PRACTICAL EIEGTRONOS
RPBOTICS - MICROS - ELECTRONICS - INTERFACING

## GAR COMPUTER

## OU1Fin <br> CL. $1503 Y$

## SCLOENDNG RNSTIDMERNT

$1-$ Bupert Guide -1 HIPAD PHARHE:

## TAKKE COMPLETE CONTROL OF YOUR MUSIG with ?he

 MEST MIDI CONNIROLLED SAMPPLEROnceagain PoweitanandE\&MMcombinetobingyou versolityandtapqualitytomaprouctout of the realms offantasy and withinthereacheftheactive musician:

TheMCS-7 willtake anysound, store it and playitback
 vibatocanbeaddedand infinitesustainis pessible thankstoaseohisticatea, loopingsystem
All the usual delay line features (Vibrate, Phasing, Flanging, ADT E © O ) are cxulntiowith delays ofvoto32 secs, Aspecial interfacee enables sam led soun ds to be stored digidilyonafloopydiscvia@BBCmicrecmauter
TheMES=I givesyoumany of the ein cfs created by top profesional units such as the Faifight op Emulator: But the MCS -7 doesn't come with 95 -figure onice lay, And, if you're prepared to investyourtime, its almost cheap!

GA99t

(8699+VAT
READY

Specification
Memay Size: Vanable fom 8 bytes to 64 K bytes,
Storage time at 32 KHzzsamplingrate: 2seconds. Storage time at 8 KHzzsampling rate: 8 seconds. Longest replay time (2uspecial effects): 32 seconas. Converfers, ADC\& \& AC: 8bitcompanding, Dyamic ranges 52 dB .
 intemal 4 pole trackingfititers oranti-aliasing and recovery:
Programmable widerange sinewave sweepgenerator: MIDI control range: 5 octaves.
41 Vhoctove control rar ge:2 ectaves withoptional transpose of ofuither 5 octoves.

## Digital Ue ay line


if Toduced in 1982,Powertan's DDL has brought digital auality afferts to thousands of musigans Still ayailable in kiffomationly $£ 799: 30+$ VAT?

## professional quality MIDI-controiled'samplingunit

Write or phone now to place an order. Powertran Cybemetics Limited, Portway Industrial Estate, Andover, Honts, SP1 0 3PE

# PRACTICAL ELECTRONICS 

## VOLUME 20 No. 12 DECEMBER 1984

## CONSTRUCTIONAL PROJECTS

CAR COMPUTER—Part 1 by S. H. Cousins BSc PhD and P. D. Wilson BEng ..... 10
Ignorance is an expensive bliss where motoring is concerned RING MODULATOR by John M. H. Becker ..... 23
Part Two: Music Modulation-The effects ..... 38
NICAD CHARGER by M. Tooley BA and D. Whitfield MA MSc CEng MIEE
NICAD CHARGER by M. Tooley BA and D. Whitfield MA MSc CEng MIEE
48
AUDIO NOISE GENERATOR by Tom Gaskell BA(Hons) CEng MIEE
Produces "white" and "pink" noise for testing audio systems NEPTUNE AND MENTOR ROBOTS by Richard Becker and Tim Orr ..... 52
Part Four: The electro-mechanics and control electronics for Mentor
GENERAL FEATURES
SEQUENTIAL LOGIC TECHNIQUES by M. Tooley BA and D. Whitfield MA MiSc CEng MIEE ..... 16
Part Three: Latches, registers and counters
VERNON TRENT AT LARGE ..... 44
SEMICONDUCTOR CIRCUITS by Tom Gaskell BA(Hons) CEng MIEE ..... 46
Digital Noise Source (MM5837N)
NEWS AND COMMENT
EDITORIAL. ..... 7
NEWS AND MARKET PLACE ..... 8
Including Countdown and Points Arising ..... 14
News and views on the electronics industry
SPACEWATCH by Dr. Patrick Moore O.B.E. ..... 36
Glorious Past-Bright Future; The Sun; Think Tank; The Sky This Month PRINTED CIRCUIT BOARD SERVICE ..... 37
A new service for readers
SPECIAL OFFER-PE QUASAR STEREO CASSETTE KIT ..... 45
INDEX FOR VOLUME 20 ..... 59Complete index for PE 1984
BUYER'S GUIDE
SOLDERING INSTRUMENTS ..... 30We look at a wide range of soldering equipment

OUR JANUARY 1985 ISSUE WILL BE ON SALE FRIDAY, DECEMBER 7th, 1984
(for details of contents see page 50)

[^0]WATFORD ELECTRONICS

## 

Tel. WIFF ROAD, WATFORD, HERTS WD1 8ED, ENCLAND ORDERS NORMALLY DESPATCHED BY RETURN OF POST POLYESTER RADIAL LEAD CAPACITORS: 250V; $10 \mathrm{n}, 20 \mathrm{n}, 15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n} 6 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}, 100 \mathrm{n} 8 \mathrm{p} ; 150 \mathrm{n}$.
220 n 10p; $330 \mathrm{n}, 470 \mathrm{n} 15 \mathrm{p} ; 680 \mathrm{n} 19 \mathrm{p} ; 1 \mu 23 \mathrm{p} ; 1 \mu 540 \mathrm{p} ; 2 \mu 246 \mathrm{p}$


$\qquad$
TAG-END TYPE: 64V: 4700 2
139p: 50V: $3300154 \mathrm{p} ; 2200.110 \mathrm{p} ;$
$470098 \mathrm{p}: 10,000320 \mathrm{p} ; 15,000345 \mathrm{p}$

## TANTALUM BEAD CAPACITORS


SLVER MICA (pf)
$2,33,4.7,68,8.2,10,12,18$,
$22,27,33,39,47,50,56,68,75$,
$82,85,100,120,150,180150$
$82,85,100,120,150,18015 \mathrm{p}$
$220,250,270,330,360,390$
470.600,
$\begin{array}{ll}1000,1200,1800 & 30 \mathrm{p} \text { esch } \\ 3300,4700 & 60 \mathrm{p} \text { each }\end{array}$


| CERAMIC Capacitors: 50 V | POLYSTVAENE Caps: |  |
| :--- | :--- | :--- |
| Range 1 pF to $6800 \mathrm{pF} 4 \mathrm{p} ; 10 \mathrm{nF}$; | 10 pF to 1 nF | 8 p |
| $15 \mathrm{n}, 33 \mathrm{n}, 47 \mathrm{nF} \mathrm{5p} ; 100 \mathrm{nF} / 30 \mathrm{~V} 7 \mathrm{p}$ | $1 \mathrm{n5}$ to 12 nF | 10 p |

8 Commoned: 19 pinst 150s), 1800 , 270 . $330 \Omega$. $1 \mathrm{~K}, 2 \mathrm{KZ}, 4 \mathrm{~K} 7,6 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K} 26 \mathrm{p}$
BRAND NEW. FULL SPEC. AND FULLY GUARANTEED. SENDCASH, P.O. OR CHEQUE ALL. CASH ORDERS. OVERSEAS POSTAGE AT COST. PRICES SUBJECT TO CHANGE xport orders no VAT. U.K. customeri please add $15 \%$ VAT to total cost inci. pso We ssock thousands more hems. Is pays to visit us. We are situated behind Wattor
Football Ground. Open Monday to Saturday, 9.00 mm © 8 . OOpm. Ample FRE Cs parking

SLIDER POTENTIOMETEAS


TRANSISTORS AC107/8
BC1078 BC1078
BC108B
BC108C BC109
BC1098
BC109 BC109C
BC114/5
BC117/8 $\mathrm{BC} 142 / 3$
$\mathrm{BC} 147 / 8$
BC 148 B BC1478
BC148C BC149
BC149C
BC153/4

LINEAR IC's
555 C
702
709 C
710
741
741
747 C 14 pin
748 C 8 pin

748 C 8 pin
7538 pin.
810
9400CJ
ADCO88
AY-1.1320
AY- 1.5050
AY- 1.5051
AY- 1.5051
AY 1.6720
AY $-3-1270$
AY-3-1270
AY- 3.6910
AY-3912
AY- $5-1317 A$
AY-5.131
CA 3011
CA 3012
CA3012
CA3014
CA3018
CA31318
CA3019
CA3020
C $\mathbf{3} 3023$
CA3023
CA
CA 3028 A
CA3035
CA3036
CA304
CA3045
CA3046
CA3048
CA3048
CA3059
CA3075
CA3080
CA3080
CA
CA 3085
CA3085
CA3066
CA3089E
CA3090A
CA31
CA3
CA3
CA3

 495 TMS9927

$\mathrm{BFX29/84}$
BFX 94
$\mathrm{BFX} \times 5 / 86$
$8 \times 89 / 80$
 BFY50/
BFY52
BFY53
BFY55
BFY56
BFY64
BFY90
BRY39
BSX20
BSX29
BSY26
BSY95
BU105
BU205
BU206
BU208
M295
MJE34
MUE37
MJE29
MJE30
MPF10
MPF10
MP10
MPSA
MPSA
MPSA
MPSA


 ses




bigge
batteries. Equivalent in size with popular Dry Cell sizes e.g. HP7 (AA), HP11 (C), and HP2 (D). Minimum life 600 ( 300 PP3 size) full charge/discharge cycles. Batteries must be charged from a constant current source only. All batteries are supplied only with a residual charge and should be charged before used.
DATA \& PRICES

| Type V(nom) Capacity Stock No. | $1-9$ | $10-49$ |
| :--- | :--- | :--- | :--- |


| AA | 1.2 V | 500 mAH | $01-12004$ | 0.80 | 0.74 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C | 12 V | 12 AH | 0.1204 | 2.35 | 199 |


| C | 1.2 V | 1.2 AH | $01-12024$ | 2.35 | 1.99 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| D | 1.2 V | 1.2 AH | $01-12044$ | 2.00 | 2.00 |
| PP3 | 8.4 V | 110 mAH | $01-84054$ | 3.70 | 3.50 |

CH/4/50
To recharge up to 4 AA size NiCads.
Size; $112 \times 71 \times 37 \mathrm{~mm} \quad 01-00409 \quad 4.95$ CH1/22
To charge PP3 type NiCads.
Slze; $70 \times 50 \times 32 \mathrm{~mm}$


Linear ICs Stock No. Price

| LF351 Bi-FET op amp | $61-03510$ | 0.49 |
| :--- | :--- | :--- | :--- |


| LF353 Dual version of LF351 | $61-03530$ | 0.81 |
| :--- | :--- | :--- | :--- |
| LM38N |  |  |


| LM380N | TW AF power amp | $61-00380$ | 1.45 |
| :--- | :--- | :--- | :--- |
| LM381 | Stereo pre-amp IC | $61-00381$ | 3.27 |


| LM381 | Stereo pre-amp IC | $61-00381$ | 3.27 |
| :--- | :--- | :--- | :--- |
| NE544 | 14 pin DiL servo driver IC | $61-00544$ | 1.80 |

NE555N Multi-purpose low cost timer
uA741CN DIL low cost op-amp
TDA1062 RF ocillator and mixer
TDAI083 Portable radio AMFM audio in one IC
HA1388 18W PA from 14V
MC1496P Double balanced mixer
TDA2002 8W into 2 ohms
UL.N2283 1W Wer amp
CA3089 FOW IF arnp, detector, mute, AFC, AGC system
H320
High quality, high specification meter at a reasonable price. In addition to the usual ranges, facilities are provided for measuring transistor parameters such as Iceo and Hie.
Meter movement fully protected against overloads. 3 -colour mirrored scale in robust case. Supplied complete with comprehensive instructions, test leads, transistor test leads and batteries ( $2 \times \mathrm{HP}-7$. $1 \times P$ P3).
DC Volts: $0.1 \mathrm{~V}, 0.5 \mathrm{~V}, 2.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1 \mathrm{kV}$ $(20 \mathrm{k} \Omega \mathrm{N})$. AC Volts: $10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1 \mathrm{kV}(18 \mathrm{k} \Omega \mathrm{cV})$. DC current: $50 \mu \mathrm{~A}, 2.5 \mathrm{~mA}, 25 \mathrm{~mA}, 250 \mathrm{~mA}$.
Resistance: $2 \mathrm{k}, 20 \mathrm{k}, 2 \mathrm{M}, 20 \mathrm{Mz}$. AF Output: -10 dB to +22 dB for $10 \mathrm{VAC}(0 \mathrm{~dB} / 0.775 \mathrm{~V}, 600 \Omega)$. Leakage (Iceo) $15 \mu \mathrm{~A}, 15 \mathrm{~mA}, 150 \mathrm{~mA}$. Hie: $0-1000$ (Lc Tb). Weight: 410 gms .

better:
Selected Lines

|  | FM IF arip, detector, mute, AFC, AGC system | 61-03089 | 2.84 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CA3130E | BIMOS op amp | 61-31300 | 0.80 |  |  |  |
| CA3140E | BIMOS rersion of 741 | 61.31400 | 0.46 |  |  |  |
| MC3359 | Low current dual conversion NBFM IF and det | 61-03859 | 2.95 |  |  |  |
| LM3900 | Quad nerton amp | 61-39000 | 1.20 |  |  |  |
| LM3909N | 8-pin DIL LED flasher | 61-3.090 | 0.68 |  |  |  |
| KB4412 | Two balanced mixers IF amp |  |  |  |  |  |
| ICM7555 | with ACC ior AMSSB | $61-04412 \quad 1.95$ |  | 68000: Principles and |  |  |
|  | Low power CMOS version of 55 timer |  |  | Programming | 02-21853 | 12.70 |
|  |  | $61-75550$ | 0.98 | 8085A Cookbook | 02-21697 | 13.55 |
| HA11225 | Low noise FM IF | 61-11225 | 1.45 | Handbook of Electronic Tables |  |  |
| HA12017 | 83 dB SN phono preamp |  |  | Formulas <br> Popular Circuits: Ready | 02-21532 | 11.00 |
|  | 0.001\% THD | 61-12017 | 0.80 | Reference | 02-04585 | 13.95 |
| MC14412 | 300 baud MODEM controller | 61.14412 | 68 | Semiconductor Data Book | 02-04797 |  |

Produces an extremely loud piercing swept input for easy connection to alarm circuits. Includes 5 in . Horn Speaker
$E 7.90$
Mini Siren
As above, but with a small speaker (instead
of horn speaker) for internal use. $\quad \mathbf{~} 4.30$
SECURITY PRODUCTS

Protect your home and properiy and save by bullding alarm system.


Sisair Mat $23 \times 7$ in (950 120) Tamper-proof connecting 125) Tamper-pro
$(950110$ )
Door/Window Contacts. Flush mounting a wire, Magnet/switch Per Pair. 1950 140)
Window Tape $0.5^{\prime \prime}$ wide 50 m 9501451
Window Tape Terminations
Per pair. 19501501
Key-operated Switch. 1.5A/250V
HST Heavy chrome meral.
3501281
Passive Infra.Red Detector
Detects intiuder's body heat. Range 10 metres. 12 V DC, $n / 0 \& \mathrm{n} / \mathrm{c}$ contact Size: $4 \times 2 \times 2$ ins. ( 950135 ) $\mathbb{1} 45.00$
Alarm Control Unit. 4 input circuits. 2 Alarm Control Unit. 4 input circuits. 2 . exit and alarm times. Built and tested. Ful instructlons supplied. Size: $180 \times 130 \times$ 30 mm , Supply: 12 V DC.
1950160 (26,00 Ulitrasonic Burglar Alarm. Self contained mains or battery powered

WW Hom Speak $\quad \mathbf{5 4 5 . 0 0}+\mathrm{p} \mathrm{\& p} \mathbb{5} .20$ BW Horn Speaker. 5.5 ins 8 ohm . Idea for sirens. etc. 2.5 m lead and 3.5 mm jack

> IR GARAGE DOOR CONTROLLER KIT

## For controlling

garage and di
lights oniofl up to
arange of 40 fl .
Lots of appl
ations like
ontrolling lighis
and $\mathrm{NV}_{\mathrm{s}}$
eic. in the home. Ideal for aged or dis a mains-powered intra-red receiver with a normally open relay output plus iwo latched transistor outputs, battery powered transmitter and opto-isolated solid staremain swich
XK 103 25.00
$\mathbf{1} .50$

## PANTEC KITS

| PN2 | FM Micro Transmitter | ¢7.50 |
| :---: | :---: | :---: |
| PN3 | Stabilised Power Supply | ¢13.70 |
| PN5 | $2 \times 10 \mathrm{w}$ Stereo Amplifier | ¢14.50 |
| PN6 | $2 \times 40 w$ Stereo Amplifier | E24.95 |
| PN7 | Pushbution Stereo Preamp | ¢12.80 |
| PNB | Tone \& Volume Control | ¢13.60 |
| PN11 | 3w FM Transmitter | ¢11.95 |
| PN13 | Single Chännel FM |  |
|  | Transmitter | ¢9.80 |
| PN14 | Receiver for above | E15.50 |

## ELECTRONIC SIREN KIT <br> TOP QUALITY BOTTOM PRICES!

For FREE CATALOGUE send $9^{*} \times 6^{*}$ SAE - contains full list of stock range all at very competitive prices. Cash with order (except accoun customers). Access or Barclaycard telephone orders welcome. Add $65 p$ p\&p $+15 \%$ VAT to all UK orders. Overseas customers add $£ 2.50$ p\&p Europe, E 6.00 elsewhere. Giro No. 529314002 . Goods by return subject to availability. Shop open 9am - 5pm (Mon-Fri). 10am-4pm Sat). ALL PRICES EXCLUDE VAT B ए

## CHRISTMAS PRESENTS GALORE



## STOCKING FILLERS an full spec. branded devices.

PACK (1) 650 Resistors 47 ohm to $10 \mathrm{Mohm}-10$ per value 4.00 PACK (2) $40 \times 16 \mathrm{~V}$ Electrolytic Capacitors $10 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F} \mathrm{E} 3.25$ PACK (3) 60 Polvester Capacitors 0.01 to $1 \mu \mathrm{~F} / 250 \mathrm{~V}-5$ per value $£ 5.55$ PACK (4) 45 Sub-miniature Presets 100 ohm to 1 Mohm - 5 per value $£ 2.90$ PACK (5) 30 Low Profile IC Sockets 8. 14, and 16 pin - 10 of each © 2.40 . PACK (6) 25 Red LEDs ( $\mathbf{5 m m}$ dia.) $£ 1.50$

## INFRA•RED REMOTE CONTROL KITS



These kits are designed to enable infraed remote control to be incorporated into car locks or alarms to controlling Hithing TV. The applleation will determine the interface clicuitry between the receiver and the controlled device. General in structions and applications are supplled. The kits are coded and provide a high dearee of security and noise immunity. MK 1 1/MK 12 receivers. Requires PP 3 bat tery. Size: $8 \times 2 \times 13 \mathrm{cms}$. Range approx $\begin{array}{r}\text { f6. } \\ \hline\end{array}$
Keyboards for MK 18
MK9 4.way for use with MK $12 \quad$ E 1.90 MK 10 16-way for use with MK $12 \begin{array}{lll}12 & \mathbf{E} .90\end{array}$ MK 1311 -way for use with MK 11 [4.35 MK 11 Receiver Kh - mains powered Provides 10 latched plus 3 analogue out puts ideat for controlling audio amplifiers, TV or lighting where control of ligh 113.5 MK 14 AC Power Controllar Kit - 10 (phalogue outputs, eg lamp dimming.
for remote control of bass, treble an volume for balance) by MKII. Includes ane of 10 decoder remote channel or input selection May be connected between the pre:amp an
power amp of almost any audio system power amp of almost any audio system. $\quad \mathrm{£10.70}$

MK12 Receiver KIt - mains powered with 16 laiched or momentary outputs. Latched version is for applications re quiring one output on at a time. eg TV channel selectlon. Momentary type gives an out put only during transmission. Lines Size: $9 \times 4 \times 2 \mathrm{cms}$

MK 15 Dusl Latched Solid Stato Relay for switching mains loads such as lamps TVs, etc. from the outputs of the MK 12 (momentary). 15 items may be switched independently using 8 MK 15 s . Triacs (no supplied) switch at mains zero to reduce

MICROPROCESSOR TIMER KIT
 over a 7.day

## blay of time and d

may of time and day, easify programmed via 20 way keyboard. Ideal for central
heating conrol (Including different switching times lor weekends). Battery back ub circuit. Includes box.
18 time settings.
СТ 6000 K
f39.00
XK 114. Relay Kit for CT 6000
includes PCB. connectors and
one relay. Will acceot up to 4
relays. $3 \mathrm{~A} / 240 \mathrm{~V}$ c/o contacts $\quad \mathbf{3 . 9 0}$
701115 Additional Relays c1.65

## ELECTRONIC LOCK KIT

With hundreds of uses indoors, garages car anti-theft devices, electronic equip ment. etc. Only the correct easily changed tour digit code will open it! Re quires a 5.15 V OC supply. Outpu
750 mA . Fits into standard electrical wall box
Completekit (except front panel)
£11.50 Electric Lock Mechanism for use with existing door locks and the above kit (Requires relay.) 12 V AC/DC coil (701 150)

## HOME LIGHTING KITS

These klts are


|  | Light Dimmer | $\mathbf{£ 1 4 . 9 5}$ |
| :--- | :--- | ---: |
| MK6 | Transmitrer for <br> above | $\mathbf{£ 4 . 5 0}$ |
| TD300K | Touch Dimmer | $\mathbf{£ 7 . 7 5}$ |
| TS300K | Touch Switch | $\mathbf{£ 7 . 7 5}$ |
| TDE/K | 2.way extension <br> lor above kits | $\mathbf{£ 2 . 5 0}$ |
| LD300K | Rotary controlled <br> Light Dimmer | $\mathbf{£ 3 . 9 5}$ |

## DISCO LIGHTING KITS

OL1000K - This value-for-money 4-way chaser features bidirectional sequence
and dimming. 1 kW oer channel. $£ 15.95$ DLZ1000K - A lower cost uni directional version of the above. Zero switching to version of the above. Zero switching
reduce interference.
Optional Optional oplo input allowing audio 'beat'
light response ( $D L A / 1$ ) light response (DLA/1) DL $3000 \mathrm{~K}-3$-channel sound 90 light ki features zero voltage switching, auto phone. 1 kW per channel. E 12.95

| CT1000K | Clock/Timet | ¢14.90 |
| :---: | :---: | :---: |
| CT1000KB | Clock/Timer + Bor | ¢17.40 |
| XK126 | OVM/Thermorneter | ¢15.50 |
| MKI | Thermostat | ¢4.60 |
| MK2 | Solid State Relay | C2.60 |
| MK4 | Temperature Control | ¢6.50 |
| MK5 | Mains Timer | ¢6.50 |
| MK6 | Infra Red Transmitter | ¢4.50 |
| MK7 | Infra Red Receiver | ¢10.50 |
| All kits inc assembly ins | clude PCBs, compon structions. | ts and |
| For further | details send S.A.E. |  |

$\square$


## IN CAR ELECTRONICS

ELECTRONICS in motor cars has provided PE with many interesting features and projects over the years. Back in 1965 we were publishing car alarms, instruments and parking lights as projects. Interestingly one news item at that time reported the first car to car 'phone call across the Atlantic. The call was made on July 51965 from a car in London using a Radiophone made by Pye to a taxi cab in Montreal also using Pye equipment. This event followed the official opening of the London Radiophone service which covered an area of about 30 miles around London.

Electronics has moved on in the last twenty years and of course so have our projects. In December ' 81 we published our first car computer which broke new ground in this area and is still an unsurpassed design. Now we are pleased to publish another, totally different car computer design, a design based on a computer model of the car's performance, consumption etc. This new design is not as complex as the PE

Car Computer of 1981 but provides all the basic information without the need to fix a fuel sensor and is consequently an inexpensive item to build. We believe this design again breaks new ground in its mode of operation.

## BUYER'S GUIDES

Buyer's guides, as regular readers may have noticed, are becoming quite a part of PE. It seems that the informaton we provide is of great value to hobbyists and those involved in the electronics industry and education. We have now covered quite a wide field with our guides and are planning further subjects for next year.

Soldering equipment is well covered in this issue and, while we make no claim that the guide is complete, it will give readers a good basis on which to build a list of required equipment. No doubt many readers will find new companies and products which they were not aware of before. If you make an enquiry about any product we describe (especially those detailed in our buyer's guides) would you please mention PE
as the source of the original informion. This applies equally to educational establishments and industry or training departments etc., as such feedback to the suppliers assists us to give good coverage in future guides.

## INDEX

As usual this issue of PE carries the index for the year. If you find an article you would like to read our back numbers department may be able to assist-see below. Alternatively a local library, particularly a technical one or one attached to a school or college etc., might carry copies.

In extreme cases we can supply a photostat of the article from the editorial office but we do have to charge 75p for each article or part of a series.


Technical and editorial queries and letters
(see note below) to:
Practical Electronics Editorial
Westover House,
West Quay Road, Poole.
Dorset BH15 1JG
Phone: Editorial Poole 671191
We regret that lengthy technical
enquiries cannot be answered
over the telephone
Queries and letters concerning
advertisements to:
Practical Electronics Advertisements,
King's Reach Tower,
Stamford Street, London SE1 9LS
Telex: 915748 MAGDIV-G

## Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stanped, self addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Back Numbers and Binders
Copies of most of our recent? issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd. Lavington House, 25 Lavington Street, London SE1 OPF, at $£ 1$ each including Inland/Overseas p\&p. Please state month and year of issue required,

Binders for PE are available from the same address as back numbers at $£ 5.50$ each to UK or overseas addresses, including postage, packing and VAT where appropriate. State year and volume required.

## Subscriptions

Copies of Practical Electronics are available by post, inland for $£ 13$, overseas for $£ 14$ per 12 issues, from: Practical Electronics, Subscription Department, IPC Magazines Ltd. Room 2816, King's Reach Tower, Stamford Street, London SE1 9LS. Cheques, postal orders and international money orders should be made payable to IPC Magazines Limited. Payment for subscriptions can also be made using a credit card


# Mains' utilities Monitoring System 


#### Abstract

A new remote-monitoring system, designed for load-management of electricity, gas and water supplies, is presently undergoing trials in London and Milton Keynes. The Thorn/EMI system Mainsborne Telecontrol uses the electricity mains to carry bidirectional coded data between the central control and the consumer combining far more cost effective tariff structures with remote meter reading.


The purpose of the trials is to establish the long term levels of reliability of the unique spread spectrum bi-directional signalling system over the low voltage mains, a system adopted to overcome excessive noise problems. A spread spectrum signal essentially provides a continuous frequency over the band and is highly resistant to narrow band interference. It is also capable of signalling through a high noise level environment such as the mains and additionally provides high security.

The consumer is provided with a microprocessor controlled home unit and communications module. These carry out a number of tasks including accumulating signal pulses from electricity, gas and water meters; tariff switching; calculating actual and estimated costs incurred by the consumer; operating 80 amp and 25 amp confactors for space and water heating control and also for detecting any tampering with the meters. The communications module contains a clock/calendar synchronised to that of the central controller which is housed in the local C.E.G.B. transformer chamber. Non-volatile RAM storage of 1 K byte permits a one day store of incremental
meter readings for each utility.
The central controller can communicate via the mains with up to 1,024 addresses. There is 500 K bytes of non-volatile bubble memory capable of storing three days of 48 half-hourly meter readings from all three utilities as well as storing data retransmission upstream to Load Management Control or downstream to home units.

The customer display (pictured) has a 10 digit, alpha numeric, vacuum fluorescent display with 19 touch sensitive keys. A series of control and data display functions are available to the customer such as display of meter reading including multi-tariff metering; display of units consumed and cost so far since last bill; display of estimated cost of next bill; display of water and space heating on/off times; when not in use for any other reason the display shows the time.

Two other communication systems are presently being tested in the UK for remote-monitoring and load management; one uses an idle line facility on the standard telephone network, the other uses radio signals transmitted in the 200 kHz band by the BBC.
 based electronics show which was to be held at the Royal Horticultural Hall in London from November 8th to the Ilth, has had to be cancelled by the show's organisers Trident International.

Despite the fact that the show was being sponsored by ten leading magazines, PE included, it did not receive the necessary backing from the electronics industry and the organisers felt it would not be possible to go

## NOV. SHOW CANCELLED

## ahead with the show under these conditions.

Mr. Gordon Johns, Managing Director of Trident International, said "We are very disappointed. It was obvious from the reaction of the public that there is a very real demand for a show that reflects all aspects of the leisure industry but because of general market conditions many companies were unwilling to give the show their support."

Trident do hope however to stage the show as soon as market conditions improve.

## Top Wharil?

Women in London will have the opportunity to train for top engineering jobs in new technology thanks to $£ 350,000$ in grants from the Greater London Enterprise Board, the Greater London Training Board and the European Commission.

The grants are in recognition of the work being done by the GLEB-sponsored London New Technology Network (LNTN) based in Camden and will finance training courses for women to be supervisors and trainers in micro-electronic engineering.

## Enter MSX

The long awaited MSX computer range is finally finding its way into the UK shops. MSX is a standard system adopted by 15 multinational electronics companies, mainly based in Japan. The standard is based on the Z80 processor, a TI video display chip and a General Instruments sound generator chip; all MSX machines and their peripherals are totally compatible. It is undoubtedly the hope of the conglomerate that their standard will eventually dominate the home-computer market.


Mitsubishi, Toshiba, Sony, Sanyo, JVC, Hitachi and Canon recently held a joint launch for their machines which all cost around the same-between $£ 279$ and $£ 300$. The software has been written by the American company Microsoft, it is a version of Basic. Around 75 general interest software packages are currently available. All the machines have a similar appearance and each possesses 64 K bytes of user RAM with a separate 16 K bytes of video RAM; the Basic is stored in a 32 K byte ROM.

Peripherals available will include $3 \frac{1}{2}$ in floppy discs, printers, data cassette recorders, joysticks, touchpads, tracker balls and cormmunications adaptors. Mitsubishi are the only company to launch two machines, the cheaper version (pictured) is a 32 K byte model, ML F48 costing $£ 249$.

## WATFORD'S MODEM 84

The Watford Modem 84 is a direct connect unit for use with BBC micros; it is a fully British Telecom approved device and is probably the cheapest way to connect to Prestel. The unit is supplied with or without a software ROM.


Having a full duplex capability the system can send and receive data at the same time. Only 1 K byte of memory is used by the system for preparing mailboxes and system operation. User passwords can be optionally programmed into the ROM giving automatic log-on whilst still allowing you to change the personal passwords from the keyboard. The system has many special features. Modem 84 costs 597 including the soffware ROM. The two can be bought separately, Modem 84 alone 574 . software alone E23. All prices include VAT and p\&p. For further details and full specification contact: Watford Electronics, 33/35 Cardiff Road, Watford, Herts, WD1 8ED. 10923 40588).

## Computer look alikes

## Briefly...

Constructors please note: as part of a 'moving sale' the Midwich Computer Co. Lid. is featuring many BBC products and compatible peripherals at low prices. Examples include a 100K, 40 track disc drive for £99.95, and the Uchida daisy wheel printer for $£ 227.65$. Prices exc VAT. All offers are while stocks last. New address: Gilray Road, Diss, Norfolk IP22 3EU. (0379 4131).

The Mitsubishi Electric Corporation has developed a method of access control that recognises personnel by their palm prints. Employees" palms are photographed and entered into a Charge Coupled Device (CCD) camera recognition system. Access $t 0$ restricted areas is gained as the prospective entrant keys in a personal code and simuttaneously presses his palm on a recognition plate; a positive palm print check coupled with the correct code number permits entry.

Systema has introduced a mini desk calculator together with an LCD clock both styled like modern computer terminals.

The DC2 computer-calculator has a full working keyboard with memory, percentage and square root funccions. Its eight digit display is fitted into the VDU cabinet. Overall measurements are $80 \times 75 \times 47 \mathrm{~mm}$.

The time and date are displayed alternately on the VDU of the CC1 computer-clock and its time keeping is accurate to within two seconds a day. Overall measurements are $52 \times 45 \times$ 41 mm .

Both items are fitted with long life batteries. Prices are $\mathbf{E 6 . 9 5}$ for the DC2 computer-calculator and $\mathbf{£ 3 . 6 8}$ for the CC1 computer-clock, inc VAT and P \& P. From, Systema (UK) Ltd., 72/74 South Street, Reading, Berks. RG1 4LG. (0734 586429).


## POINTS ARISING . . .

## PARALLEL/SERIAL CONVERTER

September '84
The +ve connection of C 2 should be connected to +5 V and not to TR2 as printed See page 18. Fig. 3 (circuit diagram).

Hountidnun Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Mike Abbott.

| Leisuretronics Cancelled (see report, far left.) | D4 | Network 0280815226 |
| :---: | :---: | :---: |
| Compec Nov. 13-16. Earl's Court. K2 | D6 | $8^{8}$ 01-701 7127 |
| P.c.b. Manufacture \& UV Box Construction (meeting) Nov. 17. Elec- | E | Evan Steadman \% 079926699 |
| tronic Organ Constructors Society. Y4 | E5 | 8 01-2284107 |
| Systems Security Nov. 19-20. Barbican Cntr., London. E | E6 | - 05884658 |
| Computers In The City Nov. 20-22. Barbican, London. O | K2 | Reed Exhibitions, Surrey Ho., 1 Throwley Way, Sutton, Surrey |
| Data Security Nov. 20-22. Barbican, London. O | L | Database \& 061-4568383 |
| Business \& Data Processing Nov. 20-24. Kelvin Hall, Glasgow. M | M | Montbuild \% 01-486 1951 |
| Northern Computer Fair Nov. 22-24. Belle Vue, Manchester, K2 | 0 | Online \% 01-8584466 |
| Northern Energy Manager Nov. 27-28. Lancashire County Cricket | T | Trident Exhibitions 『 08224671 |
| Club, Old Trafford, Manchester. W3 | TI | Cahners \% 048338085 |
| Transducer Tempcon Nov. 27-29. Harrogate Exhibition Centre, | W3 | MCM \& 01-231 1481 |
| Yorkshire. T | Y4 | Percy Vickery 0202423863 |

# CAR CONPUH:+ <br> S.H.COUSINS bscphd P.D.WILSON beng 

ONDON, Seneva, Frankfurt, Paris . . . hardly a mptor show - goes by writhout a major car manufacturer introducing a new top-a-the-range car fitted with either a trip compıter or a digital m.p.g. readout integrated into the instrument panel. Now here is an opportunity to bring your car righ: up to date with one of the new generation of car computers. These deviees are designed primarily to add interest to your motoring, but they can save you money as well.

There is Jenty of money to be saved. The average motorist dhives 9000 miles each year, which given a typical $30 \mathrm{~m} . \mathrm{p} . \mathrm{g}$. mea 7 s consuming 300 gallons per annum, costing E 540 at $\mathrm{E}^{-}$. 80 a gallon. Next vear petral is likely to go above £2 a gallon i only to keep pace with inflation and the weak pound. Bui this is only half the story because, as a rule of thumb, for every pound spent on petrol another pound is spent in total on oil, tyres, maintenance costs and car depreciation due to additional miles on the clock.

The Out-icer car computer has been developec after the first wave of car computer novehies, and we are able to build on their experience. We have concentrated on achievirg a high standard of design so that the Outrider will se simple and safe tc use whilst driving, easy to fit to the car and easy to refit if you change cars. But most important of a I we have developed a ligh quality digital m.p.g. readout which is stable under zontinuous driving conditions, suct as on a motorway. yet is also responsive to acceleration, and , responsive too, when easing off the accelerator pedal. $t$ is not necessary to fit sensors to the accelerator incidentaliy!

When the zar is stationary ot 1er features of the computer can be accəssed. For example, the computer will predict the gallons of fuel required for a trip and the trip cost tefore you travel. To do :his simply enter onto the computer the distance you expect to travel and view the appropr ate functions. Precisely how data is entered is dealt with ister, but it is worth ncting at this stage that, as a safety measure, cata can only te entered into the computer when the ca- is stationary.

Another important computer feature is the calculation of long term average m.p.g. which rovides the inforration fou require to decide whether the car needs servicing.

## CAR SHARING

Displaying the trip cost can be an incentive for car sharing. Not only do you become fully aware of the cost of car travel, which may encourage you to share, but so do your passengers!

The Outrider automatically displays the cost of the trip (petrol cost plus a mileage charge) when you switch off the ignition. This is shown for ten seconds before the computer switches off the display.

## BUSINESS TRAVEL

Many of us have to record our mileage in order to reclaim expenses from our employers. The trip distance kev is invaluable for this as we can easily underestimate the true length of trips when claiming expenses. Self-employed people and company managers may also benefit from knowing the cost of car operation for particular business trips.

## CAR OPERATING COSTS

So how should we evaluate the cost of travelling by car, and at what value should the mileage charge within the computer be set? To work out the cost of operating your car fill-in Balance Sheet 1.

The most obvious cost of motoring is fuel cost and if the mileage charge is set to zero then just the fuel cost of a trip will be displayed by the COST key.

However, each time you drive you incur additional costs. When you have estimated these and set the mileage charge to cover these costs then the trip cost displayed by the COST key will be the sum of the fuel cost and the extra costs that you incur having driven the distance of your trip. If you had stayed $a$ t home this is the total amount that you would have saved. If you use the trip cost prediction facility you would have an estimate of the trip cost that you could directly compare to the rail fare or a telephone call. Setting the mileage charge to cover these additional costs is the most useful setting for household owned cars.

Business users, the self employed and car sharers may however want to add the fixed car costs into the figure, not just those additional costs which are incurred at the time of driving.

## MAIN BOARD

The heart of the circuit is a Motorola 6803 single chip microcomputer. This chip contains the processor, 128 bytes of RAM, a programmable timer and 13 input/output lines. The program for the microcomputer resides in a 2 K byte EPROM. A 74LS373 is used to latch the low order address lines from the 8 bit multiplexed address/data bus. Timing information is derived from the 3.579545 MHz crystal. This part is commonly available as it is used in colour t.v. sets.

## KEYBOARD AND DISPLAY

Each of the four l.e.d. digits and the function indicator l.e.d.s are controlled by a transistor driven from one of five output lines of the 6803. Rapid scanning of the digits synchronising with the data to switch segments on or off, which is held in the 74LS374 latch, gives the impression of all digits being on simultaneously but with great economy in wiring and components.

The 7 -segment l.e.d.s were selected for both their appearance and their high brightness. The latter is particularly important for car instruments which must be readable in all light conditions
The five digit lines are also used to scan the five input keys, which have a common line of input to the processor. The processor detects a key press when this line goes high.
The Outrider contains calibration and trip information which must not be lost when the ignition is switched off. 64 bytes of the 6803 memory can be retained even when the processor is turned off, through the Vcc standby pin. This pin is connected directly to the 5 V regulator which is in turn connected directly to the 12 V car battery. The power to the rest of the circuit is switched by a transistor which is turned on either by the ignition line or an output line from the 6803. This enables the 6803 to hold the power on to enter a defined power down sequence and to display trip cost information for a 10 second period after ignition is turned off.

## TRANSDUCER

This is a high inductance coil mounted as close as possible to the rotating magnet found in all conventional speedometers. Normally it is sufficient to place the coil tight up against the back of the speedometer case and mounted at right angles to the axis of the drive cable. Exceptionally it is necessary to drill through the speedometer side or back and locate the transducer internally.

Each time a pole of the speedometer magnet passes the sensor coil a voltage is induced which is then converted to a digital signal by a Schmitt trigger on the main circuit board. A twisted pair connects the sensor coil to the main board to remove any electrical noise problems coming from the car's ignition circuit.

## balance sheet 1

Annual cost $£$
Oil
Tyres
Servicing
Maintenance
$\qquad$ £
aintenance £ $\ldots \ldots \ldots \ldots$
(brakes, exhaust, etc)
Half the annual depreciation
£ ..............

Total, $\mathrm{A}=$
£ ...............
$100 \times \mathrm{A}$
annual mileage

## Fixed costs $\mathbf{E}$

Annual Vehicle Tax
Insurance
Finance charges
Half annual depreciation
Other, e.g. AA/RAC membership
$\qquad$
Total, $\mathbf{B}=$ f $\ldots \ldots \ldots \ldots$
Mite age charge in pence coverfina will non petrol costs is given br:
$\quad 100 \times(A+B)$ pence
annual mileage $=\ldots \ldots \ldots$.
Just tor interest sato we can now satculate the cost of a year's twel, this is given by:
annual mileage
average MPG
$\times$ price per gallon $=£ \ldots \ldots=C$
Ou in toisal lor a whole veir
$A+B+C=f$.

## A computer model eliminates the need for a fuel flow meter



Fig. 1.1. Block diagram

## THE COMPUTER OUTPUTS

The keys display these functions
Keys Functions
DIST Distance travelled on trip
FUEL Fuel used on trip
MPG Instantaneous m.p.g. (above $20 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.
Trip average m.p.g. (below $20 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.
COST Trip cost in $£ . p$
SET Display brightness


## HOW THE COMPUTER WORKS

The overall configuration of the computer is shown in Fig. 1.2. Distance travelled is detected by a sensor coil located behind the speedometer. Fuel consumption information is fed into the computer via the computer keyboard. This is done by entering into the computer's electronic notebook the amount, in pounds and pence, spent when fuel is purchased. The computer then displays the price of a gallon of petrol the previous time it was bought to check that this is still the current price. The amount spent on fuel purchase is then divided by the price of a gallon of petrol to give the volume of petrol purchased. The volume of fuel purchased is not displayed but is retained in the computer and ultimately divided by the total distance travelled when the user requests a calculation of long term average m.p.g. This calculation is best made when the tank is completely filled and gives a highly accurate result. Long term average m.p.g. may be displayed at any time by pressing the MPG key when the computer is in calibration mode.

The distance sensor controls the dynamic behaviour of the computer outputs in conjunction with the crystal oscillator which provides a time source. Together the distance and time inputs are used to determine distance travelled, cold starts, vehicle speed, vehicle acceleration and vehicle braking. These factors are used in the computer model to determine instantaneous m.p.g. using the long term average m.p.g. to calibrate the model itself. Readers will recognise this kinetic method of calculating instantaneous m.p.g. as being very similar to the approach taken in the standard EEC driving cycle for new cars. Here m.p.g.s are given according to the speed at which they are driven ( $56 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. and $75 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.) and for an urban driving cycle involving acceleration and braking.

There are advantages to this kinetic method of determining instantaneous m.p.g. Flow meters in the fuel line can be inaccurate or expensive and there is always a slight additional risk of a petrol leak if a meter is introduced into the fuel line. Fuel flows reflect the characteristics of the carburettor float chamber as well as driver behaviour and the combination can be confusing to the driver particularly during continuous, e.g. motorway driving. By contrast the kinetic method can give a high quality signal to the driver.

Trip m.p.g. is the average of the instantaneous values over the period since the trip data were reset to zero. Fuel consumed on trip and trip cost are also calculated from the trip average m.p.g. figure. In the latter case the cost of fuel used and distance times the mileage charge are also used to determine the total trip cost. Users determine an appropriate charge per mile to reflect an average of all non-petrol costs or those costs less the truly fixed costs (tax, insurance, etc.).

Provided that the power supply to the computer is maintained, all trip and calibration data are retained when the computer display is off and the car is not in use.

## THE M.P.G. READOUT

There has been considerable debate about whether a digital or analogue readout is best for car instrumentation in general and for the m.p.g. display in particular. Our display (Fig. 1.2) is something of a hybrid using three of the 7 segment l.e.d.s to display digital m.p.g. while the fourth l.e.d. is effectively an analogue display summarising how the car is being driven. This horizontal bar can be usefully positioned at the edge of the driver's vision when the driver is at the wheel and looking straight ahead.

## DATA ENTRY

Always begin data entry by pressing the SET key (for two seconds until SET is displayed and the light above the SET
key flashes slowly). Next choose the function key that you wish to tell the computer about, e.g. COST. Now any number between 00.00 and 99.99 can be entered as follows. Each of the four left-hand keys rolls a separate digit on the display. "Roll-up" your desired number (the price of a gallon of petrol, say 1.75 in this case) then press the SET key to finish.

This is the sequence keys you will press to enter data
SET FUNCTION NUMBER SET (2 secs)
Remember the car must be stationary and the SET key pressed for two seconds.

Data entries are as follows for each function key:
SET DIST 0000 SET-Resets all trip data to zero, e.g fuel used on trip, distance travelled on trip and cost of trip
SET DIST NUMBER SET- Predicts the fuel required and cost of a trip a NUMBER miles long
SET FUEL NUMBER SET Enter the amount spent on fuel each time you buy petrol. The NUMBER is the total cost of fuel which you have just purchased. The computer also needs to know the cost per gallon of the fuel and to help here the computer automatically goes over to the cost function and displays the cost per galion last used. Change if necessary. Press SET to return to normal computer operation.
SET MPG tF.OO SET-Calculates your average m.p.g. over the last 6 to 10 gallons". if stands for "tank Fraction". Enter here the position of the needle on your
 petrol gauge. If it is reading half full enter tF .50 ; if it is a quarter full enter tF- 25 etc. To make a completely accurate result fill the tank and enter fuel purchases in the usual way (above) then the tF. 99 should be entered. After pressing SET, average m.p.g. will be displayed. Press SET to return to normal computer operation.
SET COST NUMBER SET Enter here the cost of a gallon *Equal to the volume of your petrol tank, see calibration section.

The Outrider car computer is available from: Mark Space Enterprises, 11 Church Green Rd., Bletchley, Milton Keynes MK3 6BJ. The complete kit costs $£ 59.95$ inclusive of carriage and VAT. A kit comprising those parts not generally available, i.e. case, label, $5 \times$ front panel switches, p.c.b.s; 4 $\times 7$-seg. displays, coil, programmed ROM is available for E29.95-most useful for the constructor with a well endowed spares box!
When ordering, please specify the make and model of the vehicle if known.

NEXT MONTH: Construction, installation and setting up.


## Breezy Business

Economic predictions are notoriously unreliable. The experts are often proved wrong, not by failure to correctly analyse and marshal data from which to fashion a conclusion, but by unforeseen events. Pity the poor economist whose job is to predict in an unpredictable world.

Energy demand and resource forecasting should have a much better record if only because it is a narrower field. But it has been no more reliable. In the 1950s we were all worrying that the world would soon run out of oil. In the 1960 s there was an enormous surplus. In the 1970s the price explosion forced us to think about alternative sources as well as renewing fears that oil would soon run out. Today, nearing the mid-80s, we have another glut of oil not to mention more coal in the ground than has ever been mined, natural gas in abundance and an increasing capacity in atomic energy.

Of course nobody in the 1950s imagined that in the 1980s the family car would travel 50 miles to the gallon instead of 30 , or that all-solid-state TVs would consume only 30 percent of the energy of their valved predecessors, or that double glazing and loft insulation would cut domestic heating demand by 10 percent

Abundance of supply plus more efficient usage has eased our fears and almost, but not quite, extinguished popular enthusiasm for the alternative energy sources so keenly debated in the late 70s. Whatever happened to tidal power, wind power and solar energy?

Wind power, I am happy to report, is alive and well. The Wind Energy Group, a consortium of GEC Energy Systems, British Aerospace and Taylor Woodrow Construction, has identifed a world market for wind turbine generators estimated to be in tens of thousands of installations.

The demonstration model is now under construction on a hill at llfracombe, Devon, and should be operational by the end of the year. It has a three-bladed rotor 25 m in diameter and will generate up to 250 kW , The project is financially aided by the EEC and by the Department of Trade and Industry. Naturally, the control system is electronic and one of the more interesting features is that microprocessor technology is employed for remote control over a telephone link from WEG's offices in Greenford, Middlesex, together with feedback of operating data for analysis.

The windmills of the 80 s and 90 s will help conserve oil resources but that is not the main sales message. The real truth behind WEG's optimistic sales forecast is that by clever engineering wind energy is now price-competitive with conventional diesel generated electricity in small communities.

## Turnabout

Conventional wisdom has it that the requirements of national defence and, in particular, a fighting war, is the forcing ground for truly innovative developments. The most notable example is radar which made enormous progress during World War 2 and didn't come into civil use on any scale until after the conflict.

An offshoot of radar was microwave technology which, again, only surfaced for civil communications use after the war. Today we still hear stories that defence R \& D operates on the very frontiers of knowledge and with large budgets, especially in the United States, there is still an element of truth in such assertions.

But curiously, the most revolutionary innovations of all time, the integrated circuit and later the microprocessor, had their origins in the civil market and were adopted only with some reluctance by the military.

The first simple i.c.s were the brainchildren of Jack Kilby of Texas Instruments and Bob Noyes of Fairchild Semiconductor in 1958 and 1959. Acceptance by the industry was painfully slow until ten years later Intel was formed (in 1968) as a specialist i.c. company with its first product a 64-bit solid state memory.

In 1969 a Japanese company, Busicom, asked Intel to help produce a set of i.c.s for a projected range of high performance calculators. Busicom's ideas were very good but in the opinion of Intel's project engineer, Dr Marcian E. Hoff Jr, they could be made more cost-effective by adopting a systems approach using a general purpose central processor and using peripheral memory chips to achieve the calculator functions.

Hoff had previously worked on the PDP8 computer at Digital Equipment and was systems-trained. He also foresaw many applications other than calculators where a CPU could be of value. This was the beginning of the MPU as we know it today and what brought Intel to its present impressive status in the industry.

Hoff's ideas came to the open market in November 1971 with the 4004 CPU chip
followed by the 8008, the first of the 8-bit chips and a succession of more powerful devices. By 1975 the new innovation was gaining ground with Intel and its competitors shipping 1 million chips.

Five years later the annual shipments had topped 50 million. Ironically, Busicom who had started the bandwagon rolling went out of business. Note, too, that crossfertilisation of TI and Fairchild's original work plus Digital Equipment system experience plus market demand (Busicom) combined with Intel's own expertise to generate something entirely new.

The military are not entirely to blame for tardiness in adopting the new technology. They were apprehensive over reliability in view of earlier experience with transistors which were sensitive to breakdown through power line surges and spikes. Additionally there were storage and other military specifications to be met. Many of today's operational devices for the military demand Mil Spec qualification in both production and testing but in non-operational or sheltered environments good commercial quality is good enough.

We see this also in certain items of equipment. Naval minesweepers and patrol vessels, for example, frequently use good commercial quality radio equipment originally designed for the trawler market. Financial constraints even led to the idea of VTOL Harriers and helicopters operating from converted merchant ships instead of conventional aircraft carriers which are very much more expensive.

There are many areas of course where military R \& D is essential and money well spent. But it is good to see that many products pioneered in the civil field for civil application are no longer sneered at by the military establishment.

## Self-Help

One of the Government objectives has been to encourage self-reliance as being far more virtuous than outright dependence on the nanny-state. Cut-backs in central funding have forced many organisations to seek internal economies and, in some cases, to search for alternative sources of revenue.

University R \& D is a case in point. It has been traditional for research departments to take out patents and enjoy the benefits of royalties but there are now signs that our academics are becoming far more business-minded. They are actually forming separate companies to sell their services. Thus we see Salford's Industrial Centre, Unisheff Ventures owned by Sheffield University and Unived Technology set up by Edinburgh University.

There are others and the trend is likely to continue. As private companies they can raise their own funds in the commercial market and even conceivably go beyond $R$ \& $D$ and consultancy work through to manufacture and marketing, either independently or in joint ventures with existing companies.

How refreshing to see people rising to a challenge instead of indulging in perpetual self-pity.


## Folding LCD Multimeter With Auto-Range

## ${ }^{£} 64^{95}$

- Automatic Range Setting
- Automatic Polarity Reverse
- Automatic Power-Off When The Case Is Shut!


## ■ Extra Large Non-Glare Display <br> - "Beep" Indicator For Quick Continuity Testing



It's the DVM that thinks! YOU select the function and IT selects the proper range automatically. Features extra large 11/16" non-glare display with adjustable viewing angle, a built-in compartment for its test leads, "beep" indicator for quick continuity testing, range-hold switch to override autoranging, diode/semiconductor junction check function and zero-ohms adjust for super-accurate low resistance measurements. DC volts to 1000. AC volts to 500 . Up to 10 amps AC and DC. Resistance to 2 megohms. Open: $107 / 8 \times 55 / 8 \times 11 / 2 "$. Requires two "AA" batteries. 22-193
$£ 64.95$
Compact 25-Range, 20,000 Ohms/Volt
 surge-absorber protectlon, $4^{n}$ threecolour mirrored meter with automatic shunt protection (when shut) 20,000 ohms per volt DC sensitivity. DC Volts: 0 to 1200, 7 ranges. AC Volts: 0 to 1200, 5 ranges. DC Current: $0-6 \mu \mathrm{~A}, 3-30-300$ mA, 4 ranges. Resistance: 0-2-20-200k2 megohms (centre scale 24). dB: -20 to $+63 \mathrm{~dB}, 5$ ranges. Accuracy: $\pm 3 \%$ DC, $\pm 4 \%$ AC. Measures Open: $71 / 4 \times$ $45 / 16 \times 11 / 4$ ". Requires "AA" battery. 22-211
£19.95
Folds Up For Travel!

## Take A Look At Tandy, Today!

Visit your local store or dealer and see this and many more sale bargains. We service what we sell - over 2,700 exclusive lines!
See Yellow Pages For Address Of Store Nearest You

Prior to this advertisement, all quoted regular prices have been charged during the last six ven

Prices may vary at Dealers months at the Tandy Store, Tameway Tower, Bridge Street, Walsall, West Midiands. WS I ILA

# Sequential Logic Techniques Parit 3 

M.TOOLEY BA and D.WHITFIELD MA MSc C Eng MIEE

WE have already made some use of a simple data latch configured around the four D-type bistable stages of a 7475. Data latches are ideal for the temporary storage of data and several enhanced devices have appeared. One such device, the 74175 , is a quad edge-triggered bistable which can be used both as a conventional parallel type latch having separate data input and output lines from each bistable, and as a serial type shift register where data is fed from one bistable stage to the next.

The 74175 is housed in a 16-pin d.i.l. package, the pin connections of which are shown in Fig. 3.1. The internal logic of the device is shown in Fig. 3.2. A common clock input is applied to each of the bistable stages and data present on the D inputs is transferred to the $Q$ outputs on the positive-going edge of the clock pulse. It should be noted that clock triggering occurs at a


Fig. 3.1. Pin connections for the $\mathbf{7 4 1 7 5}$


Fig. 3.2. Internal logic of the $\mathbf{7 4 1 7 5}$
particular voltage level present at the clock input and is not directly related to the transition time of the positivegoing pulse. A common master reset input is also provided which, when taken low, asynchronously clears all of the Q outputs.

## 74175 4-Bit PARALLEL DATA LATCH

We shall start our investigation of the 74175 by showing how it can be used as a 4-bit parallel data latch in the arrangement shown in Fig. 3.3. The four incoming data lines are connected to the four D inputs whilst the four out-


Fig. 3.3. A 4-bit parallel data latch using the 74175
put lines are derived from the four Q outputs. The latch enable signal is applied to the clock input whereas the clear signal is applied to the master reset pin.

The 74175 should be inserted into socket $C$ of the Logic Tutor ensuring, as usual, that pin 1 aligns with C1. The following connections should be made:

| C1 to logic 1 | (active low clear) |
| :--- | :--- |
| C2 to D1 | (D1 shows state of QO) |
| C4 to S1 | (data input, DO) |
| C5 to S2 | (data input, D1) |
| C7 to D2 | (D2 shows state of Q1) |
| C8 to OV | (common) |
| C9 to clock | (latch enable) |
| C10 to D3 | (D3 shows state of Q2) |
| C12 to S3 | (data input, D2) |
| C13 to S4 | (data input, D3) |
| C15 to D4 | (D4 shows state of Q3) |
| C16 to +5 V | (supply) |

Adjust S1 to $S 4$ to produce logic 0 on all input lines. Check the state of the output lines ( Q 0 to Q3) by examining the state of D1 to D4 and verify that these all go to logic 0 land stay at logic 0 ) after the first rising clock edge. Now wait until the clock goes low and depress S 4 so that logic 1 appears on this input. The corresponding output (indicated by D4) should remain at logic 0 until the clock next goes high, at which point the output should change to logic 1 .

Readers should experiment with various combinations of data input obtained by appropriate adjustment of S 1 to S 4 . It should be noted that, in all cases, data is only latched on a positve going clock edge (i.e. as the clock l.e.d. becomes illuminated). Furthermore, after the clock transition has occurred, the 74175 ignores any further changes on its data inputs until the next rising clock edge arrives. In practice, this means that input data MUST remain stable for the duration of the rising latch enable input signal since this is the only time at which the input data is valid.

## SEQUENTIAL LOGIC

The clear input may now be tested by first loading data into the latch, disconnecting the link from Cl to +5 V (the input pin of the 74175 remains at logic 1 during this process) and then connecting the link from C 1 to logic 0 . All four outputs should then immediately go to logic 0 and no further data will be latched until the clear input is returned to logic 1 (or left to float high again).

## A SIMPLE LOGIC ANALYSER

Here is an example of the use of the data latch. One of the primary functions of a logic analyser is that of "capturing" transient data present in a microprocessor based system and "freezing" it so that it can be displayed and examined at leisure.

The point at which data is captured is defined by a "trigger event". This usually takes the form of a particular
set of logic states present on the control bus. When this pre-set bit pattern occurs, data is latched into the memory of the logic analyser, decoded and displayed in binary or hexadecimal form.

A very simple form of logic analyser is shown in Fig. 3.4. Two 4-bit data latches are used to capture the lower nibble (present on data lines DO to D3) and the upper nibble (present on data lines D4 to D7). The clock and clear lines of all eight bistable stages are common; the clock being driven from the trigger event decoding logic (which is arranged to produce a 0 to 1 transition when the trigger event occurs) whilst the clear line is connected to a push-button 'reset' switch.

Whilst this simple arrangement is only capable of capturing a single byte (i.e. the eight data bits present on the bus) at a time, most logic analysers provide a memory of 1 K bytes for


Fig. 3.4. A simple logic analyser
more) and, in addition, will offer the facility to capture data both before and after the pre-determined trigger event.

## SHIFT REGISTERS

Shift registers essentially provide a form of serial memory (as opposed to the parallel form of data latch which we looked at last month) in which data can be synchronously clocked from one stage to the next. In a simple shift register made from D-type bistables this means that the Q output of the first stage must be taken to the $D$ input of the next stage, and so on. A register of this type is shown in Fig. 3.5 and is known as a serial-input/serial-output (SISO) shift register.

Instead of using D-type bistable elements in the SISO shift register we could, of course, use J-K bistables. The equivalent of Fig. 3.5 using J-K bistables is shown in Fig. 3.6. Both of these arrangements use four cascaded bistable elements, thus four clock pulses will be needed in order to shift data right through the shift register.

At this point it is probably worthwhile making a clear distinction between the SISO shift register and the simple binary counter. In the former case, the clock line is common to every bistable element whereas, in the latter, the Q output from the first stage feeds the clock input of the next stage, and so on.

On its own, the SISO type of shift register is only capable of providing a delay equivalent to the length of the shift register in clock pulses. Hence an 8 -stage SISO shift register will, for example, impose a delay of eight clock pulses between serial data entering the register and that leaving it.

Other types of shift register do, however, have a seemingly endless variety of applications arguably the most important of which involves the conversion of serial data to parallel data and vice versa. In such cases the basic SISO register arrangement must be modified so that parallel data access (input and/or output) is possible. One


Fig. 3.5. A 4-bit SISO shift register using D-type bistables


Fig. 3.6. A 4-bit SISO shift register using $\mathfrak{J}$-K bistables

## SEQUENTIAL LOGIC

obvious possibility is that of making each Q output of the SISO shift register available. Such an arrangement is shown in the serial-input/parallel-output (SIPO) register of Fig. 3.7. Here serial data is synchronously clocked into the register and, after the requisite number of clock pulses (four in this particular case), the register is completely loaded and the data is then available in parallel form from the four Q outputs.

Another possibility is that of parallel loading the data into a shift register using the PRESET and PRECLEAR inputs of the bistable elements. Data may then be shifted out in serial form. Such an arrangement is known as a parallel-input/serial-output (PISO) shift register, a simplified form of which is shown in Fig. 3.8. The data on the parallel inputs should not, of course, be allowed to affect the state of the bistable elements during the shifting
process and hence the PISO shift register must have additional logic to control the parallel loading of data. Most, if not all, PISO shift registers also provide a serial data input and thus can be also used for serial-toparaliel data conversion.

A further refinement is that of providing both parallel data input and parallel data output from the shift register. Such an arrangement is shown in Fig. 3.9 and is known as a parallel-input/parallel-output (PIPO) shift register. This arrangement, which is sometimes also referred to as a "universal shift register", is very similar to that of the PISO, the only difference being the addition of data output lines derived from the Q outputs of each bistable stage.

We shall begin our practical investigation of shift registers showing how a simple SIPO arrangement can be built using the four D-type bistables
of a 74175 quad data latch. The 74175 was introduced last month and hence we will not repeat the pin-out or internal logic schematic of the device.

## SIPO SHIFT REGISTER USING THE 74175

The circuit diagram of a simple SIPO shift register based on the 74175 is shown in Fig. 3.10. It should be noted that the clock input (pin-9) is common to each D-type bistable. The active-low clear input is taken to logic 1 and the serial data input (derived from push button S 1 ) is taken to the D input of the first bistable stage. The four l.e.d. indicators of the Logic Tutor are used to monitor the state of the Q outputs. With the 74175 in socket $C$ land with pin-1 aligned with C1), make the following connections on the Logic Tutor:-
C1 to logic 1 (active low clear)
C2 to D1


Fig. 3.7. A 4-bit SIPO shift register using D-type bistables


Fig. 3.8. A 4-bit PISO shift register using D-type bistables


Fig. 3.9. A 4-bit PIPO shift register using D-type bistables


PE16060
Fig. 3.10. A SIPO shift register based on a 74175 quad data latch

## SEQUENTIAL LOGIC

C4 to S1
C5 to C2
C7 to D2
C8 to OV
C9 to clock
C10 to D3
C12 to C7
C13 to D10
C15 to D4
C16 to +5 V (supply)
Outputs (indicated by D1 to D4) of the shift register should initially all be zero. With S 1 providing a logic 0 data input, the outputs should remain at zero as the logic 0 is effectively shifted into the register during subsequent clock cycles. Now wait for the clock to go low and then depress S1. Nothing should happen until the clock next goes high, at which point D1 will become illuminated indicating that the logic 1 has been loaded into the first stage of the shift register. Now release S1 to produce a logic 0 input. On the next rising clock edge D2 should become illuminated and D1 should become extinguished. This shows that the logic 1 has now shifted into the next stage of the shift register whilst the subsequent logic 0 input has moved to replace the initial logic 1 output of the first stage. The subsequent movement of the logic 1 should be observed as it shifts right through the register. Operation should conform to the timing diagram shown in Fig. 3.11 .


Fig. 3.11. Timing diagram for the shift register of Fig. $\mathbf{3 . 1 0}$

It should be noted that, had we stopped the clock after four complete clock cycles, we would have produced parallel output data on the four Q output lines that was equivalent to the serial data input (i.e. 1000).

It is now suggested that readers repeat the foregoing exercise holding S1 down for the first four clock cycles. A logic 1 will then be seen to load into the register, apparently filling the
register from left to right. After the fourth clock cycle, S1 should then be released and the register will empty as the logic 1's are successively replaced with logic O's. After observing this process for one or two further periods of four clock cycles, readers should be reasonably familiar with the operation of this simple form of 4-bit SIPO shift register.

It should be noted that the outputs of the 74175 shift register can be simultaneously set to logic 0 by taking the active-low clear input to logic 0 . Readers may wish to confirm that this is $s o$.
counter using a 74175 is shown in Fig. 3.12 , the $\overline{\mathrm{Q}}$ output of the last stage is fed back to the $D$ input of the first stage. Since all four $Q$ outputs start at zero, a logic 1 is fed to the $D$ input and the first stage changes state as soon as the clock input goes high. The register thus first fills with logic 1 's but, when the fifth clock pulse arrives the logic 0 present on the $\overline{\mathrm{O}}$ output of the fourth stage is transferred into the first stage and hence the register then begins to fill with logic O's. The timing diagram for the four stage walking ring counter is shown in Fig. 3.13.

To convert the arrangement used in


Fig. 3.12. A 4-bit walking ring counter based on a $\mathbf{7 4 1 7 5}$ quad data latch


PE16106
Fig. 3.13. Timing diagram for the walking ring counter of Fig. $\mathbf{3 . 1 2}$

## THE WALKING RING COUNTER

We shall now digress slightly from our main theme of shift registers to take a look at an interesting application of the SIPO shift register. If the complementary output from the last stage of a shift register is fed back to the input of the first stage, we can produce a counter which has twice as many states in its counting sequence as there are stages in the shift register. Such an arrangement is known as a "walking ring counter" or "Johnson counter". In this type of counter, as compared with a conventional binary counter, only one stage changes state at a time.

A practical four stage walking ring

Fig. 3.10 to that in Fig. 3.12 it is only necessary to disconnect the link from C4 to S1 and reconnect C4 to C14. When power is applied the register will successively fill with 1's and then O's, taking eight clock cycles for the complete sequence.

## THE 74195

The 74195 is a versatile 4-bit parallel access PIPO shift register. The device is useful in a wide variety of shifting, counting and storage applications. The 74195 is particularly suited to high speed serial-to-parallel and parallel-to-serial data conversion. The device is housed in a 16 -pin di.i.l. package, the pin connections of which are shown in Fig. 3.14. The internal logic of the device is shown in Fig. 3.15 .

The 74195 has two distinct modes of operation: shift right and parallel load. These modes are selected by means of a SHIFT/ LOAD input. In the shift mode the SHIFT/LOAD control input is taken to logic 1 and serial data enters the first bistable via the J and K inputs when the SHIFT/ LOAD input is at logic 1 . Data is then shifted through the register one bit (in the direction 00

## SEQUENTIAL LOGIC



Fig. 3.14. Pin connections for the 74195


Fig. 3.16. Parallel 4-bit PIPO shift register using the 74195


Fig. 3.15. Internal logic of the 74195
$\rightarrow \mathrm{O} 1 \rightarrow \mathrm{O} 2 \rightarrow \mathrm{Q} 31$ following each low-to-high clock transition.

In the parallel load mode the SHIFT/LOAD control input is taken to logic 0 and data on the four parallel data inputs (D0 to D3) is transferred to the respective bistable outputs ( 00 to Q3) at the next low-to-high clock transition.

Shift left operation $\mathrm{O}_{\mathrm{O} 3} \rightarrow \mathrm{O} 2 \rightarrow \mathrm{Q} 1$ $\rightarrow 00$ ) can also be achieved by tying the $\mathrm{Q}_{\mathrm{n}}$ outputs to the $\mathrm{D}_{\mathrm{n}-1}$ inputs (i.e. Q3 to D2, Q2 to D1, Q1 to D0) and holding the SHIFT/ $/ \overline{O A D}$ control input at logic 0 .

It should be noted that all parallel and serial data transfers are synchronous and occur after each positive
clock edge is received. Furthermore, by virtue of the edge triggered characteristic, there is no restriction on the activity on the J, K, D and SHIFT/LOAD inputs other than that associated with set-up and release.

The 74195 also has an active low clear input which sets all Q outputs low independent of any other input condition. It should be noted that, since the clear and clock inputs are internally gated, to avoid false clocking a low-tohigh transition on the clear input should only be permitted during the period for which the clock is low.

The 741.95 should be inserted into socket $B$ of the Logic Tutor ensuring, as usual, that pin-1 aligns with B1. The
following connections should then be made:-

| B1 to S3 | (active low clear) |
| :--- | :--- |
| B2 to B3 |  |
| B3 to S1 | (serial data input) |
| B4 to logic 1 | (parallel data input D0) |
| B5 to logic 0 | (parallel data input D1) |
| B6 to logic 1 | (parallel data input D2) |
| B7 to logic 0 | (parallel data input D3) |
| B8 to OV | (common) |
| B9 to S 4 | (shiftlload control) |
| B10 to clock | (clock input) |
| B12 to D4 | (D4 shows state of Q3) |
| B13 to D3 | (D3 shows state of Q2) |
| B14 to D2 | (D2 shows state of Q1) |
| B15 to D1 | (D1 shows state of Q0) |
| B16 to +5 V | (supply) |

## SEQUENTIAL LOGIC



Fig. 3.17. Arrangement used to permit left shifting of the 74195 (SIPO model)

The Logic Tutor arrangement conforms to the circuit shown in Fig. 3.16. The shift register should be tested by first adjusting S3 to produce a logic 0 input on the clear line. All l.e.d. indicators should immediately become extinguished as all the $Q$ outputs go low. Note also that S1 and S4 have no effect whilst the clear line is held low. Now adjust 54 to produce a logic 1 on the SHIFT/LOAD input and then operate S3 to generate a logic 1 on the clear line. The register will now commence loading from the serial input but, since S1 is producing logic 0 , there will be no change in any of the 0 outputs and the l.e.d. indicators will remain extinguished.

Now wait for the clock to go low (D9 extinguished) and depress S1. This places a logic 1 on the serial input. Notice how, as the clock next goes high, this logic 1 is transferred into the first stage of the shift register and D1 becomes illuminated as the first bistable changes state and $\mathbf{Q O}$ goes high. Now release S1 and notice how a logic 0 loads into the first stage on the next rising clock edge whilst the previous logic 0 is transferred into the next stage. Readers may now like to experiment with serial loading of the shift register, inputting data manually by means of S 1 .

Readers should also confirm that S3 can be used to clear the register on the next rising clock transition after S3 has been set to produce a logic 0 .

The parallel load mode can be selected by adjusting S4 to produce a logic 0 input, checking first that the clear input is at logic 1 . On the next rising clock transition the data (1010) that has been hard-wired on the data inputs will be transferred to the Q outputs. The data remains static as long as the

SHIFT/ LCAD control input is held low but as soon as S 4 is set to produce a logic 1 normal shift right operation is restored.

## SHIFT LEFT OPERATION

In order to obtain shift left operation, the 74195 should be left in socket B and the links re-arranged as follows:-

B1 to S3
lactive low clear)
B2 to B3
B3 to logic 1
B4 to B14
B5 to 813
B6 to B 12
B7 to S1
B8 to OV
(serial data input)
B9 to logic 0
B10 to clock
B12 to D4
(clock input)
B13 to D3
(D4 shows state of Q3)
(D3 shows state of Q2) B15 to D1 (D1 shows state of Q0) B16 to +5 V (supply)
(A total of 15 links)
This arrangement conforms to the circuit diagram shown in Fig. 3.17 Serial data can be fed into the register by means of S 1 and cleared by means of S3 (a logic 0 being required to clear the register). Now wait for the clock to go low and then press S1 to generate a logic 1. D4 will become illuminated when the next rising clock edge occurs and data will then be subsequently transferred from Q3 to Q2 (D4 to D3) on the next rising clock edge, and so on. To clear the register S3 should be adjusted for logic 0 and all Q outputs will then go low regardless of the state of the clock.

NEXT MONTH: Pseudo random numbers and universal shift registers

## Leader of the packs

AC/DC COMPONENT PACKS

| $\begin{aligned} & \text { Pact } \\ & \text { No. } \end{aligned}$ | aty | Description | Price |
| :---: | :---: | :---: | :---: |
| TF 11 | 12 | RED 5 mm LED | f1.00 |
| TF 12 | 30 | 500m2 ZENERS 5\% | 11.00 |
| IF 15 | 50 | 1 amp Rect. Diodes in 4000 series | \$1.00 |
| IF 16 | 6 | 1 amp Bridge Rect. | 11.00 |
| IF 17 | 100 | Transistor pads | f1.00 |
| TF 18 | 20 | A/S fuses 20 mm | f1.00 |
| TF 19 | 10 | 34 Rect. Diodes | f1.00 |
| IF 110 | 2 | DRP 12 | f1.00 |
| IF 111 | 5 | BR 100 DIAC | f1.00 |
| IF 112 | 10 | BC109B | 11.00 |
| IF 113 | 10 | LC's all different | f1.00 |
| IF 114 | 50 | BFR 86 | f1.00 |
| IF 115 | 12 | 8 pin DIL sockets | f1.00 |
| TF 116 | 20 | 10 mm Horiz. Pre set ( 10 values) | f1.00 |
| IF 117 | 10 | Slide Pots - 3K all the same | f1.00 |
| IF 178 | 10 | Maxed Pots | f1.00 |
| TF 119 | 10 | Feed throughs | £1.00 |
| IF 120 | 25 | Electrotytic Caps | £1.00 |
| IF 121 | 50 | Potyester Caps | ¢1.00 |
| IF 122 | 100 | Mixed Resistors Incl. Wire Wound | f1.00 |
| IF 123 | 100 | Mixed Transistor Hardware | £1.00 |
| TF 124 | 25 | 5 mm LED clips and rings | f1.00 |
| TF 125 | 10 | BC 107 | f1.00 |
| TF 126 | 10 | BC 108 | ¢1.00 |
| IF 127 | 6 | Green 5 mm LED | £1.00 |
| Tr 128 | 6 | Yellow 5 mm LED | £1.00 |
| TF 129 | $\begin{aligned} & 150 \\ & \text { approx. } \end{aligned}$ | Mixed nuts/bolts/washers/ self tapper | £1.00 |
| IF 130 | 25 | Mixed Electrolytics Axial | ¢1.00 |
| IF 131 | 25 | Mixed Electrolytics Radial | f1.00 |
| IF 132 | 50 | Mixed Potyester Axial | £1.00 |
| TF 133 | 50 | Mixed Potyester Radial | f1.00 |
| TF 134 | 15 | BC 337 | f1.00 |
| IF 135 | 20 | 500 MA A/S 20 mm Fuse | £1.00 |
| IF 136 | 50 | Mixed Ceramic Discs | £1.00 |
| IF 137 | 50 | Mixed Ceramic Plates | £1.00 |
| IF 21 | 200 | 47 pf 160 V Potystone Cap | $£ 2.00$ |
| TF 22 | 10 | LM 3900 N | f2.00 |
| IF 23 | 10 | Mixed DTL | ¢2.00 |
| IF 24 | 5 | 4700 mf 25 V Tag Elect $2^{\prime \prime} \times 1^{\prime \prime}$ | 92.00 |
| IF 25 | 10 | 1000 mf 63V Ax Elect | $\underline{2} .00$ |
| IF 26 | 50 | 022 mf 400 V RAD POLY | $\underline{2} .00$ |
| TF 27 | 10 | 100 mf 250 V Ax | 52.00 |
| IF 28 | 10 | $22 \mathrm{mf} \mathrm{160V} \mathrm{Potyester} \mathrm{RAD}$ | $\underline{7200}$ |
| IF 29 | 10 | VOR's | $\mathbf{5 2 . 0 0}$ |
| IF 210 | 10 | Mixed TL ( 74 series) | $¢ 2.00$ |
| IF 211 | 4 | 2N 3055 H(RCA) | $\underline{5200}$ |
| IF 213 | 200 | IN 4151 Diodes | ¢2.00 |
| TF 214 | 200 | IN 4148 Diodes | $\underline{7200}$ |
| TF 51 | 100 | White/Red 5mm LED | E5.00 |
| IF 52 | 50 | 8C 108C | £5.00 |
| IF 53 | 2 | $10,000 \mathrm{mf} 63 \mathrm{~V}$ Comp. grade | 55.00 |
| TF 54 | IKG | Reel 22 g ersin muthicore | ¢5.00 |
| TF 55 | 10 | 2 N 3055 H(RCA) | ¢5.00 |
| IF 56 | 5 | 0CP71 | f5.00 |
| TF 57 | 3 | $10,000 \mathrm{mf} 40 \mathrm{~V}$ Comp. grade elect | f5.00 |
| TF 58 | 720 | IW Carbon film $1 \Omega$-10M $\Omega$ ten values | £5.00 |

ALL PRICES INCLUDE VAT - ALL GOODS BRAND NEW \& NORMALLY DESPATCHED BY RETURN NEW \& NORMALIY DESPA.
TERMS: Cash with order. POST \& PACKING: Please add 75 p to total order.

> AC/DC ELECTRONICS COMPONENTS
> DEPT P.E., 45 CHURCH STREET, ENFIELD, MIDDLESEX.


P.E. MONO-STEREO ECHO-REVERB (SEP94) 200 ms echo, lengthy reverb, muhitracking kit as published - BLK box: SET 218 £55.66

## P.E. AUDIO EFFECTS <br> AND OTHER SUPER SOUND KITS!


P.E. RING MOCULATOR (NOV84). With murtiwaveform VCO, Noise Gate \& Auto-level Control. Kit as published - BLK box: SET 231 139.99


ROBOVOX: Versatile robot tyoe voice modifier ROGER CALI SIGN: Twin gongs, auto triggered ROGER CAIL SIGN: Single tone auto triggered SIRENS: Auto triggered by sound or pulse SIRENS: Manually controlled, constantly varying SIRENS: Manualty variable, ind gun \& space type SPEECH PROCESSOR: Clearer speech and lever contro STORMS EFFECTS: Auto 8 nranual wind, rain 8 surf effects SYNTHESISER 2 -Oct push swe wariable ES Freo Shape Spa TOM TOM SYNTH. Sound sw, vanibbe ES, freq, Shape, Span TONE CONTROL: Bass, mid teble, gain \& cut TREBLE BOOST: Increases varume of upper octaves TREMOLO: Mono varibble rate \& depth modulation TUNING FORK: 96 note audio: VOLTAGE CONTROLLED FLTER: 12dB, variable modes VIBRATO: Variable rate \& depth of treq shift VOCODAVOX: Modular vocoder, 7 chans, extendable ODALEK. Robot type voice nodutetor
WAH AH. Aut man \& minty \& delay
WAF-WAR: Auto, manual \& note triggered
WOBBLE-WAH: Oscilator controled wah-wah, variable
624.53

2113
E13.50
$〔 19.90$

$£ 13.19$
12.0

P.E. FILTER-SHIFT PHASER (OCT84). Enhanced Phasing with modulated finer shiting. Kit as published - BLK box: SET $226 £ 39.13$
Add $15 \%$ VAT \& \&1 P8P to all orders loverseas details in cath Paymen CWO, CHQ. PO, ACCISS, VISA or pre-arranged collection.

# RIIE MODULATOR JOHII II.H.BECRER PART 2 

A$T$ this point it is worthwhile looking at some oscillograms of simple waveform combinations, produced with the unit described in Part 1. Table 1 shows a schematic representation of the control settings used.

| Fig. | S7 | 54 | 56 | 55 | 53 | 52 | VRI | VR5 | VR4 | VR6 | S1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 a | 1 | $\dagger$ | $\dagger$ | $\dagger$ | $x$ | - | $x$ | , | 7 | $x$ | $\rightarrow$ |
| 3b | $\dagger$ | 1 | $\dagger$ | $\dagger$ | $x$ | - | $x$ | k | $\checkmark$ | $x$ | , |
| 3c | 1 | 1 | 1 | 1 | $x$ | $\sim$ | x | , | , | X | $\ell$ |
| 4 | $\dagger$ | 1 | $\dagger$ | $\dagger$ | $x$ | - | $x$ | , | 4 | x | $\sim$ |
| 5 a | 1 | 1 | $\dagger$ | x | $x$ | , | x | , | X | $x$ | $x$ |
| 5b | $\dagger$ | $\dagger$ | 1 | $x$ | $x$ | , | $x$ | , | x | $x$ | $x$ |
| 5 C | 1 | 1 | $\dagger$ | $x$ | $x$ | , | $x$ | , | X | $x$ | $x$ |
| 5d | $\dagger$ | $\dagger$ | 1 | $x$ | $x$ | , | $x$ | 4 | X | $x$ | X |
| 6a | $\dagger$ | 1 | 1 | 1 | $x$ | - | $x$ | , | $\prime$ | $x$ | - |
| 6b | 1 | 1 | $\dagger$ | $\dagger$ | $x$ | $\square$ | x | , | $\checkmark$ | $x$ | 4 |
| 6c | 1 | 1 | 1 | $\dagger$ | X | $\sim$ | $x$ | , | , | X | $\beta$ |
| 6d | $\downarrow$ | 1 | 1 | $1$ | $x$ | - | $x$ | $\downarrow$ | 7 | $x$ | - |
| Se | $\downarrow$ | 1 | $\downarrow$ | $\dagger$ | $x$ | $\sim$ | $x$ | $\checkmark$ | $\checkmark$ | $x$ | - |
| $6 f$ | 1 | 1 | 1 | $\dagger$ | $x$ | $\sim$ | $x$ | $\checkmark$ | $\checkmark$ | $x$ | , |
| 69 | $\downarrow$ | 1 | 1 | $\dagger$ | X | - | $x$ | $\checkmark$ | 7 | $X$ | , |
| 6h | $\downarrow$ | 4 | 1 | $\dagger$ | X | - | x | $\checkmark$ | $\checkmark$ | $x$ | $\rightarrow$ |
| 6 i | $\dagger$ | 1 | 1 | $\dagger$ | $x$ | $\sim$ | $x$ | , | $\checkmark$ | $x$ | - |
| 6j | $1$ | 1 | 1 | 1 | $\times$ | - | $x$ | * | 7 | $x$ | $\checkmark$ |
| 6k | 1 | 1 | 1 | 1 | X | $\cdots$ | $x$ | , | $\checkmark$ | $x$ | $\beta$ |
| 61 | 1 | 1 | 1 | $\dagger$ | $x$ | - | $x$ | 4 | 7 | $x$ | $\rightarrow$ |
| 70 | $\dagger$ | 1 | 1 | X | X | , | x | $x$ | $x$ | $x$ | $x$ |
| 7b | $\dagger$ | 1 | 1 | $x$ | X | , | $x$ | X | $x$ | $x$ | $x$ |
| 7 c | 1 | 1 | 1 | X | X | , | $x$ | $x$ | $x$ | $X$ | $x$ |
| 7 d | 1 | 1 | 1 | $x$ | x | , | $x$ | $x$ | $x$ | $x$ | $x$ |

PE1510P
Table 1. Switch settings

## WAVEFORM OSCILLOGRAMS

In Fig. 3, a triangle wave of 3 kHz is being used as the carrier signal going to one input, though its actual waveshape is irrelevant at this moment. This is being modulated by a second waveform, on the other input, at a much lower frequency of about 150 Hz . The two frequencies shown are widely diverse for illustrative convenience but a similar principle applies to other spacings. The modulating waveform is shown in the upper trace, and the composite output in the lower, with the higher frequency inside the 'bubble' envelope. It will be immediately apparent that the unit in the mode selected has doubled the frequency of the
sine and triangle modulators to 300 Hz . Although the ramp modulator appears not to be doubled, close examination of the scope reveals that each diamond 'bubble' is in fact two, with a very fast change at the centre, coinciding with the ramp trailing edge. The effect of modulating by square wave is not shown as the edges are too fast to produce a readily visible effect, though it can just be discerned audibly. What is not apparent in the oscillogram is that the carrier within the 'bubble' now consists of $3 \mathrm{kHz}-300 \mathrm{~Hz}=2700 \mathrm{~Hz}$, and $3 \mathrm{kHz}+300 \mathrm{~Hz}=3300 \mathrm{~Hz}$ and on the oscilloscope the carrier in the alternate 'bubbles' is seen to be phase shifted by $180^{\circ}$, with a slight vibrato on its edges. Although the full harmonic content of the product signal is not seen in the oscillograms, the differentials can be heard clearly through an amplifier. Using two signal generators with one supplying a fixed frequency, the other is slowly swept across the audio spectrum. When the sweep frequency is rising but below the fixed one, two notes are heard at the output, one rising, the other falling. Close to frequency equality the lower note becomes progressively deeper until at the balance point the low frequency is totally cancelled and only a doubling of the fundamental is heard. As the sweep progresses upwards so two frequencies are again heard, but each rising, one more slowly than the other. The very low frequency heard near the balance point is clearly shown in Fig. 4. The high frequency within the shape is at twice the original. This then is the sum of the two, and the difference. The frequency doubling can also be verified without a scope by taking both the final signal and one of the originals into a mixer and alternating the pan control between both, whereupon the octave differential will be heard. The same can be repeated when a low frequency note modulates a high frequency one. If the high frequency is out of audio range, the low frequency modulator will be heard to be one octave lower than the bass content of the output.

## FREQUENCY COUBLING

Fig. 5 shows the effect of deliberately feeding the same signal in to both the modulating and carrier inputs. From these photos it will be clear that frequency doubling occurs with each of the four different, original waveforms, but also that the output does not have the shape of the original. In the photographs of the ramp and squarewaves, both original waveforms have been intentionally slightly distorted so that the very fast intermediate peaks are more clearly seen. In all cases the frequency doubled waveform takes on a much


## MUSIC PROJECT

and interesting effects. When using a low frequency simple waveform with a higher frequency source such as speech or music, tremolo can be given to the music, and speech can be made to sound robot-like. In creating Dalek voices, one of the essentials is to modulate the voice at a low frequency, though other factors are involved in the production of the authentic Dalek sound. Tremolo and vibrato modulation are both effects that when used with discretion can greatly enhance the interest of many sounds.

For music the speed of modulation is at its most satisfying if the rate is in the region of 6.5 Hz . In an analysis some years ago of the modulation given by violin players and opera singers, there was remarkable consistency between all of them, modulating their pitch within about 1 cycle of 6.5 Hz . The author is involved in many types of effects units and finds that when testing rhythmic sources the most satisfying, and eventually the most hypnotic rates, are those within this same range. It is an interesting speculation that there might be a correlation between this frequency and the brain wave frequencies associated with Alpha and Theta
spikier shape, even for the sine wave. Indeed in other frequency doubling methods known to the author, a similar degree of sharpening is experienced. Any frequency doubled signal is thus bound to be a harsher note one octave higher, especially so with the ramp, and from an audio position, frequency doubling of a square wave will only produce objectionable clicks as the mark-space ratio is so wide. Doubling still takes on a harsher sound when introducing a time delay, which produces a phase shift, to one of two identical signals. (Interesting sounds are produced though, if the complete ring modulator is preceded or followed by echo, or reverb units). The doubling effectiveness is also subject to the complexity of the original signal. For simple monotonic frequencies, the effect is quite usable. However, if used when the signal is complex, like trying to double the pitch of a chord or of multiple instruments, the effect is cacophony. Speech too takes on extremely odd noises if octave raising in a ring modulator is attempted. For true frequency doubling with waveform retention, much more complex equipment is needed.


Fig. 3c. Rising-ramp modulator

Fig. 3a. Sine-wave modulator


Fig. 3b. Triangle modulator

Fig. 3 (above). Triangle wave 3 kHz , used as the carrier. The upper trace is the modulating waveform and the lower, the composite output


Fig. 4 (above). High frequency modulator, with modulating carrier at almost same frequency showing effective slow-beat frequency

Fig. 5 (right). Effects of using the same signal in both modulating and carrier inputs


Fig. 5a. Sine-wave


Fig. 5c. Rising ramp-wave


Fig. 5b. Triangle-wave


Fig. 5d. Square-wave

## TRACKED RING MODULATING

Another option available is to use the inputs with two accurately controlled waveforms of different frequencies. The most usual source of these is two oscillators of a synthesiser, with the frequencies tracking identically, and exactly spaced so that the correct harmonic relationship is the same throughout the range. The complex chording structure is then simpler to achieve. Referring back to the frequency example earlier, ' $G$ ' at 396 Hz is 1.5 times the frequency of 'C' at 264 Hz . Similar relationships between two original signals will produce other equivalent composites, though not necessarily of a concordant nature.

## FIXED CARRIER

It is not necessary for the carrier frequency to be shifting in sympathy with the modulator and in many cases it is better to keep the carrier static for the production of some weird
rhythms. Theta rhythms are those with a frequency of about 4 Hz to 7 Hz , and which appear to be connected with mood. Alpha rhythms occur between 8 Hz and 12 Hz and occur most often in relaxed meditation. It is possibly no coincidence that the most satisfying tremolo and vibrato rates lie between the two.

Proper vibrato cannot be readily produced by a ring modulator as it involves true frequency shifting without additional tone generation, but tremolo with a trace of vibrato is easily obtained through low frequency amplitude modulation around 6.5 Hz . Voice modulation for Dalek-type production lies in the range of about 15 Hz to 30 Hz . At frequencies lower than this the modulation tends to be lost amongst the consonant peaks of speech as the vowels are usually much shorter than in singing. As the modulation rate increases between 400 Hz and 1 kHz so a metallic quality is acquired by the voice, becoming more pronounced but less intelligible
as the carrier goes bevond 1 kHz . If music is modulated with a fixed carrier in tr a higher frequency ranges extremely uncanny effects are produced. This is particularly true of carriers between 3 kHz and 6 kHz , when music can take on an almost nightmarish quality. When working on the prototype, the author found that 10 or 15 minutes of this upper frequency modulation was all that was tolerable at one time. Using low frequency ramps and squarewaves to modulate complex higher frequency sounds usually results in objectionable clicks. However, these clicks can be made use of if the carrier is a single high frequency or white noise source. With the former 'pinging' sounds can be produced and with the white noise, a variety of steam engine effects can be created. Using a white noise generator in conjunction with an external pulse source can also produce sounds akin to gun shots.

Fig. 6 shows the effect of VR5 in the d.c. control mode at three settings when a high frequency intermodulates with a
low frequency. As will be seen some quite distinctive waveform shapes appear, all of which have their own unique effect upon the final output quality. When bypassing the ALC control a $180^{\circ}$ phase change occurs and the ramp waveform changes to the opposite slope introducing a fifth set of variations. Full modulation in the d.c. mode is intentionally inhibited as the increased level required would inherently raise the carrier breakthrough level. Full carrier modulation is of course provided when S4 is in the a.c. mode. When switching between both modes, the nature of the circuitry produces a cross-fade effect between them. This is due to the relative d.c. levels applied to C21 changing, at a rate determined by the biasing resistors and provides a smooth changeover. A similar effect is produced when S7 is switched in and out. Fig. 7 shows the effect of using the same signal as both modulator and carrier in the d.c. mode. Frequency doubling still occurs but with a changed amplitude relationship.

Fig. 6. Various effects in the d.c. control mode with a high frequency intermodulating with a low frequency


Fig. 6a. Sine-wave


Fig. 6d. Square-wave


Fig. 6g. Falling ramp-wave


Fig. 6j. Triangle-wave


Fig. 7a. Sine-wave


Fig. 6b. Triangle-wave


Fig. 6e. Sine-wave


Fig. 6h. Square-wave


Fig. 6k. Rising ramp-wave


Fig. 7b. Triangle-wave


Fig. 6c. Rising ramp-wave


Fig. 6f. Triangle-wave


Fig. 6i. Sine-wave


Fig. 6I. Square-wave


Fig. 7c. Rising ramp-wave

Fig. 7. Effects of using the same signal for modulator and carrier in the d.c. mode

## ASSEMBLY

The p.c.b. layout is shown in Fig. 8 and the wiring diagram in Fig. 10. It is easiest to assemble the printed circuit board in order of component size, leaving the insertion of i.c.s into their sockets until last. The short wire links on the p.c.b. can be shaped from resistor offcut leads. It also helps with subsequent checking if the components are mounted with their identities readily visible. Diodes, electrolytic capacitors and i.c.s must only be inserted the correct way round as shown. At the very least the circuit will not work properly if this is ignored, at worst components could suffer extinction. Wiring to the controls must be tackled neatly and methodically to avoid the unit looking like a pig's nest! Make the connections between the panel components first, then wire up to the p.c.b., keeping all wires coming round the edges of the p.c.b.-coming over it makes it messy. They should be reasonably short, but long enough to enable the p.c.b. to be turned over for track side examination. Try to get it right first time as the box space is tight and it is tricky to manoeuvre the p.c.b. between the various panel parts. Ticking off components and wires as they are connected minimises errors, as does closely studying solder joints with a magnifying glass. These should look round and shiny, covering all round the solder pad on the p.c.b. If they look dull, crazed or daylight can be seen through them, then they are not good joints. Neither is one that has the solder spread across adjacent tracks. The author sometimes sees home assembled projects returned for servicing, and in practically all cases the only reason for malfunction is that improper attention has been given to soldering. It is very rare for modern components to be the cause of any misbehaviour.

## SETTING UP

Alignment of the three presets is quite straightforward and no specialised equipment is needed. First, VR1 min, VR2 and 3 fully right, VR4 midway, VR5 min, VR6 max, VR7 midway, S1 position 1 (sinewave), S2 position 1 (internal VCO), S3 up (gate off), 54 off (d.c. coupled), 55 up (slow VCO), S6 up (ALC bypass), S7 up (Rmod override). If a signal generator is not available it is preferable to use a pre-recorded speech or music track from a cassette recorder or similar during testing. Plug this in to the high input jack socket, and the output jack socket into the main amplifier. Check that the cassette signal reaches the amplifier, if necessary increasing VR!

Fig. 8. The p.c.b. layout of the Ring Modulator


Fig. 9. The component layout of the Ring Modulator



Fig. 10. Wiring diagram of the Ring Modulator
to a suitable level without distortion. Switch on S7 and a similar output level should remain. Switch on S4 to a.c. mode whereupon the sound should diminish. Slowly adjust VR3 around its midway point until the minimum level is heard. Bringing up VR5 to maximum, a slow modulation of the sound should be heard. Varying VR4 the modulation rate will change. Switching on S5 the rate will increase dramatically, and the quality of the audio output change with it. Remove audio source from the input leaving only the carrier signal. Switch S1 through its four settings and note that changes in carrier quality are evident. The carrier level will also change with the settings of S1. With S6 switched on to ALC mode the variations will be less pronounced and on an amplifier VU meter, the levels will appear practically the same. Maximise VR5 and carefully adjust VR2 around its midway point until carrier breakthrough is as low as possible. Again apply audio source from cassette. Switching on S7, carrier modulation will cease leaving only the original sound. Now align VR7 adjusting it around its midway point until minimum waveform distortion is heard at higher amplitudes. If no difference is noticeable, leave midway and ignore, though the correct setting will be obvious on an oscilloscope if a triangle waveform from a signal generator is used. Finally again remove the cassette, switch off S7, set VR5 max, VR4 and S5 set for maximum frequency. Increase amplifienvolume until carrier breakthrough is audible. Switching on S3 the noise gate should come into operation and close down the output, eliminating all but the very smallest trace of crosstalk within IC4. Experiment with all the controls and switches with various types of speech and music inputs until familiar with the operation of the unit. If making minute adjustments to VR2 and VR3 allow the unit to be switched on first for a few minutes in case of a slight temperature sensitivity. although this was not apparent in the author's model.

The basic functions of a ring modulator have been covered


Photographs illustrating the internal and external assembly of the complete unit

in the introduction. The use of the unit is otherwise subject only to the imagination of the user. It will soon become familiar knowledge which settings are best for which type of input, whether for trains or tremolo, musical effects, or for modifying speech for robot and Dalek type vocalisations. $\star$

## TERMS OF BUSINESS

－All prices exclude V A．T．and carriage．Please add carriage to order tota before adding V．A．T
－Carriage charges extra on all orders as follows： Components
Books／Data／Software Printers，Monitors，Disc drives，etc
－Strictly cash with order or credit card（Access or VIS only．
＊Delivery is normally from stock but please allow up to 28 days．
＊Any query or complaint regarding an order should be made in writing within 7 days of receipt of the order．No telephone queries will be entertained．

All iterns carry full manufacturers warranty
A V．A．T．receipt will be supplied with all orders．
－Prices quoted are correct at the time of going to press but we reserve the right to effect changes without prior notice．
Goods incorrectly ordered cannot be accepted for replacernent without our prior agreement．Due to high processing costs，a minimum of $15 \%$ handling charge may be levied on any returns or cancelled orders．

We will issue a full immediate refund，if requested， －
$\begin{array}{ll}6502 \mathrm{~A} & 4.95 \\ 6520 & 2.25\end{array}$
$]^{75173 \mathrm{~N}}$ ${ }^{715174}$ ${ }^{7} 51882$ ${ }_{75188}^{75183}$

# Hi－Tech 

HI－TECH COMPONENTS，

6520A 6522
6522 A $6522 A$

6532 | 6532 | 5.45 | $8253-5$ | 7.50 | $2732-350 \mathrm{~ns}$ |
| :--- | ---: | :--- | :--- | :--- |
| 6532 A | 5.95 | 8259 A | 7.00 | $2732-450 \mathrm{~ns}$ |

$\begin{array}{lr}6551 & 5.95 \\ & 5.95\end{array}$

## 6800 FAMILY

 68006802 6802
6803 C

6809 F \begin{tabular}{lr|rr|}
\hline $6809 E$ \& 8.40 \& $82 C 82$ \& 6.26 <br>
68.25 \& $824 A$ \& 8.94

 

6809 E \& 6.25 \& $82 C 88$ \& 8.94 \& $4116-200 \mathrm{~ns}$ <br>
6809 P \& $\mathbf{4 . 2 5}$ \& 416 \& \&
\end{tabular} 6809P

6810
6821
6821
6840
6845
6850


\section*{| 68809 | 9.95 | $280 A S 10.17 .95$ |  |
| :--- | :--- | :--- | :--- |
| 68810 | 1.88 | Z8OASIO．27．95 MEMORIES－RAM |  |}


| 688821 | 3.70 | Z80AS10． 27.95 | MEMORIES－RAM |  |
| :--- | :--- | :--- | :--- | :--- |
| 688440 | 6.60 | Z8BCPU | 5.95 | \＃ZERO POWER ZKXB |
| Z80BCTC | 5.95 | ZMOS |  |  |

68850

## 

## 6805 FAMHY

MC1468052P
MC146818P
MC146823P
MC68705KT3
MC68705K T3
MC $68705 R 31$
MC68705U3L
68000 FAN
MC $68000 G 10$
MC 68000.8
MC 68000 L 8
MC6800818
MC6823018
MC6845118
MC 68901P
TI 9900 FAMILY
TMS9901．95
TMS9902
TMS9918
TMS9927
TMS9927
TMS9928
TM59928
TMS9929
TMS9937
TMS9980
TMS9980
TMS9995




ぶべッ

| .95 |
| :--- |
| .75 | ${ }^{751599}$

 $754538 P$
$754548 P$
75468 N
75491 N 5491N AY－3－1015
AY－ $3-1270$ AY－3－8910
AY－5－3600 ${ }^{\text {DP8304 }}$ 0 LF398 LM301AN
LM308AN LM308N
LM311N LM317MT
LM317T LM319N LM324N
LM337T

$\qquad$

75 TL062－CP
TL066－CP
TL071－CP TL071－CP
TL072．CP
TL074．CN TL081－CP
8.90
10.66 $\begin{array}{ll}\text { HCl．55564．5 } & \\ \text {（Speech Synthesis）} \\ \text { AM79100 } & \\ \text { AM790 } & 34 .\end{array}$
AM7911DC 25LS2518PC 25LS2538PC
25LS2539PC
266531 PC $26 L 532$ 6402
751078 75110 AN
75150 P
75154 N 75159
75160 AN 75160 AN
75161 AN 75161 AN
75162 AN


SOLDERING is one area of electronics where many constructors seem to give little thought to either the equipment they use or the methods they adopt. This often causes damage to components and p.c.b. tracks and can result in many unnecessary hours of fault finding once the project has been assembled. These problems can be easily overcome by using a suitable soldering iron and following the few simple rules set out below.
The basic requirement of a soldered joint is to provide an electrically conductive path with a secondary consideration being the mechanical strength of the joint.
Before soldering it is essential that the surfaces to be soldered are clean and free from any dirt or grease. If solder is to be applied to any heat-sensitive components then a suitably sized heat-shunt should be used. These are normally in the form of specially designed tweezers, although many people prefer to use a small pair of pliers.

The most important part of the soldering iron is the 'tip' or 'bit'. This is the part of the iron which stores the heat ready for passing onto the joint. The size of the bit and the power rating of the iron will determine the amount of heat that is supplied by the iron to the work and also the rate at which the work can be carried out.
the entire joint. The solder should be removed first and then the iron. After the joint has cooled it should then be checked. Remember, to ensure a good joint, never blow or move a soldered joint before it has set!

A good joint should have a smooth, shiny appearance with no pitting, spikey or dull parts; and should of course be mechanically sound.

It doesn't take long to realise that when you are soldering you always seem to need an extra pair of hands to hold either the work or the component. If you are working on a p.c.b. then it is best to use a p.c.b. holder which will allow you easy access to both sides of the board and hold it steady whilst you are saldering.

Before you start soldering ensure that all the components you require are laid out in the order in which they are to be soldered. An ideal method of storing components prior to soldering is to use a polystyrene block; note though that MOS components should be kept in their packages until you are ready to solder them into place.

You should also ensure you have plenty of light over your workplace and that you have a comfortable sitting position.

Always replace your iron in its holder when you have finished with it. Never leave an iron on your workbench.


If the temperature of the bit is incorrect it can lead to a number of problems. Too low a temperature can result in the insufficient activation of the flux, poor solder flow and therefore dry joints. If a joint is dry it will exhibit a high resistance which can be very difficult to trace. It should be noted that the majority of dry joints will only become dry after a period of time.

When the temperature setting is too high the flux will be vaporised, causing the solder to oxidise, resulting in poor quality joints and perhaps damage to any heat-sensitive components.

Soldering iron bits are usually made from copper to provide the maximum heat transfer at low cost. Because the copper soon becomes eroded many bits are coated with either nickel or chromium on their non-soldering surfaces to prevent oxidising whilst the tip can be coated with iron to increase its operating life.

The surface of the bit should be clean and free from any pits, burrs or indentations. To enable the smooth flow of heat from the surface of the bit to the joint a small amount of solder is placed on the bit prior to soldering each joint, this is called 'tinning'. After each soldering operation the bit should be cleaned with either a damp cloth or sponge and re-tinned if another joint is to be made.

When making a soldered joint the pre-tinned bit of the iron should be held against the joint and the flux-cored solder applied; the solder should flow immediately covering

When choosing a soldering iron for your particular needs you must take into account all the applications for which it will be used. Soldering irons come in a variety of wattages, bit sizes and operating voltages. Some irons come as part of a soldering station and include a holder, sponge tray and a temperature adjustment to set the operating temperature of the bit.

In this buyer's guide we have tried to show the wide range of soldering irons currently available and have also included some of the soldering aids that can be used.

The prices shown include VAT but not post and packing except where stated.

## PLEASE NOTE

We would like to point out that readers buying from the guide are not protected by the Mail Order Protection Scheme unless the company concerned have advertised the product in a display advertisement in this issue.

The guide is designed as an aid to the purchaser and makes no recommendations.

# SOLDSRNG INSTRUMENT BUYER'S GUIDE 



The Oryx M3 iron is rated at 17 watts and has a normal operating temperature of 380 degrees centigrade. It is supplied complete with a replaceable push-on tip and storage hook. The M3 is available in $12 \mathrm{~V}, 110 \mathrm{~V}$ and $210 / 240 \mathrm{~V}$ versions with the 12 V model fitted with a cigar-lighter plug for car repair work. Priced at $£ 6.85$ it is available from Greenwood Electronics, Portman Road, Reading, Berks f0734595844.

The Litesold EC50 has an electronic temperature control which can be easily adjusted via an aperture in the handle. The temperature can be adjusted between 280 and 400 degrees centigrade. The bits are iron coated copper for long life and are retained by circlips to prevent sticking. The 50 watt iron is priced at $£ 28.00$ and is available from Light Soldering Developments Limited, Spencer Place, 97/99 Gloucester Road, Croydon 801-689 0574.


The Welter WM12D weighs just 7 ounces and is the smallest iron in their range. It is rated at 12 watts and develops a tip temperature of 425 degrees centigrade. There is a choice of three tips which can be easily interchanged. The WM12D which is priced at $£ 6.58$ is also available in kit form together with two spare tips, a pair of tweezers and a supply of resin cored solder. Cooper Tools Limited, Sedling Road Wear, Washington, Tyne \& Wear 60914166062.


The new portable butane powered soldering iron from Oryx is only slightly bigger than a felt-tip pen. There is no flame during use, the chemical energy of the gas is converted into heat by means of a catalytic converter in the bit. The iron delivers the equivalent of 60 watts with the tip temperature being variable between 250 and 450 degrees centigrade. The iron will run for 60 minutes on its gas supply. The Oryx Portasol is available from Greenwood Electronics and is priced at $£ 17.25$. 0734595844.

self-contained Oryx HSR1 requires no external air self-cy lines. It consists of five units: the TC84 temor vacuum supplly iron, the SR84 vacuum solder removin. The perature convo magnetic base safety stan can be switched from p.s.u. and two with a fume extractor whe workstation is priced at TC84 is 10 the SR84 as required. TO 0734595844
the TC84 to the SRood Electronics 0073459584

## SOLDSRING INSTRUMENT BUYER'S GUIDE

The Litesold ETC-4/FXc soldering station has a built in fume extractor (see inset), and fully variable electronic temperature control with digital readout. The 40 watt iron uses a thermocouple sensor, is "spike" and "r.f.f.1" free and also free of static and leakage. Price $\mathbf{E 2 9 9}+\mathrm{p}$ \& p from Light Soldering Developments Ltd., Spencer Place, 97/99 Gloucester Rd., Croydon. Surrey CRO 2DN.
 P.c.b. Track Ropows and flatpack, flux, cleaner, spatuls, elbow is also the setting tools. Includes and knives. An econy $£ 72$. OK Industries sticks, tweezers, clamps $£ 145 \cdot 90$. Econonts SO5 4AA. Hand available. Price, Dutton Lane, Eastleigh.
UK Lid. UK
619841.

SA-6 desolderi
combining heating iron is a powerful lightweight tool 230V. Price f1ged for cleaning suction chamber V. Price E19.19 from OK Industrieslo 115 or

The TCSU-D is a 60-wat soldering station with an electronic temperature control ange of ambient to 495 deg. C. The iron itself works on 24 V stepped down from mains to safety and isolation. Price E80.81 from Antex (Electronics) Litex Mayflower House, Plymouth Devon. 0752667377.

\title{

Ol

ool
ber
or
}


SA-8 series industrial grade soldering irons, available in 371 deg. C (SA-8-15) and 427 deg. C (SA-8-20), heat-up in two minutes using ceramic elements. They may be used with static-sensitive components without earthing. Tips are corrosion resistant. Available in 115 and 230 V versions. Price £21.50, from OK Industries.

Ia 101 electronic controlled soldering iron is production orienAdcola tated. Featur protection, l.e.d. temp. io prevent magnetic effec Adcola $(120-420$ deg. C) Bitinage) from Adcola Products $1+$ carriage
c78.40 1+ E6 carriage) from Ad. 61-622 0291
House, Gauden R

# SOLDSRNG INSTRUMENT BUYER'S GUIDE 

The Weller SI-25 25 watt iron, alang with the Weller SI-15, SI-40 and WH1/2 hobby kits are claimed to be the only soldering related products on the market entitled to display the BEAB seal of approval for safety. Price E 7.80 from Coopers Tools Ltd., Sedling Rd. Wear, Washington, Tyne \& Wear NE38 9BZ. f 0914166062

 desolder braid.


Oryx ISO-TIP series irons are cordless (rechargeable) for complete mains isolation. The iron automatically recharges itself when placed in its base, and has a built in spotlight. The 50 watt iron can solder 100 joints between charges. Tip temperature is $370^{\circ} \mathrm{C}$. Also takes a drill attachment. Price E41 from Greonwood Electronics, Portman Road Reading. Berks RG3 1NE. 0734595844

Solon-Electrex $\mathbf{3 2 5}$ is a 25 watt mains 'instant' heat soldering iron of maximum temperature 380 deg . C. It uses C25 tip or TP30. Price £10.79 from GEC-Henley.


| ST4 Stand | $240,220,75,700,50,24$ | Range 65 L ra420 | Accuracy $2 \%$ |
| :--- | :--- | :--- | :--- |



## GLORIOUS PAST-BRIGHT FUTURE

A rather sad note has been struck. The Carnegie Institute of Washington, which operates the observatory on Mount Wilson in California, has announced that during 1985 the great 100 -inch Hooker reflector there will be "mothballed", and support for the two famous solar tower telescopes, the 150 -foot and the 60 -foot, will be gradually withdrawn. The other large instrument, the 60 -inch reflector, will remain in service, but, as one commentator has said, the decision "sounds the deathknell" for Mount Wilson as a leading astronomical institution.

The trouble is due to the continued spread of the city of Los Angeles, which has become not only larger, but also brighter and more polluted. From the city, the summit of Mount Wilson can be clearly seen, and from the top of the mountain the sky is not nearly so dark as it was in 1917, when the 100 -inch reflector came into operation. This means that many branches of research can no longer be carried out there.

The 100 -inch has a glorious history. When it was completed, it was not only the world's largest telescope, but it was in a class of its own, and it remained so until 1948, when it was surpassed by the Palomar 200-inch.

Using the Mount Wilson reflector in the 1920s, Edwin Hubble proved that the objects then called "spiral nebulae" were in fact independent galaxies, far beyond the limits of
our own Milky Way system. Hubble achieved this by studying the behaviour of certain variable stars inside the spirals. These variables, known as Cepheids, "give away" their real luminosities-and hence their distances-by the way in which they brighten and fade. In Hubble's day, only the 100 -inch was powerful enough to be used in studying them.

The telescope itself is as good today as it ever was, but by modern standards it is oldfashioned, and there is no thought of moving it to a better site. So its story may be coming to a close, even though it is still capable of carrying out really valuable research. At any rate, its place in history is assured, and mercifully there has been no suggestion as yet that it will be dismantled, so that hope remains.

Two major telescopes are being planned elsewhere: one in Hiroshima in Japan, and the other to be set up at the observatory on La Palma, in the Canary Islands, where the I.N.T. or Isaac Newton Telescope is now in full operation. (While I was there, a few months ago, we used the I.N.T. to obtain a colour video picture of the Ring Nebula in Lyra-the first time that this had been achieved for an object beyond the Solar System.) The projected new telescope is a 100 inch reflector, and will be a joint venture by Norway, Sweden, Denmark and Finland. The optics will be made at Turku in Finland.

Halley's Comet is now under regular observation, and continues to brighten slowly as it draws in toward the Sun, but it will not come within the range of average-sized telescopes until the middle of next year. Unfortunately, this is a poor return, and the comet will be not nearly so conspicuous as it was in 1910 or in 1835, though with luck it will be easily visible with the naked eye towards the end of 1985.

## THE SUN

On 22-23 November there will be a total eclipse of the Sun. The path of totality begins in the Molucca Islands and then crosses Néw Guinea, passing north of New Zealand and ending in the South Pacific. The maximum length of totality is exactly two minutes.

The partial phase will be seen from the Philippines, parts of Australia and New Zealand, and also from part of Antarctica, but of course the eclipse will be invisible from Europe, as it occurs during European night.

The next total eclipse to be seen from anywhere in Britain will be that of 11 August 1999, when the track of totality will cross Cornwall.

Despite Skylab and other space-stations, total solar eclipses are still of tremendous importance, because it is only when the Sun is completely covered by the Moon that groundbased observers can see the corona in its full glory. At this month's eclipse the corona will be of the "minimum" type, because the Sun is now approaching the lowest point of its 11 year cycle of activity. There have already been several spotless periods this year, when the solar disc has been entirely blank.

The solar cycle is not perfectly regular, and the usually quoted figure of 11 years between successive maxima is only an average. Moreover, it may well be that we know less about the Sun than we used to believe. Even the cycle may not be permanent; there is excellent evidence that between 1645 and 1715 there were almost no sunspots at all-a period now generally known as the Maunder Minimum, since attention was first drawn to it by the British astronomer E. W. Maunder (and, independently, by Spörer in Germany).

## SPACE MINE

Very important studies are being carried out from what is undoubtedly one of the strangest observatories in the world. It is situated a mile below ground, at Homestake Mine in South Dakota. This is the country of the gunslingers; little more than a century ago it was the home of colourful characters such as Calamity Jane, Wild Bill Hickok and "Doc" Holliday.

It is also a gold-mining area. Today the gunslingers have gone, but the gold is still there, and Homestake Mine is the largest in the whole of the United States. The solar observatory has been set up in a special chamber, or rather pair of chambers, hollowed-out specially for the purpose.

The Sun is radiating by nuclear transformations taking place near its core. Basically, hydrogen nuclei are combining to form nuclei of helium, with release of energy and loss of mass. (The mass-loss amounts to $4,000,000$ tons per second, though by solar standards this is not very much, and there is no reason to suppose that the Sun will change dramatically

## THE SKY THIS MONTH

This is not a particularly good month from the viewpoint of planetary enthusiasts. Mercury, Venus, Mars and Jupiter are all technically evening objects, but Mercury is wall south of the celestial equator and is badly placed from Britain, even when at its greatest eastern alongation on 25 November.

Mars and Jupiter are also in the southern hemisphere of the sky, and set not long after the Sun; moreover Mars is now so far away that its magnitude has faded to 0.8, about the same as that of Aldebaran, and even large telescopes will show little upon its disc. Saturn is in conjunction with the Sun on November 11, and is therefore out of view altogether.

It may be worth noting that Ceres, the largest and
first-discovered of the minor planets or asteroids, comes to opposition on November 10. It is in Taurus, near the stars $X i$ and $O$ micron Tauri, but its magnitude is only 6.9, so that it is too faint to be seen with the naked eye. Binocalars will show it, though of course it looks exactly like a star. Its diameter is rather over 620 miles, and it is much the most massive member of the asteroid swarm.

Plans for asteroid probes are now being made, and should be put into practice by the mid-1990s, but it seems likely that the first target will be not Ceres, but Vesta-the brightest member of the group-which is smaller than Ceres, but considerably closer-in to the Sun.
for at least 5,000 million years in the future.) Theorists also calculate that there should be the emission of neutrinos, which are particles with no electrical charge and virtually no mass-so that they are extremely hard to detect, since they can pass through the Sun and also through the Earth without being checked.
The only way to catch them is by making them interact with atoms of chlorine. If a neutrino hits a chlorine atom, the result will be an atom of Argon-37, which is radioactive and is therefore comparatively easy to track down.

## THINK TANK

In Homestake Mine, Dr. Ray Davies and his colleagues have set up a large tank containing 100,000 gallons of perchloroethylene, which contains a great deal of chlorine and is nothing more nor less than cleaning fluid! The procedure is to leave the tank for a period of around eight weeks, and then carry out tests
to see how many atoms of Argon- 37 have been produced.

Since there will not be more than about a dozen of them, and the whole tank contains about a thousand million million million atoms of various kinds, the tests are far from straightforward. But for the radioactive qualities of Argon-37, there would be no hope at all.

Why "go underground"? The answer is simple. Cosmic rays from space will affect the chlorine in exactly the same way as neutrinos. But cosmic rays cannot penetrate a mile of solid rock-at least, not easily; a few can get through, but these can be allowed for. This is why Homestake is so suitable for this particular experiment.
The solar observatory has now been in action ever since the 1960s, and the results have been startling. Apparently the Sun is sending out only about a quarter as many neutrinos as in theory it ought to do. Unless there is something wrong with the experiment, which
seems unlikely, or eise there is a defect in our theories-or even the possibility that at the present epoch the Sun is behaving abnormally.

Neutrino emission is very sensitive to temperature. It has been calculated that the temperature at the core of the Sun is about $15,500,000$ degrees Centigrade. If we reduce this by a million degrees, the neutrino results fall neatly into place, but such a fall in calculated temperature would raise other theoretical problems. Is it possible that neutrinos are more complicated than we think, so that they could break up or become modified during their $93,000,000$-mile journey from the Sun to the Earth?

As yet we do not know. The Homestake results seem reliable enough, and are confirmed by a similar experiment being carried out in the Soviet Union. So we must do some re-thinking, and it is not surprising that solar physicists are placing great importance on the behaviour of a tank of cleaning fluid deep in a South Dakota gold-mine.

## PRACTICAL ELECTRONICS PRINTED CIRCUIT BDARD SERVICE

Printed circuit boards for certain PE constructional projects are now available from the PE PCB Service, see list. They are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for overseas airmail. Remittances should be sent to: PE PCB Service, Practical Eloctronics Editorial Offices, Westover House, West Quay Road, Poole, Dorset BH15 1JG. Cheques should be crossed and made payable to IPC Magazines Ltd.
Please note that when ordering it is important to give project order code and the quantity. Please print name and address in Block Caps. Do not send any other correspondence with your order.
Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed here or in the November issue.

| PROJECT TITLE | Order Code | Cost |
| :---: | :---: | :---: |
| SEPT ' 81 |  |  |
| Horologicum | 109-01 | £3.16 |
| .. | 109-02 | £3.11 |
|  | 109-03 | £2.97 |
| Analogue Frequency Meter | 109-04 | £2.87 |
| Ignition System | 109-05 | £2.47 |
|  | 109-06 | £2.28 |
| APRIL ' 82 |  |  |
| Med. Resolution Equaliser (UK 101) | 204-01 | £ 1.73 |
| Enlarger Timer | 204-02 | $£ 4.02$ |
| AUG 82 |  |  |
| Automatic Photographer | 208-01 | ¢ 1.94 |
| Home Alarm | 208-02 | £3.21 |
| SEPT '82 |  |  |
| Waveform Digitiser | 209-01 | ¢8.24 |
| FEB ${ }^{\prime} 83$ |  |  |
| Radio Booster | 302-02 | £1.80 |
| MAR ' 83 |  |  |
| Into the Real World | 303-01 | £3.99 |
| Accessory PSU | 303-02 | £1.35 |
| $4 \frac{1}{2}$ Digit Frequency Meter | 303-03 | £3.69 |
| APRIL'83 |  |  |
| Phaser | 304-01 | £3.41 |
| JUNE '83 |  |  |
| Program Conditioner | 306-01 | £2.30 |


| PROJECT TITLE | Order Code | Cost |
| :---: | :---: | :---: |
| SEPT ' 83 |  |  |
| Guitar Active Tone Control | 309-01 | £2.27 |
| Ground Communication System | 309-02 | £2.13 |
|  | 309-03 | £2.31 |
| DEC '83 |  |  |
| Expanding the Vic 20 | 312-01 | $£ 5.18$ |
| MAR '84 |  |  |
| Spectrum Autosave | 403-01 | ¢1.83 |
| APRIL ' 84 |  |  |
| Microstepper | 404-01 | £10.74 |
| MAY ' 84 |  |  |
| Sustain Unit | 405-02 | £2.82 |
| Audio Signal Generator | 405-03 | £4.28 |
|  | 405-04 | £2.51 |
| JUNE 84 |  |  |
| Cross Hatch Generator | 406-01 | £3.52 |
| JULY'84 |  |  |
| Simple Logic Generator | 407-01 | £7.73 |
| EPROM Duplicator | 407-02 | £3.74 |
| Alarm System | 407-03 | £3.19 |
| Oscilloscope Calibrator | 407-04 | £4.23 |
| AUG '84 |  |  |
| Comm. 64 RS232C Interface | 408-01 | £3.02 |
| Field Measurement | 408-02 | £3.19 |
|  | 408-03 | £2.76 |
| Digital Dice | 408-04 | £4.23 |
| Simple Logic Analyser | 408-05 | £2.93 |
| Alarm System | 408-06 | £4.24 |
| ., | 408-07 | £3.14 |
| ${ }^{\prime \prime}$ | 408-08 | £3.23 |
| SEPT ' 84 |  |  |
| Parallel to Serial Converter | 409-01 | ¢2.92 |
| Through the Mains Controller | 409-02 | ¢2.88 |
|  | 409-03 | $£ 2.71$ |
| OCT '84 |  |  |
| Logic Probe | 410-01 | £ 1.90 |
| NOV ' 84 | 411-01 | f2.76 |
| Computer DFM Adaptor '84 |  |  |
| Ni-Cad Charger | 412-01 | £2.40 |

# mexel capmum mix вanteries <br> <br> MICHAEL TOOLEY ba <br> <br> MICHAEL TOOLEY ba DAVID WHITFIELD DAVID WHITFIELD <br> <br> MA MSc CEng MIEE 

 <br> <br> MA MSc CEng MIEE}

UNLIKE their lead acid counterparts, nickel cadmium cells require a constant current rather than a constant voltage charging source. Furthermore, comparable sintered and mass plate cells have different charge rate requirements and this must also be taken into account.

The maximum indefinite charge rate for a sintered cell is usually taken as $C / 8$, i.e. for a 1 Ah battery the maximum indefinite charging current is 125 mA . Cells may, however, be charged at higher rates provided care is taken to avoid overcharging which can permanently damage the cells. The maximum charge rate for a sintered cell is usually assumed to be 10C but, before attempting to 'fast-charge' a nickel cadmium cell of any variety, it is essential to ensure that the


PR22m

Fig. 1. Charge time versus charge rate for nickel cadmium cells
cell is initially fully discharged. Using the same 1 Ah battery. for example, a 2 C charge would be achieved by charging at 2 A for 30 minutes

The relationship between charge period and charge rate for nickel cadmium cells is illustrated in Fig. 1. To ensure a long cell life and a maximum number of charge/discharge cycles, charge rates in excess of $C$ should be avoided if at all possible. Mass plate cells cannot, by virture of their construction, be charged at the high rates associated with sintered cells. The maximum charge rate for such cells is usually $\mathrm{C} / 10$ for 14 hours whilst the maximum indefinite charging current is often no more than $\mathrm{C} / 100$. Hence, for a 110 mAh PP3 battery, the recommended charging current is 11 mA for a period of 14 hours. Furthermore, if this type of battery is to be left on-charge indefinitely, the charging current should not be allowed to exceed 1.1 mA . Table 1 shows the recommended charge rate for a number of popular nickel cadmium batteries.

| Battery type | Max. indefinite <br> charging current <br> (mA) |
| :---: | :---: |
| AAA | 20 |
| AA | 66 |
| C | 250 |
| D | 500 |
| PP3 | 1.1 |
| PP9 | 100 |

Table 1. Maximum indefinite charge rates for various nickel cadmium batteries

We shall now describe a simple automatic charger which provides a total of 24 different charge rate options.

## nicud CHARCER

The easiest method of obtaining a reliable constant current source involves nothing more than a d.c. supply, one transistor and just three other components. Fig. 2 shows a typical family of output (collector) characteristics for a transistor operated in common emitter mode. It should be noted that, for a fixed value of base current, the collector current remains substantially constant and is reasonably independent of the value of collector-emitter voltage. Hence, if the battery to be charged is connected as the load in the collector circuit, and the base voltage held constant, the battery will receive a reasonably constant current charge. A typical circuit is shown in Fig. 3. The base voltage is stabilised by means of the Zener diode, D, and the base current is determined by the value of emitter resistor, $\mathrm{R}_{\mathrm{E}}$. Since the collector current is equal to the base current multiplied by the value of common emitter current gain for the transistor concerned the charging current can be set by appropriate choice of $R_{E}$.


HOME PROJECT


Fig. 2. Typical output characteristics for a transistor connected in common emitter mode

Another simple constant current charging source is shown in Fig. 4. Here a conventional monolithic three-terminal regulator is connected in what, at first sight, may appear to be a strange arrangement. The normal regulator output is, in fact, developed across Rs and since this voltage remains substantially constant, the current flowing through it will also be constant. The output current is given by:-

$$
I_{0}=\frac{5}{R_{S}}+I \text { where } I \approx 5 \mathrm{~mA}
$$

The value of $R_{s}$ can be varied so that different charge rates can be catered for, as shown in Table 2.

With the two previous circuits, the charge rates may be easily selected by changing just one component. In practice, different charge rates can be obtained either by switching resistors or by incorporating a variable resistor into the circuit. There is, however, one problem; it is all too easy to connect the charger to a battery, switch 'on', and then forget it! Whilst this may be of little consequence when charge rates of $\mathrm{C} / 10$ are concerned, serious damage may be done if a fast charge rate is selected and thus, ideally, a charger should incorporate a facility which will discontinue the charge after a pre-determined time interval has elapsed. Hence, if separate controls for charging current and charging time are provided, a wide variety of charge rates can be accommodated to suit almost any type of cell which may be encountered. Furthermore, the user can rest assured that no harm will be done if the unit is left connected for an indefinite period!

## AN AUTOMATIC CHARGER

The complete circuit of the automatic charger is shown in Fig. 5, A conventional mains transformer, $T 1$, and bridge rectifier, REC1, provides an unregulated supply rail of approximately 17 V . A programmable timer, IC1, is used to provide accurate monostable timing periods which are derived from a timebase and eight-stage binary counter. The two fundamental timing components are C2 and R2 and only the last four divider outputs are employed. A miniature normallyopen push-button switch, S4, is used to initialise the timing sequence whilst a similar switch, S3, is used to re-set the timer, aborting the current timing period and discontinuing the charge.

The time period is selected by a rotary switch, S1, and the voltage at this point goes low for the duration of the timing period removing the bias from TR1 and switching the transistor 'off'. In this-condition, R5, D1 and D2 supply bias for the constant current source, TR2. At the end of the monostable period the base voltage of TR1 rises and TR 1 conducts. In this condition, D1 no longer achieves its Zener voltage and no base current is supplied to TR2. The output


Fig. 3. A simple charger using a transistor connected as a constant current source


Fig. 4. Simple charger using a monolithic threeterminal voltage regulator

| $\mathbf{R}_{\mathbf{S}}$ |  | Charge current <br> (ohm) |
| :---: | :---: | :---: |
| ( $\mathbf{W}$ ) $)$ |  |  |$|$| 820 | 0.5 |
| :---: | :---: |
| 470 | 0.5 |
| 330 | 0.5 |
| 220 | 0.5 |
| 82 | 0.5 |
| 56 | 15 |
| 22 | 2.5 |
| 10 | 4 |

Table 2. Relationship between $\mathbf{R}_{\mathrm{s}}$ and charge current for the circuit of Fig. 4
current, which is selected by means of rotary switch S2, thus falls to zero and remains in this state until another charging period is initialised by the user.

## CONSTRUCTION

The majority of the components for the automatic charger are mounted on a sirigle sided p.c.b. measuring approximately $53 \times 104 \mathrm{~mm}$, the design of which is shown in Fig. 6. The corresponding component layout is shown in Fig. 7. The recommended sequence for mounting components is: terminal pins, d.i.l. socket, resistors, diodes, transistor, bridge rectifier, and capacitors.

The underside of the completed p.c.b. should be carefully checked for solder bridges and dry joints whilst the component side should be examined paying particular attention to the placement and orientation of the polarised components. The remainder of the components, excluding the mains transformer, fusehoider, and mains connector, are all mounted on the aluminium front panel. The wiring of the front panel should follow the layout given in Fig. 8 and connec-

## COMPONENTS . . .

| Resistors |  |  |  |  |
| :---: | :--- | :--- | :--- | :---: |
| R1 | 47 k |  |  |  |
| R2 | 2 M 2 | $R 8, R 9$ | $5 \Omega 6$ (2 off) |  |
| R3 | 100 | $R 10$ | 10 |  |
| R4 | $10 k$ | $R 11$ | 15 |  |
| R5 | 1 k | $R 12$ | 1 |  |
| R6 | 56 | $R 13$ | $22 k$ |  |
| R7 | $2 \Omega 2$ | R14 | 1 k |  |

R1 to R5, R 13 and R14 are $\frac{1}{4} \mathrm{~W} 5 \%$ carbon R6 to R12 are $\frac{1}{2}$ W 10\% carbon

Capacitors

| C1 | $1000 \mu 16 \mathrm{~V}$ p.c. electrolytic |
| :--- | :--- |
| C2 | $220 \mu 16 \mathrm{~V}$ p.c. electrolytic |
| C3 | 100 n polyester |

Semiconductors

| D1 | BZY88 C4V7 Zener |
| :--- | :--- |
| D2 | Green 0.2 in l.e.d. |
| D3.D4 | IN4 148 (2 off) |
| D5 | Red 0.2 in I.e.d. |
| TR1 | BC108 |
| TR2 | TIP32A |
| IC1 | 2240 |
| REC1 | 50 V 1 A p.c. mounting bridge rectifier |

Miscellaneous
T1 6VA mains transformer with $2 \times 6 \mathrm{~V}$ or $1 \times 12 \mathrm{~V}$ secondary winding rated at 500 mA
16-pin d.i.t. socket TO220 heatsink (see text)
S1 3P 4W rotary switch (1 pole only used)
S2 2P6W rotary switch (1 pole only used)
S3 normally-open miniature push-button switch
S4 normally-open miniature push-button switch
S5 DPST mains switch
PCB Plastic case (West Hyde)
Push-on knobs (2 off) Terminal pins (20 off)
tions to the p.c.b. may be most conveniently made using short lengths of ribbon cable

Where less than six series connected cells for a battery of equivalent voltagel is to be charged at currents of 100 mA , or more, the series transistor, TR2. MUST be mounted on a heatsink. This should be a TO220 variety of $10.5^{\circ} \mathrm{CN}$. or better. The front panel should be labelled as shown in the photograph.

## INITIAL TESTS

When all wiring is complete, a final check should be made before inserting IC1 into the d.i.l. socket (taking care to observe the correct orientation). The mains supply should then be connected and the charger switched 'on'. The red I.e.d., D5, should immediately become illuminated whilst the green l.e.d., D2, should remain extinguished. At this point it is worth checking the positive supply rail voltage which appears at pin 16 of IC1. This should be $17 \mathrm{~V} \pm 1.5 \mathrm{~V}$. If this is not the case, connections to the mains switch, fuse, and transformer should be carefully checked.

The charge period switch, S 1 , should then be switched to give the shortest time ( 3.5 hours) whilst the charge current switch. S2, should be switched to the lowest current setting $(12.5 \mathrm{~mA})$. S 4 should now be momentarily pressed at which point the green l.e.d., D2, should become illuminated. Now momentarily depress S3 to reset the charger. As S3 is released, D2 should become extinguished. This set/reset procedure should be repeated a few times until the user is familiar with its operation. If no charge is apparent, readers


Fig. 5. Complete circuit diagram of the automatic charger


Fig. 6. P.c.b. design


Fig. 7. P.c.b. component layout


Fig. 8. Front panel wiring

| Test point | Voltage |  |
| :---: | :---: | :---: |
|  | Reset | Set |
| IC1 pin-16 | 17.0 | 17.0 |
| c | 17.0 | 17.0 |
| TR 1 \{ | 14.0 | 1.0 |
| e | 13.4 | 8.8 |
| ${ }^{\text {c }}$ | 0 | 16.6 |
| TR2 ${ }^{\text {b }}$ | 16.8 | 16.0 |
| e | 17.0 | 16.7 |
| Output (Sk2) | 0 | 16.6 |

Table 3. Test voltages
should refer to the test voltages provided in Table 3. If the supply voltage is correct but neither l.e.d. is illuminated, it is worth checking the polarity of D2 and D5.

Having confirmed that the set/reset switching is functional, the next stage is to check the charge time. Since it would be somewhat tedious to wait for even the shortest charge period (approx. 3.5 hours) it is more expedient to employ one of the unused shorter time periods available from the programmable timer, IC1. The shortest of these is available at pin 1 and readers should refer to the test circuit of Fig. 9a. The time period for a 'high' output should be measured using the following procedure:-

1. Connect the test circuit using either a voltmeter or digital timer. The voltmeter should be switched to the $20 \mathrm{~V}, 25 \mathrm{~V}$ or 30 V range whilst the timer should be adjusted to 'start' on a positive edge and 'stop' on a negative edge.
2. Depress S4. The voltage at pin-1 should be 'low' for several minutes and then it will go 'high'. At this point timing should commence (using a stopwatch or the digital timer).
3. After approximately 13 minutes the voltage should go 'low' again. At this point timing should stop.
The time period at pin-1 is $1 / 16$ of the nominal 3.5 hour period. However, due to component tolerances (particularly that associated with C2), the time period will seldom be exact. Where a precise time interval is desired, R2 may be


## PEzom

Fig. 9a. Arrangement for testing the charge time


Fig. 9b. Arrangement for testing the charge current


Fig. 10. Circuit modification for precise time period adjustment
replaced with a 2 M 2 pre-set resistor in series with a 1 M fixed resistor, as shown in Fig. 10. The pre-set resistor is then adjusted for a pin-1 high output time of approximately 790 seconds.

Finally, the charge current should be checked. This is accomplished using a typical battery pack consisting of four series connected AA cells and measuring the current delivered with the charger 'set'. The required circuit arrangement is shown in Fig. 9b. The charge current on each range of S2 should be measured and this should be within approximately $10 \%$ of that marked. If this is not the case, minor ad-

|  |  | Charge Time (hours) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3.5 | 7 | 14 | 28 |
|  | 12.5 | 30 | 60 | $\begin{gathered} 90 \\ (P P 3) \end{gathered}$ | $\begin{gathered} 180 \\ (\text { AAA }) \end{gathered}$ |
|  | 33 | 80 | $\begin{gathered} 160 \\ (A A A) \\ \hline \end{gathered}$ | 320 | 640 |
|  | 45 | $\begin{gathered} \hline 110 \\ \text { (PP3) } \end{gathered}$ | 220 | $\begin{aligned} & \hline 440 \\ & (\mathrm{AA}) \end{aligned}$ | 880 |
|  | 66 | $\begin{gathered} 160 \\ \text { (AAA) } \end{gathered}$ | 320 | 640 | $\begin{aligned} & \hline 1280 \\ & \text { (PPg) } \\ & \hline \end{aligned}$ |
|  | 100 | 250 | $\begin{aligned} & 500 \\ & (\mathrm{AA}) \end{aligned}$ | $\begin{aligned} & 1000 \\ & \text { (PP9) } \end{aligned}$ | $\begin{gathered} 2000 \\ \text { (C) } \end{gathered}$ |
|  | 250 | 612 | $\begin{aligned} & 1200 \\ & \text { (PP9) } \end{aligned}$ | $\begin{aligned} & 2400 \\ & \text { (C) } \end{aligned}$ | $\begin{gathered} 4800 \\ \text { (D) } \end{gathered}$ |

(Note: Battery capacity is shown in mAh)

Table 4. Recommended charge rates for the automatic charger
justment to the appropriate resistor (R7 to R11) may be made simply by connecting larger resistance values in parallel and trimming for the exact current desired.

This completes the initial tests and the automatic charger is now ready for use. Table 4 provides a guide as to the charge rate obtained with various combinations of S1 and S2. Recommended rates for charging various common types of nickel cadmium battery are also shown. Note that only cells of similar type should be charged at any time and they should ALWAYS be connected in series. Users should equip themselves with a range of battery holders to suit the cells currently in use. Such holders are readily available from most electronic component suppliers.

Finally, care should be taken to ensure correct polarity of cells connected to the charger. Failure to observe this precaution may result in damage to both the cells themselves and to the charger!

# Heathkit - ITS A PLEASURE TO BUILD 

Bring the enjoyment back into your hobby with a kit from Heathkit. The beautifully illustrated documentation and step-bystep instructions make building a Heathkit a relaxing, absorbing pleasure! Choose from their huge range of fascinating kits and self-instruction electronics and computing courses. The Heathkit range includes the ultimate in amateur radio kits, computerised weather stations, a highly sophisticated robot, a 16 -bit computer kit and a range of home (or classroom) learning courses. These state-of-the-art courses have easy-to-understand texts and illustrations, divided into sections so that you can progress at your own pace, whilst the hands-on experiments ensure longterm retention of the material covered.


You'll find Heathkits available for Amateur Radio Gear - Car Test Equipment - Kits For The Home - Self-Instruction Courses - Computer Kits - Test Instrument Kits • Kits For Weather Measurements.

All the mos: popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or for the full list of Heathkit products send 50 p for the Heathkit International Catalogue complete with a UK price list of all items.

All Heathkit products available in the UK from:

Maplin Electronic Supplies Ltd. P.O. Box 3, Rayleigh, Essex, SS6 8LR. Tel: (0702) 552911.<br>(For shop addresses see back cover.)



The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thank to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.


| Prices including P8P and VAT |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VA | Size | f | VA | Size | ¢ |
| 15 | 0 | 6.98 | 160 | 5 | 12.09 |
| 30 | 1 | 7.87 | 225 | 6 | 15.27 |
| 50 | 2 | 9.05 | 200 | 7 | 17.41 |
| 80 | 3 | 10.10 | 500 | 8 | 24.39 |
| 120 | 4 | 10.97 | 625 | 9 | 29.94 |

For 110 V primary insert " 0 " in place of " X " in type number.

Mail Order - Please make your crossed cheque or postal orders payable to ULP Elactronics Ltd. Trade - We wil open your credit sccount Trade - We wil open your credit sccount
immediately upon receipt of your first orde

Post to: ILP Electronics Ltd., Dept. 2 Graham Bell House, Roper Close, Canterbury, Kent. CT2 7EP Tel: (0227) 54778 Telex: 965780

ELECTRONICS

V.T.'s vews and opinions are entirely his own and not necessarily those of PE

HERE'S A QUESTION: just how many companies in the components business, do you think, started out as a display of valves in the side window of a butcher's shop? I know of only one. That's the firm of A. F. Bulgin-a household name in the industry for more than half a century.

The founder was one Arthur Bulgin whose father was a respected purveyor of highquality meats to the gentry (this was the grand title, or something similar, that graced his letterheads). And although he was probably disappointed that his son showed no inclination to follow the tradition of victualling the well-to-do, he gave the lad every encouragement in a venture which was, on the face of $i t$, somewhat dicey. So the side window was donated willingly, if, I suspect, with not a little trepidation. What the squire and other distinguished beef-champers thought about it is not recorded.

Arthur justified his father's confidence when he set up a business proper in April 1923. This was at a time when the British Broadcasting Company had just launched the first public radio service in the UK and the future was rich in golden opportunity.

## "'The first product was a light-emitting escutcheon'"

Long before he went in for manufacturing, Arthur traded as a distributor-he was totally dedicated to this method of marketing. His family claims-and who shall blame them-that he was one of the first to operate in this now firmly established branch of the component sector.

The first product to come out of Bulgin's modest stable was described as a lightemitting escutcheon. Or, to put it more simply, a signal window. It was set in the cabinet of a radio receiver and a quick gander through it told you if your valves were alive and well. A comforting glow meant you were in business. An inky blackness spelt trouble.

By 1948 -and we're having to skip a bit of history here-Bulgin had become a limited company employing 250 people and turning out what the Americans call panel hardware: passives, switches, connectors, fuses, fuseholders, signal lamps, clips and so on. And in spite of a considerable broadening of the range over the years, such "nuts and bolts" remain the firm's bread and butter.

Arthur's four brothers emulated their father's farsighted support of his meat-shy son and one-by-one they came into the business, leading it on to bigger and better things and consolidating the high reputation it continues to enjoy.

Today the family tide runs even more strongly. Ronnie Bulgin, son of the founder, is chairman and MD of what has become a group rather than a single company. His cousin Robert is his deputy. Ronnie's son Richard (25) bowler-hatted his way through the Stock Exchange for three years before joining the fold in 1980 and is now involved in selling and marketing with a new Bulgin venture-of which more anon. Robert's son Clifford (23) is equally active on the production side. And I'm told there is a reserve stock of other little Bulgins-too young yet to get in on the family act-watching out for their cues.
I met Ronnie and Robert the other day. Ronnie is shrewd and softly-spoken. Robert is a burly, jovial extrovert. That's understandable. Before joining the firm he was in advertising for a spell. It's the group's good fortune that he eventually decided to mend his ways. Between them, the cousins house a lot of ability and a treasury of enthusiasm.
"Let's tell you about our exciting new operation," said Ronnie. "Some months ago we consolidated Ambit International, Solent Component Supplies, Broxlea and Projex Distribution-which represent Bulgin's distribution and custom manufacturing activities-into a single company called Cirkit. It's the first stage of a major development programme.
"Cirkit, far from taking a 'me too' stance in the distributor ranks by stocking all and sundry, is going for the specialist route. It is building an inventory of essential popular components from the top manufacturers with an emphasis on exclusivity. Among the lines for which it is sole stockist are Alp's (the world's largest manufacturer of electromechanical devices) and Toko (tops in wound components). Additionally, we're appointed distributors in the South of England for Cooper Tools/Weller, brand leaders in soldering and desoldering equipment. And we're not stopping there. We plan to secure other important franchises, with the accent on high-volume components and high technology, in such key areas as telecoms, defence, control and computers."
Cirkit is also stepping up its operations in the home-user and hobbyist market, through both mail order and across-the-counter outlets. New kits coming on to the market include, in the 'expert' category, a 20 W , 144 MHz linear power amplifier for boosting the output of hand-held and transportable transceivers, bui also, in the 'enthusiast' bracket, a universal audio function generator with on-board mains PSU.

The aspiring 'student' class is not forgotten either. Kits in this area range from a universal temperature sensor which can be used as a frost warning, deep freeze alarm, greenhouse temperature alarm, etc., to a locomotive
sound generator with whistle-a boon and a blessing for the rabid thwarted railwayman who has turned his attic into a miniature Clapham Junction.

While Ronnie and Robert Bulgin keep a watchful eye on Cirkit as non-executive members of the board, they have mustered a whole new team to steer the company on its adventurous path. Spearheading the team is Chief Executive Christopher Sawyer, a born leader who has achieved a particularly successful track record with such giants as BMW, Smedleys and the Ross Group. Alongside him is Financial Director, Ronald McKellar CA, who like Sawyer is in his late 30's and has an equally impressive business background.

Chairman of Cirkit is Alistair McDonald, who brings not only a wealth of experience in top-level financial-type appointments, but also, I suggest, an odour of sanctity. He spent many years with the Church Commissioners, juggling, as investment secretary, with assets in excess of $£ 1,000$ million. Another stalwart is ex-sailor Ken Hollingsworth. He came into electronic component distribution in 1963 and has become rich in the knowledge of the game. Then there's Jonathan Burchell, who is master-minding the introduction of Cirkit's new range of kits. Richard Bulgin (Consumer Services) and Clifford Bulgin (Manufacturing Services) represent the third generation of the founding family.
"We have tried," said Ronnie Bulgin, "to bring a real breath of fresh air into the business of electronic component distribution. This is typified by the appointment of Alistair McDonald, who, in spite of coming into this sector for the first time, is generating enormous enthusiasm.
"When you think about it, this kind of consolidation of several distribution companies into one is plain commercial common sense. Promoting each of them individually, with their own advertising and catalogues, as well as premises, is not only hideously expensive, but inefficient."

There's one point the Bulgins underline in bold capitals: In spite of its expansion in the distribution area, it remains firmly in the business of manufacturing, with a main factory at Barking (Essex) and a satellite at Broxbourne (Herts). In fact, in the current year the ratio will be 40 per cent distribution to 60 per cent production, turning out components for internationally-known customers with products ranging, as Robert Bulgin said, from toasters to telecoms, robots to oil rigs.

With an eye, no doubt, on future manpower needs, Cirkit has put $£ 100,000$ into an electronics award scheme for young people at schools and colleges. They must make and design an electronic device with a viable application in everyday life-for business or leisure. Any design taken up will attract royalities and, what's more, the company will help with patenting.

Arthur Bulgin would, I'm sure, be delighted to see what that valve display, cheek-by-jowl with the lamb chops, has led to in the space of one man's lifetime. But would he, like me, have some doubts about that name Cirkit? It's certainly ingenious. But, because I've that sort of mind, I can't for the life of me resist adding 'and see'.

And I'm sure we shall.
SPECLAL OFFER! QURSAR £29.95
INCLIUDING VAT \& CASE PLUS £2.75 P and P

To: RT-VC, 21 B High St., Acton, London W3 6NG

In April 1982 PE, in conjunction with RT-VC, published the PE Quasar Stereo Cassette Deck design. The design provides some outstanding features, including variable recording bias and a gate noise reduction system. As a result of this successful design we are now pleased to be able to offer kits to PE readers at this exclusive price. The kits, including a wrap round simulated wood finish case, will be accompanied with a reprint of the PE articles which fully describe the unit and its construction.

The offer is for a limited period only and a coupon should be sent to the address shown. The specification of the made-up unit is given below:

## SPECIFICATION

Case size $285 \times 260 \times 90 \mathrm{~mm}$ approx.
Mechanism with automatic stop and tape counter with reset button.
Tape Speed: $4.76 \mathrm{~cm} / \mathrm{sec}$. $\left(1 \frac{\mathrm{in}}{\mathrm{h}} / \mathrm{sec}\right.$.).
Wow \& Flutter: Typically $0.1 \%$.
Drive Motor: 12 V d.c. with electrical governor.
Play Torque: $40-75 \mathrm{~g} / \mathrm{cm}$ (DYNAMIC).
Rewind \& Fast Forward Torque: $60-140 \mathrm{~g} / \mathrm{cm}$ (STATIC).
Rewind \& Forward Time: Less than 100 sec . for C60 tapes.
Blas/Erase Oscillator: Externally variable, frequency $90-100 \mathrm{kHz}$.
Output: (Adjustable) Up to 1 volt r.m.s.
Mic. Sensitivity: 1 mV © 47 k .
DIN Sensitivity: 30 mV @ 47 k .
Frequency Response; $30 \mathrm{~Hz}-12.5 \mathrm{kHz}(-3 \mathrm{~dB})$.
Signal to Noise Ratio.
Noise reduction OFF -50dB
Noise reduction H.F. -56 dB
Noise reduction FLAT -70 dB
Cross Talk: Typically -50 dB .

# SEMICONDULTOR CIRCUITS mumax mualine 

## DIGITAL NOISE SOURCE (MM5837N)

$\mathrm{A}^{\mathrm{T}}$T first sight it might seem a little odd that someone should produce a special i.c. to generate noise. After all, noise is something that we usually strive to get rid of in electronics! Indeed, there are very few areas of the business where noise doesn't regularly cause problems. Videg noise results in the familiar 'snow' on pictures, digital noise (especially when carried along power supply tracks) can cause spurious changes in logic states, corrupting data or even causing serious malfunction of equipment. Audio engineers face a continuous battle against noise in microphone amplifiers, record deck pickup cartridge pre-amps, and most of all in cassette and reel-to-reel tape recorders, where noise reduction systems such as Dolby or dbx are often used specifically to try to overcome limitations of the medium.
So why should anybody actualiy want to produce noise? One reason is connected with the sort of problems that have just been described. In order to test out designs of noise reduction equipment, and to test the ability of circuits to reject noise or remain unaffected by it, we need to have a reliable source of noise, probably at a relatively high level initially so that it can be reduced and controlled to produce exactly the effect that we require. Noise is, by definition, a random or semirandom type of signal, and the very unpredictability of it can prove useful in generating random numbers in digital systems, or random voltages in analogue systems. Many digital communication links are tested with digital noise sources to simulate a wide range of signal types. Analogue noise has applications in sound synthesis, forming the basis for many types of sound or sound effect. It's used in speech synthesis to model the hissing sounds made by the human mouth and vocal tract, and it's also used extensively in audio systems to allow the precise adjustment of tone controls or graphic equalisers when optimising the response of a sound system in any given room or building.


## PE 32M

MM 5837N
Fig. 1. Pinout and specification

## GENERATING NOISE

We've already considered the fact that noise is a random type of signal. It contains no steady frequency components at all which are discernible; in fact, a perfect broadband noise signal can be considered to simultaneously contain all possible frequencies from d.c. up to infinity, the net result of which is a wavepattern in which no repetitive waveforms or tones can be distinguished. This is the type of signal produced by natural phenomena within all normal semiconductor materials, albeit at an extremely low level. In very high gain amplifiers this noise is amplified along with the signal, resulting in unwanted background 'hiss'.

One technique for generating noise uses exactly this effect, and is shown in Fig. 2. TR1 is connected as a reverse biased diode with its collector open circuit. The tiny noise current generated by this is amplified, first by TR2 then by the op-amp IC1. This technique is simple, and usually works farly well, although different types of transistor used for TRI can give different types of noise, i.e. noise signals
with different amplitudes at different parts of the spectrum; a lack of low frequency components in the noise, an excess of mid-band components, or similar. A more consistent performance can be obtained by using a special noise generating Zener diode, such as the Z 5 J , with a suitable high gain amplifier configuration, although these tend to be quite expensive. There can also be problems with mains hum and interference, or instability, caused by the very high gains of the circuitry involved, so care must be taken with the design and construction of this type of system.

## A DIGITAL NOISE SOURCE

An alternative way of generating noise uses an 'artificial', rather than an amplified natural effect, and this is the basis for the i.c. featured this month, the MM5837N from National Semiconductor. It's a digital technique using a clocked shift register with multiple feedback paths. Fig. 3 shows the block diagram of the i.c. An internal high frequency clock oscillator is used to continuously clock a 17 bit shift register. The shift register acts as a 17 bit "first

| Characteristic | Notes | $\begin{array}{\|c\|} \hline \text { Minimum } \\ \text { Value } \end{array}$ | Typically | $\begin{array}{\|c\|} \hline \text { Maximum } \\ \text { Value } \\ \hline \end{array}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{d d}$ supply voltage <br> $\mathrm{V}_{\mathrm{gg}}$ supply voltage | $\begin{aligned} & \text { With respect to +ve supply } \\ & \text { pin, } v_{\text {ss }} \text { (pin 4). } \\ & \text { (absolute maxima) } \end{aligned}$ | $\begin{aligned} & V_{\mathrm{ss}}-25 \\ & \mathrm{~V}_{\mathrm{ss}}-33 \end{aligned}$ | $\begin{aligned} & v_{\mathrm{ss}}-14 \\ & v_{\mathrm{ss}}-27 \end{aligned}$ | $\begin{aligned} & v_{\mathrm{ss}}+0.3 \\ & v_{\mathrm{ss}}+0.3 \end{aligned}$ | v v |
| +ve supply $\mathrm{V}_{\mathrm{ss}}$ for normal operation | $\mathrm{V}_{\text {dd }}$ and $\mathrm{V}_{\mathrm{gg}}$ connected to OV | +8.9* | +14 | +25 | $\checkmark$ |
| Temperature range |  | 0 |  | $+70$ | ${ }^{\circ} \mathrm{C}$ |
| For all following spec's, $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{dd}}=-14 \mathrm{~V}$,$V_{g 9}=-27 \mathrm{~V}$ |  |  |  |  |  |
| Quiescent current. $V_{d d}$ (pin 1) Quiescent current, $V_{g g}($ pin 2) | No output load | 3 |  | 8 7 | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| Half power point |  | 24 |  | 56 | kHz |
| Cycle time |  | 1.1 |  | 2.4 | s |
| Output voltages: <br> LOGIC 1 <br> LOGIC 0 <br> LOGIC 0 | $\left(\begin{array}{l} \left(\begin{array}{l} \text { in } 3 \text { loaded with } 20 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{ss}} \\ \text { and } 20 \mathrm{k} \text { to } \mathrm{V}_{\text {dd }} \end{array}\right. \\ V_{\mathrm{gg}}=\mathrm{V}_{\text {dd }} \text { i.e. }-14 \mathrm{~V} \end{array}\right.$ | $\left\|\begin{array}{c} V_{s s}-1.5 \\ V_{d d} \\ V_{d d} \end{array}\right\|$ |  | $\left\|\begin{array}{c} v_{s s} \\ v_{d d}+1.5 \\ v_{d d}+3.5 \end{array}\right\|$ | v v v |

[^1]

Fig. 2. Analogue noise generator


Fig. 3. Block diagram
in first out' storage device. Any data bit present at its input when the clock is pulsed will emerge at the data output pin exactly 17 clock cycles later. In this respect, the action of the shift register can be likened to pushing coloured balls into a length of tubing one by one; they emerge at the other end, one by one, a fixed time later, in exactly the same order that they were pushed in. If the output of the register is connected back to its data input, whatever pattern of logic l's and 0 's is present within the register at that time will be 'rotated' continuously round the register without changing.

If we look at other points within the shift register, such as the 14th bit rather than the output (the 17th bit), we see the state that the input was at 14 clock cycles earlier, rather than 17 cycles earlier as would be the case when looking at the output. If the 14th and 17 th bits are combined together with some logic gating, such as an exclusive-OR gate, we can feed a rather oddly derived signal back to the data input of the shift register. The mathematics of the resultant effect are very complex, but the practical end result is an almost purely random digital signal, known as a 'pseudo-random' signal. In fact, it's not perfectly random; it does have a pattern which repeats, but only every 1.1 to 2.4 seconds, which only affects very low frequency applications of the noise source. Various different lengths of shift register, and various combinations of output bits in multiple feedback paths
could be used, but the arrangement employed by the MM5837N is quite satisfactory for most applications.

## OUTPUTS FROM THE I.C.

The i.c. is fabricated using PMOS technology, hence the unusual approach of calling the positive supply $\mathrm{V}_{\mathrm{ss}}$, and the negative supply $\mathrm{V}_{\mathrm{dd}}$. A third, optional supply $\mathrm{V}_{\mathrm{gg}}$ can be biased somewhat more negatively than $V_{d d}$ if required, which will slightly improve the output drive voltage available from the MOSFET output buffer stage connected to pin 3. The manufacturer's specifications are based on using the i.c. in a positive earth arrangement, with 0 V connected to pin 4, -14 V connected to pin 1 , and -27 V connected to pin 2. This would cause considerable headaches in most potential applications, so it is quite acceptable to simply connect pin 4 to the positive supply rail ( +8.9 to +25 V ) and connect both pins 1 and 2 to 0 V . This will give an acceptable output voltage swing for most purposes. Note that the lower voltage limit given in the specification, Fig. 1, is derived from experimentation on the prototype applications circuit, not by the i.c. manufacturers, who don't give a lower limit figure. As the voltage drops to around this figure, the noise spectrum becomes somewhat irregular, and below this voltage fixed frequency tones start to become discernible within the noise.

The clock oscillator is completely selfcontained, so no external timing components
are needed. This is a high frequency oscillator, and it totally defines the maximum high frequency limit of the output noise spectrum. The 'half power' (i.e. the -3 dB ) point is specified as between 24 and 56 kHz , inferring that the clock frequency must be around 100 kHz or more.

## NOISE COLOUR

The spectral content of a noise signal is referred to as its colour. There are actually many colours of noise: red, blue, etc., but the two types most commonly used are white and pink.
White noise is characterised by having equal energy per constant bandwidth in the spectrum. For example, the energy content in the region between 1 kHz and 2 kHz will be the same as that between 2 kHz and 3 kHz , because in each case the bandwidth is 1 kHz . The energy content will rise by 3 dB per octave, however, with an octave being defined as a doubling of frequency, so the energy contained in the region 2 kHz to 4 kHz will be 3 dB higher than that in the region 1 kHz to 2 kHz . The converse is true for pink noise, which has an squal energy level per octave, i.e. a 3 dB loss in amplitude per constant bandwidth. For example, the energy content in the region 2 kHz to 4 kHz will be 3 dB LOWER than that in the region 1 kHz to 2 kHz . Put very simply, white noise is a very hissy sound with high frequency content, whereas pink noise is a duller 'wooshing' low frequency content sound.

For audio use, especially in the setting up of graphic equalisers and sound systems, the use of pink noise is widespread. Graphic equalisers are usually calibrated in octaves, with each control cutting or boosting the audio signal in a narrow octave wide, or even one third of an octave wide band. Using pink noise ensures that the mean signal amplitude will be the same in each band of the equaliser, allowing the spectral response of the system to be tailored precisely.

## CONVERTING WHITE NOISE TO PINK

The MM5837N produces only white noise, so to obtain a pink noise signal we must include filtering to roll off the amplitude at the rate of 3 dB per octave. Unfortunately, even a simple resistor/capacitor network has a 6 dB


Fig. 4. Simple pink noise generator
per octave slope, and most active filters are designed for 12,18 , or more dB's per octave. The easy solution is to cascade several resistor/capacitor networks together, each set to different turnover frequencies in such a way that they combine to produce an overall slope of only 3 dB per octave. National Semiconductor's recommended network to do this for the MM5837N is shown in Fig. 4. Note that the output of this circuit has a fairly small amplitude for the actual noise signal (only about IV peak-to-peak) but this rides on a d.c. level
of just over half the supply rail voltage, and as a result will normally need a series decoupling capacitor prior to feeding into any other circuitry.

## APPLICATIONS

The i.c. can be used either as a purely digital noise source, or with suitable filtering or amplification as an analogue noise source. Consider using the i.c. output to feed into a CMOS serial in/parallel out register's data input, then clock that register with a regular
slow clock pulse. The output from the register will be a pseudo-random digital number. If fed into a digital to analogue converter, this would produce a regularly changing random analogue voltage, ideal for use in experimental sound or music synthesis. Other potential uses for a noise generator have already been discussed, but perhaps the most obvious is the basis for this month's applications project.

The MM5837N can be obtained from Alpha Electronics, 66 Wilbury Way, Hitchin, Herts, SG4 0TT.

## AUDID NOISE GENERATOR

T- HE circuit diagram for a useful audio noise generator is shown in Fig. 5. It can produce either white or pink noise, and has a variable level control to adjust output amplitude. The output is electronically balanced, making it ideal for feeding into balanced inputs to audio equipment, although it can equally well be used with unbalanced systems.

One of the attractions of the MM5837N is that it is very compact, replacing several larger i.c.s with an 8 -pin d.i.l. package. The circuit, and its Veroboard layout, have been designed to take advantage of the small size of the device, and the result is a very small assembly, ideal for building into a hand-held case. R1, R4, R5, R6, R7, R8, C2, C3, C4, and C5 form the passive network which derives pink noise from the i.c. output. The more difficult to obtain values in Fig. 4 have been replaced by different quantities of other values of component to make it easier to build with full accuracy. The pink noise is amplified up to a reasonably high level by IC2a, then fed to the selector switch S1. The white noise feed
to S1 comes from the output of IC1, decoupled by Cl , attenuated and biased to 0 V by R3, and with a high frequency roll-off provided by R2 and C7 to help reduce high frequency components in the waveform caused by the sharp edges of the digital output of IC1.

IC2d buffers the output of the level control VRI, and feeds into the two halves of the balanced output, IC2b and IC2c. These are connected to give EXACTLY the same gain, one with signal inversion, and the other without. The two outputs are thus symmetrical, i.e. mirror images, about 0 volts. This


Fig. 5. The Audio Noise Generator


Fig. 6. Veroboard layout
can directly drive into balanced inputs of audio equipment, while for conventional unbalanced systems, either output, positive or negative, can be used, with the common 0 V or ground connected as the return. C16 and C17 roll off the response of the amplifiers at high frequencies to keep them stable, and R18
helps to match the response of IC2c as closely as possible to that of IC2b. Ideally, the values of R16 and R17 should be within $0.1 \%$ of each other, although the actual value itself is not as critical. Practically, $1 \%$ is adequate for most systems, and even $5 \%$ resistors can be used if non-critical uses are anticipated.

## BIAS POINT

Components R9, R10, and C6 provide a half-rail bias point for the op-amps, C12 and C13 decouple the supply, C14 and C15 decouple the outputs to block d.c. from the opamps, and R19 and R20 bias the outputs to 0 V . The output impedance is very low indeed, so if a 600 ohm output impedance is required, then a pair of 300 ohm resistors, again matched to within $0.1 \%$ or $1 \%$ of each other, should be added in series with the +ve and -ve outputs. The relative amplitudes of pink and white noise can be adjusted by varying the gain of IC 2a (change R12 or RI3) or the attenuation of the white noise source (change R3), although care must be taken to avoid clipping of the waveform, which could be checked for on an oscilloscope. Many quad op-amp packages could be used for IC2, but some do not work well on low supply voltages in the voltage follower mode. The MC3403P does work well under these conditions, although if supplies of 18 V or more (or $+/-$ 9 V ) are used the TL074 offers better high frequency performance, and is to be preferred.

The noise generator can be used for testing noise rejection or reduction systems, for setting up graphic equalisers or room equalisers, or even for generating special effects. Its compactness is largely due to the diminutive MM5837N, and shows a typical use for this digital noise source i.c.

# MASHIR <br> Blechonics-Microprocessors-Now! The PRACHICAL Way! 

- Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips'.
- Carry out fult programme of experimental work on electronic \& computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagrams.
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/ computer/industrial equipment.

 ing pre-recorded cassettes and records. The Chorus effect improves the acoustic depth whilst the Flanger is similar to reverberation and phasing only with greater resonance.


PRACTICAL

ROEOTIOS-MIDROS ELEETRONISE-INTERFACINE JANUARY 1985 ISSUE ON SALE FRIDAY, DECEMBER 7

## ELBAR SALI

## All products new with money back guarantees

## In Car Equipment:

7 Stage Graphic Equaliser ............ $£ 19.50$ Door Speakers (per pair) …............ $\mathbf{\$ 9 . 5 0}$ Wedge Speaker (per pair) ….......... 4.10

Professional Audio (Literature available on request)
100 Wate Compression Drivers ..... 665.00 100 Watt Tweeters …… $\quad \mathbf{C 5 0 . 0 0}$ $12^{\prime \prime} 60$ Wart Bass Units .-............. $\mathbf{C 2 6 . 0 0}$ HD 30 Wart Tweeters $\quad 67.00$ 5" 100 Wam Bass Unirs - $\$ 101.00$ (Many more items - send for list)

Components:
Green Clock Displays
Clock Driver Chips.
Transformer for above PC Board

Mountling Hardware for LED Modern professional system for mounting digital indicators. Ineludes sockets and attractive front bazel with polarized screen from 2 to 8 digits.
Price for $0.3^{\prime \prime} \& 0.5{ }^{\prime \prime}$ LEDS 63.50 plus 50 p per digit over 2 digits.
Price for 0.6 " and I" Reds 64.50 plus 60 p per digit over 2 digits Front Bazel only $1 / 2$ price. P\&P 50
Opto Electronics
Red LEDs
Green LEDs
Orange LEDs



| Hi-Fi Systems - Seourn (all reviewed) |  |
| :---: | :---: |
| Tuner LW/MW/FM | 625.00 |
| 30 Watt Amplifier | 629.00 |
| 20 Watt Amplifier | 642.00 |
| High Velocity Headphones | C11.00 |
| Hi-Fi Speakers: |  |
| Minimax II (per pair) | . 259.90 |
| BB 1312 (per pair) | . 43.00 |
|  | (2 way) |
| DB 1206 (per pair) | . 49.00 |
|  | (3 way) |
| Sub Woofer Special "Practical |  |
| Electronics" Design ............ | . 669.00 |
| Kit as above ................................ $¢ 40.90$ |  |
| LCD Dot Matrix Panels: |  |
| $1 \times 16 \quad 1 \times 40$ |  |
| $2 \times 16$ 2×4 |  |
| $2 \times 24$ |  |
| Computer Products: |  |
| Graphies/Colour Graphics |  |
| CPU/Memory Boards |  |
| Printers/Bar Code Readers |  |
| Monitors - send for full data and prices |  |
| ALL PRICES INCLUDE VAT |  |
| All items post/carriage free except where stated |  |
| Goods normally despatched with | in 7 days |

Unit 4, Airport Trading Estate, Biggin Hill, Westerham, Kent TN16 3BW Tel: Biggin Hill 71011-15 Telex: 957353


\title{

This series is concerned in part four with the control electronics and mechanical construction of the MENTOR robot. Like the NEPTUNEs, MENTOR interfaces directly to any one of three popular home computers and provides the facility for control either from the keyboard, or by making use of the "learning arm".

## PRINCIPLES OF OPERATION

MENTOR is a 6 -axis servo controlled electric robot (Fig. 4.1). Whilst the NEPTUNEs are designed for industrial use, MENTOR is primarily intended for educational purposes but as can be seen from the specification (Table 1) it too has the repeatability for many commercial applications, where the load is light. Each of the axes is powered by a small d.c. servo motor with integral gearbox with a large reduction ratio.

Axis $\emptyset$ is the centre column which rotates in a nylon bearing in the top plate of the base of the robot and is powered by the motor through an additional pair of gears (Fig. 4.2). The radial

## PART FOUR

## PART FOUR

position of the column is sensed by a conductive polymer potentiometer fitted to the underside of it. The column is hollow to enable the cables to pass down it to the computer interface board.

Axis 1 is the lower section of the arm which rotates about an axle fitted to the centre column (Fig. 4.3). Again a pair of gears is used to transfer torque from the motor to the axle and a potentiometer provides the feedback information. The axle is hollow for the cables to pass through it.

Axis 2, the fore arm is driven in the same manner as axis 1. A large piece of steel at the back end of the lower arm section counterbalances the weight of this section of the arm making the robot's position stable when there is no power applied to it;

Table 1. MENTOR SPECIFICATION

AXIS $\emptyset$ (centre column)

AXIS 1 (shoulder)

AXIS 2 (elbow)

AXIS 3* (left wrist axle) AXIS 4* (right wrist axle) WRIST PITCH
WRIST ROTATION
AXIS 5 (gripper)

REPEATABILITY LIFTING CAPACITY
REACH (from axis 1 axle centre)
BASE DIMENSIONS

Angular movement $210^{\circ}$. Axle centre 170 mm above top of base.
Angular movement $180^{\circ}$ Arm length between axle centres 165 mm .
Angular movement $230^{\circ}$. Arm length between axle centres 150 mm .
Angular movement $320^{\circ}$
Angular movement $320^{\circ}$
Angular movement $140^{\circ}$
Angular movement $320^{\circ}$
Jaw opening 30 mm . Jaw pressure 10 newton. Distance from end of jaws and axis 3 and 4 axles 105 mm . 2 mm .
300 gm .
420 mm .
Overall width 320 mm . Overall depth 270 mm . Overall height 189 mm .

CONTROL SYSTEM

COMPUTER INTERFACE

SOFTWARE
SOFTWARE PROVIDED

All axes servo controlled with servoing performed by the control electronics
Position defined by 8 data bits giving angular resolution of $0.4 \%$
Parallel. Robot addressed as if part of computer memory. Connects to expansion port ( 1 MHz bus on BBC). Accepts commands in BASIC or machine code. Extensive package of BASIC programs including direct control from computer keyboard, control by simulator, sequence storing, replay, sequence editing, sequence storage on disc or tape, multi-speed control and graphical illustration of robot dynamics.
*AXIS 3,4 movements are combined to provide wrist pitch and wrist rotation.

## ROBOTICS PROJECT



Fig. 4.1. Exploded view of the complete MENTOR system
therefore the drive motor does not have to be continuously on to keep the arm in position. There are also counterbalance weights on the fore arm to balance out the wrist motors.

Axes 3 and 4 are the wrist drive motors. The movements are combined to provide wrist elevation and wrist rotation by means of a set of bevel gears. When axes 3 and 4 advance together the


Axis drive systems: Fig. 4.2, above, shows the system used to drive axis 6. Fig. 4.3, opposite, shows the drive system for axis 1. See also Fig. 4.1, and the text
wrist rises. When the axes move in equal and opposite directions the elevation remains constant but the wrist rotates, as shown in Figs. 4.4 and 4.5.
Axis 5 is the gripper which is also servo controlled. To keep down the weight at the front end of the fore arm the drive motor for this is fitted to the lower arm with the power applied to the jaws via a flexible cable consisting of a nylon-coated multistrand steel wire inside a spiral wound PVC-coated conduit. This is similar to the brake cable of a bicycle. Torsion springs open the jaws when tension is released on the cable. Being servo controlled it is possible to program different degrees of jaw closure. If the programmed position is for a gap between the jaws of less than the size of the object to be handled then the grip will depend on how much further the servo system is trying to move the jaws.

## THE MENTOR CONTROL SYSTEM

The MENTOR, like the NEPTUNE, can be connected to one of three popular computers, the Commodore VIC20, the Sinclair ZX Spectrum and the BBC. When the computer sends the robot new data it responds by moving to a position where the feedback information from the potentiometers exactly matches the information from a DAC (digital-to-analog converter) controlled by the computer. This process is called servoing. Each of the 6 axes of movement can be defined with 8-bit (1 part in 256 or $0.4 \%$ ) resolution.

## ROBOT CONTROL

To move each of the axes the computer sends (WRITEs) 6 bytes of data to the robot, one to each axis. The servoing is per formed by dedicated hardware on the computer interface board of the robot. In a typical movement of the robot, the computer


Fig. 4.4. Wrist and gripper drive system


Fig. 4.5. Wrist operation showing effect of one-bit change on axes 3 and 4
sends 6 new bytes of data to the robot. The computer is then writing to what it "thinks" is just another area of its memory. The interface board then stores these 6 bytes of information and converts them to 6 position control voltages. The analog electronics on the interface board then compares these voltages with the feedback voltages. The difference between these two voltages is delivered to high power operational amplifiers which drive the motors in the direction which reduces the difference to zero. This is the servoing process.

## FEEDBACK

The computer is not involved in the servoing, it is merely generating data and relying on the robot to follow the instructions correctly. However the computer can perform a READ of any or all of the 6 feedback voltages and can thus be aware of all the movements of the arm. This process can be used to delay sending the next set of co-ordinates until the previous set of coordinates have been reached or for varying the speed of the robot during playback of a sequence. It is also easy to produce a graphical display of the movements and observe the effect of varying loads and of alterations to the components determining the characteristics of the servo system.

The computer can also READ the position of the simulator, which is a small hand operated model of the robot which can be plugged into the learn axis input CN400. The computer READS the position of the simulator and then WRITES this data into the robot. The arm follows the real-time motion of the simulator. The movements are stored in the memory of the computer and can be transferred to tape or disc for later use.

## COMPUTER INTERFACES

All three computers make available various signals for external use. See Fig. 4.6. These include the data bus D0 to D7, some of the lower address lines, READ and WRITE signals, the system clock and on the VIC20 and BBC a memory block decode. The BBC and VIC20 both use the 6502 microprocessor, so have relatively similar decoding electronics. The Spectrum uses a $\mathbf{Z 8 0}$. This together with some unusual practices in the Spectrum design makes interfacing somewhat different.

All the data and address lines are hard wired together so if two computers were simultaneously connected a bus clash would occur. However there is no reason why two or more robots should not be daisy-chained together either to perform the same task or completely different tasks if a different address is used. For example, using a BBC Computer one robot could be addressed with the link-selected "FRED" decode (FCO日-FCFF) whilst the other is addressed with the link-selected "JIM" decode (FEØD-FEFF). All three interfaces generate a VALID WRITE signal. The Spectrum WRITES to the block $\emptyset \emptyset \emptyset-1$ FFF which is where the ROM resides and as ROMs are not normally written to no conflict occurs. The other computers WRITE to nonexistent areas of RAM. IC302 is a multiplexer which selects which interface will generate the READ and WRITE signals. The Spectrum interface generates two READ signals (ZXRD63 and ZXRD95). These are not passed through the multiplexer but are used later on in the electronics to perform direct READs.


The MENTOR simulator (learning arm)


## WRITING

Data is sent to the robot as 6 bytes, each with a different address. See Fig. 4.7. Six latches are used to store this data (IC 104, $107,109,112,114,117$ ). These are individually clocked with the address decodes from IC 102, which is driven by the lowest three address lines. A typical WRITE is as follows. In one computer instruction cycle, the data is set up on the data bus, a VALID WRITE signal is generated and the LSBs of the address bus are set to the correct axis address. When the VALID WRITE signal goes high the data is written into the latch corresponding to that axis. The other axes are then written to similarly. The data held in the latches is converted into position control voltages by the DACs (IC105, 108, 110, 113, 115, 118). All the data passes
through IC 100 which is a 74LS245 bus transceiver. When the DIRection signal is low, data passes from B to A (WRITE mode). When the DIR signal is high, data passes in the other direction from $A$ to $B$ (READ mode).

## READING

There are two ADCs in the system, IC400 and 402 as shown in Fig. 4.8. These are 8 -bit devices with integral 8 -way analog multiplexers and integral 3-bit address latches. IC400 is used to look at the feedback voltages VFB $\emptyset$ to VFB5 and the other looks at the learn axis (simulator) signals VLD to VL5. The input voltages to the analog multiplexer must not exceed the ADC

| COMPONENT | REFERENCES |
| :---: | :---: |
| 1C100-118 |  |
| TR100-101 |  |
| C100-137 |  |
| R100-125 |  |
| CN100 |  |
|  |  |
| WIDIS A |  |
| $\mathrm{OV}_{\text {ANA }}$ | OVOIG |

supply rails. To prevent this from occurring diode and transistor clamps are used wherever higher voltages could possibly arise.

A READ is performed as follows. The axis channel is selected by writing a 3 -bit code ( $\mathrm{BD} \emptyset, 1,2$, and $\mathrm{BD} 4,5,6$ ) into the ADCs. The ALE (Address Latch Enable) signal latches these codes into the ADC internal registers. These codes select the multiplexer position. A start conversion signal is then generated. The ADC takes about 100 microseconds to perform the conversion. A test can be made for the end of conversion (EOC). By generating the EOCT signal both EOCs can be tested as both


Fig. 4.8. Analog-to-digital conversion for a "Read" operation

TWO FABULOUS OFFERS FROM

## 소 더N

## The incredible 'MINI 20'

## 28 ranges

$20 \mathrm{k} \Omega / \mathrm{V}$ d.c. \& $4 \mathrm{k} \Omega / \mathrm{V}$ a.c.
(With protective fuse)
Accuracy: $2 \%$ d.c. and resistance, $3 \%$ a.c.
28 ranges: d.c. $V 100 \mathrm{mV}, 3 \mathrm{~V}, 10 \mathrm{~V}$, $30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}$. d.c. I $150 \mu \mathrm{~A}, 600 \mu \mathrm{~A}, 6 \mathrm{~mA}, 600 \mathrm{~mA}$ a.c. $V$ $15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1500 \mathrm{~V}$. a.c. 1 $130 \mathrm{~mA}, 300 \mathrm{~mA}, 3.0 \mathrm{~A}$. Ohms $0-$ $2 k \Omega, 0-2 M \Omega \mathrm{~dB}$ from -10 to +62 in 6 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.
The 28 ranges cover all likely requirements. Operation is straightforward, just turn the selection switch to the required range.

This special offer is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 10.00$.
THE IDEAL INSTRUMENT
FOR THE CONSTRUCTOR
(complete with carrying case, leads and instructions)

## 'SUPER 20'

A SUPER PROTECTED UNIVERSAL MULTIMETER


Accuracy: d.c. ranges and $\Omega 2 \%$ a.c. $3 \%$ (of f.s.d.)
39 ranges: d.c. $\mathrm{V} 100 \mathrm{mV}, 1.0 \mathrm{~V}, 3.0 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$. d.c. $150 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 1.0 \mu \mathrm{~mA}, 3 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, $100 \mathrm{~mA}, 1 \mathrm{~A}, 10 \mathrm{~A}$
a.c. $\mathrm{V} 10,30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$;
a.c. $13 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA}, 1.0 \mathrm{~A}, 10 \mathrm{~A}$. $\Omega 0-5.0 \mathrm{k} \Omega, 0-50 \mathrm{k} \Omega, 0-500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega$. $d B$ from -10 to +61 in 5 ranges.
Dimensions: $105 \times 130 \times 40 \mathrm{~mm}$.
These special offers is a wonderful opportunity to acquire an essential piece of test gear with a saving of nearly $£ 20.00$.
(complete with carrying case, leads and instructions)

ONLY $£ 33 \cdot 50$
PRICES Our prices include VAT and postage and goods are normally despatched by return.
For details of these and the many other instruments in the Alcon range, including multimeters, components measuring, automotive and electronic instruments, please write or telephone:


Instruments Ltd.

[^2]
## INDEX

## JANUARY 1984 TO DECEMBER 1984

 VOLUME 20
## CONSTRUCTIONAL PROJECTS


Light Delay Switch, Car Interior April 36
Lock, Combination ..... Nov 26
Lock, Opto ..... Oct 56
Logic Probe, Pulse Direction ..... Oct 52
Logic Signal Generator by M. Tooley BA andD. Whitfield MA MSc CEng MIEEMay 23
Low Water Level Alarm by Tom Gaskell BA(Hons) AMIEE ..... Aug 58
Mastermind Timer by J.D. Parkinson BSc ..... Aug 18
Measurements, Field ..... Aug 22
Meter, Plant Watering ..... April 39
Microstepper by L.G. Parkin BA ..... April 18
Modulator, Ring ..... Nov 10. Dec 23
Neptune Robots by Richard Becker and Tim Orr ...Sept 32Opto-Lock by Tom Gaskel/ BA(Hons) CEng MIEE ..... Oct 56OD. Whitfield MA MSc CEng MIEEJuly 56
Parallel to Serial Converter by R.A. Penfold ..... Sept 17
Phaser Filter Shift ..... Oct 10
Plant Watering Meter by Tom Gaskell BA(Hons) ..... April 39
PSU, Simple ..... May 60
Pulse Direction Logic Probe by S.A. Withey ..... Oct 52
Radar Security Alárm ..... Oct 30
Regulator, Voltage and Current ..... Sept 54
Ring Modulator by John H. Becker ..... Nov 10, Dec 23
Robots, Neptune Sept 32, Oct 28, Nov 28, Dec 52
Simple Logic Analyser by Chris Atkins ..... July 14, Aug 50
Simple PSU by Stephen Ibbs ..... May 60
Simple Speech by P. Creighton ..... Jan 55
Slide Dissolve by Peter F. Wells ..... July 30
Spectrum Autosave by R.A. Penfold ..... Mar 14
Spot Frequency Oscillator by Tom Gaskell BA(Hons) AMIEE ..... Juńe 60
Stardesk by Peter Newbury ..... Jan 16, Feb 32
Sub Woofer by Cliff Hardcastle ..... July 24
Sustain Unit by R.A. Penfold ..... May 26
System, Alarm ..... July 48, Aug 60
Temperature Controller by T.J. Johnson ..... Feb 50
Terminal, Computer ..... Feb 16, Mar 28
Through-the-Mains Controller by R.A. Penfold ....... Sept 40
Timer, Clock ..... Feb 24
Timer, f-Stop Enlarger ..... July 28
Timer, Mastermind ..... Aug 18
Ultrasonic Camera Trigger by R.A. Penfold ..... Jan 26
Unit, Sustain ..... May 26VIC 20, Expanding the .....Jan 36, Mar 36, April 46. May 36Voltage and Current Regulator by Tom GaskellBA(Hons) CEng MIEESept 54
Woofer, Sub. ..... July 24

## GENERAL FEATURES

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Micro Bus .... Feb 67, March 61, April 35, May 58, June 56 , Aug 26, Sept 57, Oct 29

Microprofessor Review by M. Tooley BA ............. April 58
Monitors for Home Computers by M. Tooley BA and
D. Whitfield MA MSc CEng MIEE ....... Feb 44, March 47

Multimeters-Buyer's Guide ................................ May 14
Nickel Cadmium Batteries by M. Tooley BA and D. Whitfield MA MSc CEng MIEE ........... Nov 17, Dec 38

Radio Astronomy by Frank W. Hyde ..................... Aug 35
SEMICONDUCTOR CIRCUITS by Tom Gaskell
BA(Hons) CEng MIEE ...........Jan 60, Feb 28, March 18, April 38, May 42, June 58, July 26, Aug 57, Sept 52 , Oct 54, Nov 24, Dec 46
Stereo Signal Processor (TDA 3810 ) ............. Jan 60 LED Bargraph Drivers (UB . . B Series) .......... Feb 28 Tachometers (LM $2917 \mathrm{~N}-8$ and LM 2917 N ) ..........
Window Discriminator (TCA 965) .............. April 38 Gain Controlled Preamplifier (SL6270C) ...... May 42
Touch Tuners (SAS 580 and SAS 590) ..........June 58 Programmable Timer (ICM 7240) .................July 26 Fluid Detector (LM 1830N)..........................Aug 57 Voltage and Current Regulator (L 200C) ....... Sept 52 Encoder/Decoder (MM 53200N) ................. Oct 54 Pushbutton Locks (LS 7228 and LS 7229) .... Nov 24 Digital Noise Source (MM5837N) ................... Dec 46

Sequential Logic Techniques by M. Tooley BA and
D. Whitfield MA MSc CEng MIEE ......... Oct 16, Nov 53 ,

Dec 15
Soldering Instrument-Buyer's Guide ..................... Dec 30
Spot Pricing by T.W. Berrie ..................................June 35
Technology Update: SO SMD's .......................... May 48
Test Instruments-Buyer's Guide ............................. June 14
Transputer by R.W. Coles ................................. April 26
Vernon Trent at Large ...Jan 34, Feb 56, March 23. April 32 May 35, June 47, July 41, Aug 54, Sept 56, Oct 51

Dec 44

# NEWS AND COMMENT 

BAZAAR .... Jan 59, Feb 21 40, 68, March 16, 20, 44, 62 . April 53, 60, May 41,50,57, June 44, 51, July 29, 59 , Aug 41,65 , Sept 50 , Oct 50 , Nov 45

BOOK REVIEWS
Aug 67
EDITORIAL .....Jan 13, Feb 13, March 11, April 15, May 11, June 11, July 9, Aug 7. Sept 7, Oct 7, Nov 7, Dec 7

INDUSTRY NOTEBOOK by Nexus
Jan 24, Feb 22. March 17, April 54, May 45, June 23, July 33, Aug 29, Sept 31 , Oct 36, Nov 23, Dec 28

LEADING EDGE by Barry Fox
Aug 43. Sept 46

NEWS AND MARKET PLACE ....Jan 14, Feb 14, March 12, April 16. May 12, June 12. July 10. Aug 8. Sept 8, Oct 8 , Nov 8, Dec 8

PATENTS REVIEW $\qquad$ Feb 43, April 44, May 47, July 38 PRINTED CIRCUIT BOARD SERVICE .........Nov 37, Dec 37 READOUT .................................. 22 , March 34, 62, Oct 46
SPACEWATCH by Frank W. Hyde ............Jan 45, Feb 59 ,
March 35, April 57. June 33
SPACEWATCH by Dr. Patrick Moore OBE. Aug 40, Sept 49,
Oct 49, Nov 38, Dec 36
STRICTLY INSTRUMENTAL by K. Lenton-Smith .....Aug 66

## SPECIALSUPPLEMENTS

Micro-File by Ray Coles

| Filesheet 13 | 28 |
| :---: | :---: |
| Filesheet 14 | 8073 ............................... March |
| Filesheet 15 | NSC800 ............................. . May |

Filesheet 15 NSC800 ..................................... May
Robotics by Tom Ivall ..... Nov

ORIC AND SINCLAIR COMPUTERS


Oric 1 computer 48 K £95 (£92) £102 Oric Atmos computer 48K £171 (£158 £168. Oric Colour Printer £134 ( (E123) £140. Oric disc drive $\mathbf{E 3 0 4}$ ( $\mathbf{\Sigma 2 7 8}$ ) $\mathbf{Z 2 9 8}$ New Sinclair QL Computer £406 (£385) E410. Sinclair Spectrum 48K (with 6 free
 E60. RS232 interface 1 f51 (f50) f60 Limited period special offer:- Microdrive + Interfce $1+4$ Blank cartridges $£ 102$ (£100) £120. Blank microdrive cartridges 68 ( 58 ) 29 . Interface 2 £20.45 ( 220 ) 824 32K memory upgrade kit for 16K Spec trum (issue 2 and 3 only) £ $£ 1$ ( $£ 28$ ) £ $£ 0$ Fuller Master Unit for the spectrum including speech synthesizer, sound syn-
thesizer, amplifier and loystick port $£ 56$ (E56) E62. Fuller FDS full sized keyboard for the spectrum with proper space bar E52 (E52) E62. Spectrum printer inter faces with cables:- Centronics $\mathbf{£ 5 1}$ ( $\mathbf{( 4 7 )}$ E52, RS232 £35 ( $£ 33$ ) £ 38 . 2 X printer has been replaced by the Alphacom $32 \boxminus 71$ (£67) €7. 5 printer rolls (State whether 2X81 computer $£ 45(£ 44) £ 54.16 \mathrm{~K} \mathrm{ram}$
 COMMODORE COHPUTERS
Commodore 64 £ 244 (£184) $£ 204$. Vic 20 £104 (297) £117. Vic 20 starter pack $£ 150$ ( $\mathbf{E 1 4 3 )}$ E173. Convertor to allow most ordinary mono cassette recorders to be used with the Vic 20 and the Commodore 64: $\mathbf{E 9 . 7 8}$ ( $\mathbf{2 9}$ ) £11. Bargain pack age:- cassette convertor + compatible cassette recorder 837 (E38) £44. CornPrinter interfaces for Vic 20 and Printer interfaces for Vic 20 and the
Commodore 64:- $£ 45$ (£41) E46. RS232 $\mathbf{£ 4 5}$ ( $\mathbf{£ 4 1 )} \mathbf{f 4 6}$. Disc drive $\mathbf{£ 2 3 3}$ ( $\mathbf{E} \mathbf{2 0 9 )}$ £234. 1520 Printer/Plotter $\mathbf{\Sigma 1 6 5}$ ( $\mathbf{( 1 4 9 )}$

1526 Printer $E 350$ ( $\mathbf{x 3 0}$ ) E360. Light pen 129 (129) E33. Vic 20 Accessories:Super expander high res cartridgee es3 $(29)$ E34, Programmers aid cartridge 73 (E29) £34, Extra memory ram
8 K £19 (£17) E20, 3K £6 (E7) $£ 9$.
ACORN COMPUTERS
Electron £23 (E209) E229. Electron joystick and printer interface E 61 (282) :6b. BBC Model B £404 (E357) E387. BBC ight Pen $799^{(229)} 233.14^{\circ}$ Colour monitor £228 (£299) £319. Kenda double density disk interface system rack:- single $£ 200$ ( $\mathbf{1} 184$ ) $£ 24$, dual



Brother HR5 £185 (£171) £190. Shinwa CT CP80 ©225 ( $\mathbf{2} 18$ ) £248. Cannon (W1080A $£ 332$ (£299) $£ 329$. Epson 2314 (E286) E316. Epson FX80 £399 E358) $£ 388$. Combined matrix printers and electric typewriters:- Brother EP22
 235) 260 . Smith Corona TP1 Daisy Oric colour printer/plotter £134 (£123) E140. Interfaces to run the above printers from Vic and the Commodore 64 e45 £41) £46. We can supply interfaces to un the above printers from Sharp com puters $\mathbf{f 5 8}$ ( $\mathbf{2 5 2}$ ) £55. f159. 1525 Printer $£ 235$ ( $£ 220$ ) $£ 245$.

## SWANLEY ELECTRONICS

Dept PE, 32 Goldsel Rd., Swanley, Kent BR8 8EZ, England

$$
\text { Please allow } 7 \text { days for delivery }
$$

Tel: Swanley (0322) 64851. Official orders welcome. UK prices are shown first and include post and VAT. The second price in brackets is for export customers in Europe and includes insured airmail postage. The third price is tor exporil postage.


## PRACTICAL INTERFACE CIRCUITS FOR MICROS

by G. Loveday Price: $\mathbf{£ 8 . 5 0}$
RADIO AND TELEVISION SERVICING 1983-84 MODELS
by R.N. Wainwright
Price $£ 24.00$
UNDERSTANDING SOLID STATE ELECTRONICS by Texas Ins.

Price: $£ 4.50$
ESSENTIAL ELECTRONICS AN A TO Z GUIDE by G. Loveday Price: $£ 7.0$
OPERATIONAL AMPLIFIER EXPERIMENTAL MANUAL
by G.B. Clayton
Price: $\mathbf{£ 7 . 3 0}$
TELEVISION PRINCIPLES \& PRACTICE
COLOUR \& MONOCHROME
Price: $\mathbf{E 7 . 6 0}$
SERVICING DIGITAL CIRCUITS IN TV
RECEIVERS
Price: $£ 14.60$
VLSI TECHNOLOGY
by Sze
Price: £10.95
ENGINEERING APPROACH TO DIGITAL DESIGN by W.I. Fletcher

Price: $£ 17.50$
digital technioues a systems
Price: $\mathbf{\varepsilon 6 . 7 5}$
D.C. Green

## THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books

## 19-21 PRAED STREET LONDON W2 1NP

Phone 01-402 $9176 \quad$ Closed Saturday 1 p.m.
Please allow 14 days for reply or delivery.

## ADVANCED TELECOMMUNICATIONS

## Careers with extensive scope at Cheltenham

doin the Government Communications Headquarters, one of the worid's foremost centres for R \& D and production in voice/data communications ranging from HF to satellite - and their security. Some of GCHQ's facilities are unique and there is substantial emphasis on creative solutions for solving complex communications problems using state-of-the-art techniques including computer/microprocessor applications. Current opportunities are for: Telecommunication Technical Officers
Two levels of entry providing two salary scales: £6262-£8580 \& £8420-£9522
Minimum qualifications are TEC/SCOTEC in Electronics/Telecommunications or a similar discipline or C \& G Part II Telecommunications Technicians Certificate or Part I plus Maths B, Telecommunication Principles B and either Radio Line Transmission B or Computers B or equivalent: ONC in Electrical, Electronics or Telecommunications Engineering or a CIE Part I Pass, or formal approved Service technical training. Additionally, at least 4 years' (lower level) or seven years' (higher level) appropriate experience is essential in either radio communications or radar, data, computer or similar electronic systems
At the lower entry level first line techinical/supervisory control of technicians involves "handson" particlpation and may involve individual work of a highly technical nature. The higher level involves application of technical knowledge and experience to work planning including implementation of medium to large scale projects.
Radio Technicians - $£ 5489$ - $£ 7818$
To provide all aspects of technical support. Promotion prospects are good and linked with active encouragement to acquire further skills and experience. Minimum qualifications are a TEC Certificate in Telecommunications or equivalent plus 2 or more years' practical experience.
Cheltenham, a handsome Regency town, is finely-endowed with cultural, sports and other facilities which are equally available in nearby Gloucester. Close to some of Britain's most magnificent countryside, the area also offers reasonably-priced housing. Relocation assistance may be available
For further information and your application form, please telephone:
Cheltenham (0242) 32912/3 or write to:
EEHP
Recruitment Office, Government Communications Headquarters, Oakley, Priors Road, Cheltenham,

Gloucestershire, GL5 2 5AJ.


When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

## RECEIVERS AND COMPONENTS

BOURNEMOUTW BOSCOMBE. Electronic components specialiss for 33 years. FORRESTERS (NATIONAL RADIO SUPPLIES), Late Holdenhurst Road Now at 36. Ashley Road, Boscombe. Tel. 302204. Closed Weds.
FIFTY 14 SERIES I.Cs on panel $\mathbf{1 2 2 0}$. Assorted components £5.00/56.50 7 lbs or 101 tbs plost paid. J. W. BLANSHARD, 2 Barnfield Crescent, Sale, Cheshire M33 INL.

## RESISTOR PACKS <br> FOR ALL PROJECTS

I watt carbon film resistors $5 \% 1$ hm to 10 M E24 series. Packs of 10 each value $(1690$ resistors) $\mathrm{E10.00}$. Your choice of quantities/ values 125 for E1.00. VAT and Post Free. GORDON HALLETT
20 Bull Lane, Malden Newton,
Dorchester, Dorset DT2 0BQ.

## BARGAIN BUMPER BOX OF BITS <br> Contains: working calculator, working watch

 module, Various I.C's, transistors, display tubes, PCBs, diodes batteries, gears, switches etc., etc., etc. All useful items. Would cost much, much more if bought separately. ONLY £15 (inc. VAT and P\&P) Send cheque/P.O. to:Barbara Page, Spares Dept., Decimo Lid 4-18 Chobham St., Luton LU1 38S

## SMALL ADS

The prepaid rate for classified advertisements is 36 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 12$ no per single column centimetre (minimum 2.5 cms ). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Banks Lid". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Practical Electronics, Room 2612. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

## NOTICETO READERS

Whilst prices of good's shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

TURN YOUR SURPIUS capacitors, transistors, etc into eash Contact COLES HARDING \& CO., 103 South Brink Wisbech, Cambs. Tel. 0945 584188. Immediate settlement.

PREE! Parcel of components worth 510 . Send only 80 p postage! D. HORSLEY, 113 Clare Road, Braintree, Essex.


## SERVICE SHEETS

bell-s television services for service sheets on Radio. TV ecc. $£ 1.50$ plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) $\$ 5885$

## BOOKS AND PUBLICATIONS

RULL SIZE, top quality service sheets $£ 2.50+1$.s.a.e. CTVI Music Centres $£ 3.50+$ lis.a.e. Repair data almost any named TV-Video $£ 10.50 \mathrm{inc}$. circuits. L.s.a.e. brings any quote free magazine/price lists. TISPE, 76 Churches. Larkhall, Lanarkshire. 0698883334.

## HOME SECURITY



ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Electronics for
insertions. I enclose Cheque/P.O. for $\mathcal{E}$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

|  |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

NAME
ADDRESS

## PRACTICAL ELECTRONICS

Classified Advertisement Dept. Room 2612.
King's Reach Tower, Stamford Street
London SE1 9LS. Telephone 01-2615846
Rate:
36p per word. mlnimurn 12 words. Box No. 60p extra.

## SOFTWARE

C1O COMPUTER CASSETTES, 3 for $£ 1.10,6$ for $£ 2.10,15$ for $£ 5$. C.M. ELECTRONICS, 28 Heage Road. Ripley, Derbys. (0773-48932). C. MURFIN.

## 6809 CPU CARD

## Powerful Add-on to Your Home Computer

 Quality, plated through PCB with full assembly instructions. Full RS232 Serial Interface (up to 19,200 Baud). Date storage to cassette (via external CUTS interface). Versatile Paraliel Interface for control applications, or keyboard and printer. Operation at 1 MHz or 2 MHz . $2 \mathrm{~K} / 8 \mathrm{~K}$ Static Ram with $2 \mathrm{~K} / 8 \mathrm{~K}$ EPROM, or athernatively, $4 K / 16 \mathrm{~K}$ EPROM ( 2 sockets). Communication via serial link to your home computer. Software available: Monitor, Disassembler, Editor/Assembler. FORTH Programming Language. Coming soon: Floppy Disk Interface, EPROM programmer and others.Prices plus VAT: PCB only £29.95; with monitor £39.95; Monitor + Disassernbler $£ 14.95$; Upgrade E5; Mono + Dis + Editor/Assembler E34.95; Up-
grade £20; FORTH $£ 34.95$
SOLASCAN MICRO-SYSTEMS LIMITED
91 Bryanston Road, Bitterne, Southampton SO2 7AL
Telephone (0703) 436224.

## INVENTORS

Think of something new? Write it down!-
American industry offers potential royalties for your innovations and new products. We offer free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write without delay for your free information package.

American Inventors Corporation 82, Broad Street, Dept PT
Westfield, Massachusetts 01086
United States of America.
A fee based marketing company.

## FOR SALE

OSCILLOSCOPES $£ 60$ + Minicomputer $£ 120$. Printers R $\$ 232$ £70, Golfball $£ 120$; paper. U.V. lamps. Call now! Sinclare 01.3161779

## WANTED

## WANTED

REWARDS OFFERED FOR CAPTURE NATIONAL SEMI CONDUCTOR MM57109
MR. PRICE 0527892061

## MISCELLANEOUS

## MISCELLANEOUS - CONT.

ELECTRONIC ORGAN KEYBOARDS and other parts being cleared out as special offer: ELVINS ELECTRONIC MUSICAL INSTRUMENTS, toa Dalston Lane, London E8. Te!. $01-9868455$.

CLEAAING LABORATORY: sCOpes, generators, P.S.U's, bridges, analysers. meters, recorders, ev. 0403-76236.

NEW AND SURPLUS components and equipment now in stock Also amateur F.M. and T.V. aerials, and a complete range of burglar alarm equipment. Write or phone for prike list: SPECTRUM RADIO \& ELECTRONICS LTD, 36 Slater Street, Liverpool L1 4BX. 0517094628.

NEW TVPE TELECOM EXTENSION Telephone Sockets $£ 4.25$ P\&P 50p. P. MORTIMER, 3 Furlong Gardens. Trowbridge, Wilshire.
burglar alaam equipment. Ring Bradford (0274) 308920 for our Catalogue or call at our large showrooms opposite Odsal Stadium.

SPEAKERS FROM 30p, Capacitors from 2p. Cassettc Motors 60 p. S.A.E. for liss. Rochdale 50540 , BRUTEC, 17 Heald Close, Rochdale, Lancs. OL 12 7HJ.

HEATHKIT. U.K. spares and service cenire. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredon, Tewkesbury. Glos. Tel. (O684) 73127.

AERIAL AMPLIFIER, Improve weak television reception. Requires 9v battery. £5.75. ESSA. 20, St. Lukes Avenue, liford. Essex.

SUPERB INSTRUMENT CASES by Bazelli. manuiactured from PVC faced steel. Vast range. Competitive prices start at a low ©1.50. Punching facilities at very competitive prices. BAZELLI (Dept 23), St Wilfreds. Foundry Lane. Halton, Lancaster LA2 61T

## RUN YOUR 9 VOLT CIRCUITS FROM A SINGLE NICKEL-CADMIUM CELL

with a Verkon miniature p.c.b.-mounted $\mathrm{dc} / \mathrm{dc}$ converter, the reliable alternative to expensive batteries. Learn of the full technical and economic benefits by sending s.a.e. for data sheet to:

## J. BILES ENGINEERING

120 Castle Lane, Solihull, West Midlands 892 8RN

| THE SCIENTIFIC WIRE COMPANY <br> 811 Förest Raad, London E17. Telephone $11-5311568$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| ENAMELLED COPPER WIRE |  |  |  |  |
| SWG | 1 lb | 802 | 4 02 | 208 |
| 8 to 34 | 3.63 | 2.09 | 1.10 | 0.88 |
| 35 to 39 | 3.82 | 2.31 | 1.27 | 0.93 |
| 40 to 43 | 6.00 | 3.20 | 2.25 | 1.61 |
| 44 to 47 | 8.67 | 5.80 | 3.49 | 2.75 |
| 48 | 15.96 | 9.58 | 6.38 | 3.69 |
| SILVER PLATED COPPER WIRE |  |  |  |  |
| 14 to 30 | 9.09 | 5.20 | 2.93 | 1.97 |
| TINNED COPPER WIRE |  |  |  |  |
| 14 to 30 | 3.97 | 2.41 | 1.39 | 0.94 |
| Fluxcore |  |  |  |  |
| Solder | 5.90 | 3.25 | 1.82 | 0.94 |
| Prices include P\&P VAT. Orders under $\sum 2$ add 20 p . |  |  |  |  |
| SAE for list of copper and resistance wire. |  |  |  |  |
| SAE |  |  |  |  |

To Advertise in this space
Ring MANDI 01-261 5846
 Promted sireuit Cabinet. 3 channels 1,000 watts each. Will operate Ready Euitt Deluxe 4 Channel 4,000 watt with chaset + speed * programme controls £69. Post L2.
MAINS TRANSFORMERS
 250 V 60 mA 6.3 V 2 A . 220 V 25 mA 6 V 1 Amp $£ 3.00 \quad 220 \mathrm{~V} 45 \mathrm{~mA}$. 6 V 2 Amp $\mathbf{E 4 . 0 0}$ है। Low votage tapped outputs available $1 \mathrm{amp} \mathrm{6}, \mathrm{8}, \mathrm{10}, \mathrm{12}, \mathrm{16}, \mathrm{18}, \mathrm{20}, \mathrm{24}, \mathrm{30}, \mathrm{36}, \mathrm{40}, \mathrm{48} ,\mathrm{60} \mathrm{£6.00} \mathrm{£2}$
dimo 2 amp E 10.50 LOW VOLTAGE MAINS TRANSFORMERS E5.50 each posi paid LOW VOLTAGE MAINS TRANSFORMERS E5.50 each post paid
$9 \mathrm{~V}, 3 \mathrm{~A}: 12 \mathrm{~V}, 3 \mathrm{~A}: 16 \mathrm{~V}, 2 \mathrm{~A}: 20 \mathrm{~V}, 1 \mathrm{~A}: 30 \mathrm{~V}, 1, \mathrm{~A}: 30 \mathrm{~V}, 5 \mathrm{~A}+17-17 \mathrm{~V}$. $2 \mathrm{2A}$


E8.50 posi 50p MINI.MULTI TESTER Deluxe pocket stze precision moving cot| instrument. Impedence + Capacity 4000 o.p.v. Battery included 11 instant ranges
measure: $O C$ volts $5,25.250,500$. AC volts 10, 50, 500,1000 . DC amps $0.250 \mu$ De-Luxe Range Doubler Meter, 50,000 o.p.V. $7 \times 5 \times 2 \mathrm{in}$. Resistance $0 / 20 \mathrm{meg}$ in
5 ranges. Current $50 \mu \mathrm{~A} 1010 \mathrm{~A}$ Volts 0.25 )

## PANEL METERS

5 ranges Current $50 \mu A$ to 10 A . Volts 0.25 /
1000 v DC. $10 \mathrm{~V} / 1000 \mathrm{~V}$ AC.
$50 \mu \mathrm{~A}, 100 \mu \mathrm{~A} .500 \mu \mathrm{~A} .1 \mathrm{~mA} .5 \mathrm{~mA} .100 \mathrm{~mA} .500 \mathrm{~mA}, \quad \mathrm{E} 5.50$ post 50 mp EOUIPMENT CASES $21 \times 13$ Stereo VU 3$\} \times 1 \times$ lint.

 ALI ANGLE BRACKET $6 \times 1 \times 3 \mathrm{in}$. 30 p





$\begin{array}{llllll}20 / 500 \mathrm{~V} & \cdots .75 p & 8+8 / 500 \mathrm{~V} & . . & { }^{1} 1 & 32+32 / 500 \mathrm{~V} \\ 32 / 3504 & \cdots . .45 \mathrm{p} & 8+16 / 450 \mathrm{~V} & 75 \mathrm{p} & 220 / 400 \mathrm{~V}\end{array}$
$32 / 500 \mathrm{~V}$...... $95 \mathrm{p} \quad 16+16 / 350 \mathrm{~V}$
SINGLE PLAY OECKS, Post C 2.

| SINGLE PLAY OECKS, Post $£ 2$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Make | Model | Cartridge | Price |  |
| BSR | P207 | Ceramic | 520 |  |
| GARRARD | 6200 | Ceramic | e22 |  |
| BSA | P182 | Ceramic | E26 |  |
| BSR | P232 | Magnetic | $\underline{\$ 28}$ |  |
| BSR | P200 | Magnetic | £34 |  |
| AUTOCHANGER | BSR | Ceramic | 820 |  |
| DECCA TEAK VENEERED PLINTH |  |  |  |  |
| Superior finish with space and panel for small amplifier. Board eut for BSR or Garrard 18 jin. $\times 14 \mathrm{lin} \times$ din. <br> Black/chrome fecia trim |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| TINTED PLASTIC COVERS for Decks, Music Centres, etc. Post ¢1 |  |  |  |  |
| $17 \times 121 \times 3 \mathrm{lin}$. |  | 55111 | $\times 12.1 \times 23 \mathrm{in}$. | f5 |
| $221 \times 136 \times 3 \mathrm{in}$. |  | 55161 | $\times 13 \times \sin$. | f5 |
| $211 \times 14 \mathrm{j} \times 2 \mathrm{~lm}$. |  | 65 144 | $\times 131 \times 2 \mathrm{lin}$. | 65 |
| $241 \times 13 \times 3 \mathrm{lin}$. |  | c5 21 | \% $13 i$ ) 4 lim . | c5 |
| 181 $\times 12 \mathrm{l} \times 3 \mathrm{in}$. |  | E5 301 | $\times 13 \mathrm{x} \times$ 3 l . | 5 |

RAOIO COMPONENT SPECIALISTS
Dept 3, 337, WHITEHORSE RDAO, CROYOON ACCESS SURREY, U.K. TeI: 01 - 6841665 ACCESS $\begin{gathered}\text { Posi } 65 p \text { Minimum Callers Welcome } \\ \text { Lisis } 32 p . S a m e ~ d a y ~ d e s p a t c h ~ C l o s e d ~ W e d ~\end{gathered}$


The FULLY programmable digital synthesiser that you can AFFORD THE NEW CLEF COMPUTER MUSIC SYSTEM is so user programmable that you need a BBC Micro to run it! 32 harmonically programmable oscillators. 32 programmable envelopes. 5 octave touch sensitive keyboard, up to 4 OSC/ENVS per note. Real time sequencing. Massive potential for future software. Complete system fwithout BBC Micro) $£ 475$ built. Phone or write for details. Modular systems also available.


Twenty.Four Ahythm programmable Drum Machine with iwelve instruments. Eight sections are extended to 24/32 measures for two bar programming. Sequence operation and MMStument
adiust
COMPLETE KIT
E79 adjust STRING ENSEMBLE COMPLETE KTT 179 ROTOR CHOPUS

SQUARE FRONT KEYBOARDS

KEYSWITCH ITEMS ALSO AVAILABLE

## 88/72 NOTE PIANOS

SPECIALISTS SINCE 1972
Using Patented electronic technique to give advanced simulation of Piano Key Inertia.
COMPONENT KITS including Keyboard 88 NOTE
72 NOTE
The above may $£ 234$ The above may also be
DOMESTIC KITS
inc. Cabinet. PA. \& Splov,
78 NOTE PHONE
STAGE MCDEL
inc. Cabinet a Stand

## 72 NOTE <br> PHONE

ALL PRICES INC. VAT. CARR \& TELEPHONE ADVICE. S.AE for full Specs \& MANF. PRUCES. VISA-ACCESS AMERICAN EXPRESS. Competitive quotes can be given for export, Allow $3-14$ days for normal despatch.
CLEF PRODUCTS (ELECTRONICS) LIMITED
(Dept P.E.) 44A BRAMHALL LANE SOUTH BRAMHALL
STOCKPORT CHESHIRE SK7 1AH
TEL 061-439 3297

## P.E. HYPERCHASER



4 CHANNEL PSEUDO INTELLIGENT LIGHTUNIT
\# 16 Programmes

* Manual/Auto Programme Manual Rash Buttons * Manuil/Auto Programme Stobe Dutputs * individual Dimming Sound To Ught Not just a light unit but a sophisticated \& comprehensive effects unit. A full kit




## P.E. STAR DESK

## 8 + 4 CHANNEL LIGHT MIXING DESK

 $\star 8$ Channel Twm Preset Mixer $\star$ Strobe Outputs - 8 Programmes - 1 KW Output/Channel (can be boosted to $2 \mathrm{KW} / \mathrm{Ch}$ ) * Timed Crosstade- Sot/Hard Sequence
$\star$ Soth//
al pans
A truly magnificent unit ideal for clubs, groups, drama, etc. A tull kin of parts
inc. PCB. Facia, Case, etc. Reprint of article on request. PRICE INCLUDING PGP
$£ 209$
BENSHAM RECORDING LTD
327 Whitehorse Road, Croydon, Surrey CRO 2HS 9 am- 5 pm . Mon-Sat.
Please allow 14 davs for delivery



## $\star \star \star$ STEPPER MOTORS $\star \star \star$

For robotics, turtles and $X / Y$ Plotters
Type 1035/014. Low-Current Model 48 steps/rev. ( 17 deg steps.) \& Wi 300 Gms . Price $£ 1350$ inc. P/P \& VAT.
 inc. P/P \& VAT.
RS \& stage Darington Drives 21035 's from the User Port. Price 225 inc. P/P \& VAT.
SAlen. IC. Single Pulsed input determines speed. Second input determines direction. Suitable for direct Drive of one ID55. (MR23 requires additionad Power Transistors). Price 6550 inc. P/P \& VAT. Book, DY Robotics \& Sensors with the BBC MICRO. $\mathbf{E 7} .8$ inc. P/P. (Commodore 64 version. same price.)
NOTE. Motor prices vary with foreign exchange rates. If ordering after 1.12 .84 , please telephone first.

## Telephoned ACCESS \& V/SA orders welcome.

We cannot heip with advice on projects, but a Price list of the RS components mantioned in the above books, plus limited Stepper Motor data is avalable free, BUT will be sent ONLY ON RECEIPT OF AN AA SELF ADDFESSED ENVELOPE. STAMPED WITH 240.

## CARDIGAN ELECTRONICS

Chancery Lane, Cardigan, Dyfed, Wales. Tel: (0239) 614483

## FREE CAREER BOOKLET Train for success, for a better job, better pay

## Enjoy all the advantages of an ICS

Diploma Course, training you ready for a new, higher paid, more exciting career.

Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already!

Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.

Send for your FREE CAREER BOOKLET
today-at no cost or obligation at all.
TICK THE FREE BOOKLET YOU WANT

INDEX TO ADVERTISERS
AC/DC ElectronicsA.D.E21
62
Antex
Bensham Recordings

ings
Biles J. Ltd
B.N.R.E.S.Cardigan Electronics- 58
Cirkit Holdings .....  64
Cirkit Holdings
Clef Products ..... 485Clef Products
ComputonicsC.R. Supply CoCybernetic App
Driftwood Ltd.ElbarG.C.H.O.
Alcon Instruments Alcon Instruments
American Inventive Corp.35
6463646262 58- 6251
Electrovalue ..... 51
G.C.H.Q.
Grandata61
58Greenweld
Hall. Adam. Supplies ..... 63
Hallett. Gordon ..... 62
ICS Intertext
ILP Electronics ..... 64
43
Maplin Supplies 43 8 Cover 4
Hi-Tech Components ..... 28 \& 29
Modern Book Co. ..... - 61
PhonosonicsPowertranCover 2
Proteus ..... Cover 3
R.C.S.63
22
Riscomp22
Scientific Wire Ca ..... 63
Solar Scan Microsystems ..... 51Sparkrite
Swanley Electronics ..... 6115
6
T.K. Electronics
283
Watford Electron ..... 63



The amazing Maplin Catalogue is here again! The new edition is packed with hundreds and hundreds of new electronic components to bring you right up to date with all the latest developments. As all home constructors agree (and a good many professionals too) the Maplin Catalogue is the one essential piece of equipment they really need. And now with all our prices on the page the Maplin Catalogue is better value than ever.

On Sale From 10th November 1984.
Pick up a copy as soon as it's published at any branch of W.H. Smith or in one of our shops. The price is still just $£ 1.35$, or $£ 1.75$ by post from our Rayleigh address (quote CA02C).

Post this coupon now for your copy of the 1985 catalogue. Price $£ 1.35+40$ p post and packing. If you live outside the U.K. send $£ 2.40$ or 11 International Reply Coupons I enclose $£ 1.75$.

Name
Address $\qquad$


[^0]:    (C) IPC Magazines Limited 1984. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]:    * = data not available from manufacturer- this was measured on prototype circuit.

[^2]:    19 MULBERRY WALK LONDON SW3 60Z - TEL: 01-352 1897 TELEX: 918867

