Radio and Books

Tape and Wire Recording. A selection of articles reprinted from the pages of The Radio Constructor, covering both the theory and practical applications. A really useful book on this latest development of the hobby.

Receivers, Preselectors and Converters. Practical articles, again reprinted from past issues of The Radio Constructor, which will prove of interest to many radio enthusiasts.

TV Fault Finding. Profusely illustrated with photographs taken from a television screen depicting the faults under discussion, and containing a wealth of technical information, with circuits, enabling those faults to be eradicated.

Inexpensive Television. Build yourself a television from surplus. Latest edition includes all the data necessary for any area.

World Radio Handbook (1955 edition). The S.W. broadcast enthusiasts' handbook. You are missing something from your hobby if you have not a copy of this excellent publication.

Report Pads. If you need that QSL card, send a comprehensive report. A convenient and accurate form for reporting.

Radio Amateur Operator's Handbook. An indispensable aid to the amateur transmitter and listener, containing all details of information which are constantly required. Prefix Lists, Zone Boundaries, Call Areas, Codes, and Mileage Tables, together with Maps and much other useful operating data. Revised edition.

Inexpensive Car Radio. In which two versions, one constructed from surplus and one from new components, are described.

All above prices include postage and packing

All available from your local bookseller, or from:

DATA PUBLICATIONS LTD
57 MAIDA VALE LONDON W9

Telegrams Databux London Telephone CUNningham 6518
The New GERNSBACK Library

High Fidelity: Design, Construction and Measurements. 12s. Postage 4d.
High Fidelity Techniques. By J. R. Langham. 8s. Postage 4d.
Model Control by Radio. By E. L. Stanford. 8s. Postage 4d.
Practical Disc Recording. By R. H. Dorf. 6s. Postage 4d.
Basic Radio Course. By J. T. Frye. 18s. Postage 6d.
Radio and TV Test Instruments. 12s. Postage 4d.
Radio Tube Fundamentals. By G. J. Christ. 8s. Postage 4d.
Radio and TV Hints. 8s. Postage 4d.
The Oscilloscope. By G. Zwick. 18s. Postage 4d.
Television Technotes. 12s. Postage 4d.
TV Repair Techniques. 12s. Postage 4d.

THE MODERN BOOK CO
BRITAIN'S LARGEST STOCKISTS OF ENGLISH & AMERICAN TECHNICAL BOOKS
Please write or call for our catalogue
19-23 PRAED STREET (Dept RC) LONDON W9
Open 6 days 9-6 p.m. PADDington 4185

Scottish Insurance Corporation Ltd.
62-63 CHEAPSIDE · LONDON · E.C.2
Established 1877
Telephone CITY 4936-9 (4 lines)

THE SHEDDING OF A LOAD

An ACCIDENT can cause serious financial embarrassment. Could you meet your commit-
ments on the National Insurance Benefit?
A "SCOTTISH" Policy will carry the load for you if you are disabled by ANY ACCIDENT
and will pay compensation for as long as two years for any one accident.
For a BENEFIT of £5 PER WEEK the annual premium varies between £1 10s. and £2 2s. 6d.
according to occupation, and the premium can be paid half-yearly or quarterly if desired.
If you will complete and return this form to the Corporation's office at the above address, a
quotation will be sent with a proposal for completion, or write for details quoting reference J/8.

NAME (Block Letters)

OCCUPATION

ADDRESS (Block Letters)

/JB

Bigger and Better Pictures—
with BRIMAR

★ Shortly available ★

THE BRIMAR 21-inch TELETUBE C21HIM
This Rectangular Wide Deflection Teletube with Aluminized Screen and external
Conductive Coating, operates at 16kV. It is fitted with an improved tetrode gun
assembly giving excellent overall focus and minimum astigmatism.

BRIMAR have developed powerful valves suitable for use with existing or
future types with larger screen areas.

6CD6G/50CD6G (AC/DC)
Line Output Valves with a peak current of ½ amp. and plenty of power in
hand for wide angle scanning.

6U4GT
Efficiency Diode—The high working peak heater to cathode potential renders
a separate highly insulated heater supply unnecessary.

R19
E.H.T. Rectifier—A replacement for the American 1X2A but with higher
ratings.

RMS
H.T. Rectifier—A worthy successor to the RM4, with a rating of 300mA. This
rectifier has a reserve of power and should be used initially in equipment
so that additional valves may be added if required without redesigning the
power supply stages.

VALVES for the BAND III CONVERTOR
(FOR 6-VOLT OPERATION)

*ECC84
Consists of two separate high slope triode units designed for use as a
V.H.F. cascade amplifier.

*ECF82
Is a triode pentode frequency changer featuring a high slope triode and a
high slope pentode with a high input impedance.

6BW7
The 6BW7 is recommended in areas where extra sensitivity is required. It
has a slope of 9.3mA/V with anode and screen voltages of 180V.
* The PCC84 and PUF82 are 3amp equivalents of these types and are suitable for equipments
where series connected valves are used.

STANDARD TELEPHONES AND CABLES LIMITED
FOOTSCRAY SIDCUP KENT Footscray 3333
THE "FULL-TONE" AMPLIFIER

We know that we are offering excellent value for money in the completely-drilled chassis which we have specially manufactured for constructors of the "Full-Tone" Amplifier. These chassis are superior to the sort of thing normally offered on the home-constructor market, because they are precision made in heavy-gauge mild steel, and are finished in honed-over bronze enamel. Use one of these chassis, and your amplifier will have that beautiful Custom-Built look that everyone admires.

The Chassis

Three tag-strips, as specified

(Plus 10d. p.p. for chassis, or chassis and tag-strips)

"HOME CONSTRUCTORS' HANDBOOK"
published by RODING LABORATORIES

This famous handbook is now available in the NEW 1955 edition. It contains 22 tested circuits, complete with descriptions, constructional details, full parts lists, etc., etc. Also contains hints, formulae, data. Circuits include superhet, communications receiver, oscilloscope, signal tracer, tape recorder, amplifiers, beginner's receiver, and many more items of gear. And the book is backed by Roding Laboratories, who are so well known for their quality home-constructor products. This 700-page book represents an unbeatable value at 2s. 6d. (Plus 3d. postage and packing). Order now and take immediate advantage of the wealth of information it affords.

DATA BOOKS

We have available the latest editions of all Radio Books by Data Publications. Standard Prices.

FIRST ON THE MARKET!

Wind your high-Q SW, TV, FM coils with genuine solder-through wire. You don't have to clean the wire—the enamel becomes flux at soldering temperatures. This is the real thing!

At present, 26 a.w.g. only.
Price: 1d. per yard. P.P. 3d. on all orders.

R. DAVIES
54 NEWTON ROAD • MUMBLES • SWANSEA

MAIL ORDER ONLY—NO C.O.D.
ARThurs HAVE IT!
Large Stocks of Valves and C.R.T.'s
Full Range of Meters available
Avo, Taylor, Cossor, Advance, etc.
Particulars on Request
PM Kit of Parts £5, inc valve
(Ref, Radio Constructor July, 1954)
Amplifier Tape Recorders and
Inter-mate Speakers
Jason FM Tuner Unit £15 17 0
Jason Power Pack £ 10 0
Radios and Television always in stock

VALVE MANUALS
Mullard, Brinjal No. 6, Osrail, Part 1, 5:--
Osrail Part II, 10:-- Mazda, 2:--
Postage 6d, each extra
Publications: "Lodestar" Tape Recorder, 3:6
Goods offered subject to price alteration and
being unsold

Arthurs first
Proprietors: ARTHUR GROSS LTD.
OUR ONLY ADDRESS: Gray House
150-52 Charing Cross Road
London WC2
Temple Bar 5833/34 and 4765

Technical Research Results in
Advanced Coil Performance!
Be like the many famous firms who, by specifying
Osmer High "O" Coils in thousands, take no
chances about quality!

"O" COILPACKS price only
1 x 31 x 1 1/2 with variable iron-
dust cores and polyethylene
formers; built-in trimmers; trop-
calised; realigned receiver-tested
and guaranteed; only 5 con-
nections to make. All types for
main and battery superhet and T.R.F.
receivers. Ideal for the
reliable construction of new sets, also for conversion of the
21 Receiver, TR1196, types 10, Dmitan Utility and others.
Our Technical Dept. will be pleased to answer (by letter
only) any enquiry relating to circuits in which Osmer Coils
or Coil Packs are used or are intended to be used.
Super "O" Cup Coils for Max.
Selectivity. A full range is available
for all popular wavebands and
purposes. The magnetic screening of the
cup prevents other components
from absorbing the coil's power thus
maintaining the high "O" value. Simple
one-hole fixing. * Only 1" high.
* Packled in lamp-proof containers.
* Adjustable iron-dust cores. * Fitted
caps for easy connection. L or M.V.
ic. Circuit 5/-

OSMER RADIO PRODUCTS LTD. (R.C.24)
418 BRIGHTON ROAD, SOUTH CROYDON
SURREY
Telephone CROYDON 51400

Frequency
Modulation Tuner
described in the July and Sept. 1954
issues.

JACKSON Bros. dial and condenser
£1 5 3
Completely drilled chassis 8 0
All coils with S.M. Condensers and
cans £1 2 6
Complete Set of Parts (less valves)
including pair of matched German-
ium crystals and small items
such as nuts and screws £5 0 0
Complete Tuner, assembled and
aligned, with dial calibrated in
M/cs £15 17 0
(including P.T.)

JASON MOTOR COMPANY
328 CRICKLEWOOD LANE
LONDON NW2

ARThurs have it!
The Radio Constructor

incorporating THE RADIO AMATEUR

CONTENTS FOR JUNE

648 Suggested Circuits: An Alignment Meter for F.M. Receivers, by G. A. French
651 In Your Workshop, by J.R.D.
655 Can Anyone Help?
656 The 1955 Two, Part 1, by G3XT
660 A Simple Pattern Generator, by H. Garlick
662 A Constructor at the 1955 Radio Component Show
664 The “Full-Tone” 8 Watt Amplifier, Part 2, by M. Harvey.
671 An Important Announcement
672 High Quality Tuner Unit, Part 1, by H. S. G. Thorpe
677 Copyright and Tape Recording, by F. Neville Hart
678 Query Corner
681 Let’s Get Started, 24; Hearing’s Not Believing, by A. P. Blackburn
686 Radio Miscellany, by Centre Tap
688 Notes on Radio Control: 8, Test Equipment, by Quench Cool
693 T.R.F. T.V. Sound Receiver, by James S. Kent

THE CONTENTS of this magazine are strictly copyright and may not be reproduced without obtaining prior permission from the Editor. Opinions expressed by contributors are not necessarily those of the Editor or proprietors.

NOTICES

THE EDITOR invites original contributions on construction of radio subjects. All material used will be paid for. Articles should preferably be typewritten, and photographs should be clear and sharp. Diagrams need not be large or perfectly drawn, as our draughtsmen will redraw in most cases, but all relevant information should be included.

All MSS must be accompanied by a stamped addressed envelope for reply or return. Each item must bear the sender’s name and address.

TRADE NEWS. Manufacturers, publishers, etc., are invited to submit samples or information of new products for review in this section.

ALL CORRESPONDENCE should be addressed to THE RADIO CONSTRUCTOR, 57 Maida Vale, London, W.9
The circuits presented in this series have been designed by G. A. French, specially for the enthusiast who needs only the circuit and essential relevant data.

No. 55 AN ALIGNMENT METER FOR F.M. RECEIVERS

By the time this article appears in print, f.m. transmissions on a full scale will have commenced in this country.

In quite a few cases, the repair of an f.m. receiver necessitates a re-alignment; a process which normally entails the use of a signal generator and a valve voltmeter. The latter instrument is needed to test for accurate alignment of the discriminator transformer secondary.

"Suggested Circuits," this month, presents the circuit of a very simple "alignment meter" which carries out the same function as would be given by a valve voltmeter. This alignment meter will function satisfactorily with any conventional ratio discriminator, whether balanced or unbalanced; and it can be constructed at quite low cost, since few of the small number of components required are at all critical in their values.

The Circuit

The circuit of the alignment meter is shown in Fig. 1. This does not include the power pack, which will be discussed later.

As may be seen, the instrument comprises a triode valve, in the anode circuit of which is connected a milliammeter. The cathode of the triode is connected to the slider of R5; this latter component being part of a resistive potentiometer connected across the h.t. supply and consisting, in toto, of R4, R5 and R6.

Three test leads are provided with the gear; one of these (marked "chassis") being connected to the chassis of the instrument, the second (marked "dead") to its h.t. negative line, and the third (marked "live") to the grid of the triode. It will be noted that a resistor, R1, is inserted at the termination of the third test lead. Part of the procedure employed in the alignment of an f.m. receiver consists of connecting the "live" test lead to the audio take-off point of the discriminator, and the resistor R1 prevents any rf. which may be present at this point from being radiated by the test lead and causing instability or unreliable readings. It is advisable to fit this resistor as near to the test prod, or test clip, as possible.

Two switches, S1 and S2, are fitted to the test gear. The purpose of S1 is to short-circuit the grid of the triode to the h.t. negative line in order to set up the meter. Setting up is then effected by adjusting R5. A reading of full-scale deflection should be given when S2 is in the "align I.F." position; and a half-scale reading when S2 is in the "disc. sec." position. As will be gathered, the shunt resistor R3, switched in by S2, provides this half-scale reading.

A final point is given by the presence of the 2MΩ resistor, R5. The sole purpose of this resistor is to ensure that the triode remains...
biased when the test leads are not connected to any external circuit. If this bias were not maintained the triode might pass excessive current, with the possibility of damage to the meter.

Operation

The method of measuring the meter differs slightly for balanced and unbalanced ratio discriminators. The procedure employed with a balanced discriminator is described first.

When a receiver with such a discriminator is to be aligned, both the "dead" and "chassis" test leads are clipped to the chassis of the receiver. The "live" clip is then primarily connected to the negative side of the battery (clearly apparent when an electrolytic component is employed) of the stabilising condenser. Switch S2 is set to "align I.F.," and switch S1 is set to the "adjust meter" position. Rs is then adjusted to give full-scale deflection of the meter. S1 is next returned to the "operate" position and a signal generator output fed, at the correct frequency, into the I.F. strip. The I.F. stages are next aligned to give maximum "dip" in the meter; reducing the signal generator output, as alignment proceeds, until the meter reads zero. The stabilising condenser appears to be too high. Care should be taken to prevent inaccurate alignment due to the presence of limiting valves or an a.c. loop in the I.F. strip. If such valves or circuits are employed in the receiver it would probably be advisable to use a low-level signal generator. The process of alignment incurs adjusting all the I.F., transformer iron-dust cores, including that in the primary of the discriminator transformer. After alignment has been completed, the signal generator should be removed and the centre frequency, whereupon a fairly accurate measure of bandwidth response may be obtained by monitoring the deflection of the meter in the test gear.

The signal generator is next returned to the centre frequency, and the "live" test clip transferred to the audio take-off point. S2 is set to the "disc. sec.," position; whereupon the meter will give half-scale indication for correct adjustment of the discriminator secondary core. (This half-scale indication will, of course, correspond to zero voltage at the audio take-off point with respect to the receiver chassis.) If necessary, the signal generator output may be slightly increased at this stage to provide more sensitive indications. After the discriminator secondary core has been adjusted, the signal generator should again be returned to the centre frequency. Rocking the signal generator one way should cause the meter needle to rise, rocking it the other way should cause it to fall. If the meter does not respond to the changing frequency of the signal generator output, either the discriminator secondary core has been adjusted incorrectly (causing the secondary winding of the discriminator transformer to be I.F. band-attorney) or a fault condition exists.

When an unbalanced discriminator circuit is employed, the "chassis" test lead of the alignment meter remains connected to the receiver chassis, but the "dead" lead has to be connected to the centre of the discriminator diode load. This is done as shown in Fig. 2, in which a centre-tap is obtained by means of two additional 100kΩ resistors connected in series across the stabilising condenser. It is advisable to employ this arrangement for the whole process of I.F. alignment, since the discriminator secondary may then be adjusted immediately after the primary.

Component Values

As was mentioned earlier, few of the component values for the circuit of Fig. 1 are at all critical. The valve may be any low-mu triode of the 6JS class, or it may consist of an r.f. pentode triode-strapped. (A vari-mu pentode should not be employed.)

The resistors R6 ranging anywhere between 1 and 5mA. It is desirable, however, to work the triode at a fairly linear portion of its characteristic if a 0-1mA meter is employed it might be advantageous, with some valves, to shunt the meter to give an I.S.D. around 3mA.

The value of the resistor R6 is best found empirically. It should have a value enabling the meter to be adjusted to full or half-scale deflection (according to the position of S2) for a roughly central setting of Rs. Normally, Rs will lie between 100 and 300 ohms.

The shunt resistor, R2, should be such that throwing S2 to the "disc. sec." position causes the meter to show exactly half the reading given at the "align I.F." position. The correct value should be found experimentally quite easily, and may be obtained by paralleling two, or more, low-tolerance resistors.

The Power Pack

A suitable power pack is illustrated in Fig. 3. This circuit is quite conventional, with the possible exception that, owing to the low h.t. current required (20mA), only a small mains transformer is needed.

There is one point to note with regard to the power pack, however, and this is the fact that it is essential to ensure that no leakage exists between the primary and secondary of the mains transformer. Otherwise, it is impossible for incorrect readings to be given with the circuit arrangement shown in Fig. 2. Similar inaccuracies would be given, also, if C4 were leaky.

Readers may recall that over the last year or so I have been devoting a certain amount of space in these columns to the subject of f.m. reception. In consequence I have, from time to time, received quite a few letters; most of which I have answered individually. Quite a few of these letters raised points which are worth airing here, and which should be of interest to others.

Incidentally, whilst on the subject of letters, I hope that those readers who have been good enough to write to me will forgive the slight delays which have occurred before receiving a reply. I have recently been extremely busy and it is usually only at the week-ends that I can find time to deal with correspondence. In addition, I have received quite a few letters raising questions which could hardly be described as being even remotely connected with material appearing in "In Your Workshop." Whilst I am only too happy to help anyone to the best of my ability, I would appreciate it very much if such letters could be sent along to Query Corner, where, of course, they really belong.

The Discriminator

However, to return to our queries. The subject which features most frequently in recent letters is concerned with the ratio discriminator circuits which are nowadays employed in modern f.m. receivers. For the record, a simple ratio discriminator is shown in Fig. 1.

In this diagram, C1 and C5 are parallel tuning condensers, performing the same function as in a conventional I.F. transformer. C2 is a decoupling condenser and would normally have a value around 0.01mF. C3 and C4 are r.f. decouplers, a typical capacity for each being 200 pF; whilst C6 is a d.c. blocking condenser of around 0.01 mF. C5 would normally be between 4 and 8 mF. R2 and R3 should be equal to each other in resistance, a typical value for either being 8 kΩ. (De-emphasis components are omitted.) There is little else of especial note in this circuit, and it will be quite familiar to those who have already taken an interest in f.m. receivers.

One of the things that puzzled one or two correspondents is the use of the adjectives "balanced" and "unbalanced," as applied to discriminator circuits. The circuit shown in Fig. 1 is that of a "balanced" discriminator, and it is so described because the chassis connection is taken to the junction of the two equal resistors, R2 and R3; with the result that the voltages on either plate of the stabilising condenser, C6, are "balanced" about chassis. If the right-hand half of the circuit (that constituting the plate load) were redrawn as shown in Fig. 2, the arrangement would become an "unbalanced" ratio discriminator. As may be seen, all that has happened is that the chassis connection has been taken away from the junction of R2 and R3 in Fig. 1, and re-connected at the bottom. Nothing else in the circuit of Fig. 1 is changed. However, the "unbalanced" method of connection enables R2 and R3 to be combined in a single resistor, shown in Fig. 2 as R4. R4 has the same value as R2 and R3 in series. Also C6 and C7 of Fig. 1 are similarly combined in the single condenser, C3, of Fig. 2.

To go a stage further, we could delete C6 of Fig. 2. If we do this, we wish to rely on the stabilising condenser C3 to decouple the r.f. voltages appearing across its plates in addition...
Phase Discriminator

One reader writes to state that he has been looking at the f.m. receivers advertised in current American magazines, and has noted that phase discriminator circuits appear to be used more frequently than are ratio discriminators in high-fidelity receivers intended for the more expensive, "custom-built," market. Why, he asks, are American manufacturers "reverting to phase discriminators while everyone over here and on the Continent is going crazy over ratio discriminators?"

To be frank, I don't think that this question really infers anything approaching a true picture of the f.m. scene. This is partly because American manufacturers are not "reverting" to the phase discriminator at all. So far as I know, they have used it quite frequently in their more expensive receivers. Considered on its own, it is usually agreed that a good phase discriminator circuit gives better f.m. discrimination than does a good ratio discriminator circuit. (It is often, also, a less fiddling circuit to get into good working order.) However, the great snag with the phase discriminator circuit is that it requires a limiting valve immediately preceding it to provide a.m. rejection. This limiting valve can usually only be obtained satisfactorily by fitting an extra valve into the receiver. The addition of this extra valve then not only increases the cost of the receiver; it also introduces an extra stage in the i.f. strip. Because of this, more attention has to be paid to layout, decoupling and i.f. bandwidth. Further, the fact that the extra valve is acting as a limiter means that it is not handling a sine-wave, but what becomes virtually a square-wave, at intermediate frequency. In consequence, the output of the limiter valve is rich in harmonics and care has to be taken to prevent these from being radiated.

The outstanding advantage of the ratio discriminator is that it does not, usually, have to be preceded by a limiting stage. By reason of its own operation it provides inherent a.m. rejection.

Rejection Efficiency

This brings me to the point which appeared most frequently in the letters I had from readers. In summarised, these letters could ask the question: how good is the a.m. rejection given by the average ratio discriminator circuit? One reader pointed out, also, that if the effect of the ratio discriminator is proportional to frequency deviation, why does a.f. output increase for an increase in signal input? Surely, he adds, the circuit is then responding to a.m.

In order to answer the first of these questions, it might be advantageous to examine briefly the reason why the ratio discriminator provides inherent a.m. rejection. This we could do by imagining that an f.m. carrier is amplitude modulated; and that the resultant signal is applied to the ratio discriminator circuit of Fig. 1. We may then commence by considering what happens in this circuit at a moment when the amplitude modulation is such that the carrier is increasing in amplitude.

As can be seen from Fig. 1, the increase in amplitude must cause a higher voltage to be applied from the secondary of the discriminator transformer to the two diodes, V1 and V2. This higher voltage tends to charge the stabilising condenser, C4, C8, therefore, commences to draw current from the diodes; with the result that the effective load resistance presented to the discriminator transformer by the diodes decreases in value. In consequence the secondary and primary windings of the discriminator transformer become more heavily damped than is normally the case, and the increase in amplitude is largely lost.

Similarly, at a moment when the amplitude modulation is such that the carrier is being reduced in strength, the voltage applied to the diodes is less than that which exists across the plates of the stabilising condenser. As a result, this condenser commences to discharge into the diode circuit. The effective diode load resistance increases, and as damping on the transformer windings is reduced. Because of this reduction in damping the signal applied by the transformer to the diodes increases and the drop in carrier level is largely offset.

It will be obvious from the above that the ratio discriminator does not provide perfect limiting. Nevertheless, it always tends to give a.m. rejection. In practice most discriminator circuits give good a.m. rejection, and a really well-designed circuit can give excellent a.m. rejection. However, for the latter to occur it is usually necessary to take care with component values in the diode load circuit and to try also to ensure that the signal amplitude applied to the discriminator transformer primary is sensibly constant for different transmissions. Fortunately, the requirements of reasonably constant signal amplitude will be rather easy to ensure in the conditions to be expected in this country, since almost every receiver will receive its three programmes from the same transmitter over the same route. The situation can be eased further by the use of quite simple a.g.c. circuits; or by making one (or more) of the valves act as a limiter.

The above paragraphs should help to give a rough idea of what is to be expected from the ratio discriminator circuit from the point of view of a.m. rejection. In practice the situation is by no means as black as it seems to be painted. This is due to the fact that most districts in the U.K. should be receiving signals that will be strong enough to mask all but the worst cases of a.m. interference, even when discriminators with poor a.m. rejection characteristics are being employed. Probably the only people who will have to worry seriously about a.m. rejection are those residing in "fringe" areas, or those who live in areas where strong impulsive interference is prevalent. To give an idea of the signal levels anticipated, quite a few of the f.m. receivers now being produced by manufacturers are fitted with compressed dipoles inside their cabinets, and it is expected that these "internal" aerials will cope quite adequately in most localities.
The other question — why does a.f. volume increase as signal strength increases? — is quite simple to answer. The a.f. voltage provided at the audio take-off point of a ratio discriminator for a given frequency deviation is a function of that appearing across the stabilising condenser. If the latter increases, due to increased signal strength, so also does the a.f. voltage.

Improving Rejection

The simple discriminator circuits of Figs. 1 and 2 can sometimes be made to give improved a.m. rejection characteristics by connecting the stabilising condenser such that it is "tapped down" the resistive diode load.

A typical example is shown in Fig. 3. This diagram illustrates a discriminator transformer and circuit developed by the G.E.C. and employing GEX34 germanium diodes instead of valves. As will be noted, two series resistors are connected between the diodes and the stabilising condenser.

Of the two resistors, RX is intended to be adjusted in value for maximum a.m. rejection. This adjustment will be for conditions of unbalance existing in the diodes and in the transformer itself. (The word "unbalance" used here has nothing to do with the same term when it was applied, previously, to the "unbalanced" ratio discriminator of Fig. 2. "Balance" or "unbalance" in the previous context referred merely to the type of circuit employed.) Normally, incidentally, the circuit voltage across the stabilising condenser will rise above 20 volts under most conditions. (However, a friend of mine, who has been testing some commercial F.M. receivers, reports stabilising voltages up to 40 for several particular models.) At the same time it has to be remembered that the voltage across the stabilising condenser may, with weak signals, be as low as 1 volt.

It is tempting to employ a stabilising condenser whose working voltage is just slightly above the voltage normally expected to appear across it. Unfortunately, however, when the working voltage of an electrolytic condenser is exceeded, its leakage current tends to rise very quickly, and the consequent non-linear operation may upset the a.m. rejection properties of the circuit for signals of differing amplitudes.

On the other hand, there is the fact that polarising voltages which are considerably lower than the rated working voltage of the condenser result in altered working effective capacity values. Fortunately, such changes in capacity are "on the right side," as it were, since most electrolytic condensers increase in effective capacity as the polarising voltage decreases. The only consequence of too high a stabilising capacity is that the discriminator circuit responds slowly to changes in tuning, and a rather "sluggish" effect can be produced. This effect is not, of course, so serious as would be produced by a reduction in effective capacity; which would result in reduced rejection to low frequency a.m.

So far as practical values are concerned, a stabilising condenser having a nominal capacity around 8uF should cope quite comfortably with a load resistor connected across it which has a total value of between 10kΩ and 15kΩ. Increased load resistors would require a stabilising capacity reduced in proportion, and vice versa. A working voltage figure of 100 to 150 should also be quite satisfactory, even for very weak signals. In practice, condensers with these values appear to offer a good compromise between rejection of very low frequency a.m. and sluggishness of response to tuning adjustments.

Can Anyone Help

S. Baker, 84 Northumberland Avenue, Welling, Kent, who needs data on the ex-Army 1481 Receiver?

E. W. Kerridge, 11 Tudor Way, Windsor, Berkshire, who wishes to obtain data on the U.S.A. Aircraft Receiver CRV46151?

J. A. Horton, Laund Farm, Far Laund, Belper, Derbyshire, who requires the manual for the B.C.342, temporarily or permanently?

M. Collins, 1 Cranbrook Park, Wood Green, London, N.22, who needs details such as removal of D.F. valves, type of aerial to use, removal of redundant controls, etc., relating to the R1155A?

John C. Priest, 1 Chapel Street, Blackpool, Lancs., who wants to obtain the manual and valve data sheets of the ex-U.A. Valve Tester type 4; or the identity of the makers — the inspection stamps bear the initials G.B. & Co. Ltd.?

N. J. Parker, 96 Dumbarton Road, Brixton Hill, London, S.W.2, who would appreciate any information or service sheet for the American Radio-Test & Multirange Meter manufactured by Tripplett. He is willing to exchange a manual for the BC221 Frequency Meter.

R. Bateman, 103 High Street, Croxley Green, nr. Newport, Mon., wonders if any reader can help with the circuit or information on the Transmitter/Receiver TR3171?

F. Allan Kerridge, G31DG, 95 Ramsden Road, London, S.W.12, would like some information on the Etronie television receiver.

C. E. Rees, 83 Mirador Crescent, Upton Lea, Slough, Bucks., wonders if anyone could sell or lend him the circuit of the ex-Govt. Receiver 161?

J. Bland, 56 Evington Street, Leicester, is in need of the circuit and data on the Marconiphone 7-valve Receiver type 256.

Robert R. Hous, 178 Florence Street, Southside, Glasgow, would like some information on a transformer marked 347, 10KB/501, and also on a unit built on paxolin strip and marked G52.

Chas. W. Wright, 19 Shrubbery Road, Worcester, would like, on loan or otherwise, a manual of the SC1183 Combined Valve Tester and Multirange Meter manufactured by Tripplett. He is willing to exchange a manual for the BC221 Frequency Meter.

JUNE 1955
The
1955
TWO

by
G3XT

PART I.

Those who like experimenting with unusual circuits may find it interesting to try out this novel two-valve superhet. There is nothing complicated about it, and although decidedly out-of-the-ordinary it is perfectly straightforward and does not employ a reflex arrangement or any of the "tricky" circuit devices sometimes found in unorthodox types of receiver.

The circuit has been designed around two modern pentode-based all-glass valves, namely, the Mullard ECH81 heptode-triode and the Mullard ECL80 triode-pentode.

The heptode section of the ECH81 is used, in this set, as combined mixer and oscillator, while the triode section acts as a leaky-grid detector with reaction applied at intermediate frequency (giving a virtually constant-reaction effect throughout the tuning range, thereby simplifying the adjustment of the various controls).

No i.f. amplifier is used, and the reaction largely compensates for its absence, by improving strength and selectivity. The triode section of the ECL80 is used as an audio amplifier, resistance-capacity coupled to the pentode section which forms the output stage. A simple form of negative feedback is used to improve quality, though at a slight sacrifice of volume.

A small loudspeaker is housed in the cabinet with the set, but the power pack is accommodated in a separate case. A three-core cable carries h.t. and i.f. supplies from the power-pack to the set, a four-pin plug and socket connector being used. This arrangement increases the versatility of the receiver, for, if a suitable car-type power unit running off a 6-volt car battery is available, this can be fitted with a similar cable and plug, making it interchangeable with the mains power-pack. The receiver is then instantly adaptable for occasional mobile use in a car or on an outdoor picnic, field-day or other outing. With a small mobile aerial, however, reception will be limited to the stronger signals.

As the set is small, light and easily transportable, it forms a useful bedside or kitchen receiver as an auxiliary to the full-size domestic receiver which is doubtless permanently installed in a sitting-room.

Owing to its obvious limitations, one would not be justified in making extravagant claims for the performance of this small set. But it is certainly superior to the normal straight two-valve, although on the other hand the absence of i.f. and i.f. amplification inevitably means that results are inferior to those obtainable with a standard multi-valve superhet. The performance depends largely on the use of a reasonably efficient aerial (preferably an outdoor one) and the judicious adjustment of reaction.

With the Maxi-Q coil-pack and i.f. transformer specified, selectivity is good. The reaction winding, by the way, is added to the secondary of the i.f. transformer. With the Maxi-Q i.f., this job is quite easy; but if you use some other type you may find it rather tricky, and to overcome the difficulties you are advised to refer to my article on adding reaction to i.f. transformers which appeared in the January 1955 issue of The Radio Constructor. (A suitable i.f. with reaction winding is obtainable from The Teletron Co. Ltd.—Editor).

Although—obviously and admittedly!—this set is not in the high-fidelity class, you may be pleasantly surprised at the quality obtainable, provided you use a good loudspeaker. It is clear, pleasing and a good deal better than one would expect in view of the leaky-grid detector and reaction.

Tuning Arrangements

The coil-pack covers long, medium and short waves in three ranges, of about 16-50,
There are three variable condensers; one is the reaction condenser, the others are twin-gang tuning types. The larger one acts as band-set on waves below 200 metres and as main tuner on the remaining wavelengths. The smaller one acts as bandspread on short waves, and as a "fine-tuning" adjuster for precision tuning on medium or even long waves.

If you are not specially interested in short-wave work, the bandspread can be omitted and the 500pF twin-gang substituted, with a slow-motion drive. The reaction condenser can be moved further to the right of the panel, to give a symmetrical layout. These modifications will also enable a larger scale or dial to be used on the broadcast bands; in the prototype it is the bandspread which uses the larger scale, while the ordinary broadcast calibrations have to be crowded into the smaller of the two scales.

Radio Constructor Panel-Sign transfers are used on the prototype. The large diameter scale on the bandspread can be calibrated for the various short-wave bands, and the smaller one for long and medium waves. The degree-markings on the smaller scale were trimmed off before fixing, owing to lack of space.

A method of covering the 80-metre amateur band is to connect additional capacities of about 0.0012µF (1.200pF) across each section of the 500pF twin-gang, with an extra double-pole switch to bring in the extra capacities when needed. The L/C ratio is admittedly outrageous, but I found it worked all right and is preferable to tampering with the coil-pack itself in any way.

The dust-iron cores of the coils permit considerable latitude of adjustment, and I found that with those on the medium-wave windings screwed out further than one would normally do, it is possible to tune in a number of "top-band" amateur stations working on c.w. at the low-frequency end of the 160-metre band.

The Chassis

A glance at the illustrations will show that the chassis used in this small superhet is not the ordinary flat type, but a special new version of my own design, which I described in the March 1955 issue of The Radio Constructor. This chassis gives much better accessibility to most of the components, thereby facilitating construction, testing and subsequent maintenance.

The panel can be non-metal or other suitable material. In the prototype I used ordinary builder's hardboard, with the smooth surface to the front. The latter

(continued on page 661)
A SIMPLE PATTERN GENERATOR

by H. GARLICK

Unless the modulation frequency is an exact multiple of the line frequency, however, the pattern will be completely irregular. The setting of the modulation frequency is rather critical as no normal synchronisation pulse is provided.

Due to the short duration of the modulation pulse, however, it will be found that the pattern will lock in and remain steady.

When a new receiver is being lined up, the fact that the line timebase must be set at the exact frequency to obtain a steady pattern is an advantage.

As previously stated, the generator must also supply modulation at a multiple of the frame frequency. The main purpose of frame frequency modulation is to enable the timebase to be set to run at the correct speed, as checks on linearity can be made by observing the scanning lines. In the former requirement therefore, two horizontal lines are sufficient and suitable modulation can be obtained from the cathode of a full-wave rectifier.

The rectifier conducts during the positive half of each cycle, and by applying an alternating voltage to each anode from the secondary of a centre-tapped mains transformer an output of 100 pulses per second will be obtained.

By preventing excessive oscillation (by reducing the value of grid resistor) the oscillations will be continuous, and if the anode voltage is provided as outlined above the oscillator will stop and start at the rate of twice the frame frequency. The effect on the face of the c.r.t. is that two horizontal white bars when the frame timebase is correct.

The choice of horizontal or vertical bars is made by means of a double-pole single-throw switch, wired so that the resistor R2 is placed in the grid circuit and the condenser C4 is open circuited for horizontal bars, and vice versa for vertical bars.

For the sound channel the frequency of the oscillator must be lowered slightly, and this can conveniently be done by switching in a low value capacitor across the r.f. coil. This small capacity can be obtained by twisting two pieces of insulated wire together and then adjusting the twist until the oscillator is on frequency. It is essential that the sound frequency be exactly tuned, due to the narrow bandwidth of the sound receiver, but the vision frequency is not quite so critical. The single trimmer across the coil can, therefore, be used to set the sound frequency after the chassis has been housed in its case (with the switch closed, of course), the slight alteration in frequency due to the case being of no consequence as regards the vision frequency.

Modulation for sound is obtained by switching in the frame modulation so that a 100 c/s tone is heard.

Output is taken from the tuning coil by an inductive coupling consisting of half a turn of stiff wire spaced at least an inch from the coil.

A variable capacitor connected between this coil and the output socket will give a degree of attenuation. If the coupling is too tight, it will be found that operation of the variable capacitor will cause a variation in the frequency of the line modulation.

This effect must be avoided, as the correct setting for the line timebase depends upon the number of vertical lines seen on the screen.

It will normally be found sufficient to connect a few inches of wire to the output socket and then twist round it a piece of insulated wire connected to the receiver. The unit will radiate strongly unless adequate screening is provided, and for this reason care must be taken not to interfere with nearby receivers during transmission times.

THE 1955 TWO—continued from page 659

was then painted with an enamel of the Chinese-lacquer type. The panel transfers were carefully applied (without moistening the gum) to the paint surface while it was still very slightly tacky, and they adhered perfectly. When completely dried, actually

None of the component values are critical, and any layout consistent with v.h.f. practice will be satisfactory.

The valve specified has the grid and anode brought out to top caps, making it convenient to mount the valve on a shallow chassis, with the front panel to carry all the controls, and yet keep wiring short. A 635 would be suitable, however, or a pentode strapped as a triode.

The rectifier is working at double its designed anode voltage, but no ill effects have been observed. The Pattern Generator should not be coupled directly to the receiver unless the tuning coils are well off frequency, as the output is high.
A CONSTRUCTOR AT THE 1955 RADIO COMPONENT SHOW

As occurred last year, the 1955 annual exhibition of the Radio and Electronic Component Manufacturer's Association was held, for a period of three days, at the Great Hall, Grosvenor House, in Park Lane, London. Possibly due to the fact that a different method of issuing tickets was in operation, the scene this year was less reminiscent of rush-hour in the Underground than has been the case in previous years. Despite this it was still not easy to move around quickly, and the writer gave his mental sympathy to the somewhat squashed staff on duty at some of the stands on the gallery.

Nevertheless, the fact that there was a good attendance only underlines the continuing success of the Show. It also reflects the increasing productivity and prosperity of the Radio Industry as a whole. In the Exhibition Press Office was the success story of figures which are of interest to everyone connected with the radio trade. Production output in the component industry rose by not less than a third in the past year, and it is still increasing. Before the war, 90 per cent of manufactured components went into the domestic radio market. Now, although radio and television receivers take much the same output, as many components as they did before the war, only 45 per cent of the manufactured output is absorbed by the domestic market. Half the component output is exported, reaching a total, last year (counting direct and indirect exports) of approximately £2 million.

Television

Although the past twelve months have not seen any spectacular advance in television design, they have still been the occasion of considerable and valuable development work. At the last Show much emphasis was laid on Band III, and a number of tuners employing one or more cascode triode-pentode combination were exhibited for what was virtually the first time in this country. These tuners were, in some cases, a preview of what was later to go into production.

Now, of course, such tuners are an accepted part of present-day television. In spite of this there was still much to see. For instance Cyldon (Sidney S. Bird, Ltd.) were exhibiting an improved type of turret "teleturner" which also incorporates the fm. channels on Band II. Also, N.S.F. (Oak) were showing their 12K13 television tuner unit; this covering 13 carrier frequencies. Channel selection with the N.S.F. unit is achieved by switching incremental inductances mounted directly on the switch wafers. Plessey also included their own turret tuner in their display.

Mullard allowed a peek into the British television future with their castellated Ferroxcube cores giving 90 degree deflection yokes. Readers may recall that most existing 70 degree scanning yokes employ castellated magnetic cores having eight slots arranged round their internal diameter. The frame and line windings then lie in these slots, whilst the cores bring the field up to the neck of the tube. The 90 degree Ferroxcube cores have sixteen slots spaced around the internal diameter. Each frame and line coil is then split into two, so that half of each individual winding fits into its own slot. In consequence, the coupled coils and the Ferroxcube is tighter, and the magnetic efficiency of the whole assembly is considerably increased. Furthermore, the Ferroxcube core intended for the front of the deflector yoke is shaped such that it may be placed further up the neck of the tube towards the face, thus reducing the coupling length.

Another point of interest was given by the Ferroxcube U-pieces which form the cores of most line output transformers. These were now shown having a hexagonal cross-section. This development enables a closer coupling between the Ferroxcube core and the coil in which it is inserted than was given by the earlier square cross-sectional cores. The result is, again, greater efficiency.

Mullard also showed samples of typical applications of Ferroxcube. These included the new LO.352 line output transformer and DC.605 scanning yoke; both made by Allen Components, Ltd.

An interesting sidelight on television is given by the use of laminated components and chassis together. Simmons Aerocarries exhibited a large number of practical applications of their "Spire" Speed Nutter clips. These included a practical chassis illustrating all the points at which Spire fastening may take the place of nuts and bolts. A line output transformer assembled entirely with Spire fastenings; and a Ferguson Band III tuner unit, which also employs these production aids.

A few so well known to the amateur home-constructor is Aero Research Ltd., whose product—"Araldite"—is used in the manufacture of the television receivers made by other manufacturers. Araldite is an epoxy resin which may be used as an adhesive, for potting and impregnating, and for other purposes. To illustrate the efficiency of Araldite, Aero Research showed an oscilloscope tube whose base and connections were sealed in Araldite, and which consequently displayed an elliptical trace. The whole assembly was completely submerged in a tank of water! Araldite was also used for potting a line output transformer exhibited by Igenics.

There was not a great deal new in cathode ray tubes. G.E.C. and Mullard exhibited 21-inch tubes, that by Mullard being a 90 degree tube. These 21-inch tubes appear to be taking some time finding their way into manufactured receivers.

Pullin Measuring Instruments Ltd. showed a brand-new c.h.t. voltmeter. This consists of a sensitive microammeter connected in series with a stable dropping resistor, and operating in accordance with normal voltmeter technique (except, of course, for the high voltages and low currents involved. The most interesting feature of the device was that it was arranged rather like a pistol, with the series resistor incorporated in the "barrel." At the end of the "barrel" was a metal probe (different probe shapes are available for different applications) and the meter itself was built into the handle of the assembly. The writer understood that the f.s.d. current of the meter was only 50μA.

Soldering

Soldering came to the fore to a surprising degree this year. This was partly due to the introduction of "self-soldering" wires. These wires are coated with enamel insulation in the conventional fashion, but the enamel becomes flux at soldering temperatures. Self-soldering wires were shown by the Louden Co., by F. D. Sims Ltd. and by Henley's Telegraph Works. Henley's also showed a soldered-copper wire. The coating on the copper of this wire consists of solder and not of tin. In consequence, solder joints may be carried out more readily in some applications.

Multicore Solders exhibited a simple thermo-couple thermometer for checking the temperature of solder baths and soldering iron tips. The maximum reading was 400 degrees Centigrade. Multicore also showed a new solder (type 362) which contains approximately 2 per cent copper. This solder is claimed to increase the active life of a soldering iron bit by 10 times. Also exhibited were special materials for printed circuit soldering.

Enthoven Solders Ltd. also had materials and techniques available for printed circuits and dip soldering. A new development of this year was an aluminium-coated solder which enables copper wire to be joined to aluminium surfaces with ease.

Printed Circuits

Printed circuits are here to stay. As yet, however, their greatest usefulness appears to lie with smaller assemblies only. Since this was an exhibition devoted to components, components were naturally given greater prominence than were completely manufactured assemblies.

New England C.E. showed a complete high-fidelity amplifier, assembled in its entirety, on a printed circuit. The amplifier was the Osmar "912." Bakelite Ltd. also showed a combination of printed circuits employing a copper surface bonded to a plastic base.

Components suitable for printed circuits were exhibited by A.B. Metal Products (switches), McMurdo (valveholders) and Parmeko (transformers).

Sound Reproduction

So far as sound reproduction was concerned there was much of interest.

Cosmocord introduced two new pick-up cartridges. One of these was the GP.61-1, an improved ceramic type. Another was the GP.59.3. This uses the conventional crystal but, in company with the GP.61-1, employs the new flat-type stylus.

A new high fidelity speaker was introduced by Richard Allen. This is an elliptical model whose cone diameters are 10 by 6 inches. Whiteley Electrical (Stenfield) Ltd. had a new version of their cantilever cone speaker. This is fitted with a "universal impedance" speech coil giving instantaneous matching at 3, 7.5 and 15 ohms.

Finally, G.E.C. introduced a Kraft-paper based recording tape known as "Puretone." This is claimed to have a performance comparable to materials costing twice as much.

J. R. D.
THE “FULL-TONE”

8 Watt AMPLIFIER

PART 2

by M. HARVEY

Full constructional details of the latest Radio Constructor design for the beginner

In last month’s issue of The Radio Constructor the “Full-Tone” amplifier was introduced and the salient points of its design and circuit discussed. We now carry on to full details of its construction and wiring.

The Chassis and Layout

To provide the constructor with an idea of the positioning of the main components Fig. 4 shows the top layout, as observed when looking down upon the chassis. This diagram will be of considerable assistance in carrying out the under-chassis wiring and should be studied in conjunction with the photographs.

The first part of the construction to tackle is the chassis itself. This is quite simple in design and can be made with the complement of tools normally available in the home-workshop. The chassis may be made of any metal, although aluminium of 16 s.w.g. or thicker will probably prove to be the easiest to handle. (As was mentioned last month, those who wish to avoid carrying out this part of the construction may purchase the chassis ready-made from an advertiser in this issue.)

Fig. 5 shows the chassis dimensions before bending, providing details, also, of the mounting holes required for the various components. The view given in Fig. 5 is that looking at the under-side of the chassis, with the result that the four side aprons should be bent upwards from the page, towards the reader. Many constructors will prefer to drill the holes after bending, as this obviates the possibility of distorting the top surface of the chassis when only simple bending facilities are available. The two narrow side aprons along the length of the chassis are intended merely for strengthening purposes.

All the holes in Fig. 5 which are marked “A” are intended to be drilled out 6-BA clearance. Those marked “B” are 4-BA clearance. The two holes designated “C” are intended to take the two 5/16 in. grommets included in the component list. All other holes are marked in actual diameters where applicable.

Not shown in Fig. 5, however, is a hole for the locating lug of the volume control. Since the position of this lug will vary for volume controls of different manufacture, this hole will have to be marked out for drilling by the constructor himself. The locating lug hole should be positioned such that the volume control tags project sideways when it is later mounted (see Fig. 6). The diameter of the hole for the volume control bush is also not shown. This is due to the fact that this diameter, also, may vary slightly for volume controls of different manufacture. (For most instances, however, the hole would require a diameter of 5/16.)

Mounting the Components

The next job consists of mounting the initial components. The layout of these, below the chassis, is given in Fig. 6. It is particularly important to ensure that the valveholders are fitted the correct way round. Fig. 6 shows the positions of the spigot keys for the octal valveholders, and of pin No. 1 of the two miniature valveholders. As was mentioned last month, the valveholder for V1 is a plain component, and does not need the “skirt” shown in the photographs of the chassis.

Also mounted at this stage are the output transformer and the dual electrolytic condenser C3, C10. The wiring of these last two components, above the chassis, was shown in Fig. 4; whilst Fig. 6 further clarifies the positioning of the coloured tags of the electrolytic condenser. Both condenser and transformer are mounted by 4-BA nuts and bolts. The bolt designated “X” in Fig. 6 should be sufficiently long to take another nut at a later stage in the assembly.

The three tag- strips are shown, occupying their correct positions under the chassis, in Fig. 6 as well. It is important to make certain that the centre, mounting, tags of these tag-strips make good contact with the chassis. Because of this point, all tag-strip mounting bolts must be as tight as possible.

The Pye socket assembly must be fastened as tightly as possible as well. The final step consists of fitting the volume control in the position shown in Fig. 6; i.e. with its tags projecting towards the Pye socket.

Wiring

The initial wiring may now be commenced. This is illustrated in Fig. 7. Note that the 4-way lead from the power-pack is now introduced, and that it is secured under two clamps. One of these clamps is held by a 6-BA bolt fitted in the 6-BA hole in the rear apron. The other clamp is held by an additional 4-BA nut passed on to one of the bolts (labelled “X” in Fig. 6) which already secures the output transformer above the chassis. The clamps may be made from thin metal strip or any similar material. No colour-coding, or any other method of marking the 4-way power cable, is shown in the diagram as its connections are obvious. Two of its leads connect to the heaters, the third connects to chassis, and the fourth to h.t. positive.

Although not shown in this and the succeeding diagrams, resistor and condenser leads should be covered with sleeving except for cases where they are so short that short-circuits cannot possibly occur. The heater leads must be carefully twisted together, following the route shown in Fig. 7. One of these heater leads is continued from tag 4 of V1 to the Pye socket earthing solder tag.

Fig. 4. The layout adopted above the chassis for the “Full-Tone” amplifier

The Pye socket assembly is, similarly, also of importance. This socket should be supplied with two solder tags: one 4-BA tag for its centre terminal, and one larger tag for the outside, earthing section. This second tag must make good contact to the metal of the chassis, and so the large nut securing the

JUNE 1955
Further fitted to this socket are several other leads (all illustrated in the diagram) which may also be connected in at this stage. Additional parts fitted are the output bias components and R4, R5, R7, C2, C3 and C10. R4 and R7 should be positioned fairly close to the underside of the chassis, to leave room for later components. For clarity, C9 is shown as having rather long leads: in practice, the negative end of this condenser lies directly underneath the negative end of C8. Care should be taken to ensure that the slewing fitted over the positive lead-out wire of C2 is taken right up to the body of this condenser, otherwise it is possible for this lead-out wire to touch the chassis. In cases where connections are marked “Do not solder,” this infers that more wires have to be fitted to the appropriate tag later, after which process the whole connection will be soldered. All joints not so marked may be soldered. The same instruction applies to succeeding diagrams.

The five leads travelling through the grommet hole to the speaker transformer are connected up in Fig. 8. It is important to note that the two anode connections to the transformer should be of a “temporary” nature only, as they may have to be changed over later. On no account, however, should these “temporary” connections consist merely of twisting the bare wires around the tags without soldering, as an intermittent connection to the anodes of V3 or V4 can damage these valves when power is later applied to the amplifier. Although “temporary,” the anode connections must still be reliably soldered. The transformer tag numbers referred to in Fig. 8 are those shown in Fig. 4. (The actual component itself does not have numbered tags.) Also illustrated in Fig. 8 are the chassis connections to the spigots and screen of V1 and V2.

Fig. 9 shows the next stage in wiring the amplifier. Note that C5 now partly hides R5, which was fitted in Fig. 7. The leads to R5 and R10 are shown slightly longer than they would be in the circuit itself, in order to ensure clarity in the diagram. These two resistors should, in practice, be mounted close to the tag-strips. All other components are shown in their final positions.

We now carry on to Fig. 10. This diagram shows all the remaining components which are connected into the input valve circuit. The bulky decoupling condenser, C1, is fitted by one lead-out wire only at this stage. The other wire is connected to the central terminal of the adjacent tag-strip, and the condenser finally positioned, in the manner shown in Fig. 11. Soldering this “earthy” connection also solders the negative lead from C3-C10 fitted in Fig. 7. Figs. 10 and 11 emphasise that the outside foil (O.F.) lead-out wire of C1 (at that end of the condenser which is marked with two parallel bands) connects to chassis. (Condensers C4, C6 and C7, fitted earlier, are not used for decoupling and may be connected either way round.)

Testing

Apart from the absence of the negative feedback loop, and the fact that the connections made to tags “A” and “B” (Figs. 10 and 11) are as yet unsoldered, the amplifier is now complete and ready for checking. (If a test meter is available, a quick check for h.t. short-circuits may be made by testing between chassis and the positive tags of C3, C10. If the wiring has been carried out carefully, however, such a test is not really necessary, of course.) The amplifier can next be connected to its power-pack, and the loudspeaker to the output transformer. Tags 1 and 2 (Fig. 4) are for 3 ohm loudspeakers and tags 1 and 3 for 15 ohm loudspeakers. Ensure that the unsoldered leads fitted to tags “A” and “B” (just mentioned) are not liable to work free and cause any short-circuits.

An a.f. input signal should next be applied, from any suitable source, to the input of the amplifier. The input connection should, of course, be made via a screened cable whose outer conductor is earthed both at the amplifier plug and at the input source. Television coaxial cable is excellent for this purpose, and has the advantage of enabling a simple connection to be made to the Pye plug. Also, its self-capacity is low.

In its present condition (i.e. without feedback) it will be found that the amplifier is very sensitive and that it gives a high degree of gain. Fidelity of reproduction should be good and there should be no trace of instability whatsoever. There may be a slight amount of hum—which can be reduced considerably by connecting the amplifier chassis to a good earth connection or, in some instances, merely by reversing the mains plug in its socket.

In any event, any hum that is evident at this stage should drop to an inaudible level when the feedback loop is completed.

Feedback

The feedback circuit may now be connected. This is done by soldering R13 across the tags marked “A” and “B” in Figs. 10 and 11, keeping the resistor reasonably close to the tag-strip. The next step consists of ensuring that feedback is of the correct phase.

To do this, V5 should first be removed from its socket (to reduce the available power output) and the amplifier switched on. It is advisable to keep one’s hand on the on-off switch during the time that the amplifier is warming up, as it is necessary to be able to switch off at once should the feedback
Fig. 6. Layout of the principal components below the chassis. Fig. 7. Initial stage in the wiring of the amplifier. Fig. 8. Connecting up the speaker transformer.

Fig. 9. Completing the wiring around V2. Fig. 10. Final stage—the components in the input valve circuit. Fig. 11. How C1 is fitted and positioned. The letter references in this and Fig. 10 are discussed in the text.
happen to be positive instead of negative. The reason for this precaution is that positive feedback will cause a continuous oscillation on one note which may cause damage to certain models of loudspeaker if sustained for too long a time. Should the feedback be negative, this will show itself immediately in the form of reduced volume and lower noise and hum level. If it occurs, the positive feedback condition can be altered to negative feedback simply by changing over the two anode leads temporarily connected to the output transformer in Fig. 8.

After completion of this test, the anode leads may be connected finally and permanently to their tags, and V5 re-inserted in its socket.

The “Full-Tone” amplifier is now complete and ready for use. The writer trusts that constructors will obtain as much pleasure from its performance as he has gained with the prototype.

AN IMPORTANT ANNOUNCEMENT

Band III for the Home Constructor

As our readers are aware, The Radio Constructor has always been active in new developments which affect the home constructor. Readers may recall that we were among the first to introduce articles describing the construction of television receivers from Government Surplus materials in the years which immediately followed the war, at a time when manufactured components were almost completely unobtainable. This was our “Inexpensive Television” series; later to become a popular handbook, and one which is still current, in the Data Book series.

These articles were followed by the publication of details of the “Magna-View,” the first 70 degree wide-angle home constructor television set in this country. The sound design of this receiver has been amply demonstrated by the fact that two leading manufacturers of cathode ray tubes and valves have since published booklets devoted entirely to its construction.

In the field of frequency modulation we have also played a leading part, producing designs which are practical and which are intended specifically for the home constructor. Our policy of catering for the constructor in his own workshop has shown its success in our continually increasing circulation figures, now in excess of 27,000 copies monthly.

During the last 12 months the staff of The Radio Constructor has paid a considerable amount of attention to the feasibility of Band III reception by the home constructor. This particular situation is considerably complicated by the fact that the home constructor does not have access to the expensive test gear available to the manufacturer of Band III tuning equipment. In consequence, home constructor Band III television design has to be carried out under the assumption that the reader may be in possession only of a simple test meter. On the other hand, of course, it assumes the fact that he has the necessary skill and ingenuity to put published circuits and drawings into concrete, workable form.

We feel that we now have available a suitable receiver unit for reliable and satisfactory reception of Band III transmissions in the anticipated service area. Preliminary checks with the experimental broadcasts from the Bellin-Lee transmitter on Channel 9 have given excellent results. Furthermore, our design has been largely the result of considerable co-operation between ourselves and leading manufacturers, and we anticipate no difficulties due to the non-availability of component parts.

We have pleasure, therefore, in announcing that “Band III For The Home Constructor” will commence in next month’s issue. Once again, The Radio Constructor leads the way in practical design.
HIGH QUALITY TUNER UNIT

by H. S. G. THORPE

PART 1.

Three-quarter rear view showing layout of above-chassis components—see also cover illustration

Circuit

This tuner unit is intended primarily for use with a high quality amplifier, but by adding a triode amplifier stage and an output stage a complete receiver can be built. The circuit diagram is shown in Fig. 1a and b.

The r.f. stage uses a variable-mu r.f. pentode 6BA6 to which a.v.c. is applied. The use of an r.f. stage is particularly advantageous on the short-wave bands to minimise second channel interference which would otherwise be very troublesome. Also the sensitivity of the receiver is increased on the short-wave bands as signal level is raised in relation to the mixer noise.

It will be noted that provision is made in the coil switching for shorting out coils not in use, so that absorption effects do not mar performance.

The i.f. stage is another 6BA6 with a.v.c. and the selectivity switch S2 switches resistors across the primary and secondary of T1 in the "broad" position. T2 is already sufficiently damped by the diode to make further switched resistors unnecessary.

In the detector stage the filter components, R14, C24 and C25 are chosen so that the stage can handle signals with 95% modulation up to 8 kc/s.

The output of the detector feeds into a cathode follower (6C4). This has the advant-

FIG.1(c) QUALITY TUNER—CIRCUIT DIAGRAM

The mixer stage is a 6BE6 with a 6C4 separate oscillator. This arrangement permits the oscillator stage to be built in a separate screened compartment, the only coupling to the mixer being through C15. Thus undesirable stray coupling is avoided and the resulting "pulling" effect on short waves reduced to negligible proportions.

The advantage of providing a low output impedance so that the tuner unit may be connected to an amplifier with a lengthy coaxial cable with negligible effect on the high frequency response.

Also, the use of a volume control is avoided at this point in the circuit so that the undesirable effect of a high frequency response which
PROTOTYPE COMPONENT LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>Value</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>220kΩ 4W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>33kΩ 1W, “Labpack,” R.R. Co.</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>68Ω 3W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>1,800Ω 4W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R5</td>
<td>1,800Ω 3W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R6</td>
<td>22kΩ 4W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>1,800Ω 3W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>22kΩ 2W, R.R. Co.</td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>150Ω 3W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R10a</td>
<td>100kΩ 4W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>100kΩ 4W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R12</td>
<td>47kΩ 1W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R13</td>
<td>47Ω 4W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R14</td>
<td>270kΩ 4W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R15</td>
<td>33kΩ 1W, R.R. Co.</td>
<td></td>
</tr>
<tr>
<td>R16</td>
<td>1,800Ω 3W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R17</td>
<td>68Ω 3W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R18</td>
<td>250Ω 4W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R19</td>
<td>50kΩ 4W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R20</td>
<td>1MΩ 3W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R21</td>
<td>50kΩ 4W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R22</td>
<td>1MΩ 4W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R23</td>
<td>5.6kΩ 3W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R24</td>
<td>47kΩ 3W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R25</td>
<td>see text</td>
<td></td>
</tr>
<tr>
<td>R26</td>
<td>125Ω 3W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>R27</td>
<td>125Ω 3W, Radiospares</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>0.01µF 150V, Hunts, TU1</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>0.1µF 150V, Hunts, TU1, A300</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>0.05µF 150V, Hunts, TU1, A300</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>3-gang 0.0005µF, Osmor</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>0.1µF 500V, Hunts, A58</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>0.1µF 150V, Hunts, TU1, A300</td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>0.1µF 500V, Hunts, A58</td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>0.01µF 500V, Hunts, A58</td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>0.1µF 150V, T.C.C.</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>4.5µpF padder, Osmor</td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>4.5µpF padder, Osmor</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>2.5µpF padder, Osmor</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>4.5µpF padder, Osmor</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>5.5µpF padder, Osmor</td>
<td></td>
</tr>
<tr>
<td>P15</td>
<td>0.1µF 150V, Hunts, TU1, A300</td>
<td></td>
</tr>
<tr>
<td>P16</td>
<td>0.1µF 500V, Hunts, A58</td>
<td></td>
</tr>
<tr>
<td>P17</td>
<td>0.1µF 150V, Hunts, TU1, A300</td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>50pF Mica</td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td>0.1µF 500V, Hunts, A58</td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>100pF Mica</td>
<td></td>
</tr>
<tr>
<td>C21</td>
<td>0.05µF 350V, T.C.C.</td>
<td></td>
</tr>
<tr>
<td>C22</td>
<td>0.05µF 150V, Hunts</td>
<td></td>
</tr>
<tr>
<td>C23</td>
<td>0.05µF 350V, T.C.C.</td>
<td></td>
</tr>
<tr>
<td>C24</td>
<td>50pF Mica</td>
<td></td>
</tr>
<tr>
<td>C25</td>
<td>50pF Mica</td>
<td></td>
</tr>
<tr>
<td>C26</td>
<td>100pF Mica</td>
<td></td>
</tr>
<tr>
<td>C27</td>
<td>0.1µF 150V, Hunts TU1</td>
<td></td>
</tr>
<tr>
<td>C28</td>
<td>0.1µF 150V Micamold</td>
<td></td>
</tr>
<tr>
<td>C29</td>
<td>0.1µF 350V, T.C.C.</td>
<td></td>
</tr>
<tr>
<td>C30</td>
<td>32pF</td>
<td></td>
</tr>
<tr>
<td>C31</td>
<td>16µF + 32pF in 4 × 350 V k.g. B.E.C.</td>
<td></td>
</tr>
</tbody>
</table>

12 Trimmers, 50pF. Concentric or similar
Mains Transformer, 250-0-250V 80mA, 6.3V 4A, Woden, RMSIIA or similar
Choke, 50H, 50mA, Woden PCF16 or similar
1 Fuse 100mA; 2 Fuses 1 amp.
12 Coil, Osmor
QA1, QA3, QA4, QA8, QHF1, QHF3, QHF4, QHF8, QO1, QO3, QO4, QO8
1 Pair IPT's, 465kΩ, Midget, Osmor
1 Dial Assembly complete, with Type G2 scale, Osmor
1 Coax Plug and Socket, Aerialite
1 Switch, see text
1 Switch, 2-pole, 2-way, Selectivity
1 Mains Connector, Buglin P463
3 Fuseholders, Belling-Lee
6 B7G Valveholders with cans, McMurdo
1 B9A ditto
2 Octal valveholders, Amphenol
(only 1 needed if Magic Eye not fitted)
1 Chassis, Aluminium, size 12½ x 8½ x 2½
1 Two-speed drive, Jackson Bros.

Valves
2 6BA6, Brimar
1 6BE6, Brimar
2 6C4, Brimar
1 6AL5, P1
1 EZ80, Mullard
1 EM34, Mullard
Wire, Systoflex, 6BA Solder Tags, Self Threading screws. Screened wire as required for output lead, T.V.L., Henley.

varies with volume setting is avoided. If a volume control is required it can be fitted after C29, and may be of a low value.

Gram switching is not incorporated in the tuner, as it would normally be done in a pre-amp tone control unit following the tuner.
The wavebands covered are as follows:
1. 13-35 metres SW 1
2. 35-120 metres SW 2
3. 70-230 metres Trawler
4. 190-560 metres MW

The layout is as shown in the illustrations.
The dial is held in the correct position on the chassis and the fixing holes on the mounting brackets are marked through on to the main chassis, and a ⅞ in. drill run through the centre of the marked hole. The brackets are then screwed to the chassis with self-threading screws. The condenser is placed on the main chassis with its spindle exactly under that of the pointer on the dial, and then the holes in the feet marked on to the chassis. Drill 4-BA

aluminium; welded corners would be preferable.

JUNE 1955
COPYRIGHT AND TAPE RECORDING

by F. NEVILLE HART

To those who have made or bought tape recorders, the matter of copyright is of no little interest, particularly if they want to put on the tape a musical performance, including excerpts from radio or commercial gramophone records.

Gramophone enthusiasts may have noted, on the label of every disc, that the word "copyright" is written somewhere, and probably have only a vague idea what this really means. It is a word, simple and descriptive—the right to copy—and although one probably understands that music it does "copyright reserved," the second word is implied and often left out.

But the Copyright Act of 1911 was designed to ensure that those who create works of art, in any medium, that is, literature, authorship, music, painting and even photography by any means, and shall derive the full financial benefit from their inspiration and work. Moreover, it is surprising how well thought that Act was, for in spite of the vast changes that have taken place since that time, and the introduction of radio, radio-grams and television, the protection afforded to copyright owners is still as strong as ever.

As we are only considering tape recorders, however, we are mainly concerned with music, songs and plays, and gramophone records. The Act clearly defines that authors and composers, or their agents, have the sole right to permit their work to be recorded, recorded or played in public, and natural authors, since they write for a living, we have to pay them if we wish to do any of these things.

So in simple terms, we are infringing their copyright if we do anything to deprive them of any part of that livelihood. One might go so far as to say that if we record a song from the radio, we are saving ourselves a copy of the music on to a record disc, and thus depriving the writers of their royalty.

Strictly speaking, then, the copyright is infringed. But it is, of course, appreciated by copyright owners that they cannot be aware of all tape recordings made in the privacy of the home, and although such recordings constitute infringements of copyright, the policy has been to take no action in those cases brought to their notice, although the right to do so is reserved.

But still, it is interesting to explore just how deep this copyright business goes, for it is not only confined to the authors and composers, as there is a copyright in a gramophone disc itself, regardless of what is recorded on it, and such recording may not be copied or "dubbed" without the permission of the manufacturer. Incidentally, permission is rarely granted except in most exceptional cases, and even then, a severe view being taken of infringement of this right.

Even then, the complications do not end there, for in addition to the law of copyright, there is the position of the performing artiste to be considered. His rights are protected under the provisions of the Dramatic and Musical Performers Protection Act of 1925, under which it is an offence to record his performance without his written consent. This would extend to every member of a band or orchestra performing the piece to be recorded. And in the case of trying to obtain written consent from every member of the Halle Orchesta if one wanted to make a tape recording of a broadcast of their performance! However, this Act continues by stating that it shall be a defence to any proceedings, brought under its provisions, if it can be proved that the recording was made not for the purpose of trade or public performance.

In any case, there is fortunately an organisation, called Mechanical Copyright Protection Society, where one can obtain the majority of copyright owners, and to whom those making recordings apply, and pay their mechanical royalties to the publishers, authors and composers.

(continued at foot of opposite page)
Query Corner

A Radio Constructor Service for Readers

Indicator for F.M. Tuner

I am using the F.M. Tuner Unit, described in the July 1954 issue of The Radio Constructor, and would like to add a tuning indicator. Your recommendations regarding a separate power pack would also be appreciated.

J. Lown, London, S.W.1

Judging by the correspondence recently received, the F.M. Tuner first described in the July issue, and afterwards improved by modifications included in the September issue, has aroused considerable interest. This tuner is of a design which is readily suited to home construction, and is capable of giving really first-class results when fed into the p.u. sockets of a recent receiver or the input terminals of a high quality amplifier. We are sure that now the B.B.C. plans for a wide coverage of the three programmes on f.m. are well under way, there will be increased interest shown in this superior form of broadcasting. It is planned, at the time of writing, that the transmitter at Wrotham should relay all three programmes continuously as from the 2nd May.

There are two points on the circuit from which the grid control voltage for a tuning indicator may be obtained: the grid leak of the limiter valve, V4, or the biasing network for the ratio detector. Of the two sources, the latter provides the greater range of control voltage, and hence is capable of giving a more sensitive indication of the optimum tuning point. However, because of the use of a.v.c., the exact mid-tuning point may still be a little indefinite, and to sharpen up the indication further the anodes of the tuning indicator are fed from the decoupled h.t. point of the limiter valve.

As the signal level increases, so the negative bias on this valve rises, reducing the anode current and thus increasing the voltage at the junction of R11 and C16. This variable voltage, when applied to the anodes and deflector plates of the tuning indicator serves to increase its sensitivity.

The complete circuit diagram of a full-wave power pack and tuning indicator for the F.M. Tuner is shown in Fig. 1. The method of connecting the indicator to the limiter and detector circuits will be apparent. The leads between the indicator and the main unit may be of any reasonable length. As the unit may be used to feed into a high quality amplifier, it was thought desirable to recommend an isolated full-wave rectifier type of power pack to reduce the possibility of hum being introduced into the audio section. The Mullard EM34 is one of the most satisfactory types of tuning indicator for this unit, as its dual sensitivity provides a good indication over a wide range of signal levels.

Discrimination Alignment

Would you please advise me regarding the best method of aligning the ratio detector transformer of my recently constructed F.M. tuner? I believe that the rather poor quality of reproduction is due to an asymmetrical response curve.

C. Bennett, Brighton

The detector circuit of an f.m. receiver may be regarded as the heart of the set; any defect in this part can play havoc with the quality of reproduction. The F.M. detector is a device for producing a voltage which will vary in amplitude with changes in frequency of the incoming signal. It follows that the particularly marked during the warming-up time of the receiver, and is very unlikely to be less than ±40k/c/s. Drift has the effect of shifting the critical working point up or down the response curve by altering the nominal intermediate frequency. To align the detector, a signal generator capable of covering the l.f. channel (normally 10.7Mc/s) and a voltmeter having a resistance of the order of 5,000Ω/volt are required. During alignment the meter must be connected at points A, B, C and D in Fig. 1. Should the radio detector be of the asymmetrical type in which one cathode is earthed, the diode load resistor must be replaced by two equal value resistors in series to provide the centre tap. The value of the two resistors must be equal to the signal component which they replace temporarily during adjustment. If a high resistance voltmeter is not available, an oscilloscope which provides a reading of d.c. may be used.

Connect the voltmeter on the 10V range across A-B, and feed the output from the signal generator into the control grid of the last l.f. valve. Adjust the core in the primary (anode) winding to give maximum voltage output with the generator tuned to the l.f. The output from the generator should be kept...
low during this adjustment. Move the voltmeter to C-D, and with the generator still set to give the i.f. adjust the secondary core for minimum output. For a well-designed detector transformer this will be very nearly zero voltage. Return the meter to A-B and readjust the primary core for maximum output.

The overall response can now be checked by connecting the meter at C-D, and with the nominal i.f. injected into the i.f. valve the reading will be a minimum. If, now, the frequency is first increased and then decreased, two voltage maxima will be found.

These should be equally spaced on either side of the centre frequency (i.f.) and about 240kc/s apart. The curve between the peaks should be reasonably linear as shown in Fig. 2. Slight readjustment of the cores is permitted to obtain optimum results.

This procedure is only applicable to the ratio detector; the method of aligning a Foster-Seeley type of circuit will be described in a later issue.

NEW PHILIPS L.F. VALVE VOLTMETER

Chief features of the new type GM6017 L.F. Valuer Voltmeter recently introduced by Philips Electrical Ltd. are its excellent frequency range—2c/s to 200kc/s—and high sensitivity.

Designed for the acoustic and ultrasonic frequencies, this instrument can be used to measure a.c. voltages when investigating electro-acoustical and electro-mechanical phenomena.

There are 10 measuring ranges covering 0–10mV up to 0–300V. An extremely accurate R.C. Generator supplies fully-stabilised calibrating voltages of 10mV, 100mV, and 1V at 400c/s, which can also be used for other purposes such as bridge-feed circuits, impedance measurement, etc.

Output voltage to the moving-coil meter is obtained from a germanium diode bridge rectifier. By replacing this with an internal resistor, the GM6017 can be used as a wide-band amplifier with a gain of 1000X.

Other features are automatic protection against over-loading; a separate capacitor which can be shunted across the meter circuit to avoid needle vibration at low frequencies; and a linear anti-parallax scale.

New Brimar Valve Manual

We'd hate to be without this book—and now the 6th Edition of the Brimar Radio Valve and Teletube Manual has been released, bigger and better than before, but still at $s. New types valves for F.M. and Band III are included, as well as the Brimar range of transistors, both Junction and Point Contact types. Replacement and obsolete types are retained for the benefit of Service Engineers who wish to refer to their characteristics in order to substitute modern types. The circuit section has been enlarged, and the CV Series has been added to the Equivalents List.

ERRATA

In “A Progressive Receiver,” Part 1, in the April issue, the coil L was incorrectly quoted as an Osram type QA5. The correct type number is QA8.

APOLGY

Owing to a printer's error, the price of the Litesold soldering instrument was given as “from 9/6” in their advertisement on p. 635 of the May issue. This should have read “from 19/6.” We apologise to readers and to Light Soldering Developments Ltd. for the inconvenience which resulted from this error.

THE RADIO CONSTRUCTOR

Let's Get Started 24: HEARING'S NOT BELIEVING

by A. P. BLACKBURN

YOU DON'T HAVE TO HAVE BEEN READING or talking radio long before the term 'dB' crops up. And thereafter you are always meeting it. You know how it is—see an unfamiliar word once and for the next fortnight it finds its way into every conversation, somehow. The maddening thing is that, at the first meeting, one rarely troubles to find out what these words mean, or why they appear in that particular context. It's only when they repeatedly thrust themselves before you that you are driven to making enquiries.

Now this term 'dB'. You've probably seen or heard it countless times, and you probably realise that the letters stand for decibel. The hibrow definition of decibel is a unit of transmission, but we needn't worry about that yet. The name decibel was derived from Alexander Graham Bell, the inventor of the telephone, and came into use way back in the 1920's. In those days, communication by telephone had reached a relatively advanced stage, but the absence of valve amplifiers caused the engineers some concern about the loss of signal along the line. Naturally, power the symbol P_1 and the received power P_2, and we can express this as

$$P_1 = 10^{10}$$

(100) is only another way of saying the tenth root of 10. This expression gives us a unit of attenuation, so if a system has N units of attenuation,

$$P_1 = 10^{10}$$

or, in a logarithmic form,

$$N = 10 \log_{10} P_2$$

(2)

The unit of attenuation that we defined in (1) above is called the decibel. So we may say that the attenuation N in (2) is N decibels.

In a nutshell, that is the history of the decibel. We come now to its place in present-day radio.

![Diagram](image1)

![Diagram](image2)

various standard methods were adopted to compare the quality of the lines, and one attempt to lay down a satisfactory standard was the '500 cycle mile.' It was found that the standard cable had a very convenient attenuation at 88c/s. At this frequency the ratio of the transmitted power to the received power at the other end of the cable, was found to be 100. Give the transmitted

Gains and Losses

The decibel is not confined only to attenuation, of course. It has the happy disposition of being able to lend itself equally well to gain, so that we can use it when dealing with amplifiers, etc. Since we have also expressed the decibel in terms of power, we can find a way of using the db in terms of voltage, which is very useful in radio circuits where
we are often primarily interested in voltage gains and losses.

Fig. 1 shows a network—in the box—which may be an amplifier or an attenuator; at the moment it doesn't matter which. The input resistance of the network is R_1 and the output resistance R_2. The power in R_1 is, therefore, E_1^2/R_1, and the output power is E_2^2/R_2.

If we substitute these values for P_1 and P_2 in (2), we get,

$$N = 10 \log_{10} \frac{E_1^2}{E_2^2}$$

For this little bit we need a table of logarithms to the base 10. The log of $1000 = 3.097$.

...$N = 20 \times 3.097 = 60.98$ db.

Well, of course, that's all very interesting, but we all know that it would have been just as easy to say that the gain was 1,200 times. In this simple case, that is true. But look at Fig. 2, where we have three boxes, one containing an amplifier, followed by an attenuator followed in turn by an amplifier.

The first amplifier has a gain of 50 times, the attenuator a loss of 12 times and the second amplifier a gain of 34 times. The ratio of output to input voltage is, therefore,

$$N = 10 \log_{10} \frac{E_1^2}{E_2^2}$$

A further simplification is to take the square outside the log, and we get,

$$N = 20 \log_{10} \frac{E_1}{E_2}$$

and by a similar process, except that $P = 1/R$, we get,

$$N = 20 \log_{10} \frac{R_1}{R_2}$$

The important thing to notice is that the ratio of input and output voltages and currents may be expressed in db, only if the input and output resistances are equal.

As an example of the use of (3), consider Fig. 1 as an amplifier with an input voltage of 0.1 volts and an output of 120 volts, R_1 and R_2 being equal. From (3)

$$N = 20 \log_{10} \frac{120}{60.98} = 20 \log_{10} 1200 \text{ db}$$

We have therefore, two advantages in expressing gain or loss in db's. We cut out the extra work of multiplication or division, and merely add or subtract successive gains or losses, and we don't have to juggle with large numbers which tend to get out of hand.

Further Justification

Many of you may feel that so far I haven't made out much of a case for the use of the decibel. However, there is a strong justification for its use.

The ear is non-linear. This means that if a sound impinging upon the ear produces a sensation of magnitude to the listener, then doubling the intensity of the sound will not produce a sensation twice as loud. That is, the magnitude of sensation would not be 25. In fact, the listener will judge the sound to have increased by the logarithm of 2 times 8. He will think, therefore, that the sound has increased by 3 times. In practice, this change is too small for a normal observer to detect, but if the original sound were increased ten times and then ten times again, the listener would feel that there had only been a doubling of volume between the two increases from ten times to one hundred times.

Now this results in a remarkable fact. Suppose an amplifier were producing 1 watt into a loudspeaker. If the volume were increased 10 times, the output became 2 watts, the ear would detect the same change in loudness as when the output were increased from 2 to 4 watts, and 4 to 8 watts, etc. In other words, the ear makes an impression of equal changes in volume at any level if the power change is 2 to 1.

Fig. 3 shows how the ear responds to sound. The vertical axis represents the power delivered from the amplifier, and the horizontal axis represents the sensation experienced by the listener. At 2 watts the listener experiences one unit of loudness; at 4 watts, 2 units; at 8 watts, 3 units, and so on. All these facts help considerably in assessing amplifier performance.

Response Curves

We already know that in amplifier work all frequencies are not amplified equally. We normally expect to find a tailing-off of the gain at high frequencies and low frequencies. Response curves are usually drawn with gain on the vertical axis and frequency along the horizontal one. We can try this first of all on ordinary graph paper, and we will get a curve rather like that in Fig. 4. This shows us that the output voltage falls to half of its maximum value at 25 c/s and at something over 10 kc/s. The break in the middle of the curve is to enable all the curve to fit into the paper.

We have already seen that an increase or decrease of 50%, say, of gain, does not give the listener an impression of a 50% change in loudness. Fig. 3, then, gives a false impression of the amplifier performance from the point of view of the listener, and what is more, it is on the pessimistic side. Since no radio manufacturer would care to publish erroneous details of his latest masterpiece, the vertical scale of Fig. 4 would be marked off in decibels. At the same time, the horizontal scale would be marked off logarithmically, as shown in Fig. 5. Special paper is used for this purpose, called log. graph paper. This enables the whole of the frequency scale to be shown without the break as in Fig. 4. The way in which this graph is prepared will probably need a little explanation.

The amplifier response would be measured by one of the usual methods, say by applying an input signal of constant amplitude at various frequencies.

JUNE 1955
The output voltage would be noted at these frequencies, and from the results Fig. 4 would be drawn. However, we don’t want to draw Fig. 4, because it doesn’t give a true picture, but Fig. 5 does.

The maximum output voltage is taken as zero db. The requirement is to express the gain in db in terms of the maximum gain. An extract from our table of results might look as follows:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Gain db</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 c/s</td>
<td>100</td>
</tr>
<tr>
<td>100 c/s</td>
<td>100</td>
</tr>
<tr>
<td>50 c/s</td>
<td>94</td>
</tr>
<tr>
<td>25 c/s</td>
<td>50</td>
</tr>
</tbody>
</table>

To complete the third column, we can use expression (3)...

Then, \[N_{db} = 20 \log \frac{V_1}{V_2} \]
and \[N_{db} = 20 \log \frac{100}{94} = -0.906db \]
\[N_{db} = 20 \log \frac{100}{50} = -6.02 db \]

and so on.

Now these figures merely state that at a certain frequency, say 50 c/s, the gain is 0.9 db down on the maximum gain. Note that maximum gain does not mean the gain when the volume control is hard over; that is kept constant the whole time. It means the gain over the middle portion of the graph, between about 100 c/s and 4 kc/s.

As the gain is so many db down on the maximum, a minus sign is placed in front of it. Losses are always prefixed by a minus sign. Having completed the table, we can now draw Fig. 5.

Difficulties

Calculating db values and getting back from db’s to voltage or power ratios can lead one into an awful tangle. Most of us remember logarithms best for their association with the schoolmasters on summer afternoons, so perhaps a refresher course is called for.

There is insufficient space to deal adequately with such a mathematical concept as logarithms here. However, the use of log. tables is not as complicated as may be imagined. Suppose we wish to find the log of 2.54. Simply look in the tables for 25 in the left hand vertical column, and 4 in the top horizontal column. Where the two columns extending from these numbers intersect, we find the figures 4048, which gives us the answer of 0.4048. If the number had been 254, we get 1.4048. You will remember, now that pi this is coming back to you, that if the number is between 1 and 10, the log is less than 1; if the number is between 10 and 100, the log is 1; something; if the number is between 100 and 1000, the log is 2; something; and between 1,000 and 10,000, 3; something. So that the log of 1,350 is 3.1303. The number found from the log. table always comes after the point. The number in front of the point is decided by the above rule.

The easiest way of dealing with the voltage or power ratio involved is always to ensure that it is more than one. For example, from expression (3), \(E_1 \) might be 2 volts and \(E_2 \) 2.8 volts. This will mean finding the log of 2.8, or 1.7. This can lead to trouble unless you are pretty familiar with the use of log. tables. Instead, all you need to do is turn \(E_1 \) and \(E_2 \) upside down so that (3) becomes:

\[N = 20 \log \frac{E_1}{E_2} \]

Then, \[N = 20 \log \frac{2}{2.8} = 20 \log .714 \]

From the tables, log. 1.4 = 0.1461,
\[N = 20 \times 0.1461 \times 3db \approx 10 \]

The next snag is, given a number of db, how do we convert them to voltage or power ratios. For voltage, the expression is:

\[E_1 = \text{antilog} N \]
\[E_2 = \text{antilog} \frac{N}{20} \]

and for power,

\[P_1 = \text{antilog} N \]
\[P_2 = \text{antilog} \frac{N}{10} \]

Suppose an amplifier were said to be 6db down at a particular frequency, and we wished to check the amplifier we had just built to this design. As this will be in terms of voltage, we use expression 5. We shall need a table of anti-logarithms, here.

Then, \[E_1 = \text{antilog} 6 \]
\[E_2 = \text{antilog} \frac{6}{20} = \text{antilog} 0.3 = 1.995 \]

from the tables.

In other words, the voltage at the middle frequency is approximately twice that of the voltage at the stated frequency. Or the voltage at the stated frequency fails to half that at the middle frequency.

A Conversion Chart

Many readers may, quite justifiably, find it tedious to wade through tables of logs., etc., and for this reason the chart shown in Fig. 6 has been included. This enables conversion to be made from db’s to voltage or current ratios directly. Conversion in the opposite way can be made equally easily.

Its use is best illustrated by example.

1. An amplifier gives 10 volts from the secondary of an output transformer at 1kc/s, and 5 volts at 10kc/s. How many db down (i.e., -db) at 10kc/s is this?

The same result is achieved if the loss ratio scale is used. In this case we divide 5 by 10, and from 0.5 travel to the left on the right hand vertical scale until we reach the same point as before, 6db.

Fig. 6. Courtesy E.M.J. Sales and Services, Ltd.

First we take the ratio of the two voltages which is near the top. Moving to the right from 2 we meet the line where it corresponds to 6db on the upper horizontal scale. The amplifier is, therefore, 6db down at 10kc/s.

The latter method is technically more correct, because there is a loss of voltage P1 that is not considered (10kc/s) compared to the reference point at 1kc/s.

(continued on page 692)
Radio Miscellany

Recently I referred to the usefulness of the so-called plastic soldiers for filling in unwanted holes in either metal panels or chassis. At least two brands I have tried could very effectively be used for jobs of this nature. They “work” easily, and set really hard with only a small amount of shrinkage. A good plan when using it for stopping is to cover the hole on the side which is going to show with gummed paper, which can be soaked off when the compound has set hard. This ensures a neat finish, and requires little or no rubbing down to become a virtually “invisible” repair.

In any case no readers of this column took anything I said about this use for these compounds to mean they were also useful for the cold soldering of connections. They aren’t. They will bond either a wire to a tag and it the metal surfaces were making firm contact they may make a nearly reasonable electrical junction for a time, although they would probably give trouble later.

More experienced readers will no doubt raise their eyebrows and wonder why I drop this up. Strange as it may seem to them, there are beginners who wire up their sets this way! Sometimes the list of uses printed on the packings (or even on the tubes of plastic solder themselves) suggest it can be used for “electrical” repairs.

Mr. Thompson of R.C.S. Products, who specializes in kit sets, tells me that he has had repeated instances of beginners who have complained that the sets don’t work at all or give a much poorer performance than they should. He feels that complaints of this kind suggest it can be used for “electrical” repairs.

Mr. Thompson of R.C.S. Products, who specializes in kit sets, tells me that he has had repeated instances of beginners who have complained that the sets don’t work at all or give a much poorer performance than they should. He feels that complaints of this kind suggest it can be used for “electrical” repairs.

CENTRE TAP talks about COLD SOLDER TV TUBE PRICES CATHODE-HEATER SHORTS

THE RADIO CONSTRUCTOR

The popularisation of TV. If someone can find a satisfactory way of equating the high cost of replacements, so much the better. If not, the constructor will simply put up with it, offsetting the extra expense against the many other economies he effects in the cost of his receivers and their maintenance.

Breakdown
Most viewers, if asked what they think it costs to make a cathode ray tube, will give some simply astonishing answers. Quite a lot seem to look at it as just a few bits of bent metal inside a big glass bottle, and imagine that thirty bob ought to cover it quite nicely. Even when one points out the lengthy and costly processes involved, where the B.B.C.’s 640 ft TV aerial tower is in the course of erection. At the moment of writing the crane used to hoist the sections into position still towers high above it, so I must put to hand on any useful tips on how to tackle a job of this sort. I have a deep personal interest in this job inasmuch as I once, with a half-a-dozen ft, had the erection of a 40 ft lattice mast. We bolted it together on the ground and in turn nearly killed each other in our struggles to get it to the vertical.

However, I have collected a substitute tip which must serve for this month. Shavings of perspex were dissolved in acetone (or chloroform is a suitable alternative) until it became syrupy. It was then used for painting over panel names, etc., where it dries in a few seconds forming a perfectly transparent and even coat which will stand any amount of rubbing.

Old timers will, of course, remember how we used to dope the stretched linen dia-

phragm with specks of perspex with celluloid dissolved in amyl acetate. This also makes a good protective and moisture proof varnish, but the perspex job is both clearer and harder.

BOOK REVIEW

This 144-page book, printed on fine quality art paper and stoutly bound in stiff card cover, is absolutely crammed from cover to cover with hints and tips on jobs to do and things to make. Some of the things covered are home repairs, handyman hints, fittings, furniture, toys, gifts, games, model making, wood turning, fretwork, etc., together with a host of other useful instructions. Divided into eight sections, each dealing with a separate subject, the book is well produced and good value for money. Section 1 deals with hints on the many uses of the Wolf Cub Home Constructor Equipping Set, Section 2 covers Joints and Maintenance; 4 features Fittings to Make; 5 shows Furniture to Make; 6:28 Toys and Games to Make; 7 offers Gifts for Friends and 8 Model making. Furniture is illustrated with simple and easy to follow drawings complete with suggested measurements of woods and other details. The book is recommended to readers interested in doing all kinds of the things listed above, which includes most of us, who prefer to carry out these tasks ourselves. Available from Wolf packers, it is also obtainable direct from the publisher at 5/9 post paid.

THE RADIO CONSTRUCTOR

JUNE 1955

686
NOTES ON RADIO CONTROL

8: Test Equipment

by QUENCH COIL

A Test Panel

The writer's personal experience has shown that the most frequent cause of short circuits, with consequent burnt-out valves, damaged meters and ruined components, is to make temporary hook-ups of twisted wires and crocodile clips when testing new circuits. The experimenter is strongly advised to construct a proper test panel, which will not only prove its worth on the bench but, if made portable, can be equally useful when conducting outside tests on transmitters and receivers.

Such a test panel can be quite simple in construction, or it can include any number of features which its builder may wish to incorporate. That made by the writer and described here, for example, includes a complete receiver, which has proved most useful when making outside range tests on transmitters. It obviates the necessity of taking the completed model on first transmitter tests. It also includes an arrangement whereby the relay actuating leads are taken to small plugs on the panel, so that various relays can be plugged in and checked and adjustments carried out for reliable contact operation, etc.

A further point, too, may be mentioned. One sees many radio control enthusiasts equipped with expensive multi-range test meters costing many pounds, carrying these instruments around on flying fields and river banks. The reader will agree that such places are not the safest for equipment of this type. An inexpensive test meter should be available for field tests. An excellent test meter can be constructed from ex-service meters costing a few shillings only. It is, of course, possible to use one such meter only and, by means of shunts and switches, make it suitable for reading a number of ranges of current and voltage. Some means must be found in this case of re-calibrating the scale of the meter, which for many will present difficulties. As the ranges of current and voltage met with in radio control work are quite limited in their variation, the writer prefers to include three separate meters on his test panel, by means of which all the usual currents and voltages can be directly measured. Those found most suitable by the writer are a 0.5 mA meter for measuring receiver current. This may well be fitted with a shunt and switch enabling it to read 0-50 mA, a range useful for measuring transmitter current; otherwise a separate 0-50 mA meter can be fitted to the panel. An ammeter reading 0-0.02A is a useful meter to fit, as it will prove valuable for checking total battery current, electric motor consumption, and so on. And, finally, a 0-150 d.c. voltmeter should be fitted.

A suggested layout for the test panel is shown in Fig. 1. No constructional details are given as these will depend on the builder's requirements.

A Wavemeter

The next most important item of test equipment is the wavemeter. This is used for checking that the transmitter is working on the correct frequency. A suitable job is shown in Fig. 2, with details of construction, and in the photo illustrating this article: the wavemeter being the small unit shown to the left of the photo.

The coil is tuned by the variable capacitor to the correct frequency for the radio control band (27 Mc/s). When placed near a transmitter radiating at this frequency, enough current is absorbed to deflect the meter. This meter is a very sensitive one—reading 0-500 micro-amps. The current from the coil and capacitor combination must be rectified before it will work the meter, and this is done by the small germanium crystal diode.

The details of the coil are as follows: wind 18 turns of 24 s.w.g., D.S.C.E. wire on a polystyrene former 2" long and ⅜" diameter; wind tight and secure ends of coil through double holes. Dope finally with polystyrene liquid. Mount the coil on top of the case as shown, keeping connecting wires clear of metal case. Connect bottom end of coil to earth tag. The coil former must be rigid on the case. The components must be mounted on a metal panel or directly on the front of the case. Wire with 18 s.w.g. tinned copper wire. All wires must be kept short and rigid; this is most important as any movement will upset the accuracy of the meter. When complete, the meter must be tuned to 27 Mc/s. This should be done with

THE RADIO CONSTRUCTOR

JUNE 1955

688
a signal generator covering the 27 Mc/s band or from another transmitter whose frequency is known to be accurate.

To operate, place the wavemeter close to the aerial of the transmitter, tune the transmitter condenser or trimmer until the wavemeter shows a peak reading, rotate past the peak reading and then back in order to accurately position the setting. It may be found that the tuning is very critical, but with some use it will be found that it is a simple matter to tune the transmitter to the correct frequency.

The wavemeter must be treated with great care, and it is a wise plan to have it checked from time to time with a signal generator. When tuning the transmitter it is most important to use an insulated trimming tool; under no circumstances must a screwdriver be used, as this will have capacity effect and the tuning will be inaccurate.

Field Strength Meter

The Field Strength Meter is used to indicate the relative intensity of the radiation from the transmitter under radiating conditions. It is most useful for the adjustment of directional aerials and to check the actual radiation of the transmitter in order to obtain the best results by varying aerial lengths, aerial coupling and so on.

Two circuits are shown, one using a triode valve, the other a pentode. Experimenters will, no doubt, like to build up both, but the less experienced constructor is recommended to start off with the triode version. The layout of the components is not critical, and a suggested arrangement is shown in the insert in Fig. 3, and in Fig. 6, which shows the position of the various components on the panel of the instrument. The general appearance of the completed meter is shown on the right of the photo illustrating this article. Assemble all components on the back of the panel; wire up with 18 swg. tinned copper wire, keeping all wires rigid and short. The batteries should be located inside the case of the instrument and their leads kept short and twisted together. When once calibrated, neither the aerial length nor the valve must be changed. Should this be necessary for any reason, the meter must be re-calibrated. To ensure accuracy of the instrument it is wise to have it checked by a radio engineer or another radio control enthusiast possessing a signal generator covering the 27 Mc/s band. Details of the aerial mounting are shown in Fig. 5.

When making tests, the positions of the transmitter and the field strength meter must always be the same distance and direction from each other. They should also be clear of buildings and damp ground. This is most important when making checks of relative strengths of different transmitters.

When the meter is switched on, it should show a full scale reading. In the circuit of Fig. 4, this can be adjusted by the variable resistor R_2. On tuning to the transmitter signal, the reading will drop. Tune the instrument carefully so as to get the lowest reading. Note the reading and then make the next test. In this way, comparative checks
can be made on the effects of adjustments to the transmitter, aerials and so on.
It will be found that as the battery supply drops off, the meter will not read full scale.
This does not matter providing the reading is stable, as it is comparative readings which are needed, not the actual ones.
Finally, a word about a simple little test gadget which will be used as much as any other in the workshop (Fig. 7). It consists of a loop of stiff wire bent into a circle of about 1½" diameter. The two ends of the wire are soldered to the contacts on a 0.6A flash lamp bulb. When this loop is held over the tuning coil on the transmitter, it will absorb some of the radio energy and the bulb will light. As the loop is brought near to the coil, the transmitter meter reading will increase, thus indicating that the transmitter is loading up and is working properly.

LET'S GET STARTED—continued from page 685
At 10kc/s there is only one half the voltage present at 1kc/s.
2. An attenuator marked 10db is suspected of being faulty. In order to check it, the voltage loss must be found. If the test input voltage is 10 volts, what should the output voltage be?

This is a case of using the chart the other way round. First find 10db on the upper horizontal scale. Move vertically downward, until the diagonal line is reached. Read off on the “loss ratio” scale; in this case a little under 0.333. Now this is the ratio of the input to output voltage. We know the input to be 10 volts, so we can calculate the output voltage to be 0.333 × 10, or 3.33 volts.

3. An amplifier has a voltage gain of 300 times. What is this in db?
Here the “gain ratio” scale is used. From the chart, 300 represents approximately 48db. Although primarily intended for voltage and current ratios, the chart may be usefully extended for use on power ratios. It is quite simple to effect. The db scale merely has to be divided by two. Therefore a gain ratio of 2 becomes 3db, instead of 6db.
Before leaving the topic, it cannot be stressed too strongly that the db is defined as the logarithm of the ratio of two currents, voltages or powers. One hears considerable misuse of the unit in this respect. Also, when dealing in voltage or current, the resistances involved must be equal, otherwise an incorrect answer is obtained.

Improved version of Bib Recording Tape Splicer

Multicore Solders Limited announce that an improved version of their Bib Recording Tape Splicer is now available. It is referred to as the Mark 2 and incorporates two tape retaining clamps which, in addition to having extensions on them providing an even easier releasing arrangement, are also fitted so that the clamp openings both operate identically towards the tape recorder. It is claimed that this makes tape splicing a quicker and simpler job without losing any of the virtually foolproof advantages of the original Bib product.
Multicore Solders Limited state that if an earlier model has already been bought and the user requires this latest modification, the work will be undertaken on receipt of the Splicer, properly labelled with the owner’s name and address, and a postal order for 2/-. Particularly useful. It is for these readers that this article is intended, the writer using the prototype in conjunction with a converted RDFI unit for vision on an experimental basis, although any surplus vision from these is fed into the combined detector and first audio amplifying stage, from which the resultant signal is passed to the output circuit. No AVC is included, although this could easily be incorporated should
the reader desire to do so; the intention with the present design is to offer a simple straightforward inexpensive receiver. When correctly aligned an output of approximately 2.5 watts is achieved—quite adequate for the average room. The usual cut and try methods of coil winding have been eliminated, thus removing one of the major difficulties for the home constructor. The coils (see component list) may be obtained from The Teletron Co., and are produced to the writer’s specification.

Construction

The chassis is of aluminium and drilling details for this will be seen in Fig. 1. The valve base spigots are connected to earth and each stage should have a single earthing point. In the prototype, it was found that a solder tag firmly bolted to the chassis, one to each stage, is a satisfactory earth—probably due to the use of modern miniature valves. Screening across the valve base is not required, the grid and anode connections being separated by the earthed spigot. The wiring is straightforward and the usual precautions with reference to short and direct wiring apply.

RF Stages

The Mullard EF42 valves are utilised here. This RF pentode has a slope of 9mA/V at an anode current of 10mA. The inter-electrode capacitances are small, the input capacitance being 9.4pF and the output capacitance 4.3pF. The EF42 is a most excellent wide band amplifier at TV frequencies and will, for those interested, serve in this capacity up to 200 Mc/s. All the electrodes are connected to separate pins and therefore should not be used for anchoring purposes. An internal metal screen is incorporated within the glass envelope and no external shielding is necessary.

The valve pins are numbered in the circuit diagram, and care should be taken to earth pin 3 and also to externally connect pin 4 to the cathode if instability is to be avoided.

The aerial connection may either be taken direct to the aerial or, should the constructor live in a fringe area, to a pre-amplifier. An alternative would be to incorporate a further RF stage ahead of the circuit shown, in which case the circuit would be as for V1 and associated components. The coil L1 peaks at 41.5 Mc/s with a secondary peak at 50 Mc/s. L2 and L3 tune over the range 35 to 44 Mc/s. Coil connections are given in Fig. 3. The chokes shown in the heater line are self-supporting and are made by winding ten turns of 22 swg PVC covered wire on a ½-inch diameter mandrel. All resistors are half watt rating and all capacitors are of the silvered mica type, except C9 and C10 which are ceramic.

The resultant gain from these cascaded RF stages was found to be sufficient to enable this receiver to operate satisfactorily at a distance of some 32 miles from the London transmitter.

Component List

R1	22kΩ	½ watt Dubllier
R2	270kΩ	½ watt Dubllier
R3	3kΩ	½ watt Dubllier
R4	22kΩ	½ watt Dubllier
R5	3kΩ	½ watt Dubllier
R6	270kΩ	½ watt Dubllier
R7	4.7kΩ	½ watt Dubllier
R8	100kΩ	½ watt Dubllier
R9	22kΩ	½ watt Dubllier
R10	250kΩ pot. with switch	
R11	100kΩ	½ watt Dubllier
R12	2.2kΩ	½ watt Dubllier
R13	470kΩ	½ watt Dubllier
R14	270Ω	½ watt Dubllier
C1	3-30pF Trimmer (Philips)	
C2	500pF Mica TCC	
C3	500pF Mica TCC	
C4	500pF Mica TCC	
C5	500pF Mica TCC	
C6	3-30pF Trimmer (Philips)	
C7	500pF Mica TCC	
C8	500pF Mica TCC	
C9	50pF Ceramic	
C10	22pF Ceramic	
C11	0.01μF Tubular TCC	
C12	130pF Silver mica TCC	
C13	4x3μF Electrolytic 25V wkg.	
C14	0.05μF Tubular TCC	
C15	25μF Electrolytic, 25V wkg.	
C16	1x4μF Electrolytic, 350V wkg.	
C17	8μF Electrolytic, 350V wkg.	
C18	0.05μF Tubular TCC	
C19	500pF Mica TCC	
V1	EF42 Mullard	
V2	EF42 Mullard	
V3	3x3EF41 Mullard	
V4	5x4 Mullard	
V5	EZ41 Mullard	

Chassis—Kendall and Mousley

L1, 2, 3—The Teletron Co.

L.F. Choke—10H, 60mA

Mains Transformer—Ellison Type MT162, 250-0-250V, 60mA; 6.3V, 3A; 50V, 2A.

Speaker—Goodmans Type 74/243

B8A Bases—McMurdo
Detector
The EBC41 is used to good advantage here in a perfectly straightforward arrangement that should present no difficulty to the constructor. Those living in the London area would probably benefit from the inclusion of an AVC circuit to avoid overloading, in which case it could easily be included in the usual manner.

Output Stage
In a perfectly conventional audio amplifier stage, the EL42 delivers a satisfactory output. Coupled to the small 3½-inch speaker shown in the illustration, the resultant audio is sufficient for most purposes.

General view of the TRF TV Sound Receiver. The valves are as follows:—Left rear, 1st RF Stage; Left front, 2nd RF Stage; Centre valve, Detector; Right front, Output and Right rear, Rectifier. The control is Audio Gain combined with On/Off Switch. The position of the coils will be seen from Fig. 1.

THE BRITISH INTERPLANETARY SOCIETY
12 Bessborough Gardens London SW1

We feel that quite a number of our readers may be interested in the above Society. Whilst its objects are primarily those of space travel, much of the radio nature concerns the Society, particularly in the realms of radio control. Rocket propulsion as applied to guided missiles and high altitude exploratory rockets is another of their interests, and their Journal enables its readers to keep up to date in this sphere.

The list of books and publications available from the Society shows just how comprehensive are its interests, and we would recommend those of our readers who would like to know more of this latest scientific study to write to the Secretary and obtain further particulars of membership.

The only tuning required is the adjustment of the coil slugs for maximum volume. Once this has been obtained, a small quantity of wax, taken from an old condenser, should be poured into the top of the coil, thus obviating any movement of the slugs subsequent to lining up. Provided the layout of the chassis as shown in Fig. 1 has been closely followed, the coils will be found to tune into the sound channel with little or no trouble. Any departure from the layout will of course affect the stray capacitances present in the circuit, and thereby alter the tunable frequencies for which the coils were designed.
G2ACC offers you

AERIAL WIRE. 14 s.w.g. hard drawn copper enamelled, cut to any length, 4d. per yard

FEEDER CABLE. Belling Lee: L336 twin 80 ohm, 6d.; L650 coaxial 70 ohm, 1/3 yard; L1221 twin screened 70 ohm, 1/6 yard. Telecon: K23P twin ribbon 300 ohm, 9d. yard; K33B twin circular lowloss 300 ohm, 1 yard. Sample free on request.

COAX CONNECTORS. Belling Lee L734 plug, 1/3; L604 socket, 1/3; L616 Line Coupler, 1/6

"DISC" CERAMIC CAPACITORS. 500V d.c. (300V a.c.) w.g. Non inductive for I.F. suppression, etc., 470p, 0.001 mfd, 0.003 mfd, 0.01 mfd, 0.001 mfd, 0.001 mfd, 7 d.

CONSTRUCTIONAL MANUALS. Envelopes with manual and small scale plans: Viewmaster; Tele-King 6/6; Sound Master 6/6; Viewmaster: Big Picture Conversion 3/6. All components and individual lists available.

CATALOGUE No. 9. (64 pages illustrated of general short-wave and receiver components. Free on request. U.K. only.)

Postage extras on orders under £2

SOUTHERN RADIO & ELECTRICAL SUPPLIES

SOKAD WORKS
RELYNCH
SALISBURY
WILTS

Telephone Downton 207

HOME RADIO

of MITCHAM

FM Tuners

Have you started this NEW listening yet? Superb quality of freedom from interference and overlapping stations. This new V.H.F. service is being extended over the whole country. Start your tuner now.

Full constructional details including point-to-point wiring diagram, price 2/-.

The "FULL-TONE"

We can supply all the components for this new quality amplifier from stock. Ready punched chassis with tag strips, 8/6; Allen C13348, 18/-; complete set of resistors, 7/6. S.A.E. for detailed price list.

ALL PARTS IN STOCK for MULLARD and G.E.C. AMPLIFIERS.

SPECIAL OFFER

ACOS crystal microphones with table stand type Mic. 22. Usually £4 4 0, our price only 39/6. Limited number.

MONARCH 3-speed autochanger, £10 10 0, carriage paid.

JOINER R. COOPER

32 SOUTH END CROYDON SURREY

CROYDON 916

GUARANTEED—Over 3,000 in Stock

NEW

VALVES

NEW TESTED AND GUARANTEED

GUARANTEED

NEW SURPLUS...

DENCO FM RECEIVER

Chassis, all components, nuts & bolts, etc. £4 9 6 or with complete set of valves 6 7 6

DENCO FM RECEIVER

Clyson 5-channel Telefunken, less valves, 10/- (post 1/-)

"Panini" Crackle Paint, 3/- tin

Mc. Meters, 0-500 microamps (scaled 0-100V), 2" round

B.A. nylon loaded V.h.t. covers, with screens, 2/-, set 22/- doz.

B.C. 100 mfd, 450V w.gk. Can Electrolytics, 4/6 each

Dubilier 20 mfd, 450V w.gk. Tubular, 3/- each

B.E.C. 60-100 mfd 275V w.g. Flat pack, 5/- each

C.T.C. Visconol 0.01 mfd 125V, 6/6 each

Switch Toggles, S.P.S.T., 1/- each

Jack Plugs and Sockets, Brass Nickel Plated, 1/- doz.

Midget 100V Ceramic Valves, 3/- each

HIGH NOTE BUMPERS, 6-12V, 3/- each

R. COOPER

32 SOUTH END CROYDON SURREY

CROYDON 916

D. A. W. SKILLMAN

7 FRANCISE STREET—WEMOUTH

SOUTHERN RADIO & ELECTRICAL SUPPLIES

SOKAD WORKS
RELYNCH
SALISBURY
WILTS

Telephone Downton 207

HOME RADIO

of MITCHAM

FM Tuners

Have you started this NEW listening yet? Superb quality of freedom from interference and overlapping stations. This new V.H.F. service is being extended over the whole country. Start your tuner now.

Full constructional details including point-to-point wiring diagram, price 2/-.

The "FULL-TONE"

We can supply all the components for this new quality amplifier from stock. Ready punched chassis with tag strips, 8/6; Allen C13348, 18/-; complete set of resistors, 7/6. S.A.E. for detailed price list.

ALL PARTS IN STOCK for MULLARD and G.E.C. AMPLIFIERS.

SPECIAL OFFER

ACOS crystal microphones with table stand type Mic. 22. Usually £4 4 0, our price only 39/6. Limited number.

MONARCH 3-speed autochanger, £10 10 0, carriage paid.

JOINER R. COOPER

32 SOUTH END CROYDON SURREY

CROYDON 916

GUARANTEED—Over 3,000 in Stock

NEW

VALVES

NEW TESTED AND GUARANTEED

GUARANTEED

NEW SURPLUS...

DENCO FM RECEIVER

Chassis, all components, nuts & bolts, etc. £4 9 6 or with complete set of valves 6 7 6

DENCO FM RECEIVER

Clyson 5-channel Telefunken, less valves, 10/- (post 1/-)

"Panini" Crackle Paint, 3/- tin

Mc. Meters, 0-500 microamps (scaled 0-100V), 2" round

B.A. nylon loaded V.h.t. covers, with screens, 2/-, set 22/- doz.

B.C. 100 mfd, 450V w.gk. Can Electrolytics, 4/6 each

Dubilier 20 mfd, 450V w.gk. Tubular, 3/- each

B.E.C. 60-100 mfd 275V w.g. Flat pack, 5/- each

C.T.C. Visconol 0.01 mfd 125V, 6/6 each

Switch Toggles, S.P.S.T., 1/- each

Jack Plugs and Sockets, Brass Nickel Plated, 1/- doz.

Midget 100V Ceramic Valves, 3/- each

HIGH NOTE BUMPERS, 6-12V, 3/- each

R. COOPER

32 SOUTH END CROYDON SURREY

CROYDON 916

D. A. W. SKILLMAN

7 FRANCISE STREET—WEMOUTH

SOUTHERN RADIO & ELECTRICAL SUPPLIES

SOKAD WORKS
RELYNCH
SALISBURY
WILTS

Telephone Downton 207

HOME RADIO

of MITCHAM

FM Tuners

Have you started this NEW listening yet? Superb quality of freedom from interference and overlapping stations. This new V.H.F. service is being extended over the whole country. Start your tuner now.

Full constructional details including point-to-point wiring diagram, price 2/-.

The "FULL-TONE"

We can supply all the components for this new quality amplifier from stock. Ready punched chassis with tag strips, 8/6; Allen C13348, 18/-; complete set of resistors, 7/6. S.A.E. for detailed price list.

ALL PARTS IN STOCK for MULLARD and G.E.C. AMPLIFIERS.

SPECIAL OFFER

ACOS crystal microphones with table stand type Mic. 22. Usually £4 4 0, our price only 39/6. Limited number.

MONARCH 3-speed autochanger, £10 10 0, carriage paid.

JOINER R. COOPER

32 SOUTH END CROYDON SURREY

CROYDON 916

GUARANTEED—Over 3,000 in Stock

NEW

VALVES

NEW TESTED AND GUARANTEED

GUARANTEED

NEW SURPLUS...

DENCO FM RECEIVER

Chassis, all components, nuts & bolts, etc. £4 9 6 or with complete set of valves 6 7 6

DENCO FM RECEIVER

Clyson 5-channel Telefunken, less valves, 10/- (post 1/-)

"Panini" Crackle Paint, 3/- tin

Mc. Meters, 0-500 microamps (scaled 0-100V), 2" round

B.A. nylon loaded V.h.t. covers, with screens, 2/-, set 22/- doz.

B.C. 100 mfd, 450V w.gk. Can Electrolytics, 4/6 each

Dubilier 20 mfd, 450V w.gk. Tubular, 3/- each

B.E.C. 60-100 mfd 275V w.g. Flat pack, 5/- each

C.T.C. Visconol 0.01 mfd 125V, 6/6 each

Switch Toggles, S.P.S.T., 1/- each

Jack Plugs and Sockets, Brass Nickel Plated, 1/- doz.

Midget 100V Ceramic Valves, 3/- each

HIGH NOTE BUMPERS, 6-12V, 3/- each

R. COOPER

32 SOUTH END CROYDON SURREY

CROYDON 916

D. A. W. SKILLMAN

7 FRANCISE STREET—WEMOUTH
CONSTRUCTORS build these at low cost!

PERSONAL PORTABLE RADIO
30/-

PRESELECTOR
Component parts for this unit, as featured on page 352 of the May issue, are available as follows:

Panel and Chassis 3/4
Coil Holder 9d.
Coil to cover regd. range 10-23, 20-43, 40-100; and MW range each 3 1/4.
954 Valve 3/-
954 Valve Holder 2/-
0001/2uf Condenser 4/-
4uf Choke Variable potentiometer 3/-
Suitable resistors 2/-
Suitable condensers 2/-

ALL-WAVE RADIO
30/-

Ideal for the beginner or for those requiring a simple standby receiver.

POWER UNIT TYPE PUI
An ideal power supply for both these receivers and the Preselector. Also for inclusion in Test Equipment 120V at 20 ma, 63V at 1.5A.

32/6

Send 2/- for layout, Wiring diagram and Components Price List.

R.C.S. PRODUCTS (RADIO) LTD
II OLIVER ROAD (Mail order only) LONDON E17

YOU CAN RELY ON US

We specialise ONLY in radio and electronic components, a comprehensive stock of which are held by us, to supply Government, educational and commercial laboratories. Can we be of some help to you, the experimenter and constructor?

Here are a few of our many stock lines—

Tapped Volume Controls, jmg, jmg, jmg 7/6 each; Linear, jmg, jmg, 1mg, 6/6; Surplus Stock Potentiometers, less cheap, 2/3; with 4/3; D/P, 5/-; midget, wirewound, preset, etc., in stock.

All J.B. Scales and Gangs. Full vision, 13/9: 5LB, 27/6: 5LS, 26/6; 3-gangs in .0003 and .0005, 18/-; Single gang .0005, 9/-; Twin midget gang, covered, 11/-.

Bulgin Plugs, Sockets, Panel Lights, etc. Belling-Lee Co-ax. Plugs, 1/3, Sockets, 1/2. Plugs, Sockets, etc. Resistors. 10 ohms to 15 mgs in 5W, 5W; 5 ohm, 5W, 8, 2W, 1/4; midget 5W "T" type, 6d.; High stability 2%, 100-2 mgs, 1/6 each; wirewound (green vitreous), 30 ohms to 10K, 10 watts Max., 2/- each.

Over 200 T.C.C. types of Condenser. 189 types of Hunts. Electrolytics new and surplus. 10,000 surplus Valves plus large stock BVA Valves.

1/2 Silver Micas, 1.5pf to 100pf, 1/6; 100pf to 100pF, 1/3; 300pF to 500pF, 1/4 515pf to 815pf, 1/6; 1,000pF to 5000pF, 2/6.

COILS—COMPLETE RANGE OF Denco, Weymouth, Weartie, OSOR, R.E.P., Teletron, Denco M.U. UNIT PARTS, 9/2 PARTS, NULLARD '510' PARTS—ALL TAYLOR, AVO INSTRUMENTS IN STOCK. CELESTION, ROLA, ELAC, W.B., WHARFEDALE, GOODMAN SPEAKERS.

Send now for our Supplementary Winter List with H.P. Terms—Quotations S.A.E. Please. Postage extra.

Next to South Ealing Tube Station. 63 Bus.

82 SOUTH EALING ROAD
LONDON W5 Telephone EAL 5737

RADIO SERVICING CO