Useful Accessories

‘Minicard’
Record Cards

GSO RECORD CARDS 2½ ins. x 2½ ins. printed both sides, available or Amateur Station records, at 3/3 per 100 post paid. Metal filing trays as shown, heavy gauge steel, green enamel to hold 500 cards, 3/3 post paid. Indices not available.

THE MODERN BOOK CO.

The De Luxe Home-built Television and Radiogram. By W. I. Flack. 6s. 6d. Postage 4d.
Reference Data for Radio Engineers. Edited by W. L. McPherson. 7s. Postage 6d.
Amplifiers. By N. H. Crowhurst. 3s. 6d. Postage 3d.
Resistance Strain Gauges. By J. Yarnell. 12s. 6d. Postage 6d.
The Radio Amateur’s Handbook. By The American Radio Relay League. 28th edn. 22s. 6d. Postage 1s.

We have the finest selection of books in the Country.

19-23 PRAED STREET, (DEPT. SWN) LONDON, W.2

PADDINGTON 4185.

Theory and Design of Television Receivers. By S. Deutsch. 55s. 6d. Postage 9d.
Telecommunications Principles. By A. N. Renton. 37s. 6d. Postage 9d.
Time Bases (Scanning Generators). By O. S. Puckle. Postage 9d.
Television Receiving Equipment. By E. T. Cocker. 3rd edition. 18s. Postage 6d.
Radio Servicing: Theory and Practice. By A. Marcus. 35s. Postage 9d.
Radio Valve Data. Compiled by “Wireless World.” 2nd edn. 3s. 6d. Postage 4d.
Radio Installations. By W. E. Panett. 45s. Postage 9d.

IN THIS ISSUE...

Single Valve Signal Generator • "1143" Modified for 2 Metres • A Transitron Inductance Meter • Radio Control of Models • Converting the 21 Receiver—Cont. Query Corner • Harmonic Drive • Your Workshop etc., etc.
LITERATURE FOR THE RADIO AMATEUR

Short Wave News & Radio Amateur. Constructional articles, topical features and news reviews for the radio amateur whether his interest be receiving or transmitting. Annual Sub. 21/-.

Radio Constructor. The magazine for the home constructor of radio and other electronic gear. Annual Sub. 18/-.

World Radio Handbook (1952 edition). The S.W. broadcast enthusiasts handbook. You are missing something from your hobby if you have not a copy of this excellent publication. 8/9.

Inexpensive Television. Build yourself a televisor from surplus. Latest edition includes all the data on a televisor for Holme Moss. 2/8.

Report Pads. If you need that QSL card, send a comprehensive report. A convenient and accurate form for reporting. 3/3

All above prices include postage and packing.

All available from:-
AMALGAMATED SHORT WAVE PRESS LTD.

Radio Constructor
Vol. 5, No. 6
Annual Subscription 18/-

January, 1952

Editorial and Advertising Offices—57, Maida Vale, Paddington, Tel. CUNingham 6518.

Edited by C. W. G. OVERLAND, G2ATV

CONTENTS

Suggested Circuits: A Transistor
Inductance Meter, by G. A.
French - - - - - - - - 202
'R.C.' Quiz, by W. Groome - 204
Radio Control of Models, by
A. C. Gee, G2UK - - - - 205
Converting the 21 Receiver, by
J. R. Davies - - - - 207
In Your Workshop, by J.R.D. - 212
Modification of the "1143"
Transmitter Unit for 2 Metre
Operation, by John L.
Emment - - - - - 216
Harmonic Drive, by P. Turner - 219
A Single Valve Signal Generator,
by A. W. Wood, B.Sc. - - - 224
Loudspeaker Baffles and Enclosures, by J. R. Davies- 230
Query Corner - - - - - - 233
Radio Miscellany, by Centre Tap- 236
An Auto Scale Searching Light,
by P. Johnstone - - - - 238
Mailbag - - - - - - - - 240

RESOLUTION!

With this, the first issue of the New Year, we look back at our progress during 1951, and pause in the making of tentative plans for improvements during 1952, to contemplate a furtherance of this progress.

Perhaps our greatest achievement during the past year is invisible to our readers. We refer, of course, to our greatly expanded circulation. By this means, we have been enabled to avoid an increase in the selling price, despite rising prices generally and printing costs and paper in particular.

Our increased circulation is a source of gratification to those on the Editorial side: not only because of the resultant widening of the circle of friends we make through our columns, but we feel the growth of our influence is serving to strengthen the well-being of the hobby.

In this connection, we would like to acknowledge the many suggestions received, from time to time, from readers, which have assisted us in reflecting, in these pages, the interests of all classes of readers. Confident that this policy has amply rewarded our efforts, we look forward to yet greater success in the ensuing year.

NOTICES

THE CONTENTS of this magazine are strictly copyright and may not be reproduced without obtaining prior permission from the Editor. Opinions expressed by contributors are not necessarily those of the Editor or its proprietors.

THE EDITOR invites original contributions on construction of radio subjects. All material used will be paid for. Articles should be typewritten, and photographs should be clear and sharp. Diagrams need not be large or perfectly drawn, as our draughtsmen will redraw in most cases, but relevant information should be included. All Mss must be accompanied by a stamped addressed envelope for reply or return. Each item must bear the sender's name and address.

COMPONENT REVIEW, Manufacturers, publishers, etc., are invited to submit samples or information of new products for review in this section.

Suggested CIRCUITS for the EXPERIMENTER

The circuits presented in this series have been designed by G. A. FRENCH specially for the enthusiast who needs only a circuit and the essential relevant data.

No. 14: A Transistron Inductance Meter

Last month we gave a suggested circuit for a capacitance meter in which the unknown capacitance was used to tune an inductor, a reading then being taken of the frequency of resonance. In this month's circuit, something of the same principle is used to find unknown values of inductance. The inductor under test is connected to a transistron oscillator, and, when paralleled by a known value of capacitance, it resonates at a frequency read with the aid of an external signal generator. By the use of two different parallel capacitors it is also possible to obtain a measure of the self-capacitance across the inductor.

The Circuit

The most important part of the circuit centres around the transistron oscillator, V1. This is a conventional RF pentode whose suppressor-grid is made negative with respect to its cathode, and whose screen-grid is given a higher positive voltage than its anode. The oscillator works on a portion of its screen-grid current-voltage curve which produces negative resistance. Due to this negative resistance no feedback coil is necessary for the inductor under test, and it may be made to oscillate by the use of a simple two-grid oscillator circuit.

To maintain the necessary voltages on the grid, two pre-set potentiometers, R7 and R8, are connected across the HT line. The values of resistance given in the circuit for these two components are a little low but, in the interests of stability of operation, such low values can be relied upon to err on the "safe side" for the different practical models which may be built.

The range of the transistron oscillator varies from low audio frequencies up to approximately 50 Mcs.

The oscillographic voltages obtained from the test inductor are applied to a leaky-grid detector, V2, via the 10 pF capacitor, C6. The output of an attenuated signal generator is also applied to the same valve. A further valve, V3, then amplifies the AF output from V2 and passes it to the headphones. The AF amplifier is necessary as the output from both the transistron and the signal generator will be low.

Once the frequency of oscillation given by the unknown inductor has been obtained, the value of its inductance will be given by the following formula:

\[L = \frac{2\pi f^2}{C} \]

where \(L \) is in henrys, \(C \) in farads, and \(f \) in cycles per second.

If the meter is to be used consistently as a graph of inductance against frequency can be plotted, using the capacitance values already installed in the meter.

Practical Details

The construction of the meter should not present a great deal of difficulty. The wiring to the oscillator valve must be kept short in order to reduce self-capacitance and give-efficient working at high frequencies. The resistor, R5, is panel-mounted and its leads may be of any convenient length so long as C10 is mounted close to the valve. The same applies to R8 and C11.

When the meter has been completed, the pre-set resistors R7 and R8 may be set up for optimum readings. To do this, R8 should be approximately 0.3 a third of the way up and R7 set to apply a slight negative voltage to the suppressor grid (with relation to cathode). R5 should be set to maximum. An inductor may then be connected across the test terminals and the switch S1 set to position 1.

The oscillator will probably function straightway, a beat-note being obtained from the external signal generator when it is set to the correct frequency. If oscillations do not commence immediately, R7 should be adjusted. In extreme cases it will be necessary to adjust R8 as well. Once a satisfactory beat-note has been obtained, R7 and R8 should be adjusted to give the strongest oscillations. (The adjustments to these two potentiometers will probably be interdependent.) R5 should then be turned down until the beat-note is just audible; whereupon the process can be repeated. Once they are set up, R7 and R8 will need no further alteration. Indeed, they can be replaced by fixed resistors, if this is desired.

For very accurate readings, it will be necessary to take into account the internal stray capacitances in the meter itself. These could be measured across the test terminals, with one of the paralleling capacitors temporarily unsoldered and with V1 plugged in (the power supply being switched off); and should be later added to the value of capacitance switched in by S1. The effect of the stray capacitances will not be so great when S1 is switched to position 2.

Self-Capacitance

Assuming that the self-capacitance in the inductor under test may be considered as an additional capacitor connected across it, a measure of this self-capacitance can be obtained from the frequency readings.
given on positions 1 and 2 of S1; these readings being used to form a quadratic equation.

Harmonics
It may sometimes be possible to obtain false readings from the meter due to the presence of harmonics given either by the signal generator or by the transistor oscillator. These harmonics might, however, be very much weaker than the fundamentals; particularly so when both the signal generator and the oscillator are set to give low outputs. Once a beat-note has been obtained, the output of the transistor should be reduced (by adjusting Rs) until it is approaching the 'just audible' stage. The signal generator should then be attenuated until this stage is actually reached. Should no other beat-notes be obtainable, then it will be certain that the indications obtained are given by the fundamentals.

Radio Constructor

QUIZ

Conducted by W. GROOME

(1) Mr. Brain's TV receiver was of excellent design and he was satisfied that its response was adequate and his aerial beyond reproach. He was therefore surprised to find that the 2.5 Mcs bars could not be distinguished on test card 'C'. What was wrong?

(2) For what reason is it sometimes recommended that an output pentode should work into a lower load than that which gives the maximum gain?

(3) What steps would you take to prevent 'parasitic' oscillation in an AM amplifier?

(4) Is it true that a cathode ray tube will 'explode' if the glass is broken?

(5) What objection is there to the use of a transformer as a cathode coupling after a pentode voltage amplifier?

(6) What essential precaution is necessary in the use of direct coupling between valves?

ANSWERS IN NEXT COLUMN

Radio Control of Models

By A. C. GEE, G2UK.

In the previous article in this series, we described the installation and tuning-up of the E.D. Mk 111 receiver in a model aircraft. Whilst R/C has obviously a very useful application to model aircraft, the beginner in this sphere is well advised to try his initial experiments in a rather more robust craft, which also has the additional advantage of being able to carry a greater weight of gear. You will find that once it becomes known that you have a radio controlled model working, all sorts of visitors will present themselves with the request that you show them "How the wheels go round". One of the disadvantages from the demonstration point of view of the model aircraft installation is that the life of the batteries is so short that frequent experiments or demonstrations become quite expensive. We have found, therefore, that our 30-inch electric launch makes a much better test bed and demonstration unit than our model aircraft.

This model is illustrated herewith, and its general features are well shown in the accompanying photograph. The launch was built up from a kit and is a model of the R.A.F. Seaplane Tender. It is driven by the small accumulators shown.

The receiver is the same as that used for the model aircraft, viz., the E.D. Mk 111 using the Hvac XFG1 gas triode. It is slung by means of elastic bands just forward of the electric motor—which is disguised by means of its plastic casing to resemble a Perkins Diesel engine. The switch, potentiometer and HT current test socket are fixed to the bulkhead, as shown. The aerial is made up of fine copper wire, threaded through holes in paxolin washers and twisted together to form a quite realistic looking cage aerial. The aerial is continued forward as a single wire to form a forestay or with a feed-through insulator on the foredeck. A length of insulated wire is run from this to the aerial tag on the receiver. The aerial is kept taut by a rubber band from its after end down to a cleat on the stern.

For the HT, one half of a Drydex Type 526 Drymax 90V battery makes an admir-
Converting the
21 RECEIVER

By J. R. DAVIES

The second of a series of articles describing the conversion of this well-known ex-Government receiver.

22. Carrying on with the modification of the receiver, it is next necessary to unsolder the temporary HT negative lead (used originally for checking the receiver) from tag 5 of the rear plate; and to remove also the temporarily 100 Ω resistor. Connect an additional lead from this tag to pin 3 of Spare Valvholder 2.

23. Connect an additional 100 Ω resistor (the one just removed from its temporary connection may be used, if desired) between pin 3 and pin 6 of Spare Valvholder 2. Connect an additional 250 Ω resistor between pins 3 and 8 of the same valvholder.

24. Run a lead from tag 8 of the rear plate to pin 8 of Spare Valvholder 2. Reconnect the temporary HT negative wander lead to tag 8 of the rear plate.

25. A 75 k Ω resistor is connected between the two third tags from the rear, top and bottom of the tagboard. Disconnect the red lead from its bottom tag and cut it back to its harness.

26. The other end of this red lead is bound together with a red and white lead and an orange lead; the three being originally connected to the output transformer. Remove the thread facing these three wires together and cut both the red lead and the orange lead back to the harness. Disconnect the other end of the orange lead from pin 3 of valvholder V2B and cut it back to the harness.

27. Mount the new speaker transformer in the position occupied by the old output transformer. The Premier model recommended can be fitted directly to the holes used previously by the output transformer, further drilling being unnecessary.

28. Connect one side of the secondary of the speaker transformer to pin 6 of Spare Valvholder 2. Connect the other side to the black lead from tag 2 of the rear plate (Step 5).

29. The red and white lead (all that is left of the three wires mentioned in Step 26) is now connected to one side of the speaker transformer primary. The red lead from tag 1, rear plate (Step 5), is connected to the same transformer tag. To the other primary tag is connected the screened lead from pin 3 of V2B, shortened as necessary. The screened lead must be insulated with sleeving, and may be tied to the main harness for security. The 300 pF capacitor of Step 3 is connected across the primary tags.

30. Two green leads are connected to the earthy tag (i.e. the tag at the “bottom” of the track, corresponding to minimum volume) of the volume control. Remove these leads, allowing them to remain connected together, and insulating the joint with sleeving. Connect an additional lead between the now-vacant volume-control tag and pin 8 of Spare Valvholder 2.

31. Remove the wire bonding pins 5 and 6 of V2B together. Disconnect the green lead from pin 4 and reconnect it to pin 5. Remove the 120 k Ω resistor joining pin 4 to an adjacent tag on the centre wave-change wafer. The green top-cap fly-lead from this wave-change switch tag is also removed.

32. Connect pin 4 of V2B to the top of the 75 k Ω resistor mentioned in Step 25. Remove the 75 k Ω resistor.

33. Remove the 75 k Ω (filament-dropping) resistor joining pins 8 and 2 of V2B and
connect these pins together. Similarly remove the 75 Ω resistor across pins 8 and 2 of V2A and short out the pins.

34. Trace the green fly-lead from the top-cap of valve V2A to a contact on the wave-change switch. Replace this lead by a screened lead whose screening is earthed at pin 1 of V2A.

Checking the AF Stages

35. The AF stages are now wired up and may be checked. Connect a loudspeaker (about 2-3 ohms if the Premier transformer is used) between tag 2, rear plate and chassis. Remove the AR8 from valveholder V2B and fit the Pen25 in its place. Connect a 2-volt accumulator (not 6 volts this time) to the LT leads; and 120 volts to the HT leads.

The AF stages should be sensitive and ‘lively’, and there should be no instability. If the top-grid of valve V2A is touched with the finger there should be a loud hum, click, or similar noise. Badly earthed metallising on valve V2A will cause instability. It should be remembered that the other valves in the receiver will not be working yet as their filament-dropping resistors are still connected.

After the AF stages have been checked, the batteries should be once more disconnected. The process of conversion is then resumed, carrying on to the next step.

Modifying and Testing the IF Stages

36. Remove the filament-dropping resistor from pins 7 and 8 of V1F, and connect these two pins together.

37. Similarly remove the resistor across, and short out, the pins 7 and 8 of V1E.

38. Remove the resistor across pins 7 and 8 of V1F. Disconnect, remove the black and white lead from pin 7 of V1C to pin 2 of V1B. Connect a temporary lead from pin 8 of V1E to pin 8 of V1C. (This lead is fitted temporarily in order to test the IF stages, and it will afterwards be removed).

39. The IF stages should now be working from the top-grid of V1C onwards. After reconnecting the battery supply the IF stages may be tested with an attenuated signal generator for sensitivity. Alternatively, an aerial touched to the grid of V1C will cause any local man-made interference (electric motors, etc.) to be picked up and amplified. Apart from a slight hiss these should be no self-generated noise or instability whatsoever. After the test has been completed the batteries should be disconnected again. The temporary lead of the preceding Step should also be removed.

40. To the right of the wave-change switch (chassis upside-down again) is an SPST tumbler switch. A black lead from this switch connects to a small metal rectifier above the chassis. Remove this rectifier and the lead. (The rectifier is mounted by a single long 6BA bolt and nut). To the other contact of the switch is connected a black lead which passes through the harness to tag 2 of the rear plate. Disconnect this lead at tag 2 and cut it back to the harness. Similarly disconnect it at the switch end, cutting this end also back to the harness. Remove the switch.

41. To the left of the volume control is an SPDT tumbler switch. Identify the white and black lead from the next stage, tag travelling through the harness to tag 11, rear plate. Disconnect this lead at both ends and cut both ends back to the harness.

42. Two other leads (one white, one black) are also connected to the SPDT switch. Disconnect these leads and remove the switch. After its bush nut has been removed, the switch should be turned to a vertical position, whereupon it may be seen that the main axis of the 2 kΩ resistor behind it. Trace the white and black leads to the panel above the chassis, disconnect at the tags on this panel and remove the leads.

43. Turn the chassis right way up and remove valves V1A, V1B, V1C and V1D from their valveholders.

44. Remove the paxolin cover over the tuning capacitors. This is held by three 6BA bolts screwed into tapped angle brackets at the side, and by two 4BA nuts on top. To facilitate removal, disconnect the top-cap connector to V1C.

45. The 5-gang tuning capacitor will now be visible. Identify five separate leads travelling through grommets in the chassis to the five sets of fixed vanes. Cut all five leads just above the grommets. A sixth green lead passes through a grommet adjacent to Spade Valveholder X 2 and connects to a tag-board mounted between the two tuning capacitors. Disconnect at the tagboard and leave the lead available for re-connection later.

46. Identify the small coil at the rear of the chassis and above it. (See Step 15). Disconnect the two leads connected to it (one orange, one black and white) and remove the coil.

Removing the Coil Chassis

47. Turn the chassis upside down again. Disconnect all the wires to V1A at the valveholder tags, with the exception of the short wire bridging pins 5 and 6.

48. Disconnect the leads from the V1B coil to pins 4 and 5 of V1B; disconnecting at the valveholder tags. Identify a black and red lead from the harness connecting to the front right-hand tag of the V1B coil. Disconnect this lead at the coil tag. Through the base of this coil runs a screened lead terminating at the centre wave-change wiper. Disconnect this lead at the wave-change contact, and disconnect also its screening from the adjacent earth tag. Remove the cleat holding the screened wire to the chassis and retain it for later use.

Identify an orange lead from pin 3 of V1B to the V1C coil. Disconnect this lead at pin 3, pull out from the chassis, and disconnect again at the coil tag. Remove the lead.

49. Identify the 25 kΩ resistor and its parallel waxed capacitor connected to pin 2 of V1D and unsolder both components at pin 2. Bend the two components out of the way. Disconnect, at pin 5, the short lead from pin 5 of V1D to the V1D coil. Similarly treat the orange lead to pin 3 of V1D. Identify two leads from the harness (red and blue to the top and red and yellow to the bottom), connecting the two front left-hand tags of the V1D coil. Disconnect these leads at the coil tags. Disconnect all leads from pin 2 of V1D. This will free a top-cap fly-lead, which is removed. Disconnect the blue lead from the V1D coil to pin 3 of V1D at pin 3.

50. Disconnect a short green lead from pin 5 of V1C and remove the lead. Identify the blue lead from JFT 1 to pin 4 of V1C. Carefully unsolder this lead at pin 4 and gently pull it back through the hole in the base of the V1C coil until it is free. Identify the screened lead from the same IF transformer to pin 3 of V1C. Remove the cleat.

Valve Pin Connections

<table>
<thead>
<tr>
<th>Valve</th>
<th>Pin (Top)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP 12</td>
<td>1 3</td>
</tr>
<tr>
<td>ARP 8</td>
<td>2 4</td>
</tr>
<tr>
<td>Pen 25</td>
<td>5 6 8</td>
</tr>
<tr>
<td>N.B.</td>
<td>Pins 2 and 7 are blank on all valves.</td>
</tr>
</tbody>
</table>
Fig. 4: The new position for the screened cables in the chassis. 54. The references to grommets A, B and C, and to the plain hole D, are intended for later steps in the conversion.

holding the lead on the left-hand side of the coil chassis and retain for later use. Again working carefully, unsolder the screened lead from pin 3 of V1C; and also its screening from the V1C coil earthing tag. (The screened wire remains where it is for the time being).

Disconnect, at the coil tag, the black lead from pin 1 of V1C to the coil earthing tag just mentioned. Identify the two harness leads, one red and green to the top and one red and white to the bottom, connecting to the two ends of the V1C coil. Disconnect these leads at the coil tag.

51. Identify the 5-35 pF silver-ceramic trimmer mounted on the screen between the front two wave-change wafers. Disconnect the green lead connecting this trimmer to the V1C coil at the trimmer tag.

52. Remove the screws holding the coil chassis. These consist of nine 6BA screws beneath the coils, these fitting into tapped anchor nuts or brackets on the receiver chassis itself.

53. Carefully remove the coil chassis, gently easing the screened lead from IFT-1 through the hole in the base of the V1C coil until it is free.

The coil chassis will be found very useful in later stages of the conversion because, apart from the resistors and capacitors mounted on it, it also provides plenty of such things as 6BA bolts and solder tags.

54. Reconnect the blue lead from IFT-1 (removed in Step 50) to pin 4 of V1D (not V1C). Similarly connect the screened lead from IFT1 to pin 3 of V1D, and the screening to pin 1 of the same valveholder. Re-clean the screened cable in the new position shown in Fig. 4, fitting also an earthing solder tag under the screw-head.

55. Remove all leads from pins 1 and 7 of V1D, and from pin 2 of V1B. Remove the wire joining pins 5 and 6 of V1D. Remove the resistor bridging pins 7 and 8 of V1D, and that bridging pins 2 and 8 of V1B.

56. Remove from the chassis the three small tapped angle brackets mentioned in Step 44.

57. Identify the earthing tag to the right of the centre wave-change wafer. A black lead from this tag travels to the wafer itself. Disconnect the lead at the wafer contact and remove lead, earthing tag, and its bolt completely. (This restores one of the tuning capacitor mountings). Remove the .01 µF capacitor connected across the contacts of the centre wafer. Remove the 5-35 pF trimmer mentioned in Step 51 disconnecting its remaining green lead at the centre wafer tag.

Removing the Tuning Capacitors
58. To the right of Spare Valveholder 2, is a now unused earthing tag. Remove this tag and its bolt.

59. At the front of the chassis, to the right of the wave-change switch, are two 6BA bolts about 22 inches apart. Remove and retain these bolts, removing also the earthing tag held under one of them.

60. Put the chassis right way up again, and remove the two 4BA bolts holding the rear tuning capacitor bracket.

61. To the left of the tuning drive is a 6BA bolt fastening it to the outside frame. Remove this bolt.

62. Remove the two top front outside 4BA bolts holding the top frame. Remove also the two 6BA bolts and nuts holding the top of the panel mentioned in Step 42.

63. Slightly raise the top frame at the front, and pull out the drive and tuning capacitor assembly from the front. This assembly is still connected by a green lead connecting to a three-way tagboard mounted at its front. This lead should be long enough to allow the removal of the assembly, and it should not be broken.

64. Unsoiler, at the three-way tagboard, the green and white lead connecting the forefinger trimmer of the assembly to this tagboard.

65. Remove the tuning capacitors from the drive (Two 6BA nuts at the front, and two grub-screws). Fit the new 500 pF 3-gang tuning capacitor to the drive by using the same 2BA nuts and holes. The 1 inch spindle of the new capacitor may be built up to the 3/8 inch required by the drive bush by wrapping thin tin-plate or similar material around the spindle until it is a tight fit. This process is quite reliable and any small eccentricities will be comfortably taken up by the drive itself. The locking nut should be removed, however, as a slightly eccentric dial may possibly bear up against it. Before tightening the grub-screws ensure that the two stops integral with the drive correspond to a full 180 degree swing of the capacitor.

The three-gang capacitor will be held quite steadily by this mounting, and additional brackets are unnecessary.

66. Connect three insulated leads, each about seven inches long, to the three bottom fixed vanes of the new tuning capacitor. To the moving vane vane tag between the front two gongs connect a seven inch insulated lead and a five inch length of uninsulated tinned copper wire. Connect a seven inch insulated lead to the moving vane vane tag between the rear two gongs. Connect a further seven inch insulated lead to the top tag of the centre fixed vanes. (With some makes of tuning capacitor, this may be difficult to reach later).

67. Remount the drive by the two 5BA bolts retained from Step 59, omitting to refit the earthing tag originally held under one of the 22 inch bolts. The green lead of Step 62 is returned to its original position. The front insulated lead from the moving vane vane tag is passed through grommet C, the lead being shortened, if necessary, to pin 1 of V1D. The rear insulated moving vane vane lead is taken through plain hole D (Fig. 4), and, shortened if necessary, connected to pin 1 of V1B.

The insulated lead from the bottom tag of the centre fixed vanes is taken through grommet A; and that from the rear fixed vanes through grommet B (Fig. 4 again). They are not connected as yet. All the other leads fitted in Step 66 remain above the chassis.

(The to be continued)
ONCE more, the same old story! This, incidentally, was the writer’s inward comment on being introduced to a straight short-wave receiver knocked up by a juvenile but enthusiastic acquaintance. Apparently, the trouble with his set was that it would cope quite nicely until the RF coils were accurately trimmed to the same frequency as were the detector coils; after which the set burst into uncontrollable instability. The wiring was carried out correctly with short leads and all the decoupling circuits were above reproach. The fault was obvious enough, however, and could almost immediately be seen to rest in the layout of the chassis. The RF and detector coils were mounted about five inches apart, and were optimistically screened from each other by an upright piece of metal about four inches square.

Additional screening was the answer to the problem (b). The screen having been carried experimentally, soon resulted in a stable and sensitive receiver.

The Purpose of Screening
It is true that the vast majority of constructors do allow themselves to ignore the necessity of employing adequate screening in their designs; certainly not to the extent just quoted. Nevertheless, the theory behind the use of screening is not always fully appreciated, and no harm would therefore result if we were to devote some space to it here. First of all, then, let us begin by defining the purpose of screening. Why is it necessary? The answer to that is, of course, quite simple. The fundamental purpose of screening is to isolate one circuit from another in such a manner that no capacitive or inductive coupling exists between the two. This definition assumes that the second circuit is of a nature which is liable to be affected by the first (or vice versa); and that an unwanted coupling would cause detrimental effects to the equipment which employs the two circuits.

Capacitive Screening
Let us start with the case where we have unwanted capacitive coupling. This coupling is caused when two conductors are sufficiently close together to allow an appreciable value of capacitance to exist between them. As the coupling is capacitive its effective impedance decreases as the frequency of the currents in the conductors increases. Unwanted capacitive couplings of this type are usually quite easy to clear. Fig. 1 (a) shows two conductors, A and B, between which there is an unwanted capacitance represented by C1. All that is necessary to remove this capacitance is to insert a screen between the conductors, as is shown in Fig. 1 (b). In this diagram, in which a large-area conductor C1 is isolated by the small conductor C2, the screen is placed between the two conductors in such a way that the screen is not connected to earth. We find now that, instead of C1, we have two separate coupling capacities, C2 and C3, both of which couple A and B respectively to the earthed screen. The result of this is that both A and B are now coupled capacitively to the screen and not to each other at all, and the original unwanted coupling is therefore effectively removed. In practice, of course, the screen is connected to earth by mounting it to the chassis of the equipment being used, thus providing the earth connection. It must be noted, however, that if the new capacitances introduced by the presence of the screen (C2 or C3) in Fig. 1 (b) are relatively high, the performance of the circuits connected to the conductors A and B may suffer. Particularly is this true if either or both of the conductors form part of a tuned circuit.

This method of capacitive RF screening is, in many cases, superior to ferrite-grid and pentode valves in order to screen the control grid and anode away from each other; the only difference being that the screen-grid is connected to chassis via a large-value capacitor instead of by using the direct connection. The writer mentions this example in passing in order to emphasise the necessity of connecting the screen of Fig. 1 (b) to earth. Try disconnecting the screen-grid capacitor of an IF amplifying valve and see what happens.

Fig. 1 (b) does not really present an ideal solution to the problem because it is possible for a capacitive coupling to still exist, the coupling being formed, as it were, around the edges of the screen. It may also happen that one of the conductors takes up a considerably larger space than that of Fig. 1 (b). Fig. 1 (c) shows a possible instance in which a large-area conductor A is liable to couple with the small conductor B. This time it may be necessary to use a screen of the type shown in this diagram, in which the second conductor is almost entirely screened away from the first. If, however, we are going to screen three sides of B, we might as well go the whole hog and screen it completely, as in Fig. 1 (d).

Practical Examples
We have, up to now, spoken only in general terms, referring to the unwanted couplings as existing between two "conductors". It is interesting to see how our theoretical cases can turn out to have strikingly similar practical examples.

Fig. 2 (a) shows a two-gang capacitor which may tune the aerial and detector tuned circuits of a straight receiver, or the aerial and frequency-changer signal circuits of any superhet fitted with an RF amplifier. It may happen that the tuning capacitor is not fitted with trimmers by the manufacturer and so, to meet the requirements of our particular receiver, we mount two trimmers as shown in Fig. 2 (a). So far so good!

Unfortunately, a small amount of capacitance will exist between the fixed vases of each trimmer and between the wiring. As these parts of the tuning circuits are connected to the "grid ends" of their associated tuned circuits, this small capacitance may cause sufficient coupling to introduce instability. The cure is shown in Fig. 2 (b), where a screen is mounted between the two trimmers, this being quite sufficient to remove the unwanted coupling.

This example is, incidentally, a perfectly true one, the writer having cleared a case of instability several years ago in exactly that manner. It is interesting to note also that it affords an exact parallel to Fig. 1 (b).

The case of Fig. 1 (c) also appears quite often in practice. For instance, we may find that we need to pass a lead from one point on a chassis to another without allowing it to pick up unwanted couplings from an immediately-adjacent component. We can often do this most conveniently by positioning the lead on the opposite side of the chassis from the intermediate component (above or below as the case may be) until it reaches the appropriate place. The chassis then provides the screening.
The totally enclosed screening of Fig. 1 (d) is found mainly (so far as its capacitive coupling is concerned) in the form of screened wire. Unfortunately, screened wire usually presents a high capacitance between the outside screening and the screened conductor, and care has to be taken to see that this does not upset the functioning of the circuit in which it is used.

It can be seen from what we have already said that unwanted capacitive coupling is quite simple to visualise in practice, and that the requisite screening to prevent it can usually be fairly easily worked out and incorporated in the original design of the equipment which needs it.

Inductive Screening

The screening required to prevent unwanted inductive coupling performs quite a different function from that used to prevent capacitive coupling. This is due to the fact that the nature of the coupling is itself different.

Inductive coupling is caused when two inductive components are placed sufficiently close, or in such a relative position to each other, that a value of mutual inductance exists between the two. To explain later the action of inductive screening it will help if we think about this coupling by mutual inductance in its fundamental aspect—that is, that such a coupling is caused by the varying lines of magnetic flux which exists around one component cutting the conductors of the second and thus inducing voltages in them.

Inductive coupling is most likely to exist between two coils or inductors. As, however, even a straight piece of wire can possess a small inductive field, it is well to remember that all wiring (and, indeed, all components for that matter) is theoretically capable of being affected by random inductive couplings.

At the time being, we are more concerned here with the more practical examples of unwanted inductive couplings. In most cases, these will occur between two coils or inductors. If either or both of the coils form part of a tuned circuit, the unwanted inductive coupling is more liable to rise to an undesirably high value than might otherwise be the case.

As we said just now, the mutual inductance existing between two inductors depends not only on their nearness to each other but also on their relative positions. If, for instance, two coils are positioned in line with each other (that is, on a common axis), and Fig. 3 (b), then the inductance is at its highest; when the coils are placed side by side so that their axes are in the same plane (Fig. 3 (b)), the coupling is still quite high. If, however, the axes of the coils are at right angles to each other (Fig. 3 (c)), then the inductive coupling is reduced very considerably and is at its minimum.

Preventing Inductive Coupling

The procedure used to prevent unwanted inductive coupling varies with the frequency at which the coupling is liable to occur. Two types of screening are employed, one for radio frequencies and another for audio and mains frequencies.

Let us consider first of all the case for inductive screening at radio frequencies. A coil working at radio frequencies will induce in non-magnetic conductor currents which produce an opposing field. If the second conductor happens to be a metal plate, the opposing fields set up by it will be sufficiently strong to cancel the original field and completely neutralise the original field over the area of the plate. The plate does not screen the space on its "leeward side" very effectively, but lines of flux from the coil follow curved instead of straight paths, and are therefore capable of "reaching round" to the other side.

To give efficient inductive screening of a coil it is usual to totally enclose it in a metal container or can. If this is done, it is found that all external electromagnetic fields originating from the coil are bound to meet the metal of the can and be therefore subjected to neutralisation.

In order to ensure that the opposing field set up by the screening can be sufficiently strong to adequately oppose that of the coil, it is necessary to make the can of a metal which is a good conductor. Copper is a good choice for frequencies up to VHF and is used sometimes to screen signal generators and other laboratory equipment. Much more resistant to the effects of inductive screening is a conductor such as aluminium, although it is not quite so good a conductor as copper, and is cheaper, easier to handle, and lighter.

A further point of interest is the tendency of radio frequencies to travel over the surface of a conductor instead of through its body. The result of this "skin effect" is that the opposing fields set up by the screening can are not formed so readily as an original scrutiny of the conductivity of the metallic can chosen may lead one to expect.

A measure of the conductivity of different metals is given by what is known as "skin-depth." Most authorities recommend that, for screening purposes, the thickness of the screening metal should be a number of times" that of the skin depth. The writer has made up a small table of recommended minimum thicknesses for different frequencies in order to give a guide to the practical figures involved. The minimum thickness has been chosen here arbitrarily as five times the skin depth, and appears in the table as such. The figures given, incidentally, have only been calculated approximately since a high level of accuracy is not necessary. The metal used is copper. Aluminium, with its lower conductivity, would need to be slightly thicker for a corresponding frequency.

It is interesting to note that the minimum thickness of metal needed to screen effectively an inductive field at 100 mcs is only 0.0014 in. A screen as thin as this would be too weak to be used in normal practice, and minimum screening at such frequencies would be given mainly by the requirements of mechanical strength. However, an alternative scheme could consist of plating a metal such as steel with another metal of high conductivity, the latter forming the main part of the screen. Such a system is used in some VHF equipments.

At the lower frequency end of the scale we find that the thickness of the metal needed for effective screening becomes quite large. Such thicknesses may not be entirely necessary in practice, particularly with such things as IF transformers where the coils are in their own separate cans and are thus doubly screened from each other.

Lament

What a pity it is that, after having proceeded so far on this subject, we find that we have reached our deadline and that we cannot continue without trespassing on other people's space! Still, it can't be helped and, rather than rush what remains to be said, it is the author's intention that a comprehensive account will be given later on in the discussion of screening technique over into the first part of next month's article.

The Editor Invites articles from readers of a nature suitable for inclusion in this magazine. Articles submitted for publication should preferably be typewritten, but ordinary writing is acceptable if clearly legible. In any case, double spacing should be used, to allow room for any necessary corrections. Drawings need not be elaborately finished, as they will usually be redrawn by our draughtsmen, but details should be clear. Photographs should preferably be large (half-plate) but in any case the focus must be good. Much useful advice to prospective writers is given in our "Hints for Article Writers," which will be sent free on request.
Modification of the
"1143" TRANSMITTER UNIT
for 2 Metre Operation

By JOHN L. EMMENT

This well known surplus airborne unit
(circuit Fig. 1) was originally designed for
use over the range 90—124 Mcs, but when
modified it makes a very compact and tidy
transmitter for the two metre band. Unlike
its American counterpart, the SCR522, it has
no provision for internal modulation, but it
will operate very well from a small external
modulator.

It uses 6.3 volt octal valves throughout,
and these are wired in series-parallel, as the
original LT supply was from a 12 volt source.
Modification of the heater wiring is quite easy.
Pin No. 3 on the Jones plug is the ungrounded
heater, and this should be looped through to
each valve in turn, removing the unwanted
series connections as you go, and taking the
grounded heater connection to chassis in each
case. (It is quite easy to solder to this chassis).
Coil L1 is situated on the opposite side of the
chassis to V1 and is the crystal oscillotator anode
coil. No modification is necessary to this
circuit if you are going to use a crystal in
the 6 Mcs range. If you wish to use an 8 Mcs
crystal, remove six turns from this coil.

Next, V2 circuit. This either trebles from
8 Mcs or quadruples from 6 Mcs. The coil
L2 is next to L1, and this will require four turns
removed to cover the 24 Mcs range.

V3 trebles to 72 Mcs, and L3 is the four turn
coil made from silver plated No. 10 swg. It
will be better to remove this coil entirely and
re-shape it to form a hairpin loop to the
dimensions given in Fig. 2.

L4 will be found under the chassis. This
should be removed, after unsoldering the two
grid coupling capacitors, and a new coil made
up to the dimensions given in Fig. 2. Re-fit
this coil, and re-solder the coupling capacitors
one turn from each end.

L5 (Push pull anode coil) is situated in the
screened compartment with the two output
valves. Remove this entirely, and alter its
shape by careful bending, until it assumes the
appearance of Fig. 3. Cut off surplus ends
and re-solder into position. On final test, it
may be necessary to open out the turns some-
what, but this can easily be done with the coil
in place. The existing aerial coupling loop is
designed for 50 Ohm feeder. It will be better to
leave this in place, as the mis-match, over a
range of 50 to 100 ohms, is not noticeable.

Biasing

The existing bias arrangements are not
suitable for really efficient operation, and do
not allow the output valves to run in class "C".
The best procedure, therefore, is as follows:—
Trace V2 grid lead to the bias end of the RF
choke, disconnect bias lead and earth that end
of the choke. Lift V2 cathode from earth, and
fit a 470 Ohm 1 watt resistor, by-passed with a
200 pF capacitor. Carry out precisely the
same operation with V3 and V4. The output
valves will require external bias supply. The
connection to look for is the junction of the
two grid chokes and a by-pass capacitor.

With the chassis upside down, and the screened
compartment towards you, this will be found
in the near right hand corner. Disconnect
to 75 ohms. Position 1 indicates V2 anode, and C1 should be tuned for maximum reading. Position 2: V3 anode, tune C2 for max. Position 3: V4 anode, tune C3 for max. Position 4: V5 and V6 anodes, tune C4 for max Position 6 indicates RF output. (This is the rectified RF produced by the diode situated in the PA screened compartment). Tune PA stage for max.

Position 5 reads grid current of PA stage and will be found most useful when carrying out the neutralising. The neutralising capacitors are situated immediately to the rear of V5 and V6, and are adjusted by slackening off the two screws and sliding the shutter along with an insulated screwdriver.

Pin No. 4 of the Jones plug feeds the HT to the crystal oscillator only, and this should be supplied with approximately 250 volts. Pin No. 5 supplies V2, V3 and V4, and 300 volts should be applied to this point. Pin 6 is HT for the PA stage (anodes and screens) and modulation may be applied here. Up to 350 volts may be applied to pin 6. It is wise to limit this to 0-150 milliamperes in series with the HT cord to pin 6, to ensure that the output valves are working within their rated limits. The VTS01 valves, for which this unit was designed, are equivalent to the TTI41, and the maximum permissible rating for class "C" operation is 300 volts at 50 mA per valve.

With 350 volts applied, the current should not be allowed to exceed 100 mA for the two valves (anodes and screens).

The most satisfactory method of keying the transmitter is by the cathode circuit of the PA Stage. Remove the existing bias resistors, leaving the capacitors in circuit, and connect a 100 kΩ 4 watt resistor from the two cathodes to the key lead. Fig. 5 explains this in detail, together with an efficient key click filter.

Using a 6 Mcs crystal, the unit may be operated within a few feet of a Television Receiver, with no interference whatever, as the amount of 48 Mcs harmonic in the 24 Mcs quadrupler anode is negligible. To be absolutely certain on the TV1 problem, an overtone circuit could be used instead of the straight crystal oscillator, in which case the anode frequency of the crystal oscillator would come out at 18 Mcs when using a 6 Mcs crystal. V2 would then double to 36 Mcs, V3 to 72, and V4 to 144. Thus all TV harmonics would be completely absent.

The unit will deliver up to 15 watts of RF with full anode voltages applied and, if desired, can be used to drive an 829B running at the full 150 watts.

Many thanks to the numerous readers who so kindly sent us Christmas Greetings from home and abroad.

It is an easy thing to visualise a vector which varies its speed, so it comes in handy for explaining purposes. One of the easiest waveforms to imagine in this way of variable speed is the square wave (and the most difficult to deal with in practice) is our old enemy the 'square wave'. Look at Fig. 7. This shows a nearly square waveform, something like what you might expect in an actual circuit. The waveform has a peak value which is maintained for quite a long time, relative to one cycle. During this time the vector which is describing the wave must stand perfectly still at the ninety degrees position, or vertical, if you prefer to put it that way. The time change from the ninety degrees position to the two hundred and seventy degrees position in a very, very short space of time. This means that it has to accelerate to an extremely high speed indeed. This in turn means that the rate of change of current in the circuit which is producing the square wave must be very great indeed. So during the time in which the vector is changing to its upside-down position the circuit has all the attributes of a circuit which is oscillating at a very high frequency with a more ordinary waveform. During the time when the vector is standing still, however, there is no change in the current being described by the vector. This means that the circuit is not capable of driving anything at all during this time. All this adds up to the fact that it is capable of driving circuits which are tuned to frequencies many times higher than the fundamental.

It is possible to give two distinct types of distorted waveforms which have properties peculiar to themselves. Look at Fig. 7 'B'. Here is shown a square waveform and, on the same base line, the second harmonic frequency as a sine wave, which could be expected in a tuned circuit. It will be seen that the energy imparted to the coupled circuit at twice the fundamental frequency during one portion of the current swing is cancelled again during the next portion of the current swing. Now look a little further along. Here is shown the third harmonic frequency. It will be seen that all the current swings of the circuit having the square waveform tend to reinforce the energy in a coupled circuit tuned to three times the fundamental frequency. Now look at Fig. 7 'C'. Here is shown a top-sided triangular waveform, and on the same base line the second harmonic frequency. It will be seen that the cancellation of energy, as explained earlier, is not complete, and therefore a circuit having a rate of change of current shown by a similar top-sided waveform such as this one may be expected to drive circuits tuned to even multiples of the fundamental frequency, while the current having a square waveform, or a waveform symmetrical about the horizontal axis, may be expected to drive circuits tuned...
Fig. 8: The vector of Fig. 8 rotates, first, quickly through 90°, then slowly through 180°, then quickly again. This causes the vector degrees scale to be alternately cramped and open. As time is permanently evenly divided, this scale cannot be used for comparing “relative timing” or phase, as we say, of two waveforms.

The use of degrees comes from sine wave studies. Look at Fig. 9. This shows a distorted wave and an exact replica ‘ninety degrees out of phase’. The vector would rotate as shown at the left. They would not be exactly ninety degrees apart all the time because they are varying in speed, but they would average ninety degrees apart.

Now look at Fig. 10. Here we have two sine waves ninety degrees out of phase. In this case, the changing quantity may be plotted against time or degrees rotation of the vector as the horizontal part of the graph, and the result is still a sine wave. So the same scale may be used for either purpose. The vector will rotate at a steady speed ninety degrees apart all the time.

This brings us to another little point which is often missed, and the blame for this may be laid with Old Gaffer Sine Wave again. A valve cannot cause a “phase change” of 180 degrees, as it is commonly said to do. You will see that this is true if you look at Fig. 11 ‘A’. This shows a distorted wave and the same waveform 180 degrees out of phase. Now look at Fig. 11 ‘B’. This shows the same waveform as the input to the valve, and the output of the valve when its gain is about unity, as they say. The valve actually inverts the waveform, it does not cause a phase change at all. If the input to the valve is a sine wave, however, the inverted wave is exactly the same as if the waveform had suffered a true phase change of 180 degrees. This means that, when you are dealing with sine waves, neither the valve nor the valve can tell whether the wave has had its phase changed, or whether it has been inverted, so long as the phase change is exactly 180 degrees. Since most types of valve oscillators produce a waveform which is very nearly a sine wave, the inverted wave or the phase change may be used as desired when making calculations. This brings to mind yet another point which caused me a good deal of unrest until I spotted the fallacy. In a push-pull amplifier, the input to the push-pull valves is always stated in this manner; the input to valve ‘A’ and the input to the valve ‘B’ must be 180 degrees out of phase. If this requirement were complied with, the amplifier would only be able to deal with perfectly symmetrical waveforms, such as a sine wave. If an ordinary audio waveform were fed to it, it would be anything but push-pulling. The stages in a push-pull amplifier which are called phase splitters or phase inverters are wrongly named, then. They should be called waveform inverters, for that is the function which they perform. Prior to realising this fact, I had attempted to follow the action of a push-pull amplifier and, of course, I fell straight into the trap. I imagined the audio inputs to the push-pull valves as stated, and consequently I was reduced to the necessity of ascribing magical powers beyond my feeble comprehension to the output transformer. When I found that phase does not enter into it, everything became crystal clear, and push-pull amplifiers, which had been a mighty mountain, shrank rapidly to the familiar soap-box size of ‘Things We Understand’.

(to be continued)
A SINGLE-VALVE SIGNAL GENERATOR

By A. W. WOOD, B.Sc.

The following signal generator has these advantages:

1. Ease of construction.
2. Low cost (only one valve is used).
3. Good stability.
4. Internal or external AF modulation.
5. Ease of calibration. (This point is very important in homemade signal generators.)

This instrument does not claim to be a precision instrument, and would hardly suffice for the transmitting amateur as a sub-standard instrument! However, it will prove indispensable to the average experimenter and anyone who does spare time servicing. The signal generator was built as the result of the purchase of a grey metal case divided into two by a wooden partition. The lower half is empty, but the upper half contained what seemed to have been a signal generator. It was fitted with a variable capacitor and slow-motion drive, a five-position switch with five coils grouped around it, and an output switch giving 6 positions of signal strength.

It is not proposed to describe the unit as it was, as it is not likely that many people would be able to purchase one of these units. The disadvantage also arises, when modifying ex-Serviceman gear, of adding additional controls, so that anyone wishing to build a unit on these lines would be able to adopt refinements.

The design has proved to be very stable, and variation of the output control has no apparent effect on the frequency. This is due to the fact that the hexode portion of the triode-hexode frequency changer used (a 6K8) acts as a buffer stage. The coupling is purely electronic, in the valve itself. AF modulation is applied to the signal grid of the hexode portion, and internal modulation can be simply applied by injecting 50 mA from a potentiometer across the heater supply. The oscillator uses the Hartley circuit, the coils being centre tapped. Normally the Hartley coils are in the cathode of the valve, but as the valve is a multi-electrode type, this would lead to undesirable coupling. A warning must be given here, that due to the tuning capacitor being in the anode circuit, neither side of the capacitor must be earthed. All metal parts must be insulated from chassis by paxolin, and an insulated coupling used between the slow motion drive and the capacitor spindle. Apart from this, construction is simple and straightforward.

The beginner is strongly advised to buy all the resistors and capacitors new. There are so few needed that the cost will be small, and the success of the unit will be enhanced. Apart from the increase in reliability, the appearance is so much better when new parts are used than when old and dirty components, perhaps with shortened connecting leads, are employed.

The unit must be completely screened if reliable results are expected, as when lining up a receiver it is essential that the signal enters by the leads from the generator, and not by the stray field. On the writer's unit there was a fairly large stray field until the wooden partition in the centre was lined with aluminium sheeting. Therefore, if a suitable case can be obtained, build your generator into it. If not, and you have not the facilities for making your own chassis, Philpott of Loughborough specialises in making chassis and cabinets to individual specification.

The voltage on the triode anode is held constant by a neon regulator tube, which can either be in the signal generator itself, or in the power pack, if a separate power pack is used, an extra lead being then needed. Thus the only variations in frequency are caused by valve heating, and the stability of the coils and variable capacitor. Valve heating is catered for by switching on 15 minutes before the unit is required. Note that ventilation holes are drilled in the case (and there are none in the writer's) they must be covered with fine gauze, to keep the screening complete.

The amount of trouble spent on the coils will depend on the accuracy to which the dial can be read. Obviously, if the dial is not fitted with a very low speed and vernier control, there is no object in spending a tremendous amount of care over the coils. Despite these remarks, the coils should be made rigidly, and all leads associated with the oscillator circuit should be short and direct, and made in heavy gauge wire (18 swg and upwards). If possible, the drive should be 100:1 and fitted with a vernier.

We now come to the most difficult part of constructing a home made signal generator, i.e., the calibration. The course normally advised is to feed the signal into a receiver, together with the signal from a calibrated signal generator or from broadcast signals whose frequency is known. For the benefit of the beginner, it should be explained that when the frequencies of the two signal generators only differ slightly, an audio note will be heard. As the frequencies are brought into line, the frequency of the audio note decreases until there is a position where no note can be heard.

At this point the frequencies are exactly equal. The snap with this method is that a receiver covering all the frequencies needed may not be available, and especially at the same time as a calibrated signal generator. A method which dispenses with the need for a receiver is to mix the two frequencies in a multi-electrode valve and listen for zero-beat as before. Usually, however, this calls for an extra valve, and adds complications. Not so with this signal generator, as the 6K8 acts as a mixer. It is only necessary to inject the signal from the calibrated signal generator into the AF modulation grid.

Audio beats will then appear at the RF output sockets, and can be detected on a pair of headphones plugged into the output socket. The efficiency of this arrangement can be judged by the fact that when an indoor aerial was taken to the AF injection
socket, and the signal generator tuned to 200 kcs, the audio beats could be plainly heard on a pair of high impedance phones across the RF output socket.

If a calibrated signal generator is not available, a 100 kcs variable, crystal oscillator can be used to provide marker points, although, in this case, more care will be needed in guarding against choosing the wrong harmonic. Three RF Chokes are used to confine the RF inside the cabinet, otherwise there would be stray fields from the power supply leads.

The generator provides a good second harmonic signal, which is valuable for frequencies which are not covered on fundamentals. Loss will be reduced if the valveholder and, if possible, the waveband change switch are made of ceramic.

When the signal generator has been calibrated, calibration graphs should be drawn on graph paper, which is then pasted on to the face plate and covered with cellophane. The larger the scale used, the better. For the not-so-experienced constructor, the calibration and use of the signal generator is given in greater detail.

Calibration
First of all, to find if the unit is working, switch to Range 1; turn the tuning capacitor until it is nearly at maximum capacity and switch on the heater current. Insert a co-axial plug into the RF output socket and feed the other end of the cable via a 5 pF capacitor into the aerial terminal of a broadcast receiver tuned to the Light Programme on 200 kcs. The normal aerial should be left in the aerial socket. Now switch on the HT to the signal generator and rotate the tuning capacitor of the generator. A whistle should be heard superimposed on the broadcast, and this whistle will vary in pitch with the setting of the tuning dial. The pitch becomes lower and lower as the dial is turned until the beat note disappears, and the speech or music sounds very distorted and unintelligible. The note will appear again on the other side of this position of zero beat. The signal generator is operating exactly on 200 kcs in the position of zero beat.

Should these beat notes not appear, check the wiring of the signal generator again. To find out whether the triode section is oscillating, insert a milliammeter, say, 0–10 mA, in the HT lead to the triode anode. Note the reading and then short out the 68kΩ resistor. If the meter reading increases, then the valve is oscillating. This test operates by virtue of the fact that grid current flows when the valve oscillates, and the electrons build up a bias as they leak away through the grid resistor. When this resistor is shorted, the bias is removed and the anode current increases.

Now suppose we have been able to borrow a standard frequency source such as an AVO all wave Signal Generator. Switch
Power supply

At present the writer uses a separate power unit to supply the two values of HT to the LT to the unit, but it is often an advantage to incorporate the power supply with the interstage generator to make it more portable. This is important if the owner of a standard frequency source refuses to loan it out, but will allow its use for calibration. The writer has found that the two types of power supply are illustrated, the first being quite conventional. The second is cheaper and much smaller, but requires a little different construction of the interstage generator itself. The reason is that a form of AC/DC technique is used and the HT-line must not be earthed. All connections which are taken to the HT-line in the theoretical diagram are insulated from earth by a polystyrene, and the HT-line is connected to the metal cabinet ground by a 0.01 µF mica capacitor, thus earthing the HT-line to RF. An extra precaution is to fit a non-revivable plug to the AC mains power lead, and arrange that the neutral pole is connected to the HT-line. A practical reference voltage exists between the HT-line and earth.

Only 4 components are needed for this miniature power pack, and these are illustrated in the cover photograph, with a match box to show the size of the model. The author rewound two coils because the original were not neat enough, and the original settings did not change by a great amount; for example, in the first case 200 c/s corresponded to 89.5°, and in the second case to 93.5°, so that there should be no confusion with harmonics if the two are set to the approximate frequency given in the table for each band. Follow the above procedure for each range and draw graphs as mentioned before.

Operation

Output is at high impedance and, unless the generator is working into a high impedance circuit, it should not be coupled directly to the circuit being tested. A small value capacitor, say, 5 µF, should be included between the end of the RF output cable and the point of connection to the insulated wire from the circuit under test should be coupled around the end of the cable. This coupling will transfer all the energy needed, and will avoid loading the testing apparatus.

If the modulation is used to line-up a set, either the internal 50 c/s can be used or any audio source can be taken to the modulation terminal.

<table>
<thead>
<tr>
<th>Coil</th>
<th>Turns each side of CT.</th>
<th>How wound</th>
<th>Wire</th>
<th>Approx. freq. coverage with 500 pF condens.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>130</td>
<td>in three layers 1/2 width each side of CT. Close wound.</td>
<td>33 swg enam. & single rayon covered.</td>
<td>198-486 kcs</td>
</tr>
<tr>
<td>L2</td>
<td>60</td>
<td>single layer 1/4 each side of CT. Close wound.</td>
<td>33 swg enam. & single rayon covered.</td>
<td>420-1880 kcs</td>
</tr>
<tr>
<td>L3</td>
<td>10</td>
<td>(no spacing)</td>
<td>Single layer spaced to fill 1/4 each side of CT.</td>
<td>25 swg enamelled.</td>
</tr>
<tr>
<td>L4</td>
<td>2 1/2</td>
<td>(no spacing)</td>
<td>Single layer spaced to fill 1/2" each side of CT.</td>
<td>20 swg tinned copper.</td>
</tr>
</tbody>
</table>

If different size coil formers and wire gauges are used, the ranges covered will vary to those given above. To tune lower in frequency, add turns, and to tune higher remove turns, until the required range is covered.

bypass capacitor are fastened to pin 8. Flying leads are taken from pins 5 and 2, and suitably bent 18 swg wire is soldered to pin 6. Now the valve holder can be bolted into place. Take care when shaping the heavy-gauge wire that no strain is imposed on the valve holder tag—otherwise it may break off. The writer gives this warning in the light of bitter experience! Methods of mounting the coils etc., are given in the accompanying sketches. The front panel should be very rigid, and can be in one flat piece if it is about 12 swg or 14 swg aluminium. If it is 16 swg aluminium, the edges should be turned at right angles, to provide additional strength. The cabinet bouncing the generator can be made of 20 swg aluminium. There is an unused wafer on the wavechange switch, and this is used as an anchoring place for the coil centre taps. All the taps were then bonded by heavy gauge wire, and taken to the HT switch via an RF choke. If there are no spare tags, a large sized soldering tag can be bolted to a polystyrene strip which in turn is bolted to one of the bolts securing the switch washers, and all the centre taps are soldered to these bolts. Note that the by-pass capacitor C1 is connected on the power supply side of RFC2 so that the RF choke helps to divert more of the RF into the output socket. If a separate power pack is used, the leads should be brought out of the cabinet as close as possible to the points where the RF is decoupled, to prevent RF radiation. If a different type of stabiliser valve is used, the value of the dropping resistor may have to be changed.

The following formula will assist in obtaining the correct value. It is not quite correct theoretically, but is sufficient for practical purposes. Maximum value of dropping resistor =

\[R = \frac{HT\; voltage - \; Voltage\; of\; stabiliser\; (100\; or\; thereabouts)}{\min.\; current\; of\; stabiliser + \; anode\; current\; of\; triode} \]

Max. value of resistor =

\[\frac{\max.\; current + \; anode\; current\; of\; stabiliser}{\min.\; current\; of\; stabiliser} \]

Naturally, in the interests of heat dissipation, the value chosen should be near the maximum. It should not be too high, however, or the stabiliser valve will not have sufficient volts across it, initially, for it to strike. The dropping resistor should be of ample wattage rating, found by multiplying the voltage dropped across it, by the total current passing through it:

Example:

\[\frac{HT\; volts = \; 250V}{\text{Stabiliser\; volts \; = \; 100V}} \]

\[\text{Min.\; stabiliser\; current \; = \; 5 \; mA.\; Anode\; current \; = \; 3 \; mA.} \]

\[250 - 100 = \frac{5 + 3}{120} = \frac{8}{120} = \frac{1}{15} \text{ kOhm } \approx \text{ 8 kOhm approx.} \]

\[\text{Watts dissipated} = \frac{150 \times 8}{1000} = 1.2\text{ watts.} \]

A 5 watt resistor should be used.

In conclusion, the writer can recommend this design to anyone needing a cheap and reliable signal generator.
Loudspeaker Baffles and Enclosures

PART 1

By J. R. DAVIES

High Frequency Radiation

We have already, in the first article of this series, treated the radiation of the high frequency content of the reproduced sound in a theoretical manner. Let us now see how the theory may be put into practice.

As was mentioned earlier, the main methods of diffusing the higher frequencies are by means of horns, reflectors or a combination of the two. We also stated that, so far as the home constructor was concerned, the simplest method of radiating the higher frequencies over a wide angle was by the use of reflectors, with perhaps a simple horn to guide the sound to the reflector.

A very simple type of diffuser is shown in Fig. 13 (a) and (b). It will be seen that it consists simply of vertical slats fitted to the front of the speaker enclosure, their purpose being to diffuse the top frequencies horizontally over a fairly wide angle. In practice, the slats could be made of wood, their width being about three to six inches. Apart from acting as reflectors, the slats form an elementary type of horn which also assists in ensuring a wide angle of radiation. The slats, however, possess the disadvantage that the diffusion given by them is uneven, and they are not therefore of much use for really serious work.

The Complete Enclosure

Let us now see how the problem of designing the complete enclosure has been tackled by commercial manufacturers.

An excellent illustration of design is offered by the Corner Loudspeaker made by Voigt Patents Ltd. A cross-section through the cabinet of this reproducer is shown in Fig. 14.

Looking at the diagram it may be seen that two separate paths exist for the low and high frequencies. The low frequencies (obtained from the back of the speaker) are dealt with in the bass chamber; being finally radiated from the lower part of the instrument.

The middle and higher frequencies are radiated by means of a horn combined with a distributing reflector. It is interesting to note the heavy materials which have been used for the reflectors, these being fitted not only to provide a smooth surface, but also one that is not liable to offer any unwanted resonances.

The curve used for the horn in this particular case is not exponential but follows what is known as the "Tractrix Curve". It is contended that a horn based on an exponential curve does not allow correct treatment of the sound waves at its mouth, owing to the fact that this curve relies on the assumption that the sound from the loudspeaker has a plane wave front, whereas the wave front at the mouth may be hemispherical at low frequencies. In the throat of the horn, nevertheless, the Tractrix curve is very similar to the exponential curve, and departs from it mainly at the mouth.

Materials for Construction

Apart from the design of the baffle or enclosure itself, it is also very important to ensure that the materials used in its construction do not detract from its final performance.

Wood is the best material in most cases, owing to the fact that it is easily handled and, if sufficiently thick, is not liable to resonate. Plywood cannot always be recommended owing to the fact that the laminations may come apart internally and so cause rattles or resonances.

Any joints which are necessary should be well made, and if glue is used, it should be applied liberally. Mountings, whether ornamental or part of the internal design (such as speaker transformers, cable cleats, etc.) should be screwed down as firmly as possible. If a fabric is fitted over the speaker opening this should have a coarse open mesh as, otherwise, it will attenuate the top frequencies.

Modern Developments

Before concluding this series of articles, it might be worth while examining some of the more modern developments which have been incorporated in reproducer design.

One of the most interesting of these is given by the Corner Ribbon Loudspeaker, made by the Acoustical Manufacturing Co. Ltd. Fig. 15 shows the external appearance of this loudspeaker whilst Fig. 16 shows its internal construction.

It will be seen from Fig. 16 that the back radiation of the lower loudspeaker feeds into a two-stage acoustic filter; this being designed to extend its bass response. The lower speaker handles the frequencies which fall below 2,000 c/s.

Above this frequency a horn-loaded ribbon unit comes into use. The horn is housed in the inverted L-shaped section at the top of the cabinet (see Fig. 15). The radiation from the horn is dispersed horizontally and vertically over a wide angle, not only forwards but also upwards and backwards against the corner walls of the room in which it is installed.

Apart from the very wide frequency range offered by this instrument, one of the most interesting points in its design lies in this wide angle radiation of the higher frequencies. Owing to the reflection offered by the corner walls behind the speaker, the apparent...
source of sound is enlarged considerably, and the result is extremely effective in enhancing the realism of such programmes as orchestral music where the original sound does not itself come from a single point. On speech, the lower loudspeaker predominates and gives the effect of a source situated at one point only, such as would naturally occur if the person speaking were actually in the room.

This loudspeaker is of importance here because it goes one stage further in the field of offering realistic reproduction. Not only is it designed to give the best possible reproduction of the AF signals fed to it, but it is also intended to simulate those conditions which actually exist at the microphone itself. Whereas the source of sound from the usual loudspeaker occupies only a fairly small area, this reproduction offers an apparent source which is very large, thus imitating the impression received in the concert hall itself.

Conclusion
We have now reached the end of this short series of articles which it is hoped will have assisted the constructor; and which have perhaps given him some ideas for the design of his own baffle or enclosure.

The writer would also like to offer thanks to the following firms who so generously assisted him in preparing his material. These are: H. A. Harley Co., Ltd., London, Voigt Patents Ltd., London, and the Acoustical Manufacturing Co., Ltd., Huntington.

Fig. 15: The Corner Ribbon Loudspeaker. (Reproduced by courtesy of the Acoustical Mfg. Co., Ltd.).
as a whistle suppressor. This is because of the difficulty in obtaining a sharp cut-off due to the damping imposed on the filter by the anode load of the previous valve, and the input impedance of the following stage. It is therefore necessary to resort to a filter of the type shown in Fig. 1. This arrangement is capable of providing a sharp cut-off at the unwanted frequency of over 40 dB. The filter may be conveniently connected between the first and second audio stages of the receiver, or between the tuning unit and the amplifiers. If this latter arrangement is used, the filter should be roughly tuned to the interfering frequency by adjusting either the inductor L or the two capacitors C1 and C2. These capacitors may be adjusted partly of preset trimmers of the type normally used as oscillator padders in superhet receivers; both must be adjusted in step if optimum results are to be obtained. The inductor will be very susceptible to induced voltages from stray magnetic fields, for this reason it is advisable to enclose the complete filter within an earthed metal screening compartment. Once the filter has been tuned, the variable resistor R2 should be adjusted for optimum results. In tuning AF filters a variable frequency audio oscillator will be found of immense assistance.

Another cause of whistles in high quality receivers is a beat between the IF signal and an unwanted signal on a frequency which is adjacent to the intermediate frequency. This form of interference is normally termed 'IF breakthrough' and can be eliminated by including a rejector circuit in the aerial lead to the receiver as indicated in Fig. 2(a). Fig. 2(b) shows an alternative arrangement using a series tuned circuit. In either case, the trap is tuned to the intermediate frequency of the receiver, the components 'L' and 'C' being conveniently taken from an IF transformer of suitable frequency.

Types of Microphone

I am puzzled as to the specialised use of the various types of microphones which are at present available. Can you please enlighten me?
K. Albert, Portsmouth.

The types of microphone in current use have characteristics which suit them individually to particular applications. The three basic types are as follows:

1. Dynamic type. This heading covers all moving coil microphones which are normally of the low impedance type and consequently require matching transformers. A good frequency response and a robust construction are characteristics of these units. Close talking does not usually cause blasting or absence of sound. A good all round microphone for the reproduction of speech and music.

2. Velocity or Ribbon type. These are sensitive microphones suited for the pick-up of speech, music, and singing, especially by artists in stage plays. The output impedance is low and a matching transformer is required.

3. Crystal types. These small, robust microphones have a high voltage output at a high impedance making a matching transformer unnecessary. These characteristics render the crystal units particularly suitable for use in PA equipment, where the frequency response is from 60 to about 8000 cycles. The reduced low frequency response is in fact an advantage in most PA installations, where it reduces the boominess of the installation making speech reproduction more easily understandable.

Other types not generally used include the condenser and carbon microphones. The condenser microphones have a small output and require a high gain pre-amplifier, this latter introducing difficulties which have helped to render the type obsolete. The carbon microphone requires a power source for polarising the carbon granules, and is now only used with amplifiers having a relatively low gain. Carbon microphones have now been interfered largely by those employing crystal microphones.

Solder

I have noticed that various types of solder are available; presumably they are intended for different classes of work. If this is so, which type is recommended for making solder connections in electronic equipment?

D. Fraser, Brighton.

Our correspondent is, of course, correct in assuming that different solders are manufactured for different jobs. The various types differ largely in the ratio of tin to lead which in turn affects the performance of the normal radio or television receiver winding a solder having a tin to lead ratio of 60/40 is recommended, and for the best results one having a resin flux core should be selected. The diameter of the flux coated solders is classified according to the standard wire gauge table, the most convenient size for general purpose working being 16 swg.

First-Class Television and Radio Courses... Get a Certificate!

After brief, intensely interesting study—understand it in your spare time—YOU can secure your professional qualification or learn Servicing and Tuning. Let us show you how!...

First Class Television...

NATIONAL INSTITUTE OF RADIO ENGINEERING
Radio Miscellany

The account of an ISWL member's holiday in Germany, in last month's Short Waves News, hints me that despite the international aspects of our hobby fewer holidays of this sort are arranged than might be expected. Such a holiday is an ideal way of getting to really know something of the way of life in other countries. You learn far more about the people, family life, their shopping and social habits, radio programs and the amusements of all sorts than you would do simply to go to many hotels. There is great fun, too, in getting to meet the friends of the family, particularly those who are radio-minded.

I have spent several holidays in this way, and I hope to have many more equally enjoyable. My two favorite countries are Holland and Denmark. Perhaps I feel an imagined affinity with the Dutch and the Danes. Not that they are alike by any means. The Danes are gayer and more responsive. Perhaps the thing that most impresses the English visitor is the way they give themselves over to light-hearted (and spirited) fun with a complete freedom. A visit to Copenhagen's Tivoli Gardens is a revelation to new visitors.

Denmark has the most artistic girls, but, in my opinion, Holland has a good head. There you will find a tremendous interest in constructional radio, with one of the highest concentrations of transmitting amateurs in the world. The country's biggest industrial concern is on radio and electronics, which probably adds to their radio consciousness.

Incidentally, amateur and constructional radio seems more closely allied there than in England. The vast majority of amateur transmitters in the PA0 stations is home-built—not always from choice, as factory-made equipment and communications receivers are dear and scarce. You see more such post-war years than I have seen so high a general level of constructional work neatly carried out on clean lines, often with substrate materials. It is quite easy to compare the post-war years prior to the last war, when the home construction of transmitters and short-wave receivers was at its height, with the present-day state of the art. W.D. Johnson produced communications receivers has blunted much of the best constructional work here since the war. The keenness of the Dutch and the Germans for getting useful instructions and patterns contrived airfoil to be found on the tall narrow houses of the bigger towns—but you have to get up roof level to see them.

BITZAS.

When both countries were occupied by the Germans during the war, most domestic sets were completely destroyed. In the home of all sorts of unlikely things. Bitza everything, so to speak—hence the name I use to describe them. I first heard it applied to motor-bikes, but it is more truly descriptive of those receivers. The hiding places are equally ingenious; the most popular seemed to be under a loose floor-board in the lavatory.

Even to-day, in many receivers you find a delightful diversity of odds and ends with many truly cosmopolitan sets using Dutch, German, American, British and even a few odd Russian valves and components.

Getting back to holidays, I have stayed with comparatively well-off and comparatively poor homes, but the standard of accommodation is high. With another British amateur I once spent a few days with friends who made us most welcome in their tiny flats—no shutters in the windows. Most of these flats have no lobbies, so they seem to have attics, with pulleys fitted outside to hoist things to the upper floors. Many of them are attic-houses, and when there is no other accommodation exists for use as radio dens, they are mighty cold in the winter, especially with cold prices. Nevertheless, they are welcome, and in stranded circumstances at the time—fact they had obviously been at some pains to conceal from us!

In Holland this year, I made a special point of seeing something of their TV, both of the Post Office transmitters (Hilversum—what a difference a and half hour spell a week) and factory or factory television in Eindhoven owned by Philips. It was reliably estimated that (no special licences were required) were under 500 in existence. A thousand of which, at least, were home constructed. As for the programmes—the less said the better.

When contemplating a holiday abroad next year cannot, from my experience, do better than to make the Netherlands or Denmark their first choice. There is no language difficulty, unless of course, you insist on talking Dutch or Danish to them, when they will never understand you, or else you try to do it in German when even in the border towns, they will pretend they don't. If you don't know any families in the country, you only spend a day or two and after a week, their use a hideout, and you do not find it is not strange they should ask as their mouthpiece the same quarter from which similar "feelers" emanated as far back as July 9th?

Exaggeration

The R.S.G.B. is essentially a democratic body and is, in its major principles, truly representative. It has much good service to the hobby both in producing their two months, and haven't got time to worry whether they are growing into vested interests or not.

R.S.G.B. Solidarity

The nature of the scarcely concealed attack on the Society certainly leaves doubt as to the intentions of the promoters of any rival organisation. I for one, thoroughly believe it would do some harm (according to its size) and no good to the well-being of the hobby. I cannot conceive it gaining any official recognition, and it is difficult to see what useful service it could perform which is not already adequately covered. One can therefore only assume that such an organisation would be formed to serve the interests of factional parties, and if this is so it would be foolish for amateurs to damage their own interests by supporting it.

It is no secret that there has been a difference between the Executive of the R.S.G.B. and a considerable section of its members. Unfortunately, there was an unavoidable delay before the account (generally objective) of it appeared in the Bulletin. There was, as a consequence, a certain amount of speculation and wild rumour. I received copies of a large number of the dissidents. As a member, I admit to some sympathy with their views. The official attitude was certainly not conciliatory, but at every stage the dissentients behaved in a responsible manner. There was certainly no noisy talk about resignations or the formation of a rival Society, and my knowledge of the move unconstitutional to the Society was even discovered by them.

It seems strange that a genuine desire for an alternative organisation by any large or responsible section of the amateur movement should, apparently, be made to the Editor of one radio journal only. Those who are said to be agitating for a second National body are not only few in number, but barely visible to the ordinary listener—less than 100 replica the population as it is to diminish it, and those readers who enjoy the other contents are likely to stick. The R.C.'s printing order is going up and up. The pleasure of reporting this, by the way, is not because my dividend might be increased. I have no financial interest in it. The Directors (all three of them) are actively engaged
AN AUTO SCALE-SEARCHING LIGHT

By P. Johnstone

The device described in this article has been fitted to a home-built broadcast receiver by the writer for several months, and has proved very effective in use. Its purpose is to add extra illumination to the tuning dial whenever the tuning knob is rotated. In the particular receiver constructed by the writer, the dial is lit up all the time that the set is switched on; the degree of brightness being just a little more than sufficient to enable station names to be identified. Whenever the tuning knob is rotated, an extra set of dial lamps is switched on, giving a much brighter dial and allowing tuning to be carried out more easily. When the station has been found, the extra lights remain connected for a space of several seconds, after which they are switched off automatically, the dimmer, more comfortable lighting once more being left in circuit.

The most important part of the device consists of a small automatic switch which is fitted to the tuning knob spindle. A simplified version of this switch is shown in Fig. 1. In this diagram, a piece of springy metal strip, A, is mounted on the tuning spindle, B. A loose mechanical coupling exists by reason of the friction obtaining between the two; the amount of coupling being adjusted by the screw, C. Two light springs, D and E, hold the metal strip central whenever the tuning spindle is at rest. Whenever the spindle is turned, the additional rotational force causes the metal strip to move also, thus making it touch either of the contacts F or G. When the spindle comes to rest again, the springs pull the strip back to the central position.

This switch is not so delicate in action as it may at first sight appear. It is obvious, however, that it will work the more reliably when the slow-motion drive to the tuning capacitor has a reasonably high ratio, since the spindle is then turned more swiftly in order to tune in the receiver.

In practical form, the switch could be made in the form shown in Fig. 2. It will be seen that, in this figure, both the position of the contacts and the tension in the springs are made adjustable. The spring strip could conveniently be cut out from one of the brass terminals of an old 4·5 volt flash-lamp battery. To keep the strip in position it might prove helpful to mount small bushes on the tuning spindle either side of it.

The electrical circuit controlled by the switch is very simple. Fig. 3 shows how the switch-contacts cause a relay to close, which then switches on the additional dial lamps. The relay shown in the circuit is a high resistance model which obtains its coil energising voltage from the receiver HT. A low-voltage relay could, of course, be used in its stead provided that an appropriate source of DC was available. It will be seen that the tuning-spindle itself provides the chassis connection for the circuit.

To prevent the extra dial lamp from switching off too quickly after the tuning spindle has come to rest it will probably be necessary to slightly adjust the relay. Most relays take an appreciable time to “fall off” after their energising current has been disconnected, this being due to the time taken for the induced magnetism to die away. This “fall-off” time may be utilised in this case to prevent the relay from switching off too soon and it can usually be increased by reducing the air-gap which exists between the armature and the core when the relay is energised.

Radio Miscellany—Contd.

at home and in Europe to its credit. The youthful amateur to-day has a lot to thank it for, and he should do everything in his power to strengthen its position. The Society represents its sheet-anchor in the maintenance of national goodwill, and may yet be his sole safeguard against possible future curtailment of his privileges by an autocratic officialdom.

It is unfortunate there is, in some quarters, a suspicion that views diverging from those of stronger elements in the Council are not given a reasonable hearing. That criticism, for whatever it is worth, is the only one which might fairly be made. Any talk of fundamental disaffection is a gross exaggeration.

The best suggestion so far put forward (by a member of the Society) to stop wild talk and at the same time satisfy the dissenters is to permit Council candidates to make Election Addresses through the columns of the Bulletin. This would silence the slurs one occasionally hears about the “old gang”, and members would have the satisfaction of knowing they were voting for a policy; not simply for a name, which they may or may not have heard of before, and a short history of its association with the hobby.

FRENCH IMPORTER

disposing numerous licences, wants all British or American made radio-electrical equipment from Surplus Stocks: Transmitters and Receivers, Measuring Instruments, Valves, Sundry Spare Parts, etc. at cut rates. CIRCUIT-RADIO 24 Boulevard des Filles-du-Calvaire PARIS X* Telephone VOLTAIRE 22-76 et 22-77.

ADCOLA
(Reg TRADE MARK)
SOLDERING INSTRUMENTS

Reg. Design No. 86302
(British, U.S. and Foreign Patents)
Designed for wireless assembly and maintenance. Supplied for all voltages ranges from 1½ to 220230V. High Temperature, Quick Heating, Low Consumption, Light Weight.
3½16 Dia. Bit Standard Model 22/6 1¼16 Dia. Bit Standard Model 32/0
3½16 Dia. Desirable Bit Type 32/0
Sold Manufacturers:- ADCOLA PRODUCTS LTD. General Offices and Works: Crammer Court Clapham High St., London, S.W.4. (MAC 4273)
from our Mailbag

The Constant Companion

Dear Sir,

I have built the Constant Companion Receiver to the words and methods as published in your Radio Constructor: the only alteration was using a metal rectifier in place of the valve specified.

I am more than pleased with the results on the Medium waveband and have logged 8 stations besides the BBC. Transmissions very clear, with plenty of reaction using a 10-ft. whip aerial 6-ft. above ground.

My trouble is on the Long waveband. I can get practically no reaction and can only just hear the BBC’s 1500 metre programme with everything turned right up. I have checked and double checked the tapping I made on the LW coil, and to all intents it seems OK. I have also checked the switch on the LW section and that seems in order.

I have tried bringing the aerial lead direct to the switch arm, which made no difference. I can get the station a little louder if I connect the aerial direct to the top opposite the red tag on the LW coil—the circuit was purchased new 14 days ago.

The rest of the set must be OK or else I should not get such good results as I do on Medium waves.

What I am asking is, can any of your technicians, or the writer of the article, give me any idea as to any line I could take to improve the reception on Long waves?

- G. J. Arthur, (Surbiton).

With reference to Mr. G. J. Arthur’s letter:

At first sight, the lack of reaction on longwaves appears to be due to a fault on the coil. Nevertheless, as this has been thoroughly checked, we may assume that it is working correctly. An ohmmeter test of each winding should show a near equality of resistance, and if the meter is capable of reading as low as this (and not a dead short).

An aerial which has a high capacitance to earth may reduce the effect of the reaction circuit. Reaction should be checked with the aerial disconnected. If normal reaction then occurs, a capacitor of some 100 pf can be connected in series with the aerial. Should a cure then result, the capacitor could be permanently installed in the receiver between the appropriate wave-change switch contact and the aerial tap on the long-wave coil.

It is also possible that the long-wave coil is being dwarfed by the wiring and capacitors in its proximity to it. All such wiring should be moved away from the coil windings on the bobbin and positioned nearer the chassis or the top of the coil.

Reference to that part of the articles and the diagrams explaining the reaction circuit will show that one trimming is used to set up the “standing” long-wave reaction and another to control the amount of capacitance inserted into the circuit by the reaction gang of the tuning capacitor. (Unfortunately, I cannot give circuit references as my files have not yet caught up with me; but it will be simple enough to identify these components). It is possible that long-wave reaction may be assisted by increasing the value of the first of these trimmers. The simplest way of doing this will consist of connecting an additional fixed capacitor across the trimmer, its value lying between 100 and 500 pf and being determined by experiment.

I feel confident that, unless an actual fault has occurred in connection, the above should supply the answer to Mr. Arthur’s problem: and I would be very interested to hear from him again in the future and learn what results he may have obtained.

J. R. DAVIES.

Test Card ‘C’

Dear Sir,

Your letter of November 5th to Mr. George Barnes, Director of Television, has been passed on to me, and I agree with you that at any rate three points of the answer you have printed on page 117 are indeed weak, namely, adjustment of salaries, additional use of Electricity and possible Trade Union activity. I have taken up these points with Mrs. Duffell and the Trade Union, but they have not given to you as part of our statement.

The facts are that at the moment we are unable to transmit Test Card ‘C’ each evening because of lack of apparatus for originating the Card at that time. The only available camera is a “arc-second” Telecine Room which is at present engaged each evening on film line-up and rehearsal. We have some new equipment on order, however, which will provide an alternative source, and I hope these “monoscopes” (as they are called) are delivered the position will be reviewed again.

Yours faithfully,

BRIAN BEGG.
Television Publicity Officer.

OPPORTUNITIES IN RADIO

Get this FREE Book!

"ENGINEERING OPPORTUNITIES" reveals how you can become technically qualified at home for a highly paid key appointment in the vast Radio and Television industry. In 144 pages of intensely interesting matter it includes full details of our up-to-the-minute home-study courses in all branches of RADIO AND TELEVISION, A.M.Brit.I.R.E., City and Guilds, Special Television, Servicing, Sound-film Projection, Short Waves, High Frequency and General Wireless Courses.

We definitely guarantee "NO PASS — NO FEE.

If you are earning less than £14 a week this enlightening book is for you. Write for your copy to-day. It will be sent FREE and without obligation.

BRITISH INSTITUTE OF ENGINEERING AND TECHNOLOGY

BIET

TELEVISION NEWS keeps you in the TV picture

SEND FOR THE CURRENT ISSUE TODAY.

USE THIS HANDY COUPON!

To THE CIRCULATION MANAGER

TELEVISION & GENERAL PRESS LIMITED

33 BRENTHAM STREET LONDON N.W.1.

I enclose P.O./S.M. value 1s. Send me the current issue of TELEVISION NEWS.

Name

Address

(Please use BLOCK CAPITALS)

Regular features include

- Free technical advice service
- Summary of month's programmes in advance
- New equipment and sets discussed
- Latest books on TV reviewed
- Authoritative articles on TV developments and techniques
- Commentaries on past and future presentations
- Many others on important TV features.
Osman Q Coilpack

For easy assembly and whittle-free reception. No complicated wiring circuits—just five simple connections for the Osman pre-aligned coilpack to be installed—and you are off to receiving "Loud and Clear." All types available for battery or mains, with full instructions and circuit diagram. Price per set is 3/4d, post paid.

Send 5d. (stamps) for complete receiver, coils, also lists of coils, coilpacks and all Radio Components, etc.

OSMOR RADIO PRODUCTS LTD. (Dept. RC.5)
BRIDGE VIEW WORKS, BOROUGH HILL, CROYDON, SURREY. Telephone: Croydon 5149/B.

The World Radio Valve Handbook

Edited and published by O. Lund-Johansen of World Radio Handbook fame, this publication gives details, characteristics and comparison data of most of the normally used valves in the world. A most comprehensive reference book.

Available Now.

Price 11/6.

Trade Enquiries Invited

Amalgamated Short Wave Press, Ltd.

57, Maida Vale, Paddington, W.9

Panel Transfers

Amateurs! . . . Take Note

In response to the great number of demands for a further range of markings, we are now able to offer Range No. 2.

This sheet covers instruments—Oscilloscope, Beam switch unit, A.F./R.F. Modulator Sig. Gen. Xcal and VFO Freq. calibrating meter and sets of numerals to suit. Plus other useful markings. This sheet, like sheet No. 1, is printed on white lettering on a black background.

Price per sheet is 2/3d, post paid.

Still available is sheet No. 1. See our adverts in previous issues.

Order now and avoid disappointment.

Term Cash with Order.

Details available on receipt of S.A.E.

K. NOLLYN G3666

C/o., H. NOLLYN & SONS LTD.,
5, Torrens Street, City Road, London, E.C.I.

"You Can Rely on Us"

Brimar Osram Mullard Valve Manuals 5/- each

Vol. Controls

Midgets, with switch, 5/-; less, 3/-; standard size, 4/3 with switch, 2/-, less.

Coils

IF Transformers

All 465 Pcs.—Weymouth P4, 15/- pair, Wessimic midget 500, 21/- pair. RSGB Mediumwave of midget transformers.

Bases

int. octal, 6d.; Mazda, 6d.; B7G, 1/-; BBA, 1/3; B9G, 9d.; British 4, 5, 7-pin, 6d.; all types available.

Switches

Midget type—1 pole 2 way, 2/6; 2 pole 6 way, 1 3/4; 4 pole 4 way, 3 3/4; 4 pole 3 way, 3 3/4; 1 pole 12 way, 3/4; Standard type: 1 pole 18 way, 2 1/4-1/4, pole 3 way on two banks, 4/6.

Electrolytics

Bun 450v Midget, 3/-; But Tube wire ended, 3/-; 14uf 350v W/E, 1/4; 16uf 350v, 2 3/4; 16uf 450v, 4 3/4; 16uf 450v ALI, 5 3/4; 8uf 500v ALI, 4 6 24 350v, 5 3/4; 18uf 500v, 4 9; 25uf 25v, I 5 500v 2uf 18uf 500v midget, 2/6; 12uf 1m 2uf, 10/-.

Q. Max Cutters

Ideal chassis cutouts—clean hole punched with no effort. Complete with holders.

"In Town"

The Cheapest Radio Shop

SOLIDAS LTD.

4 PRAED STREET, W.2. Tel: AMB 4670

Just off Edgware Road

Selenium Recipiept

Eht. — 5 1/4 New Westhous—
360/7—100, 140/8-13, 145/6-11.
WX2—8, WX6—23, Instruments 1m A Rect.,
11/4, 2v S/B a wave—1.

Line Cord 3 Way

0.2amp (50c) per foot—8d. Fr. 0.3amp (60c) per foot.

Droppers

Standard 0.3A, 8001 5/-, 0.3A 900v 5/-,
Midget 6/3 each 2/- high.

Surplus Values

Here are a few—write for our "Valve Bargain List" with over 120 types.

6A6-6A T—EF0-7/8, 6FM-6A—16A—2A—6A6-6—
3A6-7, 6Kt6-8/4, 350—6—, 655—6—, 655—metal-7/4.
626-12—, 626-12—, 626-12—.

Tuscular Condensers

0.001, 0.002, 0.004, 0.05, 0.01, 0.14 each.

0.25uf, 1/- each. 0.5uf, 1/- each.

Mica Condensers

0.001, 0.0001, 0.0003, 0.0005, 0.001, 0.001, 0.001, 0.005 6d. each.

Valve Cans

3 piece aluminium, (oval cans) 1/- each.

Trimmers

100pf 50—, 100pf 1—, 200pf 4—, 250pf 4—, 750pf 2—.

And we sell the "trio Constructor"!

Write for our 32 page catalogue No. 10.

Price 6d.

Radio Servicing Company (Dept. K)

44 AND WANDSWORTH ROAD, LONDON, S.W.3.

My Superhet Chassis, Medium, Short and Long Wave, complete with all valves and 8 inch PM Speaker. My price £10 0.

These receivers, in top condition, are an excellent bargain—call and see them.

Wanted

All Types of Radio-Electric Equipment. Receiving and Transmitting gear: Test Equipment and Electrical Motors etc., etc.

Please call or phone.