PRACTICAL TELEVISION
AND TELEVISION TIMES
A NEWNES PUBLICATION
Vol. 5 No. 56
JANUARY, 1955

MODIFYING AMPLIFIER
TYPE 178

FEATURED IN THIS ISSUE
Changing to the New Stations
Positive or Negative?
Using the Responser Unit
Making TV Coils
Fault Symptoms
Interference on Band. III
Your Problems Solved
THE COMPACT TELEVISION AERIAL BY ANTI FERENCE LTD.
Supplied complete with universal mounting and bracket in neutral brown finish. Overall length 51.4 in. Fixed to gutter slit, 4 in. long. Complete with full instructions. Only £17 15s. 10d. Our price £20. Order now.

CHOSES
VHF, 320, 254G, 60mA. Clamp construction 6s. ca.
VHF, 294, 91G, Clamping Construction 6s. ca.
VHF, 91G, 294D. Clamp Construction 8s. ca.
VHF, 294D, 91G, Clamp Construction 10s. ca.

TRANSMITTERS FOR BATTERY CHARGER
24 v. Input Tapped 0-12 v.
250 v. Input Tapped 0-12 v.
3 amp. Input 13 ca.
Each with tap on Primary for 2-5 v. Fitted light.

LOUDSPEAKER CABINETS
Resistant value 50 ohm, matched to speaker units. Metal speaker face, complete with back and rubber feet.
6in. type Measures 11in. w. x 8in. d. x 7in. h. at base. Price 15/- each.
8in. type Measures 17in. w. x 8in. d. x 7in. h. at base. Price 18/- each.

CARRYING CASE
Suitable for use as a portable recording case, etc. 16 in. w. x 12 in. h. x 2 in. d. Overall dimensions: 16 in. long, 11 in. deep, 9 in. from Mt. at 1in. rear Mt. With black leather finish. Weight 10 lb.
Price 13/6 each.

“GLEM” Travelling Iron with Asbestos Stand.
Size 9 in. w. x 5 in. d. x 2 in. h. with carrying handle, complete with lead and switch to enable it to be used on any voltage between 110 and 150 v. A.R.C. adaptor is fitted on the lead. (Colour as available: Blue, Green, etc.) 17½ ca.

SENTEROEL RECTIFIERS
5in. type E © 250. £4 10s.
6in. type F © 375. £6 18s.
8in. type A © 1,000 15/- ca.

METAL RECTIFIERS

“SOLDERING IRONS”
Sage 10 in. $11.25
Copper 12 in. $11.25

TERMS: Cash with order or C.O.D. Postage to be added to orders as follows: 9d. up to 10/-; 1/- up to 20/-; 1½ up to 40/-; 2/- up to £5. MAIL ORDER ONLY: Send 6d. in stamps for free catalogue.
When ordering please quote “Dept. P.T.V.”

ALPHA RADIO SUPPLY CO.
5/6 VINCES CHAMBERS, VICTORIA SQUARE LEEDS 1.

GUARANTEED NEW AND BOXED.

ALPHA

MOULDLED MICA

0006G £4 18s 6d
0008G £6 17s 9d
0012G £10 19s
0024G £20 6s 0d
All 4d. each.

CONDENSERS

The following is a selection from our stocks of condensers. It includes the latest types of metal film and mica condensers and all by well-known makers,
DURBAND, B.L., CAPACITORS, STRAGUS, etc.

Aluminium Can Types, Clip Fitting
5 x 8 in. 190 v. £4 10s.
6 x 8 in. 260 volts £5 10s.
7 x 8 in. 425 volts £5 10s.
10 in. 240 volts £7 10s.
14 in. 340 volts £8 10s.
16 in. 340 volts £9 10s.
18 in. 1000 volts £11 10s.
24 in. 340 volts £12 10s.
32 in. 5000 volts £15 10s.
48 in. 5000 volts £20 10s.

B.B. Range
B.B. 802 9 in. 600 v. £2 10s.
B.B. 1602 10 in. 600 v. £3 10s.
B.B. 2502 20 in. 600 v. £5 10s.
B.B. 3510 30 in. 1500 v. £10 10s.

TAG BOARDS, ETC.
2 Tags with Earth £1 15s.
4 Pcs. Tap & Earth £3 15s.
Tag & Tap 100 15s. 10d.
can be supplied to customers
Tag & Tap Board 54d. can be supplied to customers
on any length cut up to 1 yard.

GROUP TAG BOARD
Swamy Open Type Ins. long with fixing post £1 15s.

MAINS TRANSFORMERS
2-WAY MOUNTING TYPE MT
Primary 24 v. 2-13 a. £2 5s.
Secondary 230 v. 20 a. £1 15s.
0-9 v. 3 a. £1 5s.
0-3 v. 3 a. £1 10s.
3-22 v. 20 a. £2 15s.

MTS
Primary 200-250-300 v. £2 20s.
Secondary 380/240/110 v. £3 10s.
0-5 v. 3 a. £1 15s.
3-22 v. 30 a. £2 15s.

EX GOVERNMENT AND SURPLUS CONTROLS.

This popular range is suitable for all television equipment, etc. Keep your costs down when fitting the "Alpha" range.
Available 5000, 6000, 15000 double types, 2500, 4000, 10500, 2500, 4000, 10500, £1 5s., 1 inch £1 10s. 3 inch £2 10s., £2 10s. 6 inch, £3 10s.

CULVER PRE SET CONTROLS
Type CCC 112085 £2 10s.
Type CLH 112079 £2 10s.

PERSPECT IMPOSSION GUARDS
BROWN ELECTRICAL CO. INCORPORATED 15½ in. size £3 10s.
10½ in. size £4 0s.

RESPONDENTS with Less Valves
Type RSC 931 15½ each, post 2/6.
HENDRYS

(RADIO LTD.)

We have over 20,000 American and B.V.A. valves in stock.
ALL VALUES NEW AND GUARANTEED.

<table>
<thead>
<tr>
<th>Model</th>
<th>Valves</th>
<th>Price (10/-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEC736</td>
<td>2253GT</td>
<td>6/6</td>
</tr>
<tr>
<td>GEC736</td>
<td>2655GT</td>
<td>5/-</td>
</tr>
</tbody>
</table>

CATHODE RAY TUBES

(Hand New)
VCGR7 (Light cut-off) 15/-
VCGR7, guaranteed full TV Picture... 40/-
VCGR7C, guaranteed full TV Picture... 35/-
VCGR9A, guaranteed full TV Picture... 35/6-
3BP1, guaranteed full TV Picture... 30/-
Carr. & Packing on all tubes, 3/.

EMI INSTITUTES

The only Postal College which is part of a world-wide Industrial Organisation.

POST THE COUPON TODAY FOR OUR BROCHURE 'ON THE LATEST METHODS OF HOME TRAINING FOR OVER 150 CAREERS & HOBBIES'

PRIVATE AND INDIVIDUAL TUITION IN YOUR OWN HOME

City and Guilds Grouped Certificates in Telecommunications: A.M.Brit, R.E.
Examination, Radio Engineer's Licence, Radio and Television Servicing Certificates, General Radio and Television Courses, Racer, Sound Recording, etc. Also Courses in all branches of Engineering and Commerce.

The advantages of E.M.I. Training. ★ The teaching methods are planned to meet modern industrial requirements. ★ We offer training in all subjects which provide lucrative jobs or interesting hobbies. ★ A student is personally allotted a name to ensure private and individual tuition. ★ Free advice covering all aspects of training is given to students before and after enrolment.

Equipment supplied upon enrolment and remains your property.
Courses, from 15/- per month

POST THIS COUPON TODAY

NAME

ADDRESS

SUBJECT (S) OF INTEREST

(138K)
Here's an entirely new amplifier circuit which brings high quality sound reproduction within the reach of thousands more enthusiasts. It has been designed by Mullard research engineers with special regard for easy construction and low cost. Full details of the circuit are included in the 2/6 book which is obtainable from radio dealers or direct from Mullard Ltd. Valve Sales Department—2/10 post free. Get your copy now.

Mullard

MULLARD LTD., CENTURY HOUSE, SHAFTESBURY AVENUE, LONDON, W.C.2

Supreme in Service

‘MICROMITE’
DRY ELECTROLYTIC CONDENSERS

These small but high quality electrolytics have proved so popular that the range has been greatly extended. The use of high-gain etched foil electrodes keeps size and weight down, making the condensers suitable for suspension wiring. Conservatively rated; long shelf life ensured; green plastic insulating sleeving prevents short-circuits.

<table>
<thead>
<tr>
<th>Capacity in µF</th>
<th>Peak Wk. Volts</th>
<th>Surge Volts</th>
<th>Dims. in Ins.</th>
<th>Type No.</th>
<th>List Price Each</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Length</td>
<td>Diam.</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>12</td>
<td>5</td>
<td>1/2</td>
<td>1/4</td>
<td>CE87B</td>
</tr>
<tr>
<td>25</td>
<td>50</td>
<td>40</td>
<td>1/2</td>
<td>1/4</td>
<td>CE88DE</td>
</tr>
<tr>
<td>1</td>
<td>350</td>
<td>400</td>
<td>1/3</td>
<td>1/4</td>
<td>CE89L</td>
</tr>
<tr>
<td>8</td>
<td>350</td>
<td>400</td>
<td>1/3</td>
<td>1/4</td>
<td>CE99LE</td>
</tr>
<tr>
<td>16</td>
<td>350</td>
<td>400</td>
<td>2/6</td>
<td>2/6</td>
<td>CE99LE</td>
</tr>
<tr>
<td>32</td>
<td>450</td>
<td>550</td>
<td>1/2</td>
<td>2/6</td>
<td>CE99LE</td>
</tr>
<tr>
<td>4</td>
<td>450</td>
<td>550</td>
<td>1/2</td>
<td>2/6</td>
<td>CE99LE</td>
</tr>
<tr>
<td>8</td>
<td>450</td>
<td>550</td>
<td>2/6</td>
<td>2/6</td>
<td>CE99LE</td>
</tr>
<tr>
<td>16</td>
<td>450</td>
<td>550</td>
<td>2/6</td>
<td>2/6</td>
<td>CE99LE</td>
</tr>
<tr>
<td>32</td>
<td>450</td>
<td>550</td>
<td>2/6</td>
<td>2/6</td>
<td>CE99LE</td>
</tr>
</tbody>
</table>
TV RECEIVER INTERMEDIATE FREQUENCY

As a result of investigations, made by B.R.E.M.A. in consultation with the G.P.O., an announcement of a recommended intermediate frequency for television receivers of 34.65 Mc/s with a high oscillator has been made. It is the subject of a report prepared for the industry by a B.R.E.M.A. panel formed specially for the purpose.

The TV industry in general have endorsed the recommendations which have received the approval of the G.P.O. It should, however, be made clear that the choice of an intermediate frequency must rest solely with the individual receiver manufacturer, who must have the same liberty in design as he has in the selection of a particular circuit. The designer naturally bases his circuitry in accord with a number of technical and economic factors, not the least of which is that it must satisfy public need.

Too much significance should not therefore be attached to the B.R.E.M.A. recommendations. Indeed, it would be misleading to do so. Members of the public may safely continue to choose their TV receivers without reference to the I.F. used. A great deal of confusion over this matter has been caused by a G.P.O. statement on the protection of amateur wavebands, and it has led some members of the public to believe that the incidence of interference from amateurs is high.

The truth is that hundreds of thousands of television receivers in use to-day have an I.F. in the vicinity of the amateur waveband and are operating quite satisfactorily without interference from that source. It is pointed out that provided the designer's receiver is satisfactory, and amateurs keep their harmonics within the prescribed limits, there is no reason to expect such interference.

The B.R.E.M.A. report therefore means that 34.65 Mc/s is a preferred frequency towards which designers should veer in future development. Some manufacturers are making receivers to this frequency, and no doubt in the course of a few years such an I.F. will become standard.

WEAK COMMERCIAL TV?

COMMERCIAL TV is to make its debut next autumn, and it is thought in some circles that the signals will be so weak that only a small percentage of present televiewers will be able to receive the alternative programme. It is suggested that commercial TV will be restricted to an area of about 35 miles radius of the transmitter. When the Manchester station opens which will radiate programmes via the BBC Holme Moss transmitter, it is doubtful whether Blackpool, Southport or any other north-west coastal resort will be able to receive the programmes. Liverpool and Preston are in the fringe area, where reception cannot be guaranteed, and Chester will be out of range. On the other hand, most of the industrial areas of Lancashire will be able to watch I.T.V., but only half of Cheshire, a small part of Yorkshire and less than half of Derbyshire.

The suggested reason for the weakness of the signals as compared with those radiated by the BBC from the same mast is that the BBC works on Band 1, while I.T.V. has been relegated to the much less satisfactory Band 2. In its early days, at least, commercial television may not be able to employ the equivalent power of the latest BBC transmitters—100 kW.

When the three stations—Manchester, Birmingham and London—are operating at full strength, it is expected that I.T.V. programmes will reach an area of population of 30 millions, which is about 50 per cent. of the BBC's coverage.

In the meantime, political controversy still rages around this thorny subject in the House of Commons.

The Postmaster-General is satisfied about the power of I.T.A. But politics itself has extended its influence into radio, which we have always considered to be a retrograde step.—F. J. C.
A FOUR-WAY tag strip is mounted on the tube holder for terminating the scanning coils and another one-way is used for mounting the width control.

On the other side of the holder a one-way tag strip is fitted to hold R43. The periphery of the holes cut for the neck of the C.R.T. should be bound with plastic tubing, and the outer covering of a piece of coaxial cable is very suitable for this purpose.

Under no circumstances should the edge of the bar metal come into direct contact with the glass of the tube.

MR6 and CM6 are mounted directly on the base of the transformer.

MR1 and MR2 are mounted at right angles to each other and soldered directly between the line transformer and CM8. If mounted in this manner they are well protected and accidental contact during the preliminary running-in period is thereby avoided.

Soldered connections in the E.H.T. stages should be made very carefully and the joints finished with well-rounded blobs of solder. No sharp points should exist as these will set up corona discharges.

VRM1 with CM7 and the width control are mounted on the tube rear support.

The wiring can now be completed and then carefully checked before proceeding to Stage VI.

STAGE VI (M)

The final stage has now been attained and it is very short. The mains transformer and smoothing choke should be mounted in their positions and the rectifier holder wired in. R43 can be fitted in position (this belongs, of course, to the original power pack).

Separate tubular condensers have been used for smoothing so they can be conveniently mounted beneath the chassis.

The transformer input is connected in parallel with the vision mains transformer input and the mains supply taken via the filter to the switch.

After this work is completed the scanning coils can be wired in to the tag strip on the tube support using flexible leads.

The tube can be wired using a valveholder to suit type of tube.

C.R.T. Heater

C.R.T.s fall into three main classes so far as the heaters are concerned: they are 2 volt, 4 volt and 6.3 volt. Some tubes are designed to be used on A.C./D.C. receivers and have larger voltage ratings, but we are not concerned with them here.

If a 4-volt tube is used the supply can be obtained from the transformer T1 using the spare 4-volt winding. This winding can also supply the sound output stage where fitted.

If the tube has a cathode-heater short a separate transformer is not required.

When a 6.3-volt tube is used then the heater supply can be taken from the normal 6.3-volt line of the time-base amplifier from T2 mains transformer. If the tube has a cathode-heater short then a separate transformer must be used and this can be a heater-to-heater type or a mains type.

A 2-volt tube requires a separate transformer either of the heater-to-heater (type, 6.3 volt to 2 volt) or a direct mains type. It does not matter if a cathode-heater short exists in this case.

If a heater transformer is required it can be mounted on the rear support of the tube above the smoothing choke.

Note that V13 is wired in the heater chain from...
transformer T2 and not in the original heater line feeding V11, etc.

After wiring check the circuit carefully and ensure that no contacts exist between H.T. lines and the heaters.

TESTING

And now comes the exciting point—we are ready to connect the power!

Do not connect the aerial at this point nor put in the C.R.T. Set the chassis on its side so that access can be obtained to components underneath.

Insert all the valves except V16.

Switch on the mains.

Observe the components while warming up, take place and if any overheating is evident switch off and investigate the cause.

Assuming that all is in order and the valve heaters light up, insert V16 and again watch for possible overheating.

Within a very short period the whistle from the line circuit should be heard and it should be possible to draw off a spark from the E.H.T. with the blade of a well-insulated screwdriver.

Note that the E.H.T. is of the "safe" type and while accidental contact may produce a nasty shock it is not in any way dangerous. When probing into E.H.T. circuit the wise engineer always keeps one hand in his pocket to ensure he does not get a shock across two hands, and thereby through his body.

After verifying that all is in order then switch off, mount the chassis the correct way and adjust with the knurled screws for optimum focus and then adjust with the knurled screws for fine focusing. The lever for the final focusing can be set in mid-position and final adjustments done on this lever.

Rotate the scanning coils until the raster is square on the screen. Reduce the brilliance until the raster is faintly seen and then prepare for the vision signal.

StAGE VI (M)

1 mains transformer 350-0-350 v. 150 mA 6.3 v.
2 3-4 A, 5 v. 3 A.
1 smoothing choke 3 Henry 150 mA.
1 earth terminal
1 twin suppressor choke. (Radiospares)
1 I.O., valveholder
1 5U4G valve
1 16 µF 450 v., wkg. tubular
2 8 µF 450 v., tubular
2.01 16 µF 450 v., wkg.
1 heater transformer if required. (See text.)

Alignment of Vision

Connect the aerial and also connect a pair of 'phones or a loudspeaker between the grid of the C.R.T. and chassis. Listen for the vision signal which sounds like a rough mains hum and tune it in to its strongest position on the coils.

The contrast control should be set at first so that it has minimum resistance (maximum contrast) and then reduced as the strength of the signal increases.

Adjust the rejector coil so as to reduce the sound signal appearing on the vision as much as possible.

Disconnect the 'phones and turn up the contrast so that a pattern appears on the screen. Adjust the frame hold control carefully to resolve the pattern into a picture and adjust the frame hold control to prevent the picture rolling.

Width height and linearity controls can then be set and, finally, all vision coils should be adjusted to give a picture of the maximum quality.

The larger tube will be capable of resolving greater detail than a small VCR97 and advantage should be taken of this to improve the quality by staggering the vision stages.

If the signal strength is weaker than expected then fit the pre-amp stage so as to enable the coils to be staggered.

The sound section is simple to align as all that is necessary is to tune the coils for maximum volume. The output should be fed into a broadcast receiver as given in the data for the original model or a separate sound stage can be fitted.

In areas of weaker signal strength some constructors have had difficulty with the sound output stage. In order to increase its sensitivity the following modifications can be made:

Remove RS5 and place it in RS2 position. Transfer the volume control to RS5 position taking the slider to pin 5 of the pentode and the top end to the free end of RS3. The free end of C15 should be taken to pin 6 of the EBC33 and the free end of RS1 to chassis.

The output should be fed into a broadcast receiver as given in the data for the original model or a separate sound stage can be fitted.

To LT common

V13—anode 28 v., cathode 0.05 v.
V14—screen 42 v., cathode 7.2 v.
V15—anode 40 v., screen 55 v., cathode 7.5 v.

VOLTAGE READINGS

<table>
<thead>
<tr>
<th>Component</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>V13</td>
<td>anode 28 v., cathode 0.05 v.</td>
</tr>
<tr>
<td>V14</td>
<td>screen 42 v., cathode 7.2 v.</td>
</tr>
<tr>
<td>V15</td>
<td>anode 40 v., screen 55 v., cathode 7.5 v.</td>
</tr>
</tbody>
</table>

Fig. 13. Power supply wiring.
THE polarity of the E.H.T. supply must be decided upon before any piece of equipment using a cathode-ray tube is built. Why bother to use a negative supply at all? As a matter of fact it is possible to use positive E.H.T. almost every time, but in some cases it is much more convenient to use a negative supply. Consideration of the advantages and disadvantages of the two types of supply will make it easier to decide which polarity will be best for any particular circuit.

First, let us look at the negative supply. There are two points regarding negative supplies which might well be clarified. Some people may get the impression that because negative supplies are so called they are less dangerous than the positive variety. That is not true. A shock from a negative supply can be just as painful as one from a positive supply. It is the voltage that does the damage, and it makes no difference whether it is positive or negative with respect to earth.

Another point that some people cannot, at first, understand, is how a cathode-ray tube can work when its anode is earthed. The explanation is that the operating voltages on the tube are always referred to the cathode of the tube. If the anode voltage is stated as 2,000 volts then the anode must be made 2,000 volts positive to the cathode. If the anode is at earth then the cathode will have to be 2,000 volts negative to earth. Under those conditions the tube will work normally.

Negative

Negative E.H.T. is most useful in those circuits where signals are applied to the deflector plates of an electrostatic cathode-ray tube. These deflector plates are normally held at or near the anode voltage, which in this case is earth potential. The coupling condensers to the plates need only be of low working voltage. This point becomes increasingly important as the frequency of the signals is reduced and the value of the coupling capacity is increased. It is much easier to obtain a large capacity at low working voltages than one which will withstand several thousand volts.

In some applications, such as low speed oscilloscopes where the sweep may last for several seconds, it is often necessary to use direct coupling to the plates. This only becomes practicable if the plates are at or near earth. Direct coupling is often used when measurements of voltage have to be made on circuits where a normal voltmeter would give false readings due to its shunting effect.

A Disadvantage

One disadvantage of using a negative supply is that it is necessary to use an isolated supply for the tube heater. The heater-to-cathode insulation is usually only rated at about 100 volts. Because of this one side of the heater is generally tied to the cathode through a high value resistor. The heater transformer supplying the tube must, therefore, be capable of withstanding the full value of the E.H.T. voltage. Such transformers tend to be large and expensive, their cost rising rapidly as the E.H.T. voltage is increased.

Since the tube grid is connected to the E.H.T. line at the negative end there is quite a high resistance between it and earth. This allows a certain amount of stray signal to be picked up on the grid. This stray signal shows up as variations in the brilliance of the trace. If another signal is being applied to the grid such pick-up can be very troublesome.

It should be remembered when designing the chassis that the focus and brilliance controls are at or near the E.H.T. potential. Therefore, it becomes necessary to mount them on insulated brackets and to insulate the control spindles from the earthed chassis.

When signals are applied to the tube grid it is sometimes necessary to make use of a D.C. restoring diode. If a valve is used its heater supply must be isolated from earth in the same way as the tube heater. In most cases it is possible to run the two heaters from the same winding by choosing a diode having the same heater voltage as the tube.

Positive

Positive E.H.T. is generally used in those circuits where it is an advantage or a necessity that the cathode of the tube should be at or near earth potential. This arrangement is invariably used with tubes of the magnetically deflected type such as those used in television receivers. These tubes have only two electrodes to which signals can be applied. These are the grid and cathode. It becomes much easier to apply the signals to these electrodes if they are near earth than if they are at some high voltage.

Another advantage of an earthy cathode is that the heater supply can also be earthed without fear of a breakdown between the heater and cathode. This removes the need for a special isolating transformer since the tube heater can be operated from the common heater line of the set.

In television work the video signals are often directly coupled from the anode of the video amplifier to the tube cathode. By doing this the D.C. component of the signal is retained and no D.C. restoration is necessary. In order to do this the cathode must be made about the same voltage as the anode of the video valve. This can only be done if the E.H.T. supply is made positive.

Summarising we see that positive E.H.T. is generally used for television receivers, especially those where a magnetic tube is used. Negative E.H.T. is generally used in oscilloscopes since it makes the coupling of signals to the deflector plates relatively easy. For television receivers using electrostatic tubes either polarity can be used, the choice depending on the components to hand or personal preference.

--

"PRACTICAL TELEVISION CIRCUITS"

288 pages, 156 illustrations
15/- net or 15/6 by post from:
GEO. NEWNES, LTD.,
Tower House, Southampton Street, Strand, W.C.2.
THE 1803 15in. console was built soon after the war and contained an essentially pre-war chassis with the addition of the Z66 and other valves. The chassis was also used in the 1804 table model with a 10in. tube and re-distributed controls. The main cause of trouble in these sets is undoubtedly the frequent failure of the Z66 valves, but once a good set has been installed, quite long periods of trouble-free operation can confidently be expected. These valve troubles are usually quite obvious and need not be considered further.

If the owner of one of these sets has not had a new tube since the original, a word about this could be of value, as the original type of tube is no longer supplied, and has not been for a considerable time. The replacement tube for the 1803 is a TA15J. Now the J is rather important as it concerns the shape of the bulb of the tube. In addition, a small modification is necessary, and the J type tube carton should contain the small kit of parts and instructions. These items are necessary owing to the altered position of the focus coil assembly, the tube base, springs, etc.

The 1804 replacement is the TA10 and the fact that both this and the TA15 are tetrode tubes must be remembered, and the extra supply taken from the focus coil tag to the first anode of the new tube base. It may be thought that the E.H.T. of the set which is under 4 kV. would not be sufficient for the proper working of aluminised replacement tubes which normally require 7 kV. However, the picture obtainable with this low voltage is as good as that with the original tube and unless extensive re-designing of the line timebase is carried out no attempt at boosting the E.H.T. should be made.

E.H.T. Smoothing

One fault that regularly occurs with these sets (and any others that employ transformer E.H.T. circuits) is the appearance of a band of bright illumination along the bottom of the raster. This may come and go at irregular intervals, or may appear and remain. This is due to the E.H.T. smoothing condensers becoming defective and the following suggestion should be considered before purchasing new ones. The condensers fitted are two .03\mu F 4 kV. mounted on the top of the chassis on the left side and are both fixed to a common plate. It is the writer's opinion that more reliable operation of this circuit is achieved by the use of a single .1 \mu F condenser of 5-7 kV. rating. This should be secured by a suitable clip in place of the unit, leaving a space for the E.H.T. cable to be passed through the chassis. This cable may be connected to the top of the E.H.T. bleeder resistor tube leaving the smoothing resistors in the circuit, and incidentally whilst this operation is being carried out the bleeder resistors should be tested to ensure that they are still fulfilling their purpose of discharging the condenser when the set is switched off. Never touch the E.H.T. components until this condenser(s) has been discharged to chassis with a screwdriver, the handle of which is well insulated. This is necessary as the bleeder network often goes OC leaving the condenser
charged and lethal. Defective condensers in this position may also show themselves by “snowstorm” effects on the screen most often with a crackling on the sound.

Other effects although less usual include that of the raster taking on a wedge-shaped appearance. This of course in more up-to-date sets is usually an indication of leaky scan coils. A “snowstorm” effect may also be caused by a resistor in the bleeder chain breaking down. All these effects of faulty E.H.T. components may in some circumstances be affected by the operation of the contrast and brightness controls.

1805, 2805, 1806, 2806, Etc.

These receivers employ a rather more up-to-date circuit using Z77 vision and sound amplifiers with the exception of the video which is a Z66 and the audio which has an L63 and KT61 sound output. The detectors and limiters are D77 double diodes and the sync. sep. line oscillator and frame oscillator employ Z66 valves which with the video amplifier make a total of four valves of this type used in this receiver.

The E.H.T. circuit is similar in design to the previous 1803 with the exception of the higher voltage, 7 kV, to supply the TA10 in the 1805 and TA15 in the 1806.

The same E.H.T. faults may be expected and the modification of fitting a single condenser in place of the two .03 μF can be adopted if trouble comes, remembering that the .1μF fitted must be rated at 7 kV, or over.

Fig. 1.—E.H.T. circuit of the 1805 model which may be used as a guide for the 1803.

The diagram of the circuit shows that one end of the E.H.T. winding is connected to the high side of one H.T. secondary winding on the mains transformer. This circuit may be used in following the design of the 1803 with the exception of the type of E.H.T. rectifier fitted and the voltage ratings of the condensers. Trouble with the line or frame timebases can nearly always be traced to a defective Z66 valve and sometimes a valve in this position can be changed for the central sync. separator, although it points to a defective U33 E.H.T. rectifier, although failing at high brightness level, or contrast, may indicate a failing tube.

As the latest Z66 valves have plastic bases the necessity of insulating the metal is obviated when replacing these valves in the timebase of the 1805-6.

Fig. 2.—Plan view of lower chassis of the 1805 model, showing the position of components mentioned in the text.

![Diagram](image-url)
If it is intended to build a separate timebase chassis, L5 and R59 can be fitted on the outside of the receiver chassis. R40, R58, C43, C63 were used in the author's case for a 12in. electromagnetic tube. R58 and C63 feed the sync-separator and can therefore be on the timebase chassis. C43 and R40 were in the lead to the cathode of the C.R.T. and were fitted across the C.R.T. base.

Sound Rejectors

The rejection provided by the sound take-off coil proved sufficient, but if further rejection is found necessary the most suitable place to fit rejectors is in the cathode circuits of V5 and V6.

Contrast Control

It will be found that the cathode circuits of the I.F. valves have 100 ohm bias resistors across the valve bases. Those on the sound channel are already earthed. Those on the vision channel, however, are "commoned" and should at this stage be "floating," having been left so when the "gain" socket was removed. The "commoned" ends of these three bias resistors should be wired to the conventional type of contrast control. As this gives control of three stages, VR1 should be of low value (say 500 ohms). Alternatively, the first stage only can be controlled, the cathode resistors of the other two stages being earthed. In this case VR1 should be 2 k. It might be found that slight instability occurs at the maximum setting of the contrast control. This can be overcome by increasing slightly one of the fixed bias resistors.

The Sound Channel

A sound input coil has to be fitted. A small Haynes type coil can fit neatly in close proximity to V7. A hole should be drilled in the top of the can to allow exit for the wire to the top cap of V7. Details of the coil (L6) are given in the separate table. Tuning of L6 is by the iron-dust slug. In setting up the sound channel it may be necessary to make C48 variable. The frequency of the sound channel is to be approximately 10 Mc/s. In theory it is necessary to shunt the other two I.F. coils by extra capacitance in order to lower the frequency to 3 1/2 Mc/s less than the vision I.F. In practice, however, it was found that one coil could be adjusted on the iron core without the need for a capacitor. On the other coil a 20 pF capacitor was necessary. Sufficient gain was obtained by removing the tuned circuit damping resistors. Further gain can be obtained, if required, by removing one of the two 10 k load resistors in each can.

To utilise valves which were to hand, it was decided to use a DH63 and a 6V6 for the audio stages. This meant changing the valve bases of V10 and V11 from MO to 10 type. The simplest procedure here is to recover all wiring and completely rewire. If economy is of importance, however, the existing valve bases can be left in place and the spare P61 and SP61 can be used in these stages.

Owing to the physical layout of the components it was found that the most suitable circuit for the audio and output stages was one similar to that used in the Lynx receiver. This allows the DH63 diode load and filter to be fitted inside the last I.F. can, and a short lead out of the top of this can connects to the top cap grid of the DH63. The existing EA50 was used as a noise limiter and its position in the circuit is following the DH63.

R.F. Unit for Band 1

This was built up on a small aluminium sub-chassis, 3in. wide and equal in length to the depth...
Fig. 6 — The completed, modified, video and sound receivers. The input marked "To Band Switch" is connected to the switch through condenser C63. A complete list of values was given in last month's issue.
of the population of the United Kingdom. It is part of the BBC’s 18-station medium-power stations to be equipped with permanent transmitters. It is being built on a 26-acre site 470 ft. above sea level and 3½ miles south-west of Newport near the Calbourne road, Rowbridge, is the first of the five medium-power stations to be equipped with permanent transmitters. It is part of the BBC’s 18-station plan to provide a television service for 97 per cent. of the population of the United Kingdom. Initially, Rowbridge will have a temporary mast and aerial, and its service area will be somewhat less than that expected when the permanent mast and aerial system are brought into use next autumn. Nevertheless, it is expected to provide a reliable service to approximately two million people.

Vision Transmitter

The main vision transmitter, manufactured by Marconi’s Wireless Telegraph Co. Ltd., is of the low-level modulated type with a peak white output of 5 kW. Modulation is carried out at the 500 watt level and the signals are then amplified by two class “B” wide-band linear R.F. amplifiers each using a pair of forced-air-cooled triodes, type BR191, made by the English Electric Company. The appropriate shaping of the vestigial side-band signals radiated by the vision transmitter is carried out entirely by its own tuned circuits, and not by a separate vestigial side-band filter. The valve filaments are A.C. heated, with the exception of those in the modulated amplifier and the linear amplifiers, which derive their supply from metal rectifiers. The transmitter H.T. supplies are obtained from hot-cathode mercury-vapour rectifiers, which provide a maximum of 3,000 volts for the anodes of the linear class “B” amplifier stages.

Sound Transmitter

The sound transmitter, also manufactured by Marconi’s Wireless Telegraph Co. Ltd., is of the conventional class “B” modulated type and is rated at 2 kW output. The output power will be adjusted to 1.25 kW to maintain the standard ratio of 4:1 in terms of vision to sound power. All valve filaments are A.C. heated. As in the case of the vision transmitter, the crystal-controlled drive and the power-conversion equipment are built as an integral part of the transmitter.

Both transmitters are contained in similar sheet steel cubicles mounted side by side, and so present a single continuous front in the transmitter hall.

The air blast cooling equipment and combining filter are mounted behind the transmitter cubicles which are built into a sound-proof partition wall so as to isolate the noise of the air blowers from the control desk situated in front of the transmitters.

The new Rowbridge transmitting station operates on Channel 3 (Vision 56.75 Mc/s, Sound 53.25 Mc/s).

Built on a 26-acre site 470 ft. above sea level and 3½ miles south-west of Newport near the Calbourne road, Rowridge, is the first of the five medium-power stations to be equipped with permanent transmitters. It is part of the BBC’s 18-station plan to provide a television service for 97 per cent. of the population of the United Kingdom. Initially, Rowbridge will have a temporary mast and aerial, and its service area will be somewhat less than that expected when the permanent mast and aerial system are brought into use next autumn. Nevertheless, it is expected to provide a reliable service to approximately two million people.

Vision Transmitter

The main vision transmitter, manufactured by Marconi’s Wireless Telegraph Co. Ltd., is of the low-level modulated type with a peak white output of 5 kW. Modulation is carried out at the 500 watt level and the signals are then amplified by two class “B” wide-band linear R.F. amplifiers each using a pair of forced-air-cooled triodes, type BR191, made by the English Electric Company. The appropriate shaping of the vestigial side-band signals radiated by the vision transmitter is carried out entirely by its own tuned circuits, and not by a separate vestigial side-band filter. The valve filaments are A.C. heated, with the exception of those in the modulated amplifier and the linear amplifiers, which derive their supply from metal rectifiers. The transmitter H.T. supplies are obtained from hot-cathode mercury-vapour rectifiers, which provide a maximum of 3,000 volts for the anodes of the linear class “B” amplifier stages.

Sound Transmitter

The sound transmitter, also manufactured by Marconi’s Wireless Telegraph Co. Ltd., is of the conventional class “B” modulated type and is rated at 2 kW output. The output power will be adjusted to 1.25 kW to maintain the standard ratio of 4:1 in terms of vision to sound power. All valve filaments are A.C. heated. As in the case of the vision transmitter, the crystal-controlled drive and the power-conversion equipment are built as an integral part of the transmitter.

Both transmitters are contained in similar sheet steel cubicles mounted side by side, and so present a single continuous front in the transmitter hall.

The air blast cooling equipment and combining filter are mounted behind the transmitter cubicles which are built into a sound-proof partition wall so as to isolate the noise of the air blowers from the control desk situated in front of the transmitters.
Instability

To revert back to the rectified oscillation potential across the detector load resistor; this potential is, of course, directly coupled to the control grid of the video amplifier valve, which is thus driven heavily positive. As a result a large anode current flows in the valve and associated video amplifier load resistor, causing the video amplifier anode potential to fall considerably. This reduction in potential is reflected directly to the cathode of the picture-tube (assuming cathode modulation) and looks to the tube very much like a peak-white picture signal.

As a consequence the tube lights up very brightly as the potential at its grid is probably slightly more positive than the potential at its cathode, meaning that, in certain cases, screen illumination may be in evidence even at minimum setting on the brightness control.

Apart from the more obvious symptom of excessive tube brightness and lack of picture, internal examination will often reveal the video amplifier valve anode load resistor to be operating very hot; this, of course, is due to the large anode current.

One stage oscillating only slightly—in the vision channel, for instance—may not wipe the picture out completely, but frequently causes the display of pattern interference that cannot be attributed to any external source, and that can be made to alter in form by adjusting the contrast control. Nevertheless, even slight instability will register at the vision detector to give rise to a mean D.C. potential due to the oscillation, and this, as we have already seen, arrives at the control grid of the video amplifier valve as a positive potential. Although of insufficient magnitude to over-drive the picture-tube; this oscillation potential is almost bound to outbalance the grid bias on the video amplifier valve with a consequent loss in picture contrast ratio.

Sometimes slight oscillation occurs in the vision channel at a frequency removed from the vision carrier frequency or sound I.F. so that heterodyne patterns, normally associated with slight instability, are not displayed.

In a case like this what generally happens is that the operating point of the video amplifier valve is shifted slightly—due to the bias neutralising effect of the oscillation potential—and the picture tends to resolve somewhat “flat”—as though the vision noise limiter is adjusted to “clip” on peak-whites.

We would point out that this symptom can readily deceive unless one happens to be well versed in the characteristics of the receiver concerned, for it might well be thought that the effect could be caused by more or less anything but instability!
A Test

A quick test to prove whether the vision R.F./I.F. channel is oscillating is by measuring the potential across the vision detector load resistor, or at the control grid of the video amplifier valve—relative to chassis—with a high resistance voltmeter. If there is any tendency for the meter needle to swing in a positive direction, the control grid of the final vision I.F. amplifier valve should be short-circuited to chassis whilst observing the voltmeter reading (see Fig. 80). If, by suppressing oscillation by this means, this result in the needle swinging back to zero, then, almost certainly instability is occurring in the vision channel.

To prevent any spurious needle deflection due to picture signal, and to avoid any alteration in receiver characteristics that may occur by removing the aerial, it is often desirable to perform this test when the BBC is off the air.

The Ferguson 991T receivers would appear prone to this trouble, and in a large number of cases it is due to a defective EF80 valve operating in the vision I.F. channel. On several occasions, however, a similar symptom has been caused by deterioration in a decoupling capacitor associated with the vision I.F. channel. Also, in this particular receiver, the crystal diode employed as vision detector (located within the final I.F. can) sometimes develops a fault that is conducive to the symptom of a "flat" picture without severely detracting from the overall definition—which means, therefore, that extra special care may be demanded in establishing the actual cause, since the two symptoms are more or less of the same character.

Some receivers are much more prone to instability than others. The old Invicta T101 series, for instance, often exhibit the effect when the contrast control is advanced beyond a certain critical point. To maintain good stability on this receiver it is essential to ensure that the general alignment is kept up to standard, and this applies particularly as the R.F. valves age, and after valve replacement.

It is also most important to make certain that the copper screens underneath the chassis are making good electrical contact to the chassis, and that all the screws are used to secure the screens in position—an elusive bout of instability on one of these receivers was eventually traced to one loose screen securing screw!

There are times when both the sound and vision channels go unstable. This generally occurs when the stages common to both services turn into an oscillator. In such cases the set might well remain perfectly stable at a low contrast control setting, or if the sensitivity control is somewhat retarded. This fault would appear to be more in evidence in areas of low signal strength where a high or maximum contrast/sensitivity setting is demanded. Apart from the instability effect on a picture, as the gain of the set is advanced a "plop" is heard from the loudspeaker and the sound signal disappears completely. Under these conditions the contrast and/or sensitivity control performs a function analogous to the old-time reaction control; indeed, the same effect results in both cases.

Receivers which have a tendency to go unstable easily usually demand that the aerial feeder and aerial system possesses an excellent impedance match to the aerial terminals, particularly where high gain working is necessary. In fringe areas, where a receiver might be working "flat-out," a gradual tendency towards instability is sometimes provoked by deterioration in the aerial and feeder systems. A fault of this nature is immediately revealed when the set stability holds on a different aerial system.

As previously intimated, an alteration in the characteristics of a valve—or valves—can often be
Special care must be taken to avoid misplacing circuit wiring and components appertaining to the R.F./I.F. stages during the process of repairs and general adjustments. Such inadvertent circuit disturbances might well be sufficient to induce positive feedback in the high frequency section of a receiver that tends to be critical from the stability aspect.

Often an experimenter clears a certain fault in a television receiver, only to find on test that another fault has somehow or other been introduced unwittingly. After consulting our "Query Service" in despair, the experimenter eventually establishes that the second fault—which is often instability or low sensitivity—was instigated during the course of the original repair, when, for instance, it was necessary to disturb the R.F./I.F. wiring to permit easy replacement of a defective part—all would have been well if the experimenter had made a special point of rearranging the wiring.

Check Dubious Connections

After a receiver has been operating for several years without attention the symptom of intermittent instability may develop. This can often be stopped and started by gently tapping the cabinet. Removing the back of the cabinet and wriggling each valve in turn in its holder will nearly always prove the trouble caused by poor connections between the valve pins and the valve holder sockets and, in some cases, aggravated also by poorly fitting valve screening cans.

Further Notes on the Diamond Aerial

The "Diamond Television Aerial" in November's issue of PRACTICAL TELEVISION, has drawn a deal of correspondence. One of the most common queries was the correct length to make the dipole and reflector.

The lengths and angles were worked out to give, as near as possible, an impedance of 70 ohms at a frequency between vision and sound, so that the standard coaxial feeder can be connected straight to the aerial. If the lengths are kept the same and the angle reduced from 45 degrees to 40 degrees, to the vertical, the aerial impedance is also reduced to about 60 ohms. If the angle is further reduced to 35 degrees, the impedance goes down to between 40 and 50 ohms. The length of the spreader being reduced accordingly, of course. This is as far as the angle can be altered without reducing the efficiency of the aerial considerably.

The average "H" aerial has an impedance of about 50 ohms and the 70-ohm feeder is normally connected directly to the aerial; so the non-technical reader will see some mismatch is acceptable.

The correct lengths to cut the "diamond" for different channels are as follows:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Each Half of Dipole</th>
<th>Reflector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel 1</td>
<td>5ft. 5in.</td>
<td>11ft. 10in</td>
</tr>
<tr>
<td>Channel 2</td>
<td>4ft. 6in.</td>
<td>9ft. 6in.</td>
</tr>
<tr>
<td>Channel 3</td>
<td>4ft. 2in.</td>
<td>8ft. 10in.</td>
</tr>
<tr>
<td>Channel 4</td>
<td>3ft. 9in.</td>
<td>8ft.</td>
</tr>
<tr>
<td>Channel 5</td>
<td>3ft. 6in.</td>
<td>7ft. 5in.</td>
</tr>
</tbody>
</table>

A Spalding reader who has made this self-supporting "Diamond" aerial, claims very satisfactory results from it.—R. PINKNEY (Fareham).
HINTS ON PRACTICAL METHODS OF WINDING COILS FOR ALL TYPES OF TV RECEIVERS

By W. J. Delaney

Making TV Coils

Most home-made receivers call for the construction of the necessary coils, and constructors appear to find difficulty in either interpreting the instructions or in actually carrying out the constructional work. Many experimenters, too, fail to make full use of the equipment which they have available owing to the difficulty of obtaining suitable coils. A number of samples of coils and home-made receivers which we have seen have given poor results, simply because the coils have been badly made. There is nothing really difficult in making these components, and, in fact, they can be made by the beginner to be every bit as efficient as those which are produced by commercial firms, provided certain details are borne in mind.

Firstly, let us consider the materials which may be used. Popular with the cheaper and simpler types of receiver are the Aladdin small formers shown in the group on page 352. These merely need two fixing screws and a clearance hole for the core. They will, however, only accommodate a single core and therefore the range of coils and control is restricted. Ex-government coil formers of the clear polystyrene type, with a single core attached to an adjusting screw may also be used, but suffer from the single core restriction. Undoubtedly the most satisfactory type of former is the large component seen in the group, which is available with screening can. This type of coil is available in two lengths, but it is a fairly simple matter to cut down the long former if desired—although even if a single short coil is wound, there is no need to reduce the size of the former. The screening can is provided with two lugs, which, if bent inwards, enable the can to be attached to the chassis by the same screws which hold the coil former in position. The drawback to this is that if the can is to be removed in order to make some change in the contents, the entire coil will be loosened. The lugs may therefore be bent outwards and then the former may be left rigidly held whilst changes are made in the windings or other parts. A further, and most important advantage of these coil formers, is that the windings may be rigidly and simply attached by means of the side wires, and coupling condensers, parallel resistors, etc., may be placed inside the can, enabling the much more stable receiver to be constructed. A typical coil of this type is seen in the illustration. Modern receiver designs often call for coupled coils giving a type of band-pass characteristic with sharply peaked resonance points, but covering a fairly wide frequency band—say a full 3 Mc/s. This often means that there must be a primary and a secondary, one or both of which must be shunted by a resistor to obtain the necessary flattening of the response, plus a coupling coil. Constant coupling may be required, irrespective of the tuning of the two coils, and with the type of long former mentioned, the primary and secondary may be wound at the extreme ends, separate cores used for peaking, and the coupling winding placed at some point between them where the core will not provide any additional modification to the coupling. The resistors are mounted on the side wires, together with a coupling condenser, if needed, and the whole totally screened.

Windings

So far as the actual windings are concerned, the term "spaced" windings appears to offer some difficulties, especially to the newcomer. As a general rule it means that the turns of wire are spaced from each other by a space equivalent to the thickness of the actual wire used for the coil. The simplest way of obtaining the desired effect is to take a former of the required size and very roughly wind round the number of turns called for, hold the end of the wire and then let it slip off. In this way you will have a rough idea of the length of wire which will be needed. Cut two such lengths. Lay these side by side and wind both on together, attaching the ends as required—either with wax, cement or by soldering to the side wires. At the end, or when the cement is dry, remove one of these windings, and this will leave a neatly spaced coil as called for. As an alternative, the large formers shown are provided with an internal thread for the cores which is exactly OBA. If, therefore, a length of OBA rod is mounted on a support and one of these coil formers is threaded on to the rod, a length of wire may be anchored into position, and by holding this with one hand in a fixed position, and rotating the coil former with the other, the wire will be laid on with a spacing equivalent to the thread.

Details of Construction of Video Peaking Chokes. The cheeks are made from card or paxolin, and mounted on a resistor.
The Wire

So far as concerns the actual wire to use, in spite of the fact that the television transmissions are on the very high frequencies, it is not necessary to use heavy gauge wire. At signal frequencies it will be found that with the number of turns which are required there will be little measurable difference between 18 s.w.g. and 30. An aerial coupling winding, for instance, may be made of wire as heavy as the internal lead of the coaxial feeder or the twin feeder, there being no object in making it thicker. All other windings may be carried out in about 30 or 32 s.w.g. The covering should be single or doubled-silk (the latter preferably as there will be less risk of shorted turns in a close-wound component), and this will be found to take the necessary fixing dope most readily. This should be polystyrene cement which is readily available under various proprietary names. Do not use cellulose paint except, perhaps, for a temporary type of coil. Cellulose, too, should not be used for locking the cores, as it will probably cause the core to disintegrate or lock it so securely that it cannot be removed. The characteristics of the sound-trap coil may enable a thick tinned bare copper wire to be employed, but this depends upon the design.

The direction in which the windings are laid on (clockwise or anti-clockwise) is quite immaterial, provided that where two cores are used on a single former, they are both wound in the same direction—unless the designer has stated that they are to be in opposition. The question of whether or not the winding should be spaced-wound, may be settled if a particular design is being followed. The core proceeds into the coil as it is turned, its rate of forward movement being dependent upon the thread which is provided inside the coil former. If the coil is close wound, one turn of the core will result in the core moving through three or four turns of the coil, and consequently this will have a much greater effect than in a space-wound coil, where the same movement of the core will only result in the core moving through a single turn. The final tuning point with both types of coil will be more or less identical (depending upon the place in the circuit and the associated stray capacities, etc.).

An iron core gives a similar effect to that of adding turns to the coil (increasing the inductance), whilst a core of brass acts in the same manner as reducing the number of turns. If, therefore, it is found that a given coil does not peak when an iron core is fully withdrawn, it indicates that there are too many turns on the coil, and instead of removing one or two, a brass core may be inserted.

Video Chokes

Special chokes for peaking in the video stage, may be made in either of two ways. Small lengths of thin paxolin or similar formers may be employed, with the coils wound in the same manner as standard tuning coils, or they may be pile-wound on a small former which may conveniently be a \(\frac{1}{2} \) watt Erie ceramic type resistor. In each case about 200 turns will be required, and 40 s.w.g. wire may be used here. Two discs or thick card as shown on page 351 may be cut and slipped on to the resistor, which should have a value of 1 MΩ, and the 200 turns wound haphazardly inside the cheeks. This will give a result somewhat similar to a wave-wound commercial coil, and the ends of the coil are soldered to the two end wires of the resistor, which will provide the necessary flattening effect and prevent sharp peaking which may lead to oscillation. As an alternative, such a coil, especially where used between the video detector and the video amplifier stage, may conveniently be wound on one of the formers already described and the entire unit, consisting of coil, detector load resistor and filter condensers, etc., totally screened.

Polytechnic Courses for Senior Engineers

In September the Northern Polytechnic started some special classes dealing with Band III television and F.M. broadcasting for the benefit of service engineers.

Two groups of classes started: (a) one full day per week and (b) evening classes. The one day per week group finished their course at Christmas, whereas the evening class will terminate at the Easter recess.

In view of the interest in these classes it has been decided to commence a second one day per week course as from the 10th January next. The class will take place each Monday from 9.30 a.m. to 4.30 p.m. and prospective students can obtain full details of the course on application to the secretary of the department, Holloway, London, N.7.

A Group of Coil Components and some finished Coils.
CHANGING TO THE NEW STATIONS

SOME DETAILS FOR MODIFYING RECEIVERS AND AERIALS FOR THE NEW TV STATIONS

By “Erg”

PART I

THE ISLE OF WIGHT

Two new transmitters are opening in the southern half of England, and should provide good service to many new viewers. The Southern Counties have a new transmitter situated on the Isle of Wight while viewers in the south-west have a new transmitter at Hessary Tor.

In the service area of the Hessary Tor transmitter most existing televisions are tuned to Channel 5 for the Wenvoe transmitter; in the area served by the Isle of Wight, however, some viewers are tuned to London while others are tuned to Wenvoe. The I.O.W. transmitter itself is operating on the Kirk o’ Shotts frequency in Channel 3.

There will be many people who come within the service area with existing receivers and aerials designed for other frequencies than those of the local channel, and it is in order to assist them in changing over to the new station that this article is written.

Most modern televisors are equipped for five-channel operation, and it is only necessary to alter the trimming or switching, as detailed in the instructions accompanying the television, to receive the new station. The aerial is not quite so simple to deal with and we shall discuss that problem later.

Converting the Superhet

Where five-channel switching is not incorporated within the television it will be necessary to modify the coils. It is only necessary to modify the first stages, i.e., the I.F. stages work at a fixed frequency and can remain so. In fact, it is rather important that they are not tampered with, as once alignment of I.F. stages is lost, it is extremely difficult to re-align without the aid of specialised instruments, not normally possessed by the amateur.

The normal arrangement of the tuning stages of a superhet are shown in the block diagram in Fig. 1. The aerial is fed into the first amplifying stage which amplifies at signal frequency; from this point the signal is fed into the mixer stage, which also has an input from the local oscillator stage. In the mixer the signal frequency is changed to another frequency which is the value of the sound I.F. and the vision I.F. No modifications are necessary beyond this point.

Fig. 2 shows the general coil arrangement. The dipole feeds into the R.F. stage via a coil L1, the dipole actually being coupled to the coil by a smaller primary coil. This coil must be modified.

From the R.F. stage the signal passes through another coil L2, which sometimes has two windings, as shown in the figure, and other times has a single winding. This coil must be modified.

The mixer stage also takes the output from the oscillator coil L3, and this, too, must be modified. The oscillator coil can usually be easily distinguished by the fact that it generally has no coil former, and is made of rather stout wire, self-supporting.

It is not possible to give exact data for every type of receiver, but we can provide some general information to furnish a guide. The coils will require extra turns when changing from Wenvoe to Kirk o’ Shotts, and will require some turns taken off when changing from London to Kirk o’ Shotts. (The Kirk o’ Shotts channel is, of course, the new channel used by the I.O.W. transmitter.)

Channel 5 to Channel 3

In the case of L1 (p) one turn should be added. Wire of the same type already on the coil form should be used. The larger winding on the coil L1(s) should have two extra turns added.

If L2 is a single wound coil then two turns should be added, but if it is double wound (i.e., it actually consists of two coils), then two turns should be added to each coil.

L3 need not have any turns added. It may be possible to find a position with the core where the I.O.W. transmitter can be received, but if this is not the case then a 25 pF condenser can be added across it.

Channel 1 to Channel 3

The conversion here follows exactly the same lines as the foregoing excepting the fact that two turns must be taken away from the existing coils, and if it is found that the oscillator will not trim to the channel then one turn can be taken from it. Otherwise, the procedure given above should be followed and alignment made as given below.

Alignment

Set the cores level with the tops of the formers and connect the aerial (modified). Now turn the oscillator until a signal is received on the sound and vision, but if the normal trimmer will not bring in the signal try varying the value of the added condenser. Repeated operations will bring in the signal, and L1 and L2 can be adjusted for maximum signal.

Adjust all coils so that the vision is at its maximum and then adjust the oscillator so that sound is at maximum; the effect on the screen should be ignored while this is being done.

Fig. 1—Block diagram of a TV superhet.

January, 1955

PRACTICAL TELEVISION

353

353
Finally adjust L1 and L2 to give the best quality picture combined with adequate sound.

Straight Receivers

Most amateur-constructed televisors are of the straight type, and the modifications while being quite simple are a little more laborious.

Each R.F. coil should have two turns added to the grid coils, and to the sound rejector coils as well. London receivers should have two turns taken off and sound rejector coils fitted; these should duplicate existing sound coils. If trimmers are not fitted all ready, then they can be fitted now instead of altering the windings. Trimmers of 0.30 pF can be used.

Note that this applies only to the sound section and not to the vision receiver.

Alignment

The alignment procedure given in the original data should be followed but if it is found that a particular coil does not peak then a turn can be added or subtracted as given in the section dealing with the superhet, provided that that coil was operated in peak position previously.

In some televisors it is not intended that each coil should peak so that stagger tuning can be applied to increase the quality of the picture.

As a general guide the aim should be to get the core into approximately the same position it occupied previously.

The Aerial

The aerial which was used previously can be employed after it is suitably modified.

Where an aerial for the London transmitter was employed then it will be necessary to shorten the rods. Dipoles should be shortened by cutting 1 ft. 2 in. from each end. The open ends of the tubing should be resealed by inserting wooden plugs.

Many commercial aerials use rods filled with some substance (such as finely ground cork granules) in order to damp down vibration and, therefore, care should be exercised when cutting to avoid loss of this substance.

The reflector should be shortened by 1 ft. 1 3 in. at each end, taking the same precautions as explained for the dipole.

Directors should be shortened by 1 ft. 1 in. for the first director and 1 ft. 0 in. for the second director (if fitted). Note that this amount must be cut from each end of the rods.

It is not normally practicable to alter the spacing between the elements, and experience has shown that it is not really necessary unless one is at the fringe; in that case it is hardly worth while to change from one fringe to another.

There will be many cases where a much simpler aerial system can be used. In localities close to the new transmitter it will be possible to convert from a high-gain array to a simple dipole, or even an "H" type of aerial.

Converting Wenvoe Aerials

Those who are at the moment using Wenvoe aerials can alter them for the new station by adding sections on to the end.

Dipoles should have an additional 14 in., i.e., 7 in. should be added to each end of the dipole as shown in Fig. 3 (a). The added section is shown as "A." A length of duralumin tubing of the same diameter as the existing dipole rod should be cut 10 in. long, and then a slit 3 in. long should be made with the blade of a hacksaw, at one end. This portion fits over the end of the dipole rod. Rivets can be applied to keep the extensions in position.

A reflector should have similar extensions but they should be 8 1/2 in. long. Directors should be dealt with similarly but the length of the extensions should be 6 in. for the director nearest to the dipole and 5 1/2 in. for the second director.

Note that it may not be necessary to alter the arial in any way other than re-orienting it towards the new transmitter. It is advised that the aerial be tried out first using Test Card "C" as a guide and if the full bandwidth is displayed then there is no need to make alterations. It may be that if this plan is adopted the signal will be too strong and in that case a simple attenuator can be fitted. A "T" type of attenuator giving about 20 db. attenuation is shown in Fig. 4 and this is suitable for coaxial cable. A "Pi" type of attenuator giving about 10 db. attenuation suitable for balanced twin cables is also given.

Types of Aerial

It is not possible to specify what type of aerial should be used in which locality. As a general guide when the station is on full power a normal dipole should be sufficient up to a radius of about 25 miles under average conditions. Up to 50 miles an "H" or "X" aerial must be used, and beyond this a Yagi array will be necessary.
January, 1955

PRACTICAL TELEVISION

Specially useful for Television Work...

The AVO WIDE-RANGE SIGNAL GENERATOR

A Signal Generator of wide range and accuracy of performance, designed to cope with modern radio and television work. Turret coil switching provides six frequency ranges covering 50 Kc/s - 80 Mc/s.

- 50 Kc/s - 150 Kc/s
- 150 Kc/s - 500 Kc/s
- 500 Kc/s - 1.5 Mc/s
- 1.5 Mc/s - 5.5 Mc/s
- 5.5 Mc/s - 20 Mc/s
- 20 Mc/s - 80 Mc/s

Stray field less than 1 nV per metre at a distance of 1 metre from instrument.

General level of R.F. harmonic content of order of 1%.

Direct calibration upon fundamental frequencies throughout range, accuracy being better than 1% of scale reading. 45 inches of directly calibrated frequency scales with unique illuminated band selection, giving particularly good discrimination when tuning television 'staggered' circuits.

Of pleasing external appearance with robust internal mechanical construction using cast aluminium screening, careful attention having been devoted to layout of components with subsidiary screening to reduce the minimum signal to negligible level even at 80 Mc/s.

Four continuously attenuated ranges using well-designed double attenuator system.

Force output 0.5 volts.

Internal modulation at 400 c/s, modulation depth 30% with variable L.F. signal available for external use.

Mains input, 100-130 V. and 200-260 V. 50-60 c/s A.G.C.

Mains MODEL, as specified, or BATTERY MODEL, covering 50 Kc/s to 70 Mc/s, powered by easily obtainable batteries £30

Fully descriptive Pamphlet available on application to the Sole Proprietors and Manufacturers

The AUTOMATIC COIL WINNER & ELECTRICAL EQUIPMENT CO., LTD.
WINNER HOUSE - DOUGLAS STREET - LONDON S.W.1 Telephone: VICTORIA 3404/5

Osram AUDIO VALVES

The following valves are outstanding in the current range of Osram audio valves and offer unsurpassed performance, reliability and long life to the discriminating user.

* Z729 1st stage voltage amplifying amplifier pentode. The valve which has set the standard in its class where minimum hum and microphony are essential.

* B309 (12AT7) B329 (12AU7) Double triode voltage amplifiers.

* N709 The high output pentode for all domestic amplifier purposes.

* KT66 The world famous beam tetrode specified for the Williamson amplifier. The standard output valve for all medium power high quality amplifiers.

KT61 An efficient output beam tetrode for domestic receivers and small amplifiers.

KT33C An efficient output beam tetrode for DC/AC equipment.

PX4 The popular directly heated power triode which made true high quality sound available to the home constructor.

DA42 A new indirectly heated high power Class B triode for industrial amplifiers.

* Specified for the OSRAM 912 high quality amplifier.

Write to the Osram Valve and Electronics Department for full technical information, circuit and application data.

THE GENERAL ELECTRIC COMPANY LIMITED, MAGNET HOUSE, KINGSWAY, W.C.2.
The NEW PREMIER TELEVISOR

USING THE ENGLISH ELECTRIC CATHODE RAY TUBE T901

Brief Technical Details are as follows:

- 20 valves (plus tube) Superhet Receiver, tunable from 40-68 Mc/s without coil or core changing. Wide angle scanning Flyback EHT giving 14 kV, Duomat Focilliser, permanent magnet for picture centering adjustments, suitable for any wide angle Tube, may also be used with a 12 in. Tube with very little minor modification.

VISION CIRCUIT. Common RF Amplifier, single valve frequency changer, two IF stages, Video Detector and Noise Limiter followed by special type of Video Output Transformer TUNED ASSURING ACCURATE ALIGNMENT AND EXCELLENT BANDWIDTH.

SOUND CIRCUIT. Coupling from anode of frequency changer, two IF stages, Double Diode Triode detector and first LF Amplifier, Diode Noise Limiter and Beam Type Output Transformer. ALL COILS TUNED-HEATING AND IMPEDEMENT.

TIME BASES. 2 valve sync. Separator, giving very firm lock and excellent interface.

LINE TIME BASE. Blocking Oscillator using a peetode driving a peetode, the high efficiency FERROXCOBE Cored Scanning Coils.

POWER PACK. Double wound Mains Transformer supplying all L.T. and H.T. using two full-wave Rectifiers.

The Televisor may be constructed in 5 easy stages: (1) Vision, (2) Time Base, (3) Sound, (4) Power Pack, (5) Final Assembly. Each stage is fully covered in the Instruction Book, which includes layout, circuit diagrams and point-to-point Wiring instructions. The Instruction Book also includes full details for converting existing Premier Magnetron Televisions for use with modern wide angle tubes. All components are individually priced.

Instruction book 3/6, Post Free.

Console Cabinets in figured walnut can be supplied for the above receiver at a cost of £11/16/-, plus 1/- pkg. & Carr. H.F. Terms for cabinet on request.
Orientation

In many cases, by reason of the improved signal it will not be necessary to align the aerial directly on the transmitter. As a general rule, where signal strength is adequate the aerial should be arranged so that local interference is least. As an example, if the transmitter is almost in line with the main road fronting the house it is often beneficial to arrange an "H" or "X" aerial at right angles so that the rear points towards the road.

![Fig. 4—Two simple types of signal attenuator.](image)

**PART II
HESSARY TOR**

The opening of the new transmitter at Hessary Tor, in Devonshire, extends the service area of the BBC Television to an area which is notoriously ill-served even by the normal broadcast service.

Although it is not possible to forecast the actual results likely to be obtained it is thought that in the extreme south-west high-gain Yagi aerials will have to be fitted—a rather difficult operation in some areas swept by the winter gales!

In the districts around Plymouth some stalwarts have been using television receivers aligned on Wenvoe and a surprisingly large number of high-gain aerials are visible in the remote areas almost as far as Land's End. It is hoped that this section will enable them to convert to the new transmitter at the least expense.

The Hessary Tor transmitter will provide vertically polarised signal using Channel 2, which is the channel used by the high-powered station at Holme Moss. Wenvoe which has been serving the area up to the present time operates on Channel 5 and it is regrettably much easier to convert from a lower channel to a higher one than vice versa.

Those who possess a modern television receiver equipped for five-channel operation can convert their sets quite easily by simply following the instructions accompanying the television. The aerial can be modified in the manner given in the case of the I.O.W. transmitter and details will be given later in the article.

Converting the Superhet

Most commercial televisions are of the superhet type and it will be necessary to alter the windings on the R.F. and mixer coils, and to vary the frequency of the oscillator by adding a variable condenser across the coil.

The method given in the previous section dealing with conversion from Wenvoe to Channel 3 should be employed the only difference being that three turns should be added to the R.F. coil and three turns to the mixer coil. The data given in the previous section should be studied in relation to Figs. 1 and 2 and there should be no difficulty in arranging the alteration.

It is important to follow the alignment procedure so that maximum quality of picture is obtained and under no circumstances must the I.F. stages of the vision or sound I.F. stages be disturbed as it is rather difficult to re-align these stages accurately.

Should it be found impossible to obtain a peak on the respective coils then a turn can be added or subtracted to enable a peak to be found.

Straight Receivers

In this case the previous section relating to conversion from Wenvoe to Channel 3 should be followed except that the number of added turns should be three per grid coil. For the sound section 0-30 pF trimmers can be added where trimmers are not fitted at present, and it will not then be necessary to alter the sound coils.

Do not omit to adjust the sound rejectors.

Aerials

The existing aerials in this area are tuned to Wenvoe and it will be necessary to alter the tuning to Channel 2 by adding sections to the dipole as given in Fig. 3.

The dipole should have an additional 13 in. added at each end using a short length of duralumin tubing of the same diameter as the existing dipole rod.

A reflector should have similar extensions added but in this case the extra length required will be 13½ in.

Directors should be dealt with in a similar manner. The first director will require an extension of 12 in. and the second an extension of 11½ in. Note the previous remarks concerning riveting of the extension pieces.

Orientation

The remarks concerning orientation given in the preceding section should be studied as it is often beneficial to arrange the aerial to pick up the minimum interference rather than the largest signal.

Ghosts

Due to the rather rugged nature of the Devon and Cornwall countryside it may be possible that ghost reception will be troublesome. A ghost is a second or even third image on the screen slightly displaced to the right of the main image. It is caused by reflections from hillsides, etc.

In these cases a directional aerial should be employed and it would be wise to study the article on this subject given in the November issue of PRACTICAL TELEVISION.

It should be noted that sometimes it is possible to get a better signal from the reflection itself than from the main source of signal, and pointing the aerial towards the source of the ghost may provide a worthwhile picture.
WHEN the first television programmes in the world began at Alexandra Palace in 1936 the producers of those days were not fettered by any conventions. There were no precedents to follow. The producers came from the theatre, films and radio and all soon agreed that nothing they had done before would, by itself, be sufficient for this new electronic baby which they hoped to rear to manhood.

In those early months two types of equipment were used. One the E.M.I., which is still giving faithful service in certain programmes, and the other Baird, which recorded on film that was developed and transmitted less than a minute later.

Two Systems

The Baird system, which, incidentally, called for the most fiendish make-up ever devised, was discarded after a time, but how enjoyable it would be if some of the films made by it were available and suitable for showing to-day. Would some of those early programmes still appear as wonderful as we then thought them to be, or would they seem to us as comic as those early silent films we are treated to from time to time?

The equipment in the pre-war days suffered from several handicaps which have now largely been removed. The cameras had one lens only, so that for any close-ups the mountain of the camera had to track forward to the Mohammed of the artiste. Having got there, the depth of focus was only a few inches, so that if any close-ups involved two artistes, inevitably one was in sharp focus and the other seen through a gentle mist. It was the rule always to focus on the nearer object and the cameraman saw his picture upside down in his viewfinder.

At the present time only O.B. cameras are fitted with "zoom" lenses. Possibly in time to come studio cameras will be fitted with them too. Another pre-war handicap removed after the resumption of television was the inability to "cut" from one picture to another. A "mix" took several seconds and rendered impossible any snappy camera work.

Television is a medium demanding and receiving full co-operation between the technical and programme sides. Although few, if any, producers could trace an electric circuit, all of them, by the nature of their work, have to learn and respect the capabilities of the equipment they use. The old-timers learnt by trial and error in a period of intense enthusiasm and co-operation amongst themselves. Their mistakes did not matter so very much in the beginning because, after all, there were only some 7,000 viewers to be considered and the novelty of getting a picture on their screens lasted a long time. But any mistakes by the designers of the first equipment would have mattered very much indeed. They, too, had no precedents to guide them and it is, to say the least, remarkable that their equipment has stood the test of time so well. A suggestion has been made that when the new studios at the White City are built a place of honour should be kept for one of the first E.M.I. cameras, to remind future generations of the great pioneering work it typifies.

Lighting Engineers

A class of engineers whose work is largely taken for granted is the lighting engineers. Light in great quantities had to be used at Alexandra Palace, much to the dismay of some artistes and all cooks, who found their ingredients behaving as if in a tropical country. Less light is needed in the Lime Grove Studios owing to the greater sensitivity of present-day cameras. Apart from quantities of light there is great skill in lighting a television production, which is generally appreciated most by visiting lighting cameramen from film studios. The film men achieve a quality of lighting which is seldom approached in television, but, as they themselves point out, they can concentrate on a comparatively small area for a shot which may last a few seconds only. The television lighting engineer has so to light a set that continuous well-illuminated action is possible in any part of it. The resulting pictures are not as consistently good as those seen in films, but fortunately they do not have to be, as the demands of the small television screen are less exacting than the large screen in the cinema. As time passes the engineer places more equipment at the disposal of the producers. There is now "inlay" and "overlay," permitting a shot of a princess in the studio to appear in the top window of a castle 100ft. high. Back projection gives wings to studio actions in photographed pictures of the authentic places where the action is set.

More and more refinements will doubtless continue to come. What of the producers in the midst of all these aids to their craft? The majority to-day have passed the time of what is sometimes called "new boys' disease. This can be described as an irresistible impulse to use all the gadgets available to him. When a singer is performing happily to one camera, he suddenly cuts to another and so causes her to sing to someone else on her left or right; or to use superimpositions without proper cause. The whole tendency amongst experienced producers is towards greater simplicity and the avoiding of stunts unless strictly necessary.

Looking Back in 1973

How interesting it would be if producers and engineers could see their efforts of years ago. Perfection has not been reached and never will be reached. The passing years will see continuing experiments in all directions in search of the unattainable and in this way television will remain vital, although few viewers may be able to point the reasons accurately. But it is a safe prophecy that just as we would be amused or possibly shocked could we see again those programmes of 18 years ago, so in another 18 years' time the viewers' then, probably taking for granted their coloured stereoscopic pictures, will see the tele-recordings of to-day and be amused, and possibly shocked,
only, leaving the other ends free. Fit the screens either by nuts and bolts or, if tin plate is used, by sweating to the chassis which is also tin plate. Fit tags 1, 2 straightforward; however, it is possible to obtain satisfactory results with a test oscillator and an A.C. voltmeter.

With the A.C. voltmeter set on the 100 v. range, connect across V8 cathode. Inject a modulated signal of 12 Mc/s into V1 grid with LO short-circuited.

The I.F. coils will not require much tuning. Swing test oscillator output between 10 and 14 Mc/s. Note the two frequencies that give an output of 70 per cent.

Fig. 5 (a)—View of the unit with various parts identified, after modification.

Fig. 3.—Complete circuit of the modified unit.

Fig. 5 (b)—Another view of the modified unit with further identifications.

<table>
<thead>
<tr>
<th>RESISTORS</th>
<th>CONDENSERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 K w. R23 and 25</td>
<td>0.1 pF C110, 27 and 28</td>
</tr>
<tr>
<td>10 K w. R10 and R11</td>
<td>16 K C114</td>
</tr>
<tr>
<td>12 K w. R27</td>
<td>* See Text. Resistors R2 to R28 and condensers C1 to C28 are already in position in original amplifier.</td>
</tr>
<tr>
<td>15 K w. R26</td>
<td>10 pF Ceramic C107</td>
</tr>
<tr>
<td>20 K w. R18 and 19</td>
<td>20 pF Ceramic C106</td>
</tr>
<tr>
<td>20 K w. R106</td>
<td>25 pF Ceramic C105</td>
</tr>
<tr>
<td>22 K w. R107</td>
<td>40 pF C62</td>
</tr>
<tr>
<td>1 m w. R109 and 24</td>
<td>50 pF C108, 109, 14 and 22</td>
</tr>
<tr>
<td>100 K wirewound potentiometer VR1.</td>
<td>100 pF Ceramic C104</td>
</tr>
</tbody>
</table>

COMPONENT LIST

RESISTORS

- 10 K w. R23 and 25
- 10 K w. R10 and R11
- 12 K w. R27
- 15 K w. R26
- 20 K w. R18 and 19
- 20 K w. R106
- 22 K w. R107
- 1 m w. R109 and 24
- 100 K wirewound potentiometer VR1.

CONDENSERS

- 10 pF Ceramic C107
- 20 pF Ceramic C106
- 25 pF Ceramic C105
- 40 pF C62
- 50 pF C108, 109, 14 and 22
- 100 pF Ceramic C104
- 200 pF C6, 12, 16 and 23
- 500 pF C101 and 102

VALVES

- 6AC7, VA and V1
- EA60 V5 and V7
- VR65 V2, 3, 4, 6 and 8
- 2 Ceramic I.O. valve holders
- 1 RMG valveholder
- 3 Jn. Aladdin formers
- 3 insulated soldering tags.

Resistance values

- Resistors R2 to R28 and condensers C1 to C28 are already in position in original amplifier.

Setting Up

With a signal generator, valve-voltmeter and oscilloscope the setting-up procedure is straightforward. If the difference is not 3 Mc/s adjust the tuning slugs of L2 to L5 until this is so. If the television receiver is to use a 6in. C.R.T. 3 Mc/s is more than adequate and greater sensitivity without appreciable loss of definition will be achieved if the I.F. coils are peaked until the bandwidth is reduced to 2.5 or even 2 Mc/s.

Transfer the test oscillator to the aerial input, inject an R.F. of suitable frequency, remove short circuit from LO and tune oscillator for maximum output as indicated by the voltmeter. Tune LA and LG then...
readjust LO. The tuning of LA and LG is fairly flat but LO is sharp enough to give complete separation between sound and vision.

Note that the value of R111 and of R110 is fairly flat. LO is sharp enough to give complete separation between sound and vision.

The tuning of LA and LG is fairly flat. Various combinations of these two components can be tried until suitable positions are found under load conditions.

Fixed resistances can then be fitted of values equal to the measured values of the variable resistances. It should be pointed out that, as with all ex-service equipment, some special use whilst in service, due to their having been modified or put to use.

It is possible to convert the amplifier into a TV receiver, giving both sound and vision outputs, but it was decided to concentrate on the vision side. The following specification shows this to have been worthwhile. An input of 35 μV at 65 Mc/s modulated 30 per cent by 1,000 c/s gave an undistorted output of 50 v. A.C. (measured peak-to-peak) at the phase-splitter cathode and 35 v. A.C. at the anode. To obtain the same output with 70 per cent modulation only 17 μV input is required. The bandwidth is 3 Mc/s, this being more than ample for TV receivers employing average diameter picture tubes.

Fig. 1 shows a block diagram of the amplifier (a) before and (b) after modification.

With reference to Fig. 1 (b) and Fig. 3, the circuit of the complete receiver is described as follows. The received signal is applied from the aerial to an R.F. amplifier (VA) via the R.F. transformer LA. The voltage developed at the phase-splitter is amplified by one of the IF stages, V2, V3 and V4, and is then applied across L5. The I.F. voltage developed by L5 is rectified by the diode V5, filtered by C27 and the resulting video applied to V6, a valve which has its cathode resistor unby-passed to provide negative feedback. The I.F. voltage is then applied to the screens of V2 and V3. The circuit of V4, V5 and V6 requires no modification and part of the wiring previously indicated on the chassis of the old valves V7 and V8 can be utilised when fitting VA which is a ceramic International valve.

Some Advertising

THE Belgian Government is expected to charge a licence fee soon to its viewers who have so far been enjoying a free service. Some programmes may be allowed containing a little advertising.

Park Committee's Refusal

Many an exhibition was registered recently by North Pembrokeshire residents when the National Park Committee decided to refuse permission for the erection of a TV aerial at Foel Eryr, in the Preseli Mountains.

Another TV aerial to be fitted is proposed for the rural council of Wainford, Suffolk, to replace one which was responsible for the pro-

TABLE I-COIL DATA

<table>
<thead>
<tr>
<th>Channel</th>
<th>Coil LA Primary Secondary</th>
<th>Coil LG Primary Secondary</th>
<th>Coil LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 5</td>
<td>8 10</td>
<td>8 10</td>
</tr>
<tr>
<td>2</td>
<td>5 5</td>
<td>8 10</td>
<td>8 10</td>
</tr>
<tr>
<td>3</td>
<td>5 5</td>
<td>8 10</td>
<td>8 10</td>
</tr>
<tr>
<td>4</td>
<td>5 5</td>
<td>8 10</td>
<td>8 10</td>
</tr>
<tr>
<td>5</td>
<td>5 5</td>
<td>8 10</td>
<td>8 10</td>
</tr>
<tr>
<td>6</td>
<td>5 5</td>
<td>8 10</td>
<td>8 10</td>
</tr>
</tbody>
</table>

Fig. 6.—Component Layout.
INTERFERENCE ON BAND III

By A. E. LOFTING

NOW that Band III is well on the way, it is as well to consider what interference is to be expected, and what measures will be necessary to reduce it. The much higher frequencies of Band III require special treatment. The higher the frequency the more difficult is its suppression. This is because of the greater ease with which high frequencies leave conductors. Thus a length of wire having negligible radiation at 45 Mc/s will radiate like a charm at 200 Mc/s. With this in mind one can realise the extra difficulties involved, and the uselessness of present suppressors at these frequencies. Much work will have to be done to eliminate as far as possible the radiation of Band III frequencies, and the first “interfering agent” to be investigated will doubtless be the fractional horse power motor. First let us consider the few points on which we, the home constructor, have some control. These are: the careful choice of motor, and correct brush adjustment.

Brushes of commutator machines are the source from which our trouble flows. Each tiny spark produced, as the copper segment of the armature moves away from the brush, being responsible for a wide range of frequencies. Fig. 1 shows a diagrammatic representation of a brush and its neighbouring commutator segments. It will be seen that as the armature rotates there will be one or two coils short circuited beneath the brush, the number depending on the width of the brush. As these coils have an induced voltage within them, a current will flow. When this segment moves past the brush the circuit is interrupted, then a spark is formed. The intensity of this spark, and consequently the R.F. energy radiated, will depend mainly on the initial current flowing and coil inductance. The initial short-circuit current is proportional to circuit resistance and coil voltage. To reduce this current we must either increase the closed circuit resistance and/or reduce the coil voltage. Coils necessarily have a low resistance, only a fraction of an ohm; therefore, in practice the brushes are designed to have a high resistance. To reduce the coil voltage, the number of turns for each coil must be reduced. But at the same revolutions per minute this will result in lower available torque, unless more coils are used. From this it follows that for a motor of a given size, the one having more coils and therefore more commutator segments will produce less interference. More coils for a given output also has the desirable effect of reducing coil inductance.

Bedding-in Brushes

Intermittent contact between brush and commutator can cause serious interference. This occurs if the brush is not “bedded in,” or shaped to fit the commutator, and if the copper segments are rough and burned. To bed-in a new set of brushes is an easy matter, and can produce worthwhile results. First remove the brushes and place a narrow strip of the finest emery paper around the commutator, rough side outwards. Replace one brush to touch the paper and rock the armature to and fro until, on removing the brush, it has assumed the correct shape. Note carefully the positioning of the brush in its holder, so that it may be replaced the same way. After grinding both brushes it is as well to remove dirt and dust from the segments. A glass hairbrush is the best tool, it does not scratch the soft copper. For bad marks use carbon-tetrachloride on a rag.

In addition to these points there are the basic precautions necessary for all interference suppression. The most important of these being effective screening and earthing. Screening of a small motor is best achieved by using its own metal frame, this frame extending well over the ends of the motor and brushes. Good bonding between the three (usually)

Fig. 1.—A brush and its neighbouring commutator segments.
Inductors can be wound to specified dimensions to have a predetermined value of self-capacitance, forming the tuned circuit, Fig. 3. If this circuit be arranged to resonate at the V.H.F., it will form an effective barrier to this frequency. This insertion loss will be very high, depending on the circuit Q. Self-capacitance of inductors can be calculated from a variety of formulae, as can the inductance. These formulae are obtainable for many types of coil windings in good radio reference books.

![Diagram](image)

Fig. 2 (left)—A simple suppressor circuit. Fig. 3 (right)—The essential components of a suppressor.

giving accuracy to practically any degree. But for general work the following formulae will be useful for single layer coils:

\[
C_0 = \frac{d^2}{16d + 40} \times \frac{1}{l} n^2
\]

where \(d\) is the diameter in cms., \(H\) is constant depending on ratio \(l/d\), where \(l\) is the coil length. Given in Table I.

Table I

<table>
<thead>
<tr>
<th>(l/d)</th>
<th>(H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.32</td>
</tr>
<tr>
<td>9</td>
<td>1.22</td>
</tr>
<tr>
<td>8</td>
<td>1.12</td>
</tr>
<tr>
<td>7</td>
<td>1.10</td>
</tr>
<tr>
<td>6</td>
<td>0.92</td>
</tr>
<tr>
<td>5</td>
<td>0.81</td>
</tr>
<tr>
<td>4</td>
<td>0.72</td>
</tr>
<tr>
<td>3</td>
<td>0.61</td>
</tr>
<tr>
<td>2.5</td>
<td>0.56</td>
</tr>
<tr>
<td>2.0</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Armed with these formulae the enthusiast will have useful weapons to weald against interference.

Among the rarer cases of interference are the oscillations of old carbon filament lamps. The lamp has only one apparent electrode it can, and does, emit amplitude- and frequency-modulated V.H.F., due to an interesting effect investigated by Barkhausen and Kurz, after whom the oscillation has been named. More modern lamps sometimes give rise to interference, caused by arcing across tiny fissures in the filament, usually when nearing failure. A simple remedy in either case is to renew the lamp.

Unfortunately the majority of us suffer, from interference of someone else’s manufacture. Interference over which we have very little control. Eventually all appliances sold will be suppressed for Band III, but that still leaves a lot of apparatus working today which will create plenty of 200 Mc/s interference. Also manufacturers have yet to develop effective and cheap suppressors for their products, or provide other means of preventing interference, i.e., prevention rather than cure. One interesting possibility is the design of motors having balanced to earth layout. We all know the effect of twisting valve heater wires, and of keeping them of approximately the same length. This basically is the idea with motors, to produce “balanced” interference whose net result is zero.

New Mullard Voltage Stabilisers

A LMOST every piece of industrial, military, and commercial electronic equipment incorporates a source of stable voltage. Mullard gas-filled stabilisers and voltage reference tubes such as the 90C1 and 85A2 are widely used in such equipments because of their extremely long life, freedom from voltage “jumps,” and close tolerance burning voltages. Samples of Special Quality versions of these tubes are now being made available by the Communications and Industrial Valve Department of Mullard, Ltd. These combine the good qualities of normal types with the ability to operate satisfactorily under severe conditions of shock and vibration such as are encountered in aircraft, ships, vehicles, and in industry. They are tested to withstand impacts of 500g, and vibrations of 6g at 175 cycles per second.

The new tubes are electrically equivalent to the 85A2, the 90C1, and the 150B2. They are available in two forms, one with pins and one with flying leads. Flying leads are desirable because, since they can be soldered firmly in place, variations in contact resistance such as are encountered when plug-in types are subjected to vibration are eliminated. Such variations give rise to noise and minute voltage fluctuations which degrade the high performance of a voltage reference tube. The fact that replacement is more difficult mechanically than with plug-in types is of little importance in view of the long life of these tubes.

Extending Mast Vehicle

THE BBC recently introduced a new prototype extending mast vehicle. This vehicle, which has been produced for use with television outside broadcasts, is unique in performance and provides means whereby the radio link transmitting or receiving apparatus, and associated electronic equipment, can be elevated to a height of just over 60ft., in order to clear obstructions that might otherwise impede the transmission or reception of signals. The aerial, consisting of a 4ft. diameter paraboloid which is mounted on top of this mast, has to be accurately set to within approximately ± one deg., and a system of remote control has been devised whereby this can be readily achieved. The aerial can be rotated continuously through 360 deg. in the horizontal plane.

The mast is erected from the horizontal position through 360 deg. in the vertical position on the ground by a system of hydraulic rams. A similar system is then used to extend it to its full height of approximately 60ft. In this position the mast is self-supporting, but provision has been made for stay wires to be fitted should it be necessary for the mast to be left erected in strong winds.

The remote control system employed enables a pre-set bearing to be determined and set up to within ± half deg. On bringing the remote control into operation the paraboloids will adjust themselves to the position indicated.
Cleveland Car Battery Charger

Gives 11 amps, charges for 24 hours, uses 6 sitting metal rectifier and "quick double" wound transformer in metal carrying case, with lead and croc clips.

- Price 6 volts, 20/6; 6 to 12 volts, 36/6. Post 2/6.

Infray Lamp

Means real comfort in bed as it emits Infray Red Rays which warm and keep you healthy.

- Economical.
- Cooks only 1d. per hour (electricity 1d. per unit).
- Absolutely safe, no heat or fire risk.
- Ideal for baby, old age, rearing pup, chickens, etc.
- All complete and ready to work.

Connecting Wire Snip

P.V.C. insulated 28 s.w.g. copper wire in 100ft. coils, 2/9 each. Colours available: Black, Brown, Red, Orange, Pink, Yellow, White, Transparent. 4 coils for 10/-. Post orders should be addressed to Dept. 7, Ruislip. Phone: Ruislip Middx. 5780.

Mullard Amplifier

A high quality Amplifier designed by Mullard for maximum fidelity, with a power output exceeding 10 watts and a harmonic distortion less than 4% at 10 watts. Its frequency response is extremely wide and level being almost flat from 10 to 50,000 C.P.S.—three control are provided and the whole unit is very suitable for use with the Collaro Studio and most other good pick ups. The wiring, whilst straightforward and professional and ready to work.

Miniature Portable T.V.

The Elprenq Miniature Television uses standard conventional circuits, employing a total of 12 valves and 7 crystal diodes. The cathode-ray tube used is a 2in. Servo type VCN-196A, which has standard equivalent characteristics and will therefore always be obtainable. The layout is extremely clean, straight-forward and professional. The wiring, whilst naturally being a little more delicate due to miniaturisation, is nevertheless completely accessible. The total cost comes to 61-6-17. Its size will be approximately 8½in. × 8½in. × 6in.

We wish all our readers of "Practical Television" a Merry Christmas and a Prosperous New Year.

Tubes All Sizes

All makes required at a little over half price—SIX MONTHS' GUAR.

Component Snip

50 assorted 2 and 3 watt resistors, ranging between 10 ohm and 10 meg ohm. (Our selection.) Price 5/- post.

Electronic Precision Equipment, Ltd.

Post orders should be addressed to Dept. 7, Ruislip.

Personal shoppers, however, can call at:

49-51, Windmill Hill, Ruislip, Middx.

Phone: BELLIF 0780

Half day, Wednesday. Half day, Saturday. Half day, Thursday.

The F.M. Feeder Unit

All the parts necessary to make the Denco F.M. Ruislip are supplied. The unit gives an A.F. output suitable for feeding in at the pickup sockets of any standard broadcasting receiver and superior results can be expected. The full constructional details are prepared by the Denco technicans are available—price 1/6, post free. Alternatively, they will be given free to those ordering all the parts which come to 6/7.6. Plus 2/6 post and packing. Note: Four valves and everything included, a prepared metal chassis is supplied. Approximate chassis measurements are 6 × 8 × 11.

The Micrometer

Exceptional purchase enables us to offer a 1in. precision micrometer at the very low price of 10/. A micrometer is an essential part of an engineer's equipment. You will have found the need for one on many occasions in the past for measuring wire, gauze, etc. If you act quickly you can now acquire this precision instrument at the remarkably low price of 10/-, post free.

THE ELPREQ E.H.T. GENERATOR

This is a made up unit working on the blocking oscillator/over-wound amplifying stage principle. It is of moderate power consumption (62 W) and contains three BVA valves. Output obtainable ranges from 6kV to 0kV with normal H.T. rail input but somewhat higher outputs can be obtained with higher H.T. supply. Valve rectification is employed in the output stage. The dimensions are 6 × 9 × 7in. Price 96/6, post, packing, etc., 9/-.

The Projector

An impressive unit, it is originally designed for T.V. but slight modification makes it into an unusual but most dignified radio gram or amplifier. Size 24in. wide, 52in. deep, 27in. high. Price £6 15s. 6d. or £5 16s. 6d. deposit. Carriage and ins. fl.
BUILDING THE "SIMPLEX"?

Thousands of enthusiasts are building the "SIMPLEX" television, now being featured in "Practical Television". Why NOT YOU? CONSTRUCTORS DEPLOY complete constructional details and all parts are available, all components are STANDARDIZED. A 200 V.A.W.M. TRANSFORMER is a stock item. All parts are complete, with all constructional details and diagrams available.

R.F. UNITS TYPE 28 and 27. For use with the R.1353 or any receiver with a 3 V. supply. These are the variable tuning units which, when used with 2 values EF3S and 1 of EC25, Type 25 covers 65-50 M.C.S. and 36-25 B.C.S. These are the variable tuning units which are complete with all components, FULLY TESTED and NEW IN MAKER'S WRAPPERS. ONLY 35 each.

TRANSFORMERS. Manufactured to our specifications and fully guaranteed. Styles 225-250-250 300-0-300 6.3 v 4 a, 6.3 v 4 a, 6 v 3 a, 6 v 3 a, 4.5 v 3 a, 450 v 100 ma, 6.3 v 2 a, 6.3 v 2 a, 5 v 2 a, 5 v 2 a, 5 v 2 a, 5 v 2 a. ONLY 35/6. Complete with silver mica condensers. R.F. UNITS TYPE 26 and 27. For use with the R.1353 or any receiver with a 3 V. supply. These are the variable tuning units which are complete with all components, FULLY TESTED and NEW IN MAKER'S WRAPPERS. ONLY 35 each.

VALVES

<table>
<thead>
<tr>
<th>Type</th>
<th>100</th>
<th>6/6</th>
<th>7AT</th>
<th>6/6</th>
<th>5Z4</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>10E</td>
<td>6/6</td>
<td>7AT</td>
<td>6/6</td>
<td>5Z4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10E</td>
<td>6/6</td>
<td>7AT</td>
<td>6/6</td>
<td>5Z4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10E</td>
<td>6/6</td>
<td>7AT</td>
<td>6/6</td>
<td>5Z4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10E</td>
<td>6/6</td>
<td>7AT</td>
<td>6/6</td>
<td>5Z4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10E</td>
<td>6/6</td>
<td>7AT</td>
<td>6/6</td>
<td>5Z4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10E</td>
<td>6/6</td>
<td>7AT</td>
<td>6/6</td>
<td>5Z4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10E</td>
<td>6/6</td>
<td>7AT</td>
<td>6/6</td>
<td>5Z4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10E</td>
<td>6/6</td>
<td>7AT</td>
<td>6/6</td>
<td>5Z4</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

R.F. UNITS TYPE 26 and 27. For use with the R.1353 or any receiver with a 3 V. supply. These are the variable tuning units which are complete with all components, FULLY TESTED and NEW IN MAKER'S WRAPPERS. ONLY 35 each.

TRANSFORMERS. Manufactured to our specifications and fully guaranteed. Styles 225-250-250 300-0-300 6.3 v 4 a, 6.3 v 4 a, 6 v 3 a, 6 v 3 a, 4.5 v 3 a, 450 v 100 ma, 6.3 v 2 a, 6.3 v 2 a, 5 v 2 a, 5 v 2 a, 5 v 2 a, 5 v 2 a. ONLY 35/6. Complete with silver mica condensers. R.F. UNITS TYPE 26 and 27. For use with the R.1353 or any receiver with a 3 V. supply. These are the variable tuning units which are complete with all components, FULLY TESTED and NEW IN MAKER'S WRAPPERS. ONLY 35 each.
The Time Base

The choice of a time base for an oscilloscope often presents several difficulties. There is the necessity of keeping the number of valves at a minimum, especially when a compact, portable design is the aim, and this restriction usually leads to a comparatively narrow range of sweep frequencies. A thyratron time base can be made up using a single valve but the frequency is then restricted to a maximum of some 20 to 30 Kc/s at the high-frequency end and it is not always simple to get good linearity below some 20 cycles at the low-frequency end.

Thyratrons are made to have good high-frequency performances, but in the present design these were dropped in favour of a conventional hard-valve type of generator used in conjunction with one other valve (omitting a clipper diode) to give push-pull deflection. A frequency range of some 5 cycles to 50 Kc/s with good linearity is easily obtained in five switched and overlapping steps, and flyback suppression and the introduction of external synchronising is readily achieved.

The circuit is shown in Fig. 1 and the valves used are type Z77, or equivalents, and an EA50 diode.

Readers will see at once that the circuit is a Miller transitron with switched condenser feedback between anode and control grid. Coupling is also provided through C16 from screen to suppressor, the valve then providing its own triggering and so becoming a free-running generator. The square wave at the screen is clipped by the diode at a level determined by the voltage across R25.

One output is taken to X1 plate from the anode of the transitron, while another is fed via VR6 to the grid of the paraphase amplifier V3. There is

Fig. 1.—Time base circuit. All resistors are ½ watt and condensers paper, 350v working, except C23.
negative feedback between the anodes of the two valves and the gain of V3 is unity, the output at the anode being an inverted but equal version of that at the anode of V4. This is fed via C14 to the other X plate of the C.R.T. and push-pull deflection is obtained. This prevents defocusing at the extremities of the trace and results in a sharply defined image.

External synchronising is applied through VR7, the sync control, and C24 to the suppressor of the transitron, and so lock the trace to the work signal. A voltage of 15 is necessary for stable lock under normal conditions.

Constructional Notes

A rough layout of the chassis was indicated in last month’s article, and this should be followed in main outlines. The total chassis length need not exceed that of the tube and mains transformer combined and, with a width of some 6in., the other valves can be easily mounted along the side of the tube: There are no special precautions necessary, apart from that of mounting the Y-amplifier close to the panel input socket and switch. A suitable control layout is shown in Fig. 2.

A small screen may be well fitted around the Y-amplifier section and the leads to the Y-plates should be kept short and well clear of other leads, especially those carrying A.C. Screening will tend to reduce the bandwidth (on the wide range) of the amplifier, but up to a foot of low-capacity screening may normally be used for the Y1 input without serious effect. The correction choke of 125 µH is wound on a 1/8 in. paxolin former from 36 s.w.g. enamelled wire, 95 turns close wound being required.

Use of the Instrument

Normally, the first check on the design is to ensure that the timebase is functioning on all switch positions and that proper brightness and focus control is obtained. The setting of VR6 is not very critical and it will normally be about two-thirds turned towards the anode of V4. An improper setting will show itself up as a thickening and slight kinking of the trace at one end or other of the scan. This control is, of course, a pre-set and is not mounted on the panel. The H.T. rail voltage should be 250 volts, and R1 may be adjusted if necessary to bring it roughly to this figure should any large change be noticed, provided this is not due to a fault.

Work signal inputs are applied to the input terminal and the amplifier switch is set according to whether an amplified or straight input to the Y-plate is required. Normally, the A.C. position will be used for unamplified conditions of input, particularly on signals where a D.C. component is present, as when investigating ripple on H.T. points of a receiver. With amplified conditions, the narrow band position is most generally useful as a large gain is possible without overloading; a trace amplitude on the screen of roughly 2in. can be obtained without distortion in this position. For video work and other high-frequency set-ups, however, wide-band working will be necessary and here a reduced gain must be tolerated. A maximum undistorted trace amplitude of about 3in. is obtainable in this switch position.

Both the above conditions are with the gain control at maximum setting; there will be some restriction of the high-frequency response, on wide-band working, when the control is used at very low settings and it is always advisable to work it as far advanced as possible. The sync control is normally set fully anti-clockwise (resistance fully in circuit), and only advanced far enough to ensure locking when a sync signal is applied, otherwise distortion will occur.

The base connections of the two tubes mentioned in the previous article are given below.

ECR30

Pin 1 2 3 4 5 6 7 8 9 10 11 12
K G H H A2 — Y2 X2 A3 X1 Y1 —
(A2 is focus anode, A3 final anode, internally joined to A1).

DG7-5

Pin 1 2 3 4 5 6 7 8 9
H K Y1 Y2 A2 X2 X1 A1 G H
(A1 is focus anode, A2, final anode and coating).

It should be noted that the ECR30 has a 4 volt 1 amp. heater whilst the DG7-5 has a 6.3 volt 0.3 amp. heater. The recommended transformer is wound for either type of heater.

PRACTICAL WIRELESS

The current issue of PRACTICAL WIRELESS, now on sale, contains constructional details of the new A.C. Fury Four and further notes on the construction of a valve tester.

The first of a new series dealing with the use of test instruments, notes on amplifier design, Low-cost Hi-fi, Programme Pointers, Oscillatory Circuits, Surplus Bolometer Indicators, the 6CH6 for Audio, in addition to regular features such as the Beginner’s Guide to Radio, Transmitting Topics, Short-wave Section, complete the issue.
Manufacturers' Surplus TV Component Bargains

Wide Angle 38 mm.
- Line E.H.T. trans., Ferrox-cube core, 3-16 kV. ... 25/-
- Scanning Coils, low imp. ... 25/-
- Frame Output Transformer ... 10/6
- Line and Frame (Ferrox-cube) ... 17/6
- Focus Magnets Ferrox-cube ... 10/6

Standard 35 mm.
- Line Output Transformers No. E.H.T. ... 12/6
- Line Output Transformers 6-9 kV. E.H.T. and 6.3 v. winding, Ferrox-cube ... 19/6
- Scanning Coils. Low imp. line and frame ... 10/6
- Frame Output Transformer ... 25/-
- Focus Magnets Ferrox-cube ... 25/-

Viewmaster Large Screen Conversion

Enjoy a 14, 16 or 17 inch screen on your Viewmaster.

All W/B Components as specified.

- Frame transformer. W/B 114.
- Pair Scanning coils. W/B 115.
- Linearity control. W/B 117.
- Focus magnet. W/B 118.

THE COMPLETE PARCEL Including VALVES

£9.3.8d. Carriage 3/6d. extra.

Viewmaster Wide Angle Conversion booklet and full details
Price 3/6 Post Free

Viewmaster Wide Angle Conversion

THE TELE KING

5 Channel 16 or 17 inch Superhet Receiver

This famous and well-tried home constructor set can now be built for

£29/10/-

Only tube and cabinet extra.

EVERY COMPONENT CAN BE SUPPLIED SEPARATELY.

Full constructional data, wiring diagrams and circuits.

Price 6/- POST FREE

WRITE NOW FOR OUR NEW TELE KING PRICE LIST. WE CAN SAVE YOU MONEY.

Magnificent T.V. Cabinet

Complete with full-length doors.
Walnut veneer. Outside dimensions: 41ins. high, 23ins. wide, 24ins. deep.
The front panel finished in sycamore veneer. Originally designed for use with projection receivers.

THE FINEST VALUE EVER OFFERED IN T.V. CABINETS.

LASKY'S PRICE, £14.10.0. PERSONAL CALLERS ONLY.

Lasky's Radio

Lasky's Price £8.10.0d. Carriage 12/6.

Lasky's Radio (New Branch), 42, Tottenham Court Road, London, W.1.

CABINET for THE TELE KING and THE VIEWMASTER

Illustrations available on request. Please design, strongly constructed, finished in walnut veneer, light, medium or dark shade, including 14, 16 or 17 inch mask and glass.

Lasky's Price £8.10.0d. Carriage 12/6.

Lasky's Price

£8.10.0d. Carriage 12/6.

Special Opening Offer

FOR PERSONAL CALLERS ONLY:

- Moving Coil Microphone. Switch incorporated. Listed at £5.5.0.

LASKY'S PRICE

£59/6

Postage and packing charges (unless otherwise stated): on orders value £1 - 1s. 6d. extra; £5-2s. 6d. extra; £10-3s. 6d. extra; over £10 carriage free. All goods fully insured in transit.

Telephone

LASKY'S RADIO: CUNningham 2605.

LASKY'S (HARROW ROAD) LTD.

370, HARROW ROAD, PADDINGTON, LONDON, W.9

Hours: Mon. to Sat., 8.30 a.m. to 6 p.m.; Thurs., half day, 1 p.m.

Postage and packing charges (unless otherwise stated): on orders value:

- £1 - 1s. 6d. extra; £5-2s. 6d. extra; £10-3s. 6d. extra; over £10 carriage free. All goods fully insured in transit.

9in. T.V. Cabinet in polished walnut, complete with chassis, 20/- post paid.

Used 9in. TUBE with ion burn, 17/6 post paid. Used Mullard 12in. with ion burn, 50/- P. & P. 7/6.

Scan coils, low line, low frame, complete with frame o.p. trans. To match above line and E.H.T., 27/6. P. & P. 2/16.

Completely built Signal Generator, Coverse 9V. 230v. 250v. 270v. 250v. 270v. Metal case 10 x 6 x 4in. Size of scale 8 x 8in. 2 valv. and rectifier. A.C. mains 230- 250v. Internal modulation of 400 o.p.s. to a depth of 30 per cent. modulated or unmodulated. R.F. output continuously adjustable up to 100 milli volts. C.W. and mod. switch, variable A.F. output and moving coil output meter. Black 114.10.6, or 24/- deposit and 3 monthly payments of 6/1. P. & P. 4/6. T.V. Converter for the new commercial stations complete with 2 valv. frequency can be set to any channel within the 180-200 MHz band. F.I. will work into any existing T.V. receiver designed to work between 42-59 MHz. Sensitivity 10 Miv. with any normal T.V. set. Input arranged for 200 ohm feeder. 30 ohm feeder can be used with slight reduction in R.F. gain. Circuit R190 as local oscillator. 2301 as R.F. amplifier and mixer. The gain of the first stage, grounded grid R.F. amplifier 10 db. Required power supply of 20v. D.C. at 25 ma. 6.v. A.C. at 9.5 ma. Input filter ensuring complete freedom from unwanted signals. 2 simple adjustments only. £2.15.0. P. & P. 6/6.

T.V. Converter for new commercial stations complete with scan coils and frame output transformer and line and width control. £3.7.6. P. & P. 12/6.

2/- up to £1 and 2'6 up to £2.

PRACTICAL TELEVISION

January, 1955

SIMPLEX and VIEW MASTER

We can supply all items needed for all versions. Our fully detailed lists are available free upon request.

Full Hire Purchase Facilities

WATS RADIO 8, Apple Market, Kingston on Thames, SURREY

QUALITY TELEVISION COMPONENTS

SCANNING COILS
6/10 kW. R.F., E.H.T. UNITS
E.H.T. and OUTPUT TRANSFORMERS
LINE FLY-BACK E.H.T. UNITS

Write for illustrated list (Publication 75)

HAYNES RADIO Ltd., Queensway, Enfield, Middlesex.

SUMER SOLDERING EQUIPMENT AS FOLLOWS

HENLEY SOLON TYPE 875, 1/6 Cash or 2/8 deposit and 3 monthly payments of 4/6. 50 WATT TYPES. OVAL BITS: 2/5 Cash or 2/11 and 3 x 8.11. 150 WATT TYPES (OVAL BITS) 3/6 or 3/8 and 8 x 3/8.

SOLO TOOL ready to be run on a 6-volt battery (car or bicycle battery) 2/9 Cash and 2/- deposit and 3/12. 4/10 Cash. The transformer is available to enable the tool to be run off 200-250 v. A.C. mains at an additional 25/- or 2/6 and 3 x 3/6. A combined De Luce unit consisting of the Tool and transformer permanently mounted and wired, in handsome finished case, 25/- or 10/- and 8 x 8/-.

(Send stamp for Leaflet.)

HEK 4241 (Rev. 1)

LAFCO COMPOUNDS Ltd., Newbury, Berkshire. 8/-14.

IT'S 60% CHEAPER!!

to construct your own aerial, whether

TELEVISION or YAGI

Write for our catalogue, illustrating all fittings, prices, etc. Included in the range we offer Alloy Masts, Insulators, Reflector and Director rod holders, Mast head fittings, together with formula, useful construction hints for designing your own aerial, etc.

Send 9d. in stamps to cover the cost of postage and catalogues are free to:

Irmingeion Ltd.

3R MARLBOROUGH, WILTS.

D. COHEN

RADIO AND TELEVISION COMPONENTS

23, HIGH STREET, ACTON, W.3.

(Opposite Granada Cinema)
Nera Ceiling Projectors

Four Nera Ceiling Projectors have been permanently installed by the BBC in the Television Theatre at Shepherd's Bush.

These large-screen projection receivers, which were first used by the BBC at the 1952 National Radio Show, provide an audience with “double vision,” enabling them to see both the action on the studio floor and the transmitted picture on the receiver screen.

Programme Check Before Cuts

In future, the North-Eastern Electricity Board intends to refer to the BBC before making power cuts so that the “blacking out” of programmes of national importance can be avoided.

Heated Protest

Mr. T. Leonard, a cafe proprietor, was so disgusted with the standard of BBC programmes that he threw both his radio and television receivers on to a public bonfire in Shepperton on Guy Fawkes night.

Boom in Germany

The Eurovision link-up between West European countries has caused sales of television sets in Germany to double. The average number sold each month before July, 1954, was 3,000. Now, with more and more programmes being shared internationally, the average is 6,000.

Not Completely Abandoned

“Coin-in-the-slot” TV, where the viewer inserts money into his set and selects a film he wishes to see, has been dropped in Palm Springs, California, where the system was in its experimental stage. Its backers insist, however, that the scheme has not been completely abandoned.

By February

Mr. L. D. Gammans, Assistant Postmaster-General, announced in the House of Commons recently that the new television transmitter at Talcolneston would be ready to serve central Norfolk by February.

Tower Inquiry

An inquiry has been made, it is learned, into the possibility of using Blackpool Tower as a relay station for commercial TV.

Car Ignition Tester

Tecalemit, Ltd., are to market a car ignition tester designed by the English Electric Company, following an agreement recently concluded between the companies.

The tester is comprised of a small cathode ray tube which gives the car owner a complete picture of his ignition system, enabling him to detect and rectify faults with ease.

State TV Service in Sweden

A television committee has recommended the Swedish Government not to introduce a commercial television service but to keep it under the auspices of the National Broadcasting Corporation. The committee calls for television trans-

missions to begin from July, 1956, to serve the interests of “culture, national education, the community and the home.”

Ghosts from the School?

Residents in the Eltham district of south-east London complain of “ghost” television reception which, it is claimed, is caused by steel girders in the new giant Kings Park Comprehensive School built by the L.C.C. Some viewers in the area report that a mixture of BBC and French programmes is sometimes received while others are bothered by background voices in French or German.

Television Licences

The following statement shows the approximate number of television licences issued during the year ended October, 1954.
The grand total of sound and television licences was 13,701,205.

Region
London Postal 1,026,658
Home Counties 407,577
Midland 731,950
North Eastern 538,612
North Western 551,220
South Western 176,616
Wales and Border Counties 201,152

Total England and Wales 3,633,785
Scotland 190,838
Northern Ireland 17,045

Grand total 3,841,668

Bob Hope TV Shows

When he visited this country in November, American comedian Bob Hope had to film his weekly TV programme which is received in about 50,000,000 homes in the U.S.A. The film was made here to keep up the continuity of the series and may be shown later in this country.

Newsreel Application

Mr. Jack Davis, managing-director of the Monseigneur News Theatres and of British Newsreel, has applied to the I.T.A. for a contract to supply the newsreel for the national network.

"Keeping Up with the Schmidts"

Post Office officials checking on television licences in a small West German town found that 170 residents, although having an "H" aerial on top of the roof, really had no set at all but just wanted to impress neighbours.

No Swiss TV Yet

There is still no regular television service in Switzerland, although test programmes are transmitted on six evenings each week from Geneva and Zurich. These test transmissions are composed entirely of films, however, as Switzerland does not yet possess any TV cameras.

When a television service is eventually inaugurated, it will be run by the State without advertising.

Simplicity the keynote

Speaking to members of the Publicity Club of the Cotswolds in Gloucester recently, Mr. Neal Arden said that when commercial television begins in this country, the keynote of most programmes will be simplicity.

He described how he had helped in the making of a half-hour film which had been shown to the Independent Television Authority as an example of the way commercial shows would be presented.

Sewing Machines Come First

It is learned from Italy that television receivers cost so much in comparison with wages that the average Italian finds TV beyond his means. "The average household," a report states, "as soon as it has a little money set aside, first buys a sewing machine and then a midget motor-cycle. A long way after comes a TV set."

Owing to the rapid progress in the design of radio apparatus and to our efforts to keep our readers in touch with the latest developments, we give no warranty that apparatus described in our columns is not the subject of letters patents. Copyright in all drawings, photographs and articles published in "Practical Television" is specifically reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden.
HANNEY of BATH offers:

VIEWMASTER.—Constructor’s Envelope, 7/-6d. Stage 1, 63/–; two, 63/–; three, 25/1/2; four, 9/10; five, 5/-1/2; six, 7/7/2; seven, 5/1/2.

Conductor pre-amplifier kit (Glass valves), 39/–.

WB100 (sound and vision chassis), 18/6; WB101, 6/-; WB102, 18/6; WB103, WB104, 15/6; WB105, 47/6; WB106, 29/6; WB107, 5/-; WB108, 19/-; WB109, 2.03; (state tube type).

36/–; WB110, 7/16; WB112, 21/6; WB Console conversion kit, 35/–;

T.C.C. Condensers, £7/-10. (Any condenser supplied separately).

MacIntyre pots, 29/–. Densite resistors, 3/-.

COLLIER, 3/–. Condensers, 55/-.

W.B. chassis, 28/6.

ELSTONE Mains trans., 8/-2. T.C.C. Condensers, £7/-10; (any condenser supplied separately).

Tubular and Mica as last month’s list.

WB103A, 52/6.

WB104, 15/6.

WRITE FOR QUOTATION.

Telephone: MID 3418.

January, 1955

PRACTICAL TELEVISION

373

Smith’s for Technical Books

Books on the theory and practice of electronics, new developments, circuit design, and other specialized subjects can be quickly supplied through your local Smith’s shop or bookstall.

W. H. Smith & Son

for SPECIALIST BOOKS

Head Office: Strand House, London, W.C.2
CONVERTOR TYPE 36
For conversion from channel 3 to channel 1, complete with self-contained power supply unit and totally enclosed in a handsome well finished steel case. Price: complete............. £11-17-0

Also available in chassis form less H.T. supply but including mains operated heat supply for inclusion in receivers. Price complete............. £8-0-0

CONVERTOR TYPE AC/4
For weak signal areas. Price complete............. £15-15-0

(Leaflets on request)

S P E N C E R - W E S T
QUAY WORKS,
Gt. YARMOUTH.

Tel.: 3099. 'Grams: Spencer-West, Gt. Yarmouth.
UNDERNEATH the DIPOLE

TELEVISION PICK-UPS AND REFLECTIONS

By Iconos

The television camera in the use of angle shots from widely spaced camera positions. Incidentally, there were no less than 250 additional television stations brought into operation in the U.S.A. during the 12 months to June, 1954, many of them with 25 kW. and 50 kW. transmitters. It is this intense progress which has forced the American motion picture industry to develop Cinescope and other wide screen techniques for colour pictures with an aspect of 2:3:1, otherwise the cash customers at the cinemas are inclined to say "We could have seen that on our TV sets."

STORY TELLING

THE art of story telling on TV is not an easy one. The late Algernon Blackwood could hold one's attention by means of his highly stylised technique. No special props or assistants were necessary; he just sat back in an armchair and talked quietly to the television camera. His marvellous sense of timing and his expressive vocal delivery made every point on sound radio. The addition of picture broadened his technique by enabling us to watch the many slight changes of expression on his face and above all to say "We could have seen that on our TV sets."

BACK PROJECTION

THE use of back projection in BBC studios varies a great deal in the quality of the results. The equipment for film or still photograph slides has reached a high standard of performance. The uneven results we see, I am told, are largely due to over-confidence on the part of the BBC producers. A film cameraman or a still photographer is despatched to obtain specified background scenes at the docks or an airport—and the weather is bad. Nevertheless, the backgrounds are wanted against time and the producer has perforce to accept photographic backgrounds obtained from flat and dull negatives. The technicians cannot be blamed for this. A first requirement of this particular process, and of the " inlay " and " overlay " matte process, is an absolutely first-class photographic negative for the proposed trick background. In America, the use of studio back projection has reached a new peak with the N.B.C. production of Richard II, when a screen 15ft. high and 60ft. long was used. This was illuminated by two 90 amp. arc slide projectors using 4in. by 5in. slides made on heat-resisting glass. A new type of screen made of a blue latex rubber has been found to give a better diffusing quality than previous types of screen. It is stated that the picture can be viewed at an angle of 45 deg. to this screen with no noticeable difference in illumination from that observed at the perpendicular. This means that there is less " hot spot " effect in the centre of the screen, a common fault, and a greater flexibility for

"WAR IN THE AIR"

IN setting out to tell in a TV film the story of air power and its impact on the world during the past 20 years, the BBC set itself a pretty stiff task. " Victory at Sea," the American documentary TV film, produced by Henry Salomon, reached an extremely high standard in the expert handling of film material from many sources and is still well remembered by viewers. Here was a most professional job of film editing, with a wide variety of material skilfully knitted together with commentary, music and sound effects. Could the BBC match it with their documentary, " War In The Air?"? Having seen several episodes, I would say that the BBC has achieved its task most triumphantly, Philip Dorté, who launched and directed the project, assembled a fine team of producers, editors and technicians to tackle the job and the result has been a series of documentaries which have set a new standard. Each episode had its basic back-ground story line, each its build-up of historic sequences smoothly linked with music and commentary, Churchill's war speeches and a cautious use of diagrams. Few viewers could have failed to have been moved by this re-creation of the atmosphere of the terrible days of the Battle of Britain or the stupendous efforts to get the convoys through.

GREAT TEAMWORK

A SPECIAL word of praise must be given to John Elliot, the producer, for his brilliant script and also to John Byers for his excellent sound recording. Philip Dorté, the director of the series, is to be congratulated on what must be his last major undertaking before leaving the BBC for sponsored TV. His next opus will probably appear in due course under the flag of his old chief, Norman Collins, radiated from I.T.A. aerials.

NEWS AND NEWSREEL

THE departure of Philip Dorté from the BBC indirectly focuses attention on the TV News and Newsreel, for it was Dorté who organised the original BBC Television Newsreel and ran it until about a year ago. Since that time, the influence of the sound news side of the BBC has turned it
from being a smooth, slick and entertaining feature into a shapeless, halting mixture of lantern slides, diagrams, and announcements eked out with a few flashes of the original newsreel style. News and Newsreel in its present form is a most unsatisfactory mixture of style, of orientation and its conception is one of the few mistakes of Sir George Barnes. He would be well advised to abandon the "hotch-potch" and adopt once more the conventional cinema newsreel style or the somewhat slower tempo of the original TV newsreel.

"WAITING FOR GILLIAN"

Nigel Balchin's novel, "A Way Through The Wood," has been read by many thousands who were interested to see just how a TV play could be adapted from it. However, Ronald Miller is a playwright and film scenario writer of high reputation and we were entitled to expect a skilled treatment of the somewhat rambling though absorbing story into the newer medium. Mr. Miller did not disappoint us. He divided the plot into several separate sequences, in the manner of the theatre, interpolated with exterior film sequences and montages worthy of his best film scripts, and an ending in the traditional cinema style. Having said this, it will be appreciated that the ending of the TV play is completely different from the book! However, under the skilled direction of Alvin Rakoff and with a distinguished cast, including Anne Crawford, Patrick Barr and Michael Denison, the play held one's interest for the full ninety minutes of its playing time. The most memorable performance, I thought, was the polished acting of Michael Denison as the Hon. William Bule, in which character he had the advantage of the brittle dialogue traditionally spoken by the theatrical cad.

"THE FAST BUCK"

Half-Hour features are the main-stay of American TV. There is a lot to be said for limiting TV plays to this playing time, though such an assertion must not be read as a reflection on the merits of "Waiting For Gillian." Not many TV plays have the weight of story or characterisation to sustain ninety minutes, and "The Fast Buck," a short story in one scene, fitted its twenty-eight minutes, plus titles, to the last second. Here was an amusing little sketch of a couple of confidence tricksters outwitting a master confidence trickster. A twist ending, in the manner of Maugham, was to be expected and duly turned up. This play was well cast, but the major part of the interest was centred on the interplay between a couple of picturesque crooks, played by John McCallum and Alexander Gauge. Both of these artists once more demonstrated their mastery of television acting technique, under the experienced and smooth direction of Dennis Vance. Praise must also be given to the technicians for first class photographic and sound presentation.

MAGNETIC RECORDING

In America, magnetic recording for TV and in the film studios is carried out on a multitude of different widths of film and tape, at various speeds. Recordings are made on 35 mm., 17.5 mm. and 16 mm. perforated magnetic film running at 90 to 45 feet per minute, and also on tape running at 3½ and 15 in. per second. Sound chiefs of British film studios, sitting on a technical committee of the British Film Producers Association, have got together to avoid a repetition of this multitude of standards and have decided to standardise on 35 mm. magnetic film running at 90 feet per minute and tape at 15 in. per second. Manufacturers of sound equipment and engineer representatives of the BBC were invited to attend the deliberations of this Sound Committee, an act of co-operation suggested in this column some months ago. These decisions are well-timed, for photographic recording is on the way out and magnetic is "in."

ARSENIC AND OLD LACE

"THE Projection of Britain," a series of three episodes purporting to describe the growth and influence of the British documentary film carried with it a curious atmosphere of arsenic and old lace. The first instalment perpetuated the myth that "Drifters," an interesting film of the herring fisheries of Scotland, launched the documentary film upon an eager public and initiated a new field of information and instruction. Mention of such monumental documentary films as Ponting's "With Captain Scott in the Antarctic" and "With Cobham to the Cape," or other films which preceded "Drifters," was conspicuous by its absence, though excerpts of these films were shown on TV some time ago. Proceeding with excerpts from various odd films from the Empire Marketing Board, the Post Office Film Unit and the C.O.I., most of the films seemed to strike the same note, with the exception of a very fine sequence from Harry Watt's "North Sea," which had the story and tension demanded by audiences.

One of the exhibits at the Eighth Annual Amateur Radio Exhibition, organised by the R.S.G.B., was the first British regularly-operated amateur TV station which was built two years ago by Mr. Ralph Royle and his son Jeremy, age 21. Mr. Royle is seen showing the camera he and his son use to Mr. H. Faulkner, C.M.G., B.Sc.
ARTHURS HAVE IT!

LARGE STOCKS OF VALVES AND C.R.T.s.

AVO METERS IN STOCK

Avo Model 7 — — — — — — £19 10 0
Avo Model 8 — — — — — — 23 10 0
Electronic Test Unit — — — — — — 27 10 0
Electronic Test Meter — — — — — — 40 0 0
Valve Characteristics Meter — — — — — — 60 0 0
* Cossor Oscilloscopes Models 1052 — — — — — — 104 0 0
1049 — — — — — — 132 0 0

Full range Taylors Meters. List on request.

Leak—TL/10 Amplifier and "Point One"
Pre-amplifier — — — — — — Complete 28 7 9
Chapman Tuning Units — — from 17 6 8

LATEST VALVE MANUALS

MULLARD, OSRAM, & BRIMAR No. 5. 5/- each,
MAZDA 3/- each.

SCOPE SOLDERING IRON AC.DC. HEATING

TIME: 4 v. 6 sec. 6 v. 4 sec. 39/6
Postage 6d. each extra.
Terms C.O.D. or CASH with order and subject to price alterations and being unsold.

VIEW MASTER

IMPROVED SOUND NOISE LIMITER

In response to many requests we have introduced a modification to the View Master which will give a much better degree of Sound Noise suppression than the original circuit.

This we call

THE NOISE MASTER

All items needed to incorporate it in your View Master, together with detailed instructions, are available in kit form.

PRICE 26/- post free.

Sent by return of post.

See Editorial Review on page 335 of the December issue.

WATTS RADIO

8, Apple Market, Kingston on Thames,
SURREY.
Telephone: KINgston 4099

FOR HIGH SPEED SOLDERING

Wolf Electric SOLDERGUNS AND SOLDERING IRONS

TRIGGER FEED SOLDERGUN

Type No 51 is designed specially for all assembly operations. Solder is fed automatically with trigger-action and two reels are supplied—one 15 ft. acid-cored and one 15 ft. resin-cored.

Unbeatable from every point of view, ideal for continuous use and well able to withstand hard workshop treatment. Features include rapid constant localised heat—solid sturdy construction—low current consumption—perfect balance—absolute dependability. A type and bit for every purpose from fine instrument to heavy industrial work. Each tool includes 5 feet tough rubber 3-core cable.

Obtainable from all leading tool merchants and factors. Fully descriptive Brochure free on request.

WOLF ELECTRIC TOOLS LIMITED

PIONEER WORKS, HANGER LANE, LONDON W.5
Telephone: PERIVAL 5631/4
Branches: Birmingham Bristol Glasgow Leeds Manchester Newcastle

PROPS: ARTHUR GRAY, LTD.

OUR ONLY ADDRESS: Gray House,

150-152 Charing Cross Road, London, W.C.2

TELEGRAMS: TELEGRAY, WESTCENT, LONDON.

CABLES: TELEGRAY, LONDON.
The OSRAM NINE - ONE - TWO Amplifier Instruction Book and, Highest Quality Components

Available from Coventry Radio

189 Dunstable Road, LUTON. Phone 2677

Book 3/6d. plus 3d. postage.

Our 1954-5 Component Catalogue 1/-

OPPORTUNITIES IN TELEVISION

144 pages Free!

Television offers unlimited scope to the technically qualified. Details of the easiest way to study A.M. BRITISH, R.E., T.E.E. Cert., City and Guilds, Television, Television Servicing, Sound Film Projection, Radio, A.R.C., Diploma Courses, etc., are given in our 144-page Handbook "ENGINEERING OPPORTUNITIES" which also explains the benefits of our Appointments Dept.

We Guarantee "NO PASS - NO FEE"

If you are earning less than £1.5 a week you must read this book.

Send for your copy NOW—FREE and without obligation.

WRITE TODAY!

British Institute of Engineering Technology

31, Chalcot Road, N.W.1. Phone: Finsbury Park 3153

BATES SURPLUS STORES

49, IVY ST., BIRKENHEAD, CHESHIRE
ADJACENT CHANNEL INTERFERENCE

I have a Pye V4 in conjunction with a J-beam aerial (four element) and have changed over from Holme Moss to the Isle of Man. I get a much better, far more reliable picture but with the following defect.

The picture is crossed by horizontal lines, sometimes about 1/16 in. apart and sometimes perhaps 1/8 in. and these are sometimes hardly noticeable and at others are most distracting. They are continually on the move and change from going up to going down most erratically. I rather suspect that the set is not at fault as others get the same result, but is there anything that I can do to counteract it? None of the ordinary controls has any effect. I might say that in the intervals when there are no such lines the raster looks rather like fine linen with vertical, somewhat irregular lines running vertically. But still, Isle of Man is the best we can get on this Cumberland coast! — W. A. Henderson (Whitehaven).

The picture disturbance described is almost certainly the result of external spurious signals adjacent to the vision frequency of the Isle of Man transmitter. They are most likely originating from the local oscillator of neighbouring receivers tuned to a different channel. Unfortunately, there is little that can be done at the affected receiver to alleviate the effect. It is generally a matter of completely screening the offending set, or installing wave-traps in the associated aerial system. The G.P.O. interference investigation department should be able to give you assistance in this connection.

SOUND ON VISION

I have an Ultra television model V8ULF with J-type aerial and could you please help me with the following? I have a hum all the time but more pronounced during transmissions from the studio, namely, announcements, weather and also during the showing of test card “C.” This hum can be cured by the following:

(a) Tuning selectivity back in an anti-clockwise direction.

(b) Reducing contrast with selectivity adjustment. By doing either of these till hum disappears I get a return a very poor picture, “white-washy” and blurred. I have had the set 18 months and this hum has gradually crept in during the last three months. The set is tuned to Brighton, about 40 miles distant. — C. J. Petter (Chichester).

This effect is known as vision interference on sound and it is, in fact, caused by the vision signal gaining admittance to the sound section. Since you mention that the disturbance has appeared gradually during the last three months, we feel that it is the result of a drift in the alignment of the tuned circuits. If you cannot cut it out entirely by adjusting the local oscillator trimmer for maximum sound, consistent with minimum sound interference on vision, your set may have to go to your Ultra dealer for complete realignment.

H.T. RECTIFIER FAILING

I am having trouble with my G.E.C. TV, model BT4544, which is 12 months old and has had three KT36 and one Z77 valves.

For some time now the width has been closing in towards the centre of the screen. My width control fails to operate on the outward, or the width, to give me a full picture or mask and leaves the black line 1/16 in. to 1/8 in. each side. My horizontal form is all right. But the width will take the picture in, but not out. It is not possible to get test card C at width by well over 1/16 in. each side.

My picture fades out and the only thing which will bring the picture back is to ease back the brightness control to focus again.

This does not happen on every picture. — J. S. Whitehead (Stoke-on-Trent).

The lack of full picture width on your set is almost certainly caused by wear in the metal H.T. rectifier. We would advise, therefore, that you have this part checked for efficiency and replace it if necessary.

A certain degree of defocusing is normal on your set when the overall brightness of a picture suddenly increases—such as during a newsreel programme. We would mention, however, that the effect is aggravated somewhat by a low emission E.H.T. rectifier valve.

A slightly misplaced aerial would have no bearing at all on the above defects.

LOW E.H.T.

I am still having some trouble with my Simplex. The cause of it all is the E.H.T. which is very low—700 volt. But if I disconnect VR9 from the circuit I can get 1,000 volt reading on my electrostatic meter. I have replaced VR9 and also re-checked my circuit, but it is still the same. — R. Avery (Coventry).

Lack of E.H.T. may be due to faulty rectifiers, faulty smoothing condensers (they should be tested at full working voltage), faulty E.H.T. network due to leakage direct to chassis by corona discharge, and finally by too low a value for C34.

These points should be checked.
VIEWMASTER FRAME AMPLITUDE

I have recently converted my Viewmaster to take the Cossor 15in. tube. In doing this I have increased the E.H.T. and scanning amplitude of both line and frame line bases.

Before fitting the line and frame moderator I found the picture width was 3/4 in. short on the right-hand side, and the height and depth suffered the same.

The frame moderator gave me more height but caused a foldover at the bottom and cramping at the top. I have altered C49 to 0.025 µF; this has nearly corrected the foldover but has slightly affected the height. I have tried decreasing R56 to 220 k, but without effect.

The line moderator, even with the 1 MΩ resistor in parallel with R46 removed, still gives me a bright line on the right of the picture.—D. Brooks (Princes Risborough).

To increase frame amplitude even further we suggest the following modification.

Connect a 1 µF condenser between the top of R60 and the junction of R57 and C48, reduce the value of R66 to 350 k, connect a 1,000Ω resistor in parallel with R65, delete R67, then adjust R64 and R65.

To remove the bright line on the left of the picture it should only be necessary slightly to increase the value of R46, the best way being to connect a variable resistor in series with it; at the same time connect a 500pF condenser across the line scanning coils tags L1, L2.

INCREASING E.H.T.

I have an Ekco TS46 which has recently been thoroughly overhauled by a qualified dealer.

Although the picture is good as far as brilliance and contrast are concerned, the general focus is not all that it should be. When the centre is in focus the corners are slightly out, and about 1 in. of the right-hand edge is quite appreciably out of focus.

I have heard that by increasing the E.H.T. to the maximum allowed by the makers (in this case 6,000 volts) it is possible to overcome this fault. Can you tell me how this is achieved?

There is another fault and that is that when the set is first switched on the picture is broken up linearly, but as the set warms up this slowly corrects itself from the bottom upwards until the picture is fully held. This takes about 10 minutes. If the line hold is adjusted when the set is switched on the picture breaks up after about 10 minutes.—K. A. Noll (London).

The E.H.T. potential in your receiver is 6,000 volts, and it is not readily possible to increase it above this value. Uneven focus generally indicates that the focus unit has been shifted relative to the neck of the tube. You should try the effect of adjusting this in your case. The line hold defect is almost certainly caused by a worn line oscillator valve.

USING THREE-CHANNEL TUNER

I wish to replace the front end of my Magnaview receiver with a commercial three-channel tuner, being particularly interested in the "Pilot" as it has means of a slight oscillator adjustment by means of a ring round the selector knob. Could you tell me if this unit would be suitable, or if not could you suggest any other make that would do? The vision L.F. in the Magnaview is 19.75 Mc/s, and sound 23.25 Mc/s, as you probably know. I have plenty of heater and H.T. current to spare.—J. Williams (Manchester).

As a potential aid to minimise possible interference in Band III due to local oscillation radiation, Band I-3 (13 channel) front-end adaptors are designed to have an I.F. output in the region of 35 Mc/s. For this reason, therefore, they would not be suitable for use with your receiver in its present form.

LINE FOLDOVER

I would be very grateful if you could give me any advice with my problem of "foldover." The set is a Marconi VT73DA, and the foldover is on left, accompanied by a bright band about 1 in. from left-hand edge of mask.

I have tried to cure by replacing main rectifier and also cathode bias resistor of line output value KT36, but without success.

At its most the foldover is about 3 in., although this varies at different times.—H. Morris (West Bromwich).

Make sure that the U31 efficiency diode and the associated 2 µF electrolytic capacitor are well up to standard. Check the 0.01 µF capacitor coupling the line generator to the KT36 for insulation—if a slight leak is evidenced the capacitor should be replaced. Suspect the line output transformer and/or line scan coils for short-circuited turns.

INCREASING E.H.T. VOLTAGE

In my Masteradio Model T412 I have altered the tube to a C12B with P.M. focusing. The E.H.T. is insufficient to give me a good picture and I would like to add a 5 Kv R.F. unit in series, to make 10 Kv. Can this be done? I can add an efficiency diode for the consequent non-linearity which will result, or decrease the E.H.T. on the R.F. unit.—P. C. Whittingham (St. Albans).

We do not advocate the modification you suggest. It is, of course, feasible to raise the E.H.T. potential by means of an R.F. E.H.T. generator, though extreme care would have to be taken to achieve correct potential distribution throughout the series network. Another method is by rectifying the pulse potential existing at the anode of the line output valve during the line flyback, and adding the so-derived D.C. in series with the existing E.H.T. supply. The main trouble that will almost certainly arise in both of these cases is the unavailability of sufficient scanning power.

H.T. RECTIFIER FAULTY

I have an Invicta T105 about which I would be most grateful for advice.

With the line amplitude plunger at maximum, on first switching on, the line timebase fails to reach the mask both left-hand and right-hand sides of the screen by 3 in. to 5 in., but after the set has been running about 30 minutes the amplitude creeps up until mask is just filled.

I have renewed line generator EFSO and amplifier PL38M with no effect or fault at all. Frame timebase has no fault.—R. Wells (Alton).

Yours may be due to H.T. rectifier trouble. Two metal rectifiers are used in your set for this purpose, and they often reduce in efficiency to provoke the symptom described. You should check the H.T. line voltage over the period of time it takes for the effect to correct itself; if the voltage rises gradually you should have the rectifiers tested for efficiency. The normal H.T. line potential in your set is 245 volts, and the total H.T. current ranges between 220 to 240 mA.
E.H.T. TRANSFORMER
For the P.T. of Untuned Type (VCR-97)
Pri. tapped 230-250 v. Sec. (1) 3,000 v, tapped at 2,500 v. (2) 4 v. 1 amp. (3) 4 v. 1 amp.
Uphrift Mfg. 1 hole fixing, 51in. x 51in. x 2in. between centres. Wgt. 12 lbs.
ASK FOR
POWER UNIT TYPE 285
Pri. tapped 330-360 v. Sec. (1) 4 v. 1 amp. C.T. (3) 4 v. 1 amp. tapped at 2,500 v. (2) 4 v. 1 amp.
Uphrift Mfg. 1 hole fixing, 51in. x 51in. x 2in. between centres. Wgt. 12 lbs.
ASK FOR
POWER UNIT TYPE 285
Pri. tapped 300-350 v. Sec. (1) 5 v. 1 amp. C.T. (2) 6 v. 1 amp. (3) 8 v. 1 amp. tapped at 2,500 v. (2) 4 v. 1 amp. C.T. (3) 4 v. 1 amp. tapped at 2,5 v. Dim.: 4in. x 4in. x 8in.
Uphrift mounting, 4 hole fixing, 51in. x 51in. x 2in. between centres.
ASK FOR
ACCESSORIES
ASK FOR
15/-
15/-
15/-
15/6 each
26
26
26
26
TOTAL
51/6
51/6
51/6
51/6
CORRESPONDENCE

R1355 AND R.F. UNIT FOR BAND III

SIR,—With Commercial Television always coming nearer, many of us who are using R1355 and the associated R.F. units for our respective Band I transmitters, would like to be given a circuit for conversion of an R.F. unit to Band III, using the present I.F.s of the R1355. It would mean completely breaking down an R.F. unit and rebuilding it for Band III, but it wouldn’t require more than a few seconds to change a Band I R.F. unit for a Band III unit when one desired to switch over to another programme.—J. RODGER (Reverend) (Oldmeldrum).

BAND I CONVERTER RESULTS

SIR,—While at Robin Hood’s Bay, which is on the north-east coast of Yorkshire, last week, I built the Band I Converter Unit as in the October issue of Practical Television.

I found that by using Aladdin tin, coil formers with dust cores for the two oscillator coils, I was able to receive very good vision and sound from Holme Moss on a H.M.V. 1807 London fixed tuned receiver, using a cross type aerial (forward gain 6dB).

I should point out that Robin Hood’s Bay is 85 miles from Holme Moss. Also, if trouble is found in getting the two 18pF condensers, 20 pF will work just as well.

I hope you will publish the above, as I am sure there are many who have a London fixed tuned receiver wishing to use them in the coverage of Holme Moss transmitter.—GORDON R. BUSSEY (A.M.I.E.T.) (Coulsdon).

TUBE DATA—ACR10 AND VCR139A

SIR,—It appears that for some time the cathode-ray tube ACR10 has been sold by many firms as a VCR139A.

According to my reference books these tubes are far from direct equivalents, the only similarity being the base connections, and I am sure that this has misled many experimenters.

The following are the figures quoted in one of my reference manuals:

<table>
<thead>
<tr>
<th>ACR10</th>
<th>Diam. 2.5in.</th>
<th>1h Vh Va1 Va3 — Vg Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.1 4 800 120 12 .217 mm/v</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Both axes)</td>
<td></td>
</tr>
<tr>
<td>Vg8—800</td>
<td>VCR139A</td>
<td></td>
</tr>
<tr>
<td>Diam. 2.75in.</td>
<td>1h Vh Va2 Va3 — Vg Sensitivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 4 100 450 10 .11 mm/v</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Both axes)</td>
<td></td>
</tr>
</tbody>
</table>

Bases: 1 2 3 4 5 6 7 8 9 10 11 12 k g h a2 — y — x a1 x y |

—H. D. FORD (Fleet).

SERVICING ARTICLES

SIR,—I read Mr. Waldron’s letter in the November issue with great interest. It is a good idea to gather information from many quarters to form the basis of an article on servicing.

The sliders on the 1807 chassis are troublesome, but as the defect, or rather the source of it, is nearly always evident (I said nearly) upon operating these controls I did not deem it necessary to include this fact in the article; however, for readers’ information they are 25K sliders made by either Colvern or E.M.I., the two makes being of different size. Take a sample when buying! The fact that the valve noise limiter is often replaced by a metal rectifier was mentioned in the caption beneath the diagram on this subject. It is rare that an EA50 is fitted and the metal type will nearly always be encountered.

I expected plenty of comment in the correspondence column regarding why this fault or that was not included, but the original aim was to help readers to service their own sets; and whether all available information is included or not, the fact is that the ball has been set rolling, and I know that the great interest of readers on this subject will ensure that the maximum information will be forthcoming whether from my pen or not. Mr. Editor, I have a feeling that the subject will not end here.—L. LAWRY-JOHNS (Gravesend).

TUNABLE TV

SIR,—Re your articles on a communication receiver, Ediswan have just introduced a 12-band turret tuner for TV, with replaceable coil units.

Why not a similar job for 12-band radio, —2RF+FC? Surely this would be the “dream come true” for amateurs!

Suggestion (1) Cathode sensitivity control (manual); (2) screen A.G.C.; (3) variable selectivity; (4) B.F.D.; (5) initial values of latest type for U.S.W.

What do other readers think?—E. T. BAILMAN (Southampton).

“CANNED SOUND”

SIR,—It is with great misgiving that I learned recently that many commercial programmes will be on film. “Canned vision” means “canned sound” and one has only to see and hear the “Andy and Andy,” editions to realise how badly recorded sound tracks come over to the viewer. Only “live” sound can be easily received on the ear, and the sponsors will find this a sore point when they are trying to give the public the best in entertainment in order to sell their goods. Film sound tracks can only be amplified over a cinema sound system if good reproduction is desired.—E. COOK (Charlton).

QUERIES COUPON

This coupon is available until Jan. 21st, 1955, and must accompany all Queries.

PRACTICAL TELEVISION, JAN., 1955.
SOLDERING INSTRUMENTS FOR SUCCESSFUL HOME CONSTRUCTION AND ALL SOUND EQUIPMENT SOLDER JOINTING "STANDARD MODEL," as ILLUSTRATED, 25/6

Any volt range supplied, 6/7 to 230/250.

3/16" dia. bit Standard Model Equally suited to daily or intermittent use Made in England Registered Design (British, U.S.A., Foreign Patents) Export Enquiries Invited

WRITE DIRECT TO
ADCOLA PRODUCTS LTD.
Sales, Offices & Works: CRAMER COURT, CLAPHAM
HIGH ST., LONDON, S.W.4. MACaulay 4272

TALLON CABINETS

for television, radio and gramaphone, polished; ready for assembly in packed flat kits or factory assembled.

TELE-KING cabinets with space for radio or tape recorder with or without doors, for 12", 15", 16" or 17".

VIEW MASTER cabinets, console, or table, 12 and 17in.

P.W. 3-SPEED AUTO-GRAM CABINET. LYNX CABINET. ARGUS CABINET.

RADIOGRAM, RADIO AND SPECIAL CABINETS TO CUSTOMERS' DESIGNS. SUPER CABINETS FOR SOUNDMASTER. MINI-FOUR AND CRYSTAL DIODE cases at 14/6 each, including postage:

Consult your local dealer or write to:
(Dept. P.T.I.)

JAMES TALLON & SONS LTD.
MANOR WORKS, MANOR ROAD
RUGBY Telephone: RUGBY 2070

WE SPECIALISE ONLY IN RADIO COMPONENTS— LET US QUOTE YOU BY RETURN FOR ANY RADIO VALVES OR PARTS YOU REQUIRE —

HIRE PURCHASE TERMS ON KITS, INSTRUMENTS, ETC.

Osram "912" and Mullard "510" Amplifier Parts in Stock.

NEW CATALOGUE WITH H.P. TERMS 6d. QUOTES S.A.E.

RADIO SERVICING COMPANY
82 SOUTH EALING ROAD
LONDON W.5 EAL. 5737
NEXT DOOR SOUTH EALING TUBE STATION (TURN LEFT)
30/-
FOR FREEDOM FROM TV SWAMPING INTERFERENCE FROM NEARBY TRANSMITTERS

If the interfering station operates at 30 Mc/s, or lower, use model E.5028. If it operates at 70 Mc/s, or higher, use model E.5031. Relieves interference from the following classes of stations: Broadcast, Press, Radar, Beacon, Amateur, Aircraft, Taxis, Ambulance, Fire, Shipping, Military, Police, etc.

AS SUPPLIED TO THE G.P.O.
SEND S.A.E. FOR FREE LEAFLET

Labgear (Cambridge) Ltd.
WILLOW PLACE, CAMBRIDGE Tel. 2494—2 lines

Forrest
Combined ISOLATING BOOSTER Transformers
Enable your old CRT to have many more months of useful life. Acknowledged by ALL the leading service organisations and Maintenance Companies to be by far the most effective Transformer for this purpose on the market. PRICE 18/9.

LINE E.H.T. REWINDING SERVICE
The original repair firm for all types of winding. Wave winding, etc. New Transformers to your requirements. 2-3 days delivery.

ALL PW AND PT DESIGNS
Established over 30 years.

H. W. FORREST,
349, HASLUCKS GREEN ROAD, SHIRLEY, BIRMINGHAM.
EXPERIMENTAL KITS
in Radio, T.V. etc.

LEARN THE
PRACTICAL WAY

Specially prepared sets of radio parts from which we teach you, in your own home, the working of fundamental electronic circuits and bring you easily to the point when you can construct and service radio sets. Whether you are a student for an examination; starting a new hobby; intent upon a career in industry; or running your own business — these Practical Courses are intended for YOU — and may be yours at a Very Moderate Cost.

EASY TERMS FROM 15/- A MONTH
With these outfits, which you receive upon enrolment, you are instructed how to build basic Electronic Circuits (Amplifiers, Oscillators, Power Units, etc.) leading to complete Radio and Television Receiver Testing and Servicing.

TELEVISION — With this equipment you are instructed in the design, construction, servicing and testing of a modern high quality Television Receiver. ALL EQUIPMENT SUPPLIED IMMEDIATELY AND REMAINS YOUR PROPERTY

BEGINNER'S RADIO OUTFITS
— For carrying out basic practical work in Radio and Electronics, from first principles and leading to the design and building of simple Receivers.

ADVANCED RADIO OUTFITS — With this equipment, you are instructed in the design, construction, testing and servicing of a complete modern T.R.F. and Superhet Radio Receiver.

OTHER COURSES WITH OUTFITS INCLUDE:
MECHANICS • ELECTRICITY
CHEMISTRY • PHOTOGRAPHY
Carpentry
ALSO DRAUGHTSMANSHIP • COMMERCIAL ART
AMATEUR S.W. RADIO • LANGUAGES • ETC.

E.M.I. INSTITUTES

The only Postal College which is part of a world-wide Industrial Organisation.