Semiconductor Circuits - Universal Timer

Computer Envelope Shaper

Automatic Fish Feeder

MODEMS - Getting started
SAVE EVEN MORE!

THE PRACTICAL ELECTRONICS FILM SERVICE

So many satisfied customers have been delighted with this award-winning film service that the economies made are now being passed on to you in the form of substantial price reductions. You can now save up to 75p on last year's prices. For 36 successful Superprints you pay only £2.95 inc. VAT Compare this with last year's £3.70 and with the prices in the shops. Postage and packing is 30p extra as before. Here is the new price range — and remember, Superprints give you 30 per cent more picture area than standard prints at no extra charge.

No of Superprints | Price (inc. VAT) | PLUS P/P
--- | --- | ---
12-15 | £1.65 | 30p extra
24 | £2.20 | 30p extra
36 | £2.95 | 30p extra

RELIABILITY AND QUALITY

All our colour prints are made on Kodak Luxury Lustre paper. Prints have square corners and are borderless to give you maximum picture area. All prints are checked at every processing stage for accurate colour reproduction in a laboratory which is the winner of five recent successive Kodak Gold Awards for Quality. No other processing laboratory has been able to match this record. After allowing for postal and peak-period delays, you should normally expect your prints after seven to ten days.

ALL YOU HAVE TO DO

Send any make of colour print film together with your cheque or postal order inside the Freepost envelope enclosed with this issue. Or fill in the coupon below and send together with your film and remittance in a strong envelope to: Practical Electronics Film Service, FREEPOST, Watford WD1 8FP. Half-frame films are welcome, and these are charged at double the full-frame price.

PERSONALISED SERVICE

Readers know we care for their prints. If you have any queries, contact our service's ten-line switchboard: (01) 953 9911.

SPECIAL FILM OFFER

Films from the high-resolution emulsion 'ColorFast' range are available to all readers at highly competitive prices. And when you order three, you get another FREE.


SPECIAL ALBUM OFFER

An attractive flip-type album, padded in black with gold embossing and holding 100 Supersize prints (in the shops £5.75) is offered to readers for only £3.99 inc. p&p. All prices are correct at the time of going to press and are for UK readers only.

USE THIS LABEL IF YOU HAVE NO ENVELOPE, OR PASS TO A FRIEND.

To: Practical Electronics Film Service, FREEPOST, Watford WD1 8FP.
From: Practical Electronics Film Service, FREEPOST, Watford WD1 8FP.
Name: ____________________________
Address: ___________________________

*Print my enclosed film
*Rush me ______ of 110/24 ______ of 126/24, ______ of 135/24 ______ of Disc/15 film

*For which I enclose cheque/P0 payable to Practical Electronics Film Service

E: ____________________________
PES: ____________________________

Post Code: ____________________________
CONSTRUCTIONAL PROJECTS

COMPUTER ENVELOPE SHAPER by R. A. Penfold
An inexpensive add-on to upgrade your synthesiser

‘RUR’ HOBBY ROBOT by Ralph P. Magee
Part Two: Electronics and software

AUTOMATIC FISH FEEDER by Mike Abbott
Dispenses pond pellets daily

DIGITAL DELAY & SOUND SAMPLER WITH COMPUTER INTERFACE by John M. H. Becker
Part Three: Assembly and testing procedures

DIGITAL TIMER by Tom Gaskell BA (Hons) CEng MIEE
General purpose timer with a wide range of applications

GENERAL FEATURES

MODEMS by M. Tooley BA & D. Whitfield MA MSc CEng MIEE
Part Three: How to get started. Also includes a "mini" Buyer’s Guide

SPACEWATCH by Dr Patrick Moore OBE

BBC MICRO FORUM by D. Whitfield MA MSc CEng MIEE
ADC explored

ROBOTICS REVIEWED
New regular look at robotics and cybernetics

SEMICONDUCTOR CIRCUITS by Tom Gaskell BA (Hons) CEng MIEE
Universal Timer (HEF4753B)

INGENUITY UNLIMITED
Readers’ circuit ideas

NEWS & COMMENT

EDITORIAL 7
NEWS & MARKET PLACE 8
INDUSTRY NOTEBOOK 15
BAZAAR 35
LEADING EDGE 36
P.C.B. SERVICE 53

CALLING CLIFFORD HONES
The Editor would very much like to contact Mr Clifford Hones (Harlow) who was pictured in the first issue of PE (Nov ’84) at the age of 13 receiving a prize from Harry Secombe.

This month’s cover is a photographic abstract of various components supplied by Mullard Ltd.

OUR SEPTEMBER ISSUE WILL BE ON SALE FRIDAY, AUGUST 2nd, 1985 (see page 33)
SUPERB EFFECTS

MONO-Stereo Echo-Recver (P.E. Sept. '84) 200ums echo (extendable), lightweight, reversible, multitrack. Kit as published Set 2188K £56.66

Ringing Modulator (P.E. Nov. '84) Fabulous effects generation. With multiwaveform 20ms noise gate. Kit as published Set 2279K £25.99

MONO-Stereo CHORUS-FLANGER (P.E. Jan. '84) Superb dual mode music enhancement. Kit as published. Set 2166K £56.66

CYBERVX (E.E. Apr. '84) Amazing robot type voice unit, with ring modulation and reverber. Kits as published Set 2268K £73.40

 urzędnie NOISE GATE & VCA (P.E. May '86) Automatic noise reduction circuit for mono or stereo. Kit as published Set 2278K £26.61

SIGNAL GENERATOR & FV (P.E. Jan. '86) Audio test equipment, Multiwaveform VCO, & frequency to voltage converter, & sweep generator. Kit as published Set 2239 £46.96

BLOW BOX: Voice operated VCF & VCA for fascinating effects

COMPANDER: Mono of stereo compressor-expansion, switchable

ENVELOPE SHAPER: Note triggered ADV with VCA

FREQUENCY DUBLER: Guitar octave raise & tone changer

FLIGZ: Smooth distortion, retains attack & decay characteristic

GUITAR SUSTAIN: Extends note decay time, with noise gate

GUITAR TO SYNTH INTERFACE: With voltage & trigger outputs

HAND CLAPPER: Auto & manual variable clap effects

MIX STEREO: Spills mono sound into stereo simulation

MUSIC MOD!8: Simple tremolo & wah guitar effects

RHYTHM GENERATOR: Computer driven, BBC, Apple, 84 & similar

STORM EFFECTS: Auto & manual wind, rain & surf effects

TOM-TOM SYNTH: Sound triggered, multivariable drum effects

TREMOLO: Mono variable depth & rate modulation

VIBRATO: Vibrato, Modular voice, 7 channels

VIDEAX: Simple robot type voice modulation

WHA-WHA: Auto, manual & note triggered, switchable

Add 15% VAT. Add Free kit £1.50 each kit. (Overseas Rates in Catalogue)

Project text & circuits can be bought on 50p each plus large S.A.E. Boxes are steel & aluminium with black finish. All kits include PCBs, parts, instructions, boxes, wires, solders.

See other advert for more audio effects kits. For catalogue of over 70 kits send 9x4 S.A.E. (For overseas catalogue send £1 or 5 IRC's)

Mail Order: Payment to Phonocoms, 100s, CHQ, PD, Access, Visa. Insurance cover 50p per £100 (obligatory on credit card orders. Details correct at press. E&OE

BECKER-PHONOCOMS
MAIL ORDER DEPT PES8, 8 FININCULATE DRIVE
ORPINGTON, KENT, BR5 4ED. TEL: 0689 37821

Master
Electronics-Microprocessors
- Now! The Practical Way!

- Electronics – Microprocessors – Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.

- Recognise and handle all current electronic components and 'chips'.

- Carry out full programme of experimental work on electronic computer circuits including modern digital technology.

- Build an oscilloscope and master circuit diagram.


New Job? New Career? New Hobby?
SEND THIS COUPON NOW!
**Introducing...**

**Serpent SCARA assembly robot**
Available as kit or ready built, 5 axes, 2kg capacity, 12 bit control system, Serpent I reach 400mm. Serpent II reach 650mm.

**BEING FEATURED IN PRACTICAL ELECTRONICS** September issue

**Please phone for brochure: 0264 50093.**
West Portway Industrial Estate, Andover SP10 3PE, A private and independent company giving prompt, personal service.

---

**CCTV CAMERAS**
**ONLY £69 EACH!**

Including VAT & carriage

Crofton Electronics are pleased to announce that they are now able to supply a C.C.T.V. camera, complete with a standard lens for the amazing price of £69 inclusive of V.A.T. and carriage. Though not new, each camera has been completely refurbished to a high standard in our own workshops and comes ready to work with any suitable monitor, digitiser, VCR etc. (may also be used with a domestic T.V. set by the addition of a simple modulator – kit available). From an input of 240 volts ac, the cameras give an output of 1 volt peak to peak and are equipped with mounting points for standard tripods. With applications as diverse as education, amateur dramatics and shop/industrial/domestic security systems demand is sure to be high and orders will be dealt with in strict rotation.

**DON'T DELAY – PLACE YOUR ORDER TODAY!**

Be sure to request our free catalogue describing our range of T.V. cameras, fixed and zoom lenses, sequential switchers, special and general monitors (colour and b/w), video digitisers, light pens, eprom erasers etc.

**MOST MAJOR CREDIT CARDS ACCEPTED**

**CROFTON ELECTRONICS** ☎ 01-891 1923
35 GROSVENOR ROAD, TWICKENHAM, MIDDLESEX TW1 4AD

---

**NOVEX 1414 COLOUR MONITORS ONLY £150 EACH**

**EXCLUDING VAT & CARRIAGE**

Crofton Electronics – Probably the best known name in the monitor field now offer the superb metal cased NOVEX 1414 RGB/COMPOSITE COMPUTER COLOUR MONITOR at the incredible end user price of £150 plus P&P, & VAT (Total £184). Full 12 month guarantee.

**FREE SERVICE MANUAL (WORTH £5) WITH FIRST 100 ORDERS**

Supplies of metal cased 9 inch monitors (green tube) will soon be available at £69 each plus p&p. & VAT.

**DON'T DELAY – PHONE YOUR ORDER TODAY!**

Other monitors available – PHILIPS 7502, PHILIPS 7522 and PHILIPS 2007 plus the full IKEGAMI range. Phone your order through today using your plastic card.

**MOST MAJOR CREDIT CARDS ACCEPTED**

**CROFTON ELECTRONICS** ☎ 01-891 1923
35 GROSVENOR ROAD, TWICKENHAM, MIDDLESEX TW1 4AD

---

**ROBOTS**
For Education, Training and Industry

**NEPTUNE I**
System from £2195

**NEPTUNE II**
System from £2950

Robots available as kits or ready built

Robots may also be taught by "lead by the nose" method.

Extensive software is supplied free with each robot.

Leads available for connection to BBC, ZX Spectrum, Apple II, Commodore 64 and VCR 20.

Most other micros are also easily usable with these robots.

Please phone for brochure: 0264 50093.
West Portway Industrial Estate, Andover SP10 3PE
A private and independent company giving prompt, personal service.
HOLIDAY HELP

You have all seen the reports in your local paper of burglaries or the scare style advertisements placed by those selling alarm systems. While we would not wish to frighten anyone it does seem that crime figures are not encouraging. With this in mind and more particularly with the thought of summer holidays coming up we felt a review of the D.I.Y. alarm market was in order.

Rather than just look at what is available we have delved into the various systems explaining in basic terms what they are, how they work and their various uses—everything from reed switches to radar and seismic detectors! We have also gone on to look at discussing the set up with your local crime prevention officer, false alarms and the various governing bodies and specifications. All this plus a buyer’s guide on D.I.Y. systems should ensure you can be at ease in the sun on holiday.

Another “holiday” project is the Automatic Fish Feeder. While this sounds very specialised it could easily be adapted to water the house plants or tomatoes while you are away, or for that matter with a little ingenuity perform any task that is required once or twice a day.

RUR

Both the above items will no doubt set readers thinking about just how they might help themselves... One project that should also get the inventive moving is “RUR” Hobby Robot. The control electronics published this month would form an excellent basis for any project. Incidentally, we should apologise for the delay in publishing the second part which was unfortunately but unavoidable (part one was in June—for those who missed it).

While on the subject of “experimenting with robots”, those very words form the title of a short series aimed at the hobbyist who does not want to spend a small fortune. The series should get you started in developing your own ideas and inventing robots and other electronically controlled mechanical items. Experimenting With Robots is in next month’s issue.

While we are getting you interested in the subject, we have some copies of our November ’84 Robotics supplement to spare. This 16-page booklet carried two feature articles on Robots and their Technology plus a Buyer’s Guide showing more than 25 small robots and giving basic information on them. Anyone wanting a free copy of this booklet should send an A4 size stamped self-addressed envelope to the editorial office with a note requesting a copy of “Robotics”.

BACK NUMBERS and BINDERS...

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 0PF, at £1 each including Inland/Overseas p&p. When ordering please state title, month and/or issue required.

Binders for PE are available from the same address as back numbers at £5.50 each to UK or overseas addresses, including postage, packing and VAT.

SUBSCRIPTIONS

Copies of Practical Electronics are available by post, inland for £13, overseas for £15 per 12 issues, from: Practical Electronics, Subscription Department, IPC Magazines Ltd., Room 2816, King’s Reach Tower, Stamford Street, London SE1 9LS. Cheques, postal orders and international money orders should be made payable to IPC Magazines Limited. Payment for subscriptions can also be made using a credit card.

Phone: 0202 671191

Editor: Mike Kenward
Secretary: Pauline Mitchell

Editorial Tel: Poole (0202) 671191
Advertisement Manager: David Tilleard 01-261 6676
Secretary: Christine Pocknell 01-261 6676
Ad. Make-up/Copy: Brian Lamb 01-261 6601
Classified Ads: Mandyl Morton 01-261 5846

Queries and letters concerning advertisements to: Practical Electronics Advertisements, King’s Reach Tower, Stamford Street, London SE1 9LS Telex: 915748 MAGDIVG

Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only. We are unable to answer letters relating to articles more than five years old.

Components are usually available from advertisers; where we anticipate difficulties a source will be suggested.

Old Projects

We advise readers to check that all parts are still available before commencing any project in a back-dated issue, as we cannot guarantee the indefinite availability of components used. We are unable to answer letters relating to articles more than five years old.

Technical and editorial queries and letters to: Practical Electronics Editorial, Westover House, West Quay Road, Poole, Dorset BH15 1JG

We regret that lengthy technical enquiries cannot be answered over the telephone.
SIR CLIVE'S BRAVE FACE

As the Hoover factory at Merthyr Tydfil in South Wales was drastically cutting back its production of the Sinclair C5 electric trike, Sir Clive himself was putting on a brave face to the retailers who he hopes will help him sell it. Speaking at the annual Radio, Electrical and Television Retailers Association (RETRA) conference at Bournemouth, in April, Sir Clive raised cynical smiles and silent laughter from High Street dealers when he told them they could sell as many C5 trikes as video recorders.

They were equally unimpressed when Sir Clive went on to suggest that his pocket TV set would sell at a rate of over 2 million a year, like portable stereo systems.

Production of the TV has now been shifted back to the Timex factory in Dundee, after the temporary involvement of Thorn-EMI-Ferguson.

The Enfield factory made a few sets, and said no thank you, telling Sinclair that it needed extensive re-design for successful mass production. According to Sinclair the Timex factory in Dundee is now mass producing and there are certainly sets in the shops.

Sinclair admitted at Bournemouth, that the home computer market has gone flat. He promised dealers that he will launch a "no compromise" portable computer next year. "The next big, vital step is a portable with a real TV screen, and no compromise over battery power and memory storage. Liquid crystal displays are totally unsatisfactory. We are confident that we can be ahead of everyone else. The Japanese will fail because they have continued to back I.C.D.'s. We shall launch the new portable in 1986.

Sinclair reiterated his previously reported promise, of a real electric car with "300 mile range and 80 mile per hour top speed" by 1990.

He acknowledges that his promised vehicle depends on completely new technology.

More recently, rumours suggest that the C5 company is up for sale in an attempt to provide cash for his computer business commitments. Debts to Thorn EMI and Timex amount to around £10 million, with an additional overdraft estimated at £5 million. Over £30 million worth of equipment is said to be held in stock—directly reflecting the disappointing sales of the QL.

City of York exhibit

EXHIBIT, the prestigious high technology exhibition will be staged in the centre of the City of York by IBM, in the gardens of the Yorkshire Museum, from Monday, July 1st to Sunday, July 28th.

Designed to stand in a natural parkland setting, IBM's pavilion is a light, flexible structure incorporating advanced architectural features and was itself developed with the aid of a computer.

An arcade, with 34 arches, is the framework for the large, covered pavilion (48 metres long, 12 metres wide and 7 metres high). The poly carbonate pyramids which make up the pavilion are completely transparent.

 Entirely free of charge, the exhibition will feature a wide range of information technology demonstrations aimed at informing and stimulating young people's interest in creative computer applications of the future.

Up to 45 temporary summer jobs, with specialist IBM training, will be created for local students, acting as demonstration staff.

ELECTROSAFE LIFESAVER

The 'Powerbreaker-H20' from ElectroSafe, a division of Featmarks Ltd, is designed to prevent death or injury from an electrical accident.

Frayed or cut wires on garden or DIY power tools, etc., can be lethal, either through electric shocks or through causing fires. The H20 senses any small leak of current to earth—perhaps through a person. It cuts off the electricity supply in a split second when this happens.

Made in the UK to BS4293 and BS1363, the H20 has a durable, tamper-proof plastic casing. The fuse can be changed in seconds without the use of a tool. The device can be used on all standard 13 amp sockets. A fool-proof and abuse-proof reset mechanism has been incorporated. There is a red "flag" on its side which indicates "on/off" and it has a test button so that you know it is working properly.

Finally, the H20 has a neon light which will indicate a dangerous, incorrectly-wired socket, and it will trip automatically if plugged into one of these sockets. It can also be used with extension cables, even a four-line trailing socket, so you can use up to four appliances at once.

The Powerbreaker-H20 costs £19.95 inc. VAT and p&p. It is available from ElectroSafe, P.O. Box 16F, Cheshington, Surrey KT9 2DA (01-391 0985).
Software directory

In part with the aid of central government, computers have now been acquired by virtually every primary and secondary school, and further and higher educational establishments in Britain.

The last two years have seen an explosion in the amount of educational software commercially available—quite apart from that produced within the educational sector, and quite apart from pure "games".

With more than 1,000 entries, the M & E Educational Software Directory will be a reference for teachers, students and home computer owners alike. The software is classified under subject and specialist headings. Each entry includes a short description of what the software will do, specifies the machines for which versions of the software are available, and gives the name of the supplier and a price guide.

Compiled and written by J. Arthur and T. Russell, the directory is published by MacDonald and Evans and retails at £12.50.

The following three kits, from Powertran Cybernetics, should be of interest to our musically orientated readers.

Specially designed to meet the unique demands of keyboard players, the Synth Mix (SM-6) features three auxiliary sends on each of its six channels. External effects units can thus be utilised properly. All connections are made via the back panel to keep the front of the rack mounting (4U) unit clear. A stereo headphone output is incorporated for private practice or pre-gig tuning. Price £194.35.

Avoid cable tangles with the 'patchbox' which will enable you to make all your connections on one panel. 16 Pairs of jack sockets are presented in a neat 19-inch rack mounting panel with spaces for labelling. Contacts between pairs of sockets can be normalised if required. Phono sockets at the rear connect to your instruments, effects, mixer, etc. Price £40.25.

For studio work and for practice this amplifier enables up to six pairs of stereo headphones to be used from a single input source. Alternatively, two input signals can be used, each being fed to a group of three pairs of headphones (HA-6). Price £102.35.

Source for valves

T.O. Supplies (Export) Ltd., has joined the Selectron Group of companies at their new headquarters at Gravesend in Kent. They have been a major exporter of electronic components for over 25 years, and will be working with P.M. Components, the Selectron Group main distributor, to provide a comprehensive range of electronic tubes, valves, integrated circuits, semiconductors. A wide range of video and TV products will also be available.

Peter Watson and Mike Leeper of the Selectron Group have also announced that the Meopham Green warehouse, home of P.M. Components for the last few years, will shortly be re-opening as a surplus superstore in conjunction with Bernard Welling, formerly of B & T Electronics.

Further information and lists of surplus electronic goods will be published later this year. Details from P.M. Components Ltd., Selectron House, Wrotham Road, Meopham Green, Meopham, Kent DA13 0QY (0474 813225).

Countdown...

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Brian Butler.

Video Software Sept. 1–3, Olympia, G3
Personal Computer World Show Sept. 18–22, Olympia 22
Leeds Electronics Show Sept. 24–26, University E
Electron & BBC User Sept 27–29. UMIST, Manchester L

Electronic Publishing Nov. 5–7 Wembley Conf. Cntr. O
Compec Nov. 12–15. Olympia K2
Electron and BBC User Nov 14–17, New Horticultural Hall, London L

A1 Inst. Electronics ☎ 0706 43661
E Evan Steadman ☎ 0799 26699
G3 Link House Video ☎ 01-686 2599
K2 Reed Exhibitions, Surrey Ho., 1 Throway Way, Sutton, Surrey.
L Database ☎ 061-420 8157
M Montbuild ☎ 01-486 1951
O Online ☎ 01-868 4466
T1 Cahners ☎ 0483 38085

Practical Electronics August 1985
CONVENTIONAL synthesizers use an ADSR envelope shaper, or in the case of the more simple instruments an attack/decay type might be fitted. A wide range of envelope shapes and effects can be obtained from an ADSR envelope shaper, including envelope shapes that enable good simulations of many "real" sounds to be produced. Nevertheless, just four stages of shaping plus the restrictions on the way in which the volume can be altered during each of these stages makes it impossible to produce really intricate envelope shapes.

DIGITAL SHAPING

Digital techniques are being applied to electronic music in more and more ways, including digital systems of envelope shaping. These enable practically any desired envelope to be generated. For instance, shapes such as a "backwards" ADSR or one having several peaks and troughs can be generated just as easily as the classic ADSR shape.

It is perfectly feasible to use an external digital envelope shaper with an ordinary analogue synthesiser provided the instrument has a gate output socket. Building an add-on of this type from scratch would be quite a costly business, but with the aid of a suitable home computer a fairly simple circuit will suffice, with the computer providing the complex control and memory circuits.

The unit described in this article has been designed for use with the VIC-20, Commodore 64, and BBC model B computers, together with a synthesiser which has a gate output signal at normal 0–5V logic levels. It should in fact be possible to use it with any computer that can provide 7 digital outputs and one digital input (the Memotech MTX computers for example). The way in which the unit is used is largely dependent on the software. A simple routine for the Commodore machines is provided, and with this the envelope shape is controlled by placing a series of numbers in a data statement. The program for the BBC machine is a little more sophisticated, and it operates by entering the required envelope shape via a joystick, with the shape being displayed on-screen. There is plenty of scope for users to develop software to precisely match their needs, and the advantage of a digital approach is the almost unlimited scope for customising that it provides.

SYSTEM OPERATION

The block diagram of Fig. 1 shows the way in which the system functions. The audio output from the synthesiser is processed by a VCA and buffer stage in the add-on envelope shaper. It is not possible to utilize the internal VCA of the synthesiser due to a lack of an input socket to provide access to the control input of the VCA. Any CV inputs are usually for the VCOs and the VCF. The buffer amplifier is merely needed to give the circuit a low output impedance.

The gate output is fed to a digital input of the computer. This input monitors the state of the gate output, and with the aid of a software routine it starts a new envelope each time a low-to-high transition is detected. The leading edge of the gate pulse is then effectively used as a trigger signal rather than a true gate pulse. However, with suitable software the length of the gate pulse could be used to control the envelope shape in some way, and it would be perfectly feasible to provide more sophisticated control than is possible with an ADSR envelope shaper. The signal could be made to slowly decay during the gate period rather than just hold on indefinitely at a certain level, or a sort of tremolo effect could be used during this period. With digital envelope shaping it is possible to obtain any type of envelope shaping you desire.

The control voltage for the VCA is obtained from a digital-to-analogue converter. This is actually an 8-bit type, but here it functions as a 7-bit converter as the least significant input is just connected to earth. This leaves the least significant line of an 8-bit input/output port free to act as the input to monitor the gate signal. This gives 128 gain levels in theory, but in practice the VCA cuts off at low output values and not just zero. Even so, this gives over 100 different gain levels, enabling a very wide dynamic range to be covered with an average increment of under 1dB. Unlike most computer sound generators (which have only sixteen volume levels) this enables the volume to be varied without the stepping action being apparent.

The digital-to-analogue converter is a standard R-2R type which consists of a resistor network, eight electronic switches that are controlled by the input signals, and a 2:55V precision reference source. The reference source sets the full scale output voltage of the converter, since the maximum output voltage is equal to this reference potential. An amplifier is used to boost the output to just over 5V in order to give a better drive level for the VCA, and this stage also provides buffering.

A supply voltage of 5V is needed for the digital-to-analogue converter, but the other stages of the unit require a supply potential of about 9 to 12V. This higher potential is not available at
The user port of the VIC-20, Commodore 64, or the BBC model B computers has two 9V a.c. outputs, and one of these is fed to a rectifier and smoothing circuit which provides a supply of about +9 to 10V.

**Circuit Operation**

The full circuit diagram of the Computer Envelope Shaper appears in Fig. 2. IC1 is the digital-to-analogue converter, and this is a Ferranti ZN426E low current consumption type. It does not have a built-in data latch and must be driven from latching outputs, but the user ports of all three machines provide suitable outputs. The only discrete components required by IC1 are R1 and C1 which are respectively the load resistor and decoupling capacitor for the integral 2.55V precision reference source.

Operational amplifier IC2 is used as the output amplifier and buffer stage for the converter. IC2 is used in the standard non-inverting mode and the negative feedback network formed by R2 and R3 set the nominal voltage gain at two times. The CA3140E device used in the IC2 position is a type which can operate with its output at virtually the negative supply potential. This is advantageous in this application since it avoids the need for a negative supply for IC2. Devices such as the 741C and LF351 do not have suitable output stages and are not suitable substitutes for the CA3140E in this circuit.

The voltage controlled amplifier uses one section of an LM13600N (or the almost identical LM13700N) dual transconductance operational amplifier. The other section of the device is not needed and is totally ignored. Even though only one section of IC3 is utilized, the LM13600N is still competitive with the alternatives in terms of both cost and performance.

Transconductance operational amplifiers are very different to ordinary operational amplifiers, the main difference being that they are current- rather than voltage-operated devices. It is the differential input current that determines the output current, and not the differential input voltage that determines the output voltage. In practice this is not very convenient, and it is normal for the input signal to be applied to the device via a series resistor so that the input current is proportional to the input voltage. Also, the output is given a load resistor so that the output voltage is proportional to the output current. This effectively converts the device to voltage operation. In this circuit R10 is the resistor in series with the input and R9 is the output load resistor.

The output voltage of the circuit is a function of the input voltage and the bias current fed to the "amplifier bias" input at pin 1. The gain of the amplifier can therefore be controlled by means of this bias current. R4 is connected in series with the bias input so that the current flow is roughly proportional to the applied voltage, and the required voltage control is obtained. C3 prevents any large and very rapid changes in control current. This smoothes out the steps in the control signal and prevents relatively high frequencies from being modulated onto the output signal (which would produce "clicking" sounds). This is not absolutely necessary if the gain is being incremented and decremented one step at a time, but it can give much better results if the unit is used with fairly simple software which gives relatively coarse control of the envelope shape.

R5, R6, and C4 provide a centre tapping on the supply lines which is used to bias the inputs of IC3 via R7 and R8. The output load resistor (R9) must also be returned to this point in the circuit. The output from the transconductance amplifier is at a fairly high impedance, but the LM13600N has a Darlington Pair emitter follower buffer stage for each amplifier. This provides the unit with a low output impedance. R12 is the load for the output buffer.
The amplifiers of the LM13600N feature linearising diodes at the inputs, and by feeding a bias current to these it is possible to obtain improved distortion performance and dynamic range. R11 is used to supply a suitable bias current to the linearising diodes. For the Commodore 64 and VIC-20 computers one 9V a.c. output of the user port is rectified by C8, R13, D1 and D2, and then smoothed by C7. This is a quite crude way of obtaining a 9 to 10V supply, but it gives an adequately smoothed supply with no significant hum or noise detectable at the output of the unit. Of course, if the unit is used with the BBC model B computer and its 12V d.c. output the rectifier circuit is not needed.

CONSTRUCTION
Details of the printed circuit design are reproduced in Fig. 3.

In general, construction of the board is quite straightforward, but note that IC2 has a MOS input stage and consequently requires the normal MOS antistatic handling precautions to be observed. Do not overlook the single link-wire next to C2 and IC1. Omit C8, R13, D1, and D2 if the unit is only to be used with a BBC model B computer.

The user ports of the VIC-20 and Commodore 64 computers can be regarded as identical as far as connection to this unit is concerned. Connection to either machine is via a piece of 11-way ribbon cable up to about one metre or so in length, and a 2 by 12-way 0-156 inch edge connector. Fig. 4(a) shows the correct method of connection for this. It is unlikely that the edge connector will be fitted with a polarising key, and care must therefore be taken to ensure that it is always fitted to the user port the right way round. It is advisable to clearly label the top and bottom edges of the connector as such.

Connection to the user port of the BBC machine is by way of an 8-way ribbon cable and 20-way IDC header socket. Probably the easiest way of making these connections is to use a ready-assembled 20-way socket and lead, ignoring the 12 leads that are unused. For the Commodore 64 and VIC-20 computers a 9V a.c. connection plug is required. A 20-way IDC header socket is essential for these.

Components . . .

<table>
<thead>
<tr>
<th>Resistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
</tr>
<tr>
<td>R2, R3, R10</td>
</tr>
<tr>
<td>R4, R11</td>
</tr>
<tr>
<td>R5, R6, R12</td>
</tr>
<tr>
<td>R7, R8</td>
</tr>
<tr>
<td>R9</td>
</tr>
<tr>
<td>R13</td>
</tr>
<tr>
<td>All 1% ±5% carbon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C3</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C4</td>
</tr>
<tr>
<td>C5</td>
</tr>
<tr>
<td>C6</td>
</tr>
<tr>
<td>C7</td>
</tr>
<tr>
<td>C8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1, D2</td>
</tr>
<tr>
<td>IC1</td>
</tr>
<tr>
<td>IC2</td>
</tr>
<tr>
<td>IC3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK1</td>
</tr>
<tr>
<td>JK1, JK2, JK3</td>
</tr>
<tr>
<td>Case</td>
</tr>
</tbody>
</table>
not required in this case. The +12, +5, and OV signals are taken from the power port of the computer using a three way cable terminated with the appropriate type of plug. Fig. 4(b) gives connection details for both the user and power ports.

The case for the prototype is a Verocase having dimensions of 180 x 120 x 39 millimetres. This is a neat and practical case, but is admittedly somewhat larger than is really necessary. The three sockets, which are all standard jack types, are mounted on the front panel. A notch must be filed in the rear panel of the case to provide an exit point for the lead or leads to the computer. Alternatively, a multiway socket or sockets could be fitted on the rear panel and connected to the printed circuit board. These sockets could then be connected to the computer via a suitable lead or leads. This is a neater but more difficult and costly solution. On the prototype, which is used mainly with a BBC model B computer, a compromise was adopted with the connections to the user port being made direct while the connections to the power port are made through a 3-way DIN socket mounted on the rear panel.

SOFTWARE

All three computers have a user port which has each input/output line individually programmable to provide the required function.

This is accomplished by writing the appropriate value to the data direction register. Setting a bit to 1 designates the corresponding input/output line as an output—setting a bit to 0 designates the corresponding line as an input. In this case the least significant bit must be an input while the other seven bits are all outputs. A value of 254 must therefore be written to the data direction register which is at address &FE62 in the BBC model B, 56579 in the Commodore 64, and 37138 in the VIC-20. Data is then written to and read from addresses &FE60, 56577, or 37136 respectively.

The basic action of the software is to read the input line and loop until this goes high (indicating the start of a note and an envelope). The series of values are then written to the user port to generate the required envelope shape. However, there is a slight complication in that the program must continue to monitor the input line, and must go back to the beginning of the envelope if the input line goes through a low to high transition before the end of the envelope.

COMMODORE 64 AND BBC ROUTINES

In the routine for the Commodore 64 the envelope shape is controlled by the values in the DATA statements. The same routine will operate with the VIC-20 if the two user port addresses are changed to suit. The program will only output about 30 values per second which limits the precision with which the required envelope shape can be obtained, although quite good results are still obtained. The speed of a machine code program would be needed to fully utilize the capabilities of the unit with the Commodore computers. Envelope shapes can be saved simply by saving the whole program including the DATA statements.

The BBC program is more sophisticated and has envelope shapes entered using a joystick. If you do not have a BBC joystick an alternative is to connect a potentiometer to the analogue port in the manner shown in Fig. 5. The trace is automatically swept across the screen and the joystick is used to control the trace

**Fig. 5. Connecting a potentiometer to the BBC computer’s analogue port**

```plaintext
5 REM COMMODORE 64 PROGRAM
8 REM CHANGE PORT ADDRESSES FOR VIC-20
9 REM DATA STATEMENTS GIVE EXAMPLE Envelope SHAPE
10 POKE 56577,254
20 IF (PEEK(56577) AND 1) = 0 THEN GOTO 20
30 READ A
40 IF A = 0 THEN GOTO 100
50 POKE 56577,A
60 IF (PEEK(56577) AND 1) = 1 THEN GOTO 30
70 RESTORE
80 GOTO 20
100 RESTORE
110 IF (PEEK(56577) AND 1) = 1 THEN GOTO 110
120 GOTO 20
1000 DATA 225,245,225,225,215,205,195,175
1010 DATA 175,165,155,145,135,125,115,105
1020 DATA 105,105,115,125,135,145,155,165
1030 DATA 175,185,195,205,215,225,235,245
1040 DATA 255,245,235,225,215,205,195,185
```
vertically and draw out the required shape. This process will repeat automatically, but when exactly the required shape has been obtained the program can be halted by pressing the fire button. If you are using a potentiometer to control the trace the following line should be substituted at line 640.

640 UNTIL INKEYS(0)<=""

The program can then be halted by pressing any key on the computer’s keyboard. The envelope can be reproduced at two speeds. Operating instructions are included in the program.

The routines provided are really only intended as starting points, and there is ample scope for the user to develop software to exactly suit his or her needs.
with nuclear power capacity and the present state of play reveals some surprising statistics. The yardstick is the percentage share of nuclear to total generating capacity.

France is world leader with 58.7 percent of all its capacity being nuclear with Belgium (50.8 percent) and Finland (41.4 percent) second and third. Bulgaria, not generally regarded as a high-tech country is sixth (28.6 percent) while the Soviet Union generally regarded as high-tech rates a lowly 14th spot with a modest 9 percent.

The United Kingdom is running 11th (17.3 percent) but ahead of the United States (13.5 percent) and Canada (11.6 percent). Of course not too much should be read into the figures because each country has different needs in respect of availability and cost of indigenous fuels, electricity demand and economic development.

Our own future programme is seriously obstructed by a noisy anti-nuclear lobby which has already delayed the planned Sizewell in Suffolk at least two years. Nonetheless, for obvious reasons of reliability of supply, the Central Electricity Generating Board is dedicated to reducing dependence on coal and expects to expand nuclear capacity to 40 percent or more of the total by the end of the century.

But France, already world leader, expects to achieve 75 percent nuclear power by 1990. French tariffs, largely due to nuclear power, are some 20 percent lower than in Britain and the large industrial users in France are claimed to have a 30 percent cost advantage in energy over their competitors in the US. In France it is wondered whether the anti-nuclear groups realise the economic damage they do or, indeed, whether the 'greens' among them know that burning coal and oil is infinitely more damaging to the environment than the 3,500 operating years already clocked up by the world's nuclear power stations.

**Japanese Connections**

When, forty years ago, Japan was forced into military surrender by a devastating atomic left and right, the inherent militancy of the nation re-emerged in a bid for world domination with results which are plain to see.

Perhaps from a sense of guilt over Hiroshima and Nagasaki the west has been tolerant of some of the worst excesses of Japanese trading practices. Today there is a hardening of attitude that Japan should fall into line with other developed countries while still free to export her own products worldwide. If and how this problem will be resolved only the next few months will tell.

Meantime, we perhaps need Japan more than she needs us. ICL's new super-fast Series 39 mainframe computer would not have been possible without cooperation with Fujitsu on chip manufacture. BL has made good use of cooperation with Honda, Nissan at Sunderland is already recruiting in anticipation of starting car production in the UK. And Trade and Industry Minister Norman Tebbit was recently in Japan and is reported to have a list of over 300 Japanese firms interested in establishing subsidiary companies in Europe. Mr Tebbit hopes a good proportion will choose the UK as a base and he has some good examples to influence them in their choice.

**Good Relations**

When looking at the Japanese electronic companies already established in the UK one sees instantly why Japan succeeds so consistently while we so often fail. It is often thought that the Japanese do well in the UK only if starting fresh on a green field site recruiting only those untainted by old-fashioned, inefficient work practices. But Hitachi and Toshiba in particular have existing factories and turned loss into profit. albeit at a price in jobs. But when Toshiba, for example after a period of five years is now producing the same number of TV sets with one only fifth of the staff of the previous British employers and turned huge losses into profits it is true that there are no bad troops, only bad officers.

We have here a fine paradox. When I was at social occasions in Japan I found it somewhat embarrassing to find the polite introductory bow between the Japanese prolonged while, by careful hedging, it was disguised which person was the more senior and therefore the one to be deferred to. Yet in industry everyone is equal though mutual respect is encouraged, in fact mandatory. One works regular, one worker status, one trade union, one standard for all in clocking on, holidays and sick pay.

Naturally there are differentials in pay and managers will still manage. But the concept of officers and troops, of directors dining rooms and staff canteens is absent, as is the shop steward constantly on the alert for any grievance capable of exploitation. He or she is now a representative, has a good working relationship with management and the workforce and differences are resolved by discussion, not walk-outs.

**Smart Buy**

There is little doubt that, during the period leading up to privatisation, British Telecom was keeping a sharp eye on Cable and Wireless whose liberation from Government restraint came much earlier. And now BT has followed C & W's example of expansion with the acquisition of 51 percent of the Canadian Mitel Corporation.

This brings two great assets to BT. First it brings to BT a large scale manufacturing operation. Second, perhaps even more important, it gives BT an opening in the North American as well as other world markets.

Mitel, whose UK manufacturing base is in South Wales, also has factories in the USA, Germany, Hong Kong, Mexico, New Zealand and Puerto Rico and sells microprocessor controlled PABXs to 80 countries. Mitel was in financial difficulties but over a medium term it looks a smart buy for BT. Mitel's founders, Terry Matthews and Mike Copeland are, in effect, 'coming home' as they were both ex-BT employees before seeking a fortune in Canada.
IN this, the final part of the R.U.R. (Reekie Universal Robot) we look at the electronics (designed by James Chisholm) and the Tiny BASIC software.

The control card for the R.U.R. is based around the Z8671 single chip Microcomputer from Ziqq. It is an industrial micro controller in the Z8 range. It was chosen as it has a 2K Tiny BASIC internally held in ROM. Two fully programmable timer counters, full duplex USART/RS232/432 as well as I/O ports and addressing capabilities up to 62K, enough for most control, vision, speech recognition and speech synthesis, and enough internal registers for any machine code programs.

The basic electronics supplied with the robot has 2K RAM and 4K EPROM containing programs described later. An 8255 I/O post giving another 24 lines of I/O. A TTL to RS232/432 (almost) converter. A clock running at 7-37MHz and a Polaroid ultrasonic range finder which is connected to timer T1 and used as object and path sensing system. Two Darlington drivers are connected to the output lines to the 8255 that provide for the direction relays, motors and I.E.D. eyes.

The Address Range is decoded from 0000 HEX to 3FFF HEX into 2K blocks. These can be set-up as either ROM or RAM by changing the links so that as much or as little RAM can be used. However, with an all ROM system there are only about a 100 usable registers inside the CPU and the stack grows down from the top of memory and takes up most of the registers. With RAM in place the stack sits on top of external RAM and grows down. The bottom 4K of this area is taken up with the internal ROM and I/O ports. Also two 8-bit bi-directional I/O ports have been set aside for experimental use. One port, the individual lines of the byte can be set to be input or open-drain, and under software control can be set-up to be of type active input or open-drain. The other port is set-up to be input or output and is a byte wide.

THE ELECTRONICS

On reset the Z8 (Fig. 4) non-destructively tests the memory to find areas occupied by RAM. The micro-processor sets up the output port and prints a colon (:) and then jumps to %1020 where it starts the software held in EPROM. If the EPROM is removed and replaced by 6116 the whole system, without any of the Reekie software, is available to the user. With the Reekie EPROM it auto-runs the software as described later.

DECODING

The Z8 has a multiplex data/address bus and to decode it AS and DS are required. The data is valid when DS is at logic 1 and address bus bits 0 to 7 are valid when AS is logic 1. The address bus is latched by the 74LS373 and brought out to the edge. Bits 8 to 15 are valid throughout both cycles. These feed into 74LS138 3-to-8 decoder which decodes address range 0000 HEX to 3FFF into 2K blocks suitable for the 6116 and 2716 2K by 8 RAMs and EPROMs. To decode for 2732 two of these bits are ANDed together to form a 4K chip select suitable for the 2732. And line A11 must also be exchanged for the read write R/W for the signal. This can be achieved by changing the links.

PORT 2

Port 2 is available for the user. It can split into individual bits of either input or output type by setting the internal register @246 to 1 for input, and 0 for output, on each individual bit, then writing the data to be sent out by using @2 = data, e.g.:

10 @246 = 0 : REM sets port 2 to output
20 @2 = 255 : REM output 255 to port 2

And the ports as follows:

@%800 = Port A
@%801 = Port B
@%802 = Port C

This echoed through the block %0800 to %0FF. Port A drives into a Darlington driver i.e. which can sink 500mA as long as the whole package does not dissipate more than 1-8 watts. This is used to drive the eye i.e. on lines 0 to 5 and the head motor on and off on bit 6, and direction on bit 7.

Port B is brought to the edge of the printed circuit board and is free for users use.

Port C is split, the lower bits are set-up as mainly inputs to monitor switches on the head position (if fitted) and a demonstration button. Bits 4 to 7 are set as outputs and control the direction of the main motors. Bit 4 controls the left motor, bit 5 controls the direction of the left motor: 1 = forward. Bit 6 controls the right motor on logic 1, and bit 7 controls the direction of the right motor: 1 = forward. See Table 1 for guidance of driving the motors.

INTERRUPTS

The Z8 has 6 interrupts, 4 internal and 4 external, i.e. two both internal and external. Of these, two are taken by the USART INT 3 and 4, and a further two are taken by the ultrasonic range-finder system, these being INT5 and INT2, leaving 0 and INT1 for the user. These are vectored by 16-bit addresses stored in RAM, and should point to the start of service routines. All these interrupts can be prioritised and enabled by very powerful interrupts system. See Table 2.

INT0 and INT1 are negative edge-triggered and brought out on port 3,2 and 3,3. These can also be set-up as input and output lines by changing the port 3 register 247 % F7.
ULTRASONICS

The ultrasonic signal VSW is the Pulse Transmit signal and is connected to port 3,5 when it is taken low, transistor TR3 conducts and transmits a pulse. Once the pulse is transmitted XLG goes low, thus setting the RS latch built around IC5 so starting the clock T1 in the Z8. Upon first echo from the object in its path FLG goes low, resetting the latch and stopping the clock. The distance...
**COMPONENTS...**

**Resistors**
- R1–R16 100 (16 off)
- R17, R36, R37 407, 4W (3 off)
- R18 100k
- R19, R24, R25, R27 4k7 (7 off)
- R30–R32
- R20 12k
- R21, R22 5k6 (2 off)
- R23, R26 330 (2 off)
- R29, R35 10k (2 off)
- R33 2k2
- R34 1k
- R38, R41 470 (2 off)
- R39, R42 82 (2 off)
- R40, R43 39 (2 off)

All resistors \( \pm 5\% \) unless otherwise specified.

**Capacitors**
- C1, C17 10u, 63V tantal. bead (2 off)
- C2, C22, C23 47n disc cer. (3 off)
- C3–C10, C13–C16, C18–C21 100 disc cer. (16 off)
- C11, C12 22n (2 off)
- C19–C21 100n (3 off)

**Semiconductors**
- IC1 Z8671 micro
- IC2 74LS138
- IC3 74LS04
- IC4 74LS08
- IC5 74LS00
- IC6 8255
- IC7, IC8 2001A (2 off)
- IC9 74LS373
- IC10 2732 or 6116
- IC11 6116
- IC12 2732 or 6116
- IC13 6116
- IC14 2732 or 6116
- IC15 6116
- IC16, IC17 7805 (2 off)
- TR1 BC182L
- TR2 BC121L
- TR3, TR5 BC108 (2 off)
- TR4 ZTX751
- D1, D3, D4 1N4148 (3 off)
- D2 5V6 Zener
- D5, D6, D7 1N4001 (3 off)
- D8, D27 0-2 in. green I.E.D. (2 off)
- D9–D26, D28–D45 0-2 in. red I.E.D. (36 off)

**Miscellaneous**
- LSI 2in. 8Q loudspeaker
- S1, S2 keyboard type "click" switches (2 off)
- Main p.c.b., Relay p.c.b., Eye p.c.b. (2 off)
- RLA, RLB, RLC 12V two-pole changeover relays (3 off)
- 3A fuse plus p.c.b. holder, heatsink for regulator IC16, Xr1 7-382MHz crystal, 24-pin d.i.l. i.c. socket (6 off), 16-pin d.i.l. i.c. socket (3 off), 20-pin d.i.l. i.c. socket, 14-pin d.i.l. i.c. socket (4 off), 40-pin d.i.l. i.c. socket (2 off), p.c.b. mounting 5-way d.i.n. socket for RS232, 5-way p.c.b. plug, 4-way p.c.b. plug (4 off), 6-way p.c.b. plug, 8-way p.c.b. plug (3 off), PP3 battery-lead with studs, 12V battery lead with spare connector.

**Note**
A full kit of parts for the RUR is available from Reekie Robots. Tel: 01-892 2877.
The kit is supplied with one 6116 and one 2732. Ports 2, 3 are for future expansion.

---

Fig. 10. Component layout and wiring of the main p.c.b.
20

Fig. 11. Ultrasonic unit timing and operation diagram

in front of the transducer is given by the formula:

\[ D = 331.4 \times \left(\frac{K}{273}\right)^{0.6} \times \frac{1}{2} \]

\( D \) is in metres
\( K \) is the air temp. in Kelvin
\( t \) is time in seconds
This can be simplified to \( D = 170 -2t \) at 15 deg. C. If there is no ob-
ject in the path, i.e. the distance to any wall which is over 35 feet
after 62ms, then FLG automatically goes low.
The internal software routine returns the distance in cm at 15
deg. C and makes use of INT 5 to increment the count in the
register overflows.
Port 3,0 and 3,7 are used to connect the USAR to the outside
world and are fed directly to the RS232/432 driver and receiver

Table 1. Motor control logic

<table>
<thead>
<tr>
<th>SIDE A</th>
<th>SIDE B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 5V on A + B</td>
<td>left free</td>
</tr>
<tr>
<td>2 left free</td>
<td>left free</td>
</tr>
<tr>
<td>3 DS</td>
<td>AS</td>
</tr>
<tr>
<td>4 A14 and A15</td>
<td>reset</td>
</tr>
<tr>
<td>5 AO</td>
<td>A1</td>
</tr>
<tr>
<td>6 A2</td>
<td>A3</td>
</tr>
<tr>
<td>7 A4</td>
<td>A5</td>
</tr>
<tr>
<td>8 A6</td>
<td>A7</td>
</tr>
<tr>
<td>9 A8</td>
<td>A9</td>
</tr>
<tr>
<td>10 A10</td>
<td>A11</td>
</tr>
<tr>
<td>11 A12</td>
<td>A13</td>
</tr>
<tr>
<td>12 A14</td>
<td>A15</td>
</tr>
<tr>
<td>13,3,3</td>
<td>in</td>
</tr>
<tr>
<td>14,3,1</td>
<td>in</td>
</tr>
<tr>
<td>15,3,7</td>
<td>00</td>
</tr>
<tr>
<td>16,3,5</td>
<td>00</td>
</tr>
<tr>
<td>17 R/W</td>
<td>SP</td>
</tr>
<tr>
<td>18 SP</td>
<td>SP</td>
</tr>
<tr>
<td>19 D0</td>
<td>2,0</td>
</tr>
<tr>
<td>20 D1</td>
<td>2,1</td>
</tr>
<tr>
<td>21 D2</td>
<td>2,2</td>
</tr>
<tr>
<td>22 D3</td>
<td>2,3</td>
</tr>
<tr>
<td>23 D4</td>
<td>2,4</td>
</tr>
<tr>
<td>24 D5</td>
<td>2,5</td>
</tr>
<tr>
<td>25 D6</td>
<td>2,6</td>
</tr>
<tr>
<td>26 D7</td>
<td>2,7</td>
</tr>
<tr>
<td>27 SP</td>
<td>SP</td>
</tr>
<tr>
<td>28 SP</td>
<td>SP</td>
</tr>
<tr>
<td>29 SP</td>
<td>SP</td>
</tr>
<tr>
<td>30 SP</td>
<td>SP</td>
</tr>
<tr>
<td>31 +12V</td>
<td>0V</td>
</tr>
<tr>
<td>32 OV</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Interrupt priorities

<table>
<thead>
<tr>
<th>R249 IPR</th>
<th>R251 IMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupt Priority Register</td>
<td>Interrupt Mask Register</td>
</tr>
<tr>
<td>(F9H: Write Only)</td>
<td>(FBH: Read/write)</td>
</tr>
</tbody>
</table>

\[ \text{R249 IPR} \]

- D7 D6 D5 D4 D3 D2 D1 D0
- RESERVERED
- IRQ3, IRQ5 PRIORITY (GROUP A)
- 0 = IRQ5 > IRQ3
- 1 = IRQ3 > IRQ5
- IRQ4, IRQ2 PRIORITY (GROUP B)
- 0 = IRQ2 > IRQ4
- 1 = IRQ4 > IRQ2
- IRQ1, IRQ4 PRIORITY (GROUP C)
- 0 = IRQ1 > IRQ4
- 1 = IRQ4 > IRQ1
- INTERRUPT GROUP PRIORITY
- RESERVED = 000
- A>B>C = 010
- A>B>C = 011
- B>C>A = 100
- B>A>C = 110
- B>A>C = 111

\[ \text{R250 IRQ} \]

- D7 D6 D5 D4 D3 D2 D1 D0
- RESERVERED
- IRQ0 = P33 Input (DS = IRQ0)
- IRQ1 = P32 Input
- IRQ2 = P31 Input
- IRQ3 = P30 Input, SERIAL Input
- IRQ4 = O Serial Output
- IRQ5 = T1
circuit built around transistors TR1 and TR2, and various other associated components. This circuitry is powered by two PP3 batteries giving a voltage swing of 18 volts, enough for quite long lengths but this can easily be modified to give a potential of 24V for standard RS232 interfaces.

PORT 3
Port 3,6 is connected directly to a Darlington and drives a speaker which enables beeps to be created from timer T1.
The internal UART in the Z8 is set-up to transmit the 8 bits with no parity and 2 stop bits. It is fully interrupt driven using interrupts 3 and 4 so is fully duplex (repeating everything sent to it), employing the timer TO for the generation for its Baud rates.

THE 8255
This is an Intel chip which happens to work with the Z8. To control it, it has a Data Direction Register (DDR) addressed by @%803HEX as shown in Fig. 12.

ASSEMBLY AND CHECKING
To construct the relay board the passive components should be inserted first, then the d.i.l. sockets, and then the relays and transistors etc. Power up and check the +5V rail from the regulator before plugging in the i.c. When everything is found to be satisfactory, power down again and plug in IC5.
Assemble the main board to the same general rules and, again, check the supply voltages throughout before plugging in the i.c.s.
When ready, connect the relay board with the main board. Plug in IC1 and power up. Do not yet plug in the ROM. Using the terminal, check that a colon (:) appears on the screen. If the colon does not appear, the fault is almost certainly in the power, clock, RS232 or reset circuit. Check these areas and rectify.
Table 3. This is only a minor selection of what can be done with this powerful system and some novel and interesting extensions to normal BASIC keywords can be used allowing such things as relative, index, immediate and indirect register addressing from BASIC.

<table>
<thead>
<tr>
<th>Expressions:</th>
<th>Functions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable names A-Z</td>
<td>AND (a,b) Performs a logical AND of the expressions a,b.</td>
</tr>
<tr>
<td>Signed decimal numbers in the range -32768 to +32767.</td>
<td>USR (a,b,c) Calls an assembly language routine at address a. The expressions b,c may be used to pass arguments to the routine. The assembly language routine must return a value.</td>
</tr>
<tr>
<td>Hexadecimal numbers (preceded by &quot;%&quot;) in the range 0 to 65535.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operators:</th>
<th>Arithmetic Operators:</th>
</tr>
</thead>
<tbody>
<tr>
<td>= equal.</td>
<td>addition.</td>
</tr>
<tr>
<td>&lt;= less than or equal.</td>
<td>subtraction.</td>
</tr>
<tr>
<td>&lt; less than.</td>
<td>multiplication.</td>
</tr>
<tr>
<td>&lt;&gt; not equal.</td>
<td>division.</td>
</tr>
<tr>
<td>=&gt; greater than.</td>
<td>unsigned division.</td>
</tr>
<tr>
<td>&gt;= greater than or equal.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory Operators:</th>
<th>Statements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ Any byte may be referenced by placing the byte signal character &quot;@&quot; in front of the address. For example, LET X = @ 1000 assigns the value at address 1000 to X; LET @ (C<em>100) = A assigns the value of A to the byte at address (C</em>100).</td>
<td>GO@ Branches to an assembly language routine. This statement is similar to USR except no value is returned by the assembly language routine.</td>
</tr>
<tr>
<td>Sixteen-bit words may be referenced with an address preceded by the word signal character &quot;@&quot;. For example, PRINT @ 8 will print the sixteen-bit value pointed to by the contents of the word at location 8.</td>
<td>GOSUB Calls a subroutine at line number.</td>
</tr>
<tr>
<td></td>
<td>GOTO Branches to a line number.</td>
</tr>
<tr>
<td></td>
<td>IF/THEN Used for conditional operations and branches.</td>
</tr>
<tr>
<td></td>
<td>INPUT Inputs expressions separated by commas.</td>
</tr>
<tr>
<td></td>
<td>IN Same as INPUT except values remaining in the input buffer are used first, then new data is requested.</td>
</tr>
<tr>
<td></td>
<td>LET Assigns the value of an expression to a variable or memory location.</td>
</tr>
<tr>
<td></td>
<td>LIST Lists the current program.</td>
</tr>
<tr>
<td></td>
<td>NEW Establishes a new start-of-program address.</td>
</tr>
<tr>
<td></td>
<td>PRINT Lists its arguments, which may be text messages or numerical values, on the output terminal.</td>
</tr>
<tr>
<td></td>
<td>REM Used to insert comments.</td>
</tr>
<tr>
<td></td>
<td>RETURN Returns control to line following GOSUB statement.</td>
</tr>
<tr>
<td></td>
<td>RUN Initiates sequential execution of all instructions in current program.</td>
</tr>
<tr>
<td></td>
<td>STOP Gracefully ends program execution.</td>
</tr>
</tbody>
</table>

SOFTWARE

Software for the RUR initially consists of a learning and then repeat routine. A demonstration program is activated upon power-up and press of the Demo button, so the robot can be used without a keyboard with the auto-Baud rate selection program, as well as a program to return the distance to any object in front of the SONAR. A delay routine is included to set-up delays as well as other routines for forward, backward, left and right chasing of the eyes and scanning the head.

The auto-Baud rate selection. After reset, if the Demo routine is not activated the resident software held in EPROM prints up a message at standard Baud rates and then waits for a user to return.
a Carriage Return (%OD). It then counts the number of Os received and sets the baud rate accordingly.

The Demo routine sends the robot off to do a demonstration of its skills, and ends up with a short random walk under sonar control. If the demo button is pressed three times in quick succession it will keep repeating the demo routine until it is reset, or worse!

The Learn program is a simple learn program written in Tiny BASIC machine code with sections to outputs. Some of it is stored in RAM so the user can supply actual routines and tailor the program to any individual robot, or any modification the user might have added. Options also exist to load and save sequences, EDIT LIST the program.

COMMANDS: FD = forward, BK = backward, LT = left, RT = right, JP = jump, PA = pause, GO = go/execute, CL = clear, LI = list, LD = load, SA = save, ST = stop.

THE BASIC

On existing to BASIC the program stops. The choice can then be made to list and change the teach program, or reset. This allows access to Tiny BASIC and excellent language developed from Dartmouth BASIC which is modified specifically for control and debugging of programs. A summary of Commands is listed in Table 3.

DEMO PROGRAM

A demonstration program is supplied with the RUR. At this stage the demo program should be typed in (See LISTING 1) and the functions checked.

---

LISTING 1. Demo A. To stop the program press RESET or ESCAPE

10 REM PROGRAM TO CHASE
20 @246 = 0      Port 2 outputs
30 A = 0
40 G = A OR 0    OUTPUT TO 8255
50 A = A + 1
60 GOTO 40

LISTING 2. Demo B.

10 REM EYE CHASING
20 G = A + 1
30 A = 0
40 @800 = A
50 A = A + 1
60 GOTO 30

It is after conducting these checks that the motors, sonar range-finder and eye I.E.D.s should be wired up.

Now is the time to plug in the ROM (with the power off), press the DEMO button and with any luck, see the RUR in action. *
SETTING UP

The details of setting up your system to include a modem will depend very much on the computer involved. In the case of the BBC Micro model B, however, it is fairly straightforward because the serial port is already fitted, and the majority of modem software for the BBC Micro is provided on ROM. The Modem 84 package from Watford Electronics has been used in the examples of modem applications. This comes complete with the following items: a basic Prestel-type direct-connect modem (1200/75 and 1200/1200 baud rates) with integral mains power supply, modem manual, software in ROM, software manual, and leads for mains power, computer-to-modem and modem-to-BT connection. The configuration is illustrated in Fig. 1.

Installation is simplified by the provision of a socket on the back of the modem to allow connection of an existing telephone. This avoids the need for an additional telephone socket or a two-way adaptor by allowing the modem and telephone to share a single BT outlet. The software is installed by inserting the ROM into a convenient socket, and a function key overlay is added to identify the additional functions supported by the package. The two signal leads from the modem (to the computer and the BT socket), and the mains supply complete the installation. Once the installation is established, the next step is to try it out in action.

LOGGING ON TO PRESTEL

Once the system is set up, the inevitable question arises: "What next?" The easiest first step is probably to try out one of the ready-made demonstration facilities available on an on-line database. Depending on your interests, you may then choose to take a subscription with, say, Prestel, but initially a demonstration will help you get the feel of this type of system. What follows, therefore, is a step-by-step guide to using the Prestel demonstration with the BBC Micro and Watford Modem 84. This is only a simple demonstration, and for clarity it does not make use of many of the software facilities.

Assuming that the system is configured as shown in Fig. 1, the first step is to switch on the system and activate the software package. This is done using the "PRESTEL command provided by the ROM. This causes the introductory display shown in Fig. 2 to be produced. The next step is to obtain legal access to the Prestel computer for a free demonstration of its capabilities. This, for example, is available on the London 'Enterprise' computer, but is also available on a number of other Prestel computers. The telephone number of the Enterprise computer is 01-618 1111, and ringing this number should result in a continuous tone being heard. When this occurs, switch the modem on-line, and replace the telephone handset, the modem will then hold the connection until you "log off" the computer.

After a short pause, the Prestel computer will respond with the display in Fig. 3, which requests you to enter your customer identity. For the demonstration database you should type in 4444444444 (10 fours); anything you type will be echoed as a '-' for security reasons. After the last '4', the computer will automatically move on to the display in Fig. 4, and request your password. Entering a code of 4444 gives access to the demonstration database, and the welcome page in Fig. 5 is then displayed. Pressing any number moves on to the second welcome page, Fig. 6. Pressing any number then displays the top level 'menu' of choices, as shown in Fig. 7; you are now in the database proper. All of the subsequent pages are accessed from menus like this, all with accompanying messages to help you find your way around. The menu approach allows you to move down and back up the tree-structure of menus. Thus, for example, selecting 1 from the menu in Fig. 7 moves you into the Micronet 800 demonstration area of the database.

For further details of Prestel and Micronet 800, you can apply directly from your terminal. Although there is a charge for many Prestel pages when viewed, the demonstration is free, other than your telephone call costs. Various choices allow you to be shown the whole demonstration one page at a time, or just see the highlights.
Fig. 2. WE Prestel ROM display

Fig. 3. customer identification

Fig. 4. password request

Fig. 5. Prestel—welcome

Fig. 6. Prestel—'logged on'

Fig. 8. Techno-Line—welcome

Fig. 9. Techno-Line—main index

Fig. 10. Techno-Line—peripherals

Fig. 11. Techno-Line—information
All-in-all it is well worth browsing through the pages on offer, but suggest you do so in off-peak periods to avoid large telephone bills. One final point is the answer to a question which often causes a momentary panic: "How do you log off?". This is quite easy, if not exactly obvious; in reply to a request for a page selection, simply type "**90##". This will cause Prestel to display the log-off page and drop the carrier tone. The modem software should then drop the call, and you should return the mode switch to the off-line position.

### ELECTRONIC MAIL ORDER

Returning to the theme of the first article, our second example is Techno-Line, which includes facilities for ordering components electronically. Techno-Line is a 24 hour service offered by Technomatic Limited on 01-450 9764. It provides a range of news and information services, in addition to telephone ordering facilities. Techno-Line operates with Viewdata/Prestel protocols on 300/300 or 1200/75 baud (automatic recognition). In the same way as Prestel, Techno-Line is organised around menus which allow you to get rapidly to what you are looking for. To give an impression of the facilities offered by Techno-Line, Figs. 8 to 11 provide examples of screen displays. Techno-Line provides a good example of the way in which suppliers are taking the new technology on board. Is this the shape of things to come?

### CONTACTS

The following listing is a necessarily brief selection of contact telephone numbers for electronic bulletin boards and databases. The information was correct at the time of going to press.

<table>
<thead>
<tr>
<th><strong>SUPPLIER</strong></th>
<th><strong>ADDRESS</strong></th>
<th><strong>TELEPHONE</strong></th>
<th><strong>PRODUCTS</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Watford Electronics, 250 High St., Watford, WD1 2AN</td>
<td>0923 40588</td>
<td>Watford Electronics, 250 High St., Watford, WD1 2AN</td>
<td>Watford Electronics, 250 High St., Watford, WD1 2AN</td>
</tr>
<tr>
<td>Tandata Marketing Ltd., Albert Road North, Malvern Works, WR14 2TL</td>
<td>06845 68421</td>
<td>Tandata Marketing Ltd., Albert Road North, Malvern Works, WR14 2TL</td>
<td>Tandata Marketing Ltd., Albert Road North, Malvern Works, WR14 2TL</td>
</tr>
<tr>
<td>BBC Software Supplies Ltd., 42 New Cross St., Bradford, BD5 6BS</td>
<td>0274 729306</td>
<td>BBC Software Supplies Ltd., 42 New Cross St., Bradford, BD5 6BS</td>
<td>BBC Software Supplies Ltd., 42 New Cross St., Bradford, BD5 6BS</td>
</tr>
<tr>
<td>C View (Rochford District Council, Essex)</td>
<td>0702 546373</td>
<td>C View (Rochford District Council, Essex)</td>
<td>C View (Rochford District Council, Essex)</td>
</tr>
<tr>
<td>Daily 24 hours</td>
<td>1200/75 Viewdata</td>
<td>Daily 24 hours</td>
<td>1200/75 Viewdata</td>
</tr>
<tr>
<td>Daily 24 hours</td>
<td>1200/75 Viewdata</td>
<td>Daily 24 hours</td>
<td>1200/75 Viewdata</td>
</tr>
<tr>
<td>Techno-Line (Technomatic Limited)</td>
<td>01-450 9764</td>
<td>Techno-Line (Technomatic Limited)</td>
<td>Techno-Line (Technomatic Limited)</td>
</tr>
<tr>
<td>Daily 24 hours</td>
<td>1200/75 &amp; 300/300 Viewdata</td>
<td>Daily 24 hours</td>
<td>1200/75 &amp; 300/300 Viewdata</td>
</tr>
<tr>
<td>Distel (Display Electronics)</td>
<td>01-679 1888</td>
<td>Distel (Display Electronics)</td>
<td>Distel (Display Electronics)</td>
</tr>
<tr>
<td>Daily 24 hours</td>
<td></td>
<td>Daily 24 hours</td>
<td></td>
</tr>
</tbody>
</table>
**CIRCUIT DESCRIPTION**

A block diagram is shown in Fig. 1, and a circuit diagram in Fig. 2. The heart of the timer is a 4020 divider/counter circuit. This divides by 16384, and by clocking it with a slow multivibrator running at a period of 5-27 seconds a 24 hour period is obtained. IC1a forms the required clock multivibrator. A dual 555 timer was chosen because the other half conveniently provides the monostable function required at the system output.

In essence, the 4020's fully divided output, and its half-way output are taken to switch S2 for 12/24 hour selection. The chosen signal is routed from there to the trigger input of the output monostable.

The circuit's operation is that simple, but there is a subtlety. Whilst designing the circuit I decided that before I could head for the sun with any peace of mind I would need proof that the electronics are working. What is more, I did not wish to stand over the unit for twelve hours to find out. So, I designed a test function that accelerates the clock to the point where the whole system counts through in a minute or so.

Take a look at the multivibrator IC1a. It can be seen that the timing has two resistor chains feeding C3. Accelerated oscillation is achieved when R4 is selected by the bistable IC3a and b.

Accelerated test is automatically selected at switch-on because C9 acts as a momentary closure switch to 0V until it is charged up by R7. Once the system has cycled through, the output from the monostable IC5a and b is also used to reset the bistable IC3a and b and return the circuit to normal operation. It is the negative pulse that achieves this, bringing VR2 and R2 back into the timing network with C3. VR2 provides the multivibrator with a trimming function to allow the unit to be adjusted to exactly 24 hours. Really, VR2 goes beyond being a mere trimmer, as its value would imply. Quite a range of periods can be squeezed out of the 1M preset.

The other gates, IC3c and d, and IC4a and d form a 1ms monostable which generates a short reset pulse for the divider/counter IC2. This ensures that the very first time-out period after the switch-on is of full duration.

Finally, the remaining gates IC5a and b, and IC4b form another monostable to limit the output pulse from IC2 to 1ms to trigger the main output monostable IC1b.

There is one other subtlety, and this is the line (inverted by IC4c) between IC2's output and the reset input of IC1b. If r.f. noise from a nearby lawn mower is excessive, corruption of the output will not be avoided unless the electronics are housed in a metal case, however, that much interference is unlikely, and we can at least stabilise the output monostable during the count period. The line in question does this by holding the monostable in reset mode right up to the moment it is to be triggered. A sparky lawn mower cannot now bury the fish in pellets or flood the tomatoes.

Note that spare gates are wired input-to-ground to prevent them oscillating.

**BENDING IT**

The output monostable period may be varied if its range as published does not suit you. You may alter the value of C1 or the values of VR1 and R1. The most likely alteration will be to increase the period, in which case increasing these component values will do the trick.

Capacitor C10 is included to decouple noise from the supply rail and may not actually be necessary; it depends upon what you connect to the timer that is also powered by the battery. If you include C10 then use a high working voltage capacitor or a good low leakage type.

The reed relay contacts are rated at about 500mA and should not be used to switch mains under any circumstances. Neither should they be used to switch an unsuppressed inductive load.
**Fig. 1. Block diagram of the system**

**Fig. 2. Full circuit diagram of the Handy Timer/Controller. The annotations are applicable to the fish feeder application**

---

**OR HANDY TIMER/CONTROLLER**

**FEATURES:**
- Auto self-test for applications which demand reliability.
- 12 or 24 hour cycle selection.
- Variable output pulse duration.
- Very low current consumption (PP9 life 3 months typical). 

**APPLICATIONS:**
- Automatic fish feeding station.
- Daily reminder alarm.
- Greenhouse sprinkler control.
- Process timer or controller.
Fig. 3. Stripboard layout (actual size). The photograph below shows the prototype stripboard layout, and therefore differs from this diagram. If horizontal presets are used, and the board mounted on spacers attached to the lid of the box, then these presets may be adjusted by screwdriver through holes in the lid.

**COMPONENTS...**

**Resistors**

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R7</td>
<td>120k</td>
<td>(2 off)</td>
</tr>
<tr>
<td>R2</td>
<td>6M</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>1k5</td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>470</td>
<td></td>
</tr>
<tr>
<td>R8-10</td>
<td>15k</td>
<td>(3 off)</td>
</tr>
</tbody>
</table>

All resistors: ±5%

**Capacitors**

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>10µ/16V tant. bead</td>
<td></td>
</tr>
<tr>
<td>C2, C4, C6</td>
<td>10n disc (3 off)</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>1µ metalised polyester</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>220p polyester</td>
<td></td>
</tr>
<tr>
<td>C7-C9, C11</td>
<td>100n disc (4 off)</td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>10µ/63V elect. (radial)</td>
<td></td>
</tr>
</tbody>
</table>

**Potentiometers**

<table>
<thead>
<tr>
<th>Potentiometer</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1, VR2</td>
<td>1M hor. cermet preset (2 off)</td>
<td></td>
</tr>
</tbody>
</table>

**Transistors & Diodes**

<table>
<thead>
<tr>
<th>Component</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1, TR2</td>
<td>ZTX107</td>
<td>(2 off)</td>
</tr>
<tr>
<td>D1, D2</td>
<td>1N4148</td>
<td>(2 off)</td>
</tr>
<tr>
<td>D3</td>
<td>L.e.d. 0.1 inch red</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>L.e.d. 0.1 inch yellow</td>
<td></td>
</tr>
<tr>
<td>D5, D6</td>
<td>1N4001</td>
<td>(2 off)</td>
</tr>
</tbody>
</table>

**Integrated Circuits**

<table>
<thead>
<tr>
<th>Component</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>ICM7556</td>
<td></td>
</tr>
<tr>
<td>IC2</td>
<td>4020BE Counter</td>
<td></td>
</tr>
<tr>
<td>IC3, IC5</td>
<td>CD4011BE (2 off)</td>
<td></td>
</tr>
<tr>
<td>IC4</td>
<td>CD4069UBE</td>
<td></td>
</tr>
</tbody>
</table>

**Miscellaneous**

<table>
<thead>
<tr>
<th>Item</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLA</td>
<td>5V d.i.l. reed relay (Maplin FX88V)</td>
</tr>
<tr>
<td>PP9 battery</td>
<td></td>
</tr>
<tr>
<td>PP9 battery studs</td>
<td></td>
</tr>
</tbody>
</table>

Snap-lid Tupperware container or case (weatherproof)
Stripboard
Single-pole c/o toggle switch S2 (plus weatherproof boot?)
Single-pole single-throw toggle switch S1 (plus weatherproof boot?)
6V electric motor, mains relay, or whatever is required at output
Veropins, wire, etc
Dispenser paddle*
16 s.w.g. sheet alloy*
Timber*
Plastic drainpipe of 70mm dia.
Drainpipe clamps (2 off)
Wood screws (brass pref.)
Wood preserver and lacquer
Plastic sheet (for roof and base if desired)
Instrument wire
P.c.b. mounting pillars

* See text and diagrams
Fig. 4. A few hints on how to build an automatic fish feeding station. The system is intended to dispense pellets, and would not work with powdered food (the pellets illustrated above are not to scale). The paddle can be made from a solid spun aluminium knob screwed on the motor spindle in the normal way. Two pairs of holes may be drilled into the knob to accommodate loops of springy steel wire. If the wire loops are not fully formed before insertion, their own tension will keep them in place.
CONSTRUCTION

The circuit may be constructed on stripboard as shown in Fig. 3. If the unit is to be operated whilst exposed to the elements then the circuit board must be housed in a watertight case. This is a worthwhile precaution anyway when using CMOS devices, particularly if mounted on stripboard, because whilst condensation may look like water to you, to CMOS it looks like a lot of resistors soldered randomly across the circuit board. At least spray both sides of the finished and tested board with lacquer.

FISH FEEDER

A few hints on the construction of a fish feeding station are given graphically in Fig. 4. A motor and gearbox assembly, which I think came from a car electric window winder, was found to be ideal. A reduction gearbox giving considerable mechanical advantage is necessary, so use a motor incorporating a gearbox.

The house comprises two parts: the wooden base mounted on stilts, and which incorporates the chute and electronics box, and the roof which has its own legs to act as guides which insert into the base. The roof incorporates the chimney, or hopper, and the dispenser which is a motorised paddle arrangement. The hopper chimney passes through the roof and is sealed with a liberal quantity of Cow Gum. The roof is fabricated from treated plywood covered with stippled cement (now complete with lichen), and the hopper is a piece of 70mm diameter plastic drainpipe. An excellent cap for the hopper is the end cap from the cardboard tube in which a leading brand of fish pellets is sold. The hopper is slotted at the top in order to locate the cap.

The paddle dispenser is not mechanically linked to the chute; the pellets drop from the first stage to the second by gravity, which means that the roof can be lifted off once the motor wires have been disconnected.

PORTABLE POWER SUPPLY!

CARRY 24W DC WITH YOU!
High efficiency using modern FET power transistors useful for standby power for household equipment, central heating pumps, aquariums, lighting, TV, stereo, car radios, hi-fi systems, and Portable Power Units. Ideal also for camping, touring, marquee stalls, public address system, emergency supply from 12 V car battery using 1 amp per 10 Watts output.

SPECIFIC INTRODUCTION OFFER OF 150 WATT OUTPUT MODEL

£80.00 inc. £3.50 p & p

For this item, Made in U.K. By OCHO LTD. fully tested and guaranteed. Larger models up to 400 Watts available.

RESISTORS 72 pairs of 10 each 5% 1/4 W carbon film. Continuous £12 range, from 10 Ohm to 10 M Ohm in box £5.00.

BRIDGE RECTIFIERS 4 Amp, 200V PIV 35 x 20 x 14mm flat down type. £1.65 per pair.

5 V D.C. RELAYS (1700) P.C.B. mounting. Single pole unit. D2211, 0.1 inch centres 90p.

A.C. RELAYS 12V 2 POLE CO CONTACTS RATED 3A MAX. 40 x 30 x 30mm, 34 pin socket connectors or plug in octal (state which type) £1 each, for £7.50 or 10 for £5.00. LARGE OCTAL BASES for above with screw terminals £1.00 each.

For further details, please add 80p p & p or visit our shop.

PORTABLE POWER SUPPLY 150 WATT OUTPUT MODEL

Open 10-3.15 Monday to Saturday. Next to POPS, CROYDON DISCOUNT ELECTRONICS.

40 Lower Addiscombe Road, Croydon CR0 0AA. Tel. 01-688 2500

The paddle dispenser principle is shown in Fig. 4, and it is made from sheet alloy (as is the chute). A pop rivet gun is essential, and I advise the marking up of your metalwork using cardboard first so that you start out with a reliable template.
The constant media coverage of soaring crime rates has brought about a boom in the production of DIY intruder alarm products and kits. This guide looks at the elementary functions of available detection devices, control units and warning devices and their relevance within a system. It goes on to cover a good number of currently available kits and products.

Robots are fun to use, but even more fun to invent, along with other kinds of servo machinery. This can be a cheaper hobby than buying a ready-built machine to use; and a lot more fun. We hope this new series will provide a platform for what is a whole new playground for the imagination.

Once the alarm is armed, the action of light falling on a hidden sensor will cause the car horn to sound continuously if the boot is opened by an intruder.
The Spacelab-2 is scheduled for launching this month from Cape Canaveral, on the Space Shuttle. Two British experiments will be carried. One is an X-ray telescope, which will detect X-ray images of interesting regions in the Milky Way; actually there are two telescopes mounted side by side, carried on their own mounting which means that they can be aimed at targets independently of the attitude of the Spacelab itself. The other, a joint project of the SERC, the Rutherford-Appleton Laboratory, and the Mullard Space Science Laboratory, is CHASE (Coronal Helium Abundance Spacelab Experiment).

At the moment we are by no means sure how much helium is contained in the Sun's corona, and estimates range between 5 per cent and as much as 25 per cent. It is usually thought that the amount of helium in the corona will be much the same as that in the Sun as a whole, and that this in turn will be linked to the helium abundance in the universe as a whole—which is cosmologically very important indeed. CHASE should give a value accurate to within 10 per cent of the true figure. The instrument consists of a two-metre grazing incidence spectrometer covering the wavelength range from 140 to 1350 Angstroms, illuminated by a two-reflection grazing incidence telescope. Studies will also be made of the temperatures and densities of other regions of the Sun.

In my May article I referred to the forthcoming mutual occultations of Pluto and Charon. These have now been fully confirmed—and we are lucky, since from Earth the phenomena take place for only limited period once ever 124 years, or half Pluto's revolution period. Spectroscopic work has already indicated that Pluto's surface is partly covered with methane ice, with less reflective regions whose composition is not known.

It is now thought that as Charon's shadow sweeps over Pluto during the next few years, we may even be able to define these dark regions. It would indeed be a major feat to draw up even a rough map of a world which from Earth looks like nothing more than a speck of light!

**TOP OBSERVATORY**

The observatory in La Palma, in the Canary Islands—officially opened this month by the King of Spain—is known for its important role in astronomical research. The Spacewatch facility, for example, is equipped with powerful telescopes allowing researchers to monitor celestial objects with unprecedented detail. In addition, the observatory is renowned for its ongoing projects, many of which are supported by international collaborations. These projects not only advance our understanding of the universe but also serve as educational tools, inspiring the next generation of astronomers and scientists. With its strategic location on the Canary Islands, the observatory is uniquely positioned to observe phenomena that are otherwise obscured by Earth's atmosphere. These capabilities make the observatory a vital asset in the ongoing quest to unravel the mysteries of the cosmos.
officially as El Observatorio del Roque de los Muchachos. Los Muchachos, or "the Boys", are rocks on the summit of the ancient volcano upon which the observatory has been built; I am sure that there must be a local legend about them, though I have never been able to find out what it is.

The island is Spanish, but the observatory is international, and the Royal Greenwich Observatory has played a very major role throughout; Dr. Paul Murdin, who is in charge of the British telescopes there, is a Greenwich astronomer. The first major British telescopes were the 40 inch Kapteyn reflector (named in honour of the famous Dutch astronomer) and of course the I.N.T. or Isaac Newton reflector.

The I.N.T. was originally set up at Herstmonceux in Sussex, the present headquarters of the Royal Greenwich Observatory, and had a 98-inch mirror (officially, at least; the usable aperture was slightly less). However, Sussex skies are not suited to astronomical work, and the decision was made to transfer the I.N.T. to La Palma, giving it a new mirror with an aperture of just over 100 inches. The I.N.T. has been in use there for some time; I will not forget a night when I took part in a "commissioning run", and we

managed to obtain a colour video of the Ring Nebula in Lyra—the first time that this had been achieved for an object beyond the Solar System. At present the even larger William Herschel Telescope is being made ready, so that the complete setup is likely to be some months yet before the W.H.T. can be brought into operation.

There are other telescopes, too. The Swedes have a large solar tower, for instance; the Danes have set up an "automatic transit instrument" which takes star transits all by itself—with a somewhat uncanny effect if you happen to be present when a transit is due! Also planned is the Nordic Telescope, which will be a 100-inch reflector and is a joint project from Norway, Sweden, Denmark and Finland. The Dutch are deeply involved, too, and before long La Palma will be recognized as one of the major observatories of the world.

THE SKY FROM LA PALMA

What is the sky really like? Well, the high altitude means that seeing conditions are usually excellent (which is why the site was chosen, of course), and one often finds that the cloud-layers lie below the summit.

There is also the question of latitude. Though La Palma is well north of the celestial equator, so that features such as the Clouds of Magellan are inaccessible, the difference between their skies and ours is quite striking.

When I was there, a few weeks ago, I was surprised to see how high up the grand globular cluster of Omega Centauri was. You can also have superb views of the Sagittarius star-clouds, which are always inconveniently low from Britain. I was just able to see Canopus, though it skirts the horizon even when at its greatest altitude.

Of course, the telescopes are fully automatic, and today the observer is not even in the dome which contains the telescope itself during observing runs; everything is done from a comfortable control room, and the results come up on a television screen. Gone are the times when the observer had to spend long hours at the eyepiece, guiding the telescope during photography. Moreover, it will be possible to operate the telescopes from afar, so that the observer need not even be in the Canary Islands. Things have changed; La Palma is the most modern of observatories, and we may confidently expect great developments in the near future.

FREE! READERS' ADVERTISEMENT SERVICE

POLAROID ultrasonic ranging system designer's kit. Not used. £50. Tel: 0484 49392/25589.

PE STRING MACHINE, E.T.1 synth parts, scope, back issues PE, PW. Other bits. Offers, Details, 01-421 1513.

FOR SALE—Datron oscilloscope, dual-trace, 10MHz; probe and manual. £125. Good condition. Tel: 0233 33177.

WANTED—OK1 Microline 82A printer. G. Bayne, 20 Sugden Court, Princes Street, Dunstable, Beds. LU6 3DS. Tel: 0582 600913.

SINCLAIR Executive Calculator wanted. Any condition. Tony Smith, 16B Kendal Rise Road, Rednal, Birmingham B45 9PS.

WANTED—Circuit and data for Scopex/Griffin dual-trace scope MK 3. Tel: 0527 62436.

TAMRON 35–70mm and 80–210mm lenses, also Olympus 28mm lens. Sell or swap test-kit computer and/or peripherals. Mr. Mel Saunders, 7 Drumcliff Road, Thurnby Lodge, Leicester LE5 2LH.


50 pounds weight old electronics magazines, £25. Atari 400 computer, £50. J. Hulton, Derryman, Droitmon, Co. Tyrone BT78 3BE.


PROFESSIONAL electronics kit, build oscilloscope, other projects. All parts included, manuals and instructions. £125 or offers. Steve Byhurst, Caterham, Surrey. Tel: 0883 45979 (after 6 p.m.).

PHILIPS VCR 1974, 18 inch. Includes tapes, little used. Also some LVC-120s, £2 each. N1500 VCR, no modulator, £35. Kevin Jones, 24 Clifton Drive, Lytham, Lancs. FY3 1AX.

WANTED—Mephisto III portable chess computer. Boxed with instructions preferred. Good price paid. Mr. S. Braid, 40 Hilles Croft, Chelmsley Wood, Birmingham 37 5BW.

Rules

Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

Signature

Date

Please read the Rules then write your advertisement here— one word to each box. Add your name, address and/or phone no.

COUPON VALID FOR POSTING BEFORE 2 AUGUST, 1985

(One month later for overseas readers.)

SEND TO: PE BAZAAR, PRACTICAL ELECTRONICS, WEST-OVER HOUSE, WEST QUAY ROAD, POOLE, DORSET BH15 1JG.

For readers who don't want to damage the issue send a photostat or a copy of the coupon (filled in of course) with a cut-out valid "date corner"
CLIVE'S PUZZLE
There is some little known background to the decision by Sir Clive Sinclair now to use wafer scale integration (WSI) techniques proposed and patented by Ivor Catt, ten years ago. When Sinclair first announced the decision, last August, the word soon went round that Catt had previously failed to sell his idea to Plessey, STC and ICL.

This seemed puzzling, because Sinclair had teamed with the Vickers, Chairman of ICL. At around the same time, Trilogy, the US company formed by Gene Amdahl to make wafer scale i.c.s, ditched the idea.

The big question, which Sir Clive Sinclair's company will have to pay millions to answer, is: was Ivor Catt's idea feasible but ahead of its time, or an armchair theory that can never be put into practice.

The public records at the British Patent Office tell an interesting tale on this. Ivor Catt filed a patent application on the WSI idea in August 1972. This was issued as British patent 1 377 859 in the mid-70s. Annual renewal fees have been paid ever since, to keep it in force, even though a string of UK companies has reputedly turned down the chance of a licence. If Sinclair now manages to exploit the Catt patent, he will embarrass not only these companies, but the Government's Department of Trade and Industry and its Ministry of Defence as well.

In June 1975 Ivor Catt signed an agreement with the Department of Industry (or more accurately, the Secretary of State for Industry). The DI then authorised the Ministry of Defence to sign a contract with Middlesex Polytechnic, as part of the Advanced Computer Technology Project. The contract was for a feasibility study on Computer Associative Memory. Catt was given £500 to act as a consultant. Under the terms of the agreement, the rights to any know-how which emerged as a result of the research project were to become the property of the Department of Industry. But the DI had to agree to grant Catt licence to use any such know-how. In return Catt agreed to pay back a share of any proceeds. He also had to promise to licence only UK companies, unless special permission was granted to deal with foreign firms.

Clearly Middlesex Poly, the MOD and the DI did not think the invention was worth exploiting. It was not until ten years later that Sinclair took the patent on board. The interesting question now is whether Catt and Sinclair will have to pay the Government a share of any proceeds if the Sinclair Research WSI project proves successful.

SELF TESTING
The patent, readily available for anyone to read or buy for a couple of pounds, explains the usual procedure for making individual microchips. Several hundred at a time are formed on a single slice or wafer of silicon. Each i.c. area is then automatically tested and marked good or bad. The wafer is diced into individual chips, the good ones saved and the bad ones thrown away.

Catt's idea, back in 1972, was that all the circuits on the silicon slice should incorporate a flip-flop logic switch and the wafer be left intact instead of diced. A test-signal is fed into one circuit near the centre of the wafer. If the test is positive its switch flips over to connect it to the next adjacent i.c. The test is run over and over again, with the connections spiralling out from the wafer centre, and the chips by-passed whenever the test fails. So the final result is a single silicon slice, with a large total memory capacity. This is doubtless how Sinclair plans to provide its first WSI product, a large plug-in memory for the QL.

The Catt patent suggests that chips made this way can be self-repairing. If one of the circuit areas fails in use, it is by-passed by the routing switches of the chip around it. Another advantage is that a memory made this way should be cheaper than a batch of separate i.c.s of comparable total capacity, because no time is spent dicing the wafer. Also the chip can operate faster, because there is no need for an external web of connecting wires.

SOUND SENSE
No-one has yet cracked the anti-sound problem. In theory it sounds such a simple idea. Use a microphone to listen to an unwanted noise, generate a replica in opposite phase and of equal volume, and hey presto the original is cancelled out.

In practice it's nowhere near that easy. If the sound to be cancelled is not constant, the anti-phase sound has to track it without any time delay.

This is obviously impossible. Every circuit has a finite response time. Room reflections, standing waves and absorption by people and furnishings mean that the sound in any environment will vary with listening position. Accurate cancellation in one area may even increase the sound in other areas.

But still inventors press on. Several universities have anti-sound research contracts and a recent British Aerospace patent (BP 2 126 837) explores another approach.

The aim here is to cut background noise in an aircraft, especially a prop plane, where the noise is particularly loud and annoying through heat effects caused by different engines running at slightly different speeds. British Aerospace have previously patented a system which relies on giving everyone a pair of headphones with a built-in microphone and amplifier that produces an anti-phase signal that is fed through the headphones. But if aircraft passengers must wear headphones, why not simply give them headphone ear muffs?

The new patent doesn't answer this simple question. Presumably British Aerospace have found that passengers don't want to wear anything over their ears anyway, because the new patent takes a different tack.

Inside the passenger cabin there is a microphone which picks up soundwaves coming in from the engines and produces a corresponding output signal. A notched wheel on the drive shaft of one of the engines spins past a magnetic pickup to produce a train of reference pulses which gives a firm tell tale of engine speed. These pulses are impressed on the microphone output and the mixed signal fed to a synchroniser which delays it before inversion and amplification.

The synchroniser calculates the interval between successive engine pulses and then delays the signal from the microphone by an interval equivalent to one full period. In this way the inverted and amplified noise signal, which is fed to a loudspeaker replica irrespective of the propeller speed.

British Aerospace suggest that the same basic idea could be adopted for use in an airport building or bus terminal, by replacing the engine pulse train sensor with a variable frequency oscillator which impresses a series of notional reference pulses on the signal. The interval between the pulses is altered by trial and error until the noise is suppressed, either manually or automatically.

It's an interesting idea, but if it works why are airports all still so noisy?
MARCO TRADING

AUDIO AMPLIFIERS AT THE LOWEST PRICES
Now Distributed by Riscomp

POWER AMPLIFIERS
AL 1620 (AL 820) - Low cost general purpose 10W/8Ohm mono-block, headphone voltage range 18-30V.

£3.30 + V.A.T.

AL 1640 - AL 1650/8Ohm medium power module incorporating over-load protection. Operating voltage range 20-40V.

£13.95 + V.A.T.

AL 2500 (AL 1610) Compact 25W 8Ohm module for domestic applications with a distortion figure of 0.1%, operating voltage range 25-30V.

£42.50 + V.A.T.

AL 6702 (AL 1260) Top class 500W/8Ohm module with self-contained heat sink and built-in protection circuitry, produces really class 1st sound with a distortion level at an incredible 0.02%.

£41.00 + V.A.T.

AL 1550 (AL 1250) A rugged top of the range module providing output powers up to 1800W and is an ideal basis for the construction of 2, 4, 8, 16 or 32 channel systems. Enclosures to suit a sizeable and preferable range of modules, is attached to RCAS public address systems, jack boxes and even domestic MF-L1.

£10.50 + V.A.T.

AL 12580 (AL 2540) A rugged top of the range module providing output powers up to 1800W and is an ideal basis for the construction of 2, 4, 8, 16 or 32 channel systems. Enclosures to suit a sizeable and preferable range of modules, is attached to RCAS public address systems, jack boxes and even domestic MF-L1.

£10.50 + V.A.T.

AL 21550 (AL 2540) Top class 100W/8Ohm module with self-contained heat sink and built-in protection circuitry, produces really class 1st sound with a distortion level at an incredible 0.02%.

£10.50 + V.A.T.

AL 12580 (AL 2540) A rugged top of the range module providing output powers up to 1800W and is an ideal basis for the construction of 2, 4, 8, 16 or 32 channel systems. Enclosures to suit a sizeable and preferable range of modules, is attached to RCAS public address systems, jack boxes and even domestic MF-L1.

£10.50 + V.A.T.

AL 2500 (AL 1610) Compact 25W 8Ohm module for domestic applications with a distortion figure of 0.1%, operating voltage range 25-30V.

£42.50 + V.A.T.

AL 6702 (AL 1260) Top class 500W/8Ohm module with self-contained heat sink and built-in protection circuitry, produces really class 1st sound with a distortion level at an incredible 0.02%.

£41.00 + V.A.T.

AL 1550 (AL 1250) A rugged top of the range module providing output powers up to 1800W and is an ideal basis for the construction of 2, 4, 8, 16 or 32 channel systems. Enclosures to suit a sizeable and preferable range of modules, is attached to RCAS public address systems, jack boxes and even domestic MF-L1.

£10.50 + V.A.T.

AL 12580 (AL 2540) A rugged top of the range module providing output powers up to 1800W and is an ideal basis for the construction of 2, 4, 8, 16 or 32 channel systems. Enclosures to suit a sizeable and preferable range of modules, is attached to RCAS public address systems, jack boxes and even domestic MF-L1.

£10.50 + V.A.T.

AL 21550 (AL 2540) Top class 100W/8Ohm module with self-contained heat sink and built-in protection circuitry, produces really class 1st sound with a distortion level at an incredible 0.02%.

£10.50 + V.A.T.

AL 12580 (AL 2540) A rugged top of the range module providing output powers up to 1800W and is an ideal basis for the construction of 2, 4, 8, 16 or 32 channel systems. Enclosures to suit a sizeable and preferable range of modules, is attached to RCAS public address systems, jack boxes and even domestic MF-L1.

£10.50 + V.A.T.

AL 2500 (AL 1610) Compact 25W 8Ohm module for domestic applications with a distortion figure of 0.1%, operating voltage range 25-30V.

£42.50 + V.A.T.

AL 6702 (AL 1260) Top class 500W/8Ohm module with self-contained heat sink and built-in protection circuitry, produces really class 1st sound with a distortion level at an incredible 0.02%.

£41.00 + V.A.T.

AL 1550 (AL 1250) A rugged top of the range module providing output powers up to 1800W and is an ideal basis for the construction of 2, 4, 8, 16 or 32 channel systems. Enclosures to suit a sizeable and preferable range of modules, is attached to RCAS public address systems, jack boxes and even domestic MF-L1.

£10.50 + V.A.T.

AL 12580 (AL 2540) A rugged top of the range module providing output powers up to 1800W and is an ideal basis for the construction of 2, 4, 8, 16 or 32 channel systems. Enclosures to suit a sizeable and preferable range of modules, is attached to RCAS public address systems, jack boxes and even domestic MF-L1.

£10.50 + V.A.T.

AL 2500 (AL 1610) Compact 25W 8Ohm module for domestic applications with a distortion figure of 0.1%, operating voltage range 25-30V.

£42.50 + V.A.T.
Digital Delay & Sound Sampler
WITH COMPUTER INTERFACE

John M.H. Becker

Part 3

This month we will take a further look at the constructional details and begin the various testing procedures for the Digital Delay line. To help with testing, a simple i.e.d. test board has been made as shown in Figs. 10 and 11.

BEWARE OF MAINS VOLTAGES!

From this point onwards you will be dealing with a unit that is coupled to the mains. Although there is a transformer, a switch and a fuse, it is still possible to be careless and accidentally touch a mains connection. Until the unit is completely assembled and fully tested, I suggest that the transformer be kept well away from the unit, in an insulated box for example, and bring out long 6 volt leads from it to the PSU connection on the p.c.b. If you are in any doubt or inexperienced, seek authoritative advice.

FIRST TEST

If you haven’t yet checked all your joins with a magnifying glass do so now! Then connect the 6V a.c. leads between the transformer and the PSU. Switch on and check that approximately 8 volts or so is at the positive end of C47, and that 5 volts is present on p.c.b. pin 23. If it isn’t in either case, switch off and check what you have done wrong. It is permissible for the voltages to be slightly higher, but any large difference is wrong, especially if the readings are too low. As you progressively bring in more circuitry during the testing, the voltage at C47 will drop, but the 5V line should remain about the same. This should be checked for at each stage of testing. IC36 is short circuit protected, so if a short occurs on the 5V line, correct the fault and leave IC36 to cool for ten minutes.

ANALOGUE TESTING

Until the unit is fully operational, keep any connecting wires slightly longer than they need to be. At the end of testing they can all be tidied up into neat harnesses and trimmed to a better length. Refer to the wiring diagram (next month) and connect VR1, 2, 3, 4, 10, 11, 12, the input and output sockets, S2 and S3. Insert IC1 and IC4. Plug in a cassette recorder into the input, and plug the output into your normal amplifier. Set VR1, 4 and 12 fully up, VR2, 3 min, S2, S3 open.

Check that the signal passes through at about the same strength as it goes in, and that the level can be varied by any of VR1, 2, 4 or 12. Temporarily take p.c.b. pin 11 to point 9 instead of to the centre of VR4, check that the signal still passes through. Return wire 11 to VR4. Take the second p.c.b., connect it to the power points designated, and insert IC2 and IC3. Connect points 9 to 42, and 5 to 45. Temporarily take a short length of wire and solder it carefully to the negative ends of C11 and C15. The signal is now routed through the preamp stages, compressor, expander, filter and the output. Set VR6 to VR9 midway. VR1, 10, 11, 12 max, VR2, 4 min, S2 open, S3 closed.

Check that the signal still passes through to the amplifier, that S3 switches it off and on, that VR11 controls its level, and that VR10 acts as a treble control. The fine setting of the presets can be left until later. Disconnect the wire between C11 and C15. The analogue circuits can now be ignored for a while.

TIMING BOARD

Connect up the designated power line connections of the timing p.c.b. plus VR18, 19, 20, S4, S5, S6, and insert all of the i.c.s. With a meter or scope check that with S4 closed and VR19 max a varying slow speed voltage change occurs on pin 9 of IC26, and that VR18 varies the rate of change. Temporarily take point 88 to any of points 19 to 22 (OV line). Next, S4 and S5 open, S6 closed. If a scope is used, check that h.f. oscillation occurs at the outputs of IC26 and IC23b, and that each output pin of IC27 goes up and down at one tenth of the rate of its input.

Alternatively if you don’t have a scope and have built up the optional i.e.d. test board, this is connected to the 8V (136 or 138) p.s.u. line and to the p.c.b. output pins 74, 75, 76, 77, 78, 87, 89. Check that the i.e.d.s light in the correct sequence. If the flashing rate is too fast at the slowest clock setting, put a larger capacitor temporarily across C38 to reduce the rate. A scope can be synchronised to the test point on this p.c.b. and all outputs checked in turn. Additionally check that VR20 varies the clock rate, that S6 raises and lowers the range, and that S5 affects the control range of VR20. Then check that with S4 closed VR19 varies the depth of clock modulation. Disconnect point 88 from the 0V line.

ADDRESSING BOARD

Connect up the addressing and memory boards, complete all the remaining wiring, and insert the remaining i.c.s except for the memory chips IC15 to IC22. Switch S7 down and S8 up. Check that a negative voltage of about –3-5V is present at pin 36 of the first p.c.b., and that a bias voltage of about 2-5V is present at C30 and R45, and at C33 and R51. If using the i.e.d. test p.c.b. connect the board so that the i.e.d.s will flash in sequence when connected to p.c.b. pins 110, 107, 109, 106, 114, 113, 111, 112, in that order. Temporarily connect pin 108 to +5V (any of pins 23 to 25) instead of 74, connect 97 to +5V instead of S8, take 95 temporarily to OV instead of 76. These three temporary connections put the multiplexer in Column mode, hold IC8 and IC9 at reset, and open IC7. Temporarily take 17 and solder directly to the track connected to pin 3 of IC23a instead of to 86, so bypassing this part of the IC. The i.e.d.s should now be monitoring the output of IC7 while it converts the voltage data from VR15 to binary. Set VR14 to min, and sweep VR15 from one end to the other and back again at a slow rate. The i.e.d.s should flash in a binary sequence. Now rotate VR15 to its zero end and VR16 to maximum resistance. Adjust VR17 until only the i.e.d. connected to pin 110
is on, if necessary reducing VR16. Swing VR15 fully the other way to the full positive end, and adjust VR16 until all l.e.d.s are just on, if necessary readjusting VR17. Repeat this procedure until the displacement range is set from 1 to 255 decimal, but allow the minimum end to favour 2 rather than zero. Remake all temporary connections back to their correct points, except for the 108 connection. Leave the l.e.d.s connected. They will now monitor the main column address numbering. Temporarily take 95 to +5V instead of 76, so disabling the IC7 outputs. This ensures that nothing is added to the column address. Set VR20 to maximum frequency, open S4, S6, and close S5. IC8 and IC9 will now be counting up in sequence, the column addresses will be seen to change in binary order, and varying VR20 will vary the rate of counting.

Now take point 108 to 0V so that you can monitor and check the row addresses. The clock oscillator will probably need to be set to its slowest rate for the binary counting sequence to be individually seen on the l.e.d.s. Again remake all temporary connections to their correct points. Out of interest you can watch the various binary sequences taking shape whilst varying VR15, but it probably won’t be too meaningful because of the rates of change.

**A TO D SETTING UP**

Connect the i.e.d. test board to points 55 to 62 in that order. Set VR1, 2, 3 to minimum. Adjust VR13 around its midway point until a binary reading of 10000000 (decimal 128) is shown. This is the midway point in the absence of a signal. It is not too critical, and a place or two to either side is acceptable.

**MEMORY BOARD**

Until you are sure that all is well with your connection of the memory board, only insert 4 memory chips to begin with, IC17, 18, 19 and 20. This covers the mid binary range, and thus lower level signals. Plug in the cassette recorder again, check that the signal still reaches the amplifier via VR4, then turn down VR4, close S3, and bring up VR11. Set the clock oscillator to its fastest rate, and set the address displacement controls VR14 and VR15 to minimum. An approximate representation of the original signal...
should now be heard, having been sampled, stored, and reconstituted again. It will probably be distorted at this point, for only 4 memory chips are used and some presets have yet to be set. Switch off, insert the other remaining chips IC15, 16, 21, 22. Switch on again and an improvement in quality should be apparent, especially at higher signal levels.

COMPARATOR ALIGNMENT

VR6 to VR9 control the accuracy of the waveforms through the comparator. If a scope and signal generator are available the correct setting will be obvious with a triangle wave. If you don’t have a scope they can be readily set while listening to the output, in which case monitor the wipers of VR6 and VR8 with a voltmeter and adjust each until the voltage reads half the line voltage. In other words, if the line is 7–8V then set them for 3–9V. Feed in a signal from a cassette or signal generator, and increase the signal level until a little distortion is just heard, then adjust VR7 and VR9 until this is minimal, at which point both phases of the signal should be balanced. If you can hear no difference leave them midway and ignore.

FEEDBACK ALIGNMENT

For effects such as reverberation, repeating echo and flanging, feedback of the delayed signal is required, so that it is mixed with the original. In any delay unit the amount of signal fed back is fairly critical, particularly for flanging, where the effect can only be produced when feedback is close to the point at which ‘howl’ occurs. This point, though, only holds true for particular frequencies related to the phase of the original and processed waveforms. If the delay between the two is such that the waveforms of the frequency are out of phase with each other, then adding the two results in subtraction! One cancels out the other. If they are in phase, then full repetitive addition can occur each time round the loop.

Change the delay, and the phase relationships change and thus the howl point level. With such a wide delay range variable from a few milliseconds to well over a minute, virtually any frequency can at some point be in the correct phase for successive enhancement in feedback. A compromise has thus to be struck between the need to prevent howl, and sufficient feedback to allow a good number of repeating echoes to develop, plus adequate reverb and flanging enrichment. The compander circuits give a degree of self limiting to the howl effect even under some quite severe feedback situations, but an average amount of feedback must still be found by experimenting with the setting of VR5. Start off with this at a midway setting, turn VR3 up full with S2 closed. Feed in signals of various strengths, and give different delay settings, particularly around the shorter delay regions. Adjust VR5 until the best reverb or flanging effect is produced without the unit going into full feedback howl.

PHRASE HOLD SWITCH

At any time a particular phrase can be retained in memory indefinitely by switching off S7. This puts the memory into perpetual read mode, and data already stored will be repeatedly looped back. The length of the loop will depend upon the original delay setting of the sampling rate control VR20. Having frozen that phrase in memory, its pitch and duration can be changed by adjusting VR20. Varying VR14 and VR15 will have a short term effect while you move them, but nothing permanent. For very long loops with speech or special effects, the address counter can be reset to zero by switching S8 down. Switch it up again to commence recording, then switch S7 up to Hold mode at a suitable point before the end of the address sequence. S8, though, should only be used in the knowledge of its effect upon the RAS line.

MEMORY REFRESH

Each time RAS is strobed during the timing cycle, the data in all 256 locations associated with that Row is refreshed. Without this strobe, the data eventually decays to a level below which it cannot be retrieved. When S8 is switched down to the reset and external

The p.c.b. layouts for the Digital Delay are shown as follows: (left) the timing circuit p.c.b. (top right) the compander and A to D/D to A circuits (bottom right) addressing circuit p.c.b.

Fig. 12. Timing circuit p.c.b.
Fig. 13 (above) and Fig. 14 (below)
one of the transformer bolts. Box, looking from the front, and securing the mains earth lead to harnesses. Cable ties can be used to ensure harness permanence. Where necessary, keep signal and control leads in separate harnesses. Cable ties can be used to ensure harness permanence. Finally mount the transformer at the top right of the back of the box, as looking from the front, and secure the mains earth lead to one of the transformer bolts.

MODES
The internal memory can be switched off by S8 which then puts the unit under control from external equipment such as a computer. In switching off S8, the timing and address counters are held at reset, and the gates of IC33 and IC34 act as changeover switches, rerouting the control of the signal A to D Enable and Convert triggers, the D to A Latch trigger, and additionally opens an output Ready command line. In this mode the internal memory chips have their data lines held at a high impedance state and so have no effect upon the signal data conversion.

The signal conversion p.c.b. has been given an edge connection facility, configured to suit the User Port of my Commodore 3032, and has a track spacing of 0.156 inches. The external connections can alternatively be soldered direct to pins 53 to 64. The order of these tracks is unimportant and could have been any random order, providing that the ultimate destination order is correct. The track notations are those for the 3032 and their functions are as follows:

GND (53)=Digital Ground (0V). CA1 (54)=Output to computer to tell it that data is ready to be taken. PA0 to PA7 (55 to 62)=data bits 0 to 7 in order. PA0 is LSB, PA7 is MSB. CA2 (63)=Line to tell unit to convert signal data from computer, needs to go up then down. GND (64) Digital Ground (0V), but via a 10Ω resistor. On the prototype I found that a low level earth loop existed when connecting the computer digital ground direct to the unit ground at point 53. This resulted in a low level hum. Taking the computer ground to the unit ground via the 10Ω resistor cured this without affecting the logic levels. Try your unit first connected to point 53,

TIDYING UP
When you are satisfied with your assembly, the boards can be stacked, p.c.b. Fig. 8 bottom LHS, Fig. 13 above it, and Fig. 12 above that, Fig. 15 bottom RHS, Fig. 14 above it. Now the wiring can be drawn into neat harnesses, trimming to a better length where necessary. Keep signal and control leads in separate harnesses. Cable ties can be used to ensure harness permanence. Finally mount the transformer at the top right of the back of the box, as looking from the front, and secure the mains earth lead to one of the transformer bolts.

EXTERNAL SAMPLING
The signal conversion p.c.b. has been given an edge connection facility, configured to suit the User Port of my Commodore 3032, and has a track spacing of 0.156 inches. The external connections can alternatively be soldered direct to pins 53 to 64. The order of these tracks is unimportant and could have been any random order, providing that the ultimate destination order is correct. The track notations are those for the 3032 and their functions are as follows:

GND (53)=Digital Ground (0V). CA1 (54)=Output to computer to tell it that data is ready to be taken. PA0 to PA7 (55 to 62)=data bits 0 to 7 in order. PA0 is LSB, PA7 is MSB. CA2 (63)=Line to tell unit to convert signal data from computer, needs to go up then down. GND (64) Digital Ground (0V), but via a 10Ω resistor. On the prototype I found that a low level earth loop existed when connecting the computer digital ground direct to the unit ground at point 53. This resulted in a low level hum. Taking the computer ground to the unit ground via the 10Ω resistor cured this without affecting the logic levels. Try your unit first connected to point 53,
then if hum exists, use point 64 instead. All of these lines also have their equivalents on the usual IEEE computer connections.

**AUXILIARY TRIGGERS**

When the unit receives a positive going trigger pulse on the CB2 line, a faster pulse is developed by IC24b which triggers the conversion process of the signal A to D IC5. At this point the computer should have its output data ready on the data lines PA0 to PA7. The pulse from IC24b triggers IC35A to send a pulse to the D to A converter IC6 which reads and latches in the data from the computer. IC6 is only open to the computer for the duration of the pulse. Whilst this is happening the A to D is doing its conversion, and when complete the Ready output of IC5 goes high, is inverted by IC31c, passes through the gate IC33b and enables the output of IC6. Simultaneously a positive going pulse is sent by IC35b, via gate IC34d back to the computer on the CA1 line. Upon receipt of the pulse the computer knows that it can take and latch in the data from IC5. It can then do what it wants with the data before commencing the next cycle.

**Constructors' note:**

A complete kit of parts or separate p.c.b.s are available from:

**Becker Phonsonics,** Dept. DDL, 8 Finucane Drive, Orpington, Kent, BR5 4ED (send s.a.e. for details).

**NEXT MONTH:** Final points and wiring

---

**Photos illustrating the internal and external constructional details of the Digital Delay Line.**

**Fig. 16. Auxiliary triggering circuit diagram**
LAST month in this column I started to look at the BBC Micro's analogue port. As we saw just by looking at the electrical connector, there is rather more to this port than its name might at first suggest. Essentially, the port is a connector which is shared by the analogue-to-digital (A-to-D) converter, the CRT controller, and the system VIA. For convenience, the destination(s) of these various input signals are summarised in Table 1. This month I will be starting to explore the A-to-D section of the analogue port in greater detail.

**Table 1. Analogue port signal destinations**

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,7,12,15</td>
<td>ADC channels 0-3</td>
<td>ADC</td>
</tr>
<tr>
<td>5,8</td>
<td>Analogue ground</td>
<td>ADC</td>
</tr>
<tr>
<td>11,14</td>
<td>Reference volts</td>
<td>ADC</td>
</tr>
<tr>
<td>10,13</td>
<td>Push buttons</td>
<td>System VIA</td>
</tr>
<tr>
<td>9</td>
<td>Lightpen strobe</td>
<td>System VIA and CRTC</td>
</tr>
</tbody>
</table>

**A-to-D conversion**

Typically, signals in the real world are essentially analogue rather than digital, and are not usually electrical in form. Thus, for example, when considering water being heated in a kettle, there is a continuous temperature rise, rather than jumps of (say) one degree at a time as might appear on a digital thermometer. The A-to-D converter in the BBC Micro provides the means to convert such analogue signals into digital values. Once this has been done, these digital quantities can then be read and processed by user programs.

When looking at the use of micros in the real world, one of the fundamental tasks is clearly to provide a link between the analogue and digital areas. This usually involves two distinct stages, as shown in Fig. 1. The first is to convert the quantity to be measured (temperature in the example) into an analogue electrical signal. This is necessary because in the majority of cases the quantity being measured is not itself electrical. The conversion process is performed by a transducer, whose form depends on what is to be measured, but which rarely has a digital output. Having produced a signal representing the quantity being measured (e.g. a number of mV per degree Celsius), the next step is to convert this signal into a digital value. This process is normally performed by an A-to-D converter i.e. (ADC), which in the case of the BBC Micro is built into the analogue port and connected to the main system bus.

The ADC device in the BBC Micro is a μPD7002, which is a 4-channel 12-bit converter. This means that it is capable of measuring up to four different analogue channels, one at a time. When the ADC is measuring the signal on one of these channels, each measurement takes a finite amount of time to complete. For example, when a 12-bit reading is required, each measurement takes approximately 10ms. Since only one of the input channels can be read at a time, this means that when all four channels are in operation, the measurements on each channel will be 40ms apart.

One effect of this measurement interval is to limit the maximum frequencies which can be handled in signals being measured. At 10ms per sample, this maximum is around 50Hz, and falls to around 12Hz if all four channels are being used. Although this effect imposes a number of limitations, it is still perfectly adequate for a wide range of applications, particularly where the quantity to be measured varies relatively slowly.

The ADC output from each measurement is a 12-bit digital value (although it is possible to trade resolution for speed by using fewer bits). This 12-bit range means that the ADC divides up its measurement range into 4096 steps between 0 and 4095. The measurement range is set by the reference voltage (Vref) used by the ADC. The same Vref is used on all four channels of the ADC, and is approximately 1-8V. Vref appears on pins 11 and 14 of the analogue port connector, and care should be taken to ensure that any input signal to the ADC does not exceed its value. The overall effect of the resolution and the value of Vref is that the 4096 steps from the ADC each represent approximately 0.44mV. From this it is clear that any electrical noise on the input signal will easily affect the ADC output. Typically, therefore, the usable range of the ADC will be limited to 9 or 10 bits, unless some special precautions are taken. This resolution will, however, be more than adequate for many applications, and gives a resolution of 0.2% or 0.1% respectively. The ADC may be configured to give 8, 10 or 12-bit resolution, but by default gives 12 bits.

**SOFTWARE FACILITIES**

Unlike the user port, the analogue port is quite well provided with software facilities which can be used from BASIC. These are primarily AVAL, *FX16 and *FX17. AVAL(n) numbers the ADC channels from 1 to 4, and when called it returns the latest value read for channel n. In normal operation the ADC is continually measuring the signal on each channel in turn, and the MOS stores these latest values from each channel. The values returned are all multiplied by 16 to allow for future expansion, and thus the ADC steps appear to be 16 apart (rather than 1) as far as the program is concerned. To establish the latest value read from channel 1, for example, a BASIC statement might be:

\[
X = \text{AVAL(1)} \text{ DIV } 16
\]

If you wish to convert the value directly into volts, and have already measured and stored the value of Vref, then the alternative form is:

\[
X = \text{AVAL(1)} \text{*VREF/65520}
\]

The accuracy of this conversion clearly depends on the accuracy and stability of Vref, which is not too good. If this is important, it is a good idea to connect a known reference voltage (e.g. a band gap reference device) to one of the ADC channels, and then compare the readings.

The AVAL keyword has a number of other functions which are not related to the ADC channels, and these will be found described in Chapter 33 of the User Manual. One function which does relate to the
ADC, however, is ADVAL(0). This call allows the identity of the latest ADC channel read (multiplied by 256) to be determined. Thus, this will identify the latest channel:

```
PRINT "Current channel = ";ADVAL(0)
```

The *FX16 command allows the default situation of the four ADC channels each being measured in turn to be altered. As shown in Table 2, the sequence can be limited to any number of channels from 0 to 4. This can be explored by using the method above to check that the range is limited.

In order to obtain the latest value from any given channel, the *FX17,n command (where n is the channel number) will start a measurement on the selected channel. The measurement will be available 10ms later. When using the *FX16/17 commands, do not remember not to use them in multi-statement lines with BASIC commands after them; the remainder of the line is passed to the MOS for action.

<table>
<thead>
<tr>
<th>Command</th>
<th>Channel Measuring Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>*FX16,0</td>
<td>No channels measured</td>
</tr>
<tr>
<td>*FX16,1</td>
<td>Channel 1 only</td>
</tr>
<tr>
<td>*FX16,2</td>
<td>Channels 1, 2 alternately</td>
</tr>
<tr>
<td>*FX16,3</td>
<td>Channels 1, 2, 3 in turn</td>
</tr>
<tr>
<td>*FX16,4</td>
<td>Each channel in turn</td>
</tr>
</tbody>
</table>

Table 2. ADC measurement sequence control

**DIGITAL THERMOMETER**

After the theory, it is now time to see how some of these ADC facilities can be put to work. Fig. 2 shows the circuit for a digital thermometer which can be connected to the analogue port. As is clear from the circuit, the number of components involved is best described as 'minimal'. The most important component in the circuit is the temperature sensor. This is a type 590kH, which is also available from RS as 308-809. The complete thermometer may be built for less than £10.

The 590kH semiconductor temperature sensor is a two-terminal i.e. which produces an output current which is proportional to the absolute temperature. If, like me, your physics has become just a little rusty, you may like to be reminded that the absolute temperature in degrees Kelvin is the temperature in Celsius plus 273.2 degrees. Thus, for example, a room temperature of 20°C is equivalent to 293.2 Kelvin. For supply voltages between +4 volts and +30 volts d.c. the 590kH acts as a high impedance current regulator. The current passed is 1μA per degree Kelvin, and thus the voltage developed across any resistance wired in series with the sensor is proportional to temperature.

With a series resistance of 1kΩ, for example, the output from the thermometer will be 1mV/deg. The rated temperature range of the sensor is -55°C to +150°C, and over this range a maximum error of ±5°C is specified if no compensation is included in the circuit. If the preset in Fig. 2 is adjusted to give the correct output at 25°C (298:2μA), this maximum error over the range is reduced to ±2°C; the effect is illustrated in Fig. 3.

Construction of the thermometer is a straightforward matter. The resistors are most conveniently mounted on the rear of the 15-pin D-type plug used for the analogue port. The temperature sensor should be connected by a convenient length of a twisted pair of insulated wires. The circuit shows channel 0 (ADVAL channel 1) being used, but any of the other channels could equally well have been used. The leads on the sensor should also be sleeved to avoid accidental short circuits. If the sensor is to be immersed in liquid, the electrical connections will need to be totally encapsulated to avoid current leakage through the liquid, and hence false (high) readings. The sensor can be calibrated conveniently by using another thermometer, or by using a known standard such as the fact that melting ice in its own water will be at 0°C.

**NEXT MONTH: BBC Micro Forum** will be listing some suitable software for the digital thermometer, and then looking at some other uses of the basic temperature sensor.

**Book Corner**

This month a new book which could have been written with your scribe in mind. The Epson/Kaga Printer Commands Revealed, by David Smith, is published by Watford Electronics at £5.95. This book caters specifically for BBC Micro owners with an Epson FX-80 compatible printer. If you have a Wordwise ROM, it is even more useful because all of the examples include the commands to use with Wordwise (the OC ... strings).

But what, I hear some ask, is wrong with the substantial manuals which come complete with these printers; surely they are detailed enough? The real problem is not that they lack detail, but that they are written (or should I say "loosely translated from Japanese"?) for a wide market. As such, the commands of which the printers in question support a great number are illustrated in Microsoft BASIC. Although this has become an international standard of sorts, it does not help the BBC Micro owner who cannot get any response other than "Mistake" when the LPRINT examples given in the manuals are tried.

The introduction makes the point that this book is really a supplement for a standard printer manual, and not a replacement for it. To this end, every command description includes references to pages in the Kaga, FX80 and RX80 manuals, where full definitions of the commands will be found. Within the book there are 90 pages describing all of the commands available on the printers mentioned. Each command is described in a standard format, showing how to issue the necessary control codes from BASIC and Wordwise. This is followed by a description of the action of the command, and then a BBC BASIC example listing, with illustrations of the results where appropriate. The commands are arranged in eight logical groups, and each command description starts on a new page. The command described is indicated at the top of each page, and the book includes an index.

Verdict: If you have already mastered your existing manual, this book may well be a more convenient reference, but do not expect to learn anything new. However, if Microsoft BASIC is a mystery to you, and you have a new FX-80 compatible printer, this book could save you many hours of "manual-gazing". The choice of whether this is a book for you depends very much on your needs, but I would have been happy to have had a copy by my side when my printer first arrived.
SCARA robots seem to be the fashionable devices to be producing at the moment. No sooner had we announced in the last issue that Cybernetic Applications was launching its version at Automat than we discovered that two competitors also had plans for using Automat as the event at which they would unveil their own SCARAS.

For the uninitiated SCARA is an acronym for selective compliance assembly robot arm and apparently they are finding increasing favour in industry.

Powertran Cybernetics, those close neighbours and rivals of Cybernetic Applications have a version called IVAX. It has four axes plus a gripper, three with rotational movement and the fourth vertical movement on the central pillar.

It is powered by d.c. motors with feedback provided by optical encoders. Constant torque springs have been used to eliminate the effect of backlash and it is strong enough to lift 1kg.

All the rotational axes, the two limbs of the arm and the wrist, can move through 270 degrees and it has a 40mm range of vertical movement. IVAX can work within an arc with radii of between 108mm and 280mm.

.. give the co-ordinates ..

On board it has a Z80A processor with options for either 2K or 8K of RAM, which allows storage of three or 15 sequences. Extra storage is available of either 512 or 2K bytes.

Powertran says that it has written the software to make it as easy as possible to write control programs. One example is that the only instruction needed for the arm to reach a particular point is to give the coordinates, rather than the operator having to calculate the movements of each section. A graphical simulation of the robot's movements is provided so that routines can be run and tested on screen before being passed to IVAX.

All of the software is written in BASIC and version 2 is available for the BBC B and the Apple. IVAX has been designed to work in a restricted area or cell and a work cell has been developed to illustrate some of the robot's abilities.

The company says that it has been working on the SCARA for about six months. Further add-ons such as conveyors and go/no go gauges are also available IVAX will be sold in kit form for just under £2,000 (for the robot, controller, software, teach pendant and power unit) and ready-built, at almost £2,500, mainly to the educational market.

.. interest from the States ..

The other entrant in the SCARA stakes is a new company, Universal Machine Intelligence of London. UMI hit the headlines last year with the news that the company's products were attracting great interest from the States where two were having extensive trials.

The first device to result from that work is the RTX, which has a modified SCARA design. It is a little more sophisticated than IVAX having six axes plus a gripper and the strength to lift 4kg. While having the same two limb axes and vertical movement, the wrist has three axes, pitch, yaw and roll.

Although its vertical travel, at 920mm, is much greater than the IVAX, the angular movements are more limited. The shoulder can move through 180 degrees, elbow 160 degrees, yaw 180 degrees, roll 165 degrees in either direction and pitch 110 degrees.

But the two machines are not comparable. The RTX at a price which has yet to be fixed but is thought to be in the region of £3,000, is intended for light industrial as well as educational and health care use.

Power is provided by d.c. motors with optical encoders giving feedback. The controller is based on two Intel 8031 chips. It has to be hooked up to a micro via the RS232 port and software is available for the IBM PC.

For the future UMI is looking to include two RTX arms on a mobile base on a mobile robot called R-Theta. Details are not being given at the moment but it is known that it will be intended for industry rather than education.

Powertran, meanwhile, has been upgrading its existing Genesis hydraulically-powered arms. While retaining the same basic design and capabilities, the overall quality and reliability of the P101 and P102 have been improved. In particular the company says that the tendency of the oil to leak from the hydraulic cylinders has been reduced.

The major change has been the addition of a parallel I/O port.

L. W. Staines is also on the up-grade. Celebrating getting one of its sturdy Ogres in Oxford University it is bringing out two new versions. It is now possible to get the basic for £200, the Super Ogre at £295 and the Ogre Supreme at £350.

The company says that it has been surprised by the reaction to its arm, particularly from industry and higher education so it was decided to provide machines which would better suit their requirements. It has another robot at the development stage. Called Troll it will have two arms, one similar to the Ogre and the other an extending arm. Details are limited at the moment but it is hoped to have it ready in the next few months with a price of less than £1,000.

.. good future for the toy market ..

Finally the toy market is still proving popular. Tomy Toys is planning an autumn launch for a new top of the range robot. Peter Brown, sales and marketing manager, was reluctant to give away too many details, because of worries about the competition, but he did reveal that it would probably cost about £400 and be a much more manipulative machine than the present top of the range, Omnibot, and be radio controlled.

He added that Omnibot had been very successful and Tomy saw a very good future for the toy market.

For £150 you can now push a robot around. Cybernetic Applications has produced a set of touch sensors for its Neptune arm which allows operators to guide it by hand. The kit comes complete with the necessary software and the ability to store routines.
The '4000' series of CMOS logic i.c.s. is a popular and widely used logic family. Many of the i.c.s. in the series have become industry standards, cropping up in thousands of different applications, and most of these are produced by a considerable number of different semiconductor manufacturers. Occasionally, though, it is possible to find a device in the 4000 series which is only made by one or two companies, and is rarely seen, yet which may have many useful attributes.

The 4753 by Mullard is just such a device. It is known as a universal timer, which is a little anomalous since it has no timing components as such (ie, no on-chip oscillator circtuity), but it does have a very comprehensive set of counting circuits which make it a very interesting and useful i.c. for inclusion in timing and counting circuitry.

The pinout and specifications of the 4753 i.c. is shown in Fig.1. The specifications are a little unusual in that they miss out many parameters such as input current, etc., but since this i.c. is one of the standard 4000 CMOS series of devices all the normal family specifications apply. Fig. 2 shows the block diagram.

The clock input is used to synchronise all circuit activity, and can be divided by 1, 16, 256, or 4096 to provide the clock input to a programmable counter. This counter in turn can divide the clock by any number from 1 to 255, as defined by the programming inputs on pins 1 to 8. The output is the combined output of the counter and the divide-by-16 output.

**Fig. 1. Pinout and specifications**

**Fig. 2. Block diagram for the HEF 4753B i.c.**

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Notes</th>
<th>At Supply Voltage of</th>
<th>Minimum Value</th>
<th>Typically</th>
<th>Maximum Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td></td>
<td>3-6V</td>
<td>6</td>
<td>18-0</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Maximum clock frequency</td>
<td></td>
<td>(At Pin 17)</td>
<td>7-0</td>
<td>14</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Current, maximum</td>
<td></td>
<td>10-5V</td>
<td>8-0</td>
<td>17</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Output source current,</td>
<td></td>
<td>15-5V</td>
<td>20</td>
<td>17</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>(Pin 10 = low)</td>
<td>5-0V</td>
<td>5</td>
<td>5-0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Output voltage</td>
<td>(Pin 10 = high)</td>
<td>15-5V</td>
<td>15</td>
<td>5-0</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>PROPAGATION DELAY</td>
<td></td>
<td>5-420</td>
<td>850</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Delay between clock</td>
<td></td>
<td>10-180</td>
<td>360</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>changing and output</td>
<td></td>
<td>15-120</td>
<td>250</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>changing state)</td>
<td></td>
<td>5-450</td>
<td>900</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Load capacitance = 50pF)</td>
<td></td>
<td>420-200</td>
<td>120</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT TRANSITION TIMES</td>
<td></td>
<td>15-140</td>
<td>280</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Load capacitance = 50pF)</td>
<td></td>
<td>5-30</td>
<td>60</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-30</td>
<td>60</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15-40</td>
<td>60</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other specifications follow typical spec's for the CMOS '4000' series.
controlled by 'event flip-flops' and three mode select inputs, which arrange for the different timing modes to be implemented.

**CLOCK SELECTION AND TIMING**

The method of selecting the clock input to the internal programmable counter is shown in Fig. 3. (In all descriptions of logic levels, logic 0 is a low level, i.e. near to 0 volts, and logic 1 is a high level, near to the positive supply voltage.) If both the W and X inputs are at logic 0, the clock input to pin 17 is fed directly to the programmable divider. Otherwise, it is divided by a factor as shown. For example, if an 8192kHz square wave is fed into pin 17, and both W and X were at logic 1, then the clock input of the 8-bit programmable counter would be fed with 2Hz square wave; it would therefore begin counting up at the rate of 2 counts per second.

The programming inputs determine how far the counter must count up before its output changes state. These inputs act as a binary number, but with inverse logic; a logic 0 turns that bit on, whereas a logic 1 turns it off. For example, if pins 1 and 2 were at logic 0, and the rest at logic 1, the counter would reach three before the output changed state. If pins 2, 3, and 4 were at logic 0, and the rest at logic 1, the counter would reach 14 before the output changed.

The counter has a range of 1 to 255; an input of zero (pins 1 to 8 all at logic 1) is not allowed. Note that unlike some i.c.s. featured in Semiconductor Circuits, no inputs have internal pull-up or pull-down resistors, so if switches are to be used resistors must be provided externally. (See Fig. 12.)

**OPERATING MODES**

The seven different operating modes are selected by applying the appropriate logic signals to the LFC, Y, and Z inputs as shown in Fig. 4. The counter mode is shown in Fig. 5. Here, the input is synchronised with the first positive going clock transition after it goes high, and at the next negative clock transition the timing interval starts. After a period T1 (determined by the clock select and programming inputs) the output goes to logic 0 for 1 clock cycle, then returns to logic 1 again. The divider mode shown in Fig. 6 is similar, but in this case the output stays low after the time period has ended, until the input drops to logic 0, causing the output to go high again after a period T1 + T2 + T3.

In both the counter and divider modes it is normally intended that the output should be connected back to the input to make the
i.c. self-triggering. The output will then be a square or rectangular waveform with a frequency dependent on the clock rate and the value of \( T_b \). If this feedback is not implemented then only one cycle of the counter occurs after the input changes state, but then the output will change at a very slow rate (1/4096 of the clock at pin 17) irrespective of the settings of the programming inputs or the clock select pins.

The delayed low to high edge mode is shown in Fig. 7. When the input goes to logic 1, the output goes to logic 1 after a time \( T_1 + T_2 + T_3 \). When the input changes back to a logic 0 level, the output changes back much faster, however, it waits for the first negative going clock edge, then the next positive going clock edge, then the output changes back to logic 0. Fig. 8 is the opposite of this—a 0 to 1 change at the input gets passed through to the output fairly rapidly, whereas a 1 to 0 change is delayed by \( T_1 + T_2 + T_3 \).

A representation of the transient pulse suppression mode is shown in Fig. 9. For input pulses wider than \( T_1 + T_2 + T_3 \), the output is merely delayed by \( T_1 + T_2 + T_3 \). However, if the input pulse is shorter than \( T_1 + T_2 + T_3 \) it is ignored—no changes take place as a result of it. This circuit is therefore acting as a sort of digital low-pass filter. Short pulses are eliminated, but longer pulses (i.e. low frequencies) are merely delayed, not suppressed.

This principle is taken further in the frequency recognition mode shown in Fig. 10. The incoming signal should be symmetrical (i.e. a square wave of 50/50 mark/space ratio). If the input pulse width \( T_a \) is shorter than the programmed period \( T_1 + T_2 + T_3 \), then the output goes to logic 1, whereas if the input period is longer than \( T_1 + T_2 + T_3 \), the output goes to logic 0.

This allows us to recognise incoming frequencies as being above or below the frequency:

\[ f = \frac{1}{2(T_1 + T_2 + T_3)} \]

In this mode it is important to note that the minimum programmed count number is 3.

Finally, in Fig. 11, two 4753s are used to provide a "digital filter" function. The two i.c.s have different programmed time periods, \( T_b \) being greater than \( T_a \). The output stays at logic 0 unless the incoming pulses (again the input should be a 50/50 square wave) are longer than \( T_b \) but shorter than \( T_a \) (plus the appropriate synchronising delays in each case, as appropriate) at which point the output becomes a delayed version of the input wave form. As with the previous mode, the minimum programmed count should be 3.

The HEF4753B is an extraordinarily versatile i.c. capable of extremely complex timing and counting operations. Its subtleties shouldn't disguise the fact that it is an excellent general purpose timer/counter with as many simple applications as complex ones. To illustrate this point, the applications project this month shows an economical timer design which uses both mode and clock selection facilities.
The circuit diagram of a Digital Timer (which can be used as an egg timer) is shown in Fig. 12, with Fig. 13 giving the Veroboard layout. To start the timer, switch S9 is opened. This causes IC2c pin 10 to go to logic 1, which provides a pulse to pin 5 of the flip-flop formed by IC3a and IC3b. Pin 3 of IC3 therefore goes to logic 1, and pin 4 to logic 0. This in turn causes the W input to IC1 to go to logic 1, and the LFC input to go to logic 1. (The main input to IC1 (pin 14) also goes to logic 1.) Hence, the 4753 has its clock divided by 4096. With a 546.1 Hz clock input to pin 17, this provides 1 count every 7.5 seconds, with IC1 in the delayed low to high mode.

Switches S1 to S8, with their pull-up resistors R1 to R8, provide the programming inputs to IC1. After the programmed time has elapsed, the output of IC1 goes to logic 1. This turns on the audio oscillator formed by IC2b, which causes X1 to sound a tone. It also produces a pulse, via C6, to reset the IC3a/IC3b flip-flop. As a result of this, pin 3 of IC3 is now at logic 0, and pin 4 is at logic 1. IC1 is now working in the divider mode. Via the time delay of R15 and C4, and IC3c and IC3d, the output of IC1 is now connected back to its input. It therefore oscillates at a very low frequency (the exact frequency depending on the settings of S1 to S8), causing the piezo sounder X1 to send out bursts of tone. Closing the switch S9's contacts against forces IC1 back into the delayed low to high mode, and turns off the

Note: IC3 is a NOR gate

Fig. 12. Circuit diagram for a General Purpose Digital Timer. The HEF 4753B i.c. is available from: Macro Marketing, Burnham Lane, Slough, Bucks SL1 6LN. Tel: 06286 4422.
Note: Quote type 4753 VP. This device is pin-for-pin compatible
clock oscillator formed by IC2a, with associated components.

**PRACTICAL CONSIDERATIONS**

There are several small but important areas of circuitry incorporated into this design. D2, C1, and R9 form a switch de-bouncing network for S9. Without this, the multiple triggers feeding into IC3b due to switch bouncing could cause mis-operation. The clock oscillator, IC2a, is turned off when the timer is not in use to lower the power consumption. However, it was found that this should not be done immediately after changing the mode of IC1, or, again, mis-operation occurred. Hence D3, C3, and R13 delay the turning off of the oscillator after S9 is closed, to allow IC1 to complete its internal synchronisation, etc. R15 and C4 delay the output of IC1 reaching IC3c pin 8 until after the IC3a/IC3b flip-flop has changed state. Finally, D1 helps to protect against reverse connection of the battery, C8 and C9 decouple the supply, and R11, R12, R14, and R18 protect the CMOS gate inputs when power is turned off.

In use, the switches S1 to S8 set the timing interval. Several of these can be turned on at once, of course, to add up the required time period. VR1 should be adjusted to give the correct clock frequency, or the correct time intervals if no frequency counter is available.

No on/off switch as such is required, as the circuit only draws typically 17μA in the 'off' state with no programming switches turned on. In the 'on' state, the current drawn is approximately 130μA, and with the tone sounding it averages 300μA.

If the circuit is to be used for fixed time periods only, then S1 to S8 can be replaced by wire links or a d.i.j. switch. S9 was made to be a mercury tilt switch (salvaged from an old digital alarm clock!) so that the timer could be started by turning it up-side down, and stopped by turning it the right way up again. If you do decide to use such a switch, be very careful not to break it, as mercury is a very toxic substance. As an alternative, an ordinary switch can be used, of course.

The Veroboard layout has been made as small as possible to enable it to fit into a small case, so care must be taken with its assembly. The use of a 4753 in this circuit provides us with a compact and economical way of implementing what is actually quite a complex timing system.

---

**TECHNICIAN ENGINEERS COMMUNICATIONS AND ELECTRONICS**

**A Planned Career in Technology in the Cotswolds**

Salaries up to £11,445

- **VACANCIES** at both TECHNICIAN ENGINEER and ENGINEERING TECHNICIAN level.
- **CHALLENGING WORK** in the development and support of highly sophisticated communications and computer systems.
- **OPPORTUNITIES** for gaining experience in a wide variety of technical roles.
- **EXTENSIVE ENGINEERING FACILITIES**

Applicants for the higher grade of TECHNICIAN ENGINEER should normally possess a BTEC Higher National Certificate/Diploma in electronics or other relevant subject; or a City and Guilds Full Technological Certificate, or an equivalent qualification. An aggregate of at least 8 years relevant training and experience is required. Registration as a Technician Engineer (I.Eng) would be an advantage. Salary Scale: £9,113 - £11,445

Applicants with BTEC ONC or equivalent and at least 4 years relevant training and experience are eligible for posts at the ENGINEERING TECHNICIAN level for which a structured training programme is provided. Salary Scale: £6,399 - £9,135

**INTERESTED?** Then for either post send for full details and application form to the address below, quoting Ref: T/6523/85

---

**THE RECRUITMENT OFFICE, GCHQ, ROOM A/1108**

OAKLEY, PRIORS ROAD, CHELTENHAM, GLOS GL52 5AJ

OR TELEPHONE (0242) 32912/3
A NUMBER of friends of mine have said that they have had difficulty in telephoning me. This Telephone Monitor enables the user to check if there have been any calls in his absence.

A standard pick-up coil is stuck to the side of the telephone and connected to the circuit shown. IC1a is biased into the linear mode by R1 and gives very high gain. C2 and D2 send the input of IC1b low when a signal is received; R2 provides a path for charge to escape from the capacitor-diode junction.

IC1b and C form a latch, which can be reset by pressing S2. S3 causes D3 to light if the telephone has rung.

On the prototype, S1 was incorporated into a jack socket, although the current consumption of the unit on standby renders this strictly unnecessary. The circuit was also found to work on the doorbell!

K. Jones, Fairhaven, Lancs.

EVERYONE who has visited the Royal Festival Hall in London could not have failed to notice the gentle electronic 'pinging' sound used to indicate the end-of-interval, at concerts. The circuit shown here will emulate this sound and has been used with great success at various 'home-grown' productions.

IC1 is a dual monostable with equal mark-space ratio: the output at pin 5 oscillates at around 0-2Hz and pin 9 at around 400Hz. The latter can be tuned by changing R2 if required. When pin 5 is at a high voltage C5 is charged and TR1 is off. When pin 5 goes low, TR1 is turned on and C5 is discharged causing a decaying waveform across R10. D2 prevents C5 discharging into the 556 whilst R8 and C6 soften the attack by making the voltage at the base of TR2 fall slightly more slowly than the voltage at pin 5 of the 556.

The decaying envelope is fed to the collector of TR2. R11 and R14 and C7 to C9 enrich the harsh squarewave tone from IC1 pin 9. Finally, IC2 and its associated components preamplify the finished tone to around 600mV, making it suitable for use with most hi-fi amplifiers.

A supply of between 6 and 15 V should be well stabilised for correct operation. R4 was selected for 12V operation and may need changing if another supply is used.

P. Clarke, Thame, Oxon.
PRACTICAL ELECTRONICS
PRINTED CIRCUIT BOARD SERVICE

Printed circuit boards for certain PE constructional projects are now available from the PE PCB Service, see list. They are fully drilled and roller tinned. All prices include VAT and postage and packing. Add £1 per board for overseas airmail. Remittances should be sent to: PE PCB Service, Practical Electronics Editorial Offices, Westover House, West Quay Road, Poole, Dorset BH15 1JG. Cheques should be crossed and made payable to IPC Magazines Ltd.

Please note that when ordering it is important to give project title, order code and the quantity. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed here.

<table>
<thead>
<tr>
<th>PROJECT TITLE</th>
<th>Order Code</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum Autosave</td>
<td>MAR '84</td>
<td>£1.83</td>
</tr>
<tr>
<td>Sustain Unit Audio Signal Generator</td>
<td>MAY '84</td>
<td>£2.82</td>
</tr>
<tr>
<td>Cross Hatch Generator</td>
<td>JUNE '84</td>
<td>£3.52</td>
</tr>
<tr>
<td>Simple Logic Analyser I</td>
<td>JULY '84</td>
<td>£7.73</td>
</tr>
<tr>
<td>EPROM Duplicator</td>
<td>JULY '84</td>
<td>£3.74</td>
</tr>
<tr>
<td>Alarm System</td>
<td>JULY '84</td>
<td>£3.19</td>
</tr>
<tr>
<td>Oscilloscope Calibrator</td>
<td>JULY '84</td>
<td>£4.23</td>
</tr>
<tr>
<td>Comm 64 RS232C Interface</td>
<td>AUG '84</td>
<td>£3.02</td>
</tr>
<tr>
<td>Field Measurement</td>
<td>Aug '84</td>
<td>£3.19</td>
</tr>
<tr>
<td>Simple Logic Analyser II</td>
<td>AUG '84</td>
<td>£2.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>£2.93</td>
</tr>
<tr>
<td>Parallel to Serial Converter</td>
<td>SEPT '84</td>
<td>£2.92</td>
</tr>
<tr>
<td>Through the Mains Controller</td>
<td></td>
<td>£2.88</td>
</tr>
<tr>
<td>Logic Probe</td>
<td>OCT '84</td>
<td>£1.90</td>
</tr>
<tr>
<td>Computer DFM Adaptor</td>
<td>NOV '84</td>
<td>£2.76</td>
</tr>
<tr>
<td>Ni-Cad Charger</td>
<td>DEC '84</td>
<td>£2.40</td>
</tr>
<tr>
<td>Outsider Car Computer (Set of 2)</td>
<td>JAN '85</td>
<td>£6.10</td>
</tr>
<tr>
<td>Modular Audio Power System</td>
<td>FEB '85</td>
<td>£4.19</td>
</tr>
<tr>
<td>Pt-1: Power Amp Board</td>
<td>FEB '85</td>
<td>£4.69</td>
</tr>
<tr>
<td>Spectrum DAC/ADC Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modular Audio Power System</td>
<td>Pt-2: Pre-Amp/Line Driver</td>
<td>£5.00</td>
</tr>
<tr>
<td>Main Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart Beat Monitor</td>
<td>MARCH '85</td>
<td>£8.90</td>
</tr>
<tr>
<td>Main Circuit Board</td>
<td></td>
<td>£6.62</td>
</tr>
<tr>
<td>Detector</td>
<td></td>
<td>£3.42</td>
</tr>
<tr>
<td>Low Cost Speech Synthesiser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Control Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disc Drive PSU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modular Audio Power System</td>
<td>Pt-3: Test Signal Source</td>
<td>£4.20</td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amstrad Synthesiser Interface</td>
<td></td>
<td>£4.71</td>
</tr>
<tr>
<td>Rugby Clock Pt-2</td>
<td>MAY '85</td>
<td>£4.22</td>
</tr>
<tr>
<td>CCTV Diverter</td>
<td></td>
<td>£9.06</td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td>£5.12</td>
</tr>
<tr>
<td>Com Radioset</td>
<td></td>
<td>£5.12</td>
</tr>
<tr>
<td>MOD64 MUSIC KEYBOARD</td>
<td></td>
<td>£10.24</td>
</tr>
<tr>
<td>Keyboard</td>
<td>JUNE '85</td>
<td>£4.55</td>
</tr>
<tr>
<td>Main PCB</td>
<td>JUNE '85</td>
<td>£3.50</td>
</tr>
<tr>
<td>MTX 8 Channel A to D</td>
<td>JULY '85</td>
<td>£3.92</td>
</tr>
<tr>
<td>Voltmeter Memory Adaptor</td>
<td>JUNE '85</td>
<td>£3.28</td>
</tr>
<tr>
<td>Envelope Shaper</td>
<td>AUGUST '85</td>
<td>£3.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DON'T MISS A VITAL COPY!

Ever been in the middle of a project only to find the next issue sold out? An annual subscription to PRACTICAL ELECTRONICS solves the problem.

WHEREVER YOU LIVE YOU'LL RECEIVE A COPY REGULARLY EACH MONTH. IT'S THE QUICK, PRACTICAL WAY TO SOLVE DELIVERY PROBLEMS.

SUBSCRIPTION RATES

U.K. £13.00
Overseas £15.00

COMPLETE AND POST THIS ORDER FORM TODAY!

PRACTICAL ELECTRONICS SUBSCRIPTION ORDER FORM

POST COPIES TO

NAME

ADDRESS

POST CODE

I enclose my cheque/PO payable to IPC Magazines Ltd. for £
Charge my credit card A/C at quoted rate:

Card valid from: __________
Signature: __________

Practical Electronics - August 1985
When replying to Classified Advertisements please ensure:

(A) That you have clearly stated your requirements.

(B) That you have enclosed the right remittance.

(C) That your name and address is written in block capitals, and

(D) That your letter is correctly addressed to the advertiser.

This will assist advertisers in processing and despatching orders with the minimum of delay.

BARGAIN BUMPER BOX OF BITS

Contains: working calculator, working watch module, Various ICs, transistors, display tubes, PCBs, diodes batteries, gears, switches etc., etc All useful items. Would cost much, much more if bought separately. ONLY £15 (inc VAT and P&P). Send cheque/P.O. to:
Barbara Page, Spares Dept., Decimo Ltd,
4-18 Chobham St., Luton LU1 3BS

BRAND NEW COMPONENTS BY RETURN

Electronic Capacitors 16V, 25V, 50V, 0.047, 0.1, 0.22, 0.47 & 1.0 uF, 0p-6p, 22 & 47-5p, 100-7p, 500-8p, 220-8p, 680-10p, 470-11p, 60V-15p, 100/15V-15p, 250V-25p, 1000/25V-25p.

Subminiature fixed Tantalum electrolytics.
0.1-0.47, 16V-14p, 25V-20p, 63V-14p, 100V-22p.

Subminiature Ceramic Caps. 10V Series 1000-2p, 10 types, 0p-33p, to 330p-4p, 1000V to 27p.

Vertical Mounting Ceramic Plates Caps 50V, 100V. 12, 22, 0.47, 1.0 uF, 16V-16p, 63V-10p, 100V-22p.

Polyphenyl E12 Series 63V, Horizontal Mount 10 types, 0p-33p, 1000V to 100,000p-4p, 1000V to 10,000p-4p.

01 to 069, 4p, 1-10p, 16, 25-15p, 3-10p.

Mylar (Polyester) Film 100V. Vertical Mounting.

High Stability Miniature Film Resistors 5%.
2W 5% Series 0.1 - 10M0, 100p, 1000p, 150p, 4.7p, 10p, 22p, 47p, 100p.

Wire wind Film E12 Series 100-1M0, 5%, 2p, 1% E24, 3p, 1N4148-2p, 1N4004-4p, 1N4001-6p, 1N4002-7p, 2C285-12p.

Battery Snap 8 pin-5p, 10pin-12p, 16 pin-18p.

Battery Snap 4 pin-6p, 6p.

400V Zener diode E24 series 2V7 to 38V-8p. Prices VAT inclusive Post 20p. (Pre over 25.00).

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Electronics for

Insertions: £1.00 per word, minimum 12 words. Box No. 60 extra.

(Chques and Postal orders should be crossed Lloyds Bank Ltd. and made payable to Practical Electronics)

NAME

ADDRESS

Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 9LS.

PRACTICAL ELECTRONICS August 1985

835
**FOR SALE**

**SERVICES**

Think of something new?

Write it down –

American industry offers potential royalties for your innovations and new products. We offer free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write without delay for your free information package.

American Inventors Corporation

82, Broad Street, Dept Westfield, Massachusetts 02106

United States of America

A free based marketing company.

**COURSES**

**FULL-TIME TRAINING COURSES**

2 YEAR

B-TEC National Diploma (OND) ELECTRONICS & COMMUNICATIONS ENGINEERING (Television & Video)

15 MONTHS

B-TEC National Certificate (OND) ELECTRONIC EQUIPMENT SERVICING (Television & Video)

9 MONTHS

B-TEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY & ROBOTICS

HIGH PERCENTAGE OF COLLEGE BASED PRACTICAL WORK

SHORT COURSES WITH PREVIOUS KNOWLEDGE

NO EXTRA FEES FOR OVERSEAS STUDENTS

Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Pennyworth Road, London SW5 9SU. Tel: 01-373 8721.

---

**INVENTORS**

Think of something new?

Write it down –

American industry offers potential royalties for your innovations and new products. We offer free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write without delay for your free information package.

American Inventors Corporation

82, Broad Street, Dept Westfield, Massachusetts 02106

United States of America

A free based marketing company.

---

**SERVICES**

Think of something new?

Write it down –

American industry offers potential royalties for your innovations and new products. We offer free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write without delay for your free information package.

American Inventors Corporation

82, Broad Street, Dept Westfield, Massachusetts 02106

United States of America

A free based marketing company.

---

**COURSES**

**FULL-TIME TRAINING COURSES**

2 YEAR

B-TEC National Diploma (OND) ELECTRONICS & COMMUNICATIONS ENGINEERING (Television & Video)

15 MONTHS

B-TEC National Certificate (OND) ELECTRONIC EQUIPMENT SERVICING (Television & Video)

9 MONTHS

B-TEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY & ROBOTICS

HIGH PERCENTAGE OF COLLEGE BASED PRACTICAL WORK

SHORT COURSES WITH PREVIOUS KNOWLEDGE

NO EXTRA FEES FOR OVERSEAS STUDENTS

Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Pennyworth Road, London SW5 9SU. Tel: 01-373 8721.
THE CLEF CMS

The FULLY programmable digital synthesiser that you can AFFORD. THE NEW CLEF COMPUTER MUSIC SYSTEM is so user programmable that you need a BBC Micro to run it! 32 harmonically programmable oscillators, 32 programmable envelopes, 5 octave touch sensitive keyboard, up to 4 OSCEVNS per note. Real time sequencing. Massive potential for future software. Complete system (without BBC Micro) £495 built. Phone or write for details. Modular systems also available.

CRICKLEWOOD ELECTRONICS

It's no secret!

that there is a real difference at Cricklewood Electronics. That's why you should never be without the FREE CROOKWOD ELECTRONICS COMPONENTS CATALOGUE, for sheet variety, competitive prices and service from the U.K. number one 100% component shop. Namics, no gadgets or computers, just components, millions of them, at easily available by mail order, calling or credit card telephone orders. Just pick up the telephone to get your FREE copy now (no SAE required). You have nothing to lose.

CRICKLEWOOD ELECTRONICS LTD

1-450 Eversholt St. 
N.E.1 6EP
T.F.01-450 0995 & 452 0161
ALL MAJOR CREDIT CARDS ACCEPTED

Train for a Better Job in Electronics

Everyday more people are needed to design, install, operate and service electronic systems.
Its big business and the career opportunities are both limitless and nicely rewarding.
Prepare yourself for a future in Electronics with the IC Home-Study Course quickly, easily and in your own time.
Proven teaching methods

ICS is the world's largest correspondence school with over 90 years experience.
So far nearly 9 million people have taken advantage of our tried and tested teaching methods.
Find out how we can help you. Send today for our FREE information pack. No obligation.

ICS - Please send me full details of the Electronics Course.

NAME: __________________________
ADDRESS: __________________________

Published on approximately the 7th of each month by IPC Magazines Limited, Wessex House, West Quay Road, Poole, Dorset BH15 1JQ. Printed in England by McCorquodale Magazines Ltd., Andover, Hants, sole Agents for Australia and New Zealand - Gordon and Ganch (Asia) Ltd., South Africa - Central News Agency Ltd. Subscriptions INLAND £1.55 and OVERSEAS £3 payable to IPC Magazines Ltd. "Practical Electronics" Subscription Department, Room 2186, King's Reach Tower, Stamford Street, London SE1 9SR. PRACTICAL ELECTRONICS is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, rented, hired out or otherwise disposed of by way of Trade or offered for or as part of any publication or advertising, literary or pictorial matter whatsoever.

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are assumed undelivered within 14 days, the purchaser’s money must be refunded. Please retain proof of postage/despatch, as this may be needed.

Mail Order Protection Scheme
If you order goods from Mail Order advertisers in this magazine, and pay in advance, you have the right to cancel your order within 7 days. If you cancel, the purchaser’s money must be refunded. Please retain proof of postage/despatch; as this may be needed.
PUT BBC BASIC IN CONTROL
USE THE 6502 2ND PROCESSOR
WITH BIG CONNECTIONS

- Single Eurocard – can stand alone and run BBC BASIC programs.
- Program your control applications in BBC BASIC . . .
- ... FORTH, PASCAL or any other language ROM.
- Adds I/O expansion to your BBC via the 6502 bus connector.
- Tube Interface for fast development.
- Battery backed up Real Time calendar clock.
- Runs BASIC programs in ROM or from battery backed up RAM.
- Complete set of software utility modules available in ROM.
- A full range of Eurocards for use in target applications.
- Ideal for industry, education, research and commerce.

Move over to CMS today

CMS 0031
44a Hobson Street
Cambridge CB1 1NL
(0223) 324141

Cambridge Microprocessor Systems Limited
More This Month at Maplin

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live Wire Detector</td>
<td>LW82T</td>
<td>£2.95</td>
</tr>
<tr>
<td>75W Model Amp</td>
<td>LW51F</td>
<td>£1.15, £1.15</td>
</tr>
<tr>
<td>Siren Horn</td>
<td>LW83B</td>
<td>£10.95</td>
</tr>
<tr>
<td>Ultrasound Intruder</td>
<td>LW20E</td>
<td>£10.95, £10.95</td>
</tr>
<tr>
<td>BW Amplifier</td>
<td>LW30P</td>
<td>£4.95</td>
</tr>
<tr>
<td>Light Pen</td>
<td>LW51F</td>
<td>£10.95</td>
</tr>
<tr>
<td>Siren Drum Synth</td>
<td>LW31T</td>
<td>£17.95</td>
</tr>
<tr>
<td>Computer</td>
<td>LW52G</td>
<td>£9.95</td>
</tr>
<tr>
<td>Logic Probe</td>
<td>LW13P</td>
<td>£0.95</td>
</tr>
</tbody>
</table>

More Choice In Multimeters

- A new range of very high quality multimeters offering truly amazing quality at the price.
- Pocket Multimeter, 16 ranges, 2,0000V DC/AC £6.95 (YJ06G)
- M-10282 with continuity buzzer, battery tester and 10A DC range, 23 ranges, 20,000V DC £14.95 (YJ07H)
- M-20205 with transistor, diode and LED tester and 10A DC range, 27 ranges, 20,000V DC £19.95 (YJ08U)
- M-5050E Electronic Multimeter with very high impedance FET input, 53 ranges, including peak-to-peak AC, centre-zero and 12A AC/DC ranges £34.95 (YJ09K)
- M-5010 Digital Multimeter with 31 ranges including 201 and 20µA DC/AC FSD ranges, continuity buzzer, diode test, and gold-plated PCB for long-term reliability and consistent high accuracy (0.25% + 1 digit DCV) £42.50 (YJ10)

More Choice in Kit Supplies

- Over 100 other kits also available. All kits supplied with instructions. The descriptions above are necessary short. Please ensure you know exactly what the kit is and what it comprises before ordering, by checking the appropriate Project Book mentioned in the list above.

Top Ten Kits

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live Wire Detector</td>
<td>LW82T</td>
<td>£2.95</td>
</tr>
<tr>
<td>75W Model Amp</td>
<td>LW51F</td>
<td>£1.15, £1.15</td>
</tr>
<tr>
<td>Siren Horn</td>
<td>LW83B</td>
<td>£10.95</td>
</tr>
<tr>
<td>Ultrasound Intruder</td>
<td>LW20E</td>
<td>£10.95, £10.95</td>
</tr>
<tr>
<td>BW Amplifier</td>
<td>LW30P</td>
<td>£4.95</td>
</tr>
<tr>
<td>Light Pen</td>
<td>LW51F</td>
<td>£10.95</td>
</tr>
<tr>
<td>Siren Drum Synth</td>
<td>LW31T</td>
<td>£17.95</td>
</tr>
<tr>
<td>Computer</td>
<td>LW52G</td>
<td>£9.95</td>
</tr>
<tr>
<td>Logic Probe</td>
<td>LW13P</td>
<td>£0.95</td>
</tr>
</tbody>
</table>

The Zero 2 Robot is the first truly robotic system available and remarkably it costs less than £30. Complete kit (only mechanical construction required) £79.95 (LJ66W).

Sounds Terrific

Professional Quality
High Power Loudspeakers featuring:
- Virtually indestructible high-temperature voice-coil reinforced with glass-fibre.
- 100% heat overload tolerance.
- Advanced technology magnet system.
- Rigid cast alloy chassis.
- Linen or Plastilene elastomer surrounds.
- 5-year guarantee (in addition to statutory rights).

Prices from £17.97
Send S.A.E. for our free leaflet XH625.

The Maplin Service

All in-stock goods despatched same day for all orders received before 2.00 pm.
All our prices include VAT and carriage (first class up to 750g).
A 50p handling charge must be added if your total order is less than £5.00 on mail-order (except catalogue).

1985 CATALOGUE

Pick up a copy now at any branch of W.H. Smith or in one of our shops.
Price £1.35, or by post £1.75 from our Rayleigh address (quote CA02C).
All offers subject to availability.
Prices firm until 11th August 1985.