LOOP ANTENNA:
A PROJECT FOR LONG WAVE

ICOM IC-R71E:
A USER'S REVIEW OF THIS RX

IC-2 MOD:
LISTEN-ON-INPUT FOR THIS HAND-HELD

NICAD PROJECT:
A PROTECTIVE DISCHARGER UNIT

IN A SPIN:
VECTORS AND ROTATING WAVEFORMS

DATA FILE:
COMMON-COLLECTOR AMPS
RAYCOM EXCLUSIVE PRODUCTS
Beta 3000 10FM 5W RPT/shift £79
Revco RS2000E Scanner £425
Raycom RF Amplifiers 1-3W input
V25 25W £49.50
V450 45W FM £52.50
V15L 15W £49.50
V3SL 35W SSB £59.50
10mF MF ETA 3000 mod £79
Unmodified ETA 3000 £59
10FM FBX/SANYO MOD BOARD fits into most CB’s with the Sanyo LC7136/7 chip fitted £22.50 or we can fit it for £30 inc post FBX/SANYO 10FM kit of parts £17.50
DNT/LC 10FM MOD KIT £12.95
YAESU FT787DX fast tuning mod kit w/instructions £29.50 or we can fit it for £37.50 inc NEW FRG600 Mod Kit extends the UHF range up to 950 mhz, + improves ‘S’ meter + sensitivity Send Radio and £25.00 inc post.

HAND HELDS
WE’RE THE LARGE SELECTION OF HAND-HELDS IN THE UK
KENPRO KP202 6ch 2m/176 £49.00
TRIO TH14 70cms £165.00
TRIO TH12 2m £185.00
KENPRO KT200E 2m/176 £169.00
KENPRO KT400E 70cm £189.00
YAESU FT200R 2m/176 £245.00
YAESU FT200R 2m £185.00
YAESU FT707R 70cm £230.00
YAESU FT707R 70cm £259.00
ICOM I-C2E 2m £199.00
ICOM IC-4E 70cm £299.00
ICOM IC-2E 2m £269.00
ALINCO ALM200E 2m £239.00
++ MANY MORE MODELS AVAILABLE.
FREE PORTABLE ANTENNA WITH EVERY HANDHELD PURCHASED.
PHONE FOR LATEST USED LIST

POWER SUPPLY UNITS
3A G-Com (UK made) £19.50
5A G-Com (UK made) £29.50
10A Bremi (Italy) £52.50
10A Moosnaker (Italy) £62.50
10-12A Moosnaker (Italy) £99.00
Yaesu FP757HD 20A Cont £175.00
Yaesu FP757GX 20A S/M £140.00
Yaesu FP700 20A PSU £150.00
ICOM PS55 matches IC-735 £10.50
SPECIAL universal NI-CAD chargers, takes any cell £6.50
WE HAVE MANY BRANDS OF PSU’S IN STOCK TO SUIT YOUR NEEDS.

ANTENNAS
SUN ANTENNAS (JAPAN) £9.50
Gamma Twin £6.99
HBVCV 2 metre £6.99
HBVCV 70cm £3.99
10-11mtr loaded 1/4 wave £13.50
13mtr 7/8 mobile tilt-over £14.50
2m/5m/8 mobile tilt-over £13.50
Gutter-Clip and cable £3.50
REVCO (British Made) £11.80
2m/5m coil whip/phase £16.90
70cm Colinear double 5/8 £12.50
Revco Discone scan/ant £29.95
Revco NEW 2045 Iocan/ant £59.00
SMC (Japan) £20.95
70CM Dual band mobile £35.00
5870cm Triple 5/8 mob £30.95
HS770 Diplexer £27.50
WE HAVE NUMEROS TYPES OF ANTENNAS IN STOCK INC FULL RANGE JAVEMAY AND TONNA.

£1000 INSTANT CREDIT. HP/PERSOAL LOANS AVAILABLE
RWC CREDITCARD (written details on request)

GET YOUR LATEST BARGAIN
USED LIST. SEND LARGE ENVELOPE NOW!

Even more basement bargains!

<table>
<thead>
<tr>
<th>TURN THAT BEAM KOPEK ROTATORS</th>
<th>HI-Q INSULATOR TRAP-FORMER (2X FORMERS - INSULATORS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50kg loading £38.50</td>
<td>G5RV HG MULTI-BAND DIPOLE ANTENNA $/size £12.95 full size £14.95</td>
</tr>
<tr>
<td>DATONG AND DRAE MORSE TUTORS £49.50 PASS YOUR MORSE TEST QUICKLY!</td>
<td>STEEL QUAD SPIDERS for 2 ELE Quad Aerials £12.50 Build your own super aerial!</td>
</tr>
<tr>
<td>TRAVELLING JIM 2m £6.95</td>
<td>FT290R + Nicads, charger, listen on input £329</td>
</tr>
<tr>
<td></td>
<td>FT690 + Nicads (6mtr) £269</td>
</tr>
<tr>
<td></td>
<td>Sun gutter mount + cable assembly, PL259 fittings £9.25</td>
</tr>
<tr>
<td></td>
<td>Full Sun range in stock</td>
</tr>
</tbody>
</table>

R. WITHERS LTD
584 HAGLEY RD WEST, QUINTON, BIRMINGHAM B68 QB5. Tel: 021 421 8201 (24hr) Telex: 334303 TXAQNMG

ORDERS UNDER £50 SEND £2.50 P&P

Even more basement bargains!
CONTENTS

Editor
Duncan Leslie (AWOL)

Assistant Editor
Jane Berry

Advertisement Manager
Marian Vidler

Advertisement Executive
Richard Hart

Publisher
Peter Williams

Published by
Radio & Electronics World Magazines
Sovent House
Brentwood
Essex CM14 4SE
England
Tel: (0277) 219876

ISSN
0262-2572

Printed
In Great Britain

Newstrade sales
Seymour Press Ltd
334 Brixton Road
London SW9 7AG
Tel: 01-733 4444

Subscriptions
Tel: 01-760 0409

SPECIAL FEATURES

16 **Spectrum Watch**
Nigel Cawthorne reports from Tunis on the latest Arabsat developments and the Tunisian radio and TV broadcasting network

22 **Icom IC-2 Modification**
John Rowles presents a listen-on-input modification for this two metre transceiver

24 **The Icom IC-R71E**
A user's review of this general coverage receiver from Ken Michaelson

28 **Computing - Low-Pass Filters**
Brian Kendall G3GDU and Jeff Howell G4BXZ present a program to design one of the most frequently encountered circuits

33 **Data File**
A look at the common-collector transistor amplifier this month by Ray Marston

40 **Nicad Discharger**
David Dawson explains how to construct a unit to protect your 12V batteries

43 **Vectors and Rotating Waveforms**
If the idea of waveforms rotating puts you in a spin, read this explanation by Dr C J D Catto

48 **Long Wave Loop Antenna**
A construction project for the much neglected LW band from Richard Marris

REGULARS

4 **Product News**

12 **News Desk**

19 **Amateur Radio World**

50 **ATV on the Air**

52 **DX-TV Reception Reports**

55 **Short Wave News**

58 **Medium Wave DXing**

60 **QSO**

62 **Free Classified Ads**

64 **Small Ads**

READER SERVICES

18 **Newsagents Order Form**

31 **Subscription Order Form**

31 **Amateur Radio Subscription Order Form**

51 **Back Issues Order Form**

63 **Free Classified Ad Order Form**

66 **Advertisers Index**

66 **Advertising Rates and Information**

NEXT MONTH

59 **What's in Store for You**

- **Next Issue**
 Cover date May 1986 on sale Thursday, 10 April

- **Publication Date**
 Second Thursday of the month preceding cover date

Cover Photographs

Top — The Jaguar Cub variable speed drive from IMO (p5)

Bottom — CIL's Jay Series thermocouple monitor (p5)

Please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
MULTIPOINT RECORDER

Philips Test and Measurement's PM8237A 30-channel multipoint data recorder has been upgraded to improve data presentation. New facilities, which simplify analysis, include provision of the date on both front panel and paper and the ability to combine graphical and numerical data in one recording. These advantages make the PM8237A particularly suitable for measuring slow-moving signals. The new date facility is especially useful as there is a trend towards increasing the length of time for temperature tests. The clock/calendar circuit is battery powered which means that, once set, the clock runs continuously even after a mains power failure.

The reading of graphical data can be simplified by adding numerical information. The instrument, which hitherto could be switched to record either graphically or alphanumerically, can now print out numerical equivalents at intervals on graph in a programmed sequence — every ten, or multiples of ten, minutes.

The PM8237A is also versatile, measuring temperatures with Pt 100 and thermocouples and voltages in any combination.

Pye Unicam Ltd,
York Street,
Cambridge CB1 2PX.
Tel: (0223) 358866.

FUNCTION GENERATOR

Global Specialties has introduced the low cost model 2002, a 2MHz function generator which can produce low distortion square, triangle and sine wave signals and TTL pulses in seven frequency ranges from 0.2Hz to 2MHz. Waveform and frequency range selections are quickly and easily made by push-buttons.

The model 2002 features: a sweep input to produce constant changes in frequency; symmetry control for varying the shape of waveforms; and a push-button 30dB attenuator for work with sensitive circuits. Other features of the instrument include: a variable dc offset control to change the locations of outputs to complementary waveforms; and an amplitude control which provides adjustments from 5MV peak-to-peak into an open circuit.

With a frequency accuracy of ±5% of full scale, the function generator also has an input impedance of 10kΩ ±10% and a square wave rise and fall time of less than 100 nanoseconds (ns).

Global Specialties Corp
Shire Hill Industrial Estate,
Saffron Walden,
Essex CB11 3AQ.
Tel: (0799) 21682.

TRANSCIEVER TESTING

The radiocommunication tester, CMT, developed by Rohde and Schwarz is an intelligent, low cost test assembly for mobile and stationary servicing of transceivers.

In the frequency range of 100kHz to 1000MHz the CMT with its learn mode can handle all measurements on any AM, FM and PM transceivers and test radiotelephones with selective call facilities to different standards, including DTMF (touch-tone dialling). It is compatible with all data transmission techniques and is obsolescence-proof to a high degree, thanks to a wide choice of options being available for extension.

The high accuracy, wide dynamic range and fast measuring rate of the CMT allow a fast go/no go test as well as complete transceiver testing. The low weight and small, compact design in conjunction with the possibility of battery powering from 12V or 24V supplies make the CMT well suited for measurements in mobile servicing.

Complete manual control, fully automatic operation via the autorun control facility, including data logging by a printer with an external process controller or control via the IEC-bus option with the aid of an external controller, are simple to perform.

The CMT is available with or without an oscilloscope. The oscilloscope integrated in CMT model 54 features a bandwidth from 150kHz to 2MHz, a square wave distortion of ±1%, a vertical sensitivity of 50mV/div and a horizontal sensitivity of 10µs/div.

Rohde and Schwarz GmbH and Co,
Mühlendorf 15,
Postfach 801469,
D-8000 Munich 80,
West Germany.

CHECKER

A contact resistance meter, for use by electrical and electronic engineers, is the latest unit in Telonic's range of test and measuring equipment. The AX-123 Checker is designed to assess the contact resistance of relays, connectors, detonators and similar items.

It has two measuring ranges: from 0 to 199.9 milliohm at 1A dc, and from 0 to 19.99 milliohms at 100mA dc. Accuracy is 0.3%, and the results of checks are displayed digitally.

Go/no go capability is available from a limit comparator which, with thumbwheel switches, can be preset from 0000-9999. An LED lamp, a buzzer, and an open collector transistor output indicate the go/no go function. In addition there is a parallel BCD data output. For checking relay contact resistances, coil output voltages of dc 1.5/3.6/12/24 and 48 up to 0.2A are available.

The AX-123 costs £89 excluding VAT.

Telonic Instruments Ltd,
Boyn Valley Road,
Maidenhead,
Berkshire SL6 4EG.
Tel: (0628) 73933.

APRIL 1986
CLOCK OSCILLATORS

Walmore Advanced Components Limited have announced two new additions to their range of clock oscillators.

The new ECL series, manufactured by Xsis Electronics Inc, has a frequency range of 20MHz to 100MHz, frequency stabilities between ±0.1% to ±0.002% and operating temperature ranges between -55°C to +125°C, operating on a 5.2 volt supply rail.

These devices offer a hermetically sealed 4 or 14-pin dual in-line package, meeting military standards for vibration, shock, acceleration, solderability, altitude (operating), salt spray, etc. Typical applications would be for missiles, torpedoes, tactical radars and computers.

LOGIC ANALYSERS

Gould Electronics Ltd has introduced the K40/50, a low cost, easily portable family of logic analysers with a wide range of powerful features.

The K40/50 enables both synchronous and asynchronous data to be captured on all channels, and enables accurate timing comparisons to a resolution of 10 nanoseconds (ns) on up to 12 channels.

Features of the K40 include 32 channels of state at 15MHz or 16 of state with 16 timing at 25MHz. The K50 has 48 channels of state at 15MHz. Both instruments are supplied with a 2K per channel and triggering through four levels of trace control with find, wait, stop, sample, and repeat commands to help solve complicated hardware-software problems.

With a microprocessor disassembler, the K40/50 is ideal for microprocessor-based engineering projects.

Also new from Walmore is a crystal clock oscillator from Toyo in three different package options: 14-pin DIL, 8-pin DIL and a surface mounting package only 13mm x 13mm.

This oscillator, which drives CMOS and TTL ICs without analogue design, is available with frequencies anywhere between 250kHz and 24MHz and with a stability of ±100ppm inclusive of calibration tolerance at 25°C, operating temperature, input voltage change, load change, ageing, shock and vibration. The operating temperature is 0-70°C.

Walmore Electronics Ltd, Laser House, 132/140 Goswell Road, London EC1V 7LE. Tel: (01) 251 5115.

The disassembler simplifies connection to the CPU and converts 8s and 1s into familiar mnemonics.

In the synchronous analysis mode, an external 15MHz clock is used to clock the data in the K40/50. For timing problems, an internal clock with a 40ns resolution on all channels can be used. In the verification of timing relationships between control lines, a 10ns resolution on up to 12 channels can be selected.

Weighing only 6.7kg, the K40/50 is easily portable. Both instruments are supplied with probes, probe connectors, power cord and operating manuals. Options include RS232C and Centronics interfaces.

Gould Electronics Ltd, Instrument Systems, Roebuck Road, Hainault, Ilford, Essex IG6 3UE.

AUTO TIMEBASE

Electronic Brokers has introduced the Grundig MO-53 50MHz dual-channel oscilloscope to the UK market.

The new oscilloscope includes many features designed to make it easy to use in areas such as R & D, production, service and education.

A major new feature included in the MO-53 is automatic timebase selection. Depending on the frequency of the test signal, the timebase is selected automatically and displayed digitally, so that the user has no need to search to find the correct range.

Another important user benefit is the provision of a true separately triggerable second timebase, which enables the trigger point to be independently adjusted by an additional level control to give an unambiguous expanded display.

The use of the second timebase means that it is possible to isolate features such as the burst in a complex colour video signal to produce a clear trace for exact evaluation. Conventional oscilloscopes with a trigger-delay facility cannot reproduce the user benefits of the second timebase.

An alternating display using different timebases allows the main timebase and second timebase to be displayed at the same time, with any portion of the traces selected for expansion.

Full service and support is provided in the UK by Electronic Brokers.

Electronic Brokers Limited, 140-146 Camden Street, London NW1 9PB. Tel: (01) 267 7070.

JAY SERIES

A new range of instrumentation from CIL is called the Jay series which allows different modules to be inserted into the front of the instrument to perform many measurement tasks.

The Jay basically consists of a 260-based microcomputer circuit with RS232 option housed in a bench-mounted case. The front panel has a 2 x 16 dot matrix LCD display, switches for control functions and access for the modules.

The module installed in the illustrated Jay (see cover) is the 6-channel thermocouple temperature monitor. The microprocessor program is stored in PROM within the module. Each module therefore has a different program to perform its particular task.

This means, for example, that after the instrument is purchased for, say, temperature measurement, other modules can be purchased to perform almost all measurement tasks.

The price of the basic Jay is £245, the RS232 module is £70 and the DMM201 module is £150. Other modules vary from £50 to £200 each and several new modules will be available shortly.

CIL Electronics Ltd, Decoy Road, Worthing, Sussex BN14 8ND. Tel: (0903) 204646.
A S C I I data from UoSAT-1 and follows:

that is required is a simple ZX, Alphacom 32, or similar set top tape recorder. Spectrum 'ear' socket from a direct connection to the Spectrum or signals can be recorded first onto a tape recorder. Features of S U D D are as follows:

- It demodulates 1200 baud ASCII data from UoSAT-1 and UoSAT-2;
- No interface is required—just direct connection to the Spectrum 'ear' socket from a 145MHz FM receiver, which can be connected directly to the Spectrum (or signals can be recorded first onto a tape recorder);
- Data receiver may be displayed as text, or printed on a ZX, Alphacom 32, or similar printer;
- Telemetry frames are decoded to provide all analogue channels and status points. Checksum tests are performed and the algorithm used for interpreting the data minimises loss of information through data corruption;
- Screen 1 display during demodulation shows a 'front panel' featuring 'lights' for valid mark and space tones, parity errors and framing errors, and a bar gauge to show space remaining in the data buffer;
- Demodulated data may be saved on tape or microdrive for reading into the user's own programs or loading back into S U D D later;
- The program is fully micro-drive compatible and copies automatically onto micro-drive cartridge.

The S U D D program is supplied on cassette with a detailed 7-page instruction booklet. It is priced at £4.50 (inclusive of postage and packing within UK and Eire Overseas: add £1).

G 4 H LX, 87 Hunters Field, Stanford in the Vale, Faringdon, Oxon SN7 8ND.

DOV MODEM

Rapid Terminals has introduced a new data over voice local modem system. Known as the Line Miser DOV 96, this unit enables an existing PABX system to be used as a local area network for simultaneous voice and data communications. It treats every telephone location within the PABX system as a potential terminal location and adds a comprehensive data switching facility for each terminal when used in conjunction with the Gandalf PACX system.

Sony has introduced to the UK market an easily assembled, compact radio antenna. Coded AN-1, the antenna is capable of receiving a wide range of bands including L, W, MW and SW (150kHz-30MHz). A low noise and interference-reducing FET has also been used in the built-in RF amplifier.

The AN-1 operates from either the domestic electricity supply or batteries, and is available now at all Sony authorised dealers, priced around £49.95.

The Graying Company, 1 Dean's Yard, Westminster, London SW1P 3NR. Tel: (01) 799 9811.

PC PRINTER

Fast printing for personal computers, in a choice of up to eight colours, is offered by the new PC printer from Data Dynamics. Fully IBM PC printer-compatible, this printer features a word processing output at 100 or 120cps rates. It also permits printing at rates to 400/480cps at data quality and offers high-resolution bit-image graphics output for flexibility in application.

The PC printer is tried and tested with PC software, including Easywriter, Lotus 1-2-3, CA Executive and SuperCalc. Four character sets are provided as standard, with a range of alternative sets and fonts available as options.

The Line Miser's data channel is provided by a frequency shift modulation scheme which generates carrier signals in each direction for transmission above the voice band. The integrity of this channel is maintained by an integral low pass filter arrangement. Features include asynchronous operation at up to 9600bps and synchronous operation at 600, 1200, 2400, 4800 and 9600bps, at a distance of 6km over standard 0.5mm cable pairs.

The Line Miser DOV 96 is approved for use with telecommunication systems run by British Telecom.

JAGUAR CUB

IMO Precision Controls has unveiled the Jaguar Cub. Claimed to be the most compact 0.55-1.5KW ac variable speed drive available, the Cub will supersed the existing Jaguar 230V input range since it is smaller and possesses many new features.

The inverter utilises a single phase 2 wire line supply to provide a high grade sine-wave generated by a custom made Anyspeed IC. Protection levels are comprehensive and include protection against both short circuit and earth faults. The incorporation of galvanically isolated control circuits (from the power stages) allows for easy analogue slaving.

DATA DEMODULATOR

The two satellites designed and built by the University of Surrey, UoSAT-1 and UoSAT-2 (also known as Oscar 8 and Oscar-11), have been highly successful experiments in low cost spacecraft engineering. The S U D D program for the ZX Spectrum 48K or Spectrum Plus, now available from G4H LX, makes a low cost ground station possible. All that is required is a simple 145MHz FM receiver, which can be connected directly to the spectrum (or signals can be recorded first onto a tape recorder).

Features of S U D D are as follows:

- It demodulates 1200 baud ASCII data from UoSAT-1 and UoSAT-2;
- No interface is required—just direct connection to the Spectrum 'ear' socket from a 145MHz FM receiver or cassette tape recorder;
- Data receiver may be displayed as text, or printed on a ZX, Alphacom 32, or similar printer;
- Telemetry frames are decoded to provide all analogue channels and status points. Checksum tests are performed and the algorithm used for interpreting the data minimises loss of information through data corruption;
- Screen 1 display during demodulation shows a 'front panel' featuring 'lights' for valid mark and space tones, parity errors and framing errors, and a bar gauge to show space remaining in the data buffer;
- Demodulated data may be saved on tape or microdrive for reading into the user's own programs or loading back into S U D D later;
- The program is fully micro-drive compatible and copies automatically onto micro-drive cartridge.

The S U D D program is supplied on cassette with a detailed 7-page instruction booklet. It is priced at £4.50 (inclusive of postage and packing within UK and Eire Overseas: add £1).

G4H LX, 87 Hunters Field, Stanford in the Vale, Faringdon, Oxon SN7 8ND.
NEW PERIPHERAL

Hobbyists, schools, colleges and small businesses alike will be pleased to hear of an oscilloscope add-on for the ZX Spectrum computer. Called the Allidin scope, this new peripheral is a plug-in module with three signal input connectors. This connects to the expansion port on the ZX Spectrum computer and the software is provided on tape or microdrive.

Using the Allidin module and software, the Spectrum computer is converted into a digital storage oscilloscope using the TV screen for display. All the normal oscilloscope controls are available, but instead of those being many knobs and dials, the Spectrum's keyboard is used and the settings are displayed on the screen along with the scales and other useful operating information.

The waveform seen on the TV is a continuously updated waveform as displayed by any normal oscilloscope. However, the waveform may be captured and held on the screen or in memory while displaying a normal waveform for comparison. A screen copy function is provided so that waveforms may be recorded on a printer. These are useful for reports and handbooks, or for comparison over a period of time. The oscilloscope settings, such as timebase, amplitude and trigger mode etc., will also be printed out as they are displayed on the screen along with the waveforms.

The Allidin module retails at £49.95; complete with a signal lead and handbook. The software to drive the module in a scope configuration retails at £24.95.

Further software is to be introduced enabling the Allidin module to work as an intelligent chart recorder, or as a waveform spectrum analyser.

COMPACT PRINTERS

The Industrial Products Division of Sabre Computers has added both 32 and 40 column units to its range of ultra compact printers. They have been designed to provide system builders with reliable, plain paper, dot matrix printers for panel or rack mounting applications.

Sabre's UCP-32 and UCP-40 are both 75mm high, 75mm deep and 125mm wide, and can be fitted in a 2U high panel. The printers feature both physical and electrical interchangeability with UCCP-24.

As with the previously introduced 16 and 24-column versions, these new printers offer parallel (Centronics type) and serial (RS232 protocol) data input formats, an ASCII 64 alphanumeric character set (upper case only), multiple width, height, and invertable characters, and dot graphics. A +5V supply at around 1A is required to power the unit.

These printers are priced at around £140.

DOT MATRIX PRINTER

The new System 600 colour printer from Data Dynamics allows you to choose from word processing output at 100 or 120cps, data quality printing at 480cps or bit-image graphics output, all up to 8-colour printing.

The printer has been engineered for heavy duty applications and a range of mini and mainframe computer interfaces and emulations can be selected. Noise levels eliminate the need for an acoustic hood, and there is a comprehensive range of paper handling accessories.

Data Dynamics Ltd, Clayton Road, Hayes, Middlesex UB3 1BD. Tel: (01) 848 9781.

NEW WORKSTATION

The Hewlett-Packard 9817 is a new technical workstation, part of the latest range based on the 68000 processor family with 32-bit internal and 16-bit external architecture, running at 8MHz.

The 9817 includes 512K RAM, and a 14in monochrome monitor with alpha/graphics composite video interface. The keyboard is interfaced via the new Hewlett-Packard Human Interface Link (HP-HIL) which provides for daisy-chaining additional input devices, such as a mouse or trackball.

Software compatibility includes HP Basic 3.0 with 60 I/O commands, and Pascal 3.0 which includes a comprehensive I/O procedure library, plus editing and debugging tools.

The 9817 is ideal for engineering or scientific calculations requiring high speed and intensive data handling, and for HP-IB (IEEE488) instrument control applications. It's available from Microlease plc, the instrument rental specialists, at economical weekly hire rates from £140.

Microlease plc, Forbes House, Whitfriars Estate, Tudor Road, Harrow, Middx HA3 5SS. Tel: (01) 427 8822.
PRODUCT NEWS

LOW COST CAPACITORS
The new Recsam Components’ DST range of dipped, metallised polyester film capacitors from VSI Electronics offers production engineers a high performance, low cost product for both new and established equipments.

They are available in 5% and 10% tolerances with five working voltages from 63 to 630V dc. Values, according to case size and working voltage, range from 0.01µF to 10µF.

SURGE SUPPRESSORS
Microelectronics Technology (MeTL) have announced the addition of a range of high performance surge suppressors to their list of products. The suppressors are manufactured by Lucas Semiconductor, the latest franchise to be acquired by MeTL. The diodes, which were developed for telecoms, military and industrial applications, offer high-speed and reliability. There are four series in the Transhield range: two cover the breakdown voltage range of 9-275V, a third covers from 6.8-275V and the fourth covers the range 27-230V.

Within each series there are three types of diode with different breakdown characteristics: unidirectional positive, bidirectional positive or bidirectional negative (fold-back). These are indicated by prefixes ZP (Zener), CP (clipper) and FP (foldback). The clipper versions are designed to give low power dissipation.

The surge suppressors are claimed to offer excellent clamping ability, a wide operating temperature range, fast response times and good power dissipation. The devices are suitable for use in automotive applications (electronic ignition, etc), military applications and medical equipment, and numerous other applications.

MeTL, Unit 2, Great Hasley Trading Estate, Great Hasley, Oxon OX9 7PE. Tel: (08446) 8920.

BENCH GUILLOTINE
Oryx has announced a new bench tool which fills a need in the market for a precision guillotine. The two units, GL80-12in and GL90-18in, are principally designed for cutting copper laminated fibre-glass PCBs up to 2mm thick. The guillotines may also be used for cutting other materials, such as aluminium sheet up to 1.6mm, 1mm brass, 0.6mm tin plate, and for trimming plastic and metallised labels.

Both units can be free standing on a bench, or secured by the screw lugs provided.

Greenwood Electronics, Portman Road, Reading RG3 1NE. Tel: (0734) 595843.

SURFACE-MOUNTING
Surtech Inter-connection is offering a starter kit and engineering laboratory stock of Murata chip components to encourage the trial use of surface-mounted devices.

The SMD starter kit, priced at £49.75, comprises five PCBs (custom designed for wave/reflow soldering), solder paste, adhesive, and samples of chip resistors, capacitors, inductors, SOTs, trimmers and tantalums, plus a set of application notes. This provides everything needed by newcomers to experiment with and learn the considerable advantages of surface mount technology.

The engineering lab stock packages provide the design engineer with valuable support in the development of prototypes. Three 100 piece ranges of chip resistors are offered: E6, E12 and E24, priced at £98, £196 and £350 respectively. Lots made up of 50 or 100 chip capacitors of 60 different values ranging from 1pF to 100,000pF, and 100 of 145 different values, are also offered. The packages are priced from £265 to £1,150. All of these Murata chip components have nickel barrier layer terminations.

Surtech Interconnection Ltd, Intec 2, Wade Road, Basingstoke, Hants RG24 0NL. Tel: (0256) 470848.

STRETCHABLE INK
A new ink which stays conductive even when stretched to twice its original length is now available from Johnson Matthey Chemicals Limited. The ink is screen printable and designed for application to very flexible substrates such as plasticised PVC.

Known as P1300, the ink comprises 65.2% by weight of silver in a newly developed resin system, and may be applied using automatic or manual screen printers.

When dry the new ink is able to withstand extreme creasing, bending and stretching without detrimental effect on its resistivity, which is estimated to be 0.012 ohms per square sheet at a coverage of 100g/m².

Johnson Matthey Chemicals Limited, Orchard Road, Royston, Herts SG8 8HE.

POWER CONVERSION
A F Bulgin & Company’s Power Conversion Division have designed and developed a new range of high efficiency dc to dc converters.

The new range, the DC40F Series, which is being manufactured at the company’s Barking factory, offers 24 or 48 volt dc input options in 100 x 0.5 amp each.

A F Bulgin & Company plc, Power Conversion Division, Bypass Road, Barking, Essex IG11 0A.

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement

APRIL 1986
ELMASET INSTRUMENT CASE
302x133x27mm deep £10.00 ea (25.20)

REGULATORS
LM317T Plastic T020 variable £1.00
LM317 Metal £2.20
7812 Metal 12V £1.10
7805/12/15/24 plastic 50p 100 + 18p
7905/12/15/24 plastic 50p 1000 + 19p
CA385 T09 Variable regulator £1.00

COMPUTER IC's
Used Eproms are erased and verified
27128-320S New £3.50 10 + £2.50
2764 Intel/Fujitsu 300S £2.50 Used £1.50
2716 EX EQPT £2.10
2752 EX EQPT £3.00
2114 EX EQPT 4011 4116 EX EQPT £7.00
4164-200S New £1.50 10 + £1.00
6842 9pin 8k static ram £5.50
6116 LP-2 (27C257APL-2) £2.50
6116-2 (7C257AP-2) £2.00

POWER TRANSISTORS
TIP141, 142, 147 £1 ea, TIP112, 125, 42B £2.00
S8302 100V 1OA DARL SIM TIP121 £2.30
2N5055 Ex eqpt tested £4.00 £1.00
Plastic 3055 or 2555 equiv 50p £10.00
2N3770 NPN 25A 100V £1.00

DISPLAYS
Futaba 4 digit clock, fluorescent display 5-L 16 £1.80
Futaba 8 digit calculator, fluorescent display 9CT- 07 £1.50
Large LCD Clock display 1" digits £3.00
7 seg 0.3" display comm cathode £2.00

QUARTZ HALOGEN LAMPS
A1/1216 24V 150W £2.25
H1 12v 55w (car spot) £1.25

MISCELLANEOUS
Linear hall effect IC Micro switch no 613 541 5IM R5 304-267 £2.50 100 + £1.50
OSCILLOSCOPE PROBE KIT X1X10 £10.00
Chrome test plugs 100/£3 100/£1.00
Ipole 12 way Rotary switch £4.00
Audio Ics LM380 LM386 £1.50
Coax plugs £1.00
4x4 MEMBRANE KEYBOARD £1.80
INDUCTOR 20uH 1.5A £5.00
COAX PLUGS £1.00
15,000uF 40v £2.00 (1.00)
NEW BRITISH TELECOM PLUG + LEAD £1.50
1.25" Panel Fusesholders £5.00
MURS ROCKET SWITCHES 6A SPST 5/£1
STAINLESS STEEL HINGES 14.5 by 1" OPEN £1.00 each £10.00
MAIN TRANSIST SUPPRESSORS 245v £3.00
TO42 TO46 TO3P TO2 3POLE 3KEYS ideal for car/home alarms £1.00 £10.00
12v 1.2w small wire ended lamps fits AUDI/VOV/TV 10.00
VOYLO SABA 10.00
12v MES lamps £1.00
Large Heat shrink sleeve packing £2.00
PTFE sleeve packing asst colours £1.00
250 mixed res diodes, zeners £1.00
Mixed electrolytic caps £1.00
Stereo rca ph head £2.50
Mono head £1.00, Earphone £0.50
Thermal cut-outs 50", 75", 125° C £1.00
Thermal fuse 121C 240V 15A £5.00 £1.00
Vero pins fit 0.1" Vero £2.00

KEYTRONICS
332 LEY STREET, ILFORD, ESSEX
Shop open Mon-Sat 10am-2pm
TELEPHONE: 01-553 1863

MIN CASH ORDER £3.00 OFFICIAL ORDERS WELCOME UNIVERSITIES COLLEGES SCHOOLS GOVT DEPARTMENTS MIN. ACCOUNT ORDER £1.00
PAP AS SHOWN IN BRACKETS (HEAVY ITEMS) 65p OTHERWISE (LIGHT ITEMS)
ADD 15% VAT TO TOTAL

ELECTRONIC COMPONENTS BOUGHT FOR CASH

APRIL 1986
please mention RADIO & ELECTRONICS WORLD when replying to any advertisement

11
Taxifone

Passengers in London taxi cabs are now able to make local, national or international telephone calls while on the move around the capital. For the first time cabs are carrying public telephones connected to the new Vodafone cellular telephone network, giving passengers world-wide contact, day and night, as they move around London or travel to and from airports.

For a trial period of six months some 60 taxis on the capital's streets are being fitted with the Racal Taxifone. The cellular Taxifone will be installed in the passenger compartment close to the off-side door. A specially designed meter shows users how much the call is costing as they speak.

Taxifone is approved by the London Public Carriage Office (PCO) for trial in the capital. The unit meets stringent safety and security regulations. Calls will cost 20p per unit, with a minimum call charge of 50p.

Airborne telephones

British Telecom International, British Airways and Racal-Decca Advanced Development are teaming up to conduct trials of what is believed will be the world's first satellite telephone service for air travellers.

The trials, which will begin in 1987, will be conducted initially from Racal's Jetstream aircraft. Later, they will be extended to scheduled British Airways flights.

Passengers will make calls by inserting a credit card into a specially adapted payphone. This will unlock the handset and connect the caller with a ground-based operator in the United Kingdom who will connect the call. Racal Decca, in consultation with British Airways, will produce airborne transmitter/receiver equipment and develop specialised aircraft antennas. On the ground, BTI will dedicate one of the antennas at its Goonhilly satellite earth station to aeronautical services.

Initially, passengers will be able to make, but not receive calls, although BTI believes it will be able to offer all normal telecommunications facilities if there is sufficient customer demand.

Digital link

The world's first all-digital public telephone link spanning the world's oceans has been set up by British Telecom International (BTI) and its Japanese counterpart KDD.

A new satellite link interconnects modern digital exchanges in London and Tokyo to benefit customers by giving faster call connection and clearer speech transmission.

The factor permitting a total digital path between the two was the commissioning of a new satellite transmission technique known as TDMA (time division multiple access) via an Intelsat satellite over the Indian Ocean and British Telecom's earth station at Madley in Herefordshire.

In a TDMA system, transmissions from different satellite earth stations are separated by time rather than by frequency. Calls are transmitted in short 'bursts', which are carefully timed so that they reach the satellite in a pre-assigned sequence every two milliseconds.

The satellite's amplifier only boosts the power of one burst at a time before it is retransmitted back to Earth. This means the amplifier can be used at higher power, without causing unacceptable distortion. This in turn allows more telephone circuits to be carried by the same satellite.

Test and repair service

A new PCB test and repair service from Testech allows companies to utilise advanced ATE technology without having to purchase their own machine. Customers pay only for the test program development, plus a small sum per board tested.

At the outset of any board test application, the manufacturer need only present a circuit diagram and parts list of the PCB to be tested. Testech responds with a fixed price quotation and delivery time for a comprehensive program and interface fixture between the PCB and ATE system, with unbiased advice on the ATE system best suited to test that particular board. The fixture and program become the property of the manufacturer and are delivered to him at the end of the project.

Test and repair of the units are carried out at Testech's premises. A full record of all faults will be provided so that those recurring will be immediately highlighted and can be remedied.

This approach is more cost effective than manual testing. Use of ATE also provides more details of the price cuts can be obtained from British Olivetti on (01) 785 6666.

The use of TDMA and DSI transmission techniques means that the number of circuits carried via satellite can be more than doubled.

PC price cuts

The Microcomputer Division of British Olivetti has announced new prices for its range of personal computers. This announcement sees substantial reductions in the price of M24 hard disk base units, the M24SP, and memory and mass storage upgrade products. Hard disk prices are down as much as 47%.

Olivetti believes that users now want PCs in a more sophisticated configuration, as today's generation of productive software frequently demands a hard disk and substantial memory, and it is this software that gives users performance and value for money.
other benefits: faster turn round, guaranteed quality and ready availability of the fixture and program for use with faulty boards returning from the field.

ERA technology
ERA's Radio Frequency Technology Centre and Engineering Materials and Metallurgy Division has set up a fully co-ordinated electrical and mechanical design and test facility for radomes and antennas. The radome and assembly test facility is based on computer programs which accurately predict such electrical performance parameters as transmission loss, boresight error, cross-polarisation, flash-lobe side-lobe degradation and frequency response. It can be used to optimise new designs or to isolate deficiencies and overcome problem areas with existing systems.

The mechanical design office is supported by a comprehensive stress analysis service which includes finite element analysis and graphics facilities. The radome and antenna test facilities comprise a microwave laboratory, which includes a semi-automatic network analyser for the measurement of dielectric constant, loss tangent and reflection coefficient up to 96GHz, and four test ranges with frequency coverage up to 80GHz.

The digitised results can be presented as conventional plots, or may be analysed by the facility's computers. Alternatively, the data can be supplied to clients on floppy disc or magnetic tape for their own analysis.

PCB course
A course on the design of printed circuits will be held from 7 to 11 April in the School of Industrial Science at the Cranfield Institute of Technology. The course has been created to benefit draughtsmen/designers starting design work and those converting from mechanical to electrical design.

The full curriculum will cover:
- The influence of printed circuit design on board manufacture and assembly;
- Converting circuit design into printed circuit design;
- Using CAD and tapes to make master artwork, plus control of the photographic process;
- Design to suit subsequent testing.

The influence of new load material and surface mounting on design.

Most of the lecturers will be from industrial companies, including Ferranti, British Telecom and Jaguar Cars, to give an insight into the best current practices. Various CAD systems will be demonstrated, including Racial Redac, Wayne Kerr and IBM, and all course members will have "hands on" experience in a quiet classroom atmosphere.

For details contact Brian Phelps on Bedford (0254) 750111, ext 2737.

China contract
NovAtel Communications Ltd has been selected to supply the first public cellular telephone system for the City of Chongqing, China.

The finalised initial contract is valued at $2.5 million dollars and was negotiated in just three weeks.

NovAtel's unique cellular telephone system, which includes land-based and vehicular-mounted units, will be implemented in some of the underdeveloped areas of Chongqing and will form some of the basic communications system infrastructure, in line with the current modernisation plans of the government of China.

Rest in peace
It's not often that I get invited to a wake in the course of my job; so when it happened, PR gimmick or not, my curiosity was sufficiently aroused that I decided to attend (the free lunch at a posh restaurant had absolutely nothing to do with it, of course).

The event marked the demise of the Packet Terminal, a small hand-held data input device produced by GR Electronics from Newport, Gwent. It has been superseeded, naturally, by restyled and improved models.

The Packet Terminal was born out of an idea from an engineer at National Semi-conductor. This imaginative chap used the case and display of a pocket calculator as the basis of a demonstration unit for a particular microprocessor, using it to generate look-up tables. GR Electronics seized upon the idea, and with National Semiconductor's approval introduced the Packet TTY in 1976. It was re-engineered and renamed the Packet Terminal within a year.

The original case and display were obtained by ripping the guts out of a Texas Instruments pocket calculator, the cases not then being available separately (if you think this is wasteful, there is a company currently doing business in a line of BBC micro-based systems: to obtain the motherboard they buy BBGs and junk the case and associated hardware. Strange world!)

After a slow start in its first two years of life, sales rocketed. Over the years some 50,000 units have been produced, most being sold abroad.

In 1982 a larger unit was produced to satisfy the demand for built-in memory and a larger display. The GR range now includes basic pocket terminals able to cope with Arabic, Hebrew and special characters, larger battery-powered units with memories, a portable terminal, the Oyster, with a built-in modem and ISDN emulator, and a barcode input data collector which for ease of use writes its own applications software.

An interesting aspect of the now-defunct Packet Terminal was its price, which was originally £240. The production of electronic components has advanced so much in the last ten years, with associated decreasing costs, that the price when the unit was phased out was, surprise, surprise, still £240. Inflation? Never heard of it!

Phonethru approval
Hitherto only available for export, IQD's telephone switchboard bypass system, 'Phonethru', has finally been granted fully BABT approval. Using state-of-the-art tone signal technology, the Phonethru system enables outside callers to get directly through to any internal telephone extension from anywhere in the world without going through a switchboard operator. This means they can reach individual extensions after hours or at peak times, and access computers, dictation equipment and answering machines.

Phonethru was previewed at last year's Business Telecom Exhibition and, according to IQD, has already attracted over 600 enquiries and firm orders from around the world. It costs from £460 and IQD is intending to launch a major sales campaign - concentrating on the 320,000 small to medium-sized companies with PABX and key telephone installations in the UK.

Some good advice from the British Safety Council.
SUPER DEAL? NO—SUPER STEAL
THE FABULOUS 25 CPS "TEC STARWRITER"

Made to the very highest spec the TEC STARWRITER PPI 500-25 features a heavy-duty print head, chasIS and DIABLO type print mechanism giving superb registration and print quality. Microprocessor electronics offer full DIALOGIC command compatibility and full control via CP/M WORDSTAR ETC. Many other features include bi-directional printing, switchable 10 or 12 pitch, full width 381mm paper handling with up to 183 characters per line, friction feed rollers for single sheet or single carbon, internal buffer, standard RS232 serial interface with handshake. Supplied absolutely BRAND NEW with 90 day guarantee and FREE factory wheel and dust cover. Order NOW or contact sales office for more information. Optional extras RS232 data cable £10.00. Tech manual £7.50. Tractor Feed £140.00. Spare rusty wheel £3.50. Carryage & Ins £UK Mainland £10.00.

SUMMER OFFER ONLY £399.99!!
DIY PRINTER MECH

Brand New surplus of this professional printer chassis gives an outstanding opportunity for the Student, Hobbyist or Robotics constructor to build a printer - plotter - address etc entirely to their own specification. The printer mechanism is supplied ready built, and all wiring is tested but WITHOUT electronics. Many features include all metal chassis, phosphor bronze bearings, 132 character optical shaft position encoder, NINE needle head, 2x2 phase 12V DC motor for carriage and paper control, 5 1/2" Paper platen etc. Even a manufacturer's print sample to show the unit's capabilities!!
Overall dimensions 40 cm x 12 cm x 21 cm
Sold BRAND NEW at a FRACTION of cost ONLY £49.50 + pp £4.50.

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES
ENGLAND'S LARGEST SURPLUS STORE—SEEING IS BELIEVING!!

DEC CORNER

MAG TAPE DRIVES

Many EX STOCK computer tape drives and spares by PERTEC, CIPHER, WANGO, DIGIDATA, KENNEDY etc. Special offer this month on DAE Cartridge tape drives ONLY £450.00 each. CALL FOR DETAILS

TELETEX ASR33

Industry standard, combined ASCII 110 V DU printer, keyboard, hole paper tape punch and reader. Standard RS232 serial interface. Ideal as a cheap hard copy unit or tape prep. for CNC and NC machines. TESTED and in good condition. Only £235.00. Floor stand £100.00. Carry & Ins £15.00.

EX NEWS

SERVICE PRINTERS

Compact ultra reliable quality built unit made by the USA EXTAL Corporation. Often seen in major Hotels printing up to the minute News and Financial information, the unit operates on 5 UNIT BAUDOT CODE from a current loop, RS232 or TTL serial interface. May be connected to your micro as a low cost printer or via a simple interface and filter to any communications receiver to enable printing of worldwide NEWSPAPERS, TELETEXT and RTTY services.

Supplied TESTED in second hand complete with DATA 90 and 75 baud data sets and large table roll.

TYPE AE11

ONLY £49.95

Spare paper roll for AE11 £4.50

TYPE A11V89C Col

AS/CI/BAUDOT £185.00

Carriage and Insurance £7.50

GE TERMINPRINTER

A massive purchase of these desk top printer terminals enable us to offer you these quality 30 or 120 cps printers at a SUPER LOW PRICE against their original cost of over £100. Unit comprises of full OCRITY, electronic keyboards and printer mech with print face similar to correspondence typewriter. Variable forms tractor unit enables full width - up to 135.120 column paper, upper - lower case, standard RS232 serial interface, internal vertical and horizontal tab settings, standard ribbon, adjustable baud rates, quiet operation plus many other features. Supplied complete with manual £GE1200 120 cps £175.00
£GE1000 30 cps £95.00
£GE100 30 cps £75.00
£GE100 15 baud £60.00
Floor stand £12.50. Carry & Ins £10.00.

SEMICONDUCTOR 'GRAB BAGS'

Mixed Sems amazing value contents include transistors, diodes, lds, ICs, Interface, bridge, diodes etc. All devices guaranteed brand new full spec with manufacturer's markings. Fully guaranteed.

£50 = 2 £9.95 100+ £19.95

TTL 74 Series. A gigantic purchase of an "across the board" range of 74 TTL series IC's enables us to offer these mixers "mosty TTL" grab bags at a price which two or three ICs in the bag would normally cost to buy. Fully guaranteed all IC's full spec. £19.95
200+ £12.30, 300+ £19.95

CENTRONICS 710 PRINTERS

EX RENTAL. Heavy duty full width carriage printer up to 132 columns on 17 inch flocked spec sheet. 60cps print speeds, RS232, 20 or 200 mile loop interface. Supplied in TESTED used condition £350.00 excl. £85.00 carriage and insurance £10.00.

BARGAIN O/F A LIFETIME.

MAIN FILTERS

CUHE those unnerving hang ups and data glitches caused by mains interference with a comprehensive selection of professional quality filters SDLA match with mains filter coupled with mains filter £195.00. Load ONLY £5.95. L12172 compact completely used circuit £3.00 on lifted socket up to 750 watts ONLY £9.99.

EPROM COPYERS

The amazing SOFTY 2 The "Complete Toolkit" for copying, erasing and testing EPROMS of the 2516, 2116, 2716, 2725, 2216. Many other functions include integral keyboard, cassette interface, serial and parallel with UV PH modulator Zip socket etc.

ONLY £149.95 + pp £2.50

"GANG OF EIGHT" intelligent Z80 copier and eraser. SIMPLE single 5v bus EPROMS up to 27128. Will copy 27128 in ONLY 3 MINUTES. Internal LCD displays and checking routines for IDIOT PROOF operation. Only £399.95 + pp £13.00

"GANG OF EIGHT PLUS" Same spec as above but with additional RS232 serial interface for down line loading data from computer etc. ONLY £499.95 + pp £3.00

Data sheets on request.
There are several broadcasting unions for different parts of the world. In Europe there is the EBU, in Africa URTNA, in Eastern Europe OIRT and in Asia ABU. ABU is the broadcasting union of the Arab world which represents the twenty-two Arab member nations (there are in fact only twenty active broadcasting members because Palestine, which is an ASBU member, does not have any broadcast facilities and Egypt’s ASBU membership is currently in suspension). ASBU co-ordinates the TV programme exchanges made through the C-band transponders on Arabsat. Arabsat is currently being used for a daily TV news exchange.

Member countries transmit short suitable news items through Arabsat to the Tunisian TV (RTT) headquarters via the Dkhila earth station. The individual news items are edited into a single package, which is then transmitted back through Arabsat for use in the different Arab countries.

Daily newsfeed

Apart from the daily newsfeed, ASBU also distributes a weekly feature programme which is transmitted at 10pm local time on Tuesday evening in each country. Arabat members take it in turns to provide material for this weekly programme. The Arabat weekly programme is distributed to members through the satellite on Monday morning at 0800Z and held on tape ready for transmission locally the following evening.

ASBU’s Tunis headquarters are connected directly into the RTT’s Tunis building through a microwave link. This enables ASBU and the RTT to work in close collaboration for the preparation of broadcast material for distribution to Arabat members.

ASBU

Tunis is also a major focal point for Arabat and broadcasting activity in the Arab world, because the Arab States Broadcasting Union (ASBU) has its HQ in the Tunis suburb of El Menzah.

<table>
<thead>
<tr>
<th>Time (GMT)</th>
<th>Freq (kHz)</th>
<th>Wavelength (m)</th>
<th>Service area</th>
</tr>
</thead>
<tbody>
<tr>
<td>0400 – 0700</td>
<td>7125</td>
<td>42.11</td>
<td>Middle East</td>
</tr>
<tr>
<td>0700 – 1400</td>
<td>91150</td>
<td>18.025</td>
<td></td>
</tr>
<tr>
<td>0800 – 1400</td>
<td>11750</td>
<td>94690</td>
<td></td>
</tr>
<tr>
<td>1400 – 1600</td>
<td>11750</td>
<td>94690</td>
<td></td>
</tr>
<tr>
<td>1600 – 1800</td>
<td>2785</td>
<td>41.18</td>
<td></td>
</tr>
<tr>
<td>1800 – 2400</td>
<td>7085</td>
<td>41.18</td>
<td></td>
</tr>
<tr>
<td>2400 – 0800</td>
<td>7225</td>
<td>41.52</td>
<td>Western Europe</td>
</tr>
<tr>
<td>0800 – 1600</td>
<td>11750</td>
<td>25.57</td>
<td></td>
</tr>
<tr>
<td>1600 – 2400</td>
<td>7225</td>
<td>41.52</td>
<td></td>
</tr>
</tbody>
</table>

Tunisia’s international SW service is transmitted from Sfax with three 100kW transmitters: winter schedule

ASBU’s current major project is the construction of a TV news and programme exchange centre in Algiers. The Arabat programme centre is being designed with sufficient engineering capacity to be able to co-ordinate the transmission of up to three simultaneous programme feeds. The ASBU centre will handle PAL/SECAM (there is a goodly mix of PAL and SECAM among ASBU members) as well as NTSC for exchanges with the US.

Included in the Algiers project is a 30x30m indoor audio conference matrix which will allow cross connection between sources from any of the twenty-two ASBU members and the three technical consoles (one for each of the three transmission feeds). There will also be provision for cross connection between master control, the VTR/transcoder room, the equipment room, the Arabat Planning Office as well as the Algiers PTT Lakhdaria earth station.

The specification for the centre also calls for the supply of a master control 16x16 video/audio switching matrix, 16 in VTRs, monitor racks, video equalisers, test line generators, video and audio measurement equipment, as well as broadcast quality standards converters (NTSC to PAL/SECAM) and transcoders (PAL/SECAM).

Algiers has been chosen as the site for ASBU’s news and programme exchange centre for a number of technical reasons. The Algerian PTTE have at their Lakhdaria satellite earth station Intelsat antennas for both the Atlantic and Indian Ocean satellites. The Algerian PTTE also has access to the Soviet Intersputnik network from the same satellite station. The new ASBU centre in Algiers will be connected directly to the Lakhdaria earth station through two fixed and dedicated microwave links.

From Algiers there are also good microwave links both with Europe and along the North African coast. Access to the EBU network from Algiers is via microwave through either Tunis or Spain.

Tunisian broadcasting

In common with many other countries (such as France and Switzerland), Tun-
sia has split the responsibilities for programme production and for programme transmission between two different authorities. Since 1982, Telediffusion Tunisienne (TDT) has been responsible for broadcast transmitters and associated microwave across the country, whereas the RTT takes charge of the programming.

National radio

There are two national sound broadcast programmes: one in Arabic and the other in French. Most of Tunisia is covered by both VHF-FM and MW.

The main MW transmitters for the capital are located at the Djedida transmitter centre, 25km from Tunis. A twenty-five year old Telefunken transmitter installation provides a 600kW signal on 630kHz into a single mast radiator for the Arabic language programme. The French language service is carried from the same site, but with a different antenna, on a 100kW transmitter on 963kHz.

The mast radiator for the 600kW/630kHz Arabic service is located at about 1.5km from the transmitter hall. The two are connected by a long overhead high-power wire feeder system, which passes over a main road at no more than 6m above the road. The writer could not help but wonder what the effect might be on electronic ignition systems as they passed within a few feet of the 600kW wire feeder!

A second high-power MW installation (350kW on 585kHz) at Gafsa in Southern Tunisia also carries the Arabic language national programme. The Djedida and Gafsa MW installations are the backbone of the RTT’s national radio network.

International broadcasting

Tunisia’s international radio broadcast services are based at Sfax. There is a 1200kW transmitter installation (consisting of a pair of 600kW Telefunken MW transmitters) operating into a two element vertical array which has been designed to give two main lobes at 102° (Middle East) and 290° (North Africa). The Tunisian MW international service carries the same programming as the Arabic language national programme and is aimed at Tunisians working overseas.

Short wave

The Sfax station is also the site of Tunisia’s short wave broadcast installations. Compared with some other countries that are intent on covering the world, Tunisia’s ambitions in short wave broadcasting are relatively modest. Three 100kW Telefunken transmitters are used to provide services to Europe and the Middle East. Tunisia’s SW services to Europe are carried on just one of two frequencies (eg during the winter months on 7,225MHz or on 11,730MHz), whereas the Middle East service is carried on two frequencies simultaneously (eg from 1402z to 1600z during the winter months, the Middle East service is on 9,680MHz and 11,750MHz at the same time). The curtain arrays for the Middle East service at Sfax permit multi-band operation. One 100kW transmitter is used for Europe and the two others are for the Middle East.

Tunisia does not currently have a long wave service, but it does have an allocation (281kHz) within the Geneva plan. A feasibility study is currently being undertaken by a UK consultancy firm.

Tunisian TV

It was in 1960, at the time of the Rome Olympics, that the first ever TV transmitter was installed in Tunisia. In fact in those days it was a transposer rather than a transmitter, because it received signals off-air from a RAI transmitter in Sicily, and retransmitted the RAI programme to viewers in Tunis. Today the RAI-1 feed is brought to Tunis on a microwave.

Although the RAI rebroadcast service started over twenty-five years ago, it was not until 1986 that Tunisian TV proper got under way.

Viewers in Tunis today have the choice of three programmes. Apart from the RAI-1 rebroadcasts (which are available from one transmitter site only) there are two national Tunisian programmes. The Arabic language service is carried on VHF and the French service on UHF. However, viewers with multi-standard sets located in good sites can also receive programmes from Algeria (PAL) and Libya (SECAM).

Conveniently placed

The capital city is served by two TV transmitter sites, Boukorne and Zaghouran. Although the city of Tunis itself is low-lying, just 15km away there is a conveniently placed 576m high peak called Boukorne, which is used by both the Tunisian TV and the PTT as a transmitter and microwave relay point.

Transmitters at Boukorne carry the two national TV programmes (VHF:Ch E7 and UHF:Ch 26) as well as RAI-1 on Ch E5.

The two national VHF-FM stereo services are also broadcast from the same site using 1kW transmitters. The VHF and UHF transmitters at Boukorne are all around the 1kW level. Tunis’ more powerful transmitter station is Zaghouran, from where the two FM services are provided through 10kW transmitters (96.5MHz and 92.0MHz). The Arabic TV programme is radiated on VHF Ch E11 with a 10kW transmitter. The French language programme is on UHF Ch 33 with a pair of 20kW transmitters in active reserve (40kW).

The Arabic language TV service is on VHF Band III channels all across Tunisia with one exception: the new station in Ramada in the south of Tunisia, which has had to use a Band I channel (E4) in order to avoid interference from all the high-power Band III transmitters located in Libya.
ADL 1540 - A 15x48 Wohm medium power module for domestic applications with a distortion figure of 0.8%, operating voltage 28.5V.

$3.85 + VAT

ADL 8200 - Compact 25W module for domestic applications with a distortion figure of 0.8%, operating voltage 28.5V.

$4.15 + VAT

ADL 5070 - Top class 50W module with self-contained heatsink and built-in protector circuit, together producing reliability at a Class A level.

$4.95 + VAT

$10.50 + VAT

ADL 13980 - A rugged top of the range module providing output powers up to 128W into 8ohms, which employs 4 heavy duty output transistors to provide a wide range of outputs. Currently sold in discount units, public address systems, juke boxes and drain dynamic mixers.

$17.40 + VAT

$8.85 + VAT

All modules supplied with a comprehensive Data Sheet.

POPOY ROAD, Dept RE 14
RISCOM, RUSKS
Tel: (0844) 63326

Radio & Electronics World — The communications and electronics magazine

Don't take a chance on being able to get your copy

AVOID DISAPPOINTMENT

Place a regular order with your newsagent

Should you have any difficulties obtaining a copy, phone (0277) 219876 or write to Circulation Department, Radio & Electronics World, Sovereign House, Brentwood, Essex CM14 4SE

NEWSAGENT ORDER FORM

To (name of newsagent)

Please order a copy of Radio & Electronics World for every month

NAME

ADDRESS

Newstand distributors: Seymour, 334 Brixton Road, London SW9 1AG. Tel: 01-733 4444

Blow BARGAINS

<table>
<thead>
<tr>
<th>Ref</th>
<th>Qty</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP2</td>
<td>30</td>
<td>Assorted Resistors Mixed Types</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP3</td>
<td>200</td>
<td>Carbon Resistors 0.1% - 0.05W Pre-Formed</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP4</td>
<td>200</td>
<td>1-100 Ohm Resistors Mixed Types</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP5</td>
<td>150</td>
<td>Assorted 15W Carbon Resistors</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP6</td>
<td>200</td>
<td>Ceramic Caps Miniature - Mixed Values</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP7</td>
<td>100</td>
<td>Mixed Ceramic Discs - 100p to 1560pf</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP8</td>
<td>100</td>
<td>Mixed Ceramic Disc, 0.01p to 0.047uf</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP9</td>
<td>100</td>
<td>Assorted Fixed Film Capacitor Mixed Types</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP10</td>
<td>50</td>
<td>Electrolytic - All Sizes</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP11</td>
<td>50</td>
<td>Electrolytic 0.1uf to 100uf Mixed Values</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP12</td>
<td>30</td>
<td>Silver Mica Caps Mixed Values</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP13</td>
<td>25</td>
<td>21/200v Mn, Metal, Wire Caps</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP14</td>
<td>50</td>
<td>Wide Range Res. Mixed Wire Values</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP15</td>
<td>50</td>
<td>Metris PVC Single Strand Wire Mixed Cots</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP16</td>
<td>50</td>
<td>Metris PVC Poly Stranded Wire Mixed Cots</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP17</td>
<td>25</td>
<td>Assorted Resistors - Carbon Wire</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP18</td>
<td>10</td>
<td>Rocket Switches 2a 25v</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP19</td>
<td>10</td>
<td>Assorted Switches Under-cut/Push</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP20</td>
<td>300</td>
<td>B1 400v Class C, D & E</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP21</td>
<td>10</td>
<td>12v or 24v, Red LED's</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP22</td>
<td>10</td>
<td>Mixed Dode and Colours LED's</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP23</td>
<td>10</td>
<td>Small 5v LED's</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP24</td>
<td>5</td>
<td>Large 2v LED's</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP25</td>
<td>30</td>
<td>Assorted Resistors 25w</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP26</td>
<td>10</td>
<td>Assorted Value 25w Resistors</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP27</td>
<td>10</td>
<td>5a SCR T060 5-40v Coded</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP28</td>
<td>10</td>
<td>5a SCR T060 Up To 100v Coded</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP29</td>
<td>10</td>
<td>Diodes Up To 1n4148</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP30</td>
<td>10</td>
<td>Diodes Up To 1n4148</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP31</td>
<td>10</td>
<td>1a 94005 All Good Uncoded</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP32</td>
<td>10</td>
<td>1a 94005 All Good Uncoded</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP33</td>
<td>10</td>
<td>Assorted Fixed Toroidal Filter Board</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP34</td>
<td>10</td>
<td>Assorted Fixed Toroidal Filter Board</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP35</td>
<td>50</td>
<td>Assorted Resistors Mixed Values</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP36</td>
<td>50</td>
<td>Assorted Resinity Mixed Values</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP40</td>
<td>40</td>
<td>TTI's 15a New Gates - Flip Flop - MSI Data</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP41</td>
<td>10</td>
<td>Black Heatshrink FG T0-70 200 Printed</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP42</td>
<td>10</td>
<td>Heatshrink FG T0-70 200 Printed</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP43</td>
<td>20</td>
<td>Power-Flux-Pot M3X5X10X10X25 2X50 2X50 2X75 2X100</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP44</td>
<td>10</td>
<td>Power-Flux-Pot M3X5X10X10X25 2X50 2X50 2X75 2X100</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP45</td>
<td>50</td>
<td>RS-170A Transistors Good Uncoded</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP46</td>
<td>20</td>
<td>RS-170A Transistors Good Uncoded</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP47</td>
<td>10</td>
<td>Power-Flux-Pot M3X5X10X10X25 2X50 2X50 2X75 2X100</td>
<td>£1.00</td>
</tr>
<tr>
<td>VP48</td>
<td>5</td>
<td>Power-Flux-Pot M3X5X10X10X25 2X50 2X50 2X75 2X100</td>
<td>£1.00</td>
</tr>
</tbody>
</table>

Additional LED Transistors £1.00

BI-PACK PCB ETCHANT & DRILL KIT

Complete PCB Kit Comprises

1 x 2in Drill, 2 x Twist Bits
1 x Sheet PCB Transfers, 1 x Etch Resist Pen
1 x 10 Pack Ferric Chipboard Crystals
2 Sheets Copper clad board Papier-Fibre Glass & Double Sideled

Full instructions for making your own PCB Boards.

Actual Retail Value £16. Our Special Price

Order Ref: VP54 £10.50 only

Use your credit card: Ring us on 0783-46113 Now and post your order with a £1.00 cash deposit in a P.W. Cheque or Postal Order.

TERM CASE WITH ORDER, SAME DAY DESPATCH, ACCESS, BARBECUE & KITCHEN ACCESSORIES, 0783-46113. ORDER 338 T000 ADD 15% VAT AND £1.00 PER ORDER POSTAGE AND PACKING

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement

APRIL 1986
In order to bring to readers the latest news of the amateur radio world, your scribe has to read as many magazines and so on produced for the radio amateur as possible. Of the many he peruses, one, namely QO, can usually be relied upon to produce something of interest. Zero Bias, its editorial column, is the helms to time pretty controversial, but it does at least attempt to bring some enlightenment to many of the problems besetting the current amateur radio scene, and does make suggestions for dealing with them and planning amateur radio’s future.

One of the things which seems to be greatly concerning our friends over in America is the fall off in the number of young people coming into amateur radio. In fact, to read some of the comments about the amateur radio scene in America one would gather that the hobby is ‘on the way out’. This most certainly cannot be the case! Maybe what is happening is that it is getting too ‘high tech’ for some modern youngsters, who seem inclined to want everything presented to them on a plate, enjoying its pleasures with the minimum of effort.

In an editorial in a recent issue, Alan Dohrffer K2EEK, the editor of QO, examines this problem in some detail, and his comments make interesting reading. He rightly points out that amateur radio is a way of life for many of us, particularly those of us who have been in it for a lifetime. Nowadays, young people simply do not have the same aspirations as many of us had at their age, to radio still has its magic but the approach to it is totally different. For young people today it is at best a part of life — a small part among many other interests.

In this country, amateur radio seems to have benefited from quite a number of folk who took up CB radio and found that it was not as stimulating as they expected. They then turned to amateur radio, taking up the hobby seriously and eventually finding it of greater interest than CB radio. To judge from the escalation in the number of new licencees who are appearing on the bands, there would seem to be no lack of interest among all ages of the community in amateur radio, which is very encouraging. Rather like a diamond, amateur radio has many facets, all of which can shine if caught in the right light and one or more of which can be relied upon to catch the eye of he who looks carefully at it.

The Challenger shuttle disaster

The disaster which befell the Challenger shuttle was significantly poignant to the amateur radio fraternity because it was the shuttle that the media attention attracting slow scan TV experiments carried out by radio amateur astronaut Tony England took place on a previous mission.

Whilst NASA’s aim is safety first and foremost, all spacecraft crews realise only too well that such trips still carry a large element of risk. As Alistair Cook said in his Letter from America radio broadcast following the disaster: ‘Something like this catastrophe was bound to happen some day.’ Some failures are inevitable in such ‘high tech’ experimental, projects. Even routine aircraft flights still have their failures from time to time.

It is good to know that NASA is determined to continue its shuttle activities and we look forward to further amateur radio experiments such as those carried out from the Challenger before this disaster.

The new bands

There are so many new things coming along in amateur radio these days that it is certainly difficult to keep tabs on all of them. It was not so long ago that we were all excited about the new bands we had been allocated: 10, 18 and 24MHz. So how are they faring? Of the three, 10MHz is the most popular, due obviously to the isophoric conditions prevailing at present. Despite pretty fierce competition from the commercials still occupying that band, a good number of amateur CW signals can now be found on the band. During midday hours this is mostly short-skip, but enthusiasts can find useful DX if they choose the right hours. 18MHz and 24MHz are not showing quite such an increase in activity, but no doubt as the new solar cycle builds up conditions will improve for them too, with what will undoubtedly be most interesting results.

Council of Europe AR station

It is reported that the Council of Europe has authorised the establishment of an amateur radio station at their HQ in Strasbourg. The callsign is said to be TP21 and the station was scheduled to be operative from the beginning of this year. The address for QSLs, etc, is Amateur Radio Station TP21, 8 Rue de General Ganeval, 67000, Strasbourg.

‘High tech’

Your scribe has always thought what fun it would be to run a transmitter with water cooled valves — just like the commercials do! Lo and behold, in the latest edition of the VHF/UHF Newsletter, published by the RSGB, there appears a modification to a 7289/3CX100-A5 valved VHF linear amplifier showing just how increased power can be safely obtained from this valve by water cooling it! Details are given of a nice little water cooled attachment which can be fitted in place of the usual air cooling radiator. That should be fun! I like it!

In the same issue of the newsletter is another good idea. G3KXE uses a fish tank aerator pump to drive dry air through his coax antenna feeder. He finds that in cold weather the vapour from warm air introduces condenses inside the cold feeder, thereby decreasing its efficiency greatly. Passing the dry air through the feeder cures the problem.

Peter A Stein of Liverpool has asked us to give as much publicity as possible to the Tiros N User Group. We have just received information of another group whose interests appear to be in much the same field, though its ambitions seem to be focused more on the utilisation of space platform facilities of the future than on present activities. For copies of the latest newsletter, please mention RADIO & ELECTRONICS WORLD when replying to any advertisement.
active in the amateur weather satellite field for some 15 years using a wide variety of equipment. His role within the group is to represent the amateur interest. The group aims to provide better links between the UK user community and NOAA in Washington and also improve the methods of providing information to users.

Within the UK, the Tyros-N Data Users Working Group is acting to increase collaboration between various data source groups and data users. In particular, improved data archiving and access systems are being considered. UK requirements and suggestions are forwarded to NOAA for consideration not only in the Tyros-N programmes but also with a view to the future Columbus programme. There are already some tangible benefits from this co-operation between the UK and NOAA; increased interaction between institutes in both countries for the development of data sources, by sharing and exchanges of expertise, plus the setting up of the UK Weatherwatch programme. The group looks at areas of possible development of the Tyros-N programme and more generally acts in the interests of data users in the UK.

Peter would welcome information from amateurs who have working stations so that an integrated picture of the amateur user can be obtained. He can be contacted at his home address: 32 Lusitania Road, Walton, Liverpool L4 6SX.

The Columbus programme is the European contribution to President Reagan's instruction to NASA to develop a space station by 1994. He subsequently invited the heads of government of the UK, France, Germany, Italy, Japan and Canada to participate in the project.

Phase-3C satellite progress

The next amateur radio satellite in the Phase-3 series is nearing completion. Work in Marburg, West Germany and in the United States is being pushed ahead for a possible launch in August from an Ariane 4 rocket. A hold up in the Ariane launch last January may result in a delay in the launch of Phase-3 C until September.

AMAT-UK

A colloquium and social evening is being arranged at the University of Surrey, Guildford, Surrey on 5 and 6 July. A series of lectures covering up to date aspects of amateur radio satellite activities and possibly a trade show covering satellite equipment will be staged.

AMATEUR RADIO WORLD
934 MHz PERSONAL RADIO

The Nevada Range

Join the growing number of people discovering this exciting radio band.

934 MHz offers 2 way high quality communications from 10 - 250 miles (according to location/weather conditions).

The Cybernet Delta 1 934 MHz Transceiver

Has been engineered specifically for the UK market using latest "state of the art" technology.

SWR/Powder Meter

This precise and extremely accurate meter features an illuminated scale, low loss type connectors and fuse meters for both power and SWR measurement. Power 0-50 watts in two ranges.

Remote Antenna Switch

High quality weatherproof masthead mounting switch. For switching 2 antennas with one cable feed.

Automatic Antenna Switch

Remotes DC switch for masthead antenna switch.

WX 900 SWR/Powder Meter

A new case unit measuring power to 100 watts in three ranges.

Ask your dealer for more information or contact us direct.

Professional Series

Telecomms, 189 London Road, Portsmouth PO2 9AE. Tel: 0705 662145 Telex: 869107 TELCOMG

Nevada 934 MHz Catalogue with full details and specifications of the complete range is available from Telecomms £1.00.

APRIL 1986

Please mention RADIO & ELECTRONICS WORLD when replying to any advertisement.
LISTEN-ON-INPUT FOR THE ICOM IC-2

John Rowles G4ZUH details a conversion which will allow you to listen to the input of a repeater without manually altering the thumbwheel.

One of the most useful features of a 2m transceiver is the ability to instantly check the input frequency of a repeater to see if a simplex contact is possible. The Icom IC-2, in common with most other synthesised 2m transceivers, achieves repeater shift by transmitting 600kHz lower than the selected receive frequency. It is therefore necessary to manually alter the thumbwheels to listen to the input of a repeater, a tedious and time consuming operation. The following conversion will allow instant push-button access to repeater frequencies.

Firstly let us consider the method used by Icom to program the phase locked loop of the synthesiser. Frequency selection is by three thumbwheels selecting the units of MHz, 100s of kHz and 10s of kHz, with a further switch adding 5kHz. Each thumbwheel is BCD coded (slightly modified on the MHz wheel to prevent out of band operation) and directly addresses the programmable divider (IC1 on your Icom circuit diagram).

The UK standard for repeater operation is for the repeater to receive incoming signals 600kHz below its transmit frequency.

It would appear that the simplest solution to providing listen-on-input would be to use a four bit adder to alter the programming from the 100kHz thumbwheel as shown in Figure 1. This will in effect add 4 to the programmed input from the thumbwheel, which has the same result as deducting 6 when there is no 'carry-out' to consider. This method would provide the facility of reducing the programmed frequency by 600kHz when switch S1 is depressed.

Difficult to achieve
Practically this proved to be very difficult to achieve, due to the lack of space inside the IC-2 to accommodate a 16-pin integrated circuit. Alternative methods were therefore considered.

In the UK repeaters use only R0 to R7, that is, output frequencies from 145.600 to 145.775MHz inclusive. Therefore for repeater use the 100kHz thumbwheel will be set to either 6 or 7 and the BCD codes presented to the programmable divider will be either 0110 (6) or 0111 (7). Now the input frequencies to the repeaters range from 145.000 (R0) to 145.175MHz (R7), so to listen to a repeater input frequency the 100kHz thumbwheel would be set to 0 or 1 and the BCD codes generated would be either 0000 (0) or 0001 (1). It can be seen from this that if the two middle bits of the BCD codes for 6 and 7 are reset from logic 1 to logic 0 the effect is to present the codes for 0 and 1 to the programmable divider, in other words 'listen-on-input'.

Disadvantages
The disadvantage of this approach is that a downshift of 600kHz will only occur when the thumbwheel is set to 6 or 7, as can be seen from Table 2. Listen-on-input for R8 (145.800MHz) as used in Europe will therefore not be available.

Practically this approach only requires the switching of the two centre bits of the BCD code from the 100kHz thumbwheel, and enables a more compact board to be produced that can be easily accommodated inside the IC-2.

The method finally decided on to achieve this was to insert two transistor switches between the thumbwheel and programmable divider IC as shown in Figure 2.
Now considering the internal layout of the IC-2, the thumbwheels are connected to the programmable divider by a 'flexible board', which in effect is a specially formed type of ribbon connector. This does not lend itself to easy alteration, and to enable the IC-2 to be easily returned to original specification, it was decided to insert a further board between the flexible board and the programmable divider. The switch S1 can be incorporated in the volume control of the IC-2 if the previously described conversion to auto-tone (R&E World December 1985) has been done, or alternatively a replacement volume control can be obtained from an Icom dealer and installed in place of the squelch control (both are 10k).

Construction

The PCB should be etched on the thinnest section board you can obtain. SRBP based material is perfectly suitable in this application and is normally available in thinner grades than fiberglass. The board layout itself should be strictly adhered to as space is at a premium inside the IC-2, and the dimensions shown can just be accommodated. The two transistors and resistors are soldered to the track side of the board, as shown in Figure 4. Tr2 is mounted in line with the board and Tr1 at about 30° from the vertical to reduce height clearance. R1 and R2 are mounted vertically as shown, or if you prefer, alternative mounting holes are provided to allow horizontal mounting. If ½W resistors cannot be obtained ¼W can be accommodated, but R1 will require mounting at an angle to reduce height clearance to about 4mm above the board surface, and R2 can be positioned horizontally on top of Tr2. Take care that R1 will not short-out on the VCO case if the larger resistors are used.

All component leads should of course be as short as possible, and a fine pencil-bit soldering iron is essential. At this stage some of the flying leads of thin covered flex that will connect to S1. New mounting posts must be provided for the flexible board. This is achieved by cutting twelve 10mm lengths (about the shortest length easily handled) of 20swg tinned copper wire and soldering these into rows B and D on the board so that they stand proud on the track side.

To check that the flexible board will locate easily on these posts use a piece of 0.1 matrix board (Vero etc) to ensure that the newly installed posts are accurately aligned, adjusting as necessary. Cut these pins down to 4mm height above the board and again check them with the matrix board. Finally, on the non-track side of the board cut off any protruding leads flush with the surface.

Before installing the new board it would be prudent to carefully check for solder bridges and then to test the board as follows. Using a 5V dc supply, connect the positive to pin 1 of row B and a logic probe or meter between pin 1 of row A and 0V on the power supply. A reading of about 4½V or logic 1 should be seen. Connect the flying lead to 0V of the power supply and the reading should drop to 0V or logic 0. Repeat for pin 2. If all is well then proceed to the next stage.

Installation

Carefully desolder the flexible board from its mounting posts either side of IC1. Use the minimum heat possible to avoid damage. Ease the flexible board off its mounting and lay it to one side. Locate the new board, track side up, on the mounting posts. It may be necessary to file the bottom corner of the board to clear the electrolytic capacitor mounted next to pins 15 and 16 of IC1.

Check the height clearance of Tr1, R1, R2 and the mounting posts by laying a straight edge across the side members of the IC-2 chassis. Adjust if necessary. If all is well solder the board into position. Check at this stage for solder bridges, as these connections will be obscured by the flexible board.

Testing

Set the frequency on the thumbwheels to 145.600MHz, connect a well smoothed and regulated 8 to 9V supply to the IC-2 and switch on. Using a logic probe or meter set to 5V range, check that the programming on the programmable divider, IC1, is 0110 for the 100kHz switch output (see Figure 5). Depress the listen-on-input switch – the programming should change to 0000.

Repeat with the thumbwheels set at 145.700, when 0111 and 0001 should be found respectively.
A USER REVIEW OF THE
ICOM IC-R71E
GENERAL COVERAGE RECEIVER
by Ken Michaelson G3RDG

This is the second user review of a
general coverage receiver that I
have carried out recently, which makes
the examination of this particular
receiver all the more interesting. In my
review of the Trio R-2000, in the February
1986 issue, I said that I used the Trio
R-1000 as my normal receiver and that it
was useful to compare the new updated
unit with my own equipment.

Well, let me tell you at the start that the
Icom IC-R71E is a different kettle of fish
altogether. It is in a different class. That
is not to deprecate the Trio R-2000, but
the cost of the R71E is half as much again
as the R-2000 and this is reflected in the
facilities which are available. At the
outset there are 32 tunable memories,
but I think I had better start at the
beginning.

Impressive specification
The specifications of the receiver are
very impressive. There are 90 transistors,
19 FETs, 47 ICs (including the CPU) and
237 diodes. The frequency control is a
CPU-based 10Hz step digital PLL synthe-
sizer with a dual VFO system. The
frequency stability is stated to be less
than 200Hz between 1 and 60 minutes
after switch-on and less than 30Hz after 1
hour. With the optional CR-64 high
stability crystal it is possible to improve
this already excellent figure, the
crystal giving less than ±50Hz from 1 to 60
minutes after switch-on to less than
±10Hz after one hour of normal room
temperature.

I did not have the necessary equipment
to measure this stability for myself, but I
used the unit for the reception of FAX
broadcasts emanating from various
weather centres. In order to copy these
pictures correctly it is essential that the
receiver does not drift. I can only say that
when this receiver was used the picture
reception remained rock steady. This
was also the case in the reception of
commercial RTTY transmissions.

Quadrapule conversion
The unit is a quadrapule conversion
superhet with continuous bandwidth
control (passband tuning). This is similar
to several other makes of receivers and
transceivers, although it is called
different names by different manufacturers.

In the FM mode, when the optional
module is fitted, the receiver acts as a
triple conversion superheterodyne. The
sensitivity on SSB, CW and RTTY is less
than 0.15 microvolts for 10dB S+N/N,
except between 0.1MHz and 1.6MHz
where it is 1 microvolt.

The AM sensitivity is less than 0.5
microvolts, also with the qualification
that between 0.1MHz and 1.6MHz it is 3
microvolts. The selectivity is also
exceptional: on SSB, CW and RTTY it is
2.3kHz at –6dB adjustable down to 500Hz
minimum, and the –60dB figure is 4.2kHz.
On CW narrow and RTTY narrow
(achieved by switching in the 'narrow'
filter) it is 500Hz at –6dB and the –60dB
reading is given as 1.5kHz.

The AM selectivity is 6kHz at –6dB
adjustable to 2.7kHz minimum, and is
15kHz at –50dB. The FM figures where
the module is fitted are 15kHz at –6dB
and 25kHz at –60dB. The weight of the
unit is 7.5kg (16.5lbs) and it requires 117
or 235 volts ±10% at 50/60Hz. To operate
the receiver on 100/200/220 volts requires
internal modifications.

The receiver is 111mm (4½in) high
×286mm (11¼in) wide ×276mm (10½in)
deep. It is finished in battle ship grey
with the front panel and surround in a
darker shade of grey. The six-digit
frequency readout, together with the
mode, memory channel number and VFO
information, is displayed at a window
slightly to the right of centre. Immediately
under it is the tuning knob, a
very substantial affair with a beautiful
feel about it. To the right and left of the
tuning knob are four push on/push off
switches at either side, but these will be
examined later.

S-meter
To the left of the frequency display is
the S-meter, calibrated in S units to
+40dB, and below that is a line of push
on/push off switches for the modes of
reception.

There are four modes available in
standard form: SSB, AM, RTTY and CW.
There is an optional plug-in unit to
provide for FM reception but this was not
available for the review.

Below these four are two more con-
trols, the left-hand one being the pre-
amp/off/attenuator switch and the right-
hand one the wide/narrow filter switch.
At the top left are two more controls and
two more push on/push off switches. The
right-hand control operates the AGC
(off/fast/slow) and the left-hand one
works the noise blanker threshold with
the switches for operating the noise blanker below. There are also facilities for altering the blanking time (narrow/ wide) and, as mentioned above, the threshold. A very comprehensive facility, this.

Phone socket

To the left again, at the bottom, are the phone socket, the record socket (a 3.5mm one), dual-ganged RF and audio gain controls, and dual-ganged tone and squelch controls. This squelch control is a recent innovation in general coverage communications receivers, and one has to remember its existence. Having said that, there is no doubt of its usefulness. I did not have the FM module of the receiver for review purposes, but I am sure that the squelch control would have been able to show its paces in that mode.

To the right of the tuning knob is the numerical keyboard entry pad, where one can key any frequency and either enter or cancel the operation by means of keys labelled 'CE' or 'ENT'.

There are two VFOs in this receiver, and this fact, added to the 32 memories which are available, gives the operator complete freedom of choice in the matter of deciding which frequencies to use. To the left of the keypad are four more push on/push off switches. From top to bottom these are: 'speak', which if pressed when the optional speech synthesizer is installed announces the displayed frequency in English; 'M to VFO' (frequency transfer switch) which, when in VFO operation, transfers the frequency and mode in the memory channel whose number is shown on the readout to the selected VFO; 'A=B' (VFO equalising switch), which instantly sets the frequency of one VFO to the same as that of the other; and 'A/B' (VFO switch), which selects either VFO 'A' or VFO 'B' at the user's choice.

Memory channel switch

Immediately below the keypad is the memory channel switch, a rotary one with the 32 positions mentioned earlier, and to the right are the 'write/clear' switch and the notch switch. To the right again is the dual-ganged passband tuning/notch control.

There are eight more switches, four either side of the main tuning control. The top left-hand one is the 'dimmer switch', which does exactly what it says. The next one down is 'scan', which starts and stops any of the scan functions. When the scan switch is depressed on its own the unit will scan through memory channels continuously, regardless of the mode selected in the memory (it will skip all blank channels, and will not start on a blank channel). If the squelch is engaged, the scan will stop when the squelch is opened and a signal is received, and will restart after a specified time.

The operation of scanning can be stopped at any time by pressing the scan switch again. If both the scan and 'mode-' S' are depressed, then the unit can only scan those channels in the memory which have the same mode of operation as the commencing channel. That is to say, if you start with a memory channel in USB the unit will only scan those other channels which are also USB, and so on.

There is also an alteration of variation of scanning available to the operator, and that is 'programmed scan'. In this case one puts into the memory in channels 1 and 2 the upper and lower limits of frequency which one wishes to scan, then switches to VFO on the 'VFO/M' switch, presses scan, and behold, the unit scans over the limits of the two frequencies originally put in, starting at the higher frequency and, when reaching the lower limit, reverting back to the higher one again and repeating the process.

The rate of scan is altered by the tuning rate (top switch, right-hand side, labelled 'TS'). In this situation the squelch control may also be used, so that if one is waiting for a sked between, say, 14300 and 14200 the unit can be programmed to scan between these two frequencies indefinitely, stopping at any signal which might open the squelch and which might be the one you are waiting for.

Optional extras

An optional extra which can be obtained is an infra-red remote controller similar to those which control modern day television sets. This contains a keypad with most of the controls which appear on the front panel of the set on it, and which I have discussed above, so that the receiver may be controlled from a distance.

To operate this, the 'remote' switch (bottom left of the tuning knob, finished in chrome) is depressed, and a red indicator appears just to the right of the display area.

The other chrome finished switch (bottom left of the tuning knob) is the 'dial lock', through which the operation of the VFO is electronically locked at the displayed frequency so that an accidental touch will not disturb the tuning. The lock is disconnected by pressing the switch again, which is a good idea.

On the rear panel of the receiver is the usual mains input socket, the fuse holder and a phono socket for the take-off of the 70.4515MHz IF. This is intended to be fed to either an oscilloscope for the display of the incoming signal or to a panadaptor to show what might be on the segment of the band that is being used.

There are also two antenna inputs, one the normal 50 ohm SO259, and the other a 4mm socket for a long wire intended for frequencies below 1.6MHz. There is also a socket for an extension speaker.

Underneath the set at the front is a little screw which, when screwed in, acts like a brake to the tuning knob. It is therefore possible to get the exact amount of friction that any owner might require in the movement of the tuning knob by the adjustment of this screw.

I was completely at home with the receiver after I had absorbed the instructions in the comprehensive owner's manual and this is a point I must stress. It is vital for anyone owning this excellent piece of equipment to read and read again the guidance and advice given in the manual. By so doing, full benefit will be obtained from the many facilities available in the receiver and it will be used safely.

Appreciated

Although I have had the receiver since before Christmas, only recently have I begun to appreciate the finer points in the fidelity. Am I a convert? Am I not? I arranged to connect up my existing transceiver, a Trio TS820S, so that I could use the IC-R71E as the receiving section. I am afraid that I am sadly disillusioned with the receive section of my own rig! Stations which I thought I couldn't copy with my own unit, even on AmTOR, have been perfectly readable, although I have a shocking amount of electrical interference on 80 metres.

I can't say that I have any gripes about the unit, except perhaps to wonder at the need for 32 memories! Also, why would one want to control this beautiful piece of equipment remotely? However, what I think is unnecessary may be essential for somebody else.

I was very impressed with the smoothness of the tuning drive and the operation of the 'notch', the latter being of great help on my favourite band, 80 metres. All in all, I can thoroughly recommend the IC-R71E as a dream receiver. I was extremely sorry to have to return it to the suppliers.

The cost of the basic receiver is £729 including VAT, and there are twelve optional extras available (see table).

Thanks are due to Thanet Electronics Ltd, Sea Street, Herne Bay, Kent CT6 8LD (telephone: (0227) 363859) for the loan of the receiver for the purpose of this review.

ICOM IC-R71E OPTIONS

<table>
<thead>
<tr>
<th>Option</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT-70 d-c cable kit (12 volt)</td>
<td>£6.50</td>
</tr>
<tr>
<td>CT-10 computer interface/terminal unit</td>
<td>£339.00</td>
</tr>
<tr>
<td>IC-EX257 FM unit</td>
<td>£37.00</td>
</tr>
<tr>
<td>IC-EX303 computer interface connector unit (RT1 only)</td>
<td>£44.00</td>
</tr>
<tr>
<td>FL-63 CW narrow filter (250Hz/~5dB)</td>
<td>£46.00</td>
</tr>
<tr>
<td>FL-44A high grade SSB filter (2kHz/~5dB)</td>
<td>£29.00</td>
</tr>
<tr>
<td>IC-11P headphones</td>
<td>£29.95</td>
</tr>
<tr>
<td>RC-11 infra-red remote controller</td>
<td>£56.43</td>
</tr>
<tr>
<td>IC-EX519 voice synthesizer unit (RT1 only)</td>
<td>£42.00</td>
</tr>
<tr>
<td>IC-SPS external speaker</td>
<td>£55.99</td>
</tr>
</tbody>
</table>

All the above prices are inclusive of VAT
S E E A N D H E A R

This year at the N.E.C. Exhibition Thanet Electronics will be introducing the complete range of ICOM Amateur Radio Equipment. You will be able to try out and purchase accessories, receivers and transceivers in all popular frequency bands. The range and scope of these will enable you to appreciate the superb specifications and quality of ICOM equipment.

Stand D4

IC-735,
The Complete HF Radio

The new ICOM IC-735 is ideal for mobile portable or base station operation. It has a general coverage receiver from 0.1 MHz to 30 MHz and transmits on all amateur bands from 160m to 10m. SSB, CW, AM and FM modes are included as standard. RTTY and Amor are also possible. The IC-735 has a built-in receiver attenuator, pre-amp, noise blanker and RIT to enhance receiver performance. A 105dB dynamic range with pass band tuning and a sharp IF notch filter for superior reception. The twin VFO's and 12 memories can store mode and frequency. The HM12 scanning mic is supplied. Scanning functions include programmes scan, memory scan and frequency scan. The IC-735 is one of the first H.F. transceivers to use a liquid crystal display which is easily visible under difficult conditions. Controls that require rare adjustment are placed behind the front panel hatch cover but are immediately accessible. Computer remote control is possible via the RS-232 jack. Output power can be adjusted from 10 to 100 watts with 100% duty cycle. A new line of accessories are available, including the AT150 electronic automatic antenna tuner and the PS55 AC power supply. The IC-735 is also compatible with most of ICOM's existing line of HF accessories. See the IC-735 at your authorised ICOM dealer or contact Thanet Electronics Limited.
IC-50S, 50MHz Transceiver

The IC-50S is a 50MHz band SSB, CW transceiver, and has already gained an excellent reputation worldwide. The dual VFO system has been developed using advanced computer and PLL technology. The IC-50S features 6 channel memories and can be used independent of emission modes, memory scan, program scan which searches only specified frequency band. LCD ensures clear visibility even in sunlight. The R.F. amplifier, a dual gate MOSFET features high gain and low noise characteristics. The IC-50S accepts a standard dry cell packs rechargeable nicad battery pack (BP10) or 13.8v external power supply. 3 watts R.F. output, 0.5 watts low power, 10 watts at 13.8v. Accessory circuits include split frequency operation, noise blanker, squelch and CW break-in. Options include - P545 AC Power Supply. All these features make the IC-50S a great transceiver for operation on the 50MHz band.

IC-R71E, General coverage receiver.

The ICOM IC-R71E 100KHz to 30MHz general coverage receiver features keyboard frequency entry and infra-red remote controller (optional) with 32 programmable memory channels, SSB, AM, RTTY, CW and optional FM. Twin VFO’s scanning, selectable AGC, noise blanker, pass band tuning and a deep notch filter. With a direct entry keyboard frequencies can be selected by pushing the digit keys in sequence of frequency. The frequency is altered without changing the main tuning control. Options include FM, voice synthesizer, RC-11 infra-red controller, CK70 DC adaptor for 12 volt operation, mobile mounting bracket, CW filters and a high stability crystal filter.

The ICOM Control System

If you have a BBC Micro (Model B) or Commodore 64 or 128, the ICOM control system can control up to four (or more) ICOM radios in the range: IC-751, 755, R71, R7000, 271, 471 and 1271 (and 745 with modification). The help menu shows the available functions. The system will be displayed at N.E.C. BCNU.

Stand D4

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0</td>
<td>Frequency</td>
</tr>
<tr>
<td>F1</td>
<td>Select Mode</td>
</tr>
<tr>
<td>F2</td>
<td>Freq/Memory Scan</td>
</tr>
<tr>
<td>F3</td>
<td>Mode Scan</td>
</tr>
<tr>
<td>F4</td>
<td>VFO → Memory</td>
</tr>
<tr>
<td>F5</td>
<td>Memory Write</td>
</tr>
<tr>
<td>F6</td>
<td>Memory Clear</td>
</tr>
<tr>
<td>F7</td>
<td>Set ‘SIG’ Level</td>
</tr>
<tr>
<td>F8</td>
<td>Memory File Read</td>
</tr>
<tr>
<td>F9</td>
<td>Memory File Write</td>
</tr>
<tr>
<td>←</td>
<td>Frequency Steps</td>
</tr>
<tr>
<td>↑/↓</td>
<td>Up/Down (arrows)</td>
</tr>
<tr>
<td>M</td>
<td>Memory Channel</td>
</tr>
<tr>
<td>↑/↓</td>
<td>Memory Up/Down</td>
</tr>
<tr>
<td>V</td>
<td>VFO/Memory</td>
</tr>
<tr>
<td>B</td>
<td>Bargraph Select</td>
</tr>
<tr>
<td>↑/↓</td>
<td>Occupancy On/Off</td>
</tr>
<tr>
<td>S</td>
<td>Scan Stop Off/On</td>
</tr>
<tr>
<td>DEL</td>
<td>Change Set</td>
</tr>
<tr>
<td>Q</td>
<td>Speech (If fitted)</td>
</tr>
</tbody>
</table>
The low-pass filter is one of the most frequently encountered circuits in radio and electronics. It may be used for many purposes, including tailoring the response of an audio amplifier; stereo decoders; cleaning up the output of oscillators; modifying a waveform; or limiting the harmonic output of a transmitter.

Ideally such a filter would have no effect on the circuit of which it forms part below a certain frequency (known as the cut-off frequency), and above this it would act as an open circuit. However, in the real world nothing is that perfect and practical filters exhibit quite a low attenuation below cut-off frequency, rapidly increasing as this is approached and passed until a relatively high level of attenuation is finally reached.

As may be imagined, in attempting to match the ideal characteristic many different low-pass filter designs have been developed, each with its own characteristics and complexities, the best known being the Bessel, Butterworth, Chebyshev and elliptic.

The Chebyshev and elliptic are both capable of extremely sharp cut-off characteristics but to achieve this they require precise component values. In practice, these either use variable capacitors and inductances which are tuned for optimum response or, alternatively, are constructed with very close tolerance components.

The Bessel filter has certain special qualities but these are not likely to be useful in amateur radio equipment.

Finally, there is the Butterworth filter which, although requiring a few more components than other types, is very tolerant to mismatch and component values and exhibits an increasing stop-band attenuation with frequency. In many ways, therefore, the Butterworth filter is the best choice for home constructors.

Construction

The Butterworth low-pass filter consists of a ladder network of series inductors and parallel capacitors whose arrangement and values are decided by two factors: the operating frequency and the terminating impedances.

The frequency response of the filter depends only on the order, which in this design is equal to the total number of components.

Design procedure

In designing a low-pass filter, three decisions must be made. The first of these is the order, which will determine the frequency characteristic, and the second is the form of the filter, which will be based on the termination impedances and the operating frequency. Finally, the cut-off frequency must be specified.

With this information, the programs in this article will calculate the frequency response of the filter and the component values.

Order of filter

The shorter program is intended to assist the designer in selecting the order of the filter. The user chooses a trial cut-off frequency, filter order and a range of operating frequencies. The program then calculates the frequency response of the filter specified over that frequency range, plus that of filters of one order higher and lower.

The user may then examine the table and determine the filter most suitable to meet the requirement.

Form and cut-off frequency

Since the networks contain only passive components, the filter response is not dependent on the direction in which the signal passes. There are therefore only four configurations with which we need be concerned:

1. Equally terminated, capacitor input;
2. Equally terminated, inductor input;
3. Open circuit on one side;
4. Short circuit on one side.

In this context, the terms open and short circuit mean that the impedance ratios are 5:1 or more.

A common base transistor amplifier would therefore usually represent a short circuit load, while an emitter follower may be treated as a short circuit or voltage source. An FET gate input would be an example of an open circuit load.

Designing the filter

The main factor in selecting a filter design is the purpose for which it will be used, because not only has the efficiency of the filter to be considered but the cost may also prove a significant factor. For example, in transmitter circuits coils are relatively cheap to construct, especially at VHF, where low loss, high voltage capacitors may prove expensive and in
consequence inductive input design must be more economical.
In RF power circuits the equally terminated form of filter is to be preferred, for it is the only type which will show a 1.1 VSWR across the pass-band.
In audio circuits inductance values tend to be high and hard to attain, whilst although miniature inductors up to about 1H are commercially available, in general these easily saturate when subjected to either dc or even modest signal power. It is therefore desirable to use dc blocking capacitors in conjunction with a capacitor input filter wherever possible.

Calculation of component values
The filter transfer function is the basis of the final filter design, uniquely determining the attenuation of the filter at any given frequency. Although this could be calculated from scratch, it would add considerably to the length of the program. The function coefficients have therefore been pre-calculated for up to 8th order filters. Should an application be found which apparently needs beyond 8th order, it would be wise to consider the use of a different filter.

In using this program, the filter configuration and the cut-off frequency, terminating impedance and filter order are selected. Only one terminating impedance is requested, as the other is either zero, infinite or the same.
The program will then calculate the component value which will rarely be seen to coincide with standard preferred values. The effect of errors in component values in this type of filter is to slightly reduce attenuation at high frequencies and increase losses near the cut-off frequency.
The Butterworth filter, however, is very tolerant to component value variations and if the nearest preferred value is used, there will usually be little deviation from the predicted response.

Program 2

2. Filter design program

This program commences by declaring two arrays, which are later used in the transfer function analysis. Line 40 then restores the data pointer to the start of the program data statements at line 250. Lines 50 to 120 print a menu for selection of filter type which is entered at line 140 and validated on the following line. Lines 160 to 240 invite the entry of the cut-off frequency, order of filter and terminating impedance, validating each before proceeding.
The transfer function coefficients are then read in from lines 250 to 260 by the nested FOR-NEXT loops in 270 to 330. These start with the 2nd order coefficients, overwriting with each higher order until the desired order is reached. This data is then modified at line 380 to allow for unequal terminations, and is converted by lines 370 to 420 into the normalised component values for a capacitor input type of filter.
The actual component values are printed at lines 430-500, in which line 460 selects a denormalising routine appropriate to the filter input component type.
These subroutines, which are located at lines 560-690, determine the value of capacity or inductance to achieve the desired impedance, giving the reply in appropriate units.
Since the ladder network branches always alternate between capacitor and inductor, line 480 is required to alternate the type index ‘T’ after calculating each branch. This is permissible as ‘T’ is not used again in the program.
In conclusion, the user is invited to re-run the program at lines 520-540, and if this is not accepted it stops at 550.

![Butterworth filter response program](image)

<table>
<thead>
<tr>
<th>FILTER FREQUENCY RESPONSE</th>
<th>FILTER FREQUENCY RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER CUTOFF FREQUENCY</td>
<td>ENTER CUTOFF FREQUENCY</td>
</tr>
<tr>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>ENTER LOW, STEP AND HIGH FREQUENCY</td>
<td>ENTER LOW, STEP AND HIGH FREQUENCY</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>ORDER OF FILTER (2-8)</td>
<td>ORDER OF FILTER (2-8)</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>DB LOSS AT FILTER ORDER</td>
<td>DB LOSS AT FILTER ORDER</td>
</tr>
<tr>
<td>FREQUENCY 4 5 6</td>
<td>FREQUENCY 4 5 6</td>
</tr>
<tr>
<td>120 -.16 -.07 .03</td>
<td>450 -.31 -.29 .17</td>
</tr>
<tr>
<td>130 -.31 -.16 .08</td>
<td>460 -.32 -.26 .17</td>
</tr>
<tr>
<td>140 -.54 -.33 .2</td>
<td>470 -.33 -.24 .17</td>
</tr>
<tr>
<td>150 -.49 -.25 .2</td>
<td>480 -.34 -.21 .17</td>
</tr>
<tr>
<td>160 -.34 -.16 .2</td>
<td>490 -.35 -.18 .17</td>
</tr>
<tr>
<td>170 -.22 -.14 .1</td>
<td>500 -.35 -.16 .17</td>
</tr>
<tr>
<td>180 -.3 -.3 -.3</td>
<td></td>
</tr>
<tr>
<td>RUN AGAIN (Y/N)</td>
<td>RUN AGAIN (Y/N)</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Ready</td>
<td>Ready</td>
</tr>
</tbody>
</table>

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
COMPUTING LOW-PASS FILTERS

Test problem
In accordance with our usual practice, we have included a test problem which will enable the user to confirm that the program has been correctly entered and to gain a little experience.

The requirement is to design a low-pass filter which shows an attenuation of less than 0.5dB at 145MHz but more than 40dB at 470MHz. The terminating impedances are 50 ohms.

As an opening essay, a fifth order filter with a cut-off frequency of 180MHz is selected. The prediction program is then run twice, once looking at the response just below cut-off frequency and the second for frequencies around 450MHz. The predictions confirm that a fifth order filter will prove suitable. In this application, the second filter configuration is a natural choice.

It now remains to run the design program, which indicates that inductance values of 88nH and 27nH are required. From our coil design program, which has previously been published in *Radio and Electronics World*, it will be found that self supporting coils of 1.5 turns and 3.5 turns of 24awg close-wound, 5mm in diameter proved suitable.

The calculated capacitor values are 28pF. However, the nearest preferred value of 27pF will be acceptable.

Postscript
This program has been written in standard Microsoft Basic and as such should run with little or no modification on most home microcomputers. This, like all other programs which we have published over the past year or so in *Radio and Electronics World*, has been tested before submission on both Sanyo and BBC computers. In addition, we have received many letters describing readers' experiences with other machines. To our delight, it would appear that little difficulty has been experienced when using these programs with almost any home or personal computer although, as may be expected, Sinclair machines presented the most problems because of their particular dialect of Basic.

We have now come to the stage, however, where it is getting increasingly difficult to select further topics and we invite readers to write to us, recounting their experiences with programs and suggesting further topics for treatment.

Before making suggestions, however, please note that:
1. We see little point in writing programs which are either adequately covered elsewhere, or are elementary calculations (such as series/parallel resistors, Ohm's Law) which can be performed more easily on a pocket calculator.
2. We will not publish any program which contains any formula which we cannot fully independently. In this context, we have already found certain 'standard' formulae to be in error.
3. We do not include graphics or sound as these would make the programs machine specific.

Design program printout

<table>
<thead>
<tr>
<th>BRAND</th>
<th>VALUE</th>
<th>OMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.027</td>
<td>UH</td>
</tr>
<tr>
<td>2</td>
<td>28.586</td>
<td>PF</td>
</tr>
<tr>
<td>3</td>
<td>.088</td>
<td>UH</td>
</tr>
<tr>
<td>4</td>
<td>28.586</td>
<td>PF</td>
</tr>
<tr>
<td>5</td>
<td>.027</td>
<td>UH</td>
</tr>
<tr>
<td>6</td>
<td>90</td>
<td>OMS</td>
</tr>
</tbody>
</table>

RUN AGAIN (Y/N)
N
Break in 550

<table>
<thead>
<tr>
<th>B(0)</th>
<th>= 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(I)</td>
<td>= B(I) - X(I)</td>
</tr>
<tr>
<td>B(J)</td>
<td>= (B(J) - I * 1000) / 270</td>
</tr>
<tr>
<td>T = 5 - T</td>
<td></td>
</tr>
<tr>
<td>U$ = "MHz"</td>
<td></td>
</tr>
<tr>
<td>C = C * 1000</td>
<td></td>
</tr>
</tbody>
</table>

Butterworth filter design program
THE COMMUNICATIONS AND ELECTRONICS
MAGAZINE

- Regular well-informed columns on various aspects of amateur communication
- Up-to-date news on the latest technology
- Simple and useful constructional projects, plus clear explanations of the theory behind them
- Delivery to your door by publication date each month
- Inflation proof – price guaranteed for 12 months

On sale NOW at your newsagent and at equipment dealers

RADIO & ELECTRONICS WORLD SUBSCRIPTION ORDER FORM

To: Subscription Department • Radio & Electronics World • 1 Clarendon Road • Croydon • Surrey • CR0 3SJ
Tel: 01-760 0409

NAME
ADDRESS
Postcode

Please supply: (tick box) for 12 issues, all rates include P & P

Inland World-Surface Europe-Air World-Air
£14.40 £15.50 £20.30 £27.25

Payment enclosed: £

Credit Card Payment

Name
Address
Postcode

THE PERFECT COMPLEMENT TO
RADIO & ELECTRONICS WORLD

Amateur RADI0
For all two-way radio enthusiasts

With regular features like:

☆ DX Diary: Don Field G3XTT with all the news of rare DX, contests and DXpeditions
☆ G3OSS Tests: Angus McKenzie – the fairest, most comprehensive reviews available anywhere

MORE NEWS, MORE FEATURES, MORE FUN, MORE STYLE

Make sure of your copy by placing a regular order at your newsagents or by taking out a post free, inflation proof subscription, with early delivery to your door each month

AMATEUR RADIO SUBSCRIPTION ORDER FORM

To: Subscription Department • Amateur Radio • 1 Clarendon Road • Croydon • Surrey • CR0 3SJ
Tel: 01-760 0409

Name
Address
Postcode

Please supply: (tick box) for 12 issues, all rates include P & P

Inland World Surface Europe-Air World-Air
£14.40 £15.50 £20.30 £25.30

Payment enclosed: £

Credit Card Payment

Name
Address
Postcode

Signature

APRIL 1986

Please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
DATA FILE...

This month Ray Marston takes a detailed look at the common-collector transistor amplifier and its derivatives.

Fig 1 The three basic tranisstor configurations

<table>
<thead>
<tr>
<th>Common-collector</th>
<th>Common-emitter</th>
<th>Common-base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_{in} (High) $= h_{fe} \times R_L$</td>
<td>Z_{out} (Very low) $= R_L$</td>
<td>Z_{out} (Low) $= \frac{V_{peak}}{I_{out}}$</td>
</tr>
<tr>
<td>Z_{out} (High) $= R_L$</td>
<td>$A_v = 1$</td>
<td>$A_v = 1$</td>
</tr>
<tr>
<td>$A_i = 1$</td>
<td>$A_i = h_{fe}$</td>
<td>$A_i = 1$</td>
</tr>
<tr>
<td>Cut-off frequency (Medium)</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Voltage phase shift (Zero)</td>
<td>180°</td>
<td>Zero</td>
</tr>
</tbody>
</table>

Fig 2 (Above) Comparative performances of the three basic configurations

Fig 3 Common-collector digital amplifier

Fig 4 (Right) Effect of C_s on the output pulses

Relay drivers

The basic digital or switching circuit of Figure 3 can be used to drive a wide variety of resistive loads, including filament lamps and LED-resistor combinations, etc., without modification. If the circuit is to be used to drive inductive loads, such as transformers, coils, or 'speakers', etc., the circuit must be provided with a diode protection network to limit inductive switch-off back emfs to a safe value. A particularly useful type of inductor-driving emitter follower switching circuit is the so-called relay driver, and a variety of examples of this

APRIL 1986 please mention RADIO & ELECTRONICS WORLD when replying to any advertisement 33
Fig 6 pnp version of the relay driver

Fig 7 Darlington version of the npn relay driver

Fig 8 Delayed switch-on relay driver

Fig 9 Auto turn-off time-delay circuit

Fig 10 Simple 5mA constant-current generator

Fig 11 Ground-referenced variable (1mA-10mA) constant-current generator

Fig 12 Precision constant-current generator

Circuit are shown in Figures 5 to 9.

The Figure 5 circuit is that of an npn relay driver that can be used in either the latching or non-latching modes, and which enables the relay to be activated via either a digital signal or via an electro-mechanical switch (SW1). The circuit action is such that the relay turns on when the input signal is fully positive, or SW1 is closed, and turns off when the input signal is zero, or SW1 is open. Relay contacts RLA/1 are available for external use, and the circuit can be made self-latching if required by wiring a spare set of normally-open relay contacts (RLA/2) between the collector and emitter of the transistor, as shown dotted. Figure 6 shows a pnp version of the same circuit: in this case the relay can be turned on by closing SW1 or by applying a zero volt input signal.

Swing low

Note in Figure 5 that protection diode D1 damps relay switch-off back emfs by preventing this voltage from swinging below the zero-volts-rail value. Optional diode D2 can also be used, if required, to prevent this voltage from rising above the positive supply rail value.

The Figure 5 and 6 circuits effectively increase the relay sensitivity by a factor of about 200 (the high value of Tr1). If, for example, the relay has a coil resistance of 120Ω and needs an activating current of 100mA, the effective input impedance of the circuit will be 24KΩ and the input operating current requirement will be 0.5mA.

The circuit sensitivity can be further increased, if required, by using a Darlington or Super-Alpha pair of transistors in place of Tr1, as shown in Figure 7. In this particular case the circuit has an input impedance of roughly 1MΩ, and needs an input operating current of about 12μA. Note that C1 protects the circuit against activation via high impedance transient voltages, such as those induced by lightning flashes, RFI, etc.

The Darlington type of circuit is of particular value in relay-driving C-R time-delay designs, such as those shown in Figures 8 and 9, in which the C1-R1 potential divider generates an exponentially rising or falling waveform which is fed to the relay coil via the high impedance Tr1-Tr2 voltage-following Darlington buffer. This causes the relay to change state some delayed time after the supply lines are initially connected: with the R1 value shown, the circuits give operating delays of roughly 0.1 seconds per μF of C1 value, i.e. a 10 second delay if C1 = 100μF, etc.

In the Figure 8 circuit, C1 is fully discharged at the moment of power supply connection, so the C1-R1 junction is initially at zero volts and the relay is off. C1 then charges exponentially via R1, and the resulting rising voltage is fed to the relay circuit via Tr1-Tr2, causing the relay to turn on after a pre-determined delay.

In the Figure 9 circuit, C1 is again fully discharged at the moment of power supply connection, so the C1-R1 junction is initially at full supply volts and the relay is driven on at this moment. C1 then charges exponentially via R1, and the resulting falling voltage is fed to the relay coil via Tr1-Tr2, causing the relay to automatically turn off after a pre-determined delay time.

Constant-current generators

A bipolar transistor can be used as a constant-current generator by wiring it in the basic common-emitter input or collector mode and using its supply and collector terminals as the constant-current path, as shown in Figure 10. Here, R1-ZD1 are used to apply a fixed 5V signal to the base of Tr1, which uses R2 as its emitter load.

Because of the inherent 900mV (approximately) base-emitter voltage drop of the transistor, 5V is developed across emitter resistor R2, so a fixed current of 5mA passes through this resistor via Tr1 emitter.
Since the emitter and collector currents of a bipolar transistor are inherently almost identical, a 5mA current also flows in any load that is connected between the collector of Tr1 and the positive supply rail of the circuit, almost irrespective of the load’s resistance value (providing that the value is not so large that Tr1 is driven into saturation), so these two points serve as constant-current source terminals.

From the above description it can be seen that the constant-current magnitude is determined by the values of the base reference voltage and the emitter load resistor (R2), so the current value can be altered by varying either of these values. Figure 11, for example, shows how the basic circuit of Figure 10 can be ‘inverted’ to give a ground-referenced constant-current output that can be varied from approximately 1mA to 10mA using RY1.

Most important

In most practical applications of constant-current generators, the most important feature of the circuit is its high dynamic output impedance (typically hundreds of kilohms), the precise magnitude of the constant current being of only modest importance. In such cases the basic circuits of Figures 10 and 11 will satisfy most practical needs.

If greater precision is needed, the characteristics of the reference voltages of these circuits must be improved to eliminate the effects of supply line and temperature variations.

One simple modification to improve the Figure 10 and 11 circuits is to replace R1 with a 5mA constant-current generator, as indicated in Figure 12 by the ‘double circle’ symbol, so that the Zener current (and thus the Zener voltage) is independent of variations in the supply line voltage.

If really high precision is needed, the Zener reference should have a temperature coefficient of ~2mv/°C, to match the base-emitter coefficient of Tr1. An easy way round this problem is to use a forward-biased LED in place of the Zener, as shown in Figure 13. In this case the LED voltage is roughly 2V0, so only about 1V4 appears across emitter resistor R1, which has its value reduced to about 270R to maintain the constant-current output level at 5mA.

Analogue amplifiers

The common-collector amplifier (emitter follower) can be used as a linear amplifier of ac-coupled analogue signals by first biasing its base to a quiescent value of roughly half-supply volts (so that maximal signal swings can be accommodated without distortion), and by then coupling the input signal to the base and taking the output signal from the emitter, as shown in Figures 14 and 15.

Figure 14 shows the simplest possible version of the analogue emitter follower circuit. In this case the transistor is biased via a single resistor, wired between the positive supply line and base. This resistor (R1) must have a value equal to the input resistance (RIN) of the emitter follower stage if half-supply biasing is to be achieved. RIN (and thus the nominal R1 value) equals the R2 value (4K7) multiplied by the hFE value of Tr1 (~ 200 nominal in this case). The biasing level of this circuit is thus dependent on the hFE value of the individual transistor used.

The Figure 15 circuit uses a slightly more elaborate method of biasing, but its biasing level is independent of variations in transistor hFE values. Here, R1 and R2 act as a potential divider that applies a quiescent half-supply voltage to Tr1 base. Ideally, the R1 value should equal the value of R2 in parallel with RIN, but in practice it is adequate to simply make R1 low relative to RIN and to make R2 slightly larger than R1.

In the Figure 14 and 15 circuits, the input impedance looking directly into Tr1 base equals hFE x Zload, where Zload is equal to the combined parallel impedance of R2 and any external load, Ze, that is connected to the output. Thus, in these circuits the base impedance value is roughly 1M0 when Zload is infinite.

In practice, the input impedance of the complete emitter follower circuit equals the combined parallel impedance of the base impedance and the impedance of the bias network. Thus, the Figure 14 circuit gives an input impedance of about 500K, and the Figure 15 circuit has an input impedance of about 50K.

The Figure 14 and 15 circuits each give a voltage gain that is slightly below unity, the actual gain figure being given by:

$$A = \frac{Z_{\text{load}}}{Z_0 + Z_{\text{load}}}$$

where $Z_0 = 25$ ohms.

Thus, at an operating current of 1mA, these circuits give a voltage gain of 0.995 when $Z_{\text{load}} = 4K7$, or 0.975 when $Z_{\text{load}} = 1K0$: the importance of these gain figures will be shown shortly.

Bootstrapping

The relatively low input impedance of the Figure 15 circuit can be greatly increased by bootstrapping, as shown in Figure 16.

The great advantage of bootstrapping is that the added circuit can be connected between the base and collector of the transistor, thus ensuring that the addition of the circuit has no effect on the base-emitter voltage. Figure 17 shows the simplest bootstrapping circuit that can be added, using a Darlington connection. This circuit has an input impedance of about 10M0, more than adequate for most purposes.
increased by using the 'bootsrapping' technique illustrated in the circuit of Figure 16. Here, 47K resistor R3 is wired between the R1-R2 biasing network junction and the base of Tr1, and the input signal is fed to Tr1 base via C1.

Note, however, that the output signal of Tr1 is fed back to the R1-R2 junction via C2, so that almost identical signal voltages appear at the two ends of R3. Consequently, very little signal current flows in R3, which thus appears to have a far greater impedance than its true resistance value.

Suppose, for example, that the emitter follower circuit of Figure 16 has a voltage gain of precisely unity. In this case, identical signal voltages would appear at the two ends of R3, so zero signal current would flow in this resistor, which would thus appear as an infinite impedance. The input impedance of the circuit would thus appear to equal R_{in}, or 1M.

In practice, emitter follower circuits give a voltage gain that is slightly less than unity, and it is the precise value of gain that determines the resistor amplification factor, or A_{R}, of the circuit, as follows:

\[A_R = \frac{1}{1 - A_{in}} \]

Thus, if the circuit has a gain of 0.995 (as in one of the examples already discussed), then A_{R} has a value of 200 and the R3 impedance is almost 10M. If, on the other hand, A_{in} = 0.975, the A_{R} value is only 40 and the R3 impedance is almost 2MΩ. This impedance is effectively in parallel with R_{in} so, in the former case, the complete Figure 16 circuit exhibits an input impedance of roughly 90K.

If required, the input impedance of the Figure 16 circuit can be increased even more by using a pair of Darlington-connected transistors in place of Tr1 and increasing the value of R3, as shown in the example of Figure 17, which gives a measured input impedance of about 3MΩ.

Alternatively, an even greater input impedance can be obtained by using the 'bootsrapping' technique illustrated in Figure 16, giving an input impedance of about 10M. In this case, Tr1 and Tr2 are both wired as common-emitter amplifiers, but operate with virtually 100% negative feedback, and thus give an overall voltage gain of almost exactly unity. This 'pair' of transistors thus acts like a near-perfect Darlington or Super-Alpha emitter follower.

Complementary emitter followers

It was pointed out last month that a standard npn emitter follower can sourc current but cannot sink it, and...
Hitachi Oscilloscopes

the highest quality
from £299

Hitachi Oscilloscopes provide the quality and performance that you’d expect from such a famous name, with a newly-extended 14 model range that represents the best value for money available anywhere.

V-212/222 20MHz Dual Trace V-650 60MHz Dual Timebase
V-223 20MHz Sweep Delay V-1050 100MHz Quad Trace
V-209 20MHz Mini-Portable V-1100 100MHz DMM/Counter
V-422 40MHz Dual Trace V-134 10MHz Tube Storage
V-423 40MHz Sweep Delay VC-6015 10MHz Digital Storage
V-509 50MHz Mini-Portable VC-6041 40MHz Digital Storage

Prices start at £299 plus vat (20MHz dual trace) including a 2yr. warranty.

We hold the range in stock for immediate delivery.

For colour brochure giving specifications and prices ring (0480) 63570 Thurlby-Reltech, 46 High Street, Solihull, W. Midlands, B91 3TB.

The Archer Z80 SBC

The SDS ARCHER — The Z80 based single board computer chosen by professionals and OEM users.

- High quality double sided plated through PCB
- 4 Bytewide memory sockets — upto 64k
- Power-fail and watchdog timer circuits
- 2 Serial ports with full flow control
- 4 Parallel ports with handshaking
- Bus expansion connector
- CMOS battery back-up
- Counter-timer chip
- 4 MHz. Z80A

OPTIONS:
- SDS BASIC with ROMable autostarting user code
- The powerful 8k byte SDS DEBUG MONITOR
- On board 120 / 240 volt MAINS POWER SUPPLY
- Attractive INSTRUMENT CASE — see photo.
- 64k / 128k byte DYNAMIC CASE — ROM EXPANSION card
- 4 socket RAM — ROM EXPANSION card
- DISC INTERFACE card

Sherwood Data Systems Ltd

Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

FREQUENCY COUNTERS

Measuring typically 2Hz - 1.8GHz
Sensitivity <50mV at 1500MHz
Setability 0.5ppm
High Accuracy
3 Gate Times
Low Pass Filter
Battery or Mains
Factory Calibrated
1-Year Guarantee
0.5" L.E.D. Display

PRICES (incl. adaptor/charger, P & P and VAT)

METEOR 100 (100MHz) £117.30
METEOR 1000 (1GHz) £204.70
METEOR 600 (600MHz) £148.35
METEOR 1500 (1.5GHz) £232.30

BLACK STAR LTD, 4 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4EB, England.
Tel: (0480) 62440 Fax: 52762

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
The growth over the past few years of the market in domestic portable electronic equipment has resulted in a need for battery supplies of low weight and size but high storage capacity. In my own case, I own a portable video recorder which incorporates an internal Nicad battery rated at 12 volts as well as two spares. 12 volt Nicad batteries are generally becoming more widespread, with capacities from about 1 to 12 amp hours.

Sealed lead acid types are available, but for various reasons are not so popular. However, whereas lead acid batteries can be fully discharged, Nicad batteries must not be discharged beyond a certain point, and must also be stored in a discharged state for maximum life.

'Battery save'

Unfortunately most portable videos have a 'battery save' feature which prevent them from being used to discharge the battery unless they are in either play or record mode. This of course causes head wear, so I was faced with trying to design a circuit to discharge my three Nicad batteries, when not in use, in a controlled manner. The diagram shows the circuit of the discharger unit devised for this purpose. Operational amplifier IC1 is a voltage comparator that compares a portion of the dc line voltage to a fixed reference voltage derived from the 5.1 volt Zener diode D1.

Zener D2 ensures that the full variation in line voltage is presented to the op amp IC1. With a high line voltage (ie fully charged battery) the output of IC1 is 'low' or zero volts due to the high gain of the op amp.

Careful adjustment

As the 12 volt line voltage reduces, a point is reached, by careful adjustment of RV1, where IC1 output flips over to 'high' or 12 volts. The positive input of buffer inverter IC2 uses the same reference voltage as IC1 so that when the output of IC1 goes high, the output of IC2 goes low. This de-energises relay RLA, whose contact RLA1 disconnects the lamp LP1 and breaks the circuit from the battery. The battery has now received the correct amount of discharge for storage until it is next charged for use.

On initially connecting a battery for discharge, switch SW1 is depressed to 'set on' the circuit. If discharge needs to be interrupted then SW2, 'set off', is depressed, so disconnecting the battery. Both SW1 and SW2 are simple changeover type push switches.

To set RV1, apply a voltmeter across the dc line and temporarily place a 10 ohm wire-wound potentiometer in series with a good 12 volt battery. Depress SW1 and adjust this potentiometer until the voltmeter reads 11.8 volts, and then carefully set RV1 to switch off the lamp. Check this once or twice, then remove the meter and temporary potentiometer. The circuit should now discharge the battery steadily for a few hours via the lamp load until it reaches 11.8 volts, at which point the circuit will 'cut out'.

To provide a high or low discharge rate two lamp loads can be used with switch SW3 to operate the second lamp if required. One 22 watt 12 volt bulb discharges at about 185mA. Two bulbs at 370mA is a good discharge rate for most 12 volt Nicad batteries.

Not critical

Layout of the circuit is not critical and it can be mounted in a simple plastic box. The capacitors are required to prevent chatter of the relay when close to the 'cut out' point.
Carbon Film resistors 1W 5% E24 series 0.1R to 10MO (except 7M5)...... 1p
100 orff per value - 75p, even hundreds per value totalling 1000 £7.00
Metal Film resistors 1W 10R to 1MO 5% E12 series - 2p, 1% E24 series...... 3p
Mixed metal/carbon film resistors 1W E24 series 1R0 to 1MO........... 10p
1 watt mixed metal/Carbon Film 5% E12 series 10R0 to 10 Megohms...... 5p
Miniature polyester capacitors 250V working for vertical mounting
01, 015, 022, 033, 047, 068 4p, 015p, 022p, 0.33 & 0.47.......... 6p

Mylar (polyester) capacitors 100V working E12 series vertical mounting
1000p to 8200p - 3p, 01 to 068 mfd - 4p, 0.15p, 0.12 & 0.15........ 6p

Subminiature ceramic plate capacitors 100V wkg mountings, E12 series
2% 1.8pf to 47pf - 3p, 2% 56pf to 330pf - 4p, 10% 39pf - 47pf........ 6p

Polypropylene capacitors 63V working E12 series long axial wires
10 pf to 820 pf - 3p, 1000 pf to 10,000 pf - 4p, 12,000 pf - 4p, 12pf - 75p, 22pf - 2p, 47pf - 6p

DIODES (pin/amps)
75/25mA 1N4148 2p, 800/1A 1N4006 6p, 400/3A 1N5040 14p, 115/15mA OA91..... 6p
100/1A 1N4004 4p, 100/1A 1N4007 7p, 80/1A 5101 1p, 100/1A bridge........ 2p
40/1A 1N4005 1p, 125/1A BY112 1p, 30/45mA OA06 3p, 30/15A OA47..... 8p
Zener diodes E24 series 3V0 to 33V 400 mW - 1p, 1 watt.............. 12p
LED's 3 & 5mm Red 10p, Green, Yellow 14p, Grommets 3mm - 11p, 5mm...... 2p
20mm fuses 100mA to 5A G/Blow 5p, A/ surge 8p, Holders pc or chassis.... 5p
High speed pc drills 0.8, 1.0, 1.3, 1.5, 2.0m - 22p, Machines 12v dc........ £6.00
HELPING HANDS 6 ball joints and 2 croc clips to hold awkward jobs........ £4.50
AA/HPF Nicad rechargeable cells £1.50 pair, Universal charger unit........ £8.50
Glass reed switches with single pole make contacts - 8p, Magnets.............. 12p
Rang of aluminium & tantalum electrolytic caps at competitive prices. All
delivered include VAT, Postage 15p (free over £5), Lists Free.

THE CR SUPPLY CO
127 Chesterfield Rd,
Sheffield S8 ORN
Return posting

Radios & Electronics World
smart blue binders, each
holding up to 12 issues
keeping them in prime
condition

BINDELS!

Only

£4.75

inc p&p

Overseas readers please add 30p
Please allow 28 days for delivery

Send your orders to
Edwardschold ltd, 28 Shenfield Cres
Brentwood, Essex CM15 8BN

AUDIO MODULES
For all PA discos, hi-fi & musical applications
Rugged and reliable * Exceptional audio performance *
Full installation data supplied * Immediate dispatch *
Complete range of match PSU's, pre-amps, protection and
bridging modules also available (SAE for lists !)

TYPE OUTPUT KIT BUILT
Bi-POLAR 50-100W £8.75 £10.95
Bi-POLAR 100-200W £10.95 £14.95
Bi-POLAR 200-300W £19.75 £24.50
MOS-FET 100-150W N/A £19.95
MOS-FET 200-300W N/A £32.95
MOS-FET 250-475W N/A £54.50

Prices include VAT. Add £1.75 P&P.
RAK, Rosewood House, Bridge Road,
Downham Market, Norfolk, PE38 0AE
(0366)-382614

ANNOUNCING
A NEW SOLDERING BREAKTHROUGH.

PORTASOL
Cordless Butane Portable Soldering Iron.

* Works on ordinary butane Lighter fuel
 * Small, light and Like a pen
 can be carried in the top pocket
* Up to 60 mins continuous use
 * No longer necessary to take
the work to the soldering iron.
* Adjustable temperature
 equivalent from 10 to 60 watts.
* Tip temperature to
 400°C within 30 secs.

Special Offer
Price
£19.95
include P & P

Pocket Size

NO FLEX — NO FUSS

POST NOW "NO STAMP REQUIRED"

Send this coupon into an envelope and address to:
THE POST SHOP
Freepost, Newtownds Co. Down
BT23 3BR

Please send me the Portasol at £19.95 and

TIP SIZE REQUIRED

<table>
<thead>
<tr>
<th>Tip Size</th>
<th>£</th>
<th>Included P & P</th>
</tr>
</thead>
<tbody>
<tr>
<td>£4.95 each</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tip G/CT32/3 Supplied.

Please allow 21 days for delivery.

Please mention RADIO & ELECTRONICS WORLD when replying to any advertisement.
ATTENTION ALL CIRCUIT DESIGNERS!!

LOW COST ELECTRONICS C A D

IBM PCXCT, BBC MODEL B and SPECTRUM 48K

Analysys computes the AC Frequency Response of linear (analog) circuits. Gain and Phase, Input Impedance, Output Impedance and Group Delay (except Spectrum version) are calculated over the frequency range required. The effects on performance of Modifications to the circuit configuration and component values can be speedily evaluated.

Circuit analysys, Components Extractions Inductions, Transfer Functions, Bipolar and Field Effect Transistors and Operational Amplifiers can be simulated on 100 components IBM versions.

Ideal for the analysis of Active and Passive Filter Circuits, Audio Amplifiers, Loundspeakers, Cross Over Networks, Wide Band Amplifiers, Tuned RF Amplifiers, Aerial Matching Networks, TV IF and Chroma Filter Circuits, Linear Integrated Circuits, etc. etc.

Analysys can greatly reduce or even eliminate the need to breadboard new designs.

Used by Industrial R&D Departments and Universities worldwide. Very Easy to Use. Prices from £20 ex VAT. Access to IBM and Academic Express welcome.

For further details and example computation or for details on our New Draughting Program please write phone or fax.

NUMBER ONE SYSTEMS LIMITED

Dept REW, 9 Crown Street, St Ives, Huntingdon, Cambs PE17 4EB, UK

Tel: (0480) 61778 Telex: 32339

THE START OF SOMETHING NEW

If you are leaving College and planning a career in modern communications or if your present job lacks interest and challenge why not join us in GCHQ? We are recruiting!

RADIO OFFICERS

who are after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the field of communications. Training involves a 32 week course (38 weeks if you come straight from Nautical College) which will fit you for appointment to RADIO OFFICER.

Not only will you find the work as an R O extremely interesting but there are also good prospects for promotion opportunities for overseas travel and a good salary. Add to this the security of employment for an important Government Department and you could really have the start of something new.

The basic requirement for the job is 2 years radio operating experience or hold a PNC, MPT or MRGC or be about to obtain a MRGC. Registered disabled people are welcome to apply.

Salaries start at £4,988 at age 19 to £6,028 at age 25 and over during training and then £6,832 at 19 to £8,915 at 25 and over as a Radio Officer. Inemers then follow annualy to £12,328 inclusive of shift and weekend working allowances.

For full details and application form phone 0242 329213 or write to:

The Recruitment Office A/1108
Police Road
CHELTENHAM
Glos GL52 5AJ

(2806)

THE Rx-4 Multimode receive program for SSV - RTTY - AMTOR - CW

Text and picture store for instant recall save and printer dump. Frequency scale and fine-tune adjustment for easy, accurate tuning and a long list of top features.

For SPECTRUM (not 16k) BBC-B, CBM64 VIC20 (at least 8k) Tape £25

RTTY and CW TRANSCIVE

Split-screen, type-ahead, 26 saveable memories, auto CLR/FF, autotrack CW to 250w with QSO report and lots more.

For BBC-B, CBM64 VIC20 (at least 8k) Tape £20

A Portable version is available for SPECTRUM (not QSO review). Tape £12

Neither of these programs need any expensive hardware.

SPECTRUM versions need no hardware at all. The users use the same simple interface. £5 ready-made £20 inc all connections (state rig for transceive. They can also use a TU for RTTY and CW.

We have lots of other programs too. See November's advert.

Any BBC-B, CBM64 VIC20 program on disk at £2 extra. BBC state 40/80 tk. Prices include VAT and post. etc. by return. Channel Islands, etc. BFPO Europe deduct 13% technical software

From: Upper Llandwrog Caernarvon Gwynedd LL54 7RF. Tel 0286 581886

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement

APRIL 1986
Although one is accustomed to viewing waveforms on an oscilloscope, or drawing them out on paper, it is surprising how many belong to a ‘rotating’ rather than a ‘horizontal’ family. In fact, two sinewaves in quadrature (ie 90° out of phase) constitute the simplest form of rotating ‘vector’, and probably the most prevalent manifestation of such entities is the 3-phase mains supply that forms the national grid.

Power distribution

The CEBG’s generators, not surprisingly, are adjusted so as to rotate in synchronism, and the sinewaves sent along the red, yellow and blue phases are 120° apart. A customer can run an induction motor at the fundamental frequency of 50Hz, or 3,000rpm, less a little slippage.

By increasing the number of poles on the motor, or using a clever chopping circuit, lower speeds can be obtained, but most rotating loads are synchronous, or very nearly so. The way the vectors add up to produce a rotation is most easily seen in the two-phase case, since simple geometry shows that:

\[x = R \cos \theta = R \sin(\theta + 90°) \]
\[y = R \sin \theta \]
\[x^2 + y^2 = R^2 \]

which is the equation of a circle, as illustrated in Figure 1. The x and y components are often known as the real and imaginary parts—the latter being the j-vector, but that is another story!

Radar

It is quite legitimate to express an object’s position in terms of R and \(\theta \), rather than x and y. A well-known application of these ‘polar co-ordinates’ is in radar, where the display is in the form of a Plan Position Indicator, which shows both range R and bearing \(\theta \).

Now, this requires the spot on the CRT to be deflected in two quite different ways. The range R corresponds to a simple outward movement of the beam, proportional to the pulse echo time, and so can be derived from a straightforward sawtooth waveform. The angle \(\theta \), on the other hand, corresponds to the rotation of the antenna, and in the early days of radar was simply effected by physically rotating the R-scan coils on the neck of the CRT in synchronism with the dish, as shown in Figure 2.

As electronics improved, this somewhat crude mechanical arrangement of the CRT displays could be replaced by a totally electronic scan, feeding \(R \cos \theta \) and \(R \sin \theta \) signals to a set of fixed orthogonal coils. Nowadays, of course, the radar return signal undergoes a great deal of signal processing (and noise reduction by computer on a large installation), and so there may well be a ‘synthetic’ display. In other words, the scan on the CRT or TV display is determined by what is most convenient for the processor rather than the raw radar.

Phased arrays

An interesting technique employed in some modern radar installations is the ‘phased array’, which is a set of elements fed with signals of deliberately varying phase, so as to create the effect of a scanned beam without having physically to turn the aerial assembly. The latter, incidentally, is no longer a dish, but merely a flat rectangle of slatted appearance.

It should be possible to create a swept acoustic beam using these principles: maybe this can be taken as a challenge for those readers expert in audio.

Colour TV

The systems used for public broadcast of colour TV signals in a limited bandwidth at present rely on some form of phase encoding of the colour information so as to squeeze it into a frequency slot originally intended for monochrome.

If we take the case of the PAL method, there are basically two vectors, called U and V (see Figure 3), which are related to the colour difference signals B–Y and R–Y. These vectors rotate 90° out of phase at the subcarrier frequency of 4.43MHz, and an extra complication is that the sign of one of them is reversed every other line, hence the name Phase Alternation Line.

This feature is intended to counteract adverse propagation effects. However, the main principle is unaffected, namely a pair of rotating colour vectors and a reference or colour burst at the beginning of each line so that the receiver can set its oscillator for correct decoding throughout the active part of the TV line. The modulation equation can be written as:

\[E_r = E_s \cdot U \cos \omega t \quad V \cos \omega t \]
\[= E_s \cdot \sin \omega t \cdot x \]

where the bulk of the luminance signal is in effect carried by \(E_r \).

Framestores

The German PAL system has served its purpose well over the course of several years, and is arguably superior to the American NTSC and the French SECAM methods. In any event, it is only with recent advances in digital electronics that alternative methods can be considered as viable possibilities. Once there is the ability to store whole frames in RAM and manipulate this data at low cost, then the totality of high-definition colour TV is open to reappraisal.

In fact, a framestore in conjunction with a computer offers new methods in image processing, not just in entertainment TV. There is the important field of analysis of images obtained from optical and electron microscopes, for example in forensic science, biology and metallurgy.
The simplest method is to replace the strength and angle controls by separate x and y ones, but maybe this is cheating. Another way is to use an integrated circuit such as the Analog Devices AD639 (shown in Figure 5), which is a multifunction trigonometric converter using some very clever techniques invented by Gilbert. The open loop transfer function is:

$$W = A_0 \left[(U_p + U_1 - U_q) \sin (X_1 - X_2) - (Z_1 - Z_2) \sin (Y_1 - Y_2) \right]$$

where \(A_0\) is greater than 15,000, and is a preset amplitude of 1 or 10V can be obtained by tying \(U_p\) to \(-V_S\) or \(+V_S\).

In practice, the device is used 'closed loop' (like an op-amp), and so the open loop gain \(A_0\) no longer features. Because \(\cos \theta = \sin (90^\circ - \phi)\), it is easy to obtain cosines, tangents etc. In fact, there is no difficulty either in obtaining sec, cosec and cot, and even the inverses, like arctangent.

This IC has many applications, such as in waveform generation, though its price may be beyond the pocket of most home constructors.

Sinusoidal waveforms

Incidentally, if a project simply requires quadrature sinusoidal waveforms, ie with time \(t\) rather than angle \(\theta\) as the parameter, a simple oscillator can be built around a dual BIFET op-amp, as shown in Figure 6. This circuit is optimised for the Texas Instruments' TL082, but can be used as a starting point for other designs so long as one is aware of the relatively high impedances needed if the amplitude-setting diodes are to work well.

Having produced these waveforms, it is possible to obtain static sine and cosine values with sample-and-hold amplifiers. On the other hand, in many applications it can prove simpler to use a digital approach, with a ROM or a micro-generated look-up table, and a DAC for analogue output.

Shaft encoders

The simplest form of rotating component giving a digital output is the shaft encoder employing a wheel with a single row of stripes and generally two sets of light emitters and detectors, as illustrated in Figure 7.

The optical paths are arranged such that two square-waves, 90° out of phase, are generated. The direction of motion is discovered by asking whether \(O_1\) leads or lags \(O_2\), and many circuits for extracting the direction as well as the rate of rotation have been published. For example, Cornwell has described a complete computer interface, making use of Texas Instruments' 74LS2000 incremental encoder ICs.

Such shaft encoders are called 'relative' or 'incremental', since they rely on pulse counting, and the information is lost if the power is interrupted. However, they are quite adequate for a tracker ball, a mouse and similar pointers, as well as for motor speed control. They are now available at moderate cost from Hewlett Packard (HEDS-5000), and even as a front panel 'digital pot' from Mullard (MPG256): a spin-wheel for counter and DAC.

Without counters

'Absolute' shaft encoders, on the other hand, have several rows of stripes and detectors, and so the absolute position of the shaft can be properly defined. However, they employ a disc with some very fine stripes, and are generally much more complex, both mechanically and electrically, than their 'relative' counterpart, a fact which is borne out in the cost difference.

The discs are normally Gray-coded, which gives just one bit change per step, and is theoretically the smoothest method. Conversion to pure binary or to
BCD is a simple matter (Figure 8).

Synchros and resolvers

A simple rotary control system can be made by connecting two devices rather like ac motors together in the manner shown in Figure 9, where the reference waveforms applied to the stators cause reaction torques in the rotors. These continue until the slave has homed into on the angle held at the master, ie when the rotor voltages balance each other. In fact, surprisingly accurate angular signals can be extracted from brushless ‘resolvers’ of the type illustrated in Figure 10, where the rotor is excited by transformer action, at a frequency normally between 400Hz and 10kHz. The outputs from the stator coils can be converted to digital form in a number of ways, of which the tracking loop method is probably the best. In the Analog Devices RDC1740 series, the signals enter via sub-miniature transformers, are multiplied by \(\cos \theta \) and \(\sin \theta \), and then the difference signal is extracted by a phase-sensitive detector (using the ‘carrier’ frequency).

The filtered result is \(\sin (\theta - \alpha) \), and this error signal feeds a VCO which drives an up-down counter till the loop is nulled. The conversion is of the tracking type, ie the output follows the input angle without needing a ‘start convert’ signal, though for data transfer purposes the output latches can be frozen by the ‘busy’ signal, which gives a pulse whenever the shaft moves by one LSB or more.

The resolution of a 16-bit system is 360°/2^16, or about 20 arc seconds (one degree is 60 arc minutes, or 3600 arc seconds). Higher accuracies can be achieved by gearing, but with considerable mechanical constraints. Alternatively, there are devices called Rotary Inductosyns, made by Farrand Controls in the USA; these use rotor and stator discs with dual copper tracks plated on each, in a square-wave fashion.

The clever point is that the outer tracks have one more ‘tooth’ than the inner ones, giving a sort of electromagnetic gearing. The tracks on the rotor are energised at several kHz, and the stator held close to it (with a 0.2mm gap) picks up signals on alternating sine and cosine waves.

Applications

Rotary signalling systems were developed for gun turrets and similar military purposes, with inductive and optical methods replacing potentiometers because of reliability and accuracy.

Regardless of what sensing method is used in a control system, however, the standard ‘laws’ apply to any closed loop feedback network. To prevent the system becoming unstable (eg going into oscillation), sufficient gain and phase margins must be allowed. This generally means that the loop gain has to be limited: because of inherent lags in a system, the gain/frequency characteristics must be carefully shaped, eg by
aplying damping or feedback from a
tacho-generator.

An interesting effect is the 'velocity
error', which arises when a gun is
tracking a moving target. This is illus-
trated in Figure 11 for a basic control
system, known as class 1. The error \(a_0 \)
can be reduced by increasing the high
frequency gain, but with the risk of
instability. Alternatively, the system can
be raised to class 2, eg (in electrical
terms) by adding ac feedforward.

Testing ICs

When testing a complex digital circuit
such as a custom logic IC, it is
appropriate to consider each pin as a
possible input or output, with a zero or
one status for every line of the test
procedure.

In other words, two bits are required
er per pin. The test machine must be able to
apply, say, A TL high or low for an input,
or to detect these levels for an output.

Whether the particular pin is an input or
an output, it is useful to have the sensing
comparator permanently in circuit (Figure 12), since this will detect inputs
that are shorted to one of the supply rails.

For a device with N pins (in addition to
the power connections), each line of the
test program will need 2N bits of data,
and these can be considered as
2N-dimensional vectors. An alternative
test program is the IC as a 'black
box' or matrix M, which is fed with input
vectors \(N \), and from which we are expected
output vectors \(N \). Then the operation of
the device is defined by the vector
equation

\[N \times M = N \]

A practical limitation of this method is
that the pins must be defined at the
outset as either inputs or outputs; it is
difficult to deal with the strobed in-out
ports prevalent in some circuits.

Anyway, in order to get through a
comprehensive set of tests in a reason-
able time, the tester must be able to
'throw' these vectors at the IC at a rapid
rate. In practice, the tester will probably
have its data downloaded from the DEC
VAX or whatever computer was
employed to do the original logic
simulation.

To speed things up, the tester may run
the vectors through in blocks; also, once
the masks have been proved, it is
feasible for selected patterns to be
employed, rather than attempt to test for
every single combination.

With analogue ICs, there are mercifully
lower pins to test, but the inputs and
outputs are no longer simple 2-level
signals. To characterise an op-amp, for
example, and to capture ringing and
other aberrations, a high-speed 10-bit
D/A and A/D set-up can easily be
required.

Conclusion

Just as most real-life objects exist in
three dimensions, and it is only the
limitations of paper and of TV screens
that force us to represent them in only
2-D, so also do most waveforms belong to
some N-dimensional system. For
simplicity, we may choose to consider
only one dimension at a time. For
example drawing logic waveforms from
left to right, but when it comes to rotating
equipment we are led inevitably to
vectors and the extra dimensions, just as
our forefathers had eventually to aban-
don the notion of a flat earth.

References

1. Gilbert, B. A monolithic microsystem
for analog synthesis of trigonometric functions and their inverses. IEEE J of
Solid-State Circuits, SC-17.6, December 1982, 1179-1191.

2. Cornell, P. J. Encoders interface low-
cost trackerball. Electronic Product

COMPONENT PACKS

<table>
<thead>
<tr>
<th>Ref No.</th>
<th>Qty</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP1</td>
<td>300</td>
<td>Assorted Resistors Mixed Types</td>
<td>£0.95</td>
</tr>
<tr>
<td>EP2</td>
<td>350</td>
<td>Carbon Resistors Pre-Formed 1/4W-1/4W</td>
<td>£0.95</td>
</tr>
<tr>
<td>EP3</td>
<td>200</td>
<td>Assorted Capacitors All Types 3</td>
<td>£0.95</td>
</tr>
<tr>
<td>EP4</td>
<td>75</td>
<td>C280 Capacitors Metal Foil Mixed Values</td>
<td>£0.95</td>
</tr>
<tr>
<td>EP5</td>
<td>200</td>
<td>Ceramic Capacitors Mixed Values</td>
<td>£0.95</td>
</tr>
<tr>
<td>EP6</td>
<td>1000</td>
<td>16V Axial Electrolytic Capacitors</td>
<td>£0.95</td>
</tr>
<tr>
<td>EP7</td>
<td>20</td>
<td>Zener Diodes Mixed Good Values</td>
<td>£0.95</td>
</tr>
<tr>
<td>EP8</td>
<td>20</td>
<td>Assorted LEDs</td>
<td>£0.95</td>
</tr>
<tr>
<td>EP9</td>
<td>50</td>
<td>Electrolytics Assorted</td>
<td>£0.95</td>
</tr>
<tr>
<td>EP10</td>
<td>5</td>
<td>LEDs Red 3mm Type</td>
<td>£0.30</td>
</tr>
<tr>
<td>EP11</td>
<td>5</td>
<td>LEDs Yellow 3mm Type</td>
<td>£0.30</td>
</tr>
<tr>
<td>EP12</td>
<td>5</td>
<td>LEDs Amber Triangle 3mm Type</td>
<td>£0.30</td>
</tr>
<tr>
<td>EP13</td>
<td>25</td>
<td>Bulbs, MES, LES Assorted</td>
<td>£1.95</td>
</tr>
<tr>
<td>EP14</td>
<td>1</td>
<td>Wire Cutters Red Handles (worth £1)</td>
<td>£1.95</td>
</tr>
<tr>
<td>EP15</td>
<td>1</td>
<td>Pliers Red Handles (worth £1)</td>
<td>£0.40</td>
</tr>
<tr>
<td>EP16</td>
<td>1</td>
<td>Small Screwdrivers plastic handles</td>
<td>£0.30</td>
</tr>
<tr>
<td>EP17</td>
<td>10</td>
<td>Tantalum Capacitors 330mfd 63V 5%</td>
<td>£1.25</td>
</tr>
<tr>
<td>EP18</td>
<td>10</td>
<td>Switches Assorted Types</td>
<td>£0.35</td>
</tr>
<tr>
<td>EP19</td>
<td>20</td>
<td>33mfd 16V Radial Electrolytic Capacitors</td>
<td>£0.35</td>
</tr>
<tr>
<td>EP20</td>
<td>1</td>
<td>Solder Pack 3 metre Length, 18 awg Flux Type</td>
<td>£0.90</td>
</tr>
<tr>
<td>EP21</td>
<td>50</td>
<td>Metres PVC Multi-Strand Wire Mixed Colours</td>
<td>£0.40</td>
</tr>
<tr>
<td>EP22</td>
<td>50</td>
<td>Metres PVC Single Strand Wire Mixed Colours</td>
<td>£0.90</td>
</tr>
<tr>
<td>EP23</td>
<td>30</td>
<td>Fuses Mixed Types & Values</td>
<td>£0.70</td>
</tr>
<tr>
<td>EP24</td>
<td>15</td>
<td>Pots Assorted Types</td>
<td>£1.15</td>
</tr>
</tbody>
</table>

Electronic Components, a package containing a vast selection of Resistors, Capacitors, Switches, Potentiometers, Switches, Knobs, Diodes etc... We estimate the total package to be worth at least £25. Order No. EP25

Only £4.45

HP7 Ni-CAD Rechargeable Batteries (made by SAFT) £0.95

All Prices include VAT. Just add 75p for Postage to Total Order

OPENING HOURS (9.00 am - 6.00 pm MON-SAT)
Do you remember the long wave band? It covers from around 1000 metres to 2000 metres (300kHz-150kHz), and is now probably the most neglected band in existence in the UK for everyday broadcast listening. Many modern transistor radios do not even cover this band.

Most people in the UK with a long wave receiving facility on their radios usually use it to receive BBC Radio 4 on 1500 metres (200kHz), and use medium wave or FM bands for the rest of their radio entertainment.

Yet many countries pump out mighty signals (up to 200kW) on this band. They include the USSR, France, Rumania, Norway, Germany (East and West), Italy, Sweden, Poland, Turkey, Morocco, Iceland, Denmark, Finland, Czechoslovakia, Algeria and, of course, our old friends Radio Luxembourg. The writer does not have a clue as to how many countries transmit on this band, or how many stations exist, but can mention that when living and working in the USA a few years ago, and making business trips throughout the USA and Canada, it was possible to hear LW stations on a transistor radio. They were of little interest at the time and so were not identified, but they were there to be heard.

It is fair to assume that all these countries would not be using the LW band with high power unless they considered it to be worthwhile. So, recently it was decided to take a good look at the LW band. A good transistor portable, with in-built ferrite rod aerial, produced quite a number of stations but had limitations in range and separation of stations using the same frequency in distant countries.

Out of the question

A ¼ or ½-wave antenna on long wave is out of the question. Who knows what the local authorities, and neighbours, would think about a ½-wave LW dipole? Probably all hell would be let loose, even though our roof-tops bristle with TV and FM aerials! Even if one was erected the noise level would be very high and directivity very poor. Anyway, the writer lives in an apartment, so the proposed aerial had to be located indoors. It had to share a small bachelor flat with the writer, a considerable quantity of equipment and a load of pot plants, so it had to be as small as possible.

Some ancient literature indicated the virtues of a frame aerial on long wave, apparently used in the USA in the early days of wireless and also on ocean-going liners, but no details appear to exist regarding design and construction. Plenty of articles have recently appeared regarding MW-DX loop antennas, with the suggestion that these might be extended to the LW band by adding a vast quantity of capacity across the tuning capacitor, making the device more or less untunable.

A better suggestion is to switch in an RF choke of, say, 5mH in series with the medium wave loop, which would then cover the LW band. This works with somewhat low efficiency.

So it was decided to experiment with LW loop antennas, bearing in mind that the result would have to be small. A good tip when trying to design such an antenna is to get a largish cardboard box from the local supermarket and to wind the turns of wire around this for initial tests. This way time and money are not wasted constructing wooden frames, which may well have to be discarded.

Figure 1 shows the resulting configuration, and Figure 2 shows the circuit. It consists of a coil L1 wound on a
wooden frame, tuned by a 500pF variable capacitor (CV). Over L1 is wound the coupling coil L2, which is connected to the receiver via coaxial cable. Twin feeder could be used as an alternative.

The construction of the frame is illustrated in Figure 3, the whole thing being made of thin 3-ply wood, 16in high x 15in wide with a winding area 4in wide, and was securely glued together with corner blocks and support blocks, as shown. It was dyed with Rustins' wood dye (light teak) which, being spirit-based, dried out quickly. The L1 winding consists of 56 turns, close-wound, of PVC-covered flex containing 7 wire strands and with an overall outside diameter of 0.9mm.

This L1 winding takes the full width of the frame, apart from about ½in either side. Over L1 is wound the coupling winding L2, consisting of 3 turns of PVC-covered flex containing 22 wire strands and with an outside diameter of 2mm. L2 is close-wound directly over the centre of L1. Lead-outs are shown in Figure 3. At this stage a 500pF variable capacitor was connected across the ends of L1, a length of coaxial cable from L2 was connected to the receiver, and initial performance, wave-range and nulling was checked. Brown PVC insulating tape was then wound over the windings, and performance and frequency range rechecked.

Support assembly

The frame support assembly was then constructed, as shown in Figure 4. It consists of two vertical members, 22in long, and 2 horizontal base members, 8in long, with a block of wood between, which was cut and fitted after the frame with its winding had been secured to the frame support assembly.

The front vertical member has a suitable hole drilled for the variable capacitor (CV) and the rear member has a hole for a coaxial socket. Again these wooden parts were stained light teak.

All that remained was to fit the frame into the support assembly and secure it with wood screws into the ends of the 4in x 1½in x ½in blocks (see Figure 3) to produce a finished assembly (Figure 1).

A coaxial socket was mounted near the bottom of the rear vertical member, and the lead-outs from L2 soldered to it. A 2 gang 500pF variable capacitor was fitted in position (see Figure 4), and the lead-outs from L1 soldered across one section. The other section has been left unused for possible use later when suitable VLF equipment becomes available to switch in parallel and extend the range above 2000 metres.

Figure 5 shows the polar diagram of the loop. The null appears when the flat side points towards the station being received. Maximum signal appears off the ends.

Operation is quite simple. The frequency required is selected, and the aerial resonated with CV for maximum signal. The loop is rotated at the same time for maximum signal. Turn the loop through 90 degrees and the signal should disappear or be greatly reduced. This latter operation proved quite effective, except in the case of BBC4 on 1500 metres (200kHz), where the signal cannot usually be nulled out sufficiently to hear the lower power stations in Warsaw, Turkey and Leningrad which share this frequency.

A further bonus is that it is possible to rotate the aerial slightly to reduce the electrical interference often radiated in apartment blocks.

The frequency range of the loop was measured from 545kHz to 150kHz (550 to 2000 metres), so it obviously covers the whole of the LW band (and also the spectrum between the MW and LW bands). A slow motion drive was not considered necessary on the resonating variable capacitor.

Many European stations can be heard and QRM/QRN can be nulled out by rotating the loop slowly to obtain good listening quality and volume.

The furthest east received, so far, has been Minsk in the Crimea on 281kHz (1068 metres). It can be located with the loop pointing roughly NW/SE, and is just high frequency of a CW beacon CHT on about 277kHz (1080 metres). Of course, Moscow comes in loud and clear.

To the south, Radio Algiers usually produces a beautiful signal on 254kHz (1181 metres). Programmes are generally in French, but at 2000GMT (2100BST) there is an English news programme with station identification. The loop should be pointed roughly N/S and carefully adjusted, as must the receiver tuning, as there are powerful stations on either side.

Reykjavik (Iceland) presents a problem. There is a West German station on the same frequency, and on a reciprocal bearing, and this obviously cannot be nulled out.

Better results

Better results could no doubt be obtained with a good general coverage communications receiver which covers the LW band. Whatever receiver is used, it must not be fitted with an internal ferrite rod aerial, even if it has an external aerial socket as well. No doubt a larger loop along the same lines would also give better results.

FIG 5 Polar diagram
A TVer of the Year 1985 is Dr Anthony England W0ORE, who was nominated by Spec-Comm, the American ATV magazine formerly known as AS.

The honour was bestowed upon astronaut England for his efforts in utilising amateur slow-scan TV during last summer's S1-F Spacelab 2 'ham in space' (no, not pigs in space) operation. The award was accepted on behalf of Dr England by fellow astronaut Dr John-David Bartoe N4NYZ at the Octobervention 1985 Grand Banquet, on 2 November last (I think this figure).

Anyway, it's nice to get some recognition for ATV, and the slow-scanners should be jubilant. I have not yet seen any off-screen photos of transmissions from the Space Shuttle; would anyone like to send some in for publication?

Silly-billies

You know those daft people who make trouble for everyone else? Some operators are making a big thing of transmitting full colour and subcarrier sound on 70cm ATV. They seem to think it's macho or an illustration of the state of the art. Seems that it's getting up the noses of non-afficionados of ATV and the latter are contemplating making complaints and naming names. This seems a most unfortunate state of affairs - it is difficult enough keeping ATV picture buzz out of phone repeaters and persuading the rest of the ham radio community that ATV alone is responsible for hanging on to the full 10MHz allocation at 70cm.

Continuation of this practice will lose us a lot of friends, quite apart from it being illegal. A few tests at one in the morning are fairly harmless but lengthy transmissions during the evening are antisocial to say the least.

Using a 6MHz subcarrier and double sideband modulation, you will be radiating a signal more than 12MHz wide (with whatever filters you have - or don't) and this will inevitably be spreading outside the band. Above 440MHz you will not be doing much harm in some areas, but at 429 and below you will probably be heard by people who have good friends in the RIS.

I suspect that the number of people doing this is small, and I hope it will soon be nil. There is plenty of scope for worthwhile experimentation at 1.2, 2.3 and 10GHz, and this would give much more satisfaction than blocking the whole of 70cm.

BATC news

There are some ATVers who do not belong to the BATC. No doubt they have very good reasons, but anyone and everyone who is interested in ATV is welcome to visit the BATC's open days. This year's 'do' will again be at the Post House next to the M1 motorway at Crick. Crick is in the frozen north, about 70 miles north of London. In other words, little more than an hour's drive. It is also conveniently sited in the middle of England for everyone else to reach.

This year's event will be bigger than ever, I am told, so reserve the date in your diaries. It's Sunday 4 May, which happens to be the Bank Holiday weekend. This year there will be more for the rest of the family - an inflatable trampoline fun castle for the children and so on. I'm not convinced how much of an inducement this is because of course the ATV ver comes more for the junk stalls and trade stands.

On sale at the rally will be all the BATC's supplies: printed circuit boards, vidicons and other hard-to-find bits. A new projects book, *The Best of CO-TV*, should be out by then. too, so it should be worth a trip. DX-TV and weather satellites featured prominently last year and doubtless they will again this time. There may well be displays of satellite TV and some vintage apparatus as well.

Foreign despatches

From the Netherlands comes the news that the 70cm phone repeaters there are to be relocated from 433-435MHz to 430-432. At last no more interference between ATV stations and repeaters, says Paul Paason, who is ATV manager of Verom, the Dutch equivalent of the RSGB.

The EATWG, the European Amateur Television Working Group, is taking shape. Representatives from Britain, Germany and Holland are setting up a database which will cover: licensing conditions, frequencies, power limits; lists of stations active on 70 and 24cm; a survey of typical transmitting and receiving equipment; ATV repeater technology, antennas, lists and frequencies; details of national and international ATV contests; records and archives; and details of national organisations, conventions and publications.

The aim of the EATWG is to gain recognition from the IARU and its VHF Working Group as the consulting authority for all ATV matters in Europe. A progress meeting will be held later this year and more news should be available after that time.

Surprising tests

A factor not often reckoned with in ATV is electrical 'background noise', which acts as a constant level of interference to received signals. The higher in frequency one goes the less relevant this is, but at 70cm it may be a significant factor.

So thinks Josef DJ6PI, writing in the latest issue of *Der TV Amateur*. In a technical article he describes ATV tests made from the top of Tegelberg, more than 3,000 feet above sea level. The TV repeater DB0DN is located here and indeed it is a superb location with a very wide coverage area, thanks to its height.

The tests were made over a 180km transmission path, so this was no theoretical lab experiment. From his home station in Augsburg, DJ6PI sent signals on both 70cm (AM) and 13cm (FM) and received them via the DB0DN repeater, which has inputs on both bands and an output on 23cm. Path length was 90km in each direction, hence the 180km round trip.
The results have been astonishing. On 434 MHz a transmitted 1 watt gave a very noisy repeater output, with no colour visible. Ten watts cleared up some of the noise and colour was then visible. With 70 watts a good picture was achieved, though still with a light overlay of picture noise.

Turning to 2.3 GHz FM, a colour picture was already achieved with 150 mW output. Just 800 mW was enough to give noise-free colour and 1.5 watts gave a perfect picture.

Background noise

What does this prove and why? For a start it shows that although the path loss on 13 cm is 15 dB greater than at 70 cm, just one tenth of the output power is needed at 2.3 GHz to achieve comparable or better pictures. DJ6PI concludes that this has to be tied up with the constant background noise or QRM on 70 cm. With an interference-free band at 70 as well as at 13, the comparison might not have been so impressive. However, given that we live in the real world, perhaps we ought to exploit the advantages of the microwave bands, which are more or less handed to us on a plate. Less QRM, more gain from smaller aerials and an FM effect which works to our advantage.

Sign-off time

Why don't more people try 23 and 13 cm? Are they afraid of roasting next door's homing pigeons? How about sending me some letters? Drop me a line of Sovereign House in Brentwood or run up your phone bill and leave a message on the answering machine: (0604) 844130.
December wasn't exactly a rip roaring month for DX-TV reception. There is normally a mid-winter peak in sporadic-E activity, and indeed signals were logged but openings were generally insignificant. Tropospheric DX noted on the 16th and 17th produced good quality pictures from Belgium, France, Luxembourg, West Germany and the Netherlands. However, tropospheric ducting towards the end of the month brought in Spanish FM radio programmes and Band III TV signals to DXers in the north-west of England.

On the meteor shower front the Gemind's didn't produce anything too startling, although there were some relatively sustained 'pings' on the 13th, 14th and 15th. Unfortunately only programmes were seen, causing frustration all round as the TV services couldn't be identified.

DX-TV log for December

Simon Hamer of New Radnor (Pows) has joined forces with us this time round to provide a log. He has come to the conclusion that after experiencing a good trop opening during the autumn we all pay for it later with duct conditions towards Christmas time. We're inclined to agree with him.

The following signals were noted by the authors in Derby:

- 2/12/85: SR/SVT-1 (Sweden) on channel E2 with the 'TV1 SVERIGE' PM5544 test card. This was a very short duration signal via sporadic-E.
- 13/12/85: Meteor shower activity noted during the early evening on channels E2, R1, E3 and E4, all with programmes.
- 14/12/85: A sporadic-E opening was in progress at switch on with programmes on channels R1, R2, E3 and E4 from 1510GMT. The E4 signal was a football match thought to be of Yugoslavian origin. Meteor shower DX was noted on E2, R1, E3, R2 and E4 during the early evening.
- 15/12/85: Meteor shower DX noted throughout Band I with programmes—positive identification was not possible.
- 16/12/85: CST (Czechoslovakia) on channel R1 radiating the 'RS-KH' electronic test card. A co-channel programme was noted at 0640GMT via sporadic-E; SRG-1 (Switzerland) on channel E3 transmitting the FuBK test card with the usual identification 'PTT SRG1'. This country was received via weak sporadic-E; unidentified programme as co-channel signal to the Dutch E4 outlet at Lopik. No more showing the PM5544 test card with the identification 'PTT-NED1'.
- 19/12/85: TVP (Poland) on R1 showing their slightly modified PM5544 pattern; ORF (Austria) on E2a with the PM5544 bearing the inscription 'ORF FS1'.
- 20/12/85: TSS (Russia) on R1 with the UT0167-type electronic colour test card, noted via sporadic-E propagation at 0842.
- 22/12/85: Unidentified feature film on channel R1 or E2a at 1601GMT.

Simon's DX-TV log for the month consists of signals noted via sporadic-E during lunch-times. His report is as follows:

1985 DX-TV round-up

With the passing of yet another year, it's time to look back at DX-TV conditions. A glance through reception reports for 1985 shows that it was an exciting and eventful period with lots of surprises. DX-TV records were well and truly broken, both with reception via sporadic-E and tropo.

Early on in 1985 many enthusiasts caught a glimpse of some old discontinued test cards which were radiated for special engineering purposes. Test cards included the monochrome test card 'G' (similar to the BBC test card 'C' but with an outer circle), the RETMA Resolution Chart 1986 (probably from Hungary), the early Czechoslovakian monochrome pattern (with the identification 'CESKOSLOVENSKO' at the top) and a Swedish tuning pattern. This consisted of a girl's head and greyscale pattern enclosed within a circle.

A brand new test pattern appeared on our screens from a pirate station in Italy. The test card received on channel IA resembled the West German FuBK type but with a few modifications. The identification was 'Radio Tele Uno'.

For the first time TV signals from a low power outlet in Bulgaria were seen on channel R3 in the Netherlands. Rijn Muntjewerff, of Beemster, was the lucky DXer to log this on June 5th between 1410 and 1429GMT.

Programmes from Syrian TV were logged via channels E3 and E4 in Derby from 1250 on June 21st. Meanwhile, over in East Anglia, Ray Davies noted these transmissions together with an Arabic station on channel E2. Andy Webster in Wigan discovered the square PM5544 test card from Dubai during the same month, and Tony Brittain was overwhelmed to find the 'NTV SOCOTO' caption appear before his eyes on E3 from Nigeria.

Television signals from Iran were noted on several occasions during 1985 on channel E2. Thanks to the modified version of the FuBK test card being radiated, positive identification was possible. Rijn Muntjewerff (Netherlands) and Iain Menges (Aberdeen) both saw signals from the 5kW channel E3 outlet at Dharan in Saudi Arabia. Iain saw them on a caption and Rijn resolved the PM5544 test card for him on the morning of June 26th. The identification read 'HZ22TV' at the top and 'CHANNEL 3' below.

Jukka Kotovirta in Finland also found this on his screen. He was also astounded to hear FM radio from Iraq on June 19th. Possibly the best record breakers of the year were the Canary Islands on E3 from the Izana outlet and Morocco on E4 from Layoune.

So much for sporadic-E. What about trop conditions during last year? Well, October was a record breaker for distance and quality. Highlights included Russian and Polish DX in Band III. Kevin Jackson and Mark Dent (both from Leeds) saw the Russian signal on channels R9 and R12, while Poland occupied R8, R10 and R12. And let's not forget the Italian FM tropics from Torino noted by Kevin and the Spanish Band III and FM reception by Andy Webster just before Christmas.

All in all, 1985 was a very successful year for DX-TV enthusiasts. It won't be too long before the start of this year's sporadic-E season. No doubt even more records will be broken over the next few months.

Reception reports

Unexpected tropospheric ducting produced Spanish DX for Andy Webster of Billinge (near Wigan) on December 11th. During the afternoon he became suspicious of a foreign sounding FM radio station which peaked with the aerials directed towards the south-west. A check in Band III revealed Spanish (TVE) transmissions on channels E8, E9 and E10. Picture quality was good at times and the opening continued well into the evening. It isn't the first time Andy's seen Spanish TV via tropospheric propagation. Last year he received the ETB service on UHF from the Basque region of Northern Spain.
How to become a DXer

We frequently receive letters from Radio and Electronics World readers seeking advice on how to start DXing after hearing about the exploits and successes of established enthusiasts via this monthly column.

Until comparatively recently, equipment specially suited to the hobby wasn’t widely available on a commercial basis. This meant that most DXers had to be either associated with the TV servicing trade in some way, or be in a position to enlist the help of someone who was, in order to adapt a receiver for DX-TV. Today the situation has changed. Receiver systems and tailor-made aerials for DX-TV reception are available, together with helpful books covering various aspects of the subject. Consequently, anyone with only a minimum of technical knowledge can soon become involved with a very satisfying hobby.

Almost anyone with an interest in receiving television signals from anywhere other than the local transmitter could loosely be termed a DXer. We stress the word ‘receiving’ as opposed to viewing because the traditional role of the TV DX enthusiast is someone who enjoys resolving a broadcast TV transmission that has travelled hundreds or perhaps even thousands of miles before entering the aerial system, whatever the quality. It is the challenge of capturing these stray signals which, under normal conditions, would travel out into space. The unpredictability of their origin, quality and duration all add to the excitement of the hobby.

Nowadays, with satellite technology being widely available, it is possible to display excellent quality pictures from the USSR or practically anywhere in Europe. That’s fine if it’s extra channels you are after to supplement the offerings from the BBC or IBA.

Many established enthusiasts originally started out by exploring the VHF or UHF bands in search of extra British regional programmes. During periods of anti-cyclonic weather distant stations may appear on normally vacant channels. Some of these will have originated within the UK but others will have come from Continental transmitters.

DX via enhanced trop conditions can produce remarkably high-quality, stable pictures at times, especially from Belgium, West Germany and the Netherlands. These signals can be viewed on a standard domestic TV receiver. The sound and vision spacing is different to the UK system and the intercarrier sound stage would require some tweaking in order to obtain the audio. If you want to avoid the risk of family arguments (and electrocution) it may be best to either simply watch the foreign pictures or purchase a receiver featuring British and Continental sound standards.

The lower UHF channels are generally more productive than those in groups C and D. This should be borne in mind when selecting a more efficient aerial to replace the domestic installation.

Propagation

Perhaps the most interesting form of TV DX takes place via sporadic-E (or...
DX-TV Reception Reports

Meteor Shower Dates for 1986

<table>
<thead>
<tr>
<th>SHOWER</th>
<th>BEGINNING</th>
<th>END</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadrantids</td>
<td>Jan 1st</td>
<td>Jan 5th</td>
<td>Average</td>
</tr>
<tr>
<td>April Lyrids</td>
<td>April 19th</td>
<td>April 24th</td>
<td>Good</td>
</tr>
<tr>
<td>Aquarids</td>
<td>May 1st</td>
<td>May 8th</td>
<td>Long showers</td>
</tr>
<tr>
<td>June Lyrids</td>
<td>June 10th</td>
<td>June 21st</td>
<td>Very good</td>
</tr>
<tr>
<td>Perseids</td>
<td>July 25th</td>
<td>Aug 18th</td>
<td>Poor</td>
</tr>
<tr>
<td>Cygnids</td>
<td>Aug 18th</td>
<td>Aug 22nd</td>
<td>Poor</td>
</tr>
<tr>
<td>Orionids</td>
<td>Oct 16th</td>
<td>Oct 27th</td>
<td>Fair</td>
</tr>
<tr>
<td>Taurids</td>
<td>Oct 10th</td>
<td>Dec 5th</td>
<td>Excellent</td>
</tr>
<tr>
<td>Leonids</td>
<td>Nov 14th</td>
<td>Nov 20th</td>
<td></td>
</tr>
<tr>
<td>Geminids</td>
<td>Dec 7th</td>
<td>Dec 15th</td>
<td></td>
</tr>
</tbody>
</table>

'SpE') ionisation. Because SpE activity is capable of producing high-level signals most enthusiasts are guaranteed some form of long-distance TV reception, even with the simplest of equipment.

Sporadic-E activity usually occurs between mid-May and early September. However, TV stations can be received via SpE at any time of the year. If you're a little short on patience though it may be better to try during the height of summer to avoid disappointment.

SpE reception is provided courtesy of the 'E' layer, which is located some 75 miles above the surface of the Earth. In summer it is ionised by the sun and it then acts as a reflector, thus allowing TV signals to be redirected towards our planet. Normally the signals would pass straight through the E-layer, to be lost forever in space. The process is actually a combination of reflection and refraction.

When TV transmissions are bounced back to the Earth a 'skip' distance is involved (this is sometimes referred to as the 'hop' distance). Typically the skip distance is between about 600 and 800 miles, hence countries around the Mediterranean area or in Scandinavia may be received while countries closer to the UK, such as Belgium or the Netherlands, may be lacking. With 'double-hop' reception TV stations as far away as the Middle East or Africa can be resolved with amazing clarity. But remember, reception is totally random and programmes cannot be pre-selected. It's worth knowing this before splashing out on expensive equipment.

Service Information

United Kingdom: Stereo TV sound transmissions have been noted from the BBC-2 outlet at Crystal Palace by several Dutch enthusiasts.

Spain: A fourth regional TV service is to open shortly in the province of Navarra. The first regional network in Spain was 'Euskal Telebista', which began in 1983. This covers the northern Basque region. 'TV3' came into operation during 1984 for the Catalunya region and last year the third network began called 'Television de Galicia' (TVG).

Greenland: The television service in Greenland, which has been in operation for three years, radiates the P5544 test card with the identification 'KNR' at the top and 'KAL NUNAAT' at the bottom. There are currently six transmitters in service, all on channel 10 with a maximum ERP of only 5 watts.

This month's service information was kindly supplied by Alexander Wiese (West Germany) and Gösta van der Linden (Netherlands).

Affordable entertainment

Reliable, simple satellite systems from Connexions.

With a Connexions satellite system, up to fourteen channels of entertainment and information are available to you – whether private home, pub, club, disco, hotel, restaurant or educational establishment.

The channels currently available are broadcasting a wide range of top quality material including current cinema films, national/international and minority sports, pop videos, children's programmes, news channels and general entertainment.

Trade and dealership enquiries welcome.

Full band systems from £995* inc. vat.

* Plus delivery and installation.

Connexions Satellite Systems Ltd
125 East Barnet Road, New Barnet, Herts EN4 8RF

Phone: 01-441 1282 (5 lines) Telex 295181 SMC G

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement

APRIL 1986
Forsaking both the 60 and 90 metre bands, this installment of the ongoing short wave saga launches readers’ longships on a voyage of discovery through the QRM storm-tossed ocean lying between 4000 and 4460. Storm-tossed is the right description; this area of the dial abounds in commercial utility QRM (interference) resulting in a welter of cacophonous noises amid which— if one is fortunate—some safe harbours of DX may thankfully be found.

Many of the Far Eastern transmitters listed here are rarely logged by DXers based in Western Europe or the UK, but just occasionally some of the signals do filter through— much to the satisfaction of those lucky enough to be on the receiving end. Some of the stations featured in these paragraphs exhibit relatively low powers. Moreover, as indicated above, many of the channels are affected by ute (utility) QRM. In DXing terms, the frequencies are ‘muddy’, to say the least.

China

On 4020 Radio Beijing radiates a Foreign Service programme from 2230 to 1500. The power is 50/120kW. Also reported closing at 1730 after a Swahili programme.

The 50kW Xizang PBS (People’s Broadcasting Station) Lhasa, Tibet on 4038, carries the Home Service in Tibetan from 2230 to 0310, from 0330 to 0545 and from 1000 to 1545, the latter period including a relay of the Radio Beijing Minority Language Service from 1300 to 1325. The Radio Beijing Foreign Service in Hindi is broadcast from 1600 to 1800, the last hour being a repeat of the first.

Further up the dial on 4045 there is the Voice of the Strait at Fuzhou. This 10kW transmitter provides a service to offshore islands and Taiwan, mostly in standard Chinese but also with some programmes in Amoy. The schedule is from 1055 to 2355. The power is 10kW.

CPBS (Central People’s Broadcasting Station) Beijing relays the Radio Beijing Minority Language Service in Korean from 2130 to 2156, from 1000 to 1026 and from 1200 to 1226. Programmes in Mongolian are transmitted from 2200 to 2226 and from 1230 to 1256. The frequency is 4190 and the power 50kW.

The nearby channel of 4200 is occupied by Radio Beijing with the Foreign Service in English from 1400 to 1600 and in Russian from 2000 to 2055 and from 2100 to 2155. The power is 50kW and, needless to say, the latter programmes are jammed.

Xinjiang PBS in Urumqi radiates the Home Service in Mongolian on 4220, the schedule being from 0900 to 2030, from 0530 to 0730 and from 1300 to 1700, this latter period including a relay of the Radio Beijing Minority Language Service from 1430 to 1456. The power is 15/50kW, this one also operating in parallel on 5060. This was recently logged by the writer and reported in this feature.

On 4250 Radio Beijing carries the Home Service 2 in Chinese from 2100 to 2400 and from 0745 to 1800. The power is 50kW.

Voice of the Strait, Fuzhou at 10kW radiates programmes in standard Chinese and Amoy to offshore islands and Taiwan from 1205 to 2355. The channel is 4330, also recently logged. Voice of the Strait may also be heard on 4380, at which point on the dial it transmits in Chinese and Amoy from 0355 to 1755. The power is 10kW. Logged at 1509.

On 4450 Radio Beijing transmits Home Service 1 programmes in Chinese from 2000 to 0030 and from 1015 to 1730 with a power of 50kW. Radio Beijing on this channel is often featured in the SWL press.

Mongolia

Ulan Bator on 4060 fairly often appears in DXers’ reports. It radiates the Home Service 1 from 2200 to 1600, the schedule of which includes relays of the Moscow Foreign Service in Mongolian from 0500 to 0630, from 0930 to 1000 and from 1200 to 1245. On Tuesday and Friday there is a Russian programme from 1130 to 1220 and one in Chinese from 0830 to 0900. The power is 50kW.

North Korea

The regional North Korean station at Kanggye on 4273 , power not known, broadcasts the Home Service from 19:45 to 1800 but features local programmes from 2330 to 2300, from 0430 to 0520 and from 1100 to 1110. Again, it is hardly likely that Kanggye will be logged by UK DXers.

Vietnam

The Vietnam regional station at Vinh Phu, power unknown, on 4243 is on the air from 1030 to 1100, from 1200 to 1230 and from 1300 to 1330 with local programmes. The observation here is that this one is most unlikely to put a signal into the UK at the present point in the sunspot cycle.

Progression from 4460 next month.

AROUND THE DIAL

Cameroun

Bafoussam on 4000 at 0427, African xylophone interval signal, OM with some announcements in a vernacular, more xylophone, drums then OM with the station identification in both French and English, a choral/orchestral rendition of the National Anthem at 0430, then OM with songs complete with YLS in chorus and drum backing. The power is 20kW and the schedule is from 0425 to 0830 and from 1630 to 2300. There are news bulletins in English and French at 0700, 0800, 1700 and 2200.

Central African Republic

Bangui on 5035 at 0439, OM with a talk in French. Radio Centrafrique at 100kW operates from 0430 to 0700 and from 1630 to 2300. The channel is a muddy one, being also that of the USSR transmitter at Alma Ata at 50/100kW.

Gabon

Libreville on 4777 at 2031, African xylophone music in the local fast rhythmic style then OM’s with a song in vernacular. This one is scheduled from 0430 (Saturday and Sunday from 0700) to 0900 and from 1700 to 2400 with a power of 20kW. The frequency can vary to 4817 on occasions.
SHORT WAVE NEWS

Transkei
Capital Radio on a measured 3929.8 at 2040, OM with announcements in English amid a programme of UK pops on records. This 20kW transmitter is on the air from 0300 (Sunday from 0400) to 0530 and from 1530 to 2300. Difficulties here for some, Radio Voz de Sao Vicente, Cape Verde at 10kW being on 3930 and the rarely reported South Korean station at Suweon also being on 3930. If the announcements are in English it will be Capital Radio, if in Portuguese or Creole it will be Cape Verde, and if in Korean you will be lucky!

SOUTH AMERICA
Brazil
Radio Difusora do Amazonas, Manaus on 4805, at 2330, OM with the station identification in Portuguese followed by some sambas with announcements interspersed. This 5kW Brazilian was reactivated in the early part of last year and has been heard closing around 0200, but is sometimes known to work around the clock.

Ecuador
Radio Popular de Cuenca on 4800 at 0420, OM with announcements in Spanish then some local pops on records. At 5kW, Radio Popular is scheduled from 1000 to a variable closing time around the 0700 mark. The frequency can vary to 4801 at times.

Venezuela
Radio Valiera, Trujillo on 4840 at 0347. OM and YL with a discussion about Colombia in Spanish. This Venezuelan is on the air from 1000 through to 0400 at 1kW. The town of Trujillo is the capital of Trujillo State in western Venezuela on the Transandean highway at an altitude of 805 metres.

ASIA
China
Voice of the Strait, Fuzhou on 4045 at 1910, OM with a talk in Chinese. This is the People's Liberation Army Fujian Front Station broadcasting to Taiwan and other offshore islands mostly in standard Chinese but with some Amoy programmed. It is also known as Hai-Hsin-sheng guang-bo-dian-tai. The Haixia 1 transmission, logged here, is timed from 1055 to 2355 and the power is 10kW.

Voice of the Strait, Fuzhou has also been logged on 4330 at 1505, OM with a song in Chinese, this also being Haixia 1, timed from 1205 to 2355 and on 4380 at 1509, YL with a talk in Chinese. The latter transmission was Haixia 2 in Chinese and Amoy. Amoy programmes on this frequency are timed from 0645 to 0715, 0945 to 0955, 1400 to 1415, 1445 to 1500, 1600 to 1615 and from 1645 to 1700.

OPBS (Central People's Broadcasting Station) Beijing on 4460 at 1602, OM and YL with a talk in Chinese in the Home Service 1 which is radiated on this channel from 2000 to 0030 and from 0105 to 1730. The power is 50kW. Xinjiang PBS on 4220 at 1500, OM and YL with a discussion in the Mongolian Home Service which is on this frequency from 0000 to 0230, 0530 to 0730 and from 1300 to 1700, this including a relay of the Radio Beijing Minority Language Service in Mongolian from 1430 to 1456. Xinjiang PBS at Urumqi has a power of 15/50kW and can also be heard in parallel on 5060.

India
Air (All India Radio) Gauhati on 4770.4 at 0300, the Air radio signal, then OM with announcements at 0030 followed by YL with a song in Hindi. This 10kW transmitter is scheduled from 0025 to 0400 and from 1030 to 1215. It is seldom logged here in Europe.

Air Hyderabad on 4800 at 1545. YL and OM with the station identification and announcements then a talk about Pakistan all in English. Hyderabad is on the air from 0025 to 0215 and from 1200 to 1741 with a power of 10kW, it being the chief city of the state of Andhra Pradesh on the River Musi.

Air Delhi on 4860 at 1548, OM with a talk in English with mentions of Bangladesh and Pakistan, this programme being in parallel with that above. This one is on the air in Nepali from 0130 to 0215 and on the national network in local languages from 0215 to 0345 and from 1233 to 1741. There are English newscasts at 0240, 1430, 1530 and at 1730. The power is 10kW.

Pakistan
Islamabad on 17660 at 1003. YL with a news bulletin in English which is timed from 1000 to 1010 during the Urdu programme for Europe, scheduled from 0715 to 1100. Also logged in parallel on 15605.

SOUTH-EAST ASIA
Singapore
BBC Relay, Kranji on 3915 at 1530, OM with announcements and a talk in English in the World Service scheduled on this channel from 1500 to 1745. The power is 100kW.

Indonesia
RRJ Jakarta on a measured 4774.6 at 1538. OM with a talk in Indonesian. The schedule is from 2158 to 0100 (Sunday until 0200) and from 0800 to 1300 but irregularly to 1600, 1700 or any time between. The power is 50kW. Jakarta (Batavia) is the capital city of Indonesia and is located in north-west Java.

NOW HEAR THESE
Sistema de Emisoras Ataylaya, Guayaquil, Ecuador on 4792 at 0303, OM with some announcements then OM with a folk song in Spanish. This 5kW transmitter radiates from 1900 through to 0400 but at weekends is often on the air around the clock.

Azad Kashmir, Pakistan on a measured 4790.5 at 1452, OM with songs, some local-style music then OM with announcements, presumably in Kashmiri. At 10kW, this station is scheduled from 1400 to 1804 and claims to be located in Trarkee. The trouble is that nobody seems able to locate such a place.

Radio Nacional, Sao Tome e Principe on 4805.4 (measured) at 2054, OMs with a discussion in Portuguese, OM with announcements at 2100 then YL with songs. Reactivated during August last year, this 10kW transmitter closes at 2300, other scheduled times being unknown at the time of writing.

NOW LOG THESE
Voice of the Strait, Fuzhou on 3535 at 2302, YL and OM with a talk in Chinese under interference from amateur CW (Morse) signals. Rarely heard on this channel, which is not surprising, Han Chinese programmes here from 1310 to 2355 with a power of 10kW.

Djibouti on 4780 at 0355, YL with a song in Somali with local-style musical backing until 0345 when there is an OM with a newscast in Somali, all overriding signals from the co-channel USSR 50kW transmitter at Petrozavodsk. Djibouti is on the air from 0300 to 0800 (Friday from 0500 to 0900) and from 0900 to 1900 with a power of 20kW, carrying the National Service in Somali, Afar and Arabic.

Ulan Bator, Mongolia on 4080 with announcements, YL with a talk until 2250 then some stringed instrumental music. This is the Home Service 1 in Mongolian which is on the air from 2200 to 1600 at 50kW.

KCBS Pyongyang, North Korea on 3015 at 1531, European-style orchestral music. YL with a song, YL with some announcements then OM with a talk in Korean until 1530, this being followed by OM with a marching song. Signal lost under sudden interference at 1542. This 120kW transmitter, seldom reported by European DXers, is scheduled from 1900 through to 0400 but at weekends is often on the air around the clock.

For a change of occupation, the results of some CW operation are noted here. On Top Band (1.8 to 2MHz) the bag included EASTX, ISMMX, KAI0, T2KU, KUST, K4UEE, K5NA, LAX5, LX1E4, OH6LP, RA9AKM, SV1PL, TK0KC/P, UG6GAW, UL7LFB, UP1BZZ, UQ1GWE, UR2QD, UT5AB, VEZYF, W1FZ, YU2MM and 3X4K9N.

A new 7MHz (7.0 to 7.1MHz) CE3IAHP, COSE0, C6X0Q, F5MSU, HK4COK, HP1XLU, J28EG, L7U7BA, OA4IU, P2YLM, PZ2AC, XU1SS, YV1BD, ZR2HM and 3BB6C were logged.

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement

APRIL 1986

page 56
ATTENTION ALL RTTY OPERATORS!!

DID YOU KNOW that 'Software-only approaches may demonstrate some elegant programming, but for reliability you can't beat a terminal unit' Rew March '86.

WELL SCARAB SYSTEMS ARE PLEASED TO ANNOUNCE THE NEXT BEST THING.

SCARAB SYSTEMS are pleased to announce the NITE-2 RTTY filter unit. This is a new concept in RTTY filters as it not only improves filtering on conventional terminal units but also provides the computer operator who is operating a software only package with substantial signal enhancement. The NITE-2 features a pre-amplifier, limiter, tuneable bandpass filter and output amplifier. The output from the unit is variable so allowing maximum drive for users of non interfaced programs. An audio isolating transformer is included, this has been found to reduce the noise fed back into the transceiver from the computer. The NITE-2 is a must for all RTTY operators and especially for those computer users still running programs requiring no terminal unit.

The NITE-2 is supplied either ready boxed (matching the MPTU-1) or as a ready assembled PCB excluding switches, LEDs and case.

The fully cased NITE-2 is available at £34.95 + £1.00 P&P.

The unboxed fully assembled NITE-2 is available at £24.95 + 50p P&P.

PLEASE NOTE. Software is not provided.

SCARAB SYSTEMS produce many other high quality software programs for other computers - please write for further details.

Distributors
UK Ward Electronics, D W Electronics, S P Electronics.
Australasia. Essex Mellor Pty Adelaide.
Or available directly from:-

SCARAB SYSTEMS
39 STAFFORD ST, GILLINGHAM, KENT ME7 5EN
TEL: MEDWAY (0634) 570441

SATELLITE TELEVISION

Buy direct from the manufacturers, low cost full band satellite TV systems.
Write or telephone for details, or call in at our factory showroom.

Agents and Distributors required

NETWORK SATELLITE SYSTEMS LTD
Units 7-8
Newburn Bridge Industrial Estate
Hartlepool, Cleveland TS25 1UB
Tel: 0429 869366

OMNI ELECTRONICS

‘VISIT SCOTLAND’S NEWEST COMPONENTS SHOP’.

We stock a wide range of general electronic components, send now for our 21 page catalogue price 20p + 12p p&p or call at the shop Mon-Sat 9.00am-6.00pm at:

Tel: 031-667 2611
174 Dalkeith Road,
Edinburgh, EH16 5DX
Medium Wave

by Steve Whitt

Propagation
To make the most of this hobby you'll need to have a basic understanding of how a radio signal actually arrives at the receiver from a distant transmitter. A great deal of scientific work has been undertaken investigating the propagation of radio waves, but fortunately for the MW-DXer things can be greatly simplified by considering just two dominant propagation methods.

1) Groundwaves
Long distance MW propagation takes place by means of two entirely different and distinct mechanisms, namely groundwaves and skywaves. The groundwave, as its name implies, travels along a path close to the Earth's surface. How far such a signal goes is dependent on a number of factors, principally transmitter power, operating frequency and Earth conductivity.

Groundwave propagation is heavily dependent on the frequency, with low frequency signals travelling greater distances. In fact, everything else being equal, groundwave signals from a station on 550KHz will travel twice as far over land as those radiated by a station on 1500KHz. The Earth conductivity is also a very significant factor and it is found that the better the conductivity the further the signal travels. Sandy or rocky soil is the worst terrain whilst sea water is best, and in regions such as the Caribbean, where the sea is particularly saline (and therefore more conductive), groundwave reception of stations up to 1000 miles distant is possible. In contrast, a similar signal travelling over rocky terrain would carry only about one quarter of this distance.

Groundwave propagation is very stable, resulting in consistent reception conditions. It is, however, usually only associated with daytime (although

Information
By the time that you read this, the 1986 edition of the World Radio TV Handbook will be on the bookstalls at £17.95. Expensive it may seem, but this book is an invaluable addition to any listener's shack, listing as it does just about every radio and TV station in the world - complete with details of addresses, transmitter powers, broadcasting times and so on. Of course, MW stations are covered in detail and there are a number of feature articles on radio propagation and receiver performance.

Once you have started listening on MW you will soon want to keep abreast of the latest happenings on the band, such as news about recent station changes as well as information about what stations are currently being heard on the band. The best way to stay well informed (remember that the WRT is published annually) is to join a radio club, of which there are several in the UK interested in MW-DXing. As far as I'm aware, though, there is only one club that specialises solely in this subject, namely the Medium Wave Circle. For further information and a sample copy of the newsletter, write to the club secretary (Ed Baker) at 69 Alderley Way, Cramlington, Northumberland.

Other sources of information for the MW-DXer are DX programmes, several of which are readily heard in the UK using simple equipment. These programmes are specially prepared for the radio enthusiast and often contain material relating to the medium waves. Try listening for Sweden Calling DXers Tuesdays at 2115 and 2315GMT on 1179KHz; Radio World from BRT Brussels, Sundays 1910-1930 (1 hour earlier in summer) on 1512KHz; or DX Circle from DLF Cologne, which is broadcast at 1930 (also earlier in summer) every Tuesday on 1269KHz.

Fig 1 The ionosphere

Fig 2 Absorption and reflection by the D,E and F layers
equally present at night) since at night long distant reception is predominantly via the skywave. Because of its stable daytime behaviour, radio stations usually optimise their aerials to radiate as much of their signal as possible via the groundwave, in order to improve coverage.

2) Skywaves

There exists a rarefied region of the Earth's upper atmosphere (above about 50km) that absorbs the intense solar ultra-violet radiation, thereby protecting life on the Earth's surface. This radiation results in a region of ionised gases known as the ionosphere, which, depending on diurnal and seasonal variations, consists of several fairly distinct layers of high ionisation (Figure 1).

These layers have a profound effect upon radio waves approaching them from transmitters on the ground below. Under certain conditions refraction of waves occurs, resulting in the 'reflection' of signals back down to the Earth, whilst at other times signals can be totally absorbed by the ionised gases. During daylight hours solar radiation penetrates the atmosphere far enough to form the lowest layer of ionisation, the 'D' layer, roughly 60km above ground.

The D layer so completely absorbs signals on MW frequencies that any radio signals radiated by a station other than those parallel to the Earth's surface are completely lost. With the approach of sunset, however, the D layer absorption decreases rapidly and within a few hours MW signals are being reflected back to the ground from higher regions of the ionosphere. Depending on circumstances, reflection occurs in the E region (about 100-120km up) or in the 'F' layer (225-300km).

Figure 2 illustrates this process and shows the skip distance, which for MW frequencies turns out to be about 100 to 500 miles. Longer distance reception is possible when multiple reflections occur between the ionosphere and the Earth's surface. This occurs with least signal loss over ocean paths, hence the possibility of good reception of Brazilian stations here in England.

Whilst the skywave enables good MW-DX at night, it also leads to a deterioration in reception quality for the normal broadcast listener. Firstly, there is a region about 50-100 miles from a transmitter (Figure 3) where the groundwave and the skywave signals are received with roughly equal (but varying) strength, leading to severe distortion. Additionally, all skywave signals are affected by fading as a result of the continually changing ionosphere.

DX file

Unfortunately, there's not too much to report this month, with recent DX consisting mainly of the usual transatlantic stations such as CJYQ, St Johns, Newfoundland and WINS, New York. There was, however, a period of good DX towards the end of January, when at least 20-25 stations from the Americas could be heard.

NEXT ISSUE

Radio & Electronics
The communications and electronics magazine World

COMPUTING TRANSFORMERS
Brian Kendal and Jeff Howell present their program to calculate transformer characteristics

VPS VIDEO TIMERS
James Fletcher looks into the new video-recorder timing system now being used in Germany

PLUS ALL THE USUAL FEATURES!
On sale 10 April
To be sure of your copy, why not take out a subscription?

APRIL 1986
Presidential CARS

At the RSGB Presidential Installation, held at Furze Hill, Margerettsg, Essex in January, the Chelmsford Amateur Radio Society (CARS) was very much in evidence, with over forty members present.

CARS members witnessed Mrs Joan Heathershaw’s retirement speech, after which she presented Mr William Clintock G3VPK with the chaps of office.

Mr Clintock was also presented with a scroll giving him life membership of CARS in recognition of his services to amateur radio.

Any old Iron

If you have any old government surplus equipment piling up in your shack and want to get rid of some (or, knowing you lot, you may want to add to it), the Southgate Amateur Radio Club’s surplus equipment sale on 10 April should prove interesting.

As with all club meetings, the sale starts at 7.30pm and will be held at the Holy Trinity Church Hall, Green Lanes, Winchmore Hill, London N21.

More details are available from F R Snary G4OBE, QTHR.

How low can you get?

Readers with an interest in low power communication should visit the City of Bristol RSGB Group on 28 April for a lecture on the G-QRP Club, by Norman Field G4LOF.

The group holds its meetings on the last Monday of the month, except on Bank Holidays when the meeting is brought forward a week, at 7.30pm. The venue is the Small Lecture Theatre, University of Bristol, University Walk, Clifton.

For further information on the group and its activities contact: Colin Holister, Honorary Secretary, 34 Battersby Way, Henbury, Bristol BS10 7SU. Tel: (0272) 508451.

Wireless Revol

This annual mobile rally for radio amateurs is being held on Sunday 25 May at the usual venue of the Civil Service Sports Ground, Straight Road, Bucklesham, Ipswich, Suffolk.

Attractions will include traders, a car boot sale, an aerial testing range and a vintage radio display. Non-radio stalls, a children’s play area, model flying display and more. Admission is £0.80.

Further details are available from Jack Tootill G4IFF, 76 Fircroft Road, Ipswich IP1 6PX. Tel: (0473) 44047.

How Scilly

A group of Cornish amateurs is organising a special event station in May (provisionally the 23rd to the 26th) in aid of the RNLI.

The event is being supported by the Duchy of Cornwall and the Nature Conservation Council, who have offered an uninhabited island called Great Ganilly, part of the Scilly Isles, on which to stage the event.

The public relations officer for the station, P A Bevington G4ZUL, is hoping to obtain sponsorship from businesses, clubs and individuals, as well as prizes for a national raffle which will be drawn after the event (a prize already being offered is a free weekend on the Scillies staying with the only resident radio amateur).

As many bands as possible will be used, although this is dependent on a large extent on what equipment is lent or donated. Operation will certainly take place on 144MHz and 430MHz, as well as 3.7 and 14MHz.

Amateurs wishing to support the event in any way should contact: P A Bevington G4ZUL, Gwynsow Farm, Underlane, Carnkie, Wendron, Helston, Cornwall TR13 0EH.

Spaced out

On 12 March, G6HMS and some of his mates at the Lincoln Short Wave Club will be hosting a “Space Communications” evening.

If you are interested in attending, the venue will be the City Engineers Club, Central Depot, Waterside South, Lincoln at 8pm.

Visitors are also welcome at the club activity nights (5 and 19 March).

For more information on these events and the club generally, contact Pam Rose G4STO, QTHR.

On the move

The South Cheshire Amateur Radio Society has a new QTH: the Crewe LMR Sports Club, Goddard Street, Crewe.

Meetings will continue to be held at 8pm on the second Monday of each month, and the April meeting will be a talk on AMSAT UK and Oscar 10.

Further details are available from: Chris Wieman G1PUV, 14 Witheridge Road, Whitehill, Kidsgrove, Stoke-on-Trent, Staffs ST7 4TH.

Radio award

Ceri Jones GW1JCB has recently introduced the Vale of Glamorgan Amateur Radio Award with the idea of promoting more interest and activity on the VHF bands.

The award can be claimed for any band and any mode of operation except via repeaters. Claims are required to work four stations within the Vale of Glamorgan, contacts should have been made after 1 January 1985 and log entries should be submitted.

The cost of the award is £1.00. For further details send an sae to Ceri Jones, 7 Dawson Close, Barry, South Glamorgan, Wales CF6 8PZ.

Bulletin board

At the end of March 1986, Hamnet Hull’s telephone number will change to (0482) 465150. The baud rate will still be 300, 8 bit word, no parity. The system hours are: Monday to Friday – 12.30 to 13.45 and 17.30 to 06.45; weekends 17.30 on Friday to 06.45 on Monday; public holidays—24 hours.

The bulletin board is dedicated to radio amateurs, consisting of information associated with the hobby, but is open to all users. Registration has been made virtually error free by the use of simple one line questions. A unique feature is that apart from the board’s normal user log, radio amateurs can leave their callsigns in a special callsign user log.

There are various contributors who upload news, particularly about space communications. A regular feature is updated monthly containing Amsat and Orbiter data.

<table>
<thead>
<tr>
<th>Date</th>
<th>Occasion</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 April</td>
<td>April Fool’s Fiesta</td>
<td>0001-2359</td>
</tr>
<tr>
<td>5 May</td>
<td>May Day Microwave</td>
<td>0001-2359</td>
</tr>
<tr>
<td>6/7 July</td>
<td>Summer Fun</td>
<td>0001 (Sat)-2359 (Sun)</td>
</tr>
<tr>
<td>13/14 Sept</td>
<td>All bands and modes international</td>
<td>1800 (Sat)-1200 (Sun) (GMT)</td>
</tr>
<tr>
<td>9 Nov</td>
<td>All bands and modes</td>
<td>0900-2100</td>
</tr>
</tbody>
</table>

Details, entry forms and log-sheets are available on receipt of an sae from: M Wooding (Contest Manager), 3 Perkins Grove, Rugby, Wars CV21 4HJ.

For readers interested in ATV, the above table outlines the programme of the BATC ATV contests for 1986.
St George's Day Award

Once again this year, Wisbech and District Amateur Radio and Electronics Club is organising special event stations to celebrate the above. The three stations will be GB0SGD, GB4SGD and GB6SGD. They hope to be active on most days between 20 April until 17 May. To qualify, all QSOs must take place between these two dates.

Applications for HF need to QSO with either GB0SGD or GB4SGD plus the following: applications from all G prefix calls need to QSO with 8 other stations from England; applications from EU need to QSO with 5 other stations from England; applications from the rest of the world need to QSO with 3 other stations from England.

Applications on VHF need to QSO with any of the 3 stations plus the following: applications from all G prefix calls need to QSO with any 8 English counties; applications from EU need any other 5 English stations. On VHF all QSOs must be simplex only, no repeaters to be used.

Applications will also be welcomed from all SWLs on the same basis.

The cost of the award, which is printed in two colours on a white background, is as follows: all G prefix applications, £1.50; EU entries, 6 IRCs, rest of the world, 8 IRCs or $3 US. Applications for the award via: G4KHF, 'León', Lutton Gows, Long Sutton, Spalding, Lincs PE12 9LG.

Golden year

1936 marks the 50th anniversary of the Cannock Chase Amateur Radio Society. The society was started in 1936 and one of the notable events in its history was the organisation of the Worked All Britain Award scheme in 1969.

With this in mind the society will be running a special event station on all bands from 5 to 13 April with the callsign GB4WAB.

Special QSL cards will be available to all contacts, and a specially designed award can be obtained by working the special event station and any one member of CCARS during 1986. The award will cost £1.50 including postage and packing, and all the profits from the scheme will go to the present WAB committee for distribution to the organisations sponsored by them.

Skeds can be arranged through the contest manager Brian GBXKN, on (0543) 77558 or Alan G1AZO, on (0543) 79160, both QTHR.

Other special event stations promoting the society and Cannock Chase will be run throughout the year, the details of which will be announced at a later date.

For further information about CCARS contact: B Robinson, 68 Langholm Drive, Heath Hayes, Cannock, Staffs WS12 5EZ. Tel: (0543) 74521.

Change of venue

From 23 April 1986 the monthly meetings of the Crawley Amateur Radio Club will take place at the new venue of the Crawley Leisure Centre, Maslett Avenue, Crawley. On the above date there will be a talk on antennas by G3TNO.

For further details contact the Honorary Secretary, David Mill G4IOM on (0293) 882641.

The Service Trading Co

In the March issue of the magazine, in Dr Kiam-Laine's article Variable ac Power Supply, the Service Trading Co was mentioned as selling second-hand variable mains auto-transformers for £40. In fact, the company sell new units for £19.50.

Our apologies for misleading readers and for any inconvenience caused to the company.

For more information on the Service Trading Co see the advert in this issue.

NOTES FROM THE PAST

Some interesting comments from the 1950's...

For several months now the BBC have, in the weather reports and forecasts, used the Beaufort Scale to describe wind forces. Yet it is astonishing to find how few people are familiar with this scale. In fact, the index numbers seem to be completely meaningless to the vast majority of people. My own interest in wind was greatly heightened when my very first VHF aerial took off in a gale and landed in the garden of an already hostile neighbour. Incidentally, when re-erected, I made provision to lower it whenever gales were threatening - a precaution which, strangely enough, is still far from usual.

In my school days, we had no electric mains within some hundreds of yards, and my first interest in the wind was to harness it for the generation of electrical power. It would save hauling accumulators for recharging and the prospect of getting something for nothing strongly appealed to the faint streak of Scot in me. I also built up a simple anemometer of the Robinson type. It consisted of four metal cups mounted on cross-bars geared to an indicator which moved across a scale relating the number of revolutions to mph. There is another type, the Dines, in which a recorder floating on water is used.

The Beaufort Scale, of course, has long been used for the more detailed type of weather reporting. It was devised by Sir Francis Beaufort in 1805 and the numbers 0 to 12 are used to indicate wind velocities in mph.

During the power cuts of 1946-47 I wrote an article for Short Wave News on home-made power by wind-driven generators. Quite a number of amateurs have used them, especially when ex-WD generators of various patterns were cheaply available.

The more weather-conscious reader will have noted that wind forces of from 3 to 8 are common in the British Isles, so with reasonably sized storage cells power for many uses could be available during the rare periods when wind pressures fall below 3.

Writing, at that time, of the Beaufort Scale, I gave the generally accepted effects of the various wind forces to enable those without access to detailed reports to judge wind speeds. Now that the Beaufort index numbers are regularly broadcast the velocity figures can be put to use the other way round - visualising the wind force by knowing the scale number. At least, you will be able to know just how much your aerial is likely to sway!
Portable valve radio, £15. Tel: Reading (0734) 833799.

Mr D. Evans, 29 Mailton Road, Woolston, Liverpool L29 8QU.

Steniorian speaker (pre-war?) in cabinet, £10. Pre-war valve cabinet, with attractive dial and wooden cabinet. Made in early 1930s (back was missing, but set works OK - very long aerial and earth required). A collector's item. £45. Lissun 8024 Caernarvon receiver, £20. In fine condition, received c. 1937. Wooden cabinet, unusual dial (containing 4 pilot bulbs), working. A collector's item. £30.

Mr P. Titlow, 13A High Street, Leiston, Suffolk. Tel. (0286) 531912 or 331161.

'Maplin' electronic telephone exchange. Complete kit, assembled but not tested. Lost interest. £40. Andy Emerson, 60 Northfleet Way, Northampton. Tel: (0604) 844130, any time.

Canadian 52 set, WW1 C1944, complete transmitter and receiver, air mains power unit, National (220) or TWA (neutral). £40. AVO seven, wooden case, shunts, £18. Yaesu SP901, £15. Linear relay FR7f07, £10. Tektronix 422 d/beam scope, £35. Several items of various radio equipment. Jim Taylor, 5 Luther Road, Winton, Bournemouth. Tel: (0202) 514089.

Yaesu FT707 plus FC707 ATU, £350, or swap for BBC B, disk drive and monitor. Tel: Dave on (061) 926 8924 ext 218, or work, or (0708) 238243 evenings.

Fluke probes for sale: a range of active and passive current probes and temperature probes. All in mint condition and used. For full details: Mr I. Robinson, 78 Dora Road, Smallheath, Birmingham B10 7QX.

Datsun 240 wax rx antenna AD270, as new, boxed, £30. Tel: John (01) 642 4652.

Spectrum Microdrive Interface One, plus four microdrive cassettes. Boxed, as new, £50 or, will swap for an antenna tuner unit. Mr Deighton, 36 West Street, Salford M3 7HA. Tel: (061) 834 5743.

D Data Dynamics teletype AS33 with stand. RS232 interface, little used, £5 or offers. J. Downes, 46 Gostwyck Road, Ewloe, Swanside WA2 FRP. Tel: (0792) 202267, evenings.

Yaesu FT209R with Nicads, charger plus YH1 headset, and flexivhp, £265. Also FT75AT portable (FT757 or FT980, little used and in vgc, £200. GGCUL, Bristol. Tel: (0272) 721744.

Swap or sell IC4E plus BC25, DC35, BP4, BP2, BP1, CP1, LC2, LC3, HM9. Full service manuals for BC35 and IC4E, totals £40, sell £235. Multimeter Simpson 260. Advance 778 millivolt/dc meter. Function gen, sine, square saw. Scopex 4k 10A 10MHz bench top. I will sell or trade on above equipment for an FT790R 70cm rig. All in clean working condition. Phone and tell me what you want anytime, any swap post free. Tel: (0473) 65526.

Yaesu FT209R and Yaesu FT790R portable multimode. Both in very good condition, any test welcome. Owner goes abroad, could deliver 60 miles around London for cash, £210 each or £400 pair. Please phone (07941) 2823 evenings or weekends only.

Pair of Quad ESL36 loudspeakers, still under warranty, £959. No offers. Pair of Spendor loudspeaker stands, £150. Quad M500 stereo equipment, new, £195. AHM ADT unit, new, £195. 10 output line distribution amplifier, new, £180. 2 Revox A77 power amplifier boards, each £1. A77 record amplifier board, £15. B J Whitty, 'Fourways', Morris Lane, Halsall, Ormskirk, Lancs L38 8XJ. Tel: (0765) 840328.

Scanning VHF receiver M4000, 10 memories simultaneously, £30-79. CW, £20. All in good condition, £50. Incl used clock 12.5kHz steps, incl mobile vgc, £68. Pye PG1 Pocket Pager on 144.480MHz, detect on 175MHz tone incl Nicad charger, £100. Tel: (0604) 43437. Free, free, free! I am clearing out a friend's electronics hobby box. It's mostly wire, plugs, switches, coils, pots etc, which makes it a bit heavy, so send £1 for post/packing. Post by next: to Martin, 7 Griffen Crescent, Littlehangle, Sussex.

Multimode GWSSPA EPROM conversion to ten metres, Covers 28.5MHz to 29.7MHz in 3 bands, 10kHz steps, clarifier, USB, LSB, AM, FM with repeater shift, £10 inclusive of postage. Only a small number of multimode left. For further information contact Roger Albun GWSSPA QTH, or telephone (0222) 707794. During normal office hours telephone (0222) 499022, ext 3159.

Complete set of Ham Radio, from January 1981 (first issue) to February 1984, 29 copies in all. £15 the lot, buyer to collect or pay postage. £11 single board system, over the RCA 1800, includes text editor, assembler, tiny Basic etc. Offers Tel: Maidstone (0622) 30388.

Icom IC202S SSB/CW 2m portable,ataka 144 to 144.5 and 145 to 145.0. Boxed, mobile mount, £15 or swap IC2E or similar 2m FM hand-held or VHF/UHF scanner. Barry Stone G5SRE. Tel: Ashton (Kent) 25981.

Roger Albun GWSSPA £25. Inbuilt 1.5MHz, little used, original packaging, £55. Yaesu FT209R multimode, 144-144.5MHz. Factory mods, listen on input, improved front panel, £100. Incl delivery, £230. Indoor shack, non-smoker. Tel: Norwich 663826.

* Please mention RADIO & ELECTRONICS WORLD when replying to any advertisement.
WANTED

- WW2 German military radio collection requires receivers, transmitters, parts, documentation, accessories. Need not be in working condition. Radar parts also, WHY! Willing to swap or buy, will collect. R. Otterstedt OZIRO, Velledamien 5, DK-2840 Holte, Denmark. Tel: 010-452-801875.
- Circuit diagram for Roband dual trace scope type RO20. Will pay copying and postage costs. Martin Fuller, 74 Station Road, Stone, Staffs ST15 8ES.
- SSB adaptor for Grundig Satellit 2100. Icetcon, 5 Dorlcote Place, Stockton on Tees, Cleveland TS20 2PP. Tel: (0642) 550845.
- Operating manual and service manual for Yaesu FRDX400 and FLDX400, photocopies accepted. Also, I wish to purchase an FL2000 or FL2000B linear amp. Non-working considered. M. Jones, 11 Shaymoor Lane, Pilling, Bristol. Tel: Pilling 2701.
- Exchange: Westward PT 27 FM transceiver, can be used portable/mobile/home-based, boxed as new. Will exchange for 934 Grandstand transverter. Mr Clive Powis, 28 Kington Gdns, Chelmsley Wood, B’ham B37 3HS. Tel: (021) 786 8447.
- Borrow or buy circuit diagram and/or workshop manual of Pyle T/F-RX 1B Mk1 and Cossor Commando 700 6 ch T/F-Rx. Fair price paid or will pay postage. Tel: (0723) 946416 (Kent) GH1RW QTHR.
- Circuit of Prestel wavemeter type 6T4G/B or any information regarding it, battery voltage etc. V Marshall, ‘The Lindens’, High Street, Corringham, Nr Gainsborough, Lincs. Tel: (042783) 313 P.
- National tape recorder RT115 or RT101, must be PC track models. Mr Stephens, 108 Dudley Road, Grantham, Lincs NG31 9AB.
- Piezo transducer, approx 30W pulsed at about 1MHz. J Galvin. Tel: Cradwell (06687) 7650.
- National One Ten VHF receiver with coils. Also any Hallicrafters HF comm receiver, non-working accepted if complete. Also Edystone or Raymar 8560. Tel: (01) 868 1144 (Kent) 709122.
- YAESU FT757XD with or without ATU, PSU, or Trio 4305 with or without ATU, PSU. Prefer it with FM but not essential. Prices please to John (031) 411501, cash waiting.
- Yaesu 720R, would like VHF or UHF deck, any condition. Have got working control box. Neil Webb, 23 Millcroft Close, Costessey, Norwich NR5 0ST. Tel: (0693) 747109.
- R115S and data, working condition. Alan Secker, (01) 868 1144 daytime.
- Back issue of Hobby Electronics Feb 1979 or photostat copy of the PCB pattern for the car alarm. Postage and photostat cost reimbursed or loan magazine and return. I Defries, 20 Elsham Road, Leytonstone, London E11. Tel: (0) 555 1786.
- Yaesu FT707 power supply, FT707 antenna tuner, V727DM remote VFO with memories and scanner. Will pay good price and any transport charges. Must be in good condition. Getting 6 expander £25. Tel: (01) 868 1144 (Kent) 709122.
- Valve extractor tongs for 8V0, 8V9 type valves. Fairly recent outdated copy of ARRL callbooks, DX listings and/or USA listings. Please phone or write GM4RKA (QTHR). Tel: (0875) 610778.
- Yaesu FT101B and FT1012 digital readout conversion kits required. Tel: Coventry (0203) 455258 or 450476. G1LYP or G1LUG.
- To make PCB for Ekletor marine receiver, double sided, December 1983! Can anyone supply PCB with this, quote me price for doing the job. Will send on circuit diagram. James Sneddon, 3 Royal Court, Penicull, Lothian, EH26 8DX. Scotland.
- Please can anyone sell me a bulk tape eraser as I want to erase 50 7" tapes? Would you kindly contact me at my home by phone after 6pm, or write to: R A Boughton, 6 Southmead Close, Resolute BH8 1JS.
- Base and mobile transceiver, 25-50W, compatible with phone patch for connection to telephone line outside UK. Also Trio Kenpro comm receiver with scanner, max price £200. Holtz, 23 Victoria Road, London W6 3RJ.
- Yaesu FT575XD with or without ATU, PSU, or Trio 4305 with or without ATU, PSU. Prefer it with FM but not essential. Prices please to John (031) 411501, cash waiting.
- Yaesu 720R, would like VHF or UHF deck, any condition. Have got working control box. Neil Webb, 23 Millcroft Close, Costessey, Norwich NR5 0ST. Tel: (0693) 747109.
- R115S and data, working condition. Alan Secker, (01) 868 1144 daytime.
- Back issue of Hobby Electronics Feb 1979 or photostat copy of the PCB pattern for the car alarm. Postage and photostat cost reimbursed or loan magazine and return. I Defries, 20 Elsham Road, Leytonstone, London E11. Tel: (0) 555 1786.
- Yaesu FT707 power supply, FT707 antenna tuner, V727DM remote VFO with memories and scanner. Will pay good price and any transport charges. Must be in good condition. Getting 6 expander £25. Tel: (01) 868 1144 (Kent) 709122.
- Valve extractor tongs for 8V0, 8V9 type valves. Fairly recent outdated copy of ARRL callbooks, DX listings and/or USA listings. Please phone or write GM4RKA (QTHR). Tel: (0875) 610778.
- Yaesu FT101B and FT1012 digital readout conversion kits required. Tel: Coventry (0203) 455258 or 450476. G1LYP or G1LUG.
- To make PCB for Ekletor marine receiver, double sided, December 1983! Can anyone supply PCB with this, quote me price for doing the job. Will send on circuit diagram. James Sneddon, 3 Royal Court, Penicull, Lothian, EH26 8DX. Scotland.

FREE CLASSIFIED AD ORDER FORM

Send to: Radio & Electronics World Classified Ads· Sovereign House · Brentwood · Essex · CM14 4SE

Classification: (tick appropriate box) If you want to insert ads under more than one classification use separate sheets for second and subsequent ads
For Sale.......................... Yes.......................... No

USE BLOCK CAPITALS (One word per box) To avoid mistakes please write clearly and punctuate your ad

Name/Address
Postcode/Telephone

USE SEPARATE SHEET FOR MORE WORDS

Ensure that you have included your name and address, or telephone number

CONDITIONS: Your ad will be published in the first available issue. We will not accept trade advertisements. We reserve the right to exclude any advertisement.

APRIL 1986
please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
PNP Communications

Communications Interface

For RTTY - Morse - AMTOR

Our popular range of communication modules is now available, fully boxed and tested under the model number:

CTU 20

The CTU20 is RTTY only & costs £62.50 whilst the CTU20RM is for Morse as well and costs £175.25. For shortwave listeners the MF2-0X gives the option of 1MHz, 45MHz or 850MHz shift reception and costs £55.00.

Send a large (A4) SAE for full Cat. Please add VAT at the current rate Access & Barclaycard (VISA) welcome.

62 Lawes Avenue, Newhaven
East Sussex BN9 9SB
Tel: (0273) 514455

G4BMK RADIO SOFTWARE

NEW FOR DRAGON 32/64 AND TANDY COLOR

SSTV RECEIVE decodes audio direct from radio with tuning indicator and marker support. Tape E11.25 GREYLINE & MUF/LUF PLOT. Draws great circle world map with propagation data superimposed. Tape £5.

DRAGON AND TRIO PROGRAMS

ON TAPE OR ROM

RTTY+ASCII, Morse and AMTOR transceive. Send SAE for details. Small catalogue if only.

GROSVENOR SOFTWARE (REW)

2 Beacon Close, Seafield, Sussex (0232) 893378

XXX ADULT VIDEO CLUB

For the genuine adult films. Available only from ourselves. Ring

0924-471811 (24hrs)

For the intimate details or write

ADULT VIDEO CLUB

P.O. Box 12, Batley, W. Yorks.

MAXI-Q

COILS AND CHOKEYS PREVIOUSLY MADE BY DENTCO SAE PRICE LIST

8 BRUNEL UNITS, BRUNEL ROAD, GORSE LANE IND ESTATE, CLACTON, ESSEX CO15 4LU.

TEL: (0255) 424152

R.A.S. (NOTTINGHAM)

3 FARNDON GREEN; WOLLATON PARK
NOTTINGHAM: TEL: 0602 280267

Open: Tues-Fri 10.30- Sat 4.40

YAESU: PDL: ICOM: TONNA

HALBAR: WEIZ: ANTENNAS & OWN QWS H.F

FIBRE OPTICS

Best quality Mitsubishi Rayon 0.6mm cut to length - 25p per metre. Add 75p for postage, packing and data.

JAR Microengineering Ltd

36 Alexandra Street, Thurnaston, Leicester LE4 9FE (0533) 699568

JAYCEE ELECTRONICS

JOHN GM3OPW

20 Woodside Way, Glenrothes, Fife
KY7 5DP

Tel: 0592 756962

Open: Tues-Sat 9-5

Quality secondhand equipment in stock.

Full range of TRIO goodies. Jaybeam - Microwave Modules - LAR.

RADIO & ELECTRONICS WORLD SMALL AD ORDER FORM

TO: Radio & Electronics World - Sovereign House
Brentwood - Essex CM14 4SE - England. (0277) 219876

PLEASE RESERVE ____________________________

FOR A PERIOD OF 1 issue □ 3 issues □ 6 issues □ 12 issues □

COPY enclosed □ to follow □

PAYMENT ENCLOSED: £___

CHARGE TO MY ACCOUNT □

COMPANY ..

ADDRESS ...

SIGNATURE ..

TELEPHONE ..

B45H VIDEO

B45 Aerial Booster treble the gain of weak television.

Transmit from your video recorder throughout the house. Price £8.95+P&P 50p. SAE for leaflet:

Electronic Mailorder

62 Bridge Street, Ramsbottom Lancs BL0 9AG

Tel: 070682-3036

XXX ADULT VIDEO CLUB

For the genuine adult films. Available only from ourselves. Ring

0924-471811 (24hrs)

For the intimate details or write

ADULT VIDEO CLUB

P.O. Box 12, Batley, W. Yorks.

MAXI-Q

COILS AND CHOKEY PREVIOUSLY MADE BY DENTCO SAE PRICE LIST

8 BRUNEL UNITS, BRUNEL ROAD, GORSE LANE IND ESTATE, CLACTON, ESSEX CO15 4LU.

TEL: (0255) 424152

SMALL ADS

The communications and electronics magazine

This method of advertising is available in multiples of a single column centimetres — (minimum 2cms). Copy can be changed every month.

RATES

per single column centimetre: 1 insertion £9.65, 3 £9.15, 6 £8.65, 12 £7.75.

SMALL ADS

Please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
THE SCIENTIFIC WIRE COMPANY
811 Forest Road, London E17.
Telephone 01-331 1866
EMALLED COPPER WIRE

SWG 12b 8b 3b 2b

8 to 34 2.83 2.19 1.10 0.85
16 to 39 3.2 2.51 1.27 0.95
34 to 43 4.0 3.30 2.35 1.81
44 to 47 4.6 3.65 3.43 2.75
48 5.16 3.58 3.69

SILVER PLATED COPPER WIRE
14 to 30 9.09 5.50 1.93 1.97
14 to 30 3.87 2.41 1.39 0.94

Supplier 9.60 3.25 1.87 0.94

priced include P&P VAT. Orders under £2 add 20p.
S&F for list of copper and resistance wire.
Dealer enquiries welcome.

****** J.E.P. ELECTRONICS ******
MORSE READER PROGRAMMES
SPECTRUM DRAGON VC20 ATARI GOBDOS
MIX COMPUTERS BBC B CBM64 Z801 [18K]
AMMRE 446

Small computers require no interface other use simple one.
All programmes are written in BASIC plus full instructions.

READER TRANSMIT

For your 48K SPECTRUM full CW transmit programme.
Full CW achieve up to 12.5 WPM. Use of an FM filter, the gain around
system is not necessary. With a CW receiver speed, or choose your own.
Suitable for stations over 200m WPM. sleeved in paper cover. Programmes are supplied
with 1 - 20 foot plugs that will work. Price £2.50 inc P&P. Ready
built to order, see below.

RTTY TRANSMIT

For the 48K SPECTRUM. Menu driven, 10 programmable memories.
Full CW achieve up to 12.5 WPM. Use of an FM filter. the gain around
system is not necessary. With a CW receiver speed, or choose your own.
Suitable for stations over 200m WPM. Price £2.50 inc P&P. Built to order.

FILTER UNITS

RTTY ONLY
Built, tested and fitted with leads (the plugs)
£1.00

RTTY/VCF
Built, tested and fitted with leads (the plugs)
£1.25

RTTY/VCF SUPER
Built, tested, fitted with leads (the plugs)
£2.00

BASE TERMINAL
Switchable dual purpose filter - supplied loaded
£1.50

BASE TERMINAL
Outside terminal
£1.50

OUTPUTS
NPN/ PNP TRANSISTORS, NPN/ PNP TRANSISTORS
£1.50

UNIT
Switchable dual purpose filter - supplied loaded
£1.50

W ith the exception of the text until the filters require a nine volt battery.
Sleeved in paper cover. Price £2.50 inc P&P. Ready
built to order. Price £2.50 inc P&P. SAE please for full details.

J.E.P. ELECTRONICS
NEW ROAD COMPLEX, KEDDESWORTH DV10 1XQ
Telephone (0520) 753092

COUNTY GUIDE

KENT

COUNTY GUIDE

COUNTY GUIDE ORDER FORM

TO: Radio & Electronics World - Sovereign House - Brentwood - Essex
CM14 4SE - England - (0277) 219876

print your copy here

NUMBER OF INSERTIONS REQUIRED

Single County Guide 3 £47.00 6 £88.00 12 £156.00
Double County Guide 3 £94.00 6 £176.00 12 £316.00

PAYMENT ENCLOSED £ -

Check should be made payable to Radio and Electronics World. Overseas payments by International Money Order.

Registered No 2307607 (England)

RATES

Boxes ad sizes
20mm x 59mm single £47.00
40mm x 59mm double £94.00

prepayment rates

6 issues £88.00
12 issues £156.00

12 issues £176.00
12 issues £316.00

Please mention RADIO & ELECTRONICS WORLD when replying to any advertisement.
ADVERTISERS INDEX

Bi-Pak ... 18
Blackstar 37
Brian Reed 46
J Bull .. 32

P M Components 6.7
Connexions Satellite 54

Display Electrical 14.15

East Cornwall 67
Economic Devices 38.39
Edwardschild 41
Elmwood Comp 47
Field Electric 51
G.C.H.Q .. 42
Hart Electronic 47
Keytronics 11
Linkbrook 57

Network Sat 57
Number One Systems 42
Omni Elect 57
R.A.K ... 41
Reltech ... 37
Riscomp .. 42
Riscomp .. 18
Scarab .. 57
Sendz ... 68
Service Trading 20
Sherwood Data 37
C R Supply 41

Technical Software 42
Telecoms 21
K W Ten-Tec 46
Thanet .. 26.27
The Post Shop 41
Wilmms ... 51
R Withers 2

ADVERTISING RATES & INFORMATION

DISPLAY AD RATES

<table>
<thead>
<tr>
<th>depth mm x width mm</th>
<th>ad space</th>
<th>1 issue</th>
<th>2 issues</th>
<th>3 issues</th>
<th>12 issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>61 x 90</td>
<td>1/8 page</td>
<td>£91.00</td>
<td>£91.00</td>
<td>£91.00</td>
<td>£364.00</td>
</tr>
<tr>
<td>128 x 90 or 61 x 186</td>
<td>1/4 page</td>
<td>£305.00</td>
<td>£305.00</td>
<td>£305.00</td>
<td>£1,220.00</td>
</tr>
<tr>
<td>128 x 186 or 263 x 90</td>
<td>1/4 page</td>
<td>£305.00</td>
<td>£305.00</td>
<td>£305.00</td>
<td>£1,220.00</td>
</tr>
<tr>
<td>263 x 263</td>
<td>1 page</td>
<td>£590.00</td>
<td>£590.00</td>
<td>£590.00</td>
<td>£2,360.00</td>
</tr>
<tr>
<td>263 x 394</td>
<td>double page</td>
<td>£1,140.00</td>
<td>£1,140.00</td>
<td>£1,140.00</td>
<td>£4,560.00</td>
</tr>
</tbody>
</table>

COLOUR AD RATES

<table>
<thead>
<tr>
<th>depth mm x width mm</th>
<th>ad space</th>
<th>1 issue</th>
<th>2 issues</th>
<th>3 issues</th>
<th>12 issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 x 186 or 263 x 90</td>
<td>1/8 page</td>
<td>£420.00</td>
<td>£420.00</td>
<td>£420.00</td>
<td>£1,680.00</td>
</tr>
<tr>
<td>297 x 210</td>
<td>1 page</td>
<td>£760.00</td>
<td>£760.00</td>
<td>£760.00</td>
<td>£3,040.00</td>
</tr>
</tbody>
</table>

SPECIAL POSITIONS

Covers
- Outside back cover 20% extra
- Inside covers 10% extra
- 10% extra for bleed areas

Facings
- Matt 15% extra
- Bleed 10% extra
- Covers, Outside back cover 20% extra, Inside covers 10% extra

DEADLINES

<table>
<thead>
<tr>
<th>issue</th>
<th>colour & mono proof ad</th>
<th>mono no proof and small ad</th>
<th>mono artwork</th>
<th>on sale thru</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 86</td>
<td>13 Mar 86</td>
<td>19 Mar 86</td>
<td>21 Mar 86</td>
<td>10 Apr 86</td>
</tr>
<tr>
<td>June 86</td>
<td>10 Apr 86</td>
<td>16 Apr 86</td>
<td>18 Apr 86</td>
<td>8 May 86</td>
</tr>
<tr>
<td>July 86</td>
<td>15 May 86</td>
<td>21 May 86</td>
<td>23 May 86</td>
<td>12 Jun 86</td>
</tr>
<tr>
<td>Aug 86</td>
<td>12 Jun 86</td>
<td>18 Jun 86</td>
<td>20 Jun 86</td>
<td>10 Jul 86</td>
</tr>
</tbody>
</table>

CONDITIONS & INFORMATION

SERIES RATES
- Series rates also apply when larger or additional space is to actual booked is taken.
- As an ad not less than the minimum space must appear in consecutive issues to qualify for series rates.
- Previous copy will automatically be repeated if no further copy is received.
- A hole ad is acceptable for maintaining your ad in position. A hole ad will not be inserted if no further copy is received.
- Display Ad and Small Ad series rate contracts are not interchangeable.

COPY
- Except for County Guides copy may be changed monthly.
- No additional charges for typesetting or illustrations (except for colour separations).
- For illustrations, images, photographs or artwork. Colour Ad rates do not include the cost of separations.

ADVERTISING RATES & INFORMATION

Series rates for consecutive insertions

<table>
<thead>
<tr>
<th>colour rates exclude cost of separations</th>
<th>series rates for consecutive insertions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 issue</td>
<td>2 issues</td>
</tr>
<tr>
<td>£91.00</td>
<td>£91.00</td>
</tr>
<tr>
<td>£305.00</td>
<td>£305.00</td>
</tr>
<tr>
<td>£590.00</td>
<td>£590.00</td>
</tr>
<tr>
<td>£1,140.00</td>
<td>£1,140.00</td>
</tr>
</tbody>
</table>

Billed
- Billed 15% extra
- Billed 10% extra
- Billed areas 15% extra

PAYMENT
- All single insertions are accepted on a pre-payment basis only. Refunds are not given.
- Accounts will be opened for series rate advertisers subject to satisfactory credit references.
- Accounts are for city net and must be settled by BACS at 10 days end.

FOR FURTHER INFORMATION CONTACT
Radio & Electronics World, Sovereign House, Brentwood, Essex CM14 5SE
(0277) 219796

Oversized payments by International Money Order. Contributions to approved advertising agencies in 10%.

CONTRIBUTIONS
- 10% discount for advertising in both Radio & Electronics and Amateur Radio. A copy must be sent to Display and Colour Advertisers.
- Ads accepted subject to our standard conditions, available on request.

ADVERTISING RATES & INFORMATION

<table>
<thead>
<tr>
<th>series rates for consecutive insertions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 issue</td>
</tr>
<tr>
<td>£91.00</td>
</tr>
<tr>
<td>£305.00</td>
</tr>
<tr>
<td>£590.00</td>
</tr>
<tr>
<td>£1,140.00</td>
</tr>
</tbody>
</table>
EAST CORNWALL COMPONENTS

DEPT REV, 119 HIGH STREET

WEM

SHREWSBURY SY4 5TT

Telm: 0939 32689

Telex: 35565

NEW 1986 Catalogue is now available — range of components greatly increased — over 138 pages fully illustrated. Price £1.00 per copy (free upon request with orders over £15.00). Includes all Credit Note, Special Offer Sheets, T.V. & Video Printed Envelopes. Order your copy now — will be dispatched within 7 days.

EAST CORNWALL COMPONENTS

DEPT REV, 119 HIGH STREET

WEM

SHREWSBURY SY4 5TT

Telm: 0939 32689

EAST CORNWALL COMPONENTS

DEPT REV, 119 HIGH STREET

WEM

SHREWSBURY SY4 5TT

Telm: 0939 32689

ORDERING: All components are brand new and to full specification. Please add 66p postage & packing (unless otherwise specified) to all orders and add 15% for credit. Whole sales are welcome. Either send a cheque or send a telephone your Access or Visa number. Official orders from schools, colleges, etc. should be made to: 35565.

Reference: (Do not forget to send for our 1986 catalogue — only £1.00 per copy — details at top of advertisement.)

All orders £1000 & over, open Mon-Fri 9.00-5.00, Sat 9-12.00.