FEATURED IN THIS ISSUE

Conversion to Magnetic Tubes
Protecting Your Receiver
Operating with a Heater-cathode Short

Notes from an Engineer's Notebook
Improving Your Picture
TV for the Beginner
picture perfection with the DUBLEX

- High Gain
- Broad Bandwidth
- Correct Matching
- High Max/Min Ratio

Because it Has these features, PLUS excellent mechanical design, ensure that you get the best performance from your receiver. Moreover, the Dublex is moderately priced at £48.6 (7ft. mast complete with brackets, etc.).

other quality aerials

In the comprehensive Aerialite range include the AERFRINGE and AERADORE models: 8.0 dB forward gain, sharp directivity for interference elimination and broad bandwidth for greater detail. Model 63A complete with 10ft. mast, double lashings, etc., price £13.15.0. The room-mounting AERADORE model 65 has a telescopic top element and is suitable for all channels. Price £11.12.0 complete.

Aerialite LTD.

CASTLE WORKS STALYBRIDGE CHERISHIRE
A COMPLETELY ASSEMBLED "ALL WAVE" SUPERHET CHASSIS

MODEL B.3—A 5-valve 3-waveband Superhet Receiver, designed for operation on A.C. mains 100 - 120 volts and 200 - 250 volts, employing the very latest miniature valves. It is designed to the most modern specification, great attention having been given to the quality of reproduction which gives excellent clarity of speech and music on both Gram and Radio, making it the ideal replacement Chassis for that "old Radiogram," etc. Brief specifications—Model B.3—Valve line-up, 6BE6, 6A6, 6A7, 6B6W, 6X4. Waveband coverage, Short 16-50, Medium 187-550, Long 900-2,000 metres. Controls (1) Volume with on-off; (2) Tuning (flywheel type); (3) Wave change and Gram; (4) Tone (position switch operative on Gram and Radio). Negative Feedback is employed over the entire audio stages. Chassis size, 11in. x 7½in. x 3in. high. Dial size, 9in. x 4½in. Price, complete and READY FOR USE, excluding speaker, £12/12/- (Carr. and Pkg. 7½/- extra.)

"PERSONAL SET" BATTERY ELIMINATOR Complete kit; of parts, to build a Midget "all-dry" Battery Eliminator, giving approx. 69 volts and 1.4 volts. This is for use on A.C. mains and is suitable for any 4-valve Superhet Receiver requiring H.T. and L.T. voltage as above or approx. to 69 volts. The kit is easily assembled and is housed in a light aluminium case, size 4½in. x 1½in. x 3½in. Complete kit with easy-to-follow assembly instructions 42/-£. We can also offer a similar COMPLETE KIT to provide approx. 90 volts and 1.4 volts. Size of assembled Unit 7in. x 2½in. x 1½in. Price 47/-.

WE CAN SUPPLY ALL RECOMMENDED COMPONENTS "VIEWMASTER"

For the London — Sutton Coldfield — Holme Moss — Kirk o’ Shotts — Wenno

Specified Components by — Mr. C.C. E. W. Morgan, B.B.C., Westhoughton. Mr. H. Bell, Belling, Wearite. Mr. M. L. M. A. Millard. Mr. M. G. C. M. Ferrari, Tallon and W.B. Co. Table or Con sole Cabinets are also available.

Send 7/- for the "Viewmaster Envelope" which gives a complete description of this Televisor, including Assembly Layouts and Component Price List.

Our NEW STOCK LIST is now available (price 9d.). Brief details are given of the various KITS OF PARTS we are able to offer for the construction of many types of Radio Receivers, Battery Eliminators, "All-dry" Battery Eliminators, and "hundreds" of Radio components.

STERN RADIO LTD.,

ARTHURS HAVE IT!

LARGE VALVE STOCKS

TEST METERS IN STOCK

AVO VALVE CHARACTERISTIC METER IN STOCK.
"AVO" "TAYLOR" TEST METERS AND SIGNAL GENERATORS. MEGGERS
AVO, No. 5 IN STOCK
Leak Point One Amplifiers
Leak Pre-amplifiers
Leak Yari-slope Pre-amp for Leak Point One
Leak Tuning Unit
Chapman Tuning Units
Connoisseur Two- and Three-speed Gram.
Motor
Deca Replacement Heads and Pick-ups
Wright & Weaire Tape Deck
Cossor Double Beam Oscilloscope
Woden Output Transformers
for Williamssons Amplifier

LATEST VALVE MANUALS

MULLARD, OSRAM, & BRIMAR No. 4, 5/- each.
MAZDA 2/- each. Postage 4d. each extra.

TELEVISION SETS, WIRE AND TAPE RECORDERS

ALWAYS IN STOCK

TERMS C.O.D. OR CASH with order and subject to price alterations and being unsold.

PROPS: ARTHUR GRAY, LTD.

OUR ONLY ADDRESS: Gray House,
150-152 Charing Cross Road, London, W.C.2

TELEGRAMS: "TELEGRAV, WESTCENT, LONDON." CABLES: "TELEGRAV, LONDON."
CONSENSERS

These abbreviated ranges of two popular types are representative of the wide variety of T.C.C. Condensers available.

WAX PROTECTED TUBULARS
(Temperate Range 60°C. Max.)

<table>
<thead>
<tr>
<th>Cap. μF</th>
<th>Wkg.</th>
<th>Dimensions</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0005</td>
<td>500</td>
<td>1 in. x 1 in.</td>
<td>543</td>
</tr>
<tr>
<td>.002</td>
<td>500</td>
<td>1 in. x 1 in.</td>
<td>543</td>
</tr>
<tr>
<td>.01</td>
<td>500</td>
<td>1 in. x 1 in.</td>
<td>543</td>
</tr>
<tr>
<td>.05</td>
<td>750</td>
<td>1 in. x 1 in.</td>
<td>743</td>
</tr>
<tr>
<td>.1</td>
<td>250</td>
<td>1 in. x 1 in.</td>
<td>343</td>
</tr>
<tr>
<td>.25</td>
<td>350</td>
<td>1 in. x 1 in.</td>
<td>343</td>
</tr>
<tr>
<td>.5</td>
<td>350</td>
<td>2 in. x 1 in.</td>
<td>343</td>
</tr>
</tbody>
</table>

SUPER TROPICAL “METALMITES”
(in Aluminium Tubes)

<table>
<thead>
<tr>
<th>Cap. μF</th>
<th>Wkg. Volts D.C. at 71°C. at 100°C.</th>
<th>Dimensions</th>
<th>Type No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>.001</td>
<td>1000 750 11 in. 1 in.</td>
<td>CP49W</td>
<td></td>
</tr>
<tr>
<td>.002</td>
<td>1000 750 11 in. 1 in.</td>
<td>CP49W</td>
<td></td>
</tr>
<tr>
<td>.005</td>
<td>500 350 11 in. 1 in.</td>
<td>CP32S</td>
<td></td>
</tr>
<tr>
<td>.05</td>
<td>500 350 11 in. 1 in.</td>
<td>CP37S</td>
<td></td>
</tr>
<tr>
<td>.1</td>
<td>350 200 11 in. 1 in.</td>
<td>CP32N</td>
<td></td>
</tr>
<tr>
<td>.25</td>
<td>350 200 11 in. 1 in.</td>
<td>CP37N</td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>200 120 11 in. 1 in.</td>
<td>CP36H</td>
<td></td>
</tr>
</tbody>
</table>

THE TELEGRAPH CONDENSER CO. LTD.
Radio Division: North Acton, London, W.3. Tel: Acorn 0061

Specially useful for Television Work . . .

The **WIDE-RANGE SIGNAL GENERATOR**

A Signal Generator of wide range and accuracy of performance, designed to cope with modern radio and television work. Turret coil switching provides six frequency ranges covering 50 Kc/s—80 Mc/s.

- 50 Kc/s—150 Kc/s
- 150 Kc/s—500 Kc/s
- 500 Kc/s—1.5 Mc/s
- 1.5 Mc/s—5.5 Mc/s
- 5.5 Mc/s—20 Mc/s
- 20 Mc/s—80 Mc/s

Stray field less than 1μV per metre at a distance of 1 metre from instrument.

Direct calibration upon fundamental frequencies throughout range, accuracy being better than 1% of scale reading.

45 inches of directly calibrated frequency scales with unique illuminated band selection, giving particularly good discrimination when tuning television "staggered" circuits.

Of pleasing external appearance, with robust internal mechanical construction using cast aluminium screening, careful attention having been devoted to layout of components with subsidiary screening to reduce the minimum signal to negligible level even at 80 Mc/s.

Four continuously attenuated ranges using well-designed double attenuator system.

Force output 0.5 volts.

Internal modulation at 400 c/s, modulation depth 30%, with variable L.F. signal available for external use.

Mains input, 100-130 V. and 200-260 V., 50-60 c/s A.C.

Mains MODEL, as specified, or BATTERY MODEL, covering 50 Kc/s to 70 Mc/s, powered by easily obtainable batteries £30

Fully descriptive Pamphlet available on application to the Sole Proprietors and Manufacturers

The **AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT CO. LTD.**

WINDER HOUSE, DOUGLAS STREET, LONDON S.W.1 Telephone: VICTORIA 390/10
A New “P.T.” Receiver—“The Lynx”

ELSEWHERE in this issue is the first article describing the construction of our latest receiver, “The Lynx.” Hitherto most of the receivers described in this journal have employed straight circuitry. “The Lynx” employs a superhet circuit, and as will be seen from the photograph, it is incorporated in a new system of chassis construction providing much greater accessibility than the normal chassis, making for easier wiring, testing, alignment and servicing. It employs a 12in. tube and 18 valves.

Needless to say, the receiver has been thoroughly tested in our laboratory, and we launch this latest TV receiver with the confidence that those who build it will be gratified with its performance. We shall, of course, publish full-size blueprints for those who prefer to build from full-size drawings, and like our “P.T.” Receiver, the “Argus” and other designs which we have sponsored, it is backed by our free advisory service. This month we publish the circuit, a list of components and preliminary circuit details. Next month wiring diagrams will be given. We have arranged for the manufacture of a special cabinet for the convenience of readers who are without facilities for woodwork.

SPONSORED TV

It is a sign of the coming times that a new company has been formed to exploit the relaying of sponsored TV programmes, and the terms of its registration indicate that the company has been formed to operate existing relay concessions and to develop new ones. It will take over all or part of the capital of several existing concerns, including Link Sound and Vision Services, which is jointly owned by Pye Ltd., and Murphy Radio. The new company is named British Relay Wireless and Television, Ltd., and it will have a capital of £875,000.

AUTOMATIC PICTURE CONTROL

DEVELOPMENTS in TV proceed apace and one of the latest is the automatic picture control receiver recently demonstrated in London by Pye. It will be of particular value in areas where signal fading occurs—by no means uncommon in certain districts. In these areas at some time during an evening’s viewing controls have to be reset due to a change in signal strength, and it is claimed that A.P.C. will provide a steady picture of constant contrast in brilliance even with picture signal strength variation as great as 10 to 1. In the demonstration, although the picture blacked out completely on an ordinary TV receiver, due to signal fading, the A.P.C. set was not appreciably affected.

Another advantage is incorporated in this new receiver—an interference damper—which considerably reduces snowstorm interference. In the bright areas of the picture streaks of interference stay white, but in dark areas where normally they show up white on the screen they now become grey and hardly visible.

TELEVISION IN INDUSTRY

THE possibilities of employing TV in industry and science for optical observation purposes have been demonstrated many times in this country by the three companies manufacturing TV cameras—Emitron Television, Marconi’s and Pye. In recent years cameras have acquired more lenses and the latest have a turret carrying six, together providing a very wide range of viewing angles and a sensitivity which closely approximates that of the human eye. The average cost of a camera with its control gear is about £5,000. The cumbersome cameras of twenty years ago have been replaced with lighter and more readily portable cameras. Some, indeed, can be carried about in a suitcase and there is a miniature camera containing a 1in. tube, 6in. long, although it makes use of lenses of the conventional type as used on 16 mm. cameras. Test pattern cards and boards which formerly were used for focusing the camera are now engraved direct on the face of the pick-up tube and are in regular use by the BBC. The latter employs cameras made by each of the three companies, and still uses, at Alexandra Palace, an E.M.I. camera supplied in 1936.

In industry research work of a dangerous nature can be made safer by the use of remotely placed cameras. Particularly is this so in the case of experiments with high voltages, such as circuit breakers, where it is considered dangerous to approach nearer than 200ft.—F.J.C.
The Sound Receiver

HAVING passed through the filter gate, the sound signal then proceeds on its way in a manner similar to that in the normal broadcast receiver.

There is one usual addition, and that is an interference limiter which acts as a filter and causes heavy voltages due to car ignition to be filtered off. The diagrammatic representation given in Fig. 4 last month shows the filter gate.

The carrier which conveys the sound is retained and amplified with the sound until the sound is able to look after itself; at this point the two are separated (detector stage) and thereafter the sound alone is amplified and fed into the loudspeaker.

Of course, in neither case is vision or sound a pure square-shaped wave, such as has been shown in the diagram; the sound is a complicated sinewave and the vision an even more complicated one. The square forms have been used for demonstration purposes only.

In the detector stage the same proceedings take place whether the normal carrier frequency is retained (signal frequency is the popular name for it) or whether the original carrier frequency has been changed into a new figure as in the superhet.

We will now deal with the basic principles of the vision signal amplifier, detector and video stage.

The Vision Section

It will be remembered that the first stage of a televi sor is usually common to vision and sound. In the case of a straight receiver (i.e., one which amplifies throughout at signal frequency), it is usual to make the first amplifying stage common to vision and sound.

After separation of vision and sound signals has taken place by means of gate filters and traps, the sound and vision are amplified in separate channels, the sound finally ending up at the sound reproducer (loudspeaker) and the vision ending up at the vision reproducer (picture tube).

It is usual to employ three stages of vision amplification at signal frequency up to the detector, and sound traps (rejector coils, as they are sometimes termed) are fitted at one or more of these stages (Fig. 5).

At the detector the vision signal is separated from its carrier in a similar manner to that of the sound signal and it is passed on to the vision amplifier—or video amplifier as it is popularly called.

At the detector the vision signal is separated from its carrier in a similar manner to that of the sound signal and it is passed on to the vision amplifier—or video amplifier as it is popularly called.

Now between the aerial and the detector are four amplifying stages; it is a difficult matter to design an amplifier which will pass the broad range of frequencies which comprise the vision signal (from black to peak white) without introducing serious losses. It is possible by careful design and choice of components to use pairs of tuned circuits in the coupling stages. Fig. 6 shows what is meant by a single tuned circuit and a coupled pair of tuned circuits.

The usual method is to make the centre of the tuning point of the pair at 1.5 Mc/s from the carrier and by careful coil construction and circuit design the response can be made fairly flat over the range of picture tones.

Such coupling coils must be wound with great care and rigid adherence to the specification to enable the best response to be obtained; for this reason single tuned circuits are usually employed for amateur construction. It is possible to allow more latitude in coil construction with this type.

It is difficult to design a wideband amplifier using single tuned couplings between stages which will provide the necessary amplification, and the usual method of overcoming the problem is to "stagger tune" the stages.

Stagger tuning is arranged so that each stage amplifies a certain proportion of the band so that at the detector the sum of the different amplifications results in an overall flat-topped response. Fig. 7 shows the idea. It will be seen that by tuning each stage to its particular band the total result of the stages is a wide band amplified signal applied to the detector.

The same principles apply in the case of a superhet, though tuned coupled pairs are usually used for inter-stage amplification.

To ensure that the resultant bandwidth is adequate it is common practice to flatten the tuning of each coil by loading the input to the valve with a low valued resistor. This resistor must be lower than the actual input resistance of the valve and for this reason values over 6.8KΩ (6,800 ohms) have little effect.

The resistance is actually placed across the coil where tuned grid circuits are used.

The Video Detector

Up to this point we have considered the vision signal as being a simple band of waves whose frequency extends from zero to 3 Mc/s. In fact it is, of course, an extremely
complex affair and the analysis of its component parts is a study in itself.

We are not concerned in this series with such a detailed study; what we are concerned with at this point is that not only does the video signal contain the detail of the picture intelligence but it also contains the synchronising pulses which keep the spot on the tube in step with that in the camera at the studio.

These pulses must be extracted from the video signal at some point so that they can be fed to the timebases and trigger their respective oscillators. Quite often or less in parallel; to avoid the one exit affecting the other the circuit values are very carefully chosen.

Before leaving the detector valve the method of connection must be discussed. If the detector is connected so that the output is taken from its cathode the output will be positive. If the detector output is taken from its anode then a negatively phased signal will result. This is important because we can predetermine the correct phase of signal for operation of the C.R.T. according to whether grid modulation or cathode modulation is desired.

The extracting process takes place in the detector stage so this stage not only performs the function of separating the video from its carrier but also separates the sync pulses from the picture intelligence.

Now we must be very careful here because things are not quite so simple as that. In the timebase we require pulses to trigger the oscillators and these pulses must be free from picture intelligence; if the pulses contain picture information then a sudden change in scene from, say, a light scene to a much darker one would cause a spurious pulse and the timebase oscillators would be thrown off their normal course—result, break up of the picture on the C.R.T.

When we feed the video signal to the picture tube then it has two functions to perform. It has to modulate the beam from the cathode so that the beam varies in brilliance from light to dark shades which correspond to the light and dark shades of the scene being televised; the signal also has to blank out the beam on the retrace stroke when it has finished one line and is starting the next, and when it has finished one frame and is starting the next.

It will be seen, therefore, that we require two separate conditions (a) pulses free from picture content for the timebase and (b) video signal, including sync pulses for the C.R.T.

The two conditions are shown in Fig. 8.

The detector is often made the point of separation; a double-diode valve is frequently employed, one half of the valve acting as the normal wide-band detector and the other half as a sync separator.

Sync separation at the detector is more often employed with hard-valve timebases; thyratrons require a strong pulse and it is usual in these cases to make the separation after the video amplifying valve (Fig. 9).

It will be noted in each case that the outputs are more

Fig. 7.—Diagram illustrating the effects of stagger tuning.

Fig. 8.—Illustrating the special requirements of the tube and sync stages.

Fig. 9.—The video stage as commonly employed.

When a signal is passed through a valve. reversal of phase takes place between the anode and grid of the valve. For example, supposing a positive voltage is applied to the grid, then the movement of voltage on the anode is in the negative direction. The movement of the voltage on the cathode is in the same direction as that on the grid.

Fig. 10 shows the position.

Now when the signal indicates that a bright section is being transmitted then we must make the screen on the tube brighter. There are two ways of doing this: one is to cause the grid voltage of the tube to become more positive and the second is to make the cathode more negative. (Making the cathode more negative with respect to the grid in effect makes the grid more positive.)

Some designers prefer grid modulation and some cathode modulation of the C.R.T., but whichever form is used the output of the video valve must conform to this condition.

As a phase reversal takes place in the video valve then

Fig. 10.—A video stage showing the reversed signals in anode and cathode circuits.
the input to that valve must be arranged to be opposite to the desired output. As an example, supposing we are going to modulate the grid of the C.R.T., then peak white means that the C.R.T. grid must move in the positive direction to pass more beam current; our video valve output must therefore be positive on whites and its input must be negative on whites. To obtain this condition the output from the detector must be taken from its anode.

The Video Valve

This valve has a strenuous job to do, as it must amplify the whole frequency range from 0 to 3 Mc/s evenly, if it is not possible to obtain a very large gain with it, and it will be found that the anode load resistor is very small. Every effort is made to embrace the range of frequencies required, and in some circuits a little artificial boost is given at the high-frequency end in the form of a small boost choke. The low-frequency end must not be forgotten, and it is quite usual to find that the normal decoupling condenser on the screen is shunted by a much larger condenser.

The cathode circuit presents some problems, and it is usual to allow for a certain amount of negative feedback here by keeping the decoupling condenser across the cathode resistor on the small side. Actually the relation between the cathode resistor and decoupling condenser must be carefully balanced for optimum results, or distortion of the waveform will result. To obtain the maximum gain from the stage it is possible to make the anode load resistor up to 20 per cent. higher than that quoted in the design, and also to increase the value of the decoupling condenser up to some 50 pF. If these modifications are made, the quality of the picture is bound to suffer, although a greater gain will be obtained from the stage. This factor is useful in the fringe areas where the extra gain may be worth the small sacrifice in picture quality.

The value of the cathode resistor which controls the bias of the video valve differs widely for the same valve type, and is dependent upon whether the output is designed to be positive going on peak white or negative. If the output is to be negative going, then the input to the grid will be positive. The valve must, therefore, be biased so that maximum white (i.e., maximum positive on the grid) does not drive the valve into grid current or off the straight portion of its characteristic curve. The value of the cathode resistor must therefore be on the high side (for EF50's about 220 Ω).

On the other hand, if the input to the video valve is negative, then the cathode resistor must be a low value so that heavy negative representing peak white will drive the valve on to the lower bend of its curve and the picture will be distorted in tonal values. A value of about 68 Ω is usual for an EF50.

Next, we will discuss the fundamentals of the cathode-ray tube: the merits and demerits of cathode versus grid modulation of the tube will be dealt with and an introduction to the basic principles of the timebase. (To be continued)

Automatic Picture Control

This feature has been incorporated in some new Pye models, and is an adaptation of the auto gain arrangement which has been described in previous issues. As has been pointed out before, A.V.C. as used in radio equipment cannot be employed in a television receiver owing to the fluctuating picture level, and the black level has to be employed for the reference. To enable readers who are interested to follow the scheme the block diagram below is given to show the working. It will be seen that the signal is rectified by the video detector, amplified by the video amplifier and fed via the cathode follower to the picture tube, sync separator and automatic picture control circuits. The pulse voltage at the line output transformer during flyback is applied to the pulse transformer which provides a short delay, and the pulses are applied to the cathode of a signal-measuring diode. The arrangement results in the pulse taking current during the pulse period, thereby connecting the cathode of the cathode follower to the cathode of the automatic picture control amplifier during the black level periods. The peaks of the delayed pulses are therefore set at the potential of the cathode follower output during the black level period, and this potential alters as the signal amplitude varies. The amount of pulse fed to the controlled stages is settled by the contrast control. Attention is drawn to the letter on page 379 on this subject.

Simplified diagram of the arrangement incorporated in the new Pye receivers.
Conversion To Magnetic C.R.T.

Details of Two Easily Built Units Based on Electrostatic Timebases

SOONER or later the home constructor who has been using one of the smaller tubes such as the VCR97 feels a desire for a larger tube; the main deterrent is the cost of the tube itself, coupled with the rather heavy cost of a completely new timebase to work it.

With electrostatic deflection the timebase has to deliver power in the form of heavy voltage waves in order to deflect the spot; with electromagnetic deflection, power in the form of heavy current waves has to be used. This is the essential difference between the two forms of deflection and the reason for the need of a different technique.

Most of the data for this type of conversion which has been published previously involves the wholesale scrapping of the existing timebase and the building of a completely new one. This is quite an expensive business, and an endeavour has been made to form a new approach to the problem; practical experiments have been conducted and the resultant units described in these pages make use of practically the whole of the existing timebase.

Two units are described, the first being the most inexpensive but requiring the most labour, and the second a more orthodox type.

In each case the unit is completely self-contained so far as power supplies are concerned; some simple modifications are made to the existing timebase, the output from it being fed into the unit and thence to the tube.

The cost of the cheaper version should not be much more than £10, and the constructor who has a useful junk box can make it for rather less. Expenditure on certain items is unavoidable and would be incurred whatever system was used; these items are scanning coils, focusing magnet, line output transformer, and E.H.T. system, and these form quite a large proportion of the total cost.

A complete shopping list of specified components has been prepared, and it will be seen that all parts are standard and are easily obtainable. The cost can be kept at a lower level by employing certain items which become available very cheaply from time to time due to purchase of bankrupt stock. The use of such items was avoided in the preparation of this data, as such material is liable to disappear suddenly from the market. There is no reason why these items should not be used provided that the scanning coils and output transformers are matched; this is essential.

Another feature of the designs has been the possibility of the use of inexpensive C.R.T.s which are available from time to time, having cathode-heater shorts; it is possible to purchase a 9in. tube with slight ion burn plus cathode-heater short for as little as 3s. from advertisers in this journal, and these will provide a reasonable picture in either of the circuits given.

The circuits can be used with practically any form of timebase which uses Miller type oscillators. Examples are the Argus, the £9 televisor, the Inexpensive Televisor, and the Premier Electrostatic.

Basic Principles of the Conversion

Fig. 1(a) shows a block schematic of the existing timebase. Most electrostatic timebases follow this general scheme, though it will be found that in some cases the frame oscillator does not feed one of the deflector plates directly but only the frame amplifier, the latter being a duo-triode which feeds both of the plates; the line section is similar.

Whichever system is used the same method of modification is applied to each. A block diagram of the conversion is shown in Fig. 1(b). The new timebase amplifier is shown in dotted lines.

It will be seen that everything in the existing timebase

Fig. 1 (a) (above).—A standard electrostatic timebase, and below (Fig. 1 (b)), an electromagnetic arrangement.
is retained as far as the frame and line oscillators. In the case of the frame oscillator the existing amplifier valve is disconnected and the output from the oscillator is taken to a new frame amplifier which feeds the frame deflector coils.

In the case of the line section the line amplifier which is existing is changed into, or replaced by a line-phase reverser; the output from the reversal stage is led into the line-amplifier which in turn feeds the line-deflector coils.

E.H.T. is derived from the line flyback.

The New Unit

The new unit is built on a separate chassis which contains frame and line-amplifying valves and the

The E.H.T. circuit. The tube is mounted separately on a wooden chassis and is connected to the amplifier by plug and socket. It was considered that a separate mounting for the tube was the better scheme for the home constructor as it enables him to turn the amplifying chassis upside down for testing and preliminary adjustments.

As mentioned previously, two versions have been built, the first—being the most inexpensive of the two, and this one will be discussed in detail.

Each unit can be separated into two parts, the frame amplifier and the line amplifier, and as the frame amplifier is the easier it will be described first.

Fig. 2 shows the theoretical circuit. It consists of a single valve, a 6V6, whose output is fed directly into high-impedance frame coils. This method enables an expensive frame transformer to be dispensed with.

The existing oscillator valve is modified by disconnecting the anode load resistor and inserting a 100 KΩ potentiometer in its place. This potentiometer becomes the height control. In some cases the inexpensive Televisor is an example) the anode load resistor of the frame oscillator is already a potentiometer which is used as a height control, and in these cases no modifications need be made, excepting the disconnection of the existing feed from the centre slider, and the connecting of the new circuit.

The amplifying valve is quite orthodox. The output is developed across R19 and is led into the frame coils via C9 and C10. These two condensers are electrolytics and it important to note the method of connection. Two separate condensers are specified and they are wired in parallel. The positive sides go to the anode of V4 and the negative sides to the frame coils. It is important to note that the negative side is not earthed and the cans should not come into contact with any earthed section of the circuit or chassis.

The cathode bias is made variable by VR2 and this becomes the “Form” control. Linearity is obtained by negative feedback from the anode, the feedback being controlled by the variable resistor VR3.

It might be thought that VRF (height) and VR3 (linearity) would have been sufficient to enable a linear scan, unfortunately this was not so and some of the various timebases which were tried with the circuit had the defect (in varying degrees) of cramping at the bottom.

In order to cater for varying timebases it was considered the addition of the Form control worth while.

A further point to note is that the values of R14 and C7, with the network R15, 16, 17, 18, have been given specific values as a compromise between various timebases. If it is found difficult to obtain reasonable linearity with the circuit, then the value of C7 and R14 can be varied.

The link between old chassis and new can be made by use of coaxial cable and Pye plugs and sockets. It is important that a good earth connection exists between the two.

R22 and R23 are damping resistors connected across the frame coils to prevent distortion of the left-hand edge of the raster due to modulation from the line coils.

Line Amplifier and E.H.T. Supply

Fig. 3 shows the circuit. It is divided into two parts as shown by the dotted line. The line oscillator is dealt with in a similar manner to the frame oscillator, a potentiometer being inserted in lieu of the existing anode load resistor to form the height control.

The existing line amplifier is converted into a phase reversal stage (VL2). Quite a large number of circuits use an SP61 at this point, in paraphase circuits, for electrostatic deflection; the Argus is an example. In this case the valve circuit can be easily modified to that shown in Fig. 3.

Where a duo-triode valve such as the 6SN7 is used at this point in the existing chassis, then it is worth

Fig. 2.—A frame timebase amplifier.

Fig. 4.—A typical phase-splitter as used in the VCR97 timebase.
while recovering the valve and replacing it with an inexpensive triode. The phase reversal valve can be practically any sort of valve which is to hand, such as the 615 for example. In Fig. 3 the SP61 (VR65) has been shown with screen and suppressor grids strapped to the anode to form a triode.

It is necessary in the line circuit to have this phase reverser as the output from the Miller oscillator is not of the correct phase to operate a line-amplifying valve.

V1 is a standard EL38 which has been found eminently suitable in a circuit of this type. The output is fed directly into the simple line transformer which is not overwound for E.H.T. A transformer of this kind is inexpensive and is less liable to breakdown than a cheap overwound type.

The line coils are low resistance type and damping is effected by the condenser C2 with R6 and the variable resistor VR1. This latter forms the “Linearity” control.

A small valued resistor (actually two in parallel) is connected in the line coil circuit and the voltage developed across this resistor is fed back into VL2 cathode. This provides a high degree of negative feedback and is a good aid to linearity.

The CRT is grid modulated in the same manner as is usual with VCR97 circuits. It seems to be fairly standard practice with these circuits to employ a phase splitter as seen in Fig. 1, and to feed the grid of the CRT from the cathode resistor. This practice is continued in the present circuit and the wire which is normally connected to the cathode of the phase splitter and feeds the VCR97 grid is disconnected, the grid of the new tube being connected in its place.

To obtain the maximum quality the wire from the phase splitter to the tube should be as short as possible and unshielded, though it is quite in order to make the wire of a convenient length during the setting up period, and to shorten it when the unit is mounted in its cabinet.

The heater supply for the tube is obtained from a simple home-made transformer (T3). One of the commercial heater transformers can be used if desired though they are quite easy to make. If a brand new tube is being used then the heater can be fed directly from the 6.3v. supply provided, of course, that the tube’s heater is rated at 6.3v.

In the prototype the transformer was constructed from an old one removed from a radar unit. The existing windings were completely removed and new windings constructed. Full details will be given later.

E.H.T. is obtained from line flyback using a voltage doubler circuit. T2 is another simply made transformer and has been found to be perfectly reliable. V2 and V3 are VU120’s, which are high voltage rectifiers requiring a heater voltage of 2 volts. These valves were used because one was available in the old E.H.T. supply for the VCR97 and the other was available at a very low cost; they can be bought for as little as 3s. 6d.

Any ex-Government E.H.T. rectifier valve can be used in this position. Where a four-volt rectifier exists in the VCR97 unit, then the only alteration will be in the windings of T2. It is advisable to make one of the rectifiers a 2v. valve so that the windings can be easily accommodated on the transformer core.

The condensers C4, 5 and 6 are 2.5 Kv. working and can be obtained for as little as 1s. 6d. The components associated with this part of the circuit should be mounted on a Paxolin panel and kept at least $\frac{1}{2}$ in. clear of any earthed object.

Control over brilliance is obtained by varying the positive voltage on the cathode; the potential is obtained from the network R11, VR4, R12, R13 and VR4 forms the brilliance control.

Construction of T2 and T3

Some doubt was felt over this part of the circuit, as many constructors seem reluctant to tackle a job of this nature. However, as the primary of the transformer is fed from the 6.3 volt supply, the windings are very few in number and can easily be put on by hand. For those who think they cannot tackle the job, the alternative circuit has been designed and this uses the more normal overwound type of line transformer. Details of the alternative circuit will be given later.

(To be continued.)

![Diagram](image-url)
The main function of a vision detector is, of course, to rectify the modulated carrier signal, but in addition to this, it is necessary for the stage to provide adequate filtering of the radio or intermediate frequencies. This filtering action corresponds to the function of the circuit found in broadcast receivers, generally wired as shown in Fig. 1, where \(R_f C_1 \) constitute the combined load and filter elements. The condenser cannot discharge at the R.F. or I.F. rate but can only follow the comparatively slow variations corresponding to the low-frequency modulation.

In TV circuits, however, such a system will not normally provide adequate filtering as the video-signal extends over a range of some 3 Mc/s, the difficulty being generally more acute in superheterodyne receivers than in straight T.R.F. designs. With the average signal frequency of 55 Mc/s, for the carrier, the ratio of R.F. to the highest video-frequency is about 18 to 1, but for I.F. carriers in the region of 13 Mc/s, the ratio falls to as low as 4 to 1. Simple by-pass capacities, therefore, do not provide sufficient discrimination between the R.F. and the video-frequencies, for a capacity small enough to exhibit an appreciable reactance at the highest video-frequencies will not present a small enough reactance to the intermediate frequency; and conversely, a capacity big enough to have a negligible reactance at the intermediate frequency will not present a large enough reactance to the video-frequencies.

Some Common Forms

Filter coupling is therefore employed in practical TV designs, and a few of the more common \(\pi \)-forms are shown in Fig. 2. Such systems have a characteristic similar to that shown in Fig. 3, where the cut-off frequency \(f_c \) is arranged to fall in the region of the highest video-frequencies. The cut-off frequency of such \(\pi \) filters is given by

\[
f_c = \frac{1}{\pi \sqrt{L C}}
\]

where \(C = C_1 + C_p \). In the design of such a filter it is general to have \(C_1 = C_p \), one half of the total capacity for the required cut-off frequency being permitted in each parallel capacitive element. \(C_2 \) is the input capacity of the video-amplifier mainly and with strays is not likely to be less than some 10 pF. The terminating or load resistance \(R \) is found from the equation

\[
R = \frac{\pi f L}{C}
\]

Compensation

Besides normal filtering of the R.F. or I.F. component, the circuit being discussed can be made to compensate the detector to give a uniform high-frequency response. The coil \(L_1 \) in Fig. 2(b), for example, compensates the H.F. response of the detector diode in much the same way as the anode inductance of a video-amplifier compensates that stage. Fig. 2(c) uses two filter sections in series; this system emphasises the band-pass characteristics of the filter and provides sharp discrimination between the video pass-band and the intermediate frequencies. The centre condenser in such an arrangement as this can be made twice as large as either of the end capacities, a useful feature when a capacitive load, such as a sync separator, has to be taken from the detector output instead of the video-amplifier anode circuit.

Working with the above equations, and assuming an I.F. of 13 Mc/s, with a top video-frequency of 3 Mc/s, we have, for an input video-amplifier capacity of 10 pF, the following component values: (Fig. 2(a)). \(C_1 = C_2 \) (input capacity) = 10 pF.; \(L = 1 \) mH. and \(R = 10 \) k \(\Omega \), to round figures.
Improving Your Picture

SOME COMMON FAULTS AND THEIR CURE

By P. Dodson

The home-constructed receiver, built to suit the particular signal conditions of the locality in which it is to be used, can, when correctly adjusted, produce unrivalled results as to picture quality. Picture distortion should not be tolerated. It is usually caused either by maladjustment of the video channel or a non-linear timebase. Optical distortion, not so common, can result from a defect in the picture tube, focusing or scanning arrangements.

Poor Definition

If the picture is correctly focused, poor definition is almost certainly due to insufficient bandwidth in the R.F./I.F. or video amplifier stages. In addition to poor definition, the following faults may also be apparent: smearing, pulling on whites, black line after white outlines and vice versa, all of which are due to poor H.F. response. The vision R.F. amplifier should have a flat frequency response of approximately 2.5 Mc/s on either side of the vision carrier for double sideband working and about 2.5 Mc/s on one side of the carrier in the case of single sideband transmissions, as indicated in Figs. 1 and 2. The response of the receiver is easily checked on test card "C." It should be possible, at full contrast, to see the vertical lines in the first three squares from the top of the left-hand frequency grating and the first three squares from the bottom in the right-hand grating. These lines correspond to frequencies of 1.0, 1.5 and 2.0 Mc/s respectively. The fourth and fifth squares on either side represent 2.5 and 3 Mc/s. On a good receiver the 3 Mc/s modulation lines should be visible but at reduced contrast. In the absence of a signal generator it is best to adjust all the circuits to resonance on the vision carrier by tuning for maximum picture brightness. When this has been done the response should be broadened by slightly detuning each circuit for best definition. The procedure for tuning a superhet differs from that used for a T.R.F. receiver only in that the wide-band amplifier operates at a lower frequency.

Sometimes damping resistors are connected across anode or grid tuned circuits to broaden the bandwidth. These should be checked. If one has gone "high," this would cause reduced H.F. response. The usual value is between 2.2 Mc and 5.6 Mc. The lower size giving the greater bandwidth and making for ease of adjustment. However, difficulty may be experienced in obtaining adequate sound rejection.

If it is still not possible to resolve the 2.5 Mc/s bars, then the video stage should be suspected. For maximum picture detail the anode load resistor must be of low value: also the valve must have a low impedance. Special video valves are available such as 6AG7 and EF55, and these may be used with a load as low as 1.5 KΩ. Two EF50 valves in parallel work excellently with a load of 2.5 KΩ, giving a great improvement in picture quality and gain over a single EF50 valve. The cathode bias condenser and resistor values should be experimented with, as they will have an important bearing on results. Suitable values bring about some degree of video correction by top lift. More "highlights" may be obtained by inserting a video correction choke in the anode circuit. When a boost choke is used the
anode load may be increased, thus obtaining greater stage gain. However, with a low anode load resistor the need for video correction may be avoided. If the C.R. tube is grid modulated it may be possible to remove the bias from the video valve. It is best to be guided by results, as over-correction by selective feedback can cause outlining or ringing.

The frequency response of the video stage can easily be checked if a signal generator is available. The output of the signal generator should be connected into the grid circuit of the video amplifier. With the generator tuned to 300 metres, corresponding to 1 Mc/s, a series of vertical bars will appear on the screen if the timebases are carefully adjusted. The definition of these bars should be very good. Increasing the frequency to 2 Mc/s (150 metres) will increase the number of bars and, if the frequency response of the video stage is good, they should be clearly visible.

Low-frequency Response

The low-frequency response of the video receiver can be checked by noting if the black bar in the white surround immediately above the centre circle in test card "C" is reproduced with uniform brightness on a clean white background. There should be no evidence of "streaking."

"Pulling on Whites"

As mentioned previously, "pulling on whites" can be due to poor H.F. response. However, if the picture definition is good the trouble may be caused by the coupling components at the input to the sync separator valve. They should be mounted well clear of the chassis, particularly the large coupling condenser.

Loss of Highlights

If the emission of the C.R. tube is O.K., lack of highlights in the picture may be due to one or more valves in the vision channel overloaded, if the contrast control is at its usual setting. An incorrectly set vision noise limiter can cause loss of definition in the white areas of the picture. The limiter diode should be arranged to conduct just above the peak white level of the picture. Fig. 3 show the circuit of a manually-set limiter which is to be preferred to the self-setting type. When positive-going signals are applied to the grid of the video amplifier the connections to the limiter diode must be reversed, the cathode being taken to the video amplifier anode.

Poor Linearity

The linearity of the timebases can be checked with the aid of test card "C" by observing the white grid which forms the background.

Non-linearity of either line or frame timebase will cause the white grid squares to appear as rectangles. Stretching or cramping is usually due to the incorrect operation of the timebase output valve.

Cranked Right.—Line amplifier bias too low. Valve emission failing. Low H.T. voltage, including boost voltage if a booster diode is used. Drive voltage too high.

Cranked Left.—Bias too high. Low screen grid voltage. Linearising components wrong values.

Cranked Top.—Bias too high. Negative feedback components wrong values.

The anode load of the oscillator valve also affects linearity. Should a linearity fault develop in a receiver which has been working correctly, a check should be made of the fixed condensers. A leaky condenser or a fixed resistor gone "high" will upset linearity.

Stability

In conclusion it should be emphasised that the success of any receiver is governed by its stability. R.F./I.F. instability, however slight, can be disastrous so far as picture definition is concerned. A stable receiver, when used at maximum gain, at a time of no transmission, should give brilliant and sharply defined interference spots against a dead black background.

Royal Air Force Films

The BBC Television Service is working on a project whereby it is hoped to produce a series of films showing how the Royal Air Force prepared in the immediate pre-war years for the problems which war would bring to them; of the manner in which they handled their tasks during 1939-1945; and of the fruits of victory as exemplified by the Royal Air Force to-day.

The Air Ministry has many millions of feet of film, shot during the war and it is agreed to make this material freely available to the BBC. Although it is, of course, catalogued, every foot of film will have to be viewed before deciding whether it covers sufficient ground to make possible a production of one or of a number of films.

Air Chief Marshal Sir Philip Joubert, has agreed to be the chairman of a small viewing committee to see and to assess the Air Ministry film material, and to advise on the practicability of producing a series of films. The Committee will include Philip Doré, Head of BBC Television Films, who is himself an ex-Group Captain of the Royal Air Force, and representatives of the Air Historical Branch of the Air Ministry, and BBC Television Film Department Editors. The Committee which will start working very shortly will, it is hoped, be able to make its recommendations in a few months' time, and it is hoped that the outcome will be an outline scheme for 13 30-minute films.

If the material proves adequate, it is the intention to attempt a survey of air war as a whole with particular reference, of course, to the part played by the R.A.F. Our war-time allies will be asked to provide a certain amount of film material where necessary and captured enemy material will be drawn upon.

If a series emerges from these preparations, it is hoped that it will be possible to televise the films during 1954, and Air Chief Marshal Sir Philip Joubert has agreed to act as narrator.
WHEN battery receivers were more popular a lot of thought was given to the problem of protecting the valves and batteries in the receivers against overloads, which were a frequent occurrence when the operator inadvertently crossed the battery connections, or caused a short-circuit while endeavouring to "hot-up" the performance of the receiver.

The problem of damage from lightning discharges was also very real when aerials were of a necessity so elaborate. The popular protection devices of those days, therefore, resolved into two main items, namely, the fuse bulb, and the conspicuous aerial earthing switch: but whether they proved more ornamental than protective is another story!

To-day, however, we are mainly concerned with the problem of protecting our television receivers, particularly the expensive picture-tube, from a host of causes, which may easily originate from one or other of the many sections of the receiver developing a fault.

Protecting the Screen

In the first place, has it ever been considered what a disastrous effect, in certain receivers, a fault developing in the mains rectifier may have on the picture-tube? In this respect let us consider a receiver that derives its E.H.T. from a 50 c.p.s. mains transformer source. These receivers, although not so popular to-day, are still in constant use, and usually employ two rectifiers: one solely for E.H.T. purposes, and the other, a large valve, for supplying H.T. for the rest of the set.

A fault developing in this valve, or anywhere in the main H.T. circuit, so that the H.T. voltage is reduced to zero, has a far more detrimental effect on the picture-tube than one would at first realise. The whole receiver, apart from the valve heaters and E.H.T. system, is rendered inactive, the scanning generators cease to function, and the bias is removed from the picture-tube.

This results in a brilliant unfocused blob in the centre of the screen, and even switching the receiver off does not immediately remove it, for the heater of the picture-tube takes a while to cool off and cease emitting, while plenty of E.H.T. remains stored in the smoothing capacitor. Considerable damage may, therefore, ensue to the screen phosphors before much can be done to remedy the defect. Furthermore, a similar effect is frequently evinced each time certain receivers are switched off, for instead of the screen going completely blank the raster dissolves into an unfocused blob, which often takes quite a time to disappear. The net result of this after a few months is that the centre of the screen loses its luminescent property, and a distinct patch is observed in the centre of a picture—the tube is frequently referred to as having an ion burn.

For very little trouble and expense we can devise a means whereby this harmful effect can be prevented. The circuit at Fig. 1 illustrates the general trend the artifice takes in conjunction with the style of receiver in question, and as will be observed, the highlight of the circuit is the inclusion of a relay, the coil of which is energised from a suitable point on the H.T. rail.

The relay contacts are wired directly in series with the cathode of the picture-tube, and arranged so that the circuit is open only when the coil ceases to be energised. A slight alteration is also made to the E.H.T. bleeder circuit by including a 1 watt 1 megohm resistor (marked R in the circuit diagram) in series with the earthy end of the bleeder chain. The "hot" end of this resistor, where it joins the bleeder chain, is connected directly to the cathode of the picture-tube.

On switching the receiver off, or should the H.T. system fail, the relay contacts part, and the picture-tube cathode loses the outweighing influence of the potential from the brilliance control system: but the cathode does not become completely open, for it rises to the positive potential developed across R. This is, of course, the same as the picture-tube grid swinging heavily negative, and immediately results in beam current cut-off.

The system functions very satisfactorily in practice, and is included as a modification by, at least, one commercial receiver manufacturer where the 50 c.p.s. E.H.T. principle is adopted. The permanent connection from the bleeder chain to the picture-tube cathode has negligible influence when the relay contacts are closed, for the brilliance control potential is derived from a circuit of very much lower impedance than that supplying the
cut-off bias potential—the latter being far outweighed by the former when the receiver is working normally.

The actual relay energising current depends, of course, on the type of relay employed. Many ex-government varieties are quite suitable for this purpose; one with a low resistance winding can be energised by the cathode current of the output valve, as shown in Fig. 1, while one of the high-resistance types can obtain power direct from the receiver H.T. rail, via a suitable value limiting resistor.

Fig. 1 shows the connections for a grid modulated picture-tube, since this method is more frequently adopted than cathode modulation in this style of receiver. Should the relay desiring treatment employ cathode modulation, however, a relay with low-capacitance change-over contacts will be needed, and should be wired as shown by Fig. 2.

Protecting the Valve Heaters

As more home constructors are now concentrating on the A.C./D.C. technique for their new designs, a word on valve heater protection will not be amiss at this stage. With this style of receiver all the heaters of the valves are wired in series together with a suitable voltage dropping resistor, and then to the mains supply. And this is where trouble and expense can be incurred unless some sort of precaution is taken, for it must be remembered that valve heaters possess a positive temperature coefficient of resistance. Or in everyday language this simply means that the resistance of the heaters rises with temperature, and since it is the valve heater current which determines the temperature, we can draw a curve, such as that of Fig. 3 (a), depicting resistance as a function of current.

Observation of the curve will, therefore, make clear the fact that on first applying mains to the heater circuit an excessive current surge is bound to ensue; this effect has, no doubt, been noticed by constructors of A.C./D.C. broadcast receivers which employ a bulb in the heater chain for tuning dial illumination. When first switching on such a receiver, the pilot bulb invariably lights up brilliantly, but gradually falls to normal illumination as the receiver acquires the necessary operating temperature.

With television receivers, however, the effect is even more marked, owing to the greater number of valves plus the picture-tube heater employed in the chain, and the consequent lower value dropping resistor needed. It is, therefore, essential to include a form of current limiting device in series with the heater chain to prevent very frequent valve heater failure.

Fortunately, a very simple and effective means is available to the constructor for this purpose. It takes the form of an element which has a large negative temperature coefficient of resistance, and is for inclusion in series with the heater chain. Such elements are manufactured by Standard Telephones and Cables under the name of Brimisters, and are produced in various ratings suitable for all types of valve heater circuits.

The curve at Fig. 3 (b) illustrates how the resistance of a Brimistor decreases as the current through it increases—due to the resulting temperature rise. It is, therefore, obvious that a circuit possessing both positive and negative temperature coefficients in their correct proportions will ensure a constant current during the initial warm-up period, and thus prevent instantaneous current surges which are so harmful to the valve heaters.

A Brimistor should not be connected between individual valve heaters, but between the voltage dropping resistor and the first valve in the chain—usually the mains rectifier—as shown by Fig. 4. In certain cases, where the maximum instantaneous current exceeds the rating of the Brimistor employed, it must be shunted by a resistor of value suitable to absorb the additional current.

Harmful Mains Fluctuations

Referring again to the more popular types of receivers in which the heaters of the valves and picture-tube are connected in series, we are confronted these days with the problem of wide fluctuations in the voltage of the mains supply. This is more harmful from the aspect of the heaters of the valves and picture-tube, but can also prevent correct functioning of certain sections of the receiver, for with series-fed heaters much bigger voltage variations are liable to occur than with transformer-fed systems.
Apart from the question of life reduction then, we must consider also the effect voltage fluctuations will have on receiver performance generally. Investigation in this direction has shown that the valves most likely to affect performance are those directly associated with the production of the unmodulated raster. Coming under this category we have, of course, the picture-tube itself; the horizontal and vertical generators—including their respective amplifiers, and the rechum diode; the E.H.T. rectifier can be excluded in a receiver of this nature since its cathode is invariably heated by energy from the line flyback.

It is not uncommon these days for the mains fluctuation to exceed ±10 per cent.—although usually more in the negative direction. The chief effects are that the picture loses height and width; and the optimum focus setting is well outside the mechanical or electrical limits of the control. The mains voltage tapping on the receiver could, of course, be altered to a modified setting, but, then, unless one keeps a watchful eye on a mains voltmeter, the damage that may result—should the mains voltage suddenly go back to normal—might far outweigh the inconvenience of a poor picture. If the receiver derives its power from an A.C. source the obvious—although expensive—solution is a constant voltage feed transformer.

There is, however, a less expensive, although more of a compromise, method—suitable also for D.C. supplies—of maintaining a fairly constant heater voltage to the picture-tube, and to the valves connected with the critical parts of the circuit, by adopting a double heater chain—one fed from a modified voltage dropping resistor, and the other from a barretter. The circuit of Fig. 5 depicts the general arrangement, in which V1 to V6 correspond to the following heaters respectively—picture-tube, horizontal and vertical generators, horizontal and vertical amplifiers, and booster diode. The valves in question will, of course, be of the A.C. variety, thereby enabling one or other of the current barretters, which are frequently used in 5 or 6 valve broadcast receivers, to complete the chain.

The remainder of the valves, those which are less affected by heater variations, comprise mainly the vision and sound amplifiers, and are fed in the normal way via a voltage dropping resistor. This can be the original one in series with an additional element (R) to counteract the 6 valve heaters which now form the compensated chain. The value for R can be easily calculated from Ohm’s law; for instance, let us suppose that the valves in the receiver are 6.3 volts at 0.3 amp., then, the additional voltage we need to drop is 6 times 6.3, or 37.8 volts. To find the resistance we divide 37.8 by 0.3, which works out to exactly 126 ohms. The power rating may be resolved by multiplying the dropped voltage by the current, or 37.8 times 0.3, thereby indicating the necessity of employing a wire-wound resistor having a power rating of, at least, 12 watts.

Protecting the Mains Transformer and Rectifiers

As in the days of the battery receiver, the solution of protecting a television receiver by means of a fuse included in the power input circuit is much of a compromise. For if we use a fuse rated at a value only slightly higher than the total current taken by the receiver, it will tend to go open circuit on the—sometimes unavoidable—occurrence of heavy surges. With A.C.—only receivers heavy current surges often result at the moment of switching the receiver on. When the switch action creates a back E.N.F. across the primary winding of the mains transformer, which happens to be of similar phase to the applied mains voltage.

We can see that it is, therefore, essential to employ a fuse rated considerably higher than the normal receiver current in order to prevent its frequent replace-

![Fig. 6 (left).—Should C develop a short circuit, the power dissipated by R will rise 36 times](image)

![Fig. 7 (right).—Indicating fuse positions for maximum receiver protection.](image)
have not been by-passed due to the fault, light up like beacons.

By far the best way for maximum receiver protection is, however, by including separate fuses in series with the anode leads of the rectifiers as shown in Fig. 7. The two mains rectifier fuses, F1 and F2, should have a rating in the region of 250 to 500 mA depending on the type of receiver, while F3, the E.H.T. fuse, should have a 60 mA rating. A 2 amp fuse rating for F4 and F5 usually handles the power input current, including surges, without the need of frequent replacements.

Static Discharges

In certain parts of the country it is still necessary to maintain elaborate television aerial installations positioned as high as possible above adjacent structures. These arrays, therefore, tend to become the target points for static discharges during the summer months. This should not be taken to mean, however, that because the aerial is fixed to the chimney-stack, the associated building will be more vulnerable to damage from lightning. Indeed, the records indicate that television aerials so secured afford a certain safety factor in this respect, for its function can be very similar to that of the so-called "lightning conductors."

Before a flash of lightning occurs, the atmosphere in the vicinity of the flashover point becomes progressively charged with static electricity, until a state exists when the potential difference between the charge and the nearest object—sometimes another cloud—is so great that the insulation of the atmosphere breaks down and the charge is suddenly released in the form of a flash.

Generally speaking, the purpose of the lightning conductor is to leak away to earth any static charge which may develop in the close proximity of the building, and thus reduce the possibility of a destroying flashover occurring. It follows, therefore, that a television aerial can have the same effect, and for this reason the reflector(s) and cross member of the array should be connected to earth through stout copper wire via the shortest possible route.

In A.C./D.C. receivers, where the chassis is in direct contact to one side of the mains supply—this, by the way, should be arranged to be the neutral side—the aerial feeder must be isolated from the chassis by suitably rated capacitors. The capacitors C1, C2, and C3 of Fig. 8 perform not only this function, but also couple the aerial to the input circuit from the point of view of the signal.

Under these conditions facilities must be provided in the aerial circuit to leak away static charges which may develop on the dipole itself. This is catered for in the circuit of Fig. 8 by including resistors, R1 and R2, so that discharge can occur even when the receiver is switched off, by returning R2 to the neutral side of the mains instead of direct to the chassis.

Fig. 8.—Showing a static discharge aerial circuit for A.C./D.C. style receivers.

BBC Television News

Temporary Low-power Television Station

The BBC is now able to give details of the temporary low-power television station to be installed near Brighton in accordance with the statement made by the Assistant Postmaster General in the House of Commons on December 3rd. It will be in service before the Coronation. The site selected is at Truleigh Hill, three and a half miles north of Kingston-upon-Sea, and the station is intended to improve reception in the populated districts of Brighton, Hove, Worthing, and Shoreham-upon-Sea, where reception from Alexandra Palace is at present unreliable.

The station will work on the same frequencies as those later to be used by the permanent medium-power station which the BBC intends to build at Rowridge in the Isle of Wight when this is permitted by the Government. These frequencies are 56.75 mc/s for vision and 53.25 mc/s for sound, which are also used by the high-power station at Kirk o' Shotts, in Scotland. The new temporary station will use the single side-band method of transmission and vertical polarisation. In both these respects it will be similar to the permanent station later to be built at Rowridge, so that viewers may be assured that receivers and aerials arranged for reception of the temporary station will be suitable (possibly with some change in the direction in which aerials are facing) for receiving the transmissions from Rowridge. Viewers in particularly favourable situations in the neighbourhood who already receive a satisfactory signal from Alexandra Palace need not, of course, make any change when the Brighton transmitter comes into service.

BBC Orders Three Television Transmitters

The BBC has ordered three medium-power television transmitters from Marconi's Wireless Telegraph Co. Ltd. Delivery will be in the spring of 1954.

The order includes three 5-kilowatt vision transmitters, three 2-kilowatt sound transmitters, combining units, monitoring and control equipment for each.

The BBC has not stated where these transmitters will be installed. The range of transmitters at this power with large aerial is expected to be up to 30 miles.

STANDARD TEXT BOOKS

By F. J. CAMM

Everyone's Wireless Book, by post, 9/-.
Newnes Radio Engineer's Pocket Book, by post, 5/-.
The Superhet Manual, by post, 6/-.
Practical Wireless Circuits, by post, 6/-.
Radio Training Manual, by post, 6/-.
Wireless Coils, Chokes and Transformers, by post, 6/-.
Radio Valve Data Book, by post, 5/-.
Refresher Course in Mathematics, by post, 9/-.
Mathematical Tables and Formulae, by post, 5/-.
The Slide Rule Manual, by post, 5/-.

Obtainable from

GEORGE NEWNES, LTD.,
Tower House, Southampton Street, Strand, W.C.2.
A BEGINNER’S RECEIVER–3
AN EASILY-BUILT SUPERHET CIRCUIT, UTILISING AN EX-GOVERNMENT UNIT–R3170A

By B. L. Morley

(Continued from page 514 April 1953 issue)

RECOVER single turn coil in black wire on first I.F. coil; this wire runs from the single point tag strip to earth. Disconnect yellow wire from condenser 0.25 μF, which is mounted with the 10 kΩ 2 w. resistor on rear tag strip, and recover the condenser.

V10 valve: disconnect white wire on pin 6; disconnect 330 Ω resistor from pin 7 and recover the resistor; recover wires from pin 2, 3 and 4 and reconnect condenser on pin 2.

Fit V10 on the tag strip. Recover wires of V10 valve.

Fit the smoothing condenser in the position indicated, using the retaining clips which originally held the 2.5 kV condenser. It will be found that there is a hole in the chassis at this point and the bottom negative-common tag of the condenser will go through this hole for earthing under the chassis. The 6 v. bulb can be fitted if desired though it is not strictly necessary.

Mount the spare diode in the position indicated for V12; it will be found that holes exist in this position through washers will be necessary. (Note: there is no need to purchase nuts and bolts as sufficient are recovered for all requirements.)

Wind L1 in accordance with the data and fit in position using one of the recovered coil forms which has a very few turns on. Use 22 S.W.G. wire.

Make L3 by using a recovered coil form which has a large number of turns on it and take off 7 turns. Mount in the position shown.

Wind L18, 19 and 20 with approximately 30 gauge wire close-wound. L18 = 8½ turns. L19 = 11 turns. L20 = 10 turns. Fit coils in positions indicated on the diagram.

This concludes the preliminary work.

Section II. The Oscillator

For the advanced worker: Do the work mentioned in the last six paragraphs above and then wire oscillator circuit in accordance with Fig. 5. The condenser C11 should be fitted last. This condenser is the one which was mounted on the sub-chassis. Complete the modifications to the mixer valve so that it is wired in accordance with Fig. 6.

For the novice: Wire the oscillator in accordance with the wiring circuit given in Fig. 16.

1. The heaters are already wired: the 8 pF is in series.
2. Wire 500 pF and 100 Ω (½ w.) in cathode lead.
3. Wire 10 kΩ ½ w. between V3 grid and earth.
4. Wire mixer circuit by inserting 150 Ω ½ w. and 500 pF condenser between cathode (pin 6) and earth.
5. solder insulated wire on pin 4 V3 (anode), and another on the grid. Leave about 2 in. of wire free from each point.

6. Fit the variable condenser C11 which was recovered from the sub-chassis. Fit engraving plate and knob, etc.

Fig. 15.—Cut-out to accommodate mains transformer.
7. The oscillator coil. As found, it is suitable for Wenvoe and Sutton Coldfield; for Kirk o’ Shotts and Holme Moss, make an exactly similar coil in the same gauge of wire but with one extra turn and mount in lieu of the existing coil. For London, make an exactly similar coil to the one existing but with two extra turns and mount in the same position. Wire the back end of the coil (the end furthest from the front panel) directly to the fixed vanes of the condenser C11.

8. Wire in 100 pF between anode of oscillator and fixed vanes of variable condenser using the 2in. wire end left on the anode.

9. Wire L10 between grid of mixer and earth (for turns see table).

10. Wire a 100 pF condenser from this coil to the anode side of L4.

11. Wire 8 pF between end of oscillator coils and grid of V3 (one end of this should be in situ).

12. Wire 2 pF condenser to grid of mixer.

13. Twist the single tag strip mounted on the first I.F. coil so that a 4.7 KΩ can be wired between it and the 100 pF condenser in the oscillator anode. Also wire 500 pF condenser between the tag and pin 4 of the mixer valve.

14. Connect 47 KΩ from H.T. common to the above tag strip.

15. Earth moving vanes of condenser.

16. Connect 100 KΩ from fixed vanes to earth, and fit the 30 pF trimmer C10.

17. Run a coaxial cable from cathode of first I.F. valve to the Contrast control which should be mounted on the front panel. This control was originally on the sub-chassis and has a 300 pF condenser across it. This condenser should remain as it is on the control. The centre wire of the coaxial goes to cathode V4 and the braiding goes to earth. (Fig. 17 shows mixer valve wiring.)

This completes the work round the oscillator valve.

Section III. The R.F. Stages

The R.F. stages should now be wired and the advanced worker can proceed directly from Fig. 4. The novice is provided with a wiring diagram for each stage shown in Fig. 18.

The heater chokes are made similar to each other and comprise 30 turns of 32 S.W.G. enameled wire on §in. formers. These formers are the solid ones recovered previously from the unit. The connection of the common heater chain is broken at V2 and the choke inserted. A short length of wire is used to bridge the gap to the heater of V1.

Section IV. The Vision Receiver

For the advanced worker: little remains to be done to the vision section. The detector must be reversed if cathode modulation is to be used and the cathode bias resistor of V9 changed to 180Ω. The output circuit should be modified in accordance with the data given. If grid modulation is to be used the video valve cathode resistor should be changed to 68 Ω. The “video coupling” switch should be wired in accordance with the diagram (Fig. 6), and a 10 kΩ 2-watt resistor connected across the existing 10 kΩ resistor in the anode circuit of the video valve. The inductance which is connected between the H.T. rail and the 10 kΩ resistor should be either removed or short-circuited. If it is removed and the gap bridged, then the coil can be used elsewhere in the circuit. The red and red-white wires which feed the H.T. circuits can be connected together at any convenient point on one of the coil mounts on which they are fastened.

For the novice:—

1. Picture tone switch (video coupling). Remove 50 pF, and replace with 500 pF.

2. Recover red and yellow wire going up through chassis.

3. Solder black wire coming up through chassis to bottom tag of tag strip nearest the switch and run an insulated wire between this point and the end tag, further end.

(To be continued)
HENRY'S

EXCEPTIONAL VALVE OFFER
Ten EF85 Brand New (Ex-Demonstration)... 55/- Set
12BQ, 6K7G, 697G, 324G, EV6G (or KT88)... 45/-
185, 186, 174, 194 or 284 or 394)... 32/-
12BQ, KN4KD, VT19, PE582 or QP25)... 27/-
12BQ, 6G7Q, 507C, 2J56G, 2J52 or 2S52G)... 45/-
125Q7T, 120Q7G, 734AQT, 731GQT, 590L67452-6...
125AQT, 126KQT, 129Q7G, 35AQT, 550L6GT or
SOLICT... 42/-
Complete set of specified valves for "P.W." Personal Rec.
6 AM5, 26A3K, 1J96, 1J8C, 1 KASO and 3BP1 C.R. Tube with
base £5125.

Brand New Miniature type complete with circuit.
R. F. 1 1 6: absolute bargain.

CATHODE RAY TUBES:
VCR51. Guaranteed full picture, 40/-, carr. 3/-
VCR517. Guaranteed full picture, 40/-, carr. 3/-
3BP1. Suitable for "scopes and Tel. 85/-, carr. 3/-
MU- METAL SCREEN for VCR51 or 31. 10/-

VCR35PA (ACR01), 21in. C.R. Tube, brand new and boxed, 35/-
P. F. 1 1 6.

P. M. SPEAKERS (Inc. Tax):
Plessey 21in. with Trns.... 35/- Rola 10in. with Trans. 40/-
Postage and packing 1/- extra.

INDICATOR UNIT TYPE 102A.
This unit contains VCR517 Cathode Ray 6in. Tube, complete with 31u-metal screen. 3 EF59
4 82Q1 and 1 5UG4 valves, 9 wire-wound volume control and quantity of Resistors and Condensers. Suitable either for basis
of Television (full picture guaranteed) or Oscilloscope. Offered BRAND NEW (less relay) in original packing at 79 6d. Plus

INDICATOR UNIT TYPE SL15
This Unit is ideal for conversion for a "Scope" Unit or basis for Midget Television. It contains C.R. Tube type ACR01
(VCR35PA) complete with holder and cradle and also earthing clip. 1-VCR6, 2-VCR5, 34 mfd. 500v. w.b.g. condenser, potentiometers
and a varied assortment of resistors and condensers. These Units are in a new condition and packed in wooden
transit cases. The C.R. Tube will be tested before despatch.
Dimensions 8in. x 6in. x 11in. 57/- Plus 5/- carr.

INDICATOR UNIT TYPE 3151C
VCR517C Blue and White 8in. Tube.
The Tube replaces the VCR517 without alteration and gives a full Blue and White picture.
Brand new in original crates, 45/-, plus 5/- carr.

ADDITIONAL LINES
Brand new valves, 82Q1, 8UG4, KT85, KT99. Each.
P. P. 1/-.

SEND POSTAGE FOR NEW 1953 COMPREHENSIVE 21 PAGE CATALOGUE:
Open Mon.-Fri. 9-3 & 3-6. Sat. 8 p.m. Thurs. 1 p.m.

ROM

RIGHT FIRST TIME!
Trial and error is a costly and often disappointing
business. For too long the radio amateur has
had such methods forced upon him by the high
cost of test instruments. The RADIO MAIL
RES/CAP. BRIDGE has changed all that. For
31/6 he now has at his command an instrument
to check each component before use, and ensure
100% results.

THE PRICE OF 31/6 COVERS THE COMPLETE
KIT FOR THIS SELF-CONTAINED INSTRUMENT
5 Megohms—50,000 ohms 50 mfd.—2 mfd.
100,000 ohms—1,000 ohms 1 mfd.—0.01 mfd.
1,000 ohms—10 ohms .01 mfd.—0.005 mfd.

NO CALIBRATING
The panel bears six separate scales, one for each range, ready calibrated in ohms and mfd.'s, for direct reading.
Each range is fully variable, covering all intermediate
values.
Neat components, specially selected for accuracy.
Instructions and diagrams for easy assembly.
Prompt delivery. Cash with order or C.O.D.
Post and packing 1/4.

RADIO MAIL, 4, RALEIGH STREET, NOTTINGHAM
Stamp with all enquiries, please

HOME CONSTRUCTED TELEVISORS

Component Specialists since Broadcasting started, can supply all or any of the components specified for the
"VIEWMASTER" "MAGNAVIEW" "TELEKING"
and "Viewmaster" Wide-angle Conversion.
Also cabinets, valves, aerials, feeder cabling, wire, slewing, solder, nuts and bolts, clips, etc.
Order with confidence c.o.d. or c.o.w. at current
prices, or send s.a.e. for Price List.
We also invite your inquiries for all other electronic
components.

H. L. SMITH & CO., LTD.
287/9 Edgware Road, London, W.2.
Tel. Paddington 5891. Hours 9 till 6 (Thursday
1 o'clock).
Near Edgware Road Stations, Metropolitan and Bakerloo.
Operating With a Heater-cathode Short
HOW TO CONSTRUCT A SPECIAL TRANSFORMER TO ENABLE A DEFECTIVE TUBE TO BE USED
By A. Dalziel, B.Sc.

Introduction

This is a very common fault with TV tubes in current use, and any modification to allow continued use of the tube seems well worth while. This article describes and explains the arrangement which enabled the writer to overcome this trouble, and gives perfect results, no difference in picture being observed due to its use. It involves the construction of a special transformer, but this is a very simple design and should present no difficulty to the amateur. After incorporating it in a "Viewmaster" circuit, Test Card C continued to be resolved up to and including the 3 Mc/s lines.

Symptoms

An intermittent heater-cathode short shows itself by a series of bands running horizontally across the picture, giving greatly reduced quality, or it may be the whole picture is similarly degraded. There may also be a change in the general brilliance level.

Cause and Cure

Referring to Fig. 1 it will be seen that a short from A to B effectively short circuits R2 which changes the steady cathode potential and hence the voltage between grid and cathode which determines the picture brilliance. This can be prevented by feeding the heater through an isolating transformer. See Fig. 2.

There is now no D.C. path to short out R2 and therefore the steady potential of the cathode is at its proper value determined by R1 and R2.

Vision Frequency Leakage

However, this does not cure the fault, for the vision frequency voltages fed to the cathode are still short-circuited to earth by way of the capacity existing between the primary and secondary of the isolating transformer. This is shown in Fig. 2 as a separate capacity C2.

To maintain a good quality picture, frequencies up to at least 2½ Mc/s need to be retained and quite a moderate capacity to earth is enough to prevent this.

The New Transformer

Accordingly, a special transformer has to be used, having as low a capacity between primary and secondary as is practicable. This capacity depends on the spacing between the coils and the area of the surfaces facing each other. The normal layer winding produces too large a facing area and if the separation is made too wide the transformer will have very high losses. However, the following design was found to produce a satisfactory compromise. It is suitable for use with a 2-volt heater.

Constructional Details

An old power transformer was stripped of all its windings till the bare bobbin was left. If this has not been done before care should be taken to see how the laminations are interleaved: they will need to be replaced in the same way. The new primary was then wound as follows, using 22 s.w.g. wire — wire from an old heater winding would serve.

The Primary

Starting near one end of the bobbin, wind on 12 turns in three layers so that the width of bobbin used is only four thicknesses of wire. The wire is then secured with tape and laid along the top of the bobbin to the other end, where a similar three-layer winding of 12 turns is put on. The whole primary, therefore, consists of 24 turns wound in two sections at the extreme ends of the bobbin. See Fig. 3.

The whole primary is now wound over with one layer of corrugated cardboard to introduce a little spacing as well as insulation.

The Secondary

The secondary is then wound over the cardboard using the centre part of the bobbin directly over the space

Fig. 1.—Circuit diagram illustrating the effect of the heater-cathode short-circuit on the video stage.

Fig. 2.—C2 short-circuits the video signal here.
between the two primary sections. Twenty-six turns were used, put on in about four layers.

Great neatness here is not important as long as the winding is kept to the centre of the bobbin. The laminations should then be reassembled and the whole tried out on load.

Fig. 3.—Details of the primary winding of the new transformer.

Testing and Adjustment

An A.C. voltmeter should be used to check the final voltage on load, as variations in winding can affect the losses. If required, it will be found easy to add or remove an odd turn or two without dismantling the transformer. When satisfactory, the winding can be taped over.

Such a transformer is not so efficient as a normal design but in the one originally made a primary current of 2.3 amps. at 2 volts was necessary to provide an output of 1.4 amps. at 2 volts.

The heater transformer in the set was found to give this 2.3 amps. without overheating, but even if another 2 volt 3 amp. heater transformer has to be obtained, the cost is still far below that of a new tube.

Big-screen Television in Theatre

SPECIAL SCREENS OVERCOME BRILLIANT LIGHTING

Both sides of television were seen by the audience at the Scala Theatre, where four big-screen projectors had been installed for the National Television Awards Show in January. The audience were able to follow the continuity of the programme on the television screens, seeing both the action taking place on the stage and the actual transmitted picture, including film sequences televised from Alexandra Palace.

The screens erected on either side of the proscenium appeared to be in a hopeless position, since they came under the direct glare of powerful spot-lights illuminating the stage. Despite this apparently impossible situation, however, excellent pictures were seen in most parts of the house due to the efficient directional properties of the special screens used.

The heaters were standard “Nera” Projector Consols using the “Mullard” projection unit and “Nera” 4ft. x 3ft. screens. The fact that pictures were obtained under such adverse conditions of external lighting is a tribute to the progress being made in large-screen television technique.

One advantage of this type of apparatus is the fact that the picture is much brighter and the screen and projector are separated. They may thus be placed in the most suitable position according to the number of people viewing. Owing to the larger size of the screen a greater number of people can see the picture, and on this account a number of hospitals, homes for disabled and aged persons, and similar institutions are adopting this type of equipment. Reports have been received of a number of such institutions which are installing the apparatus for the Coronation, and in many cases one room is being specially set aside as a television theatre, and in view of the number of viewers who will be able to see the show the overall cost of the installation is less than that of a number of separate standard television receivers which would be needed to serve the same crowd.

Coronation Relays

As we go to press we are informed that a number of big-screen relays of the Coronation ceremony will be given in various places in London, including certain colour relays. Full details are not yet available but will be given as soon as they are received.
This television receiver is designed for A.C. mains supplies in the voltage range 200 to 250 volts, and is a superheterodyne with a single-sideband I.F. amplifier suitable for use on any of the existing television channels. The receiver is built on an aluminium framework in a form that is a little unusual for home constructors, and consists basically of the four following separate sections: the vision and sound receiver, the time-bases and H.T. booster system, the E.H.T. supply, and the power-unit sound-output chassis.

The time-bases use high efficiency scanning components and are suitable for use on either narrow-angle or wide-angle tubes up to 14 in. rectangular without modification, the E.H.T. available being adjustable up to a maximum of about 13 K volts for use with the latter type of tube. As described, the chassis uses a 12 in. Mullard MW31-16 ion-trap tube working at 9 kV, but the mechanical changes necessary for other and larger tubes are not serious to the average constructor. Aluminised tubes may, of course, be used.

Fig. 1 shows the complete theoretical circuit of the receiver. The coaxial aerial input socket SK 1 connects to the isolated coupling winding L1 and so passes to the grid of the R.F. amplifier V4, tuning being accomplished by means of the iron core threading L2. The output of the stage is transformer coupled through L3 L4 to a double-triode type of mixer stage V2, the right-hand section of which is a conventional centre-tapped Hartley type oscillator. Coupling to the mixer section grid takes place through a small capacity C5, and the resultant I.F. signal for both vision and sound channels is developed across the anode coil L6. This coil is not externally tuned, but is wound to be flatly resonant at 12.3 Mc/s. The grid coil of the first vision I.F. amplifier V3 is tuned by a brass core to 10.6 Mc/s and the degree of coupling to L6 is set to give the requisite passband, assisted with damping resistances R9 and R10. The sound signal at 9.5 Mc/s is taken off the mixer anode through C29, and this condenser, in conjunction with the parallel circuit L16 C30, forms the first sound trap of the system. Above resonance, the capacitance reactance of this trap provides desirable shunt capacity across L6.

Contrast control is applied conventionally to the first vision I.F. stage by the potentiometer VR1; for localities close to the transmitter, it is advisable to include V1 in this control system to prevent overloading and cross-modulation at the mixer, but more will be said of this later.

The anode circuit of V3 is tuned by L8 to 12.2 Mc/s, and is coupled to the second amplifier V4 through C13. The input of this stage is shunted by the sound trap L9 C15 which is loosely coupled by C14 to the grid circuit. The anode circuit of V4 is similarly tuned by a single coil L10, this time to 10.2 Mc/s, and a further sound trap L11 C20 shunts the grid resistance R18 of V5. The final I.F. amplifier stage is transformer coupled to the detector-limiter V6, the tuning frequency here being at 11.5 Mc/s.

The detected positive-going vision signal is filtered by C23 and L14 (220 μH) and is developed across the load resistance R22 in the grid circuit of the video-amplifier V7. The vision signal is also applied to the cathode of the limiter diode (right-hand half of V6); here the current in R21 maintains the cathode of this valve at a positive level which follows the peak white of the video modulation. In the absence of sharp interfering pulses, therefore, the diode is almost non-conducting, but when the anode is driven suddenly positive by an interfering pulse at the main detector cathode, the limiter cathode cannot follow because of the long time-constant of C24 R21 and the diode effectively shunts the detector output.

The video-amplifier is straightforward and calls for little comment. Anode H.F. correction is obtained by an inductance L15 (175 μH), and the load consists...
of two 10 KΩ resistances in parallel. The coupling to the tube cathode is through a long time-constant network R26 C26, this type of feed being useful in overcoming fading of a comparatively slow type, such as is often experienced from aircraft flutter. The tube heater is returned to the cathode through a resistance R28 of 100 KΩ. Brightness control is conventionally applied through VR2 to the tube grid.

Sound Receiver
Turning now to the sound receiver section, this consists of a single I.F. amplifier V8 which is trans-

![Response curves of vision I.F. stages.](image)

former coupled at 9.5 Mc/s to the diode-detector L.F.-amplifier stage V9. The diode load R32 is directly coupled to the amplifier grid, and provides direct bias to this stage in place of the more usual cathode system. The L.F. output across the load R31 is passed through a conventional sound limiter crystal V10, and so on to the output amplifier V17, this latter valve being mounted on the power chassis. Control of volume is effected by VR5 and an output of about 3 watts is normally available.

Time-Bases
The sync separator stage V11 is coupled from the video-amplifier anode through R27 and C39 and is a normal pentode limiter working over a short grid base. Line pulses are taken directly from the anode through R40 and C42 to the line triode blocking oscillator V12, but the frame pulses are passed through a further diode clipper and integrator stage (diode part of V15) before reaching the anode of the triode-section frame blocking oscillator.

The line oscillator is conventional and uses a Haynes blocking transformer T5, control of frequency being adjustable by the Hold control VR3. The sawtooth output across C43 is coupled to the line output amplifier V13 through C45 and R44. The output transformer T6 has an overwinding for purposes of E.H.T., and a doubler circuit using two metal rectifiers MR1 and MR2 (STC type K3/100) will produce up to about 13 kilovolts for the tube final anode. Control of E.H.T. depends upon C51 across the line coils, and for 12in. tubes requiring 9 kilovolts, a reduction is readily effected by increasing the capacity of this component.

V14 is an efficiency or booster diode, and when used in conjunction with the specified transformer and scan

![A three-quarter side view](image)
coils develops 95 volts boost across C50. The H.T. available for the line output anode is therefore effectively about 380 volts. The blocking condenser C52 is necessary to keep the D.C. component out of the line scan coils.

A separate winding is provided on the line transformer for control of picture width; a plunger form of control L19 is used in conjunction with this winding and when adjusted, exercises negligible effect on either linearity of the scan or the value of the E.H.T.

On the frame side of this section of the receiver the blocking oscillator (triode part of V15) develops a saw-tooth waveform at frame frequency across C55, and this is passed to the frame output amplifier V16, which is a strapped double-triode. The frame scan coils are transformer coupled from the anode by T4, and linearity of scan is ensured by voltage feedback through the network C57, R57, VR8 and R66. The cathode resistance of this stage is fairly critical and requires careful adjustment to correct the extremes of the raster from cramping or foldover. The height control is VR7.

Power Unit

The A.C. mains supply is fed to the auto-transformer T1, which is overwound to give a H.T. output of 275 volts at 250 mA., and two heater windings on the component supply respectively the main rectifier V18, and the cathode-ray tube, a tap on this latter winding providing for either 2 volt or 6.3 volt tube supplies.

Main smoothing is carried out by reservoir C61 (40 µF, 250 volts) and a 3H, 250 mA. choke L20. Additional smoothing and decoupling is provided by R63, C65 for the vision-sound chassis, R65, C63 for the sound output amplifier, and R64, C64 for the frame time-base. The voltages to be expected on these various lines are indicated in the figure.

The heaters of all other valves are wired in series and all valves are of the 0.3 amp. type with the exception of V12, which has a 0.15 amp. heater. This valve is consequently shunted with a suitable resistance R71 to bypass the excess current. The order in which the valves are wired is indicated, and decoupling condensers (C67 to C70) are connected across some of the vision heaters.

A thermistor element CZ1 is wired in series with the heater chain to overcome any initial surges, and the main dropper R69 is used to reduce the mains voltage to the total of about 150 volts required by the heater chain. The valve chain takes about three minutes to reach operating temperature, but the maximum rise in H.T. across C61 due to the faster-heating rectifier in this period does not exceed 320 volts and therefore, cannot damage the electrolytics.

A fuse is included in the rectifier anode circuit and the double-pole on-off switch is part of the front panel Brightness control.

Performance Curves

The individual and overall response curves of the vision I.F. stages are shown in Fig. 2. This figure should be referred to when the receiver is being aligned.

The video-amplifier response to high frequencies is given in Fig. 3, where the effect of changing the inductance of L15 is illustrated. The full line curve is that of the stage when the coil has an inductance of 175 µH, but top lift can be obtained as sketched in broken line by inserting an Aladdin 3/4 in. type iron-dust core centrally in the former. An inductance of about 230 µH is then obtained, but the stage is over-compensated. The curves were taken with the circuit fully wired, the total shunt capacity being about 15 pF.

Construcional Work

So much for the description of the actual circuit, and reference to the illustration on our cover, on p. 564 and on the left, will show that the layout is, as has already been mentioned, unusual. With the usual form of chassis in the shape of an inverted tray, most of the wiring becomes inaccessible when a tube is mounted on the upper surface, and it is not a simple matter to place the complete equipment in any kind of firm position for
LIST OF COMPONENTS

CONDENSERS.-All below 0.005 μF are Hunt's Multifilm type W99, unless otherwise stated.
C1, C13, C18, C44—500 pF 350 v.
C2, C4, C12, C17, C22 0.01 μF 150 v.
C31, C67, C68, C69, C70
C3, C37, C41, C43—0.001 μF 350 v.
C5, C14, C19—3.3 pF Erie G.P. Ceramicon.
C6—33 pF Erie Ceramicon.
C7—3.30 pF Phillips Trimmer.
C8—See text.

RESISTANCES. All Morganite ½ w. “T” unless otherwise stated.
R1, R14, R22—4.7 K Ω.
R2, R16, R19, R29—150 Ω.
R3, R8, R13, R17, R20, R30—1 K Ω.
R4—2.2 K Ω.
R5—680 Ω.
R6, R7, R9, R27—10 K Ω.
R10—6.8 K Ω.
R11—33 Ω.
R12—120 Ω.
R15—100 K Ω (1 w.).
R18—2.2 M Ω.
R21—8.2 M Ω.
R23, R45, R59, R60—470 Ω.
R24, R25—10 K Ω (1 w.).
R26, R31, R44—220 K Ω.
R28, R57—100 K Ω.
R32—39 K Ω.
R33, R36—1 M Ω.
R34—3.3 M Ω.
R35—47 K Ω.
R37—82 K Ω.
R38, R40—22 K Ω.
R39—680 K Ω.

B7G Holders & Cans 11 OFF.
B9A Holders & Cans 1 OFF.
B9A Holders less Cans 3 OFF.
Int. Octal Holders 2 OFF.

Tube Holder (To suit tube). Haynes Radio Type G2.
1 Set Coils, Formers Cans, Side Wires, Cores etc.

Line Osc. Transf’mer
Frame Osc. Transf’mer
Line O/P Transf’mer
Frame O/P Transf’mer
Scanning Coils

Sound O/P Transformer—“Standard” Pentode type (50 mA).

Mains Auto-Transformer 311, 250 mA Choke

VR1 2 KΩ Colvern Wirewound CLR 3001/15.
VR2 500 KΩ Carbon with D.P. switch Morganite.
VR3 20 KΩ Colvern Wirewound CLR 3001 15.
VR4 75 Ω Colvern 1106/13S.
VR5 500 KΩ Carbon. Morganite.
VR6, VR8 250 KΩ Carbon. Morganite.
VR7 1 MΩ Carbon. Morganite.

V1, V2, V4, V5, V7 EF91, Z77, 6AM6.
V8, V11
V2, V16,—12AT7, ECC81.
V6—EB91.
V9—6AT6, DH77.
V10—GC4C, XIIAL.
V12—6C4, L77.
V13—PL38.
V14—PY80.
V15—EAC91.
V17—PL82.
V18—SZ4M.

C.R.T. (12") Mullard MZ1516. Brimar C12FM1, C12B.
Mazda CRM121, CRM121A, CRM123.
MR1, MR2—S.T.C. type K3/100.

Focus Magnet Elac. (to suit tube).
Ion Trap Elac. (ditto).

Width Coil—Plessey or WB/110.
Mains Socket & Plug—Bulgin 3-pin type P463.
Fuse & Holder—Belling-Lee.

Tag Boards 1 double 7-way.
1 double 14-way.
4 single 6-way.

MISCELLANEOUS:
Lengths of coaxial cable, single screened lead.
6 & 4 B.A. nuts and bolts, washers, etc.
1 Polystyrene length of ½in. rod, 4in.
2 ½in. diam. paxolin formers, 2in. long.
Sheet of ½in. thick paxolin sheet, 3in. x 14in.
Sheet of ½in. thick paxolin sheet 3in. x 14in.
Sheet of ½in. thick paxolin sheet 2½in. x 4in.
Aluminium ½in. and ½in. rod, and 16 S.W.G.—18 S.W.G. sheet for chassis work.
servicing or testing. In addition, to accommodate the various sections on a single chassis, the overall dimensions become rather excessive. In this design the separate sections are all built on their own chassis, and these are combined in a rigid framework so that the overall dimensions are satisfactorily reduced, and the final form is rigid and may be laid on any side for testing without any risk of twisting or distortion. In addition, the description which will follow is to accommodate a 12in. round glass tube, but the design is such that the front tube-mounting section may be modified as required to take a rectangular tube. This modification will in no way affect the rest of the assembly, and although the tube mounting is part of the main chassis assembly, various modifications can be made to it without difficulty.

Chassis Work

Before going on to a practical description of the work involved, it may be briefly stated that the main framework of the chassis consists of 3/16in. diameter aluminium or dural rod bent to form the main supports and these are locked at the centre by crosspieces of the same material. The timebase chassis is on the left of the tube, and the vision and sound strip on the right. The lower chassis at the rear carries the power supply section and the sound output stage, whilst the E.H.T. components are on a small sub-chassis mounted in the front beneath the front of the tube. There are three main controls on the front—Brilliancy and combined on/off switch. Contrast, and Volume, whilst the various timebase controls are mounted on one side and the rear, as they are more or less pre-set and only require occasional adjustment. The cabinet which has been designed for the receiver by Messrs. Tallon has a lift-up front portion which enables the tube face and protecting glass to be cleaned and certain adjustment to be made if required, without the necessity of removing the entire receiver from its cabinet.

(To be continued)

A rear view of the Lynx showing underside of timebase chassis.

Radio and TV Sales and Stocks

B.R.E.M.A. Index

TELEVISION sales to the public in the last quarter of 1952 totalled 341,000 sets, the highest yet recorded, more than double the number sold in the previous quarter and 18 per cent. up on the last quarter of 1951. Radio receiver and radiogram sales were 29 per cent. higher than in the same quarter of 1951 and the highest since the second quarter of that year. Radio receiver sales showed an increase of 35 per cent.; radiogram sales were up by 9 per cent.

Stocks Held

The figures are given by the British Radio Equipment Manufacturers' Association in its survey of dealers' stocks.

Dealers held lower stocks of radio receivers and radiograms at the end of December last than at any time since the base date of the index, September, 1947. The index figure was 105, compared with 145 at the end of September, thus continuing the fall in stocks since the peak of 183 in March, 1952.

Dealers' stocks of all types of television receivers at the end of the year are estimated to have been 160,000 compared with 198,000 at the end of September and 12 per cent. higher than at the end of 1951.
THE VIEWMASTER. Television constructor at its finest. 32-page booklet and 8 full-size wiring diagrams. PRICE 4/- POST FREE. Stare station required.

THE TELEKING. Large screen television for home construction. Superhet, 5 Channel, 32-page booklet and full-size wiring diagrams. PRICE 4/- POST FREE. THE MAGNAVIEW. Large screen television. Construction booklet. PRICE 6d. POST FREE.

CATHODE RAY TUBES MASKS
New aspect ratio. 9in. Sorbo, 5/-.
10in. Double D. Metal, 7/6.
12in. 14/-.
12in. Flat Face, 15/6.
14in. Rect, 21/6.
16in. Double D. 30/6.
17in. Rect, 25/-.
12in. Soled, 7/6.

ARMOUR PLATE GLASS
15in. Actual size. 18/6.15 x 12/6.7 x 9/6. 11/6.
12in. Actual size. 13/6.10 x 10/6.4 x 9/6. 9/6.
9in. Actual size. 9/6.8 x 8/6.5 x 7/6. 3/-.
9in. x 8in. x 8in. 3/6.

T.V. PICTURE TUBES
SPECIAL CORONATION C.R.T. OFFER. Brand new and unused 12in. ion trap tube. By famous manufacturer. 22 1/2 in. Diag., 35 mm. neck. Black and white picture. £11.19.6. Screen has slight blemishes. £12.19.6. PERFECT.

Carriage and insurance, 15/- extra.

ALL BRAND NEW TUBES IN STOCK.
Mullard, Ferranti, etc., 9in. from £13.13.8d. 10in. from £15.4.0, 12in. from £18.4.10d.

LATEST WIDE ANGLE
14in. from £21.5.8d. 16in. from £24.6.5d. 17in. from £23.16.10d.
12in. Rect., with grey filter, £15.8.5d. 17in. Mullard rect. with grey filter, £25.16.10d.

MANUFACTURERS SURPLUS T.V. COMPONENTS.
Frame blocking oscillator transformer. Plessey, 10/6.
Multi ratio frame output transformer, 10/-.
P.M. Focus units. For any type c.r.t. with 35 mm. neck, 15/-.
E.M.T. transformer with EYSI heater winding, 12/6.
Variable inductance without control. Plessey, 4/6.

LASKY'S RADIO.
LASKY'S (HARROW ROAD), LTD., 370, HARROW ROAD, PADDINGTON, LONDON, W.9.

Telephones: CUnningham 1979-7214. ALL DEPTS.

Hours: Mon.- to Sat. 9.30 a.m. to 6 p.m.; Thurs., half day, 1 p.m.
Postage and packing charges (unless otherwise stated) on order value £1-19.6. extra; £20-39.6, extra; £40 and over, 10/- carriage free. All goods fully insured in transit.

SIX INCH TUBE LOOKS LIKE NINE
The illustration shows the "Arcus" 6in. Television fitted into our "Regina" Console cabinet, using our internal magnifier system, which is equally applicable to any Televisor using a 6in. tube. The object, which comprises magnifying lens, vernier front and four secret head fixing screws, is available at 30/- post free.

The "Regina" cabinet illustrated is of particularly fine workmanship; it is suitable for any of the popular sets Televisor, Viewmaster, etc., etc. Price £15.6.3d., plus 10/- carriage.

VIEW MASTER OWNERS
You probably know that a 6in. tube gives approximately 3 times as many square inches of actual picture as does a 9in. tube. You may not know, however, that without any modification at all your View Master will run the 15in. Coronet Type 6X which we offer for cash or on H.P. (see our advert. last month.) If you would like to go over to the big 15in. picture the easy way is to send for "View Master Hit Picture Panel" as follows:
1. 15in. tube type 85K.
2. 85K Coupling filter mask.
3. Tube coupling ring.
5. Special Ion trap.
6. Plastic E.H.T. fixing tube, Ion trap, etc.
7. Plastic covering for above six items at least what a new 6in. or 12in. tube alone would cost, namely, £14.10.0d. cash with order post and insurance. Limited quantity only at this price so order by return.

TV. SIGNAL AND PATTERN GENERATOR
This can be tuned to the Visicon channel and will produce a pattern on the face of the C.R.T. tube. Alternatively, it is tuned to the sound channel and will produce a visible signal in the loudspeaker. It operates entirely from A.C. mains and is quite suitable for use with superhet and h.f. receivers. A complete kit of parts (in fact everything except the cabinet) with full constructional and operational data will be supplied for 29/6, plus 10/- post and insurance.
NOTE: Cabinets as Illustrated prototype now available at 17/6d. each.

THE SUPERIOR 15." Up to the Minute TV. for only £35.0.0d.

You will have noticed that the modern trend is towards larger pictures, in fact, the 12in. tube is fast going the way of the 9in. and 10in. tubes. For many manufacturers are using in their latest models. However, you can be right up to date for we are now commercialising a delivery of a new constructor's set using the Coronet 15in. tube type 85K. This set complete (as illustrated) will only cost you £35.0.0d., including tube. Contrary to what might be expected, to get down to this very low price we have not sacrificed quality in any way, fact interface, sensitivity and definition are equal to the best commercial standards. The chassis provides is of generous proportions and will allow the inclusion of a Radio unit if one is wanted.

The whole has been so arranged as to be particularly suitable for our popular Coronation Console cabinet, but there is no reason whatever why it cannot be fitted into any well-made TV. cabinet.

Technical features include:
A. Superhet circuit fed by a R.F. amplifier.
B. Particularly carefully dimensioned Video stage.
C. Diode damped interlace network.
D. Line and frame blocking oscillators.
E. Fly back E.H.T.
F. Optional voltage doubler for illumination effect.

DATA. Full constructional data, price 7/6d. post free, is available, on approval if you decide not to make the set, providing that you return the data within 7 days in clean condition 7/- will be refunded.

DEMONSTRATION. A made-up chassis can be seen at Fleet Street, or Ruislip, and if you arrive to call during 8 H.C. transmission times, we will gladly demonstrate the excellent interface and other qualities of which we are particularly proud.

All parts are available and total cost is £35.0.0d. which includes licence, 10 valves, prepared metal cabinets, in fact everything needed except cabinet and mask. Order form and parts list is included with the 7/6d. data.
METAL RECTIFIERS 10v, 1A, 1/8 each; 2 to 8v, 1A., 3 each; 12v, 1A, 49 ea.; 15v, 5A, 189.; 250V, 10MA, 76. R.M.S. 4.; R.M. 4.; R.M. 4.; R.M. 10.; 12v, 2A, 106.

AS ABOVE; with turned handle and 100. C.M.I. type turntable, variable, 40.- ea. Post 1/6.

COLLARO RECORDING MOTORS Clock and anti-clock. 59h. pair. Post 1/5.

10 VALVE 11 METRE SUPERTUBE Ideal for conversion into TV sets. 1/2 mega. Band width 4 mags. Co-axial input and output good condition.

TALLA 13c. each, carriage 5.

INDICATOR UNIT TYPE 233 Case size 19in. x 71in. x 81in. All controls brought out to front panel. Contains 1 V.C.R.9 Tube, 3 E.F.S.O. 3 V.F.S., 2 V.F.S., 2 V.F.S., 1 V.F.S.

High voltage condensers and a host of volume controls. condensers and resistors. 60-70.

INDICATOR UNIT TYPE 81.

Series of case as size of type 233 above. Contains 1 V.C.R.9 Tube, 3 E.F.S.O. 3 V.F.S., 10 wire, control and record, all condensers and resistors. In perfect condition. 76. carriage 7/6.

TALLON CABINETS for television, radio and grams, superbly polished, ready for assembly in packed flat kits or factory assembled.

TELE-KING cabinets with space for radio or tape recorder with or without doors.

VIEW MASTER cabinets, console or table.

MINI-FOUR cabinet, blue leather cloth, with grille and plastic handle, 1/4, post free.

ARGUS 3 speed auto-radiogram cabinet.

Full range of quality cabinets available. Consult your local dealer or write to:

JAMES TALLON & SONS LTD.
MANOR WORKS, MANOR ROAD
RUGBY

Telephone: RUGBY 2070

ALPHA RADIO SUPPLY CO.

VALVES

Guaranteed new and boxed. Majority of manufacturer’s cartons.

<table>
<thead>
<tr>
<th>Code</th>
<th>Each</th>
<th>Each</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>024</td>
<td>7.1BDG</td>
<td>7.8BDG</td>
<td>8.0BDG</td>
</tr>
<tr>
<td>1AGT</td>
<td>8.6F6G</td>
<td>8.8BDG</td>
<td>8.2BDG</td>
</tr>
<tr>
<td>1AGT</td>
<td>8.6F6G</td>
<td>8.8BDG</td>
<td>8.2BDG</td>
</tr>
<tr>
<td>1557</td>
<td>7.1SGG</td>
<td>7.5SGG</td>
<td>7.5SGG</td>
</tr>
<tr>
<td>1557</td>
<td>7.1SGG</td>
<td>7.5SGG</td>
<td>7.5SGG</td>
</tr>
</tbody>
</table>

INDICATOR UNIT TYPE 753 Case size 171in. x 81in. x 11in. All controls brought out to (front panel. Contains V.C.R.9 Tube, 13 V.R.91, 2 x 65G, 2 V.F.S. 1 V.F.S. Brand new, all complete, 28. ea., carriage 76.

FOUR TV VOLUME CONTROLS. Sires 550 cu. in. S.P.S., 750 6. type wire wound. 20K cu. in. 6K 6 type wire. Mounted on a bracket with flexible lead, with 1.7 k 12 resistor and 15 watt wire wound fixed resistor. Complete. 8.

LOUD SPEAKERS. All 2 6 ohm, these prices are less purchase tax. Buy now while stocks last.

4in. round type 12.9. ea.

6in. Elac. square type 13.9. ea.

6in. units by Goodmans.

Waterhouse and Lectrona, 13.9. ea.

8in. units by Elac.

Pleessen... 14.8. ea.

10in. units by Elac.

Pleessen... 17.8. ea.

14in. units by Elac.

Pleessen... 20.8. ea.

19in. units by Elac.

Pleessen... 25.9. ea.

Travox 5in. with output transformer fitted.

Goodmans 6in.

Latest type... 18.9. ea.

Travox water speaker 6in.

19.9. ea.

Full range of heavy duty 13in., 15 ohms speech coil.

28.8. ea.

TERMS: Cash with order or C.O.D. MAIL ORDER ONLY. Illustrated list available. Send 6d. in stamps. Postage 6d, under 10- 1; under 20- 2; under 40- . Minimum C.O.D. and postage charge, 23.

5/6 VINCES CHAMBERS, VICTORIA SQUARE, LEEDS, 1

For SUCCESSFUL wide angle scanning

ALLEN DEFLECTOR COILS

70 deg. Scan with minimum deflection defocusing high-efficiency castellated “FEROX-CUBE” core. Suits any wide angle C.R.T. up to 27 in. double (d) Scan.

LARGE SCREEN TELEVISION

Only achieved with high efficiency components throughout. ALLEN can supply complete range.

Send 9d. and S.A.E. for circuit diagrams of line and Time Base. Write for price list and details of full range of ALLEN components to

ALLEN COMPONENTS LIMITED
Crown Works, 197, Lower Richmond Road, Richmond, Surrey. Tele.: Prospect 9013
Biggest Picture?

Mr. W. R. Walker and Mr. J. Bremner, two Glasgow technicians, have completed a projection receiver which, they believe, produces the largest picture yet.

The screen covers 48 square feet and is the result of four months of experimenting with a standard projection receiver.

Schools Television

It is reported that the Education Ministry has been approached by the Schools Broadcasting Council to install big-screen receivers in 500 secondary schools.

The educational programmes for the schools would be on the normal wavelengths so that adults at home could see the programmes also.

Television Licences

The following statement shows the approximate number of television licences issued during the year ended February, 1953. The grand total of sound and television licences was 12,867,898.

<table>
<thead>
<tr>
<th>Region</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>London Postal</td>
<td>705,021</td>
</tr>
<tr>
<td>Home Counties</td>
<td>237,673</td>
</tr>
<tr>
<td>Midland</td>
<td>453,547</td>
</tr>
<tr>
<td>North Eastern</td>
<td>226,777</td>
</tr>
<tr>
<td>North Western</td>
<td>263,329</td>
</tr>
<tr>
<td>South Western</td>
<td>59,051</td>
</tr>
<tr>
<td>Welsh and Border</td>
<td>71,465</td>
</tr>
<tr>
<td>Total England and Wales</td>
<td>2,016,863</td>
</tr>
<tr>
<td>Scotland</td>
<td>55,614</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>503</td>
</tr>
<tr>
<td>Grand Total</td>
<td>2,072,980</td>
</tr>
</tbody>
</table>

Venezuela Station

Television equipment for the first television station in Venezuela, the site of which is in Caracas, the capital, left this country by plane recently.

It is believed that this was the largest single consignment of TV equipment ever air-freighted from this country. It was rushed to Caracas for the opening of the new station in April and consisted of almost a ton-and-a-half of equipment, including telecine apparatus and studio lighting.

Mr. Duddington joined the Corporation in February, 1946, at the Lisnagarvey station, transferred to the television service at Alexandra Palace in August, 1950, and has since served at the Sutton Coldfield and Holme Moss stations.

Children Copy Baby Talk

It is reported that children listening to the BBC's "Flowerpot Men" on Thursday afternoons are copying the double-talk used by the characters and hold long conversations in the language, thus retarding their education.

Miss Freda Lingstrom, head of Children's Television Programmes, has called for a special investigation into the matter.

British War Films

The BBC is to prepare a series of war films in the same style as the "Victory at Sea" films made by the Americans.

Some viewers have protested that the half-hour American "Victory" films emphasise too much the part played by America in the last wa...
and not enough of Britain's effort. Now the R.A.F., Admiralty and Army have lent their war-film shots to enable the BBC to compile a thirteen-week series of films of the British Services.

Signal Too Strong

VIEWERS on Tees-side found recently that atmospheric conditions caused a 50 per cent. increase in the signal received from Holme Moss which ruined picture reproduction.

Commercial TV Inquiries

MR. L. D. GAMMANS, Assistant Postmaster-General, said in Parliament recently that 46 inquiries on commercial television broadcasting licences had been received and approximately 26 on time allowed to sponsored programmes.

Replying to Mr. Ness Edwards, he said that the BBC licence did not permit commercial broadcasting except with the Postmaster-General's permission.

New South Coast Station

THE temporary low-power station sited at Truleigh Hill, 3½ miles north of Kingston-upon-Sea, will be in operation in time for the Coronation, the BBC has announced.

This will improve greatly the pictures received in Brighton, Worthing, Hove and Shoreham.

"Fringe" Problem

THE Television Society will hold its annual summer meeting in June at Bedford, half way between Alexandra Palace and Sutton Coldfield.

This has been arranged so that the Society may study the difficulties presented to a viewer "on the fringe," Bedford being one of the worst reception areas in the country.

TV City Grows

SPEEDY progress is being made on the £10 million radio-and-television city at White City, London.

The first section to reach completion will be the scenery block where all properties, scenery and background cloths are to be made. The city will contain seven large studios, one 120ft. long and 60ft. high. Cameras are expected to move in this summer.

Norway Prepares

A COMMITTEE has been formed in Norway to conduct experimental TV transmissions in preparation for a national television service.

Tests begin in Oslo later in the year and equipment manufacturers in Britain and the United States have been invited to submit estimates to the committee.

Life in North-east

A FILM concerning the way of life in the north-east of England has been shot in the Northumberland and Durham area in time for the opening of the Pontop Pike transmitter.

This half-hour documentary takes in shots of collieries, shipyards, steel works and farmlands and is produced by John Elliot, documentary head of the BBC Television Film Service.

Wired Service

BECAUSE a relay company has merged with another and a new board has to make fresh considerations, the installation of a wired television and radio service for Kingston and Surbiton, Surrey, has been delayed indefinitely.

Coal Under Mast

WORKMEN from Stanley Urban Council, who are laying a road leading to the Pontop Pike Station, have discovered a 3½ft. seam of good quality coal running under the main buildings and steel mast.

Hospitals Hire Sets

In order that patients in four hospitals may watch the Coronation, a hospitals management committee is to pay £300 to a Wandsworth firm for the hire of twenty receivers.

This makes a fee of £15 for hiring one set only.

Ban Lifted

BEFORE Giannella de Marco, aged eight, the Italian girl conductor, could appear on Henry Caldwell's "Shop Window" programme, the ban on children under 12 appearing in front of a television camera had to be lifted by the Home Office.

(Left) Eamonn Andrews, chairman in the "What's My Line?" programme, congratulates the 71-year-old office-boy of Television Mainstal, Ltd., of Hounslow, on his success in being the panel. They guessed no nearer than "messenger." (Right) Patrick Troughton, who plays Robin Hood in the serial play on Children's Television, puts in some archery practice in Battersea Park, watched by an interested group of young admirers.
A workshop in your pocket!

FOR ONLY

25/6
Post Free

THE TELEVISION & RADIO SERVICE ENGINEERS' MASTER TRIMMER KIT

- End Trimmer
- Side Trimmer
- Waxley Switch Contact Adjuster
- Low Capacity Trimmer
- Screwdriver
- Set of Feeler Gauges
- Set of Six Box Spanners from 1 to 8 B.A.
- Set of Four Spanners from 6 to 8 B.A.

In durable black cracker finish metal case.

Export Enquiries Invited
109 HAMPSTEAD RD., LONDON, N.W.1
Tel.: EUston 5176/7

E Finch E Finch E Finch E Finch

LONG LIVE THE QUEEN

CORONATION GIFT

(1 month only)

FREE WITH ALL ORDERS OVER 61.

VALVES

SP08 3.6 EF375(Res.) 3B14 2.4 6M2 5.4

VD13 3.3 E1111 3.3 V1115 6.3 6K7 6

SP11 2.5 EF89 4.6 F690 10.0 EP34 5

R51 10.0 824 10.0 U390 10.0 FW1 400 10

RC2 5.0 ECC83 5.0 ECC89 4.0 EB68 5

R27 10.0 ECC82 7.6 6N7 7.6 6V6 10

R26 7.7 823 7.6 630 7.6 105 8

R11 5.4 154 9.0 185 9.0 581 8.2

R87 12.0 6K8 12.0 838 4.6 6B87 4.6

R91 6.0 6F1 6.0 839 2.0 560 4.6

HLK2 3.0 6N20 3.0 SS215 3.0 1F210 3.0

V250 3.6 U10 6.6 120A 7.5 1T15 7

MLA 5.0 648 10.0 13817 4.6 8N4 7

T.V. COMPONENTS

CONDENSERS—8 mfd. 150 volt W.R. (Small). 2/3 each 5.8 mfd. 150 volt W.R. (Large). 2/3 each 5.8 mfd. 50 volt W.R. (Drylite). 5/3 each 1.1 mfd. 250 volt W.R. (Ceramic) 2.5 cent.

RESISTORS—1 and 1 Watt. 45 dozens. 1 Watt carbon, all values. 6.0 to 1,000 ohm. 45 dozen. 7/3 each. Pots. All values to 2 Meg. 2/3 each.

RECTIFIERS—12 volt 1 Amp. 7/3. 20 volt 50 m.A. Selenium. 5/6.

CONTACT TABLE—80 ohm. 112 ohm. 10 ohm. per yard. VCR 57C, VCH67. $2 each. (Gallons only). Full Picture.

VINER

24-26, EAST STREET, MIDDLESBROUGH
Tel.: (Mtd) 3418

High Speed

SOLDERING

* twice as fast
* more efficient
* more economical

WOLF Electric SOLDERGUN

EACH REEL HOLDS 15 FEET CORED SOLDER
TRIGGER ACTION FEED
PERFECT CONTROL FOR SMALL ASSEMBLY AND JOINTING WORK
FINELY BALANCED WITH EASY-GRIP PLASTIC HANDLE
RAPID, CONSTANT HEAT
HEAT CONCENTRATED AT WORKING POINT
LOW CURRENT CONSUMPTION

Supplied complete with 15 feet reel of acid-cored solder, spare 15 feet, resins-cored solder and fitted with 5 feet tough rubber 3-core cable. Finished in heavy chrome.

* Obtainable from all leading tool merchants and factors

WOLF ELECTRIC TOOLS LTD.
PIONEER WORKS, HANGER LANE, LONDON, W.5

May, 1953
PRACTICAL TELEVISION 569
SPECIAL! SPECIAL! SPECIAL!

This month as the result of a purchase from the Ministry of Supply we are proud to make a unique offer of the famous American 25 RANGE "TRIPLETT" UNIVERSAL TEST-METER MODEL 1200 SC.

This superb instrument is fitted with a large 2,000 ohms per volt moving coil meter size 4in. x 4in., with an extreme scale length of 3in., and measures A.C. and D.C. Voltage up to 1,000v. D.C. Current up to 10ma. Resistance up to 1 Megohm. Capacity up to 10 mf...and Receiver A-F Output from -15 to +55 decibels. Contained in a black crackled metal case, overall size 6in.W x 11in. H x 6in.D, with removable front cover and supplied with test leads and full operating instructions. Every meter has been thoroughly checked and tested, and is GUARANTEED IN PERFECT WORKING ORDER. An ideal opportunity to acquire a high-grade tester at a fraction of original cost. ONLY £7-19-6 (postage, etc. 2s).

BUILDING THE "ARGUS"?

<table>
<thead>
<tr>
<th>Thousands of enthusiasts are building the Practical Television "Argus" Television. Why not YOU? Full constructional details with Blue Print sent for only 2s 9d post paid. All components available ex stock, as follows:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINS TRANSFORMER</td>
</tr>
<tr>
<td>250-450v, 200 ma, 53.4, 4a, 53.4a, 5v, 2a (postage 2s)</td>
</tr>
<tr>
<td>F.L.T. TRANSFORMER FOR</td>
</tr>
<tr>
<td>10000V, 5 ma, 2-2-2v, 11 a, 2-2-2, 2a (postage 1s 9d)</td>
</tr>
<tr>
<td>CHOKE</td>
</tr>
<tr>
<td>1h, 200 ma (postage 1s)</td>
</tr>
<tr>
<td>VALVENS</td>
</tr>
<tr>
<td>6J5G (VRB9)</td>
</tr>
<tr>
<td>6J6G</td>
</tr>
<tr>
<td>EIGHT TRANSFORMERS WITH</td>
</tr>
<tr>
<td>10000V, 5 ma, 2-2-2v, 11 a, 2-2-2, 2a, (postage 1s 9d)</td>
</tr>
<tr>
<td>POTENTIOMETERS</td>
</tr>
<tr>
<td>3:1, 2.5 kV</td>
</tr>
</tbody>
</table>

COIL FORMERS WITHSKUSS

<table>
<thead>
<tr>
<th>1in.</th>
<th>8d.</th>
<th>1in.</th>
<th>10d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>COIL FORMERS WITHSKUSS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1in.</td>
<td>8d.</td>
<td>1in.</td>
<td>10d.</td>
</tr>
</tbody>
</table>

VALVEHOLDERS

<table>
<thead>
<tr>
<th>10.0 (3.0)</th>
<th>6d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAN SPEAKERS (less trans.)</td>
<td></td>
</tr>
<tr>
<td>5in, Rola</td>
<td>16s.</td>
</tr>
<tr>
<td>TRIMMERS 0-30 pf.</td>
<td>18s.</td>
</tr>
</tbody>
</table>

TUBULARS

<table>
<thead>
<tr>
<th>2w.</th>
<th>10w. 2.5kV</th>
<th>6d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TELEVISION PICTURE FAULTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2w.</td>
<td>10w. 2.5 kV</td>
<td>6d.</td>
</tr>
</tbody>
</table>

ELECTRICALS

| 8 x 10 400v | 16 x 10 400v | 25 x 25v | 50 x 25v | 100 x 12v | 150 x 25v | 250 x 25v | 500 x 25v | 1000 x 25v | 2500 x 25v | 5000 x 25v | 10000 x 25v | 25000 x 25v | 50000 x 25v |

RESISTORS

<table>
<thead>
<tr>
<th>1w.</th>
<th>2w.</th>
<th>5w.</th>
<th>1w.</th>
<th>2w.</th>
<th>5w.</th>
<th>1w.</th>
<th>2w.</th>
<th>5w.</th>
</tr>
</thead>
</table>

TRIMMERS

| 0-30 pf. | 18s. |

CAPACITORS

| 0.001uf | 0.01uf | 0.1uf | 1uf | 10uf | 100uf | 1000uf | 1uf | 10uf |

VALVES

<table>
<thead>
<tr>
<th>6J5G (VRB9)</th>
<th>6-6 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALM. HOLDEKS</td>
<td></td>
</tr>
<tr>
<td>16 -</td>
<td></td>
</tr>
</tbody>
</table>

TRIMMERS

| 0-30 pf. | 18s. |

TRIMMERS

| 0-30 pf. | 18s. |

TRIMMERS

| 0-30 pf. | 18s. |

Cash with order, please, and print name and address clearly. Include postage as specified and all Component Orders under 2s.

Open until 1 p.m. Saturdays. We are 2 mins. from High Holborn (Chancellors Lane Station). 5 mins. by bus from King's Cross.

Let ICS perfect YOUR knowledge of radio and T/V

Those who wish to supplement their existing knowledge with a sound technological background or pass qualifying examinations, can do so by means of I.C.S. Home Study Courses. These include T/V TECHNOLOGY - RADIO SERVICE ENGINEERING - RADIO ENGINEERING - ELEMENTARY ELECTRONICS - RADAR - ADVANCED SHORT WAVE RADIO and training for the following examinations: C. & G. RADIO SERVICING CERT. (R.T.E.B.) - B.I.R.E. - C. & G. TELECOMMUNICATIONS - C. & G. RADIO AMATEURS - P.M.G. CERT. FOR WIRELESS OPERATORS, etc., etc. Students are coached until successful. Fees are moderate and include all books required.

REDUCED TERMS TO H.M. FORCES.

Dept. 1722, I.C.S. 71 Kingsway, W.C.2

LET WRITE TODAY for FREE BOOKLET describing complete facilities for the successful study of T/V technology and Radio.

INTERNATIONAL CORRESPONDENCE SCHOOLS LTD.

Please send booklet on subject...

Name.................. Age..................

(Block letters please)

Address.............
<table>
<thead>
<tr>
<th>Firm</th>
<th>Stand No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.B. Metal Products, Limited</td>
<td>64</td>
</tr>
<tr>
<td>Advance Components, Limited</td>
<td>56</td>
</tr>
<tr>
<td>Aerialite, Limited</td>
<td>12</td>
</tr>
<tr>
<td>Antiference, Limited</td>
<td>50</td>
</tr>
<tr>
<td>Associated Iliffe Press, Limited</td>
<td>106</td>
</tr>
<tr>
<td>Associated Technical Manufacturers, Limited</td>
<td>75</td>
</tr>
<tr>
<td>Automatic Coil Winder and Electrical Equipment Co., Limited</td>
<td>105</td>
</tr>
<tr>
<td>Bakelite, Limited</td>
<td>74</td>
</tr>
<tr>
<td>Bell and Lee, Limited</td>
<td>52</td>
</tr>
<tr>
<td>Bird, Sydney S., and Sons, Limited</td>
<td>78</td>
</tr>
<tr>
<td>Birmingham Sound Reproducers, Limited</td>
<td>15</td>
</tr>
<tr>
<td>Bray, Geo., and Co., Limited</td>
<td>89</td>
</tr>
<tr>
<td>British Electric Resistance Co., Limited</td>
<td>70</td>
</tr>
<tr>
<td>British Insulated Cables Limited</td>
<td>73</td>
</tr>
<tr>
<td>British Mechanical Productions Limited</td>
<td>66</td>
</tr>
<tr>
<td>British Moulded Plastics, Limited</td>
<td>114</td>
</tr>
<tr>
<td>Bulgin, A. E., and Co., Limited</td>
<td>45</td>
</tr>
<tr>
<td>Bullets, Limited</td>
<td>5</td>
</tr>
<tr>
<td>Carr Fastener Co., Limited</td>
<td>25</td>
</tr>
<tr>
<td>Clarke, H., and Co. (Manchester), Limited</td>
<td>87</td>
</tr>
<tr>
<td>Collaro, Limited</td>
<td>19</td>
</tr>
<tr>
<td>Colvern, Limited</td>
<td>51</td>
</tr>
<tr>
<td>Connollys (Blackley), Limited</td>
<td>76</td>
</tr>
<tr>
<td>Cosmocard, Limited</td>
<td>59</td>
</tr>
<tr>
<td>Daly (Condensors), Limited</td>
<td>99</td>
</tr>
<tr>
<td>Dawe Instruments, Limited</td>
<td>32</td>
</tr>
<tr>
<td>De La Rue, Thomas, and Co., Limited (Plastics Division)</td>
<td>108</td>
</tr>
<tr>
<td>Diamond "H" Switches, Limited</td>
<td>3</td>
</tr>
<tr>
<td>Dumbell Condenser Co. (1925), Limited</td>
<td>68</td>
</tr>
<tr>
<td>Duratube and Wire, Limited</td>
<td>46</td>
</tr>
<tr>
<td>Edison Swan Electric Co., Limited</td>
<td>62</td>
</tr>
<tr>
<td>Egen Electric, Limited</td>
<td>79</td>
</tr>
<tr>
<td>Electric Acoustic Industries, Limited</td>
<td>40</td>
</tr>
<tr>
<td>Electronic Components</td>
<td>93</td>
</tr>
<tr>
<td>Electrothermal Engineering, Limited</td>
<td>83</td>
</tr>
<tr>
<td>English Electric Co., Limited</td>
<td>95</td>
</tr>
<tr>
<td>Enthoven Solders, Limited</td>
<td>34</td>
</tr>
<tr>
<td>Erg Industrial Corporation, Limited</td>
<td>112</td>
</tr>
<tr>
<td>Eric Resistor, Limited</td>
<td>26</td>
</tr>
<tr>
<td>Ever-Ready Co. (Great Britain), Limited</td>
<td>103</td>
</tr>
<tr>
<td>Ferranti, Limited</td>
<td>37</td>
</tr>
<tr>
<td>Fine Wires, Limited</td>
<td>118</td>
</tr>
<tr>
<td>Garrard Engineering and Manufacturing Co., Limited</td>
<td>69</td>
</tr>
<tr>
<td>General Electric Co., Limited</td>
<td>100</td>
</tr>
<tr>
<td>Goodmans Industries, Limited</td>
<td>31</td>
</tr>
<tr>
<td>Gresham Transformers, Limited</td>
<td>98</td>
</tr>
<tr>
<td>Guest, Keen and Nettlefold, Limited</td>
<td>101</td>
</tr>
<tr>
<td>Hallam, Sleigh and Cheston, Limited</td>
<td>85</td>
</tr>
<tr>
<td>Hassett and Harper, Limited</td>
<td>111</td>
</tr>
<tr>
<td>Hellermann, Limited</td>
<td>71</td>
</tr>
<tr>
<td>Henly's, W. T., Telegraph Works Co., Limited</td>
<td>2</td>
</tr>
<tr>
<td>Hunt, A. H. (Capacitors), Limited</td>
<td>22</td>
</tr>
<tr>
<td>Igranic Electric Co., Limited</td>
<td>6</td>
</tr>
<tr>
<td>Imhof, Alfred, Limited</td>
<td>38</td>
</tr>
<tr>
<td>Jackson Bros. (London), Limited</td>
<td>4</td>
</tr>
<tr>
<td>London Electric Wire Co. and Smiths, Limited</td>
<td>110</td>
</tr>
<tr>
<td>London Electrical Manufacturing Co., Limited</td>
<td>44</td>
</tr>
<tr>
<td>Long and Hamblt, Limited</td>
<td>11</td>
</tr>
<tr>
<td>Magnetic and Electrical Alloys, Limited</td>
<td>63</td>
</tr>
<tr>
<td>Marconi Instruments, Limited</td>
<td>96</td>
</tr>
<tr>
<td>Marshall and Catterall, Limited</td>
<td>104</td>
</tr>
<tr>
<td>McMurdo Instrument Co., Limited</td>
<td>58</td>
</tr>
<tr>
<td>Micanite and Insular Co., Limited</td>
<td>113</td>
</tr>
<tr>
<td>Morgan Brothers (Publishers), Limited</td>
<td>102</td>
</tr>
<tr>
<td>Morganite Resistors, Limited</td>
<td>47</td>
</tr>
<tr>
<td>Mullard, Limited</td>
<td>20</td>
</tr>
<tr>
<td>Mullard, Limited (Valves Division)</td>
<td>120</td>
</tr>
<tr>
<td>Mullard Overseas, Limited</td>
<td>115</td>
</tr>
<tr>
<td>Multico Solders, Limited</td>
<td>41</td>
</tr>
<tr>
<td>Murex, Limited</td>
<td>13</td>
</tr>
<tr>
<td>Mycalex Co., Limited</td>
<td>86</td>
</tr>
<tr>
<td>Neill, James and Co. (Sheffield), Limited</td>
<td>116</td>
</tr>
<tr>
<td>N.S.F., Limited</td>
<td>55</td>
</tr>
<tr>
<td>Painton and Co., Limited</td>
<td>24</td>
</tr>
<tr>
<td>Parmeko, Limited</td>
<td>21</td>
</tr>
<tr>
<td>Partridge Transformers, Limited</td>
<td>57</td>
</tr>
<tr>
<td>Plessey Company, Limited</td>
<td>42</td>
</tr>
<tr>
<td>Plessey International, Limited</td>
<td>72</td>
</tr>
<tr>
<td>Pye, Limited</td>
<td>94</td>
</tr>
<tr>
<td>Reliance Electrical Wire Co., Limited</td>
<td>10</td>
</tr>
<tr>
<td>Resisound, Limited</td>
<td>29</td>
</tr>
<tr>
<td>Rola Celestion, Limited</td>
<td>36</td>
</tr>
<tr>
<td>Salford Electrical Instruments, Limited</td>
<td>49</td>
</tr>
<tr>
<td>Scharf, Erwin</td>
<td>77</td>
</tr>
<tr>
<td>Scott, Geo. L., and Co., Limited</td>
<td>84</td>
</tr>
<tr>
<td>Simmonds Aerocessories, Limited</td>
<td>82</td>
</tr>
<tr>
<td>Stability Radio Components, Limited</td>
<td>33</td>
</tr>
<tr>
<td>Standard Telephones and Cables, Limited</td>
<td>27</td>
</tr>
<tr>
<td>Standard Telephones and Cables, Limited (Valve Division)</td>
<td>67</td>
</tr>
<tr>
<td>Static Condenser Co., Limited</td>
<td>92</td>
</tr>
<tr>
<td>Steatite and Porcelain Products, Limited</td>
<td>35</td>
</tr>
<tr>
<td>Sulflex, Limited</td>
<td>8</td>
</tr>
<tr>
<td>Supply, Ministry of</td>
<td>97</td>
</tr>
<tr>
<td>Swift, Levis and Sons, Limited</td>
<td>107</td>
</tr>
<tr>
<td>Symons, H. D., and Co., Limited</td>
<td>91</td>
</tr>
<tr>
<td>Tannoy Products, Limited</td>
<td>65</td>
</tr>
<tr>
<td>Taylor Electrical Instruments, Limited</td>
<td>1</td>
</tr>
<tr>
<td>Taylor Tunnichitt (Refractories), Limited</td>
<td>117</td>
</tr>
<tr>
<td>Telegraph Condenser Co., Limited</td>
<td>48</td>
</tr>
</tbody>
</table>
Some New T.C.C. Condensers

T.C.C. announce the introduction of several entirely new and interesting condensers. Amongst these are the following, illustrated below:

High-voltage Type CP561

This is a new range of paper dielectric condensers, which is intended for use in E.H.T. supplies for the largest cathode-ray tubes.

The unique construction includes a moulded case, stud mounting and a flexible connection. The special impregnating compound has outstanding properties which prevent ionisation, and thereby increase the working life.

As there are no metal parts at the high potential end of the condenser, corona losses due to external discharge are virtually eliminated.

Sub-miniature Electrolytics for Use in Hearing Aids

These diminutive tubular condensers are the smallest electrolytics ever made and have been specially designed for use in miniature hearing aids where every component is of necessity scaled down to the smallest possible size.

The improved construction has resulted not only in a spectacular reduction in size but also in an efficient condenser which has successfully undergone a series of very extensive and stringent tests over a long period.

Only two capacity values are available at the moment, 6μF for 3-volt D.C. working and 8μF for 6-volt D.C. working, but more will be added as and when the demands of manufacturers become apparent.

Hi-K Ceramic Disc Condensers

This new addition to the existing range of Hi-K ceramic condensers has several uses, including decoupling in television receivers and spark suppression in small electrical apparatus. They can also be used as alternatives to the ordinary mica condensers in positions where changes of capacity due to variations of temperature coefficients are of no importance.

These Hi-K discs are at present available in two sizes, approximately 10 and 20 mm diameter, and in a range of values from 0.001μF to 0.02μF at working voltages from 500 volts D.C. to 4,000 volts D.C. A special non-cracking, heat-resisting protective coating is applied as a standard finish.

Metallised Polystyrene Condensers

The excellent electrical properties of the plastic film condenser are already well known, these condensers being unsurpassed for high insulation resistance and low power factor.

T.C.C. have now developed a method of metallising Polystyrene film which enables the size of a condenser to be reduced to a point where it compares favourably with its paper counterpart whilst retaining the excellent electrical characteristics associated with the plastic film condenser.
Television at 200 miles

NEW MODEL SC23 TV PRE-AMPS. ALL CHANNELS

- High gain and low noise.
- Custom built to the highest standards.
- Amplo bandwidth for good definition.
- Ideal for the "difficult" fringe and ultra fringe areas.
- Each pre-amp supplied guaranteed to have been "as-tested" and to have received both vision and sound at 200 miles using a standard commercial superhet receiver.
- Models SC22 and SC23 have self-contained metal rectifier power supply, 200/250 V, A.C.
- 2 months' guarantee.
- Immediate delivery.

RETAIL PRICE LIST

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC22, new model</td>
<td>£5.5/6.</td>
</tr>
<tr>
<td>SC23, two-stage</td>
<td>£8.10/6.</td>
</tr>
<tr>
<td>SC24, two-stage</td>
<td>£16.6/6.</td>
</tr>
<tr>
<td>Requires power supply, SG12, TV 250 v, 50/50</td>
<td>£6.19/6.</td>
</tr>
<tr>
<td>PC12 Pmt. Go</td>
<td>£1.9/6.</td>
</tr>
</tbody>
</table>

TELEVISION SIGNAL GENERATOR

- Frequency range 30/70 Mhz.
- Calibration chart for all Television Channels.
- Modulation on sound and vision optional.
- Sensitive meter fitted for use as grid dip oscillator.
- Ideal for service engineer and experimenter.
- Measures coil, aerial frequencies, etc.
- The only one of its kind on the market.
- 2 months' guarantee.
- Immediate delivery.

J. V. RADIO CO.

25, WILLIAM STREET, PLYMOUTH.

ADCOLA PRODUCTS LTD.

Sales, Offices & Works: CRANMER COURT, CLAPHAM HIGH ST., LONDON, S.W.4.

SOLDERING INSTRUMENTS FOR

SUCCESSFUL HOME CONSTRUCTION AND ALL SOUND EQUIPMENT SOLDER JOINTING

"STANDARD MODEL" AS ILLUSTRATED 25/6

Any volt range supplied, 6/7 to 230/250

3/16" dia. bit Standard Model

Equally suited to daily or intermittent use

Made in England

Registered Design

(British, U.S.A., Foreign Patents)

Export Enquiries Invited

WRITE DIRECT TO

ADCOLA PRODUCTS LTD.

Tel. 4797

Order direct from:

2 Bridge Street, Glasgow, C.S.

Visit our Branches in Scotland, England and N. Ireland
RADIO SUPPLY CO. (LEEDS) LTD.
32, THE CALLS, LEEDS, 2.

Post Terms C.A.O. or C.O.D. No C.O.D. under £1. Postage 4/1 charged on orders up to £1. From £1 to £2 add 1½. over £2 post free. Open to callers 9 a.m. to 5.30 p.m. Sat. until 1 p.m. B.A.I. with enquiries, please, Full list 5/4. Trade List, 5d.

R.S.C. MAINS TRANSFORMERS
FULLY GUARANTEED
Primaries 200-240-315 v ±5%-2%, Secondaries 50-55-75-70 v ±5%

TOP SHROUDED DROP THROUGH CHARGER TRANSFORMERS
250-4-250 v 50 ma. 63 v 2 a. 5 v 3 a.
112 11 All with 200-260 v 50 c.s. Primaries 0.05 x 1.5 a. 129, 9.9 x 1.5 a. 119, 9.9 x 1.5 a.
51 51 Fully Transformed.

BATTERY SET CONVERTER KIT
All parts for converting any type of Battery Receiver to A.C. mains 200-250 v 60 c.s.
Supplies 120 v 250 v or 120 v at 10 ma. Fully smoothed and fully smoothed I.T. of 2 at 1 a. Price including Circuitry 47.10.

BATTERY CHARGE KIT—For mains output 200-250 v 50 c.s. To charge 5 v at 2 amp. 299.9. To charge 6 v or 12 v at 2 amp. 499. For above contact of transformers, F.W. Recorder, Fuse, Fusing Holder, Stee Case and Circuit.

SPECIAL OFFER.—Mains Trans., Midget type, 2-5-3-21. Primary 220-240 v. Sec. 200-250 v 60 ma. 63 v 2 a. 5 v 3 a. Small trans. 220-240 v input, 8 v 1.3 a output
5 v 1.3 a. Auto Trans. 50 watts, 110-220-230-240 v

CHASSIS (16×12×4.5 Aluminium) Receiver Type—3, 5-11, 26-71-12-17, 33-45, 53-16-21, 76-20-3-21, 21-1
Amplifier trans. 25 watts, 16-21, 1011, 14-15-3, 13-6, 29-8

P.M.SPEAKERS.—All 23 ohms 5th.
M.P.SPEAKERS.—2 and 3 ohms. 6in. Rola. 700 ohm Field. 12.9 £10. R.A., 690 ohm Field. 23.9.

NEW VACUUM TUBES.
Argus and Circuit.

NEW VACUUM TUBES.

RADIO ELECTRONIC TEACHERS.—Master's type. 5.000 to 12 ohms.
Standarttpe, 8,000 to 12.000 ohms.
Push-Pull 10-12 watts to match 6V6 etc. to 330-840 ohms.
Push-Pull 15 watts to match 6L6 etc. to 3 or 15 ohm Speaker

SPECIAL OFFER.—Mains Trans., Mikado type, 2-5-3-21. Primary 220-240 v. Sec. 200-250 v 60 ma. 63 v 2 a. 5 v 3 a. Small trans. 220-240 v input, 8 v 1.3 a output
5 v 1.3 a. Auto Trans. 50 watts, 110-220-230-240 v

CHASSIS (16×12×4.5 Aluminium) Receiver Type—3, 5-11, 26-71-12-17, 33-45, 53-16-21, 76-20-3-21, 21-1
Amplifier trans. 25 watts, 16-21, 1011, 14-15-3, 13-6, 29-8

P.M.SPEAKERS.—All 23 ohms 5th.
M.P.SPEAKERS.—2 and 3 ohms. 6in. Rola. 700 ohm Field. 12.9 £10. R.A., 690 ohm Field. 23.9.

NEW VACUUM TUBES.
Argus and Circuit.

NEW VACUUM TUBES.
THEATRICAL books recall with nostalgic phrases the appeal that Shakespeare had for the public of fifty years or so ago. Rival "Hamlets" or "Henry V's," played simultaneously at West End theatres in the opulent age of the great actors-managers, nearly all of whom were ready at any time to put on one or other of the eight most popular of Shakespeare's works. Provincial theatres followed suit with the Bard's plays performed by resident repertory companies or by touring companies. Smaller towns and even villages were given their doses of Shakespeare in corn exchanges and village halls, put on by "fit-up" companies of actors who travelled prosenium and stage fittings as well as scenery. But, in the course of time, the "tip-up" replaced the "fit-up" and in all except the largest towns the early flickering "bioscope" took the place of flesh-and-blood hisitronies. For the time being, and except for specialized audiences, the great Bill was superseded by Bronco Billy in "horse operas" or by "Clutching Hand" serials.

THE TAINT OF THE "THIRD"

Time marches on. Those not living in populous areas had little chance of seeing Shakespeare performed by professional actors. Sound radio prepared the way for a revival of general interest in Shakespeare's plays, but the medium had insufficient impact to retain the attention of the popular public. True the Third Programme has often featured Shakespeare—but its very appearance in such eclectic environs was sufficient to damn it, so far as the ordinary man-in-the-street was concerned. Shakespeare has had to wait for TV to remove the "third" taint. TV sound and picture riveting the attention of the viewers, have carried the golden words back into the towns and villages again, and the arm-chair has, in turn, replaced the "tip-up." Once more, all the world's a stage—or rather, two million British TV sets are stages for a rapidly increasing audience for Shakespearean drama. The TV boys are doing it well, but it is strange that "As You Like It" is possibly the turning point. Campbell Logan's production was a delicate piece of work, but it was Margaret Leighton's Rosalind which captured all hearts. Good production and acting are essential to success with Shakespeare, but it is always the individual performance of an artiste which carries it to triumph. In spite of the anonymity of players frequently insisted upon by many stock company managers, Shakespeare must have appreciated the value of the star system. Each play contains at least one part which gives scope for the player to convey every little shade of dramatic interpretation. There is no particular need to hurry with TV production, and no particular necessity for streamlined restless cutting from shot to shot, montages, or chase sequences, as in films. Tempo can be slower on TV, enabling the producer to dwell on individual shots for long periods—providing the shots are really worthy of such prolonged attention. At last we have a medium which can exploit the full virtuosity of the "star" characters in Shakespeare's plays. Encore!

IRISH PLAYS

For some reason or another the Irish play has always had an attraction for TV producers. I have often tried to account for it, because with a few notable exceptions, stage plays or films in dialect (excepting when in Scottish) seem to have a limited appeal. Nevertheless, viewers must have revived happy memories of the notable productions of Fred Donovan and George More O'Ferrall when Andrew Osborn presented "The Goldfish in the Sun." All the characters were handled sympathetically and Fred Johnson was very convincing as the retired bo'sun who is caught in the threads of his early life when he comes home to live in Cork. Noteworthy were the settings of Roy O'Heley and coupled with imaginative camera work, they gave the play "visual depth" if not precisely 3-D!

A GLASGOW RELAY

It is not often that reference to religious programmes appear in these columns, perhaps because seldom has TV been able to transmit the spiritual uplift present in a sound broadcast. The two relays from Glasgow Cathedral were admirable—particularly in the Epilogue, when the beauty and serenity of St. Mungo's was apparent to all viewers; and what a perfect choir! In view of the land-line relay, the clarity of the sound on this transmission was praiseworthy as was the excellence of the pictures.

TV GLOOM

PLAYS and films are notoriously out of touch with public taste if the box office results are an indication. But their opinions are valued by the managers, especially during the first few weeks of a run. Plays which are frankly "popular" in their appeal usually rely upon word of mouth recommendation and audiences increase week by week. Thus,"Worms Eye View," "Reluctant Heroes" and the Novello musical plays gradually built up their success over a long period. There is not the same incentive for television producers who look to the rapidly growing band of TV press critics for their appreciation. The vast popular TV public are not in the habit of sending frequent postcards of appreciation or otherwise. Perhaps this accounts for the growing highbrow aspect of many of the features put on the TV programmes lately. I am not referring to Shakespeare, but to the batch of depressing features about pain, to the morbid modern plays such as "Shadow of the Vine," by Beverley Nichols. After this depressing little season let us hope we have another taste of the Crazy Gang and slapstick as an antidote.
The Johnson "Chorehorse"

TELEVISION with definition equal to first-class mains is now available to all those without mains supply through the use of a "Chorehorse" A.C./D.C. power unit. This is a motor-operated generator, illustrated below, and having the following specifications:

Engine: The engine is a side-valve, blow-cooled type. 2½ in. by 1⅛ in. bore and stroke. Ignition by flywheel magneto, fully compensating carburettor with adjustable main jet. Especially sensitive built in governor, and large diameter outside flywheel to maintain constant voltage. A pulley is fitted for cord-starting if required.

Generator: The generator, of very ample dimensions, has four-pole windings; 1,800 r.p.m., self-excited, self-contained unit with a rated output of 250/300 watts at 220/250 volts A.C. Single phase, 50/60 cycles, plus 12/15 volts, 300 watts charging output. A self-starting circuit is also incorporated. The rated output is well on the conservative side.

Controls: On the instrument panel are mounted 100-300 A.C. voltmeter, 30-0-30 D.C. ammeter, starter button, D.C. terminals, A.C. output detachable plug, cut-out, rheostat, auto A.C. voltage control box, etc.

Assembly: The engine and A.C./D.C. generator are close-coupled and fully suppressed against interference; they are mounted in the approved "Chorehorse" manner, on a hollow base plate which forms the petrol tank. The set is protected from damage by light tubular framing.

Size and Weight: Overall dimensions, 17 in. × 15⅝ in. × 14 in. high. Weight complete, 124 lbs.

Wolsey Aerial Improvement

All concerned with TV aerial erection will at once recognise the step forward in design presented by the new Wolsey square fitting cross-arm. They will know that on all makes of aerials having the conventional round cross-arms the elements are very apt to get out of alignment, and the entire aerial to move out of the vertical through the force of the wind. Wolsey's new square fitting makes this impossible. The square fitting of the junction box, reflector clamp and central T bracket ensures automatic and positive alignment, and the aerial cannot move round the cross-arm. For orientation, slots in the T bracket and stand-off arm allow ample swing. Further, it will readily be obvious that this new square fitting considerably reduces the time required to assemble the aerial.

The square fitting reflector clamp is pre-assembled at the works and supplied with the rods actually fitted folded against the cross-arm for convenience in packing and transit. All the erector has to do is snap the rods into position and by finger tightening the two wing nuts, quickly and firmly secure rods to the cross-arm.

The end of the cross-arm is, of course, fitted with an effective insulator.—Wolsey Television Ltd., 75, Gresham Road, London, S.W.9. Brixton, 6651 (PBX). Established 1934.

New American TV Rectifier

A MINIATURE cathode type high-voltage half-wave rectifier, Type 6V3, is now being produced by the Radio Tube Division of Sylvania Electric Products, Inc., Emporium, Pa.

The 6V3 has a coated unipotential cathode and is designed for use as a damping diode in television receivers. In new equipment applications the Sylvania 6V3 when used within its maximum ratings is capable of withstanding a peak inverse voltage of 6,000 volts and a steady state peak current of 600 mA.

The Sylvania Type 6V3 is contained in a miniature T-6½ envelope. The cathode is connected to the top cap.

Television Price Reductions

THE General Electric Co., Ltd., announces a substantial reduction in the price of the television preamplifier, BT166, from £2 10s. Od. to £1 10s. Od. to take effect immediately.

H.M.V. and Marconiphone also announce reductions in their 12in. table and console models. Model 1814 is now 62 gns. Model 1816 is 83 gns. Model VT59DA is £65 2s., and Model VC59DA is £75 12s.
HANNEY of BATH offers: STANDARD VIEWMASTER. Constructor's Envelope. 7;6; complete kit with wires, slewing, nuts and bolts, lens valve, tube and cabinet. GENUINE parts only. 25. OR in 7 easy stages: 1. £0.5; 2. £2.429; (Wenveo, 301); 3. £3.132; 4. £1.091; 5. £3.129; 6. £7.947; 7. 87.8; individual Parts (any item separately). WBN16 (sound and vision chassis), 196; WBN16. 6; - WBN15, 196; - WBN13, 492; - WBN11, 545, 492; - WBN10, 334; - WBN09, 2 or 0 (state tube type). 22.6; WBN11. 104; - WBN09. 218; - WBN07 pre-ampl chassis, 12.6; Westhorne Rectifiers, 14.49; 284; B328, 117; - WCN3. 2, 9. each — WHITELIGHT, 36EHT71. 291; - SEHT79. 291; - SEHT79. 291; - K25. 100; - K50, 9.9; K350, 4.2; T.C.C. Condensers, £17.10s. (any condenser supplied separately). Mortagine pots, 8 each: - Mortagine resistors, 35.2. Copper pots, 29.9; or CLR001, 3.3 each and CLR000. 2. 64. Belling Lee 1267. 899. Fuses, 4d. each. Wearite Coilsets (with L0.305, 21.8. - 33.2: - 43.2: - 54.2: - 65.2: - 76.2: - 87.2: 27.9. per pair. Any channel. Special condensers are also available for the WIDE ANGLE Viewmaster.

TELEVISION CABINETS
FOR ALL HOME BUILT RECEIVERS. ANY SIZE SCREEN UP TO 17". FITTED WITH FULL LENGTH DOORS AND BEAUTIFULLY DESIGNED. ALSO RADIOGRAM & L.S. CABINETS.
WRITE OR PHONE FOR LEAFLET H. ASHDOWN, 98, Hertford Rd., Edmonton, N.9. Tel: TOT 2621

COMPLETE VIEW MASTER SERVICE ALL MODELS ALL AREAS PRICES. We can save you up to £7 on your View Master. Our very detailed leaflet gives full particulars. Send for your copy now.
SPECIAL OFFERS. Resistor Kit. Every resistor labelled with value and position in set. Please note that the knowledge of the code colour is required with our kit. London, 26d.- Midland, 249.
PAYMENT. Cash or C.O.D. H.P. Terms now available.
DELIVERY. All orders are despatched on day of receipt.
INSTRUCTION BOOKS. Any model 7s 6d. post free.
WATTS RADIO (Weybridge) LTD. 8 BAKER STREET, WEYBRIDGE, SURREY Telephone: Weybridge 2542.

SAFE, RELIABLE E.H.T.
The NERA R.F., E.H.T. unit has been designed to provide a safe and reliable source of D.C. high voltage for all C.R.T.s including the new wide angle and aluminised types. The output is continuously variable between 8 to 12 kV, at approximately 500 micro-amps.

PRICE £6.10.0 COMPLETE
The unit is completely wired and tested ready to switch on, requiring only, H.T. and L.T. connections. Ample shielding is provided to prevent radiation and interference to Broadcast receivers. The coil with rectifier incorporated may be purchased separately. Full instructions and data supplied.

WITH THE NERA R.F., E.H.T. UNIT
Full details from: AREN (TELEVISION) LTD., HIGH ST., GUILDFORD Manufacturers of Nera Big-screen Television Receivers

MAKING SOLDERING A PLEASURE! BY USING THE "TYVANA" SOLDERING IRON
Reg. Design No. 667804 The Perfect Small Soldering Instrument
• Adjustable Bit. • Easy to Handle. • Weight approx. 4 ozs. • Overall length 11" of the iron and diameter of the bit ½. • Heating Time 3 min. • 20 Watt economy Consumption. • Standard Voltage Ranges (other Ratings Available on Request). • Long Life and Efficiency. • Replacement Elements and Bits always available. • Just the Convenient Iron Required for Intricate and Fine Soldering. Maintenance Service for Industrial users. british made by:—KENROY LIMITED.
152/297, Upper Street, Islington, London, N.1. Telephone: Canvey 4905-4663
PRACTICAL TELEVISION

May, 1953

LYONS RADIO LTD.

3, GOLDSHAW ROAD, Dept. M.T.
SHEPHERD'S BUSH, LONDON, W.12.

Telephone: Shepherds' Bush 1729.

MILLIAMPETERS—An 0.1 milli-amp. and an 0.10 milli-amp. moving coil, 2in. square bakelite case meters mounted side by side on the front panel of a modern metal-case unit measuring approx. 5 x 3 x 1.5in. Also 0.01 milli-amp. movement. B.T. toggle switch, a 2-way wafer switch and a choice of condition as new and unused. PRICE 226d. Open box, 0.10 milli-amp., 0.1 milli-amp. The 0.1m.meter, PRICE 106d, post 19. Resist not available with only the 1m.meter.

AMPLIFIERS, TYPE A1386—These are two-valve amplifiers and can be used for inter-com purposes or as an input pre-amp. With slight modification (details supplied) can also be used as a gramophone amplifier. Valves fitted are VR2 (P.F.) and VR5 (Q.H.). Operates from 2V, L.T. and 4½V. H.T. Housed in neat metal cases 7 x 8 x 4in. In good condition, A REAL SNIP AT ONLY 106d, post 2d.

SCREENED CABLE.—Outside dia. 3½in. Copper sheath, screened, and with outer insulating cover which gives an appearance of coax. cable. Good for Mike leads, etc. 4½in. dia. 6d. per yard, 10yd. coil 50. Similar to above but with separate conducting and outer covering. 12yd. 6d., over 12yds. at 6d. yd.; 100yd. coil 37½.

SPECIAL TV. SPARES OFFER—a cathode-ray tube type V.C.C. tested. 10 valves (VR253, VR546, VR564, VR565); P.H. condensers, resistors, spindles, extractor rings, etc. All first-class quality. Prices on request. Coils and dozens of other useful components all mounted on neat metal chassis and fitting into a case 19 x 9 x 7ins. Condition as new and unused, supplied in made-up chassis. All the above to suit 66-74 INSTRUMENT UNITS TYPE 96. PRICE ONLY 59½.

FIRST-CLASS TELEVISION AND RADIO COURSES . . . GET A CERTIFICATE!

After brief, intensely interesting study—undertaken at home in your spare time—YOU can secure your professional qualification婴 and Theory. Let us show you how:

—FREE GUIDE—

Write now for your copy of this invaluable publication. If you well prove to be the turning point in your career.

FONDED 1885—OVER 150,000 SUCCESSES.

NATIONAL INSTITUTE OF ENGINEERING

(Dep't. 462), 148, HOLBORN, LONDON, E.C.1.
AUTO-CONTRAST CONTROL

Sir—In connection with your article on "Automatic Contrast Control" which appeared in the February issue, in the circuit (Fig. 1) suggested by the author the diode will not conduct during any part of the signal, as the anode of the video valve can never become negative. This means that there will be no control voltage developed across CR, and therefore the circuit will be ineffective.

Using the BBC system of positive picture modulation, any attempt to make use of the line sync. pulses to obtain a control voltage is bound to be very difficult, because during the pulse itself the transmitter output is zero, and hence the voltages appearing at any point in the video circuits will be independent of the peak or even the mean power output of the transmitter. One way to obtain a reference level is by the use of a circuit which will operate in accordance with the actual amplitude of the pulse, by the use of the front and/or back porches. This is necessarily difficult, owing to their short duration, which would mean that the equivalent of the condenser "C" would require many pulses before it became fully charged, which would render the circuit very "sluggish" in operation.

A simpler and more satisfactory method is found in the use of a gating circuit which opens during the composite frame pulse period, thus allowing complete line pulses to be sampled and a reference level obtained without the difficulty of removing the picture content of the signal.

The following skeleton circuit may help to make the principle a little clearer.

![Skeleton circuit of the control suggested by Mr. Henk.](https://example.com/skeleton-circuit.png)

The valve V, which should be a high-slope pentode, is normally cut off at the suppressor grid, and by the application of gating pulses during the frame flyback period, derived from a gating pulse generator synchronised to the frame timebase, the frame sync. pulse is made to appear at the anode, together, of course, with the D.C. component of the H.T. supply. This is removed by C₁, and the top of the waveform brought to zero level by D₂, which acts as a D.C. restorer. The waveform is now applied to the cathode of D₁, and the control voltage is developed across C₂R. This voltage varies partly as the strength of the video signal and partly as the amplitude of the suppressor grid pulses, so the general contrast level may be altered using the pulse amplitude control as a contrast control.—A. J. Henk (Leeds).

RE CAGE AERIALS

Sir.—It is with some reluctance that I embark upon yet a further letter on this subject, but I am afraid that in his efforts to discredit what I have said Mr. H. B. Gregory has strayed into the dizzy realms of fantasy.

His remarks concerning my purloining of statements from the Belling-Lee book are utter nonsense, and the accusation that I have quoted therefrom without acknowledgement is possibly actionable. Mr. Gregory should exercise great care before he ventures to consign such statements to print.

For Mr. Gregory's information I did not attend last year's Radio Show, nor have I seen or even heard of the publication he mentions. I am too old in the tooth to far as journalism is concerned to plagiarise another's work or even to attempt to quote ad verbatim the copyright details without obtaining the necessary permission and making the necessary acknowledgements.

The one interesting fact which has emerged from this correspondence is that Mr. F. R. W. Strafford has carried out some experiments with thin wire aerials and has proved it possible to obtain sufficient bandwidth with an aerial of this type. Previous data has suggested the necessity for the broader dimensioned arrays and this point has been stressed in quite recent works. However, the proof of the pudding is in the eating and I would suggest that the serious experimenter should try out the thin wire arrangement for himself, in the same way that I suggested the trial of the cage aerial.

The last word has not yet been said on aerial design for TV and there is much room for experimental work. Personally I am very much in favour of the simplification in aerial systems and look forward to the day when all these fantastic contraptions which now adorn our chimney stacks will be abolished. In TV we now appear to be in the same phase which accompanied the early
...days of sound radio, and it is to be hoped that new developments in valve design and circuitry will enable us to regard our present arrays with the amused tolerance we now give to the older double and triple wire aerials of early sound radio.—Eng.

SIGHT STRAIN

SIR.—As an optician, and a regular reader of Practical Television, may I offer a few comments on the article entitled “Television Sight Strain,” in the April issue?

With no wish to be less than just to the author, I cannot but feel that he is the victim of a number of fears and fallacies concerning human eyes which would be better dispelled, rather than propagated by his article.

In the conduct of my daily affairs, the fact about the human eye which most astonishes me is its immense tolerance: the ability to work for long periods under the most adverse conditions of illumination and focus, without permanent detriment.

Most of my colleagues would, I know, refute your contributor’s bland assumption that modern conditions are causing deterioration in the eyesight of the nation.

Whilst it is true that more spectacles are worn now than hitherto, the reason is simply that people are more concerned with visual efficiency nowadays, and follow both occupations and pleasures (of which television is a case in point) which demand critical rather than casual vision, and thus reveal small errors of focus which would not be apparent under less exacting conditions.

Television is a pleasure which demands fairly intensive visual concentration and which is likely, ipso facto, to cause some visual fatigue. Just how much fatigue depends on a number of circumstances, some of which may be enumerated as follows:

1. Conditions of viewing, i.e., room illumination; screen brilliance; posture, etc. all of which have been helpfully discussed in these pages.

2. Refractive condition of viewer, i.e., whether or not spectacles would be of assistance.

3. Physical stamina of viewer. With conditions (1) and (2) as good as possible, some people tire more easily than others, just as some can walk or run farther than others before becoming tired.

4. Use. It has come to my notice that a small proportion of newcomers to television suffer an initial period of ocular discomfort, which disappears after a week or two.

The analogy is obvious: probationer nurses not infrequently suffer from aching legs and feet until use enables them to cope adequately with the conditions of their new life.

Your contributor’s reference to moles seems to me a little inapt: changes due to evolution, taking thousands of years, are scarcely comparable with the effects, real or imagined, of occupations involving a small proportion of each day during a single lifetime. The confusion here is between heredity and behaviour, though it might be accountable if the author of the article has been thinking, say, about the occupational disease “miner’s nyctagmus.” Here again, comparison between the conditions under which coal is hewed, and television viewed, seems unprofitable.

Conditions under which intensive vision is considered detrimental are progressive myopia and measles.

My own suggestion is, therefore, that unless you are afflicted with progressive myopia or measles, go ahead and enjoy television to your heart’s content.

You may get tired eyes or a frontal headache. If you do, several courses are open to you.

(a) Check that the conditions of viewing are as good as you can make them.

(b) If the pleasure is greater than the pain, put up with it.

(c) Find out whether or not a pair of spectacles (not green ones!) would help.

(d) Switch off, and give your eyes a rest before going on again. (Sound broadcasting still has much to offer, you know.)

But—and this is the main point of my writing and upon which I would place some emphasis—you may rest assured that you are most unlikely to be doing your eyes any permanent damage whatever, and the possibility of blindness ensuing from such a cause is even more remote than that of the abolition of purchase tax.—D. G. Perkins, F.S.M.C., D.Orth. (Liverpool).

YAGI AERIALS

SIR.—In answer to “Erg’s” reply to the Rev. Davies re Yagi aerials, may I also say I agree with Mr. Davies as regards the information (re aerials) being as accurate as possible.

Readers of Practical Television have gleaned much valuable and expert opinion from writers of articles.

But I am puzzled as to why “Erg” is convinced that the close-spaced array is the better proposition.

In the Practical Television issue of January, 1951 (page 353), Mr. E. Roulton, describing various aerials and polar diagrams, says: With closely-spaced arrays, a slight variation in spacing—such as that caused by wind flexing the elements—may cause considerable changes in signal strength, and the result is a certain amount of picture flutter. As closely-spaced aerials have other disadvantages—poor gain and overall bandwidth—the best way out of the trouble seems to be a widely-spaced array.

“Erg” states that close-spaced give maximum gain.

Mr. Roulton states they give poor gain and overall bandwidth, and may cause considerable changes in signal strength. Mr. Roulton gives his opinion and figures on Yagi aerials. “Erg” differs in his opinion!

As a reader of Practical Television, I feel we are likely to be put “off the beam” on a question like this. So perhaps Messrs. Knight, West, Thomasson, etc., can help on this question?—J. R. Hardy (New Malden).

THE “TELESQUARE”

SIR.—I should like to thank you for the recently published design on the Telesquare which has enabled me to service my receiver after considerable difficulty. Perhaps your talented contributors could design a similar type of instrument which, instead of giving just lines in each direction could produce a pattern similar to the Test Card “C.” Incidentally, I have not seen such an instrument on the market, and there may be a reason why this cannot be done. If a card of that type is not possible, could not a geometrical design similar to some of the U.S.A. station signals be made which would give a large number of tests with the minimum of trouble? I believe some time ago the BBC used a new card which was known as Test Card “F.” Perhaps they will tell us what has happened to this.—H. Hooky (Esher).
RATES: 4/- per line or part thereof, average five words to line, minimum 2 lines. Box No. X. Advertisements should be prepaid and addressed to Advertisements Manager, Viewpoint, Tower House, Southampton St., Strand, London, W.C.2.

AERIALITE" fringe aerial, perfect item, £141.00. Leaded Glass, £1.00. Offers. Box No. 149, c/o PRACTICAL TELEVISION.

VIEWMASTER" Valves, exact to specification, guaranteed new and boxed, comprising 5 EF50, 1 EF27, 1 CT58, 2 KT66, 1 6F6G, set of 12 £26/2/6, with 6AM6 or EYS1 7/6 extra. Post and insurance extra. EB91, 6ALS, HVR2A, 6/9, 185, 185S, EF59, EF59S. Offers. Box No. 128.

SECONDHAND Televisions always for sale: famous makes. TOMLINSON, 70/71, 121, Brixton Rise, Forest Hill, S.E.23 (FOR 5497).

WANTED

NEW VALVES WANTED, small or large quantities 3Q4, 6EV, 524Z, ECC83, KT66, KT61, KT63, SE50-30, 5R4, 801, 8R5, 6BM8, Prompt cash. WM. CARVIS, 163, North Street, Leeds, 7.

WANTED Television Tube, 12in. screen EKE COCOA. Address: WOOD, 176A, High Rd., S.W.16.

VALVES WANTED, 6KS, 6V6, 6L7, 184, 174H, etc. Write Box No. 150, c/o PRACTICAL TELEVISION.

SITUATIONS VACANT

The engagement of persons answering these advertisements must be made through a Local Office of the Ministry of Labour or a Scheduled Employment Agency. If the applicant is under 18,46, inclusive, or a woman aged 18-25, inclusive, unless he or she, or the employment, is exempted from the operation of the Notification of Vacancies Order, 1963.

UNION OF SOUTH AFRICA—Vacancies Division of Civil Aviation: Ministry of Transport and Works. Applications are invited for the following vacant positions: (a) Aircraft Engineer, Grade IV, for South African Airways. Applicants must be in possession of the B.Sc. (electrical engineering) degree. Experience of ground radio and/or radar engineering work will be a recommendation. (b) Aircraft Engineer, Grade V, for South African Airways. Applicants must have had 3 years’ experience in radio and/or radar engineering work. In addition to salary on the scales of pay indicated, the following cost of living allowance is payable for the present, subject to review at any time. Salary: up to and including £5 a.p.a.: Married Allowance £280 p.a.; Single Allowance £200 p.a. Over £500 p.a.: Married Allowance £400 p.a.; Single Allowance £300 p.a. Successful applicant will be entitled to free transport for themselves and their dependant children from place of residence to the United Kingdon or to South Africa and return on completion of contract.

Further particulars and application forms should be obtained from the STAFF CLERK, Room 102, South Africa House, Trafalgar Square, London, W.C.2, on which completed applications should be addressed.

EDUCATIONAL

I.P.R.E. Data for constructing TV Aerial-strength Meter, 7/6, 5.000 Small Pekans, 1.00 sample copy "Practical Radio Engineer", 1.00. Membership-examination partner’s, 1.00. postal courses free and post free. SECRETARY, P.R.E. 29, Fairfield Rd., London, N.4.
YOUR PROBLEMS SOLVED

Whilst we are always pleased to assist readers with their technical difficulties, we regret that we are unable to supply diagrams or provide instructions for modifying surplus equipment. We cannot supply alternative details for constructional articles which appear in these pages. We CANNOT UNDERTAKE TO ANSWER QUERIES OVER THE TELEPHONE. The coupon from p. 584 must be attached to all Queries, and if a postal reply is required a stamped and addressed envelope must be enclosed.

A.C./D.C. TELEVISOR

I have completed the A.C./D.C. television described in your July, 1952, issue. The set works quite well, but it has two faults, and I should be glad if you could suggest remedies for these.

First, there is a jin. overlap at the top of the raster which cannot be cured by any adjustment of the frame timebase controls: alterations to the frame linearity control either distorts the picture unearfully or widens the overlap. I have tried various resistance-capacitance networks across the connection to the frame coil, but to no avail. In fact, the only thing which appears to affect the waveform is a large (1 nF) condenser across the frame transformer primary, which improves the overlapping but effectively lengthens the flyback time. I have not left this condenser in circuit for I cannot be sure whether or not its insertion seriously changes the operating conditions of the frame amplifier valve.

Secondly, the receiver always seems to require slight readjustments on each separate occasion that it is used. Does this fact point to some misalignment in the R.F. stages?—H. D. Blakelock (Hillingdon).

You should try altering the values of the following components in the A.C./D.C. television to overcome the top frame foldover: shunt R51 with a condenser in the range 0.005 to 0.1 nF; increase R33 up to 300 ohms; reduce R52 down to 1 K ohm. You should also experiment with both ends of the components of the timebase oscillator, as a pip may be appearing on the sawtooth at this point. A cathode resistance of up to 1 k ohm in the cathode of V18 may help. A condenser across the frame coil can do no damage, but if it increases the flyback excessively there is little point in using it.

CHECKING NOISE LIMITERS

In my recently completed "View Master," although I have a satisfactory picture in the main, there is the following snag.

The set suffers from ignition interference on both sound and vision, and I should like to know if there is some method to determine whether the interference circuits are working as well as they should.—W. L. Newberry (Dewsbury).

The only method of checking whether the ignition interference circuits are operating correctly is to disconnect the vision suppressor and note whether there is any difference, whilst with the sound receiver the suppressor rectifier MR1 may be short-circuited, and again note if there is a difference. If the vision suppressor is not operating correctly it can only be that either MR5 is faulty or C52 is disconnected, whereas if sound suppression is poor then it may be due to a fault in a component or to the sound receiver having too narrow a bandwidth with a restricted frequency response.

In the first place we suggest checking R36, C33 and MR1, and if these are considered satisfactory, then we suggest making the following changes:

Delete C25.
Reduce the value of R32 to 47 K ohm.
Reduce the value of R30 to 47 K ohm and use only low-capacity screen sleeving for volume-control leads.

Finally check that there is no instability in the sound receiver and connect a 47 K ohm resistor across V6 anode coil.

DIRTY BACKGROUND

I would like your help concerning my receiver which has developed a fault. I find that when I turn up the contrast control to its proper setting, I get a dirty picture, rather like the effect of rain, but the focusing is O.K.

When I remove the aerial and turn up the contrast I get a number of streaks of white pulling out on each side of the raster. I have checked the aerial, and it is O.K., also on the sound I get a rushing noise with sound, and when I disconnect the aerial it is still there.

Also, the raster is short either side on screen by about 5 in., and that is with width control set to give maximum width without extending left side of picture.—W. C. Birks (Sidcup).

The trouble here is probably due to a trace of instability in the vision receiver or a noisy valve. The rushing noise on sound may be due to the same cause, and it is obviously internal as the effect is apparent with the aerial disconnected. The common R.F. amplifier stages should therefore be suspect, and a change in the valves may effect a cure.

Again, a poorly seated valve or a noisy resistance can lead to this effect, and the circuit should be checked for such a fault. If the trouble cannot be located in this part of the circuit, check on the possibility of a slight H.T. leak through a decoupling or smoothing condenser.

The loss of width may be due to an ageing line-output valve, but a H.T. leak as above may be causing an excessive drop. Check the main rectifier.

LINE TROUBLES

I am writing for your advice re my Premier Magnetic Television London Model, with 12 in. Primar tube C12B. I recently had a breakdown of the condenser C19 on the vision receiver. I replaced this with a new one, same value, etc., but could only get a very dull watery picture covering two-thirds of the screen. The picture being then wrong way round and also upside down. I cannot understand this as I changed nothing else. I reversed the wires on the scanning coils and brought the picture correct, i.e., right way up and right way round, but still very weak as before. I have tried changing different components, i.e., resistors and condensers, etc. and I accidentally paralleled R15 anode feed 470 K on V5 of line time base. This brought the picture back almost perfect in fact, better than ever before; the resistor was was the same value as R15. I have replaced R15, but with the same results, i.e., watery, two-third size picture until I put another in parallel again. I have run the set for two or three hours at a time since and there does not seem to be any harm done, although it does not seem correct to me.

One more point. The picture is a little stretched on the left about 2 in. and slightly misty if I try to close it in by line linearity R34. The R35 resistor gets extremely hot and starts smoking, but cools down when I turn it back to minimum, can you explain this?—E. Miller (Aylesbury).

If the picture suddenly reversed in both directions,
you must have had the scanning coils off at some time and replaced them the wrong way round. Changing a condenser in the vision strip and nothing else would not produce this effect.

The trouble seems to be associated with the line oscillator stage; this is functioning incorrectly and the poor picture is probably the result of low E.H.T. If the picture is normal with the anode load of this stage reduced by a parallel component, then one of the charging condensers is probably leaky; you should check on all parts associated with this stage.

Increase the wattage rating of R35 to overcome the heating problem.

CONDENSER TYPES

In "Practical Television," dated June, 1951, you stated that the modification for the View Master, the C45b, 0.001 F, T.C.C. type should be CP56VO.

Whereas in the View Master, Model C, Holme Moss area, the number and letters are, CP55VO.

Will you please state which is the correct one?—R. Johnston (Manchester).

The correct condenser for use on C45b position is the T.C.C. Type 56VO, though if the CP55VO was ordered the correct condenser would probably be supplied.

COIL DATA

I am building the vision and sound sections of the television receiver described by S. A. Knight. Vision in "Practical Wireless," page 66, February, 1949. Sound section, page 150 "Practical Wireless," April, 1949. You advised me some time ago as to the modifications required to the coils, etc., to receive the Wenoe transmission.

Will you please tell me the name of a reliable firm who can supply me with all the coils required for the sound and vision sections.

I note that in the articles the author recommends, "Mideo Radio," Wellingborough, but I cannot find their advertisement in recent numbers of "Practical Wireless" or "Practical Television," so I wondered if they were still in existence.

Now for one other item relating to the coils, namely the I.F. coils in the sound section (page 153, "Practical Wireless," April issue). In Fig. 3, showing details of coils E3, L4, L5, L6 (I.F. coils), they are shown as having two even layers of 25 turns each, yet in the diagram showing how they are mounted there are only two leads. Is this a mistake in the description of the windings or is a length of wire folded in the middle so as to enable 25 turns to be put on doubled so that actually there would be 50 turns, this would, of course, still have only two ends or leads to the windings, I hope you can enlighten me on this point.—L. H. Miles (Taunton).

Mideo Radio (of 19, Newcomen Road, Wellingborough), can probably still supply the coils you require, and you should write to them to check on this. If they are no longer supplying these coils, you may be able to obtain them from Messrs. Bel Sound, of Marlborough Yard, Archway, N.19.

The coil formers and cores are Aludrin; jin. types and are readily available from most advertisers; the full winding instructions were given in the article in question.

The I.F. coils are wound in two layers; first 25 turns are wound on evenly, and the next layer is simply carried on in the same direction over the top of the first layer.

There are then, of course, only two ends to each complete coil, and a total of 50 turns.

REFLECTED IMAGE

I live in a bad TV district, so I made a double H anti-ghost aerial for Holme Moss (the two H’s were constructed out of one of your "view" books—"Wood, Dural Tubing," etc.). I put it on a pole in the garden, and when the dipole was right for Holme Moss, the picture broke up. I received a much better picture with the reflectors facing Holme Moss, but a lot of ghosts.

Would you be so kind to inform me if the following might work: 2ft. 4in. between dipole and reflector, and 4ft. 8in. between the two H’s, and if it needs a balancing transformer for co-axial lead-in?—G. Barron (Sheffield).

It would appear that you are receiving a strong reflected signal from some building or other structure behind your locality, and so you receive a better picture when your aerial is facing away from the transmitter. The distance between the two H systems you mention should be half-wavelength, and the two connecting cables can be parallelised at the mid-point connection. No transforming system is necessary.

A.C./D.C. TELEVISION RECEIVER

Could you please inform me if the timebase of the above set, running with the equivalent A.C. valves in the circuit, is capable of scanning the 15in. Cossor tube 85K?—This is the tube I have, and I am wondering if extra H.T. (of which I can supply up to 500 volts) or a different scanning coil is needed for full scan of the tube.—N. Walsh (Hull).

If the tube is narrow angle, the timebases in the A.C./D.C. receiver would probably scan it, but the brilliance would be inadequate. You should run the timebases at 350 volts on the H.T. line and use an E.H.T. doubler for the tube supply in order to be sure of adequate brilliance and full scan. In the circumstances, therefore, it would probably be as well to obtain the scanning components as designed for wide angle work, and sufficient scan will then be assured.

The remainder of the circuit need not be changed; that is, the vision-sound unit and the wiring up to the sync separator.

MODIFYING CHANNEL 2 "VIEW MASTER"

I have been running for some time now a "View Master" on Holme Moss, but as I am removing to an area which is covered by the Wenoe Transmitter I was wondering whether you could give me the full details of conversion to this particular station.—H. G. Peers (Manchester).

It should certainly be possible to modify your Holme Moss "View Master" for reception of Wenoe and the simplest and most economical way is to remove three turns from each tuning coil except L110 and L112 which should only have one turn removed; L109 may be deleted entirely. It will, of course, be necessary to realign the receiver and this may be done on the transmitted signal.

Published on the 23rd of each month by GEORGE NEWNES LIMITED, Tower House, Southampton Street, Strand, London, W.C.2, and printed in England by W. SPEAKUT & SONS LTD, Eemoo Street, London, W.10. Sole Agents for Australia and New Zealand: GORDON & GOTCH (A-Mat.) LTD. South Africa: CENTRAL NEWS AGENCY, LTD. Subscription rate inclusive postages for one year: Inland and Abroad Id. 9d. (Canada 1d.). Registered at the General Post Office for the Canadian Magazine Post.
MODERN RADIO
BOLTON

VIEWMASTER COMPONENTS, any item sold separately—specify items. Components: Con-
structor's Envelopes, 25/-; Resistors, 35/-;
T.C.O. condensers, 9/6-8/-, Westhoughton
14/6, 20/6, Tipton 5, 11/6, W.E. W.A. 39/-
8/6-9/6, Sound and Vision Channels
in 15/6, WH21 42/6, Fixed base power
18/6, Colver Pot. Kit. 22 2, Belling Lead 10/6.
19/6, VR102 42/-, VR102 241, WH21 12/6.
W.R.16 Loudspeaker, 47/6, WH21 25/6.
W.H.2, VR102 30/6, WH21 121, 22
W.H.10, VR117 48/6, VR117 121, 21.

TELEGRAPH COMPONENTS, Construc-
tor's Envelope, 6/-. Coils sets, 5/-. Com-
plete kits of chassis, 70/-, Sound and
Vision, 15/-, Power Chassis, 15/-, Sound
Chassis, 15/-, T.C.C. Condenser kit, 17/6;
H.M. Receiver, 21/-, Chassis Kit, 24/6.
Condenser Kit. 25/-, Allen Wide Angle
Components, 1/00, 56/-; G.C. 40/-, 40/6.
W.H.15 - 16/-, G.L19, 10/-. G.L18, 10/-.
Outfit Transformer, 8/-, smoothing
Condenser Kit. 1 35/-; RCA M.A. Auto tra-
ns 30/-. Main Magnets, Iron Tubs, Valves,
R.B. Tubs, Marks, Cabinets, etc., at lot prices.
Sets checked and aligned on completion.
Please and £. postage for all orders under
11.
Personal Shoppers welcome.

MODERN RADIO
103, DERBY ST., BOLTON, LANCs.
Phone : Bolton 1116

G.E.C. & B.T.H.

GERMANIUM CRYSTALS
B.T.H. LATEST TYPE MOULDED
in THERMO-SETTING PLASTIC
Both Wire Ends for Easy Fixing
2 1/2d.
B.T.H. SILICON CRYSTAL VALVE
3/6 each, postage 2d.
Fixing Brackets 4d. Extra.
Wiring locations for a cheap, simple
but highly quality Crystal Set included
with each Diode and Crystal Valve.

COPPER INSTRUMENT WIRE
ENAMELLED, TINNED, LITZ,
COTTON and SILK COVERED.
Large gauge available.

B.A. SCREWS, NUTS, WASHERS
soldering tags, eyestuds and rivets.
EBONITE and BAKELITE PANELS.
TUNING FOODO, PAXOLIN TYPE COIL
FORMERS and TUBES,
ALL DIAMETERS.

CRYSTAL SET
INCORPORATING THE SILICON
CRYSTAL VALVE
Adjustable Iron Coiled Core.

RECEPTION GUARANTEED
Polished wood cabinet, 15/-, post 1/-.
A REAL CRYSTAL SET, NOT A TOY.

POST RADIO SUPPLIES
33 Bourne Gardens, London, E.4

The now famous "New 1355 Conversion" enables you to construct a remarkably compact, self-contained television set. Sound, Vision, Tube, balance, speaker and power pack on one 1355 chassis—without the use of any expensive RF units.

Data for all channels. 24h. 21d. post.
We can supply 1505 receivers, in original makers cases, complete with 11 valves, 45/-, Loose stored, 30/-.

INDICATOR UNIT 12 V. containing V.C.C.116 in C.R.T. 28/6-30/6, 514G, dore of resistors, condensers, etc., 2/2 60th, the time of the additional components required for our conversion, or for scope con-
struction. The tube is superior to the V.C.C.107 when used for T.V. 65/- in general cases. We can supply lines 65/- and 54/-.

RADIO EXCHANGE CO.
14 ST. MARY'S,
BEDFORD
(Phone: 5568)

ALUMINIUM, LIGHT ALLOYS,
BRASS, COPPER, BRONZE,
IN ROD, BAR, SHEET, TUBE, STRIP,
WIRE, ANGLE, CHANNEL, TEE
3000 STANDARD STOCK SIZES.
H. ROLLET & CO., LTD.
6, CHESHAM PLACE, LONDON, S.W.1.
SLOane 3463

Branches at Liverpool, Manchester, Birmingham.
"No Quantity too Small"
This fully illustrated booklet tells you how to build your own big screen Magna-View receiver with the 16-inch ‘English Electric’ metal C.R. tube.

Chosen for its brilliance, resolution, long life and high safety factor, the ‘ENGLISH ELECTRIC’ British Made Metal C.R. Tube T901 is the one around which most home constructors’ circuits — including the Magna-View — are designed. This comprehensive booklet gives you full instructions for building the famous Magna-View 16-inch receiver, together with details of the necessary components.

Please send me POST FREE full instructions for building the Big Screen Magna-View Television receiver.

NAME
ADDRESS

If there is any difficulty in obtaining supplies write to—

THE ENGLISH ELECTRIC COMPANY LTD., TELEVISION DEPARTMENT, QUEENS HOUSE, KINGSWAY, LONDON, W.C.2