COSMOS & Co: A GUIDE TO RUSSIAN SATELLITE RECEPTION

AERIAL DESIGN: PHASED VERTICAL ARRAYS

IN THE CELLS: GET MAXIMUM LIFE FROM YOUR BATTERIES

DATA FILE: LED ANALOGUE-VALUE INDICATOR CIRCUITS

RF SIGNAL AMPS: PITFALLS OF DESIGN AND CONSTRUCTION

SPECIAL READERS' OFFER £5 OFF MJ102 OSCILLOSCOPE
CONTENTS

SPECIAL FEATURES

10 Special Readers’ Offer
Free to our readers – £5 off the MJ Instruments 102 oscilloscope

15 Canal Plus
Nigel Cawthorne G3TXF describes Europe’s first VHF/ UHF pay-TV service

18 Phased Vertical Arrays
A computer program for the design and modelling of phased vertical antenna systems

29 Russian Satellites
The first part of a series looking at the equipment used to decode signals from the USSR’s navigation satellites

32 RF Small Signal Amplifiers
A look at some of the obstacles encountered when constructing radio frequency devices

37 Data File
Ray Marston continues with the opto-electronics theme and looks at LED sequencer and analogue-valve indicator circuits

46 Weather Satellite Update
Looking at the changes that have occurred and the addition of the new Polar Orbiting Satellite

47 A Night in the Cells
A few suggestions to keep your batteries healthy

55 Principles of Z80 Morse Decoding
Dr M A Kiam-Laine tackles the problems of decoding Morse signals using a computer

REGULARS

4 Product News
11 News Desk
27 Amateur Radio World
50 Latest Literature
59 Short Wave News
62 QSO
65 DX-TV Reception Reports
70 ATV on the Air
74 Free Classified Ads
76 Small Ads

READER SERVICES

58 Subscription Order Form
68 Amateur Radio Subscription Order Form
72 Back Issues Order Form
75 Free Classified Ad Order Form
78 Advertisers Index
78 Advertising Rates and Information

NEXT MONTH

73 What’s in Store for You

☐ Next Issue
Cover date February 1985 on sale Thursday, 10 January

☐ Publication Date
Second Thursday of the month preceding cover date
PRODUCT NEWS

Featured on these pages are details of the latest products in communications, electronics and computers. Manufacturers, distributors and dealers are invited to supply information on new products for inclusion in Product News. Readers, don’t forget to mention Radio & Electronics World when making enquiries.

200 WATT LINEAR

The new MML 144/200-S from Microwave Modules, featured on this month’s cover, has been introduced to cater for the growing requirement for a high power 144MHz solid state linear amplifier.

The amplifier provides an output power of 200 watts and is fully compatible with transceivers of 3, 10 and 25 watts output. Input power level is manually selected, so the unit is suitable for use with mobile, portable or base station equipment.

Front panel mounted switches allow the linear power amplifier and the GaAsFET receive preamplifier to be independently switched in and out of circuit.

By means of an RF Vox circuit the linear will automatically switch onto transmit when 144MHz drive is applied to the input socket. This facility cannot be over-ridden by the connection of an earth to the phono socket on the rear panel.

The RF Vox has switched delay times for SSB and FM modes. Design of the PA stage ensures highly reliable and ultra-linear performance, making the unit ideal for all modes of communication (SSB, FM, AM & CW).

The receive pre-amp design, employing dual-gate GaAsFETs in a noise-matched configuration, is ideal for use with any popular 2 metre transceiver and gives an excellent overall system noise figure.

Construction is to the usual high standard, and all necessary plugs are supplied.

Microwave Modules,
Brookfield Drive,
Liverpool L9 7AN.
Tel: (051) 523 4011.

SPLITTER/COMBINERS

W & G Instruments have added to their range of British manufactured signal processing components with the introduction of the 4-way splitter/combiner type 3352 and the 6-way splitter/combiner type 3354.

Both units cover the frequency range 5 to 150MHz, with isolation (mid-band) of 25dB and insertion loss of 0.75dB.

Amplitude balance is 0.3dB and phase balance 4.0°.

The operating temperature range is -20°C to + 85°C.

These high performance reactive components are designed for dividing or combining RF signals with minimum insertion loss and high isolation.

W & G Instruments Ltd,
Hatfield Components Division,
Burrington Way,
Plymouth,
Devon PL5 3LZ.
Tel: (0752) 772773.

A/D CONVERTER

The DTR1580 is the newest instrument in the CIL Microsystems range. It fulfils a demand for a very accurate high speed, large storage data recorder with intelligent programs to analyse data and transfer the results either to a terminal or computer via IEEE or RS232.

Up to now this type of instrument was only available at very high cost because of the expensive way of producing 16-bit accuracy at high speed. CIL Microsystems, in conjunction with various universities, have developed a method of producing this type of conversion at low cost.

As already stated, the DTR1580 is a 16 channel 16-bit 20µs high speed A/D converter for use with the IEEE-488 BUS and RS232 link.

Recordings can be initiated by an external trigger (Schmitt input) which has programmable delay and gain (±100mV to ±10V).

Although the micro-proces-
LOW-COST MULTIMETERS

Five new low-cost digital multimeters have been introduced by Beckman Industrial under the Circuitmate name. The range comprises two full-size handheld meters, the DM40 and DM45, and three pocket-size meters, the DM15, DM20 and DM25. All are 3½ digit models and incorporate the proven Beckman Industrial design concept of a single rotary centre switch operation.

The robust DM40 and DM45, ideal instruments for either field service applications or bench use, have accuracies of 0.8% and 0.5% Vdc respectively.

Features include five ranges each for ac and dc volts and current (six on the DM45 which has a 10A input) and six different resistance ranges.

Display and input sockets are recessed for maximum safety and a tilt bail and anti-skid pads facilitate bench use.

The DM45 also incorporates a buzzer for fast continuity testing and circuit tracing, and both instruments have a separate range or diode testing. The price of the DM40 is £49.00, and that of the DM45 £65.00.

The DM15, DM20 and DM25, which measure only 15.0 x 8.2 x 2.5cm, are full-function meters with extras not found on most larger instruments, allowing measurement problems even outside traditional multitester applications to be solved.

Each model has its own special dedication. Depending on the most frequent needs it is therefore possible to choose between additional capacitance measurement on the DM25 or additional transistor testing on the DM20. Model DM15 is the lowest priced version but, like the other two, also has a separate range for diode testing as well as a direct 10A input. All three instruments have a Vdc accuracy of 0.8%.

Both the DM20 and DM25 measure conductance, which is very convenient when faced with very high resistances (up to 10000Mohm). They also offer switch selection of high or low power on resistance ranges, the low power allowing convenient in-circuit measurements in sensitive electronic circuits. The top-of-the-range DM25 also incorporates a buzzer for continuity testing.

The prices for the DM15, DM20 and DM25 are £42.00, £47.00, and £58.00 respectively.

A full range of Beckman Industrial accessories is available for the Circuitmate meters.

All are covered by a comprehensive three-month warranty and are obtainable through Beckman Industrial's UK distributor network.

Beckman Industrial Ltd.
Electronic Technologies Division.
Mylen House,
11 Wagon Lane,
Sheldon,
Birmingham B26 3DU.
Tel: (021) 742 7921.
Cirkit. Making it perfect.

Cirkit's got the kits you need to make your copy loud and clear.

In all there are over 100 kits to choose from. Selected and designed to offer the best possible standards at the best possible price.

Delivery is fast and reliable. We keep in touch with the manufacturers and we know what's going on. So as soon as new products are available, Cirkit has them.

Cirkit means a bigger catalogue. A better company to deal with.

And a wide range of kits and products that's growing all the time.

At Cirkit, we're tuned in to your needs.

Just send for our catalogue or visit one of our three outlets at:

200 North Service Road, Brentwood, Essex. CM14 4SG;
53 Burffields Road, Portsmouth, Hampshire. PO3 5EB;
Park Lane, Broxbourne, Hertfordshire. EN10 7NQ.

Please add 15% VAT to all advertised prices and 60p post and packing.

Minimum order value £5 please.

We reserve the right to vary prices in accordance with market fluctuation.

10MHz DFM

A DFM capable of operating at frequencies up to 10MHz. The kit can be configured in six different measurement modes including: frequency, period, elapsed time and unit counter. Applications can be extended using the CIRKIT prescaler and preamp.

SPECIFICATION: Input signal: 20V (min) TTL, Frequency range: 0 to 10MHz. Period measurement: 0.5 to 10 sec. Time measurement: up to 10 sec. Output: BCD multiplexed. Display: 8 digit 12mm LED. Supply: 5VDC at 100mA (nom).

2m POWER AMP

A carefully designed 20W, 144MHz linear power amplifier, to boost the output of hand-held and transportable transceivers such as the TR-2000 ICE, FT298, FT290 etc. With 10dB gain to give a 20W output from a 2W input. Automatic changeover relay - switched from RF sense circuit. High power - output relay, robust construction with die-cast box, plus RX pre-amp.

Input/Output impedance: 500. Size (excluding sockets): 122 x 96 x 44mm. Pre-amp section spec as 2m Pre-Amp Kit.

2m CONVERTER

Low noise 2m to 10m converter. This design uses low noise dual gate MOSFETs in the RF and mixer stages which, together with a TOKO pre-aligned helical filter and pre-wound coil, gives a high specification and repeatable performance. A reliable 116MHz oven tone oscillator circuit is followed by a double tuned stage which gives a very clean output, this reduces spurious at a minimum. As the circuit is basically linear any mode - AM, FM or SSB - can be converted. The complete circuit is built onto a double-sided PCB.

2m PRE-AMP

Very compact low-noise MOSFET 2m pre-amp. The overall PCB is sufficiently small to be installed inside receivers or transceivers.

SPECIFICATION: Noise figure: Better than 1.5dB. Gain: 15dB Min. Input/Output impedance: 500. Size: 34 x 13 x 10mm.

KIT INCLUDES: Double sided PCB - All capacitors - MOSFET - Coils and cans.

To: Cirkit Holdings PLC, Park Lane, Broxbourne, Hertfordshire. EN10 7NQ.

Enclose 85p. Please send me your latest catalogue and 3 x £1 discount vouchers!

If you have any enquiries please telephone us on Hoddesdon (0992) 444111.

Name ___________________________ Telephone ___________________________

Area of Special Interest ___________________________

New Winter Catalogue Out Now!
NOW AVAILABLE exclusively from CIRKIT, TAU high quality ATU kits and accessories.

Full HF coverage, tuned from 1.5MHz continuously to 29.500MHz. Based on the reknowned SPC transmatch configuration, TAU innovated this composite module design with large air-spaced capacitors rated at 5kV, tested to 7kV. Roller inductor infinitely variable. Solid precision radio engineering. Heavy weight long life construction. Will tune any transmitter/aerial combination to optimum. A lifetime investment and should never need replacing. Power handling capabilities from a few milliwatts to above 3000 watts PEP. Undoubtedly the finest ATU module available today.

STU/SK ATU Kit 41-50650 130.00
CABINET - custom-made for STU/3 KATU 41-50510 62.50
DIGITAL TURNS COUNTER
Multi-turn, vernier scale with digital indication, for use with rollecoaster, with or without cabinet. 41-50520 27.94
BALUNS
To complete the ATU, we have the following Baluns:
Location PEP Ratio Stock No. Price
Outdoor 08141 1kW 4:1 41-50414 27.35
Indoor 08241 20kW 4:1 41-51241 17.25
41-51341 22.35
ROLLECOASTER
To complement existing equipment, covers 1-30MHz, 28U inductance, tapered pitch for 10 and 15 meters. 41-50540 46.00

CIRKIT ELECTRONICS TOOL KIT
Contains 15W Soldering Iron, 2 spare bits, heat shunt, solder, pliers, cutters, and screwdriver. 41-00007 15.56

Selected Lines

Books

The Radio Amateur's Q & A Reference Manual
02-02157 5.95

Oscilloscopes: How to use them, how they work
02-21300 4.35

The World's Radio Broadcasting Stations
02-11564 7.00

The ZX Spectrum
02-00100 5.95

Privacy and Pocket Book
02-21309 7.50

Practical Design of Digital Circuits
02-11831 10.45

Projects in Amateur Radio Active Filter Cookbook
02-21304 3.80

Beginners Guide to the Amateur Radio CMOS Cookbook
02-21188 12.70

Handbook of Active Filters
02-21339 10.15

Design of Op-Amp Circuits
02-21537 9.30

Design of Phase-Locked Loop Circuits
02-21545 9.30

Foundations for Microstrip Circuit Design
02-21666 10.15

Effectively Using the Oscilloscope
02-21700 9.30

Microcomputer Circuits
02-21794 10.15

Microcomputer Foundations for Microstrip Circuit Design
02-21947 21.00

Handbook of Electronic Tables
02-21532 11.00

TTL Cookbook
02-21038 11.00

TV Antennas and Signal Distribution Systems
02-21584 10.15
PRODUCT NEWS

MULTIPLEXER

Levell Electronics have announced the release of a new oscilloscope multiplexer. The type OM358 expands any oscilloscope to 8 channels.

The multiplexer has a bandwidth of 35MHz and a calibration accuracy of 3%. Input impedance is 1Mohm/20pF and the attenuator has four positions of x100, x50, x20 and ground. The trigger signal can be selected to come from any of the 8 input channels. A variable multiplex rate control ensures flicker free operation at any timebase speed, and facilitates high speed multiplexed capture of multichannel single shot events.

Typical application areas include microprocessor based products, data transmission systems, analogue to digital converters, phase locked loops and frequency dividers.

Levell Electronics Ltd, Moxon Street, Barnet, Herts EN5 5SD. Tel: (01) 440 5028.

VOLTAGE TESTERS

A range of inexpensive, reliable and safe voltage testers, ideally suited to DIY and hobby applications, is available from Steinel (UK) Ltd. The testers are simple to use and provide a wide range of voltage indication enabling the rapid and safe testing of batteries, power supplies and mains voltages.

Using a simple LED and/or neon indicator system built into one of the two shock-protected probes, ac and dc voltages of up to 415V can be detected, depending on the model chosen. A major feature of their design is their foolproof operation in all conditions likely to be encountered by the average DIY user.

Volt Check is simplicity itself to operate. It has just two LEDs indicating the presence of voltages either ac or dc in the range 4.5 to 415V, with polarity indication. This is ideal for fault-finding applications, testing whether mains sockets/terminals are live etc.

Power Check is designed specifically for the indication of ac mains voltages, and using three neons indicates voltages of up to 110, 240 and 415V.

Hobby Check provides the same three-step voltage indication as the Power Check but with the added advantage of dc measurement covering the same voltage ranges and with polarity indication.

Steinel (UK) Ltd, 17 Reddicap Trading Estate, Sutton Coldfield, West Midlands B75 7BU. Tel: (021) 375 2820.

CAPACITANCE METER

GSC has introduced the Model 3000 digital capacitance meter, a precision test instrument designed for handheld battery operation.

Features include a 3½ digit resolution, accuracy to 0.2% of reading, capacitance measurements of 1pF to 2000 uF, and switch selection of capacitance range.

The instrument has a 0.5 inch high numeric liquid-crystal display with annunciators to indicate low battery and excessive compensation of stray capacitance.

Designed to operate with a 9v battery, the Model 3000 also has a front-panel zero 'adjust' control to permit nulling of stray and incidental capacitance, and a tilt stand for easy and convenient positioning.

Applications include quality control, inspection, production, design, calibration, field service and systems installation.

Available accessories include a pair of test leads, fuses, battery, and an instruction manual.

Global Specialties Corporation, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.

INSTRUMENT HOUSINGS

The 'H9 'Proto-Pac' series has now been added to the range of standard instrument housings made by PMH Inc. Versatile and economical, Proto-Pac series housings are particularly suitable for prototyping needs and are formed from extruded aluminium tubing. Front and back panel fixing is by way of 0-80 holes tapped directly into the housing sidewalls giving the user more interior space, access to both sides, and providing excellent shielding.

The Proto-Pac series are available in a large range of sizes and with options which include covers with mounting flanges, connector holes and chemical film or nickel plating.

Aspen Electronics Ltd, 2/3 Kildare Close, Eastcote, Ruislip, Middlesex HA4 9UR. Tel: (01) 868 1186.

FREQUENCY METER

The TF600 is a battery or mains (ac adaptor) operated portable frequency meter with a large 0.5in 8-digit LED display.

The frequency range is 5Hz to 600MHz with a sensitivity of better than 10nV RMS across the entire range.

There are two inputs. Input A is a high impedance input (1MΩ) for the 10MHz and 100MHz ranges; a low pass filter (40kHz) is provided. Input B is a 50Ω nominal input for the 40MHz to 600MHz range.

The display reads out directly in KHz and also has indicators for overflow, gate and low battery.

The decimal point is positioned automatically on all of the ranges.

Thandar Electronics Ltd, London Road, St Ives, Huntingdon, Cambridgeshire PE17 4JH. Tel: (0480) 64646.
THE ULTIMATE BATTERY?

AllBatteries have introduced to the UK the latest ‘state of the art’ battery. Developed by the Altus Corporation, one of America’s foremost battery manufacturers, the new high power Lithium Thionyl Chloride cells incorporate several unique features which make them superior to any other battery for many applications. Weight for weight and size for size, Altus cells contain more power than any other commercial cell.

Among the many special features are a number which make these new cells probably the safest battery available. Tests conducted by the UL prove that the cells can be subjected to heat, short circuit, crushing and even penetration by a metal object without any dangerous consequences.

Other patented features allow the cells to deliver high currents; the larger sizes can deliver up to 15A continuous and 30A pulse. All cells are rated at 3.6V nominal and will operate over a wide temperature range.

AllBatteries stock a wide range of Altus disc and cylindrical cells with capacities from 0.23 to 18AH. They can advise on the best choice of battery and can construct special packs if required.

The TU also has the PNP ALCSystern to cater for a wide range of input signals and to compensate for signal fading. A bar-graph tuning indicator is provided to ensure accurate tuning, which is necessary for the reception of RTTY.

MULTI-STANDARD TERMINAL

PNP Communications have announced the availability of a new ‘matched-filter’ type RTTY/CW receive-only terminal unit.

Primarily aimed at the serious short wave listener, the unit is suitable for interfacing a communications receiver to a home computer. The matched filter-rectifier-integrator design also makes it suitable for demodulating Morse code transmissions for CW reading programs.

The terminal unit comprises two active filter chains. One is fixed at 1275Hz for space and the other is electronically switched to 1445Hz for 170Hz shift, 1700Hz for 425Hz shift or 2125Hz for 850Hz shift mark signals. This channel is used for Morse reception.

The TU has also the PNP ALCSystern to cater for a wide range of input signals and to compensate for signal fading. A bar-graph tuning indicator is provided to ensure accurate tuning, which is necessary for the reception of RTTY.

The TU is suitable for the reception of signals in excess of 200 baud and for the reception of AMTOR etc. TTL level outputs are provided for ‘normal’ and ‘inverted’ signals and power is available for a transmit tones generator.

All connections are by plug and socket and the TU has onboard rectifiers and power regulators. It is supplied as a built and aligned PCB complete with mains transformer, and measures 155mm x 107mm. The price is £32.50 + VAT inc p&p.

Kit versions will be available shortly.

PNP Communications, 62 Lawes Avenue, Newhaven, East Sussex BN9 9SB. Tel: (0273) 514465.

INSERTION GUIDES

A new line of insertion guides, ready loaded with collet pins for speedy and accurate collet pin insertion, are available from Aries Electronics.

Both single and double row insertion guides on 0.1 inch spacings are available, the single row versions having from 3 to 40 pins and the double row versions having 6 to 48 pins on 0.3 or 0.6 inch centres. After wave-soldering the pins to the board, the disposable insertion guide is simply removed.

Aries collet pins are available in 3 styles. All styles have a two-piece contact assembly, consisting of a machined four leaf (gold plated) closed entry contact within a screw machined outer sleeve. Collet contacts provide high reliability and accept .015 to .020 round leads and flat IC leads.

Aries Electronics (Europe), Alfred House, 127a Oatlands Drive, Weybridge, Surrey KT13 9LB. Tel: (0932) 57377.

BROADBAND TRIPLEXER

Time Microwave, Santa Clara, California, have announced the Model TPF 143 triplexer, which is designed to operate from DC to 18GHz and provides passband channel bandwidths of DC to 2GHz, 2 to 6GHz, and 6 to 18GHz.

The triplexer exhibits 1dB maximum insertion loss (to within 5% of crossover), a crossover insertion loss of 4.5dB maximum, a 2:1 maximum SWR, and rejection of 55dB to within 15% of crossover. The low profile triplexer is 3.7 x 2 x 0.5 inches and uses SMA female connectors.

The triplexer is an integration of Suspended Substrate MIC (SSMIC) diplexers with crossover frequencies of 2 and 8GHz. A series of SSMIC diplexers with crossover frequencies from 2.6 to 14GHz have been designed on RT/Duriod.

These diplexers can be integrated to form many multiplexing functions.

Protocol is a professionally designed British product for the easy construction of prototypes or the development of new circuits.

Six 16-pin DIL sockets have their pins brought out to large area solder pads on the PCB, which is also provided with transistor pads and supply and signal tracks which run the full length of the board.

Protocol can be re-used as often as required, providing a useful aid to circuit designers.

Also supplied with the board are a pack of Protocol Plan cards (which are used to plan component layout), instrument wire in a selection of colours, and solder.

This product is invaluable to those constructing prototypes and test circuits, and does not suffer the problem of bad contacts sometimes encountered with push-in type boards.

E & H Electronics, 33 North Street, Keighley, West Yorkshire BD20 3SL. Tel: (0535) 44103.
THE FERGUSON VIDEOSTAR C

The Ferguson Videostar C 3V41, the latest concept in electronic photography which combines a video camera and recorder in one compact, lightweight unit, is the latest addition to the Ferguson Videostar range.

The new Ferguson Videostar C package includes a single unit camera and recorder, slimline rechargeable battery, battery charger, RF converter, detachable microphone, carrying handle, VHS C EC30 video cassette and instruction book. Supplied in an executive style custom fitted carrying case, the Videostar C is a truly portable home video system that includes everything needed to make home video recordings in colour and with sound, and to immediately replay them on a television receiver or in the electronic viewfinder provided.

Developed from VHS technology, the Ferguson Videostar C system is completely compatible with all VHS video cassette recorders. Designed for high performance with effortless operation, this camcorder is supported by a comprehensive range of accessories offering the opportunity to exploit and enjoy the full scope of video recording techniques, making it the ideal system for domestic and business use.

It weighs just 4½lb and is only 13.5cm high, 34cm long and 20cm wide, and is therefore very convenient for one handed use.

The Videostar C has high sensitivity in low light levels (down to 15 lux), which allows it to make excellent colour recordings under almost any lighting conditions. Varying light values are compensated for by the automatic iris control, but this can also be operated manually for creative effects.

Other features include an electronic viewfinder which can be mounted at various angles and incorporates 8 recorder/camera mode indicators; instant playback through the electronic viewfinder; colour picture search (forward and reverse); back space edit; automatic quick review of each recording; LCD tape counter, including memory stop; and 6x power zoom with manual over-ride.

The Videostar C is supported by a full range of accessories which allows the video enthusiast to gain full scope and more professional results from the system.

Thorn EMI Ferguson Ltd, Cambridge House, Great Cambridge Road, Enfield, Middlesex EN1 1UL. Tel: (01) 363 5353.

SPECIAL READERS' OFFER — THE MJ1 102

Here's your chance to obtain the M J Instruments' 102 oscilloscope at a £5 discount

This simple to operate unit features fully automatic triggering, 100mV to 50V/div sensitivity, and 10mS to 1μS/div sweep speed.

The 'scope is available to R&EW readers for £5 less than the already low retail price of £129.95 by enclosing the voucher below with your order, which should be sent to:

M J Instruments, Hilltop House, Thingoe Hill, Bury St Edmunds, Suffolk IP32 6BE

But be quick! This offer ends 31 January 1985
Gallium arsenide plan
Plessey Research (Caswell) Limited announced recently that it has reached the first major milestone in a £50M investment programme to establish a production facility for gallium arsenide integrated circuits.

Parts of the research centre have been completely refurbished to provide an additional 2000 square feet of advanced clean wafer fabrication facility and associated services. Plessey now has a total floor space of over 7000 square feet for clean gallium arsenide wafer fabrication.

The latest addition to the company’s GaAs facilities will be dedicated to the engineering and pilot production of ICs prior to their transfer to full production at the Plessey Three-Five Group Limited in Towcester.

Plans are well established to add further clean facilities for assembly and testing early in 1985. The total cost of this new facility, its equipment and commissioning is £3M. Equipment installation, including the dedicated ion implantation facility, is now nearly complete.

Plessey has all the technology in its Caswell Laboratory to commercialise the first generation of integrated circuits and has been supplying small quantities to customers at home and abroad for some years. However, Plessey’s £50M investment objective is to be a leading world producer of circuits in volume manufacture and has a plan before DTI to do this.

Gallium arsenide exhibits higher electron mobility and saturated drift-velocity than silicon, giving speed advantages of up to 4:1 over silicon for digital circuits. Analogue circuits operating up to 20GHz can be designed and fabricated at the present time. Silicon circuits have difficulty in achieving analogue bandwidths greater than a few GHz in IC form.

Applications for gallium arsenide ICs include satellite communications, phased-array radars, navigation receivers, cellular-radio systems and high-speed computers.

In order to reduce testing time, increase yield and reduce packaged chip costs, an RF on-wafer testing capability prior to chip separation has been developed at Plessey Research. This equipment will be installed in the new wafer-fabrication facility during 1985.

Currently over 30 different gallium arsenide IC designs are in advanced phases of development, including chips to perform functions such as multiway switches, mixers, multipliers and oscillators for first generation MMICs.

RFI protective screening
A new zinc coating process which eliminates radio frequency interference (RFI) has been developed by Decospray, part of the Eltron group of companies.

The process, called Decoscreening, consists of the homogeneous application of molten zinc to the internal surfaces of plastic enclosures without deforming, discoloring or weakening the base material.

Electromagnetic energy is absorbed by the coating, and external radio frequency interference is subsequently reflected. This interference can be caused by such mundane things as vehicle ignitions, fluorescent lights, radio transmitters, or welding equipment.

The problem of RFI has arisen where metals have been replaced by modern plastics to house electronic components. Although more aesthetically acceptable, cheaper, and lighter plastics are transparent to radio waves, and so protective screening becomes essential to prevent damage or malfunctioning.

The Decospray patented process has the added advantages of being quickly and permanently attached, avoiding short circuits, and is non-combustible. The process has been effective in solving interference problems in the computer, VDU, telecommunications, security, medical, and defence industries. The process can be applied to almost any plastic housing.

DIY graphics processors
The Camberley-based systems engineering company, EASAMS Limited, unveiled two new graphics processor packages at the International Test & Measurement Exhibition held recently. These will spearhead the company's drive to strengthen its position in the fast-growing industrial market for low-cost computer graphics.

For manufacturers and others with limited CAD capability, the dedicated software packages, known as FLOW GEN and CD GEN, respectively offer generators for flowchart and circuit diagram graphics. Both 12K machine code programs take full advantage of the high resolution graphics and memory-mapped screen possibilities of Apple II micros, with hard copy output provided by a Hewlett Packard plotter.

Flowcharts and circuits are to technical publications standard, and are produced with fine-line drawing office pens of sufficient quality for immediate reproduction-for-print. Complete hardware/software packages can be supplied by EASAMS to satisfy users' needs for a low-cost automated drawing office capability.

Second generation mobile telephones
The Nordic market for mobile telephones has expanded at record speed since it first got under way in 1981. The rate of development has exceeded almost all expectations.

During the three years the NMT (Nordic Mobile Telephone) system has been in existence it has attracted more than 100000 subscribers. Of these, approximately 40000 are located in Sweden. The Nordic area is already the most active mobile telephone region in the world.

The second generation of mobile telephones is now being launched by Ericsson, one of 11 suppliers to the Scandinavian market, with their PT range.

These telephones are well-equipped for future communications requirements. They are characterised by a drastic reduction in size - they are almost half the size of previous models. One station unit therefore weighs only a couple of kilos and the control unit only 340g. The small dimensions and negligible weight provide increased mounting possibilities.

The Ericsson PT telephones are already adapted and equipped for future digital communications. In the future it will be possible to receive or transmit information from a mobile telephone computer terminal installed, for example, in a car.
Radar recorder

Originally developed for use with the Royal Navy, the commercial variant of Walton’s Radar Recorder is now in full production.

Seen to have many applications in the defence, maritime and civil aviation fields, the system means that instead of radar information being lost as the screen is updated, there can now be a permanent record. This is useful not only for post-incident analysis but in, say, air traffic control applications, as a valuable tool when planning preventative measures.

On the training front the radar recorder has been enthusiastically received because it enables operators to work with real radar. A whole library of tapes can be built up to give trainees the experience of a wide variety of situations, so they no longer have to wait for the appropriate conditions to arise.

The Walton Radar Recorder Interface can record radar synchronising pulse, radar video and antenna azimuth data onto 3½in magnetic cassette, as well as other data such as log, compass/gyro, secondary plot data, depth readings, voice and time code signals.

Record and replay are the basic modules of the system, but several options can be provided to suit individual requirements, such as video store, sequencer and tape copying modules.

Data processing equipment

Computerisation of British industry has now gained an unstoppable momentum, but penetration is still low and there is still a long way to go before replacement is the major determinant of demand, according to a new report on data processing equipment published by Market Assessment, which estimates that the market has grown from £1103M at MSP in 1978 to £2266M in 1983.

UK production in the electronic computer industry is one of the few manufacturing sectors to have ridden the recession and actually expanded, even though some UK production reflects assembly of imported parts rather than manufacture. Yet UK manufacturers’ sales of data processing equipment is valued at £1,962M out of the total £2,866M market in 1983.

Advertising has increased phenomenally, reflecting both market growth and the proliferation of manufacturers. In 1978, media advertising of computers and calculators alone accounted for £2.10M. By 1983, this had grown to £26.45M and this excludes trade exhibitions and direct mail. IBM and ICL are by far the largest advertisers, followed by DEC, ACT Apple, Hewlett Packard and Honeywell.

The report examines the performance and prospects of calculators, mainframe computers, small business computers, computer peripherals, encoders, disc drives, printers and tape decks.

Computer repairs

The looming nightmare of repairing hundreds of thousands of cheap home computers after their warranties expire has been solved by a new British company, Computer-fx Ltd of Camberley, Surrey.

Computer-fx has set up a national network, initially of 500 dealers, offering cheap, guaranteed repairs in only 48 hours plus postage time from the dealer to Camberley and back.

The network is based on a revolutionary British diagnostic computer which can reveal any of the top ten brands of home micro in just seconds. The machine does not even need to be told the make or model of micro it is testing.

ACUMEN – Advanced Computer Memory Tester – is British designed and manufactured and if Computer-fx decided to sell it would cost around £5000 (somewhat less than existing advanced test equipment).

Most home computers sold in Britain are still covered by their manufacturers’ warranties, as sales started to boom only the Christmas before last. According to managing director Ray Johnson, the first hundreds of thousands of repairs out of warranty are just starting to explode on the market.

With his combination of revolutionary test equipment and a national network of dealers, Mr Johnson believes he can corner the British market for home micro repairs, especially when people see just how low his prices are (a 90-day guarantee on parts and labour is included).

Plans are under way to extend the principle, possibly on franchise, throughout Western Europe.

PCB-based product lines

RIFA have announced the introduction of a completely new line of products designed to simplify the design and production of PCB-based systems and modules.

At the centre of this new range of products is the unloaded PCB, which incorporates a full matrix of holes on 0.1in centres. This may be mated at right-angles with a front panel which itself contains a PCB, and the resulting assembly fitted into an industry-standard 19in rack.

A variety of components, such as LED holders, fuse holders, switches, trimmers and test jacks etc, may be plugged or soldered directly into the host board or front panel, thus dramatically simplifying the job of both prototype and production board-based modules.

Third generation MosFETs

Motorola is using significantly improved process technology in its new ‘A’ series of MosFET devices now in production. Utilisation of this new TMOS II technology results in significant cost savings to customers, making MosFET devices an even more attractive and cost-effective alternative to bipolar transistors in many applications.

The state-of-the-art design of TMOS III devices, accomplished through fine line geometry and spacing of source sites, increases the packing density to more than one million cells per square inch.

This smaller die size is less expensive to produce and yet retains the low on-resistance (R_off) specified for previous TMOS die with larger surface areas.

As an example, the industry standard bipolar transistor, the 2N3055 (with an equivalent on resistance of 0.3 ohms), can now be replaced economically in many uses with the advanced Motorola power MosFET, the MTP3055A. This is a 60 volt, 12 amp device with an R_off figure of 0.15 ohms.

Motorola has also recently expanded its discrete surface-mount product lines with the introduction of its MLL34 and MLL41 leadless packages.

This company thus becomes the first US supplier of surface-mount Zeners, complementing its previously introduced lines of leadless Schottky and general-purpose rectifiers for power-supply (and circuit protection) applications.

JANUARY 1985
R WITHERS COMMUNICATIONS

584 HAGLEY ROAD WEST, OLDbury, Warley
B68 OBS (QuINToN, Birmingham) WEST MIDS.
Tel: 021-421 8201/2 (24 HR ANSWERPHONE)

RWC SPECIAL OFFER

PLEASE ASK ABOUT THE RWC CREDIT CARD
AVAILABLE NOW VIA LOMBARD TRICITY

R.W.C.'S BARGAIN WINDOWS — ONCE ONLY OFFERS

YAESU FT200R
FREE ABCBC
£270 * VARTA Ni-CAD £110
* CHARGER
* LISTEN ON INPUT
WHILE STOCKS LAST

25w 10 MTR
LINEAR RELAY SWITCHED
5w DRIVE
£16.50
3 ONLY INC P&P

CENTURY 210 INC FREE
G5 RV MULTIBAND ANT
*500c's = 30 MHZ
*BARLOW WADLEY LOOP
*LED DISPLAY
*HEADPHONE JACK
£19 + POST FREE
AM + SSB

AJH LINEAR KIT
30w ON 2MTRS
EASY TO
BUILD INC.
FULL INST.
VALUE AT £20 POST FREE
£90 EXTRA

TOYO 3.5-148MXZ
BWR - POWER MTR
50KG LOADING
£47.50

FARRELL 10 AMP
OK ON 2MTU
PSU REGULATED AND FULLY PROTECTED
SWITCH LIST £165
MODE LAST FEW £39.95

POLICE BAND
1/4 WAVE
FINE ON 2MTR

SUN TRIPLE / BASE ANTENNA
144-148Mhz
72DBI QUALITY CONSTRUCTION LOW USBW
SAVE £25 £29.95

HOKIN
DC GROUNDING 1/2 WAVE MOBILE ANT
INC PL359 + CO-AX £6.50 TO CLEAR

UNEQUALITY 1/4 WAVE PLATE
Fecz NEW INK
 Cata AMPLIFIED
ELBOWS WORTH £10 PER STK.
PLUGS ETC ONLY £6.99

SUN HIGH QUALITY
GUTTER MOUNT KITS
INC 4U4C-OX AND PL 450 ANODISED
BLACK FINISH
ONLY £9.95

STOP PRESS
LOW PASS TVI FILTER
BY TELCO
LIST £39.95
12 ONLY £12.50
MADE IN USA

MINI HEADPHONES
2.5MM 1/4" JACKS
£15.95

GIVING AWAY
SUPER QUALITY 1 MICRONEEDLE DESIGN
LAST FIVE

All offers subject to availability on a first come first served basis. Prices subject to change without change all correct at time of going to press. E&OE Terms No COD, Barclaycard and Access accepted. Post free over £50 under £50 add £2 POST and HANDLING, unless stated.
CANAL PLUS
FRANCE'S NEW 'FOURTH CHANNEL' COMES ON THE AIR
NIGEL CAWTHORNE
G3TXF EXPLAINS ALL

Canal Plus started full time programme transmissions in early November 1984, just three years after the company was formed as France's first film channel TV.

Before Canal Plus
France, up until the arrival of Canal Plus, had three TV channels: TF1, Antenne 2 and FR3. These three channels were created following the break-up of the old ORTF, and all three are government run.

The transmission of all TV programmes in France is organised by the TDF (Telediffusion de France). The TDF owns and operates all the transmitters and the programme channels each pay a transmission fee to the TDF. All three programmes are transmitted on UHF and can be received by anyone with a TV receiver, just like the BBC1, BBC2, IBA1 and C4 transmissions in the UK.

The new Canal Plus however uses both Band III VHF and UHF. To appreciate the implications of using Band III VHF for a new fourth channel, it is worth briefly tracing through the history of TV, this being a history of 'lines'.

Lines and bandwidth
In the days of black and white television there were many different line standards in use. These reflected to some extent the date of commencing TV transmissions in each country. The UK was the first and selected the then technically feasible 405 line system. The USA selected 525 lines. Many European countries went for 625 lines. France however went even further in the 'lines' race and chose 819 lines for its VHF service.

Choosing more 'lines' meant that the bandwidth required to transmit the TV programme was that much greater. The UK black and white 405 line signal required 3.5MHz of bandwidth between the vision and sound carriers, but as the number of lines increased, so did the RF bandwidth required to transmit the signal. At 525 lines the vision-sound spacing was 4.5MHz, at 625 lines 6MHz, and the French 819 line system required 11MHz. This meant that within a given frequency range (Band I was 41-68MHz and Band III was 174-225MHz), fewer channels could be accommodated as the number of lines increased. In the UK, Band I represented 5 channels, whereas across in France there was room for only 2 TV channels in the same bandwidth.

Colour: more standards - more chaos!
The arrival of colour TV transmissions in Europe standardized the number of lines at 625, but introduced international disagreement concerning the colour coding method to be used. France went one way with her SECAM system and Germany and the UK went another way, with PAL.

Even though the number of lines had been standardized to 625, pictures were still not interchangeable across borders because the colour standards were different (also the sound-vision carrier spacing was a little different, as was the modulation system used for the sound). International TV standards were still in chaos, so that the interchange of programmes between one broadcaster and another was made impossible without the use of expensive and quality degrading standard-convertors.

The arrival of Canal Plus in France comes at a time of some major changes in frequency spectrum uses, both within the UK and to some extent in Europe as well.

UHF planning
When the UHF four-channel network was planned in the UK, the basic objective was that a full four programme interference-free service on UHF would eventually be available almost everywhere in the UK.

The introduction of Channel 4 TV in the UK has been the final check on the accuracy with which the original UHF TV network was planned. A full four channel service will soon be available in the UK for a very high percentage of the population. In France though things are different!

The planning of the French UHF transmissions did not envisage providing four UHF channels to the majority of the population. Three channels can be provided, but not the fourth.

The main problem to be overcome when planning a TV network that re-uses the same frequencies in different parts of the country is that of co-channel interference.

If a transmitter at one side of the country is on say, channel 26 at 511.25MHz (vision carrier), can this frequency/channel be re-used at the other side of the country without an unacceptable level of interference? As an example, channel 26 is used by the 1,000KW ERP transmitter at Crystal Palace in London for BBC1. The same channel is also used by the 250KW ERP TV transmitting station at Stockland Hill for BBC2 in the south-west of England.

Detailed network planning had to be undertaken to ensure that for an adequately high percentage of the time there would be interference-free reception for the large majority of viewers.

DX curse
During times of the year when there is anomalous propagation at UHF (joyous DX openings to the amateur, but a curse to the TV network designer!), can a satisfactory signal be received from the local TV transmitter without undue interference from the other transmitter on the same frequency? The task of the network planner is to prepare an optimum frequency plan for the whole country.

Network planning techniques include the use of sophisticated computer models as well as detailed field strength measurements and analysis. Techniques such as frequency off-set, where the...
carrier frequency of one transmitter is moved slightly relative to another co-channel transmitter, are used to reduce channel interferences.

In the UK, the UHF TV network was planned on the basis that there would be four programme channels. Not so in France!

VHF and UHF

This is the background to why the new Canal Plus TV channel in France is obliged to use a mixture of VHF and UHF transmitters in order to reach its audience. Total coverage of France on a UHF only basis for the new fourth channel has proved to be impossible, so the possible complications of a new VHF Band III transmitter network start to set in.

Canal Plus’ new transmitter network is a mixture of VHF and UHF transmitters. Of the 57 transmitters that are in service at the start of broadcasting in November 1984, 37 are on VHF and 20 on UHF (see table).

819 lines phased out

French black/white transmissions on VHF used to use 819 lines. All the 819 line transmitters on VHF have been closed down over the past few years, in the same way that in the UK the BBC and IBA have been phasing out their 405 line transmissions. But in France, things will be different again!

Whereas the UK is liberating both Band I and Band III for other services, in France the Canal Plus transmitters on VHF Band III will be a new service using 625 line transmissions in colour on VHF for the first time in France. In the UK, VHF transmissions were only ever on black/white. The opening of Canal Plus in France means that VHF Band III is being used for a new French TV service, replacing the now defunct 819 line system, whereas in the UK, Band III is to be used for entirely different services after the 405 line VHF TV transmitters close down.

Subscription TV

Unlike the other three TV programme channels in France, Canal Plus will not be getting its income from the licence fee and advertising revenues. Its income will be derived entirely from subscriptions and programme sponsoring.

Subscriptions will be on a monthly basis, with discounts being available for subscriptions taken out over long periods. The current subscription is 120 Francs per month (about £10). In addition the Canal Plus viewer also has to pay a once and for all deposit on a decoder unit which is supplied through local TV dealers. The decoder is an essential part of the system, because transmissions are encoded so that viewers without a decoder will be unable to see the picture or hear the sound. The deposit on the decoder is 420 Francs (£37).

Canal Plus will not carry advertisements, but some programmes will be sponsored. A sponsoring company or organisation will pay to have its name, logo, jingle and slogans connected with a particular programme or series of programmes. This is similar to the sponsoring of sporting events that is now common in the UK. Sponsoring revenues will be Canal Plus’ second source of income after viewers’ subscriptions.

Encryption

A special decoder has to be plugged into the TV set in order to receive Canal Plus. Without a decoder the viewer will still be able to watch the three other channels (TF1, A2 and FR3), but will not have access to the Canal Plus programmes on the fourth channel.

Subscribers are given an 8 figure code for each of the months for which they have paid their subscription. The code has to be changed on the decoder unit each month by the subscriber, and one month’s code will not work during the following month. The subscriber receives from Canal Plus a list of the codes for all the months for which the subscription has been paid. The code for each individual subscriber is different.

The decoder unit can be taken with the subscriber when he goes on holiday. With his own decoder he will be able to watch Canal Plus on other TV sets which are not normally used for receiving the fourth channel.

VHF Antennae live again!

As French 819 line VHF transmissions have been phased out, French TV viewers have become ‘all UHF’, in the same way as it is now rare to find a VHF TV receiver being used in homes in the UK. Both in the UK and France VHF TV antennae have been left to rust away and eventually be blown down by gales!

Many would-be Canal Plus subscribers in France will have to re-install a VHF TV antenna in order to receive the new transmissions. In Paris for instance, there is a 20KW VHF TV Canal Plus transmitter in the Eiffel Tower operating on French TV channel 6. Most Parisians have been receiving UHF-only signals for years. Canal Plus viewers have to buy and have installed a VHF antenna. This is a further cost to the subscriber.

Round-the-clock TV

The planners behind Canal Plus believe that there is a round-the-clock market for television in France. Monday to Thursday, Canal Plus will be on the air from 7am to 3am, but from Friday to Monday it will be on the air for 24 hours a day. Such a high concentration of programming will make the UK’s ‘breakfast television’ look very tame in comparison!

Although it will be broadcasting for long hours there will be a large amount of ‘repeat’ material. The scheduling of the programme material, which will for the most part be films, has been done on the basis that viewers generally watch television in a regular pattern. Night-shift workers will be able to see films during the day that will be repeated for other viewers in the evenings and at other times of day.

From a transmission viewpoint, the arrival of Canal Plus will mean that the VHF Band III TV channels used will be on the air virtually all the time without a break in transmission. The table shows the location, channels and powers of the French VHF Band III TV channels used by Canal Plus for 625 line colour transmissions:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Vision carrier</th>
<th>Sound carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>176.0</td>
<td>182.5</td>
</tr>
<tr>
<td>06</td>
<td>184.0</td>
<td>190.5</td>
</tr>
<tr>
<td>07</td>
<td>192.0</td>
<td>198.5</td>
</tr>
<tr>
<td>08</td>
<td>200.0</td>
<td>206.5</td>
</tr>
<tr>
<td>09</td>
<td>208.0</td>
<td>214.5</td>
</tr>
<tr>
<td>10</td>
<td>216.0</td>
<td>222.5</td>
</tr>
</tbody>
</table>

Please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
higher powered VHF Band III transmitters that were brought into service at the beginning of Canal Plus programming in November. But what is happening to these VHF Band III frequencies in the UK?

UK VHF Band III closes

As described in the November issue of RAW, the old VHF Band III TV frequencies in the UK are being given over to the land mobile service. This is where things start to get interesting from a spectrum usage viewpoint!

On one side of the Channel, there will be a number of high-power VHF TV transmitters on a round-the-clock schedule, whereas on this side there will be the new relatively low-power land mobile services. A formula for mutual interference problems!

Canal Plus will not be the only user of VHF Band III in France either. The French PTT is also putting land mobile radio services into parts of Band III. In the Paris region, the Radiocom 200 network is operating in the range 183-207MHz which straddles the French Band III TV channels of 07 and 08. These TV channels will be put into service in other parts of France to carry Canal Plus. There may be interference problems in France too.

Only experience and a few days of good ‘VHF lift’ in the summer will tell whether or not the network planning has been sufficient to avoid mutual interference both within France and across the Channel, caused by using the same frequencies in adjacent countries for two very different types of service.

Vive la difference!

The French and English hardly ever agree on anything! Lamb, long-life milk, TV transmission standards and frequency spectrum management included!

On one side of the Channel VHF TV transmitters are being silenced forever, whereas just a few kilometres away on the other side, new VHF Band III transmitters are being switched on.

To be fair to both Canal Plus and

Canal Plus' high power TV transmitters in the first phase will cover the large population areas around Lille, Paris, Clermont, Lyons, Marseilles and Nice. The Eiffel Tower in Paris houses many transmitters including the new fourth channel Canal Plus.

France, it is the UK that is the odd one out! Most European countries still use Band III for TV as well as in some cases Band I. Not all Band III services are fully duplicated on UHF, so that closing down VHF transmitters is not yet a practical possibility in many countries.

France's Canal Plus is the first TV programme channel to introduce subscription TV using direct VHF/UHF transmissions. Canal Plus is thus using on-the-air transmissions in the same way that the cable operator uses his cable, except that Canal Plus can only ever offer one programme. The viewer becomes a subscriber, with the power to cancel his subscription if he is not satisfied with what he receives.

Audience projections

Canal Plus is being shy in saying exactly how many subscribers have joined up, but their original target was to have 200,000 subscribers at the beginning of full-time programming in November 1984 and to grow to about 1,500,000 subscribers by November 1987. Daily measurements of audience levels will be taken so as to track closely the audience response to this new type of TV programming for the French viewer. Subscribers will receive material through the post to encourage them to keep up their subscription.

The new fourth channel TV service in France, Canal Plus, can claim a number of firsts for France, for both programming style (subscription TV with non-stop films) and television transmission techniques (mixed VHF and UHF).
Phased vertical arrays have been used for many years by amateurs and professionals alike and are referred to in many publications. The amateur press, however, is usually very limited in its cover, often restricted to two element arrays with 90 degree phase shift. Just occasionally articles have touched on the versatility of these antennae.

Tedium

In one of these articles, in Ham Radio magazine, May 1977, K1AON described a method of calculating the relative field strengths around a phased vertical system using a programmable calculator. This was a great improvement on the ‘cut and see’ approach, but still required the tedium of hand plotting the results.

This program takes the next step by using a home computer to calculate the relevant field strengths and construct a horizontal polar diagram on the monitor screen.

The program has been written to deal with an array of up to five elements which may be arranged in any configuration, not just straight lines. The polar diagram is backed up with a numerical output, allowing accurate comparison between arrays as well as the overall impression of performance given pictorially.

Although the program was written using a BBC Model B computer it has been run successfully on an Acorn Electron. It is intended that enough guidance on the vital parts of the program have been included to help transposition to any other machine.

The model

The strength of the field at any point about an array of driven elements will be the phasor sum of the strengths due to each element. By phasor sum we mean that the relative phase angles are important as well as the magnitudes. Quantities in phase will result in a simple addition of the magnitudes, while a phase shift of 180 degrees leads to cancellation of part, or all (if the magnitudes are equal). Intermediate phase differences yield an intermediate result. A more detailed explanation can be found in any textbook on ac electricity if required.

The magnitude and phase angle of the relative field strength of each element is calculated and the results combined to give the total for a given array by the equation:

\[P_{\text{tot}} = 1 + \sum_{n=1}^{N-1} K_n e^{iB \cos(S_n-I) - A_n} \]

where:
- \(P_{\text{tot}} \) = relative field strength at angle \(I \)
- \(K_n \) = relative current amplitude, element \(n \)
- \(N \) = total number of elements
- \(B \) = distance between element \(n \) and reference
- \(S_n \) = spatial angle of element \(n \)
- \(A_n \) = phase angle of current in element \(n \)
- \(I \) = angle relative to centre of array

The program

A full analysis of the construction of and thinking behind the program is not really appropriate to this article. However some notes may be of help if it becomes necessary to debug the program after entry.

The arrays used to hold values entered and calculated results are dimensioned in line 120.

The purpose of each procedure (subroutine) should be evident from the titles, eg PROCPolar which produces the polar diagram.

The first of the important procedures is PROCenter, located at line 250. This asks for the number of elements in the array and continues with a call to PROInput, at line 270. PROInput is in the form of a loop, repetition of which is controlled by the number of elements.

As the title suggests, this procedure controls the entry of the parameters of each element.
PHASED VERTICAL ARRAYS

PROCcorr, line 690, allows the correction of any errors in input and also allows the easy alteration of the parameters from within the program. The initial entry at first appears clumsy, but with practice this becomes second nature.

PROCresults, line 380, displays the numerical results.

These results are derived from PROCcalc, line 410, which is also used for the polar diagram. It is important to note the use of RAD to obtain functions of angles. The ABS function in line 520 is also essential to avoid system crashes.

PROCpolar, line 550, uses the results of PROCcalc at one degree intervals to plot the polar diagram. At line 590 the relative angular phase shift is ascertained, which may be positive or negative, the beam being 'rotated' through 180 degrees by switching from one to the other.

Angular phase shift

'Current Phase Angle' is the angular phase shift between the element and E0. This is due to the length of the interconnecting feeder and is fundamental to the operation of this type of antenna. The phase angle can easily be varied by switching between feeders of different lengths and is likely to be the most readily altered parameter of a given array. The angle may be either positive or negative, the beam being 'rotated' through 180 degrees by switching from one to the other.

'Spatial Distance' is the linear distance separating the given element from E0. This must be entered in electrical degrees (one wavelength equals 360 degrees).

'Spatial Angle' is the angle between a datum line and the line between the given element and E0. If all the elements are in a straight line then the spatial angle will be zero. If they are arranged in any other shape then a datum must be defined, preferably a line through two or more elements.

On completion of data entry a press on the space bar will return to the menu for selection of the next operation.

'Display Numerical Results' will require one further data input. The Angular Increment of Plot can be any angle and is used to define the number of intervals around the circle at which the relative field strength will be calculated for display. When a full screen of output has been displayed the computer will wait until the SHIFT key is pressed, allowing time for note taking.

On completion of this operation, a press of the SPACE bar will return to the menu.

'Display Polar Diagram' instructs the

THE PROGRAM

```
>4L.
10 REM ******************************************************
20 REM * PHASED VERTICAL ARRAYS *
30 REM *
40 REM * by FRED HOUGHTON *
50 REM *
60 REM * TONY SWIFT *
70 REM *
80 REM * August 1984 (c) *
90 REM ******************************************************
100 *TV255*
110 MODE1
120 DIMA(5),B(5),C(5),D(5),K(5),P(5),R(5),S(5):K(0) = 1:N% = 0
130 PROCmenu
140 DEFFPROCmenu:PROCtitle
150 PRINTTAB(7,13)"1......Enter values"
160 PRINTTAB(7,15)"2......Display Numerical Results"
170 PRINTTAB(7,17)"3......Display Polar Diagram"
180 PRINTTAB(7,19)"4......Next/End"
190 PROCchoice(S)
200 IFG3=1ANDN<>0:PROCcenter ELSEIFG3=1ANDN<>0:PROCinput
210 IFG3=2PROCresults
220 IFG3=3PROCpolar
```
PHASED VERTICAL ARRAYS

230 IF % =4 THEN PROCend
240 PROCmenu:ENDPROC
250 DEFPROCcenter:PROCtitle
260 REPEAT PRINTTAB(4,9)"HOW MANY ELEMENTS DO YOU WISH TO" "CONSIDER?" ; INPUT
"N%:UNTIL N%>1 AND N%<6:PROCinput:ENDPROC
270 DEFPROCinput
280 L%=0:REPEAT: L%=L%+1
290 PROCtitle
300 PRINTTAB(1,3)" ENTER VALUES RELATIVE TO REFERENCE" " ELEMENT (E0)"
310 PRINTTAB(1,3)" ELEMENT "; L%
320 PRINTTAB(0,10)" 1. CURRENT MAGNITUDE.............."; K(L%)
330 PRINTTAB(0,12)" 2. CURRENT PHASE ANGLE.............."; A(L%)
340 PRINTTAB(0,14)" 3. SPATIAL DISTANCE, (Degs.Elect.).."; B(L%)
350 PRINTTAB(0,16)" 4. SPATIAL ANGLE.................."; S(L%)
360 REPEATPROCcorr:UNTIL % = 89:UNTIL N% = 1
370 PROCkey(31):ENDPROC
380 DEFPROCresults:PROCtitle
390 PRINTTAB(1,4)"ANGULAR INCREMENT OF PLOT DEGREES"; INPUTTAB(27,4) AI%; PROC
400 KEY2
410 I=1: VDU21,0,29,39,6,14: FOR Y = 1 TO (360/AI%):PROCcalc:PRINTTAB(3)"ANGLE "; I ; T
420 AB(20)"STRENGTH "; INT(0*100)/100; I=1+AI%: NEXT: VDU15,26:PROCkey(31):ENDPROC
430 DEFPROCalc
440 L%=0:REPEAT: L%=L%+1
450 E=B(L%)*COS(RAD(B(L%)-I))-A(L%)
460 C(L%)=COS(RAD(E))
470 D(L%)=SIN(RAD(E))
480 UNTIL N%=NX-1
490 T1=1: T2=0
500 L%=0:REPEAT: L%=L%+1
510 T1= T1+R(L%): T2= T2+P(L%)
520 O=SQRT(ABST1^2+ABST2^2)
530 UNTIL N%=NX-1
540 ENDPROC
550 DEFFPROCpolar:PROCtitle
560 MOVE300,512:DRAW940,512
570 MOVE640,412:DRAW640,612
580 FOR I = 0 TO 360: PROCcalc: MOVE640,512
590 PL0T69,640+(D*COS(RAD(I)))*100,512+(D*SIN(RAD(I)))*100: NEXT
600 MOVE9,0
610 PRINTTAB(31,16)"0"; TAB(19,7) "90"; TAB(5,16) "180"; TAB(19,24) "270"
620 @%=4
PHASED VERTICAL ARRAYS

630 PRINTTAB(0,25)"ELEMENT 0 1 2 3 4"
640 PRINTTAB(0,26)"CURRENT MAGNITUDE",K(0),K(1),K(2),K(3),K(4)
650 PRINTTAB(0,27)"PHASE ANGLE",A(0),A(1),A(2),A(3),A(4)
660 PRINTTAB(0,28)"SPATIAL DISTANCE",B(0),B(1),B(2),B(3),B(4)
670 PRINTTAB(0,29)"PHASE ANGLE",S(0),S(1),S(2),S(3),S(4)
680 IF%="10:"PROCKey(31);ENDPROCC
690 DEFPROCcorr
700 COLOUR2:REPEATPRINTTAB(4,31)"Are these figures correct (Y/N)? ";:FX15,0
710 IF%="0":SET;UNTIL%>7809%<99
720 IF%="9":ENDPROCC
730 REPEATPRINTTAB(2,31)"Type in No.of the value to be altered":;COLOUR3
740 IF%="0":SET;UNTIL%>48AND%<53
750 IF%="64";X%=34
760 IF%="1Y%="10:"PROCalter:INPUTTAB(X%,Y%):K(L%)
770 IF%="2Y%="12:"PROCalter:INPUTTAB(X%,Y%):A(L%)
780 IF%="3Y%="14:"PROCalter:INPUTTAB(X%,Y%):B(L%)
790 IF%="4Y%="16:"PROCalter:INPUTTAB(X%,Y%):S(L%)
800 ENDPROCC
810 DEFPROCCalter:COLOUR2:PRINTTAB(0,31)SFC(39);TAB(X%,Y%);SFC(2);TAB(9,31);"Enter the correct value":;COLOUR3:ENDPROCC
820 DEFPROCHOICE(C%)
830 COLOUR2:REPEATPRINTTAB(8,31)"Enter the appropriate number":;G%="0":SET;G%="G-4"
840 UNTIL%>4AND%<5AND%="C%":COLOUR3
850 ENDPROCC
860 DEFPROCKey(Y%)
870 COLOUR2:REPEATPRINTTAB(0,Y%);SFC(39);TAB(6,Y%);"Press SPACE bar to continue ";:FX15,0
880 IF%="0":SET;UNTIL%>32:COLOUR3:CLS
890 ENDPROCC
900 DEFPROCKey2:COLOUR2:PRINTTAB(3,31)"Press SHIFT to scroll the screen":;COLOUR3:ENDPROCC
910 DEFPROCTitle
920 CLS:COLOUR2:PRINTTAB(10,1)"VERTICAL AERIAL ARRAYS":COLOUR3
930 ENDPROCC
940 DEFPROCend:PROCtitle
950 PRINTTAB(7,13)"1.....Continue with this Array"
960 PRINTTAB(7,15)"2.....For New Array"
970 PROCchoice(4)
980 IF%="1":PROCinput:PROCMenu
990 IF%="2":CLEAR:RUN
1000 IF%="3":CLEAR:CLS:END
1010 PROCend:ENDPROCC

JANUARY 1985
PHASED VERTICAL ARRAYS

program to calculate the values of relative field strength at intervals of 1 degree and to plot the results in graphic form. The horizontal axis of the display corresponds to the datum line mentioned earlier.

Scaling down
There may be occasions, especially when using the larger arrays, when the polar diagram is too large for the screen. The scaling may be reduced by substituting a smaller number for the multiplier 100 in line 590.

NB this multiplier is used twice in the line and must be changed at each location to preserve symmetry.

The fourth menu option, ‘Next/End’, selects a secondary menu which has three options:

‘Continue with this Array’ provides a safeguard against unintentional selection of the Next/End choice.

For New Array is the quickest way of changing to a completely different array as it causes the program to RUN again, clearing all resident data on array parameters.

Finish with Program’ is self-evident in its operation.

Testing the program
None of us are infallible in avoiding errors between page and keyboard, so the following two examples are given to check the program.

1 An array of two elements with equal current in each and a current phase shift of 90 degrees. The two elements are spaced one quarter of a wavelength apart. (This is a common textbook example.) Remember that one element is the reference, represented in the equation by adding 1, so that only one set of element data is entered.

On request enter the following:
Number of elements . . . 2
and for element 1,
Current magnitude . . . 1
Current phase angle . . . 0
Spatial distance . . . 90
Spatial angle . . . 0
The polar diagram should be as shown in Figure 2.

Try a phase angle of -90, which should rotate the polar diagram through 180 degrees.

2 A three element array set out in the form of an equilateral triangle of side one quarter of a wavelength. Each element is fed in phase with the reference, with equal current magnitudes.

Two sets of element data will be requested. Enter the following:
Number of elements . . . 3
For element 1,
Current magnitude . . . 1
Current phase angle . . . 0
Spatial distance . . . 90
Spatial angle . . . 0
and for element 2,
Current magnitude . . . 1
Current phase angle . . . 0
Spatial distance . . . 90
Spatial angle . . . 60
This time the polar diagram should be as in Figure 3 (although there is some flattening of the circle on the printout, most likely due to the deficiencies of the printer used).

Fig 2 2 elements spaced a quarter wavelength and fed 90° out of phase

Fig 3 3 elements in an equilateral triangle of side one quarter wavelength. All fed in phase

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement JANUARY 1985
NEW THIS MONTH

These digital multimeter cases are moulded in high impact black plastic and are offered at an extremely attractive price to clear stocks.

DP2010 — 10MΩ x 2000mΩ: This has built-in range switches for low Ohms, insulation resistance, temperature, diode and capacitance measurement. Ideal for the hobbyist. £1.80.

DP100 — Same as above but this unit is for general electronic servicing and testing. £8.90.

Z817 PLCA Panel: 20x30mm with M3/Ø2-300. On large aluminium or plastic panels, all with 3M adhesive tapes. £1.95. Also 555, 540A bridge rectifier, large smoothing caps, multi-way plugs and sockets etc. £4.00 each. How about a complete range of LWZL01077, LWZL01078, LWZL01079 etc. £2.50 each.

DIPL BOARD

Flexible Dip board 10x14x6mm double sided with 0.5x0.5mm edge connector gold plated vero £2.00. £1.50 each.

20 WAY RIBBON CABLE

Twisted and flat computer grade for lower cross-talk. Reformed into flat sections every 21 for UK connectors. Only 50p to £2.95 per reel.

3′ DIGITAL LCD DIP

Type 900S set powered input range ±2.5V. £3.95 each. £1.95 in packs of 10 or more.

TORSUS

Computer controlled robot built around the gearbox described. £12.95. £9.95 small for etching kit. £6.95 recommended — 3m better. £15.00 each. For lectures.

GEARBOX

Pre-formed leads for PCB mounting. £2.50. Also 13, 14, 15, 22, 25... £2.95. Enormous range of PCB's available for £2.60/100.

Welcome — min invoice charge £10.

LECMAR ELECTRONICS

Vehtis Yard, Cowes, I. of Wight
Tel (0983) 293996

DEALER ENQUIRIES INVITED. BARCLAYSACCESS.

COMMUNICATION RECEIVER

A compact communications receiver with full professional specifications and facilities.

- Full frequency coverage of 150kHz to 29.999 MHz and 78 to 108 MHz.
- Maximum sensitivity on AM/SSB/CW, also FM, with narrow/width filter.
- Memory for any 6 AM/SSB and 6 FM frequencies, plus automatic scanning between any two frequencies.
- External sockets for aerial, earth, headphones, and loudspeaker.
- Operation from internal batteries, 12VDC, or 240V.
- Only £189.75 inc VAT and P&P.

Master Electronics — Microprocessors — Now! The Practical Way!

- Electronics — Microprocessors — Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips'.
- Carry out full programme of experimental work on electronic computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagram.

New Job? New Career? New Hobby?

SEND THIS COUPON NOW.

Address:

Telephone:

Note: Please send your吻信 without any cost or charge.

Please mention RADIO & ELECTRONICS WORLD when replying to any advertisement.
ICOM IS OUT OF THIS WORLD.

ICOM can introduce you to a whole new world via the world communications satellite OSCAR. Did you know that you can Tx to OSCAR on the 430-440MHz IC-471 and Rx on the 2m. IC-271.

By making simple modifications, you can track the VFO’s of the Rx and Tx either normally or reverse. This is unique to these ICOM rigs and therefore very useful for OSCAR 10 communications. Digital A.F.C. can also be provided for UOSAT etc. This will give automatic tracking of the receiver with digital readout of the doppler shift.

The easy modifications needed to give you this unique communications opportunity are published in the December ‘84 issue of OSCAR NEWS. Back issues of OSCAR NEWS can be obtained from AMSAT (UK), LONDON, E12 5EQ.

BUT, ON THE OTHER HAND...

IC-02E
IC-04E, (70cm).

The new direct entry microprocessor controlled IC-02E is a 2 meter handheld jam packed with excellent features.

Some of these features include: scanning, 10 memories, duplex offset storage in memory and odd offsets also stored in memory. Internal Lithium battery backup and repeater tone are of course included. Keyboard entry is made through the 16 button pad allowing easy access to frequencies, duplex, memories, memory scan and priority.

The IC-02E has an LCD readout indicating frequency, memory channel, signal strength, transmitter output and scanning functions. New HS-10 Headset, with earphone and boom microphone, which operates with either of the following: - HS 10-SB Switch box with pre-amplifier giving biased toggle on, off and continuous transmit. HS 10-SA Voice operated switch box, with pre-amplifier, mic gain, vox gain and delay. The IC-2E continues to be available.

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement

JANUARY 1985
ICOM PRICES ARE DOWN TO EARTH.

(Please contact us or your local Icom dealer for current prices)

IC-745

ICOM’s IC-745 is the all-in-one transceiver featuring an HF all band SSB, CW, RTTY, AM (receive only) ham transceiver, plus a general coverage receiver. Options for FM transceive and an internal power supply make the IC-745 the complete transceiver in an all-in-one package.

The receiver section features a 100KHz to 30MHz general coverage receiver, this allows access to all HF bands plus all the frequencies in between. The IC-745 has an adjustable AGC circuit and DFM (Direct Feed Mixer) giving a wide dynamic range of 103dB with an intercept point at +18dBm. Exceptionally clean reception is achieved with a low noise PLL circuit and a 70MHz first IF.

The IC-745’s features include IF shift, 16 programmable memories with lithium battery back-up, passband tuning, a noise blanker both wide and narrow, threshold level control, notch filter, receive audio tone control and an all mode squelch. Also available is a front end switchable receiver preamp providing 12dB gain. RIT has a ±1KHz range.

We could go on all day about the 745, get in touch with us and we will send you the full story.

Agent: Gordon G3...EY or telephone Knutsford (0565) 4040. Please telephone first, anytime between 0900 - 2200 hrs
Gordon also sells Yaesu products.

IC-290D

290D is the state of the art 2 meter mobile, it has 5 memories and VFO’s to store your favourite repeaters and a priority channel to check your most important frequency automatically. Programmable offsets are included for odd repeater splits, tuning is 5KHz or 1KHz.

The squelch on SSB silently scans for signals, while 2 VFO’s with equalising capability mark your signal frequency with the touch of a button. Other features include: RIT, 1KHz or 100Hz tuning/CW sidetone, AGC slow or fast in SSB and CW, Noise blanker to suppress pulse type noises on SSB/CW.

You can scan the whole band between VFO’s/scan memories and VFO’s. Adjustable scan rate 144 to 146 MHz, remote tuning with optional IC-HM1 microphone, Digital frequency display, Hi/Low power switch. Optional Nicad battery system allows retention of memory.

Special Offer as from 15th January '84
IC-290D reduced to £469 and the IC-290E to £399. Also 70cm version IC-490E, £529.
Take advantage of this money saving offer.

You can get what you want just by picking up the telephone. Our mail-order dept. offers you: free, same-day despatch whenever possible, instant credit, interest-free H.P., telephone Barclaycard and Access facility and a 24 hour answering service.

Please note that we now have a new retail branch at 95, Mortimer Street, Herne Bay, Kent. tel: 69464. Give it a visit, BCNU.
FEATURES

- 25 watts Tx output
- GaAsFET RF stage
- Transmit ALC circuit
- 13.8V DC operated
- Repeater shift (normal, simplex, reverse)
- High level DBM mixer
- LED Bargraph Power Meter
- RF Vox – Adjustable delay & manual override

DESCRIPTION

This new transverter has been designed to allow users of existing HF band transceivers to establish a first-class transceive facility on the 144MHz band. The MMT144/28-R incorporates many new and exciting features which combine to make this product simply superb.

Receive Section

An NEC GaAsFET is employed in a noise-matched configuration feeding a high level double balanced mixer via a bandpass filter. IF gain is achieved by a JFET post amplifier. This combination produces a good signal to noise ratio, excellent immunity to overload and cross modulation, resulting in a rugged receive system having a third order output intercept point of +19dBm.

Two separate low-noise oscillators, operating at 116.00 and 115.40MHz are included, running from a regulated 8.2 volt supply. Selection of the wanted oscillator is achieved by a quad op-amp circuit, controlled by the front panel mounted 'MODE' switch. This provides simplex, repeater and reverse repeater operation. The output of each oscillator feeds a JFET buffer amplifier via the quartz crystal which acts as a filtering element to reduce amplitude noise and reciprocal mixing products. The resultant high level injection is extremely pure and free from harmonics.

Transmit Section

The incoming 28MHz signal, in the range ¼ to 300mW, is initially fed to the RF VOX circuit, ALC control circuit and the input level control. This signal is then fed into a pair of MOSFETs in a balanced mixer configuration, together with the local oscillator injection, to produce the wanted signal in the range 144-146MHz. This signal is then amplified by several linear stages up to the specified output power of 25 watts. A visual indication of relative output power is provided by a front panel mounted LED bargraph display. A rear panel mounted level control allows the user to adjust the sensitivity of the transverter to suit the transceiver in use, and a front panel mounted RF VOX delay control allows adjustment to suit SSB/AM modes.

The ALC circuit has a 20dB dynamic range and has been incorporated to ensure that a totally clean signal is produced by the transverter. This is a particularly useful feature which will virtually eliminate compressed signals and the resultant problems caused to local stations.

SPECIFICATION

<table>
<thead>
<tr>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input freq range</td>
</tr>
<tr>
<td>Output freq range</td>
</tr>
<tr>
<td>Repeater shift</td>
</tr>
<tr>
<td>DC requirements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmit Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output power</td>
</tr>
<tr>
<td>Input level range</td>
</tr>
<tr>
<td>ALC range</td>
</tr>
<tr>
<td>Modes of operation</td>
</tr>
<tr>
<td>Spuribus outputs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receive Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
</tr>
<tr>
<td>N.F.</td>
</tr>
<tr>
<td>3rd order intercept</td>
</tr>
</tbody>
</table>

PRICE: £215 inc VAT (p+p £3.50)

HOURS: MONDAY – FRIDAY 9-12.30, 1-5.00

MICROWAVE MODULES LTD
Brookfield Drive, Aintree, Liverpool L9 7AN, England.
Telephone: 051-523 4011.
Telex: 628608 MICRO G.

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
One hears a lot these days about alternative sources of energy. One of the most plausible of these, which is already in widespread use, is of course solar energy.

Solar heating is now well past the experimental stage, and its use for heating swimming pools, and as a supplementary source of house heating is well established even in this country. Additionally of course, practically all satellites use solar radiation for their power source.

A very interesting variation of the use of solar energy is to be found as a research project up in the mountains of southern France.

Here, near Fontromue in the Pyrenees Mountains, a solar furnace has been established. By means of myriads of small mirrors an intense beam of solar rays is focused on a small crucible, into which materials can be placed and the effect of the intense heat generated can be determined.

Our illustration this month is of this solar furnace and its environs, and shows the huge mirror made up of thousands of small mirrors with a total surface area of 10000 square metres. Things are so arranged that these mirrors can be kept focused on the crucible as the sun crosses the sky. The photo was taken by a friend of your scribe, during a holiday in the Pyrenees last summer.

An interesting 'reverse use' of the solar mirrors was carried out recently by some French radio amateurs.

The French electricity authorities gave them permission to use the mirror for an attempt to moonbounce TV signals on 1255MHz. The crucible was replaced by a dipole antenna and the controlling computer reprogrammed to direct the mirrors towards the moon instead of towards the sun. FM modulated vision signals with a transmitter power of 140 watts were used.

It will be very interesting to hear what was achieved when the results of these tests come to hand.

New locator system

Beginning 1 January 1985, a new system of indicating the location of one's QTH comes into operation. There are of course numerous ways in which one can do this. The simplest is to give the nearest town. Or if you want to be more accurate and have a suitable atlas, you can give your longitude and latitude.

Your scribe recently heard a Brazilian Beacon station on 28.300MHz, PY2AMI, giving his QTH in this manner, viz. 22.45 degrees south and 47.16 degrees west. The signal gave the additional information that the power was 10 watts into a ground plane antenna.

However, radio amateurs have adopted a system better suited to their specific needs.

The first such system, which was commonly known as the QRA System, was introduced in Europe. Its main purpose was to enable accurate distances to be measured, which it would do down to a few kilometres between amateur radio stations, so that results of VHF contests and so on could be accurately measured. It became the custom for contests to actually require the QTH Locator, as it came to be known, to be given to the contacts made so that results could be easily determined.

The QTH Locator system was very much a local distance indicator however, and was not applicable for use over the whole of the world. To overcome this difficulty various proposals have been made over the years to produce a more versatile system and, after much discussion and debate, a system has been devised which has met with the approval of most radio amateur authorities. All three regions in the International Amateur Radio Union have agreed to adopt it.

New system

In the new system the world is divided along lines of latitude and longitude into areas known as 'fields'. Each field covers 20 degrees of longitude from west to east and 10 degrees of latitude from south to north.

The surface of the world is thus divided into 324 fields. These are labelled by two letters in the range A to R. The first letter gives the longitude of the field, starting from 180 degrees west and working eastwards. The second letter gives the latitude of the field, starting from 90 degrees south and working northwards.

It is interesting to note that the squares of the new system coincide with those of the old QRA squares.

Finally, each of these squares is divided into a 24x24 grid of 'subsquares'. Each subdivision covers 5 minutes of longitude and 2.5 minutes of latitude, and is indicated by two letters, each in the range A to X, starting from the southwest corner of the square. The first letter of the subsquare gives the longitude and the second the latitude.
It all sounds pretty complicated, but no doubt once in practice it will all fall into place. Needless to say the system is very compatible with computers, and numerous programs are already available.

Readers who would like to know more about the system should consult an excellent article in the October 1984 issue of the RSGB's Radio Communication, by John Morris GM4ANb, which explains all and includes three computer programs designed to aid the process of adapting to the new system. (Or see last month's R&EW).

RS6 satellite disappears

One of the most consistently reliable Russian amateur radio satellites quite suddenly went out of action towards the end of September last. It had been suffering from low battery voltages for some time and it was thought that these might have been nearing their end. But the demise came much sooner than expected.

It is always difficult to get specific information about the Russian satellites and this is certainly true in this case. Some mystery surrounds the rather sudden disappearance of the RS6 signals; it is reported that RS6 has 'ceased to exist' but whether this means it has disintegrated is not certain.

There have been 290 satellites launched into the same orbit as RS6 since 1970, so the sudden demise of this Russian satellite may be due to its destruction in a collision.

Quite a few problems are now appearing due to congestion on densely occupied orbits, and several satellites whose planned function has been completed, but which are still orbiting, have been moved out into higher orbits when possible to get them out of the way of satellites which are still active.

An example is that of GEOs-2. This satellite was launched into a geostationary orbit in June 1978 and completed its planned scientific mission in July 1980. In January 1984, it was moved from the densely occupied geostationary orbit into a higher and slightly asynchronous orbit, where it drifted at a rate of 3.5 degrees of longitude per day.

However, due to the wish of the scientific community to obtain data over the whole of the 11 year solar cycle and to support the Active Magnetosphere Particle Tracer Experiment project, plus the fact that it was still in good condition, Switzerland and Germany requested it be reactivated, and this has now been done.

Careless talk

The quarterly magazine of the Ipswich Radio Club highlights a matter which your scribe feels needs far more publicity than it gets. This article, 'Discretion' by G4UKL, appeared in the January 1984 edition of The Cornish Link, the magazine of the Cornish Radio Amateur Club, and merits wide publicity. To quote:

'At a recent club meeting, it was wisely decided not to publish the names and addresses of members since, it was argued, such a list would provide a handy guide for house-breakers. Subsequently, listening around for a familiar voice on 2 metres, I heard a QSO between two operators with new G4 callsigns which was frightening because of the manner in which confidential information was being traded.

'It would seem that operator 'A' had been to visit a well-known member's shack and was enthusiastically describing his visit to operator 'B'. This account included a list of the shack contents, how much the equipment cost, what manufacturer, how old, and its various applications. Even the layout was graphically explained. Not to be outdone, operator 'B' claimed knowledge of the shack and described its location by airing his geographical knowledge and asking 'A' for confirmation of the QTH.

Worse but not first

'This is by far the worst I have heard, but by no means the first and it can serve as a good purpose whatever. If members elect to give an inventory of their own shacks and QTH over the air that's their ego trip, but please do not invite thieves to other members homes by careless and irresponsible gossip. Use a telephone for any confidential chat.'

Noive

'No radio ham can be so naive as to believe that only 'goodies' listen to their Q5Os. It is an open invitation to the criminal fraternity (a current growth industry) to detail shack and house contents on any band. Being insured does not compensate for the shock and inconvenience of a rifled and desecrated house, or replace equipment no longer available but treasured.

'Can we please have some common sense and an awareness that going 'simplex' is not the equivalent of going 'private'? However flattered your friend may be by your admiration and envy, he or she will not be quite so amiable if put in the frame by what is tantamount to a breach of confidence.'

This is all very similar to your scribe's views and is reproduced here as he considers it deserves as much publicity as possible. He knows several amateurs who are very careful to avoid any reference whatsoever to a forthcoming holiday, so as not to broadcast around when their QTHs will be unoccupied.

Other news

The RSGB have appointed their first lady President. Mrs Joan Heathershaw will take office on 1 January 1985. She holds the callsign G4CCH and was formerly zonal representative on the RSGB Council for Zone A.

The ARRL has appointed an international Program Manager, JA8WRO. The idea is to encourage international contacts and friendship through travel, exchange holidays, etc. Those interested should write to JA8WRO, International Program Manager, ARRL, 225 Main Street, Connecticut 06111, USA giving their name, callsign if any, address and the languages they can speak.

The Yaesu Owners Club has a new address, viz, PO Box 47, York Y015G. Send an SAE to Freda for full details of membership of the club.
RUSSIAN SATELLITES

A guide to the reception and decoding of VHF signals from the USSR's navigation satellites, with full details of hardware, software and signal formatting.

PART ONE: GENERAL DESCRIPTION AND SIGNAL FORMATTING

Reception of signals at VHF frequencies from the low-orbiting navigational satellites belonging to the USSR is discussed in terms of circuit implementation and decoding of the 50 baud data. An interface with a minicomputer is described which allows automatic data logging followed by processing stages whose output defines the positions of the satellites in a group. This orbital data forms the basis for navigational computations enabling the observer to fix his position.

It is the purpose of this paper to describe receiving and processing equipment used to decode signals from all the satellites in the system, and to identify the different transmit frequencies in use.

Table 1

<table>
<thead>
<tr>
<th>Soviet number</th>
<th>Cosmos number</th>
<th>International designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1448</td>
<td>1963-002A</td>
</tr>
<tr>
<td>02</td>
<td>1386</td>
<td>1962-069A</td>
</tr>
<tr>
<td>03</td>
<td>1428</td>
<td>1963-001A</td>
</tr>
<tr>
<td>04</td>
<td>1459</td>
<td>1963-042A</td>
</tr>
<tr>
<td>05</td>
<td>1464</td>
<td>1963-048A</td>
</tr>
<tr>
<td>06</td>
<td>1417</td>
<td>1962-102A</td>
</tr>
<tr>
<td>07</td>
<td>1538</td>
<td>1962-003A</td>
</tr>
<tr>
<td>08</td>
<td>1181</td>
<td>1980-039A</td>
</tr>
<tr>
<td>11</td>
<td>1383</td>
<td>1962-066A</td>
</tr>
<tr>
<td>12</td>
<td>1304</td>
<td>1981-087A</td>
</tr>
<tr>
<td>13</td>
<td>1447</td>
<td>1983-021A</td>
</tr>
<tr>
<td>14</td>
<td>1339</td>
<td>1982-012A</td>
</tr>
</tbody>
</table>

P Daly, D Bell and M Leybourne
Department of Electrical and Electronic Engineering
University of Leeds
and
PA Pitts
University Television Service
University of Leeds

JANUARY 1985
RUSSIAN SATELLITES

3. SIGNAL FORMATTING AND MODULATION

3.1 Modulation scheme

As mentioned briefly in the introduction, the VHF carrier is amplitude modulated by one of three audio tones at 3, 5 and 7KHz. Each tone lasts 20mS and there are 50 tone bursts in one second. A transition between the 3 and 5KHz tones indicates a binary 'one', and no change indicates a binary 'zero'.

At the beginning of each second the 7KHz synchronising pulse, which remains on until the first non-zero data bit, is sent. The synchronising pulse may last a minimum of 1 bit (20mS) just before local midnight, to 18 bits (360mS) at local midnight – see the next section on data format.

3.2 Frame format

The data format employed by the Cosmos navigation satellites uses one minute frames divided into 60 words, each word lasting 1 second and containing 50 bits.

The 60 words of a frame are split into 8 blocks of 7 words each, with two empty words at the beginning and at the end of each frame. The word number then corresponds to the current second, with the first block starting at second 2 and the last block ending at second 58.

The frame format is shown in Figure 1(a) together with word and bit structure. Each word of 50 bits contains information concerning the time of transmission and one of the satellite parameters. The first bit of each word is left empty to allow the sync pulse to last for at least one bit.

The sync pulse terminates as soon as the first non-zero data bit after bit 1 is met. The time then occupies bits 2-18 and is encoded BCD into hours (bits 2-6), minutes (bits 7-12) and seconds (bits 13-18) local Moscow time (MST - MST in summer is 3 hours ahead of GMT and 2 hours ahead of BST).

It follows that the sync pulse is shortest (1 bit long) when the hour number reaches 16 and that the sync pulse is longest (18 bits long) at midnight.

The binary data in each word from bit 19 to bit 50 contains information which, apart from some integer exceptions which are dealt with later, is encoded in the normalised binary floating point notation as follows:

<table>
<thead>
<tr>
<th>Word</th>
<th>Description</th>
<th>Parity bit number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ascending node longitude (east) in radians</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>inclination, i in radians</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>satellite ID</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>semi-major axis in Kms</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>constant 1, a + e x sin (ω)</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>where e = eccentricity, ω = argument</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>of the perigee and a and b are very small offsets from the centre of a circle obtained by plotting word 4 against word 5</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>orbital period (minutes)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>time of ascending node</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>with bits 20-23 month</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>bits 24-28 day</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>bits 29-33 hour</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>bits 34-39 minute</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>bits 40-50 part of minute</td>
<td></td>
</tr>
</tbody>
</table>

The signs of words 1, 2, 3 and 6 are always positive, of course, and the signs of words 4 and 5 are always to be taken as negative.

Please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
bits 24-50: mantissa M, with sign digit at bit 24.
bit 25 is always 'one' and the binary point occurs between bits 24 and 25. The decimal equivalent is simply: M \times 2^25
where the binary digits from 25-50 have been converted into an integer fraction. For example, the binary sequence 0101011 01011001 01110101 01011001 is converted to:

E = 10101 (binary) = -5
M = 0.11011001 01110101 01011001 = +0.83733043
Decimal = +0.83733043 \times 10^5

The only data not so coded are some integer values, for example satellite identification number and timing data, which are simply appended as BCD numbers. Clearly bit 25 need not be 'one' for integer data values.

3.3 Block structure
A one minute data frame has 8 blocks of 7 words each, split into two groups; blocks 1-4 contain positional data on the transmitting satellite, and blocks 5-8 contain parameters of the Keplerian orbit of up to 4 satellites. The first and last two words in each frame are spare.

3.3.1 Co-ordinate blocks
The first two blocks give position x,y,z (words 1-3) and velocity x,y,z (words 4-6) of the transmitting satellite at two consecutive three-minute intervals. Word 7 contains the relevant minute of the day encoded in bits 27-37. Bits 19-26 and bits 38-50 of word 7 are not understood and merely decoded (code-words 1 and 2) as if they were integers. This data is repeated to give a total of 4 blocks.

3.3.2 Parameter blocks
The parameter blocks give details of the elliptic orbit of up to 4 satellites in the group (any others are given in the next frame). These parameters are as shown in Table 2.

This description of the frame format is derived from the original data first published by Wood and Perry. It is repeated and extended here to assist the reader in translating the binary data shown in Figure 1(b).

Figure 1(c) shows the decoded version of the binary data given in Figure 1(b), as the interested reader may verify.

Table 2

<table>
<thead>
<tr>
<th>Block</th>
<th>Data fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x, y, z</td>
</tr>
<tr>
<td>2</td>
<td>Velocity x, y, z</td>
</tr>
<tr>
<td>3</td>
<td>ID, Node, Const 1</td>
</tr>
<tr>
<td>4</td>
<td>ID, Node, Const 2</td>
</tr>
</tbody>
</table>

Next month

The receive chain hardware is described, with an outline of the requirements and the techniques adopted.
Frustration is a common feeling to newcomers in any hobby. Electronics is no exception and, indeed, is full of potential pitfalls not only for beginners but also for the more experienced. Frequently, a project is started with great enthusiasm but, when the moment of 'switch-on' arrives, this changes to disappointment. There are many causes of circuit malfunction, and simple wiring errors account for a significant fraction. However, electronics has other weapons in its armoury with which to baffle constructors.

Once the relatively safe ground of low frequency analogue and digital circuits is left behind and radio frequencies loom on the horizon, there are many hidden obstacles. Some, like stray capacitances, are purely a matter of careful constructional practice. Others lie deeper in the art of circuit design and the physics of the components themselves. One such area is the small-signal RF amplifier. Let us look at this useful species of circuit and discover some of the science behind the art.

The simple amplifier

Perhaps the simplest single-transistor amplifier can be designed in the common-emitter configuration. Figure 1 shows the transistor and its dc bias components which ensure that the transistor is in its correct mode for amplification.

Let us, arbitrarily, decide on a supply voltage of 12 volts and a collector current of 1mA. The emitter resistor is chosen to give a voltage of 1.5 volts at the transistor's emitter, so that changes in the voltage drop from the base to the emitter due to temperature variations do not significantly change the emitter voltage. The bias resistors are chosen so that 100 microamperes flows in the bias chain (Rb1, Rb2) and the voltage at the base is 700mV above that at the emitter. The collector voltage is set by Rc to be mid-way between the emitter and supply voltages.

ac signals

So far, the dc operating conditions have been set. To couple ac signals into and out of the circuit, C1 and C0 are chosen to have a small impedance at the lowest frequency of interest.

Because of the negative feedback provided by Re, the circuit would only have a gain of about 3; Rf and Cf are inserted to reduce this feedback. Cf prevents Rf shunting Re at dc and so ruining the dc bias. Now the gain, Av, is approximately Rc divided by Rf, or nearly 50. Indeed, connecting a small 1KHz signal to the input, and an oscilloscope to the output shows that this is the case. Pass 'Go', collect £200. However, Figure 2 illustrates what happens to the gain as the input frequency is increased. Anybody for jail?

Why does the circuit not function at higher frequencies? After all, the design is simple and often used. The reasons are fairly straightforward. Figure 3 shows the model of the transistor that we used to calculate the circuit values for Figure 1. 'rb' and re represent resistances within the transistor, while Rc and Re are the component values of Figure 1; Rf (via Cf) has been absorbed into Re. By tracing
round loop A from point A to point B, we see that the input voltage is equivalent to that developed across \(r_b \) by \(I_b \) and that of \((r_e + R) \) by \(I_e \), the emitter current:

\[
V_{in} = r_b I_b + (r_e + R) I_e
\]

Since \(I_e \) is the sum of the base current, \(I_b \), and the amplified base current in the collector (shown as the current source) we can then write:

\[
I_e = I_b + h I_b
\]

where \(h \) is the small signal gain of the transistor specified by the maker. The output voltage, seen across \(R_c \), is simply (by Ohms Law):

\[
V_{out} = h I_b R_c
\]

so the gain is:

\[
\frac{V_{out}}{V_{in}} = \frac{h R_c}{r_b + (h + 1)(r_e + R)}
\]

Since \(r_b \) is small compared to \((h + 1)(r_e + R)\), it may be ignored. \(r_e \) is near 25 ohms and, on substituting in the other values, a gain of 50 is indeed obtained.

However, Figure 3 has totally ignored the capacitances present within the transistor (let alone those of stray wiring, etc). Figure 4 shows an improved model with two capacitances added: \(C_{bc} \), between the base and the collector, and \(C_{be} \), between the base and the emitter. The former is caused by the varactor-like properties of the reverse-biased base-collector junction, and more will be said about it later. The latter is created by the charge transfer process within the semiconductor and it parallels \(r_e \).

Split

At high frequencies, the current flowing in through \(r_b \) splits: some goes through \(r_e \) while the remainder goes through \(C_{be} \) and effectively robs the transistor of current. At high enough frequencies, the current gain falls to unity.

The frequency at which this happens is quoted by the maker in the transistor's specification under the name of \(f_t \). There is a wide range in the values of \(f_t \). Current in the transistor increases, its value has to be calculated from a simple equation:

\[
C_{be} = \frac{I_e (mA)}{2 \pi f_t \cdot 25}
\]
RF SMALL-SIGNAL AMPS

The main response degradation comes from the effects of Cbe and Cbc. The resistance seen by an input signal is the small-signal gain, h, multiplied by the sum of re and Rf. Re is the intrinsic emitter resistance (within the transistor), and is 250ohms at 1mA (scales reciprocally with le). The capacitance is Cbc, as calculated above, and Cbc multiplied by the low frequency gain. So, with Cbe at 42pF, Cbc at 6pF, and h at 200:

\[f = \frac{h(25 + 100)(42pF + 6pF \times 50)}{1.2} \]

we obtain \(f = 120\)KHz. This will be dependent on exact transistor parameters and the variation of Cbc with the magnitude of the collector-base voltage, but it certainly gives us a ball-park figure for the start of the roll-off of the gain. Turning again to Figure 2, we see that the actual 3dB point is near 150KHz.

The cure

There are various cures for the capacitance problem. Transistor types should be carefully chosen to be designed for RF amplifiers – capacitances are then minimised. The transistors operating current can be increased: this decreases re and so improves the frequency response. The circuit configuration may also be changed and, as this is the most interesting solution, we shall examine three designs which improve the HF response.

Earlier, we noted that the Miller effect – which multiplied the capacitance of Cbc by the low-frequency gain of the circuit – was caused by the large, asymmetric voltage variation across Cbc. The fact that one end sees an amplified voltage relative to the other end causes a ‘feedback current’ to flow through Cbc. This can be reduced by the use of two circuit designs.

The first, shown in Figure 5, is the cascode circuit (not to be confused with cascode). When a signal is injected into the base of Tr1, the transistor’s collector voltage changes by the same amplitude, but with an opposite polarity. Hence, Cbc only sees a voltage variation of twice the input signal. The capacitance is therefore not multiplied by the low-frequency gain and so remains a few picofarads in value.

Secret

But how does this circuit produce gain? The secret lies in passing the variation in current through Tr1 onto a second transistor: Tr2. The variation in current through its collector resistor creates the output voltage signal – such a buffer-type of action is possible by tying Tr2’s base to a fixed voltage considerably higher than Tr1’s collector voltage. Because a transistor behaves as a current source, and current sources have very high impedances, there is very little coupling of the output voltage to Tr1’s collector and thence to its base – so the Miller effect is greatly reduced. Figure 6 shows the frequency response of the cascode circuit in Figure 5.

Although the cascode circuit is shown here with two bipolar transistors, Tr1 may be replaced by a FET (leaving Tr2 bipolar), or both may be replaced with FET types. The biasing arrangements change, of course, but the input resistance rises, and this is important in some applications where the signal source is of high impedance.

Another circuit design which avoids the Miller effect is the long-tailed pair – as illustrated in Figure 7. Here, Tr1 is used as an emitter follower. Tr1’s base-collector capacitance only sees the input signal variations across it because the collector is tied directly to the positive supply. Gain is obtained by transferring the variation in Tr1’s current to Tr2 – this assumes that the resistor attached to the emitter of both Tr1 and Tr2 behaves like a constant current sink.

The variation in the collector current of Tr2 causes the output voltage variation available at Tr2’s collector. Note that Tr2 is really a version of the rarely-seen common-base amplifier, so called because the base of the transistor is ‘common’ to both input and output signals.

In this version of the long-tailed pair, the base of Tr2 is coupled to ground (for ac signals) by C2. The frequency response of this amplifier is similar to the cascode discussed above; the drop in gain at 3MHz is caused by the capacitance Cbe, which may be minimised by careful choice of transistor.
The poor f_1 used here is merely for illustration.

The circuit in Figure 7 may be changed to allow the gain to be voltage-controlled. By inserting a voltage-controlled current sink in the tail of the 'pair', the gain becomes variable — and lends itself to use in systems with AGC.

The last technique we shall look at is the tuned amplifier. Intended for amplifying a limited range of frequencies, a tuned circuit is inserted as the collector's ac load.

This has several advantages. The inductor/capacitor in the tuned load effectively nulls out troublesome circuit capacitances, while the near-zero dc resistance of the coil allows an arbitrary collector current to be set by the designer. The ac signal can be transferred between stages of the amplifier by transformers, with each 'side' acting as a tuned circuit. The most obvious application of this configuration is in intermediate frequency amplifiers where a broadband response is not required and the selectivity obtained by the successive tuned sections is an advantage.

However, despite the science introduced into HF amplifier design, the subject is still an art. The circuits depend so much on capacitance values that transistor types have to be carefully chosen — even then, the values are variable with circuit bias voltages and currents! With care, simple amplifiers may be built which give useful gain into the VHF region.

Other fields

While circuits with good HF responses are obviously required as RF signal amplifiers, there are other areas which have similar needs. In order to amplify pulses with sharp edges, the amplifier used must have gain up to ten times the pulse repetition frequency — to faithfully copy a 1MHz square wave, constant gain to 10MHz (at least) is required.

Such pulses are common when dealing with the output from Geiger-Muller tubes (used to detect nuclear radiation) and photo-multiplier devices in science. As fabrication techniques have improved, digital electronics have increased in speed — microprocessors with clock rates of 10MHz and more are now in everyday use.

Because transistors in digital circuits are operated outside their linear region, other effects must be taken into account. The base of a saturated transistor stores charge and, when the base signal changes, the surplus charge delays the transistor's response. Delays of several hundred nanoseconds are not uncommon with general purpose transistors — such delays can be the equivalent of a few processor cycles. The simplest way of preventing this performance degradation is to keep the transistor in its linear region — the penalty is paid in signifi-

![Fig 8 AGC amplifier](image)

![Fig 9 Typical tuned amplifier](image)

![Fig 10 Capacitances in the FET amplifier](image)

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
FET capacitances

Just like their bipolar cousins, FET devices suffer from capacitive effects which degrade their performance as RF amplifiers. The model of the FET, with all capacitances shown, is illustrated in Figure 10. C1 is the dc-decoupling capacitor while Cgs and Cgd are internal capacitors within the device. Although both are specified for some devices with the above titles, manufacturers sometimes quote Cgs (also called Cgs) and Cgd (also called Cgd). However, Cgd and Cgs are both easily found from Cgs and Cgd by the following formulae:

\[C_{gd} = C_{gs} - (\text{approx}) C_{res} \]

Note that Cres is also occasionally used. This is the algebraic sum of Cgs and Cgd. The latter is an extremely small capacitance between the drain and source. It may be ignored in most instances. Typically, Cgs is around 4pF and Cgd around 2pF for JFETs intended for amplifiers; devices designed for analogue switches may have Cgs near 20pF.

Following on from the description of the bipolar circuitry, Cgd is amplified by the Miller effect in simple configurations. Of course, the cascode design will always reduce the effect of Cgd multiplication. The -3dB point is found by treating Rsource, the combined input capacitances (i.e., any signal-source capacitance and Cgd), and Cgd (multiplied by the low-frequency gain) as a simple serial RC circuit (Figure 11). Then:

\[f = \frac{1}{2\pi R_{source} [C_{gs} + C_{source} + (1 + \text{gain})C_{gd}]} \]

A simple amplifier is shown in Figure 12. The source resistance was 10kiloohms and 20pF, Cgd was 2pF and Cgs 4pF. The gain (measured at 1kHz) was 7. From the formula, the -3dB point should be 400kHz; the actual frequency response is shown in Figure 13.
Ray Marston continues his survey of opto-electronics principles and systems with an in-depth look at practical LED ‘chaser’ and ‘bar-graph’ circuits.

One of the most popular types of LED display circuit is the so-called ‘chaser’ or ‘sequencer’, in which an IC (or other electronic device) is arranged to drive an array of LEDs in such a way that individual LEDs (or small groups of LEDs) turn on and off in a predetermined and repeating sequence, thereby producing a visually attractive display in which a ripple of light seems to run along a chain.

Probably the most popular IC used in ‘chaser’ applications is the 4017B CMOS chip. This device is actually a decade counter/divider IC with ten decoded outputs, each of which can be used to directly drive an LED display. If desired, outputs can be coupled back to the IC control terminals to make the device count to, or divide by, any number from 2 to 9 and then either stop or re-cycle.

Numbers of 4017B ICs can easily be cascaded to give either multi-decade division, or to make counters with any desired number of decoded outputs. The 4017B is thus an exceptionally versatile device that can easily be used to ‘chase’ or ‘sequence’ an LED display of virtually any desired length.

Figure 1 shows the outline, pin designations, and the functional diagram of the 4017B, and Figure 2 shows the basic timing diagram of the device, which incorporates a 5-stage Johnson counter and features CLOCK, RESET, and CLOCK INHIBIT input terminals.

The internal counters are advanced one count at each positive transition of the input clock signal when the CLOCK INHIBIT and RESET terminals are low. Nine of the ten decoded outputs are low, with the remaining output high, at any given time. The outputs go high sequentially, in step with the clock signal, with the selected output remaining high for one full clock cycle.

An additional CARRY OUT signal completes one cycle for every ten clock input cycles, and can be used to ripple-clock additional 4017B ICs in multi-decade counting applications.

The 4017B counting cycle can be inhibited by setting the CLOCK INHIBIT terminal high. A high signal on the RESET terminal clears the counter to zero and sets the decoded ‘0’ output terminal high.

4017B chaser/sequencer circuits

Figure 3 shows the practical circuit of a 4017B 10-LED chaser, in which IC1 (a 555 timer chip connected in the astable mode) is used as a variable-speed (via RV1) clock generator, and the 4017B is wired into the ‘decade counter’ mode by grounding its CLOCK INHIBIT (pin 13) and RESET (pin 15) control terminals.
The action of the Figure 3 circuit is such that the visual display appears as a moving 'dot' which repeatedly sweeps from the left (LED '0') to right (LED '9') in ten discrete steps as the 4017B outputs sequentially go high and turn the LEDs on. The LEDs do not, of course, have to be arranged in a straight line: they can, for example, be arranged as a circle, in which case the 'dot' will seem to rotate. Note that the LEDs in the Figure 3 circuit are not provided with current-limiting resistors, and that the circuit can safely be used only with supply voltages up to 9 volts. The decoded outputs of the 4017B provide inherent current-limiting under short circuit conditions.

The manufacturers do not quote a maximum short-circuit current value, but practical experience indicates that currents of 10 - 15mA are commonly available from the device. The maximum device dissipation-per-output-stage figure of 100mW is quoted on some data sheets, indicating that a voltage drop up to about 7 volts can safely be developed across a 4017B output stage under maximum-current conditions.

Thus, the LED chaser circuit of Figure 3, which has each LED connected directly between an output and ground, can safely be used up to maximum supply values of 9 volts (allowing for a 2 volt drop across each 'on' LED).

Greater
At voltages greater than 9 volts, the circuit of Figure 4, which has a current-limiting resistor wired in series with each LED, should be used. Note that the main purpose of these resistors is that of reducing the power dissipation of the 4017B.

A variant that is sometimes used is shown in Figure 5, and can be used with reasonable confidence at supply values up to 12 volts maximum.

Figure 6 shows a possible equivalent of this circuit when it is powered from a 15 volt supply, and illustrates the defect of the design. The action of the 4017B is such that, when a given LED is on, the anodes of all other LEDs are effectively grounded: R1 thus causes the 'off' LEDs to be reverse biased.

Because of the low reverse-voltage ratings of LEDs, it will often be found that one of the 'off' LEDs will zener at about 5 volts, giving the results shown in the diagram and possibly causing a destructive power overload in one of the 4017B output stages.

Thus, when the 4017B is used to drive LED displays in the 'moving dot' mode, the LEDs can be connected directly to the IC outputs if supply values are limited to 9 volts maximum. At supply values greater than 9 volts, the LEDs must be connected to the IC outputs via current-limiting resistors.

A variety of display circuits are shown in Figures 7 to 10.
Figure 9

type can be used with fewer than ten types. Moving dot displays of the Figure 3 type can be used with fewer than ten LEDs by simply omitting the unwanted LEDs, but in this case the dot will seem to move intermittently, or to 'scan', since the IC takes ten clock steps to completely sequence and all LEDs will thus be off during the 'unwanted' steps.

If a continuously-moving less-than-10-LED display is required, this action can be obtained by connecting the first 'unused' output terminal of the 4017B to its pin-15 RESET terminal, as shown (for example) in the 4-LED circuit of Figure 8. Alternatively, the circuit can be made to give an intermittent display with a controlled number of off steps by simply taking the appropriate one of the 'unwanted' outputs to the pin-15 RESET terminal. In Figure 9, for example, the LEDs 'display' for four steps and then 'blank' for four steps, after which the sequence repeats.

Figure 10 shows a rather unusual and very attractive 4-LED 5-step sequencer, in which all four LEDs are initially on but then turn off one at a time until eventually (in the 5th step) all four LEDs are off.

Note in this circuit that the LEDs are effectively wired in series and that the basic circuit cannot be used to drive more than four LEDs.

Figure 11 shows another unusual and attractive LED display. In this case the 4017B runs through a 10-step sequence, with LED1 on for steps '0' to '3', LED2 on for steps '4' to '6', LED3 for steps '7' to '8', and LED4 on for step '9'.

The consequence of this action is that the visual display seems to accelerate from LED1 to LED4, rather than sweep smoothly from one LED to the next. The acceleration action repeats ad infinitum. Figure 12 shows how the above circuit can be modified to give an intermittent display, in which the visual 'acceleration' action occurs for 10 clock cycles but all LEDs then blank for the next 20 cycles.
after which the action repeats. The action of this circuit is as follows:

The 4017B has a CARRY OUT terminal at pin 12. When the IC is used in the divide-by-10 mode, as in Figures 11 and 12, this terminal produces one output cycle each time the IC completes a decade count.

In Figure 12, this signal is used to clock a second 4017B (IC3), which is connected in the divide-by-3 mode, with its '0' output fed to gating transistor Tr1. Consequently, for the first ten cycles of a sequence the '0' output of IC3 is high and Tr1 is biased on, so IC2 acts in the manner already described for Figure 11, with its LEDs turning on sequentially and passing current to ground via Tr1. After the 10th clock pulse however, the '0' output of IC3 goes low and turns Tr1 off, so the LEDs no longer illuminate, even though IC2 continues to sequence.

Eventually, after the 30th clock pulse, the '0' output of IC3 again goes high and turns Tr1 on, enabling the display action to re-occur.

Figure 12 is a simple example of a display 'multiplexing', in which IC3 and Tr3 are used to enable or disable a bank of LEDs. Figure 13 shows a further example of a multiplexing circuit, in which three lines of six intermittently-sequenced LEDs are sequentially enabled via IC3 and individual gating transistors, with only one line enabled at any one time. This basic circuit can in fact be expanded to control a ten line (100 LEDs) matrix display.

Finally, to complete this look at 'sequencer' circuits, Figure 14 shows the circuit of a 4-bank 5-step 20-LED chaser. Note here that a bank of four LEDs is wired in series in each of the five used outputs of the 4017B, so that four LEDs are illuminated at any given time.

In practice, roughly 2 volts are dropped across each 'on' LED, giving a total drop of about 8 volts across each 'on' bank, so...
Fig 18 States of the U237B internal transistors at various input voltages

- The circuit supply voltage must be greater than this value for the circuit to operate. A greater number of LEDs can be used in each bank if the supply voltage value is suitably increased.

'Bar-graph' displays
Another type of multi-LED indicator circuit is the so-called 'analogue-value'

indicator, which is designed to drive a chain of linearly-spaced LEDs in such a way that the length of chain that is illuminated is proportional to the analogue value of a voltage applied to the input of the LED-driver circuit, ie so that the circuit acts like an analogue voltmeter. These circuits may be designed to produce either a 'bar-graph' display, as shown in Figure 15, or a 'dot' display, as in Figure 16. In a 'bar-graph' display, the input value is indicated by the total number of LEDs that are illuminated. In the 'dot' display, the input value is indicated by the relative position of a single illuminated LED.

Special ICs are available for operating LED analogue-value display systems. The most useful of these are the U237 family from AEG, and the LM3914 family from National Semiconductor.

The U237 family are simple 'dedicated' devices which can usefully be cascaded to drive a maximum of 10 LEDs in 'bar' mode only. The LM3914 family are more complex and highly versatile devices, which can easily be cascaded to drive as many as 100 LEDs, and can drive them in either 'bar' or 'dot' mode. Both types are listed as 'bar-graph driver ICs'.

IC-driven bar-graph displays make inexpensive and superior alternatives to analogue-indicating moving-coil meters. They are immune to 'sticking' problems, are fast acting, and are unaffected by vibration or attitude. Their scales can easily be given any desired shape.

In a given display, individual LED colours can be mixed to emphasise particular sections of the display, and 'over-range' detectors can easily be activated from the driver ICs and used to sound an alarm and/or flash the entire display under the over-range condition. They also have better linearity than conventional moving-coil meters, typical accuracies being 0.5%. Scale definition depends on the number of LEDs used; a 10-LED display gives adequate resolution for most practical purposes.

We'll look at a range of practical U237-based bar-graph display circuits in the remaining section of this edition of Data File, and go on to look at some LM3914-based designs next month.

U237 basics
The AEG U237 family of bar-graph driver ICs are simple, dedicated devices, housed in 8-pin DIL packages and each capable of directly driving up to five LEDs.

The family comprises four individual devices. The U237B and U247B produce a linear-scaled display and are intended to be used as a 'pair', driving a total of ten LEDs. The U257B and U267B produce a log-scaled display, and are also meant to be used as a 'pair' driving a total of ten LEDs.

All four of the U237 series use the same basic internal circuitry, which is shown in the block diagram form (together with external connections) in Figure 17.

The IC houses five complete sets of Schmitt voltage-comparator/transistor-switches, each of which has its threshold switching or 'step' voltage individually determined by a tapping point on the R1 to R6 voltage divider, which is powered from a built-in voltage regulator; the input of each comparator is connected to the pin-7 input terminal of the IC. The IC also houses a constant-current generator (20mA nominal), and the five external LEDs are wired in series between this generator and ground (pin 1), as shown in the diagram.

The basic circuit action is such that groups of LEDs are turned on or off by activating individual switching transistors within the IC. Thus, if Tr3 is turned on, it sinks the 20mA constant-current via LEDs 1 and 2, so LEDs 1 and 2 turn on and LEDs 3 to 5 turn off.

The U237B has step voltages spaced at 200mV intervals, and Figure 18 shows the states of its five internal transistors at various values of input voltage. Thus, at zero volts input, all five transistors are switched on, so Tr1 sinks the full 20mA of constant current, and all five LEDs are off. At 200mV input, Tr1 turns off but all other transistors are on, so Tr2 sinks the 20mA via LED1, driving LED1 on and causing all other LEDs to turn off, and so on.

Eventually, at 1.0 volt input, all transistors are off and the 20mA flows to ground via all LEDs, so all five LEDs are on. Note that the operating current of the circuit is virtually independent of the number of LEDs turned on, so the IC generates negligible RFI as it switches transistors/LEDs.

The four ICs in the U237 family differ only in their values of 'step' voltages.
which are determined by the R1 to R6 potential divider values. The table of Figure 19 shows the step values of the four ICs. Note that the U237B and U247B are linearly scaled, and can be coupled together to make a 10-LED linear meter with a basic full-scale value of 1 volt. The U257B and U267B are log scaled, and can be coupled together to make a 10-LED log meter with a basic full-scale value of 2.0 volts or +6 dB.

Figure 20 shows the basic specification of the U237 family of ICs. Note that the supply voltage range is specified as 8 to 25 volts. In practice, the minimum supply voltage is one of the few design points that must be considered when using these ICs, and must be at least equal to the sum of the 'on' voltages of the five LEDs, plus a couple of volts to allow correct operation of the internal circuitry. Thus, when driving five red LEDs, each with a forward voltage drop of 2V0, the supply voltage must be at least 12 volts. Different-coloured LEDs (with different forward voltage drops) can be used together in the circuit, provided that the supply voltage is adequate.

Another 'usage' point concerns the input impedance of the IC. Although the input impedance is typically 100K, the IC in fact tends to become unstable if fed from a source impedance greater than about 20K. Ideally, the signal feeding the input should have a source impedance less than 10K; if the source impedance is greater than this, stability can be enhanced by wiring a 10n capacitor between pins 7 and 1.

Practical U237 circuits

Figures 21 to 26 show some practical ways of using the U237 family of devices. In all these diagrams, we have shown the supply voltage as being ' +12 to 25 volts', but the reader should keep in mind the constraints already mentioned.

Figure 21 shows the practical connections for making a 0 - 1 volt 5-LED linear-scaled meter, using a single U237B IC, and Figure 22 shows how a U237B/U247B pair of ICs can be coupled together to make a 0 - 1 volt 10-LED linear-scaled meter.

Note in the latter case that the two ICs are operated as individual 'Figure 21' style circuits (needing only a '5-LED' supply voltage), but have their input terminals tied together and have their LEDs physically alternated, to give a 10-LED display.

Figure 23 shows how the full-scale sensitivity of the basic circuit can be reduced by feeding the input signal to the IC via the R1 and R2-RV1 potential divider, which has a 15:1 ratio and thus gives a full-scale sensitivity of 15 volts. Figures 24 and 25 show how the basic Figure 21 circuit can be used to indicate the value of a physical parameter (such as light, heat, etc) that can be represented by the analogue resistance value of the transducer Rr.

In both cases, the transducer is effectively fed from a constant-current source, so that the input voltage to the IC is directly proportional to the transducer resistance value.

In Figure 24, the transducer current is derived from the regulated supply line via R1-RV1, and current constancy relies on the fact that the regulated supply voltage is large relative to the 1 volt full-scale sensitivity of the meter. In Figure 25, current constancy is ensured by the ZD1-Tr1-etc constant-current generator.

Finally, to complete this month's edition of Data File, Figure 26 shows how the U267B 'log' IC can be used to make a 5-LED audio-level meter. A 10-LED meter can be made by connecting the R1-R2-R3-C1-D1 input circuit to the input of a U257B/U267B pair of ICs connected in the Figure 22 configuration.
RTTY and CW TRANSCIEVE with no TERMINAL UNIT

This fantastic program interfaces directly with your PC, slashing the cost of your RTTY and CW station. Perfect for the home operator or the mobile enthusiast, this program allows you to interface with your terminal through a simple interface. It offers full RTTY and CW operation, including in-line character generation, copy and paste, and a comprehensive set of features for easy operation. It is available in a compact, user-friendly package, designed for easy installation and use. Available at a discount price, this program is a must-have for any radio amateur.

Mail order & shop:
441 PRINCES ROAD,
DARTFORD, KENT DA1 1RB
Telephone: (0322) 91454

YOUR RADIO AMATEURS EXAM SUCCESS

Study at home – pass first time with
RCC’s Complete Home Tuition Service

- Self-contained courses, regularly updated for The City & Guilds Radio Amateurs Examination
- Fully inclusive fees
- No costly, time-consuming text books to buy
- Everything you need in booklet lectum form
- Regular tests ensure you are fully prepared
- Enrol at any time
- Timetable to suit you
- Continued tuition at no extra cost if you don’t pass first time

FREE RADIO AMATEURS PROSPECTUS BY RETURN
Write or phone today for full details, and a FREE copy of our prospectus, without obligation to

THE RAPID RESULTS COLLEGE
Dept. JY12, Tuition House, London SW1 1DS
Tel: 01-947 7272 (9am-5pm) – or use our 24-hour Recordcall Service: 01-946 1102 quoting Dept. JY12
Since the last update appeared in Radio and Electronics World, several dramatic changes have occurred. By the time this appears in print, a new Polar Orbiting Satellite should have been launched.

NOAA-8
The attitude controls on NOAA-8 failed on June 11th, and the spacecraft began to tumble. There appears to be some chance of recovery, but at the present time no systems are being used operationally. The beacon on NOAA-8 is being left on when it does not conflict with the NOAA-6 beacon on the same frequency.

NOAA-7
NOAA-7 has developed a serious power regulation problem caused by a loss of power supply shunt loads, but at the present time all systems continue to work nominally.

NOAA-6
This spacecraft has been re-activated to replace NOAA-8 as the primary morning spacecraft transmitting on 137.5MHz. Since July 1st NOAA-6 has been transmitting two channels of infrared data during the night. Depending upon user-response, this experiment may be introduced on NOAA-7.

NOAA-F
NOAA-F was scheduled for launch on November 2nd, 1984. After launch it will be NOAA-9. It will be the primary afternoon satellite with an equator crossing at 1430 local time each day. The period will be 1022 minutes and the inclination 98 degrees. As well as instruments concerned with its weather measurements, the satellite will also carry a search and rescue package (SAR).

This package, first carried on NOAA-8, is part of a continuing demonstration to evaluate a satellite search and rescue system.

NOAA-next
The next NOAA in the series has been cancelled for budgetary reasons. However, three more satellites of the advanced TIROS-N type will be used to continue the series into the 1990s.

More trouble
The GOES geostationary satellites have also run into trouble. The failure of the second encoder lamp on GOES-east has had a major impact upon the GOES programme. The encoder lamps are tungsten filament lamps which are used in the control of the VISIR/AS instrument. GOES-east covered an area from mid-west United States to western Europe and from Canada to South America.

GOES-west was moved to 98 degrees west to cover the Atlantic and part of the Pacific during the hurricane season, and provided vital information during the recent hurricanes. GOES-4 was reactivated at 139 degrees west.

Since GOES-west is not relaying WEFAX data both GOES-4 and GOES-east will be used to relay VISIR data called by GOES-west. GOES-1, stationed at 131 degrees west, may be used to broadcast WEFAX data using a dish at the NASA/Goddard Space Flight Center if tests are successful. There was speculation that this satellite might be moved to 108 degrees west in November, and GOES-central would possibly then move to 113 degrees west. Life gets complicated up there doesn’t it!

The Americans weren’t the only ones with problems. Japan’s GMS-2 suffered a partial failure of its imaging system in early 1984. GMS-1 was moved to 135 degrees east, GMS-2 being moved to 145 degrees east. During May and June GMS-1 suffered progressive failure in its imaging system. Complete failure occurred in July. Images at six-hourly intervals are still being received from GMS-2. GMS-3 was launched on August 2nd and should be on station at 140 degrees east (and operational) by now.

Celebration
As part of the celebration of the 25th anniversary of Weather Satellites, NOAA are requesting photographs of receiving stations and images received. They hope to make slides and displays showing the high level of professional and amateur achievement since the construction and operation of direct readout stations. This is an opportunity to give something back for all the information made so freely and readily available by NOAA. Material should be sent to:

When looking through advertisements in magazines and listening on the air, it is obvious to anyone with two brain cells to rub together that there is a lot of portable and even more mobile equipment being used these days. Most of this is powered by Nicads or lead-acid accumulators (the car battery – idiot!) yet how many people give a thought to the rough treatment that they dish out to their all-important (and expensive) sources of power?

Considering the cost of all types of secondary cell it is worth taking some care to avoid abusing them beyond the point of no return.

I will deal firstly with the lead-acid accumulator; this type of cell has a nominal voltage of 2V per cell and a low internal resistance when charged (typically 0.01ohms). I will not go into great detail about the chemical action of this cell, as this is not really necessary and is covered adequately in the many textbooks available. It is, however, worth noting that the cell is formed of two plates (or nets of plates), the negative being lead and the positive being lead peroxide, when the cell is charged. These are mounted on lead-antimony grids and the electrolyte is diluted sulphuric acid.

It is also important to realise that during discharge both plates become lead sulphate and water is generated, which lowers the specific gravity of the electrolyte. Towards the end of a charging period it can be seen that oxygen and hydrogen are liberated inside the battery.

NOTE: oxygen and hydrogen in certain proportions are highly explosive. Always charge batteries in a well ventilated area, if not mounted on your car, and never use any naked flames near a battery under charge.

Now that that's over we can go on to the practicalities.

Battery life

How long will my battery stay charged?
The best approximate answer to this, apart from your own experience of your power consumption, is to look at the manufacturer's data for your battery. Somewhere, you will find a specification known as ampere-hour capacity (AHC). This will probably be printed or stamped somewhere on the actual battery. The AHC is the product of the rate of discharge in amps and the time of discharge until the manufacturer's lowest charge level is reached.

It is very simple to understand; for example a battery with an AHC of 100 could deliver 100 amps for 1 hour, 50 amps for 2 hours, 1 amp for 100 hours, 0.5 amps for 200 hours or 200 amps for half an hour etc. In each of these cases the product of current and time is equal to 100 – the AHC of the battery.

How well charged is my battery?

In general, as long as the manufacturer's instructions are adhered to and certain situations avoided your battery should give you a long life. However, you may be interested or need to know the state of charge of your battery.

There are two main indications of this; the terminal voltage and the specific gravity (Sg) of the electrolyte, ie how much water it contains.

As can be seen from the graph, the EMF of a freshly charged cell may be as high as 2.2V; however, this falls to 2.0V almost as soon as the discharge begins. It then stays at this point for the remainder of the safe discharge period and only when the cell is nearly completely discharged will it fall below this level. If this happens there is a possibility that the cell may be permanently damaged.

False sense

So as can be seen, simply measuring the terminal voltage of your cell could lull you into a false sense of security; a much more reliable method is to measure the specific gravity of the acid in the battery.

If you remember, when a cell is discharging water is produced as a by-product of the reaction. It is then a simple matter to compare the gravity of the diluted acid with that of pure water to find the degree of discharge.

A fully charged cell has a specific gravity of 1.25 but a discharged one only 1.18. The electrolyte goes from being 1.25 times as dense as water to 1.18 times; this can be measured on an instrument called
Caring for your battery

Always keep your battery clean and dry. If possible, smear the contacts with petroleum-based jelly or grease; this will help to prevent corrosion caused by splashed acid which can come out of the vent holes when the cell is under charge. Keep the acid at the correct level (about ⅛ inch above the plates) by topping up with distilled water when necessary. This is vital to prevent buckling of the plates.

Keep the air vents clear from any debris or you could find yourself in an explosive situation! Avoid heavy currents on charge or discharge or the cell will be damaged by the excessive heat caused. If you want to store the battery then leave it in a charged condition; failure to do so could lead to a fault known as sulphation which if allowed to occur would destroy the battery. Of course, as in all things, conform to the manufacturer’s instructions as regards charging/discharging rates and use.

Main faults

There are three main faults that occur with lead-acid batteries. These are detailed below.

Sulphation; this is the formation of insoluble lead sulphate on both plates, caused by discharging the cell beyond safety limits, or by storing in a discharged state. If it is not too severe it can be cured by a long trickle charge, during which the sulphates will disintegrate and fall to the bottom of the battery. There is usually a well provided at the bottom for this type of debris to prevent it shorting the plates out.

Buckling of plates can occur if too large currents are drawn from, or put into, the battery; this can lead to internal short circuits in the plate network of the battery. In severe cases the plate may crack. The same effect can be caused by uneven chemical action on the plates if the electrolyte is not kept topped up. If this happens you may as well throw the battery away.

Corrosion of the terminals can occur when, during charging, acid splashes through the vents and reaches the terminals. These can simply first be wiped clean and greased lightly to prevent further corrosion. If you follow these guidelines you should get many hours of life out of your battery, and more importantly it shouldn’t pack up on you during a field day on a windy hilltop!

Nicads

Now on to the infamous Nicads which seem to power almost every other rig you see these days. Nicad cells can be used as a direct replacement for dry primary cells in most applications, the only real difference being that they have a lower open circuit voltage of 1.2V as opposed to the 1.5V of a standard dry cell. These have one problem, in that their performance is limited below 0°C, but that also applies to standard dry cells and doesn’t really bother us greatly. These cells have a very low internal impedance so currents of several amps can be obtained; as with lead-acid cells, this will damage the cell if continued for more than a few seconds. Because of this it is an idea to include a fuse in any circuit you are designing which could lead to the cells being shorted if a component were to malfunction.

Trouble free

Nicads are much more trouble free in maintenance, and if obvious precautions are observed, should give no trouble. Because of this, our main interest is in the expected life of the cell before it is worn out. This depends upon several factors, most of which are related to how it is used and charged.

A cell under normal use can be expected to have a useful life of a couple of hundred charge/recharge cycles. One factor that can limit the life is that of extremes in temperature. Both high and low can reduce the life span of the cell, so beware on cold frosty mornings! The cell, in fact, will work best and longest at proverbial room temperature, about 15 to 25°C, suiting it well.

One area in which Nicads often fail is in charging; the manufacturer’s instructions should therefore be carefully followed. Nicads have been known to explode when incorrectly charged, and this makes a mess of anything, or anyone, in the immediate vicinity. This does not, of course, mean that the very best, highly priced charger has to be bought; indeed with a reasonable junk box a suitable one can be built for a couple of quid. A simple yet effective circuit is shown later and is ideal for the given charging currents, or could easily be adapted to give others.

Two ways

There are two ways in which Nicads are often overcharged, both of which damage the performance of the cell in different ways. The first is when there is a slight but prolonged overcharging; this is not too serious and can be identified.
by a slightly lower output voltage from the cell than normal. It can be cured by giving the affected cell(s) a deep discharge, but this will slightly shorten the life of the cell.

Excessive

The other type of damage is when the overcharge is excessive; this causes the temperature of the cell to rise and gases are given off. These should escape through a vent hole, but if the build-up is too rapid then the cell may explode. Even if things don’t come to this then the life and capacity of the cell are severely impaired because of the loss of some of the active chemicals as gases. This is, unfortunately, incurable.

The best ways to overcome this are to use a charger with a timer or with automatic voltage limiting. When charging the cells they should be in a low state of charge or you may come across the ‘memory effect’ discussed later. Cells must only be charged in series because the current is constant; if they are charged in parallel each cell will pass a different current and some could be undercharged and others overcharged.

Conversely, if a deep discharge is called for, this should only be done with cells in parallel as each cell will hold a different charge. If they were charged in series it could lead to cells becoming reverse charged, which has a similar effect to excessive overcharging.

Memory effect

The ‘memory effect’ previously referred to is an interesting phenomena first detected by NASA. It happens when the cell is partially discharged a number of times. The accompanying graph is self-explanatory for this condition. The effect can be overcome with little damage to the cell by giving it a deep discharge.

It is fortunate that the memory effect is not serious and has few long term effects, for how many of us give Nicads a deep discharge every time?

Talking of long term effects, if you are going to store Nicads for some time then do so when they are in a charged state. This will prevent formation of internal short circuits and/or the cell being damaged by formation of chemicals which the charging process will not reverse.

Long life

If all these precautions are taken and the cells well treated generally then they should last for quite some time longer than the manufacturer’s rated minimum life.

Earlier on I mentioned a circuit for a Nicad cell charger, the diagram for which you will find below. It will charge four type ‘D’ cells in series at constant current with automatic voltage limiting. Tr2 is the current source, with its base voltage stabilised at about 3V by the two LEDs which also serve as a charge indication. This transistor can be a BC301 or similar. Tr1 gives a voltage limiting action when the voltage across the cells approaches that at the 1K branch of the potential divider. This transistor can be a 2N3638 or similar.

The circuit values shown will give an initial charge current of about 260mA, dropping to about 200mA when the voltage across the cells reaches 5.5V, and to almost zero when the voltage reaches 6.5V. The cost of components (new), including the transformer, often the most expensive item, is somewhere about £7.
THE GUIDE TO COMMODORE 64 SOFTWARE
By John Darling
The author of this volume has compiled a catalogue of commercially available software for this computer, and worked with the co-operation of most of the software houses in Britain. The programs available are split into seven sections, the first three covering games (arcade, adventure and traditional), the next two covering educational software (4 to 14 years and 14+ years) and the last two covering business software and utility programs.

Within each section the software is listed alphabetically, and each section begins with a short introduction. All the software is fully described, although not reviewed, with the retailer, price and format (cassette, disk or cartridge). An appendix lists the addresses of the various software houses.

The most striking aspect of this book is the tremendous diversity of software available for the Commodore 64 and the imagination that goes into devising names for the programs (how about 'Revenge of the Mutant Camels'!).

Granada Publishing Ltd, £5.95

INTRODUCING MACINTOSH
By Francis Samsh
The Macintosh computer was designed by Apple Computer to be intelligible to the 'average person.' It is intended for the small business user, and aimed at making it easier to operate a computer through using a 'mouse' pointer and pictograms on the screen.

Consequently this is not a 'how to program' book, the intention being that off-the-shelf software is used. The author concentrates on describing how to use the Macintosh to the best advantage, providing some simple worked examples.

The ideas are set out clearly, with some very good advice given concerning, for instance, copying programs and 'regularly saving' information in order to prevent power failure or operator error from spoiling anything in memory.

Advice is also given on buying software, with a warning to beware rushed-out 'quick-and-dirty' packages which do not make full use of the computer's abilities.

To complement this section there is a brief list of software, with good descriptions, which the author considers worthy of consideration.

The text concludes with a glossary of computing terms which is, unusually, truly 'user-friendly'.

Granada Publishing Ltd, £7.95

AMSTRAD COMPUTING
By Ian Sinclair
The new Amstrad CPC464, claimed to be a major step forward in computing, uses a dialect of BASIC which apparently requires learning almost from scratch if the user has previously used the simple version of the language on earlier makes of computer.

This book complements the manual of the CPC464, and was written while the author was using one of the computers, with the listings obtained from a printer connected to it.

The approach taken is to present the various commands in detail step by step. The author writes in a clear, idiot-proof style, beginning with a chapter on how to set up the computer. He progresses to elementary commands, and then expands on these in such a way that the reader has covered a fair amount of ground before he has even realised that he is well on the way to programming.

Sound and graphics are covered, of course, as well as windows and other effects.

Granada Publishing, £6.95

THE BBC MICRO ADD-ON GUIDE
By Allan Scott, Mike Scott, Rohan and Philip Gardner
This book is intended to give an easily understood outline of peripherals available for the BBC, with an evaluation of quality and value for money.

It is not comprehensive, but of course this would be impossible considering the rapid rate of change in this market. The coverage of hardware available is good, with useful descriptions of the advantages and drawbacks of the various devices written in clear non-technical language (prices, too, are included).

Each type of peripheral has its own chapter, and the scope of the book extends so far as to give a brief mention to the field of control and robotics (which could fill several volumes itself).

The writers are clearly BBC enthusiasts of the first order, but this has not affected their discrimination when it comes to evaluating hardware (in fact it has probably enhanced it, since they will only want the best for their favourite computer!).

For those with a BBC Micro a book such as this will be an invaluable addition to their bookshelves. Others can benefit from the general descriptions of the uses of the various peripherals, but might well find themselves dashing out to buy a BBC after being infected by the authors' enthusiasm.

Collins Professional and Technical Books, £6.95.
• For office & home
• 240 AC Operation
• Includes Airfresh Gel
• Complete with case

The unique on/off timer controlled circuit starts the fan at regular intervals giving a controlled output of fragrance.

Ready Built - £11.95
Please add £1.45 P & P + 15% V.A.T.

Looking for the best price on components?
We are the main stockists for 'BEARPARTS', the new name in electrical, electronic and audio components. Interested? Send S.A.E. and receive your
FREE

BEARPARTS
sample pack.

We are the main stockists for 'BEARPARTS', the new name in electrical, electronic and audio components. Interested? Send S.A.E. and receive your
FREE

BEARPARTS
sample pack.

We are the main stockists for 'BEARPARTS', the new name in electrical, electronic and audio components. Interested? Send S.A.E. and receive your
FREE

BEARPARTS
sample pack.
LATEST LITERATURE

CATALOGUES AND BROCHURES

South West Aerials

The 1985 catalogue is now available from South West Aerials. This small illustrated booklet contains 21 pages of aerials, amplifiers, diplexers etc., covering most receiving requirements. Also included is a range of TV DXing equipment, including the Waltham 416 6in VHF/UHF TV for System B/G operation (made for the West German market).

The company can also obtain equipment for specific requirements that is not found in the lists. The catalogue is available for 60 pence.

South West Aerials,
11 Kent Road, Parkstone,
Poole, Dorset BH12 2EH.

Data I/O

The latest edition of Data I/O’s Product Guide is now available from Microsystem Services (MSS) of High Wycombe, Bucks.

This free booklet illustrates Data I/O’s range of PROM and logic device programmers, programming systems and software; it also includes description and specification for each product together with details of the most effective applications.

The wide range of products covered includes a system for programming up to eight EPROM-loaded boards at the same time, a complete design/programming system for over 130 programmable logic devices, and a stand-alone or host PC controlled system that can program over 1,200 devices.

Copies of the Data I/O Product Guide can be obtained direct from Microsystem Services.

Microsystem Services,
PO Box 37,
Lincoln Road,
Cressex Industrial Estate,
High Wycombe,
Bucks HP12 3XJ.

Simpson

Simpson Electric Company’s test equipment catalogue is available free of charge on application to the company.

This well illustrated publication is divided into five sections covering digital meters, analog VOMs and electrical testers, environmental test equipment, communications service test equipment, and accessories. Complete specifications of the units are included, with the prices prominently displayed.

Simpson Electric Company,
853 Dundee Avenue, Elgin,
Illinois, USA.

Motorola

Motorola Logic and Special Functions Division has announced the availability of the new Telecommunications Device Data Book.

This publication contains complete technical data for design engineers, and covers Motorola’s semiconductor devices which are dedicated to applications in telecommunications.

As well as extensive data sheets, there are application notes and technical articles to aid understanding of systems and devices.

The Telecommunications Device Data Book costs $2.80, with discounts for quantities of ten or more, and can be obtained from the nearest Motorola sales office or the company’s literature distribution centre.

Motorola Literature Distribution Centre,
Broadway Building #1,
616 West 24th Street,
Tempe,
Arizona 85282, USA.

Maplin

The 1985 edition of Maplin’s Buyer’s Guide to Electronic Components is now available from Maplin shops and branches of WH Smith.

By extensively sourcing new products worldwide the range of products has been extended over 1984, and all prices are featured alongside the products.

In many cases these prices are lower than before. The catalogue costs £1.35 retail, or £1.75 including p&p mail order from Maplin.

Maplin Electronic Supplies Ltd.,
PO Box 3,
Rayleigh,
Essex SS6 8LR.
LINSLEY HOOD 300 SERIES AMPLIFIER KITS
Ultra high quality Mosfet output, Hi-Fi amplifier kits by this famous designer. Two models of identical appearance are available, one giving 35 watts per channel output, the other 45.

Complete record and replay circuits for very high quality low noise stereo casette recorder. Circuits are optimised for our HS16 Super Quality Sandhurst Alloy Head. Switches bias and equalisation to cater for ceramic and ferrite tapes. Very easy to assemble on plug-in PCBs. Complete with full instructions.

- Complete Record/Play Kit — £28.25
- Reprints of Original Articles — 75p per Val.

LINSLEY-HOOD CASSETTE RECORDER CIRCUITS
Our complete kit for this brilliant new design is the same size as our Linsley-Hood Cassette Recorder 3. Kit includes all parts for two power amplifiers with large heatsink area, high power supply and speaker protection circuit. Total cost of all parts is £114.68 but our special introductory prices for all parts bought together is only £108.00.

Please Note: New Phone Number: (0691) 652894
Personal callers are always very welcome but please note that we are closed all day Saturday.

Radio & Electronics World
PCB’s
- May '84 Signal Generator £1.90
- Frequency meter £4.30
- S meter display £3.92
- S meter control £1.99
- July '84 VLF converter £1.60
- Teletypewriter Interface £1.45
- Sept '84 5ch Scanner £3.92
- 5ch Scanner display £1.40
- Nov '84 Base mic £1.50

Prices include VAT & P&P

KITS and other PCB’s also available. Please order from us.

Edwardschild Ltd. (0277) 216433
28 Shenfield Cres, Shenfield, Essex CM15 8BN
Radio amateurs in particular may be interested in some details of how to tackle the problem of decoding Morse signals with a computer, since it has become commonplace to be doing so nowadays.

The use of RTTY and data-transmissions over short wave links is spreading rapidly into its guaranteed future, along with visual display on TV monitors and error-checking repeat-request microprocessor circuits.

So this general field of activity is going to become normal procedure for radio operators before too long.

Having just written such a program to run on a Nascom-3, using 1k byte of RAM, it was concluded that 95% of the work was not dependent on the machine being used and so could be of interest to all computer users.

Z80 code experts may like to know about the Mode 2 interrupt techniques employed, as it makes a change from inputting pulses via the conventional serial UART or PIO running on 1 bit, and furthermore the method of pulse analysis has applicability to many data streams other than Morse code, and so could be adapted to industrial uses.

Easy facility

The Nascom bus line 22 INT is an open collector pulled up to +5V, and any circuit sinking 6-10mA can pull it to zero volts in order to cause a maskable interrupt. Thus an easy facility exists into which a Morse signal can be fed, and this will form the core of a routine which decides whether a space or mark (dot or dash) is being received, prior to counting delay loops to time the durations of either.

However, the pulses supplied to the computer should be clean and fairly square, so you may have to build an interface from your communications receiver. The Elektor (May 1983) circuit is an excellent solution for most situations, but does not sink enough current at its output in order to interrupt the Nascom. The simple addition of a PNP transistor will cure that aspect (see Figure 1).

Reference to any Z80 book will show there to be three modes of maskable interrupt possible. Mode 1 always jumps to location 0038 HEX to find its processing routine, but this may not be convenient, especially if you have a ROM monitor over that area.

Careful use

Mode 0 jumps to any of eight restart addresses or executes a call instruction, but all require the interrupting device or peripheral to have circuitry to put a necessary instruction byte onto the databus at the right time. Provision of such circuitry can be avoided by careful use of Mode 2, if you can determine what state your databus is in at the time of interrupt.

The principle of Mode 2 is a two stage jump. The first address is obtained by combining the I-register contents with the databus value; the Z80 goes to that address to get the contents of it, plus the next RAM byte, to form the destination address at which the processing routine must be placed. Sounds complicated doesn't it? But it isn't too bad once you study it, and it allows great flexibility in multi-peripheral systems.

Now both the I-register and the two RAM bytes can be loaded by program to any value you want. The only problem is to know what value the databus will be at by itself at the time of interrupt, if no external circuits set it to any other value.
MORSE DECODING

One might think it would be all lines high at +5V giving (FF) HEX, but on the Nascom at least it was found to be at (BE) HEX when exiting from a JR-2 loop, and (00) HEX from a NOP window provided by the instructions:

```
EI       enable interrupts
NOP      window during which INT is allowed to occur
disable interrupts
```

Thus it might be expected to be at other values, depending on the type of instruction being executed at the time of interrupt. Maybe these values are published somewhere?

Anyway the database can only adopt 256 different states, so by filling a spare block of RAM with a chosen symmetrical (high byte same as low byte) first stage address one can catch it wherever it lands in that block, and then do a binary reduction on the block length to converge on its exact value, which we shall refer to as (WW) HEX.

So we now know how to use Mode 2 by program only – with no hardware:

```
| IM2  | set Mode2          |
| LD A, ZZ | load I-register |
| LD I, A | with ZZ          |
| EI   |                   |
| NOP  |                   |
| DI   |                   |
```

The following must also be provided:

Address	Content
ZZW+1	XX low byte
YYYY	YY high byte

(WW) = (BE) HEX in this case.

We can now progress to a mark or space discriminating routine:

```
JR + 3
CALL SPACE
M2
LD A, ZZ
LD I, A
EI
NOP
DI
LD A (10B2)
SUB 01
JMP
LD A, 0
LD (10B2) A
```

where location 10B2 is being used as a flag to record whether each previous loop was interrupted (yes = 01) or not. Returns from interrupt go back to the window and continue looping.

That is all we need to say about interrupt and interrupt catching; the rest is the more straightforward job of counting the lengths of each space and mark to decide whether:

1. the marks are dots or dashes (dash should equal 3 dot lengths);
2. the spaces are inter-mark (should equal 1 dot length);
3. the spaces are inter-characters (should equal 3 dot lengths);
4. the spaces are inter-words (should equal 5 dot lengths).

Note the use of the word 'should'!

Erratic

Even if you are not accustomed to reading Morse you may not have adequately appreciated how erratic most senders' styles are; although the ear/mind of a listener has the faculty to decide what the sender was probably intending to send rather than what electrically was transmitted.

One famous radio operator in the Ukraine regularly sends his own CQ and callsign at 100wpm as one continuous string of dots and dashes, whereas the rest of the message comes in at 20wpm. Ironically the poor computer can't cope with that sort of burst unless 'signature' storage routines are incorporated, but this is hardly worth the effort for normal non-espionage decoders like ourselves.

However, this underlines the need for our program to be able to automatically adjust itself as the incoming speed varies – at least over a defined range – and to be tolerant of extra long gaps or dashes etc.

Most hand-sent Morse one hears is in the range 8-25wpm, so the program should cover, say, 5-40wpm for normal use. The method used for auto-adjusting the speed is to maintain a store of dot, dot+2, dot+3, and dot+4 lengths and continually update the values to that of the last dot which came in. All other lengths are compared with this store, so it will always provide a valid reference within its range.

The initial dot length setting is calculated for a nominal 12wpm input to minimise the chance of the very first dash of a fast sequence being mistaken for a dot, but either way the first true dot would soon locate and immediately thereafter adjust.

Duration

Any duration less than dot+2 is said to be a dot or inter-mark separator.

Any duration ñ dot+2 but less than dot+4 is said to be a dash or inter-character separator.

Any duration ñ dot+4 is said to be an inter-word separator.

Regarding the so-called 'speed' of Morse, you have to note that its (X)wpm rating is a very imprecise statement on its pulse composition. Morse characters vary from 1 to 6 marks in length, and some contain all dots and others all dashes, so the shortest character is 'E' at 1 dot length while 'O' (5 dashes) is 5+3+4 = 19 dot lengths.

20wpm plain language is officially reckoned to be equivalent to 16wpm random code, since the latter contains fewer short characters like E, A, I etc, but even that statement is inadequate. Therefore, we must plan for worst-case

Many micro-computers use the Z80 processor chip, including the Tatung Einstein (reviewed in R&EW December)
sequences of all Es or all Os so that the program won't fail in such events.
It has been calculated that the worst-case dot length at 50wpm should not be less than 10mS.
Furthermore, regarding 'durations', you will need some perspective on the speed of Z80 instruction execution relative to the incoming Morse as well as a short excursion into 'real time' progranming.
Even though you think the Morse may be fast, the 280 is a thousand times faster, so if a pulse of say 100mS was to be measured it would be unnecessary to look at it every 10μs (giving a count of 10000). Instead we build a delay loop of known duration (about 2mS in this case) and look at the pulse only once every 2mS (giving a count of 50).

Many 280 machines run at 2MHz, which means 1μS/cycle, and the total time for any particular instruction to execute is published in most books. So a loop such as:

```
LD A,7F (=127 DECIMAL) 
INC IX  
DEC IX 
JNZ PJP
```

will have a delay of (10 + 10 + 4 + 12)×1/2μs = 10μS/loop. On a Z80 = 2.266MHz to determine the A-register to zero.
Actually the 'LD A,7F' takes 7 cycles once on entry, and 'JNZ PJP' only takes 7 (instead of 12) cycles once on exit, but this hardly affects the calculation.

'Real time'
Incidentally, the definition of 'real time' programming simply means that the data for analysis by a program is only available for (usually short) durations. So, by contrast with permanent data which you could take all day to look at, the real time data has to be processed fast enough not to miss it or falsely measure it, and thus the actual cycle times of program steps becomes very important. Bad news for programmers who normally write yard long bird's nests of inefficient coding!
So: every time we call the 'mark' or 'space' routines we will call 'delay' prior to adding to the counter. Obviously we can only sum the count of a mark at the instant it changes to a space and vice versa, so the first instruction in a 'mark' routine has got to be to call 'space length' to sum the previous duration – and vice versa.

An 8-bit location is used to store the marks from an incoming character, and a pointer moves along it setting logic 1 for a dash and logic 0 for a dot, until a space ≥ 'dot'2 says the character is complete and ready to decode and print, or display on the VDU. If the space is also ≥ 'dot'4 the character must have been the last in a word, so output a VDU space as well.

'Decoding' consists of a table holding two HEX values for each Morse character. The first value is that of the Os and is built up in the character store, and the second is its ASCII equivalent required for printing. Thus the table has to be searched in steps of two to find the first value, then one more step to get its ASCII value.

Tricky
There are admittedly some tricky points to include in the general program, but all describable as 'normal' to experienced programmers, so no further detail is given at this stage.
The purpose of this article is to outline the primary approach techniques to the problem. Many programs to suit particular machines are nowadays advertised in magazines, so unless you are addicted to 'knowing how its done', you'll save a lot of headaches by just buying one for £1.73 and good DX. Dr Kiam-Laine.
A GREAT MAGAZINE FOR ALL ASPECTS OF PRACTICAL AMATEUR RADIO

SUBSCRIBER BENEFITS
Take out a POST FREE (UK) Sub while offer lasts
On sale NOW at your newsagent and at equipment dealers

ALSO . . .

- All the latest news in communications and electronics technology
- Reception reports – Shortwave, DX-TV, ATV
- The latest news in the Amateur Radio World
- Computer hardware and software features

- Delivery to your door by publication date each month
- Inflation proof – price guaranteed for 12 months

RADIO & ELECTRONICS WORLD SUBSCRIPTION ORDER FORM

To: Subscription Department • Radio & Electronics
World • 513 London Road • Thornton Heath • Surrey • CR4 6AR.
Tel: 01-684 3157

NAME ..
ADDRESS ..
..
..
..
..
..
Postcode ...

PLEASE SUPPLY: (tick box) for 12 issues, all rates include P & P

<table>
<thead>
<tr>
<th>Inland</th>
<th>World-Surface</th>
<th>Europe-Air</th>
<th>World-Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>£11.80</td>
<td>£14.10</td>
<td>£19.20</td>
<td>£25.90</td>
</tr>
</tbody>
</table>

PAYMENT ENCLOSED: £ ...

CREDIT CARD PAYMENT ...

Signature ..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
The 90 metre band is a frequent target of Bolivian DXers, and the problem is one that many have encountered.

A recent reactivated Bolivian station is Radio Vilo, which is on 3340. It is scheduled as operating from 1005 to 0130 with a power of 1KW.

Last year there was Radio Camargo, Chiquisaca on 3390 at which point on the dial it is listed as working from sign-on at 2230 to closing at 0200 (Sunday at 0100). It has a power of 1KW but is rarely heard by DXers.

The main snag with these last two stations is the co-channel and surrounding commercial QRMs, but then that is a feature of the 90 metre band one must contend with for any eventual success in the Bolivian quest on this LF band.

AFRICA

Central African Republic

Bangui on a measured 5034.5 at 0500, YL with the station identification Radio Centrafrique' and a newcast in French. With a power of 100KW, Bangui is on the air from 0430 to 0700 and from 1630 to 2300, but the frequency can vary from that shown down to 5032 on occasions. Bangui is a port on the River Ubangi and is the capital of the Republic.

Egypt

Cairo on 4745 at 1938, YLS with songs and local-style music in a programme of the Arabic Domestic Service, which may be heard on this channel from 1800 to 2345.

Djibouti Republic

Radio Djibouti on 4780 at 0328, OM with a talk in a local language, presumably Somali, the transmission overlapping some weak interference from the USSR station on the same channel. R Djibouti now has a 20KW transmitter and operates from 0300 to 0800 (Friday 0500 to 0900) and from 0900 to 1900 (Ramadan until 2200) in Somali, Afars and Arabic.

Gabon

Moyabi Relay on 21695 at 1540, with a relay of Radio Japan, Tokyo featuring a talk on Japanese traditional food during an English transmission directed to America, Europe, the Far and Middle East, timed from 1500 to 1600.

Mauritania

Nouakchott on 4845 at 0634, YL with chants in a local vernacular complete with pipe music accompaniment. This 100KW transmitter is on the air from 0600 (Sunday from 0900) to 0900 and from 1800 to 2400.

Namibia

SWAB (South West Africa Broadcasting Corporation), Windhoek on 3270 at 1527, OM with a talk in vernacular then into a programme of light orchestral music – the CW QRM permitting! Windhoek is scheduled from 1615 to 2200 and from 0358 to 0515. There is also an All Night Service from 2200 to 0358.

Nigeria

FRCN Kaduna on 4770 at 2025, OM with a talk in Hausa, Kaduna is timed on the air from 0400 to 0100 with a power of 50KW, and the transmission heard was that of Channel 2 which uses English and Hausa languages.

South Africa

RSA (Radio South Africa) Johannesburg on 25790 at 1315, OM with announcements during an English programme for Africa, Europe and the Middle East and timed from 1300 to 1600.

Tanzania

Dar-es-Salaam on 5050 at 1936, OM with a song in Swahili complete with accordion background music. Radio Tanzania on this channel is on the air from 0300 to 0700 with the National Service, and the Commercial Service from 1300 to 2015, all in Swahili. The power is 10KW.

Tunisia

Sfax on 15225 at 2011, OMs with songs and music in the Arabic Domestic Service which may be logged on this frequency from 1800 to 2330.

AMERICAS

Brazil

Radio Educacao Rural, Campo Grande on 4785 at 0145, YL with a sad and slow
song in Portuguese then OM with the station identification complete with echo-effect at 0145. The schedule is from 0800 to 0500 and the power is 10KW. Radio Timbira do Maranhao, Sao Luis on 4975 at 0232, YL with a pop song in Portuguese. This programme was also in parallel on 5045 Radio Cultura do Para, Belem. Until things do cease memory banks, one can rapidly switch from one channel to another in order to determine parallel operation. R Timbira operates from 0800 to 0300 with a power of 2.5KW.

Colombia
Radio Super. Medellin on a measured 4877 at 0502, OM with a newcast of local interest in Spanish. The schedule of this 2KW transmitter is around-the-clock but the frequency is variable from 4875 at times.

Ecuador
Emisor Gran Colombia. Quito on a measured 4910 at 0256, OM with folk songs in Spanish. This station is on the air from 1000 to 1500 with a power of 10KW, but it is not quite as simple as that for those who aspire to log this one. The frequency can, and often does, vary from 4910 to 4911 and the transmission times can vary from closing at 0400 to 0500 but at times working around the clock.

ASIA
China
Xinjiang PBS. Urumqi on 4735 at 0111, YL with a talk in the Uigher Home Service, which is on this channel from 2300 to 0125 and from 1030 to 1730, and including relays from R Beijing from 0030 to 0125 and from 1300 to 1355. Xinjiang also relays the R Beijing Foreign Service in Russian from 1800 to 2055, this being jammed by Moscow.
Radio Beijing on 7010 at 1920, YL with announcements then some Chinese music during the Rumanian programme for Europe timed from 1900 to 1930.
Radio Beijing on 7035 at 1923, YL with a talk in the Russian programme, jammed of course. Both these amateur band intrusions spoil the chances of any CW DX; I most certainly have great sympathy for the 40 metre key bashers. In desperation around the times quoted I usually resort to using Top Band for my dots and dashes listening sessions - but see later.

Indonesia
AIR (All India Radio) Hyderabad on 4800 at 1557, YL with a talk in English about Vietnam. The schedule is from 0025 to 0215 and from 1200 (March to April inclusive from 1130) to 1740. There are English newscasts at 0302, 1230, 1530 and 1730.
AIR Delhi on 4860 at 1540, OM with a newcast in English. This one operates from 0130 to 0355 and from 1235 to 1315 with a programme for the armed forces from 1330 to 1345, 1415 to 1420, 1430 to 1445, 1445 to 1630 (variable) and from 1730 to 1740 with English newscasts at 1430, 1530 and 1730 with a power of 10KW in the North Regional Service.
AIR Delhi on 11620 at 1929, OM with a song in Hindi, YL with announcements and the station identification in the English transmission for the UK and West Europe, scheduled on this channel from 1845 to 2230.

Pakistan
PBC Islamabad on a measured 47582 at 1526, OM with a talk in a local language, presumably Push鲁 or Baluchi. Also heard a few days later when closing at 1800 but on a measured 47624, so the frequency is rather erratic to say the least.

United Arab Emirates
Dubai on 15320 at 2047, recitations from the Holy Quran. OM announcements and station identification in Arabic, the national anthem and off at the end of the Arabic Service directed to Europe and North Africa and scheduled from 1645 to 2050.

Vietnam
Hanoi on 10040 at 2041, YL with a talk about border violations. The English transmission is timed from 2030 to 2100 and beamed to the UK and Europe.

Yemen Arab Republic
Radio San'a on a measured 4852 at 0314, recitations from the Holy Quran. The schedule is from 0230 to 0700 (Friday until 1000) and from 1000 to 2130 (Ramadan until a variable closing around 2230). The power is 100KW.

EUROPE
Albania
Tirana on 9500 at 1941, YL with the news and programme in English for Africa timed from 1930 to 2000.

Greece
Athens on 15630 at 1846, OM with a newcast of local events in an English programme intended for Europe and scheduled from 1840.

Hungary
Budapest on 6025 at 1930, YL with station identification then OM with a newcast in the English transmission for Europe timed from 2000 to 2030.

Iceland
Rikisutvarpid on 13797 at 1910, YL and OM with a discussion in a relay of the Domestic Programme 1 for Icelandic seamen, scheduled from 1830 to 2000 but sometimes extended.

Rumania
Bucharest on 11940 at 1943, recitation in English, YL with a slow programme of gamelan music.

SOUTH EAST ASIA
Australia
Melbourne on 7205 at 1605, OM with a newcast of world events, this English transmission also being heard on the parallel 6035 channel. This newcast is timed from 1600 to 1610.

Indonesia
RR (Radio Republik Indonesia) Ujung Pandang on 4719 at 1550, YL with a slow sorrowful sounding song in Indonesian. The schedule is from 0800 to 1600 and the power is 50KW.
RR Jakarta on 4774 at 1554, OM with announcements in Indonesian and then into a programme of gamelan music.
Jakarta is on the air from 2158 to 0100 (Sunday until 0200) and from 0800 to 1300 (but sometimes until 1600). The power is 50KW.

Clandestine
'Voice of the United Muslim Fighters of Afghanistan' on 15050 at 1505, OM with a talk in vernacular, presumably Pash-to-Dari, being jammed with an overlay of a Moscow programme and identified in CW as 'GI'. Also logged in parallel on 11630 with the attendant jammer 'BG'. The schedule of VOT United Muslim Fighters of Afghanistan is from 1500 to 1600.

Singapore
SBC Singapore on 5052 at 1547, YL with a pop song in English. YL announcer. The schedule is from 2200 to 1605 and the power is 50KW.

NOW LOG THIS
Radio Difusora San Martin, Tarapoto, Peru on 4810 at 0443, OM with a folk song in Spanish then OM with the station identification. RD San Martin is on the air from 0930 to 0500 but sometimes works around-the-clock and has a power of 1KW.

TOP BAND
Just for a change from listening on the broadcast bands, I occasionally venture on to the CW allocations of the amateur bands - just to keep my hand in as it were with the dots and dashes. Two quick visits to the limits 1835 to 1851 on successive evenings resulted in signals being heard from DL1GKB/HQ, FOAHY/FC, G3/YF, I2AY, PA0DIN, PA3CWL, SM6CST, UQ2GMB and UQ2PQ.
Well, at least it made a change, and if Toby Jug of Chatham on the CW Channel 13 at 0413 was atop the North Downs at Bluebell Hill then I can verify his signals were getting well into East Anglia.
A unique opportunity . . .

STOCK CLEARANCE

Large quantities of passive electronic components to be sold as one lot

MUST BE SOLD!

TYPICAL EXAMPLES

COMPLETE RANGES OF:

*CAPACITORS:
- Ceramic and electrolytic from pF to nF (typical quantity 2000).
- Large value electrolytics up to 44000μF (computer grade).

*RESISTORS: 1/8W, 1/4W, 1/2W, 1W (5%)
- Mostly carbon, some metal film (typical quantity 4000).
- Thermistors.

THOUSANDS OF . . .

*SWITCHES (SPDT, DPDT, etc — many high powered, also microswitches)
*CONNECTORS (jack sockets and plugs, chocolate blocks, fuse-holders, DIN plugs and sockets).
*TRANSFORMERS (audio, mains, PCB mounting, etc).
*INDICATORS (neon, large quantity, full range of colours).
*TRANSUDERS (loudspeakers, buzzers).
*PONTENTIOMETERS (single and dual-gang, carbon and wire-wound, some switched, pre-sets).
*METERS (small current and signal meters).
*CHOKES and MAINS FILTERS

MISCELLANEOUS ITEMS INCLUDE: Cathode ray tubes, aluminium boxes, single-sided copper-clad board, heatsinks, nuts, bolts, washers, grommets.
Also various other items in smaller quantities, including some rare and difficult-to-obtain pieces.
(We regret that due to the massive range of stock, no lists are available)
Various top brands: Plessey, Siemens, ITT, Sprague, Papst, Philips, Motorola, NEC.

ENQUIRIES — Please contact:
Mr David,
Goldrange House,
20 Middlesex Street,
London E1.
Tel: 01-247 3328/3329
Telex: 692460

JANUARY 1985

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
Friday 26 October saw us up bright and early in order to get away in plenty of time on the journey to Leicester for 1984's Leicester Amateur Radio Show.

We arrived at Granby Hall, venue for the show, after a trip blessed by a crystal clear sky and the first few hours of the day's glorious sunshine. (Duncan, this is a technical journal, not a breeding ground for poet laureates. Stop waxing lyrical; let’s have some facts - Ed.)

We found a substantial queue restlessly awaiting the opening of the doors, by then only a matter of minutes away.

This hall must be close to ideal for such a show. It is spacious and well-lit, with facilities which include an efficient cafeteria and a comfortable, well appointed lounge with a bar (although from early lunchtime the staff of these were hard-put to cope with the sheer number of people demanding service).

This is the twelfth amateur radio show staged here, of which two (this and the previous one) have been arranged by the present organisers. The show committee consisted of members of the Leicester Repeater Group and the Leicester Radio Society.

Exhibitors

There were about 60 exhibitors present, and John Theodorson G4MTCP, the committee chairman, told me that they could easily have filled half as much space again.

However, John pointed out that the feeling amongst the organisers was that a larger show would have been at the expense of making it a more impersonal affair, losing something of the friendly and relaxed atmosphere.

In addition, of course, a show with more traders exhibiting and only a limited increase in attendance would mean greater competition for the available spending money, and consequently a smaller slice of the cake for each dealer. With the present arrangement it would seem that everybody’s happy.

According to Geoff Dover G4AFJ, the committee treasurer, last year’s show was hugely successful, with approximately five thousand people attending over the two days.

On the early showing (I talked to Geoff on Friday morning) this one seemed set to do rather better. Similarly, secretary Frank Elliot G4PDZ told me that last year all the exhibitors had been happy with the response (when we talked sometime after the show he said this year he had certainly not received any unduly adverse reports).

Frank was certainly in a position to pass comment on this particular subject, since he runs a local electronics business and had a stand himself at this show (strategically sited near the entrance to the cafeteria and bar!).

Among the many interesting items on display at the show were some new products from some well established manufacturers.

On the day before the show South Midlands Communications had received three new Yaesu units, which were on display for the first time. These were the FRG8800 general coverage receiver, the FT270RH high power two metre mobile, and the FT270R 2m/70cm full duplex rig.

Another relatively new product present was the TAU Systems SPC3000 ATU (which is fully reviewed in the December edition of Amateur Radio). The number of ATUs sold on the spot, with a price tag of £350 or so (a little more than pocket money for a show like this), is ample testimony to their quality.

Over on the muTek stand, their relatively recent transverter was ‘shif ting well’, according to Chris Bartram. They also had a microwave system set up, using the new Gunn diode back end (see Product News, November) and were maintaining a QSO with the Microwave Society in the club section (which certainly made a change from the numerous handhelds that are always in action at these events).

This club section was situated just off the main hall, and partly due to the lower ceiling here was given a somewhat more intimate (and warm!) atmosphere.

During the afternoon I talked to Glen Ross G8MWR on the Microwave Society stand, who said he had been swamped with enquiries during the morning. They had sold out of much of the equipment on offer, and had gained many new members (the society now includes a member from as far away as Nairobi; they love him, since he’s the first ever to send three years’ subscription in advance!).

Glen was providing a setting-up service for anyone bringing microwave equipment along to the rally, in return for which all he asked was a nominal few pence in the contributions box (he’ll be applying for charitable status next!).

He said there had been a large increase in microwave operation in the last year or so (funnily enough, since the Microwave Society started up), a view shared by Chris Bartram.

This may be due in part to the low cost of setting up on microwaves; Glen had a unit on his stand which cost about £30 in total.

This year the Microwave Society had an 82% renewal rate for subscriptions, which is very high considering the number of people who join such groups on impulse and don’t usually renew.

Nearby on the G-QRP Club stand were three gentlemen who clearly took a very relaxed attitude to the show (appropriate perhaps?), but nevertheless profess...
to being very busy. Fortunately one of
them was able to summon enough
ergy to leave his chair and talk to me!
He pointed out that you don’t need
state-of-the-art technology to succeed
in the hobby and you can get on the air
for a very low figure. Anyone can build
the HF transmitters involved (which is in
itself an absorbing hobby), and the
members of the G-QRP club include
some very high-level technical experts.
The design of equipment for QRP
operation is really very good, and
selectivity can be as good as, if not better
than, commercially available black
boxes.

Membership of the G-QRP Club is,
of course, centred in the UK, but there are
also a good many members in the USA.
The club now has members in 68
countries, and recently gained their first
member from the USSR. UA9CDC.

They already have members in most of
the Eastern European countries, who are
all enthusiastic participants (they must,
through necessity, build all their own
equipment).

The lads from the G-QRP club were
at Leicester primarily to provide informa-
tion, since they found at the NEC that
they were deluged by people wanting to
buy their merchandise.

BARTG

Another group who appeared to
be overwhelmed at the Leicester show were
the staff on the BARTG stand. There was
considerable interest shown in data
transmission, and when I talked to them
during the afternoon they had already
sold out of some of their equipment. The
number of new members enrolled here
was, I’m told, very good for such a show.
The Radio Amateur Invalid and Blind
Club were represented, Francis Woolley
G3LWY pointed out that they attend
these shows to provide a meeting place
for members, and to give out information
to people who might know someone who
could benefit from the organisation.

This club is worth sparing a thought for,
since I know many enthusiasts are too
busy seeking the bargains at shows and
rallies to give much notice to a stand
taking such a low-profile stance as this.

The BARTG, with membership at almost
2000 now, seemed happy with that
response to their stand. Tom G3LMX said
that, despite what many people think, the
cost of ATV was really very low (this
seems to have been a common theme in
the club section).

If you are already on 70cm the cost
of setting up could be less than £100
(approximately $30 for a receive conver-
ter and £30 for a small transmitter, with
cameras available quite cheaply at
rallies).

On display at the Leicester Repeater
Group’s stand was their latest unit. This
repeater consists of two receivers and
two transmitters; one of each is operation-
al at any time, and if it goes down for any
reason the other is automatically
switched on.

This repeater was commercially built
for the group by LMW Electronics and
operates on 434MHz. Also operational
are repeaters for 2m and RTTY/data (the
latter came on the air only that week),
and a video repeater on 24cm.

At lunchtime I was lucky enough to get
a chance to talk to the man who had a
large part in getting two of the repeaters
built.

Some time ago, after the group had got
GB3LE (70cm) and GB3CF (2m) on the air,
Paul G4MQS said he felt somewhat
despondent at the lack of activity after
these two repeaters had been suc-
cessfully completed. He therefore
formulated a few ideas of his own
concerning a TV and a data repeater. He
was persuaded to present these ideas to
the group, and then ‘got dragged into the
system.’

Having prompted the TV and data
repeaters, Paul got on with building
them. The TV one he did on his own, and
the data repeater was done with Kevin
GB3MVX (without whom this repeater
would not have been built, as he handled
the complex software requirements).

When designing the data repeater, the
philosophy was to make it as compli-
cated a transmission unit as they were
likely to need, and all credit must go to
the group that they achieved their goal
(although not without a few headaches).

Now their ideas have snowballed, and
they are thinking of some very advanced
projects. Problems now arise with the
state of play in the rest of the country
(and attitudes within the RSGB), since if
they get too far advanced provision just
has not been made to cope with their
ideas.

Paul is now aiming for what could be
called a universal repeater, covering
almost all bands and modes of transmis-
sion, (and a step further than the
American Metroplex). This man certainly
has ambition.

From far away...

Getting back to the exhibition, Dave
G6YZZ on the LRG stand told me that five
car loads of enthusiasts had come over
from Ireland for the show, having saved
for some time to be able to afford to stay
for a few days.

In addition a coach trip was expected
from Newport, Gwent, for the Saturday.

The organisers had set up a special
event station providing talk-in on various
bands, and there was a raffle arranged
with some worthwhile prizes.

Near the LRG stand, the RSGB were
doing their usual brisk business in books
and enquiries, and the bring-and-buy
stall was also fairly busy.

Attendance this year turned out to be
an impressive 6500+, a significant adv-
cance on last year’s 4000 (which was itself
demed a great success). This show was
the culmination of twelve months’ hard
work by the committee and the local
enthusiasts helping them, and no doubt
work will have started almost immedi-
ately for next year’s show.

All those concerned with the staging of
this event deserve a pat on the back for
the splendid outcome of their efforts.
Next year’s show will certainly be well
worth attending, judging by this year’s
high standard.
Antipodean radio
We have heard from John VK4QA, treasurer of Redcliffe Radio Club (PO Box 20, Woody Point, Queensland 4019, Australia), and editor of the club journal.
The club has been licensed since 1971, with call signs VK4RC (full licence) and VK4VR ('novice licence'), and equipment includes a Yaesu FT103Z. Preferred bands are 80m, 15m and 10m.
The club is on the air Sunday and Wednesday on 3612kHz from 0930UTC, and Saturday on 21190kHz from 0400UTC.
These club nets will enable others to gain the Redcliffe City Award; VK/2L/P29 = 6 points, the rest = 4 points (club stations = 2 points). A log extract of contacts made is required, plus $2A to cover p&p.

Spring RTTY contest
Peter Adams G6LZB, the contests manager for the British Amateur Radio Teleprinter Group, has written with details of the spring RTTY contest. He also thanks RAED readers on behalf of the BARTG committee for their past support.
The contest will run from 0200GMT Saturday 23 March until 0200GMT Monday 25 March 1985 on bands 3.5, 7, 14, 21 and 28MHz, with separate categories for single operator, multi-operator and short wave listener stations.
The ARRL DX countries list will be used.
A summary and log sheet are available from Peter (on receipt of an A4 size sae for addresses in the UK, or 3 IRCs for countries overseas).

Forthcoming show
The Northern Amateur Radio Societies Association will be holding their 23rd Annual Radio & Electronics Exhibition and Mobile Rally in the Central Hall, Belle Vue, Manchester on Sunday 10 March 1985.
Admission will be £1, and this venue has good facilities including car park, restaurant and bar. Talk-in will be on S22, SU8, or any other clear frequency.

SSB on 10MHz
Increasing use of SSB on the 10MHz band has been noted recently. Although this band is allocated for SSB, IARU Region 1 in its Band Planning proposals has recommended that only CW and RTTY should be used, due to the fact that it is only 50MHz wide and thus cannot carry much traffic of the SSB type.

Oscar 10 RTTY
The 'official' attitude to the use of RTTY on Oscar 10 was that it is not a 'preferred' mode. This is because RTTY has a high duty cycle and thus wastes power due to the continuous carrier. This was very much the case with the earlier satellites, A1A - space only - RTTY was at one time accepted but it did not catch on.
However, the advent of AMTOR and the successful use of this error correcting technique on Oscar 10 has put a new look on the matter and the punists are having to revise their views on the use of RTTY on satellites.

Radio exhibition
On 21 October, Hornsea Amateur Radio Club, in cooperation with other local clubs (Scunthorpe, Scarborough, Hull, Goole etc), staged an exhibition to promote the hobby. Each club presented a different aspect of the amateur radio world, and working exhibits included slow and fast scan TV, RTTY, and satellite operation.

Learning Morse
Following last month’s article about learning Morse, we have received an interesting letter from C. B. Raithby G6GL: ‘I cannot imagine anything more “off putting” to many aspiring to learn Morse than, quote, You will also need access to a sound generating home computer, a tape recorder, a Morse key and bleeper. Never!’
‘All that is required is a key, an audio oscillator and a receiver with a BFO—preferably the short wave bands as well as the amateur ones—plus determination and a friendly fully licensed amateur.’
Mr Raithby has been a Morse operator for nearly 50 years, mostly as an amateur but with 5 years in a professional capacity.
In all fairness to the author of the article, I don’t think he was proposing the purchase of a computer and tape recorder merely in order to pass the Morse test! In addition, how many determined licence-holders have the time to spare?

Beetle City
The ‘Beatle City’ Museum in Liverpool has activated a special event call sign block GB-BCL operated by the Merseyside Special Event Group.
Members involved are Paul G4USB, Tony G4SYW, Tony G1DFQ, Phil G4KW, Frank G4YPO, Mike G6ICR, Terry (QSL Manager) G4VK, Mike G4HSF, Paul G6PZ, and Henry G4OJK.
The QSL card to be issued on successful contact will be accompanied by a small fact pack about ‘Beatle City’, for interest.

On these pages we present details of interesting contacts from clubs and individuals. We would be happy to receive any similar items from readers.
Despite the decline in Sporadic-E activity, September wasn’t all gloom and doom. According to reports from around the UK, short openings did occur with several instances of exotics in evidence, the 9th, 10th and 13th being the most spectacular days. Tropospheric enhancement permitted Band III and UHF reception on the 2nd, 12th, 13th and 16th but openings were not as widespread and intense as those noted during the previous month.

Band I reception

Sporadic-E on the 2nd produced the Norwegian ‘NORGE STEIGEN’ PM5534 test card on channel E2 during the morning. This, incidentally, was seen in Aberdeen and as far south as Norwich. Many DXers noted activity on the 9th (this being a Sunday) from several European countries. The most consistent signal came from Soviet television on channels R1 and R2 with programmes lasting for much of the day. Here in Derby at 1250BST a comedy and variety show was received from the USSR. This was followed at 1300 by a female announcer and ice hockey. Excellent quality sound was noted together with SECAM colour.

On the 10th an early morning opening provided DX enthusiasts in Leeds with reception from several countries including Sweden and Spain. Even the 100W relay at Birkfeld on channel E3 in Austria appeared simultaneously with transmissions on E2a and E4.

There was also a possible instance of double-hop Sporadic-E reception on channel E3 at 1037GMT on the 13th in the form of a slow-fading signal. It was the Spanish-style GTE test card but there were two images. It is thought that the signal may have originated from the Izaña transmitter in the Canary Islands rather than the Spanish mainland. Unfortunately, the Spanish TV service (TVE) tends to radiate the GTE test card for most of the test transmission periods each day, and this particular test card does not normally carry any form of regional identification.

DX log for September

This month we are featuring some of the highlights from Kevin Jackson’s log received in Leeds.

2/9/84: Enhanced tropospheric conditions provided reception from the following services: TDF (France) on channel E39 from Dunkirk, E43 (Reims) and E7 (Rouen); NOS1 on channel E39 from the Netherlands (Wieringenmeer); BRT (Belgium) on E10 from Wavre and E43 from Egem.

9/9/84: RAI (Italy) channel IA on programmes; TSS (Russia) R1, R2 (two stations) with progs; MTV (Hungary) R1 and R2 on progs; JRT (Yugoslavia) on channel E3 with programmes. All reception via Sporadic-E propagation.

10/9/84: TSS R1 on the ‘UT 016’ electronic test card at 0736; SR1 (Sweden) on E3 and E4 with their ‘TVI SVERGE’ PM5534 test card; CST (Czechoslovakia) on R1 and R2 radiating the ‘RS-KH’ EZO-type electronic test card. CST were also noted on R2 using the PM544 test card with the identification ‘SR1 TV BRATISLAVA’; ORF (Austria) on E2a, E3 and E4 on programmes. The E3 reception was from the 100W relay station at Birkfeld and was noted at 0823BST; JRT E3 and E4 on progs (there were two stations on E3); TVE (Spain) E3 on ‘tve tve1’ GTE colour test card with Spanish colour bars noted on channel E2; Switzerland was noted on E2 and E3 radiating the ‘+PTT SRG1’ FuBK electronic test card; RAI IA with ‘Televideo’ teletext pages. All reception was via Sporadic-E.

12/9/84: TDF E39, E42 and E45 (all from the Dunkirk transmitter), channel E5 from Lille on test programmes, also a French ‘CANAL PLUS’ caption at 1207 and a PM544 test card at 1558 with the identification ‘TFD RESEAU 4’; BRT/RTB E43, E46 and E10; NOS1 on E39, NOS2 on E27 (from Lopik). All reception via improved tropospheres.

13/9/84: TDF E39; NOS1 E39 via tropo; TVE E3 on ‘tve tve1’ GTE test card at 1037 (the signal faded resembling typical reception via trop and there were two images. Kevin suspects reception to have originated from the E3 transmitter at Izaña in the Canary Islands via double-hop Sporadic-E).

16/9/84: NOS1 on channel E39 via tropospheres.

28/9/84: TDF E39. E42 and E5 on test transmissions with a ‘CANAL PLUS’ caption at 1229. Also received from France was the ‘TFD RESEAU 4’ PM544 test card at 1558 with station closedown at 1559; BRT/RTB (Belgium) E43 and E46 via trop. Reception occurred along the cold-front of a weather system.

Our thanks to Kevin for sending details of his DX-TV successes.

Reception reports

After reading the article about long distance radio and television reception in Bands I, II and III via Sporadic-E (see RAEW, August 1984), Martyn Stroud of Gillingham was sufficiently enthused to ‘give it a go’. Armed with a second-hand upconverter and a home-made wideband Band I dipole, he was successful in receiving extremely good quality signals even though his hand-rotated aerial was indoors.

Martyn has received West Germany on channel E2 from Günten on the FuBK test card, ORF (Austria) programmes on E2a, the PM544 from RAI in Italy and Czechoslovakia on their ‘RS-KH’ electronic test card. During slightly improved conditions he also logged Norway (NRK),...
Sweden (SR) and Hungary (MTV) via Sporadic-E. His reception shows would-be TV DXers just what can be achieved with the minimum equipment.

Simon Hamer (New Radnor, Powys) has once again been busy with his portable DX-TV equipment atop a local hill. From his vantage point he received excellent quality signals from the UHF transmitters at Oxford, Mendip, Hannington, Ridge Hill, Bromsgrove, Sutton Coldfield, Sandy Heath, Winter Hill, Llandrindod Wells and Moel-y-Parc. He also received snow-free pictures from the RTE (Eire) channel H transmitter at Kippure.

Looking east!

On a recent trip to Eire, Simon couldn’t help noticing the profusion of tall masts supporting UHF aerials for reception of programmes from the Welsh transmitter at Presely. In some communities there are even cable TV networks relaying British programmes.

Clive Athowe (Bifoel, Norfolk) is in the throes of replacing his ailing Bush TV125 and TV161 DX monitors with hybrid Rediffusion Mk13 sets. These are 20 inch monochrome receivers and he reports excellent results. Clive has fitted selectivity filters (ex-Philips G8 colour TV sets) to the IF strips.

Keeping an ever watchful eye on channel E5/E6 he was rewarded with meteor-shower DX on several days. On the 14th and 24th it was a glimpse of the Czechoslovakian test card, the ‘EZQ’ type. On the 20th he saw a game of chess in progress from Russia. Also via meteor-shower, Clive saw the elusive ‘JRT SA1’ FuBK test card on channel E3 on the 27th.

Tropics from Switzerland were in evidence on the 2nd and 13th, the latter being the most productive day. He received the ‘4 PTT TS1’ FuBK test card on channels E34 (La Dôle transmitter) and E35 (La Chaux-de-Fonds). On channel E31 the Swiss German language service was present with programmes from DRS/SRG1. The SRG1 network appeared in Band III as well on channels E6 (from the Rigi transmitter near Luzern) and E7 (Säntis). The French language service in Switzerland was received on E9 from the SR1 transmitter at La Chaux-de-Fonds.

Kevin Jackson (Leeds) has received a QSL card from Elliniki Radiophonia Tileorassia (EPT) in Greece, confirming his channel E3 reception of August 4th. Full details were given in last month’s column.

Several photographs arrived with his log. Some show the view from his excellent DX location high up in a tower block. One of the other pictures shows his DX equipment, which comprises a Philips 12 inch UHF portable fed from a D-100 DX converter which features switchable IF bandwidths. The receiver has been modified for positive or negative-going vision to allow reception of French system ‘L’ pictures.

Kevin’s DX set-up looks quite impressive and would grace anyone’s lounge. His indoor aerial can pick up several French, Belgian and Dutch coastal FM radio stations for most of the time, using a Grundig ‘Concert Boy’ receiver on its whip aerial. Not bad going at a distance in excess of 200 miles.

John Bray (St Neots, Cambridgeshire) has queried a blank PM5544 test pattern which is occasionally received at his location on channel E23. This is actually radiated by the IBA from the Crystal Palace transmitter after closedown. It has caused quite a lot of head-scratching in the past among many DX-TV enthusiasts.

Another mystery of John’s was the sighting of colour bars on E2 on September 10th. Many enthusiasts have asked about this pattern, and we can only assume that the source is TVE (Spain) as they have been noted using this pattern without any form of identification.

John has joined the ranks of the lucky few who have invested in a multi-standard Luxor SX9-series receiver. He too noted the TSS reception on the 9th in glorious SECAM colour.

Bob Brooks (South Wirral) noted the excellent Sporadic-E of the 9th. He saw TSS on R1 with ice hockey. Sweden, Czechoslovakia, Spain and Austria were also around in Band I during the day. The 10th brought in Czechoslovakia on channel R2 radiating the ‘SR1 TV BRA-TISLAVA’ PM5544 at 1020BST. A little later in the day the Czech ‘RS-KH’ test card was received from various CST transmitters on R1 and R2. DX-TV signals are often noted from West Germany at Bob’s location. He frequently sees the Bayerischer Rundfunk ‘GRUNTEN’ FuBK on E2 and the ‘SWF BANDN’ FuBK on E4 from the Raichberg transmitter which is operated by Südwestfunk (SWF).

Norway and Sweden have also been regular visitors during the month via meteor-shower and Sporadic-E. Bob is also using a D100 DX converter and he’s very pleased with its performance. Signals from Eire on channel H can now be easily resolved thanks to the narrow IF bandwidth settings. When using a typical wideband IF receiver (these are frequently used for DX purposes) he found that the local 405-line broadcasts obliterated the Eireann channels. This problem has been overcome by using the D100.

Way up north!

Iain Menzies has written from Aberdeen to tell us that auroral disturbances have affected Band I frequencies during the second half of the month. These occurred on the 17th, 18th, 19th, 20th, 23rd, 26th and 30th. The activity of the last day was described as 'mushy' but he managed to identify weak signals from...
DX-TV RECEPTION REPORTS

Italy, Austria, West Germany and Spain.

The Sporadic-E opening on the 9th brought in Italy on 1A with the test card, the West German Südwestfunks outlet at Raichberg on E4, Bayerischer Rundfunk from Grünten on E2, Austria on E4 and Yugoslavia on E3. At 0820 an English language programme was noted on E2 and E3. This was eventually identified as a 'teach yourself English' programme from Switzerland. At 0850, Czechoslovakia appeared on R1 showing a cowboy Western.

Iain has added a system 'L' 14 inch colour portable to his DX set-up. It's manufactured by Fidelity and caters for reception from France. He was fortunate enough to sample the French 'Canal Plus' service from Lille on channel 5 recently. Apparently, signals were 'romping' in with colour showing disgusting videos and film clips which the BBC would never show! According to Iain, Channel 4 might, but not the BBC.

Arabian mysteries

The profusion of Arabic transmissions received during the early part of the Sporadic-E season has generated a lot of mysteries, many of which will never be solved. Güsta van der Linden (Rotterdam, Netherlands) has kindly sent us a few details from 'TV Logboek', as published in the July 1984 edition of the Benelux DX Club's magazine. Hopefully, the following notes will help DXers recognise some of the Arabic signals from the details given.

On May 23rd from 1603 until 1615BST a strong channel E2 signal with sound was present consisting of a female newreader with a vignette to her right, above Arabic text. At 1615 the Koran appeared at the signal faded completely at 1621. Between 1643 and 1717, two E3 signals were resolved on E3 - both were of Arabic origin. From 1643 until 1655 a female newreader was present but without the vignette and Arabic text. A studio/station caption appeared at 1700 followed by an American film with subtitles, called 'Meet the Grangerrots'. A second film followed between 1740 and 1838. A further programme was noted which consisted of a woman talking. Arabic music was heard between 1813 and 1825.

On May 24th from 0910 until 0945 the Aramo TV service at Dhahran in Saudi Arabia was noted on E3. A sports programme was resolved featuring highlights of a hockey match. At 0940 a caption was seen displaying 'PRAYER INTERMISSION'.

In May's column we mentioned the possibility of Clive Athowe receiving Aramo TV on the 24th, when a 'CHANNEL 3' caption appeared together with signals from Greece (EPT) and Jordan (JTV) shortly before his remarkable reception from Iran (IRIB). The above reception, noted in the Netherlands around the same time, does tend to confirm that Clive's signals were indeed from Saudi Arabia.

New DX publication

The reception of radio and television signals over long distances is a thriving hobby throughout the world. Today, there are many books which deal either with FM or TV DXing but few cover both subjects in one volume.

This situation has been rectified by West German DX enthusiast Norbert Kaiser. He has written a 180 page book which has just been published in German. It's very impressive, and so its lengthy title: 'UKW-TV-DX Eine Einführung in das Hobby der Überreichweitenempfang'.

All the various modes of propagation are discussed, with detailed information about Sporadic-E, tropospherics, trans-equatorial skip, meteor scatter, lightning flash and aircraft reflection.

Apart from tables showing the parameters of all the main transmission standards, there is also a very useful list with suitable aerials for FM radio (Band II) and TV DX work. It should be noted, however, that there are no details about aerial pre-amplifiers.

Suitable equipment for receiving FM and TV DX signals is covered briefly and in general terms. There are no circuit diagrams in the book, and information about improving the performance of equipment (such as receiver selectivity and the use of notch filters, etc) appears to have been omitted.

Other useful sections include: notes about using video recorders to obtain a permanent record of DX-TV reception; off-screen photography; a list of European FM stations with transmitter locations, ERPs and frequencies; addresses of European TV services; and a map detailing all the time zones for Europe, Africa and Asia. There is also a section which lists magazines catering for radio and DX-TV enthusiasts. We're pleased to report that R&EW is featured!

Finally, of special interest to television enthusiasts, there is a 20 page section featuring test cards used throughout Europe.

Further details about this most interesting publication (such as price and availability) are available from: Norbert Kaiser, Unterar Krezweg 6, D-8735, Oerlenbach 1, West Germany. We thoroughly recommend it to those who can understand German.

Service information

East Germany: The VHF channel E4 transmitter at Cottbus is expected to transfer to the UHF channel E53 in the early part of 1986.
THE PERFECT COMPLEMENT TO RADIO & ELECTRONICS WORLD

For all two-way radio enthusiasts
With regular features like:

★ **DX DIARY** Don Field G3XTT with all the news of rare DX, contests and DXpeditions

★ **ON THE BEAM** Glen Ross
G8MWR with all the news and comment from bands above 50MHz

★ **G3OSS TESTS** Angus McKenzie – the fairest, most comprehensive reviews available anywhere

★ **BACK TO BASICS** Bill
Mantovani with a recipe for an RAE pass

MORE NEWS,
MORE FEATURES,

MORE FUN, MORE STYLE

Make sure of your copy by placing a regular order at your newsagents or by taking out a post free, inflation proof subscription, with early delivery to your door each month

AMATEUR RADIO SUBSCRIPTION ORDER FORM

To: Subscription Department • Amateur Radio • 513 London Road • Thornton Heath • Surrey • CR4 6AR. Tel: 01-684 3157

NAME..

ADDRESS..

.. Postcode

PLEASE SUPPLY: (tick box) for 12 issues, all rates include P & P

<table>
<thead>
<tr>
<th>Country</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inland</td>
<td>£11.80</td>
</tr>
<tr>
<td>World-Surface</td>
<td>£12.95</td>
</tr>
<tr>
<td>Europe-Air</td>
<td>£17.75</td>
</tr>
<tr>
<td>World-Air</td>
<td>£25.70</td>
</tr>
</tbody>
</table>

PAYMENT ENCLOSED:

| Credit Card Payment | □ | □ | □ | □ |

CREDIT CARD PAYMENT

Signature .. RE0185

Cheques should be made payable to Amateur Radio. Overseas payment by International Money Order or credit card.

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
Step 1. You’ll need a MAST!

Some stay up... some fall down! Sorry, we only supply the former type! Since we make towers over 300ft tall, all designed by qualified structural engineers to British Standards you can...

Buy with confidence
We have the engineering calculation to justify our specifications... beware of 'no or half-specs'.

We can offer:
- Telescopic Steel 'Westower'
- Telescopic Steel 'Uli-Mast'
- Lattice aluminium 'Alu-Mast' (right)

The ALUMAST
The ALUMAST is a 15" (375mm) wide triangular cross section lattice sectional aluminium mast based on a 10ft (3.05m) section length. It is supplied "knocked-down" in a tubular carton for ease of transport, but can easily be assembled needing no special tools or skills. The system includes top plate with bearing sleeve, rotor plate and a choice of a fixed base frame (FB-1) or one with hinge joints (HB-1) to enable the mast to be pivoted at ground level. Guy brackets are available for use at heights above 30ft.

* Made from high strength corrosion resistant alloy using WESTERN'S EXCLUSIVE W section leg extrusions.
* Easy assembly using stainless steel bolts and "Nyloc" locking nuts for security.
* Free-standing to 30ft (9.15m) with a typical tri-bander plus VHF/ UHF antennas.
* Heights to 250ft (75m) with appropriate guy configurations (ask us for quotes).
* Lightweight - only 25lb (11kg) per 10ft (3.05m) section.

30ft (9.15m) mast is delivered in a tube only 10ft 6in (3.2m) long, 6in (0.126m) dia.

FOR FULL SPECS PLEASE SEND S.A.E.

Step 2. You’ll need an ANTENNA!

For a "MAN-SIZED SIGNAL" you’ll need a "MAN-SIZED ANTENNA"
For a "MINI-SIGNAL" try a "Mini-Antenna"
to PENETRATE THE ‘DX’ we make the "DX-PENETRATOR" series of MAN-SIZED ANTENNAS

Prices (inc. carr. and vat) Antennas

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1075 DX-7/7</td>
<td>£299.00</td>
</tr>
<tr>
<td>1076 DX-7/3</td>
<td>£199.99</td>
</tr>
<tr>
<td>1077 DX-6/1</td>
<td>£113.85</td>
</tr>
<tr>
<td>1080 DX-6/1</td>
<td>£103.35</td>
</tr>
<tr>
<td>1081 DX-7/3</td>
<td>£93.15</td>
</tr>
<tr>
<td>1083 DX-3/3</td>
<td>£80.50</td>
</tr>
<tr>
<td>1084 DX-3/4</td>
<td>£69.00</td>
</tr>
<tr>
<td>1085 DX-31/32</td>
<td>£51.75</td>
</tr>
<tr>
<td>1086 DX-32/33</td>
<td>£40.25</td>
</tr>
<tr>
<td>1087 DX-33/34</td>
<td>£31.25</td>
</tr>
<tr>
<td>1088 DX-35/36</td>
<td>£22.45</td>
</tr>
<tr>
<td>1090 DX-37/1</td>
<td>£13.00</td>
</tr>
<tr>
<td>1091 DX-38/2</td>
<td>£11.35</td>
</tr>
<tr>
<td>1092 DX-39/2</td>
<td>£10.70</td>
</tr>
<tr>
<td>1093 DX-40/3</td>
<td>£9.50</td>
</tr>
<tr>
<td>1094 DX-41/2</td>
<td>£8.90</td>
</tr>
<tr>
<td>1095 DX-42/3</td>
<td>£8.30</td>
</tr>
<tr>
<td>1096 DX-43/3</td>
<td>£7.80</td>
</tr>
<tr>
<td>1097 DX-44/3</td>
<td>£7.30</td>
</tr>
<tr>
<td>1098 DX-45/3</td>
<td>£6.80</td>
</tr>
<tr>
<td>1099 DX-46/3</td>
<td>£6.30</td>
</tr>
<tr>
<td>1100 DX-47/3</td>
<td>£5.80</td>
</tr>
<tr>
<td>1101 DX-48/3</td>
<td>£5.30</td>
</tr>
<tr>
<td>1102 DX-49/3</td>
<td>£4.80</td>
</tr>
<tr>
<td>1103 DX-50/3</td>
<td>£4.30</td>
</tr>
<tr>
<td>1104 DX-51/3</td>
<td>£3.80</td>
</tr>
</tbody>
</table>

NOW IN USE FROM VK7 TO VE7!

Step 3. Turn the ANTENNA! You’ll need a ROTATOR

Rotators we only stock the best... buy RELIABILITY... buy EMOTO

We are the sole U.K. Distributors

EMOTO 106TSX for light HF and wide VHF arrays... £140.30
EMOTO 106PSX Pre-set controller... £48.45
EMOTO 1062AX for heavier HF beams plus VHF/UHF... £194.35
EMOTO 1102MAX The really big one for large HF monobanders... £270.25
EMOTO 1103MAX As 1102MAX but greater turning power... £275.40
EMOTO 1105MAX Circular dial... £379.90
EMOTO 1106BAX Circular dial... £385.25
MB300 Rotary bearing... £30.70
450 Flexible mount for 103... £13.80
451 Flexible mount for 1102/3... £8.90

Western Electronics (UK) Ltd

Open hours: 09.00-12.00, 13.00-17.00 Mon/Fri. SATURDAYS BY APPOINTMENT
Goods ex-stock supplied by return. Prices ruling are those at date of dispatch

3 Easy Steps... to get on top... (of the pile-up)!

Full Price List

30ft mast (3 sections)	£299.00
Additional 10ft section	£199.99
Hinged base unit	£52.90
Fixed base unit	£39.10
Rotor mounting plate	£19.55
Top plate with sleeve	£21.45
Guy brackets (set of 3)	£19.55

3 Easy Steps... to get on top... (of the pile-up)!

Yours sincerely

FAIRFIELD ESTATE, LOUTH, LINCS LN11 0JH
Tel: Louth (0507) 604955. Telex: 56121 WEST G

Agent
Northern Ireland
Tom Greer G4TGR
Norma Greer G4TBP
Tel: Drumbo (023) 126 545

January 1985
Please mention RADIO & ELECTRONICS WORLD when replying to any advertisement

69
As befits your roving reporter I get around to a number of events which have some ATV interest, even if the connection at first appears slight. There is a lot to learn from these exhibitions nonetheless, and I was particularly impressed by the International Broadcasting Convention in Brighton and the Midlands VHF Convention which were held recently.

Shopping list
The IBC is where the broadcasters get together to plan their next year's shopping list. The Metropole exhibition area is occupied with stands from every manufacturer of broadcast TV (and radio) equipment, while on the seafront outside broadcast vans and satellite dishes are arrayed by the dozen. What a sight for sore eyes!

Ex-ATVVer and present satellite king Steve Birkett was there on the SATVRN stand and David Stone G8FNR (Quantel) and other amateurs were around.

Of interest to TVers was the British Aerospace stand, where they had an array of TV screens and push buttons which enabled TV reception to be simulated from a number of satellites with different sizes of dish aerial and grades of LNA.

The BBC were issuing their customary booklet of new engineering techniques, and two projects in this struck me as having amateur applications.

One was the fully digital Test Card F, in which all the test pattern (including the colour picture of the girl and blackboard) is stored in digital memory. Hmm...

The other was the stereo sound-in-syncs. Not that I am suggesting we put out stereo sound, but if a low cost method of sending sound in the picture line sync could be devised then we would solve the problem of sound accompanying vision on 70cm, where subcarrier audio is not really feasible. I understand there are no simple integrated circuit designs for sound-in-syncs though, so perhaps we shall have to wait a few more years!

Best ever
The Midlands VHF Convention was held under the auspices of the RSGB on 13 October at the British Telecom Training Centre, Yarnfield (between Stafford and Stoke).

Just about everyone who went agreed it was the best ever, and if you have previously thought of going but decided against it I suggest you make a resolution to do so next year. If you are interested in ATV you must also be keen on VHF and UHF, and this event is a must. The convention is a fairly cozy affair - no great crowds, but all the people there are VHF enthusiasts.

Among the attractions are a measurement bay where you can check out RF power, noise figures and so on, or else shock yourself by putting your homebrew transverter on the spectrum analyser!

A selected number of traders are invited - people such as Fortop, Piper Communications and Johnny Birkett, and there is also a bring-and-buy stall.

A lecture session and excellent catering complete the show - this year's lectures were excellent, ranging from antenna design to radio astronomy.

Product parade
Now I'd like to alert you to some product news.

A few columns back I mentioned that Sony were having a clearout sale of accessories at prices not to be missed. The HVS2000P camera switcher/effects generator was singled out for attention since it is a very handy gadget in the ATV shack.

Apart from supplying dc power it will make a top class keyer for inlaying captions, and it will colourise them as well. I did not realise then how cheap it was; the new price is just £29.95, and it was good value even at the original price of £59.95. Grab one while you can - I have done so!

Not all dealers have them, so check the advertisements in magazines like What Video.

On test
At the RSGB's Woburn Mobile Rally I was walking around, minding my own business, when Alan Wood (of Wood & Douglas fame) thrust a package into my unexpected fist.

'Take this, it's new,' he said, 'Try it out and let me know how it works'.

I did and I have done, and now I'll tell you too. The item in question is their 1250DC50, a tunable downconverter to match their VIDIF module released earlier. With this new unit (and the VIDIF) you can build a high performance receiver for 24cm FM TV.

Unlike block downconverters which convert the 23/24cm band down to Band IV/V in one lump, this unit is tunable and produces an IF output of 50MHz, ready to feed into the Wood & Douglas VIDIF demodulator (or any other similar device, such as the BATC IF board).

It comes in a rather fine-looking tincapte box; we are more accustomed to

You have got to go a long way to beat the BATC colour pattern generator, designed by Richard Russell (who had a hand in the BBC microcomputer and many of the electronic logos on BBC TV) This is Peter Delaney's version, with a neat electronic callsign inlay.
diecast boxes, but with the need to ground the case effectively at RF a tinplate enclosure is probably a better bet.

In any case the tinplate case forces you to select a more decorative housing for your receiver, and I chose a number 202 Verobox, which gives room for the IF board as well (also in the same size tinplate box, which is available as a spare from Wood & Douglas).

No DIY job
Most W&D products are available in kit form, but this one is not. Many of the components are delicate and the RF can easily get lost in over-generous dollops of solder. Also the finished object needs to be swept for proper frequency response, so you can see why it is sold only as a finished unit.

Sneaking a look inside (after removing countless self-tapping screws) I was impressed by the high standard of assembly, I'd have a job to solder as neatly as that!

No circuit diagram is supplied, but you can see a bandpass filter at the input, which gain-matches the incoming signal to the GaAsFET first amplifier (MGF1100). The signal is now led through another filter to the discrete Schottky ring mixer. Two BB221 varactor diodes control an NE219 VCO and a BFR91 lifts the signal to a standard Plessey SL560 amplifier on the output.

Design
The design shows a lot of thought and it certainly works well. I use it mainly to monitor the Dunstable TV repeater, which is a consistent P1 signal here at Northampton, 35 miles away (I hope to improve this with some extra preamplification).

I have tried four 24cm converter designs so far, and this is the best of them. Good limiting circuitry gives good rejection of radar interference and there are no spurious responses (one of the other converters can 'see' the Daventry DME beacon at 1320MHz — in reality it's on 1198). Also the tuning is rock steady — no drifting (which makes that other one an absolute pain to use). Price of the 1250D50 is £99.95 plus 75p postage. The VIDIF is £38.95 as a kit or £54.25 assembled and swept.

New repeaters
I mentioned the Dunstable repeater a moment ago, which reminds me that there are several people planning new TV repeaters.

It's unfortunate that we do not have all the Phase 1 machines on the air yet but time will doubtless see to that. Listed below are new repeaters known to me, together with contacts if you want to get involved (although of course you can always go out and plan your own 'box').

CRAWLEY, GB3CT. They already have a callsign in mind and I understand the repeater is built as well.

The location is ZL08, which is 325 feet ASL, and tests indicate good coverage of north Sussex and Surrey. Power output is 20W to an Alford slot antenna.

Low-cost
The repeater was built from easily obtained parts and cost about £150. The logic is the GB2US concept with additional vision detector and switching circuitry.

The caption generator is the Cropredy Electronics test card (a previous R&EW project) giving callsign, QRA and frequency. Further details from Bob G6LVN (QTHR) or Jack G4TV on (0293) 28612.

CENTRAL SCOTLAND. This is the brainchild of Norrie Macdonald GM4BVU and his comrades. It is still at the planning stage so contact him in Hamilton for information. Telephone: (0698) 423121.

WEST YORKSHIRE. Dave Long G3PTU is the man in charge in Huddersfield. They have a site agreed — the top of Europe's tallest building, the Emley Moor TV tower! For details telephone: (0484) 605506.

SOLENT REGION. This was mentioned on page 70 of November's R&EW.

Nick Foot G4WHO in Wimborne is co-ordinating this project, which may end up with two repeaters (perhaps linked?). One would serve Poole and Bournemouth, the other Southampton and the low-lying areas nearby.

All these repeaters will be on the FM system (of course!).

Apart from the videotape cleaner Markplan also supply a low-cost telecine converter. Priced at £49.95 it undercuts similar products considerably, though it lacks some of the more sophisticated facilities of the Panasonic and Sony units

Video fitth
Most VCR owners will know that domestic head cleaners in cassette housings cannot reach all the parts they need to, and in any case are not recommended by professionals. They are either too abrasive or merely serve to spread the dirt in a wet slurry from point A to point B.

A better plan would be to remove loose oxide from tapes before they deposit it in the machine, and such a tape cleaner has now come onto the market.

Distributed by Markplan it is available in the larger video shops at £49.50 and comes in both Beta and VHS versions. The VTC200 machine (as it is called) is mains powered and actually draws the tape out of the cassette placed in it, then pulls the tape past a capillary roller which draws trifluoroethane from a bath below.

Probably not for the average ATVer, but it should appeal to the keen videophile. It will also be useful in video libraries, where tapes can come back pretty filthy after rental.

Make sure you get R&EW every month for the latest broadcast and amateur TV news
BACK ISSUE SERVICE

All issues from October 1981 onwards are still available, with the exceptions of January and February 1982, and December 1983. All orders must be pre-paid, the cost of each issue being £1.00 inclusive of postage and packing. A contents index spanning the issues from October 1981 to September 1983 is available on receipt of a stamped addressed envelope. To ensure that you don’t miss any future issues, we suggest that you place a regular order with your newsagent or complete the subscription order form found in this issue.

MAY 1984
Projects — One Week’s Work (UHF/UHF Frequency Meter), Spectrum Analyzer Update, Assembling a Logic Probe, Signal Generator, J-Shape Aerial, SX-200 Receiver 2 Meter.

JUNE 1984
Projects — Microprocessor Controlled Dot Matrix Printer, One Night’s Work = Replacement Plug-In Module for 2032 STRWM, A Low-Cost Frequency Standard: Radio Frequency Bridge, Modifying the RG11 Interface for the Ferguson TX90.

JULY 1984
Projects — VLF Converter, a unit for the Very Low Frequency Teleprinter Terminal Interface. Multifunction Test Instrument a versatile piece of test equipment, Building the Fortsop TVT-451, Improving Indoor Aerials, getting better reception without an aerial amplifier, Logic Probe for CMOS and TTL’s.
Features — Amplitude/Phase Digital Panel Printer, Oscar 10, Yaesu FC102 Receiver, Data File — radio power amplifiers, Images of the World, a new publication review.

AUGUST 1984
Projects — High Quality Directional Coupler, a coupler for frequencies above 430 MHz, QV96-44A Linear Amplifier, 4th Triode and extending mast, a home constructed aerial, and adapting a portable typewriter; BBC Micro volume control TV and Video Interface. Features — Twenty Questions, Spectral Propagation, Data File — audio power amplifiers; BBC Micro Morse Tutor; Improving Receivers, Data Communication, Computing Transmission Links.

SEPTEMBER 1984
Projects — Low Power Transmitter, an 80cm CW Class A M3A3, an experimental signal generator; Spectrum Analyzer, further update on this project. Five Station Scanner, an add-on for the 70cm channel, airband receiver.
Features — Computing inductances, a program for winding coils; Data File, a look at alarm systems. Satellite, a look at electronic equipment, Distance and Bearing Program, an aid for station location. Super Transmatch, a review of a Tau System, ATU kit.

OCTOBER 1984
Projects — Base Mic, construct this present sensitive accessory. One evening’s work, build an indoor UHF TV aerial.
Features — Moderns, the link between computers and radio. Non-linear elements, a look at multipliers; Data File, continuing the look at alarm systems, SSTV for the BBC Micro, getting started in this mode. Testing! Testing! how to use your test gear, multimedia.

NOVEMBER 1984
Features — cellular mobile radio; compiling, updaters, a program for calculating resistance values; small aerials, coping with problems of space, 27-29MHz conversions; Data File, concluding the series on security systems, FETS — a beginner’s guide, Non-linear elements, log and anti-log. QSO, interesting contacts from clubs and individuals, ATV on the air, a look at a range of aerials for the average pocket.

DECEMBER 1984
Features — Cable TV goes on the air; Simple approach provides a simple device to increase a station’s talk power; Using a telemetry decoding satellite signals using this BBC Micro program; Satellite Edition review. Testing! Testing! Oscilloscopes; ATV — getting started, Data File, LED circuits and op-amp electronic principles; Morse test, self-study course, Computing Maidenshead, three programs relating to the Universal (Maidenshead) Locator. QSO, club and event news; ATV on the air, with news from the airwaves.

BACK ISSUE ORDER FORM

TO: Back Issues Department • Radio & Electronics World • Sovereign House • Brentwood • Essex • CM14 4SE

NAME:__
ADDRESS:__________________________________
POST CODE:_________________________________

PAYMENT ENCLOSED: £——

CHEQUES SHOULD BE MADE PAYABLE TO RADIO & ELECTRONICS WORLD. OVERSEAS PAYMENT BY INTERNATIONAL MONEY ORDER OR CREDIT CARD.

CREDIT CARD PAYMENT:

SIGNATURE:__________________________

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
DATA FILE
Ray Marston continues with the opto-electronics theme and looks at LM3914-based display circuits

TOUCH SENSITIVE JOY STICK
Peter Rouse describes the construction of a 'joystick' control that is self-centering and has no moving parts

AIRBORNE TV
Ray Herbert looks at some previously unpublished experiments made with TV transmissions from aircraft in flight before the last war

LOW-PASS FILTER
Duncan Walters G4DFV outlines the theory and construction of a high power low-pass filter

DIRECT BROADCAST BY SATELLITE
An outline of the DBS systems currently in use in the Western World

HORSESHOE NAIL SYNDROME
Ken Williams looks at how the short production life of modern ICs effects the purchaser

PLUS all the usual features!
New products ● News ● Reception reports . . .
DON'T MISS the February issue — on sale 10th January

To be sure of your copy of Radio & Electronics World, complete the newsagents order form in this issue or take out a subscription
For Sale

- Transverter FTV107 unused, under guarantee, complete with satellite 2 metre and 70cms modulator, £700.
- Yaesu solid state Tx and go, cost £439, offered at £365, no offers. FT707 Tx excellent condition, FM fitted scanning Mic, £1260 transverter included, plus manuals. Mods.
- Lafayette HA700 general coverage receiver, 150kHz – 30MHz good condition, £80. Also.""
FREE CLASSIFIED ADS

VANTED

- NRD515 Rx, in good working order, preferably realigned, negotiate price. Mr Allen, 51 Island Road, Handsworth, Birmingham B21 8NS. Tel: 5237158 (after 6pm).
- MCM40, Tandy or similar four pen graphic printer and Thandar PFM200A frequency meter. Other frequency meters considered if cheapish. Needed for computerised research project. Dr Andrew Brown, Dept of Oral Surgery, John Radcliffe Hospital, Oxford OX3 9DU. Tel: (0865) 65164.
- Roberts radios, especially early models such as M4Q, M4D, M5A, Junior, R4P, RMB, R66, R77, R88, RT1. Working condition of no consequence. Also any data or pamphlets relating to Roberts radios. Tel: Reading 583799.
- Freq meter for 174MHz. Walker, 23 Forest Hill, Yovel BA20 2PF. Tel: 25225.
- Manual or circuit R107 receiver. Also AM/FM generator, must be in good order. Good scope 20MHz double beam. EF39 valves. Lots of odds and ends for sale. Write: Mr White, 29 Nunney Street, Castle Hedingham, Essex CO9 3ND.
- Belcom FS1007P manual wanted, to purchase or borrow for a few days. Will pay postage. Dave Carter, 32 Welland Crescent, Stockton-on-Tees, Cleveland TS19 OUT. Tel: (0542) 582581.
- Philips 4307 reel to reel mono tape recorder. Anyone with a motor in working order, reasonably cheap. Cranshaw, Tel: Lymn 3335.
- 16mm GSAP Bell Howell cine-gun camera, ex spot electric 24V dc drive magazine load, with or without lens. Have for exchange. Bendix Rx GC aircraft Rx Hewlett Packard scope. Tel: Melksham (0225) 706735.
- Yaesu FT20R, nicads, charger, soft case etc. Vgc. about £120, or similar rig, eg 100M2E, TR2400 etc. maximum £180. Nicholas von Ficiks, Applepark, Lymington Bottom, Four Marks, Alton, Hants. Tel: Alton (0420) 63445.
- FDK Rx40 with accessories. Will buy or part exchange Rx and CB hand-held new. Tel: (0274) 724144 (10am or 3pm). (0274) 576656 (after 6pm).
- Circuit Eddyphone 888A. Also BFO unit or just good coil for 888A. Price etc to: B E Viney, 10 Heol Meiron, Barmouth, Gwynedd LL42 1LA.
- Valve HF linear amp, 3.5MHz to 28MHz, power input 10 watts, output 100 watts. Must have own power supply. Also amateur radio software for Apple IIE. GvVJK, J H King, 36 Haroldswick Drive, Horley RH6 GDU. Tel: (02934) 3556.
- Marconi Atalanta for mains supply, vgc essential, no objection to dealer. Trower, 2 Natal Road, Brighton, Sussex BN2 4BN. Tel: (0223) 680723 (1.15am to 8am) Mon to Fri.
- Any amateur communications receiver, any condition, must be in working order. Have CB base station + aerial etc. Part exchange and/or cash. T Ixram, Steggall House, 341 Perith Road, Dundee, Tayside.
- Yaesu FRG7700/FRT7700 wanted in exchange for realistic DX-400 Chinon CE-45 Optmax 135mm telephoto lens, Miranda wide angle lens. Tel: (0443) 758576.
- Names and addresses of companies or individuals willing (and able) to produce finished and working equipment from the various kits advertised in this magazine. I am a handicapped SWL and am willing to pay up. Write to: Flower, Avenue Labby 12 B-5989 Bossut, Gotcheghe, Belgium.
- Yaesu FRG7700/FRT7700 wanted for spares. Write: Mr White, 29 Nunney Street, Castle Hedingham, Essex CO9 3ND.
- A service manual of Exco valve mains radio Rx, A172 model (1954 approx date). Details of cord drive especially required (clear photocasts accepted). M Horns, Barkwith House, Haylings Road, Leiston, Suffolk IP16 4DJ.
- Old Marconi marine receivers, manuals and catalogues. Books on submarine communications and ships aerials. Scrap T1154 for coils. Cossee gainging oscillator or similar. Wooman, Streatham, Southwark, Portobean, St Austell, Cornwall. PL26 6AU.
- MM435/600 converter. Also good scanner, ie SX200N, Bearcat, PR22001 etc, plus portable colour TV. See my For Sale ad in this issue. Mr Lindley, Tel: Runcorn, Cheshire. 711939.
- Bird type 43 elements 100C, 100H, 260H or WHY7 R B Lever, 4 Hamilton View, Wigginton, York YO3 8PN. Tel: (0904) 768854.
- Oscilloscope, portable, dc to 10MHz or higher, in good condition, with service manual. Will pay up to £40. E Schofield, 26 Birkenshaw Lane, Birkenshaw, Bradford, West Yorkshire BD11 2HA.
- Wanted for Yaesu FT301 transceiver 600Hz CW filter (XF-90C) and 6KHz AM filter (XF-90B), also external VFO VX01 or other suitable VFO. Tel: St Albans 2933.
- ZS Spectrum hardware and software for RTTY, AMTOR, CW, etc. Also VHF/UHF equipment for satellite work. Edgar W Abraham, PO Box 1136, Kierstorp 2570, Rep of South Africa. Tel: (018) 2- 7380.
- RAE tutor requests help. Can anyone please loan me copies of the March, May and December 1984 (any or all) Radio Amateur Examination papers? Your help will be much appreciated by my enthusiastic but apprehensive students. Seven day return promised and expenses refunded. John G8PWO QTH, Tel: Sevenoaks (0732) 62461.

FREE CLASSIFIED AD ORDER FORM

Send to: Radio & Electronics World Classified Ads, Sovereign House, Brentwood, Essex CM14 4SE

Classification: (tick appropriate box) If you want to insert ads under more than one classification use separate sheets for second and subsequent ads

For Sale .. ❑ Wanted ..

USE BLOCK CAPITALS (One word per box) To avoid mistakes please write clearly and punctuate your ad

Name/Address
Postcode/Telephone

USE SEPARATE SHEET FOR MORE WORDS

Ensure that you have included your name and address, and/or telephone number

CONDITIONS: Your ad will be published in the first available issue. We will not accept trade advertisements. We reserve the right to exclude any advertisement.

RE0185

JANUARY 1985

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
A New Approach to
HF Antennae Design

Compare these performance figures of Hightech Antennae’s MBFr80 with the best 3 element antennae available today.

<table>
<thead>
<tr>
<th>Metric</th>
<th>MBFr80</th>
<th>Hightech Antennae’s Spec for MBFr80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front to Back Ratio</td>
<td>18d8d</td>
<td>Better than 4.5d8d</td>
</tr>
<tr>
<td>Forward gain</td>
<td>6d8d min.</td>
<td>1.1 : 1</td>
</tr>
<tr>
<td>VSWR at Resonance</td>
<td>1.5 : 1</td>
<td>2kW (100% duty cycle) 5kW peak</td>
</tr>
<tr>
<td>Max. Power Input</td>
<td>1 kW (100% duty cycle)</td>
<td>50 ohm</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>50 ohm</td>
<td>4m</td>
</tr>
<tr>
<td>Boom Length</td>
<td>4.2m</td>
<td>4.6m</td>
</tr>
<tr>
<td>Max. Element Length</td>
<td>8.2m</td>
<td>100mph</td>
</tr>
<tr>
<td>Max. Wind Survival</td>
<td>75mph</td>
<td>8kg</td>
</tr>
<tr>
<td>Net Weight</td>
<td>16.3kg</td>
<td>100mph = 23kg</td>
</tr>
<tr>
<td>Wind Load</td>
<td>80mph = 47kg</td>
<td></td>
</tr>
</tbody>
</table>

The front to back ratio advantage from Hightech Antennae’s MBFr80 is 18d8d better than other antennae available today. Remember this is a 3 S-unit noise reduction in unwanted directions over and above other antennae.

6d8d = 1 S-unit

Massive front to back ratio. This is more important than forward gain on today’s crowded amateur bands.

Flat VSWR across all HF bands.

No need for the purchase of ATU’s for those with solid state PA’s.

No need for the purchase of baluns.

A complete break with the coil and capacitor trap arrangement with, of course, its associated losses, restricted bandwidth etc.

Expandability: Extra parasitic element (director)
Extra absorber element for even greater front to back ratio.

With the conversion kits available, a 3 element, 3 band beam with an enormous front to back ratio will become the standard for others to follow.

![VSWR PLOT for 14MHz BAND](image1)

![VSWR PLOT for 21MHz BAND](image2)

![VSWR PLOT for 28 - 30MHz BAND](image3)

[Company Information]