

 1 4 $50) 5$

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio. TV or electronic equipment. Please address your letters to the Editor, Practical Wireless, at the above address, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.
Components are usually available from advertisers. A source will be suggested for difficult items.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 10.60$ per annum, from "Practical Wireless"' Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of $P W$ are available at $75 p$ each. including post and packing to addresses at home and overseas.

Binders are available (Price $£ 2.85$ to UK addresses or £3.45 overseas, including post and packing) each accommodating one volume of PW. Please state year and volume number for which the binder is required.

Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.

All prices include VAT where appropriate. Please make cheques, postal orders, etc. payable to IPC Magazines Limited.

COPYRIGHT

(C) IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden.
All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

NEWS \& VIEWS

20 Editorial
Opinion
PW Personality
Charles Molloy
21, 31 News . . . News . . . News . . .
27 Special Product Report
Logic Probe kit, Continental Specialties Corporation
RAE Reprint Announcement
Production Lines
Alan Martin
Information on the latest products
Kindly Note
PW "Imp" Beginners Receiver, May 1979
Radio Special Product Report
FRG-7 Communications Receiver, Yaesu Musen
61 Hotlines Ginsberg
Recent developments in electronics

FOR OUR CONSTRUCTORS

AM/FM Frequency Readout
. William Poel
Do away with mechanical tuning-scale drives
28
Ideas Department
Workbench Amplifier. Tachometer/Dwell Meter. TTL Snap Indicator
Selective Sound Operated Switch C. R. Harris Control equipment with a hand-clap
VMOS Top Band Transmitter . J. R. Green
A design for the 160 m band, using power f.e.t.s
62 Inexpensive AF Electronic Voltmeter M. Tooley A high-impedance, wide-band instrument

\square GENERAL INTEREST

34
Numbers Without Tears
. Dr G. Brown An educational toy for children of $2 \frac{1}{2}$ years and upwards
50 Changes in Broadcast-Band Listening on Short Waves
A look at the international broadcasting scene Jonathan Marks
66
On the Air
Amateur Bands Eric Dowdeswell
MW Broadcast Bands Charles Molloy
SW Broadcast Bands Charles Molloy
VHF Bands Ron Ham
VHF Personality - John Tye Ron Ham
We regret that Part 2 of the PW '"Trent'" has had to be held over, due to production difficulties

OUR COVER

The object looking rather like a ventilation grille is in fact a much-enlarged view of the "works" of a power f.e.t. Photograph courtesy Siliconix Ltd.

Our August issue will be published on 6 July (for details sec, page 43)

The latiost Mit mnoration: from Sparthrite
 ωthe quickest fitting CLIP ON capacitive discharge electronic ignition in KIT FORM
 Smoother running
 Instant all-weather starting Continual peak performance Longer coil/battery/plug life Improved acceleration/top speeds Optimum fuel consumption

Sparknite $X 4$ is a high performance. high quality capdcitive discharge. electronic ignition system inkit form Tried. tested, proven reliable and complete it can be assembled in two or three hours and fitted in 13 mins
Because of the supetb design of the Sparkrite circurt it completely eliminates problerns of the contact breaker There is no mistire due to contact breaker
bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit tiring if the points bounce open at high R PM M Contact breaker prevents the unit firing if the points bounce open at high R P M Contact break
burn is eliminated by reducing the current to about 150 th of the norm It will burn is eliminated by reducing the current to about 150 th of the norm It
perform eoually well with new. old. or even badly pitted points and is not perform eaually well with new. old. Of even badly pitted points and is not
dependent upon the dwell time of the contact breakers for recharging the sys Sparkite incorporates a short circuit protected inverter which eliminates the
problems of SCR lock on and. therefore. eliminates the possibility of blowing the transistors or the SCR iMosi capacitive discharge ignitions are not completely transistors or the SCR iMost capacitive discharge ignitions are not completely greatly improved cold starting The circuit includes built in static tuming light systems function light. and security changeover switch All kits fit vehicles with coll distimbutor ignition up 108 cylinders
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epory coated case Ready drilled, aluminium exiruded base and heat sink, coll mounting clips, and accessories Top quality 5 year guaranteed transtormer and components, cables, connectors, P C B , nuts, bolts and slicon grease Full instructions to assemble kit neg or pos earth and fully illur, trated installation instructions
will tequire a tachometer pulse slave unit Price $£ 385$ inc Electronic Design Associates, 82 Bath Street, Walsall, WSI $30 E$

Electronics Design Associates, Dept. PW7 82 Bath Street. Walsall, WS1 3DE. Phone: (9) 614791

Name

Address
Phone your order with Access or Barclaycard

RTDIO FPCHANGH LMIHFD

NEW ELECTRONIC MASTERKIT

With special V.H.F. Tuner Module to construct. A complecely Solderless Electronic Construction Kit, with ready drilled Bakelite Panels. Nuts Bolts, Wood Screws, etc. Also in the kit: Transistors. Capacitors, Resistors, Pots, Switches, Wire, Sleeving, Knobs, Dials, $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker and Speaker Case, Crystal Earpiece, etc. Also ready wound Coils and Ferrice Rod Aerial. These are the Projects you can build with the components supplied with the kit, togecher with comprehensive Instruction Manual Pictorial and Circuit Diagrams.
Projects:
V.H.F. Tuner Module \star A.M. Tuner Module \star M.W. L.W. Diode Radio \star Six Transistor V.H.F. Earpiece Radio * One Transistor M.W. L.W. Radio * Two Transistor Metronome with variable beat control \star Three Transistor and Diode Radio M.W. L.W. \& Four Transistor Push Pull Amplifier \star Eight Transistor V.H.F. Loudspeaker Receiver \star Variable A.F. Oscillator \star liffy MultiTester \star Four Transistor and Diode M.W. Injector \downarrow Five ${ }^{\star}$ A.F. R.F. Siznal Amplifier \star Five Transistor Push Pull Amplifier \star Sensitive Hearing Aid Amplifier \star Three Transistor and Oiode Short Wave Radio \star Siznal Aracer \star Three Transistor Push Pull Ampliter \star One Transistor Class A \star Sensitive Transistor Pre-Amp \star Transistor Tester \star Sensitive Three Transistor Regenerative Radio \star Four Transistor M.W. L.W. and Oiode Tuner 4 Five Transistor M.W. L.W. Trawler Band Rezenerative Radio \star Five Transistor V.H.F. Tuncr \star Three Transistor Code Practiec Oscillator \star Five Transistor Regenerative Short Wave Radic \star
M.W.ur Transistor and two Diodes
L.W. Loudspeaker Radio * Seven Transistor M.W. L.W. Radio with Loudspeaker Push Pull output \star One Transistor Home Broadeaster. \&14.99 + P \& P \& $1 \cdot 10$

V.H.F

AIR
CONVERTER KIT

Build this converter kit and receive the aircraft band by placing it by the side of a radio cuned to medium wave or the VHF band and operating as shown in the instructions suppiied free with all parts.
Uses a retractable chromeplated telescopic aerial. gain control, V.H.F. tuning capacitor, transistor, etc. Size $5 \frac{1}{1^{\prime \prime}} \times 1 \frac{1}{2} \times 3 \frac{1}{2}{ }^{\prime \prime}$. All pares including case and plans. 84.95 + $\mathrm{P} \& \mathrm{In}_{\mathrm{I} .60 \mathrm{p}}$

ELECTRONIC
CONSTRUCTIOM KIT E.C.K. 2

Self Contained Multi-Band V.H.F. Receiver Kit.

8 transistors and 3 diodes. Push pull output. $2 \frac{3}{4} \mathrm{in}$. loudspeaker. gain control, 7 section chromeplated telescopic aerial, V.H.F. tuning capacitor, resistors, capacitors, transistors, etc. Will receive T.V. sound, public service band, aircraft, V.H.F. local stations, etc. Operates from a 9 volt P.P. 7 battery (not supplied with kit
Complete kit of parts
$27.95+\mathrm{P} \& \mathrm{Ins}_{\mathrm{In} .90 \mathrm{p}}$
NEW MODEL R.K.1.

MultiBand A.M. Receiver. M.W.L.W. Trawler Band and Three Short Wave Bands. Seven Transistors and Four Diodes. Push Pull Output stage. $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker. Internal Ferrite Rod Aerial. Kit includes all parts to build it up including Carrying Strap, Rubber Feet and ready-drilled Panels. Comprehensive Instruction Manual for stage by stage construction. Uses P.P. 9 Nine Volt Battery.

$88.99+{ }_{90} \mathrm{P}_{\mathrm{p}}$

EDU-KIT JUNIOR

Completely Solderless Electronic Construction Kit. Build these proiects without Soldering Iron or Solder * Crystal Radio Medium Wave Coverage-No Battery necessary * One Transistor Radio

* 2 Transistor Regenerative Radio
* 3 Transistor Earpiece Radio Medium Wave Coverage
* 4 Transistor Medium Wave Loudspeaker Radio
* Electronic Noise Generator
* Electronic Metronome
* 4 Transistor Push/Pull Amplifier

All parts including Loudspeaker, Earpiece. M.W. Ferrite Rod Aerial Capacitors, Resistors, Transistors, etc. Complete kit of parts including construction plans

Multiband V.H.F. and
A.M. Receiver. 13 Transistors and Six Diodes. Quality
Loudspeaker
With Multiband V.H.F. section covering Mobiles, Aircraft, T.V. Sound, Public Service Band, Local V.H.F. Stations, etc. and Multiband A.M. section with separate Tuning Capacitor for easier and accurate tuning, covering M.W.1. M.W.2. L.W. Three Short Wave Bands S.W.1. S.W.2, S.W. 3 and Trawler Band. Built-in Ferrite Rod Aerial for Medium Wave, Long Wave and Trawler Band, etc., Chrome-plated 7 section Telescopic Aerial, angled and rotatable for peak Short Wave and V.H.F. reception. Push-Pull output using 600 mW Transistors. Gain. Wave-Change and Tone Controls. Plus two Slider Switches. Powered by P.P.9-9 volt Battery.

Complete kit of parts including carrying strap. Building Instructions and operating Manuals.

E.V. 6 PLUS ONE

Build this exciting now design. Now with 7 Transistors and 4 diodes. MW/LW. Powered by 9V battery. Ferrite rod aerial tuning con denser. volume control, and $2 \frac{3}{4}$ in loudspeaker. Attractive case with speaker grille. Size 9 in. $\times 5$ tin. $\times 2$ in approx. All parts including Case and Plans.
Total Building Costs
$26.95+P$ \& P and
Ins. 90p

EDU-KIT MAJOR

Completely solderless Electronic Construction Kit. Build fifteen projects including:Signal Injector Tester NPN.PNP Transistor Loudspeaker Radio MW/LW S Transistor Short Wave Radio.

Components include

- 24 Resistors 21 Capacitors - 10 Transistors $5^{\prime \prime} \times 3^{\prime \prime}$ Loud. speaker Earpiece Mica Baseboard 3 12-way Connectors - 2 Volume Controls 2 Slider Switches 1 Tuning Condenser - 3 Knobs Ready Wound MWI LW/SW Coils Ferrite Rod $6 \frac{1}{2}$ yards of wire I yard of sleeving, etc Complete kit of parts including construction plans.

ding costs

$29.39+P$ PR and

RADIO CONSTRUCTION

 KIT 97A compact small radio kit covering Long Wave bands. Ruzzed Micanitecon struction and simple square design allows for easy earrying and positioning. Ideal for the Garaze, Workroom, Kitchen, etc.. has seven Transistors and four Diodes, quality Loudspeaker, ready wound Ferrite Rod Aerial and Carrying Strap. Size $41^{\prime \prime} \times 42^{\prime \prime} \times 42$. All parts and plans excluding 9v PP7 Battery.
$86.25+P=P$ and Ins. 75p
POCKET FIVE

NOW WITH 2f"LOUDSPEAKER 3 Tuneable wavebands. M.W. L.W., and Trawler Band. 7 stages, 5 transistors and 2 diodes, supersensitive ferrite rod aerial, attractive black anj gold case. Size $5 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$ approx. All Parcs including Case and Plans

Total Building Coscs
$24.95+P \& P$ and
Ins. 80p

To: RADIO EXCHANGE LTD
61A High Street, Bedford MK40 ISA
Callers side entrance "Lavells" Shop Open 10-1. 2.30-4.30 Mon.-Fri. 9-12 Sat.

Tel:023452367
Reg. No. 788372

I enclose $\mathbb{f} .$.
\qquad
Address ...

U.K. RETURN OF POST MAIL-ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE

R.C.S. LOUDSPEAKER BARGAINS

3 ohm. 6×4 in. $£ 1.50 .7 \times \operatorname{tin} .\{1 \cdot 50.8$
8 ohm. $2 \mathrm{fin}, £ 1.50$. 3 in . $£ 1.50$. Sin , £1-50. 10 in . £3. 12 in . $£ 4$. 10 in . $£ 3.12 \mathrm{in} . £ 4.10 \times 6 \mathrm{in} . £ 3 \cdot 50$.

THE "INSTANT" BULK TAPE ERASER Suitable for cassettes, and all sizes of tape reels A.C. mains 200/249V.

Leafer S.A.E.
£5.50

BLANK ALUMINIUM CHASSIS. 18 s.w.g. 2 tin. sides. $6 \times 4.1 \mathrm{n}$. $95 p ; 8 \times 6 \mathrm{in} . £ 1.40 ; 10 \times 7 \mathrm{in}$. $£ 1.55: 14 \times 9 \mathrm{in}$. $£ 1.90$:
$£ 1.85 ; 12 \times 3 \mathrm{in} . £ 1.20 ; 16 \times 10 \mathrm{in} .\{2.20: 12 \times 8 \mathrm{in} . £ 1.70$. ALUMINIUM PANELS, 18 s.w.g. 6×4 in. $24 \mathrm{sp}: 8 \times 6 \mathrm{in}$. 38 p : $10 \times$ ALUMINIUM PANELS, 18 s.w.g. $6 \times 4 \mathrm{in}$. 54 s ; $12 \times 5 \mathrm{in} .44 \mathrm{p} ; 12 \times 8 \mathrm{in}$. $70 \mathrm{p} ; 16 \times 6 \mathrm{in}$. $70 \mathrm{p}: 14 \times 9 \mathrm{in} .94 \mathrm{p}$. $7 \mathrm{in} .54 \mathrm{p}: 12 \times 5 \mathrm{Sn} .44 \mathrm{p} ; 12 \times 8 \mathrm{i}$
$12 \times 12 \mathrm{in} . \mathrm{f} 1 \div 16 \times 10 \mathrm{in} . \mathrm{\&} 1.16$.
ALUMINIUM ANGLE BRACKET $6 \times \frac{1}{3} \times \frac{2}{6} \mathrm{in}$. 20 p .
ALUMINIUM BOXES. MANY SIZES IN STOCK

Plays 12in. IOin. or 7in. records	
Auto or Manual. A high quality	
unit backed by BSR reliability with 12 months guarantee. A.C.	Post on
200/250V. Size $13 \frac{1}{} \times 11 \mathrm{fin}$.	All
Above motor board 3 fin.	Deck
Below motor board 2 fin.	£.
With CERAMIC STEREO CARTRID	
Garrard 2025 Autochanger with ceramic carindge.	noge.
Garrard Minichanger. Play sall size records. Ceramic cartridge. Stereo.	£8.95
BSR. P182. Snake arm, flared Aluminium Turntable Stereo ceramic cartidge. Latest model.	$\text { mntable } £ 22.50$
BSR. Disco Stagie Player	
Cueing Device 11 in . Turntable. Budget price	119.50
RSC Disco Deck 3 speed Stereo $£ 8$ or	$\underline{8}$ or E 15 pair

£59

Post $\& 1$

Superior quality ideal for Halls'PA systems. Disco's and Groups. Two nputs with Mixer Volume Controls. Master Bass. Treble and Gain inputs with Mixer Volume Controls. Master Bass, Treble 50 watts RMS. Three loudspeaker outlets 4. 8. 16 ohm. AC 240 V (120 V available). Blue wording on bleck cabinet.
BAKER ISO Watt AMPLIFIER $\&$ inputs $£ 79$.
DRILL SPEED CONTROLLER/LIGHT DIMMER KIT. Easy to build kit. Controls up to 480 watts AC mains. Post 3sp $\mathbf{£ 3} \mathbf{2 5}$
STEREO PRE-AMP KIT. All parts to build this pre-amp. 3 inputs for high medium or low gain per channel, with volume control and P.C. Board. Can be ganged to make \quad Post 3sp $\mathbf{f 2 . 9 5}$
multi-way stereo mixers.
R.C.S. SOUND TO LIGHT DISPLAY MK 2 Complete kut of parts with R.C.S. printed circuit. Three
channels. Upto 1.000 watts each, Will operase from 200 M to 100 watts sigon source. Suitable for home $\mathrm{Hi}-\mathrm{Fi} \quad \mathrm{f} 17$ and all Disco Amplifiers. Cabinet extra $\{4$.
200 Watt Rear Reflecting White Light Bulbs. Ideal for Disco
Lights. Edison Screw 75 p each or 6 for $£ 4$. or 12 for $£ 7$ - 50 .
MAINS TRANSFORMERS ${ }^{\text {Poof }}$
6 VOLT $\$$ AMP. $£ 1.007$ AMP. $£ 1.959$ VOLT 3 AMP. $£ 2.75$ 30 VOLT 5 AMP. AND 34 VOLT 2 AMP. C.T. $£ 3.45$
20 VOLT 1 AMP. $22.0020-0$ VOLTLT AMP. 22.9530 V 2 AMP. $£ 3$ $0-20-40.60$ VOLT I AMP. $£ 3.502 \times 18$ VOLT 6 AMP. $£ 9$.
Low Voltage 0.8.12V.3AMPE3.
Low Votkage $12-0-12$ V. 2 AMP $\mathfrak{f} 3$.
GENERAL PUR POSE LOW VOLTAGE. Volfages availabie at
2A.3.4.5.6.8.9.10.12.15.18. 24 and 30 V (5.80
1A.6.8. 10. 12. 16. 18. 20. 24. 30. 36. s0. 48.60

SA.6.8. 10. 12. 16. 18. 20. 24. 30. 36. 40. 48. 48.60
15.80
ع8.50
R.C.S. TEAK

COMPACT
SPEAKERS
$13 \times 10 \times 6 \mathrm{n}$.
50 to $14,000 \mathrm{cps}$
10 watts. 4 or 8 ohms
f16 pair

MAIL ORDER DEPT

CRESCENT RADIO LTD

1 ST. MICHAELS TERRACE, WOOD GREEN, LONDON N22 4SJ. 01-888 3206

"FLIP"
PUSH BUTTON HEADS OR TAILS Complete kit and full instructions supplied. A pocket game, easy to build and great to play KIT PRICE $=\mathbf{~} 5 \cdot \mathbf{2 5}+\mathbf{8 \%}$ VAT. Post free.

75 OHM

$28^{\prime \prime}(57 \mathrm{~mm})$ LOUDSPEAKER BARGAIN $21^{\prime \prime}(57 \mathrm{~mm})$ LOUDSPEAKER BARGAN
This ever popular many project loudspeaker. This ever popular many project lou
Dnty while stocks last $90 p+124 \%$ esch.
fear shelf car speakers 5W 8 ohm good quality car stereo fouds peakers.
Stikl only $£ 3.75+12 \frac{1}{2} \%$ per pai

HEAVY DUTY XOVER

 2 WAY 8 OHM A 2 way 8 ohm H/D Xover suitable for US systems up to 100 watt. Fitted with screw terminals for Fitted with screw a three position HF LEVEL' switch which selects eithe Flat, -3 dB or -6 dB .ONLY £3.00 + 8\% VAT
A CRESCENT 'SUPERBUY'
Goodmans $5^{\prime \prime} 8$ ohm long throw Goodmans
H/D loudspeaker.
H/D loudspeaker.
Mounting plate is integral with U / S chassis and has fixing holes with chassis and has ixing noles with ONLY $£ 5.00+12 \frac{1}{2} \%$ VAT

CR. 3000. SCREWDRIVER SET

 In neat plastic case. Consists of: awt jowellers screwdriver, watchmaker's screwdriver, radio screwdriver. phillips screwdriver. All fit into master swivelling handle.
CR. 4110 . DESOLDERING PUMP ONLY E6
$+8 \%$ VAT High suction pump with automatic ejecHigh suction pump with automatic ojec-
tion. Knurled, anti corrosive casing. Teffon nozzle.
CR. LV1. 12v DRILL f12.00p.

. 8\% VAT

BRITISH MADE "Versadrill". 12 volts DC. Compact battery operated power tool, suf ficiently powerful to perform all the operations associated with 240 V drills.
Dimensions:- $150 \times 50 \mathrm{~mm}$ (dia.) Dimensions:- $150 \times 50 \mathrm{~mm}$ (dia.)
C.180-*KEYNECTOR•MAINS Essential equipment for the showroom. Workshop. factory, laboratory. home and
hobby bench, the 'Keynechobby bench, the 'Koynec-
tor' provides quick, efficient and safe temporary mains
 $\mathbf{£ 6 . 2 5 + 8 \%}$ VAT

250v. 5 aOTSW. Non-slip base. Lead with 2.5 mm plug. 8ody dims:- 88×66 £ 3.75 + 8% VAT

PRAGTICAL WIRELESS T.V. SOUHD TUNER
(Nov. 75 article by A.C. Alnslls)
Copy of original artichesupplled on requeat
IF Sub-Assembly (G8) £7-65. P\&P 75p.
Mullard ELC1043 V'cap UHF Tuner £6•19. P\&P 35p.
3-way Station Control Unit £1-35. P\&P 25p.
6-way Station Control Unit (Special Offer) £1-12.
Power Supply Prtd Circuit Board £1-12. P\&P 30p.
Res, Caps, Semiconds, etc. for above $\mathbf{£ 6 . 5 3}$.
Mains Transformer for above $\mathbf{£ 2}$-81. P\&P 30p.
(Price of goods includes $12 \frac{1}{2} \%$ VAT) P\&P all items 85 p.
Callers welcome at shop premises.
MANOR SUPPLIES
172 WEST END LANE, LONDON NW6
(Near W. Hampstead Tube Stn.) Tel. 01-794 8751

Low cose version, AO 113 ($\cdot \mathbf{0 2 \%}$ dist.) $\mathbf{6 2 7 . 5 0 (K i c . ~} \mathbf{6 2 3}$). Other instruments include Millivoltmeter. Tachometer, Noise level meter. Distortion Analyser, F.M. Sig. Gen. Crystal Frequency Standard. KEF Speaker Units. Send S.A.E. for lists. VAT extra B\%. Post/Pkg. $\mathrm{fl} \cdot 50$.

TELERADIO ELECTRONICS

325 Fore Street, Edmonton N.s. 01-0073719
Closed all day Thursday

FROM CSC

THREE

 ELECTRONICS BY NUMBERS

 ELECTRONICS BY NUMBERS

 LED BAR GRAPH UNIVERSAL

 LED BAR GRAPH UNIVERSAL INDICATOR
 Now using EXPERIMENTOR BREAD. BOARDS and following the instructions in "Electronics by numbers" ANYBODY can build electronic projects.
 Look at the diagram and sefect R1, this is a resistor with a value between 120 to 270 ohm. Plug it into holes $\times 20$ and D20, now take LED 1 and plug it into holes E20 and F20. Do the same with the Diodes e.g. plug D7 into holes G7 and G10.

YOU WILL NEED

EXP-ANY EXPERIMENTOR BREAD. BOARD
D1 to D15 - Silicon Diodes (such as 1N914) R1 to R6 - From 120-270 ohm resistors $1 / 4$ watt.
LED1 to LED6 - Light emitting diodes.
LED BAR GRAPHS are replacing analogue meters as voltage-level indicators in many instances.
This circuit uses the forward voltage drop of diodes to determine how many LEDs light up. Any type of diode can be used but you must use all the same type. For full working details of this circuit fill in the coupon.
If you have already built the Two-transistor Radio and the Fish'n'cliks projects you will find that you can reuse the components from these projects to build other projects in the series.

FILL IN THE COUPON AND WE WILL SEND YOU FREE OF CHARGE FULL COPIES OF "ELECTRONICS BY NUMBERS" PROJECTS No 1, No 2 and No 3.

PROTO-CLIP TEST CLJPS.

Brings ic leads up from crowded PC boards. Available plain or with cable with clips at one or both ends.

$$
P C-16 \text { pin. } £ 2.75
$$

PC - 16 pin with cable

£6.00
PC - 16 with cable and 16 pin clips at both ends. $£ 10.25$.

Europe, Africa, Mid-East: CSC UK LTD. Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB1 1 3AQ. Telephone: SAFFRON WALDEN $216 B 2$. Telephone: SAF
Telex: 817477.

EXPERIMENTOR BREADBOARDS.

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP.4B.

EXP.325. The ideal breadboard for 1 chip circuits.
Accepts $8,14,16$ and up to 22 pin IC's.
ONLY $£ 1.60$.

EXP. 300.
550 contacts
with two
40-point
bus-bars.
£5.75.

EXP. 650 for Microprocessors. $£ 3.60$.
£3.15.
EXP. 350 . £3.1
270 contact points with two 20 -point bus-bars.

EXP 4B.
More busbars. £2.30.

ALL EXP. 300 Breadboards mix and match with 600 series.

PROTO-BOARDS.
THE ULTIMATE IN BREADBOARDS FOR THE MINIMUM COST.
TWO EASILY ASSEMBLED KITS.

PB. 6 Kit. 630 contacts, four 5 -way binding posts accepts up to six 14 -pin Dips.
PROTO-BOARD 6 KIT. £9.20.

PB. 100 Kit complete with 760 contacts accepts up to ten 14 -pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.
PROTO-BOARD 100 KIT £11.80.

HOW TO ORDER AND RECEIVE FREE COPY OF TWO-TRANSISTOR RADIO PROJECT, FISH'N'CLIKS AND LED BAR GRAPH.
CSC UK LTD. Unit 1. Shire Hill Industrial Estate. Saffron Walden, Essex CB11 3AQ.
It's easy. Give us your name and full postal address, in block capitals. Enclose cheque. postal order or credit card number and expiry date. OR telephone 0799216 B 2 and give us your Access, American
Express or Barclavcard number and your order will be in the post that night.
EXPERIMENTOR. CONTACT HOLES. IC CAPACITY
BREADBOAROS. UNITPRICE BREADBOAROS. 14 PIN.DIP. INCLUDING POSTAGE
AND V.A.T.

EXP. 325	130
EXP. 350	270
EXP. 300	550
EXP. 650	270
EXP. 4 B.	Four 40 Point Bus-Bars

TEST CLIPS
PC. 16.

use with 0.6
pitch Dip's
Bus-Bar Strip

PC. $16 \cdot 1 \mathrm{~B}$ Dual Clip
PROTO-BOARDS.
PB. 6.
PB. 100.
630
760
6
10
$\begin{array}{ll}£ & 2.53 \\ £ & 4.21 \\ £\end{array}$
E 7.29
£ 4.69
£ 3.29

E 3.7 B
£ 7.56
E12.15

NAME
ADORESS
DEPT. $6 T$

FILL IN COUPON \& RECEIVE FREE COPY OF ELECTRONICS BY NUMBERS PROJECTS Nos 1, 2 AND 3

CHIOMASONDE Electronics your soundest comnection in the morld of components

Dept PW1, 56 FORTIS GREEN ROAD, MUSWELL HILL, LONDON, N10 3HN

Our new catalogue lists a whole range of plastic boxes to house all your projects. And we've got circuit boards, accessories, module systems, and metal cases - everything you need to give your equipment the quality you dentand. Send $25 p$ to cover post and packing and the catalogue's yours.

VERO ELECTRONICS LTD. RETAIL DEPT.
Industrial Estate. Chandlers Ford, Hants. SO5 3ZR Telephone Chandlers Ford (04215) 2956

SINCLAIR PRODUCTS microvizion tv wortd model E14795. uk model 18995 . meins ty world model CO .73 . POM35 C28 95. Mains sdaptor E3.19. case E3. 19.
OM350 E68 95. DM450 ¢97 95 DM235 E49 45. rechargesble bevts E7 50, mpins sdeptor E3 70. case 8845 . enterprise prog calculator with eccessorios C22 95. combridge prog calculator $\mathrm{E12}$ 13. proo
library E 4 45. mains mouptor C 320 . PFM 200 E49 48 . CSC MAX 100 treq meter E 7540.

CALSCOPE Oscilloscopes send ane for date or 390 Super 10 £238.
COMPUTER GAMES Chess challonger 10 E 162 chess challanger) 7 §7. checker challonger 4 E84. checker challongot 2 E5O. Atari videccomputer £138 carfidges C 1345
COMPONE NTS sand sue for full lits. IN4148 140 iN4002 $29 \mathrm{p} .74115 \mathrm{p} . \mathrm{DC} 182 \mathrm{~b}$. DC 183 b . bc 184 b Cc212b. be2 13b. bc 214 c 45 D . rasistors tw 5% E12 10 R to 10 M 9 p . O 8 g p for 50 . of one value. 18 V alec-
 TV GAMES sand we for daw. AY-3-8500.
 - 55
 3v 14 ak 189 9-0-9v 75 ma 74
$12-0.12 v 100 \mathrm{ma} 90 \mathrm{p}$. 10 E2 49

C AUDIO AMPS with nch. JC: 22 OW E1 80. JC20 COW E2 95. send we for diat.
BATTERY ELIMINATOAS 3 -way trpe $8 / 7 \mathrm{j} / \mathrm{gv}$
 Dut $4 y / 6 / \downarrow$ \& 9 C 800 ma C 250.
BATTERY ELIMINATOR KITS send see for dath. 100 mas rodio thpes with prase-gtuds $4 f \mathrm{fy} \mathrm{C1} 40$. 8 V

 T-DEC AND CSC BREADBOARDS T-dec E4 02
 C2 48
BI-PAK AUDIO MODULES a450 E23 51. ALEO C4 86. pa 100 C16 95. ュom 80 E4 47. bmt80 E5 95. Etereo 30 E20 12. AL30 $£ 395$. PA $12 € 780$. PS 12
E1 39. MA60 35 4.

SWANLEY ELECTRONICS Poes 30p 32 Goldeci Md., Swaibev, Kent. Poet 30p extra. pricas include Vaz. Ofticiel and versees orders watcoms.

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronicsnow it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many
successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, TV Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing
Electrical Engineering, Installations and Contracting
Qualify for a New Career
Home study courses for leading professional examinations and diploma courses for business and technical subjects:-
G.C.E.

60 subjects
at "O" \&
" A " levels
Accountancy
Air
Conditioning
Building

POST OR PHONE TODAY FOR FBEE BOOKLET.

J. BIRKETT

Radio Component Suppliers

25 The Strait, Lincoln LN2 1JF. Tel: 20767

BF 679 STRIP LINE 1000 MHz PNP TRAN8ISTORS - 25p.
BF 362 STRIP LINE 800 MHz NPN TRANSISTORS ${ }^{25 \mathrm{p}}$.
MINIATURE VARIABLE CAPACITOR8
$-75 p$, Direct Drive $25+25+25$ pf +75 p .
75 p, Direct Drive $25+25+25 \mathrm{pf}$ \& 75 p .
\times BAND GUNN DIODES CYX 11 A 53 each.
X BAND DETECTOR DIODES LIKE SIM 2.15p or $1 \mathrm{~N} 23 \cdot 25 p$.
STRIPLINE FET with date 2N 4417 . E2. 20 each.
100 C 280 CAPACITOR8 aseorted for 57 p .
200 t , 1 watt RESISTORS assorted values o 75_{p}.
502 watt ZE NER assorted untested - 57 p .
TOKO 10.7 MHz FILTER CFS 10.7 M . 27 p , MURATA 10.7 MHz FILTER SFW $10.7 \mathrm{~mA}-27 \mathrm{p}, 5.5 \mathrm{MHz}$ SFC 5.5 mA - 27 p .
VERNITRON FM4 10.7 MHz FILTER - SOp or 3 for £1.
STC CRYSTAL FILTER B.W. $\pm 7.5 \mathrm{KHz}$ \& E5.
8TC CRYSTAL FILTER 8.W. $\pm 7.5 \mathrm{KHz}$ \& 8.
465 KHz CRYSTAL FILTER $8 . W .7 \mathrm{KHz}$. 50 p .
RADIO TELEPHONE MIKE INSERTS YA 8548 \& 50 p.
UA 742 ZERO CROSSING AC TRIGGER TRIGAC with data e $\mathbf{2 5}^{5}$ p.
FX 1115 FERRITE BEADS at $15 p$ doz.
$3 / 16^{-}$COIL FORMERS with core al 6 for $25 p$.
$8 A 158$ 8ILICON DIODE 8 at 50 for $57 p$.
20 PHOTO TRAN8ISTOR8 AND DARLINGTON8 assorted untested - £1.
6000 VOLT PIV 1 AMP DIODE ASSEMBLY \& 11 each.
DAU TRIMMERS 2 to 9 pf - $15 \mathrm{f}, 7$ to 35 pf - $15 \mathrm{p}, 6$ to 45 pf - $15 \mathrm{~F}, 8$ to $125 \mathrm{pf}-15 \mathrm{p}, 8$ to $140 \mathrm{pf}-15 \mathrm{p}$.
MULLARD CAPACITOR8 C 281 Type 1 uf $250 \mathrm{v} . \mathrm{w}$ at 20p doz
CRYSTAL PACKS 30 10XAJ $£ 1 \cdot 10,20$. FT 241 A - $\mathrm{fl} 1 \cdot 10,20$. FT 243 - £1-50, 25. $10 \times$ Types - $£ 1.25$.
50. AC 128 TRANSISTORS 8 randed but untested for 57 p .
50. VARI-CAP DIODES LIKE BA 102 untested e 57 p.
50. 1 AMP THYRISTORS TO5 Case Untested for $£ 1$.
25. 5 AMP STUD MOUNTING THYRI8TORS Untested e $£ 1$.
20. PHOTO TRANSISTORS AND DARLINGTONS assorted untested e £1.
50. BC 107-8-9 TRANSISTORS assorted untested for 57p.
10. MULTI-TURN PRE-SET POTENTIOMETER8 Assorted • 60 p .

UNIJUNCTION TRANSISTORS 2N 4871 - 22p, 2N 6028 25p, 2N 6029 - 25p,
MEU $21=22 p$, MU $4894=22 p, 4$ LOSE29 = 22p, Similar to TIS $43=20 \mathrm{p}$.
FET'S J310-20p, E304-20p, E111-12p, E113 - 12p, 2N 3819T - 20p, 8F 256 25p, 8 244 25 P, DAL GATE MOS FES S 4067 . 100 PIV 20 Amp 25 p
STUD MOUNTING DIODES 100 PIV 10 amp - 15p, 100 PIV 20 amp - 25p.
1 amp TRIACS TOS Case 400 PIV e 35 peach.
MULLARD TRANSISTORS 8C 548 - 10p, 6 for 50p, 8C 549 - 10p, 6 for 50p.
TRANSFORMERS 240 volt AC Input Type 1.24 volt Tapped at 14 volt 1 amp e E1.30
TRANSFORMERS 240 volt AC Input Type 1.24 volt Tapped at 14 volt 1 amp e E1
(P\&P 25p).
Please add 20p for post and packing on U.K. orders under £2. Overseas postage at cost.

PHILIP H. BEARMAN 6 POTTERS Rd, NEW BARNET HERTS. Tel: 01-449-1934/5.

LARGE RANGE OF BVA \& QUALITY VALVES. SAE LISTS.

NEW MONO TUBES, USUALLY 2 YEAR GUARANTEE.

A31/120; A31/300; A31/410W.
A34/100; CME 1420, M6529 FZP.
A38/160; CME1520, Thorn.
A44/120; CME1713, Thorn.
AW47/91; CME1903, A47.14W
A47/11W: A47.26WR, Mullard.
A47/13W: CME1906, Thorn.
A50/120W; CME2013, Vega.
A59/15W (AW59.91), Mullard.
A59/23WR (A59.1 1 W), Mullard.
A61/120WR (CME2413) Vega $\mathbf{£ 1 8 . 5 0 ~ i n c l ~ V A T ~}$ $\mathbf{£ 1 9 . 5 0}$ incl VAT $£ 19.50$ incl VAT $£ 19.50$ incl VAT $\mathbf{£ 1 0 . 0 0}$ incl VAT $\mathbf{£ 1 5 . 0 0}$ incl VAT $\mathbf{£ 1 5 . 0 0}$ incl VAT $\mathbf{£ 1 8 . 0 0}$ incl VAT $\mathbf{£ 1 1 . 0 0}$ incl VAT $£ 16.00 \mathrm{incl}$ VAT £21.00 incl VAT
VARIOUS OTHERS - NO 900 PORTABLE TYPES.
CARRIAGE MAINLAND £2 EACH, ENQUIRIES SAE. (310, 340 SERIES).

[^0]

SUPPLIERS TO H.M. GOVT. DEPTS. MANUFACTURED AND ASSEMBLED IN GT. BRITAIN FULLY TESTED AND GUARANTEED SEND NOW FOR OUR FREE 28 PAGE ILLUSTRATED CATALOGUE. SEND STAMP PLEASE

Electronics. Make a job of if....

Enrol in the BNR \& E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radıo, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians Certificates) ; the Grad. Brıt. I.E.R. Exam; the RADIO AMATEUR'S LICENCE:P M.G. Certificates; the RTE.B Servicing Certificates ; etc. Also courses in Television: Transistors: Radar; Computers; Servo-mechanisms, Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest detalls will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation to
British National Radio \& Electronic School
PO Box 156 . Jersey. Channel Islands
NAME
ADDRESS

THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

```
AUDAX AUDIOMASTER BAKER BOWERS \& WILKINS CASTLE CELESTION CHARTWELL COLES - DALESFORD - DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS I.M.F. ISOPHON - JR JORDAN WATTS KEF LEAK LOWTHER MCKENZIE MONITOR AUDIO PEERLESS - RADFORD RAM RICHARD ALLAN SEAS SHACKMAN STAG TANGENT TANNOY VIDEOTONE WHARFEDALE YAMAHA
```


WILMSLOW AUDIO

(Dept. P.W.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRESK9 1 HF

Discount Hi-Fi Etc. at 5 Swan Street and 10 Swan Street
Speakera, Mail Order \& Export 0625529599 Hi-Fi 0625526213

Vega value is convincingly demonstrated in the superb shortwave coverage of the 206. Spidola and Selena models: no less than six short-wave bands on the 206 and Spidola, five (including "trawler" bands) on the Selena. Engineered in the USSR to the highest electronic standards, these powerful portables - and the other models in the range - give you top performance (for complete "home" listening too) and reliable service at competitive prices.

Vega Selena 210/2 MB

Superhet portable receiving VHF/FM. long. medium and 5 short-wave bands: $19.85-19.4 \mathrm{~m}(151-1545 \mathrm{mHz}) .258-248 \mathrm{~m}(11.7-12.1 \mathrm{mHz}): 31.6-30.7 \mathrm{~m}(9.5-9.77 \mathrm{mHz})$: $504-41.0 \mathrm{~m}(595-73 \mathrm{mHz})$. (marine) $1869-760 \mathrm{~m}(1.605-3.95 \mathrm{mHz})$. Intermediate frequency 465 kHz Rated Output. 500 mW (max 750 mW) 31 semi-conductor circuitry Independent bass and treble tone controls. Automatic frequency control. Built-in mains convertor Sockets for line aerial. earth, tape-recorder. earphone or extension speaker Inbuilt ferrite rod aerial for long and med waves. 8 -section telescopic swivelling antenna for VHF/FM and short waves. Battery condition/tuning meter Werght 4.08 kg (9 lb) without batteries. Price: $£ 39.34$ inc VAT.
Vega 206 Superhet portable receiving long and medıum waves plus 6 shorl-wave bands 150 $60 \mathrm{~m}(2-5 \mathrm{mHz}) .60-40 \mathrm{~m}(5-7.5 \mathrm{mHz}) .3235-248 \mathrm{~m}(93-121 \mathrm{mHz}): 1985-194 \mathrm{~m}(15.1-1545 \mathrm{mHz}): 1695-$ $16.75 \mathrm{~m}(17.7-17.9 \mathrm{mHz}) .14-138 \mathrm{~m}(2145-2175 \mathrm{mHz})$. Intermediate frequency 465 kHz Rated Output 150 mW . Circutry comprises 12 semi-conductors including voltage stabilising diode. plus turret waveband selector, treble control. inbuilt ferrite rod aerial for med and long waves. 7 -section telescopic antenna for short waves Sockets for line aerial. 9 v DC external power source. taperecorder. earphone or extension loudspeaker. Dimensions. $229 \times 297 \times 105 \mathrm{~mm}$

Weight 2.7 kg (5lb) without batteries Price: $£ 24.15$ inc VAT.

Imported. Distributed and Guaranteed by Technical \& Optical Equipment (London) Ltd.. Zenith House. The Hyde. Edgware Road. London, NW9 6EE. Tel: 01-200 6505
 $19.85-16.75 \mathrm{~m}(15.1-17.9 \mathrm{mHz}) .14-13.8 \mathrm{~m}(2145-21.75 \mathrm{mHz})$. Intermediate frequency: 465 kHz . Rated Output 800 mW Circuitry inciudes 23 semi-conductors. independent bass and treble tone controls. automatic frequency control. Battery condition/tuning meter. Inbuilt ferrite rod aerial for long and medium waves 8 -section telescopic swivelling antenna for VHF/FM and short waves. Sockets for: line aerial. 9 v DC external power source, tape recorder. earphone or extension speaker. Dimensions $250 \times 365 \times 105 \mathrm{~mm}$. Weight. 3.4 kg (7.51 b) without batteries. Price: $£ 34.79 \mathrm{inc}$ VAT. Note: prices shown are rec retail. You may find lower prices locally.

See these and the other fine Vega radios right away.

DISCOUNT SPEAKERS

 ALL PRICES INC．VAT
Prices correct at 23.179

HI－FI TYPES

5．FANE 501 Mid or Full range 8＂A．F．Model 80 Dual Cone FANE 8＂ $808 T$ Dual Cone WH＇FEDALE L＇TON $3 \times P \mathrm{Fit} \mathrm{Pr}$ GENTON $2 \times P$ KIT P A．F．FR̈I B＂SPKR KIT 8．FANE MODE ONE KIT

CABINETS（TEAK VENEEREO）
$20^{\prime \prime} \times 11 \frac{1}{n}^{\prime \prime} \times 9 \frac{1}{2 "}^{\prime \prime}$ Suitable for Mode 1 or FRI Kits and
GROUP／OISCO TYPES

FANE HP×1R or HP×2R Carr．35p £3．65 £2．25 ADD－ON HIGH FREQUENCY UNITS

| TITAN T2H Cair E 1 | $£ 39.00$ | $\mathbf{E 2 6 . 9 5}$ |
| :--- | :--- | :--- | :--- |

BIG DISCOUNTS ON WHARFEDALE SPEAKER KITS

LINTON $3 \times P$

st／value $\begin{gathered}\text { Sonic } \\ \text { pnce }\end{gathered}$
Power handling 30 watts DIN
$6070 \quad$ £35．95

DENTON 2XP
Power handling 25 watts DIN
£39 15 £21．95
AMPS，TTABLES，JINGLE MACHINES， OISCO CONSOLES，LIGHTING，CABINETS． CREOIT TERMS AVAILABLE ordors $\begin{gathered}\text { over } \\ \text { 20 }\end{gathered}$

Phone orders accepted from Access \＆Barclay

403 SAUChIEHALL StREET Tal： 0413320700

GLASGOW
Mail Orders／Export enquiries only 1024 Newgate Shopping Centre．NEWCASTLE．Add ${ }^{\text {E }} 1$ carr on
Hi－fi spkrs．or kits．Otherwise add $£ 1.25 \quad 12^{\prime \prime}$ Spkr）

OSMABET LTD $\begin{gathered}\text { We make translormers } \\ \text { amongst other things }\end{gathered}$
LOW VOLTAGE TRANSFORMERS：Prim 240V ac． 63 V ； $5 \mathrm{~A} £ 2.95$ ； 3 A £3．60；6A CT $\mathrm{E6} .85$ ； 12 V 15 A £3．35；3A CT £6．85；6A CT 〔8．50；15V O 5A £2．75； 18 V
 f12．25．
$\mathbf{f} 12.25$
TWIN SEC TRANSFORMERS：Prim 240 V sc．
$6 \mathrm{~V} 06 \mathrm{~A} .6 \mathrm{~V} 06 \mathrm{~A}: 9 \mathrm{VO} 4 \mathrm{~A} .9 \mathrm{~V} 04 \mathrm{~A}: 12 \mathrm{VO} 3 \mathrm{~A} .12 \mathrm{~V}$
 $18 V 1 \mathrm{~A}$ ． 18 V 1 A 6.85 ； 18 V 15 A ． 18 V 15 A e8．50； 20 V 15 A ； 20 V i 5 A f8．50； 12 V 4 A ． 12 V 4 A £ 10.50 ； 25 V 2A． $25 V$ 2A 10.50.
MIDGET RECTIFIER TRANSFORMERS：Prim 240 V ac． 6－0－6V 15 A or $9 \cdot 0.9 \mathrm{~V} 1 \mathrm{~A}$ f3．00 each： $12 \mathrm{~V}-0.12 \mathrm{~V} 1 \mathrm{~A}$ or
$20 \mathrm{~V} \cdot 0.20 \mathrm{~V} 0 \mathrm{~F} 5 \mathrm{~A}$ £3．75 each： $9-0-9 \mathrm{~V}$ o 3 A or $12 \mathrm{~V}-0-12 \mathrm{~V}$ O 25A or 20 V．0．20V $015 A$ ©2．85 each
LT TRANSFORMERS TAPPED SEC．Prim 240V ec．
 24－3OV 2 A £7．35； 4 A £10．50； $0-20-30 \cdot 60 \mathrm{~V}$ 1A £8．25 MAINS TRANSFORMERS SPECIAL OFFER：
 2A 〔3．00；9V 3A £2．50， 25 V 0 3A £1．00．
2 in $8 \Omega .2$ in 8 or $25 \Omega .21$ in $8 \Omega .3$ in 35Ω ． $3 \frac{1}{2} 3.8 .160$

 Instant erasure of cassettes，and any diameter of tape spools dermagnetises tape heads． $200 / 240 \mathrm{~V}$ ac．$£ 6.00$ ． POWER SUPPLY，TWIN OUTP UT：Prim 240V ec． New．British manufacture smoothed d．c．output 20 V 15 A
plus stabilised output of 15 V 100 Ma ．plus 12 Vac 05 A out put．complete with diagram．E3．50． $200 / \boldsymbol{A}$ SHARGING METER 800Ω £ 1.10 ．
CHA 3 A M1． 25 each 5 A or 10 A 1.50 ．
 Brand new．built in gear box． 1 or 20 RPH £1．25 each．
O／P TRANSFORMERS FOR VALVE AMPLIFIERS P．P．sec lapped 3．8．15＠．A－A $6 K$ ．30W $£ 15.25$ ；A－A 3 K G．E．C．MANUAL OF POWER AMPLIFIERS Covers valve amplifiers 30W to 400 W © 1.00 ． MULTIWAY SCAEENED CABLE，PVC COVERED 36 way f1．00； 25 way $75 p ; 14$ way $50 p ; 6$ way 25 p； 4 way 20 p； 2 way $10 p ; ~ i w a y ~$
ed $25 p$ per metre $f i g$ iwin stereo do screcned $15 p$ ，metre． MAINS CABLE
4 way，3A 30p matre：fig 8 for loudspaakers atc．f5．00 100 CONDENSERS
CONDENSERS $2200 / 40 \mathrm{~V} 40 \mathrm{p} ; 8+8 / 450 \mathrm{~V} 40 \mathrm{p}$ ；Paper tubular．W／E 4／160V 6／160V，2／150V，0．1／2000V 25 p each

CARRIAGE EXTRA ON ALL ORDERS
ALL PRICES INCLUDE V．A．T．
Callers by appointment only．S．A．E．Enquiriss，Liets 46，Kenilworth Road，Edgware，Middx． HA8 8YG．Tel：01－9589314

ELECTRONICS SUPPLIERS

 SHOPS，IMPORTERS， MANUFACTURERS HONG KONG IS CHEAPEROwing to the rising value of the Japanese Yen，products from Japan are becoming very expensive．

We have equivalent quality products at far better prices from Hong Kong，Taiwan and Korea．

We can supply in both large and small quantities with proven quality．

Even if you have never im－ ported goods before，we can show you how！

86 pages，compre－ hansive，fully priced catalogue availabla： specialising in products for the olectronics hobbyist．

Caralogue SUS4．00 to cover airmail postage．

Simply ahead!

 HIGH PERFORMANCE MODULAR UNITSBACKED BY NO-QUIBBLE 5 YEAR GUARANTEE

30 WATTS R.M.S.
INTO 8 OHMS

I.L.P POWER AMP MODEL HY50

> Of all the purpose-built power amplifier modules by I.L.P., the HY50 is understandably the most popular with those wanting to build or up-grade a hi-fi system, run a small high quality P.A. system, amplify a musical instrument (say for practise or small range use) or use it for lab work. Its useful 30 watts RMS output into 8 ohms, its rugged construction and freedom from heatsink worries make HY50 the ideal all-purpose quality power amp-and it is unconditionally guaranteed for five years. Tens of thousands are in use throughout the world.
> .. . and a epee that means just what it sers l

Encapsulated power amp with integral full-rated heatsink.
Input -500 mV
Output 30 watts RMS/8 Ω
Load Impedance - 4 to 16Ω
Distortion -0.04% from 100 mW to 25 watts at $1 \mathrm{KHz} / 8 \Omega$
Distortion -0.04% from 100 m to 25 watts at 1 kr
Supply Voltage $- \pm 25 \mathrm{~V}$. Size $105 \times 50 \times 25 \mathrm{~mm}$
Supply Voltage $- \pm 25 \mathrm{~V}$. Size 105
Inc. V.A.T. and postage in U.K.
£8.15

Nothing has been overlooked in the design and manufacture of I.L.P. Modular Units. Heavy duty heatsinks, encapsulated circuitry, nocompromise production standards and irue professional finish ensure world leadership for I.L.P. Now we have up-graded output ratings and down-graded prices to bring I.L.P. within easier reach of all who want the best.

New production techniques enable us to reduce prices by an average of 20\%, making I.L.P. a better buy than ever.
(Guaranteed 7 days despatch)
USE OUR FREE POST SERVICE for sending your orders, requests for information sheets etc. Simply address envelope.
NO STAMPS REQUIRED.

FREEPOST 1

Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP
Phone(0227)54778
Telex 965780

Compatible with all I.L.P. power amps. and P.S.U.'s. In a single pack, needs external pots and switches. Multi-function equalization. 5 inputs. High overload margin. Active tone controls, 500 mV out. Distortion at 1 KHz 0.01\%.

Two connect easily for stereo. $\mathbf{E 5} \mathbf{2 2}$
THE POWER AMPS
With heatsinks, full load line and thermal protection. Distortion typically 0.05% at 1 KHz .
HY120 60 Wetts RMS/8 $8114 \times 50 \times 85 m m \quad £ 10.42$ HY200 120 Wats RMS/BO $114 \times 50 \times 85 \mathrm{~mm}$ 4 Y 400240 Watts RMS/40 $114 \times 100 \times 85 \mathrm{~mm}$

THE POWER SUPPLY UNITS
(Split line outputs to suit I.L.P.
power amps and HY5)
PSUEO for 1 or $2 \times$ HY50 $\mathbf{~} 9.11$
PSU70 for 1 or $2 \times$ HY12O
14.70
f14.70
E24.80
PSU180 for One HY400 or $2 \times$ HY200
information sheots on appllcation -
Use our freepost service.

No screws, just clips together only 4 basic parts. Do it yourself replacement. 36 ranges to
$1000 \mathrm{~V}-\mathrm{AC} / \mathrm{DC} 5 \mathrm{AC} / \mathrm{DC} 20 \mathrm{Kohm} / \mathrm{V}$
Illustrated above are just 4 of the 350 instruments offered by PIL covering practically every measuring capability for Industry Education Science or Hobby.

Our new 1500 sq ft showroom displays a wide range of the products we distribute for some 60 manufacturers both British and international.

All visitors whether company engineers buyers or hobbyist are welcome and may purchase direct from the showroom in preference to mail order.

For further information on the showroom or on our product range please write to or call at
Precision Instrument Laboratories, 727 Old Kent Road, London SE15 Tel 01-639 4461
Products may be purchased by sending cheque with order to our showroom or by personal visit.

Prices including carriage and 8% VAT

IEC GROUP COMPANIES

Showroom/Sales/Export 01-639 4461
Open Mon. to Fri. (ring for Sat. opening times) North London Showroom 01-965-2352 Factory / Reparr 01-639-0155

BUILD YOUR OWN METAL DETECTOR

 TR/IB TR/VCO BFOTest equipment not required. Manuals for kits available at
Test equipment not required. Manuals for kits available at $25 p$ each (refundable). UK prices post \& VAT paid excopt available: SAE please.

Shadow TR/18
(illustrated)
A true transmit receiva induction balance meta detector - uses the lates circuitry for maximum range and sensitivity. Speaker or phones. Pre assembled search head with lightweight closed cell foam encapsulated coils fo thermal insulation and water resistance. A very powerful machine 1

8 hadow TRNCO

An advanced version of the above detector, use it as a sen sitive TR/18 machine or switch to VCO mode when the depths achieved approach the maximum "in air" range. Low power requirement: runs on standard 9 volt batteries. The most sophisticated detector available as a kit

Shadow TR/18 kit $\mathbf{£ 2 2 . 5 0 (£ 2 9 . 9 5}$ aseambled)
Shadow TRNCO kit £27.50 (£38.95 mesembled)
Padded stereo headphones suitable for 'Shadow

detectors

E.50

Designing your own detector? Then we can supply the (hard to obtain) hardware "shell" in cluding fully adjustable shaft with handle, search head moulding with hinge assembly. special clips to mount your own control housing (any box is suitable) completely non-metalic: suitable for any type of detector (TR-PI-VLF-8FO etc). Supplied undrilled as a kit with full instructions las used on our Shadow range). Low cost BFO derector $200 \mathrm{~mm}\left(8^{\circ}\right)$ annular search head gives wide scan with easy pinpointing. Simple high efficiency circuit draws $<3 \mathrm{~mA}$. Extra lightweight 300gms (10.5 ozs) with bettery. Very detailed construction manual; ideal as a first project. Absolutely everything supplied including pre-a ssembled search head. tuning coil and earpiece.

ALT3 detector (kit) - $\mathbf{1 1 3 . 9 5}$.
Padded high \mathbf{Z} headphones for ALT3: $\mathbf{~ 4 . 9 0 .}$
Order by post or phone (24 hours) - for quickest delivery quote credit card number

A C Dept. (P.W.) 1 Green Lane,
 Walton-on-Thames, Surrey.
 Phone (093 22) 44110

* BARGAIN BUYS \star

 100/f45.
8C184 Preformed for TO5 spacing 100/£4.50:000/£30.
8C213L straight leads $100 /$ /55 1000/ $\mathbf{5 3 3}$. 2N5060 0 8A SCR 30V. Ig 200uA 10/E2 100/E15 1000/E120.
IN4148. bandoliered $1000 / \mathrm{E} 15$ $2500 / \mathrm{C32} 10.000 / \mathrm{E} 90$. Loose. boxes of $10 \mathrm{k} / \mathrm{f} 75$.
741 8DIL $10 / \mathrm{E} 1-80100 / \mathrm{C} 14.50$. $5558 \mathrm{DIL} 10 / £ 2.40100 / \mathrm{E} 19.50$ 1 N4003 100/е2.90 1000/е24. 1 N4007 100/E4.90 1000/E44. Electrolytics: $10 u 40 \mathrm{~V}$ PC mntg $25 / \mathrm{E} 1.25$ 100/E3: $47 \mathrm{w} / 63 \mathrm{~V}$ V.PC mntg. $1 \mathrm{w} / 63 \mathrm{~V}$ H.PC mntg same price.
$1250 \mathrm{w} / 25 \mathrm{~V}$ can $10 / \mathrm{E1} .60$ 100/E10 $1500 \mathrm{w} / 40 \mathrm{~V}$ can $10 / \Sigma 2 \cdot 20$ 100/£15. $800 \mathrm{u} / 250 \mathrm{~V}$ can $10 / 85 \cdot 50100 / \mathrm{C44}$
400 w 400 V can $10 / \mathrm{C8} 100 / \mathrm{E} 56$. $400 \mathrm{u} / 400 \mathrm{~V}$ can $10 / \mathrm{c8} 100 / \mathrm{E} 56$ $200 \mathrm{w} / 350 \mathrm{~V} .100 \cdot 100 \cdot 50 / 300 \mathrm{~V}$ lall in pots 10k lin std bush \&
Pots - 10k lin std bush \& spindle 1 long 10/E1 100' $\mathbf{E 7 . 5 0} 1000 /$ E50.
Slider 18 k lin 60 mm long prices as above. $18 \times 13 \times 17 \mathrm{~mm} 0125^{\circ}$. plied with sman knob 40p $10 / \mathrm{E3} .50$ sup plied with smart knob 40p $10 / \mathbf{E 3 . 5 0} 100 /$
f30. £1.20 $100 / \mathbf{\text { c8.50 }}$
Resistors - $\ddagger W 5 \%$ carbon film, these values only: 22OR 1 k 3 k 94 k 733 k 47 k 220k 18R 330k 39k. All - 1000/£ (min aty of one value) or $\mathbf{£ 3 5}$ per 10.000 any mix.
80 ohm 21 inch speaker 55p. $100 / \mathrm{C38}$. TO3 socketa $10 \mathrm{p} .100 / \mathrm{E} 7$.
Ferrite rod aerial $140 \mathrm{~mm} \times 10 \mathrm{~mm}$ with LM 8 MNW windings -40 p. $100 / \mathrm{C} 30$.
Powerful 6V buzzer $50 \mathrm{~mm} \times 20 \mathrm{~mm}$. 70p $100 / \mathrm{E} 48$.
8C2398. $100 / \mathrm{C4}$. $1.000 / £ 27$.
1% hall watt resistors $111 \mathrm{~K}, 333 \mathrm{~K} .500 \mathrm{~K}$ 900K. 100/£2.50.
Other valves on bargain list, send S.A.E.

Audible Warring device - solict state circuit drives high efficiency transducer to give high output. Voltage req $\mathbf{d - 1 8 V}$ Can also be driven direct from TTL or CMOS Module size $45 \cdot 21.12 \mathrm{~mm}$ Comprehensive data supplied $£ 1.20$. VU meters - 2 meters $40 * 40 \mathrm{~mm}$. driver board supplied with full data and circuit £3.50.

OSCILLOSCOPES

We have available from stock the following SCOPEX models 4D10A-DC-10MHz 10 mV sensitivity: Stab Power supplies Dual beam: 3% accuracy. Excelient value
at $£ 214 \mathrm{inc}$ VAT and Carr
4S6 - DC-6MHz. pornable scope Soldu state cricurtity All for

NIXIE TUBES

ITT iype GNP7AH. Supplied with data 60 p

 each.7 -seg display, wire ended tube NEC type L08012 $\frac{1}{2}$ " high. with data 65p. 7 -seg display. (as abovel Futaba type DG $100103^{\prime \prime}$ char. 70p with data.

1979 CATALOGUE

64 big pages with 50p discount vouchers - aty prices for bulk buyers . reply paid

Relays, push button banks and variable caps: Switches. component packs etc, etc alt in our latest 8argain List - send SAE for your free copy

Prices in this ad include VAT and are valid
until 30.7 .79 . Add 26 p UK 8 FPO postage until 30.7.79. Add 26 p UK/8 FPO postage cash.

TRANSISTORISED INVERTERS

$12 v$ or $24 v D C$ INPUTS
200/240v AC OFF LOAD OUT SQUARE WAVE

FREQUENCY
$48 / 52 \mathrm{~Hz}$ DEPENDING ON LOAD SILICON POWER
TRANSISTORS DC INPUT FUSED

ECONOMY MODELS

12v DC inputs:

EC1 $-6^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$ approx. 20 watts	£9.50
EC2 $-6^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$ approx. 40 watts	£12.80
EC3 - $11^{\prime \prime} \times 7 \frac{1}{2}^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime}$ approx. 150 watts	£25.48
EC4 - $11^{\prime \prime} \times 7 \frac{1}{2}^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime}$ approx. 200 watts	£32.20
EC5 - $11^{\prime \prime} \times 7 \frac{1}{2}{ }^{\prime \prime} \times 5^{\prime \prime}$ approx. 300 watts	£39.00
ED1-11 ${ }^{\prime \prime} \times 7 \frac{1}{2}{ }^{\prime \prime} \times 4 \frac{1}{2}{ }^{\prime \prime}$ approx. 100 watts	£22.10
ED2 - $11^{\prime \prime} \times 7 \frac{1}{2}{ }^{\prime \prime} \times 4 \frac{1}{2}{ }^{\prime \prime}$ approx. 150 watts	£26.80
ED3-11" $\times 7 \frac{1}{2}{ }^{\prime \prime} \times 5^{\prime \prime}$ approx. 200 watts	£33.50
ED4-11" $\times 7 \frac{1}{2 \prime \prime} \times 5^{\prime \prime}$ approx. 300 watts	£42.00

Please add $£ 2.00$ per unit carriage.
All units assembled to order approx. 28 days.
Caged sizes are subject to variations.
$£ 9.50$ £12.80
E25.48 £39.00
$£ 22.10$
$£ 26.80$
£42.00

MICRO CHIMES FROM THE INVENTORS OF MICROPROCESSOR MUSICAL CHIMES

New price for the original

CHROMACHIME KIT

24 tune model!
Due to the fantastic
success of this product right

across the World we are able to offer it at

$$
\text { only } £ 9.95+75 p \text { p\&p }
$$

Comes complete with:

* TMS1000 Micro * Fully prepared PCB
* Superb cabinet $\quad *$ All semiconductors
* AllR's \& C's \quad : Loudspeaker
* Switches \& pots \quad Socket \& Hardware
* Fully detailed kit manual

TMS 1000N - MP0027A Microcomputer chip available separately if required. Full 24 tune spec device supplied with data sheet and fully guaranteed.

New low price only £4.95 inc. p\&p (Only present 24 tune repertoire currently available.)

A COMPLETE KIT FOR THE

NEW MICRO CHIME

This easy to build kit includes:

* TMS1000 Custom MPU Chip
* Special purpose designed case
*: Fully drilled and legended PCB
* All transistors, Resistors and Capacitors
* Full set of mechanical parts
* Smart fascia labels
* IC Socket and Loudspeaker
* Really Low Price!
only $£ 8.95+55 \mathrm{p}$ p\&p
Chromatronics,
Riverway. Harlow
Essex. U.K.
ALL CHROMATRONICS PROOUCTS

Please sendme:
TO CHROMATRONICS, RIVER WAY. HARLOW, ESSEX.UK NAME
ADDRESS

I enclose cheque/PO value \mathcal{L}
or debit my ACCESS/BARCLAYCARD account no

Signature

Largest range of quality components in the U．K．－over 8，000 types stocked

JMarshallis Head Office and Mail Order to Dept．E．E． A．Marshall（London）Ltd． Kingsgate House，Kingsgate Place， London NW6 4TA．Tel：01－624 0805. Telex： 21492.

Retail Sales：London：40 Cricklewood Broadway，NW2 3ET．Tel：01－4520161／2 ALSO 325 Edgware Road，W2．Tel：01－7234242 Glasgow： 85 West Regent Street，G2 2QD．Tel：041－3324133 AND Bristol：108A Stoke＇s Croft，Bristol．Tel：0272 426801／2．

TRANSISTORS（full range in catalogue）

DAXIAL CABIES
24i－UHF（GANOS I．V） 75 OHMS $18 \mathrm{p} / \mathrm{m}$ V．H．F．FEEDER CABLES
MAINS CABLE

LINEAR（see catalogue for full range）

LINEAR（see catalogue for full sange）									
CA3013	［125	SLEIDC	12.15	50760014	21.30	TM283	01.36	14700	C15
Ca3014	t220	Siblic	62.7	S476003m	cace	TM300	6270		［146
Ca3318	50.76	516120	2275	Sh76008KE	11.85	thas21	61.11	тM9308	［1／3
C43018	11.10	\＄16200	5345	5n78013m	22.4	tMas22	c1．85	tsalzo	caso
C33020	22.20	S1621t	22．75	Sm76013n0	21.12	＇Mas50	614	т8азз	20．80
ca30200	2250	\＄1623C	15.25	Ssh78013ake	［130	ти6618	1230	traja	20ss
C33021	6240	s 1830 C	62．60	SM76023Y	C20s	tMA621	c2s0	тRa395	61.80
CA3022	22.20	SIB4DC	240	swlsazjum	$\underline{1.12}$	［M681A	01.65	trazs	11.20
Ca3023	62.20	S1641C	6.44	54760334	C108	тM6818	C1，4	trato	C220
C13026	ce 70	Si 70 IC	220	S478110m	51.30	т4／790	c1．35	TBat4	［1．80
C1302a	tase	Ca3086	［1．1．）	S476115m	C1．05				
Ca3028	t128	Cu308	620	sw76116m	［1．80				
NEW 1979 CATALOGUE									
48 pages									
components in the UK－over 8.000									
$-50 p$		aid or	10	tlers at	of				
our 4 branches．MAIL ORDER All prices ase									
VAT incl．									
TIL（see catalogue for full range）									
1415242n	（1．25	715233m	6.380	7453zen	22．70	${ }^{74} 5379 \mathrm{~N}$	12		
74．5243M	61．25	7415275＊	6120	745322\％	22.5	715386＊＊	cas		
74524a4	21.50	7152799	cose	7415348M	$\underline{1.19}$	745390\％	caso		
3452454	［1．85	74585004	$\underline{1.45}$	765352M	11.07	745393\％	cas 0		
${ }^{\text {74 } 52477}$	81.09	765283m	$\underline{120}$	74L53534	$(107$	1415395M	61.50	SN74540M	0
345248M	21.05	745239M	1274	745385m	fess	7453980	$\underline{1.90}$	S474s64x	co．n
7415249m	（1．09	7415390w	¢1，00	745388m	cass	74LS399\％	［1，45	SN7S6SM	ca， 17
74152311	11.00	16152934	［100	74S3387M	fess	2415490＊	1000	S474s112k	11.70
74L5253M	\＄100	14152954	［1］5	745388 ${ }^{\text {a }}$	C056	74.56704	（1）0	swhes $114 \times$	61.70
74525 ${ }^{\text {／4 }}$	\＄1．00	14529an	［1．35	7415373\％	60.35	SM74 500 m	c011	SNT45160N	can
741523854	\＄100	1415299＊＊	t29s	7453744	f195	SN74S03m	60.17	SN14S157m	22 65
74152594	［1．5s	7415323	1250	74.5375 m	2046	SN745044	6094	Sw74S188\％	6278
7452881m	2125	1415320N	21．5	7453374	01.30	Sk／4510．9	［0．71	5．4．15189\％	11.01
345288m	cass	215325x	1240	415378\％	t100	swidsiow	¢0．31	Sn745200N	tase

POTENTIOMETERS－VOLUME CONTROLS

 ROTARY POTENTIDMEIERS．All standard35 ＂spinles 35p $75 p 21$ SINGLE SWITCHED As above but with 2 Pote Smitch 2 Amp 250 V AC 95p 31 OUAL CANGED STESEO As Bbove But dual No Smich All Log or avalable in the tollowng values
5 k 10 k 25 k .50 k .100 k 250 k .50 k ． 1 Meg ． 2 Meg ．excep type 1 not avalable

VALVES－MULLARD							
0r97／302	${ }^{11.17}$	Eเs6	［2．4］	PCL200	［27）	9183	62．6）
f0CB $^{\text {c }}$	1130	E195	［1．71	PCR201	12717	${ }^{\text {Pas }}$	［1．74
［EC83	61.31	ก86802	61.17	PCrsol	61.77	P195	¢1．44
［CC88	11.51	arsel	［28］	pCr 802	11.71	P1504	6260
Eccs_{58}	C215	G234	t214	PCP806	6171	Prab	［2．1）
Ecriso	［151	PC86	［231	PCH200	¢24	P909	C276
［CH84	6215	рсsя	［231	pasz	［191	P． 519	cats
tciso	61.21	PC97	［1．31	Pab3	（1） 80	Pie03	t399
EL182	11.71	PC900	［243	Pa84	$(107$	Prooo	［1．78
Etise	617	PCCEA	［1．51	P966	t176	Pr88	¢154
Ef85	11.17	PCC85	1.17	paros／8s	［180	prsoen	［2．48
［E183	2151	PCC89	（1．15	P0510	64.40	UC182	41.08
Ef184	11.62	PCC199	42.15	Pfl200	2225	var3	$\underline{1.66}$
6t38	2260	Pcrso	（1．51	P138	1231	U184	［18
EL84	11.20	PCF88	\＄1．17				

TEST LEADS KIT PN90 Complete luxury kit－curly leads．long reach
prods－banana plug pin plug Spade terminal and croc elip．PRICE $\mathrm{f} 3.50 /$ SET

SIGNAL INJECTOR

Model SE250B
Unusually stable trouble shooter－for checking
TV．Radio．amp．etc． 55.30
TINNED COPPER WIRE

SWG	Price	SWG	Price	SWG	Price
18	$\mathbf{£ 0 . 5 5}$	26	$\mathbf{£ 0 . 6 0}$	32	$\mathbf{5 0 . 7 3}$
22	$\mathbf{£ 0 . 5 5}$	30	$\mathbf{£ 0 . 6 5}$	36	$\mathbf{£ 0 . 8 0}$

MULTICORE SOLDER－SAVBIT 1.2 mm
Approx 13.7 metres of site 12 SAVBIT solder．ideal for Radıo．TV and similar work－ $\mathbf{\$ 2 8}$ ．
CMOS（see catalogue for full range）

C04000	C020	Codot2	coso	cos621	1105	C020318	5
C040018	6020	CO40138	COS2	C0：0223	1100	co40368	124
C04002	［0．10	${ }^{\text {cos }} \mathbf{4} 14$	［100	C01023日	2020	COA035	t1．30
CO4008	2125	cos015	61%	C04024	2078	c04037	2120
C0400）	C0．19	C04018	c0．12	C04025 ${ }^{\text {a }}$	1020	C04040	1.12
CD40088	60.31	CDS0178	11.05	C000279	coss	C040418	cosis
C04009	C0 60	C04918日	$\underline{105}$	C04028日	fow	C020428	casb
${ }^{\text {codela }}$	coss	coadsa	c0．32	C020298	\＄1．10	CO4043	（105
111		¢04020	$t .1$	C04030		cotout	11.00

TRANSFORMERS

 12.15 .18 .20.
and
and
$15 \mathrm{~V}-0.15 \mathrm{~V}$.

Ref	Amps	Price	P \＆P P
112	05	$\mathbf{2 . 6 4}$	078
79	10	$\mathbf{3 . 5 7}$	096
3	20	$\mathbf{5 . 7 7}$	096
20	30	$\mathbf{6 . 2 0}$	114
21	40	$\mathbf{7 . 9 9}$	114
51	50	$\mathbf{9} .87$	132
117	60	11.17	145
88	80	14.96	164
89	100	17.25	164
90	120	19.17	195
91	150	$\mathbf{2 1 . 9 6}$	208
92	20	$\mathbf{2 0 . 4 6}$	0 A．

SO VOLT RANGE
Pri 220／24OV Sec $0.20-25-33-40$
50 V Voltages available 5.7 8．10． 13 50 V Vollages available $5.7 .8,10.13$
$15,17,28.33,40$ or $20 \mathrm{~V} 0-20 \mathrm{~V}$ and $25 \mathrm{~V}-0.25 \mathrm{~V}$

12 OR 24 V OR $12-0-12 \mathrm{~V}$

$\begin{aligned} & 12 \text { OR } 24 \mathrm{~V} \text { OR } 12-0-12 \mathrm{~V} \\ & \mathrm{P}_{1} 220-240 \text { volts } \end{aligned}$				
		mos		
Ref	12 V	24 V	Price	P\＆P
111	05	025	$2 \cdot 20$	045
213	10	05	2.64	078
71	2	1	3.51	078
18	4	2	4.03	096
85	05	25	5.00	096
70	6	3	6.35	096
108	8	4	7.42	114
72	10	5	8.12	114
116	12	6	8.99	132
17	16	8	10.72	132
115	20	10	13.98	208
187	30	15	17.93	208
226	60	30	36.74	U．C．

COMPONENT PACKS
65 1W Metal Oxide Resistors 65 W Metal Oxide Resistors 150 Mined Value Capacitors 10 Reed Switches 50 Wire Wound Resistors 103000 ml 30 V Capachors 25 Assorted presets 503 tag terminal strips Hardware BA nu：s Dolis 200 Mixed Resistors 10 mixed valve electrolitic caps 32 mt 102000 mt ． $70 p \cdot 121 \%$ VAT P\＆P 40p－8\％VAT

BAIDGE RECTIFIERS	
100 V 25A＊	E2． 36
200 V 2 A	C0． 51
soov 4a	¢0．96
soov 64	¢ 1.41
$500 V$ PM17A6 12A．	¢3．08
VAT 12；P \＆P 15p VAT	
AMPLIFIER MODULES	
10W（AL3）	E3．75
25W（AL60）	E4．95
35W（AL80）	¢7．79
125W（AL250）	¢18．74
Power Supply PS 12	c2．05
Power Suppl，SPM80	c4． 25
VAT 121\％PA12	c6．70
P\＆P350 PA100	C13．88

Ref	
30－Isolator $240 \mathrm{~V}: 240 \mathrm{~V} 200 \mathrm{VA}$	£4．54 P\＆P£104
62－Isolator $240 \mathrm{~V}: 240 \mathrm{~V} 250 \mathrm{VA}$	£5．62 P\＆P ¢ 104
63－Isolator 240V：240V 500VA	£11．50 P \＆P ¢2 15
6－250－0－250＊100ma 1）Sec 6 3V © 3 5A 21 Sec $0-5 \mathrm{~V} .63 \mathrm{~V}-2 / 1 \mathrm{amp} \quad £ 3.20 \mathrm{P} \& \mathrm{P}$ 78p	
$7-350-0-350 \mathrm{~V}$－ $100 \mathrm{ma} 1 \mathrm{Sec} 6.3 \mathrm{~V} \cdot 3.5 \mathrm{~A} 2$ ）Sec $0-5 \mathrm{~V}$ ． $63 \mathrm{Ve} 2 / 1 \mathrm{amp} \quad £ 4.10 \mathrm{P} \& \mathrm{P} 96 \mathrm{p}$	
218－250 0－250V． 150 ma 1）Sec 6 3V 4 A 2 V 0－5V． $63 \mathrm{~V}-2 / 1 \mathrm{amp}$	
$\begin{aligned} & \begin{array}{l} 27-250-0-250=60 \mathrm{ma} \mathrm{1)} \mathrm{Sec} \mathrm{6.3V}=25 \mathrm{~A} 21 \mathrm{Sec} 63 \mathrm{~V} \\ \quad 1 \mathrm{amp} \\ £ 3.00 \text { P\&P 78p } \end{array} \end{aligned}$	
$220-410-0-410 \mathrm{~V}$－ 180 ma 1）Sec $63 \mathrm{~V}=4 \mathrm{amp}$ CT 2） Sec 6．3V 2 A 5 V ． $2 \mathrm{amp} \quad £ 5.30 \mathrm{P} \& \mathrm{P} 96 \mathrm{p}$	
82－4 amp lead acid 8attery Charger（transformet only）	
	£4．81 P\＆Pf 104
86.6 amp lead acid 8attery Charger（transformer only）	
59－0－240V．25－0－25－4A	£6．32 P\＆P£162
M184－To match EL84 15W	£1．62P\＆P 32p
M616－0．240V：Screen 1）13－0－13	1A．2） 12 V 150 ma £2．10 P\＆P60p
M489－0．240V： 1400 V － $150 \mathrm{ma}, 6 \mathrm{VV} \cdot 4 \mathrm{~A}$	
M708－6K to $3 \mathrm{~K} \Omega$ matching transformer 5 watt	
	90p P \＆P 40p
M679－120V $\times 2.36 \mathrm{~V} 16 \mathrm{~A}$	£3．00 P\＆P 78p
M865－100V Line to $4 \Omega 10$ watts	£1．90 P \＆P 60p
M973－100V Line to $8 \Omega 40$ watts	£2．90 P\＆P60p
M1015－Choke 8A－ 5 watt 150A Serge	
	£1．50 P\＆P 45p
M1020－0－240V 12－0．12V 50ma	
M1126－0．120 $\times 2.90 .91 \mathrm{~A}$	£2．40 P\＆P 71p
M1130－0－240 4500V 10 ma	£4．86P\＆P£108
M1165－0－115－240V：14V 50ma	75p P\＆P 30p
M624－0．380V： 110 V ＋ 136 A	£12．70 P\＆P£1．40

Porsonal Shoppers EDGWARE ROAO LONDON W2 Tal: $01.7238432 .9 .30 \mathrm{am}-5.30 \mathrm{pm}$. Closed all day Thursday ACTOM: Mail Order only. Mo callers GOOOS MDT DESPATCHEO OUTSIDE UK

Ouality audio modules and accessories for

S450 STEREO FM TUMER FM TUNER Fitced with phase lock-loop
 E26.14 $+4 \mathrm{P}_{\mathrm{D}} \mathrm{F} \mathrm{D}$

FREQUENCY RANGE	88-100 Mhz
SENSITIVITY	$30 \mu \mathrm{~V}$
BANDWIDTH	250 hHz
SPURIOUS REJECTION	50 dB
SELECTIVITY $\pm 400 \mathrm{hHz}$	55 dB
AUDIO OUTPUT (22 5 kHz deviation) 100 mV	
STEREO SEPARATION	30 dB
SUPPLY REQUIREMENTS	20 to 30 V ($90 \mathrm{~mA} \mathrm{max)}$
AERIAL IMPEDANCE	75 ohms
DIMENSIONS	240 mm - 110 mm ^ 32 mm

The 450 Tuner provides instant programme selection at the touch of a button ensuling accurate tuning of 4 pre-selected stations, any of which may be altered as often as you choose. simply by changing the seltings of the pre-set controls Features include FET input stage. Vari-Cap diode tuning. Swithed AFC LED Stereo Indicator

MPA30
 MAGMETIC CARTRIOGE

 PRE.AMPLIFIEREnjoy the qually of £3.35 magnelic cartuidge with you
existing ceramic equipment using
amplifier enabling magnetic caltrid pere
exist for the use of ceramic cartidges only
SENSITIVITY 35 mV for 100 mV outpul 8 ohms

LOAD IMPEDANCE	8 ohms
TOTAL HARMONIC DISTORTION Less than 5% (TypIcally 3%)	

FREQUENCY RESPONSE	50 Hz to $20 \mathrm{kHz} \pm 3 \mathrm{dBs}$
TONE CONTROL RANGE	$\pm 12 \mathrm{~dB}$ at $100 \mathrm{H}_{2}$ and 10 Hz

TONE CONTROL RANGE	$\pm 12 \mathrm{~dB}$ at 100 Hz and 10 Hz
SENSITIVITY	190 mV for full output

INPUT IMPEDANCE	i M ohm:
TRANSFORMER REQUIREMENTS	22 V.A.C. rated at 1A

TIMENSIONS

The Stereo 30 comprises a complete stereo proamplifer, power ampliffers and power supply. This. with only the addition of a transformer or overwind will produce a high quality audlo unit suitable for use with a wide range of inputs i.e. high quality ceramic pick-up, stereo funer, stereo tape deck etc. Simple to install. capable of producing really first class results. thls unit is supplre
mountlno brackets.

OUTPUT POWER	25 Watts RMS
SUPPLY	$30-50 \mathrm{~V}$
LOAD IMPEDANCE	$8-18$ ohm
TOTAL HARMONIC DISTORTION	Less than 1% (TyDically 06%)
FREQUENCYRESPONSE	20 Hz to $30 \mathrm{kHz} \times 2 \mathrm{dBs}$
SENSITIVITY	280 mV tor full output
MAX. HEAT SINF. TEMPERATURE	$90^{\circ} \mathrm{C}$
DIMENSIONS	$103 \mathrm{~mm} .64 \mathrm{~mm} \times 15 \mathrm{~mm}$

This high quality audio amplifier modute s for
to 25 RMS with distortion levels below 01%

OUTPUT POWER	35 Watts RMS
SUPPLY	$40-60 \mathrm{~V}$
LOAD IMPEDANCE	$8-16 \mathrm{ohms}$
TOTAL HARMONIC DISTORTION	Less than 1% (TyDICally 06%)
FREQUENCY RESPONSE	20 Hz to $30 \mathrm{kHz} \times 2 \mathrm{dBs}$
SENSITIVITY	280 mV tor full output
MAX. HEAT SINK TEMPERATURE	$90^{\circ} \mathrm{C}$
DIMENSIONS	$103 \mathrm{~mm} .64 \mathrm{~mm} \cdot 15 \mathrm{~mm}$

n to the AL60 above and is of the same high qualliy but provides output powers up to 35 W with distortion levels below 01%

AL250 POWER AMP LIFIER	OUTPUT POWER	125 Watts RMS conitnuous
	OPERATING VOLTAGE	$50-80 \mathrm{~V}$
	LOADS	4-16 ohms
	FREQUENCY RESPONSE	25 Hz 20 KHz measured at 100 Watis
	SENSITIVITY FOR 100 WATTS OIP AT 1 kHz	450 mV
	INPUT IMPEDANCE	33 K ohms
	TOTAL HARMONIC DISTORTION 50 WATTS into 4 ohms SO WATTS into 8 ohms	$\begin{array}{ll} 0 & 1 \% \\ 0 & 06 \% \end{array}$

This unit, deslgnated AL250, is a power amplifier providing an output of up to 125 W RMS. into a 4 ohm load.

AL30A 10w AUDIO AMPLIFIER modules	MAXIMUM SUPPLY VOLTAGE	30 V
	POWER OUTPUT for 2% THD	10 Watts RMS
	TOTAL HARMONIC DISTORTION	Less than 25\%
	LOAD IMPEDANCE	$8-16$ ohms
	INPUT IMPEDANCE	100 K ohms
	FREQUENCY RESPONSE	$50 \mathrm{~Hz}_{2}-25 \mathrm{kHz} \pm 3 \mathrm{dBs}$
	SENSITIVITY	75 mV for full output
	DIMENSIONS	74 mm . 63 mm - 28 mm

These low cost 10 watt modules offer the ut most in reliebility and performance, whilst being compact in size

* 118	INPUT A.C VOLTAGE	$33-40 \mathrm{~V}$
	OUTPUT D C. VOLTAGE	33 V nominal
STABILISED	OUTPUT CURRENT	$10 \mathrm{~mA}-15 \mathrm{amos}$
POWER SUPPLY	OVERLOAD CURRENT	17 amps approz.
14.95 + 35pp4p	DIMENSIONS	$105 \mathrm{~mm} \cdot 63 \mathrm{~mm}$ - 30 mm

Designed to power two ALS0s at is Walts per channel simultaneously. Circuit Techniques include full short circuit protection.

PA100

STEREO PRE-AMPLIFIER

£18.05
$+40 p p^{2} p$

FREQUENCY RESPONSE	$20 \mathrm{~Hz}_{3}$ to $20 \mathrm{KHz}^{*} 1 \mathrm{~dB}$
TOTAL HARMONIC DISTORTION	Less than 1\%(Tyotcally 07%)
SENSITIVITY 1. TAPE INPUTS 2. RADIO TUNER 3. MAGNETIC PU	$\left.\begin{array}{l}100 \mathrm{mV} / 100 \mathrm{~K} \text { ohms } \\ 100 \mathrm{mV} / 100 \mathrm{~K} \text { ohms } \\ 3 \mathrm{~m} \mathrm{mV} / 50 \mathrm{Kohms}\end{array}\right\}$For an outpul 250 mV25 m
EQUALISATION	$\begin{aligned} & \text { Within } \pm 1 \mathrm{~dB} \text { from } \\ & 20 \mathrm{~Hz} \text { to } 30 \mathrm{hHz} \end{aligned}$
BASS CONTROL RANGE	$\pm 15 \mathrm{dBs}$ at $75 \mathrm{~Hz}^{\text {d }}$
TREBLE CONTROL RANGE	$+90-20 \mathrm{dBs}$ at 15 hHz
SIGNAL/NOISE RATIO	Better than 65 dBs (All inputa)
INPUT OVERLOAD	Better than 26 dBs (All inputs)
SUPPLY	20 to 40 V
DIMENSIONS	$300 \cdot 90 \cdot 33 \mathrm{~mm}$ (fess controls)

A top quality stereo pre-amplifier and tone control unit. The PA100 provides a comprehensive solution to the front end requirements of steteo amplifiers or audio
two filters for high and low frequencies
gUALISATION

INPUT IMPEDANCE
SIMENSIONS

- $\quad 50$

DIMENSIONS
18 to 30 V -re sarth
$110 \cdot 50 \cdot 25 \mathrm{~mm}$ (ine DIN

PA12

$£ 8.75$
STEREO

The PA 12 Stereo Pre-

Amplifler chassis is desigied and recommended tor use with the AL $20 / 30$ Audio Amplifier Modules. the PS 12 power supply and the T 338 Translormer. Features include onfof volume, Balance, Bass and Tieble contiols-Comolete with tape output
FREQUENCY RESPONSE
$20 \mathrm{~Hz}-20 \mathrm{kHz}(-3 \mathrm{~d} 8)$
BASS CONTROL $\pm 12 \mathrm{~d} 8$ at 80 Hz
TREBLE CONTROL $\pm 14 \mathrm{ds}$ at $10 \mathrm{hHz}^{2}$
INPUT IMPEDANCE

OIGNAL/NOISE RATIO
TAPE OUTPUT

PS12 POWER SUPPLY MODULE

Power supply for AL20A-30A
PA12. S450 etc.
Transtormer T538.
Input A.C. Voltage 15-20V. Output D.C. Voltage 2230 V approx. (Dependent upon input.)
Output Current 800 mA
maximum.
Dimensions $60 \times 43 \times 26 \mathrm{~mm}$

£2.13

BP124 SIREN ALARM

 MODULEAmerican Police screame powered from any 12 volt supply into 4 or 8 ohm speaker. Ideal for car burglar alarm. treezer break-down, and
other security purposes.

ONLY £3.78

$+35 p$ p\&p. 5 WATTs -

MA60 HI-FI AMPLIFIER KIT

Build you own top quality amplifier, save yourself pounds. The MABO kit comprises the following Bi-kits modules, 2. AL60 amps. 1 天 PA 100 pre-amp. 1 . SPM80 stab. Dower supply. 1 * BMT80 transt. giving 15 watts RMS per channel STEREO. Alt modules Details of the above modules are in inis ad. Price $£ 36.00+62 p p \mathrm{k} p$.

TC60 KIT

A beaulifully designed genuine TEAK WOOD veneered cabinet to out the professional touches to your home built amplifer. Full Sockets. Noen, etc. Ideal for the MA60. Sire: 425 mm . 290 mm , Price $\mathrm{E} 22.44+86 \mathrm{p}$ p E p .

TRANSFORMERS

T538 For use with S. 450 AL 30 A MPA30
 Order No. 2450
BMTBO For use with AL60 SPM80

Order No. 2034 Price: $\mathbf{£ 6 . 0 8 + 8 6 p o 8 t p}$
MT250 For use wim alasice: $£ 7.14+f 1.10$ pt
order No. 2043 with At 60
Order No 2040 Prico: $£ 5.85+800$ \&
2041. For use with AL80, AL120and AL250

CASES

TEAK 30, $32 \times 23 \times 8 \mathrm{~cm}$, designed mainly for use with our stereo 30 Audio System but has proved vory helpful to home cons

TEAK $60,42 \times 29 \times 9 \mathrm{~cm}$, for use with AL60/MK60 Audio Kit. Usoful for the home constructor requiring an amplifier sleave - has no front or back panel. o/n 140.£7.87. p\& p B5p.

Professionals and Enthusiasts from BI-PAK

AL120

AU010

AMPLIFIER
With integra heat sink and
short-circuit tection
£12.91

50W

SUPPL
OADIM TOTTAL HARMONIC DISTORTION FREOUENCYRESPONSE三1dB SENSITIVITY MAX HEAT SINK

50 Watts R.M.S. 70 Watts
B. 16 ohms 05\% Max. (Typically 02\%) $25 \mathrm{~Hz} \cdot 20 \mathrm{kHz}$
500 mV
$192 \times 89 \times 49 \mathrm{~mm}$

Introduced to fultill the demand for a fully protected power amp. capable of driving high quality speaker systems at up to 50 w . with distortion levels velow 05\%. Ideal for domestic use. Discos. P.A. systems. electronic organs etc. The generously rated com with distortion levels uelow 05\%. Ideal for domestic use.

AC INPUTS	
SPM12045	$40-48 \mathrm{~V}$
SPM120:55	50-65v
SPM120'65	$60.65 v$
OUTPUT CURRENT	2.5A
RIPPLE	$\begin{aligned} & 1 \mathrm{~A} 100 \mathrm{mV} \\ & 2 \mathrm{~A} 150 \mathrm{mV} \end{aligned}$

SPM120 is a fixed voltage stabuliser availabie with an or 9066 0/Oge of either 45 v .55 v , or 65 v . Designed primarily for use in audio applications, the stabiliser which provides output currents up to 2.5 A . operates direct from a mains transformer requiring only the

GE100 Mk2.

Control Range	$\pm 12 \mathrm{~dB}$
Dynamic Range	110 dB
Maximum Output	.15 dB
Frequency Response	$30 \mathrm{~Hz}-20 \mathrm{KHz}(\pm 1 \mathrm{~dB})$
Power Supply	$15 \mathrm{O}-15 \mathrm{~V}$
Voltage Handling Input	$3 \vee$ R.M.S
TH.O	005%

Only $155 \mathrm{~mm} \times 65 \mathrm{~mm} \times 50 \mathrm{~mm}$ including the $10 \times 10 \mathrm{~K} 1 \mathrm{in}$ slider potentiometers and knobs which are mounted on a board positioned above the circuitry. In the frequency range of 31 Hz to 20 KHz you can cut and boost $\pm 12 \mathrm{~dB}$ with the 10 shiders each of will also greatly improve the sound reproduction of your existing audio equipment. Power Supply for GE100 o/d SG30 C3 BO

VPS30

REGULATEO VARIABLE
STABILISEO POWER SUPPLY

£8.20

This NEW versatile Regulated Vatiable Stabilised Power Supply with short circuit protection and current liming is a must for a electronics enthusiasts it incorporates adjustable voltage from $2 v-30 \mathrm{v}$. with a current limitung range of $0-2 \mathrm{~A}$ With this module there is no need to buld a separate power supply for each of your projects. with the simple addtion of a transformer fo'd 2033 . O-1ma (0/d 1310 or 1305). plus a suitable shunt, a voltmetet (o/d 1311 or 1306) a 470 hm pot to/d 1896) a 4 K 7 bot $10 / \mathrm{d}$ 1899), it can be used again and again as a self-contained bench, power supply. eliminating the use of batteties and thus saving

PA200

STEREO
PRE-AMPLIFIER

f16.55
$+12 \frac{1}{3} \%$ V.A.
P. \& P. 40 p
The PA200 is bas

HEADPHONES

A top quallity he adphone with cushioned earpads and or Mono switch impedance 8 ohms Frequency 30
 A brillant compromise between price and perfor-
mance Superb stereo reproduction for the
newcomer to $H_{1}-F_{1}$. Impedance B ohms. Frequency

HI-FI ACCESSORIES

Parallal Tracking GROOV KLEEN

The very latest in automatic record cleaning. Desig
ned to suit all modern single play decks Simple to tit it is extremely efficient Complete with two types of base and three height extensions. o/n $8101 . £ 3.97$ p\&p35p.
Cassotte Tape Editing Kit
Enables cassette tapes to be edited and foined easily. quickly and accurateiv Kit comprises Tape Splicer,
132 mml 2 Precision Tape Cutters Tape Piercer 132 mmi 2 Precision Tape Cutters Tape Piercer
9 Self-adhesive Labels Reel of Solicing Tape Winders and removers and instructions. all in a handy wailet. o/n811.E2.59. p\& p35p.
GROOV-STAT
The BIB Groov Stat sidtic peducer neutralises the static charge on records and other plastic surfaces $0 / n 8$
Cassatta Head Cleana
Essential for cleaning of tape heads. capstans and follers Pack contans Tape tead Appiccator and tap
head polisher tools Plus bottle of special tormul cleaning fluid and full instructions. o/n 832. £0.72. p\&p35p.

FREQUENCY RESPONSE		20 Hz to $20 \mathrm{kHz} \times 1 \mathrm{~dB}$	
TOTAL HARMONIC DISTORTION		Less than 1\% (Typically 70 ol	
SENSITIVITY INPUTS	TAPE 2 RADIO TUNER 3 MAGNETIC PU	$100 \mathrm{mv}, 100 \mathrm{~K}$ ohms $100 \mathrm{mV} \cdot 100 \mathrm{~K}$ ohms $3.5 \mathrm{mv} / 50 \mathrm{~K}$ ohms	For an output 500 mV
EQUALISATION		Withen - 1 dB from 20 Hz to 20 kHz	
BASS CONTROL RANGE		- 15dBs at 75 Hz	
TREbLE CONTROL RANGE		- 10 20dBs at 15 kHz	
SIGNAL NOISE RATIO		Better than 65dBs (All inputs)	
INPUT OVERLOAD		Better than 2dBs (All inputs)	
SUPPLY		35 10 706v	
DIMENSIONS		$300 \times 90 \times 33 \mathrm{~mm}$ (less controls	

METERS

Minioture Balance \& Tuning Mete
Miniature moving coll meter for stereo balance
indicator funing indicator for FM or stmilar $4 B y$
$-=1$ application Pointer at centre indicates zero or null position Robusi construction Sensilivity

Balance and Tuning Mete Cluar view edgewise meter Centre zerio application Sensitivity 1000 o 100 UA
Dimensions $45 \times 22 \times 34 \mathrm{~mm}$ o/n Dimensions $45 \times 22 \times 34 \mathrm{~mm} o / n$
$1319 . £ 2.16$.p\&p 35 p .

Miniature Level Mete
Moving coil. for accurate level indication for tape recorders ampliters etc Neat design rugged con struction will withsidnd live times rated value
Gensitivity FSD 200 UA Od 130 OA Oimen sions: $23 \times 22 \times 26 \mathrm{~mm}$. o/n 1320 . $\mathbf{~} 3.02$. sions: 35 p.

Vu Meter

Cailbrated 20 to 3 and 0100 , making it sult power outpus indicator Senstivity i30uA
 p\& 135 p.

ADAPTORS
$A C, D C$ enables a targe range of battery powered radion, recorders, calculators to be run off the mains. (220-240v AC). Switchabie for Universal plugincorporated. o/n 137. E4-05. p\&p35p.
DC-DC for use in all cars. boats atc. with pos. Of neg. asth for a
regulated outout of 6.7 .5 or 9 voits OC 31300 mA . For radios, recorders etc. o/n 138. £3.15. p\& p 35p.

CROSSOVER NETWORKS

high to iweeters, How to woofers. Complate with instructions. Frequency: $3.000 \mathrm{~Hz}, \mathrm{o} / \mathrm{n} 1904$. £1-24. p 8 p 35 p . 2-WAY for B ohm speakers up to 30 watts. Frequency: .3 KHz . o/n
$1905 . \mathrm{Ef} \cdot \mathrm{Bi}$. p 8 p 35 p .

MICROPHONES

For equipment requiring a high quality microphone. Sturdy. solid moulded body in black with neal chrome surround Pick-up pattern is ommirectuonal OniOtf swith. I metre of tough lead with floating 2.5
and 35 mm plugs Matching moulded strut. Pmperiance: 200 ohms
 120 mm . o/n 1326 . £1-80. p\& p 35 p .
DYNAMIC MICROPHONE
Superior quality portable cassette recorder mike with built-in remote conteol switch and lead fitted with 5 -pin 240° DIN plug tremote switch) and 3-pin DiN plug (microphonel. Provides a direct replace-
ment for those supplied with recorders with detachable stand. Omnidirectional Impedance 200 ohms. Frea tesponse: 100 to p\& 835 p.
RE-317: DYNAMIC MICROPHONE
Highly sensitive, high grade desk or hand mike suitable for use with many popular cassette decks incorporates OnOHf switch and 1 metre lead with moulded standard lack plug Complete with desk stand,
Ommidiectional Impedance 5.000 ohms Frea response: 100 at 12.000 Hz . Sensitivity: $(-7 \mathrm{~dB}$ at $1,000 \mathrm{~Hz})$. o/n 1338. \&4.48. plo 350
OMNIDIRECTIONAL CARDIOID
Powered by a iv batrery located within the aluminium body. Satin On Off switch Also with Busby type windsheeld. U" bracket and stem and extremely supple cable Consumption 02 mA from $1 \frac{1}{2} \mathrm{v}$ battery providing approx. $8 \cdot 10.000$ hours continuous life. Impedance:
 UNIDIRECTIONAL CARDIOID
UNIDIRECTIQNAL CARDIOID (190 gm o/n 1328 , 12.32 p 8 p 35 dia $\times 6$ long Weigh

STANDS
GOOSENECK CHROME FLEXIBLE HOLOERS
Length 320 mm . o/n 1333 . £2.70. p8p 35 p.
Length 515 mm , o/n 1334. £3.B3. p\&ip 35p
FLOOR STAND Heavy chrome Stow away leet with ruduer ends for f10.69.p\&p 85
£10.69. p\&p 85 p.
BOOM ARM for use with the above stand Heavy chromed metal gives $30^{\prime \prime}$ each from the stand. o/n 1337. £10-35. p\& p 70 p .

WINDSHIELD COVERS

AUDIO LEADS

1
107
113
114

FM Indoor Ribbon Aerial	¢0.68
35 mm Jack plug to 35 mm lack plug Length 15 m	
pin DiN plug to 35 mm . Jack connected	
to pins 385 Length ${ }^{\text {I }} 5 \mathrm{~m}$	¢0.95
5 pin DiN plug to 35 mm . Jack connected	
to pins 184 Length 1.5 m	¢0.96
Car aerial extension Screened	
lead Fitted plug \& ski	¢1.24
AC mains connecting lead tor cassette	
recorders 8 radios 2 metres	¢0.76
5 pin DIN phono plug to stereo	
headphone pack socket	c1.18
2 + 2 pin Din plugs to stereo jack socket with attenuation network tor stereo	
headphones Length 02 m	¢1.01
Car stereo connector Variable geometry	
plug to fit most car cassette. 8 rrack	
cartridge \& combination units, Supplied	
with inline fused power lead and instructions.	20.68
$6 \mathrm{6m}$ Corled Gutar Lead Mono Jack Plu	
to Mono Jack Plug BLACK	¢1. 62
3 pin DiN plug to 3 pin OIN plug. Length 1.5 m	f0.84
5 pin DIN plug to 5 pin OIN plug Length 1.5 m	¢0.84
5 pin Din plug to Tinned open end Length 1.5 m	f0.84
5 bin DiNulug to 4 Phono Plugs.	
All colour coded Length 1.5 m	11.46
5 pin DIN plug to 5 pin DIN socket. Length 1.5 m	¢0.90
5 pin DiN plug to 5 pin DiN plag mirior	
Image Length 15 m	f1.18
2 pin DIN plug to 2 pin OIN inline socket Length 5 m	f0. 78
5 pin DiN plug to 3 pin DIN plug 184	
and 385 Length 15 m	£0.93
2 pin DIN plug to 2 pin DIN socket Length 10 m	£1.10
n DIN plug to 2	
Connectedpins 385 Length 1.5 m	f0.84
5 pin DiN plug to 2 phono sockets	
Connected pins 385 Length 23 cm	¢0.78
5 pin DIN socket to 2 phono plugs.	
Connected pins 385 Length 23 cm	£0.78
Coiled stereo headphone entension lead.	
Black Length 6 m	£1.97
$A C$ mains lead for calculators etc	¢0.64

ALLPRICESINCLUDEV.A.T.

EDITOR
 Geoffrey C. Arnold

ASSISTANT EDITOR
Dick Ganderton C. Eng., MIERE ART EDITOR

TECHNICAL EDITOR
Peter Preston
NEWS \& PRODUCTION EDITOR
Alan Martin
TECHNICAL SUB-EDITOR
Joe Bishop
TECHNICAL ARTIST
Rob Mackie
ASSISTANT ART EDITOR
SECRETARIAL Keith Woodruff
Sylvia Barrett
Debbie Chapman

EDITORIAL OFFICES

Westover House,
West Quay Road,
POOLE, Dorset BH 15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER
 Telephone:01-2616636

Dennis Brough
CLASSIFIED ADVERTISEMENTS
Telephone:01-2615762
Colin R. Brown
MAKE UP \& COPY DEPARTMENT
Telephone:01-261 6570
Dave Kerindi

ADVERTISEMENT OFFICES

King's Reach Tower, Stamford St., London, SE1 9LS
TELEX: 915748 MAGDIV-G

Opinion

LTHOUGH we have, over the years, reviewed quite a number of kits, for items ranging from intruder alarms to ignition systems, it has long been editorial policy that reviews of ready-built equipment were confined to pieces of test equipment which were likely to appeal to the electronics or radio enthusiast. This was considered to be the right approach for a magazine which was aimed principally at constructors.

We have recently been receiving a growing stream of letters from readers, asking for advice and comment on currently-available communications receivers and other radio equipment for the short-wave listener and amateur, and it is to meet this demand that we are now embarking on a series of reviews. You may rest assured, however, that this change in policy does not mean that we shall be devoting less attention to designs for home-constructed equipment.

It is not our intention to carry out any Which-style comparative tests, nor to suggest a "Best Buy". Neither shall we be carrying out full-scale specification testing, in the way that the hi-fi magazines do on tuners, amplifiers and the like. We shall simply try to convey the feel of the equipment as gained from user tests, to give an idea of how good the instruction manual, etc. is, and to say what accessories or options may be available.

In choosing items for review, we have selected what seem to be the most popular, plus any others available within roughly the same price bracket. This month it is the turn of the Yaesu FRG-7 receiver-future plans include several more receivers, transmitters, transceivers, aerials and various pieces of ancillary equipment. We also hope to comment on some professional receivers now available on the second-hand market. We hope that you will find the reviews interesting and useful, and would be glad to receive suggestions for items to include in the future.

Charles Molloy G8BUS-"On the Air" Contributor

Trained as a telecommunications engineer, Charles worked abroad for several years and became an associate member of the IEE. He is now a technical author in electronics.

Interest in the medium waves began when a schoolboy in the mid-1930s, after constructing a receiver for domestic use. He later turned to the short waves after building a one-valve receiver from a design by F. J. Camm in Practical Wireless, and became a regular SWL while living in the Middle East.

Although a holder of a class B amateur licence, appearances on 70 cm and 2 m are infrequent as the main interest in radio these days is in broadcast band DXing.

Charles collects books on the early days of radio, and enjoys messing about in boats. Other interests include classical music, opera and attending ballet with wife Mary, who is a devotee. He is looking forward to retirement and the opportunity to catch up with a number of outstanding radio projects.

Marshall's Bristol move

Subsequent to the recent publishing of Marshall's. 1979 product range catalogue their Bristol retail shop has moved.

From 24 April 1979, the new shop will be in larger premises at 108A Stoke's Croft, Bristol. This new location is approximately 5 minutes walk from the main shopping centre of Bristol.

At the same time they announce that they have been appointed sole specialist distributors to the constructor market for the new Mullard 'Teletext' chips-SAA 5000, 5010, $5012,5020,5030,5040$ and 5050. These will be available shortly.

Further information from: Mardata, Kingsgate House, Kingsgate Place, London NW6 4TA. Tel: 01-624 0805.

Conferences

An IERE/RSGB colloquium is to be held on Tuesday, 5 June 1979 starting at 2 pm at The Royal Institution, Albemarle Street, London W1.

The subject for discussion will be amateur work on microwave propogation and techniques over the last five years, which have made the professionals look hard.

There has been some fascinating work, particularly in the UK, e.g. "s.s.b. at $10 \mathrm{GHz}^{\prime \prime}$ and the colloquium will describe these great developments which are currently going on.

Further details from: The Conference Secretariat, IERE, 99 Gower Street, London WC1. Tel: 01-388 3071.

The programme for the Consumer Electronics Symposium, announced by the Society of Electronic and Radio Technicians (SERT) last autumn, has now been finalised, and is to be held at the University of Essex between 8 and 10 July 1979.

Copies of the programme/registration form are being widely distributed and applications from nearly 100 potential delegates have already been received.

As can be seen from the programme, there is a wide representation of authors from industry, broadcasting authorities and servicing organisations who are providing an extremely varied programme of lectures and discussion covering all aspects of electronics in the consumer field.

Further details from: SERT, Faraday House, 8-10 Charing Cross Road, London WC2H OHP. Tel: 01-240 1152.

Club News

The North England Radio Club has a national and European membership. with the heart of the club on Merseyside.

They publish a monthly magazine called 'Spectrum' and meet monthly, usually at The Sports Centre, Grange Road West, Birkenhead.

New members from anywhere in the world would be very welcome. A copy of 'Spectrum' and club information may be obtained for two $9 \frac{1}{2} p$ stamps, in the UK, or two IRC's from abroad.

The man to contact is: Norman Monti, 66 Chesnut Grove, Birkenhead, Merseyside L42 OMZ.

T/ 9900 data book

A self-teaching microprocessor design manual-written for beginners and experts alike-is now available from Texas Instruments.

The soft-cover "9900 Family Systems Design and Data Book", will offer in more than 1000 pages a comprehensive selection of educational and applications information that can help users develop a deeper understanding of the complex technology and tremendous potential available in microprocessors.

Combining hardware and software information, the data book should assist both the engineer doing advanced m.p.u. design work and "interested" people who simply want to know more about the subject. It is a complete reference book containing the basic knowledge and data a novice might need to become better acquainted with m.p.u.s-and it carries that knowledge through into complete technical and systems design data needed to use TI's 9900 family of 16 bit microprocessor and microcomputer circuit boards.

The "9900 Family Systems Design and Data Book" costs $£ 8.00$ plus P\&P, and is available from: The Modern Book Co., 19-21 Praed Street, London.

SERT

The Society of Electronics and Radio Technicians is pleased to announce that Mr T. Bryce McCrirrick has become a Vice-President of the Society.

Mr McCrirrick has recently been appointed Director of Engineering to the British Broadcasting Corporation in
succession to Sir James Redmond.
The current President of SERT is Air Vice Marshal Alec Morris and the other Vice-Presidents are Mr Michael Clark (Deputy Group Chairman of the Plessey Company) and Sir Edward Fennessey.

Rally Dates

The Royal Naval Amateur Radio Society's Mobile Rally, will 'take place at HMS Mercury, Petersfield, Hampshire, on Sunday, 17 June 1979. It will be open to the general public between 1000 and 1700 hours.

The rally is intended as an outing for the whole family, with stands, arena events and displays of interest to all ages. There will also be the usual trade stands.

Further details from: Wally Walker G4DIU, 9 Woodstock Road, Bedhampton, Havant, Hants PO9 3HX.

The "East Suffolk Wireless Revival" Amateur Radio Mobile Rally will take place on Sunday, 3 June, 1979, at the I.A.C.S.S.A. Sports ground, Bucklesham, near Ipswich. Commencing at 1100 hrs and admission will be 40p, which includes a free raffle ticket.

In addition to talk-in stations on 2 m , 70 cm f.m. and 80 m s.s.b., there will be trade stands, technical displays (featuring Prestel, RTTY and m.p.u.s), refreshments and a licensed bar.

Further details from: C. P. Ranson G8LBS, 67 Tranmere Grove, Ipswich, SuffolkIP1 6DU.
"Nunsfield House Community Association Amateur Radio Group" of Derby, hold their 10th Rally, at Elvaston Castle Country Park, on Sunday, 10 June 1979.

It is expected to be their largest rally yet, with oyer 50 trade stands, along with many other attractions of interest to all the family.

Talk-in stations will be available on callsign GB2ECR, on 2 m f.m. Ch. 22, and 70 cm f.m. Ch.s SU8, SU20.

Further details from: Chris Wallace G8PTW, QTHR. TeI: Derby 752358.
-Bangor \& District Amateur Radio Society" hold their mobile rally on 24 June 1979, at the Castlewellan Forest Park. There will be all the usual events including trade stands and a "bring and buy" stall.

Further details from: W. H. Langtry GI4AMM, QTHR. Tel: Bangor 65394.

William POEL

If you can think of an application for an arrangement of c.m.o.s. logic with a potential sale of a million plus, then the chances are that some enterprising manufacturer of 1.s.i. has got a dedicated chip either on the drawing board. or in the market place. The application described here is an ideal candidate, since it is yet another instance of ageold analogue technology being swept aside with digital technology. For a long time past, an accurate readout of a radio receiver's tuned frequency has only been available with large amounts of logic, and large amounts of patience to work out the various i.f. offset programming steps. Such systems have also cost considerably more than the best analogue arrangements, and have consequently been restricted to the very expensive exotica in both consumer and communications applications.

Just as Intersil have revolutionised the concept of the instrument type counter with their ICM7216, OKI Electric of Japan have introduced a family of c.m.o.s. for consumer and communications digital frequency readouts which render all other approaches now quite simply obsolete. For in a 40 -pin l.s.i. the counter gives both a.m. and f.m. frequency readout, plus straight kHz frequency count (no offset); drives an I.c.d. directly with no r.f.i. to the radio in question and all this with a current consumption of 4 mA with the prescaler off. or 15 mA with it on. The unit described here is conceived and designed as a universal readout for long wave through medium wave to a maximum a.m. count of 2.999 MHz , including the popular marine DF band where digital readout is almost essential for reasonable operation in congested waters. The f.m. range operates from about 20 MHz to 200 MHz (with SP8629 prescaler) with a resolution of 100 kHz -e.g. a typical readout is 88.1 MHz . In the direct mode, the display shows kHz from the a.m. input, and 100 s of kHz from the prescaled input.

Purists will complain that 100 kHz is insufficient for f.m. resolution-but the display flicker brought about by further resolution is very tedious, and the small number of stations not on 100 kHz channels makes the exercise rather pointless for the nuisance involved. And not many f.m. receivers would show up too well from the point of view of oscillator drift.

The Circuit

The full circuit (Fig. 1) reveals a remarkably simple overall approach compared to previous endeavours to produce this type of unit. Nearly all functions are carried

on within the MSM5526 i.c.-and the few remaining peripheral components are included as an extra for maximum flexibility. On f.m. the divide-by- 100 prescaler is an obvious essential. but the input sensitivity of both the SP8629 and the MSM5526 is such that, if the unit is wired into many receivers directly, the pre-amps are not required. However, with these pre-amps using the high f BF274 type of transistor, typical sensitivities of $800 \mu \mathrm{~V}$ on ${ }^{1}$ a.m. and $10-15 \mathrm{mV}$ on f.m. can be achieved-thus permitting connection of the digital display with the barest minimum of coupling. In the case of one portable radio tried by the author, it is sufficient simply to couple in via a single-ended wire loosely draped around the relevant oscillator section for either a.m. or f.m. So, even if your set doesn't possess specific local oscillator drive, a small piece of wire poked into the oscillator section will work in almost all applications.

The SP8629 has a very useful 6.3V Zener on-chip, permitting a simple but adequate 5.5 V stabiliser stage to be built with an external pass transistor. The National Semiconductor equivalent DS8629 does not incorporate this facility, and a separate external Zener must be used. The stabiliser stage has an 82Ω resistor in the outputand this is the result of a mistake when assembling the prototype, since 8.2Ω should have been used. However, the whole circuit worked perfectly when switched on-and it was only when a check was made on the current drain, that this error was discovered, since the unit took a sur-

Fig. 1: Complete circuit diagram of the a.m./f.m.
frequency readout based on the OKI MSM5526 i.c.

LCD 3 $\frac{1}{2}$ Digit				LCD 4 Digit			
PIN		PIN		PIN		PIN	
1	Back Plane	40	Back Plane	1	Back Plane	40	Back Plane
2	- Bar	39	\|Bar	2	nc	39	nc
3	$\mathrm{b}_{4}, \mathrm{c}_{4}$	38	Over Range	3	nc	38	nc
4	nc	37	nc	4	nc	37	g_{4}
5	nc	36	nc	5	e_{4}	36	f_{4}
6	nc	35	nc	6	d_{4}	35	a_{4}
7	nc	34	nc	7	c_{4}	34	b_{4}
8	DP3	33	nc	8	DP3	33	nc
9	e_{3}	32	g_{3}	9	e_{3}	32	g_{3}
10	d_{3}	31	f_{3}	10	d_{3}	31	f_{3}
11	C_{3}	30	a_{3}	11	C_{3}	30	a_{3}
12	DP2	29	b_{3}	12	DP2	29	b_{3}
13	e_{2}	28	DP4 (colon)	13	e_{2}	28	DP4 (colon)
14	d_{2}	27	g_{2}	14	d_{2}	27	g_{2}
15	c_{2}	26	f_{2}	15	c_{2}	26	f_{2}
16	DP1	25	a_{2}	16	DP1	25	a_{2}
17	e_{1}	24	b_{2}	17	e,	24	b_{2}
18	d_{1}	23	g_{1}	18	d_{1}	23	g_{1}
19	c_{1}	22	f_{1}	19	c_{1}	22	f_{1}
20	b_{1}	21	a_{1}	20	b_{1}	21	a_{1}

Table 1

Display Select	$\begin{array}{\|c\|} \operatorname{Inp} \\ \mathrm{AM} / \mathrm{FN} \end{array}$	conditions S1S2S3S4	IF offset value
AM	$\begin{aligned} & H \\ & H \end{aligned}$	HHHX L H HX H L HX L L HX H H L X L H L X	$\begin{aligned} & -452 \cdot 5 \mathrm{kHz} \\ & -454.5 \\ & -456 \cdot 5 \\ & -465 \cdot 5 \\ & -467.5 \\ & -469.5 \end{aligned}$
FM	$\begin{aligned} & L \\ & L \end{aligned}$	HHHH LHHH H L H H L LHH HHLH L H L H H L L H L L L H HHHL L H H L H L H L L L H L H H L L L H L L H L L L L L L L	$\begin{aligned} & +10.68 \\ & +10.71 \\ & +10.75 \\ & +10.79 \\ & +10.82 \\ & -10.58 \\ & -10.60 \\ & -10.61 \\ & -10.62 \\ & -10.63 \\ & -10.65 \\ & -10.66 \\ & -10.69 \\ & -10.70 \\ & -10.72 \\ & -10.73 \end{aligned}$
direct	H	H L L X	none
event counter	H	L L L X	impulses
$\begin{aligned} & " \mathrm{H}^{\prime \prime}=\text { open (or Vdd) } \\ & \mathrm{L} \mathrm{\prime} \mathrm{\prime}=\text { ground (Vss) } \\ & " X "=\text { either } \end{aligned}$			

prisingly low 15 mA from a 9 V source. The SP8629 is rated at a typical 30 mA -so investigation with a voltmeter revealed that both prescaler and display i.c. were happily clocking away with only a 3.8 V rail-as a result of the 82Ω mistake. A second unit was built with the same values, and worked just as well-and so it is assumed that most others will too-but if faulty counting is experienced. this 82Ω should be gradually reduced until the circuit settles.

The input to the counter i.c. is common for both a.m. and f.m. count, and the drives from the f.m. prescaler and a.m. pre-amp may be simply paralleled. The output of the SP8629 settles either high or low. depending where the last count cycle left it-and so whilst the outputs were originally paralleled via 10 nF capacitors, the f.m. coupling capacitor has to be reduced to 150 pF -otherwise the a.m. signal can easily be shunted through the prescaler output stage when it has settled to the low state. A value of 150 pF
is still quite enough to pass the very fast edges of the logic output of the prescaler, since counting of the l.s.i. occurs on edges. the actual waveform (which looks quite distorted) is immaterial.

The input to the 8629 must be disabled when reading a.m., and it is important to follow Plessey's application advice, and tie the unused differential input down via a $100 \mathrm{k} \Omega$ resistor to ground, to prevent spurious oscillation occurring under no-input conditions.

The i.f. offsets are all pre-programmed via a diode matrix, set according to Table 1. Just about every standard offset is available, although occasional 500 Hz compromises are called for, e.g. 454.5 kHz not 455 kHz . With an a.m. resolution of 1 kHz , and an average i.f. filter tolerance of 1 kHz , this sort of error is unlikely to be at all significant.

The functional setting is likewise matrix controlled, enabling selection via the simplest of all devices, a ground-to-operate switch. As well as the three modes available on this board. a straightforward event counter is also available for batch counting to a maximum of 2999 units, but this feature is not used in this instance.

Had this been a description of a "discrete" approach c.m.o.s. unit, the circuit description would have just about reached the oscillator stage, but instead, there is nothing more to say!

Construction method

The printed circuit board layout, Figs. 2 and 3, employs a useful technique when using direct drive to l.c.d.s from l.s.i., namely placing the i.c. under the display. This technique saves space-and cuts the only marginal area of possible interference (from the l.c.d. backplane strobe) to a bare minimum. Construction on anything but the properly made p.c.b. is not really feasible. Fixing holes for mounting are provided so that the unit may be fitted directly behind the receiver front panel. The c.m.o.s. MSM5526 is not a particularly fragile device, but the usual care should be taken when soldering, to avoid static damage, caused by poorly earthed soldering implements, or earth leakage currents. The p.c.b. is laid out for either HCl 3 or HC18 style crystals, and since 6.5536 MHz is a standard binary frequency, the supply is not generally a problem.

Great care must be taken when mounting liquid crystal displays, since these are not only costly, but very fragile if pressure is applied unevenly. A socket must be used to raise the l.c.d. above the rest of the components, and either socket strip or a 40 -pin di.i. socket cut in half is suitable for the purpose. Molex i.c. pins are not a good idea since in strips of 20. it is very difficult to accurately locate the pins of the display. The electrical contact is also somewhat more chancy at this sort of length. since a small displacement of one pin can cause a lot of trouble.

The MSM5526 is mounted directly on the board and the liquid crystal display is mounted over it, using i.c. sockets to space it from the p.c.b. (see text)

Fig. 2 (above): Full-size track layout of the p.c.b.

Fig. 3 (above right) : Component layout and details of external connections to the p.c.b. The switch will normally be part of the wave-change switch of the associated receiver. When using a $3 \frac{1}{2}$-digit l.c.d., two 'U''-links of insulated wire should be soldered to the track side of the p.c.b., linking pins 2 and 5/6, and pins 3 and 7 of the display
Fig. 4: Pin-outs of the SP8629 (below) and the MSM5526 (right)

(TTL) ${ }^{\text {cec }}$ 2 1	$\left.\bigcirc{ }^{8}\right] \mathrm{v}_{C C^{1(E C L)}}$	
Output ${ }^{2}$	7 Input (positive edge triggered)	
(TTL) $V_{E E^{2}}{ }^{3}$	6 input(negative	iggered)
(ECL) $\mathrm{EEE}^{1[4}$	5 Zener diode	WKM100

Resistors		
$0.25 W 5 \%$		
82Ω	1	$R 4$
100Ω	2	$R 2,9$
390Ω	1	$R 3$
$1.2 \mathrm{k} \Omega$	2	$\mathrm{R} 5,8$
$100 \mathrm{k} \Omega$	1	R 6
$330 \mathrm{k} \Omega$	2	$\mathrm{R} 1,7$
$1 \mathrm{M} \Omega$	1	R 10

Switch-on and test

Provided the components are located correctly, then there is nothing to go wrong apart from your soldering. Check the very fine tracks for splashes, and clean the board with flux remover if available. Using a currentlimited power supply (for extra security), apply 5 volts at first, gradually turning up to 12 V if the current drain is not excessive-indicating a short circuit somewhere. Switch to the desired input, and place a finger on the relevant preamp input, when some stray counting should occur from the pickup thus provided. Remember, this is very sensitive.

With a suitable radio to hand, place a pickup coil near the oscillator, and feed this to the counter input via r.f. coaxial cable. Something is almost certain to happen, and usually no more trouble than this is necessary. In fact, a single-ended pickup is frequently enough, though not suitable if more than 150 mm long. If you don't know the exact i.f. offset, assume 10.7 MHz high for f.m., and in the f.m. mode, tune to a station of known frequency. If the display reads incorrectly-say 89.2 instead of 89.1 with the tuning indicator zeroed-then the i.f. offset should be adjusted to 10.79 MHZ (the closest to 10.8 MHz available) by diode programming. Many of the finer variations of offset will not be apparent unless you have a very accurately calibrated signal source handy.

To set the internal clock accurately, switch to Direct Count and with a signal generator and reference counter, tune to 999 kHz so that the generator output reads 999.4999 kHz . Tuning to 999.501 should cause the counter to change over to 1000 kHz , and the trimmer capacitor on the crystal input to the MSM5526 may then be adjusted to provide this threshold point. With the trimmer approx 30 per cent enmeshed, the whole unit is sufficiently accurate to be self calibrating anyway, so do not worry too much about these very fine adjustments if you cannot
get access to appropriate equipment. Another way is simply to count the crystal oscillator frequency on a separate counter so that it is trimmed for exactly 6.5536 MHz (take care not to load the crystal-try to use inductive coupling if possible).

To set the a.m. offset, tune to a known frequency with the offset pre-programmed for 469.5 kHz (nearest available to 470 kHz) for most UK- and European-made sets, and 455 kHz for most Japanese sets, and check the error. Simple maths will tell you what to do-e.g. if the station is known to be on 910 kHz , and the counter says 905 when the i.f. is set for 470 kHz , then reprogramme the offset for $465 \cdot 5$ and all will be well.

Applications

Apart from new equipment, there is obviously a large retrofit application for improving existing equipmentsince the accuracy of frequency display has let down many otherwise good designs. Varicap diode designs can occasionally put strains on analogue scale design, since the end-point capacitance can vary widely, although the diodes themselves remain well matched. This display takes away those problems, and does away with the last remaining mechanical headaches of the set designer.

One point which is very important about the MSM5526 is the fact the display is totally static. This means that there is no multiplexing interference-and the only potential source is in the shape of the backplane strobe, which is very, very low power for an l.c.d. Thus without screening, this device can readily be used without problems in any radio environment, from supplies ranging from 8 V to 20 V d.c. (thanks to the regulator on board). So next time the drive cord snaps, forget about a replacement and fit a digitally accurate alternative.

LOGIC PROBE KIT

If you are involved in digital electronics it is essential that you have some means of detecting pulses and logic states. Without this necessary equipment you will be totally in the dark when trying to find out why your latest creation does not work.

There are many logic probes on the market but for the amateur they tend to come a touch on the pricey side. Continental Specialties Corporation, who also make a range of logic probes, have recently introduced a kit for a probe which will detect and display logic levels, pulses and voltage transients.

The kit is complete down to the last piece of wire and even includes a length of solder. All the components appeared to be of good quality and fitted the holes drilled in the glass fibre printed circuit board without any problems.

The instruction manual is very comprehensive and covers not only the building of the probe but also notes on how to use it.

specifications

Input impedance: $300 \mathrm{k} \Omega$

Threshold: Logic 1 (Hi-l.e.d.) 70\% Vcc Logic 0 (Lo-I.e.d.) 30\% Vcc
Detectable pulse width: 300 nanoseconds min.
Input signal frequency: 1.5 MHz max.
Pulse detector: High-speed pulse train or single events (positive or negative transitions), active 0.1 second pulse stretcher
Input voltage: $\pm 50 \mathrm{~V}$ continuous, 120 V a.c. for less than 15 seconds
Power requirements: 5 volt Vcc at 30 mA 15 volt Vcc at 40 mA 25 volts max., with power lead reversal protection
Physical size: $147 \times 25.4 \times 17.8 \mathrm{~mm}$
Weight: 85 grams

Construction proved to be very simple and straightforward, the step-by-step assembly instructions proving easy to follow. Unlike traditional British component placement drawings however this one did not show the copper track pattern of the p.c.b. and no holes are shown so that it is very important to check twice that the components are correctly placed.

No problems were encountered and the probe worked first time, but if you are unfortunate a page is devoted to trouble-shooting and two pages to testing the probe following construction.

The plastics case, which is available separately and has been used for the PW Car Test Probe, is very neat and the two labels supplied with the kit are self-adhesive giving the finished probe a professional look.

The probe is simple to use, requiring the power leads to be clipped to suitable voltage rails on the circuit under test and the probe tip to be held against the test point.

Indication of the status of the point is by a combination of three l.e.d.s which light, or pulse, depending upon the logic state being investigated.

As a simple means of determining logic states this kit is very good value for money.

Dick Ganderton

> SEE NEXT MONTH'S ISSUE OF PRACTICAL WIRELESS FOR DETAILS OF A SPECIAL INTRODUCTORY OFFER FEATURING THIS KIT

Some original circuit ideas provided by our readers. These designs have not been proved by us, and we cannot therefore guarantee their effectiveness. They should at least provide a basis for experimentation.

Why not send us your idea? If it is published, you will receive payment according to its merits. Articles submitted should follow the usual style of PW in circuit diagrams and the use of abbreviations. Diagrams should be clearly drawn on separate sheets, not included in the text.

Each idea should be accompanied by a declaration that it is the original work of the person submitting it, and that it has not been accepted for publication elsewhere.

WORKBENCH AMPLIFIER

Although there are plenty of amplifier i.c.s and modules available, there are many applications where discrete circuitry can hold its own on cost and simplicity. One of these is a battery-powered audio amplifier for workbench use.

The input signal goes via the volume control VR1 to Trl, which is a high-gain voltage amplifier. Its output is applied to the bases of $\operatorname{Tr} 2 / \operatorname{Tr} 3$, the complementary output pair, with R1 providing the necessary standing bias. For reasons of simplicity and cost, no form of temperature compensation has been included.

Two negative feedback paths are included. Resistor R5, which is basically the collector load for Trl, also provides bootstrapping for the output stage. Resistor R2 provides base bias for Trl and also overall negative feedback. Audio quality may be improved at the expense of reduced output by lowering the value of R2. Capacitor C3 decouples the supply, and helps to maintain audio quality when the battery approaches the end of its life.

Transistors $\operatorname{Tr} 2$ and $\operatorname{Tr} 3$ should be purchased as a

matched pair, and must be fitted with heat-sinks-the push-on, finned type should suffice. With no signal applied, the total consumption of the amplifier should be less than 35 mA .

D. L. Jones,
Denbigh,
Clwyd.

TACHOMETER/DWELL METER

This circuit utilises a 555 timer chip in a dual function as a tachometer or dwell meter. In the tachometer mode, the input signal is taken from the car's contact breaker as a square-wave and fed via a capacitor to pin 2 of the timer, realising a high mark/space ratio. The two switched ranges, 0 to 1000 r.p.m. and 0 to 5000 r.p.m., are calibrated by a $20 \mathrm{k} \Omega$ and a $1 \mathrm{k} \Omega$ potentiometer.

In the "dwell" mode, the input capacitor is by-passed, maintaining a square-wave at the input of the device, which means that the output at pin 3 is an inverted version of the input waveform. In the "dwell" mode, only the lower of the two tacho ranges should be switched in.

The circuit requires a minimum supply of 12 V for consistent operation.

> R. J. Jenkins \& M. E. Taylor,
> Knebworth, Herts.

Hey, Good Looking!

Beautiful innit?, but a swish exterior can often be an eye catching cover for some very ordinary "guts", so what's so different about the WINTON?
Well, for a start we have discarded Bi-Polar output devices in favour of the far superior performance of the Hitachi Power MOS-FETS, which until now have only been available in some of the most expensive $\mathrm{Hi}-\mathrm{Fi}$ Amplifiers around, (and we consider $£ 700$ to be expensive with a capital E!). Secondly, our extremely low distortion figures are obtained at FULL RATED OUTPUT with both channels driven, across the entire audio spectrum.

Further, at these power levels 2 nd and 3rd order intermodulation components are typically less than 0.005\% (See the March issue of P.W. for the full spec' and a few shots from the Spectrum Analyser.) Whilst we freely admit that ownership of a Winton will not prevent your hair from falling out, nor warts from growing on your nose, you will feel a nice sense of achievement when the job is complete, and you will own an Amplifier that will make your mates positively green with envy, until that is they see the light and obtain one of their own.

The WINTON Kit is available in the following form:-

Pack (A) Capacitors \& Fixed Value Resistors
Pack (B) Switches, Potentiometers, Pre-Sets \& Knobs
Price Inc.
V.A.T. \&
carriage.
£21.45
Pack (C) Printed Circuit Board, and Terminal Pins
£13.26
Pack (D) Hardware Pack, consisting of Chassis, Heat Sinks, Cabinet, Screws, Wire, Fuseholders etc., and a Brushed Aluminium Fascia Front Panel.
£32.99
Pack (E) Semiconductors (including HITACHI MOS Power Fets)
Pack (F) Toroidal Mains Transformer
£17.22
Complete Kit of all parts necessary to built the WINTON $\mathbf{£ 1 2 0 . 0 0}$
ORDER WITH COMPLETE CONFIDENCE (Cash with order please) FROM:-
T. \& T. ELECTRONICS. GREEN HAYES, SURLINGHAM LANE, ROCKLAND ST. MARY, NORWICH, NORFOLK. NR14 7HH. PLEASE ALLOW 28 DAYS FOR DELIVERY.

MW Heathkit electronic test equipment course.

Section 1. Analogue and digital meters. Section 2. Oscilloscopes.
Section 3. Frequency generation and measurement.
Section 4. Special measuring instruments.

New
 Heathkit car electrical
 systems course.

Section 1. Electrical principles of the car. Section 2. Starting system fundamentals. Section 3. Car charging systems. Section 4. Accessories and body electrical. Two new self-instruction courses from Heathkit. Based on step-by-step programmed instructions, they let you learn at your own pace in your own home.

Each course is complete and contains audio/ visual material, text, and parts for 'hands on' experiments with the optional Heathkit experimenter trainer. So all you need is a cassette player and the will to learn.

Full details of Heathkit courses are available in the Heathkit catalogue, together with hundreds of kits you can build for yourself - computers, oscilloscopes, transceivers etc.... Send for your copy now.

There are Heathkit Electronics Centres at 233 Tottenham Court Road, London (01-636 7349) and at Bristol Road. Gloucester (0452 29451) Soldering at Bristol Road. Gloucester (0452 29451) FREE FREE

So You Want to Pass the RAE?

A reprint of the complete series, including details of the new examination format being introduced in 1979, is now available. The reprint will cost $85 p$, including 'postage and packing to addresses within the United Kingdom.

Order your copy by completing and returning the coupon, together with your remittance, to IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 0PF. Please ensure that your name and address are clearly legible.

PRACTICAL WIRELESS-Radio Amateur Examination Reprint

Please send your order and remittance to:-

IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF

Please send me . . copies at 85 p each to include postage and packing

I enclose P.O./Cheque No \qquad Value \qquad

Remittance must be crossed postal order or cheque (name and address on back please) and made payable to IPC MAGAZINES LTD

NAME.
(BLOCK LETTERS)
ADDRESS
(BLOCK LETTERS)

Post Code

Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required.
Payable by International Money Order only

Company registered in England. Regd. No. 53626
A subsidiary of Reed International Limited

IDEAS DEPARTMENT

TTL "SNAP" INDICATOR

At switch-on R6 holds the input to gate 1 low, making the output high. This is coupled to inverter gate 2, the output of which is low and is coupled back to pin 4 by a 330 ohm resistor. These gates remain in this state as do gates 3 and 4 and in this condition no l.e.d.s are lit.

Note that the high at pins 6 and 8 are cross-coupled to the inputs of gates 1 and 3 . Suppose $\mathbf{S} 2$ is pressed: pin 4 is connected to a high via R2. As pin 5 is also high the output of gate 1 goes low causing gate 2 to change state at pin 3, which goes high causing l.e.d. 2 to be lit.

Pin 4 is kept high via R4 so that the l.e.d. is "latched" on when $S 2$ is released. Since pin 9 of gate 3 is held low by the output of gate 1 , closing of S I cannot change the state of gate 3 and l.e.d. 1 cannot be lit.

A complementary sequence occurs if SI is pressed first. The power supply must be broken by the reset button to restore the circuit to its original state. Cl decouples the supply lines and prevents random triggering of the l.e.d.s at switch-on.

J. Bloxham,
 Stratford-on-Avon,
 Warwickshire.

PLEASE MENTION PRACTICAL WIRELESS
 WHEN REPLYING TO ADVERTISEMENTS

UNICOM 21

To celebrate the 21 st anniversary of the birth of their company, South Midlands Communications Ltd. are holding an Exposition and Symposium on Communications, called Unicom 21, on 22/23 June at Kempton Manor, Sunbury-on-Thames. Opening hours for the general public are $6 \mathrm{pm}-10 \mathrm{pm}$ on the Friday and 10am-8pm on the Saturday. Kempton Manor is adjacent to the M3 and A305, alongside Kempton Park Race Course.

There will be demonstrations of equipment by SMC. Strumech. Ascot Antennas and Microwave Modules, with experts on hand to answer all your questions. Practical Wireless will be there too, showing a selection of recent projects for the radio enthusiast.

The programme of lectures includes such subjects as: "A Single-chip Frequency Synthesiser". "FM vs SSB Bandwidths", "WARC 79", "Direct Conversion Receivers" and "Working more DX".

There will be a talk-in station operating on channel S22 with the special call-sign GB3SMC. Full bar and buffet facilities will be available.

Exhibitions

"The Great British Electronics Bazaar" is to be held at Alexandra Palace between 28 and 30 June 1979. The Bazaar is aimed at attracting the amateur, hobbyist and small professional buyer.

Among the stands booked by both large and small companies and organisations, will be demonstrations of building electronic circuits and home computer systems, to suit virtually everyone.

It is hoped that the event may be televised and application has been made for an amateur radio station with its own callsign.

Free tickets for the exhibition are available (send s.a.e.) from: The Great British Electronics Bazaar, 34-36 High Street, Saffron Walden, Essex CB1O $1 E P$.

Computer shop

Since Friday, 16 March 1979, London's West End shoppers have been able to walk up to a counter and say "Can I have a computer, please?" And
that's precisely what they can do at The Byte Shop, located in the capital's home electronics heartland, Tottenham Court Road.

At The Byte Shop, the fascinating world of computers is only a counter's width from the man in the street. For the first time, businessmen in Central London will be able to nip out at lunchtime for an impromptu demonstmation. Everything needed to computerise a small to medium sized business is now on show-from the smaller self-contained systems costing a few hundred pounds to the most professionally-configured systems incorporating external printers and visual display units priced up to around £ 15000 .

The Byte Shop also offers a broad selection of advanced computer games, with shoppers being invited to pit their skills against chess, poker and backgammon programs compiled by experts. Further information from: The Byte Shop, 48 Tottenham Court Road, London WC1.

Cartoon computer

A unique computerised system to expedite the production and lower the costs of making animated films is now being used by the Swedish Broadcasting Corporation (SBC) for its television services.

Conventional methods of preparing animated films are enormously timeconsuming. Most of the work is very repetitive since each second of finished film requires from 20 to 25 almost similar drawings.

Under the new system, utilising a Sperry Univac 1100/11 computer, SBC uses a technique developed by Alan Kitching, an animation and data processing specialist, who manages Grove Park Studios in Camberwell.

The technique, known as ANTICS, begins with a basic drawing being prepared and entered into the computer using a special light pen. By means of special command words and codes, direction, speed and position specifications are also fed into the computer. The basic drawing can then be modified in different ways, for example, it can be shrunk, enlarged, panned, skewed, shaken or reversed. It can also be induced to rotate, jump. rock, etc. The system now contains some 40 commands, but Alan Kitching is working on further expansion.

One of the latest concepts within ANTICS is the Skeleton command. In response to a Skeleton command; a part of the basic drawing-such as a human character-will move in a natural manner. Using single skeletal figures the operator can specify a pattern of movements based on key positions. The computer then automatically creates all the intervening pictures needed to complete the overall sequence of movements and the final result appears as a smooth natural motion which matches the position of the skeletal figures entered into the computer.

With the new ANTICS system. sophisticated films that would have taken more than six months to produce by conventional means can be made in a few man-weeks. Sperry Univac, 65 Holborn Viaduct, London EC1.

PRODUCHITON LINES alan martin

Mighty Midget

Toolrange, distributors of the Panavise range, announce availability of the Model 502 Precision Panapress. This small but tough arbor press, less than

178 mm high, is ideal for pressing bearings, forming and assembling small parts, staking rivetting and broaching. Built to stand the rigours of daily production line usage, the press has a rated capacity of 500 psi .

The arbor and table plate are pressure die cast in high strength Zamak Ill alloy. The operating mechanism and operating lever are hardened ground steel, leverage ratio $13 \cdot 25: 1$. Throat depth is 64 mm and vertical capacity is 89 mm . Ram ends are supplied unfinished for custom tooling by the user and the operating ram is fully reversible. A unique feature of the Panapress 502 is the four self lubricating adjustment gibs which give fine directional control of the ram/plate alignment.

The Panapress 502 is available at £36 plus VAT, from Toolrange Ltd., Upton Road, Reading RG3 4JA. Tel: 10734) 29446 or 22245.

Test prod connector

The new Kaffka range of connectors being imported from Germany by West Hyde consists of six types, made in 5 mm or 10 mm spacing. They dovetail together to form a connector of any desired configuration.

They are of high-quality precision manufacture in red Nylon 66. The connector bodies are of zinc-plated brass with leaf springs to avoid conductor damage from the chromed nickel
plated clamping screws.
Behind each screw there is a hole for a 2 mm test prod. Current rating is 13 amps and accept cables of $2.5 \mathrm{~mm}^{2}$, with temperature range of from $-30^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$.

Prices range from 7p to 23 p each and are available from: West Hyde Developments, Unit 9, Park Street Industrial Estate, Aylesbury, Bucks HP20 1ET. Tel: (0296) 20441.

Handy Stripper

Recently introduced into the Carel Components catalogue, is the "Kabifix" DBP cable stripper which can effectively and accurately end or centre strip cables up to 25 mm diameter.

Complete with a blade which easily adjusts to the insulation thickness and swivels automatically, the tool can be snapped closed over the cable, rotated round the insulation or pulled longitudinally to expose the cable.

Durable and easy to operate, this handy stripping tool supplied with an instruction leaflet and plastic pouch, costs $£ 8.25$ plus VAT.

Carel Components, 40-44 The Broadway, Wimbledon, London SW19. Tel: 01-540 7186.

Transformers

A new range of high quality competitively priced transformers, designed to conform generally to BS2214, is now being stocked by Verospeed.

All the transformers are fitted with full shrouds and are varnish protected. Two 120 V windings are provided for the primary and they may be connected in series or parallel for operation at 50 and 60 Hz . Two secondary windings are provided for series or parallel connection. Various output voltages from $0-3 \mathrm{~V}$ to $0-20 \mathrm{~V}$ are available within a range from 1.2 VA to 50 VA .

Further details are contained in the new Verospeed catalogue, available direct from: Verospeed, Barton Park Industrial Estate, Eastleigh, Hampshire SO5 5RR. Tel: (O703) 618525.

Learning to spell

The latest learning aid from Texas, Instruments, known as "Spelling B", uses proven word/picture association techniques to help children progress in spelling regardless of their basic writing skills. Using an alphabetical calculator-type keyboard and display, combined with a picture book containing 264 carefully selected, colourful pictures of familiar objects, "Spelling $B^{\prime \prime}$ is designed to provide an early introduction to word recognition, and also incorporates a series of simple and entertaining word games to improve basic reading skills.

In operation, the "Spelling B " selects and displays a picture number, the child finds the numbered picture in the book, and then spells the name of the picture by pressing the letter keys. As the letters are keyed they appear in the display, and at the end of each word the display signals "right or wrong". If the word is misspelled, the
child is given a second attempt, and if this is wrong the correct answer is displayed. The number of correct answers is displayed as a "score" at the end of each'set of five words.
"Spelling B" is programmed so that one of three different levels of difficulty can be selected. In addition, a variety of pre-spelling activities for younger children plus word games for all ages are available.

Among the games which add fun and variety to "Spelling B" are: "Starts with", a pre-spelling exercise in which the child only has to enter the first letter of the displayed word; "Missing letter", in which a word is selected at random and displayed with letters missing: "Mystery word", a variation of "Hangman" in which players have to guess words one letter at a time; and "Scramble", in which up to five words can be put into a memory in anagram form and recalled for "unscrambling" at a later stage.

The "Spelling B" costs $£ 19.95$ (r.r.p. including VAT), and is available through the usual distributors.

Texas Instruments Ltd., European Consumer Division, Manton Lane, Bedford MK41 7PA.

Portable 'scope

The new Model SB15M lightweight portable oscilloscope from Albol Electronic is claimed by the makers to break all records for cost-effectiveness for a professional/amateur instrument.

Albol say that the bandwidth goes up to 15 MHz within 3 dB limits and nine ranges cover, with an accuracy of $5 \% 10 \mathrm{mV}$ to $20 \mathrm{~V} / \mathrm{cm}$ on the 45 by 60 mm measuring area of the c.r.t. Input impedance is $1 \mathrm{M} \Omega \pm 3 \%$ in parallel with 30 pF , and the maximum input voltage is 400 V .

The timebase can be freely running or triggered, and is displayed on 19 calibrated ranges from $0.5 \mathrm{~s} / \mathrm{cm}$ to $0.5 \mu \mathrm{~s} / \mathrm{cm}$. Synchronisation can be either internal or external, with the a.c. mode giving 20 Hz to 1 MHz , and the h.f. mode 1 to 15 MHz . Trigger sensitivity is said to be 0.5 cm of the display on "internal", or 0.5 V $p-p$ on "external".

Bandwidth of the X amplifier, within 3 dB , goes from d.c. to 3 MHz , with an input impedance of $1 \mathrm{M} \Omega$ in parallel with 45 pF . The X deflection coefficient varies from 0.3 to $1.5 \mathrm{~V} / \mathrm{cm}$. An attractive feature of this truly portable scope is that it can operate from 220 to 240 V mains (using the optional adaptor) at 50 to 400 Hz , with a power consumption of 40 VA , or else from internal 1.5 V cells giving 12 V d.c. (rated then at 27 W).

The width of the SB 15 M is 150 mm , depth 340 mm , and height 280 mm . and it weighs only $7 \cdot 6 \mathrm{~kg}$. Price is $£ 150$ plus VAT.

Available from: Albol Electronic \& Mechanical Products Ltd., 3 Crown Buildings, Crown Street, London SE5 OJR. Tel: 01-703 2311.

New Sinclair DFM

Latest from Sinclair's new instrument product range, is a high specification, low cost, digital frequency meter, called the PFM200.

Designed to provide the performance of high quality bench-style instruments with the portability of a 158 $\times 76 \times 45 \mathrm{~mm}$ unit in a light (6oz) but rugged case, the PFM200 is priced at only £49.80 plus VAT, which should permit most laboratory engineers, service technicians, students and hobbyists to possess their own personal digital frequency meter.

Its bright, sharp 8-digit display with variable accumulation period gives high resolution coverage from low audio frequencies right up to v.h.f.
without the need for complex range changing and with exceptional sensitivity of 10 mV . Guaranteed range is 20 Hz to 200 MHz , typically higher, with a frequency resolution down to 0.1 Hz . Power is from a 9 V battery or approved a.c. adaptor.

Supplied complete with test leads and probes, protective wallet and operator's manual, optional extras are a.c. adaptors for $117 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V ; de-luxe padded carrying case with lead storage compartment; and a connector pack comprising BNC, coaxial, DIN and phono adaptors plus telescopic aerial for direct signal pick-up from nearby transmitter.

A technical information leaflet on the PFM200 is also available from: Instrument Sales, Sinclair Radionics Ltd., London Road, St Ives, Huntingdon, Cambs PE1 7 4HJ. Tel: (0480) 64646.

The aim of this design was to produce an educational toy capable of teaching rapid number recognition to children of $2 \frac{1}{2}$ years and upwards. The absolute minimum of instruction should be necessary, the idea being that the child learns as he plays, without external influence. The toy should thus be interesting to play with.

To a young child this means: (a) visual stimulationthings should be seen to happen: (b) tactile stimulationthe instrument should respond to touch, to pressurethere should be something to turn, something to switch.

This simple unit has all these facilities and can hold a child's attention for remarkably long periods. It can also double as a single die for use with other games.

General Features

Fig. 1 shows the basic design blocks. A sweptfrequency clock generator feeds the first decade counter. the digit outputs of which are used to drive ten lightemitting diodes (l.e.d.s) arranged in a circle. A second decade counter, fed from the same clock source. drives a single 7 -segment l.e.d. numeric display. As the clock frequency rises from zero, the circular l.e.d. display assumes a rotating motion with a visible acceleration. As the clock frequency then falls to zero. the "flywheel" effects slows and stops at a random position.

The l.e.d.s are labelled 0 to 9 , as are the positions on the manual number selector. which is a rotary switch. Provided that both decade counters are reset to zero initially. they will always remain synchronised. i.e.. if the flywheel stops at position " 4 ", then the 7 -segment outputs will correspond to the figure 4 also.

1 he number selector is wired such that the 7 -segment display is only illuminated when this switch is turned to the same number at which the flywheel has stopped. The normal fixed-frequency clock is used when the device is employed as a die.

Some simple logic is included to make the toy more interactive with the child. and will be described in the appropriate sections.

The Swept-frequency Clock Generator

For this particular application. a manually-initiated frequency sweep was required from zero up to about 100 Hz and back again to zero. The circuit is shown in Fig. 2.

The clock is designed around the ubiquitous NE555V integrated circuit connected in the astable mode.

If the circuit to the left of the dashed line is studied. the timing components R1 and C1 are easily recognised. C1 is
charged up through R1, and ICI will discharge C1 when the voltage at point A reaches 0.67 Vdd . The negativegoing edge corresponding to the discharge of Cl retriggers the cycle and the system becomes astable, the frequency of oscillation being given by:

$$
\mathrm{f}=\frac{1.44}{\mathrm{R} 1 \times \mathrm{Cl}} \mathrm{~Hz}
$$

In the circuit to the right of the dashed line Tr 1 and Tr 2 are connected as a Darlington pair controlled by the touch plate connected to the base of Tr 2 . The quiescent-state voltage at point A is controlled by resistors R1, R2, and R3, the two transistors being effectively open-circuit. A simple Ohm's Law calculation shows that point A is held at 0.65 Vdd and. because IC1 will not discharge C 1 until point A reaches 0.67 Vdd , the clock oscillator is biased off, its output being a logic " 1 " in this condition.

When a finger is applied to the touch plate, charge flows into the electrolytic capacitor, C2. As this charges up, the potential at point B rises. With C2 fully charged (after about one second), both transistors are turned fully on and point B is taken almost to Vdd. Thus the Darlington pair may be regarded as a variable resistance, Rt, between point B and Vdd. this resistance varying from infinity to near zero. As soon as Rt becomes finite. point A is lifted above the threshold value of 0.67 Vdd and oscillation begins.

Fig. 1 : The basic block diagram of the numbers toy

The frequency of oscillation is still given by the above equation, except that R1 must be replaced by the effective instantaneous value of R1, R2 and Rt. In the limit, with Tr 1 and Tr 2 turned fully on, R1 and R2 are virtually in parallel between Vdd and point A, and have an effective resistance of $24.8 \mathrm{k} \Omega$. This gives a theoretical upper frequency limit of:

$$
\mathrm{f}=\frac{1.44}{2.48 \times 10^{4} \times 3.3 \times 10^{-7}}=176 \mathrm{~Hz}
$$

This figure is not attained in practice because Rt never falls completely to zero.

When the finger is removed from the touch plate, C2 discharges slowly through $\operatorname{Tr} 1$ and R3, and Rt increases correspondingly. The frequency of oscillation falls and finally reaches zero when point A falls again below its threshold value. This decay time is of the order of 10 to 15 seconds.

Switching R4 into the biasing network by closing SI holds point A just above threshold and a constantfrequency output of about 15 Hz is produced. The use of this clock frequency is described in a later section.

The touch plate is very sensitive in its action, and this encourages the child to experiment as he watches the effects of his finger's pressure illustrated on the flywheel display.

The Decade Counters

Apart from the NE555V oscillator, this instrument employs c.m.o.s. devices which are relatively cheap and are ideal for this purpose. Fig. 3 shows the circuit diagram of

Fig. 2: Circuit diagram of the swept-frequency clock generator
the first decade counter and the transistor drivers for the 10-l.e.d. flywheel display. The 4017 decade counter is fed from the clock generator described above. In order to drive the flywheel l.e.d.s at 20 mA . ten transistors operating as emitter followers are used. As only one I.e.d. is illuminated at any instant. only one current limiting resistor. R10, is necessary. It will be noted from Fig. 3 and Fig. 4 that the "reset" and "clock inhibit" functions are made common to both decade counters. This is to ensure complete synchronism of the two counters at all times. The combination of C3 and R5 resets both counters to zero when power is first applied.

Fig. 3: The first decade counter and transistor drivers

Switching Logic

The switching logic provided by S3, S4 and IC3 has two important effects, which are now described.

Suppose the flywheel display has stopped at "4". It would be trivial to connect the pole of S4a to the "display enable" pin of the second counter (see Fig. 4) to illuminate the 7 -segment display when $\mathrm{S} 4 a$ is turned to position "4". This operation would not require any numerical knowledge on the part of the child: he would just turn S4 until the 7 -segment display came on. To avoid this, IC $3 a$, b and c are interposed between $\mathrm{S} 4 a$ and the "display enable" pin of the second counter. IC $3 a$ and b form a toggle whose normally-off output is taken to the "display enable" input of the 4026 counter, thus keeping the 7 -segment display off under normal conditions.

Taking pin 8 of IC3 to Vss will turn the toggle on and, with it, the 7 -segment display. Similarly, taking pin 12 of IC3 to Vss will reset the toggle and extinguish the 7 -segment display.

Signals to control the state of the toggle are taken from the pole of S4a. The "on" state of toggle and display is controlled by the position of $\mathrm{S} 4 a$, by the inverter IC $3 c$. and by the push switch S3. If S $4 a$ is turned to position " 4 " to match the flywheel display, then the pole is taken to logic " 1 "; logic " 0 " thus appears at pin 3 of IC 3 .

If S3 is momentarily pressed, the resulting logic " 0 " applied to pin 8 of the toggle will switch both itself and the 7 -segment display on. Thus the child must not only select a number, but must press the CHECK button, S3, to see if his selection was correct.

What happens if the selector switch is turned after the 7 -segment display has been illuminated? If the display were to remain illuminated with the electro-switch now showing a different number, the child would be confused. so provision is made to extinguish the display (a) when the selector switch is turned from the correct position, and (b) when the flywheel is started again. These requirements are simultaneously fulfilled by connecting the pole of S4a via C4 to the "reset" input of the toggle, pin 12.

Suppose the previous procedure has resulted in a "4" being indicated by both the displays. If $\mathrm{S} 4 a$ is turned away from " 4 " the pole is taken from logic " 1 " to logic " 0 ". and the negative-going edge so produced is passed by C4 to reset the toggle and extinguish the display.

Similarly, if the flywheel is started, the negative-going edge produced as l.e.d. " 4 " goes out resets the toggle via C 4 and the 7 -segment display is extinguished.

Thus, in normal use, there can never be any ambiguity between the numbers on the displays and the number set on the selector switch.

The presence of R 7 from the pole of $\mathrm{S} 4 a$ to Vss is worth

Fig. 4: The second decade counter
nothing. There is no reason why the digit positions on the S4a wafer should not go direct to the digit outputs of the 4017 counter: in this case R7 would be unnecessary. However, there is a very good practical reason why this is not done. The ten l.e.d.s and the selector switch S 4 are mounted on the front panel. The integrated circuits and transistors are on a single circuit board mounted on the base of the metal box. Thus there are ten flexible leads from the emitters of $\operatorname{Tr} 3-\operatorname{Tr} 12$ to the l.e.d.s on the front panel. Ten more flexible leads would be needed from the S4a wafer to the digit outputs of IC2, but these leads can be eliminated by simple wiring to $\mathrm{S} 4 a$ from the anodes of the l.e.d.s, which are on the same panel. When this is done, a pull-down resistor, R7, to Vss is needed for the inputs of IC $3 c$ to keep them at logic " 0 " except when a logic " 1 " is fed to the pole of S4a from the flywheel display.

Fig. 5: Driver circuits for the second decade counter

The second decade counter and its associated circuitry are shown in Figs. 4 and 5. The counter is a Type 4026 c.m.o.s. device which has outputs for a 7 -segment display. These figures require very little explanation. The 4026 counter operates in parallel with the 4017 counter, and the 7 -segment common-cathode display is fed by seven segment driver stages, $\operatorname{Tr} 13-\operatorname{Tr} 19$, and one digit driver stage, Tr20-Tr21. The current-limiting resistors, R19-R25, give segment currents of 19 mA . To. "enable" the display, the digit driver Darlington pair, $\operatorname{Tr} 20-\operatorname{Tr} 21$, is switched on by a logic " 1 " from pin 4 of the 4026 counter, thus providing a low-resistance path from the display cathodes to Vss. Tr 21 must be capable of carrying $7 \times 19=133 \mathrm{~mA}$, and the Darlington configuration has been used so that $\operatorname{Tr} 21$ can be very conservatively rated, ensuring high reliability.

Provision has been made to illuminate the 7 -segment display while the flywheel is running. This adds to the visual appeal of the instrument before the child is ready to tackle number recognition and matching. This is the function of position " C " (continuous display) on the selector switch S4. When "C" is selected and S3 pressed, the display will remain on throughout the flywheel cycle.

A final word now about the use of the instrument as a die. On the "DIE" position of the selector switch, S4a provides a constant logic " 1 " on its pole (as in the "C" position), and when S 3 is pressed the 7 -segment display is
constantly illuminated. $\mathrm{S} 4 b$ comes into operation at this point and connects the " 7 " digit of the l.e.d. flywheel to the "reset" pins of both counters. Thus both of the displays count repetitively from " 0 " to " 6 " when the clock runs. The swept-frequency clock can be used for this, but it has been found that the use of a constant 15 Hz clock (selected by S 1) is more satisfactory, in that the procedure is less involved for the child.

To "throw" the die, all that the child does is press S2: both displays stop immediately, showing a number between " 1 " and " 6 ". On releasing $S 2$, counting begins again. This function utilises the "clock inhibit" pins of both counters. When these pins are taken to logic "1", counting will cease, even though the clock is still running. The last NaND gate of IC3 is used for a rather devious purpose in this mode. Both IC2 and IC4 are counting from " 0 " to " 6 " yet it would clearly be incorrect to allow the die to stop at " 0 ".

Instead, the die is slightly "weighted" such that it can never be stopped at " 0 "! The probability of throwing a given number on a die is $1: 6$. On this die, the probability of throwing a number between 2 and 6 is $1: 7$ and the probability of throwing a 1 is $2: 7$.

In use by young children, or even unsuspecting adults, this would never be noticed. To prevent a " 0 " being thrown, the signal to inhibit the clock is taken from the " 0 " digit output (pin 3) of the 4017 counter. If, at the moment $S 2$ is pressed, a number from " 1 " to " 6 " is being displayed, pin 3 will be at logic " 0 ". IC $3 d$ inverts this to logic " 1 " and inhibits the clock. However, if " 0 " is being displayed when $S 2$ is pressed, pin 3 is at logic " 1 " and the logic "0" produced by IC $3 d$ will not inhibit the clock. Instead, it waits for the next clock pulse which increments both counters to the digit " 1 ", at which instant pin 3 of the 4017 goes to logic " 0 " and IC $3 d$ then inhibits the clock with logic " 1 " at its output.

Power Supply

A single-polarity, stabilised 5 volt supply is used, employing an integrated circuit regulator. Stabilisation is to be preferred here, because the current taken from the supply varies between about 23 mA with only the flywheel display on, to about 160 mA with the 7 -segment display showing an " 8 ". Fig. 6 shows the circuit used. The regulator is mounted on the metal box to dissipate the small amount of heat generated. The use of 15 V d.c. supply for the regulator may seem excessive. In fact, this supply rail will drop to 12 volts on full load and, as the regulator needs a supply of at least 8.5 volts, the supply is not too conservatively rated. A transformer with a $9-0-9$ volt secondary could be used, provided that the supply rail for the regulator did not fall below 9 volts on full load.

components

Resistors
$\frac{1}{4}$ W 5\% carbon film

82Ω	7	$R 19,20,21,22,23,24,25$
100Ω	1	$R 10$
$4.7 \mathrm{k} \Omega$	1	R3
$1.5 \mathrm{k} \Omega$	7	R12, $13,14,15,16,17,18$
$33 \mathrm{k} \Omega$	1	$R 11$
$39 \mathrm{k} \Omega$	1	$R 1$
$68 \mathrm{k} \Omega$	1	$R 2$
$100 \mathrm{k} \Omega$	2	$R 4,7$
$560 \mathrm{k} \Omega$	1	$R 26$
$1 \mathrm{M} \Omega$	3	$R 6,8,9$
$2.2 \mathrm{M} \Omega$	1	$R 5$

Capacitors
Electrolytic

$2 \mu \mathrm{~F} 6 \mathrm{~V}$	1	C 2
$25 \mu \mathrm{~F} 6 \mathrm{~V}$	1	C 6
$4700 \mu \mathrm{~F} 25 \mathrm{~V}$	1	C 5

Polycarbonate or polyester

$2 \cdot 2 n F$	1	C4
$22 n F$	1	C3
$0.33 \mu F$	1	C1

Semiconductors
Diodes

1 N4001	2	D11, 12
LED	10	D1,2,3,4,5,6,7,

Transistors
BC108C

BC109C
BFY52
Integrated circuits
MVR5 regulator
NE555V
4011
4017
4026 IC4
Switches

s.p.s.t.	1	S1
Push to make	2	S2,3
2p $12 w$ rotary	1	S4
s.p.d.t. slide	1	S5

Miscellaneous

12-0-12V 200mA transformer T1 (1); 12V panel lamp (1); 7 -segment red l.e.d. display, common cathode MAN74 (1); Veroboard (see text), case.

Constructional Notes

Apart from the power supply, displays and switches, the entire circuit was constructed on a single piece of Veroboard measuring $95 \times 63 \mathrm{~mm}$. The layout is not important, so no details are given, but it is advisable to take all Vss leads to a common point.

In general, this precaution is unnecessary, but in this circuit the emitter connection of the digit driver $\operatorname{Tr} 21$

Fig. 6: Power Supply

This unit was developed after I was asked by a friend to build a device with which he could turn a light on by clapping his hands.

Obviously this could be done by using a simple sound operated switch comprising a microphone, audio amplifier and trigger circuit, but such a simple circuit would respond to any sound of sufficient volume. Clearly something more sophisticated was required.

After a number of tests had been made. it was found that satisfactory operation could be obtained by making the circuit respond only after receiving two sounds with a fixed time interval between them of around one second. This achieves a good compromise between simplicity, spurious operation from background noise and ease of use. The human brain is very bad at estimating short time intervals and a sequence of more than two sounds becomes impossible to generate with any accuracy. The circuit also incorporates a filter and a level trigger so only sounds of the correct pitch and sufficient volume will be detected.

Circuit Operation

ICI and associated components amplify the sound picked up from the microphone and include rough frequency filtering. VR1 is a gain control and VR2 adjusts the d.c. level of the output from this stage. This is fed to a Schmitt trigger comprising Tr 1 and Tr 2 and also has a time delay (C4. R2) to prevent multiple triggering. The components following ($\operatorname{Tr} 3-\operatorname{Tr} 5$) form a driver stage for the logic circuit, and the l.e.d. D2 indicates when a sound has been detected. The circuit gives a logical ' 0 ' on receiving an input above a preset threshold set by VR2.

The output from this stage is first fed to a monostable comprising Gl and associated components which in turn triggers two more monostables G3, G4 and associated components. Monostable Gl has a period of about 5 seconds and is included to prevent the other two monostables re-triggering before the circuit has finished its cycle. G3 has a period of about 1 second and G4 about 3 seconds.

The circuit comprising G6-G11 and FF1 looks for the state in which, after a pulse has triggered the monostables, a second pulse arrives during the period when G3 has turned off again and G4 is still on, i.e. 1-3 seconds after the first pulse. When this happens a logical ' 1 ' is sent to FF2 which then changes state and opens or closes the relay via $\operatorname{Tr} 9$ and $\operatorname{Tr} 10$. If the second pulse arrives before or after
the allowed period it is ignored and will also work the latch G9. G11 to make the circuit ignore all further inputs until G1 has reset. Thus on receiving two sounds with a time interval of about 1 second between them the circuit will operate the relay, turning the load circuit on or off.

Construction

Construction is simplified by the use of printed circuit boards. Start by soldering in the smallest components. i.e.. resistors and diodes and add the tallest components (capacitors and transistors) last. The c.m.o.s, integrated circuits (IC2-IC5) should be connected using i.c. sockets, installing them in after all the other components have been soldered. Standard c.m.o.s. handling precautions should be used. Sockets should also be used for the other integrated circuits. Take great care to connect all components such as diodes, transistors, i.c.s and electrolytics the correct way round as incorrect connection can cause a large range of puzzling faults.

At this point. something should be said about the microphone and the mains transformer. The microphone used is a hign impedance balanced armature earpiece which is better than a crystal microphone in this application. There is also space on the circuit board for putting a resistor in series with C2 to adjust the low frequency characteristics ($10-100 \Omega$).

Fig. 1: Circuit diagram of the selective sound operated switch

The mains transformer is a $12-0-12 \mathrm{~V}$ type designed to supply up to 100 mA d.c. from a full-wave rectifier. Most of the current is drawn by the relay $(60-80 \mathrm{~mA})$ with the rest taking less than 20 mA . Thus if a relay is used which draws more than 80 mA a larger transformer will be needed. A 100 mA fuse is shown connected to the primary of the transformer and this is necessary for safety. If it is found that the fuse blows on switch-on an anti-surge fuse can be fitted. The other fuse supplying the appliance being controlled should be rated according to the relay contacts and mains cable used.

A suitable case for the unit can be made from a plastics Bimbox. When fitting components into the case, it is important to keep all the high voltage components (relay, transformer and fuse holders) well away from the other components so that there is no chance of any live connections touching any other part of the circuit. Holes are drilled in the case for the microphone, the l.e.d. and the gain control VR1. The circuit boards should be positioned within the case such that the presets VR2-VR4 can easily be reached to be adjusted. The boards are held in place using self-adhesive pads. When wiring up between the
circuit boards. it is very important that all the supply rails are connected up correctly because the c.m.o.s. chips can be damaged if an input is fed to them before the power rails are connected.

The components and p.c.b.s are fitted into a plastics Bimbox. The two p.c.b.s are attached to the box base and lid using self-adhesive foam pads

Setting Up

First set VR3 and VR4 midway along their tracks. Set the gain control VRI to minimum. It should be found that as VR2 is moved the l.e.d. will light at one end of the track and be extinguished at the other. Adjust VR2 until it is just extinguished. Then turn the gain control VR 1 up a little. It should now be found that any loud sound near the microphone will cause the l.e.d. to flash on for just under a second. If it stays on or does not come on at all then adjust VR2 until the response is satisfactory. Next. connect a voltmeter between the 0 V rail and pin 10 of IC3 (marked TP in the diagram) or, if no meter is available, disconnect R25 from IC5 and make a temporary connection from that end of the resistor to pin 10 of IC3.

It should now be found that if, after at least 5 seconds of silence, a sound is made near the unit loud enough to make the l.e.d. Hash, then a short pulse of approximately +7 V will be indicated on the meter, or the relay will close momentarily about one second after the sound. If this does not happen adjust VR3 and VR4 until it does. This is the period during which the device is sensitive and it will switch the load if a second sound is made during this period. Adjust VR3 and VR4 until the time period is satisfactory. Note. however. that if the values of the presets are made too low then the monostables will stop working. so that if a satisfactory time period cannot be achieved then it may be necessary to change C8 or C12. Do not make the "sensitive" period too short or it will be found very difficult to estimate the required time interval.

After R 25 has been replaced in its correct position and the lid has been attached. then the unit is ready for use.
components

Resistors $\frac{1}{4} W 5 \%$		
680Ω	1	$R 9$
$1 \cdot 2 \mathrm{k} \Omega$	2	$R 6, R 8$
$8 \cdot 2 \mathrm{k} \Omega$	6	$R 12,16,19,20,23,26$
$12 \mathrm{k} \Omega$	1	$R 3$
$18 \mathrm{k} \Omega$	3	$R 14,18,22$
$27 \mathrm{k} \Omega$	1	$R 7$
$47 \mathrm{k} \Omega$	1	$R 25$
$120 \mathrm{k} \Omega$	2	$R 2,24$
$150 \mathrm{k} \Omega$	1	$R 4$
$330 \mathrm{k} \Omega$	2	$R 5,15$
$1 \mathrm{M} \Omega$	4	$R 11,13,17,21$
$1.5 \mathrm{M} \Omega$	1	$R 1$
$\frac{1}{2} W 5 \%$		
330Ω	1	$R 10$

Potentiometers

Horiz. miniature preset		
$10 \mathrm{k} \Omega$ Lin.	1	VR2
$220 \mathrm{k} \Omega$ Lin.	2	VR3, 4
$\left.\begin{array}{ccc}\frac{1}{4} \text { inch shaft } \\ 47 \mathrm{k} \Omega & & \\ & & \\ & & \end{array}\right)$		

Capacitors
Disc ceramic

47pF	1	C3
10 nF	3	C7, 9, 11
Polyester		
$0.47 \mu \mathrm{~F}$	1	C2
Electrolytic		
$10 \mu \mathrm{~F} 25 \mathrm{~V}$	5	C1, 4, 8, 10, 12
$64 \mu \mathrm{~F} 16 \mathrm{~V}$	1	C5
$1000 \mu \mathrm{~F} 16 \mathrm{~V}$	1	C6

Semiconductors
Diodes

1N4001	2	D4,5
1N914	5	D1,6, 7, 8,9
Red I.e.d.	1	D2
BZY88 C6V8	1	D3

Transistors BC168 $6 \quad \operatorname{Tr} 1,2,4,6,7,8$ BC2 $12 \quad 2$ Tr3. 5 2 TX300 2 Tr9, 10
Integrated circuits

741	1	IC1
4000	1	IC3
4001	1	IC2
4011	1	IC4
4013	1	IC5

Miscellaneous

Bimbox (190 $\times 110 \times 60 \mathrm{~mm}$ BIM 2006/16): Mains transformer 12-0-12V 100 mA (1): Relay 12 V 80 mA max. 7A 240 V d.p.c.o. (1); Fuse holder (2): Fuses 100 mA and 5A; Balanced armature earpiece (see text) (1); Printed circuit board (2 in set); Sockets, 14 pin d.i.I. (4); 8 pin di.i.l (1); Knob (1); Mains cable, socket and cable clamps.

Fig. 2: The copper track pattern and component placement drawing for Board $\mathbf{2}$ shown full size.

Using the Switch

Adjust VRI so that the l.e.d. will not flash from background noise in the room, but will reliably respond to a hand clap. The l.e.d. will be found very useful for indicating whether the unit has "heard" a sound or not. when setting the sensitivity.

Although originally intended purely as a gimmick. the device has been found to be extremely reliable and may well have more practical uses. The prototype was left in an average sitting room for a week without triggering spuriously. but would immediately respond on hearing the correct sound sequence.

There could be practical uses where it is necessary to operate equipment remotely, possibly by a disabled
person. or in other cases where it is not possible to operate a switch directly.

Fault-finding

Once the design had been finalised. it was found that the units could be relied upon to work correctly immediately they had been assembled and adjusted. Most faults are likely to be caused by wire links in the wrong places and diodes or transistors the wrong way round. Remember that the circuit uses both npn and pnp transistors. A puzzling intermittent fault in one unit was traced to C6 being open-circuit. This resulted in the supply rails

So You Want to Pass the RAE?

For details and coupon see page 30

Fig. 3: The copper track pattern and component placement drawing for Board 1 shown full size
carrying unsmoothed a.c. and played havoc with the logic functions.

Provided that the l.e.d. flashes in response to sounds then faults are best traced by first checking the outputs of the monostables (pins 4, 10. 11 of IC2) and then following the voltage levels through the rest of the circuit. Remember that the monostables give an inverse output, i.e. " 1 " in the quiescent state and " 0 " when active, and remember also that the circuit takes 5 seconds to complete its cycle and if it receives an input before G1 has reset it will ignore it.

If the l.e.d. does not light up then first check IC I. The voltage on pin 6 (output) should equal that on the wiper of VR2. except at extreme settings of VR2. The Schmitt trigger. Tr 1 . Tr 2 should turn on when the voltage on Tr 1 base exceeds about 5 V , turning on the I.e.d. via $\mathrm{Tr} 3-\mathrm{Tr} 5$. and should turn off sharply as the voltage is lowered. These functions can easily be checked with a multimeter and should show up the location of any fault. However. provided the unit is constructed carefully, there is no reason why it should not work first time.

Automatic Intercom

Unwanted salesman? Tired after a hard dex? PWig Automatic Intercom allows you to answer catters frem your armchair without even pressing of button, while the front door remains securely bolted, D(giral and analogue techniques are combined in this comprehensive. Weteasy-to-install aid to basic security for the old, infirm or just plain lazy.

Ultrasonic

Remote Control
A short introduction the use uf ultrasonics for cordless on/off control of domestic appliznces ptc. The article suggests some suthable circuits baseq en i.c.s intended for use in othe fields, alowing the constuction of very small
 transmitters and receivers

Aerial designs can be tested and developed easily by buitling seate models of the proposed systems and making meanuremente uth.f. This article describes how a surplus marine redar display can be adapted to plot the resulting polser diagrains automatically

Rlus SPECIAL PRODUCT REPORT on the LOWE SRX-30 Receiver

This low-power a.m. transmitter design illustrates the use of power f.e.t. devices-in particular, the VN66AF recently introduced by Siliconix Ltd.-and takes full advantage of modern semiconductor technology. The unit is particularly suitable for use within the 160 -metre band. although operation at higher frequencies is quite possible.

Design Considerations

The Author has carried out a great number of experiments with low-power transmitter circuitry using bipolar (i.e. "conventional") devices over the last few years. Some degree of success was achieved in later designs, using the now-defunct BD123. but en route many pitfalls for the unwary were uncovered.

Technically. however. the bipolar device fell down on several counts. notably:

1. High drive power was required: typically 10%, even at low frequencies.
2. Difficulty was experienced in achieving really linear amplitude modulation, even when modulating both the driver and p.a. stages. Modulation of the p.a. only, by swinging the supply rail, was unsuccessful. Modulation of the driver as well was essential and far more modulator power was required.
3. Problems were encountered in achieving stability in the transmitter r.f. strip. Often appreciable "slugging" was called for to prevent h.f. or v.h.f. parasitics.
4. Modulation excursions also tended to introduce instability. often producing undesirable steps of modulation non-linearity in the modulated r.f. carrier envelope.
5. It proved remarkably easy to destroy the p.a. transistor(s) if instability occurred or the transmitter was mis-tuned.

These difficulties led the Author to the conclusion that solid-state transmitter design could be much simplified if a
device existed which exhibited the characteristics of a thermionic valve. In particular, low drive power, modulation linearity and stability were desirable in addition to the ability to operate from low voltages. In other words. a high-power f.e.t. was needed.

During 1978, Siliconix Ltd. produced the VN66AF and samples were supplied to further the Author's experiments. The ultimate results are incorporated into the transmitter featured in this article. Whilst the published form is for 160 -metres, the basic circuit could be used to produce a transmitter capable of at least 10 MHz and possibly more.

Circuit Description

The transmitter employs a crystal oscillator which incorporates a twice-frequency, parallel-resonant crystal, with a TIS88A f.e.t. as the oscillator transistor (Care with substitutes! The circuit may fail to oscillate with devices requiring different d.c. conditions.). This stage provides sufficient drive to switch $\operatorname{Tr} 2$, a 2 N 2369 A switching transistor which provides a twice-frequency 5 volt peak-topeak square-wave to drive IC 1. This i.c. is a 7473 flip-flop wired to divide-by-two. thus producing the output frequency " f ".

The 7473 limits the " $2 f$ " crystal to around 6 MHz (therefore the output frequency "f" to 3 MHz) but this may be extended by substituting a Schottky 7473 (i.e. a 74S73).

From ICl the signal is passed to Tr 3 , another 2N2369A switching transistor, to present 12 volts peak-to-peak square-wave drive to the output devices. With $\operatorname{Tr} 3$ looking into 100Ω the two VN66AF p.a. devices are easily driven. Their input capacity of 50 pF each is the prime limiting factor with untuned drive, although a BFY50 could be substituted for $\operatorname{Tr} 3$ and R11 reduced in value to increase the operating frequency or drive more than two p.a. devices. A power output of 6 watts is typical for a 10 watt d.c. input.

A simple "constant K " type low-pass filter is provided. together with transformer matching to transfer the output power effectively into a 50Ω load and remove harmonics.

Note that since a 1:1 mark-space square-wave drive is derived for the p.a.. optimum efficiency with minimal second-harmonic radiation in the unfiltered output is assured, with the filter biting hard at the third and subsequent harmonics.

Filter values shown are for a cut-off frequency of $2500 \mathrm{kH2}$, but others may be calculated from the expressions:

$$
\begin{aligned}
\mathrm{C} & =\frac{1}{\mathrm{f}_{c} \pi \mathrm{z}} \quad \text { and } \quad \mathrm{L}=\mathrm{z}^{2} \mathrm{C} \\
\text { where } \mathrm{z} & =50 \Omega \quad \text { and } \quad \mathrm{L}=\mathrm{L} 1=\mathrm{L} 2=\mathrm{L} 3 \\
\mathrm{C} & =\mathrm{C}_{10}=\mathrm{C}_{11} \quad \text { and } \quad C_{9}=C_{12}=\frac{C}{2}
\end{aligned}
$$

f_{c} is the cut-off frequency.
The modulator circuit is merely a modified version of the Author`s hi-fi amplifier design and should not present any problems. A speaker matching transformer rated at 10 watts (T2) is used to transfer the modulator power to the p.a. This should have a core area of around 25 mm square and a winding resistance between the 0 and 16Ω taps of not more than 1Ω. The modulator input sensitivity is in the order of 100 mV , so a pre-amplifier will be necessary for microphone level signals.

The r.f. matching transformer Tl was wound on a Mullard binocular "balun" ferrite block, measuring approximately $25 \times 20 \times 8 \mathrm{~mm}$ and consists of three turns on the primary (transistor) side and nine on the secondary (filter) side. Experiments using these baluns showed a power-handling capability of 100 watts peak! Substitutes should have the following characteristics:

1. Suitable for the intended operating frequency.
2. 1:3 turns ratio for 6 watts, 50Ω output with wire gauge as large as possible.
3. 50Ω secondary reactance to be $\gg 50 \Omega$ at operating frequency
4. Peak power rating of at least 20 watts.

If a suitable ferrite block cannot be found. three Mullard FX2249 blocks can be used.

No Adjustments Needed!

It will be apparent from the r.f. circuitry that no tuning is required on the r.f. strip, which should work from switch-on. Trimmer VCl is used for very fine frequency adjustment and could well be omitted, replacing it with a fixed capacitor of 18 pF if the facility is not required. The pre-set potentiometer VR2 should be rotated until Trll and $\operatorname{Tr} 12$ just start to conduct-say 50 mA of standing current.

The VMOS VN66AF devices performed very impressively throughout the development of the prototype transmitters. Only very low drive was necessary and very linear upward and downward modulation was produced. In every respect, the devices performed entirely to specification and simply shut down if an unacceptably-low load was connected.

Possibly it will be found that the modulator output is not quite sufficient to achieve 100% upward modulation but with a suitable transformer the quality is very good indeed and certainly far superior to so-called "communications quality". which covers a multitude of sins!

Construction

The construction techniques are clearly seen in the photograph, most of the components being soldered and mounted on one side of a double-sided "earth-plane" printed-circuit board, measuring $160 \times 100 \mathrm{~mm}$. The top of the board. the component side that is, forms an earthplane and the copper should be cleared (using a drill and an outsized bit) around the larger holes indicated in Fig. 2. The remainder form earth-plane connections. Details of the p.c.b. are given in Fig. 2 and the component locations are shown in Fig. 3.

The modulation transformer T 2 is mounted on the bottom panel of the West Hyde Developments instrument case, as are Tr 4 and 5 (on insulated washers). Transistors Trl1 and 12 are mounted on the extrusion as shown in the photograph. (In fact. the VMOS devices could also be fixed in the same manner, if preferred).

For the prototypes, the p.c.b.s were made by the rather laborious drilling-painting-etching-cleaning techniques, which are more arduous than difficult. However, constructors who wish to purchase ready-made boards will find them available from advertisers.

Components used in the output filter should be exactly as specified-i.e., abnormally high voltage capacitors to take high circulating currents and air-cored inductors to
avoid the saturation which would occur with the smaller type of ferrite cores. Remember that the filter is passing $6-7$ watts of r.f. energy and retaining $1-2$ watts of harmonic energy.

Loss of harmonic power and the bottoming resistance of the power f.e.t.s are the principal causes of efficiency loss in this transmitter. The filter values may be "scaled" for other frequencies.

Fig. 2: The copper track side of the p.c.b. is shown full size at the top with the copper ground plane on the component side below it.

Resistors

$\frac{1}{4}$ watt 5\% Metal Oxide

39Ω	3	R2, 13, 14
47Ω	1	R19
82Ω	1	R22
100Ω	2	R3, 11-see text
150Ω	1	R6
330Ω	3	.R23, 24, 25
470Ω	3	R7, 8, 9
$2 \cdot 2 \mathrm{k} \Omega$	1	R4
$3 \cdot 3 \mathrm{k} \Omega$	1	R5
$4.7 \mathrm{k} \Omega$	3	R12, 20, 21
$5.6 \mathrm{k} \Omega$	1	R10
$10 \mathrm{k} \Omega$	2	R15, 18
$22 \mathrm{k} \Omega$	1	R16
$33 \mathrm{k} \Omega$	1	R17
$100 \mathrm{k} \Omega$	1	R1

Semiconductors

Diodes		
1N914 ${ }^{\text {a }}$	1	D1 1N916 may be used
1N5339B	1	D2 5.6 volt Zener
Transistors		
TIS88A	1	Tr1
2N2369A	2	Tr2, 3
VN66AF	2	Tr4, 5 (from C. Bowes \& Co.)
2N3250	1	Tr6
BC108	1	Tr7
BFY50	2	Tr8, 9
BFX88	1	Tr10
MJE3055	1	Tr11
MJE2955	1	Tr12
Integrated circuit		
SN7473N	1	IC1 SN74S73N for higher
		frequency operation

Crystal

XL1 Twice-frequency HC6U type, parallel-resonant

Inductors

Calculated filter values for 160 metres:
$6 \cdot 25 \mu \mathrm{H}, \mathrm{fc}=2.5 \mathrm{MHz}$.

$$
\text { L1, 2, } 3
$$

38 turns of 26 s.w.g. enamelled copper wire on 25 mm long 8 mm diameter former, air cored.

Transformers

T1 20 watt rating r.f. transformer (peak). Turns ratio $1: 3$, secondary reactance $\gg 50 \Omega$, wound on suitable binocular balun-block ferrite (or 3 type FX2249, see text).
T2 10 watt rating speaker matching transformer with $0-3-8-16 \Omega$ taps. The step-up ratio using 0Ω as common 3Ω as input and 16Ω (or 15Ω) as output is a fraction in excess of 1:2.

Hardware

Insulating kits for VN66AF transistors (2), MJE3055 and MJE2955. Socket for crystal. 50 BNC connector (or SO239). West Hyde Developments instrument case type "Classic" CL2ADK (See advertisers' index). Printed-circuit board.

Setting Up

A very short section this! No tuning is required and the r.f. strip should work straight away. The d.c. input current to the final stage can be monitored and should be about 800 mA when looking into 50Ω. Other loads will affect the p.a. current and in extreme cases may require some sort of matching transformer.

Poor quality "inactive" crystals will reduce the oscil-
lator drive level and this may reach proportions where Tr 2 will not switch and consequently there will be no output.

The quiescent current of the modulator should be set at around 50 mA by means of VR2. If this adjustment is a smooth one all is well, but if the current flicks up to a high value check for amplifier instability. This can be cured by fitting C16. which also helps to keep r.f. from reaching the modulator.

Fig. 3: The compenent placement drawing of the p.c.b. showing the ground plane (component) side of the board.

Aerial Matching

Most low-frequency aerials in amateur use are unlikely to present a good 50Ω match due to their small electrical size. The following techniques, based on a little theory and a lot of experimentation, are suggested.

The transmitter filter is quite tolerant of a mis-matchsay $30-80 \Omega$-but placing a low impedance load on the output may violate the d.c. input power requirements. A really low load will cause the VN66AFs to overheat, but do not worry if this should occur; adequate protection is afforded within the devices. and they will merely shut down.

VFO Operation

Those who develop the transmitter may well wish to add the facility of v.f.o. operation. This is easily achieved by feeding the twice-frequency v.f.o. signal, at 2 volts peak-to-peak, into C 5 , in place of the injection from the crystal oscillator.

No problems with f.m. pulling should be encountered. as the v.f.o. and output frequencies are not the same.

Well, now you know how to build and operate your VMOS transmitter. Incidentally, the VN66AFs should only cost around $£ 1$ each. We hope it brings you enjoyment.

Changesin
 BRORDCRST-BANDLISTERIIIG on Short Waves Jonathan MARKS

If you follow Practical Wireless regularly, then by now you may have put together or bought a short-wave general coverage receiver. Tuning around between 3 and 30 MHz it soon becomes apparent that the spectrum is divided into blocks which are used for various purposes. If you listen between the frequencies $5950-6200,7100-7300$. 9500-9775. 11700-11975. 15100-15450. $17700-17900$. $21450-21750$ and $25600-26100 \mathrm{kHz}$ you'll hear radio programmes originating from broadcasting organisations all over the world. These radio stations are obviously different from the BBC or IBA domestic broadcast channels that the general public are used to, since their target audience is often a whole continent if not the world, rather than a single country or indeed a particular town.

A first flick through any short-wave (usually abbreviated to s.w.) broadcast band may prove disappointing. Many stations seem to be talking in foreign languages and are all crowded together. The secret with this hobby though is slow, careful tuning and frequent checks on "who's around". Most stations put out a magazine-style programme of about half-an-hour's duration in a number of languages, and with English the most common international language there are few stations without an English section. Indeed many s.w. stations broadcast specifically to Great Britain and Ireland every evening with programmes in English.

Station Types

Short-wave broadcasting stations fall into two main categories. The first group of stations aim to provide their listeners with news which is unlikely to hit world headlines (and therefore overseas newspapers and radio bulletins). yet never-the-less would be interesting to people with a

ABOUT THE AUTHOR

Jonathan Marks is a broadcaster/journalist who forwarly worked in Vienna for the Austrian Radio Short Wavl Service, becoming involved with the weekly SWL news programme "Austrian SW Panorama" hroad tist world wide every Sunday. Since returning to the UK, he has continued to make regular contributions to the programme, and is an active DX enthusiast
desire for information on world events and culture. Such stations are usually given a grant by their government, but the journalists and broadcasters are given a free hand to make programmes without government censorship. Hence the programmes give an objective. often critical insight into current affairs in the country, the reaction of its people to world events and a sample of the culture, music and perhaps even language. Stations in this category include Radio Finland, the Swiss Broadcasting Corporation, Radio Canada International, Austrian Radio. Radio Sweden and the BBC World Service.

In the second category are the government-run stations. whose main aim is to put over the political views of the government in power. As a result programming is rather one-sided, promoting only national achievements and churning out masses of statistics. That aside, such stations can be a source of quite fascinating information, and it is often interesting to compare their version of a news story with others, either in your national newspaper or on TV. Such government-run stations include Radio Moscow, Radio Peking. Radio Berlin International. Radio Tirana and the Voice of Vietnam.

A view of the BBC Monitoring Service listening room, as seen from the console

Photo courtesy BBC

Austrian Radio studio centre in Vienna, with s.w. section in foreground

Photo courtesy ORF, Vienna

Computer-controlled switching gear selects appropriate transmitters and aerials to suit propagation conditions

Photo courtesy ORF, Vienna

Continuity suite for Radio Sweden. The cartridge machine on the left provides multi-lingual station identifications
Photo courtesy Arne Skoog. R. Sweden

Reception Reports

While reading PW's "On the Air" feature you may have heard of QSLs and reception reports. These are really terms adopted by the broadcasting stations from the amateur radio world, and go back to the early thirties when many s.w. stations started up. In those days, stations didn't know if they were being heard in the target areas at all, and so in return for a listener sending in a report of reception (containing details of time, date, frequency and quality of reception, plus notes on the programme heard and receiving equipment used), stations would issue a confirmation card or QSL. This consisted of a picture postcard with the time, frequency and date of the transmission heard confirmed in writing on the bac̣k.

Many stations still send out QSLs, but since the thirties there have been a lot of changes on the technical side. Stations now use very much higher power (many in the order of 500 kW), and because of the existence of professional monitoring stations, the larger broadcast stations know exactly how they are being received in target zones. Thus, as far as these stations are concerned, listeners' reception reports are now of marginal interest and the QSL card is more of a public relations venture since the reports are not checked. However, the smaller stations operating in only a few languages (especially religious stations), still need reception reports from listeners. They have only a limited budget and very much lower powered equipment, so regular reports on more than one frequency remain very important.

How can you judge if the station wants your report? The answer is to look in an excellent annual publication called the World Radio and Television Handbook which is available through most bookshops. It lists all known radio organisations in the world and where and when to listen out for them. It will give you a clear idea as to the size of the station, its QSL policy and the exact address to send your report to. In general, the smaller the station the more welcome your reception report, with the exception of small stations in West and Central Africa and South Amercia. Stations in these areas use s.w. for domestic broadcasting
in much the same way as v.h.f. is used in Europe, and distant reception reports are usually QSLd only out of courtesy.

Programmes

All international broadcast stations, large or small, welcome your comments on the programmes heard. Over the last 10 years, programming standards have improved enormously compared with the sixties when most stations were of the "cold war" variety, deadly dull and boring. Then, the hobbyist could do little but send a technical reception report. In 1979, though you'll still find some pure propaganda stations, most stations in the Western world (and even a few in the Eastern Bloc) have woken up to the fact that sheer political fact switches Mr Average SWL off. Instead you can now find interesting, wellpresented cultural material, whether it be tips on hitchhiking across Sweden, eating out in Brussels, getting around in Tokyo or exploring caves in the Alps of Austria. Younger listeners too are catered for, with music programmes which broaden one's outlook on the pop music scene and enable one to get world-wide contacts. It is also important to point out that listeners who provide stations with critical constructive comments are well respected by the editorial staff.

Who listens to these international s.w. programmes? In the UK, s.w. broadcast listening is not widely known. Radios sold today in the average British hi-fi shop have no facilities for s.w. listening, but this is not the case in other parts of Europe. In West Germany or Finland for example, thanks to publicity of SWL clubs and the availability of suitable sets, SWL means more to the man in the street. There are signs though that the UK may be catching up on its European neighbours, as good s.w. receivers become cheaper thanks to integrated circuits, and digital readout eases the tuning problem. Also with more holidays being taken abroad, people like to keep in touch with countries they've seen. In the USA and Canada, s.w. is catching on simply because listeners are fed up with their local station full of commercials, time and weather men and rip-and-read news.

The more factual style of s.w. is also important in the developing countries, where radio is very different to Europe. There is usually no v.h.f. or m.w. service, and s.w. radio is the only means for the government to reach listeners in its own country. Thanks to ionospheric propagation though, signals from other countries (e.g. in Europe) can also reach developing countries. The BBC's African Service for example, thanks to a network of on-the-spot correspondents, provides a very fast, accurate picture of what is going on in Africa for African listeners, often before the national radio station reports it. Of course politics comes into play here. Many stations in the Western world beam vernacular programmes towards a developing country which disagree with what the national government station in that country is saying; something which often worries the latter if it is trying to influence its population.

Local Stations

Most stations in Latin America broadcast on the 60 metre tropical s.w. band $(4750-5060 \mathrm{kHz})$ instead of medium waves, which are full of static due to tropical thunderstorms. Propagation is such that from about midnight until dawn in the UK you can hear these stations broadcasting to their local population: an excellent insight into Latin America with wide opportunities to study the language or simply enjoy the music. Such small stations in the jungle run on a shoe-string and provide amusing stories for those who've visited them.

The official time signal on one station in Peru for example, turned out to be made by a simple audio oscillator triggered by the DJ watching the second hand on an ancient clock. A station in Bolivia came up on the wrong frequency for over a month because the station engineer had plugged in the wrong crystal. Similar stories come from Asia where the national station in Nepal sometimes comes on the air late when they forget to switch on the carrier of the transmitter. All this added together makes for a fascinating hobby.

The secret is to know when and where to look. One of the best ways is to contact one of the UK Broadcast DX Clubs as well as reading "On the Air". In addition stations. themselves put out SWL programmes to assist listeners, for example: Sweden Calling DXers (Radio Sweden), World Radio Club (BBC World Service), Austrian SW Panorama (Austrian Radio), World DX News (AWR, Portugal) and DX Juke Box (Radio Nederland) to name just a few. In addition, an organisation exists in the UK, called the Handicapped Aid Programme, to help introduce this hobby to the disabled. Undoubtedly, broadcast listening can open up new horizons for a person who is house-bound, and no licence is needed.

Finally, if you would like to combine your hobby with a holiday, then you might consider joining a DX camp for a few days. These take place during the summer months in Austria, West Germany, Sweden, Finland and, starting in 1979, in the UK. These meetings offer an excellent chance to try out new equipment and antennas as well as meeting fellow DXers and SWLs. Such camps are often coordinated under the European DX Council which acts as an umbrella organisation for European clubs and has a number of useful publications for broadcast band listeners. Meetings on a local basis also explode the myth that a typical SWL is someone who hibernates in his shack, to find friends all over the world but none in his own country!

CONTINUED NEXT MONTH

HInDL IOIE:

PW Imp 3-Waveband Receiver May 1979
The details of the extra windings to be added to the coils were unfortunately omitted from Figs. 5 and 6.
They are given below.

Additional reaction windings. 38 s.w.g. enamelled copper wire. 8-9, 2 full turns in sense shown above: 1110, 2 full turns in sense shown above. Note that the coils should be on the rod as shown so that the windings are in the same direction from the 'live' ends (1 and 3).

Reduce winding 5-7 to 2 turns. Add 12 turns of $38 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire on top (3-4) in direction shown above.

VISIT THE PW STAND AT

22-23 JUNE

SEE OUR NEWS PAGES FOR FULL DETAILS

THE CHOICE
 IS YOURS! 4

YAESU MUSEN

 General Coverage Communications Receiver FRG-7
0.5-29.9M Hz Coverage with 10 kHz Readout

The FRG-7 is a precision-built all-purpose communications receiver, featuring all solid state construction for long life and high performance. Utilizing the Wadley Loop drift cancellation system, in conjunction with a triple conversion superheterodyne circuit, the FRG-7 boasts high sensitivity along with excellent stability. It provides broadcast listeners with such features as a 3-position tone selector, an RF attenuator, and an automatic noise suppression circuit. For many years of satisfying reception, the FRG-7 is the receiver for you.

YAESU MUSEN
Digital Display Communications Receiver with CPU Digital Clock \& Timer FRG-7000
 7000 保 000, a digital-display general coverage receiver for the discriminating SWL The digital clock and timer, controlled by a CPU (Central Processing Unit) chip, will read ut both local and GMT time, and will control peripheral station equipment such as a tape recorder. Improved SSB selectivity, ease of operation, and rugged construction are yours with the new FRG-7000 from YAESU.

AMATEUR ELECTRONICS UK

S08-514 ALUM ROCK ROAD BIRMINGHAM $8 \quad \underset{\substack{\text { Tel:021-327-1 } \\ \text { Telex: } 337045}}{\substack{\text { 2 }}}$

Meet 'UncleTom'. He's on your wavelength.

Buy by post or call in - or phone your Barclay Card or Access number For speedy delvery on your SRX-30, please send cheque/P.O. made out to Leeds Amateur Radio for $£ 178.00$ which includes $£ 3.00$ carriage and packing. We will deal with your order by return.
Alternatively, call in for a chat at 'Uncle Tom's Cabin'. The shop is just 10 minutes from Leeds City Station, and there's easy parking if you travel by car.
Onstant H.P. for Licenced Amateurs. Extended Credit Terms
Available. Send 50 p for Catalogue and Price List.
LOWE TRIO DISTRIBUTOR

Leeds Amateur Redio are area distributors for Jay Beams, Anterna specialists and Hilomast products.
 Leeds Amateur Radio. 27 Cookridge Street. Leeds 2. West Yorkshire. Tel. Leeds 452657.

FIT A DIGITAL DISPLAY TO YOUR FRG7 OR SRX30.

These units come complete. with only three wires to connect. The FDU7 for the Yeasu FRG7 can be fitted in place of the KHz dial. or can be supplied for external use. (Please state when ordering) fitted in place of the KHz dial. or can be supplied for external ule.
The FDU3 for the SRX 30 is supplied for top of the set use only.
(Full Finting Instructions are supplied.)
(FDU7) for FRG7
@ $£ 44.77$
(FDU3) for SRX30
@£44.77

We also m
We supply these units with single or double current loops for connection to teleprinter To Order. T.T.L./C-MOS Logic Levels and Oscilloscope Outputs are provided. Dimensions ($84 \times 304 \times 210$).
(MB6R Double or single currant) @ 77.96
(MB6R/T Double or single current) @ $£ 83.25$
(All Units are fully Guaranteed. and come complete) (No extras needed)
(All prices inclusive of postage and V.A.T.)
(Pay ment by P.O.. Cheque or Access)
B. BROOKES ELECTRONICS, 69 Leicester Streat. NORWICH NA2 2DZ, ENGLAND. Tel: 0603-24573.

STEPHENS-JAMES LIMITED

COMMUNICATION ENGINEERS
47 WARRINGTON ROAD. LEIGH WN7 3EA
ENGLAND
Telephone (0942) 676790
Everything for the Short Wave Listener.
We stock receivers and listening aids by most of the world's leading manufacturers. Full range of VHF receivers-transceivers. Mobile equipment pre-selectors-filters-antennas. Stabilised power supplies from 2 to 20 Amp . Antennaswitches-converters. Aluminium masts-clamps. Antenna rotators

> Yassu FRG7-FRG7000 Drake SSR-1 © SPR4

Secondhand Equipment Our secondhand equipment stock changes exchanges welcome.
Access-Barclaycard and H.P. facilitues.

```
                                    TRIO
                                    R-300-R820S
                                    Lowe SRX30 Receiver
                                    Antenne Multituners
                                    Designed and manufactured by ourselves.
                                    Over 1000 sold in over 50 countries.
                                    MM2 covers 550Khz 30MMz_ ¢25.00
```

\qquad

There are many types of communications receivers currently available, the choice of which is initially determined by where the user's interests lie. General-coverage receivers, as the name implies, cover a range of frequencies which include broadcast bands, amateur bands and other communications channels, and the Yaesu FRG-7 falls into this category.

On the other hand, if only the amateur bands are required, then receivers for this purpose, offering a greater bandspread over these frequencies, are available.

In both instances, the tuned frequency may be displayed by "conventional" analogue means, or a digital readout. which gives the tuned frequency in illuminated digits.

The FRG-7 tested by PW was already fitted with a digital readout when supplied by SMC Ltd. This is an option which can be retro-fitted to existing FRG-7s and replaces the original dial unit with a $4 \frac{1}{2}$-digit red l.e.d. display. The digital display indicates the kilohertz part of the frequency to which the receiver is tuned, while the megahertz part is set using the original MHz knob in conjunction with the "Lock" indicator lamp and the "Band" switch.

A Preselector control is provided which enables the r.f. circuits to be tuned for optimum signal. This control operates a vertically mounted drum which has four bands marked on it. The Band switch selects the basic range over which the Preselector and MHz controls operate, at the same time illuminating the appropriate preselector band.

The "Lock" indicator lamp is extinguished when the MHz tuning control is correctly set to mid-band.

The main tuning control is fitted with a large diameter handwheel knob which has a large felt washer fitted behind it to provide a measure of friction although by no stretch of the imagination could the control be described as flywheel. The fine tune control is fitted just to the right of the main tuning knob and was positioned too close to the main knob for comfort. It proved to be annoying when, after getting the main control set, operating the fine tune meant that one's thumb or index finger caught the large knob putting the set off tune. The fine control also seemed to be much too coarse in operation making precise adjustment of setting, so
essential for successful s.s.b. listening, very difficult. In fact with an adjustment of $\pm 6 \mathrm{kHz}$ over 180° swing it was only four times better than the main control and it was almost as easy to set the tuning using only the main control and ignoring the fine one. As supplied the fine control operated in reverse to the main control but this was easily altered by slackening the grub screw of the knob and turning ti.e : nab through 180°.

An input attenuator is fitted with a three positior. a...ich labelled DX, NOR, Local. The handbook indicates tha: ..s the DX position a station which is swamping the set ca: نe attenuated to enable a weaker distant station to be recerved. We were not able to verify this as in the Bournemouth area no signals seemed strong enough to overload the front-end. All the attenuator seemed to do was cut down the signal strength, so the set was operated with the attenuator in the normal position.

The Tone switch changes the audio response of the receiver and has three positions, 250 Hz to $3 \mathrm{kHz}, 400 \mathrm{~Hz}$ to 2.5 kHz and 250 Hz to 1.5 kHz .

The other front panel controls fitted are a volume control and the Mode switch. A horizontal scale S-meter is fitted above the tuning dial. The dial lamps can be switched off independently of the main power, which cuts down on current drain from the battery pack when running from batteries.

The audio output, rated at 2 watts, is not hi- fi but is presentable and enables the receiver to be used on the broadcast bands.

A pair of phones can be used instead of the speaker fitted, the phone jack being on the front panel together with the jack for the record output.

The performance of the FRG-7 on a.m. was excellent with a very good single-signal response. However, on s.s.b. and c.w. the set lacked selectivity with the standard filters. Alternative filters are available as optional extras but were not tried in this test.

Three sockets are provided on the rear of the case for aerials. Two of these are push-type terminals for long-wires while the third is a SO239 socket for use with a coaxial type

THE WADLEY LOOP

The FRG-7, in common with many other contemporary communications receivers, employs the Wadley Loop, triple-conversion superheterodyne system. This offers a number of advantages in terms of performance.

A high first intermediate frequency can be used, in this case around 55 MHz , giving good image (secondchannel) rejection. The problems inherent in achieving satisfactory frequency stability in the first oscillator ("MHz Set"), which must operate in the v.h.f. band and tune over a range of some 30 MHz $(55.5-84.5 \mathrm{MHz})$, are overcome by mixing its output in twice, so that any errors due to drift are selfcancelling.

As shown below, this is done by mixing the first oscillator output with a spectrum of harmonics from a stable 1 MHz crystal oscillator. The product at 52.5 MHz is selected by the Band-pass Filter and mixed with the 1 MHz -wide band of signals coming from IF1 to translate them to the band $3-2 \mathrm{MHz}$ for IF2.

The output of IF2 is mixed with the output of the " kHz Set" oscillator in Mixer 3. Because this oscillator operates at a reasonably low frequency, and over a band just one megahertz wide, it is not too difficult to make it adequately stable. The output of Mixer 3 is at 455 kHz , and is passed to a conventional i.f. filter/amplifier chain, detectors and a.f. stages.

Because there are no conventional band switches other than in the r.f. preselector stage, problems due to varying contact resistance in the oscillator circuits (a common cause of instability) are eliminated. Because the whole range of $0 \cdot 5-30 \mathrm{MHz}$ is tuned in bands 1 MHz wide, the tuning resolution of the receiver is the same at 1 MHz as at 30 MHz .

Disadvantages of the system are the large number of mixing stages employed, calling for careful screening and filtering if spurious products are to be kept low, and the need to design efficient filters operating in the v.h.f. band, for IF1 and the Band-pass Filter.

The actual frequencies adopted in the early stages of receivers using the Wadley Loop principle vary between different models; those shown here are as used in the FRG-7. Anyone checking the sums for themselves may wonder about the fact that the " MHz Set" oscillator tunes down to 55.5 MHz , which is within the passband range of IF1, inferring that the receiver will tune down to zero frequency! In fact the lowest band is cut off at just below 0.5 MHz by the response of the r.f. stages, and on that band, the signals passed to IF1 are limited to $55-54.5 \mathrm{MHz}$ and those in IF2 to $2 \cdot 5-2 \mathrm{MHz}$. The " $k H z$ Set" oscillator only tunes over $2955-2455 \mathrm{kHz}$ on this band. In many Wadley Loop receivers, IF2 is fixed-tuned with a 1 MHz passband, but in the FRG-7 it is tuned in step with the " kHz Set" oscillator.

feeder and this is electrically common with the push terminal labelled SW1. This can cause confusion since the coaxial socket is labelled SW1 on the circuit diagram, SW2 on the receiver back panel and to add to the confusion a label immediately above the aerial sockets gives the ranges as SW1, SW2, SW3 and SW4.

The handbook provided with the set was generally good, with an adequate circuit description, a full circuit diagram drawn reasonably well and very legible, a block diagram of the set and a comprehensive components listing.

The operating instructions were generally good but there
were some omissions. The English was very good for a Japanese model with none of the usual funny sentences which seem to occur during translation from the original.

Maintenance and alignment information together with a voltage chart and p.c.b. component layout drawings should help if it is ever necessary to overhaul or repair the set.

As well as the operating manual, the FRG-7 is supplied with two lengths of copper flex for use as aerials, all the necessary plugs and two spare fuses.

The maker's guarantee is for twelve months but does not include the semiconductors.

THE COMMUNICATIONS RECEIVER THAT HAS IT ALL . . .

The finest general-coverage synthesised communications receiver on the market

$£ 210.00$ me.var

Also available from us with special 2 m converter, all for just an extra $\mathbf{£ 1 7 . 0 0}$

$$
\star
$$

Phone for details of current stocks, both new and secondhand
\star

FRG7 Communications Receivers

 Ours are Better...
£210 inc vat* and Securicor delivery

PLUS

FREE: HEADPHONES SHORT WAVEAERIAL SAEFOR COLOUR bRochure ${ }^{-}$Price correct as 8 sh May.
We've been selling this receiver now for more than two years and, as value for money, its pretty difficult to beat. It's been our pleasure to introduce many hundreds of customers to the fascinating hobby of short wave listening and as the first step to obtaining their amateur radio transmitting licence. So why are our FRG7's better? Well. as enthusiasts as well as retailers, we're pretty fussy on the receiver performance and with mass production. limited factory alignment time and a journey of 6,000 or so miles, the untested, boxed item may not be giving its best performance.
That's why every unit we sell is first checked in our well equipped service department for sensitivity, stability and mechanical soundness. In fact, the test equipment we employ for this task alone costs over $£ 5,000$! Once we are satisfied that the receiver performs to specification, we despatch to you via Securicor for safety and speed. Maybe we are a litte more particular than most retailers, but that way we tend to get more satisfied customers.
For those of you with Barclay or Access cards you need simply telephone us, quoting us your number and address, and your receiver will be despatched by return.

The Complete Ham Radio Centre:-

WATERS \& STANTON ELECTRONICS

31, SPA ROAD, HOCKLEY, ESSEX. TEL. 03-704 6835
Opening hours Mon-Sat. 9 a.m.-5.30 p.m. Exc. Wed. 1 p.m.

MODEL D70

INSTANT MORSE PRACTICE
magine the convenience of heving your own eource of eccurate Morse
The Datong MORSE TUTOR produce at any tima I
character groupes at varleble sopesd and with random strman of five orwon lections. You con select betions or numberi or a mbtre apeding the recorde or lapes. the reouence never reocets.
 PP3). Supplied racoly to use. only $£ 37.00$ plus VAT (C 4.62 totall

MODEL UC/1 UPCONVERTER

'GOOD GENERAL COVERAGE RECEIVERS
COST A FORTUNE!"
True but if you allesdy own a goos quality ten-metre or iwo-metro ccover ox tranticativer you are onty E118 sway from a railly high peefor. MOOELUC/ from DATONGI MODELUCI Prom DATONG 1 (hugby MSF) to 30 MHz , at high menaitivity and with an the faciliteo and high cortormance of your axisting nal For good measure UC $/ 1$ atwo edde two-metre coverage to ten-metre
Power recuiramans: 12 v .120 MA . Price: © 105.00 plue VAT ($¢ 118.13$ total)
MODEL AD 170 ACTIVE ANTENNA

\qquad REVIEWED IN JUNE'S
a GOOD RECEIVER DESERVES GOOD AERIAL
om MSF at 60 kHz to Gand 1 IV noed for an sontennes tarm. MODEL A0170 hat no adjustmants and Athough only three matres Mional propertios as of full sise dipole.

S.E.M.
 BOX 6, CASTLETOWN, ISLE OF MAN.

 TEL. MAROWN (0624) 851277
join the thousanos of others who have improved RECEPTION SENTINEL STANOARO FET 2 METRE PRE-AMPLIFIER Ultimate performance pre-amp with a 1 dB N.F. selected FET and 18 dB gain. 12 V nominal ($9-15 \mathrm{~V}$) at 5 mA .
$\boldsymbol{£} \mathbf{1 0 . 8 5}$. 70 cms , Satellite and Marine Band also in stock.
sentinel auto 2 metre pre-amplifier
Same performance as above with an r.f. switch so that the unit can be left in the tranceiver aerial lead and transmitted through. £17.35.

SENTINEL H.F. WIDEBAND PRE-AMPLIFIER

Covers $2-40 \mathrm{MHz} .15 \mathrm{~dB}$ gain. Ideal for receivers where gain falls off above 20 metres. Weak signals e.g. OSCAR. When used with a short aerial acts as an ACTIVE aerial.
£9.00.

SENTINEL AUTO H.F. PRE-AMPLIFIER

Same as above but with a relay for transmitting through, or to give straight through operation when switched OFF.
£12.94.
For further details on our S.E.M. Z Match A.T.U., Power Amplifier/Pre-Amplifier, Converters and Transverters do ring or write.
ACCESS/BARCLAYCARD/VISA or C.W.O. All units in stock. 12 months guarantee. Prices include VAT and delivery.

Frequency range: $0.5 \mathrm{MHz}-29.9 \mathrm{MHz}$

Sensitivity: SSB/CW better than $0.7 \mu \mathrm{~V}$ for 10 dB S/N at 30% modulation

Selectivity: $3 \mathrm{kHz}-5 \mathrm{~dB}$
$7 \mathrm{kHz}-50 \mathrm{~dB}$

Frequency stability: Within 500 Hz during any 30 minute period after warm-up

Input Impedance: $0.5 \mathrm{MHz}-1.6 \mathrm{MHz} \mathrm{High}$
Impedance
$1.6 \mathrm{MHz}-29.9 \mathrm{MHz} 50-75 \Omega$
unbalanced

Output Impedance: 4Ω

Audio Output: More than 2 watts

Power requirements: $100 / 110 / 117 / 200 / 220 / 234 \mathrm{~V}$ a.c. $50 / 60 \mathrm{~Hz}$ or 13.5 d.c. Negative ground

Batteries: Type UM-1 $\times 8$

Dimensions: $340 \times 153 \times 285 \mathrm{~mm}$

Weight: 7kg without batteries

The standard of engineering is excellent as can be seen from the photograph of the inside of the set we tested.

The receiver was subjected to several air-tests, using a variety of antennas, ranging from a 132 ft long wire to a multi-element rotary beam. On the broadcast bands the receiver performed very well indeed and the s.s.b. capability for amateur reception was also quite good. (The latter mode can be quite dramatically improved, incidentally, by the inclusion of the mechanical filter, produced for the FRG-7 by Ambit International.)

The Wadley Loop provides a good degree of stability in the receiver. This is especially necessary for acceptable sideband resolution-at 29 MHz , for the receiver to remain within about 25 Hz of the tuned frequency, a stability factor of about one part per million is called for. Long-term stability is perhaps less important to the amateur than stability in the short-term, and the FRG-7 performs quite well in this respect. However, since the Wadley Loop system involves multiple conversion, it is difficult to achieve a wide dynamic range, a problem which is overcome to some extent in this receiver by the use of a balanced mixer.

Used in conjunction with a 400 watt p.e.p. transmitter, the receiver performed well. Many contacts were made with W, VK, ZL, ZS and so on, some of these on a simple end-fed long-wire antenna. Copy on the h.f. bands was good, but on the more congested frequencies-such as 40 m -it was often felt that a little more selectivity would have been nice. Still, "You pays your money . . ." as the old adage goes, and the FRG-7 represents particularly good value.

A 2.4 kHz mechanical filter to improve the s.s.b. performance is available from Ambit International, 2 Gresham Road, Brentwood, Essex, priced at $£ 15.30$ (inc VAT). We understand that a Yaesu approved s.s.b. filter may be available from SMC in the very near future.

Prices

Basic FRG-7 receiver $£ 210.37$
FRG-7 receiver with digital readout $£ 270.00$
Yaesu approved digital readout (SMC) $£ 56.25$
(All prices quoted include VAT and carriage)
The FRG-7 receiver reviewed was kindly loaned by South Midlands Communication Company Ltd., Osborne Road, Totton, Southampton SO4 4DN. Tel: 04216 7333, and we would like to thank them for their invaluable assistance in this respect.

```
NEXT MONTH WE REVIEW THE
LOWE SRX-30
RECEIVER
```


C.B.ELECTRONICS

UNIT 3, 771 ORMSKIRK ROAD, PEMBERTON, WIGAN, WN5 8AT Telephone: Wigan (0942) 216567
THE BESTIN THE NORTH-WEST
The Communications Receiver that has it all

FRG-7

£210.00 incl. VAT $+£ 2.00$ p\&p./ins.
Also available from us with Microwave Modules converter all for just an extra f20.25
All orders dealt with promptly by Mr. Jack Stephens

Uestern

THE COMMUNICATIONS SPECIALISTS EVERYTHING FOR THE RADIO AMATEUR

YAESU FRG-7000

The Now Performance Stondard in Communications receivers!
A high quality general covarage receiver for the discerning SWL and a worthwhile additon as a second receiver for the transmitting a matour.
How often have you wanted a true general coverage receiver of this calibre but been put off by the price.
The FRG-7000 is a cost-effective answer to your pravers.
\star Full and continuous coverage 250 kHz to 29.999 MHz * Dperation on SSB/AM/CW * Switched selectivity and fine tune control for maximum efficiency on SSB . Accurate digital frequency readout to 1 kHz , using advanced CPU techniques . Built-in digital clock with facilities for setting two time zones (GMT and local), selected at the flick of a switch ${ }^{*}$ control of external unit such as tape recorder Wadley at preselected times; also enables control of external unit such as tape recorder . Wadley toop circuitry for minimum drift and
maximum stability $\$$ Simple and accurate frequency selection: easy-to-use colour coded maximum stability $\$$ Simple and accurate frequency selection; easy-to-use colour coded
bandswitch and preselector.

Send large SAE for further details of this and other equipment - or use our Answerphone after hours

Uertern Electronics (UK) Ited

HEAD OFFICE (All Mail/Enquiries)
FAIRFIELD ESTATE
LOUTH, LINCS, LN11 0JH
Tel: Louth (0507) 4955/6
H.P.

SOUTHERN VALVE CD. SECOND FLOOR, 8 POTTERS ROAD,Telephone $01-440 / 8641$ NEW BARNET, HERTS.CALLERS BYAPPOINTMENT MINIMUM OROER BOp								
Soma leading makee available. VAT invoices issued on request. 6VA valves do NOT carry any guarantes, Enquire prices.								
Some Multard Mazde avaliable at extre cost. NOTE: PLEASE VERIFY CURRENT PRICES. Correc 82p' at time of going to press.								
DY86/7								
D				CF805 1.7	PLa			
ECC81		EF183 55	C88 60	PCF806 75	PL83		UC685	
ECC82		EF184 56		PCF808 11.7			UCH81	
ECC83		EH90 80	PC900 65	PCL82 ${ }^{\text {PCL }}$		£1.20	UCL82	
ECC85		EL34	PCC84 35	PCL83 £1.0	PL50	E1.20	C183	
		EL509 $£ 3.0$	(5	PL5			
E		EM84 90	PCC189 55	PCL85 ${ }^{\text {P6 }}$	PL51	E3.30		
	65p	EY86-7 48	PCF80 80	PCL86 85	PL802	E2.90		
		EY500A E1.6	PCF86 80	PCL200 £1.4				
		E780 43p	CF200 £1.60	0500 E3.7				
			PCFB01 80p	200 £1.				
We offer return of post eervice. CWO ONLY. No C.O.D. MANY OTHERS Post free over $£ 25$. $£ 6$ to $£ 25-80 \mathrm{p}$ (max.) AVAlLABLE								
STOP PRESSI One valve post $1 \frac{\text { I }}{5 p}$. each extra valve $6 p$. Large valves 2 p each order 80p. 8 .STOCKISTS UHF								
"MICRO" AERIAL! WIDE BANO MAX 75p. LISTS AND ENQUIRIES. SAAE. PLEASEI								
SIZE $1 \mathrm{t}^{\prime \prime} \times 3^{\circ}$ onty 5370 p incl. ALL PRICES INCLUDE VAT $\quad 12 \frac{1}{2} \%$ EZ40/41. 70p aach ENQUIRIES WELCOMED FROM TRADE and RETAIL (same prices)								

Can YOUR Antenna do all this?

A SMALL SELECTION FROM OUR HUGE FILE OF TESTIMONIAL LETTERS ON THE JOYSTICK VARIABLE FREQUENCY ANTENNA $(.5-30 \mathrm{MHz}$)

G4DJY's COPY LOG shows 68 North Americans worked in the ARRL WNE contest.
W6TYP worked WA6JPR over hundreds of miles on 40 m . using the JOYSTICK VFA and MICROWATTS "equivalent to $1.000,000$ MILES PER WATT"-AWORLD RECORD-we can supply conclusive evidence
"I have used Rhombics, $4 \times \frac{1}{2}$ waves in phase, centre fed dipoles, etc., but the success I have had with the V.F.A. has been AMAZING . . . only 20ft. high. . . in front of my mobile home. I NEVER RECEIVE LESS THAN R7 AND MOSTLY R9 ON CWDX WORKING-Bob Green. SUIKG/G3APH.W.B.E.,W.A.C. Phone and CW.
W7OE, U.S.A. Government Electronics Engr. (retd.). claims VFA 5ft. below ground, same as dipole, elevated 15 ft ., one " S " point UP on dipole.

IN USE BY AMATEUR TRANSMITTING AND SWL STATIONS WORLDWIDE AND IN GOVERNMENT COMMUNICATION

JOYSTICK ANTENNAS

SYSTEM "A"
f41.00
200 w. p.e.p. OR for the SWL

SYSTEM "J"

£47.95
500 w. p.e.p. (Improved " $Q^{\prime \prime}$ on receive)

PACKAGE DEALS'"
 COMPLETE RADIO STATIONS FOR ANY LOCATION

All packages include the JOYSTICK VFA (System " A '") 6 H feeder, all necessan cables. matching communication heedphones. Delivery Securicor our rigk. ASSEMBLED IN SECONDS. You SAVE £14.15 on each PACKAGE DEAL!

PACKAGE No. 1. Features R. 300 Rx.
£222.00
PACKAGE No. 2. Features FRG7 Rx £237.45

PACKAGE No. 3. Features SRX30 Rx. £212.45

PACKAGE No. 4. Our "Rolls"-Rx. FRG7000.
£402.00

RECEIVERS ONLY			
R.300	$£ 184.50 \quad$ FRG7	$£ 199.95$	
SRX 30	$£ 174.95$	FRG $7000 £ 364.50$	

All prices are correct at tume of going to press and include VAT at $12 \frac{1}{\%}$ and carriage.

5. Patridge House, Prospect Road, Broadstairs, CT10-1LD. (Callers by appointment).

Everymonthisth right frequency

When you're building a major project from.a PW design, you want to be sure of getting every issue in sequence ! Use this order form for a year's supply to be posted to you.
ANNUAL SUBSCRIPTION RATES (including postage and packing) U.K. $£ 10.60$. Overseas $£ 10.60$.

Please send me Practical Wireless each month for one year. I enclose a Sterling cheque/international money order for. \qquad please use block letters NAME Mr/Mis/Miss

ADDRESS

POSTCODE
Make your crossed cheque/MO payable to IPC Magazines Ltd., and post to: Practical Wireless, Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS.

NUMBERS WITHOUT TEARS

Continued from page 37 should not be taken to Vss via any wire connecting the c.m.o.s. to Vss. When $\operatorname{Tr} 21$ is switching a full 140 mA , some very strange arithmetic may be evident from the counters if some of the wiring to Vss is common! Anyone contemplating a p.c.b. design is especially warned of this point.

In order to make the touch plate as mechanically simple as possible, a 6BA cheeseheaded bolt was mounted on (but insulated from) the metal front panel and recessed so that the head was flush with the panel. The entire box was earthed and connected to the mains transformer screen, and connected to Vdd via R26 (see Fig. 6).

In this way, a finger placed on the head of the bolt must also touch some of the surrounding painted panel, and this provides sufficient base current to operate the Darlington pair, $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$. The instrument is thus electrically safe while providing 100 per cent reliable touch operation of the swept-frequency clock.

Fault-finding

It may be found that, on closing S1, the clock does not run. Decreasing R4 to $82 \mathrm{k} \Omega$ will solve the problem. Similarly, in the swept-frequency mode, it may be found that the clock is still "ticking over" even when C2 is discharged. Increasing R1 to $47 \mathrm{k} \Omega$ should stop the clock.

These problems arise because of the 5% tolerance resistors used to derive quite a precise voltage at point A (Fig. 2). The author has not found this to be a problem, but theory shows that it is quite possible.

The mains switch, $\mathbf{S} 5$, is a d.p.d.t. slider switch mounted on the side of the box adjacent to the top of the front panel. It is thus normally out of sight, reducing the temptation to tamper with it.

Summary

This instrument is designed to appeal to children of $2 \frac{1}{2}$ years upwards. The visual effects produced by it are pleasant and interesting. There are switches to use, buttons to press, a knob to turn, and a touch-controlled flywheel display. It aids in the teaching of rapid number recognition and matching, without obviously being a "teaching" toy.

It can also be used as a die for other board games when the numbers themselves have become of secondary importance.

With a little judicious help, the child will soon grasp the cyclic nature of counting in the decimal system-the progression from single-digit numbers to dual-digit numbers, the second (tens) digit being the number of complete revolutions of the flywheel, the first (units) digit being the number at which the flywheel stops.

A REVIEW OF RECENT DEVELOPMENTS

In general, the author does not have any more information on products than appears in the article.

Microprocessor Miscellany

People have long been chanting that microprocessors are going to end up in "everything". One of the latest applications to reach my ageing eyeballs is in typewriters. The new ET 221 for example is not the established "golfball" but a "daisywheel". Built-in is a Z80-based system that uses a number (note: not just one) of 8-bit, single-chip microcomputers. To be sold in the US for under $\$ 2000$, this new wonderwriter has a 20-character display for showing what you've been typing in line at a time. It can also store lines and page formats too, so it appears to be bordering on a form of word processor.

Another microprocessor application to loom is in controlling motors. When one considers that there are virtually millions and millions of motors in so many different applications, the enormous market becomes apparent.

There are some very good reasons, too, for using microprocessors in this application. The first is that old chestnut-money. For example, many motors rely on costly feedback loop circuitry required for close speed control. It has been claimed that just over $£ 1$ worth of digital chip can replace $£ 5$ worth of analogue circuitry to do the same job. The microcomputer can also do far more than adjust speed. For example, it can check the motor current against a table of maximum values which it holds safely stored in its ROM. This very same ROM can contain a program that limits both the instantaneous and surge currents drawn by the motor at any given time. This, besides offering a safety factor, also allows the manufacturer to use smaller, and probably cheaper motors to do exactly the same job.

Big Bang Theory

A few Ginsbergs ago I mentioned Lithium batteries. They appeared to offer advantages, but I now hear of disadvantages-like they explode. Perhaps not all Lithium batteries do this, but it is reported from America
that the powerful Federal Aviation Administration has ordered that Lithium-Sulphur-dioxide batteries must be removed from emergency aircraft locator transmitters within 30 days. Apparently half a dozen or so reports were received of LiSO_{2} batteries exploding. Some 6000 aircraft in the US carry equipment that uses LiSO_{2} batteries.

Mon Dieu

I note with great interest that a British company has come up with an i.c. certain to cause a linguistic stir. By adding it to your teletext/viewdata decoder set, you can have the potential to display the whole lot in one of 28 different languages-Ha so! Perhaps you don't get the whole 28 in one go, but an order has already been received for the chip from across the pond in Canada, where the new i.c. is to enable delighted viewers to see viewdata information in a 20 -row format (32 characters/row) in English and French. Had this happened when de Gaulle was in office, the designers would have been given the Legion of Honour and free wine for life. How about it, Giscard?

Stable Arrays

And pleased 1 am, too, to tell of another British achievement. A wellknown establishment has come up with a new way of addressing twisted nematic liquid crystals. The liquid crystal display matrix can be driven continuously over the whole of its area and thus the annoying flicker associated with multiplexed arrays is eliminated.

Complementary m.o.s. (CMOS) powered by only 15 V is used to drive a 100×100 matrix at around 5 kHz . Researchers believe that 1000×1000 element arrays are possible. This, coupled with the low voltages and flicker-free display, could have great impact on the small screen TV and scope development. A pocket oscilloscope with a power consumption of, say, 500 mW becomes a reality.

Bye-Bye Noise

The Dolby system of noise suppression in audio and hi-fi equipment is now very well entrenched. But a German company has arrived with an alternative-and the claims are that it's better, too. The new system is called High Com and it claims to be an improvement over the Dolby system in two areas. The first is that it removes an extra 10 dB of noise. It is also said to perform this kind act over the audio spectrum-that's 30 Hz to 20 kHz , not just over a narrow band.

The immediate area of obvious improvement is at the I.f. end. The Dolby system starts to be effective at around 300 Hz , so it isn't so effective against our old audio enemy "mains hum" at around 50 Hz . The name High Com derives from "high fidelity compander" and during compression the lowest level signals are amplified. Thus any noise that is picked up or contributed by either the storage medium employed or the actual transmission path finds the amplified signal that much stronger and therefore that much higher above the noise level.

The immediate application for such a device is in consumer audio goods and it is rumoured that some 20 European electronics manufacturers are very interested indeed, as are four of the big Japanese producers. One claim is that when the High Com was used on an audio cassette tape recorder, the measured noise was found to be no less than 20 dB down. The magic i,c. that helps achieve all these wonderful things is designated $U 401 \mathrm{~B}$ and it comes disguised in a 24 pin d.i.l. plastic package. It has been suggested that the new device could be very usefully employed in radio and television. Although it will cost a little more than the Dolby counterpart at present, volume production will doubtless bring the prices tumbling down. Please note: you cannot buy one yet.

Cimbers

M.TOOLEY BA G8CKT

Most multi-range meters offer a rather mediocre performance on the a.c. voltage ranges. The Avo 8 MkIV , which has long been one of the writer's favourite test instruments, exhibits an internal resistance of only 250 ohms on the most sensitive $(2.5 \mathrm{~V})$ a.c. range. This is clearly very unsatisfactory regarding sensitivity and circuit loading when measurements are to be made on today's electronic circuits. The instrument described was therefore developed as a replacement for the Avo on the a.c. voltage ranges and it offers the advantages of a $1 \mathrm{M} \Omega$ constant input impedance on all ranges and a frequency response which is substantially flat from 10 Hz to well over 100 kHz . Six voltage ranges are provided, with a maximum sensitivity of 100 mV r.m.s.

The unit uses low cost readily available components and can be built for an outlay of around $£ 10$. Battery consumption is minimal and a small 9 V battery will provide for many hours of operation.

Circuit Operation

The a.c. voltage to be measured is applied to a switched potential divider, R1 to R6. The range is selected by S1 and capacitor C 1 is used to remove any d.c. level present on the input voltage. R7 provides a measure of protection for the field effect transistor, $\operatorname{Tr} 1$, and C 2 provides a degree of high frequency compensation. Trl operates as a
source follower and exhibits an extremely high input impedance (greater than $100 \mathrm{M} \Omega$) thus minimising the loading effect on the potential divider. Trl provides a voltage gain of slightly less than unity, the output voltage being developed across R8.

Silicon transistors, $\operatorname{Tr} 2$ and $\operatorname{Tr} 3$, form a two-stage highgain amplifier. Both transistors are operated in the common emitter mode. The amplifier incorporates three feedback loops which help to ensure unconditional stability, a wide operating bandwidth and a high degree of linearity. Stabilisation of the transistor bias is provided by means of direct current feedback from the emitter of Tr 3 to the base of Tr 2 using R9. C4 provides negative feedback in the second stage of the amplifier. This helps reduce any tendency to oscillation at high frequencies and also ensures that the frequency response "rolls-off" beyond a few hundred kilohertz. VR1, the emitter resistor of Tr2, is used to set the overall voltage gain by controlling the amount of negative feedback present.

Germanium diodes, D1 and D2, from a voltage doubler rectifier arrangement. The arrangement of C6 and C7 provides a means of reducing the surge current through the meter movement during switch-on. Silicon diodes, D3 and D4, provide a "last ditch" protection for the meter movement by offering a shunt path to current when a 600 mV voltage drop of either polarity appears at the meter terminals; this corresponds to an eight times overload.

Fig. 1 : Circuit diagram of the a.f. electronic voltmeter

\star specifications

Voltage ranges: $100 \mathrm{mV}, 500 \mathrm{mV}, 1 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}$, 50 V

Input resistance: $1 \mathrm{M} \Omega$ on all ranges

Frequency response: Typically 5 Hz to 250 kHz at 3dB down

Accuracy: $\pm 5 \%$

Supply: 9 V d.c. at 10 mA

Construction

The impedance converter and the amplifier circuit are constructed on a p.c.b. The circuit board layout is shown in Fig. 3. The range selector switch, S1, is mounted on the front panel of the instrument together with the meter movement, power on/off switch, l.e.d. indicator and input sockets. The potential divider resistors, R1 to R6, are most conveniently wired directly to the tags of $\mathrm{S} 1 . \mathrm{Cl}$ is wired directly between the input terminal and top end of R1, which is located on Sl. Note that the high frequency response of the instrument will depend very much on the stray reactance associated with the input and potential divider wiring. It is essential that all connecting leads be kept as short and direct as possible. The front panel wiring layout is shown in Fig. 4.

Earthing of the metal front panel is achieved by means of the body of S1, which may be soldered to directly in order to provide a common earth point. If an alternative swich is suosiluted tor the recommended type, it may be necessary to locate a separate earth tag on the front panel. This may be most conveniently accomplished by using one of the meter securing nuts. The front panel is labelled by means of dry transfers, and then sprayed with clear lacquer to protect the transfers. During this operation the meter should either be removed from the front panel or be protected using several layers of masking tape.

The instrument is housed in a standard Vero case. Any other suitable case may of course be substituted provided that any metal parts are connected to the earth or common rail. It was not found necessary to use a totally screened enclosure for the instrument, as with careful wiring there should be no pick-up of hum or stray signals within the unit. The unit will not, however, give accurate indications in the presence of very strong r.f. fields such as may be experienced when measurements are made on medium or high power transmitters.

Testing and Calibration

After completing the assembly of the instrument it is advisable to carry out a thorough visual check of the wiring. Connect a 9 V battery to the instrument and measure the d.c. current supplied. If the circuit is functioning correctly this should be approximately 10 mA and will vary slightly according to the setting of RV1. Due to a slight difference in the charging currents of C 6 and C 7 , the meter pointer

Internal view of the complete instrument. This is the prototype which used a matrix board instead of a p.c.b.

Fig. 2: (above left) The component overlay for the p.c.b. version of the a.f. voltmeter
Fig. 3: (above right) The copper track layout of the p.c.b. shown here full size
Fig. 4: (below) The wiring and layout of the front panel. The resistors on S1 are soldered directly to S1 tags and the end of R6 is soldered directly to the body of the switch

components

Resistors $\frac{1}{2}$ W 2% metal oxide		
$1.2 \mathrm{k} \Omega$	1	R5a
$2 \mathrm{k} \Omega$	1	R6
$6.8 \mathrm{k} \Omega$	1	R5b
$10 \mathrm{k} \Omega$	1	R4
$12 \mathrm{k} \Omega$	1	R3a
$68 \mathrm{k} \Omega$	1	R3b
$100 \mathrm{k} \Omega$	1	R2
$120 \mathrm{k} \Omega$	1	R1a
$680 \mathrm{k} \Omega$	1	R1b
$\frac{1}{2}$ W 5\% carbon film		
$1 \mathrm{k} \Omega$	2	R11, 13
$1.5 \mathrm{k} \Omega$	1	R8
$2 \cdot 2 \mathrm{k} \Omega$	1	R12
$22 \mathrm{k} \Omega$	1	R10
$100 \mathrm{k} \Omega$	1	R9
$1 \mathrm{M} \Omega$	1	R7
Capacitors		
Electrolytic axial leads		
$100 \mu \mathrm{~F} \quad 25 \mathrm{~V}$	2	C6, 7
$250 \mu \mathrm{~F}$ 25V	1	C5
Polystyrene		
47 pF	2	C2, 4
Polyester		
$0.22 \mu \mathrm{~F}$	1	C3
$0.47 \mu \mathrm{~F}$	1	C1
Potentiometers		
Miniature horizontal preset		
$5 \mathrm{k} \Omega \mathrm{lin}$.	1	VR1
Semiconductors		
Diodes		
OA90	2	D1, 2
1 N4148	2	D3, 4
LED	1	D5
Transistors		
BC108	2	Tr2, 3
2N3819	1	Tr 1
Switches		
1 p 6 w rotary	1	S1
s.p.d.t. min. toggle	1	S2
Miscellaneous		
Case Vero 75-1798-k $171 \times 121 \times 75$		
4 mm terminals 1 red, 1 black; Meter, $50 \mu \mathrm{~A}$		
4 inch scale $110 \times 82 \mathrm{~mm}$; Printed circuit board;		
(Sifam).		

may give a momentary indication when switching on. The pointer should however return to zero fairly quickly, and if this is not the case the wiring should be re-checked for faults.

To calibrate the instrument a known source of a.c. voltage is required. A signal generator with a calibrated output level may be used, alternatively a comparison may be made with an existing a.c. voltmeter. If neither is available,
a rough calibration can be carried out using a low voltage transformer of known output. A 6.3 V filament transformer or the 9 V transformer of a power supply is ideal for this purpose. The instrument should be switched to the 10V range and RV1 adjusted for the correct reading. The calibration on the other ranges should follow automatically provided that the potential divider has been wired correctly. If a signal generator is available a check can be carried out on each range. The calibration should be consistent to within $\pm 5 \%$ on all ranges. If a signal generator is used, it is suggested that calibration be carried out at a frequency of 1 kHz . Where a mains transformer is used the calibration will, of course, be at 50 Hz . The frequency response of the instrument should be "good" over a wide frequency range, at least 10 Hz to 100 kHz at the 3 dB points, and the frequency response of the prototype instrument on the IV range is shown in Fig. 5.

Fig. 5: The frequency response of the instrument
Note that, due to the high input impedance of the instrument, false readings can sometimes be produced on the more sensitive ranges. This is due to pick-up of hum and stray signals on the input leads. The input leads can be screened if desired; the inner lead of the coaxial cable is connected to SK1 (red) and the outer screen to SK2 (black). It is important to note that coaxial cable possesses an appreciable shunt capacitance between the inner conductor and screen (often as much as 100 pF per metre). Long screened cables should therefore be avoided since they will impair the high frequency response of the instrument.

> VISIT THE PW STAND AT THE GREAT BRITISH ELECTRONICS BAZAAR. ALEXANDRA PALACE. JUNE 28 to 30. JOHN THORNTONLAWRENCE WILL PRESENT THE PW LECTURE "'GETTING STARTED IN AMATEUR RADIO'", ON SATURDAY AT 1200hrs.

by Eric Dowdeswell G4AR

The problem of identifying correctly an amateur callsign can present a problem to anyone unaccustomed to listening on the amateur bands. It often seems to be a jargon incapable of being decoded! The answer is not always obvious even if the station is in the clear, but if it is being clobbered with QRM then there really is a problem.

Although there is an ITU phonetic alphabet, given below, it is seldom adhered to by amateur operators who seem to use part of this alphabet and part of their own invention. In a perfect phonetic code the word used to represent a letter, such as "alfa" for A and "bravo" for B, must be neutral, one without any particular connotation and generally understood world-wide.

The approved code starts off all right but then uses "Charlie" for C. although personal and place names ought to be avoided since these can be misleading, especially in amateur use, where station locations and operator's names are constantly being exchanged.

A	Alfa	J	Juliett	S	Sierra
B	Bravo	K	Kilo	T	Tango
C	Charlie	L	Lima	U	Uniform
D	Delta	M	Mike	V	Victor
E	Echo	N	November	W	Whiskey
F	Foxtrot	O	Oscar	X	X-Ray
G	Golf	P	Papa	Y	Yankee
H	Hotel	Q	Quebec	Z	Zulu
I	India	R	Romeo		

There are several words in the phonetics list which I do not agree with personally, but the problem is to find suitable alternatives.

What causes most confusion however is the amateur's own version of the phonetic code, especially the use of "George" for the G in UK callsigns, particularly where the operator is called "Fred"! Might not matter too much among lads and nets on 2 m or u.h.f., but used on the DX bands can only make identification of a callsign all that more difficult.

On numbers, the recommended procedure is to use the word "figure" before any number, to indicate that a figure is to follow, thus "Golf, figure four, alfa romeo". This can only help but it is seldom employed by amateurs unless
they have been trained on a military or commercial network of some kind. The use of phrases like "Red Hot Momma" for RHM in the suffix of a call may be amusing to some but meaningless to the amateur with little or no knowledge of the English language.
I appreciate that this little homily will have no effect whatsoever, but I hope it will serve to demonstrate to the innocent listener to the amateur bands that there is little or no "system" with amateur phonetics. Initially, it is better to write down in full what is heard and then the callsign ought to become apparent, aided by a good list of prefixes, but, as ever, experience will prove the best teacher.

Here and There

Well known to this column for his SSTV reports in the past, Paul Barker of Sunderland is now busy on c.w. and s.s.b. with his new callsign G4HPS, having started off with G8OVD. Paul's first s.s.b. QSO was with FG7AS/FS7 on 10 m , which is enough to make anyone's mouth water! He uses a TS520S transceiver to an 18AVT multiband vertical, plus an FT221R on 2 m to an indoor 4-element quad. Paul managed to get QSLs from all six continents for SSTV reports before getting his ticket.

In Southport, Peter Hawks has got going with a DX160 but, like others, found the manual's calibration chart did not match up to reality. He's talking about a digital readout unit but I think he would be better off initially with a crystal calibrator. Philip Charlesworth (Southport) has got going with an outside aerial which he finds "staggering" after his indoor one. As he lives on the only hill in Southport he will find the advantage of much greater importance when he gets his ticket in due course. Philip mentions the PA0AA transmissions on 3750 kHz for amateurs, followed by slow Morse transmissions. Details of the latest schedules would be appreciated.

Peter Lucas of Newport, Salop, has dumped his R207 and settled for an AR88 but needs to rewire a lot of it. A circuit or manual would be appreciated at 3 Queen's Drive if anyone can help. Pete's been hearing plenty on 10 m of late with only a 16 ft vertical. In Chiswick, London, George Gizebieniak BRS 41733 has bought an old SX24 receiver for $£ 20$ and found it worked fine on the 10 m band, with converters for 2 m and 70 cm .

An appeal from Jim Timoney ZSITK for a spare for his KW2000 transceiver, not having had any success with the descendants of KW in this country. He wants the 3 -gang tuning capacitor on the pre-selector, part number C40 on the circuit diagram. Any offers of help to me direct please. Another reader in need of help is M. David of 46 Pentathlon Way, Cheltenham, Glos, who has got hold of a Star SR550 for just a $£ 1$! It works fine but he'd like a manual for copying and return. He's heard an HK on the 10 m band and threatens to send in some logs in future.

SOUTH MIDLANDS COMMUNICATIONS LTD.

OSBORNE ROAD, TOTTON
SOUTHAMPTON S04 4DN
Cables: Aerial Southampton Telex: 477351 SMCOMM G Tel: Totton (04216) 7333
21 YEARS OF PROFESSIONAL EXPERIENCE
Main importers of Yaesu Musen Communications Products '" 2 Year Guarantee - Free Securicor Delivery"

Synthesised General Coverage Communications Receiver.

The FRG7 is solid state mains and $12 v$. receiver offering continuous coverage $0.5-30 \mathrm{MHz}$ with specifications unparalled in its price range.

Its advanced circuitry provides superb performance either as a standby receiver or for SWL's (Broadcast and Amateur Bands alike)

PRICE: FRG7 £210.37 (Carr. Foc.) FRG7D £270.00 (Carr. Foc.) (DIGITAL VERSION) AS REVIEWED IN THIS ISSUE

SMC YOUR SINGLE STOP SOURCE FOR: TRANSCEIVERS, RECEIVERS HF, VHF AND UHF. ANTENNAS AND ROTATORS CABLE - CONNECTORS - TOWERS - MASTS AND FITTINGS

VHF BEAMS

VHFDISCONES VHFLOG PERIODICS

HF QUADS

HF BEAMS

For fixed station antennas, (from top band to twenty three, from a dipole to a box of 352 elements) for Rotators (a choice of 15 models from Stolle and C.D.E.) and all accessories and fittings - coax, baluns, lightning arrestors, wall brackets, etc, SMC must be the natural choice.

A chance to see our complete range: Visit Unicom 21: Kampton Manor, Sunbury-on-Thames, June 22nd and 23rd. Further details from SMC HQ at Totton, call our Agents or Branches in your area.

Come to the Great British Electronics Bazaar
 Come to the Great British Electronics Bazaar
 Come to the Great British Electronics Bazaar

(AND WAIT TILLYOU SEE OUR SEMINAR PROGRAMME)

The Great Big 'Bazaar' for the hobbyist, amateur, and small buyer.

There's never been an event like this before.
First, the very scale of the exhibition is huge. Virtually all the companies you're used to hearing about (and buying from) will be there. Companies like Fluke and Gould showing off their low cost multimeters; smaller but important manufacturers like Lektrokit and Chromasonics; and even the R.S.G.B. who will have a station'on the air' throughout the 'Bazaar.'
Then there are the suppliers of low-cost components and equipment. Plus almost all the journals in the business. Plus, oh, so many more interesting people catering for your needs (including computer kits!!.
And you get in FREE if you send an s.a.e.
(see alongside). $\angle A$ BRITISH ELEC

Our Symbol.
We think it tells you just what the Bazaar is all about. 68

The Seminars.

If you would like to hear just what the experts have to tell you, a season ticketfor three whole days can be yours for only $£ 1.50$.
Sendan s.a.e. and we'll give you all the information (just use the

Our home for three days-Alexandra Palace, where it all began. (Our seminars are sited alongside the organ-for those who know this unique SEMINAR TICKETS £1.50.
I'd like to sit in at your seminars. (And like a free ticket to the exhibition.) Send me full details, please, and l enclose a large-ish s.a.e.
Name:
Address:
\qquad
| Post to: 'The Bazaar,' 34/36 High
Street, Saffron Walden, Essex.

When?

Between Thursday to Saturday 28th-30th June.

You'll be in very good company; some ten thousand enthusiasts and over a hundred stands displaying all that you want to see.

You'll come?

Eyes down for the appropriate coupon.

ADMISSION FREE

(or 50p on the door).
I'd like to see 'The Bazaar' FREE. I enclose a large-ish s.a.e. and will receive by return a ticket and full information.
Name:
Address:
..

Post to: 'The Bazaar,' 34-36 High Street, SaffronWalden, Essex. Ifyou'd rather just pay 50 p , go to Wood Green Tube Station and take a bus (every 3 minutes) to Alexandra Palace. We're open 10 am- 6 pm daily, Thursday to Saturday, 28th-30th June.

Mike Stollov of Blackley, Manchester, has not deserted the column although active as G4HWB. Flu laid him low but he was able to drag his FRG-7 to the bedside and keep in touch with the bands on c.w. and s.s.b. Good finds on 15 m c.w. were HH2T, HK0BKX, HM1DM and H44LW while on 10 m s.s.b. FM7AY, HC 1 FM, KZ5AS and 6W8AAD were fairly rare ones. After some blush-making comments R. Beswick of "Hillhouse", Yatton-Keynell, Chippenham, Wilts, mentions that he has run through quite a few receivers and now has a Trio 9R59D and a Minimitter MR44, but is sadly in need of a circuit or manual for the latter. Any help direct please to him, all expenses paid of course.

We don't often get any RTTY news but here is Dennis Sheppard of Sheppey, Kent, with a long log of stations copied in this mode with Creed page printer, tape printer, tape reader and home-made terminal unit driven from a JR310 receiver. Any other RTTY enthusiasts are invited to write in with logs, etc.

Australian J. Clark arrived here with his equivalent to the " B " licence and wrote to the RSGB for info on clubs in the Reading area and on the licensing regulations in order to get a full licence while over here. He says: "The RSGB HQ was not particularly forthcoming about licensing exam procedures, nor even too certain about the active status of clubs in this area". Needless to say, he got a full reply from me in a couple of days!

DX Notes

Bill Rendell (Truro) has the solution to the S79MC mystery, straight from the horse's mouth! It is the Seychelles after all. Although Bill heard him some time ago, it was only in the middle of March that the QTH was given, seemingly. Bill has been up at sunrise to find the DX still rolling in on 80 m such as C6AFR, CT2SH, HCINJW, VP1KG plus three ZLs one of whom was mobile "out salmon fishing"! 40m revealed Bill's first GD logging, GD3KGC but little else. On 20 m CT2YB on St Michael popped up, with D4CBS, J3ABN, M1D, VP2VBK and VP8SO on Signy Island, not to mention VK3MO reputed to have eight quads in a 4 -over- 4 arrangement!

The 10 m band has been very good at times but several readers comment on weird and variable skip at times, which makes it all the more interesting! P. Lucas of Newport, Salop mentioned HH2LD, H44CF and S79MC on the band, all good catches in the early evening, on his AR88 and vertical. Looking at the c.w. end of bands can produce some unusual prefixes if one is interested in that direction. Mike Stollov found a CP5, EA8, HC2, HP1, OY9 on 20 m and HH2, VS6 on 15 m , plus KZ5, SV1, 6W8 and 8P6 on 10 m . More c.w. logs would be very welcome.

As usual lan Marquis sorted out the better ones at Leigh-on-Sea, Essex, on his FRG-7, 100 ft wire and 28 MHz dipole, such as M1C and ZB2CJ on 80 m , VP2KF, XE1FU and YN1S on 40 m , C6ANX and TR8AC on 15 m with HC1FM and HL9KE on 10 m , all s.s.b.

Club Activity

Let's start with the Bury RS which meets every Tuesday evening at Mosses Centre, Cecil Street, where visitors are more than welcome. June 12 sees G8SCA talking on the joys of medium-wave DXing (how did that get in?) and on July 10 there is a foxhunt for those keen on DFing. QRP-lovers may like to know that Yeovil ARC's transmitter G3CMH is reputed to have made the first
solid-state s.w. DX QSO in the UK in 1954, working 90 miles on 80 m with 30 mW input to a single transistor. The station is still active with QRP so pop along any Thursday evening to Building 101, Houndstone Camp, Yeovil and meet the gang, or write: D. McLean G3NOF, 9 Cedar Grove, Yeovil.

The second and fourth Thursdays of the month, see the Edgware and District RS (Middx), at the Watling Community Centre, 145 Orange Hill Road, Burnt Oak, Edgware. On June 14 a "Bring \& Show" your favourite test gear, tools, etc., is a pleasant twist while on June 28 there is a junk sale. Contact: D. Lisney G3MNO, 119 Draycott Avenue, Kenton, Middx. Fridays is the day to find the West Kent ARS at the Adult Education Centre, Monson Road, Tunbridge Wells. On June 22 a Mr Constable will talk on the British Vintage Wireless Society and its work.

Trevor Tugwell G8KMV reports his retirement as Sec of the Stevenage \& District ARS and I hope his replacement Ted Godfrey of 94 Common View, Letchworth, will be equally forthcoming with the club's news. June 14 is devoted to a DF hunt, with G4DDX talking about his Top Band DF receiver on June 21.

Don't forget the deadline for copy, the 15 th of the month without fail.

Log Extracts

Ian Marquis:-80m M1C ZB2CJ 40 m HC4JQ VP2KF, XE1FU YN1S 20 m VP8ML VR3AH VS5XU 8Q7AH 15 m C6ANX TR8AC VP9JA 10 m HCIFM HL9KE
R. Bell: -20 m OA8ODE 15 m JY5ZM P29MF 10 m CT2CP KZ5FF YB0ADW
P. Hawks:-20m VK7OH A9XBS CT4UU M1D VP9CP XT2AV
P. Charlesworth:- $\mathbf{2 0 m}$ JY8AQ JY0OZ VP9BB 7X2LS 9V1TX
M. Stollov:-20m CP5NK EA8FO FY7BF HC2FN HP1XGL OY9J 15 m HH2T H18MOG HM1DM H44LW KL7PJ VS6EN 10m FM7AY HCIFM KZ5AS VS6DT 8P6JQ (Bold are c.w.)
P. Lucas:-10m HH2LD HI8XEA H44CF S79MC VQ9JJ ZF2CL 9J2LL 9L1KB
W. Rendell:-80m C6AFR CT2SH EA8PP HCINJW PJ2AAX VP1KG YS9RVE ZF1CL ZL3GS ZL4AP 40m EA8QY 20m D4CBS HP6JB J3ABN J6LFZ M1D VK7AE VP2VBK VP8ML VQ9JJ ZD7PL 15 m CT2CP HC6FC J6LDE (St Lucia) S79MC VP5JFH VP8SB (Adelaide Is.) VQ9RL YB0WR ZB2DV
D. Sheppard:-All RTTY 20m A4XFW FP8DF 9G1JX 9J2KD 15m JA1ACB KC6CB LU1NH VE7DIA W7WHY YU3KAA 10 m AG2M C5AAN FG7XT JA2JHR KZ5JA VK3KF ZS6AKO 3D6AD 5Z4PD

[^1]VHF BANDS Ron Ham BRS15744, Faraday, Greyfriars, Storrington, Sussex RH2O 4HE.

MEDIUM WAVE DX

by Charles Molloy G8BUS

Are you going abroad for your holidays this year? Then why not take along a portable receiver? As well as providing entertainment, it will give you the opportunity to listen to the medium waves from a new location. I had this experience while on holiday in Bulgaria a few years ago where the medium-wave scene was totally unrecognisable. I could have been on another planet! I even tried to do some DXing but could not pick up either the BBC or Luxemburg on the medium waves, though a weak unidentified on 200 kHz might have been Droitwich. It would have been very interesting with a decent receiver and a loop.

Holidays abroad these days generally mean Spain, a country which is very interesting from the radio standpoint. As well as having an official government network, there are several chains of privately-owned local radio stations spread across the country. In most locations there are at least three to be heard during the day-time, while after dark many more are just waiting to be picked up. The holidaymaker also has the opportunity to hear "difficult" outlets such as Radio Gibraltar on 1458 kHz .

DXing Spain

No need to visit Spain to listen to Spanish radio. A lot of it can be heard from the UK, and it is quite an interesting area to explore at this time of the year. A loop should sort out much of the co-channel QRM, since the DX is coming from the south while much of the QRM is from the east. The easiest stations to pick up are the high-powered RNE outlets at the l.f. end of the band. Listen to $585,639,684$, $729,738,774$ and 885 kHz for the call Radio Naçional España.

The real interest for the DXer is with the local radio stations which operate on a number of channels between 792 kHz and 1602 kHz . The best time to listen for them is between 2300 and 0100 GMT when European QRM slackens off and many Spanish locals themselves close down leaving the frequencies clear for other weaker stations to appear in their place. Try on $1026 \mathrm{kHz}, 1107$. 1134, 1224, 1260, 1314, 1395, 1521, 1539, 1584 and 1602 kHz .

Identification

Station identification includes the name of the town or city preceded by one of four titles depending on the particular network such as Radio Barcelona, Radio Popular Malaga, Radio Juventud Murcia, La Voz (pronounced Voth) de Granada. A callsign is allotted to each station which is generally used in the sign-off announcement but it can present a problem to the DXer unless he is familiar with the alphabet and numerals in Spanish. Four sets of three letters plus figures are in use depending on the network. For example, EFE14 is in Madrid, ECS5 in Granada, EFJ56 in Malaga and EAJ1 in Barcelona.

A list of Spanish frequency allocations extracted from the Boletin Oficial del Estado of the 13 November 1978 is available from Keith Hatcher, Duquesa de la Victoria 50 bis, Logroño, Spain in return for 2 IRCs or 25 Pesetas in unused Spanish stamps. At the time of writing this is the most up-to-date list available, though it does include some stations not yet on the air.

Reception Reports to Spain

Spanish locals are usually good verifiers even to a report written in English, though a Spanish Report Form (obtainable from DX clubs) is better. A full list of callsigns and addresses is to be found in the World Radio and TV Handbook though the frequency information in the 1979 edition is quite out of date. No need to worry too much about the full address. A report sent to El Gerente, Radio Popular Malaga, Malaga, Spain will certainly find the station. El Gerente being the station manager. Always include return postage, either unused Spanish postage stamps which are obtainable from stamp shops or an International Reply Coupon (IRC). These are on sale in main post offices.

Region 2 Station Separation

According to a report in DX Monitor, the Daylight Broadcasters Association (USA) is asking the US government to press for 9 kHz station separation plus a slight extension of the m.w. band, as an alternative to the current proposal to the WARC-1979, to extend the band to 1850 kHz . The suggestion is that the band should start at 530 kHz with stations spaced at 9 kHz intervals up to 1610 kHz , which would provide an additional 14 channels.

The DBA just cannot be serious! It would mean that the majority of stations in Region 2-North, Central and South America-would be on the old pre-Geneva channels, which incidentally are at the moment occupied by many broadcasters in the Middle East who have not (yet?) changed over. 1 kHz heterodynes would be commonplace and a 1 kHz audio notch filter would be an essential item in the m.w. DXer's shack. A more reasonable proposal would be to start at 540 kHz and follow the Geneva frequencies right up to 1602 kHz . This would give 12 additional channels and would not require approval by the WARC as the m.w. band would not have to be extended. It would only require approval by the countries in Region 2.

It is to be hoped that the DBA will not be successful. At present Region 2 is on 10 kHz separation starting at 540 kHz which is also a Geneva frequency. Coincidence between the two systems occurs at 90 kHz intervals across the band but there are other parts where the separation between the two systems is as much as 4 kHz and these are the "DX slots" that would disappear if the Geneva Plan becomes world-wide. Fortunately there is likely to be opposition within the USA to the DBA's proposals, as many stations would be put to considerable expense, not just in changing frequency but with modifications to directional aerials which are in widespread use in that country. None-the-less, m.w. DXers will await further developments with apprehension.

Loops in New Zealand

The Loop becomes Respectable is the title of a short, amusing article sent to me by its author Tony King, who is the Mailbag editor of Radio New Zealand. It seems that RNZ decided to restrict its racing coverage, which led to the experimental use of a DXer's loop to get better reception. Soon, a commercially produced "punter's loop"
appeared which was investigated by the NZ Consumers Council, who had to acknowledge its effectiveness. A competitor, the Space Raker soon turned up. This was a loop built into a briefcase for convenience of use and acceptability in domestic surroundings. Finally "the national TV network screened a programme on the loop, the a.t.u. and on erecting an outside aerial, all in the quest for better reception".

DXing does have a large following in New Zealand but I once knew a Kiwi who was a great leg puller, so you can take your choice. Either way, it is an interesting story.

Readers' Letters

Stephen Donnelly wonders how DXers identify foreign language broadcasts. His method is to look for key words (Voiçi=French). This is alright if you have a list of key words but an easier way is to listen for place names. Most countries carry local items in their news bulletins and if, for example, you hear Ankara mentioned several times then you may be listening to Turkey. Stephen has recently acquired a Trio 9R59D and he would like to hear from other users of this receiver. Replies direct to Stephen Donnelly, 25 Church St, Addlington, Lancs PR 7 4EX.

From Pensilva in Cornwall comes another letter from reader K. Lewis who has modified the r.f. pre-amplifier intended for use with the PW "Dorchester" Tuner. He used it along with a long wire, a.t.u. and Realistic DX 160 to pull in WINS on 1010 kHz , Radio Margarita, Venezuela 1020, Radio Coro, Venezuela 1210 and Radio Paradise, St Kitts on 1265 kHz , all heard between 0250 and 0330 during March. Listen in mid-summer during the hour before sunrise for this type of DX; results are sometimes very good.
DX Circle is the name of the weekly DX programme in English carried by Deutschiandfunk on 1269 kHz each Tuesday at 1900 GMT. It is compiled and presented by DXer Alan Thompson and it has been running now for over 10 years, the session on the last Tuesday of the month being designed especially for newer members of the hobby.

It is nearly 10 years since I met Alan at the DX Convention he organised in his home town, Neath. It was attended by Arthur Cushen who was on a tour from New Zealand at the time, and this was the first gathering of Broadcast Band DXers to take place in this country so far as I know. Alan is the UK/Europe representative for the NASWA/FRENDX, Indian DX Clubs International and the Union of Asian DXers, which means that subscriptions to those bodies can be made through him. Alan can be contacted via the DX Circle, Deutschlandfunk, 5 Koln 51, Raderberggürtel 40, West Germany.

SHORT-WAVE BROADCASTS

by Charles Molloy G8BUS

Questions asked by a number of readers recently have prompted me to produce the following few notes written in non-technical language which will, I hope, show how a receiver converts the incoming radio signals into the sounds heard from the loudspeaker or headphones. An understanding of what is happening should help the DXer to get the most out of the quite sophisticated gear that is under his control.

The Superhet Receiver

A block diagram of a superhet receiver suitable for broadcast reception is shown in Fig. 1. Facilities for s.s.b. and c.w. are not included, as these are not generally used for broadcast band DXing. Each square represents a particular job the receiver has to do. Starting at the left-hand side, radio signals are picked up by the aerial and applied to the aerial socket where they pass into the r.f. stage and out again to earth. The r.f. stage selects the wanted signal, amplifies it and applies it to the mixer where a further stage of frequency selection is encountered. The local oscillator is maintained at a frequency 465 kHz higher than the incoming signal by the tuning control. The mixer, which is aptly named, mixes the two together and supplies a 465 kHz difference frequency complete with modulation (programme) to the intermediate frequency (i.f.) stages. Here the signal is amplified and further selectivity is encountered.

The output from the i.f. stages is applied to the detector where the audio is extracted and applied to the audio amplifier. The output goes either to headphones or to a further amplifier which drives a loudspeaker. The output from the i.f. stages is also fed to the automatic gain control (a.g.c.) circuit, which adjusts the gain of the amplifiers in the r.f. and i.f. stages in sympathy with the strength of the signal.

That, very briefly, is the make-up of the supersonic heterodyne receiver, to give it its full name. In this case the

heterodyne is 465 kHz which is the standard value used in the UK. Anyone interested in the history and development of the superhet should try to get hold of a copy of The Superhet Receiver by Witts. first published in 1935. There are a number of later editions and although long out of print, copies can be found in secondhand bookshops. This book contains a fascinating account of the efforts of the early radio experimenters to produce a design that is now regarded as standard throughout the world.

Images

To get back to the block diagram. It is important that a receiver intended for DXing should have an r.f. stage. The majority of domestic receivers do not have one, the aerial going straight to the mixer. As well as increasing sensitivity, the r.f. stage helps to reduce what is known as second-channel or image interference. The mixer can produce the 465 kHz heterodyne in two ways-by beating with a station 465 kHz lower than itself, and also by beating with one 465 kHz higher. The second is the image. For example, if the receiver is tuned to $6180 \mathrm{kHz}(49 \mathrm{~m}$ band), the local oscillator will be generating 6645 kHz and the image will be 7110 kHz (41 m band). The selectivity in the r.f. stage reduces the strength of the image compared with the wanted signal.

It is easy to tell if a receiver has an r.f. stage. Have a look inside at the tuning capacitor. It should be a threegang, one section for the r.f., one for the mixer and one for the oscillator, all under the control of the main tuning knob. The dotted lines in Fig. 1 represent the 3-gang tuner. If it is only a twin-gang then there is no r.f. stage. Paradoxically, a receiver without an r.f. stage will sound a lot more lively than one with an r.f. stage. It picks up many more stations, in the example quoted. in the 49 m band plus the stronger images in the 41 m band. A receiver with poor image rejection will pick up the stronger stations at two points on the dial and this effect becomes worse the higher in frequency you go.

Automatic Gain Control

The a.g.c. does electrically what you can do for yourself manually-turn down the volume when listening to a strong station: turn it up to hear a weak one. The a.g.c. does it much faster and is therefore useful for dealing with fading. There are occasions, though, when you are better off without a.g.c. When two stations are operating on the same frequency, there will probably be a beat of a few hertz, equal to the slight difference between them. This can occur even if one station is a lot weaker than the other. The a.g.c. will follow the beat and may produce an unpleasant blasting effect at the loudspeaker. If you are searching for a weak station close to a strong one then the a.g.c. may respond to the strong station, reducing the receiver gain. so that the weak one is missed.

A.G.C. ON/OFF Switch

An a.g.c. on/off switch is fitted to communications receivers but seldom to other types. If you switch off the a.g.c. then you must be able to adjust the r.f. and i.f. gains. otherwise strong stations will cause overloading, therefore a separate r.f. gain control will have to be provided. In spite of the name, the r.f. gain control usually controls the gain of both r.f. and i.f. stages. To operate a receiver with the a.g.c. switched off: adjust the volume (a.f. gain) to a comfortable level and follow the strength of the incoming signal with the r.f. gain control, which replaces the a.g.c.

To sum up, a receiver for DXing should have an r.f. stage to provide adequate sensitivity and freedom from images. You can check by examining the tuning capacitor. It is also desirable to be able to switch off the a.g.c. but if you do this then you must have a manually operated r.f. gain control as a replacement.

Radio Finland QSLs

From Tullebody in Scotland comes a note from James Thompson who is a civilian instructor on radio with the ATC and a keen DXer. He sent a reception report to Radio Finland expecting to get a listener card in return. but much to his surprise he received a proper QSL giving the date, time, frequency and verifying that the report was correct. Whether this is the result of a genuine change of policy or the result of an error is not clear but let's hope it is the former.

Readers' Letters

The National Panasonic RF1 105 is in the news again with a report from E. Roper who obtained his first experience of s.w. listening with this receiver and is more than satisfied with its performance. He finds that by increasing the diameter of the tuning control to 75 mm , a more sensitive touch was obtained when tuning. Fitting a large knob to the tuning control is an old dodge, but it can spoil the appearance of the receiver. DX picked up with the RFI 105 included Pakistan on the 16 m band at 1100 , Afghanistan on 19 m at 1600 and Radio Australia on 25 m at 1900 .
"I am at present compiling a survey of the FRG-7 as there seem to be so many conflicting reports about these receivers." writes George Tyler from 41 Park Crescent, St George. Bristol BS. 'AY. George has already contacted about 20 FRG- 7 owners and he would like to hear from more as he thinks some hints and guidelines could emerge from his survey. In particular he would like to know the good points, the faults and how the FRG-7 performs with an a.t.u., audio filter, etc. George has promised me a copy of the survey when complete and a summary of it will appear in this column. See also Special Product Report this month. Ed.

Arthur T. Cushen, MBE, writes from New Zealand to say that his book The World in my Ears will be published in August or September 1979. It is the story of a blind radio listener who has become a world authority in his hobby and who is a regular broadcaster on RNZ and Radio Nederland. The book, which is partly autobiographical and partly a guide to short-wave listening, can be obtained direct from Arthur Cushen, 212 Earn St, Enwood, Invercargill. New Zealand, at a pre-publication price of $£ 7$ until June 30 .

DX Heard

Japan has been heard on 9585 kHz at 2000, SIO 433 by Chris Howles (Lichfield) using his Vega 206 and 40 ft loft aerial. David Stevenson (Thurso) has a National Panasonic receiver and a 100 ft length of wire wound round his bedroom and he picked up Afghanistan on 11805 at 1900 and Taiwan on 15425 and 15345 at 0100. Bob Bell (Blyth) reports hearing Radio RSA on 25790 kHz in the 11 m band at 1520. According to a recent report in Sweden Calling DXers, IBA Jerusalem is now on 25640 kHz as well as on 25645 , Radio Nederland is on 25650 at 0800 and the VOA is also on 25880 kHz .

A newly-acquired Sanyo RP 8880 is in use by newcomer to the s.w.s Alan Curry (Stockton-on-Tees) who
pulled in Japan on 15195 in English at 2300 using the telescopic aerial. All India Radio was logged on 11620 at 2225, SIO 444 with a programme in English about the Indian fishing industry. Mark Hattam (Hereford) is amazed at propagation on the 13 m and 16 m bands (the higher frequencies are really opening up now). His Realistic DX160 and 45 ft long wire pulled in VOA Philippines on 17780 at 1500 , Chile on 17715 at 2330 and Peking 17680 kHz all in the 16 m band. P. R. Sixe (Cambourne) is puzzled by Radio Naçional de Colombia which was noted on 13848 kHz and he wonders if this could be the first station to appear on the new 22 m band. This band has not (yet) been authorised and you may have heard a harmonic. Craig Kelly (Walsall) has been unable to identify a station on approx 31.2 m with the call Hebra Radio (anyone any ideas?). David Grimshaw (Bury) has an FRG-7, long wire and a.t.u., and he reports that Radio Japan comes in well on 17795 and 17825 kHz , in English, at 0800.

by Ron Ham BRS15744

The propagation of radio waves between two points is a complex subject, because, whatever the wavelength of the transmitted signal it must travel somewhere through the earth's gaseous atmosphere, which, in a variety of ways can be upset by the sun. Every month, with the help of my readers, I endeavour to show what natural events have taken place and how our terrestrial radio communications are affected. New readers to my column often ask about basic reading matter so they can better understand such words as aurora, meteor scatter, sporadic-E, sunspots and solar radio noise, so, my first suggestion is, Chapter 11 , in Volume 2 of the RSGB's Radio Communication Handbook (Fifth edition), and secondly, J. A. Ratcliffe's Sun Earth Radio, World University Library.

Solar Activity

On March 21, Cmdr Henry Hatfield, Sevenoaks, recorded bursts of solar radio noise at both 136 and 1296 MHz , on the 22 nd he saw an active plage through his spectrohelioscope and on the 23rd he counted between 30 and 40 sunspots, in 8 groups, in addition to a long ribbon flare. Nigel Fisher, South-East Essex Astronomical Society, recorded a solar burst at 60 MHz during the morning of the 27 th and I heard strong solar noise in the 10 m band at midday on the 30 th . During the BBC's World Radio Club programme on April 8, Lucian Prechner said that ionospheric conditions were disturbed between April 2 and 6 , mainly on the western paths, which was no doubt caused by the very large sunspot group, about 35 spots, and a long arched filament which occupied almost a quarter of the sun's diameter. This was a massive affair, bearing in mind that the sun's diameter is about 865000 miles.

It was not surprising that Henry Hatfield, John Smith, Rudgwick, Sussex, and myself, were recording a solar noise storm, Fig. 2, at 136,142 and 146 MHz during the

Fig. 2: Chart recording of solar noise received on 135.95 M Hz on 3 April 1979 by Henry Hatfield
morning and early afternoon of the 3rd. On the 5th, Henry noted that the large sunspot group was declining and the filament was much less active, explaining why we recorded only a few small bursts on the 4 th and a slight noise storm on the 5th. Bursts of about 5 minutes duration were recorded around midday on the 8th and 11 th, one 1.5 minute burst at 1310 on the 14 th, and a 4 minute burst during the midday observation on the 16 th.

The 10 Metre Band

Apart from the relatively few disturbed periods, 10 m conditions were generally good between March 19 and April 16. On March 22, Harold Goble G4FDQ, Lancing, worked all Continents, UA6, VE, ZL3, 4S7, 5N2, and 8P6, on 10 m using his KW 2000A into a 66 ft end-fed long-wire aerial. The band was so good on the 22 nd , a VK station told Harold, that they were burning the midnight (local time) oil working DX. "The band was running wild," said Harold; too true it was, around 1900, I was at a meeting of the Mid-Sussex ARS and listened to Alan Baker G4GNX, have a 59 contact with WB4HHY, Utah, using the club station G3ZMS. At 0843 on the 22nd, Ern Hoare G3RZD, Hove, and Harold had a joint QSO with 9 H 1 CD who has established a beacon, using his own callsign on 432.25 MHz , for use during the sporadic-E season, reports, of course, are welcome. Back in July 1976, Ern worked 9H1CD on 2 m phone, during a sporadic-E disturbance.

From my own observations the 10 m band was blacked out during the early mornings of March 23, 28, 30, and April 4, 6, 7, 15 and 16. The event on March 30 was reported by the BBC World Service and on April 4 the disturbance persisted for most of the day. On the majority of days throughout the period I received signals, averaging 549 , from the International Beacon Project stations in Bahrain A9XC, and Cyprus 5B4CY, but, unlike previous months, the signals from the German beacon, DLOIGI, were much less frequent. During the afternoon, on the good days, signals, about 559 , were heard from the Bermuda beacon VP9BA. The RSGB are responsible for the IBP service and in the April issue of Radio Communication they say: "The establishment of the beacon stations has stimulated scientific interest in the propagation paths revealed by reception of the beacons. In addition, they fulfil a practical role by providing signals on what may otherwise be a dead band."

Aurora

The aurora borealis which followed the big solar storm on April 3 began around 2300 and ended during the early hours of the 4th. Alan Baker noticed that the 20 m band was almost dead towards the late evening of the 3rd, and what weak stations there were had an auroral tone. He soon checked the 2 m band, turned his beam just east of north and had an auroral contact with G8BHH, Wolverhampton, and heard GM4COK, GM4DSZ and GI4GID. John Cooper G8NGO, Cowfold, Sussex, using his 14-element beam, had 59A contacts with G4HSS, GM4DSZ, GM8EYB, and weaker contacts with G8LHT, Doncaster, and G8RHI. John also heard GM8NET and tried to contact GI4GID who was very strong in southern England, but the pile up to work him was too great.

During the event I heard G8ODN, GI4GID, GM4COK and GM8NET. Up in Scotland the aurora affected v.h.f. signals earlier in the evening and between 1700 and 2000 GMT John Branegan GM8OXQ. Saline. Fife, heard $5 \mathrm{Gs}, 4 \mathrm{GIs}, 7 \mathrm{GMs}, 2$ LAs, 1 PA0 and the 2 m beacons in Germany DLOPR, Northern Ireland GB3GI, and Cornwall GB3CTC. Dermot Cronin EI9DC/G4GRO, who normally reports from the Royal Sovereign Light, heard, at his home in Killiney, tone-A signals from G, GI, GM and LA during the evening of March 29. John Branegan said it was "A very odd aurora", and between 1700 and 1830 he heard signals from EI, DL, LA, G, GI, GM, OZ, SM and the beacons from Cornwall and Germany. At 1746, John heard EI3S, OZIOF, GM3UU and GI5AJ all calling at once and writes: "they all appeared at or near the same tuning point but they were clearly not hearing one another. However. the OZ called the EI and was answered by the GI so at

least he got a QSO eventually". Auroral signals, mainly confined to GM, were heard by John during the early evenings of March 22, 26 and 27 and, around 1115 on April 13, Alan Baker noticed that some 10 m signals had an auroral tone.

European DX

While at the BBC on April 6, I met Rudolf Heim, Secretary General of the European DX Council, who was visiting Bush House to see a recording of World Radio Club. The EDXC has some 35 member organisations throughout the world, among whom are several international broadcasters acting as observers. Rudolf told me that only about 10 per cent of broadcast DXers are interested in v.h.f. and TV DX, but the number is growing. The Dutch are well ahead in this field however, and have some remarkable aerial systems. Some German clubs are moving in this direction and the German DX Federation, AGDX, frequently publish their own v.h.f and TV DX Bulletin. The use of Citizens' Band in Germany is popular among people of all age groups.

Radio Astronomy

John Smith is experimenting with a receiver to record the bursts of radio noise which come from Jupiter between 20 and 30 MHz . So far he has built a pair of 4 half-wave dipoles on a 300 metre baseline, the signals being fed to an FRG-7 followed by a d.c. amplifier to drive a pen recorder. John is also working on a microprocessor, based on the SC/MP chip, to drive his 30 ft dish which he intends to use for astronomical observations at 1420 MHz .

Satellites

As a result of John Branegan's article about 70 cm propagation from satellites, published in the quarterly journal of AMSAT-USA, he has been busy answering letters, one of which came from JR ISWB, editor of the Japanese OSCAR NEWS. John is pleased to do this and play his part in the international co-operation of the OSCAR project. His talk on satellites to the Mid-Lankark ARS was well received. Recently, John's first QSL card arrived from OK3CDI for a contact through the Russian satellite, RS-1 and another card from W4AXR, Florida, confirming his best DX to date, 4300 miles, via OSCAR 7B. So far, John has had nearly 50 satellite QSOs with W2BXA who was the first amateur to work 100 countries via satellite and the one who helped John through his first transatlantic QSO via OSCAR.

Tropospheric

The predominantly poor weather conditions and the low atmospheric pressure between March 19 and April 12 gave little help to the v.h.f. enthusiast, in fact at midnight on March 27 it was 29.1 in and only just reached 30 - lin for a few hours on the 23 rd, when a brief improvement in conditions took place. Suddenly, on Good Friday, April 13. the weather turned warmer, the pressure began to rise and by midday on Easter Sunday it was $30 \cdot 2$ in and rising. At 2200 on March 23, Alan Baker heard DB5KGI and PA3ALK on 2 m s.s.b. and at $2320, \mathrm{ON6CP}$ on c.w. At 1931 on April 13, Alan had a difficult QSO with F3CF, Lille, and heard G3BDQ in nearby Hastings working a German station on 2 m s.s.b. Later, Alan, from his home in east-Sussex, worked stations in Bedfordshire, Hampshire and Kent, via the London repeater GB3LO, R7. At 0853 on the 15 th, I heard a QSO between GB2RN, HMS Belfast, London and G4EVI, Yeovil, Somerset, via the

Hampshire repeater GB3SN, R5 and both stations were saying that they had not heard SN so strong for a long time.

Around 0730 on the 16 th , I heard signals through GB3BC on R6, received a picture from Lichfield on Ch. 8, $(189 \mathrm{MHz})$ and noted some continental interference to the BBC stations in Band II. During the day Barry Ainsworth G4GPW, Sompting, Sussex and Roy Bannister G4GPX, in nearby Lancing, had a QSO via the French repeater FZ2THF on R9 and around 1530, G4GNX worked DJOJW/A and DLOGO, who were both at their club station. DD8EE and using 4×21-element beams on 2 m s.s.b.

DX Television

On April 1, Andrew Coetzee, one of my readers in Transvaal, SA received Ch. 1 BBC TV. 45 MHz on his KB receiver with a dipole aerial. Although the vision was only good enough to make out the figures, the sound was very strong. Congratulations are also due to Andrew, who has passed his amateur exams, and now has a restricted licence, callsign ZR6QP.

PRACTICAL WIRELESS

WHEN REPLYING

TO ADVERTISEMENTS

Part of John Tye's shack, on the right is home constructed equipment for 13 and 23 cm

John Tye's interest in radio began around 1940 when, at the age of 14, he assisted with the servicing of broadcast receivers. His fascination for communications was fostered through listening to the short-wave bands on the government surplus receivers, R107 and R1155, which became available soon after the war. Later he joined the RSGB and, as BRS 27622, expanded his listening activities, with home-brew equipment, into the v.h.f. bands. John passed the RAE in May 1968 and, although he was soon active on 2 m as G8BYV, his mind was set on building gear and experimenting on the centimetric bands. He passed the Morse test in 1973, and was then granted the callsign G4BYV.

John's signals have been heard in many European Countries on 70, 23 and 13 cm from his home in Dereham, Norfolk and in September 1976 he earned the No. 1, Four Metres and Down, Microwave award from the RSGB for a contact of 883 km on 1.3 GHz with SK6AB. By the end of that year, he had achieved enough confirmed QSOs to qualify for the Society's 23 cm award and the 70 cm Senior award. One of John's overseas honours came in October 1973 when he received the Mirabel II certificate for sending a tape recording of Mirabel's 1296 MHz beacon to F2LM. Mirabel II was a transponder with an up and down link on $144-432 \mathrm{MHz}$, and a beacon on 23 cm . It was launched from Nancy, France, by balloon and descended by parachute.

John`s present aerial array, consisting of a 13 -element Yagi for 70 cm , an 8 -element Yagi for 2 m and separate 4 ft dishes for 23 cm and $9 / 13 \mathrm{~cm}$, is mounted on a tower which can be raised if required. For almost 30 years, John, a carpenter by trade, has been a reader of Practical Wireless and is supported in his amateur radio activities by his wife, Joan, who enjoys listening to the h.f. bands when driving their car. For the future, John plans to stay on the centimetric bands, use s.s.b. on 9 cm and develop gear for 6 cm .

\begin{tabular}{|c|}
\hline \multicolumn{4}{|l|}{TTLS BY TEXAS} \& 74221
74251 \& ${ }_{140 \mathrm{p}} 1$ \& 74LS192 \& 140 p
140 p

d \& \[
$$
\begin{aligned}
& 74 C 157 \\
& 74 C 160
\end{aligned}
$$

\] \& $57{ }^{250} \mathrm{p}$ \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{| LINEAR I．C． g |
| :--- |
| AY1－0212 © |
| －AYi． 1313 cesp |}} \& \& \& \multicolumn{4}{|l|}{TRANSISTORS} \& \multirow[t]{2}{*}{TIPAC TIP42A} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 71 p \\
& 70 p
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& \text { 2N } 3886 \\
& \cdot 2 \mathrm{~N} 3 \mathrm{SOS} / 4
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 90 p \\
& 10_{0}
\end{aligned}
$$

\]} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[

$$
\begin{aligned}
& \text { DIODES } \\
& \bullet \text { BY127 }
\end{aligned}
$$
\]}}

\hline 7400 \& 13p \& 7497 \& 180p \& 74251 \& 140 p \& 74LS193 \& 140p \& 74 C 160 \& 155 p \& \& \& ${ }^{-1} \mathrm{MCl}^{488}$ \& $100 p$ \& AC127／8 \& 20p \& BFY51／2 \& p \& \& \& \& \& \&

\hline 7401 \& 14p \& 74100 \& 130p \& 74259 \& 250 p \& 74LS195 \& 14 p \& $74 \mathrm{Cio1}$ \& 1 153p \& \& \& MC3340 \& 120p \& AD149 \& 70p \& BFY56 \& 33 p \& TIP2055 \& 2 p \& －2N303／6 \& 250 \& －0A81 \& ${ }_{50}$

\hline 7402 \& 14p \& 74104 \& 65p \& \& \& \& p \& \& 2 155p \& \& \& \& \& AD161／2 \& 45 \& BFY60 \& 0 0 \& \& \& \& \& \& 5 p

\hline 7403 \& 14p \& 74105 \& 65 p \& \& \& 74LS221 \& \& 74 Cl 16 \& \& \& \& － \& \& BC107／8 \& 11p \& BLY83 \& 700p \& T1P3035 \& 70 p \& － \& \& 析 \& 15p

\hline 7404 \& 17p \& 74107 \& 34 p \& 74279 \& 140 p \& 74LS240 \& 175p \& $74{ }^{\text {c }}$ \& 4120 p \& －AY5－1315 \& 80p \& K50398 \& 750 \& 8C109 \& \& \& 45 P \& －T1S93 \& ${ }_{30}{ }^{\text {P }}$ \& －2N4060 \& 120 \& －0A90 \& p

\hline 7405 \& 16 p \& 7409 \& 55p \& 74 \& \& 74LS242 \& 175p \& $74 \mathrm{Cl}{ }^{\text {7 }}$ \& 4 20p \& 317 \& ${ }^{3} \mathrm{P}$ P \& －NES40 \& 130p \& ${ }^{-8 C 147 / 8}$ \& 9 P \& 8S×19／20 \& 20p \& －ZTX108 \& 12p \& －2N4123／4 \& 22p \& －0A95 \& p

\hline 7406 \& 32 p \& 74110 \& 55 p \& 74285 \& 400 \& 74LS243 \& 175p \& 74 C 175 \& 5 21\％p \& －AY5－1320 \& 320p \& NES43K \& 235 \& －8C149 \& 10p \& －BU108 \& 180p \& －ZTX300 \& $11 p$ \& －2N4125／6 \& 22p \& －o A200 \& p

\hline 7407 \& 32 p \& 7411 \& 70p \& 74290 \& 150 p \& 74LS245 \& 175p \& 74 Cl 192 \& $2{ }^{151}$ \& －CA5018 \& p \& NES55 \& 25p \& －8C157／8 \& 10p \& －BU205 \& 200 \& －ZTX500 \& 15p \& 2N4289 \& 20p \& －OA202 \& 10 p

\hline 7408 \& 19 p \& 74118 \& $200 p$ \& 74293 \& － \& 74LS251 \& 200p \& 74 C 193 \& 3 150p \& －CA3048 \& 205 \& NE556 \& 74 p \& － \& $11 p$ \& －8U208 \& 240 p \& －ZTX502 \& 18 p \& －2N4401／3 \& 27p \& －1 N914 \& $4 p$

\hline 7409 \& 19 p \& 7418 \& \& 74794 \& 200 p \& 74LS257 \& 120 \& 74 C 194 \& 4220 \& CA3080 \& 22p
720 \& NE5618 \& 425p \& －8C172 \& 12p \& －8U406 \& 145 p \& －Zrx 504 \& 30 p \& 2N4427 \& 90p \& －1N916 \& $7 p$

\hline 741 \& 15p \& 74119 \& 210 p \& 74298 \& 200 p \& 74LS259 \& 175p \& 74 C 195 \& 5 110p \& CA3080E \& 225 \& NE5628 \& 485 \& ${ }^{-8 C 172}$ \& 12 p \& MJ481 \& 1750 \& 2N457A \& 250p \& 2N4871 \& 60p \& ${ }^{1} 1 \mathrm{~N} 4148$ \& 4 p

\hline \& 24 \& \& 1100 \& 74365 \& 150 p \& 74LS298 \& 249p \& 74.221 \& 1715 p \& Ca3090 A \& 2375 \& NES65 \& 423p \& 8 \& p \& MJ491 \& 200p \& 2N696 \& ${ }^{35 p}$ \& －2N5087 \& 27p \& 1N4001／2 \& $5 p$

\hline 7412 \& 20 p \& 74121 \& 28. \& \& \& 74LS373 \& 200p \& \& \& CA3130S \& 1000 \& 585 \& \& \& p \& M J2501 \& 245p \& 2N697 \& $25 p$ \& 2N5089 \& 27p \& $1 \mathrm{~N} 4003 / 4$ \& \％

\hline 7413 \& 34 p \& 74122 \& 44 p \& 74366
74367 \& 150 D \& 74LS374 \& 195p \& 40008 \& SERIES \& CA3130S \& 100p \& NE567 \& 175p \& －8C182／3 \& 19 p \& M M 2955 \& 100 p \& 2N697 \& 45 p \& 2N5172 \& 27p \& 1 N 4005 \& 8 p

\hline 14 \& 60 \& 23 \& \& 74368 \& 150p \& 89LS95 \& 120 p \& 4001 \& 17 p \& CA3140E \& 70 \& RC4151 \& \& \& 11 p \& MJ3001 \& 225 p \& 2N706A \& 20 p \& 2N5179 \& 27p \& 1N4008／7 \& 7p

\hline 7416 \& 27 p \& 74125 \& ${ }^{55}$ \& 74308 \& 1300 \& $81 \mathrm{LS98}$ \& 180 p \& 4001 \& $17 p$ \& CA3160E \& 750 \& －${ }^{\text {R }}$ NT76003N \& 409p \& \& 30p \& －MJE340 \& $65 p$ \& 2N708A \& 20 p \& 2N5191 \& 330 \& 1N5401／3 \& 14p

\hline 7417 \& 270 \& 74126 \& E0 \& 74390
74393 \& 2000 \& $81 L 597$ \& 120p \& 40 \& 170 \& ${ }^{\text {FX209 }}$ ICL7108 \& ${ }^{750}$ \& －SN76013N \& p \& ${ }^{-} \mathrm{BC} 212 / 3$ \& 110 \& MJE2955 \& 100p \& 2 N 1818 \& 45 p \& 2N5194 \& 0 \& 1N5404／7 \& 19p

\hline \& 17 p \& 74128
74132 \& \& 74490 \& 2250 \& 81 LS 98 \& 20p \& 4007 \& 11p \& ICLL0038 \& 340 p \& －SN76013ND \& \& ${ }^{-8 C 214}$ \& 12p \& MJE3055 \& 70p \& 2N930 \& $1{ }^{1} \mathrm{p}$ \& ${ }^{-2} 2 \mathrm{~N} 5245$ \& 40 p \& ${ }^{\text {C }}$ ZENER \&

\hline 7422 \& 22 p \& 74132

74136 \& 75 \& $$
\begin{aligned}
& 7490 \\
& 74
\end{aligned}
$$ \& \& $8{ }^{8} 28$ \& 230 p \& 4008 \& 10 p \& \& 34 p \& － \& 120p \& 8 \& 3 ¢ \& －MPF102 \& 45p \& 2N1131／2 \& 20p \& 2N5296 \& 55p \& $2.7 \mathrm{~V}-33 \mathrm{~V}$ \&

\hline 7422 \& 32 p \& 74141 \& $$
\begin{aligned}
& 75 p \\
& 70 p
\end{aligned}
$$ \& SERIES \& \& 9308 \& $1{ }^{160}$ \& 4009 \& 40 \& LM3014 \& 100 p \& －SN76023N \& 1400 \& $8 \mathrm{BC4778}$ \& 30 p \& －MPF103／ \& 1440p \& 2N1813 \& 25p \& N540 \& 50p \& 400 mW \& p

\hline 7425 \& 30 p \& 74142 \& 200p \& 74LS00 \& 18p \& 9302 \& 175p \& 4010 \& 50 p \& LM318 \& \& －SN76023ND \& \& －8C5487 \& 30p \& ＇MPF105／ \& 1640p \& 2N1711 \& 25p \& －2N5457／8 \& 40p \& 1 W \&

\hline 7426 \& 40 p \& 74145 \& \％p \& 74LS02 \& 18p \& 9308 \& 317 \& 4011 \& 17p \& LM324 \& 70p \& \& 120p \& －8C549C \& \& －MPSA0 \& 30p \& 2N2102 \& 60p \& －2N5459 \& 40 p \& SPECIA \&

\hline 7427 \& 34 p \& 74147 \& 100p \& 74LS04 \& 20D \& 9310 \& 275 \& 4012 \& 16p \& LM339 \& do \& N78033 \& 175p \& ${ }^{-8 C 5578}$ \& 16p \& －MPSA12 \& 2 30p \& 2 N 2160 \& 120p \& 2N5460 \& 40 p \& OFFERS \&

\hline 7428 \& 30 \& 74148 \& 150p \& 74LS08 \& 22 p \& 931 \& 275 \& 13 \& 50 p \& LM348 \& 95p \& －SP8515 \& 50 p \& ${ }^{-8 C 559 C}$ \& 16p \& －MPSAS \& 32p \& 2N2219A \& ${ }^{20} 9$ \& ${ }^{2} 2 \mathrm{NS} 485$ \& $4{ }^{4} \mathrm{p}$ \& $100+741$ \&

\hline 7430 \& 17p \& 74150 \& Pp \& 74LS 10 \& \& 9314 \& 165 p \& 4014 \& \& －LM377 \& 175p \& 61819 \& \& BCY70 \& 18p \& －M \& \& 2N2369A \& 16 \& 2N6247 \& 10 \& 200 555 \&

\hline 7432 \& 34 p \& 74151 A \& 70p \& $74 \mathrm{LS13}$ \& ${ }^{31} \mathrm{p}$ \& 9316 \& 20p \& 4015 \& 45p \& －LM380 \& 75 p \& \& \& 8CY71／2 \& 22p \& 0 O 28 \& 130 \& 2N2484 \& 30 p \& 2N6254 \& 130p \& c20 \&

\hline 7433 \& \& 74153 \& 70D \& 74LS14 \& 100 \& 9322 \& 150 D \& 4016 \& P \& －LM381 AN \& 150 p \& －${ }^{\text {PA8A810 }}$ \& 10 \& 8D131／2 \& 50p \& $0 \mathrm{OC35}$ \& 130 p \& 2N2646 \& 50p \& 2N6290 \& 5 \& \&

\hline 7437 \& 35 p \& 74154 \& 199p \& S20 \& 22 p \& 9388 \& 200 \& 18 \& ${ }^{2} \mathrm{p}$ \& －LM389N \& 140 p \& －TBA820 \& \& $80 Y 56$ \& 200p \& －R20088 \& 209p \& 2N2004／5 \& 20 \& 2N8292 \& 65 \& RCA 2N3 \& 055

\hline 7438 \& ${ }^{35}$ \& 7455 \& 9 ¢ \& 74LS22 \& 23 p \& 9370 \& \& 4018 \& \& \& \& － \& 175 \& BF200 \& 32p \& －R2010日 \& 2000 \& 2N2908A \& 24p \& 2N128 \& 120p \& c35 \&

\hline 7480 \& 170 \& 74156 \& \& 74LS27 \& \& 9374 \& 200 \& 4020 \& \& LM710 \& 50p \& TCA940 \& 175p \& －BF2448 \& 35p \& －TIP29A \& 40 p \& 2N2907A \& 30p \& 3N140 \& p \& BRIDGE \&

\hline 7441 \& 70p \& 74157 \& 70p \& 74LS30 \& 22 p \& 9601 \& 100 p \& 4020 \& $110 p$ \& LM733 \& 100 \& TDA102 \& 400 P \& －8F2568 \& 70p \& －TIP29C \& 55p \& －2N2926 \& 9p \& 3N201 \& 110p \& RECTIF \& R

\hline 42 \& \& \& \& \& D \& 9802 \& 175 \& 4021 \& 110 D \& LM741 \& 23 p \& XR2206 \& \& BF257／8 \& 32p \& －TIP30A \& 4 p \& 2N3053 \& 20 p \& 3N204 \& 100p \& 1 A $50 V$ \&

\hline 743 \& 12 p \& 74160 \& 10p \& 74LS55 \& 30 p \& 9803 \& 60 \& 4023 \& 22 \& LM747 \& 750 \& XR22207 \& $4{ }^{75}$ \& 日F259 \& 36p \& －TIP30C \& \& 2N3054 \& 5 p \& 40290 \& 250p \& － 1 a 100 V \& 22p

\hline 7444 \& 112 p \& 74161 \& 1 \& LS \& 50 p \& INTER \& CE \& 4023 \& 22 p \& LM748 \& 35 p \& XR2216 \& 675p \& －BFR39 \& 30p \& tip31a \& Stp \& 2N3055 \& 440 \& 40360 \& 40p \& －1A 400 V \& 30

\hline 7445 \& p \& 74182 \& \& 74LS74 \& 40 p \& I．C．S \& E \& 4024 \& $2{ }^{\text {20 }}$ \& LM3800 \& 70p \& XRE240 \& 400 p \& －BFR40 \& 30 p \& TIP3iC \& 2p \& 2N3442 \& 1400 \& 40361／2 \& 45p \& －2A 50V \&

\hline 7446 A \& ${ }^{93} \mathrm{p}$ \& 74163 \& 10p \& 74LS75 \& ${ }^{30 \mathrm{p}}$ \& MC1488 \& \& 4025 \& 130 \& LM3811 \& 130p \& 2N414 \& \& －8FR41 \& 30 p \& TIP32A \& 68 \& 2N3553 \& 240p \& 40364 \& 120p \& －2A 100V \&

\hline 7447 \& 70p \& 74164
74165 \& 1240 \& LS83 \& 1100 \& MC1489 \& 100 p \& 4027 \& 13 \& LM4136 \& 120p \& ZN424E \& 1350 \& －BFRJ9 \& 30 p \& TIP32C \& 62 p \& ${ }^{2}$ 2N3565 \& 30 p \& 40408 \& 70p \& －2A 400V \&

\hline 7448
7450 \& 170 \& 74165
74166 \& 134 p \& 74LS85 \& ${ }^{109 p}$ \& 75107 \& 160 p \& 4027 \& 84p \& －MC1310P \& 150 p \& 25E \& 400 p \& －BFR 80 \& 30 p \& TIP33A \& 90p \& －2N3643／4 \& \& 40409 \& 85p \& －3A 200V \&

\hline 7451 \& 170 \& 74167 \& 200p \& 74LS90 \& 10 p \& 75182 \& 230D \& 4029 \& $100 p$ \& MC1458 \& 55p \& ZN1034E \& 200 P \& －8FR81 \& 34 p \& TIP33C \& 114p \& －2N3702／3 \& \& 40410 \& \＄5p \& －3A 600 V \&

\hline 7453 \& 17p \& 74170 \& 240p \& 74LS93 \& 10p \& 78450 \& 120 p \& 4030 \& 55p \& C1495 \& 40 \& 95 H 90 \& 0 \& BFX29 \& 30 p \& TIP34A \& 115p \& －2N3704／5 \& 12p \& 40411 \& 304 p \& －4A 100V \& 95p

\hline 7454 \& 17p \& 74172 \& 720p \& 74LS107 \& 45p \& 75451／2 \& 72 D \& 4031 \& \& \& \& \& \& BFX30 \& 34 p \& TIP34C \& 160p \& －2N3706／7 \& 12p \& 40594 \& 7p \& － 4 A 400 V \& 100p

\hline 7460 \& 17p \& 74173 \& 120p \& 74LS112 \& 100p \& 75491／2 \& p \& 4033 \& 180p \& VOLTA \& \& cators \& \& 8FX84／5 \& 30 p \& TIP35A \& 225p \& －2N3708／9 \& 12p \& 40595 \& 105p \& 6 6 50V \&

\hline 7470 \& 36 p \& 74174 \& 85p \& 74LS123 \& 75p \& C－MOS \& I．C．${ }^{\text {c }}$ \& 4034 \& 200p \& xed Pla \& ＋ \& \& \& BFX86／7 \& ${ }^{30} \mathrm{p}$ \& TIP35C \& 290p \& 2 N 3773 \& 300 p \& ${ }^{40663}$ \& Pp \& 8A 100V \& 100p

\hline 7472 \& 30 p \& 74175 \& 65p \& 74LS132 \& 900p \& 74.00 \& 25p \& 4035 \& 110p \& la＋ve \& \& 14 －ve \& \& 8F×38 \& 30p \& TIP36A \& 270p \& －2N3819 \& 25 p \& 40673 \& 0 0p \& 6 6 400 V \& 20p

\hline 7473 \& 34p \& 74176 \& 40p \& $74 \mathrm{LS133}$ \& 60p \& 74.602 \& 25p \& 4040 \& 100p \& 5 V 7800 \& 75p \& $5 V 7905$ \& 100p \& BFW10 \& \& TIP36C \& \& 2N3820 \& \& \& \& \&

\hline 7474 \& 30 p \& 74177 \& 0p \& 74LS138 \& 60 \& 74 CO 4 \& 27p \& 4041 \& 80p \& 12V 7812 \& 75p \& 12V 7912 \& 10 \& \& 22 \& \& \& \& \& \& \& \& p

\hline 7475 \& 34 p \& 74178 \& 140 \& 74LS139 \& ${ }^{0} \mathrm{p}$ \& 74 C08 \& 27 p \& 4042 \& p \& 15V 7815 \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 7476 \& 35 p \& 74180 \& 83 p \& 74LS151 \& 100 p \& 74 C 10 \& 27p \& 4043 \& P \& 18 V 7818 \& 0 \& 18 V 7918 \& 100 \& \& \& \& \& \& T ${ }^{\text {a }}$ \& ATES：All \& Whis \& at 8\％ \&

\hline 7480 \& Sp \& 74189 \& 200p \& 74LS153 \& 60 p \& 74 Cl 4 \& 00 p \& 4044 \& p \& 24 V 7824 \& 0 \& 24 V 7924 \& 100p \& 0.12 \& \& \& \& \& PT \& marked \& whi \& ， \&

\hline 7481 \& 100p \& 74182 \& \％p \& 74LS157 \& 0 p \& 74.20 \& 27 p \& 4046 \& 110p \& 109 mA \& ro．tz \& 100 mA T \& O． 22 \& 0.2 ＂ \& \& 50. \& \& \& \& \& \& \&

\hline 7482 \& 64p \& 74184 \& 1580 \& 74LS158 \& 120 p \& 74.830 \& ${ }^{27}$ \& 4047 \& $100 p$ \& 5V 78L05 \& ${ }^{35} \mathrm{p}$ \& 5 V 79L0 \& 80p \& \& \& \& \& \& \& \& \& \&

\hline 7483 A \& 9p \& 74185 \& 150p \& 74LS160 \& 100 p \& 74.832 \& 34 p \& 4048 \& 55p \& 12V 78L12 \& 35 p \& 12V 79612 \& 80p \& \& \& \& \& \& \& \& \& \&

\hline 7484 \& 10 p \& 74186
74190 \& ${ }^{7000}$ \& ${ }_{74} 74 \mathrm{LS161}$ \& ${ }_{100} 10$ \& ${ }^{74 C 42}$ \& 119 p \& 4049 \& 32p \& 15V 78L15 \& 35p \& $15 \mathrm{~V} 79 \mathrm{L15}$ \& 60p \& Please \& ad \& $25 p$ \& \& \& \& \& \& \&

\hline 7486 \& 34 p \& 74191 \& 100 p \& $74 \mathrm{LS163}$ \& 140 p \& $74 \mathrm{Cl3}$
74085 \& ${ }_{75}{ }^{\text {Pp }}$ \& 4051 \& 50p \& OTHER \& EGUL \& TORS \& \& ptp an \& nd \& AT at \& \& \& \& \& \& \&

\hline 7489 \& 2100 \& 84192 \& 100p \& 74LS 164 \& 120p \& $74 C 74$ \& 70p \& 4052 \& 30p \& LM309K \& $135 p$ \& TBA6258 \& 120p \& approp \& priate \& rates． \& \& \& \& \& \& \&

\hline 7490A \& 33 p \& 74193 \& 109p \& 74LS165 \& 80p \& $74 C 85$ \& 200 p \& 4053 \& P \& LM317T \& 209 p \& T \& 65 \& \& \& \& \& \& \& \& \& \&

\hline 7491 \& 80p \& 74194 \& 100p \& $74 L 5173$ \& 110 D \& $74 C 86$ \& 65 p \& 4055 \& 1250 \& LM323K \& 625p \& 78HOSKC \& 575p \& Govt．， \& Col \& es， \& \& 17 BUR \& N \& Y RO \& \& \&

\hline 7492A \& $4{ }^{4} \mathrm{p}$ \& 74195 \& 95p \& 74 LS 174 \& 119 p \& $74 \mathrm{C9}$ \& ${ }^{95}$ \& 4056 \& 1315 p \& LM723 \& 37p \& 78MGT2C \& 135p \& order \& ac \& ＋ \& \& \& \& \& \& \&

\hline 7493 A \& 33 p \& 74196 \& ${ }^{950}$ \& 74LS 175 \& 110p \& ${ }_{74}{ }^{\text {C95 }}$ \& 130p \& 4059 \& ${ }_{150}$ \& \& \& \& \& \& \& \& \& N \& \& NW10 \& \& \&

\hline 7494 \& ${ }_{74}{ }^{60}$ \& 74197
74198 \& 150p \& 74LS181 \& 320p \& 74 Cl

74 Cl 50 \& | $125 p$ |
| :--- |
| 250 | \& 4060

4063 \& $115 p$

$120 p$ \& \& SPOR \& 2 Np ORP61 \& \& MON－FR \& \& $$
-5.30
$$ \& \& \& \& \& \& \&

\hline 7498 \& 65 \& 74 \& 151p \& 74LS191 \& 100 p \& 74 C 151 \& ${ }_{200 p}$ \& 406 \& 55p \& OCP71 130 \& p ORP \& 90p TIL78 \& 7ep \& 8ATUR \& Day \& 10．30－4．30 \& \& el：（0 \& 1） 4 \& 1500 \& ele \& ： 82 \&

\hline
\end{tabular}

TRANSMITTER RECEIVER MK. 123 very compact Army unit for use in range 2.5 to $20 \mathrm{Mc} / \mathrm{s}$ receiver section 7 valves inc RF stage \& BFO provides O / P for 4 K phones 3 bands with direct cal 2.5 to 5,5 to $10 \& 10$ to $20 \mathrm{Mc} / \mathrm{s}$. Tx section 2.5 to $20 \mathrm{Mc} / \mathrm{s}$ in 3 ranges O/P $15 / 25$ watts over range C.W. only as crystal osc \& 5B254 P.A. will match into the following loads $25,100,500 \&$ 1500 ohm as int tune up meter, reas crystals type FT2543 in range 2.5 to 10 as int morser key with plug for ext key as int mains P.U. for $110 / 200 / 250 \mathrm{v}$ overhaul size $30 \times 9 \times 14 \mathrm{~cm}$ weight 4 kg also supplied with ext invertor unit for use on $12 v$ DC. Supplied in clean condition with 80 page handbook inc circs etc. Price $£ 54$
CABLE FAULT LOCATORS standard mains operated unit contains CRT type DG7-5 $2 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} 16$ valves plus 2 Rect, slow motion dial, large number of misc parts in transit container $£ 25$.
CONTROL BOX aircraft radio sel box contains $4 \mathrm{~min} 1 p \mathrm{c} / \mathrm{o}$ \& 32 p c/o minature toggie swts, 2 small amp units etc $£ 2 \cdot 30$ ea or 2 for £4.
AERIALS special purpose blade aerials precision made with BNC sk at base, length $6 \frac{1}{2}$ or $10^{\prime \prime}$ from top of base $£ 1.75$ either type.
AERIAL dipole overhaul length $50 \frac{1}{2}$ "with centre moulded fairing $23^{\prime \prime}$ dia with BNC sk conn these contain int loading transformer were used on $20 / 50 \mathrm{Mc} / \mathrm{s}$ or if this is removed can be used on nom $125 \mathrm{Mc} / \mathrm{s} £ 2$ ea or 2 for $£ 3 \cdot 50$.
BLOWERS heavy duty single ended for use on 230/250v AC outlet $2 \frac{1}{2} \times 3 \frac{1}{2}{ }^{\prime \prime}$ fix flange $5^{\prime \prime}$ sq req ext cond 2 uf new boxed $£ 10.80$.
VARIAC UNITS for use on $180 \times 500 \mathrm{c} / \mathrm{s}$ dual gang rated 15 amps per section these can be used on $50 \mathrm{c} / \mathrm{s}$ if the I / P voltage is limited to 50 , these can be used to provide var O/P from L.V. trans or across 200/250v taps of H.D. trans to provide var O/P good cond with knob £13.
HELIPOT DIALS standard 10 tr type to fit $3 / 8$ th bush approx $1 \frac{3}{4}$ dia $£ 1.50$ ea or 10 for $£ 12.50$ with 100 K kelipot $£ 2$.
SLOW MOTION DRIVES 9.1 with $\frac{1}{4}$ shaft with knob \& skirt also $2 \cdot 5$ or $25 \mathrm{~K} 360^{\prime}$ pot ex new equip $£ 2 \cdot 30$
PANEL METER edgewise type FSD 100-0-100 Ua scale 100-0100 size front $2 \frac{1}{2} \times 5 / 8$ th $3 \frac{1}{2}{ }^{\prime \prime}$ deep new $£ 2.75$.
U.H.F.T.V. tuners manual tuned type transis with circ new $£ 2.50$.

PHOTO TRANSIS type FPT120 end viewing high sensitivity with data new 60 p ea 2 for $£ 1$.
PANEL METERS assorted types mostly $\frac{2}{3}{ }^{\prime \prime}$ dia types all moving coil new 4 different for E 4 .
TEST SET DEVIATION frea 65 to $75 \mathrm{Mc} / \mathrm{s}$ with int crystal check at $70 \mathrm{Mc} / \mathrm{s}$, as 1 Ma meter, slow motion dial ass, atten etc no details thought to be part of Microwave Link test equip 200/250v I/P good cond f 17 .
DYNAMOTORS small American pattern 1/P 24 v DC o/p 250 v at 60 Ma suit command sets good cond $£ 3.50$.
RECTIFIER UNITS ex Army unit 200/250v I/P as dual DC O/Ps of 12 v at 3 amps can be connected for 12 v 6 a or 24 v 3 a will do 4 amps okay for battery chargers in steel case good cond with circ E10.80.
AUDIBLE WARNING DEVIZE $1 \frac{1}{2}{ }^{\prime \prime}$ dia will work on $6 / 12 v$ DC solid state gives tone about $800 \mathrm{c} / \mathrm{s}$ takes 100 Ma at 12 v new £ 1 ea 2 for $£ 1.70$ or 10 for $£ 7.50$.
FILM RECORDERS special aircraft 16 mm film recorders for use on 24 v DC with cassete good cond in transit container $£ 16$.
FANS extractor type fans for $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$ Adm Patt cont rated mounting flange $7 \times 8^{\prime \prime}$ with front guard $7^{\prime \prime}$ deep. new boxed $£ 7 \cdot 50$.
TEST SET contains meter 5-0-5 Ua scale linear 5-0-5 $3^{\prime \prime}$ dia complete in neat carrying case size $10 \times 8 \times 7 \frac{1^{\prime \prime}}{}$ good cond meter tested E8. 50.
DOME BELLS $11 \frac{1}{2}^{\prime \prime}$ dia $6^{\prime \prime}$ deep chrome with red base American made these are spring powered with solenoid control were used for supply failure warning, will adapt to most control voltages will ring when supply removed, new some blemishes due to storage $£ 25$.
METER UNIT 0 to 40 amps DC with shunt $2^{\prime \prime}$ dia m.c. flush mt new $£ 3$.
MANUALS \& CIRCUIT DIAGRAMS we can supply these for ex M.O.D. equipments, test gear etc.

Above prices include Carriage \& VAT.
Goods ex equipment unless stated new.
S.A.E. for List 22 or enquiry.

A. H. SUPPLIES

122, HANDSWORTH RD. SHEFFIELD S9 4AE Phone: 444278 (0742)

This 195 mm long, all metal, high suction, desoldering tool with re. placeable Teflon tip enables removal of molten solder from all sizes of pcb pads. Primed and released by thumb, it incorporates an anti-

recoil system and built in safety guard. Only $£ 6.80 \mathrm{inc}$. VAT \& P.P.
 Tuli: UNIUUL:
 HIV: UROBREADBOARD

Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to .85 mm (dia
500 individual connections in the central breadboarding area spaced to accept all sizes of DIL package without running out of connection points, plus 4 Integral Power Bus Strips around all edges for minimum inter.connection lengths
All connection rows and columns are now numbered or lettered enabling exact location indexing.
Double-sided nickel silver contacts for long life (10K insertions) and low contact resistance ($<10 \mathrm{~m}$. ohms)
Easily removable, non slip rubber backing allows damaged contacts to be rapistly replaced
No other breadboard has as many individual contacts, offers all these features and costs only $£ 5.80$ each or $£ 11.00$ for 2 - inclusive of VAT and PP

Snip out and Post
David George Sales, r/o 74 Crayford High St., Crayford, Kent DA1 4EF

> David George Sales
> r/o 74 Crayford High Street,
> Crayford, Kent, DA 1 4EF.

$$
\begin{array}{rll}
\text { Please send me } & 1 \text { EuroSolderSucker @ } £ 6.80 \quad \square \text { Please } \\
\text { or } & 1 \text { EuroBreadBoard @ } £ 5.80 \quad \square \text { Tick } \\
\text { or } & 2 \text { EuroBreadBoards @ } £ 11.00 & \square
\end{array}
$$

(All prices include VAT and P P.. but add 15% for overseas orders).

Name
Company
Address

Tel No
Please make cheque/P.O. s payable to David George Sales

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

___ WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

STEREO PRE-AMPLIFIERS

CPRI
CPR 1-THE ADVANCED PRE-AMPLIFIER
The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably In the disc staqe. The overload inargin is a $\$$ uperb $40 d 8$, this together with the high slewing rate ensures clean toD. even with high outout cartridges traching
heavily modulated records. Common-mode distortion is eliminated by an unusual design. R.I.A.A. is accurate to 1 dB : signal to noise ratio is 70 dB relative to
Following this stage is the Nal gain/balance stage to bring tape, tuner. etc. up. io power amp. signal levels. Signal to noise ration 85db: slew-rate $3 V / \mathrm{uS}$
T.H.D. $20 \mathrm{~Hz}-20 \mathrm{kHz}<008 \%$ at anylevel. F.E.T. muting. No controls are filled There is no provision for tone controls. CPR isize is $138,80,20 \mathrm{~mm}$. Sunplv to be ± 15 volts.
MC 1-PRE-PRE-A MPLIFIER
Suitable for nearly all moving-coil cartridges Send for details.
X02: X03-ACTIVE CROSSOVERS
XO2 - two Way. XO3 - three way. Slope $24 \mathrm{~dB} / \mathrm{octave}$. Crossover points set to order
REG 1-POWER SUPPLY
The requlator module. REG 1 provides 15-0-15v to power the CPR 1 and MC 1 it can be used with any of our power amp supplies or our amall iransiormer TR 6 thome
POWER AMPLIFIERS
It would be pointless to list in so small a soace the number of recarding studios educational and government establishments, etc. Who have beer usingCRIMSO quality at the lowest prices. The power amp is avalable in five types, they all have the same specification: T.H.D. lypically 01% any power 1 hHz 8 ohms T.I.D. Insignificant; slew rate limit 25 V/uS: signal to noise ratio ilodB; Irequency load sately: sensitivity 775 mV (250 mV or 100 mV on request); size 120,80 . 25 mm .

POWER SUPPLIES
We produce suitable power supplies which use our superb TOROIDAL transformers only 50 mm high with a $120-240$ primary and single bolt fixing (Includes capacitora/bridge rectifier).

POWER AMPLIFIER KIT
The kit includes all melalwork, heatsinks and hardware to house any two of our power amp modules plus a power supply. It is contemporarily styled and its quality is consistent with that of our other fidence in a lew hours.

CRIMSON ELEKTRIK ASTAMFORD STREET LEICESTER. LEI SNL Tel: (0533) 537722
U.K.-pleace allow up to 21 daya All prices shown are UK only and include VAT and post. COD 90p extra, £100 limit. Export is no problem, please write tor specific quote. Send large SAE or 3 International Reply Coupons for delailed information.

ACTIVE CROSSOVERS XOW E14.83 X03 223.06 POWER AMPLFIER MODULES CE $100 \mathrm{~A} 100 \mathrm{~W} / 4$ ohms $35-0 \cdot 35 \mathrm{v}$ E16 22 CE $1008100 \mathrm{~W} / \mathrm{B}$ ohms $45-0-45 \mathrm{v}$ e 2322 $\begin{array}{lll}\text { CE } 1708170 \mathrm{~W} / 8 \text { ohms } 60-0-60 \mathrm{y} & \text { £23. } & \mathrm{E} 31.50\end{array}$ TOROIDAL POWER SUPPLIES CPSIfor 2 . CE 608 or $1 \times$ CE 1004 CE 608 . CE 1004 or $2 / 4$. CPS 3 for 2 . CE 1008 or 1 .. CPS 17104 CE 1008 CPSS for 1 CE 1008 CE 1708 HEATSINS HEATSINKS Light duty. $50 \mathrm{~mm} .2^{\circ} \mathrm{C} / \mathrm{W}$ $14^{\circ} \mathrm{C} / \mathrm{W}$ Disco/group. $150 \mathrm{~mm} .11{ }^{\circ} \mathrm{C} / \mathrm{W}$ Fan mounted on or 20 mm or 100 mm heatsimks 2 two drifled $65^{\circ} \mathrm{C}$ max. with two 170 W THORMAL CUT-OUT, $70^{\circ} \mathrm{C}$.

PREAMPS AMP ${ }_{\text {C }}$. 40 These are avail able in iwo ver-sions-one uses slandard compo-
nents. and the other (the S) uses MO resistors where necessary CPRI
 POWER SUPPLY
 BRIDGE
DRIVER, BDI
Obtain up to 340 W
using 2 and 170 W
amps
modute BDI $55 \cdot 40$

Distributor:-
MINIC TELEPRODUKTER BOX 12035: 8-754 12
UPPSALA 12, SWEDEN

NASCOM MICROCOMPUTERS AND FULL SUPPORTING RANGE OF ITEMS TO ENABLE YOU TO WORK AT PROPER PROFESSIONAL LEVELS
\star At newest reduced prices

* Widest possible range stocked
* Information on request
\star Enquiries from trade, industrial and educational users invited

Appointed distributors for the

 fine products of:SIEMENS, ISKRA, RADIOHM, VERO AND MANY OTHER FAMOUS MANUFACTURERS

It's a good deal better from

ELEGTROALIUE LTD

Dept. PW7, 28 St. Judes Road, Englefield Green, Egham, Surrey TW20 OHB Phone Egham 3603. Telex 264475
Northern Branch (Personal shoppers only). 680 Burnage Lane
Burnage. Manchester M19 INA Phone (061) 4324945

OPEN UP THE EXCITING WORLD OF SHORT WAVE LISTENING

For the adyaneed, teen short wave listener, the choice of recetver has usually been between cheap and asth or very good but very expensise cquipment We think that the SRX. 30 will provide that listener nasty or very good but very expensive equipment. We think that the SR X-30 will provice
The SRX 30 is based on an advanced drif cancelling loop system which gives spot on dial accuracy at any frequency between 500 KHz and 30 MHz together with easy to understand frequency readout. Sutable for all users from raw beginners. thanks to it's simplicity of operation; to experienced listeners and amateur operators thanks to it's advanced technology, the SRX- 30 is the best communications eceiver avalable in u's price range today.
Completely seif contaned, including operation from mains or 12 volts dc, the SRX. 30 is at home on broadcast or amateur bands. All mode reception of AM. CW. USB. and LSB is provided and recever give optimum performance on any mode.
保
arriage b) Securicor f

- G VALVE MAIL ORDER CO. GLIMAX HOUSE, FALLSBROOK ROAD. LONDON SW16 6ED

SPECIAL EXPRESS MAIL ORDER SERVICE

SEMICONDUCTORS

AA119	0.11	ASY26	0.43	8 C 159	0.11
AAY30	0.29	ASY21	0.43	8 C 167	0.14
AAY32	0.45	ASZ15	1.35	8 C 170	0.12
AAZ 13	0.19	AS216	1.35	8 C 171	0.11
AAZ15	0.37	AS217	1.35	8 C 172	0.11
AAZ17	0.29	AS220	1.62	8 C 173	0.13
AC107	0.65	ASZ21	2.16	8 C 177	0.16
AC125	0.22	AUl10	1.84	8 C 178	0.15
AC126	0.22	AUl13	1.84	$8 \mathrm{8C179}$	0.17
AC 127	0.22	AUY10	1.84	8 C 182	0.12
AC128	0.22	8 A145	0.15	$8 \mathrm{8C183}$	0.11
AC141	0.27	8 8148	0.15	$8 \mathrm{ClP4}$	0.12
AC141K	0.38	8 A154	0.10	8 C 212	0.14
AC142	0.22	8 8155	0.11	8 C 213	0.14
ACl42K	0.32	8 A156	0.10	BC214	0.17
AC176	0.22	8 AW62	0.06	BC237	0.10
AC187	0.22	8 8AX 13	0.07	BC238	0.14
AC188	0.22	8 AX 16	0.10	8 C 301	0.27
${ }_{\text {ACY17 }}{ }^{\text {ACY }}$	0.92 0.86	8 Cl 107	0.13	8 C303	0.26
ACCY18	0.86	8 C 108	0.13	8 C 307	0.11
ACY 20	0.81 0.76	8C109	0.14	8 86308	0.11
ACY21	0.81	8 8113	0.13	$8 C 327$ 8 C 328	0.23 0.21
ACY39	1.62	$88 \mathrm{8C115}$	0.14 0.15	$8 \mathrm{8C} 337$	0.21 0.21
AD149	0.76	8 C 116	0.17	8C338	0.19
AD161	0.49	BC117	0.19	$8{ }^{8} \mathrm{CY} 30$	1.08
AD162	0.49	BC118	0.11	$8_{8 C Y} 1$	1.08
AF106	0.49	8 C 125	0.18	8 CY 32	1.08
AFII 14	0.81	8 Cl 26	0.23	BCY33	0.97
AF115	0.81	8C135	0.16	BCY34	0.97
AF116	0.81	8 C 136	0.17	8 Cr 39	3.24
AF117	0.81	8 C 137	0.17	8 CY 40	1.08
AF139	0.43	8 Cl 47	0.10	$8 \mathrm{CY4} 2$	0.27
AF1B6	1.30	BC148	0.09	8 CY 43	0.27
AF239	0.49	8 C 149	0.10	BCY58	0.17
AFZ11	2.97	8 C 157	0.10	BCY70	0.16
AFZ 12	2.97	8C158	0.09	BCY71	0.18

8 CY 72	0.14
$8 \mathrm{CZ11}$	1.62
8 8115	0.49
80121	1.30
8D123	1.30
80124	1.40
8 8131	0.38
8 D132	0.41
8 8135	0.37
8 D 136	0.37
8 D137	0.38
80138	0.43
BD139	0.48
BD140	0.48
8 D144	2.16
8 D 181	1.19
8 8182	1.27
80237	0.43
8 D238	0.59
$8 \mathrm{D} \times 10$	0.98
BD×32	2.16
BDY20	1.35
BDY60	1.62
8 F115	0.27
BF152	0.19
8F153	0.22
$8 F 154$	0.18
8F159	0.25
BF160	0.17
8 F 167	0.22
$8 F 173$	0.22
8 F 177	0.26
$8 F 178$	0.26
8 F 179	0.27
8 F 180	0.32
BF 181	0.32
BF182	0.32
BF183	0.27
BF184	0.27
BF185	0.27

8F194	0.10
8 F195	0.10
8F196	0.11
8 F197	0.14
8 F200	0.29
BF224	0.23
8 F 244	0.30
85257	0.26
8 F258	0.28
8 F 259	0.35
8 8536	0.32
8 F337	0.32
8 F 338	0.33
8FS2 1	4.28
8FS2B	2.41
8 FS 61	0.23
8 FS 98	0.23
BFW 10	0.70
BFW11	0.70
$8 \mathrm{~F} \times 84$	0.24
$8 \mathrm{~F} \times 85$	0.25
$8 \mathrm{~F} \times 87$	0.23
$8 \mathrm{~F} \times 88$	0.23
8 FY 50	0.28
$8 \mathrm{FY5} 1$	0.28
8 FY52	0.28
BFY64	0.28
$8 \mathrm{FY90}$	1.35
85 $\times 19$	0.23
85×20	0.22
$8 \mathrm{~S} \times 21$	0.22
8 C 106	1.35
8TY79/4	OR
	3.45
BU205	1.97
8U206	2.53
BU208	2.25
BY100	0.49
8 Y 126	0.15
8 Y 127	0.16

82×61	0.19
Series	
82 YBB	0.14
Saries CRS/140 0.65 CRS/340 0.81	
CRS/360	0.97
GEX66	1.62
GEX541	1.89
GJ3M	0.81
GM037841.89	
$\begin{array}{ll}\text { KS100A } & 0.51 \\ \text { 1 } 1 \mathrm{JE} 340 & 0.86\end{array}$	
MJE370	1.26
MJE371 0.66	
MJE520	0.56
MJE521 0.59 MUE29551.35	
MPF103 0.34	
MPF104 0.34	
MPFIO5 0.34	
MPSA06	0.26
MPSA56 0.29	
MPSU01	0.41
MPSU06 0.52	
MPSU56 0.55	
NE555	0.49
NKT401 2.46	
NKT403 1.87	
NKT404	1.87
OA5	1.03
OA7	0.59
OA10	0.65
OA47	0.15

$00 A 70$	0.32	0
$0 A 79$	0.32	0
$0 A B 1$	0.32	O
$0 A B 5$	0.32	O
$0 A 90$	0.09	0
$0 A 91$	0.09	O
$0 A 95$	0.09	0
$0 A 200$	0.10	0
$0 A 202$	0.10	0
$0 A 211$	1.08	0
$0 A Z 200$	1.08	0
$0 A Z 201$	1.08	0
$0 A Z 206$	1.08	0
$0 A Z 207$	1.08	0
$0 C 16$	2.16	0
$0 C 20$	2.70	0
$0 C 22$	2.70	0
$0 C 23$	2.97	0
$0 C 24$	3.24	0
$0 C 25$	0.97	R
$0 C 26$	0.97	R
$0 C 28$	2.16	R
$0 C 29$	2.16	T
$0 C 35$	1.62	T
$0 C 36$	1.62	T
$0 C 41$	0.86	T
$0 C 42$	0.81	T
$0 C 43$	2.43	T
$0 C 44$	0.65	T
$0 C 45$	0.59	T
$0 C 71$	0.59	T
$0 C 72$	0.59	T
$0 C 73$	1.08	T
$0 C 74$	0.70	T

VALVES

VAL	$E 3$			$\begin{aligned} & \text { EL32 } \\ & \text { EL33 } \\ & \text { EL34 } \\ & \text { (Thorn) } \end{aligned}$	$\begin{aligned} & 1.69 \\ & 3.94 \\ & 2.48 \end{aligned}$
AZ31	1.24	ECC83	0.99	EL34 (M)	ulard)
CBL31	1.69	ECC84	1.34		2.52
CL33	2.25	ECC85	1.35	EL41	1.41
CY31	1.13	ECC88	2.03	EL42	1.97
DAF91	0.45	ECC91	7.45	EL81	1.24
DAF96	1.13	ECC189	1.87	EL84	1.13
DF91	0.45	ECF80	1.22	EL86	2.43
DF96	1.13	ECF82	1.35	EL91	6.92
DK91	1.18	ECH35	2.25	EL95	1.49
DK92	1.41	ECH42	1.29	EL360	5.98
DK96	1.24	ECH81	1.35	EM80	1.24
DL92	1.24	ECH83	1.41	EM81	1.13
DL94	1.35	ECH84	1.44	EM84	1.13
DL96	1.24	ECL82	1.13	EM85	1.41
DY86/7	0.72	ECL83	1.69	EM87	1.69
DY802	0.95	ECL86	1.35	EN91	2.76
E80CC	6.22	EF37A	3.94	EY51	1.97
EA8C80	1.35	EF39	3.09	EY86	0.95
EAF42	1.41	EF40	1.29	E240	1.41
EAF801	1.97	EF41	1.35	E24 1	1.41
E841	2.25	EF42	2.25	Ezbo	0.95
E891	0.95	EF50	1.69	EZ81	0.95
E8C33	1.97	EF80	0.90	E290	1.35
E8C41	1.41	EFB3	1.97	G232	1.41
E8C81	1.24	EF85	0.90	GZ33	4.50
E8C90	0.96	EF86	1.71	G234	2.14
E8F80	0.57	EF89	1.80	KT61	3.94
E8F83	1.41	EF91	2.03	KT66	6.19
E8F89	0.96	EF92	5.63	KT88	7.59
E8L31	2.81	EF98	1.41	KTW61	1.97
ECC40	1.41	EF183	0.90	KTW62	1.97
ECC81	0.99	EF184	0.95	KTW63	1.97
ECC82	0.81	EH90	1.58	MU14	1.13

PL82	1.35
PL83	2.50
PL84	1.22
PL504/500	
	1.58
PL508	2.03
PL509	3.38
PL519	3.65
PL801	1.24
PL802	3.33
PY33	1.24
PY81	0.95
PY82	0.90
PY83	0.79
PY88	0.95
PY500A	2.03
PY800	0.95
PY801	0.95
OOV02-6	
	11.23
00V03-10	
OOV03-20A	
OOV06-40A	
	18.90
R17	1.86
819	1.35
R20	1.62
U18-20	2.81
U25	1.31
U26	1.62
UA8C80	1.41
UAF42	1.41
U841	1.41
U8C41	1.69
U8F89	1.35

 Mout is 0 すion	

6L6GT
0.96

6	$12 A U 7$	0.81
9	$12 A V 6$	2.25

92AV 8.

	7454	0.19	7491
	7460	0.19	749
	7470	0.38	7493
32	7472	0.36	749
35	7473	0.39	749
35	7474	0.43	7496
19	7476	0.58	74
78	7480	0.53	74
97	7482	0.81	74
19	7483	0.97	74
19	7486	1.08	74
19	7490	0.38	74

7491
7492
7493
7494
7495
7496
7497
74100
74107
74109
74110
74111
74116

74118	
5	74119
6	74120
74121	
	74122
74123	
	74125
	74126
	74128
	74132
	74136
	74141
	74142

1.08
1.62
0.90
0.43
0.65
1.08
0.59
0.59
0.65
0.76
0.99
0.86
2.48
2.70

74144
74145
74147
74148
74150
74151
74154
74155
74156
74157
74159
74170
74172
2.70
0.97
2.16
1.89
1.73
0.92
1.89
0.92
0.92
0.81
2.27
2.48
4.75

1.51
1.62
0.97
1.19
1.35
1.35
1.25
1.62
1.62
1.46
1.46
1.35
1.08

1.30
1.19
2.43
2.43
1.97
1.62
2.59
3.94
4.22
2.07
2.59

BASES	VCRI39A 8.64 Valve screening cans all sizes 0.30	$\begin{aligned} & 3 K P 1^{\circ} \\ & \text { 3RP1० } \\ & 5 A D P 1 \end{aligned}$	$\begin{aligned} & 16.20 \\ & 37.80 \\ & 37.80 \end{aligned}$	VCR5178 ${ }^{\circ}$ VCR517C*	$\begin{aligned} & 6.48 \\ & 6.48 \end{aligned}$	HORN NE	UR	ES FU	
$\begin{array}{ll}87 \mathrm{G} \text { unskirted } & 0.16 \\ 87 \mathrm{G} \text { skirted } & 0.32\end{array}$					£1.75				
89A unskirted 0.16	CRTS	${ }_{5 C P 1}{ }^{\text {CP1A }}$	5.40 43.20	- Surplus		A49-191/192X	47.61	A63-200x	9.06
$\begin{array}{ll}\text { 89A skited } \\ \text { NUVISTOR } & 0.32 \\ 0.59\end{array}$	$\begin{array}{lr}1 \mathrm{CP} 31 & 33.48 \\ 2 \mathrm{AP1} & 9.18\end{array}$	$5 \mathrm{FP15A}$	16.20			A5 1-110X	49.5	A66-120X	60.31
$\begin{array}{ll}\text { Intocral } & 0.22\end{array}$		DG7-5	15.12 27.00			A56-120X	51.44	A67-120X	60.31
$\begin{array}{ll}\text { Loctal } & 0.59 \\ 8 \text { pin DIL } & 0.16\end{array}$	$\begin{array}{ll}38 P 1 & 8.64 \\ 3 \mathrm{DP} 1 . & 5.40\end{array}$	DG7-32 DH3.91	38.88 33.48			A56-120x		A67-150X	
14 pin DIL $\quad 0.16$	3EG1 ${ }^{\circ} \quad 7.56$	DH7-11	73.44			A55-14X			3
16 pin DIL Tube 8 ass (Surplus) 0.0 .18	$\begin{array}{ll}3 F P 7 & 6.48 \\ 3 \mathrm{GPI} & 6.48\end{array}$	VCR97 VCR138	5.40 10.80		AVAILABLE FROM STOCK FOR COLLECTION ONLY-OLD TUBE MUST BE RETURNED.	AVAILABLE FROM STOCK FOR COLLECTION ONLY-OLD TUBE MUST BE RETURNED.			
0.81	3JP1* 8.64	VCR138A.	13.50						
Valve screening cans	$\begin{array}{lr}\text { 3JP2** } & 8.64 \\ \text { 3JP7* } & 10.80\end{array}$	VCR139A** VCR517A*	16.20 10.80						
Torms of business: CWO. postage and pecking valves and stmiconductors $\mathbf{3 0} \mathrm{p}$ per order. CRTe $£ 1.00$. Price ruling at time of daspatch. Account facilitios avallable to approved companies whth minimum order charge $£ 10$. Cerringe and packing $£ 1$ on credit orders. Over 10,000 types of valves, tubes and semiconductors in stock. QUOTATIONS FOR ANY TYPE NOT LISTED SAE. ALL PRICES INCLUDE VAT. OPEN TO CALLERS MONDAY-FRIDAY 9 a.m. $-\mathbf{5 . 3 0}$ p.m. CLOSED SATURDAY. Telephone 01-677 2424 Telex 946708									

P.W. JUMBO CLOCK

Kits of parts by the designers of the clock.
Kit A.
Comprising of printed circuit board. Price £8.96. V.A.T. and postage included.
Kit B.
Comprising of printed circuit board, case, perspex panel, pillars, transformer and l.e.d.s. Price £22.72. V.A.T. and postage included.

Kit C.
Comprising of full kit, excluding mains cable and wire. Price $\mathbf{£ 2 9 . 0 0}$. V.A.T. and postage included.

Two colours of cases are available:- Gloss White \& Simulated Black Leather Grain.
Please state colour with order e.g. Kit C/Black.

Full range of R.S. components available

(48 hours service)
If you are experiencing difficulty in obtaining certain components for projects please do not hesitate to telephone us.

I.C.'s LM3900 \& MC3302
 £1.13 per pair Postage and package 20 pence.
 V mos transistors. VN66AF
 $\mathbf{£ 1 . 3 0}$ each postage and package 20 pence.

P.C.B'SFOR			
PRACTICAL VIRELESS PROJEGTS			
Nov. 78.	Sarum Q Me	R030	Price $£ 3.30$ \& 20 p
Nov. 78.	S.T.D. Charge Time	A0212	Price $£ 2.80$ \& 20 pence p \& p.
Nov. 78.	Porch Light Timer	A0222	Price $£ 0.60$ \& 12 pence p \& p.
Nov. 78.	Battery Indicator	AD225	Price $\mathrm{f0} 0.60$ \& 12 pence p \& p.
Dec. 78.	Car Radio LW. Converter	R034	Price f 2.35 \& 15 pence p \& p.
Dec. 78.	Digital Door Chimes	R017	Price $£ 3.78$ \& 25 pence p \& p.
Dec. 78.	Car Radio LW. Convert	R032	Price $£ 2.62$ \& 20 pence p \& p.
Jan. 79.	Acoustic Delay Line	R018	Price $£ 3.53$ \& 20 pence p \& p.
Jan. 79.	Dorchester	R033	Price $f 10.80$ \& 30 pence p \& p.
Jan. 79.	Sandbank Met.	R035	Price $f 3.19$ \& 20 pence p \& p.
Feb. 79.	Hythe Receiver	WR037	Price $£ 5.94$ \& 20 pence p \& p.
March 79.	Hythe Receiver	WR038	Price $£ 2.70$ \& 20 pence p \& p.
March 79.	Soudlite Converte	WK001	Price $£ 5.98$ \& 20 pence p \& p.
Ma	Tone Burst Gen	R023	Price f 1.60 \& 15 pence p \& p .
March 79.	Wide Band Noise Source	WR036	Price $£ 0.70$ \& 12 pence p \& p.
April 79.	PW Winton'	WR039	Price $£ 15.42$ \& 30 pence p \& p.
April 79.	FM Multiteste	WR040	Price f2.70 \& 15 pence p \& p.
May 79.	Car Test Probe	WR042	Price $f 0.90$ \& 15 pence p \& p.
May 79.	Follow up to PW Gillingham	WR044	Price $f 1.36$ \& 15 pence p \& p.
May 79.	PW Imp	WR043	Price $£ 1.42$ \& 15 pence p \& p.
May 79.	Inline Crystal Calibrator	WR041	Price $£ 1.58$ \& 15 pence p \& p.
June 79.	Jumbo Clock		Price $£ 8.66$ \& 30 pence p \& p.
June 79.	Logical D's+X's	WR046/	
		7/8/9	Praf12.00 30
		WR050	Price 83.80 \& 20

All prices include V.A.T.
Send orders to:

C. BOWES \& CO. LTD., 4, WOOD STREET. CHEADLE, CHESHIRE SK8 1 AQ.
 Tel. 061-428-4497.

Please state type number and enclose cheque or postal order.

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

AM/CW/SS8 COMMUNICATION RECEIVER and preselector modules. 4535
kHz BW, with diode-switchin
KHZ BW, With diode-switching.
CRYSTALS Brand new high precision HC33/U: 10.20 30.1008 .25625 MHz E3-35. $128 \mathrm{MHz} \mathrm{f4.15}. \mathrm{HC13}$

 Large stocks of standard freqs for MPU etc. Any freq made to order 6 weeks from £3-75.
WINKLE PICKERS. Winkle out DX from the ORM with pin-sharp $250 \mathrm{~Hz} 8-\mathrm{pole}$ crystal CW filters specially
manufactured to fit TRIO and YAESU: FT/FR-101. FT-301 TS-520, TS-820. £25-90 each
All prices inc. VAT and UK post. SAE Lists
P.R.GOLLEDGE ELECTRONICS G3EDW, Morriott, Somarat, TA16 5NS Tel: 046073718

BRAND NEW COMPONENTS BY RETURN

 Subminiature bead tantalum, electrolytics
$01.022,047,10,35 \mathrm{~V}, 4$, $\begin{array}{llll}2 & 2 / 35 \mathrm{~V} & 8 & 1 / 25 \mathrm{~V}-10 \mathrm{p} \\ 22 / 10 / 25 \mathrm{~V} . & 15 / 16 \mathrm{~V}-14 \mathrm{p} \\ 23 / 10 \mathrm{~V} .47 / 6 \mathrm{~V} \text {. } 68 \quad \& \quad 100 & 3 \mathrm{~V}-18 \mathrm{p}\end{array}$

Mylar (Polyeater) film 100 V . Vertical Migg 001. 002. $005-3 \frac{1}{2} \mathbf{p} .01 .024 \frac{1}{2}$ p. 04. $05-5 \frac{\mathrm{f}}{}$ Miniature film Resistors Hightab. E12 5\%
0 125 watt $10 \Omega 2 \mathrm{M} 2 \Omega$
0 Ip 0125 watt $10 \Omega 2 \mathrm{M} 2 \Omega \mathrm{M}$. 110% over 1 MI
0250 0500 watt 10Ω to $2 \mathrm{M} 7 \Omega$
1000 watt 10Ω to $10 \mathrm{M} \Omega$ 8C107/8/9. BC147/8/9 - Bp, 1N4006-6p,1N4007-7p
 20 mm . fuses $15.25 .5,10.20 .30$ \& $5 \mathrm{~A}-3 \mathrm{p}$ Post 10 p (Free over ©4). Prices VAT inclusive

THE C. R. SUPPLY CO.
127. Chesterfield Road, Sheffield S8 DRN

SMALL ADS

The prepaid rate for classified advertisements is 22 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 7.50$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS DF ACCEPTANCE DF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted aubjoct to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the mdvertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisoment.
3. Although every cars is taken, the Publishers shall not be llable for clerical or printers' arrors or their consequences.

D.V.M. THERMOMETER KIT

Based on the ICL7 106 single chip DVM the kit contains a 3 digit LCD. a PCB. ICL7 106 . and atl components and in-
structions to make a $0-200 \mathrm{mV}$ FSD
DVM COmponents also DVM. Components also supplied to
enable this to be converted to a digital enable this to be converted to a digital
hermometer. Requires a 2 mA 9 M
supply (PP3 battery). ONLY $\mathbf{~} 21.99$
TOUCH CONTROLLED LIGHTING KITS
Directly replace conventional light switches and control up
to 300 W of lighting. No mains rewiring. Insulated touch plates. Easy 10 follow instructions
NEWI TO3OOK TOUCHDIMMERI Sing alternate action. 8 rief touch switches single touchplate with alternate action. 8 rief touch switches lamp on and off, longer
touch dims or brightens lamp. Neon lamp helps find the E8.99
swith in the dark
Extension kit for TD300K permits operation from another Extension kit for TD300K permits operation from another
E1.50 location. two-way switching. etc.
TSD 300 K -TOUCHSWITCH-DI DIMMER-One alternate TS 300 K presetting lamp brightness. $\mathrm{ON} / \mathrm{OFF}$ TOUCHSWITCH. Two $\begin{gathered}\text { E5.50 } \\ \text { touch- }\end{gathered}$ TSA3OOK - AUTOMATIC TOUCHSWITCH. TIm $\mathbf{£ 4 . 3 0}$ TSA 300 K -AUTOMATIC TOUCHSWITCH. Time delay LD 300 K - 300W LIGHTDIMMERKIT $\mathbf{~ 2 . 9 0}$
10% discount on any 4 lighting control kits

24 HR. CLOCK/APPLIANCE TIMER KIT

ADD 8% VAT, $25 p$ P\&P. Callers by appointment on K KI:OI-5799794
106 STUDLEY GRANGE ROAD, LONDON W7 $2 L X$
TUNBRIDGE WELLS COMPONENTS, BALLARD'S, 108 Camden Road, Tunbridge Wells, Tel: 31803. No Lists. Enquiries S.A.E.

Record Accessories

STYLI, Cartridges For MUSIC CENTRES, etc, FREE List No. 29 For S.A.E. includes Leads, Mikes, Phones etc. FELSTEAD ELECTRONICS, (PW), Longley Lane, Gatley, Cheadle, Ches. SK8 4EE.

Books and Publications

Build your own

P.A., GROUP \& DISCO SPEAKERS

Save money with this practical guide. Plans for 17 differen designs. line source. I.8.. Horn and Reflex types. for $8^{\prime \prime}-18$ rive units. e 3.95 post free ($\$ 8$ overseas)

THE INFRA-BASS LOUDSPEAKER
by G. Holliman
(full constructional details for versions using 15 $15^{\circ}, 12^{\circ}$ and 10° drive units.) £2.95 post free (\$6 overseas)

THE DALESFORD SPEAKER BOOK
by R.F.C. Stephens
This book is a must for the keen home constructor. Latest $10-100$ watts. Also unusual centre-bass sysiem. $\mathbf{£ 2 . 2 0}$ pos (\$5 overseas)

VAN KAREN PUBLISHING
 5 SWAN STREET, WILMSLOW, CHESHIRE

WHY NOT START YOUR OWN BUSINESS REWINDING ELECTRIC MOTORS. A genuine oppor tunity to success. LARGE PROFITS. You can't help but make money if you follow the easy, step by step, instruc tions in our fully illustrated manual showing how to rewind Electric Motors. Armatures and Field coils as used in Vacuum Cleaners, Electric Drills and Power Tools. NO PREVIOUS KNOWLEDGE IS REQUIRED, as the manual covers in 13 chapters, where to obtain all the work you need, materials required, all instructions, rewind charts and how to take data etc. A gold mine of information. How to set up your home workshop and how to cost each job to your customer. $£ 4.00$ plus 30 p P\&P. UK. CWO, to INDUSTRIAL SUPPLIES, 102 , Parrswood Rd. Withington, Manchester 20. Dept. PW.

Radio searions Guide
Long disence Talowision
Long discence Talovision Popular Electronic Projects
Electronic Proyects for Bezinine
Mobile Discotheque Han^{2}
Radio Circuits using IC_{5}
Projects in Opto-Electronics
How to make Walkete-Talkie
Radio Antenna H'book for Lont Distance Receosion
How to build Adranced Shore Wave Recevers
Solid Stabe Shopt Wave Receivers for Betinner

Aerials

AERIAL BOOSTERS

Improves weak VHF Radio and Television reception.
B45-UHF TV, BII-VHF Radio.
For next to the set fitting.
Price E5, S.A.E. for Leaflets

ELECTRONIC MAILORDER LTD,
 Ramsbotton, Bury, Lancs, BLO 9AG

SHORT WAVE LISTENERS. Use the best aerial for the best results, the G2DYM Anti-T.V.I. Trap-Dipole, send 10 $\times 8^{\prime \prime} 16 p$ S.A.E. \& $3 \times 9 p$ stamps for lists, Aerials Guide, testimonials. G2DYM, Uplowman, Tiverton, Devon.

Ladders

LADDERS varnished $22^{\prime \prime}$ extd. $£ 30$. Carriage $£ 2.80$ Leaflet. Also Alloy ext. up to $62+\mathrm{ft}$. LADDER CENTRE (WLS3), Halesfield (1), Telford. Tel: 586644

Service Sheets

HUGE G.T. TV/RADIO/ETC. CATALOGUE (with $£ 4$ worth of useful vouchers)

Lists thousands of service sheets, manuals. atc. Many unobtaineble oisowhere. Plus up dated Chassis Guide, newaletter, etc Essential for every firm/engineer - Save $£ £ 8$ - only $£ 1$ plus large S.A.E.

S.A.E. for details of our Giant Service Sheet Collectiona - not available elsewhere.

G.T. TECHNICAL INFORMATION SERVICES

6 Church St, Larkhall, Lanarkshire ML9 IHE

Largest etocks of manuala, otc. anywhere. C1 - large S.A.E. brings any requested full size wingle service sheet. Service sheete from 50p: S.A.E. for full details of this plus unique T.V. Publications. The now 1979 British Colour T.V. Repoir Mannual and the new First Forsign Colour T.V. Repeir Manual for $£ 4.90$ each - both for $\mathbf{£} 9.50$.
S.A.E. brings full details of these and other unique publications.

BELL'S TELEVISION SERVICES for Service Sheets on Radio. TV etc., $£ 1.00$ plus SAE Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 King's Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.

SERVICE SHEETS, Radio, TV etc., 10.000 models. Catalogue 24 p. plus S.A.E. with orders. enquiries TELRAY, 154 Brook Street. Preston PR $17 H P$

Educational

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS

Dapt. 1227 Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

TECHNICAL TRAINING
 Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing. Electronics, Computers, also self-build radio kits. Full details from:
 ICS SCHOOL OF ELECTRONICS
 Dept. 1227 Intertext House, London SW8 4UJ
 Tel. 01-6229911 (all hours)
 State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms, Technicians, Electrical Installations. Radio. TV \& Electronics Technicians, Radio Amateurs, Full details from

ICS SCHOOL OF ELECTRONICS

Dept. 1227 Intertext House, London SW8 4UJ
Tel. 01-622 911 (all hours)
State if under 18
WHETHER SEA-GOING OR SHORE-BASED, an ex citing life awaits you as a Marine Radio Officer. Full details from the Principal. Barking College of Technology Dagenham Road, Romford RM7 0XU. (Tel: Romford 66841).

GO TO SEA as a Radio Officer. Write: Principal. Nautical College, Broadwater, Fleetwood. FY78JZ.

For Sale

NEW 10-18U Single Beam Oscilloscope. Price $£ 60$ o.n.o with full instructions. Girish Patel, 77 Baggrave Street Leicester.

NEW BACK ISSUES of "PRACTICAL WIRELESS" available 70 peach, post free. Open P.O. Cheque returned if not in stock-BELL'S TELEVISION SERVICE. 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

AS NEW K.W. 202 Receiver, was $£ 236$. Going for $£ 70$ Enquiries after 6 p.m. Swanley 63605.

SEEN WHISTONS CAT? 5000 odds and ends. Mechanical/Electrical Cat Free. WHISTON, (Dept. PW), New Mills, Stockport.

LARGE SUPPLIER OF SERVICE SHEETS

and Colour Manuals, IV Mono Radios, Tuners. Tape Recorders, hecord Pravers, Transistors, Steseograms, ali al 75 peach + SA.E are nol in stock. All TV Sheets are full lengths 24×12. not in Bits \& Pieces Free Fault Finding Chart or TV Catalogue with order. All crossed PG's returned id service sheeis not in stock
C. CARANNA (Mail Order)

71, Beaufort Park, London, NW11 6BX 01-4584882

SERVICE SHEETS for Radio. Television. Tape Recorders, Stereo, etc., with free fault-finding guide. from 50p and S.A.E. Catalogue 25p, and S.A.E. HAMILTON RADIO. 47 Bohemia Road, Se. Leonards. Sussex.

Overseas Appointments

PRODUCTION TECHNICIAN

required in South Africa.
Excellent opportunity for skilled wireman with test experience.
The position is permanent and offers good salary, good working conditions, warm climate, subsidised house mortgage.

Write giving details of age, experience etc. to
Klerkscale (Pty) Ltd
P.O. Box 944 Klerksdorp 2570

South Africa.

Wanted

WANTED PRACTICAL WIRELESS February 1976, March 1976. April 1976, May 1976. Evenings Tel: 061. 620-0145.

CIRCUIT DIAGRAM and detailed parts list to build a radio permanently tuned to 194 metres or 1546 kHz with pre-set volume and nine volt battery supply or have such a radio constructed in a wooden or sturdy plastic box to be inserted into a padded bag or details of how to replace a variable tuning capacitor with a pre-set one. THE JOB IS FOR AN IN-PATIENT OF WARLINGHAM PARK HOR AN IN-PATIENT OF WARLINGHAM PARK HOSPITAL WHO IS SUFFERING FROM
TERMINAL DISEASE WHICH SEEMS LIKE TERMINAL DISEASE WHICH SEEMS LIKE A
TWENTY-FOUR HOUR EPILEPTIC FIT AND MAY SUBJECT THE RADIO TO ROUGH TREATMENT INCLUDING DROPPING IT! Offers please to:- BM BEDSITTER, LONDON, WCIV $6 X X$.

ELECTRONIC COMPONENTS PURCHASED. All Types Considered - Must be new. Send detailed list - Ofter Iypes Considered - Must be new. Send detailed list - Ofter
by return -. WALTONS. 55 A Worcester Street. Wolverhampton.

Miscellaneous

COMPLETE CAR ALARM KIT, 12 Volt positive or negative carth, only 4 leads to car. I.C. design incorporating C.M.O.S.: Battery sensing with Keyswitch and internal buzzer. Ready made 224.95 . kit $£ 21.95$ (repair service available) Buzzer as used in car alarm, 85 dBA a 3 metres, 10.15 Volts $£ 4.95$, also available large range of audible devices, cases. switches and p.c.b. manufacturing service. Send S.A.E. for details. All prices include V.A.T. and p\&p Send S.A.E. for details. All prices include V.A.T. and P\&p
in U.K. Make cheques/P.O.s payable to:- C.D.S. ELECTRONICS, Dept. P.W... $2-4$ Chichester Rents. Chancery Lane, London WC2 2EJ.

```
    EX MINISTRY ANO SURPLUS EQUIPMENT
A neat 21* dia OC Moving coil indicator. F.S.D. 1mA ronstance
scaled 0.500 and 0-125 no caption (ideal for
(ransistor tester) supplied unused £3.30. . % Nong romovable worm
on a t" dia shaft. a quality mede motor suppliad unused e2.80
50X ohms Ten Turn potentiomater f " dia. servo mounting
witha t" dia shaft, supplied unused £1.25. Display 180 VM
Seven segment nine digit Gas Discharge Dis
Eliatt Tr height 27*, supplied unused fi.20. 
Elliott Transistor Curve Tracer type 8079, requires an oscillo
scope with D/C X and Y Amps to operate £30.00.
Al prices include postage. Lots of other items in stock S.A.E.
for lists. Shop hours 9.30am to 2pm weekdays, closed
Thursdays. Saturday 9.30am to 5.30pm.
1 Arnolde Yard, Old Market Plece, Átrinchum, Cheshire
```

SUPERB INSTRUMENT CASES by Bazelli, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p. Chassis punching facilities at very competitive prices, 400 models to choose from, free literature (stamp would be appreciated). B.4ZELLI. Dept. No. 25. St. Wilfreds, Foundry Lane, Halton, Lancaster LA 6LT.

RECHARGEABEE BATTERIES
 TRADE ENQUIRIES WELCOME

full range available sae for lists. £1.25 for Booklet Nickel Cudmium Power" plus Catalogue. Write or SUTON COLOFIELO. WEST MIOLANDS. 0213549764 or see them at TLC. 32 Craven Street. Charing Cross. London WC2

| THE SCIENTIFIC |
| :---: | :---: | :---: | :---: |
| WIRE COMPANY |
| PO Box 30, LondonE.4 |
| Reg. Office 22 Coningsby Gdns |
| ENAMELLED COPPER WIRE |

ALFAC etch resist transfers and other p.c. board drawing materials available from stock. SAE details. Ramar Constructor Services. Masons Road, Stratford-upon-A von CV37 9NF.

GUITAR/PA

MUSIC AMPLIFIER

TIRRO's new mail order price list of electronic components now available on receipt of SAE. TIRRO ELECTRONICS, Grenfell Place, Maidenhead, Berks.

NICKEL CAOMIUM BATTERIES

Rechargeable and suitable for 'fast charge' HP7 (AA) £1.13,
SUB C £1.47 HP 11 (C) £2.15, HP 2 (0) $£ 3.27$ PP3 SUB $\mathrm{C} £ 1.47, H P 11$ (C) £2.15, HP 2 (D) £3.27, PP3 C4.09, PP3 not suitable for fast charge. PP3 charger C.5.81.
All above Nickel Cadmium batteries are guaranted E EVER All above Nickel Cadmium battorias are quarantead "EVER
READY fuli spec, and are supplied complete with solder tags (except PP3). Just in stock-New rachargasbie sealed lasd acid maintenance froe batteries sultable for burglar alarms atc. 12 amphr 6 v £ 4.4026 amp hr . 6 v E 5.85 .
Quantity prices available on request. Date and charging circuits free on request with orders over $£ 10$ otherwise 30 p post and handlin ispecify battery type). all prices include
$V A T$ Please add 10% \& P on orders under $£ 10.5 \%$ over
Cheq
Cheques, postal orders, mal order to: SOLIO STATE SECURITY OEPT PW 10, Bradshaw Lene, Parbold

RARE DX UNDER QRM?

DIG IT OUT Irom tiring whistles and cw interference with - Tunable Audio Noteh Filter. $350-5000 \mathrm{~Hz} .40 \mathrm{~dB}$ notch, speaker amplifier, ᄃ8.90. MORE OX MISSING RARE DX? Gat SPOT-ON with a Crystal Calisig. brator. $1 \mathrm{MHz}, 100,25 \mathrm{KHz}$ markers. E13 BO. square wave outputs, $£ 10.80$, linear trequency sch or PROGRAMME YOUR OWN tunes on a MUSICAL OOORBELL. Now tune each day. just needs bell transformer and speaker. $£ 19 \cdot 50$. great tun
Giro 21-923-4000. Each aesy-assambly kit includas all parts. printed circuit, cose postege arc. money back assurance so SEND off NOW.

CAMBRIDGE KITS

45 (PU) Old School Lane, Mition, Cmmbridge.
BULK PURCHASE. Battery intercoms to clear. SOft. lead \& volume control $£ 6.95$ pair. J. HARMSWORTH (PW2) 34 Victoria Street. Eccles, Maidstone, Kent.

KEEP ONE HANDY IN THE WORKSHOP

The unique aerosol treatment for minor burns and scalds. From Boots and other Chemists.

BUILD you own 7718 type Metal Detector. details SAE 117 Horton Road, Brighton, BN 1 7EG.

Mail Order Protection Scheme

The Publishers of Practical Wireless are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.

In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wireless within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence.

For the purpose of this scheme, mail order advertising is defined as:-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail order advertising are excluded.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below.in the next available issue of Practical Wireless for insertions

I enclose Cheque/P.O. for f .
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

NAME.. Send to: Classified Advertisement Manager	
ADDRESS	practical wireless, GMG, Classified Advertisement Dept., Rm. 2337, King's Reach Tower, Stamford Street, London SE1 9LS Telephone 01-2615846
	Rate 22p per word, minimum 12 words. Box No. 60 p extre.

H.A.B. SHORT.WAVE KITS WORLD-WIDE RECEPTION

H.A.C.: well hnown by amateur constructurs
for its Short Wave receivers, now offers a for its Short Wave receivers, now offers a complete range of kits and accessories to suit E 10.50 INC and the expert.
£ 10.50 INCLUSIVE-the ever popular and casy to construct DX receiver Mark III: drilled chassis, valve, accessories and full instructions. selective, sensitive and with fantastic reception yet needing only a single PP3 battery, at $£ 12.50$ this receiver is outstanding value, and will give you hours of interest and entertainment.
Lastly the K and K plus (illustrated above) for the more advanced constructor. This receiver has recently been re-designed for even better reception. All orders despatched within 7 days. Send stamped and addrese of now ror free descriptive cataloguc of kits and SORAY, NO CATALOGUES WITHOUT S.A.E.
"H.A.C." SHORT-WAVE PRODUCTS P.O. Box No, 16, 10 Windmill Lane Lewes Road, East Grinstead, West Sussex RH19 3SZ

- $D C$ to 10 MHz bandwidth.
- 10 mV to $50 \mathrm{~V} / \mathrm{cm}$ in 12 calibrated steps.
plus $12, \mathrm{Vemec} / \mathrm{cm}$ sweep range in 6 calibrated steps
- Magnifier x 5 .
- Fully automatic trigger.
- 2 MHz horizontal bandwidth.
- Fastest sweep $10 \mathrm{ins} / \mathrm{cm}$ with Magnifier.

Sensitivity $<1 \mathrm{~cm}$ deflection 10 Hz to $>15 \mathrm{MHz}$ LF. triggor extends below 5 Hz with 2 cm deflection. Trigger circuir
locks to the mean value of the displayed waveform. It will lock to almost any waveshape including sine. square. triangle, pulse and TV video signals. When no signal is present to repetition rate is below 5 Hz the trace free runs producing a bright base line. Company orders welcome by phone and Telex. Function Generator also available.

TECHNICAL
SPECIFICATIONS
Frequancy range:
20 Hz to 200 MHz
20 Hz to 200 MHz
up to 8 dipits
Lowest frequency resolution:
0.1 Hz 0.1 Hz
Gare tim

Gare time: decade adjus table from
0.01 secs to 10 secs
up to 5 per second
Display format: 8 LEDs. direct reading in kHz Attennumtor: 20 db
input impedince: 1 M in parallol with 50 pF Dimensions: 6 acy : $0.3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, $10 \mathrm{ppm} / \mathrm{year}$
Waight: 6 oz
Power requirament: 9V DCor ACadaptor
Sockets: standard 4 mm for resilient plugs
wner's instruction manual leads and prods, carrying wallet.
Optional equipmant: AC adaptor for 240 V 50 Hz power: deluxe padded carring case: connector kit comprising 8NC. co-ax, DIN and phono adaptors. plus telescopic aerial for off-air
transmiter measurements METER £49. ADAPTOR $£ 3.20$
CASE £3.20. CONNECTOR KITS $£ 10.58$
KRAMER B CO.
9 October Plece, Holders Mill Road, London NW4 1 EJ
October Place, Holders Mill Rosd, London, NW4 1EJ.
Telex: 888941 tetn. Kramer K7. Tel: 01-203 2437 Mail order only. Callers by appointment. Cash with order

PLEASE MENTION

PRACTICAL WIRELESS

WHEN

REPLYING TO ADVERTISEMENTS

BURGLAR ALARMS

WE HAVE STOCKS OF EVERYTHING YOU NEED. CALLERS WELCOME. OPEN 6 DAYS
EXPRESS POSTAL SERVICE FREE CATALOGUE SEND S.A.E.
MAXIGUARD MK 4 ULTRASONIC DETECTOR

12 V D.C. c/o relay output
Covers approx. 24 ft . Adjustable sensitivity
SPECIAL OFFER ONLY

including VAT \& Postage
A. D. E. (SECURITY) CO.,

217 WARBRECK MOOR
AINTREE, LIVERPOOL
TEL: 051-525-3440
STOP PRESS : Trade Price List Available Applications on Official Stationery only

The world's smallest
LCD programmables can be music to your ears

CASIO FX-501P and FX-502P
POCKET SIZED NON-VOLATILE PROGRAMMABLE CALCULATORS WITH MAGNETIC TAPE CASSETTE RECORDING ABILITY that convert to musical synthesizers!

- 1300 hours continuous use battery life - Non-volatile memories and stores - Conditional and unconditional jumps - Up to 9 subroutines, up to 4 levels - User defined keys
- Indirect on registers
- PAUSE key - Random Number key - 51 scientific functions

World's first LCD pocket sized complete scientific programmables. Both use ALGEBRAIC operating system. The FX-501P offers up to 10 programmes and up to 128 non-volatile steps, with 11 non-volatile memories. The FX-502P has up to 10 programmes, up to 256 nonvolatile steps and 22 non-volatile memories. Both have Automatic Power Off after approximately 14 minutes non-use. Dimensions of both are:-
9.6 mm H $\times 71 \mathrm{~mm} \mathrm{~W} \times 141.2 \mathrm{~mm} \mathrm{D}\left(3^{\prime \prime} \mathrm{H} \times 2 \frac{3}{4}^{\prime \prime}\right.$ W $\times 5 \frac{1^{\prime \prime}}{} \mathrm{D}$)

Optional FA-1 Programme Adaptor available for either model - permits programmes to be recorded on standard tape cassette recorder and stored for re-entry later. Also contains a music switch which converts both calculators into musical synthesizers - keys 1 through 8 contain pre-programming for a full musical octave.

Model	RRP	Our Price
FX-501P	$£ 59.95$	$£ \mathbf{£ 9 . 9 5}$
FX-502P	$£ 79.95$	$£ 69.95$
FA-1	$£ 24.95$	$£ 19.95$

\star THIS YEAR'S STAR BUY $\longrightarrow A \longrightarrow \square \begin{aligned} & 46 \mathrm{CS}-27 \mathrm{~B} \\ & 46 \mathrm{CS} 29 \mathrm{~B}\end{aligned}$
(As available - slight case difference only) Almost certainly the slimmest and most sophisticated ALARM CHRONOGRAPHS available today.

- LC Display of hours. minutes, seconds. day; And with day. date. month and year.
- 12 hour. with $\mathrm{am} / \mathrm{pm}$. ${ }^{24} 24 \mathrm{hr}$ clock displas at hr alarm setuing. chimes. Chrono measures from $1 / 100$ measures from thou Laps is \& ind place. Stuintess steel care only 7.8 mm thick. Water melistant 100° Mtneral relissant face. Backligh1 for
Backligh1 for might time
- 10 seconds/munth Removable links in bracciet Wes $£ 74.95$

NOW ONLY $£ 39.95$
Other CASIO multi-function watches from $£ 19.95$
UNBEATABLE QUALITY AND VALUE FOR MONEY FROM JAPAN - WHY SETTLE FOR LESS?

Most CASIO products available from stock. Send 25 p for illustrated brochures of this superb range of high quality watches or calculators. (Both on request.)

Prices include VAT, P \& P. Send cheque, P.O or phone your ACCESS or BARCLAYCARD number to:-

[^2]

INDEX TO ADVERTISERS

[^3] otherwise disposed of in a mutilated condtion or in any unauthorised cover by way of Trade of amfixed toor as partof any publication or advertising. literary or pictorial matter uhatsoeter.

Prices are inclusive of VAT (at current rates) except where shown separately. Postage and packing charges are $\mathbf{£ 0} \mathbf{0 . 1 0}$ per $£$ subject to a minimum of $\mathbf{£ 0} \mathbf{0} \mathbf{3 0}$. Minimum order charge for Approved Credit customers $£ \mathbf{2 0 . 0 0}$. Minimum Transaction Charge for mail orders £1.00.

OUR NEW 1978/1979 CATALOGUE IS NOW READY AND WILL BE SENT ON RECEIPT OF REMITTANCE FOR £O. 30

IT'S EASY WHEN YOU KNOW!

To avoid missing your copy of PRACTICAL WIRELESS simply complete this order form and hand it to your newsagent.

ORDER FORM
To:
(name of newsagent)
Address \qquad
\qquad
\qquad
Please reserve/deliver every month one copy of PRACTICAL WIRELESS until further notice.

My Name \qquad
Address \qquad
\qquad
\qquad
\qquad

[^0]: SPECIAL OFFER SEMICONDUCTORS
 T8A8OO 50p. LM3900 40p. 7418 pin 6 for $£ 1.00$. NE555 22p. ZN4 14 75p. IN4005 10 for 35p. 723 REGS 35p. OC140 TRANS. 40p. BX504 opto isolotors 25p. 2 N 5062 1100V 800MA SCRI 18p.
 MINIATURE TOGGLE SWITCHES. SPST $8 \times 5 \times 7 \mathrm{~mm} 49 \mathrm{p}$. DPDT $8 \times 7 \times 7 \mathrm{~mm}$ 83p. DPDT centre off $12 \times 11 \times 9 \mathrm{~mm} 78 \mathrm{p}$. HEAYY DUTY TOGGLE DPDT 240 V AC 10 amps 35p.
 MINIATURE SOLID STATE BUZZERS. $33 \times 17 \times 15 \mathrm{~mm}$ white plestic rectangular case. output at 3 feet 70 d 8 . Low consumption only 15 MA .4 voltage types available. 6-9-12 of 24 V DC 75 p each. LOUD BUZZER. 50 mm diameter 6 or 12 volts 60 p . GPO ADJUSTABLE BUZZER, 6-12V DC 25p.
 DE-SOLDERING TOOL. Good suction. Teflion nozzie, £4.75p.
 MOTORS. Miniature model motors $1.5-6 \mathrm{~V}$ DC 20p. 12 V DC 5 pole motors 35p. 8 track replacemant motors 12V DC 55p. 'Big inch' tiny precision motor 115 V AC 3 pm 30 p . Smiths Clock Motor Syneh., 240 V AC 1 rev. per hour $£ 1.75$ p.
 SURPLUS BOARDS. No. 1 has 14 encapsulated reed relays, $12 \mathrm{~V} \mathrm{E1.95p}$.
 No. 2 has $1150 V 2.5 \mathrm{amp}$ scra.. one reloy and various trensisiors including UJT $\mathbf{£ 1 . 9 6 p}$. No. 3 car radio RF/IF boards 2 transistors, LM382 IC trimmers ifs etc. 66p.
 No. 4 car radio boards with 6 transistors including power output types |F's choke atc. 75p. TELEPHONE PICK UP COIL. Suction type with lead and plug 55p.
 Terms - Cash with order for official orders from schools etc.) Postage 30p. (Overseas at cost) VAT inclusive.
 SAE for illustrated lists.
 PROGRESSIVE RADIO
 93 Dale Street,
 Liverpool L2 2D'Y.

[^1]: Reports on the various bands are welcome and should be sent direct, by the 15 th of the month, to:
 AMATEUR BANDS Eric Dowdeswell G4AR, Silver Firs, Leatherhead Road, Ashtead, Surrey KT21 2 TW. Logs by bands, each in alphabetical order.
 MEDIUM and SW BANDS Charles Molloy G8BUS. 132 Segars Lane, Southport PR8 3JG. Reports for both bands must be kept separate.

[^2]: Dept. P.W. Bc. Beaumont Suite. 16 - 167 Eay Road Cambridge CB1 IDB Tckphonc 022367503

[^3]: Published on approximately the 7th of each month by IPC Mapazines Limited. Westover House. West Quay Road. POOIEE. Dorset 8 HIS IJG. Printed in England by Chapel River Press. Andover. Hants. Sole Agents
 for Australia and New Zealand-Gordon and Goteh (A sia) Lid.: South Africa-Central News Agency Lod. Subscripuons INLAND and OVERSEAS EiO. 60 payable 0 IPC Services. Oakfield House Perpymount Ror Australia and New Zealand-Gordon and Goich (Asia) Lid. South Arrica Central News Agency led. Subscriphons liNLAND and OVERSEAS \&iO 60 payable to IPC Services. Oakfield House. Perrymount Road. Raysards ineath. Sussex. Practical Wikeless is sold subject to the following conditions. namely that it shall not. without the written consent of the Publishers first has ing been given. be lent. resold. hired out

