MODERN PRACTICAL RADIO
AND TELEVISION

Modern Practical Radio and Television is quite different from anything else of its kind. It is not too advanced for the enthusiastic amateur to master, and it is a boon for any expert. It is, in fact, crammed from cover to cover with a wealth of general and specialised knowledge — knowledge that everyone interested in Radio and Television should have ready at their finger-tips. Supplied with Modern Practical Radio and Television there is a separate booklet, bound to match, which gives details of 48 circuits and popular models, and a mass of useful formulae and data.

THE CONTENTS

THE ILLUSTRATIONS

"Modern Practical Radio and Television" is profusely illustrated. It contains 16 full-page plates, over 400 diagrams in the text and 7 large folding insets. Each illustration has been specially selected for its practical utility.
TELEVISION SETS AND SHORT WAVE TRANSMITTERS

Television Sets and Short Wave Transmitters/Receivers are expensive to acquire and you no doubt highly prize your installation. Apart from the value of your Set, you might be held responsible should injury be caused by a fault in the Set, or injury or damage by your Aerial collapsing.

A "Scottish" special policy for Television Sets and Short Wave Transmitters/Receivers provides the following cover:

(a) Loss or damage to installation (including in the case of Television Sets the Cathode Ray Tube) by Fire, Explosion, Lightning, Theft or Accidental External Means at any private dwelling house.

(b) (i) Legal Liability for bodily injury to Third Parties or damage to their property arising out of the breakage or collapse of the Aerial Fittings or Mast, or through any defect in the Set. Indemnity £10,000 any one accident.

(ii) Damage to your propery or that of your landlord arising out of the breakage or collapse of the Aerial Fittings or Mast, but not exceeding £500.

The cost of Cover (a) is 5/- a year for Sets worth £50 or less, and for Sets valued at more than £50 the cost is in proportion. Cover (b) (i) and (ii) costs only 2/6d. a year if taken with Cover (a), or 5/- if taken alone.

Why not BE PRUDENT AND INSURE your installation—it is well worth while AT THE VERY LOW COST INVOLVED. If you will complete and return this form to the Corporation's Office at the above address, a proposal will be submitted for completion.

NAME (Block Letters) ..

ADDRESS (Block Letters) ..

The "MAXIMITE" AC/DC SUPERMIDGET SUPERHET — Full Plans 1/-

CATALOGUE No. 12 now available
70 pages 250 Illustrations Price 1/-

NOTE OUR NEW ADDRESS

RADIO SERVICING COMPANY
DEPT. K 82 SOUTH EALING ROAD LONDON W.5

Telephone EALing 5737

"YOU CAN RELY ON US"

COILS
Wearite "P" Coils. All types in stock including AF I, RF I. Price 3/-.
Midget. L. Transformers Type 800 21/- per pair. Standard Type 500/501 (465Kc) 20/- per pair.
HIGH IMPEDANCE HEADPHONES
New Ex-Government Price 11/6 per pair.

SCOTCHBOY TAPE
1200ft Reels 35/-
Spare Rolls 4/3

Osmor Midget iron-cored "Q" Coils 4/- each. Leaflet on request.
Coilpacks Type H.O. 5/-, LM 43/4, HTS 54/2, TRF 43/4, all including Tax.
TRIMMERS
All new Postage Stamp Ceramic. 4-70pf 8d, 40-100pf 10d., 20-150pf 1/-, 100-550pf 1/3.
LINECORD
3-way, 3a at 60 ohms, per foot 8d ft., 2a at 100 ohms per 1/3 ft.

DEPENDABILITY

AVO Precision ELECTRICAL MEASURING INSTRUMENTS

Dependability is an essential quality in any good electrical testing instrument. Absolute dependability is the outcome of good design, suitability for purpose, and a high standard of accuracy. These and a high standard of accuracy are exemplified in inexpensurable factors are exemplified in inexpensurable factors. We are also all "AVO" Instruments, which are also now notable for their compact portability and robust construction.

You can depend on "avo." When choosing instruments, consult our complete catalogue, a copy of which may be had free on application.

THE AUTOMATIC COIL WINDER & ELECTRICAL EQUIPMENT CO. LTD.
WINDER HOUSE • DOUGLAS STREET • LONDON S.W.1.
IMPROVED "MAXI-Q" PLUG-IN COILS

In addition to the Maxi-Q Chassis and Miniature Dual Purpose Coils.
Most advanced form of improvements worthy of careful note:
1. Former and Base completely moulded in coloured polystyrene for easy identification of the coil.
2. Adjustable Iron Dust Core simplifying receiver alignment.
3. Octal valveholder mounting.
4. Litz windings on L.F. ranges.
5. The termination pins form an integral part of the base and cannot become loose.
6. Dimensions: Former length 1-7/16". Dia. 3/4".
The following Colour Code identifies the coils:
BLUE: Grid coil with aerial coupling winding. For R.F. or Mixer.
RANGE 1-5 4/3, Range 6-7 3/11
YELLOW: Grid coil with coupling for reaction or R.F. anode. Straight detector or mixer following R.F.
RANGE 1-5 4/3, Range 6-7 3/11.
WHITE: Superhet Osc. (465 kc/s, I.F.), Range 1-5 4/3, Range 6-7 3/11.
WHITE: Superhet Osc. (1.6 Mc/s, I.F., Prices as Red.
(RANGE 6 and 7 Red can be used for various I.F.'s; no White coils are made for these ranges).

Complete Technical information on the coils — DTB1 1/6
Formers of the above coils complete with core, any colour.

Send 9d for General Catalogue

IKOPATENTS LTD.
Managing Director
E. G. O. ANDERSON
Consultants

RADIO
TELEVISION
ELECTRONICS

17 CRISP ROAD W6
RIVERSIDE 2678

TELEVISION CABINETS

All Sizes up to 16" Tube
Specially Designed for 'The Radio Constructor' MAGNAVIEW TV.
Receiver.
Price £18.10 Carriage £1
SEND FOR ILLUSTRATED LEAFLET

H. ASHDOWN
98 HERTFORD ROAD
TOTtenham 2621 EDMONTON N9

56 PAGES The Art of Listening — The loudspeaker • Amplifiers for the high quality reproduction of sound • Design factors in high fidelity amplifiers • Circuit and constructional details on 6, 12, 14, 20 and 30 watt amplifiers. The design of the pre-amplifier and tone control • Notes on feeder units • Using the G.E.C. f.r. Metal Cone Loudspeaker.

2/6 Post and Packing 3d. extra

THE GENERAL ELECTRIC CO. LTD., MAGNET HOUSE, LONDON, W.C.2
Component Specialists Since Broadcasting Started

Invite all those interested in ELECTRONIC COMPONENTS (both Regular and Surplus) to send for particulars of their New Mailing List Scheme

H. L. SMITH & CO. LTD
287/9 Edgware Road London W2
Telephone Paddington 5891
Hours 9 till 6 (Thursday 1 o'clock)
Nr. Edgware Road Stations, Metropolitan & Bakerloo

ARTHURS HAVE IT!
LONDON'S OLDEST RADIO DEALERS
LARGE VALVE STOCKS
AVOMETERS IN STOCK
Avo Test Meters and Signal Generators and Taylor Meters
Leak Point One Amplifiers and Tuning Units.
Chapman Tuning Units.
Crystal and Moving Coil Mics.
Decca Replacement Heads and Pickups.
Goodman's Axion 150 Speakers.
Partridge Output Transformers for Williamson Amplifier.
All Components for the Radio Constructor's 15" Television.
Weare & Wright Tape Deck £35.
LATEST VALVE MANUALS
Mallard, Osmar & Brimar No. 4 5/- each
Mazda V- each Postage 6d extra
TELEVISION SETS, WIRE AND TAPE RECORDERS ALWAYS IN STOCK
Goods offered subject to price alterations and being unsold.

THESE STANDARD WIDE ANGLE COMPONENTS ARE USED IN THE "TELEKING" AND "SUPERVISOR"
Also for the conversion to 14" or 17" C/R Tube of all popular home-built televisions.
* From all leading stockists.

ALLEN COMPONENTS LIMITED
Crown Works
Lower Richmond Road
Richmond, Surrey
Telephone Prospect 9013
Send 9d. and stamped addressed envelope for Circuit Diagram.

NEW! EXPERIMENTAL OUTFITS
LEARN THE PRACTICAL WAY
Specially prepared sets of radio parts from which we teach you, in your own home, the working of fundamental electronic circuits and bring you easily to the point when you can construct and service radio sets. Whether you are a student for an examination; starting a new hobby; intent upon a career in industry; or running your own business—these Practical Courses are intended for YOU—and may be yours at very moderate cost.

EASY TERMS FROM 31 A MONTH
With these outfits, which you receive upon enrolment, you are instructed how to build basic Electronic Circuits (Amplifiers, Oscillators, Power Units, etc.) leading to complete Radio and Television Receiver Testing and Servicing.

RADIO Outfit No. 1.—For carrying out basic practical work in Radio and Electronics, from first principles and leading to the design and building of simple Receivers.

TELEVISION Outfit No.3.—With this equipment you are instructed in the design, construction, servicing and testing of a modern high quality Television Receiver.

OTHER COURSES WITH EQUIPMENT INCLUDE:
MECHANICS • ELECTRICITY • CHEMISTRY • PHOTOGRAPHY • CARPENTRY
ALSO
DRAUGHTSMANSHIP • COMMERCIAL ART
AMATEUR S.W. RADIO • LANGUAGES • ETC.

E.M.I. INSTITUTES
The only Postal College which is part of a world-wide Industrial Organisation

POST THIS COUPON TODAY
Please send me your FREE book on Practical Courses:
I am interested in Radio □, Radio 2 □, Television □.
Other subjects ________________________________
To: E.M.I. INSTITUTES, Dept. 179x, 43 Grove Park Road, Chiswick, London, W.4.
NAME ________________________________
ADDRESS ________________________________

304
You've not heard true sound reproduction until you've tried the new 'Scotch Boy' Magnetic Recording Tape—the nearest approach yet to perfection in tape recording. Already noted for crystal clear recordings at economical running speeds, 'Scotch Boy' now offers you new and improved features:

- Higher sensitivity, 6db extra output.
- Higher signal/noise ratio, even less distortion, and perfected dry lubrication.

Put this new magnetic tape on your recorder and you will realise why 'Scotch Boy' is used by recording companies and the B.B.C.

A High Stability T9 VHF Mixer/Oscillator Unit, by H. E. Smith, G6UH

Suggested Circuits: Obtaining AVC Bias from an Infinite Impedance Detector, by G. A. French

In Your Workshop, by J.R.D.

The "Voyager" — A 5-Valve Communications TRF Receiver, by Frank A. Baldwin, A.M.I.P.R.E.

Book Review

Editorial and Advertising Offices
57 Maida Vale London W9
Telephone, CUNingham 6518

Editor
C. W. C. OVERLAND, G2ATV

Advertising Manager
F. A. BALDWIN, A.M.I.P.R.E.

Osmor Radio Products
regularly specified by "RADIO CONSTRUCTOR"

Price 4/- each

Iron Dust cores, Single-screw fixing. Ideal for TRF receivers, for decoupling and general purpose, specially selected for the Voyager (see this issue).

Price 4/- each

A full range available for Superhet and TRF, mains or battery. Size only 1½ "x3½ "x2½". Ideal for the reliable construction of new sets. Also for conversion of the 21 receiver. T.R. 1196. Type 18 wartime utility and others. Aligned and tested with full circuits etc.

Price 4/- each

M.G. GANG CONDENSER
M.G. Gang Condenser available as 1, 2 or 3 gang, 490 p.F. nominal capacity with Cadmium plated steel frame, aluminium vanes; matched and standardised to close limits. Low loss non-hygroscopic insualtion. Supplied with trimmers if required. Other capacities available. Write for further details. Prices 9/3, 14/-, 18/3.

Please write for our list of capacitors and drives

M.G. GANG CONDENSER

JACKSON BROS.
(London) LTD.
KINGSWAY, WADDON CROYDON Surrey
Telephone: CROYDON 2754-5
Telegrams: WAFILCO, SOUPHONE, LONDON

THE CONTENTS of this magazine are strictly copyright and may not be reproduced without obtaining prior permission from the Editor. Opinions expressed by contributors are not necessarily those of the Editor or proprietors.

NOTICES

THE EDITOR invites original contributions on construction of radio subjects. All material used will be paid for. Articles should preferably be typewritten, and photographs should be clear and sharp. Diagrams need not be large or perfectly drawn, as our draughtsmen will redraw in most cases, but all relevant information should be included.

All Mss must be accompanied by a stamped addressed envelope for reply or return. Each item must bear the sender's name and address.

TRADE NEWS. Manufacturers, publishers, etc., are invited to submit samples or information of new products for review in this section.

ALL CORRESPONDENCE should be addressed to THE RADIO CONSTRUCTOR, 57 Maida Vale, Paddington, Telephone CUN. 6518, London W.9.
A HIGH STABILITY T9 VHF MIXER/OSCILLATOR UNIT

By H. E. SMITH, G6UH

NOTHING REVOLUTIONARY IS CLAIMED in the design of this unit, but it will be found ideal for the operator who likes to experiment with pre-amplifier stages. The low impedance co-axial input may be coupled to any type of pre-amplifier.

The oscillator is extremely stable, and in operation compares very favourably with any crystal controlled oscillator (after the initial warm-up period of about 10 minutes). Two 6J6/ECC91 valves are used, the first being a push-pull oscillator of the Colpitts type, the second being a push-push mixer.

The oscillator coil assembly is arranged via the two coupling condensers so that just about right for efficient and noise-free mixing, and if any random coupling is allowed to exist between the two circuits, the weak-signal performance will be spoiled.

Secondly, the feed resistor to L2 should be soldered at the exact centre of the coil, and all components associated with the oscillator should be distributed symmetrically around the valveholder. This same rule applies to the leads from the mixer coil to the valveholder. In other words, keep everything balanced. The two oscillator coupling condensers should have exactly the same capacity.

FIG. 1. THE CIRCUIT.

A high stability VHF mixer-oscillator.

FIG. 2. UNDER CHASSIS LAYOUT OF MAIN COMPONENTS.

There are several important but simple points which must be observed when constructing this unit. First, the oscillator valve and coil must both be well screened from the mixer stage. The amount of oscillator injection via the two coupling condensers is just about right for efficient and noise-free mixing, and if any random coupling is allowed to exist between the two circuits, the weak-signal performance will be spoiled.

Trimming

Unless you are blessed with a signal generator, there is no easy road to "finding the band." This will need some little patience, but if you have followed the instructions regarding coil sizes, etc., you will at least know that the band is obtainable. Trim the oscillator injection via the two coupling condensers so that just about right for efficient and noise-free mixing, and if any random coupling is allowed to exist between the two circuits, the weak-signal performance will be spoiled.

The leads from the mixer coil to the valveholder. In other words, keep everything balanced. The two oscillator coupling condensers should have exactly the same capacity.

With anode (IF) coil well decoupled, which eliminates the last traces of modulation hum. There would then be no necessity to use trimmers is just about right for efficient and noise-free mixing, and if any random coupling is allowed to exist between the two circuits, the weak-signal performance will be spoiled.

FIG. 2. UNDER CHASSIS LAYOUT OF MAIN COMPONENTS.

The tuning condenser C5 was an air-spaced Polar trimmer with 1/16" spindle, with all insulated couplings to bring the spindle out to the front panel, as we had to do in this instance. It would probably be better to use a split-stator type of condenser for this job, with the rotating vanes earthed. There would then be no necessity to use insulated couplings to bring the spindle out to the front panel, as we had to do in this instance.

Mixer Coil

This is once again No. 16 swg wire, 4 turns spaced 5/32" apart on a 1/4" former wound with a dust-iron plunger. The coupling coil, wound with the same gauge wire, insulated with sleeving, consisted of two turns overwound at the HT feed end of the coil. This is connected to another short length of co-ax, which feeds the main receiver. The decoupling circuit is most important, and with an HT voltage of 250, the 1kΩ resistor provides just about the right amount of voltage on the mixer anode for minimum mixer noise.

JANUARY 1954

308
WHILST THE INFINITE IMPEDANCE detector is of great use in high fidelity equipment, it suffers from the considerable disadvantage that it cannot be employed to provide an AVC control voltage.

A typical infinite impedance detector is shown in Fig. 1. It functions by reason of the fact that pulses of anode current corresponding to the positive peaks of grid voltage are passed by the valve. The AF voltage built up across the RC circuit, R1-C1, consequently follows the modulation envelope of the impressed signal. Since the grid does not draw current, the input impedance approaches infinity; with the result that the tuned circuit feeding the grid is not damped or loaded.

As will be seen, the cathode of the valve is always at a potential which is positive with respect to chassis. This potential rises according to the amplitude of the received carrier. The voltage at the cathode is, therefore, diametrically opposed to that which would be needed for AVC control.

An Additional Diode

It is possible to obtain AVC bias from the tuned circuit feeding the detector by fitting an additional diode. This could be connected either to the tuned circuit itself or, assuming an IF transformer, to the previous anode. Unfortunately, the diode would at once cause a load to be placed upon the tuned circuit or transformer, and one of the advantages of the detector — its infinite input impedance — would be cancelled.

In this month’s Suggested Circuit, which is illustrated in Fig. 2, the additional diode is fitted, instead, in the cathode circuit of the detector. This is done by connecting the primary of an additional IF transformer between the cathode load resistor and its by-pass capacitor. Whilst the transformer primary will not interfere with the AF characteristic of the RC circuit, it will at the same time have built up across it most of the RF appearing at the cathode. In addition, it will not cause the grid circuit of the detector to be loaded in any way at all. The secondary of the additional IF transformer is connected to a diode rectifier which provides AVC bias in the conventional manner.

Practical Points

The circuit of Fig. 2 should not prove difficult to apply in practice. It is possible that the performance of the circuit may be improved if a further capacitor of some 50pF is connected across R1; although this might, of course, cause a drop in AVC voltage. The point is experimental. The additional capacitor will cause detuning of the IF transformer primary.

Due to the fact that the RF appearing at the detector cathode consists of pulses of current, it may be found that a higher AVC voltage is obtained when the IF transformer secondary feeding the diode is connected one particular way round. This point should be checked by temporarily reversing the connections from the transformer secondary.

It will be noted that the values of R1 and R3 are in the ratio of 10:1. This ratio will prevent negative peak-clipping for modulation depths of up to approximately 90 per cent.
In your Workshop

In which J. R. D. discusses Problems and Points of Interest connected with the Workshop side of our Hobby based on Letters from Readers and his own experience.

Over the last few months I have been receiving letters from many readers concerning the question of detectors for high-fidelity receivers. As these readers point out, the BBC is now transmitting on Medium and Long waves up to a modulation depth of 80 per cent and more, with the result that it is difficult to be certain whether any distortion introduced by such heavy modulation is introduced in the receiver or in the transmitter. At the time of writing, the question of distortionless detector of the BC type was the subject of a series of letters in the correspondence columns of a contemporary. It can be seen, therefore, that the BBC's policy of allowing heavy modulation is looked upon as an "Old Faithful" for many, many years. Such a circuit will not give a great deal of distortion at, say, 40 per cent modulation. When we step the modulation up to 80 per cent, however, distortion may not become just merely noticeable; it may become downright unpleasant. Such distortion will be particularly evident on high notes and transients, and it will almost always be caused by negative peak-clipping in the CR circuit used for filtering the detected AF.

Transmitter or Receiver?
The first thing to consider when tackling the problem of high modulation depth transmission and reception is whether the distortion lies in the transmitter, the receiver, or both.

So far as I can see, increasing the modulation depth at the transmitter is almost certain to increase distortion, even if only by a very small amount. However, BBC engineers are notoriously painstaking and persevering; and, I think, we can be fairly certain that they would keep the distortion introduced by high modulation to as low a limit as possible. They have, furthermore, the moral advantage of right on their side. Modulation depth, they say, has been increased to counteract interference from powerful Continental stations.

So, really, we are faced with the alternatives of high modulation with possible attendant distortion, and lower modulation with almost certain interference. Of the two, I think it is fairly safe to say that the first is the more preferable.

Having (albeit a little grudgingly!) exonerated the BBC, and having assumed that the programmes transmitted are as free from distortion as is possible, let us now examine our receivers. It is here that we may get something of a shock.

Fig. 1 shows the circuit of a conventional diode detector; one, indeed, that has been looked upon as an "Old Faithful" for many, many years. Such a circuit will not give a great deal of distortion at, say, 40 per cent modulation. When we step the modulation up to 80 per cent, however, distortion may not become just merely noticeable; it may become downright unpleasant. Such distortion will be particularly evident on high notes and transients, and it will almost always be caused by negative peak-clipping in the CR circuit used for filtering the detected AF.

Negative Peak-Clipping
To appreciate how negative peak-clipping may occur, let us examine the circuit shown in Fig. 2. This presents a diode detector stripped down to its essentials. To facilitate the process of explanation, the diode load has, this time, been connected between the diode cathode and chassis. The modulated signal is applied by the tuned circuit to chassis and to the anode of the diode. When the top end of the tuned circuit is positive the diode conducts, charging the capacitor C. When the top end of the tuned circuit is negative the diode does not conduct, and the capacitor discharges into R.

Fig. 3 shows the process graphically. In this familiar diagram, the modulated waveform at (a) is rectified by the diode; the resultant signal, illustrated in (b), appearing across the diode load. Note that, between positive half-cycles of RF the capacitor discharges into the resistor, (as happens, for example, between points A and B in the diagram), until the next positive RF half-cycle appears and charges the capacitor up to peak value again. (The irregular outline of Fig. 3 (b) is due to the fact that, for purposes of illustration, the carrier frequency is shown as being much lower than it would be in practice.

Now, what happens if the values of C and R are made such that the capacitor can only discharge slowly between successive half-cycles? This will not worry us between points C and D in Fig. 3 (b), because the capacitor is being charged up by the diode to a higher voltage at each half-cycle. Between points E and F, however, the voltage at the cathode of the diode is falling, and, if C cannot discharge into R quickly enough to "follow" the cathode voltage, there will be distortion. An approximate idea of the distorted waveform is given in Fig. 3 (c).

It will be seen that the distorted part of the curve appears when the diode cathode voltage is falling. Hence the term "negative peak-clipping."

Critical Values
It may be seen from the above that the values of C and R are of considerable importance if we are to achieve distortionless reproduction from a diode detector. I have been carrying out a little investigation of my own into this matter and, by making several assumptions that can be fairly comfortably met in high-quality receivers, am able to show that there is a limiting value of CR in the circuit of Fig. 2 above which distortion is almost inevitable.

January 1954

Fig. 2 shows the AF voltage appearing across the cathode load of a diode using the circuit of Fig. 2. The waveform of this voltage is, of course, practically identical with that of Fig. 3 (b), with the exception that the RF half-cycles are not shown.

The peak voltage of the waveform is \(V_1 \) volts, and its average voltage (measured from the point where the AC voltage is zero) is \(V_2 \) volts. The waveform is that of a sine wave and there is no distortion. Its frequency is \(f \) cycles per second.

We will need to assume that the resistive value of the diode load is very much higher than the internal resistance of the diode, and that the resistance offered by the diode remains constant over the half-cycle during which it conducts. We can satisfy the first assumption by giving the load resistance a value of some 250 kΩ or more, and the second by applying the RF to the diode at a fairly high voltage. We will have to assume also that the impedance of the RF source, in this case the tuned circuit, is negligible so far as AF and DC are concerned. This latter assumption is readily met if our tuned circuit is the secondary of a conventional IF transformer.

Having proceeded so far, let us examine Fig. 4. As it stands, the values of C and R are such that C cannot discharge sufficiently quickly into R at all points of the cycle, thereby allowing the voltage waveform across R to follow that of the modulation envelope.

Let us now gradually increase the value of C until it is just on the threshold of being too large to allow the capacitor to discharge...
into R quickly enough at the steepest part of the AF cycle. It can be seen that this state of affairs will be encountered at the point where the sine wave voltage is falling at its greatest speed. In Fig. 4, the point at which the sine wave voltage is falling at its greatest speed is at P, on the line AB; that is, at the point where the AC voltage is equal to zero.

Equal Rates

At this juncture it would be advisable to use more concrete terms. So let us re-word the conclusions of the last paragraph to state that we are considering the case where the rate of change of voltage of the sine wave at point P is equal to the initial rate of change of voltage across C when it discharges into R. We refer to the initial rate of change of voltage across C because this is the only time during the whole cycle when the capacitor has been expected to discharge into the resistor at a rate dependent solely upon the values of C and R. Previously, the voltage was "held up," as it were, by the diode cathode. If we evaluate these two rates of change, we will be able to find the limiting values of C and R.

Our reference books tell us that the rate of change of voltage of a sine wave at zero voltage is given by

\[R_1 = 2\pi fV \text{ volts per second,} \]

where \(R_1 \) is the rate of change, V is the peak voltage, and f the frequency. Therefore, in the case of Fig. 4, the rate of change will be given by

\[R_1 = 2\pi fV_1 \text{ volts per second.} \]

The initial rate of change of voltage across a capacitor discharging into a resistor is given by

\[R_3 = \frac{E}{CR} \text{ volts per second,} \]

where \(R_3 \) is the rate of change, E is the initial voltage, and C and R are measured in farads and ohms respectively. In Fig. 4, E will be equal to \(V_2 \) and so we obtain:

\[R_3 = \frac{V_2}{CR} \text{ volts per second.} \]

As we are considering the case where \(R_1 \) is equal to \(R_3 \), we may now reach the following:

\[2\pi fV_1 = \frac{V_2}{CR} \]

This may be rewritten:

\[CR = \frac{V_2}{2\pi fV_1} \]

However, \(\frac{V_1}{V_2} \) is equal to the modulation depth (see Fig. 4). If, therefore, we represent the modulation depth (as a fraction, not as a percentage) by the letter K we may further rewrite the equation as follows:

\[CR = \frac{1}{2\pi fK} \]

A Practical Example

It would be interesting now to see what values of C and R we can obtain under practical conditions of reception.

Let us start off, therefore, with a stringent but, nevertheless, representative set of requirements. We wish to produce a detector circuit which will not introduce negative peak-clipping for all frequencies up to 10 kc/s. The modulation depth will be four-fifths (i.e., 80 per cent).

Using these figures, we obtain:

\[CR = \frac{1}{2\pi fK} \]

where \(f \) is the frequency and \(V_2 \) is the peak voltage. For this particular case, we have:

\[f = 10,000 \text{ per second,} \]

\[V_2 = 250\text{ millivolts.} \]

It follows that

\[CR = \frac{1}{2\pi \times 10,000 \times 4 \times 0.8} = 16,000\pi \text{ volts per second.} \]

If we decide to use the conventional value of 250k\(\Omega \) for the diode load resistor, we then obtain:

\[C = \frac{16,000\pi \times 250,000 \text{ farads}}{80\text{pF (approx).}} \]

Some Solutions

80pF is not a large capacitance by any means, and it will at once be realised how the apparently harmless circuit of Fig. 1 is capable of causing a considerable amount of distortion; this being especially true of high notes at high levels of modulation. It must be remembered that, in Fig. 1, both C1 and C2 are effectively in parallel across the diode resistor so far as AF is concerned; and that the total capacitance is nearly equal to 300pF. Which is a lot more than 80pF!

At the same time, it is essential to have a reasonable amount of capacitance across the diode load, or we will not be able to filter RF away from the succeeding AF stages. We must remember also that there are residual capacitances to consider, including the input capacitance of the subsequent valve.

One way of increasing the permissible parallel capacitance consists of reducing the resistive load. Thus, if R is halved, C may be doubled. This will still maintain the same limiting value of CR.

This is not a very useful solution, however, because if we reduce R to too low a value, we will be introducing distortion from other causes. If, in the case just quoted, we were to reduce R to 150k\(\Omega \) (probably as far as we could go with safety), this would allow us to increase C to a value of approximately 130pF.

Another method of attack would be to increase the value of the series resistor in the RF decoupling circuit. The circuit shown in Fig. 5 is due to J. D. Herring and appeared in Wireless World for September,

\[\text{Fig. 4. Illustrating a condition in which the initial rate of change of voltage of CR is equal to the fastest rate of change of voltage of the sine wave} \]

[Diagram of a high-fidelity diode detector circuit]

and it will be seen that it uses a very low value of C. To prove this point, the issue I have not referred to AC/DC diode load...
The VOYAGER
By FRANK A. BALDWIN, A.M.I.P.R.E.

A 5-valve Communications Type TRF receiver using Eddystone plug-in coils, Mullard B8A valves, and incorporating a Noise Limiter and Audio Filter.

This receiver has been designed and constructed for those enthusiasts who prefer using modern miniature components and plug-in coils. The advantages of these components are too well known to require discussion here; be it sufficient to state that maximum efficiency has been achieved in this design mainly as a result of their use.

Preliminaries
The completed receiver is shown on the front cover, and the various illustrations in this article adequately explain the physical lay-out both above and below the chassis. Panel and chassis drilling details are given in Figs. 1 and 2 respectively. Before operations commence, however, various modifications to the steel cabinet (supplied by Kendall and Mousley), are required in order to obtain a lift-up top—which is required in order to change coils. The cabinet sides, top and bottom are inter-changeable merely by removing the fastening screws and re-assembling. The bottom of the cabinet should first of all be removed, reversed (i.e., inner surface to become the outer so

RF Stage
The aerial input is via CI—a 25pF split stator—and this effectively matches the impedance of the aerial to the receiver over the entire frequency coverage. In operation, this is adjusted to give the best signal-to-noise ratio on the particular frequency in question. C3 is the RF trim control. RF gain is by means of the variable resistor R5 in the cathode circuit. The valve is a Mullard EF41—a variable-mu RF pentode in which the entire electrode system is internally enclosed in a metal shield, thus obviating the need for a metal screen. As an RF amplifying valve, the EF41 is particularly suited to sets designed to include short wave bands. The RF choke, an Osmon type QCI, mounts vertically on to the chassis by means of a single fixing bolt. The RF output is fed via C6 into the coil primary of the Detector stage. Note the under-chassis screening between the RF and Detector stages—this effectively prevents any interaction between the two RF chokes.

Detector Stage
This stage incorporates a further EF41 RF pentode, which has been found to work extremely well as a leaky grid detector. Owing to the fact that the Eddystone miniature plug-in coils have their windings all internally connected to an earth pin, reaction is obtained by varying the screen grid...
voltage. The values of R9, 10, 11 and 12 have been carefully chosen to ensure that smooth reaction is present throughout the receiver coverage. The values of C10 and C11 are also important in this respect. Using the values shown in the component list, the Detector will be found to be completely stable, and careful operation of R11 will allow the circuit to slide gently into oscillation at will. The output of the Detector stage is fed via C15 into the grid of V3.

First Audio Stage
In this stage the EF40 AF pentode has been specially selected as it was designed for use in high sensitivity amplifiers; hum, microphony and valve noise are reduced to a very low level. It has a straight characteristic and a slope of 1.85 mA/V. Component values have again been chosen for best performance, and LF instability is conspicuous by its absence. The suppressor grid is connected externally to the cathode.

Output Stage
The input to this stage is via the audio gain control R17. The remaining components in the grid circuit are the Noise Limiter and Audio Filter respectively. Dealing first with the former, R18 is the manual control, and adjustment of this towards the maximum setting provides a high degree of audio pulse limitation. In the prototype receiver, distortion at the maximum setting is extremely small, C19 and C20 being the critical values in this respect — some variation of values by constructors is therefore admissible here.

Component List
The Audio Filter follows normal practice except that an RF choke is utilised, and this component is mounted above the chassis and directly behind its control—R21. This circuit works extremely well, the effect being most marked on CW signals and particularly where several such signals are received at the same time. With the Filter in circuit, it is a comparatively easy matter to read the required transmission.

In the anode circuit, the output transformer is of particular importance in that a correct matching must be made to the EL42 (see component list). This valve is a low consumption output pentode, the heater current being only 200 mA. The maximum output of 2.8 watts has been achieved in the circuit shown. Insertion of the headphones into circuit automatically mutes the speaker, which is separate from the receiver, the output being brought through the chassis back-drop (see illustrations).

Power Pack
The EZ41 full-wave rectifier is specified here. The heater current of this rectifier is only some 0.4 A, and it is capable of delivering up to 60 mA HT current. The heater voltage is obtained from the common valve heater supply. The 1 watt resistors R25 and R26 have been included to avoid momentary flashover between anode and cathode.

It was considered wise to incorporate these resistors in view of the fact that many intending constructors may choose to utilise a mains transformer other than that specified. Should the specified transformer be included, these resistors may be omitted.

General Remarks
Fig. 1 showing the panel drilling details is complete except for the dial and drive assembly. This has been omitted for the reason that this assembly is adjustable with respect to height from the chassis deck in
order to accommodate various sizes of tuning condensers.

Fig. 3 shows the complete circuit diagram which, together with the component list and illustrations, provides complete data on the construction of this receiver.

The gold coloured decoration shown on the front panel and cabinet sides consists of two strips of metal speaker mesh, suitably cut to size, and bolted to the cabinet itself.

Conclusion

On completion, The Voyager will be found a pleasure to handle with a performance in keeping with its looks. Provided the circuitry is closely followed and a sound mechanical design adopted, no trouble will be experienced by the intending constructor.

BOOK REVIEW

This volume is Book VIII.B of the Philips Technical Library, and is a companion work to the Monograph dealing with the design of television receiver IF stages reviewed in the June 1953 issue of this journal. The production of the book itself, and its contents, are fully in keeping with the high standard of the series. The principles of simple capacitive and inductive saw-tooth generators are briefly described in the opening chapter, and some complications that can arise with the inductive circuit are given notice. Some practical saw-tooth generator circuits are considered next and dealt with by blocking oscillators and multivibrators.

The greater part of the book is devoted to mathematical treatments of flywheel action resonant circuits and automatic phase control. In order to show how these principles can be applied to various types of saw-tooth generator, it is inevitable that the author has to describe in detail the operation of blocking oscillators, and multivibrators that work in the symmetrical and asymmetrical modes. Herein can be found a considerable amount of design data that can be most useful in other applications, especially in the case of multivibrator circuits.

Like other books in this series, this one will appeal to the design engineer of degree standard. The mathematics are rather too involved for those who do not possess a good knowledge of the Calculus. Those who can appreciate the author's treatments of his subjects will find that he deals at great length with various circuits and reaches his conclusions by logical argument from basic principles.

There is a chapter devoted to the description of special valves which are applicable to the practical circuits given in the book, and it is to be noted that even though the emphasis is on developments by Philips of Eindhoven, these same valves are available in the British Mullard range.

NOTE: Some of the valve base pins are internally connected although not shown in the circuit diagram. It is important, therefore, that no valve holder tags be used for anchoring purposes.

Can Anyone Help?

Dear Sir,...Could you please oblige me with some information regarding the ex-WD transformer marked Power Unit No. T484990—VA 14.6—PHI PER 50—Style 201053.—G. Robinson, 23 Ullswater Road, Ferryhill, Co. Durham.

Dear Sir, Could anyone oblige me with details of the U.S.A. of the makers of the Haford receivers, I would also like to buy or borrow the circuit, and any other particulars, of the Admiralty (Marconi) "F".F.649 receiver and associated power pack.—E. W. Hillier, 60 Randolph Avenue, London, W.9.

Dear Sir, I wonder whether any of your readers can supply me with the circuit of the R3170A, which I understand was to incorporate as many refinements as possible, with microphone or gram input. These refinements included negative feedback, and a fairly complex tone control, and so the circuit of Figs. 1a and b was developed.

Finding, and I want to change it back for normal reception.—W. Buchanan, 12 Carrick Park, Ayr, Scotland.

Dear Sir, I am writing to see if you can give me any information with regard to the RAF R1116 receiver. I should like to know the front panel layout with regard to the controls, and also the valve line-up.—R. E. Bowgen, 83 Hall Place, London, W.2.

Dear Sir, Would you be so kind as to spare half an inch of space to print a vote of thanks to all those readers who replied to my S.O.S. for details of the R3170A, which you published in the May issue. I have not yet been able to reply to all those who kindly sent me assistance. Incidentally, details of the EL37 and the KT705, frequency range 1.2—22 Mc/s in five switched bands. The trouble is that the aerial input circuit has been modified for Direction.
"reduction" in output would scarcely be detected by ear, when a total of 50 or so watts is available, and one cannot be expected to tell the difference between full power and three-quarter power when one has never heard what full power is like. Therefore a surer method of detecting parasitics will be suggested later.

Design

The input to the EL37's for full output under the conditions shown is about 60 volts signal from grid to grid. When used with fixed bias, this becomes about 70 volts. The gain of the phase splitter, V4, may be assumed to be about 1.8 times, so the required input to V4 under conditions of maximum output will be 40 volts. Since R25 is 10kΩ, only 1/11 of this voltage will appear across R23, and so V4 will not be overloaded. The voltage gain of the second half of V3 will be about 15 times, so the input to its grid must be 3 volts. It is necessary to allow for about 18dB attenuation in the tone control circuit, so the input to the first half of V3 must be about 0.1 volts. It is also necessary to allow about 16dB loss for the negative feedback, and therefore the output from V2 will have to be about 12 volts. Hence, assuming V2 provides a gain of 100, which is not very difficult to attain with a high gain pentode, the signal input to V2 for full output will be 0.12 volts. As the average gramophone pick-up output is in the neighbourhood of a volt or more, this gives plenty of margin for offsetting the attenuation of R21 when used for bass characteristic compensation. And since the input from a microphone is of the order of 0.01 volts, the gain of V1 is considerably more than is necessary, and advantage could be taken of this by applying, as with V2, about 8dB of negative feedback by omitting C1.

Construction

The original amplifier was built into the cabinet of the TR9 transmitter-receiver, which is fairly easily available on the surplus market. It was decided that the normal operating position would be upright, with the sliding metal drawer at the top. This drawer should be cut off about 2" down the sides, so as to leave only the top; then the sides may be bolted to the sides of the case, so that the drawer appears to be about 3" open. This forms an effective ventilator, as both the EL37's and the 5U4 rectifier produce a good deal of heat.
The amplifier was built into the top half of the case, and the power pack and output transformer were put at the bottom. Two separate panels were used, the upper one being bolted to the amplifier chassis, and the lower one merely bolted to tapped brackets at the side of the case, as the power pack was built directly into the bottom of the case without using a chassis. It is as well to put all the power pack components roughly in their positions before bolting any down, as the larger components may vary considerably in shape and size.

The original layout is shown in Fig. 2, and may be used as a rough guide. It should be noted that the 5U4 is supported on insulating pillars, about 2½' high.

More care must be taken with the upper deck, of course, and considerable thought went into determining the best possible layout, which is shown from the top in Fig. 3. The view from the underneath of this chassis corresponds with the top view, and has screens which follow those on top, but are only 2' deep, plus a 1' flange for bolting down. The screens above the chassis are all 5' deep. Space is very scarce, and the layout should be followed carefully. The chassis should be made of 18 swg aluminium, and the screens of 20 or 22 gauge aluminium, or better still of copper. It is then very convenient for use as a sort of continuous earthing strip. The rear edge of the chassis rests on the edge of the metal bar which runs across the TR9 case. This bar is best covered in felt to avoid stray rattle. Both the upper and lower panels were made of 18 gauge mild steel, but unless the constructor possesses an electric drill, it is easier to use aluminium. A drilling diagram is shown for the upper panel in Fig. 4.

A pilot light and mains switch were mounted on the original lower panel, with the mains plug and fuses at the side of the case, under a hinged metal cover. It is also desirable to cut a pair of 1' slots horizontally across the panel, to help with the ventilation.

It should be noticed that all the electrolytic decoupling condensers used were rated at 500 volts working.

If the constructor feels that the full output of 69 watts is desirable, it is necessary to run the output stage with fixed bias. The modification necessary is shown in Fig. 5. A larger output transformer will also be
The mains transformer may either be bought, or wound at home. If bought, it should be rated at 350-0-350 volts at 250 mA (or, if it is proposed to run the EL37's under fixed bias, at 300 mA), also 5V 3A for the rectifier heater, and 6.3 volts 5A for the valve heaters. The job of winding the transformer effects a considerable economy, and is not such a difficult job as it might appear. The necessary winding data is set out below:

Watts output of transformer: 134, therefore assuming 85% efficiency, the input power is 158 watts. Required cross section of core is therefore 2.7 square inches. Turns per volt = 3. So primary turns (mains winding) = 690, and primary current = 0.7 Amperes, or wind primary with 24 swg enam. copper. Similarly, IT secondary should be 2,100 turns with centre tapping, of 28 swg enam. copper. Rectifier heater winding: 15 turns of 18 swg enam. copper. Valve heater winding: 19 turns of 16 swg enam. copper. The total winding space required for the windings is approx. 1½ sq ins.

It is best to make the bobbin out of sheets of paxolin cut to shape and well glued at the joints. This ensures better insulation to core than is obtained by using cardboard. It should be remembered that the bobbin, before being wound, should be fairly loose fit on the laminations, as the weight of the wire will reduce the inside measurements considerably. The primary should be wound on first, then covered with either several layers of new greaseproof paper, or better still, a thin sheet of paxolin. A similar procedure should be adopted after the HT winding has been completed.

Testing
When finished, the power pack leads should be long enough to allow the amplifier to be tested outside its case. With no input to gram or mic., the amplifier should be switched on, and all the volume controls turned to maximum. Some hum will be audible, but at this output level a little hum is not normally noticed. It may be found that as the volume controls approach maximum, the amplifier becomes unstable. This indicates that either C4, 8, 15, or 16 is faulty, and should be replaced. Since these are expensive items, the instability may possibly be disregarded, as the amplifier will not normally be used at such a high level of gain, even though full power may be used. It is best to replace them if possible, though, as signals may tend to shock the amplifier into instability. However, assuming the amplifier gives every mute indication of being satisfactory, the push-pull stage may now be balanced. With the amplifier switched off, the anode of V5 should be temporarily disconnected from the output transformer, and joined to the anode of V6. Also, a 0.1 μF condenser should be connected from the live side of the heater wiring to the top of R11. Both modifications are only temporary. When the amplifier is again switched on, a heavy mains hum will be heard in the speaker. Then adjust R36 till the hum is inaudible even with R11 turned up to maximum gain.

The 0.1 μF condenser may now be removed, and the anode of V5 restored to its original position. This adjustment must be done as quickly as possible, as one half of the output transformer primary is being seriously overloaded. The next adjustment to be made is to put a DC voltmeter across R15, and adjust it to 3½ volts.

The amplifier may now be put into its cabinet, and its performance checked as follows: put an AC voltmeter from the live side of the heater wiring to the top of R11. Both modifications are only temporary. This instrument, besides having three speeds, is fairly insensitive. The stage mentioned will readily be seen as being a high quality arrangement.

After careful consideration it was therefore, decided to install a pure AC type which would fulfil the above requirements. The B.R.S. "Monarch" record player was the final choice. For those on DC mains, an oscillator/converter specially designed for this changer is obtainable at a moderate price. This instrument, besides having three speeds, will change records of inter-mixed sizes.

The Circuit
Apart from the infinite impedance cathode follower stage, this AC/DC receiver is entirely conventional. The stage mentioned will readily be seen as being a high quality arrangement.

THE "UNIVERSAL" RADIOGRAM

A description by A. S. TORRANCE of the second of the two units, each complete in themselves, which make up the complete TV-Radio-Gramophone home entertainment.
THE UNIVERSAL RADIGRAM CIRCUIT

Note—The pin numbers on V1 are slightly incorrect; pin numbers 2 and 7 should be reversed.

COMPONENT LIST

Resistors. All Dubilier

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Value</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>1 MΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R2</td>
<td>10 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R3</td>
<td>47 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R4</td>
<td>1 MΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R5</td>
<td>22 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R6</td>
<td>3.3 MΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R7</td>
<td>220 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R8</td>
<td>47 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R9</td>
<td>22 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R10</td>
<td>10 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R11</td>
<td>10 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R12</td>
<td>10 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R13</td>
<td>2 MΩ with SP sw, type CP volume</td>
<td></td>
</tr>
<tr>
<td>R14</td>
<td>2.2 MΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R15</td>
<td>47 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R16</td>
<td>470 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R17</td>
<td>4.7 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R18</td>
<td>100 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R19</td>
<td>2 MΩ pot, tone, type CP</td>
<td></td>
</tr>
<tr>
<td>R20</td>
<td>2 MΩ pot, tone, type CP</td>
<td></td>
</tr>
<tr>
<td>R21</td>
<td>2.2 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R22</td>
<td>100 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R23</td>
<td>10 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R24</td>
<td>1 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R25</td>
<td>2.3 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R26</td>
<td>220 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R27</td>
<td>1 kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R28</td>
<td>220 kΩ, ±2%, type R627</td>
<td></td>
</tr>
<tr>
<td>R29</td>
<td>270 kΩ, ±2%, type R627</td>
<td></td>
</tr>
<tr>
<td>R30</td>
<td>1kΩ</td>
<td>type BTS</td>
</tr>
<tr>
<td>R31</td>
<td>100 Ω, 1W, type BWF</td>
<td></td>
</tr>
<tr>
<td>R32</td>
<td>47 Ω, 1W, type BWF</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Value</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>250 pF</td>
<td>type SMWN</td>
</tr>
<tr>
<td>C2</td>
<td>100 pF</td>
<td>type SMWN</td>
</tr>
<tr>
<td>C3</td>
<td>100 pF</td>
<td>type SMWN</td>
</tr>
<tr>
<td>C4</td>
<td>100 pF</td>
<td>type SMWN</td>
</tr>
<tr>
<td>C5</td>
<td>0.01 mF</td>
<td>750V, type 743</td>
</tr>
<tr>
<td>C6</td>
<td>0.05 mF</td>
<td>350V, type 343</td>
</tr>
<tr>
<td>C7</td>
<td>8 μF</td>
<td>same can, type CE34PE</td>
</tr>
<tr>
<td>C15</td>
<td>8 μF</td>
<td>same can, type CE34PE</td>
</tr>
<tr>
<td>C8</td>
<td>5 pF</td>
<td>ceramic</td>
</tr>
<tr>
<td>C9</td>
<td>82 pF</td>
<td>ceramic</td>
</tr>
<tr>
<td>C10</td>
<td>82 pF</td>
<td>ceramic</td>
</tr>
<tr>
<td>C11</td>
<td>82 pF</td>
<td>ceramic</td>
</tr>
<tr>
<td>C12</td>
<td>0.1 μF</td>
<td>500V, type 543</td>
</tr>
<tr>
<td>C13</td>
<td>0.1 μF</td>
<td>500V, type 543</td>
</tr>
<tr>
<td>C14</td>
<td>100 μF</td>
<td>6V, type CE32A</td>
</tr>
<tr>
<td>C16</td>
<td>0.1 μF</td>
<td>500V, type 543</td>
</tr>
<tr>
<td>C17</td>
<td>8 μF</td>
<td>same can, type CE34PE</td>
</tr>
<tr>
<td>C18</td>
<td>8 μF</td>
<td>same can, type CE34PE</td>
</tr>
<tr>
<td>C19</td>
<td>0.02 μF</td>
<td>500V, type 543</td>
</tr>
<tr>
<td>C20</td>
<td>0.02 μF</td>
<td>500V, type 543</td>
</tr>
<tr>
<td>C21</td>
<td>0.05 μF</td>
<td>500V, type 543</td>
</tr>
<tr>
<td>C22</td>
<td>0.02 μF</td>
<td>500V, type 543</td>
</tr>
<tr>
<td>C23</td>
<td>0.02 μF</td>
<td>500V, type 543</td>
</tr>
<tr>
<td>C24</td>
<td>0.02 μF</td>
<td>500V, type 543</td>
</tr>
<tr>
<td>C25</td>
<td>0.02 μF</td>
<td>500V, type 543</td>
</tr>
<tr>
<td>C26</td>
<td>0.02 μF</td>
<td>500V, type 543</td>
</tr>
<tr>
<td>C27</td>
<td>0.01 μF</td>
<td>750V, type 743</td>
</tr>
<tr>
<td>C28</td>
<td>0.1 μF</td>
<td>type 37N</td>
</tr>
</tbody>
</table>

Valves. All Mullard—see heater chain circuit

Speaker. Goodmans T32/61001/3

Output Transformer. Electrovoice 113D
(H. L. Smith & Co., Ltd.)

Coil Turret. Type CT6U, Denco (Clacton) Ltd.

Chassis. Denco (Clacton) Ltd.

Heater Dropper. Goldsman DK36/8 distributed by Ampion Ltd.

Cabinet. Lasky's (Harrow Road) Ltd.

Knobs. Lasky's (Harrow Road) Ltd.

IF Transformers. 2, IFT11, Denco (Clacton) Ltd.

Radio/Gram Switch. Single-pole two-way rotary

Insulated Aerial plug and socket.
Insulated Earth plug and socket.
Insulated BU 2-pin plug and socket.
Insulated Speaker 4-pin plug and socket.
Grommets, solder tags, wire, slewing, nuts,
distortion, and with a degree of quality which has surprised many technicians.

Construction
The chassis is composed of five plates which are assembled around the turret (see photos.) This should occasion no difficulty and is, in fact, an obvious way of doing it.

When installing the valveholders, study the photograph of the underside and the circuit for their orientation. Thus, VI will have pin 2 close to C3, and so on.

Heater Chain Wiring
This is completed as given in the circuit, and in the same order.

General Wiring
This is best achieved by wiring up one stage at a time; the placement of components is helped by the illustrations, in which a great many resistors and condensers have been identified by their circuit numbers. The five screened connections may be put in last of all; standard TV co-ax is very suitable here.

Mains Switching
Note that this is single-pole, and that it is the chassis side which is switched. This greatly assists in hum reduction. There may still be hum present if the mains plug is inserted incorrectly into its socket.
Radio/Gram Switching

A standard single-pole two-way rotary switch is attached to a small bracket on the chassis front (see photograph), and this is held into position by the bush nut on the volume control.

The leads from the switch enter the chassis via the usual grommet.

The Heater Dropper

This component will be seen mounted at the rear of the chassis. This is convenient during testing, but it develops a great deal of heat, and readers are advised to finally mount this component at the rear on an extension bracket, so removing the heat further from the chassis and at the same time enabling it to dissipate more rapidly.

Incidentally, there is plenty of room at the back of the cabinet for the oscillator/converter, if the latter is required.

Output Transformer

This can be seen in the illustration showing the chassis installation. A standard 5-pin connector is required for it; should any 'howling' be experienced, either the primary or the secondary connections should be reversed. This condition is known as "out of phase." Note that both the chassis and the output transformer require fixing bolts having countersunk heads.

Alignment

The coil turret and the IF transformers (465 kc/s) are pre-aligned before leaving the factory, but if any serious defect in tracking or response is experienced it would be advisable to have the receiver properly lined-up. Full alignment data is given in the literature supplied with each coil turret.

Installation into the Cabinet

This procedure is illustrated by three photographs, and the sections to be removed may be clearly seen.

Remove the top, and then the four screws holding down the wooden support for the record player. Lay the cabinet on its side, and fix the speaker (with flexible leads attached) into position. Restore the upright position of the cabinet, and place the chassis in location with the spindle holes. Cut the spindles to the correct length, using the knobs as guides.

Fit the glass dial protection, and fix down the chassis using bolts as mentioned above.

Recesses are provided in the wooden top for the springs, which when fitted considerably lessen any "rumble" effects. The springs are held in position by nuts and large washers; one nut is threaded on first, then a washer, and then another nut used for locking. Two additional screw holes are provided, but these should be ignored. Adequate information for its installation and operation is provided with each changer.

Rumble

If this effect is observed, a 500kΩ resistor should be soldered directly across the pick-up connecting tag strip on the underside of the record player.

No pilot lights have been incorporated in the circuit, but miniature mains bulbs are obtainable and may be added if required. On no account should bulbs be tapped into the circuit.

It is recommended that all literature appertaining to the "Universal" be placed into an envelope and pinned to the cabinet, so that it is available for any future servicing requirements.

Precautions

The remarks given in the TV section on safety measures are equally applicable to the radiogram unit, and should be observed at all times.

Remember that the "Monarch" record changer is designed for AC inputs only, and must not be directly connected to a DC supply.

Aerial

The aerial input is completely isolated from direct connection with the receiver. In some areas satisfactory results may be obtained from the TV co-ax braid, but a proper and separate aerial is best for optimum results.
Radio Miscellany

A NOTHER R.S.G.B. EXHIBITION was held on the seventh — has come and gone. There was little which could be categorised as "new", and a number of the standard lines and established favourites were absent. This was regrettable, as I like to feel that this occasion is as representative as possible of amateur radio. It is intended to be a public one, and at no time of the year is the hobby more in the public eye.

As always it was a great occasion for amateurs from widely separated regions to get together, and many must have found the visit worth while for this alone. David Godwin (a newcomer to the amateur market) exhibited a range of separately available foundation units which can be assembled as a TV-proof table-top transmitter. Unfortunately they kept the bottoms screwed on, so visitors were not able to see much of the "works." Panda Radio also had their "Table-Topper" on show, and also a new low-power rig, the "Panda Cub." This table-top emphasis is markedly symptomatic of the trend in recent years. In amateur design the formerly popular 6-foot-odd rack-and-panel seems to be increasingly falling out of favour. Also in the fashion were our old friends, E.J. Philpotts Ltd., who had a couple of 3-tier table-top racks on show, one fully enclosed.

Now the housing situation is getting a little easier, it is curious that amateurs are still queuing their stations onto a corner of the dining-room instead of spreading it around a spare-room.

Home-made

The Amateur Constructors Section was of great interest, and some very elaborate apparatus was on view. Many visitors must have wondered whether all of it worked as well as it looked.

The standard of finish was extremely high and the marking of controls was of a high order. Modern techniques are effective if carefully used. It wasn't many years ago that this column felt it necessary to urgently appeal for someone to market such transfers to fill the vacuum, despite the ambitious design and workmanlike construction, much of the gear was made "on the kitchen table."

One or two of the cases had admitted to professional finishers for cellulosing, etc. The winning entry, as I like to feel that even the best entry has still got to go up to the standard, was a couple of 3-tier table-top racks on show, one fully enclosed. Now the housing situation is getting a little easier, it is curious that amateurs are still queuing their stations onto a corner of the dining-room instead of spreading it around a spare-room.

The Amateur Constructors Section was of great interest, and some very elaborate apparatus was on view. Many visitors must have wondered whether all of it worked as well as it looked.

The standard of finish was extremely high and the marking of controls was of a high order. Modern techniques are effective if carefully used. It wasn't many years ago that this column felt it necessary to urgently appeal for someone to market such transfers to fill the vacuum, despite the ambitious design and workmanlike construction, much of the gear was made "on the kitchen table."

Readers, like myself, who have come to regard sound broadcasting as old-fashioned (and have done practically no broadcast listening for four years now) must find it hard to believe that more ordinary radios than TV receivers are still being sold. This is proved by statistics; not culled from one of those Strange-But-True columns.

Is further proof needed that one half of the world knows next to nothing about how the other half lives?

Programmes

In the recent discussions on alternative TV programmes, a lot of people unqualified to publicly express any view did most of the talking. This, according to the Horrible Example of American TV. Perhaps they haven't yet realised that many of the most popular programmes are American in origin and copyright. "What's My Line?" is but one example.

Has anyone examined the question in reverse? What do the Americans think of our programmes? Those who I have asked think they are very dull, and a few were positively embarrassed by the patronising earnestness of our documentaries. They had, at least, seen both the best and the worst of both systems. On every 'bus you can meet people who will tell you all about American TV — and they have never left British shores!

Centre Tap

B.B.C. TV can be rank bad. Fancy asking our American friends to judge it by the current output! The only critic said it was gruesome, slapdash and imaginatively impoverished. He was being generous. It must have made every intelligent viewer squirm. And that was a Saturday night-high spot!

No one reasonably expects sparkle all the time. Nor is TV like a tap, ready to be switched on at any hour of the day or night. What an enormity number they must have on the books. Once you take out a licence they don't care. It's a different story if you don't renew your licence, and yet they would order other peoples' lives.

What is further proof needed that one half of the world knows next to nothing about how the other half lives?

R.S.G.B. Exhibition — More About Pirates — Ruggedisation

B.B.C. TV can be rank bad. Fancy asking our American friends to judge it by the current output! The only critic said it was gruesome, slapdash and imaginatively impoverished. He was being generous. It must have made every intelligent viewer squirm. And that was a Saturday night-high spot!

No one reasonably expects sparkle all the time. Nor is TV like a tap, ready to be switched on at any hour of the day or night. What an enormity number they must have on the books. Once you take out a licence they don't care. It's a different story if you don't renew your licence, and yet they would order other peoples' lives.

What is further proof needed that one half of the world knows next to nothing about how the other half lives?

R.S.G.B. Exhibition — More About Pirates — Ruggedisation

B.B.C. TV can be rank bad. Fancy asking our American friends to judge it by the current output! The only critic said it was gruesome, slapdash and imaginatively impoverished. He was being generous. It must have made every intelligent viewer squirm. And that was a Saturday night-high spot!

No one reasonably expects sparkle all the time. Nor is TV like a tap, ready to be switched on at any hour of the day or night. What an enormity number they must have on the books. Once you take out a licence they don't care. It's a different story if you don't renew your licence, and yet they would order other peoples' lives.

What is further proof needed that one half of the world knows next to nothing about how the other half lives?

R.S.G.B. Exhibition — More About Pirates — Ruggedisation

B.B.C. TV can be rank bad. Fancy asking our American friends to judge it by the current output! The only critic said it was gruesome, slapdash and imaginatively impoverished. He was being generous. It must have made every intelligent viewer squirm. And that was a Saturday night-high spot!

No one reasonably expects sparkle all the time. Nor is TV like a tap, ready to be switched on at any hour of the day or night. What an enormity number they must have on the books. Once you take out a licence they don't care. It's a different story if you don't renew your licence, and yet they would order other peoples' lives.

What is further proof needed that one half of the world knows next to nothing about how the other half lives?
A Radio Constructor Service for Readers

Art of Soldering:

As a newcomer to the hobby of radio construction, I find difficulty in obtaining first-class soldered joints. Can you give me a few hints, please?

D. J. P., Slough

On a number of occasions we have received pleas from readers requesting us not to make the magazine too technical. This month, therefore, our selections from the postbag have been made with a view to helping those who are just starting.

Soldering is an art which has to be mastered if any degree of success is to be expected from a piece of newly-made equipment. There must be many constructors who, in their eagerness to complete and test the job, have paid insufficient attention to the soldering, only to be frustrated by a long and tedious fault-finding procedure. Dry joints are notoriously difficult to locate in a completely assembled receiver. First, then, let us consider the choice of the soldering iron. Its size, shape and weight will depend largely on the size of the parts to be joined, and, as most of the joints will be between a thin wire and, say, a valveholder tag, an iron having a pencil-cell is most suitable. These are available from several manufacturers, and provision is made for the bit to be renewed after a long period of use. For the heavier jobs, however, these small irons do not provide sufficient heat, and if it is desired to solder leads or small screens directly to a chassis an appreciably larger r.c. will be needed. Thus the well-equipped workshop will have at least two held in readiness to meet most demands.

Before use an iron must be tinned; that is, the working surface of the bit must be coated with solder. This is essential if the required transfer of heat from the bit to the work is to be efficiently achieved. If the bit is dirty, or the iron new, tinning is done by switching on the iron and allowing it to reach its working temperature, then running a file a number of times over the working surface of the bit so that the bright copper is revealed. At this stage a resin-coated solder is applied quickly to the bit before it has had time to oxidise; if necessary, the blob of solder can be spread by wiping it with a cloth. Once an iron has been tinned it should not require further attention for a considerable period of time.

Now let us turn our attention to the work in hand and proceed to make a few soldered joints. The first is to connect a piece of tinned copper wire to a tag on a valveholder. Providing the tag is clean and bright and perfectly free from grease, the copper wire may be passed through the hole and pinched back with a pair of pliers. This ensures a good mechanical anchorage and prevents the parts moving whilst being soldered. Next, hold the end of a length of flux-coated solder on the joint and apply the iron, removing the solder immediately sufficient has melted. The iron is held in position long enough to ensure that the solder runs freely over the joint. The wire should not be moved until the solder has completely solidified, otherwise a dry joint will occur.

The success of soldering depends mainly upon having the parts clean, and if either the wire or the tags of the valveholder were tarnished, or greasy, a doubtful connection would have been made. Grease may be removed by wiping away with a cloth dipped in methylated spirits. Dirt is removed from wire with the aid of a piece of emery cloth.

Tags are best cleaned by scraping with a sharp tool; it is not sufficient merely to produce a few scratches on the metal—the solder will not adhere. If the solder behaves rather like a spot of water on a greasy plate, it is a sure indication that the surface needs cleaning. Remember that on a good joint the solder will have flowed freely into all the crevices, and will solidify with a smooth surface.

The foregoing procedure applies when an electric iron is used, but if a flame-heated iron is employed the procedure differs only in one respect. As the iron is removed from the flame it is touched in a tin of flux or other suitable flux before being applied to the work. This removes any oxidation which may have formed.

Cabinet Resonance

My recently-constructed radiogram is giving good results but for a rather annoying distortion which occurs on some of the lower notes. I have had the speaker examined, and I now believe the trouble is due to cabinet resonance. What can I do to prevent this effect?

D. Connolly, Leeds

Cabinet resonance can produce a form of blurring on certain notes, usually in the lower register. When designing a cabinet the trouble can be minimised by employing a wide but shallow form. When applying corrective measures, however, steps must be taken to damp out the resonance. Some improvement can usually be obtained by lining the inside walls of the cabinet with an acoustically dead material, such as
inch thick felt or Celotex board. If further improvement is required, as much of the bottom of the cabinet should be cut away as possible and a number of holes in the sides. These holes should be covered with material of a fine gauge to prevent the ingress of dust.

Locating Faulty Valves

When servicing a receiver which had low sensitivity, I suspected that one of the valves had low emission. Is there a quick check which can be made to ascertain whether or not the valves are functioning correctly?

F. W. Williams, Cambridge

Yes, the operating cathode current of each valve is a guide to its efficiency, and it may be measured without breaking the circuit if the following procedure is adopted. First take the universal test meter and measure the resistance between the valve cathode and chassis. These two readings will enable the cathode current in milliamperes to be calculated by Ohms Law, by dividing the voltage by the current and multiplying by 1000. If, now, the data on the valve in question is referred to, it will be possible to find out whether it be passing the calculated current at the measured bias. Providing the results are within 20 per cent it can be assumed that the valve is functioning correctly; if, however, a wider deviation is found the remainder of the electrode voltages (screen and anode) should be checked. If found in order the valve must be suspected of being faulty. In this case it should be tested and replaced.

This checking procedure is a simple one and can be quickly applied to each stage in turn. It is, of course, of great assistance if a circuit diagram of the receiver is available, as it provides a ready check for bias and screen resistor values. If a valve is operated in a resistance/capacitance coupled stage its cathode current will be low, most probably in the region of 1 mA. This is a useful figure to bear in mind, as R-C amplifier operating conditions are seldom included in the valve-maker's abducted printed data sheets.

TRADE REVIEW

The Teletron Co., of 226 Nightingale Road, London, N.W.5, have given us their sample of the Crystal Transformer Coil type HAX, designed for Medium Wave use. The coil is wound with a crystal detector, and is fitted with a bakelite tag panel. A quite fine job which is likely to be acceptable to the average receiver constructor by us. The price is 3/-, and it may be obtained direct from the manufacturer at the above address.

JANUARY 1954
The ORPHEUS TAPE RECORDER

PART 2

Described by A. S. TORRANCE

Together with the photographs seen last month, the diagrams in this issue will give readers a clear understanding of the general layout.

As has been previously stated, simplicity is the keynote of this design, but the performance will still please most people. There is nothing, of course, to prevent the more advanced constructor from elaborating according to his taste and his pocket.

The tone control will be seen to be really an attenuator of the upper frequencies.

in the February 1953 issue of this magazine, a limited number of copies of which are still available.

Many readers will already possess high fidelity amplifiers. In their case a switch could be added to the junction of C3 and C6, and the playback signal taken from the radio/gram input socket direct to the external amplifier. The design of a new and suitable external amplifier has been made available to us by The General Electric Co. Ltd., and it is hoped to publish this at an early date.

C3 couples the anode of V1 to the tone and volume controls. Condenser C7 with a fixed grid leak was added to prevent undue loss of high frequencies. All the grid resistors are soldered directly to their respective grid pins, to avoid self-oscillation.

Radio and gram inputs, which are normally of an adequate strength, are fed into the grid of V2. A radio input utilising a germanium diode, such as that described in Tape and Wire Recording, may be plugged into V1. V2 feeds into the output stage. No negative feedback, as such, has been incorporated, although a measure of such feedback is obtained by omitting the cathode bypass condenser in the output stage. However, under some circumstances additional gain may be required, hence the inclusion of this...
The speaker transformer output is taken to the switch where various listening requirements may be obtained, such as headphone monitoring. In the "mute" position, a dummy load (15Ω) effectively protects V3 from damage should no normal load be present.

From the junction of C12 and the switch, the feedline for the level meter circuit is taken to V4. Correct polarity of the meter and the rectifier must be observed.

V5 is the bias oscillator, and has an output in the region of 37 kc/s. C20 couples the bias to the recording head, and the 39 kΩ resistor on the switch provides as constant a load as possible for the output valve.

Switching

The wiring of complicated switches is always a confusing task. Fortunately, this switch is obtainable assembled and ready-wired with colour coded leads, and the resistors (shown with values marked) are included. The switch positions read, from left to right: Radio/Gram; Mic; Mute; and Playback.

The use of a high quality external speaker is recommended where possible, and the

C17 and C17a greatly reduce unwanted effects at the input sockets when in the "playback" position, and are attached at these points.
The Power Pack

The sketches and wiring details are comprehensive and provide complete construction details. Note in the circuit diagram that the HT supply to both the bias oscillator and directly to the switch on the amplifier chassis, the earth lead to the bus-bar.

From here the mains are fed to the octal socket for supply to the power pack, and if required (strongly recommended) an additional toggle switch for isolating the motors. In this way a most useful amplifier

The level meter valve is switched out in the "playback" position.

Mains Connections

The order of mains connection is as shown in the sketch. The input is brought in to a panel at the back of the cabinet. From the fuses and the earth pin of the 3-pin mains socket, 3-way flex (rubber or PVC) is taken is available for other purposes than recording if required.

There is, of course, a "stop" position on the tape deck, but this control works by applying a DC potential to the motors, and must not be left "on" for an indefinite period; it should be used merely for braking purposes.

[To be continued]
WHEN DEALING WITH THE PROBLEM of fringe area television, the constructor is always up against the battle between gain and quality. One way to increase the gain of a vision unit is to peak all the coils. Unfortunately, this causes the bandwidth to narrow, and the picture definition consequently suffers. Another way to increase the gain is to use more valves, but there is a limit to this because of the undesirable increase in valve ‘noise’ which produces a background ‘mush.’ A superhet undoubtedly gives better gain than a TRF unit, but there are extra construction and alignment difficulties. However, by using four tuned-anode, tuned-grid stages a TRF vision unit gives excellent gain without impairing the picture definition to any noticeable degree.

Component List

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>68Ω</td>
</tr>
<tr>
<td>R2, 5, 9, 12, 17</td>
<td>220Ω</td>
</tr>
<tr>
<td>R3, 10, 16</td>
<td>4.7kΩ</td>
</tr>
<tr>
<td>R4, 11</td>
<td>1kΩ</td>
</tr>
<tr>
<td>R8, 14</td>
<td>3.3kΩ</td>
</tr>
<tr>
<td>R7, 13, 21</td>
<td>5.6kΩ</td>
</tr>
<tr>
<td>R6</td>
<td>10kΩ wire-wound variable (contrast)</td>
</tr>
<tr>
<td>R15</td>
<td>15kΩ</td>
</tr>
<tr>
<td>R18</td>
<td>6.8kΩ 1 watt</td>
</tr>
<tr>
<td>R19</td>
<td>1MΩ</td>
</tr>
<tr>
<td>R20, 22</td>
<td>10kΩ</td>
</tr>
</tbody>
</table>

All resistors 1 watt except where stated.

C1, 3, 5, 6, 9, 10, 13, 14 | 0.001µF ceramic or mica
C2, 4, 7, 8, 11, 12, 15, 16, 17, 18 | 500pF mica discs
C19 | 15pF ceramic cup
C20, 21 | 0.002µF ceramic or mica
C23 | 0.1µF non-inductive paper tubular 6.3kV wkg.
V1, 2, 3, 4 | EF91 or Z77
V5 | EB91 or D77
V6 | EL91
V7 | 6J5GT all metal valve

Reference to the circuit diagram shows the four RF stages with the tuned-anode, tuned-grid arrangement, employing nine tuned coils. The earthy ends of the grid coils are tightly coupled to the HT ends of the previous anode coils. The tight coupling, and the damping of L8, ensures sufficient bandwidth for good definition. The four RF valves are EF91’s, and although Z77’s work quite as well, the coils have to be altered to suit, as their inter-electrode capacitances are slightly higher than that of the EF91 valves.

The screen grids and anodes of all four RF valves are decoupled with 0.001µF capacitors. These can be obtained in the ceramic tubular type (not paper) as these save more space than the mica variety. The HT lines of the first two RF stages are fed separately from the last two, so as to minimise the risk of instability. The HT lines are decoupled at regular intervals with 500pF mica disc capacitors, as are the valve heaters. The cathode bias resistors are 200Ω, and are decoupled with 0.001µF capacitors; the contrast control being a 10kΩ variable resistor in the cathode of the second RF valve.

The diode detector, which is half of an EB91, is the last tuned stage. As the input capacitance is only 3pF, as compared with the 7pF of the EF91’s, this tuned coil (L9) needs more turns than the usual grid coil. The negative signal is fed to the grid of the video amplifier via a suitable RF filter. The use of a 3 Mc/s boost choke at this point was found to give much better results than as part of the anode load of the video amplifier. An EL91 miniature output valve gives excellent results as a video amplifier because it can handle a large grid voltage swing and gives quite an appreciable output. The grid leak of this valve, 4.7kΩ, and the anode load, 6.8kΩ, were found to be the best values for giving a good balance between definition and gain. The 220Ω cathode resistor and the 15kΩ screen resistor are decoupled by 0.002µF capacitors which give...
Sound output socket Mica discs Decoupling resistors

Dipole coax To contrast control Heater chokes Mica discs

FIG. 2. VISION UNIT - CONSTRUCTIONAL DETAILS

While the grid of the video amplifier is driven negative, it is not advisable to decrease the cathode resistor below 2200; as, although this will increase the gain, the anode current will also increase considerably, as the signal ceases. This extra current is liable to burn out the anode load resistor, which is already of the 1 watt variety. The video signal is passed on to the phase-splitting stage, via a 0.1uF capacitor, to be separated for feeding the CRT and synchronising separator. Because of the 0.1uF coupling capacitor, the DC content of the picture is lost (the video signal must not be amplified or applied to the CRT if it has lost its DC content, or the definition will be seriously affected). The DC content of the signal is restored by the other half of the EB91. The phase-splitting valve is a 6J5, the only international octal valve in the unit, all the others being B7G glass-button miniatures. The CRT is fed with a positive pulse from the cathode of the 6J5, and the sync separator from the anode. The total anode current of the vision unit is between 55 and 65 mA, with an HT voltage of 250-300 volts.

The sound unit is fed directly from the dipole television aerial (the writer's television aerial was a folded dipole, with director and reflector), rather than from a stage in the vision unit, so that none of the vision coils have to cover the 41.5 Mc/s sound channel, and this makes unnecessary the use of sound rejectors. The writer's vision unit was found to be exceptionally clear from car ignition interference, and the use of an interference suppressor on the vision unit was thought unnecessary.

Construction

The vision unit chassis is made of tinplate (aluminium being next to useless because of bad connections through not being able to solder directly on to an aluminium chassis). The chassis is 15" long by 23" wide, and 11" deep. The four RF B7G valveholders have a diameter of 3" and are spaced 2" apart along the chassis centre line. Mica disc capacitors are soldered through 1" holes up each side of the chassis: six on the HT decoupling side, and five on the heater decoupling side. The decoupling resistors and chokes are mounted outside, on top of the chassis. This gives more room for components inside, and less chance of feedback. The position of the coil tuning holes, which are 1" in diameter, are as in the diagram, diagonally in line with the valveholders. Four tinplate screens are soldered diagonally across each of the four RF valveholders, and one across the double diode valveholder.

The coils are wound on Aladdin formers of 3" diameter with 34 gauge cotton-covered copper wire. The anode coils are wound first in a clock-wise direction, looking from the flange end, and the turns are fixed into position with Durofix. These coils are fastened into the chassis with self-tapping screws which make their removal (if necessary) quite easy. The ends of the anode coils are soldered direct to the screen and anode tags of the B7G valveholders. The grid coils are...
then wound, leaving 3–4 mm of wire at each end. The coils are then placed into position and the grid end is soldered to its respective grid tag. The spare HT wire is then wound around the top end of the preceding anode coil for 1½ turns, then back again around the grid coil for another 1 turn as in the diagram. This end is then earthed at the same point as the cathode as the cathode decoupling capacitor and bias resistor. The one HT and the four heater decoupling chokes are wound on ¾" diameter round (baked-in enamel) with 21 gauge, plastic-coated copper wire, and consist of 10 turns and made self-supporting. The writer found that single-point earthing was not necessary, but connected grid and cathode decoupling components on one side of the valveholder and screen, to the chassis, and the anode decoupling components on the other side of the screen to the chassis. There was no sign of instability, even when all the coils were peaked and the contrast control was at maximum gain.

Alignment

As most constructors do not possess an accurate signal generator, capable of reaching 45 Mc/s, the best method of alignment is by the BBC transmission. The vision unit is disconnected from the timebase chassis, and the aerial can be replaced by a signal source which can be varied. The aerial is then connected, and a pair of high resistance headphones in series with a 0.1μF capacitor is placed between the anode of the GES valve and earth. Having peaked all the coils, unscrew rather than rewind the complete coil, rather than attempt to add a piece more wire, as this last can seriously reduce the Q of the coil. Having peaked all the coils, unscrew the anode decoupling components on the other side of the screen to the chassis. There was no sign of instability, even when all the coils were peaked and the contrast control was at maximum gain. The iron dust cores should then be adjusted for maximum sound. The headphones should then be removed and the vision unit connected to the rest of the television receiver. A fair picture should present itself on the CRT screen. The audio cores should then be adjusted for maximum brilliance (i.e., peaked) using the contrast control so as not to overload the video stage. It might be necessary to adjust the turns on some of the coils, but it must be remembered that half a turn makes quite a lot of difference at 45 Mc/s. If a turn needs a turn added, it is advisable to unwind the complete coil, rather than attempt to add a piece more wire, as this can seriously reduce the Q of the coil. Finally, the 3 Mc/s boost choke should be adjusted for maximum picture definition.

Gain and Distortion

When designing an amplifier, the best plan is to start from the output valve and work back to the input. First, choose an output valve which will deliver the power required. Do not confuse anode dissipation with power output — they are different quantities which will be explained later. The output valve which will deliver the power required will then be chosen. In order to avoid distortion the valve must be operated under the correct conditions. First fix the HT voltage, to use in an AF amplifier. In order to avoid distortion the valve must be operated under the correct conditions. First fix the HT voltage, to use in an AF amplifier. In order to avoid distortion the valve must be operated under the correct conditions. First fix the HT voltage, to use in an AF amplifier. In order to avoid distortion the valve must be operated under the correct conditions. First fix the HT voltage, to use in an AF amplifier. In order to avoid distortion the valve must be operated under the correct conditions. First fix the HT voltage, to use in an AF amplifier. In order to avoid distortion the valve must be operated under the correct conditions. First fix the HT voltage, to use in an AF amplifier. In order to avoid distortion the valve must be operated under the correct conditions. First fix the HT voltage, to use in an AF amplifier. In order to avoid distortion the valve must be operated under the correct conditions. First fix the HT voltage, to use in an AF amplifier. In order to avoid distortion the valve must be operated under the correct conditions.
Battery life. Considerable improvement can be obtained from the anode voltage swing and the current swing. The latter is 35 - 16 = 19 mA. The power output is calculated from the expression:

\[\text{Power in watts} = \frac{(\text{voltage swing}) \times (\text{current swing in mA})}{8000} \]

\[= \frac{100 \times 19}{8000} \]

\[= 25 \text{ watts approx.} \]

The plate load is, of course, \(V_a = 250 \times 1000 = 50000 \) and \(I_a = 50 \) watts.

Often the HT voltage is known and it is required to calculate the anode load to give a definite gain. To do this, the point A is fixed as before and with a ruler pivoted on this point a number of trial lines drawn until the required gain is achieved. Point B, obtained from the intersection of the load line and the I_a axis of the graph, gives the load resistance.

Providing that the peak-to-peak signal at the grid never exceeds the two I_a/E_a curves chosen (D and C), the amplifier will be working under the correct conditions. The grid bias is always chosen, of course, to be the middle value, in this case -4V; i.e. halfway between 0 and -8 volts.

Excess of signal voltage over the determined value results in distortion. The grid will be driven positive over part of the cycle and part of the input waveform will be clipped. This is because the grid acts as a diode when it becomes positive with respect to the cathode. Consequently, the grid conducts, or passes current, and the waveform is distorted. On the other hand, if the signal drives the grid too negative over part of the cycle, the valve will be cut off, that is, there will be no current flowing. Under these circumstances, the anode waveform can bear no relation to the input waveform because the grid has no control over the anode.

Operation of the valve under the correct conditions, obtained from the load line, is called 'class A' operation. It can be shown that the maximum efficiency obtainable under this condition is 50%. Efficiency is defined as the ratio of power output divided by the DC power input. For 50% efficiency, therefore, the DC power provided by the power supply must be twice the power output. In practice, efficiencies of 25-30% are normal. The question of efficiency is particularly important when battery operation is considered. It is obviously an advantage to get as much out of the amplifier as possible for the longest battery life. Considerable improvement can be obtained by the use of 'class B' operation.

Class B and Push-Pull

The theoretical maximum efficiency of a class B stage is nearly 80%, which is a worthwhile improvement over the 50% for class A. Unfortunately, other problems are involved which tend to offset this advantage. Basically, class B operation is obtained by using a grid bias voltage large enough to cut off the valve. From what I have said about class A operation, it will be clear that distortion will occur because any part of the signal waveform attempting to drive the grid more negative than the bias will not be reproduced at the anode.

Fig. 3a shows how a signal appears at the anode in a comparatively undistorted form under class A conditions. Fig. 3b shows how biasing the valve to cut-off distorts the waveform.

Reproduction would be almost unintelligible from a stage of this sort, but the circuit shown in Fig. 4 gives good quality reproduction. This arrangement is called 'push-pull'. At any instant the signal at one end of the input transformer is going positive as the other end is going negative. The grids connected to the transformer are, of course, following these potentials. Supposing that V_1 in Fig. 4 is positive, and V_2 goes negative, the negative-going grid of V_1 will produce an output at its anode similar to that shown in Fig. 3b. However, the positive-going grid of V_2 can produce no output at its anode because the grid is being driven far beyond cut-off. Half a cycle later the conditions will reverse and V_2 will begin to go positive and V_1 negative. There will now be no output from V_1, but V_2 will produce an output similar to that of V_1 half a cycle before.

The two outputs are combined in the output transformer and the signal at the secondary will be relatively undistorted.

Push-pull output stages are not necessarily used under class B conditions. When class A push-pull stages are used, the output from the two valves is somewhat greater than twice the output from each valve alone, and the quality of reproduction can be very good.

Frequency Response

Ideally, an audio amplifier should reproduce every frequency in the audio spectrum with the same amplitude. That is to say, the gain of the amplifier should be the same at all frequencies. This presents one of the greatest problems to designers, and many different methods have been devised to improve the frequency response of amplifiers.

Generally speaking, the problem is split into two separate parts. One is obtaining good response to high frequency, and the
other obtaining good response at low frequencies. Let us consider high frequencies first. The circuit shown in Fig. 5a is a typical resistance-capacitance-coupled voltage amplifier. The dotted capacitors represent the inter-electrode capacities of the valves. These 'invisible components' are unavoidable, as all the electrodes in the valve must have some capacity to all the others.

Reactance in ohms = \(\frac{10^{12}}{2\pi f c} \)

where \(f \) = frequency in c/s
\(c \) = capacity in pF.

This expression shows that as the frequency increases the reactance decreases. The resultant anode load will therefore tend to decrease with increasing frequency because the anode load consists of the resistor \(R_l \) and the capacities in parallel.

The gain will also decrease because its value is dependent upon the value of the anode load. If \(R_l \) is 1 kΩ the capacities have a reactance that is at least five times the value of \(R_l \). At 10 kΩ, however, they will equal \(R_l \) and the anode load will be halved. For example, if \(R_l \) is 200 kΩ, the reactance of \(Cac + Cgc \) will be 2 MΩ at 1 kΩ/s, and the resultant anode load is 180 kΩ, but at 10 kΩ/s the reactance of \(Cac + Cgc \) will be 200 kΩ, and the resultant anode load 100 kΩ. The gain of the stage will therefore be at 10 kΩ/s one half its value at 1 kΩ/s. High notes in the signal will therefore suffer.

At the low frequency end, \(Cac \) is the troublesome component. The same reasons apply as before, but now the capacitor is in series with the signal, so to speak, and not in parallel. Remembering that the reactance of a capacitor does the opposite to the frequency, the reactance of \(Cac \) will rise as the frequency falls. The effective coupling of the signal from the anode of \(V_1 \) to the grid of \(V_2 \) will decrease with the frequency, and the signal passed to the grid of \(V_2 \) will also be less.

From this you can see that bass notes and high notes are likely to get lost in the amplifier. Improvement of the bass, i.e. the lower frequencies, is brought about by making \(Cac \) as large as possible, and for this reason the coupling between stages is not so easily dealt with, because the capacities are inherent in the valves themselves. An important point to watch in this respect is that the wiring between stages also adds to the capacity alarmingly, and should therefore be kept as short as possible and well away from the chassis.

The problem of extending the high frequency response of an amplifier becomes particularly acute in television. The vision signal contains frequencies up to 3 Mc/s, and the video amplifier (not therefore capable of reproducing such frequencies reasonably accurately. We have already seen that the reactance of a shunt capacity of the stage \(Cac + Cgc \) becomes less as the frequency rises, until eventually the reactance and anode load have the same value. Increasing the anode load either will make the reactances less than the plate load, of course,

and the gain of the stage will drop accordingly. If the plate load were made a low value, say 5 kΩ, then the frequency at which the reactance would become equal to 5 kΩ, would be higher than for a plate load of, say, 100 kΩ. For example, if \(R_l \) were 100 kΩ and the gain of the stage dropped to one half its maximum value at 15 kΩ/s, making \(R_l \) 5 kΩ would make the gain drop to half its maximum value at \(15 \times 100 = 300 \) kΩ/s, i.e. 15 kΩ/s multiplied by the ratio of the two values of \(R_l \). The inevitable snag is, of course, that if the maximum gain with \(R_l = 100 \) kΩ were 200 times, with \(R_l = 5 \) kΩ it would be only approximately 10 times. In other words, band width can only be obtained at the expense of the gain.

Choice of Valves

The choice of valves in amplifiers is conditioned by a number of factors. Pentodes can generally produce higher gains than triodes, but it is usually considered that their harmonic distortion is higher than triodes. Pentodes or beam tetrodes are almost invariably used for output stages. Voltage amplifying stages generally consist of pentodes also, because of their high gain feature. An effect known as 'Miller effect' is particularly noticeable in triodes. You may have noticed that in Fig. 5a no mention has been made of \(Cag \). This capacity can be very troublesome because the input capacity \(Cgc \) is multiplied by the gain of the valve. For example, in a triode with capacities \(Cgc = 2.5 \) pF, \(Cag = 2 \) pF, and gain 100, the total grid-to-cathode capacity is \(2.5 \) pF + \(100 \times 2 \) pF, which is 202.5 pF. In a pentode, \(Cag \) is seldom more than 0.1 pF; the input capacity here, with everything else as before, would be 2.5 pF + \(100 \times 0.1 \) pF, which is 25.5 pF. Better bandwidth and higher gains are therefore available with pentodes, but the harmonic distortion may be greater.

Design

Briefly, to summarise what has gone before, the method of designing an audio amplifier consists of a number of steps, as follows:

1. Choose an output valve to deliver the required power output or, for push-pull, half the required output. The manufacturer's data will tell you the necessary grid bias, HT voltage, and optimum load. The output transformer ratio is calculated from the expression:

\[
\frac{\text{Ratio}}{\text{Speaker impedance}} = \sqrt{\frac{\text{Optimum load}}{\text{Speaker speech-coil impedance}}}
\]

2. Doubling the value of the grid bias voltage gives the approximate peak-to-peak signal voltage to produce maximum power. This voltage must be produced at the anode of the previous stage, so that, having chosen a valve, it can be designed from the load line. Another stage to drive this one can then be designed, and so on, until the point is reached where the input voltage corresponds to the maximum output of the pick-up or microphone to be used with the amplifier.

Often the limiting factor in amplifier design, a poor output transformer can have a ruinous effect, no matter how good the amplifier. A transformer having a large core and the secondary interwound with the primary gives the best frequency response.

Other Improvements

Another means of improving the performance in modern amplifiers is to use negative feedback. Briefly this consists of feeding part of the output signal back to the input. The phase of the feed-back signal is arranged to be out of phase with the input signal. Negative feedback can be applied over the whole amplifier or merely to individual stages. The gain of the stage is reduced when feedback is employed, but considerable improvement in quality can be obtained. Space does not admit of a complete explanation here, which must be deferred to a later date when the subject can be covered in more detail.

HIGH STABILITY VHF MIXER/OSCILLATOR—cont. from p. 309

L3 for maximum hiss on the receiver. Now trim the oscillator trimmer with the tuning condenser set at half mesh. (This must be done with a trimmer tool; therefore be capable of reproducing such frequencies reasonably accurately. We have already seen that the reactance of a shunt capacity of the stage \(Cag + Cgc \) becomes less as the frequency rises, until eventually the reactance and anode load have the same value. Increasing the anode load either will make the reactances less than the plate load, of course.

Use a good slow-motion dial with no backlash.

The oscillator stabiliser (Brimar OA3) operates in an orthodox fashion and the 0.22μF condenser is fitted as an RF decoupler as a safety measure.

(This unit is in operation in conjunction with a "Low-Noise, High-Gain preamplifier" described by the writer in a recent issue of the Radio Amateur, and is giving excellent results.)

JANUARY 1954

354

THE RADIO CONSTRUCTOR
THE WORLD'S LOWEST PRICED

TEST GEAR

Supplied in Kit Form. Ready Calibrated

RES/CAP BRIDGE
- 5 Megohms—50,000 ohms
- 1,000 ohms—10 ohms
- 1 μF—0.1 μF
- 0.005 μF

INDUCTANCE BRIDGE
- 50 μH—1,000 μH
- 1,000 μH—20 mH
- 20 mH—400 mH
- 400 mH—8 H
- 8 H—100 H

31/6
P. & P. 1/6

42/6
P. & P. 1/6

NO CALIBRATING NO METALWORK
JUST ASSEMBLE AND USE

THE R.M. TWIN MULTI-OHMER
Entirely new and first time on the British market. Invaluable for all servicing and experimental work. Send for details.

25/-
P. & P. 1/6

NO CALIBRATING NO METALWORK
JUST ASSEMBLE AND USE

I.F. ALIGNER
Tunes over 465 kc/s range of i.f. frequencies. Pre-tuned ready for use.

17/6
P. & P. 1/6

NO CALIBRATING NO METALWORK
JUST ASSEMBLE AND USE

Full instructions and diagrams with all kits. Instructions and diagrams for any kit supplied separately, post free 1/6, or the four at 5/-.

STAMP FOR ILLUSTRATED LEAFLETS
Cash with Order or C.O.D.

RADIO MAIL
DEPT. "B"
RALEIGH STREET
NOTTINGHAM

PANL
Hints and Tips No. 1.
The demand for a reliable black crackle which could be applied by the inexperienced amateur constructor was met when PANL was first introduced, in 1951. Since then many thousands of constructors have purchased PANL for the obvious purpose of painting radio equipment panels and metal cases.

Now that PANL is available in colours (*), we feel there will be a still greater demand for this unique paint, and we have decided to publish a series of hints to help PANL users get the best results. Of particular interest is the use of PANL as a cabinet finish, as the effect created is similar to a leatherette covering.

PANL is essentially a brushing finish, and is applied rather thickly, like ordinary paint. When the object has been covered with PANL, it is left to dry in the vicinity of a burning gas jet or oil burner. The 'crackling' occurs in about 30-60 minutes. It can then be left to harden in any convenient place and will be quite hard in between 24-48 hours.

(*) Brown, green and black.
PANL is available from many dealers at 3/6 per jar. If unobtainable, post 4/6 (which includes postage) to--- Miller's, 8 Kenton Park Cres., Kenton, Middx

R.C.S. PRODUCTS
(RADIO) LTD.
11 OLIVER ROAD LONDON E.17

POWERFUL PERSONAL PORTABLE!

Build this Amazing Portable Radio

- Selective tuning
- Acorn low drain valve
- Loud clear tone
- Long range
- No earth
- Short aerial 2ft
- Welded steel case
- Easy to assemble
- All parts for this set are sold separately

MAIL ORDER ONLY

This little set was designed to give you a real personal portable radio that you can enjoy anywhere without disturbing others. Use it on camping trips, in bed, in your office, or just anywhere. Send 2/- for layout, Wiring diagram and Component Price List.

POST THE COUPON TODAY FOR OUR BROCHURE ON THE LATEST METHODS OF HOME TRAINING FOR OVER 150 CAREERS & HOBBIES

PRIVATE AND INDIVIDUAL TUITION IN YOUR OWN HOME
City and Guilds Grouped Certificates in Telecommunications; A.M. Brit. I.R.E. Examination, Radio Amateur's Licence, Radio and Television Servicing Certificates, General Radio and Televisions Courses, Radar, Sound Recording, etc. Also Courses in all other branches of Engineering and Commerce.

The advantages of E.M.I. training.
★ The teaching methods are planned to meet modern industrial requirements. ★ We offer training in all subjects which provide lucrative jobs or interesting hobbies. ★ A tutor is personally allotted by name to ensure private and individual tuition. ★ Free advice covering all aspects of training is given to students before and after enrolling with us.

Courses from £1 per month

EMI INSTITUTES
The only Postal College which is part of a world-wide Industrial Organisation.
ACDOLA
Regd. Trade Mark

SOLDERING INSTRUMENTS
Reg. Design No. 860302 (British, U.S. and Foreign)

- Designed for wireless assembly and crystal work
- Supplied for all volt ranges from 6/7v to 230/250v

ADCOLA PRODUCTS
Sales Office and Works Cromer Street,
Clapham High St, London SW4 (MAC 4727)

TELETRON SUPER INDUCTOR COILS
MINIATURE DUST CORE TYPES

- Type 25. 40-50 Mc/s.
- Type 26. 50-65 Mc/s.
- Type 27. 65-85 Mc/s.

DUAL WAVE T.R.F. COILS

Type TRF. A/ HF. AE. & HF. Trans-

- Type 25. 40-50 Mc/s. Variable Tuning, 2-VRI36, 6" Tube, complete with 45 mc/s Pye and amplifiers. No
- Type 26. 50-65 Mc/s. Variable Tuning. 2-VRI36.
- Type 27. 65-85 Mc/s. Complete with 45 mc/s Pye and amplifiers. No

MINIATURE DUST CORE TYPES

- 4/5 Mc/s. 35/-
- 5/6 Mc/s. 35/-
- 7/6 Mc/s. 35/-
- 8/6 Mc/s. 35/-

HENRY'S

We have over 20,000 American and B.V.A. valves in stock.

SETS OF VALVES

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>6K8G</td>
<td>45/-</td>
</tr>
<tr>
<td>6K7G</td>
<td>45/-</td>
</tr>
<tr>
<td>6Z4G</td>
<td>7/6</td>
</tr>
<tr>
<td>6Z6G (or KT16)</td>
<td>37/6</td>
</tr>
<tr>
<td>KT66, GU50</td>
<td>12/6</td>
</tr>
<tr>
<td>KT33C, 10/-</td>
<td></td>
</tr>
<tr>
<td>12K17G, 12K12G, 12K18G, 3 L 6 G T or 6L6</td>
<td>37/6</td>
</tr>
<tr>
<td>12A5T, 12K5T, 12K3T, 12G5T, 12L5T or 5L6</td>
<td>37/6</td>
</tr>
<tr>
<td>35Z4GT, 35L5GT or 35L6GT</td>
<td>37/6</td>
</tr>
<tr>
<td>12J17, 12J5T</td>
<td>37/6</td>
</tr>
<tr>
<td>12H17, 12H5T</td>
<td>37/6</td>
</tr>
<tr>
<td>12G17, 12G5T</td>
<td>37/6</td>
</tr>
<tr>
<td>12F17, 12F5T</td>
<td>37/6</td>
</tr>
<tr>
<td>12E17, 12E5T</td>
<td>37/6</td>
</tr>
</tbody>
</table>

RECEIVER 6355

- As specified for "Inexpensive Picture" Receivers. Complete
- With 8 valves V66S and 1 each V110D, V127C. Only 37/-, 15/- carry, 5/-.
- Or Brand New in original packing case, 35/-, 5/- carry.

SHAPED POLE MIC HC

- 4/5 Mc/s. AC ideal for Tape Deck etc.

RECORDING TAPE

- Proprietary Brand
- 7000 feet
- 21/-

ADVERTISEMENTS

SMALL ADVERTISEMENTS

Readers' small advertisements will be accepted at 3d per word, minimum charge 2/-. Trade advertisements will be accepted at 6d per word, minimum charge 6s. If a Box Number is required, an additional charge of 1/-. Terms: Cash with order. All copy must be in hand by the 5th of the month for insertion in the following month's issue.

TELE-RADIO (1943 LIMITED)

- **ALL CHASSIS 18G.** REINFORCED CORNERS.
- **8"x6"x2"** 7/6 14"x5"x2" 9/6
- **10'-2"x2"x2"** 7/6 12"x5"x2" 11/-
- **12'-6"x2"x2"** 6/6
- **TEST METER CASES**
- **STEEL WITH ALL METAL ENAMELLED.**

WALTCHIRGUS PICK-UPS

WITH VOLUME CONTROL

- 30/-

REP HIGH VOLTAGE

- Dual Range Miniature Crystal
- Dual Range Crystal with Mains Circuit 2/6
- Battery Circuits 4/-

TEST METER CASES

- C.W.O. OR C.O.D.

TELEGRAPHIC WAR DEPARTMENT

F.R.U.

- Type 24. 50-65 Mc/s. Variable Tuning. 2-VRI36, 1-VRI37. 15/- EACH.
- Type 25. 40-50 Mc/s. Variable Tuning. 2-VRI36, 1-VRI37. 15/- EACH.
- Type 24. 30-30 Mc/s. Switched Tuning With 3-SPE2. 1/- EACH.
- Type 25. 40-50 Mc/s. Switched Tuning With 3-SPE2. 1/- EACH.

FOR SALE

- Cossor 9-inch Electrostatic Tube, "44K", 9/-
- Cossor 9-inch Electrostatic Tube, "44K", 9/-
- Pyle 6AK5, 6J6, 6L6, 6F6, 5/6, 22/-. 25/-

FRANCHISE STREET WEYMOUTH

VALVES—OVER 3000 in Stock

- 2021, EC91, 12A7U, 6E87, 6C6G, 6W64, 6S77, 9/-
- EC91, 12A7U, 6E87, 12A7U, 6E87, 9/-
- EC91, 12A7U, 6E87, 12A7U, 6E87, 9/-

NEW

- Circular, I-valve, M.W. Receiver
- I-valve Amplifier, Send S.A.E

FREE!

- Circuit, I-valve, M.W. Receiver
- I-valve Amplifier, Send S.A.E

TELE-RADIO

- (Mail Order Department)
- 4 BOURNEMOUTH ROAD LONDON SE5

SOLDERING INSTRUMENTS

- MILLER**

HENRY'S

- **RECORDING TAPE**
- **MINIATURE DUST CORE TYPES**
- **DUAL WAVE T.R.F. COILS**
- **MINIATURE DUST CORE TYPES**
THE MODERN BOOK CO.

Coming Shortly

RADIO CONTROL
for Model Ships, Boats and Aircraft

BY F. C. JUDD, G2BCX

A really comprehensive work on this fascinating subject

DATA BOOK SERIES, NO. 9