FIBRE OPTIC AUDIO LINK

AMSTRAD I/O - CLOCK TIMER

Special Feature...
ELECTRONIC MAIL
P.E. PROJECT KITS

Full kits include PCB’s, hardware, cases (unless stated otherwise), IC sockets, wire, nuts & bolts. Article reprints extra 70p each.

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>PORT</th>
<th>PEFORMANCE</th>
<th>DRIVER</th>
<th>EXTRAS</th>
<th>COMPASS</th>
<th>PORT EXPANSION</th>
<th>PORT EXPANDER</th>
<th>PORT EXTENSION</th>
<th>PORT EXTENSION CONTROL</th>
<th>PORT EXTENSION CONTROL PORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECTRUM SPEECH, AND 8 BIT I/O</td>
<td>PORT 16</td>
<td>$29.99</td>
<td>HIGH PERFORMANCE STEPPING MOTOR</td>
<td>DRIVER Dec 85</td>
<td>$20.99</td>
<td>EXTRA1: Transform 8.95, Grad. 9.99, BBC</td>
<td>BBC lead & plug £1.98</td>
<td>Motor: 1302 £14.56</td>
<td>COMMODORE 64 PORT EXPANDER Nov 85</td>
<td>PORT EXTENSION CONTROL £10.91</td>
</tr>
</tbody>
</table>

*SQUANT ROBOT EYES Nov 85 £8.68
TOUCH CONTROL PSU Oct 85 £20.38

DIGITAL CAPACITANCE METERS
A super-sensitive 8 channel digital input a true digital display of up to 10 of 1suf or 10uf. £14.99

Exceptionally easy to use. A crystal precision electronic setting up program. Ideal for schools, labs, and beginners as well as electronics enthusiasts. From beginners to experts. Excludes kit - including PCB & components. Import issues: £23.99, Returns of £23.02, TOTP.

HIGH PERFORMANCE STEPPING MOTOR DRIVER
As featured in December issue
Kit including PCB, I.C. & All Parts £29.98
Transformer 230V 18W £5.96 extra
Case (house PCB only) £2.95 extra
Load & Connector for BBC Computer £1.99
Motor - ID20 £14.50
TEA102 also available separately £16.88. Data £1.00

TOOL KIT
Antex 38 soldering iron 25W 24V £7.25, 12V 4.5W, 24V £7.65, 110/125V £7.35.
Antex 704 Large carrying iron 24V £5.99
Heat link heaters £1.99
Solder holder size 5 £2.50
Solder carrier size 10 £2.99
Low cost pliers £1.99
Rope nose pliers £3.99
Mini off 12V (MDU) £1.99
Multimeter Type 1 1000v £17.98
Multimeter Type 2 20,000v £17.98
Multimeter Type 3 30,000v (paul bates) £27.98
Multimeter Type 4 10M digital £5.48
Digital multimeter £18.99
Signal injector £2.99
Circuit jumpers £1.99
Holding Hands £5 magnifier £7.99
Miniature vice (plastic) £3.85

A Practical Introduction to Microprocessors. Pynkiel $2.98
Basic Electronics, Hodder & Stoughton $2.98
Beckers Guide to Building Electronics Projects. Perlund $2.98
BBC Accessories. Usborne First Guide to $2.98
DIY Robots & Sensors Billingsby. BBC $7.95
Experiments to do with Your Computer (Science) $2.43
Experimental Science to Design & Make Your Own PCBs $7.99
Elementary Electronics. Skildern $3.98
Experiments with Your Computer (Science) $2.43
How to program. Science to Design & Make Your Own PCBs $2.98
How to Get Your Electronics Projects Working. BP110 $2.15
How to make a project Computer Controlled Robots. Potter $2.19
How to make Computer controlled Motor Controllers. Potter 116, Usborne $2.19
Interfacing to Microprocessors & Microcomputers. £5.00
Machine Lode for Beginners, Usborne £6.50
Making Music on the BBC Computer. Waugh £6.45
Micro Circuit Trees 1 £3.45
Microprocessors for Hobbyists, Gailes £4.98
Practical computer Experiments. Perle £6.45
Practical Things to do with a Microcomputer. Usborne £6.45
Programming for Education on the BBC Computer. Snow £6.45
Questions & Answers — Electronics. Hickman £3.45
Understanding the Micro, Usborne £6.45
Usborne Introduction to Electronics £1.45

BBC SHAPE RATE
BBC Heart Rate Monitor - Ready Built £35.99
Practise relaxation or mental stress with this plug in heart rate monitor. Connects directly to the BBC computer. Programs gives continuous heart rate displays, bar charts, graphs etc. Supplied with sensor, software & instructions — ready to plug in and use.

MAGENTA

EDUCATIONAL Sets

FUN WITH ELECTRONICS

Econolook Introduction to electronics. Full of very clear cut visual pictures and easy to follow text. Covers: Basic information about the types of electronic components and circuits. Suitable for science classes. £6.95

PULLY WHEELS — metal 3mm bore 10mm dia £1.75
20mm dia £1.84
30mm £1.99
METAL COLAR with screw — 3mm bore £2.40
FLEXIBLE SPRING COUPLING 3mm L3.1mm £2.40
FLEXIBLE METAL COUPLING 3mm £2.99
FISCHETECHNIK DC MOTOR SETS £9.95
SMALL TYPE 18 £1.99
LARGE TYPE 185 £3.20
DC MOTOR 1.5-5.4V 5PM 4400-8700 £3.96
Shaft dia 2mm L10mm Body 26x36mm DC MOTOR TYPE — OCS £1.98
FLEXIBLE STEEL SPRING DRIVING BELT 47p 12" long. Join to itself or 2 or more can be joined where longer lengths are needed.

BBC — DC MOTOR CONTROLLER
FISCHETECHNIK MOTOR CONTROL SYSTEM FOR THE BBC COMPUTER (BUILT) £46.55 PE
A high precision DC motor driver and BBC B computer controller. Complete with suitable software. Send £1 in stamps etc or add £1 to order. Price list only £9.49 SAE.

HOW TO ORDER MANGENTA ELECTRONICS LTD.
Electronic, 135 Hunter Rd., BURTON-ON-TRENT DE6 2BD. MAIL ORDER ONLY.

ORDER FORM

ORDER FORM

OUR PRICES INCLUDE VAT

0283 654 352, Mon-Fri 9-5.

ACCESS/BARCARD (Visa) by phone or post.

24 hr Answerphone for credit card orders.

ORDER FORM

ORDER FORM

SHIPPING

SHIPPING

OUR PRICES INCLUDE VAT

0283 654 352, Mon-Fri 9-5.

ACCESS/BARCARD (Visa) by phone or post.

24 hr Answerphone for credit card orders.

ORDER FORM

ORDER FORM

SHIPPING

SHIPPING

OUR PRICES INCLUDE VAT

0283 654 352, Mon-Fri 9-5.

ACCESS/BARCARD (Visa) by phone or post.

24 hr Answerphone for credit card orders.
This month's front cover picture shows a fibre optic cable cluster, capable of carrying 1000's of signals. Photograph by The Science Photo Library.

PROJECTS

FIBRE OPTIC AUDIO LINK by R. A. Penfold
Audio transmission system employing fibre optic light guide

AMSTRAD I/O by Richard Sargent
Allows up to 24 I/O lines to be controlled from any user port address

HARDWARE RESTART by R. Macfarlane
Provides a Spectrum reset facility without loss of memory contents

CLOCK TIMER by Pablo
An interesting clock design with practical applications

INTEREST

EDITORIAL
A message from our new editor

ROBOTICS REVIEW by Nigel Clark
A regular look at robotics and cybernetics

ELECTRONIC MAIL by Barry Fox
The latest in information technology—the facts and figures

BBC MICRO FORUM by Ray Stuart
Liquid crystal display—a useful add-on for the Beeb

SPACEWATCH by Dr Patrick Moore OBE
Mysterious Sirius and more, plus The Sky This Month

BAZAAR
Readers' buy and sell spot

INDUSTRY NOTEBOOK by Nexus
What's happening inside industry

PRINTED CIRCUIT BOARD SERVICE

SUBSCRIPTIONS SERVICE
A chance to take up our questionnaire offer

OUR APRIL 1986 ISSUE WILL BE ON SALE FRIDAY, MARCH 7th, 1986 (see page 27)
SPECTRUM 32K UPGRADE

Upgrade your 16K Spectrum to full 48K with our RAM Upgrade Kit. Very simple to fit. Fitting instructions supplied.

ONLY £18

IDC CONNECTORS (Screw block type)

<table>
<thead>
<tr>
<th>2 pins</th>
<th>3 pins</th>
<th>4 pins</th>
<th>5 pins</th>
<th>6 pins</th>
<th>7 pins</th>
<th>8 pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>£2.75</td>
<td>£3.75</td>
<td>£4.75</td>
<td>£5.75</td>
<td>£6.75</td>
<td>£7.75</td>
<td>£8.75</td>
</tr>
</tbody>
</table>

ZIP SOCKET (Textile)

<table>
<thead>
<tr>
<th>2 pins</th>
<th>3 pins</th>
<th>4 pins</th>
<th>5 pins</th>
<th>6 pins</th>
<th>7 pins</th>
<th>8 pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>£1.75</td>
<td>£1.75</td>
<td>£2.25</td>
<td>£2.75</td>
<td>£3.25</td>
<td>£3.75</td>
<td>£4.25</td>
</tr>
</tbody>
</table>

DIL PLUGS (Headers)

<table>
<thead>
<tr>
<th>5 pins</th>
<th>6 pins</th>
<th>7 pins</th>
<th>8 pins</th>
<th>9 pins</th>
<th>10 pins</th>
<th>11 pins</th>
<th>12 pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>£3.75</td>
<td>£4.75</td>
<td>£5.75</td>
<td>£6.75</td>
<td>£7.75</td>
<td>£8.75</td>
<td>£9.75</td>
<td>£10.75</td>
</tr>
</tbody>
</table>

SPECIAL OFFER

7/84 – 7/86 £15

7/87 – 7/88 £16

7/89 – 7/90 £17

7/91 – 7/92 £18

7/93 – 7/94 £19

7/95 – 7/96 £20

7/97 – 7/98 £21

DIL SOCKETS

<table>
<thead>
<tr>
<th>Turned Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
</tr>
<tr>
<td>8 pin</td>
</tr>
<tr>
<td>10 pin</td>
</tr>
<tr>
<td>12 pin</td>
</tr>
<tr>
<td>14 pin</td>
</tr>
<tr>
<td>16 pin</td>
</tr>
<tr>
<td>18 pin</td>
</tr>
<tr>
<td>20 pin</td>
</tr>
<tr>
<td>24 pin</td>
</tr>
</tbody>
</table>

BBC PLUS MICROCOMPUTER

SPECIAL OFFER THIS MONTH

ONLY £365

We stock the full range of BBC Micro peripherals, Hard- drives (software like Disc Drives Top quality Commodore, Oxford, Diksettes), Printers, Printer Interface Cable, Dust Covers, Cassette Recorder & Cassettes, Monitors, Connectors (Ready made Cables, Plugs & Connectors), Plotter (Graphic Table) EPROM Programmer, Lightpen Kit, Joysticks, Sockets, Jumpers & Office, EPROM Eraser, Machinedec ROM, The highly sophisticated Watford's 16K BEER DFS, WORDWISE, BEEBCAL, Software (Educational Application & Games), BOOKS, etc. Please send SAE for our descriptive leaflet.

5½ IN DISC DRIVES Cased with Power Supply & Cable

| CS100 – TEC Single sided 40 track 100K 5½ Single Disc Drive |
| CS200 – Epson Double sided 40 track 200K 5½ Single Disc Drive |
| CS4005 – MITSUBISHI Single 400K, Double sided 40/80 track switchable |
| CD400 – Epson Double sided 40 track 400K 5½ TWIN Disc Drives |
| CD8005 – MITSUBISHI Dual 800K. Double sided 40/80 track switchable |

DPS Manual (comprehensive)

£7 (NO VAT)

DISC INTERFACE kit for BBC

£56

TWIN Disc Drive CASE with Power Supply to house your own Drives

£38

N.B. All single drives with power supply will be supplied in a twin case for later inclusion of a second Drive.

(Carriage on disc drives £7 Securicor)

WATFORD ELECTRONICS

Tel. (0923) 40588

Telex. 8956095

Practical Electronics March 1986
SUPER HY-LIGHT STROBE KIT
Designed for black, theatrical effect etc.
Approx. 16 (n)otes. Adjustable speed. Price £4.00 + £2 (p&p) (Total Inc. VAT £5.00). Case and instruction price £7.00 + £2 (p&p boxed incl. VAT £9.00). Footslop SAE for further details including Hy-
Light and Individual Strobe Tabs.

ULTRA VIOLET BLACK LIGHT FLUORESCENT TUBES
In stock and ready for use. Price £1.20 (p&p) (Total Inc. VAT £1.50). 12 tubes £13.50 (p&p £3.50). USES
14W AC 220V transformer, suitable for home or office use.

VARIABLE VOLTAGE TRANSFORMERS
Input 230V, 240V a.c. 50/60Hz OUTPUT 220V.
230V, 1A Max. £10.50
3x250VA 5A Max. £15.00
5x50VA 10A Max. £7.50
5x25VA 20A Max. £5.00
5x2VA 50A Max. £1.50
4 x 3VA + 2 x 5VA 65A total. Reasonable price and VAT.
3-PHASE VARIABLE VOLTAGE TRANSFORMER
Input dual 220-240V 50 Hz, 240V 50 Hz. Transformer with Transformer Bell (SOLITON & AUTO) (100-240V) as well. Either used with American sockets and trash leads or open frame has been available for interfaced delivery. Leads on request.

240V AC Transformer with for both fans, fan of 12 tubes £5.50 (p&p £5.50). USES
1 x 120V SELF-BALANCED BLACK LIGHT MERCURY BULBS
Available for either I.C. or U.S. fitting. Price £1.80 + £0.25 (p&p) (Total Inc. VAT £2.05). 4000W UV LAMP & BALLAST company — £55.00 + £3.00 (p&p) (Total Inc. VAT £58.00). 4000W UV lamp, ¥25.00 + £2.00 (p&p) (Total Inc. VAT £27.00).

ROBOT ENTHUSIASTS
1. ESCAP precision Swissmade robotsasser, R.C. or electric.
Mach with 9 to 10 feet, 10-15 feet, or 20 feet. Price from £5.00 + £1.00 (p&p) (Total Inc. VAT £6.00).

SOLD STATE RELAY
Eight make switch up to 500W A.C. 16 ans. Recommended operating voltage 220V D.C. but will work at less than 50V D.C. upto 70V. Lifts 1000 lb. T.P. Logic for switching mains voltage. £5.00 by post (Order at fraction of price. £3.00 + £0.50 (p&p) (Total Inc. VAT £3.50).

MICRO SWITCHES
Type 1. 1 Hour delay, 120v ac contacts. Type 2. 120v ac contacts. All type button. Price £0.90 inc. VAT for 10, any type. Post paid. N.M.S.

VEROE BLOWER & SUCTION UNIT
Powerful exhaust fan. Assembly balanced totally enclosed motors, 15,000, 20,000 or 25,000 rpm, 50 Hz. Price £25.00, 35.00, 45.00 inc. VAT.

VBLA CENTRIFUGAL BLOWER
O.C. motor, 220V. 1.5 HP, 1440 rpm, 115V. £20.00 + £2.00 (p&p) (Total Inc. VAT £22.00).

CENTRIFUGAL FANS
Smith Type 1750. 240V. A/C. Capacity 45-40mm 86.50 (p&p £1 inc. VAT for 10).

12/24V DC CENTRIFUGAL BLOWER
On-press button 5 villi. 220V. 6000 rpm, 250 ma. £25.00 + £2.00 (p&p) (Total Inc. VAT £27.00).

COOLING OR EXTRACTOR FAN

Job lot of 1000 of 300V (AC) N.C. inc. £5.50 inc. p&p. COOL.

JOB LOT OF 1000 OF 300V (AC) N.C. inc. £5.50 inc. p&p. COOL.

MULTIFREQUENCY NON-CONTACTING REED SWITCH
Sensor. Each 12 pens. Price £0.90 inc. VAT. 5 pens + £0.50 (p&p) (Total Inc. VAT £1.40).

WIDE RANGE OF XENON TUBES
WRITE/PHONE IN YOUR ENQUIRIES

SERVICE TRADING CO
47 BRIDGIAN ROAD, CHISWICK, LONDON W4 5BB Tel: 01-395 1560
ACCOUNT CUSTOMERS MIN. ORDER £10

Practical Electronics March 1986
Send now for our FREE CATALOGUE or ring: 01-567 8910 for the keenest prices on –

HOME LIGHTING KITS

<table>
<thead>
<tr>
<th>Kit Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1000K</td>
<td>Remote Control</td>
<td>£14.95</td>
</tr>
<tr>
<td>MK6</td>
<td>Transmitter for above £4.50</td>
<td></td>
</tr>
<tr>
<td>T300K</td>
<td>Touchscreen £7.75</td>
<td></td>
</tr>
<tr>
<td>T200K</td>
<td>Touchscreen £7.75</td>
<td></td>
</tr>
<tr>
<td>TDEK</td>
<td>Extension kit for 3-way switching for T300K £2.50</td>
<td></td>
</tr>
</tbody>
</table>

DISCO LIGHTING KITS

<table>
<thead>
<tr>
<th>Kit Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL1000K</td>
<td>– This value-for-money 4-way chaser features bi-directional sequencing and dimming. 1kW per channel.</td>
<td>£15.95</td>
</tr>
<tr>
<td>DL21000K</td>
<td>– A lower cost un-directional version of the above. Zero switching to reduce interference.</td>
<td>£8.95</td>
</tr>
<tr>
<td>DL3000K</td>
<td>– 3-channel sound to light kit features zero voltage switching, automatic level control and built-in microphone. 1kW per channel.</td>
<td>£12.95</td>
</tr>
</tbody>
</table>

MICROPROCESSOR TIMER KIT

Designed for control of 4 outputs independently. Includes box, 18 time settings. CT6000K $39.00. XX114, Relay Kit for CT6000 includes PCB, connectors and one relay. Will accept up to 4 relays. 3A/240V 200 contacts. $3.90. 701115 Additional Relays $1.65.

DIGITAL ELECTRONICS

EASY

SUPERKIT £22.00

SUPERKIT II £16.00

(£35.00 if bought together)

The SUPERKIT series introduces beginners to practical digital electronics. **SUPERKIT (SUP I)** is the first kit, which contains an instruction manual, a solderless breadboard, and components (7 integrated circuits, switch, resistors, capacitors, LEDs and wire). It teaches boolean logic, gating, flipflops, shift registers, ripple counters and half adders. **SUPERKIT II** (SUP II) extends SUPERKIT. It contains an instruction manual and components (10 integrated circuits, 7-segment display, resistors, capacitors and wire), and explains how to design and use adders, subtractors, counters, registers, pattern recognisers and 7-segment displays.

DIGITAL COMPUTER LOGIC £7.00

DIGITAL COMPUTER DESIGN £9.50

MICROPROCESSORS & MICROELECTRONICS £6.50

The **SUPERKIT** series is backed by our theory courses **DIGITAL COMPUTER LOGIC (DCL)**, the beginners' course, covers the use and design of logical circuits, flipflops and registers. **DIGITAL COMPUTER DESIGN (DCD)**, a more advanced course, covers the design of digital computers both from their individual logic elements and from integrated circuits. **MICROPROCESSORS** and **MICROELECTRONICS (MIC)** teaches what a microprocessor is, how it evolved, how it is made and what it can do.

GUARANTEE If you are not completely satisfied, return the item to us in good condition within 28 days for a full refund. All prices include worldwide surface postage (ask for prepaid invoice if required). Orders dispatched within 48 hours. Overseas orders (by international credit card or by bank draft drawn on a London bank)

CAMBRIDGE LEARNING LTD, Unit 20, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR, England

Telephone: 0480 67446. VAT No. 313060352, Company No. 1228762

Please send me (initial letters used):

- **SUP I** @ £22.00 DCL @ £7.00
- **SUP II** @ £16.00 DCD @ £9.50
- **SUP I + II** @ £35.00 MIC @ £6.50

Full details of all your courses (please tick)

- I enclose a cheque/PO payable to Cambridge Learning Ltd. for £

Please charge my credit card, No.

- Expiry date

- Telephone orders from credit card holders accepted on 0480 67446 (24 hrs).

Name

Address

Signature

CAMBRIDGE LEARNING LTD

Unit 20, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR, England
Micronta

Quality Test Equipment

- **£69.95**

- **£34.95**
 - Autoranging. Select the function and it does the rest. Measure to 1000 volts DC in 5 ranges, 500 volts in 4 ranges. Accurate from 45-10 kHz. Resistance to 2 megohms in 6 ranges. 4¾ x 2½ x 1⅜. Requires 2 "AA" batteries.

- **£22.95**
 - 25 Ranges, 20,000 Ohms Per Volt. Has 4' colour-coded mirrored scale and detented hinge. Measures to 1200 volts DC, 1200 volts AC, DC to 300 mA. Resistance to 2 megohms. 5⅞ x 3⅜ x 1¼. Requires 2 "AA" batteries.

- **£9.95**
 - Transistor Checker. Makes Go/No-Go tests on small signal and power types. Indicates relative current gain. 2⅛ x 2¾ x 1⅜. Requires "AA" battery.

- **£8.95**
 - 8 Ranges 2,000 Ohms Per Volt. Easy to use. Perfect for beginners' VOM. 2½ meter, colour-coded mirrored scale and "Off" position. Measures to 1000 volts AC/DC in 6 ranges, DC to 150 mA. Resistance to 100,000 ohms. 3¾ x 2¼ x 1½. Requires "AA" battery.

Take a Look at Tandy, Today

Visit your local store or dealer and see these and many more bargains.

We service what we sell - over 2,600 exclusive lines!

Tandy is known as RadioShack in the U.S.A.

Prices may vary at dealers.

Offers subject to availability.

Over 9,000 Stores & Dealerships Worldwide.
We regret that lengthy technical enquiries cannot be answered over the telephone.

Assistant Editor Richard Barron

Editorial Tel: 01-727 7010

Advertisement Manager Nigel Bellwood

Advertisement Tel: 01-727 7010

Queries and letters concerning advertisements to: Practical Electronics Advertisements, Practical Electronics Magazines Ltd., 16 Garway Road, London W2.

Letters and Queries

We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped addressed envelope, or addressed envelope and international reply coupons, and each letter should relate to one published project only.

Component lists are usually available from advertisers, where we anticipate difficulties a source will be suggested.

Old Projects

We advise readers to check that all parts are still available before commencing any project in a back-dated issue, as we cannot guarantee the indefinite availability of components used.

SUBSCRIPTIONS

Copies of Practical Electronics are available by post, inland for £14, overseas for £16 per 12 issues, from: Practical Electronics, Subscriptions Department, Practical Electronics Magazines Ltd., 16 Garway Road, London W2. Cheques, postal orders and international money orders should be made payable to Practical Electronics Magazines Limited.

Phone: Editorial 01-727 7010

We regret that lengthy technical enquiries cannot be answered over the telephone.

In November, Practical Electronics celebrated its twenty-first birthday. In those twenty-one years the magazine has grown into one of the most widely respected popular electronics titles. Each issue is read avidly by tens of thousands all over the world. For all these years Practical Electronics has been under the ownership and guidance of IPC Magazines Ltd. Now the magazine has changed ownership and will from the next issue be under the guidance of Practical Electronics Magazines Ltd. The new owners will continue the tradition of quality and advancement in the exciting field of electronic technology.

The editorship of Practical Electronics is being taken over by myself, Nick Hampshire. I have written many books on computing and electronics, and have edited and published several computer magazines. Richard Barron the current assistant editor is staying with the magazine and will help to ensure that the magazine continues to provide our existing and loyal readers with the kind of articles and projects which has made Practical Electronics the success that it is today. I shall also be acting as publisher in association with Angelo Zgorlec who is well known to many as the founder of Personal Computer World Magazine, the first European personal computer magazine.

I wish to assure all our readers, subscribers and advertisers, that Practical Electronics under its new ownership will continue to provide the kind of editorial which you both expect and demand. Expanding the size of the magazine will give me space to include new editorial material, thereby allowing more extensive coverage of subjects relating to leading edge LSI and micro technologies. To help decide what you as readers want from the magazine I am including in this issue a special reader survey. I hope that as many readers as possible will complete and return the survey form (see page 25). This is important since it is on the basis of this research that I will decide on the editorial contents, and what type of projects to include in future issues.

WELCOME CRITICISM

I would welcome any ideas or criticism from our readers and advertisers. I would also like to encourage any readers who have developed a project which they think others would like to hear about to write to me with a short description as I will constantly be looking for new authors with good, original and innovative ideas.

I wish to take the opportunity of thanking my predecessors as editors, Mike Kenward, and founding editor Fred Bennett, for the great job they have done over the last twenty one years. I am looking forward to continuing this tradition of high standards over the next twenty one years of Practical Electronics, and I hope all our loyal readers will agree.

... Nick Hampshire

BACK NUMBERS and BINDERS

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), Practical Electronics Magazines Ltd., 16 Garway Road, London W2, at £1.40 each including Inland/Overseas p&p. Please state month and year of issue required.

Binders for PE are available from the same address as back numbers at £5.50 each to UK or overseas addresses, including postage, packing and VAT.

Practical Electronics March 1986
WHEN TO START?

At what age should one start to learn about electronics? The answer—as early as possible! At least, that is the idea inWirral, where the Borough’s Education Authority asked Bromborough’s INTECH (Information Technology Centre) to develop an idea of Simon Jones, a teacher at Sandbrook Primary School, Wallasey, for teaching basic electronics to primary and early secondary school children.

The result is the successful Wirral Electronics Pack, now being offered to schools and education authorities throughout Britain.

The pack is permanently housed in a carton with a fitted cellular plastic interior lining—the individual cells containing separately all the materials necessary for simply constructing 10 experiments which will introduce 3rd and 4th year juniors or 1st year secondary school pupils to the fundamental concepts of electronics.

Worksheets are included which instruct users—both teachers and pupils—how to set up each experiment correctly to achieve an end result. Each experiment demonstrates the nature of electricity and how it flows in a circuit.

Power is supplied cheaply and safely by 4 ordinary 1.5 volt HP2 or equivalent dry batteries (not included). Spacers gripped between the batteries provide tapping points for 1-5, 3-4-5 or 6 volts as required.

Project No. 12 gives instruction in building a multifunction alarm system (intruder and fire), but children and teachers can develop their own projects from there—the Electronics Pack is a springboard rather than a closed learning system.

This is further borne out by the fact that Stage II, which will link more advanced experiments to school computers, is already being developed. Stage II will then make a bridge to the Micro-Electronics for All course. (See Practical Electronics January and February.)

For further information on the Wirral Electronics Pack Stage I (£22.25 inc. VAT and p&p) contact Bromborough INTECH Centre Ltd. (061-334 2771).

OPTICAL FIBRE RECORD

A new world record for optical fibre transmission set by British Telecom promises to help contain the cost of expanding the network. A team of engineers have succeeded in transmitting data over 32 km of singlemode fibre at a rate of 2.4 Gbit/s, the fastest rate yet achieved over an installed cable.

Unlike previous laboratory demonstrations this feat was achieved over an existing cable. It illustrates the feasibility of upgrading existing optical systems without the need to replace cables. Considerable sums could be saved in the future by providing only new terminal electronics to expand the capacity of cables rather than replacing complete systems.

The data rate achieved, 2,400 million bits of information per second, represent a 16-fold capacity increase over the existing 140 Mbit/s systems. It is equivalent to passing 30,720 separate speech channels, or 32 full-bandwidth colour television pictures, down the same single optical fibre.

The key factor in the trial was the use of a ridge-waveguide distributed feedback (DFB) laser, developed at British Telecom’s Martlesham research laboratories. It gives an absolutely pure single wavelength output at 1.52 microns, which is necessary to avoid the distortion which would occur with less pure, multi-wavelength signal sources in this application. The wavelength, longer than that used by current fibre systems (1-3 microns), was chosen because of the significantly lower losses (and hence further transmission) at this frequency.

The record was set on a cable linking Birmingham with Tamworth.

SATellite TRACKER

Two Satellites, UOSAT 1, launched in 1981 and known as OSCAR 9, and UOSAT 2 or OSCAR 11, launched in March 1984, are helping to generate more enthusiasm from pupils for geometry, maths, science, geography and computer systems. But until recently communicating with OSCAR 9 and OSCAR 11 has not been easy, involving electronics, computing and satellite tracking knowledge.

Now, after 15 months of work, the problems have been eliminated by Steve Webb whose track record in the electronics industry includes ten years work with Ferranti and Marconi on space and defence satellite systems.

Steve developed a basic receiver for his children after they got bored playing space invader games on their home computers—and they were thrilled to be able to receive data, news bulletins, and messages from space. He says his children provided the inspiration for ASTRID (Automatic Satellite Telemetry Receiver and Information Decoder) which is now about to be launched world-wide.
IDEA '86 (Internepeon Development in Electronics Award) is a new award scheme initiated by Cahners Exhibitions Ltd.—the organisers of Internepeon, the UK's longest running national electronics show. The impetus behind IDEA '86 is to not only encourage the tradition of British innovation, but also provide the professional support necessary to manufacture and successfully promote and market the design. IDEA was officially launched in January this year.

The entrants will be taken from three main areas—individuals with an idea who are prepared to go into full time business, students in the final year of an electronics degree or other suitable technical qualification and small independent companies employing less than 10 staff.

IDEA '86 has, therefore, been conceived to encourage and help develop those ideas on new products which might otherwise be lost to industry.

The awards will be a bi-annual event—providing an ongoing impetus for new enterprise in the UK electronics industry, and continuously supporting those innovations through to the marketplace.

Entry details and further information can be obtained from Lucinda Hopkins/Chris Corfield, Infopress Limited on 01-353 2320.

OOPS! SORRY

In the January news item 'CD With a Difference' we wrongly stated that the CARIN navigation system was presently available, we also published an approximate cost price.

Unfortunately we have since been informed that our source of information was inaccurate. Philips have demonstrated a prototype installation in Eindhoven and fully expect to be manufacturing a product sometime in the future. However, the time scale on this will be measured in years rather than months and therefore no information can be given on launch dates or prices.—Apologies to all concerned.

Advance House of Instruments has recently appointed the Bedfordshire-based Beds. Industrial Calibration Centre on an exclusive basis to provide a back-up service for in and out of warranty repairs on the Advance House of Instruments' ranges of electronic test and measuring instruments.

Bedds. Industrial Calibration Centre undertakes repair, servicing and calibration of a wide range of instruments and also provides an emergency repair facility and a 7-day turnaround as standard for calibration. Precision measurements are performed in a modern, clean, temperature-controlled room and are traceable to the National Physical Laboratory via the British Calibration Service. Repaired and calibrated equipment is stored and given a final test prior to being wrapped and delivered. All equipment repaired and calibration is supported by full documentation in the form of fault reports. Calibration certificates are available at a nominal cost. Information from Advance House of Instruments, Raynham Road, Bishop's Stortford, Herts CM23 5PF. (0799 26699).

IT'S A SMALL WORLD

Very often in our field we need to take a close look at our work, it is not always easy to illuminate the area at the same time. The Spirig Pocket Inspection Microscopes will, however, solve both these problems at the same time. Arguably these aids are being marketed as pocket size, they are certainly portable and would be a handy addition to the hobbyist toolkit.

Two types are available—the Spirig 30 (30x magnification) and the Spirig 100 (100x magnification). Their prices are £22.42 and £32.77 respectively (inc. VAT and p&p). From Cobonic Ltd., 32 Ludlow Road, Guildford, Surrey GU2 5NW. (0483 505260).

Briefly...

It looks likely that Amstrad will launch a combined TV/Video-recorder later this year. According to reports, the machine could be the first of its kind, having the capability of recording TV broadcasts in full. So far similar combinations have only incorporated monitors, they are used for business presentations etc.

Whilst on the subject of Amstrad machines, it has been brought to our attention that 'Locoscript' discs for the 8256 have an inherent bug (page number insertion fails to operate). Replacements available free of charge.

Countdown ...

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below. Note: some exhibitions may be trade only. If you are organising any electrical/ electronics, radio or scientific event, big or small, we shall be glad to include it here. Address details to Brian Butler.

Electrex '86 Feb 24–28. NEC, Birmingham G

CAD '86 Apr. 8–10. Metropole, Brighton. L
Internepeon Production Show Apr. 8–10. NEC, Birmingham. B
British Electronics Week Apr. 29–May 1. Olympia. N

B Cahners. 01-891 5051
F ASCE Ltd. 06286 67633
G Electron Ltd. 0483 222888
I Online 01-868 4466
J Trident Int. Ex. Ltd. 0822 4671
K Lutterworth Scientific Ltd. 0483 31261
O Database 061-456 8383
P Imperial College 01-589 5111
Although there has been a great deal written about fibre-optics in the technical press over the years, and this technology is now beginning to have a real impact in the communications industry, fibre-optic constructional projects seem to have been all but nonexistent so far. While it has to be admitted that the capabilities of fibre-optic cable are far in excess of anything most amateur users are likely to require (when did you last want to send twenty-five TV signals over a single cable), simple data links can also be provided, and can be surprisingly inexpensive. The cable itself has fallen in price over the years, and is now just a little more expensive than ordinary electric cable.

This article describes a simple fibre-optic audio link which does not require any special or difficult to obtain electronic components. A frequency modulation system is used to give good linearity and a signal to noise ratio of better than 60dB. A high brightness i.e.d. is used as the modulated-light source and an ordinary phototransistor acts as the light receiver. The prototype has only been tried over a range of 20m, and this should be adequate for most purposes. This range is achieved with ease though, and the system should be capable of operating over a substantially greater range without the need for any modifications. Whether or not the system has any real advantages over an ordinary electric-cable link is debatable, but at the very least it represents an interesting project for schools and experimenters.

Although an AM system has the advantage of being extremely simple, it has a major drawback in that any non-linearity anywhere in the system produces distortion on the audio output signal. In practice quite significant levels of distortion would almost certainly result, and it is better to use an FM system where non-linearity in the i.e.d., i.e.d. driver, and photodetector do not affect the audio output quality. This equipment uses a simple FM set-up, and the block diagrams for the transmitter and receiver are shown in Fig. 1 and Fig. 2 respectively.

The transmitter is slightly the more simple of the two devices, and really consists of little more than a VCO (voltage controlled oscillator). The output frequency of the VCO is dependent on the control voltage, and this voltage is modulated by the audio input signal. The receiver must convert the variations in frequency back into an audio signal using some form of frequency to voltage converter. The i.e.d. is simply being switched on and off, and it is the switching frequency rather than the i.e.d. brightness that is proportional to the amplitude of the audio input signal. Therefore the i.e.d. and photodetector cannot introduce distortion into the system. An FM system is not distortionless though, and the VCO cannot achieve a range of more than 20m, a frequency modulation system is used to give good linearity and a signal to noise ratio of better than 60dB. A high brightness i.e.d. is used as the modulated-light source and an ordinary phototransistor acts as the light receiver. The prototype has only been tried over a range of 20m, and this should be adequate for most purposes. This range is achieved with ease though, and the system should be capable of operating over a substantially greater range without the need for any modifications. Whether or not the system has any real advantages over an ordinary electric-cable link is debatable, but at the very least it represents an interesting project for schools and experimenters.

Fig. 1. Transmitter block diagram

Fig. 2. Receiver block diagram

SYSTEM OPERATION

The type of cable needed for a link of this type is a single polymer filament of about 1mm in diameter and covered with plastic sleeving to protect the core. The latter gives the cable an appearance which is very much the same as ordinary single core insulated electric cable, but the fibre-optic cable is generally a little less flexible though. Light fed in at one end of the cable tends to travel down the filament, reflecting from one wall to the other, eventually emerging at the other end. The difficulty when producing fibre-optic cable is to keep the losses down to a low level, and a typical (inexpensive) modern cable has an attenuation of about 1dB per metre. In other words, the light level reduces by a factor of ten for every 20m of cable.

This may not seem to be very good in comparison to an ordinary coaxial cable, and only represents about one tenth of the range for a given level of attenuation, but it is adequate for many purposes. If used to link an i.e.d. to a photodetector, the range obtained via the cable is vastly more than can be obtained by simply directing the light direct from the i.e.d. to the detector. Of course, the other advantage of using a fibre-optic cable is that it is not nec-
must have good linearity, as must the frequency to voltage converter at the receiver, if a good quality audio output is to be obtained. In practice good VCO and detector linearity are easily achieved.

TRANSMITTER AND RECEIVER

Returning to Fig. 1, the transmitter is more than just a VCO, and one of the additional stages is a buffer stage at the output which provides a reasonably high drive current to the i.e.d. A buffer stage at the input gives the circuit a fairly high input impedance and provides a low output impedance to drive a lowpass filter circuit. This stage ensures that the excessive modulation frequencies are not allowed to reach the VCO. A bias voltage for the control input of the VCO is supplied by the buffer stage via the lowpass filter.

A phototransistor is used as the light detector, and this provides good sensitivity at the fairly high carrier frequency of around 100kHz. Another point in favour of phototransistors is that they are readily available with a built-in lens that gives a fairly narrow viewing angle. This is important in this application as it helps to ensure that the light from the end of the cable is efficiently coupled to the semiconductor detector element. The output from the detector circuit is quite low at typically only a few mV RMS or less. A two stage high gain amplifier is used to boost and clip the signal to give virtually squarewave output to drive the frequency to voltage converter circuit.

PHASE LOCKED LOOP

A phase locked loop provides the frequency to voltage conversion. The phase comparator, lowpass filter, and VCO make up the phase locked loop. The relative phase and frequency of the input signal and the VCO are checked by the phase comparator, which provides a series of output pulses. These pulses are integrated by the lowpass filter to produce a reasonably smooth control voltage for the VCO. If the VCO is at a lower frequency than the input signal or even if it is just slightly lagging the input signal in phase, the output from the lowpass filter goes to a high voltage and boosts the operating frequency of the VCO. Similarly, if the VCO is at a higher frequency than the input frequency, or leading in phase, the output of the lowpass filter goes to a low voltage. This reduces the VCO's operating frequency.

There is a negative feedback action here which results in the VCO locking on to the same frequency as the input signal, and also keeping in phase with it. This assumes that the input frequency is within the locking range of the circuit. For proper demodulation the carrier frequency of the transmitter must be roughly matched to the centre frequency of the VCO in the PLL, and the deviation at the transmitter must not take the carrier outside the locking range of the PLL. Severe distortion usually results if lock is lost on signal peaks.

Of course, in this application it is not the output of the VCO that is of value, but the control voltage from the lowpass filter. This rises and falls in sympathy with fluctuations in the input frequency, and provided the VCO has good linearity, it provides the required linear frequency to voltage conversion. A phase locked loop may seem to be an unnecessarily complex way of doing things, but using a suitable PLL integrated circuit this type of detector can actually be very simple and inexpensive. PLL detectors give excellent results, and an acceptable signal to noise ratio from weak and noise infested input signals.

The demodulated audio output is fed via a buffer stage to a second lowpass filter. This filter ensures that there is no significant carrier breakthrough at the output, and as it is an active type it also provides the unit with a low output impedance.

TRANSMITTER CIRCUIT

Fig. 3 shows the circuit diagram for the transmitter. The circuit is designed around IC3 which is a CMOS 4046BE phase locked loop, but in this circuit only the VCO section of the device is utilized. C6, R6, and VR1 are the timing components, and VR1 is adjusted to match the centre frequency of the transmitter VCO to that of the PLL decoder in the receiver circuit. The carrier frequency of the prototype is just over 100kHz, and the peak deviation can be quite high at up to about 30kHz or so. TR1 operates as an emitter follower buffer stage at the output of the VCO, and this drives the i.e.d., D1 at a current of approximately 40mA. The output waveform of IC1 is a squarewave signal, and D1 is therefore switched off for about 50% of the time. This gives an average i.e.d. current of about 20mA. Originally a higher i.e.d. current was used, together with an ordinary 5mm red i.e.d., but this gave poor results with a mediocre signal to noise ratio. In fact it was difficult to align the optics accurately enough to get the system to operate at all. Filing down the lens on the i.e.d. gave a much improved signal to noise ratio, but optical alignment remained critical. In the final unit a high brightness red i.e.d. is used, and the specified device (a CQV51J) was found to give excellent results. Even using an average i.e.d. current of only around 20mA a good signal to noise ratio is provided, and optical alignment is far from critical. An infra-red i.e.d. might give improved results since most phototransistors have a response which peaks in the infra-red part of the spectrum. However, not all fibre-optic cables will transmit efficiently in the infra-red part of the spectrum, and the cable used in the prototype proved to be very inefficient with an infra-red source. A high brightness red i.e.d. probably represents the safest option.

IC1 is the input buffer stage and it gives the unit an input impedance of nominally 50k. The lowpass filter is based on IC2 which also operates as a unity voltage gain buffer stage. The filter is a conventional third order (18dB per octave) type which gives the system a bandwidth of about 15kHz. This is marginally less than the full audio range, but is sufficient to provide a very respectable audio quality (comparable to FM radio).

RECEIVER CIRCUIT

The circuit diagram of the receiver appears in Fig. 4. TR2 is the phototransistor, and although a BPX25 is specified for this...
component, similar devices such as the TIL81, and BPY62 seem to work equally well. The collector to emitter resistance of TR2 is connected with R9 to form a potential divider across the supply lines. The pulses of light cause the collector to emitter resistance of TR2 to fall slightly, and this generates small negative pulses at the collector of TR2. R8 provides TR2 with a small quiescent bias current which aids its sensitivity and high frequency performance.

TR3 is connected as a high gain common emitter amplifier, and it provides the first stage of amplification. IC4 is connected as an inverting amplifier with a voltage gain of 20dB, and this provides the second stage of amplification. The clipped signal at the output of IC4 is compatible with the input of IC5, which is another 4046BE CMOS phase locked loop. In this case it is used as the phase locked loop detector. The link across pins 3 and 4 connects the output of the VCO to the input of the phase detectors (only one of which is used here). R19 and C12 form the lowpass filter between the phase comparator's output and the control input of the VCO, while C11 and R17 are the VCO's timing components. R18 is the load resistor for the built-in source follower buffer stage of IC5, and it is from here that the demodulated audio signal is taken.

IC6 is used as the basis of the lowpass filter at the output of the unit, and this is essentially the same as the filter at the input of the transmitter. The circuit will handle signal voltages of up to about 1V RMS or so with distortion of under 1%. Although one might expect there to be exactly unity voltage gain through the system, there is in fact a loss of a few dB. This is due to the buffer stage in IC5 having a voltage gain of somewhat less than unity.

CONSTRUCTION

Printed circuit designs for the transmitter and receiver are shown in Fig. 5 and Fig. 6 respectively. Both boards are pretty straightforward to construct, but bear in mind that IC3 to IC6 are all MOS devices, and that they consequently require the normal antistatic handling precautions.

D1 and TR1 are mounted horizontally on their respective boards. The boards are then mounted on the base panels of the cases with D1 and TR1 positioned behind holes drilled in the front panels. Cases of about 150mm by 100mm by 50mm are suitable incidentally. There is no fibre-optic equivalent of a 3-5mm jack plug and socket available, and so something has to improvised. Fig. 7 shows the arrangement used in the prototype equipment. The front panel holes are fitted with small grommets having an inside diameter of about 5mm. Some sleeving is then used to link each grommet to its opto device, so that when the end of the cable is pushed into the grommet it is guided to the opto device. Heat-shrink sleeving is ideal, as the opto devices have a wider diameter than the cable, and by shrinking the sleeving the cable will be made a tighter and more reliable fit. The sleeving must be fitted and shrunk prior to mounting each opto device. It can be shrunk by holding it over the flame from a match, and rotating the sleeving so as to heat it evenly over its entire surface. Be very careful not to overheat the sleeving or the component, or your fingers for that matter. This system seems to work very well in practice, making the fibre-optic cable as easy to use as an ordinary audio cable fitted with jacks. If you prefer not to use heat-shrink sleeving, results seem to be perfectly acceptable using
COMPONENTS . . .

TRANSMITTER

Resistors
- R1, R2: 100k (2 off)
- R3 - R5: 2k7 (3 off)
- R6: 4k7
- R7: 100
- All \(\frac{1}{2} \)W carbon
- VR1: 10k sub-min hor preset

Capacitors
- C1: 470µ 10V radial elect
- C2: 470µ carbonate
- C3: 15n carbonate
- C4: 22n carbonate
- C5: 1n carbonate
- C6: 470p ceramic plate

Semiconductors
- IC1, IC2: 741C (2 off)
- IC3: 4048BE
- TR1: BC441
- D1: CQV5.1J 5mm High brightness - red i.e.d.

Miscellaneous
- S1: Rotary on/off switch
- SK1: 3.5mm jack socket
- Case 152 x 102 x 51mm; printed circuit board PE 025:
 - 16 pin d.i.l. i.c. holder; 8 pin d.i.l. i.c. holder (2 off);
 - battery and connector; control knob; heatshrink sleeving; grommet; fixings, etc.

RECEIVER

Resistors
- R8: 1M
- R9: 3k9
- R10: 1k8
- R11, R18: 4k7 (2 off)
- R12: 470
- R13, R17, R19: 10k (3 off)
- R14, R15: 15k (2 off)
- R16: 10k6
- R20 - R22: 2k7 (3 off)
- All \(\frac{1}{2} \)W carbon

Capacitors
- C7, C17: 100µ 10V radial elect (2 off)
- C8: 10n polyester
- C9: 100n polyester
- C10: 2u2 63V radial elect
- C11: 470p ceramic plate
- C12: 10n carbonate
- C13: 15n carbonate
- C14: 22n carbonate
- C15: 1n carbonate
- C16: 10µ 25V radial elect

Semiconductors
- IC4, IC6: CA3140E (2 off)
- IC5: 4046BE
- TR2: BPX25 or similar
- TR3: BC547

Miscellaneous
- S2: Rotary on/off switch
- SK2: 3.5mm jack socket
- Single core fibre optic cable; case about 152 x 102 x 51mm; printed circuit board PE 026:
 - 16 pin d.i.l. i.c. holder; 8 pin d.i.l. i.c. holder (2 off);
 - battery and connector; heatshrink sleeving; grommet; control knob; fixings, etc.

Fig. 7. Fibre optic connection details

ordinary PVC sleeving having an inside diameter of about 5mm.

The current consumption figures for the transmitter and receiver units are about 28mA and 10mA respectively. This permits economic battery operation, but in both cases it is advisable to use a fairly high capacity type, such as a PP3 or six HP7 size cells in a plastic battery holder. Connection to the latter is via an ordinary PP3 style battery clip.

Fibre-optic cable is often supplied with rather rough cut ends which do not aid good light transmission. Much more efficient light transmission can usually be obtained by cutting off a small piece from each end of the cable using a sharp modelling knife, making the cuts as cleanly as possible and at a right angle to the cable. Provided a good clean cut is made there should be no need to polish the ends of the cable in order to obtain good results. A very important point to note is the fibre-optic cable will fracture and cease to provide good light transmission if it is bent into tight curves. The minimum recommended radius for most single filament cables is about 20mm.

Photos below illustrating both p.c.b's

ADJUSTMENT AND USE

For good results the system must be used with a fairly high input level of around 250mV to 1V RMS. For use with a low level source such as a microphone a suitable preamplifier must be added ahead of the transmitter. Only one adjustment has to be made to the completed system, and this is to set VR1 for optimum large signal handling ability. If an oscilloscope and audio signal generator are available these can be used to aid the correct adjustment of VR1, using the standard procedure. If suitable test gear is not available it does not really matter, and VR1 can be given any setting that gives good results with no obvious distortion on the output signal. The PLL detector has a wide lock range and the setting of VR1 is not particularly critical.

If stereo operation is required, the most simple way of achieving this (and the only way with the present design) is to use a separate transmitter and receiver circuit for each channel, with a twin fibre-optic cable providing the link. Similarly, a twin cable plus two sets of circuits could be used to provide a two-way link. The signal to noise ratio should be quite good unless a very long connecting cable is used. If necessary though, a higher transmitter output power can be used to give an even lower noise level, and this merely entails reducing the value of R7 to about 47Ω. Of course, this gives the transmitter a higher current consumption.
Introduction to MICRO SYSTEMS

MICHAEL TOOLEY BA **DAVID WHITFIELD** MA MSc CEng MIEE **PART 6**

This month sees the final part of this introduction to micro systems series. In it we will be taking a look at some of the peripheral chips available to support the 6502 CPU which was introduced last month. We will then move on to conclude the series by briefly reviewing the capabilities of the Z80 family.

6502 PERIPHERALS

The 6502 CPU has its own family of peripheral support chips, and Table 6.1 lists a selection of the more popular of these devices. In addition, however, 6502-based systems are also able to make immediate use of the peripheral chips provided for the 6800 family. This is due to the common bus structures used in these two micros. As a practical example of this capacity for "mix-and-match", we find that although the BBC Micro is designed around a 6502A CPU, and Table 6.1 lists a selection of the more popular of these devices.

Many of the 6502's peripheral chips are very similar to the 6800 family devices, e.g. the 6545 CRTC is pin-compatible with the 6845. Others are more accurately best considered as broad equivalents to 6800 family devices, but usually with additional facilities. For example, the 6522 VIA is generally equivalent to the 6821 PIA, but it has the added features of two programmable interval timers and a shift register.

Before we move on to discuss the Z80 family, we will take a brief look at the 6502's VIA. This device is of particular interest because it introduces the type of programmable timing facilities which are frequently required in designing a micro system. In other micro families, these facilities are frequently provided separately in a programmable timer chip, e.g. the 8255 Programmable Interval Timer (PIT) in the 8080 family. With the 6522 we see the combination of parallel I/O and programmable timers. As system designers know, this can save a considerable amount of extra wiring if the number of 40-pin packages can be reduced by even one.

<table>
<thead>
<tr>
<th>Table 6.1. 6502 peripheral devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>6520 Parallel I/O</td>
</tr>
<tr>
<td>6522 Versatile Interface Adaptor:</td>
</tr>
<tr>
<td>Parallel I/O + Timers (VIA)</td>
</tr>
<tr>
<td>6530 ROM + RAM + Timer + I/O</td>
</tr>
<tr>
<td>6532 RAM + Timer + Parallel I/O</td>
</tr>
<tr>
<td>6541 Keyboard/Display Controller</td>
</tr>
<tr>
<td>6545 CRT Controller</td>
</tr>
<tr>
<td>6551 Asynchronous Communications Adaptor (ACIA)</td>
</tr>
</tbody>
</table>

6522 VIA

As we have already mentioned, the 6522 versatile interface adaptor (VIA) is in many respects best described as a super-6821. It features two 8-bit bidirectional I/O ports, two 16-bit programmable timer/counters, a series-to-parallel and parallel-to-series shift register, as well as providing input data latching on the peripheral ports.

The pin connections for the VIA are shown in Fig. 6.1, with the corresponding internal block diagram shown in Fig. 6.2. As can be seen from these two diagrams, the 6522 has many more internal registers than the 6821. The 6522's sixteen registers (compared to the six to be found in the 6821) are individually addressable via the four register select lines, R80 to R83, in accordance with the scheme shown in Table 6.2. Many of the additional register addresses are provided in support of the additional functions provided by the VIA when compared with a PIA. One immediate and simplifying consequence of the increased number of register addresses used, however, is that the data direction and data I/O registers are not required to share the same register address, as was the case with the 6821. This makes simple I/O programming much easier, since it is possible to identify the effect of I/O instructions without referring back to any previous setting of bits in other registers.

Space unfortunately does not allow us to examine the operation of all of the 6522's registers in any detail. We will confine ourselves, therefore, to looking briefly at some of the additional features not previously encountered in peripheral devices. For further information, it is necessary (as indeed it usually is) to refer to the manufacturer's data sheet.

VIA TIMERS & SHIFTER

Interval Timers: There are two interval timers provided in the 6522 VIA, and these are referred to as T1 and T2. Since there are some significant differences in their capabilities and modes of operation, we will look at each of the timers in turn.

Timer 1 (T1): Interval timer T1 consists of two 8-bit latches (T1L-L and T1L-H), and a 16-bit counter (T1C-L + T1C-H). The latches are used to store the data which is to be loaded into the counter. When loading values into the counter, the CPU cannot write directly into the least significant byte of the counter. Instead, it must load the low order latch (T1L-L), and the contents of this latch are then automatically transferred into the low order half of the counter (T1C-L) when the CPU writes to the high order half of the counter (T1C-H). This allows both halves of the counter to be loaded simultaneously using only a single instruction, thereby avoiding possible timing errors caused by skew effects. After loading has occurred, the counter is decremented at the 01 clock rate. When the 16-bit count reaches zero, the T1 interrupt flag (bit 6

Fig. 6.1. 6522 pin connections
configured to drive the PB7 peripheral line. This behaviour is
and TIL-H) will be re-loaded automatically into the counter when
the counter has been re-loaded. The counter will, however, continue
to decrement to allow the CPU to determine the time since the
interrupt occurred. This is known as the “one-shot” timer operating
mode. If bit 6 is set to a 1, the contents of the two latches (T1L-L
and T1L-H) will be re-loaded automatically into the counter when
the count reaches zero, and the whole process will then repeat. The
timer is here operating in “free-run” mode.

In addition to generating interrupts, the timer can also be
configured to drive the PB7 peripheral line. This behaviour is
enabled when bit 7 in the ACR is set to a 1, and disabled when bit 7
is set to a 0. In one-shot mode, PB7 goes low when the counter is
loaded, and returns high when the count reaches zero. Thus, the
timer can be used to generate a programmable pulse width;
operation in this mode is illustrated in Fig. 6.4. In free-run mode,
the state of PB7 is inverted every time the timer expires. In the
simple case, this allows the production of a square wave output
whose pulse width is not affected by the time taken to service the in-
trrupt. In sophisticated applications, the latch settings may be
altered after each interrupt (which will not affect the count
currently running, but will determine the next setting), allowing
complex waveforms to be synthesised using this mode of timer
operation.

Timer 2 (T2): The second timer operates either as an interval
timer (in the one-shot mode only), or as a counter for counting

Table 6.2. 6522 peripheral registers

<table>
<thead>
<tr>
<th>Register Number</th>
<th>RS Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0 0 0</td>
<td>ORB/IRB</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 0 1 0</td>
<td>DDBR</td>
</tr>
<tr>
<td>2</td>
<td>0 0 0 1 1 0</td>
<td>DRA</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 1 0 0</td>
<td>T1C-L</td>
</tr>
<tr>
<td>4</td>
<td>0 0 1 1 1 0</td>
<td>T1C-H</td>
</tr>
<tr>
<td>5</td>
<td>0 1 1 1 1 0</td>
<td>T1L-L</td>
</tr>
<tr>
<td>6</td>
<td>0 1 1 0 0 0</td>
<td>T1L-H</td>
</tr>
<tr>
<td>7</td>
<td>0 1 1 0 0 1</td>
<td>T2C-L</td>
</tr>
<tr>
<td>8</td>
<td>0 1 1 1 0 0</td>
<td>T2C-H</td>
</tr>
<tr>
<td>9</td>
<td>0 1 1 1 1 0</td>
<td>SR</td>
</tr>
<tr>
<td>10</td>
<td>1 0 1 1 1 0</td>
<td>ACR</td>
</tr>
<tr>
<td>11</td>
<td>1 0 1 1 0 0</td>
<td>PCR</td>
</tr>
<tr>
<td>12</td>
<td>1 0 1 0 0 1</td>
<td>IFR</td>
</tr>
<tr>
<td>13</td>
<td>1 1 1 1 0 0</td>
<td>IER</td>
</tr>
<tr>
<td>14</td>
<td>1 1 1 0 1 1</td>
<td>ORA/IRA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Register Number</th>
<th>RS Coding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1 1 1 1 1 0</td>
<td>Same as Reg 1 Except No ’Handshake’</td>
</tr>
</tbody>
</table>

Fig. 6.2. 6522 block diagram

in register 13) is set. If T1 timer interrupts are enabled (see later),
the IRQ user CPU interrupt line is also asserted low.

The subsequent operation once the counter has reached zero
depends on the setting of bits 6 and 7 in the auxiliary control
register (ACR—register 11). The significance of these bits is shown
in Fig. 6.3. If bit 6 is set to a 0, no further interrupts will occur until
the counter has been re-loaded. The counter will, however, continue
to decrement to allow the CPU to determine the time since the
interrupt occurred. This is known as the “one-shot” timer operating
mode. If bit 6 is set to a 1, the contents of the two latches (T1L-L
and T1L-H) will be re-loaded automatically into the counter when
the count reaches zero, and the whole process will then repeat. The
timer is here operating in “free-run” mode.

In addition to generating interrupts, the timer can also be
configured to drive the PB7 peripheral line. This behaviour is
negative pulses on peripheral pin PB6. Selection of the mode of operation of T2 is controlled by bit 5 of the ACR, as shown in Fig.
6.3. The timer comprises a write-only low-order latch (T2L-L), a read-only low-order counter (T2C-L), both sharing the same register
address, and a read/write high-order counter (T2C-H). The two
counter registers act as a 16-bit counter which counts down at the 0,
clock rate.

Each interrupt flag also has associated with it an interrupt enable
bit in the interrupt enable register (register 14). This allows the CPU
to decide in advance, for each possible source of interrupt in the
VIA, whether this should be allowed to give rise to a user interrupt
or not. This can save the CPU a lot of time in its own interrupt han-
dling routines, and generally increases the flexibility of the system
by devolving work from the CPU to the peripheral device.

In the one-shot mode, T2 starts to count down when the CPU
loads the high-order part of the counter, i.e. in the same manner as
the operation of T1 in this mode. When a zero count is reached, the
VIA generates an interrupt and sets the flag in the interrupt flag
register (in this case it is bit 5 in register 13).

In the pulse counting mode, however, T2 serves primarily to
count a predetermined number of the negative-going pulses on PB6
input and then generate an interrupt. This is accomplished by first
loading a number into T2. Writing to T2C-H will clear the interrupt
flag of any previous interrupt. The write operation will also cause
the counter to decrement each time a pulse is applied to PB6. In or-
der to be recognised, however, the pulse must be low on the leading
edge of the 0, clock. When the count reaches zero, an interrupt will
be generated, but the counter will continue to count. The pulse
counting sequence is summarised in Fig. 6.5.

Timer Interrupts: In both T1 and T2, the corresponding interrupt
flags in register 13 are usually reset in one of two ways. The flag is
cleared either by reading from the low-order half of the counter, or
by writing to the high-order half of the counter. In each case, further
timer interrupts will not be generated until the corresponding flag
has been cleared. The interrupt flags may also be cleared directly by
writing a 1 to the appropriate bit in register 13.

<table>
<thead>
<tr>
<th>T1 TIMER CONTROL</th>
<th>T2 TIMER CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>Operation</td>
</tr>
<tr>
<td>PB7</td>
<td>PB7</td>
</tr>
<tr>
<td>DISABLED</td>
<td>DISABLED</td>
</tr>
<tr>
<td>ONE SHOT</td>
<td>COUNT DOWN WITH</td>
</tr>
<tr>
<td>PULSES ON PB6</td>
<td>PULSES ON PB6</td>
</tr>
</tbody>
</table>

Fig. 6.3. Auxiliary control register

Fig. 6.4. One-shot timer operation

To assist the CPU in determining the source of an interrupt in a
micro system, the 6522 provides an easily tested flag (bit 7) in
register 13 which indicates whether an interrupt exists within the
VIA. If not, then the CPU can rapidly pass on to another device,
without having to look in detail at the individual flags.

Shift Register: The shift register (SR) allows serial data transfers
to be performed into and out of CB2, i.e. serial-to-parallel and
parallel-to-serial conversion between CB1 and the SR, respectively.
The shifter has eight different modes of operation (including a
'disabled' mode), and the current mode of operation is selected by
the setting of bits 2 to 4 in the auxiliary control register

16 Practical Electronics March 1986
The Z80 features minicomputer-style I/O and vectored interrupts. It has a large instruction set of 158 instructions, including the 78 instructions of the 8080A as a subset. These instructions provide extensive facilities for string, bit, byte and word operations. Block searches and block transfers, together with indexed and relative addressing result in very powerful data handling capabilities.

Duplicate sets of both general-purpose and flag registers are provided, easing the design and operation of control software through rapid context switching. The programming model of the Z80 is shown in Fig. 6.8. There are essentially three groups of registers in the Z80. The first consist of duplicate sets of 8-bit registers; a principal set and an alternative set (indicated by the ' suffix). Both sets of registers have an accumulator, a flags register and six general-purpose registers. Transfer of data between these duplicate sets of registers is accomplished by means of "Exchange" instructions. The result is faster response to interrupts and easy, efficient implementation of such versatile techniques as background/foreground processing. The second set of registers have assigned functions: Interrupt Register (I), Refresh Register (R), Index Registers (IX and IY), Stack Pointer (SP), and the Program Counter (PC). The third group consists of two interrupt status flip-flops and two flip-flops to identify the current interrupt status mode. It is perhaps worth a brief look at some of the registers which may not be familiar from looking at other micros.

![Fig. 6.6. Shift in under control of T2](image)

Memory Refresh: This register provides a user-transparent dynamic memory refresh capability. The lower 7 bits are automatically incremented, and all 8 are placed on the address bus during each instruction fetch cycle refresh time (i.e. when the RFSH signal output is low). This can be used as a refresh address to the system's dynamic memories, thereby simplifying system design.

Interrupt Register: This register holds the upper 8 bits of the memory address to be used in forming the 16-bit address to point to the table of addresses for the interrupt service routines. This register is used in servicing interrupts in mode 2, where the lower 8 bits of the address are provided by the interrupting peripheral device.

![Fig. 6.7. Z80 pin functions and assignments](image)
Interrupt Mode: These flip-flops reflect the current interrupt mode, which may be 0, 1, or 2. Mode 0 is the 8080 mode, whereby the interrupting peripheral places an instruction on the bus. This is normally a restart instruction which will initiate a call to the selected one of eight restart locations in page zero of memory. Mode 1 is very similar to the 8080 mode, but it jumps to the code contained at location 0338 for its service routine (whereas an NMI uses location 0066). This mode is intended for non-Z80/8080 systems. Mode 2 is the flexible vectored mode described above, particularly intended to use the Z80 family and compatible peripheral devices most effectively.

Z80 PERIPHERALS

There are five major support peripherals which were designed specifically for the Z80. Instead of numbering these separately, it is common practice with the Z80 family to describe each device in terms of the family name, followed by the functional acronym (CPU, PIO, etc). Each device does, in fact, also have a conventional (different) part number, e.g. the standard Zilog Z80 CPU is the Z8400, or the Z8300 if from the low power family. The popular peripheral chips in the Z80 family are described briefly below.

Z80-PIO: The PIO (Parallel Input/Output) operates in both byte I/O transfer mode (with handshaking), and in bit mode (without handshaking). The PIO may be configured to interface with standard peripheral devices such as printers and keyboards. Typical part number: Z8420.

Z80-CTC: The CTC (Counter/Timer Circuit) features four programmable 8-bit counter/timers, each of which has an 8-bit prescaler. Each of the four channels may be configured to operate in either counter or timer mode. Typical part number: Z8430.

Z80-DMA: The DMA (Direct Memory Access) controller provides dual-port data transfer operations, and also has the ability to terminate data transfer as a result of pattern match in the transferred data. Typical part number: Z8410.

Z80-SIO: The SIO (Serial Input/Output) controller provides two channels. It is capable of operating in a variety of modes for both synchronous and asynchronous communications. Typical part number: Z8440.

Z80-DART: The DART (Dual Asynchronous Receiver/Transmitter) provides low cost asynchronous serial communication. It has two channels and a full modem control interface. Typical part number: Z8470.

CONCLUSION

This brings us to the end of our short series on the basics of micro systems. We hope that it has given enough of an insight into the workings of these fascinating machines to allow some sense to be made of the huge volumes of application data now available on the subject. As mentioned originally, a series such as this can hope to do little more than provide a general introduction to the subject. From here on the best course will depend very much how you wish to make use of the basic technology.

The cost of providing a particular level of capability, counter to the natural law in most other spheres of endeavour, is likely to continue to fall for quite some time to come. The applications for micro system technology are generally limited only by the ingenuity of you, the designer, whilst the capabilities of the basic components are constantly being improved. The future for this technology therefore seems assured.

Photo illustrating the BBC Micro which employs a 6502 CPU as the main processor, but may use a Z80 as a second processor.

TO COME: Next month in PE we will be outlining details of some constructional projects which will employ both the 6502 and Z80 microprocessors.
RELIGION IN SPACE

Writing for a monthly magazine is always a gamble. There is a good chance that anything written will be out of date before it appears in print. Predictions are particularly dangerous. They can be proved right or wrong while the writer’s words are still at the printers.

By the time this appears in print, British Telecom may well have changed its decision to use Ku-band, at 11 degrees west. Otherwise, all the claims will be the world’s biggest satellite hook-up. It’s not for a pop concert; it’s not for a boxing match. It’s for a round-the-worldreligious service which was scheduled to be held at the end of 1985.

In November British Telecom announced that it was changing religious organisations Campus Crusade for Christ “just under £1 million.” If this called the “first inter-continental satellite congress”. What the world needs most, said a CCC spokesman, is an explosion of love.

So the event, scheduled for 93 public sites in 52 countries at the end of December, was christened Explo 85. The idea came to 53 year old American Bailey Marks while shaving in Germany. He says God told him to use satellites. No kidding.

That’s what CCC’s press release says.

London firm Satellite Express was booked to handle the ground stations. BT International booked seven satellites to fill the gap. The plan was for high profile religious notables, like Billy Graham to preach in front of TV cameras which beam sound and vision signals back to London via the Telecom Tower in Maple Street.

These would then be edited at Limehouse studios in London’s docklands and the highlights bounced back for display around the world. The signals pass through BT’s earth stations at Goose Green and Madley.

BT had its fingers firmly crossed that nothing would go wrong with the satellite links. Although the line and microwave links between the earth stations and tower have back-ups, there is often no reserve channel if a satellite link goes down. Communication satellites are now so fully booked that some signals are carried by spare channels, leaving no spare spares for back up.

CABLE NEWS

You may be wondering how American TV station Cable News Networks Britain. Normally the US and Europe don’t share cable programmes from a single satellite, because the beams aren’t wide enough. In this case it is all done with one satellite, but in a special way.

The signal for Ted Turner’s all-news station CNN is beamed up from Atlanta, Georgia, in the 6 Gigahertz C-band to the spare channel of the Atlantic Ocean Intelsat VA-F11 communications satellite. This sits at 27.5 degrees West over the Equator. On board the satellite the signal is changed in frequency to Ku-band at 11 Gigahertz. It is then “cruised stripped” to another transponder on the same satellite.

This beams it down to earth in the direction of Europe.

Cross-strapping is an expensive exercise, because, in satellite jargon, it “sterilises” two half channels. Normally signals go up in the C-band and are sent back down in the Ku-band; or they go up in the Ku-band and come back down in the C-band. Cross-strapping means that only the C-band up link is used with only the Ku-band down link. The C-band down link and Ku-band up link are wasted.

There is a great deal of talk in Britain about satellite reception now that the Government has agreed to license home dishes and promised to make planning permission easier. What people in the business gloss over, is that some signals are beamed down from Intelsat V and others from the Eutelsat F-1 satellite. This sits at 13 degrees East and carries British pop programmes and three entertainment programmes, Sky Channel and French, Italian, German and Dutch film and entertainment channels.

Intelsat V at 27.5W carries CNN as well as Première, the Thorn-EMI film channel, the general entertainment programmes, Sky Channel and French, Italian, German and Dutch film and entertainment channels.

Intelsat F-1 at 27.5W carries CNN as well as Première, the Thorn-EMI film channel, the general entertainment programmes, Sky Channel and French, Italian, German and Dutch film and entertainment channels.

What this means in practice is that the dishes must be large, usually 1-5 metres in diameter. It also means that a viewer must either choose between programmes from Intelsat or Eutelsat; or they must have two equally large dishes, each pointed on one satellite; or they need a motor which moves the dish from the direction of one satellite to the other. A system to receive from both satellites will cost the best part of £2,000.

Note well, incidentally, the government’s talk about relaxing the rules for planning permission on satellite dishes is confused. One government department, the Department of the Environment, hasn’t been talking to the others, the Home Office and Department of Trade and Industry. The DoE is allowing dishes of 90cm diameter, or less. The DTI and Home Office are allowing people to receive satellite station signals.

They are doing this because Britain’s plans for DBS have gone phut. But 90cm dishes are what you need for DBS. The low power communications satellites which distribute the cable programmes need larger dishes that the DoE allows.

WRONG BLEND

It isn’t only the government which is in a muddle over satellites. I fear Robert Maxwell of the Mirror Group could come seriously unstuck with his plans to broadcast a new TV channel direct into British homes from a French satellite. His office admits he has not yet even considered the technical problems. They didn’t understand my questions, let alone offer any answers.

France and West Germany plan to go ahead this summer (1986) with the launch of two 200W DBS satellites, TV-SAT for West Germany and TDF-1 for France. Like the DBS satellites planned for Britain, but now, sadly shelved, these will transmit enough power for reception by 90cm dishes.

Maxwell isn’t buying a satellite. He is renting a channel from the French government for £6 million a year. The plan, says his spokesman at the Mirror Group, is to broadcast English language programmes to an audience of 280 million people across the whole of Europe.

First problem for Maxwell is that he is relying on the ability of satellite receivers to produce excellent picture from inaccurate signals. The French satellite has a footprint which covers France. Other countries will only receive mainly overspill signals, at low power.

Maxwell’s office says he intends people to buy their own dishes. Alternatively they can use dishes which they have already bought to receive cable signals from the communications satellites Eutelsat and Intelsat.

But Maxwell’s office also says he will broadcast in English language only and leave it to foreign countries to dub on their own languages. This is, of course, impossible. How can people with their aerials just on different language sound.

Then there is the question of dish alignment. Dishes lined up to receive from Eutelsat (in orbit at 13 degrees East) or Intelsat (at 27-5 degrees West) will need realignment to receive from the French DBS satellite TDF-1 which (with the German craft) will be at 19 degrees West. And this is a quite different orbital slot from the one at 31 degrees West allocated to Britain and Ireland.

Maxwell also hasn’t thought about what TV standard to use for transmission. France uses 625 line SECAM and the rest of Western Europe uses 625 line PAL. The French and German Governments have said they will adopt the new MAC standards for their DBS services. So will Maxwell send PAL out of a French satellite and so make his programmes unviewable in the country which transmits them? Or will he use SECAM and make the programmes useless for the UK?

Or will he try and use MAC? If he uses MAC then he faces exactly the same problem which turned the BBC off the idea of satellites. Initially there will be no equipment available to receive what he transmits. And that is no way to make money.

Only one thing seems certain. Maxwell needs a down-to-earth technical adviser for his high-in-the-sky plans.

BARRY FOX
Amstrad I/O

Richard Sargent

24 I/O lines located at any user port address

The BASIC used by the CPC464 has a wealth of commands which would make this computer very easy to use with a user port and control-device peripherals. There is of course one snag—the Amstrad computer has no user port, other than its dedicated Centronics Printer Port.

The project described in this article provides 24 I/O lines which can be used, often directly, to control relays, i.e. d.s and other paraphernalia of the outside world. Special consideration has been given to the decoding circuitry so that it can respond to any of the CPC464 user-port addresses. The circuit is best built up on a piece of vero-board, and a PIA (Peripheral Interface Adaptor) of your choice can be included on the board if you wish. The preferred chip, and the one used in the prototype, is the 8255 which will supply the full complement of 24 user lines, which can be programmed as inputs and/or outputs.

In the present climate of chip shortages it's a good idea to be flexible. The 8255, which incidentally is used inside the CPC464 for keyboard and sound-chip duties, is not particularly cheap at the moment and you might wish to use instead a Z80 P10 or even a 6522 or 6521 PIA.

DECODING

The addresses which have been put aside for user peripherals are those with a high byte of F8, F9, FA or FB and a low byte in the range EO to FF. By a careful selection of TTL chips it is possible to tie in to any of those legal addresses. The starting point is to examine the BIT PATTERN of the range of addresses to see which bits remain constant and which bits are allowed to change. (see Fig. 1).

The circuit design starts by assuming address A9 and A8 to be low and therefore decodes the most significant byte as 11111000 F8. However, if port address F8xx clashes with another user add-on then one or both of bits A9 and A8 may be decided in the high condition which will give port addresses F9xx, FAxx or FBxx. Hence the w w bits are wired to shift the I/O board to alternate blocks of address space.

The least significant byte can change through 32 consecutive port addresses, as determined by the state of bits A0–A4. The PIA chips like to have A0 and A1 to themselves, and they will decode these lines internally so we can forget about z z for the moment.

Address lines A2, A3 and A4 are taken to a 3-line to 8-line decoder and the eight outputs are CHIP SELECT signals, one of which drives the onboard PIA. The remaining seven are available as select lines for other I/O boards, and their addresses are given in Fig. 2.

CIRCUIT DESCRIPTION

The port decoder uses IC1, an 8-input NAND gate to decode all the address lines which are high (see Fig. 3). When that is the case an intermediate enable signal E1 is produced. IC2 decodes the permanent lows A10 and IORQ. On the prototype IC2 is a 74LS54 acting as a straightforward NOR gate and as such it will only produce an output when all inputs are low. When this is the case the second intermediate enable signal E2 occurs. E2 is ANDED with M1 to produce E3 (see Fig. 8). All I/O peripherals should be enabled only when M1 is in its high state, otherwise you will run into problems when the Z80 CPU uses certain of its interrupt modes. IC3B normally has its two inputs tied high and so produces a low signal which is inverted by IC3C to form the remaining intermediate enable signal, E4. E4, E3 and E1 enable IC4, the 3-line to 8-line decoder, which then happily responds to the A2, A3 and A4 address lines to give a low chip-select pulse on one of its Q output lines. The stripboard layout is shown in Figs. 9 and 10.

Block selection is made by changing one or both of the links LK1 and LK2. If A9 is "high" for the required address, LK1 should be strapped to pin B, and similarly, A8 should be linked through to pin D if it also is "high" for the required address.

A RESET pulse is provided at switch-on time by the components C1 and R1.

CONSTRUCTION

The CPC464 has a 25 x 25 way edge-connector at standard 0.1" spacing and a slot for a polarising key between track 21 and 23. The odd-numbered tracks indicate the top or component side of the computer's p.c.b. As Fig. 4 shows, this is a standard Z80 CPU expansion bus, although it is labelled "Floppy Disc" by Amstrad in preparation for their disc system peripherals.

A 30-way ribbon cable joins the 25 x 25 way connector to the I/O board. 34-way cable is the nearest standard size, although you may prefer to use 10-way for the DATA lines, +5V and GND (since they are together at one end of the vero-board) and 20-way for the remaining signals. The CPC464 signals are brought into the left-hand side of the board, where LK1 and LK2 in conjunction with ICs1–4 develop the eight chip-select signals Q0–Q7. On this board it is the Q0 signal which is used to enable the 8255, but for different addresses the other Q signals should be used as shown in Fig. 2. Plenty of room has been left on the right-hand edge of the board so that if you wish the I/O lines can be taken to other components rather than being brought to the edge of the board. The 100n decoupling capacitors are not shown on the component overlay—they should be mounted across the supply pins of ICs 1–4 and since they are flat disc ceramic types, they can be mounted on the copper side of the board. The whole assembly should be housed in a plastic box, and if you don't require too many extra components beside the PIA then a Vero-board type 201 with dimensions of 205 x 140 x 40 will fit the bill nicely. The I/O lines can be brought out to cheap screw-terminals mounted on the side of the box.

THE 8255

This is a NMOS IC which is easy to program to various input and output configurations, and simple to interface to other TTL and CMOS chips (see Fig. 5). Being of NMOS construction it only has a limited current drive on output, and currents over 16mA will overheat the IC. However, it is designed to drive 1 standard TTL load, and constructors are advised to place a cheap TTL buffer between their expensive PIA and the relays, etc. that are being driven. The 8255 can be damaged by static electricity and long wires trailing across work surfaces to some remote sensor are to be avoided: buffering using a 74LS04 is again the solution. Fig. 6 shows some typical interface circuits for inputs, while Fig. 7 shows how the 8255 should be buffered when its lines are used as outputs.

Practical Electronics March 1986
In its simplest configuration, the 8255 PIA has three 8-bit ports A, B, and C, mapped at F8E0, F8E1 and F8E2. The CONTROL port is at F8E3. At power-on all the PIA lines are in a high impedance state and the ports must be set up by sending a control word to the chip. The 8255 can work in one of three modes, called 0, 1 and 2. Mode 0, the basic input/output mode, tends to be the one most often used. If you think you might like to use the more specialised modes 1 and 2, strobed I/O and bi-directional I/O, then the 8255 data sheet is worth purchasing.

Providing you remember that PORT C is divided into two halves, upper and lower, and that these halves may be configured independently of each other, then MODE 0 operations are very straightforward. The Mode 0 control word is worked out by building a bit pattern made up as follows:

- D0 Port C (lower) PCO-3 1 or 0
- D1 Port B 1 or 0
- D2 Mode 0 0
- D3 Port C (upper) PC4-7 0 or 1
- D4 Mode 0 0
- D5 Mode 0 0
- D6 Mode 0 0
- D7 Select mode required 0

Load 1 for an INPUT, 0 for an OUTPUT

Eg: OUT &F8E3.&X10001001 causes PORTS A & B to become inputs, PORT C to be input.

It is probably safest to test the 8255 by setting all the ports to input. With no signals attached, the high impedance lines should read 1 and change to 0 when you ground a particular input. Amstrad BASIC is particularly good at examining individual lines of input ports. Listing 1 shows the test routine.

Having now got a working I/O board there are two other "goodies" in the Amstrad BASIC which you will want to use. The first is the logical operator AND which can be applied to bit patterns to form the highly useful masking function on an input value. Listing 2 reads a port and prints the result before, and after, masking.

Logical OR, XOR and NOT can also be used to perform this bitwise manipulation of data.

The command WAIT <P>, <M>, <I> suspends a program flow until a given I/O port returns a particular value in the range 0–255. The Amstrad manuals don’t really explain how this command works. P is the number of the port being monitored and M and I are integer expressions. If I is omitted, it is assumed to be zero. The port status is exclusive ORed with I and the result is...
Fig. 6. Typical inputs to the 8255

COMPONENTS...

Resistors
R1,2,3,4 10k (4 off)
R5 100k
All 0.25W carbon ±5%

Capacitors
C1,2 10μF 12V electrolytic (2 off)
C3,4,5,6 100n disc ceramic (4 off)

Semiconductors
IC1 74LS30
IC2 74LS54
IC3 74LS00
IC4 74LS138
IC5 8255

Miscellaneous
Plastic box
Ribbon cable
Veroboard
25 x 25 way edge-connector
14 pin i.c. sockets (3 off)
16 pin i.c. socket (1 off)
40 pin i.c. socket (1 off)
Screw-terminals (3-amp strip type)

Fig. 7. Typical outputs from the 8255

Fig. 8. Decoupling capacitors, and the generation of E3 from E2 and M1 using a 4-wide AND-OR-INVERT gate

Listing 1. Testing routine

Listing 2. Read port and print routine
ANDed with M. Execution of the BASIC program is suspended until a non-zero value results. M is a mask which picks the bits of port P to be tested and execution is suspended until those bits differ from the corresponding bits of I. For example:

WAIT P,6: Execution stops until either bit 1 or bit 2 of port P are equal to 1.

WAIT P,255,7: Execution stops until any of the most significant 5 bits of port 10 are 1 or any of the least significant 3 bits are zero.

This command should be used with care, since BASIC will stick in this WAIT loop if the required condition does not occur, and only a system RESET will effect an escape.
CLOCK SIGNAL TRACER

<table>
<thead>
<tr>
<th>SIGNAL</th>
<th>INPUTS</th>
<th>OUTPUTS LOW</th>
<th>DISPLAYS LIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁</td>
<td>A 0 1 1 1</td>
<td>Y₀, Y₃</td>
<td>GREEN-GREEN</td>
</tr>
<tr>
<td>S₂</td>
<td>B 0 1 1 0</td>
<td>Y₁, Y₂ Y₁ Y₂</td>
<td>YELLOW-RED</td>
</tr>
<tr>
<td>S₃</td>
<td>A 1 1 1 1</td>
<td>Y₁ Y₃ Y₁ Y₃</td>
<td>YELLOW-GREEN</td>
</tr>
<tr>
<td>S₄</td>
<td>A 0 0 0 0</td>
<td>Y₀ Y₂ Y₀ Y₂</td>
<td>GREEN-RED</td>
</tr>
<tr>
<td>S₅</td>
<td>A 0 1 1 0</td>
<td>Y₀ Y₃ Y₀ Y₃</td>
<td>ALL FOUR</td>
</tr>
</tbody>
</table>

Table 1. Display truth table

Fig. 1. Circuit diagram of the Clock Signal Tracer

Fig. 2. Waveform diagram of the Clock Signal Tracer

A selection of readers' original circuit ideas.

Why not submit your idea? Any idea published will be awarded payment according to its merits.

Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not in the text.

HAVE A GO!

If you're a regular Practical Electronics reader and have not yet submitted an idea for Ingenuity Unlimited, why not have a go now? We will pay £50.00 per page for any article published.

We are looking for original ideas which may be simple or complex, but most importantly are interesting, unusual or ingenious.

What to do

Just send in your idea to our editorial offices, together with a declaration to the effect that it has been tried and tested, is the original work of the undersigned and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proved by us, but are included to stimulate further thought.

Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not in the text.

Please send your ideas to:
Ingenuity Unlimited, Practical Electronics, 16 Garway Road, London, W2.
TEMPERATURE-ANALOGUE INTERFACE

Designed primarily for temperature measurement applications, this useful interface can be used in conjunction with a variety of analogue transducers or signal sources to allow intelligent decisions and responses to be made, limited only by software.

SOUND SWITCH

Voice activation of controls provides plenty of scope for experimentation. This quality project has applications in many areas of electronics, radio, communications and remote control.

INDUSTRIAL STANDARD PROCESSOR SYSTEM

PE takes on a new challenge with this industry standard constructional series. Part One deals with the power supply and backplane of the IEEE 1000 standard bus.

SILICONES

The Creeping Menace

Silicones, familiar to us all as the agent that puts a shine on plastics, can cause contact failure in electrical switching apparatus—and they need not be in the vicinity to do it.

SETTING THE STANDARDS

The majority of micro based projects published in PE, in the past, have been incompatible with many machines due to varying bus standards, control protocols and non-standard connectors. These problems are not unique to us. Indeed, industrial and commercial products suffer from similar problems. PE, like industry, is aware of these problems and is setting new standards designed to overcome many of the difficulties. This article clearly defines a number of policies and future PE standards.

PRACTICAL ELECTRONICS

ROBOTICS · MICROs · ELECTRONICS · INTERFACING

APRIL 1986 ISSUE ON SALE, FRIDAY, MARCH 7
Spectrum HARDWARE RESTART

R. Macfarlane

The board is designed to plug into the Spectrum edge connector and will allow the user to escape from any running program without losing the memory contents. The action is similar to the BREAK key on the keyboard which jumps to a routine within the Spectrum ROM, prints BREAK and eventually returns to the (K) cursor. However, if the BREAK key has been disabled then the only recourse is to remove the power plug and reset the system which, of course, clears the memory contents. It can also be extremely annoying if during the development of a machine code program the computer enters a loop from which there is no escape. With this circuit the Z80 processor can be forced to jump to any address within the Spectrum ROM or RAM.

When running BASIC programs the address of the Auto List routine in ROM was chosen as the restart address. Executing a hardware restart therefore produces an automatic listing of the first few lines of the program and then returns to the (K) cursor. Further Basic commands can now be entered and run, eg, LIST, SAVE, PRINT, etc.

When running machine code the address 0000H was chosen. This is the start address of the ZEUS Assembler program which is used to develop machine code programs. Again, executing a hardware restart produces the ZEUS copyright symbol and by using O for OLD, the original source file can be recovered intact.

However, any restart address may be chosen to meet the needs of the individual user.

SYSTEM OUTLINE

When the Spectrum is first switched on the reset line to the Z80 processor chip is held low for a few milliseconds by the action of Ra and Ca (Fig. 1). This ensures that the supply rails are given time to reach their operating voltage and that the CPU is properly initialized.

The initialization includes:

1) Forcing the program counter to zero.
2) Disabling the interrupts.
3) Setting the interrupt register to 00H.
4) Setting the refresh register to 00H.
5) Setting interrupt MODE 0.

During reset time the address bus and the data bus go to a high impedance state and all control output signals go to the inactive state. No refresh of the dynamic memory occurs so that all memory contents are lost.

When the reset line eventually goes high the CPU executes the instruction found at address 0000H which is the start of the initialization procedure for the Sinclair Basic in ROM.

In order to restart the system at a different address two conditions must be met. The reset line must be held low for as short a period as possible so that the memory refresh cycles are maintained and memory contents are not lost. When the CPU addresses location 0000H it must find a different set of instructions to the ones held in the Sinclair BASIC ROM. To achieve these conditions, therefore, the external circuit operates in the following manner.

A short 50µS pulse is applied to the reset line of the Z80 CPU. This is of sufficient duration to properly initialize the CPU but have no effect on the memory contents. Coincident with this pulse the Spectrum BASIC ROM is deselected using the ROMCS line on the edge connector and an external ROM selected in its place.

The CPU will then run the program within this new ROM which in fact holds a jump instruction to another address. When the jump is completed the external ROM must be deselected and replaced by the Spectrum BASIC ROM.

To understand how the ROMs are selected and deselected an explanation of the Z80 M1 output is required.

The M1 (Machine Cycle One) is an active low output which indicates that the CPU is currently executing an operating code fetch cycle. The OP Codes can be any one of the 158 different instructions that the Z80 can execute, eg, LOAD, ROTATE, CALL, JUMP, HALT, etc.

Examination of the Jump instruction is shown in Table 1. This is a three byte instruction, the first byte containing the OP Code for JUMP, the following two bytes holding the address to be jumped to. However, only when fetching the OP Code from memory will the CPU issue an M1 cycle output signal. The CPU knows that the following two bytes must form an address and the M1 output stays high.

<table>
<thead>
<tr>
<th>OP CODE</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Order Address</td>
<td>A2</td>
</tr>
<tr>
<td>High Order Address</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 1. JUMP Instruction

After a reset pulse the CPU program counter is initialized to zero. The address bus is, therefore, 0000H and the CPU is looking for its first instruction. The M1 output goes low as the CPU executes an OP Code fetch cycle. The falling edge of the M1 output is used to switch from internal to external ROM and control can be handed back to the internal ROM at the next occurrence of an M1 cycle.

SPECTRUM KEYBOARD

As stated earlier, when the CPU is reset the interrupts are disabled and the MODE is set to 0. Without wishing to delve deeply into the interrupt structure of the Z80 CPU it is sufficient to say that the Spectrum Keyboard operating system requires the CPU to be in MODE 1 and that the interrupts are enabled. Before jumping to the new address, therefore, two extra commands must be executed. These are IM I and EI.

Fig. 1. Timing diagram showing the M1 cycles
IM1 is a two byte OP Code and El a single byte OP Code. This brings the required number of OP Code fetch cycles to be executed in external ROM to four, i.e., IM1, EI, JP.

Four MI cycles must therefore, be counted before returning control to the Sinclair BASIC ROM. The timing diagram of Fig. 1 shows the relevant switching points.

Circuit Description

IC1a buffers and inverts the MI signal from the edge connector and the output is fed to the clock inputs of IC2a and IC6a. The reset input to IC2a is held low by the output of IC1b the input of which is held high by R1, R2, C1. C1 serves to debounce the reset switch and R2 limits the discharge current of C1.

When the reset switch is pressed the reset on Pin 1 of IC2a is removed and the next negative going edge on an MI cycle will clock IC2a causing the Q output to go high. Further incoming edges will cause no change since the D input is tied to the 5V rail and only when the reset switch is released will the Q output fall to zero.

The positive going edge at the Q output of IC2a triggers the one shot IC3 to produce a 50µs positive going pulse at the Q output Pin 6, which is in turn inverted by the parallel connected NOR gates of IC4. This parallel connection is required due to the internal combination of Ra and Ca enabling the power up reset for the Spectrum. Using IC4a, b, c, d in this way increases the sourcing and sinking currents and the above timing requirements can be met.

The second NOR input to IC4 is taken from the output of IC1c whose input is identical to IC1b. This provides a means of resetting the Spectrum without removing the power plug and also provides, due to the action of R5, C3, an external power up reset.

The output of IC1a is also fed to the input of IC5a Pin 3, which is connected as a divide by 4 counter. The Q output of IC5b Pin 9 is connected to the clock input of a further divide by 2 stage IC6a. The reset inputs to the three stage counter are taken low during the 50µs Restart pulse by Q on IC3 pin 1 and the first negative going edge of MI to appear after the restart pulse will cause the Q output of IC6a Pin 6 to go low.

After four MI cycles this Q output will go high again and is used as a clock input to IC6b.

During the 50µs restart pulse the set input of IC6b Pin 10 goes low causing the Q output at Pin 9 to go high. This deselects the Spectrum ROM and simultaneously the Q output at Pin 8 selects the external ROM. When the clock input of IC6b Pin 11 goes high this state is reversed. Further clock inputs to IC6b are ignored due to the D input being tied to the OV rail and can only change state after the set input is once again taken low by another restart pulse.

IC6b, therefore, selects the external ROM on the negative edge of the restart pulse and selects the internal ROM four MI cycles later. Diode, D1 is included in the ROMCS line and this input is connected in a wired OR configuration within the Spectrum.

IC7 is a 32×8 tri-state fusible PROM. When the CS Pin 15 is high the data outputs are in a high impedance state and do not affect the operation of the internal data bus on the Spectrum.

Switch SW3 selects one of four 8-byte blocks giving a possible four selectable restart addresses. A0, A1, A2 are connected to the Spectrum address bus and select the program data held in one of these four blocks.

The contents of the PROM are shown in Table 2.

Power Supply

The internal 5V supply from the Spectrum cannot supply the necessary current so an onboard 5V regulator is used. An unregulated 9V from the Spectrum power pack is available on the edge connector and this is used to drive the external restart circuit.

Construction

The printed circuit board is double sided and requires a number of through hole connections to be made using linking pins (Fig. 3). The resistors and capacitors should be soldered in place first, remembering to solder on both sides of the board where required as some leads form necessary through connections.

The I.C. sockets, regulator and switches can then be added along with the edge connector, being careful to mount this on the
correct side of the board. The i.c.s can now be inserted and with switch SW3 in position 2, the board can be connected to the rear edge connector on the Spectrum.

With the unit connected, power can now be applied. The Spectrum should come up with the familiar white screen and BASIC ROM message. Pressing the RESET button should bring about a similar result.

If the small BASIC program (Test Program 1) is entered and run, execution can be immediately stopped by pressing the START button and an automatic listing of the program will appear. The program can at this point be re-run, listed or saved as desired.

The significance of the restart will become apparent only when the break key is disabled, as the above program could just as easily have been stopped using the break key itself.

Running the Test Program 2 will disable the keyboard interrupt and then print a continuous stream of RESTARTs. There will be no response to the break key and only by use of the START button can the listing be retrieved.

It should be noted that breaking into commercial software is now quite possible but that the board should not be used for the purpose of copying tapes as this is forbidden by copyright.

If running the ZEUS assembler program, then pressing the START button, with SW3 in position 3, will immediately return the user to this program start either from BASIC, without requiring the usual PRINT USR 57344 start up command, or from the currently executing machine code program.

The PROM will normally be supplied with the address of the Auto List routine in SW3 position 2, and the start address of ZEUS in SW3 position 3. The two remaining blocks can be programmed to any user’s requirements.

TEST PROGRAMS

Test Program 1

40 PRINT "RESTART";
50 GOTO 40

Test Program 2

10 POKE 23296,243: REM Disable Interrupts
20 POKE 23297,201: REM Return
30 RANDOMIZE USR 23296: REM Run m/c and return to Basic
40 PRINT "RESTART";
50 GOTO 40

COMPONENTS . . .

Resistors
- R1, R4: 330 (2 off)
- R2, R5: 10K (2 off)
- R3: 68K
- R6, R7: 47K (2 off)
- All resistors 5% 0-25W carbon

Capacitors
- C1: 10u 16V Tant
- C2: 1n Ceramic
- C3: 68p 6.3V Tant
- C4, C5: 680n Polyester (2 off)
- C6-C12: 100n Ceramic (7 off)

Semiconductors
- D1: IN4148
- IC1: 74LS14
- IC2, IC5, IC6: 74LS74 (3 off)
- IC3: 74121
- IC4: 74128
- IC7: 82S123 PROM
- IC8: 7805

Miscellaneous
- SW1, SW2: Min. p.c.b. keyboard (R.S. 334–892)
- SW3: Horiz. decimal switch (R.S. 334–865)
- 14-pin d.i. s.tk (6 off)
- 16-pin d.i. s.tk (1 off)
- 28-way Double sided edge connector (Wire wrap tags)
- P.c.b. Double sided (PE p.c.b. 506–02)
- Linking Pins

The PROM will normally be supplied with the address of the Auto List routine in SW3 position 2, and the start address of ZEUS in SW3 position 3. The two remaining blocks can be programmed to any user’s requirements.
PRACTICAL ELECTRONICS

March 1986

11

AUTOWAH
Auto manual or remote triggered Wish-Walt, switchable. Set 140

BASS BOOST
With volume boost & range. Set 138

BLOW BOX
Voice operated filter & amplifier for lancing effects with voice & music. Set 214

CHORUS-FLANGER (PE JAN 84)
Music Stereo. Dual dual mode effects. Set 234

COMPANDER
Music Stereo. Compression, expansion, switchable. Set 224

CYBERVOX (EE APR 85)
Random sound effects tone voice and music melody & rhythm. Set 126

DISCO LIGHT CONTROL (PE NOV 85)

ECHO-REVERB (PE SEP 84)
Music Stereo. Random tone voice, length, random melody & music melody. Set 214

ENVELOPE SHAPER
From triggered RR, with VCA. Set 114

EQUILISER
3 channels. Volume, low, mid, high, random melody, length, switchable. Set 214

FADER
Voice controlled automatic music fader. Volume rate and sensitivity controls. Set 17

FLANGER
Variable time & depth dual phasing controls. Set 126

FRONT TO BACK DUBLER
Splits stereo left & right stereo. Set 98

FUZZ
Semi-random, returns attack and decay character. Set 199

GUITAR EFFECTS
Random stereo effect, with Wish-Walt effects. Set 196

GUITAR SUSTAIN
Variable time decay, switchable stereo & Wish-Walt effects. Set 226

GUITAR TO SYNTH
Variable time decay, with Wish-Walt & switchable. Set 214

HAND CLAPPER
Auto & random variable clapping effects. Set 151

HEADPHONE AMP
For headphones and speakers of 8 ohms, 2 watts. Mono set 1947

LINKAFLEX CHORUS
Front panel true stereo & Mono, H005 to 4 secs, Set 264

LINKAFLEX DELAY
Front panel true stereo & Mono, true stereo & Mono, Set 206

LINKAFLEX FLANGER
Front panel true stereo & Mono, Variation rate & depth, true stereo & Mono, Set 206

LINKAFLEX MODULUS
Front panel true stereo & Mono, switchable & Wish-Walt effects. Set 211

LINKAFLEX PHASER
Front panel true stereo & Mono, Variation rate & depth, 280ms to 8 secs. Set 206

LINKAFLEX SUSTAIN
Front panel true stereo & Mono, Variation rate & decay, Set 223

MICRO-SCOPE (PE DEC 85)
Semi automatic dual & mono, stereo, true stereo & stereo, Set 213

MIXER - 4 CHAN MONO (PE JAN 86)
Stereo & mono, true stereo & Mono, Set 212

MIXER - 4 CHAN STEREO (PE JAN 86)
True stereo & mono, mono, Set 212

M N D R E S O R
Variable depth & rate modulation, Set 208

MOCK STEREO
Semi automatic equalisation, true stereo & Mono, Set 237

NOISE GATE & VCA (PE MAY 85)
True stereo & mono, true stereo & mono, Set 237

PHASER (PE OCT 84)
Phase shifter, with Wish-Walt effects. Set 213

PRE-AMP
Variable level & gain, switchable & mono, & Stereo, Set 212

REVIVERS (STEREO)
Variable stereo & mono, true stereo & Mono, Set 212

REVIVERS (STEREO)
Variable stereo & mono, Set 212

RING MODULATOR (PE NOV 84)
Falling effects generator, with 82 & multiwaveform VCO, 4 modules. Set 231

RHYTHM GENERATOR
Computerdriven, MMC, PEE, 82, 9 modules, true stereo & Mono, Set 256

RING MODULATOR (PE NOV 84)
Falling effects generator, with 82 & multiwaveform VCO, 4 modules. Set 231

SAMPLER & 64K DD (PE JUN 85)
Digital Logic memory. Up to 85 sec stereo, true stereo, Set 128

SAMPLER & 64K DDL (PE JUN 85)
Digital Logic memory. Up to 85 sec stereo, true stereo, Set 128

SAMPLER - MINI (PE JUN 85)
High speed for 64K DDL. True stereo, mono, stereo, true stereo, mono, 8 modules, true stereo, mono, Set 226

SIGNAL GEN & F-V (PE JAN 85)
True stereo & Mono, switchable, stereo, mono, Set 223

STORM EFFECTS
Audio & manual, voice, Set 214

T ECHNICAL ENGINEERS

COMMUNICATIONS AND ELECTRONICS

A Planned Career in Technology in the Cotswolds

Salaries up to £13,745*

- **VACANCIES** at both TECHNICAL ENGINEER and ENGINEERING TECHNICIAN level.
- **CHALLENGING WORK** in the development and support of highly sophisticated communications and computer systems.
- **OPPORTUNITIES** for gaining experience in a wide variety of technical roles.
- **EXTENSIVE ENGINEERING FACILITIES**

Applicants for the higher grade of TECHNICAL ENGINEER should normall possess a BTEC Higher National Certificate/ Diploma in electronics or other relevant subject; or a City and Guilds Full Technological Certificate, or an equivalent qualification. An aggregate of at least 8 years relevant training and

TECHNICAL ENGINEERS COMMUNICATIONS AND ELECTRONICS

A Planned Career in Technology in the Cotswolds

Salaries up to £13,745

- **VACANCIES** at both TECHNICAL ENGINEER and ENGINEERING TECHNICIAN level.
- **CHALLENGING WORK** in the development and support of highly sophisticated communications and computer systems.
- **OPPORTUNITIES** for gaining experience in a wide variety of technical roles.
- **EXTENSIVE ENGINEERING FACILITIES**

Applicants for the higher grade of TECHNICAL ENGINEER should normal possess a BTEC Higher National Certificate/Diploma in electronics or other relevant subject; or a City and Guilds Full Technological Certificate, or an equivalent qualification. An aggregate of at least 8 years relevant training and experience is required. Registration as a Technician Engineer (T.Eng) would be an advantage. Salary Scale: £11,413-£13,746

CAREER PLANNING aided by regular assessments of performance.

ADVANCEMENT opportunities on the basis of proven ability.

OVERSEAS service (voluntary).

FLEXIBLE working hours with up to six weeks leave.

RELOCATION EXPENSES in most cases.

GCHQ

THE RECRUITMENT OFFICE, GCHQ, ROOM A/1108, OAKLEY, PRIORS ROAD, CHELTENHAM, GLOS GL52 5AJ OR TELEPHONE (0242) 39212/3

PHONOSONICS, DEPT PE36, 8 FINICAN DRIVE, ORPINGTON, KENT BR5 4ED.

TEL: ORPINGTON 37821 (STD 0689, LONDON 66).
Troll, the double armed robot from L. W. Staines of Essex, the people who brought you the Ogre family, has been completed. Based on the Ogre technology, Troll is similarly robust and strong but inexpensive and can execute some quite complex operations such as picking up a nut with one gripper, a bolt in the other and screwing the two together.

It has a total of nine axes and two grippers. The two arms are joined at the shoulder, as with human beings, and fixed to a single base. The base can have movement through a full 360 degrees and the shoulder moves up and down 80 degrees from the horizontal.

The left upper arm can move through 180 degrees both up and down and extends by 12 inches. The lower arm can move right and left and has a 4 inches extension, on the end of which is a parallel action gripper, controlled by an optical encoder and microswitch.

The right upper arm can move the same distance as the left but it is a more conventional arm, with an elbow which has movement through a total of 180 degrees and a wrist which can move right and left and has continuous rotation, allowing a screwing operation to be carried out.

... new Armroid ii ...

The new Armroid II, still with five axes, will be more robust and accurate than Armroid I with stronger stepper motors, toothed belt drive and optical encoders for feedback. Colne says that it should be possible to use it continuously without supervision. The accuracy is claimed to be ±1mm which is a great improvement on the ±4mm of the earlier version, but the lifting capacity is still in the same region of 300gms to 400gms. At a price of about £700 it is still aimed at the enthusiast and education market.

As before it has its own processor onboard and can be linked to micros via the RS232 port. There are no major changes in the software which is another important difference between the present upgrade and the larger version which is intended to have networking capabilities of up to 15 arms. Development work is continuing on the 6-axis arm and it is expected to be available sometime later in the year.

Meanwhile Colne is linking its Colvis vision system to the Armroid II and for a little under £2,000 it is possible to get a complete package including the vision system, an arm and the necessary software.

It is controlled by a software system called the Coordinator 32 which has 24K of control software on EPROM and 24K RAM allowing the storage of up to 2,255 steps. It can control two arms in synchronisation.

For existing owners of the Colvis system the rest of the package is available at about £1,000 and owners of the Armroid I can have the calibration altered so that it will work with the system.

... ogre features ...

All the parts have the same robust construction which is a feature of the Ogres. It is powered by servos and worm drives with optical encoders providing the feedback. Tests have to be completed but it is thought it should be able to lift 1kg.

Standard interfaces and software are provided for the BBC B and CB4 with further sets being considered for the Spectrum and QL. It is possible to teach it routines through the keyboard either with the exact route or moving the arms to a series of points and the device working out the best route to follow.

The ability to write routines on screen before passing them to Troll, as can now be done with the Ogres, is also being considered. Because of its complexity it is not possible for all the motors to move at the same time but move in groups of three or four.

A price has yet to be fixed but it is expected to be in the region of £2,000 and is aimed at higher education and light industrial use.

Staines has also developed a cheaper arm for £70 to be sold by Commotion. Known as Baby Kate, it has three axes and a gripper is driven by geared servos under microswitch control. The software is being commissioned by Commotion.

Colne Robotics has decided to postpone the launch of the 6-axis Armroid II, which was unveiled, as a prototype, at the Autumn exhibition earlier this year. Instead it has introduced an upgraded version of Armroid I, still to be known as Armroid II, but not as complex as the original Armroid II, which is now nameless.
THREE ACES FROM ALCON!

TESTER 20 A

20KΩ/Ω d.c. & 4KΩV a.c.

Diode & Fuse

Protection

39 Ranges

Accuracy: ±% 7% (±10%)

39 ranges: 65, 1000, 10V, 30V, 100V, 300V, 600V, 1kV, 10kV, 10kΩ, 60kΩ, 300kΩ, 3MΩ, 10MΩ, 30MΩ, 300MΩ

Dimensions: 105 x 130 x 40mm

ONLY £29.75

MINI 20 A

20KΩ/Ω d.c. & 4KΩV a.c.

28 Ranges with Protective Fuse

Accuracy: ±% 7% (±10%)

28 ranges: 65, 1000, 30V, 60V, 100V, 300V, 600V, 1kV, 3kV, 10kΩ, 30kΩ, 100kΩ, 300kΩ, 3MΩ, 10MΩ, 30MΩ, 300MΩ

Dimensions: 105 x 130 x 40mm

ONLY £21.60

SUPER 50 A

39 Ranges - Indestructible

Accuracy: ±% 7% (±10%)

39 ranges: 65, 1000, 90V, 120V, 300V, 600V, 1kV, 10kV, 10kΩ, 60kΩ, 300kΩ, 1MΩ, 10MΩ, 30MΩ, 300MΩ

Dimensions: 105 x 130 x 40mm

ONLY £36.30

Each instrument has a clear mirrored scale and comes complete with a robust carrying case, leads and instructions.

Prizes Our prices include VAT and postage and goods are normally despatched by return.

Please write or telephone for details of these and the many other instruments in the Alcon range, including multimeters, components measuring, automotive and electronic instruments.

Robots for Education Training and Industry

Serpent System from £1515

Hydraulic using water!

Hydraulic using water!

NEPTUNE System from £1995

NAAID System from £765

Mentor System from £495

Audio Modules at the Lowest Prices

Now Distributed by Riscomp

Power Amplifiers

- **AL 1250 (AL 250)** - A rugged top of the range module providing output powers of up to 1250W into 8 ohms which employs 4 extra high output transistors to ensure a stable and reliable output of your choice. The module has 32 diodes and 20 power transistors, address systems, pair output, and is very useful to develop a superior performance excellent with the higher power audio modules. Includes an appropriate transformer, back & front panel.

- **AL 7250 (AL 450)** - A rugged top of the range module providing output powers of up to 7250W into 8 ohms which employs 4 extra high output transistors to ensure a stable and reliable output of your choice. The module has 32 diodes and 20 power transistors, address systems, pair output, and is very useful to develop a superior performance excellent with the higher power audio modules. Includes an appropriate transformer, back & front panel.

Price & VAT

- £13.65 + VAT

Pre-Amplifiers & Mixers

- **MM 100** - A mixer and mixer with line controls, master volume, treble & bass controls, with inputs for microphone, magnetic, speaker inputs, and an output of 2100W. Operates from 65-700V.

- **MM 150** - A mixer and mixer with line controls, master volume, treble & bass controls, with inputs for microphone, magnetic, speaker inputs, and an output of 2100W. Operates from 65-700V.

- **MM 200** - A mixer and mixer with line controls, master volume, treble & bass controls, with inputs for microphone, magnetic, speaker inputs, and an output of 2100W. Operates from 65-700V.

Price & VAT

- £11.35 + VAT

Power Supply

- **SPS 250/500** - A split power supply with 3 voltages, 45-50 & 55V providing a stabilized output of ±1% (±5%) and providing a voltage performance especially with the higher power modules. Includes an appropriate transformer, back & front panel.

Price & VAT

- £6.95 + VAT

Riscomp Limited

Driect PE13, 3.1 Poppy Road, Prices Risborough, Bucks. HP17 9DB.

Prices Risborough: 0494 4328

Practical Electronics March 1986
The popular press enthuses over e-mail as the new "Penny Black". Others see it as the death of telex. Specialist magazines publish circuits for modems and computer monoliths review the software which enables a home micro to link up with a telephone line. But what exactly is electronic mail; how does it work, what does it offer and where are the snags? Hopefully what follows will answer these and other questions.

E-mail is a development from the technology which lets two computers exchange data along an interconnecting wire. The wire can be a private cable or public telephone line. The computers can be micros or mainframes. The data can be computer programs or text for messages. Normally both the communicating computers must be connected or "on-line" at the same time. Sometimes one computer plays the role of "host" to many others. Its memory may become an open access bulletin board on which remote computers can leave messages for anyone to read. The host may be a powerful computer with a database of information through which remotes can search, from across an office or across the world. This is how Prestel Viewdata works.

In an electronic mail system one host computer is used as a box into which a large number of smaller computers can drop messages for later collection by other computers. A system of passwords ensures that only those computers which are entitled to read a message can access it from the host. In this way any two computers can communicate with each other without being on-line at the same time. In theory the computers can be anywhere in the world, making e-mail equivalent to—and more versatile than—telefax. In practice a confusion of technical standards and incompatible rival systems means that some e-mail messages get through only by interfacing with the telex network.

TELECOM GOLD

Telecom Gold is one of four e-mail systems available for public use in Britain. The technology is licensed from US company Dialog, now owned by ITT. The same system is used in twelve countries, by over 100,000 subscribers, all of whom can communicate with each other. With this power base, and the strength of British Telecom behind it, Telecom Gold has been the most successful operator in Britain. But the situation could change, especially if TG's rivals adopt interface or "gateway" technology which allows different system subscribers to send each other messages. At the moment, all four public systems in use in the UK have adopted different and incompatible standards.

As e-mail technology becomes more mature, and its practical use less of an obstacle course, the system will become as routine a business tool as the telephone. It will then become an electronic penny black. Only Britain's traditional resistance to change can prevent a domino switch from telex, costing several thousand pounds a year in dedicated hardware and lines, to electronic mail handled by cheap microcomputers and conventional telephone lines. But so far the practical difficulties encountered by people who want to use electronic mail as a business tool, rather than tame computers as a hobby, have slowed ones progress of trial.

Many of the practical difficulties follow from the technical problem of sending digital pulses down wires designed to carry analogue wave signals, such as speech. Telex characters are carried by 5-bit Baudot code words. Until recently telex machines have relied on electromechanical switches triggered by 80 volt plus and minus d.c. pulses sent down dedicated lines. Modern telex equipment relies on much the same technology for e-mail, although to retain compatibility the modern electronic hardware emulates the old electromechanical system.

Confusion is compounded by the fact that much of the vital information on computer connection is handed down by word of mouth from poor unfortunates who have learned by trial and error. Even Telecom Gold has not published a clear explanation of the technology on which its system depends, the computer hardware and software needed to make it work or the parameter settings for hardware and software which is available.

Most computer firms make no mention of e-mail in the manuals which accompany their machines and the software which enables them to communicate. To give just one specific example, few manuals bother to explain that when text is prepared "off-line" and stored on disc for later transmission by e-mail link it must be stripped of control codes. Wordprocessing programs use hidden control codes to define text layout. If an attempt is made to transmit text that has been prepared by a wordprocessor, it will very probably throw the e-mail system into confusion and emerge with errors at the other end. The trick is to save the message from the wordprocessor as plain text. Most, if not all, programs will allow this—although they all have different names for the procedure.

Computers process and store text as a coded stream of pulses, arranged in groups each signifying a letter or number. Most computers use ASCII (American Standard Code for Information Interchange), with each character represented by seven ones or zeros in an eight-bit word. The eighth bit is spare for other uses, usually error detection by parity check (an extra one or zero is added so that the total number of ones is always either odd or even). Incidentally the way to save text from a wordprocessor for transmission is as plain ASCII text. Saving this way strips out the control codes.

FREQUENCY SHIFT KEYING

Whereas digital data runs as a stream of square pulses, a speech telephone line is designed to carry a limited range of analogue wave frequencies, within a band of around 3kHz. The technique used to send data down a ordinary speech telephone line, is called Frequency Shift Keying, or FSK. A zero is represented by one audible tone frequency and a one is represented by another tone frequency.

A speech telephone line carries both halves of a conversation at the same time. The human ear-brain mechanism is clever enough to
untangle the mixture of incoming and outgoing speech. But computers are not so clever. When two computers are communicating on a two-way line they must use different tones for their zero and one pulses. So each end of the line uses a different pair of frequencies, making a total for four tones per line. These are usually between 1kHz and 2kHz, which is why the signals which flow down the line when computers are communicating are a high pitched chirp or warble. Filters in the modem prevent the outgoing tones feeding back into the input.

When two computer users first try to put their machines on line to send private messages, they must decide who is to use which set of tones. For convenience these are identified as the "Origin" or "Answer" frequencies. For electronic mail, where a large number of personal computers or terminals are all communicating with the same main central computer, it is established practice for the host to choose the Answer frequencies and the subscribers at home or in other offices to choose Origin.

There are two quite separate standards, one for the USA and the other for Europe. In the USA the FSK frequencies were set by Bell and in Europe the standard was agreed by the CCITT (International Consultative Committee on Telephone and Telegraph). This means that the hardware needed to interface a computer with a telephone line in North America is not the same as that needed for the UK. So any attempt at direct communication between a home computer in Europe and the US will fail unless one of the parties is equipped to handle the foreign set of FSK tones.

If communication is in "full duplex" mode, the computer screens display text which has reached the other end of the line and been bounced back by the computer there. This shows up any errors that have been introduced along the route. In "half duplex" mode each computer shows only the text which it is transmitting, so errors are not revealed. Obviously full duplex operation is desirable but there is a penalty. Because data is travelling in two directions at the same time the system is effectively handling data at twice the real rate.

MODEMS

The hardware needed for converting a stream of ASCII (or telex) text into FSK waveforms is a modem, or MODulator-DEModulator. This both generates tones when fed with digital pulses, and recreates digital pulses when it receives incoming tones. Some modems now on sale can be switched between Bell and CCITT format, to enable direct communication across the Atlantic. Fortunately this consideration does not arise if messages are sent via an electronic mail system with host computer. The mail system is transparent. Messages injected with a modem operating on one standard will emerge in a foreign country on the local operating standard. But travellers hit problems if they carry hardware with them. A modem, or computer with built-in modem which is bought in the US, will not work in Europe; a European modem will not work in the US or Canada.

Even when the hardware is bought in the country of intended use, setting up a terminal, with computer and modem connected to the telephone wire, is fraught with difficulties.

Some computers have a slot inside, into which a modem on a printed circuit board can be plugged. It is often cheaper, however, to use an outboard modem. This can be hard-wired into the telephone network, like an extension telephone. Or it can be an acoustic coupler which works like a telephone in reverse, with a microphone to pick up sound from a conventional telephone ear piece and a loudspeaker to inject sound into the telephone mouthpiece. Acoustic modems are useful where the operator is on the move, needing to couple with a different phone every day. It is seldom possible to unplug a hotel telephone, for the simple reason that unplugable phones are too easy for guests to steal.

Usually an outboard modem connects with the RS232 socket. The pulses run in a serial stream, in on wire and out on another. Other wires carry additional signals which allow the two computers to work in harmony. Around half a dozen wires are needed for full transmission control. Unfortunately there is no agreed standard on which wires should go to which pins of the 25 way plugs used for RS232 connections! The only safe way to make a connection is to buy all necessary leads at the time of purchasing a modem.

DATA RATES

Even with the correct wire connections, the stream of data coming from the modem is useless to the computer unless it has been loaded with a software program which converts the incoming pulses into text for display on the screen. There are several different data rate standards, of which three are in regular use for electronic mail. Different data rates use different tones. This lets automatic equipment set its own data rate.

At a slow data rate the pulses produce relative long waves, so are less likely to be lost or distorted by noise on the telephone line. But messages take longer to send. This is an important consideration because on an e-mail system the subscriber must pay both to transmit and receive or read.

Data rates are measured in bits per second, often wrongly equated with bauds or number of modulation changes per second. By clever tone coding, bit rate can be made much higher than baud rate. But at low speeds, of a few hundred signal transitions a second, baud and bit rate are similar or identical.

As a yardstick, telex messages are carried at 50 baud which in practice means around 400 characters a minute. The speeds for computer are laid down in terms of CCITT standards, the V series. The usual speed for electronic mail is 300 baud or 300 bits per second in each direction, known as 300/300. This is the CCITT V21 standard. Higher speeds present problems, especially in duplex mode.

Dedicated data circuits, for instance special phone lines, have four wires. So data can travel in both directions, separately. But electronic mail travels on the public telephone network, which is a two wire system. A data rate of 1200 bits per second is the practical limit. If data is to be sent in two directions at once, for duplex operation, simple FSK coding is not adequate. A combination of phase and frequency shifts is needed. Cheap modems cannot handle the 1200 bits/s duplex standard (V22) because the readily available chips on which they rely offer FSK only.

The 1200/75 (V23) standard is a useful compromise; data travels at 1200 bits/s in one direction and 75 bits/s in the other. At this speed full duplex FSK is feasible. A link at 1200 bits/s in both directions can work with a cheap modem, but only in one direction at a time. This 1200 bits/s half duplex standard also comes under the V23 heading, but e-mail host computers will usually refuse to work in this mode. The 1200/75 "asymmetrical" approach is useful where one half of the link, such as a database, is sending out much more information than the other. This is the technique used for Prestel. For e-mail, where as much data is usually being sent as received, the 300/300 rate is best. Apart from anything else, there is inevitably more risk of noise on the line introducing errors at 1200 bits/s than at 300 bits/s.

Usually the different speeds and tone frequencies offered by the host are handled by different modems, each on its own phone number. So the host must be accessed on a phone number chosen to suit the data rate eg 583 3000 for the Telecom Gold 300 baud service in London. The calling modem is manually, or automatically, set to match the host data rate.

The speed at which the data leaves the terminal computer, and is accepted by it, must be controlled by software. This will have a menu of options which the operator must select to match the chosen data rate. Unfortunately data rate is only one of a long string of parameters which must be set when the software is tailored to suit the system being used as a terminal. There are a large number of different programs on sale which enable micros to communicate, either with each other or with an electronic mail host. Needless to say they are all different and the instruction manuals which accompany them are often understandable only to the dedicated computer buff. It is a token of the potential value of e-mail as a business tool that so many non-buffs have persevered with the absurd obstacle course and now use the system.

SMART TYPES

Recently I was loaned a modem of the so-called "smart" type. Made by British firm Tanda it plays the very clever trick of listening to the tone on one wire and then adjusting the various parameters to match those of the computer at the other end. Connection was simple. By far the most difficult part of using it was understanding the appallingly confused instruction books which came with it.

The communications software must add extra data bits to each ASCII word for control functions. An additional "start" bit at the beginning of each word tells the other computer that a character is coming. An additional "stop" bit at the end signals that the
character has finished. This is asynchronous operation. For faster data rates than e-mail the computers are locked in step over much longer periods of time. This is synchronous operation.

Each data word will usually also contain a "parity" bit. This is added to help the other computer sense when an error has been introduced, for instance by noise on the line. Absurdly, the computer world cannot agree on such basic matters as odd or even parity; i.e. whether the extra bit should bring the total to an odd or even number, or whether parity should be ignored altogether. Instruction codes are usually injected by the software, so that neither computer floods the other with more information than it can handle.

Some software packages pose questions which few people understand, let alone are able to answer. The object of this extraordinary obstacle course is to let anyone in the world, with any computer, set its parameters to communicate with any other computer. For electronic mail, far less flexibility is needed. But the electronic mail system providers have to offer a Help Line service to assist bewildered subscribers in setting up their computers.

GETTING STARTED

For the benefit of anyone currently struggling to set up a system, the best starting point is as follows:

Data rate of 300 baud, full duplex operation, a word length of 7 data bits, parity even, 1 start bit (generally software assumes this), 1 stop bit and line status set at Enable for Xon and Xoff to let the software freeze the screen if the user wants to stop text scrolling past too fast.

All the UK e-mail systems now allow the subscriber to inject a message into the telex network and receive telex messages on an e-mail terminal.

The wider spread of e-mail will depend on making the technology more accessible, for instance by the development of dedicated systems which require no computer expertise to set up. It will also depend on the service providers' ability and willingness to remove irritants from the system. For example, with a portable micro and modem, an e-mail subscriber can in theory communicate easily with the office backwork from the bedside telephone of any hotel in the world. But to do this the subscriber needs the right modem to match the local standard. He or she also has to hope that the hotel switchboard will not mistake the modem tones for a fault and disconnect the line halfway through a message. I know from bitter experience that this frequently happens.

PACKET SWITCHING

In most countries it is possible to route calls back to London, by one of the International Packet Switching Systems. A local telephone company modem accepts calls from a terminal modem, breaks the data into packets and slots it into the 48 kilobit/s stream which now travels by satellite and submarine cables between most countries of the world. But to use IPSS the itinerant e-mailer must know not only the long strings of code numbers and passwords, but be able to find the local PSS phone number from a foreign language operator out of office hours. Making an e-mail hook up from a far-off land can be far more trouble than it is worth.

For users, the biggest potential nuisance is junk e-mail, like rambling advertising literature. An advertiser can send the same message simultaneously to any number of different destinations. At 300 bits/s it can take several minutes to receive and read a tedious message that would take only seconds to scan and discard if it came through the post on paper. On some e-mail services, notably Telecom Gold, the subscription charge (up to 10-15p a minute) for all time on line, whether receiving or sending messages. This is in addition to the cost of the telephone call to the e-mail host computer. Fortunately the e-mail service operators are aware of the problem and will disconnect persistent offenders.

The Dialcom system used by Telecom Gold, the most vigorous e-mail service provider in Britain, relies on Prime 740 and 850 computers as hosts. Each costs around £0-2 million. Incoming calls are automatically connected to the computer by a gang of switch pads (Packet Assembler and Disassembler). As the number of incoming calls increases, the response time of both switches and host computers slows down. This means that subscribers spend longer on the line connected to TG. Although this in turn means TG earns more money, because the charge rate remains the same even when response time is slow, it makes TG's customers increasingly angry. The situation gets worse if a PAD or computer develops a fault. One of the major disadvantages of electronic mail is that if the hardware or software at either end of the link fails, mail cannot be read; it might just as well be locked in an unrememberable safe.

TG now has around 30,000 subscribers and around 30 Primes. In practice each computer can handle between 50 and 60 connections at the same time. Because only a fraction of its subscribers will be trying to connect at the same time, each Prime computer can serve around 5,000 boxes. As demand grows, TG has no option but to install new computers. Currently TG is buying one a month. These are each given a code number, which is part of the subscriber's box number address. Predictably there is a howl of protest when a subscriber's number has to be changed because a new computer has been installed, all the subscriber's printed stationary suddenly goes out of date.

STAND-BY

TG holds one complete Prime configuration idle as a stand-by system is case there is catastrophic hardware failure. The service does not have its own emergency generator. If the mains power goes down, so does the system. The prospect of every subscriber's data being lost in a crash is too awful to contemplate. A crash should not lose data. But to be on the safe side all user data is archived to magnetic tape each night. The daily archives are retained for one week, weekly archives are retained for four weeks, monthly archives are retained for one year and yearly archives are retained indefinitely. There has only been one incident in three years, when TG lost some data which had been created between the last nightly archive and the time of failure. But clearly the system is vulnerable and users with valuable data should keep their own copies for 24 hours. But if a customer accidentally deletes valuable data from a mailbox, TG can retrieve it from the back-up tape.

HACKING

Security is always a vexed issue. How easy is it to "hack" into someone else's box and read their mail? No system can be 100 per cent secure. There is no secret over a subscriber's box number. It is just like a house address to which letter mail is sent. The householder uses a lock and key to stop unwelcome guests getting past the front door. For e-mail this is done by a system of passwords; the electronic mail equivalent of a front door key. Without the password no-one can get access to whatever messages are inside a box.

The biggest risk to security is that people who use mailboxes often make it easy for someone to steal their password. They write it on a piece of paper, load it into a computer program or key the word onto a screen while others are watching.

British Telecom leases lines to four public and three private electronic mail services in the UK. The four public networks are its own Telecom Gold; EasyLink, which is run by Britain's Cable and Wireless in conjunction with Western Union in the US; Comet run
by Istel a subsidiary of British Leyland, and One-to-One now owned by US telecoms consortium Telesis.

All offer a straightforward e-mail message service and all offer a link with the telex network. This can be used either to send and receive conventional telexes (with the cost of the telex added to the e-mail bill) or to bridge the gap between the incompatible e-mail systems, i.e. to send a message from Telecom Gold to Easylink or from One-to-One to Comet. In this respect the new e-mail technology is helping the old telex technology survive. There is vague talk of interchange or "gateway" software which will let different system mailboxes communicate with each other. Paradoxically, not everyone wants it. Gateway interfacing would help the smaller operators sell their services by offering cut price access to the larger and more expensive networks.

On all services, phone calls are extra because BT refuses to package its charges with those of arms length companies like Telecom Gold or Prestel Viewdata.

In more detail the services on offer compare as follows...

SERVICES

Easylink has a few thousand subscribers in Britain (it won't say exactly how many) and a total of 150,000 here and in the US where it has been offering a low cost alternative to dedicated telex for five years. The company has done little to publicise itself in the UK, where it has been operating for a year. But changes are planned.

Easilink's prices are an initial registration fee of £40 and then a minimum of £12.95 a month. Subscribers only pay extra (at 10p a minute plus the cost of telex transmission) to send messages. It costs 15p per address to which a message is sent, but the first 50 per month are free. Reading messages is free, except of course for the unavoidable cost on all systems of making the phone call to the host computer.

One-to-One began as a private company in March 1984 but in January 1985 was bought by Telesis, the Californian and Nevada Bell telephone company spin-off. The user base is small, a few thousand like Easylink, and profile is low. Again like Easylink, Telesis plans aggressive marketing and a change of image.

Registration is £50 and cost on line is 10p per minute. There is no off peak cheap rate but the first half minute of each call is free. That is enough to let a user check whether there is any mail to read.

Comet is run by Istel. It began as an in-house mailbox service for BL but is now on offer to anyone. Istel claims 90,000 mailboxes, mainly distributed through the offices of large companies like Shell, Citibank and, of course, BL. There is no registration fee. Basic cost is £30 a month, with an extra £10 for telex facilities. There is no charge for time on line.

Telecom Gold was created as an arm's length company by British Telecom in April 1982, initially to offer internal mailbox communication for BT. It is now on offer to anyone. The cheapest subscription scale is a one-off registration fee of £40 and on line time charged at 10.5p a minute peak rate, or 3.5p off peak, with a monthly minimum of £10.

Prestel is probably the best known system because it has been available for longer than any of the e-mail services. Prestel is essentially a data base, but it began offering a mailbox service in September 1981. Initially this was available only in selected areas of the country, but in October 1984 Prestel Mail Box became a national service. Any one of the 50,000 Prestel subscribers can now send a short message to any other subscriber.

By way of return competition, Telecom Gold hopes soon to offer its subscribers the opportunity to access data base bases, both in Europe and the US, by e-mail. This already happens on Dialcom in the US.

SINGLE POT DUAL OVERLAP CONTROL VOLTAGE CIRCUIT

Recently the writer needed a single pot control of two voltages which had to vary from ±12V and cross over to 2Vpe at one end of the pot rotation. Also, the law of the rotation about centre had to be different for the two control voltages. The circuit devised works very well.

This is a linear circuit, but if R7 and R8 are shunted by different diode and bias networks then a non-linear, non-symmetrical system can be developed.

OVERLAP

By shifting D1 and D2 to other voltages, the point of overlap can be set where required.

A. B. Bradshaw, Sandy, Beds.
The month's BBC Micro Forum looks at the addition of a secondary display, in the form of a small l.c.d. module. This is a feature found on other computers such as the Apricot and could be used to display, for example, function key information or time. The l.c.d. module is easily fitted to the BBC being simply plugged into the computer's User Port.

L.C.D. DISPLAY MODULE

L.c.d. modules consist of a dot matrix l.c.d. with an internal CMOS microprocessor, memory and l.c.d. drivers thereby producing an intelligent alphanumeric display. They are available in a range of sizes from 1 row of 16 characters to 2 rows of 40 characters. Although this article is based on the 2 × 40 character module, the setting-up information, pin connections and programming techniques are applicable to most types.

Included within the module is a 192-character generator ROM including 92 Alphanumeric symbols, 62 kata kana, and 32 Euro/Greek/symbols and RAM for 8 user defined characters, e.g. 'E' sign. The user defined characters also allow the production of multi-channel bar graphs and animated characters. Characters to be displayed are written to the module in ASCII form via either an 8-bit or 4-bit bus and a few control lines. All this makes the module easy to use and imposes very little software overhead on the BBC microcomputer. The modules require a 5V, 2mA supply which can easily be supplied by the BBC microcomputer's User Port.

A block diagram of a 2 rows of 40 characters module is shown in Fig. 1. It can be seen that it consists of one control chip, four driver chips and the l.c.d., all of which are mounted on a 180 × 35mm printed circuit board. The control chip contains the microprocessor, RAM and Character generator ROM and the input/output circuitry that allows it to communicate with other equipment. It should be noted that this communication is bi-directional thereby allowing the contents of the display to be read by the BBC microcomputer. Having received display information from the BBC microcomputer the control chip undertakes all the refresh and update controls without further intervention by the BBC microcomputer.

L.c.d. modules are available from a range of suppliers, however, the majority use a Hitachi chip set (HD 44780 controller, HD44100 drivers) and the same pinout configuration although the physical appearance may be different. The module described here is the RS 588-538 device.

Table 1. Pin functions of l.c.d. module

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Function</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vdd</td>
<td>5V</td>
</tr>
<tr>
<td>2</td>
<td>Vss</td>
<td>0V</td>
</tr>
<tr>
<td>3</td>
<td>V0</td>
<td><0.7V</td>
</tr>
<tr>
<td>4</td>
<td>RS</td>
<td>0 = inst: 1 = char</td>
</tr>
<tr>
<td>5</td>
<td>R/W</td>
<td>0 = write: 1 = read</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
<td>latch on fall</td>
</tr>
<tr>
<td>7</td>
<td>BD0</td>
<td>Logic</td>
</tr>
<tr>
<td>8</td>
<td>BD1</td>
<td>Logic</td>
</tr>
<tr>
<td>9</td>
<td>BD2</td>
<td>Logic</td>
</tr>
<tr>
<td>10</td>
<td>DB3</td>
<td>Logic</td>
</tr>
<tr>
<td>11</td>
<td>DB4</td>
<td>Logic</td>
</tr>
<tr>
<td>12</td>
<td>DB5</td>
<td>Logic</td>
</tr>
<tr>
<td>13</td>
<td>DB6</td>
<td>Logic</td>
</tr>
<tr>
<td>14</td>
<td>DB7</td>
<td>Logic</td>
</tr>
</tbody>
</table>

range for Vo is between 0-2V and 0-7V, outside this range the viewing angle may be so high that the characters become unreadable. Vo is usually adjusted to produce maximum contrast as opposed to maximum dot darkness.

The eight data lines are used to transfer data to and from the module under control of the three control lines. Data is normally in the form of ASCII characters except when initialising the module or programming the user defined characters.

Now consider the three control lines. The R/W line is used to inform the module of the desired data flow direction. When set to '0' data is sent from the computer to the module (write), and from the module to the computer when it is a '1' (read). The module has only two registers that can be accessed by the BBC microcomputer, these are the Instruction Register (IR) and the Data register (DR). The regi-
ter to be accessed is selected by means of the RS line. '1' selects the Data Register, '0' selects the Instruction Register. The use of these registers will be discussed later.

The remaining control line is designated 'E', and it is this signal that is used to initiate the actual transfer of data, present on the data bus, into the module. The operation of the module is such that the data is latched into either the Data or Instruction Register on a falling edge of the 'E' line. Thus the 'E' line can be considered as a pseudo module-select signal, but note that the module does not have tri-state input/output lines. This means that modules cannot be paralleled as can, for example, memory chips.

CONNECTION TO THE BBC

The module is connected to the BBC by means of a ribbon cable plugged into the User Port as shown in Table 2. However, the user port can only provide a maximum of ten outputs if the CB lines are included, so how can the system work? The answer is to configure the module to run in 4-bit mode. By doing this, one only needs seven lines, 4 data and 3 control. In this mode the module still requires 8-bit data words, but it accepts them as two 4-bit nibbles, the most significant nibble followed by the least significant nibble. By using this mode of operation only seven bits are required instead of the previous eleven and can therefore be linked to the User Port.

When in 4-bit mode the module uses DB4–DB7 as the 4-bit bus and ignores anything that may be present on the other four bits. The User Port bits PB0–PB3 are used as a 4-bit bus with bits PB4 as R/W, PB5 as RS and PB6 as the E signal. It will be described later, when discussing the software how the unit is set into this 4-bit mode.

INSTRUCTION SET

The full instruction set for the l.c.d. module is shown in Table 3. It can be seen that it is possible to configure the l.c.d. module in a wide variety of operating modes. For example, there is the option of having a cursor displayed as a bar underneath a character position and this can be made to flash on/off if required. The cursor can be made to move to the next character position upon receipt of a character or to remain in a fixed position. The latter can be used to produce a sideways scrolling effect.

These are only a few of the options available and it is obvious that the l.c.d. module is a versatile device. Should you wish to use these facilities to the full, a copy of the relevant device's data sheet should be obtained for further details.

CHARACTER GENERATOR RAM PROGRAMMING

The character generator RAM (CG RAM) allows one to programme eight 5 × 8 characters of one's choice. An example of this is included in the software listing under PROC define_character. Once programmed, these newly created characters can be used in exactly the same way as can those contained within the character generator ROM, i.e. they are called by the appropriate data word. To programme a character into the CG RAM one first has to define the required character as 8 rows of 5 dots. A dot is represented by '1' and no dot by '0' with the leftmost dot the most significant. Thus the hex representation of each line of the character's eight lines can be calculated. The RAM locations between

Table 2. BBC to l.c.d. display connections

<table>
<thead>
<tr>
<th>BBC User Port Pin No.</th>
<th>Function</th>
<th>LCD Module Pin No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>0V</td>
<td>1</td>
<td>Vss</td>
</tr>
<tr>
<td>1</td>
<td>+5V</td>
<td>2</td>
<td>Vdd</td>
</tr>
<tr>
<td>6</td>
<td>PB0</td>
<td>11</td>
<td>DB4</td>
</tr>
<tr>
<td>8</td>
<td>PB1</td>
<td>12</td>
<td>DB5</td>
</tr>
<tr>
<td>10</td>
<td>PB2</td>
<td>13</td>
<td>DB6</td>
</tr>
<tr>
<td>12</td>
<td>PB3</td>
<td>14</td>
<td>DB7</td>
</tr>
<tr>
<td>14</td>
<td>PB4</td>
<td>5</td>
<td>R/W</td>
</tr>
<tr>
<td>16</td>
<td>PB5</td>
<td>4</td>
<td>RS</td>
</tr>
<tr>
<td>18</td>
<td>PB6</td>
<td>6</td>
<td>E</td>
</tr>
</tbody>
</table>

Table 3. l.c.d. module instruction set

<table>
<thead>
<tr>
<th>Instruction</th>
<th>RS</th>
<th>R/W</th>
<th>DB7</th>
<th>DB6</th>
<th>DB5</th>
<th>DB4</th>
<th>DB3</th>
<th>DB2</th>
<th>DB1</th>
<th>DB0</th>
<th>Code</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear display</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>ACG</td>
<td>clears display and home cursor</td>
</tr>
<tr>
<td>Home cursor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>I/D</td>
<td>returns cursor to home position</td>
</tr>
<tr>
<td>Entry set</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>S</td>
<td>selects cursor direction and shift modes</td>
</tr>
<tr>
<td>Display control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>D</td>
<td>C</td>
<td>selects display, cursor and flash modes</td>
</tr>
<tr>
<td>Cursor or Display shift</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>S/G</td>
<td>R/L</td>
<td>X</td>
</tr>
<tr>
<td>Function set</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>DL</td>
<td>N</td>
<td>F</td>
<td>X</td>
<td>sets interface mode, number of lines and character font</td>
</tr>
<tr>
<td>CG RAM address</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>ADD</td>
<td>selects CG RAM address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD RAM address</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>BF</td>
<td>AC</td>
<td>indicates if module ready</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read busy flag and address</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Write data</td>
<td>writes data into CG or DD RAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write data to CG or DD RAM</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Read data</td>
<td>reads data from CG or DD RAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read data from CG or DD RAM</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Read data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BIT

- **I/D**: Increment
- **S**: Enable
- **S/G**: Display shift
- **R/L**: Shift to right
- **D/L**: 8-bit mode
- **N**: 2 lines
- **BF**: Busy
- **F**: Not used

Code

- **1**: Increment
- **ADD**: Enables
- **AC**: Display shift
- **BD**: Shift to right
- **2**: 8-bit mode
- **1**: Two lines
- **0**: Busy
- **0**: Not used

Comments

- **clear display**
- **home cursor**
- **selects cursor direction and shift modes**
- **selects display, cursor and flash modes**
- **moves cursor and shifts display**
- **sets interface mode, number of lines and character font**
- **CG RAM address**
- **DD RAM address**
- **indicates if module ready**
- **writes data into CG or DD RAM**
- **reads data from CG or DD RAM**

SOFTWARE CONSIDERATIONS

Having generally described the l.c.d. module, let us now examine the software required to drive it. The listing shown in Table 4 is for a basic display in which the required string is displayed on the l.c.d. module starting at the top left position. Should the string be longer than 40 characters it will continue on the lower line. The software has been written as a number of procedures which one can include in one's own programs.
The first thing to do is to initialise the BBC microcomputer’s User Port (PROC_initialise_port). This port can be considered as two memory locations, the Data Direction Register (DDR) address &FE62 and the Data Register Buffer (DRB) at address &FE60. In this case we configure the port as all outputs, and as an output is represented by its corresponding bit in the DDR being ‘1’, we write into the DDR &FF. To provide some known starting value one now drives all the outputs to ‘0’ by writing &00 into DRB.

Having initialised the port one can initialise the I.C. module. When power is applied to the I.C. module it puts itself into the following mode; 8-bit data bus, 1-line display, display off, cursor off, flash off. For this application the operating mode needs to be changed to 4-bit data bus, display on and 2-line operation. This is achieved by PROC_initialise_I.C. Examination of the instruction set command ‘Function set’ shows that if D/L is ‘0’ the module will be put into 4-bit mode. By setting our 4-bit bus to ‘&2’ the module’s 8-bit bus reads this as ‘&2X (X = don’t care)’ and sets itself into 4-bit mode. From now on data is sent as two 4-bit nibbles representing the control bytes &28, &6C, &06, &01. Note that all these are written into the Instruction Register. The I.C. module is now ready for use.

To send alphanumeric ASCII characters to the I.C. module one creates a message string called strings. Characters are extracted one at a time from the string, split and sent to the I.C. display as two nibbles. This is the purpose of PROC_display which writes data into the module’s Data Register. First of all it clears the display of any previous messages that may be displayed. It then splits the first character in string’s into two parts called high% and low%. The two parts, plus the R/W bit to ‘0’ signify that it is a write command.

As previously stated, data is latched into the I.C. module by generating a negative edge on the ‘E’ line. This is achieved by sending the nibble with ‘E’ set to ‘0’, then

<table>
<thead>
<tr>
<th>Table 4. Basic display program</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>
This 9 inch metal cased, monochrome monitor offers you the chance to obtain a high quality product at a budget price!

SPECIAL OFFERS

WATCH THIS SPACE FOR THE NEW THOMSON RANGE OF MONITORS

CROFTON ELECTRONICS
35 GROSVENOR ROAD, TWICKENHAM, MIDDLESEX TW1 4AD
SALES & SERVICE: P.O. BOX 6, KINGSTON HRS 3SX. 01-981 3923

SAXON MOSFET AMPLIFIERS

SAXON DISCO & LIGHTING BARGAINS

MONO DISCO MIXER
Mic/1 Tape/2 Decks/Phones/Black/White Facia, Jacks, etc.

FOUR CHANNEL CHASER
Forward/Rev/Auto/4KW/Audio Outputs — Bulgin & Ropeight Socket

SENSALITE
Free Standing — Light Unit • Self-contained — Internal Mic • 4 Bulbs

8 CHANNEL CHASER
32 Programs — Dim — 1KW/Channel Audio Input — Manual/Auto Prog includes 19" Pack Mounting Case

2KW PROFESSIONAL DIMMER
2KW Inductive/Resistive Output Indicator/Panel Fuse — Flash Button 4". Sub Rack Unit

4x2KW POWER PACK
Accepts 0-10V and Mains Level Inputs — Professional Finish — Fully Fused — Slave Output

CRODAR LTD
327 WHITEHORSE ROAD, CROYDON, SURREY CR0 2MS
ALL PRICES INC. VAT. ADD £1.50 p&p

(01) 684 3007
Clock Timer
Pablo

Combines digital technology with analogue layout

The problem following the demise of my old mechanical timer was exactly what was to replace it. There are many gadgets around all purporting to be for the purpose. In the end simplicity was allowed to win, and the features built in are shown in the specification box.

1) Mains powered (Batteries for someone who spends long night hours in the darkroom can be dreadfully inconvenient.)
2) 5V supply
 a. To give the safety of batteries. Darkrooms are notoriously damp and electrically inhospitable places.
 b. At 9V or less CMOS 4017s will drive I.e.d.s directly without current limiting resistors.
3) Autodimming (A lot of colour processing is done in total darkness, and many photographers work "eyes shut". Afterwards is too late to discover that you forgot to dim the clock.)
4) Easily read (In any light from room daylight to total darkness, whilst remaining reasonably safe photographically)
5) Count up (Any form of presetting which does not use multiple timers is not welcome in most darkrooms. When a tank has to be emptied and refilled to a time, and a timer has to be reset at the same time to a time different to the one just used . . .)
6) Instant reset (In the above situation any available hand, bottle, tank, elbow will do.)
7) Indicated time (Must be capable of exceeding any time the operator would wish to use. The timer will read to 100 minutes then auto reset.)
8) The display (In my darkroom things happen on, or as near as one can make it to, a particular second. Any timer then, needs to have an analogue seconds presentation so that some sort of actions can be started in anticipation of actual elapsed time.

 Having one I.e.d. for each second puts up the price of the timer but is perfect for ease of reading, quickly, and without ambiguity.)
9) Minutes (Since reading the minutes display is usually a far more leisurely affair than reading seconds, and since this time we want to know how long has elapsed rather than how long to go, two seven-segment I.e.d.s provide the information. In order that only elapsed time is displayed all Os are blanked unless there is a number other than 0 in the M.S.D. So at 00 minutes, that is, seconds only elapsed, both seven-segment displays remain blank. At 01 minutes through to 09 minutes elapsed the display shows 1–9. At ten minutes elapsed the display shows 10.)
10) Parts (Parts were chosen to be 'standard' and thus available as long as the timer is likely to remain in service. The old timer determined the size of the presentation since the prototype fits the old case.)

HOW IT WORKS

For the purpose for which this timer was designed, input needs to be 9–16V a.c., with sufficient current available to ensure 150–180mA after rectification. One of the small battery eliminators with its rectifier diodes removed is ideal. The intention being to eliminate any possibility of having mains anywhere near the timer. The circuit diagram is shown in Fig. 1.

The incoming a.c. is fed through a 1A bridge or four small diodes arranged as a bridge and the unregulated d.c. stabilised by a 7805 IC1. However, for timing purposes a.c. is tapped ahead of the rectifier, current limited by R1, clipped to supply voltage D1 and D2, and compared for level to the stable d.c. level by IC3, a 4093 Schmitt Nand gate.

The resulting clean 50Hz square wave is divided by five in IC2, a 4016 divide by "n", cleaned again by IC3, passed to IC4, a 4017 decade counter, to be divided by ten. This output being the 1Hz working signal.

THE SECONDS DISPLAY

The seconds display is a matrix of 60 I.e.d.s, six rows, each row 10 I.e.d.s long. Each row has its cathode route to OV switched in sequence by a BC108, TRs 1–6.

The 1Hz output from IC4 is applied directly to the input of IC5, a 4017. The outputs of IC5 go high in sequence continually, resetting at ten second intervals. Each of the first I.e.d.s in each of the six rows is connected to the first output, i.e. pin 3 of IC5. All of the second I.e.d.s are connected to the second output, pin 2 etc. Only the I.e.d.s which have access to OV are able to shine, but by switching the rows sequentially all 60 I.e.d.s can be made to shine consecutively.

The carry output from IC5 is the input to IC6, and the outputs from IC6 which change state at 10 second intervals connect the matrix rows to OV in turn by providing base current to TRs 1–5 through resistors R3–R8.

IC6 is also configured to divide by 6, so the leading edge of the seventh output triggers its own reset and the matrix count starts again at zero. D3 prevents the reset pulse straying to ICs 4, 5 and 7. Since the IC7 reset pulse occurs 60 seconds after counting starts it is also used to drive.

THE MINUTES DISPLAY

When the timing sequence starts, i.e. the reset button is pressed, D4 prevents the reset signal getting to the count input.
Fig. 1. Circuit diagram
pin 1 of IC7. IC7 is a dual BCD up counter. IC7a counts the l.s.d. via pin 1, resets via pin 7, is enabled by pin 2, and outputs at pins 3, 4, 5 and 6. IC7b counts the m.s.d. via pin 9, is enabled via pin 10, reset on pin 15, and outputs at pins 11, 12, 13 and 14. All IC7a outputs are at OV. IC7b count is disabled due OV pin 10, IC7b pin 9 is high but is ignored since the count is disabled. IC8 and 9 are both disabled due OV on their respective pins 4. On receipt of a count pulse from IC6 pin 3 IC7 goes high, putting pin 4 of IC9 high via D24 and D20, enabling IC9 to decode the high from IC7 pin 3 and display a 1 as I.s.d.

Pin 10 of IC7 goes high but now pin 9 is low so no count occurs. The m.s.d. display is still blank due D19 preventing IC8 being enabled via its pin 4.

On the arrival of the 10th pulse from IC6 all outputs of IC7a go low, but this time the high from IC4 is counted, IC7 pin 12 goes high, IC8 and IC9 are both enabled via D15 and D19. A 1 is displayed as m.s.d. and a 0 as l.s.d.

RESET
During operation C5 is charged to supply rail voltage. When the reset button is pressed, C5 provides the current to reset ICs 4, 5, 6 and 7 and the count starts again from 0.

DIMMING
Due to the differing power requirements of the two parts of the display slightly different methods are used to dim them.

All 10 outputs from IC5 are also routed via D5–D14 to the collector of TR7. In light conditions the base of TR7 is held low due to R30 conducting. TR7 is turned off and the whole output of TR6 is available to the l.e.d.s which go as bright as they can.

As ambient light reduces R30 stops conducting, the voltage on the base of TR7 rises and TR7 turns on, reducing the current available to the matrix l.e.d.s. R24 prevents TR7 turning fully on and so sets the minimum brightness level.

The minutes readout has the opposite arrangement. Here, R23 and R31 are in parallel, and in high ambient light conditions the base of TR8 is held high, allowing the readout to shine as brightly as R9–R22 will allow. As light falls R31 stops conducting and the voltage on the base of TR8 falls. TR8 turns off reducing the brightness of the display. R23 sets the minimum brightness. Since in the seconds matrix only one l.e.d. is lit at a time, a BC108 is sufficient for TR7, but for the higher current carrying capacity required TR8 is a 2N3252.

Total power requirements:

- **Total darkness, 30mA.**
- **Ambient room daylight, 130mA.**

TOTAL DARKNESS
In total darkness with only 1 l.e.d. lit, i.e., during the first minute. It can be difficult to orientate the face of the timer accurately when reading quickly. I.e.d.s D25–D28 are only visible in near total darkness, to provide the orientation.

Depending on the usage anticipated, for the same reason, it can be a distinct advantage to have every 5th l.e.d. a different colour, this improves the accuracy of reading in almost any lighting condition.

CONSTRUCTION
The component layout is shown in Fig. 2. Apart from a soldering iron and meter of some sort a logic probe is almost essential. The probe described in *PE* October 1984 is sufficiently versatile to handle any problem likely to be encountered, even if it is only breadboarded. That probe has been tested on the clock and will indicate all necessary levels, being t.t.l. it might not always indicate a high, but it always moves away from 0, i.e. it floats.

Component spacing can be a little tight, especially around IC2 and IC3 and around the seven-segment readouts. Depending, for example, on the type of rectifier chosen, R1 may well lie partially beneath it.

Where possible, and that is most of the time, use standard construction techniques, i.e., links first, resistors and diodes next, then the larger components.

Construction is sequenced in the following order so that the correct operation of each stage may be verified before construction of the next stage starts.

1. Power supply and rail extension.
2. Pulse origin.
3. Pulse division and count.

Fig. 2. Component layout (actual size)

Inset shows how the loom and diodes are positioned on the reverse side of the board.
Fit D15–D24 then IC7, not forgetting the links back to IC3.

Test again. It should now be possible to detect the entire sequence of operation at some point on the circuit. If necessary R29 and C5 can be inserted and S1 jury rigged with wire for test.

Fit IC8 and IC9, caution with orientation, they are upside down when looking at the markings on the back of the chips, with respect to the other devices on the board. Check that the inputs of IC8 and IC9 result in the desired outputs.

Fit displays 1 and 2 and associated resistors, TR8, R23 and R31.

Run the timer. If all is well, after switching on and pressing the reset, nothing will happen for one minute, then a one should appear in the I.s.d. From then on the number displayed should increase by one every minute until 100 minutes has passed, when the display should go blank and start again. The dimming function can be checked by placing a finger firmly on R31 and observing a noticeable change in the display intensity. The total darkness display brightness cannot be determined by this method, the amount of light passing through your finger will prevent minimum brightness being reached.

4) Minutes display.
5) Seconds display.

Start by putting the power supply together, REC1 and IC1 and the components around IC2 and IC3, C1–4, D1, D2, R1, R2.

NOTE: IC1 and C2 are mounted on the back of the board. The arrangement is a little untidy, but it keeps the front component height low which may be important at the presentation stage. Caution with the orientation of IC1.

Switch on and test for:
1) a.c. at the site of pin 2 IC3.
2) 5V d.c. pin 3 IC1.
3) 0V pin 7 IC3, pin 8 IC2.

Extend the power supply rails using links and R25–R28 so that l.e.d.s 1–4 can be fitted and tested. NOTE l.e.d.s 1–4 are extremely dim being only intended to be used in total darkness.

Fit IC2 and IC3. Check for 10Hz pulse train at pin 1 IC2, and at site for pin 14 IC4.

Fit IC4 and check for 1Hz at pin 12, and at site for pin 14 IC5.

Fit IC5 and check the sequence of pulses at the ends of the tracks radiating from the i.c. If you can be certain of the pulse sequence at the track extremities, problems which may occur later will be much easier to deal with. It is most strongly recommended that unless the sequence at the ends of the direct tracks is operating correctly, no further installation be done until the problem is located and solved.

Fit IC6 and carefully check the outputs. For a 1/10Hz input to pin 14, pins 4, 3, 2, 7, 10, 1 should go high in that order and remain high for 10 seconds. If all is well R3–R8 and TR1–TR6 can be fitted and tested.
Constructing the 60 I.E.D. matrix requires patience if optimum results are to be achieved. Start by deciding whether the I.E.D.s are to lie flush on the board or at some pre-determined height, as required by the container you are going to use. Some I.E.D.s have irregularities built into their legs to assist in this kind of positioning. Having decided a height, make a small jig that will hold the I.E.D., given, say, finger pressure on the I.E.D. side, whilst you solder single-handed on the other side of the board. A short rehearsal with spare I.E.D.s and a spare piece of p.c.b. at matrix spacing will pay dividends in neatness later. All face I.E.D.s can now be mounted.

LACING

It is now necessary to join all equally numbered I.E.D.s together. You will require ten lengths of connecting wire, preferably with different coloured covers, each 15 to 20 inches long.

- Remove the waste cathode leg from those I.E.D.s already installed. Solder each length of wire to an anode leg. Lay out the wire away from the timer. Using the test battery and resistor, test all I.E.D.s, change any that have stopped working.

SECOND STAGE

Lay the first wire along the legs of the I.E.D. s until you can mark where the insulation is to be split before soldering to the anode of I.E.D. Do not pull the wire tight, to be in position is sufficient. See Fig. 3a. Prevent the strain on the wire from pulling at the leg of I.E.D. 1, split the insulation on wire 1 just short of the I.E.D. 11 and pull it 1cm or so sideways. See Fig. 3b. Loop the bare wire round the leg of I.E.D. 11. See Fig. 3c.

Check that wire 1 is not touching wires 9 or 10, otherwise it is possible for the insulation to melt in a position where it cannot be seen. See Fig. 3d. Solder wire 1 to I.E.D. 11. Return wire 1 to the start position, i.e. leading away from the centre. Repeat with wire 2.

Before laying wire 3 to position 13, lay it over wires 1 and 2 still in the start position. See Fig. 3e. Push it back under wires 1 and 2 on the i.e.d. 1 side of i.e.d. 3, firm it up, do not pull tight, lay out and solder as for wires 1 and 2. All subsequent wires are to be tied in place before being laid out except those soldered to the 59th and 60th i.e.d.s.

When wire 10 is in place check function of the first 10 I.E.D.s by running the timer.

If the timer is run following every soldering operation on wire 1, more and more I.E.D.s will be brought into the display until all run.

DIMMING

At some time during matrix construction, prepare and install diodes D5—D14. They can run in either direction. They should be soldered to any 10 consecutive face I.E.D.s, but the cathode of D14 should be around the position occupied by I.E.D. 20.

- Prepare the diodes by bending small loops at each end of the diodes, use a very small screwdriver or thick wire offset. The loops should be at 90° to one another so that the loop at the anode end can drop over the I.E.D. leg, which lies vertically, whilst allowing the loop at the cathode end to accept a horizontal collecting wire.

- Complete the matrix, testing fully at least every 10th position. Add the various dimmer components not already fitted.

The timer is now ready for use. There are no adjustments that can be made to the timing function. The only adjustments that might be necessary are to the light output from the I.E.D.s when the timer is operating in total darkness in your darkroom. The prototype timer has been working with a variety of colour sensitive materials in my own darkroom for several months with no apparent problems of any sort.

TIMING PULSES

Timing pulses appear at the following places and rates:

- **IC3**
 - **pin 1**: 10Hz
 - **pin 14**: 50Hz
 - **pin 4**: 20Hz
 - **pin 15**: 10Hz
 - **pin 12**: 1Hz

Universal Semiconductor Devices Ltd.
17 GRANVILLE COURT, GRANVILLE ROAD, HORNSEY, LONDON N4 4EP, ENGLAND.
TEL. 01-348 9420/9425 * TLX. 25157 usdco g

WE OFFER ONE OF THE LARGEST RANGES OF SEMICONDUCTORS AT HIGHLY ECONOMICAL PRICES. THE FOLLOWING SEMICONDUCTOR TYPES ARE AVAILABLE FROM STOCK: IF WE DON'T STOCK WHAT YOU NEED THEN WE CAN GET IT FAST FROM OUR FACILITIES IN WEST GERMANY AND USA UPON REQUEST.

TRANSISTORS
- ** Bipolars** - Germanium and Silicon
 - Small Signal Power Darlington's - All Shapes and Sizes
- **Opto-Electronic Devices**
- **Power Mossets**
- **FETS**
- **Power Mossets**
- **Unjunctions**
- **Diodes** - Germanium and Silicon
- **Rectifiers and Bridges**
- **Opto-Electronic Devices**
- **Thyrstors**
- **Triacs**

INTEGRATED CIRCUITS
- **Consumer** - Digital/Analog
- **Microprocessors and Peripherals**
- **IC Sockets**
- **Japanese Components**
- **Vast Range of Discrete and Consumer ICs**

MAIL ORDER CUSTOMERS: PLEASE SEND FOR OUR COMPREHENSIVE PRICE LIST, ENCLOSING 75p PEACE IN STAMPS, CHEQUE OR POSTAL ORDER. THIS SUM IS REFUNDABLE WITH A FIRST ORDER VALUE OF £5.00 OR MORE.

CATALOGUE SENT FREE OF CHARGE, WHEN REQUESTED ON OFFICIAL LETTERHEAD (WITHOUT REFUND, TO DENY, SCHOOLS, COLLEGES, UNIVERSITIES, GOVERNMENT INSTITUTIONS, COMPUTER FIRMS, ELECTRONIC REPAIR FIRMS AND DISTRIBUTORS.

SPECIAL DISCOUNTS AND PAYMENT TERMS ARE AVAILABLE TO ABOVE INSTITUTIONS.

PLEASE ENQUIRE FOR QUANTITY DISCOUNTS.

WE WELCOME TELEPHONE AND TELEX ENQUIRIES!
Sirius is not alone. It has a companion only 1/10,000 as bright, known to be a white dwarf—a star which has used up its reserves of nuclear energy, and may be described as “bankrupt”. Because Sirius is known as the Dog-Star, the companion is often nick-named the Pup but it is a very busy pup. Its mass is about the same as that of the Sun, and its density is some 60,000 times that of water.

Many white dwarfs are known, but the Pup is the most famous of them. It is not easy to see, except with large telescopes, because it is so overpowered by the brilliant light of its primary.

MYSTERIOUS SIRIUS

There is a mystery associated with Sirius. Ancient astronomers, including Ptolemy of Alexandria (who flourished around A.D. 150) described it as red, and this seems remarkable, because Sirius is certainly not red now. Neither is it the sort of star likely to change colour, it is a normal member of the Main Sequence. So what is the explanation?

Various ideas have been put forward. One of these involves the Pup. Before collapsing to the white dwarf stage, a star passes through a period of high luminosity and cool surface temperature. Red giants are common enough—Betelgeux in Orion is one—and is it possible that the Pup used to be a red giant in the days of Ptolemy?

This is intriguing, but there are any number of objections to it. First, the timescale is all wrong. Though the collapse to the white dwarf condition is rapid by cosmical standards, it is very gradual on the terrestrial timescale, and would most definitely occupy more than a mere couple of thousand years.

Moreover, a star made up of the present Sirius together with an even more luminous red giant would be starting by any standards; it would surpass Venus, and would easily be visible in broad daylight. Neither Ptolemy nor any of the other astronomers of Classical times gives the slightest indication of this. So it seems that the whole theory must be rejected out of hand.

The question of whether the twinkling of Sirius really did give the impression that it is basically red? Some years ago, in a television Sky at Night programme, I carried out a test, and asked viewers to look at Sirius and send me postcards reporting its colour. I had over 5000 replies and not one of them said that Sirius was red, though because of the strong twinkling red flashes were seen now and then. But Ptolemy lived in Alexandria, where Sirius rises much higher in the sky and the twinkling is less, so that I feel we must reject this also.

All in all, we seem to be forced to the conclusion that there have been mistakes either in observation or (more probably) interpretation or translation. But it is strange all the same, and no explanation seems to be completely satisfactory.

I simply cannot believe that there has been any real change in Sirius during historical times. But I do suggest that you look at it, when the sky is clear, and see what you think. If you can bring yourself to call it a red star, I will be very surprised indeed.

ARIANE

When I went to French Guiana, in July last year, to watch the launching of the Giotto probe to Halley’s Comet it would be wrong to pretend that I was over-confident. Though Ariane’s performance has improved tremendously of late, it is not yet totally reliable. Everyone felt a sense of relief when it was put into the right orbit.

Things were not so good for the next Ariane launch, from Kourou. There was a
dual payload, the GTE Spacenet's F-3 satellite and the ESA/Eutelsat ECS-3, both of which were destroyed when the decision had to be taken to abort the mission when Ariane's third stage failed.

Since then things have returned to "normal", but the accident did underline the danger of having only one craft for a mission which cannot be repeated for a long time. There was only one Giotto, and Halley's Comet will not be back for another 76 years.

Meanwhile the US preliminary attempt to assemble the first stages of a space-station, operating from the Shuttle Atlantis, have been completely successful, and this augurs well for the future. We will surely be unlucky if a fully-fledged space-station is not in orbit well before the end of the century.

KECK OBSERVATORY

There is great activity on the summit of Mauna Kea, in Hawaii, the extinct (we hope) volcano which is already the site of several major telescopes, including the United Kingdom Infra-red Telescope (UKIRT). As a site, Mauna Kea, at almost 14,000 feet, is ideal for astronomical observation, apart from the inconvenience of the very thin atmosphere—and even this is not too damaging, because telescopes can now be operated entirely by remote control, and the observer need not be in the dome or even on the same continent.

MAIN SCOPE

The main telescope at the new W. M. Keck Observatory will be a reflector with a 10-metre segmented mirror, made and operated by CARA (the California Association for Research in Astronomy). If all goes well, it will see "first light" in 1990, and it should be in full operation in 1991. It will be far more powerful than any existing telescope, and indeed to make a single mirror of this aperture would be a wellnigh impossible task. It will be very interesting to see how it compares with the Hubble Space Telescope, which has a mirror "only" 94 inches in diameter but will have the tremendous advantage of operating from above the Earth's atmosphere.

HISTORY

In view of all these technical developments, it is rather interesting to look back in history to what was once the world's largest telescope—the 72-inch at Birr Castle—built virtually single-handed by the third Earl of Rosse and completed in 1845. It has not been used now for almost eighty years, and was dismantled long ago, but plans are well in hand for bringing it back into action. Naturally it will be of historical value only, but many people will welcome the opportunity to look through the "Leviathan" which was the first telescope powerful enough to show the spiral forms of the objects we now know to be external galaxies.

RULES

Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.
In the first half of this century the telecommunications industry was busy and conservative—one might almost say dozy. The technology largely consisted of telephones and teleprinters, electromechanical exchanges, manual switchboards and lots of wires carried from place to place on wooden poles. In the UK the Post Office was the major customer for a ring of five or six manufacturers who were always being accused of price fixing and always blandly denying it.

GEC and Plessey

All this changed dramatically under the twin impact of electronics technology and the privatization of British Telecom. It became digital transmission, electronic exchange, microwave links, optical fibres, satellites, data communications, information retrieval and a variety of new services. Telecomms and computers came together to form what we now call information technology (IT).

Then the newly privatized British Telecom started buying some of its equipment on the world market from foreign countries which were also engaged in this technological revolution and sometimes advancing much faster than the UK. Telecomms equipment, instead of being something you just bought locally when you needed it, became a massive, world-wide business. China, for example, in its 1986–90 Five Year Plan, is allocating some £20 billion for telecomms development. The country aims to increase its number of telephones from the present 5 million to 33 million.

This is the historical background which provides the rationale for GEC's wanting to combine with Plessey. Both companies have big sections making telecomms equipment and have been deeply involved with System X switching technology. At the time of writing the original tentative approach from GEC has developed into a classical take-over battle. GEC are offering £1.18 billion for Plessey, or 160p per share.

Plessey have rejected this offer but say they would be prepared to combine with GEC on the manufacture and marketing of System X alone. They also want to continue their existing collaborative arrangements on future switching systems with the European firms Alcatel of France, Italtel of Italy and Siemens of West Germany.

GEC's reason for wanting such a merger or take-over is to make themselves bigger in telecomms manufacturing in order to compete better in world markets. At present GEC is only about 11th in the international league table of telecomms manufacturers. Plessey is even lower down at about 14th. By becoming larger they could achieve economies of scale, at the same time avoiding the duplication of costs in the two companies, and thereby achieve a reduction of unit costs that would result in better competitiveness in world markets.

This, of course, is the logic behind most mergers/take-overs and is why the Government is encouraging it as a general policy for all UK industry. However, combining with another company, whether by agreed merger or forced takeover, is not the only way of becoming larger. You can also do it by internal expansion, though this might take a long time.

An economist friend of mine tells me there's not much evidence either way on whether combination or expansion is the better expedient for achieving the ultimate aim of lower unit costs. There is obviously a danger in merging or taking-over that you merely replace two small inefficient firms with one large inefficient firm.

Whatever has happened in the take-over battle by the time you read this, there is no question that GEC's intentions are right in the UK as well as right for GEC. Britain's share of the world telecomms market has shrunk from a respectable 20 per cent to practically nothing. It's high time that this downward slide be stopped and reversed.

Chips and Jobs

I see that the Policy Studies Institute has a fairly optimistic message about the effect of microelectronics technology on employment. In a recent report, *Chips and jobs: the acceptance of new technology at work*, the Institute admits there have been some cases of big job losses but says there has been little resistance to the introduction of this technology at the workplace.

Trade unions have generally taken a positive attitude, and the impact of microelectronics technology on working life has so far been marginal. But, warns the Institute, the effect of these changes has yet to be felt in many industries.

There's no doubt at all that certain types of jobs have disappeared almost completely—for example, in making mechanical cash registers and electromechanical telephone exchanges. I happen to know of a case of negotiated redundancies in a mechanical engineering factory due, not to the recession, but to the introduction of CNC (computer numerically controlled) machine-tools. But, of course, new jobs have been created in the manufacture and use of the new electronic systems responsible for the changes.

We can expect much controversy over the social and economic consequences of all this, and we won't get a true overall picture for some time. What is important economically is not a simple totting up of jobs lost and jobs gained—which is not much help to the individuals concerned anyway—but the improvement achieved in productivity per worker.

In the post-war era, American workers have generally been more productive than British workers in comparable manufacturing jobs not because they worked harder but because they had more kilowatts of powered tools and machinery per capita raising their output. Now, in both countries, this powered assistance is being supplemented by the "intelligence" of automated systems in production, distribution and related office work. Economic prosperity can obviously be good for the quality of life, though not necessarily so. Whether the total effect of these industrial changes will be beneficial is another matter.

Early Warning Five Years Late

It's sad to see a nation which made such a brilliant success of early warning military radar in the 1939-45 world war now sinking to such a low level of efficiency in this field. In the late 1930s we built a chain of 19 metre-wave radar stations round the coast of Britain all the way from Orkney to the Isle of Wight. This was the famous CH (Chain Home) early warning radar system. It was constructed in complete secrecy, was totally integrated with the RAF's system of fighter aircraft control and was fully operational to meet the attacks of enemy bombers by the start of the war.

In contrast, the current £900 million project for an airborne early warning radar system is a continuing story of delays, technical problems and mounting costs. It is already five years behind schedule. Nobody knows when it will be completed or how much more cash will be needed for further development. £430 million has been mentioned. It might even be scrapped altogether.

I note that this project bears the name of Nimrod, the "mighty hunter" from the Old Testament (Genesis 10, 8)—which would be mightily impressive if he was actually in a position to do some hunting. But it turns out, according to the Bible, that Nimrod was begotten by a character named Cush. So perhaps Cush was the one who first thought up the cussly job as a way of making a living and encouraged his son to just pretend to go out hunting. Also, of course, Nimrod speit backwards becomes Dormin which, as everyone knows, is a tiny, sleepy creature rather like a dormouse.

For the regrettable record, the customer for this radar system is the Ministry of Defence and the contractor is GEC.
Goodbye Berliner

So the sales of pre-recorded tape casettes have now overtaken the sales of long-playing phonograph records. This probably doesn't worry the L.P. record companies because they usually have both and have been expecting it anyway. And they are obviously in compact disc records as well, as these are coming up fast.

The flat disc record invented by Emile Berliner in 1888 has given us all a lot of enjoyment and helped to make a lot of money for the consumer electronics sector of the industry. But its major problem has always been the mechanical friction of the stylus being dragged along in the groove. Tape cassettes avoid a lot of this playback friction and optically scanned CD records eliminate it completely.

The next leap in technology would be to get rid of the mechanical movement altogether. It is already being done in computer memories and speech or music synthesizers, where the recorded information is read out purely electronically. Any firm whose R&D department could do this for Wagner's Ring or even Wham's Wake me up before you go go would be onto a very good thing.

Philological Note

Until I read a recent issue of Siemens Components, the technical house journal of that company, I always thought the longest word I knew was 'antisidestabilisationmentarianism' (28 letters). Not that it crops up more than twice a week in casual conversation. But German electronics has gone one better than English theology with 'abschatzverzögerungsschaltung' (29 letters).

The Germans are famous for their portmanteau words and they have a lot of electronics/communications terms with twenty or more letters. But when it comes to nearly thirty letters, the tight-lipped Britisher accustomed to communicating in monosyllables must feel they have gone a bit too far. For anyone interested, this word describes an electronic device giving delayed switch-off of an electrical circuit.

MAIL ORDER ADVERTISING

British Code of Advertising Practice

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/dispatch, as this may be needed.

Mail Order Protection Scheme

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, PRACTICAL ELECTRONICS will consider you for compensation if the Advertiser should become insolvent or bankrupt:

(1) You have not received the goods nor had your money returned;
(2) You write to the Publisher of PRACTICAL ELECTRONICS summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.

Please do not wait until the last minute to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.

We guarantee to meet claims made in accordance with the above as soon as possible after the Advertiser has been declared bankrupt or insolvent.

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine nor, for example, payment made in response to catalogues etc., received as a result of answering such advertisements. Classified advertisements are excluded.

BACK NUMBERS and BINDERS

Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), Practical Electronics Magazines Ltd., 16 Garway Road, London W2, at £1.40 each including P&P. Please state month and year of issue required.

Binders for PE are available from the same address as back numbers at £5.50 each to UK or overseas addresses, including postage, packing and VAT.
WANTED: Plug-in Teletext Unit. For Sale, £10.00. J. Fulton, Derrynessen, Dromore, Co. Tyrone BT78 3BE.

RS-232 To Centronics Converter

- **Mar 85**
- **Price:** £0.09
- **Code:** 508-01

Power Control Interface

- **Price:** £13.36
- **Code:** 504-01
- **Price:** £16.91
- **Code:** 504-02

Modular Audio Power System

- **April '85**
- **Price:** £16.91
- **Code:** 504-01

Pt: 3- Test Signal Source

- **Power Supply**
- **Price:** £2.92
- **Code:** 505-01

Amstrad Synthesizer Interface

- **Price:** £2.92
- **Code:** 505-02

Rugby Clock Pt:

- **MAY '85**
- **Price:** £2.92
- **Code:** 505-03

Envelope Shaper

- **Price:** £2.92
- **Code:** 505-04

CBM64 Music Keyboard

- **Price:** £2.92
- **Code:** 505-05

Car Boot Alarm

- **Price:** £2.92
- **Code:** 505-06

- **Price:** £2.92
- **Code:** 505-07

Touch control PSU

- **Price:** £2.92
- **Code:** 505-08

Exped. with Robots (double-sided)

- **Price:** £2.92
- **Code:** 505-09

Modulated Synth

- **Price:** £2.92
- **Code:** 505-10

IBM User Port Expander

- **Price:** £2.92
- **Code:** 505-11

Modem Railway Track Control

- **Price:** £2.92
- **Code:** 505-12

Special Price

- **Complete set of boards**
- **Price:** £2.92
- **Code:** 505-13

Model Railway

- **Price:** £2.92
- **Code:** 505-14

Track Control DEC '85

- **Price:** £2.92
- **Code:** 505-15

Exp. with Robots

- **Price:** £2.92
- **Code:** 505-16

Fiberoptic Audio Link

- **Price:** £2.92
- **Code:** 505-17

Burglar Alarm

- **Price:** £2.92
- **Code:** 505-18

Specs:

- **Price:** £2.92
- **Code:** 505-19

Computer Movement Detector

- **Price:** £2.92
- **Code:** 505-20

Clock Timer

- **Price:** £2.92
- **Code:** 505-21

Fibre Optic Audio Link

- **Price:** £2.92
- **Code:** 505-22

Transmitter

- **Price:** £2.92
- **Code:** 505-23

Receiver

- **Price:** £2.92
- **Code:** 505-24

Set of two boards

- **Price:** £2.92
- **Code:** 505-25

Hardware Restart (double-sided)

- **Price:** £2.92
- **Code:** 505-26

PHONE ORDERS USING ACCESS CREDIT CARD: TEL: 0268 710722

FREE! READERS' ADVERTISEMENT SERVICE

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

PE BAZAAR

Pari Model A. T. ELECTRO MAGNETIC ORGAN, Twin Manual Keyboard only. Swap for working V.H.S. Recorder. Tel. 021-380 8773.

New Oric MCP-40 Printer-Plotter (Unwanted Xmas Gift) Sorry Auntie! Also Taylor 132 Multimeter. Sell—Offers. Or Swap. W.H.Y. Mel Saunders, 7 Drumcliff Road, Thunbury Lodge, Leicester LE5 2LH.

WANTED: Plug-in Teletext Unit. For Sale, 50 pounds weight electronic magazines £10.00. J. Fulton, Derrynessen, Dromore, Co. Tyrone BT78 3BE.

**Shugart SS/80T Disc Drive Suitable BBC-B. Cased. Upgrading, £60.00 + £3.50 registered postage. P. G. Haidroyd, 3 Estelle Way, Wymondham, Norfolk NR18 0ES. Tel: (0953) 604148.

Telequipp D43 Dual Beam Oscilloscope with Manual £75, M. A. Campbell, 81 Larch Acombe, Bishopbriggs, Glasgow G61 1TB. Tel: 041-772 5280.

74TTL EX-EQP (Socketted) 15 Various for £2. Also some complete boards (Offers). B.V. Taylor, 189 Hewes Side Lane, Blackpool FY4 4AJ. Tel: 0253 695778.

Wanted: Spectrum Penpal Clubs willing to exchange ideas. Sandeep Kapli, 7C-23 Sangraeta Apts., Bombay 400 054, India.

Taylor 132 Multimeter, Tamron 80-120m, 35-70m lenses. Sell/Swap. Wanted—Computer, Plotter, D.V.M., PSVs, etc. Mel Saunders, 7 Drumcliff Road, Thunbury Lodge, Leicester LE5 2LH.

AVO 8 MK III £50. LF2M 1Hz-1MHz A-F OSC Generator £50. Hearing Aids £20. Polaoid Close-up Lens £5 L. J. Snow, 10 Goodings Green, Wokingham, Berks RG11 1SB. Tel: 0734 790899.
BI-PAK Bargains

VALUE PACKS

<table>
<thead>
<tr>
<th>Pak</th>
<th>No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP9</td>
<td>500</td>
<td>Ceramic Resistors Mixed Types</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>500</td>
<td>Carbon Resistors 10-100k Pre-formed</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>500</td>
<td>Carbon Resistors Mixed</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>100</td>
<td>1/2 Watt Resistors Mixed</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>100</td>
<td>Assorted Resistors Kit Tubes</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>700</td>
<td>2mm Cermic, Wirewound – Mixed</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>700</td>
<td>Mixed Resistors Disc: 1K-9K</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>700</td>
<td>1/2 Watt Resistors Mixed</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>100</td>
<td>Assorted Precision/High Value Crt</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>25</td>
<td>10/50mm 25 Value Metal Mem</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>50</td>
<td>25/50mm 25 Value Metal Met</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>100</td>
<td>Assorted Wires, Mixed Wires, kit</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>50</td>
<td>Mixed PVC, Mixed Wires, Mixed Wires</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>40</td>
<td>Mixed PVC, Mixed Wires, Mixed Wires</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>6</td>
<td>5X1000W Wirewound Resistor</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>151</td>
<td>30V 50W Wirewound Resistor</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>150</td>
<td>30V 50W Wirewound Resistor</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>59</td>
<td>120V 100W Wirewound Resistor</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>56</td>
<td>120V 100W Wirewound Resistor</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>55</td>
<td>120V 100W Wirewound Resistor</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>55</td>
<td>120V 100W Wirewound Resistor</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>138</td>
<td>Assorted Resistor Combination</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>137</td>
<td>Assorted Resistor Combination</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>130</td>
<td>Assorted Resistor Combination</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>172</td>
<td>Assorted Resistor Combination</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>172</td>
<td>Assorted Resistor Combination</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>171</td>
<td>Assorted Resistor Combination</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

BI-PAK BARGAINS

DO NOT MISS A VITAL COPY!

Ever been in the middle of a project only to find the next issue sold out? An annual subscription to PRACTICAL ELECTRONICS solves the problem.

SUBSCRIPTION RATES

U.K. | £14.00
Overseas | £16.00

COMPLETE AND POST THIS ORDER FORM TODAY!

Annual Subscription Rates
U.K. | £14.00
Overseas | £16.00

Students: deduct £1 and quote Student Number.

PRACTICAL ELECTRONICS

Annual Subscription Rates
U.K. | £14.00
Overseas | £16.00

Students: deduct £1 and quote Student Number.

POST COPIES TO

NAME

ADDRESS

POST CODE

I enclose my cheque/P.O payable to Practical Electronics Magazines Ltd. for

Charge my credit card (A/C at quoted rate

Texas Note: Subscriptions cannot be ordered by phone

Card Valid from

Signature

TECASBOTY '86

THE ELECTRONIC COMPONENTS AND SEMICONDUCTOR PRICE CATALOGUE OF THE YEAR FOR 1986

A parcel of Components and Semiconductors for the hedged, tighter and fewer than ever before. Unobtainable value and Bi-Pak's money back guarantee if not completely satisfied. You get, in every parcel, a selection of the following: Resistors, Carbon and Wirewound and Insulated Resistors. Capacitors, at types, volts, and sizes, including Electrolytics, Polystyrenes, Single and Dual, Discs and Tantalum, Switches, Transistors, Knobby Heatblocks, Wire, PCB Board, Plastics, etc. Plus a selection of Semiconductors for every day use in popular Hobby Projects, including Transistors, Diodes, SGF's, mosfets, Zeners and I.C.'s. In all, we estimate the value of this parcel, bought in current retail catalogues, to be well over £20. So help yourself to a great 1986 component surprise and order a box today. Only at Bi-Pak.

BIFI-BAGS

Send your orders to Dept PE BI-PAK PB BOX 6&8 WARE, HERTS.

TERMS PAYABLE WITH ORDER, SAME DAY DEPART, ACCESS.

BACIL/ACARD/ACCESS ACCEPTED. TEL 0763 48981. GRD 335 7066 ADD 15% VAT AND £1.00 PER ORDER POSTAGE AND PACKING.

TECASBOTY '86

THE ELECTRONIC COMPONENTS AND SEMICONDUCTOR PRICE CATALOGUE OF THE YEAR FOR 1986

A parcel of Components and Semiconductors for the hedged, tighter and fewer than ever before. Unobtainable value and Bi-Pak's money back guarantee if not completely satisfied. You get, in every parcel, a selection of the following: Resistors, Carbon and Wirewound and Insulated Resistors. Capacitors, at types, volts, and sizes, including Electrolytics, Polystyrenes, Single and Dual, Discs and Tantalum, Switches, Transistors, Knobby Heatblocks, Wire, PCB Board, Plastics, etc. Plus a selection of Semiconductors for every day use in popular Hobby Projects, including Transistors, Diodes, SGF's, mosfets, Zeners and I.C.'s. In all, we estimate the value of this parcel, bought in current retail catalogues, to be well over £20. So help yourself to a great 1986 component surprise and order a box today. Only at Bi-Pak.

BIFI-BAGS

Send your orders to Dept PE BI-PAK PB BOX 6&8 WARE, HERTS.

TERMS PAYABLE WITH ORDER, SAME DAY DEPART, ACCEESS.

BACIL/ACARD/ACCESS ACCEPTED. TEL 0763 48981. GRD 335 7066 ADD 15% VAT AND £1.00 PER ORDER POSTAGE AND PACKING.

BI-PAK PCB ETCHANT & DRILL KIT

Complete PCB Kit Comprising:

1 UV Mix Drill, 2 Tardis Blk
1 Sheet PCB Transfer, 1 Clear Resist Pen
5 Bi-Pak Formic Crystal Chrls
6 Sheets Copper Clad Board-Paper Glass & Double sided

Full instructions for making your own PCB Boards.

OUR SPECIAL PRICE £15.00 ONLY

Order No. VP81
Given the vast range of power amplifiers currently available in kit or modular form it is surprising to note the relative scarcity of suitable high quality preamplifiers with which they may be used. This neat design fulfills the need.

A "Midi" is a "Musical Instruments Digital Interface", using computer control. Any number of instruments can be connected together, with either a pre-selected instrument as the system controller, or a sequencer. Any home computer can act as the sequencer, giving unique control. You can be the first electronic one-man band!

A simple, but very useful "tool" for checking out sockets and locating blown fuses. A three lamp arrangement makes it possible not only to indicate whether power is on or off, but also to check "live", "neutral" and "earth" wiring to sockets.
FULL-TIME TRAINING COURSES

2 YEAR
B-TEC National Diploma (OND) ELECTRONICS & COMMUNICATIONS ENGINEERING
(Reception & Computing)
15 MONTHS
B-TEC National Certificate (ONC) ELECTRONIC EQUIPMENT SERVICING
(Reception & Sales)
15 MONTHS
B-TEC National Certificate (ONC) COMPUTING TECHNOLOGY
9 MONTHS
B-TEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY & ROBOTICS
HIGH PERCENTAGE OF COLLEGE BASED PRACTICAL WORK
SHORT COURSES WITH PREVIOUS KNOWLEDGE
NO EXTRA FEES FOR OVERSEAS STUDENTS

Prospectus from:
LONDON ELECTRONICS COLLEGE
Dept: AA, 20 Penywern Road, London SW5 9SU. Tel: 01-373 8721.

FOR SALE

PROMS – EPROMS – PALs
EPROMS from £3.25 (17127/272/275 etc.
EPROMS from £1.50 (11276/256/512 etc.
PALs from £4.25 (12109/1510/1710L etc.
Full Programming Service available
SAE for full price list incl. RAMs etc
Any IC supplied – if it exists we will find it
P&L, 16 Wordsworth Drive, Chesham, Surrey SM2 8HF. Phone 01-644 8095 (usually manned 0800-2000 hrs)
Private and professional enquirers welcome.

WANTED

PAL EPROM PPA 8I PROGRAMMING SERVICE. Anything from
circuit diagram through logic equations to fuse plots accepted to
produce programmed devices. Send for details. Tel 0438
727-34 for sample pricing. KORTABIN LIMITED, 57 Hard-
wick Road, Tighfar, Reading, Berks, RG3 4LF

COMPUTERS

CLEARING LABORATORY, scopers, generators, P.S.U.'s, bridges,
oscilloscopes, meters, recorders etc. Tel. 0453-78236.

ORACLE-CHEFAX remote controlled personally guaranteed, as
new, instructions. £195. 0533/00086 evenings.

HEATHKIT UK SPARES AND SERVICE CENTRE, Electron-
cos, Unit 12, Station Drive, Bridgen, Tewkesbury, Glos. Tel.
(0666) 73127

FREE MEMBERSHIP to new national electronics club. For details
and a free gift of components worth over £10 send only £1 P&P
to NCC, Woodside, Dowsett Lane, Ramsden Heath, Essex
CM11 1YL

MISCELLANEOUS

SUPERB INSTRUMENT CASES by Bazell, manufactured from
PVC. Fixed steel. 15% range, competitive prices start at a
low £1.50. Punching facilities at very competitive prices.
BAZELL, (Dept. 23), St. Wilfrids, Foundry Lane, Halton,
Lancashire L12 8JT.

BURLINGTON ALARM EQUIPMENT. Roy Bradford (0274) 309290
for our catalogue or call at our large showroom, opposite
Odeb Stadium.

THE SCIENTIFIC WIRE COMPANY
111 Forest Road, London E71 Telephone 01-633 1448
ENAMELLED COPPER WIRE

<table>
<thead>
<tr>
<th>SWG</th>
<th>18b</th>
<th>16b</th>
<th>14b</th>
<th>12b</th>
<th>10b</th>
</tr>
</thead>
<tbody>
<tr>
<td>16b</td>
<td>3.07</td>
<td>2.9</td>
<td>2.87</td>
<td>2.70</td>
<td>2.55</td>
</tr>
<tr>
<td>14b</td>
<td>3.75</td>
<td>3.55</td>
<td>3.35</td>
<td>3.15</td>
<td>2.95</td>
</tr>
<tr>
<td>12b</td>
<td>4.40</td>
<td>4.10</td>
<td>3.90</td>
<td>3.60</td>
<td>3.35</td>
</tr>
<tr>
<td>10b</td>
<td>4.85</td>
<td>4.65</td>
<td>4.40</td>
<td>4.15</td>
<td>3.95</td>
</tr>
</tbody>
</table>

SILVER PLATED COPPER WIRE

<table>
<thead>
<tr>
<th>SWG</th>
<th>14 to 10b</th>
<th>16 to 12b</th>
<th>18 to 6b</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 to 10b</td>
<td>3.15</td>
<td>2.95</td>
<td>2.83</td>
</tr>
<tr>
<td>16 to 12b</td>
<td>3.75</td>
<td>3.55</td>
<td>3.45</td>
</tr>
<tr>
<td>18 to 6b</td>
<td>4.40</td>
<td>4.10</td>
<td>3.90</td>
</tr>
</tbody>
</table>

Soldering fluxes, 50p.

FREE MEMPERSHIP to new national electronics club. For details
and a free gift of components worth over £10 send only £1 P&P
to NCC, Woodside, Dowsett Lane, Ramsden Heath, Essex
CM11 1YL

MISCELLANEOUS – CONT.

FREE MEMBERSHIP to new national electronics club. For details
and a free gift of components worth over £10 send only £1 P&P
to NCC, Woodside, Dowsett Lane, Ramsden Heath, Essex
CM11 1YL

TECHNICAL SALES REPRESENTATIVE

Our Company, which is a subsidiary of an American based Parent Company, is expanding its production/sales operation in the field of thyristors, diodes and other ceramic enclosed packages for the electronics industry.

As a result we require an experienced technical sales person with knowledge of diode application and scope to provide liaison between customer and the manufacturing and distribution process.

Interviews are to be held in Wrexham during January/February 1986 with an anticipated commencement date of March/April 1986.

Salary, transport and conditions of employment to be negotiated.

Applications giving details of age, qualifications and experience in the first instance to:

Mr. E. Thomas
Commercial Manager
Interceram Manufacturing Limited
Unit 17
Whitegate Industrial Estate
Wrexham
Clwyd
LL13 8UG

CABINET FITTINGS

Fretcloths, Coverings, Handles, Castors, Flight Case Locks & Parts, Jacks, XLRs, Burglers, Window Trays & Fixings. ASS Glass럭isire Horns. CELESTION POWER Speakers

ADAM HALL SUPPLIES LTD.
Unit G, Carlton Court, Grange Road, Southendon-Sea.

You can depend on

for your supplies of world famous QUALITY COMPONENTS by

and other leading names

SIEMENS

52 PAGE FREE CATALOGUE, write, phone or call
• Priced & illustrated
• Over 8000 items
• Real discounts
• Prompt dispatch

ELECTROVALUE LTD 28 St. Jude’s Road, Enfield Green, Enfield, Middlesex (01) 3304666 Telefaxes: 01-351 1644

BRITAINS FOREMOST QUALITY COMPONENT SUPPLIERS

PRACTICAL ELECTRONICS March 1986
VQ POWER AMPLIFIER MODULES

- **Power Output:**
 - 10 watts R.M.S. into 4 ohms, Frequency Response 10Hz-10kHz, 99% efficiency.
 - 25 watts R.M.S. into 8 ohms, Frequency Response 10Hz-10kHz, 98% efficiency.
 - 100 watts R.M.S. into 4 ohms, Frequency Response 10Hz-10kHz, 97% efficiency.

- **Price:** £19.99 + £4.50 P&P per pair.

OEM POWER AMPLIFIER MODULES

- **Output Power:** 100 watts R.M.S. into 8 ohms, Frequency Response 10Hz-10kHz, 96% efficiency.

- **Price:** £36.99 + 40p P&P per pair.

BURGLAR ALARM

- **Features:**
 - Strobe Light
 - sirens
 - remote controls
 - etc.

- **Price:** £39.99 + £4.00 P&P per pair.

OEM LINNEN LOUDSPEAKERS

- **Features:**
 - 200 Watts R.M.S. into 4 ohms, Frequency Response 10Hz-20kHz, 90% efficiency.
 - 800 Watts R.M.S. into 8 ohms, Frequency Response 10Hz-20kHz, 80% efficiency.

- **Price:** £109.99 + £4.00 P&P per pair.

19” STEREO RACK AMPS

- **Features:**
 - 1000 watts R.M.S. into 4 ohms, Frequency Response 10Hz-20kHz, 95% efficiency.

- **Price:** £229.99 + £4.50 P&P per pair.

PIEZO ELECTRIC TWEETERS

- **Features:**
 - Miniature size.

- **Price:** £4.99 + 40p P&P per pair.

STEREO DISCO MIRROR

- **Features:**
 - 2 x 5 x 4 ft.

- **Price:** £25.99 + 40p P&P per pair.

BRITISH ELECTRONICS

- **Unit:** Unit 5, Comet Way, Southend-on-Sea, Essex, SS2 6FB.

- **Tel:** 0702 527 5722.
Lowest possible prices?
Top quality components?
Fast reliable service?
Large range?

Pick up a copy of our new 1986 catalogue from any branch of W.H. Smith for just £1.45.
Or post this coupon now, to receive your copy by post for just £1.45 + 40p p& p. If you live outside the U.K. send £2.50 or 11 International Reply Coupons. I enclose £1.85.

Name
Address

MAPLIN ELECTRONIC SUPPLIES LTD.
Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8LR.
Telephone: Southend (0702) 552011
SHOPS:
• BIRMINGHAM Lynton Square, Perry Barr, Tel: 021-356 7292.
• LONDON 159-161 King Street, Hammersmith, W6.
 Telephone: 01-748 0928.
• MANCHESTER 8 Oxford Road, Tel: 061-236 0281.
• SOUTHAMPTON 46-48 Bovis Valley Road, Tel: 0703 225831.
• SOUTHEND 262-264 London Rd, Westcliff-on-Sea, Essex.
 Telephone: 0702-554000
Shops closed all day Monday.