SECURITY CONTROLLER

MIDI EXPANDER

TEACHER POWER

DC MOTOR INTERFACE

DESIGN — THEORY OF SEMICONDUCTOR PRINCIPLES

COMPUTING — ROBOTICS APPLIED RESOURCEFULLY

TECHNOLOGY — LASERS AND FIBRE OPTICS

PLUS:
★ SPACEWATCH
★ LEADING EDGE
★ INDUSTRY NEWS
★ LOGIC PUZZLE
★ MARKET PLACE
★ PROJECTS GUIDE

EXPERIMENTAL ELECTRONICS
EXCITING DESIGN IDEAS AND PRACTICAL APPLICATIONS

THE SCIENCE MAGAZINE
FOR SERIOUS ELECTRONICS AND COMPUTER ENTHUSIASTS
KAYCOMP 68000

MICROPROCESSOR

TRAINER

AND SINGLE BOARD COMPUTER

USED

BY SCHOOLS COLLEGES & UNIVERSITIES

- Full 8MHz 68000 Processor with 16 bit data bus.
- Top-class monitor program included on two 27128 Eproms.
- Communicates via RS232 interface to terminal, BBC computer, P.C. computer etc.
- Use as a Trainer, or as a stand-alone computer system.
- Fast, powerful processing – ideal for real time control systems.

LOWCOST

KIT PRICE

£110 INC VAT

PERFECT FOR ROBOTICS APPLICATIONS REQUIRING POWER AND SPEED

- Dual U.A.R.T. allows simultaneous connection of printer and terminal.
- Add-on options include: 664 Bus, 68230 P.I.T. 8k and 32K Ram upgrades, and line by line assembler.
- Available from stock now – with support manual and full technical back up.

STANDARD SYSTEM IN KIT FORM £110.00
STANDARD SYSTEM BUILT & TESTED £169.00
LINE BY LINE ASSEMBLER PROGRAM (IN EPROM) £ 27.00
POWER SUPPLY £ 11.99

68230 P.I.T. ADD ON OPTION £ 11.97
664 BUS ADD-ON £ 5.49
8K x 16 RAM UPGRADE £ 9.24
32K 15 RAM UPGRADE £ 28.00

OTHER OPTIONS, DATA PACKS, AND LITERATURE AVAILABLE – SEND FOR DETAILS.

SOLE SUPPLIER – MAGENTA ELECTRONICS – UK & WORLDWIDE

PE PROJECT KITS

KIT INCLUDES CASES & PCB UNLESS STATED.

COMPUTER D.C. MOTOR CONTROL AS FEATURED IN THIS ISSUE £24.49
PCB also available separately £5.37
BBC SOFTWARE CASSETTE £4.99

CATALOGUE £1.00
This ad shows just a fraction of our wide range of Kits, Tools, Components, Books etc. Our illustrated catalogue is a must for all electronics enthusiasts. FREE TO SCHOOLS ETC. WHEN ORDERED ON LETTERHEAD

LOGIC PROBE Feb 86 £16.15
COMPUTER MOVEMENT DETECTOR Feb 86 £17.43
SPECTRUM SPEECH SYNTH & 8 BIT I/O PORT Feb 86 £32.22
COMMUNICATE USER PORT EXAMINER Jun 86 £11.98
TOUCH CONTROL PSU Oct 86 £22.24
MODULATED SYNTHORET UNIV Oct 86 £28.24
ROSE TO GENTRONICS CONVERTER Nov 86 £49.44
CAR DOOR ALARM Sept 86 £12.89
COMPUTER ENVELOPE SHAPER Aug 86 £24.39
VOLTOMETER MEMORY ADAPTOR July 86 £31.99
STYLUS KEYBOARD FOR COMM Jun 86 £16.50
SYNThERES INTERFACE FOR COMM Jun 86 £17.26
FACE-TO-FACE CONVERTER Sept 86 £39.98
PASSIVE INFRARED DETECTOR July 86 £28.46
OPTICAL REVERSE UNIT July 86 £41.15
PASSIVE INFRARED DETECTOR L.D. June 86 £55.98
MICROPROCESSOR INTERFACE FOR DVM Jun 86 £31.46
OFF-TO-ON CHANGER May 86 £20.25
TEMPERATURE/ANALOGUE INTERFACE Apr 86 £29.85
THREE-AXIS CHECKER May 86 £11.98
SOUND ACTIVATED SWITCH Apr 86 £41.55
SCRATCH & RUMBLE FILTER (1stage) Apr 86 £19.89
PHOTOGRAPHIC TRIGGER UNIT Apr 86 £35.68
PHOTOGRAPHIC TRIGGER UNIT Apr 86 £35.68
TEMPERATURE/ANALOGUE INTERFACE Apr 86 £43.87
SPECTRUM HARDWARE RESTART (loaded) May 86 £29.49
AMPLIFIED/O OCT May 86 £28.53
FIBEROPTIC AUDIO LINK May 86 £27.66
FIBER OPTIC CABLE £0.50/metre

MAGENTA ELECTRONICS LTD
135 Hunter Street PE51,
Burton on Trent
Staffs DE14 2ST.
0283 65435

Prices include VAT add £1.00 p&p to all orders. Official orders welcome.

SHOP NOW OPEN
Callers welcome 9-5 MON-FRI
Access/Visa Phone or Post.
24 hour answerphone.
CONSTRUCTIONAL PROJECTS

INTRUDER ALARM CONTROLLERS PART ONE by Bill Kent 12
Alarming procedures need taking to deter thieves and vandals. Bill Kent discusses some practicalities.

MIDI EXPANDER by Robert Penfold 24
Musical profusion through patched up tuning – or how to become a solo band without really trying.

TEACHER POWER by Tim Pike ... 35
Another feature for G.C.S.E. students in which power supplies are examined and a working example described.

COMPUTER D.C. MOTOR CONTROLLER by Mark Stuart 43
Programmed model mobilisation is readily achieved with this micro to motor interface.

SPECIAL FEATURES

SEMICONDUCTORS PART ONE by Andrew Armstrong 17
The first of a series of articles demystifying the business of choosing and using semiconductors.

OPTIC FIBRES, LASERS AND COMMUNICATIONS by Barry Fox ... 27
The digitised harnessing of light increases the speed and reliability of communications, despite an odd joker in the fibre pack.

PROGRAMMABLE LOGIC DEVICES PART TWO by Chris Kelly 49
PLDs turn design dreams into speedy hardware reality, especially when PALs, FPGAs are programmed.

CLASSROOM ROBOTICS by Lawrence Hamburg 54
Practical control of robots teaches analysis techniques and instils an understanding of the disciplines needed for the adult world.

REGULAR FEATURES

EDITORIAL – Security ... 9
LEADING EDGE by Barry Fox – The quality of Dallas 8
SPACEWATCH by Dr. Patrick Moore OBE – A true double quasar? 46
INDUSTRY NOTEBOOK by Tom Iball – Five billion customers 57
MARKETPLACE – what’s new, where and when 4
PCB SERVICE – professional PCBs for PE Projects 60
TRACK CENTRE – the PCB track layout pages 32
CHIPCHOP – a technical logic research analyser 41
BAZAAR – Readers’ FREE advertising service 56
ADVERTISERS’ INDEX ... 62

NEXT MONTH . . .

RADIO RECEIVER – ANOTHER GCSE PROJECT IDEA • MULTIZONE BURGLAR ALARM • RS232C TO MIDI CONVERTER • SEMICONDUCTOR TECHNOLOGY • CODED LOCK TECHNIQUES • APPLIANCE TIMER • TELEPHONES ANCIENT AND MODERN • SOLAR CELLS •
AND in addition to our top line regular features, exciting experimental ideas, plus all the latest product information from our advertisers.

THERE IS ALSO A HIGHLY INFORMATIVE, COLOURFUL DATA CARD
DON’T MISS YOUR COPY OF THE PE DECEMBER 1987 ISSUE
ON SALE FROM FRIDAY NOVEMBER 6TH

THE SCIENCE MAGAZINE FOR SERIOUS ELECTRONICS ENTHUSIASTS
We have recently received the following catalogues and literature:

Bulgin. 272 pages of electrical and electromechanical components are featured in the comprehensive new catalogue for design engineers and buyers. Marketing Dept., AF Bulgin & Co PLC, Bypass Road, Barking, Essex, IG11 0AZ. 01 594 5588.

Electromail. Full catalogue of the entire range available from the hobbyist relative of RS Components. Electromail, PO Box 33, Birchington, Corby, Northants, NN17 9EL. 0536 20455.

Feedback Instruments’ new 12 page colour catalogue features the product supplied by their recently formed test and measurement division. Feedback Instruments, Park Road, Crowborough, East Sussex, TN6 2QR. 08926 3322.

IEEIE. Compendium of Active Devices — a technical monograph containing concise definitions of the terminology and acronyms used in semiconductor technologies. £4.95 each incl. p&p from Institution of Electrical and Electronics Incorporated Engineers. IEEIE, Savoy Hill House, Savoy Hill, London, WC2R 0BS. 01-636 3357.

Heinemann Professional and Technical Publishing. Complete 1987 catalogue of new and current books, including electrical and electronic engineering. Same address as Made Simple books.

Made Simple Books. Complete 1987-1988 catalogue of books for many subjects, including electronics and computing. William Heinemann Ltd., Dept MS-87, Freepost 10, London W1E 7YZ.

Maplin 1987 buyer’s guide to electronic components. Nearly 500 pages of electronic components, equipment, data and books. £1.50 from booksellers or £1.50 + 40 p&p from Maplin Electronic Supplies Ltd., PO Box 3, Rayleigh, Essex, SS6 8LR. 0702 554161.

STC Mercator. 335 page catalogue of components, soldering equipment and speech systems, with specifications and technical diagrams for designers. STC Mercator, South Denes, Great Yarmouth, Norwich, NR30 3BR. 0493 844911.

WHAT’S NEW

Slim Time

No strenuous exercises to set time into shape with the new ECT-1 timer from Cobonic. Chronology and technology have been neatly combined into this slim time piece that incorporates a true stop-watch function, a clock, a countdown and countup timer, and an alarm. Measuring just 6.4 x 6 x 1.2 cm, the timer can be slipped into a pocket, set upright on its integral stand, clipped to a pad, or magnetically attached to a suitable surface. The liquid crystal display shows hours, minutes and flashing seconds. Normal clock display is independent of the stopwatch and timer circuits, with a switch to select between the two. Once the timer has been started, it can continue uninterrupted even when the clock display is selected.

The countdown timer can be set for any period between 1 second and 23 hours 59 mins 59 secs, with an alarm sounding at the end of the timed period. Since the alarm duration is limited to 30 seconds, battery power consumption is minimised. The last time interval used remains automatically in the memory so identical time settings can be repeated without resetting the values already used. Another nice touch is the overtime display in the countdown mode, showing how much time has elapsed since the end of the preset period.

In the countup mode, start, stop and reset buttons allow the timer to be used as a stopwatch. The countup can be halted and restarted at any time without resetting to zero.

The normal list price is £17.50 plus VAT, but Cobonic (a Spirig company) are offering a special three months introductory 20% discount, bringing the price down to £14.00.

For further information contact: Cobonic Ltd, 32 Ludlow Road, Guildford, Surrey, GU2 5NW. Tel: 0483 505260.

Taping Royalty

A home taping royalty of 10% will be added to the price of blank audio tapes, as part of a new copyright law, the United Kingdom government announced recently. The proceeds of the royalty will be distributed to the performers, composers and producers of sound recordings. The new legislation will be introduced during the 1987-88 session of Parliament.

Commenting on the move, Ian Thomas, IFPI’s Director General said: “As the international organisation of the recording industry, IFPI welcomes the British government’s firm commitment to copyright reform and in particular its proposal to deal with the home taping problem. Although a royalty does not represent a totally satisfactory solution to the problem of private copying, such a move will bring the United Kingdom into line with the majority of its EEC partners. Three member states (France, Germany, Portugal) already have such a royalty while bills have been introduced in the Parliaments of Spain, Belgium and Italy, and the Dutch government has announced its intention to provide a private copying royalty.”

IFPI, The International Federation of Phonogram and Video Producers, are at 54 Regent Street, London W1R 5PJ. Tel: 01-434-3521.
Low-Cost PCB System

MEGA Electronics have announced the introduction of a comprehensive but low-cost system for the prototyping of printed circuit boards. This system, the SENO Workstation, is the SENO Workstation contains every essential element for PCB prototyping. It includes artwork materials for PCB design and circuit layout; PCB laminate materials; cleaning block; spraywash facilities, which obviate the need for mains water; an environmentally-safe board etching system, and chemicals which are contained in unique, simple to use disposable applicators. Moreover, the chemicals are themselves non-hazardous and non-toxic, and do not require special disposal procedures or precautions. The applicators have been especially developed to simplify the use of these chemicals and to remove problems associated with their disposal.

Mega Electronics Ltd. is a principal manufacturer and distributor of equipment and materials used in the design and production of printed circuit boards, signs and labels.

For further information contact: MEGA Electronics Ltd., 9 Radwinter Road, Saffron Walden, Essex, CB11 3HU. Tel: 0799 21918.

Maplin Market Heath Kit

Flat pack racks

Eminence Audio Ltd have recently put onto the market a range of good quality self-assembly 19in rack mounting equipment cases and cabinets, known as Rackz. These are sold as flat pack kits.

The equipment cases have a black anodised 3mm aluminium front panel, with the rest of the case constructed from 7mm and 9mm 'Stelvetite' PCV-coated steel, with front panel handles and rubber foot supports. Equipment cases are available in 44mm, 88mm, 132mm and 444mm, 888mm, 1322mm and 1888mm, 3444mm, 4444mm, and 5555mm, 6666mm, and 8888mm, respectively.

For more information contact: Eminence Audio Ltd, Combe House, Stoke St. Michael, Bath, Somerset BA3 5HN. Tel: (0749) 840002.

Binatone’s White Knight

BINATONE International Limited, the UK’s largest privately owned consumer electronics company, is introducing a new white-fronted version of their hugely successful midi system – the Midi 40.

The new Midi 40 has all the features offered on the original design, including: 5 band graphic equaliser, 3 band MW/LW/VHF/ FM stereo tuner, 20 watts Total Peak Music Power, stereo headphone and stereo mic sockets, matching full range speakers, compatibility to CD units.

Binatone firmly believe that the new white-fronted Midi 40 will pioneer this new fashion-styling direction. The retail price is around £129. 99.

Contact: Sue Morris, Morris Media, London House, 26-40 Kensington High St, London W8. Tel: 01-938 2222.

Maplin Market Heath Kit

The SENO Workstation is based on the Heathkit Hi-Fi and Hoby kits. These include an Audio Amp Starter Kit SK-104, a 1-watt Audio Amplifier at only £14.95. A Pseudo-Stereo Starter Kit SK-107 is designed to convert a mono input into a video into two different channels for synthesis stereo. £16.95.

The Heathkit range of educational courses and products are well established and are available on a wide range of computing and electronic subjects.

Contact: Maplin Electronics Supplies Ltd, P.O. Box 3, Rayleigh, Essex, SS6 8LR. Tel: 0702 552911.

Broader Crotchet Scope

TWO precision ancilliary amplifiers, the Crotchet Waugh UA1 and 1A1, extend an oscilloscope’s voltage range from as low as 100uV up to 1.5kV.

Now available from Electronic and Computer Workshop (ECW), the UA1 is a micro pre-amplifier that has a wide bandwidth from d.c. to 2MHz and allows oscilloscope users to extend the switched sensitivity down the the microvolt level. This is a very useful accessory for working with sensor outputs and other low-level analogue signals. Supplied with batteries, the UA1 is offered by ECW at a price of £179. 40.

The amplifier can be used with virtually any type of oscilloscope requiring extension of the input voltage range.

Contact: Electronic and Computer Workshop Ltd, 171 Broomfield Road, Chelmsford, Essex, CM1 1RY. Tel: 0245 262149.

Amstrad Programmable Interface

THE PC-14 programmable interface card for the Amstrad PC 1512, IBM PC or other compatible personal computers provides up to 48 input or output TTL lines and three independent 16-bit counter/timers on a single card. Applications include use as a plotter, printer or other hbd/ribbon interface, to provide programmable delays as a real time clock, to count events or to control machine tools.

Each 0 or 4 bit digital port may be configured as input or output under software control and operate bi-directional, unidirectional or to provide interrupt or handshake signals. The three independent counter/timers may be programmed as event counters, single shot pulse counters, rate generators or as hardware or software triggered strobes.

The PC-14, priced at £54, is one of 38 economically-priced industrial boards available on same day dispatch from Amplicon Liveline Limited who may be telephoned free on 0800 525 335.
Synthesised Fluke Gen

FLUKE announces the introduction of the 6062A Synthesised Signal Generator, with extended frequency generation capabilities from 0.1MHz right up to 2.1GHz. In addition, the 6062A incorporates a high-performance pulse modulator which uses gallium arsenide switch technology to achieve rise/fall times of 15nS and on/off ratios of 80dB. The 606A is designed for L-band testing applications in avionics, communications and navigation.

Specific applications include secondary surveillance radar, IFF, Microwave links, Global positioning systems and satellite communications. The 6062A brings extended frequency to Fluke's family of high performance, low-cost signal generators and complements the performance of their general purpose 6060B and the low noise 6061A models, both of which operate to 1.05GHz. The 6062A's output level is adjustable over the range of +16 to -137dBm to 1.050MHz, with extended frequency to 2100MHz. Absolute accuracy is ±1.5dB. Amplitude can be displayed in volts, dBm, dB, µV, or relative to any specified reference.

It also increases the modulation capabilities of the 6060 line with FM deviations to 400kHz, and added phase modulation. The pulse modulation on the 6062A has the high on/off ratio (80dB minimum) that is needed for radar simulation. Fast rise and fall times permit quality pulses of less than 50nS duration. The low noise capabilities of the 6061A are incorporated in the new 6062A. Residual FM is guaranteed to be less than 6Hz (0.3 to 3kHz) in the frequency range of 245 to 512MHz (typically less than 4Hz rms). Non-harmonic spurious products are less than -60dBc to 1050MHz, -54dBc to 2100MHz, with -123dBc typical SB phase noise 20kHz offset from a 500MHz carrier frequency. Other standard features on the 6062A include: AM, FM and phase modulation, AC/DC-coupled AM, full talk-listen IEEE 488 interface, 400kHz FM deviation on 1050 to 2100MHz range, relative frequency and amplitude modes, "Step" programmings and "Bright-Edit" editing, 50 location non-volatile memory, 25 watt reverse power protection, sub-harmonic external reference, low microphones due to robust construction, self-diagnostics.

Contact: Fluke (GB) Ltd., Colonial Way, Watford, Herts, WD2 4TT. Tel: 0923 4051.

Desolder Pumps

OK Industries now have a range of desolder pumps which they claim are suited all applications and competitively priced at between £3.75 and £25.32. Model DP-1 offers full industrial performance and self cleans on each stroke. Its anti-static variant, the DP-2, is conductive through the full length of the tool making it suitable for removing sensitive CMOS components. DP-3 is a low cost static-free unit manufactured in accordance with UK and MIL standards to satisfy MIL-STD-881705 2nd barrier stated requirements. Designed for high precision work and engineered to provide precise, repeatable operation, DP-4 has corrosion-resistant parts. Its anti-static variant is the DP-5.

The SA6-VDE is a VDE approved electric desoldering iron combining the ease and portability of a hand-held pump with the performance of an industrial desoldering station. It is available for mains or 24V operation.

Contact: OK Industries UK Ltd., Barton Farm Industrial Estate, Chichenhall Lane, Eastleigh, Hants, SO5 5RX. Tel: 0703 619841.

Astec SMPSU

GREENWELD Electronics have produced a very neat switched mode power supply on a pcb just 99mm square. Called the Astec AA7271, it will accept inputs up to 24V dc, and give a stable 5V dc output at up to 2 amps. The six transistor circuit provides current overload protection, thermal cutout, and excellent filtering. It is offered at the remarkably low price of just £5.00 including VAT and postage.

Contact: Greenweld Electronics Company, 443 Millbrook Road, Southampton, SO1 0HX. Tel: 0703 772501.

CHIP COUNT!

This month's list of new component details received — mainly chips, but other items may be included.

HA11505. Two channel, wide frequency band (100MHz) video amplifier-multiplexer simplifying video signal mixing (HT).

HD6314. Intelligent peripheral controller that dramatically increases a system's efficiency. Includes a 10-bit A-D converter, 1K of SRAM and a Watchdog timer. (HT).

LM1071L. Compact LCD display module using a new construction system for greater efficiency (45%) of the total external PCB area (HT).

MC3361. Signal processor for improved performance from cordless telephones and mobile radios up to 60MHz (ML).

NE5050. Power line modem capable of listening to the line to detect broadcasts from remote transmitters and also to verify its own transmissions (ML).

SAA3009 & SAA3049. Decoders for infrared remote control systems (ML).

SCC53484. Advanced CRT controller for graphics and characters with maximum resolution of 4096 × 4096 pixels in monochrome (ML).

TC11000 J10. One megabit DRAM for surface mounting (TS).

Manufacturers, and contact telephone numbers for further details. (HT) Hitachi. 0923 246488. (ML) Mullard. 01 580 6633. (TS) Toshiba. 0279 442971.

Desktop Laser Printer

NCR Limited has announced its first desktop laser printer, the NCR 6416. Users of NCR's Tower, Personal Computer and WorkSaver systems can now obtain up to eight pages per minute of high quality text and graphics reproduction from this quiet, compact and versatile printer.

The NCR 6416, which can provide letter-quality print on ordinary cut-sheet paper, combines electrophotography, electronics and semiconductor laser technologies. It is duty-rated at up to 3,000 pages per month, and its combination of 55dBAnoise level and high print quality makes it ideal for applications such as desktop publishing in office environments.

The lightweight and compact NCR 6416 will print on letter, legal, A4 and B5 paper and envelopes. It offers four face types as standard — Courier 10 with italic, Boldface and Super/Script — with a wide selection of font cartridges such as Pica and Elite, landscape and portrait if required.

The NCR 6416 laser printer is available for immediate delivery and will cost approximately £2,700.

For more information please contact: Matthew Spencer, NCR Limited Tel: 01-725 8337.

PRACTICAL ELECTRONICS NOVEMBER 1987
The Archer Z80 SBC

The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users.
- Top quality board with 4 parallel and 2 serial ports, counter-timers, power-fail interrupt, watchdog timer. EPROM & battery backed RAM.
- OPTIONS: on board power supply, smart case. ROMable BASIC, Debug Monitor, wide range of I/O & memory extension cards.

The Bowman 68000 SBC

The SDS BOWMAN - The 68000 based single board computer for advanced high speed applications.
- Extended double Eurocard with 2 parallel & 2 serial ports, battery backed CMOS RAM, EPROM, 2 counter-timers, watchdog timer, powerfail interrupt, & an optional zero wait state half megabyte D-RAM.
- Extended width versions with on board power supply and case.

Sherwood Data Systems Ltd
Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

<table>
<thead>
<tr>
<th>BARGAIN PACKS</th>
<th>Price inc VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE1</td>
<td>5 Ass Rocker Switches push fit</td>
</tr>
<tr>
<td>BE2</td>
<td>5 Ass Micro Switches</td>
</tr>
<tr>
<td>BE3</td>
<td>12 Ass Slide Switches</td>
</tr>
<tr>
<td>BE4</td>
<td>20 Ass On/Off Cherry Switches</td>
</tr>
<tr>
<td>BE5</td>
<td>16 Ass Heat Sinks</td>
</tr>
<tr>
<td>BE6</td>
<td>5 Ass Volume Controls</td>
</tr>
<tr>
<td>BE7</td>
<td>100 Ass Electrolytic Caps. Axial</td>
</tr>
<tr>
<td>BE8</td>
<td>100 Ass Electrolytic Caps. Radial</td>
</tr>
<tr>
<td>BE9</td>
<td>60 Ass tweedlexCabinet</td>
</tr>
<tr>
<td>BE11</td>
<td>25 Ass Control Knobs</td>
</tr>
<tr>
<td>BE11</td>
<td>100 Ass. Resistors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABS BOXES BLACK OR WHITE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BM1</td>
<td>77x54x27mm with lid</td>
</tr>
<tr>
<td>BM2</td>
<td>95x71x25mm with lid</td>
</tr>
<tr>
<td>BM3</td>
<td>115x92x37mm with lid</td>
</tr>
<tr>
<td>BM4</td>
<td>207x125x71mm with lid</td>
</tr>
<tr>
<td>BM5</td>
<td>140x65x50mm with lid</td>
</tr>
<tr>
<td>BM6</td>
<td>220x126x60mm with lid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALUMINIUM BOXES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BA5</td>
<td>21½"x15½"x1½" with lid</td>
</tr>
<tr>
<td>BA8</td>
<td>4½"x¼"x1½" with lid</td>
</tr>
<tr>
<td>BA10</td>
<td>4½"x¼"x1½" with lid</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOOLS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KT/10</td>
<td>Multi Tester 2 Ranges</td>
</tr>
<tr>
<td>STW</td>
<td>5PCS Min. Cutter/Rivet set</td>
</tr>
<tr>
<td>ST4</td>
<td>5PCS Min S/Driver set, metal handle</td>
</tr>
<tr>
<td>MCMG2</td>
<td>6PCS Min S/Driver set, plastic handle</td>
</tr>
<tr>
<td>AD12</td>
<td>12V Min. PCB Power Drill 8-12mm</td>
</tr>
<tr>
<td>SB15</td>
<td>24V x 12v Soldering Iron</td>
</tr>
<tr>
<td>S1340</td>
<td>24v x 22v Soldering Iron</td>
</tr>
<tr>
<td>S13110</td>
<td>Solder Iron Stand with Springer</td>
</tr>
<tr>
<td>ST03A</td>
<td>Helping Hands (Soldering Assistant)</td>
</tr>
<tr>
<td>KT20</td>
<td>Pick Up Tool (Small Component use)</td>
</tr>
<tr>
<td>H2</td>
<td>Snap Craft Knife (Snap Off Blade)</td>
</tr>
<tr>
<td>H40</td>
<td>Large Craft Knife (Snap Off Blade)</td>
</tr>
<tr>
<td>MV11</td>
<td>Min. Vice (Suction Base) Metal/Plastic</td>
</tr>
<tr>
<td>M216</td>
<td>Min. Vise Drill Chuck Plastic</td>
</tr>
<tr>
<td>JCT/10</td>
<td>4PCS S/Steel Tweezers Set</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECHARGEABLE BATTERIES/CHARGER</th>
<th>Price inc VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMA</td>
<td>N/CAD Rechargeable Battery AA Size</td>
</tr>
<tr>
<td>D</td>
<td>N/CAD Rechargeable Battery D Size</td>
</tr>
<tr>
<td>PP3</td>
<td>N/CAD Rechargeable Battery PP3 Size</td>
</tr>
<tr>
<td>UN</td>
<td>N/CAD Universal Charger for above</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POWER SUPPLIES</th>
<th>Price inc VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLA</td>
<td>3-12V DC Unregulated</td>
</tr>
<tr>
<td>REG12</td>
<td>12V DC Regulated</td>
</tr>
<tr>
<td>PSA</td>
<td>13.8V DC Stabilized 3A</td>
</tr>
</tbody>
</table>

ACCESS/VISA CARD ORDER
£10.00 MINIMUM VALUE

POSTAGE & PACKING
PLEASE ADD
FOR ONE ITEM £1.00
FOR TWO OR MORE £1.50

PERSONAL CALLERS
WELCOME
SHOP HOURS
MON-SAT 9am-6pm
THE LEADING EDGE

BY BARRY FOX

Blurred women crack up on TV

Low standards lead to crummy conversions. Digital methods offer a better way, but will they get the opportunity?

IT seems that the Great British Public does care about the quality of TV pictures, after all. The BBC had to contend with a deluge of complaints about Dallas.

Most glossy TV programmes from Hollywood are shot on 35 mm film, and edited on film, like a cinema feature. So until last year, Dallas episodes were being flown over to Britain as cans of 35 mm film.

Then things changed, for the worse. Although Hollywood still shoots Dallas on 35 mm film, it is now transferred from film to videotape. The tape is of 525 line, 30 picture frames per second NTSC format. The conversion from 24 fps film is tricky because 6 frames a second must be reconstituted from thin air.

To save time and money on Dallas the film is never edited. All editing is on the video tape. When finished, each taped episode is shown on American TV at 30 pictures a second. The tapes are also converted to the 625 line, 25Hz PAL format needed for Britain and most of Europe. For every picture 100 lines must be conjured from nothing and every second 5 pictures must be discarded.

That's why the pictures are so poor. Nothing looks crisp and clear. The opening credit title sequence judders. Anything that moves, blurs.

The BBC has its own standards converters which can perform fine tricks on 525 line, 30Hz tapes. But in the case of Dallas the BBC gets rolls of tape, already converted and already spoiled.

You see the effect of poor standards conversion on other imported soaps. One of the worst was Golden Girls on Channel 4. Lower budget programmes like this are not shot on film. They go straight to video in the 525 line, 30 Hz NTSC format. The tapes then have to be converted for showing in 625 line, 24 Hz Britain. Poor conversion makes faces look artificially smooth, like plastic, while the actresses are talking; then when they stop, and the conversion circuitry is working on the stationary detail, the faces briefly show facial lines and hairline detail. It's very, very disturbing once you have noticed the effect.

British company AVS of Chessington in Surrey is selling a new standards converter called ADAC, Advanced Digital Adaptive Converter, which combines video and computer technology. Talking of Dallas, AVS says ADAC could "definitely do the job better".

Although the US and Japan uses 525 lines per picture, and 30 pictures a second, and Europe uses 625 line, and 25 pictures, both systems have one thing in common. Each full picture "frame" is made up from 2 interlaced half pictures or "fields".

In all standards converters the incoming picture signal is converted into digital code. The code for at least 2 fields is stored in a solid state memory and averaged, so that 100 lines and 10 fields a second can either be discarded or created.

The AVS Advanced Digital Adaptive Converter spreads the averaging much further and takes account of the fact that stationary objects in the picture do not suffer from smear or judder. A motion detector distinguishes moving parts of the picture from stationary parts, and applies different averaging techniques accordingly. The sensor analyses each individual pixel or picture point in each line of each picture. It then pulls an appropriate averaging algorithm out of pre-programmed memory and processes it in the best possible way.

Each TV picture is made from around 0.5 million pixels so the 16 bit computer processor inside ADAC must analyse and average nearly 15 million items of picture information every second.

The converter costs £80,000 or more, depending on features and facilities. That is the price the broadcast industry must pay if programmes imported from the US are to look good on British TV.

The use of processing equipment like this ties in with a revolution in the TV industry. More and more equipment now works in the digital domain. In fact the Independent Television Companies Association, IITCA, is currently spending £1m on practical research into the best way to convert British TV studios so that they can work with digital TV signals.

Thames now has the first control room in the world which can take live pictures from a TV studio and process them fully digitally. The French CCETT (Centrale Commune d'Etudes de Television et Telecommunication) has a rather similar test facility at Rennes, but it is working with tape-recorded signals.

There is now a world standard for digital video recording set by the European Broadcasting Union, EBU, Society of Motion Picture and Television Engineers, SMPTE, and International Radio Consultative Committee. The CCIR's Recommendation 601 specifies the digital coding format and the type of cassette to be used for recording TV signals digitally. US company Ampex, which invented video recording 30 years ago, has proposed a modified approach which costs less and triples recording time per cassette, but loses a little in picture quality. The EBU has objected to what it sees as de-standardisation by Ampex and the ITCA has decided against using Ampex technology. The Teddington studio has Sony digital video recorders which follow the CCIR 601 standard.

CCIR 601 is a "component" system. The raw red, green and blue signals which make up all TV pictures are combined to produce a black and white or 'luminance' sum signal and two colour or 'chroma' signals. The luminance signal is digitally sampled at 1.35MHz and each of the two chroma signals is sampled at half this rate, 6.75MHz. This gives a sampling ration of 4:2:2. Hence the 601 standard is often identified simply as 4:2:2. Each sample is digitally coded in an 8 bit word, to give a digital stream of 216 Mbits/s.

The standard digital video recording cassette is called D1, uses 19mm tape and comes in three sizes: small to offer up to 13 minutes playing time, medium for up to 41 minutes and large for up to 94 minutes. The recorder mechanism automatically adjusts to the cassette size.

The 216 Mbit/s signal is very difficult, and expensive, to record onto tape. This is why Ampex has suggested an alternative to component coding. The

CONTINUED ON PAGE 56
SECURITY

If there is any area of society where it is not true that security concerns us all, I have still not managed to think of it.

To most of us, probably security of property is the matter that first comes to mind. Can someone pinch the car; the video; the expensive trinkets; the souvenirs that span a lifetime? Yes they can, and they will given half a chance.

Even those who are not yet adult may have bikes, computers, books, even secrets, that need to be kept out of other’s hands. On another level, shops, banks, club treasurers, need to be ever vigilant against theft of one sort or another.

Fortunately, electronics is well suited to the design of systems that can help to protect property. For example, Tim Pike in last month’s issue described a simple method of using digital coding to produce an intruder resistant lock. Although the main intention of the design was to discuss electronics for GCSE courses, it has practical uses for almost anyone who needs to deter unauthorised entry.

Following on from this, much wider ranging aspects of protection are discussed by Bill Kent in the Intruder Alarm Controller project. In part one, an example of a simple burglar alarm is described, and is ideal for anyone with just a room, shed, or garage to protect. This too is a good project idea for anyone doing GCSE electronics.

Part two of the article, next month, extends the discussion and illustrates a far more complex security alarm controller that can be used in a multitude of applications, from house protection, to security for the elderly or sick.

Robert Penfold is also contributing a related article next month. In this he will take a broad look at how locks can be electronically controlled in ways other than digital, from frequency detection to infrared methods.

Between them, the three authors demonstrate the use of electronics for just some aspects of protection. It is an alarming fact though, that electronics is also the cause of the need for security. Insecurity of computerised data is frequently publicised.

Huge profits are lost annually through financial fraud aided by illegal entry to computerised data banks. More money is lost through the illegal copying and selling of copyright software and audio recordings. Unethical access to personal data files, though not theft in the same sense, is also misappropriation of electronically stored information.

Although legislation like the Data Protection Act, represents one way of strengthening security, electronic methods still seem to be best suited to combating illegal use of electronic material.

However, human nature being what it is, there will always be someone wanting something free. All we can reasonably hope to achieve with any security system is that it is more intelligently designed than the system designed to counter it. We must be cleverer than the thief.
PRINTER ACCESSORIES

- We hold a wide range of printer attachments (sheet feeder, tractor feeds etc.) in stock.
- Serial, parallel, IEEE and other interfaces also available.
- Ribbons Hitachi 6720459 (a)
- EPSON KX P1080 (80 col) £149 (a)
- LQ800 (80 col) £439 (a)
- Softy II peripherals for the BBC
- For detailed specifications and pricing please send for our leaflet

MONITORS

- RBG 14" 1:431 Std Res £170 (a)
- 1451 Med Res £225 (a)
- 1441 Hi Res £385 (a)
- MICROVITEC 14" RGB/PAL/Audio £199 (a)
- 1451AP Std Res £259 (a)
- All above monitors available in plastic or metal case.

ACCESSORIES

- MNCROHROME PHILIPS 12" Hi Res £75
- IBM Compatible IBM clone 12" £149
- Accessory Stations with handling capacity of 14 eproms
- UV140 C69, UV141 £47 + £2 p&p.
- UV1 as above but without the timer £47 + £2 p&p.
- Built-in safety interlock to avoid accidental exposure to the harmful UV rays.
- Industry Standard floppy discs with a lifetime guarantee. Discs in packs of 10

DIL HEADERS

- B21 6-pitch Dual Row Header 100 pin £275
- C21 6-pitch Dual Row Header 200 pin £350
- AB 25 way (100 pin)
- AD 25 way (200 pin)
- BD 25 way (300 pin)
- CD 25 way (400 pin)

SOFTWARE

- ATTENTION
- All prices in this double page advertisement are subject to change without notice.
- ALL PRICES EXCLUDE VAT
- Please add carriage 50p unless indicated as follows:
- (a) £8 (b) £2.50 (c) £1.50 (d)
- (e) £10 (f) £5 (g) £2.50 (h)
- (i) £4.50 (j) £2 (k) £1 (l) £0.50
- (m) £1.50 (n) £1 (o) £0.50
- (p) £2.50 (q) £1.50 (r) £0.50
SECURITY PROJECT

The old-fashioned burglar is a comic figure, but being burgled is far from funny. Here are described two control units, one simple, one sophisticated, which act as the heart of deterrent alarm systems. Arm with an alarm!

Do you feel like a sitting duck? If your neighbours have intruder alarms, but you do not, it is likely your home will be burgled in preference to theirs.

We are all aware of the increase in the crime figures over the last few years. A high percentage of these crimes are casual burglaries, carried out against domestic premises. Frequently the thefts are by opportunist thieves on the look out for readily accessible properties. To this type of thief, a house, bungalow or flat that has an alarm bell showing is less of a good bet than one that does not. It is even widely believed that just the presence of a bell, even though it may not be connected to anything, represents a deterrent factor to the would-be burglar.

SELF HELP

The police are notoriously undermanned, and are placing increasing emphasis on the need for the public also to take an active part in crime prevention. Such measures include the simple expedients of adding further locks to doors and windows, and the marking of property with the owner's postcode using non-erasable ultraviolet ink, or etching and engraving tools. The use of window stickers announcing the existence of marked items is recommended, as is photographing all belongings, especially the valuable bits and pieces. While these actions will not prevent theft, they act as a deterrent since it is less easy to dispose of readily indentifiable stolen property. The markings also help the police to return property to the owners if found.

The interest of the public in carrying out these simple and relatively inexpensive precautions is slowly being aroused, though it is still not as widespread as the police would prefer. Despite this, public interest shows itself in other ways, as the success of such TV programs as Crime Watch, and Police Five demonstrates.

NEIGHBOURHOOD WATCH

The spread of neighbourhood watch schemes also illustrates how the public can be active in both crime detection and prevention. Increasing numbers of these groups of concerned residents have been organised around the country. Figures announced at the time of writing (July 1987), state that over thirty thousand groups exist.

Many of them are probably extensions of the activities of existing residents' associations. In my own area, an association for about 200 houses had existed for many years, though few residents would normally attend the meetings. Yet, when the intention of setting up a watch scheme was announced, practically all households sent representatives to the discussion.

This was organised in conjunction with local police crime prevention officers, who lectured on various aspects of home security, and how to operate the watch scheme. Essentially this is only a matter of neighbours looking out for each other's welfare, advising of prolonged absence, and generally watching for unusual activity by strangers, reporting this to the police if suspicions are aroused. Subsequently, around two thirds of the households joined the scheme, and over the last three years an encouraging reduction in crime on the estate has been experienced.

INTRUDER ALARM CONTROLLERS

PART ONE BY BILL KENT

Detectors deter delinquents

ALARMING FACTORS

With improved awareness and active participation in preventing crime, the number of burglar alarms installed has also been increasing. It seems probable that the increase will snowball as more people realise that they are more likely to be burgled in preference to a neighbour who has a alarm.

The type of system installed will depend on the degree of risk that is felt. No system will prevent a determined burglar getting in, as recently reported high value thefts show. The more sophisticated the system though, the harder it is for it to be bypassed.

In assessing the quality of the system needed to offer reasonable protection, the two main factors to be considered are the value of the property to be protected, and the level of risk that already exists in the particular area. In assessing value, one significant factor is the degree of distress that a burglar might cause. Although value of the property owned may not be great in money terms, most people have items that have strong sentimental value, the loss of which can never be replaced. A large number of illegal entries also involve sheer vandalism with belongings being destroyed or disfigured for no sane reason. This can cause as much, if not more distress than simple theft.

Many companies supply and install burglar alarm systems of varying degrees of sophistication. In my local area, some companies will install simple systems from as little as around three hundred pounds, up to several thousands of pounds. Considerable savings can be made though, by installing your own system from pre-assembled units that just need wiring together. Several companies offer these units, and installation is quite straightforward. The main cost, though, is in the master control unit, and if this can be built by oneself even greater savings can be made.

PRACTICAL CONTROL

Two such control units will be described here, one very simple, and the other offering several levels of detection and alarm control. Both are intended for use with readily available low cost
intruder detectors, bells, buzzers and flashers. The main unit has been designed in the light of my experience with several commercial units, some of which had a few shortcomings. Additionally, I referred to the British Standard recommendations for burglar alarms, and although I do not claim that the main unit conforms to BSI specifications, I am not aware that it contravenes them.

The primary requirements for a burglar alarm are that it should detect when premises have been entered, and sound an alarm in response. In principle, this can simply be achieved by having a switch connected to a bell and a battery (Fig.1a). If the switch S_1 is closed, the bell will ring.

With this system, the switch would be mounted on a relevant entry door in such a way that when the door was opened, the switch would be turned on, so ringing the bell. A simple release to make contact switch would do it.

This method has the obvious drawback that the bell will ring every time the door is open, and the door will need to be closed to stop it. A second switch S_2, is thus needed to turn off the bell if the door needs to be opened legally, (Fig.1b), and should be capable of being operated only by an authorised person. This switch therefore would usually be operated by a key, though it could be of the type described by Tim Pike in the October issue of PE in the GCSE coded lock project.

In practice, it is desirable to invert the switching so that if the wire is cut through, this will also trigger the bell. Consequently the circuit should operate through a relay of some sort, with the relay contacts held open while the circuit is closed. Then, if the circuit is opened, the relay coil will cease conducting, causing the contacts to close, and so ring the bell (Fig.2).

The control switching should also prevent the door from being immediately reclosed to switch off the bell, so stopping a speedy burglar from entering and immediately switching the bell off. This means then, that when the door is undesirably opened, the bell should latch into the triggered condition until intentionally turned off in an authorised fashion. Fig.3 shows a possible arrangement, using S_3 as the primer switch.

However, it is conventional to have regard for the sensitivities of neighbours' ears. An alarm bell ringing incessantly can be of considerable annoyance not only to a burglar, but to anyone else within earshot. Any sensible burglar will flee if an alarm bell is triggered, but innocent neighbours could suffer until the bell is deliberately switched off. Consequently, it is usual for an alarm system to have an automatic switch that turns off the bell after a predetermined period of time. This duration should be long enough for neighbours to know that the bell has not been inadvertently triggered by the carelessness of an authorised person who, realising the error, hurriedly switches the bell off.

For greater security, it is preferable to know whether or not the system has been triggered during one's absence, even if the bell is not ringing. So there is the need for another latching circuit that will not be reset when the bell stops. This could operate a lamp of some sort, or a low volume audible warning device, like a buzzer.

Fig.4 shows the block diagram of a simple system that will operate according to these requirements. It is an ideal circuit for anyone with only the simplest of security needs, like for example protecting just one or two rooms from casual illegal entry. It is also a very suitable project for anyone who is studying for GCSE electronics. The power supply can be any between $+5V$ to $12V$.
and +12V, and ideally should be drawn from a mains operated PSU in conjunction with a heavy duty battery back-up supply.

The circuit details are in Fig.5, and consist of the latching chip IC1, and a timing control around IC2. The controlling switches are within the dotted box, of which more presently.

The voltage at the input of IC1, pin 3, is normally held low by either S3 or S2. If both are open, pin 3 rises to the full line voltage via R1 and R2. This rising change of level triggers IC1 so that pin 1 goes high, turning on the LED monitor D2. IC1 will remain in this state until deliberately reset by S1.

Pin 2 of IC1 simultaneously goes from high to low, sending a negative going pulse via C2 to the trigger input of IC2. Between them C2 and R8 determine the length of the pulse. IC2 is a 555 timing chip, wired as a simple one-shot monostable. Its output pin 3 goes high when triggered, and remains high for the time set by VR1, R9 and C4. At the end of this time, the output returns to the low state. While it is high, TR1 is turned on via R10, causing it to conduct via the load in its collector path.

The load can be any suitable warning device, such as a 12V low current (200mA) bell, buzzer or strobe light. The load could alternatively be a relay that switches higher powered units. D3 is included for use across a relay coil, but could be omitted if the load is non-inductive.

VR1 is used to set the required delay time. At minimum this is around 17 seconds, and at maximum around 15 minutes. Electrolytic capacitors have a broad tolerance, and a largish leakage current, so the precise timings may vary to either side of these figures. A longer time could be set by increasing R9, but the total resistance of R9 and VR1 should allow more current to pass than is being drawn by the leakage of C4. If it does not then the threshold level needed to end the timing cycle may never be reached by the voltage at C4, and the bell would not automatically turn off.

The PCB layout is shown in Fig.6.

Fig.6 PCB details for simple alarm controller.

SWITCHES

Both IC1 and IC2 can be intentionally reset by switching off S1. This will stop the bell, and turn out the LED D2.

The intrusion detector switches are represented by S3. These can be any type of switch that will be normally open, but will close when the door or window to which they are attached is closed. These could be contact switches, or preferably magnetically operated switches that will close when a magnet is brought close to them.

They are available from many suppliers, including those who stock RS components. There are two basic types, flush mounting, and surface mounting. The former require setting into the door or window frame, and so need holes to be cut into the frame. The others, as the name implies, are screwed to the frame.

They are the easiest to mount, but are less sightly. They both come in two halves, the magnetically operated switch, which is normally mounted on the fixed frame since it needs wires connected to it, and the section that holds the permanent magnet. This goes on the moving part of the frame and is positioned so that when the frame is closed, or within about half an inch of closing, the magnet attracts the switch contracts together, so closing the circuit. All should go on the frame side furthest from the hinge.

You can use as many of these switches as you have entries to protect, including entry to the box housing the controller. They basically require two wires, though the use of four wires for anti-tamper protection will be needed for the more complex control unit to be described in part two.

A twin flex is taken from the control board to each location to be protected in series, and is firmly stapled at frequent intervals to hold it in position. At each location a switch is inserted into one of the leads; it does not matter particularly which one.

At the final switch one wire goes to one side of the switch, and the second wire to the other. You thus end up with a continuous loop of wire with the many switches in series with one another (Fig.7). With all switches closed, R1 will be shorted to ground, but if any switch is opened, the circuit will be broken, allowing the voltage at R1 and R2 to rise, so triggering IC1 as described earlier.

At the main point of legal entry, two switches are needed, one of the magnetic type, and the other operated by a key. They are wired in parallel. For normal entry the key is turned, closing the contacts of that switch. This bypasses the magnetic switch, so allowing the door to open without triggering the alarm. For the magnetic switch to operate as a detector, the keyswitch is turned the other way, opening it, so that only the magnetic switch is in circuit.

The master set and reset switch S1, is mounted on the control unit front panel. This too should be a keyswitch, to prevent unauthorised use. In the off position, IC2 is held reset via S1. IC2 though, is held in a triggerable condition, so that if any contact switch is opened, apart from the one bypassed by S2, the LED D2 will come on, showing that at least one other entry point is open. Since IC2 is reset at this time, the bell will not be triggered.

GOING AND COMING

Prior to leaving the premises, check that led D1 is on, indicating that all contacts are closed; then switch on S1. This enables IC2 via S1b, and also sends a reset pulse to IC1 through S1a, C1 and R4, so turning out D2. After the door has been closed, S2 is switched off. The system is now activated and will respond to any of the contact switches being opened.
TREMOL

VODALEK

STORM - WIND & RAIN

STORM - THUNDER

STORM (SIMPLE)

RING MODULATOR

REVERB

POLYWHATSIT!

MICRO TUNER

LINKAFEX FLANGE

LINKAFEX DELAY

LINKAFEX CHORUS

GUITAR MODULO

FLANGER

ECHO-REVERB

DIGITAL DELAY

CYBERVOX

COMPANDER

CHORUS FLANGER

A-D-A INTERFACE

operated switch, 2-core cable.

key operated switch, DPCO key

Bell, magnetic contact switches, SP

NEEDED: (SEE TEXT):

SECURITY PRODUCTS

socket. 14-pin i.c. socket.

Pcb clips (4 off), PCB279A, 8-pin i.c.

MISCELLANEOUS

IC2

IC1

TR1

D3

D1,D2

SEMICONDUCTORS

VR1

POTENTIOMETERS

C5

15n polyester

C4

1000µ 10V

C3

22/4 16V electrolytic

C1,C2

100n polyester (2 off)

CAPACITORS

All resistors 1 w 5% carbon film

R6,R11

R1-R5,R7-R10

RESISTORS

SIMPLE BURGLAR ALARM

11

MORSE DECODER

PHONOSONICS

THROUGH ELECTRONICS UNDERSTAND ESSENTIAL TECHNOLOGY

PHONOSONICS, DEPT PE7N, 8 FINUCANE DRIVE, ORPINGTON, KENT, BR5 4ED. MAIL ORDER

THE PE GEIGER WAS SHOWN ON BBC TV "TAKE NOBODY'S WORD FOR IT" PROGRAM

NEXT MONTH

In part two, the more complex circuit to be described shows how anti-tamper circuitry can be used, and how two or more zones can be monitored separately.

Upon return to the premises, first switch off S2. Open the door, then switch off S1. If none of the contacts have been broken during absence D1 should still be on, and D2 should be off. If D2 is on, then the circuit has been broken, even though the bell may have automatically been turned off. If D1 is off, then the circuit is still broken.

PHONOSONICS

LOW COST

GEIGER COUNTERS

NUCLEAR FREE ZONES? CHECK THEM OUT - GET A GEIGER

Detectors for environmental and geological monitoring - know your background! You'd be amazed at the quantities sold since Chernobyl.

METERED GEIGER (PE MK2)

Ready-built - T2272 - (ZP1310) £75.50, (ZP1320) £95.50

GEIGER-MITE SET 271 £39.50

Miniature geiger with ZP 1310 tube, LED displays radiation impacts. Socket for headphones or digital monitoring. Kit-form only.

Send SAE for detailed catalogue, and with all enquiries (overseas send £1.00 or 5 I.R.C.'s).

Add 15% VAT. Add P&P - Sets over £50 add £2.50. Others add £1.50. Overseas P&P in catalogue. Text photocopies - Geiger & DOL Texts £1.50 each, others 50p, plus 50p post or large SAE. Insurance 50p per £50. MAIL ORDER, CWO, CH0, PO, ACCESS VISA.
A 28-Range FET VOM. Perfect for electronics testing! 10 megohms per volt DC sensitivity. Measures: 1000 volts DC in seven ranges and 1000 volts AC in five ranges. DC current to 10 amps, resistance to 100 megohms. Decibles: -20 to +62 dB. Fuse protected. Requires one 9v and one "C" battery. Measures: 7"/16 x 5 ½ x 2 ¾". £34.95

22-220

B 43-Range Multitester. 50,000 ohms per volt DC sensitivity. Fuse and overload protected. Measures to 1000 volts DC in 12 ranges and 1000 volts AC in 8 ranges. DC current to 10 amps, resistance to 20 megohms. Decibles: -20 to +62 dB. Requires one 9v and one "AA" battery. Measures: 6 11/16 x 4 7/8 x 2 ¾". £29.95

22-214

For The Best In High Quality Electronics
Over 300 Tandy Stores And Dealerships Nationwide.
See Yellow Pages For Address Of Store Nearest You

Tandy UK, Tandy Centre, Leamore Lane, Bloxwich, Walsall, West Midlands. WS2 7PS
In this multi part feature I hope to de-mystify the business of choosing and using semiconductor devices, from the humble diode to complex LSIs. The user of semiconductors does not need to be an expert on fabrication technology, or semiconductor physics, but a little knowledge of device structure can help you to make better use of the data provided by manufacturers.

PRINCIPLES

The simplest semiconductor device is the diode. Fig. 1 shows a simple diode made from P and N type silicon. The silicon is doped P or N type by the addition of small quantities of impurities which disrupt the crystal lattice in such a way as to leave either a "spare" electron which can move around, or a vacant site or "hole" for an electron. If the vacant site absorbs an electron from a neighbouring atom, then the "hole" has moved, and can carry charge in the same way as movement of a free electron. The mobility of the electron is higher than that of the hole, as one might expect.

As the reverse voltage is increased the depletion region widens, until at some point its insulating property is no longer adequate and it breaks down, usually catastrophically. This property is put to good use in the zener diode, which is so doped as to have a low reverse breakdown voltage which is little affected by current.

The charge distribution in a reverse biased diode is very similar to that in a parallel plate capacitor, and sure enough the diode has a capacitance which depends on the width of the junction and the thickness of the depletion region. Thus the capacitance depends on the reverse bias voltage, a property which is used to allow diodes to serve as the adjustable element in a tuned circuit.

The junction capacitance of a diode limits its speed of operation, but there is another effect which limits its switch-off speed when the bias across it is switched from forward to reverse. While the diode is conducting, the depletion region contains many charge carriers. When the polarity of the voltage across the diode is reversed the charge carriers do not disappear immediately and current continues to flow until all these are swept out into the P and N regions away from the junction. This effect can often prove more of a limitation on high speed switching than junction capacitance.

The silicon junction diode is not the only variety available. Germanium is still used for some signal and rectifier diodes in applications where low forward voltage drop is required, along with a modest junction capacitance. The functioning of the germanium diode is like the silicon diode, but the forward voltage required for moderate forward current is only about 300mV, as against the 600mV to 700mV of the silicon diode. This forward voltage is a function of the difference in electron energy levels between the P and N type materials, and the difference is less in germanium than silicon.

Another diode technology which exhibits almost no specific forward drop is the Schottky diode. In practice there is forward drop, of course, because the device possesses resistance (higher resistance, in fact, than silicon junction diodes of similar size). The Schottky diode uses a junction of metal to silicon rather than two oppositely doped silicon layers. Electrons in a metal are much freer than in a semiconductor, and the common image of a metal is of an array of atoms in a sea of mobile electrons. For this reason electrons are available at almost any energy level, and in great quantity. There is little in the way of a depletion region to overcome, so that forward conduction can occur very easily. Equally, without a depletion region to store charge, one limitation on switching speed is removed.

There are drawbacks, of course. The lack of a depletion region at zero bias

PART 1: PRINCIPLES

How many holes in Blackburn, Lancashire? Not half as many as in the average semiconductor, and they move about, as well. And that's just the start. No-one said semiconductors were simple, but they are fascinating and, more to the point, essential.
means that the junction capacitance is much higher per unit area than an ordinary junction diode, because the "capacitor plates" are closer together. The relatively high ohmic resistance of the device mandates larger area junctions to obtain the low voltage drop advantage of the device, so the junction capacitance can be very high. It is more difficult to make high reverse voltage Schottky diodes, and a few devices are available with ratings above 30V. They are generally more expensive as well.

The ratio between the number of electrons crossing to the collector region and those leaving by the base connection is called the current gain, and is represented by the symbol h_{fe}. For small signal transistors this value can range from about 50 to 1000, depending on transistor type. Its precise value varies with current, but is much more constant than the gain with respect to base voltage. If a graph of collector current against base voltage were to be plotted, it would look much like Fig. 2.

Few if any transistors are made in the form illustrated nowadays. It is more economical and gives more uniform results to manufacture planar transistors, in which the base, emitter and collector regions are diffused into a flat plate of silicon.

It is also possible to produce a f.e.t. which is normally in the non-conducting state, and which can be made to conduct by application of a gate voltage. In this case, the gate must be insulated from the channel, or else the gate-channel junction would be forward biased and gate current would flow.

A possible layout of an N channel planar enhancement m.o.s.f.e.t. is shown in Fig. 10. In this device the channel is normally blocked by a depletion region, but the presence of a positive potential on the gate metalisation attracts charge carriers and permits the channel to conduct. This effect is shown in Fig. 11.

For small values of drain-source voltage this channel behaves largely resistively, but when the drain-source voltage is a significant fraction of the gate-source voltage this is no longer true. The effective gate voltage now varies along the length of the channel, and hence the channel width varies along its length. This is illustrated in Fig. 12. As the drainsource voltage increases and the channel narrows the incremental resistance of the channel increases until changing the drain-source voltage varies the current hardly at all.

Inspection of Fig. 12 shows what looks like an unusually shaped npn transistor, if you ignore the channel and the gate connection. This configuration is not
ideal for transistor action, but under some circumstances this "parasitic transistor" can conduct and cause trouble. For this reason, some f.e.t.s. of this type have a connection to the substrate, which should be connected (in the case of an N channel f.e.t.) to a point in the circuit more negative than the source (0V or the negative power supply). This biases off the parasitic transistor and allows the f.e.t. to work as expected.

REAL DIODES

Diodes come in a wide range of sizes, from small signal types to rectifiers rated at hundreds of amps. They are designed for many different purposes, including voltage regulation, tuning, and frequency multiplication as well as rectification. However, for most people the most familiar type of diode is the general purpose signal diode such as the IN4148. The IN4148 is a fast, low capacitance diode, as shown in table 1. This table includes some less common small silicon diodes for comparison of characteristics. As you can see, many of the characteristics are similar, and different diode types often differ only slightly. For most projects published in PE which use the IN4148, any of these diodes would be suitable. In fact, the chances are that any small silicon signal diode which may be lying around will work perfectly well.

To illustrate this, consider the circuit shown in Fig. 13. This is a stage from Robert Penfold’s “Bright Fuzz” design (PE May 1987). The diodes are used to clip the audio signal and produce the well known fuzz sound. The maximum reverse voltage which the diodes experience is about 0.6V. The peak current is likely to be a few hundred microamps, but even a few microamps’ reverse leakage will have little effect on the performance. The switching time (\(t_{on}\)) can be as long as 20us without affecting the sound, and even a junction capacitance of a hundred picofarads will have little effect on performance. The diodes specified for the circuit, IN4148s, exceed the minimum specification by a big margin, and they were chosen as the most economical small diode. In fact it would be difficult to find a diode which would not be suitable for the job.

Some diode applications place emphasis on one or two parameters while being non-critical in other respects. Fig. 14 shows an oscilloscope input stage, with two protection diodes.

It is these diodes which permit the input to withstand a high voltage even when the attenuator is set to a sensitive range. The attenuator must always impose a series resistance between input and diodes to permit this scheme to work. To avoid disturbing the DC level of the input, the diodes must be ultra low leakage types, and should preferably have a low junction capacitance, though this can be compensated if not too great. The voltage rating of the protection diodes need not be very high, as they will never experience more than the rail to rail power supply voltage.

The diodes in the voltage multiplier shown in Fig. 15 have a different set of requirements of optimum circuit operation. Leakage current in the range nor-

<table>
<thead>
<tr>
<th>TABLE 1 DIODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type No.</td>
</tr>
<tr>
<td>IN4148</td>
</tr>
<tr>
<td>IN916</td>
</tr>
<tr>
<td>OA200</td>
</tr>
<tr>
<td>BAV10</td>
</tr>
<tr>
<td>BAV20</td>
</tr>
<tr>
<td>BAV45</td>
</tr>
<tr>
<td>BA481</td>
</tr>
<tr>
<td>11DQ04</td>
</tr>
<tr>
<td>VSK530</td>
</tr>
<tr>
<td>1N4001</td>
</tr>
<tr>
<td>1N401</td>
</tr>
<tr>
<td>40HF20</td>
</tr>
<tr>
<td>BYV27-100</td>
</tr>
<tr>
<td>BYV95A</td>
</tr>
</tbody>
</table>

KEY:
- \(Vr(max)\) = maximum steady state reverse voltage
- \(Vrrm(max)\) = Maximum repetitive peak reverse voltage
- \(If(av)\) = Average forward current
- \(I_{FS}\) = Maximum repetitive peak forward current
- \(t_{on}\) = Switch off time

Fig. 13:

To illustrate this, consider the circuit shown in Fig. 13. This is a stage from Robert Penfold’s “Bright Fuzz” design (PE May 1987). The diodes are used to clip the audio signal and produce the well known fuzz sound. The maximum reverse voltage which the diodes experience is about 0.6V. The peak current is likely to be a few hundred microamps, but even a few microamps’ reverse leakage will have little effect on the performance. The switching time (\(t_{on}\)) can be as long as 20us without affecting the sound, and even a junction capacitance of a hundred picofarads will have little effect on performance. The diodes specified for the circuit, IN4148s, exceed the minimum specification by a big margin, and they were chosen as the most economical small diode. In fact it would be difficult to find a diode which would not be suitable for the job.

Some diode applications place emphasis on one or two parameters while being non-critical in other respects. Fig. 14 shows an oscilloscope input stage, with two protection diodes.

Fig. 14. Oscilloscope input stage
In making the choice, if you are in any doubt as to whether a rectifier's ratings may be exceeded, it is probably best to choose a device with higher ratings and guarantee an adequate overload margin. The few extra pence is well worth it for a reliable project. The only time it is worth designing to the limit with such a component is if you are designing an item for very high volume manufacture, where small cost savings can amount to a lot of money.

Schottky rectifiers are often used in switched mode power supplies rather than to rectify the output of a mains transformer. In 5V supplies in particular, the low voltage drop can cut the total loss in the supply by up to perhaps 50%. The high capacitance of a Schottky rectifier renders it most suitable for use in situations where it does not receive a very large reverse voltage. Otherwise, the losses in switching components to charge and discharge the capacitance can nullify some of the saving.

In making the choice, if you are in any doubt as to whether a rectifier's ratings may be exceeded, it is probably best to choose a device with higher ratings and guarantee an adequate overload margin. The few extra pence is well worth it for a reliable project. The only time it is worth designing to the limit with such a component is if you are designing an item for very high volume manufacture, where small cost savings can amount to a lot of money.

Schottky rectifiers are often used in switched mode power supplies rather than to rectify the output of a mains transformer. In 5V supplies in particular, the low voltage drop can cut the total loss in the supply by up to perhaps 50%. The high capacitance of a Schottky rectifier renders it most suitable for use in situations where it does not receive a very large reverse voltage. Otherwise, the losses in switching components to charge and discharge the capacitance can nullify some of the saving.

In making the choice, if you are in any doubt as to whether a rectifier's ratings may be exceeded, it is probably best to choose a device with higher ratings and guarantee an adequate overload margin. The few extra pence is well worth it for a reliable project. The only time it is worth designing to the limit with such a component is if you are designing an item for very high volume manufacture, where small cost savings can amount to a lot of money.

Schottky rectifiers are often used in switched mode power supplies rather than to rectify the output of a mains transformer. In 5V supplies in particular, the low voltage drop can cut the total loss in the supply by up to perhaps 50%. The high capacitance of a Schottky rectifier renders it most suitable for use in situations where it does not receive a very large reverse voltage. Otherwise, the losses in switching components to charge and discharge the capacitance can nullify some of the saving.

In making the choice, if you are in any doubt as to whether a rectifier's ratings may be exceeded, it is probably best to choose a device with higher ratings and guarantee an adequate overload margin. The few extra pence is well worth it for a reliable project. The only time it is worth designing to the limit with such a component is if you are designing an item for very high volume manufacture, where small cost savings can amount to a lot of money.

Schottky rectifiers are often used in switched mode power supplies rather than to rectify the output of a mains transformer. In 5V supplies in particular, the low voltage drop can cut the total loss in the supply by up to perhaps 50%. The high capacitance of a Schottky rectifier renders it most suitable for use in situations where it does not receive a very large reverse voltage. Otherwise, the losses in switching components to charge and discharge the capacitance can nullify some of the saving.

TABLE 2 ZENER DIODES

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Working voltage Vz at 1z = 20mA</th>
<th>Temperature coefficient mV/°C @ 1z = 20mA</th>
<th>Differential resistance Ohms at 1z = 20mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZY88C</td>
<td>min nom max</td>
<td>min typ max</td>
<td>min typ max</td>
</tr>
<tr>
<td>2V7</td>
<td>3 3.25 3.5</td>
<td>-3.5 -2 V</td>
<td>-0.6</td>
</tr>
<tr>
<td>4V7</td>
<td>4.9 5.1 5.3</td>
<td>-1.5</td>
<td>0</td>
</tr>
<tr>
<td>5V1</td>
<td>5.1 5.35 5.7</td>
<td>-1.5</td>
<td>-0.8</td>
</tr>
<tr>
<td>5V6</td>
<td>5.45 5.75 6.1</td>
<td>-1.0</td>
<td>+1.0</td>
</tr>
<tr>
<td>6V8</td>
<td>6.6 6.9 7.25</td>
<td>+2.8</td>
<td>+3.2</td>
</tr>
<tr>
<td>8V</td>
<td>9.5 10.1 10.8</td>
<td>+7.0</td>
<td>+7.3</td>
</tr>
<tr>
<td>C15V</td>
<td>14.1 15.3 15.9</td>
<td>+12</td>
<td>+13.5</td>
</tr>
<tr>
<td>C20V</td>
<td>19.3 20.5 21.9</td>
<td>+17.5</td>
<td>+18.5</td>
</tr>
<tr>
<td>C30V</td>
<td>29 31.3 33.4</td>
<td>+25</td>
<td>+28</td>
</tr>
<tr>
<td>All BZY88 series 400mW power dissipation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In5339B 5.6 ± 5% Power dissipation = 5W

NOTE: IN5339B is included as a component seen in a recent PE advertisement.
diode will only work at its specified voltage (+/− the tolerance) when a specific current is passed through it. The incremental resistance is paradoxically higher for the very low voltage devices, as can be seen from Table 2. It is preferable to operate zener diodes at a constant current, and a circuit to achieve this is shown in Fig. 17.

Zener diodes also have a temperature coefficient, again as shown in Table 2. The lowest typical temperature coefficient for the BZY88 range is that of the 5V6, but the 5V1, a very useful voltage, also has a fairly low tempco. Zener diodes also generate a fairly large amount of noise, so a capacitor is often connected in parallel with a zener diode reference to minimise this.

Another property of diodes which has hitherto only been briefly mentioned is that of changeable junction capacitance. If an effect exists, an engineer somewhere will almost certainly find a use for it. In this case, the variable junction capacitance can be used as a variable capacitor in tuned circuits. Special high capacitance diodes are available for the purpose, and they are called varicap diodes.

There are drawbacks in the use of varicap diodes. One such is that the change of capacitance is not proportional to the voltage. As the reverse voltage applied to the device is increased, the change of capacitance per volt becomes less and less. This interacts with a more fundamental limitation: because the capacitance changes with voltage, it also changes in step with any signal on the tuned circuit, of which the varicap forms part. The lower the reverse bias applied to the varicap diode, the bigger proportional change will be made by the signal. Unfortunately, the most useful range of capacitance of a varicap is usually at a fairly low voltage.

This interaction of signal and tuning voltage in a tuned circuit of, for example, a television receiver causes non-linearity and allows intermodulation to take place. In this way a perfectly legal amateur radio or CB transmission which has no harmonics anywhere near the frequency of BBC 1 can totally obliterate reception of said channel. The interfering harmonics are being produced in the television tuner itself, because it uses varicap diodes to provide electronic tuning. This effect can be minimised by using back to back varicaps as illustrated in Fig. 18.

The non-linearity of the varicap diode is put to good use in the varactor frequency multiplier. When UHF transistors were less available than they are now, the varactor frequency multiplier was widely used as a means of generating frequencies from about 500MHz upwards. An ordinary diode can generate numerous harmonics if a signal is fed into it, due to its non-linear conduction. A varactor multiplies frequency in a different manner, however. Little forward current flows in the device. It works by storing charge when its capacitance is high, and then dumping it out into the surrounding circuit. In this way relatively little power is lost, and efficiencies for a tripler can be around 50% as a result.

Fig. 19 shows an example of a varactor frequency multiplier circuit. Signals fed in at a subharmonic of the resonant frequency of the tuned circuit will be changed to that of the circuit. Apart from the bias level on the varactor, this circuit bears some resemblance to the input stage of a television tuner. This factor has probably caused as much friction between radio enthusiasts and "Dallasty" watchers as all other causes put together.

As I hope I have demonstrated, the humble diode is more important than may be apparent at first. Part two of this series is planned to cover junction transistors, f.e.t.s., thyristors, triacs etc, and it is intended that part three will cover common types of integrated circuit.

BACK NUMBERS, COPIES AND BINDERS

We can usually supply copies of back issue of PE up to three years old. These are £1.50 each including postage (£2.00 for overseas readers). If we no longer have the issue needed, we will be pleased to send a photocopy of the article for the project that you want to build. These are £1.00 each per issue, including postage (£1.50 to overseas readers).

We also have the latest binders available for PE, each holding twelve issues. Embossed in gold with the PE logo, they will make a handsome addition to your technical library as well as keeping your magazines in mint condition. They are available at only £5.95 inc. p&p. (Overseas readers please add £2.)

REMEMBER SUBSCRIBING TO PE AVOIDS FUTURE DISAPPOINTMENT
OMC POWER AMPLIFIER MODULES

- Now employs a wide range for quality, reliability and performance at a realistic price
- Complete module available to suit the needs of the professional and hobby market

OMC100 Bi-Pol Power Output 110 watts R.M.S. into 4 ohms. Frequency Response 1Hz-100kHz. PRICE £29.99 + £3.00 P&P
OMC MF100 Mono-Fet Power Output 110 watts R.M.S. into 4 ohms. Frequency Response 1Hz-100kHz. PRICE £29.99 + £3.00 P&P
OMC MF200 Mono-Fet Power Output 200 watts R.M.S. into 4 ohms. Frequency Response 1Hz-100kHz. PRICE £39.99 + £5.00 P&P
OMC MF300 Mono-Fet Power Output 300 watts R.M.S. into 4 ohms. Frequency Response 1Hz-100kHz. PRICE £49.99 + £5.00 P&P

SOUNDLAB (Full Range Twin Cone)
5" 60 WATT R.M.S. Hi-Fi, Multiple Array Disco etc.
12" 85 WATT R.M.S. Hi-Fi, Multiple Array Disco etc.

WEM

- Res. Freq. 100Hz. Freq. Respond to 15KHz. Sens. 90dB. PRICE £40.00 + £3.50 P&P ea.
- Res. Freq. 150Hz. Freq. Respond to 15KHz. Sens. 90dB. PRICE £60.00 + £3.50 P&P ea.

Loudspeakers available including cabinet plans. Large

- UNIT 5, COMET WAY, SOUTHEND-ON-SEA, ESSEX, SS2 6TR TEL: 0702-527572

Hobby Kits

- Proven designs including glass fibre printed circuit board and high quality components complete with instructions

FM MICROTRANSMITTER (BUG) 90/105MHz with very sensitive performance. Range up to 100 metres. PRICE £8.00 + £2.50 P&P
3 WATT FM TRANSMITTER 3 WATT 85/115MHz variable controlled professional range. Range up to 3 miles 35 x 84 x 12mm (12 volt) Price £12.00 + £3.50 P&P

STEREO DISCO MIXER
- VHF 1st & 2nd Band 200-750MHz
- Professional 1st & 2nd Band RF Mixer
- High quality RF performance
- Robust design
- Ideal for many applications. Receiver 90 x 70 x 22mm (9/12 volt) Price £13.00 + £2.50 P&P

Stereo Mixer with a 3 band 50mm & Graphic equalisers and twin 10 segments 5" 60 Watt stereo. Many outstanding features
- 5 Inputs with individual faders providing a unique combination of the latest technology
- Repeater system
- FM Transmitter
- Perfect for Disco, Karaoke, and Communications. Price £59.99 + £4.50 P&P

BURGLAR ALARM

- Thandar's famous "Minder" Burglar Alarm System. Superior microwavable principle. Supplied as three control sections complete with interconnection cable FULLY GUARANTEED.
- Control Unit - Houses microwave radar unit. Range up to 5 metres adjustable. Ideal for all types of control.
- Three position key operated fascia switch - off - arm - arm delay. Ideal for lawns, gardens, etc.
- Indoor alarm - Electronic swept freq. sensor
- Outdoor Alarm - Electronic swept freq. siren

OMC LIINNET LOUDSPEAKERS

- The very best in quality and value. Make sure to buy today
- Full range output with high,output levels. outstanding in finished in hand
- Heavy weight black with protectors in carry handle. All models 8 ohms. Full range 45KHz. 20KHz X 12" 11 Watts R.M.S. per cabinet. Sensitivity 1W 1m 0dB
- OM21-100Watts 100dB. Price £149.99 per pair.
- OM24-200Watts 102dB. Price £199.99 per pair.

19" STEREO RACK AMP

- Professional 19" cabinet with twin VU meter. Adaptable to any size
- 84 x 27 x 45mm Price £8.50 + 50p P&P.

Peizo Electric Tweeters

- Motorola from the finest precision. The 4" tweeter produces a high frequency response using 8 amp Melfs
- Price £4.99 each + 40p P&P

250 watt SLIDE DIMMER

- Full wave control using 8 amp trimpots
- Conforms to BS800
- Suitable for both resistance and inductive loads in numerable applications in industry, the home, and disco's, theatres etc

Burglar Alarm System

- Ideal for Workshops, Factories, Offices, Home etc Supplied ready built

BSR 2295 ELECTRONIC TURNTABLE

- Electronic speed control 45 & 33' rpm
- Plus variable pitch control
- Belt driven
- Aluminium platter with chrome edge
- Aluminims tone arm
- Aluminims tone arm
- Full wave control using belt
- Supplied complete with cut out template
- £5.50 P&P ea

£17.82 Transmitter 80 CHANNEL FM MICROTRANSMITTER (BUG) 90/105MHz with very sensitive performance.
VOICE (38Hz Freq. Resp. to 20KHz Sens. 89dB) £12 99
(125mm x 335mm, 147 x 202mm, 175 x 150mm) £79.99 + £5.00 P&P.

£5.99 each - 40p P&P

£3.99 each 40p P&P

£3.99 each 40p P&P

£3.99 each 40p P&P
THE SOLEX MICROCIRCUIT LABORATORY TIMER

ONLY £14.95 inc. P & P

Special Offer!
Free five function stopwatch worth £10 (inc. VAT) with every timer ordered before 31st December 1987

THE TIME - PRECISELY!

Send no money — we will send your Solex timer and your free stopwatch on 14 day approval. If not completely satisfied you can return them.

SOLEX INTERNATIONAL
44 Main Street,
Broughton Astley,
Leicestershire
LE9 6RD

Circuit Breaker 1 Phase

Full programmable with liquid crystal display

Count-down, count-up facility with electronic alarm

Roll-over facility — indicates time over-run

4 separate count-down time intervals can be stored at any time

Pocket clip adapts to bench stand with magnet for attaching to steel cased equipment

Battery supplied.

RESISTORS (value in kΩ)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1% carbon</td>
<td>£0.05</td>
</tr>
<tr>
<td>100</td>
<td>10% radial</td>
<td>£0.05</td>
</tr>
<tr>
<td>100</td>
<td>20% radial</td>
<td>£0.05</td>
</tr>
</tbody>
</table>

CAPACITORS (value in μF)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>Tantalum</td>
<td>£0.05</td>
</tr>
<tr>
<td>0.01</td>
<td>Mylar</td>
<td>£0.05</td>
</tr>
</tbody>
</table>

Other Components

- **LED's now in stock**
- **Free 13th battery with every order**
- **Stopwatch on 14 day approval.**

ACCESSORIES

- **Audio generator, 20Hz to 20KHz**
- **5 watts mains supply**
- **12 volts mains supply**
- **Audio generator, 20Hz to 20KHz**

Catalogue

- **Send with all orders**

BRYANT ACOUSTIX

5 BELLE VUE TERRACE, GILESGATE MOOR, DURHAM

DH 1 2 HR. TEL (091) 3864500

CMOS

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1% carbon</td>
<td>£0.05</td>
</tr>
<tr>
<td>500</td>
<td>10% radial</td>
<td>£0.05</td>
</tr>
<tr>
<td>500</td>
<td>20% radial</td>
<td>£0.05</td>
</tr>
</tbody>
</table>

OTHER COMPONENTS

- **LED's now in stock**
- **Free 13th battery with every order**
- **Stopwatch on 14 day approval.**

ACCESSORIES

- **Audio generator, 20Hz to 20KHz**
- **5 watts mains supply**
- **12 volts mains supply**
- **Audio generator, 20Hz to 20KHz**

Catalogue

- **Send with all orders**

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS TTL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000 U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000 T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000 G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000 R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OTHER COMPONENTS

- **LED's now in stock**
- **Free 13th battery with every order**
- **Stopwatch on 14 day approval.**

ACCESSORIES

- **Audio generator, 20Hz to 20KHz**
- **5 watts mains supply**
- **12 volts mains supply**
- **Audio generator, 20Hz to 20KHz**

Catalogue

- **Send with all orders**
The MIDI expander converts a single MIDI controller or a computer with MIDI software into a system with five or more outputs, which is more efficient than "chaining" several instruments in sequence.

While this project will not go down in the history of Practical Electronics as the most complex project ever published (it is comprised of little more than a dozen components), it is nevertheless a very useful little gadget for anyone who is setting up a MIDI system. A MIDI expander simply takes a single MIDI output signal and splits it into several outputs available at individual sockets. This enables several MIDI instruments to be driven from one MIDI controller using the so called "star" method of connection.

THE STAR SYSTEM

As discussed in PE September 1987 the MIDI system uses a form of serial data transmission that is similar to the standard RS232C asynchronous type, but which is at a higher baud rate of 31.25 kilobaud. Also, it is a 5 milliamp current loop system, with opto-isolators at all inputs. Most MIDI equipment has "IN", "OUT", and "THRU" sockets, and a typical set up would be a controller and four instruments connected as shown in Fig.1.

Here we are assuming that the controller is a computer plus suitable software, or a purpose made microprocessor based controller. In either case it is unlikely to have a built-in piano type keyboard, and so the first instrument in the system has its "OUT" socket coupled back to the "IN" socket of controller. The keyboard of instrument 1 can then be used to feed information into the system, such as when recording in "real-time". Although any MIDI equipped keyboard instrument could be used as instrument 1, it would be sensible to use whichever instrument has the best keyboard (preferably one with a six or seven octave compass and touch sensitivity). The "OUT" socket of the controller connects to the "IN" socket of the next one in the chain. In theory, any number of instruments can be connected into the system in this way, but note that the "THRU" socket of the final instrument should be left unconnected. Wiring it back to the input of the controller would result in any signal fed into the system circulating indefinitely!

With the "star" method of connection, as outlined in Fig.2, the output of instrument 1 connects back to the input of the controller, as before. However, the output of the controller now connects to a MIDI expander, and then each instrument is fed from a separate output of the expander unit. On the face of it there is no advantage to this system which achieves no more than the chaining method of connection, but there can in fact be advantages to the "star" system. Actually, in some cases it is the only method that can be used, as not all instruments have a "THRU" socket. My SCI "Six Trak" synthesizers lack this feature for example. The absence of a "THRU" socket does not matter if it only afflicts one instrument, as this instrument can be fitted at the end of the chain, but otherwise the chaining method of connection is not usable.

Where the "chain" system is feasible, many MIDI users still prefer the "star" system. One advantage of the latter that is sometimes put forward is its equal delay time, with all instruments receiving information simultaneously. With the "chain" system there is a slight delay between a signal being received at the "IN" socket and transmitted at the "THRU" socket, and this delay builds up as the signal progresses along the chain. I would have to say that from experiments I have made this delay time seems to be totally insignificant, but possibly not all instruments drive the "THRU" socket in the same way, and it might be more significant with some instruments than with others.
important to use a type which has suitably fast switching times. Devices such as the popular TIL111 type seem to be inadequate in this respect, even with the aid of an output switch to speed things up slightly. The CNY17-3 seems to offer good reliability but is not excessively expensive. An opto-isolated input is not strictly necessary, since the units fed from the expander will all have isolated inputs that will prevent any direct connection between them via the expander. However, MIDI outputs are designed to drive this type of device, and it was felt that an opto-isolator at the input represented the most reliable method of interfacing to the controller. R1 provides input current limiting, and it really only included to protect IC1 in the event of a fault occurring in the driver circuit. On the output side of IC1 the phototransistor operates in the emitter follower mode with R2 as its load resistor. TR1 is a common emitter switch which is directly coupled to the output of IC1. Normally TR1 is cut off, but when the LED at the input of the opto-isolator is switched on, its light output produces increased leakage through the output transistor. This in turn switches on TR1 which then drives all five outputs via separate current limiting resistors (R3 to R7). In the original circuit there were individual driver transistors for each output, but with five outputs a single driver seems to be more than adequate to drive all the outputs properly.

The circuit might look rather risky in that there is no current limiting resistor in the base circuit of TR1. In practice there is no problem here in that the efficiency of IC1 (although at least 100%) is not high enough to give an excessive base current. Adding a current limiting resistor does not seem to have any great detrimental effect on the output waveform, but still seems to prevent the unit from functioning properly!

Power is obtained from a 9 volt battery, and a small type such as a PP3 is adequate. The quiescent current consumption is extremely small, and if the unit should be accidentally left switched on this may well fail to deplete the battery significantly. In operation the current consumption can reach around 10 milliamps with large amounts of data being passed and all five outputs in use.

CONSTRUCTION

Virtually all the components fit onto the printed circuit board, and the battery is, in fact, the only off-board component. Details of the circuit board are provided in Fig.4. There is little here that should give any real problems. A six pin DIL holder for IC1 might prove difficult to obtain (they do exist), but it is quite easy to trim an 8 pin type down to size. I would not recommend the use of alternative types to the CNY17-3, and it is important to use a device having the “-3” suffix.

A case measuring about 180 by 120 by 40 millimetres is used on the prototype. This is largely filled by empty space rather than components, but a smaller case would probably provide adequate width to accommodate the row of six sockets and the on/off switch along the front panel. Ideally the printed circuit board should be mounted so that the six sockets are immediately behind a cutout

EXPANDER CIRCUIT

MIDI expanders can be quite expensive to buy ready-made, but can be home constructed at quite low cost. As can be seen from the circuit diagram for this unit (Fig.3), only a handful of low cost components are required.

IC1 is the opto-isolator, and it is important to use a type which has suitably fast switching times. Devices such as the popular TIL111 type seem to be inadequate in this respect, even with the aid of an output switch to speed things up slightly. The CNY17-3 seems to offer good reliability but is not excessively expensive. An opto-isolated input is not strictly necessary, since the units fed from the expander will all have isolated inputs that will prevent any direct connection between them via the expander. However, MIDI outputs are designed to drive this type of device, and it was felt that an opto-isolator at the input represented the most reliable method of interfacing to the controller. R1 provides input current limiting, and it really only included to protect IC1 in the event of a fault occurring in the driver circuit. On the output side of IC1 the phototransistor operates in the emitter follower mode with R2 as its load resistor. TR1 is a common emitter switch which is directly coupled to the output of IC1. Normally TR1 is cut off, but when the LED at the input of the opto-isolator is switched on, its light output produces increased leakage through the output transistor. This in turn switches on TR1 which then drives all five outputs via separate current limiting resistors (R3 to R7). In the original circuit there were individual driver transistors for each output, but with five outputs a single driver seems to be more than adequate to drive all the outputs properly.

The circuit might look rather risky in that there is no current limiting resistor in the base circuit of TR1. In practice there is no problem here in that the efficiency of IC1 (although at least 100%) is not high enough to give an excessive base current. Adding a current limiting resistor does not seem to have any great detrimental effect on the output waveform, but still seems to prevent the unit from functioning properly!

Power is obtained from a 9 volt battery, and a small type such as a PP3 is adequate. The quiescent current consumption is extremely small, and if the unit should be accidentally left switched on this may well fail to deplete the battery significantly. In operation the current consumption can reach around 10 milliamps with large amounts of data being passed and all five outputs in use.

CONSTRUCTION

Virtually all the components fit onto the printed circuit board, and the battery is, in fact, the only off-board component. Details of the circuit board are provided in Fig.4. There is little here that should give any real problems. A six pin DIL holder for IC1 might prove difficult to obtain (they do exist), but it is quite easy to trim an 8 pin type down to size. I would not recommend the use of alternative types to the CNY17-3, and it is important to use a device having the “-3” suffix.

A case measuring about 180 by 120 by 40 millimetres is used on the prototype. This is largely filled by empty space rather than components, but a smaller case would probably provide adequate width to accommodate the row of six sockets and the on/off switch along the front panel. Ideally the printed circuit board should be mounted so that the six sockets are immediately behind a cutout.

Fig. 2. The "star" method of connection.

Fig. 3. The MIDI expander circuit diagram.
MIDI EXPANDER

Fig. 4. Details of the printed circuit board.

COMPONENTS

RESISTORS
R1 100
R2 to R7 1k (6 off)
All 1/4W 5% carbon film or better.

SEMICONDUCTORS
IC1 CNY17-3 opto-isolator
TR1 BC549

MISCELLANEOUS
SK1 to SK6 5 way 180 degree p.c.m. DIN socket (6 off)
S1 SPST sub-min toggle
B1 9 volt (PP3 size)
Printed circuit board, case about 180 x 120 x 40mm, battery connector, pins wire, etc.

made in the front panel. With the specified case it would be very difficult to make a suitable cutout in the panel as there would be very little panel left after the cutout had been made. I opted for the simple alternative of simply cutting off the whole of the section of the panel in front of the sockets, but those with the necessary skills and tools could probably produce a much neater job by making a proper panel cutout.

IN USE

The system is wired up using standard 5 way DIN plug to 5 way DIN plug leads. If you are making up your own leads, twin screened cable is required, with pins 4 and 5 on one plug connecting to the corresponding pins of the other plug. The screen is, of course, connected to the chassis tags of the plugs. With five outputs the unit should be adequate for most systems, but if necessary a few additional sockets and current limiting resistors could be driven from TR1, or two expanders could be wired in series to give nine outputs. Another alternative would be to use a mixture of “star” and “chain” connection.

CONSTRUCTOR’S NOTE

Robert Penfold advises that the CNY17-3 opto-isolator is available from Electrovalue Ltd. The PCB may be bought through the PE PCB Service. A full kit of parts is also available from Magenta.
Every day now brings some new announcement about the use of optical fibre as a wide bandwidth signal carrier, instead of traditional copper coaxial cable. There are continual developments, too, in the lasers used to send signals down a fibre link. Recently, systems have become available which use an infra-red laser to transmit sound and picture signals by direct line-of-sight link.

All this news builds on basic principles which are perhaps not as widely understood as they could be.

A few years ago, the Department of Trade and Industry - which encourages interest in Information Technology - chanced its arm with an experiment. Normally the DTI only organises press conferences when there is something newsworthy to announce. But the DTI thought that a few journalists might be interested in a briefing on fibre optic technology.

The DTI invited every journalist on its IT list, a total of 250, to come along and hear experts talk generally about fibre optic technology. The DTI reckoned that if a dozen people turned up it would be worthwhile. But a staggering 70 said they would like to come, and of these over 50 actually arrived to be educated. This, the DTI press office ruefully admitted to me, was a better turn out than they would normally get for a major announcement on Government policy by a senior minister. Significantly - but inevitably - most of the journalists who couldn't find time to attend, or even reply to their invitations, were Fleet Street hacks with famous names.

Because fibres carry electrical signals as light pulses, they are free from interference and virtually immune from bugging. Optical cables are smaller than coaxial cables, too. And the frequency of light is so high that the modulation bandwidth is in theory almost infinitely wide.

Fibres are cheaper because they are made of relatively common glass-like materials. They are waterproof and underground links don't stop working when it rains.

But new technology brings with it new problems. Primarily, expensive ancillary equipment is needed to convert electrical signals into light pulses and back again at each end of the fibre.

TRADITIONAL COAX

The importance of optical fibre as a new technology can only be appreciated when the problems of using traditional coaxial cable technology are analysed. Out of sheer necessity, the cable TV and telephone industries have stretched the performance limit of copper coax to breaking point. The more phone calls or TV channels which they can pipe down a wire, the more money they can earn on revenue from subscribers.

A colour TV channel needs a bandwidth of 6MHz, with guard bands to eliminate cross-talk between adjacent channels. So each TV channel carried on a cable link soaks up 8MHz of bandwidth - which is equivalent to around 2,000 telephone speech channels.

Domestic cable distribution systems keep the TV signal in its original analogue form and separate the different channels by stacking them one on top of the other in frequency - Frequency Division Multiplexing. This means that the cable must carry very high frequency signals. But the cable must not leak them or it will act as a transmitting aerial and interfere with broadcast signals. The cable also has to stop unwanted signals, such as ignition spark interference, leaking in.

Hence the use of coaxial cable. This originally had a central copper core surrounded by a solid plastic insulating sheath, itself surrounded by copper braid or foil and extra insulation and protection. The braid acts as a screen to block interference and prevent leakage. Modern coaxial cable is lighter and cheaper, because it uses an air space instead of solid plastic insulation. But early cables of this type, made in the 1970s, broke or kinked. The kinks left gaps in the screen which let stray signals in and out.

To complicate the equation there is a finite limit on the number of amplifiers which can be connected in cascade along a cable run. For conventional amplifiers it is 25; for the more modern expensive low distortion devices it is 40. This puts a finite limit on the total area that the coax cable system can cover.

There must also be an exact match between the electrical impedance and the cable and the amplifier. Nominally cable impedance is 75ohms, but if there is mismatch by even 1 ohm, some of the signal is reflected back down the cable. This causes ghost images. Any impedance mismatch where the cable is split and joined will cause a similar effect.

In practice cable stations do not try and squeeze more than 450MHz out of coaxial cable. To double the capacity it is easier to lay another cable alongside the first. At these frequencies, the signals need regular boosting, ideally every 250 metres. To complicate the issue the channels which are stacked at the higher frequency end of the multiplex spectrum need boosting more than the lower frequency channels, because...
signal loss is not linear with frequency. Under the circumstances it is hardly surprising that telecomms engineers have been looking for an alternative to copper coax!

Early types of air-spaced coax used plastic foam, or cartwheel spokes, to space the screen from the core. But if water gets in at one end, the cable fills like a pipe under capillary action. More modern coaxial cable uses foam with closed cells but this has odd electrical characteristics at high frequencies. For this reason some wide bandwidth coaxial cables have bamboo-like rings along their length. These seal the air space into a large number of discrete, waterproof compartments, as in a submarine.

AMPLIFYING REPEATERS

Electrical resistance is an important factor. With cheap thin cable, more money must be spent on amplifiers to boost the signal along its route. In the early days of cable TV a bandwidth of around 230MHz was thought more than adequate for the relatively few channels distributed. This is why cable performance is often measured in decibels of signal loss per 100 metre run at this frequency.

With 3dB cable an amplifier is necessary every 600 metre or so to ensure strong signals and clear pictures for subscribers. In practice this bandwidth is only enough for around 12 or 18 TV channels. When the number of channels to be carried is raised to 32, the bandwidth must go up to 400MHz. Signal loss increases with frequency, so amplifiers must be used every few hundred metres. If the cable operator cuts cost and uses cheaper coax, with 6dB loss instead of 3dB, then the amplifiers must be spaced at half the distance. If the operator spends more money underground, and lays 1.5dB cable, the distance between amplifiers is doubled.

ANCIENT LIGHTS

The idea of transmitting signals by light is old. In 1880 Alexander Graham Bell, the Scotsman who emigrated to North America and invented the telephone, filed a patent application on "an apparatus for signalling and communicating called a Photophone". This described a primitive system of optical communication.

Bell took light from the sun, a lamp or even a candle, and used a lens to focus it into a beam. He passed this beam through a rotating wheel, or oscillating miniature venetian blind, to modulate it. His photophonic receiver was a lens which focussed the modulated beam onto a very thin hard rubber diaphragm mounted in a large telephone ear piece. According to the Bell patent, when the chopped light beam was focussed onto the diaphragm it created audible sympathetic movements.

Bell soon realised that it was impractical to convert light energy direct into acoustic energy at the receiver. So he replaced the diaphragm with a piece of light sensitive selenium, connected in series with a battery and telephone ear piece. This incoming light beam was focussed onto the selenium which changed its resistance in dependence on the strength of the beams. So the fluctuating beam created a fluctuating resistance in the telephone circuit and this produced a fluctuating current in the ear piece, which in turn produced sound.

Bell built a prototype system which for nearly a hundred years lay in the Smithsonian Institution in Washington DC, until a curator realised what it was.
REFRACTIVE INDEX

In any optical fibre, there is a difference in refractive index between the central core of the glass and the outer region or cladding. This is what causes total internal reflection, in the same way that someone swimming under water cannot see out in all directions to the dry world above. Light reflects from the boundary.

The central core of the fibre has the higher refractive index. If the refractive index sharply changes, between a high centre value and a low outside value, the fibre is said to have a "stepped index". Light transmitted along the fibre reflects many times from the boundaries, in a random fashion. The reflected signals arrive at different times to create a multipath effect. This distorts an analogue signal and introduces errors into a digital pulse train. Fibre of this tape is termed "multimode" because of the many modes of reflections inside the core.

If the refractive index of the glass varies gradually between the centre high value and lower outer value, the result is a "graded index" fibre. There is less risk of multipath distortion.

However, the most elegant approach is to use a stepped index fibre with a very narrow central core, so narrow in fact that a light beam passes down it in a straight line. This is “monomode” fibre. In practice the working core diameter of step index fibre is around 50 microns, for graded index it is over 100 microns and for monomode fibre it is just 5 microns.

It is obviously more difficult to inject light into the end of a fibre whose usable core is 5 microns wide. The light source must be aligned to an accuracy of just 0.5 microns. It is also difficult to join monomode fibre, because the tiny cores must be accurately aligned.

Wide core multimode fibres with a wider optical core are much easier to join and couple with a light source. But spurious reflections limit the working length of multimode fibre. There must be frequent booster stages which receive light, reconstitute and amplify electrical signals, and re-inject light into the next stage of the fibre run. Obviously this puts up the system cost over long distances. So multimode fibre is better for use on short runs and monomode fibre is better for long runs.

LIGHT TRANSMISSION

There are two way of transmitting a signal by light; the light source can be varied in intensity as an analogue of the signal or it can be switched on and off in digital code.

There are two ways of injecting light into a fibre; either with a solid state laser or a solid state light emitting diode. A laser produces a beam which is easier to focus into a tiny monomode fibre, because its light does not spread in frequency as much as the light from an LED. But for multimode fibre, an LED will do as a source.

LEDs are cheaper than lasers but the cost of solid state laser is continually falling, largely as a result of the research and development work done for the consumer electronic boom in optical, video and audio disc players. However, disc player lasers are required only to produce a constant beam of light on the disc surface. The lasers used for optical fibre communication must be modulated at a very high frequency. This explains why professional lasers can cost hundreds of pounds each, compared to the few pounds, or less, now charged for the laser in a disc player.

FREQUENCY FACTORS

The frequency used for optical fibre transmission is an important factor. At some frequencies even the best optical fibre available will absorb or scatter light, whereas at other frequencies it will pass light with almost no attenuation or scattering.

At high frequencies and short wavelengths, below around 0.7 micrometres or microns, spurious reflections kill the signal. At 1.4 microns residual water molecules cause a drastic attenuation peak. At a longer wavelengths, around 1.8 micrometres, there is another water absorption peak. But at 0.8 microns, 1.3 microns and 1.6 microns there are "windows"; an absorption dip and peak in transmission.

Although in theory the bandwidth of a light link approaches infinity, in practice all lasers, photo receptors and conversion circuits have a finite bandwidth of operation. References to bandwidth are also meaningless unless qualified by distance of the run. The longer the run the more the waves spread or the more the digital pulses scatter. So a fibre link which has a bandwidth of 5 GHz over 1 kilometre may have a bandwidth of 1 GHz for a 5 kilometre run and so on. Bandwidth is also limited by the performance of the terminations at the end of the fibre.

British Telecom has for several years been able to transmit four analogue TV channels, of 8MHz bandwidth, down a single optical fibre using frequency division multiplexing with a laser operating at 0.8 microns wavelength.

DISTRIBUTION

Seven of London University's colleges are now linked by an interactive TV and video network, called Livenet, which relies on BT's optical fibre cable. Multimode cables are used for short distance links across London (up to 4 kilometres) and monomode for the longer distances (up to 25 kilometres) out to the Royal Holloway and Bedford New College.
was when engineers at the research laboratories, soon after. BT planned its first optic fibre field trials in 1974 and began them in 1977. In October 1983 BT announced the successful test of a 27 kilometre optical link between Luton and Milton Keynes, and gave the go-ahead for a submarine fibre cable to carry phone calls and data under the Atlantic. This will be ready to use next summer (1988).

INTERCITY LINKS

Currently 51% of BT's inter-city trunk lines are fibre: 15% of calls are carried by microwave link, and 34% by coax. No new coax has been laid since 1983.

Intercity fibre trunks can carry 2000 simultaneous telephone calls in digital code at a data rate of 140 Megabits/second with repeater stations every 30 kilometres. Soon as the fibres improve the spacing will be 50 km, and the data rate will rise to 565 Mbit/s for 8000 simultaneous calls. The longest fibre route without a repeater is from Guernsey to Dartmouth, 135 km. The coax cables still in use as intercity phone trunk lines have a 12 MHz bandwidth, are paired to carry 54000 calls and need repeaters every 2 kilometres.

British Telecom's rival, Mercury, is laying optical fibre links around Britain to provide an alternative telephone service. Mercury recently laid a 51 kilometre fibre between Wolverton in Buckinghamshire and Mercury's satellite earth station near Oxford. Originally it was planned to put a repeater halfway along the run, but the fibre was able to support a 565 Mbit/s data stream without the need for any midpoint amplification. The fibre is of monomode type, with a wavelength of 1.3 micrometres.

When BT's submarine fibre cable to America is ready it will handle data at 280 Mbit/s and, by novel multiplexing tricks, carry 38,000 calls simultaneously. Undersea repeaters are being laid every 50 km. The current coax cable under the Atlantic carries 4246 calls and needs a repeater every 5 km.

TUNING RESEARCH

With sights set on optical multiplexing BT engineers at Martlesham, and the STC laboratories at Harlow, have been researching laser which generate light tuned very tightly to a specific frequency. Numerous discrete light channels can then be separated by slight shifts in light carrier frequency. The use of tightly defined frequencies also limits dispersion and makes it possible to use optical boosters instead of converting light into electricity and then back into light again. With tight light frequency tuning the receiver at the far end of the cable can work on the heterodyne principle, just like a radio receiver; the incoming light signal beats with a beam of locally generated laser light to produce an intermediate frequency of much longer wavelength. So tight tuning dramatically increases the number of information channels that can be sent down existing fibres and makes it easier than expected. "The problems just tumbled as people put their minds to them", said Dr John Midwinter, of the research laboratories, soon after.

British Telecom has for several years been using optical fibre links as telephone trunk lines. This follows a crucial decision made by BT in 1980. That was when engineers at the research laboratories in Martlesham decided to switch work from graded index to monomode fibre. The switch proved far easier than expected. "The problems just tumbled as people put their minds to them", said Dr John Midwinter, of the research laboratories, soon after.

BT planned its first optic fibre field trials in 1974 and began them in 1977. In October 1983 BT announced the successful test of a 27 kilometre optical link between Luton and Milton Keynes, and gave the go-ahead for a submarine fibre cable to carry phone calls and data under the Atlantic. This will be ready to use next summer (1988).

INTERCITY LINKS

Currently 51% of BT's inter-city trunk lines are fibre: 15% of calls are carried by microwave link, and 34% by coax. No new coax has been laid since 1983.

Intercity fibre trunks can carry 2000 simultaneous telephone calls in digital code at a data rate of 140 Megabits/second with repeater stations every 30 kilometres. Soon as the fibres improve the spacing will be 50 km, and the data rate will rise to 565 Mbit/s for 8000 simultaneous calls. The longest fibre route without a repeater is from Guernsey to Dartmouth, 135 km. The coax cables still in use as intercity phone trunk lines have a 12 MHz bandwidth, are paired to carry 54000 calls and need repeaters every 2 kilometres.

British Telecom's rival, Mercury, is laying optical fibre links around Britain to provide an alternative telephone service. Mercury recently laid a 51 kilometre fibre between Wolverton in Buckinghamshire and Mercury's satellite earth station near Oxford. Originally it was planned to put a repeater halfway along the run, but the fibre was able to support a 565 Mbit/s data stream without the need for any midpoint amplification. The fibre is of monomode type, with a wavelength of 1.3 micrometres.

When BT's submarine fibre cable to America is ready it will handle data at 280 Mbit/s and, by novel multiplexing tricks, carry 38,000 calls simultaneously. Undersea repeaters are being laid every 50 km. The current coax cable under the Atlantic carries 4246 calls and needs a repeater every 5 km.

TUNING RESEARCH

With sights set on optical multiplexing BT engineers at Martlesham, and the STC laboratories at Harlow, have been researching laser which generate light tuned very tightly to a specific frequency. Numerous discrete light channels can then be separated by slight shifts in light carrier frequency. The use of tightly defined frequencies also limits dispersion and makes it possible to use optical boosters instead of converting light into electricity and then back into light again. With tight light frequency tuning the receiver at the far end of the cable can work on the heterodyne principle, just like a radio receiver; the incoming light signal beats with a beam of locally generated laser light to produce an intermediate frequency of much longer wavelength. So tight tuning dramatically increases the number of information channels that can be sent down existing fibres and makes it easier than expected. "The problems just tumbled as people put their minds to them", said Dr John Midwinter, of the research laboratories, soon after.

BT planned its first optic fibre field trials in 1974 and began them in 1977. In October 1983 BT announced the successful test of a 27 kilometre optical link between Luton and Milton Keynes, and gave the go-ahead for a submarine fibre cable to carry phone calls and data under the Atlantic. This will be ready to use next summer (1988).
possible to send signals further down a mono mode link, without any boosting along the route.

Clearly the development of lasers and fibres goes hand in hand. New lasers must exploit the optical windows offered by new fibres; new fibres must work at the wavelengths at which lasers lase.

Laser-fibre development is moving in two directions, towards shorter and longer wavelengths. Fibres working with the 1.3 micron window are reaching theoretical limits of performance, with a loss of 0.1 dB per kilometre.

LASING DIODES

Although early fibre links used bulky gas lasers, they are now all solid state diodes. A tiny particle of active material is sandwiched between reflectors in an intergraded circuit. The sandwich filling determines the light output: gallium arsenide for wavelengths of around 0.8 microns and gallium indium arsenide phosphide for around 1.3 microns.

When a semiconductor diode emits light it spreads over a bandwidth of around 100 nanometres; when the diode lases, through oscillation of the light between reflectors, the bandwidth tunes down to around 1 nanometre. STL has been working with diffraction gratings which tune the lased light even tighter. The Philips research lab at Redhill in Surrey has been working on laser diodes with shorter wavelengths. The technique used is MBE, molecular beam epitaxy, a way of growing very thin layers of semiconductor crystal. The semiconductor material is evaporated in a vacuum and beamed onto a heated substrate. It grows in layers at a rate of around one atom per second. By rotating the substrate and switching the beams on and off with a shutter it is possible to build up very thin, very even, layers of gallium and arsenic. When the layers are super-thin, the gallium arsenide behaves in an odd way because its atoms are effectively squashed into two dimensions instead of the usual three.

![Fig.14. Schematic diagram of a semiconductor laser.](image)

The laser sandwich has two layers of aluminium gallium arsenide, with gallium arsenide in the middle. As the thickness of the middle layer goes down, so does the wavelength. Philips has now got down to a layer of around 13 angstrom, which is the equivalent of about five atomic layers. At this thickness, the laser starts emitting light of such short wavelengths and high frequency that it comes into the visible band. The tiny laser chip actually glows red in the dark. The wavelength achieved is around 700 nanometres, which is 0.7 microns. This is very short for a solid state laser. Normally only gas lasers can go that low. Philips believes that with MBE it can go even further, probably down to 0.65 microns.

The new diodes are called "short wavelength quantum well lasers". The "quantum well" describes the filling of the sandwich which is only a few atoms thick. Meanwhile Toshiba in Japan says it already has a semiconductor laser working at a wavelength of 0.656 micrometres. It uses InGaAlP, a layering of indium-gallium-aluminium-phosphorous. Toshiba claims that this is the world's first solid state laser to work at this wavelength.

LONGER WAVELENGTHS

Although all current opto-electronic technology relies on light with a wavelength of below 2 microns, there is mounting interest in light at longer wavelengths. Doctors use 10.6 micron light for surgery. The same lasers are used in the industry, to cut steel. Until now this long wavelength light has been carried by waveguides with mirrors at the corners. Silica glass simply absorbs light of this long wavelength. A new generation of fluoride glass fibres is emerging which can handle light of between 2 and 12 micron wavelength. But fluoride glass is difficult to draw and the fibres are fragile when formed.

STL in Britain has been working with glass fibre made from zirconium fluoride. This carries infra red light efficiently but is still fragile. It can break when bent round a corner. Matsushita in Japan make long wavelength fibre from thallium bromoiodide which claims is both flexible and an efficient carrier for infra red. The surgical laser fibre has such low absorption that it can carry a 30 watt beam without overheating. It bends round a curve of 15 centimetre radius without fracturing.

The Japanese success with infra red fibre will greatly interest the armed forces. When thermal imaging cameras are used on the wings of aircraft for surveillance, the infra red data collected by the sensors has until now had to be converted to electricity before transmission along wires to flight recorders inside the body. With the new optical fibres, the sensor data can be carried as light.

HYDROGEN ABSORPTION

In the new field of optoelectronics there is always something new to learn. It was during blue sky experiments on future fibres a few years ago that BT made a discovery which sent shock waves through the entire optical fibre industry. When glass fibre comes into contact with hydrogen, it absorbs the gas and the chemical structure of the glass modifies. The glass then starts to absorb light at just those frequencies which are used for laser transmission. This makes the fibre permanently useless for communication. Dr John Midwinter of BT described the discovery at the time as "coming like a joker out of the blue". Even a few per cent of hydrogen in the atmosphere surrounding the fibre can cause permanent damage. Fortunately the problem was discovered before trans-Atlantic fibre cables were laid. The galvanic effect of seawater on the steel cladding used to protect a submarine fibre cable could easily have generated hydrogen gas which might then diffuse through the cladding to the glass. Neither steel nor iron can be relied on to block hydrogen molecules, which are very mobile. BT is confident that the problem has been solved by a careful choice of cabling and joint seals. The industry can be excused hoping that there are no new jokers like this still waiting to be discovered.

LASER POWER

We have perhaps become so used to the West being the main source of advanced technology, that the achievements of the Russians are sometimes overlooked.

A notable example was reported recently in The Times when they revealed that the Russians appear to be working towards constructing giant orbiting satellites that will be capable of beaming solar power to specific locations on earth.

These would take the form of huge reflectors, possibly as much as one kilometre across, in geostationary orbit at around 22 thousand miles high. They would concentrate sunlight by a factor of 1000, and feed it to gallium aluminium arsenide solar cells. With an estimated 27% efficiency, the intense power would then be transmitted to earth by laser generators. Operating in the infra-red region of the spectrum, around 500 megawatts could be produced.

A suitable system of satellites could well be in orbit by 1995-2005.
HOW TO USE THESE TRACKS

FIRST MAKE TRANSPARENT COPY
(We regret that we cannot supply transparent copies of PCB track layouts.)

STUDIO COPY METHOD
Ask local photographic studio to produce high contrast 1 to 1 positive transparency.

HOME PHOTOGRAPHY METHOD
Using even, bright illumination, photograph track onto fine grain black and white negative film. Develop film for high contrast. Photographically enlarge image up to lifesize, and print onto high contrast lithographic cut film, such as Agfa Copyline HDU 3P Type 2. Develop in Agfa Litho G9OT litho developer, or similar.

PHOTOCOPY METHOD
Ask local photocopy shop to make a good contrast copy onto acetate film.

(Some copiers are better than others - shop around.) Then touch up tracks with dense black ink, or photographic opaque ink.

ISODRAFT METHOD
Have a normal photocopy made, ensuring good dense black image. Spray ISODraft Transparentiser onto copy in accordance with supplied instructions. ISODraft is available from Cannon & Wrin, 68 High Street, Chislehurst, Kent. Tel: 01-476 0935.

PAINSTAKING METHODS
Draw image by hand onto clear film or drafting film using dense black ink. Draw direct onto copper surface of PCB fibreglass, using etch-resist inking pen. Use etch resist PCB tracks and pads, taping direct to copper surface, or onto drafting film.

NEXT PRINT ONTO PCB
Place positive transparency onto photosensitised copper clad fibre glass, cover with glass to ensure full contact. Expose to Ultraviolet light for several minutes (experiment to find correct time - depends on UV intensity).

Develop PCB in Sodium Hydroxide (available from chemists) until clean track image is seen, wash in warm running water. Etch in hot Ferric Chloride, frequently withdrawing PCB to allow exposure to air. Wash PCB in running water, dry, and drill holes, normally using a 1mm drill bit.

(PCR materials and chemicals are available from several sources - study advertisements.)

* CAUTION - ENSURE THAT UV LIGHT DOES NOT SHINE INTO YOUR EYES. PROTECT HANDS WITH RUBBER GLOVES WHEN USING CHEMICALS.

ALTERNATIVE METHOD
Buy your PCB ready made through the PE PCB SERVICE, most are usually available - see page 60.
or hallway, the unit will provide effective detection of any intrusion.

This tried and tested control unit represents the ideal value for money in control systems, providing the following features:

- Built-in electronic siren drives 2 loud speakers + Provides exit & entrance delays together with fixed alarm time + Battery back-up with trickle charge facility.
- Survives piercing of glass or window, using special incandescent pyroelectric sensor means that changes in ambient temperatures are ignored, thus providing a stable and reliable performance. Easily installed in a room or hallway, the unit can be fitted in a few minutes.

CA 1382 ADVANCED CONTROL UNIT that's simple to install and operate.

- Full automatic diagnostics.
- Automatic entry & leaving, Alarm Sounded memory.
- Alarm Sounded input during delays.
- Built-in electronic siren, loud, powerful, fully instructions supplied.

The latest control panel provides effective & reliable control for all types of security installations, its advanced circuitry checks the loop circuits every time it is switched on, preventing incorrect operation. Using a simple 3 wire connection the unit is then connected to the RISCO pyroelectric sensor, the system is then ready to operate.

In addition it provides 24 hr. personal protection around the house, so in a severe case it is supplied with a warning siren which can be fitted inside the house.

Available in kit form with fully instructions. Only £44.95 + VAT built electronics, £39.95 + VAT.

CA 1250 LOW COST ALARM CONTROL MODULE

- 12 metre detection range.
- Size only 80x80x40mm. Detects intruders up to 12 metres away.
- 24 Detection zones.
- Built-in electronic siren drives 2 loud speakers + Provides exit & entrance delay together with fixed alarm time + Battery back-up with trickle charge facility.
- Survives piercing of glass or window, using special incandescent pyroelectric sensor means that changes in ambient temperatures are ignored, thus providing a stable and reliable performance. Easily installed in a room or hallway, the unit can be fitted in a few minutes.

DP 3570 LIGHTING CONTROLLER

This versatile module provides discreet switching of lights for one set times between 10 secs and 5 mins. The timed period being triggered by the opening or closing of an external sensor input. The built-in 12V power supply is available for operating external sensors. Suitable plastic enclosure £25.95 + VAT.

FL 500 QUARTZ HALOGEN FLOOD LIGHT

Whilst intended for security lighting applications, this unit is suitable for lighting patios, pathways and gardens etc. Supplied complete with 500W lamp, protective grill, £14.95 + VAT.

US 5063 DIGITAL ULTRASONIC DETECTOR

- 3 levels of discrimination against false alarms + Crystal control for greater stability + Adjustable range up to 25ft + Built-in delays + £39.95 + VAT

ULTRASONIC MODULE ENCLOSURE

Stainless steel enclosure for housing us 5063, supplied with locking screws, and rings. Only £2.95 + VAT.
HART - Hi-Fi Kits

Offer you a route to the very best Hi-Fi sound at bargain prices. Consider these star features:

- **Up to minute Circuit design by John Linsley-Hood and other famous writers.**
- **Components specified by THE DESIGNER for ultimate sonic performance given you the superior sound quality you want.**
- **Better value for your money. HART KITS have a life long 5-year norm.**
- **In order to consolidate from a establishment in 1965 and producing electronic kits since 1960.**

Bi-Pak Bargains

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Assorted Resistors, metal value and types</td>
<td>£1.00</td>
</tr>
<tr>
<td>2</td>
<td>Carbon Resistors</td>
<td>£1.00</td>
</tr>
<tr>
<td>3</td>
<td>Metal Film Resistors</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

Complete Stereo Record/Play Kits

- **Send for your free copy of our LISTS. Overseas please send 2 S. A. E. to cover postal or Air Post as required.**
- **We have a large range of kits for any requirement.**

LINSLEY-HOOD CASSette recorder CIRCUITS

- **One inexpensive test cassette enables you to set up VU level, head alignment and get your order even faster. Goods normally required.**
- **Send us your order details and we will send you a free copy of our LISTS. Overseas please send 2 S. A. E. to cover postal or Air Post as required.**

HART Triple-Test CASSETTE TC1

- **One inexpensive test cassette enables you to set up VU level, head alignment and get your order even faster. Goods normally required.**
- **Send us your order details and we will send you a free copy of our LISTS. Overseas please send 2 S. A. E. to cover postal or Air Post as required.**

CASSETTE HEADS

- **Send for your free copy of our LISTS. Overseas please send 2 S. A. E. to cover postal or Air Post as required.**

HART Hi-Fi Kits

Offer you a route to the very best Hi-Fi sound at bargain prices. Consider these star features:

- **Up to minute Circuit design by John Linsley-Hood and other famous writers.**
- **Components specified by THE DESIGNER for ultimate sonic performance given you the superior sound quality you want.**
- **Better value for your money. HART KITS have a life long 5-year norm.**
- **In order to consolidate from a establishment in 1965 and producing electronic kits since 1960.**

Bi-Pak Bargains

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Assorted Resistors, metal value and types</td>
<td>£1.00</td>
</tr>
<tr>
<td>2</td>
<td>Carbon Resistors</td>
<td>£1.00</td>
</tr>
<tr>
<td>3</td>
<td>Metal Film Resistors</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

Complete Stereo Record/Play Kits

- **Send for your free copy of our LISTS. Overseas please send 2 S. A. E. to cover postal or Air Post as required.**
- **We have a large range of kits for any requirement.**

LINSLEY-HOOD CASSette recorder CIRCUITS

- **One inexpensive test cassette enables you to set up VU level, head alignment and get your order even faster. Goods normally required.**
- **Send us your order details and we will send you a free copy of our LISTS. Overseas please send 2 S. A. E. to cover postal or Air Post as required.**

HART Triple-Test CASSETTE TC1

- **One inexpensive test cassette enables you to set up VU level, head alignment and get your order even faster. Goods normally required.**
- **Send us your order details and we will send you a free copy of our LISTS. Overseas please send 2 S. A. E. to cover postal or Air Post as required.**

CASSETTE HEADS

- **Send for your free copy of our LISTS. Overseas please send 2 S. A. E. to cover postal or Air Post as required.**

TEACHER POWER

BY TIM PIKE

A series of designs for general purpose low voltage power supplies suitable for use with GCSE projects

Power is the sine qua non of electronics, so your power supply will be one of the most important projects you construct. Learning to wire up a mains supply safely is also important. Read on and take your choice.

For the third project in this series I have chosen to go back to square one and to consider a number of relatively simple designs for low voltage power supplies which could be used to run any of the other projects in this series. Readers who have followed the series so far will recall that the first project (Teacher Timer, PE Sept 87) required a dual ± 9V supply which it was suggested might conveniently be produced by using two PP3 batteries.

The second project (Teacher Locker, PE Oct 87) required the use of just one 9V supply. In general, many projects are designed around the use of a single 9V supply because the PP3 battery is so simple to use and takes up relatively little space. TTL devices which work on a +5V supply can be accommodated if a simple 5V regulator circuit is added.

The intention in this article is to develop a number of circuits for low voltage supplies with a range of useful output voltages which between them will be suitable for any GCSE project and indeed for almost all general practical work.

SAFETY CONSIDERATIONS

It is impossible to lay too much emphasis on the safety requirements of circuits of this type. It is also most important for teachers and students alike to consult the examination syllabus which they are following to find out exactly how much of the theory and practice of power supply circuits they need to cover.

Certainly no examination course at this level (GCSE) will ever require students to work with mains voltages. My research leads me to conclude that for this very reason a number of the GCSE syllabuses do not even mention transformers. I think that this is unfortunate if only because the transformer principle is one so fundamental to electromagnetic work in physics and to many useful devices in practical electronics.

In order to offer a complete picture of the circuits which I shall develop in this article, I am going to start from a mains input and thereby include the transformer stage. Each circuit will clearly show an alternative which requires only a very low voltage a.c. input, effectively working from beyond the transformer stage. By this means I hope to satisfy both the educational safety requirements of the project and yet offer the enthusiast who is quite at home with mains voltages something complete.

Returning for a moment to the general safety requirements, I would draw the attention of all readers to the excellent article on Electrical Safety by Ray Stuart (PE May 87). I will be stressing a number of safety features along the way, all of which were discussed in detail in that article.

BUILDING BLOCKS

In its very simplest form a mains powered low voltage supply will consist of three basic stages: a transformer to reduce (step down) the mains voltage to some much lower value and to provide isolation from the mains, a rectifier to convert the a.c. output of the transformer to a very crude form of d.c. and a smoothing circuit to improve the quality of the d.c. output (Fig.1).

Already we have used a number of technical terms which may be unfamiliar to some students. A transformer is a device which consists of two quite separate coils of insulated wire wound onto a common core or former. One coil usually has many more turns of wire than the other. If the transformer is being used to step down the voltage from a higher value to a lower one then the input coil (the primary) will have the larger number of turns. The turns ratio defines the ratio of:

No. of turns on secondary winding / No. of turns on primary winding

Voltage induced in secondary / Voltage applied to primary

Once the transformer is made to work...
by connecting a load to the secondary coil, the energy being drawn must be supplied from the primary coil and therefore from the mains input. The transformer operates by converting the electrical energy from the current in the primary coil into an alternating magnetic field in and around the core of the transformer.

This magnetic energy is reconverted to electrical energy in the secondary coil by electromagnetic induction. Inevitably there are energy losses in this double conversion process. Some energy is lost as magnetism but more can be lost as heat. You will find that the core of a transformer becomes quite warm after it has been working hard for a little while.

Various steps are taken to keep energy losses to the absolute minimum. These include using a very good conducting material for the coils (usually copper wire), 'laminating' the core of the transformer (this means making it of lots of thin strips of material stuck together instead of out of one solid piece) and using a good magnetic material for the core itself. (Soft iron is the most common for these types of transformer).

As there is no electrical connection between the two coils of wire, the output is said to be 'isolated' from the input. This is one very important safety feature of the transformer.

The rectifier may be nothing more than one semiconductor diode arranged so that it passes the positive half cycles of the alternating current but blocks the negative half cycles. This very simple form of rectification is called 'half wave rectification' because the output consists of either the positive or the negative half waves of the a.c. input.

The smoothing circuit may be one fairly large value electrolytic capacitor acting as a temporary reservoir for storing electrical charge. When the half cycle which is being passed by the diode comes along, the capacitor charges up and then releases its charge during the half cycle when the diode is blocking.

Fig.2a. shows the arrangement of these three components to form a half wave power supply circuit. Notice the first of a number of safety features which we will build into these designs right from the start. A neon indicator lamp is connected across the primary winding of the transformer to show the presence of the mains input. A double pole On-Off switch is used so that both the Live and Neutral connections from the mains are disconnected when the switch is off. A suitable fuse is included in the live input. Fig.2b shows the same principle but working from an existing a.c. low voltage supply.

If we examined the signals in this circuit at four key points we would find that the input from the mains and the output from the transformer are both pure sine waves (Fig.3a). Transformers preserve frequency and so the period of the waves would be about 0.02 seconds corresponding to a 50Hz input waveform.

The simplest full wave circuit requires the use of a centre-tapped mains transformer. (Fig 4a). Two identical secondary windings connected in series will produce the same effect. If you are avoiding the use of mains transformers within your own construction and you wish to simulate this method by using commercial low voltage a.c. supplies then you can connect two of these in series and use the mid-point as the centre tap equivalent. But beware! Some commercial low voltage supplies will work against each other if connected incorrectly. To ensure that this is not happening, start each supply on a very low output value (say 1V). Make sure by using an a.c. voltmeter or an oscilloscope that the combined outputs are what you expect.

In practice, the simple half wave circuit is rarely used because it is very inefficient. It is clear from the diagrams of Fig.3 that somewhat less than half the maximum transformer output power can possibly appear at the d.c. output. Ignoring the smoothing effect of the capacitor it can be seen quite clearly that the rectified output consists of only one half of the original waveform and that even this half will have a slightly reduced amplitude. Very large smoothing capacitors are needed to cover the relatively long intervals between pulses of charge from the rectified output. To some extent at least the use of a full wave rectifier circuit improves the situation and reduces the demands on the smoothing capacitor.

The full wave rectifier circuit (Fig.4) looks a little more complicated because we have to ensure that half the transformer's output is not connected to one of the diodes. The centre-tap equivalent of the mains transformer is disconnected by the double pole switch and the output of the transformer is connected across the diode, D1.

Fig.3. Half wave PSU waveforms (a) a.c. output at T1. (b) Output after D1. (c) Output at CI.

If a fairly large value electrolytic capacitor is connected across the output. Whatever value is chosen for C1, it is impossible to provide a perfectly smooth d.c. output.

FULL WAVE RECTIFICATION

The principle of the full wave rectifier circuit is very similar to that of the half wave circuit, but there is an extra diode to ensure that the output is always connected to the transformer. The full wave circuit gives a far better approximation to a perfect direct voltage supply. The diagram in Fig.4a is the version for the mains supply and Fig.4b shows the version for lower voltages.

The simplest full wave circuit requires the use of a centre-tapped mains transformer. (Fig 4a). Two identical secondary windings connected in series will produce the same effect. If you are avoiding the use of mains transformers within your own construction and you wish to simulate this method by using commercial low voltage a.c. supplies then you can connect two of these in series and use the mid-point as the centre tap equivalent. But beware! Some commercial low voltage supplies will work against each other if connected incorrectly. To ensure that this is not happening, start each supply on a very low output value (say 1V). Make sure by using an a.c. voltmeter or an oscilloscope that the combined outputs are what you expect.

The smoothing circuit may be one fairly large value electrolytic capacitor acting as a temporary reservoir for storing electrical charge. When the half cycle which is being passed by the diode comes along, the capacitor charges up and then releases its charge during the half cycle when the diode is blocking.

Fig.2. Half wave PSU. (a) Mains version. (b) Low V.a.c. version.

Fig.4. Full wave PSU. (a) Mains version. (b) Low V.a.c. version.
would expect (i.e. the sum of the two separate outputs). Once you are sure about this it is safe to turn them both up to whatever level you require. Do this before you connect the load across them. It is also quite important to ‘balance’ the two L.V.U.s if you are using this method. Try to make sure that they are contributing equally to the total a.c. output (Fig.4b).

The two halves of the secondary (or the two L.V.U. outputs) are effectively fed to separate half wave rectifying circuits but operating in a push-pull mode. Diode D1 conducts on one half-cycle; diode D2 conducts on the other half-cycle, but in both cases the pulse of charge received by C1 is in the same direction. As the capacitor now receives two charges per cycle, there is less time for the capacitor to discharge between pulses and therefore a smaller capacitor will give the same level of smoothing.

The diagram of Fig.5 show the output waveforms at the same key points in circuit as for Fig.3.

Fig.5. Full wave PSU output waveforms. (a) At T1. (b) At D1. (c) At D2. (d) At D1/D2, without C1. (e) At D1/D2 with C1.

One other point worthy of mention here is that the frequency of the ripple from the full wave rectifier circuit is twice what it was from the half wave circuit. This means that with the U.K. mains operating at 50Hz, the full wave ripple frequency will be at 100Hz. This might be significant in an audio system where ‘hum’ from the mains will form part of the unwanted noise signals. A signal at 100Hz is more likely to be audible than one at the same intensity at 50Hz. The human ear is most sensitive to low intensity sounds at a mid-range frequency of about 1kHz. A hum at

100Hz is therefore a little closer to this than one at 50Hz.

This slight disadvantage does not outweigh the considerable advantages of the full wave method over the half wave method in terms of the ease of smoothing.

Some students find it very difficult to memorize or to work out the correct arrangement of diodes. Notice though a number of important features: Firstly that diodes on opposite sides of the ‘square’ face the same way. Secondly, that at corners where the a.c. supply is

Fig.6. Basic bridge rectifier circuit (mains version)

THE BRIDGE RECTIFIER

A bridge rectifier is an arrangement of four rectifier diodes which allows full wave rectification without the need for a centre-tapped transformer. Since just one secondary winding is now able to provide two charging pulses per cycle, this circuit is also much more efficient than either of the others. The only penalty is that there are now two diodes in the conduction path at any one time. This means that there will be a voltage drop of around 1.4V rather than the 0.7V experienced previously. Fig.6 shows the basic arrangement for a full wave bridge rectified circuit. Again, note that the mains connections and transformer could be replaced by a commercial a.c. low voltage supply with the same rectifier and smoothing components attached.

Fig.7. Schematics showing current paths through bridge on each half cycle.

The waveforms produced are exactly the same as in Fig.5. for the centre-tapped full wave supply.
LOADING EFFECT

All the supplies considered so far are of the unregulated type. This means that the output voltage can vary considerably according to changes elsewhere.

It is tempting to think that the most likely cause of output voltage variation would be fluctuation in the mains supply voltage. In practice this is relatively unimportant. Suppose the mains voltage dropped by 12V from its nominal value of 240V. This represents a 5% reduction. All voltages would therefore be reduced by 5%. If our d.c. supply was intended to give +9V out, then it would fall to 95% x 9V is 8.55V. It is unlikely that this would be too devastating. Such relatively large changes in the mains supply voltage do not normally occur and so we need not look elsewhere for the culprit.

In fact most of the variation in output voltage of an unregulated supply is due to the loading effect of the supply. The secondary winding of the transformer and the other components used in the output circuit will all contribute to a global resistance figure. This might otherwise be called the output impedance of the power supply. When current is drawn from the supply, a voltage is developed across this output impedance proportional to the amount of current being drawn. This loss of voltage is subtracted directly from the available output voltage. So the more current is drawn, the lower the output voltage becomes.

CURRENT ALLOWANCE

To a certain extent this is allowed for in the design of transformers. A transformer which is quoted as being 12-0-12 volts at 2.5 amp is designed to give two separate 12V outputs each delivering a current of 2.5A to its load. Alternatively one 24V output could be obtained, again at 2.5A. Such a transformer would be rated as 60VA. (24V x 2.5A = 60VA). Note that the electrical unit of power (the Watt) is not used here. This is because the transformer is not consuming energy at the rate of 60W – ideally it is consuming nothing itself! If a much lower current (say only 0.5A) was drawn from the transformer then the output voltage of each winding would be much more than 12V, possibly even as high as 18V for an unloaded transformer.

Many items of electronic equipment use varying amounts of current at different times. Certainly the current drawn by analogue amplifier circuits and by digital switching circuits might vary enormously from a fairly low background level to peaks which might be a hundred times bigger. As the current drawn from the supply rises and falls so the output voltage will fall and rise. We have already seen that there can be as much as a fifty percent increase in nominal output voltage if the circuit is practically unloaded.

REGULATED SUPPLIES

In order to overcome these difficulties some form of ‘regulation’ or ‘stabilisation’ of the output voltage is required.

The simplest form of voltage regulator is the Zener shunt circuit shown in Fig.8. A Zener diode is chosen to give the required output voltage or as near to it as the preferred values will allow. At voltages below the Zener voltage, the diode has a very high resistance and therefore behaves like an open circuit. At or very close to the Zener voltage, the diode suddenly starts to conduct with an effective resistance of only a few ohms. Whatever excess voltage exists between the input voltage and the Zener voltage is dropped across the series resistor. Further increases in input voltage cause the diode to conduct even more current and thereby increase the voltage dropped across the resistor. By this means the output (stabilised) voltage is kept within a very small margin of the chosen Zener voltage.

There is one problem with this simple arrangement and that is that the rapidly changing currents flowing in the semiconductor materials of the Zener diode serve to generate large amounts of electrical noise. In some applications this would be very annoying. A decoupling capacitor in parallel with the diode works well at attenuating (cutting down) the amount of noise.

Another more serious problem applies to the lower voltage values of Zener diodes. Theoretically the Zener diode should maintain a steady output voltage over a considerable range of output current. The Zener voltage values larger than about 6V do this within about 5% of their stated value. The smaller Zener values (e.g. 3V) may vary from only 2V at zero current output to 5V at the stated maximum current. Fig.9 shows (a) the ideal Zener response at 6V, (b) the response of a typical Zener diode at 10V and (c) the relatively poor response of a typical Zener diode at 2.4V.

One other extremely important feature of the Zener diode is that it is always used in reverse bias (Fig.8). If the diode is connected in forward bias then it behaves more or less as an ordinary silicon diode with a steady voltage drop of around 0.7V across it, regardless of its Zener value.

THREE TERMINAL REGULATORS

There are many clever ways of designing regulator circuits around the Zener principle. One or more transistors can be added to give more output current or even to produce current limiting (automatic shut-down if too much current is drawn).

Many of these sophisticated design problems have been overcome by the introduction of whole families of high performance monolithic voltage regulators at very low prices. Of these the 7805 is probably the best known because it has appeared in many voltage regulator circuits for well over a decade. Nowadays there are regulators available to give stable voltages from +5V to +24V, from −5V to −24V and even adjustable regulators working up to 125V. Essentially the price you pay determines how much current you can draw. The faithful old 7805 will happily give at least 1A if connected to a reasonable heat sink.

All of these devices consist of three terminals. An input (unregulated), an output (regulated) and a common connection. (Fig.10). Most monolithic regulators have current limiting output.
short circuit protection and very often include 'foldback' current limiting. This means that if the device is overloaded (i.e. an attempt to draw too much current from it) then not only does it limit the maximum current which it will provide but it actually reduces it, until the overload is removed.

David Silvester discussed this principle in last month’s issue. Many devices also include ‘thermal shutdown’ which reduces the output current if the device starts to overheat. In short, these integrated circuits are very hardy and not easily destroyed. Their one weakness is that they can be damaged by an excessive input voltage. A device intended to give an output of, say, 5V requires a minimum input voltage of 7V and a maximum input voltage of around 25V. There is still considerable scope left to choose the transformer and rectifier to match these requirements.

A practical circuit for a supply capable of delivering up to 1A at a fixed voltage of +12V is shown in Fig. 11. If you are not building the mains transformer into your circuit then you will require two identical low voltage (12V min) a.c. supplies connected in series as in Fig. 4b.

PEAK VALUES

It should be noted that a.c. voltages are normally expressed as r.m.s. values (root of the mean square) and that the actual peak value is approximately 1.41 times greater.

MULTIPLE OUTPUT VOLTAGES

To be of general use our final supply needs to provide the following minimum specification:

(a) ±9V outputs to act as battery eliminators for projects where PP3 batteries are suggested.

(b) +5V output for TTL use.

(c) A variable 0–7.5V output for general practical use.

An output current of up to 1A should be sufficient for each of these voltage sources.

It is not difficult to produce a dual rail output if we are using a centre-tapped transformer. The +5V can be derived from the +9V output and does not need a separate source. We will need to protect the supply against misuse.

VARIABLE VOLTAGE SUPPLY

Although there is no real need to start from a regulated output if the purpose of this section is to allow variable control from 0V to 7.5V it is still an advantage to do so for two reasons.

Firstly we have (or will have) a +9V regulated supply available anyway and secondly by using this as the source, we can benefit from the current limiting features of the regulator.

A power transistor will provide the necessary output providing we can control its base current carefully. GCSE students should be aware of the ways in which two transistors can be coupled to give such accurate control. One method (the Darlington pair) was mentioned in the Teacher Timer article, so this time we will use the Super Alpha Pair configuration. An ordinary general purpose transistor (e.g. BCI06) has its base run from a simple potential divider circuit. The emitter current from this transistor becomes the base current to the second stage which will then give the required range at whatever current we choose. A suitable diode in reverse bias is connected across the output of the power transistor in case inductive loads are driven which might then generate high reverse voltages on the emitter. A 1k resistor is also included as a dummy load. (Fig.12).

DIODE BOOSTER

There is however a little trick which we might employ to 'boost' a 5V regulator to give 9V. If a 3.9V Zener diode is inserted between the common terminal and the common rail (in reverse bias, of course) then the output voltage will be increased by this same amount.

Since we know that the maximum current drawn from the regulator will not exceed 1A, a 1W Zener diode will probably suffice, though a 5W will certainly guarantee that we do not damage this device. Fig.13 gives the method for increasing +5V to +8.9V which is surely good enough. Alternatively a chain of ordinary silicon rectifier diodes in forward bias could also be used. Six diodes would give about 4.2V needed to increase from +5V to about +9V. The same technique can be used to obtain −9V from −5V but care needs to be taken with the polarity of the diode(s).

THE FINAL DESIGN

Since we require a +5V output for TTL use, the method used above to obtain +9V from +5V simply needs to be cut out to give the +5V output. The switch will therefore need to short out the Zener diode when +5V is required. The final design incorporating all these ideas is given in Fig.14. Coloured LEDs are used to monitor the ‘active’ outputs for each position of the rotary switch, S2. This switch, you will note, prevents more than one type of output being used at once. The user has the choice of ±9V or +5V or the variable output. Fig.15 gives the required connections for switch S2 which must have 3 poles and 3 ways (or more).
CONSTRUCTION AND TESTING

One possible printed circuit layout for the final design is given in Fig.15. As with previous projects, students should be encouraged to develop their own ideas. One particular requirement of this project though is that as a power supply it will develop fairly high currents and may involve the use of mains voltages. Both of these factors make it essential that the PCB design is well organised with strong, wide tracks to carry the current.

As with previous designs, mains voltages can be avoided. The transformer is substituted by a pair of commercial a.c. supplies each producing 12V to 15V. The rest of the circuitry can remain the same. If the full project is attempted then the choice of transformer and rectifiers is important.

The transformer must have two secondary windings, each giving an a.c. output of around highest d.c. output required. The 9V regulators will require at least 11V input to operate properly. A 12-0-12V transformer will do but a 15-0-15V device could be used. As we have limited the output current to 1A, a 30VA transformer will suffice. Depending on your supplier, you may need to buy a 50VA device.

The rectifier diodes must have a current rating at least equal to the maximum output current. Their peak inverse voltage (p.i.v.) must be at least three times the secondary r.m.s. voltage. So in this case the diodes must be 1A minimum and p.i.v. at least 90V. My choice is therefore the IN4002 diodes.

FUSING AND EARTHING

Great care needs to be taken with the construction of this device. A metal box, rather than a plastic one, enables easy and safe earthing to the mains earth pin. An internal mains fuse rated at 250mA will protect the primary winding of the transformer. In case the smoothing capacitors or rectifiers go short circuit a fuse in the secondary is also a good idea. This must be placed in the centre tap connection and should be rated at 2A.

An anti-surge fuse is advisable in case the initial charging current of the capacitors is sufficient to destroy the 'quick blow' type. A proper rubber grommet and cable clamp or alternatively a cable gland must be used for cable entry and fixing.

Ventilation holes must be drilled in the case, if these are not already present, but not so as to allow access to mains voltages even with a small screwdriver. You will need to work this out for yourself once you have selected your container.

NOTE: The centre and left hand legs of IC2 should be bent and swapped over.

Fig.15. Printed circuit board and wiring details.
COMPONENTS

RESISTORS
R1 1k
R2-R4-R5 560R (3 off)
R3 330R
All 0.25W carbon 5%

POTENTIOMETER
VR1 5k Lin Rotary

CAPACITORS
C1-C2 1000µF
25V electrolytic (2off)
C3-C4-C5-C6 220nF (4off)
C7 100nF

SEMICONDUCTORS
D1-D4-D7 1N4002 (5off)
D8-D11 LED, Yellow (2off)
D9 LED, Red
D10-D11 3V9 Zener (2off)
TR1 BC108
TR2 TIP31A
IC1 7805
IC2 7905

MISCELLANEOUS
FS1 20mm 250mA fuse (quick blow)
FS2 20mm 2A fuse (anti-surge)

S1 DPDTrains toggle switch
S2 3-pole 3-way rotary switch (see text)
T1 I2-0-12V, 30VA mains transformer (see text)
LP1 Mains neon with internal resistor

Box to suit, 13A mains plug, mains cable, panel mounting fuseholders (2 off), knobs, 4mm sockets (5 off), cable clamp/grommet, wire, solder, printed circuit board.

The PE PCB Service can supply the PCB. Magenta can supply a full kit of parts, including the PCB.

SAFETY FIRST
Potentially this is the most useful project of any that you might attempt. It is also the most dangerous. Do not work with mains voltages unless you are confident that you know what you are doing. Even if you are confident, take care. If in doubt, seek advice. I hope the finished product lives up to your expectations and saves you money in batteries!

TABLE 1: TESTS TO CHECK FOR CORRECT OPERATION

T1 (centre tap)	0V a.c.
T1 (outputs)	12V a.c. min.
7805 input	+15Vd.c. min.
7905 input	-15Vd.c. min.
7805 common	5.6Vd.c.
7805 output	5.6Vd.c.
7905 output	5.6Vd.c.
Collector TR1/ TR2	8.9V d.c.
S2 to variable O/P	8.9V d.c.
Collector TR1/ TR2	8.9V d.c.
S2 other positions	0V d.c.
Base TR1	0 to 7.5V d.c. variable
+5V socket	5.6V d.c. (yellow LED ON)
S2 to +5V	5.6V d.c. (red LED ON)
-9V socket	5.6V d.c. (red LED ON)
S2 to +9V	5.6V d.c. (red LED ON)
S2 to variable O/P	0 to 7.5V d.c. (depending on VR1)

Some of the chips from this month's and last month's circuits have been chopped and their pins jumbled. Can you name the chips chosen?

Also tell me which features or projects in this month's issue you found most interesting, and which you found least interesting - state as many as you like.

Answers to the editorial office to arrive before the publication date of the next issue. The first three senders of the correct chip identity answers will receive 12 month's free subscription to PE. Where there is ambiguity through chips having identical pin-outs, either answer is acceptable.

First 50 entrants will receive a valuable set of CMOS pin data references. Answer and another CHIPCHOP puzzle next month. The Editor's decision is final.

Follow the series and collect the data!
For Kits & Components - the easy way - with

Send 50p* & SAE for CATALOGUE

ORDERS: RING (01) 567 8910 - 24 HRS.

DISCO LIGHTING KITS

DL1000K This value-for-money 4-way chaser features by-directional sequence and dimming. 1kW per channel.

DL2100K A lower cost uni-directional version of the above. Zero switching to reduce interference.

DLA1 Optional otp input allowing audio or light response.

DL3000K -3 channel sound to light kit features zero voltage switching, automatic level control and built-in microphone. 1kW per channel.

THE DL8000K

The DL8000K is an 8-way sequencer kit with built-in opto-isolated sound to light input which comes supplied with a pre-programmed EPROM containing EIGHTY 80 different sequences including standard flashing and chase routines. The kit includes full instructions and all components (even the P0D connectors) and requires only a box and a control knob to complete. Other features include manual sequence speed adjustment, zero-voltage switching, LED memo and light and sound to loudspeaker connection. And the best thing about it is the price...

ONLY £28.50.

HIGH SECURITY LOCK KIT

Designed for use with our lock mechanism (£10 50s 5.89s & £4.50 each). This kit also includes a switch to operate from a 9V to 150V supply drawing a standby current of only 50uA. There are over 5000 possible 4-digit combinations and the sequence can be easily changed. To make things even more difficult for an unauthorised user an alarm can be sounded after 3 or 9 incorrect entries - selectable by means of a switch on the keypad. The alarm can be switched off by pressing any key on the keypad, by inserting a key or by pressing a key on the keypad. The kit will also operate from a 9V to 150V supply, with 150V surge protection.

VERSATILE REMOTE CONTROL KIT

This kit includes our lock mechanism (50s £4.50 each & £10 50s 5.89s for the lock mechanism). The kit also includes a switch to operate from a 9V to 150V supply drawing a standby current of only 50uA. The keypad lock mechanism is connected to a sensitive RC receiver, and can be used to switch up to 16 items of equipment on or off remotely. The outputs may be switched (to the last recorded code) by momentary (or during transmissions) by specifying the decoder IC and a 5V stabilised supply is available to power external circuits. Supply: 240V AC or 15V DC at 1mA. (Note: For transmitting with this output, transmitting must be done by means of a switch, not a key or other device. The kit is available with or without a switch. The switch is used to prevent the kit from being used as a keyless entry device.)

HOME LIGHTING KITS

EDINBURGH, 6th - 8th NOVEMBER

TWO GREAT HOBBIES

The new PE 30 + 30 integrated Amplifier (featured Practical Electronics Feb - April 87)

The PE 30 + 30 integrated amplifier is the first to benefit from Graham Nalty's research into Temperature Generated Distortion in transistors. As a result it exhibits a smoothness and musicality normally only expected from expensive valve amplifiers. Advanced power supply electronics and the use of H020 precision resistors in critical positions enables this kit to achieve a greater musical pleasure from your records, CDs and tapes. Yet you can buy the complete kit from AUDIKITS for under £70 to build it yourself.
This basic interface controls a d.c. motor from six output port lines with 16 speed control stops. Designed to control motors up to 6V/1A, from a BBC-B, it can be adapted for larger motors and other computers.

The widespread use of computers has led to many applications beyond word processing, games, and business uses. In many fields there is a need for interfacing with mechanical input and output devices. Inputs from sensors such as switches, potentiometers, and photocells provide the computer with a 'feel' for its environment. In response to these signals the computer will frequently be required to produce outputs via such devices as solenoids, stepping motors, and d.c. motors.

The circuit presented here enables the speed and direction of a d.c. motor to be controlled by six computer output port lines. The controller contains a 4 bit D to A converter and so gives speed control in 16 steps from zero to maximum. Two other control bits are used to select the direction of rotation and to switch power on and off (enable/disable). The motor drive circuitry uses current sensing 'negative resistance' feedback to stabilise motor speed regardless of the load applied.

In its standard form the circuit will power motors requiring up to 6 volts and 1 amp. Alternative power supply arrangements and amplifier scaling factors can easily be used to extend the controller to much larger drives.

CIRCUIT

Fig. 1 shows the circuit diagram which can be divided into three parts: Power Supply, D to A Converter, and Motor Driver.

The power supply is a standard arrangement with unregulated ± 9 volt outputs and a regulated 5 volt output.

A-D CONVERTER

The A-D converter consists of IC1a-d and IC2a. Four output lines PB0 – PB3 from the computer drive a binary weighted set of resistors R1 to R4/R5 gates IC1a-d. The other inputs of the gates are paralleled and driven by inverter transistor TR1. This provides a select/deselect function. When selected the output of each gate goes from OV to +5V and injects a current into the inverting op-amp IC2a. The input of IC2a is a 'virtual earth' point the voltage of which is maintained at OV by current feedback via R11, which is exactly equal and opposite to the current injected. This means that the voltage at the output of IC2 is directly proportional to the injected input current.

Resistors R1, R2, R3, R4/5 inject 1mA, 0.5mA, 0.25mA and 0.125mA respectively so that when full speed is selected the maximum current into IC2a is 1.875mA. Applying Ohm's law to R11 gives a full speed output voltage of 1.875 x 2.4 = 4.5V. The lowest speed is selected when just PB0 is set to logic 1 level and the output voltage from IC2a is then 0.3V. Intermediate binary inputs produce output voltages in steps of 0.3V. As the gates are CMOS types, provision has been made on the board to fit pull-down resistors if required.

DIRECTION CONTROL

The output from IC2a is a negative going voltage which would drive the motor in only one direction. To provide the necessary bi-directional control a switchable inverting/non-inverting amplifier stage is used. This stage consists of IC2b in conjunction with TR2, TR3 and TR4. Direction control is by means of computer output line PB5. When this line is held high TR2 is turned on...
on and turns on Tr3. This arrangement of Tr2 and Tr3 is necessary for level shifting purposes so that the negative 9V rail can be used for bias on the f.e.t. Tr4.

With Tr3 turned on Tr4 is turned off because its gate voltage is -9 Volts. In this condition IC2b works as a simple non-inverting amplifier with a gain of one. This circuit is easy to understand if the amplifier is considered as a simple inverting amplifier stage the input to which (applied to R13) is always equal to the bias voltage (applied via R14 and R15) to the non-inverting input. In this conditions there is, in effect, no input signal and the output voltage is equal to the bias voltage. As the bias voltage varies, the output voltage follows it exactly so that the circuit acts as a unity gain non-inverting buffer stage. When PB5 is held low (logic 0) then Tr2 and Tr3 are turned off and Tr4 is turned on as its gate voltage rises to 0V.

In this condition the input of IC2b via R14 and R15 is short-circuited by Tr4. The non-inverting amplifier stage with a gain of one set by R16 and R13.

The output from IC2b passes via the voltage divider R17/R19 and on to IC3 via R18.

POWER OUTPUT STAGE

IC3 is configured as a standard inverting amplifier with its output capability boosted by emitter followers Tr5 and Tr6. The gain of this stage is set at slightly over ten by R18 and feedback resistor R21.

Diodes D6 and D7 guard against inductive 'kick-back' from the motor by providing continuous paths for positive and negative currents to the two power supply rails.

If the action of R20, VR1 and R22 are disregarded the motor can be seen to be fed with a voltage which is directly proportional to the output from the A-D converter stage. The motor would thus be driven in 'constant voltage' mode. In this mode the performance of the motor is limited by its winding series resistance, which causes the speed to drop under load as the motor demands more current.

CURRENT SENSING FEEDBACK

Where precise control of motor speed is required, constant voltage mode is inadequate. The ideal way to obtain precise speed control is by attaching a tachometer to the motor spindle, sensing speed directly and using this as feedback to control the motor drive voltage. This technique is excellent but is rather expensive and elaborate for some applications.

An alternative approach is to sense the motor current and modify the drive voltage so that the effect of winding series resistance is cancelled out. This is achieved in the present circuit by means of R20, R22 and VR1, which apply feedback to the non-inverting input of IC3. The source of the feedback signal is the voltage generated across R22 by the motor current passing through it. A proportion of this voltage is tapped off from the slider of VR1 and fed to IC3. The actual value of R22 is not important, but it should be selected so that it does not drop too much of the available voltage at the maximum motor operating current. It should also be high enough to provide sufficient feedback voltage. The power rating of the resistor should also be taken into account, bearing in mind that the motor could be stalled by a heavy load while the circuit is applying full voltage to it.

With the value given in the parts list a current of one amp through the motor gives rise to a drop of one volt across R22. As the feedback is applied to the non-inverting input of IC3, its effect is to increase the output voltage as the output current increases. This is exactly what is required. As the motor is loaded, the speed falls and the current drawn increases. The feedback network senses this increase in current so that more voltage is applied to the motor and its speed is brought back up.

VR1 is provided so that the amount of feedback can be adjusted to suit a range of motors. Too much feedback results in the motor 'hunting', that is, the speed jittering up and down as the circuit over-compensates. Too little feedback results in inadequate speed compensation and generally poor performance.

At the correct setting it is possible to obtain excellent performance, especially at low speeds where non-linear friction effects can cause problems. Even cheap model motors will run very smoothly, while higher quality motors such as those found in cassette recorders run beautifully.

CONSTRUCTION

The circuit is constructed on a single printed circuit board which is completely self-contained as it includes the mains transformer and fuse. Fig.2 shows the component layout. Seven connections are to be made to the host computer (which can be anything with six available
of course be necessary to mount the

will extend equally flexible control.

rated power supplies (up to ±15 volts)

of darlington output transistors and up -

the motor. For larger drives the addition

deliver up to one amp at five volts to

components shown

PRACTICAL ELECTRONICS NOVEMBER 1987

ribbon cable. Connections for a BBC

made directly to the board using suitable

user port lines). These connections are

made directly to the board using suitable

ribbon cable. Connections for a BBC

computer user port are shown in Fig. 3.

I found that motors were at one time

used in radio receivers. Turning to a book first published in 1943,

control has changed over the years.

I wondered how much the motor

started, an automatic clutch came

any station button was pressed, the

selected stations.

were used for mobile

No, they were not used for mobile

motor stopped. The sensing of this

station was tuned in, whereupon the

condenser through suitable gearing until

into operation, and the motor turned the

motor. For larger drives the addition

of darlington output transistors and up -

rated power supplies (up to ±15 volts)

will extend equally flexible control.

For higher current applications it will

of course be necessary to mount the

output devices off the board to ensure
good quality current paths. Heatsinks

are not strictly necessary for the

standard version, but small push-on
types will give extra protection in the

event of output short circuits.

The prototype was built in a plastic

case with an earthed metal lid and fitted

with two 4mm screw terminals for the

output connections.

TESTING

The circuit is simply tested by

connecting a small motor and setting the

appropriate logic levels on the input

lines. This can be done with or without

a computer. The setting of VR1 is best

arrived at by trial and error and should

be checked at all motor speeds as motor

behaviour is not strictly linear. The best

setting is that which gives good speed

control without instability at any speed.

To check the effect of feedback it is

simply a matter of applying a load to the

motor (finger pressure) and observing

the effect on the speed. Adjusting VR1

for minimum allows the uncompensated

operation to be compared with

compensated operation. The effect is

quite dramatic, especially at low speeds

where some small motors have great

difficulty running at all without

feedback, but run smoothly as soon as

it is applied.

SOFTWARE

For BBC computer users a set of

programs is available on cassette (see

constructor's note). One program allows

small positional servo systems to be built

using two potentiometers connected to

the analogue port as position sensors,

and a motor connected to the driver

circuit as an actuator. Different loop gain

settings, and 'dead-band' widths can be

programmed so that the effect on

positional accuracy and loop stability

can be assessed.

Another program allows each user

port bit to be set independently so that

the effect on motor speed and direction

of each bit can be observed.

Other computer users must write their

own programs, but it is a relatively

simple task to get the motor moving by

setting up the necessary output port

values. Further programming, leading to

full control of motorised systems, can

soon be learned by experiment.

CONSTRUCTOR'S NOTE:

Magenta Electronics are offering a

full kit of parts including case and

PCB for £24.49. They will also supply

the PCB only at £5.37, and a software

cassette (BBC only) for £4.95. Prices

include VAT, but add £1.00 per order

for postage.

MOTORING-BACK

Reading though Mark Stuart's article

I wondered how much the motor

control has changed over the years.

Turning to a book first published in 1943,

I found that motors were at one time

used in radio receivers.

No, they were not used for mobile

radio stations, but instead were used for

tuning purposes. As an elaboration of

the manual mechanical system, motor

driven arrangements turned the gang-
tuning condenser to preset positions for

selected stations.

The general principle was that when

any station button was pressed, the

motor started, an automatic clutch came

into operation, and the motor turned the

condenser through suitable gearing until

the point was reached where the selected

station was tuned in, whereupon the

motor stopped. The sensing of this

position was done by using a protruding

terminal brush to find an insulated

section of an otherwise conducting

rotary wafer. The rotor simply turned

until the insulation cut off the current.

Ed
Supernova SN 1987A continues to behave in unpredictable ways, while quasar PKS 1145-071, believed to be a single object, may be a true double after all.

The supernova SN 1987A, in the Large Cloud of Magellan, continues to puzzle astronomers. It simply does not follow the rules. It is, moreover, under luminous by supernova standards, and there may possibly be some affinity with the supernova Andromeda, which blazed out in the Andromeda Spiral in 1885. At that time its nature was not appreciated (it was generally believed to be in the foreground; remember, it was not even known that the Spiral is an external system). But the 1987 supernova has a strange companion, which is being called Mystery Spot, at least two light-weeks from the main outburst (that being called Mystery Spot, at least two why Mystery Spot may be remains, for the moment, unknown. SN 1987A itself has faded below naked-eye visibility, but retains its strong red colour. Whether or not it will produce a pulsar remains to be seen.

Another supernova has been in the news — Cassiopeia A, which is thought to be about 9,000 light-years away. It was not definitely seen, though the first Astronomer Royal, John Flamsteed, may have noted it in 1680 as a star of the sixth magnitude (in that area of the sky, obscuration by dust in the Milky Way region dims all remote objects). Today, the site is associated with faint nebulosity. New studies of this material by R.A. Fesen and W. Blair in America, indicate that fast-moving, nitrogen-rich knots of material may be actual fragments of the outer layers of the destroyed star, which could have been a very hot and massive body of the type known as a Wolf-Rayet star.

A TRUE DOUBLE QUASAR?

Quasars are among the most fascinating objects known to us. They were identified in 1963, and are now known to be very remote and super-luminous; it seems that they are the nuclei of very active galaxies. They are thousands of millions of light-years away, and are much more luminous than normal galaxies.

Sometimes it is found that a quasar has a twin, close beside it absolutely

The Sky This Month

The two giant planets, Jupiter and Saturn, are on view this month. Saturn, magnitude +0.6, is in Ophiuchus, and can be seen in the south-west after dark. It is now past its best for this year, and will be lost to view after early November, but the rings are wide open, so that even a small telescope Saturn is a glorious sight.

Jupiter comes to opposition on 18 October, in Pisces — to the north of the celestial equator, so that it is excellently placed for British observers. Its magnitude is –2.9, much brighter than any other planet or star apart from Venus — which is just starting to emerge in the evening sky, low in the west after sunset, but is not yet prominent.

Jupiter is an interesting sight telescopically, with its yellowish, flattened disc, its cloud belts, and its four bright satellites Io, Europa, Ganymede and Callisto. Good binoculars will show Ganymede at least; there are some exceptionally keen-sighted people who can see the satellites with the naked eye. On Jupiter’s disc, the famous Great Red Spot has not been in evidence lately, but it is never absent for long. It is now known to be a whirling storm — a phenomenon of Jovian meteorology — and the colour seems to be due to phosphorus.

Of the other planets, Mercury is technically an evening object, but as it is well south of the celestial equator it is not likely to be a naked eye object from Britain. Mars is just detectable in the eastern sky before dawn, during the latter part of October, but is still a long way away, and not even large telescopes can show much on its disc.

Summer Time ends on October 25, which at least makes the evenings darker! The Moon is full on October 7, and new on the 22nd.

During October evenings the Great Bear or Plough (Ursa Major) is at its lowest in the north, though of course it always remains above the horizon. The W of Cassiopeia is almost overhead, and the Milky Way is very much in evidence, stretching across the sky from one horizon to the other. The “Summer Triangle” (Vega in Lyra, Altair in Aquila, and Deneb in Cygnus) is still prominent, though Altair is becoming low in the west; it is not circumpolar, whereas from Britain both Vega and Deneb skirt the horizon without dipping below it. Capella is rising in the east. It is worth noting that Vega and Capella are on opposite sides of the Pole Star, and at about the same distance from it.

The main autumn constellation is Pegasus, whose four main stars make up a square and which is now high in the south. Maps tend to make it appear smaller and brighter than it really is, but it is so distinctive that it can hardly be mistaken. Leading off from it is the line of stars making Andromeda; look for the Great Spiral, Messier 31 — a system larger than our Galaxy, and more than 2,000,000 light-years away. It is just visible with the naked eye; binoculars show it easily, but photographs with large telescopes are needed to bring out its details. Like our Galaxy, it is spiral in shape, but unfortunately it lies almost edge-on to us, so that its full beauty is lost.

Below the Square of Pegasus, look for Fomalhaut in the Southern Fish, the most southerly of the first-magnitude stars ever visible from Britain. From South England it is easy to see, but from North Scotland it is always so low down that even the slightest mist will hide it.
identical in every way. For some time this was a puzzle, but then an explanation came forward. It seems that there is only one quasar, but that between it and ourselves there is a large galaxy which cannot be seen directly. According to relativity theory, light is bent by a gravitational field - so that the light-rays from the background quasar are bent by the unseen galaxy, and pass either side of it, making a false double image. This is what has become known as the gravitational lens effect.

This is all very well, but there has been a recent new development. Using the 2.2-metre telescope at La Silla in Chile, astronomers have studied the quasar pair known as PKS 1145-071 in the little constellation of Crater, the Cup. It is double — but apparently not a gravitational lens pair. Obviously, the two images of a lens effect must be exactly alike (because they are in fact the same thing), but with the Crater pair there were spectral differences, and the optical astronomers called in their radio astronomy colleagues. At Socorro, in New Mexico, there is a vast establishment known as the VLA or Very Large Array. Here, Richard Perley and his colleagues found that at radio wavelengths, one of the ‘twins’ disappeared — it did not transmit in that region of the electromagnetic spectrum, whereas the other member did. So they could not be identical; we must be dealing with two quasars, side by side.

This is very important. It now looks as though the total mass of the pair is around 100,000 million times that of the Sun, which is about the same as that of our own Galaxy, and the distance is of the order of 10,000 million light-years. But we are still only at the very beginning of the investigation, and it is hoped that we will learn a great deal from the first genuine double quasar.

Astronomy Now

Number. 4

Articles in an advanced state of preparation:

PLANETARY ATMOSPHERES
by Dr. Garry Hunt

OBSERVING THE SUN
by Stan Hewitt

THE BIG BANG
by Iain Nicolson

CHOOSING YOUR FIRST TELESCOPE
by Brian Crabb

COLOUR PHOTOGRAPHY WITH A SCHMIDT Camera
by Terence Tempest

ON SALE at all good newsagents — Price £1.25

ISSUE NUMBER 4 ON SALE TUESDAY OCTOBER 20th

The likely move of the R.G.O. from Herstmonceux has frequently been mentioned in Spacewatch. Last month’s column prompted me to take a trip there before it moves.

It’s an interesting place to visit, and I was pleased to learn that at least part will remain. Basically, it is the research facilities that will move to Cambridge. Since these are largely contained within the main building complex the outward appearance will probably remain unchanged.

I was relieved to learn that the group of telescope domes will remain on site. They are well worth a visit for their own sake. The external view is quite dramatic and inspiring to the imagination. Two domes were open to public view, complete with a telescope in each. A video theatre displayed additional information and gave a short run down on the history. The other exhibitions and the souvenir shop are well worth visiting, but the main research centre is not open to the public. There is a teashop.

Selected areas of Herstmonceux Castle itself, together with a display of historical books and archives, are also open a few days each year.

The R.G.O. site is now closed for this year, but will re-open at Easter, and then be open daily until September 30th, from 10.30am to 5.30pm, with last admission at 4.30pm. It’s best to use your own transport — access by bus or train appears difficult. For further information ring 0323 833171.

Ed.
UNIVERSAL NICAD CHARGER
Charges any combination of AA, PP3, C & D cells, up to 4 cells simultaneously.
CDE PRICE £5.95 each

TECHNICAL NICAD CHARGER
Charges any combination of AAA, AA, PP3, C & D cells, up to 23 cells from 1.2V to 12V simultaneously. Test meter facility, using charging socket to charge various special batteries, connecting clipper or universal type plug.
CDE PRICE £24.00 each

NICADS
AA size - £1.10 each 500 mAh
'C' cell - £2.50 each 1.2 Ah
'D'cell - £2.80 each 1.2 Ah
PP3 - £6.90 each 100 mAh

MINI-DRILL KIT WITH PRECISION TOOLS BY MAXICRAFT
Drill with selection of buffer heads, abrasive discs, polishers & drill bits, chucks & collets, 45W, 1800 rpm, 9–16V, 1.5A. For model makers, engravers and electronics enthusiasts.
CDE PRICE £19.50

TUNGSTEN CARBIDE DRILL BITS
1mm, ideal for glass fibre PCBs (1/4 shanks)
CDE PRICE £1.20 each or £5.50 for 5

PCB KIT
Includes 4 pieces copper clad, 2 inch resist pens, 4 sheets transfers, plastic tray, tweezers, circuit etchant and instructions.
CDE PRICE - complete kit £6.25

PCB BOOK
How to design and make your own PCBs.
CDE PRICE £1.95

ALL GOODS SUPPLIED BY CDE ARE FULLY GUARANTEED AGAINST DEFECT - FULL REFUND IF NOT SATISFIED.
PLEASE ADD £1.00 PER ORDER FOR POST AND PACKING.

SEND NOW for our latest 100 page international electronics catalogue.
Thousands of major and minor electronic components. Audio, hi-fi, stylish car radios, amps, kits, meterscopes, test gear, transistors, disco, hardware tools and computer bits.
Send £1.00 (refundable with first order) to:
SMITH ELECTRONICS
157 CHAPEL STREET, LEIGH, LANCs WN7 2AL. Tel: (0942) 606674.
Arrays in all their glory

Part One of this series introduced programmable logic devices (PLDs), discussed their advantages over standard logic chips, and briefly outlined the different types currently available. The simplest types of PLDs, being field programmable gate arrays (FPGAs) and PROMs, were described with practical examples.

Now in Part Two we turn our attention to the more versatile devices or logic arrays known as PALs and FPLAs, and logic sequencers known as FPLSs.

PROGRAMMABLE ARRAY LOGIC

Programmable array logic (PAL) was developed by a U.S. company called Monolithic Memories many years ago and has been steadily gaining acceptance. Now it is one of the most popular types of PLDs.

The PAL structure comprises a programmable AND array followed by a fixed OR array (unlike the PROM which is a fixed AND followed by a programmable OR array). A typical but simplified PAL arrangement is shown in Fig.10.

PALs can be programmed to represent 'sum of product terms', which are Boolean logic expressions where the input variables are shown as a number of AND functions with the outputs of all ANDs ORed (eg F = X.Y.Z + X.Y.Z + X.Y.Z + X.Y.Z). All combinational logic can be expressed this way. The size of the sum of product terms which can be programmed using PALs is limited only by the number of connections in the AND/OR arrays.

As an example, take the simple exclusive-OR expression where output = A.B + A.B. This can be implemented by leaving certain fuses intact as shown in Fig.11, and arranging for all other fuses to be blown.

PALs come in many configurations. Fig.12 shows a 4 in, 4 out, 16 product term PAL. Some PALs have programmable input-output lines with a three-state buffer which when enabled by a product term drives the output. The output can also be fed back into the AND array for operations such as shifting or rotating data. When the three-state buffer is disabled, the line can be used solely as an input. This gives greater flexibility of applications as the number of inputs and outputs are not rigidly fixed. Also, these lines can be programmed as bi-directional buffers.

Many PALs have registered outputs (Fig.13) using D-type bistables to latch the data. These can be used for straightforward data buffers such as for input and output ports of microcomputers. The inverted output Q is fed back into the AND array which allows sequential circuits such as counters and sequential state machines to be made.

Table 2 shows a selection of PAL types with relevant details of inputs and outputs and the number of registered outputs included.

Programming PALs is not so straightforward as PROMs because the fixed OR inputs of PALs have lower capacitance, but balanced against this is their limited flexibility.

FIELD PROGRAMMABLE LOGIC ARRAYS (FPLAs)

A typical FPLA comprises a programmable-AND array followed by a programmable-OR array, possibly with bistable registers at the outputs. Sometimes these devices are simply called PLAs or, as with Mullard/Signetics devices, the family is referred to as IFL (Integrated Fuse Logic).

FPLAs have a greater flexibility of applications than PALs because the fixed OR inputs of PALs have lower capacitance, but balanced against this is their limited flexibility.
generally more expensive with more complex programming procedures.

An example application is shown in Fig. 14, using the Mullard/Signetics PLS 153 as an 8-to-1 bi-directional multiplexer/demultiplexer. Table 3 describes the operation as follows. Three address lines A_0, A_1, and A_2 select one of eight parallel data lines X_0 to X_7 to be linked to the serial data line Y. The direction of data flow is determined by DIR. When $DIR=1$ (high or H) the data flow is from the selected X input to Y output. When $DIR=0$ (low or L) the data flow is from Y as input to the selected X output. Therefore, bi-directional input-output pins are designated for the X and Y lines. The PLS 153 has 8 inputs I_0 to I_7 and 10 bi-directional lines B_0 to B_9 as shown in Fig. 15. The top left shaded block is the AND fuse array and the lower left hand block is the OR fuse array. Outputs from the OR gates are fed into exclusive-OR gates which can be programmed as true or complement outputs by the fuses labelled S_0 to S_9.

TABLE 2. PAL Input/Output/Function/Performance Chart

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Input</th>
<th>Output</th>
<th>Programmable I/O's</th>
<th>Feedback</th>
<th>Register</th>
<th>Output Polarity</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0H8</td>
<td>10</td>
<td>8</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>12H6</td>
<td>12</td>
<td>6</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>14H4</td>
<td>14</td>
<td>4</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>16H2</td>
<td>16</td>
<td>2</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>16C1</td>
<td>16</td>
<td>2</td>
<td>BOTH</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>BOTH AND-OR Gate Array</td>
</tr>
<tr>
<td>20C1</td>
<td>20</td>
<td>2</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>16LB</td>
<td>10</td>
<td>8</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>12L6</td>
<td>12</td>
<td>6</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>14L4</td>
<td>14</td>
<td>4</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>16L2</td>
<td>16</td>
<td>2</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>12L10</td>
<td>12</td>
<td>10</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>14L8</td>
<td>14</td>
<td>8</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>16L6</td>
<td>16</td>
<td>6</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>18L4</td>
<td>18</td>
<td>4</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>20L8</td>
<td>20</td>
<td>2</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>16L8</td>
<td>10</td>
<td>2</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>16L4</td>
<td>16</td>
<td>4</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>20L2</td>
<td>20</td>
<td>2</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>16L2</td>
<td>16</td>
<td>2</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>20L10</td>
<td>12</td>
<td>8</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array</td>
</tr>
<tr>
<td>16R8</td>
<td>16</td>
<td>8</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array w/Reg's</td>
</tr>
<tr>
<td>16R6</td>
<td>16</td>
<td>6</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array w/Reg's</td>
</tr>
<tr>
<td>16R4</td>
<td>16</td>
<td>4</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array w/Reg's</td>
</tr>
<tr>
<td>20R8</td>
<td>20</td>
<td>8</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array w/Reg's</td>
</tr>
<tr>
<td>20R6</td>
<td>20</td>
<td>6</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array w/Reg's</td>
</tr>
<tr>
<td>20R4</td>
<td>20</td>
<td>4</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array w/Reg's</td>
</tr>
<tr>
<td>20X10</td>
<td>10</td>
<td>10</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array w/Reg's</td>
</tr>
<tr>
<td>20X8</td>
<td>10</td>
<td>8</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array w/Reg's</td>
</tr>
<tr>
<td>16X4</td>
<td>8</td>
<td>4</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array w/Reg's</td>
</tr>
<tr>
<td>16A4</td>
<td>8</td>
<td>4</td>
<td>AND-OR Gate Array</td>
<td>AND-OR</td>
<td>AND-OR</td>
<td>AND-OR Gate Array</td>
<td>AND-OR Gate Array w/Reg's</td>
</tr>
</tbody>
</table>

The top right shaded block labelled Control Terms serves a number of purposes. Any combination of inputs can be programmed to the D AND gates to enable any of the three-state buffers so that the corresponding B lines are outputs. Also, B lines can be programmed as inputs by the control terms disabling the appropriate three-state buffer.

Fig.14. FPLA 8:1 bidirectional multiplexer/demultiplexer

PROGRAMMABLE LOGIC SEQUENCERS

Field programmable logic sequencers (FPLSs) are single chip devices which can be programmed to step through a sequence of fixed states under control of clock pulses. An example is a bi-directional decade counter as shown in Fig. 16. The U/D input determines the direction of the count where U/D = 1 for up counting at outputs A, B, C and D, and U/D = 0 for down counting. The sequence of output changes is shown by the state diagram of Fig. 17.

The conventional method of designing such a circuit can be very complex, involving tables of present/next states and simplifying Boolean equations using Karnaugh Maps and De Morgan's Theorems for every output. The follow-
TABLE 3. Truth table for 8-to-1 multiplexer/demultiplexer

<table>
<thead>
<tr>
<th>CE</th>
<th>DIR</th>
<th>A0</th>
<th>A1</th>
<th>A2</th>
<th>X0</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
<th>X6</th>
<th>X7</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>X0</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>INPUTS</td>
<td>X1</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>INPUTS</td>
<td>X2</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>INPUTS</td>
<td>X3</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>INPUTS</td>
<td>X4</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>INPUTS</td>
<td>X5</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>INPUTS</td>
<td>X6</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>INPUTS</td>
<td>X7</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>

outputY

| Z = High impedance |
| X = Don’t care (1 or 0) |
| I = Input state |

Fig. 15. The PLS 153 FPLA fuse map for multiplexer/demultiplexer

This describes how easier and quicker the design becomes when using an FPLA.

A typical FPLS is the PLS105. This device includes programmable AND/OR arrays which are used for the combinational logic to control the transitions between 8 output registers and 6 internal state registers.

The programming of the PLS105 for the counter example is shown using the program table, Table 4. The table shows that at power up, the outputs ABCD are all low. If the clear (CLR) pin is high (inactive) and U/D is high, each clock pulse causes the internal state register to change from the present states (columns labelled P) to the next stages (labelled N). The device outputs labelled F, reflect the present states P. The down count state changes are defined from rows 10 to 19.

The contents of the program table are simply keyed into a PLD programmer which programs the PLS105 accordingly, cutting design time, from first putting pencil on paper to the finished circuit, down to a matter of minutes.
TABLE 4. A computer high-level listing for PLD design

State S0: case (Mode == Up) : S1;
(State == Down) : S9;
(Mode == Clear) : S0;
endcase;

State S1: case (Mode == Up) : S2;
(State == Down) : S0;
(Mode == Clear) : S0;
endcase;

State S2: case (Mode == Up) : S3;
(State == Down) : S1;
(Mode == Clear) : S0;
endcase;

State S3: case (Mode == Up) : S4;
(State == Down) : S2;
(Mode == Clear) : S0;
endcase;

State S4: case (Mode == Up) : S5;
(State == Down) : S3;
(Mode == Clear) : S0;
endcase;

State S5: case (Mode == Up) : S6;
(State == Down) : S4;
(Mode == Clear) : S0;
endcase;

State S6: case (Mode == Up) : S7;
(State == Down) : S5;
(Mode == Clear) : S0;
endcase;

State S7: case (Mode == Up) : S8;
(State == Down) : S6;
(Mode == Clear) : S0;
endcase;

State S8: case (Mode == Up) : S9;
(State == Down) : S7;
(Mode == Clear) : S0;
endcase;

State S9: case (Mode == Up) : S0;
(State == Down) : S8;
(Mode == Clear) : S0;
endcase;

HIGH-LEVEL PLD LANGUAGES

There are a number of high-level PLD computer aided design programs available, primarily for PCs such as the IBM PC or similar. These generally enable very complex designs to be developed, simulated for a particular PLD and then the fuse-map information downloaded to a programming device using a standard known as JEDEC.

Monolithic Memories provide a program called PALASM which, as its name suggests, can only be used with PALs. Mullard/Signetics provide a program called AMAZE (Automatic Map And Zap Equation Entry!) which, as you may have guessed, can only be used with their own PLDs.

Both PALASM and AMAZE are extremely powerful development tools but limit you to one manufacturer's range of devices. There are now available programs such as CUPL and ABEL which are able to simulate any type of device, but these programs are very expensive. Table 4 shows a typical high-level language entry for the decade counter example described under FPLSs. All the states are defined, followed by the selection of a device, and then each transition is entered line by line. Once mastered, these high-level languages make complex design even faster.

Fig. 17. State diagram for Up/Down Counter

Fig. 16. PLS105 FPLS as an up/down counter with clear.

COMING SOON: Early in 1988 Chris Kelly will describe a PLD Programmer Constructional Project.
GCOMPUTER WAREHOUSE
1:44i:PLIA111
for SCHOOLS, SHOPS, DISCO'S, CLUBS and other AUDIO VISUAL appft

Guarantee Although used, units are supplied in EXCELLENT condition. Seen to be believed! Supplied complete and ready to plug direct to a BBC
£99.00, a price for a colour monitor as yet unheard of!! Our own interface, converted DECCA RGB Colour Video TV Monitor at a super low price of only
£159.00 as above' OR IBM PC Version £165.00

protected. 100 or 240v AC input. Dim 28 x 12.5 x 7 cm
NEW £49.94

REDIFFUSION MARK 3, 20" COLOUR monitor. Fitted with standard 75 ohm
Little or hardly used manufacturer's surplus enables us to offer this special
Supplied BRAND NEW and BOXED, complete with DATA and 90 day
guarantee ONLY £159.00 as above' OR IBM PC Version £165.00

7.5" d x 3.5" h, latest technology, BRITISH manufacture, fully
moulded case, containing ALL electronics tuner, power supply etc
7.5" d x 3.5" h, latest technology, BRITISH manufacture, fully
moulded case, containing ALL electronics tuner, power supply etc

THE central processor plinth contains the 64K, Z80 processor, DUAL TEAC 55F 5V

Disk drive, cost over £2000 with data

32 Biggin Way, Upper Norwood, London SE19 3XF
Telephone 01-879 4414 Telex 894502 Data 01-879 1888

PRACTICAL ELECTRONICS NOVEMBER 1983
The local education authority in Bradford, West Yorkshire, is currently looking into the expansion and development of its Enterprise Education Centres/Work Practice Units. They are intended to provide the opportunity for all fourth formers, from local schools, to attend for a two week experience course. Through a practical approach part of the aims of such a centre are to provide a contact for previously gained knowledge within school, and to help relate this to the adult world of industry and commerce etc. Experience of working relationships and disciplines of the world outside school, with the emphasis on education, are incorporated into various aspects of the centres, such as the requirement for all students to clock in and out.

TECHNOLOGY AND EDUCATION

As coordinator for the North Bradford Centre I believe that this presents an exciting opportunity to develop areas in which young people can work using modern technology. When fully established the centre will open its doors to over 1200 young people a year. Its functions will include the integration of technology, such as for example computer applications, into all areas - office, catering, stores, design etc. - the emphasis being on its use to assist in the completion of a task, rather than specifically focusing attention of the equipment itself.

The Centre is also to be regarded as a resource, providing certain activities which can be integrated into the requirements of a school situation. Amongst these I intend to establish a robotics and electronics area, subjects in which I am particularly interested - some would say obsessed! It is firmly believed that an appreciation of new technology, in this case through robotics and electronics providing a simple introductory hands-on approach, is a useful asset for all young people. I am fortunate enough to be in a position to put this belief into practice.

EDUCATIONAL ROBOTS

In the situation where the robots described here are to be used the emphasis is on the student experimenting, with little input from tutors or staff - "there is the robot, switch it on and control it". The students will normally be in the robotics area for only one day. Given this situation and that many of the students will be new to robotics, the emphasis must be towards providing an introduction to this exciting area. One problem with commercially available educational robots of the low cost introductory type is that, while they may possibly offer a progressive hands-on approach to robotics, they tend to be delicate and 'unrealistic' in appearance. It is important that the robots available are 'appealing' to the students. A mass of tangled wires, coupled to a flimsy robot on the edge of a desk, will only serve to dampen any previous interest shown towards this area - students are better motivated into becoming involved if the presentation is attractive.

DEVELOPMENT

To provide computer-controlled robots suitable for this application, I have developed and constructed my own robots, interfaces and other equipment, and adapted suitable low cost components and cases of replacement. They are intended for use with the BBC range of computers (although their use is to be extended to include the RM Nimbus). The robots are of the arm and floor type, and have cost under £100 each to construct. They are solidly constructed and only the minimum number of components, including robust metal gearboxes, is attached to them. The students can therefore move the robots around without fear of altering any settings or controls - there is no need to provide a list of don'ts or for staff to check and interfere.

Apart from hands-on experience the aims of this area include the encouragement of problem solving and decision making techniques, and to present the opportunity for a team student centred approach. All students will have the opportunity to control a robot using a computer - new technology is for all. The programs used are progressive, to allow students of differing abilities to participate. One encouraging point is the way girls have taken to this area, after only a little push - technology is not just for boys.
ROBOT ARM

This is constructed from a variety of materials consisting mainly of aluminium section. The intention is to provide an arm which is realistic in appearance, in relation to illustrating possible links towards applications in an industrial setting. In addition to the arm being of robust construction it is housed in a perspex case, to prevent accidental damage (access being provided for placing and moving objects around).

There are three DC motors to control turntable rotation, arm extension and gripper opening/closing. The first two have positional feed back facilities in the form of potentiometers which inform the computer about the position of the arm. The screen then displays turntable rotation in degrees and arm extension in millimetres. The gripper performs two actions in one operation: as it moves downwards the jaws open; as it moves upwards the jaws close. It is, therefore, possible to move objects to and from various positions on the board. The students can experiment and develop a correct sequence of operations for this to be achieved.

ROBOT – FLOOR TYPE

Two types have been constructed, each utilising two stepper motors and gearboxes, one for each wheel and mounted on 'toy' robots, offering a 'robot look' to the construction. One model consists of a tractor and trailer, giving the added bonus and problem of reversing – one skill in which I need more practice! Despite their large size, weight and low dynamic torque (turning force), for this application the accuracy provided by stepper motors justifies their use. There is no need to burr the robot with further components to provide positional feedback facilities, as would be required if DC motors were to be used. These particular robots, unlike the arm, can be picked up and moved around the board; only the stepper motors and gearboxes need to be attached to the robot. This allows for a more robust construction that is less prone to damage.

The interface between the computer and robot permits the control of various relays. The computer simply activates the required relay for a specified time, with each relay determining in which direction the robot is to move. The two stepper motors are operated through a control board and power interface constructed on stripboard. This hardware approach, in the control of stepper motors, allows the opportunity to demonstrate to the student how the robot can be operated without the use of a computer. This is achieved through the use of push button switches, mounted on the robot board, which simply operate the required relay. A progressive approach can then be adopted, from using the computer keyboard for manual control, to programs enabling a sequence of instructions to be stored and repeated as required.

EXCITING OPPORTUNITY

Upon completion, the students can then simply load the word processor program, record their achievement, switch over to the printer and provide themselves with a print-out. One rewarding aspect is when students ask where they can obtain the circuits and electronic components for building their own robots and linking them to their home computer.

This is only one particular approach towards introducing robotics into an educational setting. It presents an exciting opportunity in which hands-on experience and sound educational principles, can be put into practice – by using it as a tool to encourage problem solving, decision making skills etc. Young people are going to experience many different situations, mainly as a result of advancements in technology, and they therefore need to have the desire and ability to adapt and become part of a changing society. The education system must play its part.

Typical control course

COURSE CONTROL

To encourage the use of a range of skills and knowledge, this area also requires various courses to be constructed for the robot to follow. As regards the floor type robot, this includes the requirement to convert specific 'robot units of movement' into centimetres and degrees of rotation, ie. The use of applied maths.

The students, using calculators, protractors, rulers and pencils, draw the course details on the board. They can then try out the different programs available and instruct the robot to follow the course, collect the object from the gripper, and return to the starting point. The courses have been designed to be progressive, starting with simple routes and advancing to those requiring a greater degree of planning.

BIOPGRAPHICAL NOTE

Lawrence Hamburg is studying part-time for an M.A. in applied educational research. He is part of a five member team sponsored by the Bradford Authority to look at the various aspects of the new educational initiatives – particularly in relation to courses funded by the Manpower Services Commission, an organisation which with the Government's backing is radically changing some aspects of education towards a vocational emphasis. His particular area is new technology and its role within education, especially stressing the link between school and industry.

Bradford has recently put in a bid for and will obtain millions of pounds under the Technical & Vocational Education Initiative – there are various local authorities involved in this scheme.

PRACTICAL ELECTRONICS NOVEMBER 1987
A free readers' advertising service

Name & Address:

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertising. Each ad. must be posted within one month of cover date. (One month later for overseas readers). Send this form (or a photocopy of it) to PE Bazaar, Practical Electronics, 193 Uxbridge Road, London W12 9RA.
EARLIER this year the United Nations announced that the population of the world had reached 5 billion some time during the summer. The official day to mark the event was 11 July, though of course nobody could know for sure the exact time when the five-billionth baby was born. Enormous as the actual number is, a much more significant fact is that it lies on a part of the population curve which is rising exponentially at a rate faster than ever before. According to an old book of statistics I have, the world population in 1911, after several million years of multiplication of the species, had reached 1.602 billion. Now, only 76 years later - or just one orbit of Halley's Comet - it has increased by some 3.4 billion. Currently the growth is about 78 million new inhabitants of the planet per annum.

What significance does this population growth have to our present discussion on the interaction of the electronics industry with society? In so far as everyone is to some extent a consumer of goods and services it means, simplistically, that the world electronics industry now has a potential 5 billion customers. In reality, of course, this is not so. First of all not every individual can be regarded as a direct consumer of the products of this industry. Secondly, most of the population growth is taking place in the poorest countries of the world. You will find the odd radio set or digital watch here and there among the villages of Africa, India and Latin America but these people are, and will be for a long time, predominantly consumers of the basic necessities of life - food, clothing and shelter.

Yet the sales of electronics products are undoubtedly increasing at a fast rate. According to Jürgen Knorr, a senior manager of Siemens in Munich, the world electronics market is now expanding somewhat faster than that for conventional electrical goods. Over the past 15 years, whereas the conventional electrical market has grown at an average annual rate of about 6%, the electronics market has expanded at about 9.5% per annum. And in the coming five years, while the electrical market is expected to increase by only 2.5% p.a., the electronics market will probably grow at approximately 8.5% p.a.

It's tempting to superficially correlate these sales figures with the population growth statistics, especially when one remembers that modern electronics is very much centred on the technology of integrated circuits. The sales of ICs are currently increasing somewhat faster than those of passive components and discrete semiconductors put together. With their small size, low power consumption and decreasing price per function on a chip, they are obviously attractive products if you can use them. Theoretically, a Third World villager with a simple diet and few home comforts could still afford to buy a sizable number of binary storage cells or logic functions. He or she might even be able to afford a whole microprocessor. But what would be the point?

I raise this rather absurd idea simply to underline the realities of the present situation. Integrated circuits are being bought to make electronic equipment not by the developing countries with their rapidly growing populations but overwhelmingly by the already highly developed, industrialized countries where the populations are either virtually static or growing very slowly. Jürgen Knorr says that by the year 1990 Japan will constitute 40% of this market, the United States 36% and Western Europe 18%, the rest of the world's countries accounting for the remaining tiny 6%.

The reason for this imbalance is not far to seek. Predominantly the world's output of ICs is being used to make communications equipment and computers - the heart of information technology. And this equipment has its most intensive application and offers its greatest benefits in those countries where, regardless of population size, society is highly organized in the economic and industrial sense, where the socio-economic functions of individuals and groups are highly interdependent. The information technology equipment and systems have become almost essential to keep everything running smoothly. In its personal relationships, families and other cultural groups the society may be falling apart, its human values disintegrating, but the system keeps working.

There are, however, certain ways in which electronics technology, its products and services, do reach out to the poorest people in the remotest areas of Third World countries. First, the administrations and industries of these developing countries are beginning to make use of computers - though in a limited way compared with the intensive application of the industrialized world. Secondly, communication satellites are being used by governments to beam educational and entertainment services down to remote and isolated communities which so far have not had access to the terrestrial broadcasting centred on the large cities.

A third factor is the rise of nationalism and the rivalries it produces. My old book of statistics shows that there were fewer than 50 countries in the world in 1911. Now, after widespread decolonization, there are over 150 independent nations. Each of these has its own sovereignty as a territorial/political/economic entity, and we see various forms of competition and sometimes wars to assert these national rights. Many of these developing countries turn their eyes to the industrialized world as a model to be emulated, with its technology to be bought, copied or adapted.

Instead of relying on cheap labour, minerals or cash crops to pay their way in the world, some of the developing countries have understood the need to harness high technologies such as electronics to increase the productivity of their industries as a means of speeding up the accumulation of capital. Such capital is required for rural and urban development, for providing manufactured products to help agriculture and for meeting the urgent material need of the people.

Thus, overall, there are several trends which are likely to produce in the future a far more widely distributed usage of electronics than we have today in the world's population.
ELMASET STRUMENT CASE

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCW10 BCW11 BCW12 NTAV01 1s2836 m5 type</td>
<td>£2.00</td>
</tr>
</tbody>
</table>

POWER TRANSISTORS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N3904 2N3905 2N3906 2N3907</td>
<td>£35.00</td>
</tr>
<tr>
<td>TIP130 TIP140 TIP150 TIP160</td>
<td>£41.00</td>
</tr>
<tr>
<td>2SC2974 2SC2975 2SC2976 2SC2977</td>
<td>£50.00</td>
</tr>
<tr>
<td>8051 8052 8053 8054</td>
<td>£50.00</td>
</tr>
</tbody>
</table>

SURFACE MOUNTED TRANSISTORS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCW10 BCW11 BCW12 NTAV01 1s2836 m5 type</td>
<td>£2.00</td>
</tr>
</tbody>
</table>

DIODES & RECTIFIERS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4004 1N4006 1N4007 1N4008</td>
<td>£3.00</td>
</tr>
<tr>
<td>1N4148 1N4149 1N4150 1N4151</td>
<td>£3.00</td>
</tr>
<tr>
<td>1N4148 1N4149 1N4150 1N4151</td>
<td>£3.00</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>D L L Switches 10 Way £1 8 Way</td>
<td>£1.50</td>
</tr>
<tr>
<td>8 Way 4/6 Way 5/6 Way</td>
<td>£1.50</td>
</tr>
<tr>
<td>180 Volt 1 watt Zeners ALSO 2W</td>
<td>£1.50</td>
</tr>
<tr>
<td>MINATURE CO-AX CABLE RG58U</td>
<td>£1.50</td>
</tr>
<tr>
<td>MINATURE CO-AX CABLE RG58U</td>
<td>£1.50</td>
</tr>
</tbody>
</table>

MINI GLASS NEONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELAY 5v 2 pole changeover looks like R5 35-74 marked</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

TRIMMER CAPACITORS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 pin/35 50 pin 150 pin 250 pin</td>
<td>£1.00</td>
</tr>
<tr>
<td>50 pin 150 pin 250 pin 350 pin</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

SOLID STATE RELAYS NEW 10A

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>250v AC</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

POLYESTER/POLYCARB CAPS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x30 5x30 3x30 5x30 3x30</td>
<td>£1.00</td>
</tr>
<tr>
<td>10x30 30x30 10x30 30x30</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

BEAD TANTALUM CAPS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 25v 40v 6v 10v</td>
<td>£1.00</td>
</tr>
<tr>
<td>25v 40v 6v 10v</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

MOBILE PHONE PLUGS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 200 250 300 400 500 600</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

SOLDER

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 200 250 300 400 500 600</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

DIN SOCKETS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 200 250 300 400 500 600</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

MICROCONTROLLERS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 200 250 300 400 500 600</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

RADIO FREQUENCY

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 200 250 300 400 500 600</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

MICROCOMPUTERS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 200 250 300 400 500 600</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

VACUUM TUBES

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 200 250 300 400 500 600</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

FUSES

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 200 250 300 400 500 600</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

GENERAL PURPOSE RESISTORS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 200 250 300 400 500 600</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

TO-3 TO TRANSISTORS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 200 250 300 400 500 600</td>
<td>£1.00</td>
</tr>
</tbody>
</table>
PRACTICAL ELECTRONICS NOVEMBER 1987

CLASSIFIEDS

FULL-TIME TRAINING COURSES

2 YEAR
BTEC National Diploma (OND) ELECTRONICS AND COMMUNICATIONS ENGINEERING
(IEC, Computers, Programming, IT)

1 YEAR
BTEC National Certificate (ONC) ELECTRONIC EQUIPMENT SERVICING

COMPUTING TECHNOLOGY
(Microprocessors, DataComms, Interfacing)

INFORMATION TECHNOLOGY
(Telecoms, Satellite TV, CD, Networks)

SOFTWARE ENGINEERING
(Assembler, BASIC, PASCAL, CAD/CAM)

COURSES COMMENCE
11th January & 25th April 1988

LONDON ELECTRONICS COLLEGE
Dept: AA 20 Penywern Road, London SW5 5SU. Tel: 01-373 8721

Free Membership to a new national electronics club. For details and a free pack of components worth over £10 send £5.75 per Track for 2/3 day service.

PRACTICAL ELECTRONICS NOVEMBER 1987

CLASSIFIEDS

QUALITY COMPONENTS AND ACCESSORIES
Turntable belts Tape heads Multimeters Soldering irons Syl 15ask Aerials Crossovers Video copy kits Plugs Leads SEND OR PHONE FOR FREE LISTS

STRACHAN ELECTRONICS
9 CROALL PLACE
EDINBURGH EH7 4LT
Tel. 031-556 9549

PAYNE ELECTROPRINT LTD
(Train enquiries welcome)
Agents req. UK, Canada, Australia & New Zealand.

PB's. Cheap quotes for fine quality boards. Fast service. Send track layout, photocop, or enquiry to: PCs, 290 Stanstead Road, Hoddesdon, EN11 ORX.

HEATHKIT U.K. SPARES AND SERVICE CENTRE. Cedar Electronics. Unit 12, Station Drive, Bredon, Tetbury, Glos. Tel. (0643) 73127.

SERVICE

CLASSIFIEDS

QUALITY COMPONENTS AND ACCESSORIES
Turntable belts Tape heads Multimeters Soldering irons Syl 15ask Aerials Crossovers Video copy kits Plugs Leads SEND OR PHONE FOR FREE LISTS

STRACHAN ELECTRONICS
9 CROALL PLACE
EDINBURGH EH7 4LT
Tel. 031-556 9549

PAYNE ELECTROPRINT LTD
(Train enquiries welcome)
Agents req. UK, Canada, Australia & New Zealand.

PB's. Cheap quotes for fine quality boards. Fast service. Send track layout, photocop, or enquiry to: PCs, 290 Stanstead Road, Hoddesdon, EN11 ORX.

HEATHKIT U.K. SPARES AND SERVICE CENTRE. Cedar Electronics. Unit 12, Station Drive, Bredon, Tetbury, Glos. Tel. (0643) 73127.

SERVICE

CLASSIFIEDS

QUALITY COMPONENTS AND ACCESSORIES
Turntable belts Tape heads Multimeters Soldering irons Syl 15ask Aerials Crossovers Video copy kits Plugs Leads SEND OR PHONE FOR FREE LISTS

STRACHAN ELECTRONICS
9 CROALL PLACE
EDINBURGH EH7 4LT
Tel. 031-556 9549

PAYNE ELECTROPRINT LTD
(Train enquiries welcome)
Agents req. UK, Canada, Australia & New Zealand.

PB's. Cheap quotes for fine quality boards. Fast service. Send track layout, photocop, or enquiry to: PCs, 290 Stanstead Road, Hoddesdon, EN11 ORX.

HEATHKIT U.K. SPARES AND SERVICE CENTRE. Cedar Electronics. Unit 12, Station Drive, Bredon, Tetbury, Glos. Tel. (0643) 73127.

SERVICE

CLASSIFIEDS

QUALITY COMPONENTS AND ACCESSORIES
Turntable belts Tape heads Multimeters Soldering irons Syl 15ask Aerials Crossovers Video copy kits Plugs Leads SEND OR PHONE FOR FREE LISTS

STRACHAN ELECTRONICS
9 CROALL PLACE
EDINBURGH EH7 4LT
Tel. 031-556 9549

PAYNE ELECTROPRINT LTD
(Train enquiries welcome)
Agents req. UK, Canada, Australia & New Zealand.

PB's. Cheap quotes for fine quality boards. Fast service. Send track layout, photocop, or enquiry to: PCs, 290 Stanstead Road, Hoddesdon, EN11 ORX.

HEATHKIT U.K. SPARES AND SERVICE CENTRE. Cedar Electronics. Unit 12, Station Drive, Bredon, Tetbury, Glos. Tel. (0643) 73127.

SERVICE

CLASSIFIEDS

QUALITY COMPONENTS AND ACCESSORIES
Turntable belts Tape heads Multimeters Soldering irons Syl 15ask Aerials Crossovers Video copy kits Plugs Leads SEND OR PHONE FOR FREE LISTS

STRACHAN ELECTRONICS
9 CROALL PLACE
EDINBURGH EH7 4LT
Tel. 031-556 9549

PAYNE ELECTROPRINT LTD
(Train enquiries welcome)
Agents req. UK, Canada, Australia & New Zealand.

PB's. Cheap quotes for fine quality boards. Fast service. Send track layout, photocop, or enquiry to: PCs, 290 Stanstead Road, Hoddesdon, EN11 ORX.

HEATHKIT U.K. SPARES AND SERVICE CENTRE. Cedar Electronics. Unit 12, Station Drive, Bredon, Tetbury, Glos. Tel. (0643) 73127.

SERVICE

CLASSIFIEDS

QUALITY COMPONENTS AND ACCESSORIES
Turntable belts Tape heads Multimeters Soldering irons Syl 15ask Aerials Crossovers Video copy kits Plugs Leads SEND OR PHONE FOR FREE LISTS

STRACHAN ELECTRONICS
9 CROALL PLACE
EDINBURGH EH7 4LT
Tel. 031-556 9549

PAYNE ELECTROPRINT LTD
(Train enquiries welcome)
Agents req. UK, Canada, Australia & New Zealand.

PB's. Cheap quotes for fine quality boards. Fast service. Send track layout, photocop, or enquiry to: PCs, 290 Stanstead Road, Hoddesdon, EN11 ORX.

HEATHKIT U.K. SPARES AND SERVICE CENTRE. Cedar Electronics. Unit 12, Station Drive, Bredon, Tetbury, Glos. Tel. (0643) 73127.

SERVICE

CLASSIFIEDS

QUALITY COMPONENTS AND ACCESSORIES
Turntable belts Tape heads Multimeters Soldering irons Syl 15ask Aerials Crossovers Video copy kits Plugs Leads SEND OR PHONE FOR FREE LISTS

STRACHAN ELECTRONICS
9 CROALL PLACE
EDINBURGH EH7 4LT
Tel. 031-556 9549

PAYNE ELECTROPRINT LTD
(Train enquiries welcome)
Agents req. UK, Canada, Australia & New Zealand.

PB's. Cheap quotes for fine quality boards. Fast service. Send track layout, photocop, or enquiry to: PCs, 290 Stanstead Road, Hoddesdon, EN11 ORX.

HEATHKIT U.K. SPARES AND SERVICE CENTRE. Cedar Electronics. Unit 12, Station Drive, Bredon, Tetbury, Glos. Tel. (0643) 73127.
READY-MADE P.C. BOARDS

Simplify your project assembly - use a ready-made printed circuit board. All are fully drilled and roller tinned. Just slot in the components as shown in the project texts, and solder them. PCBs are the professional route to project perfection.

MAIL ORDERING

Select the boards you want, and send your order to PE PCB SERVICE, PRACTICAL ELECTRONICS, 193 UXBRIDGE ROAD, LONDON W12 9RA.

Prices include VAT and postage and packing. Add £2 per board for overseas airmail. Cheques should be crossed and made payable to Intra Press.

Quote the project name and PCB Code Number, and print your name and address in Block Capitals. Do not send any other correspondence with your order.

TELEPHONE ORDERS (OPEN 24 HOURS)

Use your Access card and phone your order to 0268 289923 clearly stating your name and address, Access number, and order details.

All orders receive priority attention, but allow 28 days for delivery in case a PCB is temporarily out of stock.

WE CAN ONLY SUPPLY THE PCBS LISTED HERE CHECK LATEST ISSUE FOR PRICES BEFORE ORDERING

PHOTOCOPIES OF THE TEXTS MAY BE BOUGHT FROM THE EDITORIAL OFFICE AT £1.00 EACH PART (£1.50 OVERSEAS), P&P INCLUSIVE.

COMPONENTS ARE AVAILABLE FROM ADVERTISERS.

MAY 86

NOTCHER EFFECTS - unusual harmonics. 107 £5.99
TTL LOGIC CHECKER - for 14 and 16 pin chips 108 £4.59
DF BEACON TIMER - accurate navigation aid. 109 £6.18
STE-BUS BACKPLANE - data and PSU routing socket board. 110 £14.97

JUN 86

GUITAR TRACKER - transforms a guitar for sound synthesis 111 £6.98
THERMOCOUPE INTERFACE - transforms a DVM into a thermometer. 112 £3.90
PE HOBBY BUS - universal computer interface 113 £29.00
BBC LIGHT PEN - inhibiting, enhancing and visual feedback. 114 £3.90

JULY 86

PASSIVE IR DETECTOR - burglar detection 115 £3.90
200MHz COUNTER - professional specification 120 £30.88

SEP 86

FIBRE-OPTIC LINK - computer commms. ODE £10.34
PE HOBBY BUS - universal D-A and A-D unit. 120 £7.25

OCT 86

DRUM SYNTHESISER - variable dynamic sound triggered effects. 121 £7.67
MAINS DELAY TIMER - selectable 15 to 120 mins. Set of 2 PCBs. 122 £7.92
MAINS DIMMER - touch control up to 400W. 123 £3.90

NOV 86

REMOTE JOYSTICK - infrared computer controller. Set of 2 PCBs. 124 £10.86
BABY ALARM - through-the-mains transceiver. 125 £10.71

DEC 86

VIDEO ENHANCER - manually adjustable video improvement. 126 £8.76

JAN 87

VIDEO FADER - simple inexpensive video mixer 127 £4.59
VOICE SCRAMBLER - confidential trans. 128 £8.06

FEB 87

HISTAB - good variable workshop PSU 132 £8.79

MAR 87

4 CHANNEL ENHANCER - adapts stereo to 4 channels 135 £4.60
LIGHT PEN - uses fibre optics for high accuracy 136 £4.10
PHONE REPEATER - extra bell interface 137 £3.90
ULTRASONIC TAPE MEASURE - resolution to one centimetre 138 £9.50

APR 87

VIGILANTE CAR ALARM - keeps cars alert to intruders 139 £5.90
INDUCTIVE LOOP TRANSCEIVER - remote control for models: ...Transmitter 143 £3.90 ...
Recevier 144 £3.90

MAY 87

BRIGHT FUZZ - Foot operated overdrive 145 £3.90

JUN 87

AUDIO SIGNAL GENERATOR - uses frequency synthesising techniques 146 £10.20

JUL 87

WORD GENERATOR - produces binary words of up to 16 bits 147 £13.42
SCOPE STORE oscilloscope add-on data storage 148 £11.94

AUG 87

PSEUDO STEREO - mono to simulated stereo 149 £7.37

SEP 87

SPEECH PROCESSOR - clarifies transmitted speech quality 150 £5.86
GCSE TIMER UNIT - versatile variable delay 151 £5.18
AWD and switching 152/153 £9.69
FUGEN - triple waveform signal generator 152/153 £9.69
LIGHT CONTROLLER - delayed switching 154 £4.64

OCT 87

TEACHER LOCKER - digital lock control 155 £7.50
POWER SUPPLY - stabilised ±15V 156 £7.50
GUITAR TO SYNTH - music interface 157A/B £9.95

THIS MONTH'S BOARDS

NOV 87

DUAL POWER SUPPLY - GCSE 158 £6.20
MIDI EXPANDER - Music Interface 159 £5.04

PROTOTYPE SERVICE

PCBs FROM YOUR OWN MASTERS - PHONE 0268 289923
CCTV CAMERAS FROM ONLY £69.50 EACH
PLUS CARRIAGE & VAT

Crofton Electronics are now able to offer C.C.T.V. cameras from as little as £69.50 + VAT & carriage. These cameras have been refurbished to a high standard. The overall condition will be good and will work after a very short video camera. These cameras are powered from 240volt mains, and have a vidicon tube giving a focusing range from an inch or two to infinity. A standard 16mm lens is also supplied. The sensitivity is in the order of 10 lux which allows their use in the domestic environment. Pictures can be produced with only 2.5 lux but with a worse signal to noise ratio. Low light versions are available having sensitivities of 0.1 lux (half moonlight) at £390 + VAT and carriage. Many other lenses are available from stock. A Mounting bush is standard. Many other cameras are available from stock both reconditioned and new. i.e. brand new 1/3" vidicon camera at only £80 plus VAT and carriage, lens extra. Many other items of C.C.T.V. equipment such as monitors (both new and refurbished) switchers, panning units, housings, time and date generators are available from stock. We also supply camera and monitor tubes, as well as scanning yokes for a wide range of equipment.

SPECIAL SPECIAL SPECIAL

Currently on offer is a professional drive board and tube to make a superb 12" professional green panelled tube monitor at £23.60 inclusive. Would normally cost well over £200 +. Buy 10 off and they will only cost you £180.00 inclusive. Professional green panelled tube monitor at £23.50 inclusive. Would normally cost £35.00 + VAT.

LOW COST ELECTRONICS CAD

IBM PC (and compatibles) R.M. NIMBUS, BBC MODEL B, + MASTER, AMSTAR CPC and SCPEX 48K.

HURRY HURRY HURRY

(Not many left. First come first served.)

Stock contains many of the following items:

- 40pin 4-way Socket
- 40pin 9-way Plug
- 40pin 9-way Socket
- 40pin 4-way Plug
- 40pin 10-way Plug
- 40pin 10-way Socket
- 40pin 19-way Plug
- 40pin 19-way Socket
- 40pin 34-way Plug
- 40pin 34-way Socket
- 40pin 12-way Plug
- 40pin 12-way Socket
- 40pin 37-way Plug
- 40pin 37-way Socket
- 20pin 4-way Socket
- 20pin 9-way Socket
- 20pin 10-way Socket
- 20pin 19-way Socket
- 20pin 34-way Socket
- 20pin 37-way Socket
- 16way Plug
- 16way Socket
- 9-way Plug
- 9-way Socket
- 5-way Plug
- 5-way Socket
- 3-way Plug
- 3-way Socket
- 2-way Plug
- 2-way Socket
- 1-way Plug
- 1-way Socket
- 1-way Plug 0.5W
- 1-way Plug 1W
- 1-way Plug 2W
- 1-way Plug 5W
- 1-way Plug 10W
- 1-way Socket 0.5W
- 1-way Socket 1W
- 1-way Socket 2W
- 1-way Socket 5W
- 1-way Socket 10W
- 1-way Socket 2W
- 1-way Socket 5W
- 1-way Socket 10W
- 1-way Socket 20W
- 1-way Socket 30W
- 1-way Socket 50W
- 1-way Socket 100W
- 1-way Socket 200W
- 1-way Socket 300W
- 1-way Socket 500W
- 1-way Socket 1KVA
- 1-way Socket 2KVA
- 1-way Socket 3KVA
- 1-way Socket 5KVA
- 1-way Plug 25W
- 1-way Plug 50W
- 1-way Plug 75W
- 1-way Plug 100W
- 1-way Plug 150W
- 1-way Plug 200W
- 1-way Plug 300W
- 1-way Plug 500W
- 1-way Plug 1KVA
- 1-way Plug 2KVA
- 1-way Plug 3KVA
- 1-way Plug 4KVA
- 1-way Plug 5KVA
- 1-way Plug 6KVA
- 1-way Plug 7KVA
- 1-way Plug 8KVA
- 1-way Plug 9KVA
- 1-way Plug 10KVA
- 1-way Plug 12.5KVA
- 1-way Plug 16KVA
- 1-way Plug 100KVA
- 1-way Plug 200KVA
- 1-way Plug 300KVA
- 1-way Plug 400KVA
- 1-way Plug 500KVA
- 1-way Plug 600KVA
- 1-way Plug 700KVA
- 1-way Plug 800KVA
- 1-way Plug 900KVA
- 1-way Plug 1000KVA
- 1-way Plug 12.5KVA
- 1-way Plug 16KVA
- 1-way Plug 20KVA
- 1-way Plug 25KVA
- 1-way Plug 30KVA
- 1-way Plug 35KVA
- 1-way Plug 40KVA
- 1-way Plug 45KVA
- 1-way Plug 50KVA
- 1-way Plug 55KVA
- 1-way Plug 60KVA
- 1-way Plug 65KVA
- 1-way Plug 70KVA
- 1-way Plug 75KVA
- 1-way Plug 80KVA
- 1-way Plug 85KVA
- 1-way Plug 90KVA
- 1-way Plug 95KVA
- 1-way Plug 100KVA
- 1-way Plug 125KVA
- 1-way Plug 150KVA
- 1-way Plug 175KVA
- 1-way Plug 200KVA
- 1-way Plug 250KVA
- 1-way Plug 300KVA
- 1-way Plug 350KVA
- 1-way Plug 400KVA
- 1-way Plug 450KVA
- 1-way Plug 500KVA
- 1-way Plug 550KVA
- 1-way Plug 600KVA
- 1-way Plug 650KVA
- 1-way Plug 700KVA
- 1-way Plug 750KVA
- 1-way Plug 800KVA
- 1-way Plug 850KVA
- 1-way Plug 900KVA
- 1-way Plug 950KVA
- 1-way Plug 1000KVA
- 1-way Plug 12.5KVA
- 1-way Plug 16KVA
- 1-way Plug 20KVA
- 1-way Plug 25KVA
- 1-way Plug 30KVA
- 1-way Plug 35KVA
- 1-way Plug 40KVA
- 1-way Plug 45KVA
- 1-way Plug 50KVA
- 1-way Plug 55KVA
- 1-way Plug 60KVA
- 1-way Plug 65KVA
- 1-way Plug 70KVA
- 1-way Plug 75KVA
- 1-way Plug 80KVA
- 1-way Plug 85KVA
- 1-way Plug 90KVA
- 1-way Plug 95KVA
- 1-way Plug 100KVA
- 1-way Plug 125KVA
- 1-way Plug 150KVA
- 1-way Plug 175KVA
- 1-way Plug 200KVA
- 1-way Plug 250KVA
- 1-way Plug 300KVA
- 1-way Plug 350KVA
- 1-way Plug 400KVA
- 1-way Plug 450KVA
- 1-way Plug 500KVA
- 1-way Plug 550KVA
- 1-way Plug 600KVA
- 1-way Plug 650KVA
- 1-way Plug 700KVA
- 1-way Plug 750KVA
- 1-way Plug 800KVA
- 1-way Plug 850KVA
- 1-way Plug 900KVA
- 1-way Plug 950KVA
- 1-way Plug 1000KVA

SERVICE TRADING COMPANY
57 BRIDGMAN ROAD, CHISWICK, LONDON W4 5BB
ACCOUNT CUSTOMERS MIN. ORDER £10

TEST EQUIPMENT

[A list of test equipment is provided including VOM, oscilloscopes, and other electronic measuring instruments.]

SOLDERS

[A list of solders and their specifications is provided, including lead-free and flux information.]
AFFORDABLE, EASY AND SIMPLE.

Complete SATELLITE TV. receiving system for £339.00 + VAT.
1.2 metre system .. £439.00 + VAT.

Dishes: complete with stand & mount.

0.9 m Spun aluminium .. £55.00 £45.00

1.2 m Spun aluminium .. £85.00 £65.00

LNB Converter

Swedish Microwave (NF 2.1 dB) £129.00 £99.00

SATELLITE Stereo Receiver

model Rockdale – TR12E £145.00 £129.00

Polarimeters unit £40.00 £30.00

Feed Horn Ariel .. £15.00 £12.00

All prices exclusive of VAT & carriage.

Please phone for a catalogue or visit our showroom for a demo.

ROCKFORT PRODUCTS, 81 CHURCH ROAD, LONDON NW4 4DP.
Tel: 01 203 0191 (Trading division of Vignesh Ltd.)
NEW ITEMS

- E2 POUNDERS
- £2 EIGHTY CENT POUNDERS
- £1-90 POUNDERS

COMPACT FLOPPY DISC DRIVE EME-101

The EME-101 drives a 3.5" disc of the new standard which despite its small size provides ample space to hold 120k per side on a disc equivalent to the 5.25" and 6.25" drives. We supply the Operators Manual in English, and also in French, German, Italian, and Spanish, complete with separate unpacking instructions. Popular, Specimen, Amstrad etc. All at a special price of £10.50. One disc of 120k capacity available separately £2.95, refundable if you purchase the drive.

OVERALL ST праздникующихся!

Waltz, we put up, but if you don’t watch it, this film battery has an inherent instability itself 6V, which is a real headache for engineers, in spite of analog, digital, scalers, and other modern techniques that do away with microchips. The film battery has to be in and out of circuit in real time. Post £3.10 + 60c. Note there are two factory units on RN 5503.

POLE MODE MORTOR

A motor to spin up in 1/2 s and speed will increase steadily as the motor is in use. 4 x 56V 7200 use, and the Heath Medical kit as standard. An expensive time switch but you can’t have it for £2.25. £2.95 add for its conversion to the new 24-hour time switch but with the added advantage of up to 12 on/off per day in a single channel, and a master on/off. The 19-channel timer is far superior to an expensive time switch for this type of application.

CASSETTE STEREO TAPE HEADS

With mounting brackets and with tape guide pins, so the user can play and record it twice over the other side. £3.50, add 60c for its conversion to the new 24-hour time switch.

OPTO INTERRUPTER

Covers a wide range of pulse widths. The moment light is interrupted the charge on the reservoir capacitor is reduced to zero. The output, after a fixed time (which can be varied), goes to one state or the other (1 or 0), and the output is usually connected to the input of the next section. The output of the last section is the output of the interrupter.

LOW VOLTAGE RELAY

A 12 volt OMR type switch, a lot smaller, than the previous one. Now even more compact, and in an all-electronic, 16V dc supply to set it going. It’s made up in a lacquered metal framework. Has a 200uA movement scaled 1-100.

SLIDE SWITCHES

A 10A slide switch or switch per £2 is £1.60.

POLARISED RELAY

Opening simply as circuit is closed to allow two 12V motors to work alternately. A powerful 230V motor is supplied with an adaptor for 230V mains. A powerful 230V motor is supplied with an adaptor for 230V mains.

DOLLED OPTO SWITCH

Provides a very high precision output signal, to the output, at the end of each cycle, which is then used to control a 24V mains operated relay. A powerful 230V motor is supplied with an adaptor for 230V mains.

24HR TIME SWITCH

Basic work which we have done for some time. Just use 4" x 10mm T/c contacts on a lever arranged around 24 dial to register the exact time plus a switch which will fire up the early alarm. Price £3.10.

COMPUTERS

The Anode (Electronics) is used in a number of ways for digital and analog circuits. Works very much better in analog circuitry, which is an ideal solution. To connect a 24V relay to the 24V supply, one of these contacts, or the power supply, can be used in the electronic system, speed sensing etc. Price £2.10.

TELEPHONE LEAD

3 core very long wearing and very long life. Flat plug and a flush fitting crimped terminals. Either 24V or 24V mains. A powerful 230V motor is supplied with an adaptor for 230V mains.

POWERFUL IONISER

Generates up to 10 million ions from the tin and similar circuits. Will ignite our clothes, our shoes, our houses. Makes use of laser technology, high power laser beams and a complete mains powered kit, cost increased £5.00 + £2 P&P. £10.50.

25Pounder S

An induction kit, 230V in 10m, makes for cleaning display glass for charts, business cards or office, home or shop display, digital scale £5.00.

LIGHT CHASER KIT MOTOR chaser switches bank with connection diagram, used in schools and public companies. Makes a very nice eye catching display for home, shop or disco, only £55.00.

BATTERY CHARGER

10V 2A 15mA charger, for operating aircraft or model cars. £25.00.

ACCESSORIES

- 3-12V battery charger, for operating aircraft or model cars. £25.00.
- 10V 2A 15mA charger, for operating aircraft or model cars. £25.00.
- 10V 2A 15mA charger, for operating aircraft or model cars. £25.00.

BATTERIES

- Everlast battery charger 15V 1A secondary. £2.95.
- 15V 1A secondary. £2.95.
- 15V 1A secondary. £2.95.

BUNDLES

- £2.95 add for its conversion to the new 24-hour time switch.
- £2.95 add for its conversion to the new 24-hour time switch.
- £2.95 add for its conversion to the new 24-hour time switch.

15Pounders

- £1 one 24hr timer switch.
- £1 one 24hr timer switch.
- £1 one 24hr timer switch.

25Pounders

- £25.00 24hr timer switch.
- £25.00 24hr timer switch.
- £25.00 24hr timer switch.

Mains Operated Switches

- 12V mains operated relay with 4 x 8a c/o contacts, 12V mains operated relay with 4 x 8a c/o contacts, 12V mains operated relay with 4 x 8a c/o contacts.

15Pounders

- £15.00 mains operated 16a c/o contacts, £15.00 mains operated 16a c/o contacts, £15.00 mains operated 16a c/o contacts.

10Pounders

- £10.00 mains operated 16a c/o contacts, £10.00 mains operated 16a c/o contacts, £10.00 mains operated 16a c/o contacts.

5Pounders

- £5.00 mains operated 16a c/o contacts, £5.00 mains operated 16a c/o contacts, £5.00 mains operated 16a c/o contacts.

2Pounders

- £2.00 mains operated 16a c/o contacts, £2.00 mains operated 16a c/o contacts, £2.00 mains operated 16a c/o contacts.

1Pounders

- £1.00 mains operated 16a c/o contacts, £1.00 mains operated 16a c/o contacts, £1.00 mains operated 16a c/o contacts.

50Centers

- £0.50 mains operated 16a c/o contacts, £0.50 mains operated 16a c/o contacts, £0.50 mains operated 16a c/o contacts.

25Centers

- £0.25 mains operated 16a c/o contacts, £0.25 mains operated 16a c/o contacts, £0.25 mains operated 16a c/o contacts.

10Centers

- £0.10 mains operated 16a c/o contacts, £0.10 mains operated 16a c/o contacts, £0.10 mains operated 16a c/o contacts.

5Centers

- £0.05 mains operated 16a c/o contacts, £0.05 mains operated 16a c/o contacts, £0.05 mains operated 16a c/o contacts.

2Centers

- £0.02 mains operated 16a c/o contacts, £0.02 mains operated 16a c/o contacts, £0.02 mains operated 16a c/o contacts.

1Centers

- £0.01 mains operated 16a c/o contacts, £0.01 mains operated 16a c/o contacts, £0.01 mains operated 16a c/o contacts.

25Centers

- £0.25 mains operated 16a c/o contacts, £0.25 mains operated 16a c/o contacts, £0.25 mains operated 16a c/o contacts.

10Centers

- £0.10 mains operated 16a c/o contacts, £0.10 mains operated 16a c/o contacts, £0.10 mains operated 16a c/o contacts.

5Centers

- £0.05 mains operated 16a c/o contacts, £0.05 mains operated 16a c/o contacts, £0.05 mains operated 16a c/o contacts.

2Centers

- £0.02 mains operated 16a c/o contacts, £0.02 mains operated 16a c/o contacts, £0.02 mains operated 16a c/o contacts.