MODIFYING RECEIVERS FOR KIRK O'SHOTTS

PRACTICAL TELEVISION
AND TELEVISION TIMES
A NEWNES PUBLICATION
Vol. 2 No. 23
APRIL 1952

FEATURED IN THIS ISSUE

A Black Level Clamp
Aerial Matching
Interference Limiters

A Boom in Documentaries
Tracking Down Pirates
Time Base Synchronisation
D. COHEN

RADIO AND TELEVISION COMPONENTS

PM Focus Unit. Any 9in. or 12in. tube, except I2/6.
Similar to above with front adjustment, 15/-.

PM Focus Unit for 12in. Mazda.
Similar to above with front adjustment, 15/-

Frame oscillator blocking transformer 4/6.

MAINS TRANSFORMERS

These transformers are all famous radio manufacturers' surplus and are fully inter-leaved, impregnated and guaranteed.

Primary 200-350 v. P. & P. on each, 12 extra.
100-2-350, 120 mA. 4 volt 4 amp., 5 volt 3 amp., 17 1/2.
320-2-350, 120 mA. 8 volt 4 amp., 5 volt 3 amp., 25 v.
320-2-350, 120 mA. 8 volt 4 amp., 9 volt 3 amp., 25 v.
350-3-350, 80 mA. 6 v. 4 amp. (to be used on common heater, chassis with 8 x 8 rectifiers), 13 1/2.
350-3-350, 80 mA. 6 v. 2 amp. (with valves), 14 1/2.
350-3-350, 55 mA. 6 v. 3 amp., 5 v. 3 amp., 27 1/2.
350-2-350, 50 mA. 4 v. 4 amp., 3 volt 3 amp., 12 1/6.
350-2-350, 20 v. 4 amp., 4 volt 3 amp., 3 volt 3 amp., 2 volt 3 amp., 10-12 v. post and packing.
12in. White rubber mask with armour-plate glass 10/-
12in. Rubber mask with armour-plate glass 15/-
12in. Rubber mask 4/-
12in. Armour-plate glass 1/-
12in. Armour-plate glass 15/-

Heater Transformer Pri. 200-350 v. 0.1 amp. 6/-: P. & P. each, 10/6.

R.A. 6lin. closed field P.M. 12/6.

Southern Radio & Electrical Supplies

85, FISHERSTON STREET, SALISBURY, WILTS.

PRACTICAL TELEVISION

April, 1952

VIEWMASTER

LONDON - MIDLAND - HOLME MOSS

KIRK O'SHOTTS AND WENVOE

A superb quality receiver you can build in 7 easy stages from standard parts.

☆ Brilliant, high definition picture.
☆ Uses 9in. or 12in. C.R. Tube.
☆ Table or Console versions.

A complete constructional envelope is available with 34-page, fully illustrated " How to make it " Manual, eight full-size working drawings, alignment and operating details, etc. Model " A " London, " B " Midlands, " C " Holme Moss and Kirk O'Shotts. 7/6 each, post paid.

Revised price list of Viewmaster components, giving details of the 7 easy stages, 23d. post free.

" VIEWMASTER " KITS IN STAGES.—Holme Moss, Kirk O'Shotts and Wenvoe: (1) £3.3.12, (2) £2.2.9, (3) £4.19.4, (4) £5.11.11, (5) £6.0.10, (6) £6.12.9, (7) £6.13.11. Sutton Coldfield: (1) £3.3.0, (2) £2.2.9, (3) £4.10.10, (4) £5.13.14, stages 5, 6 and 7 as Holme Moss. London: (1) £3.3.4, (2) £2.1.10, (3) £4.5.9, (4) £6.7, stages 5, 6 and 7 as Holme Moss prices. P.O. box for which station. Kit of 12 specified valves, £12.8.9. Kit of coloured sleeving and screened sleeving, 5/-.

CATALOGUE No. 8.—54 pages, illustrated on fine art paper, containing over 2,000 radio and television lines, 9d. post free.

The solder for all

HOME TELEVISION CONSTRUCTOR SETS

Designers of television constructor sets know that the efficiency of their equipment depends on the solder used by the constructor— that's why they recommend Ersin Multicore for trouble-free, waste-free soldering. Ersin Multicore, the only solder containing three cores of extra-active, non-corrosive Ersin Flux, is obtainable from all leading radio shops. Ask for Cat. Ref. C.16018, F.S.W.G. 60/40 High Tin Television and Radio Alloy. The size 1 Carton contains 37 feet of solder, costs 5/-.

Ersin Multicore Solder

In case of difficulty in obtaining supplies, please write to:

MULTICORE SOLDERS LTD., MULTICORE WORKS, MAYLARDS AVE., EMELI HAMPSTEAD, HERTS • Boxmoor 3636 (3 lines.)
EVERYBODY IS BUILDING
THE VIEWMASTER!
All components in stock and sold separately

Sound/dimension chassis ... 18/6
Time base chassis ... 18/6
WESTINGHOUSE RECTIFIERS
36EHT100 ... 29/6
14D36 ... 11/8
14A86 ... 20/4
WX3 ... 3/9
WX6 ... 3/9
36EHT45 ... 23/8
36EHT50 ... 26/1
T.C.C. VISCONOL CONDENSERS
.001 mfd. CP55Q0 ... 4/6
.001 mfd. CP55YO ... 7/6
All T.C.C. Condensers for the Viewmaster available at listed prices from stock.

Scaning coils ... 29/6
Heater trans. WB/103 ... 37/6
WB/103A ... 52/6
Focus ring ... 22/6
Main choke ... 15/6
Width control ... 10/-
Supporting bracket ... 6/-

WEARITE COILS. For all models.
A, B, C, D, E.
10 Coils ... 20/-
4 Filter coils ... 8/-
L9 choke ... 2/-
State model when ordering.

CONSOLE CABINETS
for 12in. C.R. tubes, medium walnut finish. LASKY’S PRICE, £8/10/0.
Adaptor frames for 9in. or 10in. C.R. tubes available.
Send 2/- stamp for illustration.

Send today for the CONSTRUCTION ENVOLVE, a 32-page booklet crammed with top-rate information and all the necessary data, also 3 full-size working drawings and stage by stage wiring instructions.
PRICE A, B & E, 5/- PER COPY. C & D, 7/6 PER COPY. Post 4d. extra.

Television for the home constructor at its finest.

Send today for the CONSTRUCTION ENVOLVE, a 32-page booklet crammed with top-rate information and all the necessary data, also 3 full-size working drawings and stage by stage wiring instructions.

LASKY’S RADIO. 370, HARROW ROAD, PADDINGTON, LONDON, W.9.
(Lasky’s (Harrow Road) Ltd.)

‘Phone: Cunningham 1979 and 7214.

TERMS: Pro Forma, Cash With Order, or C.O.D. on post items only. Postage and packing extra, unless otherwise stated. All goods fully insured in transit.

Television at 200 miles
NEW MODEL SC23 TV PRE-AMPS. ALL CHANNELS

Primary Features
- High gain and low noise.
- Custom built to the highest standards.
- Ample bandwidth for good definition.
- Ideal for the "difficult" fringe and fringe areas.
- Each pre-amp supplied guaranteed to have been "air tested" and to have received both vision and sound at 200 miles using a standard commercial superhet receiver.
- Models SC22 and SC23 have self-contained metal rectifier power supply, 2001250v. A.C.
- 12 months' guarantee.
- Immediate delivery.

RETAIL PRICE LIST
(Trade enquiries invited)

SC23, new model, £5. 5. 0.
SC22, two-stage, £8. 10. 0.
SC21, two-stage, £6. 6. 0., requires power supply.
SG12, TV Sig. Gen., £6. 19. 6.
PG1, Patt. Gen., £14. 0. 0.

TELEVISION SIGNAL GENERATOR
- Frequency range 40/70 M/Cs.
- Calibration chart for all Television Channels.
- Modulation on sound and vision optional.
- Sensitive meter fitted for use as grid dip oscillator.
- Ideal for service engineer and experimenter.
- Measures coil, aerial frequencies, etc.
- The only one of its kind on the market.
- Self-contained power supply, 2001250v. A.C.
- 12 months' guarantee.
- Immediate delivery.

J. V. RADIO CO. 84, EMBANKMENT ROAD, PLYMOUTH.
Manufacturers of Television Equipment.
Tel. 4737.
ELECTROLYTIC CONDENSERS

The choice of T.C.C. Condensers by so many knowledgeable manufacturers is testimony to their worth.

'LECTROPACK' ETCHED FOIL ELECTROLYTICS

<table>
<thead>
<tr>
<th>Cap. µF.</th>
<th>Peak Wkg.</th>
<th>Length</th>
<th>Dia.</th>
<th>Type No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-32</td>
<td>275</td>
<td>23 in.</td>
<td>1 in.</td>
<td>CE34HE</td>
</tr>
<tr>
<td>60-100</td>
<td>350</td>
<td>22 in.</td>
<td>1½ in.</td>
<td>CE37LEA</td>
</tr>
<tr>
<td>8-16</td>
<td>450</td>
<td>22 in.</td>
<td>1 in.</td>
<td>CE34PEA</td>
</tr>
<tr>
<td>32-32</td>
<td>450</td>
<td>4½ in.</td>
<td>1½ in.</td>
<td>CE37PE</td>
</tr>
<tr>
<td>100-100</td>
<td>350</td>
<td>4½ in.</td>
<td>1½ in.</td>
<td>CE36LEA</td>
</tr>
</tbody>
</table>

'PICOPACKS' MINIATURE ELECTROLYTICS (Plain Foil)

<table>
<thead>
<tr>
<th>Capacity µF.</th>
<th>Peak Wkg.</th>
<th>Dimensions</th>
<th>Type No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>6</td>
<td>1½ in.</td>
<td>CE72A</td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>1½ in.</td>
<td>CE30B</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>1½ in.</td>
<td>CE71B</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>1½ in.</td>
<td>CE30C</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>1½ in.</td>
<td>CE30D</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>1½ in.</td>
<td>CE30G</td>
</tr>
<tr>
<td>1</td>
<td>350</td>
<td>1½ in.</td>
<td>CE30N</td>
</tr>
</tbody>
</table>

(Regd.)

THE TELEGRAPH CONDENSER CO. LTD.
Radio Division: North Acton, London, W.3. Tel: Acorn 0061

noise-suppression circuit. Standard half-watt and quarter-watt resistors provide an interesting comparison in size.

It is important to note that this photograph is of a G.E.C. production television sub-chassis into which the crystal is soldered without heat shunts and with the leads clipped to the required lengths.

For further information apply to Osram Valve & Electronics Dept.

THE GENERAL ELECTRIC CO. LTD., MAGNET HOUSE, KINGSWAY, LONDON, W.C.2

Germanium Diodes

The photograph shows a G.E.C. germanium diode soldered between adjacent tags of an octal socket in a noise-suppression circuit.
Colour Television or Black and White?

It will be agreed that the existing black and white television service can be improved by the use of better equipment, but the financial position does not permit the BBC to embark on the considerable expenditure necessary to effect this improvement. Manufacturers are debating whether further improvements should be concentrated on colour television to the exclusion of black and white television. Improvements in the black and white pictures would undoubtedly pave the way for colour television, and the use of electronic scanners for the superimposition of the three primary images must at present be ruled out, unless some auxiliary device can be used to ensure registration.

Up to the present time there has not been any practical demonstration of a receiver incorporating a tricolour tube which also incorporates such auxiliary registration on a full definition picture.

Problems connected with colour television are numerous and involved, but by concentrating on them, even on a laboratory experimental basis, must result, in any case, in an improvement of the black and white transmissions.

There are those who feel that experiments in colour television should proceed simultaneously with those in black and white. The problem in connection with the colour transmissions is to evolve a system which will provide a satisfactory service to viewers who possess receivers which at present are only capable of reproducing a black and white picture. There is plenty of room for improvement in the black and white system in this country, particularly in the direction of overcoming reduction in the signal strength at the upper end of the frequency range; camera technique is also in need of improvement, notwithstanding the turret lens cameras with which the Lime Grove studios are equipped. Whilst acknowledging that these have effected a considerable improvement, there is still need for electronically-controlled cameras so that too much reliance is not placed upon the skill of the cameraman.

Everyone knows that considerable financial resources would be necessary to develop colour television and that these are not available at the present time, even though the industry is prepared to embark upon the work. Colour television must, therefore, remain for at least ten years a possibility and a subject for development by private enterprise. On the whole it is our opinion that it would be unwise at this stage to embark upon colour television.

It is by no means certain, for example, that the cathode ray tube as it exists at present is the ultimate in television reception. Projection television, for example, may ultimately replace the glass tubes, and colour technique would be vastly different for such a system.

THE GROWING RISE IN EHT VOLTAGES

Picture brightness is improving as a result of design changes permitting higher EHT voltages. At present anode voltages are 8 kV. for 9in. tubes, 10 kV. for 12in. tubes, 14 kV. for 16in. tubes, and 17 kV. for 21in. tubes, whilst for projection TV EHT voltage is approximately 25 kV. The practice at present is to obtain EHT from the line flyback.

Screen sizes also are being increased, although the length of the tube is not suffering a similar increase. This is made possible because tube designers are increasing the angle of deflection of the electron stream from 50 deg. to 70 deg.

THE 1952 RADIO SHOW

The 19th National Radio Show will be held at Earls Court from Tuesday, August 26th, to Saturday, September 6th.

The northern radio show which is to be held at the City Hall, Manchester, will be opened at 12 noon on Wednesday, April 23rd.

The radio components show will be held at Grosvenor House, London, from April 7th to 9th.

GREAT DEMAND FOR THE "ARGUS"

Many thousands of Argus receivers are at present in course of construction as a result of the free blueprint presented with every copy of last month’s issue. We regret that in spite of a greatly-increased print order the issue went out of print on publishing day. We have, however, made arrangements to re-print the blueprint and the articles detailing its construction.—F. J. C.
The composite picture and synchronising signal is fed to the input of the synchronising separator stage, which should—for successful synchronising—completely eliminate the vision content, leaving only the sync pulses such as shown in Fig. 1 (a) and (b).

Both line and frame saw-tooth oscillators are synchronised by these pulses, which ensure that neither line scan nor frame scan last too long—and keep the electron-beam in the receiver picture-tube exactly in step with that in the television camera.

The sync pulses initiate the commencement of frame and line flyback. They are thus radiated at the finish of each frame and line scan respectively. The repetition rate of the former being 50 per second and that of the latter 10,125 per second. Usually about eight frame sync pulses are radiated collectively to form the frame sync signal.

Obviously then, in order to supply either saw-tooth oscillator with its appropriate sync pulses a means is necessary whereby the line and frame pulses may be separated from each other. A popular method of achieving this function is to feed the line time base from the sync separator through a differentiating circuit and the frame time base through an integrating circuit.

The Differentiator

Essentially, a differentiating circuit is a "high-pass-fil ller"—comprised of a resistor-capacitor coupling. By its inclusion not only are the relatively high-frequency line sync pulses conveyed to the line-generator with little attenuation, but they, also undergo a shaping process, necessary for correct "firing" of the line generator. The action of such a circuit is fairly straightforward and may be readily understood in conjunction with Fig. 2.

As will be remembered, a resistor R connected in series with a capacitor C produces a time constant \(T \) equal to \(CR \), which is the time required, in seconds, for the voltage or current to grow or decay to 63 per cent. of its maximum value.

It will now be instructive to consider the effect such a circuit has on a square-topped wave. Let the square-topped wave be that of a line-sync pulse (Fig. 2 (b)); as will be observed such a pulse occupies a time period of 10 \(\mu \) seconds.

Now, because the capacitor is uncharged the circuit responds suddenly to the leading edge of a pulse, and the initial current through CR equals \(ein/R \). Therefore, \(eR \) equals \(ein \).

As time goes on, however, \(C \) charges exponentially and the potential across \(R \) falls, so that \(eR \) equals \(ein \) minus \(eC \). Thus, after time \(CR \), \(eR \) will fall to 37 per cent. of its initial value, but by the time the trailing edge of the pulse is reached \(eR \) will have a relatively higher value if \(CR \) is greater than the pulse duration.

A change of input in the negative direction is created by the trailing edge of the pulse and \(eR \) is thus charged instantly from a positive to a negative magnitude depending on the initial positive value of \(eR \), which is followed by an exponential return to zero.

Output wave-forms where \(CR \) is much larger than, and equal to the pulse duration are illustrated by Fig. 2 (c) and (d) respectively.

From the foregoing it will be obvious that if \(CR \) is smaller than the pulse duration, \(C \) will acquire a maximum charge before the trailing edge of the pulse is reached. Therefore, \(eR \) will rise to a maximum positive value; reduce exponentially to zero; rise to a maximum negative value and again exponentially return to zero. Fig. 2 (e) illustrates the resultant differentiated square topped wave-form.

Actually this operational mode indicates that \(CR \) must be appreciably smaller than the pulse duration since \(C \) charges fully. Theoretically a capacitor will reach nearly full charge in a period equal to 4\(CR \) seconds. Therefore, for true differentiating action \(T \) should not exceed one
quarter of the pulse duration, or in the case of a line pulse, 10/4 microseconds equal CR.

Usually, in practice, C is about 50 pf. Thus:—

\[2.5 \times 10^{-3} \text{ equals } 50 \times 10^{-6} \text{R} \] (it should be noted that C and R are expressed in microfarads and megalohms respectively).

Therefore, R equals \(2.5 \times 10^{-4} / 50 \times 10^{-6} \), equals 0.05 megalohms (50 Kilohms).

The Principle of Synchronism

The effect of feeding the mixed pulse train of Fig. 1 (a) and (b) into the differentiating circuit is shown diagrammatically at Fig. 1 (c) and (d). It will be seen that the frame pulses when passed through the circuit lose their identity and are also differentiated to form a set of short duration peaked pulses, which keep the line oscillator in synchronism during the frame sync pulse.

This will be better understood in relation with the general operation of a saw-tooth oscillator. The potential on the grid of the oscillator valve increases exponentially until it reaches a value which “fires” the valve (flyback). In the unsynchronised (free-running) condition this potential build up is determined by the circuit constants (Fig. 3 (a)).

The oscillator is synchronised by the application to the valve grid of a differentiated positive-going sync pulse. The effect being that just before flyback conditions are reached, a sync pulse arrives and the valve is immediately “fired,” thereby exercising complete control on the repetition frequency of the line saw-tooth oscillator (Fig. 3 (b)). This means then, that the line hold control should be so adjusted that the oscillator is running very slightly on the slow side.

The pulses employed for line synchronism are marked “X” in Fig. 1 (c) and (d). Therefore, it can be seen that during the frame pulses the line oscillator remains synchronised due to the differentiated leading edge of every other frame pulse; the sync pulse for the half line during odd frames being clearly indicated.

A condition may arise where the pulse which occurs in the middle of a line scan during a frame pulse “fires” the oscillator prematurely (Fig. 3 (d)). This will have the effect of causing the top of the picture to be tilted over to the right-hand side. Usually, such a fault indicates that the sync pulses fed to the oscillator are too large and steps should, therefore, be taken to reduce their magnitude.

The Integrator

The integrator circuit is also formed by an RC combination but with a modified time constant. The basic circuit is shown in Fig. 4 (a), and in this case it will be observed that the integrated sync pulses are developed across the capacitor.

Unlike the differentiator, however, this circuit responds only slowly to steep-fronted wave-forms, which is rather obvious when it is considered that an integrated pulse is nothing more than the exponential rise and fall in potential across C due to its charge and discharge.

Fig. 4 (c) shows the wave-forms across the capacitor due to an input pulse such as (b). From this it will be seen that the amplitude of the integrated pulse is proportional to the duration of the applied pulse; since a longer pulse allows the capacitor to charge to a higher value. This feature enables discrimination to be made between the 10 microseconds line sync pulses and the 40 microseconds frame sync pulses.

The effect of feeding both line and frame sync pulses into the integrating circuit is shown diagrammatically at (e) and (f) Fig. 1. The short duration line pulses are distorted and greatly reduced in amplitude since they have little effect on charging C. However, the first of the series of frame pulses, due to its longer duration, charges C to an appreciable value, and it discharges only slightly before the next pulse arrives. Thus, the next frame pulse charges C to an even higher value and so on, resulting in a build up of potential across C, which at some critical value “fires” the frame saw-tooth oscillator. It is necessary, of course, for the frame oscillator to be arranged to “fire” at a higher level than the peak output on a line pulse.

The values for C and R are larger than those forming a line pulse differentiating circuit, and it is usually found satisfactory to make T about 5 times the frame pulse duration, typical values being: R 20 Kilohms and C 1,000 pf.

Interlace Problems

From the wave-forms of (e) and (f) Fig. 1, it can be seen that the first pulse following an “even” frame is only displaced half a line from the first pulse following an “odd” frame. This means that to secure a good...
interface between successive frames the start of a frame scan must coincide with the start of a line scan every other frame only. Such conditions are difficult to achieve with the simple differentiator-integrator circuit of Fig. 5 and by its use a stable interface is very rare.

The limitations offered by this simple arrangement may be better understood when it is considered that the frame time base has to be pulled only half a line at the end of an "odd" frame and the beginning of an "even" frame to severely impair the interface. This means, that for preventing the frame time base will need to "fire" on exactly the same serrations of the integrated waveform of Fig. 1 (c) and (f) every "even" and "odd" frame. In practice minor circuit disturbances, such as fluctuation of signal or mains voltage, prevent this happening and, therefore, noticeably impair interlacing.

Furthermore, matters are made worse since no protection from the line pulse is offered; for it must be remembered that during the line flyback high peak voltages are developed which cause quite a disturbance in the receiver and are liable to "fire" the frame time base, resulting in non-interlace.

A Frame Pulse Shaper Circuit

Usually, in order to prevent line pulses effecting the "firing" of the frame generator the integrator circuit is followed by a further circuit which eliminates the line pulses and shapes the train of eight frame pulses to form a single steep-fronted pulse. A pulse shaping circuit of similar function, used in certain G.E.C. receivers, is shown by Fig. 6.

Fig. 6.—A frame pulse shaper circuit by G.E.C., showing the waveform output at (a)

Line sync pulses developed across R1 are differentiated by the action C1, R2 and are applied to the line generator in the usual way. The frame sync pulses, however, are mainly developed across R3 and C2. These components form a time constant such that the line pulses are severely attenuated. The thus modified sync signals are conveyed, via C3, to the cathode of a valve which is positively biased by a potentiometer comprising R4 and R5. Bias magnitude is arranged so the diode conducts during the negatively-going frame pulses only, resulting in a rise of potential across R6 and the charging of C4. Since these components form a relatively large time constant the 10-\mu s-second interval between successive frame pulses has little effect on the discharge of C4. A single clean-cut frame pulse (Fig. 6 (a)) is thus produced and is transmitted via C5, to the frame generator.

Another Method

Another popular circuit is shown by Fig. 7. Both line and frame sync pulses are developed across the sync separator load resistor R1, which is in direct connection with the diode anode of VI (a). During the time when no sync pulses appear across R1, the positive potential on the diode anode renders the valve conductive. A positive potential is thus developed across R2, which charges C1 to the H.T. line voltage. Also, the anode of VI (b) is held at a steady positive potential by the potentiometer R3 and R4, but less positive than its cathode, and of consequence is non-conducting.

On every sync pulse the anode potential of VI (a) falls below its cathode potential and the valve is cut-off for the duration of the pulse. C1 commences to discharge through R2, but owing to the relatively large time constant (50-60-\mu s-seconds), the potential across the combination does not fall sufficiently during a line pulse for VI (b) to become conductive.

During a frame pulse, however, the cathode potential falls below that on the anode and the valve conducts. A series of sharp frame sync pulses is thus developed across R4.

This circuit has not only the advantage of producing frame sync pulses of equal magnitude, but also since VI (a) is non-conductive during a frame pulse disturbances originating from a line pulse are minimised.

In conclusion, it should be remembered that interlacing may be considerably impaired if stray capacitive couplings exist between the time bases. The line flyback pulse may also be radiated from a lead or component within the circuit to any of the post detector circuits with similar results. It is worthy to note that unless a receiver is interfacing correctly 50 per cent. of the transmitted picture may be lost.
A TECHNIQUE has recently been developed at the Radio Experimental Laboratories of the Post Office at Dollis Hill for the detection of television receivers irrespective of whether an indoor or an outdoor aerial is used.

This new technique is so sensitive that the majority of working television receivers can be detected, and the positions of houses containing the receivers can be pinpointed, by means of equipment fitted in special Post Office vans. The equipment used is quite easy to operate, and with a little practice houses containing working receivers can be located while the van is on the move.

Equipment of this type will be used to carry out "combs" of certain areas in London and the Provinces for illicit television receivers, i.e., those whose owners have not obtained television licences.

Popularity
An interesting sidelight on this technique is that it also provides a means for assessing the popularity of a television programme by counting the number of receivers switched on in a given area.

Principles
The detection equipment makes use of the induction magnetic field set up by the line-scanning coils of the television receiver; this field contains strong harmonics of the fundamental line-scanning frequency of 10,125 Kc/s, and these harmonics can be picked up by a sensitive receiver at distances of up to 100 ft., or more in many cases.

Three horizontal loop aerials are mounted on the roof of the van in an "E" formation; these are tuned to the second harmonic (20,25 Kc/s) of the line frequency. The outputs of the loops can be switched in turn to the input of a specially-adapted radio receiver, and the audio output is heard on a loudspeaker or indicated on an audio level meter. By noting the relative levels of the signals from the three loop aerials the operator can obtain a clear indication of whether the television receiver is in front of or behind, or to right or left of, the detection van. For example, when the van passes in front of a house on the same side of the road containing a working television receiver, the indications obtained from the fore and aft loop aerials are equal, and that from the off-side loop aerial is weaker than that from the other two. In addition to the indicators mentioned, the van which we had the privilege of seeing also had four small lamps with associated buttons mounted beneath the visual meter. The buttons carry the references "Front," "Rear," "Right" and "Left," and pressure on the buttons lights up the appropriate lamp. It will be seen, therefore, that the location of a receiver is almost foolproof and can be made very rapidly by any one of three different methods.

The strength of the induction magnetic field varies inversely as the square of the distance, and this fact enables receivers even in adjacent houses to be separately detected. The brick walls of ordinary houses have little or no effect on the induction magnetic field at the relatively low frequency (20.25 Kc/s) used.

An operator at the controls inside the detection van seen in the heading illustration. The visual indicator and lamps are hidden by the operator's head.
Kirk o' Shotts Experimental Transmissions
DETAILS OF THE TEST PROGRAMMES

In order to bring television to Scotland by the earliest possible date, the BBC brought into service the low-power transmitter at the new television station at Kirk o' Shotts on Friday, March 14th, on an experimental basis. At 7.30 p.m., Mr. James Stuart, Secretary of State for Scotland, opened the service from the BBC studios in Edinburgh, and the ceremony was broadcast from Kirk o' Shotts. Programmes during the following week included outside broadcasts from Scotland. As we go to press, tests are in progress on the radio link which the Post Office is installing between Manchester (the most northerly point on the television network at present) and Kirk o' Shotts; an experimental picture has been obtained, but neither the radio link nor the transmitters are scheduled for use before March 14th, and then only on an experimental basis.

It is emphasised that this is an experiment for the first few weeks; interruptions to the service may therefore be necessary from time to time for adjustments to the radio link and to the equipment at Kirk o' Shotts.

Programmes
The Kirk o' Shotts station will carry the same programme as the existing stations at Alexandra Palace, Sutton Coldfield and Holme Moss, except that between 10 a.m. and 12 noon on weekdays during the first few weeks a still pattern (Test Card C) will be broadcast instead of the morning film that is normally radiated by the other stations.

Service Area
It is expected that the low-power transmitter will provide satisfactory service over a considerable area of central Scotland, including Edinburgh and Glasgow; but reception will be more liable to interference, particularly in fringe areas, than it will be when the high-power transmitter comes into service.

Details of the frequencies of the new transmitter will be found on pages 511 and 512, together with a diagram showing the field-strength (estimated) of the high-power transmitter when this eventually comes on the air. It is emphasised that this contour has been calculated, and cannot be taken as a guarantee of the strength of signals finally in any locality. Preliminary tests, when the transmitter was put on the air temporarily for the relaying of the funeral procession of the late King, showed that excellent reception was obtained in certain areas which it was not expected to cover satisfactorily, and therefore it is emphasised that the present transmissions must be regarded purely as experimental. The actual transmitter which will finally be brought into use is identical with that used at the Midland and Northern stations and the details which we have already published concerning these stations may be taken as being applicable to the final Kirk o' Shotts transmitter.

First photographs of the new Marconi medium-power Television installation at Kirk o' Shotts. These illustrations show the control desk and part of the 5 kW. transmitters with Marconi and BBC engineers during preliminary tests.
It is well known that one cannot adjust the contrast of a television receiver without readjusting the brightness control because, in adjusting the contrast, one inevitably changes the voltage applied to the cathode (or grid) of the cathode-ray tube corresponding to "black" in the picture signal. Therefore, a new value of bias must be applied to ensure that the tube is dark once more when "black" is being transmitted. This can be very irritating, and if, in fact, we could use a circuit to maintain the cathode-ray tube at "black" whenever black was being transmitted, independently of the relative settings of the contrast control it would be a great improvement. The brightness control would become a means of setting up the black level in the first instance, and, provided nothing drifts, it need not be touched again, all further adjustment being a true adjustment of contrast carried out with the IF or RF gain controls. We would also notice that most aeroplane flutter merely became a change in picture contrast instead of alternate glare and darkness on the screen. Such a circuit is called a black level clamp, and is not very difficult to devise.

Obtaining the Required Voltage

Fig. 1.—Essential portion of the transmitted signal referred to in this article.

Firstly, we must examine the transmitted waveform to discover what we may use, which will not vary with picture content. Clearly it is no use attempting to clamp the black level to anything but a voltage which is both always available (recurrently) and quite independent of the picture. Fortunately there is a period, when the frame sync signals are transmitted and for a short time afterwards, when the picture signals are blanked for a period of about 1,400 μs (Fig. 1). We must therefore use a device which will be out of action all the time that picture signals are being transmitted, but immediately comes to life during this period of the 14 lines when no picture is present. This occurs once every frame, i.e. at a rate of 50 c/s. The means used to achieve this is to desensitise our clamping circuit with a heavy bias, but obtain a large pulse at the right moment to overcome the effect of the biasing, and let the clamping circuit (for the duration of this large pulse) respond to the signals contained in the television waveform. Therefore, looked at from the point of view of the clamping circuit, for 391 lines it "sees" nothing, then it becomes "turned on" at the right moment by the pulse so that it "takes notice of" the signals present during the blanking period as shown in Fig. 2. In fact it responds to their amplitude and provides us with the required D.C. voltage for our clamp. The pulse for "turning on" the circuit is obtained naturally enough from the frame time-base, since this will be recurring at a suitable timing to sensitise the clamp to the frame sync signals, which have already synchronised the time-base which provides the pulse to work the clamp. Of course, as we must wait for this chain of events to take place, we shall not get all of the 14 lines through to the clamp but this is not of practical importance.

The Circuit (Fig. 5)

The valves used are not important so long as we are able to obtain sufficient output with convenient values of anode or cathode load resistors, and provided that the valves have sufficient mutual conductance to respond, in the case of the "gated" clamp valve V1, to the "gating pulse." For example, if the available pulse from the frame time base is of only 50 volts amplitude, V1 must be capable of being well and truly turned on by such a pulse. EF50's triode-connected work very well, and no doubt VR65's would be as good. A single 6SN7 of the clamp during No-picture period, at other times clamp biased off.
to mention a readily available ex-surplus type, is also suitable although it needs slightly more drive than the others, but has the advantage of a single valve construction.

The anode and cathode loads of V2 are chosen to give adequate frequency response, and sufficient output

![Diagram of circuit](image)

Fig. 4. Clamp only "sees" waveform shown above which is coincident with gating pulse duration. Fully to modulate a Mazda CRM121 with full EHT, and therefore more than enough for other available types, and to give adequate drive to all commonly used sync separator circuits. These values may be varied somewhat, but the above explanations should be borne in mind.

The reason for carefully arranging the voltages to which the cathode of V1 is taken is that, apart from biasing the clamping valve, we must ensure that the black level is sufficiently above earth at the grid of V2 as not to cause V2 to compress the sync pulses appreciably. In practice the reduction from the nominal 30 per cent. sync ratio is quite small, only a few per cent. Finally the coupling-condenser of the D.C. -restorer which connects the grid of V2 to the anode of the video amplifier

![Diagram of circuit](image)

Fig. 5. Circuit of the black level clamp.

must be of high quality, and a metal cased type is desirable as these condensers maintain a high insulation resistance much longer than the waxed cardboard type, which should never be used in restoration circuits since their low leakage resistance prevents such a circuit from functioning. Owing to the cathode follower action of V2 the time-constant of the 0.05µF and 1MΩ grid return of V2 is multiplied several times, and gives a value which is adequate to prevent appreciable "sag" in the black level over the course of one frame.

It has been assumed that the majority of home-built sets will be employing grid modulation of the C.R.T., and that the video amplifier valve gives positive picture and negative sync output. If cathode modulation is required it is only necessary to reverse the sync/C.R.T. connections to V2, as negative going video is available across the anode load (Fig. 4).

It may be found that the clamp valve does not get turned on for a long enough period. This will give a less effective black level clamp as full use would not be taken of the whole 1,400µS of transmitted black level on which we are attempting to clamp. This effect, if it appears to be present, may be improved by adjusting the grid circuit values of V1, the clamping valve. If, however, the difficulty is due to the frame flyback being "too good," i.e., taking place too quickly for our purpose (this may be estimated by observing the existence or not of a large amount of frame blanking pulse at the top of the picture with the brightness control turned up too far for normal viewing) it will be necessary to use very large values of components in the grid circuit, or a separate square-wave generator. In the latter case, probably the easiest circuit to use would be the one shown in Fig. 6, a phantastron which gives a positive square-wave on its screen. A trigger pulse may be the frame flyback, taken from the anode of the frame output valve as before. The time constants are not important in this case as all we require is a fairly short duration trigger pulse of sufficient amplitude. The width of the square-wave needs to be about 800-1,000µS and may be adjusted over wide limits by the 100 KΩ potentiometer. This circuit, although simple to get working, is much easier to adjust if an oscilloscope is available, and in any case the vast majority of frame time-base pulses in

![Diagram of circuit](image)

Fig. 6. Additional circuit required for "gating" under certain conditions.
amateur built receivers will prove quite adequate for use as gating pulses without resource to this complication.

Final Adjustment

To make certain that V2 is working properly on its own, temporarily connect the grid and cathode of V1 to earth, thus making V1 a simple diode D.C. restorer between the video output valve and V2. Under these conditions the television receiver should function almost exactly as it did before the black level clamp circuit was added. If this is so, i.e., adequate video output to the cathode-ray tube is still available, and the controls have much the same effect as before, all is well. It must be remembered however, that the position of the brightness control will be different owing to the video voltage across the cathode load of V2 being between about 1 volt and 40 volts above earth (for a black or peak-white picture) instead of something like 200 volts to 240 volts above earth in the case of connecting the grid of the C.R.T. directly to the anode of the video amplifier, which was presumably the method of operation before the new circuit was added. So we may expect the brightness control at “maximum” to refuse to produce any light on the C.R.T. screen. This means only that the range of the brightness control must now be reduced to operate over something like 40 to 150 volts which is no problem.

Now take off the temporary earthing connections and connect the grid circuit of V1 to the frame output valve anode and, even if the clamping is incomplete, some results will immediately be obtained. According to the nature of the positive pulse available at the anode, some adjustments to the grid circuit of V1 may be required as indicated earlier. It should then be possible to set the brightness, and changing the contrast setting will not require the brightness control to be retouched.

One final word, if all seems to be going fine, but after the set has been switched on for a quarter of an hour you should find it necessary to re-set the brightness control, it is probably due to the slope of the C.R.T. changing as it warms up. You cannot do anything about this unless you can design a black level clamp to operate on current instead of voltage. The effect however is not likely to be very bad.

Interference Limiters

A REVIEW OF SEVERAL COMMERCIAL SYSTEMS

By S. A. Knight

INTERFERENCE suppressor circuits now form a part of every television receiver manufactured and the following notes are intended to cover a few of the more interesting forms that such circuits have taken in the past two or three years. The most ingenious adaptations have occurred on the sound side of receivers as it is here that ignition interference can become really objectionable, and so attention will be paid mainly to the systems. Vision suppression will be dealt with later on in the article.

General Systems

There are two basic systems for sound interference suppression, the principle in both cases being the provision of a means of chopping out all spiky interference pulses while allowing audio signals to pass on unhindered. The obvious solution lies in the construction of a circuit that can discriminate against signal amplitudes; for, with interference pulses superimposed on the audio signal, as shown in Fig. 1, it is apparent that the amplitude of the interfering pulses is such, in relation to the general amplitude of the audio signal, that a form of amplitude filter should provide an answer to the problem. Such filters may be of either the series—or parallel—gate type, that is, the detector circuit might be open or short-circuited on the high amplitude interference pulses, depending upon the kind of filter used.

The simple series diode that open-circuits in the presence of interference is illustrated basically in Fig. 2 (a). The signal voltage V is developed across R and so appears between the cathode of the limiter diode and earth. The diode anode is maintained at a positive potential with respect to earth by the battery E connected through the load R1, and so the diode will pass current so long as the potential at the anode exceeds the potential at the cathode. The magnitude of the diode current will depend upon the relative magnitudes of the voltages at cathode and anode and will be more or less proportional to the difference between them provided that the anode is a few volts positive to the cathode. Neglecting the impedance of the diode by assuming a high value for R1, the voltage developed across R1 will be equal to the signal voltage V.

If now the value of E is so chosen that the positive signal excursions of V at their maximum do not quite exceed E but peak interfering pulses exceed this voltage by an amount depending on the individual pulse amplitudes, the diode cathode is driven positive on interfering peaks and is then momentarily above the potential on the anode. Under these circumstances the diode is cut off and the anode potential rises to the steady voltage E.

The difficulty with this simple arrangement is its inability to do more than limit the interfering pulses to a level determined by the distortion that can be tolerated on the signal itself. The value assigned to E determines the level of input at which the diode ceases to conduct: if no audio signal distortion can be tolerated the value of
Audio-biased Systems

The I.F. amplifier pulse from the anode-tuned circuit

The limiting diode the course, from the same objections sort and than those equivalent to the maximum passible audio

fering signals are reduced is signal, in general the amount of pulse noise remaining is still too great to be tolerated. For incorrect settings of E the audio signal itself is distorted as shown

Fig. 2.—The diode circuit as used for the basis of certain suppressors.

in Fig. 3 (b). Some circuits have been produced that cause the level of E to vary with the amplitude of the signal, but in general the amount of pulse noise remaining is still too great to be tolerated. Only the loudest interfering signals are reduced in volume; while on the lower audio levels there is little or no improvement.

The other variation of the simple limiter is the parallel-gate or shunt type where the diode is arranged to short-circuit the detector load on signal amplitudes greater than those equivalent to the maximum possible audio modulation. Fig. 2 (b) shows a circuit system of this sort and its operation is self-explanatory. It suffers, of course, from the same objections as those outlined for the series filter above.

A circuit based on the above simple limiter is included in some Cossor receivers, and is shown in Fig. 4. The limiting diode is positioned between the sound I.F. valve and the detector, and is biased by the steady voltage drop developed across R1 (30 kΩ) in the anode circuit of the I.F. valve. At a level determined by the setting of R1 the diode conducts and by-passes the noise pulse from the anode-tuned winding. In this circuit the I.F. amplifier is operating at 2.2 Mc/s and retains a wide bandwidth, thus ensuring retention of the peak characteristic of the interference with its consequent easy removal.

Audio-biased Systems

The previous circuit discussion forms a useful intro-

duction to a different approach to the problem of interference suppression. Instead of chopping interference peaks whose amplitudes exceed a fixed D.C. level, a better method lies in a circuit that can discriminate between short-period pulses and the audio signal and which can suppress those pulses whose amplitude is greater at any moment than that of the audio signal. The method should not be confused with a modification of Fig. 2 to adjust the voltage level of E to the mean audio level at a given time; the audio level itself decides the point at which suppression begins, and the effect on pulse signals is therefore something as shown in Fig. 5.

A circuit working on this principle is used in certain H.M.V. receivers and is illustrated in Fig. 6. The left-hand section of the double-diode is the detector, the load resistance being R1 (6.8 kΩ) shunted by C1 (47 pf). This output is fed to the cathode of the right-hand section of the valve which forms the limiter proper; this diode is arranged to conduct, the anode being positive with respect to cathode, and there is also a condenser C2 (0.001 µF) connected effectively between cathode and earth. On reception of a signal the cathode of the detector goes positive and carries the cathode of the limiter with it. The anode of the limiter rises by the same amount and the potential across C2 follows in sympathy with the output of the detector. When, however, an interference pulse is superimposed on the audio signal the anode of the limiter cannot follow it closely, due to the limitation imposed by the charging rate of C2. The effect, therefore, is that instead of an interfering pulse of high amplitude being passed on to the L.F. stage it has been reduced to a level that is only slightly greater in amplitude than the audio signal at that particular instant.

It will be noticed that the detector load has a value very much lower than usual. The reason for this is twofold; first, a low value ensures retention of the peak characteristic of the noise pulses, and second, for large values of load in this circuit the detector input cannot be permitted to fall below minimum value without severe sound distortion. The reason for this is that the limiting diode biases the detector so as to prevent rectification over

Fig. 3.—Cutting of interference peaks and how distortion can be caused.

Fig. 4.—A Cossor circuit.
a part of the cycle; above some critical voltage input no distortion occurs. There is, of course, a reduction in detector efficiency for a low diode load, but this is of minor importance.

A method of obviating the tendency to distortion at low input levels while retaining a high value of detector load is illustrated in the circuit of Fig. 7, which is used on many commercial receivers and is often included in home-built designs on account of its simplicity. The essential circuit system of Fig. 6 remains, but the diode cathodes are coupled by a condenser C3 (0.01 µF). The D.C. bias is therefore removed from the detector cathode, yet the limiter can still follow the audio signal since its cathode in conjunction with the capacity will operate to restore the D.C. level.

In the above circuits the anode-earth capacity of the limiter will charge up to the potential of the limiter anode, after which the maximum rate of any further change is determined by the time-constant of this condenser and the diode anode load. This time constant is arranged in practice so that the condenser can charge and discharge at a rate fixed by the highest modulation frequency to be handled. Typical values are 300 pF for the capacity and 2 MΩ for the resistance.

Thermonic diodes are not always used in such simple filter circuits and it is not unusual to find crystal rectifiers incorporated. The circuit of such an arrangement is shown in Fig. 8, and its similarity to the circuit of Fig. 7 is at once apparent. The limiter crystal is normally conducting and is maintained so by the positive potential applied from the H.T. rail through R3. The audio signal appears across R2 and is developed with only a small loss across C2. On the arrival of an interfering pulse the voltage across this condenser cannot change with sufficient rapidity and the crystal cuts off for the period determined by the time-constant of R3C2.

A metal rectifier is used on Bush model T.91 and the circuit is shown in Fig. 9, slightly simplified for clarity. Here the signal is rectified by the diode D1 and the audio voltage is developed across the detector load R1 (470 kΩ). Across this load is connected R2 (560 kΩ) and R3 (500 kΩ), the normal receiver volume control, in series. When a signal changing at audio rates appears across R2 and R3, condenser C1 charges through R4 (2.7 MΩ) and develops a voltage approximately equivalent to that existing across R3. Reducing the circuit to a bridge as shown in Fig. 10 reveals the action somewhat better; here the crystal has its faces maintained at the same D.C. level throughout the audio-frequency range and the crystal is normally non-conducting. Now C1 can only charge through R4 at a certain rate; therefore if a pulse of interference drives the junction of R2R3 in a positive direction at a rate greater than this, the opposite face of the crystal will be left behind, rendering the crystal conductive. The volume control is then virtually short-circuited and the receiver is muted for the duration of the pulse. The diode D1 is part of a double-diode-triode valve in the actual receiver.

A further modification to the circuits so far discussed has been introduced in Murphy Models V114 and V116 so as to give a constant ratio of signal to noise by arranging for the bias on the anode of the limiter to be obtained not from the H.T. rail but from the audio output of the final sound amplifier. By means of this arrangement (to be shown in next month) the mean anode current of the limiter D1 thus varies according to the mean (rectified) audio output, and the interference is suppressed according to the strength of the signal. This is a great advantage for it means that on quiet passages the interference is almost non-existent, and only on loud passages does it approach the overall strength experienced with the previous circuits.

Fig. 5.—Effect on the pulses of some circuits.

Fig. 6.—An H.M.V. circuit.

Fig. 7.—Retaining a high detector load.

Fig. 8.—The use of a crystal for limiting.

Fig. 9.—A circuit used by Bush.

Fig. 10.—The arrangement of Fig. 9 in bridge form.
Filming the Royal Funeral Procession

By Philip H. Doreé, O.B.E.

Head of Television Films, British Broadcasting Corporation.

An individual newsreel company making a film record of the Funeral Procession for showing in the cinema will have had as its target a film of less than one reel in length, running some eight and a half minutes, and due to be shown in cinemas all over the country three days after the event was over. During the evening of Friday, February 15th, the day on which the Royal funeral was held, Television transmitted some 13 reels of film running well over two hours: the funeral was over at half-past two: the first reel of film was transmitted at 8 o'clock. There is one more pertinent comparison: the commercial newsreel will have been shot, in the main, with silent cameras, and commentary, music and effects will have been post-recorded, whereas the television film will have been wholly recorded at the time of shooting.

I would make it clear immediately that I am not trying to suggest that we in television are more skilled or more alert than the film-makers of Wardour Street. Our problem is an entirely different one and has to be met in a different way. The typical newsreel company will have fielded a round dozen cameras. Television had in the field twenty-two cameras, of which twelve were electronic and the balance of the standard types as used for ordinary filming; and because the output of the electronic cameras was filmed at Alexandra Palace the film of these at least could be rushed to the laboratory for processing and dispatch riders had to be allocated only to a selected few of the "straight film cameras" in order to get their film back to the laboratories through the dense crowds.

The Plan

The plan was basically quite simple. The electronic cameras (whose output was going to be broadcast at the time as well as being filmed for reproduction in the evening) were located at Westminster, at Hyde Park Corner and at Windsor. Had there been more of these available, they would have been located, too, at Paddington Station, at Wifhalsr Station and between the two, so that the cortège would have been in sight for virtually the whole length of its sad though impressive journey. But, lacking these additional electronic cameras, we located at the railway stations (and in between them) film cameras of such a design that sound could be recorded simultaneously with picture and to each, as to the groups of electronic cameras, was assigned a commentator whose duty it was to describe in detail everything and anything which might not be clear in picture and to explain the impressive traditional ceremonial which attains Royal occasions, even of this sombre kind.

Additionally, not only because at this stage of the art of filming the output of an electronic camera ("tele-filming," as we call it, or "kinescoping," as the Americans call it) the quality of the resultant film is not quite as good as it is with normal filming, but also because with the various radio and fine links between Windsor and Alexandra Palace there might be a technical breakdown. Television Film Unit cameramen equipped with ordinary "silent" cameras were stationed at vantage points in London and Windsor so as to make it possible ultimately to fill in gaps resultant on breakdowns and to ensure the placing in the television film archives of as perfect a record of this historical event as can be achieved today. This additional film has, in fact, been placed to study television in America. In this country he was one of the pioneers of television writing, and was, in fact, the first full-time scriptwriter ever appointed to the BBC service. With producer Stephen McCormick he started "London Town" in 1949, and he will be remembered by many viewers for his series "Magistrates Courts," "The Course of Justice," and, more recently, "The Loch Ness Monster."

Ross, a 43-year-old Scot, lives with his wife and four children almost under the shadow of the mast at Alexandra Palace. He came to television after 21 years' experience in film and theatre work. At one time he was the youngest manager in the Gaumont British circuit, and immediately prior to joining the BBC he worked with Paul Rotha as scenarist, director and producer.

"Canadian Journey"
DID that title startle you, or surprise you? It shouldn't. Because the documentary is the real future of television. I say this categorically, not because I co-ordinate the work of the documentary producers, but because I sincerely believe it and always have (though much of my working life has been in variety), and since documentary television is based on life itself. There is nothing stronger or stranger than life; certainly not fiction. The TV documentary has a line reputation and the department a big programme and this is on the way to viewers.

Television is probably the greatest coming medium for the projection of personality as such. And what is life but a dovetailing of personalities? The reaction of one person to another, love, hate, birth, death. One sells, another buys, one earns more, another less. One acquires too much, another exists on too little. It is the way of the uneasy universe man has created. To do justice to itself and its own purpose in existing side by side with its stable companions, television drama and talks, television documentary must reflect this faithfully and without distortion.

So never let it be said that the word "documentary" sounds dull. The mere word may spell a certain dryness—the deadness of a document. But this is most unfair to the result when it comes alive on your home screen. It must never be a series of interesting pictures on a given subject. At all costs a documentary must tell a story.

Television documentary owes much to certain programmes reckoned as milestones, notably: "I Want to be a Doctor," "Promise of Tomorrow" (about young actors), "Shout Aloud Salvation!" and the law series from juvenile courts to assizes: "The Course of Justice." "I Made News" followed this with a number of real-life cases of detection, some British, some from American F.B.I. files, some Continental, but always presenting, in addition to the players, some personality (in one case a prominent French detective) who was actually present at the unravelling and who could vouch for its authenticity by being able to say "I was there." This is what gave these true thrillers their genuine character as pieces of live documentary evidence.

Albert Schweitzer says that "the great sickness of man is that he is constantly seeking entertainment and more entertainment." But the public's insatiable appetite must be appeased somehow. I quote Ned Depinet, president of R.K.O. Radio Pictures: "New and costlier devices must be created to keep it thrilled, amused or merely interested. This is nothing new; it is merely more intense now, due to the whiplash of new and vigorous competition, maturity, and therefore greater selectivity, in public taste and a new and vital force which we can call the 'shrunken clock.' No longer is there 'time to kill'. The leisure hour is crowded with things to do. The public's problem is no longer a matter of spending money, but of profitably spending time."

Time

Time is television's greatest bugbear. In America you can have "video" on tap from breakfast till long past bedtime, with choice (in New York) of thirteen stations and many stars and commercials. In Britain adult TV is confined to certain hours which to the majority is its time off, that is to say, mainly at night. How much more can the public profitably want, or even take?

So it may well be that the TV documentary, when it reaches its own maturity, will tend to bridge the gap between grind entertainment and the search for something more serious (let us avoid the ghastly words culture or education). People may well turn to the documentary as a half-way house in the curious world of tomorrow that is rushing towards us so fast.

What is a "Documentary"?

I have been trying to find a simple description of the documentary, so perhaps it is fair to call it the creative interpretation of reality or a dramatisation of life as it is around us. It is a way of presenting true stories that have come from documents. That way can be found by filming, by presenting real people (as themselves) and by adding actors (impersonating real people) or by using actors exclusively to dramatise a particular point. joined in from actual film of real places. The next
secret is a good shape. So the answer is a well-written script from the start.

There is also the documentary play, the play with a social problem to discuss. I would place most of Galsworthy in this class. He was at heart a reformer as well as a story-teller. He used the world around him as his subject matter, the servants, and the lawyer in his platform. His impact would have been swifter if, in one night his Justice had been seen by a million or so licence-holders or, say, five million viewers, but he would not have made so much money in royalties with long runs in single playhouses to a few hundreds at a time. Nevertheless, his plays live on to-day as moving TV documents of a past period. But as messages they are museum pieces (though still fine vehicles for actors) because the social injustices he pleaded for have now been put right by succeeding governments.

A good example of a modern documentary play in television is Albert, by Guy Morgan and Edward Simmons. This told a true story in fictional form of a naval P.O.W. camp in Germany in the recent war, of a single room filled with British, American and Canadian naval types of all ages and all ranks—and the inevitable topic of escape. An artist among them created a dummy person, “Albert,” who could be assembled in sections by detachable limbs, taken to the washhouse wrapped in towels and put together there as a complete man for the march back while one of their number made a bid to escape. In fact, “Albert” did provide a real means of escape for a prisoner and the authors have it that the original dummy turned up later in a German war museum now in the Russian Zone. The memory of the original “Albert” is likely to live on again as the stage in the films as it is both novel and humorous and yet so stirring to the emotions.

Noel Coward’s remarkable play, Peace in Our Time, which showed Britain under a Nazi occupation, though written for the theatre, could well be adapted and handled as a TV documentary subject both as a thrilling piece of imaginative writing and as a warning to us all. How would people we all know behave in similar circumstances? Who knows who would be the Quislings? It is a fascinating speculation.

Viewers have recently had a taste (many without knowing it and more without caring overmuch) of the application of a new technique in TV. The producer and the director both billed in a single production. The layman has a right to ask what exactly both do? It has been current practice in films for years—the producer who assembles the production, finds the money, script, writers, scenery, costumes and artists, and the director who directs the whole on the floor and (in TV) from the control room in action too. It is the same relationship in legal practice as the solicitor has to the barrister. The solicitor talks down (in his office), the barrister talks standing up (in the court).

I asked Robert Barr, the outstanding exponent of the documentary programme in television, how he would describe the difference between a play of social interest and a documentary.

Both have a place in television schedules. His answer is that it all comes down to the intention. If it’s set up primarily to entertain, as in the theatre, to make certain effects on the emotions, such as strong curtain lines, as strictly a play; if the work’s intention is to inform, to state balanced opinion, it is legitimately a documentary.

Morning Departure, the drama of men in a submarine lost on manoeuvres, is a good example of the former; To Save a Life (a night shift in a hospital) was a real documentary.

The “Rising Twenties”

Television rightly does a lot for children, its junior viewers from three to five and from five to ten, but so far little or nothing for the genuine teen-agers—boys and girls between 16 and 20—the rising twenties—as they have been called. This is being put right from now on in a series which will cover such varied phases of struggling adolescence as a Boys’ Club in the North of England, the Call-up, a Salesgirl in a Chain Store, The First Job, and the group that stay on at Grammar School for training in technical colleges. They will all be dramatised and their stories acted out by professional actors. They may succeed in a dual purpose—to assault the imagination by their human values and also to make the youth of to-day think ahead constructively about what lies before them.

The secrets of Scotland Yard have always had a fascination for law-abiding taxpayers of all countries. The celebrated American bandleader, Major Glenn Miller, only a few days before his untimely and still unexplained death crossing the Channel by plane, when in London as conductor of the giant war-time musical export, the American band of the A.E.F. had only one request—to see inside “The Yard.” This wish was granted cheerfully by the Big Five. Together we walked round the Black Museum, were told about the marvellous criminal filing system where even a miscreant’s odd table habits may be known (one criminal was traced from boarding-house to boarding-house by a quirk of dicing bread); we even saw the results of an overnight raid on...
American Commentary

From Our American Correspondent

TWO interesting developments are announced from the U.S.A.—both connected with picture tubes. The first is from Stromberg-Carlson and is announced as "Panoramic Vision." "Panoramic Vision" (patent applied for), is the new feature produced for the first time in three new models using the new cylindrical-faced rectangular 21in. picture tube. With 241 sq. in. (1,554 sq. cm.) of viewing surface. In these receivers, the curved-face picture tube, hugs the removable safety-glass, also curved and extending across the entire front of the cabinet, to provide an extraordinarily wide view of the picture and to eliminate all room glare and reflection. For those who are interested in circuit features, these new receivers include automatic focusing, automatic re-trace line suppression, keyed automatic gain control, intercarrier tuning, and two-stage video amplification for high-contrast pictures at increased brightness: There are four stages of wide-band video.I.F. amplification.

The second development is a small electronic device that, it is stated, can be applied to home television receivers to test and reactivate the picture tube without removing the tube from the set, resulting in renewed brightness and considerably longer useful life. This unit has been placed on the market by a New York manufacturer, Transvision, Inc., of New Rochelle, New York.

In some cases, it was said, the picture tube may be made almost as good as new, and given as much as a year’s useful life before replacement is necessary.

The instrument is small and compact. It weighs 3lb., costs little and is simple to operate. It is claimed that picture tubes, some of them new and never in a receiver, have shown remarkable improvement in brilliance and definition after a few minutes of reactivation.

Although the principle of its operation is not new—cathode-ray tube manufacturers have used it for years in the initial making of picture tubes—its incorporation in a small box as a separate instrument for use by the public or TV service men is, so far as is known, quite new.

New picture tubes can be tested and reactivated without removing them from their cartons, and tubes in TV sets without removing the tubes from the receivers. It is done by attaching a standard picture-tube socket to the tube, linked by wires from the new instrument, turning a switch on the tester-reactivator, and noting the glow of a small neon bulb as a dial on the tester is watched. The condition of the tube is indicated directly on a dial of the tester, which is plugged into an A.C. home electric socket. The receiver, meanwhile, is not turned on.

In some cases the test and reactivation is accomplished in less than 15 minutes. In more severe cases one hour, or even two hours, is required.

Engineers of Transvision, Inc., described the ageing process in picture tubes as "strictly of poisoning." When tubes are made they are heated, then evacuated of air and "cooked" alternately until gases are removed. Some traces of gas, however, always remain inside the glass bulb, and these, released gradually "on the shelf" in stores or in sets in home use, adhere to the electron-emitting cathode in the tube and render it less able to do its work.
The "Practical Television" Receiver

AN ANALYSIS OF SOME OF THE DIFFICULTIES WHICH HAVE BEEN EXPERIENCED WITH THIS RECEIVER, WITH REMEDIES

By W. J. Delaney (G2FMY)

ALTHOUGH first designed in 1949, this receiver, which has been constructed in considerable numbers, has been remarkably free from recurring troubles. Those queries which have been received have been, in the main, different from each other and no particular fault has been experienced by all constructors. When referring to faults we intend, of course, to indicate troubles which are not due to deficiencies or inaccuracies in design. A good instance of a fault is that wherein a receiver works satisfactorily for a few weeks and then when switching on one night the raster opens only half-way. Or where, whilst the picture is running satisfactorily, it suddenly breaks up and it is impossible to obtain a clean raster again. It is obvious that faults such as these are due to breakdowns in some part of the circuit and it is these which cause most trouble. The initial setting up seems to be found quite simple, and it has not been found necessary to publish any change in the circuit although, owing to the discontinuation of manufacture of the mains transformer, it is necessary to use an alternative model in this position. The following faults will be dealt with because they are common to many commercial receivers and are of the type which seem to present most trouble to the reader who has no access to a C.R. oscilloscope—without which the proper testing of time-bases is almost impossible.

Line Linearity

The commonest fault is in the line linearity, and unfortunately this can be the result of several different breakdowns. Across the line coils in this particular model, and those employing a similar arrangement, a condenser is connected in series with a resistor (C58, 0.005 µF and R79 15 kΩ 10W). A similar arrangement will be found in a large number of receivers, and the purpose of these two components is to damp the oscillation which occurs in this part of the circuit. As most readers know, the peak potential which occurs here can be quite high and is, in fact, in modern commercial designs, utilised to provide the E.H.T. for the tube. In the Practical Television receiver the actual peak value developed across a working receiver is about 1.5 to 2 kV, and the scanning coils specified are designed to withstand this. It has been found that when experiencing difficulty in obtaining the specified condenser (2000 volts working) for this part of the circuit some constructors have, not realising the high voltages developed, used an ordinary type of low-voltage condenser in this part of the circuit. This has soon broken down, and the resultant open circuit permits the peak voltage to rise up to 6 or 7 kV and, as a result, the scanning coils will not break down. For a similar reason it is imperative that the constructor should not disconnect these components and try to operate the receiver with them out of circuit. A short-circuit across C57 is not so harmful as an open-circuit across the two items mentioned. Wrong values in these two components can, however, modify the linearity, and only the specified components, values and ratings should be used here.

Cramping Sides

Another fault, which is experienced very much on commercial receivers, is a cramping on one side or the other of the frame. It has been shown in past issues that the oscillator produces a waveform of a certain shape which is usually modified by the following amplifier, and the two together should produce a linear scan. It has also been pointed out before that when first setting up a receiver it is necessary to adjust linearity and width together, as it is generally found that the width control affects one side more than the other, whilst the linearity control functions on the opposite side. In certain modern designs, of course, the amplitude or width control does not affect linearity, or the linearity control has only a small effect on the total width. Although a linearity control is provided in the oscillator stage of the line time-base, it has been found in some instances that this does not permit a complete adjustment for perfect linearity. The other component in this type of oscillator which will affect linearity is the load resistor of the oscillator stage—in the P.T.R. this is R72. If it is found, for instance, that the left-hand side of the picture cannot be contracted sufficiently to balance both sides of the picture, an increase in the value of R72 should be tried. It will be remembered that in the P.T.R. no high-tolerance components were specified, practically all components being of the standard wide tolerance. It may therefore happen that the components in the stage may all vary, in one direction, and as a result a modification of one or more is called for. When designing the receiver I tried various values outside the normal tolerance ratings, and it was found that this particular type of time-base would function with very outside values, but it has since been seen that this particular resistor, carrying very

(Concluded on p. 524)
A New Windsor Test Meter
20,000 o.p.v. MODEL 77A

An entirely new instrument incorporating the latest improvements in manufacturing technique. Refinements include shockproof moulded case, clear and easy to read scales and many other features.

SENSITIVITY
20,000 ohms per volt D.C.
5,000 ohms per volt A.C.

METER
Precision engineered moving coil, fitted with 5in. scale and knife edge pointer.

RANGES
VOLTS D.C. : 0-7.5—30—75
—300—750—3,000.
VOLTS A.C. : 0-7.5—30—75
—300—750.
RESISTANCE : 10 ohms-5 megohms in two ranges, self contained.

SENSITIVITY METER
20,000 ohms per volt D.C.
5,000 ohms per volt A.C.

RANGES
VOLTS D.C. : 0—15
—30—75—300—750—1,500.
VOLTS A.C. : 0—15
—300—750—3,000—1,500.

OUTPUT. As for A.C. volt ranges except 3,000v., via a condenser.

List Price £15.0.0

Please write for illustrated leaflet featuring our new range of radio and television test gear.

Taylors Electrical Instruments Ltd.
412-424, Montrose Avenue, Slough, Bucks.

Phone: Slough 21381.

To: Miss P. Hobbs,
1, New Look Buildings,
Cranleigh, Surrey.

I am a Television Viewer and should like to receive Free details showing how I can improve my Television picture quality by 60%.

Name...
Address...

My set is a (make).............................
No...
RDF 1 RECEIVER

The unit reviewed in the October and November issues of this journal for conversion into a Tele
vision set is a Low Band Receiver with the name of SÖLL and
VISION ON THE ONE CHASSIS. Complete with 14
values as follows: 5 of 6P61, 2 of 6P6, 3 of EA50, and 1 each 6V6,
EB34, EC52, 5Z4G, also a complete reprint of the above review
(carriage, etc., 5/-) ONLY 49/-

194 I.F. STRIP

Reviewed in the October issue of this journal. An easily modified
LF Strip recommended for TV constructors who want good re-
sonstacts at moderate cost, or for those
who have built televisions but are
having trouble in the Vision or sound receivers. Can be built into
into tube layouts, measuring 8in. x 5in.

VCR97 C.R. TUBES

Another delivery of these famous tubes, all guaranteed tested and
suitable for Television (carriage paid) ONLY 45/-

MAGNIFYING LENS FOR
VCR TUBE

First grade oil filled (postage, 2/-) ONLY 25/-

TRANSFORMERS

Manufactured to our specifications and fully guaranteed.
Normal Primaries, 425v.-0.4, 425v.-200ma, 6.3v. 6a.,
6.3v. 6a., 5v. 3a., 0-2-4-6.3v. 3a.
350v.-0-350v., 160ma., 6.3v. 6a.
6.3v. 6a. 5v. 3a.
250v.-0-250v., 100ma., 6.3v. 6a.
5v. 3a.

All above are fully shrouded,
upright mounting.
Universal Mounting: 350v.-0.9
350v. 80ma., 0-4-6.3v. 4a., and
0-4-5v. 2a.

Top shrouded, drop through: 350v.-0-350v. 70ma., 6.3v. 3a.
5v. 2a.

Upgirt mounting: E.H.T. for
VCR97 Tube, 2500v. 5ma.,
2v.-0-2v. 1.1a., 2v.-0-2v. 2a.

5.5 kV. E.H.T. with 2 taps of 3v.
1a.
7v. E.H.T. with 4v. 1a.

PLEASE ADD 1/6 POSTAGE
FOR EACH TRANSFORMER.

CHOKES

20h. 80-120ma.
5h. 200ma.
30h. 100-150ma.
(post. ea. choke 1/-)

CO-AXIAL CABLE

Thin type, 70-80 ohms. Per
yard ONLY 13/-

Cash with order, please, and
print name and address clearly.

Order direct from:

CLYDESDALE SUPPLY CO. LTD.

2, Bridge St., Glasgow, G.5. 'Phone: SOUTH 2706/9
Visit our branches in Scotland, England and N. Ireland.

THE R3001 RECEIVER UNIT

A 15 valve (6V6, VU60, 4 S6P6, 5 EA50, 2 S6P4, EC50, VU111) dual chassis receiver for 220 Volts with 12 Mos.I.F. strip,
H.F. section, high cycle power section, antenna switch, relay,
carriage, etc., in metal case 18 x 8 x 8 lbs.

REAL BARGAINS

Open until 1 p.m. Saturdays, we are 2 mins. from High Holborn (Chancery Lane Station), 5 mins. by bus front King's Cross.

U.E.I. CORPN.,
THE RADIO CORNER, 138, Gray's Inn
Road, London, W.C.1 (Phone: TERminus 7937)

10 VALVE 11 METRE RE-
CEIVER ZC931

For long-distance TV results:
Valve line-up is 6 of S6P6, 2 of
EA50, and 1 each EF34 and
EC52, and the 12 Mos. I.F.
Strip gives tremendous amplifica-
tion with ample bandwidth of 4
Mc. in the receiving engine.
EASILY MODIFIED,
full details being supplied (car-
riage etc., 5/-) ONLY 59/-

RECEIVER R3118

An A.C. Mains operated version of
the above ZC931, but is in-
initely more powerful, having
another I.F. Stage and employing
16 valves: 6 of S6P6, 4 of EA50,
2 of EF34, and 1 each EC52, P61,
5Z4 and Y63 "Magic Eye."
Built-in power pack operates
from 180-240 V, A.C. in excellent
condition (carriage, etc., 3/6)
ONLY 97/-

"INEXPENSIVE TELEVISION"

The 48-page book which gives
details of many ex-Gen. units
which can be used for television
Construction, has just been re-
vised and republished, and now
covers London, Midlands, and
Holme Moss Areas. Send for
your copy NOW (post paid)
ONLY 2/9

Bargains in Ex-Servicemen Radio and Electronic Equipment

FOR INEXPENSIVE TELEVISION

INDICATOR UNIT, TYPE 62. IN MAKER'S ORIGINAL CASE.

CLYDESDALE'S £5. 9. 6. CARRIAGE PRICE ONLY PAID

Also available in used, fair condition.

CLYDESDALE'S 79/- 6. EACH CARRIAGE PRICE ONLY PAID

E.H.T. TRANSFORMER

Primary tapped 20-250 v. A.C. Sec. (i) 3,000 v, 3 m.A. tapped 25/20 v. Sec. (2) 4 x 1 amp. Sec. (3) 1 x 1 amp tapped 25 v. and 2.5 v.

PRICE 45/- POST PAID

MAINS TRANSFORMER

Primary tapped 250-20 v. A.C. Sec. (1) 350-350 v, 175 m.A.
Sec. (2) 6.3 v, 5 A. Sec. (3) 6.3 v, 6 A. Sec. (4) 5 v, 5 A.

PRICE 55/- POST PAID

Also available potentiometers, resistors, condensers, etc.

New List of Ex-Service Items No. 9. Price 1/-

(Prices credited on purchase of 2/- or over.)

THE R3001 RECEIVER UNIT

A 15 valve (6V6, VU60, 4 S6P6, 5 EA50, 2 S6P4, EC50, VU111) dual chassis receiver for 220 Volts with 12 Mos. I.F. strip,
H.F. section, high cycle power section, antenna switch, relay,
carriage, etc., in metal case 18 x 8 x 8 lbs.

CLYDESDALE'S £4. 12. 6. CARRIAGE PRICE ONLY PAID

UCS

FOR ELECTRONIC ENGINEERING & PRACTICAL TELEVISION SETS

in pack-flat kits or assembled cabinets. Radiogram, Radio and Television
cabinets must be made to suit customer's requirements, in quantities
or singly. Tape Recorder Cabinets.

Prices and literature on application

JAMES TALLON & SONS LTD.
(Dept. P.T.1.)
MANOR WORKS - MANOR ROAD
RUGBY

Telephone: RUGBY 2070
Pioneers of Television

2.—VLADIMIR ZWORYKIN, MAKER OF MODERN TELEVISION

Most people take it for granted that television is a completely new thing, something which has only been invented during the last few years. The truth however, is far from this. The idea of television, or "electric seeing" as it used to be called, goes back a round eighty years at least, whilst the principle of modern television technique was first enunciated in London in 1911.

Evidently, the idea of television is no merely modern thing. Nor, for that matter, is television as we know it nowadays the brain-product of any one inventor. Quite a number of clever inventors toyed (and fumbled) with the notion of "seeing by electricity" before finally relinquishing the project as being hopelessly impracticable for any ordinary use. And, perhaps, they were quite justified in so doing because, almost without exception, they one and all lacked the electrical knowledge and practical facilities which have gone to make the long-sought art of television or electrical seeing the practical proposition which it is in our modern days.

A Practical Pioneer

If, perhaps, there is any one individual pioneer who is more responsible than any others for the phenomenal practical success of up-to-date television, that individual is a one-time totally unknown Russian worker, a former technical college student: by the name of Vladimir Kosma Zworykin, who, on emigrating from Russia to America, gave to the world the first really satisfactory television camera which was based on the principle of the cathode-ray tube.

Zworykin was born in Russia in 1889. His parents were middle-class bourgeois people who, as such, were able to provide for his early education and to finance his entry into the famous "Institute of Technology" in the then St. Petersburg (Petrograd). Perhaps, if Zworykin had been of very humble parentage he might never have been heard of.

It happened, however, that one of the professors at the St. Petersburg Technological Institute was a person named Boris Rosing, a man who had made a minor name for himself in the then infantile sphere of electronics and who had, indeed, actually devised some experiments on the practicality of working out and constructing a system of television or, as he called it, "electrical vision." As time went on, Rosing became more and more television-minded. It was his constant enthusiasm, his constant endeavour and, no doubt, his constant dream. Such earnestness was picked up by his pupil, the youthful Zworykin, who assisted the professor in all his work and at all his practical demonstrations. Rosing and Zworykin became firm friends. Together they worked for the development of the technique of the cathode-ray tube. The cult of the cathode ray seems, indeed, to have become the keynote of Zworykin's subsequent life and activities, for it was at the St. Petersburg Institute that Vladimir Zworykin first began to realise the enormous potentialities held forth by these electric tubes. A realisation which subsequently became, in due time, such a motive force in his future path to technical, inventive and commercial success in the sphere of the one-time "electrical-seeing."

Zworykin graduated in electrical science in the St. Petersburg Institute. Then came the time for him to leave the Professor Rosing and, in 1912, he entered the "College of France," a Parisian Institution, to undertake X-ray research under the direction of Professor P. Langevin, another enthusiastic worker in the science of electrical vacuum tubes. When the 1914-18 war broke out. Zworykin felt too restless and uneasy in Paris. So he returned to Russia and served his country during the war as an officer of the Russian Radio Corps, as it was in those days. But after the war he left Russia and emigrated to the United States, becoming a naturalised subject of that nation within a year or two of landing there. Before this, he had joined the research staff of the Westinghouse Electrical and Manufacturing Company, of Pittsburgh, and it was here that he first began to devote himself seriously and energetically to the many problems which then awaited the successful creator of any system of television working.

There were, of course, other minds working in the same direction. Inventors in Germany were actively attacking the long-standing television problem. Von Minden, of Budapest, was then rising to the height of his reputation as an electrical inventor who desired to achieve fame in the realm of television, whilst in England the now famous John Logie Baird, at that time almost an amateur, and a rather impetuous one at that, was creating scientific sensations by demonstrating, in London, the crude, half-shadowy television images on poorly lighted, orange-red flickering screens. The vision systems of all these inventors were based on
mechanical principles only, some of which, particularly those of Baird, were holding out great possibilities of eventual success. Zworykin, however, saw, it had never been done before, that, for any successful television working, no purely mechanical device could possibly be given the speed and the flexibility of an all-electric system of image transmission and reception which was necessary to provide high-definition television working. His first professor—Boris Rosing—at St. Petersburg itself had, as far back as 1908, more or less confidently preached the all-electric principle of image reproduction by means of cathode rays, and so, too, had an English experimenter, John Logie Baird. Campbell Swinton, who, perhaps before Rosing himself, had worked out on paper a complete television system based on cathode rays, in considerable detail.

Enter the Iconoscope

It was on the principles originally advanced by Rosing and Campbell Swinton that Zworykin began his work on the cathode-ray tube as a means of successful television in the laboratories of the American Westinghouse company. This work led quickly to his conception of the basic principle of the Iconoscope, a revolutionary type of television pick-up tube designed on a cathode-ray basis. Under Zworykin's direction, a group of young engineers working with him made this tube suitable for practical picture transmission.

Others, particularly in America, were hot on the same trail, but Zworykin, with his Iconoscope, got there first. The cathode-ray pick-up tube which Zworykin first chose to designate by the name of iconoscope (Greek: ionic, an image; skopein, to see) quickly revealed its value by making possible the first entirely satisfactory television camera for both interior and outside use. Unlike other image-pick-ups of the time, the Iconoscope had no moving parts of any sort. It was essentially a 100 per cent. electrical device, the first really successful and relatively simple implement for “seeing at a distance.” The Iconoscope invention not only made the first of the modern television cameras, but it also formed the basis of all the subsequent important developments in this field of applied science.

First appearing on the laboratory scale in 1933, Zworykin's Iconoscope principle was applied to television cameras in 1935, that is to say, a couple of years later, and it was first perfected for practical television purposes in 1945. Had not World War II intervened, the Iconoscope camera would, naturally, have been forthcoming at a considerably earlier date. During the period 1935-1945, Zworykin worked incessantly on the perfection of his camera. He developed (1935) the Zworykin “electron multiplier,” a device for stepping-up the intensity of the electron-flow of electrons emitted from a cathode element under the impact of light, natural or artificial. By this device alone, the television camera greatly increased in sensitivity to all forms of light. From being an entity only suitable for the strongest of natural illuminations, it was transformed into a device which could function quite well under relatively weak artificial light. Electron multipliers are, nowadays, not only applied to television cameras, but also, to many forms of talking-picture screen reproducers.

The "Kinescope"

Incidentally, Zworykin brought out, during his earlier days in America, what he called his “Kinescope.” This was actually an improved form of cathode-ray tube specially designed for television reception. It was a device which, in association with the original Zworykin "Iconoscope," made practical the first beginnings of modern all-electric television as practised nowadays by all the leading nations of the world.

Thus, we see that besides being the first creator of the modern television camera, Zworykin functioned, too, as the originator of our present-day television cathode-ray receivers.

Other Inventions

Perhaps it will be unnecessary to remark that the research activities of Vladimir Zworykin were by no means confined to television alone. Our pioneer had begun his student days at St. Petersburg with photo-electric studies, and these he kept up at the present stage of his career. His attentions, besides television, were being given over to many phases of electronic and electron optics. Such work led to the development of a number of electronic image tubes which were devoted to a host of important light-controlled optical devices and mechanisms, electrical gadgets which now serve various industries throughout the world. The study of electron optics guided Zworykin’s practical interests to the subject of the electron microscope, an implement which was not his actual creation but which has been benefited by his work to a large extent as a result of the concentrated, long-term effort which he bestowed on its design. Since 1928, Vladimir K. Zworykin has been closely associated with the Radio Corporation of America, a company which has its main research centre at Princeton in the State of New Jersey. Before moving from the celebrated Westinghouse Electric Co. to the R.C.A., Zworykin had been awarded the degree of Doctor of Philosophy by the University of Pittsburgh. This honour was only the first of a long succession of academic distinctions which have been subsequently conferred on him, mainly, perhaps, in well-deserved recognition of the indispensable pioneering studies which he has made in the extensive field of modern electronic and television advancement.

Dr. Zworykin is, at present, not only vice-president of the gigantic R.C.A. organization, of Princeton, New Jersey, but also the Director of Electronic Research of that company. He has received various honours and distinctions from most nations of the world. Thus does civilization value the coming of television in practical, everyday form. Vladimir Kosma Zworykin, world-acknowledged maker of modern television, is not only a man who has been in the right place at the right time and who has been shrewd enough to fasten-on to the opportunity when it first arrived at his door. But, more than this, by his interest in and by his long-lasting practical devotion to a specialised and entirely modern field of electronic studies and experiment, the new claim which has been made on his behalf to have reared, developed and, at last, to have virtually perfected one of the world’s modern scientific wonders must, so far as we can tell, remain for ever practically unassailed.

A Near Disaster

Only once did Zworykin's Iconoscope invention nearly end in practical annihilation. This was when he had planned to install a model of his device in the American dirigible, Akron, just before the war. The airship was to fly high above the clouds and then to lower the Iconoscope camera on a cable until it was substantially below cloud-level so that the pilot would be able to see what was going on below without, at the same time, exposing the dirigible to view from the ground. For one reason or another, the inventor did not accompany the camera in its flight. But the Akron did proceed on its flight. Ultimately, it crashed badly. The Iconoscope camera mechanism was destroyed completely, but its inventor, fortunately, survived the disaster.
The "ARGUS"

BUILDING OUR Free Blueprint TELEVISION RECEIVER

MAKING THE CHASSIS, AND FURTHER CONSTRUCTIONAL NOTES

The Time Base

The time-base circuit is given in Fig. 6. It follows normal practice and has been proved to be very reliable in operation.

The input is taken via C40, and V12 forms the D.C. restorer. V13 is the phase splitter, the picture signal for the C.R.T. being taken from its cathode while its anode supplies a correctly-phased signal for the sync separator.

An SP61 is used in this position with screening grid, suppressor grid and anode connected together to give normal triode conditions. This type of valve is used merely as a convenience; they are cheap and easy to obtain and its use in this position makes the top of the chassis layout appear uniform.

The coupling condenser C41 cuts off the D.C. component of the signal provided by V12, but as the cathode of V14 is directly earthed, the valve works on the lower portion of its curve and the D.C. component is thus artificially restored.

C58 is made variable so as to obtain the best amplitude of line sync pulse to trigger the line oscillator. The pulse obtained from V14 is fed to the line oscillator via the differentiating circuit. The frame pulse is obtained from the junction of R39 and R40 and is fed to the frame oscillator via the integrating circuit.

Both oscillators are of the Miller integrater and transitron type and each is accompanied by a companion valve to provide paraphase amplification and hence an output which is in push-pull for application to the deflector plates. V16 works in conjunction with V15 and the outputs are obtained at C54 and C55. Both these condensers need be only 450 volts working for the reasons explained later.

Fig. 6.—Theoretical circuit of the time base.
V18 performs the same function for the frame oscillator and the "Y" plate feeds are taken via C47 and C48. These condensers also need to be only 450 volts working.

VR4 is the "Line Hold" control and VR5 is the "Frame Hold" control. The H.T. supplied to the frame time base goes through the variable potentiometer VR6, which thus exercises control over the height of the picture.

Building the Time Base

The chassis is constructed as shown below. After the holes have been drilled from the Blueprint and the chassis made up, the wiring can proceed.

The valveholders should be mounted first and then the component strip. This is formed by bending two pieces of soft iron strip 1/4 in. wide 1/4 in. thick into an L shape and mounting on it tag strips, which are cut from a standard strip.

The filaments of the valves are wired first; the earthed side going to the valveholder fixing bolts. The components are fixed as shown in the diagram and those attached to the tag strip are fastened as the work proceeds. Start with the D.C. restorer, then the phase splitter, sync separator line time base, and frame time base.

The leads to the deflector plates are fixed at the bottom terminals of the tag strip and are taken out through the chassis and labelled one by one as they are wired.

Finally the H.T. and L.T. leads are brought out of the chassis.

E.H.T. and C.R.T. Network

The circuit is shown on page 506. E.H.T. is obtained by using a transformer directly from the mains. The main advantage is that should the E.H.T. winding break down, one is faced with the cost of replacing a single small transformer, whereas if the E.H.T. and the rest of the power supply is obtained from one transformer, the cost of replacement in the event of a breakdown in the E.H.T. windings is very heavy.

It should be noted that the E.H.T. positive is earthed and not the negative. The reason for this is that it keeps the peak inverse voltage (which amounts to 5,000 volts) away from the transformer and transfers it to the valve. This greatly reduces the risk of breakdown in the transformer.

A further advantage is that the coupling condensers to the deflection plates need only be 450 volts working, and the time base H.T. supply can be used for biasing the plates.

One disadvantage is that the grid of the C.R.T. cannot be directly coupled to the time base and the condenser used for coupling (C61) must be 2.5 kV. working. Due to the use of this coupling condenser the D.C. component is lost and has to be reinserted by use of the EASO diode.

It should be remembered when dealing with a circuit of this nature that the cathode and filament of tube and diode are at E.H.T. potential with respect to chassis, and care should be taken in the wiring and handling of these points.

The bias on the C.R.T. is varied by VR9, which varies the cathode potential in relation to the grid. This control forms the Brilliance Control. The E.H.T. voltage applied to the second anode is made variable.

Fig. 7.—Details of the tube mount.

Fig. 8.—Dimensions of all the 5 chassis.
A view of the underside of time base and power unit.

by the potentiometer VR10 and thus enables accurate focus to be obtained.

The X and Y plates are biased by voltage obtained from the time-base H.T. One X plate and one Y plate is provided with variable bias (VR7 and VR8), which form the shift controls to enable the raster to be accurately centred.

Building the E.H.T. and C.R.T. Network

The chassis should be constructed as shown below, and Figs. 7 and 9 show the method of constructing the tube mount. It is in two parts, one for the tube holder and the other for the neck of the tube.

Most tubes have two rubber rings round the neck and they should be moved forward so that they act as a buffer between the metal of the tube holder and the glass of the tube. If you should happen to have a tube which has not got these rings, then a strip of sponge rubber can be used, or even a strip of felt.

The holder should not be clamped down too firmly or the neck of the tube may be fractured.

The E.H.T. transformer should be fixed first, followed by the bleeder network. The bleeder resistors (R68, R69, R70 and R71) are mounted so that they are ⅛ in. clear of the chassis.

The Focus and Brilliance controls are mounted on a thick paxolin strip which is fastened to the chassis by L-shaped connectors, as shown in Fig. 7. This holder is mounted in the position shown and the controls fastened to it. Extension rods 10 in. long carry the controls to the front panel, but are not fitted at this stage.

The tube holder should be mounted next together with the diode restoring diode, which is fastened to the tube holder by a small piece of L-shaped metal, using the existing screws on the tube side of the holder.

R66 is retained in its vertical position by the wiring.

After fixing all the components the wiring can proceed, bearing in mind that the R61, R62, R63 and shift control network is 450 volts above earth potential, but the rest of the circuit is at E.H.T. potential.

Commence the wiring with the biasing and shift control network. Room is left on the resistors R57, R58, R59 and R60 so that leads from the respective coupling condensers in the time base can be "fed" at these points.

R65 and C64 are mounted as shown in the wiring diagram, and the resistor R64 is mounted directly across the diode holder. All this part of the circuit should be wired with double insulated wiring, using 2 mm. sleeving over the bare wire and enclosing the whole in 5 mm. sleeving.

The leads from the primary of the E.H.T. transformer to the mains are brought out at the side of the chassis together with the time-base H.T. lead. The time-base H.T. lead is connected to the top end of R61, and this forms the common point for the H.T. to be connected to the time base itself.

When this part of the work has been completed, the time base and C.R.T. chassis can be bolted together. The X and Y leads from the time base should be connected to their respective resistors, and the L.T. for the time base extended through the side of the C.R.T. chassis.

H.T. for the time base is connected to the top of R61 in the manner mentioned previously.

Fig. 9.—Details of the tube base support.

Fig. 10.—Details of the compartment screens.
A coaxial cable link is run from R34 in the time base to C61 in the C.R.T. network, and the screened covering should be earthed at both ends.

When the wiring has been completed it should be checked very carefully. Finally, the 10in. long extension rods should be connected to the brilliance and Focus controls, the rods being insulated with P.V.C. covering from a length of coaxial cable. The front ends are supported by a paxolin strip. When the knobs are fitted, the grub screws should be sunk well inside the knob.

Power Supply

The transformer should have an output of 425-0-425 volts and the time-base H.T. is taken directly from the receiver side of the smoothing choke. R72 and R73 feed the vision and sound receivers respectively. Adequate smoothing is applied and the raster will be found free from traces of ripple.

As an additional precaution an iron shield can be erected between the power unit and the vision and sound receivers, if desired.

The mains input is taken via the switch, and the transformer side of this switch is connected to the appropriate voltage tap on the transformer. The main input to the E.H.T. transformer is wired directly across the power transformer, and thus comes under the direct control of the switch.

Building the Power Unit

The chassis is constructed to the dimensions shown in Fig. 8, and the components should be fixed and wired as shown in the blueprint.

After all the wiring has been checked, a test should be made to ensure that no contacts exist between H.T., E.H.T., L.T. or earth. The separate units can then be connected together by long leads, not forgetting the coaxial links from the time base to the vision receiver, and from the vision receiver to the aerial socket.

Do not bolt the units together at this stage, as it is much easier to make adjustments or correct faults with the units separate.

Insert the valves in their respective sockets and fit the C.R.T. in its mount.

Operating Instructions

Set all the controls to their minimum positions: plug in the mains lead, and switch on. After allowing time for the televisor to warm up, advance the brilliance control until a trace appears on the screen. This should be roughly square in formation and is termed the "raster." Now adjust the focus control until the lines forming the raster are clearly defined: the height control can then be adjusted to obtain a suitably dimensioned pattern, and the shift controls operated to bring the raster centrally on the screen.

Now reduce the Brilliance control until the raster just fades out. This is the normal operating position for the brilliance control. Advance the contrast control and a varying pattern should now appear on the screen. Adjustment of the line-hold control should resolve the pattern into a picture and adjustment of the frame-hold control should lock the picture vertically.

(To be concluded next month.)
The waves in a high
whereas the
lines used, (a) twin lead,
balanced pair and must therefore be connected directly to
In connection
This may
match
It
Fig.
Receiver
Twin - lead
cable
To
a
IN
Another important factor
Principle
is
not
and
the aerial. This
' is exactly one quarter of a wavelength long (measured in
terms of electrical length) will possess a high impedance at
the operating frequency if short-circuited at the far
end.
Fig. 1 shows one form of unit. It consists of a metal
shield one quarter of a wavelength long fitted round the
aerial end of the transmission line; the back end of the
shield is bonded firmly to the outer conductor of
the coaxial line while the top end is left free. Thus
the inside of the shield and the outside of the outer
conductor form a \(\frac{1}{4} \) section of line which is short-
circuited at one end.
A similar method which is more practicable for
television is to run the coaxial cable up through the
bottom half of the dipole. This is shown in Fig. 2. The
outer skin of the coaxial cable, together with the inner skin
of the dipole, forms a \(\frac{1}{4} \) short-circuited section of line
resonant at the frequency of the dipole.
Now a line such as this displays a high impedance at
its open end, i.e., between A and B. Assume a voltage
is generated in the dipole, then a potential will exist at
D with regard to the centre of the dipole; B also pos-
sesses a potential difference between itself and the centre
of the dipole. (Fig. 3 makes this clear.)
The centre of the dipole is at earth potential: D has
a high impedance with regard to the centre of the dipole
and therefore it has a high impedance with regard to
earth. B has a high impedance to the centre of the
dipole and it also has a high impedance to earth due
to the effect of the short-circuited \(\frac{1}{4} \) section, i.e., due to
the high impedance effect between A and B. The equiva-

Fig. 1.—General illustrations of the form taken by
one type of matching transformer.
connection between the aerial and its transmission line.
In TV practice there are two general types of transmission
lines used, (a) twin lead, and (b) coaxial cable.
Now a dipole has two equal arms which form a
balanced pair and must therefore be connected directly
to a balanced line in order to obtain maximum results.
Twin - lead cable is made of two parallel conductors
which form, in themselves, a balanced pair. When such
a cable is connected to the balanced dipole they
form a complete symmetrical system, and the maximum
results are obtained, provided that both impedances
are equal.
Coaxial cable, however, is inherently unbalanced, and
if direct coupling is made between the balanced aerial
and the unbalanced cable, losses are liable to occur.
H.F. current circulates in the "skin" of a conductor
and with coaxial cable we have the condition where the
outer skin of the outer conductor is at earth potential,
whereas the outer skin of the inner conductor has quite
a high impedance to earth.
At the lower frequencies the unbalance is not excessive
especially so when the diameter of the line is small
compared with the length of the aerial. When dealing
with television frequencies, however, the unbalance
becomes much more noticeable and losses due to standing
waves in the transmission line are liable to occur.
It is not a difficult matter to convert an unbalanced
coaxial line so that it becomes balanced as far as the
aerial is concerned; losses due to standing waves are
then avoided and the full benefits of accurate matching
obtained. It is accomplished as explained briefly in the
February issue by using an unbalance to balance
converter.
The Principle
This may take various forms, though the principles
governing their use are the same, and depend mainly
upon the fact that a piece of transmission line which is
exactly one quarter of a wavelength long (measured in
terms of electrical length) will possess a high impedance at
the operating frequency if short-circuited at the far
end.

Fig. 2. (left).—Taking the feeder through the bottom
portion of the dipole. Fig. 3 (right).—Voltage distribution
in the dipole.
A lent circuit diagram in Fig. 4 shows the conditions which bring about the balance.

An Alternative
Where the diameter of the dipole does not permit the use of the above scheme another method; as shown in Fig. 5, may be used. Here the transmission line and

![Diagram of dipole and coaxial cable](image)

unit are mounted side by side. The bottom end of the unit is short-circuited and the top end connected as shown in the figure. Both transmission line and the unit should be brought off at right angles to the dipole for at least one quarter of a wavelength. The short-circuited end causes the unit to offer a very high impedance at the frequency to which it is tuned.

One snag with this method is that the velocity factor of the cable must be included in the calculations of the length of the unit. A formula is given below:

$$L = \frac{246 \times V}{f}$$

where L = length of unit in feet.
f = frequency of the dipole in megacycles.
V = velocity factor of the cable.

V depends upon the class and type of cable being used and can be obtained from the manufacturers of the cable. As a general guide 75 ohm coaxial cable such as is used for television has a velocity factor of about 0.66.

Once the unbalanced condition of the coaxial cable has been overcome the writer prefers this type of cable to twin lead. With coaxial cable the outer sheath can be fully earthed and thus form a screen from interference in its passage down to the receiver; at the same time it provides an efficient safeguard against heavy electrical discharges when lightning is about.

THE BRITISH TELEVISION VIEWERS' SOCIETY

Hon. Sec. : E. W. Gregg, 15, Convent Hill, Upper Norwood, S.E.19.

Television's popular feature.

Café Continental, formed the subject of the British Television Viewers' Society's meeting held at Kennard's Restaurant, Croydon, on Monday, February 4th, when its producer, Henry Caldwell, addressed a large gathering of members.

The speaker explained the origin of this successful show in the Middle East during the war and gave details of the difficulties encountered and complicated formalities required in the course of booking foreign sets for the Café.

The relating of his experiences whilst searching for suitable talent on the continent and elsewhere provided some amusement at the meeting, but members were nevertheless fully appreciative of the very hard preliminary work done "behind the scenes" before Café Continental becomes a reality on their television screens each month.

NORTHAMPTON AREA TELEVIEWERS' SOCIETY

General Sec. : G. T. Wilson, 4a, Embiride Road, Northampton.

At the society's January meeting, a Viewers' Forum discussed the question: *Is the presence of Harding in "What's My Line?" a cause of embarrassment, and should he be removed?* Opinion from the floor included the view that he should be retained. Other questions under discussion included O.P. transmission from the Midlands, such as motor racing from Silverstone, Northamptonshire, and County Cricket sponsored programmes.

Mr. N. T. G. Thorne, secretary, stated that he had a letter from Mr. Barrie-Edgar, TV Outside Broadcasts Producer, stating that they hoped to be at Silverstone this year.

The society recently voted on the question of Leslie Mitchell being dropped from "Picture Page." Our views were sent to the chairman of Viewers' Viewpoint (British Television Viewers' Society).

For our February meeting on Thursday, February 21st, we had as our guest, Mr. Eric Robinson, B.B.C. Television Musical Director, and on March 14th, Mr. Cyril Page, B.B.C. Newsroom Commander, who was in Korea, will visit the society.

ADMIRALTY ELECTRONICS SOCIETY

Hon. Sec. : W. J. Green, Esq. (G3EBX).

Membership of this society is open to civilian and service members of the Admiralty, and to members of other Government Departments at the discretion of the committee.

PROPOSED MANCHESTER CENTRE FOR THE TELEVISION SOCIETY

In view of the rapid increase in the interest in the North of England in television, it has been decided that an attempt shall be made to form a centre of the Television Society in Manchester, and with this idea in view a meeting was recently held.

Further details about the meeting, and all correspondence, should be addressed to Mr. T. E. L. Watson, 10, Dalton Avenue, Whitefield, Near Manchester. (Whitefield 2781.)

THE TELEVISION SOCIETY

REVISED PROGRAMME OF MEETINGS

All meetings, unless otherwise stated, are held at the Cinematograph Exhibitors' Association, 164, Shaftesbury Avenue, W.1, and commence at 7.30 p.m.

- **Thursday, March 29th.**—Fleming Memorial Lecture, "Guided Waves," Prof. H. M. Barlow, Ph.D. (University College). Held in the Anatomy Theatre, University College, Lower St., W.C.1, at 6.30 p.m.
- **Friday, March 30th.**—The Mechanism of Signal Generation in Storage Type Picture Tubes. Dr. H. Birtles (Rye Radio, Ltd.). Wednesday, April 4th.—A New Television Recording Camera. W. D. Kemp, B.Sc. (B.S.C.P.A. Dept.). Joint meeting with the British Kinema Society at Film House, Wardour St., W.1, at 6.45 p.m. (Tues).
- **Friday, April 27th.**—Silver Jubilee Dinner. The Waldorf Hotel.
- **Thursday, May 1st.**—A Discourse by Mr. Richard Dimbleby: "London Town." Held in the Lecture Theatre of the Institution of Electrical Engineers, Savoy Place, at 6.30 p.m. Visitors tickets will be limited.
- **A Summer Meeting will be held in June, 1952.**

Non-members of the society are admitted to meetings on presentation of a signed ticket obtainable from any member, or from the Hon. Lecture Secretary, Mr. G. T. Clark, at the Society's London office, 164, Shaftesbury Avenue, W.C.2.
SOLDERSUNS

Built to increase output and cut costs over the whole field of soldering from fine instrument work to heavy industrial soldering. Only Wolf Soldersuns have all these outstanding advantages.

OFF-Straight EASY-Grip Handle PERFECT CONTROL
LOW CURRENT CONSUMPTION QUICK HEAT-UP
MAINTAIN CORRECT HEAT LOCALISED HEAT
A MODEL FOR EVERY PURPOSE

SOLDERING IRONS

For all who, for special reasons, prefer the conventional straight type handle. Identical as regards elements and bits with Wolf Soldersuns but with round hard wooden handle with heat deflection skirt.

Wolf ELECTRIC SOLDERING IRONS & SOLDERSUNS

* Obtainable from all high class stockists and ironmongers.

WOLF ELECTRIC TOOLS LIMITED · PIONEER WORKS · WANDER LANE · LONDON · W.5 · Telephone: PERIVALE 5631 W

Visit Stand No. 6603, B.I.F. (Castle Bromwich), May 5 to May 10.
THE LONDON ASSURANCE

Very good people to deal with

HAS IT OCCURRED TO YOU? A moment's carelessness—and you may find yourself sued for damages of hundreds of pounds. But it's a year all it costs to protect yourself with our Personal Liability Insurance. Interested? Then write YES beside this paragraph, and cut it out with the coupon.

THE LONDON ASSURANCE
1, King William St., London, E.C.4

Please send me your booklet: "How to be well Assured"

Name

Address

1/165
Modifying the "P.T." and "Viewmaster" Receivers for Kirk o'Shootts

DETAILS OF THE ALTERATIONS REQUIRED AND THE NEW PEAKING FREQUENCIES

An examination of the frequency spectrum allocated to the BBC television system will show that the new Scottish transmitter has frequencies midway between those of Holme Moss and Sutton Coldfield. Kirk o'Shootts is on what is known as Channel 3, whilst the Northern transmitter is Channel 2 and Sutton Coldfield Channel 4. The sound and vision carrier frequencies for each channel are separated by 3.5 Mc/s, and the separation between each vision carrier and the sound carrier of the channel next above it is fixed at 1.5 Mc/s. It is obvious, therefore, that in some areas it may be found difficult with ordinary circuits to obtain adequate separation between the vision and the sound channel of the adjacent transmitter, but the geographical location of the stations and their frequencies have been so chosen that this will only present trouble in very few localities.

In the booklet dealing with the "Practical Television" receiver we have given coil data for Channels 1 and 4, whilst later issues carried a separate instruction data sheet for modification to the coils for Channel 2. As the new station in Scotland is midway between the Midland and Northern transmitters the core coverage under normal conditions should enable either of the coils for these two transmitters to be tuned to the required 53.25 Mc/s signal for sound or 56.75 Mc/s for vision.

The only drawback to using coils for these frequencies will be that the core will be almost out at one end or the other, but much depends upon the stray capacities in the circuit wiring, and these differ for each individual constructor.

Coil Modifications

If it is desired to wind new coils the following data will apply:

Aerial Input Coil 6
(Tap at 1½)
V.F. Coupling Coils (4 required) 5
Sound Coupling Coil 6 and 5
Sound Input and Rejector Coil(s) 5 (Tap at 1)

If it is found that the core has to project too far, half a turn may be opened out at the end, but it is emphasised that in view of the flat tuning which is necessary and is produced by the damping resistors, together with the stray wiring capacities, exact half-turn coils are not called for and the core adjustment with the closely wound coils should enable the exact frequencies to be found. The peaking frequencies upon which the circuits should be aligned with the aid of a signal generator will be as follows:

A three-quarter rear view of the popular "Practical Television" receiver.

Official estimated field strength contours of the Kirk o'Shootts station when on full power.
Film Testing by Television

TELEVISION is now being used in British film studios for the first time. A complete three-camera unit, supplied by Marconi's Wireless Telegraph Co., Ltd., is installed at the Eustree studios of Associated British, and Robert Clark, executive director in charge of production at Eustree Studios, is to use television as a means of testing whether film stories mooted for production are likely to prove box-office winners. The method by which he will accomplish this is both new and ingenious. For the first test pre-fabricated film sets will be standing ready on one of the large sound stages at Elstree Studios. A cast of well-known players, headed by James Donald and Isabel Dean, will then perform a full-length story. But instead of the usual film cameras, they will be "shot" by television cameras. As the story is performed it will be transmitted into one of the large viewing theatres at Elstree where the "film try-out" will be viewed by a representative body of executives and film and television technicians. By this method, the experts should be able to assess whether or not the televised story will be a likely subject for filming in the normal manner.

Cutting Out Gambles

It is believed that this is the very first time in history that this method of pre-filming by television has been carried out in Britain. The scheme has many advantages. Showmen normally judge a film's potentialities by a complete visualisation of the script. This new method will allow executives and technicians to view an actual performance on a cinema screen, thereby probably ensuring that fewer gambles and more certainties will emanate from studios.

The story forming the subject for the initial televised film performance is "The Human Touch," a script by J. Lee Thompson and Dudley Lesley, from the successful play of the same name which had a long run at the Savoy Theatre about three years ago. Film production chief Robert Clark, in his determination to achieve the best possible results from this performance, engaged one of the BBC's senior television producers, George More O’Ferrall, to direct the performance.

Reducing Costs

Another advantage of this harnessing of television in film studios will be that film tests of individual artists may be speedier, less costly and more advantageous than the normal motion picture artist test.

It must be emphasised that this new project is very much in the nature of an experiment. But it is an experiment that is likely to pay dividends after film and television technicians have had the opportunity of working closely together and blending their respective techniques as is being done at Elstree. If the experiment is successful it could mean that producers in this country will be able to assess the value of, as it were, a finished product instead of having to try to assess the screen potentialities of a story from the script alone.

It is highly probable, moreover, that the television experts, that this "marriage" of film and television techniques might easily prove beneficial to television studio productions.

Table: Potentialities of Film Testing

<table>
<thead>
<tr>
<th>Generator Connected to</th>
<th>Tune Coils</th>
<th>Peaking Freq. Mc/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid of V6</td>
<td>L314, L315 for MAX. sound output at</td>
<td>53.25</td>
</tr>
<tr>
<td>Grid of V1</td>
<td>L313, L310, L303 for MAX. sound output at</td>
<td>53.25</td>
</tr>
<tr>
<td>Grid of V3</td>
<td>L308 for MAX. output at</td>
<td>56.75</td>
</tr>
<tr>
<td>Grid of V2</td>
<td>L307 for MAX. output at</td>
<td>56.00</td>
</tr>
<tr>
<td>Grid of V1</td>
<td>L312 for MIN. output at</td>
<td>58.25</td>
</tr>
<tr>
<td>Aerial Input feeder</td>
<td>L304 for MAX. output at</td>
<td>56.00</td>
</tr>
<tr>
<td></td>
<td>L303 for MAX. output at</td>
<td>54.00</td>
</tr>
<tr>
<td></td>
<td>L310 for MIN. output at</td>
<td>54.00</td>
</tr>
<tr>
<td></td>
<td>L309 for MIN. output at</td>
<td>58.25</td>
</tr>
<tr>
<td></td>
<td>L313 for MAX. output at</td>
<td>53.25</td>
</tr>
</tbody>
</table>

The Viewmaster for Scottish viewers is the Model D, which is exactly the same as Model C (Holme Moss), with the exception of the coils. To convert a Model C to the Kirk o'Shotts' frequencies it is only necessary, therefore, to change the set of Wearite coils. There are no other alterations whatever in the circuit or in any of the other component values.

Kirk o'Shotts coils can be identified by their numbers L301 to L315 (instead of L201 to L215 as listed in the Model C (Holme Moss) Viewmaster booklet), and are enumerated in the table below.

Alignment Instructions

The instructions given on page 21 of the Holme Moss booklet are exactly the same for Kirk o'Shotts and the following is the correct aligning procedure with a signal generator for the Kirk o'Shotts' frequencies.

<table>
<thead>
<tr>
<th>Inductance</th>
<th>Kirk o'Shotts Coi Reference Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerial Coil</td>
<td>L301</td>
</tr>
<tr>
<td>V1 Grid Coil</td>
<td>L302</td>
</tr>
<tr>
<td>V1 Anode Coil</td>
<td>L303</td>
</tr>
<tr>
<td>V2 Grid Coil</td>
<td>L304</td>
</tr>
<tr>
<td>V2 Anode Coil</td>
<td>L305</td>
</tr>
<tr>
<td>V3 Grid Coil</td>
<td>L306</td>
</tr>
<tr>
<td>V3 Anode Coil</td>
<td>L307</td>
</tr>
<tr>
<td>V4 Anode Coil</td>
<td>L308</td>
</tr>
<tr>
<td>Aerial Filter Coil</td>
<td>L309</td>
</tr>
<tr>
<td>V1 Anode Filter Coil</td>
<td>L310</td>
</tr>
<tr>
<td>V2 Anode Filter Coil</td>
<td>L311</td>
</tr>
<tr>
<td>V3 Anode Filter Coil</td>
<td>L312</td>
</tr>
<tr>
<td>V6 Grid Coil</td>
<td>L313</td>
</tr>
<tr>
<td>V6 Anode Coil</td>
<td>L314</td>
</tr>
<tr>
<td>V7 Input Coil</td>
<td>L315</td>
</tr>
</tbody>
</table>
BUILD YOUR OWN MODERN RECEIVER for HALF the normal cost

A MIDGET 4-STATION PRESET SUPERHETERODINE RECEIVER for A.C. mains. Designed to receive any three stations on Medium Waveband and one on Long Waves by the turn of a Rotary Switch, no Tuning being necessary. The Complete Assembly Instructions, showing the Wiring Diagrams, Component Layouts, and Point-to-Point connections, together with a Component Price List, available for 1s.

A 4-VALVE T.R.F. BATTERY PORTABLE PERSONAL SET, available as a Complete Kit of Parts or by purchase of the Components separately. The complete price details, including an Individual Component Price List, are included in our set of Assembly Instructions, which are obtainable for 9d.

A MIDGET 4-VALVE SUPERHETERODINE PERSONAL SET, covering Long and Medium Wavebands and designed for Mains or Battery operation. This receiver is designed to operate on A.C. mains or by an "All-dry" Battery; either method is selected by means of a Rotary Switch. It is so designed that the Mains Section I supplied as a separate section which may be incorporated at any time. The set, therefore, can be made either as an "All-dry" Battery Personal set or as a Midget Receiver for Combined Mains and Battery operation. The Assembly Instructions, which include Wiring Diagrams and Practical Component Layouts, are available for 1s. This includes a separate Component Price List.

TUNING UNITS, a publication showing how to make three different types of Tuning Units: 1. A 1-Valve T.R.F. Unit covering 200 and Medium Wavelengths. 2. A Superhet Unit, covering 250 and L.Waves. 3. A 4-Valve Station Superhet Unit, providing three stations on Medium and one Station on Long Waves. The Manual, page 28, shows Wiring Diagrams, Practical Layouts, and Component Price Lists.

Send 9d. P.O. for our NEW STOCK LIST, showing many KITS OF PARTS for Sets and Battery Chargers and "hundreds" of Wireless A.C. MAINS 3-VALVE RECEIVER, as described and published by Wireless World," covering Long and Medium Wavebands. Cost of all Components to build this set is £5/5/0. A reprint of the complete Assembly Instructions, including Practical Layouts, is available for 9d.

THE "MIDGET 3-VALVE BATTERY PORTABLE" for 4 PRESET STATIONS, as designed and published in the March issue of "Practical Wireless." We are able to supply all the Components to build this Midget Portable. Blueprint and detailed component price list is available at 1s, including postage.

THE "SUMMER ALL-DRY BATTERY PORTABLE," as published in the June issue of "Practical Wireless." We can supply from stock all the Components to build this Midget 3-Valve Receiver. A reprint of the complete article and circuits, including Practical Layout and Component Price List is available for 1s.

A COMPLETE KIT OF PARTS to build a MIDGET "All-dry" BATTERY ELIMINATOR, giving approx. 69 volts and 1.4 volts. This eliminator is suitable for use with a 4-valve Superhet Personal Set. It is easily and quickly assembled and is housed in a case, size 4½ x 1½ x 2½. Price of Complete Kit, 42/-6d. Included in the kit is a complete instruction sheet giving assembling details.

For £1/15/6. A Complete Kit of Parts, Including Drilled Chassis and Valves, to build a 6 to 8 watt PUSH-PULL AMPLIFIER for operation on A.C. Mains. Incorporates Tone Control and is suitable for use with any type of pick-up. The complete set of Assembly Instructions, including Practical Layouts, is available for 9d.

PHYSICAL SOCIETY EXHIBITION

Huxley Building, South Kensington
April 3rd.-8th.

showing our latest ELECTRICAL LABORATORY & PRODUCTION TESTING EQUIPMENT at STAND No. 106

BRITISH PHYSICAL LABORATORIES, HOUSEBOAT WORKS, RADLETT, HERTS.

VOLT METERS • TEST SETS

SAVE P.T. on T.V.

Even small screens give you a BIG PICTURE when you use a Magnavista lens. That’s why wise buyers see the Magnavista first—then save money on their sets!

Remember, it’s optically correct, and the inside filter allows daylight viewing with a normal brilliance setting and, saves overworking the tube.

SOME POPULAR KITS and CIRCUITS for EASY ASSEMBLY by the HOME CONSTRUCTOR

SAVES P.T. on T.V. a.

April, 1952

PRACTICAL TELEVISION
Home Study will give you a fuller understanding of Television problems.

To the enthusiast for whom television is an absorbing interest and who wishes to understand more about it, or to those who are constructing their own sets and want complete knowledge of the theory underlying the constructional details, ICS offers a sound, practical and comprehensive course of instruction. It has given a high level of efficiency to many, who studied in their own time. What about you?

FOR THE ENTHUSIAST OR INTENDING TV ENGINEER

Course 'A' provides a sound introduction to radio and television principles, deals with the principles of reception and transmission, and includes the preliminary study of Mathematics, Electro-technics and Radio and Television. Course 'B' offers a more comprehensive treatment of receiving equipment, deals in detail with modern principles of transmission and reception, and contains the necessary introductory instruction in mathematics, electrotechnology and radio.

The ICS also offer the following Courses in Radio:

Complete Radio Engineering Radio Service Engineers Radio Service and Sales Advanced Short-Wave Radio Elementary Electronics, Radar and Radio

And the following Radio Examinations:

British Institution of Radio Engineers P.M.G. Certificates for Wireless Operators City and Guilds Telecommunications Wireless Operators and Mechanics, R.A.F.

For FREE BOOKLET and full details of these highly successful courses, fill in and post the coupon below. Fees are moderate and include all books required.

Generous Discount to H.M. Forces.

MULLARD 5- MARCONI OSRAM 5- BRIMAR 5-

"YOU CAN RELY ON US"

FOR CLEAN COMPONENTS AT COMPETITIVE PRICES

48HR. SERVICE AGAIN

VALVE DATA MANUALS

CLAPHAM, LONDON, S.W.8

MANUFACTURERS:

B.P.A., MARCONI, OSIAMS, BRIMAR.

RADIO SERVICING CO.

TECHNOLOGY

T/V

International

CLAPHAM, LONDON, S.W.8

"YOU CAN RELY ON US"

FOR CLEAN COMPONENTS AT COMPETITIVE PRICES

48HR. SERVICE AGAIN

VALVE DATA MANUALS

CLAPHAM, LONDON, S.W.8

MANUFACTURERS:

B.P.A., MARCONI, OSIAMS, BRIMAR.

RADIO SERVICING CO.

TECHNOLOGY

T/V

International

CLAPHAM, LONDON, S.W.8

"YOU CAN RELY ON US"

FOR CLEAN COMPONENTS AT COMPETITIVE PRICES

48HR. SERVICE AGAIN

VALVE DATA MANUALS

CLAPHAM, LONDON, S.W.8

MANUFACTURERS:

B.P.A., MARCONI, OSIAMS, BRIMAR.

RADIO SERVICING CO.

TECHNOLOGY

T/V

International

CLAPHAM, LONDON, S.W.8

"YOU CAN RELY ON US"

FOR CLEAN COMPONENTS AT COMPETITIVE PRICES

48HR. SERVICE AGAIN

VALVE DATA MANUALS

CLAPHAM, LONDON, S.W.8

MANUFACTURERS:

B.P.A., MARCONI, OSIAMS, BRIMAR.

RADIO SERVICING CO.

TECHNOLOGY

T/V

International

CLAPHAM, LONDON, S.W.8

"YOU CAN RELY ON US"

FOR CLEAN COMPONENTS AT COMPETITIVE PRICES

48HR. SERVICE AGAIN

VALVE DATA MANUALS

CLAPHAM, LONDON, S.W.8

MANUFACTURERS:

B.P.A., MARCONI, OSIAMS, BRIMAR.

RADIO SERVICING CO.

TECHNOLOGY

T/V

International

CLAPHAM, LONDON, S.W.8

"YOU CAN RELY ON US"

FOR CLEAN COMPONENTS AT COMPETITIVE PRICES

48HR. SERVICE AGAIN

VALVE DATA MANUALS

CLAPHAM, LONDON, S.W.8

MANUFACTURERS:

B.P.A., MARCONI, OSIAMS, BRIMAR.

RADIO SERVICING CO.
Trans-Atlantic Relay Off
IT is understood that the National Broadcasting Company of America has decided that its plan to televise the Coronation of Queen Elizabeth by using 'planes, flying at a height of five miles and equipped with microwave relay apparatus, contains too many technical difficulties and entails too much expense.

Growth of Television
THE BBC is making a film on the development and growth of television. The early days of John Logie Baird's experiments and discoveries will be included in the film, which is intended primarily for exhibition overseas, although it will be seen on the BBC service in this country.

Television for Italy
BY next year Italy should have television. The standard of 625 lines and 25 frames interlaced has been fixed, and transmitting stations will be situated in Rome, Milan and Turin, seven to be built within the next two years.

A television staff has already been engaged by the Italian radio, and both the television and radio services will come under Government control and finance.

Our Films Earn Dollars
MORE and more British films are being flown to the United States to be shown on television screens over there.

The films, mainly murder and psychological thrillers, are mostly made by a London firm and are specially designed to suit American tastes.

Old Favourite
OLD pre-war English films are still shown in America and are very popular.

Probably the most televised of them all is John Buchan's "Thirty-nine Steps," starring Robert Donat and Madeleine Carroll. Although filmed as long ago as 1935, it appears on American screens at least three times a year.

Fish Location
UNDERWATER television apparatus, which can detect fish within a distance of fifty feet.

Pye Contract
MR. CINGOLANI, president of "Radio Minerva," Milan.

Television was used for the first time in this country in an Oxford Street store, when demonstrations were shot by a Marconi camera and shown on the sets in the shop.

The Editor will be pleased to consider articles of a practical nature suitable for publication in "Practical Television." Such articles should be written on one side of the paper only, and should contain the name and address of the sender. Whilst the Editor does not hold himself responsible for manuscripts, every effort will be made to return them if a stamped and addressed envelope is enclosed. All correspondence intended for the Editor should be addressed to: The Editor, "Practical Television," George Newnes, Ltd., Tower House, Westminster Street, Strand, W.C.2.

Owing to the rapid progress in the design of wireless apparatus and to our efforts to keep our readers in touch with the latest developments, we give no warranty that apparatus described in our columns is not the subject of letters patent.

Copyright in all drawings, photographs and articles published in "Practical Television" is specifically reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden.
recently visited Cambridge to sign an agreement for the manufacture of Pye television receivers under licence in Italy.

With television transmissions now beginning in Turin, there is a good potential market for television receivers in Italy. "Radio Minerva" is a well-established name on the Italian market. Their factory is situated in Milan, where they have a very modern plant manufacturing radio receivers and other electronic products.

Lesson Tests

When the schools educational service opens in May, six London schools will hold test classes to see what benefit can be derived from this form of education.

Two of the schools are the Chase School for girls and the Albany School for boys, at Enfield. The classes will last half an hour and will be televised every afternoon for four weeks.

Wenvoe Progress

Construction of the new transmitter at Wenvoe has proceeded so smoothly that it is expected that the first tests will be made in June.

After only seven weeks' work the 610ft. main part of the mast was completed. The fitting of the tubular section and the 40ft. dipole will be carried out soon, so that the proposed opening date in September now seems certain.

The transmitter will bring 3,500,000 more viewers within range of television.

Committee Approval

Two devices were approved by the Anglo-French Television Liaison Committee last month for making French pictures fit English screens.

New Rush

A further boost was given to the sale of receivers in Scotland when the Kirk o'Shotts station transmitted the funeral of the late King.

Crowds collected round display windows of Glasgow dealers and many of the fortunate already possessing receivers invited others to share with them the initial delight of viewing.

Many people paid cash down at the last minute in order to have a set installed in time.

"About the Home"

In a recent edition of "About the Home," one of the guests introduced by Joan Gilbert was Mr. F. J. Camm, editor of Practical Television.

The subject for Mr. Camm's short talk was not on this occasion television, but bicycles. Viewers were given hints and points for which to look when choosing a new bicycle.

Churchill's Speech

The Gramophone Co., Ltd., have the privilege of publishing on "His Master's Voice" records the memorial speech made by the Rt. Hon. Winston S. Churchill, O.M., C.H., M.P., to the memory of our beloved King George VI, broadcast on Thursday, February 7th.

This tribute is contained on two 12in. plum label records, Nos. C.7900 and C.7901, which have been available since Saturday, February 16th.

The profits from these records are being given to a charity nominated by the Prime Minister.

Commonwealth Link

Directors-General from India, Pakistan, Australia, New Zealand, South Africa and Canada will arrive in London in June to discuss with Sir William Haley, Director-General of the BBC, plans for a two-way television and radio link between this country and the whole of the Commonwealth.

The outcome of the discussions is likely to be kept secret for a time.

"What's My Line?"

With the leaving of Professor Jimmy Edwards from the "What's My Line?" team and only occasional appearances of Richard Dimbleby, the panel of experts for this popular programme consists once again of the faces that were with the show in the first editions back in the autumn. The faces belong, of course, to Elizabeth Allan, authoress Marghanita Laski, Jerry Desmonde, and the one and only Gilbert Harding.

Eamonn Andrews still reigns supreme in the role of chairman.

Dusty Screens

Viewers are reminded that a dark circle on the face of the cathode ray tube does not necessarily mean that deterioration has set in.

The dark patch may be caused by dust collecting on part of the tube. A quick test for a true diagnosis of this type of complaint is to stand by the side of the receiver with the ordinary room light on and look at the glass from a downward angle. If dust has accumulated, it will show up as a dark patch.

Lack of Electronic Mechanics

Speaking at the annual dinner of the Institution of Electrical Engineers, in London, Field-Marshal Sir William Slim, Chief of the Imperial General Staff, said that one of the great shortages in the Services was the electrical mechanic, together with electronic equipment.

-He said that he wished employers would release skilled men for service in the Regular Army and the Territorials.
The new ARMSTRONG Television Chassis Model T.V.15 incorporating a 12in. C.R.T., is now available for distribution.

How much do you know about Radio and Television?

This world-famous book contains all latest radio and television developments. Earlier copies sold 300,000 - this entirely new volume has 400 pages, 1,440 entries, hundreds of illustrations; covers every aspect of radio: new sections include radar, television, remote control, calculators, Kirchhoff's laws, photo-electric cells, new series of modern circuits for receivers and amplifiers, automatic station selector, crystal electron multipliers, fast finding, building television receiver, new colour codes, etc.—contains all the accumulated knowledge of radio science! Examine this grand book on 30 days' approval terms - if you do not wish to retain it, return your purchase money is refunded in full.

MAKE SURE OF YOUR COPY—POST COUPON NOW!

To: A. THOMAS & Co. (T), 117 Buchanan St., BLACKPOOL

I enclose 22¢ for one copy of above OR Please send C.O.D.

Name:

Address:

BALANCED ARMATURE, LOW RESISTANCE HEADPHONES, Type 1, 1 1/2 pair.

BALANCED ARMATURE, LOW RESISTANCE HEADPHONES, Type 2, 7 1/2 pair.

HIGH RESISTANCE HEADPHONES, 1 1/2 pair.

LIGHTWEIGHT HIGH RESISTANCE HEADPHONES, 18 1/2 pair.

MOVING REED HEADPHONES, Type 5, 1 pair.

BRAND NEW R1155 RECEIVERS, in original cases, complete with 10 valves, £12 10s. 7 1/2 Packard and Carriage.

BATTERY CHARGER KITS. All incorporate metal rectifiers. Transformers are suitable for 200-250 v. A.C. 50 cycle MAINS.

Cat. No.

2002 Charges 6 volt accumulator at 1 amp. Resistance supplied to charge 2 v. accumulator.

2003 Charges 12 volt accumulator at 1 amp. Resistance supplied to charge 2 v. accumulator.

TUNING CONDENSERS, 4-Gang, 1,000 mfd. Ceramic insulation, tin spindle. 5 psi. 3-Gang, 1,000 mfd. 1 spindle. 11/2 - 4 each.

GERMANIUM CRYSTAL DIODES, wire ends, medium size. The ideal Crystal Detector. G.E.E., or B.T.H. 4 1/2 each.

METAL RECTIFIERS—FULL WAVE, 6 v. 1 amp. 45- 12 v. 1 amp. 85, E.H.T. Pencil Type—Output: 450 v. 1 ma. 4 each; 1,000 v. 1 ma. 6 each.

CRYSTAL MICROPHONE

An entirely insulated crystal microphone which can be safely used on A.C./D.C. amplifiers. High impedance. No background noise, really natural tone. The ideal Mike for Tape, wire and disc recording and sound projectors. Price 22 6.

MAINS NOISE ELIMINATOR KIT.

Two specially designed choices with three smoothing condensers, with circuit diagram, Cuts out all mains noise. Can be assembled inside existing receiver. 6 complete.

H.T. ELIMINATOR AND TRICKLE CHARGER KIT.

All parts to construct an eliminator to give an output of 120 volts at 30 mA., and 2 volts to charge an accumulator. Uses metal rectifier, £2.

BURGOYNE SOLDIER GUNS, 75—

V.C.R. 97 C.R. TUBES

We are once again able to offer this famous tube with the usual PREMIER Guarantee of a full screen picture, free from cut-off. Every tube being television picture tested before despatch.

£2 5 0

Plus 5/- postage, packing and insurance.

NEW BABY ALARM KIT

A tremendously improved and re-designed version of the famous Premier Baby Alarm Kit consisting of a Battery in Plastic Cabinet to construct to enable Baby's cries, or even breathing, to be heard in any selected room in the house. Consists of a 2-voltage amplifier (A.C. mains-operated 200-250 volts, with a Midget Telephone used as a Microphone. A 9 in. Loudspeaker is now incorporated in the kit which together with other improvements in the design have resulted in tremendously improved sensitivity and quality of reproduction. May be left permanently connected. Extra Microphones in different rooms may be added without impairing the efficiency of the Unit. The lead from Microphone to the Unit may be up to 30 ft. in length. Complete with Valves, Circuit and Instructions, £9 6.

PREMIER SUPERHET COILS. 16-50, 100-150, 200-2500 metres. Set. with circuit, 10 6.

T.V. WHITE RUBBER MASKS CORRECT ASPECT. We can supply a specially designed White Rubber Mask for 4 in. C.R. tubes at 2/- each. 6 in. White Masks, 15-12 in. White Masks, 10-11. Round or flat-faced.

The new ARMSTRONG Wireless & Television, Co. Ltd., Warlers Road, Holloway, London, N.7. Telephone—NORTH 3213.

How much do you know about Radio and Television?

PRICE

53 Guineas

TAX PAID

Also in production

The new ARMSTRONG TELEVISION CHASSIS Model T.V.17 for Fringe Area Reception (similar in appearance to the T.V.15). Price £7 15 6 TAX PAID

Prices quoted are subject to alteration.

IMPORTANT ANNOUNCEMENT: We cannot accept responsibility for, or guarantee, any kit or component sold as a Premier product by firms other than ourselves. All prices quoted are those ruling at the time of submitting advertisement copy, and are subject to alteration without notice.
HOLM MOSS CONVERSION

Type AC/4 Converter unit for use with Sutton Coldfield receivers. Optimum picture detail and Sound. No returning or alterations. Incorporates power supply unit, R.F. stage and high sensitivity. Can be fitted in any stage or circuit. Free from noise and correct reception of the new single side-band transmitters. Also available for Holm Moss on London type receivers. Price, complete with 5 valves, etc., 15 gns. C.O.D. if desired, or by arrangement with your own Dealer.

The AC/4 neutralized triode PRE-AMPLIFIER. A well designed and properly tuned giving the best possible results for 'Fringe' and long distance viewers. Our confidence in the unit is revealed by a 7 day guarantee. Price complete, 10 gns. C.O.D. if desired, or by arrangement through your Dealer. Illustrated leaflet and details, etc., available on request.

TELEVISION COMPONENTS

FOR THE

"Practical Wireless" VIEWMASTER AND E. E. TELEVISIONS

IN STOCK

Price lists of specified and alternative components available on request. Prompt Postal Service

J. T. FILMER

MAYPOLE ESTATE, BEXLEY, KENT

TEL. Bexleyheath 7427

5 HARROW ROAD, LONDON, W.2

PADdington 1008/9

4041

Send stamps for new 28-page catalogue. Please include postage under £1

METAL RECTIFIERS. S.T.C. 300 volts 1.25 amp., 12V, 25V, 60V, 120V. Westhouse 12 volts 2 amps. 32, 12, 60V, 120V. Price 4.7. Pencil Type E.H.T. 1,000, 1.1V. 6. - 12V, 3J, 33V. Price 1.76.

TRANI-RECEIVER. No. 38. Trans. Aerial R.ods, etc. Metal case, size 12in., x6in., x4in. In new condition, but less transmitting components, removed by the M.O.S. Price, including carriage, 35. - Limited quantity.

FIDELITY TRANSFORMERS. Manufactured by American Tube and Co. Octal base fixing. Following frequencies only: 1,500 kc., 6,300 kc., 10,000 kc. Price 2.

F. T. TRANSFORMERS. Manufactured by F. T. Transformer Co., 100 volts, 0.5 ma., 100,000,000 ohms. Size 4 in. x 14in. x 14in. Price 2.

P.A.5.0. RECEIVER: MAGNOX. Manufactured by well known manufacturer, dual stage and 100,000,000 ohms. The meter is a moving coil type operated from 110 volt battery input. Price in unit. Size 6in. x 8in. x 4in. Weight 2 lb. - Listed at 25 in our price, brand new. 54/4.0. 5.17.

ALUMINIUM, LIGHT ALLOYS, BRASS, COPPER, BRONZE, remember ... you have a choice of 3,000 stock sizes of TUBE, ROD, BAR, SHEET, STRIP, WIRE, ANGLE, CHANNEL, TEE at H. Rollett & Co. Ltd., 6, Chesham Place, London, S.W.1 Phone: SLOane 3343 3236 Rosebery Avenue, London, E.C.1 KIRKBY TRAINING ESTATE LIVERPOOL "No Quantity too Small"

When you are planning to use

TELEVISION EQUIPMENT

METAL RECTIFIERS. S.T.C. 300 volts 1.25 amp., 12V, 25V, 60V, 120V. Westhouse 12 volts 2 amps. 32, 12, 60V, 120V. Price 4.7. Pencil Type E.H.T. 1,000, 1.1V. 6. - 12V, 3J, 33V. Price 1.76.

TRANI-RECEIVER. No. 38. Trans. Aerial R.ods, etc. Metal case, size 12in., x6in., x4in. In new condition, but less transmitting components, removed by the M.O.S. Price, including carriage, 35. - Limited quantity.

FIDELITY TRANSFORMERS. Manufactured by American Tube and Co. Octal base fixing. Following frequencies only: 1,500 kc., 6,300 kc., 10,000 kc. Price 2.

F. T. TRANSFORMERS. Manufactured by F. T. Transformer Co., 100 volts, 0.5 ma., 100,000,000 ohms. Size 4 in. x 14in. x 14in. Price 2.

P.A.5.0. RECEIVER: MAGNOX. Manufactured by well known manufacturer, dual stage and 100,000,000 ohms. The meter is a moving coil type operated from 110 volt battery input. Price in unit. Size 6in. x 8in. x 4in. Weight 2 lb. - Listed at 25 in our price, brand new. 54/4.0. 5.17.

ALUMINIUM, LIGHT ALLOYS, BRASS, COPPER, BRONZE, remember ... you have a choice of 3,000 stock sizes of TUBE, ROD, BAR, SHEET, STRIP, WIRE, ANGLE, CHANNEL, TEE at H. Rollett & Co. Ltd., 6, Chesham Place, London, S.W.1 Phone: SLOane 3343 3236 Rosebery Avenue, London, E.C.1 KIRKBY TRAINING ESTATE LIVERPOOL "No Quantity too Small"

When you are planning to use
UNDERNEATH THE DIPOLE

By Iconos

That is a vastly different proposition from the three-minute (or more) commercial blurb permitted every half-hour on American television programmes. There must be a midway compromise between these two extremes which would be acceptable to British viewers.

HIGH-DEFINITION FILMS

TELEFILM recording is a useful device for filming events televised during the day, for subsequent retransmission. Great as the progress has been in improving the quality of telefilm recordings, it still lacks the definition, sparkle and quality of the normal TV newsreel, for which ordinary cine cameras have been used. There are certain fundamental snags which are almost insuperable in photographing scenes off a 405 line interlaced picture on a C.R. tube. Norman Collins and T. C. Macnamara, both former BBC executives, are now developing a system of high-definition film recording, using upwards of 600 lines with sequential scanning, and the recording takes place on a closed-circuit. The system is primarily intended for use in film studios as a time-saver in production, but I feel its most useful place is actually back in the television studio.

TEN-MINUTE TAKES

If it can be demonstrated that recordings can be made which show no loss of quality when reproduced, compared with direct transmissions on 405 lines, interlaced, then here is a tool which should interest the BBC far more than the film industry. All the important TV plays could be recorded in advance instead of being televised direct, thus enabling plays to be split up into several sections and photographed in the course of a day or so. This would give both artists and producers a better opportunity of getting the best out of each scene. The tension which develops behind the scenes when a long and elaborate TV play is being produced has to be seen to be believed. Photographed in, say, a number of separate ten-minute sections, there would be fewer artistic and technical fluffs, and a really bad take could be scrapped. Furthermore, the film record could be retransmitted any number of times and also exported to other countries—in exchange for dollars! Mind you, British Actors'

A COMPROMISE

MOST viewers feel that the case against sponsored TV programmes cannot be proved until they have an opportunity of seeing a few samples. In the very early days of broadcasting, when Lord Reith (then plain "Mr.") presided over the three solitary BBC studios at Savoy Hill, a Sunday newspaper was allowed to promote a "celebrity" radio concept which was highly successful. The name of the newspaper was announced only at the beginning and end of the programme, which seemed a fairly reasonable sort of arrangement to me. Occasional TV programmes put over in the same manner would, I feel, have a tonic effect upon the whole service.

"Now that you've made the darn thing, LISTEN TO IT, WILL YOU?"
DEPTH OF FOCUS

Some of the TV cameras at Lime Grove certainly seem to be super-sensitive. I am told that some of the image orthicon cameras are so sensitive that a reasonable picture can be picked up with the light of a few candles. On the other hand, with fairly normal studio lighting, the lens aperture can be closed very considerably, even to f/22 or smaller, giving an extraordinary depth of focus. A person's head in the immediate foreground, for instance, will then be quite sharp while the back wall of a large set is also sharp. Of course, such extreme depths of focus are not always desired, but it is quite easy to lose this sensitivity electrically or by means of a neutral density filter in the optical system. A fine example of extreme depth of focus was seen in the TV interview with Eugene Goosens.

THE MINIATURE CRANE

The Vinten miniature camera crane, put into service at Lime Grove a few months ago, is a remarkable piece of equipment and the results must have provoked curiosity on the part of mechanically minded viewers. It is a power-operated truck, fully motorised, with elevation and rotary movements controlled by foot pedals operated by the camera-man's feet, leaving his hands completely free to manipulate the camera. By varying the angle of the pedal, the camera will ascend or descend at controlled speed, and all the time the camera platform is automatically maintained in a horizontal position. The two foot pedals can be operated together or independently, giving a great variety of movement, under the direct control of the cameraman, while the tracking movements are worked by an assistant at the rear of the truck, who can turn it sharply almost in its own length or propel it in a straight line.

I should think that the manipulation of all the instruments of a one-man-band are child's play compared with the operation of this amazing piece of equipment. However, the results reveal that the operator has already acquired great skill.

SUNELL Blake! Calling Mr. Sexton Blake!

90 deg. SOUTH

I have several times mentioned various old films, including silent pictures, which would make interesting viewing. One of these, "90 deg. South," was screened when the programmes were reorganised following the death of His Majesty King George VI. "90 deg. South" was a re-edited version, with sound, of Ponting's film of the South Pole Expedition of Captain Scott. In 1914 or 1915, Ponting lectured with the film and with lantern slides. Both still photographs and movies have been combined in this comparatively new version which was first shown in about 1934. It is still a first-class documentary film, and its photographic qualities stand up to the test of time very well. This is all the more creditable because only orthochromatic stock was used by Ponting, and the developing of the negative was carried out by Ponting under the most primitive conditions. His still photographs were very cleverly edited into the film narrative. "90 deg. South" is a moving film, which could be repeated on TV from time to time. I, for one, would like to see it again.

DOMESTIC TV

Not too long ago David Sarnoff, chairman of the RCA, decided he wanted a TV set in his private dining-room, one that he could operate by remote control from the table. Under the table top at one corner he had a drawer fitted containing the TV set control. First, he presses a button and an oil painting on the wall disappears. In its place, a TV screen lights up. Next, he selects the channel he wants on a telephone-type dial. The programme comes on. There are other dials to control volume and adjustments.

As soon as the engineers got this remote control arrangement working in Sarnoff's room, another was installed just like it in the private dining-room of the President. F. M. Folsom, which is an almost exact duplicate of Sarnoff's. These two sets are not playthings by any means. Both Sarnoff and Folsom consider them as prototypes of what will be made and sold to thousands in the future.
ALPHA OFFERS

WAX TUBULAR CONDENSERS, WIRE ENDS
402 ml. 400v. — 450 ml. 500v. — 500 ml. 1,000v. — 600 ml. 1,000v. — 800 ml. 1,000v. — 1,000 ml. 1,000v. — 1,500 ml. 1,500v. — 2,000 ml. 2,000v. — 3,000 ml. 3,000v. — 4,000 ml. 4,000v. — 5,000 ml. 5,000v. — 6,000 ml. 6,000v. — 8,000 ml. 8,000v. — 10,000 ml. 10,000v. All 440v. ea. 4- doz.

P.M. FOCUS RINGS
Latest Types R20-223. 19/6 ea.

BARKLITE CASE H.V. CONDENSERS
42 ml. 150v. — 60 ml. 150v. — 150 ml. 4,000v. — 350 ml. 500v. — 1 ml. 600v. — 1 ml. 900v. — 2 ml. 1,000v. — 4 ml. 1,500v. — 6 ml. 1,500v. — 8 ml. 1,500v. — 10 ml. 1,500v. — 12 ml. 2,000v. — 16 ml. 2,000v. — 20 ml. 2,000v. — 40 ml. 3,000v. — 60 ml. 3,000v. — 80 ml. 3,000v. — 100 ml. 3,000v. — 150 ml. 3,000v. — 200 ml. 3,000v. — 300 ml. 3,000v. — 400 ml. 3,000v. — 500 ml. 3,000v. — 600 ml. 3,000v. — 800 ml. 3,000v. — 1,000 ml. 3,000v. — 1,500 ml. 3,000v. — 2,000 ml. 3,000v. — 3,000 ml. 3,000v. All 440v. ea. 4- doz.

INSULATED SLEEVING
Bright colours. 1 mm. — 2 mm. — 3 mm. — 4 mm. — 5 mm. per 10 yards. 3 mm., 6 mm., 8 mm., 10 mm. 1/8 per doz. yards.

METAL RECTIFIERS
12 volt 1amp. 1amp. 1/8 to 500 volt 60 offs. 5/6 ea. 12 volt 3amp. 1/6 ea. Redic Rectifiers, 30 volt 45 mm., 1/6 ea. 3 amp. 1 core, 1/6 yd.

THIMMERS

LINE CORES
Circular 3 amp. 3 core, 1/6 yd.

I.P. TRANSFORMERS
Weavite, Type 429H. 425/473 kcm., 1/6 pair. Phillips Round Type, 170 kcm., standard, 1/6 pair.

TRANSFORMERS

CHOKES
Flamotte Choke, 61/6 30 mm., 84 ea. Bulbin type, 13H 5 mm. Total res. 2,101/2 with tap at 1,900 r.p.m., 8 8/6 ea.

VALVES
Guaranteed New and Boxed. Majority in Makers’ Cartons.

<table>
<thead>
<tr>
<th>Catalogue</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>OZ4</td>
<td>8/6</td>
</tr>
<tr>
<td>106</td>
<td>7/8</td>
</tr>
<tr>
<td>140UT</td>
<td>8/6</td>
</tr>
<tr>
<td>145</td>
<td>8/6</td>
</tr>
<tr>
<td>154</td>
<td>8/6</td>
</tr>
<tr>
<td>155</td>
<td>8/6</td>
</tr>
<tr>
<td>156</td>
<td>8/6</td>
</tr>
<tr>
<td>157</td>
<td>8/6</td>
</tr>
<tr>
<td>344</td>
<td>8/6</td>
</tr>
<tr>
<td>345</td>
<td>8/6</td>
</tr>
<tr>
<td>346</td>
<td>8/6</td>
</tr>
<tr>
<td>347</td>
<td>8/6</td>
</tr>
<tr>
<td>348</td>
<td>8/6</td>
</tr>
<tr>
<td>349</td>
<td>8/6</td>
</tr>
<tr>
<td>350</td>
<td>8/6</td>
</tr>
<tr>
<td>351</td>
<td>8/6</td>
</tr>
<tr>
<td>352</td>
<td>8/6</td>
</tr>
<tr>
<td>353</td>
<td>8/6</td>
</tr>
<tr>
<td>354</td>
<td>8/6</td>
</tr>
<tr>
<td>355</td>
<td>8/6</td>
</tr>
</tbody>
</table>

TERMS : Cash with order or C.O.D. Please add postage: 6d. under 10/-, 1/2 under 20/-, 1/6 under 40/-, list 3d.

ALPHA RADIO SUPPLY CO. 5/6 VINCES CHAMBERS, VICTORIA SQUARE, LEEDS, 1.

"ADCOLA" SOLDERING INSTRUMENTS
Reg'd. Trade Mark
Reg'd. Design No. 860302
(British, U.S. and Foreign Patents.)
For Wireless and Television Assembly
The advanced design of the Adcola Instruments meets the modern requirements of Television, Telecommunication and Radar Engineers.

SUPPLIES FOR ALL VOLT RANGES FROM 6/7 V. TO 230V/250 V
316/16 in. dia. Br. Standard Model ... 2 1/6
316/16 in. dia. Br. Standard Model ... 2 1/6
316/16 mm. dia. detachable Bit. Model. ... 2 1/6

Solo Manufacturers:
ADCOLA PRODUCTS LIMITED
GENERAL OFFICES AND WORKS
Cromer Court, Clapham High Street, London, S.W.4
(Macaulay 4272)

VIEW MASTER
SPECIAL OFFER
Complete set of resistors. Every resistor packeted and labelled with the value and position in the set.
London, 2/-.
All other models, 2/19.

INSTRUCTION BOOKS
View Master instruction books for the London, Midland, Northern, and Scottish Models are available at 5/-, post free. A fully detailed list of View Master Components is available upon request.

WATTS RADIO (WEYBRIDGE) LTD.
8 Baker Street, Weybridge, Surrey.
Telephone : Weybridge 7542

WALTONS of WOLVERHAMPTON
Special offer in Ex-Government H.T. Batteries. All tested before despatch. 60+1/2 volt. Ideal for deaf aid, personal sets and electronic equipment, 4 each, post 9d.
72+1/2 volt, ditto, 6/1 each, post 9d. 60 volt, Standard, 6/- each, post 1/-., or 2 for 1/2., post 1/6.
We still have many Valves at Special Clearance Prices. Send S.A.E. today for our complete List.

Waltons Wireless Stores
48, Stafford Street, Wolverhampton

QUALITY TELEVISION COMPONENTS
SCANNING COILS
6/10 kV. R.F., E.H.T. UNITS
E.H.T. and OUTPUT TRANSFORMERS
LINE FLY-BACK E.H.T. UNITS

"TELEVISION CIRCUITS"
Third Edition, 64 pages, 2/6

HAYNES RADIO LTD.
Queensway, Enfield, Middlesex.
NORMAN H. FIELD,
68, HURST ST., BIRMINGHAM, 5,
Mail Order Dept.
64-66, CHURCH LANE,
WOLVERHAMPTON.

VALVES
6G7: X01, 6SN7, KT65, 6P6, 6Y6, 6A6.
At 10:--- 6X6S, 6SN7.
At 6:--- 6BQ5, 6BQ7, 6X5, KT63, 174, 154-
185, 186. At 8:7; V12, EL23, V150, 155L.
At 7:2: 7117, 71, 6CL7, 6CL7, VR119, B807G,
707, VR118, 6Y7G, TC5, 12A6, 12ACT,
VR105, At 7V: 6B3, 6B4G, 6GCTC, 6GCT.
1A4, 6K7G, 6V20. PR50, PR6, 6G4.
6A11, ARCT12, V20. At 5:4; 6SN7, 153A,
H30, 6SH7, VT41, PR50, 10W, T111, VT501.
At 6:--- 6J6, 12B7, 8810V7, 223, VU103,
212, V111, PEN50A, VR118, RK72. At 9:4:
6W0, 6G50T, 12817, 1216, VR110, At 3:6:
EF272, AK0, 30V6, 4W16. At 9:4; 6K34,
VT12, 216G5, VU111, H12L, VR21, VR69, P61,
6F10, 5F111, 6F6A, 5E141. PR41; 6S54,

VIEWMASTER PARTS
Holme Moss and Birmingham:
Kit of 14 Coils and P.P. Choke 2/16.
Pieony Focus Ring 720/1, 22S.
Scanning Coils. 29/9.
Wedge Coupling. 7/8.
Heater Transformer. 25/6.
Mica Mounting Block. 500 3/9 p. each.
500 pF Midget Mica. 6/4./2.

SPECIAL OFFER !
KIT OF VIEWMASTER VALVES
AT HALF PRICE
£6. 4. 0.

Please include something for post. Money
Back Guarantee.

NOW READY
For the
VIEWMASTER
(KIRK O'SHOTTS)
SETS OF COILS
WIDTH CONTROLS
BOOST CHOKES
RF CHOKES
OLYMPIC RADIO COMPONENTS,
COIL WINDING SPECIALISTS
224, HORSEY ROAD, HOLLOWAY, N.7
Phone: NORTh 2914.

THE NEW 1355 CONVERSION The new famous
self-contained TV receiver. Data for all TV channels.
3s. per copy.

MAINS TRANSFORMER, as specified. 52/6.

POWER UNIT. VU120 EHT rectifier (5,000 v., 2 v.
indirectly heated) two transformers, one smoothing choke.
1. I 2L. condenser, two other condensers, etc., etc., com-
plete with our 50 cps conversion data for EHT (approx.
1,800 v.). 7 in. x 6 in x 3 in. £15. 0/5. cash.

RECEIVER P40. 2-stage controlled oscillator: 4 zones 85/95
mcs, but may easily be modified for TV, complete with 4
RFC's (R.F., mixer and Osc. multipliers), ECS2 (C.O.);
2 EF39's (2.9 mcs L.B34 (Det.) and 6T4 and 6V6,
audio). ONLY 69/6 (1/8 post).

RADIO EXCHANGE CO.,
9, CAULDWELL STREET, BEDFORD.
Phone : 5569.

THE W.A.S.P. LONG RANGE INDOOR T.V. AERIAL
We have always been convinced that the largest demand
is for a really good indoor T.V. Aerial and, after extensive
research, we are proud to announce that we have developed
an entirely new type which is highly efficient, simple and
inexpensive, and when erected indoors it will give com-
parative results to the kind of "H" type outdoor aerial.
It is in the form of a circle, approximately 5 ft. in diameter,
and comprises a special type of dipole with reflector and has
a back to front ratio of 10 to 1, ensuring high signal to noise
ratio. Installation is extremely simple and full instructions
are supplied with each aerial.
This is, without doubt, the finest indoor T.V. Aerial on
the market, irrespective of cost, and can be obtained through
all bona-fide dealers at 39/- or, in case of any difficulty, write
direct to the manufacturers and patentees.
W.A.S.P. ENGINEERING CO., LTD., Mowbray Drive,
Layton, Blackpool.

NORTHERN ELECTRONIC EQUIPMENT
SPECIALISTS IN RADIO & TV SERVICING
INSTRUMENTS
OFFER
AN ACCURATE AND RELIABLE MULTI-RANGE
METER, AS A KIT OF PARTS FOR HOME ASSEMBLY
FOR 2/5.
★ ROBUST CRANKLE FINISHED METAL CASE 2X20, 2X11.
★ 110/131 MOVING COIL MOVEMENT—FIRST GRADE
ACCURACY
★ A.C./D.C. VOLTS: 0-10/20/30/100, 100-200
★ D.C. MILLIAMPS: 0-1/10, 0-100
★ D.C. RESISTANCE: 0-1000/07, 0-10000
★ PROVISION FOR A C.O.M. CONNECTOR
★ FINE LEADS WITH INTERCHANGEABLE PRODS AND CLIPS
★ ALL COMPONENTS CHECKED BEFORE DESPATCH
★ FULL CONSTRUCTIONAL DETAILS
The Above Instrument is Available Fully Assembled.
PRICE £10.00 COMPLETE.
BINDER CASE WITH DISTRIBUTION (ASSURED) OR WRITE FOR FURTHER DETAILS TO:
NORTHERN ELECTRONIC EQUIPMENT, 11, KELSALL TERRACE, LEEDS, 8, YORKS.
CORRESPONDENCE

The Editor does not necessarily agree with the opinions expressed by his correspondents. All letters must be accompanied by the name and address of the sender (not necessarily for publication).

SIR,—Scottish readers may like to know of results obtained with the slot aerial described recently in these pages. The only alteration from the published description was in the length of slot, which was 10in. shorter, to allow for the increased frequency of the Kirk o'Shotts station. Being pressed for time, as at the time of writing there are only two hours' transmitting time per week-end, the aerial was erected without the reflector, and within half an hour I had lined up from scratch a home-built “Viewmaster” circuit, on both sound and vision.

The position is some 35 miles from the transmitter, and I should add that the house is of the semi-permanent steel-frame type, there being just sufficient space between the steel girders in the attic to allow the slot an un-interrupted “view” in the direction of the transmitter.

—J. R. STEWART (Markinch, Fife).

SIR,—I note in your February, 1952, issue of PRACTICAL TELEVISION an article on a slot aerial made of wire-netting and, in this connection, surely the reflector should be vertical for vertically polarised transmissions rather than its major axis horizontal as in the article described.

We have, in fact, tried this type of aerial and agree that a horizontal slot receives vertically polarised waves, but a plain reflector should be vertical.—E. MOULTON (Aerialite, Ltd.).

AERIAL FEEDERS

SIR,—In your reply to K. S., of Hampstead, in the March issue (on the subject of ex-Service feeder cable) it is stated that: “In the case of the aerial being used with an A.C./D.C. receiver, the screening of the feeder cable will be joined to the chassis, which is probably live to one side of the mains.”

Surely, direct connection of the aerial to the supply mains is expressly forbidden by the conditions of the receiving licence? There must be many exposed coxial plugs and sockets, skirting-board outlets, attenuator boxes, etc., being used in conjunction with A.C./D.C. sets, and if there are, in fact, direct connections to the mains in these instances it is surprising that there have not been more cases of severe shock reported in the Press.

I hope I am right in saying that commercial A.C./D.C. sets incorporate aerial isolating condensers or, in the case of twin feeders, adequately insulated coupling coils.—J. R. MILLBURN (Redhill).

A.C./D.C. RECEIVERS

SIR,—In suggesting the use of a neon tube when operating an A.C./D.C. receiver, your correspondent, Mr. Long, writes: “The receiver is now plugged into the mains and switched on.” This point should be emphasised as, in a number of receivers, a single-pole switch is fitted, one side being connected to chassis.

Thus, if the test is made with the switch off and the plug the correct way round, the neon would be connected to the mains via the heaters and it would thus glow, giving the indication that the plug connection was incorrect.

No indication would be obtained with the plug the wrong way round and the switch off, which would lead one to suppose that the plug was in order.—ROBERT C. BELL (Ambleside).

THE 7BP7 TUBE

SIR,—Here are some details of cathode-ray tube 7BP7, as requested by F. E. Profaze in the November issue.

Tubes 7BP1-2-4-7 and 11 are classed together, and according to my information are suitable for oscillograph and television.

Data

Heater volts, 6.3; current, 0.6 amp.; A1 or anode No. 2, voltage 4,000 or 7,000; G2 or anode No. 1, voltage 250; G1, grid cut-off voltage—45.

Screen may be either green, blue or white.

Socket Connections

Viewed from rear: Pin No. 1—blank; pin No. 2—heater; pin No. 3—G2 (or anode 1); pin No. 4—blank; pin No. 5—G1 (control E); pin No. 6—blank; pin No. 7—cathode; pin No. 8—heater; ext. comm.—A1 (or anode 2).—FLT.-LT.- R.A.F. (BAOR3).

ENLARGER LENS

SIR,—I wonder if readers will be interested in this method of using a television enlarger?

My object was this: I have a 9in. tube but wanted a larger picture without having an enlarger positioned in front of the cabinet in the usual way.

I required a cabinet which later might be converted to take a larger tube without having to make large structural alterations.

The set is a "Viewmaster" with a 9in. tube, the cabinet is made up of hardboard and then veneered (incidentally, at a cost of less than £3 (less enlarger)).

The enlarger is slotted in position and secured by a wooden rail immediately below the enlarger, two sliding panels uncover screws securing rail locating enlarger. Thus enlarger may be quickly removed and when a larger cathode tube is later used it is only necessary to fit safety glass in place of enlarger.

The sliding panels also make the set very accessible although, of course, the chassis can be removed as a complete unit from the back of the cabinet.—A. F. BOLTON (Bromley).

USES OF TUNING SLUGS

SIR,—Here is an additional note to the article in the February issue. Heater-choke for R.F. stages may consist of about 20-50 turns of enamelled wire wound on a dust-iron slug. No insulation is needed; the wire may be wound directly upon the slug which is itself an insulator (see the section entitled "Iron"). The resulting low-resistance choke may be wired directly into the chassis in the same way as a resistor, supported on its own leads.

The line output stage in the high-efficiency receiver now uses dust cores to adjust the inductance of coils controlling line frequency, linearity and amplitude. The line output transformer is wound on a moulded dust-iron core resulting in higher fly-back E.H.T.

Scanning coils also are now constructed around a circular core of dust iron. The term "iron" is used all through this article, but the substance actually used may be any of the ferro-magnetic substances, depending on the circumstances.—F. R. PETTIT (Herne Bay).
ACR2X

SIR.—Since your magazines started dealing with television there have been many surplus televisions shown, all of which use the popular VCR97. From my own experience I find this tube has far too much praise. Half these tubes suffer from cut-off—they require a large input to the control grid to obtain any depth of contrast; the screen colour is green and their cost has now risen to an average of about 45s.

Some time ago, whilst in London, I noticed that Premiers were selling ex-R.A.F. ACR2X tubes for 5s. These make excellent TV tubes and will give a very much better picture than the VCR97. The screen colour is either light yellow or light blue, the diameter being 5½in. They are fitted with a special anti-astigmatic electrode assembly which ensures perfect focus over the whole picture, and most important of all they only require a very small input to the grid to give a very well-contrasted picture. The after-glow is slightly less than that of the VCR97. With 2,000 volts on the final anode a perfect undistorted picture, easily viewed in normal room light, is obtained.

The only disadvantage about this tube is its length. It is 20in. long and the connections to the deflector plates are brought directly out of the side of the tube.

I hope this information will be of use to those who, like me, were not satisfied with the picture given by the VCR97.—J. MUIR SMITH (Northwich).

CAMERA DIFFERENCES

SIR.—I think it is about time some complaints were made regarding the variations in light values which are experienced during a night's viewing. We first have the still of the tuning-signal, upon which, I am told, we are supposed to adjust our receivers. Next comes the announcer (studio) has the telecine, which calls for a reduction in brilliance. Then turn on the still, and if it is an early newreel night we have the telecine, which calls for a reduction in brilliance. Then back to the studio, and if it is at Lime Grove I have found that there is considerable difference between cameras, especially when close-ups and long shots are transmitted. I am also certain that many adjustments produce serious black after white, although I would not guarantee that this is not my receiver, but the trouble is aggravated by the close-ups. Cannot something be done by the BBC to ensure that an even value of picture is transmitted, no matter whether it comes from a studio at A.P. or Lime Grove, or from the telecine apparatus?—H. G. HELTON (Cambridge).

[We would remind our correspondent that a wrong adjustment of the contrast control can give rise to the troubles which he mentions, although the BBC admits that cameras differ. There is an even black level transmitted, although all cameras have a black level clamp, there is also a clamp in the transmitter. The fitting of this device to a receiver will also prove advantageous and an article on this subject appears in this issue.—Ed.]

"LOOK OUT, MRS. MOSS"

SIR.—Your correspondent who signs herself "J. MUIR SMITH" is surely in an unfortunate domestic position. We have had our receiver now for two years and apart from the minor troubles which any domestic change can bring we have found that our general conditions have been considerably improved as a result of the advent of television into the home. We have made friends with neighbours who before were just casual passers-by; we find immense pleasure in sitting down together now of an evening where previously I was inclined to go out to the club or the local in order to get a change; my wife finds immense relaxation after the day's work, when the kiddies have gone to bed, and does not now sit down darning and doing similar jobs which previously she did merely to pass the evening. They get done in the daytime, and a better re-arrangement of household duties seems to have arisen as the result of endeavouring to make the evening free. This gives her better health, too, and in general I think Aunt Jane is taking a far too serious view of our own misfortunes.—F. WYNNE (Guildford).

PROGRAMME PLANNING

SIR.—In reply to the grievance of Mr. H. Turner (Hayes, Kent), surely he must realise that the main difficulty in week-end programme planning is the question of staff. How would Mr. Turner like to work a seven-day week? Although I know next to nothing of the staff situation at the BBC, pure logic tells me that for a transmission of any sort, a complete crew of transmitting engineers is necessary, whether the programme be a gala variety show or the plain showing of a dated Western film.—K. NORTON (Tolworth, Surrey).

THE "PRACTICAL TELEVISION" RECEIVER

(Continued from p. 498.)

little current, does play a fairly large part in the waveform of the oscillator and its value may be increased, in the event of a very stretched left-hand side, up to 470 k2.

Right Versus Left

In this connection there is one point to bear in mind, and that is whether the left-hand side is unduly stretched, or whether the right-hand side is cramped. Obviously, both these faults produce the same visual result, and if an increase in R72 fails to balance both halves of the picture, or the resultant raster is too narrow to fill the mask, then obviously the fault is a cramping of the right-hand side, and the simplest remedy for this is to increase R76. This may be pushed up to 1 MR2 without difficulty, if required. It should, of course, be increased in stages if it is found that the characteristics of the particular valves call for the modification.

Frame Circuit

No troubles have been reported on the frame side, all the controls functioning perfectly satisfactorily here, and having sufficient tolerance to take care of any minor variations in other components.

Sync Circuit

A few readers when considering buying the receiver have asked whether the sync circuit could not be modified to use the KT61 (V12) alone, as in normal commercial practice, and although it is possible to arrange for this it is not recommended, as one of the main features of this receiver is the very high quality of the picture resulting from the perfect interchange which the three-valve sync separator provides. If it is found that after a period of use the sync fails to hold properly, it is recommended that the KT61 be changed round with the frame output valve (V16), as the two valves are of the same type and may be used to check one against the other. Neither the L63 nor the D63 is likely to give any cause for trouble.
RATINGS: 3 - per line or part thereof, average five words to line, minimum 350 words. Advertisements must be prepaid and addressed to Advertisement Manager, "Practical Television," Tower House, Southampton St., London, W.1.

V.T.V.I.'S. (Valves and small condensers, &c., as per list. Send for free book.) This list can be seen with all TV designs and general Components. CWO or COD, all vacuum tubes, 7/6, 3/6. 1/6. 3/6, 1/6, 3/6, 1/6, 8/6.

ASPIRING to a career in radio or television? The "Practical Television" offers "Radio and TV" courses, with a syllabus post office. For details, send 1/- for list of courses.

Radio and TV courses.

SITUATION VACANT

The management of "Practical Television" is always on the lookout for experienced radio and television contractors. Applications are invited for the posts of Technical Assistant, Junior Engineer, and Junior Technician. The successful candidates will be required to carry out various tasks, including the design and installation of television and radio equipment. Applications should be addressed to Mr. J. R. Brown, "Practical Television," 10, Park Road, London, W.1. The closing date for applications is 30th April 1952.
YOUR

Problems

SOLVED

Whilst we are always pleased to assist readers with their technical difficulties, we regret that we are unable to supply diagrams or provide instructions for modifying surplus equipment. We cannot supply alternative details for constructional articles which appear in these pages.

VERTICAL DISTORTION

"I have recently completed my 'Viewmaster', and although I get a very good picture it is spoilt by the sides of buildings being curved instead of straight. It is noticed even on small objects, and no amount of adjusting of the controls will rectify it. I hope you can help me to overcome this."—H. Wild (Eccles).

Vertical distortion which you complain of may be due to insufficient smoothing of the H.T. supply, and this can be checked by reversing the mains plug when the curvature should then be reversed in direction. If this change does not occur, then the distortion may be due to faulty scanning coils or to a stray magnetic field from either a transformer or a piece of iron or steel mounted close to the tube.

PULSE INTERFERENCE

"My set is eight months old, and has given and continues to give very good results except that the definition is not quite as good as it might be.

"I realise now from references to interlacing in February's 'Practical Television,' that this poor definition is due to faulty interlacing. The raster consists of rather heavy black lines and the white ones between them are only slightly split.

"I have tried adjusting the vertical hold and over its locking range I get the following effects:

"At the clockwise limit the raster is made up entirely of heavy black and wide white lines, complete superimposition. Turning anti-clockwise the raster narrows and then suddenly there seems to be a point at which the white lines split and a wide black appears between them, giving exactly the same result. This point is so terribly critical and impossible to hold that it is difficult to believe that it is there even when the 'height' control is used to open the raster right out! Further anti-clockwise turning has no effect.

"I would be very grateful indeed if you could give me some advice on this matter. I am quite capable of adjusting a trimmer or paddler or anything like that."—S. H. Boor, B.Sc. (Leeds).

As it appears from your letter that no reasonably critical setting of the vertical hold will make the picture interface correctly, the trouble is caused by line pulses reaching the frame time-base generator in some way. If this has been present since you purchased the set, the most likely reason lies in the underchassis wiring; in some way the wiring is run in such a manner that coupling is taking place across from the line to frame oscillators, or the integrator system feeding the frame oscillator has a faulty component which is allowing line pulses to reach the oscillator. You could try the effect of a new sync separator valve, or experiment with small capacities to earth from the point on the separator at which the frame pulses are taken. An oscilloscope would be ideal for checking such a fault as this, and if you can borrow a model you should do so.

TUBE HEATER-CATHODE SHORT?

"My receiver has been in use for eight months and is completely standard. Performance has been perfect until two weeks ago when a serious defect appeared. The picture pulls out of focus and becomes blurred in horizontal strips, which eventually cover the whole screen when the set has been on for 20 to 25 minutes—the picture will occasionally revert to normal, however, for a second or so, but again become blurred and defocused. The horizontal strips must not be confused with normal line tearing as the picture is at all times outlined fully but so indistinct as to be valueless.

"My first suspicions were the sync and integrator circuits, but new 6AL5 and substitution of all frame and line interlace resistors and condensers has failed to effect a cure."—R. E. Field (Birmingham).

From your description we suspect that your cathode-ray tube has developed an intermittent heater-cathode short which is thereby destroying the definition. There is little which can be done to cure this defect except to change the tube.

FOCUSBING MAGNET

"Some time ago I purchased a Marconi 10in. TV (Sutton Coldfield), which had been modified for the Holme Moss frequency, and the picture has always been displaced towards the bottom left corner.

"When I attempted to centre the picture I noticed two other faults were introduced:

1. The picture was cut off by a shadow in the top right corner.

2. The focusing ring had to be turned off-centre to such a degree that great pressure was exerted on the neck of the tube, and the edges of the picture became less sharply focused than the centre.

"I have now fitted a new ion trap of a different make and have got rid of the shadow.

"I have also tried an 'Elac' low flux focusing ring (R7/6) and find that the picture can be centred perfectly, but I cannot quite obtain sharp focus although best results were obtained with the gap tightly closed (giving, I believe, minimum flux).

"In view of the above I should be very grateful for your help.

1. As I have adjusted the ion trap to give maximum brightness, will the C.R.T. be harmed in any way due to using an ion trap not supplied by the makers of the tube?

2. Can you suggest a focusing ring which would give the desired results?"—J. Pounder (Cottingham).

Focusing depends upon the position of the magnet along the neck of the tube as well as the actual intensity of the field. It appears from your letter that the magnet you are using at present is too strong for perfect focusing, since you have the gap tightly closed; try the effect of moving the magnet further towards the base of the tube and then open the gap to secure focusing. There is no danger of damage occurring to the tube by your use of an alternative ion trap provided this is set up and adjusted according to instructions.

ELECTROSTATIC CHARGE

"When I switch my set on, several minutes elapse before I gently turn up the brilliance, and then I get the
top half blacked out completely, and if I leave it at that it sometimes stays as long as ten minutes before my picture arrives all over the screen, and even then it keeps coming on and off for several minutes. Is this a faulty component? Perhaps you could enlighten me as to its cause.

"I bought the set in April, 1951, and had quite a bit of trouble at the time: there was an arcing in the set at periods and it does that now and again; it sounds like a spark jumping from one point to another."—W. C. Knight (Littleborough)

The blacking out effect you mention may be due to an electrostatic charge forming on the screen during the off-periods, and this charge deflects the electron beam when it arrives at the screen. Does the picture "creep" gradually on to the blank areas during the warming-up period, or does it suddenly cover it? If the former, the above explanation is probably the correct one. Try wiping the face of the tube with a dry cloth to remove all damp and dust.

LONDON RECEIVER ON HOLME MOSS

"I have done a considerable amount of experimenting with a manufacturer's surplus vision and sound unit, which is a London type. I have peaved the coils, and I am receiving sound from the Holme Moss transmitter perfectly, but I have come up against a difficulty about receiving the vision. I can get a 'raster' on the tube and also the vertical black lines, and when trying to focus the lines jump from top to bottom. I have been experimenting four months trying to overcome this difficulty, but with no success. Can you help me with this circuit? The tube I am using is a VCR97, which is supposed to be a good tube for TV."—R. Sanderson (Bury)

The R.F. chassis you are using is quite unsuitable for reception of the Holme Moss transmission.

This chassis was designed for reception of the upper side band of the London transmitter and no sound rejection circuits were included. As the Holme Moss transmission operates on single side band close to the sound frequency, the continuous jumping from top to bottom which you experience is due to sound interference. We suggest that to overcome this you modify the circuit to a design intended for reception of single side band transmission. For this purpose we suggest you obtain a copy of the "Viewmaster" booklet and incorporate the tuning coils and rejector circuits as specified in that publication.

VCR97

"There are two queries which I would be grateful if you would help me to clear up.

"The first is with reference to the VCR97 C.R. tube and its associated circuit. In all circuits I have seen in P.T. the tube is heated by a 4 volt supply of A.C., and the associated EA50 D.C. restorer is heated from the same supply. But surely the EA50 is rated at 6.3 volts—does it do it no harm to be underlive like that?

"The second is with reference to a power supply unit. I have purchased a transformer with a secondary H.T. winding rated at 50-0-500 at 250 mA., but when I came to look for a rectifier to use with it I found that there was no valve on the lists I have in my possession which was rated to take 500 volts R.M.S. on each anode with a condenser input to the filter. I would be obliged if you would help me on this point (5 volt heater preferred)."—H. G. Lavington Evans (Cambridge).

The EA50 has a 6.3 volt heater, but when a restorer is used that is fed from the tube heater of 4 volts, the 4-volt equivalent of the EA50 is best employed, i.e., the D.I. The EA50 will function when used on 4 volts, but it is best if the correct diode is used.

You must use two 500 volt, 120 mA. rectifiers with your transformer, the anodes in each valve being connected together. A suitable valve is the Mullard F4W-500, 4 volt indirectly heated; or the 5U4G, 5 volt directly heated, or equivalents. Use only a 4 μF reservoir condenser rated at 650 volts with either of these valves. Separate heater supplies may be necessary as each consumes 3 amps.

MAINS VOLTAGES

"I am the owner of a Holme Moss model TV and I am writing to you over the following:

"With contrast on full I could only just hold a decent picture, and this only if I was prepared to stand near the set, altering the horizontal hold, so I arranged a visit of the service representative in my area, and this is what was done: after taking a reading of the mains voltage, which was 208 volts, he altered the input tags at the back of the set from 220-235 to 200-220, and the result, of course, was that my contrast was reduced two-thirds, and the picture held. Here is my problem: in the event of a return to normal mains voltage, say of 235 volts, will the effect it have on my set, and have you any alternative to the above you can advise?"—S. Wood (Stockport).

A TV receiver should always be operated at the correct mains voltage.

The cathode-ray tube heater is specified to run within a tolerance of ±7 per cent. of its rated heater voltage. If an incorrect operating temperature can therefore affect the life of the tube. In the same way, certain components in the receiver may be designed with a maximum working voltage equivalent to the voltage operating in the receiver when correctly adjusted to the mains.

There is no way of obviating the mains adjustment, and it is always necessary that the correct adjustment be made for the particular mains voltage.

VISION FAULT

"My Ultra receiver (Model V710) has recently developed a fault as follows.

"After being in operation for about 20 minutes, picture disappears, leaving rectangular white patch. By switching off set for a few minutes, normal picture can again be obtained, and will then operate satisfactorily as long as required.

"I would appreciate your opinion on this, please."—B. Hardy (Hove).

The trouble lies somewhere in the vision receiver or in the coupling to the tube. Check on the valves in the vision strip, particularly the detector and video-amplifier, and ensure that the valves are firmly seated in their holders.
TELEVISION AERIALS

"H" Type for any channel, complete with chimney bks and lashing, 55/- Carr. paid.

Line Output Transformers, suitable replacements for any A.C. T.V. Receiver, 15/- each.

SOUND TELEVISION
42, ELMS ROAD, ALDERSHOT.
ADVANTAGES OF THE 'ENGLISH ELECTRIC'
METAL C.R. TUBES

3. Short Tube

The metal C.R. tube has been specifically designed for use in cabinets which can be made substantially shallower in depth than has previously been possible with a 16" tube, which apart from other features shows a big saving in cost. The overall length of 17¼" is exceptionally short in relation to the large screen diameter and it will be found most convenient for easy component mounting. To sum up, it provides for big screen viewing in either table, console or radiogram cabinets of moderate proportions.

BRITISH MADE BY 'ENGLISH ELECTRIC'

For full technical details and price for quantities write to
THE ENGLISH ELECTRIC COMPANY LTD., TELEVISION DEPT., QUEENS HOUSE, KINGSWAY, LONDON, W.C.2