Pocket Autoranging Multimeter

At Tandy we stock a wide range of quality multimeters for all your testing requirements - everything for the DIY enthusiast to the professional! Our Pocket Autoranging Multimeter is perfect for on-the-spot testing - wherever you may be! Features "beep" continuity test, diode check, auto-polarity and low-battery indicator. Measures to 400 volts AC/DC, resistance to 2 megohms. Complete with miniprobes and folding case. With 2 silver-oxide batteries. 22-171 ... £19.95

Benchtop Digital Multimeter

Featuring LCD display with a built-in 31 segment bar graph for simultaneous analogue-type display and data-hold mode which freezes both readings until you reset. Built-in transistor checker with front-panel pin socket gives you the true hfe (gain) measurements of small-signal types and separate diode-check mode for quick open/short/leakage tests of semiconductor junctions. With memory function and buzzer continuity checker. Measures up to 1000 volts DC, 750 volts AC (accurate from 45Hz to 10Hz) AC/DC current to 10 amps. Resistance to 30 megohms. Requires 4 "C" batteries. 22-195 .. £79.95

For The Best In High Quality Electronics

Over 400 Tandy Stores and Dealerships Nationwide.

Tandy (U.K.), Tandy Centre, Leamore Lane, Bloxwich, West Midlands. WS2 7PS.
BURGAL ARM

Select to be 'Armled' then transmitted. Thandar's famous 'Meder' Burglar Alarm System. Superior microwave principle. Supplied as three units complete with interconnection cables FULLY GUARANTEED.

- Control centre - gives microwave radar unit range up to 15 metres adjustable by sensitivity control.
- Three position control panel - Operates in: Test mode - armed 30 second exit and only delay.
- Indoor Alarm - Electronic sweeping sensor fired 30db output.

Both the control centre and output circuits for very fast rise and decay times. Tough moulded plastic case,体系化的逻辑控制.

IDEAL FOR WORKSHOPS, Factories, Workplaces, etc. Price £99.99. Contact B. M.

LOUDSPEAKERS 5" to 15" up to 400 Watts R M S Cabinet Speaker System. The selection of McKenzie Loudspeakers available including Cabinet Plans. Large S.A.E. (25p) for free details.

- **KIVER RANGE**
 - 5" WATT RMS. R. C.® Speaker
 - 8" WATT RMS. R. C.® Speaker
 - 10" WATT RMS. R. C.® Speaker
 - 15" WATT RMS. R. C.® Speaker
 - **20" WATT RMS. R. C.® Speaker**

- **LOUDSPEAKER 7" (400 Watts R.M.S.)**
 - 3" - 175 Watts R.M.S.
 - 5" - 250 Watts R.M.S.
 - 7" - 400 Watts R.M.S.

- **LOUDSPEAKER 10" (400 Watts R.M.S.)**
 - 10" - 400 Watts R.M.S.
 - 15" - 800 Watts R.M.S.

- **LOUDSPEAKER 15" (400 Watts R.M.S.)**
 - 15" - 1600 Watts R.M.S.

REO ELECTRIC TWEETERS

- **MOTOROLA**
 - Join the Peo revolution. The low dynamic mass (the voice coil) of a Peo tweeter provides an improved transient response with a lower distortion level than ordinary dynamic tweeters. All Peo tweeters are available in a variety of mounting methods. Suitable for both resistive and inductive loads innumerable applications in industry, the home and discos, etc.

- **TYPE A** (KEN2036A) 3" round with protective wire mesh. Ideal for bookshelf and minimum size hi-fi speakers. Price £4.90 each + 40p P.T.

- **TYPE C** (KEN2036A) 3" horn. For general purpose speakers, discos and PA systems etc. Price £9.99 each + 40p P.T.

EURO DISCO MIXER

- **STEREO DISCO MIXER**
 - With 3 x5 band L & R magnetic graph and ten 10 segment 3.G.V. Vu Meters. Many outstanding features: 5 inputs with individual faders providing a useful combination of the following.
 - **3 Turntables (Magl) 3 Mics 4 Line Plus mix with talk over switch. Headphone Monitor, Full Fader, 6 x Master Out plus 1 x 775V. Size 280 x 282 x 90mm. Price £134.99 + 30p O.P.

Hobby kits

- **HOBBY KITS**
 - Proven designs including glass fibre printed circuit board and high quality components complete with instructions. FM MICROTRANSFORMER (BUCH) 96000/116 - 100300 microfarads. Range 100-300 metres. 57 x 46 x 14mm (9 volt) Price £8.62 + 75p P.T.
 - 3 WATT FM TRANSMITTER 3 WATT 80/155 microfarad controlled professional performance. Range up to 3 miles 8 x 84 x 12mm (12 volt) Price £14.49 + 75p P.T.

POSTAL CHARGES PER ORDER

- £1 minimum. OFFICIAL ORDERS WELCOME. SCHOOLS, COLLEGES, GOVERNMENT BODIES ETC. PRICE INCLUDES V.A.T, S.A.E 28P FOR CURRENT LIST.

O.M. POWER AMPLIFIER MODULES

- **O.M. POWER AMPLIFIER MODULES**
 - Now enjoy a wider range of performance, quality and performance at a realistic price. Four models available: 8 x 100 Watts R.M.S. into 4 ohms - two types high and low frequency - input transformers. SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER & RECEIVER 27MHz. Range up to 500 metres. Double coded modulation. Perfect for outbuilding or for use in locations difficult to get mains power for many applications. Receiver 90 x 70 x 22mm (9/12 volt) Price £7.17 2 Transmitter 9 x 5 x 10 (9/12 volt). Price £11.29 P.T. + 75p each. S.A.E. for complete list.

O.M. POWER AMPLIFIER MODULES

- **O.M. POWER AMPLIFIER MODULES**
 - Now enjoy a wider range of performance, quality and performance at a realistic price. Four models available: 8 x 100 Watts R.M.S. into 4 ohms - two types high and low frequency - input transformers. SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER & RECEIVER 27MHz. Range up to 500 metres. Double coded modulation. Perfect for outbuilding or for use in locations difficult to get mains power for many applications. Receiver 90 x 70 x 22mm (9/12 volt) Price £7.17 2 Transmitter 9 x 5 x 10 (9/12 volt). Price £11.29 P.T. + 75p each. S.A.E. for complete list.

POSTAL CHARGES PER ORDER

- £1 minimum. OFFICIAL ORDERS WELCOME. SCHOOLS, COLLEGES, GOVERNMENT BODIES ETC. PRICE INCLUDES V.A.T, S.A.E 28P FOR CURRENT LIST.
1988 BUYER'S GUIDE TO ELECTRONIC COMPONENTS

Maplin

VISIT OUR NEW SHOP IN BRISTOL
NOW OPEN AT
302 GLOUCESTER ROAD
Tel: (0272) 232014

Make your own DIGITAL WATCH KIT

UNIQUE

NEW! RADIO CONTROL MODELS AT LOW, LOW PRICES £1.60

GET YOUR COPY OF THE NEW MAPLIN CATALOGUE ON SALE NOW

AVAILABLE NOW IN ALL W.H.SMITH STORES GET YOUR COPY NOW!
COMPETITION

WIN A SATELLITE TV SYSTEM

Answer a few simple questions and have a chance to win a superb Connexions CX8520R satellite tv system, complete with motor driven dish, remote control, and twin channel output. Worth over £1200!

CONSTRUCTIONAL PROJECTS

LOGIC ANALYSER PART ONE by Michael Sweet

A very sophisticated unit for use with the BBC computer, enabling digital systems to be analysed at full operating speed.

TREMOLON by John Becker

A novel musical effect unit designed with low-tech and hard-up soloists in mind.

TEACHER TALKBACK PART TWO by Tim Pike

Chatterbox TF tells how masters and slaves can communicate along a GCSE project hot-line.

DC MOTOR SERVO by David Sanders

Practical real world interfacing for mobiles through a mixer and motor control system.

SPECIAL FEATURES

REAL WORLD INTERFACING PART ONE by Robert Penfold

Most things in nature produce analogue signals, so to control them by digital electronics, converting interfaces are needed.

HEAT SINKS by Stephen Knight

A cool headed look at the theory of why heatsinks are needed, and how their applications can be treated as circuit diagrams.

SEMICONDUCTORS PART FOUR by Andrew Armstrong

Uses for field effect transistors are growing rapidly, so it’s vital to understand their pros and cons.

ELECTRONIC LOCKS PART TWO by The Prof

Still keyed up from last month’s security discussion, the Prof describes an infrared controlled locking system.

REGULAR FEATURES

EDITORIAL – Spanning high tech notes

LEADING EDGE by Barry Fox

SPACEWATCH by Dr. Patrick Moore – New millisecond pulsar

INDUSTRY NOTEBOOK by Tom Ivall – Market values

MARKETPLACE – what’s new, where and when

PCB SERVICE – professional PCBs for PE Projects

TRACK CENTRE – the PCB track layout pages

READERS’ LETTERS – and a few answers

BAZAAR – Readers’ FREE advertising service

ADVERTISERS’ INDEX

NEXT MONTH . . .

WE’VE GIVEN MARCHING ORDERS TO –

A WEATHER CENTRE • SATELLITES • TEACHER LIGHTSHOW • AMSTRAD PRINTER PORT • DIGITAL TO ANALOGUE • AND WE’RE SNOWED UNDER WITH OTHER TIMELY FEATURES

SO HARE ROUND TO YOUR NEWSAGENTS FOR THE PE MARCH 1988 ISSUE ON SALE FROM FRIDAY FEBRUARY 5TH

THE SCIENCE MAGAZINE FOR SERIOUS ELECTRONICS ENTHUSIASTS
Midnight Express

Midland Bank has introduced Mid-Night Express, an electronic service for retailers that helps speed up and simplify the process of receiving payment for goods and services. Mid-Night Express is the first in a series of electronic payment services to be introduced by Midland under the generic name 'MidlandTransac'. Based on the principals of EFT-POS (electronic funds transfer at the point-of-sale), it collects and distributes certain plastic card payments, without the necessity of the traditional sales vouchers.

The customer pays for goods and services by handing the retailer an acceptable card. Initially these will include Access and Visa. The retailer then 'swipes' the card through a small point-of-sale device. This reads the card and a receipt is produced. The customer confirms the transaction, usually by signing the receipt, and the sale is completed electronically.

WHAT'S NEW

Arriva Revox

FOLLOWING the successful introduction of the C79 compact audio mixer, Revox have launched a plug-in expansion module further enhancing this flexible unit. The new unit gives the mixer four additional features: stereo noise reduction using dbx1 processing (encoding/decoding); built-in test-tone generator for calibration at two levels 0dBu and +6dBu; faster start logic for all six inputs as well as the master channel; two phono inputs also with fader start logic. Revox have also introduced a carrying case for the mixer which can be used whether or not the C79 is fitted with the expansion unit.

For more information about Revox Equipment, please contact EWO, Box 63, 49 Theobald Street, Boreham Wood, Hertfordshire WD6 4RZ. Tel: 01-953 0091

Soft Boards

CADSoft have announced the introduction of their new printed circuit board design program for the Amstrad range of computers. It will operate on all Amstrad CPC computers without the need for expansion RAM. Draft or final quality printouts can be produced at 2:1 scale, using Epson compatible dot matrix printers, including the Amstrad DMP8/40. Single and double sided boards up to 25 x 25 inches (63.5 x 63.5 cm) finished size can easily be accommodated, with up to 4000 structures (pads or tracks) on each board. 4 track widths and four pad sizes are available and can be freely mixed.

The program costs £19.99 on tape and £21.99 on disc and is available from: CADSoft, 18 Ley Crescent, Astley, Tyldefley, Manchester, M29 7BD.

Multi-Colour Panels

A new and non-hazardous system has been introduced by Mega, for the production of purpose-designed custom panels, signs and labels. The Gedapak system offers the means of producing labels or panels quickly, economically and simply on standard formats ranging in size from 250 x 320mm, up to 500 x 1000 mm, with thicknesses from 0.125 to 3.0 mm. The end product is reproduced from the user's artwork on anodised aluminium sheeting and as many as 29 available dyes provide for a variety of multi-colour options.

The anodised aluminium sheeting is coated with an ultraviolet-sensitive, positive working photoresist. Once exposed to UV light via the positive film artwork, the sheeting is developed by spraying with water. There then remains an 'open-pore' positive image of the film, and this will accept any of the colour dyes. Excess dye and unwanted photoresist is removed by means of a stripping solution, and this results in the coloured design being set into the anodised aluminium image of the artwork. The complete process may take only about 10 minutes. If necessary, the image may then be sealed extremely simply, for protection against chemicals, scratching and adverse weather conditions. Introductory kits are also available, for feasibility assessment.

For further information contact: Mega Electronics Ltd, 9 Radwinter Road, Saffron Walden, Essex, CB11 3HU. Tel: 0799 21918.

We have recently received the following catalogues and literature:

Maplin appear set to conquer the Universe with their Monster 1988 buyer's guide to electronic components, or so it would seem from it's front cover. Could they be conquering time travel as well? - if you phone 0702 554161 before 5pm, they promise the same day goods despatch. Otherwise, write to Maplin Electronics, PO Box 3, Rayleigh, Essex, SS6 2BR.

Electroplan Rental have issued their 1987-88 catalogue of computing test and measurement products that are available for rental. Equipment may be rented for a minimum of one week, to over two years. Discount and purchase option plans are also offered. Electroplan Rental, PO Box 19, Orchard Road, Royston, Herts, SG8 5HH. 0763 47251.

IQD Ltd have announced their new 200 page quartz crystal catalogue. It's been completely redesigned around the needs of electronic design engineers and buyers, and is apparently the largest and most comprehensive frequency control catalogue on the UK market. IQD Ltd, North Street, Crewkerne, Somerset. TA18 7AR. 0400 7443.

IMO have sent their 1987-88 catalogue. They are well known for their wide range of professional control equipment, and their 300+ page catalogue confirms this reputation. IMO are at 1000 North Circular Road, Staples Corner, London, NW2 7JP. 01-452 6444.

British Amateur Electronics Club have sent another news letter full of interesting electronics information, and reader feedback. (How about looking into a low cost DTP system, chaps? It would work wonders with your drawings.) For more info on the BAEC, write to the Hon Sec, 53 High Oaks Close, Locks Heath, Southampton, SO3 6SX.

Industry and Education is a quarterly journal, the first issue of which has recently been received. Its intention is to cover all aspects of developments in collaboration between higher education and industry. It is published by Butterworth Scientific Ltd, PO Box 63, Westbury House, Bury Street, Guildford, Surrey, GU2 5BH.

PRACTICAL ELECTRONICS FEBRUARY 1988
CHIP COUNT!

This month's list of new component details received — mainly chips, but other items may be included.

83XX. CHMOS multifunction peripherals for 8-, 10- and 12MHz versions of 80286 PC-AT compatible designs (IT).

H4808. Addition to the H400 series of single chip cmos 4-bit microcontrollers. Ideal for instrumentation, telephones, display modules etc. Features large program and data memories, integral I/O interface, time, interrupt and flexible I/O structures (HT).

NE-SA-SE5570. Controller for brushless 3-phase DC motors using pulse-width modulated (switch mode) drive from a serial bid stream. Can also deal with 60° or 120° commutation motors. (ML).

OM2000 series of low noise wideband hybrid IC amplifiers for RATV, MATV and CATV systems in the 40 to 860MHz range. (ML).

PP12 series potentiometers. Small low cost modular pots with carbon or cermet tracks, for PCB mounting, vertically or horizontally, and which can be fitted with a snap in plastic spindle. (ML).

Manufacturers, and contact telephone numbers for further details: (HT) Hitachi, 0923 246488. (IT) Intel, 0793 696204. (ML) Mullard, 01-850 6633.

Practical Electronics February 1988
Gas Soldering

IDEAL for field servicing use, in the laboratory or where electric mains connection is impractical, a new butane gas soldering tool from OK Industries can be used with or without a flame to enable it to double as a welder. It is supplied with three attachments to allow soldering with a tip, shrinking with a hot air nozzle and welding with an open flame with temperatures of up to 1300°C. When used for soldering and hot air applications it is a catalytic converter operates.

The amount of gas and temperatures is controlled by three adjustment rings, and the refined butane gas in the refillable cartridge allows for about 180 minutes operation.

Contact: OK Industries UK Ltd., Barton Farm Industrial Estate, Chichenhall Lane, Eastleigh, Hants, SO5 9RR. Tel: 0703 619841.

Airstrip

ERaser International have introduced an all new air operated magnet and enamel wire stripper into their popular L series of strippers. The L4 uses rotary inserts to strip most film insulations from round wires of sizes between 29 AWG and 4 AWG and can also be used for cleaning component legs and transformer pins. A clean lubricated air supply of 90 p.s.i. at 18 c.f.m. is required to operate the unit.

Contact: ERaser International Ltd, Unit M, Portway Industrial Estate, Andover SP10 3LU. Tel: (0264) 513478.

Tintinabulation

MEGA Electronics have announced the availability of a new powder-form tinning solution. It is the only one currently available that is capable of platting tin on tin. Introduced as part of Mega's recently acquired Seno range of PCB processing chemicals and applicators, the Seno-tin solution embodies a number of unique features of importance in the PCB production environment.

In addition to its ability to plate tin on tin, Seno-tin is designed to work at room temperature. Once mixed with water it does not crystallise out, and deposits the tin in extremely small molecules to form a hard, bright and non-porous scratch-resistant surface.

The powder may be mixed in ordinary tap water, after which it has a shelf life of around six months; its shelf life in powder form is indefinite.

SENO-TIN is available in bulk, ex-stock, from Mega Electronics Ltd., at 9 Radwinter Road, Saffron Walden, Essex, CB11 3HU Tel: 0799 21918

Micro-Synth Sig Gyms

ELECTRONIC Brokers have introduced the Marconi Instruments 2018A and 2019A AM/FM synthesized signal generators, two new microprocessor-controlled instruments covering the frequency ranges 80kHz to 520MHz and 80kHz to 104MHz respectively.

Microprocessor control provides simple and rapid operation by direct keyboard entry of settings, and the non-volatile memory, which can store up to 100 settings, further reduces measurement time.

Powerful second functions enhance the operation of the signal generator and provide the user with valuable diagnostic aids for use in maintenance and calibration.

Contact: Electronic Brokers Limited, 140-146 Camden Street, London, NW1 9RB. Tel: 01-267-7070

Digital Radio Service

THE Department ofTrade and Industry have announced a new agreement with the Electronic Engineering Association (EEA) on a work programme aimed at the introduction of a digital short range radio service by the early 1990's.

The use of all digital techniques for voice and data is a UK first in this field.

The DTI has commissioned a report on the economic costs and benefit of short range radio which is available free of charge from: Radiocommunications Division Library, Department of Trade and Industry, Waterloo Bridge House, Waterloo Road, London SE1 8UA.

Scribbled

A continuity tester with a difference has been introduced by JASP International. The EEH 751F incorporates acoustic and LED indicators to facilitate testing procedures, and additionally has a push-in writing probe so that notes can be written done immediately after making tests.

The voltage on the test probe is only 2.6V, minimising the risk of destroying components under test. The unmistakably loud tone resulting from satisfactory connections is produced by a piezo-electric buzzer.

Simultaneously a LED is illuminated.

The probe measures just 19mm x 120mm, runs from two 1.5V batteries, and is protected against external voltages up to 250Vac, providing each test takes less than 10 seconds.

It is obviously a handy tool to have around if a multimeter is not available.

Contact: JASP International, 14 Tudor Close, Wokingham, Berks, RG11 2LU.

Pico the Pulses

IBM scientists here have made and measured the world's shortest electrical pulses, an important step in designing the ultrafast electronic computer components of the future.

Using a laser and a very fast switch, the scientists produced electrical pulses lasting only one half of a picosecond. A picosecond is one trillionth of a second. Until this experiment, researchers had never broken the "picosecond barrier" with an electronic device.

Today's fastest experimental silicon logic devices can switch on and off in about 30 picoseconds; gallium arsenide devices in about 10 picoseconds. But to investigate the electrical behaviour of these devices, researchers must be able to measure pulses at least 10 times faster then these switching times.

The technique used to make the half-picosecond pulses can measure electrical pulses up to 20 times briefer than the switching times of the fastest present-day devices.
Transputer Centre

THE Bristol Transputer Centre, a major new initiative to exploit British technology which has recently been opened by Professor Ian Barron the man behind the invention of the transputer at Inmos, and Brian Lodge of the DTI.

Bristol Polytechnic, Inmos and the Department of Trade and Industry teamed up to launch the centre at a cost of £500,000. The centre will provide a major link between industry, commerce, and the academic community. It has been established to supply information on transputers and their applications and will develop short courses by workshops, applications notes, and in-house training packs on this important new topic.

Underpinning this work is a flourishing research group investigating transputer applications in fields such as Intelligent Knowledge Based Systems and Databases for clients in both the industrial and financial sectors.

Initially the centre will have a forty transputer system and fifteen microcomputer based workstations supported by Inmos transputer development systems, together with a versatile selection of specialised boards for applications such as graphics, disk handling, signal processing and communications.

Contact: Mary Wright, Public Relations Office, Bristol Polytechnic, Coldharbour Lane, Frenchay, Bristol BS16 1QY. Tel: 0272 656261 ext 2208

Ceka Driver

A n extension to its range of screwdrivers for the electronic, radio and tv industries, CeKa Works has introduced a new selection of small ‘Micro’ Screwdrivers for the most delicate tasks.

With their small ‘button’ heads and ribbed turning grooves moulded into the handles, the drivers measure just 85mm from button to tip and are available in versions to suit slotted, recessed or ‘Torx’ screws: each type is clearly identified by its button colour and sizes are printed onto the handles.

Tip sizes of the four slotted drivers range from the minute 0.8mm to 1.8 mm, the recessed tools are sizes 000, 00 and 0, while ‘Torx’ drivers are in four sizes from 0 to 9.

Contact: Ceka Works Ltd, Pwllheli, Gwynedd, North Wales, LL53 5LH. Tel: 0758 642254.

Screen Printer

NEW from Electronic Brokers is a particularly handy and compact thermal video printer that can be used to record directly from any crt screen. The Thunder TP-35 is capable of printing a hard copy of any ctt image - eg, from a computer, oscilloscope, spectrum or logic analyser. It operates very quickly; records are produced in only 15.7 seconds for a standard screen. It is fully compatible with most computer and measuring systems and, furthermore, there is no warm up time prior to use.

The printer has input terminals for composite video signals, separate video signals and composite synchronised signals. It can also be connected directly to any computer; no separate interface is required.

There is a choice of high or low resolution printing. Horizontal printing pitches are 6 dots/mm or 3 dots/mm, are switch selectable, and there is a user choice of positive or negative copies.

The TP-35 operates virtually silently, and also features simplified construction and built-in testing to assure reliability and peak performance for years of maintenance-free operation.

Contact: Electronic Brokers Limited, 140-146 Camden Street, London NW1 9PB. Tel: 01-267 7070.
THE LEADING EDGE
BY BARRY FOX
THE W I R E S W O N ' T T E L L
A new report says that all our information and entertainment could be piped to us through broadband optical cables by the year 2010. It could happen, but will it? IT can reveal anything — except the future.

Soon after writing a feature for this magazine on the future of optical fibre wideband systems, I got a look at a new report prepared for the government.

The department of Trade and Industry had commissioned the PA Consulting Group to research the 'Evolution of the United Kingdom Communications Infrastructure'. This followed a recommendation made in the Peacock Committee report on financing the BBC, published in July 1986. Peacock had said that BT and Mercury should be allowed to act as common carriers, and bring television programmes into the home as well as providing a telephone service. The DTI thought the government should know what the future looked like. Now PA has told them.

In a nutshell, no-one knows how Britain's telecommunications infrastructure will look in 2000! PA can only say it all depends on the people who commissioned the study, the Department of Trade and Industry. As it's an interim report, intended as a discussion document, the DTI still has time to shape the future. But don't bank on it.

People in the Information Technology business have short memories. Kenneth Baker, who started the IT ball rolling and breathed fire into the DTI, has been through several different jobs since then. I fear there are people in the DTI now who would have difficulty remembering what the IT initials stand for. I doubt many of them recognise that the PA paper echoes forgotten recommendations made in 1982 to Prime Minister Margaret Thatcher and her Cabinet by another research group, the Information Technology Advisory Panel.

ITAP envisaged a wired society with an infrastructure of optical fibre cables carrying not just entertainment but interactive information technology and telecommunication services run by British Telecom and rivals. ITAP's plan fell flat when the firms licensed to provide new cable systems in Britain learned that the Government would not provide money, and investors saw the project as too risky. ITAP sank without trace, along with Kenneth Baker's plans for wiring up Britain.

According to PA the year 2010 could see 80% of homes and 95% of business sites connected to a high technology national telecommunications grid of wide band optical fibre links. On the other hand only one in ten homes may be connected to a low tech cable network.

"The differences between scenarios are in the pace of this change, not in its direction", says PA.

Today's telecoms infrastructure is valued at £16.25 billion, of which BT's share is over 90%.

The Government, says PA, will be the most important player influencing the changing size of this share. Annual investment now runs at £1.75 billion with around 20% coming from Mercury, the broadcasters, cellular radio operators and cable TV companies.

"I feel sorry for people who retired from telecoms 5 years ago," Colin Davis, boss of the booming Cellnet cellular radio service, told me recently. "They missed out on all this".

PA comes up with a string of possible future scenarios. If competition is lightly regulated, and BT and Mercury continue to be precluded from carrying entertainment channels on their telephone network, and if local cable TV companies are allowed to carry telephony, there will be no incentive for BT to rip out existing copper cables and replace them with optical fibre. So only around 2 million homes will get even simple broadband links.

If the Government adopts a hands-off approach, and lets BT and Mercury carry entertainment TV by telephone wire, they could run optical fibres into seven million homes and half British businesses. This policy would be irreversible because of the high price of compensation.

If the government intervenes and helps wire Britain with a national IT grid, up to 16 million homes could be plugged into broadband fibre by 2010. This would make Peacock's dream come true, with widespread electronic publishing and very many people and organisations able to originate video material for wide distribution.

One way to achieve a grid, says PA, would be to compel BT to share its existing underground cable ducts with local franchises. If there is one thing in the telecoms industry you can be sure of for the future, it is that BT will fight this proposal tooth and nail.

Barry Fox has won a UK Technology Press Award — see page 5.
SPANNING HIGH TECH NOTES

In recent issues the Prof has demystified some of the facts about MIDI. Those articles concerned the theory and simple practice behind a universal interface standard of multiple control for electronic musical instruments. In future issues, we shall be showing further practical ways in which this theory can be applied.

Music and effects control is a subject close to my own heart, and I know how important MIDI is for the modern musician. The Prof has written several books on the subject, one of which, 'Midi Projects', is available through the PE book service. It makes interesting reading.

High tech music interfaces are of considerable value for those who have the equipment and desire to use them. Instrument prices are really quite moderate considering the technology inside them, and you need not spend a fortune to equip yourself with one suited to MIDI control. If you build the interface yourself from a published project, it could cost even less.

However, despite the availability of high tech music making, it should not be forgotten that everyone does not necessarily want high tech facilities. There are many instrument players who are quite happy with their solo guitar or simple electronic organ, playing it purely for their own pleasure. Additionally, there are those who may belong to a small group for whom mobility is as important as technology. Let's face it, a lot of performers have only a rusty old low tech banger in which to stow their gear, and do not have space for sophisticated synths, samplers, mixers, equalisers and so on, as well as for guitars and a drum kit. All they have room left for is an effects box or two that can be slung in the boot somewhere.

From the letters received I know that the needs of these players are just as important as those who are high up the scale. The interest created by the Bright Fuzz in the May issue, as well as by some of my own simple effects designs published at various times, confirms my opinion.

Boxes that produce fuzz, phasing, flanging, tremolo, echo and chorus are frequently the only additional effects that many performers need. I see further truth of this when I travel on the London Underground to the PE editorial offices. Around the corridors and escalators of the central London stations there are solo musicians, playing everything from guitars, flutes, saxophones and synths, to harps! Many of them use electronically coupled small effects boxes, all only of the type just mentioned. I'm not suggesting you join them (though I think some are students from music colleges), but the sounds they produce with their equipment are well worth imitating.

With this in mind, I am pleased to publish another simple musical effects project as a contrast to higher tech MIDI units. I make no apology for its function being nothing new. I have designed several tremolos across the years, and this is simply a fresh approach using a different technique. It should fit in the boot nicely.

THE EDITOR

OUR MARCH 1988 ISSUE WILL BE ON SALE FRIDAY, FEBRUARY 5th 1988 (see page 2)

© Intra Press 1988. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. All material is accepted for publication on the express understanding that the contributor has the authority to permit us to do so.
PRINTERS & PLOTTERS

We hold a wide range of printer attachments (sheet feeders, feeder trays etc) in stock. Serial, parallel, PS/2 and other interfaces are also available. Ribbons are available for all above plotters. Pens with a variety of tips and colors are also available. Please phone for details and prices.

Plain Fanfold Paper with extra low perforation (Clean Edge): 2000 sheets 9.5" x 11" (£13.50), 2000 sheets 14.5" x 11" (£18.50). Labels per 1000: Single Roll 3", 1/16" (£5.25), Triple Roll 2.75"x 1.75"x 1.75" (£9.00).

PRINTER ACCESSORIES

All modems carry a full BT approval

MIRACLE TECHNOLOGY WS Range

WS4000 V21/23 (Hayes Compatible, Intelligent, Auto Dial Dialup Answer) (£149.00)
WS3000 V21 Professional As WS4000 and with BELLs standards and battery back-up for memory (£245.00)
WS3000 V22 Professional As WS3000 V21 but with 1200/1200 bps (£450.00)
WS3000 V22 bis Professional As V22 and 2400 baud full duplex (£595.00)
WS3022 V22 Professional As WS3000 but with 1200/1200 (£350.00)
WS3024 V22 Professional As WS3000 but with only 2400/2400 (£450.00)
WS2000 V21/23 Manual Modem (£95.00)
DATA Cable for WS series/PC or XT (£10.00)
DATATALK Comms Package "it purchased of any of the above moderns" (£70.00)
PACE Nightmail Modem V21/23 Manual (£75.00) (Offer limited to current stocks)

SOFTY II

This low cost intelligent epson compatible software carries page 2174, 26, 2194, 2720, and all alias. 264 and 2194. (Grades 3-5 type page on Tandy) has internal and portable software. Can be used on epson, computer, copier. Patented proprietary software. £195.00 (£95.00)
SPECIAL OFFER

2712-40 £2.50 (d)
2712-2 £2.75 (d)
6264 LP-15 £2.80 (d)

TELECON CENTRAL

DISC DRIVES

- 5.25" Single Drives 40/50 switchable
- 5.25" Dual Drives 40/50 switchable
- 3.5" DS Drives
- 3M FLOPPY DRIVE HEAD CLEANING KIT

IBM 3.5" DISC DLX £285.00

FLOPPICILE DRIVE HEAD CLEANING KIT

FLOPPICILE Drive Head Cleaning Kit with 28 disposable cleaning discs ensures continued optimum performance of the drive. 5.25" £12.50 (d)
3" £14.00 (d)

DRIVE ACCESSORIES

- Single Disc Case £5.00 (d)
- 10 Disc Library Case £11.00 (d)
- 50 x 5" Disc Lockable Box £9.00 (d)
- 100 Disc Lockable Box £13.00 (d)

MONITORS

- MONOCROME TAXAN 17" HI RES £99.00
- TAKEN 17" HI RES £99.00
- MICROVITEC 14" RGB/PAL AUDIO £49.00
- 14" AP St 219 £199.00
- 14" AP St 215 £124.00
- IBM compatible £170.00
- TXAIX Superslim £115.00
- MITSUBI £140.00
- STAR £139.00

EXT SERIAL/PARALLEL CONVERTERS

- Mains powered converters £148.00 (c)
- Parallel to Serial £100.00
- Boundary Converter £100.00 (c)

SERIAL Test Cable

Serial Cable networked at both ends allowing pin arrangements to be re-ordered or wired at either end — making it possible to change the cable configuration on site. Available as M/M or M/F £24.75 (d)

SERIAL Mini Patch Box

Allows a user to re-configure pin functions without rewiring the cable. Any cable can be used and reused £22.00

CONNECTOR SYSTEMS

- 5 pin 90° £10.00
- 6 way £8.00
- 6 way £6.00
- 8 way £12.00
- 8 way £10.00
- 8 way £8.00
- 8 way £6.00
- 8 way £4.00
- 8 way £2.00
- 8 way £1.00
- 8 way £0.00

DIL HEADERS

- 14 pin header £30.00

ATTENTION

All prices in this double page advertisement are subject to change without notice.

All PREVIOUS PRICES EXCLUDE VAT

Please add carriage 50p/invoice unless indicated as follows (a): £8 (b) £2.50 (c) £1.50 (d) £1.00

Using "Prestige" type protocols. For information and orders — 24 hour service, 7 days a week
The Logic Analyser collects signals along eight data lines, sampling at regular very short intervals. The signals collected are TTL logic level voltages and are interpreted as 0 or 1 in the usual way. The user attaches probes to test points which he has chosen on the target system, these collect the test signals (data). The target system is the system whose operation the logic analyser is being used to test, and any number of test points up to the maximum of eight may be investigated simultaneously.

The sampling frequency may be chosen between 1MHz and 16MHz. The input data is stored in the on-board ram and is subsequently transferred to the ram of the host microcomputer, the BBC-B. The data extends to 2048 bytes and since this represents a short time interval at any of the sampling frequencies it is normally necessary to define when the sample should be taken in order to obtain useful information; a random sample covering a few microseconds is unlikely to reveal anything of interest. This definition is achieved by setting some or all of the 24 triggers and condition bits available on the analyser. Again the probes by which these signals are relayed to the logic analyser may be attached at chosen points on the target system. The logic analyser will "trigger" or collect the data sample only when all the trigger and condition bits correspond to the chosen settings. The data storage may be chosen by the user to be after the occurrence of the trigger condition (POST) or up to this event (PRE); this choice is by a prompted keyboard entry. Skilful selection of trigger conditions is important in obtaining useful results with this, and with any, logic analyser.

The collected information is processed by the BBC-B and the user has a wide choice of how the data is presented, again by prompted keyboard entry. The following article describes these options and also gives some examples of the use of the trigger and condition bits. The logic analyser is useful in achieving an understanding of the operation of a perfectly working target system as well as enabling both hardware and software errors in a faulty system to be pinpointed. The user-friendly software available for this device ensures an ease of operation unusual in logic analysers.

OUTLINE OF OPERATION

Essentially the device clocks data into on-board ram at a user chosen frequency between 1 and 16MHz. Data collection is started (or terminated) by the occurrence of a preset trigger condition depending on whether the user has chosen post (or pre) trigger mode. The source of the data and trigger signals is normally a microprocessor based system which is under investigation, henceforth referred to as the target system. Subsequently the contents of the on-board ram are downloaded to the BBC ram where it is then treated to create data in various useful forms which are discussed later: these may be used to fully explore the way in which the system under investigation has behaved at its operating frequency. The most powerful of the options is a disassembled listing of the steps taken during the full speed operation of the target system. Software is provided to allow signature analysis of each of the 8-bits comprising each data word.

The risk of spurious data occurring in the BBC ram is minimised by the buffering of all signals between the board and the BBC, the buffers being a high impedance state for all but the few microseconds necessary to transfer data following a data collection cycle.

While a Z80 version is available the 6502 version is the most advanced and reference to this is most often made.

The specifications are as follows:

SIGNAL INPUTS FROM SYSTEM UNDER INVESTIGATION

24 trigger inputs. Each has a don't care option.
1 sync pulse. The sync line must be connected to the 6502 pin 7.
1 clock qualifier.
8 bit data word input.

Each of the above is via buffered inputs.

SIGNAL INPUTS/OUTPUTS TO BBC MICROCOMPUTER

Buffered address and data lines to allow transfer of data from ram on the logic analyser board to BBC internal ram together with control signals. All via a rom socket connector.

Eight outputs and one input acting as control signals to ensure proper operation. All via a user port connection.

Michael Sweet is the Senior Lecturer in physics at Robert Gordon's Institute of Technology, Aberdeen.
Fig. 1. Main analysis control circuit diagram.

Letter Codings:
A Buffers enabled during data collection stage
B Buffers enabled during data transfer stage
C Address generation counters
D Pre/post trigger signal routing
E Comparators for trigger condition
F Hex switches to preset trigger condition
G Care/Dont care connection switches

(The same codings apply to Fig. 2, and to the PCB details in Part Two next month).

See also Table 1.
This is the data which will be stored as acquired data may be displayed in printer. Alternatively the 2048 words of monitor a page at a time or sent to a display.

TRIGGER CONDITION/STORAGE MEMORY

There are 24 trigger inputs, each with optional don't care setting. The recommended use is for 16 of these to be attached to the system address bus with the other 8 for other signals as desired but all 24 may be used in any way the user considers appropriate. The inputs are described as 16 trigger bits and 8 condition bits. For the recommended connections a plug-in connector to replace the 6502 microprocessor on the target system is available, which reduces problems with multiple leads.

There is also an 8 bit data word input normally connected to the data bus lines. This is the data which will be stored as 2048 × 8 bit words. Bits from the data word may also be used as trigger condition bits by connecting them in parallel to trigger inputs. This combination allows a wide range of data and trigger options and includes storage of 8 bit data on a 16 bit address trigger condition, which is a powerful option. The full 2048 × 8 bit storage may be chosen to be pre- or post-trigger condition.

DISPLAYS

Data as acquired, cycle by cycle data, disassembled code* or opcode only data* may be displayed on the BBC monitor a page at a time or sent to a printer. Alternatively the 2048 words of as acquired data may be displayed in logic level format 32 words at a time on the screen. Disassembled code with absolute address may be displayed or printed, as may also signature analysis data.

SOFTWARE

The supporting software is in BBC Basic with a judicious mix of assembly code for operations requiring high speed. The software is such that the user is taken step by step through the necessary choices and while the operating instructions and hardware/software details presented in later sections may help and extend the understanding of the instrument only Appendix 1 is essential and only then in the event that the interrupt vectors of the systems are unknown and accurate disassembly through interrupts is required. In this event the device may be used to find these vectors using a method detailed in Appendix 1; this is specifically referenced by the software at the appropriate point.

DISASSEMBLY/OPCODE LISTINGS OF DYNAMICALLY ACQUIRED DATA

The actual program as executed by the target system may be presented on screen or printer in disassembled form*. This allows a full check so that deviations from expected operation may be diagnosed. This is equivalent to a full processor speed single stepping facility but is more powerful as it is more efficient to operate and allows access to interrupt handling routines, a feature absent from manual single stepping. The full facility is available for the 6502 processor only at present but the software may be extended to include others. Available for all processors is the cycle by cycle listing which gives the data bus contents at each successive cpu clock cycle and enables the operator to follow the instruction sequence cycle by cycle.

These features make the device rather more oriented to the software engineer than most logic analysers and aims to bridge the gap between hardware and software personnel while remaining a powerful hardware tool. The features described also make it a powerful aid in the teaching of microprocessor principles.

*for 6502 and Z80 microprocessors only at present. Also for these facilities the 8 data inputs MUST be connected properly to the system data bus. A screen warning to this effect is given at the appropriate stage.

Table 1

<table>
<thead>
<tr>
<th>Labels</th>
<th>Types</th>
<th>V_{ref} pin</th>
<th>V_a pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAC, RA, RD, F</td>
<td>74LS244</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>LD1, LD2, LA, LC</td>
<td>74LS244</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>E, L, M, H</td>
<td>74LS193</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>A, B</td>
<td>74LS125</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>C, D</td>
<td>74LS00</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>G</td>
<td>74LS27</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>X</td>
<td>74LS04</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>RAM1, RAM2</td>
<td>616P2 or 3</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>Q</td>
<td>Newport 8450</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>74LS85</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

V_{ref} & V_a connections not shown, also each package has 0.1 μF decoupling capacitors not shown

Fig. 2. Trigger selection circuitry.
Finally it should be emphasised that the software may readily be user-extended to include features not presently included; the model provided by the existing software should aid this task in many instances.

CONSTRUCTION

For constructors making their own printed circuit board the minimum size is 207mm x 195mm, and the board is double sided. Boards which are not through hole plated require 0.8mm drilled holes for link pins, the locations for these are clearly shown on the component layout diagram. The 0.84mm link pins are forced in from the top side and soldered on both sides.

The next stage is to add all components which require top-side soldering, using (and identified by) the remaining solder pads on the top side of the board. Flux residue should then be removed from the top side, and constructors using in-house boards are advised to lacquer this side at this stage.

The remaining components, IC sockets and jumper pins should then be soldered in leaving connectors 1 to 6 till last. Sockets should NOT be used for the hex switches as their pins are too fragile for forceful insertion, these should be soldered directly to the board. Connectors 1 to 6 are attached to appropriate (see components list) lengths of ribbon cable before soldering. The use of the recommended cable and connector types is strongly advised to minimise contact fault problems, even with these items and with care in assembly and use contact faults remain one of the most common error sources. Pins 1 and 28 are not used on the BBC-B rom socket, it is recommended that 26 way ribbon cable is used positioned so as to exclude these pins when squeezing together the dail header plug connector. Finally the 3.9nF ceramic capacitor should be soldered to the solder pads of pins 13 and 14 of IC21 on the underside of the board, and this side lacquered if appropriate.

Before using the logic analyser the links must be made; L1 and L2 if a 6502 microprocessor is on the target system or L3 if a Z80 or for general purpose working. The sample frequency selection is made by completing L4 (4 MHz), L5 (8 MHz) L6 (16 MHz), L7 (2 MHz) or L8 (1 MHz).

Finally it should be emphasised that the software may readily be user-extended to include features not presently included; the model provided by the existing software should aid this task in many instances.

CONSTRUCTION

For constructors making their own printed circuit board the minimum size is 207mm x 195mm, and the board is double sided. Boards which are not through hole plated require 0.8mm drilled holes for link pins, the locations for these are clearly shown on the component layout diagram. The 0.84mm link pins are forced in from the top side and soldered on both sides.

The next stage is to add all components which require top-side soldering, using (and identified by) the remaining solder pads on the top side of the board. Flux residue should then be removed from the top side, and constructors using in-house boards are advised to lacquer this side at this stage.

The remaining components, IC sockets and jumper pins should then be soldered in leaving connectors 1 to 6 till last. Sockets should NOT be used for the hex switches as their pins are too fragile for forceful insertion, these should be soldered directly to the board. Connectors 1 to 6 are attached to appropriate (see components list) lengths of ribbon cable before soldering. The use of the recommended cable and connector types is strongly advised to minimise contact fault problems, even with these items and with care in assembly and use contact faults remain one of the most common error sources. Pins 1 and 28 are not used on the BBC-B rom socket, it is recommended that 26 way ribbon cable is used positioned so as to exclude these pins when squeezing together the dail header plug connector. Finally the 3.9nF ceramic capacitor should be soldered to the solder pads of pins 13 and 14 of IC21 on the underside of the board, and this side lacquered if appropriate.

Before using the logic analyser the links must be made; L1 and L2 if a 6502 microprocessor is on the target system or L3 if a Z80 or for general purpose working. The sample frequency selection is made by completing L4 (4 MHz), L5 (8 MHz) L6 (16 MHz), L7 (2 MHz) or L8 (1 MHz).

Finally it should be emphasised that the software may readily be user-extended to include features not presently included; the model provided by the existing software should aid this task in many instances.

CONSTRUCTION

For constructors making their own printed circuit board the minimum size is 207mm x 195mm, and the board is double sided. Boards which are not through hole plated require 0.8mm drilled holes for link pins, the locations for these are clearly shown on the component layout diagram. The 0.84mm link pins are forced in from the top side and soldered on both sides.

The next stage is to add all components which require top-side soldering, using (and identified by) the remaining solder pads on the top side of the board. Flux residue should then be removed from the top side, and constructors using in-house boards are advised to lacquer this side at this stage.

The remaining components, IC sockets and jumper pins should then be soldered in leaving connectors 1 to 6 till last. Sockets should NOT be used for the hex switches as their pins are too fragile for forceful insertion, these should be soldered directly to the board. Connectors 1 to 6 are attached to appropriate (see components list) lengths of ribbon cable before soldering. The use of the recommended cable and connector types is strongly advised to minimise contact fault problems, even with these items and with care in assembly and use contact faults remain one of the most common error sources. Pins 1 and 28 are not used on the BBC-B rom socket, it is recommended that 26 way ribbon cable is used positioned so as to exclude these pins when squeezing together the dail header plug connector. Finally the 3.9nF ceramic capacitor should be soldered to the solder pads of pins 13 and 14 of IC21 on the underside of the board, and this side lacquered if appropriate.

Before using the logic analyser the links must be made; L1 and L2 if a 6502 microprocessor is on the target system or L3 if a Z80 or for general purpose working. The sample frequency selection is made by completing L4 (4 MHz), L5 (8 MHz) L6 (16 MHz), L7 (2 MHz) or L8 (1 MHz).

ELECTRONIC GUARD DOG KIT

DISCO LIGHTING KITS

VERSATILE REMOTE CONTROL KIT

HOME LIGHTING KITS

ELC05 Mains Electronic Iron. £29.99

SK18 Soldering Kit. £16.70

BUILD or repair any electronic project.

ADAMIN Miniature Iron £7.69

Possibly smallest mains iron in the world. Ideal for fine work. Slim

L’Series Lightweight Irons. 12w £7.68

High efficiency irons for all electronic hobby work.

Soldering Irons

Stands 3 & 4 £6.06 No.5 £6.28

Replacement Plugs

For all above irons. Non-stick designs, machined from special copper alloy, with lockable retaining ring. Two types - Chromium plated with copper face (for economy and ease of use) and iron plated with Yellow £1.38 Green £1.44

Blue £1.50 per Reel

De-Solderer Pumps £7.71

High Quality version of increasingly popular type of tool. Precision made anodised aluminum body, plunger guard and high seat pin. Easy

TOOL SETS

Pre-tinned face (Long Life) Slate material size and iron type.

Helper Pumps

£5.39 Light weight hard anodised and precision ground. Flash cutting bits available. Return spring, cushion grip handle. Safety wire retaining clip.

Soldering Aids.

Set of 3 £4.22

Scraper/Knife, Hock/Probe, Brush/Fork. Useful double-ended aids to soldering/desoldering assembly. In plastic wallet.

ADAMIN Electric Stylus. £16.71

JOIN UP WITH LITESOLD

Professional Soldering Equipment at Special Mail-Order Prices.

FREE P&P on orders over £20 (UK only), otherwise add 75p + VAT. Overseas P&P: Europe £2.75. Elsewhere £6.50. Send cheque/P.O. Bank/Access/No. order. Giro No. 529914002

SEND FOR OUR ORDER FORM TODAY AND JOIN UP WITH THE PROFESSIONALS

LIGHT SOLDERING DEVELOPMENTS LTD. DEPT. PE

87-99 GLOUCESTER ROAD, CROYDON CR0 2DN, 01 689 0574

PRACTICAL ELECTRONICS FEBRUARY 1988
REAL WORLD INTERFACING

PART ONE BY ROBERT PENFOLD

ANALOGUE INTO DIGITAL AND BACK AGAIN

A digital circuit cannot handle the infinite range of signal variations possible to an analogue circuit. The real world is analogue. This article looks at ways of bridging the gap.

Few people would doubt the advantages of digital electronics in many applications, and logic circuits are now commonplace in audio systems, cars, video equipment, etc. With much digital equipment there is a major obstacle that has to be overcome before the advantages can be exploited. This is simply that in the real world there are few things that are truly digital in nature. Most entities that are measurable or controllable can be interfaced to analogue circuits with little difficulty. In the field of audio for example, a microphone provides an output that can be directly fed to analogue circuits, and a loudspeaker can be directly driven from analogue devices. As far as I know there is no microphone that provides a digitised output, and no genuine digital loudspeaker!

Digital audio circuits work with conventional transducers, but only via special interfaces. Apart from simple on/off switching of motors, bulbs and the like, this technique of conventional analogue transducers plus an interface of some kind is the standard approach to real world interfacing. Even with something as simple as switching a light bulb or an audio signal on and off, the direct output from a digital circuit will not usually be able to fulfil the task without a little assistance.

In this two part article we will consider various types of digital interfacing, including such things as power and audio control, and measuring methods. The information has been deliberately made as general as possible, and circuits that will interface to a specific computer are not provided. It is assumed that the reader has some background knowledge of general interfacing techniques, and that he or she can get digital information into and out of their computer. It is the electronics that fits onto the parallel input/output port that we will be concerned with here. The purpose of this article is to provide a range of practical circuits rather than to delve deeply into the theoretical side of things. It is not possible to give a complete course in interfacing in two articles, but a wide range of circuits will be provided.

![Photo: Flight Electronics FLT 68K microprocessor trainer linked to a BBC computer.]

It is worth noting that digital interfacing does not necessarily mean using a microprocessor based system. There are a great many applications where digital electronics can be used to good effect, but where there would be considerable overkill in using a microprocessor system. The circuits provided here should work perfectly well with simple digital systems.

D/A CONVERSION

In this first article we will consider a number of control circuits. Only low power circuits will be considered here, but the related subjects of power control and measurement will be covered in some detail in part 2. Some low power control applications require nothing more than on/off switching, and quite often the direct output from a latching output port will then surface. At most a simple driver or level shifter circuit will be required.

Most applications require some form of digital to analogue conversion so that precise control can be obtained. There are several types of digital to analogue converter, and in some applications a simple type based on an operational amplifier summing mode circuit might suffice. Simple digital to analogue converters can also be based on multiway cmos analogue switches. However, the cost of high quality dac chips is reasonably low these days, and these usually offer a cost effective solution even if they are slightly over-specified for a given application.

Although they do not have "industry standard" status, the Ferranti dac and adc chips are much used, and are the most convenient devices of this type I have yet encountered. The dac converters are of the "R-2R" type, and this name refers to the resistor network on which they are based. Fig.1 shows the basic set up used, and the switches are, of course, electronic types which are operated by the eight bit parallel input. In theory the values used for the resistors is unimportant, provided all the "R" types are the same value, and the "2R" types are twice this value. In practice the values used must be low enough to give a reasonably low output impedance, but not so low as to heavily load the voltage reference. In the Ferranti chips the resistors have values of 10k and 20k.

For anyone familiar with Kirchoff's Voltage Law it should be apparent that this circuit will have roughly the desired...
effect, with the msb switch producing a large increase in the output potential when it is set to the left hand position, and the switches controlled by the less significant bits having progressively less effect. Working out a few examples with two or three bit networks will soon show that it has precisely the desired effect, with an output voltage that is proportional to the binary input value. The Ferranti digital to analogue converters have a built-in 2.55 volt reference source. They are 8 bit types which consequently have an input value range of 0 to 255 (decimal), or a convenient 10 millivolts (0.01 volts) per digit output voltage. A value of (say) 126 would therefore give an output voltage of 1.26 volts.

Two main dac converters in the Ferranti range are the ZN426E and the ZN428E. These would appear to be essentially the same device, but the former requires latched inputs whereas the latter can interface direct to the data bus of most microprocessors. Basic circuits for these two devices are shown in Figs. 2 and 3 respectively.

Taking Fig.2 first, the 8 bit input can be driven from standard ttl logic outputs, as well as 5 volts mos and cmos outputs. The built-in voltage reference source requires discrete load resistor R1 and decoupling capacitor C1. The output will normally require buffering and amplification, and this is provided by IC2. VR1 is an offset null control which is used to optimise accuracy at low output voltages, and VR2 controls the closed loop voltage gain of IC2. With all the inputs set high VR2 is adjusted for the required full scale output voltage. The input value is then made much lower (around 5) and VR1 is adjusted for the correct output voltage. This procedure is repeated a few times until the output voltage tracks accurately over the full output range. The maximum output voltage can be anything from 2.55 volts to about 34 volts, but note that the supply voltage for IC2 must be at least 2 volts more than the required maximum output voltage.

Turning to Fig.3, the converter circuit is much the same as the one described previously, but there is an extra input (“LATCH”). This input would normally be fed from the output of an address decoder circuit. It must be high under quiescent conditions, and pulsed low when data is written to the converter. The data is latched into the device as this input returns to the high state. The ZN428E is effectively a ZN426E with an 8 bit transparent latch added at the input. The only other significant difference between the two devices is that the ZN428E has separate digital ground (pin 9) and analogue ground (pin 8) terminals. The device will operate properly with a voltage difference of up to 200 millivolts of either polarity between these two pins, but in practice they are almost invariably wired together.

The circuit of Fig.3 shows a different output stage. This differs from the one featured in Fig.2 in that it uses a standard μA741C operational amplifier rather than the more expensive CA3140E. It requires a -5 volt supply though, and as the total supply voltage to the device must not exceed 36 volts, this reduces the maximum possible output voltage by 5 volts. The output stage of Fig.3 generally offers slightly better accuracy at low output voltages, and is the better choice in critical applications. With both converters chips a maximum error of 0.5 µv, or 5 millivolts in other words. The output of a dac converter does not switch instantly from one voltage level to another, and the time taken for the switch over is called the “settling time”. For these converter chips it is 1µs for a 1 lsb change, or 2µs for a change from maximum to minimum (or vice versa). This is more than fast enough for most applications, including the more demanding ones such as audio waveform synthesis.

Some applications require lowpass filtering at the output in order to remove slight glitches that are often produced as the output moves from one value to the next. In audio waveform synthesis a lowpass filter is needed anyway, in order to remove the high frequency components generated by the almost instant switching from one level to another. Fig.4 shows the circuit for a dac converter plus third order (18dB per octave) output filter. The filter has a cutoff frequency of about 10kHz, which is well suited to waveform synthesis. The cutoff frequency is easily changed though, and it is just a matter of changing the values of the filter capacitors (C2 to C4). The relationship between the values of these capacitors must not alter significantly (eg C4 must be kept ten times higher in value than C2), and the values of all three must therefore be changed. Alterations in the values produce an inversely proportional change in the cutoff frequency.

With an output that shifts in 10 millivolts increments it is obviously not possible to produce highly accurate sinewave signals, or other waveforms which are of a non-stepped nature. This is a fundamental difference between digital and analogue circuits that must always be kept in mind. A digital circuit can not handle the infinite range of voltages possible with analogue circuits, but in practical applications there is a certain level of resolution that will give acceptable results. Sometimes 8 bit
resolution is more than adequate, but on other occasions it is less than ideal.

For audio synthesis there is a definite advantage to 12 or even 16 bit resolution. However, 12 and 16 bit converters of adequate speed are quite expensive, and their extra performance can only be realised in practice if the hardware driving the converter is of adequate speed and sophistication. The distortion level obtained with 8 bit resolution is under 0.5%, but this assumes that the waveform uses the full 0 to 255 value range. It is therefore important to make sure that waveforms are synthesised using the widest possible range of values. More information about the theory of digital audio can be found in the “Signal Processing” article in August 1987 issue of PE.

MAKING THE SWITCH

Digital audio control can range from simple on/off switching through to precise level control and filtering. Taking on/off switching first, a low-tech but effective method is to use a relay, and a high-speed reed type would be the normal choice for this type of application. This may seem like a rather old-fashioned way of doing things, but there are a couple of advantages. The first of these is the total isolation between the relay contacts and the digital controller. The contacts can therefore be placed at any desired position in the audio circuit. The second advantage is a total lack of distortion through the contacts (or in deference to Graham Nulty, (PE Aug-Sept 87), perhaps that should be ‘almost a total lack of distortion’).

If a more modern approach is preferred, there are a number of semiconductor switching devices that can be used, including various types of transistor and numerous integrated circuit analogue switches. There are some quite expensive analogue switch integrated circuits available, but these are not particularly popular as there are much cheaper devices which seem to be capable of achieving a similar level of performance if used in the right way. In particular, the cmos analogue switches such as the 4016BE quad spst type are available for a matter of pence each, and can work very well.

The action of the 4016BE is for a switch to close if its control input is taken to logic 1, or to open if it is taken to logic 0. However, the switch can not be used quite as freely and easily as the contacts of a reed relay. The switch should only be used at signal voltages which do not stray significantly outside the supply rail potentials, and it should be borne in mind that the “on” and “off” resistance are not zero and infinite respectively. The “off” resistance is actually extremely high at hundreds of megohms or more, and the “on” resistance is generally quite low at between about 50 and 250 ohms.

Switching circuits based on these devices should take into account the fact that stray coupling around a switch can easily reduce the effective “off” resistance, and that the “on” resistance varies somewhat with the applied signal voltage. This second factor means that small but significant distortion levels can be generated, and that the signal voltage across the switch must be as low as possible in order to optimise performance. With any electronic audio switching circuit there is a strong danger of severe switching “clicks” being generated unless due care is taken with the circuit design.

Fig. 5 shows a simple but effective method of using two cmos analogue switches plus an operational amplifier to provide low distortion, low breakthrough, and virtually “clickless” switching. IC2a is the main switch, and this is connected in the signal path. IC3 acts as a high input impedance buffer amplifier, so that when IC2a is turned on, the voltage drop through its series resistance is negligible. This ensures that it can introduce only minute amounts of distortion.

A drawback of IC3’s high input impedance is that it encourages stray coupling through IC2a when it is switched to the off state. To ensure that no significant breakthrough can occur, IC2b is used to reduce the input impedance of the circuit to only about 100 ohms when the circuit is in the off state. This gives the circuit a massive amount of attenuation over the full audio bandwidth when set to the off state.

The two switches must be operated in anti-phase, and so IC2a is controlled via an inverter (IC1). The signal is allowed to pass when the control input is low, and blocked when it is high. Control IC2a direct and IC2b via the inverter if the opposite action is required.

Many applications for this type of circuit require a multi-way audio selector rather than a single on/off switch. Ideally multi-way switching would be achieved having several circuits of the type shown in Fig. 5, with the outputs fed to a conventional audio mixer circuit. The desired channel or channels are then selected by taking the appropriate control input or inputs low.

This method provides excellent performance, but is probably too costly and complex to be practical in some applications. A low cost alternative is to use a multi-way cmos analogue switch, as shown in the 8 way selector circuit of Fig. 5.
pole analogue switch. It is controlled by a three bit binary input, and in this circuit it simply switches the selected audio channel through to the buffer amplifier based on IC2. The input impedance of IC2 has to be something of a compromise. On the one hand it must be high enough to give reasonable distortion performance, but on the other hand it must be low enough to give no significant breakthrough on the channels that are switched off, even at high audio frequencies.

The specified values for R1 and R2 give what seemed to be the best compromise, but they could be made lower in value if very low breakthrough is important, or higher in value if lower distortion is vital.

If less than eight inputs are required, simply ignore some of the most significant inputs and omit their input capacitors. Any unused binary inputs must, of course, be connected to the 0 volt supply rail.

GAIN CONTROL

Digital control of audio gain and filters has been commonplace in the world of electronic music for some time now. Digital audio control is finding its way into other aspects of electronics, and the use of computerised mixing consoles is just one of the many possibilities that are now being exploited.

There are digitally controlled audio attenuator chips available, such as the 7110 from RS. As yet these are quite expensive, and it is generally more cost effective to use a conventional vca driven from a digital to analogue converter. This is one application where 8 bit precision is not really needed.

Human hearing can at best detect a 2dB change in volume, and a dynamic range of about 100dB is adequate for an audio attenuator. With a 6-bit converter there are sixty four output voltages available, and with these giving 1.5dB increments in gain an adequate 96dB dynamic range could be accommodated. Of course, an 8-bit converter can be relegated to a 6-bit type simply by connecting the two least significant inputs to ground, and then driving the other six inputs from the least significant bits of an output port.

The circuit of Fig.7 is for a good quality vca that will interface to the digital to analogue converter circuits described earlier. They should be set for unity voltage gain through the output amplifier as this circuit has a 0 to 2.55 volt control voltage range. The circuit is based on one section of an NE570 or NE571 compander chip. The main difference between these two devices is that the NE571 has a slightly higher distortion figure of 0.1% as opposed to the 0.05% of the NE570. The NE570 also has a higher maximum supply voltage rating of 24 volts, which compares to 18 volts for the NE571.

In this circuit the input is applied to the variable gain cell, and is then taken to the operational amplifier which really just acts as an output buffer amplifier in this case. The control voltage is applied to the rectifier input, although there is no processing by this stage as the input is always positive going, and the control voltage passes straight through to the gain control cell. Note that increased input voltage provides decreased gain.

This could be altered by using an inverting amplifier ahead of the control input, but in practice there is unlikely to be any problem in writing the software to suit the natural control characteristic of the circuit. An excessive control voltage causes the gain to start to rise again. Therefore, with the output of the d/a converter at maximum, VR1 is adjusted for maximum gain. Around 100dB of attenuation should be possible.

VR2 is the distortion trimming control, and is merely adjusted for minimum distortion. In the absence of suitable test gear this can be adjusted by ear using a low frequency sinewave test signal, or R3, R4 and VR2 can just be omitted. The untrimmed distortion is typically 0.3% for the NE570 (0.5% for the NE571).

The numbers in brackets in Fig.7 are the equivalents for the other section of the device, and this can be used in a second vca.

SC FILTER

A digitally controlled filter can be implemented using a voltage controlled filter (vcf) driven from a digital to analogue converter. There is an interesting all-digital alternative in the
form of switched capacitor filters. These have an operating frequency that is controlled via a clock signal, and accurate clock frequencies can easily be generated by conventional digital circuits, or by microprocessor based designs. In the case of microprocessor based systems the clock frequencies can either be largely software generated, or special timer/counter chips can be used.

An advantage of the switched capacitor approach is that it enables the operating frequency to be set with quite high precision; a factor that opens possibilities in the area of high quality computer controlled test equipment.

The only readily available switched capacitor filter chip is the MF10CN, which is a versatile device having an excellent specification. Fig. 8 shows a circuit based on the MF10CN, and having switchable lowpass, bandpass, and notch modes. This circuit uses IC1 in what the MF10CN data sheet refers to as “Mode 1a”, which is one of nine possible operating modes. As shown in Fig.8 the operating frequency of the filter is nominally one hundredth of the clock frequency, but this can be changed to one fifth of the clock frequency by taking pin 12 high. There are actually two identical filters in the MF10CN package, and the numbers in brackets show the pin numbering for the second section of the device. The 50/100 control input is common to both filters, but they do have separate clock inputs. Dividing one clock frequency by two will therefore place the filter frequencies one octave apart. The clock signal can be at ttl or (5 volt) cmos logic levels. The Q of the filter if equal to R2/R3, and can be increased from its present level of 1 by increasing the value of R2.

Switched capacitor filters have definite advantages, but they do have a slight drawback in that the output is a form of digitised signal. It steps up and down in level in standard digitised audio fashion, and in many applications some output filtering will be needed in order to attenuate the high frequency components on the output. An input filter may also be needed to ensure that high frequency input signals do not result in heterodynes on the output.

A simple single stage passive filter will often be sufficient at the input, and a filter of this type (R1 − C2) is included in Fig.8. More comprehensive output filtering may be desirable, and in this circuit a third order active lowpass filter is included. The filters give a bandwidth of about 10kHz, but the cutoff frequency may need some adjustment to suit a particular application. A crucial point to bear in mind with this type of filter is that low filter frequencies (less than about 200Hz) require clock frequencies that fall within the audio range. Any significant breakthrough of the clock signal at the output is then likely to be clearly audible. At the other end of the

There are plenty of circuits for isolating digital signals, but designs to handle analogue signals seem to be scarce. An isolation circuit that will accurately transmit a dc level with no offsets is a relatively difficult task. Isolation circuits are almost invariably based on opto-isolators, and these lack the high degree of linearity required for analogue applications.

A standard approach to audio isolation is to use an opto-isolator, but to feed the signal through it as some form of pulse modulated signal. As the isolator is only handling a pulse signal any slight non-linearity it introduces is of little significance. The performance of the system is largely governed by the quality of the encoder and decoder circuits. The circuit of Fig.9 is based on pulse width modulation techniques.
The basic idea is to convert the dc input level into a pulse signal having an average voltage that is equal to the input voltage. The pulse signal recovered from the opto-isolator is then processed by a lowpass filter to recover the dc signal level. In this circuit IC1 operates as a triangular oscillator and IC2 is a voltage comparator. This method of pulse width modulation is a well known one that is used in a range of applications. Pulse width modulation has been covered in PE in the recent past in articles on class D audio and switch mode power supplies, and these articles should be consulted if more information on this topic is required.

For the circuit to work well it is important that VR1 and VR2 are set up correctly. Ideally VR1 should be a multi-turn preset. Initially it is adjusted so that the triangular output signal from pin 1 of IC1 just reaches 0 volts on negative peaks. The unit should then work quite well, but linearity at low voltages may be less than ideal. An improvement can be obtained by first connecting and input of a few volts to the unit, and then adjusting VR2 for the correct output level. Next use a much lower input voltage (about 20 millivolts) and adjust VR1 for the correct output voltage. Repeat this procedure a few times until no further improvement in accuracy can be made. When used with a Ferranti converter over a 0 to 2.55 volt range the prototype exhibited no significant degradation in performance. Note that the unit can be used both at the output of a digital to analogue converter, or the input of an analogue to digital converter. The bandwidth of the circuit is about 100Hz. This can be increased by reducing the value of C2 to boost the clock frequency, and raising the cutoff frequency of the output filter. This will result in some loss of linearity at very low input voltages though, and a bandwidth of more than 10 to 20kHz is not practical.

DISPLAY DRIVING

Microprocessor based circuits mostly have the familiar monitor or television display as the main means of supplying data to the user, but in some applications something more basic is all that is needed. In particular, applications that require the system to run for prolonged periods unattended are better suited to some form of display. Televisions and monitors should not be left unattended for any length of time as they represent a fire hazard.

Light emitting diodes can be driven from digital circuits without difficulty, and usually require nothing more than a current limiting resistor. A few individual LEDs can provide a useful status display, or the seven segment variety can be used where a slightly more sophisticated form of readout is required. One way of driving seven segment displays from a microprocessor based project is simply to drive each segment from one output of a parallel port, but this is doing things the hard way. A much better approach is to use a couple of binary coded decimal (BCD) to seven segment decoders, as in the circuit of Fig.10. This permits two displays to be driven from an 8 bit latch output port.

The pin numbering for the displays assumes that they are of the standard 0.5 or 0.56 inch common cathode type. Other sizes should work equally well, but will almost certainly have a different pinout configuration. The displays must be of common cathode variety and not the common anode type.

The decimal value sent to the port is not the value that will be displayed by this circuit. To find the right value to display a given number, simply multiply the most significant digit by sixteen, and then add the least significant digit to this. For example, to display "24", the value written to the port would be 36 (2 x 16 = 32, 32 + 4 = 36).

In part two next month, Robert Penfold looks at other aspects of real world interfaces, such as dc pulse controllers, triacs, and measurement techniques.

Fig. 10. A circuit to drive two seven segment i.e.d. displays from an 8 bit output port.
COMPACT FLOPPY DISC DRIVE EME-101
The EME-101 drives a 3.5" disc of new standard which
keeps the small size possesses a capacity of 500MB disc, which
is equivalent to the 3.5" floppy disc. We supply the
Quarterly Manual and other information showing how to use this with popular
computers, including IBM. At a special price of £27.50 incuding VAT. Get it now.

DO NOT IMPROVE ME - We still have the strongest winds for over 200
years and who knows we may be in for the colder winter, so if you
have not already protected your water pipes you should do to
move your heating valving around the pipes will all this and will cost us
about £50 per week for 10 to 15 years (minimum length connected to 220/
415V mains). Price is £5.00 incuding VAT. Get it now.

MELODY ELECTRIC AN unusual fan, more the like of you Medbourne
type, than the unit on the normal type. It does not rotate. The
air movement is caused by two vibrating areas. It is American made, mains operated,
very economical and causes no interference. So it is ideal
for computer and instrument Cooling. Price is only £1 each. Ref. 805.

STEREO GROUND-TESTS - probably the most familiar sound of
Budgery Park. Very good Quality price for 1 Ref. 805.

CURLY LEAD four-strand double insulated copper telephone
eal, and to two metres Price. £1 each. Ref. 805.

TELEPHONE BOLLS - they will wash off our standard mains through
a transformer, so just sound exactly like a telephone, they
then must be fed with 25 to 30V DC. We will give a discount for a
suitable power supply. Price 20s for 10, Ref. 805.

ULTRA SENSITIVE PICKET METER - 48 semipin-part-11 ranges
- carry one of these in your belt and you will always ready to test
for mains. Small and portable. Price £1.50 each.

A 12 volt motors 1.2mm with 3 x 3.7v cells are fitted. Ref. 805.

85 - 1 masts shade pole motor 1" stack - 1 shaft

71 - 4 wire wound pot sets - 18.33 .50 and 100

66 - Magnetic brake - stops rotation instantly

56 - Miniature Unisels with circuit for electric jigsaw

44 - 4 Rocker switches 10 amp DPDT

22 - 225 watt crossovers units 2 may

20 - 5 different microswitches

122 - 10 m twin screened flex white p.v.c outer

118 - Team effect extension 5" speaker cabinet

115 - Wall mounting thermostat 24V

103 - 16V mains power supply unit

94 - 10 m twin screened flex white p.v.c outer

83 - 2.5 m twin screened flex white p.v.c outer

75 - Dell House switches

67 - 1000 Volts per metre

66 - 14.4 x 5.16" diameter sails

64 - 10 x 4.5" square glass plate

60 - 2 x 4.5" square glass plate

57 - 2 metal selsails with L & W wave coils

56 - 1 x 3.7v cells are fitted. Ref. 805.

55 - 1 Mullard thyratron trigger module

54 - 10 assorted knobs 1 spindles

53 - 9 different transformers, mains bi metal

52 - 4 12V or 24V AC & DC relays

51 - 12 4 volt capacitors

50 - 60 - 12v DC or 24V AC & DC relays

49 - 30 x 12 volt motor 1.2amp

48 - 200 x 12 volt motor 1.2amp

47 - 120 x 12 volt motor 1.2amp

46 - 200 x 12 volt motor 1.2amp

45 - 200 x 12 volt motor 1.2amp

44 - 200 x 12 volt motor 1.2amp

43 - 200 x 12 volt motor 1.2amp

42 - 200 x 12 volt motor 1.2amp

41 - 200 x 12 volt motor 1.2amp

40 - 200 x 12 volt motor 1.2amp

39 - 200 x 12 volt motor 1.2amp

38 - 200 x 12 volt motor 1.2amp

37 - 200 x 12 volt motor 1.2amp

36 - 200 x 12 volt motor 1.2amp

35 - 200 x 12 volt motor 1.2amp

34 - 200 x 12 volt motor 1.2amp

33 - 200 x 12 volt motor 1.2amp

32 - 200 x 12 volt motor 1.2amp

31 - 200 x 12 volt motor 1.2amp

30 - 200 x 12 volt motor 1.2amp

29 - 200 x 12 volt motor 1.2amp

28 - 200 x 12 volt motor 1.2amp

27 - 200 x 12 volt motor 1.2amp

26 - 200 x 12 volt motor 1.2amp

25 - 200 x 12 volt motor 1.2amp

24 - 200 x 12 volt motor 1.2amp

23 - 200 x 12 volt motor 1.2amp

22 - 200 x 12 volt motor 1.2amp

21 - 200 x 12 volt motor 1.2amp

20 - 200 x 12 volt motor 1.2amp

19 - 200 x 12 volt motor 1.2amp

18 - 200 x 12 volt motor 1.2amp

17 - 200 x 12 volt motor 1.2amp

16 - 200 x 12 volt motor 1.2amp

15 - 200 x 12 volt motor 1.2amp

13 - 200 x 12 volt motor 1.2amp

12 - 200 x 12 volt motor 1.2amp

11 - 200 x 12 volt motor 1.2amp

10 - 200 x 12 volt motor 1.2amp

9 - 200 x 12 volt motor 1.2amp

8 - 200 x 12 volt motor 1.2amp

7 - 200 x 12 volt motor 1.2amp

6 - 200 x 12 volt motor 1.2amp

5 - 200 x 12 volt motor 1.2amp

4 - 200 x 12 volt motor 1.2amp

3 - 200 x 12 volt motor 1.2amp

2 - 200 x 12 volt motor 1.2amp

1 - 200 x 12 volt motor 1.2amp

0 - 200 x 12 volt motor 1.2amp

473 - 15 ohm speaker with built in tweeter Radium Mobile

KIT for converting old entry terminals to new B.T. mains socket,
can be used with most types of B.T. and 2 BT apparatus.

100 m core 4 core telephone cable £8.50

£1 DASKER DOZEN PARCELS
Price per parcel is £1.25, but you order 12 you get one extra free.

All items listed below are brand new components. Unless marked "s".

TREMOLON
BY JOHN BECKER
TRIM THAT TCA TO YOUR TASTE

Your editor does not like to be caught standing still, so hiding deep within this simple and economical tremolo unit are stranger sounds and a variety of choices for the constructor.

In these days of high tech music, it's easy sometimes to lose sight of the fact that not everyone wants or can afford the necessary equipment. Undoubtedly, the cost of sophisticated electronic musical instruments complete with computer and digital interfaces has been plummeting as chips become more complex, equipment becomes smaller, and more companies make their impact felt on the scene. Nonetheless, to those whose income may be less than ideal, or non-existent, even such competitive prices may be too expensive.

RHYTHM RIDDLE
This does not stop people from wishing to make music; those who are really stricken by the need to let tunes or rhythms pour forth, will do so irrespective of the facilities available. Hands beating on a tabletop, fingers plucking at a tuned rubber band, throats vibrating in song, all signs of the desire to make music. Music is part of human nature.

To those with a little more talent, and perhaps with a few extra pounds, or generous relatives at gift times, guitars become an ideal instrument to play. Pleasure can be just as great whether the guitar is acoustic, or electronically powering into an amplifier. With the electric guitars, it is easy to plug in an extra box of some sort to also change the nature of the tone or character. In this way, greater interest can be created, and whole new realms of sounds produced. Some of these may even help a moderate musician to sound more adept!

POPULAR POPS BOXES
Of the units generally available at little cost, there are perhaps just half a dozen or so that are the most commonly used. Probably one of the most interesting boxes is one that gives echo or reverb, adding spaciousness to the music. Chorus, flanging, phasing and double tracking are also related to echo, and they too have their widespread appeal. Fuzz and heavy overdrive units have their addicts, though unconvinced listeners may query why distortion is thought to be a sign of modern music maturity. Tremolo and vibrato as well are easy to produce via simple control boxes. Curiously though, vibrato seems less common than it deserves to be; it is after all the effect that any stringed or vocal musician will deliberately introduce to create mood.

The two effects simplest to produce electronically, are fuzz and tremolo. Robert Penfold produced a superb little Bright Fuzz unit for the May 1987 issue of PE. To show just how easy and effective tremolo can be, I have designed this very simple Tremololon unit. It uses only one chip, and just a handful of other components, and is a valuable but low cost addition to anyone's effects line up. It's simple to make, cheap to buy, and interesting to use.

MISCONCEPTION
Before looking at the circuit, let's remove a misconception. From numerous conversations it is apparent that a number of people are confused about the difference between tremolo and vibrato. Certainly they both involve the imposing of a low frequency vibration, and in that sense tremolo is a vibrato effect. In reality though, the character of the two effects is widely different, both in nature and in operation.

VIBRATO
Vibrato occurs when the pitch of a basic note or notes is repeatedly and smoothly varied up and down. This change is not the same as simply shifting back and forth between two conventional notes at a fast rate. It is more subtle than that, and usually faster.

Much research has been carried out into what creates the best sounding vibrato, both in terms of frequency shift, and the rate at which it occurs. Analysis of the singing and playing of live musicians, and of those who now only live through their recordings, reveals interesting facts. Although some musicians may claim that they only sing pure notes, in reality, even they may unintentionally introduce vibrato. Instrument players, on the other hand, can be more self-controlled, and deliberately decide whether or not to add vibrato.

From the analysis, there seems to be a fairly consistent agreement on the pitch shift and its rate, a rate which also applies to tremolo. The pitch shift range usually depends on the basic note that is being played, and upon the emphasis required by the mood of the music. As a rough guide, a shift of about a quarter of a tone to either side of the ideal is common.

The rate at which the shift is created is also pretty consistent between performers, and lies in the range of about six and a half cycles per second. This too changes with mood and the emphasis required.

TREMOLO
Tremolo, although varied at similar rates and depths to vibrato, is fundamentally very different. It involves
The characteristics of the chip introduce a high amplification factor. This partly depends on the current flowing into the control node, but also is related to the current being drawn from its output. Within limits, the less current being drawn, the higher is the gain. To maximise the availability of the gain, the tca is followed by a very high impedance buffer, IC1b.

The abilities of this particular chip allow the creation of numerous varying circuits, and I have used it in many applications. Most readers will know the potential versatility of the humble 741 and its associated family, but I thoroughly recommend the LM13600, or LM13700 to any experimenting constructor if even greater versatility is sought after.

Oscillator

In common with other forms of oscillator, feedback and amplification are needed to create the conditions under which self-sustained oscillation can occur. IC1a has a network of associated components that provide just these conditions. The essential timing component that governs the rate of oscillation is C3. Current flows into and out of this capacitor at a level set by the current at the control node. In this case it is variable by the potential divider VR1 and R3. The tapped voltage from the wiper of VR1 causes a current to flow through the limiting resistor R6. The higher the voltage level at the wiper, so the greater is the current flowing into the node through R6. Since the rate of charge of any capacitor is determined by the current flowing into it, so VR1 can vary the rate of charge into C3. R3 sets the minimum possible current.

IC1b is simply a very high impedance buffer stage consisting of two transistors in a darlington configuration, Fig. 3. Its impedance is so high as to have little effect upon the charge rate for C3. As
ALTERNATIVES

It might be expected that the amplitude control stage should consist of a voltage controlled amplifier. That is certainly the conventional way of doing things. But many of you will know by now that your Ed is sometimes prone to unconventional eccentricities. Here is a case in point, in which I shall show that there are usually more ways than one in which specific problems can be approached.

What I have chosen to do here is to show that by using a modulated filter we can produce a tremolo effect, and at the same time add a little more interest to the sound.

It is interesting to note that simply by changing one component, a voltage controlled amplifier based around a tea such as the LM13600 can be modified to become a voltage controlled filter. That component is the one on the output of IC1c. For the network around IC1c and IC1d to operate as a vcf, the component becomes a capacitor. For use as a vca a resistor would be used instead — a nominal value of between 47k and about 220k would be suitable. For a full gain span R13 should also be omitted in the vca mode.

SIGNAL PASSING

For use either as a vca or a vcf, the signal is brought into IC1c via the input level control VR3, C5 and R9. This level control is also somewhat unusual and is used as a variable resistor rather than a potential divider, though the end result is similar. The actual signal level seen at the input of IC1c is the tapped level set by the total value of VR3 plus R9 feeding into R10. Decreasing the resistance of VR3 causes a higher tapped signal level to appear at the input to IC1c.

The amount of signal that is allowed to pass through IC1c is of course determined by the current into its control node. Now, as we saw with the vco in stage one the current coming out of IC1c will charge or discharge a capacitor. If the output signal is an ac waveform, then the capacitor will mop frequency and control the current flowing in the control node IC1c.

The output voltage is taken via the decoupling capacitor C4 to the level control VR2. R8 is not essential to the circuit, but is simply there to limit the maximum level available at highest setting of VR2. The level tapped by the wiper of VR2 is taken via R12 and controls the current flowing into the control node of IC1c.

MOP MODULATING

We have already established that the current flowing into the control node of IC1c can be varied by the oscillator amplitude being output through VR2. It should now be apparent that the frequency response of the vcf stage to any input signal is going to vary with the control level at any given point in time.

At that point, only signals having frequencies below the filter cut off region will be allowed to pass through to the output. Since the vcf response is constantly changing with the vco rate and level, so the effective amplitude of the signal will vary with its frequency. An amplitude variation is just what we want for a tremolo effect. Quod est nearly demonstrandum — almost OED!

The remaining point to notice is that the tremolo effect is not being applied to just any old signal, irrespective of its content. This would be the case with a normal tremolo unit, but here, as it is the upper frequencies working downwards that are progressively modified, so a more individual effect occurs varying with signal pitch. Additionally, if the input signal level is allowed to overload IC1c, an effect similar to a mild phasing will sometimes occur. At extremes of overload, and signal frequency, a slight ‘wah’ effect may also be noticeable.
Returning briefly to pure amplitude control, if you replace C6 with a resistor as mentioned above, only pure level variation will occur, without frequency modification. In this instance, by over-driving the input to IC1c, a fuzz effect can be produced.

The final output is taken via C8 to S2, and then to an amplifier in the normal way. S2 is included as a bypass switch, allowing the unmodified original input signal to pass to direct to the amplifier.

POWER SUPPLY

The unit draws very little power, and is very tolerant of voltage levels. A nine volt battery, such as a PP3, can quite readily power it. A 12V supply could be used instead, though the frequency characteristics of the two stages will vary in relation to the psu voltage used. For testing purposes, note that two basic bias levels are used, one for each function stage. Both split the psu level in half and consist of R1, R2, C2 and R15, R16, C7 respectively. However, providing you have assembled and checked everything adequately it is unlikely that you will need to do any testing. All that is needed is to set VR4 for the best sweep amplitude, and to use the unit.

ASSEMBLY

The printed circuit board layout is shown in Fig. 5, and should be within the assembly capabilities of even a novice to electronic construction. Indeed, this is an ideal unit for GCSE students, or anyone else learning about electronics, to assemble. Even the wiring details shown in Fig.6 are very straightforward. There are so few components involved that it should not take long to put together, and not only will it give useful assembly experience, but also result in a worthwhile addition to your musical effects line up.

TREMOLONWARDS

So, whether you are an escalating musician (to whom I refer in the Editorial!), an impoverished soloist, or an aspiring electronic enthusiast, have a bash at the Tremolon and raise your skill and thrill thresholds.
ELMASET INSTRUMENT CASE
300 x 130 x 217mm deep £10 ea (£20) 100+ £9 memex 1.33 x 133 x 217mm £100 ea (100+ £9)

REGULATORS
LM317T PLASTIC TO220 variable £1.50 500 pc £0.50
LM337T PLASTIC TO220 €1.20 500 pc £0.72
7812 METAL 12V 1A £2.40 50pc £1.30
7805/12/15/24V plastic £2.80 50pc £1.60
7812/5/12/24/25V plastic £2.90 50pc £1.65
CA3085 T09 variable 2£ 500 pc £1.20
LM3085 5V variable 2£ 500 pc £1.20

COMPUTER ICs
1707 FLOPPY DISC CONTROLLER CHIP £1.25
68008 PROCESSOR EX-EQPT £2.50
27256-20 ex-eqpt £2.50
2764-30 £2.50
2724-25 USED £2.50 100 pc £1.20
2714-25 USED £2.50 100 pc £1.20
1722 EPROM EX EQPT £2.80
2114 EX EQPT 60p 4116 EX EQPT £2.00 100pc £1.50
6264-15k static ram £2.80
6116-3 (C517AP) £1.50
4401 RS 422 £1.50

SURFACE MOUNTED TRANSISTORS
B30500 B30 W3027 NTA760 152836 min 50my £1.50

POWER TRANSISTORS
POWER PET RF551 8A 40V 2£
2N3055H RCA HOUSE NUMBERED 2£
2SC2520 sm 8IF25 £3.50 100pc £2.80
TIP140 TIP1251 £1.50 200pc £1.00
TIP568 TIP567 £1.50 1000pc £0.50
2N3055 EX EQPT TESTED £2.00 100pc £1.50
PLASTIC 3055 OR 2955 equiv 50p
2N3055 2N3106 120V 150W £2.00
BO132 £1.50

QUARTZ HALOGEN LAMPS
A1216 24V 50W £2.00
H 12V 50W (CAR SPOT) £1.50

MICROSENSITIVE
SMALL MICROPHONE DIODES AEC DC1026A £1.50
RG62 CO-AX LEAD 2 METRES + 8NC PLUG £4.00
D4056 100W 30 WAY 10W 45W 65W 80W 95W 100W 120W 140W 150W £1.50
180 1w 1 watt ZENERS ALSO 12v £1.50
50 Ohm MINIATURE CO-AXIAL CABLE RG58/16 £50/16
OLIVETTI LOGICS CALUATOR KEYBOARD (12 KEY) PLUS 12 DIGIT FLUORESCENT DISPLAY ON DRIVER BOARD (i.e. CALCULATOR LESS CAEE, TRANSFORMER AND PRINTER) £16.00
PLASTIC EQUIPMENT CASE 6 x 9 x 12 £1.50 IN FRONT AND Rear PANELS CONTAINING PCB WITH EPOXY 2740-30 AND ICS 7411 LS66 LSD74 LS74L MD117 TR500 REG 5.0V WIRE PLUG PUSHER SWITCH, DIN SOCKET £1.90
VNI01,108 104A Schott A967 £4.00 1000 pc £2.00
S1256/62 S1247 £1.00
RELAYS 5v 2 pole changeover looks like RS 355-741 marked STM7G91 £1.50
OPTION RELAY 3 x 6 volt £1.50 50pc £1.00
50 Ohm MINIATURE CO-AXIAL 100Metre £50/100

SCREW DRIVER & WRENCHES
MICROVITE ONE WAY WRENCH £1.50
12.7 Mm x 152mm £2.00
27mm x 130mm £2.00

DIODES AND RECTIFIERS
BA1017 400A 50V £1.50
1N4448 £1.00
1N4004/5D40 1A 300V £0.50
1N4001 3A 100V £0.30
1N4148 1A 40V fast recovery £0.50
1N5401 3A 100V fast recovery £0.30
35V 35A 2UD £0.30
BY127 1200V 1.2A £1.00
BY204 800V 4A £1.00
BY255 1300V 3A £1.00
6A 1000V SIMILAR ZV £1.00
VM88 800MA 100V DIL BREC £1.00
VM88A 80MA 100V DIL BREC £1.00
1A 800V BRIDGE RECTIFIER £1.00
5A 1000V £1.00
6A 100V BRIDGE £1.00
6A 120V BRIDGE £1.00
6A 150V BRIDGE £1.00
25A 200V BRIDGE £2.00
25A 250V BRIDGE £2.00
25A 250V BRIDGE £2.00

ZENERS
5.6V 1W SEMIKRON 50V AVAILABLE @£125/1000

SRS
e.g. 100V 600V £1.00
80V 200V £0.80
70V 300V £0.60
60V 200V £0.50
50V 100V £0.40
40V 300V £0.30
30V 200V £0.20
20V 200V £0.10
10V 100V £0.05

TRIACS
NEC TRAC ADP10 8A 40V 100V £1.00
NEC TRAC ADP10 8A 40V 100V £1.00
NEC TRAC ISOL 30V 200V £1.00

CONNECTORS
CENTRONICS 26 WAY IDC CONNECTOR £3.50 100+ £3.00

MONOLITHIC CAPACITORS
10uf 250v £0.80
1uf 100v £0.10
0.1uf 100v £0.05
0.01uf 100v £0.02
0.001uf 100v £0.01

ADD 15% VAT TO TOTAL
£3.50 100+ £2.70

MAIL ORDER ONLY
MIN CASH ORDER £3.00 OFFICIAL ORDERS WELCOME UNIVERSITIES COLLEGES SCHOOLS GOVT DEPARTMENTS MIN. ACCOUNT ORDER £10.00
P & P AS SHOWN IN BRACKETS (HEAVY ITEMS) 65P OTHERWISE (LIGHT ITEMS)

ELECTRONIC COMPONENTS BOUGHT FOR CASH

KEYTONICS
TEL. 0279-50555
P O BOX 634
BISHOPS STORTFORD
HERTFORDSHIRE
CM23 2RX

MIN CASH ORDER £3.00 OFFICIAL ORDERS WELCOME UNIVERSITIES COLLEGES SCHOOLS GOVT DEPARTMENTS MIN. ACCOUNT ORDER £10.00
P & P AS SHOWN IN BRACKETS (HEAVY ITEMS) 65P OTHERWISE (LIGHT ITEMS)

ADD 15% VAT TO TOTAL
£3.50 100+ £2.70

PRACTICAL ELECTRONICS FEBRUARY 1988

28
HEAT SINKS
How to keep your cool
BY STEVE KNIGHT

When a transistor is working, power is not only delivered to the load, a loudspeaker for example (something we do want), but like any other appliance, power is also dissipated inside the transistor itself, most of it at the collector junction (something we don’t want). The worst case occurs in Class-A operation where, in the absence of a signal, the greatest power is dissipated at the collector.

If the heating is very small, as it is in small-signal amplifiers, we can rely on air convection and the conducting paths provided by the connecting wires, and the copper on the printed board to which the wires are soldered, to remove the unwanted heat from the transistor as fast as it is produced. With power transistors, however, we cannot rely on this method because the heating generated is too great to be conducted away quickly enough. So we have to mount the transistor on a large area of metal plate (or use the metal chassis of the case), and this serves to get rid of the generated heat into the surrounding environment. Such a plate is called a “heat sink”.

According to molecular theory, the temperature of a solid is a function of the extent of vibration of its molecules about their mean position. So when one end of a metal bar is heated the extent of the vibration of the molecules at this end is increased. These vibrations affect neighbouring molecules and cause them to vibrate in turn. Thus, heat is conducted along the bar until, assuming it is perfectly lagged and loses no heat by radiation, the whole bar reaches the same temperature.

The choice of a material for a heat sink depends upon its ability to conduct heat efficiently, that is, it must have a high “thermal conductivity” or a low “thermal resistance”. As a general approximation, if a metal is a good conductor of electricity it is also a good conductor of heat. Copper and aluminium are both good conductors and most heat sinks used in the electronics business are made from one or other of these metals, most generally from aluminium.

AN ELECTRICAL ANALOGY
A convenient way of investigating heat sink problems is to relate the flow of heat along a metal conductor to the flow of current along a conductor.

Electric current flows (in the conventional sense) from a point of high electrical potential (voltage) to a point at a lower potential. Similarly, heat energy will flow from a point at a high temperature level to a point at a lower temperature. We can make comparisons by looking at Fig. 1 (a) and (b).

As it flows along a conductor, electric current encounters resistance to the flow and Ohm’s Law tells us that the current flowing depends upon the potential difference across the ends of the conductor. So

\[V_2 - V_1 = I \times R \]

Voltage difference = current × electrical resistance

or

\[R = \frac{V_2 - V_1}{I} \text{ volts per ampere.} \]

Hence, resistance is defined as the voltage difference (or voltage drop) per unit current (ampere). Electrical resistance, of course, depends upon the material from which the conductor is made and its physical dimensions.

In the same way, the flow of heat along a conductor also encounters “resistance” and this too is a function of the material and its dimensions, and, additionally in this case, of the surroundings of the conductor. Suppose we use the symbol \(\theta \) to represent this thermal resistance. Then we may say that the heat energy flowing (P watts) depends upon the temperature difference \((T_2 - T_1)^\circ \) across the ends of the conductor. So

\[\text{Temperature difference} = \frac{\text{power}}{\text{thermal resistance}} \]

or

\[T_2 - T_1 = \frac{P}{\theta} \text{ °C per watt.} \]

Hence, thermal resistance is defined as the temperature change (or temperature rise) per unit dissipation (watt).

See the analogous connection? If you keep this in mind, heat sink calculations are not problem at all.

THERMAL RUNAWAY
Why do transistors require heat sinks? If they want to get hot, why worry? In the old days, valves never required cooling in this way (not outside of large transmitters, anyway). Well, we can find an answer by looking at Fig. 2. Everything hinges fundamentally on the collector junction temperature \(T_1 \) of the transistor being used. This is always higher than the surrounding (or

\[\text{Temperature difference} = \frac{\text{power}}{\text{thermal resistance}} \]

or

\[T_2 - T_1 = \frac{P}{\theta} \text{ °C per watt.} \]

Hence, thermal resistance is defined as the temperature change (or temperature rise) per unit dissipation (watt).

See the analogous connection? If you keep this in mind, heat sink calculations are not problem at all.
ambient) air temperature T_{amb}, but it has an upper limit. There is a maximum permissible temperature above which the transistor must not go if damage or destruction is to be avoided.

Germanium transistors don't like working at temperatures above some 85°C; silicon transistors are harder creatures but anything over about 180°C is not appreciated. These upper temperature limits are stated by the manufacturer of the transistor and are symbolised $T_{j\ max}$. They are decided by the physical properties of germanium and silicon, not by the manufacturers.

As temperature increases, more and more electrons are shaken out of their valence bonds by the increasing vibrational energy of the generated heat, and these thermally generated electrons become available as charge carriers, as do the holes which appear simultaneously. These "hole-electron" pairs as they are called are strictly unwanted carriers, and they form what is known as "leakage current". They are dependent upon the temperature of the junction inside the transistor and they are not under our control in the sense that the charge carriers produced by the doping of the semiconductor are under our control. We can only control them by paying attention to the rise in temperature. The collector current, which we should otherwise expect to be stable at whatever value we might set it, has the leakage current added to it and consequently increases as temperature increases.

Well, we might argue that the answer to this one is to keep the temperature low and steady; don't stand your amplifier on the radiator or in front of the fire! But it isn't so much the surrounding ambient temperature which causes the problem, it is the heat generated internally by power being dissipated within the transistor. If we now go back to Fig. 2 we can figure out what happens.

Suppose our transistor is working away happily in its case, and then for some reason the internal dissipation increases - this need only be very slight. Call it ΔP, where the Δ stands for a small change in the collector power P_C, in this case an increase. As soon as this happens, the temperature of the junction (T_J) rises slightly and the production of the unwanted carriers increases. This additional leakage current (ΔI_L) effectively adds to the collector current already flowing and this current increase (ΔI_L) lifts the power P_C dissipated at the collector junction. We have now worked our way around the diagram in Fig. 2 and arrived at our starting place.

From here on the process repeats, and the junction gets hotter and hotter until it finally exceeds the permissible limit. What you will need then is a new transistor and probably a better heat sink! The whole disastrous build up can actually happen in an extremely short space of time and is known as "thermal runaway". Hence thermal runaway occurs when the rate of increase in the junction temperature outpaces the ability of the transistor mounting to pass the heat safely away into the surroundings. This will always happen if the "gain" around the closed loop of Fig. 2 exceeds unity, that is, when we have thermal positive feedback. So, to put it in the form of a simple equation, the product

$$a \cdot b \cdot c \cdot 8 < 1$$

for stability.

Now whereabout around the loop can we get in to make sure that the product of a, b, c and 8 is always less than 1? In other words, how can we get a negative feedback loop? Well, we can't do anything about links a or c because they involve physical facts which cannot be changed. Link b is not best bet; if we can blow off enough of the generated heat at the collector junction, the temperature of the junction can be kept below its maximum permissible limit. So by mounting the transistor on a large area of radiating surface, we can ensure that this happy state of affairs comes about. See Fig. 3.

INTRINSIC RESISTANCE

For a given temperature rise in the transistor, the heat generated can be radiated into the surrounding air more quickly if that air temperature is low. As the air temperature rises, the power dissipated in the transistor must be correspondingly reduced to ensure that the temperature rise doesn't exceed its maximum. A graph showing the permissible power dissipation against ambient temperature can be drawn for any transistor, and Fig. 4 is a typical example.

In this case the dissipation at 20°C (room temperature) is seen to be 1000mW, but at 50°C this has fallen to 800mW. Obviously, if the ambient temperature reaches that of $T_{j\ max}$, here taken to be 80°C, no power dissipation within the transistor would be allowed, hardly a useful situation! We are actually here discussing the radiating properties of the transistor case as it is supplied to us, as so far we have not fitted it to anything.

The thermal resistance of the device itself is known as its intrinsic resistance, θ_i, and this is made up of two parts: the thermal resistance of the junction and the thermal resistance of the case to which the junction is attached. To keep θ_i small, power transistors have their collector electrode mounted in direct metallic contact with the case; TO5 and TO220 are familiar forms of this type of construction. This keeps the intrinsic
resistance low, typically of the order of 1 to 2°C/W.

From Fig. 4 we can derive the intrinsic resistance of that particular transistor by dividing the temperature gradient by the power dissipation, i.e.

\[\theta_i = \frac{T_{\text{max}} - T_{\text{case}}}{P_c} \]

Assuming that the case is maintained at, say, 20°C by some means, then

\[\theta_i = \frac{80 - 20}{1000} = 0.06 \text{ °C/mW} \]

As the graph is a straight line, it doesn't matter where as we take the ratio of temperature to power, we will always get the same value for \(\theta_i \).

THERMAL DIAGRAMS

So the intrinsic resistance is built into the device and there's nothing we can do about that. What we can do is "short-circuit" the high thermal resistance present between the transistor case and the surrounding air; call this \(\theta_d \) for the direct air-to-case connection. Now we can sketch a resistance diagram as shown in Fig. 5A. The thermal resistances act in series, and the heat generated at the junction has to work its way to the ambient level through the total \(\theta_i + \theta_d \).

\(\theta_d \) is relatively small, but \(\theta_i \) is large, hence the drop in temperature across \(\theta_i \) is going to be small relative to the drop across \(\theta_d \), think of all this in terms of ome resistance and voltage drops. Hence the case temperature \(T_c \) is not going to be far removed from the junction temperature \(T_j \), and our transistor is probably going to overheat.

What we want to do is put a resistance of low thermal value in parallel with \(\theta_d \); this will then bring the temperature of the case down towards the ambient where, theoretically, we ideally want it. This parallel resistance is the heat sink, so when we have mounted our transistor on it, the diagram looks like Fig. 5B. In most cases, since \(\theta_d \) will be very low compared with \(\theta_i \), we can simplify matters and neglect the effect of \(\theta_d \) altogether. From diagrams like this, heat sink problems can be solved as easily as d.c. circuits containing ohmic resistance.

SOME EXAMPLES

Suppose we have a silicon transistor with a rated \(T_{\text{max}} \) of 150°C. We are told this transistor will dissipate 20W when its case is held at a temperature of 100°C. What is the intrinsic thermal resistance of this transistor?

Well,

\[\theta_i = \frac{T_{\text{max}} - T_{\text{case}}}{P_c} \]

\[= \frac{150 - 100}{20} = 2.5 \text{ °C/W} \]

Suppose now we bolt this transistor to a plate of aluminium which has a thermal resistance of \(\theta_d = 2.0 \text{ °C/W} \). If the ambient temperature is 20°C, what is the greatest collector dissipation the transistor will tolerate?

The total thermal resistance from junction to air is the sum of \(\theta_i \) and \(\theta_d \), which equals 4.5 °C/W.

The overall temperature drop this time is \(T_{\text{max}} - T_d \), which is 150 - 20 = 130°C. So

\[P_{\text{max}} = \frac{\text{Temp drop}}{\text{Total resistance}} = \frac{130}{4.5} = 28.9 \text{W} \]

Now it nearly always happens that we have to insulate (electrically) the transistor case from the heat sink itself. We do this with either a mica or a silicone impregnated washer, usually with the addition of a smear of compound to help reduce the additional thermal resistance that the washer introduces into the circuit. Fig. 5C shows the situation this time; we have ignored \(\theta_d \) for reasons already stated.

What effect does a washer have? Well, we would expect it to reduce the power dissipation at the collector as it has introduced resistance in series with the thermal path. Suppose the transistor mentioned above has a washer introduced where \(\theta_d = 0.75 \text{ °C/W} \). Then the total thermal resistance now becomes

\[\theta_i + \theta_d + \theta_w = 2.5 + 0.75 + 2.0 = 5.25 \text{ °C/W} \]

For the same ambient temperature \(T_a = 20°C \), \(T_{\text{max}} - T_a \) remains at 130°C as before.

But now \(P_{\text{max}} = \frac{130}{5.25} = 24.76 \text{W} \)

So we have lost something like 4W power dissipation.

Things are helped if the heat sink is blackened. Most ready made heat sinks are blackened, but a home produced sink, besides being unfinned, will generally be made from a sheet of aluminium. It pays to spray the sheet with some matt black auto paint, but the areas where the transistor is bolted on are best left plain. If sufficient area of metal is involved, it makes spraying unnecessary. Thickness of the plate is not particularly critical. 16 gauge is adequate in most cases; it is the surface area which matters. And remember that both sides of the plate constitute the total radiating area.

As a rough and ready guide, a piece of 16 gauge aluminium measuring three inches square has a thermal resistance of about 8°C/W, while a piece measuring 6 inches square is about 3°C/W.

To get down to say, 1.5°C/W you will need a piece of 14 gauge measuring eight inches square. All pieces are assumed to be blackened. If you use bright aluminium, you lose about 20 percent of the effective radiation. The sink doesn't have to be square as the above comments might have suggested; the area of the surface is the criterion. It is, however, advisable to make the sink so that the ratio of its sides is no greater than 2 to 1; that is, if you want a sink of area 50 square inches, it is OK to make it about 7 inches by 7 inches or 10 inches by 5 inches, but not 25 inches by 2 inches.

Finally, if you have to use an insulating washer, it is best to use the hard anodised aluminium washer or the silicone rubber reinforced with fiberglass washer as these have very low thermal resistances, typically 0.5 to 1.0°C/W compared with 1.5 to 2.0°C/W for mica. Mica washers also need heat sink compound which is not necessary with the silicone rubber type of insulator.
HOW TO USE THESE TRACKS

FIRST MAKE TRANSPARENT COPY
(We regret that we cannot supply transparent copies of PCB track layouts.)

Have a normal photocopy made, ensuring good dense black image. Spray ISOdraft Transparentiser onto copy in accordance with supplied instructions. ISOdraft is available from Cannon & Wrin, 68 High Street, Chislehurst, Kent. Tel: 01-467 0935.

NEXT PRINT ONTO PCB
Place positive transparency onto photosensitised copper clad fibre glass, cover with glass to ensure full contact. Expose to Ultraviolet light for several minutes (experiment to find correct time - depends on UV intensity).
Develop PCB in Sodium Hydroxide (available from chemists) until clean track image is seen, wash in warm running water. Etch in hot Ferric Chloride, frequently withdrawing PCB to allow exposure to air. Wash PCB in running water, dry, and drill holes, normally using a 1mm drill bit.

(PCB materials and chemicals are available from several sources - study advertisements.)

* CAUTION - ENSURE THAT UV LIGHT DOES NOT SHINE INTO YOUR EYES. PROTECT HANDS WITH RUBBER GLOVES WHEN USING CHEMICALS.

ALTERNATIVE METHOD
Buy your PCB ready made through the PE PCB SERVICE, most are usually available - see page 60.
RESISTORS

<table>
<thead>
<tr>
<th>No.</th>
<th>Qty</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>V112</td>
<td>10</td>
<td>E1254K120, precision 1%</td>
<td>£1.25</td>
</tr>
<tr>
<td>V113</td>
<td>5</td>
<td>E1254K120, precision 1%</td>
<td>£0.75</td>
</tr>
<tr>
<td>V114</td>
<td>100</td>
<td>E1254K120, precision 1%</td>
<td>£1.25</td>
</tr>
<tr>
<td>V115</td>
<td>500</td>
<td>E1254K120, precision 1%</td>
<td>£5.00</td>
</tr>
<tr>
<td>V116</td>
<td>1000</td>
<td>E1254K120, precision 1%</td>
<td>£10.00</td>
</tr>
<tr>
<td>V117</td>
<td>10000</td>
<td>E1254K120, precision 1%</td>
<td>£100.00</td>
</tr>
</tbody>
</table>

TRANSISTORS

<table>
<thead>
<tr>
<th>No.</th>
<th>Qty</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>V118</td>
<td>10</td>
<td>2N549 BJT, silicon, 30V, 0.3A</td>
<td>£1.25</td>
</tr>
<tr>
<td>V119</td>
<td>10</td>
<td>2N553 BJT, silicon, 30V, 0.3A</td>
<td>£1.25</td>
</tr>
<tr>
<td>V120</td>
<td>10</td>
<td>2N577 BJT, silicon, 30V, 0.3A</td>
<td>£1.25</td>
</tr>
<tr>
<td>V121</td>
<td>10</td>
<td>2N582 BJT, silicon, 30V, 0.3A</td>
<td>£1.25</td>
</tr>
<tr>
<td>V122</td>
<td>10</td>
<td>2N628 BJT, silicon, 30V, 0.3A</td>
<td>£1.25</td>
</tr>
</tbody>
</table>

CAPACITORS

<table>
<thead>
<tr>
<th>No.</th>
<th>Qty</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>V123</td>
<td>100</td>
<td>EPCOS B42450, ceramic, 100pF</td>
<td>£1.00</td>
</tr>
<tr>
<td>V124</td>
<td>100</td>
<td>EPCOS B42450, ceramic, 100pF</td>
<td>£1.00</td>
</tr>
<tr>
<td>V125</td>
<td>100</td>
<td>EPCOS B42450, ceramic, 100pF</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

DIODES & SOROS

<table>
<thead>
<tr>
<th>No.</th>
<th>Qty</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>V126</td>
<td>10</td>
<td>1N4148, NPN, silicon, 30V, 0.3A</td>
<td>£0.50</td>
</tr>
<tr>
<td>V127</td>
<td>10</td>
<td>1N4148, NPN, silicon, 30V, 0.3A</td>
<td>£0.50</td>
</tr>
<tr>
<td>V128</td>
<td>10</td>
<td>1N4148, NPN, silicon, 30V, 0.3A</td>
<td>£0.50</td>
</tr>
</tbody>
</table>

TRANSDUCERS

<table>
<thead>
<tr>
<th>No.</th>
<th>Qty</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>V129</td>
<td>10</td>
<td>2N549 BJT, silicon, 30V, 0.3A</td>
<td>£1.25</td>
</tr>
<tr>
<td>V130</td>
<td>10</td>
<td>2N553 BJT, silicon, 30V, 0.3A</td>
<td>£1.25</td>
</tr>
<tr>
<td>V131</td>
<td>10</td>
<td>2N577 BJT, silicon, 30V, 0.3A</td>
<td>£1.25</td>
</tr>
<tr>
<td>V132</td>
<td>10</td>
<td>2N582 BJT, silicon, 30V, 0.3A</td>
<td>£1.25</td>
</tr>
</tbody>
</table>

RESISTANCE CARBON FILM RESISTORS

<table>
<thead>
<tr>
<th>No.</th>
<th>Qty</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>V133</td>
<td>1</td>
<td>1K, 5%</td>
<td>£0.50</td>
</tr>
<tr>
<td>V134</td>
<td>1</td>
<td>1K, 5%</td>
<td>£0.50</td>
</tr>
<tr>
<td>V135</td>
<td>1</td>
<td>1K, 5%</td>
<td>£0.50</td>
</tr>
</tbody>
</table>

VOLTAGE REGULATORS

<table>
<thead>
<tr>
<th>No.</th>
<th>Qty</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>V136</td>
<td>1</td>
<td>7805, 5V</td>
<td>£0.75</td>
</tr>
<tr>
<td>V137</td>
<td>1</td>
<td>7809, 9V</td>
<td>£0.75</td>
</tr>
<tr>
<td>V138</td>
<td>1</td>
<td>7812, 12V</td>
<td>£0.75</td>
</tr>
</tbody>
</table>

TOOLS

<table>
<thead>
<tr>
<th>No.</th>
<th>Qty</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>V139</td>
<td>1</td>
<td>Screwdriver set, 5 piece</td>
<td>£1.75</td>
</tr>
<tr>
<td>V140</td>
<td>1</td>
<td>Multi-tool, 10 functions</td>
<td>£3.00</td>
</tr>
</tbody>
</table>

MISC

<table>
<thead>
<tr>
<th>No.</th>
<th>Qty</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>V141</td>
<td>1</td>
<td>Project box, 100x150x30mm</td>
<td>£2.50</td>
</tr>
<tr>
<td>V142</td>
<td>1</td>
<td>Printed circuit board, 100x150x30mm</td>
<td>£3.00</td>
</tr>
</tbody>
</table>

TELEPHONE ACCESSORIES

<table>
<thead>
<tr>
<th>No.</th>
<th>Qty</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>V143</td>
<td>1</td>
<td>Telephone Answering Machine</td>
<td>£15.00</td>
</tr>
<tr>
<td>V144</td>
<td>1</td>
<td>Telephone Extension Cord, 10m</td>
<td>£5.00</td>
</tr>
<tr>
<td>V145</td>
<td>1</td>
<td>Telephone Speaker, 5W</td>
<td>£10.00</td>
</tr>
<tr>
<td>V146</td>
<td>1</td>
<td>Telephone Cable, 5m</td>
<td>£2.50</td>
</tr>
</tbody>
</table>

###呼ばれています。
BRAINWAVE MONITOR PARTS SET ONLY

£29.90

COMPLETE PARTS SETS FOR ETI PROJECTS

MAINS CONDITIONER

FEATURED IN ETI, SEPTEMBER 1986

£4.901 + VAT

KNIGHT RAID

FEATURED IN ETI, JULY 1987

£6.90 + VAT

MATCHBOX AMPLIFIER

FEATURED IN ETI, APRIL 1986

£6.50 + VAT

POWERFUL AIR IONISER

FEATURED IN ETI, JULY 1986

£9.50 + VAT

PROJECT BOX

WITH P33 BATTERY COMPARTMENT

£2.601 + VAT

LM2917 EXPERIMENTER SET

£5.80 + VAT

RUGGED PLASTIC CASE

suitable for main conditioner and mains components

£1.65 + VAT

BRAINWAVE MONITOR

The ETI Brainwave Monitor must be the most astonishing project ever to appear in the pages of an electronics magazine. It will allow you to hear your brainwaves and judge the relative levels of various types. It will also allow you to control your mind more effectively, to be at peak performance in all situations.

Don't my mind work perfectly well when left to its own devices?

If you have ever been confused, unsure of yourself, shy, unable to perform or to impress people at interviews, you know perfectly well that it doesn't. Your mind (and even your body's) is full of bad habits, inappropriate reactions, feelings of inadequacy all pulling you down. Why should you put up with it?

Mind training sounds like hard work!

It doesn't. If you want to do it this hard way, go study under a Zen master for fifty years or so. You'll get there in the end! With the brainwave monitor it takes no effort at all. Just the opposite in fact - it's the only thing you mustn't do!

How do I start?

At first you use the monitor's internal indicator to exercise your mind. In direct mode you improve the time percentage, in integrate mode you concentrate on the amplitude. After that, the choice of direction is yours. With the Alpha Plan you can reach the core of your personality to root out the weakness and replace it with inner strength. Otherwise you can just enjoy the feelers of peace and clear headliness that alpha training brings, or the creativity and imagery of the theta state.

A friend told me I can use brain power to control lights and things. I can't believe it!

As a matter of fact, you can do more than that! The interface sockets on the monitor allow you to turn lights on and off, control toys and electrical gadgets, play computer games... all with your mind! Are we about to create a race of Superman? Only time will tell.

The Brainwave Monitor is featured in the September, October and November 1987 issues of ETI. The approved parts set contains: two PCBs, all components including three PMI precision amplifiers, switch box for screening the bio-amp's attractive instrumentation cases with lifting feet, controls, switches, knobs, plug and sockets, leads and materials for electrics, full instructions for assembly and use.

**In stock and available separately. We also have a range of accessories, professional electrodes, books etc. Please send a stamped self-addressed envelope if you just want the list. Otherwise, an £5 + VAT will bring you full, complete details and turn around time.

Are we about to create a race of Superman?

Complete

Parts Sets

for ETI Projects
SEMICONDUCTORS

PART 4: FIELD EFFECT TRANSISTORS
BY ANDREW ARMSTRONG

THE THINKING PERSON'S VALVE

Fets score points over junction transistors in a number of ways, but in the post vacuum tube era few people really know how to get the best from them.

CHARACTERISTICS

Some readers may remember the days when glass bottles with electric fires inside were the mainstay of electronic equipment. Despite their inconvenience valves had some admirable characteristics, and fets share a number of the advantages of valves without the associated disadvantages. For example, though a junction transistor needs a continuous supply of base current to remain switched on, a fet simply requires a constant voltage applied to the gate terminal. The only gate current required in the normal course of events is that needed to charge the gate capacitance to the required voltage. The power gain available from fets of all types at moderate frequencies is much greater than that available from junction transistors just for this reason.

In most applications fets are inherently more linear than junction transistors. If a voltage signal is applied to the base of a transistor, the current flow in the base and in the collector is exponentially related to the applied voltage. In a fet on the other hand the drain current is proportionally related to the gate voltage over a moderate range. The gain of a fet is expressed in terms of mutual conductance, represented by the symbol g_m, and expressed in microsiemens, millisiemens, or siemens (amps per volt).

There is another advantage to the use of fets in some applications. Because fets work on majority rather than minority charge carriers the mechanism of noise generation is different from that of junction transistors, and the overall noise can be lower if the input and output impedances are correctly matched. This is mostly of interest in rf applications, but some of the hi-fi fraternity would have you believe that junction fets are more electromagnetically cleaner, slower (in effect) in a fet than in a junction transistor at any given current, a type of subtle distortion which occurs in junction transistors should be much reduced in fets. The theory is that distortion is introduced by only being able to have either 1000 electrons or 1001, rather than, say, 1000.475, and that this is more like fets because the choice is between larger numbers of electrons. They may even have a point, but until we have perfect air molecules to transmit the sound I wouldn't get excited about it. (Long live practical sanity! Ed.)

THE DOWNSIDE

So far, it would appear that fets violate the law of the conservation of misery, but there are some snags. One problem is that fets have been more expensive and less available than their junction counterparts. This drawback is fast disappearing. There are also applications in which the current operated junction transistor is more useful than the voltage operated fet. In low voltage low impedance circuits fet cannot give of their best, and if only a 2V drive signal is available fets will not usually switch at all well.

Fig.35 shows a simple example of an application for which fets of any type are ill suited. In this application the most important characteristic is the g_m of the device. In order to provide a low output impedance, the gate to source resistance must not vary much as load current varies. A mutual conductance of 2ms will give a change of 0.5V/mA, or the equivalent of 500Ω in series with the source. This would only be a minor problem if this were the whole story, but the better linearity of the fet is only relative. The effective resistance in series with the source depends on the current and this gives rise to waveform distortion.
Biassing fets is difficult as well. A junction transistor has a more or less predictable base-emitter forward voltage drop regardless of its gain. For example, one method of voltage biasing, in which the base is biased to a level of base emitter voltage plus forward drop in emitter resistor. This works with emitter resistor voltage not much greater than forward base voltage because the base emitter voltage is about the same from transistor to transistor.

The gate voltage required for a given current in a fet is much different from fet to fet, so a circuit designed with fixed component values may be biased right with one fet but not with the next one out of the box. For example with junction fets (which are of course depletion mode types) there is a specific gate voltage at which the fet is turned off and, no current flows. This is known as the pinch off voltage and it can be different by a factor of 3:1 for a given fet type. Another variable characteristic is the Idss, the saturation drain current. For a junction fet this is the current which will flow if the gate voltage is the same as the source voltage. For a 2N3819 D-channel fet this is specified as between 2mA and 20mA.

Most circuits using a 2N3819 would require a resistor to be selected on test, or alternatively would use a preset potentiometer to set the bias. Luckily there are many more recent devices whose parameters are a little more closely specified, and which can be used without adjustable bias in appropriately designed circuits.

JUNCTION FET APPLICATIONS

Perhaps the simplest possible linear fet circuit is the source follower. It is equivalent to the emitter follower configuration for junction transistors, but it is less effective. An improved version of the circuit is shown in Fig.36. In this configuration, the source resistor is replaced by a fet connected so as to provide a constant current, equal to the Idss of the device. As can be seen from the sample characteristic curves shown in Fig.37, so long as the drain-source voltage of a fet is high enough to clear the resistive region, the drain current changes very little with changes in drain-source voltage.

The use of a constant current source in this circuit removes the problem mentioned earlier, that the source output impedance acts as part of a potential divider network of questionable linearity which attenuates and distorts the output signal. Of course, if a moderately low output load impedance is used, this advantage is nullified, so that all we really have here is a unity voltage gain buffer with a high input impedance and only a fairly high output impedance.

![Fig. 37. Typical characteristics curves.](image)

This idea can be taken further to come up with something really useful, as shown in Fig.38. Here, the input impedance is extremely high, while the output impedance is similar to that of the circuit in Fig.36. In this ultra high input impedance configuration, the gate voltage is derived from a point which has almost the same signal on it as the input terminal. Hence, no significant current flows in R1, when a signal is applied. This makes R1 appear to be a much higher resistor than it actually is. The presence of R2 permits reasonable dc biasing, and provides just enough signal attenuation to prevent any danger of instability. In this circuit, the constant current sink, Q2, is biased to provide a current lower than its Idss by the addition of R3. This simple technique can permit a fet to provide a wide range of preset constant currents.

So far, the circuits we have looked at have not provided voltage gain. The circuit shown in Fig.39 provides a considerable ac voltage gain with high input impedance, fairly high output impedance, and a moderate linearity. The ac gain is set by the ratio of R1 to R3, in parallel with R4, so long as this latter value is much higher than the source output impedance, the linearity is good. Once again, however, the tendency is for the limited gm of most junction fets to limit the usefulness of this simple type of circuit.

![Fig. 39. Inverting amplifier with voltage gain.](image)

![Fig. 40. Linear gain circuit.](image)
VARIABLE RESISTANCE

Another difference between fets and bipolar transistors is in the performance at very low drain-source voltages. At voltages of up to a few hundred millivolts, fets pass a current proportional to the drain-source voltage, though bipolar transistors are non-linear. This characteristic allows fets to serve as analogue signal switches, voltage controlled attenuators, or in any other application in which a variable resistance is needed. The expanded section of fet characteristic shown in Fig.41. Applications of this principle are shown in Figs. 40 to 42.

![Fig. 41. N-channel JFET output characteristic enlarged around $V_{ds} = 0$.](image)

Fig. 42. Simple voltage controlled attenuator.

The simple attenuator shown in Fig.42 causes significant distortion, though there are some applications in which this would not matter. That there will be distortion is clear from a close inspection of Fig.41. The reason for the distortion is that increasing drain-source voltage tends to pinch off the channel, as illustrated in part 1 of this series. The incremental resistance of the device is actually increased by this effect, hence the distortion. This effect can be countered by feeding some of the signal to the gate, so that a rise in gate voltage will offset the rise in drain voltage.

Fig. 43. A linearised voltage controlled attenuator.

A circuit employing this principle is shown in Fig.43. R2 and R3 are used to apply half of the drain signal voltage to the gate. The values of R2 and R3 are a compromise between loading the drain signal too much and having such a high impedance on the gate of Q1 that it picks up a lot of radiated electrical noise. The use of this circuit technique can reduce the distortion from 10% (mainly second harmonic) to approximately 1% with a particular signal level. Distortion level of course signal dependent, but too low a signal level will give a poor signal to noise ratio, which will tend to nullify any advantages gained from lower distortion.

Fig. 44. Voltage controlled bandpass filter. Q increases with frequency. $F = 500\text{Hz}$, $Q = 6$. $F = 1000\text{Hz}$, $Q = 10$. Fig.44 illustrates a voltage controlled filter which is tuned by varying the resistance of a fet. The maximum frequency is determined by the lowest possible fet resistance in series with R2, while the minimum is determined by the resistance of R3. The filter shape is affected by the fet resistance, but this is not too serious a problem over a modest tuning range — perhaps a maximum of an octave.

Apart from having a fairly linear characteristic at low drain-source voltage levels, junction fets really score in two specific ways: one is that they have a very high input impedance, and the other is that they have a very high inherent output impedance. Certain types of load benefit strongly from the high output impedance. These are the applications in which one might use a cascode circuit with ordinary junction transistors. For example, if a high Q tuned circuit is connected to the drain of a fet in an rf amplifier circuit, the high drain output impedance will not significantly load the circuit and hence reduce the Q value.

To illustrate this point, compare the bipolar if amplifier stages shown in Fig.45 with the fet stages shown in Fig.46. In the fet circuit, no impedance matching is required, and thus the design of the tuned circuits is simplified. The disadvantage associated with this is that the Miller capacitance (drain-gate capacitance) has more effect on performance, but in most applications this problem is not serious. Where it does matter, the solution is often to use a dual gate mosfet, which will be covered in part 5 in two months time along with power mosfets.

Fig. 45. Bipolar IF amplifier.

Fig. 46. FET IF amplifier.
The K5000 Metal Detector Kit combines the challenge of DIY Electronics assembly with the reward and excitement of discovering Britain’s buried past.

THE KIT—simplified assembly techniques require little technical knowledge and no complex electronic test equipment. All stages of assembly are covered in a detailed 36 page manual.

THE DETECTOR—features Analytical Discrimination & Ground Exclusion, backed by the proven pedigree of C-Scope, Europe’s leading detector manufacturer.

Ask at your local Hobby/Electronics shop or contact:

C-Scope International Ltd., Dept. FE
Wotton Road, Ashford, Kent TN23 2LN
Telephone: 0233 29181

...IN ONE GREAT KIT!

Mail or Telephone Orders Only Please To: Dept 12, Samuel Whites Estate, Bridge Road, Cowes, Isle of Wight, PO31 7LP.
Please Add £1 For 1st class Post and Packaging, and 15% VAT to Total Stock Listing available soon. Please send SAE to be put on the mail list.

VISA

Xen-Electronics 0983 292847

JUST A SAMPLE OF STOCK, ASK FOR ITEMS NOT LISTED.

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>£1.20</td>
</tr>
<tr>
<td>Orange</td>
<td>£1.20</td>
</tr>
<tr>
<td>Red</td>
<td>£1.00</td>
</tr>
<tr>
<td>Yellow</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

THE K5000 METAL DETECTOR KIT

C-SHOP

20x540 10.20
20x505 12.50

Minerals

Black 10.50
Brown 12.50

Computer

42x32 10.00
42x36 12.00

Please contact for full list.

8052-BASIC

Microcomputer prototyping board by MATRIX Systems

Special features include:
- powerful BASIC interpreter in the ROM of an Intel 8052
- on board EPROM programmer
- up to 255 different programmes can be stored in the EPROM.
- 2 RS232 ports, one for a VDU and the other for a printer.
- 24 general purpose i/o lines.
- 8 kbytes of static CMOS RAM.
- 8 kbytes of EPROM.
- on board switching regulators generate +5, -10 and +21 volts. You just need a simple 5v supply
- MATRIX prototyping space to build your own circuit
- decoded signals are provided for expanding i/o and memories
- 116 instructions including floating point arithmetic.

“The 8052AH BASIC microcontroller... offers an elegant and efficient way of writing control programmes for computer based projects.”

For full details write to MATRIX Systems
23 Grove Road, Lytham Buzzard, U17 8SF
Telephone enquiries to Peter Cox-Smith on 0234-751001
Cheques with orders payable to MATRIX Systems

CROFTON ELECTRONICS
05448 557
‘KINGSHILL’, NEXSEND, LYONSHALL, HEREFORDSHIRE HR3 3HZ.

PRACTICAL ELECTRONICS FEBRUARY 1988
HEARING AGE
Dear Editor

I was interested to read the item "Hear hear!" on page 4 of the August issue as this is a topic which has interested me for some time. I do not believe that age related hearing loss is the correct explanation for the complaints about the high signal to noise ratio inherent in many TV productions.

In the early days of information theory this situation was referred to as the "multiplex problem". Although semantic content plays a part I believe the problem arises because of the loss of spatial information when listening to sound from a single loudspeaker. Normally our binaural hearing helps us to select the information of interest.

This is supported by a common experience when listening to a public speaker there is little loss of information. If one listens to a tape recording of the same occasion however, the replay is marred by a host of other sounds - coughing, fidgeting, traffic outside the window, footsteps outside the room, etc. which were successfully filtered out in the live situation.

Also, in my experience, the quality of sound on many modern TV productions is inferior to older ones. For instance the sound on the recent showing of the 1930's Fred Astaire films was excellent, but that on the recent ITV serial "Floodside" was very poor.

The reduced signal to noise ratio now also seems to be infiltrating the visual domain as well as the auditory one.

Examples are the backcloth designs to many productions, for example the "Through the Keyhole" production on Channel 3 hosted by David Frost and the "No we have a computer" series on Channel 4 which started at least with a large keyboard as a somewhat distracting backdrop.

I am writing not to inform you to try counter the view that these annoyances are age related and would be grateful if you would tell me an address for the group investigating the problem.

John C. Shaw Ph.D., Chidham

AN EDITOR'S SOUND-OFF
Dear Mr Shaw

As an ex-film editor I too was particularly interested by the report, and share some of your views.

Most certainly I believe that binaural focussing of attention is a key to selective separation of wanted and unwanted sounds. Visual understanding though is related to the simplicity of the two dimensional image, and to the length of time in which to study it. I believe that a golden rule that information should be imparted in as many forms as possible. I have no experience of TV production, but it may well be true in theory, but in practice "normal" conditions can muffle and distort the sound, possibly resulting in auditory confusion through the inability to separate the sounds. The confusion can be further aggravated by visual distortion, and also by mental perception problems.

Perception of filmic information is more complex than just the ability to separate 'cocktail party' chatter. Four or five levels of information being imparted, through vision, commentary, sound effects, music and possibly subtitles. The brain is being expected to separate and understand all of these messages. Though some discrimination can be done subconsciously, vision, commentary and subtitles may all be being separate, but essential information. It can be extremely difficult to concentrate on, and think about all the messages, as we are frequently expected to do, especially in documentary reports.

Add to this the shortcomings of the equipment and conditions under which this mental conformation has to be performed, and it is not surprising that information is not always apparent to an audience.

My second concern is that the age factor does also come into it, on two levels. It is well established that the frequency bandwidth of the human ear decreases with age. As a result more information can be lost, and the audio content become muddled. Many older people find it necessary to increase the treble content of the sound by means of the tone control, to compensate for apparently muffled speech. They may well also need to increase the volume beyond that at which the equipment prefers to operate, resulting in electronic generated distortion. Further more, as people become older, their ability to rapidly analyse meaning can also become reduced. It is often necessary to talk to an older person at a slow rate so that not only can they hear you distinctly, but also have time to interpret and think about what is being said.

In addition to difficult audio conditions, if visual overloading is present as well, interpretation becomes even more complex. As many levels of sound data are used to create impacts, so many visual data paths are combined to emphasise a message. Apart from subtitles, split screen images are frequently used for this purpose, on occasion many of them at once, simultaneously. The intention here though, is not that all should be looked at and understood, but rather that they should give an overall impression of the message. Despite this, it can be confusing, and frustrating, to have interesting images in view, but not be able to study them in detail.

You can compare these productions sounding clearer than recent ones interests me. The 1930s production mentioned would have been originally recorded on an optical (photographic) track, the bandwidth of which is inherently lower than obtainable with magnetic tape. I forget the figures, but I believe that the upper limit is well below 3KHz, and that the bass response was also well culminated. This resulted in the early recording equipment used could also place severe limits on the overall fullness of mixed tracks. Consequently, your comment suggests that the quality of the sound track made it easier to hear, either through limitations of restricted hearing, or the abilities of the reproduction equipment.

It may be the editor's age, but there are times when I too would welcome simpler audio-visual messages, even though in the past I have been guilty of overloading the multiple impact approach through film based information. I would also welcome a ban on vertically striped backgrounds, shirts and ties, since my own set prone to vision-on-sound problems that cause even more aggravation!

To answer your question though, further information on the research group's activities can be obtained from Henry Price, BBC TV, Broadcasting House, London W1A 1AA.

Ed.

IF YOU HAVE ANY COMMENTS, CRITICISMS OR SUGGESTIONS, WRITE AND LET US KNOW. WE ARE INTERESTED IN WHAT YOU THINK AND SAY.
A Combination Lock

This circuit was designed in response to a request from one of my friends. He wanted to build a combination lock for his workshop, so that it will open the door when he keyed in the correct code. This circuit is a very simple design, based on the CMOS 4017 decade counter.

The keyboard has nine keys for the digits 1-9, (but more keys could be put in if required, using them as reset keys). Four keys are used to key in the code. One of each of the four keys' connection is connected to pin 3,2,4,7 of IC1 and the other connections are all connected to the CLK pin of IC1, pin 14. The position of these keys determines the sequence in which the code has to be keyed in. The circuit diagram shows the connection for the code number 2491.

The rest of the keys are used as reset keys. So when any of these keys are pressed, it will reset the opening sequence of IC1. One of each of these keys' connections are connected to point 'A', (shown in diagram) and the other connections are connected to the ground.

The circuit automatically resets itself at switch on. This is so because IC1 has to slowly charge up through VR1 and R3, and before C1 reaches 0.6V, TR2 will be off, so the reset pin of IC1, pin 15, will be high. When TR2 turns on, ie, C1 has reached 0.6V, pin 15 of IC1 will go low, so the code could now be keyed in. If the keys are pressed together, the reset keys will reset IC1. If the four code keys are pressed together, pin 14 will still be low because the only high output from IC1 will be pulled low by the other three outputs.

When the correct code is keyed in, in the right sequence, pin 10 of IC1 will go high. LED1 will light up and TR3 and TR1 will turn on. TR3 will switch on the relay and TR1 will ground the point at the junction between R3 and VR1. C1 will slowly discharge through VR1 and when 1T has discharged below 0.6V, TR2 will switch off and reset IC1, ie, switch off the relay. The delay time could be varied by varying VR1.

J. Lam, Dagenham

Crystal Oscillator

The circuit shown here is a micro-power crystal controlled oscillator which was designed for use with CMOS circuitry. The circuit as shown requires only 45μA at 5 volts. The power consumption of CMOS devices is proportional to operating frequency. This is because power is consumed charging and discharging on-chip capacitances and because when switching there is a short time when both the n-channel and p-channel transistors are partially conducting. Bearing this in mind, a low power oscillator must operate at relatively low frequency, thus the 32kHz crystal in this design. The number 32,768 is 2^{15} thus the output of the oscillator may be divided down to 1 Hz using 15 binary dividers. Other frequencies are obtainable by changing the crystal. A decoupling capacitor should be mounted across the supply pins.

E. Hunter, Dundee
PE BAZAAR

80Mhz Magneto/Popular/Electronic world, American, WW, PE, PW, ETI, Radio Constructor. £80 buyer collects Cardiff. Tel: L. Deere 0222 360252

Monica or Obee RAf. Any info. most welcome, or old circuits relating to these receivers. Mr. H. Hatton, 6 Tuscan House, Knottsford Street, London E2 0PR.

Hitachi V222 Oscilloscope, dual trace, full industry specification, never used, boxed + probes + manual. £300. A. Cowell. Tel (evenings) Great Dunmow. 07976

Tektronix type 564 storage oscilloscope: dual trace with screen store, probe included. £150 ono. R. Hollands, 56 Worlds End Lane, Oprington, Kent, BR6 6AH. Tel: 0689 57596.

Wanted: Ferrograph or capstan motor for ferrogram model 2A/9H. J. Taggart, 2 Sandown Lane, Wavertree, Liverpool L15 8HY. Tel: 051-734 1302.

Eproms for sale. 2716, 2516, 2732, all £1 each inc. postage and packing. D. Keene, 16 Leasowes Ave. Green Lane, Coventry, CV3 6BH.

247 PE Mags 67-88 offers to B.S. Hewson 35 Knox Road, Forest Gate, London E7. Tel: 01-555 3796.

Wanted: ZK Spectrum cheap or free, in any condition or bare PCB only. Please. I'll pay postage. R. Kaminsky, 90 Helston road, Penryn, Cornwall, TR10 8NG.

Murphy FM/LW/MW radio (boxed) £12 Five high quality amplifier modules & directions 50 W4/25 - 100 Watts£3. Mr. Frost, 1 Regents road, Ilkley, Yorkshire.

Wanted: Oric Microdisk or compatible drive with DOS also BBC DOS listing and CBM 1551 drive. M.J. Last, 7 Peacock Rise, Ixworth, Bury St. Edmunds, Suffolk. Tel: 0539-30858.

BBC B OS12.40/80 SSD. Fitted ROMS wordwise, spellcheck £250. Printer £150. Phone after 6.30 pm. 0933 678970.

wanted: LNC's for 12GHz SAT-TV reception. For sale: surplus components, schematics, instruments, various parts. Mr. Gebeles Bela, Gorenjska 17a, 24000 Subotica, Yugoslavia.

Maplin Reg. 2A PSU £35. Ultraviolet light box £40. Good condition. Will post. Mr. G.A. Hope, 72 Picket Close, Fordingbridge, Hants SP6 1JY.

MAP80 (VFC) Video and floppy card + CM22.2 for NASCOM/GEMINI's £150 ono. GM802, 64K RAM £45.00 75W PSU (switching) £35.00. Contact: I. Cullen, High Hill Farm, Nettlestead, Ipswich, Suffolk. (0473) 831353.

Wanted: Info or equivalent supplier TMS 1600 SM07. P.A. Herr, 2 Arthur Road, Bexhill on Sea, Sussex TN39 3PN.

For Sale: Power pack cases as used on spec. Grubby and no screws. Price 20p each. Mr. J. Norman, 25 Milton Road, Corby, Northants, NN17 2YN.

Tektronix type 581A scope 85 MHZ dual trace x10 probe. Phone: Kenilworth 511161 eves/weekends. £95.

Wanted: service manual or circuit diagram for Rotel Amplifier RA314. Mr. D. Lotay, 65 Downsfield Road, Sheldon, Birmingham, B26 2TU. Tel: 021-743 3400.

Spectrum Plus computer with 5yr. guarantee and 4RGB interface and green monitor. £50. Phone: (0392) 75896.

Floppy drives: two Shugart SA800/801 (8”), and FD1771 controller, all with data. £35. Buyer collects. P.J. Le Riche, 119 Aldwickbury Crescent, Harpenden, Herts AL5 5SS: Tel: 05827 62414.

Grundig shortwave converter KW1000 for connection to any car radio to receive 5+5W bands £30 ono. R.N. Ostley, 8 Waverley Road, Kingsbridge, Devon, TQ7 1EZ.

Oscilloscope Tektronix type 541A with type L plug-in unit. Good working order 800MHZ £80 ono. K. Szatkowski, 6 The Meadows, Wellingborough, Northants, NN9 5YT. Tel: (0933) 675698.

Autoranging multimeter all usual features plus hold, memory & IF. Brand new with guarantee £45 including P&P. Alan Auden, 206 Elleride Road, Hounslow, TW3 2PX. Tel: 01-568 5458.

Amstrad 464 computer. Mono screen, speech synthesizer and digital drums. Lots of software £325. Buyer collects. M. Evans, 23 Canterbury Avenue, Slough, Berks, SL2 1EJ.

1513 Amstrad HD20 with modem, complete. New 18th March 1987, £200. M.W. Quills, 469 Fulham Palace Road, London SW6 6SL.

Brother HR5 dot matrix printer with RS232 serial input £60 ono. G. Hope, 72 Picket Close, Fordingbridge, Hants, SP6 1JY. 0425 65551.

Wanted: expansions communications disc interface boards or information circuit diagrams for MFX512 computer. J. Poliszewski, 9 Contiers Close, Teddington, Middx., TW11 9JG. 01-878 9611 ext 244 (work - ask for Jan).

Hameg HM203-4 oscilloscope, full probe set, boxed £250. Powered Experimentor board £50. Tel: Havant (0705) 482928.

Over twenty years back numbers Practical Electronics, some in annual binders. Space required. Offers please. Charles Gale, 93 Booth Road, Colume, London, NW9 5UJ. Tel: 01-205 0221.

New logic 4 alarm unit. Three keys. Mains running (battery switchable), trickle charger. £45 ono. J. Baxter Tel: 01-809 1008.

Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules.
Signature..Date........

RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. PE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be posted within one month of cover date. (One month later for overseas readers).

Send this form (or a photocopy of it) to:
PE Bazaar, Practical Electronics, 193 Usbriedge Road, London W12 9RA
In part one some of the theoretical aspects of designing an intercom were discussed. This month the article is completed by describing a practical working two-station intercom.

The only other practical improvement worthy of consideration is another look at the amplifier design. In developing the three stage circuit of Fig.6, no thought was given to the overall requirements of the circuit. We arrived at Fig.6 by adding more amplification through identical cascaded transistor stages. Although this simple approach will work, better results should be obtained if more specialised components are used.

Fig.14 gives a much better amplifier design although still based around three transistors. If you followed the "Teacher Radio" GCSE article in PE Dec. you will notice great similarities between the amplifier circuit used there for the radio and the heart of the unit suggested here. The input stage uses a field effect transistor (fet) to provide a low noise voltage gain of about 20dB – this corresponds to a linear gain of about 10 times. The fet itself has a very high input impedance of 100 MΩ. The inclusion of the gate bias resistor R1 provides a dc path to the gate of fet under all conditions. Capacitor C2 provides some rf filtering which is important because high gain circuits of this type invariably suffer from RF breakthrough. This means that the circuit detects unwanted radio signals and amplifies them along with the desired audio information.

Although there is no diode detector in this circuit, there are other semiconductor devices (base-emitter junctions) which will serve this purpose. Unless we are careful the intercom can end up as a pretty good radio receiver! Capacitor, C4 couples the output from the fet to the first bipolar transistor which is being used in common emitter configuration. Capacitor, C5 couples the output of transistor TR2 into the base of transistor TR3. This again is being used in common emitter configuration but with lower values of load resistor (R8) and bias resistor (R7) to allow for sufficient current to drive the loudspeaker. This is the same argument as was presented earlier when discussing Fig.8. The output power of the amplifier is only about 50mW but this is perfectly adequate for this sort of application.

Following the approach developed in the system diagram of Fig.13 we require four switches. S1 is a simple on/off toggle switch to disable the amplifier when the unit is not required to be left on. S2 is the double pole double throw selection switch which the master control operates to toggle between "send" and "receive". S3 and S4 are push-to-make "call" switches, one for each unit.

Notice that when S1 is switched off, no current will be flowing from either battery. The remote unit can operate its "call" button even when S1 is switched off. Both buzzers will sound when either call button is pressed. This serves as a battery test and would give the operators a good idea of battery condition especially as the batteries begin to reach the end of their effective life.

Fig. 14. Above: Full circuit of the master Teacher Talkback unit. Bottom Right: Circuit for the remote station.
off. Both buzzers will sound when either call button is pressed. This serves as a battery test and would give the operators a good idea of battery condition especially as the batteries begin to reach the end of their effective life.

Although not essential it is probably desirable if S2 is of the biased toggle type because it makes for easier operation.

Ideally the three-way cable needed to connect the units should be a two core screened cable with the screen braid being used for the 0V line. This again will help to ensure that rf breakthrough does not occur.

CONSTRUCTION AND TESTING

Low profile, sloping panel boxes are traditionally used for this sort of application. Although the remote station will house only the loudspeaker, the buzzer and the call switch, it is probably worth having two identical boxes. Certainly the result will look more professional if you keep the hardware uniform. Cable length is always deceptive and of course will change if you wish to relocate the system at any time. For this reason permanently wired connections are awkward. I would prefer to see a simple plug and socket arrangement at each end of the cable—a stereo jack and socket of the 0.25in type will do very nicely.

A suitable printed circuit design for the amplifier is given in Fig.15 but do try to develop your own designs. This is a relatively simple pcb to work on. Testing is likely to be divided into two main areas. Firstly of course, the amplifier which could easily be tested independently by injecting a very small signal from a generator, running at perhaps 1kHz, into the circuit at the gate of TR1. An oscilloscope would then be needed to trace the signal through its various stages of amplification and eventually to detect it emerging through capacitor, C7.

In some ways it is more likely that a total lack of response from the circuit is due to a problem with one of the many interconnections or switches. Each of these pathways must be checked for continuity if such a problem is suspected.

High impedance loudspeaker units (80Ω or 6Ω) will give much better results than 8Ω units.

Whichever one of the various designs given you decide to build, I wish you many hours of enjoyable ‘chat’ once you have your finished product.

Fig. 15. Printed circuit board layout details.

COMPONENTS

RESISTORS
R1,R8 180Ω (2 off)
R2,R5 3k9 (2 off)
R3 2k7
R4 1M5
R6,R9 390Ω (2 off)
R7 100k
All resistors 1/4W 5%

CAPACITORS
C1,C8 22µF 10V (2 off)
C2 22n plastic foil
C3 4.7µF 10V
C4,C5 470nF plastic foil (2 off)
C6 120pF ceramic plate
C7 100µF 10V

SEMICONDUCTORS
TR1 BF224B
TR2,TR3 BC109C (2 off)
D1 Red led

SWITCHES
S1 spst toggle
S2 dpdt biased toggle
S3,S4 Push-to-make switch (2 off)

MISCELLANEOUS
LS1,LS2 Miniature 80Ω loudspeaker (2 off)
BZ1,BZ2 Miniature 6V buzzer (2 off)
Two PP3 batteries and connectors, two boxes, two 0.25in stereo jack plugs and sockets, length two core screened cable, wire, solder, printed circuit board.

The pcb is available through the PE PCB Service.

Tim Pike is Deputy Headmaster of the Ramsden School for Boys in Orpington, Kent, and has taught Electronics to ‘A’ level standard for thirteen years.
QUALITY BOOKS AT REASONABLE PRICES

WHY A BOOK SERVICE?

We receive hundreds of letters from readers from all over the world complaining that they are unable to get hold of books or information on various subjects.

The information is available if only you know where to look. Unfortunately, it's looking that takes so much time. By expanding our book service to include books from a variety of publishers we are able to keep you informed as to what is available on a wide range of subjects.

All the books in our service are available from our editorial office at the recommended retail price plus postage and package. (We are not allowed to sell them at below cover price.) In addition to our book service, we have commissioned some independent reviews of some selected titles in order to give a fair and balanced view as to their suitability, quality and value. These reviews will appear regularly to back up our service. Descriptions of books accompanying titles in the book service are not independent reviews but are merely indications of their contents. You may photocopy this form if you prefer.

BOOK ORDER FORM

Please supply the following books listed on the enclosed form.

Remittance should be sent to:
PE Book Service, Practical Electronics,
Intra House, 193 Uxbridge Road, London W12 9RA.
Cheques should be crossed and made payable to Intra Press.

PRICES INCLUDE POSTAGE AND PACKING FOR INLAND ORDERS BUT PLEASE ADD £2 PER ORDER FOR OVERSEAS*

<table>
<thead>
<tr>
<th>BOOK DESCRIPTION</th>
<th>CODE</th>
<th>QTY</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADD £2 FOR OVERSEAS*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL ENCLOSED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME AND ADDRESS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUALITY BOOKS AT REASONABLE PRICES

A PRACTICAL GUIDE TO WORD PROCESSING ON THE AMSTRAD PCW 8256 AND PCW 8512
There have been 100% of Amstrad computers sold - this book is a guide to using the word processing facilities

MIDI PROJECTS

GETTING THE MOST FROM YOUR PRINTER
A guide to making the most of your printer, £3.45 inc p&p, Order code BP181.

MICRO INTERFACING CIRCUITS BOOK 1

EASY ADD-ON PROJECTS FOR COMMODORE 64, VIC 20, BBC MICRO AND ACORN ELECTRON
O. Bishop, 1985, 208 pages, £3.45 inc p&p, Order code BP134.

EASY ADD-ON PROJECTS FOR AMSTRAD CPC 464, 6128 and MSX COMPUTERS

AN INTRODUCTION TO COMPUTER PERIPHERALS
J.W. Penfold, 1985, 80 pages, £3.00 inc p&p, Order code BP176.

MICROPROCESSING SYSTEMS AND CIRCUITS

AN INTRODUCTION TO COMPUTER COMMUNICATIONS

AN INTRODUCTION TO 68000 MACHINE CODE
Price £3.45 inc p&p, Order code BP184.
DIGITAL IC EQUIVALENTS AND PIN CONNECTIONS
A. Michaels, 1985, 256 pages, £6.45 inc p&p, Order code BP140.

LINEARIC EQUIVALENTS AND PIN CONNECTIONS
A. Michaels, 1985, 320 pages, £6.45 inc p&p, Order code BP141.

INTERNATIONAL TRANSISTOR EQUIVALENTS GUIDE
A. Michaels, 1981, 320 pages, £4.00 inc p&p, Order code BP85.

ELECTRONICS SCIENCE PROJECTS
O. Bishop, 1982, 144 pages, £2.75 inc p&p, Order code BP104.

POWER SUPPLY PROJECTS
R.A. Penfold, 1980, 96 pages, £3.00 inc p&p, Order code BP76.

PRACTICAL ELECTRONIC BUILDING BLOCKS – BOOK 1

AUDIO PROJECTS

PRACTICAL ELECTRONICS CALCULATION AND FORMULAE

MORE ADVANCED ELECTRONIC MUSIC PROJECTS

QUALITY BOOKS AT REASONABLE PRICES

OP-AMPS (THEIR PRINCIPLES AND APPLICATIONS)
Brian Dance, 2nd Edition 1986
This edition provides a source of practical circuits using both new devices and well-established ones like the 741, and including all component values. Written in a simple, non-mathematical style and specifically directed to the non-academic reader.
£6.00 inc p&p Order code NT2

OSCILLOSCOPES (HOW TO USE THEM, HOW THEY WORK)
Ian Hickman, 2nd Edition 1986
This second edition has been updated to cover new techniques and new instruments which have been introduced since the publication of the first edition in 1981. Illustrated with diagrams and photographs of many more oscilloscopes than the first edition, the book will appeal to everyone who wants to know about oscilloscopes, from the school student to the graduate, from the hobbyist to the technician.
£6.00 inc p&p Order code NT3

MODERN ELECTRONIC TEST EQUIPMENT
Keith Brindley, 1986
The subjects covered include analog and digital meters, oscilloscopes, signal sources, frequency, time and event counters, spectrum and logic analysers, displays and automatic test equipment.
£7.45 inc p&p Order code NT4

PRACTICAL ELECTRONICS MICROPROCESSOR HANDBOOK
Ray Coles, 1986
Can be used to select an appropriate microprocessor for a particular task as a comprehensive reference source for the technician, as an overall introduction to the microprocessor scene, or as a primer for the engineering student.
Taken from Practical Electronics and updated to include new information and devices.
£14.00 inc p&p Order code NT13

16-BIT MICROPROCESSOR HANDBOOK
Trevor Raven
The 16-bit Microprocessor handbook examines the characteristics of the four most popular chips: 8086, Z8000, and 99000. Over 95% of the 16-bit microcomputers available on the market today incorporate one or other of them.
£9.95 inc p&p Order code NT7

NEWNES ELECTRONICS POCKET BOOK
Despite the increasing emphasis on microcomputers, the aims of the book are unchanged; namely the presentation of all aspects of electronics in a readable and largely non-mathematical form for both the enthusiast and the professional engineer.
£9.45 inc p&p Order code NT10

BEGINNER'S GUIDE TO INTEGRATED CIRCUITS
Ian R. Sinclair, Second edition 1983
"As before Ian Sinclair has managed to produce an outstanding book for the beginner to electronics. " (Everyday Electronics)
£5.45 inc p&p Order code NT8

INTRODUCTION TO 6800/6802 MICROPROCESSOR SYSTEMS HARDWARE, SOFTWARE AND EXPERIMENTATION
R.J. Simpson & T.J. Terrell
"This book is very thorough." (Electronics and Computing)
"This text has long been needed... essential reading." (Micro Forecast)
£8.45 inc p&p Order code NT9

PRACTICAL ELECTRONICS HANDBOOK
Ian Sinclair, 1986 Revised Edition
A useful and carefully selected collection of standard circuits rules-of-thumb, and design data for professional engineers, students and enthusiasts involved in radio and electronics.
This revised edition contains more details on computers and microprocessors and has been brought up to date throughout.
£6.45 inc p&p Order code NT1
A new millisecond pulsar has been found, this time in the cluster M4 near Antares. The discovery was made by A. Brinklow, A. Lyne, J. Biggs and M. Ashworth, using the 250-foot Lovell Telescope at Jodrell Bank. The spin rate is 90 revolutions per second. It is generally believed that millisecond pulsars are old, and have been ‘speeded up’ by interactions with a companion star. This is only the second millisecond pulsar to be found in a globular cluster; I will have more to say about it in a future article.

Plans for the launch of the Russian Mars probe are well under way, and if all goes well the vehicle will be sent up during the coming summer. It is intended to explore not only Mars itself, but also the larger of the two dwarf moons, Phobos, which is below 20 miles in diameter, and is a dark, irregularly-shaped rock object. The ‘descent module’ will land on Phobos, attaching itself by a harpoon-like device; the ‘frog’ will literally hop around the surface of the tiny satellite. Of course, Phobos has a very weak gravitational pull, so that ‘landing’ there is really more in the nature of a docking operation.

Another satellite which will be very much in the news in 1989, if not 1988, is Triton, the senior attendant of Neptune. It is larger than our Moon, and, like Titan in Saturn’s system, is believed to have a substantial atmosphere. Two American astronomers, M. Delitsky and W. Reid, now suggests that the surface may be partly covered with a sea of intensely cold liquid nitrogen and methane, on which floats a ‘scum’ of organic compounds. They even say that when Voyager 2 by-passes the satellite, in August next year, it will show ‘plains of white and coloured organic deposits and, maybe, the glist of a distant Sun reflected off a calm nitrogen sea’. We must wait and see, but in some ways Triton may prove even more interesting than Neptune itself.

On the debit side, we greatly regret to report the death of one of Britain’s most distinguished astronomers, Dr. D.H. Sadler of the Royal Greenwich Observatory and a Past President of the Royal Astronomical Society. Dr. Sadler was particularly well known for his work in the Nautical Almanac office.

Mars and more distant objects are providing food for speculation in the near future, and the variable star Mira Ceti will be visible to the naked eye for a while.

The Sky This Month

As 1988 opens, both the two brightest planets are in the evening sky, and make a brave showing. Pride of place must go to Venus, which by the end of the month does not set until three hours after the Sun. Its magnitude is —4, so that it far outshines any other object in the sky apart from the Sun and the Moon. Yet lovely though it is as seen with the naked eye, Venus must be regarded as a telescopic disappointment; no telescope will show anything but occasional vague, cloudy markings, simply because all we are seeing is the upper part of the atmosphere. Below, we have found Venus to be a veritable inferno, and even the shining clouds contain large amounts of sulphuric acid. During January the phase decreases from 82 per cent to 77 per cent; not until March will the planet reach ‘dichotomy’, and appear as a half-disk.

Jupiter, magnitude — 2.4, is in Pisces, and is visible all through the early part of the night. Telescopically it is more rewarding than Venus; look for its cloud belts, its bright zones, and its four main satellites. The Great Red Spot (now known to be a whirling storm) has not been in evidence lately, but no doubt it will soon become prominent once more.

Saturn is emerging into the dawn sky, and Mercury is an evening object; it may be glimpsed low down in the south-west at the end of the month, just after sunset. Telescopes will show it as a crescent, but no surface details will be seen. Of the other planets, Uranus and Neptune are out of view, but Mars can be observed in the south-east before sunrise. Its magnitude is + 1.5, and its apparent diameter is less than 5 seconds of arc, so that telescopes will show little, but Mars is worth finding, because it is not far from the first-magnitude star Antares in Scorpius.

It is easy to confuse the two, though Antares is lower down and is, at present, half a magnitude brighter. Of course Antares is a red star — its name means the rival of Ares’ or Mars. It is sobering to reflect that while Mars has only half the diameter of the Earth, Antares is big enough to swallow up the whole orbit of the Earth round the Sun.

The Moon is full on January 4, and new on the 19th. The only major meteor shower this month is that of the Quadrantids, with its maximum on the 3rd; it is usually of brief duration, and this month the Moon will interfere. Bradfield’s Comet is now fading, but telescopically it will remain observable for some time.

Of course the evening sky is dominated by Orion, with its two brilliant leaders (Betelgeux and Rigel), its Belt, and its Sword. Lower down, and further east, is Sirius, the brightest star in the sky, of magnitude — 1.5. Sirius is pure white, but seems to flash various colours because of the effects of the Earth’s atmosphere. Capella, in Auriga, is almost overhead, by it you can see the little triangle of stars nicknamed the ‘Kids’, of which one member (Epsilon Aurigae, at the apex of the triangle) is a remarkable eclipsing binary, made up of a yellow super-giant together with an invisible companion which passes in front of the supergiant once every 27 years. The Square of Pegasus is setting in the west; Ursa Major, the Great Bear, is rather low in the north-east. Leo, the Lion, is coming into view over the eastern horizon.

The regular look at astronomy

By Dr. Patrick Moore

Our regular look at astronomy

SpaceWatch

Mars and more distant objects are providing food for speculation in the near future, and the variable star Mira Ceti will be visible to the naked eye for a while.

A new millisecond pulsar has been found, this time in the cluster M4 near Antares. The discovery was made by A. Brinklow, A. Lyne, J. Biggs and M. Ashworth, using the 250-foot Lovell Telescope at Jodrell Bank. The spin rate is 90 revolutions per second. It is generally believed that millisecond pulsars are old, and have been ‘speeded up’ by interactions with a companion star. This is only the second millisecond pulsar to be found in a globular cluster; I will have more to say about it in a future article.

Plans for the launch of the Russian Mars probe are well under way, and if all goes well the vehicle will be sent up during the coming summer. It is intended to explore not only Mars itself, but also the larger of the two dwarf moons, Phobos, which is below 20 miles in diameter, and is a dark, irregularly-shaped rock object. The ‘descent module’ will land on Phobos, attaching itself by a harpoon-like device; the ‘frog’ will literally hop around the surface of the tiny satellite. Of course, Phobos has a very weak gravitational pull, so that ‘landing’ there is really more in the nature of a docking operation.

Another satellite which will be very much in the news in 1989, if not 1988, is Triton, the senior attendant of Neptune. It is larger than our Moon, and, like Titan in Saturn’s system, is believed to have a substantial atmosphere. Two American astronomers, M. Delitsky and W. Reid, now suggests that the surface may be partly covered with a sea of intensely cold liquid nitrogen and methane, on which floats a ‘scum’ of organic compounds. They even say that when Voyager 2 by-passes the satellite, in August next year, it will show ‘plains of white and coloured organic deposits and, maybe, the glist of a distant Sun reflected off a calm nitrogen sea’. We must wait and see, but in some ways Triton may prove even more interesting than Neptune itself.

On the debit side, we greatly regret to report the death of one of Britain’s most distinguished astronomers, Dr. D.H. Sadler of the Royal Greenwich Observatory and a Past President of the Royal Astronomical Society. Dr. Sadler was particularly well known for his work in the Nautical Almanac office.

The Sky This Month

As 1988 opens, both the two brightest planets are in the evening sky, and make a brave showing. Pride of place must go to Venus, which by the end of the month does not set until three hours after the Sun. Its magnitude is —4, so that it far outshines any other object in the sky apart from the Sun and the Moon. Yet lovely though it is as seen with the naked eye, Venus must be regarded as a telescopic disappointment; no telescope will show anything but occasional vague, cloudy markings, simply because all we are seeing is the upper part of the atmosphere. Below, we have found Venus to be a veritable inferno, and even the shining clouds contain large amounts of sulphuric acid. During January the phase decreases from 82 per cent to 77 per cent; not until March will the planet reach ‘dichotomy’, and appear as a half-disk.

Jupiter, magnitude — 2.4, is in Pisces, and is visible all through the early part of the night. Telescopically it is more rewarding than Venus; look for its cloud belts, its bright zones, and its four main satellites. The Great Red Spot (now known to be a whirling storm) has not been in evidence lately, but no doubt it will soon become prominent once more.

Saturn is emerging into the dawn sky, and Mercury is an evening object; it may be glimpsed low down in the south-west at the end of the month, just after sunset. Telescopes will show it as a crescent, but no surface details will be seen. Of the other planets, Uranus and Neptune are out of view, but Mars can be observed in the south-east before sunrise. Its magnitude is + 1.5, and its apparent diameter is less than 5 seconds of arc, so that telescopes will show little, but Mars is worth finding, because it is not far from the first-magnitude star Antares in Scorpius. It is easy to confuse the two, though Antares is lower down and is, at present, half a magnitude brighter. Of course Antares is a red star — its name means the rival of Ares’ or Mars. It is sobering to reflect that while Mars has only half the diameter of the Earth, Antares is big enough to swallow up the whole orbit of the Earth round the Sun.

The Moon is full on January 4, and new on the 19th. The only major meteor shower this month is that of the Quadrantids, with its maximum on the 3rd; it is usually of brief duration, and this month the Moon will interfere. Bradfield’s Comet is now fading, but telescopically it will remain observable for some time.

Of course the evening sky is dominated by Orion, with its two brilliant leaders (Betelgeux and Rigel), its Belt, and its Sword. Lower down, and further east, is Sirius, the brightest star in the sky, of magnitude — 1.5. Sirius is pure white, but seems to flash various colours because of the effects of the Earth’s atmosphere. Capella, in Auriga, is almost overhead, by it you can see the little triangle of stars nicknamed the ‘Kids’, of which one member (Epsilon Aurigae, at the apex of the triangle) is a remarkable eclipsing binary, made up of a yellow super-giant together with an invisible companion which passes in front of the supergiant once every 27 years. The Square of Pegasus is setting in the west; Ursa Major, the Great Bear, is rather low in the north-east. Leo, the Lion, is coming into view over the eastern horizon.
MIRA CETI

This month the most famous variable star in the sky, Mira Ceti, should be an easy naked-eye object. It lies not far from the 'head' of Cetus, the Whale, and is on view in the south-west after dark.

Mira was the first variable star to be discovered. It was seen in 1596 by the Dutch observer Fabricius, but subsequently it was 'lost'. It was seen again by Johann Bayer in 1603, but again little notice was taken of it, and it was not until 1638 that Phocylides Holward realized that it is a genuine variable. The mean period is 332 days, but this is not constant, like all stars of its type — now known universally as 'Mira variables' — both the amplitudes and the period show changes from one cycle to another. There is none of the regularity of the short-period Cepheid variables.

Mira is the closest of the variables of its type; the distance has been given as 95 light-years. (This is according to the authoritative Cambridge catalogue; other sources give it as rather more distant.) At maximum, the luminosity is 130 times that of the Sun. By stellar standards this is not very powerful; Betelgeux in Orion — also variable, but of different type — could match 15,000 Suns.

At its peak Mira may rise to magnitude 1.7, brighter than the Pole Star, but admittedly this does not happen often, and in most years the magnitude does not rise above 3. The 1987 maximum was fairly bright — I gave it as magnitude 2.3 — but whether 1988 will come up to expectations remains to be seen. In any case Mira will be easy to identify, because of its strong red colour. Its spectrum is of type M, which means that its surface temperature is only about 3000 degrees Centigrade — half that of the Sun.

Mira has a faint companion, known either as Mira B or as VZ Ceti. Its usual magnitude is 12, though it shows occasional short-lived flares up to magnitude 8. It may well be a white dwarf, but this month it will not be easy to see, because it is less than a second of arc away from the bright star (the actual separation is 0.8) and will be 'drowned' in the glare.

It is interesting to follow Mira throughout its cycle, though of course it is out of view for some time during the summer when it is too close to the Sun in the sky. My advice is to locate it now, when it is an unmistakable naked-eye object, and memorize the binocular and telescopic fields, so that you can find it again when it has dropped below naked-eye visibility. Binoculars will enable you to follow it for some time, but at minimum the magnitude falls to 10, so that a telescope will be needed.

Mira is only one of many red long-period variables, but it has a special place in the history of astronomy, and it is not surprising that its name means "Wonderful".

Astronomy Now

Number 7

February 1988

Articles in an advanced state of preparation:

THE AURORA by Neil Bone
A HUNDRED YEARS OF ASTRONOMY BOOKS: The Top Ten by David Hughes
ALPHA CENTAURI: The Sun's Nearest Neighbour by Ken Crosswell
COLOUR PHOTOGRAPHY WITH A SCHMIDT CAMERA by Terence Tempest

plus a host of regular features including:

The Night Sky
Sky Watch Down Under
Picture Gallery
Foreign News
News Update
Society News
Your Views
Book Reviews

Also, the ever-popular Newcomers' Guide for beginners to astronomy

ON SALE at all good newsagents — Price £1.25
(also available on subscription)

ISSUE NUMBER 7 ON SALE TUESDAY JANUARY 26th

Ministerial involvement with IT may be unpredictable (see Leading Edge).
The circuit diagram for the transmitter appears in Fig. 7, with the receiver circuit being shown separately in Fig. 8.

A standard 555 oscillator forms the basis of the transmitter. VR1 is adjusted for the output frequency that gives optimum sensitivity. The timing resistors have been given values that provide a roughly squarewave output. Due to the frequency selective nature of the receiver circuit, short pulsed waveforms tend to be ineffective and a more or less squarewave signal gives better results.

High output currents are not required in this application, and IC1 can therefore directly drive the infra-red led via current limiting resistor R3. The LD274 specified for the D1 position is a narrow angle type which is well suited to a short range application such as this. A wider angle type such as an LD271 will work in the circuit, but the wider beam results in a signal of lower intensity.

Turning our attention to Fig. 8, D1 is the detector diode. It is a large area type which is used here in the reverse bias mode. The pulses of infra-red radiation from the transmitter cause increased leakage current through D1, and the resultant pulses at its cathode are coupled to the input of the buffer amplifier via C2. D1 is a type which has a built-in infra-red filter, and it is not affected significantly by visible light.

The buffer amplifier is an ordinary operational amplifier voltage follower which drives a simple operational amplifier bandpass filter based on IC2. The latter has a Q of just under 5, a voltage gain of about 34dB, and a centre frequency of just over 3kHz. The voltage amplifier is based on TR1, which is operated as a high gain common emitter amplifier. Together with IC2 it provides approximately 80dB of voltage gain, and gives the unit good sensitivity. A simple two diode rectifier processes the output from TR1, and the smoothed signal is fed to the input of a conventional operational amplifier Schmitt Trigger built around IC3. R14 provides a moderate amount of hysteresis which reduces the risk of spurious pulses being generated.

As this circuit has a fairly high level of gain, the component layout needs to be designed reasonably carefully so that any obvious paths for stray feedback are avoided. The only adjustment required to the finished unit is to be set VR1 in the transmitter for maximum range. The easiest way of doing this is to monitor the output level from IC2 at the receiver.
using an oscilloscope or a.c. millivolt meter. With the transmitter switched on and aimed towards D1 at the receiver, VR1 is then adjusted for maximum output from IC2. If IC2 becomes driven to the point where the output signal becomes clipped, increase the distance from the transmitter to the receiver in order to reduce the signal level. In the absence of suitable test gear, it is just a matter of trying VR1 at various settings in an attempt to find one that gives good results.

The unit works well at ranges of up to about 3 meters in free air, but the range is obviously reduced somewhat by the inclusion of glass or other partial obstructions placed in the beam from the transmitter. In practice a range of around half a metre should be satisfactory, and even allowing for factors that reduce the practical operating range, the system should be more than adequate in this respect. In some cases the range might be much more than is really needed. It is then advisable to reduce the gain of the receiver slightly as this improves the security of the system. The receiver's gain can be reduced by adding a resistor in the emitter circuit of TR1. The higher the value of this resistor, the lower the sensitivity of the receiver (a value of about 100 ohms should do).

Many of the circuits provided in this article use a relay. I have not specified a particular type, but in each case any type that meets the following criteria should suffice:

1. It must operate reliably at slightly less than the nominal supply voltage.
2. The coil resistance should be about 185 ohms or more.
3. It must have contacts of the appropriate type and adequate rating for your particular application.
4. Not essential, but construction is generally easier using a modern miniature printed circuit mounting type.

DEVELOPMENTS

These circuits should serve to give you a good idea of the variety possible with electronic locks. They also make a good starting point for anyone who would like to experiment with this type of thing. All the circuits could be improved upon, and you may well be able to come up with a few novel designs of your own. A useful addition to units of this type is some form of tamper alarm. This sounds an alarm and (or) holds the lock in the off state for a period of time in the event of an incorrect "key" being connected to the circuit. With the infra-red beam it would be impossible to detect an infra-red beam at the wrong pulse frequency and sounded an alarm and (or) provided a hold-off. It would also be possible to have a coded signal modulated onto the infra-red beam. This could use the same basic circuit as the infra-red joystick design featured in a previous issue of the same (June 1986), or some remote control integrated circuits which permit quite complex coding of information onto the output signal.

When designing electronic locks try not to get carried away with over-complex ideas. To be practical the system must not be so expensive that it costs more than the property it is protecting. It must also be convenient in use, and should not require a suitcase full of electronics to activate to lock. It must also be reliable. It is very easy to design systems that quite often fail to operate when the correct "key" is used. Do not make the classical mistake of having highly sophisticated locks that are easily bypassed simply by undoing a few screws, or leaning hard on a door or window. Good locks should be used in addition to secure windows and doors, and preferably backed up by at least a basic alarm system. Where electronic locks can probably be used most effectively is with electronic equipment that must not be operated by unauthorised users. For instance, with computers that are used to store sensitive information, or radio transmitters.

Your local police station will always be happy to offer advice on the best way to secure your property. Ed.
I/O CONNECTIONS
* Powerful Enhanced Basic Interpreter,
* On Board EPROM Programmer,
* Program Development from a VDU,
* 32K Bytes of CMOS Static RAM,
* 32K Bytes of CMOS EPROM (expandable to 56K Bytes),
* Two RS232 Ports,
* Single Unregulated Supply Requirements,
* Small Physical Size (80 by 100mm),
* Expansion with range of Compatible Circuit Boards.

KIT including all components, full instructions and operating manual—£129
Manufactured and Fully Tested Circuit Board — £244.

"All prices exclude VAT.
Packaging and Postage FREE (UK only).
Overseas P&P : — Europe £2.75
Elsewhere £6.50."

For full details please contact
ELTRAK electronics ltd
MONIFIETH BUSINESS CENTRE
DUNDEE DDS 4P1 Telephone: 0382 534944

FEATURES INCLUDE

Oscilloscopes
Telequipment O/R3 Dual Trace 50MHz. Delay Sweep. Large Tube... £150
Telequipment O/R1 Dual Trace 100MHz. With Manual... £165
S.E. Labs SM111T 1 Dual Trace 18MHz. Solid State Portable AC or External DC operation & 8 x 10cm display with Manual... £150
Telequipment O/DL Dual Trace 15MHz. With Manual... £130
Telequipment O/S4A. Single Trace 10MHz. Solid State. With Manual... £90
Gould/Anaximande 65295 Dual Trace 15MHz. With Manual... £140
Hameg 202 Single Trace 10MHz. 5 x 5cm... £80

Power Supplies
Avco & P&P £2.75 (overseas P&P £7)

Power Supply FREE (UK only).

"All prices exclude VAT.
Packaging and Postage FREE (UK only).
Overseas P&P : — Europe £2.75
Elsewhere £6.50."

For full details please contact
ELTRAK electronics ltd
MONIFIETH BUSINESS CENTRE
DUNDEE DDS 4P1 Telephone: 0382 534944

OSCILLOSCOPES
Telequipment O/R3 Dual Trace 50MHz. Delay Sweep. Large Tube... £150
Telequipment O/R1 Dual Trace 100MHz. With Manual... £165
S.E. Labs SM111T 1 Dual Trace 18MHz. Solid State Portable AC or External DC operation & 8 x 10cm display with Manual... £150
Telequipment O/DL Dual Trace 15MHz. With Manual... £130
Telequipment O/S4A. Single Trace 10MHz. Solid State. With Manual... £90
Gould/Anaximande 65295 Dual Trace 15MHz. With Manual... £140
Hameg 202 Single Trace 10MHz. 5 x 5cm... £80

Power Supplies
Avco & P&P £2.75 (overseas P&P £7)

Power Supply FREE (UK only).

"All prices exclude VAT.
Packaging and Postage FREE (UK only).
Overseas P&P : — Europe £2.75
Elsewhere £6.50."

For full details please contact
ELTRAK electronics ltd
MONIFIETH BUSINESS CENTRE
DUNDEE DDS 4P1 Telephone: 0382 534944

COMPUTER ENGINEERING
THE FIRST STEP

If you are aged between 18 and 24 and would like to take up an exciting, rewarding and challenging career in Computer Field Engineering then read on...

We have vacancies for Trainee Computer Engineers at BIRMINGHAM, BISHOP'S STORTFORD, BRISTOL, EPSOM, EXETER, FELTHAM, LONDON.

Come and join us on an established training programme which will provide you with a mixture of practical and theoretical training to ensure that you are well equipped and on the way towards a successful career with CFM.

You must have 'O' levels in Mathematics, Physics and English, possess appropriate qualifications at 'A' level or equivalent and have a valid driving licence.

You will be required to take part in a rigorous selection procedure which will test your aptitude and ability for this unique opportunity to join the United Kingdom's leading independent Computer Maintenance Company.

Please write, giving brief details of your qualifications and experience to:
Sally Callaghan,
Computer Field Maintenance Ltd.,
Trust Industrial Estate,
Wilbury Way,
Hitchin,
Herts SG4 0UZ.
The TL081 has proved itself as a robust and reliable op amp for control applications, directly replacing standard op amps such as the 741. The mixer has two feedback paths, one of which is non-linear and only takes effect within predefined limits.

The first dc servo-amplifier design is called the Billingsley amplifier, after Dr John Billingsley, Professor of Robotics at Portsmouth (more famous among electronics and computer buffs as the father of Micromaze and now, Robot Ping Pong).

Unlike more conventional “push pull” amplifiers, this design has four separate simple voltage supplies. Current supply to the dc motor in a forward or reverse direction is usually achieved with a single power supply. In the Billingsley amplifier, current is applied by four separate high impedance output stages. The design is highly efficient and largely overcomes the problems of crossover distortion and wasted power common in conventional servo motor power amplifiers.

The block diagram of the mixer circuit is shown in Fig.1. The feedback signal is split into two paths, both providing negative feedback. The inner loop is a simple linear feedback loop, but the outer loop is non-linear. The gain and range within which the non-linear circuit takes effect is preset by the selection of suitable resistors and voltages. For most applications the outer loop would be “loose” (low gain), allowing high speed. The inner loop can be high gain, providing “tight” control within the limits.

The demand input to the mixer is an analogue voltage. If powered from a computer or microprocessor, the signal would be derived from a d/a circuit. The tacho signal is optional and is only used when a speed/voltage signal is available. Tacho signals can be simple to produce with the help of modern chips and specific circuits will not be discussed here.

The tacho input is mixed with the demand input and fed to the TL081. This is connected as a standard mixer using the negative input.

DC MOTOR SERVO

BY DAVID SANDERS

TWO MODULES GO A LONG WAY

Our author describes two tried and tested stages which can be built into a variety of servo and robotic systems: a non-linear mixer circuit, and a dc servo amplifier with four separate selectable voltage supplies.

David Sanders is at the Portsmouth Polytechnic.
The circuit diagram of the mixer is shown in Fig. 2. R23 and R24 define the gain of the demand input, in this case:

\[\text{Demand} = \frac{R24}{R23} = \frac{43}{1.8} = 24. \]

The tacho signal is separated into two paths. One path is high gain, for low velocities close to the demanded position and consists of the four diodes D3-D8 and resistors R25-R27. This inner loop only takes effect when the tacho-feedback signal is within the two supplies at A and B, in this case +/-10 volts.

A current flows from supply A to supply B. When the tacho input is zero, the current flows through D5 and D7, and half through D6 and D8. As the tacho input moves away from zero, say positive, the amount of current through D5 and R25 reduces and current through D7 and R27 increases. Thus, the voltage applied to the op-amp tends to increase in sympathy. The effect within the range is that the output to IC1 is via R26.

The high gain circuit only takes effect within the limits of A and B, since when the tacho input is outside this range, say positive, no current can flow through D5, which is reverse biased and the voltage across is constant. So R26 and R24 define the inner loop gain, in this case:

\[\text{Loop gain} = \frac{425.6}{5.6} = 78. \]

A second path with a low gain for higher velocities where control is not so important, consists of a simple resistor, R28. A capacitor, C1, is included to remove noise from the feedback signal. R28 and R24 define the outer loop gain, in this case:

\[\text{Loop gain} = \frac{43}{56} = 0.78. \]

The setting of these gains depends on the amplitude of the feedback signal in your particular application and may require modification.

Resistor R29 and variable resistor VR1 adjust the output of IC1 to zero for a zero input.

AMPLIFIER DESIGN

For rapid speed and fast responses, the amplifier must be capable of delivering a substantial current. In this novel design, large demand voltage signals may have current supplied from a higher voltage positive or negative supply. (Fig. 3). This would occur at high speed or for torques associated with large changes of force. (Fig. 4).

The amplifier circuits of the conventional twin supply output stage are configured to have a low output impedance and are liable to excessive common current if both are simultaneously driven into conduction.

This transition characteristic is crucial in traditional amplifier design. Basic design provides for a 'dead band' in which no conduction occurs. Crossover distortion is then present in the output wave-forms.

The control circuits of the Billingsley amplifier are configured to have a high output impedance, giving an output current which during the conducting phase of each circuit varies linearly with the applied demand signal. These outputs may be safely connected without fear. The lower voltage circuits are biased so that over a central range of input control signal both circuits conduct. Outside the range, one or other circuit will be cut off. (Fig. 5). Within the range, the rate of change of output current with respect to the input signal will be twice that outside the range and neither dead band nor discontinuity of current will occur.

Fig. 3. Amplifier block diagram.

Fig. 4. Graph of torque against armature current.

Fig. 5. Graph of output versus input voltages.

AMPLIFIER CIRCUIT

A block diagram of the circuit is shown in Fig. 3. The four circuits are configured so that the higher voltage amplifiers will only conduct once the opposing low voltage amplifier has turned off. The amplifier circuit diagram is shown in Fig. 6.

Two pairs of transistors control the four Darlington pair driver circuits. These are shown as TR1/TR2 and TR3/TR4 in the diagram. These pairs of transistors are configured so that neither pair can have both transistors conducting simultaneously. In the circuit shown, a change of input voltage at the emitters of about 1.4 volts is necessary to change from one state of conduction to the other.

Resistors R7 and R8 apply a bias voltage to the bases of TR1 and TR2. Similarly R9 and R10 bias TR3 and TR4. The resistors are set so that the low voltage drivers each conduct a moderate current, for instance 0.5 amps. The grounded base configuration of TR1, TR2 and TR3, TR4 causes the change in input voltage at the junction of R1 and R2 to result in a proportional change in the voltages across R11, R12, R13 and R14. If, as in this case, these resistors are selected to be equal in value, then the voltage changes are equal.

If the input voltage is steadily increased from zero then TR2 will
increase its collector output while driver TR3 will decrease, in this example cutting off at an input of 0.25 volts. Thus, TR3, the transistor controlling the +10 volt supply, switches off completely before TR4, controlling the −40 volt supply, can begin to conduct. TR1 and TR2 operate in a similar manner. As the input voltage continues to increase, the output of TR2 continues to increase. Only when the input is in excess of approximately 3 volts will TR4 and the −40 volts supply begin to conduct.

CURRENT CONTROL

The four circuits for current control are formed by transistors TR5 to TR12 with their associated resistors. These circuits operate slightly differently, but are similar and only TR5 and TR6 will be considered.

TR5 and TR6 are connected as a Darlington pair, giving very high current gain. Resistor R15 carries a voltage proportional to the current supplied by its associated transistors. This voltage has a feedback effect, so that to a first approximation a voltage increase on the base of TR5 will result in an equal increase in the voltage across R15, and hence a corresponding output current. If, for example, the value of R15 or R18 is 0.5 ohms, a gain of 2 output amperes per input volt is obtained. In a similar manner, the other three circuits supply current to the load from +40, +10, −10 and −40 volts respectively.

Diodes D2 and D3 protect the lower voltage drivers from being reverse loaded and diodes D1 and D4 protect the output transistors TR6 and TR12 from the large reverse voltages which can be produced in the load.

CONSTRUCTION

The mixer and low power section of the servo amplifier need to be as close as possible to avoid noise in the low voltage connection, and in this case are mounted on pcb. (Fig.7).

The four high current circuits need to be constructed on a heatsink, and so that each transistor of each Darlington pair is close together. A typical layout is
the other as shown in photo 3. Providing
the circuits are mounted +, +, +, with
the low power circuits on the outside for
safety, no problems should arise from
overheating.

Finally
Once the decisions have been made for
the fixed power supplies and resistor
values, only VR1 needs adjustment to
give a zero output for zero input.
The only likely problems with these
circuits will be in the earth connections
care must be taken when wiring the
system not to create an earth loop. All
the circuits should have one earth
connection to the same point, including
the motor and supply circuits. Any
connection to a d/a circuit or computer
should have the earth connection from
the mixer circuit supply.
Motors are noisy things and any noise
in the circuit from this source must be
accepted. Any attempt to filter this noise
will reduce circuit performance and
possibly cause oscillation. If oscillation
in the circuit is very bad, start by
reducing your tacho feedback loop gains
by amending R26.
The circuits are proving themselves as
good work horses at Portsmouth
Polytechnic and photo 1 shows the dc
amplifiers powering a prototype robot
base developed for Micro Robotic
Systems in the Electrical Engineering
Department. The circuits have now been
used for over a year with little problem.
I wish you the same success with your
systems.
6V 16 Ah Sealed Batteries
A sealed, maintenance-free, lead acid gel battery, the EP160 is manufactured by Elpow and delivers a massive 6V 16Ah capacity from a package measuring only 140 x 70 x 210mm. Useful for many stand-by or portable applications, the EP160 is also ideal for deep cycle use and is chargeable from a constant voltage source.

BRAND NEW
£15 P+P
£20

SIEMENS V3014 300 WATT OPEN FRAME SWITCHMODE
A high reliability multisupply carrying UL and CSA approvals. Built on a rugged aluminium chassis the V3014 accepts 110 or 230Vac input and delivers five outputs:

- 5V/35A
- 12V/3A
- 24V/3.2A
- -12V/0.2A

All units burn in and tested
OFFERED BRAND NEW & boxed
Overall size 390 x 225 x 57mm

REDUCED TO CLEAR only
£30 + VAT & P+P

SUPER SAVINGS ON SWITCHMODES

DC-DC Converters
Measuring only 65 x 70 x 20mm the GSR407 converter delivers 7 Volts at 4 Amps from an input range of 9-48V, making it ideal for mobile battery applications. Enabling an efficiency of 75% and the unit is protected against short circuit and over-temperature. Simple to use, the GSR407 is supplied with data sheet, and full application information.

BRAND NEW
£10

Price Breakthrough!

68000 Processors
The Signetics SC80800 C8004 is an 8MHz 68000 cpu in a 64 pin Ceramic DIL package. Due to its advanced design features the 6800 has become an industry standard in thousands of hit processing. A scope purchase enables us to offer this popular device at the unbelievable price of

MASSIVE STOCKS
MUST BE CLEARED
£5 P+P
£10

BSC DIX INTERFACE leads, 34 way speed/sense socket to 34 way SOCKET. Available in simple or twin cord configurations

SINGLE DRIVE £1.50 TWIN DRIVE £2.50

(UM 165Q) modulation : High quality BIF modulators for interface of computer and video 75 Ohm systems to TV sets.

Data entry units...

BARGAIN PRICE £4.00

SEMI 16141 300 WATT OPEN FRAME SWITCHMODE

EASY POWER

Price

ELMA INSTRUMENTS - Supplies - In kit form, these attractive and easy to assemble enclosures are finished in Pacific Blue and will accept either Eurocards or modular components.

Size 317 x 140 x 210mm ONLY
£10.00

NEC MCR200D 340 Locat Controller Module 4000 Eos SBC

£9.00

LUTTHRED CELLS, Matsushita 2R35, 5V, 3x 3mm
£1.50

£30 + VAT & P+P

DECEMBER SPECIAL OFFERS

Switchmode Power Supplies

COULC MCS-30, 5V at 20A
£30.00

COULC MCS-60, 5V at 40A
£45.00

COULC MMGC-3, 5V at 5A
£19.00

VM5800, 5V at 12A, 16V at 12A - 5V at 12A - 12V at 12A
€25.00

VM5800, 5V at 12A, 16V at 12A - 5V at 12A - 12V at 12A
£20.00

VM5260, 5V at 6A, 12V at 3A - 5V at 1A - 12V at 1A
£15.00

Supplied new box & boxed with data sheet
£25.00

LABO SVC 19, 5V at 1A, ±15V at 1A. Brand new miniature FET switch.

LAMO 110 x 80 x 30mm. Only
£15.00

FARNELL N200, 5V at 30A, ±12V at 5A. Few only
£25.00

Other switches always in stock. Please phone for sales or technical information on our wide range.

FARNELL G30, 5V at 5A or 12V at 5A, two versions
£30.00

Linear Power Supplies

ELPAC SOL 30, 5V at 1A Open frame supply.

£15.00

PRO-LINEC MCS-5, 5V at 5A
£30.00

ADVANCE PMG-5, 5V at 10A
£25.00

ADVANCE PMDG15, ±5V at 1A
£25.00

ADVANCE PM4A, Variable 0-30V at 1A
£20.00

COUPLANT ESM19, 5V at 1A, ±15V at 1A, 12V at 2A
£15.00

£35.00

Motors

SANYO 105-006-2 Stepper. 2 Phase 4 pole 6V 3A
£10.00

SHINON PMAP5005 Stepper. 1 Phase 4 pole 5V 1A 1.3A
£18.00

PHILLIPS CONTROLS BE235 Stepper. 2 Phase 4 pole.
£10.00

14Vac Step Angle 7.5 Deg 27.5 Ohm Coil
£10.00

MAXON M40 6012 12V permanent Motor - regulator £3.00

BERGER-LAKEN RDM 50 10V 12 Volt Stepper Motors.

£9.00

Custom fabricated 300ma/120 per winding brand new stock only.

MOORE and REED LM7515S 11V 4phase Stepper with Parker 106 Backlash gearbox. Brand new
£10.00

DC and AC motors always in stock.

BARGAINS - Express delivery of non-stocked prototype boards at affordable prices.

Budget Series - 100 Tie Points - £1.20. 200 Tie Points - £5.00. 400 Tie Points - £8.50.

Pre-93 LAM 600 Points - £4.00. 630 Tie Points - £7.50. 1400 Tie Points - £13.50.

Panel METERS 600mm x 15mm. Cutout 300mm. Attractive Black/Clear plastic construction.

Available 50A, 100A, 150A, 250A, 630A, 1000A. Brand new and boxed. Only £6.00 each.

DRELS - PCB Dul 10 Volt Pin Chuck type - £6.95. 16mm adjust chuck - £3.25.

MAINS DRILLS - high power 4mm chuck - £14.75. Drill kit - 12 volt drill - kits £35.00.

FREE Magnets - 12 Volt Kit Fier 1968 output Small £9.50, Large £11.95, Ideal Car Alarma, etc

FERRIC CHLORIDE - Circuit etch Grandals. Approx 250g. Only £1.00 bag

We also buy good working TEST EQUIPMENT, POWER SUPPLIES, COMPUTER PERIPHERALS and other hardware.

NEW LINES

DIE CAST BOXES. Now available, a range of typical Aluminium die cast enclosures in standard, and some non standard sizes. Ex-stock at highly competitive prices.

ABS PLASTIC INSTRUMENT CASES. Featuring brushed all front and rear panels and front metal cover ABS construction, these two part enclosures give any project a professional appearance. Available in Pacific Blue and Pale Jasmine.

DIE CAST BOXES - 6x 8 x 35mm x 11 x 12 x 68mm £3.90

BY VAIL 35 x 127 x 66mm £4.35

BY VAIL 339 x 133 x 51mm £4.35

BY VAIL 306 x 178 x 60mm £3.35

Terms of business Cheque/PDO with order. Mail Order - details for paid charges are for order.

Callers Welcome. Shop Hours: 9.00-5.30pm. 6 days a week.

£15.00 + VAT to ALL PRICES

Fuselodge Ltd
267 ACTON LANE
CHISWICK, LONDON W4 5DD
Telephone: 01-994 6275

£6.00

£10.00

£10.00

£3.90

£4.35

£3.35

£10.00

£10.00

£3.90

£4.35

£3.35

£10.00
Zenith Electronics

KIT-MODULES-HARDWARE

EXTENDED OFFER: 10 Channel variable speed running light Kit, driver LEDs or Main lamps – plus 2-FREE LED display boards and LED lamps.

- High quality touch dimmer 50W R/Built — £12.99
- Selectable Tone Generator 9/12 volt — £5.50
- 3 Note Electronic Door Chime unit; 9 volt operation, 3 melodious tones; variable frequency. Kit — £9.83
- Miniature FM Transmitter, 50-160MHz. Kit/R/Built — £6.95
- 3 Watt FM Transmitter, 80-108MHz. Kit/R/Built — £18.99
- 300 Watt Light Dimmer unit for 240 volt mains lights. Kit — £6.95
- 4 Code Digital Code unit plus Key Pad—select own code; 9 volt. Kit — £15.95
- 5-100 Watt Electronic Loudspeaker Overload Protector. adjustable. Kit — £11.11
- VU Meter 10 LED indicator; +5 to +12dB range. Kit — £12.59
- Automatic light controller; automatically turns on and off lights at pre-set times and triggered by darkness. Kit — £25.08
- Mains Wiring and Metal Detector. R/Built — £11.00
- Zenith Speech Processor P-202 R/Built — £25.00
- 18 Watt Car/Home Portable Amp. 12V. Kit — £13.23
- Amplifier Power Meter; 10 LED indicator from 0-25-100 Watt Input—9 volt operation. Kit — £9.52
- Light sensitive relay unit; variable sensitivity trigger control, seases light or dark—selectable. Kit — £8.45

ALL KITS CONTAIN FULL INSTRUCTIONS, P.C.B.s AND COMPONENTS.

PRICES INCLUDE VAT & POSTAGE & PACKING.

OVERSEAS ORDERS – ADD 1% TO ABOVE PRICES.

PLEASE SEND CHEQUE OR POSTAL ORDERS WITH ORDER.

PRACTICAL ELECTRONICS FEBRUARY 1988

TEL 01-471 9338

Specialised Supplier of Digital Integrated Circuits

TEL 01-471 9338

FREE Data Pack

The inevitable price of financial speculation is a market collapse. The ultimate victim is manufacturing — the process by which real wealth is created. Big firms are amalgamating in the struggle to survive.

MARKET AND OWNERSHIP CHANGES

If anything were needed to illustrate my remarks in August 1987 about the domination of use value by exchange value, you wouldn't find a much better example than the world-wide stock market crash in October. All electronics firms listed on the Stock Exchange were affected. Take Racal Electronics, for example. Between 16th and 28th October this enterprising company did nothing to worsen its own trading position and prospects. If anything, with the Racal-Vodafone cellular radio business pulling in more subscribers than expected, the company was on an upward swing from the low point it had experienced in 1986. Yet between those two dates — less than a fortnight — the capital value of Racal Electronics, as judged by the share market, fell by as much as 40% (the share price dropping from 330p to 198p).

This was patently absurd. In less than two weeks the use value of all Racal's products and services, its factories and capital equipment, couldn't possibly have changed so drastically. The exchange value of the company's shares was clearly way out of touch with reality. Either the initial valuation was unrealistically high or the later price was unrealistically low. Perhaps by the time this report appears some degree of stability will have emerged.

How can such a crazy situation occur? Because the people who buy and sell the company's shares, whether solid investors like pension funds and insurance firms or opportunists out for quick buck, simply do not understand the electronics business carried on by the company and its relationship to the world at large. In fact these people are not interested and don't care. When they see share prices going down generally for some external reason, they simply follow the herd and sell their shares in the company to recover their money, quite regardless of any sensible assessment of the company's true worth. Lack-

ing knowledge, they are guided by nothing more reliable than the primitive emotion of fear.

When this process is repeated many times with numerous companies and investors, all looking over their shoulders at each other, it becomes a self-maintaining panic. And nowadays such a drop in share prices is accelerated electronically by worldwide data communications and programmed trading based on computers. Chancellor of the Exchequer Nigel Lawson was driven to comment to members of the Stock Exchange: “The electronic automation and globalisation of the herd instinct is not a pretty sight.”

If the industry could simply sit tight and ignore such wild swings in its share prices everything would be fine. But unfortunately a drop in market value not only has a bad psychological effect but also reduces a firm's ability to raise money for capital investment and increases its vulnerability to a hostile take-over.

Talking of which, just before the stock market collapse Racal was reported to be considering a take-over of Ferranti. If this rumour were true it wouldn't be at all surprising, as Racal has conducted a consistent policy of expansion by acquisition over the years. It has purchased a whole series of small and medium-sized companies, including such well known names as Chubb, Decca Navigator and Dana Instruments. But so far it has failed to swallow up any of its major competitors in general electronics and communications.

Meanwhile, in other parts of the playground or jungle (according to your point of view) there have been some quite substantial shifts in the pattern of ownership. Not only Racal but STC as well was said to be considering a take-over bid for Ferranti. In the event, Ferranti itself took over the American company International Signal and Control and thus made itself even bigger in the field of military electronics manufacturing. As a result of this merger the combined companies had a capital value of some £1 billion before the stock market collapse, with annual pre-tax profits of about £100 million. Thus it seemed that Ferranti thwarted any possible take-over by making itself too big and expensive to be swallowed by the likes of Racal or STC.

Although STC was founded in Britain in 1937 as a joint-venture company it was virtually under the control of the American giant ITT, which held a majority shareholding. In recent years, however, ITT has reduced its stake to only 24% so that STC has become predominantly British again. But now this remaining 24% has been bought by the Canadian firm Northern Telecom, which has also added a further 3.8% by purchasing STC shares on the stock market.

A positive development for Plessey has been an agreement between it and GEC to merge their telecommunications equipment manufacturing activities in a new, joint-venture telecoms company. By the time this report appears the new firm may well be in business. You may recall that in early 1986 I reported on GEC's attempt to take over Plessey with an offer of £1.18 billion. The reason given by GEC was that they wanted to make themselves bigger in telecoms manufacturing in order to compete better in world markets. At the time GEC was 11th in the international telecoms league table and Plessey about 14th. As things turned out, the Government banned the proposed takeover on the advice of the Mono-poies and Mergers Commission. How-ever, although Plessey had rejected the GEC bid, they did say at the time that they would be willing to co-operate with GEC solely on the manufacture and marketing of telecommunications switching equipment — notably System X. This proposal now seems to have come to fruition. It will give the UK a stronger foothold in the world telecommunications market, though the new company will still be only the eighth largest manufacturer in this field.
PC CASINGS
OEMs/TRADE WELCOME

SOFTMACHINE DISTRIBUTION LTD
UNIT F25, HARBET ROAD, EDMONTON
LONDON, ENGLAND, U.K. N18 3LR
NEW TLX: 9312100158 – TD G

Office Hours: 10.00am–6.00pm

ATTENTION

Component buyers: Service engineers
Manufacturers: Project designers
Also hobbyists

SAVE TIME! SAVE MONEY!

We offer one of the largest ranges of semiconductor and passive components at low low prices! Also we are able to supply types from any major manufacturers

SO RING 01-965 5748

Next time you require components whatever the quantity you will be amazed at our service and prices!!

PRICE LISTS SENT FREE IF REQUESTED.

OMEGA ELECTRONICS 252A HIGH ST,
LONDON NW10 4TD

BACK NUMBERS, COPIES AND BINDERS

We can usually supply copies of back issue of PE up to three years old. These are £1.50 each including postage £2.00 for overseas readers).
If we no longer have the issue needed, we will be pleased to send a photocopy of the article for the project that you want to build. These are £1.00 each per issue, including postage (£1.50 to overseas readers).

We also have the latest binders available for PE, each holding twelve issues. Embossed in gold with the PE logo, they will make a handsome addition to your technical library as well as keeping your magazines in mint condition. They are available at only £5.95 inc. p&p. (Overseas readers please add £2.)

REMEMBER SUBSCRIBING TO PE AVOIDS FUTURE DISAPPOINTMENT
VISIT THE SUNNY SOUTH COAST
It's worth it to see the biggest display of ELECTRONIC COMPONENTS in the South

FRASER ELECTRONICS
42 ELM GROVE - SOUTHSEA - HANTS
COME AND BROWSE BEFORE YOU BUY
Access Backyard

OMNI ELECTRONICS
stock a wide range of electronic components at
174 Dalkeith Road
Edinburgh EH16 5DX
Tel: 031 667 2611
situated midway between Commonwealth Pool and Cameron Toll

QUALITY HAND TOOLS
Genuine, original Micro-Shar/hand Side Cutters, Pliers, Screwdrivers, Nut Spanners, etc., etc. at Competitive Prices. S.A.E. for listing to: Quinton Tool Supplies, Dept. PE, 52 Graywood Park Road, Birmingham, West Midlands B32 1HE.

SURPLUS/REDUNDANT ELECTRONIC COMPONENTS WANTED
ICs - Tunnels - Transistors - Valves - Diodes etc. any quantity considered - immediate payment.
ADM ELECTRONIC SUPPLIES
Tel: 0827 673311

PRACTICAL ELECTRONICS FEBRUARY 1988

CLASSIFIEDS

COMPLETE TRAINING

2 YEAR
BTEC National Diploma (OND)
ELECTRONICS AND COMMUNICATIONS ENGINEERING
(TEC, TV, Computers, Programming, IT)

1 YEAR
BTEC National Certificate (ONC)
ELECTRONIC EQUIPMENT SERVICING
(VIDE, CCTV)

COMPUTING TECHNOLOGY
(Microprocessors, DataComms, Interfacing)

INFORMATION TECHNOLOGY
(Telecomms, Satellite TV, CD, Networks)

SOFTWARE ENGINEERING
(Assembler, BASIC, Pascal, CADCAM)

COURSES COMMENCE
Monday 25th April 1988

LONDON ELECTRONICS COLLEGE
Dept: AA, 20 Penywern Road,
London SW5 9SU. Tel: 01-373 8721

Special Offer List Feb 1988
Computer grade capacitors with screw terminals
-30000pF 50V 1%, 3.50
39000pF 75V 0.5%, 3.50
47000pF 100V 0.5%, 1.95
33000pF 25V 1%, 1.95
68000pF 15V 1%, 2.07
Serious L0/MW/M WM tuner pre-amp panel with circuit diagram and super-scope setting up procedure etc.
Brand new 5.95, faulty return 1.95
5 digi voltmeter electronic counter 3.95
5 digit co-ordinate resetable counter 1.50
stepping motor 9.50 SA-027 driver chip 0.50
LM324 quad op-amp 2.50
Motor Starter Contacts 1set 440 vac
dc 340Vac 5.50
ac 400Vac 7.50
axial polyester capacitors
660v 440C 200uf 1p 5.00
0.22uf 250v 500p 25.00
0.1uf 250v 100p 50.00
0.047uf 250v 10p 100.00
0.022uf 250v 1p 100.00
0.01uf 250v 0.1p 200.00
0.047uf 250v 0.01p 400.00
0.01uf 250v 0.001p 800.00
0.047uf 250v 0.0001p 800.00

Q U A L I T Y H A N D T O O L S

CIRCUIT BOARDS for your design. Also artwork production from a circuit diagram. Send designs to: Q.E.D., 6 Tottenhoe Road, Dunstable, Bedfordshire LU16 2AG.

MAKE YOUR OWN PCBs the easy way – TEC-200 – used extensively in USA and Europe – now available in UK. Single Sheet (4 x 4) – 9 sheets £30.00, 5 sheets £15.00.

For Printers:
Circuit Boards need 100 off...or just one?
You can send the artwork (1:1, single sided) for your boards or let us work on it, at extra cost, from your own drawings. Enquiries: WATLING WIRES PCB Production, 52 Watling Street, Nuneaton, Warwickshire, CV11 6L0 or Telephone (0304) 829826.
‘Surveillance devices, lasers, testa coils, scanners, ultrasonic and many more, over 150 designs send to Placentia, Old Wharf, Dynson Road, Ledbury WR5 2HS'
READY-MADE
P.C. BOARDS

Simplify your project assembly – use a ready-made printed circuit board. All are fully drilled and roller tinned. Just slot in the components as shown in the project texts, and solder them. PCBs are the professional route to project perfection.

MAIL ORDERING

Select the boards you want, and send your order to
PE PCB SERVICE, PRACTICAL ELECTRONICS,
193 UXBRIDGE ROAD, LONDON W1Z 9RA.

Prices include VAT and postage and packing. Add £2 per board for overseas airmail. Cheques should be crossed and made payable to Intra Press.

Quote the project name and PCB Code Number, and print your name and address in Block Capitals. Do not send any other correspondence with your order.

TELEPHONE ORDERS (OPEN 24 HOURS)

Use your Access card and phone your order to
0268 289923
clearly stating your name and address, card number, and order details.

All orders receive priority attention, but allow 28 days for delivery in case a PCB is temporarily out of stock.

WE CAN ONLY SUPPLY THE PCBs LISTED HERE
CHECK LATEST ISSUE FOR PRICES BEFORE ORDERING

PHOTOCOPIES OF THE TEXTS MAY BE BOUGHT FROM THE
EDITORIAL OFFICE AT £1.00 EACH PART (£1.50 OVER-SEAS), P&P INCLUSIVE.

COMPONENTS ARE AVAILABLE FROM ADVERTISERS.

MAY 86
NOTCHER EFFECTS – unusual harmonics. 107 £5.99
TTL LOGIC CHECKER – for 14 and 16 pin chips 108 £4.59
DP BEACON TIMER – accurate navigation aid. 109 £6.18

JUN 86
GUITAR TRACKER – transforms a guitar for sound synthesis 111 £6.98
THERMOCOUPLE INTERFACE – transforms a DVM into a thermometer. 112 £3.90
BBL LIGHT PEN – inhibiting, enhancing and visual feedback. 114 £3.90

JULY 86
PASSIVE IR DETECTOR – burglar detection 115 £3.90
200MHz COUNTER – professional specification 100D £30.88

SEP 86
FIBRE-OPTIC LINK – computer comm.s. ODE £10.14

OCT 86
DRUM SYNTHESIZER – variable dynamic sound triggered effects 121 £7.67
MAINS DELAY TIMER – selectable 15 to 120 mins. Set of 2 PCBs. 122 £7.92
MAINS DIMMER – touch control up to 400W. 123 £3.90

NOV 86
REMOTE JOYSTICK – infrared computer controller. Set of 2 PCBs. 124 £10.86
BABY ALARM – through-the-mains transmitter. 125 £10.71

DEC 86
VIDEO ENHANCER – manually adjustable video improvement. 126 £8.76

JAN 87
VIDEO FADER – simple inexpensive video mixer 127 £4.50
VOICE SCRAMBLER – confidential trans. 128 £8.06

FEB 87
HI STAB – good variable workshop PSU 132 £8.79

MAR 87
4 CHANNEL ENHANCER – adapts stereo to 4 channels 135 £4.60
LIGHT PEN – uses fibre optics for high accuracy 136 £4.30
PHONE REPEATER – extra bell interface 137 £3.90
ULTRASONIC TAPE MEASURE – resolution to one centimetre 138 £9.50

APR 87
VIGILANTE CAR ALARM – keeps cars alert to intruders 139 £5.90
INDUCTIVE LOOP TRANSCEIVER – remote control for models: 143/144 £7.80

MAY 87
BRIGHT FUZZ – Foot operated overdrive 145 £3.90

JUN 87
AUDIO SIGNAL GENERATOR – uses frequency synthesising techniques 146 £10.20

JUL 87
WORD GENERATOR – produces binary words of up to 16 bits 147 £13.42
SCOPE/STORE oscilloscope add-on data storage 148 £11.94

SEP 87
SPEECH PROCESSOR – clarifies transmitted speech quality 150 £5.86
GCSE TIMER UNIT – versatile variable delay 151 £5.18
AWD and switching
FUNGUS – triple waveform signal generator 152/153 £9.69
LIGHT CONTROLLER – delayed switching 154 £4.64

OCT 87
TEACHER LOCKER – digital lock control 155 £7.50
POWER SUPPLY – stabilised ±15V 156 £7.50

GUITAR TO SYNTH – music interface 157A/B £9.95

NOV 87
DUAL POWER SUPPLY – GCSE 158 £6.20
MIDI EXPANDER – Music Interface 159 £5.04

DEC 87
RS 232C TO MIDI 160 £6.43
TEACHER RADIO – GCSE 161 £5.58

JAN 88
EGG TIMER 162A-C £12.44
LEGO BUGGY DRIVER 163 £6.42

THIS MONTH'S BOARDS

FEB 88
TEACHER TALKBACK – GCSE 164 £6.36
DC MOTOR SERVO 165 £7.53
YOUR ED'S FEELING GENEROUS AGAIN - WITH THE HELP OF CONNEXIONS!

THIS SUPERB CONNEXIONS CX8520R SATELLITE TV RECEIVER AND DISH COULD BE YOURS FREE JUST BY ANSWERING A FEW SIMPLE QUESTIONS.

The Connexions' CX8520R receiver was reviewed by What Satellite magazine in December 1987 and concluded to be a best buy luxury system.

Included in the system are a powerful 1.2 metre offset signal receiving dish complete with twin low noise blocks and automatic motor drive, full infrared remote control, twin channel sound output and audio bandwidth video tuning plus selective channel lock out.

Closing date for entries is 29th Feb 1988
The winner will be announced in the May issue of PE on sale from April 8th.
The Editor's decision is final.

12 month's subscription to PE will be awarded to the first three runners-up.

WIN A SATELLITE TV SYSTEM WORTH OVER £1200!

PRACTICAL ELECTRONICS ENTRY FORM SEND TO THE EDITORIAL ADDRESS ON PAGE 9

1) When did Marconi first transmit a radio message across the Atlantic?
2) When was the integrated circuit first introduced (by Texas Instruments)?
3) When was PE first published?
4) Why do you want a satellite TV receiver?

Not part of the competition but please tell your Ed on a separate piece of paper:

5) What you like about PE
6) What you don't like about PE

Name (in block letters) ...
Address ..
...
...
...
Post Code ...

PRACTICAL ELECTRONICS FEBRUARY 1988
Please mention practical electronics when replying to advertisements.