six output from IC2 pin 6 is connected to the second divide-by-six counter (IC3) via the NOR gate ICid. This counter and its BCD seven-segment decoder IC5 are connected in an identical manner to IC2 and IC4. The output from pin 6 of IC3 is approximately 65 Hz whioh is used to drive the I.c.d. and the decoder drivers IC4 and IC5.

The OV from the battery is connected directly to the OV of

COMPONENTS . . .

```
Resistors
\begin{tabular}{ll} 
R1, R2 & 100 k (2 off) \\
R3 & 220 k \\
R4 & 56 k \\
R5 & 1 M \\
All resistars \(1 \mathrm{~W} 5 \%\) carbon
\end{tabular}
```


Capacitors

```
\begin{tabular}{ll} 
C1 & \(250 \mu 16 \mathrm{~V}\) elect \\
C2 & \(2 \mu 216 \mathrm{~V}\) tant \\
C3 & 10 n ceramic \\
C4, C5 & 680 p polystyrene \((2\) off) \\
C6 & 2 n 2 polyester \\
C7 & 100 n ceramic
\end{tabular}
```


Semiconductors

```
\begin{tabular}{lc} 
IC1 & 4001 quad 2 input NOR gate \\
IC2, IC3 & 74 C193 binary up down counter (2 off) \\
IC4, IC5 & 4543 BCD seven-segment decoder \\
X1 & driver (2 off) \\
3 \(\frac{1}{2}\)-digit I.c.d. \(\frac{1}{2}\) in high digits \\
Miscellaneous & \\
S1 & Single pole double throw min push- \\
Case & button switch \\
PP3 battery & Plastic \(118 \times 100 \times 40 \mathrm{~mm}\) \\
P.c.b. &
\end{tabular}
```


Fig. 2. Circuit diagram of the Digital Dice
the logic. The positive terminal is connected to the emitter of TR1. This transistor is switched on only when capacitor C1 is charged to a value greater than the base/emitter junction voltage of 0.7 V . The collector of TR1 is connected directly to the Vcc of the logic. When the change-over, push-button switch is depressed the battery is connected directly across capacitor C 1 which fully charges it, turning TR 1 hard on. The battery voltage is then connected to the logic. The changeover switch also disconnects the enable earth to the clock buffer gates IC1c and IC1d which disables the clock to the counters and hence inhibits counting. At the same time the display drivers are disabled and hence the I.c.d. goes blank. Also the BCD output from the counters is stored in the latches of IC4 and IC5. When the push-button is released the new BCD numbers will be displayed on the l.c.d. The capacitor C3 ensures contact bounce from the push-button switch S1 does not cause corruption of the stored numbers whilst capacitor C2 is merely a decoupling capacitor.
The display will remain active for the time it takes capacitor C1 to discharge through R1. With the particular values of R1 and C1 chosen, the display will remain for approximately 7 minutes before switching off.

Fig. 3. P.c.b. design

(664i

Fig. 5. Case cutting details

Fig. 6. Mounting arrangement for the display

CONSTRUCTION

The p.c.b. design for the dice is shown in Fig. 3 with the component overlay shown in Fig. 4. Sockets or soldercon pins should be used for mounting all the i.c.s and special care should be taken with the orientation of the i.c.s as their positions alternate. The push-button switch S1, which is mounted directly onto the p.c.b., secures the board to the lid of the case.

Although a $3 \frac{1}{2}$-digit l.c.d. was used in the prototype a 4digit display would also be suitable as it is pin-for-pin compatible. The I.c.d. is mounted onto the board by using three soldercon pins, one soldered inside the other, on each l.c.d. pin. This gives additional height to the display above the p.c.b. The electrolytic capacitor C1 is mounted on the copper side of the board and care should be taken that the body of the capacitor is clear of the tracks.

SPECIAL OFFER

PE is pleased to make this special offer exclusively to our readers. This excellent portable Chess Computer is just right to take on holiday or play whilst travelling.

The CG1A features eight levels of difficulty, has a sensory playing board, reverse play for instruction, and it will play numerous standard openings as well as recognising castling, pawn promotion and en passant captures.

A save position means that the computer can memorise the position of the pieces in an interrupted or unfinished game with minimum battery wear. The unit is powered by penlight batteries which give up to 250 hours of play.

The unit has a snap-on lid to hold the pieces in place when travelling and a compartment is provided for 'taken pieces'. A set of spare pieces may be purchased to replace any which are lost.

Make cheques payable to Brooks and Company (Clients Account) Send your completed coupon and cheque or PO to: Brooks \& Company, Opus House, 72/76 South Street, Reading, RG1 4HW.

all in your

Of ever increasing interest and importance are robotics, and PE has been at the forefront of this subject, having featured as constructional projects the first educational servo controlled robot and the first low pressure hydraulic robot. These robots are now a common sight In the education institutions and R \& D laboratories throughout this country and abroad.
Breaking new ground again we present Neptune 1 and 2, hydraulic robots of novel design powered by pure waterl Also featured will be Mentor, a rugged little fixed axis electro servo
 controlled robot which is software compatible with the Nep-
tunes.
A pre-publication preview of Neptune and Mentor will be given at the Education Training and Development Exhibition at the National Exhibition Centre, Birmingham, 10-12 July.

Based on the TDA 1097 bucket brigade device this neat solid state unit features echo delays up to 200 ms and reverberation to infinity.

This article takes the lid off disc drives and explains how to choose which drive is best for your particular needs and how to get the best from them.

PRACTICAL
EIEMionces
ROBOTICS - MICRES ELECTRONICS - INTEAFACING SEPTEMBER ISSUE ON SALE FRIDAY, AUGUST 3

THE BEGINNING

Fifty three years ago Karle Guthe Jansky became the first radio-astranomer. He had graduated from the University of Wisconsin ard taken up a post with the Bell Telephone Laboratories. The company posted him to a field station in New Jersey. There he was assigned to the invessigation into the causes of interference on trans-oceanic links. During the course of these abservations he noticed certain peculiarities en a band of frequencies between 20 MHz and 21 MHz . He then built an aerial on an old Ford chassis which enabled him to point the system in azimuth.

At the time of these experiments there were many unknowns both in ragard to receiver sensitivity and the origins of the signals. A ter many trials and modifications to his apparatus he noticed that thare was a change in the position cf a band of noise which he had at irst thought to be coming from the Sun. As time went by it was clear that the source was not the Sun as Jansky was eventually receiving signals in tre middle of the night. From this he concluded that the source was outside the solar system and situated in the direction of the Milky Way. He offered two thougats on the subject. Firstly, that the radiations must be coming foom a body in space that wes emitting radio waves in a greater amount than light and heet. Secondly, the sounds that he heard from the output of his receiver were very similar to those produced by thermal agitation in a resistor carrying a current.

He considered that a mechanism of this kinc, where charged particles were in constant agitation such as in stars, would explain the origin of this radiation. The temperature required to produce this kind of radio emission would be in the region of 15,000 to 20,c00 degrees Kelvin. Later obsertations jy those who came after Jansky fully confirmed this view

Jansky gave his famous paper in 1932 anc caused a considerable stir with broadcasts of the noises from his receiver. However, excest for a few amateurs his efforts did not succeed in inspiring the professional astronomers. It is impossible to over-estimate the importance of Jansky's work for here is another example of a turning point in history where research directed to one goal, opens up an entirely new avenue of discovery. His ability to recognise the unusual brought light to a new area of scientific thought and revolutionised an industrial horizon. It is parhaps fitting that the last paragraph of Jansky's paper published in 1932 reads, 'In conclusions data has been presented which shows the existence of electromagnetic waves in the Earth's atrosphere which apparently come , from a direction that is fixed in space. The data obtained gives the coordinates of this direction as a right ascension of 18 hours ard a declination of -10 degrees. This was the part of the Milky Nay toward the galactic centre.

Soon after the publication of his paper Jansky was transferred to other dities anc did not pursue the subject further. He was not in fact a very robust man and he died before the full impact of his early work was recognised. However, one of the amateurs
who was inspired was a radio engineer. Grote Reber, who decided to work at frequencies higher than those which Jansky used He reasoned that he could expect better results. He chose a frequency of 163 MHz . In fact his reasoning was incorrect. There were in those days severe limitations in the techniques available and a lack of sensitivity with receivers. Reber built himself a 30 foot diameter dish of wood and aluminium for 160 to 170 MHz . He zaused some considerable disturbance to his neigr bours for as the dish cooled down at night the contraction of the metal sounded to them like gunshots, and when it rained the vater poured down through the centre hole provided for the aerial, they thougłt he was making rain.

Reber succeeded in making a map of the sky and this map is still valid to this day. He continued his own work and was concerned with the development of the new high frequency valve techriques. After the second world war he devoted much of his time to very low frequencies, working in Tasmania. Reber's dish was in fact the first of the parabolic aerials used for radio astronomy. It is now at the Bureau of Standards site in Virginia.

It would be an unjustiiled omission if an even earlier link with the past was not mentiored. The first indication of the existence of electromagnet:c waves came from the publication of Maxwell's theory in 1865 though it was not till some 23 years

This aticls is published as a sribute to Frank W. Hyde who died recently an obizuary was published in Spacewatch, June issue.

later that Hertz produced and demonstrated radio waves. It seems clear that some six years later Sir Oliver Lodge described, to a meeting at the Royal Institution, an experiment to detect radio waves. He failed, concluding that more sensitive apparatus would be needed. This is not surprising since his detector was the coherer and his indicating instrument the mirror galvanometer.

Later that year Charles Nordmann, a French graduate, attempted a similar experiment. His aerial was 175 metres long and his apparatus was set on a glacier at an altitude of 3,100 metres 'to eliminate the absorbing action of the atmosphere'. In his doctoral dissertation he referred to an earlier attempt made by Wilsing and Schiener at Potsdam in 1896. This must have been the earliest attempt to detect radiation from the Sun. Nordmann actually predicted that outbursts of solar radio activity would accompany sun-spot activity.

WARTIME ADVANCEMENT

The advent of the second world war changed many things, more sensitive receivers, more efficient aerials and many more people were engaged in searching in the atmosphere for enemy activity. Quite a mass of data was available but of course could not be published. Not surprising then was the fact that people gravitated toward this new window to the universe. One significant name here is that of J. S. Hey who in 1942 proved the existence of the radiations from the Sun. In this instance a sun-spot was visible to the naked eye so both visual and radio recording was available. This was confirmed by G. C. Southworth of Bell Telephone Laboratories some six months later. These observations were taking place while both Hey and Southworth were operating at government establishments and consequently no information was available to the public.

Hey was troubled by an incident in the English Channel. Considerable apprehension existed during February 1942 as to an imminent German invasion. It was the sudden interference with radar performance which made it necessary for Hey to be sent to investigate. Since the radar aerials were highly directional and could be pointed to any part of the sky it was easy to discover the source of the interference. At this time it became clear to Hey, as Nordmann had stated, that radio waves were associated with sun-spots. The radio frequency involved in Hey's work was between 55 MHz and 80 MHz . Southworth was using frequencies between $3,000 \mathrm{MHz}$ and $10,000 \mathrm{MHz}$.

It is accepted now that Solar emissions are extremely complex and there is still much work to be done. This applies to many of the areas of the sky where so much has been accomplished but only serves to show that man has still only just touched the fringe of understanding. With the building and expansion of radio-telescopes the name of Radio Astronomy replaced the old definition of Radio Physics and things moved apace even before the war was over.
It was inevitable that the professional astronomers should come to accept their new sister and such was the enthusiasm from those who entered the field that now 40 years on it has become large enough to have sub-divisions such as Infra-Red astronomy, X-Ray astronomy and Gamma-Ray astronomy using the techniques of radio to expand horizons even further. Reading textbooks of the 1920's helps a little to put matters of Astronomy in perspective for much that is given there as positive fact is now of course abandoned.

THE TECHNIQUES

The principle of the radio-telescope is a simple electronic arrangement which can be shown as analogous with respect to its optical counterpart. It consists of a Collector, the aerial, a Receiver, the electronics and a Recording system. In fact it is possible to receive solar radiations by connecting a sensitive

Fig. 1. Comparison of a reflecting optical telescope to a simple radio-telescope with parabolic reflector
receiver to a directional aerial pointed at the Sun, many people began that way. With the amateur now at an advanced state of electronics, here is another fascinating hobby that is available to individuals as well as schools and colleges or youth centres.

Fig. 1 compares a reflecting optical telescope with a simple radio-telescope using a parabolic reflector and receiver with recorder. A typical recording from a radio-telescope is shown in Fig. 2. This recording is of the Sun as it passed through the aperture of the aerial main lobes. The frequency of the system was 81 MHz . It is a good example of the change of level that occurs when the Sun comes 'into view' against the background. The straight lines of the pen on the paper indicates overloading of the receiver at meridian passage of the Sun. There are several basic designs which can operate separately or in combination. These are shown in Figs. 3, 4 and 5 (overleaf).

The simple radio-telescope shown in Fig. 1 would of course be used depending on the frequency of the radiation. However, since the resolution of the energy depends upon the resolving power of the system radio-telescopes are in the main large when compared with the optical system, other methods are necessary in order to obtain satisfactory data. Fortunately there is a solution based on the Michelson optical interferometer.

Michelson used two mirrors twenty feet apart mounted on the

Fig. 2. A typical recording from a radio-telescope showing the Sun's passage of the aerial main lobes

PETM10

Fig. 3. (a) Simple interferometer
(b) Polar diagram
(c) Output from recorder chart in presence of source

100 inch Mount Wilson telescope. The purpose of this arrangement was an attempt to measure the diameter of stars. The mirrors were so arranged that the light from the stars would be reflected into the telescope so that it travelled by differing paths. This would produce fringes at the eyepiece. Optical theory indicates that the diameter of a star is a function of the wavelength of the width at which it is examined and the distance between the two mirrors. Increased resolution was obtained, the effective aperture of the telescope being extended to the width of the two mirrors.

Utilising this principle Ryle and Vonberg used two separate aerials on a long base line. The energy collected by the two aerials was fed into a receiver simultaneously. With such an arrangement, the aerial system as a whole has a polar diagram beam in the shape of a fan (Fig. 3), in which occur a number of interference patterns or lobes. The width of each lobe will be dependent upon the angular separation between the points of minimum signal. The angular separation decreases as the distance between the aerials is increased, so if the aerials are separated by 20 wavelengths the minimum points of the lobes will be separated by approximately 3 degrees at the half-power points. A further separation will reduce the width between these minimum points. If now a radio source is of smaller diameter than the width of the separation of the minimum points, the output of the receiver will vary in a periodic manner. For a source that is greater in extent than the width of the lobes, the output from the receiver will maintain a fairly constant level. From this it will be appreciated that the resolution of the telescope is increased enormously.

The aerials are usually set up on an East to West baseline and the rotation of the Earth serves to sweep the beam across the heavens. Each individual aerial system can be moved in altitude thus enabling successive strips of the sky to be studied. Though valuable work can be done with this arrangement there is one
drawback. Local interference could obscure weaker input signals. Ryle and Vonberg took their version of the Michelson interferometer a stage further so that it could overcome the principal difficulties of positional identification of radio sources. If an extended source of radiation is near to a smaller source it may become difficult to resolve the two, the larger source causing ambiguity. The new system was a method of phase switching which in effect moved the lobes of one of the aerials against those of the other. The method of doing this was to insert a half wavelength section of cable between one aerial and the input to the receiver (Fig. 4.-The phase-switched interferometer). It is usual to use a particular circuit design which switches the halfwavelength alternately in and out of circuit. This produces a lobe pattern which is only present when a source is intercepted. When no source is above the sensitivity of threshold the recording is a straight line and when a source is encountered the result is shown in Fig. 4.

So far the system receivers that have been described are used for the location of sources. In order to give an exact value to energy being received it is necessary to have a standard source as a comparator. This type of telescope can, in its basic form, search for and locate sources with an additional facility to evaluate their power. This is accomplished by switching a comparison signal, from a calibrated source, rapidly from the radio source to the standard. Such a system was devised by Dicke in America and modified by Ryle and Vonberg at Cambridge. The block diagram of the layout is shown in Fig. 5. Each system used is selected or designed for the job such is the sophistication of present day instruments. From the simple pen recorders of the earlier days it is now possible with the latest plotters to make maps of areas showing size and power of the sources which look like 3 -dimensional views.

PELK?

Fig. 4. (a) Phase-switched interferometer
(b) Output from recorder chart in presence of source

Fig. 5. (Dicke) receiver modified by Ryle and Vonberg, input signal is compared to a calibrated noise source

LOOKING OUT FROM THE EARTH

The Earth is but a small speck in the Solar System. It is also very young and for many people it is difficult to accept the fact that looking outwards into the sky means looking always into the past. Though new stars are coming into being every second (areas like the Nebula in Orion) it takes time. Glance at the Sun (with suitable eye protection of course) and it is seen as it was 8 minutes previously. A look at the Spiral Galaxy in Andromeda reveals its condition as it was 2.2 million years ago. Even to look at the Moon is to see it as it was 1.25 seconds before. Radio-astronomy opened up so much to the astronomer that comparing before and after is nearly impossible. The meticulous work in observation by those who were eminent in their fields has not been wasted, for at many points the conjectures offered by them have been confirmed. The vastness was recognised but the contents of that vastness are still to be catalogued. Sufficient classification has now been made to title broad divisions.

RADIO EMISSION FROM THE SUN

With a minor star for our Sun (and close by) there naturally has been a concentration of radio-observation. It is interesting to compare the types of emission for the greater part of the Sun's energy is given out in the visual part of the spectrum. Over the band there is little change in level. Variations of the luminous flux alters by no more than a few per cent. In contrast to this the radio-emission changes all the time. There is a constant quiet component which is relatively unchanged and superimposed on this are slow enhancements and sharp bursts whose intensity can reach several million times that of the quiet component. The bursts and slow variations are manifestations of the activity of the G-type star which commands all the life of planet Earth. The whole of the electromagnetic spectrum is involved.

The apparent visible size of the disc, the photosphere, is in constant turmoil and what appears to be brightly shining smooth surface is in fact made up of small areas of constantly varying
temperature. These areas are in the order of 600 to 700 miles in extent. Occasionally the surface has areas which are dark against the bright surface. These are the sun-spots which sometimes have a disastrous effect on radio communications and the atmosphere of the Earth. These sun-spots appear in cycles and were observed in ancient times, and so a complete mythology now surrounds them.
Scientific observations have been carried out since the year 1610 by J. Fabricus of Holland. These were direct observations. Galileo was the first to observe them by the projection method. Newton also used the method in his study of the colour spectrum. These spots have a variable rhythmic cycle between $10 \cdot 2$ and 11.2 years and is also overlaid with longer overall variation between 170 and 200 years which is not yet entirely accepted. The effect on communications is such that superimposed on radio and television in the 1948 peak the taxi drivers in New York were heard in the British Isles and the enhanced Aurora Borealis brought disturbance of the television picture and spectacular visual display as far as 35 degrees latitude. If the very large spots, sometimes a single group could cover hundreds of Earths, are observed on a large projection screen the changes which are taking place all the time can be directly observed. This was done at the author's observatory where for the first time in history sun-spots were shown on the BBC programme 'Sky at Night' with Patrick Moore.

So far as the Earth is concerned the Sun is the most powerful source available for observation and is ideal for the amateur since only a minimum of apparatus is needed. From the radio point of view it matters not whether the Sun is actually visible optically for the atmosphere, no matter how clouded, is transparent to radio emission except at certain special very high frequencies. Simple aerial systems can even be operated from a block of flats or a bungalow in the suburban areas. If the system is set up properly then multiple observations by interested amateur astronomers whether as individuals or in groups would be a valuable contribution to the data banks, or merely pursued for the hobby interest. Some of the systems can be arranged to double up for the observation of satellites and space stations.

There are two other powerful sources that are available for study with simple units, these are in the constellation Cassiopeia and the Crab Nebula. There is also the planet Jupiter but this needs greater physical space and would be suitable for those living in the urban and country districts, though of course schools and colleges are better able to cope in built-up areas. It is important to accept that radio-astronomy does not require that the observer be present at the telescope. It is a hobby therefore which

Thls steerable 12-metre antenna communicates with the IRAS satellite as it tracks across the sky. Groundstation, Chilton, Oxfordshire
does not upset normal routine. This means that having decided on the plan of a project all systems can be put on time-control and allowed to operate automatically. However, if the observation is being carried out on the Sun then it will come to meridian passage every day at midday. With other sources the time of meridian passage will change each day. This of course also means that the conditions are reversed if the observatory is south of the equator. This would naturally mean that there could be a world 'net' of observers. However, whatever the horizon seen by a single enthusiast the motivation in the pursuit of this hobby is not necessarily a direct interest in radio-astronomy, much of the progress in optical-astronomy for instance was made by enthusiasts who sought to improve the techniques themselves. That is to say the improvement in the making and polishing of mirrors, the manner of mounting the assembly, the control system, the improvement in photographic techniques and processing. This is still an on-going activity in the whole of the astronomical world.

Naturally it follows that readers of Practical Electronics are concerned largely with electronics but the mechanical precision of robotics has also become a part of the design considerations for new astronomical endeavour. The problems that need to be solved should always be directed to the main requirement and constant up-dating of the design specification. It has taken many years to reduce the weight of the large reflector telescope. Indeed one highly respected optical-astronomer was always somewhat vociferously critical of such items as the Questar table top reflector, condemning it as a toy for the dilettante and that there was only one rule to be followed and that was that the weight of the assembly shall not be less than 'Half a ton per inch of diameter of the main mirror'. An average size of mirror for an amateur would be some 8 inches diameter to do any effective observation. Thus these 'standard?' rules of thumb need looking at more closely. The modern electronics field offers great scope for innovation. Much of the technology already available is highly sophisticated but the challenge is still there to improve, whether it is to reduce cost, number of components, size and so on. Radio-astronomy, though it has become in a sense an opener of wide horizons, must of necessity become wider, and clearly the lesson of the twentieth century is a support of Einstein's words that the universe is 'finite but boundless'. It follows that the technology must therefore be the same.

Orbiting Observatories: The various types of orbiting telescopes were originally directed at special objects alternatively special arrangments were made for the attitude control of the vehicle. The latest of these was the IRAS satellite which was featured in the May issue of Practical Electronics. This was a purpose built telescope for short term observations in a special area of the infra-red spectrum. There will be later in this decade a very large optical telescope launched into orbit and this will no doubt open up further vistas and bring surprises. The electronics associated with such a project are very varied and complicated for not only has the guidance system to operate to extremely close limits but accurate re-setting will be of prime importance. Where very distant sources are concerned such re-setting will involve only microscopic changes in positional orientation, and all this in free space. This again emphasises the accuracy of the electronics. On Earth the control of the large telescope at Mauna Ki Hawaii is now capable of being controlled from a chair in an office of the Edinburgh Observatory. This is largely over standard links of communication networks and again emphasises not only the versatility of the electronics but also indicates again the need for faster operating switch networks. This is a major area of research at the moment. Now it is of course true that this is a matter which has been tackled already and at least three major companies are looking for a solution. So in a very short time the limit of silicon chip technology is holding up the innovations which are already waiting. Forward movement in all technology

An artist's impression of the Infra-Red Astronomical Satellite (IRAS).
seems to be logarithmic, the periods between each new level of advancement get shorter and shorter.

X-Ray and Gamma-Ray Astronomy: Here again the special needs of the detectors require sophisticated electronics to provide a means of translating the observations. This area of operations is not really accessible to the amateur and perhaps should not strictly speaking be referred to as radio-astronomy, the electronics still apply.

CATALOGUES OF THE RADIO SKY

The Cambridge catalogue was the first comprehensive attempt and is the accepted standard. Over the years a series have appeared. At Cambridge under Prof. Martin Ryle (Sir Martin Ryle, Nobel Laureate, a Fellow of the Royal Society and Astronomer Royal) together with a team who have themselves become household names, Professor Anthony Hewish FRS also Joint Nobel Laureate with Sir Martin Ryle and Professor Graham-Smith FRS who became Head of the Royal Greenwich Observatory who has now taken over Jodrell Bank from Sir Bernard Lovell FRS to mention only three of many who have passed through Cambridge and contributed to these records. In the early 1950's a catalogue was compiled in which the sources that are accessible with the simplest radio-telescope are marked. Since that time the improvements in electronics have enabled the amateur to deal with many more sources. Indeed there is a challenge here for a design of a sidereal clock which should be able to show the incremental change of ten seconds per hour in sequential display which has a read out in Hours/Minutes/ Seconds. (A design by J. S. B. Dick was published in our October '81 issue photostats available for 75 p from the editorial offices- $E d$.)

In concluding this short review of the potential for the amateur it is possible that there are readers who are looking at the future for an entrepreneur package radio-telescope. Could it be that another Sinclair could arise?

FRANK HYDE

The death of Frank Hyde, so long a contributor to Practical Electronics, has come as a sad blow to his many friends. I had known him for at least thirty years, and I appreciate the value of the contributions which he made to the science of radio astronomy. In some respects he was unorthodox, which is no bad thing, and he also had a strong sense of humour. I well remember my first visit to the radio astronomy observatory which he set up in a Martello tower near Clacton. It was crammed with technical equipment, and was most impressive. I asked him whether he had installed a toilet. He replied that he hadn't-but the tower did have a moat!

Frank, with his genial personality and his gift for imparting knowledge, will be much missed, but he will certainly not be forgotten. I am glad to have known him.

QUASARS: COULD WE BE WRONG?

Now to something much farther from home-a subject which has caused endless discussion since 1963, and which has again become headline news because of important work carried out in the United States. Let us turn to those enigmatical objects, the quasars.
Quasars were identified originally because
of their radio emissions. Superficially they look like bluish stars, but they are much more dramatic than stars, because according to most astronomers they are super-luminous and very remote. The most distant quasar so far identified, PKS 2000-330, is thought to be about 13,000 million light-years away, in which case it is not so very far from the boundary of the observable universe.

For some years the quasars remained a total mystery, but it now seems that they are the nuclei of very active galaxies, and there may be an evolutionary link between quasars, Seyfert galaxies (systems with condensed centres and weak spiral arms) and more normal radio galaxies. But how do we measure quasar distances? There is only one way: by using the Doppler effect. A receding object has its light slightly reddened, because the effective wavelength is increased, and the spectra show this well, because the lines are moved over toward the red or long-wave end of the spectrum. The greater the red shift of the spectral lines, the greater the velocity of recession; and since recessional velocity is linked with distance, the distance of the object can be worked out. On the conventional picture, PKS 2000 330 is racing away at well over 90 per cent of the velocity of light.

But . . . could there be a serious mistake? If the red shifts are not pure Doppler effects, we could be grossly over-estimating the distances. And this is what is believed by some very eminent scientists, including Sir Fred Hoyle and, in America, Halton C. Arp.

RADICAL ALIGNMENT

Arp has drawn attention to significant lining-up arrangements of quasars and galaxies. Such alignments indicate genuine association-and yet the red shifts are different; those of the quasars are much greater than those of the galaxies. From this, Arp has concluded that the red shifts are giving spurious results, and that the quasars may be fairly close-not on our doorstep of course, but perhaps only a few million light-years away instead of hundreds or even thousands of millions of light-years distant.

Everything hinges upon whether these alignments are fortuitous or not. If they are
genuine, we must do some radical re-thinking. Up to now few astronomers have believed this, and have dismissed Arp's alignments as sheer chance, but new evidence has now come to hand which could very possibly change the whole picture.

Working at Mount Wilson in California and the Las Campanas Observatory in Chile, Arp has been busy noting the numbers of quasars in different parts of the sky. He has found a marked concentration in the direction of the centre of our Local Group of galaxies a system which is made up of our own Galaxy, the Magellanic Clouds, the Andromeda and Triangulum Spirals, and more than two dozen much smaller galaxies (plus, probably, the large elliptical Maffei 1 , about which little is known because it is so heavily obscured by dust lying in the main galactic plane). Using the standard red shift-distance relationship, this indicates that the area in which quasars are concentrated measures 1300 million light-years by 4875 light-years. On the other hand, there is a paucity of observed quasars in the direction of the Virgo super-cluster of galaxies, some 65 million light-years away.

COSMOLOGICAL DOUBTS

If quasars are really as remote as is usually believed, there certainly should not be any marked concentrations or quasar-poor regions (it is hardly necessary to add that Arp has taken into account complications such as the absorption of light in space). And if there really are more quasars than expected in the direction of the centre of the Local Group, it seems only logical to assume that the Local Group itself is responsible in some way, and that the red shifts are not purely "cosmological", i.e. produced solely by the overall expansion of the universe.
There seem to be only a few alternatives, all of which have marked disadvantages and all of which will add to the already heated controversy:

1. Arp's red-shift measurements are wrong. This seems unlikely to the highest degree, because Arp is an extremely skilled and experienced observer.

THE SKY THIS MONTH

Unlike most modern professional astronomers, I like to keep a close eys on the sky, and I think it may be holphul if I begin those articles by giving some briaf notes about the objocts on viow. During July and August the brilliant Vonus sterts to move outward from the Sun, and by the end of July it should be visible for a short while after sunse?.

Mars, which is still above magnitude 0 aven though it is wall past opposition, is visible before midnight in the constellation of Libra, but by the and of July its apparant diamerer has decreased to less than 12 seconds of arc, so that small telescopes will not show much on its surface. Up to the present time there hsve bean no major Martian dust-storms this opposition, but one may stert at any time; with Mers, one never knows.

Saturn is also in Libra, with a magnitude of 0.7 , and since the rings are wide open the planet is a glorious sight through aven a modest talescope. Jupirer, lowar down in Sagittarius, is also imposing, with its yellowish, flatrened disk, its cloud belts and its four bright satellires which have turnod out to be such ramarkablo worlds. The Graat Red Spot has not bean at all prominent recently. I have sean it, using the 15 -inch raflactor in my Selsey observatory, and have measurad its longitude (029 degrees), but it
is only alightly pink.
Among the stors, leok for the brilliant blue Vega, almost diractly overhoad during July awnings; this was one of two stars which was observed from lost year's infre-red sotellite IRAS, and found to bo associated with materiad which may be a planatary systam in tho process of formation, though it would be premature to jump to any conclusions; Fomalhaut was the second star. Voga, Doneb in Cygnus, and Altair in Aquila make up a prominant triangle. Very low in the south look for Antares in the Scorpion, which is distinguished by its strong nad colour; its vary name means 'the Rival of Mars:

Scorpio is a supert consrallation, though unfortunataly it is always so low from Britain that wa never seo it to advantage. Following it round is Sagittarius, the Archer, now graced by the presence of Jupiter, and of course, the lovaly star-chouds which lie in the direction of the centre of the Galaxy.

I must mention Hallor's Comet, which will be so very much in the news from now until lare 1996. It is 'on courso' but still so faint thet it is teyond the renge of any but the world's most powerful talascopes. It will brighten stoadily, coming within the range of amateur-sized telescopes some time after mid-1985, and I will kesp you fully informed.
2. The alleged concentration in the direction of the centre of the Local Group is spurious because of some factor which has not been taken into account. The same would have to apply to the quasar-poor region in the direction of the Virgo cluster.
3. Arp is right, and the quasar red shifts are not purely cosmological.
4. There are two kinds of quasars: those which are the nuclei of active galaxies, with high red shifts and which lie at immense distances, and those which are much closer and less luminous, with red shifts which are due to some other cause.

At the moment it seems safe to say that most authorities will opt for the second alternative, otherwise the consequences upon all theories of the universe would be dramatic indeed. But there are also a few more rather disquieting facts. Before the discovery of PKS 2000.330 in 1982, by Alan Wright and D. Jauncey at the Parkes Radio Astronomy Observatory in New South Wales, the holder of the 'distance record' was OQ 172, detected as long ago as 1973. The Parkes observers had made a careful and systematic hunt for more remote quasars, bearing in mind that OQ 172 itself is not particularly dim by quasar standards-and for nine years they were unsuccessful. It began to seem almost as though
quasars simply did not exist farther out in the universe. This again seemed peculiar. Not long ago, while on a visit to Parkes, I asked Dr. Wright whether he believed that the quasar red shifts were purely cosmological. He replied that he tended to do so on Monday, Tuesday and Wednesday, but not on Thursday, Friday or Saturday.

So the whole question remains open; and although it is still officially believed that quasars represent the most distant objects known to science, definite doubts remain. And if Arp, Hoyle and their supporters prove to be justified-well, we may not be back to Square One so far as theory is concerned, but we will certainly be back to Square Two.

FREE! READERS' ADVERTISEMENT SERVICE

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

COMPUTER p.s.u.s $\pm 5 \mathrm{~V} \pm 12 \mathrm{~V} 3 \mathrm{~A} £ 10 . \pm 5 \mathrm{~V}$ $\pm 12 \mathrm{~V}$ 6A £10. 4118 £2 each Z80 PIO £2.50. Spectrum p.s.u. £4. Keyboard Case £5. Offers Mr. R. Boyce, 11 Jevington, Birch Hill, Bracknell, Berkshire RG12 4ZD.
WANTED XTAL Filter for Marconi AD108C RX (87 G) $600 \mathrm{kc} / \mathrm{s}$ approx. Mr. T. Scrase. West Wood Farm, Finchampstead, 8erks.
ELECTRONIC Thermometer, Plus Probes "Comark" Type 1602. Brand New. £80 o.n.o. Tel: Nuneaton (0203) 385271 Mr. K. S. Walton, 27 Barne Close, Nuneaton, Warks. CV1 1 4TP. SHARP MZ-80A Computer, Monitor, Cassette drive, f 60 of software and books. Excellent condition f250. Tel: Southend 206617 5-9 pm. Mr Tony Guinness, 5 Fountain Lane, Hockley, Essex. VEROCASE $19.4^{\prime \prime} \times 9.5^{\prime \prime} \times 12.5^{\prime \prime}, 12$ prs guides, connector rails, card frame, tilting feet, unused E15. Buyer collects. Mr. W. R. Critchley. 11 Hale Road, Helpringham, Sleaford, Lincs. NG34 ORL. Tel: 052921273.
$64 K$ Memories 4164150 ns £ 2.50 each. Picotutor Assembly Language Controller $£ 30$. Microtan 65-£35 ASCll Keyboard £8. Tel: 061 2266481 (Evenings).
SPECTRUM Micro Drive Demo plus two Cartridges, some software new condition. Offers. Mr. G. Heath, 103 Pollards Oak Road, Oxted, Surrey RH8 OJE.
WANTED S 100 Video 8 oard Cheap any Condition. Tel: (0704) 212450 after 6p.m. Mr. P. Clayton, 48 Corden Road, Southport. Merseyside.

UK101 16K 300/600 plus recorder, boxed plus interfaced teletype printer and software £150. Mr. Tony Park, 112 Bachelor Lane, Horsforth, Leeds LS 18 5NF. Tel: (0532) 586169.
ZX81(16K), Programs, Leads + Manual etc. Offers. ORIC 148 K , Programs, Leads + Manual etc. Offers. Mr. John Taylor. Tel: Orpington (0689) 35353.

MAPLIN Spectrum Synthesiser. Great sound. Stereo output. Professionally built. Any reasonable offer accepted. Mr. Nick Sanderson, Carr Holme, Furbarn Road, Rochdale, Lancs. Tel: (0206) 50223.

WANTED connection details for Olivetti $8^{\prime \prime}$ disc drives as used in TC800 System. Wivenhoe (020622) 5671. Mr. C. J. Hellen, Vine Cottage, Main Road, Alresford, Colchester, Essex CO7 800.

C-SCOPE Discriminator Metal Detector VLF-TR-950 D. New with Manual Exchange for Home Computer Spectrum 48 K or similar. Letters Answered. Stephen Imrie, 19 Banchory Green, Glenrothes, Fife KY7 6UA.
WANTED ZX81, Spectrum, VIC-20, or CBM64. High prices offered. All offers are welcome. Mr. Tareef Al-Attar, PO Box 1429, SAFAT, Kuwait, Arabian Gulf.
WANTED AY-3-8710. TMS 1000, M253. Will appreciate 'by a gift' and interested in communicating with students of unlversities in other countries. Mr. Ali Reza Mahabadi, 121 Emam Mousa Sadr Street, Rey Avenue, Tehran 11797. Iran.

QUASAR Cassette Deck, Computer p.s.u.'s 3A, 6A, Spectrum p.s.u., 28OPIO, 4118 's, Breadboard, Keyboard Case, Nascom Magazines. Mr. R. Boyce, 11 Jevington, Birch Hill, Bracknell. Berkshire RG 12 4ZD. Tel: (0344) 57903.
NASCOM 1, 64K, 5000 Baud Cassette Deck. Software. Much more. $£ 500$ o.n.o. with GP80A Printer [600. Mr. M. J. Parker, 22 Hutchcomb Road. Botley, Oxford OX2 9HL. Tel: 10865) 725495.

TEST Gear Manuals, AVO sig Gen. p.s.v. valve components etc. Send 30p for list. Mr. A. Freeman, 64 Oulton Crescent, Barking, Essex IG11 9HF.
DATA Terminał Teleprinter Type ITT Envoy Tape Punch and Reader RS232 £25 also Creed 7E £10. Mr. G. Kirkup, 115 Victoria Road, Mablethorpe, Lincs. Tel: (0521) 78183.
FERROGRAPH Stereo Half Track Studio Mastering Machine in metal case, three heads three speed $£ 425$ o.n.o. Mr, A. Windsor, 34 Field Lane, Chilwell, Beeston, Nottingham NG9 5FJ. Tel: 221976.
50 MHz Counter £75. H.p. DVM3430A £30. Nagard pulse generator £25. Texas printer £95. Manuals. Tektronix Oscilloscope. Mr. T. J. L. Haley. Tel: (01) 8684221.
PRACTICAL Wireless 1948 to 1970, Practical Televislon 1950 to 1962, PE 1964 to 1971. Offers? Mr. J. Bullock, 754 Chester Road, Birmingham, 824 OEA. Tel: 0213731126.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature Date .
Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no. COUPON VALID FOR POSTING BEFORE 3 AUQ 1984 (One month later for overseas readers.)
SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WESTOVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH15 1JG.

For readers who don't want to damage the issue send a photostat or a copy of the coupon (filled in of course) with a cut-out valid "date corner"

T.V. SOUND TUNER

SERIES II BUILT AND TESTED Complete with case. $£ 26.50+£ 2.00$ p\&p.
In the cut-throat world of consumer electronics, one of the questions designers apparently ponder over
is 'Will anyone notice if
we save money by chopp ing this out?" In the domestic TV set, one of the first casualties seems to be the sound quality. Small speakers and no tone controls are common

Also available with built-in headphone and all this is really quite sad, as the TV companies do their best to transmlt the highest quality sound. Given this background a compact and independent TV tuner that connects direct to your $\mathrm{Hi} \cdot \mathrm{Fl}$ is a must for quality reproduction. The unit is mains-operated.
This TV SOUND TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can also be used in conjunction with your video recorder. Dimensions: $10 \% \%^{\prime \prime} \times 7 \%_{1} \times 21 /{ }^{\prime \prime}$ ".

PRACTICAL ELECTRONICS STEREO CASSETTE RECORDER KIT

ONLY $£ 34.50$ plus $£ 2.75$ p\&p. - NOISE REDUCTION SYSTEM. - AUTO SO. INDEPENDENT LEVEL CONTROLS E.Q. INDEPENOENT LEVEL CONTROLS. 0.1\%. RECORD/PLAYBACK I.C. WITH ELECTRONIC SWITCHING. FULLY VARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TYPES.
KIt includes tape transport mechanism, ready punched and back
printed quality circuit board and all electronic parts. ie. semiconductors
You only supply soider \& hook

125W HIGH POWER AMP MODULES

The power amp kit is a module for high power applications - disco units, guitar amplif iers, public address systems and even high powainst short circuiting of the load and is safe
agater In an open circuit condition. A large safety margin exists by use of generously rated components, result, a high powered rugged unit. The PC board is back printed, etched and ready to drjll for ease of construction and the aluminium chassis Ts preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.
Accessories: Stereo mains power supply kit with

trans. $£ 10.50+£ 2 \mathrm{p}$ \& p . Mono: $£ 7.50+£ 2 \mathrm{p} \& \mathrm{p}$.

SPECIFICATIONS
Max. outpur power (RMS): 125 W . Operating voltage (DC): $50=80 \mathrm{max}$. Loads: 4-16 ohm Frequency response measured @ 100 watts: $25 \mathrm{~Hz}-20 \mathrm{KHz}$. Sensitivity for $100 \mathrm{w}: 400 \mathrm{mV}$ @ 47 K . Typical T.H.D. @ 50 watts, 4 ohms 0.1%. Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$

KIT $£ 12.00$
BUILT £ 17.50

GOODMANS SPEAKERS AT BARGAIN PRICES

$7^{\prime \prime} 60$ watt Bass/Midrange speaker 8 ohm impedance. Frequency magner. $£ 14.95$ plus $£ 1.75$ p 80

BSR RECORD DECKS

Auto-Changer model - takes up to 6 records
with manual override. Supplied with stereo ceramic cartridge. $£ 12.95$ plus $£ 1.75$ p\&p. 3 speed, auto, set-down; with au to return. Fitted with viscous damped cue, tubular aluminium counter-weighted arm, fitted with
ADC magn nic head. Ideally suited
anual single play record deck with auto return and cueing lever. Flited with steteo ceranic cartridge 2 speeds with 45 pm spindle adaptor
 suited for home or

Frequency response: 35 6.500 Hz . Magnet: $\psi_{\text {" }} \times 4 \times$ dia. Foam surround, viny laminated cone. For use in HI.F systems up to 65 watts. Bass/
STEREO TUNER KIT SPECIAL OFFER!
£13.95

$+£ 2.50$ p $\& p$

This easy to build 3 band stereo AM/FM tuner kit is designed in conjunction with P.E. (July 81). For ease of construction and ules and an IC. IF System. Front scale size 10% "x 2% " approx. Complete with dlagram and Instructions.

MONO MIXER AMP

ldeal fo
halls an
clubs.
£45.00

$+£ 2$ p\&

50 Watt, six individually mixed inputs for 2 pickups (Cer, or mag). 2 moving coil microphones and 2 auxiliary for tape tuner, organs er ight slider controls - 6 for level and 2 controls bass and treble, 4 extra treble $13 \% 0^{\circ} x 6 \%{ }^{\prime \prime} \times 3 y$.. and aux. inputs. Size. RMS tcont.) for use with 4 to 8 ohm speakers. Attractive black vinyl case with matching fascia and knobs. Ready to use.
CALLERS TO: 323 EDGWARE ROAD LONDON W2. Telephone: 01-723 8432. 15 minutes walk. from Edgware Road Tube Sta. (5 minutes walk from Edgware Road Tube Station)

AUDAX LOW FERRO-FLUID

HI-FI TWEETER FREQ, res.: $5 \mathrm{KHz}-22 \mathrm{KHz}$ Imp.: 8 ohms. 60 mm sq. $£ 5.50+60$ p p\&p. GOODMANS TWEETERS 8 ohm softdome radlator tweeter $(3 \%$ " sq) for use in systems up to 40 W .

$$
£ 3.95 \text { ea }+£ 1 \text { p\&p. } £ 6.95 p r+£ 1.5
$$

All mail to: 218 HIGH ST, ACTON W3 GNG Access phone orders on 01.9928430
Access phone orders on 01.9928430.
All items subject to availstillity. Prices correct at $31 / 5 / 84$ and subject to change without notice. for despatch. RTVC Llmithed reserve the right to upS.A.E. Telephone or mall orders by ACCESS welcome.

ELECTRONICS ENGINEERING
A Diploma Course. recognised by the Institute of Engineers \& Technicians as meeting all academic standards for application as an Associate.

ELECTRICAL

ENGINEERING
A further Diploma Course recognised by the Institute of Engineers \& Techmicians, also covering business aspecis of electrical contractung

FREE CAREER BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering-now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success.
Personal Tuition and 80 Years of Success The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstanding performance in the technical field. You study at the time and pace that suits you best and in your own home

You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

TICK THE FREE BOOKLET YOU

 WANT AND POST TODAYT.V. \& AUDIO SERVICING
A Diploma Course, traming you in all aspects of installing. naintaining and repairing $T . V$ and Audio equipment. domestic and industrial.

RUNNING YOUR OWN BUSINESS It running your own electronics, T.V. servicing or electrical business appeals. then this Diploma Course trains you in the vital business knowledge and techniques vou'll need
\square

BARRY FOX

TIME FOR A CHANGE

For what seems like several hundred years now I have been scanning new British patents and reporting them in these columns (Patents Review). I will be continuing the scan, but with a different approach. Instead of taking patents one at a time and analysing them in depth. we'll look more briefly at more patents. We will also jigsaw them into the overall picture of modern consumer electronic information technology. In other words we will be casting the net wider in The Leading Edge.

Perhaps it is opportune that the Science Reference Library, which is housed in the building of the London Patent Office, has just announced its full-scale commitment to electronic technology. SRL has linked up with Telecom Gold, the electronic mail service (more of which in a future column). SRL also has telex and facsimile facilities. So anyone with a credit account with SRL (which is easy to arrange) can now order copies of technical documents, including patents, by electronic mail and have them either posted off or immediately sent down the line by facsimile.

The get-up-and-go attitude of the Science Reference Library makes a fascinating contrast with the sleepy goingson at the Patent Office, in the same building. Searching through Patent Office lists these days would be funny if it weren't so annoying. To take just one example, the Patent Office killed off its system of written card indexing and replaced it with a modern computer system. How sensible and exciting? Not a bit of it. They started computer indexing before ironing the bugs out in their software. The top brass civil servant who organised the system switch admitted to me that he had never actually tried to use it. As a result some patents are listed under the name of the company that filed them, while others from the same company are listed under T for "The" !

The value of patents as a source for information is still not widely recognised. But just before Christmas Dr. Robin Nicholson, Chief Scientific Adviser to the Prime Minister, published a Green Paper on the subject. "Overall the impression given is of an arcane world rather than that of modern technological Britain" he wrote. "The lack of awareness of their (patents) importance to innovation and wealth creation is at its peak within Whitehall".

Nicholson was particularly critical of the Patent Office and its love of jargon. Taking up the gauntlet the Prime Minister asked for written comments to be sent to the Secretary of State for Trade and Industry. the Minister ultimately responsible for
patents. I did just this, for instance mentioning the nonsense of filing company inventions under T for The. But I doubt that anything will change. What I received back was an acknowledgement letter signed by the man in charge at the Patent Office.

VOICE OF PROGRESS

Nicholson is right when he says that patents are an important source of information. Take for instance the recent state of innovation in the area of speech recognition. The patent record shows all too clearly that the Japanese are investing heavily in this new technology. Expect, for instance, the next range of cars from Nissan to use speech-control switching for some functions, like headlights, ventilation and door latching. European patent 100773 from Nissan is just one of a string of similar patents from the same company.

The basic technique of speech control is well known. The operator, in this case owner or driver of the car, speaks several key phrases while the recognition circuit is in "record" mode. The circuit analyses and stores the spoken phrase, which thereafter triggers a switch whenever it is recognised as input. Analysis is of duration, between peaks and of voice power sliced across the frequency band. Storage is in digital code on a simple memory chip. The practical snag is that when the command phrase is uttered, there is a good chance that background noise in the car will drown it out. To confuse the issue further, the background noise could well be changing, as for example when another car is overtaking or blowing its horn.

The trick, says Nissan, is to use band pass filtering and separate speech components from the major components of engine noise. These cluster around the frequencies of 200,400 and 800 Hz depending on engine speed. These bands are tightly notched out and speech passed in the bands $500-600 \mathrm{~Hz}, 900-1200 \mathrm{~Hz}$ and $1200-2200 \mathrm{~Hz}$. There is also high frequency boost to compensate for natural attenuation of speech at high frequencies.

The Nissan research work makes an interesting parallel with research work which I know the airlines are carrying out. Their aim is to make cabin announcements more intelligible without making them louder.

When the captain or crew make an announcement, the speech is split into separate frequency bands. At the same time the background noise in the cabin is split into separate frequency bands and each band analysed. Where there is high noise energy in a background band, the speech signal in the equivalent band is
cranked up in level. Where there is limited energy in a background nolse band, speech energy is dropped. So in each band speech energy is only just enough to stand out above background noise. The net result is low level speech which is able to cut thrcugh the background noise, rather than drown it out:

Without knowing it, factory workers use exactly the same technique to talk through noise on the shop floor. Instead of shouting, they subconsciously tailor their speech to find a way through cracks in the frequency noise spectrum.

One of the main differences between Japanese and Westem industry is that the Japanese spend very little on military research. This follows from tight restrictions clamped on the country after the last war. But the West spends heavily on defence technology. This is why in the West speech recognition research is heavily subsidised by the military. Marconi, for instance, already has a speech control system for aircraft, which allows a fighter pilot to arm weapons under verbal control.

Casio has recently patented a computer controlled by voice input (UK patent application 2121217). It's an office computer that you quite literally shout at from across the room, to change programme function. Toshiba has filed a European patent application (99476) on a verification system that is based on speech pattern recognition. The idea could let credit card owners identify themselves by speech. The idea sounds attractive, but the snag is that human voices change quite considerably from day to day, especially when the owner has a cold or sore throat.

Not all consumer electronics work on speech recognition starts in the Far East. Thorn Ericsson has just shown off a telephone, which connects a caller to the right extension, by listening out for the spoken name and comparing it with control "library".

Perhaps most exotic of all, Swiss company Asulab (in British patent 2125990) offers up the answer to every traveller's dream; a watch that can be altered by talking to it.

The patent describes a speech sensitive watch in detail. The extent of detail suggests a prototype has been built. The watch can be set to give an alarm call or jump hours when travelling through time zones, all under direct speech control. If Asulab can make the system work reliably. and sell it at reasonable price, this could be a long overdue shot in the arm for the Swiss watch industry. But one of the inventors named on the patent does have a decidedly Oriental name, Ngoc Chau Bui.

Copies of British Patents can be obtained from: The Patent Office, Sales, St. Mary Cray, Orpington, Kent (£1.75); copies of Foreign Patents can be obtained from the Science Reference Library, 25 Southampton Bulldings, London WC2A 1 AJ. (Prices on application)

Ingenuity Unimited

INGENUITY UNLIMITED has been a regular feature in Practical Electronics for many years, and has been a good reflection of the changing face of electronics, giving an up to date guide to new devices and circuit ideas. More recently we have introduced "I U of the month" for which we pay an additional $£ 10$ for especially good ideas.

We are looking for interesting circuit ideas, with useful or unusual applications. Test gear, micro-interfacing and peripheral devices, domestic and automobile circuits are all areas of considerable interest. This month's "I U special" should give a good guide to the type of circuits we are looking for.

Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned and that it has not been offered for or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not in the text.

FLOOD ALARM

THE detector and circuit shown in the diagram have been used as an alarm for floods caused by faulty washing machines, leaky water-cooled systems etc.

The transistor TRI requires a base current of a few microamps to turn on, and is then latched on by the regenerative action of TR2. Current to drive a sounder or relay is provided by TR3. If desired, the relay can cut off the power to a heavy duty relay feeding the machine, or to a water valve fixed direct to the tap.

The circuit is reset by interrupting the battery supply momentarily, assuming the conductive path at the detector has been cleared. The battery should have at least 2A/hr capacity, e.g. a PP9 type.

Dr. C.J.D. Catto,
Elsworth,
Cambs.
 PE6656A
$\mathrm{XI}_{1}=$ SOUNDER (RS 269-796)
OR RELAY (RS 349-125)

VOLTAGE CONTROLLED AMPLITUDE

TT is sometimes useful to be able to represent a varying $D C$ voltage in the form of an audio tone whose volume varies with the value of the voltage. This circuit provides a simple and economical means of achieving this.

Essentially it consists of a C-MOS 4007UBE wired as a two-way switch, driven at audio frequency and switching between the input voltage and the negative supply. The drive tone should be a squarewave, and it is differentiated by Cl

and RI before application to the switch input. This causes the output to appear in the form of short pulses, which are ideal for creating lots of noise from small loudspeakers with fairly economical power consumption. It also prevents any chance of transistors $\mathrm{Tr} I$ and Tr 2 being held "on" for sustained periods, which would cause heavy current consumption and possible damage. These transistors buffer the output pulses, whose voltage is equal to that of the input signal, to a current capability sufficient to drive the speaker. The overall volume is set by the value of R3. R2 and C2 serve to keep the effect of the heavy spikes of output current from affecting the positive supply rail.

This circuit is not only simple; in use it has a much smoother response than many others tried, and virtually no problems of any kind have been experienced'with it.

A Flind,
Taunton,
Somerset.

JOYSTICKS FOR DRAGON 32/64

AM not a violent man but I have managed to break a couple of joysticks whilst playing Meteoroids on my Dragon 32. This sent me on a search for a robust digital joystick. The best one I could find is the "Altai RJ8353B". The only problem with this joystick is that it is not compatible with the Dragon. The following circuit is an interface between the Dragon 32/64 and a digital joystick normally used on Commodore Vic-20, Atari 400 and 800 home computers, Sears arcade game and Atari home video game. The settings for VR1 and VR2 are easily set by using the program, in the Dragon manual, designed for checking the joysticks.

Tony M. Gooding (G6TMG),
Dorset.

LOW POWER VOLTAGE REGULATOR

DESPITE the scores of integrated regulators now available, it can still sometimes be worth designing your own, particularly where batteries are to be the main power supply. The circuit shown has the following advantages; it draws only 1.25 mA quiescent current, it operates down to just 0.1 V difference between supply and output voltages, and it provides both positive and negative rails, useful for circuits containing op-amps.

The zener reference voltage is applied to both amplifier inputs. The op-amp IClb is connected as a source follower, the output being termed " 0 V ", so that supply negative can become -5 V . The feedback to op-amp ICla causes it to drive transistors Tr 1 and $\operatorname{Tr} 2$ so that the collector voltage of $\operatorname{Tr} 2$ is maintained at twice V ref., this being termed +5 V . The zener is somewhat underrun at 0.5 mA ; this reduces its voltage slightly but doesn't affect stability so long as it is supplied with a reasonably constant current, so this is taken from the regulated rail. Under some conditions this could prevent the circuit starting up when switched on, so D1 and R2 eliminate this possibility.

As shown the circuit can supply around 20 mA , the limit being set mainly by the dissipation rating of Tr 2 , which could be replaced by something more substantial. No more than 10 mA should be sourced or sunk by the 0 V rail, but this can easily be uprated by adding a pair of transistors as
shown, and possibly increasing the values of the three smoothing capacitors to $470 \mu \mathrm{~F}$.

A Flind,
Taunton,
Somerset.

POWER SUPPLY FAST SHUT OFF

DURING the testing of prototype audio equipment it was found necessary to provide a power source which was capable of totally disconnecting itself from the load
in the event of a short-circuit or excessive current drain.
The set up of TR3 and R3 form a current sensing circuit, which when

INFRA-RED SHOP DOORBELL

THIS circuit was designed for a shop door where a mechanical switch on the door has proved to be unreliable. To avoid using any moving parts, the triggering device is an infra-red emitter and detector, and the "bell" is the SAB0600 i.c. featured in PE May 1983.

D3 is an infra-red detector which allows a current to flow when infra-red falls upon it. It is very sensitive, however, so it is made to switch on SCR1 via TRI only when infra-red light falls directly upon it. This occurs when D2, which is mounted on the door, passes over it. D2 can be any infra-red emitting LED, the one used having a lensed top to focus the light

The SAB0600 was chosen as it only requires a momentary pulse from SCR 1, and once switched on, goes through its chime sequence of three descending notes.

R5 and C4 were selected to give a high frequency sequence of notes to be heard easily at the back of the shop. Increasing the value of C4 reduces the frequency and lengthens the notes. With the chosen values, the sequence is finished before the door is closed, so the i.c. is triggered again when the door closes.

The capacitors C2 and C3 should be mounted as close as possible to the i.c. to ensure stability of the belf circuit. Dl can be any ordinary LED and is simply an on/off indicator.

This circuit was built for my father's pharmacy and has been working satisfactorily since installation in May 1983.
A. R. W. Hall,
Huntingdon,
Cambs.

IU SPECIAL

INTERNAL RESISTANCE METER

THIS circuit represents a different approach to checking the state of single cells, or batteries up to 9 volts, giving a reading which is complementary to the time-honoured measurement of open circuit voltage. In determining the utility of a battery, some indication of its performance under load is needed, and hence many battery checkers incorporate a dummy load, normally a resistor However, on designs for checking various batteries, an active current sink is often used which draws a constant current irrespective of battery voltage. Ideally though, a cell requires a load current in proportion to its capacity and so with a fixed load current, a meaningful result may not always be oblained. In this instance, the load applied is a current sink, but rather than simply reading the on-load voltage, it is the drop in terminal voltage that is measured. With the choice of a suitable Ioad current, a direct readout of internal resistance can be made on an external voltmeter.
Three sections make up the circuit shown: a switchable precision current sink, a sample and hold subtractor and timing generation logic. A standard circuit is used for the current sink (ICIb and TRI) though with a VMOS FET as the current controlling element. This is used in
preference to a bipolar transistor as it gives better linearity over a greater range of battery voltages, since the drain-source channel acts as a pure resistance. ICla allows us to detect when the current sink is no longer in its active region-as the voltage across TR1 drops, the transistor is turned on harder and harder until the OP-AMP saturates at the positive supply. 1 C la lights D2 under these circumstances, giving an indication of an invalid reading. 1C2a and b are alternately energised, switching the voltage at pin 5 ICIb between ground and a preset reference, hence switching the current sink off and on. D1 is a 1.23 V bandgap reference which gives superior performance over a zener at around one-tenth the bias current. A low voltage zener could be used instead with a suitable reduction in R1 and R2. IC3 forms an astable RC oscillator and two monostables arranged to have their pulsewidths slightly less than one half-cycle of the oscillator. The pulses from IC3c and d direct the on-load and open-circuit voltages respectively, through the analogue gates IC2c and d, to separate capacitors. Buffers IClc and d prevent loading the stored voltages, which have been attenuated by R8 and R9, permitting batteries up to 9 volts to be tested without saturating the buffers. If higher voltages
are likely to be tested, the values can be altered with a suitable adjustment of the test current.
In its present form, the circuit gives a full scale reading of 20Ω for 200 mV output: thus a resolution of $1 / 100 \Omega$ is achieved with a $3 \frac{1}{2}$ digit voltmeter. For this range, VR1 is set up to give a sink current of 13.1 mA though TR 1 , and this must be checked with C2 shorted with a temporary link. Calibration accuracy then rests on the tolerance of R8 and R9. In order to minimise offsets when measuring low resistance cells, a four-wire probe arrangement is used so that negligible current flows through the voltage sensing wires.
In use, it was found that even the very low internal resistance of nickel-cadmium cells could be resolved-these typically exhibit values of a few hundredths of an ohm. At the other extreme, lithium button cells were found to have values greater than 20Ω. To extend the measurement range of the circuit it is necessary to reduce the test current through TRI since increasing the range on the external voltmeter will increase the likelihood of the 'invalid reading' LED illuminating for the lower voltage, higher resistance cells.
R. P. Dudley,

Newtown,
Southampton.

IU SPECIAL

AUDIO TO LOGIC INTERFACE

THE circuit shown is for an interface, which allows logic circuitry to be driven by audio tones, recorded on cassette tape. The design is based upon a single LM 392 op-amp/comparator chip, and will operate with input levels as low as 60 mV peak, over a supply range of +3 V to +32 V .
The op-amp is configured as a multiplefeedback bandpass filter, with f_{0} centred on 440 Hz . Its gain, at this frequency, is twenty, and rolls off at a rate of 6 dB per octave. This gives effective discrimination of both switching transients and mains hum. The output from this stage feeds the comparator, whose threshold is set at 1.2 V by a bandgap reference diode.
The comparator output switches virtually from supply rail to supply rail, making it suitable for use with either CMOS, T.T.L. or the 555 timer.
P. Thompson, Glasgow, Scotland.

A SIMPLE VCO

THIS cheap, simple circuit was designed to indicate the value of a changing DC voltage by varying the pitch of an audio tone. It consists in essence of an integrator followed by a schmitt trigger. A positive input to the integrator causes its output to ramp downwards until the schmitt changes state; the output of this then pulls the input to the integrator almost to negative supply, and its output then ramps back upwards !until the schmitt returns to the original state.

The four inverting gates are formed from a C-MOS 4011 BE with its four pairs of inputs linked. Two of them make up the schmitt trigger, the remaining pair are paralleled to form a buffer for the feedback

COOLER SPECTRUM

circuit. Almost any op-amp could be used, the original was tried with both $\frac{1}{2} x$ LM358N and $\frac{1}{4} \times$ LM324N.

Resistor R4 sets the centre frequency. Since the ear detects changes in pitch as an "octave" shift for each doubling or halving of frequency, the network R2, R3 and D1 was added to make the output sound (fairly!) linear over the input voltage range. R1 and Cl provide input noise smoothing, if required.

With the component and supply voltage values shown, and driven by the output of an LM358N (minus 5 to plus 3.5 V) the circuit gave an output of about plus and minus one octave with a centre frequency of approximately 350 Hz . The output consists of pulses, about 300 microseconds wide, both polarities being available.
A. Flind,

Taunton,
Somerset.

LOW COST KEYLESS LOCK

UNABLE to track down the LS7225 Keyless Lock i.c., I built my own Keyless lock using spare components. The resulting circuit was cheaper and boasts a better specification than the LS7225 I.C.
Keyless locks have numerous security applications in , for example, burglar alarms and door entry systems where the correct entry of a 4 -figure number on a keypad will arm or disarm an alarm or activate a door-opening solenoid.
The diagram shows 10 keypad switches connected to a 10×4 selection matrix. This was easy to implement using stripboard and low-profile i.c. sockets. The selected keys are "patched in" to each flip-flop using single strand cable. All unselected keys are commoned and connected as shown.
When $\mathbf{S} 5$ is depressed, ICla's clock input (C) momentarily changes from logic ' 0 ' to logic ' 1 '. This transition transfers logic ' 1 ' on the data input (D) to its Q output. This procedure repeats for the other 3 flip-flops until the output of IC 2 b changes to logic ' 1 ' for the correct 4 -key entry. The RC circuit between flip-flops is quite nove! in that it allows each keypad switch to bounce for up to 10 ms without clocking the output of two consecutive flip-flops for one key depression, as shown for ICla and b.
Two features make this lock virtually fool-proof: pressing an unselected or out-of-sequence key will take each flip-flop reset input (R) high resetting the opening sequence. The combination of C4 and R8 will suppress any momentary AND gate (IC3) output transitions that may occur while allowing the opening sequence to be externally reset. D1-D3 are essential to prevent the logic ' 0 ' output of any AND gate from sinking current when a legitimate reset pulse occurs.

IF YOUR house is fitted with modern Venetian Blinds, you have a source of protection available to you which would take a lot of ingenuity to overcome.
A system was set up nearly three years ago in my house and it has proved very satisfactory. The reed switch type of intruder detector is screwed to the window cill in the appropriate place and the magnet part of the combination is removed from its case (if it is encased) and positioned as shown in the sketch using a bit of Blu-Tack.

The bottom rail of some blinds is steel but the slat used to fill the gap at the underside of the steel rail is generally of aluminium and matches the remaining slats which form the blind. A plastic end cap is usually fitted over the steel rail end and this is first removed before fitting the magnet in the rail. It can be replaced when the correct position has been found for the magnet, whereupon it would appear that

Unlike the LS7225 keyless lock, this circuit allows two sets of two identical consecutive numbers to be entered without resetting the opening sequence. This allows $10 \times 10 \times 9 \times 9=8,100$ possible four-
figure number combinations as compared to $10 \times 9 \times 8 \times 7=5,040$ with the LS7225.

Steve A. Brown,
Wembley,
Middlesex.

VENETIAN BLIND INTRUDER SENSOR

one has a magic Venetian Blind which, when disturbed, triggers the burglar alarm.

In order to enable the blind to be raised or a window opened without risking the wind disturbing the blind with consequent triggering of the alarm, a small slide switch can be fitted in the reed switch casing and wired across the reed switch or a spare bar magnet may be placed over the switch casing when the blind is raised.

When a large window needs protection, I used a sensor at each end of the blind, so that it would not be possible to intrude without one or other switch being tripped. The two reed switch arrangement must be wired such that the two reeds are in series.

Gordon E. Lumley,
Richmond,
N. Yorks.

Siinnple Logic Anclyser

 CHRIS ATKINS

 CHRIS ATKINS

 PART TWO

 PART TWO}

OBVIOUSLY, construction of the analyser is a matter of choice, however, if the diecast box approach of the prototype is made, the photographs in Parts One and Two indicate a suitable layout.

CONSTRUCTION

A wiring diagram is provided: see Fig. 2.1. The circuit diagram given last month shows a filament lamp across the mains transformer secondary winding to act as a pilot light. An alternative is to wire an l.e.d. (in series with a 270Ω resistor) across 0 V and +5 V . This method is employed in the wiring of the prototype unit illustrated in the wiring diagram, except that a self-current regulating l.e.d. has been used so that no series resistor is necessary.

KEYPAD

The keypad used was an RS Components unit (see components list) and the diagram shows how this is wired. Almost any matrix Hex keypad will suffice, but reference to the 74C922 (IC1) data sheet will be necessary to arrive at the correct wiring arrangement.

DISPLAY BOARD

The display board is shown in Fig. 2.3. Some links are necessary, but assembly is straightforward. Be sure to insert the displays in the correct orientation. The displays TIL3 11 incorporate internal decode and drive logic, and as such are referred to as i.c.s.

8-BIT/16-BIT SWITCH

The Eight/Sixteen Bit change-over switch, S2, requires a small alteration to its connections as portrayed in Fig. 1.2. If
the wiring diagram of Fig. 2.2 is followed this will be automatically taken care of, but to correct the circuit diagram, make the following corrections to S2c: IC14 pin 8 and IC15 pin 8 line goes to the upper contact (the switch position illustrated as "closed") leaving the lower contact open circuit instead. In addition to moving this line it should also incorporate a 4 k 7 pull-up resistor to +5 V (shown in Fig. 2.1 as R8).

WHOOPS!

The circuit diagram in Part One shows a 2 k 2 resistor connected to S2b which should be called R7, not R1. In fact, R1 is a 2 k 2 pull-up resistor wired between IC6 pin 1 and +5 V . Note also that the line linking IC18 pin 5 and IC19 pin 5 to IC5 pin 2 (STROBE) can be interrupted with a biased on/off toggle switched marked HOLD DATA. The switch should be wired so that ICs 18 and 19 (pins 5) can be isolated from the remainder of the circuit. Referring to the main board component layout, note that the capacitor linking the STROBE output to OV is C10, not C9. Also the annotations C7 and C8 should be transposed.

One final addendum which should clear up confusion appears below, and it pertains to the correct Data input pins to IC18 and IC19.

IC19	IC18
D0-12	D4-13
D1-13	D5-12
D2-	D6-
D3-3	D7-

No setting up procedure is required prior to use.

Fig. 2.1. Wiring diagram. Some corrections to Part One are referred to in the text, and these are already taken into account hare

Fig. 2.2. Display board printed circuit layout (actual aize)

Fig. 2.3. Display board component layout

Frontal view of the dieplay board. A double-sided board is featured in the photograph, although, as presented above, a single-sided board only is necessary

MICROWAVE

SYSTEM...

Built into a hi fi speaker cabinet, this microwave doppler intruder alarm has a range of 8 m , yet is completely self-contained, The unit requiring no exter $155 \times 155 \mathrm{~mm}$. measures only $245 \times 155 \times 155 \mathrm{~mm}$.

TEMPERATURE INTERFACE for BBC...

Using the machine's own four channel A to D converter this article shows how a simple temperature verter this article shows how a simple temperazure curacy over a temperature range of -50° to $+150^{\circ}$ Centigrade. [

Ever needed
useful project with lot in the kitchen? This is itA timer which can swits of practical applications. 5A, with a fully adjustable mains appliances up to

feature article: WHAT IS RADIATION?

AUGUST 1984 ISSUE ON SALE FRIDAY, JULY 20

VERNON at LREN ITLaige!

V.T.'s views and opinions are entirely his own and not necessarily those of PE

SOME time back, over a soothing thimble of lung syrup, my old mate Tony Kenward (no relation to PE's Mike), the genial secretary of the Society of Electronic \& Radio Technicians (SERT), surprised me more than somewhat. And that doesn't happen very often.

He told me that according to an official survey, carried out, I believe, by the Engineering Industries Training Board, less than five per cent of engineers and technicians now elect to join a professionab association upon qualifying in their chosen disciplines.

How times have changed. It's not so long ago, as I recall, fresh-faced young fledglings, bearing their diplomas like Olympic torches, used to fall over each other to stick magic letters after their names. In terms of a headlong dash it ranked with the stampede of hopeful panhandlers to the Yukon in '98.

So this current reluctance to is something of an oddity. After all, we're known as a nation of joiners of societies, clubs, associations, fraternities and federations. Not to mention trade unions where, regrettably, one is sometimes faced with Murray's choice.

Every calling and profession has its corporate body. From the Scout movement which, no doubt to the chagrin of Baden Powell up there, now covers its knees, to the Freemasons where breasts are still, I am assured, bared on appropriate occasions. From the Freshwater Biological Association, which sounds like fun and games on lakes, to the British Horological Institute, which, one would conjecture, time has not passed by.

"Blinkered and ostrichlike' ${ }^{\prime \prime}$

If there is an explanation why times have changed, it could be that outlooks have changed with them. The newly-qualified man-whatever his field-may no longer feel the need for the support of a consolidating body. He sees little logic in forking out what could be a hefty subscription for the honour of adding to his handle a suffix which in many cases no longer carries the weight or exerts the influence it did in former days.

It could also be that in the view of the lately-qualified man, particularly in the current industrial climate, his ability to do a job is of far greater importance than membership-even fellowship when his beard begins to grey - of organisations which by tradition offer what they still happily believe to be the only true hallmark of proficiency.

How far the employee is supported by the employer in this respect I do not know. But I think it is safe to assume that the latter, similarly influenced by the prevailing need for realism, recognises that practicality is the prime consideration. Unless, that is, he happens to be one of the leading lights of a professional society himself.

"'I do not write without experience'"

Another contributory factor of this switch of attitudes may be the reluctance of many august bodies to acknowledge that they no longer hold the sway they did. Many still cling, blinkered and ostrich-like, to their assumed standing, blandly confident that without membership of their fold, an operator in their particular area might just as well give up and get a job stacking shelves in Tesco's.

Speaking from the touchline and basing my views entirely on superficial impressions-which means that I have resigned myself to a hail of indignant fire-] would cite the Institution of Electrical Engineers as a case in point.

I do not write without experience. I have had contacts with the IEE for more than 20 years and have the deepest respect for the talents and inventiveness it enshrines and the work it has accomplished. None the less, isn't its image a bit out of date?

Even its headquarters in Savoy Place, London, grand and imposing as they are, epitomise an age which ought to be decently buried. All that marble-enough to equip a dozen Victorian super-loos. Those lofty woodpanelled chambers-highly conducive to nodding off on a warm afternoon. And, most off-putting of all, that larger-than-life statue of Faraday, looking thoroughly cheesed-off after a rotten day with his electro-magnets, extending anything but a warm welcome in the entrance hall.

This, I submit, is hardly the way to attract the young engineer whose only aim in life in the 1980 s is to get himself a good job which will pay the mortgage and keep his kids decently fed, clothed and shod. Insularity and the academic concept have no place outside universities. Maybe not even there either.

I don't want to rub it in, but here's another example of how outfits like the IEE tend to wrap around themselves the shawls of yesteryear. They don't hold meetings, debates and conferences. No. They have seminars, or
what is even more unacceptable, conversaziones.

I cannot believe that the latter affection is meant as a compliment to the Italians. After all, the IEE and others have been at this form of nonsense since long before Italy joined the Common Market. Let's remember the words of Winston Churchill: "Foreign words were made for Englishmen, not Englishmen for foreign words."

Attitudes have altered just as dramatically in yet another zone. Twenty years ago your aspiring subject expert would have drooled like an infant presented with the teat at the offer of writing-for free, mind you-a 10,000 -word article for a professional journal. The sordid matter of money never crossed his mind. The kudos was in itself worth a king's ransom. Brothers, we now exist in another age and your prospective author needs to be coaxed and cajoled and everything depends on the answer to the question: "How much?" It must be very hard for those who have opted to dwell in the past.

In spite of all this sniping at the professional institutions, I am still convinced that they have a place, even if a modified one, in the scheme of things. Their demise would be the loss of yet another of those traditions which are part of our heritage.

I would like to see them becoming more of an advisory force rather than a rigid dictatorial one. There is no room in modern society for the Star Chamber attitude, with membership restricted to those who graduated from Oxbridge or who turned in an examination paper without error or blemish.

It is as well to bear in mind that your average engineer or technician is today a responsible and dedicated person who has studied hard and worked just as hard to gain his laurels. He is professionally motivated by instinct and he has a natural respect for the requirements and ethics of his calling. The only control function a professional society needs to exercise is against the cowboys of electronics who, like the poor, will probably be with us for a long time.

Given this new approach, one could expect budding engineers and technicians to present themselves for membership in ever-increasing numbers. And, as their ranks swell, one could also hope for less prohibitive annual fees.

Tell me, Tony. Is this any help?

If you thought from the foregoing that the professional association movement was a bit rocky, here's news of one of the latest. The Association of Diagnostic Engineers (ADE) is to hold its first annual convention in September. Formed in April 1981, it now has a membership of 3,000 worldwide. They come from the UK, Brazil, Canada, Australia, Egypt, Greece, Poland, Sri Lanka and Nigeria.

The ADE publishes a monthly newsletter with technical articles relating to defect recognition and diagnostic techniques. It even has a "trouble shooters" dining club, which is aimed at exchanging experiences between fellow-members under, as they put it, "conditions of friendship and progress".

If you will forgive me, isn't that just what I've been talking about?

TOROIDALS

The toroidal transformer is now accepted as the standard in industry overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radlated field and, thanks to I.L.P., PRICE
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 DAYS together with a short lead time on quantity orders which can be
programmed to your requirements with no price penalty

STEEL DISHED WASHER

15 VA		
$62 \times 34 \mathrm{~mm}$		$0.35 \mathrm{Kg}$
series	secomoary	RMS Current
0.010	6.6	125
0×011	9*9	083
0.012	12.12	063
08013	$15 \cdot 15$	050
0.014	18*18	$0{ }^{4} 2$
0×015	22.22	0.34
0.016	$25 \cdot 25$	0.30
0×017	30430	025
(encased in ABS plastic)		
30 VA		
$70 \times 30 \mathrm{~mm} \text { Aegulation } 18 \%$		
1×010	$6 \cdot 6$	250
1-0,11	9.9	166
1 mol ?	$12+12$	125
1×013	15.15	100
1:014	18*18	083
1.015	$22+22$	068
1.016	25.25	060
$1: 017$	$30 \cdot 30$	050

$\begin{gathered} 50 \mathrm{VA} \\ 80 \times 35 \mathrm{~mm} \\ \text { Regulation } 13 \% \end{gathered}$		
2.010	6 * 6	416
2×011	$9 \cdot 9$	217
28012	12.12	208
2.013	15:15	166
2.014	$18 * 18$	138
2\%015	22.22	113
2×016	$25+25$	100
2×017	$30 \cdot 30$	083
2×028	110	045
2×029	220	022
28030	240	020
80 VA		
$\begin{gathered} 90 \times 30 \mathrm{~mm} \quad 1 \mathrm{Kg} \\ \text { Regulation } 12 \% \end{gathered}$		
3×010	6.6	664
3×011	$9 \cdot 9$	444
3×012	12*12	333
3.013	$15 \cdot 15$	266
3.014	18.18	222
34015	22.22	1
3×016	25.25	160
3 K 017	30.30	133
36028	110	072
3×029	220	036
35030	240	033

120 VA
$90 \times 40 \mathrm{~mm}$
Requlaton 11.2 Kg
$90 \times$ Requlation 11%

160 V
40 mm $110 \times 40 \mathrm{~mm} \quad 1.8 \mathrm{Kg}$ $5011 \quad 9+9$ Regulation 8% $\begin{array}{ccc}5 \times 011 & 9 * 9 & 8,89 \\ 5 \times 012 & 12 * 12 & 666 \\ 5 \times 013 & 15 * 15 & 533 \\ 5 \times 014 & 18 * 18 & 4 * 4 \\ 5 \times 015 & 22 * 22 & 363 \\ 5 \times 016 & 25.25 & 320 \\ 5 \times 017 & 30.30 & 266 \\ 5=018 & 35.35 & 228 \\ 5 \times 026 & 40 * 40 & 200 \\ 5 \times 028 & 110 & 145 \\ 5=029 & 220 & 072 \\ 5 \times 030 & 240 & 066\end{array}$

Why a Toroid?
Smaller size \& weight to meet modern simine requirements Low electrically induced noise demanded by compact equipment.

High efficiency enabling conservative rating whilst main ta ining size advantages

Lower operating temperature.
Why ILP?
Ex-stock delivery for small quantitles.

Gold service avallable. 21 days manufacture for urgent dellveries.

- 5 year no quibble guarantee. - Realistic delivery for volume orders.
- No price penalty for call off orders.

Prices including P\&P and VAT

VA	Size	$£$	VA	Size	£
15	0	7.43	160	5	12.90
30	1	8.08	225	6	16.30
50	2	10.10	300	7	18.55
80	3	10.81	500	8	25.73
120	4	11.73	625	9	31.63

Mail Order - Please make your crossed cheques or postal orders payable to ILP Electronics Lid.
Trade - We will open vour credit account immediately upon recelpt of your first order.

Post to: ILP Electronics Lid., Dept. 6 Graham Bell House, Roper Close, Canterbury, Kent. CT2 7EP
Tel: (0227) 54778 Telex: 965780

For 110 V priman insers " O " in place of " X " in ryos number For 220 V primary (Europe) insert " 9 " in place of " X " in type number For 1 MPORTANT: Regulation. All voltages quoted aro FULL LOAD IMPORTANT: Regulation. All vol tages quoted are FULL LOAD.

ELECTRONIC SECURITY

ALM22 ALARA CONTROL UNIT

This high performance module is used in AUTROL professional alarm equipment. It will enable you to assemble a sophisticated alarm system at a very low price. It will support all types of detection devices such as magnetic contacts, pressure mats, ultrasonic or passive infra red movement detectors. Screw terminals are fitted for easy installation.
Just took at the advanced features ${ }^{*}$. Immediate alarm circuit *Separate delayed access circuit * Independently adjustable entry and exit delays "Anti-false alarm circuitry * 24 hour tamper protection * Tamper protected wiring *Walk test facility *On board courtesy buzzer * Bell shutdown timer *Auto reset option *Soak test facility *On board 1 Amp fused power supply *Automatic standby battery charger *Extensive interference filtering. The unit requires $150-15 \mathrm{~V}$. transformer, keyswitch, and LEDS (3)

READY BUILT AND TESTED $£ 25.95$ + VAT

SBM10 SELF ACTIVATNG BELL MOOULE

Used in conjunction with the ALM22, this module goes inside the external bell unit and monitors its fead wiring. Any tampering with the unit or its wiring will cause the bells to sound READY BUILT AND TESTED $£ 5.95$ + VAT

KS2. 2 position keyswitch for use with ALM22.
£3.38 + VAT
KS4. 4 postrion keyswitch for use with ALM22. Allows upstairs to be switched off at night.
£ 3.70 + VAT
MT1. 150.15 1 A transformer for use with ALM22. $£ 3.45+$ VAT
W8. External bell box, red or white plastic coated $\mathrm{f8.00}+$ VAT
CH1. Control unit housing, 18 SWG hinged front door, size: $12^{\prime \prime} \times 9^{\prime \prime} \times 3^{\prime \prime}$ undrilled.

E 8.00 + VAT
B3. Rechargeable standby battery 12 V COMPREHENSIVE LITERATURE IS AVAILABLE ON ALL ITEMS
We supply a complete range of accessories and equipment from magnetic switches to complete ready buit systems Send for full information
Add 700 carnage to sll orders. Add 15% VAT to order total (inc. cartiage). Pease allow 14 deys tor detivery.

AUTROL LTD (Dept C)
Ten Acres, Foundry Lene, Loosloy Row, Princes Risborough, Bucks. HP17 ony Tel. Factory: 084447805

5
 E M 5 $\square \square \square \square \square \square$ $=\sqrt[3]{ }$ \square 5 [' $\square \quad \square$ 0 R C R C UITS

 FLUID DETECTOR (LM 1830N)

 FLUID DETECTOR (LM 1830N)}

THE use of electronic sensors to replace old electromechanical devices is widespread, bringing benefits in reliability, smaller size, and lower cost. Some types of sensor are easier to implement as a purely electronic system than others, and one of the mos straightforward of these involves the detection of liquid levels. During the past year in Semiconductor Clrcuirs we've looked at two applications circuits designed to measure moisture levels in soil. This month we feature the LM 1830 N , a bipolar i.c. specitically designed for detecting the presence of water or any other conductive fluid in containers or enclosures.

BLOCK OPERATION

The pinout and specification of the i.c. is shown in Fig. 1 with the basic block diagram shown in Fig. 2. An internal oscillator passes an audio frequency signal via an internal resistor, $\mathbf{R}_{\text {ref }}$ to one half of a probe, the other half of which is connected to ground. A detec tor determines whether the liquid is present or not by measuring the level of signal on the probe; a low level infers that the liquid's own resistance is shunting the probe signal to ground, i.e. 0 volts, whereas a high level suggests that no such shunting is taking place, i.e. the liquid is not present. Hence, the detec tor effectively compares the resistance of the fluid to $\mathrm{R}_{\text {ref }}$. When the detector is triggered it passes the signal directly to the base of an npn transistor, which then provides an open collector current sinking capability for loads of up to 20 mA . This transistor turns on when the liquid is NOT present, i.e. it is a 'low level' warning arrangement.

Because the transistor is turned on by an audio frequency a.c. signal, it will sink current from the load as a series of pulses. This is ideal for driving a loudspeaker via a suitable load resistor, as shown in Fig. 3, or for driving an l.e.d., but could be unsatisfactory for feeding

noso
into a relay, or as part of a logic system. To avoid any problems, the collector of the detector transistor is brought out to the "filter pin', pin 9. Connecting an electrolytic capacitor from pin 9 to 0 volts will smooth the a.c. signal, causing the output transistor to turn on continuously in the absence of any liquid. The use of this capacitor is also recommended for incandescent lamp driving applications, or when using any form of inductive load.

Because the detector works on a level sensing principle, it is important that the oscillator signal amplitude and the detector threshold are unaffected by supply voltage variations. For this reason, an internal voltage regulator is provided to stabilise the internal supply.

OTHER EXTERNAL
 COMPONENTS

An external capacitor must be provided for the oscillator (C2 in Figs. 2, 3, and 4), and should normally be lnF, giving a typical frequency of 7 kHz . The output at pin 13 is usually a.c. coupled to the probe via a 47 nF capacitor, preventing any problems of electrolysis or plating that would occur with d.c. polarisation. The surface area and spacing of the probes can affect the effective resistance seen to ground, and it may be necessary to adjust the sensitivity of the detector to compensate for different probes or liquid resistivities. This can easily be achieved by using an external reference resistor as shown in Fig. 3. Although the i.c. is primarily used to detect
liquid levels, it can also be used to sense changes in resistance of other devices. Fig. 4 shows the arrangement used to detect heat or light levels with a suitable thermistor or optodetector. No 47 nF coupling capacitor is shown since these sensors are usually d.c. coupled. Again, an external reference resistor can be used to change the range of sensor resistances which the i.c. will respond to.

Also shown in Fig. 4 is a filter capacitor connected to pin 9 , since the output drives a relay via an external npn transistor. The transistor is arranged to invert the output signal, such that the relay turns on when the sensor resistance is low, corresponding to a high liquid level warning system. Other arrangements of output transistor could give the opposite effect, of course. If the output of the i.c. is to feed into logic circuitry a pult-up resistor to the logic system's own supply must be provided. This should be typically Ik to +5 V for TTL. and 10 k to 1 M up to V_{dd} (the +ve supply rail) for CMOS. The LM 1830 N need not share the same positive supply rail as the logic.

PRACTICAL USES OF THE I.C.

The i.c. depends on the resistance of the liquid in question; unfortunately, some liquids are non-conducting, which prohibits the use of this technique. Table 1 shows a list of conducting and non-conducting liquids. If a conducting container, e.g. a stainless steel sink or tank, is used to hold the fluid. then this can be

Characteristic	Notes	Min. value	Typically	Max. value	Units
Supply voltage Quiescent current Temperature range	All specs measured at $+16 \mathrm{~V}$	$\begin{array}{\|c\|} \hline 5 \\ -40 \\ \hline \end{array}$	$\begin{aligned} & 16 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 28 \\ 10 \\ +85 \\ \hline \end{array}$	$\begin{gathered} V \\ \mathrm{~mA} \\ { }^{\circ} \mathrm{C} \end{gathered}$
Oscillator output voltage $\left\{\begin{array}{l}\text { Low level } \\ \text { Oscillator frequency }\end{array}\right.$	Measured at pin 5 Oscillator capacitor $=1 \mathrm{nF}$	4	$\begin{aligned} & 1.1 \\ & 4.2 \end{aligned}$	12	$\begin{aligned} & v \\ & v \end{aligned}$ kHz_{z}
Internal reference resistor Detector threshold voltage Detector threshold resistance	$\mathrm{R}_{\text {ref }}$-see Fig. 2	8	$\begin{gathered} 13 \\ 680 \\ 10 \end{gathered}$	25 15	$k \Omega$ mV $\mathrm{k} \Omega$
Output sink current Output saturation voltage Output leakage	at pin 12 10 mA sink current, pin 12 For pin $12 \mathrm{at}+16 \mathrm{~V}$		0.5	$\begin{aligned} & 20 \\ & 2.0 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \\ \mu \mathrm{~A} \end{gathered}$
Power dissipation				300	mW

Fig. 1. Pinout and specifications

Fig. 3. External $R_{\text {ref }}$ and direct driving of a loudspeaker

DEFB66
Fig. 4. Other sensors and driving a relay with inversion

Conducting Liquids	Non-Conducting Liquids
Ordinary water (the majority of water)	Pure water
Sea water	Whisky
Weak acid	Petrol
Weak alkali	Oil
Coffee	Alcohol
Wet soil	Dry soil
Copper sulphate solution	Paraffin
Water and Glycol mixture	Brake fluid
Household ammonia	Ethylene glycol

Table 1. Conducting and Non-Conducting Liquids
connected to 0 volts directly, and the probe need only consist of a single conductor held in the vessel. In other cases the probe should be a two conductor arrangement; a piece of glass fibre p.c.b. material, suitably etched, could suffice, as could many configurations of metal and insulator.

APPLICATIONS CIRCUIT

The circuit diagram of a low water level alarm is shown in Fig. 5, with Fig. 6 giving the Veroboard layout. This circuit can be used in many water level detection applications, and is ideal for use in vehicles; a good example is to give early warning of a low windscreen wash water level. The LM 1830 N is used as already described, with a filter capacitor to ensure that the output transistor is turned on with a d.c. signal. A 'low level' warning l.e.d., DI, illuminates as soon as the water level drops to an appropriate point. As soon as this occurs D2 becomes reverse biased and C4 starts to slowly discharge via R3. After several seconds the voltage across C 4 becomes sufficiently low to cause the output of 1 C 3 a to go to logic 1 (a high level), assuming that pin I of IC 3 a is at logic 0 (a low level), too. This turns on an audio frequency oscillator formed by IC2c and IC2d with R9, R10, and C7. The oscillator, in turn, causes WD1 to sound, driven by spare gates IC3b. IC3c, and IC3d in parallel to ensure a more than adequate current capability. IC2a and IC2b form a latch or flip-flop, which is set when power is first applied to the circuit by R6 and C8, and is reset by SI. When set it allows IC 3a to operate normally and the tone to sound, but when reset it feeds a logic 1 to IC3a, preventing any tone being heard until the power is turned off, then on again.

In use, the warning l.e.d. illuminates as soon as the liquid level goes low. The tone is only heard after a few seconds, to allow time for the l.e.d. to be noticed and remedial action taken, or to prevent false alarms caused by momentary drops in level; for example, due to liquid

Fig. 5. Circuit diagram of low water level alarm

Fig. 6. Veroboard layout
movement during vehicle cornering. When the tone is heard it can be stopped either by adding more liquid to the container, or by pressing S 1 (the momentary action reset button). The tone signalling is re-armed when power is re-applied to the circuit as described above. Note that the power should be turned off for several seconds to allow C5 time to discharge. The tone will sound immediately, with no delay, if the liquid level is low when power is first applied, since C4 and R3 will not have had any chance to charge up to a logic I level.

Finally, D3, R7, C5 and C6 smooth the supply to the circuitry, helping to avoid problems caused by the large spikes and transients found in most vehicle electrical systems. The internal oscillator of IC1 wasn't used for the tone signalling in this design (via the output pin 12) because of the requirement for a simple time delay provided by D2, R3, and C4, Also, the small oscillator amplitude at ICI pin 5 (4 volts peak at maximum) made it easier to provide a separate audio oscillator (IC2c and IC2d) than to try to exploit the LM 1830N's own oscillator. Other circuit configurations, of course, could make good use of this internal oscillator facility.

The LM 1830 N is not a new i.c. by any means, but it offers a simple, economical, and interesting solution to many problems in liquid level sensing, and is very straightforward to design with and use. It is available from Maplin Electronic Supplies Lid.

Ahterdinha a.e.umley PART TWO

BOTH internal and external alarms have been left to the preference of the constructor.
The relays in both the Comparator and the Two Timer have 24 volts d.c. at 1 ampere local contact capacity. The internal warning might well be a bell or buzzer or indeed the door gong. If a more exotic sound is sought, the Warbler described later in this article will probably suffice. A variety of alternatives present themselves including the lighting of lights. In such a case use will be made of a power triac or second relay since the relays given are limited to 100 V a.c..

Of all the external alarms the electric bell is very economic in both price and power terms but years of discredit due to bells ringing for long periods due to badly designed alarm systems false triggering rather rules them out as effective. A very good and economic alternative has been located by the writer. This is a little 'Micro-Siren', which is quoted by the manufacturer as producing over 90 dB at 3 metres, audible at 400 metres at least and requiring 850 mA with an input supply of 12 volts. This little howler is small enough to either hide away or build into a box along with a power supply and other devices such as flashing beacons. Setting the Two Timer is a case of personal feeling but is surely a question of common sense; if the the internal alarm has fired, followed by the external alarm which is allowed to run for a full three or four minutes, it is very unlikely that there is any intruder hanging around after that. Perhaps a flashing beacon might be desired after the cessation of the siren; this could be achieved by picking up the I.e.d. output from the Two Timer and by suitable amplification and relay, flash a lamp or Zenon Tube.

CONSTRUCTION OF THE COMPARATOR BOARD

The p.c.b. design for the Comparator is shown in Figs. 2.1 and 2.2 with the component layout in Fig. 2.3. The board is double sided and Veropins are used as lead throughs. Be careful to tin both sides of any lead through circuits. Usually these are foil pads soldered to through pins but there are some which consist of the pins of d.i.l. sockets or potentiometers. Lead through Veropins not used as terminals can be cut off short after soldering. The 10 n disc ceramic capacitors soldered close to the supply pins of those i.c.s listed are very important in the suppression of 'glitches' which would cause false triggering.

A sub-panel is made to carry the switches and I.e.d.s along with the Compensator sub-assembly. The details are in Figs. 2.7 and 2.8. The drawing can be used for both the
sub-panel cutouts and the lid of the box. The slide switches are not screwed but glued to the sub-panel and when the sub-panel is screwed to the box lid, they are held fast. The details of the Compensation panel should be followed closely using a scrap of Vero board to carry the resistors. Use a d.i.l. socket for the di.i.l. switch for ease of assembly and to avoid damage to the switch. The top pins of the d.i.l. switch are commoned and the outside ends of the resistors are commoned on the Vero strip left on the board. The other ends of the resistors go each to a free pin on the switch (socket if used). Make sure the assembly is well fixed as it will see considerable use.

POWER UNIT

The p.s.u. described fits the 2006 box and is intended to supply the Comparator board and the Two Timer board. The circuit diagram is in Fig. 2.4 and a p.c.b. layout in Fig. 2.5 with a component layout shown in Fig. 2.6.

It is not intended that the p.s.u. shall supply extra circuitry, although the specified transformer and rectifier combination is capable of doing so. The main restriction is in the regulation provided by the Zener diodes. Replace these with appropriate voltage regulators and another 50 mA would be available; however, since the project philosophy is to leave the audible warning devices to the choice of the constructor, it is necessary to note the design limits of the p.s.u. as it stands.

The two Ni-Cad PP3's are charged at just 1 to 3 mA by adjusting the two associated variable resistors. The batteries must have been on charge for some two days before the final adjustment is made, or alternatively they could be charged on a normal charger at a normal rate first.

The position of the p.s.u. in the box is at about 7 or 8 slots from the top. This allows ample ventilation for the transformer by virtue of the vents cut in the box. The two PP3's are held by double sided adhesive pads in a convenient position. Take care not to allow fouling of the sub-panel components when the box lid is positioned.

When the system is triggered, a state of discharge will be seen if the batteries are monitored. This is intentional and cycles the batteries at least whilst testing the installation. The charge/discharge currents are monitored by lifting one side of the battery connector and placing a milliammeter in series. (About 30 mA from one PP3 and 20 from the other.)

The 240 volt mains input must be wired with care, covering terminal pins with systoflex or shrink sleeving. Use a fused plug at 2A and fit a 500 mA fuse in the internal holder.

Fig. 2.1. P.c.b. design (track side)

Fig. 2.2. P.c.b. design (component side)

Fig. 2.3. Component layout

\section*{COMPONENTS . . .
 COMPARATOR BOARD
 | Resistors | |
| :--- | :--- |
| R1,R2 | |
| R3,R10,R11 | $1 \mathrm{M}(2 \mathrm{off})$ |
| R4 (3 off) | |
| R5,R6 | 100 |
| R7 | 150 k (2 off) |
| R8 | 470 |
| R9 | 100 k |
| VR1,VR2 | 470 k |
| | 100 k hor. preset |
| VR3 | 12 off) |
| All resistors | $1 \mathrm{M} 5 \mathrm{~h} 5 \%$ hor. preset |}

Capacitors

C1,C3	$47 \mu 16 \mathrm{~V}$ elect
	(2 off)
C2,C4,C5	$10 \mathrm{n}(3$ off)
C6	$470 \mu 16 \mathrm{~V}$ elect

Semiconductors

D1.D2,D3	1N4001 (3 off)
D4	BZY885V6
	Zener
TR1	BC109
IC1	LF353
IC2	4049
IC3	CD4011
IC4	741

Miscellaneous

8-pin d.i.l. Iow profile i.c. socket;
14 -pin di.l. low profile i.c. socket;
16-pin d.i.I. low profile i.c. socket;
Relay 9 volts 225 ohms Kuit A
(Ambit 46-80001); P.c.b. double
sided board; Veropins.

SUB-PANEL

Resistors

R1 to R8 470 F +W 5\% carbon

Semiconductors

D1,D2,D3	5 mm red l.e.d. (3 off)
D4	5 mm yellow l.e.d.
D5	5 mm green l.e d.

Miscellaneous

S1.S2 d.p.d.t. slide switch (2 off)
S3 push switch single pole push to make
S4 to S 11 Octal d.i.l. switch
(Maplin $\times \times 27 E$), Veroboard,
Veropins, 16 -pin di.i. i.c. socket.
*Reed switches (10 off),
SK1,SK2,SK3 2-way LS type DIN sockets (3 off)
"If reed switches complete with magnets are used then it will be necessary to insert a 470k resistor in series with the reed.

Fig. 2.4. P.s.u. circuit diagram

NTERWIRING

The various p.c.b.s are connected together using the interconnection diagram in Fig، 2.9. Ribbon cable was used but constructors may wish to use singles. Use stranded interconnecting wire, not solid core, and enough length should be used to enable all p.c.b.s to be withdrawn from the box.

The adjustment is simple enough. If all the external circuits have been installed, these may be used, otherwise connect a resistor of value equivalent to the parallel value of the proposed external network, to the input DIN socket. (Compensators switched in are the equivalent of sensors.)

If the external network or its equivalent resistor is used, switch out all compensators. Adjust VR1 on the comparator to about mid position and adjust VR2 so that half Vcc appears at pin 3 or 6 of IC1. S1 must be switched to AutoReset.

The green l.e.d. should now be lit.
Switch in a compensator at the dii.l. switch. The green l.e.d. should extinguish and the yellow l.e.d. should light.

The next step is to set up the delays. Only the Comparator delay is described at this stage, the Two Timer will be covered later.

Fig. 2.5. P.c.b. design for p.s.u.

PE15206

COMPONENTS . . .
POWER SUPPLY UNIT

Resistors

R1,R2.R3.R4 $330+$ W 5\% carbon (4 off)
VR1,VR2 250 verrtical presets (2 off)

Semiconductors

D1.D2 10V Zener BZY88 (2 off)
D3,D4,D5,D61 N4001 (4 off) REC1,REC2 Bridge rectifier 50 V p.i.v. $(2$ off)

Miscellaneous

Ni-Cad rechargeable battery (2 off): Mains transformer $12 \mathrm{~V}-0-12 \mathrm{~V}$ @ 140 mA (Ambit 57-10052): Fuse clips p.c.b. mounting (2 off): Fuse 500 mA : P.c.b.

Prototype p.s.u. board

Fig. 2.6. Component layout

Set the delay control VR3 to minimum. Set the input network to 'Alert' and all Compensators off. The green l.e.d. should be on.

With a stopwatch or similar timer, measure the delay from the point of switching in a Compensator to the point where the red l.e.d. lights and the relay closes. Switching in a Compensator is the equivalent of a tamper condition when the external network is 'All Intact'.

The adjustment of the delay can now be made, based on the minimum period just obtained. It will be very roughly about 8 seconds. See if the delay arrived at is adequate to leave the house and close the door. It will need to be if 'Lock-On' is to be used when the premises are vacated.

Switch to Lock-On and retrigger the Comparator using the Compensator. The green should extinguish and the yellow light up. Wait until the red comes on then remove the input

Fig. 2.9. Wiring diagram for the Alarm System
by switching out the Compensator. The yellow and the red l.e.d.s should persist until the 'Auto-Reset' mode is applied and the Compensator removed.

The Width Control is all that remains to be set. It is necessary to either use the external network or simulate it.

Use 'Auto-Reset' mode, then with all sensors (or simulated sensors) in circuit and all compensators out, green l.e.d. lit and previous settings (VR2) correct, switch in one compensator and the yellow l.e.d. should light. Switch out the compensator and the green should replace the yellow. Now open circuit one sensor (remove one 470k from the network) or reduce the number of simulated sensors by one, whereupon the yellow should light again and the green should extinguish.

Turning the Width Control anti-clockwise narrows the Width and therefore the system will appear more sensitive; try a pair of wet fingers across the external network when all compensators are out and all sensors in. If it proves impossible to trip the system either by decreasing the number of sensors in circuit or putting in one extra 470 k by using the compensator, the system is too insensitive and the Width Control should be turned anti-clockwise. A point can generally be found where the system is so sensitive that the green and yellow l.e.d.s tend to flutter on and off. This state must be avoided. By and large set the system to that Width where either an open circuit sensor or an additional compensator will trigger the l.e.d.s.

Alternatively, a more accurate method may be used. By plotting the necessary change in input voltage for each of several settings of the Width Control, it can be ascertained which value of VR1 is stable and yet sensitive enough. A 100 k potentiometer across the input socket but set to equal the setting of VR2 (say 47 k) and a high impedance voltmeter to measure the change in input voltage, can be used to check the increment and decrement necessary to trigger the system for each of say five settings of VR1.

EXTERNAL NETWORK (INSTALLATION)

Little can be said about the external network as much depends on the building and its occupier. The wiring need not be concealed because of the anti-tamper facility. One very important point however, great care must be taken to ensure that moisture cannot make ingress at any point, since the Comparator would see this as a tamper state. Any junction blocks are best filled with wax or resin (paraffin wax or Araldite).

TESTING THE TWO TIMER

When the whole system is complete and the Comparator has been set up, it will be necessary to adjust the delays in the Two Timer. The procedure is simple, there are two potentiometers in the Two Timer, one for the Delay before

Fig. 2.11. P.c.b. design for the Warbler Unit

Fig. 2.12. Component layout
the external siren starts and the other for the period of operation of the siren. Remembering that both are initiated simultaneously by the Comparator and each independent of the other, set first the delay time to somewhere around 45 seconds after the yellow l.e.d. in the Comparator lights; this will mean that the external siren relay will close after that period. Next set the other potentiometer to establish the duration of the external warning. A length of time up to about four or five minutes is adequate, since if no action has been taken by then, there would seem to be little chance of the intruder being around or indeed catching him.

In addition to an external siren, some users might like to include a flashing beacon with the siren. There are possibilities with Zenon Tube beacons or more simply, just a red lamp powered from the 12 volt siren supply.

WARBLER UNIT

It is possible to construct a unit which produces a warbling note for use as the internal warning. When a piezo horn is connected to the Warbler, adequate noise is generated to put off most intruders before the external siren is activated.

The circuit diagram of the Warbler Unit is shown in Fig. 2.10 with the p.c.b. and component layout shown in Figs. 2.11 and 2.12 .

The output relay of the Comparator which is available at the socket SK2 is used to switch external power (batteries perhaps up to 18 volts) to the Warbler which should be located out of reach. The normal house offers a good position high up in the stair well, with leads running down from the loft. The object is to avoid leading the intruder to the electronics.

The components specified will suit most horns but as they

Fig. 2.10. Circuit diagram of the Warbler Unit
are frequency conscious, experiment a little with the timing components C1/C2 and C4. C1 should be chosen to generate a tone which coincides with the peak resonance of the horn, usually around 2 to 2.5 kHz . This is easily sensed by ear. Do not be too persistent, the noise can become quite painful. A fine tune on the warble can be made by replacing the $1 \mathrm{M} 2(\mathrm{R} 4)$ by a variable. C 4 is important in that it forms part of an integrator which shapes the modulation waveform.

The housing of the Warbler is left to the constructor. Any box which could also house the dry batteries and even the horn could be used.

CRIMSON Electrik 100 Watt Stereo Slave in $19^{\prime \prime}$ Rack Mounting Cases. Two only for sale £70.00 each. Mr. Kerry Williams, 10 Wilmot Street, Melyncryddan, Neath, West Glamorgan SA11 IAH. Tel: (0639) 51948.
TELEQUIPMENT Scope D67 Manual wanted to buy or borrow. Mr. J. Rayner, 30 Westbourne Park. Scarborough, N. Yorks. Tel: (0723) 372588.

WANTED Diagrams with explanations of an EPROM 2716 Programmer with CPU 8085 Intel or 280 Zilog. Mr. D. Vandewalle, 6 Chee G Richet, 7860 Lessines, Belgium.
SYNTHESISER 4600, Mostly working. (Not completely finished) Large wooden case. Internal Amps/Speakers. Huge Patchboard £220. Mr. T. A. Gaskell, Cambridge. Tel: Cambridge (0223) 893593.

MAPLIN organ complete working including Reverb Rhythm units two Keyboards Pedals etc. Best offer accepted. Mr. D. Dockree, 6 Pine Road, New Southgate, London N1 1 1EP.
PRACTICAL Electronics 1969-1984 less 2. Buyer collects. M. E. L. Yates, 5 Whinney Moor Lane, Retford, Notts. Tel: Retford 704995.
6 ROLLS Sinclair Printer. Paper unopened $£ 5$. Broken Printer £ 1 Plus postage. Mr. Ralph Lovelock, 14 Knightley Road, Exeter EX2 4SR. Tel: (0392) 75826.
INTEREST p.c.b.'s i.c.'s Amplifier Chase and Moving Lights Circuitry Exchange. Write. Mr. A. Larry, 56 Becher Street, Derby DE3 8NN.
TWO $2 \frac{1}{2} \mathrm{ft} 34$ Way Ribbon Cable with Edge Connector on each end. $£ 2.50$ each including postage and packing. Mr. G. Blount, 39 Rectory Lane, Roack, Kidderminster, Worcs, DY14 9RU.

TELEQUIPMENT Serviscope with probe and manual $£ 60$. Suggest collection. Tel: (0865) 779855 Mr . C. Dean.
SALA safety block E25. Coax cable 140 ft $\frac{7}{8} \mathrm{in}$ £50. Mr. J. Denby, 107 Station Road, Lepton, Huddersfield HDB ODE. Tel: (04B4) 603898.
CHEAP Armstrong FM tuner. Truvox tape deck, pre-amp/record unit, power supply. Belling-Lee 'Eliminoise' aerial kit. Mr. Smith. Tel: 01-366 7115.

WANTED circuit to build Electrostatic Gen up to 70 kVA as used for paint or flocking spraying. Will buy. Mr. W. Beetwell, 23 Buckingham Avenue. Thornton Heath, Surrey. Tel: 01-679 3983.

LOOKING for plan Schema operator manual 'Graph' 303C oscilloscope by Waveforms Bournemouth or New York. D. E. Piere, 222 Lge Leemstraat, 20/8 Antwerp, Belgium.
WANTED oscilloscope must be modern and good condition. Will pay up to $£ 100$. Dual if possible. Mr. P. Hale, 31 South Road. Stourbridge, West Midlands DY8 3YA. Tel: (0384) 379120.

PYE Vanguard TX RX crystalled 4 metres 70-26 Megs VG condition. 1 TX 1 RX crystals. £12. Mr. R. Pearson. Tel: (0792) 582941

MAMEG scope HM203-4 £250. Realistic scanner £190. Revco discone £30. PE 1972-81 + 83. offers, plus carriage. W. Edwards, 2 Beach Road, Burton Bradstock, Bridport, Dorset. Tel: (0308) 897625.

UK 101 cased 16K RAM + Exmon/assembler in Eprom via. 300/600 baud full documentation. £ 115 o.n.o. Mr. B. H. Hancock. Tel: Ringwood 6950.

XC68000t proioiype 4 MHz 68000 processor: 3 surplus to requirements. Ideal for experimenter at $£ 15$ each. B. Benson. Plumtree Cottage, Mill Lane, Legbourne, Louth, Lincs.
ACORN Atom 12K RAM with p.s.u. and software $£ 50$ o.n.o. Consider breaking for spares.

Mr. D. Butler, 28 Twining Road, Lexden, Colchester, Essex CO3 5KG. Tel: Colchester 48603.

OSCILLOSCOPE Telequipment type 43 with manual. Works sometimes! For repair or spares £12. Mr. B. Marriott, 79 The Myrke, Datchet, Slough. Berks. SL3 9AG. Tel: Slough 35195.
SEIKOSHA GP 100A printer, needs repair! Best offers. Want-swap monitor, keyboard, 74LS's recorder, w.h.y. Mr. M. Saunders, 7 Drumcliff Road, Thurnby Lodge, Leicester LE5 2LH.
SEEKING a friend having interest in electronics or collecting something in exchange of electranics components. D. Amroudi, PO Box 13595-114, Tehran, Iran.
KEMIPSTON S interface Spectrum to Seikosha with software. Working but replaced with Kempston E. E20. Mr. R. T. Lovelock, 14 Knightley Road, Exeter EX2 4SR. Tel: Exeter 75896.

WAMTED Akai model GXR 82D 8-track stereo recorder. Buy or borrow service manual or circuit diagram please. P. Harding, 4 York Road, Brentwood, Essex. Tel: Brentwood 10277) 222693.

SCOPEX 4D10B (dual trace) £125. Nascom 2 32 KB green screen VDU, languages etc., £290. Sensible offers considered. Mr. G. J. Wicks, 89 Headroomgate Road, St. Annes-on-Sea, Lancs. Tel: (0253) 721099.
2×81 16K Spectrum-type keyboard still under guarantee plus good games, £59. Mr. M. Huq. 31 Darfield Road, London SE4. Tel: 01-692 475 T.
MEMORY $1 C^{5}$ HM6116LP3 unused fully guaranteed £1.75 each. Over 100, £ 1.50 each. P\&P 25p. Mr. R. G. Potts, 371 Heathcote St., Chesterton, Newcastle, Staffs. Tel: (0782) 564037.

Strictly

ypormonnond

by K. Lenton-Smith

THE process of invention is perpetual but it is fascinating to note how it has galloped over the past 30 years. There are no prizes for guessing the reason. Who would have thought that widespread ownership of powerful, miniature computers and digital watches would arrive so soonand at prices we can all afford.

Transistor action was discovered in 1949 but a good few years were to elapse before the delicate 'point contact' device evolved into a really dependable component which was both inexpensive and available in quantity.

Twenty years ago the transistor had gained wide acceptance. There was another important event taking place at that time: the Publisher and his Editor were planning the launch of a new magazine. Practical Electronics made its debut in November 1964.

Then, as always. P.E. was forwardlooking, with the semiconductor its main preoccupation. In those early issues there were occasional references to valve circuitry, which may seem strange in retrospect, but the long-term reliability of transistors was still being proved. A number of organ manufacturers were very conservative in this respect, understandably so as their good names were at risk if they made a wrong decision.

Gulbransen was the first manufacturer to produce a fully-transistorised instrument but competitors were often slow to make the change from proven valve circuitry. Organs were just about the most expensive piece of electronic equipment you could own, were extremely well-made and built to endure many years of use. A close look at the cabinet work of vintage instruments will show that this aspect was better than it is today.

AGEING

Being built to last, many valve organs are still in existence today and work quite happily. There were no 'frills' such as rhythm units or synthesizers though possibly a simple form of percussion might have been embodied. A straightforward instrument of this type is suited to secular music and is often found in a chapel or small church to-
day. A good number of church organists take an interest in electronic music and nurse their instruments over the years.

If an old valve organ works reasonably well and up-to-date facilities are not essential, why bother to replace it? Provided the owner takes care to keep a set of spare valves, it might as well be used until it gives its last gasp. At the same time, valve circuitry does suffer from anno domini and needs occasional attention. Taking the back off will reveal some 'CEGB' engineering as steel chassis had to be used to support large transformers. The valve filament current alone may well have been in the region of 25 A if tone generation was electronic rather than mechanical. The h.t. supply was perhaps some 400 V for the output stages and all the discrete components had to be suitably rated and were consequently bulky.

Being interested in electronics, you will naturally be considered very expert by anyone knowing less than you-so you can get saddled with curious tasks from time to time! Being asked to look at an ageing electronic instrument is a possibility so it may be useful to consider what you coutd encounter.

UNFAMILIAR

The impressive armour-plated innards may look forbidding but the circuitry was far less complex than it is today. The circuit diagram may have been lost years ago, to add to the problems, so you may have to (as at the keyboard!) play it by ear.

Basically, a block diagram of an average instrument was as shown in Fig. 1. If the instrument works tolerably well but appears to lack punch and volume, the chances are that the h.t. voltage is well below par. This is fairly typical and will be due to the rectifier valve losing its emission and the state of the electrolytic capacitors in the power supply section. We tend to forget the enormous difference between working voltages today and in yesterday's circuitry. Large electrolytics suffer particularly from being bombarded by high voltages year after year: it used to be the practice to put the date of manufacture on these large capacitors so you may be surprised by what you find when you remove the dust.

[61157

Fig. 1. Block diagram showing basic layout of an average instrument of yesteryear

Fig. 2 shows a typical power supply where the rectifier feeds its output through a chain of resistors to provide voltages for the various parts of the organ. I would suggest replacing the rectifier and the first two capacitors without question. Although the life of semiconductors appears to be limitless if they are operated within the correct parameters, valves age due to loss of cathode emission. The smoothing and reservoir capacitors suffer extra surge every time the instrument is switched on: filaments take time to warm up and until they do the power supply is virtually off-load. Replacement capacitors should therefore be rated at least as high as the originals.

RECTIFIER FED WITH 400 V AC
TO EACH ANODE FROM

[EOT350

Fig. 2. Typical power supply
Resistors in this part of the organ are probably wire-wound and will not have altered in value, but lift the chassis and examine the tags of the capacitors and you may well find that electrolyte is oozing out.

GENERATORS

These were often mechanical and will need to be lubricated carefully. Compton generators can seize through lack of oil but take care not to spill oil on the drive belt. Hammond tone wheel instruments have fine capillary threads which feed oil to the bearings and can be accidentally broken quite easily. This type of generator should not be over-oiled as drips will fall directly onto the values below.

The circuitry used for electronic tone generation was varied and even neon tube dividers were not uncommon. If a frequency is missing at all points on the keyboard whatever the chosen pitch, look first at the valve itself. High voltages collect dust and dirt which, together with traces of oil. can get into the valveholder. Clean everything-valve pins and socket-with carbon tetrachloride and see if that helps before changing the valve.

Another source of trouble in valve equipment are resistors that go high. Long use with high voltages will 'in effect' give a change in the colour of the multiplier band! For example, a 220 k resistor can increase its value to 2 M or more and if it happens to be the anode load it will stop the valve working.

Fig. 3 shows a typical amplifier stage. Unsolder and check the resistor connected to the anode of any valve that appears to be working at a very low voltage: anode volts for generators and amplifier stages are in the region of 150 V . If the resistor has gone high, replace it with a hi-stab of the correct rating: ordinary carbon resistors were often used through the generator and later stages, but hi-stabs are preferable in being less noisy.

[E61351]
Fig. 3. Typical amplifier stage
Capacitors in generator and amplifier stages were of various types. Ceramics usually stand the test of time but coupling capacitors of the paper type become very leaky and will best be replaced with plasticbodied types of the correct rating. The lower voltage, small elecirolytics can be unsoldered at one end and checked on an RC bridge but will usually be found to have survived.

WIRING

Under chassis wiring should not be disturbed more than necessary as there is a real risk of inducing 'heater hum' in doing so. Flexible wiring and cables should be examined carefully, especially the mains lead. The colour-coding of the mains cable will indicate its age and, if it happens to be rubber-covered, the chances are that the insulation is turning to powder. Replace this lead to eliminate fire hazard.

Co-ax cable of the same age often had a bare screen and rubber insulation for the inner. I would replace this type of cable for two reasons. If the bare outer touches anything it can cause trouble-hum, for example, if it contacts the chassis. Old co-ax can also produce an elusive fault where the audio signal evaporates without an apparent reason. What happens is that flexing the cable powders the insulation, which earths out the signal.

KEYING

If a generated frequency is missing somewhere, a test amplifier and speaker can be used to check whether the fault lies in the generator or with the keying. Traced to a keyswitch the problem will probably be
dirt on the contacts and nothing more A small brush will usually help to clear it, in stubborn cases, moistened with carbon tetrachloride.

Precious metal-to-metal contacts were usual and their wiping action kept them clean. Some organs used progressive resistance switches for earthing out a generator signal (extremely prone to ciphers!) but any problem with these systems can usually be traced to dirt. Rotating busbars were fitted to some models to allow a new switching surface to be presented in the event of the precious metal plating wearing through.

One very obvious precaution with valve instruments is to keep a set of spares as valves are becoming increasingly hard to find. When you buy them, the $£ \mathrm{~s} d$ price is often still marked on the box-and bears no relationship to what you will pay today! If unfamiliar with valve circuitry, renovating one of these old instruments is an interesting challenge and there is great satisfaction in injecting new life into a worthy instrument.

As it is some time since valve circuitry appeared in this magazine, there is one final tip: if delving into the works with the organ switched on, keep one hand in your pocket!

FROM COMPASS TO COMPUTER

Author W. A. Atherton
Price £20 Hard back, $£ 9.95$ limp
Size $230 \times 155 \mathrm{~mm} .337$ pages
Publisher
ISBN
Macmillan
0-333-35266-1

THIE subtitle of this book, "A History of Electrical and Electronics Engineering", tells you more about its content than the title. The history spans roughly the last century, though in the early chapters due acknowledgement is made to William Gilbert, Coulomb, and Benjamin Franklin, among others.

The work of Oersted is well told: his crucial experiment demonstrated the magnetic force present when current flows through a wire, by the deflection of a compass-needle. This will be familiar to many readers today as school science, but Dr. Atherton gets across well the feeling that the discovery was one of major importance: a repeatable experiment which showed conclusively the existence of invisible forces.

This was the foundation for the work of men such as Ampere, Davy, Ohm, Wheatstone, and Faraday; and in the fifty years following Oersted's determined attempts to unify theories of electricity and magnetism there was what today would be called an "information explosion". The work of mathematicians, chemists and physicists gave rise, almost inevitably it seems now, to telegraphy and telephony (in 1865 a cable could be sent to India, via a landline), electric lighting and power, and, ultimately, radio.

The chapter on theories and discoveries contains references to the achievements of dozens of the important mathematicians and physicists of this century. But, just because the scope is so wide, there is very little depth, and some readers might find this irritating.

The story of the miniaturisation of electronics is better, wellpaced and clear, and the penultimate chapter-computersalso covers the ground well in an interesting way, though without going into the details of computer architecture.

Finally, Dr. Atherton considers the effects of new technology on society, pointing out its benefits as well as the dangers, and the inter-relatedness of the technology with political, military, and economic factors. It is a comprehensive book, wellpresented, and may well find a wider audience than Dr Atherton envisages. Certainly O - and A -level students will find it useful, as will many engineering undergraduates; but it is also a book for anyone who is interested in modern Western history.
D.A.B.

THE ART OF MICRO DESIGN

Author	A. A. Berk
Price	$£ 13.95$
Size	$215 \times 135 \mathrm{~mm} .176$ pages
Publisher	Butterworth and Co:
ISBN	$0-408-01403-2$

EVER since their "birth", microprocessors and microcomputers have had a major impact on our world and society especially in the field of commercial and industrial control application.

Because of the complexity and indeed subtlety of the techniques involved, micro-based system design has become somewhat of an art, which can only be learnt through dedication and practice. However, this book provides an excellent practical guide to all would-be designers, whether engineer or hobbyist.

The book covers all the essential areas of micro-systems and their peripheral circuits. Bus structures, memory devices, inputoutput and interfacing techniques are all described in detail, with close attention being paid to practical applications. There is an in-depth study of the basic hardware and software aspects of three example MPUs; the Z80, 6800 and 1802 with emphasis on actual data.

After reading this book the reader should be able to read manufacturers' data sheets and begin micro-design with confidence and an up to date knowledge of the chips and techniques available . . . Good luck!
R.M.B.

PROGRAM SORTER IN CHAOS?

Sortwaretrune

The user guide to microcomputer software.

IS THE ANSWER

It's the most comprehensive magazine listing of software programs for the eight leading microcomputers.

BBC • COMMODORE 64 • DRAGON VIC 20 • ORIC 1/ATMOS • ATARI 400/800 • SPECTRUM • ZX81
GAMES EDUCATION BUSINESS
PERSONAL MANAGEMENT
SPECIALIST PROGRAMS

User Guide to Microcomputer Software

Affordable Accuracy - Low Cost Multimeters from Armon

SPECIFICATION MODELS
HC-6010 \& HC-7030 DIGTAAL

* 10 amp AC/DC
* Battery: Single 9 V drycell. Llife 200 hrs
- Dimensions: $170 \times 89 \times 38 \mathrm{~mm}$
* Weight: 400 g inc. battery
- AC DC Current: $200 \mathrm{\mu A}$ to 10 A
* AC Vortage: 200 mV to 750 V
- DC Vorage: 200 mV to 1000 V
* Resistance: 200 N to $20 \mathrm{M} \Omega$
* Inpur Impedance: $10 \mathrm{~m} \Omega$
* Display: 3y Digit 13 mm LCD
* Ofload Protection: All ranges

28 RANGES, EACH WTTH FULL OVERLOAD
PROTECTION

ARMON ELECTRONICS LTD.

P.E.HYPERCHASER

4 Channel Pseudo Intelligent Light Unit. Kit of Parts $€ 78.50$

Kit includes PCB, Case, Facia, all you need - Post \& Packing inc

P.E. STARDESK

8 \& 4 Channel light mixer. A full set of parts for this exciting project inc VAT \& Carr.
f209
Telephone your order now on (01) 6848007

RENSHAM RECORDING LTD
327 Whitehorse Road, Croydon, Surrey CRO 2HS $9 \mathrm{am}-5 \mathrm{pm}$. Mon-Sat.

OVERSEAS ORDERS

Overseas readers are reminded that unless otherwise stated, postage and packing charges published in advertisements apply to the United Kingdom only.
Readers wishing to import goods from the United Kingdom are advised to first obtain from the advertiser(s) concerned an exact quotation of the cost of supplying their requirements carriage paid home.

ELEGTROVALUE
 POTENTIOMETERS ROTARY-SLIDE-PRE-SET
We offer a wide range of useful types which can be relied on for long working life, smooth action and good contact
ROTARY Wht twin wiper contects Wirewound
SINGLES 100, $220,470,1 \mathrm{~K}, 2 \mathrm{~K}, 4 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}$ and 10 M ohms.
P. 20 Single track

Linear in 15 values, 100 R to 4 M 7 Log, in 13 values from 220 R to 2 M 2 Rev. Log. 10K, 22K, 47 K . All without or with switch.
JP. 20 Twin track matched
Twin gang matched; with or without PST switch
Lin. or log. 9 values $1 \mathrm{~K}-2 \mathrm{M} 2$ per section.
Rev. Log. $10 \mathrm{~K}, 22 \mathrm{~K}$.
DP20 Twin Track
Dual concentric spindle for controlling sections separately. With or withaut DPST switch. 3 and 1 W , various values. SLIDERS Lin. or Log. 4 K 7 to 1 M , single or stereo. PRE-SETS Horizontal or vertical, 100 to 10 M in E3 series of values.

CERMET

100 to 4 M 7 in E3 series in values.
KNOBS
In a wide range
of sizes, styles. finishes and colour also calibrated scales. Mention P.E. when sending comprehensive tree 40 pege $A Z$ fst.

BRITAINS LEADING qUaLITY COMPONENT

 SUPPLIERS-SEND FOR FREE 40 PAGE A-Z LIST attiactive ongcounts-frez postage-godo senvice a deliveay

28 St. Jude's Rd., Englefield Grn.,

Egham, Surrey Tw20 | Egham, Surrey Tw20 |
| :--- |
| OHB: | OHB: (0784) 33603 Telex 264475. (North) (Callers only) 680 Burnage Lane Telex 264475. (North) (Callers only)

Mnchstr. (061-432 4945) EV Computing Shop 700 Burnage Mnchstr. (061-432 4945) EV Cor
Lane, Manchester (061-431 4886).

FREOUENCY COUNTERS

HIGH PERFORMANCE HIGH RELIABILITY
LOW COST
The brand new Meteor series of 8 -digit Frequency Counters offer the lowest cost professional performance available anywhere

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz}$ (Low Pass Filter
* Sensitivity $<50 \mathrm{mV}$ at 1 GHz
* Setability 0.5 ppm
* High Accuracy
* 3 Gate Times
* Battery or Mains
* Factory Calibrated
- 1.Year Guarantee
* $0.5^{\prime \prime}$ easy to read L.E.D. Display

PRICES (Inc. adaptor/charger, P \& P and VAT)
METEOR $100 \quad(100 \mathrm{MHz}) \quad £ 104.36$
METEOR $600 \quad(600 \mathrm{MHz}) \quad \mathbf{£ 1 3 4 . 2 6}$
METEOR 1000
(1GHz) \quad E184.86
Designed and manufactured in Britain.

Illustrated colour brochure with technical specification and prices available on request

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

RECEIVERS AND COMPONENTS

BOURNEMOUTH BOSCOMBE. Electronic components speciallsts for 33 years. FORRESTERS (NATIONAL RADIO SUPPLIES). Late Holdenhurst Road. Now at 36, Ashley Road, Boscombe. Tel 302204. Closed Weds.

TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact COLES HARDING \& CO. 103 SOUTH BRINK. WISBECH. CAMBS. TEL: 0945 584188. Immediate settement.

NEW COMPONENTS FOR SALE
Metal Film Resistors, IW, 2\%, High Stability: E12 Valves 100 R to $27 \mathrm{~K}, 2 \mathrm{p}$ each; $15 \mathrm{p} / 10$ per value. Carbon Composition Resistors, $2 \mathrm{~W}, 10 \%$; 12R 39R 8K2 10K 18K, 22K i00K, 220K 4M7 Values, oly
. 8 p , $22 \mathrm{p} / 100$, $120 \mathrm{p} / 200$ per value
L.E.D s; $3 \mathrm{~mm} / 5 \mathrm{~mm}$, clear/diffused
(please state size/type required)
Red, 10p each, 80p/ 10 Green, 12p each, 100p/10 Yellow, 12p each, 100p/10
Tri-Colour, 5 mm diffused, 40p each, 350p/10
p\&p 30p Rapid Despatch
Also Capacitors, semi-conductors, I. C.s, etc.
P. Douro.

4 Elsham Road, London W14 8HA

SMALL ADS

The prepaid rate for classified advertisements is 36 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 12.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Lid". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

RESISTOR PACKS
 FOR ALL PROJECTS

I watt carbon film resistors $5 \% 1$ ohm to 10 M E24 series. Packs of 10 each value (1690 resistors) $\mathbf{£ 1 0 . 0 0}$. Your choice of quantities/ values 125 for $£ 1.00$. VAT and Post Free. GORDON HALLETT
20 Bull Lane, Malden Newton. Dorchester, Dorset DT2 0BO

FIFTY 14 SERIES L.Cs on panel $£ 2.20$. Assorted components £5.00/£6.50 7lbs or lolbs post paid. J. W. BLANSHARD 2 Bamfield Crescent, Sale. Cheshire M33 INL.

TRANSISTORS, RESISTORS, CAPACITORS and more. Eg. 14 pin dil sockets 9 p . Send for VAT inclusive price list. HUNT ELECTRONICS, P.O. Box 57, Derby, DE6 6SN

HOME SECURITY

SEC덕ㄱTY

FAEE COMPREHENSIVE CATALOGUEI - LOWEST DISCOUNT PRKCES - HIGHEST OUALITY EQUIPMENT - FREE DIY DESIGN GUIDE - FULLY ILLUSTRATED - MCROCHIP CIRCUITRV - QUICK DESPATCH SERVICE - FULL INSTRUCTIONS SEND SAE OR PHONE C-TEC SECURITY, Dept PW 60 Market St, Wigan WN1 1HX. Telephone (0942) 42444

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the adventisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for \mathbb{C}.
(Cheques and Postal Orders should be crossed Lloyds Bank Lid. and made payable to Practical Electronics)

Send to: Classified Uepartment,
PRACTICAL ELECTRONICS
Classified Advertisement Dept, Room 2612.
King's Reach Tówer, Stamford Street,
London SE1 9LS. Telephone 01-261 5846
Rate:
36p per word, minimum 12 words. Box No. 60p extra
NAME.
ADDRESS

[^1]
SITUATIONS VACANT

ROBOTICS

Dick Becker, founder of Powertran, requires Electronic Engineers for his new company, Cybernetic Applications Mećhanical/computing ability is required to assist with current projects (to be featured in Practical Electronics, Seplember issue) and future generations of robots and robotic equipment.

Please send CV to:
Dick Becker,
Hollow Down Farm,
Lopcombe, Salisbury,
Wilts SP5 1BP

I Bybernetic Applications

SERVICE SHEETS

BELI'S TELEVISION SERVICES for servie sheets on Radio. TV enc. $£ 1.50$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 Kings Road. Harrogate. N. Yorkshire. Tel. (0423) 55885

BOOKS AND PUBLICATIONS

FUUL SIZE SERVICE SHEETS $\mathbf{E 2}$ + L.S.A.E; CTV/MusC $\mathbf{E 3}$ + L.S.A.E. Repair/circs almost any named TV/VCR $\mathbf{£ 9 . 5 0}$ L.S.A.E. free quotations for manuals, sheets - free mag inc service sheets. T.I.S.P.E.. 76 Church Street. Larkhall. Lanarks. Phone 0698883334.

COURSES

CONOUER THE CHIP... Master modern electronics the PRACTICAL way by SEEING and DOING in your own home. Write for your free colour brochure now to British National Radio \& Electronics School, Dept. C2, Reading. Berks. RGI IBR.

SERVICES

EPROM PROGRAMMING SERVICE from Master or Hex Likting. Low rates. Most types. Ring 0438720671 evenings.

INVENTORS

Think of something new?
Write it down!-
American industry offers potential royalties for your innovations and new products. We offer free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write without delay for your free information package.

> American Inventors Corporation 82, Broad Street, Dept PT
> Westfield, Massachusetts 01086 United States of America.

A fee based marketing company.

FOR SALE

179 COPIES MIXED P.W.'S P.T./Television. radio constructors. W.W.'s. Dates between 1959/1977. Tel. 0742-558261.

BARGAIN. Self adhesive copper foil meets all D.I.Y. requirements i.e. design and modification of PCBs and many other applications. 110 fr rolls $3 / 16^{\prime \prime} £ 2.50 .7 / 32^{\prime \prime} £ 2.65 .1 / 4^{\prime \prime} £ 3.00$. 3/8 $£ 3.95$. inc. post \& packing. Cheques: C. BATEMAN, 182 Ferry Road, Hullbridge, Essex SSS 6 JZ .

SHEET METAL FOLDERS $18^{\prime \prime} \times 18 \mathrm{G}$, bench or wice held E 38 . Leaflet, 01-890 7838. 90 Granville Avenuc. Feltham. Middx. TWI 3 4JN.

MISCELLANEOUS

SUPERB INSTRUMENT CASES by Bazelli. manufactured from PVC faced steel. Vast range. Competitive prices start at a low £1.50. Punching facilities at very competitive prices. baZELLJ (Dept 23), St Wilfreds, Foundry Lane, Haton, Lancaster LA2 6LT.

OPTICAL AIOS, MAGNIFIERS. Free Catalogue. MASON \& GANTLETT. 29 Surrey Street. Norwich.

THE SCIENTIFIC WIRE COMPANY 811 Forest Raad, London E17. Telephone 01-531 1568				
ENAMELLED COPPER WIRE				
SWG	1 lb	8 Oz	40 O	20
8 to 34	3.63	2.09	1.10	0.88
35 to 39	3.82	2,31	1.27	0.93
40 to 43	6.00	3.20	2.25	1.61
44 to 47	8.67	5.80	3.49	2.75
48	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 30	9.09	5.20	2.93	1.97
TINNED COPPER WIRE				
14 to 30	3.97	2.41	1.39	0.94
Fluxcore				
Solder	5.90	3.25	1.82	0.94
Prices include P\&P VAT. Orders under E2 add 20p SAE for list of copper and resistance wire.				
Dealer enquiries weicome.				

PRINTED CIRCUIT BOARDS, Manufactured to customers designs. Glass fibre roller tinned. Art work layour. Reductions. Prototypes to batch runs. Send S.A.E. for quotations. R.D. ELECTRONICS, 12 Whiteoaks Road, Oadby. Leicester. 0533-716273.

BURGLAR ALARM EQUIPMENT. Ring Bradford (0274) 308920 for our Catalogue or call al our large showrooms opposite Odsal Stadium

CLEARING LABORATORY: scopes, generators, P.S.U's, bridges, analysers, meters, recorders, etc. 0403-76236

MAKE YOUR OWN PRINTED CIRCUITS Alfac Etch Resist Transfers - Stanter pack (5 sheets) lines, pads, I.C, pads) $\mathbf{£ 2 . 8 0}$. Large range of single sheets in stock at 56 p per sheet.
Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. 2 sheets document paper, 2 sheets MSM film (A4) $\mathbf{£ 2 . 5 0}$. Photo-resist spray (200 ml) $£ 3.90$ ($\mathrm{p}+\mathrm{p}$ 65p) Drafting Film (AA) 30p. Precision Grids (AA) $65 p$ 20p stamp for lists and informatlon. P\&P 50p per order plus extra where indicated. No VAT payable. P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE.

PLEASE MENTION

PRACTICAL

ELECTRONICS

WHEN REPLYING TO
ADVERTISEMENTS

BIG VALUE RESISTOR PACKS | WATT CARBON FILM $1 \Omega-10 \mathrm{M} \Omega$ ten values. Total 720 resistors.
d WATT METAL FILM
$1 \% 50 \mathrm{ppm} 10 \Omega-1 \mathrm{M} \Omega$ E24 range
Total 960 resistors.
f5

FREE CATALOGUE

AC/DC COMPONENT PACKS

$\begin{aligned} & \text { Pack } \\ & \text { No. } \end{aligned}$	Qty	Description	Price
TF11	12	RED 5 mm LED	£1.00
TF12	30	500mz ZENERS 5\%	£1.00
TF13	100	IN4148 Diode	E1.00
TF14	100	IN4151 Diode	£1.00
TF15	50	1 amp Rect. Diodes in 4000 series	£1.00
TF16	6	1 amp Bridge Rect.	£1.00
TF17	100	Transistor pads	£1.00
TF18	20	A/S Fuses 20 mm	£1.00
TF19	10	3A Rect. Diodes	\$1.00
TF110	2	ORP 12	£1.00
TF111	5	BR 100 DIAC	£1.00
TF112	10	BC1098	£1.00
TF113	10	IC's all different	£1.00
TF114	50	BFR86	£1.00
TF115	12	8 pin DIL. sockets	¢1.00
TFll6	20	10 mm Horiz. Pre set (10 values)	¢1.00
TF21	200	47pf 160v Polystone cap	E2.00
TF22	10	LM 3900 N	¢200
TF23	10	Mixed DTL	82.00
TF24	5	4700 mf 25 v Tag Elect $2^{\prime \prime} \times 1^{\prime \prime}$	02.00
TF25	10	1000 mf 63 v Ax Elect.	¢200
TF26	50	. $022 \mathrm{mf} \mathrm{400v} \mathrm{RAD} \mathrm{POLY}$	82.00
TF27	10	100mf 250v Ax	82.00
TF28	10	22 mf 160 v Polyester RAD	E2.00
TF51	100	white/red 5 mm LED	£5.00
TF52	50	BC 108C	$\underline{55.00}$
TF53	2	$10,000 \mathrm{mf}$ 63v comp. grade elect.	$£ 5.00$
TF54		$\frac{1}{3} \mathrm{~kg}$ reel 22 g ersin multicore solder	E5.00
TF55	10	2N3055 H(RCA)	£5.00
TF56	5	OCP71	$£ 5.00$

ALL PRICES INCLUDE VAT - ALL GOODS BRAND NEW \& NORMALLY DESPATCHED BY RETURN POST.
er. POST \& PACKING Please add 75 p to total order.
AC/DC ELECTRONICS COMPONENTS

DEPT P.E., 45 CHURCH STREET.
ENFIELD, MIDDLESEX.

ADVANCED TELECOMMUNICATIONS

Careers with extensive scope at Cheltenham

Join the Government Communications Headquarters, one of the world's foremost centres for R \& D and production in voice/data communications ranging from HF to satellite - and their security. Some of GCHO's facilities are unique and there is substantial emphasis on creative solutions for solving complex communications problems using state-of-the-art techniques including computer/microprocessor applications. Current opportunities are for:
Telecommunication Technical Officers
Two levels of entry providing two salary scales: £6262-£8580 \& £8420-£9522 Minimum qualifications are TEC/SCOTEC in Electronics/Telecommunications or a similar discipline or C \& G Part II Telecommunications Technicians Certificate or Part I plus Maths B, Telecommunication Principles B and either Radio Line Transmission B or Computers B or equivalent: ONC in Electrical, Electronics or Telecommunications Engineering or a CIE Part I Pass, or formal approved Service technical training. Additionally, at least 4 years' (lower level) or seven years' (higher level) appropriate experience is essential in either radio communica tions or radar, data, computer or similar electronic systems.
At the lower entry level first line techinical/supervisory control of technicians involves "handson" participation and may involve individual work of a highty technical nature. The higher level involves application of technical knowledge and experience to work planning including implementation of medium to large scale projects.
Radio Technicians - £5485-£7818
To provide all aspects of technical support. Promotion prospects are good and linked with active encouragement to acquire further skills and experience. Minimum qualifications are a TEC Certificate in Telecommunications or equivalent plus 2 or more years' practical experience.
Cheltenham, a handsome Regency town, is finely-endowed with cultural, sports and other facilities which are equally available in nearby Gloucester. Close to some of Britain's most magnificent countryside, the area also offers reasonably-priced housing. Relocatlon assistance may be available.
For further information and your application form, please telephone:
Cheltenham (0242) 32912/3 or write to:

EEHH

Recruitment Office, Government Communications Headquarters, Oakley, Priors Road, Cheltenham, Gloucestershire, GL52 5AJ.

INDEX TO ADVERTISERS

AC/DC Electronics
Advanced Security Products Ltd.
American Investors Corp.
Armon Electronics
71
70

Armon Electronics
71
Autrol Lid
69
Bensham Recordings 69
Blackstar
69
Bi-Pak
National Radio \& Electronics
School
Cricklewood Cover 3
C.R. Supply Co.

70
C-Tec Security 70
Electrovalue
69
G.C.H.Q. 72

ICS Intertext 42
ILP Electronics 56
Maplin Supplies
Cover 4
Newnes Technical Books
P. Douro

Phonosonics
P.K.G. Electronics

Powertran
Radio Component Specialists

Radio \& T.V. Components
42
Scientific Wire Co.
Sparkrite
Tandy
17
T.K. Electronics

55
Watford Electronics

OPTOELECTRONICS
 DATA BOOK 1984

by Texas Price: $\mathbf{£ 6 . 0 0}$
a GUIDE TO PRINTED CIRCUTT BOARD DESIGN by C. Hamilton Price: $\mathbf{£ 8 . 0 0}$

PRINCIPLES OF TRANSISTOR CIRCUITS by S.W. Amos Price: $\mathbf{£ 8 . 2 0}$
CIRCUTTS \& SYSTEMS A MODERN APPROACH by A. Papoulis Price: $£ 11.00$
DIGTTAL ELECTRONICS PRACTICE USING INTEGRATED CIRCUITS
by R.P. Jain
Price: $\mathbf{£ 8 . 0 0}$
SCR MANUAL INCL TRIACS \& OTHER THYRISTORS

Price: $£ 15.00$
THE ART OF ELECTRONICS
by Horowitz/Hill Price: $£ 18.00$
A PRACTICAL INTRODUCTION TO ELECTRONIC CIRCUTS
by M.H. Jones Price: $\mathbf{e 8} .20$
DOMESTIC VIDEOCASSETTE RECORDERS A SERVICING GUIDE
by S. Beeching \quad Price: $£ 15.50$
1984 THEE RADIO AMATEUR'S hANDBOOK
by A.R.R.L
Price: £12.00
\& PRICES include postage \& PAcking \&

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

19-21 PRAED STREET LONDON W2 1NP

Phone 01-402 9176
Please aliow 14 days for reply or delivery

กißpliln Clessire ruge of eomponcits for your hobhy....insist on maplin quality!

MAPLIN'S TOP TWENTY KITS

THIS LAST
MONTH

1. 11 DESCRIPTION OF KIT
2 (1) 75 W Mosfet Amp Module
(2) Modem

Case also available: YK62S Price $£ 9.95$
3. (3) Car Burglar Alarm
8) - Spectrum Easyload

- Partylite
(6) Syntom Drum Synthesiser
(11) - Ultrasonic Intruder Detctor
(9) - 8W Amp Module
(10) Logic Probe
(12) VIC20/64 RS232 Interface
(7) - Spectrum Keyboard

Also
required: $\angle K 30 H$ £6.50. Case: XG350 £4.95 - Total 539.95

Also available complete ready-built: XG36P $£ 44.95$.
12. (14) Spectrum RS232 Interface
13. (5) ZX81 I/O Port
14. (196) Noise Gate
15. (New) - Car Battery Monitor
16. (13) Harmony Generator
17. (19) Guitar Tuner
18. (New) 50W Power Amplifier
19. (New) 80 m Amateur Receive LK41U £15.95 10 XA10L
\section*{LK21X £19.95 8 XA08」}
LW76H £10.49 4 XA04E
LK43W E9.95 Best of E\&MM
LK42V E6.95 Best of E\&MM
LW91Y £ 17.95 Best of E\&MM LW90X E 12.95 Best of E\&MM LW350 £15.95 Catalogue LW57M £49.95 2 XA02C

The descriptions above are necessarily short. Please ensure you know
exactly what the kit is and what it comprises before ordering, by checking the appropriate Project Book mentioned in the list above.

ORDER KIT DETAILS IN CODE PRICE PROJECT BOOK LW51F £13.95 Best of E\&MM LW99H £44.95

LW78̣K
. 49
LW93B
f9.95 LW83E £10.95
LW36P f4.45
K13P £10.95
$\begin{array}{lr}\text { LK11M } & \text { £9.45 } \\ \text { LK29G } & \text { f28.50 }\end{array}$
G36P £44.95.

MAPLIN'S FASCINATING PROJECTS BOOKS

Full details in our Project Books

Price 70p each.

In Book 1 (XA01B) 120W rms Mosfet Combo-Amplifier - Universal Timer with 18 program times and 4 outputs Temperature Gauge -6 Vero Projects. In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit - Stopwatch with multiple modes - Miles-per-Gallon Meter.
In Book 3 (XA03D) ZX81 Keyboard with electronics - Stereo 25W Mosfet Amplifier - Doppler Radar Intruder Detector - Remote Control for Train Controller.
In Book 4 (XA04E) Telephone Exchange for 16 extensions 'Frequency Counter 10 Hz to 600 MHz Ultrasonic Intruder Detector - I/O Port for ZX81 - Car Burglar Alarm Remote Control for 25W Stereo Amp. In Book 5 (XA05F) 300 Baud Duplex Modem to European Standard - 100 W 240VAC Inverter - Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System - Model Train Projects Timer for External Alarm

In Book 6 (XA06G) Speech Synthesiser for ZX81 \& VIC20 - Module to Bridge two of our Mosiet Amps to make a 350W Amp - 2X81 Sound on your TV - Scratch Filter - Damp Meter Four Simple Projects.
In Book 7 (XA07H) Modem (RS232) Interface for 2X81/VIC20 Commodore 64 - Digital Enlarger Timer/Controller - DXers Audio Processor - Sweep Oscillator - CMOS Crystal Calibrator. In Book 8 (XA08J) Modem (RS232) Interface for Dragon 32 \& Spectrum • Synchime - I/O Ports for Dragon 32 Electronic Lock - Minilab Power Supply - Logic Probe - Doorbell for the Deaf.
In Book 9 (XA09K) Keyboard with Electronics for ZX Spectrum - InfraRed Intruder Detector - Multimeter to Frequency Meter Converter - FM Radio needs no alignment - Hi-Res Graphics for 2X81- Speech Synthesiser for Oric 1 - VIC20 Extendiboard - 2X81 ExtendiRAM - Dynamic Noise Limiter for Personal Cassette Players - TTL Levels to RS232 Converter Logic Pulser - Pseudo-Stereo AM Radio - Ni-Cad Charger Timer •

Adder-Subtracter - Syndrum's Interface - Microphone Pre-Amp Limiter. In Book 10 (XA10L) Cassette Easyload for 2X Spectrum - 80m Amateur Receiver - Auto Waa-Waa Effects Unit - Oric 1 Modem Interface - 2.8 kW Mains Power Controller Extendiport for Dragon 32 - 12V Fluorescent Tube Driver - 32-Line Extension for Digi-Tel.

1984 CATALOGUE

A massive 480 big pages of description, pictures and data and now with prices on the page. The new Maplin catalogue is the one book no constructor should be without. Now includes new Heathkit section. On sale in all branches of W.H. Smith. Price £1.35 - It's incredible value for money. Or send $£ 1.65$ (including p \& p) to our mail-order address.

In Book 11 (XA11M) Mapmix Six Channel Audio Mixer - Mk II Noise Reduction Unit - Xenon Tube Driver Enlarger Exposure Meter - Motherboard for the BBC Micro - Cautious NiCad Charger - Servo \& Driver Module - 8 Channel Fluid Detector - Door Alarm - THD Filter - Cassette Processor • Volume Expander • Parametric Equáliser

REAT PROJECTS FROM E\&MM

Our book "Best of E\&MM Projects Vol. $1^{1 "}$ brings together 21 lascinating and novel projects from E\&MM's first Year.

Projects include Harmony Generator, Guitar Tuner, Hexadrum, Syntom, Auto Swell, Partylite, Car Aerial Booster, MOS-FET Amp and other musical, hi-fi and car projects. Order As XH61R. Price £1.

Post this coupon now for your copy of the 1984 catalogue. Price $£ 1.35+30$ p post and packaging If you live outside the U.K. send $£ 2.20$ or 11 International Reply Coupons. I enclose £1.65

Name

Address

PE 8/84

ELECTAONIC
SLJPPLIES LTO
Mail Order. P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911 - Shops at: 159-161 King Street, Hammersmith, London W6. Tel: 01-748-0926. - 8 Oxford Road, Manchester. Tel: 061-236-0281. - Lynton Square, Perry Barr, Birmingham. Tel: 021-3567292. 282-284 London Road, Westclift-on-Sea, Essex. Tel: 0702 554000. 46-48 Bevois Valley Road, Southampton. Tel: 070325831. All shops closed all day Monday.
All prices include VAT and carriage. Please add 50p handling charge to orders under $£ 5$ total value (except catalogue).

[^0]: © IPC Magazines Limited 1984. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Company registered in England. Registered No. 53626. Reglstered Office: King's Reach Tower, Stamford Street, London SE1 9.S.

