RWC AUTUMN SALE

This is our first ever Shop Sale in over Five years trading in the Amateur Radio Field (about time too)! All stock offered is new and has full warranty. Some units are Ex-Demonstration and may have slightly marked Boxes. We need to clear some stock to make way for our new range of scanning receivers and other products. Pssss, Keep in touch for latest news.

Important Note Due to current exchange rates the price of all imported equipment is subject to change, and rarely do prices come down (you noticed!) we anticipate a price increase on ICOM, YAESU and KENWOOD/TRIO of between 5-20% imminently. This added to copy dates of between 1 and 3 months before the magazines appear on sale means that you normally have up to a three month old price list! we hold our prices on existing stocks and usually get NO WARNING from our suppliers when prices go up. Consequently we often have to make a sale at the OLD PRICE or loose a good customer. Well, if you want a Bargain here are some offers you cannot refuse, DON'T SAY WE DIDN'T WARN YOU, we will never again be able to make you the following offers!

Sorry Bernie and Brenda, Harvey and Peter, we are having a SALE! (prior to opening our Fast food Take-away maybe!)

All goods are offered on a first-come first-served bases. Please check stock levels before ordering
Please add post and packing of £5.00 minimum on transceivers and £2.50 on accessories. Datapost/Next day delivery extra. Please telephone for more details. PART EXCHANGE WELCOME, FULL CREDIT ARRANGED AND INTEREST FREE FINANCE ON SELECTED ITEMS. (SUBJECT TO STATUS)

ONLY LIMITED STOCKS AVAILABLE

ICOM
IC271H 100W MULTIMODE BASE STATION
IC3200E 25W DUAL BAND MOBILE
IC28E NEW 25W 138-174 MOBILE
IC745E 100W HF TRANSCEIVER

TRIO/KENWOOD
TS711E 25W 2MTR BASE STATION
TR9130 25W 2MTR MOBILE
TM411A/E 25W UHF DCS MOBILE

YAESU MUSEN
FT290R 2.5W 2MTR M/MODE (inc Nicads)
FT690R 2.5W 6MTR MULTIMODE
FT790R 1W UHF MULTIMODE
FT270RH 25W DUAL BAND FM MOBILE
FT270RH 45W FM MOBILE
FT726/2MTR MULTIMODE BAS STATION

BARGAIN BASEMENT
DNT M40FM modified 10FM 6W TRX
DNT M40FM as above with RPT, SHIFT
DNT M40FM CB/27/81 4W unmodified
RAYCOMM 7000 VSWR METER 1.6-160MHz
G-COMM REGULATED PSU 3-5A AC240V
G-COMM REGULATED PSU 5-7A AC240V
WODEN UNIVERSAL NICAD CHARGER

MANY OTHER ODDMENTS AVAILABLE IN SMALL QUANTITIES, PLEASE CALL INTO OUR HAGLEY ROAD BRANCH AND HAVE A LOOK

We are only one minute away along the A456 from junction 3.MS towards Birmingham, first shop on the left next to the Texaco Station. Full demonstration facilities, all major brands in stock + the latest scanning receivers and antennas. We have something of interest for everybody! SWLs licensed amateurs, all radio enthusiasts and even plumbers!

Morning and afternoon tea and coffee served in mugs!
Please send £1.00 for our latest Raycom Catalogue which has all current prices and information of major brands and our own products (refundable) or send a large SAE for our FREE famous By-Weekly used list and any other information or colour leaflets (which are available for major products).

RWC for the latest in RADIO TECHNOLOGY
Tel: 021 421 8201 (24hr answerphone)
Telex: 334303 G TXAGWM
CONTENTS

Editor
Duncan Leslie

Editorial Assistant
Mike Gibson

Advertisement Manager
Marian Vidler

Publisher
Peter Williams

Published by
Radio & Electronics World
Magazines
Sovereign House
Brentwood
Essex CM14 4SE
England
Tel: (0277) 219876

ISSN
0262-2572

Printed
In Great Britain

Newstrade sales
Argus Press Sales &
Distribution Ltd
12-18 Paul Street
London EC2A 4JS
Tel: 01-247 8233

Subscriptions
Tel: 01-760 0409

© Copyright 1986
Radio & Electronics World Magazines

Safety in the shack
Some of the constructional projects
featured refer to additions or
modifications to equipment; please
note that such alterations may prevent
the item from being used in its
intended role, and also that its
guarantee may be invalidated.

When building any constructional
project, bear in mind that sometimes
high voltages are involved. Avoid even
the slightest risk - safety in the
shack please, at all times.

Whilst every care is taken when accepting
Advertisements we cannot accept
responsibility for unsatisfactory transactions.
We will, however, thoroughly investigate
any complaints.

The views expressed by contributors are not
necessarily those of the Publishers.

Cover Photographs
Top: A logical
application of the IBM
PC (p4)
Bottom: Mitel
interfaces (p9)

SPECIAL FEATURES

15 Satellite TV on a Budget
You've built the tuner, now buy the dish. Details of a new
low cost DIY antenna

16 Using the 55/8
Bob Redding has been playing with the new serial 5 volt,
8-pin interface

21 Satellite Review
That's Satellite, not satellite: two new radio receivers from
Grundig, under the expert scrutiny of Brian Kendal

26 Designing Active Audio Filters
A program for the ZX Spectrum from the keyboard of
F. Houghton

29 The Triode Valve: Part Two
Roger Alban on the triode as an amplifier

33 Data File
A couple of audio power amp designs and more of Ray
Marston's marvellous miscellany

40 Digital Filters: Part Two
Mary Dick concludes her brief look at the techniques of
digital filtering

44 Modifying the KP-202
Must be the season for cost cutting: Peter Rouse takes a
soldering iron to a cheap 2m hand-held

51 Special Effects using Tape Loops
A gem for those who like messing around, as Ivor Nathan
uses a lo-tech approach to sound effects

55 Plug in to Peritel
Andy Emmerson takes a look at the SCART connector
(hang about, this mag's rapidly being overrun by young
Emmerson's articles: three this month, no less. This must
stop: he must be earning more than I am! - Ed)

REGULARS

4 Product News
12 News Desk
19 Amateur Radio World
46 DX-TV Reception Reports
49 ATV on the Air
50 Network 934
53 Medium Wave DXing
57 Short Wave News
60 QSO
62 Free Classified Ads
64 Small Ads

READER SERVICES

18 Newsagents Order Form
18 Back Issues Order Form
23 Subscription Order Form
37 Amateur Radio Subscription Order Form
63 Free Classified Ad Form
66 Advertisers Index
66 Advertising Rates and Information

NEXT MONTH

56 What's in Store for You
☐ Next Issue
-cover date November 1986 on sale Thursday, 9 October
☐ Publication Date
-Second Thursday of the month preceding cover date

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
The two, and the data word value at the pointer position. Instantaneous pan and zoom facilities are provided, enabling specific areas of interest to be located and examined in detail very quickly. Careful use is made of colour in order to aid legibility and clarity, although the system can also be used with a monochrome monitor.

In the state display mode a page of 30 words can be displayed from anywhere in the memory. The data format can be binary, octal, decimal, hex or ASCII, and formats can be mixed.

The Thurlby LA160-PC operates with the IBM PC/XT or AT, and with most close equivalents including Olivetti, Compaq and Sperry. The cost of the LA160-PC interface package is £395 + VAT. The cost of the Thurlby LA160A logic analyser is £395 + VAT.

Thurlby Electronics Ltd, New Road, St Ives, Huntingdon.
Tel: (0480) 63570.

LOGIC ANALYST

New from Thurlby Electronics is the LA160-PC interface package which provides the facilities of a sophisticated logic analyser using a standard IBM PC or compatible computer.

The package allows a Thurlby LA160 16 or 32-channel logic analyser to be linked to the computer via its RS232 interface. The software takes data from the LA160 and loads it into the computer memory. A user friendly control program makes maximum use of the computer’s graphics functions, disc storage, printing capability and computational powers to provide the user with sophisticated facilities.

In the timing display mode the screen shows 16 channels vertically with either 64, 256 or 1024 samples horizontally. Each channel can be given a user defined name and can be placed in any desired position. A moveable cursor and a moveable pointer are provided. The screen also shows a read-out of the cursor position, the pointer position, the time difference between the two, and the data word value at the pointer position.

Power trigger functions including words, glitch detection and clock delay send all assigned data into memory; glitch detection speed is at least 15ns.

Fieldtech Heathrow Ltd, Huntavia House, 420 Bath Road, Longford, Middlesex UB7 0LL.
Tel: (01) 897 6446.

LOGIC ANALYST

Fieldtech Heathrow has introduced the Meguro MLA-3300 16-channel logic analyser, a compact, lightweight instrument with a 100ns maximum resolution (at 10MHz). The liquid crystal display gives the analyser very low power dissipation in logic circuits, allowing battery-powered operation. The analyser is designed to measure timing, state and signature and can be used in many applications from hardware to software.

The instrument may be powered from mains voltage, a 5-8V dc line in or by its internal nicad battery. In addition to the 16-channel data input there is an external clock input, external trigger input and a clock qualifier input.

The MLA-3300 provides a 256-bit/channel acquisition memory and a 256-bit/channel reference memory, allowing comparative acquisition. Both memories have a storage back-up facility allowing detailed analysis at a later time if required.

Fieldtech Heathrow Ltd, Huntavia House, 420 Bath Road, Longford, Middlesex UB7 0LL.
Tel: (01) 897 6446.

Fieldtech Heathrow has introduced the Meguro MLA-3300 16-channel logic analyser, a compact, lightweight instrument with a 100ns maximum resolution (at 10MHz). The liquid crystal display gives the analyser very low power dissipation in logic circuits, allowing battery-powered operation. The analyser is designed to measure timing, state and signature and can be used in many applications from hardware to software.

The instrument may be powered from mains voltage, a 5-8V dc line in or by its internal nicad battery. In addition to the 16-channel data input there is an external clock input, external trigger input and a clock qualifier input.

The MLA-3300 provides a 256-bit/channel acquisition memory and a 256-bit/channel reference memory, allowing comparative acquisition. Both memories have a storage back-up facility allowing detailed analysis at a later time if required.

LOGIC ANALYST

Fieldtech Heathrow has introduced the Meguro MLA-3300 16-channel logic analyser, a compact, lightweight instrument with a 100ns maximum resolution (at 10MHz). The liquid crystal display gives the analyser very low power dissipation in logic circuits, allowing battery-powered operation. The analyser is designed to measure timing, state and signature and can be used in many applications from hardware to software.

The instrument may be powered from mains voltage, a 5-8V dc line in or by its internal nicad battery. In addition to the 16-channel data input there is an external clock input, external trigger input and a clock qualifier input.

The MLA-3300 provides a 256-bit/channel acquisition memory and a 256-bit/channel reference memory, allowing comparative acquisition. Both memories have a storage back-up facility allowing detailed analysis at a later time if required.

LOGIC ANALYST

Fieldtech Heathrow has introduced the Meguro MLA-3300 16-channel logic analyser, a compact, lightweight instrument with a 100ns maximum resolution (at 10MHz). The liquid crystal display gives the analyser very low power dissipation in logic circuits, allowing battery-powered operation. The analyser is designed to measure timing, state and signature and can be used in many applications from hardware to software.

The instrument may be powered from mains voltage, a 5-8V dc line in or by its internal nicad battery. In addition to the 16-channel data input there is an external clock input, external trigger input and a clock qualifier input.

The MLA-3300 provides a 256-bit/channel acquisition memory and a 256-bit/channel reference memory, allowing comparative acquisition. Both memories have a storage back-up facility allowing detailed analysis at a later time if required.

LOGIC ANALYST

Fieldtech Heathrow has introduced the Meguro MLA-3300 16-channel logic analyser, a compact, lightweight instrument with a 100ns maximum resolution (at 10MHz). The liquid crystal display gives the analyser very low power dissipation in logic circuits, allowing battery-powered operation. The analyser is designed to measure timing, state and signature and can be used in many applications from hardware to software.

The instrument may be powered from mains voltage, a 5-8V dc line in or by its internal nicad battery. In addition to the 16-channel data input there is an external clock input, external trigger input and a clock qualifier input.

The MLA-3300 provides a 256-bit/channel acquisition memory and a 256-bit/channel reference memory, allowing comparative acquisition. Both memories have a storage back-up facility allowing detailed analysis at a later time if required.
The model 4500 digital multimeter, available from PPM, requires no test probe for measurement of voltages up to 15kV dc or peak ac. Only for voltages in excess of 15kV, and up to 40kV, is the optionally available high voltage divider probe required. This 4½-digit instrument provides 0.005% resolution, permitting measurements down to 10µV. The unit offers six ranges each of ac volts, dc volts, and high and low ohms. On the two lowest voltage ranges input impedance is 1000 megohms, which improves measurement integrity by a factor of 100 compared with conventional DMMs.

The constant current digital ohmmeter section has three dedicated diode check ranges which supply adequate potential to forward bias most semiconductor junctions so that actual junction voltage drop can be displayed. The remaining three ohm ranges will not turn on a diode junction.

For ac measurements the unit features a wideband, low noise average responding ac converter, offering ±0.25% accuracy with bandwidth specified to 50kHz. True rms is optionally available for applications where highly distorted waveforms are frequently encountered. The model 4500 is powered by an internal rechargeable battery pack and charging circuitry running on 230V mains supply.

PPM Instrumentation Ltd, Hermitage Road, St Johns, Woking, Surrey GU21 1TZ. Tel: (04867) 80111.

COUNTER TIMERS

Thandar have introduced two new counter timers. Designated the TF1000 and TF1100 respectively, they offer the following specifications.

The TF1000 is a 100MHz universal counter timer with frequency, period, period average, time interval, time interval average, frequency ratio and totalise measurement modes.

HIGH SPEC SCOPE

Telonic Instruments Ltd, the UK distributor for Kikusui, have announced the availability of a new high specification CRT read-out oscilloscope range. The COM 7000 series consists of 6 models with real-time bandwidths of up to 200MHz, all with CRT read-out, built-in DVM and frequency counter. Three of the six new instruments also incorporate digital storage.

The top of the range is the COM 7201, a 200MHz real-time bandwidth instrument with 50MHz clock rate digital storage capability and GPIB compatibility.

In real-time mode the COM 7201 has 4 inputs, all with a 200MHz bandwidth. Channels 1 and 2 have selectable input impedances of 1 megohm or 50 ohms and have a sensitivity range from 1mV/div to 5V/div. Channels 3 and 4 have sensitivities of 0.1V/div or 0.5V/div. Timebase speeds cover 1 nanosec/div to 0.5 sec/div on both A and B timebases. The timebases can be operated in A only, alternate, B only or B triggered modes. The variable delay time range is 100 nanoseconds to 5 seconds. Two separate trigger circuits provide for internal or external trigger capability.

In its digital storage mode the COM 7201 has 50MHz clock rate 8-bit A to D converters. Single-shot sinusoidal events up to 20MHz can be stored by using the sinusoidal interpolation facility. Repetitive signals up to 100MHz can be stored by using the repeat function (equivalent to sampling). A magnification function allows the stored waveform to be magnified by up to 100 times centred on the trigger point.

Telonic will be displaying the COM 7000 range at the International Test and Measurement Exhibition, Olympia, London, from 23rd-25th September. Also on show will be Kikusui’s new FFT analyser, synthesiser function generator and various logic analysers and conventional scopes.

Telonic Instruments Ltd, Boyne Valley Road, Maidenhead, Berks SL6 4EG. Tel: (0628) 73933.
The R71E now has a team-mate – the IC-R7000.
With these matching receivers it is now possible to tune from 100kHz-2GHz.*

The IC-R7000 covers Aircraft, Marine, FM Broadcast, Amateur Radio, Television and weather satellite bands. The IC-R7000 incorporates FM wide/FM narrow, AM, USB and LSB modes of operation with six tuning speeds: 0.1, 1.0, 5.10, 12.5, and 25kHz. *Frequency coverage 25-100MHz and 1025-2000MHz (25-1000MHz and 1260-1300MHz guaranteed specification). With the IC-R7000 you have normal tuning capability with the front panel tuning knob or for quick tuning of a desired frequency by using the front panel key-pad. A total of 99 memory channels are available for storage of received frequencies and operating mode. Memory channels can be called up by pressing the memory switch then rotating the memory channel knob or by direct keyboard entry.

Computer Control These receivers can be connected to a computer terminal via a suitable interface:
IT603 Serial Interface to IC-R7000
J7603 Parallel Interface for IC R71E (IC-R7000)
The ICOM IC-R71E requires the IC-EX309 interface connector.

These receivers are available seperately but together would make a superb listening station for the shortwave listener or licensed amateur.

A sophisticated scanning system provides instant access to specific frequency ranges. By depressing the Auto M switch, the IC-R7000 automatically memorises frequencies that are in use whilst in the scan mode and can be recalled later. The scanning speed is adjustable and the scanning system includes memory selected frequency ranges or priority channels. All functions including memory channel readout are clearly shown on a dual-colour fluorescent display with dimmer switch. Other features include dial-lock, noise blanker, S-meter and attenuator.

Options include: RC12 infra-red controller, EX310 voice synthesizer, SP3 and SP7 external loudspeakers, HP1 headphones and the ICOM AH-7000 super wideband disccone antenna.
IC-3200E Dual-band

If you are a newly licensed or just undecided about which band to first operate, then the ICOM IC-3200E is just the answer. This is a dual-band (144-146/430-440MHz) F.M. transceiver ideally suited for the mobile operator. The IC-3200E has a built in duplexer and can operate on one antenna for both VHF and UHF, and with 25 watts of output power on both bands (the low power can be adjusted from 1 to 10 watts) you can never be far from a contact whether simplex or 2m/70cm repeater.

The IC-3200E employs a function key for low priority operations to simplify the front panel and a new LCD display which is easy to read in bright sunlight. 10 memory channels will show operating frequencies simplex or duplex, and four scanning systems memory, band, program and priority scan.

IC-271 & 471 Multimode
Base stations

ICOM can introduce you to a whole new world via the world-communication satellite OSCAR. Did you know that you can Tx to OSCAR on the 430-440 MHz IC-471 and Rx on the 2m IC-271. By making simple modifications, you can track the VFO's of the Rx and Tx either normally or reverse. This is unique to these ICOM rigs and therefore very useful for OSCAR 10 communications. Digital A.F.C. can also be provided for UOSAT etc. This will give automatic tracking of the receiver with digital readout of the doppler shift. The easy modifications needed to give you this unique communications opportunity are published in the December '84 issue of OSCAR NEWS. Back issues of OSCAR NEWS can be obtained from AMSAT (UK), LONDON E12 5EQ.

This range includes the IC-271E-10W, IC-271E-25W, 271H-100W and the 70cm versions IC-471E-25W and 471H-75W r.f. output. The 271E has an optional switchable front-end pre-amp. The 271H can use the pre-amp AG-25, with the 471E and 471H using the AG35 mast-head pre-amp. Other options include internal switch-mode PSUs the 271E and 471E use the PS25 and the 271H and 471H use the PS35.

Telephone us free-of-charge on:

HELPLINE 0800-521145.

--- Mon-Fr 09:00-13:00 and 14:00-17:30 ---

This is strictly a helpline for obtaining information about or ordering ICOM equipment. We regret this service cannot be used by dealers or for repair enquiries and parts orders. Thank you.

You can get what you want just by picking up the telephone. Our mail order department offers you free same day despatch whenever possible, instant credit, interest-free H.P., Barclaycard and Access facility. 24 hour answerphone service.
PRODUCT NEWS

According to the specifications, the TC-250 is variable from 13-250pF featuring a breakdown voltage of 7.8kV. It includes 13-250pF and features a range including some high-loss broadcast equipment available in kit form for amateur building ATUs.

Antel has launched three series of antennas intended for mobile telephone systems.

The antennas are manufactured without internal cables, and this, according to the manufacturers, results in low losses and improved reliability.

The three series of products have differing properties. The BCD range consists of omnidirectional antennas, while the BCR and LPD ranges are directional.

The antennas are intended for use in the 800-960MHz band. The BCD and BCR types are split into two frequency bands, 800-960MHz and 870-970MHz. Bandwidth is 100MHz. The LPD antennas have a bandwidth of 170MHz.

The absence of internal cables offers several advantages. Cable losses and the risks resulting from humidity and contact problems disappear, thus further improving reliability.

The use of various forms of reflector in conjunction with an omnidirectional antenna, type BCD, allows wider opportunities for design of the radiation pattern to suit specific requirements.

In the case of the LPD series, radiation patterns giving 120°, 90° and 60° sectors are available. Gain is between 5dBd and 15dBd, depending on design. The BCD type gives a gain of 7 or 10dBd while the BCR is available for 14 or 17dBd gain. The antennas give 5% null fill-up in the vertical plane and a lobe tilt of 1.25%.

Antel AB, Bagargatan, S-384 00 Blomsternmåla, Sweden. Tel: 46 499 22710.

TELECOMMS NEWS

Recent additions to the Nevada Communications range include some high power variable capacitors intended for both professional and amateur use.

The TC-250 is variable from 1-250pF and features a breakdown voltage of 7.8kV. It measures 101 x 105 x 88mm with a weight of 0.62kg. The price is £15.61 + VAT.

The TC-500 is a twin version of the TC-250, with similar specifications. It costs £19.50.

Both units feature a 2mm air gap between the plates and have end plates of 6mm thick acrylic perspex. For commercial broadcast equipment there is a version available with ceramic end plates.

The TC-250 and TC-500 are available in kit form for amateurs building ATUs.

Telecomms have also announced the release for cellular use of the TC12LW wideband beam antenna. This features a gain of over 18dBi and a frequency coverage of 855-955MHz, and has been developed "to enable users to gain access to the UK cellular system from outside the cells, eg areas such as Wales or in the English Channel".

Samples have been purchased by BT for evaluation. The cost of the beam is £55 + VAT.

And finally... Telecomms are now importing a range of 50 ohm ultra low loss cable from Japan. This double-screened cable is claimed to offer much greater flexibility than the popular H100, as well as lower losses. It is available in three diameters, 8.1, 11.6 and 13.7mm, the cost being £0.72, £1.68 and £2.52 per metre respectively.

Telecomms, 189 London Road, Portsmouth PO2 9AE. Tel: (0705) 698113.

ANTEL ANTENNAS

The Swedish company Antel has launched three series of antennas intended for mobile telephone systems.

The antennas are manufactured without internal cables and this, according to the manufacturers, results in low losses and improved reliability.

The three series of products have differing properties. The BCD range consists of omnidirectional antennas, while the BCR and LPD ranges are directional.

The antennas are intended for use in the 800-960MHz band. The BCD and BCR types are split into two frequency bands, 800-960MHz and 870-970MHz. Bandwidth is 100MHz. The LPD antennas have a bandwidth of 170MHz.

The absence of internal cables offers several advantages. Cable losses and the risks resulting from humidity and contact problems disappear, thus further improving reliability.

The use of various forms of reflector, in conjunction with an omnidirectional antenna, type BCD, allows wider opportunities for design of the radiation pattern to suit specific requirements.

In the case of the LPD series, radiation patterns giving 120°, 90° and 60° sectors are available. Gain is between 5dBd and 15dBd, depending on design. The BCD type gives a gain of 7 or 10dBd while the BCR is available for 14 or 17dBd gain. The antennas give 5% null fill-up in the vertical plane and a lobe tilt of 1.25%.

Antel AB, Bagargatan, S-384 00 Blomsternmåla, Sweden. Tel: 46 499 22710.

MORSE AID

Invotron Limited has commenced production of a digital morse processor (DMP1), which interfaces between a morse key and a transmitter so that with a conventional up/down key it becomes possible to send perfect morse. The processor decodes the input and buffers it in an 8k static RAM store, before outputting it as a continuous morse stream with all mark and space durations precisely correct. The DMP1 integral store enables a call to be stored and repeated at will by simply pressing the RUN button.

In the correcting mode, the output speed is set by the user to be very slightly lower than the average input speed. In the repeat mode the output speed can be changed to higher or lower speeds irrespective of the initial input speed.

The digital morse processor is a powerful trainer, enabling high speeds to be generated from low input speeds for receiving practice. When sending, the indicators will guide the beginner towards improved dot and dash durations and inter-letter spacings.

Invotron Ltd, Brookfield Avenue, Blackrock, Co Dublin, Ireland. Tel: Dublin 884993/831938.

VARIABLE ATTENUATORS

The comprehensive range of variable attenuators made by JFW Industries Inc is for use in RF, microwave, programmable and automatic test equipment and systems is now available in the UK from Tony Chapman Electronics. It embraces the R and DR rotary series which provides attenuation values up to 110dB in 1dB steps for dual concentric types, 70dB/10dB and 10dB/1dB steps for single shaft designs.

The frequency range covers dc to 2000MHz and impedance values can be 50 or 75 ohms. A choice of SMA, BNC and TNC connector configurations is available.

Bench mounted attenuators for laboratory applications can comprise two attenuators giving switchable values down to 0.1dB.

The range of JFW attenuators available from Tony Chapman Electronics covers fixed, rotary and programmable models.

Tony Chapman Electronics Ltd, Electron House, Hemnall Street, Epping, Essex CM16 4LS. Tel: (0378) 78231.
REMOTE CONTROL

IQD has developed a new single-function version of its Phonecontrol telephone remote control system, Mini-Phonecontrol, which incorporates a synthesized voice. It has received BT approval and will retail at £420.

Mini-Phonecontrol can be used to monitor or control any electrical function. As well as industrial and commercial applications, such as remote switching, it can check and reset security devices or switch on and off domestic central heating or hot water by means of a simple telephone call from anywhere in the world.

The unit plugs into an ordinary telephone socket and an authorised caller simply dials a dedicated number followed by the function code. A synthesized voice immediately replies, giving both the identity and current status of whatever function is to be controlled or monitored. This can then be changed as necessary.

IQD Ltd, North Street, Crewkerne, Somerset TA18 7AR.
Tel: (0460) 74433.

IT’S A GAS

Now available from Steinel is the GL1000 butane gas powered multi-purpose thermal tool.

The GL1000 is small and compact, not much bigger than a magic marker, yet it offers the user the ability to weld at temperatures of approximately 1300°C at the hottest point of the welding flame.

For soldering and hot air shrinking applications a catalyst controls the heat, giving typical temperatures of between 200-400°C for soldering and 100-600°C for heat shrinking. The GL1000 will be of use to the professional serviceman, DIY enthusiast and hobbyist alike.

The unit is supplied boxed, complete with adaptors for each application. It uses ordinary butane gas and gives up to three hours use from each filling.

Steinel (UK) Ltd, 37 Manasty Road, Orton Southgate, Peterborough PE2 0UP.
Tel: (0733) 238265.

FIBRE OPTIC COUPLERS

Amphenol have introduced the Interfuse 945 series couplers for uniform distribution of light signals between single-mode fibres, with very low insertion loss.

The star coupler is available with 4×4 or 3×3 port options, implementing 25% or 33% split ratios. Excess loss is less than 0.5dB and output uniformity less than 0.5dB.

The tree coupler is available with 1×4 or 1×8 port options, 25% or 12.5% split ratios. Excess loss is <0.5dB for 4-port couplers, <1dB for 8-port. Output uniformity is <0.6dB. The units are suitable for wavelengths of 820, 1300 and 1520nm.

Amphenol Ltd, Thanet Way, Whitstable, Kent CT5 3JF.
Tel: (0227) 264411.

PRODUCT NEWS

ISDN COMPONENTS

Online Distribution can now supply the new Mitel ST-Bus family of ISDN digital communications components. The Serial Telecom Bus (ST-Bus) is a synchronous intercomponent bus operating at 2.048Mbit/sec for communicating data, voice and control messages.

The range includes the MT8972 digital network interface, the MT8978 and MH89780 CEPT digital trunk interface chips, and the MT8950 data codec.

The MT8972, programmed at 80/160kbit/sec, gives full duplex transmission over two-wire telephone cable with echo cancellation. It can also be used as a high speed modem and is available with an evaluation board set.

The MT8978 is a single chip Tx/Rx interface to CCITT/CEPT digital trunk format at 2.048Mbit/sec. Applications include trunk equipment, PBX/Central Office and computer/high speed data interfacing.

The MH89780, an enhanced version of the MT8978, is available with an evaluation kit.

The MT8950 uses ISO-CMOS technology to convert low speed data into 64kbit/sec channel formats. Applications include RS232/UART data terminal to ST-Bus interfacing and encoding/decoding synchronous/asynchronous data into a voice codec equivalent format.

Online Distribution Ltd, Melbourne House, Kingsway, Bedford.
Tel: (0234) 217981.

INTERFACE HYBRIDS

Mitel Semiconductor have now developed a family of analogue-to-A-Law PCM interfaces. Using Mitel's advanced ISO/CMOS and hybrid technology, these devices offer advanced levels of modularity, space saving and cost effectiveness.

Current line card designs using discrete ICs, large transformers and complex assembly, test and repair procedures can now be rendered obsolete. The MH89615/25/35 family of analogue line interfaces (ALIs) minimise critical line card costs and PCB real estate for the existing and emerging digital communications equipment such as PBXs, cellular radio, voice messaging, CO trunks and line concentrators.

Each interface circuit contains and/or controls all of the BORSCHT functions (using an advanced transformerless 2W/4W conversion design) and A/D and D/A processing. The ALI devices are available in three options to allow flexibility of application between short and long subscriber lines, CO trunks and Mitel's ST-Bus serial PCM interface.

Mitel Telecom Ltd, Severnbridge Estate, Portskewett, Newport.
Gwent NP6 4YR.
Tel: (0291) 423355.
degree Celsius, changes to a normal liquid. Below the transition temperature the device appears bright, but above this temperature light is extinguished. Thus any dissipation associated with the operation or malfunction of a device is clearly seen as a dark spot or area.

The success of the technique relies substantially on the degree of temperature control and to a significant extent on the selection of liquid crystals.

Tempronic Corporation’s TP0314 Alpha Controller, Thermochuck, Thermosocket, Microjogger and Liquid Crystal Application Kit provide all the essential elements for success using this technique. Now it is possible to observe defects with a dissipation of only a few microwatts and geometries as small as just one micron.

Test Reliability Ltd, PO Box 20, Petersfield, Hampshire. Tel: (0730) 65412.

IEEE CONTROLLER

The new PC-IEEE from CIL is an interface for IBM PCs and compatibles to control the IEEE-488 (GPIB, HP1B) bus. It plugs directly into an I/O slot, and is the first of a range of function cards for the IBM PC planned for release by the company. The PC-IEEE features a 280 microprocessor and up to 56K of on-board memory. The combination of high and low level commands held in ROM provide simplicity of operation without sacrificing power and flexibility.

CIL Microsystems Ltd, Decoy Road, Worthing, Sussex BN14 8ND. Tel: (0903) 210474.

FAILURE ANALYSIS

A new system for semiconductor component failure and defect analysis using liquid crystals is now available from Test Reliability Limited. The surface of a device is coated with a liquid crystal which at a clearly defined temperature, within a few tenths of a second, changes to a normal liquid. Below the transition temperature the device appears bright, but above this temperature light is extinguished. Thus any dissipation associated with the operation or malfunction of a device is clearly seen as a dark spot or area.

The success of the technique relies substantially on the degree of temperature control and to a significant extent on the selection of liquid crystals.

Tempronic Corporation’s TP0314 Alpha Controller, Thermochuck, Thermosocket, Microjogger and Liquid Crystal Application Kit provide all the essential elements for success using this technique. Now it is possible to observe defects with a dissipation of only a few microwatts and geometries as small as just one micron.

Test Reliability Ltd, PO Box 20, Petersfield, Hampshire. Tel: (0730) 65412.

IEEE CONTROLLER

The new PC-IEEE from CIL is an interface for IBM PCs and compatibles to control the IEEE-488 (GPIB, HP1B) bus. It plugs directly into an I/O slot, and is the first of a range of function cards for the IBM PC planned for release by the company. The PC-IEEE features a 280 microprocessor and up to 56K of on-board memory. The combination of high and low level commands held in ROM provide simplicity of operation without sacrificing power and flexibility.

CIL Microsystems Ltd, Decoy Road, Worthing, Sussex BN14 8ND. Tel: (0903) 210474.

FAILURE ANALYSIS

A new system for semiconductor component failure and defect analysis using liquid crystals is now available from Test Reliability Limited. The surface of a device is coated with a liquid crystal which at a clearly defined temperature, within a few tenths of a second, changes to a normal liquid. Below the transition temperature the device appears bright, but above this temperature light is extinguished. Thus any dissipation associated with the operation or malfunction of a device is clearly seen as a dark spot or area.

The success of the technique relies substantially on the degree of temperature control and to a significant extent on the selection of liquid crystals.

Tempronic Corporation’s TP0314 Alpha Controller, Thermochuck, Thermosocket, Microjogger and Liquid Crystal Application Kit provide all the essential elements for success using this technique. Now it is possible to observe defects with a dissipation of only a few microwatts and geometries as small as just one micron.

Test Reliability Ltd, PO Box 20, Petersfield, Hampshire. Tel: (0730) 65412.

IEEE CONTROLLER

The new PC-IEEE from CIL is an interface for IBM PCs and compatibles to control the IEEE-488 (GPIB, HP1B) bus. It plugs directly into an I/O slot, and is the first of a range of function cards for the IBM PC planned for release by the company. The PC-IEEE features a 280 microprocessor and up to 56K of on-board memory. The combination of high and low level commands held in ROM provide simplicity of operation without sacrificing power and flexibility.

CIL Microsystems Ltd, Decoy Road, Worthing, Sussex BN14 8ND. Tel: (0903) 210474.

FAILURE ANALYSIS

A new system for semiconductor component failure and defect analysis using liquid crystals is now available from Test Reliability Limited. The surface of a device is coated with a liquid crystal which at a clearly defined temperature, within a few tenths of a second, changes to a normal liquid. Below the transition temperature the device appears bright, but above this temperature light is extinguished. Thus any dissipation associated with the operation or malfunction of a device is clearly seen as a dark spot or area.

The success of the technique relies substantially on the degree of temperature control and to a significant extent on the selection of liquid crystals.

Tempronic Corporation’s TP0314 Alpha Controller, Thermochuck, Thermosocket, Microjogger and Liquid Crystal Application Kit provide all the essential elements for success using this technique. Now it is possible to observe defects with a dissipation of only a few microwatts and geometries as small as just one micron.

Test Reliability Ltd, PO Box 20, Petersfield, Hampshire. Tel: (0730) 65412.

IEEE CONTROLLER

The new PC-IEEE from CIL is an interface for IBM PCs and compatibles to control the IEEE-488 (GPIB, HP1B) bus. It plugs directly into an I/O slot, and is the first of a range of function cards for the IBM PC planned for release by the company. The PC-IEEE features a 280 microprocessor and up to 56K of on-board memory. The combination of high and low level commands held in ROM provide simplicity of operation without sacrificing power and flexibility.

CIL Microsystems Ltd, Decoy Road, Worthing, Sussex BN14 8ND. Tel: (0903) 210474.

FAILURE ANALYSIS

A new system for semiconductor component failure and defect analysis using liquid crystals is now available from Test Reliability Limited. The surface of a device is coated with a liquid crystal which at a clearly defined temperature, within a few tenths of a second, changes to a normal liquid. Below the transition temperature the device appears bright, but above this temperature light is extinguished. Thus any dissipation associated with the operation or malfunction of a device is clearly seen as a dark spot or area.

The success of the technique relies substantially on the degree of temperature control and to a significant extent on the selection of liquid crystals.

Tempronic Corporation’s TP0314 Alpha Controller, Thermochuck, Thermosocket, Microjogger and Liquid Crystal Application Kit provide all the essential elements for success using this technique. Now it is possible to observe defects with a dissipation of only a few microwatts and geometries as small as just one micron.

Test Reliability Ltd, PO Box 20, Petersfield, Hampshire. Tel: (0730) 65412.
A real-time clock module now available from IQD is specifically designed for use in microprocessors. The RTC 58321 features a built-in 32.768kHz standard clock quartz oscillator which eliminates the need for regulation and aids rationalisation. It also incorporates battery back-up, time counter (hour, minute, second), date counter (year, month, date and day), a 12 hour/24 hour clock switch-over function and automatic leap year setting, and counter start, stop and reset functions.

The clock module has an integrated circuit with an output of 1Hz, and standard signal output can be set at 1024Hz, one second, one minute, one hour. A 4-bit bi-directional bus line is employed for data, which is written to and read from memory.

IQD Ltd, North Street, Crewkerne, Somerset TA18 7AR.
Tel: (08460) 74433

A low cost scrambler integrated circuit to ensure privacy with cordless and cellular telephones, mobile radios and security systems is now available.

The DVS100 chip was designed by Advanced Electronic Products (Merseyside) Limited, and will be manufactured by Marconi Electronic Devices Limited.

Manufactured in bulk CMOS, the new device is a digital speech processor which implements time division multiplex (TDM) encryption techniques to provide effective security along with good voice quality at low cost. The DVS100, with the addition of a 64K DRAM, incorporates all the necessary circuit elements to encrypt and decrypt two analogue speech channels, which may be combined to form a full duplex system.

The TDM scrambling technique used in the DVS100 'slices' the speech waveform in the time domain, and the slices are re-ordered before being transmitted. This breaks up the phonetic content of the waveform and makes the signal unintelligible to the human ear.

Marconi Electronic Devices, Doddington Road, Lincoln LN1 3LF.
Tel: (0522) 688121.

Osiris Controls Ltd are now manufacturing the first units in a range of radio alarm equipment at their new factory in South Wales. These include a push-button operated portable transmitter which sends a coded signal over a distance of up to 200m, and single, 16 and 31-channel double superhet receivers which produce pulse outputs on receipt of the coded signals. There is an optional preamplifier to increase the range in adverse conditions.

Codes are selected by 16-position DIL switches, providing more than 2000 alternatives to ensure security.

It will also be possible to connect a transmitter to pro-ximity switches and pressure pads to protect doors and windows.

The equipment has been approved to DTI specification MPT1309 and operates at 173MHz. Prices are claimed to be unbeatable.

Osiris Controls Ltd, 22 Pwll-Y-Min Crescent, Peterston-Super-Ely, Cardiff CF5 6LR.
Tel: (0443) 740827.

A new 1.5 micron CMOS chip and housed in a 68-pin package, the IMS T212 includes 2K bytes of 50ns static RAM, an interface for up to 64K bytes of direct address memory, and four Inmos standard 10mbit/sec full duplex serial links for concurrent message passing to other transputer devices. In addition, the device has a maximum data rate of 40M bytes/sec and multi-port access for the processor and serial links.

The IMS T212 is compatible at both program and interface level with all Transputer products, including the B006-1 Transputer expansion board. This board contains one T212 Transputer and space for another eight.

A fully populated B006-1 provides a processing capability of 90MIPS.

Rapid Silicon, Rapid House, Denmark Street, High Wycombe, Bucks HP11 2ER.
Tel: (0494) 26271.

Kelsey House, Wood Lane End, Hemel Hempstead, Herts HP2 4RQ.
Tel: (0442) 61291.

Toroid Technology Ltd are introducing a new range of UK designed and manufactured toroidal power transformers with applications in electronic and electrical equipment.

This high quality professional range consists of five power ratings from 15VA to 130VA, 48-60Hz; maximum ambient operating temperature is 55°C. These products are designed for applications requiring low magnetic field and low temperature rise. They incorporate a copper foil screen between primary and secondary.

Terminations are heat resistant PVC stranded wires and mounting arrangement is by single screw fixing into the base of the transformer.

Physical size is between 63 x 31 and 114 x 41mm.

Toroid Technology, 175a Briggstock Road, Thornton Heath, Surrey CR7 7JR.
Tel: (01) 689 6002.
Digital stereo sound

On 18th July the BBC started limited experimental engineering tests of digital stereo sound with television. The first programme to be transmitted in these tests was 'The First Night of the Proms', which was broadcast live from the Albert Hall. The tests, from the BBC 2 television transmitter at Crystal Palace and its dependent relays, will enable staff to gain operational experience and allow manufacturers the opportunity to build and test prototype stereo decoders.

The stereo channel on the transmitter carries either programme related material when this is available or high quality music at other times. The experimental signal will be liable to interruptions, although the normal sound channel is not affected by these tests.

The stereo sound signal is transmitted by quadrature phase-shift keying (QPSK) modulation of a carrier placed 6.552MHz above the vision carrier. The system, developed by the BBC, underwent trials in 1983/84, and is the subject of a joint BBC/IBA specification that is under consideration by the DTI as a potential UK standard.

New sound distribution equipment has been developed to carry the stereo signal to the transmitters. The BBC currently uses a digital transmission system known as sound-in-syncs to distribute the sound signal. However, the present system cannot accommodate a stereo sound signal, and therefore a dual-channel system has been developed by the BBC Engineering Design and Equipment Department together with Pye TVT Ltd, who are manufacturing the dual-channel sound-in-sync equipment.

There are currently no domestic receivers capable of decoding the stereo signals, and stereo televisions intended for use with video cassette recorders will not work in stereo with this system. It is expected that the BBC 1 transmitter at Crystal Palace will join the experiment later this year, although there are no plans as yet to extend the experiment to other parts of the UK.

Defence spectrum review

Following its inaugural meeting, the Defence Spectrum Review Committee has asked for evidence from broadcasters, manufacturers, public utilities and lobby groups.

It will examine the current and foreseen use of those parts of the radio frequency spectrum which are allocated for national defence.

The review is to take account of the operational needs of the services for which the Ministry of Defence has responsibility, defence procurement policies and procedures, the obligations imposed by international treaties and agreements, the impact of technological developments, the availability of economic and other resources to implement changes and the overall demands on the spectrum by all users, civil and military.

The review will be conducted in stages. The first stage will concentrate on the frequency range 470-3400MHz and is to be completed by 31st December 1987. The first stage of the review will run concurrently with a more general survey of the allocations within the same frequency range. This survey is being undertaken by the Radio Regulatory Division of the DTI A report covering the work of both bodies will be published.

Individuals or organisations wishing to submit written evidence should send their submissions before 3rd October 1986 to: Ken Hutchinson, Secretary, Defence Spectrum Review, DTI, Room 508, Waterloo Bridge House, Waterloo Road, London SE1 8UA.

Good idea, silly name

Motorola has announced the availability of Dr BUB, an electronic bulletin board dedicated to digital signal processing (DSP). The bulletin board offers the DSP community a wide range of information on Motorola's new line of digital signal processors.

Dr BUB provides the user with documentation on new products and improvements on existing products, application notes, DSP contest information, a confidential mail service, and a question and answer forum. A user can access the bulletin board from anywhere in the world providing they have a 1200 baud modem (Bell 212A or V.22) and a terminal or personal computer.

For more information on Dr BUB and Motorola DSP call Dr BUB at (512)440-DSP1 (440-3771) or contact the Motorola Literature Distribution Center, PO Box 20924, Phoenix, Arizona 85036 and request BR297.

Burmes short wave

Under a £700,000 contract placed by Gesellschaft Fur Technische Zusammenarbeit (GTZ) and funded by German Aid, Incomtel are to provide and install a new short wave radio transmission network in Rangoon for the Burma Broadcasting Corporation.

The two latest design short wave PDV transmitters with PIE equipment cover the two 100kW combined medium wave transmitters and antennas supplied by AEG Telefunken, provide clear border to border transmis-
sion throughout Burma for the first time.

The network, to be commissioned by engineers from Incomtel's British and German offices next year, will replace the present outdated short and medium wave system and will be housed in a new transmission building now being built by the Burma Broadcasting Corporation.

Satellite TV centre

Whoever said that there was a lot more money residing in the south-east of England than elsewhere in the country certainly wasn't talking out of the wrong orifice. In testimony of this fact, a new shop dealing only in satellite TV equipment was due to open in sunny Brighton during August. There must be a good deal of disposable cash down that way for such a shop to be considered commercially viable, considering the embryonic nature of this market.

The Home + Business Satellite TV Centre is situated in Churchill Square, Brighton, and will deal in equipment from NEC, Ferguson, Grundig, Luxor, Philips, STS and 'many other leading European, Japanese and American manufacturers'.

Weather satellite decoder

If you're keen on weather satellites it's well worth taking a butcher's at the latest edition of Electronics - The Maplin Magazine, which features a weather satellite decoder to complement their receiver project published earlier this year. This issue also contains an 8-bit parallel input port for the Amstrad CPC computers, which Maplin suggest could be used to interface the weather satellite decoder.

Incidentally, Electronics - The Maplin Magazine is apparently the UK's best selling electronics publication. Must be great to work on: produce one issue every three months and then watch it sell more than anyone else. I'm obviously doing something wrong here!

Satcom system for BNSC

A civil satellite communications Earth terminal, custom-designed and manufactured by Ferranti for the British National Space Centre (BNSC), has been installed and commissioned at R.S.R.E. Dufford in Worcestershire.

The BNSC, formed last year to improve and co-ordinate the development of British space technology, will use the terminal initially to support an experimental programme with Ku-band satellites and Olympus - 1. The terminal is a 'turn-key' system based on a 5.6 metre Intelsat E2 dish aerial. Initial operation will be in the 12/14GHz bands, and the system is adaptable to allow field substitution of an 11/13GHz horn and OMT (ortho-mode-transducer). The antenna pointing system is compatible with the tracking requirements of the Intelsat standard E Earth station and the Eutelsat ESC multi-service system specifications.

The satellite communications Earth terminal is made by Ferranti Microwave at Poynton using mainly British equipment. The stringent noise specifications for the up/down converters are met using Ferranti low noise phase-locked oscillators, and a Ferranti low noise FET amplifier is used in the receive chain.

Laser antenna alignment

Tony Chapman Electronics claims a new boresight laser provides test engineers with an exciting new totally portable system for the quick, accurate and inexpensive alignment of antennas. It enables perfect alignment between transmit and receiver antennas and means the elimination of the need for traditional surveying instrumentation, which is both time consuming and difficult to use.

Before antennas can be tested in an anechoic chamber, the source antenna and the antenna under test must be aligned, or boresighted, perfectly. The new centre-head boresight laser made by Hulbert Engineering, and introduced to the UK by Tony Chapman Electronics of Epping in Essex, is designed to greatly ease this task without sacrificing accuracy by using a coherent light source to adjust the antennas.

The laser is first used to align the antenna under test by replacing the source antenna and directing a 1mW visible light beam down-range to the test antenna. Azimuth adjustments are then made to this antenna's polarization positioner until the laser beam intersects the geographical centre of the antenna to leave the positioners aligned in one plane. The laser is then mounted on the test antenna's positioner and the process is repeated until both antennas' positioners are boresighted in two planes.

The whole process requires about 30 minutes. The laser tube has a typical lifetime of greater than 15,000 hours, and has been built to operate from 10° to 60°C at humidity levels as high as 95%. Since the laser's current requirements are low, 4.5 ± 0.1mA, it can be battery powered for field use. Each unit is supplied with its own rechargeable battery.
ESPRIT Conference

Following its success in 1984 and 1985, the ESPRIT Conference will once again be held at the Palais des Congrès in Brussels from 29th September to 1st October 1986. As in previous years, some 700 participants will attend technical working sessions on the first two days and 1000 guests will hear major industrial and political speakers on the third day - 'The IT Forum'.

The Forum day speakers include Karl-Heinz Narjes, Vice President of the Commission of the European Communities; Geoffrey Pat- tle, UK Minister of State for IT and Telecommunications and Chairman of the Research Council at that time; and Carlo de Benedetti, Chair-
man of Olivetti. Michel Poniatowski, Chairman of the European Parliament's Commission on Energy Research and Technology, has also been invited. These speakers will address major themes in high technology, and review the strategic importance of information technology and industrial co-operation in Europe; the title of the ses-
sions is 'European IT - Turning the Tide'.

Further details are available from the Organisation Bureaux ECOCO, 17a rue Vilain Xlll, 1050 Brussels. Tel: (02) 647 8780.

EMI

The IEEIE is to hold a one day symposium on 'Electro-
magnetic Interference: Practical Design and Con-
struction Techniques' in Lon-
don on Monday 17th November 1986.

This event, co-sponsored by The Institution of Electrical Engineers, Institution of Electronic and Radio Engineers, Institute of Measurement and Control, and Society of Electronic and Radio Technicians, is a sequel to the IEEIE sym-
posium in April 1985 which provided a practical introduc-
tion for engineers to the subject of electromagnetic interference, and which attracted a capacity attend-
ance.

The basic aim of this latest IEEIE symposium is to discuss practical design and construction techniques to minimise electromagnetic interference effects in elec-
tronic and similar equip-
ments. Consideration will also be given to installation, test and maintenance aspects. The emphasis will be on practical engineering (rather than academic or theoretical) considerations. The symposium is intended primarily for engineers and managers in the electronics, communications, computer and related industrial sectors.

A special discount will be allowed to delegates who book and pay before 1st October.

Programme details and application forms are obtain-
able from: The Conference

Secretary, IEEIE, Savoy Hill House, Savoy Hill, London WC2R OBS. Tel: (01) 836 3357.

Sound Comm 86

Following last year's successful event at Preston, the Association of Sound and Communication Engineers will hold their second Sound Show at a larger venue, the New Century Hall, Manchester, on Wednesday 1st and Thursday 2nd October 1986. A late night on Wednesday will give everyone the opportunity of seeing this exhibition. Opening times are 10.00am until 9.00pm and 10.00am to 5.00pm respectively.

Sound Comm 86 will cater for all who use equipment for the reproduction of sound. This show is described as a must for the PA system design-
er, club proprietor, purchasing manager, architect and 'end user' alike.

Special rail and hotel con-
cessions are available. For details contact the ASCE on (06286) 67633.

The Archer Z80 SBC

The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users.

★ Top quality board with 4 parallel and 2 serial ports, counter-timers, power-fail interrupt, watchdog timer, EPROM & battery backed RAM.

★ OPTIONS: on board power supply, smart case, ROMable BASIC, Debug Monitor, wide range of I/O & memory extension cards.

from £185 + VAT.

The Bowman 68000 SBC

The SDS BOWMAN - The 68000 based single board computer for advanced high speed applications.

★ Extended double Eurocard with 2 parallel & 2 serial ports, battery backed CMOS RAM, EPROM, 2 counter-
timers, watchdog timer, powerfail interrupt, & an optional zero wait state half megabyte D-RAM.

★ Extended width versions with on board power supply and case.

from £295 + VAT.

Sherwood Data Systems Ltd

Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
When the satellite TV tuner project appeared in *Radio & Electronics World* back in the August issue, a comment subsequently heard more than once concerned availability (or lack thereof) of cheap dishes and LNBs. "OK," said Mr Enthusiast, "so I can save a few bob by building my own tuner. But I'm still going to have to pay full whack for the other bits. The overall saving on a full system will hardly be worth the effort..."

Great minds?

Well, great minds think alike it seems (and *R&E* readers all have great minds, don't they?). A phone call from Mike Fox of Kord Audio Products, until now known for their hi-fi speakers and amps, produced details of a cheap dish antenna that his company's been working on.

The Kord product has been designed with the DIY enthusiast very much in mind. The various elements are available separately to allow the purchaser to do as much himself as he feels capable of, and thus benefit from the resultant cost savings.

The dish itself is of glass reinforced plastic (GRP), with a layer of conductive material encapsulated beneath the surface. In early models this material was nickel based, but now a substance of greatly improved conductivity is being employed.

The diameter is 1.5m (5ft) and the gain is quoted as 42.5dB (this being for the nickel based conductive layer, incidentally). This compares favourably with dishes from other manufacturers, who generally quote between 42 and 44dB, and should prove entirely adequate.

Mike describes his product as being stronger than a comparable metal dish, and other GRP dishes on the market seem to bear out his contention that such dishes are capable of performing as well as metal. And the price? Well, you can have a Kord dish (minus mount) for £77 + VAT.

Who's keen on DIY?

For the keen DIY enthusiast, Kord provide full details of dimensions and construction of the tripod for mounting the LNB on the dish. Likewise there are notes and dimensions describing how to build a simple dish mount out of Dexion or similar, although it is pointed out that such a simple mount is really only suitable for pointing the dish at one satellite (unless you really insist on manhandling it around and fiddling about with alignment every time you want to change between ECS1 and Intelsat V).

If the idea of such metal bashing doesn't appeal (it's worth bearing in mind that the dimensions of the LNB mount have to be followed closely at these frequencies), the LNB tripod is available separately for £14.50 + VAT, while a proper polar mount for the dish costs £96 + VAT.

According to Mike, Kord are producing far fewer polar mounts than they are dishes, since they anticipate that many people will devise their own mounts. If demand is sufficient, however, the price might well fall considerably.

If you're wondering how these prices compare with the competition, you could expect to pay at least £280 for a dish and mount if purchased from an 'established' dealer.

The DIY notes are available from Kord for £2 + a large SAE, the £2 being refundable on the purchase of a dish. These notes also include some details of alignment with the satellites. The company will also send a data sheet (free of charge) in response to enquiries, although this won't tell you any more than you've learnt here.

Cheap, cheep!

So, now you can get a cheap dish as well as a cheap tuner. All we need now is a source of cheap LNBS, or a simple means of otherwise converting down the signals. Any ideas?

Kord Audio Products Ltd
7 The Green
Nettleham
 Nr. Lincoln
Tel: (0522) 750702
USING THE S5/8

The reason for it is a lack of standardisation, so that each manufacturer's line has special features which inhibit interconnection with units made by anyone else. Although a skilled amateur might defeat this, and 'Fixit-Widget Merchants' enjoy a bonanza, this is still a debilitating process in no-one's long term interest.

However, there is hope on the horizon in the form of the S5/8 (serial 5V, 8-pin) interface, which is now before BSI and which I outlined in RA&EW, May 1985.

There is now a definitive description of this in Wireless World of July and August 1986 by Andrew Hardie, who has been very active in the birth of the proposals now in the hands of the British Standards Institution.

I have been involved in its use on a line-powered modem, which is a special case where not all matters associated with connections are clear. This gave experience in connecting such an S5/8 unit to a variety of computers with RS232 in various forms, BBC and Kyocera micros, for example.

To solve a problem we need to know how and why it arose, as well as the obvious symptoms, so let us look at the standardisation process.

Problems of standardisation

When I first became involved with engineering standards, I thought they were 'an agreement of common ground among experts, in order to co-operate and develop further in accord'. They were certainly not a cookbook of how the initiated could do it, and many of the documents said so in no uncertain terms.

Unfortunately the term 'Industry Standard' has since tended to become a global answer to all questions that are difficult to answer and, of course, is 'completely meaningless, for it means whatever you want it to!'

The reason for the problem is the fact that so many people do not really know what they are doing, a problem compounded by the cult that a manager (or a salesman) is the same, whether it is in the field of computers or fish and chips. He can ask his experts, but he should remember the joke about the army message 'send 3 & 4d. We are going to a dance'. The 'magic keyword' syndrome can be even worse. The marketing manager of a company who makes V21 and V23 modems phoned me because an important customer wanted something else—a V24 one. I had to explain that 'V24' is essentially a list of the names of the pins on an 'RS232 connector', and that is the grandaddy of this problem area.

If you do not know about gender-benders, null modems, DCEs and DTEs as well as other items of the RS232 language, you are lucky and you will find a large range of fix-it devices in many mail-order catalogues. Many people think that a 'D-25 connector' is a sure sign of an RS232 interface, whereas none of the specifications define what connectors shall be used, and in fact almost any number of pins between 3 and 37 is in use at present.

The reason of course is that RS232 has just grown up like Topsy since the early days of the 48 volt mechanical teleprinter, and we have added new things when we needed them, without throwing away the old ones.

A fresh start

Obviously we need to start again, and the impetus came with the advent of the hand-held computer because a much smaller connector was essential, and a single-sided supply of 5 volts is clearly adequate for all reasonable purposes. The Public Services Working Party, originally formed to define a standard for micro floppies, turned its attention to interfaces and the S5/8 is a result. The organisation has been hosted by one of the bodies—the Central Computer and Telecommunications Agency—but it is hoped it will be gradually taken over by the British Standards Institute which has to attain industry's endorsement of it.

A personal impression

The proof of the pudding is in the eating, and the following is the personal experience of utilising the S5/8, with particular reference to the special but difficult case of modems.

Below is an outline diagram which indicates the basic features for this discussion, but I suggest that anyone really interested should obtain the full documents from the BSI or CCTA at Riverwalk House, Millbank, London SW1P 4RT. They describe fully the buffering and the evolving of new items so that S5/8 replaces not only serial connections but also parallel connections, eg 'Centronics', and it's meant to operate at up to 9,600 baud.

The basis is that all units are equal and have signals called 'D in' and 'D Out', and what goes out of one socket goes into another. There are also handshake 'H signals which also go 'In' and 'Out'. For some cases you may want further control signals in and out, and so we call these 'S' for special. We need a common or earth, ground pin 2, and there is a central pin 8 marked '"' which carries a
5 volt supply so that we can power one unit from another, instead of having interminable supply and lead problems.

This means that there is only one cable which has a plug on each end, and the cross-connection between input and output for the data and handshakes is done within the cable, so “You can’t go wrong”. Because of the universality of the DIN series, you can put 3, 5, or 7-pin as well as 8-pin connectors into the S5/8 sockets and there is no reason why we shouldn’t use them. However, it would appear contrary and stupid to choose a socket for a unit for less than the full S5/8 complement of 8 ways, even if only 3 or 5 are used. Finally, the system is designed around a 5 volt single-sided supply, and few hobbyists or professionals worth their salt would quarrel with that.

Applications of S5/8
The best known application of the S5/8 is the Liberator, a hand-held PC specially developed for Government departments by Thorn-EMI. Various people have provided ancillary equipment, eg printers, modems etc, and there are now a considerable number of devices using the system.

The real proof of its efficacy shows when it has to be interconnected with existing equipment using the old conventions. If we can do this in a clean and simple way, then the advantages will become obvious.

A line-powered modem was adapted to suit the Liberator and similar hand-held terminals, because the use of the line-holding current of the telephone simplifies cabling and means there is no drain on the internal batteries.

To standardise on the S5/8 connection for the modem, we needed adaptors to work with other plugs and sockets, and with the various complications of the RS232.

Recent experience
My recent experience is described below. The modem will be detailed in a separate article, and for the moment we need only concern ourselves with the logical ‘data input’ and ‘data output’ connections. These are signals that any modem must provide, as distinct from such auxiliary ones as carrier detection, line ringing and dialling facilities which we have come to expect in the more exotic models. What really matters is ‘D in’ and ‘D out’ for the data, for the rest are really isolated connections to suitable extra circuitry in the computer or in the modem itself.

A modem cannot provide hardware handshakes, and so H1 and H2 cannot be employed, although their use might be simulated. The S5/8 specification makes this point clear by insisting that the control of data should be software control, ie ‘X on’, ‘X off’. The exact way in which the H and F2 are used to bring in the other connections and to provide dialling will be described in a later article.

Connection to a telephone line
The standard way of connecting any terminal to a BT line is by means of an opto-isolator of suitable rating, and consequently data of a modem invariably uses something like the interface shown.

‘Data out’ invariably has sufficient energy to operate the LED (which requires a milliamp or less at about two volts), but the data inwards is received at an open transistor junction which requires a local voltage on the computer side to turn this into data, and hence pin 8 and its 5 volts does the necessary via a 10k resistor.

This also applies to any other machine if a suitable voltage can be found. There is a good case for using a battery to avoid having to find a suitable pin in whatever connector is used.

Connection to other Interfaces
Connection of the modem to previous standards such as RS232 and RS422 or 423 is quite easy, subject to precautions that the voltage and current available is not excessive, and that one picks up voltage for the received data of 5 volts from a convenient spot. This is probably best described by considering individual

The ED3010 line-powered modem

[Diagram of isolating a computer from the BT phone line using opto-isolators]

OCTOBER 1986 please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
S5/8 INTERFACE

Data out 0
S5/8

connection to hand-holds
Tandy, NEC, Olivetti etc

Data in ()

1 D INP (BLUE)

Ground (BROWN)

HINF

OD OUT 3

B BC computer to modem
If RS423 is inactive RTS goes negative: the diode prevents confusion

RS423

RTS

CTS

Data out

Data in

0 V

GROUN D

OD OUT 3

Typical RS232 'DTE'
Use resistor R to limit current to 4mA if ±12V is present

RS232

+5V max.

Hand-holds:

Tandy, NEC etc

D O U T 3

D IN P

GROUN D

Typical RS232 'DTE'
Use resistor R to limit current to 4mA if ±12V is present

connection to hand-holds
Tandy, NEC, Olivetti etc

computers, since unfortunately the plug and the designation terminology and convention vary widely between manufacturers.

Listed below is the way a number of popular types have been used, which will give a clue to the operation of further ones. A general diagram is given along with the precise arrangement for the BBC and Kyocera, and hand-helds by Tandy, NEC and Olivetti.

Replacing plugs

The ED3010 has a captive lead ending in an S5/8 plug so that the cable cannot be lost or mislaid. If you will use it only with a non-S5/8 computer, then it is probably best to cut off the plug and make connection to a D type or other appropriate plug to suit your computer. The colouring of the leads is as follows: pin 8 is red, pin 3 (D OUT) is blue, pin 1 (D INP) is yellow, and pin 2 (ground) is brown.

One can then make any internal handshakes or 'kick one's own behind' connections in the plug that goes to the computer. Alternatively, a socket for the 8-pin DIN plug may be connected by a further lead which has the handshake necessary for the terminal or computer concerned.

Radio & Electronics World —

The communications and electronics magazine

Don't take a chance on being able to get your copy

AVOID DISAPPOINTMENT

Place a regular order with your newsagent

Should you have any difficulties obtaining a copy, phone (0277) 219876 or write to Circulation Department, Radio & Electronics World, Sovereign House, Brentwood, Essex CM14 4SE

NEWSAGENT ORDER FORM

To (name of newsagent)

Please order a copy of Radio & Electronics World for me every month

NAME

ADDRESS

Newstrade distributors: Argus Press Sales and Distribution Ltd, 12-18 Paul Street, London EC2A 4JS, Tel: 01-247 8233

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
OCTOBER 1986

From Solar News we gather that the first sunspot group of the new solar cycle made its appearance on 3rd July. This makes June the minimum of the old cycle so we can now look forward to a gradual increase in solar activity. The accompanying graph produced by Roger Hardman, reprinted from Solar News shows clearly how solar activity has decreased over the last few years.

Those readers who are interested in solar matters and their relationship to radio propagation will find Solar News a most interesting and informative publication. It is available from Benz Chapman, 'Brindles', Mill Lane, Hooe, Battle, East Sussex TN33 9HT.

'Hands Across America'

In our July contribution we mentioned the part amateur radio was to play in the 'Hands Across America' project. From Westlink Report we learn that this project was eminently successful. From California to New York more than five and a half million Americans, co-ordinated by more than three and a half thousand radio amateurs, held hands for fifteen minutes on Sunday, 25th May. The idea was to further an awareness of the plight of the homeless and hungry and to raise money to aid them. W6RO, aboard the old Queen Mary ocean liner, served as the West Coast Net Command, while the Eastern Command originated from a 'walkie-talkie' in Battery Park, New York.

Each actual mile of the route had a radio amateur assigned to it and information was fed to state HQs. VHF and UHF were mostly used, although there were several areas where 80 or 40 metre SSB proved a better alternative.

The amateur radio network saved the project a lot of expenses which would otherwise have been incurred. This being the case, the dollar value of amateur radio time contribution may well be one of the biggest in bringing aid to those Americans most in need of it.

Oscar 10 back in limited service

Recovery efforts aimed at restoring Oscar 10 to service proved partially successful when, on 15th July, the Mode B transponder was brought back into limited service, thus successfully concluding a process of diagnostic testing, rewriting the Integrated Housekeeping Unit (IHU) software and cautious evaluation of results at each stage of testing. Oscar 10's IHU memory had been showing evidence of accumulated radiation damage for several months. While there is a software error correcting system aboard the satellite, this was ultimately unable to correct all the software errors which had accumulated through repeated radiation damage to the IHU memory and it finally became overwhelmed. The operating system 'crashed' and Oscar 10 went off the air.

At the time the situation looked bleak and the satellite controllers were only able to reset the IHU with the master reset command. Karl Meinzer DJ4ZC, the principal architect of the IPS operating system, designed a memory diagnostic package which produced a 'memory map' of the failed memory cells. Based on this he was able to rewrite the IPS operating system so as to avoid the affected zones.

Ian Ashley ZL1AOX, the New Zealand Satellite Controller, soon reported that this new IPS software package seemed to be working. By about 12th July the decision was taken to turn on the Mode B transponder. This was done with a reduced operating schedule.

Reorientation procedure

The overall situation is now stable and it has been possible to carry out a reorientation procedure to adjust the satellite's attitude to accommodate seasonal changes in sun angles. Had this reorientation not been possible, by late summer Oscar 10 would have been in dire straits due to reduced sun angle and a consequent reduction in electrical power.

Following this reorientation process an improved operating schedule may be possible. At present, however, due to the reduced memory capacity it is not possible to transmit CW and RTTY telemetry. Bulletins are therefore currently being sent by PSK'M'M blocks only.

JAS-1

At the time of writing, satellite enthusiasts are awaiting launch of the first of the Japanese amateur radio satellites, JAS-1. The first date given for launch, viz 31st July, has passed and the second date, 3rd August, has also passed. The proposed date is now 12th August, with launch time being between 2030 and 2230 hrs UTC (we have lift-off! Launch was, in fact, successful – Ed).

It is interesting to see that Japanese launch dates are just as subject to delays as those originating in the West! These delays are also due to similar causes apparently, as the launch vehicle H-1 failed a rehearsal test on 15th July, but did pass the countdown rehearsal on 19th July. The problem was due to a faulty fuel tank valve failing to close on telemetry command. The launch takes place from the Japanese island of Tanegashima.

Sporadic-E propagation

Sporadic-E propagation of radio waves occurs when patchy regions in the E layer of the ionosphere become sufficiently ionised to reflect or refract signals in the VHF band of frequencies. Usually it's the 28 and 50MHz bands which show this phenomenon, propagation taking place over a range of 400 to 1,200 miles or so, although multi-hop effects may extend the range to some two thousand miles or more. It can occur at any time, but is more likely to be encountered in the early evening or morning. It is most common around midsummer.

Particular interest is being shown in these multi-hop propagation conditions, for until recently sporadic-E was thought to be confined to single hop short skip paths only.

The recent general release of 50MHz to British radio amateurs has greatly
AMATEUR RADIO WORLD

increased interest in sporadic-E propagation, because this band is particularly prone to such propagation. The much greater use of 50MHz resulting from the new licensing regulations has led to much more knowledge of sporadic-E characteristics being accumulated, and during the past summer period dozens of reports of QSOs with many unexpected countries have taken place. Sporadic-E contacts have been made almost daily between this country and Malta, Cyprus, Portugal, the USSR, Norway, Sweden and Finland. Not all European countries have been licensed for 50MHz as yet, so cross-band contacts between 50MHz and 28MHz or 144MHz have been worked.

More common

Evidence is growing that multi-hop sporadic-E propagation is much more common than was previously thought to be the case. So much so, in fact, that transatlantic QSOs might be possible via this mode on 50MHz. Considerable interest is being shown amongst the ‘50MHz DX experimenters’ in trying to make such contacts. Reports of QSOs with Iceland and Greenland from America and Europe are especially important. The VHF/UHF Newsletter for last June, number 6/86, provides some useful hints for monitoring sporadic-E openings using TV and FM stations on the Continent as ‘beacons’. It gives the various channels and their frequencies from 48.25MHz to 93.25MHz, so that as they appear one can see just how conditions are changing toward producing sporadic-E. There is also a circuit diagram for a sporadic-E monitor which will give an early warning of sporadic-E via a klaxon! The VHF/UHF Newsletter is published by the RSGB and is full of information, particularly on current events, for the VHF enthusiast.

Datacom

Datacom is the official journal of the British Amateur Radio Teletype Group (BARTG). It is sent free to all BARTG members, and is published at the end of March, June, September and December. It must be one of the best amateur radio specialist group journals produced, and covers the whole field of amateur radio data communication techniques, from packet radio, computers and software for RTTY and other similar applications, to error correcting techniques such as AMTOR, FAX and many more similar topics as well. The latest edition contains a hundred pages of very readable information. Even the advertisements are informative, such as the one on ‘Fax from Space’ from Datacom, Inc.

Anyone who is interested in this aspect of amateur radio is strongly advised to join BARTG, if only to get their journal. Membership details from: Pat and John Beedie, G6EWO/MOK, Flynnonas, Llandeilo, Wales SA19 7NP. Tel: (0558) 822286.

UoSAT spacecraft data booklet

A new, revised and enlarged edition of the UoSAT data sheets has been produced by the UoSAT team. It is a 40-page booklet containing UoSAT 1 and 2 mission summaries, technical data summaries, UoSAT orbits and tracking, spacecraft data formats, whole orbit data (WOD), telemetry calibration estimates, and details of the UoSAT 2 digital communications experiment, UoSAT CCD camera and DSR experiments, and UoSAT ground station equipment. It’s a very useful collection of much of the information that has been distributed over the past months in ‘bits and pieces’. It is available from AMSAT-UK, 94 Herongate Road, Wanstead Park, London E12 9EQ for £2.25 plus 18p p&p.

ECW for KITS

ECW for KITS

Prices include VAT & Postage.
For your order, please make cheques payable to ELECTRONIC & COMPUTER WORKSHOP LTD 171 Broomfield Road, Chelmsford, Essex. CM1 1RY Telephone (0245) 262149

DIGITAL VOLTMETER MODULE

- High Accuracy
- 0.01% + 1 digit
- Single supply
- 3–12V
- Ranges – 999mV to 999mV
- Easily extended
- Large bright 0.43 LED Displays

TELEMETRY TEMPERATURE MODULE

Kit D10

A simple though effective module which combines a linear output at 50mV per 1°C with a linear temperature range of 15°C to 100°C. The unit is designed to be used in conjunction with the E14 Fm Transmitter to give a high accuracy digital thermometer suitable for a wide range of applications.

AUDIO MODULES 10–125 WATTS

AL1030

Low-cost general purpose 10W radio module suitable for use in Fm or Ds radars in domestic applications. Power range 10–120

AL2550

Compact 25W radio module for Domestic applications with a maximum figure of 90% output power at a rated power level of 28–50W.

PA 207

A quality stereo pre-amplifier and tone control unit suitable for driving any of the above amplifiers. Order now from a stock list of 40–120.

Order by post, order by telephone and P/P. Orders over 10% P/P. Order over £10 for delivery. VAT included. P/P cost £1.50.

ECW for KITS

Please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
When I first received the review samples of the Grundig Satellit 400 and 650 receivers, I must admit that I immediately broke a rule of a lifetime — and read the instruction books first! This proved a wise move, for to take full advantage of all the facilities which either receiver offers requires some study, although the various procedures are quickly learned and easily remembered.

When reviewing any equipment, consideration must be given to its intended purpose. If it has been designed for professional or amateur communications, it must be judged with other equipment in its class; a broadcast receiver must be viewed in terms of its ability to receive commercial broadcast stations, and the fact that the listener is unlikely to be a skilled operator should be taken into consideration.

The Satellit receivers fall somewhere between these extremes, so the domestic broadcast was regarded separately from the HF wavebands.

With both sets on the bench certain similarities were immediately evident, as both cover the LF, MF and FM broadcast bands and 1.6 to 30MHz on the HF waveband, with synthesised frequency control. Furthermore, each contains a digital clock which also controls auto switch-on and switch-off facilities. These include switching for an external cassette recorder, although the switch-off in the case of the 400 is preset at 60 minutes after switch-on. It is definable on the 650.

In addition, either receiver may be operated from mains, 12V dc or internal batteries.

The Satellit International 650

The Satellit 650 is a relatively large receiver (504 x 242 x 202mm) with a weight of 8.5kg excluding batteries. A large proportion of the front panel is taken up by the speaker. To the right of this are the controls, above which is a tuning scale. This, however, is not the tuning scale but indicates the setting of the preselector, the tuned frequency being shown by a large LCD display. The latter indicates the frequency, date and time as required, in figures an inch high — a boon to whose eyesight has lost the perfection of youth.

A meter is situated to the right of the LCD. Again this is of adequate size, and either indicates battery voltage or acts as a tuning meter. For the latter function it is arbitrarily scaled 0-10.

Beneath the LCD and meter is the keypad which controls the frequency, memory and timing functions, and to the right of this lie the manual frequency and preselector tuning controls. Tuning the receiver may be accomplished by selecting a frequency from memory, keying the required frequency into the pad, or manual tuning.

Across the bottom of the receiver is a line of rotary controls which includes AF gain, RF gain, bandwidth, sideband selector, clarifier, and bass and treble tone controls. There are also switches for on/off, battery check/dial illumination, loudspeaker selector and noise limiter.

The FM broadcast band

The Satellit 650 is undoubtedly the most sensitive FM broadcast receiver I have ever handled. This was recently demonstrated when in one half-hour session during a slight 'lift' I identified no less than 43 British and Continental FM broadcast stations, using only the whip aerial attached to the set.

On this waveband tuning is in 10kHz increments, but if the tuning knob is rotated more quickly an audio muting circuit comes into circuit while the increments are increased to 110kHz.

The quality of reproduction is good but not exceptional. On this band full advantage can be taken of the dual loudspeaker system by switching in the tweeter to improve the audio high frequency response.

Sixteen frequencies may be stored on the VHF FM band.

The LF and MF bands

On these bands the Satellit proved excellent for broadcast reception with, in general, the medium bandwidth position proving most satisfactory. Due to the restricted frequency response of the transmissions, however, use of the tweeter speaker tended to degrade rather than enhance the quality of reception.

As the set is equipped for attachment to a direction-finding aerial on the LF band, it was also obviously intended to receive the LF navigational beacons. Accordingly, with the help of a beacon list and switching in the BFO with the receiver in its most selective state, I managed to identify a number of these transmissions up to a range of a hundred miles or so. Bearing in mind that many of these, especially those installed for airport identification, are only intended for ranges of 10 or 25 miles, I considered this highly satisfactory.

On the MF broadcast band the sensitivity was excellent, and the selectivity was such that crosstalk from adjacent stations was rarely a problem.

The preselector tuning may be operated in two modes, automatic and manual. In automatic mode this is achieved with the help of a small motor, but it is recommended that when operating remote from the mains supply, manual control is selected to save unnecessary drain on the batteries. The necessary changeover is by depression of a button in the centre of the concentric tuning/preselector control.

On all bands, LF, MF and HF, the automatic preselector tuning was found to track with such accuracy that no improvement was possible with the manual adjustment.
On the LF band the tuning is in 1 or 3kHz increments and on MF either 1 or 5kHz increments, depending on the speed of rotation of the tuning control.

Four frequencies from the LF band and eight from the MF band may be stored in memory.

The HF bands
The frequency coverage of the Satellit 650 is from 1.6 to 30MHz. Within this spectrum are four types of transmission which may be of interest to readers: broadcast AM, commercial SSBO, amateur SSBO and CW.

For listening to a particular broadcast AM station this receiver is excellent, for it is merely a matter of either keying in the required frequency or recalling it from store. The accuracy of the frequency control makes further tuning adjustment unnecessary. When searching across a band, however, it doesn't pay to be impetuous, for on rapid rotation of the tuning control the incremental rate soon jumps to 11 or 111kHz, and if the operator is not careful he (or she) can easily increment 500kHz when 50 was intended. When this occurs the receiver mutes until the synthesiser again locks, causing a brief but annoying silence. I consider that the high tuning rate could well have been omitted, for when large frequency excursions are necessary it is as quick to use the keypad. Apart from this, the equipment proved excellent for HF broadcast reception.

The reception of commercial HF SSBO demonstrated the excellent frequency accuracy of this receiver. Almost all transmissions are on an exact number of kilohertz (ie 4750.0, 13306.0 etc), and it was possible to switch from one to the next without adjustment of the clarifier. In such service, the receiver was a pleasure to use, with transmissions from coastal and meteorological stations and transatlantic aircraft being received at good strength.

The reception of amateur SSB signals is, however, less convenient or effective, for amateurs rarely transmit on an exact number of kilohertz, and due to the 1kHz tuning increments almost every station has to be individually clarified. This makes tuning across the amateur bands both slow and laborious. Furthermore, as only the BFO is adjusted during clarification it is often necessary to use medium bandwidth rather than narrow, with consequent further problems from adjacent stations.

When using the receiver for SSB reception it will often be found desirable to use manual rather than automatic gain control. At such times care must be taken to keep the gain to an absolute minimum, for there are many extremely strong signals on HF which are capable of giving serious cross modulation problems.

Although it might be thought that similar problems would be present for CW listening they were not much in evidence, although even on narrow position the filters are not really sharp enough for this purpose. The ear is tolerant to the pitch of the received CW signal and if it is desired to adjust this on a particular signal, this can be done at leisure.

Through most of the HF band the sensitivity seemed adequate, but above 20MHz it seemed a little deaf and would not stand comparison with the station equipment. Furthermore, although it was possible to slope-detect strong CB FM signals on 27MHz, it would not even detect the presence of signals which were quite readable on standard CB equipment.

32 frequencies on the HF band may be stored in memory.

General impressions
On first seeing the Grundig Satellit 650 it gives the impression that it is a well engineered piece of equipment typical of that manufacturer. Over weeks of testing that impression remained.

For most purposes it is an excellent piece of equipment, performing well for broadcast and commercial SSB reception. On the amateur bands, however, the 1kHz incremental tuning rate is really too high to be convenient. I was also disappointed that the sensitivity seemed inadequate above 20MHz, for I would have thought that it ought to have at least matched my rather old station equipment.

Overall, I believe that this equipment will prove to be of considerable interest to the listener who requires a good quality broadcast set with the additional facility of HF broadcast (but not amateur) listening.

The Grundig Satellit 400
The Satellit 400 is far smaller (304 x 180 x 70mm), lighter (2.15kg) and of simpler design than the 650.

As with the larger receiver a considerable proportion of the front panel is occupied by the loudspeaker fret, with the controls to the right of this. Three slider potentiometers dominate the front panel, slightly to the right of centre, these controlling audio gain and HF and LF audio response. To the right of this is the keypad controlling frequency, waveband and memory functions, etc. These are surrounded by a signal strength/battery condition meter and LCD frequency display.

The manual tuning knob is located to the side of the cabinet and operates in 1kHz increments on AM and 10kHz on VHF FM, with no 'fast tune' facility. Up to 24 frequencies across all wavebands at random may be committed to memory.

As with the Satellit 650, I shall consider the performance on each band separately.

The FM broadcast band
The Satellit 400 performs creditably well on this band, providing good sensitivity and good audio quality.

Tuning can be accomplished in three ways: by selecting a station from store, by using the search facility, or by manual tuning.

When using the search facility, either the up or down button is pressed. The receiver is muted and the display indicates the frequencies as they are examined. When a carrier is detected there is a brief pause while the signal...
strength is examined, and if sufficient to give entertainment quality the audio mute is released.
This is a very convenient means of operation, but the brief wait before the muting lifts can be a little annoying if the user is just scanning up and down the band looking for a programme of casual interest.

The LF and MF broadcast bands

On the LF and MF bands the Satellit 400 proved an excellent broadcast receiver, although the restricted frequency coverage on LF, compared with the 650, inhibited use for monitoring navigational beacons.
The search facility can also be used on these bands, and the comments made previously apply equally.

The HF bands

The HF frequency coverage of the Satellit 400 is exactly the same as the 650, but the fact that it is a less expensive receiver is evident. The highly accurate synthesiser is a delight, but unfortunately the RF selectivity is inadequate and except on the strongest stations there is a continuous background of cross modulation and/or second channel interference present.

This may be reduced by switching the 'DX/Local' switch to the local position, but this considerably reduces the overall receiver sensitivity. I found that during the evenings it was impossible to operate the receiver in the DX mode.
If it is intended to use this receiver for serious short wave listening, an external aerial with a good aerial tuning unit to provide additional RF selectivity will be essential.
On the HF band the search control operates in a different and novel way. On depressing either button the receiver returns to the next broadcast or amateur waveband, up or down, as appropriate.
On amateur wavebands the lowest frequency is selected, but on broadcast the receiver is tuned to the middle of the selected band.
This facility is also extended to the tuning, for if two digits corresponding to the wavelength of the desired band (eg 15 for 21MHz) are keyed, the receiver will immediately tune to that waveband.
On amateur bands, due to the 1kHz tuning increment the clarifier has to be continually adjusted, but the accuracy of the synthesiser makes this unnecessary when listening to commercial SSB transmissions.
The sensitivity at the higher end of the HF band was somewhat disappointing, for stations which registered S7 or S8 on the station equipment were often inaudible on the 400.

General impressions

The appearance of the Satellit 400 gives the impression of a well made piece of equipment of the standard we have come to expect from Grundig.
The performance on the LF, MF and VHF FM broadcast bands is excellent, but unfortunately on the HF band where conditions are so much more critical poor RF selectivity gave rise to severe cross modulation and second channel problems. With additional RF selectivity I believe this could be minimised and HF broadcast reception considerably improved.
I was also disappointed with the poor sensitivity above 20MHz considering that, with modern semiconductors, adequate gain is available and that a great deal of modern communications equipment uses no RF amplification before a diode first mixer.
I believe that this receiver will appeal most to the listener who requires a good quality portable broadcast receiver with the availability of the HF band for occasional listening.

THE COMMUNICATIONS AND ELECTRONICS MAGAZINE

- Regular well-informed columns on various aspects of amateur communication
- Up-to-date news on the latest technology
- Simple and useful constructional projects, plus clear explanations of the theory behind them
- Delivery to your door by publication date each month
- Inflation proof - price guaranteed for 12 months

On sale NOW at your newsagent and at equipment dealers

RADIO & ELECTRONICS WORLD SUBSCRIPTION ORDER FORM

To: Subscription Department • Radio & Electronics World • 1 Clarendon Road • Croydon • Surrey • CR0 3SJ
Tel: 01-760 0409

NAME..
ADDRESS...
...
Postcode..

Please Supply: (tick box) for 12 issues, all rates include P & P

£15.60.. £17.40.. £17.40.. £28.45..

Island World-Surface Europe-All World-Air

Payment Enclosed: £__________________________

Credit Card Payment D [] D []

Signature..

OCTOBER 1986

Please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Philips R1</td>
<td>0.95</td>
</tr>
<tr>
<td>02</td>
<td>Philips R2</td>
<td>1.50</td>
</tr>
<tr>
<td>03</td>
<td>Philips R3</td>
<td>2.50</td>
</tr>
<tr>
<td>04</td>
<td>Philips R4</td>
<td>7.95</td>
</tr>
<tr>
<td>05</td>
<td>Philips R5</td>
<td>27.50</td>
</tr>
<tr>
<td>06</td>
<td>Philips R6</td>
<td>18.50</td>
</tr>
<tr>
<td>07</td>
<td>Philips R7</td>
<td>1.20</td>
</tr>
<tr>
<td>08</td>
<td>Philips R8</td>
<td>2.10</td>
</tr>
<tr>
<td>09</td>
<td>Philips R9</td>
<td>3.20</td>
</tr>
<tr>
<td>10</td>
<td>Philips RA</td>
<td>5.00</td>
</tr>
<tr>
<td>11</td>
<td>Philips RB</td>
<td>10.95</td>
</tr>
<tr>
<td>12</td>
<td>Philips RC</td>
<td>20.00</td>
</tr>
<tr>
<td>13</td>
<td>Philips RD</td>
<td>27.50</td>
</tr>
<tr>
<td>14</td>
<td>Philips RE</td>
<td>7.95</td>
</tr>
<tr>
<td>15</td>
<td>Philips RF</td>
<td>2.50</td>
</tr>
<tr>
<td>16</td>
<td>Philips RG</td>
<td>1.05</td>
</tr>
<tr>
<td>17</td>
<td>Philips RH</td>
<td>2.00</td>
</tr>
<tr>
<td>18</td>
<td>Philips RI</td>
<td>3.50</td>
</tr>
<tr>
<td>19</td>
<td>Philips RJ</td>
<td>4.50</td>
</tr>
<tr>
<td>20</td>
<td>Philips RK</td>
<td>5.20</td>
</tr>
<tr>
<td>21</td>
<td>Philips RL</td>
<td>7.50</td>
</tr>
<tr>
<td>22</td>
<td>Philips RM</td>
<td>20.00</td>
</tr>
<tr>
<td>23</td>
<td>Philips RN</td>
<td>27.50</td>
</tr>
<tr>
<td>24</td>
<td>Philips RO</td>
<td>1.50</td>
</tr>
<tr>
<td>25</td>
<td>Philips RP</td>
<td>2.00</td>
</tr>
<tr>
<td>26</td>
<td>Philips RQ</td>
<td>3.00</td>
</tr>
<tr>
<td>27</td>
<td>Philips RR</td>
<td>4.00</td>
</tr>
<tr>
<td>28</td>
<td>Philips RS</td>
<td>5.00</td>
</tr>
<tr>
<td>29</td>
<td>Philips RT</td>
<td>7.50</td>
</tr>
<tr>
<td>30</td>
<td>Philips RU</td>
<td>20.00</td>
</tr>
<tr>
<td>31</td>
<td>Philips RV</td>
<td>27.50</td>
</tr>
<tr>
<td>32</td>
<td>Philips RW</td>
<td>1.50</td>
</tr>
<tr>
<td>33</td>
<td>Philips RX</td>
<td>2.00</td>
</tr>
<tr>
<td>34</td>
<td>Philips RY</td>
<td>3.00</td>
</tr>
<tr>
<td>35</td>
<td>Philips RZ</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Note: Prices are subject to change and are for reference only. For the latest prices, please contact us directly.
ACTIVE AUDIO FILTER DESIGN USING THE ZX SPECTRUM

by F Houghton G3VZM

Audio filters can be used to significantly improve many receivers, and are an essential part of other items of equipment. Passive filters may be built from capacitors and resistors or capacitors and inductors, but these suffer from relative bulk, signal loss and poor skirt performance. Cascading sections can improve the shape factor, but only at the expense of further loss and size. Active filters provide a sound solution to these inherent problems.

Although active filters may be built from discrete transistors, the simplicity, low cost and small size of integrated circuit op-amps (operational amplifiers) makes them the usual choice. This is the approach taken for this program.

The design of these filters uses only simple equations which can be easily solved with a pocket calculator. So why use a computer?

The starting point of each set of calculations is an arbitrary choice of a capacitor value. Like most arbitrary choices, the first is unlikely to be the best. The initial value may result in inconvenient or not easily produced with combinations of preferred values. When this happens the results must be used to help select another starting value and the calculations repeated.

This can become tedious if a number of runs are needed. Computers are very much at home with tedium, so why not let the machine do the work?

Each of the three common configurations is represented, low-pass, high-pass and band-pass. The circuits are shown in the accompanying diagrams.

The program

The program was written using only a simple approach, with no clever tricks or expanded Basic commands. It should run on any ZX Spectrum.

Each step in using this program has been made self-explanatory, but I shall nevertheless offer a quick guide.

After the initial title screen a menu is offered, giving a choice between filter types. Selection is by a single key for each.

Followed selection you will be prompted to enter the starting information. First, cut-off frequency, or for the band-pass case, centre frequency. This must be in Hz. Next you will be asked to specify the gain of the circuit. This should be the numerical gain (ie V_{out}/V_{in}), not the value converted to dB. Values less than 1 represent loss. For good results don't try to get too much from the circuit. In the case of the band-pass filter it is also necessary to enter the bandwidth required.

The last input required is the arbitrary starting value of a capacitor. This must be entered in microfarads. Keep in mind the range of frequencies being used when making this decision, and remember that a little practice will give you some idea of the capacitances to be used.

Before making the calculation the computer will need confirmation that you have entered the correct values. Pressing 'N' will return the program to the input routine and 'Y' will allow it to continue. This particular feature may seem extravagant in a simple program, but it can save a lot of time if mistakes are made when complex calculations are involved. Its use has simply become a habit.

Making the printing of hard copy a choice is simply to avoid wasting paper if the result is unsuitable. Using the copy command when no printer is connected has no effect, the computer just ignores it. After accepting or refusing a copy the program resets to the menu. Remember to take any notes first if you want to record the results without a printer.

Now you can simply select the filter type again if you want to try and improve on the values calculated.

Validation

Typing errors are easily made when transferring a program to the computer, so after making a copy on tape try the examples shown to check the results.

- **Low-Pass Filter**
 - Cut-off: 1000Hz
 - Gain: 2
 - $C1 = 0.001$
 - $C2 = 0.006$
 - $R1 = 56269$ $R2 = 112539$ $R3 = 37513$

- **High-Pass Filter**
 - Cut-off: 1500Hz
 - Gain: 1
 - $C1 = 0.002$
 - $C2 = 0.002$
 - $R1 = 159184$ $R2 = 17683$

- **Band-Pass Filter**
 - Centre frequency: 1200Hz
 - Bandwidth: 400Hz
 - Gain: 1
 - $C1 = 0.001$
 - $C2 = 0.001$
 - $R1 = 79577$ $R2 = 50066$ $R3 = 79577$

If you get these results then all is well. You will also see what makes a computer so useful when trying to get convenient resistor values.

![Fig 1 Low pass filter](image1)

![Fig 2 High pass filter](image2)

![Fig 3 Band pass filter](image3)
Active audio filter design program

```plaintext
430 PRINT "TAB 3; "Gain"; TAB 22
420 PRINT "TAB 3; "Cl (microfarad)
410 PRINT "TAB 22; "Rl (ohms)"
400 PRINT "TAB 22; "Cl (microfarad)
390 PRINT "TAB 2; "Gain"; TAB 22
380 PRINT "TAB 2; "Rl (ohms)
370 PRINT "TAB 3; "R2 (ohms)"
360 PRINT "TAB 3; "R3 (ohms)
350 PRINT "TAB 3; "R4 (ohms)
340 PRINT "TAB 3; "R1 (ohms)
330 PRINT "TAB 3; "R5 (ohms)
320 PRINT "TAB 3; "R5 (ohms)
310 PRINT "TAB 3; "R6 (ohms)
300 PRINT "TAB 3; "R6 (ohms)
290 PRINT "TAB 3; "R7 (ohms)
280 PRINT "TAB 3; "R8 (ohms)
270 PRINT "TAB 3; "Gain"; TAB 22
260 PRINT "TAB 3; "Cl (microfarad)
250 PRINT "TAB 22; "Rl (ohms)
240 PRINT "TAB 22; "R2 (ohms)
230 PRINT "TAB 22; "R2 (ohms)
220 PRINT "TAB 22; "R2 (ohms)
210 PRINT "TAB 3; "Gain"; TAB 22
200 PRINT "TAB 3; "Cl (microfarad)
190 PRINT "TAB 22; "Rl (ohms)
180 PRINT "TAB 3; "Gain"; TAB 22
170 PRINT "TAB 3; "Cl (microfarad)
160 PRINT "TAB 3; "Rl (ohms)
150 PRINT "TAB 3; "R2 (ohms)
140 PRINT "TAB 3; "R3 (ohms)
130 PRINT "TAB 3; "R4 (ohms)
120 PRINT "TAB 3; "R1 (ohms)
110 PRINT "TAB 3; "R5 (ohms)
100 PRINT "TAB 3; "R6 (ohms)
90 PRINT "TAB 3; "R7 (ohms)
80 PRINT "TAB 3; "R8 (ohms)
70 PRINT "TAB 3; "Gain"; TAB 22
60 PRINT "TAB 3; "Cl (microfarad)
50 PRINT "TAB 3; "Rl (ohms)
40 PRINT "TAB 3; "Gain"; TAB 22
30 PRINT "TAB 3; "Cl (microfarad)
20 PRINT "TAB 3; "Rl (ohms)
10 PRINT "TAB 3; "Gain"; TAB 22
0 PRINT "TAB 3; "Cl (microfarad)
```

Inexpensive digital IC Tester

The Datapen Chipstester uses the power of a BBC micro to achieve superb performance at low cost. Comprehensive software allows the user to construct and file test sequences for new or unusual devices, although many standard types are supplied.

* Tests all popular 5V families
* Loop until pass/fail option
* Display of waveforms for fault analysis or device demonstration
* Waveform printout and other utilities
* Fast tests for post burn-in or goods inwards inspection
* Search mode for unknown device
* Works with any disc based BBC micro

Full details upon receipt of SAE from:
Datapen Microtechnology Ltd
Kingsclere Road
OVERTON
Hants
RG25 3JB

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
So far we have examined the various parameters of the triode valve, but have yet to find a practical use for it. We know that when a small voltage is applied to the grid, it will affect the anode current and anode voltage. Therefore it must be possible to use the triode as an amplifier.

If an alternating voltage is applied across the grid and cathode as shown in Figure 8, it will in turn control the anode current.

The effect upon the anode current of applying a sine wave signal to the grid circuit may be examined in conjunction with the mutual characteristic of the valve, Figure 9. The signal applied to the control grid will cause the grid voltage to swing either side of its normal zero voltage in equal positive and negative peak values.

If the effect of the sinusoidal grid voltage is projected onto the mutual characteristic graph, the instantaneous values of anode current resulting can be plotted. It at once becomes apparent that if the grid is allowed to operate over a range which includes any non-linear portion of the graph, the changes in anode current will not bear a constant relationship to the changes in grid voltage. When the grid voltage becomes positive, the resulting change in anode current will be smaller owing to the onset of saturation. Therefore the resulting anode current waveform will not be a faithful reproduction of the signal applied to the grid.

To reduce the distortion on the output signal it is necessary to move the operating point P such that the input signal applied to the grid remains within the straight portion of the characteristic curve. It is therefore necessary to add a steady negative dc component to the input signal to bias back the grid voltage so that the operating point P lies half-way along the straight portion of the characteristic curve. This condition is shown in Figure 10.

If the input signal is applied about this biased operating point, then the input sinusoidal signal will vary above and below the negative bias value. For example, if the steady bias supplied to the grid is -5V and the applied signal has a peak value of 2V, the grid voltage will swing between the values of -3V to -7V.

If this range of grid voltage is within the linear portion of the characteristic curve, the changes in anode current will bear a constant relationship to the change in grid voltage. This condition is, however, subject to the fact that grid current does not flow.

Grid bias

In the early days of valves the grid bias was supplied by a separate battery known as the grid bias battery. With the vast majority of modern valves, being of the indirectly heated variety, the grid bias can be obtained from the voltage dropped across a resistor connected in series with the cathode.

In Figure 11, the resistor R_1 carries the anode current I_a. The arrow indicates the direction of conventional current flow which makes the grid negative with respect to the cathode. The bias voltage is simply calculated from the formula V = I_a x R.

The voltage on the grid comprises an alternating voltage and the bias voltage which is produced by a fluctuating anode current. It is convenient to regard the anode current as the combination of a steady direct current with an alternating current component having a similar waveform to that of the input signal. The ac component of the anode current may be separated from the dc component by providing a shunt capacitor circuit to bypass the cathode resistor. The capacitor is in parallel with the cathode resistor and provides a low impedance path for the ac component of the anode current.

Load Lines

Except under static conditions when the grid is kept at a constant voltage and there is no load resistor R_L in the anode circuit, the actual voltage on the anode will not be equal to that supplied at the terminals of the high tension battery. A voltage drop of I_a x R_L volts will always exist across the load resistor R_L. The anode of the triode valve will actually be at the voltage of the high tension supply minus the voltage dropped across the load resistor R_L, Figure 12.

To examine the dynamic working characteristics of the triode, a study of the static characteristics is insufficient. It is necessary to draw the load line which represents the actual operating points of the valve when the grid voltage is varied and the anode circuit includes a known load impedance.

The load line is most usefully constructed across a series of graphs of V_R plotted against I_a for different values of V_g, Figure 13. The load line for a pure resistive load may be plotted on this graph in the following way. If the grid is heavily biased negatively so that I_a is
THE TRIODE VALVE

Amplifier efficiency

The anode characteristic graph with the attached load line can be used to calculate the power efficiency of the valve amplifier.

The total power supplied to the valve can be calculated from knowing the operating point P. The total power supplied will be $P = I_a \times V_a$ watts. The power developed in the anode load resistance can be calculated from a close examination of the load line. If the signal applied to the grid causes the grid voltage to vary between $-1V$ and $-3V$, then the resulting swing in V_a will be between V_a and V_2, and the anode current will vary between I_1 and I_2 milliamperes.

Therefore, V_a and I_a will be the high tension battery voltage because no voltage is dropped across the load resistance R_a. The point where I_a is zero and V_a is equal to E is plotted at point A. A second point Q can be plotted for the condition when V_a becomes zero. That is when all the high tension voltage is developed across the load resistor R_a.

The value of I_a will be determined by E divided by R_a.

A straight line AQ, the load line, can be drawn and has a slope which will represent the value of the load resistance. The line passes through the points whose co-ordinates are zero anode current and the full anode voltage supply. Therefore if the value of the load resistance is altered the gradient of the slope will be changed, but the straight line will still pass through point A.

In the example shown the value will most probably be biased to achieve the operating point with a grid voltage of $-2V$. The application of a sine wave signal to the grid will cause the operating point to swing an equal distance on either side of P along the load line. The range within which the load line is cut at equal distances on both sides of the normal bias point P by equal changes in grid voltage will be the range of undistorted output.

If the anode load should be reactive rather than resistive the load line becomes an ellipse, the dimensions of which will be a function of the frequency of the input signal and its peak value.

Output voltage $\mu \times V_0 \times \frac{R_a}{R_a + r_a}$

Therefore voltage gain $\mu \times \frac{R_a}{R_a + r_a}$

To obtain a high value of voltage amplification it is necessary to ensure that μ is high and that r_a is larger than R_a. The input resistance R_a is high in value and will normally be in the order of megohms.

Miller effect

The triode valve has been used successfully as a voltage amplifier at audio frequencies. However, circuit designers experienced difficulties in obtaining the theoretical voltage gain when the operating frequency was increased.

This unusual phenomenon baffled the experts for some time until it was discovered that the triode contained natural capacitance which had an effect on the voltage gain at high frequencies. The capacitance C_{an} between grid and cathode, C_{ag} between anode and grid, and C_{ak} between anode and cathode.

Figure 15 shows a typical triode amplifier complete with its associated internal capacitance. At high frequencies the high tension supply for ac purposes can be considered to be a short circuit with the load impedance Z being in parallel with the valve.

The input impedance can be calculated by dividing V_i by I_1. But:

$$I = \frac{\text{voltage drop across } C_{ag}}{C_{ag}}$$

$$V_i + A \times V_i = \frac{1}{\omega C_{ag}}$$

$$A \times C_{ag} = \omega C_{ag} (A + 1) V_i$$

Please mention RADIO & ELECTRONICS WORLD when replying to any advertisement

OCTOBER 1986
where A is the voltage gain of the amplifier. Therefore:

$$Z_{in} = \frac{V_i}{\omega C_{eq} \times (A + 1) 	imes V_i} \times \frac{1}{2\pi FC_{eq} \times (A + 1)}$$

It can be seen that the capacitance C_{eq} appears as a capacitor of value $C_{eq} \times (A + 1)$, which is across the input terminals of the valve amplifier.

At radio frequencies the reactance of the small inter-electrode capacitance drops to a very small value. A resistance coupled amplifier gives very little amplification at RF, for example, because the reactance of the inter-electrode capacitance C_{eq} is so low that it practically short circuits the input and output circuits. Thus the valve is unable to amplify.

Unstable amp

In addition, at RF frequencies the capacitance C_{eq} provides a relatively low path over which the amplified signals can be fed back to the input of the amplifier in the correct phase so as to cause the amplifier to become unstable and start to self-oscillate.

Hope and aspiration

The hopes and aspirations of the valve manufacturers and the circuit designers were dampened for a time while a solution was sought. Like all problems, given time and effort, a solution was eventually in sight to reduce the inter-electrode capacitance between anode and grid. This particular era was a milestone in the development of the modern valve which provides the home entertainment comforts taken for granted today. The further development of the valve is, however, yet another story.

Sorry!

As you might have noticed, a couple of deltas did a bunk from last month's equations! The errant blisters have repented, so here they are:

$$r_a = \frac{\Delta V_a}{\Delta I_a} \quad \mu = \frac{\Delta V_g}{\Delta I_g} \times \frac{\Delta I_a}{\Delta V_g}$$

$$g_m = \frac{\Delta I_g}{\Delta V_a} = \frac{15 - 5}{10} = 3$$

$$\mu = \frac{\Delta V_g}{\Delta V_a} = \frac{120 - 80}{40} = 2$$

COMEX SYSTEMS LTD

COMET HOUSE, UNIT 4

BATH LANE, LEICESTER LE3 5BF

TEL: (0583) 25084

TVRO RECEIVER KIT

Motherboard & Component Kit .. **£35.00**

AT1020 Tuner Module ... **£35.10**

AT3010 IF Demodulator ... **£54.65**

‘F’ Plugs .. **each £00.50**

TVRO ADD-ON'S

Low Noise IF Preamplifier Kit .. **£35.00**

Power Supply Kit .. **£32.50**

‘S’ Meter Kit .. **£17.00**

Digital Tuning & Display Kit ... **£56.75**

RF Modulator Kit .. **£25.00**

High Gain Scaler Horn .. **£49.00**

Mitsubishi 10GHZ Converter ... **£47.00**

Tuneable Sound IF Kit ... **out soon**

DIY Dish (1.5 Fibreglass) .. **POA**

OTHER PRODUCTS

FM Television Transmission Equipment for Amateur & Professional use

RF Preamplifiers

RF Power Amplifiers

Video Control Equipment

PMR Radio Equipment

Full Sales and Service Facilities

SEE US AT THE LEICESTER SHOW

24th & 25th OCTOBER

STAND NO 54A

ALL PRICES INCLUDE VAT

Please include £1.50 P&P on orders below £100 and £2.50 on orders above.

PRODUCTS FOR SATELLITE TELEVISION, AMATEUR RADIO AND PROFESSIONAL USE
The prices quoted in my Catalogue are below normal trade price — some at only one tenth of manufacturers quantity trade. Just send large 24p stamped addressed envelope for free copy. (Overseas send 2 international reply coupons)

 Millions of components: thousands of different items

Rechargeable Nickel Cadmium batteries (ex unused equipment)
AA(HP7) 1.25 volt 500 mA .. Set of four £2
ITT Mercury Wetted relay 20-60 Vdc-Coil, SpCo, 2A .. 79p or 10 for £7
Clear LED illuminates Red, Green or Yellow depending upon polarity/current. Oblong 5 x 2½mm Face .. 25p or 100 for £23 or 1000 for £200
5mm Red Flashing LED .. 25p or 10 for £2.25
Watch/Calculator/Lighter etc Mercury Batteries Made by Ray-O-VAC 10 mixed popular sizes .. £1.50, 50 for £5.00
In4004 or In4006 Diodes .. 300 for £6.50
KBS005/01/02 3 amp 50V/100V/200V/bridge rectifiers, 35p/36p/40p. 10 off £3.20/£3.40/£3.70. 100 off £30/£31/£34
Plessey SL403 3 Watt amp, From Bankrupt source, hence sold as untested. 4 for 60p or 10 for £1.20
5mm LED, clear, lighting hyperbright (600mcd). red up to 200 times brighter (gives beam of light) 25p, 100/£2.00, 1000/£150
Mullard 5mm LED, 40 red, 30 green, 30 yellow = 100 mixed...... £7
'HARVI!' Hardware packs (nits-bolts-screws-self tappers, etc) marked 35p retail, 100 mixed packs for £11.
Modern silver/black/aluminium, etc knobs 50 mixed, £5 (sent as 10 sets of 4 + 5 sets of 2 – 15 different type/sizes).

SEND PAYMENT PLUS 17p SAE

Postal orders/cash – prompt dispatch.
Cheques require 9 days from banking to clear.
Crossed postal orders and cheques – add 20p handling due to Bank’s increasing ‘commission’ on business accounts.
Cheques drawn on Barclays Bank not accepted.
Prices you would not believe before inflation!

BRIAN J REED

TRADE COMPONENTS, ESTABLISHED 29 YEARS

161 ST JOHN’S HILL, CLAPHAM JUNCTION

LONDON SW11 1TQ.

Open 11am till 6.30pm Tues to Sat. Telephone 01-223 5016

The highest quality... from £299 + VAT

POCKET INSPECTION MICROSCOPE

The self-illuminated pocket microscopes are about the size of along slim pack of cigars. They weigh 4½ounces and provide a clear 30-power magnification (with the Spirig-30 £18.90), or a 100-power magnification (with the Spirig-100 £27.90) model of any surface on which it is easily focused.

No Sp III the compact design of the SPIRIG microscopes allow to almost any surface to be closely inspected.

For further information call Guildford (0483) 505260 or write to COBONIC LTD, 32 LUDLOW ROAD, GUILDFORD, SURREY GU2 5NW or telex 28604 ref 1321.

SECURITY Systems, Modules, Accessories

COMPLETE SECURITY SYSTEMS START FROM

ONLY £39.95 + VAT

US 5063 £13.95 + VAT

Digital Ultrasonic Movement Detector

CA 1250 £19.95 + VAT

Control Unit

CK 5063 £37.00 + VAT

Self Contained Ultrasonic Alarm Kit

IR 1470 £25.51 + VAT

50 Foot Infrared Beam System

Send for full details or come to our Showroom and see the units on demonstration.

Monday to Friday 9am to 6pm
Closed Wednesday Saturday 9am to 1pm

FROM THE SECURITY SPECIALISTS RISCMP LTD

OCTOBER 1986
Power amplifiers

The easiest way to build a low to medium power audio amplifier is to simply use one of the many dedicated ICs that are now available for this task. In some cases, however, particularly when making 'one off' projects, it may be cheaper or more convenient to use a discrete transistor design, such as one of those shown in Figures 1 to 3.

The Figure 1 design is that of a general purpose low power high gain amplifier with a class A output suitable for driving a medium impedance (greater than 65 ohms) speaker or headset. The circuit draws a typical quiescent current of about 20mA (this can be reduced by increasing the R3 value) and operates as follows.

Tr1 and Tr2 are both wired as common-emitter amplifiers, with the output of Tr1 direct-coupled to the input of Tr2, and the circuit thus gives a typical overall voltage gain of about 80dB. Note that Tr2 emitter load (R3) is decoupled via C3, and Tr2 emitter thus 'follows' the mean collector voltage of Tr1, and that the Tr1 base bias is derived from Tr2 emitter via R2; the bias is thus stabilised by dc negative feedback. Input pot RV1 acts as the circuit's volume control.

Figure 2 shows a simple 3-transistor class AB complementary amplifier which can typically drive about 1 watt into a 3 ohm speaker. Here Tr1 is wired as a common-emitter amplifier driving collector load LS1-R1-RV2, and has its output voltage 'followed' and power-boosted by the Tr2-Tr3 complementary emitter follower stage. The output of the amplifier is fed (via C2) to the LS1-R1 junction, thus providing a low impedance drive to the speaker and simultaneously bootstrapping the value of R1 so that the circuit gives a high value of voltage gain. The output is also fed back to Tr1 base via R4, thus providing base bias via a negative feedback loop.

In use, RV2 should be carefully adjusted to provide minimal audible signal crossover distortion consistent with minimal measured quiescent current consumption; a good compromise is to set the quiescent current at about 10 to 15mA.

Figure 3 shows a rather more complex audio power amplifier that can deliver roughly 10 watts into an 8R load when powered from a 30 volt supply. This
The circuit uses high gain quasi-complementary output stages (Tr3 to Tr6) and uses an adjustable 'amplified diode' (Tr1) as an output biasing device.

The Tr2 common-emitter amplifier stage has its main load resistor (R2) bootstrapped via C2, and is dc biased via R3, which should set the quiescent output voltage at about half-supply value (if not, alter the R3 value). The upper frequency response of the amplifier is restricted via C3, to enhance circuit stability, and C5-R8 are wired as a 'Zobel' network across the output of the amplifier to further enhance the stability. In use, the amplifier should be initially set up in the way already described for the Figure 2 circuit.

Scratch/rumble filters

A common annoyance when playing old record discs through a decent 'hi-fi' system is that of 'scratch' and/or 'rumble' noises. The scratch noises are mainly high frequency sounds (usually greater than 10kHz) picked up from the disc surface, and the rumble noises are low frequency sounds (usually less than 50Hz) that are mostly caused by slow variations in motor-drive speed. Each of these noises can be effectively eliminated (or greatly reduced) by passing the record player audio signals through a frequency filter that rejects the troublesome part of the audio spectrum. Figures 4 and 5 show suitable circuits.

The rumble filter circuit of Figure 4 acts as a high-pass filter that gives unity voltage gain to all signal frequencies greater than 50Hz, but 12dB per octave rejection to all frequencies below this value, ie 40dB of attenuation at 5Hz, etc. Here, Tr1 is wired as an emitter follower and is biased at roughly half-supply value from the low impedance point formed by R1-R2-C3, but has negative feedback applied via the R3-C2-C1-R4 filter network, which causes the 'active' filter response mentioned above. The frequency turnover point of the circuit can be altered, if desired, by changing the C1-C2 values (which must be equal). Thus if the C1-C2 values are halved (to 110n) the turnover frequency will double (to 100Hz), etc.

Scratch filter circuit

The scratch filter circuit of Figure 5 acts as a low-pass filter that gives unity voltage gain to all signal frequencies below 10kHz, but gives 12dB per octave rejection to all frequencies above this value. This circuit is similar to that of Figure 4, except that the positions of the resistors and capacitors are transposed in the C2-R4-C4-R5 filter network. The turnover frequency of the circuit can be altered, if desired, by changing the C2-C4 values; eg values of 3n3 will give a turnover frequency of 7.5kHz.

The circuits of Figures 4 and 5 can be combined to make a composite scratch and rumble filter by simply connecting the output of the high-pass filter to the input of the low-pass filter. The individual filter sections can be provided with bypass switches, enabling the filters to be easily switched in and out of circuit, by using the connections shown in Figure 6. Note that if the Figure 4 and 5 designs are to be built as a single unit, a few components can be saved by making the R1-R2-C3 biasing network common to both circuits.
noise. In this circuit, R2 and ZD1 are wired in a negative feedback loop between the collector and base of the common-emitter amplifier Tr1, thus stabilising the dc working levels of the circuit; the loop is ac decoupled via C1. Consequently, the Zener diode acts as a white noise source that is wired in series with the base of the transistor, which then amplifies the noise to a useful level of about 1V p-p.

In practice, the base-emitter junction of any silicon transistor can be made to function as a noise generating Zener diode by simple reverse-biasing the junction to its breakdown point. In the 2N3904 small-signal transistor this breakdown typically occurs at about 6 volts, and a 2-transistor white noise generator can thus be made by using the circuit shown in Figure 7b, in which Tr1 acts as a Zener diode.

Noise can at times be a great nuisance. When listening to very weak broadcast signals, for example, it is often found that the peaks of unwanted background noise completely swamp the broadcast signal, making it unintelligible.

This problem can sometimes be overcome by using the 'noise limiter' circuit of Figure 8. Here, the signal plus noise waveform is fed to amplifier Tr1 via RV1. Tr1 amplifies both waveforms equally, but diodes D1 and D2 automatically limit the peak to peak output swing of Tr1 to about 1.2 volts. Thus if RV1 is adjusted so that the signal output is amplified to this peak level, the noise peaks will not be able to greatly exceed the signal output, and intelligibility is greatly improved.

Astable multivibrators

The astable multivibrator or 'square wave generator' circuit has many uses. Figure 9, for example, shows how it can be used as a 2-LED 'flasker' that operates at about 1 flash per second. The rate is controlled by the time-constant values of C1-R4 and C2-R3.

In the Figure 9 circuit the LEDs are wired in series with the transistor collectors and flash on and off in opposition to one another symmetrically. The flash rate can be changed by altering the values of either C1/C2 or R3/R4. If desired, one of the LEDs can be replaced with a short circuit to make a 1-LED flasker.

A simple variation of the astable circuit is shown in Figure 10. Here, a non-symmetrical waveform of about 800Hz is generated and fed to a speaker and limiting resistor in the collector of Tr2, thus producing a monotone audio signal when S1 is closed. The circuit can thus be used as either a simple sound generator (by using an ordinary switch in the S1 position) or as a morse code practice oscillator (by using a morse key as S1). The circuit's tone frequency can be changed by altering the C1 and/or C2 values.

Figure 11 shows how an astable multivibrator can be used as the basis of a signal injector/trace piece of test gear. Here, when SW1 is in 'inject' position 1, Tr1 and Tr2 are configured as a 1kHz astable multi and feed a good square wave signal into the 'probe' terminal via R1-C1. This waveform is very rich in harmonics, so if it is injected into any AF or RF stage of an AM radio it will produce an audible output via the radio's loudspeaker, unless one of the radio's stages is faulty. By choosing a suitable
injection point the 'injector' can thus be used to trouble-shoot a defective radio. When SW1 is switched to 'trace' position 2, the Figure 11 circuit is configured as a cascaded pair of common-emitter amplifiers, with the probe input feeding to Tr1 base, and Tr2 output feeding into a magnetic earpiece or headset. Thus any weak audio signal fed to the probe will be directly amplified and heard in the earpiece. Similarly, any amplitude-modulated RF signals that are fed to the probe will be demodulated by the non-linear action of Tr1 and the resulting audio signals will then be amplified and heard in the earpiece. By connecting the probe to suitable points in a radio, the 'tracer' can thus be used to trouble-shoot a faulty radio, etc.

L-C oscillators
L-C oscillators have lots of applications in test gear and gadgets of various sorts. Figures 12 to 14 show some simple examples.

The Figure 12 circuit is that of a medium wave (MW) signal generator or beat frequency oscillator (BFO). Here, Tr1 is wired as a straightforward Hartley oscillator, but uses a modified 465KHz IF transformer as its collector load. The internal tuning capacitor of the IFT should be removed; variable oscillator tuning is then available via CV1, which enables the output frequency (on either fundamentals or harmonics) to be varied from well below 465kHz to well above 1.7MHz. Any MW radio will detect the oscillation frequency if simply placed near the circuit: if the unit is tuned to the IF frequency of a radio a beat note will be heard, enabling CW and SSB transmissions to be clearly detected.

Figure 13 shows how the above oscillator can be modified so that when used in conjunction with a MW radio it functions as a simple 'metal/pipe locator'. In this case oscillator coil L1 is hand-wound and comprises 30 centre-tapped turns of wire, firmly wound over about 25mm length of a 75 to 100mm diameter non-metallic former or 'search head' and connected to the main circuit via 3-core cable. The search head can be fixed to the end of a long non-metallic handle if the circuit is to be used in the classic 'metal detector' mode, or can be handheld if it is to locate metal pipes or wiring hidden behind brickwork or plaster, etc.

Operation of the Figure 13 circuit relies on the fact that the electromagnetic field of L1 is disturbed by the presence of metal, causing the inductance of L1 and the frequency of the oscillator to alter. This frequency shift (and thus the presence of metal) can be detected on a portable MW radio placed close to the search head by tuning the radio to a local station and then adjusting CV1 so that a low frequency 'beat' or 'whistle' note is heard from the radio's loudspeaker. This beat note will change significantly if the head is placed near metal, and the circuit thus functions as a simple metal detector.

Figure 14 shows another application of the Hartley oscillator. In this case the circuit functions as a dc-to-dc converter, which converts a 9 volt battery supply into a 300 volt dc output. Tr1 is a 9V-0-9V to 250V mains transformer, with its primary forming the 'L' part of the oscillator. The supply voltage is stepped up to about 350V peak at T1 secondary, and is half-wave rectified by D1 and used to charge C3. With no permanent load on C3, the capacitor can deliver a powerful but non-lethal 'beet'. With a permanent load on the output, the output falls up to about 300V at a load current of a few mA.

Water/steam switch
One gadget that is always useful about the home is a water or steam activated relay switch which activates when water or steam simultaneously comes into contact with a pair of metal probes. Figure 15 shows such a circuit. Here, Tr1 and Tr2 are wired as a super-alpha pair of transistors wired in the common-emitter mode, with the relay coil (RLA) as their collector load.

The circuit action is such that the relay is normally off, but turns on when a resistance less than a couple of megohms is placed across the probes. Normal (non-distilled) water, steam and human skin all have resistances below this value, so this simple little circuit can be used as a water, steam, or touch-operated relay switch. External devices such as motors or alarms can be operated via relay contacts RLA/1.

Lie detector
Our final circuit (the lie detector of Figure 16) is most emphatically an "experimenter's" circuit. Here, the victim is connected, via a pair of substantial metal probes, into a Wheatstone bridge circuit formed by R1-RV1-Tr1 and R3-R4. The meter, which should be a 1mA centre-zero type, is used as a bridge-balance detector. In the use of the victim makes firm contact with the probes and once he or she has attained a relaxed state (in which the skin resistance reaches a stable value) RV1 is adjusted to obtain a null on the meter. The victim is then cross-questioned.

The theory of operation is that the victim's skin resistance will change and the bridge will go out of balance if he or she lies or shows any signs of emotional upset (embarrassment etc) when being questioned. Some people claim wonderful results from this circuit. Others don't!

In next month's edition of 'The File' we'll look at a variety of useful relay and relay-driving circuits.
CIL PRESENT A NEW DATA LOGGING SYSTEM – THE DTR 1680

CIL have introduced a Wattmeter especially designed as a low cost, simple to use test instrument for almost any electrical apparatus. Just plug in your equipment, press a button and RMS voltage applied, RMS current drawn and effective power all to ±0.2% accuracy are instantly displayed.

The Wattmeter is Z80 Microprocessor basic using a unique Analogue/Digital technique for the digital sampling.

Applications include Test Departments, Goods Inward Laboratories where instruments can be easily checked for their correct ±0.2% effective power consumption, without any danger from the mains voltage.

The device supplies 240v main voltage up to 10 Amp display in either Watts or KWatts.

The price of this instrument is only £245.00

CIL Electronics Ltd.
26 Decoy Road, Worthing, W Sussex BN14 8ND. Tel: (0903) 204646

THE PERFECT COMPLEMENT TO RADIO & ELECTRONICS WORLD

With regular features like:

☆ DX DIARY: Don Field G3XTT with all the news of rare DX, contests and DXpeditions

☆ G30SS TESTS: Angus McKenzie – the fairest, most comprehensive reviews available anywhere

MORE NEWS, MORE FEATURES, MORE FUN, MORE STYLE

Make sure of your copy by placing a regular order at your newsagents or by taking out a post free, inflation proof subscription, with early delivery to your door each month.

AMATEUR RADIO SUBSCRIPTION ORDER FORM

To: Subscription Department • Amateur Radio • 1 Clarendon Road • Croydon • Surrey • CR0 3SJ

NAME
ADDRESS
Postcode

Tel: 01-760 0409

PAYMENT ENCLOSED:

CHEQUE

Signature

CHARGE ORDER £15.00 World Surface £17.40 Europe-Air £21.50 World-Air £26.50

 أخرى

PLEASE SUPPLY: (tick box) for 12 Issues, all rates include P & P

Inland World Surface Europe-Air World-Air

£15.00 £17.40 £21.50 £26.50

Chques should be made payable to Amateur Radio. Overseas payment by International Money Order, or by credit card

Credit Card Payment

MANDATE NUMBER

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
COMPUTER WAREHOUSE

THE "ALADDINS' CAVES OF COMPUTER AND ELECTRONIC EQUIPMENT

Distel

The ORIGINAL FREE of CHARGE dial up data base.
Base: Buy, browse or place YOUR OWN AD.
1000's of ads: Cars, motorbikes, spares and one off bargains. Updated daily.
ON FREE NO. 017 8 bit to 16 bit In 2 days.
For 300 baud modems call 01-679 1888
For 1200-75 baud modems call 01-679 6183

FREE

Your monitor from its computer!
For only £24.95 or £19.95.

Colour & Monochrome Monitor Specials

SYSTEM ALPHA 14 Colour Multi-Input Monitor
Made by the famous REDFUSION Co. for their own professional computer systems, these units have to be seen to be believed.
Two video inputs, RGB and PAL. Composite Video allow direct connection. DVI inputs are also accommodated. Includes our own TELEBOX. An internal speaker, with mono cable output & VCR friendly.

TELEBOX 200 Series TV chassis give 80 column definition and quality found only in the best. Single 5v rail, ASCII, full video monitor w/ composite input, colour or monochrome.

TELEBOX compact size of only 15.75" w x 12" h together with a 15 way plug for RGB input, modulator construction etc.

BRAND NEW 32 1/4" colour video monitor at a superb low price of £145.00 + VAT.

BRAND NEW metal 5" drive by TYSAN 8", BASF 61728" Stærke, BASF 61628" Stærke, BASF 61728" Stærke.

BRAND NEW metal 5" drive by TYSAN 8", BASF 61728" Stærke, BASF 61728" Stærke.

BRAND NEW metal 5" drive by TYSAN 8", BASF 61728" Stærke, BASF 61728" Stærke.

BRAND NEW metal 5" drive by TYSAN 8", BASF 61728" Stærke, BASF 61728" Stærke.

BRAND NEW metal 5" drive by TYSAN 8", BASF 61728" Stærke, BASF 61728" Stærke.

BRAND NEW metal 5" drive by TYSAN 8", BASF 61728" Stærke, BASF 61728" Stærke.

BRAND NEW metal 5" drive by TYSAN 8", BASF 61728" Stærke, BASF 61728" Stærke.

BRAND NEW metal 5" drive by TYSAN 8", BASF 61728" Stærke, BASF 61728" Stærke.

BRAND NEW metal 5" drive by TYSAN 8", BASF 61728" Stærke, BASF 61728" Stærke.

BRAND NEW metal 5" drive by TYSAN 8", BASF 61728" Stærke, BASF 61728" Stærke.

BRAND NEW metal 5" drive by TYSAN 8", BASF 61728" Stærke, BASF 61728" Stærke.

BRAND NEW metal 5" drive by TYSAN 8", BASF 61728" Stærke, BASF 61728" Stærke.

New 16" high definition Pil tube coupled with the 1986 information revolution with our super range of DATA MODems, prices and specifications. See all applications at our special display area. £69.95.

BRAND NEW State of the art products.

BEATEN at £121.23 (MUSH 681925 300-1200-75

BRAND NEW State of the art products.

BEATEN at £121.23 (MUSH 681925 300-1200-75

BRAND NEW State of the art products.

BEATEN at £121.23 (MUSH 681925 300-1200-75

BRAND NEW State of the art products.

BEATEN at £121.23 (MUSH 681925 300-1200-75

BRAND NEW State of the art products.

BEATEN at £121.23 (MUSH 681925 300-1200-75

BRAND NEW State of the art products.

BEATEN at £121.23 (MUSH 681925 300-1200-75

BRAND NEW State of the art products.

BEATEN at £121.23 (MUSH 681925 300-1200-75

BRAND NEW State of the art products.
DIY PRINTER MECH

Brand New surplus of this professional printer chassis gives an opportunity for the student, hobbyist or professional constructor to build a printer - plotter - digitiser etc entirely to their own specification. The printer mechanism is supplied ready built, aligned and tested but WITHOUT electronics. Many features include all metal chassis, phosphor bronze bearings, 123 character platen, Winchester drives with encoder, 2 x phase trackers, drip stopper motors for carriage and paper control, 9.5" Paper platten etc. Even a manufacturer's print sample to show the unit's capabilities!

Overall dimensions 41 x 12 1/2 cm x 21 cm
Sold BRAND NEW at A FRACTION of cost ONLY £49.50 + pp £4.50.

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES

ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING!

DEC CORNER

MAG TAPE DRIVES

POP 1140 System comprising of CPU, 124k memory, & MMU 15 line RS232 interface, 1002 40 MB hard disk drive, TUT0 9 track 800 SPI Mag tape drive, dual track systems, DD VDU etc. Tested and running. £3,750.00

BA11-MB 3.5" Box PSU, Ltc £39.99

D111-AD 16" x RS232 DMA Interface £10.00

DVLX1-24 x EIA Interface £350.00

DNLIP 24 x dual track £350.00

DP11 Synch. Serial data I/O £145.00

DZ11-B 8 IEC RS232 box £85.00

RDP11-B-8932-M ED12B £1193.00

PLUS £1,100.00

LA39 Decorder EIA or £60.00

MA1-JP Umbus 32k Baud £50.00

MS1-LB Umbus 128k Baud £450.00

MS1-LD Umbus 256k Baud £850.00

PDP11/5 Cpu. Ram, i/o etc £650.00

PDP14-Cpu 124k MMU £17.00

RT11 ver B3 Documentation kit £650.00

RKO5-2 5.25 Mb disk drives £175.00

MB18 PDP B2 Vizor option £75.50

VTSO VDU and Keyboard £175.00

VT52 VDU and RS232 interface £250.00

Brand New VT100 Keyboards £55.00

Many EX STOX computer tape drives and spares by PERTEC, CIPHER, WANGO, DIDGEATA, KENNEDY etc. Special offer this month on DEI Cartridge tape drives only £450.00 each.

CALL FOR DETAILS

COMPUTER/SYSTEM CABINET & PSU

All in one quality computer cabinet with integral switch mode PSU, mains filtering, and twin fan cooling. Originally designed for the famous DEC PDP8 computer system costing thousands of pounds. Made to run 24 hours per day the PSU is fully guaranteed and will handle massive ±5V DC at 17 amps, ±15V DC at 1 amp and ±15V DC at 5 amps. The complete unit is fully enclosed and has adjustable carriage, trip switch, power and run leds mounted on all front panel, rear cable entries etc. Units are in good but used condition - supplied for 240v operation complete with full circuit and tech man. Give your system that professional finish for only £49.95 + carr. 19" wide 16 deep 10.5 high. Useful area 24" x 11.5 x 5. Also available less psu, with fans etc. Internal dim. 19" w, 16" d, 10.5 h. £69.95. Carryage £8.75.

66% DISCOUNT ON ELECTRONIC COMPONENTS & EQUIPMENT

Due to our massive bulk purchasing programme, which enables us to bring you the best possible bargains, we have thousands of components. Resistors, IC's, PCboards, Sub-assemblies, Switches etc etc surplus to OUR requirements. Because we don't have sufficient stocks of any one item, we are putting items into the BARGAIN OF A LIFETIME. Thousands of components at giveaway prices and who wants to be left without what you buy? Remember to check out all our 1000's of other EX STOCK items including POWER SUPPLIES, RAXELS, RELAYS, TRANSFORMERS, TEST EQUIPMENT, CABLES, CONNECTORS, HARDWARE, MODEMS, TELEPHONES, VARICAS, VDU'S, PRINTERS, POWER SUPPLIES, OPTICS, KEYBOARDS etc etc. Give us a call for your spare part requirements. Stock changes daily almost daily.

Don't forget, ALL TYPES and QUANTITIES of electronic surplus purchased for CASH
DIGITAL FILTERS

PART TWO

Bringing the computer closer to the analogue world

by Mary Dick

So far, we have considered how the computer acquires an analogue signal and how, by representing the signal on a diagram, a suitable mask can be designed to remove or amplify signals at different frequencies. Now we need to be able to take the mask and implement it as a digital filter. First, however, let us look at two examples to gain a small insight into how a signal can be modified once it has been digitised.

Figure 12 shows a very simple 'filter' in two forms: the first is a software instruction while the second is a possible hardware solution. An explanation of both now follows. If the input samples are stored in the computer's memory as an array called X such that X(1) is the first sample taken, X(2) the second (and so on), and the output values after some filtering has been performed are placed in an array called Y, we can see that the equation allows any Y value to be obtained providing we know the current and previous X values.

The second form of the filter replaces the software with a diagram more closely associated with a hardware implementation. The adder output is equivalent to Y, and its two inputs are the current (digitised) sample value and the previous sample – the box with a 't' in it represents a delay of one sample period. To test this very simple filter, a variety of signals can be applied and the corresponding output measured. If this was done, the frequency response would be identical to that of Figure 9.

Now we have made a link between a simple, arbitrary design of filter and a mask – what is required next is to be able to implement a filter design using the mask (which represents the desired frequency response) as the start-point. This is best done by introducing a minimal amount of complex mathematics.

The circle and mask that we have been using are in the z-plane, a cartesian coordinate system with a 'real' x-axis and an 'imaginary' y-axis. If the variable which describes position on this plane is z, where z = x + iy (i being the square root of -1), the mask may be equated to a function of z. Hence, if our mask contains a zero point at (x=1, y=0), the mask function H may be written as:

$$H(z) = 1 - z$$

so that when $z=1, H(z)=0$.

Now, the mask function was described earlier as what is multiplied with the input signal to obtain the output signal. Returning to our description of Figure 12 where the input signal was X and the output signal Y (not to be confused with the small x and y which form the components of z), the equation for this mask function may be expanded to:

$$H = \frac{Y}{X} = 1 - Z$$

Hence $Y = X - XZ$.

Examining Figure 12, this new equation which relates the input and output signals is rather similar to the $y(t) = x(t) - x(t-1)$ used for the software calculation. Indeed, this equation in $y(t)$ is made realisable by inserting a pole at $x=\gamma=0$, which only adds a unit delay. Hence, the more complex relation of:

$$H(z) = \frac{Z^2 - z + 1}{X(z)}$$

may be changed to $XZ^2 = YZ^2 - YZ + Y$, which gives (dividing through by Z^2):

$$x(t) = -y(t-1) + y(t-2) + y(t)$$

This is implemented in Figure 13 and represents a filter with a double zero at the origin and two poles 90th and 90th of the sampling frequency. So once an analytic expression for $H(z)$ has been obtained by calculating the required mask, the time-related equation in $y(t)$ may be solved and the filter implemented.

'Recursive'

Note how the filter output, $y(t)$, is fed back with different delays to the calculation stage of the filter. This feedback gives the filter the name 'recursive' which might be more familiar to computer buffs. An alternative name is that of an Infinite Impulse Response filter – or IIR for short. This name is derived from the result of applying a sharp impulse to the filter input: the output of the filter, at least theoretically, never returns to zero. Hence the response of the filter to an impulse has an infinite duration in time. Later we shall see why this may not be the case in practical filters. The simple filter in Figure 14 is used to demonstrate the effect; the impulse at the input results in a decaying exponential output.

The other type of digital filter is also known by the names Finite Impulse Response (FIR) or non-recursive. Here there is no feedback from the output of the filter to any earlier stage.
response to an impulse is therefore of limited (finite) duration. Figure 15 represents a simple FIR filter and its response to an impulse — note how the impulse dies out after only two samples.

While the design of some FIR filters may use the pole-zero model of the z-plane as a starting point, it is much more common for other more elaborate techniques, based on the Fourier Transform, to be used. However, these are beyond the scope of this article; readers interested in pursuing their study will find ample description in most digital filter books.

One common type of FIR filter is the so-called comb filter. Figure 16 shows a filter and its frequency response; the periodic zero-points in the frequency response resemble the teeth of a comb and so name the filter. A typical use for such a filter is to place the first zero on the fundamental of an interfering signal (perhaps 50Hz for mains rejection) and the remaining zeros then fall on the harmonics of the interference. Since the harmonics often contain significant power, the comb filter provides a simple solution to the filtering problem.

Figure 17 shows another filter based on the original comb design. The comb, with \(n \) delays, has \(n \) zeros around the circumference of the z-plane's unit circle which was used for the earlier description of signals and the mask. If such a filter is followed by a design of IIR filter which has two poles coincident with two of the comb's zeros (and then two zeros at the origin), the poles on the circle which would normally cause an unstable filter are cancelled and the z-plane diagram appears as in Figure 18. Figure 18b shows the frequency response — note the band-pass nature of the filters. Most practical filters of this sort would involve many more delays and would have a much smaller bandwidth.

If several centre frequencies are required, the latter part of the filter may be duplicated (with appropriate values of coefficients) while keeping a common comb section. This is a simple method of producing a spectrum analyser with 'arithmetically' spaced centre frequencies for the channels.

Implementing a filter

Up until now little consideration has been given to the implementation of a filter, and this area can often be the main constraint on the complexity that is achievable for a given application. Perhaps the simplest way of introducing some of the problems is to design a simple filter for AFSK. Wide-shift AFSK uses two tones spaced by 850Hz: 1275 and 2125Hz. Let us design a dual band-pass filter with a passband centred on each of the AFSK tones.

First, we draw the z-plane (Figure 19) diagram and mark the positions of the two tones on the circle. The sampling frequency is chosen to be 6375 so that the tones lie at \(\frac{1}{5} \) and at \(\frac{1}{3} \) respectively of the sampling frequency. Next, four zeros are placed on the circle to null frequencies while four poles are placed near the required signals (and their symmetric points about the x-axis) at a radius of 0.95: if they were placed on the circle, the filter would be unstable. The mask function, \(H(z) \), may now be written as:

\[
H(z) = \frac{1}{1 - Z^{-4}} \frac{(Z^{-2} - 2r\cos\omega_0 t + r^2)(Z^{-2} - 2r\cos\omega_0 t + r^2)}{(Z^2 - 2r\cos\omega_0 t + r)(Z^2 - 2r\cos\omega_0 t + r^2)}
\]

where \(r = 0.95, r^2 = 0.90, \cos\omega_0 t = 0.31 \) and \(\cos\omega_0 t = -0.5 \). If we substitute in the appropriate values we obtain (remembering that \(H(z) = Y/X \)):

\[
XZ^{-4} - XZ^{-8} = Y + 0.31YZ^{-1} + 1.27YZ^{-2} + 0.28YZ^{-3} + 0.81YZ^{-4}
\]

Translating the \(Z^{-1} \) terms into time delays and the \(X, Ys \) to \(x(t), y(t) \) gives:

\[
y(t) = x(t - 4) - x(t - 8) - 0.31y(t - 1) - 1.27y(t - 2) - 0.28y(t - 3) - 0.81y(t - 4)
\]

This is the equation we would use if we were writing a software filter. However, the average home computer would take quite a few seconds to execute a 200-sample block of data. How fast do we need to calculate the above equation if we are to keep up with the incoming data? For a sampling frequency of 6375Hz, a new value is obtained every 157 microseconds. With four multiplications...
Digital filters are one of the specialist areas where powerful array-processors are used. These computers manage ten million floating-point operations per second – so the simple filter above could be easily handled in real time.

Another solution is to dispense with floating point and use integers. This speeds up the filter calculation because many simple microprocessors (such as the 6809 family) have an 8 x 8 MUL instruction. This will limit the dynamic range of the analogue input to 8 bits. An assembler program would perform the filter calculation much quicker since a 6809 only takes 11 clock cycles for the MUL instruction and 10 for a 16-bit add (depending on addressing mode).

Apart from the problem of squeezing your filter calculations into the time available, numerical accuracy is also of concern. Although not too critical in many applications, disaster can easily occur. Very particular filter shapes, like a sharp notch filter, require poles near the circle, and should a pole with radius of 0.96 stray onto 1.00 (only a 2% error) the filter may ring for prolonged periods.

This is an obvious problem where an integer implementation is used.

Implementation problems are being eased, however, as new devices appear on the market. Advanced microprocessors, like the 68020 and National Semiconductor's 32032, have 64-bit integer maths op-codes and may have floating-point operations, or at least facilities for maths co-processor support. Texas Instruments have their TMS320 digital signal processor, which is a microprocessor with an internal architecture designed specially for signal processing and digital filtering. This sort of processor complements the fast multiplier chips that have been around for a few years, such as those made by TRW and AMI, which have multiply times of a few tens of nanoseconds.

Although we have assumed up until now that a 'digital filter' is implemented using digital hardware this is not always true. The adjective 'digital' can sometimes refer to the fact that the filtering operation is done on a sampled data-stream. The samples need not be digitised – they may be held as an analogue voltage on the capacitor of a sample-and-hold circuit or as packages of charge in the semiconductor of a charge-coupled device (CCD). The CCD and its relations have been well introduced by the use of bucket-brigade delay chips in audio reverberation systems. Figure 20 shows a conceptual view of a simple filter using a delay unit and an op-amp which is the same as Figure 14's filter.
Such a system is very complicated and prone to drifting with age and temperature. However, the CCD is commonly used in simple FIF filters. ‘Tapping’ into the buckets of charge and multiplying (in analogue) the voltage by a coefficient, a complex filter can be made. Figure 21 shows the resultant model. Because the data sample can be clocked through the CCD at very high rates and no analogue-to-digital conversion has to be done, filtering may be formed at video rates. Remember, however, that because sampling is used aliasing will still be present. The determination of the coefficient values is fairly simple and involves the inverse Fourier Transform of the desired frequency response of the filter.

Future look
So what of the future? New devices are providing filter times for mass functions, and with processors becoming one of the cheapest parts of any of the work of handling a complex filter can be split between several CPUs.

In amateur radio perhaps the day of the ‘completely digital’ audio section with real-time signal processing is not far away. The ability to steer an arbitrary number of notch filters onto interference would not go unappreciated. This might be an added extra when even the speech itself is digitised. The speed with which digital filtering techniques are adopted into amateur gear depends only on the radio enthusiasts’ ever-present ingenuity.
MODIFYING THE KEN KP-202

Peter Rouse GU1DKD
irons out some quirks on this bargain price two metre hand-held

The Ken KP-202 was amongst the early generation of hand-held 2 metre FM portables and in its day was so popular that several enterprise but naughty UK firms even sold retuned but non-approved versions for marine and PMR use. It was discontinued about seven years ago, but it seems that since then quite a large stock of these 6-channel crystal controlled sets has been lurking in a corner of the Tama Denki factory in Japan. That's where they were spotted by a keen-eyed UK equipment importer who bought up the lot and put them on sale here for little more than £40 a set, plus VAT. At that price they were soon all snapped up like hot cakes.

As with many cut-price bargains there has to be a snag or two. On this particular set these are, in order of annoyance, non-standard receive crystals, non-standard (F type) aerial socket, and a difficulty in recharging nicads without removing them from the set. Obviously no accessories are available.

The good news is that these problems can be quite easily overcome and the necessary modifications call for little in the way of tools, skill or time.

Big and beefy
Before discussing modifications let's have a quick look at what we have as standard. The set is bigger than, say, an IC-2E, but it has a good robust feel to it and is quite well made both inside and out. It has six switched channels, 2 watts of output power, and operates from 8 AA (penlight) dry cells or 10 nicad equivalents which are housed in a slide-in carrier that pulls out from the base of the set once you've broken your fingernail...

On top of the set is an F type aerial socket, a rotary channel changer (crystals for S20 and S22 already fitted), volume, squelch and combined $meter/battery state meter with the latter function operating in transmit mode.

The current batch are supplied with a small carry strap, easy-to-break telescopic aerial, difficult-to-fit F type aerial plug (it relies on the centre conductor wire of the co-ax being the contact pin), two dummy batteries for use when dry cells are installed, and the obligatory Japanese crunchy bag of silica gel (they either have an extremely damp climate or more of this stuff than they know what to do with).

Receiver and crystal mods
The receiver is a fairly conventional double superhet with IFs at 10.7MHz and 455kHz, but a problem arises in the first local oscillator because the circuit requires crystals which are loaded with a parallel capacitor. These crystals are not as readily available as the standard off-the-shelf 44MHz series type. If series type crystals are inserted in the existing circuit they will not tune correctly onto channel no matter how far the trim capacitor is swung.

This is a shame, because firms like Quartzlab* sell standard HC25u series crystals for 2 metre channels at around £2 each when two or more are purchased, whereas parallel types cost far more and may have to be specially cut even for standard channels.

Fortunately there is a simple remedy. The circuit is easily modified so that the remaining four crystal positions accept standard series types (there is no problem with the transmit crystals).

Before and after
Figure 1 shows the before and after sequence, with a swap in connections to put the trim capacitor in series with the crystal and the removal of 4 fixed capacitors. Before anyone squeals that other circuit values are not optimised for the new crystal configuration, I promise that you cannot hear, feel or smell the difference without instruments.

Note that a standard BNC chassis socket is a direct fit into the hole used for the existing aerial socket, and if you want to change it do so while the set is opened up for the crystal modification. The advantage of using a BNC is that a

Fig 1 showing the before and after sequence

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement OCTOBER 1986
standard rubber duck helical can be fitted in place of the telescopic, and connection to an external aerial can be made with a conventional connector.

Work proceeds as follows:

1. Remove the battery slider, the two screws that are revealed with the slider out, and the two screws on the back of the set's casing. The two halves of the case will now separate. Next remove the five screws that secure the PCB (the one you can't find is hidden under the grey co-ax that runs down the middle of the set). If you are going to change the aerial socket also remove the two screws that hold the meter in place.

2. Locate the four 10pF capacitors shown in Figure 1 for crystals C, D, E, F (the trimmer locator chart on the back of the set will help) and remove them. Don't try and desolder them as it's not worth it—just snip them out.

3. Use a sharp knife or mini-drill pulled across the PCB at an angle to make cuts in the tracks to separate the connections between crystal and ground tracks and the crystal/trimmer connection. Now cross-connect with the six insulated jumper wires (these must be as short as possible) between the non-earth end of the trimmer and the now isolated end of the crystal. Note that in the photograph this has been done for all six crystals, but in fact it's only necessary for channels C, D, E and F.

4. Check the receiver is working and trim the crystals onto channel either with a signal generator, second set, off-air signals etc.

5. Desolder the aerial socket and remove it, then replace the socket with a BNC, which will have to be tightened from behind. It is a bit fiddly but with long-nose pliers and patience it can be done.

Dry cell versus nicads

The set draws a fairly hefty current for dry cells: 15mA stand-by, 150mA receive and 400mA on transmit. With AA size nicads available for around £1 each (search the small ads) it seems sensible to fit them.

The sets sold recently were not fitted with nicads, although there are two studs on the base of the set for recharging. In its heyday the set was supplied with a charger stand which it plugged into. Building a suitable charger along these lines is beyond the engineering skills of most amateurs, and a simpler solution is to fit a miniature jack socket.

The only place where such a socket can be fitted is on the right-hand side of the case as viewed from the front (Figure 2). Disconnect the red positive lead from the battery contact rail and connect it to the socket so that the set is disabled during recharge. The socket sleeve connects to the negative battery rail. A simple charging circuit is shown in Figure 3.

What else?

Not a lot Ken! If you've been scared of modifying equipment before, give this one a whirl—after all, you can hardly devalue it. Don't bother trying to fit tone-burst, there isn't room: just learn to whistle at 1750 hertz if you want to fire up repeaters. Need a leatherette case? Take the set to one of those firms who do upholstery, boat covers, shop canopies, car seats etc.

One firm stitched one up for me for a fiver. "Always makin' 'em for the cops, guv. The ones they get wiv their sets fall apart after six muns".

*Quartslab Marketing Ltd, PO Box 19, Erith, Kent. Tel: (01) 318 4419.

New cross connections
DX-TV log for June

This month we are featuring Chris Howles’ log, which reflects the excellent sporadic-E conditions noted by many enthusiasts during the month.

1/6/86: Sporadic-E opening for most of the day. Signals included SVT (Sweden) E2; TVE (Spain) E2, 3 and 4; RA I (Italy) on channels IA and IB; ORF (Austria); TSS (Russia) on R1.

2/6/86: TVE1 on E2 and E3 with breakfast TV at 0730. Spanish signals also later in the day. RA I identifications R1 programme at 0730; TSS R2 with good SEACAM colour during the evening.

3/6/86: Sporadic-E DX between 1800-2000 including TSS R1 with BPEM1 (current affairs/news); RA I and IB with programmes; MT V1 (Hungary) R2 on clock caption; CST (Czechoslovakia) R1 and R2 with REKLAME caption; JRT (Yugoslavia) E3 with weather map at 1800.

4/6/86: Sporadic-E DX between 0730 and 0830 including TVE E3 breakfast TV; RA I A showing teletext pages and programmes; TVE E2, 3 and 4 on programmes; RTU (Radio-Tele-Un) IA using the FuBK style test pattern with ‘RADIO-TELE-UNO’ inscription; ORF E2a, 3 and 4 on programme schedule followed by the PM5544; CST R2 radiating the ‘RS-KH’ EZO test pattern; DDR-F1 (East Germany) E4 on test pattern; TVP (Poland) R1 and 2 with clock and dark background PM5544; TSS R1 showing ‘HOBOCTN’; SVT (Sweden) E2 on ‘TV1 SVERIGE’ PM5534; MT V1 R1 and 2 programmes at 1945.

10/6/86: NRK (Norway) E3 with ‘NORGE TELEVERKET’ PM5534; RUV E4 on PM5544; SVT E2 PM5534; YLE (Finland) E4 radiating the ‘TV1 YLE’ FuBK test pattern.

11/6/86: RA I A in good colour at times.

12/6/86: RA I A with ‘TG1’ news; JRT E4 showing ‘JRT SKOPJE’ PM5544; JRT E3 showing ‘JRT BGRD’ PM5544.

13/6/86: RA I A in colour and sound.

14/6/86: TVE E2, 3 and 4 programmes in colour; CST R1 with REKLAME caption at 1037; TVE2 E2 on GTE test card; RFP E3 ‘RFP LISIS’ FuBK test pattern; RA I A programmes at 1240.

15/6/86: RA I A and IB programmes from 1220.

19/6/86: TSS R1 on electronic colour test pattern at 0830; TSS R1 programmes noted during the evening.

24/6/86: An intense sporadic-E opening was noted at switch-on at 1755. Signals identified included RUV E3 and E4 with the ‘RUV ISLAND’ PM5544; TVE E3 basketball in Libour with sound; ARD E2 with news and weather at 1910; M TV1 R1 and 2 adverts; JRT E3 and E4 news and clock caption; RA I A programmes; TVR R2 news followed by an announcer.

25/6/86: TVE E2, 3 and 4 with colour and sound; RA I A and IB also in colour with sound.

26/6/86: TSS R1 clock at 1800; RA I A programmes; RUV E3 and E4 on PM5544; TVP R1 and R2 news at 1830; M TV1 R1 adverts at 1845; unidentified E2 programme at 2120 with possible Arabic subtitles.

29/6/86: Sporadic-E DX between 1000 and 1210 including RA I A and IB in colour; M TV1 R1 with ‘VIDE0 REKLAM’ caption; SVT E2, 3 and 4 with the PM5534 prior to station opening; ARD E2 news; JRT E3 and E4 programmes.

New Band I country

The exciting news this month is confirmation that a new channel E4 transmitter is operational in Tunisia. The station is at Ramada in the south of the country and it would appear to be fairly high power judging by the results obtained by a number of DX-TV enthusiasts in the UK.

This particular outlet was mentioned in Nigel Gathorne’s Spectrum Watch a few issues ago and is part of Tunisia’s transmitter expansion programme. Channel E4 was chosen to avoid problems with interference from the many high power Band III outlets operating in neighbouring Libya.

The first definite sighting of the new station occurred on June 25th during a sporadic-E opening from the south. Tony Privett of Basingstoke was amazed to see an FuBK test card bearing the identification ‘RTT’ and a line of Arabic script across the centre. The picture quality was as good as his local between 1634 and 1700 with colour and sound present.

Other suspected sightings of RTT occurred earlier in the month. On the 1st, please mention RADIO & ELECTRONICS WORLD when replying to any advertisement

OCTOBER 1986
NEW CONTINENTAL STANDARD TV!

YOKO MODEL F1

VHF/UHF SYSTEM

B/G/I Operation

£89.95

NEW FROM AERIAL TECHNIQUES

- The YOKO MODEL F1 5" mono multiband TV for full Band 1, Band 3 and UHF TV/DXing coverage or for Continental travelling. This high gain chassis features System B/G/I (5.5MHz) sound spacings for UK and Continental usage, switching automatic between the various systems and with an exclusive sound muting (squelch) facility (cuts out the 'hash' in no signal conditions).

- The front panel includes a clear slide rule tuning scale, band change and other essential user controls with unique 'Band in use' different colour indicator LEDs.

- The integral telescopic whip or external aerial input jack feed into the low noise tuner via an internal 'booster' wideband amplifier to ensure optimum gain, signal/noise over the wide tuning range.

- Sound output is from an internal 3" speaker or external 3.5mm jack for earphone or extension 150ohm speaker.

- Three way power options from an internal dry or rechargeable battery pack, an external 12V source (lead supplied) or via the supplied AC mains PSU.

- The attractively styled grey cabinet features a carrying handle coupling as a stand, weights just 2kg and is a compact 4.6 x 7.6 x 10 inches.

- We're the SOLE UK IMPORTER for this high quality KOREAN made TV – further technology innovation by AERIAL TECHNIQUES.

YOKO model F1 multiband VHF/UHF 5" screen TV (System B/G/I) £89.95

Carriage UK - £4.95 elsewhere post.

We are the specialist aerial company for all installations - domestic, fringe, distribution of DX. Our Catalogue at 69p tells you all: please include SAE with enquiries. TVRO satellite systems for 1GHz supplied at very competitive prices.

- We are appointed dealers for SALORA and LUXOR Multi-standard TV's. For catalogue send large stamped (22p) addressed envelope.

All prices inclusive of VAT. Delivery 7-10 days.

ACCESS & Visa Mail and Telephone orders welcome.

THE CR SUPPLY CO

127 Chesterfield Rd,

Sheffield S8 ORN

Return posting

PHOTO FILE ● PHOTO FILE ● PHOTO FILE

<table>
<thead>
<tr>
<th>PM5534 test card radiated by the Syran TV service, SBT</th>
<th>An alternative test pattern used by SBT and received in Hungary on E3</th>
<th>Cross-hatch test pattern used by JTV in Jordan</th>
</tr>
</thead>
<tbody>
<tr>
<td>FuBK test card used by the 3rd network of Hessisch Rundfunk, West Germany</td>
<td>Test pattern used by the French tlf relay service in West Berlin</td>
<td>An FuBK test card broadcast by one of the pirate TV stations in Italy</td>
</tr>
</tbody>
</table>

OCTOBER 1986

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
Tony saw an Arabic film followed by credits and an announcer at approximately 1700. On the 8th, reception consisted of Arabic script, a picture of a prayer to be followed by a female singer. Reception on both occasions was in colour together with sound.

Another possible sighting of RTT took place on June 5th, although the signal was originally logged as emanating from Morocco. It consisted of a dissilseive programme on channel E4 from a southerly direction. Arabic script was also noted. This was seen by a number of enthusiasts including Roger Pates (Nottingham), Chris Howies (Lichfield), Tony Mancini (Belper, Derbyshire) and Andy Webster (Billinge, near Wigan). The tail-end of this reception was seen at Derby but it became increasingly obscured by Spanish signals from TVE on the same channel.

Reception reports

Simon Hamer of Powys pulled in no fewer than forty stations from eight different countries during the latter part of June via improved trop conditions in Bands I and III and at UHF. The highlight for Simon was definitely on the 26th. While searching the UHF band for Scottish signals he spotted a political discussion programme on channel E34. The sound channel was monitored and found to be in excellent condition. The signal became stronger the Swiss-Italian logo from RTSI was noticed superimposed in the corner of the picture. The transmitter is situated at La Dôle, close to the border with France. Reception was due to tropospheric ducting, since there were very few other UHF signals present at the time from that direction.

Despite suggestions that the new Italian private station Radio-Tele-Uno may have replaced Nord Center Television on channel IA, Simon can confirm that RCV is indeed active and he identified them during an opening on the 4th when a feature film was being shown with the letters ‘NCT’ in the corner of the picture.

Other successes during June include the French service Canal Plus in Band I on channels L3 and L4, Albanian channel IC programmes on the 3rd, 7th and 18th, and RUV-Iceland on E4 at well after 0100 BST on the 30th. This was a ‘real nightcap’ according to Simon.

The high-light of the month for William Maries was the sighting of the Jordanian PM5534 test card on channel E3 with the identification ‘JVT SUWEILEH’ from 1105 BST. A co-channel FuBK test card appeared at times carrying the identification ‘JVT SUWEILEH’. The following inscription confirms reception from the low power Yugoslavian relay at Pivsar.

The late appearance of the Greek PM544 test pattern from the low power E3 outlet quashed rumours that the station had been taken out of service. Kevin Jackson of Leeds noted it on the 9th at 0710 and again on the 12th at 1231. The JRT relay on E3 at Pisvird was also noted during both openings with the ‘JRT FuBK’ test card. Another rare catch was the PM534 from the Skopje channel E4 outlet seen displaying the inscription ‘JRT SKPJU RTSKOPJE’ at 0721 on the 8th.

Kevin has commented that the Radio-Tele-Unos test card on channel IA has descended regularly in the Leeds area since.

On one occasion it was so clear that it may have locked colour, but unfortunately a colour set wasn’t available to check this possibility.

An identification on the Russian UUIT test card posed something of a mystery during an early morning opening on the 19th. Translated into the Roman alphabet it read ‘CHGD’. Another identification noted during the same opening read ‘Leningrad’ when translated from the Cyrillic.

A mystery noted by Kevin was a colour-bar pattern on channels E3, E4 and E4. The reception on E2 was as late as 1803 BST. Has anyone else noted this pattern at such a relatively late time?

Quite a few low power trop signals were logged by Kevin towards the end of the month. Not content with the Belgian RTBF-2 500W relay at Brussels on channel E45, he also received the SSVC relay on E59 from Mönchengladbach. Its ERP is only 100W.

Mark Dent of Leeds has reported a very good month with a mixture of sporadic-E and tropospheric reception. A number of rare stations have made an appearance, such as the 25W channel E4 Pisvird relay of JRT which radiates programmes from studios in Sarajevo. The FuBK test card was seen on the 9th bearing the ‘— JRT SA-1’ identification during the morning. This was also noted in Derby but with rather poor and unstable frame lock compared with other DX signals around at the time.

Mark also logged two other low power relays on the 9th. They were radiating the Austrian 1st network on channel E3. Both signals were floating and reference to the EBU list of TV stations indicated that the outlets were Birkenfeld (100W) and Tauplitz (25W). On the 19th he saw Jordan on the PM5534 test card. Although reception was weak and occasionally suffered from multiple images, the identification ‘JTV SUWEILEH’ could be deciphered. On the same day a French Band I ‘Canal Plus’ signal was resolved comprising a pulse and bar test pattern on channel L3.

Thanks to improved trop conditions Mark received the PM544 test card from the German service on several occasions. The identification was ‘SSVC GERMANY’ and the signal was logged on channels E51 and E52. The network is now operated by ‘Services Sound and Vision Corporation’ but it is more widely known by its old title of ‘BFFS’ (British Forces Broadcasting Service). SSVC was present the following evening on channels E27, E41, E48, E49 (two stations), E57 and E59.

The Belgian RTBF-2 TELE 2 PM544 was noted in colour from the 500W relay at Brussels on the 29th along with the TVS 800W relay on channel E56, also located at Brussels. The good trop conditions allowed Mark to watch the West German 2nd network (ZDF) with the FuBK test card being radiated right through the month on several occasions. The transmissions probably originated from the Schleswig Holstein region.

At 0549 on the 15th a mystery colour-bar pattern appeared (in monochrome) on channel J/H12. There are two possibilities. It was either RTE-2 (Eire) testing on full power from the Kippure transmitter or an OIRT signal, probably of Polish or Czechoslovakian origin. Mark would like to hear from anyone who managed to identify this signal.

Tony Mancini of Belper (Derbyshire) has been puzzled by two captions noted via sporadic-E activity. One appeared during a news programme and consisted of the letters ‘HOY’ with a clock inside the letter ‘O’. The other caption read ‘3 Antennae’. Did anyone else see these captions in Band I? If so, please send any information via R&EW.

Service Information

Portugal: RTP-Portugal have occasionally been noted using an alternative form of identification on the FuBK test card. The inscription reads ‘RTP LISB 1’ although sometimes the ‘1’ is absent. The older ‘RTP—PORTO’ identification is also used.

Sweden: A transmitter operated by the Finnish TV service YLE is operational in Stockholm on channel E39. The exact ERP is not known but it is thought to be between 600kW and 1000kW. The PM544 is radiated with the identification ‘KANAL 3’ and ‘STOCKHOLM’ at the top. Text is superimposed and reads, ‘1 Södertälje sker provsändingen pa kanalerna 47 och 49’. This indicates that there are also YLE test transmissions in the town of Södertälje on channels E47 and E49.

Netherlands: The very familiar EBU Bar test pattern is no longer used by the Dutch PTT. The identification was ‘PTT- NL AVVC-HVS’. It has been replaced by the FuBK test card which incorporates a circle and the identification ‘AVVC-HVS’. This is an abbreviation for ‘Audio Video Verdeel Centrum – Hilversum’ (Vision and Sound Distribution Centre – Hilversum). The FuBK has been used since May 16th.

Germany: The main HR-3 (Hessischer Rundfunk) transmitter at Kassel on channel E42 (200kW) was taken out of service on May 31st. This month’s service information was kindly supplied by Gösta van der Linden and the Benelex DX Club (Netherlands).
A feast for slow-scanners this time; hope you don't get indigestion. I guess this proves that there are some SSTVers out there, but when you write next time don't forget to include some pictures as well.

Regional reports

Starting in the Potteries, we have a detailed letter from Steve G4DVN setting out the active stations in his part of the world. Chris G4UDG, Paul G4UDH and G4DVN will shortly have completed their home-brew Robot 400 clones: Steve intends to operate on 20 metres and 2 metres FM, while the other two will be on 20 and 10 metres. Both Paul and Chris have built the G3WCY scan converter, and although this design works very well the pictures look better when displayed on a Robot.

Incidentally, building a Robot clone is not expensive, as all the chips are still readily available. The only trick, says Steven, is getting hold of the PCB for it: Robot UK say this is now a discontinued line.

From Atherton (Manchester) Dennis G6YBC writes that eleven stations are active SSTVers there, using WCY/ENA set-ups or Robot 400s. They have fairly regular skeds with G3CCH and G1OZH and have even managed to work G2BAR (when the local FMers honour the bandplan SSTV frequency of 144.500).

Colin Pennell G3EFP in Northwood Hills (Middlesex) is on SSTV every day on 20 and 2 metres; on the former band he has had SSTV contacts as far as VK-land. Four different set-ups are available: a Robot 480C, a Wrasse SC-1, a Scarab terminal unit for the BBC micro and the BATC G3WCY/G4ENA boards.

Finland chronicle

Our regular SSTV stalwart G3WW has not failed us. This time Richard mentions the Sunday morning 3730kHz net, which has been joined by G3AI “after dusting off his Robot 400”. Interesting DX worked by Richard since we last heard from him includes SM5DAJ, 10EMU, OE3JKA and HA8XK.

On Mondays at 1930 we have the Finland net on 144.5MHz, and this has been joined by newcomers G0BNR (Ramsay St Mary), G4WB (Stanground, near Peterborough) and G6SCD (Chatteris). All are welcome to join in, says Richard. It’s not only Cambridgeshire, Norfolk and Suffolk stations that take part, but also some well-sited ones in Avon and Salop. The Wednesday evening Essex net has gone quiet — hopefully this is only temporary.

New hardware

John Feely G4MRB is making contacts with the aid of an Orcic 1 computer, which he says can be picked up very cheaply now. He uses a French program which he has modified somewhat. In Milton Keynes Tom Mitchell G3LMX has got his G3WCY board going and is very pleased with the results from this converter. G4WB has acquired a Venus SS2 4.5 inch SSTV monitor for use with his TR4C. G4PJ now has an SC-1 with single frame colour capabilities; he uses a TR5. EA5FIN also now has an SC-1 and immediately added a facility for sending and receiving double 48 second single frame colour SSTV (if anyone wants a 96 second frame!)

To newcomers to SSTV Richard says don’t be put off if stations announce that they are about to transmit in colour and you only have a monochrome monitor. If they say they will send two frames of red and then two of green and blue, you will receive them all in varying shades of black and white. Those who send sequential frame colour will produce elongated b/w picture with a venereal blind effect. Richard suggests that folk equipped with colour remember the people who just want an 8 second b/w frame!

For a demonstration of all the latest colour modes tune in between 3730 and 3735kHz around 10:00 on Sunday mornings. G3CDK and G3OOD will be pleased to demonstrate...

Nets north and south

In the past I have mentioned the Essex SSTV net, and now I have been given details of a similar set-up in Middlesex. On Wednesdays you are likely to pick up at least six people — Philip G1MOG in Ruislip, Roddy G3CDK in Wallington (in Surrey), Jim G3WGM in North Harrow, Vince G4WDF in Staines and Barry G4SHJ in Hillingdon. They can of course be found on the air at other times as well.

Equipment in use includes Robots, Wrasse SC-1s, the Drae transceiver and software packages involving the Commodore 64 computer (RX4 program by G4W3RI) and the BBC micro (using G3LIV’s program and interface). There are lots of colour pix flying around, mainly aerospace orientated! Some of these people also use the SC-1 for FAX type reception including weather pictures on VHF.

Yet another net, this time on South Humberse John G3CCH reports activity on most nights involving G0CUI, G4NJ1, 4G5ZX, G4KZQ, G5YBC, G1OZH, and himself. The Wrasse SC-1 seems to be the most popular converter, though Sinclair Spectrums are also in use. John’s own SSTV equipment is all home-made to the designs of G4EOD (G8Y1). The mark 2 version of this, for which John can supply a data sheet, is a most versatile and economical unit, receiving Robot 1200 colour pictures as well as FAX and weather satellites.

Sending and receiving SSTV by packet radio is also being considered. Drop him or G4EOD a line at his callback address for further details. In the mean time listen around 3730kHz for slow-scan signals; apparently lunchtimes and Sunday mornings see the most activity.

Media star

Dave Probert G4JBU had an unexpected contact when he took his slow-scan gear on holiday. His first QSO call from the caravan was answered by Jouko Kytosalo OH5ZJ in Finland, who just happened to have some newspaper people in his shack researching a story on amateur radio. Dave sent me a photocopy of the resulting piece from the Finnish newspaper; a lengthy article complete with an on-screen photograph of Dave as received in Finland. Well done, we can always do with more publicity for our hobby. The transmitter was a TS520S, incidentally, sending 80 watts to a long wire strung between two trees. Frequency was 14.290MHz.

Well that’s it for now, spread your news and photos care of the editor. Until next time, have fun!
The 12-element gave consistent results one S-point up on the collinear and just one S-point down on the Tonna. I would estimate its gain at 15dB or so, and this is achieved in a length of just 104cm. For its compact size it is a powerful antenna, and it has already attracted quite a following. The price is around £30 (not exactly cheap) and it is distributed by Telecoms of Portsmouth.

If you want something smaller (and more legal) the 4-element job is for you; again the gain is not quoted (probably around 5dB), and this one has a much broader beam width. Roil on the day when longer beams are authorised!

Tropo DX without a lift

If you have ever driven a car at night you will know that you can tell if a vehicle is coming in the opposite direction, even if he is round the bend or below the summit of a hill. A small portion of the headlight's beam is visible: not much but just enough of the beam is scattered for other vehicles to see.

The same technique can be exploited in UHF radio, and it is also the way telephone calls are beamed out to offshore oil rigs, for instance. Using a directional antenna as much power as possible is beamed at (or just above) the horizon and a small fraction of the energy is monitored beyond the horizon. Using good beams and sensitive preamps this so-called tropospheric scatter technique can be used at 934MHz, and there are some stations which can manage distances of 150 miles and more, regardless of conditions.

A lot of patience and experimentation is called for, of course, but the results can be very rewarding. It is always worth calling CO DX: if you constantly monitor channel 20 but wait for someone else to do the calling, you probably won't make those contacts! The other day we heard a station well over 100 miles away, and several locals hooked up with Les CDX101 in Castleford. The contact was scratchy and didn't last long, but conditions were as flat as a pancake. This was probably due to aircraft reflection: a plane along the route can act as a passive repeater and reflect back to earth signals which would normally escape into space.

Getting out

Once you have been operating for a while you will get to know your best directions and where your signals are obstructed. Plotting paths on a large-scale Ordnance Survey map can be very instructive if you enjoy this kind of thing. At 934MHz trees, chimneys and nearby hills suck up signals like a sponge, and you will do well to get your antenna as far clear of obstructions as possible. Sometimes another five feet of height may make all the difference.

Height above sea level is important, but take-off is significant, too. The first mile or two is really important for your transmitted signal; any major obstructions here are deadly. Hills which are higher than your location need not be a problem if they are distant, say five or ten miles off; but then your signal has had a chance to 'get airborne'. If the ground falls away rapidly from your location, all the better, but the important thing is keeping the radio horizon as far away as possible. If you're stuck in a radio black hole this will be cold comfort... I think I have made the point now, so I'll drop the subject.

Illegal operators?

One hears some pretty uninformed comment on the band from time to time. I suppose people have a right to talk rubbish! A little knowledge is dangerous, though, and I do get fed up hearing people misquoting the licence regulations to suit their own notions. Condition 12 states: The apparatus shall not be used for the purpose of advertising goods or services of any kind.

In other words you cannot use your wireless to advertise any goods or services. It does not say the radio shall not be used in connection with any commercial service, and in fact CB radio can be used for any kind of business purpose, so long as no advertisements are broadcast.

Some 934 operators are apparently having arguments with taxi firms on the air and telling them that taxi drivers have no right to use 934. Of course they do, and it was partly in order to make two-way radio more affordable for small firms that the Government promoted 934MHz.

We have a taxi firm on channel 5 in our neck of the woods and we co-exist very well. They leave the other 19 channels to us, and even change channel temporarily if a QSO lands on 'their' channel by accident. What's more, in the absence of a proper channel 9 monitoring service they are the only people who can be relied on to give a radio check at any time, and I am sure they would ring up the police and pass messages if called up in an emergency.

73

Once again I've used up all my space, so I'll have to sign off. The new power meter to SWR bridge has arrived from Telecomms and you'll have a user report of this next time. I'm still waiting for your reports and QSL cards, so take time out to drop me a line c/o the editor.
SPECIAL EFFECTS USING
TAPE LOOPS

by Ivor Nathan

Many people now own tape recorders, be they reel-to-reel or cassette machines. For the experimenter wishing to expand activities beyond simply collecting favourite recordings on tape, ie the creative sound recordist who wishes to compile sound tracks or sound effects for amateur dramas, films or videos, or hospital radio programmes, this article describes how tape loops can be used effectively. Similarly, people owning a musical instrument, particularly an electric guitar or electronic keyboard, can build up an ‘orchestra’ of themselves playing quite elaborate musical arrangements (with a ‘choir’ of their own voice as well, if desired) by using tape loops which can finally be copied onto a second, conventional tape when completed.

It is appreciated that special effects, including ‘chorus’ sounds, can be produced by purely electronic circuits, but electro-mechanical methods were used because all the parts were readily to hand and quickly convertible; all parts were found in the junk box.

Initial attempts

Initial experiments were made with a spare cassette recorder, but because a continuous loop of ¼ inch cassette tape moving at 1½ips inside a standard cassette case completes one revolution extremely quickly, insufficient information is recorded on the first revolution; also, head spacing (if the erase head were to be replaced with a second record/replay head) is too close to achieve suitable delay for a convincing echo effect. Therefore a spare reel-to-reel recorder using ¼ inch tape at 3½ips was modified and used with spectacular results.

As shown in Figure 1, the original erase head was removed and replaced by a second record/replay head (A) to which was soldered a length of audio coaxial cable terminated with a phono plug. The erase power output lead of the recording amplifier was then terminated in a resistor equivalent in value to the impedance of the missing erase head; a resistance value of approximately 500 to 1000 ohms should be suitable.

Note that failure to add this resistive load could result in the oscillator circuit burning itself out: in any event, the oscillator would probably not operate if left open-circuited and therefore RF bias for recording would not be available, thus distorting any subsequent recordings.

Record/replay head

The existing record/replay head (B) should also be disconnected from the recording amplifier and terminated with the same amount of audio coaxial cable fitted with a phono plug, as with head A. The original connecting cable from the record/replay amplifier should then be extended with a length of audio coaxial cable and terminated with a chassis-mounted phono socket. Connect another chassis-mounted phono socket across this first phono socket and mount them side by side in a convenient position on the tape recorder cabinet. This then means that either one of the two heads (A or B) can be connected to the record/replay amplifier while both A and B can be connected in parallel.

In order to make the ¼ inch tape loop as large as possible and thereby record sufficient information on the tape as it completes one revolution at 3½ips, a supporting arm carrying two extra tape guide posts was constructed, as shown in Figure 1, and fixed to the tape deck using an existing screw fitting. This configuration enabled a 26inch length of unused ¼ inch tape to be cut from a reel of tape, and very carefully spliced to form the loop. Several attempts may be necessary to cut and splice the correct length of tape needed to form a fairly taut but free-running loop; if the tape is too long it will ‘bunch’ when revolving and will probably become entangled in the pinch-wheel assembly. If it is too tight it will not run freely and will eventually become stretched and damaged.

It should be emphasised that a good, clean splice must be made so that the tape loop can revolve smoothly and not cause ‘drop-outs’ or unwanted noises as the join passes both heads. Two empty spools should be left on the deck to act as tape-loop guides; whether they both revolve or not during use should be immaterial.

Easy method

It will be easier to fit the completed loop by first removing one spool, placing the loop into its correct path around the deck and added support arm (preferably with just a little slack in the loop), and then refitting the spool. Figure 2 shows the modifications made to the wiring of the reel-to-reel tape deck and its amplifier.

Using only the modified reel-to-reel tape recorder, Figure 3 shows how, with heads A and B connected in parallel, the tape loop can be used for multi-track overlay on the continuous loop. By watching for the tape splice as the loop revolves, the correct timing can be achieved so that enough can be recorded during one revolution, using a

Figure captions:

Fig 1 Modifying the reel to reel tape deck

Fig 2 Modifying the wiring of the reel to reel tape deck and amplifier
microphone for example, before over-
laying a second track via the micro-
phone. After a little practice a complete
revolution can easily be observed, and
an instinctive 'feel' for the correct timing
is soon developed. Because no erase
head is being used the signal is recorded
twice, with a delay that is dependent on
the distance between the two heads.

Practice helps

Recording on the second revolution of
the tape will slightly erase the signal that
was recorded on the first revolution, but
sufficient information should be
retained to enable about three overlays
to be made. Again, practice will enable
appropriate levels to be set to minimise
this effect, and to allow all the overlays to
be heard at optimum volume.

Upon removing the microphone from
the amplifier input and switching to
replay, the signals on the loop can be
listened to and, if complete, copied onto
a standard tape by using either a
separate reel-to-reel recorder or a
cassette recorder. If necessary, adjust
the azimuth of head A so that both head
gaps scan the recorded track accurately,
before commencing serious recording
sessions.

For more ambitious work Figure 4
shows how the loop can be used to
record a signal with head A, pick off the
signal with head B and introduce
variable echo and other acoustic effects
via a monitor power amplifier with its
associated loudspeaker system while
simultaneously re-recording the final,
composite signal with a separate cas-
sette recorder. Head A remains con-
nected to its record/replay amplifier via
its phono plug; head B is connected to
the input of a separate cassette recorder
whose 'monitor output' is connected to
the input of a separate monitor power
amplifier with its associated loud-
speaker system.

Start the loop moving (at present,
blank tape), switch (a) to record with gain
at maximum, and switch the separate
cassette recorder (b) to record, with the
monitor power amplifier (c) gain at zero
and its treble control about half-way and
bass control at maximum. Speak into the
microphone and record onto the loop.
Advance the gain of the separate
cassette recorder (b), start its tape
moving and check that head B is picking
off the signal recorded by head A.

Disconcerting!

Slightly advance the gain control of the
monitor power amplifier until you hear
your voice coming from the loudspeaker
system slightly delayed behind what you
are currently saying – this can be quite
dischordant until you become accus-
tomed to it! The loop can now be left to
revolve indefinitely, acting as an electro-
mechanical delay while you continue
to speak into the microphone. If the
monitor power amplifier (c) gain control
is carefully advanced further, slight
acoustic feedback will occur between
the loudspeaker system and the micro-
phone so that dramatic echo and ringing
'space' effects can be achieved, all being
combined on the separate cassette
recorder (b) to produce the final result.

With practice, and with the monitor
power amplifier controls set to optimum
positions (note that the treble control
should be set only about half-way), a
controlled, pleasing effect can be pro-
duced and uncontrolled acoustic feed-
back is avoided. If the entire system is
left running on record and no more is
said into the microphone, a very slow
fade is achieved as the echo diminishes
and as the signal stored on the tape loop
is slowly erased by the RF bias power.

After testing the system, constructors
may wish to dispense with the inter-
changeable phono plugs/sockets
arrangement by using a suitable system
of switches. Similarly, the system can be
expanded by using stereo heads
throughout or can be modified to
add/subtract portions of sub-tracks by
using different combinations of half and
quarter-track heads on the modified tape
deck.
Welcome back to the wonderful world of MW radio. This month I’ve decided to take a special look at some aspects of broadcasting in the UK, highlighting the latest news as well as featuring an item of historical interest.

Station news

Although MW stations make far fewer adjustments to their broadcasting schedules than their short wave counterparts, there are many dozen changes reported every month from Europe alone. Usually these changes affect low power local or relay stations, and it is fairly rare for changes to be made on the main high power networks. This month I have a couple of items which should be worth watching for.

Firstly R Finland (YLE) is currently building a new 600kW transmitter that will operate on 963kHz from early 1987. YLE already operates its international service on this frequency, but it is planning much greater coverage of Europe, quite possibly at the expense of Radio Monique.

The next item concerns Ocean Sound, which is the new ILR franchisee for the Southampton area. R Victory became the first ILR station to lose its franchise when it closed down on 28th June, and the IBA selected Ocean Sound to take over an expanded operating area. The station is due to come on air on 14th October using 1170kHz for Portsmouth and 1557kHz for Southampton.

Another new set-up that will be affected by the activities of Radio Caroline is BBC Essex, which is due on air some time this November, provisionally with a 500W transmitter on 558kHz. BBC Essex is setting up its HQ in Chelmsford but is planning nine satellite studios throughout the county. It seems likely that 558kHz will be abandoned in favour of another frequency (which had not been announced at the time of writing) together with a local 100W relay for Southend on 1530kHz.

Station profile

This month, instead of focusing on one particular station, we’ll take a stroll down memory lane to examine the origins of BBC local radio.

Although many people think of BBC local radio in its present form, it could be said that the story of BBC local radio goes back to 1922, to the start of radio in fact, when the BBC had stations in Birmingham, Manchester and Newcastle. By 1924 there were 20 of these regional stations, but twenty stations needed twenty frequencies, and by 1925 radio was becoming so widespread that an international conference was arranged to share out the available channels. Britain’s allocation was just 13, and as a result the local stations were closed down to make way for a national radio network operating fewer but more powerful transmitters.

Nearly forty years passed before the idea of local radio was revived. In 1960-61, 18 closed-circuit experimental stations were set up in places such as Bournemouth, Hull, the Isle of Wight, London, Norwich, Poole and Reading.

Soon afterwards the Pilkington Committee recommended that the BBC should be allowed to open some experimental stations. Five years of delay later, in December 1968, the Wilson Government gave the go-ahead for nine experimental local stations which were intended to be at least partly financed from local council funds. Of the nine, only eight eventually became operational since the Conservative council of Manchester refused to finance their local station. The first station on the air was BBC Leicester, which opened on 8th November 1967.

It should be noted that the early stations (ie the first eight at Leicester, Sheffield, Nottingham, Stoke, Leeds, Brighton, Durham and Merseyside) were confined to VHF FM frequencies, which were not that popular with listeners. Nevertheless in 1969 the experiment was

BBC LOCAL RADIO ON MW

<table>
<thead>
<tr>
<th>City</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aberdeen</td>
<td>990kHz</td>
</tr>
<tr>
<td>Bedfordshire</td>
<td>630 & 1161kHz</td>
</tr>
<tr>
<td>Bristol</td>
<td>1323 & 1548kHz</td>
</tr>
<tr>
<td>Cambridge</td>
<td>1026 & 1449kHz</td>
</tr>
<tr>
<td>Cleveland</td>
<td>1548kHz</td>
</tr>
<tr>
<td>Clwyd</td>
<td>657kHz</td>
</tr>
<tr>
<td>Cornwall</td>
<td>630 & 657kHz</td>
</tr>
<tr>
<td>Cumbria</td>
<td>756 & 1458kHz</td>
</tr>
<tr>
<td>Derby</td>
<td>1116kHz</td>
</tr>
<tr>
<td>Devon</td>
<td>801, 855, 990 & 1458kHz</td>
</tr>
<tr>
<td>Essex</td>
<td>1530kHz</td>
</tr>
<tr>
<td>Foyle</td>
<td>792kHz</td>
</tr>
<tr>
<td>Furness</td>
<td>837kHz</td>
</tr>
<tr>
<td>Guernsey</td>
<td>1116kHz</td>
</tr>
<tr>
<td>Humberstone</td>
<td>1485kHz</td>
</tr>
<tr>
<td>Jersey</td>
<td>1026kHz</td>
</tr>
<tr>
<td>Kent</td>
<td>774, 1035 & 1602kHz</td>
</tr>
<tr>
<td>Lancashire</td>
<td>855 & 1557kHz</td>
</tr>
<tr>
<td>Leeds</td>
<td>774kHz</td>
</tr>
<tr>
<td>Leicester</td>
<td>837kHz</td>
</tr>
<tr>
<td>Lincolnshire</td>
<td>1368kHz</td>
</tr>
<tr>
<td>London</td>
<td>1458kHz</td>
</tr>
<tr>
<td>Manchester</td>
<td>1458kHz</td>
</tr>
<tr>
<td>Merseyside</td>
<td>1485kHz</td>
</tr>
<tr>
<td>Newcastle</td>
<td>1458kHz</td>
</tr>
<tr>
<td>Norfolk</td>
<td>855 & 873kHz</td>
</tr>
<tr>
<td>Northampton</td>
<td>1107kHz</td>
</tr>
<tr>
<td>Nottingham</td>
<td>1521 & 1584kHz</td>
</tr>
<tr>
<td>Oxford</td>
<td>1485kHz</td>
</tr>
<tr>
<td>Sheffield</td>
<td>1035kHz</td>
</tr>
<tr>
<td>Shropshire</td>
<td>756kHz</td>
</tr>
<tr>
<td>Solent</td>
<td>999 & 1359kHz</td>
</tr>
<tr>
<td>Solway</td>
<td>585kHz</td>
</tr>
<tr>
<td>St Albans</td>
<td>1503kHz</td>
</tr>
<tr>
<td>Sussex</td>
<td>1161, 1368 & 1485kHz</td>
</tr>
<tr>
<td>West Midlands</td>
<td>828 & 1458kHz</td>
</tr>
<tr>
<td>York</td>
<td>666 & 1260kHz</td>
</tr>
</tbody>
</table>

* These stations are local opt-outs from the BBC regional networks in Scotland, Wales and Ulster.
declared a success and another twelve stations were authorised, bringing the total to 20.

The BBC had planned a second phase in its local radio development programme which would have multiplied another 20 stations coming on air, but in 1971 the Heath Government pledged itself to the introduction of commercial radio. As a consequence, between 1971 and 1976 19 commercial stations opened but the BBC’s development plans were frozen. During this period the only change in BBC local radio occurred when the Durham station closed down (August 1972) and was replaced by R Carlisle in November 1973.

Slow developments

Despite by and large a political back seat, BBC local radio continued to develop, and 1973 presented a major opportunity to expand the size of station audiences when medium wave frequencies first became available. Oddly enough, although BBC local stations had been confined to the VHF band for their first six years they had failed to exploit the benefits of this band, as they remained monovenue after commercial stations started appearing with stereo broadcasts.

Until 1978 the BBC local network remained static, but in July of that year a Government White Paper gave the BBC authority to expand its local radio coverage.

The BBC opened new stations at Norwich and Lincoln in 1980 and subsequently a further eleven stations have become operational in places as far apart as the Channel Isles and York.

Currently the BBC is still adding to its network, but recently the most significant changes have affected program- ming and station identity. BBC local stations have been seeking an image with which listeners could identify, and this has resulted in a distinct “country station” image that is reflected in a number of fairly recent station name changes (the table shows the present position of BBC local radio).

Next month I’ll be taking a look at the start of commercial radio, but in the mean time can you name the very first number of a commercial station to take to the air from Great Britain?

Having spent most of this month’s column looking at radio in the UK, it’s about time to have a peek at what is being heard from far away. MW conditions over the summer have (relatively speaking) been very good, with extended periods of low solar and ionospheric activity. My log book reveals reception of: Wins New York, 1010kHz, continuous news WHN New York, 1050kHz, baseball commentary ZDK Antigua, 1100kHz, reggae music and sports phone-in R Globo Rio de Janeiro, Brazil, 1220kHz, Portuguese sports Caribbean Beacon Anguilla, 1610kHz, religious programmes

All these stations could be heard between midnight and 0100 GMT in July. It is interesting to note that reception around 0300 (just before UK sunrise) of stations in the Chicago area of the USA has been reported by other MW DXers – even in winter these stations are not that regularly heard.

That’s all we have room for this time round, so I’d better be going. Remember that your letters, logs, tips and comments are always most welcome.

DX FILE

No FRILLS, “GIMMICKS”, OR UNUSUALLY LOW COST FOR THE SERIOUS PHONE/CW OPERATOR WHO WANTS THE LOWEST NOISE, CLEANEST AND MOST SELECTIVE AMATEUR hf TRANSMITTER ON THE WORLD MARKET.

Other KW-TEN TEC winners The ARGOSSY II phone/cw transmitter. The CENTURY 22 cw only transceiver. The original KW TRAP DIPOLE and TRAPS, 8 ATU’s, KW BALUN, and ANTENNAS WRITE OR PHONE OF DETAILS.

KW TEN – TEC LIMITED

Vanguard Works, Jenkins Dale, Chatham, Kent, ME4 5RT

Telephone: 0634 – 815173

KW TEN – TEC CORSAIR II

NO FRILLS, “GIMMICKS”, OR UNUSUALLY LOW COST FOR THE SERIOUS PHONE/CW OPERATOR WHO WANTS THE LOWEST NOISE, CLEANEST AND MOST SELECTIVE AMATEUR hf TRANSMITTER ON THE WORLD MARKET.

Stewart of Reading

110 Wykeham Road, Reading, Berkshire RG6 1PL

Telephone: 0734 65041

Mon-Fri (until 6pm)

use letterhead

October 1986

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement
If you have looked at a new TV receiver or video recorder lately (or read reviews of them) you may have spotted a strangely shaped socket on the back. Known variously as a Peritel or SCART connector, or more widely as a Euroconnector, this new plug and socket system promises at last to take the hassle out of connecting up video recorders, TVs, home computers and TV games. The concept is a universal multi-pin connector catering for all options and bypassing the modulator and tuner compromises to give you a better picture.

Anyone who has seen a home computer or VCR connected both to a TV and a monitor will know that a monitor gives a sharper, less smears and washed-out picture. Many new TVs can also be used as monitors, and in order to simplify the connections a committee in France devised a system to meet all requirements. The sockets have been obligatory on all French TV sets for some years, and TV manufacturers in other countries have now seen the light and are fitting the socket on their TVs and VCRs too.

DIY possibilities

Now known as the Euroconnector, this plug and socket combination is also referred to as SCART (after the committee which designed it) and Peritel (because it connects peripheral equipment to the television). Euroconnectors are cheap, and you can buy ready-made leads, but if you want to make up your own cables this article should help.

When you look at the plug you will note that it is shaped so that it cannot be inserted the wrong way round. There are 20 pins each with its own purpose: to carry vision signals, mono or stereo audio and command signals in and out of a TV. There is even provision for a 'domestic data bus', which is not something you keep in the garage!

The idea is that the whole house can be wired for sound and vision, with a slave entertainment centre (comprising a TV screen and hi-fi sound system) plugged into the cable in any room. You would also plug in a remote control command unit to call up your choice of broadcast or cable TV, radio, or perhaps something from your video recorder or hi-fi deck. This is clearly something for the future, but firms like Philips and Bang & Olafsen are already working on it.

Compatibility

For complete compatibility between equipment of different makes the whole system relies on firms 'sticking to the rules' and using the pins of the connector for their proper purpose. With the DIN audio plugs and the J-type video plugs this has not been the case, but we can hope that it will be different with the Euroconnector. The Japanese manufacturers are fitting it to some of their products for Europe, so perhaps even the rest of the world will adopt it!

The actual allocation of each pin is shown in Table 1. There are twenty pins in a staggered arrangement, and the 21st contact is made by the metal surround.

The plugs are available from several sources, but one of the cheapest is Maplin Electronics, PO Box 3, Raleigh, Essex SS6 8LR, tel: (0702) 562911 (you have probably seen their catalogue in W H Smith). The part number is FJ41U and the price is 75p (postage 50p). They also supply all other types of video, audio and computer plugs which you may need for the other end of your home-made lead, as well as the cable.

To make up a connecting lead you will need to use good quality, screened cable. For short lengths of up to three feet you can use the same type of cable for both audio and video signals. This cable is available in both single and multi-core versions, so you can either use a separate cable for each function or a two-, four- or six-way cable. If you use
PLUG INTO PERITEL

EUROCONNECTOR CONTACTS
1. Audio out (right-hand channel)
2. Audio in (right-hand channel)
3. Audio out (left-hand channel)
4. Ground for audio channels
5. Blue video channel ground
6. Audio in (mono or left-hand channel)
7. Blue video channel input
8. Source switching, ie TV/monitor status (see Table 2)
9. Green channel ground
10. Remote control (inverted) or clock
11. Green channel input
12. Remote control
13. Red channel ground
14. Ground for remote control channel
15. Red channel input
16. TV/non-TV status (see Table 2)
17. Ground for composite video
18. Ground for TV/non-TV status
19. Composite video output
20. Composite video input or sync for RGB signals
21. Socket earth (plug shield)

Because the contacts are staggered and grouped in even and odd columns the allocation order shown above looks illogical – it isn’t!

Table 1

this multi-core cable make sure that each core inside has its own individual screen or braid: we don’t want the signals to leak across or interfere with each other.

The Euroconnector is supplied in parts and is a little different from other plugs. First of all take the round ferrule and thread it down your cable – you don’t get a second chance! Each pin is loose: you offer up the bared end of the wire to it, then squeeze the ‘wings’ tight with pliers to hold the wire. Then solder your wire to it in the normal way and press fully home into the central body of the plug.

When you have inserted all the pins into the body, clip the metal shield around the body and press the plastic shell around the centre. The plug should protrude almost 1/4 inch outside the shell. Finally run the ferrule down the cable and screw it onto the shell.

Wiring examples
(a) Linking a microcomputer, VCR or camera with composite video output. Video signal to pin 20, 12V to pin 8 and 3V to pin 16. Any audio to pin 6.

(b) Linking a microcomputer with RGB output. Red to pin 15, ground to pin 13, green to pin 11, ground to pin 9, blue to pin 7, ground to pin 5, 12V to pin 8 and 3V to pin 16.

(c) Linking a microcomputer with separate luminance and chrominance

SIGNAL LEVELS (NOMINAL)

<table>
<thead>
<tr>
<th>Signal Type</th>
<th>Level (Nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite video</td>
<td>1V peak to peak into 75Ω</td>
</tr>
<tr>
<td>RGB video</td>
<td>0.7V into 75Ω</td>
</tr>
<tr>
<td>Audio in</td>
<td>500mV into 10kΩ</td>
</tr>
<tr>
<td>Audio out</td>
<td>500mV into 1kΩ</td>
</tr>
<tr>
<td>TV/monitor status</td>
<td>inactive (during TV reception) 0-2V, active (TV used as monitor) 10-12V (into 12kΩ)</td>
</tr>
<tr>
<td>External fast blanking input</td>
<td>inactive (during TV reception) 0-0.4V, active (TV used for anything else) 1-3V</td>
</tr>
</tbody>
</table>

Table 2

outputs. This applies to some older micros using the MC6847 video circuit, eg the Acorn Atom. The three signals for luminance (Y) and chrominance (phase A and phase B) must be used to create R, G and B as follows:

- \(R = \text{phase A} - Y \)
- \(B = \text{phase B} - Y \)
- \(G = (-Y) - 0.51 \times \text{phase A} - 0.19 \times \text{phase B} \)

The circuit devised by M Greff (see diagram) shows how to do this for the Atom. The preset variable resistors adjust the contrast levels and the voltages shown are quiescent.

NEXT ISSUE

TV OF YESTERYEAR
1986 is television’s Golden Jubilee year in this country:
Ray Herbert looks back

A MATTER OF FAX
Ken Michaelson, weather-watcher extraordinaire, takes a look at a high quality WEfax decoder

PLUS ALL THE USUAL FEATURES!
On sale 9 October
To be sure of your copy, why not take out a subscription?

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement

OCTOBER 1986
This month is the time of year to direct the attention of broadcast band hobbyists to that least popular of all low frequency ranges—the 120 metre band (2300 to 2498) and, in the next issue, the out-of-band limits 2600 to 3015. Abounding in utility (UTE) interference (QRM), these ranges are in fact not only avoided completely by the majority of SWLs—at least according to the scarcity of published reception reports—but are also not all that often frequented by DXers. One reason for this state of affairs is the fact that not all enthusiasts can erect an outside aerial of sufficient length to achieve a reasonable chance of success. Furthermore, operating a receiver exhibiting a very high degree of selectivity is an undoubted advantage.

None the less, readers are urged to have a go. Some of the Chinese transmitters listed below are capable of putting into the UK a signal audible to many listeners—it is just a question of visiting the respective channels on a consistent basis throughout the season and awaiting the right conditions for such results. Start now and continue through until the end of February, mid-term usually being the prime time.

China

Cathay (the medieval European term for China) has several outlets within the frequency limits specified above, the lowest in frequency order being Yunnan PBS.

Yunnan PBS (People's Broadcasting Station) in Kunming carries Yunnan 2B minority language programmes in Dehong Tai and Jingsuo from 2230 to 0030 and from 1225 to 1430 on 2310. Identifying as Yunnan Renmin Guang-bo Dian-tai. It is not often heard in Europe. Kunming is the capital of Yunnan Province in southern China, bordering Burma on the west, with both Laos and Vietnam in the south. The province is mainly a plateau, drained by several rivers including the Mekong, Salween and the Yangtze.

On 2340, Fujian PBS, Fuzhou (formerly Foochow) identifies in Chinese as 'Fujian Ren-min Guang-bo Dian-tai, dai Tai-wan Guang-bo' and carries the home service 1 in Chinese from 2050 to 2400 and from 1020 to 1700 with a power of 10kW, being logged by the writer during January last at 1518. English language lessons are featured by many Chinese stations, that of Fujian being timed from 1330 to 1400. Fujian (Fukien) is located in south-east China on the Formosa Strait opposite Taiwan.

Voice of the Strait ('Hai-xia-zhi-sheng Guang-bo Dian-tai') at Fuzhou is a PLA (People's Liberation Army) Fujian Front station broadcasting the Haixia 2 programme in Chinese and Amoy from 1200 to 1755, the Amoy slots being from 1400 to 1415, 1445 to 1500, 1600 to 1615 and from 1645 to 1700 with a power of 10kW. The frequency is 2430, this one being logged during January and February at around 1518.

Explanation 1

Voice of the Strait, meaning the Formosa Strait, has all PLA transmitters, which radiate either the First or Second Programme, these being differentiated in DXers language as Haixia 1 and Haixia 2. These transmissions are intended for offshore islands and Taiwan.

Yunnan again

Yunnan appears again on 2450, at which point on the dial it radiates the Home Service 1 in Chinese from 2150 to 0100, from 0250 to 0600 and from 1020 to 1600 with English language lessons from 2200 to 2230, 0500 to 0530 and from 1400 to 1430. The power is 15/50, being logged in December 1985 at 2308. Zhejiang PBS, Hangzhou on 2475 also features programmes in the Home Service 1, the schedule being from 2050 to 0530 and from 1400 to 2150 with the almost inevitable English language lessons from 2140 to 2210 and from 1330 to 1400. The power is 10kW. Hangzhou (Hangchow) was entered into the log during January and February at 2235 and 2136 respectively. Hangzhou is the capital of Zhejiang Province in south-east China on the East China Sea, the fertile Yangtze delta being a part of this province. Voice of the Strait, Fuzhou carrying Haixia 1 in Chinese can be heard on 2490 broadcasting from 0955 to 2355 at 10kW.

Explanation 2

It is convenient for DXers to report the programme language as Chinese, usually shown abbreviated as C or CC. In fact the language is Putonghua (Standard Chinese).

AFRICA

More on Cathay

Cathay was popularised by Marco Polo, the Venetian traveller in China who became a favourite and an agent of Kubia Khan. On returning to Venice in 1298 he became the main source of information on the Far East. This review will be continued in the next issue—make sure of your copy if a return to fabled Cathay appeals.

AROUND THE DIAL

As usual, Africa is the springboard—dive in and strike out for some DX.

Australia

Algaeers on 7245 at 1000, OM with the station identification, YL with announcements in the Kabyle Programme for Africa, scheduled from 0700 to 2300.

Ascension Island

BBC Relay on 7160 at 0513, OM with a newcast in English in a programme for Africa, timed from 0300 to 0545 daily. Ascension Island lies in mid-Atlantic and is part of the British colony of St Helena, 1,216km to the south-east. It is customary to group the island with African countries in SWL publications.

Botswana

Gaborone on 4820 at 1950, 7245 at 1000, 4820 at 1950, and OM with announcements in Sesotho.

Cameroon

Douala on 4795 at 0430, OM with the station identification and frequencies in French and English repeated several times, the National Anthem, then a short news bulletin in French. This 100kW transmitter carries the Home Service in vernaculars, French and English from 0425 to 0800 and from 1830 to 2300 (Saturday and Sunday until 2230). The programmes in English are timed from 1745 to 1845 week-

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement

57
days, from 0705 to 0800 and 1730 to 1845 on Saturday and from 0600 to 0645 on Sunday. Relays of the Yaounde English newscasts are made at 0530, 1800 and at 2100 daily.

Chad
Njamen a on a measured 4920.2 at 1952, OM with a talk in French.
This is a move from the former 4905 channel now strikingly occupied by the 250kW VAE Abu Dhabi transmitter which tested on that frequency a few months ago.

Guinea
Conakry on 4900 at 0208, OM with a talk in a vernacular, YLs with a song then OM with an announcement in French. The Home Service in French and vernaculars is radiated from 0600 to 0800 and from 1230 to 2400 Monday to Saturday, and from 0800 through to 2400 on Sunday. There is an English programme from 1830 to 1930 daily. The power is 18kW.

Libya
Tripoli on 7245 at 0050, OM with songs in Arabic, local-style music in an Arabic presentation to Africa, scheduled from 1645 to 0330.
Tripoli on 9600 at 1427, YLs with songs complete with local-style music in an Arabic schedule for Africa, 0400 to 2225 daily.

Nigeria
Lagos on 4990 at 0527, OM with some announcements in English then OM with a local programme.
The Home Service 1 in English and vernaculars is on this frequency from 0430 to 2310 with a power of 50kW.

Senegal
Dakar on 4890 at 2158, YL with a song in vernacular with stringed instrumental backing then OM with announcements and the station identification in French at 2200. Dakar is on the air with the National Service in vernacular and French from 0600 (Sunday from 0700) to 0800 and from 1800 to 2400, but the closing time can vary up to 0100 on occasions. There is an English programme timed from 1845 to 1905. The power is 100kW.

Tanzania
Dar-es-Salaam on 5050 at 0300, OM with the news in Swahili, many place names mentioned such as Morocc, New York, etc. Choral rendition of the National Anthem at 2016 and off at 2018. Radio Tanzania operates the National Service in Swahili from 0300 to 0700 and the Commercial Service from 1300 to 2015. The power is 10kW.

SOUTH AMERICA
Brazil
Radio Nacional de Manaus, Manaus on 4845 at 0230, OM with the full station identification and promotions (promos) in Portuguese.
This 250kW Radiobras transmitter is on the air from 0900 to 1600 and from 1800 to 2000 closing around 0300 (Sunday at 0100).
Radio Nacional, Boa Vista on 4875 at 0317, OM with promos and the station identification in Portuguese. This one is scheduled from 0900 to a variable closing time around 0400 with a power of 10kW.

Colombia
Caracol, Neiva on 4945 at 0609, OM with a newscast in Spanish. Caracol operates around the clock with a power of 20kW.

Ecuador
Radio Quito, Quito on 4920 at 0240, OM with a talk in Spanish followed by a YL with a song extolling the virtues of Quito. At 5kW, Radio Quito is scheduled from 1000 (Sunday from 1200) to 0300 (Sunday until 0300) and identifies as 'Radio Quito, La Voz de la Capital', which makes identification an easy matter. In the Andes, at an elevation of 2,852 metres and situated 24 kilometres south of the equator, Quito is the capital of Ecuador, being the educational, cultural and political centre of the country.
A Quito Indian settlement, it was captured by the Incas just prior to conquest by Benalcazar in 1534.

NEAR AND MIDDLE EAST
India
Air Delhi on 7412 at 1538, OM with news of local affairs and events in English. The North Regional Home Service operates on this channel from 1430 to 1630 and from 1730 to 1740 with newscasts in English timed from 1530 to 1545 and from 1730 to 1735.

Israel
Jerusalem on 17565 at 1010, OM with a talk about international affairs of concern to Israel during an English programme for Europe, scheduled from 1000 to 1030.

Pakistan
Islamabad on 17660 at 1104, OM with the station identification then YL with local news in English read at slow speed. The Urdu transmission for Europe is timed from 0715 to 1115, the English newscast being scheduled from 1100 to 1115.

Turkey
Ankara on 7215 at 1918, OM with a song in Turkish with local-style musical backing during the German programme for Europe, scheduled from 1900 to 2000.

United Arab Emirates
Dubai on 21700 at 1050, OM and YL with a talk in English about some of the local sites of antiquity. This English transmission for Europe is scheduled from 1030 to 1100.

North Yemen
San'a on 9780 at 1058, YL with songs and music in the local style then OM with the station identification in the Arabic programme timed from 0300 to 0700 and from 1000 to 2100.

EUROPE
Greece
Athens on 9935 at 1340, OMs with a folk song together with some local-style music during the Greek presentation to the Middle East, scheduled from 0900 to 2115.
Athens on 11645 at 1523, OM and YL with songs and music in typical Greek style during a Greek programme to North America, timed from 1500 to 1540, and then a YL with an English news bulletin scheduled from 1540 to 1550.

Poland
Warsaw on 7270 at 0059, interval signal then OM with the station identification, frequencies and times of Polish programmes for the North Atlantic area. This particular Polish transmission for the area is timed from 0000 to 0200.

Romania
Bucharest on 7195 at 1923, OM with the DX programme in a German transmission for Europe, scheduled from 1900 to 1925. Then suddenly off without the National Anthem at 1925.

Spain
Madrid on 7280 at 0505, OM and YL with the news during the Spanish programme for Europe, timed from 0500 to 0600.

CLANDESTINE
Seda-ye Jebhe-ye Nejat-e Iran (Voice of the Liberation of Iran) on 7080 at 1815, OM with the station identification followed by a talk in Farsi (Persian). Also logged on 9027 in parallel, which makes identification an easy matter. The use of 7080 makes this transmitter another amateur band intruder and is a shift from the 15555 channel. This particular transmission is scheduled from 1630 to 1825. Voice of the Liberation of Iran has, however, been logged on 15555 and in parallel on 9027 at 0352, radiating from 0530 to 0525.

NOW HEAR THIS
Niamey, Niger on 3260 at 2021, OM with a talk in vernacular followed by the sound of African drums. ORTN Niamey is on the air from 0530 to 0700 (Sunday until 1130) and from 1700 (Saturday and Sunday from 1630) to 2300 carrying the Home Service 1 programmes. The power is 4kW and the channel is beset by utility interference.
HAM RADIO DOES NOT HAVE TO BE EXPENSIVE!

HOWES QRPC equipment offers you the chance to enjoy amateur radio without the need to spend a fortune! Take our QRPC DIRECT CONVERSION COMMUNICATIONS RECEIVERS for example: This is an easy to build, single band receiver for CW and SSB reception. It will work from a 12 to 14V DC supply and gives up to 1W of audio output to drive a loudspeaker or headphones. For a simple receiver, the performance is quite amazing. Compare one against an expensive radio, you will be surprised! Versions are available for 160, 80, 40, 30 or 20m bands. The DDX20 kit costs £14.90, or as an assembled PCB module, £19.90. With readily wound coils, and little layout, this makes an excellent project for both the newcomer and the experienced operator building a QRPC station. A case and a couple of tuning capacitors are the only major items to add to finish your receiver. We have suitable capacitors for all but the 160m version at £1.50 each. You can read a review of this super little kit in the July 1986 issue of Practical Wireless.

HOWES QRPC TRANSMITTERS. We have three QRPC CW transmitters in our range at the moment. The CTX transmitters are available for 40 or 80m bands, and the MTX20 is for 20m. All three feature attractive output power, up to about 5W on 80, 3W on 40 and 1W on 20W. The heating for the output stage is on-board, and one crystal is included. There is space for two more crystals on the PCB, and provision is made for connecting a VFO. The CKV VFOs are available for 40 and 80m at about the moment, the 20m version is under development. The VFOs have dual buffered outputs, so that not only will they drive the transmitter, they can also drive the DDX receivers as well, for full transceiver operation. Voltage regulation, and RT (standby) facilities included.

HOWES 2M to HF TRANSVERTERS. If you have a 2M ESBOW transceiver (or FT290 for example) you can get on to 20 or 80m without having to spend a fortune on an HF transceiver. These transverters also make HF Moire operation much more practical, as a small 2M rig is all that has to be mounted within reach of the operator. These units deliver about 10W output from mismatch proof transverts, and do not require any fancy test equipment to set them up. A high proportion of fixed value filter components keeps alignment simple, and the output spectrum clean.

HOWES CTU20 ANTENNA MATCHING UNIT. The CTU20 is a "T" match type ATU for use with receivers and transmitters of up to 300W output on all bands from 1.8 to 23.0MHz. It uses two air-spaced capacitors and two air variable inductance settings. An unusual feature in a small ATU is the provision of a balance for feeding balanced antennas in addition to the more common unbalanced feed points. LPDA and Yagi antennas can be mounted in this novel design. Simply add a case and connectors to fit in with your station, even the knobs are included on this kit!

HOWES TRF3 SHORTRANGE BROADCAST RECEIVER. The TRF principle was developed 80 years ago. Here it is brought up to date with modern silicon devices. The receiver tunes from 2000 to 12.7 MHz in three bands, if you remove the coil as suggested in the instructions, although you can easily experiment with the coverage if you wish. The TRF3 has switchable input and output, and can be used with small or small antennas. This is an excellent educational project for the "junior" operator, providing a bit of fun for the old timer as well! You should be able to read all about building it in the September issue of Ham Radio Today.

A suitable tuning capacitor is available at £1.50

HOWES TRF3 Kit £13.90

139 HIGHVIEW, VIGO, MEOPHAM, KENT DA13 0UT, ENGLAND. TEL: FAIRSEAT (0732) 823129

C. M. HOWES COMMUNICATIONS
EASY TO BUILD KITS BY MAIL ORDER

Radio & Electronics World smart blue binders, each holding up to 12 issues keeping them in prime condition

Only £4.75 inc p&p

Overseas readers please add 30p Please allow 28 days for delivery

Send your orders to Edwardscchild Ltd, 28 Shenfield Cres Brentwood, Essex CM15 8BN

EPROM 27128 £2.45 RAM 6264 £2.70
25 way D plug 81p 25 way skt £1.30
25 way D plastic shell £1.07
Centronics 36 pin plug £2.50
DIN plugs 5.6, 7 pin (5 off) £1.00
BBC printer lead (5 off) £8.20
40 way D plug 81p 20 (10 off) £8.10
LED's 5mm red, green, amber (10 off) £1.00
All prices inc P&P, please add VAT at 15%
On these pages we present details of interesting contacts from clubs and individuals. We would be happy to receive any similar items from readers.

UoSAT success

The pioneering store-and-forward digital communications experiment (DCE), currently in orbit on the UoSAT 2 satellite has proved an unqualified success. In eight months of experimental operation, the digital communications experiment has been used to relay up to 15 pages of text (100Kbytes) per day between inexpensive groundstations in the UK and the USA.

Following this success groundstations in Australia, New Zealand and Alaska are now going to join the network. Communications experiments with low power, highly portable ground terminals for use in remote or less developed areas will begin soon.

UoSAT 2, built at the University of Surrey and now in a polar orbit at 700km altitude, provides an ideal test bed for the store-and-forward communications concept. Using this technique, a message from one ground terminal is stored in memory on the satellite and delivered as the satellite passes over the destination ground terminal.

The two ground terminals do not have to 'see' the satellite at the same time, and a single satellite can provide global communications coverage. This is unlike geostationary communications systems, which require three satellites to provide world-wide coverage, and still cannot provide communications in the polar regions or in areas without access to large ground stations. As a store-and-forward satellite is in a relatively low orbit, ground terminals need only low power transmitters and small antennas.

There is growing government and commercial interest in this form of communication. Of particular interest is the Swedish Space Corporation which is now planning a dedicated store-and-forward satellite named Mailstar. Data gained from the UoSAT 2 DCE will be invaluable to designers of large-scale store-and-forward systems. The University of Surrey ground control station, in an on-going study funded by ESA, is collecting data from the DCE on both the long and short-term effects of the low-earth orbit environment on high-density CMOS memories and other LSI devices necessary for a store-and-forward transponder.

Engineers with the University of Surrey and VITA (the USA-based Volunteers In Technical Assistance) have been using the DCE to evaluate access protocols and error detection and correction techniques that will perform efficiently on links to store-and-forward satellites in low-earth orbit.

The experiment is one of a number of space technology and space science experiments in orbit on the UoSAT satellite. The DCE was built by volunteers in the United States and Canada, co-ordinated by the Amateur Radio Satellite Corporation (AMSAT) and funded by VITA. VITA's interest in store-and-forward communications stems from a need for timely and accurate communications between volunteers in remote, less-developed areas of the world (generally not served by geostationary communications networks) and technical advisors in the USA.

The UoSAT unit has, for the past ten years, been a pioneering force in cost-effective spacecraft engineering, and has carried out many experiments in low-cost spacecraft and ground station technology through its two successful spacecraft missions - UoSAT 1 and UoSAT 2, launched in 1981 and 1984 respectively as piggyback payloads on NASA Delta rockets. Both are still fully operational in orbit, providing valuable engineering and scientific data.

Tyneside ARS event

BBC Radio Newcastle will be inviting the public to view their new studios during an open day on Sunday, 12th October. The purpose-built broadcasting centre at Fenbrook near the city centre has been on the air since 25th May, and next year BBC Television will move in when the TV studios are completed.

As an added attraction the Tyneside ARS will run a special event station from the newsroom, with the callsign GB2FBC.

This will be the second time Tyneside ARS has run a special event station for Radio Newcastle. In 1982 when the BBC was celebrating 60 years of public broadcasting in Newcastle (originally from 5NO), Tyneside ARS operated GB5NO at the site of the first broadcast for one week. During this time they had a QSO on two metres with G4MHW, a staff presenter for the BBC, which was broadcasted over the air.

Repeater news

The South-West Hertfordshire UHF Group's 433MHz FM repeater, GB3HR (RB14), is now 10 years old. Although no longer operational from the original site at Bushey Heath, near Watford, the present site near Stanmore, Buckinghamshire, has much improved coverage in most directions, and the installation of a better aerial system in February 1986 further improved the service.

Reliability over the last 10 years has been very satisfactory with only one component failure and a feeder cable fault at the Stanmore site. The Bushey Heath site suffered from several electricity mains failures, but so far the supply at Stanmore has been excellent, except for the day that the EEB removed the fuses and meter by mistake!

Plans for the future of HR include a complete standby repeater station, a new duplexer for single aerial working and a protected mains electricity supply.

The group also operates a 10GHz telemetry station, GB3SWH, on 10.380GHz. Facilities are provided for both narrow and wideband reception. This station, located at Bushey Heath, is horizontally polarized and gives an almost omnidirectional coverage. Several long distance reception reports have been received by the beacon keeper, Trevor Groves G4KLU, but many more would be gratefully received to build up a better picture of the paths that exist from the site. The present transmitter was built by Les Shaw G5SWH.

GB3BH, a 23cm FM beacon/repeater, Tx 1297.0MHz, Rx 1291.0MHz, is due to be operational from Bushey Heath during 1986.

Members of the Ballymena Amateur Radio Club, G13FF, operating the special event station, GB2MRL, on Rathlin Island on 6-10 August, using the 2m, 70cm and 23cm bands
Welsh rally
This year's Welsh Amateur Radio Convention will be held at The Oakdale Community College, Blackwood, Gwent on Sunday 5 October. Doors will open at 10.00am and the official opening will be at 11.00am by Mr W McClintock G3VPK, President of the RSGB.

The programme will include the ARRL video presentation of the shuttle mission 51F (W0/JE/Challenger), a tape/slide presentation of the 1985 Cliperton Island DXpedition, a lecture on amateur fast scan TV by E Edwards, GW8LJJ and a VHF feature. Morse test facilities will be available although applicants must apply previously to the RSGB. There will be £300 in cash prizes, plus other prizes, the usual trade stands, bring and buy and RSGB stand. Admission is £1.50 at the door. Talk-in will be on S22.

Further details can be obtained from R B Davies GW2KYA, 16 Vancouver Drive, Penmain, Blackwood, Gwent NP2 0UQ.

Wakefield Mobile Rally
The Wakefield Mobile Rally, organised by the North Wakefield Amateur Radio Club, will offer various attractions, including radio, electronics and computer stalls, a handicraft stall and entertainment for the kids.

It will be held on Sunday 5 October at the Outwood Grange School, Potovens Lane, Wakefield. Doors open at 11am and talk-in will be on S22 and GB3WU. Admission is free.

Refreshments, including a licensed bar, will be available as well as good car parking facilities.

Further details can be obtained from Steve G4RCH on Leeds 536633.

Bristol Radio Rally
The South Bristol Amateur Radio Club has organised the second Bristol Radio Rally for Sunday 19 October. The venue will be the Hartcliffe Youth and Community Centres, Hareclive Road, Hartcliffe, Bristol. And the doors will open at 10am.

The floor area has been increased by 40%, enabling a substantial growth in the number of traders. There will be a globe on site and other refreshments will also be available.

A special event station, GB2BRR, will be operating on the HF bands and talk-in will be on S22. Admission will be 50p.

Further information may be obtained from Mark Goodfellow G4KUQ on (0272) 716093 or Colin Hollister G4SQQ on (0272) 508451, both QTHR.

Testing, testing
Members of the Chelmsford Amateur Radio Society will have a chance to test their rig on 7th October, under the watchful eyes of fellow hams. The society's AGM is also scheduled for that evening, and a high turn-out is expected.

Regular meetings occur on the first Tuesday of each month. For details of time and venue contact Roy GPMX and Ela G6HKM on (0245) 360545 (home) or (0245) 353221 ext 2815 (office).

A club net is held on the Tuesdays between meetings at 8.00p.m on 145.2575 MHz or 145.225 MHz if this frequency is already occupied.

OK yah!
On Tuesday, 11th November at 6.00pm, Professor William Melody, Director of the programme on information and communication technologies at the Economic and Social Research Council, will be speaking at the Royal Society of Arts on 'The contribution of the Canadian Broadcasting Corporation to Canadian culture'.

Those of you not confused by the title may be interested in attending, tickets for which can be obtained free of charge from Carole Singleton, The Royal Society of Arts, John Adam Street, Adelphi, London WC2N 6EZ.

RIP 10-UK
Due to various business and personal changes of circumstance, the organisers of 10-UK have been forced to give up any involvement in the now defunct organisation.

On investigation it has been found that an amount of £230.17 remains as a balance of the 10-UK funds.

Provided that no objections are received by 1st January 1986, it is proposed that the above sum, less any expenses involved (postage, etc), will be donated to the RAIBC. If there are any objections kindly advise G3LWM at 21 Waltham Way, Frinton on Sea, Essex CO13 9JE as soon as possible.

EMC info
On 8th October the Farnborough and District Radio Society will host an evening concerning EMC (electromagnetic compatibility), which will be presented by the RSGB. This will be followed on 22nd October by a surplus equipment sale.

More details of the society are available from G4SBU QTHR.

Morsum Magnificat
A new morse journal, Morsum Magnificat, will shortly be available.

A Dutch version has been published since 1983 by PAOBFN and PA3ALM, and contributions have been received from both amateur enthusiasts and professional Morse telegraphers from around the world.

Now Tony Smith G4FAI has joined the editorial team as English language editor, in order to produce an English version of the journal.

It's aim is to publish material about morse which is not normally found in popular magazines, including history, anecdotes, techniques and illustrations.

UK subscription for one year will cost £6.00 (four issues) including postage. Apply to G4FAI, Tash Place, London N11 1PA, and cheques should be made payable to Morsum Magnificat.

Phone 01-368 4588 for further details.

QRP demo
The Borehamwood and Elstree Amateur Radio Society will be at the second Monday of each month at the Organ Hall Community Centre, Baisworth Close, Borehamwood, Herts.

The October meeting will consist of a QRP demonstration and lecture by G3JJP. A tour of the BBC Brookmans Park Station is also being arranged. Enquiries about this should go to Tony King G0DDJ on 01-207 3809 (after the 7.00pm) and general information is available from Ivor Rosenberg, 11 Parkside Drive, Edgware, Middlesex.

Olympic city?
In Probe, the journal of the Midland Amateur Radio Society (MARS), it is reported that a special event station, GB6OC, is being organised in support of the City of Birmingham's campaign to host the 1992 Olympic Games. The city is a finalist in the selection procedures to choose an appropriate venue for the games. MARS hopes to publicise the idea that Birmingham is a worthwhile choice.

There are several sporting events arranged in Birmingham this year, and MARS plans to operate the station at each of them. The first event was the Royal International Horse Show at the NEC, when 151 stations were contacted in 38 countries. Other events will include the Birmingham Superprix on 24 and 25 August and the Brum Olympic Fun Run on 27 and 28 September.

For further information contact Stuart Grainger G4NSG.

Intruder Watch
In the latest edition of the Irish Radio Transmitters Society's Yearbook a form was included to encourage members to submit reports of intrusion heard on amateur bands.

Now the IRTS plans to recruit volunteers to monitor the bands. These monitors will be provided with a pad of forms and a booklet giving guidelines on the types and modes of transmission to look for. Any SWL or licensed amateur will be welcome to take part.

All reports will be collated by the IRTS and submitted to the Region 1 Intruder Watch, who will report to the IARU. The IARU will in turn put pressure on the ITU to have the intruders removed.

The IRTS believes that this action will help preserve amateur allocations on the HF bands.

More information on the scheme is available from PO Box 462, Dublin 9.
FREE CLASSIFIED ADS

SEND TO: Radio & Electronics World

We are pleased to be able to offer readers the opportunity to sell your unwanted equipment or advertise your wants.

Simply complete the order form at the end of these ads, feel free to use an extension form if there is not enough space on the order form. We will accept ads not on our order form.

FOR SALE

- Clearing shack: Class D wavemeter, valve, capacitors (up to 5 Kv), precision wire wound resistors, meters, unused gauges eg vacuum 0-30 inch Hg, 2 inch white dial, black filament MTG, steel scaled, 0.1, 0.5, 0.33, 0.15, 0.05, 0.025 Ohms, £40. Sony 7600d portable.comms rcv, £95. Metal detector C-Scope, £15, Mike, 14 Doverfield Road, Brixton, £20 NW9. Tel: 01 674 013, Thursday.

- Electronic noise circuit, complete and working with 6 buttons, speaker, main IC makes train, fire engine etc, £25. D52 transistor, £5, Cardigan extra, for older models, photographic oddments and projector lamps, 35mm filmstrip - mostly geographical subjects, £5, Collect or postage extra. Ben Tel: (021) 525 977.

- **Hallicrafters S108 comm receiver, 8 tubes, £55. Hall S72s mains/battery, 8 tubes, portable rec, also makes some test equipment, £5.** C-F46, 24th May.

- **Free transistors for amelioration receiver and components.** They're a bit heavy, so please send £1 to cover post. D Martin, 6 Downland Garden, Epsom, Surrey KT18 5JJ. Post only.

- **N-transistor video detectors, 27 stage filters, £3.** PW Mean 50MHz trvtr, 28MHz F, not boxed, £40. 1kW isolation transformer, 240V, £55. For Bush model, £30. J Turner, 61a Kings Road, Reigate, £27. PCB for 50MHz Meon, £2.50. PCB for VLF converter, any IF, £1.50 with C10, £3.50. Will collect or postage extra. Ben. Tel: (021) 525 977.

- **Mailboxes in plastics and steel, many design and price changes, £5.** C-F46, 24th May.

- **Foot switch, microwave, 50W power supply, 600-0-600, 350-0-350, plus lower voltages, smoothing circuit, £15.** J Turner, 61a Kings Road, Reigate.

- **Surplus amateur radio 2 meter transmitter, 80W output, modulator, 50W out power supply, 600-0-600, 550-0-550, 350-0-350, plus lower voltages, smoothing circuit, £15.** J Turner, 61a Kings Road, Reigate.

- **New colour TV/radio and cassette set.** Excellent. Please mention Radio & Electronics World when replying to any advertisement.

- **Radio & Electronics World Classifieds can work for you.** Please mention ple, or reapplying to a any advertisement.

Deadline and conditions

Advertisements will be inserted in the first available issue on a first come first serve basis. We reserve the right to edit and exclude any trade advertisements not accepted.

Please mention Radio & Electronics World when replying to any advertisement.

OCTOBER 1986
FREE CLASSIFIED AD ORDER FORM

Send to: Radio & Electronics World Classified Ads. Sovereign House, Brentwood, Essex CM14 4SE

Classification: [tick appropriate box] If you want to insert ads under more than one classification use separate sheets for second and subsequent ads

For Sale... ☐ Wanted... ☐

USE BLOCK CAPITALS (One word per box) To avoid mistakes please write clearly and punctuate your ad

[Insert Classified Ad Details]

Name/Address
Postcode/Telephone

USE SEPARATE SHEET FOR MORE WORDS

Ensure that you have included your name and address, and/or telephone number

CONDITIONS: Your ad will be published in the first available issue. We will not accept trade advertisements. We reserve the right to exclude any advertisement.
SMALL ADS

RF DEVICES AT ROCK BOTTOM PRICES!

Nobody beats us!
Over 30,000 RF devices at low prices
REPLACEMENT RF TRANSISTORS
MRF454 HF/SSB 80W £16.20
MFR450 HF/SSB 50W £11.60
MRF238 VHF/FM 25W £12.80
MRF475 HF/SSB 20W £2.99
2SC1969 HF/SSB 18W £2.79
2SC2043/1307 HF 16W £2.00
2SC1947 VHF 3.5W £7.60
2SC1946A VHF 32W £14.30

REPLACEMENT RF POWER MODULES
M57704/SAU3 UHF 15W £36.00
M57712/SAV7 VHF/FM 25W £39.00
M57713/SAV8 VHF/SSB 15W £39.00
M57716/SAU4 UHF/SSB 15W £49.00
M57719 VHF/PMR 15W £29.00
M57727 VHF/SSB 38W £45.00
M57749/SAU11 934/FM 7W £29.00

Send £1.00 p&p and SAE for full list
All prices inc. VAT
Many Ic's and other types in stock

RAYCOM LTD
DEPT RE 584 HAGLEY RD WEST
QUINTON BIRMINGHAM
B6 9BS
021 421 8201-3
(24hr answer phone)

TELEBOX
refers any monitor with a composite video input into a
QUALITY 7 channel off air COLOUR UHF TV set. Brand new
cable contains mains powered. Integral 4 way switch and
ONLY £27.50. Plus £2.50 p&p. Send cheq/Po to:
Dept RE, CHILTERN COMMUNICATIONS
COMPANY, 9 CHILTERN STREET, LONDON W1

JAYCEE ELECTRONICS
JOHN GM30PW
20 Woodside Way, Glenrothes,
Fife KY7 5DP
Tel: 0592 756982
Open: Tues-Sat 9-5
Quality secondhand equipment in stock. Full
range of TRIO goodies. Jaybeam - Microwave
Modules - LAR.

ETESON ELECTRONICS
158 Lower Green,
Poulton-le-Fylde, Blackpool
Tel: (0253) 885107
Open: 9.30am - 12.30, 1.30 - 5.30; Closed Wed & Sun.
Electronic Component Specialists.
A wide range of electronic components, IC's, capacitors,
transistors, resistors, plugs and sockets etc.

BEAM VIDEO
Throughout the house on Channel 36.
Price £5.90 + P&P 50p. Phone for leaflet:
Electronic Mailorder A
62 Bridge Street, Ramsbottom
Lancs BLO 9AQ
Tel: 070602-3036 (24hrs)

* MICROCOMPUTERS
* PERIPHERALS
* INSTRUMENTATION
For fastest, best CASH offer, phone
COMPUTER APPRAISAL
Canterbury (0227) 470512
Telex: 966134

SERVICE SHEETS
For most Makes, Models and age of electronic equipment
Audio, Video, TV, Test, Amature Radio, Vintage etc.
Thousands stocked
SAE Exchanges

MAURITRAN TECHNICAL SERVICES
Dept REN, 8 Cherry Tree Road, Chinnor, Oxon OX9 4QV

WHY PAY HIGH PRICES
FOR COMPONENTS

<table>
<thead>
<tr>
<th>PARTS</th>
<th>NEW</th>
<th>USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>M57A</td>
<td>2.80</td>
<td>1.85</td>
</tr>
<tr>
<td>M80I</td>
<td>2.80</td>
<td>1.80</td>
</tr>
<tr>
<td>M848</td>
<td>3.80</td>
<td>2.85</td>
</tr>
<tr>
<td>MAN815</td>
<td>3.50</td>
<td>2.50</td>
</tr>
<tr>
<td>M84520</td>
<td>3.00</td>
<td>2.00</td>
</tr>
<tr>
<td>M6200</td>
<td>6.30</td>
<td>-</td>
</tr>
<tr>
<td>M8650</td>
<td>4.20</td>
<td>-</td>
</tr>
<tr>
<td>2 way dot switch</td>
<td>9.00</td>
<td>-</td>
</tr>
<tr>
<td>3 way dot switch</td>
<td>4.00</td>
<td>-</td>
</tr>
<tr>
<td>35x1030mAh PCB</td>
<td>1.30</td>
<td>-</td>
</tr>
<tr>
<td>M850</td>
<td>1.30</td>
<td>-</td>
</tr>
</tbody>
</table>

RELAYS

<table>
<thead>
<tr>
<th>PARTS</th>
<th>NEW</th>
<th>USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-bit</td>
<td>1.00</td>
<td>-</td>
</tr>
<tr>
<td>32-bit-100 KHz</td>
<td>3.00</td>
<td>-</td>
</tr>
<tr>
<td>Base for above</td>
<td>3.00</td>
<td>-</td>
</tr>
<tr>
<td>24-pin DIP (metal)</td>
<td>1.00</td>
<td>-</td>
</tr>
<tr>
<td>24-pin device (crystal)</td>
<td>2.00</td>
<td>-</td>
</tr>
<tr>
<td>32-pin TIP (metal)</td>
<td>3.50</td>
<td>-</td>
</tr>
<tr>
<td>32-pin DIP PCB</td>
<td>4.00</td>
<td>-</td>
</tr>
<tr>
<td>Eprom 15K</td>
<td>5.00</td>
<td>-</td>
</tr>
<tr>
<td>S-1C sockets</td>
<td>5.00</td>
<td>-</td>
</tr>
<tr>
<td>28mm speakers 3n</td>
<td>3.00</td>
<td>-</td>
</tr>
<tr>
<td>Black plastic PCB</td>
<td>1.95</td>
<td>-</td>
</tr>
<tr>
<td>50nF sockets</td>
<td>9.00</td>
<td>-</td>
</tr>
<tr>
<td>350/150/100</td>
<td>1.50</td>
<td>-</td>
</tr>
</tbody>
</table>

SPECIAL OFFERS

- Automatic Car Immobiliser £15.99
- Automatic Key Pad Car Immobiliser £19.99
- Remarq BLEESA 12v £7.20
- Remarq BLEESA 12v £7.20
- Copper/Brass Door - Single sided 8in £2.50
- Copper/Brass Door - Double sided £5.00
- Copper/Brass Door - Double sided £5.50

Send SAE for complete stock list.
Add 10% VAT plus 50p p&p to all orders.
Cheques and Postal Orders make payable to
"GIN-MAR COMPONENTS", Bridge Cottage,
Beddington Bank, Beddington, Northumberland NE22 5TV.
Telephone 0670-36866.

ADULT VIDEO CLUB
OUR GIRLS WILL GIVE YOU
THE INTIMATE DETAILS.
NOW RING
0924 262122
OR WRITE:
AVC, PO BOX 12,
BATEL, W YORKSHIRE

RADIO & ELECTRONICS WORLD SMALL AD ORDER FORM

TO: Radio & Electronics World - Sovereign House
Brentwood - Essex CM14 4SE - England (0277) 219876

PLEASE RESERVE........... centimetres by............ columns.

FOR A PERIOD OF
1 issue........... 3 issues........... 6 issues........... 12 issues...........\

COPY enclosed........... to follow...........\

PAYMENT ENCLOSED: £ -

CHARGE TO MY ACCOUNT:

COMPANY
ADDRESS
SIGNATURE
TELEPHONE

CPI

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement

OCTOBER 1986
ADVERTISERS INDEX

Aerial Techniques 47
Anchor Surplus 43
Barrie Elec ... 59
Bi-Pak .. 43
J Bull ... 28
CIL Elec ... 37
Cobonic ... 32
Comex Systems .. 31
PM Components 24, 25
Data-Pen ... 27
Display Elec .. 38, 39
Edwardschild ... 59
Elec and Comp Workshop 20

CM Howes ... 59
ICOM .. 6, 7
Brian Reed .. 32
Retech ... 32
Riscomp .. 20, 32
Sendz Comp .. 68
Sherwood Data 14
Stewart of Reading 54
C R Supply .. 47
T Systems ... 59
Telecoms ... 67
KW Ten Tec .. 54
Reg Ward ... 43
R Withers .. 2

ADVERTISING RATES & INFORMATION

DISPLAY AD RATES

<table>
<thead>
<tr>
<th>depth mm x width mm</th>
<th>ad space</th>
<th>1 issue</th>
<th>3 issues</th>
<th>6 issues</th>
<th>12 issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>61 x 90</td>
<td>1/8 page</td>
<td>£91.00</td>
<td>£182.00</td>
<td>£364.00</td>
<td>£728.00</td>
</tr>
<tr>
<td>128 x 186 or 263 x 90</td>
<td>1/4 page</td>
<td>£160.00</td>
<td>£320.00</td>
<td>£640.00</td>
<td>£1,280.00</td>
</tr>
<tr>
<td>263 x 196</td>
<td>1/8 page</td>
<td>£305.00</td>
<td>£610.00</td>
<td>£1,220.00</td>
<td>£2,440.00</td>
</tr>
<tr>
<td>263 x 334</td>
<td>1 page</td>
<td>£560.00</td>
<td>£1,120.00</td>
<td>£2,240.00</td>
<td>£4,480.00</td>
</tr>
<tr>
<td></td>
<td>double page</td>
<td>£1,140.00</td>
<td>£2,280.00</td>
<td>£4,560.00</td>
<td>£9,120.00</td>
</tr>
</tbody>
</table>

COLOUR AD RATES

<table>
<thead>
<tr>
<th>depth mm x width mm</th>
<th>ad space</th>
<th>1 issue</th>
<th>3 issues</th>
<th>6 issues</th>
<th>12 issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 x 186 or 263 x 90</td>
<td>1/8 page</td>
<td>£420.00</td>
<td>£840.00</td>
<td>£1,680.00</td>
<td>£3,360.00</td>
</tr>
<tr>
<td>263 x 334</td>
<td>1 page</td>
<td>£1,350.00</td>
<td>£2,700.00</td>
<td>£5,400.00</td>
<td>£10,800.00</td>
</tr>
</tbody>
</table>

SPECIAL POSITIONS

COVERS
- Outside back cover 20% extra
- Inside covers 10% extra
- Blended 10% extra
- Facing Matter 15% extra

DEADLINES
- 12 issues
- 3 issues

CONDITIONS & INFORMATION

SERIES RATES
- Series rates also apply when larger or additional items are inserted in a position.
- All ads at least the minimum space must appear in consecutive issues to qualify for series rates.
- Previous copy will automatically be replaced if no further copy is received.
- A 10% of 10% extra is acceptable for maintaining your series rate contract. This will automatically be inserted if no further copy is received.
- Display Ad and Small Ad series rate contracts are not interchangeable.

MOMENTUM - web-offset
- Printed by International MoneyOrder
- Commission to approved advertising agencies is 10%

OVERSEAS by International MoneyOrder
- Commission to approved advertising agencies is 10%

ADDED- ON
- 10% discount if advertising in both Radio & Electronics World and Amateur Radio. A voucher copy will be sent to Display and Colour advertisers only.
- Ads accepted subject to our standard conditions, available on request.

please mention RADIO & ELECTRONICS WORLD when replying to any advertisement

66

OCTOBER 1986
Telecomms

DISTRIBUTORS OF AMATEUR AND PERSONAL RADIO EQUIPMENT

SEND £1 FOR OUR FULL CATALOGUE AND RECEIVE A £2 VOUCHER

All amplifiers except broadband models are tuned for 29.6 MHz centre freq. Should you require a lower freq. i.e. 28.5 MHz please state when ordering. Export models available for 25-30 MHz.

MOBILE AMPLIFIERS

C.T.E. MOD 767
76 Watts FM
INPUT: 25-15 Watts
SWITCHABLE: Class AB, Class C
SUPPLY: 12V DC
REMOTE CONTROL FACILITY

C.T.E. MOD 717 50W FM AM/SSB/CW
C.T.E. MOD 717 100W FM AM/SSB/CW
ZETAG 855 50W FM 26-30 MHz
ZETAG 816 70W FM 26-30 MHz
ZETAG 8130 100W FM 26-30 MHz
NEVADA TCSD 50W FM 26-30 MHz

MAINS OPERATED AMPLIFIERS

C.T.E. DCB 50W FM (Broadband) 12V or 24V
ZETAG 8132 150W FM (Waves) 26-30 MHz
ZETAG 8132 150W FM Solid State (Broadband)

29 MHz BASE ANTENNAS

NEVADA TC52 1/2 WAVE
This top class British made half wave uses high grade aluminium and a low loss cut coil with a small radius. This antenna is our most popular amongst the 29.6 MHz frequency.

NEVADA TC58 9/8 WAVE
Designed using high grade aluminium and a low loss coil sample with a small radius this antenna is our most popular amongst the 29.6 MHz frequency.

SALIUT 3/4 WAVE
Using a unique base this antenna offers excellent ground wave coverage on 10 MHz.

2 MTR EQUIPMENT

2 MTR HANDHELD

NEW MOD. C.TE. CT1600
A superbly sensitive new handheld covering 29-48 MHz.
- Regular switch
- High power 1.5-5 Watts
- Two bandweek selector

VHF MOBILE AMPLIFIERS
C.TE. B104 144MHz 10 Watt Pre-Amp
C.TE. B44 144MHz 4 Watt

ALINCO 2 MTR PRODUCTS
AL-210E 25W Pre-Amplifier
SPECIAL OFFER
AL-520E Inserted with 30 Watt Amp

POWER SUPPLIES

F911
10 AMP MAX. 13.8V DC
£49.99

CTE F100 30 Amp Supply
£49.47

ZETAG 1210 10 Amp Supply
£89.70

ZETAG 1210 10 Amp Supply
£102.75

ZETAG 1220 25 Amp XMeters
£123.92

ZETAG 1225 40 Amp XMeters
£199.95

NEVADA BASED PRODUCTS

NEVADA TC27 RX
RECEIVER PRE-AMP FOR 26-30 MHz
A superior low noise pre-amplifier for 29MHz FM operation. Variable gain -68dB to 18dB's suitable for use with transmitters up to 25 Watts output.

NEVADA TC27 RXM
MOBILE PRE-AMPLIFIER FOR 29MHz FM
An F/E 1 low noise pre-amplifier with variable gain. Designed to improve reception on even the best transceiver. Variable gain -4 to +30dBs.

TELECOMMS

HOTLINE 0705 662145
TELEX 869107 TELCOM G
189 LONDON ROAD, PORTSMOUTH,
HANTS, PO2 9AE,

USE YOUR CREDIT CARD (AMERICAN EXPRESS,
ACCESS OR VISU) FOR IMMEDIATE DISPATCH.