Practical Television
AND TELEVISION TIMES
DECEMBER 1960

The "Olympic" Tuner

A Triode Converter
Line Oscillator and Sync. Circuits
Replacing C.R. Tubes

www.americanradiohistory.com
TELEVISION SPARES

All Makes All Models By return of post
LINE OUTPUT TRANSFORMERS FRAME OUTPUT TRANSFORMERS
DEFLECTOR COILS
LINE AND FRAME BLOCKING OSCILLATOR TRANSFORMERS
ALL POTentiOMETER AND SLIDER CONTROLS
MAINS DROPPERS METAL RECTIFIERS
GERMANIUM DIODES FOCUS MAGNETS
ION TRAPS E.H.T. CONDENSERS

Our Range of Spares is probably the most extensive in the country and includes all Spares for Tape Recorders, Radio and Record Player Units.
Technical Advice Free. Service Manuals supplied on loan.
Terms: C.W.O. or C.O.D. All Components are supplied at list prices, plus 2 6 p.p.

Please enclose S.A.E. with all enquiries.

NEWBURY RADIO
272 ROMFORD ROAD, FOREST GATE, LONDON, E.7. MARyland 3100

SPECIAL FOR THE "HAMS" RADIO STATION

Illustrated

½ inch detachable bit soldering instrument
List No. 70
Combined Protective Unit with Wiper/Abrasion Pad and Solder Reel
List No. 700

Apply SALES & SERVICE

ADCO (Regd. Trade Mark)
GAUDEN ROAD
CLAPHAM HIGH ST.
LONDON, S.W.4

Telephones: MACaulay 4272 - 3101
Telegrams: "SOLJOINT, LONDON"

TELEVISION TUBES REBUILT

★ A NEW GUN IN EVERY TUBE
★ BUY DIRECT FROM THE FACTORY
★ 12 MONTHS' GUARANTEE

12 inch £5.0.0
14 inch £5.10.0
17 inch £6.10.0

Immediate dispatch on receipt of Remittance
Carriage and insurance 12/6 extra

£1 Refunded on receipt of your old Tube

SPECIAL TERMS TO THE TRADE

Our new Sapphire Tubes with 18 months' guarantee are also available.

MARSHALL'S for TELEVISION LTD.
131 St. Ann's Road, Tottenham, London, N.15
STAMFORD HILL 3267
BENTLEY ACOUSTIC CORPORATION LTD.

38 CHALCOT ROAD, CHALK FARM, LONDON, N.W.1.

Telephone: PRIMROSE 9090

FOR IMMEDIATE DESPATCH PHONE PRIMROSE 9090 AND ASK FOR "CASH ON DELIVERY SERVICE." ALL POST ORDERS CLEARED SAME DAY AS RECEIVED. PLEASE ENQUIRE FOR ANY TYPE NOT LISTED WITH S.A.E.

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA4</td>
<td>500 ft.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QA6</td>
<td>500 ft.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QA7</td>
<td>500 ft.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QA8</td>
<td>500 ft.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTRICAL CONDENSERS

- **32 mfd., 250 V.:**
 - 32 mfd., 350 V.: 2/6
 - 8 x 8 mfd., 450 V.: 3/4

ALL ITEMS OFFERED ARE NEW, FULLY GUARANTEED, AND PRODUCED ON THE BEST MANUFACTURERS.

WE DO NOT OFFER ANY DAMNISHED OR REMANUFACTURED GOODS OF ANY KIND OR MAKES OF DAMNISHED OR REMANUFACTURED GOODS.

JUST OUT! MIDGET SILICON RECTIFIERS. OUTPUT 120 VOLTS AT 8 AMP. TWO IN SERIES GIVE 240 VOLTS AT 8 AMP. NO RESISTOR. 106 EACH.

- **Standard Can:**
 - ELECTRICAL RESISTORS:
 - 32 mfd., 250 V.: 2/6
 - 8 x 8 mfd., 450 V.: 3/4

- **Post-Order Charge 6d. per Item. Orders Over £5 Post Free.**
 - Shop Hours 8:30-5:30. Early Closing Saturday.

ELECTRICAL RESISTORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Resistance</th>
<th>Color Code</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 k</td>
<td>10 k</td>
<td>22</td>
<td>100</td>
<td>1.10</td>
</tr>
<tr>
<td>1 M</td>
<td>100 M</td>
<td>22</td>
<td>100</td>
<td>1.10</td>
</tr>
</tbody>
</table>

METAL VACUUM TUBES

- **Vacuum tubes**
 - **Power Tubes:**
 - 12AX7: 100/6
 - 12AU7: 100/6
 - 12AU9: 100/6
 - 12AV7: 100/6
 - **Output Devices:**
 - 12AX7: 100/6
 - 12AU7: 100/6
 - 12AV7: 100/6

SPECIAL OFFER

- **500 kV.:**
 - 32 mfd., 250 V.: 2/6
 - 8 x 8 mfd., 450 V.: 3/4

DC-2 EXTRA. Full List, With Terms of Business, 66.

- **Any parcel insured against damage in transit for only 6d. extra.**

Voluntary Contributions

- **100% agrees to**
 - 31/2 d.
 - 51/2 d.
 - 1 s.
 - 2 s.
 - 3 s.
 - 5 s.
 - 10 s.
 - 20 s.
 - 50 s.
 - 111/2 d.
 - 2 s.
 - 3 s.
 - 5 s.
 - 10 s.
 - 20 s.
 - 50 s.
 - 111/2 d.
 - 2 s.
 - 3 s.
 - 5 s.
 - 10 s.

Instruments

- **Phone:**
 - PRIMROSE 1721

Telephone

- **PRIMROSE 9090**
YOUR C.R.T. completely FACTORY REBUILT

New heater and Cathode assembly

COMPARE OUR PRICES

* 12 in. £3.0.0 * 14 in. £3.10.0
(Money back if not completely satisfied)

* 17 in. £4.0.0 * 21 in. £5.0.0

Carriage and Insurance add 12/6

12 months’ Guarantee

All Mullard and Mazda Types Rebuilt—Fast Service
Send your Tube now — Terms C.W.O. or Pro-forma Invoice

KING’S TELE SERVICE CO.
101-111, DAWES ROAD :: FULHAM, S.W.6

FREE TO AMBITIOUS ENGINEERS

WHICH IS YOUR PET SUBJECT?

GET SOME LETTERS AFTER YOUR NAME!

PRACTICAL EQUIPMENT

INCLUDING TOOLS!
The speciality: Electronics Division of B.I.E.T. (Incorporating E.M.I. Institutes) NOW offers you a real laboratory training at home with practical equipment. Ask for details.

B.I.E.T. SCHOOL OF ELECTRONICS

POST COUPON NOW!

Please send me your FREE 156-page ‘ENGINEERING OPPORTUNITIES’ (Write if you prefer not to cut page)
NAME..
ADDRESS...

THE B.I.E.T. IS THE LEADING ORGANISATION OF ITS KIND IN THE WORLD

FREESTEP TO AMBITIOUS ENGINEERS

THE LATEST EDITION OF ENGINEERING OPPORTUNITIES

Have you sent for your copy?
ENGINEERING OPPORTUNITIES is a highly informative 156-page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio & Electronics Courses, administered by our Specialist Electronics Training Division—the B.I.E.T. School of Electronics, explains the benefits of our Employment Dept. and shows you how to qualify for five years promotion in one year.

We definitely Guarantee
“NO PASS—NO FEE”
Whatever your age or experience, you cannot afford to miss reading this famous book. If you are earning less than £20 a week, send for your copy of "ENGINEERING OPPORTUNITIES" today—FREE.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Incorporating E.M.I. Institutes) (Dept. SE 20), 29 Wright’s Lane, London, W.8

www.americanradiohistory.com
NEW 108K (10in.) TUBES SPECIAL OFFER: 29/-

17 INCH 5 CHANNEL TV'S
Complete table models with all valves and tubes. Amazing value. £6.19 Each

4-SPREAD RECORD PLAYERS
Latest B.S.R. T.V. Tunable together with lightweight speaker. Select different stations. £3.10 Each

100 CONDENSERS 10/- Assortment of miniature silver mica and ceramic condensers. 10,000 pk. Low value over 50.

100 RESISTORS 7/6 Assortment 8/- choose. 11/- 100m.

CO-A X
Standard and low base, 25 yds. 18/-.

COAX 1/2 in. Wall outlet boxes 3/-

SMASH HITS
STEREO AUTOCHANGERS

STEREO TUBE UNITS
Consisting of several R.S. U.K. models, together with two separate 3 watt mains amplifiers. 3 valves, 5 tubes, complete. £11.10 Each

WATT AMPLIFIERS
As above, ideal for P.A. Systems or Rooms.

TV PROJECTION UNITS
Complete matched Philips optical units with Mullard MW22-3020 projection tube. £3.10 Each

VALVES SOURED GUARANTEED 3 MONTHS.

13 CHANNEL TV'S
TABLE MODELS. FAMOUS MAKES. Complete with all valves and tubes. These sets are unrepeatable. Direct from manufacturers and are not guaranteed to be in working order.

AMAZINGLY POPULAR-IDEAL SECOND SETS

12" £3.19
14" £6.19
17" £9.19

12" 5 CHANNEL TV'S 45/-
14" 5 CHANNEL TV'S 85/-

12"TV's. 5 channel table models. Automatic tuning makes them ideal for the average home. £5.19 Each direct from Makers. No. of tubes and valves varies. £3.50 Each

14" TV's. £4.99 Each

RECORDERS
Latest 78 rpm 12" and 14" makes. £1.35 Each

EXTERNAL/INTERNAL L.T.V. CONVERTERS
With Power and Pack. Complete. £2.89 Each

TURRET TUNERS
88 Me. B.R. Standard Mains Make with condenser £7.99 Each

EXTERNAL/INTERNAL L.T.V. CONVERTERS
With Power and Pack. £3.50 Each

EXTRAワイドテレビ

FREE INSURANCE.

DIRECT FROM FACTORY
New low prices. Top quality guaranteed. All valves and tubes, new and reconditioned. £1-10 £3

12 MONTHS 6 MONTHS
RECONDITIONED REVACUUMED
£1-10 £2-4
£2-4 £4-10
£6-15 £8-15
£10-18 £15-18

WATT AMPLIFIERS
As above, ideal for P.A. Systems or Rooms.

TV PROJECTION UNITS
Complete matched Philips optical units with Mullard MW22-3020 projection tube. £3.10 Each

VALVES SOURED GUARANTEED 3 MONTHS.

13 CHANNEL TV'S
TABLE MODELS. FAMOUS MAKES. Complete with all valves and tubes. These sets are unrepeatable. Direct from manufacturers and are not guaranteed to be in working order.

AMAZINGLY POPULAR-IDEAL SECOND SETS

12" £3.19
14" £6.19
17" £9.19

12" 5 CHANNEL TV'S 45/-
14" 5 CHANNEL TV'S 85/-

12"TV's. 5 channel table models. Automatic tuning makes them ideal for the average home. £5.19 Each direct from Makers. No. of tubes and valves varies. £3.50 Each

14" TV's. £4.99 Each

RECORDERS
Latest 78 rpm 12" and 14" makes. £1.35 Each

EXTERNAL/INTERNAL L.T.V. CONVERTERS
With Power and Pack. Complete. £2.89 Each

TURRET TUNERS
88 Me. B.R. Standard Mains Make with condenser £7.99 Each

EXTERNAL/INTERNAL L.T.V. CONVERTERS
With Power and Pack. £3.50 Each

EXTRAワイドテレビ

FREE INSURANCE.

DIRECT FROM FACTORY
New low prices. Top quality guaranteed. All valves and tubes, new and reconditioned. £1-10 £3

12 MONTHS 6 MONTHS
RECONDITIONED REVACUUMED
£1-10 £2-4
£2-4 £4-10
£6-15 £8-15
£10-18 £15-18

WATT AMPLIFIERS
As above, ideal for P.A. Systems or Rooms.

TV PROJECTION UNITS
Complete matched Philips optical units with Mullard MW22-3020 projection tube. £3.10 Each

VALVES SOURED GUARANTEED 3 MONTHS.
Midland "New Alumina" rebuilt C.R.T.s conform to the highest standard of reliability—offering you the finest value available today. Each tube is completely rescreened, aluminised and fitted with a new gun unit.

Midland's reputation for quality and the rapidly growing demands for these dependable tubes are your assurance of satisfaction.

12 and 14in.—£5.00 15 and 17in.—£5.10 21in.—£8.00 (all types).

Reliable Rebuilds at Popular Prices.

Exceptionally low-priced Midland Rebuilds—the tubes you can always depend on.

12in.—£4.10 21in.—£7.00 (all types).

FOR THE MAN ABOUT THE HOUSE, A SOLDERING TOOL!

PORTABLE AMPLIFIER, 40/6 (Mr. DEA) 3 watts. ECL82 valve, A.C. mains. O.P. Transformer included (two controls). Latest circuit including negative feedback. Knobs 2/6 extra. P. & P. 3/6.

SPEAKERS 5/6. Limited quantity of these modern type speakers. They are tested and they have a slight tone fault, that is required, not affecting the quality. P. & P. 2/6.

TAPE AMPLIFIER, 515.6. 6 valve amplifier. Output 3.5 watts. Valve line up: ECC83, ECL82, 6BQ6, 6BQ5, input for Microphone, Radio and Gram. Controls—Record playback, volume, tone, and Off/On. Size 8 x 3 x 4in. Ins. & Carr. 4/6.

EXTENSION, 19/9, in original cabinet of attractive design. Complete, fitted with 5in. F.M. Speaker of the highest quality, flex and switch. Ready for use. Ideal for kitchens or workshop, etc. Ins and Carr. 2/6.

1.6. AERIAL 8/6. For all i.T.A. Channels or outdoor or indoor, 2 elements. Famous manufacturer. Sold at half the normal price. P. & P. 6/6.

CO-AXIAL CABLE, 6y. PER YARD. Cut to any length. Good quality at very low price. Allow 1/6 postage on 20 yards. 4S/- per 100 yards. P. & P. 2/6.

DOUBLE BEAM "SCOPE" for D.C. & A.C. APPLICATIONS

Engineered to precision standards, this high-grade instrument is made available at the lowest possible price, incorporating the essential features usually associated with luxury instruments. This "SCOPE" will appeal particularly to Service engineers and Amateurs. A high gain, extremely stable differential Y-amplifier (30 mV/C.M.), provides ample sensitivity with A.C. of D.C. inputs. Especially suitable for measurement of transis- tor operating conditions where maintenance of D.C. levels is of paramount importance. Push-pull X-amplifier: Fly-back suppression; Internal Time-base Scan Waveform available for external use. Full output available for checking TV Line O.P. transformers, etc.; Provision for external — 1’’ and CRT Brightness Modulation. A.C.: mains 210-250 vac. E.H.T. plus P. & P. 7/8, or 50-60 deposit, plus P. & P. P. 7/8 and 12 monthly payments of 21/6.

FULL 12 MONTHS' GUARANTEE INCLUDING VALVES AND TUBE.

ALIGNMENT ANALYSER TYPE MC12

A.C. mains 200-250 v. Provides: "Wobbulator" (Swept Frequency) operation, for FM/TV alignment linear fre- quency sweep up to 12 Mc/s. From 400 Kc/s-60 Mc/s. Capacitance Measurement. Two ranges provided 0-60pF. and 0-300pF. Special facility enables true resonant fre- quency of any tuned coil, i.e., transformer, etc., to be rapidly determined. Cash price £6.19.6 or 25/- deposit and 6 monthly payments of 21/6. Plus Postage and Packaging 5/-. Coverage 120 Kc/s-84 Mc/s. Metal case 10in. x 61in. x 5in., grey hammer finish. Incorporating three miniature valves and Metal Rectifier. A.C. Mains 210-250 vac. Internal Modulation of 400 c.p.s. to a depth of 30%; modulated or unmodulated R.F. output continuously variable. C.W. and mod. switch variable A.F. output and moving coil output meter. Grey hammer finished case and white panel. Accuracy plus or minus 1/2.

SIGNAL GENERATORS

C.W. and mod. switch, variable A.F. output. Incorporating magic-eye as output indicator. Accuracy plus or minus 1/2.

Cash £6.19.6 or 25/- deposit and 4 monthly payments of 21/6. Plus Postage and Packaging 5/-.

CHANNEL TUNER

Will tune to all Band I and Band III stations. BRAND NEW by famous manufacturers complete with P.C.C. 84 and P.C.C. 3510 valves (in series 84, 18-19 or 33-35). Also can be modified as an aerial converter (instructions supplied). Complete with knobs. 32/6 Plus 3/6 P. & P.

HEATER TRANSFORMER

To suit the above, 200-250 v., 6/-. Plus 1/6 P. & P.

8-WATT PUSH-PULL AMPLIFIER

COMPLETE WITH CRYSTAL MIKE AND SPEAKER.

A.C. mains 200-250 v. 4 ire 10/14, x 61in. x 3in. Incorporating 6 valves, H.F. pent., 2 triodes, 2 output pens and rectifier. For use with all makes and type of pick-up and mike. Negative feed back. Two inputs, mike and gram., and controls for game. Separate controls for Bass and Treble lift. Response fast from 40 cycles to 15 Kc/s. £4.19.6 or 25/- deposit, plus 2/6 P. & P. 1/6.

RADIO & T.V. COMPONENTS (Acton) LTD.

23 HIGH STREET, ACTON, LONDON, W.3.

All enquiries S.A.E. GOODS NOT DESPATCHED OUTSIDE U.K.
THE NEW SALFORD
SELECTEST

MODEL SUPER K 1 mA movement.
39 self-contained ranges for measuring
A.C., D.C. voltages and currents and resistance.
MODEL SUPER 50 50 μA movement
Send for leaflet No. S.K.50/6002/PT
SALFORD ELECTRICAL INSTRUMENTS LTD.
PEEL WORKS, SILK STREET, SALFORD 3, LANCs. Tel: Blackfriars 6408
London Sales Office: Magnet House, Kingsway, W.C.2. Tel: Temple Bar 4608
A Subsidiary of THE GENERAL ELECTRIC CO. LTD. OF ENGLAND

A NEW-PRACTICAL WAY
of UNDERSTANDING
Radio : Television
Electronics
Including: Transistors; VHF/FM; Hi-Fi equipment;
Computors; Servo-mechs; Test instruments;
Photo-electrics; Nucleonics, etc.
Radiostructor—an organisation specialising in
electronic training systems—offers a new self-
instructional method using specially designed
equipment on a “do-it-yourself” basis. You learn
by building actual equipment with the big kits
of components which we send you.
You advance by simple steps, performing a whole
series of interesting and instructive experiments—
with no complicated mathematics! Instructional
manuals employ the latest techniques for showing
the full story of electronics in a practical and
interesting way—in fact, you really have fun whilst
learning! Fill in the coupon below, for full particulars.

POST NOW
TO RADIOSTRUCTOR (DEPT. G.40)
READING, BERKS.
Please send brochure, without obligation to:
Name ____________________________
Address __________________________
(We do not employ representatives)

12/60
THE REPORT OF THE BBC

The report of the BBC which was published in October gave rise to a great deal of comment in the daily Press, and the statements concerning the views of the BBC on the future of television were given particular prominence. Under the heading "Tasks for the Future", the report states that the Corporation sees as its first task the need to extend the coverage of its transmitters to those areas which at present lack a television service or do not possess a satisfactory service. The BBC has in mind especially the need in the remoter parts of Scotland and Wales. This policy statement shows that the Corporation is aware of the limitations of the present service and, sensibly, intends to improve it before, or together with, the introduction of an alternative service. It must be remembered that where the coverage is at present poor—in remote areas—the need for a television service is great owing to the lack of other forms of entertainment.

Where the introduction of another service is concerned, and it is decided that the uncommitted channels in Band III should be used for an additional television service instead of being employed to extend the present coverage, the report states that "the BBC would wish to provide the additional service". The report continues, "It remains the BBC's objective to provide the public with a planned choice between two different television programmes as soon as possible. This is necessary to the proper fulfilment of the Corporation's obligations as a public service." The BBC considers that this second service would enable it to "increase the number of serious, cultural and informational programmes; cater more fully for regional needs than is possible at present; extend educational broadcasts; provide more opportunity for programmes of an experimental nature".

Of the two alternative uses of the remaining channels in Band III, we think that the proposal to use them to increase the coverage of existing transmitters is the better. As the BBC points out, television in Bands IV and V is all the more likely to succeed if a completely new programme is transmitted to give viewers an incentive to purchase new receivers or the new equipment necessary to receive the transmission.

The report states that the BBC would also be prepared to introduce colour television in any band when the time comes. The point is made that the studios at the Television Centre have been designed so as to be suitable for the introduction of colour at any time.

This latest report of the BBC has already given rise to many comments and we consider that, so far as the future of television is concerned, a number of factors have been mentioned which are worthy of more attention than has so far been bestowed upon them.

Our next issue, dated January, 1961, will be published on December 22nd.
A.M. Radio from Spare Turret Coils

RETUNING THE LOCAL OSCILLATOR TO 38 MC/S

By L. E. Higgs

Unused channel coils that are fitted in many TV receivers can be modified, in many cases, to tune down to the local broadcast radio station frequencies. The convenience of changing from either channel to A.M. (amplitude modulation) radio for a quick news check, or to

Fig. 1.—Aerial coil assembly.

listen to a short item, without switching off the TV and waiting for the radio to warm up is one advantage. The other is that all modifications are made on detachable spare coils from the turret, without interfering in any way with the circuit of the receiver. If a mistake is made, only a coil is spoiled.

Coil Information

Since about 1955, most thirteen channel receivers use the standard intermediate frequencies of 35Mc/s vision and 38.15Mc/s for sound. This makes the coil information similar for a whole range of sets. Added to this, the turrets fitted in a large range of sets are similar, and often originate from the same factory. These turret types are still being incorporated in sets today, and can be identified by the shaped coil mouldings (Fig. 1). Almost any set with this type of coil—standard I.F.’s should function on radio from the modifications given here.

Receivers using different types of turrets, converted sets with the old low I.F., in fact almost any tuner with detachable coils can be modified using this procedure as a guide. Switch tuners, continuously tuned front-ends, and incremental inductance tuners are not suitable.

Briefly then, the oscillator coil has additional turns added to bring its frequency down to around the 38.15Mc/s sound I.F. The mixer grid coil is replaced with a M.W. pre-tuned coil. The cascode anode coil is dispensed with and replaced by a resistor and coupling capacitor. The aerial coil is replaced by another M.W. pre-tuned coil but with a coupling winding.

The Modifications

Remove all the windings from a spare mixer coil except the slug-tuned oscillator winding. Rewind the oscillator section, tags 1 and 2 (Fig. 2), until, after trial and error guided from the coil table, the oscillator runs at the sound I.F. and can be tuned off on either side of this point. When the oscillator passes through the sound I.F., a hum and rushing noise is heard accompanied by disturbances of the brilliance of the unsynchronised raster. The coarse-tuning slug decides this frequency. Coat this winding with cellulose cement to fix the turns, and improve frequency stability. Cut off the remaining length of paxolin tube (Fig. 2) and solder a 56k resistor 1W with short ends across the cascode output anode coil contacts. In Fig. 2 these are shown as pair 5 and 6, but check the circuit of the turret in question as it may differ from the examples shown. Now connect a capacitor from the anode contact of the
cascode to the mixer grid contact (6 and 3 in the particular example). This capacitor is not critical. Try 500pF at first until a good signal strength is obtained and then reduce it to improve selectivity compatible with output—47pF is about the lowest tolerable.

Wind a medium wave coil to fit between the mixer grid and the bottom contact of the grid circuit (the pair of contacts from which the original grid winding was removed) 3 and 4 in Fig. 2. This coil is quickly hand-wound on the can of one of the turret valves, slipped off, tested and adjusted to one of the required stations and bound with tape in three places in a circular bundle winding. The whole coil is shaped into an ellipse and wired on to the coil holder and cemented with an adhesive. Do not cement it until all the adjustments have been completed. The problem with these coils is to obtain a good Q in a small space and yet leave them easy to adjust, and the rough coils shown here work well, although time and patience spent with alternative arrangements and miniature screened dust-cored M.W. types would probably give better efficiency.

Pre-tuning the Coils

The method of pre-tuning the M.W. coils will depend on the equipment available. A signal generator and a valve voltmeter were used by the author (Fig. 3). Good positive peaks were obtained with the signal generator set to the station frequency. The turns are removed one by one until resonance shows as a peak reading on the valve voltmeter, and are then bound with tape, soldered on to coil former, and checked again.

When no equipment is available, the coils can be tuned by substituting them for the medium wave coil in a TRF radio and adjusting for maximum volume on the required station. It is important to remember to keep the tuning condenser vanes fully out of mesh during this operation, which is repeated until optimum results are obtained. A superhet would not be suitable owing to the ganging between the oscillator and the R.F., which would prevent keeping the R.F. vanes open.

The Aerial Coil

A check should be kept of the number of turns needed for the mixer coil as this saves time when winding the aerial coil. For this repeat the winding but this time use exactly the same number of turns as were found to be needed for the mixer. Do not remove it from the screening can when completed, but wind another coupling winding of 25 per cent of the turns just fitted and bind the two coils with a couple of layers of tape and remove from the can used as a former. Make sure that the ends do not become mixed. Now fit on to a stripped-aerial-coil former.

The way these four connections are made to the contacts will depend upon the reader's particular turret circuit. Generally, after a study of the stripped winding connections and the circuit, the small 25 per cent aerial coupling winding goes between the aerial inner and the coaxial outer (not always the chassis), and the tuned R.F. coil between the lower cascode grid and the chassis or old winding connection, whichever is better.

Make the tests for performance described below and when satisfied with one station, repeat for the other station. Make sure that the aerial socket does not become connected to the mains via direct chassis connection.

Coil Details

Oscillator: tin. dust-core tuned, 17-25 turns (strip off from 25 turns), 32s.w.g.
M.W. mixer coil: 247m. tin. in diameter air core “bundled” winding, 47 turns 32s.w.g.
330m, 47 turns. 32s.w.g.
R.F. and aerial coils; as for mixer but with 25 per cent additional winding. 32s.w.g.

The information above can only be approximate and should only be used as a guide. This is due to the circuit variations and coil positioning, the turns spread, and the dielectric of adhesive soaked into windings.

Testing and Adjusting

It cannot be overstressed that the turret winding must not be altered. To do so can spoil the TV reception. Manufacturing experts leave this section well alone while it is working, especially the trimmers. Use a long aerial plugged into the inner only at the start. With the set on, select the newly fitted radio coil pair and, with the volume full up, tune the oscillator slug slightly above and below the I.F. and several stations should be heard; the pre-tuned should be loudest. Watch
the screen when adjusting because there are two places that the selected station can appear owing to the sum and difference heterodyning of the local oscillator. Between these two points the described effects will occur as the oscillator runs at the I.F. It is important to choose the highest oscillator setting as this lies outside the vision I.F. acceptance band. The wrong setting can be seen in Fig. 4, and shows up on the screen as a strong brightening of the raster while the correct setting leaves the raster at "no signal" illumination but slightly rippled and torn by other signals.

When the station is tuned in, try the normal TV aerial. This will probably give weaker reception, and a loft or outside aerial is essential for a good signal. If a good result is obtained, the next pair of station coils can be made. However, if the selectivity is poor, then reduce the size of the coupling capacitor until the best result compatible with good volume is obtained. The setting of the contrast and sensitivity controls will affect the signal output and, in the absence of AVC on some models, any overloading, choking, sound can be cured by slight oscillator detuning or by reducing the number of turns on the aerial coupling winding. It is assumed that the alignment of the vision I.F. is reasonably accurate. Because prolonged running of the oscillator at the intermediate frequency can overrun the video output valve, or possibly affect the vision detector if it is a crystal type, it is wise to short the vision I.F. out with a 1000pF capacitor from the last I.F. valve anode to chassis while tests are made. This can be removed for a second or two when the screen has to be observed and, of course, when the work is finished.

Curing Instability

The many things that cause frequency shift in a turret would in a good proportion of cases make the local oscillator "pull into the I.F." and the powerful signal, greatly amplified, could radiate back into the whole of the turret and I.F. stages.

(Continued on page 152)
Television Receiving Licences

The following statement shows the approximate number of Television Receiving Licences in force at the end of September, 1960, in respect of television receiving stations situated within the various Postal Regions of England, Wales, Scotland and Northern Ireland.

<table>
<thead>
<tr>
<th>Region</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>London Postal</td>
<td>1,874,893</td>
</tr>
<tr>
<td>Home Counties</td>
<td>1,480,283</td>
</tr>
<tr>
<td>Midland</td>
<td>1,647,067</td>
</tr>
<tr>
<td>North Eastern</td>
<td>1,790,791</td>
</tr>
<tr>
<td>North Western</td>
<td>1,739,792</td>
</tr>
<tr>
<td>South Western</td>
<td>811,883</td>
</tr>
<tr>
<td>Wales and Border Counties</td>
<td>653,255</td>
</tr>
<tr>
<td>Total England and Wales</td>
<td>9,766,621</td>
</tr>
<tr>
<td>Scotland</td>
<td>961,786</td>
</tr>
<tr>
<td>Northern Ireland</td>
<td>152,063</td>
</tr>
<tr>
<td>Grand Total</td>
<td>10,880,470</td>
</tr>
</tbody>
</table>

French Television

Mr. H. A. Richardson of Ingoldmells, Skegness, Lincolnshire, has been supplied by Aerialite Ltd. with the television aerials necessary for his experiments and these have proved very successful in receiving French Television Services at Skegness.

Tests have also been carried out on the French channel eleven station at Bouvigny and the French channel 8A, Lille and Paris.

The receiver being used was a standard British model, but Mr. Richardson proposes acquiring a set suitable for the French Service.

New Survey of British Electronics Industry

Today, over 1,700 firms in Britain employing more than 350,000 people operate within the broad field of electronics. Value of the gross output is around £475 million and exports this year are expected to exceed £100 million.

These and a mass of other facts are brought out in "The Structure and Future Prospects of the Electronic-based Industries in the United Kingdom", a new 54-page survey by Cyril C. Gee, managing editor of "British Communication and Electronics" and the recently launched newspaper "Electronics Weekly".

Low Power Television Station for Ballachulish

The Postmaster General has approved in principle a proposal by the BBC to build a low power television station near Ballachulish, Argyllshire. The station already approved for Kinlochleven will receive its television programme from the existing BBC station at Rosemarkie via the satellite station to be built at Fort William. This plan necessitates the use of a relay point at Ballachulish to feed the programme to the Kinlochleven station. The BBC has decided that, rather than provide a point-to-point link over this part of the route, it would be better to build a small satellite station at Ballachulish that would not only serve the main purpose of providing the feed of the programme to Kinlochleven, but would also give direct television reception to some 1,500 people in Taylor Woodrow Ltd. have installed Marconi closed circuit television on the site of the new building they are erecting at the junction of Gracechurch Street and Fenchurch Street. The installation enables the public to watch building operations in progress on a 21in. monitor fitted in a public observation platform. This illustration shows a Marconi engineer fitting the closed circuit television camera on the roof of a building adjoining the site.
the immediate neighbourhood of Ballachulish.

The new station, the site and technical details of which have not yet been authorised, is to be built concurrently with the other satellite stations in Stage 1 of the BBC's scheme. All of which are scheduled for completion by March 1962.

TV as a Public Observation Aid

The first public "televiewing" platform at a building site in this country is now in use at Gracechurch Street, London. Taylor Woodrow Construction Ltd. have installed Marconi closed-circuit television on the site of the new building they are erecting at the junction of Gracechurch Street and Fenchurch Street, E.C.3.

A Marconi 21in. monitor installed on an observation platform at Gracechurch Street enables the public to watch work in progress in areas which would otherwise be hidden from view. A control unit mounted near the monitor enables the public to move the camera in bearing and elevation to view different parts of the site.

An industrial camera complete with a remotely controlled pan/tilt head has been fitted on premises overlooking the site, where work will be completed by autumn, 1961.

The TV installation is a development of the public observation platforms first introduced to building operations in this country by Taylor Woodrow in 1955. "Televiewing" will prolong the life of observation platforms, which are normally dismantled as building progress screens the view.

Stockholm Exhibition

Photomultiplier tubes, of the type used in space rockets for measuring radiation hundreds of miles above the earth, were among the display of special valves and tubes manufactured by E.M.I. Electronics Ltd., shown on the stand of Swedish SAAB Aircraft Company, at the recent Fifth International Instruments and Measurements Exhibition in Stockholm.

A videocon television tube which can "remember" a transient picture for up to two minutes after the subject has passed out of camera range, and microwave klystron valves of the type used by the Eurovision network of radio links for televising such events as the Olympic Games to Stockholm and other cities of Europe, were also shown.

Visitors to the exhibition were able to see the latest E.M.I. closed-circuit television equipment. This system, which is being used for applications as varied as police control of traffic and auditioning of television artists, has recently been installed in the offices of a leading Wall Street stockbroker to show busy executives a continuous picture of the latest ticker-tape price changes.

During the Exhibition, the SAAB Company also showed a range of E.M.I. stroboscopes and oscilloscopes in their Stockholm offices. These included E.M.I.'s latest high-power industrial stroboscope which "freezes" fast-moving mechanisms for observation and critical adjustments without interrupting production. This stroboscope, which uses an ultra-high intensity Xenon discharge tube, has a flash rate of up to 60,000 flashes per minute.

Appointments

Dr. H. K. Henisch, of the Department of Physics, Reading University, lectures in the first of the new series of Discovery, Granada TV's schools programme for sixth formers. Every Thursday at 11.40 a.m. Granada TV's Discovery can be seen in the North and Wales and the West. Dr. Henisch's subject: "Semi-Conductors".

Group of The Plessey Company Ltd. announces the appointment of Mr. George A. Smith as Commercial Executive of that Group.

This Plessey Group includes the Telecommunications, Electronics and the Domestic Equipment Divisions and Hagan Controls Ltd., with a total pay-roll of over 4,000 people. In this appointment he will be responsible for the coordination of the four sales organizations within the Group.

British Instrument Display in Germany

The Board of Trade and the Scientific Instrument Manufacturers Association (S.I.M.A.) co-operated for a second time in the organisation of a collective display of British scientific instruments at the triennial International Congress and Exhibition of Measuring Instruments in Dusseldorf, which was held this year from October 19th to 26th.

This year's collective British display followed a successful combined effort by the Board of Trade and S.I.M.A., similar to the first event of the same exhibition in 1957. Twenty-five firms have displayed their products on the official stand, which covered an area of 5,000 sq ft.
EHT Generation

By G. K. Fairfield

The need for a compact unit capable of providing the EHT required for television equipment often arises where servicing or experimental work is undertaken. Safety requirements demand that the type of EHT unit chosen should not be capable of giving a lethal shock as very high voltages are in use. Consequently a simple transformer system for increasing the A.C. mains potential to a high voltage, followed by a rectifier or voltage-doubling circuit may not be used and therefore one of the various types of high-frequency circuits that are available must be employed. In addition to its use as a test source, the provision of EHT independently produced, will simplify the design of the line scanning section of the television receiver, which usually provides, by line-flyback action, the EHT for the CRT. The brightness of the screen will not then depend on the action of the time-base, and since the separate EHT unit can have better regulation, then defocusing on high-lights can be avoided and improved picture definition results.

Methods of EHT Production

Two general methods are possible to produce the high voltage required and both lead to a compact unit being produced which is quite safe to use. The first of these is the R.F. Oscillator system in which a class C oscillator, containing a high-Q tuned circuit resonating at a radio frequency provides an oscillatory voltage which may be stepped up by transformer action and subsequently rectified.

![Fig. 1.—R.F. oscillator circuit (grid-leak bias).](image)

Since the resonant frequency is high, only small smoothing capacitors are necessary in the rectifying system and these cannot contain enough energy to give a lethal shock. In addition their smaller size, compared with those necessary for mains EHT production, allows a much more compact unit to be designed.

The second method is similar to the way in which the line timebase transformer operates to provide a high potential from the flyback pulse appearing across the deflection coils.

The principle is to "shock-excite" a tuned circuit by passing a large pulse of current through it at a repetition frequency that is low compared with its self-resonant frequency. This current pulse sets up a train of high frequency oscillations in the tuned circuit which are then transformed to a higher voltage and rectified in the same manner as the R.F. oscillator system. This arrangement is known as the "Ringing Choke" or "Pulsed EHT System."

In addition, circuits may be used where a transistor acts as a very effective switch and converts a D.C. voltage into a square wave, also at a frequency high compared with the mains supply frequency. This waveform can also be increased in amplitude by transformer action to a high voltage. The use of transistors for this purpose is very attractive owing to the high efficiency of conversion, and a future article will be devoted to a description of their operation, and practical designs will be discussed.

![Fig. 2.—Generation of current pulses.](image)

In this article it is intended to describe both types of thermionic valve circuits and show how the regulation of such circuits may be improved very considerably by the use of negative feedback.

R.F. Oscillator

This method consists of an R.F. oscillator having a large secondary winding tightly coupled to its anode "tank" circuit.

For maximum efficiency a class C oscillator is used, the grid leak being of such a value that the
minimum anode potential is small compared with the anode supply potential.

Assuming an anode supply of 300V, let the minimum anode potential be 50V. Then the peak

$$V_{peak} = \sqrt{2} \times 300V - 50V = 250V$$

is usually constructed in sections to avoid insulation breakdown. The Q-factor of this coil is most important and if this falls much below 450 then excessive power will be dissipated in the coil, the overall efficiency will fall, and the protective coating of wax given to the completed coil will melt, increasing the danger of breakdown between windings. Filament current for the high voltage rectifier V2 can be obtained by an extra winding on the former which must be suitably spaced or insulated from other windings since it is at EHT potential.

Disadvantage

A disadvantage of the arrangement shown in Fig. 1 is that, should the valve cease to oscillate for any reason, the large negative bias is removed, and the resulting large cathode current may damage the valve through excessive anode dissipation. Using cathode bias as shown in Fig. 3, the anode current is actually reduced on cessation of oscillations and no power is being delivered to the external circuit.

Choice of V1 is governed by consideration of the EHT required, peak anode dissipation at this value of EHT, and peak A.C. potential. The latter is important as the peak voltage between the anode and grid is twice the peak voltage across L1, hence the valve chosen must have adequate grid-anode spacing to avoid internal “flashover.” For EHT potentials below about 7-8kV then a medium impedance triode, such as a 6J5 can be used.
Varying the EHT Value

The value of EHT produced can be varied over small limits by tuning the tank circuit. If this process is carried too far then poor regulation of the output results. A better method is to adjust the cathode bias resistor and maintain the tuning capacitor at optimum setting where a maximum EHT is produced.

With any design a value of EHT will be found corresponding to peak efficiency of operation. Above this value the efficiency of conversion drops and high anode dissipation results. With the design described, this optimum EHT is about 6kV at a load current of 100μA.

Practical Design

Suitable component values are given in Fig. 3 for an EHT unit giving up to 7kV EHT, at a load current up to 100μA—usually quite adequate for most cathode-ray tubes.

A diagram of the oscillator coil is shown in Fig. 4. L1 is the anode tank coil and consists of 100 turns of 30/48 Litz wire either wound between insulating cheeks or preferably wound so as to be self-supporting. L2 is the main EHT winding and is found in six sections each of 250 turns. Thinner wire is chosen to avoid excessive bulk and 6/5 Litz wire will be suitable. Litz wire is used to give a high Q-factor by avoiding "skin effect"—that is the high R.F. resistance that occurs in solid wire owing to the high frequency currents travelling only at the surface of the wire. L3 is the feedback winding and need only have about 50 turns of 38 s.w.g. wire to couple sufficient energy into the grid circuit. Fairly tight coupling is required but this is limited by the nearness to which L1 can approach the high potential end of L2. A satisfactory arrangement is to wind L1 and L3 on either side of L2 as shown in the diagram.

The filament winding L4 will depend on the requirements of V2—the high voltage rectifier. Using an EY51, 24 turns of 23 s.w.g. polythene covered wire will suffice. To avoid "tracking"—a gradual breakdown of the paxolin former due to the voltage stress across it—the completed coil is given a fairly thick coating of soft wax.

Screening of the complete oscillator is necessary, both from the point of view of interference with neighbouring broadcast receivers, and avoidance of interference patterns on the screens of the television receiver which is being supplied by the unit. A close mesh wire screen will be necessary to enclose the coil completely or complete circuit, care being taken to ensure that adequate clearance is maintained between the screen and the high potential points.

Ringing Choke Unit

The ringing choke system is rather elaborate but has the advantage that it is easier to modify the circuit to produce control over the regulation of the EHT produced.

The principle has been stated earlier in that a valve is pulsed repetitively into current which flows through an inductive circuit, thus setting up a large resonant voltage across it. To pulse this valve a sawtooth generator is used and it is convenient to make this a blocking oscillator similar to that used in the time-base sections of the television receiver.

If an additional winding is placed on the output transformer core then the voltage developed across this may be rectified and fed to the driven valve as a controlling bias and in this way any increase in load current can be made to cause an increase in the amplitude of the current pulse, thus maintaining the EHT voltage constant. A circuit of the type is shown in Fig. 5.

The triode section of V1 functions as a blocking oscillator and provides a sawtooth driving waveform to the grid of V2. This has an inductance L1 tuned by C8 in its anode circuit and by autotransformer action provides a large pulse voltage across the EHT winding L2. Rectification of this pulse voltage is carried out by V3 which develops the EHT voltage across the smoothing capacitor C9.
Feedback Action

Feedback action is carried out by coupling winding L3 to the diode of the double-diode triode V1. This rectifies the pulse voltage induced in L3 and develops a D.C. voltage across the diode load R9 proportional to the peak value of the EHT pulse. Controlling action is obtained by feeding this as bias to V2 such that as the load across C9 increases, then this bias is reduced, allowing V2 to supply more current to the transformer windings. If the load is reduced then the bias is proportionally reduced and less current is supplied by the valve.

Thus the EHT potential tends to remain constant irrespective of the load current supplied. To render this action more effective a fixed voltage is added in series with the peak rectified voltage so that as the load varies then the percentage variation of the resulting control is greater than that of the induced peak.

Consider a change in rectified bias of from 12 to 15V due to a change in load current. This represents a change of 25per cent in bias value. Now if 10V of fixed bias is deduced from this then the change is from 12−10=2V to 15−10=5V, i.e. a 150per cent change thus rendering the arrangement much more sensitive to changes in load.

The effect of this feedback on regulation of the supply is illustrated in Fig. 6 which shows the change in EHT output with and without the feedback circuit connected.

Transformer Design

A blocking oscillator transformer as used in line timebase operation may be used for T1. A suitable design has been described in the October 1957 issue (now out of print). The output transformer is wound on a paxolin former 1 in. in diameter with the turns given in Fig. 7. Windings L1 and L2 should preferably be wavewound and the gear ratios for a Douglas wave-winding machine are given in the diagram. A satisfactory coil may be obtained by winding this between thin perspex cheeks cemented on to the former. These cheeks should be separated by a gap of \(\frac{1}{30} \) in. and the 1,500 turns pile-wound between them. The whole coil should be impregnated in soft wax for insulation purposes.

A ferrite core is used for the transformer consisting of two U-shaped cores (Mullard type FX1336) with a 0.003in. paper spacer in each gap. The heater winding for the EHT rectifier can consist of six turns of 20s.w.g. polythene covered wire, (the “inner” of television coaxial cable will be found quite satisfactory for this purpose) wound on one of these limbs as shown in Fig. 7.

It is important to connect the feedback winding in the correct sense to obtain best regulation and Fig. 6 shows the effect of incorrect connections.

Performance

With this design a regulated supply of 6kV is obtained adequate for supplying currents up to 200\(\mu \)A.

Higher voltages than this can be supplied by adjustment of the fixed potentiometer R8R9 with, of course, reduced regulation performance. The limit being reached at 11-12kV with this design.

(To be continued)

![Fig. 6.—Regulation of ringing choke system.](image)

![Fig. 7.—Construction of the transformer.](image)

<table>
<thead>
<tr>
<th>WINDING DATA FOR FIG. 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winding</td>
</tr>
<tr>
<td>4/5</td>
</tr>
<tr>
<td>1/2</td>
</tr>
<tr>
<td>2/3</td>
</tr>
<tr>
<td>6/7</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gears for windings</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(Douglas machine)</td>
</tr>
</tbody>
</table>
A BAND III LOFT AERIAL
A 10-ELEMENT DIRECTIONAL ARRAY
By A. R. Richards

ANY articles have appeared in Practical Television from time to time on how to construct a suitable array for Band III transmissions.

Substitute for Metal Elements

Nothing basically new is offered in this article, other than to introduce a suitable substitute for the normal metal elements, and which should simplify the construction, even for the very inexperienced constructor.

The whole array is constructed with a length of 1 in. \times \frac{1}{8} in. timber, a dozen \frac{1}{8} in. \times 3 ft dowelling rods, and a box of aluminium cooking foil. The total cost amounts to less than 10s.

There is no real need for perfection in placing the foil on the dowel rods, and wrinkles will not impair the efficiency of the array. A dozen wide strips of foil to length and roll around each element lengthwise. Any method can be used to hold the foil such as glue, elastic bands, cotton, thin wire, etc. The directors are then nailed to the main support with panel pins, taking care that the centre of each director is properly in line (Fig. 1).

Connecting the Feeder

The two main lengths of the folded dipole are wrapped with foil in a similar manner to the directors and reflector, with the exception that the wrapping on the one length allows for a \frac{3}{8} in. to \frac{1}{8} in. gap at the centre. Two 2 in. lengths of dowelling rod are then cut and these are nailed to the ends to form the folded dipole, and over these ends are wrapped more foil taking care to bond this with the foil on the main elements. The folded dipole is then nailed in the appropriate position on the main support, and if thought necessary, further short pieces of dowelling rod can be used as struts for the outer element of the dipole to give additional support. These are easily nailed in situ providing reasonable support is made beneath the dowelling rod when being nailed. Bare lighting flex wire is wound firmly around the ends of the foil at the gap of the folded dipole outer element, and to these ends are soldered the co-axial down lead (Fig. 2). A 1 in. wide strip of foil is attached to the centres of all the directors thus connecting them together.

Mounting

It is necessary to stress that the array must be sited in the loft with the maximum available space above and to the sides.

Mounting can be carried out by placing a board across two rafters, to which has been nailed a 6 in. cube of wood suitably drilled to receive the \frac{1}{8} in. vertical dowelling-rod mast. An elastic band will effectively hold the co-axial down lead to the horizontal support, and the lead can also be anchored to the rafters when the correct positioning of the aerial has been obtained.

This aerial is highly directional, and a deviation of 1 in. to 2 in. will appreciatively vary the signal strength. However, no real difficulty should be experienced in swinging the aerial to the best position to receive maximum signal.

Band I aerials or V.H.F. aerials generally can be constructed quite simply with this method of construction, and many experiments can be carried out cheaply and without waste, as the dowelling rods can easily be spliced to make them longer should an aerial for other frequencies be required.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Reflector (1)</th>
<th>Dipole (2)</th>
<th>Director (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2 ft</td>
<td>2 ft</td>
<td>2 ft</td>
</tr>
<tr>
<td>9</td>
<td>2 \frac{1}{2} ft</td>
<td>2 ft</td>
<td>2 \frac{1}{2} ft</td>
</tr>
<tr>
<td>10</td>
<td>2 \frac{3}{4} ft</td>
<td>2 \frac{1}{2} ft</td>
<td>2 \frac{3}{4} ft</td>
</tr>
<tr>
<td>11</td>
<td>2 \frac{1}{2} ft</td>
<td>2 ft</td>
<td>2 \frac{1}{2} ft</td>
</tr>
</tbody>
</table>

Directors numbered 4 to 10 may each be \frac{1}{8} in. shorter than their predecessor; for example, for channel 9, director No. 4 would be 2 ft long and director No. 5 2 ft 0 in. long, etc. (Note that the number of directors may be varied to suit the available space.)
Replacing CR Tubes – 13

R.G.D. AND REGEN TONE RECEIVERS

(Continued from page 85 of the November issue)

HAVING dealt with unboxing and removal of the CRT in the R.G.D. Deep 17, we now deal with the boosting and focusing procedure.

Boosting

Use a 6-3V CRT transformer and connect the boosted secondary to pins 1 and 12 of the tube, having removed the previous two leads from these pins, and joined them together to complete the heater chain. Mains voltage for the transformer may be obtained from between the set side of the mains fuse and chassis.

Screen Cleaning

In all cases the chassis is removed from the cabinet to clean the screen as outlined in “Unboxing.”

Focusing

“The 17”, “The 21”, and earlier models have a magnetically focused tube which has as its picture shift device a shuffle plate just forward of the focus magnet adjustable by a bent metal strip at the top. The tube neck is centred within the focus magnet by a wedge-shaped rubber ring which should be removed with the ion trap magnet when replacing the tube.

On electrostatic models, focus is adjusted by touching the lead attached to pin 6 on to various other electrodes around the tube base, and fixing it to the one which gives the best focus. This adjustment seldom needs altering when a tube is replaced.

MODEL T14 TRANSPORTABLE

Unboxing

Remove the main control knobs (the inner two are grub-screwed in, and retain the outer two) and the cabinet back. Take off the two rear rubber feet and the green earth wire. Remove the handle, which is held by two screws located beneath the plastic trim over the handle support, and which should be picked out to gain access. Remove the two insulated spacers from the lower chassis securing screws and withdraw the chassis.

Changing the CRT

Discharge and remove the EHT cap, CRT base, ion trap magnet and picture shift magnet, keeping these latter two in a safe place away from strong magnets and each other. Remove the four self-tapping screws holding the tube support board to the top edge of the chassis and the two diagonal support struts to the side of the chassis and withdraw the CRT assembly. Clean all parts thoroughly before reassembling.

Setting Up

Ensure that the scanning coils are seated well forward on the tube neck, adjust ion trap and picture position magnets in turn for the brightest possible picture centrally placed on the screen.

The ion trap magnet should not be used to position the picture at the sacrifice of brightness. Focusing is adjusted by the small pre-set resistor mounted on the tube base.

Boosting the Tube

This is performed in exactly the same way as on the Deep 17, detailed above.

Models 605, 590, 610, 611, etc,

Warning: 110deg tubes are used.

All the above receivers use a wide angle 110deg tube. It should be realized that the more the shape of a tube departs from the traditional goldfish bowl the greater are the stresses set up in the glass under high vacuum. The risk of implosion when handling is therefore theoretically greater than with earlier shapes of CRT.

Unboxing Model 605/590

Lay face down on a soft cloth, remove two back screws and lift off the cabinet.

(Continued on page 148)
These receivers bear a close resemblance to several other receivers of well-known makers. Probably the closest relative is the Regentone 143T, and these notes may be used in cautious conjunction with these models. There is, however, absolutely no resemblance between this range and the R.G.D. 1455-1456 series, the chassis and circuit being completely different. Defiant models covered by these notes are, in addition to those above, TR1456TL, TR1456C, TR1456CT, TR1756TD and TR1756C. Three types of tube are fitted, a Mazda CRM171 17 in. rectangular, CRM141 14 in. circular (actually 13 1/4 in.) and CRM143 14 in. rectangular.

The electrical shift controls are fitted in 17 in. models only and there are minor component differences.

Common Faults

The most common fault encountered by the writer is failure of the metal rectifier, especially when the original 14RA1-2-8-2 (short) or 14RA1-2-8-3 (long) is fitted. The normal symptoms are no sound, no vision, valves light up but no raster or hum from the speaker. This generally only necessitates replacement of the contact cooled rectifier, MR1, which, as shown on the chassis layout diagram, is bolted on the front centre of the chassis. A replacement, FC101 (short) or FC31 (long) should be fitted. Occasionally the H.T. fuse, 500mA, or 1A on some models, will be found blown, due to a short on, or in, the rectifier, and this can blow the 1.5A mains fuse at times.

Dull Negative Picture

When the picture lacks brilliance or what may be termed crispness, having a uniform grey appearance with silvery highlights, worsening when the controls are advanced, the tube may be assumed...
to be losing emission. Check the setting of the ion trap magnet on the rear of the tube neck (set for maximum brilliance), and make a voltage check across the heater pins 1 and 12. In some cases these tubes seem to lose some heater resistance, thus causing the voltage drop across the heater to fall. Even though the cathode may be in good order, its temperature is lower than that specified and the beam current is correspondingly less. The provision of a 12.6V heater transformer (13V is usually supplied) will overcome this trouble and restore the emission if the cathode is in good condition. When this is done, remove the original heater leads from pins 1 and 12, connect these
leads together and shift the green lead on the mains voltage adjustment one letter up, e.g. C to D. The mains supply for the transformer may be obtained with a lead to the chassis and a lead to the main fuse.

There are occasions, however, when the symptoms are misleading unless carefully studied. When the brilliance control produces a fairly bright raster although the contrast only shows a negative or thin picture when advanced, check the V6 20F2 anode load resistor 6.8k, the cathode 330Ω, and the video choke L25-L40, R54, etc. The video

Fig. 3.—Simplified under-chassis view.

GD1... CG6E Sound Detector
MR2... WX6 Sound Limiter
MR3... 39K1 Sync. Clipper
coupling capacitor C98 may occasionally be found o.c.

Frame Faults

The most common frame trouble is compression at the bottom of the picture. This is usually due to a failing V11 ECL80. Replacement of this normally restores full height and linearity once the controls have been reset. If, however, valve replacement fails to cure the condition, attention should be directed to the biasing, which is unusual. It will be seen from the circuit that the cathode is returned to the chassis with no bias resistor. The bias is applied to the control grid pin 9 from the oscillator which when the stage is working is a source of heavy negative potential, via R68 (4.7M) and R69 (1.8M). The actual bias applied depends upon the value of these resistors, C65 (0.1µF) and the linearity network R73 270k and VR7.

Complete Loss of Frame Scan

When only a bright horizontal line is visible across the screen, V11 should be checked and if this is in order a voltage check made on pins 1 and 6. Full H.T. should be present at both these pins, allowing for a slight drop across the transformer windings. If there is no voltage at pin 6, check the blue lead H.T. If H.T. is present here, the transformer T3 has an o.c. primary winding. A cold resistance check should record about 750Ω between the blue and red leads. If the voltage is present at pin 6, check pin 1, where the same remarks apply to T2, green and red resistance reading about 780Ω.

If these voltages are present and V11 is in order, check C65, which may be shorted.

Frame Hold

If the picture rolls with the hold control set at one end of its travel for the best condition without locking, check V11, R70 and C64. Alternatively if the picture rolls up or down but will not lock, check MR3 (39K1), R116, R117 and C63. If both line and frame holds are critical or cannot be obtained at all, check V10, R63, C59 and C102 (250µF H.T. decoupling). If this capacitor is open circuited, the loss of hold will be accompanied by hum, sound on vision and other symptoms, depending upon the setting of the various controls.

Intermittent Sound

This normally shows as a sudden drop in volume or sometimes complete loss which is restored just as suddenly, sometimes by the operation of a light switch in the house, by switching channels or even by removing and replacing the aerial plug. This should immediately direct attention to C82 and C83, both 0.01µF audio coupling capacitors. Firmly moving each will usually show which is the culprit. It is pointed out, however, that C88, 0.001µF, could equally be at fault, as could a poor connection anywhere in the V7-V8-V9 stages, and GD1 should not be neglected in this respect.

(To be continued)
BRAND NEW AM/FM (V.H.F.) CHASSIS AT £13.6.8. (P. & P. 10/-)

Tapped Input. 220-235 v. and 220-230 v. A.C. ONLY.
Chassis size 19 x 7½ x 5in. high. New manufacture.
Dial 1½ x 1½ in gold and black.
With all valves & O.P. Transformer. Tone-control fitted.
Cover. 800 x 500 M. : 6666 MC.
Valves EZ80 rect. ECH1, EBF8, 8AB30, EL41, ECC83, Speaker & Cabinet to fit chassis. 4½ in. x 6in. ELLIPTICAL SPEAKER. 250-.
TERMS:-Chassis £4.10.8 down—10/- cash,—and 6 Monthly Payments of 30/-, or with Cabinet & Speaker £5.2.8 down and 7 Monthly Payments of 30/-.
A FEW CHASSIS, DUSTY AND TARNISHED THROUGH STORAGE AT £10 (P. & P.). Working and unused but only 3 months guarantee.

THE "CABY" TEST METERS
In housed cases. Prices include Test Prods., Batteries, Instruction Book, FULLY GUARANTEED. Also measure D.C., A.C., PRACTICAL TELEVISION.
A-10 £4.17.6
B-30 £6.10.0

REGUNNED TUBES
Mullard and Mazda, all types. 12 months' guarantee. First grade goods.
14 inch £5.0.0
17 inch £5.10.0
Carriage and Insurance 12/6.
and NEW COSSOR 10 inch, 10EK, 20/- (P. & P.).

OFFER OF 13-CHANNEL INCREMENTAL TUNER
L.F. 34-38 Mc/s without valves. Removed from chassis but in working order. PÇB80 and PC984 required.
7/6 (26 P. & P.). Knobs 8/6 extra.
NEW ITA AND BBC TUNER.
By well-known manufacturer for superhet TVA with 38-38 Mc/s L.F. For all areas; covers all 13 channels. Gives BBC and two ITA selections. Suite G.E.C. tests B74564, 2864, 2106, 1147, 5553, 5552, and 5551 without alteration. Easily adapted as aerial converter, and instructions can be provided free. Has ITA and BBC coaxial sockets and separate gain controls.
WITH VALVES PCF80 and PC984, £8/6 (P. & P. 3/-). Some without valves at only 1£6 (P. & P. 3/-).

PERSPEX UNSCRATCHED. (Post 2/- each or 6 post free.)
161 x 14 x 4½in., 7/6. 121 x 9½ x 4½in. 4/6.
Armour Plate Glass 161 x 14 x 4½in., 7/6.

AUTOMATIC RECORD CHANGERS, COLLARO CONQUER WITH manual play also. Turnover crystal pick-up, 4-speed. A.C. mains 200-250 v. see Illus.
£7.10.0 P. & P.)
B.S.R. 4-speed UA14, automatic changer £7.10.0 or STEREO U/A for only £8.17.8 (carr. 5/- or either).

GLADSTONE RADIO
Camberley closed Sat. Portsmouth closed Weds.
FIRST IN QUALITY - FOREMOST IN ECONOMY

SUFFOLK TUBES LTD

SUFFOLK HALL, 1-3 UPPER RICHMOND ROAD, PUTNEY, S.W.15
Telephone: VAN 5267, 4304

Suffolk's reputation for reliability accounts for the rapidly increasing popularity of Suffolk rebuilt tubes. Now you can obtain "NEW ALUMINA" C.R. Tubes of all types completely rescreened and aluminised—at an exceptionally low price!

12" £5. 14" £5.5. 15" & 17" £5.10. 21" £8.

Sensational value with the existing range of picture tubes!

12" £4.10. 14" £4.15. 15" & 17" £5. 21" £7.

Suffolk's FULL 12 MONTH GUARANTEE is your assurance of satisfaction. You get FREE DELIVERY anywhere in the U.K. when you trade with Suffolk, the largest independent tube rebuilders in London.

KENDAL TUBES

THE ALL NEW COMPLETELY REPROCESSED PICTURE TUBES

Real performance with brand new Mullard, Mazda, etc., gun units

All tubes are DIRECT plug-in replacements

Specially selected reprocessed glass envelopes

FULLY GUARANTEED 12 MONTHS

EXACT replacements for ALL MULLARD, MAZDA, COSSOR, E.E., GEC, FERRANTI, BRIMAR, EMITRON. EMISCOPE (incl. hard glass) type

12" £5.10.0 20/-
14" £5.17.6
15"-17" £6.10.0 C.W.O.-C.O.D. Post & Ins. 7/6 (pass.)

Gladly refunded if you return your old tube

KENDAL TUBES

Milnthorpe
Westmorland

HENLEY SOLON

Trade Mark

Best electric soldering irons in the business—first choice with Industry for over 25 years. Full range available. 25 watt model illustrated. For leaflet write:

AEI CABLE DIVISION

Associated Electrical Industries Limited

Distribution Equipment Sales Department.
145 Charing Cross Road, London, W.C.2.
Tel. GERrard 8660.
HAVING dealt with the basic requirements of line oscillator stages, the next step is to discuss the circuits involved in line sync separators and pulse-forming stages. First, however, the effects of variations of H.T. and of component tolerances must be considered.

Change of Oscillator Frequency with Picture Brightness

If the oscillator is fed from the boost H.T. line, or if the main feedback is obtained from a tap on the line transformer, the frequency may change as the picture brightness is increased or decreased either by means of the control or due to a change of programme or scene. This is because any change of brightness alters the loading on the line output circuit and thus affects the amplitude of the boost H.T. voltage and the pulse fed back to the oscillator.

An exception to this occurs when a stabilised line output circuit is used, where the voltages change only a very small amount over a wide range of loading. These circuits are uncommon at present but will probably become more popular in the near future.

The change of frequency is undesirable because the hold range has to be increased correspondingly, to the detriment of the sync performance, and even then the picture may break sync when the brightness is changed, if the hold control happens to have been adjusted near the end of its range.

If the trouble is due to changes of boost H.T., the obvious cure is to return the oscillator to ordinary H.T. instead, if the other circuit characteristics permit. Changes of feedback amplitude are not easy to compensate because they are inherent in the circuit, and if the fault is serious it is probably best to use a different type of oscillator, unless the time and equipment necessary for a full-scale investigation are available to the reader, in which case the aim should be to alter the circuit so that another frequency change is induced of the opposite sense to cancel out the first one.

Circuit Tolerances and Component Ratings

The commercial setmaker has to take a great deal of trouble to investigate the effects of component tolerances on the working of a circuit. This is necessary to avoid making a large number of reject receivers which have failed to pass the stringent production tests because the tolerances added up the wrong way. Fortunately the home constructor is not much affected by tolerances, since he is only making one receiver, and he can afford to ignore this aspect of the task.

In the case of component ratings the setmaker is again vitally interested, because any carelessness in the specification of components will cause a lot of unnecessary and premature failures in customers' sets. The home constructor is also concerned, although not quite so seriously, because he does not want any unnecessary faults either.

The thing to do here is to measure or calculate the currents, voltages and powers in each part of the circuit and then to make sure that components of the correct rating are used. This applies particularly to valves, and great care should be taken to avoid exceeding any of the published limits, as this invites an early failure, and will prove expensive. Valve makers do not want to limit the usefulness of their valves, but they are forced to do so in order that their products shall give good service.

It is as well to bear in mind, too, that resistors of over 1M and of small size and wattage rating do not always take kindly to pulses; even quite small ones. In such cases it is best to err on the side of safety and use 1W types where a 1/2W component would be adequate in theory. They are also easily damaged by too much soldering.

Pulsed applications commonly occur in the frequency controlling circuits of line and frame oscillators, and also in the feedback stages of the frame output valve. This is a good point to bear in mind when servicing a receiver, since by replacing a 1W resistor by a 1/2W type, you may prevent repetition of the fault.

Line Synchronisation

In an ideal receiver, fed from a perfect transmission, the sync pulse always arrives at exactly the correct moment and triggers the oscillator so that the next line of the picture starts in precisely the right place. This means that the edge of the raster will be perfectly straight, and any vertical line will appear "clean". (Fig. 4.) This is what we mean by good synchronisation.

In practice, however, electrical noise is generated in both the aerial and the receiver circuits and this, added on to the sync pulses, causes them to trigger slightly too early or slightly too late. As a result the individual lines of the picture will be displaced, and vertical lines will appear ragged. (Fig. 5.)

In areas close to the transmitter (called the service area) the signal picked up by the aerial is so large that the noise forms only a very small proportion of it.

<table>
<thead>
<tr>
<th>Vertical lines on a picture</th>
</tr>
</thead>
</table>

Fig. 4 (left)—Part of a "clean" picture.
Fig. 5 (right)—Part of a "ragged" picture.
Note the random displacement of the lines.
Consequently with almost any type of synchronisation arrangement the displacement of the lines in the picture will be so small that the picture detail will look clean.
In the outer region of the service area the signal is not so strong and the noise forms an appreciable part of the total signal; consequently care is needed in the design of the sync circuits.

In the fringe area the signal-to-noise ratio is so poor that special synchronisation circuits have to be used in order to obtain a stable picture, and these are usually of the so-called flywheel type. Often the entertainment value is small, even if the picture is steady, because the detail tends to be lost amongst noise.

Other Causes of Poor Synchronisation

When considering the causes of poor synchronisation in general, the electrical noise generated in the aerial or receiver circuits is only one of the hazards. Other sources of trouble include:

- impulse interference;
- squaring;
- self-generated oscillation in the line transformer;
- spurious line hold characteristics;
- interaction of line and frame sync.

Impulse Interference

This is the kind radiated by electric motors, thermostats and arcing in faulty connections. Cars, electric hair dryers and razors, immersion heaters and old power points are often the culprits, although most of these should have suppression devices. The effect is to swamp the sync pulses so badly that several lines of the picture may be hopelessly displaced, and since the interference is also fed to the cathode ray tube, the picture is affected by black or white spots and streaks.

Squaring

This is the term given to a fault which causes groups of lines in a picture to be displaced towards the left-hand side. On looking more closely it will be found that this only happens where a white portion of the scene occurred at the end of the line before (Fig. 6.) The reason for this is shown in Figs. 7a-e. Diagram (a) shows a picture comprising dark grey and white horizontal bars; (b) is the corresponding video signal for a dark grey line and (c) for a white line. Note particularly the so-called "front porch", which is an interval to give the signal time to fall from white to black level before the sync pulse comes along.

Supposing that there is a long time constant in, say, the sync separator, then the signal will take too long to fall from white to black level and it will not have reached it by the time the sync pulse arrives. This state of affairs is illustrated in Fig. 7d, and it should be compared with the dark grey line in (e). It can be seen that in case (d), for a white line, the oscillator will be triggered too late, causing the next line to start too late also, i.e. this line, and any subsequent white ones, will be displaced towards the left and in bad cases with a picture of the appropriate pattern, the whole scene appears almost to be built up from a number of squares, like a chess board.

Sometimes the trouble is aggravated by a faulty transmission which has an unusually short front porch. This is easily tested by switching over to another channel and seeing if the fault persists. If it does, then the fault lies in the receiver, and may be due to valve or component failure in the sync separator or video circuits, or to incorrect tuning of R.F. or I.F. circuits causing poor H.F. response.

Another way in which this peculiarity can arise is when video information reaches the line sync pulse more directly. If a video voltage is added to the sync pulse, the size of the pulse, and hence the time of firing of the oscillator varies with the picture content. This is basically the same mode of action as in the previous case, but the means by which it comes about are different.

If the sync separator fails to separate completely the video information from the sync pulses, i.e. its

Fig. 6 (left)—Squaring.
Fig. 7a (right)—Part of a picture comprising dark grey and white horizontal bars.

<table>
<thead>
<tr>
<th>Dark grey</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dark grey line
Sync pulse

Front porch
Black level
Oscillator triggers at this level

Note the time error in triggering

Fig. 7b—Ideal signal waveform corresponding to the dark grey lines of Fig. 7a.
7c—Ideal signal waveform corresponding to the white line of Fig. 7a.
7d—Video signal with a long time constant giving a white line.
7e—Video signal with a long time constant giving a dark grey line.

clipping action is inadequate, squaring will occur. Alternatively, if a lead carrying line sync pulses passes too close to one carrying video information, the mixture will be passed to the oscillator, with the same results. This mixture is shown in Fig. 8 (a) and (b).

Spurious Oscillations

Another form of bad synchronisation is due to a spurious oscillation (ringing) in the line transformer. This gives rise to the trouble illustrated in Fig. 9, where the vertical lines on a picture tend to form a zig-zag with two or three lines at a time. It only occurs in circuits where a capacitor is used in series with the deflection coils, and these two components may resonate at a frequency corresponding to a few lines of the picture. This condition is easy to recognise because the quality of synchronisation is worse on the right-hand side of the picture than near the beginning of each line.

There is no cure for this trouble except to change the circuit for a less efficient one, but it can be improved by good design of the sync circuits.

In some circuits ordinary line transformer ringing, characterised by vertical bars on the raster, can be fed back to the oscillator, and this causes the output pulses to vary in a regular pattern with the result that the raster has a wavy edge, as shown in Fig. 10.

Spurious Locking

If you turn the line hold control of an ideal receiver the picture should remain in perfect synchronisation over the whole of the hold range, and should break up smoothly at each end. Most receivers, however, show some slight peculiarities. In some cases the

![Diagram](image-url)

picture does not immediately break up at one end of the control range, but first slips sideways. The last half of the picture then appears at the left-hand side of the screen followed by a broad vertical bar and then by the first half. The black bar in the middle is the sync pulse and blanking period, illustrated earlier in Fig. 7, and this can be seen in detail by turning up the brightness. Further rotation of the hold control then causes the picture to go out of sync in the usual way.

This spurious hold position can hardly be classified as a fault, but it is an interesting peculiarity, and provides an easy means of looking at the transmitted blanking times and sync pulse widths. Incidentally, the actual times can easily be measured and then

![Diagram](image-url)

Fig. 9 (left)—A form of poor sync which may occur when a capacitor is used in series with the deflection coils.

Fig. 10 (right)—The raster may have a wavy edge when line transformer ringing is fed back to the oscillator.

compared against the transmission standards. Day to day variations can be recorded as well. How to do this will be described in a future article.

Another phenomenon which may as well come under this heading is backlash in the hold control. This is very much akin to lost motion in the steering wheel of a car, which makes it difficult to set the road wheels in the right direction. When the hold control is adjusted so that the picture just breaks lock, it has to be rotated back again quite a long way before the picture is resynchronised. This characteristic must be classified as a design fault because it makes the control difficult to adjust to its best position, and makes a larger hold range necessary.

The third peculiarity is that of the picture jumping sideways slightly when passing through a certain critical setting of the hold control. This, too, is a slight fault since it makes it more difficult to choose a mean position of the control when centring the picture on the screen of the CRT.

(To be continued)

LAST MINUTE CHRISTMAS GIFTS

No need to rush out to the shops. Here's one you can arrange now... in a few moments... in the comfort of your own armchair. A year's subscription for PRACTICAL TELEVISION is the ideal gift for friends who are TV enthusiasts.

Either send your friends' names and addresses, together with your own and remittance* to cover each subscription, to The Subscription Manager (G.2), PRACTICAL TELEVISION, Tower House, Southampton Street, London, W.C.2, or you may place your instructions with one of the leading newsagents or bookstalls, who will be pleased to make the necessary arrangements.

Whichever way you choose, your friends will receive a Christmas Greetings Card announcing each gift.

* RATES (INCLUDING POSTAGE) FOR ONE YEAR (12 ISSUES):—U.K. £1.20, OVERSEAS £1.0.6, CANADA £0.19.0, U.S.A. $3.00.
The Practical Television

CONSTRUCTING THE I.F. TRANSFORMERS AND THE TUNER

Continued from page 98 of the November issue

The layout is also complicated to some extent by the need to keep line and frame time-bases well separated. It is not always realised that in places very heavy pulse currents flow, and that the large magnetic field associated with them can induce quite high voltages in adjacent high-impedance circuits. If this happens, interlace may be seriously affected. As extremely good interlace is a feature of this receiver, care must be taken not to spoil it through thoughtless location of components.

The last components to be fitted to the chassis will be the I.F. transformers and R.F. chokes, because these are to be home-constructed and are moreover not very robust. Among these is clusted the sound-I.F. reactor which is of the same physical form. The data for winding these components was given on page 80 of the previous issue.

The coil forms for these transformers are made of bakelite, a substance of very satisfactory resistance to temperature. It is, however, not particularly easy to wind on it a coil which will not slip or deform as time goes on. The vision I.F. coils are of finer wire than the sound I.F. coils because more turns have to be accommodated. These are prepared in the following way.

A piece of adhesive cellulose tape is wound once round the coil former, sticky side on the bakelite, with an overlap of about \(\frac{1}{2}\)in. The wire is looped several times through one of the fixing holes, and is wound quite tightly on to the tape, as many turns as are required. Another piece of sticky tape is placed carefully over the wound coil and pressed down firmly. The ends are now cleaned of enamel and soldered into the eyelets, leaving about 4in. as leads. The tape is then carefully trimmed to the size of the coil with a sharp penknife or razor blade.

In order to obtain the correct spacing between the coils it is best to mark off a strip on a long piece of drawing paper, and cut it to precisely the width required. A long piece is needed of uniform width. This is now wound round the former several times in close contact with the coil already wound, and secured with waterproof cement. When dry the next coil is wound in the same way as the first one beginning close up to the paper spacer, and finished off as before. The paper spacer can now be stripped off, and the relative spacing of the coils preserved by a further layer of adhesive tape.

The internal construction of a sound I.F. transformer.

A vision I.F. transformer.

The presence of large quantities of material of unknown dielectric properties matters very little in the vision amplifier because the coils are heavily damped in any case to obtain the necessary bandwidth. Before closing up the coils in their cans, the damping resistors are soldered into place. These

Fig. 4. (left) Chassis drilling details for the I.F. transformers, and (right) the coil connections.
are very small items and if they are arranged neatly in the corners no difficulty will be found in accommodating them. Fig. 4 shows the recommended connections to the eyelets.

This system separates anode and grid leads as far as possible and is convenient for the EF80 valves. It should be noted that the centre ends of the windings are screen or earth connections to reduce the capacitance coupling between the primary and secondary of the transformer. Fig. 5 shows this. The two coils are both wound in the same direction on the former.

The sound I.F. transformers are of somewhat different construction, because of the need to avoid losses. A heavier gauge wire is used, and this is wound direct on to the former. When wound the turns are cemented together with polystyrene cement (plastic model aircraft cement). The cement may appear to stick to the former, but it does not do so. It does fix the turns very firmly together however. The wire ends are then cleaned off and soldered into the eyelets, making sure that they are not under tension. In this way the coil holds together very well, and the soft leads automatically ensure that correct spacing is maintained. Spacing is arranged by eye and ruler in this case, as it is much larger and is not critical. No damping resistors are used, but tuning capacitors are soldered across the coils and closed up in the can, together with the 1pF top-coupling capacitors. These will go in with ease, but there is not a great amount of room.

The sound I.F. trap is constructed in the same way, except that there is no necessity to put the tuning capacitors in the can; but they may be included with the phase-correcting resistor if the constructor desires.

When polystyrene formers are used, as in the tuner and the pre-video stage I.F. filter, polystyrene cement may be used to secure the turns. Here it is essential to do the sticking with a core slug in place, and to leave the component at least overnight to harden. The slug in position prevents warping of the former, and the long drying time is necessary because the cement solvent penetrates the former deeply. Artificial drying by heat is not advised as warping will almost certainly take place. There is some tendency to soften on heating for a week after sticking, but this only means that soldering the ends should be done with a "heat-sink"—a pair of pliers to grip the wire—between the soldered wire and the former. It should be realised that before the knack is obtained, one polystyrene former will probably have to be sacrificed!

The tuner is next to be tackled. This is a critical item, and even (left)—Another view of a sound I.F. transformer.
if the layout given is followed accurately, different constructors will probably obtain different circuit capacitances. The chief difficulty is in the Band III oscillator, and to obtain a stable oscillator of large (and therefore less critical) dimensions a tuned-lines oscillator is specified.

The very much increased physical size of the inductors of a tuned-lines oscillator also enables a quite large temperature-compensating capacitor (Ck) to be included in the circuit. This should be soldered very close to the ends of the lines, care being taken not to let its temperature rise appreciably during the operation. This precaution is necessary whenever a negative temperature coefficient capacitor is soldered in. This is because any overheating may, and usually does, impair the negative temperature coefficient quite seriously.

Provided the dimensions given are adhered to reasonably closely there should be no difficulty encountered in covering the range of frequencies needed. The aerial and inter-stage circuits are heavily damped by the input resistance of the valves, and are not critical.

With the frequency changer, temperature rise is minimised by running it at reduced anode and screen voltages, and the gain improved by using an inductance in the screen lead to neutralise cathode lead inductance. The screen inductance consists of 0.9in. of lead between the valve pin and the decoupling capacitor. More length than this may lead to instability; less length will reduce the conversion conductance, but if the receiver is to be used in an area of high signal strength the length may be reduced at will.

The Band III oscillator lines are constructed from %in. outside diameter copper tubing, which (Continued on page 168)
WHETHER you build for yourself or for your friends—it will need servicing. Here are some hints for cutting down the need to a minimum, and to ensure simple repair when the need does arise.

Soldering

Learn to solder perfectly. A good iron is the best investment in the world—except a pair of good irons, one large for heavy soldering and an instrument type for small components. Scrupulous cleanliness and the use of a good cored solder (e.g. Ersin Multicore) are the next requirements, and then the components.

In the realisation that short leads to condensers and resistors are needed at the higher frequencies, some constructors try to cut the wire ends too short. This often causes a component to become overheated during soldering and defects easily arise. A useless component is still useless even if it is soldered in with very short leads. The “thermal shunt” is often advocated to minimise this trouble, and it can help a great deal to hold the wire, between the component body and the soldering point, with a pair of pointed pliers. What is more effective, often, is to dip the pliers into water first so that water is held in contact with the wire being soldered. If this precaution is taken the component is very unlikely to be overheated, especially if a really hot iron is used. A cool iron means long contact with the soldering point and much heat can travel along the wire in such circumstances.

Avoid, too, the use of a mechanical joint as a preliminary to soldering. A wire looped through the hole in a valveholder tag and bent round on itself, or twisted round the tag, makes a sound joint, but if later the component has to be removed—especially if the space is confined—neighbouring components can easily be damaged and the last state can be worse than the first. If a “lying side by side” joint is not good enough, better soldering technique is needed!

Solder tidily: loose blobs usually end up in very tiresome positions—for example, between anode and suppressor grid connections. The decoupling resistor will probably burn out, but even if it does not, the anode still will be deprived of H.T. and the valve will be overheated by excessive screen current.

Components

Component reliability is high these days—except for volume controls. This does not mean that one can take liberties. A 450V condenser may cost a shilling more than one rated at 350V, but if it saves a replacement it pays for itself when it is soldered into place. The rule should always be to work well within the rating of all components, including valves. However, in this latter connection, it is better to overrun heaters than to under-run them, if the choice has to be made.

If you rely on “surplus” resistors and condensers—or those stripped from ex-government equipment—always test them before use. While resistors are not too bad for reliability, they are often different in actual value from that colour-coded on them. Many people will not employ condensers taken from such a source; they are often very unreliable. If you do use them, test the insulation resistance first. Fig. 1 shows the simple apparatus needed. V is a neon lamp—any type will do. R1 is about 50,000Ω, C is a first-rate mica condenser of about 0·01µF capacitance. X is the condenser to be tested. H.T. should be about 250 volts. Comparative tests with components known to be good are the best guide to the rate of flashing of the neon which should be tolerated.

In any case, never test by connecting a delicate milliammeter in series with a doubtful component and H.T. The sudden demise of the meter, if one’s fears are found to be well-grounded, is not amusing and costs more than buying a new condenser of reliable make in the first place.

Ex-government and manufacturers’ surplus valves are defective often enough to warrant testing each one before use. Test the cathode-heater insulation, and do not be content with the 9V or so of an ohmmeter—use 50V in series with a 10k resistor. The neon tester is of little use for this purpose. If any component is found to be seriously defective, destroy it—if you put it back in the box you will use it some time and probably regret it!

Layout

This is just as important a matter as good soldering or watchfulness over components. The rules are simple enough: they are these. Economise in space, but not to the extent that components are rendered inaccessible by others being put on top of them. A logical order is important—a val e h o l d e r the wrong way round will cause endless difficulties with crossing wires. Always leave room for the soldering iron between components and don’t pack them so close that heat radiated from the iron causes wax to drip or insulation to be charred. It is sound practice to do development work on a skeleton chassis, where different

USEFUL HINTS ON WIRING AND CONSTRUCTION

By R. B. Archer
arrangements can be tried out. When the circuit is satisfactory, the layout can then be considered carefully before actual construction begins.

- Always use enough components. This may sound strange advice, but I have seen many chassis where the H.T. wiring is insecure for want of a few stand-off insulators or insulated tag-strips. Such economy may be all right in a development chassis, but in a receiver itself it must be assumed that shaking and bumping will inevitably occur. If the H.T. leads are loose, trouble can then be expected with some confidence. Clips to hold down bulky components with wire ends can be manufactured easily enough by anyone with a broom handle, tin-snips and a drill; and so there is no excuse for unstable components waggling about and not supported properly.

- Mount condensers, resistors, etc., so that their value can be read without taking half the set to pieces.

Circuit Diagram

Always have an accurate circuit diagram inside the instrument itself. If modifications are carried out, enter them on the diagram as amendments in

REPLACING CR TUBES

(Continued from page 134)

![Diagram](image)

Fig. 6.—Removal of the carrying handle (and chassis) on the T14 transportable.

Unboxing Model 610/611

Remove the four front control knobs and the cabinet back, disconnect and remove the loudspeaker by taking out the wing nut and spring clip. Remove the base fixing screws from the side brackets at the rear of the chassis and withdraw the chassis backwards.

Replacing the CRT

Discharge the EHT cap and remove it. Disconnect the wires from the deflector coils, having marked their position, and withdraw all units from the tube neck. Remove the clamping band around the tube bowl and withdraw the tube from its harness. The setting up follows the previous models, with a tapping system for the adjustment of focus on the 605, and a small pre-set potentiometer on the 110deg models.

NOTE ON THE FOCUSING OF ELECTROSTATIC TUBES

Two methods of adjusting the focus on electrostatic tubes are commonly employed by R.G.D. One is to have a short flying lead permanently connected to pin 6 of the tube (the focusing electrode), the other end of which may be taken to any of the other tags around the tube. An H.T. feed is brought up to pin 9 and, because pin 12 is the earthing end of the heater chain, the voltages available are thus:

- Pin 9 — 200
- Pin 10 — 400
- Pin 11 — 100
- Pin 12 — 0

On other models a small 2M pre-set resistor is connected between A1 and chassis providing a continuously variable voltage on the focus electrode of between 0 and 400.

JOIN THE PRACTICAL GROUP

PRACTICAL WIRELESS	1/6
Every Month.	

PRACTICAL MECHANICS	1/3
Every Month.	

PRACTICAL MOTORIST	1/6
Every Month.	

PRACTICAL HOUSEHOLDER	1/3
Every Month.	
A.C./D.C. Multimeter Kit
Ranges: D.C. volts 0-0-0.05, 0-0.5, 0-5, 0-50, 0-500, 0-5,000, 0-50,000, 0-500,000, 0-5,000,000. D.C. amperes 0.5, 1, 5, 10, 20, 30, 50, 100, 200, 300, 500, 1,000, 2,000, 5,000, 10,000, 20,000, 50,000, 100,000, 200,000, 500,000, 1,000,000 with internal batteries. Measures A.C./D.C. voltage, d.c. current, and a.c. current. Measures volts, current, and resistance. Measures all the essential basic tests, including metal case, 2n, moving coil meter, selected resistors, wire for ohms, range selector, switches, calibrated scale and full instructions, price £1.75, plus 6d post and insurance.

TV Workshop Aids
FILM SEALER. Applies with soldering iron. Stops corona discharge, etc. 2d. per stick.
PHOTO-ETCHED STRIP. 2in. x 10th. for E.H.T. insulation up to 25 kV. 5½d. per 25th., roll.
SPONGE STRIP. 1in. x 1in. For sealing or cushioning, 8d. per bag.
ANTI-STATIC SCREEN CLEANER. For SPONGE SPONGE and screens. Perspex or glass. Delays accumulation of dust, 3d. per tube.
3 1/4 IN. TUBE CEMENT. Specially prepared for radio fitting of metal, glass, ceramic, wood, fabrics, 4/6 per tin.

Component Storage Drawers
Stout board construction, these drawers are ideal for small components complete with ejection mechanism and full instructions. Price 1/6 each or 6 for 2s 6d in. drawers each 6 x 2 3/4 x 6in., 13/6, post 2s.

Building A Scope?
8in. oscilloscope tube. American made type No. 9P57, octal base 6.3 v. 0.8 amp, heater, electrostatic deflection, brand new and guaranteed, with circuit diagram of scope, 1s. 6d. each, plus 1s 6d. post and insurance.

Transistor Loudspeaker Radios
To build your own—anybody can do it! Pocket, 1 use three transistors and a diode, complete cost £1.5s. plus postage and insurance. Pocket, 2 much louder, uses four transistors and diode, complete cost 5s. plus 2/6 postage and insurance. Pocket, 4, complete £1.5s. plus postage and insurance. Pocket, 3, complete £1.25 plus postage and insurance. Pockets 5, 6, 7, and 8, complete £1.5s. plus postage and insurance. Pockets 9, 10, and 11, complete £1.5s. plus postage and insurance. Pocket 12, complete £1.5s. plus postage and insurance. Pocket 13, complete £1.5s. plus postage and insurance. Pocket 14, complete £1.5s. plus postage and insurance. Pocket 15, complete £1.5s. plus postage and insurance. Pocket 16, complete £1.5s. plus postage and insurance.

The Taylor Meter
Mode 127A. A pocket meter but with a big scale and a sensitivity of 20,000 Ohms per volt D.C. calibrated to 1912. This therefore an ideal unit for television servicing—quite easily made and complete with leads and probes—20 ranges as follows: D.C. current 50 microamps. D.C. voltage 0-1,000 volts in seven ranges (25 kV.) with each range 0-75, 0-150, 0-300, 0-600, 1-250, 2-500, 5-000 in six ranges. Self-contained, 8in. x 1in. movement. Price 10/- or £1 deposit and 26/- (partly) in three equal payments of 16/- each. Non-callers add 8/- carriage and insurance.

Components for Transistor Sets

"Dim and Full" Switch
Particularly useful for controlling coldodium lamp which have only a short life at full brilliance. This switch has three positions. The first switch has three positions. The second position is off and the third position full brilliance for the operation shots. Also useful for controlling lights, lamps, heaters, etc. etc. Price 3s 9d. each, post 6d.

Connecting Wire
P.V.C. covered in (10ft. coils—2d. a coil) or your coils different colours. 10/-, post free.

Yaxlee Switches
1 Pole 3 Way... 1/-
2 Pole 2 Way... 2/-
2 Pole 4 Way... 2/-
2 Pole 6 Way... 2/-
3 Pole 2 Way... 4/-
3 Pole 3 Way... 4/-
3 Pole 4 Way... 4/-
3 Pole 5 Way... 4/-
3 Pole 6 Way... 4/-
4 Pole 4 Way... 7/-
6 Position Neon... 2/-

Morganite Potentiometers
Single and 3-Ramp types available.

Band III Converters
Suitable for A M, London, Midlands, North, Scottish, etc. All the parts including two EF80.

Midget Miniatures
Valves, 8p per sample. Price 1s 6d.

Microphone
American made, Dynamic type. Lead bargain at 6/- plus 6d. postage.
TV PICTURE TUBES

BUY DIRECT FROM FACTORY

SAVE up to £8

- **12” & 14”**
 - **£5-19-6**

- **15” & 17”**
 - **£6-19-6**

Send cash with order or C.O.D. giving size and type of tube required to:

HOMEVISION SERVICES

17 OXFORD STREET, SWANSEA

For Safety's Sake

use

AVO Proclips

![Pat. No. 748811](image)

with Trigger-Action Spring-Loaded Clips

PRESS TRIGGER TO OPEN

RELEASE TO GRIP

Safety first every time with these patented spring-loaded AVO Proclips.

Cleverly designed for use on insulated prods, they are invaluable for reaching and holding test points which are difficult of access.

Suitable for use with AvoMeter, Multimeter and AVO Electronic Test Meter Leads.

Post Free

15/- per pair.

ALPHA RADIO SUPPLY CO.

VALUES GUARANTEED ALL TESTED BEFORE DESPATCH

<table>
<thead>
<tr>
<th>Code</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A21</td>
<td>10/-</td>
<td>2000 P.O.</td>
</tr>
<tr>
<td>A22</td>
<td>15/-</td>
<td>5000 P.O.</td>
</tr>
<tr>
<td>A23</td>
<td>20/-</td>
<td>10000 P.O.</td>
</tr>
</tbody>
</table>

CATALOGUE

Our 1961 catalogue is now available. Please send 2/- in stamps for your copy.

Trade enquiries are also available. Please attach your business letterhead.

SINGLE RECORD PLAYER UNITS

Garrard, Model TA, Mark II, 4-speed single player, die-cast aluminum pickup with a GC2 cartridge, automatic stop, 3in. diameter turntable, £28.10s.

Cordoba Junior, 4-speed turntable and pick-up, complete with a crystal cartridge and magnetic stylus, finished cream with a maroon turntable mat and speed control, £21.15s.0d. or turntable and motor unit only at £21.15s.6d. pick-up only £1.7s.6d.

TELEPHONE ADAPTOR

Gelonow, type 5010 45/-.

METAL RECTIFIERS

Alpha Range of Guaranteed Bridge Rectifier units suitable for Battery Chargers. 6 and 12 volt outputs.

3amp. 7/- 4amp. 12/-

LOUDSPEAKER UNITS

All Brand New

<table>
<thead>
<tr>
<th>Model</th>
<th>Size</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>3in.</td>
<td>Square Celestion</td>
</tr>
<tr>
<td>106</td>
<td>4in.</td>
<td>Square Celestion</td>
</tr>
<tr>
<td>107</td>
<td>5in.</td>
<td>Square Celestion</td>
</tr>
<tr>
<td>108</td>
<td>6in.</td>
<td>Square Celestion</td>
</tr>
</tbody>
</table>

RECORD CHANGER

Garrard RC100, Mark II, 4-speed unit with manual control, to enable records to be played singly, fitted with the G.C. cartridge.

£23.15s.0d.

AMPLIFIERS

Decamaniac, fitted with valve ECL82, compact, cooled rectifier, tone and volume control, chassis size 8 x 8in., complete with Celestion speaker. £2 6s. 6d. £4.5.0.

ALPHA RADIO TERMS

Cash or C.O.D. Postage and Packing charges extra as follows: Order value 10/- to 19/- add 2/6 for 10/-; 20/- to 24/-: 25 add 9/-; Minimum C.O.D. Fee and Postage 3/-. For full terms of business see inside cover of our catalogue. Personal Shoppers 9 a.m. to 5 p.m. Monday to Friday. Saturday 10 a.m. to 1 p.m.

103 LEEDS TERRACE, WINTOUN STREET, LEEDS, 7.
A Triode Converter

COMPLETING THE WIRING AND TESTING THE UNIT

(Continued from page 89 of the November issue)

By H. G. Underwood

The completed converter.

soldered to the first star tag. Now solder C8 and C9 into position.

The Band-Switch Installation

This completes the main circuit wiring, and the band-switch can now be installed. Cut down all the tags on this component and the centre pin of the coaxial Band I input socket, leaving about \(\frac{3}{4} \) in. for soldering. This is essential to prevent patterning from BBC on the ITV signal.

Pass the end of a piece of p.v.c.-covered twin flex (approximately 2ft long) through the right-hand hole in the chassis end and solder one lead to the centre section of the switch. The other lead is secured by loosening the bolt holding the corner of the chassis, tucking the bared end of the lead in and tightening the bolts again. Wire the remainder of the switch as shown in the layout diagram and solder in C15 and C16. Allow about 2ft of coaxial lead for the output to the receiver for preliminary testing and fix a coaxial plug on its further end. Finally solder a 2-3ft length of black p.v.c.-covered wire to a convenient solder tag direct on the chassis and take through the same hole as the H.T. lead. This is the H.T. return wire and must be soldered direct to the main receiver chassis. Insert a grommet, or bind these two wires with insulation tape where they pass through the hole in the chassis end.

Testing

The unit is now ready for testing. Insert the two valves in their holders and connect the heater cable to the output tags of a small 6-3V 1A heater transformer. Take a mains lead, connect with plug and solder to the mains input of the heater transformer. Now cover all the tags on this component with insulating tape to obviate any possibility of shock whilst testing. Connect an ohmmeter or continuity tester between the H.T. lead and the chassis and make quite sure that a short exists between the two. The meter should not read less than 200k.

Solder the red p.v.c.-covered J H.T. supply wire to the output tag of the tuning condenser to leave one moving and one fixed vane.

Remaining Wiring

Before proceeding with the remaining wiring, make sure that all the necessary earth connections have been made from the valveholders and taken to the star-shaped tags mounted as shown (Fig. 2. last month). Note that capacitors C7 and C11 must be positioned near the valveholders, as close to the chassis as possible.

Mount the fine tuner (C14), after modifying it as shown in Fig. 5. Connect the moving vane to the second star-tag and solder a wire connecting the two fixed vane pillars and connect with an insulated lead to pin 7 on V2. Bolt the L5 oscillator coil former into place. Wind L5 (turning up the bottom end lead as shown to meet pin 7 of V2) on a \(\frac{3}{4} \) in. drill shank and press carefully in position on the former, using a small screwdriver to feed the coils over the top rim of the former. Solder the bottom end lead to pin 7 of V2 and solder C13 between the top lead and pin 6. If one is available, it is advantageous that C13 should be of the negative temperature coefficient type to minimise tuning drift.

Attaching the Formers

Now attach former L1 and wind the coil as shown. The primary is a piece of p.v.c. covered wire, wound once round the former between the bottom turn of the secondary, then twisted and taken to the input socket connections. Solder the top lead of the secondary to pin 2 of V1, and solder C2 and R1 to the bottom, followed by C3.

Now L3 and L4 formers must be fixed so that their centres are approximately \(\frac{3}{4} \) in. apart. Wind L3 and L4 (both in the same direction), press them on to the formers and solder the top end of L3 to pin 6 of V1, and the bottom end of L4 to the second star-tag. Solder R5 and connect the free end of C6, which should already have been
main smoothing condenser of a single band television receiver and the black wire to a convenient earth tag. Set the fine tuner so that the vanes are half engaged. Plug in the aerials to the correct sockets of the converter, and the output lead of the converter to the input socket of the television receiver. Switch the band-switch on the converter to position 1, and switch on the main receiver and allow to warm up on the BBC signal.

Tuning

Now plug in the lead to the filament transformer, switch to position 2 and observe that the converter valves light up correctly. Allow about 30 sec and switch to position 3. With a non-metallic tuning rod, such as a broken plastic knitting needle with its end filed to a chisel point adjust the core of the output coil (L6) for the loudest "rushing" noise from the speaker. Set all other cores with their tops about level with the rims of the holders and slowly screw in the oscillator core (L5) until the vision signal is heard on the speaker. Screwing in the core a little further should produce a picture, accompanied by sound. If, however, the vision signal sounds weak, leave the oscillator core in that position and adjust all the other cores to produce the loudest vision signal noise in the speaker. Now go back to the oscillator core and screw in until the picture and sound appear. It is only necessary, then, to readjust all the cores for the best picture and sound, adjusting L4 for maximum sound, and noting also that the fine tuner functions correctly.

If the sound and picture are only obtainable separately, then the oscillator frequency is too high, and the core of that coil should be screwed further into the former.

If the heater transformer can be accommodated on the main receiver chassis then a worthwhile refinement could be added to the converter by incorporating a four-way non-reversible plug and socket in the bottom end of the chassis to convey the supplies to the converter from the main set. This would make subsequent servicing far easier.

Installing the Converter

Before installing the converter in the receiver for which it is intended, switch on that receiver and test the chassis with a neon screwdriver. This is a precaution one should always take before touching any receiver. If it is alive—and it is surprising how many are—reverse the connections to the mains plug. If the plug is of the reversible type, mark suitably with white paint and give firm instructions to the owners always to ensure that the plug is correctly inserted.

Resistor R2 can now be experimented with to obtain reasonable matching between the signals—the higher the value, the lower the gain.

On some older receivers employing auto-wound or double-wound mains transformers it will be found that the receiver H.T. line will be in the neighbourhood of 350V. Under such conditions R10 should be increased to about 5k to 6k, so as to reduce the supply to the converter to about 200-250V.

A.M. RADIO FROM SPARE TURRET COILS

(Continued from page 126)

which might become a combined feedback oscillator. To keep an oscillator running about 5 per cent from the main I.F. is difficult. There need be no great concern of the TV enthusiast on this count, as dirty contacts, valve bases and drift are speedily noticed and corrected.

Filters

Other points to watch for are the possibility of filters fitted in the aerial lead to the turret removing M.W. radio frequencies. These should only be removed if they do not spoil the results on the TV. The disturbed raster that may irritate when using radio can in some cases be cleared by making a vision valve inoperative with any spare switch contacts existing on the wafer where fitted on to the turret spindle. It is not advisable to attempt to switch off the vision sections of the set owing to the complex interdependence of sound and turret sections on the normal running of picture and timebase sections. Heater current, H.T. level and parts of some AGC systems affecting sound rely on fine gating pulses.

Results

Good radio results were obtained in the London area with a normal outside aerial on the Light and Home programmes, 247m and 330m, with no noticeable drift or oscillator pulling. Radiation to other receivers was also negligible. Using the inner only of the coaxial increases the volume.
RE-GUNNED TV TUBES

New reduced prices...

and now 12 months guarantee!

All new tube, rebuilt with new heater, cathode and gun assembly reconditioned virtually as new.

12 in. £5.15. 14 in. £5.10. 19 in. £8, etc.

10/- part exchange allowance on old tube

Carr. and inst. 10%. Comprise highensive stocks—quick delivery.

BAND 3 TV CONVERTER

All channels 7-13 (600-2050 Mcy)

Ex. £2 Model. License issues and 16/60 varnish

14 in. glass, 200-250 v. A.C. Base 6s. 21 in. Sim. Simple to fit, ready to use. Only 7/8, 7/2, 7/9.

31-33 changeover Sw. and BBC Aerial socket included.

COAX & OX CABLE

Stand. in. diameter. All-Spaced Aerial. A high-grade Coax at NEW REDUCED£6.50 per 100 ft. ONLY 8d. per yard.

Special prices—quantity lengths.

25 Yds. 9/- 100 ft. 3/6. Cables, 10/- 120 ft. 5/-.

CR潼 HTR ILLUMINATION TRANSFORMERS

New improved types, new capacity, small size and tag terminated. Prim. AC 200/250V. Secondaries 115V., 230V., +10%,-5%. IN 120V. 6V. 12V or 15V Tubes. 12V each. P. & P. 1/6.

enyreICEL RECIPITORS, E.K.T. Type Flug-Back Voltages, K2933 2 V., K2934 3.5 V. K2935 5.5 V. K2936 7.5 V. K2937 10 V. K2938 10 V. MAINS TYPES—RM1. 150 V. 80mA. 6/9. RM2 120 V. 100mA. 6/9. RM3 150 V. 150mA. 7/6. RM4 200 V. 200mA. 14/9. RM4B type 270 V. 17/6. RM5 250 V. 300 mA. 8/6. etc.

SPEAKER FETR—Expanded Bordered anodised metal 9 x 5 in. 9/- 12 1/2 in. 12/6 15 1/2 in. 15/6 18 in. 18/6 21 in. 21/6. 24 in. 24/6.

TYGA FETR (striped) sizes 9 1/2 in. 12 1/2 in. 15 1/2 in. 18 1/2 in. 21 1/2 in. 24 1/2 in. 27 1/2 in. 31 1/2 in. 34 1/2 in. 37 1/2 in.

SPEAKERS F.M. 3 ohms 9 in. £10. 12 in. £10. 18 in. £12. 24 in. £14. 30 in. £16. 36 in. £18. 42 in. £20. 48 in. £22. 54 in. £24. etc.

SPEAKERS P.M. 3 ohms 9 in. £12. 12 in. £12. 18 in. £15. 24 in. £18. 30 in. £20. 36 in. £22. 42 in. £24. 48 in. £26. etc.

JASON FM TUNER UNITS

(87-105 Mcy)

Design-approved kits of parts for these quality and highly popular tuners available as follows:

STANDARD MODEL (FNT1)—as previously extensively advertised. COMPLETE KIT. £5. p. A. 1/6. Set of 4 spec. values. 10/- post free.

ONLY A FEW ITEMS ARE LISTED FROM OUR COMPREHENSIVE STOCK. WRITE NOW FOR FULL BARGAIN Lists, 3d.
THE "STUDIO TWIN"
Listed 40 gns. NOW ONLY 29 gns.

This quality Twin Speaker Tape Recorder at this amazing reduced price. Two hours' playing time on 7in. 1,200 c.c. Standard reels. Latest 3-speed Deck. 1, 3, 7 1/2 I.P.S. Includes Twin Tracks Reverse counter, Pause control and magic recording indicator. Volume and tone control, superimpulsed switch. Two 7in. x 4in. matched speakers. 3 watts output. Attractive design cabinet in beige. Size 19in. x 13in. x 8in. Ins. and Carr. 12/6.

EXTRAS: Microphone 27 1/2. Tape 25c.-speed Line Output Transformers Resistor to TELEVISION -7

DE LUXE TAPE RECORDER

List price OUR
21 TUBE £8.10.0 £2 Allowed on
17 TUBE £7.10.0 £1 old Tube
12 14" TUBE £5.10.0 £1 old Tube

REPLACEMENT, REBUILT TV TUBES

12 14", Guarantee
Terms available over
10 weeks
Carr. & ins. 15/6

TELEVISION SPARES

We can supply from stock almost any component from a Resistor to a Tube.

NEW OR USED

Line Output Transformers from 25/-. S/Coils from 15/-. Line or Frame Blocking Osc. Transformers from 2/6. Frame Output Transformers from 10/-. 12 Channel Turret Tuners from 40/-. 10-16-38 M/Cs. Stage which.

Ion Traps, 2/6 each. Resistors, mixed (25). 2/6. Speakers for TV, 7/6. Cabinets. New or Secondhand, from 10/-. Spares for:

PYE V14, V7, VFI, etc.
KECO 141, 161, 221, 251, 290, etc.
LEWIS 988, 986, 992/4/6, 3046, 3006, etc.
H.M. 1007 to 1040 series, etc.
MURPHY 214, 914, 930, 960, etc.

These are only examples of stocks, we have spares for nearly any make and model.

FIRST-CLASS PICTURE TUBES (used)
9tn. and 12tn., 35/-; 14tn., £5.10.0; 17tn., £5.0.0.
7-TIMES MONEY BACK GUARANTEE if not perfectly satisfied.

REGENERATED TUBES:
12tn., £4.0.0; 14tn., £4.10.0; 17tn., £5.0.0.
12 months' guarantee.

SOME OF OUR VALVES, e.g.
EB990 9/- TO EB994 3/- PC994 7/- PL91 8/6
EC915 9/- TO EC918 3/- PC991 7/- PS91 8/-
EC928 9/- TO EC932 3/- PC932 7/- PL93 12/6
Send 3d. for list.

TOP QUALITY AT LOWEST PRICES

with 12 months' Guarantee.

VIRTUALY AS NEW

COMPLETELY REBUILT TUBES

TERMS—C.W.O.
MULLARD - MAZADA AND HARD GLASS TYPES

12-14 inch £6. 0.0 ELECTROSTATIC
15-17 inch £6.10.0 TYPES
21 inch £9. 0.0 10/- EXTRA.

TRADE ENQUIRIES WELCOMED

PRICES SUBJECT TO RETURN OF OLD TUBE

Pass, Train, Carr. & Ins.—To You & return of old tube, in special containers. All covered for 20/- extra anywhere in U.K. or N. Ireland. BRAND NEW TUBES WITH 2 YEARS' GUARANTEE—NOW AVAILABLE (i.e. 17 inch at £10.). From:—

SABRINA C. R. TUBE CO.
Electron Works, North Bar, BANBURY - OXON
Phone: 2390.
PHONES FOR TV RECEIVERS
FOR PERSONAL LISTENING AND THE DEAF
By F. G. Rayer

It is not always realised that headphones can be worked from a TV receiver, and that this can be of great convenience for individual listening, or for a deaf person. If the receiver speaker is switched off (as it can be) a viewer can use the phones without any danger of disturbing others, and this arrangement is occasionally handy.

Advantages

In the case of a deaf person, when phones are connected, there is no longer any need to adjust the receiver volume control to a level which is unpleasant for other people in the room nor need for the deaf individual to sit near the receiver. This is sometimes done in an attempt to follow the programme, but is not a good viewing position. A deaf aid can, of course, be helpful, but it is not always easy to situate this so that it picks up a good signal from the receiver loudspeaker and yet allows the deaf person to be at the best viewing distance.

To overcome these difficulties, phones may be connected to the output circuit, with their own volume control. The exact manner in which hearing has deteriorated varies with different people, and this can have a bearing upon the circuit which is found best. Frequently, however, the maximum reduction in hearing is in the top register, and a simple condenser coupling circuit will allow considerable top boost to be made available.

Output Sockets

Sockets are provided so that the phone circuit can be plugged in. If the receiver speaker is always to be left working when the phones are in use, no changes will have to be made except for this socket circuit. But if a speaker silencing switch is required, this will have to be fitted at a convenient point at the back of the cabinet.

It is essential that the headphone circuit is isolated from receiver high tension and mains voltages. If the receiver is of A.C. type, with all circuits isolated from the mains by means of a transformer, and an earthed chassis, then it is only necessary to connect the sockets to the output transformer secondary, as in Fig. 1. One side of the phone circuit is then earthed.

If the receiver speaker is to be silenced, it is often enough to include an on/off switch in one lead from output transformer secondary to speaker output coil. But if the circuit has a powerful output stage, or takes negative feedback from the secondary, a 2-way switch can be used instead, as also shown in Fig. 1. The resistor R is somewhat higher in value than the speech coil impedance of the speaker—say 5Ω, for a 2/3Ω unit. For normal purposes with the speaker silenced it is unlikely that very much power will be dissipated in this resistor, so a 1W to 5W component may be fitted.

Isolation

With A.C./D.C. or series-heater circuits, it is not safe to assume that the output transformer, secondary is isolated, because it may be wired to chassis, or to a negative feedback circuit. Because of this, an isolating transformer can best be added, as in Fig. 2. The primary of this is returned to the chassis, and is therefore alive to the mains. The secondary is isolated, however, and one secondary lead can be connected to earth (not the receiver chassis, with this type of set).

The transformer is a small output coupling type, with a fairly high primary impedance. The condenser C is a high voltage paper component, and 0.1μF will usually be suitable. This can be modified if desired, as explained later.

Phone Control Unit

A length of twin flex is run from the receiver sockets to a small box or case, which contains a volume control for the person using the phones. Some surplus phones of very low impedance are encountered, and these may be operated directly from the low impedance output sockets, fitted as in Figs. 1 and 2. The matching will not usually be correct, but can be near enough for satisfactory quality.

Fig. 1.—Connections for a receiver with an earthed chassis.

Fig. 2.—Isolating circuit.
When this method of operation is to be adopted, the circuit in Fig. 3 will be satisfactory. R1 is a volume limiting resistor, because the power required by the phones will usually be relatively small. R2 is for volume control purposes. For a low impedance circuit, R2 can usually be some 10 to 50Ω or so, without very much influencing results. R1 can, of course, be omitted. But it is wise to adjust speaker volume to a normal level, then employ for R1 a resistor which will avoid distress to the person using the phones, even with the volume control near maximum.

If medium or high impedance phones are to be used, the volume obtained from them will be small with a low impedance output circuit. It is possible to feed such phones from isolating condensers connected to the primary of the receiver output transformer, but a fault can then result in a high voltage reaching the phones. For this reason, a small output transformer is best used, wired as shown in Fig. 4. A moderate ratio, such as would be fitted to couple a triode output valve to a speaker, will be satisfactory.

Resistor R1 is again so chosen that careless adjustment of the phone unit volume control will not distress the listener. R2 should be of fairly high value, and 10,000Ω will generally serve. A small 0.1μF condenser can be used for C.

Treble Boost

When it is necessary to accentuate the treble, the condenser in Figs. 2 or 4 can be reduced in value. Quite small condensers can be fitted, if necessary. Readjustment of the volume control will be needed, and this will give a relative increase in the power of the higher frequencies. If the phones are only to be used for personal listening by people having normal hearing, the coupling condenser should be of reasonably large value. When a deaf person is using the phones, while other viewers listen with the speaker, the receiver volume control should be adjusted first. The deaf person should then set the phone volume at the required level.

Many ex-service headsets can handle quite a powerful signal. This is not so, however, with some types of diaphragm phones which are produced for crystal sets. 1-valve sets.

Attempts to work the phones at high volume will then cause a rattle, owing to the diaphragm striking the magnet poles. If this arises, the cap should be unscrewed, and the diaphragm lifted off. By drawing a pencil line round the diaphragm, a narrow washer of the same diameter can be cut from stout paper or very thin card. One such washer is then placed under each diaphragm, to increase the clearance between diaphragm and magnet poles.

A spare multi-ratio output transformer will be handy for coupling purposes, as it is then possible to select tappings to match phones of various impedances.

NEW BBC TRANSMITTING STATION AT DRYDEN HILL

The BBC has chosen a site at Dryden Hill, near Galashiels, for its new station in South-East Scotland. The site has been approved by the Postmaster General and legal negotiations for its acquisition are in progress. The station will transmit BBC Television, and also the Scottish Home Service, the Light Programme, and the Third Programme, with Network Three, on VHF. The station will be provided with a 750ft. mast, and will serve an area with a population of nearly 100,000 people, some 70,000 of whom have not hitherto been within range of BBC Television or of the VHF sound services. This area will extend to Lauder, Duns, Selkirk, Hawick, Jedburgh, and Coldstream.

The station will work in Channel 1 with vertical polarization. Work on the site will be started as soon as possible, but the construction of the building, the installation of plant, and the design and completion of the mast and aerials will necessarily take some time, so that it is not yet possible to give a completion date.
LARGE STOCKS OF 12-CHANNEL TUNER TUNERS
New and unboxed. Large selection. Many of famous makers such as Cividon, Haybray, Plessey, Cassor, etc. Let us quote for the model you require. Examples:

30-25 M.C.H. 6-6 M.C.H. 9-14 M.C.H. 14-25 M.C.H.
37/6 59/6 59/6 59/6

C. R. TUBES NEW, UNUSED AND GUARANTEED
FERRANTI 12in., 1/24/4 volt heater.
LAKSY'S Price 49/6
Carr. & Insur. 12/6
Also 9in. T13/4 at same price.
FERRANTI 17in., type TRI70, 63 v., 0.3 amp. heater.
LAKSY'S Price 69/6
Carr. & Insur. 12/6

SEND FOR LAKSY'S COMPONENTS CATALOGUE
TO ORDER 100 ILLUSTRATED PAGES. SIZE 8 x 5in.
Price 2/6. Post 6d.
Latest 13-page BARGAIN BULLETIN included free.

SEND FOR LAKSY'S COMPONENTS CATALOGUE
OVER 100 ILLUSTRATED PAGES, SIZE 8 x 5in.
Price 2/6. Post 6d.
Latest 13-page BARGAIN BULLETIN included free.

LAKSY'S (HARROW ROAD) LTD.
42, TOTTENHAM COURT ROAD, W.1.
Telephone: MI655 9900
Pad. 2102/1
Open All Day Saturday. Early Closing Thurs. Mail Orders to Dept. 777, Edgware Road.

MAIL ORDER DEPARTMENT
211 Streatham Road, Mitcham, Surrey
ALL VALVES LISTED ARE NEW STOCK
Terms C.W.O. or C.O.D. Postage 3d. per valve.

RST 120 COMMERCIAL ROAD, LEEDS 5
We are now able to offer SUPER SCREEN TV TUBES with 12 months' guarantee at the keenest exchange price ever.

Example:

<table>
<thead>
<tr>
<th>Tubes all types</th>
<th>Cash allowance on return of old tube</th>
<th>Actual Cost of Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>12"-14"</td>
<td>15/-</td>
<td>£4.5.0</td>
</tr>
<tr>
<td>15"-17"</td>
<td>25/-</td>
<td>£4.15.0</td>
</tr>
<tr>
<td>21"</td>
<td>30/-</td>
<td>£6.10.0</td>
</tr>
</tbody>
</table>

Carriage and Insurance 10/- extra

These tubes are COMPLETELY REBUILT by experts, with the most up-to-date electronic equipment, and are fitted with the famous American Superior Electron Gun. Many tubes of these tubes are in service today. Our factory is open to inspection to readers of "Practical TV." Technical advice and queries are answered free of obligation. All tubes are dispatched with adhesive paper and return labels. Cash allowance is sent on receipt of old tube.
Better get the best—
it costs less

VIDIO

Offers you the finest rebuilding service available today. Each tube is completely rescreened aluminised and fitted with a new Gun Unit. Available now — for IMMEDIATE DELIVERY.

12”—£5. 14”—15”—17”—£5. 10. 21”—£8.

VIDIO'S SECOND CHOICE
—GUN UNITS.

12”—£4. 10. 14”—£4. 15. 15”—17”£5. 21”—£7.

ALL TUBES GUARANTEED FOR ONE YEAR.

Get full details now from.

VIDIO REPLACEMENTS LTD.

Hales St., Deptford High St.
London S.E.8. Tel: TID 4506

IS IT THE L.O.P.T.?

Be SURE with the SKANT ESTER. The most compact low-priced line output and time base component shorting turn tester. Will indicate even one shoting turn.

£7.10.0. Carriage 5/-.

COAX LOW-LOSS CREAM/BROWN

50 yds. £2.0. 100 yds. £4.0. 500 yds. £17.0.

EAGLE MULTI-PURPOSE VALVE

COMPLETE WITH TESTER V14

Checkers — Valves, tubes.

Realt. — Plug lamps

Inbuilt — 9 pin straightsen.

Battery test

COMPLETE with batteries, instrns. 30/-

RADAR KILOVOLTER, A servicing "must".

Checks accurately and safely actual E.H.T. volt at C.R.T. E.H.T.

rectr., etc. £5.17.6. carr. 2/6.

MAINS TRANSFORMERS SPECIAL OFFER.

350-500 V. £0 ma. 3.6 v. at 0a.

3 v. at 2a. Half-shrouded, drop-through.

Ex new equipment, by well-known manufacturer

WHILE THEY LAST.

ONLY 13G. post 1/6.

PLESSEY O.P. transformers—standard matching for 5-8 ohm spkr.

CRYSTAL MICROPHONES. £3.95 xen.

For tape recorders, public address, etc.

Cream plastic casing—gold metal grille.

Boxed, with long iron screened lead.

BARGAIN £2.0. post 1/-.

S.A.E. with enquiries please—

5 Westward Way.

Preston Road, Harrow, Middx.
SOUNDING brass and tinkling cymbals! How realistically they are reproduced on modern V.H.F. hi-fi sound radio—and especially on the latest stereophonic radiograms. Memories of the Radio Show are fading now, but recent examinations I have made of some of the very latest commercial television sets have reminded me of the enormous difference in the sound quality when compared with the best of the hi-fi receivers.

Lo-fi Sound

THE shape of the modern TV set allows little space for a good loudspeaker and baffle, and in any case the loudspeaker is usually relegated to the side or back of the set, thus effectively losing the high harmonics and "top" that give sound presence and character.

What is to be done about it? Nothing, I regret to say. For in the majority of cases, it is the woman of the family who chooses the make of television set at the shop and the choice is dependent upon her existing furniture styles in the house, the wallpaper or other local colour. Some modern receivers have spikes on their legs as injurious to the carpets as stiletto heels. With a resigned expression on his face, a television set designer said to me, "I don't like the trends, but what can I do? I'm restricted by the credit squeeze and slimline fashions; outer styling is now more important than inner engineering—and I have to sell my sets to eat, so I pander to the ladies."

I am, of course, exaggerating to make my point, but not grossly exaggerating. However, two or three makers have lately achieved an admirable compromise by producing rather wide-fronted slimline models with forward directed loudspeakers on each side of the TV picture combined with cabinet styling that harmonises with almost any kind of furnishings. This is a remarkable achievement!

Piped Television

POOR sound on television is not only heard from some modern TV sets. It is very often heard on the sets provided by wired television companies in some provincial towns. These services are a boon for those viewers who live in towns which are badly screened from their local BBC and ITA transmitters. In some cases, even the highest aerials will not give an interference-free picture from either transmitter, whereas the piped services originate from a first-class receiver with a high aerial on high ground outside the town. Picture and sound are relayed to various parts of the town with amplifiers and repeaters at various points. Picture quality is usually of a high order, free from car and other similar interferences, but sometimes subject to very slight ghost or reflection effects which are possibly due to local distribution line conditions. Surprisingly, the sound sometimes lacks brightness and top. The pictures of BBC and, say, two alternative ITA transmitters are often surprisingly different in strength and quality. I recently looked at a provincial wired television set in a hotel which gave the following picture results:

1. BBC—excellent.
2. London ITA—excellent.
3. Local ITA—weak and poor.

Considering that the people in the town who use their own sets with normal aerials can receive the local regional ITA station perfectly but not the London ITA, the above results are sur-

Tyne Tees Television's new Remote Unit equipped with two Marconi Mark IV cameras in action at Redcar Racecourse.
prising. I would imagine that advertisers who have purchased expensive space for their commercials from the local regional ITA company must be furious.

TV Humour

It really is not very surprising that the public seem to prefer television in its lightest vein. The most popular films in the cinemas are light comedies which include a quota of slapstick such as the “Doctor” series (“Doctor At Sea”, “Doctor In Love”, etc.) and the “Carry-ons” (“Carry on, Constable”, “Carry on, Nurse”, etc.). Virtually the same formulae are used for “The Army Game”, “Bootsie and Snudge”, Granada’s two comedy series.

It all goes to show that there is no joke like an old joke, as long as you dress it up in a new way. Granada do this very well, and a good storyline and skill of direction keep the laughter going, however old the chestnuts.

My personal preference is for “goonish” humour of the type “distilled” by Peter Sellers, Harry Secombe, Valentine Dyall and the “Fred” gang. There is a touch of this type of humour in BBC’s “Parade”, in which Alan Melville distinguished himself recently. The pace of this show is a merry one. It is always a wonder to me how the writers and producers, not to mention the actors, can keep it up week after week in any of these comedy series.

I hear that Gracie Allen, of the Burns and Allen team, rejoices in the end of the series which has caused so much laughter week by week both here and in the U.S.A. “What a lovely rest from having to learn pages and pages of dialogue each week!” she said. It is forgotten by many that Burns and Allen toured their music hall act in Britain before the war. I remember seeing them at the Victoria Palace. They were not at the top of the bill then, but their act had the audience rolling in their seats with laughter. Their television act each week is based upon the same routines. Early episodes of “I Love Lucy”, another domestic comedy series, are still being enjoyed by some of the regional stations more recently opened.

Many a humorous film series is started for TV but not many succeed in getting further than a pilot of the first episode. It is a big gamble to assess the possible audience reactions to humour, but there are big financial rewards for those who succeed in making the grade.

Special Effects

It only seems a few months since the special effects panel, capable of providing a variety of electronic wipes, was evolved, and yet years have passed since a BBC engineer, Dr. Spooner, first investigated the prospects of applying photographic trick effects, as used in films, to television. He spent several weeks visiting Ealing Studios and watching the travelling mattée process in use on a famous film called “The Lavender Hill Mob.” Alec Guinness (now Sir Alec) and the other actors, including Stanley Holloway, were unable to leave London and so other means had to be found to enable them to act in front of the authentic backgrounds. Foreground actors and pieces of scenery were therefore shot in the Ealing Studio and superimposed on backgrounds of the Eiffel Tower and streets of Paris. The result was most convincing and it was hard to believe that the chase down the iron stairway of the great tower was not completely shot in situ. Dr. Spooner then started his experiments on inlay and overlay which resulted in the development of the electronic switch. In turn this was simplified to provide straight electronic wipes in which one scene wipes across and replaces an existing scene.

A further recent development and simplification of the special effects wipe panel was evolved by Dave Whittle, Chief Engineer of Alpha Television Studios, Birmingham, and now, various versions of special effects panels are being supplied to the BBC and ITV Companies by Pye, Marconi, RCA, and E.M.I. The Marconi panel is the most elaborate and can deal with overlay as well as eighteen different types of wipe. These electronic tricks will become commonplace, largely replacing the cumbersome back-projection system. The only danger is that they will become over-used at the least pretext. Remember the dazzling wipes and zooms which became such boring technical clichés in film trailers announcing next week’s attractions at the cinema? Let us hope the television people do not overplay this new electronic card in their hands.

Granville Theatre

As I mentioned last month, the Granville Theatre, Fulham Broadway, has once more been opened for television but in a more elaborate way than it was four years ago and is available for hiring to any of the TV Companies. It is fitted with Pye cameras and telecine, and excellent lighting grid by Mole Richardson and all the very latest paraphernalia of the TV studios. I’m glad that the Granville is in circulation again. It has been a theatre of some kind since 1898, housing music hall, melodrama, revue and non-stop variety in turn. It was rather on the small side, seating only 777 people, but this is no disadvantage for television. The maximum audience that can now watch television shows here is about 200. Almost the entire stalls and pit have been turned into an extension of the stage and large control rooms have been fixed up in the gallery.
18 MONTHS' WRITTEN GUARANTEE

To ensure extreme reliability, not only are the best available materials used under controlled conditions, but all tubes are given 12 THOROUGH TESTS after completion of the processes.

12".. £5.76.
14"-16"................................. £5.10.

 Allowance on old tube 10/-.

17"... £6.19.

 Allowance on old tube 20/-.

21"... £8.19.

 Allowance on old tube 30/-.

C.W.O. or C.O.D. Carr. and Ins. 10/-.

FACTORY REBUILT

TELEVISION TUBES

After considerable development work and extensive trials under working conditions, the manufacturer is confidently offering an 18 MONTHS' WRITTEN GUARANTEE on all tubes.

To ensure extreme reliability, not only are the best available materials used under controlled conditions, but all tubes are given 12 THOROUGH TESTS after completion of the processes.

12" .. £5.76.
14"-16" £5.10.

 Allowance on old tube 10/-.

17" ... £6.19.

 Allowance on old tube 20/-.

21" ... £8.19.

 Allowance on old tube 30/-.

C.W.O. or C.O.D. Carr. and Ins. 10/-.

TELEVIEWER SUPPLIES

95 Caldmore Road, Walsall, Staffs.

AERIALS

BAND I - BAND II - BAND III

Combined Arrays I and III £9.99
3 Element Loop Mounting 10/6
3 Element Loops Mounting 12/6
3 Element Wall Mounting 15/6
3 Element Wall Mounting 8/6
3 Element M. C. Mounting 15/6
3 Element M. C. Mounting 8/6

Band I Single Dipole Wall Mounting 24/7

Single Dipole Chimney Mounting 20/5
5/6

Band III

3 Element Yagi Wall Mounting 33/-
3 Element Wall Mounting 25/-
3 Element Wall Mounting 25/-
3 Element Wall Mounting 33/-

Double 6 Array, only with clamp 8/6.

Band I Single Dipole Wall Mounting 20/5

Single Dipole Chimney Mounting 20/9

Aerial Chimney Mounting 20/3

Rabbit Ear Antenna, ready to plug in. All Bands 21/3

6-inch Lashing Kit 7/6

7-inch Lashing Kit 7/6

8-inch Lashing Kit 7/6

1 to 1-inch Clamps 5/6

1 to 1-inch Clamps 5/6

1 to 2-inch Clamps 5/6

Brickner Repair Kit, B. & B. U. 30/-

Wire, Thimbles, Corner Plates 20/-

Co-Ax Semi Air Spaced, 7/8 yd.. 13/-

Send 6d. or Lists. Please send 1/- when ordering.

Cash, with Order, Post and Packing extra.

Satisfaction or Money Back Guarantee

WALKER & SQUIRES

PINNOX STREET, TUNSTALL, STOKE-ON-TRENT

Phone: Stoke-on-Trent B4767
VALVES

SAME DAY SERVICE
NEW! TESTED! GUARANTEED!

SETS

IR5, IR3, IT4, BS4, 3V4, 3A6, DP91L, DP91, DK31, DL69, DL64
DAP96, DP96, DR98, DL26
EAB93, ES97, EV97, EV95, or EY97 — any 4 for £1.85

December, 1960

“AS-NU” Regassed TV Tubes

Supplied from stock, and despatched by British Railways same day.

COMPLETE NEW GUNS
fitted in every tube and fully guaranteed for TWELVE MONTHS.

Mullard
Mazda

12 in. ... £6.10.0
14 in. ... £6.15.0
15 in. ... £6.0.0
16 in. ... £6.10.0

£5.10.0
£5.15.0
£5.10.0
12 in. ... £8.10.0

Plus 10/- Carr. & Ins.

Other types available. Please contact:

J. P. WRIGHT
1c Shotton Street, Doncaster
Solo Distribution Agent

Tel: 37030

LINE OUTPUT TRANSFORMERS

Most types available. State Make and Model Number of Receiver when ordering.

S.A.E. please with all inquiries

HOWORTH
51 POLLARD LANE, BRADFORD 2, YORKS.

A SUPER SPECIAL TV TUBE OFFER

Our Unbeatable Price £8.10.0. Also available brand new 14in. to replace 36-34, 36-41. Tel: 25-74, 24-42, 14IR, 14-A1, 14-A1, CP-4, 14ASAP4, or for AW 36-30, 36-21, 12in. brand new 11 MW 31-74, all available at 7/- each. Post packing and insurance 10/- extra.

NEW MAX ELECTRONICS

For London’s Finest Dealers in electronic and radio equipment. Also selected Dealers in UK. Tel: 220, Edgware Road, London, W.2.

December, 1960

PRACTICAL TELEVISION

READERS RADIO

24 COLBERG PLACE, STAMFORD HILL
LONDON, N.16

STA. 4587

ACT NOW!

Get information-packed literature FREE.

Prime Electrics Dept. G.A. 11.

Please send your FREE brochure and tell me how I can make EXTRA MONEY in my spare time by introducing your new product which sells on sight to all TV viewers.

NAME

(please print and send 3d. stamp (or postage)

ADDRESS

UNITED KINGDOM ONLY.

Just published in a NEW 3rd edition...

TELEVISION ENGINEERS’ POCKET BOOK

Edited by J. P. HAWKER

Much new information has been added to this enlarged and revised third edition.

Apart from essential reference data on cathode-ray tubes, valves, television stations and transmission standards, there are extensive sections on the basic circuits used in receivers, on fault finding—including a new trouble tracing chart—and on the alignment of Band I/III receivers. There is guidance on the conversion of Band I sets and a comprehensive list of receiver intermediate frequencies. Colour and transistorized receivers are described. There are special sections on servicing equipment, dealing with printed-circuit models and projection receivers, aerials and interference problems.

Only 12s. 6d. FROM ALL BOOKSELLERS ... or, in case of difficulty, 13s. 6d. by post from George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.

“A SUPER SPECIAL TV TUBE OFFER

New tubes made by world-famous manufacturers complete with 12 months’ maker’s guarantee, 17in. Tube to replace the MW43-04 33-68, 17IR, 17ASAP4, 17AXP4, CP-1, C17-A, CR-17-22, C17-FM, MW 43-90...

Our Unbeatable Price £8.10.0. Also available brand new 14in. to replace 36-34, 36-41. Tel: 25-74, 24-42, 14IR, 14-A1, 14-A1, CP-4, 14ASAP4, or for AW 36-30, 36-21, 12in. brand new 11 MW 31-74, all available at 7/- each. Post packing and insurance 10/- extra.

NEW MAX ELECTRONICS

For London’s Finest Dealers in electronic and radio equipment. Also selected Dealers in UK. Tel: 220, Edgware Road, London, W.2.

“A SUPER SPECIAL TV TUBE OFFER

New tubes made by world-famous manufacturers complete with 12 months’ maker’s guarantee, 17in. Tube to replace the MW43-04 33-68, 17IR, 17ASAP4, 17AXP4, CP-1, C17-A, CR-17-22, C17-FM, MW 43-90...

Our Unbeatable Price £8.10.0. Also available brand new 14in. to replace 36-34, 36-41. Tel: 25-74, 24-42, 14IR, 14-A1, 14-A1, CP-4, 14ASAP4, or for AW 36-30, 36-21, 12in. brand new 11 MW 31-74, all available at 7/- each. Post packing and insurance 10/- extra.

NEW MAX ELECTRONICS

For London’s Finest Dealers in electronic and radio equipment. Also selected Dealers in UK. Tel: 220, Edgware Road, London, W.2.

“A SUPER SPECIAL TV TUBE OFFER

New tubes made by world-famous manufacturers complete with 12 months’ maker’s guarantee, 17in. Tube to replace the MW43-04 33-68, 17IR, 17ASAP4, 17AXP4, CP-1, C17-A, CR-17-22, C17-FM, MW 43-90...

Our Unbeatable Price £8.10.0. Also available brand new 14in. to replace 36-34, 36-41. Tel: 25-74, 24-42, 14IR, 14-A1, 14-A1, CP-4, 14ASAP4, or for AW 36-30, 36-21, 12in. brand new 11 MW 31-74, all available at 7/- each. Post packing and insurance 10/- extra.

NEW MAX ELECTRONICS

For London’s Finest Dealers in electronic and radio equipment. Also selected Dealers in UK. Tel: 220, Edgware Road, London, W.2.
SIR,—I am an experimenter and find most enjoyment in trying out timebases. Recently I had a most unfortunate accident with a unit which virtually "blew up". I assumed at the time that one of the condensers had developed a fault which is not uncommon, and proceeded to dismantle it and wired in a new one. I have now found that the output transformer has gone o.c. The primary is burnt out and so I looked through a large number of circuits and books I have, and discovered a very interesting point. Some years ago it was the custom, apparently, to fit a 1W resistor across the primary as a "surge limiter". Today this does not seem to be included in any of the commercial circuits which I have looked at, and I wonder whether there is anything in the frame circuits which now does away with this surge, or are transformers now made to withstand the surge? I have not been able to see any data on this in any books or publications.—G.E. (Enfield).

A STRANGE FAULT

SIR,—I have seen some peculiar faults in television sets, but am now faced by a most awkward one, which two local dealers have been unable to solve. When switched on the set warms up in the usual way, and suddenly the line whistle may be heard. The screen then starts to light up, and for about ten seconds there is a good picture with a full raster. Almost immediately, however, the frame jumps to about two-thirds full size with no alteration in width. Everything is accordingly elongated but if the set is not touched, after a period varying from ten minutes to half an hour, the frame jumps back to full size. It may do the same thing once or twice more during the evening, although some evenings it remains constant for the entire viewing period. Every component has been changed in the frame timebase, and the valves replaced with no effect. Can anyone offer a suggestion as to the cause?—D.K.L. (Aylesbury).

ALTERNATIVE TRANSMISSIONS

SIR,—It is now many months since I read that the Government had authorised the use of Bands IV and V, yet nothing seems to transpire. I expected to see something at the Radio Show on the lines of a really simple multi-band tuner, but was disappointed. Why cannot the BBC or ITV give us the opportunity of having these additional bands, especially as I understand that this may be done with no heavy cost, simply by using the present programmes, radiating them on two or three bands as required. It would give us experimenters something to mess about with on those nights when there is nothing to hold our interest, as well as permitting developments to be made in multi-band tuning. I agree that colour would be more difficult as changes in the transmitter would be required, but the addition of a simple aerial array on all masts and radiation on three or four bands does not appear to me to be a difficult proposition, and would also help the transmitting people when an alternative transmission is commenced.—F.T.R. (Hull).

COLOUR TV

SIR,—The BBC has just announced the possibility of introducing colour television to Britain. Unless I am very much mistaken, this will be a costly change-over for both the viewer and the BBC.

For the BBC it will mean employing many more technical advisers who have had experience with scenery and costume arrangement suitable for colour television, as well as the cost of new cameras and equipment. This means that some of the finer points of acting and arrangement of the "sets", which in recent years have come near to perfection, will inevitably be lost under the restrictions caused by the necessity that colours will neither clash nor be lost against a background of similar colour. The result can only be a deterioration in the high standard of production we have at the moment on British television. Which excels, I wonder—a cheap colour production or a first-class play in monotone?

For the viewer it will almost certainly mean an increase in the price of a television licence—the BBC have said so. The receiver will cost many times the amount usually paid for one now. Also, every TV set will have to be increased in size to accommodate the extra components, and much of the elegant styling that has been accomplished over a number of years and which can be seen in nearly all of today’s models will have to be forfeited for the addition of colour programmes.—D. HILLIAM (Bexley).

SIR,—I, for one, was pleased to hear of the BBC’s plan for colour television in this country, but am somewhat sceptical about the quality of the picture that will be received. Although I have no experience in this field of television, I would imagine that faults that were either common or inevitable on normal TV sets would become serious defects on colour receivers.

For instance, would the strength of the colours become lessened when a receiver is used in a "fringe" area? Would the overlapping images formed by "ghosting" result in a change of colour over certain parts of the screen?

No doubt manufacturers will overcome these and other difficulties, but additional controls will almost certainly be necessary, making the operation of receivers more complex than ever.—J. EVANS (Redhill).
PROBLEMS

Whilst we are always pleased to assist readers with their technical difficulties, we regret that we are unable to supply diagrams or provide instructions for modifying surplus equipment. We cannot supply alternative details for constructional articles which appear in these pages. WE CANNOT UNDER- TAKE TO ANSWER QUERIES OVER THE TELEPHONE. The coupon from p. 168 must be attached to all Queries, and if a postal reply is required a stamped and addressed envelope must be enclosed.

ULTRA V707

This set has developed a 1in. black line down the right-hand side of the picture. When the sound is loud, the picture breaks up.—D Cole (London, W.3).

We are not familiar with the model V707, but assuming this belongs to the W700 series we would suggest you check the UUB, the electrolytic capacitors and the “beehive” capacitor adjustment on the right side chassis (oscillator tuning).

H.M.V. 1826

This set uses an Emiscope 4/15 tube which is now going dim. As regunned tubes are hard to obtain for this model I was wondering if there is any way to convert it to take a Mullard or Mazda tube.—E. Williams.

A rebuilt 4/15 tube may be obtained from firms advertising in our pages.

FERGUSON 989T

The trouble started with what appears to be EHT “brushing” spots in two separate horizontal bands. These have now spread all over the screen, but not always present. I have inspected the circuit in the dark for sparking but with no success. This has become worse after interference accompanied by a forked lightning effect from the top centre to the middle of the screen. This appears to have caused a slight vertical burn, leaving a permanent mark. There is also an erratic frame hold. At intervals of up to 15 minutes or more the picture commences to move up or down and, while a lock can be obtained, there is sometimes a tendency for the bottom of the picture to fold up.—P. Hunt (Hackney, E.8).

There is a possibility that the disturbance is in fact the result of a form of external electrical interference. You should first prove this by disconnecting the aerial from the set when the effect occurs. If the interference spots are still present with the brightness suitably advanced to show a raster, then it is being caused by a fault in the set. If the raster is clear, however, the interference is external. In the former case check the line output transformer, insulation and soldered connections, especially those on the EHT rectifier. Also check the EHT smoothing capacitors. These often tend to break down and cause the troubles mentioned. External interference may require Post Office investigation.

ALBA

This set is six years old and has developed a wedge-shaped raster or picture. I purchased a new set of scan coils but there was no life on the tube face at all, so I put the old ones back without results. I increased the heater voltage on the tube slightly, and I was able to see the wedge shape but it was misty. The sound is also lacking in strength, and the ion trap magnet failed to increase the brilliance. There is plenty of EHT and the line timebase whistle is loud and clear.—A. James (New Tredegar).

Whilst the tube is almost certainly responsible for the lack of brilliance, we do not doubt that the scan coils were responsible for the wedge-shaped raster. Check H.T. and electrolytic capacitors.

BUSH MS6

I have noticed the fault on this set for some time and have carried out a check over the sound output stage but can find no fault with it. The effect I am obtaining is a low-pitched hum on sound, but while checking I noticed that the hum was not present during the warm-up period, and does not become apparent until the line timebase starts, which also makes the frame circuit operate. I believe that I am obtaining a feedback from the frame circuit. If I open the height control to maximum, the hum becomes louder, and likewise if I reduce the height the hum decreases. I have been wondering if it could be a fault in the frame output transformer.—C. E. Herridge (Paignton).

The main smoothing is carried out by a 100+100µF and separate 200µF electrolytic capacitors. It is quite likely that one of the 100µF sections of the former is open circuited. A wire-ended 32µF 350VW capacitor can be used for checking, touching the negative wire to chassis and the positive to each capacitor tag in turn to see which gives a result.

VIDOR CN4217

The picture is excellent but tapered from top to bottom leaving a 3in. blank each side of the screen. The coils on the CRT neck become fairly hot. There is a white band about 1in. wide at the bottom of the screen. The following have been checked and found to be in order:—sound, interlace, contrast, horizontal and vertical holds, picture height and brightness.—J. Davies (Barry).

The scanning coils should be changed as it would appear that a fault in these is causing the tapered picture. The 1in. white band at the bottom should direct your attention to the ECL80, beneath and to the left of the focus magnet, i.e. to the right of the PY82 valves as viewed from the rear.

PHILIPS 1746U

Recently the picture on this set has been gradually contracting in width, to about 3in. border on
DIY'S
EDDY'S
MINIATURE
ADJUSTABLE
6FT. LENGTHS EACH. POST 6D.

VARIABLE CONDENSERS.

GERMANIUM
HEADPHONES.

HIGH GAIN STAGE AND CAR
GUITAR

EF92
EF91
EF42
EF40
EF36
ECF82
ECC83
ECCBI
E834
DK96
DK9I
DF96
DAF96
DAF9I
NEW S.A.E. TRANSIT ANY
ALL LUXEMBOURG
16MFD. 450V, 2/6.

17111.

PARCEL INSURED AGAINST DAMAGE ALL REGULATORS.

600V, 2/6.

RADIO
ACCUMULATORS.

5/0& 3IN.

1713

6SN7GT
6K7G
6C6
6C4
6AG5
5Z4G
613
12111
P.M.

619

13/-

1/6.

613
12AT7
613

13/-

1/6.

619

13/-

1/6.

619

13/-

1/6.

619

13/-

1/6.

P.O.

13/-

1/6.
You can't help earning more!

WITH NEWNES

RADIO and TV SERVICING

LATEST EDITION IN SIX VOLUMES

FREE FOR 7 DAYS

This Latest Edition of Newnes Complete Library of Servicing Data is exactly suited to your needs. Here in six packed volumes are all the circuits, component and layout diagrams you must have for speedy, efficient repair work, tuning and general maintenance—over 2,300 models pre-1954 right up to 1960. All the famous makes below are included—everything you want for years to come. If you've never seen previous editions be sure to see this one! TELEVISION, RADIO, RECORD REPRODUCERS, TAPE RECODERS

All these popular makes—

Important Reference Data on Valve and Picture Tube Bases and Equivalents. BBC and European Broadcasting Stations, TV and VHF/FM Channel and Stations.

POST NOW Data No Cost-No Obligation

GEORGE NEWNES LTD., 15-17 Long Acre, London, W.C.2

Please send me Newnes RADIO AND TELEVISION SERVICING without obligation to purchase. I will return it in 8 days or send 1/- deposit 8 days after delivery, then twenty monthly subscriptions of 1/- paying £11 11s. 6d. in all. Cash price in 8 days is £11.

Name ________________________________
Address __
Occupation __
Your Signature __
(Or Your Parent's Signature if under 21) RV 120

B.B.C. - I.T.V. - F.M. AERIALS

B.B.C. (BAND 1), Tele- scopic mast, 6 ft. External, £12 6d.
I.T.V. (BAND 2), 3 El e-ment mast, 14 ft. Element, 30/6. Wall mounting, 3 Elements, £3/6-
1/2 Element, £5/2.
COMBINED - B.B.C. + I.T.V. Mast, 1 3 Element, 14/3. 1 5 Element, 48/0.
Wall mounting, 1 5 Element, 60/6. 1 4 Element, 65/6. Chimney and mast mounting units also available.

GEORGE E. DARWIN
45, Shaw Street, St. Helens, Lancashire,
Telephone: St. Helens 4246

DARWINS "Lancashire" tested television tubes. Completely rebuilt and guaranteed fully for twelve months. 12 inch £5. 14 inch £5-5. 15 inch £5-10. 17 inch £5-15. 21 inch £8-10.

Carriage and insurance paid on to your doorstep.

INCREASES YOUR EARNINGS

OVER

2,300

POPULAR MODELS

MORE THAN

3,800

Circuit & Component Layout Diagrams

OVER

3,750 Pages

2 Years' Free Postal Advisory Service

Includes Practical Guidance on Circuit Developments, Fault-finding and Alignment, Servicing Tape Recorders, Aerial Installation, Electrical and Car interference suppression. Servicing Transformer and VHF/FM Radios, Printed-wiring sets, Servicing Equipment, Salvaging Picture Tubes, etc.

INCREASES YOUR EARNINGS FOR YEARS TO COME
the right-hand side and l1n. on the left. Although the knob for adjusting the horizontal width is working it has no effect on the picture. The image appears to be curved on the right-hand side at the extreme edge.—E. Robinson (Staines).

We would advise you to replace the PL81 line output valve. This is the right-hand valve of the two situated in the screened compartment on the left side as viewed from the rear.

G.E.C. BT1748

After being switched on for about an hour, the width and height become smaller. I fitted a new metal rectifier RM5 a few months ago to remedy this fault, which it did, but now it has appeared again.—J. Googar (Leicester).

Check the H.T. voltage which should not be much under 200. If it is, change the RM5 and see that the ventilation of the receiver is not restricted in any way. If the H.T. voltage is normal, check the N339 line output valve and the timebase voltages generally.

ALBA T432

A fault has developed in the H.T. circuit. In the past six months we have changed four GZ32 valves, three condensers C37a and C37b. On the last occasion, a U52 rectifier was used to increase current. This too has burned out. After changing condenser 37a and 37b a new rectifier was fitted but this immediately flashed. Condensers 36a, b and c, 37a and b do not appear to be shorting. —H. Mercer (Hove 4).

You should not use a directly heated rectifier such as a U52 since this causes a rapid voltage rise (to about 500V) almost as soon as the receiver is switched on. Revert to the GZ32. Check the line oscillator EF50 and circuit since a short often occurs here of an intermediate nature causing the rectifier to flash over and fail.

BANNER 124B

Can you tell me where to obtain a service sheet for this receiver? I have flyback lines seriously interfering with the top half of the picture. I think I have the wrong value components.—G. Gibson (Wadhurst).

You will find that a service sheet on the Sobell T143-T144 series will apply to your receiver. You may have fitted a wrong value coupling capacitor in the frame timebase: that to pin 9 of the ECL80 via a 10k resistor is 0.1µF.

INVICTA 126

My trouble is two or three lines down the left-hand side of the screen like waterfalls. This only occurs on BBC, ITA is perfect. —R. Shorrock (New Ferry).

Check the PL81 line output valve by replacement, then the top centre PCF80. If these are in order, check the 3.9k resistor and 47µF capacitor wired in series behind the line output transformer.

PILOT TV94

This set has completely broken down to give a horizontal white line of intense brightness. When this line appeared a rasping, grating sound was heard from the speaker. The brilliance con-
trol was turned down and the set switched off. Previous to this fault, the line hold control was at the end of its travel but failed to lock. The only method of locking the line hold was switching from one channel to the next then back again but this operation had to be carried out every 20 minutes or so. The line output valve was glowing rather blue before horizontal lines appeared. It was later noted that the large resistor underneath the line output valve was rather black and burnt. The set is three years old and has the original valves except for the EY51. — A. Taylor (B.F.P.O.39).

The 12BH7 may be at fault but from the "rasping sounds" heard we are suspicious of the frame output transformer or the H.T. feed from the boosted line. Check for H.T. at pin 1 of the 12BH7 and at the junction of the 68k resistor and 8µF capacitor. If no H.T. is present at pin 1, but it can be recorded at the resistor/capacitor, the transformer is at fault. Inability to lock should direct your attention to the 12AU7 line oscillator valve and the adjustment of the lower core of the coil next to the PY83.

DEFIANT T.R.1756T

When first switched on there is a loss of height top and bottom. After one hour or so it reaches the correct height and later it loses height or perhaps becomes "too tall". The ECL80 has been changed without effect. —D. Tindel (North Shields).

The ECL80 concerned is that on the front left side as viewed from the rear. Then replace the 4.7M (yellow-violet-green) and 1.8M (brown-grey-green) resistors associated with this valve and circuit. The H.T. metal rectifier is possibly low but this would also cause loss of height and focus.

ENGLISH ELECTRIC C45

An unusual fault has developed on the above set. Everything is normal except when the contrast control is turned down or when the aerial plug is removed. Then the EY51 heater goes out and this means that there is no EHT and the PL81 becomes red-hot. Also the line output transformer becomes overheated. All the valves in the line output section and EF80 line oscillator have been checked and also the components but they are in order. As this circuit has a separate line oscillator valve this does not make sense to me. There are about five bands about l1n. wide on the left-hand side of the screen which do not alter with the controls.—W. Worral (Holywell).

There is no completely separate oscillator, the EF80 is operated in conjunction with the line output transformer in a feed-back circuit. We would direct your attention to the 220µF capacitor to pin 2 of the EF80 and the 33µF wired across terminals 1 and 3 of the line output transformer.

VIEWMASTER

This set is built to take wide angle 17in. tube and adapted to take a 12-channel turret tuner. I am unable to obtain a full-width picture; it is about 1in. too small on either side. The width control is at its best position. I have replaced C82 on the side of the line transformer 140µF and this.
Improved the width slightly, but not enough.—A. Kemp (Leeds).

Loss of width, evenly on both sides, normally denotes a low-emission H.T. rectifier. If this is in order, however, check the anode resistor of the line oscillator and the timebase valves and components generally.

BUSH TV56

I believe the fault is in the tuner. The fault is only on ITA. It is a noise rather like an electric shaver and at the same time two white bands appear on the screen from left to right, one about 2 in. from the top and the other 1 in. from the bottom. These white bands pull the picture contents to the right. I have changed PCF80 in the tuner and also PCC84 and EF80, first I.F. valve but the noise still remains. The only way to eliminate it momentarily is to adjust the fine tuner very slightly, but the slightest movement to either left or right brings it back.—H. Wronski (Leeds).

If the original position of the components and wiring in the tuner have not been disturbed, you will probably find that the cause of the disturbance is an open-circuited decoupling capacitor of 560pF associated with the H.T. feed to pin 1 of the PCF80. Check the other decouplers of this value if necessary. It is necessary to maintain the original positions of the components.

FERRANTI 17TS

I am shortly moving to Sittingbourne, Kent and I am anxious to know whether my set will work in that area without many adjustments. — T. Scoates (Orpington).

Set channel selection switch to Band I, and adjust tuning control until Channel 1 is opposite pointer (this gives London BBC); set switch to Band III and adjust tuning control until channel 9 is opposite pointer (this gives London ITV).

COSSOR 948

On switching off the set a residual spot of some intensity persists for about a minute, which, according to my agent, is of no importance. However, I should like to remove it.—A. Lacy (Aspley).

An EHT Metrosil, fitted between the EHT lead and chassis should reduce the time taken for your spot to decay, and should improve EHT regulation. Metrosils are ordered by their working voltage and we suggest you measure the EHT and purchase the nearest available Metrosil.

THE "OLYMPIC"

(Continued from page 146)

can be obtained from most good garages. They are carefully straightened by rolling them on a hard flat surface with a domestic iron, after thoroughly cleaning with metal polish and hot detergent solution. They are preferably silver plated—the method has been described in this journal—not only to improve the "Q" of the circuit but to avoid oxidation which will cover the copper in time with a layer of copper oxide, which is less conductive.

A hole of suitable size is cut in the back plate of the tuner chassis, and a large enough piece of paxolin to cover it is obtained. This is drilled with two holes exactly 1 in. apart each 1/2 in. in diameter. A piece of Perspex is also drilled with holes 1/2 in. apart in the same tube are pushed and the paxolin to the required depth, and then the piece of Perspex is also pushed over the tubes so that it will in the end be inside the tuner. The slight inaccuracies which will inevitably occur in drilling will enable the Perspex to jam the tubes solidly in position when it is tapped gently towards the paxolin mount. Last of all, the paxolin, with tubes in place, is mounted on the back plate of the tuner, and the tubes rendered parallel by slight bending as necessary.

Attachment of the tubes to the oscillator wafer is made by means of flexible braid which may be obtained from odd lengths of coaxial cable. A hot soldering iron is required because of the high thermal capacity of the copper tubes. Extra heat may be needed, from a small blowlamp or gas jet, to increase the temperature of the soldering iron.

Building up the tuner should be carried out wafer by wafer. The first, for the aerial switching (if used), is slipped into position and the wiring done on it. Then the valve wiring for the R.F. stage should be started, and when the grid circuit reached the second wafer is put in position, using the correct spacers between the two wafers. No inter-stage switching is needed—the coupling circuit has been designed so as to avoid this complication—and so the remainder of the wiring can be completed as far as the oscillator stage.

(To be continued)

QUERIES COUPON

This coupon is available until DECEMBER 22nd, 1960, and must accompany all Queries sent in accord with the notice on page 164.

PRACTICAL TELEVISION, DECEMBER, 1960.
LAWSON TUBES
156 PICKERSLEIGH RD., MALVERN, Wors. MAL. 3798

December, 1960
PRACTICAL TELEVISION

LAWSON

EXACT REPLACEMENT
Completely Reprocessed TUBES

POINTS FOR PERFORMANCE

(1) These new small particle silver activated screens have been specially developed for increased brightness with greater contrast. This results in a brilliant crisp picture especially suitable for daytime viewing even in the older type sets. In addition sharper focus, better definition and increased life result, because correct brightness levels are obtained with lower beam currents.

12 MONTHS' NEW TUBE GUARANTEE

ALL MATERIALS AND COMPONENTS USED IN THE MANUFACTURE OF THESE TUBES ARE COMPLETELY NEW, EXCEPT THE GLASS ENVELOPE AND ONLY ENVELOPES WHICH WILL PASS INSPECTION TO NEW GLASS STANDARD ARE USED.

NEW VALVES!
Guaranteed Set Tested
24 HOUR SERVICE
12/6, 15/6, 17/6, 19/6, DAF91, DF92, DFK1, DFD96, DFK6, DF93, DC94, SET of 6. £8/6

156 - £5.10.0
14" - £5.19.0
15-17" - £6.10.0

FIRST-CLASS TELEVISION and RADIO COURSES
GET A CERTIFICATE!

After brief, intensely interesting study — undertaken at home in your spare time — you can secure your professional qualification or learn Servicing and Theory. Let us show you how.

FREE GUIDE

Write now for your copy of this invaluable publication, it may well prove to be the turning point in your career.

FOUNDED 1885—OVER 150,000 SUCCESSES

NATIONAL INSTITUTE OF ENGINEERING
(Dept. 463). 148 HOLBORN LONDON, E.C.I

S. Africa : P.O. Box 8417, Jhburg.
Australia : P.O. Box 4570 Melbourne.
www.americanradiohistory.com
Practical Television Classified Advertisements

December, 1960

SETS & COMPONENTS

IN SCOTLAND

RENVU

For BETTER VALUE

Completely REPROCESSED TUBE

(New Gun, Rescreened, aluminised)

6.3v. 3 amp. 17" types £7.00

6.5v. 3 amp. 14" types £6.10

12.6v. 3 amp. £7.00

12.6v. (round)

6.3v. 14" types £6.10

6.5v. 13" types £7.00

12.0v. £6.10

ELECTROSTATIC 90° TUBES

10° extra.

10/- allowed on old tube.

RENFREW ELECTRONICS LTD.

ANDERSON DRIVE

RENFREW

Tel.: RENfrew 2624

VALVES, RECORD Players and Amplifiers, Receivers, Valves

AMATEURS HANDYMAN

Change your TV Tube with a Rebuilt one by post. Free advice given. Service Sheet & List supplied. S.A.E. for enquiries.

G. HURST, 3, Conleton Road, Shiffield.

TV TUBES

New guns, 17hn. £5. Twelve months guarantee. Dealers supplied.

Aerfans and Coax cheap. TV ELECTRIC & CYCLES Co., 1, High Street, Cheyney, Slough. Tel.: Slough 2186.

Television: Tube Shop

now stock Tubes for every make of set

NEW REDUCED PRICES

- 14 inch, Mullard type: £4.50
- 12 inch, Mullard type: £4.15
- 11 inch, Mullard type: £3.80
- 10 inch, Mullard type: £3.60
- 9 inch, Mullard type: £3.40
- 8 inch, Mullard type: £3.20
- 7 inch, Mullard type: £3.00
- 6 inch, Mullard type: £2.80
- 5 inch, Mullard type: £2.60
- 4 inch, Mullard type: £2.40
- 3 inch, Mullard type: £2.20
- 2 inch, Mullard type: £2.00
- 1 inch, Mullard type: £1.80

Add 10/ for delivery to your door within 48 hours or 5/- B.S. Terms 32 down. All Tubes carry 12 months guarantee. A few shop-soiled tubes available. Good picture. Fully guaranteed, from 900.-. Spare-time service engineers—send for details of our rebate scheme.

TAPE RECORDERS

Latest Colloca "Studio" 3-speed Tape Deck, complete. £12.15. Potted to Motor Board, with 1,200 feet £11.00. £10.50 for your own cabinet, to suite 120 volt. £15.00 for 53 watt Amplifier, specially designed for the "Studio" complete with power pack, knobs, etc.

VALVES

A very wide range at 20% off list price. Send for complete price list of these and other brands.

TELEVISION TUBE SHOP

48 Battersea Bridge Road, LONDON SW1. SAT. 6000. Open Saturdays.

HATES: 4/- per line or part thereof, average five words to line. Minimum 2 lines. Box no. 1/2 line extra. Advertisements must be prepaid and addressed to "Manager "Practical Television" Towner House, Southampton St., London, W.12.

TELEVISION TUBES

Rebuilt, new guns, twelve months guarantee, 14In., 17In., 79/6. Quantity discounts. 3, Pank Ave, New Bury, BURY 3115.

OLYMPIC TV SET

Top Quality Valves: EF12, EF70, 761, 761/6, ECC83 9R4G, PC66 12AU7, PC212 12B, PC60 10/8, PE82 15/8, PE110 8R5, 6D 9R5, each valve. VALVE HOLDERS, B.I.G. Stat, B.A. Skirt/Can 1/9 each, 6D, 6P6, 6G5, T.A.G. STRIPS, 1, way 14, 2, way 6D. RESISTORS 1 watt 34ohm, 1 watt 340 ohm. WIRE WOUND, FB28, PC66 12AU7, 6G5, and other valves. COIL FORMERS with Cored, 6D, 24.5mm. COLLIER with Can, 24, each, SILICON RECTIFIERS, with or without socket, 500V, 2, 6D, 6, 4, p.p. FILM, Rectangular Tubes, 12 months guaranteed. BLG, LORENZ ELECTROSTATIC TWEETER SPEAKERS, (1200-1050000), 12, 13, 14, 2 volts. VIBRATORS, 2, double 1 volt 5 pin, 5/each, 6D, 6P6. BLOOMFIELD CONDENSERS, 0.25 to 2000mfd, 33h., 134v.

SOUND VISION

ANCHOR STREET, CHELMSFORD

TV SPARES

London’s Largest Range—New or Used LINE OUTPUT TRANSFORMERS and SCAN COILS for nearly every make and model.

New from £2.50, reconditioned from 20/-. Just a few examples from our extensive range In STOCK, Add 2/6 for P & P. TELEPHONE ORDERS SENT SAME DAY C.O.D.

NEW LINE O.P. TRANSFORMERS

Pye V47, V4T, V74, S2/6; LV30, FV1, V3/6.

Fernase 14V, V4T, S2/6; LV30, FV1, V3/6.

Ferguson 992/67/8, 66/9, 94/5-5, 57/6.

Ekco T212/213, 50/-, 516 etc., 45/-.

H.M.V. V47, S2/6.

Crosost 930-9, 9b/6, 916-25, 75/6.

Alba T30/504 45/-, 362/441, 47/6.

Murphy V40/180, 180, 52/6.

Ultra VT56-17 etc., 108/6, with 282.

New Scan Coils for Pye, V47, V4T, 62/6.

We also stock a complete range of spares for nearly all makes and models, e.g., LOFT’S, Line and Frame Blocking Trans., Frame Output Trans., valves, resistors capacitors, ion traps, etc., etc., PLEASE SEND S.A.E. FOR IMMEDIATE REPLY.

SPARES - VALVES - TUBES

36-360

RECLAIMED VALVES

All tested and perfect; modern and obsolete; huge stocks: all one price. 8/- to 50/-, postage extra, depending on whether you buy 10 or 50 valves.

ST. JOHN’S RADIO, 156/71, John’s Hill, SW11.

TUBES - AERIALS - VALVES

Regenerated tubes, guaranteed one year. All valves sent under new old stock, Recycled tubes, all sizes, 50/-; guaranteed 4 months. Full range of aerials available. Accessories: aerials, leads, etc., Carriers extra. 6/5.; 10/2.; 15/3. 25/4.; 30/5.; 40/6. Moderate discounts. Full range of valves, example PC66s cost 6/-.

TELEVISION PICTURE TUBES

Manufacturers’ Guarantee

TELEVISION CONSUMER SERVICES LTD.

35 BROOMWOOD ROAD

ST. PAUL’S CRAY, KENT

Orippington 21855

Cathode Ray Tube Service
SETS & COMPONENTS (continued)

C. EDWARDS
1070 HARROW ROAD LONDON N.W.10
LADBOKE 1734

Offers
S/H TV in 1st-class
Condition.
12in. £5.00
14in. £7.10
17in. £13.10
(all 5 channel)
+15's. carriage.
Guaranteed
VALVES
10F1, 10F2, 10C2,
10F4, 10F5, 10F7.
Chip 21st.
4K6, 4K6, 7V4,
6X25, 812, 20P1, 10F7,
PZ30, 813, PL33, 7V5,
ECL80, 80F, EB91
Plus 16d. post.
S/H 12 in. tube 50d. plus 7/6 post.
FERGUSSON, EKCO.

AJAX SIGNAL BALANCER. Gives
both programmes with identical
brilliance. 16/- post free. AJAX
ELECTRONICS, 572. Fulham Road,
S.W.6.

BRAYHEAD TETRATUNERS for
any area. Will convert over 600
models. Complete with fitting
instructions. State set model and 2
charges when ordering. 18m/c and
35m/c models £5.15/-, 18m/c £6/6/-.
External cabinet (if required) 24/-.
Complete range. WAREHOUSE, C.O.D.
DURHAM SUPPLIES, 175. Durham
Road, Bradford 8, Yorkshire.

MULLARD
CATHODE RAY TUBES
All at the new
reduced prices.

RADIANT SCREEN. The very finest picture
lumen. Lumen. Built to the highest standards
as the Radiant Screen tube, but using re-
claimed bulb. Every other part is
brand new.

FULL 12 MONTH GUARANTEE ON
EITHER TYPE
Radiant Lumenar
12" MW31/74 $5.00 $2.8
14" MW38/14 $9.00 $4.0
17" MW45/80 $11.00 $5.0
17" MW45/80 $11.00 $5.0
17" AW45/80 $11.00 $5.0
21" MW50/80, MW50/80 $11.00 $5.0
14" 8/9 $11.00 $5.0
14" 8/9 $11.00 $5.0
ALL CARRIAGE & INSURANCE FREE
HIRE PURCHASE
All of the above tubes can be supplied on
Hire Purchase as follows:-

<table>
<thead>
<tr>
<th>Cash Price</th>
<th>Deposit</th>
<th>12 monthly payments of</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8.10</td>
<td>$2.30</td>
<td>$2.10</td>
</tr>
<tr>
<td>$11.10</td>
<td>$3.30</td>
<td>$2.80</td>
</tr>
<tr>
<td>$13.10</td>
<td>$4.30</td>
<td>$2.80</td>
</tr>
<tr>
<td>$15.10</td>
<td>$5.30</td>
<td>$2.80</td>
</tr>
<tr>
<td>$18.10</td>
<td>$6.30</td>
<td>$2.80</td>
</tr>
<tr>
<td>$21.10</td>
<td>$7.30</td>
<td>$2.80</td>
</tr>
</tbody>
</table>

WATTS RADIO (Mail Order) LTD.
44 CHURCH STREET
WATERIDGE, SURREY
Telephone: BRIDGE 6566

Please note: Postal business only from this address.

SETS & COMPONENTS (continued)

GUARANTEED VALVES

<table>
<thead>
<tr>
<th>Type</th>
<th>H.P.</th>
<th>E.C.B.</th>
<th>ECC81</th>
<th>7/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H4</td>
<td>2/8</td>
<td>12A7T</td>
<td>6/8</td>
<td>8F11</td>
</tr>
<tr>
<td>6F1</td>
<td>6/8</td>
<td>26G1</td>
<td>6/8</td>
<td>5F2</td>
</tr>
<tr>
<td>6F2</td>
<td>8/6</td>
<td>26G2</td>
<td>7/6</td>
<td>6P2</td>
</tr>
<tr>
<td>6F3</td>
<td>7/6</td>
<td>20J2</td>
<td>5/6</td>
<td>6P3</td>
</tr>
<tr>
<td>6F4</td>
<td>6/6</td>
<td>10F4</td>
<td>6/6</td>
<td>6P5</td>
</tr>
<tr>
<td>6F5</td>
<td>6/6</td>
<td>10F5</td>
<td>6/6</td>
<td>6P6</td>
</tr>
</tbody>
</table>

SHEET BOOKS, SHEETS, COMPONENTS.

List 5d.

Bournemouth

14in., 16in., 17in. Round and Rectangular
TV Tubes. £5.15/- (8/- allowed on your
dual tube). 10 months guarantee. 3 element
TV/Radio aerial with wall bracket. 34/-.

Complete range of capacitors, resistors,
Hi-Fi radiogram chassis, amplifiers, motors.
pick-ups, and equipment.

Bournemouth's Hi-Fi and
 constructors' centre.

NATIONAL RADIO SUPPLIES
50 HOLDENHURST RD, BOURNEMOUTH
Tel. 25252

REBUILT TELEVISION TUBES — 12in.
£5.15, 14in. 5/10/-; 17in. 8/-10/.
Twelve months' guarantee. 10/- carr.
BRAYHEAD TETRATUNER — £6/10/-.
Carriage paid. State colls.
All types BBC and I.T.A. AERIALS.
AIRSPEED COAXIAL CABLE from
6d. per yard. TELEVISION SPARES
and EXACT REPLACEMENTS.
The latest BSR STA four-speed Changer
£9/10/- Carriage paid. All leading
makes of TAPES, RECORDERS, and
AMPLIFIERS, TAPES, DECKS,
RECORD PLAYERS, TELEVISIONS
and RADIOs. All new goods on
Easy Hire Purchase Terms. TRANS-
SISTORS, TRANSISTOR SPOTLIGHTS,
TRANSISTORS WHITE SPOT 5/6 each.
GERMANIUM DIODES 1/- each.
Stamped addressed envelope. please.
For inquiries and callers welcome.

DEVIZES TELEVISION SERVICE
Devizes. Wilts. Tel.: Devizes 1100.

H.P. on Regunned
C.R.T.s.

At No Extra Charge
12 Months' guarantee
12" & 14" . .. $3.10.0
17" . .. $4.10.0
21" . .. $5.10.0

Phone or Call only
Rod 7778

P. J. F. ANDREWS
61-63 ROSEMARY RD.
LONDON, S.E.15

SETS & COMPONENTS (continued)

TV SPARES New. Used: L.O.T from
20/-, etc. Valves, etc. from 6/-.
A.S.A.
quotation BOYD, LANGFORD.
162 Church Street, London, N.16.

1H4 3/6 EB91 3/6 PC880 7/6
1F4 3/6 EB91 3/6 PC880 7/6
IR5 3/6 ECC81 5/6 PL81 8/6
IS5 3/6 ECC82 3/6 6KC1 7/6
DK92 8/- ECC84 4/- 65NF7 4/-
DK92 8/- ECL80 7/6 6V6G 4/6
DK92 8/- ECL80 7/6 12A47 4/6
DL96 6/9 EY86 7/6 954 1/3
DL94 7/4 EF86 9/- EF50 1/-

All Brand New and Boxed. C.W.O. Over 200
Types Available. Woodward, 16 Aubrey
Road, Sherwood, Nottingham. 85554.

17-INCH TUBES £5. new guns all
sizes available. GUARANTEED
STARS. Brief Street, Bolton.

SALVAGED VALVES
2/6 each
Tested on Mullard High Speed Valve Tester
New and Boxed Valves
all at 10/- each
S.A.E. FOR LIST

ARION TELEVISION 4, MAxted Road,
S.E.15
NEWX 7152

REBUILT TV TUBES
Fully Guaranteed
12 months
All makes—12" to 21"

Blane & Martin
Electronics
Sandown Lane, Liverpool

DETAILS ON REQUEST. Tel. S.EF. 342.

AERIALS

MAKE YOUR OWN AERIALS
SAVE 50s
TV aerial manufacturer offers "do-it-
yourself" kits. 50 components include
mountings, brackets, insulators, aerials,
brackets, can be utilized to make 100 differ-
ent models. TV, V.H.F., amateur. Brochure
kives full illustrations, element dimension,
and price. Discounts for quantities.

THE RICHARD MAUGHIE
EQUIPMENT CO.
Portsmouth Road, Cobham, Surrey.
COBBAR 3232.

BOOKS

FIND TV SET TROUBLES in
MINUTES from that great book "The
Principles of TV Receiver Service."
16/- all book shops and radio
wholesalers. If not in stock from:
Secretary, I.P.R.E., 20, Fairfield Road
Radio Television & Electronics

Learn at home with the world's largest home study organisation. Brit. I.R.E.; City & Guilds; R.T.E.B. etc. Also Practical Courses with equipment. No books to buy.

Write for FREE prospectus stating subject to Dept. 516 I.C.S.
Intersect House, Parkgate Road, London, S.W.11.

"HOW AND WHY" of Radio and Electronics made easy by a new non-maths practical way. Postal Instructors based on hosts of experiments and equipment built out at home. New courses bring enjoyment as well as knowledge of this fascinating subject. Free brochure from Dept. 12, P.T. RADIOSTRUCTOR, 49, Russell St., Reading.

Radio & TV Servicing for your own Business/Hobby

Q by a new exciting no-maths system, using practical equipment recently introduced to this country.

FREE Brochure from:-
RADIOSTRUCTOR
DEPT. G78
READING, BERKS.
22/11/60

SERVICE SHEETS

SERVICE SHEETS Radio, TV, 5,000 models. Lots to choose from. Enquiries, TELRAY, 11, Maudland Rd., Preston.

FAULTFINDER FILES (TV) showing common faults that each receiver is prone to. 2/- each. Send for list.

SERVICES (continued)

FREE FROM THE I.P.R.E. Syllabus of famous Radio and TV Courses. Membership Condition booklet. 1/- Sample copy the Pae. Radio Engineer Iran's 2/- each. Write to Secretary, 22, Fairfield Road, London, N.8.

TV PHONES

TV TRANSFORMERS by 3 p.m.

SENT SAME DAY C.O.D. ON ALL ITEMS BELOW IN STOCK

SAVE MONEY WITH US

SEND ORDER DIRECT TO

WYNDOR TELEVISION SERVICE
ST. BARNES ROAD
HERTONS, HERTS.

B.A.B. 1769. Closed Thursday 1 o'clock.

www.americanradiohistory.com
Build your own Aerials...

AT HOME

AERIAL FITTINGS FOR BAND III, BAND 1 & RADIO F/M. Useful formulae and hints for constructing your own aerial quickly and cheaply. Catalogue illustrating our increased range of Diecast Alloy Fittings, including Band III to Band 1 Mast Couplers, Reflector and Director Rod Holders, Insulators (both "Inline" and "H" types), Masthead Fittings, Masts and Elements, Chimney Brackets, etc. Send 1/- in stamps for the above, to:

Fringevisión Ltd.

MARLBOROUGH, WILTS. Phone: 657/8

AS ADVERTISED ON TELEVISION

Save £££

FACTORY REBUILT...

TELEVISION TUBES

ALL TYPES AND SIZES - Immediate Delivery
FITTED WITH COMPLETE NEW GUN

Price

12" £5.0.0 14" £5.0.0 15" £5.15.0 17" £6.0.0
21" £8.10.0

TERMS TO
THE TRADE

RE-VIEW (LONDON) LTD.

10 High Street - - Colliers Wood, S.W.19

Telephone: Liberty 3272

Plus 10/- carriage and insurance.
Cash with order or C.O.D.
C.R. ISOLATION TRANSFORMERS
TYPE A, OPTIONAL 25%, and 50% BOOST, 5, 10, 15, or 20 pin, 115 V., 600 V. 1/6 A. 18.5 M. MAINS INPUT.

TYPE B, HIGH QUALITY, LOW CAPACITY, OPTIONAL 25%, 50% & 75% MAINS INPUT.

C.E.T. MAINS INPUT, 18/6.

RESISTORS. Preferred values. 10 ohms to 1 Meg., 1%, 2%, 5%, 10%, in 1/4, 1/2, 5, and 10%.

HIGH STABILITY. 1%, 2%, Preferred values 10 ohms to 1 Meg., 1/4, 1/2, 5, 10%.

5 watt. WIRE-WOUND RESISTORS.

(SEE PAGE 321, Tube Exzer and Head De-

sion.

O.P. TRANSFORMERS. Duty Heavy 50 k, 4/6.

MULTIVIBRATOR, push-pull, 7/8. MINIATURE, 394, etc. 6/8.

Phase shift, push-pull 15, 18, 25, 50 k. F. CHOKES 15/60 k, 18/60 k, 18, 18, 18, 18, etc., 14/6.

MAINS TRANSFORMERS 220-250

MINIATURE 20 mA, 20, 25, 1/3., .63.1.

TARGET 100, 120, 150, 1/3., .63.7.

SMALL, 220-250, 25, 25, 1/3., .63.1.

HEATER TRANS.

GENERAL PURPOSE LOW VOLTAGE.-3.

54.1.

54.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.

22.1.